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Abstract

Optimal growth mechanisms in wall-bounded shear flows, in particular, plane Couette
and plane Poiseuille flow, with and without a destabilizing wall-normal temperature
gradient are studied extensively. New insights on the transient growth mechanisms
of arbitrary perturbations in both cases are obtained via the adjoint of the dominant
eigenmode and the extension of Squire’s transformation allowing us to propose universal
scaling laws.

In the case with a cross-stream temperature gradient in a Boussinesq fluid, a compre-
hensive non-modal stability analysis is performed over various Reynolds, Rayleigh and
Prandtl numbers. The scaling laws pertaining to transient growth in pure shear flows
are shown to hold even in the presence of a destabilizing temperature gradient. This
unstable temperature gradient only moderately increases the optimal growth. The lift-
up effect remains the predominant transient growth mechanism. The classical inviscid
lift-up mechanism characterizes the short-time behavior whereas the Rayleigh-Bénard
eigenmode without its streamwise velocity component characterizes the long-time be-
havior. In this fashion, the entire optimal gain curve is fully retrieved and interpreted.
Consequently, the role played by the Prandtl number as a parameter that couples tem-
perature perturbations and the lift-up mechanism is understood. The results are shown
to remain qualitatively similar over a general class of norms that can be considered as
growth functions.

In the case of pure shear flows, the implications of the Squire transformation are
extended to the (direct/adjoint) Squire equation and the entire eigenfunction structure of
the Orr-Sommerfeld and Squire modes (direct/adjoint). The role of this extended-Squire
transformation on the optimal transient growth of arbitrary 3D disturbances is thereby
elucidated in the case of parallel shear flows bounded in the cross-stream direction. It
also permits to demonstrate that the long-time optimal growth for perturbations of
arbitrary wavenumbers may be decomposed as a product of the respective gains arising
from the 2D Orr-mechanism and the lift-up mechanism. This asymptotic solution is
shown to describe the long-time and even the intermediate-time dynamics of the optimal
disturbances and provides a good estimate of the maximum optimal gain at all time.
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Chapter 1

Introduction

“Yet not every solution of the equations of motion, even if it is exact, can actually
occur in Nature. The flows that occur in Nature must not only obey the equations of

fluid dynamics, but also be stable.”

− L. D. Landau & E. M. Liftshitz (1959)

There are many examples in fluid flows wherein a very small action leads to the
development of a series of complex spatio-temporal behaviors. Hence, for over a cen-
tury now, hydrodynamic stability theory has been recognized as one of the important
aspects of fluid mechanics. By the early twentieth century, various problems of hydrody-
namic stability were recognized and formulated, thanks to Helmholtz [35], Lord Kelvin
[48], Reynolds [73], Bénard [4], Orr [65], Lord Rayleigh [71], Taylor [81], etc. Osborne
Reynolds [73] made one of the seminal contributions to the study of hydrodynamic stabil-
ity. In his well-known pipe flow experiments [73], a laminar flow, the smooth flow which
he recognized with a colored streak that extended in “a beautiful straight line” through
the tube, was shown to breakdown when a non-dimensional parameter Umaxa/ν

∗ (Umax
being the maximum velocity of water in the tube, a radius of the tube, and ν∗ the kine-
matic viscosity of the fluid at an appropriate temperature) exceeded a certain critical
value. This non-dimensional parameter is now called the Reynolds number. He noted,
“On viewing the tube by the light of an electric spark, the mass of color resolved itself
into a mass of more or less distinct curls, showing eddies, ..” and thus, introduced
some of the most essential questions in modern hydrodynamic stability: (1) When do
laminar flows break down? (2) What are the origins of such a breakdown? How are
time-dependent flows realized for given steady boundary conditions? (3) What are the
consequent developments of the breakdown, and do they eventually lead to turbulence?

More generally, it is in the differentiation between stable and unstable patterns of ad-
missible flows that the problems of hydrodynamic stability originate. The Navier-Stokes
equations admit a variety of steady solutions, the simplest being the so-called parallel
shear flows: plane Couette flow, Hagen-Poiseuille flow (pipe flow), plane Poiseuille flow
(plane channel flow), etc. These flow patterns are, however, not realized for various
ranges of parameters that characterize them, for example, the Reynolds number in engi-
neering applications, in nature, etc. It is reasonable to expect that such flow patterns are
inherently unstable to small perturbations which are inevitably present in the physical
systems and an instability could be regarded as the inability of a fluid flow to sustain
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against these perturbations. It is of fundamental interest in fluid dynamics to study
such instabilities, in order to understand many common flow situations.

1.1 Basic concepts

1.1.1 Method of normal modes

The analysis in terms of normal modes to study the stability of dynamical system of
particles and rigid bodies was already well-developed in Reynolds’ time. Stokes, Kelvin
and Rayleigh adapted the method of normal modes to fluid dynamics. In this method,
a known steady solution of the equations of motion for the system is perturbed by in-
finitesimal disturbances and the equations are linearised by neglecting the products of
the perturbations. It is further assumed that the perturbation of each quantity can be
resolved into independent components or modes varying with time t like eλt for some
constant λ, which is in general complex. If the real part of λ is found to be positive
for any mode, the system is deemed unstable because a general initial perturbation,
however small, will grow exponentially until it is no longer small. In fluid dynamics, the
motivation to analyze such linearized equations arises from the fact that the growth-rate
of a finite amplitude disturbance can, at each instant of its evolution, be found from an
infinitesimal disturbance with an identical shape. This is a consequence of the conser-
vative nature of the nonlinear terms in the Navier-Stokes equations. Thus, the onset
of any instability is always related to the mechanisms that are present in the linearized
equations. A general solution to these equations can be sought in terms of independent
modes varying exponentially in time. In the method of normal modes, one seeks such
modes which would grow, or decay, exponentially in time. Mathematically, this is in-
ferred from the spectrum of the linearized equations wherein the eigenvalues correspond
to exponential growth rates and phase speed of the disturbance. The eigenfunctions
represent the structure of the secondary flow at the onset of the instability.

In general, instability occurs because there is some perturbation of the equilibrium
between external forces, inertia and internal stresses of a fluid. To understand some
of the most basic physical mechanisms leading to instability in fluids it is important
to remove inessential characteristics of the flow. It is conventional in physical sciences
to consider a simple situation in which only one or a very few aspects of the flow are
important. Thus, a few idealized flows have been the subject of extensive theoretical and
experimental research for more than one hundred years. For example, Rayleigh-Bénard
convection bounded by horizontal planes is a classic situation wherein instabilities arising
from buoyancy forces can be analyzed; plane Poiseuille flow and plane Couette flow are
one of the simplest flow configurations wherein shear flow instabilities can be studied.

The onset of thermal instability in horizontal layers of a fluid heated from below
is well-suited to illustrate the many mathematical and physical facets of the general
theory of hydrodynamic stability. It commonly arises when a fluid is heated from below:
a horizontal layer of static fluid in which an adverse temperature gradient is maintained
by heating the underside. The temperature thus maintained is called adverse since, on
account of thermal expansion, the fluid at the bottom will be lighter than the fluid at
the top; and this is a top-heavy arrangement whereby there is a tendency for the static
fluid to redistribute itself and “fix the weakness” in its arrangement. This tendency of
the fluid, however, will be inhibited by its own viscosity and thermal conductivity. In
other words, if the temperature gradient is too small, heat will be transfered through
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Figure 1.1: Bénard cells in spermaceti[10].

the fluid by conduction alone and it is expected that the adverse temperature gradient
must exceed a certain value before the instability can manifest itself.

The first experiments on thermal convection date back to Count Rumford (1797),
Thomson (1881) and Bénard (1900). The experiments by Bénard, in particular, have
attracted great attention and are considered today as the first published results on
thermal convection. This early interest is also due to the fascinating pattern of regular
hexagonal cells (see figure 1.1) obtained for large time in his experiments. Stimulated
by Bénard’s experiments, Lord Rayleigh [71] wrote, “Bénard worked with very thin
layers, .. ... .. the layer rapidly resolves itself into a number of cells, the motion
being an ascension in the middle of a cell and a descension at the common boundary
between a cell and its neighbours.. ...they acquire surfaces nearly identical, their forms
being nearly regular convex polygons.... ..etc.” Rayleigh chose equations of motion
and boundary conditions to model the experiments. He assumed that the amplitude of
the disturbances was infinitesimal so that the equations could be linearized. Rayleigh
introduced the method of normal modes and showed that what determines the stability,
or instability, of a layer of fluid heated from below is the value of the non-dimensional
parameter gα∗∆Th4/κ∗ν∗, which is the well-known Rayleigh number. Here, g is the
acceleration due to gravity, α∗ the thermal expansion coefficient of the fluid, ∆T the
magnitude of the vertical temperature gradient across the fluid layer, h the height of the
fluid layer, κ∗ the fluid thermal conductivity and ν∗ the fluid kinematic viscosity at a
given temperature. In fact, Rayleigh derived the critical value of the Rayleigh number
at which thermal instability would occur along with the wavenumber of the disturbance
at the onset of thermal convection and the spatial structure of such disturbances.

The early success of the method of normal modes comes from the works of Kelvin
[48], Helmholtz [35], Rayleigh [71] and Taylor [81] who derived criteria for the onset
of instability in different flow situations. Indeed, the thermal convection problem is a
special case where at the onset of instability the principle of exchange of stability is valid
and a stationary pattern of motion prevails. The instability, thus, sets in as a steady
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Figure 1.2: Schematic of the lift-up mechanism.

secondary flow. In the case of a static fluid heated from below, the secondary motion
results from thermal convection. In contrast, if at the onset of instability oscillatory
motion prevails, one has a case of overstability, a term coined by Eddington [?]. In such
cases, a very small displacement from equilibrium provokes restoring forces so strong
that the system “overshoots” on the other side of equilibrium.

1.1.2 Transient growth analysis

One of the biggest shortcomings of the modal stability analysis is that it fails to predict
the onset of instability in some of the most common wall-bounded flows, for example,
pipe flow, plane Couette flow, etc. This is mainly due to the fact that the spectrum of the
linearized perturbation equations cannot completely describe the disturbance behavior
at all times because it fails to capture their short-term characteristics [75]. In the case of
parallel shear flows, the modal stability analysis predicts that two-dimensional spanwise-
uniform disturbances provide the most dangerous asymptotic state at any given Reynolds
number. Many experiments in the presence of high free-stream turbulence [50, 49, 60]
show that transition is usually preceded by the presence of streamwise motion in the
form of streaks and not via Tollmien-Schlichting waves as predicted by modal stability
analysis. For example, a boundary layer which is subjected to free-stream turbulence
levels in the range 1−6% develops streamwise elongated regions of high and low stream-
wise velocity which lead to secondary instability and breakdown to turbulence [60]. In
addition, it was commonly observed in experimental investigations [50, 49, 76] that a
secondary flow is established on a substantially shorter time scale compared to that via
Tollmien-Schlichting waves. It is, however, known that oblique disturbances, in par-
ticular streamwise-uniform disturbances, result in large perturbation kinetic energy at
short times [21, 53]. In plane Poiseuille flow, the maximum non-dimensional growth rate
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Figure 1.3: Schematic of the Orr mechanism [34].

based on half-width and centerline velocity is approximately 0.04 for two-dimensional
spanwise-uniform disturbances and at this growth rate, it would take the mode about 57
time units to grow one order of magnitude. It was not until a few decades ago that the
short-term perturbation dynamics and its consequences on transition to turbulence and
scale selection at the onset of such transitions was considered seriously in hydrodynamic
stability theory.

“..a finite disturbance independent of the streamwise coordinate may lead to instability
of linear flow, even though the basic [flow] velocity does not possess any inflection

point.”

− T. Ellingsen & E. Palm (1975)

This was one of the earliest statements on the importance of transient growth of dis-
turbances which may, however, be exponentially stable in the sense of modal stability
analysis. Later, Landhal [53] showed that all parallel inviscid shear flows are unstable to
a wide range of initial infinitesimal three-dimensional disturbances, in the sense that, ac-
cording to the linear theory, the kinetic energy of the perturbations will grow at least as
fast as linearly in time. He remarked that such a finding should have strong implications
on the observed tendency of shear flows to develop streamwise streaky structures before
leading to turbulence via Klebanoff modes [50] in the so-called by-pass transition route
[62, 63]. In fact it was observed that in boundary layer flows with high free stream tur-
bulence levels, the initial growth of streaky structures is related to such transient growth
processes [60]. For flows such as plane Couette flow that do not support unstable normal
modes, this transient growth must account for whatever increase of disturbance kinetic
energy is observed, assuming that the initial disturbance is sufficiently small that non-
linear terms in the governing equations are negligible. For flows such as plane Poiseuille
flow, that do support unstable normal modes, the onset of transition to turbulence is
determined by the nature of initial perturbations [31]. The importance of the transient
growth mechanisms in understanding how finite amplitude two-dimensional disturbances
arise in shear flows was soon established [6, 72]. It was later shown that it is possible
to tap the mean shear energy using certain perturbations, such as streamwise-uniform
perturbations with non-zero wall normal velocity, that develop into the required primary
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disturbance on time scales comparable to those associated with the secondary instabil-
ities even though the basic shear flow is stable or supports, at most, weak exponential
instability [24, 6, 54, 75, 76].

This process of short-term increase in disturbance kinetic energy occurs in the ab-
sence of nonlinear effects. Mathematically, it can be explained by the non-normality of
the governing linear operator [6, 72] i.e., the non-orthogonality of the associated eigen-
functions and it is not necessarily limited to degenerate eigenvalues [72]. Even though
each eigenfunction may decay at its own rate (related to its eigenvalue), a superposition
of non-orthogonal eigenfunctions may produce large transient growth before eventu-
ally decreasing at the rate of the least stable eigenfunction. Physically, the source of
transient growth of disturbances is related to the inviscid vortex tilting process in the
presence of base flow shear whereby a disturbance can feed on the base flow kinetic
energy for a short time. The lift-up mechanism [6, 21, 53] and the Orr mechanism [65]
are two such commonly identified growth phenomena in a shear flow. The former is
considered as the dominant mechanism in many wall-bounded shear flows, for instance,
the two-dimensional boundary layer. According to the lift-up mechanism, a very small
streamwise-uniform vortex superimposed on a parallel shear flow can lift-up low-speed
fluid from the wall and push down high-velocity fluid towards the wall (see figure 1.2).
In the schematic shown in figure 1.2, x, y and z denote the streamwise, cross-stream and
spanwise directions, U0(y) the base flow velocity and u the streamwise disturbance ve-
locity. The sketch depicts an initial disturbance configuration in the form of streamwise
vortices (x-component vorticity) which due to the presence of a base flow with non-zero
cross-stream vorticity results in the production of streamwise perturbation velocity. In
fact it is possible to show from the linearized perturbation equations that a streamwise-
uniform vortex will continuously produce a u-velocity proportional to time t and base
flow shear uy via the lift-up mechanism until viscous dissipation becomes important at
times of the order of Reynolds number Re [21, 53]. Hence, the growth in disturbance
kinetic energy could be O(Re2). The Orr-mechanism, is associated to the increase in
disturbance kinetic energy due to an initial disturbance field that principally consists of
spanwise-uniform vortices (z-component vorticity) that are tilted against the direction
of the base flow as shown in figure 1.3. Such a disturbance can feed on the base flow
kinetic energy via the Reynolds stress production term

∫

−uvUydy. Here, uv is the
average of the product of the streamwise velocity u and cross-stream velocity v (along
y-direction) over an x-z plane at some height y and Uy is the base flow shear. This
term is positive for an initial configuration as shown on the left of figure 1.3 and hence
there is continuous production of disturbance kinetic energy until the base flow velocity
U(y) tilts this disturbance configuration to such an extent that viscous dissipation and
Reynolds stress production terms become equal. Eventually, the perturbations start to
lose their kinetic energy to the base flow as they are tilted indefinitely so as to align
with the base flow vorticity (rightmost sketch of figure 1.3).

“To accurately describe disturbance behavior [in wall-bounded shear flows] at all times,
it appears necessary to introduce a finite-time horizon over which an instability is

observed.”

− Peter J. Schmid (2007)

Thus, it is fundamental to the understanding of shear flow instabilities that one
follows an analysis which determines the most amplified perturbations in such flows
and, eventually, describes their evolution in time. The quantitative determination of the
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short-term disturbance dynamics is the goal of the so-called transient growth analysis.
Many new concepts and techniques have been developed and successfully implemented
during the last two decades to characterize such phenomena [75, 76].

1.2 Rayleigh-Bénard-Poiseuille/Couette flows

1.2.1 Motivation

It is clear that modal stability analysis offers good predictions for the onset of instability
in Rayleigh-Bénard convection problem. It fails, however, in the case of many simple yet
common wall-bounded shear flows, for example, plane Couette flow and plane Poiseuille
flow. In the study of turbulent shear flows, plane Poiseuille flow and plane Couette
flow are prototypes in which perturbations exhibit large transient growth in disturbance
kinetic energy O(Re2) via the mechanisms discussed earlier. It is reasonable to assume
that the presence of a cross-stream temperature gradient in a parallel shear flow would
influence transient growth. If so, what are the dominant physical mechanisms of tran-
sient growth in such flows? Is lift-up dominant at all Rayleigh and Prandtl numbers?
It is the aim of the present dissertation to examine thoroughly the influence of buoy-
ancy induced by an adverse cross-stream temperature gradient on the transient growth
phenomenon in plane Couette flow and plane Poiseuille flow.

Indeed, there are simple stationary solutions to the Navier-Stokes equations for fluid
motion between two infinitely long, rigid walls (moving/fixed) maintained at different
temperatures (cold upper wall or vice versa) with no-slip boundary condition. If the
temperature difference between the walls is small enough then conduction would be the
only means of heat transfer and one expects a linear temperature variation between both
walls to prevail. The base flow, under the assumption that the buoyancy force is the
only temperature effect in the momentum equation, could be plane Poiseuille or plane
Couette flow depending on whether the walls are stationary or moving relative to each
other. Hereafter, the former is referred to as Rayleigh-Bénard-Poiseuille flow (RBP ) and
the latter is referred to as Rayleigh-Bénard-Couette flow (RBC). From an experimental
as well as a theoretical point of view, the Rayleigh-Bénard convection problem is the
simplest and most easily accessible case, in which the onset of instabilities can be readily
studied. Plane Couette and plane Poiseuille flow represent prototype shear flows in which
the onset of instabilities depends strongly on the initial conditions and hence, on the
background disturbance field. Thus, the linear stability analysis of Rayleigh-Bénard-
Poiseuille and Rayleigh-Bénard-Couette flows is expected to be of fundamental interest
in hydrodynamic stability.

Moreover, this type of fluid motion is commonly encountered in various forms in geo-
physical flows, heat exchangers, electroplating, chemical vapor deposition, etc. Thermal
convection in the presence of the atmospheric boundary layer that leads to the alignment
of clouds in the lower atmosphere is a well-known example of thermal instability in the
presence of a shear flow [52]. The study of such flows is useful in fields often remote
from fluid dynamics such as plankton research. For example, the motion and spatial
distribution of phytoplankton and algal suspensions are affected by convection in the
presence of shear flows in ice-covered lakes [46, 14]. It is not surprising that shear flows
involving thermal convection are fundamental to flow situations arising in astrophysics,
meteorology, and many engineering applications.
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Figure 1.4: Schematic of “longitudinal” rolls as observed by Bénard and Avsec (1938)

1.2.2 A brief history of RBP and RBC flows:
Modal stability

The thermal instability leading to secondary motion in the form of Rayleigh-Bénard con-
vection rolls has been well-known for more than a century. If the domain is large enough
compared to the depth of the fluid layer, the convection rolls do not have a preferential
orientation. In the presence of a shear flow, however, modal stability theory predicts that
streamwise-uniform convection rolls would occur. In fact, the preference for streamwise-
uniform convection rolls (called longitudinal rolls in the literature) in unstably stratified
(adverse temperature gradient) shear flows was first discovered by Idrac [41]. It is in-
teresting to note that Idrac was interested mainly in possible atmospheric applications,
including migration patterns of birds from Europe to Africa. The phenomenon, however,
has long since intrigued a number of researchers. In the case of a static fluid heated from
below, convection develops in the form of locally two-dimensional rolls. If allowed to
develop in a sufficiently large aspect ratio apparatus and from background disturbances
instead of controlled initial disturbances, rolls can have a random orientation. Thus, in
Idrac’s experiments, the emergence of a well-ordered motion from a seemingly random
state is fascinating to say the least. Terada [42] made quantitative observations of these
rolls in shear flows. For example, he noted that, for small values of the gap height h,
the wavelength of the rolls was about 2h. Later, the linear stability analysis of RBP
and RBC flows was motivated by the observation of cloud streets [2, 3, 52] and sand
dunes in deserts [33]. The convection rolls in the lower atmosphere tend to align in
the direction of the atmospheric boundary layer. The moisture in the up-flowing warm
air of these rolls condenses to form clouds that are aligned in the streamwise direction,
thereby leading to the formation of cloud streets [52] (see figure 1.6). It was not until
Chandra in 1938 [9] that experimentalists claimed that shear does not affect the critical
Rayleigh number for plane Couette flow. However, definitive evidence was not available
until Ingersoll [43] showed via heat flux measurements that this is true. Ingersoll [43]
used two horizontal concentric discs with fluid contained between them. Such a set-up
allows for reduced end effects. The upper disc is rotated at a constant angular velocity
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Figure 1.5: Sketch of Idrac’s experiment (1920). It accounts for the first published result
of “longitudinal” convection rolls.

Figure 1.6: Cloud-streets as formed due to the presence of convection rolls aligned along
the shear of the atmospheric boundary layers [79]. This photograph was taken from a
Japan Coast Guard aircraft off the north-eastern coast of Hokkaido. It shows a bird’s-
eye view of cloud streets over the Sea of Okhotsk. According to the source [59], these
clouds floated just over the sea surface, stood 300 meters tall and stretched for over 100
kilometers.
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while the lower disc is kept at rest. The gap between the discs is maintained small. The
results from Ingersoll’s experiments are displayed in figure 1.7. It shows Nusselt number
Nu which is the ratio of heat transports with and without convection as a function
of Rayleigh number for various Reynolds numbers. The Reynolds numbers (evaluated
at the outer radius) are denoted by various symbols. Since the symbols collapse on a
single curve, it is concluded that the critical Rayleigh number of thermal convection in
Couette flow is independent of Reynolds number. For the sake of completeness, it is
here mentioned that Akiyama, Hwang and Cheng [1] determined experimentally that
the longitudinal rolls form near the Rayleigh number Ra = 1708 (based on the channel
width) for the case of fully developed, plane Poiseuille flow. This experimental result is
close to the theoretical value RaRBc = 1707.78. In fact Akiyama et. al. [1] observed weak
convection in the form of rolls for Ra < 1708 and non-zero Reynolds numbers Re > 0.
It was, however, attributed to the subcritical instability arising from non-Boussinesq
effects.

Thus, the experimental results predominantly indicate that longitudinal rolls oc-
cur at a fixed Rayleigh number, independent of Reynolds number, and that the onset
of secondary motion occurs via streamwise convective motion. However, in order to
demonstrate that spanwise-uniform rolls are more stable than streamwise-uniform rolls,
the linearized equations should be solved subject to appropriate boundary conditions.
The earliest known stability analysis of plane Poiseuille flow with unstable thermal strat-
ification in a Boussinesq fluid is due to Gage and Reid [26]. If ReTSc (≈ 5772.2) is the
Reynolds number (based on the channel half-width) at which Tollmien-Schlichting waves
(TS) become unstable in plane Poiseuille flow without temperature effects, Gage and
Reid showed that for all Reynolds numbers less than a critical value, approximately
equal to ReTSc , the dominant eigenmode of RBP is in the form of streamwise-uniform
convection rolls due to the Rayleigh-Bénard instability (RBI) above a critical Rayleigh
number RaRBc = 1707.78 (based on the channel width). This value is independent of
both Reynolds number and Prandtl number. It was concluded that the effect of a shear
flow on the linear stability of a fluid subjected to unstable cross-stream temperature gra-
dient is only to align the rolls along the streamwise direction. Furthermore, the effect of
the cross-stream temperature gradient on the Tollmien-Schlichting instability (TSI) is
negligible for all Ra < RaRBc : the critical Reynolds number for the onset of TS waves
in RBP remains very close to ReTSc ≈ 5772.2.

The complete linear stability characteristics of plane Couette flow with unstable
thermal stratification in a Boussinesq fluid (RBC) were first computed by Gallagher
and Mercer [27]. As in RBP flow, the dominant eigenmode at all Reynolds numbers is
in the form of streamwise-uniform convection rolls due to RBI.

The energy method [77] has been used to obtain bounds on the Rayleigh and Reynolds
numbers below which the flow is stable to disturbances of arbitrary amplitude (i.e., the
flow is globally stable). It is to be noted, however, that such bounds can be obtained
only via defining an appropriate “energy” for the system. This is a subject of debate
in shear flows with adverse cross-stream temperature gradient and we simply postpone
the discussion until chapter 4 (section 4.1.1). For the case of plane Couette flow, it was
shown by Joseph [44] that if

Ra+
1

4
Re2 < 1708, (1.1)

any infinitesimal disturbance decays monotonically with time. Here, the Reynolds num-
ber Re is based on the half-channel width and the wall velocity for the case when the
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Ra/RacRB

Nu

Figure 1.7: Rotating disk experiments from Ingersoll [43]: Nusselt number as a function
of Rayleigh number for various Reynolds numbers.

rigid walls are moving at equal speed in opposite directions. Equation (1.1) implies that
time-dependent subcritical instabilities do no exist in this domain of control parameters.
In addition, it was demonstrated by Joseph [44] that the “most dangerous” disturbance,
(i.e., the disturbance yielding the lowest “energy” bound for various Reynolds number)
has the form of a longitudinal roll disturbance. It is to be mentioned, however, that these
results are based on calculations wherein only kinematically admissible disturbances are
considered.

Clever, Busse and Kelly [13] studied the secondary instability of the streamwise-
uniform rolls in RBC in an effort to understand the onset of waviness in the rolls
and to relate them to the formation of cloud streets in the lower atmosphere. The
secondary instabilities of the convection rolls were determined to occur as standing waves
or simply as waves that propagate along the rolls. Clever and Busse [11] later considered
the three-dimensional flows arising from the secondary instability: they computed the
finite-amplitude solutions that evolve from the wavy instability, even at vanishing or
negative values of the Rayleigh number. The interested reader is referred to Kelly [47]
for a comprehensive review of the major results on the onset and development of thermal
convection in RBP .

1.2.3 A brief history of RBP and RBC flows:
Non-modal stability

For the last two decades, non-modal stability analysis has been an active area of research
in hydrodynamic stability and it has been recognized as fundamental to the understand-
ing of shear flow instabilities. Many new concepts and techniques have been developed
and successfully employed in various flows [76]. Recently, there had been an increased
interest in the Rayleigh-Bénard-Poiseuille/Couette system as a prototype problem for
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transient growth mechanisms related to buoyancy forces [5, 74, 55], absolute and con-
vective instabilities involving two propagation directions [7, 66, 29], three-dimensional
global modes [8, 57, 56, 58], etc. The system has so far motivated many researchers in
flow instabilities because of its simplicity and fascinating properties.

Biau and Bottaro [5] investigated the effect of stable thermal stratification, solely
induced by buoyancy, on the spatial transient growth of energy in RBP flow. The
analysis showed that the presence of stable stratification reduces the optimal transient
growth of perturbations. Perhaps the most akin to this thesis is the article by Sameen
and Govindarajan [74] who studied the effect of heat addition on the transient growth
and secondary instability in plane channel flow. According to their study, the effect
of heating may be split into three contributions: the first one is due to the generation
of buoyancy forces as in classical Rayleigh-Bénard convection, the second one is asso-
ciated with the temperature-dependent base flow viscosity, and the third one results
from viscosity variations induced by temperature perturbations. The computations re-
vealed that heat addition gives rise to very large optimal growth. For various control
parameter settings, it was demonstrated that viscosity stratification had a very small
effect on transient growth. At moderately large Reynolds number (= 1000), the opti-
mal disturbances could be either streamwise-uniform vortices (as in pure shear flows) or
spanwise-uniform vortices, largely depending on Prandtl number and Grashof number.
However, the transient growth mechanisms related to such optimal initial disturbances,
and their corresponding response were not examined. Finally, cross-stream viscosity
stratification was determined to have a destabilizing influence on the secondary insta-
bility of TS waves.

A comprehensive study of the transient growth in plane Couette flow with cross-
stream temperature gradient was performed by Malik, Dey and Alam[55] in the context
of a compressible fluid. The optimal energy growth was determined to be strongly
impaired by the presence of viscosity stratification in such flows.

1.3 Objective

In light of the previous works and in view of the fundamental nature of the phenomena
under consideration, the objective of the present investigation is to provide a compre-
hensive understanding of the effect of buoyancy alone on the transient growth in RBP
and RBC flows. Since viscosity stratification was observed to be ineffective for tran-
sient growth in RBP (Sameen and Govindarajan[74]), this effect will not be taken into
account. Thus, the RBP and RBC flows under consideration form the simplest systems
where the effect of buoyancy forces on shear flow instabilities can be studied. A thorough
treatment of the non-modal growth in RBP and RBC flows will be given, as a function
of the main control parameters, namely, the Reynolds number, Rayleigh number and
Prandtl number.

This part of the thesis has been organized in the following way. Chapter 2 describes
the base flow configuration and formulates the governing equations and basic concepts of
both modal and non-modal stability analyses. Chapter 3 reviews and presents the modal
stability characteristics of the various exponentially-growing eigenmodes. In chapter
4, major results from the non-modal stability analysis are discussed. The dominant
transient growth processes are determined. The issues pertaining to the choice of the
norm and to the effect of Prandtl number are also included in the same chapter.
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Chapter 2

Linear stability analysis of
RBP and RBC flows

“You will have to brace yourselves for this – not because it is difficult to understand,
but because it is absolutely ridiculous: All we do is draw little arrows on a piece of

paper – thats all”

− Richard Feynman
QED : The Strange Theory of Light and Matter (1985).

The basic concepts and equations dealt with in part I of the thesis are introduced
in this chapter. The base flow configuration is discussed in section 2.1. The governing
equations of infinitesimal perturbations in Rayleigh-Bénard-Poiseuille/Couette flows are
derived for two different types of non-dimensionalization in section 2.2. The implication
of such non-dimensinalizations are mentioned. The adjoint equations do not play a part
in the modal stability analysis. However, they are derived in this chapter just for the
sake of completeness.

2.1 Base flow

The base flows under study are shown in figure 2.1: plane Poiseuille flow (or plane
Couette flow) in the presence of a cross-stream temperature gradient, namely, Rayleigh-
Bénard-Poiseuille (or Rayleigh-Bénard-Couette) flow. If x and z are the non-dimensional
streamwise and spanwise coordinates, such base flow velocity and temperature profiles
are uniform along these directions and depend only on the wall-normal spatial coordinate
y. Let h be the width of the channel. Then the non-dimensional velocity U0(y) and
temperature Θ0(y) profiles of RBP and RBC flows are

U0(y) =

{

1− y2, plane Poiseuille flow

y, plane Couette flow
, (2.1)

Θ0(y) = Θ∗ − y, (2.2)

where y is normalized with the half-width of the channel h2 , velocity profiles have been
normalized with respect to the maximum velocity of the base flow Umax, the temperature
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Figure 2.1: Schematic view of Rayleigh-Bénard-Couette (top) and Rayleigh-Bénard-
Poiseuille (bottom) flows.

of the base flow has been normalized with ∆T
2 and Θ∗ is the average non-dimensional

temperature of the channel.

Note that these profiles are solutions of the Navier-Stokes equations under the Boussi-
nesq approximation: (1) all fluid physical properties, except density, are considered in-
dependent of pressure and temperature (Implicitly, it is assumed that the pressure and
temperature variations are small and that the corresponding variations in fluid physi-
cal properties are negligible); (2) the density of the fluid is assumed to be related to
temperature variations only (and considered to be independent of pressure variations)
through an equation of state of the form ρ = ρ∗ [1− α∗(Θ−Θ∗)] , where ρ∗ and α∗

are temperature-and-pressure-independent fluid density and thermal expansion coeffi-
cient, respectively; (3) and most importantly, the density variations are assumed to be
negligible in every term of the equations of motion, except in the buoyancy term.

2.2 Governing Equations

A brief discussion of the governing equations for perturbations to this base flow is pre-
sented here. In general, there are two formal ways of normalizing the velocity compo-
nents. Their implications are discussed in this section. One could go from one scaling
to the other, as done in the following chapters, to extract interesting physics.

The non-dimensional control parameters of the problem, namely, Reynolds number,
Rayleigh number and Prandtl number, are defined as follows:

Re =
Umax

h
2

ν∗
, Ra =

α∗g∆Th3

ν∗κ∗
, P r =

ν∗

κ∗
, (2.3)
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where Umax is the maximum base flow velocity, h the height of the channel, ν∗ is
the kinematic viscosity, α∗ is the thermal expansion coefficient of the fluid, g is the
acceleration due to gravity, ∆T is the difference in temperature between the lower and
upper wall and κ∗ is the thermal diffusion coefficient.

The governing equations of the disturbance field in RBP and RBC flows can be
obtained by linearizing the Oberbeck-Boussinesq equations about the respective base
flow and temperature profiles. If ~u(~x, t) = [u, v, w]T and θ(~x, t) are the disturbance
velocity and temperature field, respectively, they read

∇ · ~u = 0, (2.4)

(

∂

∂t
+RePrU0

∂

∂x

)

~u+RePrv
dU0

dy
~ex = −∇p+ Pr∇2~u+Rah/2Prθ~ey , (2.5)

(

∂

∂t
+RePrU0

∂

∂x

)

θ + v
dΘ0

dy
= ∇2θ, (2.6)

where, Rah/2 = Ra/16 is the Rayleigh number based on the half-width of the channel.

In equations (2.4)-(2.6), the thermal diffusive time scale (h/2)2

κ∗
has been chosen to non-

dimensionalize time, ~u(~x, t) has been scaled with respect to ( κ
∗

h/2 ) while the base flow

velocity U0(y) has been scaled with respect to Umax. The pressure p is scaled with
the dynamic pressure 1

2ρ(
κ∗

h/2 )
2. These equations are to be solved with homogeneous

Dirichlet boundary conditions on ~u(~x, t) and θ(~x, t) at y = ±1 1

The base flow is homogeneous in x and z, and hence the perturbation field may be
decomposed into independent wave modes,

~u(~x, t) = ~̃u(y, t)ei(αx+βz) + c.c., (2.7)

θ(~x, t) = θ̃(y, t)ei(αx+βz) + c.c., (2.8)

p(~x, t) = p̃(y, t)ei(αx+βz) + c.c., . (2.9)

where α, β are the streamwise and spanwise wavenumber, respectively and c.c. stands
for the complex conjugate of the preceding expression. The perturbation equations
(2.4)-(2.6) then read:

iαũ+
∂ṽ

∂y
+ iβw̃ = 0, (2.10)

(

∂

∂t
+ iαRePrU0

)

ũ+RePrṽ
dU0

dy
= −iαp̃+ Pr

(

∂2

∂y2
− k2

)

ũ, (2.11)

(

∂

∂t
+ iαRePrU0

)

ṽ = −∂p̃
∂y

+Rah/2Prθ̃ + Pr

(

∂2

∂y2
− k2

)

ṽ, (2.12)

(

∂

∂t
+ iαRePrU0

)

w̃ = −iβp̃+ Pr

(

∂2

∂y2
− k2

)

w̃, (2.13)

1Note that * on physical properties, fluid dynamical and physical variables, like kinematic viscosity,
thermal expansion, velocity etc. denote temperature-independent quantities, unless otherwise stated.
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(

∂

∂t
+ iαRePrU0

)

θ̃ + ṽ
dΘ0

dy
=

(

∂2

∂y2
− k2

)

θ̃, (2.14)

where k2 = α2 + β2 and the boundary conditions are ~̃u(±1) = 0 and θ̃(±1) = 0. If

the advective time scale h/2
Umax

and velocity scale Umax are used instead of the thermal

diffusive time scale (h/2)2

κ∗
and velocity scale κ∗

h/2 , these equations become

iαŭ+
∂v̆

∂y
+ iβw̆ = 0, (2.15)

(

∂

∂tRe
+ iαU0

)

ŭ+ v̆
dU0

dy
= −iαp̆+ 1

Re

(

∂2

∂y2
− k2

)

ŭ, (2.16)

(

∂

∂tRe
+ iαU0

)

v̆ = −∂p̆
∂y

+
Gr

Re2
θ̃ +

1

Re

(

∂2

∂y2
− k2

)

v̆, (2.17)

(

∂

∂tRe
+ iαU0

)

w̆ = −iβp̆+ 1

Re

(

∂2

∂y2
− k2

)

w̆, (2.18)

(

∂

∂tRe
+ iαU0

)

θ̃ + v̆
dΘ0

dy
=

1

RePr

(

∂2

∂y2
− k2

)

θ̃, (2.19)

where Gr = Rah/2/Pr is the Grashof number, tRe is the advective time scale h/2
Umax

, ~̆u and
p̆ are the new non-dimensional wall-normal velocity vector and scalar pressure. They
are related to t, ~̃u and p̃ as

tRe = t(RePr), (2.20)

~̆u = ~̃u

(

1

RePr

)

, (2.21)

p̆ = p̃

(

1

RePr

)2

. (2.22)

The state variables obey homogeneous Dirichlet boundary conditions.
The systems (2.10)-(2.14) and (2.15)-(2.19) are the same but for the non-dimensionalization

of velocity, pressure and temperature variables. This is due to the presence of two in-
dependent time scales in the base flow: (1) the base flow velocity that provides the
advective time scale and (2) thermal conduction due to the presence of a cross-stream
temperature gradient that provides the thermal diffusion time scale. Equations (2.10)-
(2.14) and (2.15)-(2.19) are similar to the linearized Oberbeck-Boussinesq equations
except for the terms involving U0(y) and are equivalent to the linearized Navier-Stokes
equations except for the linear temperature equation and the buoyancy term due to θ̃
in (2.12) and (2.17). At Re = 0, the former system (2.10)-(2.14) smoothly reduces to
the set of disturbance equations of the pure conduction problem (a static fluid layer
subjected to a temperature gradient in the wall-normal direction) whereas the latter
system (2.15)-(2.19) is singular in this limit. When Ra = 0, however, both formulations
reduce to the linearized Navier-Stokes equations about a parallel shear flow. The Squire
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transformation [80] (see section 2.3) is readily inferred from the former system whereas
it is not directly evident from the latter system. When Re >> 1 the latter formulation
is more meaningful and, as shown in chapter 4, useful scaling laws can be derived based
on this normalization. For convenience, only the former normalization and equations
(2.10)-(2.14) are considered in the following chapters, unless otherwise mentioned.

Note that both formulations do not assume exponential behavior in time for the
state variables. The so-called modal temporal problem, however, considers disturbances
that grow or decay exponentially. It is legitimate to look for such solutions because the
coefficients in the linear operator (2.10)-(2.14) are independent of time t. The success
of the modal analysis depends on finding a complete set of exponentially decaying (or
growing) solutions, namely, normal modes, to represent the development of an arbitrary

initial disturbance. If the variables ~̃u(y, t) and θ̃(y, t) in equations (2.7) and (2.8) are
taken as

~̃u(y, t) = ~̂u(y)e−iωt, (2.23)

θ̃(y, t) = θ̂(y)e−iωt, (2.24)

p̃(y, t) = p̂(y)e−iωt, (2.25)

the system (2.10)-(2.14), along with the boundary conditions, defines a generalized eigen-
value problem for the complex frequency ω at given (α, β), Re, Ra and Pr. Following
the classical parallel shear flow analysis, equations (2.10)-(2.14) may be rewritten in
terms of reduced variables, namely, the wall-normal velocity v̂(y), wall-normal vorticity

η̂(y) and temperature perturbations θ̂(y), leading to the system

[

(−iω + iαRePrU0)
(

D2 − k2
)

− iαRePr
d2U0

dy2

]

v̂ = Pr
(

D2 − k2
)2
v̂

−k2Rah/2Prθ̂, (2.26)

(−iω + iαRePrU0) η̂ + iβRePr
dU0

dy
v̂ = Pr

(

D2 − k2
)

η̂, (2.27)

(−iω + iαRePrU0) θ̂ +
dΘ0

dy
v̂ =

(

D2 − k2
)

θ̂, (2.28)

where D = d
dy and the boundary conditions are v̂(±1) = 0, Dv̂(±1) = 0, η̂(±1) = 0

and θ̂(±1) = 0. Equation (2.26) is the Orr-Sommerfeld equation forced by buoyancy.
The classical Squire equation (2.27) is simply retained for shear flows in Boussinesq
fluids because buoyancy acts normal to the wall and it cannot directly induce wall-
normal vorticity. Equation (2.28) is the linearised temperature equation which is of an
advection-diffusion nature similar to the one in the linear stability of pure conduction
in Boussinesq fluids.
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2.3 Squire’s transformation

It is shown in this section that the problem defined by the system (2.10)-(2.14) for any
arbitrary perturbation with α 6= 0 , β 6= 0 (say, an oblique mode), is equivalent to that
for a spanwise-uniform mode (β2D = 0) at a different Reynolds number.

Consider equations (2.10)-(2.14) for a normal mode at α2D, β2D = 0 and Reynolds
number Re2D

iα2Dũ2D +
∂ṽ

∂y
= 0, (2.29)

(

∂

∂t
+ iα2DRe2DPrU0

)

ũ2D +Re2DPrṽ
dU0

dy
= −iα2Dp̃+ Pr

(

∂2

∂y2
− α2

2D

)

ũ2D,(2.30)

(

∂

∂t
+ iα2DRe2DPrU0

)

ṽ = −∂p̃
∂y

+Rah/2Prθ̃ + Pr

(

∂2

∂y2
− α2

2D

)

ṽ, (2.31)

(

∂

∂t
+ iα2DRe2DPrU0

)

θ̃ + ṽ
dΘ0

dy
=

(

∂2

∂y2
− α2

2D

)

θ̃, (2.32)

where the subscripts 2D refer to variables of the spanwise-uniform Fourier mode ~̃u2D(y, t) =
[ũ2D, ṽ, 0]

T and θ̃(y, t). By comparing this system with equations (2.10)-(2.14) for any
α 6= 0 , β 6= 0, we note that they have the same solutions if

iα2Dũ2D = iαũ+ iβw̃, (2.33)

α2D =
√

α2 + β2, (2.34)

α2DRe2D = αRe. (2.35)

Note that Re2D < Re and hence, at a fixed Ra and Pr, for every three-dimensional
Fourier mode in RBP and RBC flow, there exists a two-dimensional Fourier mode
(β = 0), at a smaller Reynolds number given by the transformation (2.33)-(2.35). This
transformation is similar to the Squire transformation in pure shear flows[80]. Note,
however, that the time variable t remains invariant under the transformation. This
result has similar implications regarding on the linear stability analysis of RBP and
RBC flows as discussed in chapter 3.

2.4 Adjoint equations and the norm

The adjoint of the linear operator (2.26)-(2.28) is now derived. Consider the family of
norms that represent a measure of the growth of perturbations,

E (t; γ) =

∫

V

[

1

2

(

|u|2 + |v|2 + |w|2
)

+
1

2
γ2 |θ|2

]

dV, (2.36)
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where the weight γ between the kinetic energy and the temperature perturbations is left
arbitrary. Note that E (t; γ) belongs to a class of norms commonly used in the literature;
in particular, in [74] and [5], γ = 1 and γ =

√

|Rah/2|Pr, respectively. For a discussion
on the choice of the norm the reader is referred section 4.1.1. It is convenient to rewrite

the state vector as q =
[

ṽ, θ̃∗, η̃
]T

, where θ̃∗ = γθ̃. The direct equations (2.26)-(2.28)

can then be written in the matrix form
(

LOB +
∂

∂t
BOB

)

q = 0, (2.37)

where

LOB =









Pr.LOS −k2Rah/2Prγ 0

−γ
(

− dΘ0

dy

)

LLHE 0

iβ (RePr) dU0

dy 0 Pr.LSQ









,

BOB =





k2 −D2 0 0
0 1 0
0 0 1



 .

The Orr-Sommerfeld and Squire operators, LOS and LSQ, respectively, are defined as

LOS = iαReU0

(

k2 −D2
)

+ iαRe
d2U0

dy2

+
(

k2 −D2
)2
, (2.38)

LSQ = iαReU0 +
(

k2 −D2
)

, (2.39)

and LLHE (here, the subscript LHE refers to Linearized Heat Equation) is the advection-
diffusion operator governing the evolution of the rescaled temperature perturbation:

LLHE = iαRePrU0 +
(

k2 −D2
)

. (2.40)

Homogeneous boundary conditions on the state vector q are enforced, as for the reduced
variables in (2.26), (2.27) & (2.28). In the case of unstable thermal stratification dΘ0

dy =

−1 and for stable stratification dΘ0

dy = 1. The adjoint of the linear operator, say LAOB ,
is defined as

〈〈LOBq , qA〉〉 = 〈〈q , LAOBqA〉〉, (2.41)

where the angle brackets represent the scalar product

〈〈q1, q2〉〉 =
∫ 1

−1

qH2 Mq1dy, (2.42)

and M = diag
(

1, k2, 1
)

. The choice of this weight matrix will become evident by the
end of the section where the biorthogonality condition is derived.

Using integration by parts and the boundary conditions on the state vector, the
adjoint equations are derived to be

(

LAOB +
∂

∂t
BOB

)

qA = 0, (2.43)
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LAOB =







Pr.LAOS −k2γ
(

− dΘ0

dy

)

−iβ (RePr) dU0

dy

−Rah/2Pr

γ LALHE 0

0 0 Pr.LASQ






,

where LAOS , L
A
SQ and LALHE are the classical adjoint-Orr-Sommerfeld operator [75],

adjoint-Squire operator [75], and the adjoint of the advection-diffusion operator ap-
pearing in the linearised temperature equation, respectively:

LAOS = −iαReU0

(

k2 −D2
)

+ 2iαRe
dU0

dy
D

+
(

k2 −D2
)2
, (2.44)

LASQ = −iαReU0 +
(

k2 −D2
)

, (2.45)

LALHE = −iαRePr.U0 +
(

k2 −D2
)

. (2.46)

Note that BOB is a self-adjoint operator and the adjoint state vector qA obeys homo-
geneous boundary conditions similar to the direct state vector q .

Let qn and qAm be any normalized direct and adjoint eigenvectors, respectively,
where n and m are indices, such that 〈〈qn, qn〉〉 = 〈〈qAm, qAm〉〉 = 1. To find the
bi-orthogonality condition, consider the product of the direct operator (2.37) applied to
qn with qAm,

〈〈(LOB − iωnBOB) qn, qAm〉〉 = 0,

which upon using the definition of the adjoint (2.41) gives

〈〈qn,
(

LAOB + iω∗
nBOB

)

qAm〉〉 = 0,

where * denotes complex conjugate. Since qAm is an adjoint eigenvector, it satisfies the
eigenfunction formulation of the adjoint operator (2.43). Thus, the above equation can
be simplified to

−i
(

ωn − ω(m)

)

〈〈qn, BOBqAm〉〉 = 0,

which gives the bi-orthogonality condition between any direct eigenvector qn and any
adjoint eigenvector qAm in the form

〈〈qn, BOBqAm〉〉 = 2k2δnm, (2.47)

or, equivalently,
〈qn, qAm〉γ = δnm, (2.48)

where δnm is the Kronecker delta and the new scalar product

〈q1, q2〉γ =

∫ 1

−1

[

1

2

(

v̂1v̂
∗
2 +

1

k2
(Dv̂1Dv̂

∗
2 + η̂1η̂

∗
2)

)

+
1

2
γ2θ̂1θ̂

∗
2

]

dy (2.49)

has been introduced (here, ∗ denotes complex conjugate). The corresponding norm is
given by

‖q‖2γ =

∫ 1

−1

[

1

2

(

|v̂|2 + 1

k2

(

|Dv̂|2 + |η̂|2
)

)

+
1

2
γ2

∣

∣

∣θ̂
∣

∣

∣

2
]

dy, (2.50)

which is precisely the norm E (t; γ) defined in terms of primitive variables in equation
(2.36) but expressed here in reduced variables (see [75] for a similar derivation).
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Chapter 3

Modal Stability Analysis

“Eternity is a very long time (.., especially towards the end.)”

− Woody Allen.

3.1 Formulation

In modal stability analysis small disturbances are resolved into normal modes (2.23)-
(2.24), which may be treated separately because each mode satisfies the linear system
(2.26)-(2.28):

[

(−iω + iαRePrU0)
(

D2 − k2
)

− iαRePr
d2U0

dy2

]

v̂ = Pr
(

D2 − k2
)2
v̂

−k2Rah/2Prθ̂, (3.1)

(−iω + iαRePrU0) η̂ + iβRePr
dU0

dy
v̂ = Pr

(

D2 − k2
)

η̂, (3.2)

(−iω + iαRePrU0) θ̂ +
dΘ0

dy
v̂ =

(

D2 − k2
)

θ̂, (3.3)

whereD = d
dy . Along with the homogeneous boundary conditions v̂(±1) = 0, Dv̂(±1) =

0, η̂(±1) = 0 and θ̂(±1) = 0, this forms an eigenvalue problem in ω, the complex
frequency of the normal mode. The problem can be restated in terms of a dispersion
relation involving ω, the streamwise wavenumber α, the spanwise wavenumber β and
the control parameters Re, Ra, Pr, of the form

D (ω, α, β;Re,Ra, Pr) = 0. (3.4)

A normal mode depends on time exponentially with a complex exponent. The imaginary
part of the complex frequency, say ωi, determines if the mode grows or decays exponen-
tially in time. If ωi > 0, then the corresponding disturbance will be amplified, growing
exponentially with time until it is so large that the non-linear interactions between the
eigenmodes become significant. If ωi = 0 the mode is said to be neutrally stable, and if
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ωi < 0 asymptotically stable or stable because it remains small for all time. An infinites-
imal disturbance in a base flow, however, will excite all modes, so that if ωi > 0 for at
least one mode then the flow is unstable. Whereas, if ωi < 0 for all of a complete set
of modes then the flow is said to be exponentially stable. A mode is marginally stable if
ωi = 0 for critical values of the control parameters (here, Re, Ra and Pr) on which the
complex frequency ω depends but ωi > 0 for some neighboring values of the parameters.
The objective of the method of normal modes is to solve the dispersion relation (3.4) at
various control parameter values in search of marginally stable modes.

3.2 Squire’s Theorem in RBP and RBC flows

As seen in section 2.3, the Squire transformation holds for the system (3.1)-(3.3). At
a fixed Ra and Pr, for every oblique mode for α 6= 0 and β there exists a spanwise-
uniform normal mode β2D = 0 with the same complex frequency at a smaller Reynolds
number Re2D given by (2.33)-(2.35). The Squire equation has no explicit forcing due to
buoyancy. The standard result that Squire modes are always damped [80] holds also at
all α, β, Re, Ra and Pr. Thus, for any marginally stable oblique mode at a Reynolds
number Re there exists a spanwise-uniform mode at a smaller Reynolds number Re2D
and the same Rayleigh and Prandtl numbers. In order to find the stability diagram at a
fixed Ra and Pr, it is sufficient to consider only two-dimensional eigenmodes (β = 0 or
α = 0):

D (ω, α = 0, β;Re,Ra, Pr) = 0, (3.5)

and

D (ω, α2D, β2D = 0;Re2D, Ra, Pr) = 0, (3.6)

where the former dispersion relation corresponds to streamwise-uniform eigenmodes and
the latter to spanwise-uniform eigenmodes.

3.3 Numerical Technique

3.3.1 Chebyshev discretization of the governing equations

A spectral method using Chebyshev polynomials is used to discretize equations (3.1)-
(3.3) along the inhomogeneous y-direction. The method is highly accurate and easy to
implement in RBP and RBC flows.

The eigenfunctions v̂(y), θ̂(y) and η̂(y) are expanded in a Chebyshev series

v̂(y) =

j=N−1
∑

j=0

ajΦj(y), (3.7)

θ̂(y) =

j=N−1
∑

j=0

bjΦj(y), (3.8)

η̂(y) =

j=N−1
∑

j=0

cjΦj(y), (3.9)
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where aj , bj and cj are complex coefficients of Chebyshev polynomials Φj(y) = cos (j cos−1 y)
and N is the number of Gauss-Lobatto collocation points yn = cos(nπ/(N − 1)) in
the wall-normal direction. The second and fourth derivatives of the eigenfunctions are
derived by differentiating with respect to y the Chebyshev polynomials in the series.
Substituting the resulting series into (3.1)-(3.3), one obtains a discretized system which
should be satisfied at each Gauss-Lobatto collocation point. For example, in the case of
the Orr-Sommerfeld equation with the buoyancy term (3.1), the disretized system reads

(

iαRePrU0(yn)k
2 − iαRePrU ′′

0 (yn)− k4
)

j=N−1
∑

j=0

ajΦj(yn)

+k2Rah/2Pr

j=N−1
∑

j=0

bjΦj(yn)

+
(

iαRePrU0(yn) + 2k2
)

j=N−1
∑

j=0

ajΦ
′′
j (yn)−

j=N−1
∑

j=0

ajΦ
′′′′
j (yn)

= iω





j=N−1
∑

j=0

ajΦ
′′
j (yn)− k2

j=N−1
∑

j=0

ajΦj(yn)



 , (3.10)

which should be satisfied at each Gauss-Lobatto point yn and thus, gives rise to a system
ofN -equations. Here ′ represents derivatives with respect to y. The boundary conditions
become

v̂(±1) =

j=N−1
∑

j=0

ajΦj(±1) = 0, (3.11)

Dv̂(±1) =

j=N−1
∑

j=0

ajΦ
′
j(±1) = 0, (3.12)

θ̂(±1) =

j=N−1
∑

j=0

bjΦj(±1) = 0, (3.13)

η̂(±1) =

j=N−1
∑

j=0

cjΦj(±1) = 0. (3.14)

Thus, the generalized eigenvalue problem for the complex frequency of the continuous
state eigenfunction q̂ = [v̂(y), θ̂(y), η̂(y)]T reduces to a discrete system

LOB {φ} = iωBOB {φ} , (3.15)
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where {φ} is

{φ} =



































a0
...

aN−1

b0
...

bN−1

c0
...

cN−1



































, (3.16)

and LOB , BOB are each 3N × 3N matrices: they are the discretized version of the
operators (2.37) containing the coefficients of the unknown complex coefficients aj , bj
and cj , so that

LOB =





LOS LOSOB 0
LOBOS LLHE 0
LOSSQ 0 LSQ



 (3.17)

BOB =





BOS 0 0
0 I 0
0 0 I



 . (3.18)

Here, each element in LOB and BOB is a matrix of order N (I and 0 are the identity
and zero matrix, respectively). The boundary conditions are applied at the first and
the last (also the second and the last-but-one, for v̂(y)) row of each of the discretized
operators in LOB and BOB. For example, after applying the boundary conditions on
the wall-normal velocity v̂(y), the operators LOS and BOS read

LOS =













s0Φ0(1) . . . s0ΦN−1(1)
s0Φ

′
0(1) . . . s0Φ

′
N−1(1)

. . . L(N−2)×(N−2)
OS . . .

s0Φ
′
0(−1) . . . s0Φ

′
N−1(−1)

s0Φ0(−1) . . . s0ΦN−1(−1)













, (3.19)

BOS =













Φ0(1) . . . ΦN−1(1)
Φ′

0(1) . . . Φ′
N−1(1)

. . . B(N−2)×(N−2)
OS . . .

Φ′
0(−1) . . . Φ′

N−1(−1)
Φ0(−1) . . . ΦN−1(−1)













, (3.20)

where s0 is a complex constant. The eigenmodes corresponding to the eigenvalue s0 do
not satisfy the boundary conditions and by specifying a proper complex value for s0,
they can be mapped to a specific location on the complex ω-plane. Thus, the generalized
eigenvalue problem can now be solved using a standard package, for example, the eig
function in MATLAB.
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3.3.2 Validation

The above spectral collocation method based on Chebyshev polynomials over Gauss-
Lobatto collocation points was implemented in MATLAB to compute the stability char-
acteristics. The computational accuracy depends primarily on the number of polynomial
expansion functions N . When N ≥ 60, the eigenvalues computed for the cases Re = 0
and Ra = 0, were observed to match up to eight digits those given in the classical
textbooks [18, 75]. The values of the critical Rayleigh numbers in RBP flow for small

Re Müller [61] Fujimura et. al. [25] present
1 1710.1 1710.1 1710.1
2 1717.2 1717.2 1717.2
3 1728.9 1728.9 1728.9
4 1745.4 1745.5 1745.5
5 1766.5 1766.7 1766.7
6 1792.4 1792.8 1792.8
7 1822.9 1823.8 1823.8
8 1858.2 1859.6 1859.6
9 1898.1 1900.3 1900.3
10 1942.7 1946.1 1946.1
20 2647.8 2695.4 2695.4

Table 3.1: Comparison of the critical Rayleigh numbers for transverse 2D rolls (spanwise-
uniform mode) in RBP when Pr = 1 (N = 100).

non-zero Reynolds numbers are shown in table 3.1. The critical Rayleigh numbers
correspond to transverse 2D rolls (α 6= 0, β = 0) which are the least unstable spanwise-
uniform eigenmodes at a given Reynolds number in RBP flow. The first column displays
the results in Müller’s [61] analytical findings pertaining to very small Reynolds numbers
Re << 1; the values in the next column are borrowed from the numerical computations
of Fujimura & Kelly [25] and the critical Rayleigh numbers computed with the above dis-
cretization technique are presented in the third column. Our results agree with Muller’s
computations for very small Reynolds numbers but deviate when Re > 5. They, how-
ever, match up to 5 significant digits of those from the more accurate and recent results
of Fujimura & Kelly [25].

Note that all marginal stability results given in the present chapter are based on
computations with N = 100 (or N = 120).

3.4 Modal stability characteristics

3.4.1 Road to the stability diagram

Modal stability characteristics of RBP and RBC are well-established [27, 26, 47]. At
the beginning of the present work, it was, however, judged to be important to revisit and
review the computed growth rates, eigenfunctions, etc. of the dominant disturbances in
the system. In order to completely understand the stability characteristics of exponential
instabilities and to take away valuable ideas, if any, to the non-modal stability analysis,
an unbiased investigation was performed in the entire Rayleigh and Reynolds number
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space. A summary of results from such an analysis is presented in this section. Here,
however, the discussion is restricted to the stability features of RBP and RBC flows
that have not appeared in the literature before.

Growth Rates

Figure 3.1 shows typical plots of the maximum growth rate 2 of streamwise-independent
(α = 0) modes as a function of spanwise wavenumber β at various Rayleigh numbers
(− − −− Ra = 1856, —— Ra = 1707.78, and − · − · − Ra = 1536) for arbitrary
Reynolds numbers (see discussion below). The maximum growth rate exhibits a single
maximum and decreases rapidly for large β. As the Rayleigh number increases, this
maximum value increases and reaches zero at Ra = 1707.78. When Ra = 1856 there is
a band of spanwise wavenumbers for which the growth rate is positive. Thus, there is
an infinite set of streamwise-uniform disturbances that grow exponentially at Rayleigh
numbers larger than 1707.78 which is, hence, the critical Rayleigh number of the system.
Note that, when α = 0, the system of equations (3.1)-(3.3), along with the boundary
conditions, is identical to the governing equations for disturbances in a static heat-
conducting fluid layer between rigid walls. The equations are independent of Reynolds
number, with the exception of Squire’s equation (3.2). Since the Squire equation cannot
support exponentially growing modes, plot 3.1 is independent of Reynolds number and
base flow velocity profile. Thus, the dominant streamwise-uniform eigenmode in RBP
and RBC flow at all Re is the classical Rayleigh-Bénard mode. It has, however, a non-
zero streamwise velocity component when Re > 0 due to the presence of the forcing
term iβU ′

0(RePr)v̂ in the Squire equation.
Now consider figure 3.2 where the maximum growth rate ωmaxi of spanwise-uniform

modes (β = 0) is displayed as a function of streamwise wavenumber α at Re = 3510,
Ra = 4.85× 107 and Pr = 1 in RBP flow. The spanwise-uniform modes are distinctly
identified based on their respective phase speed, eigenfunction shape, etc. For example,
in figure 3.2, the growth rate curve shows three distinct peaks corresponding to various
sets of wavenumbers: 1. Transverse Rolls (TR), 2. Tollmien-Schlichting waves (TS), and
W -mode (W stands for “weird”, because it “weirdly” resembles the classical Rayleigh-
Bénard mode with very large wavelengths). By convention, spanwise-uniform distur-
bances that exist as Re→ 0 and that propogate at some constant wave velocity related
to the average base flow velocity U0(y) are termed as transverse rolls [27, 26, 13, 11, 47].
They correspond to the two-dimensional solution that evolve continuously from RB rolls
at Re = 0. These are typical characteristics of the temporal growth rate in RBP flow
at large Rayleigh and Reynolds numbers (Re < 5772, the value beyond which TS waves
are unstable for Ra ≥ 0). As shown in the figure, the largest growth rate corresponds to
the so-called Transverse Rolls at large wavenumbers, followed by Tollmien-Schlichting
waves at wavenumbers α ≈ 0.1− 1.25 and finally, W -modes at very small wavenumbers.
In the same way, figure 3.3 displays ωmaxi as a function of streamwise wavenumber α
at a smaller Reynolds number Re = 90 and Rayleigh number Ra = 31329. Again, the
growth rate is not monotonic with α and shows three peaks (at least 2 very distinct
peaks) corresponding to the same set of eigenmodes: the TR mode with largest growth
rate, TS waves with the second largest growth rate and, finally, W -modes. It is seen
that TS waves still exist and that they are unstable at Reynolds numbers as low as
Re = 90, but for a very large Rayleigh number. Upon comparing with figure 3.2, it can

2It refers to the growth rate of the dominant (spanwise-uniform/streamwise-uniform) eigenmode at
some given streamwise and spanwise wavenumbers
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Figure 3.1: Growth rate ωmaxi of the dominant streamwise-uniform (α = 0) eigenmode
in Rayleigh-Bénard-Poiseuille/Couette flow at various Rayleigh numbers: −−−− Ra =
1856, —— Ra = 1707.78, and − · − · − Ra = 1536 when Pr = 1 for all Reynolds
numbers (see discussion in the text)

be noted that the set of wavenumbers for which ωmaxi is positive has decreased. Thus,
at a given Rayleigh number, the range of unstable streamwise wavenumbers decreases as
the Reynolds number is decreased. As mentioned before, the spanwise-uniform modes
displayed in figures 3.2 and 3.3 are identified based on their respective phase speed,
eigenfunction shape, etc. At low Reynolds numbers (Re < 100), however, it is all the
more difficult to distinguish between these eigenmodes. It was, nevertheless, observed
that at very low Reynolds numbers Re < 60, ωmaxi displays a single maximum as a
function of α, similarly to streamwise-uniform modes as a function of β.

In the same way, figure 3.4 presents a typical plot of the maximum growth rate ωmaxi

as a function of streamwise wavenumber α in RBC flow at large Rayleigh and Reynolds
numbers. At least two different modes corresponding to large and small wavenumbers
can be identified in this control parameter range: Stationary Modes SM and Non-
Stationary Modes NSM (here, the names stationary/non-stationary refer to symmetry-
preserving or symmetry-breaking eigenmodes that have therefore a zero/non-zero phase
speed, respectively). SM ’s are the fastest growing spanwise-uniform eigenmodes in
RBC flow. NSM ’s appear typically at large Reynolds numbers. Their phase speed,
as explained below (see figure 3.8), increases with Reynolds number and approaches
asymptotically the maximum velocity of the base flow at very large Reynolds numbers.
They, however, have negligibly small phase speeds at Re ≈ 90 and disappear at smaller
Reynolds numbers Re < 50.

Critical wavenumber and phase speed

In modal stability analyses, it is customary to determine the wavenumber and phase
speed of marginally stable modes. The critical phase speed and wavenumber of various
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max

Figure 3.2: Growth rate ωmaxi of the dominant spanwise-uniform (β = 0) eigenmode
ωmaxi in RBP flow: Re = 3510, Ra = 4.85× 107 and Pr = 1

α

ωi
max

Figure 3.3: Growth rate ωmaxi of the dominant spanwise-uniform (β = 0) eigenmode
ωmaxi in RBP flow: Re = 90, Ra = 31329 and Pr = 1.
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Figure 3.4: Growth rate ωmaxi of the dominant spanwise-uniform (β = 0) eigenmode
ωmaxi in RBC flow: Re = 3000, Ra = 1.64× 108 and Pr = 1.

dominant spanwise-uniform eigenmodes in RBP flow are shown in figures 3.5 and 3.6,
respectively. Here, the phase speed has been scaled with respect to the maximum base
flow velocity Umax. The symbols correspond to different eigenmodes: � - transverse
rolls, ◦ - Tollmien-Schlichting waves and ⊳ - W -modes. Observe that at all Re > 100,
the phase speed and wavenumber of these eigenmodes are very different from each other.
The phase speed of transverse rolls increases with Re, and it approaches asymptotically
the value cr = 1, while the phase speed of TS waves decreases with Reynolds number and
W -modes have the same phase speed at all Reynolds numbers. The critical wavenumber
of transverse rolls increase with Re while that ofW -modes decreases with Re. Note that,
for Re > 0, in the log-log plot 3.6, the critical spanwise wavenumber varies linearly with
Reynolds number, irrespective of the spanwise-uniform mode. Thus, there exist scaling
laws that relate αcrit and Re, namely, (1) for TR’s: αcrit ∝ Re1/3 and (2) for W -modes:
αcrit ∝ Re−1.

ForRBC flows, figures 3.8 and 3.7 display the critical phase speed and wavenumber of
various dominant spanwise-uniform eigenmodes, respectively. The symbols correspond
to different eigenmodes: � - Non-stationary modes and ◦ - Stationary modes. Similarly
to the case of RBP flow, it can be observed that the phase speed and wavenumbers of
these eigenmodes are distinct at all Re > 100. The critical phase speed of non-stationary
modes increases with Re. The critical wavenumber of non-stationary modes increases
as αcrit ∝ Re1/2 while that of W -modes decreases as αcrit ∝ Re−1.

Eigenfunctions of spanwise-uniform modes

A few energy transfer mechanisms in spanwise-uniform modes are discussed in this
section. A qualitative understanding of why such disturbances are stabilized when Re >
0 is thereby obtained.

An equation for the mean kinetic energy of spanwise-uniform disturbances (β = 0)
can be obtained by taking the scalar product of equation (2.5) with ~u and averaging
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Re

cr

Figure 3.5: Rayleigh-Bénard-Poiseuille flow: Critical phase speed cr = ωr/α versus
Reynolds number of the first few dominant spanwise-uniform eigenmodes (β = 0); � -
transverse rolls, ◦ - Tollmien-Schlichting waves and ⊳ - W -modes

Re

αcrit

Figure 3.6: Rayleigh-Bénard-Poiseuille flow: Critical wavenumber αcrit versus Reynolds
number of the first few dominant spanwise-uniform eigenmodes (β = 0); � - transverse
rolls, ◦ - Tollmien-Schlichting waves and ⊳ - W -modes
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Figure 3.7: Rayleigh-Bénard-Couette flow: Critical phase speed cr versus Reynolds
number of the first few dominant spanwise-uniform eigenmodes (β = 0); � - Non-
stationary modes, and ◦ - Stationary modes

Re

αcrit

Figure 3.8: Rayleigh-Bénard-Couette flow: Critical wavenumber αcrit versus Reynolds
number of the first few dominant spanwise-uniform eigenmodes (β = 0); � - Non-
stationary modes, and ◦ - Stationary modes
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over a wavelength 2π/α, across the width of the channel and over a unit distance in the
spanwise direction while keeping in mind that the flow is homogeneous in x and z. In
such a manner, terms involving ∂

∂x disappear because of periodic boundary conditions.
Let 〈· · · 〉avg represent an average. The rate of change of the mean kinetic energy of such
a disturbance is then

1

2

d

dt

〈

u2 + v2
〉

avg
= RePr

〈

−uvdU0

dy

〉

avg

+RaPr 〈θv〉avg

−Pr
〈

(

∂v

∂x
− ∂u

∂y

)2
〉

avg

, (3.21)

where the first term denotes the transfer of energy between the base flow and the distur-
bance via the Reynolds stress, the second represents the conversion of buoyant energy
into kinetic energy of the disturbance and the last term corresponds to viscous dissipa-
tion. Note that, in the case of spanwise-uniform modes, w = 0. In plane Couette flow
and Poiseuille flow, dU0

dy = 1 and dU0

dy = −2y , respectively.
Plots of the perturbation velocity vector field and temperature contours of a sta-

tionary mode and non-stationary mode in RBC are presented in figures 3.9a and 3.9b,
respectively. The control parameters Re = 1000, Ra = 6.343 × 106 and Ra = 1.807 ×
107 correspond to their respective critical condition i.e., when such a disturbance is
marginally stable. The red and blue zones in the temperature field denote warm and
cool cores, respectively. Observe that the presence of shear has led to a tilt in both
streamlines and temperature contours, but more so in temperature contours. The re-
gion of maximum updraft and maximum downdraft are not directly above the center
of warm and cool cores, respectively. In the case of Re = 0, the temperature contours
and the cells of such vortical vector fields would be straight, with the region of maxi-
mum updraft being located directly above the center of the warm core and the region
of downdraft being directly above the cool core. The latter arrangement tends to max-
imize the release of potential energy into kinetic energy of perturbations via the term
coupling buoyancy and wall-normal velocity in the energy equation (3.21). In the former
arrangement (Re 6= 0), however, the ascending motion just to the left of the maximum
updraft is advecting upward the relatively cool fluid of the adjoining region as well as the
warm fluid, due to the tilt. Thus, the conversion of buoyant energy into kinetic energy
is not efficient in both stationary and non-stationary modes compared to the classical
Rayleigh-Bénard convection. It is also observed that the streamwise velocity u and wall-
normal velocity v have the same sign in most of the ascending and descending regions

due to the tilt of the vortical structures. The average
〈

uv dU0

dy

〉

avg
is therefore positive

and hence, the energy is being transferred from the disturbance to the base flow, imply-
ing that the Reynolds stress acts to stabilize the base flow. For such reasons,the Rayleigh
number at which RBC flow becomes unstable to spanwise-uniform disturbances is much
larger compared to the case with Re = 0 and also compared to that of streamwise-uniform
disturbances which are not affected by the shear in the wall-normal direction.

Similarly, in the case ofRBP flow, the velocity vector plots and temperature contours
of spanwise-uniform disturbances show that such disturbances are also stabilized by
Reynolds stresses when Re > 0 (see figure 3.10). Note that, in plane Poiseuille flow,
the shear changes sign across the center of the channel and correspondingly the product
〈uv〉avg changes sign from positive to negative as one crosses from the bottom of the
channel to the top. Also, the temperature contours exhibit the tilt that was discussed
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(a) Stationary mode

(a) Non-stationary mode

Figure 3.9: Rayleigh-Bénard-Couette flow: Velocity vector plots and temperature con-
tours of spanwise-uniform perturbations (β = 0) at Re = 1000: (a) stationary mode
(α = 0.05472) and (b) non-stationary mode (α = 3.375) when Ra = 6.343 × 106 and
Ra = 1.807× 107, respectively.
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Figure 3.10: Rayleigh-Bénard-Poiseuille flow: Velocity vector plots and temperature
contours of transverse rolls (α = 11, β = 0) at Re = 3510 and Ra = 4.8× 107.

above. This implies again that buoyant energy is not efficiently transfered into kinetic
energy when Re 6= 0. Thus, the Rayleigh number at which RBP flow becomes unstable
to spanwise-uniform disturbances is much larger compared to the case with Re = 0 and
also compared to that of streamwise-uniform disturbances which are not affected by shear
in the wall-normal direction.

3.4.2 Dominant modal instability

The results of the modal stability analysis in RBP and RBC flows were recovered by
numerical computation and the leading eigenmodes are discussed in this section.

Figure 3.11 depicts the stability diagram of RBP flow when Pr = 1. It shows the
neutral curves corresponding to the Reynolds number and Rayleigh number at which a
given eigenmode, streamwise-uniform (α = 0) or spanwise-uniform (β = 0), is marginally
stable (ωi = 0, where ωi is the imaginary part of ω). Note that, as discussed in section
3.4.1, a streamwise-uniform mode becomes unstable at RaRBc , independent of Reynolds
number and Prandtl number, since in that case all the U0-dependent terms drop-out from
equations (2.26) and (2.28). Equations (2.26) and (2.28) then reduce to the linearized

disturbance governing equations of a static heat-conducting Boussinesq fluid. The θ̂ and
v̂ eigenfunctions of the least stable eigenmode (RB) are then identical to those in the no-
through flow case (Re = 0). Note, however, the presence of η̂ perturbations governed by
the Squire equation (2.27) corresponding to the tilting of the base flow vorticity by the
v̂ component as in the lift-up mechanism. Also, two distinct spanwise-uniform modes,
namely, Transverse Rolls (TR), and Tollmien-Schlichting waves (TS) are presented in
the stability diagram. For reasons presented in section 3.4.1, they occur at a critical
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Rayleigh number which increases monotonically with Reynolds number. The so-called
Oblique-Rolls (OR) are three-dimensional disturbances whose critical Reynolds number
can be obtained from that of transverse rolls, through the Squire transformation (2.33)-
(2.35). In figure 3.11, the marginal stability curve of one such oblique roll has also
been displayed. Here, the selected OR corresponds to α/β = 9.95. At a given Rayleigh
number, the Reynolds number at which these modes become marginally unstable is
larger than that of a TR. Note that, this is simply the consequence of Squire’s theorem.

All spanwise-uniform modes except for the TS mode become unstable at some
Ra > RaRBc for all non-zero Reynolds numbers. When Ra = 0, the TS mode be-
comes marginally stable at Re = ReTSc and for all non-zero Rayleigh numbers below
RaRBc its critical Reynolds number decreases, however very slowly and monotonically
[27, 25].

These plots suggest that there is only a weak coupling between buoyancy and shear
flow stability characteristics. Nevertheless, the TS mode appears to become unstable at
Reynolds numbers as low as Re = 100, but always at Ra > RaRBc which confirms that
unstable stratification is favorable to TS instability.

For RBC flow, the marginal stability diagram is shown in figure 3.12. For the same
reasons discussed in the case of RBP , the least stable eigenmode (RB) at all Reynolds
numbers is a streamwise-uniform convection roll with non-zero streamwise velocity due
to the presence of shear (lift-up mechanism). The critical Rayleigh number at which this
eigenmode becomes unstable is always independent of Re and Pr. In figure 3.12, several
spanwise-uniform eigenmodes: stationary mode (SM), non-stationary mode (NSM),
and an oblique stationary mode (OSM) are also presented. As in RBP flow, they
become marginally stable at Ra > RaRBc for all non-zero Re[27, 25] and the critical
Rayleigh number of both SM andNSM increases monotonically with Reynolds number.
Thus, the stability diagram remains essentially similar to the case of RBP flow. For all
Reynolds numbers, however, the dominant linear instability is RBI in the presence of
shear.

Thus, for Rayleigh-Bénard-Poiseuille flow, the stability boundary consists of two
parts [26]. One part of the boundary is formed by the streamwise-uniform Rayleigh-
Bénard mode (RB) at a constant Rayleigh number equal to RaRBc while the other part
is due to Tollmien-Schlichting waves occurring at Re ≈ ReTSc . In the case of Rayleigh-
Bénard-Couette flow, the second part of the boundary (TS waves) is absent [27]. The
hatched regions in figures 3.11 & 3.12 represent the domain where RBP and RBC flows,
respectively, do not show any exponential instability.

In the case of spanwise-uniform neutral modes, a few scalings laws are evident from
the lines of constant slope in figures 3.11 and 3.12. It seems that this remark has not
been made in previous studies. In the case of RBP flow, it is observed that, if Rac
refers to any critical Rayleigh number, it is proportional to Re4/3 for TR. While both
SM and NSM in RBC flow obey the scaling law Rac ∝ Re1/2.

55



Re

R
a

10-2 10-1 100 101 102 103 104 10510-2

100

102

104

106

108

TR
OR

TS

RB

Figure 3.11: Marginal Stability Diagram of Rayleigh-Bénard-Poiseuille flow for Pr = 1:
(——) streamwise-uniform (α = 0) Rayleigh-Bénard convection rolls (RB), (− − −)
Transverse Rolls (TR), (· − · − ·) Tollmien-Schlichting (TS) waves and (· · · · ·) Oblique
Rolls (OR), α/β = 9.95. The flow is linearly stable in the hatched rectangular region
formed by the lines corresponding to the onset of the RB and TS modes at the lower
left of the plot.
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Figure 3.12: Marginal Stability Diagram of Rayleigh-Bénard-Couette for Pr = 1: (—–)
streamwise-uniform (α = 0) Rayleigh-Bénard convection Rolls (RB), (−−−) Stationary
spanwise-uniform mode (SM), (−· ·−) Non-stationary spanwise-uniform mode (NSM),
(· − · − ·) Oblique stationary spanwise-uniform mode (OSM): α/β = 9.95. The flow is
linearly stable everywhere in the hatched region below the continuous line corresponding
to the onset of the RB mode.
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Chapter 4

Non-modal Stability Analysis

“...it is only the details of how he lived and how he died that distinguish one man from
another. ”

− Ernest Hemingway.

4.1 Road to Santiago

In this section, the various methods used to compute optimal growth characteristics are
introduced. First, it is, however, imperative to discuss the measure which is used in the
analysis.

4.1.1 Choice of an appropriate norm

The transient growth characteristics are obtained by solving equations (2.10)-(2.14), or
equivalently (2.37), for an initial disturbance field that would give rise to the maximum
possible growth qopt(t0). This disturbance is called the optimal initial condition [75]. It
is necessary to define the optimal growth

GE(t) = max
∀q(t0) 6=0

[ Eout(t)
Ein(t0)

]

, (4.1)

where Eout(t) is an output measure corresponding to a relevant input measure Ein(t0)
and, in general, they may not be the same.

It is meaningful to study the growth in disturbance kinetic energy when the temper-
ature field is initially undisturbed. This would denote a flow field wherein the average
noise intensity in the base flow velocity field is much larger compared to the average
temperature noise intensity. Note that, however, both the noise intensity fields should
be negligibly small compared to the base flow for a linear stability analysis to be valid.
Such a norm could be used to identify if there are any transient growth mechanisms due
to wall-normal thermal stratification whereby the growth of disturbance kinetic energy
is larger or smaller than that in the case of pure shear flows. For such transient growth
studies, the growth function can be defined as

GK.E.(t) =

{

max
∀q(t0) 6=0

[

EK.E.(t)

EK.E.(t0)

]

: θ0 = 0

}

. (4.2)

57



It is also possible to find other measures that could be appropriate for the study of
transient growth in RBP and RBC flow. For example, the class of norms E(t; γ) for
any γ > 0 is a positive measure whereby the non-linear terms in the perturbation kinetic
energy are energy-conserving. There are many choices of relevant measures of the state

vector q =
[

ṽ, θ̃, η̃
]T

from the norm E (t; γ) used to derive the adjoint equations in

section 2.4: for example, if γ = 1,

E (t; 1) =

∫

V

[

1

2

(

|u|2 + |v|2 + |w|2
)

+
1

2
|θ|2

]

dV, (4.3)

which was used in the recent computations by Sameen et al. [74] and if γ =
√

|Rah/2 |Pr,

E

(

t;
√

|Rah/2 |Pr
)

=

∫

V

[

1

2

(

|u|2 + |v|2 + |w|2
)

+
1

2
|Rah/2|Pr |θ|2

]

dV, (4.4)

used by Biau and Bottaro [5] in their spatial transient growth calculations. Note that the
norm (4.3) does not have any physical relevance for all Rayleigh number and Reynolds
numbers. The first bracketed term, however, in both norms (4.3) and (4.4) is the distur-
bance kinetic energy. For the case of a fluid layer heated from above (stable stratifica-

tion) the term 1
2 |Rah/2 |Pr|θ̂|2 in norm (4.4) is the non-dimensional potential energy of

the disturbance. This term, however, loses its significance as the disturbance potential
energy in the case of a flow with unstable thermal stratification (when Ra > 0). This
norm is identical to the total energy of the perturbations in a Boussinesq fluid in the
presence of stable thermal stratification. This property is independent of Prandtl num-
ber. Also, it reduces to the kinetic energy of the perturbations when Ra = 0. Taking
γ =

√

|Rah/2|Pr, the direct equations (2.37) and the adjoint equations (2.43) become
identical when Re = 0 i.e., the linear operator of the Rayleigh-Bénard-Poiseuille/Couette
problem is then self-adjoint under this specific norm [10]. It is also the measure under
which the principle of exchange of stability holds for the case of pure conduction across a
static fluid between rigid plates [10, 45, 18]. Nevertheless, there is no unique physically
meaningful norm that can quantify the entire state vector [74]. Also, it is relatively
simple to set up a code for norms of the form E(t; γ). For such reasons, a measure of
perturbation growth of the form

E(t) =

∫ 1

−1

1

2

[

|v̂|2 + 1

k2

(

|Dv̂|2 + |η̂|2
)

+ |Rah/2 |Pr
∣

∣

∣θ̂
∣

∣

∣

2
]

dy, (4.5)

is considered for the transient growth analysis. It will later be shown that (see section
4.3.7) the optimal growth mechanisms are similar for the entire class of norms E(t; γ).

4.1.2 Computational method

The growth function, thus, becomes

G(t) = max
∀q(t0) 6=0

[

E(t)

E(t0)

]

, (4.6)

referred to as the optimal transient growth [75, 76], i.e. the maximum possible growth
at some time t over all possible non-zero initial conditions. Since different wave vectors
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are not linearly coupled, G(t) may be considered as a function of α and β as well as the
control parameters Re, Ra and Pr. It is convenient to define the quantities

Gmax (α, β;Re,Ra, Pr) = max
∀t≥0

G (t, α, β;Re,Ra, Pr) , (4.7)

S (Re,Ra, Pr) = sup
α,β

Gmax (α, β;Re,Ra, Pr) , (4.8)

where Gmax is commonly known as the maximum optimal transient growth. Let tmax
be the time taken to attain the growth Gmax and (αopt, βopt) be the wavenumbers
corresponding to the overall optimal growth S (Re,Ra, Pr).

To compute G(t) the continuous linear operator, i.e. the system of equations (2.26),
(2.27) and (2.28), is discretized using Chebyshev spectral functions in the same way as
for the numerical computations in the modal stability analysis. The optimal growthG(t)
is then related to the norm of the matrix exponential of the discretized linear operator
(gain matrix). Various methods of computing the matrix exponential are discussed in
this section.

The domain being finite in the eigenfunction direction y, the DiPrima-Habetler the-
orem [17] applies and the spectrum of the system (2.37) is discrete and complete [36].
Thus, the state vector q can be obtained by an eigenfunction expansion

q = ΨΛΨ−1q0, (4.9)

where q0 is the initial state vector, Ψ is the eigenfunction matrix and Λ is the exponential
of a diagonal matrix consisting of the eigenvalues of the system (2.37). Thus, the growth
function reads

G(t) = max
∀q(t0) 6=0

‖q‖2

‖q0‖2
,

= max
∀q(t0) 6=0

∥

∥ΨΛΨ−1q0

∥

∥

2

‖q0‖2
,

=
∥

∥ΨΛΨ−1
∥

∥

2
, (4.10)

where ‖. . .‖2 denotes the norm (2.50) when γ =
√

|Rah/2|Pr. The norm of the matrix
ΨΛΨ−1 with respect to the scalar product (2.49) can be rewritten in terms of the L2

norm. The weight matrix in the scalar product (2.49) is M BOB . It is positive definite
with respect to the same scalar product and hence, there exists a Cholesky decomposition
M BOB = MHM. The gain (4.10) may therefore be expressed as

G(t) = max
∀q(t0) 6=0

∥

∥MΨΛΨ−1q0

∥

∥

2

2

‖Mq0‖22
,

=
∥

∥M
(

ΨΛΨ−1
)

M−1
∥

∥

2

2
, (4.11)

which is given by the singular value of the matrix M
(

ΨΛΨ−1
)

M−1. A direct singu-
lar value decomposition [16] of this matrix would give UΣV∗ where U , V∗ (∗ denotes
the conjugate transpose) are complex unitary matrices and Σ is a diagonal matrix with
nonnegative real numbers, known as singular values, on the diagonal. The optimal ini-
tial condition corresponding to optimal growth is then simply the column vector in V

59



corresponding to the maximum singular value. Thus, computing the non-modal stabil-
ity characteristics consists of two steps: (1) solve the generalized eigenvalue problem
(3.1)-(3.3) and (2) use the spectrum and the eigenfunctions of the operator to compute
the singular values of the eigen-decomposition of the exponential of the operator. It
involves decomposition of two 3N × 3N matrices in discretized spectral space. In fact,
the state vector at any time can be approximated as the sum of the first M dominant
eigenfunctions; hence q0 = ΨMC0 and q = ΨMC = ΨMΛMC0, where ΨM is a ma-
trix of size 3N ×M whose M columns are the leading M eigenfunctions, ΛM is the
diagonal matrix of orderM containing the firstM leading eigenvalues, C and C0 are col-
umn matrices of complex constants given by the projection of the state vector on each
eigenfunction direction. The optimal growth problem can now be restated as follow:
maximize ‖ΨMC‖2γ = (ΨMC)HW(ΨMC) so that ‖ΨMC0‖2γ = (ΨMC0)HW(ΨMC0) = 1,
where W is an appropriate positive-definite weight matrix that accounts for integration
along the Gauss-Lobatto points and the weight matrix involved in the energy scalar
product (2.49). In other words, the Lagrange functional of the optimization problem
reads

P(C0) = CH(ΨHMWΨM )C + σ
(

1− CH0 (ΨHMWΨM )C0
)

,

= CH0 GC0 + σ
(

1− CH0 G0C0
)

, (4.12)

where G = ΨHM (ΛHMWΛM )ΨM , G0 = ΨHMWΨM , each being of order M and σ is a
Lagrange multiplier. Thus, the optimal gain is given by the maximum eigenvalue of
the generalized eigenvalue problem GC0 = σG0C0. In this case, the second step in
computing optimal perturbations involves only a matrix of order M ≤ N and usually
M is much less than N i.e. only a few dominant eigenfunctions are required. The
computational accuracy, however, depends on N , the number of Chebyshev polynomials
required to represent the state vector in the wall-normal direction and M , the number
of eigenfunctions (which are already discretized in the wall-normal direction) required
to construct the optimal disturbances accurately.

If one decides to use the norm (4.2), the weight matrix W becomes singular. The
Lagrange problem can, however, be restated by restricting the space of initial conditions
q0 = [v̂(y), θ̂(y), η̂(y)]T to a subspace of initial conditions consisiting of vectors of the
form qθ0=0

0 = [v̂(y), 0, η̂(y)]T with zero temperature perturbations. Consider such an
initial condition that is expressed as a sum of eigenfunctions ΨM with components Cθ0=0

0 ,
i.e. qθ0=0

0 = ΨMCθ0=0
0 . An orthogonal basis for such a subspace of initial conditions is

then the null space of the matrix W1ΨM . Here, W1 = diag(Z(2N), I(N)), where Z(2N)
is a zero matrix of order 2N and I(N) is an identity matrix of order N . If V forms the
basis of the null space of W1ΨM

Cθ0=0
0 = VY0, (4.13)

where Y0 is a column vector whose elements are components of Cθ0=0
0 along the orthog-

onal basis V . Thus, the Lagrange functional (4.12) reads

P(C0) = YH0
(

VHGV
)

Y0 + σ
(

1− YH0 (VG0V)Y0

)

(4.14)

Note that the size of the basis matrix V is M ×K, where K < M ≤ N and hence, the
matrices VHGV and VHG0V are of order K. In this case, however, the computation of
optimal perturbations involves three steps: (1) solve the generalized eigenvalue problem
(3.1)-(3.3), (2) evaluate the null space of W1ΨM using singular value decomposition [16]
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and (3) solve the Lagrangian problem (4.14) through the generalized eigenvalue problem
(

VHGV
)

Y0 = σ
(

VHG0V
)

Y0.
It was, however, observed that the null space method used to restrict the initial

conditions to a subspace was not efficient. If the number of eigenfunctions M is in-
creased, the eigenfunction expansion becomes more accurate. In the case of the problem
(4.12), optimal growth computations converged for a relatively small value M ≈ 60.
The problem (4.14) involving null space computation required a very large M ≈ N and
eventually, the orthogonal basis computed via singular value decomposition included
spurious modes that do not satisfy the homogeneous boundary conditions. The opti-
mal initial conditions obtained through this null space formulation did not satisfy the
boundary conditions. Interestingly, however, the non-modal stability results for the case
Ra = 0, namely, optimal growth, optimal initial condition (except for boundary points)
at any time t were seen to agree with existing results. In the case Ra 6= 0, the optimal
transient growth converged for large M and the results matched with the case of the
norm (4.4). However, optimal initial conditions did not obey the boundary conditions
and the first few boundary points (2 or 3) showed oscillations of an order of magnitude
less than the maximum of the state vector.

The method of power iteration [51] seemed to be one way to get around the problem
of restricting the initial conditions while it could also serve as a faster means to compute
singular values. Here, the norm of the matrix exponential, say P , is computed by
iterative multiplication qn+1 = Pqn

‖Pqn‖ . Such an iteration will converge, at large n,

to the eigenvector corresponding to the eigenvalue of maximum absolute value. Let
A = M

(

ΨΛΨ−1
)

M−1, then

G(t) =
∥

∥M
(

ΨΛΨ−1
)

M−1
∥

∥

2

2

=
{

max(σ) : (AHA)χ = σχ
}

, (4.15)

where AH is the conjugate-transpose of the matrix A, and χ is a 3N dimensional vector.
Note that the eigenvalues of the matrix AHA are real and positive. Thus, to find the
optimal growth using the method of power iteration, one typically follows two steps: (1)
solve the generalized eigenvalue problem (3.1)-(3.3) and (2) use the spectrum and the
eigenfunctions of the operator to compute the singular values of the eigen-decomposition
of the exponential of the operator via the iterative multiplication

χk+1 =
(AHA)χn
‖(AHA)χn‖

, (4.16)

starting from an initial non-zero random vector χ0, until the ratio
‖(AHA)χn+1‖

‖χn+1‖ has

converged to a constant value. This constant is the maximum singular value of the matrix
AHA. Here, the elements in the vector χn are not the components along eigenfunction
directions. But they represent the state vector at each Gauss-Lobatto collocation point.
Hence, the initial condition can be restricted to a subspace by simply setting the elements
corresponding to temperature perturbations to zero at each iteration. Note, however,
that the eigen-decomposition also includes the spurious modes corresponding to a growth
rate given by the imaginary part of s0, say so,i in the expression (3.18). If so,i is large
and negative, such modes would not affect the result of the optimal growth computation
at sufficiently large time O(1/so,i).

The accuracy of both methods depends on the number N of Chebyshev expansion
functions and the precision of the first method also depends on the number of eigenmodes
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M considered in the construction of the gain matrix. Thus, when using the former, it
must be ensured that all the dominant eigenmodes are taken into account. Note that, in
both methods, the direct equations in Fourier space were first discretized using Cheby-
shev polynomials; the eigenvalue decomposition was then performed on these direct
equations and the adjoint operator was introduced only indirectly when the conjugate-
transpose operation was used along with appropriate weight matrices to account for the
integration along the Gauss-Lobatto points and for the positive-definite weight involved
in the scalar product (2.49). As an alternative, one could have discretized both the
direct and adjoint equations using Chebyshev polynomials, followed by the eigenvalue
decomposition of the two matrices. Eventually, the exponential of the direct and ad-
joint matrices (expressed in terms of the direct and adjoint eigenfunctions, respectively)
could have been used to compute the norm (4.10) or (4.11) via a forward-backward type
method: forward in time through the exponential of the direct operator and backward in
time through the exponential of the adjoint operator. This method is similar to power
iteration wherein (AHA)χk is split into two steps. In the iteration (4.16), however,
the discretized adjoint equations are not used. The aforementioned forward-backward
type method had also been explored at the same time as the method of power iteration
was coded in MATLAB. The author did not succeed in writing a bug-free code for the
forward-backward type method.

4.1.3 Validation

The computations were successfully validated against those available in Reddy et al.[72]
and Schmid and Henningson[75]. It was observed that M ≈ 60 is sufficient to com-
pute G(t) up to 5 significant digits over all control parameter values (see figure 4.1).
Cross-validations were performed between the two methods, namely, Singular Value
Decomposition method and Power Iteration method, as a consistency check. In the fol-
lowing sections, only the results from the method of power iteration for the norm (4.4)
are presented (N = 100).

4.2 Results: Non-modal stability analysis

4.2.1 Effect of varying Rayleigh number at constant Reynolds
number

Figures 4.2 and 4.4 show the contour level curves of logGmax and tmax, respectively, with
respect to streamwise and spanwise wavenumbers at different Rayleigh numbers Ra = 0,
Ra = 500, Ra = 1500, and Ra = 1700 for the same Reynolds number Re = 1000. In the
case when Ra = 0 (pure shear flow), the plot (figure 4.2a) reproduces the results of Reddy
et. al. [72] wherein S = 196, αopt = 0, βopt = 2.04 and tmax = 76. This corresponds
to the classical lift-up mechanism [21, 53] resulting from the interaction between Orr-
Sommerfeld and Squire modes due to the presence of the forcing term −iβReU ′ in the
Squire equation [72, 75]. The contour levels along the α-axis (β = 0) correspond to the
lowest values of Gmax, indicating that the spanwise-uniform disturbances which grow
via the Orr-mechanism [65] are only sub-dominant compared to oblique and streamwise-
uniform disturbances for all Reynolds numbers [6, 72, 75].

The contours of logGmax are remarkably similar for all Ra and the effect of un-
stable stratification only moderately increases the maximum optimal growth. This
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M

Gmax

Figure 4.1: Convergence of the computed value of Gmax with respect to the number of
eigenmodes M considered for computations of transient growth: Re = 1000, Pr = 1
and ◦ Ra = 0, � Ra = 500 (α = 0, β = 1.8).

variation is evident near the β-axis, for streamwise-uniform perturbations and some
oblique perturbations which are nearly uniform in the direction of the base flow (say,
nearly-streamwise-uniform disturbances: 0 ≤ α < 0.25). In figures 4.2a-d, the gray
bars indicate that the overall optimal growth increases from S = 196 at Ra = 0 to
S = 369.15 at Ra = 1700. The growth S(1000, Ra, 1) is, thus, of the same order of mag-
nitude for all Rayleigh numbers even at the onset of streamwise-uniform convection rolls
when Ra ≈ RaRBc (figure 4.2d). The optimal wavenumber βopt of streamwise-uniform
disturbances decreases with the increase in Rayleigh number. The maximum growth via
the Orr-mechanism (for β = 0) is not affected by the cross-stream temperature gradient,
which is contrary to the observations of Sameen and Govindarajan [74]. Thus, the global
optimal perturbations S(Re,Ra, Pr = 1) are always in the form of streamwise-uniform
disturbances for all Ra with an optimal spanwise wavenumber βopt varying from 2.04
to 1.558 as Ra approaches RaRBc (Note that the wavenumber of the most unstable RB
mode is 1.558).

The geometry of the Gmax contours remains similar for all Ra and Re. Figure
4.4 indicates that there is a marked difference in the contour geometry of tmax with
increasing Rayleigh number. When Ra = 0 (figure 4.4a), the maximum of tmax lies on
the β-axis and large values of tmax occur around this point which is seen by the white
contour levels close to that axis. The time taken to attain the growth corresponding
to S(Re,Ra, Pr) is 76 and it is larger than that for any Gmax along the α-axis. This
implies that the Orr-mechanism is sustained only for a small time compared to the lift-
up mechanism. For Ra 6= 0 the plots (figure 4.4b-d) display a small region of white
contour levels near the β-axis and the maximum of tmax increases from 76 for Ra = 0
to 366 for Ra = 1700. It can be concluded that the influence of unstable stratification is
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limited to streamwise-uniform and nearly-streamwise-uniform perturbations (similarly
to the contours of Gmax) and the transient growth of these disturbances is sustained
over a much longer time than for any other disturbances. The equivalent of the Orr-
mechanism in Boussinesq fluids is sustained only over a shorter period of time (as in the
case Ra = 0).

These observations are more evident in figure 4.6 wherein Gmax and tmax are dis-
played for streamwise-uniform disturbances of various spanwise wavenumbers. Here, the
results are for RBP flow and different symbols indicate different Rayleigh numbers. Ex-
cept for a range of spanwise wavenumbers between 1 and 5, the curves are all identical.
This shows that the effect of Rayleigh number in RBP is restricted only to a small range
of spanwise wavenumbers.

The dashed lines in each of the Gmax and tmax contour plots correspond to iso-lines
of the growth Gmax = 2

3S and tmax = 2
3Tmax, respectively, where Tmax is the global

maximum of all tmax in the α-β plane. The size of the region enclosed by this dashed
line constantly decreases with increasing Rayleigh number as it approaches RaRBc and
this is even more evident in the tmax - contour plots. The presence of a temperature
gradient thus sharpens the selection of global optimal perturbations.

The equivalent plots for RBC flow are presented in figures 4.3 & 4.5. They are
qualitatively similar to figures 4.2 & 4.4, respectively, except that the growth S cor-
responds to a nearly-streamwise-uniform disturbance with αopt << 1 (Note: at large
Reynolds numbers, in plane Couette flow [75] without a cross-stream temperature gra-
dient, αopt =

35
Re ). As the Rayleigh number increases, however, αopt approaches zero. In

comparison with RBP , there is a more marked increase in Gmax and tmax with Ra. As
in RBP , this is primarily limited to streamwise-uniform and nearly-streamwise-uniform
disturbances.

Thus, it is likely that lift-up remains the most dominant mechanism of transient
growth and that the Orr-mechansism is negligibly affected by the presence of unstable
stratification. The effect of Prandtl number will be discussed in section 4.3.6 but it may
already be mentioned that this conclusion holds for all Prandtl numbers too.

4.2.2 Effect of varying Reynolds number at constant Rayleigh
number

In wall-bounded shear flows without stratification the optimal transient growth of streamwise-
uniform perturbations scales as Re2 at large Reynolds numbers [31, 6, 72]. This scaling
is related to the presence of the large off-diagonal term in the linear operator (2.37):
the coupling term −iβRe due to the basic flow shear appearing in the Squire equation
for the wall-normal vorticity. Physically, this transient growth is due to the presence of
a non-zero initial wall-normal velocity perturbation in the form of streamwise-uniform
vortices that feed the wall-normal vorticity (associated to the streamwise velocity) by
the tilting of base flow vorticity through the so-called lift-up mechanism [21, 53] for all
t ≥ 0. The influence of buoyancy on this scaling law is considered in this section and in
section 4.3.3.

In figure 4.7 the optimal transient growth of streamwise-uniform disturbances is
displayed at Ra = 0 and Re = 5000 and also, at Ra = 1500 for different Reynolds
numbers when Pr = 1. The optimal transient growth and the optimization time are
scaled as Gopt/Re

2 and tRe/Re, respectively, where tRe is the advective time scale scaled
with respect to Umax. It is related to the non-dimensional time t in equations (2.4), (2.5)
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Figure 4.2: Contour plot of logGmax for RBP at Re = 1000, Pr = 1, and (a)Ra = 0,
(b)Ra = 500, (c)Ra = 1500 and (d)Ra = 1700. The dashed lines correspond to iso-lines
of the growth Gmax = 2

3S.
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Figure 4.3: Contour plot of logGmax for RBC at Re = 1000, Pr = 1, and (a)Ra = 0,
(b)Ra = 500, (c)Ra = 1500 and (d)Ra = 1700. The dashed lines correspond to iso-lines
of the growth Gmax = 2

3S.
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Figure 4.4: Contour plot of tmax for RBP at Re = 1000, Pr = 1, and (a)Ra = 0,
(b)Ra = 500, (c)Ra = 1500 and (d)Ra = 1700. The dashed lines correspond to iso-lines
of tmax = 2

3Tmax, where Tmax is the global maximum of all tmax in the α-β plane.
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Figure 4.5: Contour plot of tmax for RBC at Re = 1000, Pr = 1, and (a)Ra = 0,
(b)Ra = 500, (c)Ra = 1500 and (d)Ra = 1700. The dashed lines correspond to iso-lines
of tmax = 2

3Tmax, where Tmax is the global maximum of all tmax in the α-β plane.
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Figure 4.6: Effect of Rayleigh number on (a) Gmax and (b) tmax in RBP for streamwise-
uniform disturbances of various spanwise wavenumbers β at Re = 1000, Pr = 1, and
+Ra = 0, △Ra = 500 and ◦Ra = 1500.
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310−×

Figure 4.7: Optimal growth curves at various Reynolds numbers for streamwise-uniform
disturbances in RBP at Ra = 1500 (α = 0, β = 2.04): —— Re = 5000, × Re = 1000,
+ Re = 500, ⋄ Re = 300, � Re = 200, ◦ Re = 100 and −−− Ra = 0, Re = 5000

& (2.6) by the relation

tRe =
Umax
h/2

t∗ = (RePr) t, (4.17)

where t∗ denotes the dimensional time variable. As the Reynolds number increases all
the symbols collapse on a single continuous curve, thereby confirming that the large
Reynolds number scaling law of pure shear flows, i.e.

G

Re2
= f

(

tRe
Re

)

, (4.18)

remains valid even when buoyancy is destabilizing the flow. The scaling law fairly pre-
dicts the optimal gain even at Reynolds numbers as low as 200. Biau and Bottaro [5]
presented the same scaling law in their analysis of transient growth in the spatial frame-
work for plane channel flow under the action of stable thermal stratification and, here, a
similar result is observed in the temporal framework for an unstable temperature gradi-
ent in RBP flows. The scaling law is also valid for RBC flow as seen in figure 4.8. Similar
observations can be made for supercritical Rayleigh numbers Ra > RaRBc . Figure 4.9
displays Gmax/Re

2 against tRe/Re for various Reynolds numbers (different symbols)
at a supercritical Rayleigh number Ra = 1800. The continuous line corresponds to
Re = 5000 and the symbols collapse onto this curve for large Reynolds numbers which
indicates that the scaling law (4.18) holds for Ra > RaRBc as well. Figure 4.9 corre-
sponds to the case of RBC flow. It still holds for RBP flows (results not presented

74



310−×

Figure 4.8: Optimal growth curves at various Reynolds numbers for streamwise-uniform
disturbances in RBC at Ra = 1000 (α = 0, β = 1.558): —— Re = 5000, ⊳ Re = 3000,
+ Re = 2000, × Re = 1000, ◦ Re = 400, � Re = 200 and −−− Ra = 0, Re = 5000

here). Thus, optimal transient growth of streamwise-uniform disturbances in RBP and
RBC flow at large Reynolds numbers under both stable and unstable temperature gradi-
ent retains the classical scaling law of the lift-up mechanism in pure shear flows at all
Rayleigh numbers.

The short-time transient growth, once rescaled as shown in figures 4.7 & 4.8, is
remarkably independent of Re and Ra. The corresponding maximum optimal transient
growth and the time at which it occurs depend only weakly on Rayleigh number. This
suggests that the short-time transient growth is predominantly an inviscid process, as
further examined in section 4.3.1.

4.2.3 Domain of Transient Growth

A state is said to be monotonically stable if the perturbation energy, for any perturba-
tion, decays monotonically to zero [75]. Along the same line of thought, it is appropriate
to look for Rayleigh and Reynolds numbers at which RBP/RBC flow does not exhibit
transient growth. In terms of the growth function G(t), it is the domain in the Re-Ra
plane where G(t) is less than unity for all α, β and t > 0.

For RBP and RBC flow, the contours of the global maximum optimal transient
growth S in the stable region of the Re-Ra plane are displayed in figures 4.10 and 4.11,
respectively. The hatched region in both plots represents the domain of no-transient-
growth. At Re = 0, the flow is monotonically stable for all Rayleigh numbers up to
RaRBc where the Rayleigh-Bénard instability occurs, a feature which is consistent with
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Figure 4.9: Same as figure 4.8 at a supercritical Rayleigh number Ra = 1800

the classical results [10] for the present choice of norm (4.5). Hence, the thick line meets
the Ra-axis at Ra = RaRBc and the Re-axis at the critical Reynolds numbers, 49.6 and
20.7 for plane Poiseuille and plane Couette flow, respectively. These numbers match with
the critical Reynolds number for monotonic decay of the kinetic energy as computed by
Joseph [45]. The iso-contours at large Reynolds numbers are nearly vertical (figures 4.10
& 4.11) for both RBP and RBC flows indicating that the effect of unstable stratification
on the overall optimal transient growth S is negligible.

4.3 Transient growth of streamwise-uniform distur-

bances in RBP and RBC flows

4.3.1 Lift-up Mechanism in the presence of temperature pertur-
bations

In order to understand the transient dynamics of streamwise-uniform disturbances, the
low-order model discussed by Schmid and Henningson[75] is extended to include temper-
ature effects and buoyancy. Consider the following model of the linear operator (2.37)
with 3 degrees of freedom

d

dt





v̌

θ̌
η̌



 =





−bPr
√

Rah/2Pr 0
√

Rah/2Pr −b 0
RePr 0 −aPr









v̌

θ̌
η̌



 , (4.19)
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Ra

Re
Figure 4.10: Contours of global maximum transient growth S in Rayleigh-Bénard-
Poiseuille flow (Pr = 1). For any Ra and Re in the hatched region that is bounded
by the thick line and the axes, S = 1 wherein the flow is monotonically stable. The
symbols denote the numerical results of Shuhlze and Carmi (1976).

where the amplitudes of the field v̌, θ̌ and η̌ are time-dependent only. The coefficients
a, b are positive and they are related to the eigenvalues of the linear operator. When
Rah/2 = 0, v̌(t) is decoupled from θ̌(t) and the matrix is analogous to the 2D vector model
presented in Schmid and Henningson[75] to illustrate the nature of the lift-up mechanism
in pure shear flows. The off-diagonal term

√

Rah/2Pr makes the operator self-adjoint at

Re = 0 so that the state vector
[

v̌(t), θ̌(t), η̌(t)
]T

does not exhibit any transient growth.
On comparing the dispersion relation of the model with that of the linearised disturbance
equations for pure conduction of a static fluid with free-slip boundary conditions, it can
be seen that b2 plays the role of the critical Rayleigh number characterizing the linear
stability of pure conduction in Boussinesq fluids3. Thus, the resulting operator (4.19) is
stable for all a > 0 and Rah/2 < b2.

Such a model is hypothesized on the basis of the following observations. There
is no explicit temperature term θ̃(y, t) in the governing equation (2.37) for the wall-
normal vorticity η̃(y, t). The only forcing term in this equation is due to the wall-
normal velocity ṽ(y, t) and it is O(RePr) if β is of order unity. Bearing in mind that γ =
√

O(Rah/2Pr), the coupling between ṽ(y, t) and θ̃(y, t) appears as terms O(Rah/2Pr)
1/2in

their respective evolution equations. When β is of order unity, the dissipation term in
the equation for θ̃(y, t) is only O(1) but it is O(Pr) in the equations of both ṽ(y, t)
and η̃(y, t). When α = 0 the operators LOS and LLHE are normal and their spectrum

3alternatively, one could have used three arbitrary constants, say, a, b, c; with c in the diagonal term
of the θ̌ equation, thereby relating the critical Rayleigh number to b and c
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Figure 4.11: Same as in figure 4.10 but for Rayleigh-Bénard-Couette flow. The symbols
� and ⋄ denote the theoretical results of Joseph (1966) and the numerical results of
Shuhlze and Carmi (1976).

depends only on Ra and Pr with an unstable Rayleigh-Bénard convection roll appearing
at Ra = RaRBc , independently of the Reynolds and Prandtl numbers. The reduced
model (4.19), therefore, appears to be a good representation of the evolution equation
of streamwise-uniform disturbances.

The behavior at small time t can be obtained by expanding the solution of system
(4.19) about t = 0. One easily obtains:





v̌(t)

θ̌(t)
η̌(t)



 =





v̌0
θ̌0
η̌0



+





−bv̌0 +
√

Rah/2Pr θ̌0
√

Rah/2Pr v̌0 − bθ̌0
RePr v̌0 − aPr η̌0



 t

+





(b2Pr +RaPr)v̌0 − b(1 + Pr)
√

Rah/2Pr θ̌0
−b(1 + Pr)

√

Rah/2Pr v̌0 + (b2 +RaPr)θ̌0
−(b+ a)RePr v̌0 + a2η̌0 +RePr

√
RaPr θ̌0



 t2 +O(t3), (4.20)

where
[

v̌0, θ̌0, η̌0
]T

is the initial condition. In (4.20), the largest contribution comes from
the term proportional to RePr in the expression for η̌(t). It arises from the off-diagonal
term in the model (4.19) and so η̌(t) will display algebraic growth in the presence of
a non-zero initial condition on v̌(t). This is identical to the classical algebraic growth
for t ∼ O( 1

Re ) of wall-normal vorticity [75] due to the lift-up mechanism in pure shear
flows. Therefore, the growth of the disturbances will be led by η̌, which manifests
itself through the appearance of low and high speed streaks. The effect of the initial
perturbation temperature field θ̌0 is felt only in the terms O

(

t2
)

because θ̌ does not
directly force η̌. It affects, however, the decay rate of v̌(t) which in turn forces η̌ through
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the lift-up mechanism. The t2 term in system (4.20) is O(RePr
√

Rah/2Pr) and becomes
increasingly important at large Rayleigh numbers. Thus, the small-time expansion (4.20)
suggests that the influence of buoyancy on the short-time energy growth of streamwise-
uniform disturbances in parallel shear flows is only secondary compared to the classical
lift-up mechanism. The initial energy growth, therefore, scales as Re2 at large Reynolds
numbers.

4.3.2 Short-time dynamics

It is shown that the short-time evolution of streamwise perturbation velocity is linear
in time and is independent of Rayleigh and Prandtl numbers at very large Reynolds
numbers. The arguments presented here are similar to those in Ellingsen et al [21].

If the advective time scale (as in eqn. (4.17)) and advective velocity scale had been
used, instead of the time scale and velocity scale based on the thermal conductivity, the
governing equations of amplitudes of the Fourier modes in RBP and RBC flows are
given by expressions (2.15)-(2.19) as derived in section 2.2. Consider now the physical
variables ~uRe = 1

RePr~u and pRe = 1
(RePr)2 p. The expressions (2.15)-(2.19) in physical

space then become

∇ · ~uRe = 0, (4.21)

(

∂

∂tRe
+ U0

∂

∂x

)

~uRe + vRe
dU0

dy
~ex = −∇pRe +

Gr

Re2
θ~ey +

1

Re
∇2~uRe, (4.22)

(

∂

∂tRe
+ U0

∂

∂x

)

θ + vRe
dΘ0

dy
= 1

RePr∇2θ. (4.23)

If ψRe(y, z; t) represents the stream function in the horizontal y-z plane then

vRe = −∂ψRe
∂z

and wRe =
∂ψRe
∂y

. (4.24)

The governing equation of the streamwise velocity component written in terms of the
stream function is then

∂

∂tRe
∇2
hψRe = − Gr

Re2
∂θ

∂z
+

1

Re
∇4
hψRe, (4.25)

where ∇2
h = ∂2

∂y2 + ∂2

∂z2 . When Re >> 1, the R.H.S. of eqn. (4.25) becomes negligibly

small O(1/Re). Thus, in an inviscid flow (or equivalently for tRe << Re) ψRe is inde-
pendent of time. This implies that the rescaled wall-normal velocity vRe and spanwise
velocity wRe are constant for all tRe << Re. The streamwise velocity grows linearly with
time. Also, vRe and wRe do not depend on any control parameters, namely, Reynolds
number, Rayleigh number and Prandtl number. Hence, at short times, the linear growth
in streamwise velocity is directly related to the classical lift-up mechanism as in pure
shear flows.
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4.3.3 Reynolds number scaling for Gmax(α, β;Re,Ra, Pr)

It is possible to estimate the behavior of Gmax(α, β;Re,Ra, Pr) at α = 0 (or small
αRe) at a fixed Rayleigh and Prandtl number by employing the method followed by
Gustavsson [31] and Reddy et. al. [72]. The following analysis is similar to that
previously known for pure shear flows[72, 75, 54]. If the wall-normal vorticity in the
Squire equation is rescaled as η̄ = η̂/βRe, equations (2.26), (2.27) & (2.28) then depend
on only two parameters, namely, k2 = α2 +β2 and αRe at a fixed Rayleigh number and

Prandtl number. The norm (4.5) of the perturbations in the new variables
[

v̂, θ̂, η̄
]T

can
then be expressed as

E(t) =

∫ 1

−1

(

|v̂|2 + 1

k2
|Dv̂|2 + |Rah/2 |Pr

∣

∣

∣θ̂
∣

∣

∣

2
)

dy +
1

2

β2

k2
Re2

∫ 1

−1

|η̄|2dy. (4.26)

The first bracketed term, defined as E(v̂,θ̂)(t), is the contribution to the energy from the

wall-normal velocity v̂ and temperature θ̂ only and the second integral, defined asE(η̂)(t),
is the contribution from the wall-normal vorticity η̂ alone. When α = 0, the evolution
equations (2.12) & (2.14) for the wall-normal velocity and the temperature perturbations
are independent of Reynolds number and they are identical to the linearised Oberbeck-
Boussinesq equations in the linear stability analysis of pure conduction in Boussinesq

fluids. If L(v̂,θ̂) denotes this coupled linear operator, then
[

ṽ(y, t), θ̃(y, t)
]T

= exp { −
iL(v̂,θ̂)t}

[

ṽ(y, 0), θ̃(y, 0)
]T

. Since the operator is normal for the present choice of norm

E(v̂,θ̂) issued from the norm (4.5) and since its spectrum lies in the lower half-plane

for all k, the Hille-Yosida theorem [72] implies that E(v̂,θ̂)(t) ≤ E(v̂,θ̂)(0). Furthermore,
the wall-normal vorticity is governed by the Squire operator LSQ which is forced by

v̂ but not by θ̂ in (2.37). If the initial wall-normal velocity were zero, E(η̂)(t) would
decrease monotonically given that the Squire equation is simply a diffusion equation.
The definition of the growth function (4.6) gives

Gmax = max
∀q(t0) 6=0 ,t≥0

[

E(v̂,θ̂)(t̄) +Re2E(η̂)(t̄)

E(v̂,θ̂)(0) +Re2E(η̂)(0)

]

, (4.27)

and at large Reynolds numbers, in order to achieve a large transient growth, the initial
perturbation should be chosen so that most of the initial energy is in the velocity and
temperature perturbations:

E(v̂,θ̂)(0) >> Re2E(η̂)(0). (4.28)

Since, E(v̂,θ̂)(t) does not grow, it follows that, if t̄ ≈ tmax, the time taken to achieve
the maximum transient growth Gmax, the perturbations that experience the maximum
growth at large Re satisfy

Re2E(η̂)(t̄) >> E(v̂,θ̂)(t̄). (4.29)

Thus, for Re >> 1,

Gmax ≈ Re2 max
∀q(t0) 6=0 ,t≥0

[

E(η̂)(t̄)

E(v̂,θ̂)(0)

]

. (4.30)
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The measures E(v̂,θ̂) and E(η̂) are of order unity or less and they depend on the state

variables which in turn depend only on the wavenumber k = β (since α = 0), Ra and
Pr. The above expression therefore simply becomes

Gmax ≈ Re2ζ(β;Ra, Pr), (4.31)

where, ζ(β;Ra, Pr) is some function of the spanwise wavenumber β, Ra and Pr. Note
that this scaling relation holds both for RBP and RBC flows and becomes more accurate
at large Reynolds numbers.

4.3.4 Long-time Optimal Response

The domain being finite in the eigenfunction direction y, the DiPrima-Habetler theorem[17]
applies and the spectrum is discrete and complete[36]. The solution of the direct equa-
tions (2.37) (and also the adjoint equations (2.43)) may be expanded as

q (t) =
∑

j

cjφj exp (−iωjt), (4.32)

where ωj and φj are the eigenvalues and eigenfunctions of the linear operator (2.37) and
cj are complex components of q(t) along φj . If ω1 is the eigenvalue with the largest
imaginary part, it should lead the large time dynamics of q(t):

lim
t→∞

q (t) = c1φ1 exp (−iω1t),

and the constant c1 is given by

c1 =
〈q (t = 0) , φA1〉γ

〈φ1, φA1〉γ
, (4.33)

where q (t = 0) is the initial condition and φA1 the adjoint eigenfunction associated with
φ1. This demonstrates the classical result that the optimal initial perturbation for the
large time dynamics is the adjoint of the leading eigenmode.

As noticed already, in the direct equations (2.37) the coupled linear operator for v̂

and θ̂ is independent of η̂ and the Squire equation for η̂ is forced by the solution of
this coupled operator. Hence, in general, the solution to the direct equations can be
written in terms of the eigenfunction expansion (4.32), splitting modes in two families,
namely, Orr-Sommerfeld-Oberbeck-Boussinesq modes (OSOB modes) and Squire modes
(Sq-modes):





ṽ(y, t)

θ̃(y, t)
η̃(y, t)



 =
∑

j

Ajexp (−iλjt)





v̂j(y)

θ̂j(y)
η̂pj (y)



+
∑

j

Bjexp (−iµjt)





0
0

η̂j(y)



, (4.34)

where {λj} are the OSOB eigenvalues of the coupled equations (2.26) and (2.27) in-

volving v̂ and θ̂ only, {η̂pj } are the forced wall-normal vorticity functions, and {µj} are
the eigenvalues of the Squire equation. The coefficients {Aj} and {Bj} are complex
constants that can be determined from the initial conditions on the state variables. In
the case of the adjoint linear operator (2.43), it is η̂A that forces the adjoint wall-normal
velocity and temperature. The adjoint Squire equation is independent of the adjoint
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wall-normal velocity. Similarly to the expansion (4.34), the solution to the adjoint equa-
tions can be written as





ṽA(y, t)

θ̃A(y, t)
η̃A(y, t)



 =
∑

j

AAjexp
(

−iλ∗j t
)





v̂Aj(y)

θ̂Aj(y)
0



+
∑

j

BAjexp
(

−iµ∗
j t
)





v̂pAj(y)

θ̂pAj(y)

η̂Aj(y)



, (4.35)

where ∗ on the eigenvalues denotes the complex conjugate and the vector eigenfunctions
in the first sum are the adjoint OSOB modes corresponding to the homogeneous part
of the coupled linear operator of the adjoint variables v̂A and θ̂A in equation (2.43).
The vector eigenfunctions in the second sum are the adjoint Squire modes, wherein the
functions {η̂Aj} are the eigenfunctions of the adjoint Squire operator and the functions

{v̂pAj} and {θ̂pAj} are the corresponding forced wall-normal velocity and temperature
functions. The coefficients {AAj} and {BAj} are complex components in the direction
of the adjoint eigenmodes. Note that the above eigenfunction formulation is valid only if
the eigenvalues {λj} and {µj} are distinct which is the case except for a set of parameters
of zero measure.

If only streamwise-uniform disturbances (α = 0) are considered, the direct and ad-
joint equations of RBP (or RBC) flow given by (2.37) and (2.43) pertaining to the
scalar product (2.49) with γ2 = |Rah/2|Pr become identical except for the coupling
term between wall-normal velocity and wall-normal vorticity. This term is dependent
on Reynolds and Prandtl numbers and independent of Rayleigh number. In the di-
rect equations, the wall-normal vorticity is forced by the wall-normal velocity and its
dominant streamwise-uniform eigenmode, corresponding to the Rayleigh-Bénard con-
vection roll, has a non-zero streamwise velocity component when Re 6= 0 and Pr 6= 0.
Whereas, in the adjoint equations, it is the wall-normal vorticity term that forces the
wall-normal velocity as seen in the eigenfunction expansion shown in (4.35). Hence, the
governing equations (2.43) corresponding to adjoint streamwise-uniform OSOB modes
[

v̂Aj , θ̂Aj, 0
]T

become identical with those of the pure conduction problem where the
least stable eigenmode is, indeed, the Rayleigh-Bénard mode with zero wall-normal vor-
ticity and therefore zero streamwise velocity. Since the eigenvalues of the adjoint modes
are complex conjugates of those of the corresponding direct modes, for Ra 6= 0, the
adjoint of the leading eigenmode is the Rayleigh-Bénard mode without its contribution
from the wall-normal vorticity, or more precisely, zero streamwise velocity.

Thus, the Rayleigh-Bénard convection mode without streamwise velocity is the optimal
input to obtain the largest long-time response from RBP/RBC flows. Note that this
result is independent of Reynolds number and Prandtl number.

4.3.5 Transient Growth at arbitrary time

Figures 4.12 and 4.13 display semi-log plots of the optimal gain (continuous line) versus
time for a fixed Reynolds number at various Rayleigh numbers up to RaRBc . All the
continuous curves are identical for small time until close to the maximum optimal gain
which is larger for large Rayleigh numbers. At later times, however, they separate
and decay at a rate which decreases with increasing Ra. The slope of the optimal
growth curve at large time corresponds to the exponential decay rate of the least stable
eigenmode (RB), thereby providing a justification for the slower decay rate at larger
Ra. The y-intercept (t = 0) of the asymptotic straight line defines the extra gain which

according to (4.33) may be estimated as 1
Re2

‖φ1‖2‖φA1‖2

|〈φ1, φA1〉γ |2 for large times (in figures 4.12

82



and 4.13, γ =
√

|Rah/2 |Pr). The dashed curves represent the long-time asymptote as
estimated with this extra gain and the slope is obtained from the imaginary part of
the dominant eigenvalue (RB-mode). It is observed that the prediction at large times
is excellent. At short times, the dashed line represents the prediction from the pure
lift-up mechanism wherein the wall-normal velocity forces the wall-normal vorticity. In
effect it represents the inviscid optimal growth and it is computed numerically at very
large Reynolds numbers up to 108 in the case without thermal stratification4. It fits
remarkably well with the computed short-time optimal gain (continuous curves) for
all Ra. Indeed, the entire optimal growth curve is well approximated by the piecewise
continuous curve consisting of a linear branch at short-times that is independent of Ra
and an exponentially decreasing branch at large times given by G ∼ Re2 |exp (2ω1t)|,
where ω1 is the complex eigenvalue of the RB-mode.

Figure 4.14 compares optimal gain curve versus time (continuous line) with the
response to different inputs at Re = 1000 and Ra = 1000: optimal input corresponding
to Gmax (dot-dashed line) and the classical RB-mode without streamwise velocity which
is the adjoint dominant eigenmode. Both responses exhibit transient growthO (Gmax) at
tRe ≈ 1

4Re and eventually decay monotonically. This implies that the adjoint dominant
eigenmode is a good approximation to the optimal initial condition at all times. The
transient growth mechanism is similar at all times and it is well-approximated by pure
Rayleigh-Bénard rolls. Thus, the dominant optimal growth in the presence of a cross-
stream temperature gradient is due to streamwise vortices in the form of Rayleigh-Bénard
convection rolls that act in tandem with the inviscid lift-up mechanism to produce large
streamwise streaks O(Re) which eventually decay exponentially in time.

4.3.6 Effect of Prandtl number

The Prandtl number is the property of a fluid that indicates its heat diffusing capacity
against its ability to diffuse fluid momentum or vice versa. An increase or decrease in
Pr can result in decreased or increased heat diffusion, respectively, at a given viscous
momentum diffusion. Hence, it can equivalently delay or advance the appearance of
the buoyancy-induced convective motion that is responsible for the increased transient
growth in RBP and RBC flows.

It was shown in section 4.2.2, when Pr = 1, that the standard large Reynolds number
scaling law of streamwise-uniform disturbances in pure shear flows is also satisfied by
Boussinesq fluids in the presence of a constant cross-stream temperature gradient for all
Rayleigh numbers. The same result has also been verified for various Prandtl numbers.
See, for example, in figure 4.15, the computed values of optimal growth as a function of
time at different Reynolds numbers. Here, G(t) is rescaled with Re2 and t is rescaled
with Re. Each symbols correspond to various Reynolds numbers ranging from 200 up
to 2000. The symbols corresponding to large Reynolds number collapse on the optimal
gain curve at Re = 5000 (continuous curve). Thus, the Reynolds number scaling of
streamwise-uniform disturbances in pure shear flows remains valid even in the presence
of destabilizing cross-stream temperature gradient at Pr = 10−2.

4To compute the inviscid optimal growth curves, one can either pose a separate eigenvalue problem
without any control parameters (as in section V A of Malik et al.[55] for the case of compressible plane
Couette flow) or simply increase the Reynolds number and consider the short-time characteristics of
the asymptotic large-Reynolds-number growth curve. In the results presented in figures 4.12 and 4.13,
the latter approach is used to numerically compute the short time inviscid optimal growth.
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Ra

Figure 4.12: RBP flow: Comparison between computed optimal gain curve (——) and
the asymptotic estimates for short and large times (−−−) at various Rayleigh numbers
(from inside to outside: Ra = 300, 500, 800, 1000, 1500, 1700) at Re = 1000, Pr = 1,
α = 0 and β = 2.04

In RBP flow, the effect of Prandtl number on the transient growth of streamwise-
uniform perturbations at a fixed Ra is shown in figure 4.16 where, as previously dis-
cussed, the optimal growth G and advective time scale tRe have been scaled with Re2

and Re, respectively. The different symbols and the continuous line correspond to the
optimal growth curves for various Prandtl numbers at large Reynolds numbers (here,
Re = 1000) when Ra = 1700. The dashed curve, which is almost identical with the con-
tinuous curve with the least maximum optimal gain (◦ Pr = 102), represents the case
when Ra = 0. Transient growth exists for all Prandtl numbers and the maximum opti-
mal transient growth markedly increases with decreasing Prandtl number. As Pr → 0,
Gmax/Re

2 asymptotically reaches a maximum about an order of magnitude larger than
for Ra = 0. Meanwhile, the time at which it occurs, say tmaxRe , increases by the same fac-
tor. As Pr → ∞ the maximum optimal transient growth Gmax asymptotically reaches
the value for the case without temperature gradient (Ra = 0) at the same Re.

These features are more vividly illustrated in figure 4.17 wherein the maximaum
optimal gain Gmax for various Rayleigh numbers has been plotted against Prandtl num-
ber at Re = 1000 for β = 1.558. Above Pr = 1, all the curves collapse on the curve
Ra = 10−3 whereas for vanishing Prandtl numbers the curves are well-separated, Gmax
being larger for large Rayleigh numbers. This suggests that, in a Boussinesq fluid of
sufficiently large Prandtl number, the temperature gradients have negligible influence
on the transient growth of a parallel shear flow.

The effect of Prandtl number on the dominant transient growth mechanism in RBP
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Ra

Figure 4.13: RBC flow: Comparison between computed optimal gain curve (——) and
the asymptotic estimates for short and large times (−−−) at various Rayleigh numbers
(from inside to outside: Ra = 300, 500, 800, 1000, 1500, 1700) at Re = 1000, Pr = 1,
α = 0 and β = 1.558

flow can be further illustrated by comparing the optimal gain curve with the response to
the adjoint of the leading eigenmode input at large and small Prandtl numbers as shown
in figure 4.18. Here, the optimal gain curve G(t) is represented by a continuous line
when Pr = 10−3 and by a dotted line when Pr = 102. The dashed line (Pr = 10−3)
and dot-dashed line (Pr = 102) represent the time evolution of the energy from the
normalized adjoint to the leading eigenmode. This eigenmode is always the Rayleigh-
Bénard convection roll irrespective of the Prandtl number. While both responses exhibit
transient growth, the maximum growth exhibited by the Rayleigh-Bénard convection roll
at Pr = 102 is an order of magnitude less than Gmax at the same Prandtl number. At
Pr = 10−3, the response to the Rayleigh-Bénard convection roll is amplified as much as
the maximum optimal growth, although it is not the optimal initial condition at tmax.
Thus, at large Pr, the Rayleigh-Bénard convection roll is not effectively amplified by
the lift-up mechanism and vice versa at small Prandtl numbers. In effect, the Prandtl
number acts as a coupling agent between buoyancy and shear flow transient growth
mechanisms, as shown below.

As explained in section 4.3.5, the leading order transient growth process is due to
the inviscid lift-up mechanism acting in tandem with the convective motion to produce
large streamwise streaks O(Re) together with Rayleigh-Bénard rolls. Such streaks and
convection rolls ultimately decay exponentially in time. The time scale at which the vis-
cous and thermal dissipative motion can occur is O

(

l2/ν∗
)

and O
(

l2/κ∗
)

, respectively,
where l is the characteristic length scale (here, l = h/2). Note that the Rayleigh and
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Figure 4.14: Time history of the growth
‖q‖2

RB

‖q0‖2
RB

with q0 being the optimal input at each

time horizon (——); optimal input corresponding to Gmax (· − · − ·) and dominant-
adjoint-mode input (−−−) at Re = 1000, Ra = 1000, Pr = 1, α = 0 and β = 1.558.

Prandtl number may be written as

Ra =
τν∗τκ∗

τb
and Pr =

τκ∗

τν∗

, (4.36)

where τb =
√

l/α∗∆Tg is the buoyancy time scale, τν∗ = l2/ν∗ is the viscous momentum
diffusion time scale and τκ∗ = l2/κ∗ is the thermal diffusion time scale. Hence, at a
fixed Ra, if Pr << 1 (τκ∗ << τν∗), τb is much smaller than τν∗ and vice versa when
Pr >> 1. At large Pr the presence of any thermal disturbance cannot be communicated
swiftly across the channel before viscous dissipation begins to act and therefore, the
convective motion can no longer take place before viscous momentum diffusion has
invaded the channel. As a result, any convective motion brought-in by the presence of a
thermal perturbation cannot effectively complement the production and/or sustenance
of streamwise motion. Overall, the effect of large Pr is to hamper the influence of any
temperature perturbation on the lift-up mechanism. At low Prandtl numbers, however,
any temperature disturbance can be swiftly conveyed across the channel and, since
τb << τν∗ , a convective motion can be set-up immediately which produces streamwise
velocity through the lift-up mechanism.

Viscous forces become active at non-dimensional times O (Re) for all Pr and hence,
in the stable region of the Re-Ra plane, any perturbation should decay at large time.
Thus, in spite of the potential enhancement effect of the buoyancy-induced convection,
at t ∼ O (Re) any perturbation should eventually decay under the action of viscous
forces. Viscous forces and thermal diffusion then lead to the dissipation of the convective
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Figure 4.15: Optimal growth at different Reynolds numbers in RBP flow at Ra = 1000
and Pr = 10−2 (α = 0, β = 1.8): —— Re = 5000, × Re = 2000, + Re = 1000, ⋄
Re = 500, � Re = 300, ◦ Re = 100 and −−− Ra = 0, Re = 5000

motion. Furthermore, viscous diffusion also dissipates the so-formed streamwise streaks.
The reason why tmaxRe increases only marginally with decreasing Prandtl number is owing
to the fact that the increased production of streamwise streaks induced by the coupling
between the convective motion and the lift-up mechanism is always overtaken by viscous
dissipation at a finite non-dimensional time t ∼ O (Re).

4.3.7 Effect of the norm ‖q‖γ
In this section the transient growth computations for the class of norms γ 6=

√

|Rah/2|Pr
are considered. Only a few key results are discussed.

Let us consider the case when γ = 1. Figure 4.19 displays the effect of Rayleigh
number on the optimal gain for the norm ‖q‖γ=1. Results are shown for various stream-
wise wavenumbers at β = 0 (figure 4.19a) and β = 1 (figure 4.19b) and various spanwise
wavenumbers at α = 0 (figure 4.19c) and α = 1 (figure 4.19d). The symbols correspond
to different Rayleigh numbers (� Ra = 0, ⋄ Ra = 500 and ◦ Ra = 1500). In figures 4.19a
and 4.19b these symbols collapse onto a single curve indicating that the Rayleigh num-
ber has very little effect on such perturbations. When α = 0 and α = 1, however, Gmax
is larger at large Rayleigh number for a range of spanwise wavenumbers. On comparing
with the results for the case γ =

√

|Rah/2 |Pr (figure 4.2), the maximum optimal gain is

larger for γ = 1. However, as in the case γ =
√

|Rah/2|Pr, the effect of Rayleigh number
is primarily limited to streamwise-uniform and nearly-streamwise-uniform disturbances
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Figure 4.16: Optimal gain at various Prandtl numbers when Re = 1000, α = 0 and
β = 1.558 for Ra = 0 (− − −−) and Ra = 1700 (——): ◦ Pr = 102, � Pr = 10, ⊳
Pr = 1, △ Pr = 10−1, ⊲ Pr = 10−2, ▽ Pr = 10−3 and ∗ Pr = 10−4.

Pr

G
m

ax

Figure 4.17: Effect of Prandtl number on Gmax (Re = 1000, α = 0 and β = 1.558)
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Figure 4.18: Effect of Prandtl number on the optimal gain curves (Pr = 10−3 ——;

Pr = 102 · · · · · · ); Time evolution of the growth of perturbations
‖q‖2

RB

‖q0‖2
RB

, where q0 is

the normalised adjoint of the leading eigenmode (Pr = 10−3 − − −; Pr = 102 − · ·−)
at Re = 1000, α = 0 and β = 2.04.

only.

Figure 4.20 shows the variations of optimal growth G(t), with γ = 1, of streamwise-
uniform disturbances for different Reynolds numbers (× Re = 2000, · Re = 1000, +
Re = 500, △ Re = 200, ◦ Re = 100 and � Re = 50) at Ra = 1300 and Pr = 1. The
continuous line and the dashed line correspond to the case Re = 5000 at Ra = 0 and
Ra = 1300, respectively. When compared with the case of zero temperature difference
(dashed line) the maximum transient growth is seen to be almost an order of magnitude
larger at Ra = 1300. The collapse of all the symbols onto a single continuous curve
(Re = 5000) as the Reynolds number increases, demonstrates that the large Reynolds
number scaling holds also for the case γ = 1. This was observed for various non-
zero values of the weight γ (data not shown). A comparison between figure 4.20 and
figure 4.7 confirms that the optimal gain is larger when γ = 1. Note that, when γ =
√

|Rah/2|Pr, the coupled operator governing the wall-normal velocity component ṽ(y, t)

and the temperature θ̃(y, t) for a streamwise-uniform perturbation (α = 0) is normal
with respect to the scalar product (2.42). If Ra < RaRBc , its spectrum lies in the
lower half-plane for all wavenumbers and hence, the Hille-Yosida theorem [72] states

that the vector
[

ṽ(y, t), θ̃(y, t)
]T

cannot exhibit transient growth. Whereas, for any

γ 6=
√

|Rah/2|Pr, this operator is no longer normal with respect to the scalar product
(2.42). Since the spectrum lies in the lower half-plane for all wavenumbers, the increase
in the optimal transient growth G(t) when γ 6=

√

|Rah/2 |Pr can only come from the
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Gmax

Figure 4.19: Optimal gain computations for the norm ‖q‖γ with γ = 1 at Re = 1000,
Pr = 1 and � Ra = 0, ⋄ Ra = 500, ◦ Ra = 1500: (a) β = 0, (b) β = 1, (c) α = 0 and
(d) α = 1
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Figure 4.20: Optimal gain in RBP as computed for the norm ‖q‖γ for γ = 1 atRa = 1300
(α = 0, β = 2.04): —— Re = 5000, × Re = 2000, · Re = 1000, + Re = 500, △
Re = 200, ◦ Re = 100, � Re = 50 and −−− Ra = 0, Re = 5000

non-normal block of system (2.37). Thus, when γ 6=
√

|Rah/2 |Pr, G(t) can be very large
depending on the weight γ and the increase in G(t) is due to the presence of off-diagonal
terms corresponding to the forcing of wall-normal velocity by temperature perturbations,
and vice versa, that render the governing equations explicitly non-normal.

Using the transformation





v̂A
θ̂∗A
η̂A



 =







1 0 0

0
|Rah/2 |Pr

γ 0

0 0 1













v̂A
γθ̂∗A

|Rah/2 |Pr
η̂A






, (4.37)

the adjoint system (2.43) for streamwise-uniform perturbations becomes

− iω∗





−D2
β 0 0

0 1 0
0 0 1











v̂A
γθ̂∗A

|Rah/2 |Pr
η̂A







=





PrD4
β −β2 |Rah/2|Pr −iβ (RePr) dU0

dy

−1 −D2
β 0

0 0 −PrD2
β











v̂A
γθ̂∗A

|Rah/2 |Pr
η̂A






, (4.38)

where D2
β = D2−β2. Thus, if q (RB) =

[

v̂(RB), θ̂(RB), 0
]T

denotes the leading Rayleigh-
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Bénard mode of the pure conduction problem, the adjoint of the leading eigenmode, for
any arbitrary norm ‖q‖γ , is given by

q
(γ)
A(1) =





v̂(RB)
1
γ2
0

θ̂(RB)

0



 , where γ0 =
γ

√

|Rah/2|Pr
. (4.39)

The dominant adjoint velocity and temperature eigenfunctions are seen to be identical
to the Rayleigh-Bénard mode except for a multiplicative constant γ0 in the temperature
eigenfunction. Note that γ0 depends on the type of norm through γ and it is equal to
unity for the norm ‖q‖RB which makes the governing equations self-adjoint at Re = 0.

The response of RBP flow to various inputs at Re = 1000, Ra = 1300 and Pr = 1
is shown in figure 4.21. The continuous line denotes the optimal gain curve, the dashed
line denotes the evolution of the optimal streamwise-uniform perturbation which grows
up to Gmax, the dot-dashed line denotes the response to the adjoint of the leading
eigenmode (4.39) and the dotted line denotes the response to the Raleigh-Bénard mode
of the pure conduction problem. Here, G(t) has been computed based on the norm
‖q‖γ with γ = 1. All the initial conditions display transient growth and the dominant-
adjoint-mode is amplified as much as the optimal input. Again, the adjoint of the leading
eigenmode is a good approximation to the optimal initial condition. Note that the same
conclusion was reached in section 4.3.5 where the norm ‖q‖RB was selected to compute
the optimal response. This has also been verified for several values of γ (not presented
here).

Thus, in general, the dominant optimal transient growth mechanism, irrespective of
the selected norm ‖q‖γ , consists of two processes. The short-time optimal is due to the
convective vortex motion, in the form of a “modified” Rayleigh-Bénard mode given by
(4.39), which acts in tandem with the inviscid lift-up mechanism, thereby resulting in
large streamwise velocity streaks. The long-time optimal simply consists of the tran-
siently amplified Rayleigh-Bénard convection roll. It either decays or grows in time
depending on the magnitude of Ra.

4.4 Conclusion

The effect of unstable thermal stratification on the linear stability properties of plane
Poiseuille flow and plane Couette flow has been summarized for a wide range of Reynolds
numbers Re and Rayleigh numbers Ra. The scaling laws for spanwise-uniform modes
governing the dependence of the critical Rayleigh number and critical wavenumber on
the corresponding critical Reynolds number have been obtained.

It was demonstrated that these flows are susceptible to large and sustained transient
growth for a wide range of Reynolds and Rayleigh numbers at all Prandtl numbers. It
was observed that unstable stratification, in RBP and RBC flows, increases the maxi-
mum optimal transient growth and maintains such a growth over a longer period of time.
The maximum optimal transient growth Gmax and the corresponding time at which it
occurs tmax remain of the same order of magnitude as in the case of pure shear flows. In
particular, the increase in Gmax is more effective for streamwise-uniform disturbances.
Unlike the computations by Sameen et. al. [74], spanwise-uniform disturbances were
never observed to be the dominant optimal behavior in RBP flow at any Rayleigh or
Prandtl number. The optimal spanwise wavenumber varies between the value for pure
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Figure 4.21: Optimal gain curve (——) and time evolution of the growth of perturba-

tions
‖q‖2

γ=1

‖q0‖2
γ=1

, where q0 is the normalized adjoint of the leading eigenmode (−−−−),

the optimal initial condition corresponding to the maximum optimal gain (− · − · −)
and the normalized Rayleigh-Bénard mode without its streamwise velocity component
(· · · · · · ) at Re = 1000, Ra = 1300, Pr = 1, α = 0 and β = 2.04 for γ = 1.

shear flow and that for the most unstable Rayleigh-Bénard convection mode as the
Rayleigh number increases towards the critical Rayleigh number in RBI. The large
Reynolds number scaling laws, such as, Gmax ∝ Re2 and tmax ∝ Re, were shown to
remain valid in both RBP and RBC flows for all Rayleigh and Prandtl numbers.

The associated dominant growth mechanisms for the production of streamwise ve-
locity streaks in the presence of an unstable temperature gradient were identified. A 3D
vector model of the governing equations was used to demonstrate that the short-time
behavior is governed by the inviscid lift-up mechanism and that the effect of Rayleigh
number on this mechanism is secondary and negligible. By contrast, the optimal initial
condition for the largest long-time response is given by the Rayleigh-Bénard mode with-
out its streamwise velocity component. It was established that such a disturbance sets
up streamwise-uniform convection rolls with no streamwise velocity component which
act in tandem with the inviscid lift-up mechanism to produce and sustain streamwise
motion in the form of streaks. A good approximation to the optimal initial condition
was shown to be the dominant-adjoint-eigenmode, namely, the RB mode with zero
streamwise velocity.

It was shown that the Prandtl number Pr of a Boussinesq fluid plays an important
role in the coupling between temperature perturbations and the lift-up mechanism. At
large Pr for a given Rayleigh number Ra, the convection rolls cannot take place be-
fore the viscous diffusion process and hence, the short-time optimal transient growth
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is similar to the case without cross-stream temperature gradient: the classical inviscid
lift-up mechanism without thermal convective motion. Whereas, at small Pr, the con-
vection rolls can effectively couple with the lift-up mechanism, thereby resulting in large
transient growth.

An analysis of the direct and adjoint equations (2.37) and (2.43) revealed that the
resulting transient growth depends on the type of norm selected. Thus, for the norm
‖q‖γ , optimal growthG(t) can vary largely as a function of γ and, when γ 6=

√

|Rah/2 |Pr,
the increase in G(t) is due to the off-diagonal terms that render the governing equations
explicitly non-normal. It was shown, however, that the dominant mechanism of transient
growth is independent of the norm used to quantify it.

This study of the transient growth phenomenon in Rayleigh-Bénard-Poiseuille and
Rayleigh-Bénard-Couette flows were summarized in an article which is under consider-
ation by Physics of Fluids since early August 2011.
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Part II

Consequences of the Squire
transformation on 3D Optimal

Perturbations
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Chapter 5

Squire’s transformation and
3D disturbances

“When you follow two separate chains of thought, Watson, you will find some point of
intersection which should approximate the truth.”

− Sherlock Holmes, The disappearence of Lady Francis Carfax
Sir Arthur Canon Doyle

5.1 Introduction

For over a decade now[76], the linear stability analysis of shear flows are followed in two
parts, namely, modal stability analysis[45, 10, 18] and non-modal stability analysis[75].
The former analysis involves, the so-called method of normal modes, wherein the initial-
value problem with linearized Navier-Stokes equations is reduced to an eigenvalue prob-
lem by considering modal solutions that grow, or decay, exponentially in time. Whereas
the latter, and more general, analysis investigates the dynamics of disturbances over a
finite-time horizon without assuming exponential time dependence. One of the main
consequence of Squire’s transformation [80] on the modal stability of 3D disturbances
in parallel shear flows is Squire’s theorem which states that for every 3D modal pertur-
bation at a given Reynolds number, there is a 2D perturbation at a smaller Reynolds
number with a larger growth rate. It is a celebrated result [10, 45, 18, 75] in the modal
stability analysis as it justifies to reduce the analysis to 2D perturbations. In this part
of the thesis, the role of Squire’s transformation in the linear stability analysis of pure
shear flows is revisited in order to understand its effect on (1) the Orr-Sommerfeld and
Squire eigenmodes, (2) the Squire equation, (3) the arbitrary solution of the linearised
Navier-Stokes equations, (4) the adjoint Orr-Sommerfeld and Squire eigenmodes and (4)
the optimal growth for arbitrary wavenumbers and Reynolds numbers.

5.2 Governing equations

The evolution of three-dimensional infinitesimal disturbances in a shear flow is governed
by the linearised Navier-Stokes equations with appropriate boundary conditions. For
parallel shear flows infinite along streamwise (x-axis) and spanwise (z-axis) directions,
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wherein the base flow velocity vector is of the form ~U = [U0(y), 0, 0]
T , these equations

can be written independently for each streamwise and spanwise wavenumbers (denoted
by α and β, respectively) as a system of two ordinary differential equations: the Orr-
Sommerfeld equation for the normal-velocity ṽ(y, t) and the Squire equation for the
normal-vorticity η̃(y, t) [45, 18, 75]. The dimensionless version5 of these equations is
written as

− ∂

∂t

[

k2 −D2 0
0 1

]

q =

[

LOS 0

iβ dU0

dy LSQ

]

q , (5.1)

where q = [ṽ(y, t), η̃(y, t)]T , D = d
dy and k2 = α2 + β2. The symbols LOS and LSQ,

respectively, denote the Orr-Sommerfeld and Squire operators:

LOS = iαU0

(

k2 −D2
)

+ iα
d2U0

dy2
+

1

Re

(

k2 −D2
)2
, (5.2)

LSQ = iαU0 +
1

Re

(

k2 −D2
)

, (5.3)

where Re is the Reynolds number. The DiPrima-Habetler completeness theorem [17]
applies to the system of equations governing the linear stability of parallel shear flows
that are bounded in the cross-stream direction. Thus, it is possible to represent any
solution of the LNS equations (5.1) as an eigenfunction expansion:

[

ṽ(y, t)
η̃(y, t)

]

=
∑

Aj

[

v̂j(y)
η̂pj (y)

]

e−iλj t +
∑

Bj

[

0
η̂j(y)

]

e−iµj t, (5.4)

where {λj} are the eigenvalues of the Orr-Sommerfeld equation and {µj} are the eigen-
values of the Squire equation. The vector eigenfunctions in the first sum are referred to
as the Orr-Sommerfeld modes (OS-modes), wherein the wall-normal velocity eigenfunc-
tions {v̂j} and wall-normal vorticity eigenfunctions {η̂pj } are the solutions, respectively,
of the OS-equation

(

iλj(k
2 −D2)− LOS

)

v̂j(y) = 0, (5.5)

and the forced Squire equation

(iλj − LSQ) η̂
p
j (y) = iβ

dU0

dy
v̂j(y). (5.6)

The eigenfunctions of the Squire equation have no contribution from the wall-normal
velocity and are represented by [0, η̂j(y)]

T . They are the solutions of the homogeneous
Squire’s equation

(iµj − LSQ) η̂j(y) = 0, (5.7)

and they form the so-called Squire modes (SQ-modes). The coefficients {Aj} and {Bj}
are constants that can be determined from the initial conditions on the state variables.
Equation (5.6) has a solution only if λj is not in the spectrum of LSQ, i.e all λj ’s are
different from µj ’s. This condition can be assumed except for a set of Reynolds numbers
and wavenumbers of zero measure.

5The non-dimensional time, wall-normal velocity and wall-normal vorticity variables are based on
some characteristic length scale, and advective velocity scale from the base flow. They should not be
confused with the variables in the previous chapters.
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5.3 Consequences on the eigenfunctions

When α 6= 0, it is well-known that the OS equation (5.5) and the homogeneous part
of the SQ equations (5.7) are amenable to the Squire transformation whereby their
respective eigenvalue problem at any α, β and Re can be reduced to the case when
β = 0. According to the transformation, when α 6= 0, the eigenvalue problem for
v̂j(y) of OS-modes and η̂j(y) of SQ-modes at any α, β and Re reduces to the 2D case

α2D =
√

α2 + β2, β2D = 0 and Re2D = αRe/
√

α2 + β2. This implies that

λj(α, β,Re) =
α

√

α2 + β2
λ2Dj (α2D, 0, Re2D), (5.8)

v̂j(y;α, β,Re) = v̂2Dj (y;α2D, 0, Re2D), (5.9)

for the OS-modes and

µj(α, β,Re) =
α

√

α2 + β2
µ2D
j (α2D, 0, Re2D), (5.10)

η̂j(y;α, β,Re) = η̂2Dj (y;α2D, 0, Re2D), (5.11)

for the SQ-modes. To the author’s best knowledge the implications of the Squire trans-
formation on the wall-normal vorticity eigenfunction of OS-modes η̂pj (y) has not been
yet discussed in the literature. The extension of the Squire transformation to equation
(5.6) of η̂pj (y) gives

[

i
(

λ2Dj − α2DU0

)

− 1

Re2D

(

α2
2D −D2

)

]

η̂p2Dj (y) = i
dU0

dy
v̂2Dj (y), (5.12)

where η̂p2Dj (y) is the solution of the 2D Squire equation forced at λ2Dj (α2D, 0, Re2D)
and is related to η̂pj as

η̂pj (y;α, β,Re) = β

√

α2 + β2

α
η̂p2Dj (y;α2D, 0, Re2D). (5.13)

Since, for the 2D perturbation (β = 0) ,λ2Dj is not in the spectrum of LSQ, this equation
has a solution. Firstly, as a consequence of Squire’s transformation, the solution (5.4)
of the direct equations (5.1) for arbitrary α, β and Re can be deduced simply from two
simple cases: (1) at α = 0, β, Re and (2) at α2D, β2D = 0, Re2D. Secondly, the Squire

transformation implies that by decreasing α at a constant α2D = k =
√

α2 + β2 and
Re2D the wall-normal vorticity in the OS-mode diverges as 1

α while the wall-normal
velocity remains constant. This is another manifestation of the lift-up mechanism in 3D
disturbances whereby η̂j is a passive response to the v̂j forcing in the OS-mode. Note
that αRe = α2DRe2D and, thus, decreasing the streamwise wavenumber α is equivalent
to increasing the flow Reynolds number Re at a constant Re2D and α2D. This implies
that, for the same initial condition with zero wall-normal vorticity, the solution (5.4) to
the initial value problem (5.1) corresponding to all α 6= 0, β and Re at a given Re2D
and α2D can be rewritten as

[

ṽ(y, t)
η̃(y, t)

]

=
∑

Aj

[

v̂2Dj (y)
(

βRe
Re2D

)

η̂p2Dj (y)

]

exp

(

−iRe2Dλ2Dj
t

Re

)

+

(

βRe

Re2D

)

∑

B
′

j

[

0
η̂2Dj (y)

]

exp

(

−iRe2Dµ2D
j

t

Re

)

. (5.14)
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Here, Aj ’s and B
′

j ’s are independent of the streamwise wavenumber α, β and Re. When
Re increases (or α decreases), the response to such an initial condition is slower since the
time variable is rescaled by Re in the exponential terms. The amplitude of the Squire
modes needed to cancel the wall-normal vorticity initially increases as the Reynolds
number and thereby offering the possibility of transient growth. It can be seen that the
short-time expansion of the wall-normal vorticity in the solution (5.14), for the same
initial condition, is

η̃(y, t) ∼ −iβt
∑

Aj η̂
p2D
j (y)

(

λ2Dj − µ2D
j

)

. (5.15)

for all t << Re. When Re2D and α2D are given, for disturbances with arbitrary α and β
, this is a Reynolds-number-independent short-term growth in the wall-normal vorticity
similar to the classical inviscid lift-up mechanism that usually attributed streamwise-
uniform disturbances. The results (5.14) and (5.15) are applicable for all non-zero
streamwise wavenumbers, spanwise wavenumbers and Reynolds numbers such that αRe =
α2DRe2D.

Conventionally, the optimal growth characteristics are obtained by solving equations
(5.1) for an initial disturbance field that would give rise to the maximum possible growth
at a particular time horizon t and it is defined by the gain function

G(t;α, β,Re) = max
∀q0 6=0

‖q(t)‖2

‖q0‖2
, (5.16)

which is referred to as the optimal gain, i.e. the maximum possible growth at some time
t over all possible non-zero initial conditions. The commonly used positive-definite norm
of the growth of disturbances is the kinetic energy. Such a norm can be defined using
the scalar product

〈q1, q2〉 =
∫ 1

−1

qH2 Mq1dy, (5.17)

where H represents the conjugate-transpose of a matrix and

M =

[

k−2 0
0 1

]

. (5.18)

The kinetic energy of the disturbances, in terms of wall-normal velocity and wall-normal
vorticity, reads

‖q‖2 =
1

2

∫ 1

−1

[

|v̂|2 + 1

k2

(

|Dv̂|2 + |η̂|2
)

]

dy. (5.19)

With respect to the scalar product (5.17), the adjoint equations are derived to be [75]

− ∂

∂t

[

k2 −D2 0
0 1

]

qA =

[

LAOS −iβ dU0

dy

0 LASQ

]

qA, (5.20)

where LAOS and LASQ are the adjoint-Orr-Sommerfeld and adjoint-Squire operators, re-
spectively [75],

LAOS = −iαU0

(

k2 −D2
)

+ 2iα
dU0

dy
D +

1

Re

(

k2 −D2
)2
, (5.21)
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LASQ = −iαU0 +
1

Re

(

k2 −D2
)

, (5.22)

and the adjoint state vector is qA = [ξ̃(y, t), ζ̃(y, t)]T . Here, ξ̃(y, t) and ζ̃(y, t) denote
the adjoint wall-normal velocity and wall-normal vorticity components, respectively. Ob-
serve that, in the adjoint linear operator (5.20), it is the wall-normal vorticity ζ̃(y, t)
that forces the adjoint wall-normal velocity equation whereas the adjoint Squire equa-
tion is independent of the adjoint wall-normal velocity. The advantage of the adjoint
problem is that the spectrum of the adjoint OS operator LAOS is the complex conjugate
of the spectrum of the direct OS operator LOS and similarly for the SQ operator LSQ.
Thus, the solution to the adjoint equations can be written as an infinite sum of adjoint
eigenfunctions:

[

ξ̃(y, t)

ζ̃(y, t)

]

=
∑

Pj

[

ξ̂j(y)
0

]

e−iλ
∗

j t +
∑

Qj

[

ξ̂pj (y)

ζ̂j(y)

]

e−iµ
∗

j t, (5.23)

where the coefficients {Pj} and {Qj} are constants and ∗ on the eigenvalues denotes the
complex conjugate6. The vector eigenfunctions of LAOS correspond to zero wall-normal

vorticity i.e., the adjoint OS-modes are of the form [ξ̂j , 0]
T . Conversely, the adjoint SQ

modes have a non-zero wall-normal velocity corresponding to the forcing of the adjoint
OS operator by the off-diagonal term −iβ dU0

dy in the adjoint equation (5.20) and they

read [ξ̂pj , ζ̂j ]
T .

Remarkably, the Squire transformation also applies to the homogeneous part of the
adjoint Orr-Sommerfeld equation and to the adjoint Squire equation. Thus, a 3D adjoint
OS-mode at any α, β and Re, is related to a 2D adjoint OS-mode at α2D =

√

α2 + β2,
β2D = 0 and Re2D via the transformation

λ∗j (α, β,Re) =
α

√

α2 + β2
λ∗2Dj (α2D, 0, Re2D), (5.24)

ξ̂j(y;α, β,Re) = ξ̂2Dj (y;α2D, 0, Re2D). (5.25)

In order to complete the general solution (5.23), it only remains to find the particular

integrals ξ̂pj (y) of the adjoint OS equation forced by ζ̂j(y) for β 6= 0. This component
of the adjoint SQ-mode can be deduced from a similar extension of the Squire trans-
formation discussed above, applied here to the forced adjoint OS equation. Thus, as
a consequence of the Squire transformation, the adjoint SQ-mode at any α, β and Re
reads

ξ̂pj (y;α, β,Re) = β

√

α2 + β2

α
ξ̂p2Dj (y;α2D, 0, Re2D), (5.26)

ζ̂j(y;α, β,Re) = ζ̂2Dj (y;α2D, 0, Re2D), (5.27)

where ξ̂p2Dj satisfies the two-dimensional adjoint Orr-Sommerfeld equation forced at

µ∗2D
j (α2D, 0, Re2D) such that

[

i(µ∗2D
j + α2DU0)(α

2
2D −D2)− 2iα2D

dU0

dy
D − 1

Re2D
(α2

2D −D2)2
]

ξ̂p2Dj (y) = −idU0

dy
ζ̂2Dj (y),(5.28)

6Note that, throughout this chapter, * denotes complex conjugate
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and

µ∗
j (α, β,Re) =

α
√

α2 + β2
µ∗2D
j (α2D, 0, Re2D). (5.29)

Note that the solution ξ̂p2Dj of the 2D adjoint OS equation (5.28) exists because µ∗2D

is not present in the spectrum of the 2D adjoint OS operator.

In general, the solution of the adjoint system (5.20) for arbitrary α, β and Re can
also be deduced simply from two simple cases: (1) at α = 0, β, Re and (2) at α2D,
β2D = 0, Re2D.

5.4 Consequences on long-time optimal gains

The definition of the adjoint problem allows for a simple resolution of equation (5.4),
since for any initial condition q0, the coefficients in the eigenfunction expansion (5.4)
given by:

Aj =

〈q0,

[

ξ̂j(y)
0

]

〉

〈
[

v̂j(y)
η̂pj (y)

]

,

[

ξ̂j(y)
0

]

〉
& Bj =

〈q0,

[

ξ̂pj (y)

ζ̂j(y)

]

〉

〈
[

0
η̂j(y)

]

,

[

ξ̂pj (y)

ζ̂j(y)

]

〉
. (5.30)

For t >> 1, the long-time response is dominated by the leading eigenmode with a non-
zero co-efficient in the solution (5.4). The leading eigenmode, in general, can either be
the OS-mode or the SQ-mode. Consider the case when the long-time response is due
to the leading OS-mode, say, φ1 = [v̂1(y), η̂

p
1(y)]

T . Then at t >> 1,

q (t) ∼ A1φ1e
−iλ1t, (5.31)

and maximizing the long-time gain reduces to maximizing the coefficient A1. Using
expression (5.30), it is observed that the large-time gain is achieved by taking as an

initial condition, the leading adjoint OS-mode, say, φA1 = [ξ̂1(y), 0]
T and hence the gain

reads

G(α, β, t;Re) ∼ ‖φ1‖2
∥

∥φA1
∥

∥

2

∣

∣〈φ1, φA1 〉
∣

∣

2

∣

∣e−iλ1t
∣

∣

2
, (5.32)

where λ1 is the dominant eigenvalue of OS equation. Let GOS∞ =
‖φ1‖2‖φA

1 ‖2

|〈φ1, φA
1
〉|2 denote the

resulting extra gain, taking the adjoint OS-mode φA1 as the initial condition, compared

to the gain
∣

∣e−iλ1t
∣

∣

2
, achieved by choosing as initial condition the direct OS-mode φ1.

Similarly, in the case where the leading eigenmode is the SQ-mode, say, ψ1 = [0, η̂p1(y)]
T ,

let GSQ∞ =
‖ψ1‖2‖ψA

1 ‖2

|〈ψ1, ψA
1
〉|2 denote the extra gain compared to the gain

∣

∣e−iµ1t
∣

∣

2
, achieved by

choosing as initial condition the direct SQ-mode ψ1. In this instance, µ1 is the dominant
eigenvalue of the Squire equation and ψA1 = [ξ̂A1 (y), ζ̂1(y)]

T is the adjoint of the leading
SQ-mode.
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5.4.1 Case (1): Streamwise-uniform disturbances (α = 0)

Under this assumption, the direct OS equation and the homogeneous part of the adjoint
OS equations become identical. So, v̂j(y) = ξ̂j(y) and the leading direct and adjoint
OS-modes can be rewritten as, respectively,

φ1 = φv1 + φη
p

1 , (5.33)

φA1 = φv1 , (5.34)

where φv1 = [v̂1(y), 0]
T and φη

p

1 = [0, η̂p1(y)]
T . If the leading eigenmode is an OS-mode,

the long-time optimal gain becomes

GOS∞ (0, β;Re) =






1 +

∥

∥

∥φ
ηp

1

∥

∥

∥

2

‖φv1‖
2






. (5.35)

Since the SQ operator is self-adjoint, the leading direct and adjoint SQ-modes can be
rewritten as

ψ1 = ψη1 , (5.36)

ψA1 = ψξ
p

1 + ψη1 , (5.37)

where ψη1 = [0, η̂1(y)]
T and ψξ

p

1 = [ξ̂p1(y), 0]
T . Thus, if the leading eigenmode is a SQ-

mode, the long-time optimal growth becomes

GSQ∞ (0, β;Re) =






1 +

∥

∥

∥ψ
ξp

1

∥

∥

∥

2

‖ψη1‖
2






. (5.38)

The expressions (5.35) and (5.38) represent the extra optimal gain associated with the
lift-up mechanism resulting from the leadingOS-mode and SQ-mode, respectively. They
are functions of β and Re. If a Gustavsson-type [31] scaling is used for the forced Squire
equation and the forced adjoint Orr-Sommerfeld equation at α = 0:

t̄ =
t

Re
, (5.39)

v̄(y) = v̂(y), η̄(y) =
η̂(y)

βRe
, (5.40)

ξ̄(y) =
ξ̂(y)

βRe
, ζ̄(y) = ζ̂ , (5.41)

whereby the state variables can be rendered independent of Reynolds number. The gains
(5.35) and (5.38) can then be rewritten as

GOS∞ (0, β;Re) =






1 + β2Re2

∥

∥

∥φ̄
ηp

1

∥

∥

∥

2

∥

∥φ̄v1
∥

∥

2






, (5.42)
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and

GSQ∞ (0, β;Re) =






1 + β2Re2

∥

∥

∥ψ̄
ξp

1

∥

∥

∥

2

∥

∥ψ̄η1
∥

∥

2






. (5.43)

Note that the norms are independent of the Reynolds number.

5.4.2 Case (2): 3D long-time optimal perturbations

Consider now case (2): α 6= 0. As a consequence of Squire’s transformation, the direct
and adjoint OS-modes can be written as, respectively,

φ1 = φv2D1 +

(

βRe

Re2D

)

φη
p2D

1 , (5.44)

φA1 = φξ2D1 , (5.45)

where φv2D1 = [v̂2D1 (y), 0]T , φη
p

1 = [0, η̂p2D1 (y)]T and φξ2D1 = [ξ̂2D1 (y), 0]T . The superscript

2D represents the eigenfunctions at α2D, β2D = 0 and Re2D. Note that η̂p2D1 (y) is the
particular integral of the rescaled-Squire equation (5.12) which depends only on Re2D
and α2D. Using (5.44) and (5.45), the long-time optimal growth (5.31) can be split into
two contributions according to the expression

GOS∞ (α, β;Re) = GOS∞ (α2D, 0;Re2D)






1 +

β2Re2

Re22D

∥

∥

∥φ
ηp2D

1

∥

∥

∥

2

∥

∥φv2D1

∥

∥

2






, (5.46)

where GOS∞ (α2D, 0;Re2D) is the gain that would be obtained in the 2D case and which
is known to result from the Orr-mechanism [65] and the second term on the R.H.S is
precisely the extra gain from the 3D effect, the contribution to the optimal transient
growth arising from the lift-up mechanism [21, 53, 72] due to the forcing of the wall-
normal vorticity by the wall-normal velocity. Note that GOS∞ (α2D, 0, t;Re2D) ∼ O(1)
while the second term is O(β2Re2/Re22D). Similarly if the leading eigenmode is a SQ-
mode, the long-time optimal growth becomes

GSQ∞ (α, β;Re) =






1 +

β2Re2

Re22D

∥

∥

∥ψ
ξp2D

1

∥

∥

∥

2

∥

∥

∥
ψη2D1

∥

∥

∥

2






. (5.47)

In this instance, ψ1 = ψη2D1 = [0, η̂2D1 (y)]T , ψξ
p2D

1 = [ξ̂p1(y), 0]
T and ψA1 = (βRe/Re2D)ψ

ξp2D

1

+ ψη2D1 (since the 2D SQ operator is self-adjoint). The particular integral ξ̂p2D1 (y) of
the 2D adjoint OS equation is given by the equation (5.28) which is dependent on α2D

and Re2D only.

Note that equations (5.42), (5.43), (5.46) and (5.47) are derived for t >> 1. They
are valid irrespective of the base flow, Reynolds number and wavenumber.
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2Re

Ζ

Re

t

Figure 5.1: Direct computations in Plane Poiseuille flow for α = 1, β = 0 and Re = 1000:

Temporal variation of optimal gain (—–) and the growth of perturbations Z = ‖q(t)‖2

‖q(t0)‖2
for various normalized initial conditions: adjoint of the leading OS-mode (−··−), adjoint
of the leading SQ-mode (−·−·), leading OS-mode (· · · · ·) and leading SQ-mode (−−−)
at Re2D = 1000 and α2D = 1, β2D = 0.
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2Re

Ζ

Re

t

Figure 5.2: Direct computations in Plane Poiseuille flow for α = 1√
2
, β = 1√

2
and

Re = 1414.2: Same as figure 5.1.

2Re

Ζ

Re

t

Figure 5.3: Direct computations in Plane Poiseuille flow for α = 0.1, β = 0.9949 and
Re = 104: Same as figure 5.1.
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2Re

Ζ

Re

t

Figure 5.4: Direct computations in Plane Poiseuille flow for α = 0.01, β = 0.99995 and
Re = 105: Same as figure 5.1.

2Re

Ζ

Re

t

Figure 5.5: Direct computations in Plane Poiseuille flow for when Re = 105 and α = 0,
β = 1: Same as figure 5.1
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2Re

Ζ

Re

t

Figure 5.6: Plane Poiseuille flow at Re2D = 3000 and α2D = 1, β2D = 0: Same as figure
5.1 when α = 1, β = 0 and Re = 3000.

5.5 Discussion

Figures 5.1−5.3 display, for different streamwise and spanwise wavenumbers, the time
evolution of the logarithm of optimal transient growth (—–) as defined in equation

(5.16) and the response Z = ‖q(t)‖2

‖q(t0)‖2 for various normalized initial conditions: adjoint

of the leading OS-mode (− · ·−), adjoint of the leading SQ-mode (− · −·), leading OS-
mode (· · · · ·) and leading SQ-mode (− − −). These results were obtained for the case
of plane Poiseuille flow. The long-time optimal gains GOS∞ and GSQ∞ were computed
using the expressions (5.46) and (5.47), respectively. In figures 5.1−5.3, Re2D = 1000
and α2D = 1 while α and Re vary with respect to β such that α2 + β2 = α2

2D = 1 and
αRe = α2DRe2D = 1000. For all α and β values shown here, the responses to the adjoint
of the leading OS and SQ modes display transient growth whereas the responses to the
leading OS and SQ modes exhibit exponential decay e2ℑ(λ1)t and e2ℑ(µ1)t, respectively
(here, ℑ(λ) represents the imaginary part of λ). At t >> 1, the gain Z corresponding to
the adjoint of the leading SQ-mode coincides with the continuous curve representing the
optimal transient growth and Z of the adjoint of the leading OS-mode coincides with
the optimal growth curve at intermediate time steps in all the cases. Irrespective of α
and β shown here, the large-time optimal response due to the adjoint OS-mode GOS∞ is
observed to be greater than the large-time optimal response due to the adjoint SQ-mode
GSQ∞ . Note that it is the leading-adjoint OS-mode that displays a large growth, as much
as the optimal growth, before eventually decaying. If t∗ represents the time at which
the response to the leading adjoint OS-mode equals the optimal transient growth, it is
observed in all cases that t∗ ≈ tmax, where tmax is the time at which the maximum
transient growth occurs. This suggests that the adjoint of the leading OS-mode is
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likely to be a good approximation to the optimal initial condition at t ∼ O(tmax)
for all α 6= 0 and β. Thus, the evolution of the leading adjoint OS-mode can, at
worst, provide valuable insights on the most dominant transient growth mechanisms in
a parallel shear flow. This implies that the gain GOS∞ (the product of the gains from the
2D Orr-mechanism and the lift-up mechanism) is a good approximation of the maximum
optimal gain in these flows.

In figures 5.1−5.5, the large-time optimal response due to the adjoint SQ-mode GSQ∞
increases rapidly as the streamwise wavenumber α approaches zero. Consider figure 5.5
corresponding to the case when α = 0 and β = 1 at Re = 105. Here, the various curves
denote the same responses as in figures 5.1−5.3. Note that GSQ∞ is very large and the
evolution of the adjoint of the first dominant SQ-mode exhibits larger transient growth
than that in the case of α = 0.1 and β = 1 at the same Reynolds number. The adjoint
of the leading OS-mode, however, grows as large as the maximum optimal growth and
its gain Z approximately coincides with the optimal growth curve at all times except at
very large time. The optimal initial condition at t ∼ O(tmax) for all α and β, up to a
first approximation, is the adjoint of the leading OS-mode and the gain GOS∞ is a good
estimation of the maximum optimal growth.

By employing the method of Gustavsson[31] and Reddy et. al.[72], the wall-normal
vorticity in the Squire equation can be rescaled as η̄ = η̂/βRe and t̄ = t/Re. Thus,
when α = 0, (5.1), (5.2) and (5.3) become independent of Re and the state vector
[

v̂, η̄
]T

depends only on β. The norm (5.19) of the perturbations in the new variables
can then be expressed as

E(t̄) =
1

2

∫ 1

−1

[

|v̂|2 + 1

β2
|Dv̂|2 +Re2 |η̄|2

]

dy, (5.48)

Therefore, if E(v̂)(t̄) =
1
2

∫ 1

−1

(

|v̂|2 + 1
β2 |Dv̂|2

)

dy and E(η̄)(t̄) =
1
2

∫ 1

−1
|η̄|2 dy, the growth

function (5.16) may be rewritten as:

G(t̄) = max
∀q(t0) 6=0

[

E(v̂)(t̄) +Re2E(η̄)(t̄)

E(v̂)(0) +Re2E(η̄)(0)

]

. (5.49)

Note that the operators LOS and LSQ are self-adjoint in this case. In order to obtain
a large gain G(t̄) from the lift-up mechanism at Re >> 1, it is expensive to have a
non-zero normal vorticity in the initial condition [72, 75]. The normal vorticity is zero
in the leading adjoint OS-mode whereas it is non-zero in the leading adjoint SQ-mode.
Since the optimal initial condition for large time is the leading adjoint eigenmode, it
is expected that the gain from transient growth of the adjoint OS-mode is larger than
the gain from the transient growth of the adjoint SQ-mode. This is reflected in the
results displayed in figures 5.1−5.5, wherein GOS∞ is observed to be always larger than
GSQ∞ . It was noted already that the adjoint of the leading OS-mode exhibits a transient
growth as large as the optimal initial condition at tmax. The adjoint of the leading SQ-
mode, however, does not grow as large because of the presence of a non-zero wall-normal
vorticity component.

Figure 5.6 displays the time evolution of the logarithm of optimal transient growth

(—–) as defined in equation (5.16) and the response Z = ‖q(t)‖2

‖q(t0)‖2 for various normalized

initial conditions similar to figure 5.1. Here, Re2D = 3000 and α2D = 1, β2D = 0. In
this range of parameters, the leading eigenmode in plane Poiseuille flow is an OS-mode
corresponding to Tollmien-Schlichting waves. The response to the adjoint of the leading
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OS-mode grows as large as the maximum optimal gain and coincides with the optimal
growth curve for all t/Re > 0.0125. At t >> 1, compared to case shown in figures
5.1−5.5, the logarithm of optimal growth is a single straight line. However, all the
observations made in figures 5.1−5.5 are equally valid in this case.

5.6 Conclusion

In summary, the Squire transformation has been extended to obtain eigenvalues of the
Squire mode for inclined wave as a function of the 2D case and the eigenfunctions of not
only the wall-normal velocity but also the wall-normal vorticity. It has all been extended
to the eigen-solutions of the adjoint operator with respect to the kinetic energy norm.
The transformation then permits us to derive expressions for the large-time optimal
gain corresponding to Orr-Sommerfeld and Squire modes at arbitrary wavenumbers and
Reynolds numbers in bounded parallel shear flows. Remarkably, the Squire transforma-
tion predicts that the long-time optimal gain for OS-modes GOS∞ is the product of the
gain of the 2D Orr-mechanism at a smaller Reynolds number and a term that can be
identified as the contribution from the lift-up mechanism from inclined waves.

The results were verified for arbitrary wavenumbers in the context of plane Poiseuille
flow using a direct computation of the optimal gain. It was observed that the leading
adjoint OS-mode and GOS∞ are good approximations to the optimal initial condition
and the maximum optimal transient growth, respectively, in wall-bounded parallel shear
flows. If the least stable eigenmode is a Squire mode, the optimal gain curve can be
approximated by the response of the adjoint of the leading SQ-mode at t >> 1 and
the response of the adjoint of the leading OS-mode at intermediate times. If the least
stable eigenmode is an Orr-Sommerfeld mode, the optimal growth curve can be well-
approximated by the adjoint of the leading OS-mode at all times. This is valid for all
wavenumbers and Reynolds numbers.

These results are being brought together as an article to be submitted soon in Physics
of Fluids.
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Chapter 6

Remarks and Perspectives

“I do not know what I may appear to the world, but to myself I seem to have been only
like a boy playing on the sea-shore, and diverting myself in now and then finding a

smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.”

− Sir Isaac Newton
Sir Arthur Canon Doyle

A brief summary of perspectives that branch out from this thesis is presented in this
chapter.

The optimal growth mechanisms identified in this thesis are expected to motivate
experimental investigation in Rayleigh-Bénard-Poiseuille/Couette convection. To the
author’s best knowledge, no such experiments are available up-to-date. Since Prandtl
number is a control parameter in switching on/off the coupling between inviscid lift-
up mechanism and the RB convection, it would be interesting to decrease/increase
the Prandtl number of the fluid, by adding appropriate solvents that change the heat
conducting (or viscous diffusion) property of the fluid, to increase/hinder the optimal
growth of infinitesimal perturbations in shear flows with heat addition.

The transient growth analysis in the thesis is confined to the stable region in the
Re-Ra plane. It is, however, interesting to study the competition between the exponen-
tially growing modes and algebraically growing perturbations corresponding to control
parameters beyond the stable region in Re-Ra plane. In particular, when Ra > RaRBc
at some relatively small Reynolds and Prandtl numbers, the growth of the dominant
optimal response and the modal response would be comparable. Further work for this
parameter range is expected.

It is, also, possible to extend the Squire transformation analysis of the pure shear
flow case conducted in chapter 5 to the (direct/adjoint) eigenmodes in Rayleigh-Bénard-
Poiseuille/Couette flows. This is due to the fact that the Squire equation is independent
of the temperature perturbations. Thus, in this case, one could again look for two sets
of solutions:





v̂j(y)

θ̂j(y)
η̂pj (y)



 and





0
0

η̂j(y)



 , (6.1)
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so as to write a general solution in the form (4.34). As discussed in section 4.3.4,
the former set of solutions are referred to the Orr-Sommerfeld-Oberbeck-Boussinesq
(OSOB) modes and the latter are the usual Squire modes. Here, the OSOB modes
are the solutions of the coupled equations (2.26) for wall-normal velocity and (2.27)

for temperature perturbations, involving v̂ and θ̂ only; also, {η̂pj }’s are the forced wall-
normal vorticity functions; and {η̂j}’s are the solutions of the Squire equation. The
Squire transformation is valid also for the equations governing OSOB modes. Thus, all
the conclusions derived for the case of pure shear flows in chapter 5 could be possibly
extended to the case with temperature perturbations.

Recently, a large family of three-dimensional traveling wave (TW ) solutions have
been discovered to exist at Reynolds numbers lower than the transitional range in vari-
ous pure shear flows [64, 20, 11, 12, 22, 23, 83, 84, 38, 37, 78]. It is understood that they
arise in saddle-node bifurcations at Reynolds numbers as low as 1250 [23, 84]. The dy-
namical importance of such structures has been elucidated via a series of numerical and
experimental works (see review [19]). It is firmly believed that they provide a framework
for the formation of chaotic saddle that can explain intermittent transition: A family
of TW solutions can be shown to lie on a surface which separates initial conditions
which relaminarize and those which lead to a “turbulent-like” evolution. These are reg-
ular solutions of the equations of motion that are embedded in the turbulent dynamics.
They were initially called tertiary structures [64, 20, 11, 12] to distinguish them from
primary and secondary flows that occur from linear instabilities of the base flow and the
primary flow, respectively. In plane Couette flow [64, 11, 12, 83], they are observed to
be stationary states whereas, in plane Poiseuille flow [20, 83], they occur only as trav-
eling waves. Both states are coherent structures, dominated by large-scale fluctuations,
vortices and streaks. It is also known that these dynamical structures are similar to the
ones that exhibit the largest non-modal growth in shear flows [28, 75, 85]. One of the
first evidence for such 3D TW s was discovered in the case of plane Couette flow with a
cross-stream temperature gradient by Clever and Busse [11, 12]. They brought out that
some of the 3D stationary states can be continued over to the pure plane Couette flow
scenario. Remarkably, these states are dominated by vortices aligned in the direction of
the base flow, similar to the initial conditions that lead to the largest optimal growth.
They, however, “wiggle” in the streamwise direction. It remains, however, inconclusive
how these structures are related to optimal initial conditions in pipe flows. In Rayleigh-
Bénard-Poiseuille/Couette flows, it would be of academic interest to study the edge of
chaos [19] which separates perturbations that decay towards laminar profile and those
that trigger turbulence. The most akin to the analysis in part I of the thesis is the search
for such solutions via direct numerical computations similar to the study by Faisst and
Eckhardt [23] and by experiments similar to those presented by B. Hof, C. W. H. van
Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R. R.
Kerswell and F. Waleffe [38, 37].

Rayleigh-Bénard-Poiseuille/Couette flows are among the simplest type of flows in
which the selection of fully non-linear global modes [68, 69] in the context of two-
dimensional nonlinear evolution equations can be studied. It is well-known that spatially
developing free shear flows such as jets, mixing layers and wakes typically exhibit intrin-
sic self-sustained oscillations. The origins and the dynamics of such structures can be
related to the presence of large regions of absolute instability wherein fluctuations grow
indefinitely, only to get saturated at a finite amplitude and become tuned at an overall
frequency. Thus, a non-linear global mode is such an oscillating state corresponding
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to a particular spatial distribution of fluctuations beating with an intrinsic frequency
depending upon the system. Such structures have been put forward, for instance, by
Benôıt Pier and Patrick Huerre [68] in the case of one-dimensional nonlinear evolution
equations with slowly spatially varying coefficients on a doubly infinite domain. They
identified two types of structures, namely, steep and soft global modes. Steep global
modes exhibit a sharp front at a marginally absolutely unstable point and their fre-
quency is determined by the corresponding linear absolute frequency, as in Dee-Langer
propagating fronts [68]. Whereas, soft global modes are characterized by slowly varying
amplitude over the entire domain and their frequency is determined by the application
of a saddle point criterion to the local nonlinear dispersion relation. In the scenario of
Rayleigh-Bénard-Poiseuille/Couette flows that vary slowly in the streamwise and span-
wise directions, say, an appropriate hot spot in plane Poiseuille/Couette flow, there
are many conceptual difficulties in understanding the structure and the development of
nonlinear global modes. For example, the definition of front in two-dimensions becomes
unclear as the shape and the strength (steepness) of the front will certainly depend on
the transverse curvature of the convective/absolute instability boundary. Interestingly,
there already exist in the literature linear global modes in these systems for the case
of two-dimensional non-uniform temperature distribution in the form of a single hot-
spot (Gaussian in the streamwise and spanwise direction) [58]. Also, D. Martinand,
P. Carrière and P. A. Monkewitz [57, 8] analyzed the same Rayleigh-Bénard-Poiseuille
system in search of linear 3D global modes in the framework of envelop equations. It is
of both mathematical and dynamical interest to find such nonlinear objects in a slowly
varying 2D media. Part I of the thesis analyzed Rayleigh-Bénard-Poiseuille/Couette
flows for linear temporal instability. Linear spatial instability analysis in such systems
have been identified already [7, 29]. Thus, the next step is, perhaps, to look for finite-
amplitude solutions that exhibit an overall frequency existing in the linear absolutely
unstable regions of the flow. Indeed, one could study such systems starting from a
complex Ginzburg-Landau equation in two-dimensions

∂A

∂t
+ U

∂A

∂x
= µA+ |A|2 A+ (1 + iξ)

∂2A

∂x2
+ (1 + iζ)

∂2A

∂z2
, (6.2)

where A(x, z; t) is a complex fluctuating scalar field representing the amplitude of the
disturbances, ξ and ζ are the dispersion coefficients, µ(x, z) is the control parameter
that determines the linear stability of the basic state A = 0 and U is a complex con-
stant. Note that µ is, however, allowed to vary slowly in the streamwise (x-axis) and
spanwise (z-axis) directions. This is a simple and easy-to-implement extension of the
one-dimensional complex Ginzburg-Landau equation. The linear temporal and spatial
stability boundaries are readily obtained by a few algebraic manipulations after a Fourier
transform of equation (6.2). In effect, one can obtain a region of absolute instability
embedded in a connectively unstable (or stable) region in the x-z plane. The boundary
separating these regions can be studied by direct numerical computation of equation
(6.2). Such computations are expected to help understand the structure of 2D fronts
at the absolute-convective boundary and hence, the frequency selection criterion in real
flow situations, such as plane Poiseuille/Couette flows with a hot spot, the wake of a
circular cylinder with slowly varying diameter in the spanwise direction, etc.

Recent discoveries [30, 39] on large-scale streaks in turbulent plane Couette and
Poiseuille flow have reignited a large number of research in wall-bounded turbulent
flows [15, 70, 40, 67]. In the near-wall region, streaks, i.e. spanwise alternating pat-
terns of high/low-momentum regions with mean spacing of about 100 wall units, are
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the most prominent feature of wall-bounded turbulent shear flows. These streaks sus-
tain independently of the turbulent motions in the outer region, and the corresponding
process has been understood as a cycle involving amplification of streaks by vortices,
breakdown of the streaks via instability and the subsequent nonlinear process generat-
ing new vortices [32, 82]. Streaky motions, however, have been also found in the outer
region, and they carry a significant fraction of turbulent kinetic energy and Reynolds
stress [30, 39]. The self-sustained process at large scales is associated with coherent
large-scale streaks that undergo sinuous oscillations and break down to produce coher-
ent large-scale vortices [40] which are gradually damped with time thereby transforming
into coherent large-scale streaks. Such a self-sustained process is expected to exist in all
wall-bounded shear flows. The effect of heat addition on such large-scale structures have
not got any attention so far. It is, however, intriguing to look for such coherent struc-
tures and the self-sustaining processes via direct numerical simulations or experiments
in Rayleigh-Bénard-Poiseuille/Couette flows.
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Résumé

Les mécanismes de croissance optimale dans des écoulements de cisaillement confinés,
en particulier les écoulements de Couette plan et Poiseuille plan, lorsqu’ils sont soumis
ou non à un gradient de température déstabilisant normal à la paroi sont étudiés en
détail. Dans le cas d’un fluide de Boussinesq soumis à un gradient de température
transverse, une analyse exhaustive de stabilité non modale est effectuée pour différents
nombres de Reynolds, de Rayleigh et de Prandtl. On montre que les lois d’échelle rel-
atives à la croissance transitoire dans des écoulements cisaillés purs sont robustes, y
compris en présence d’un gradient de température déstabilisant. Le mécanisme de “lift-
up” non visqueux classique caractérise le comportement aux temps courts alors que le
mode propre de Rayleigh-Bénard sans sa composante de vitesse longitudinale caractérise
le comportement aux temps longs. Dans le cas d’écoulements cisaillés purs, le rôle de
transformation de Squire est étendue à la croissance transitoire optimale d’une pertur-
bation arbitraire 3D dans le cas d’écoulements cisaillés parallèles d’extention transverse
finie. Cela permet aussi de démontrer que les croissances optimales aux temps longs pour
des perturbations de nombre d’onde arbitraires peuvent être décomposées comme un pro-
duit des gains respectifs résultant du mécanisme de Orr 2D et du mécanisme de “lift-up”.

MOTS CLÉS: la croissance transitoire, Rayleigh-Bénard, Poiseuille, Couette flow, trans-
formation de Squire

Abstract

Optimal growth mechanisms in wall-bounded shear flows, in particular, plane Cou-
ette and plane Poiseuille flow, with and without a destabilizing wall-normal temper-
ature gradient are studied extensively. In the case with a cross-stream temperature
gradient in a Boussinesq fluid, a comprehensive non-modal stability analysis is per-
formed over various Reynolds, Rayleigh and Prandtl numbers. The scaling laws per-
taining to transient growth in pure shear flows are shown to hold even in the presence
of a destabilizing temperature gradient. The lift-up effect remains the predominant
transient growth mechanism. The classical inviscid lift-up mechanism characterizes
the short-time behavior whereas the Rayleigh-Bénard eigenmode without its stream-
wise velocity component characterizes the long-time behavior. The Squire transfor-
mation is extended to provide new insights on the optimal growth of arbitrary 3D
disturbances in parallel shear flows bounded in the cross-stream direction. It also
permits to demonstrate that the long-time optimal growth for perturbations of arbi-
trary wavenumbers may be decomposed as a product of the respective gains arising
from the 2D Orr-mechanism and the lift-up mechanism. This asymptotic solution is
shown to describe the long-time and even the intermediate-time dynamics of the opti-
mal disturbances and provides a good estimate of the maximum optimal gain at all time.

KEYWORDS: transient growth, Rayleigh-Bénard, Poiseuille, Couette flow, Squire’s
transformation


