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ABSTRACT  

Topological features of an object are fundamental in image processing. In many applications, 
including medical imaging, it is important to maintain or control the topology of the image. However 
the design of such transformations that preserve topology and geometric characteristics of the input 
image is a complex task, especially in the case of parallel processing. 
 
Parallel processing is applied to accelerate computation by sharing the workload among multiple 
processors. In terms of algorithm design, parallel computing strategies profits from the natural 
parallelism (called also partial order of algorithms) present in the algorithm which provides two main 
resources of parallelism: data and functional parallelism. Concerning architectural design, it is 
essential to link the spectacular evolution of parallel architectures and the parallel processing. In 
effect, if parallelization strategies become necessary, it is thanks to the considerable improvements in 
multiprocessing systems and the rise of multi-core processors. All these reasons make 
multiprocessing very practical. In the case of SMP machines, immediate sharing of data provides 
more flexibility in designing such strategies and exploiting data and functional parallelism, notably 
with the evolution of interconnection system between processors. 
  
In this perspective, we propose a new parallelization strategy, called SD&M (Split Distribute and 
Merge) strategy that cover a large class of topological operators. SD&M has been developed in order 
to provide a parallel processing for many topological transformations.  
 
Based on this strategy, we proposed a series of parallel topological algorithm (new or adapted 
version). In the following we present our main contributions: 
 
(i) A new approach to compute watershed transform based on MSF transform, that is parallel, 
preserves the topology, does not need prior minima extraction and suited for SMP machines. 
Proposed algorithm makes use of Jean Cousty streaming approach and it does not require any sorting 
step, or the use of any hierarchical queue. This contribution came after an intensive study of all 
existing watershed transform in the discrete case. 
 
(ii) A similar study on thinning transform was conducted. It concerns sixteen parallel thinning 
algorithms that preserve topology. In addition to performance criteria, we introduce two qualitative 
criteria, to compare and classify them. New classification criteria are based on the relationship 
between the medial axis and the obtained homotopic skeleton. After this classification, we tried to 
get better results through the proposal of a new adapted version of Couprie’s filtered thinning 
algorithm by applying our strategy. 

 
(iii) An enhanced computation method for topological smoothing through combining parallel 
computation of Euclidean Distance Transform using Meijster algorithm and parallel Thinning–
Thickening processes using the adapted version of Couprie’s algorithm already mentioned. 

 
 
 
 

 

KEYWORDS: PARALLELIZATION STRATEGY, PARALLEL PROCESSING, TOPOLOGY, WATERSHED, 
SKELETON, SMOOTHING, SHARED MEMORY, THREADS COORDINATION 
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RÉSUMÉ 

Les caractéristiques topologiques d’un objet sont fondamentales dans le traitement d’image. Dans 
plusieurs applications, notamment l’imagerie médicale, il est important de préserver ou de contrôler 
la topologie de l’image.  Cependant la conception de telles transformations qui préservent à la foi la 
topologie et les caractéristiques géométriques de l’image est une tache complexe, en particulier dans 
le cas du traitement parallèle.  
 
Le principal objectif du traitement parallèle est d’accélérer le calcul en partagent la charge de travail 
à réaliser entre plusieurs processeurs. Si on approche cet objectif sous l’angle de la conception 
algorithmique, les stratégies du calcul parallèle exploite l’ordre partiel des algorithmes, désigné 
également par le parallélisme naturel qui présent dans l’algorithme et qui fournit deux principales 
sources de parallélisme : le parallélisme de données et le parallélisme fonctionnelle.  
 
De point de vue conception architectural, il est essentiel de lier l'évolution spectaculaire des 
architectures parallèles et le traitement parallèle. En effet, si les stratégies de parallèlisation sont 
devenues nécessaire, c'est grâce à des améliorations considérables dans les systèmes de 
multitraitement ainsi que la montée des architectures multi-core. Toutes ces raisons font du calcule 
parallèle une approche très efficace. Dans le cas des machines à mémoire partagé, il existe un autre 
avantage à savoir le partage immédiat des données qui offre plus de souplesse, notamment avec 
l'évolution du système d'interconnexion entre processeurs, dans la conception de ces stratégies et 
l'exploitation du parallélisme de données et le parallélisme fonctionnel. 
 
Dans cette perspective, nous proposons une nouvelle stratégie de parallèlisation, baptisé SD&M 
(Split, Distribute and Merge) stratégie qui couvrent une large classe d'opérateurs topologiques. 
SD&M a été développée afin de fournir un traitement parallèle de tout opérateur basée sur la 
transformation topologique. Basé sur cette stratégie, nous avons proposé une série d'algorithmes 
topologiques parallèle (nouvelle version ou version adapté). Nos principales contributions sont : 
 
(i) Une nouvelle approche pour calculer la ligne de partage des eaux basée sur ‘MSF transform’. 

L’algorithme proposé est parallèle, préserve la topologie, n'a pas besoin d'extraction préalable de 
minima et adaptée pour les machines parallèle à mémoire partagée. Il utilise la même approche 
de calcule de flux proposé par Jean Cousty et il ne nécessite aucune étape de tri, ni l'utilisation 
d'une file d'attente hiérarchique. Cette contribution a été précédé par une étude intensive des 
algorithmes de calcule de la ligne de partage des eaux dans le cas discret. 

 
(ii) Une étude similaire sur les algorithmes d'amincissement a été menée. Elle concerne seize 

algorithmes d'amincissement qui préservent la topologie. En sus des critères de performance, 
nous somme basé sur deux critères qualitative pour les comparer et les classés. Après cette 
classification, nous avons essayé d'obtenir de meilleurs résultats grâce avec une version adaptée 
de l'algorithme d'amincissement proposé par Michel Couprie. 

 
(iii) Une méthode de calcul amélioré pour le lissage topologique grâce à la combinaison du calcul 

parallèle de la distance euclidienne (en utilisant l'algorithme Meijster) et l’amincissement/ 
épaississement parallèle (en utilisant la version adaptée de l'algorithme de Couprie déjà 
mentionné). 

 

MOTS CLES: STRATÉGIE DE PARALLELISATION, TRAITEMENT PARALLELE, LA TOPOLOGIE, DES 
BASSINS VERSANTS, SKELETON, LISSAGE, LA MEMOIRE PARTAGEE, FILS DE COORDINATION 
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INTRODUCTION                                                                                                

1.1 Context and motivations 
 

maging applications including medical imaging (MRI2 scan, PET3 scan, SPECT4 scan) 
2D/3D (even 4D in some cases) implement different steps: acquisition (raw format), pre-
processing, processing, analysis, interpretation and display of results. The growing needs for 

such applications, variety and complexity of their algorithms, new requirements in terms of 
performance and quality, require the development of new methods, supports and packaged 
software implementation of these application on new multi-processor based-architecture5 that 
offer more computing power. Such software design flow must include all processing steps from 
high level specification (algorithm specification) to the low level specification (optimized 
implementation based on parallel code distributed between different processors of the platform) 
with respect of real-time constraints such that throughput and latency.       
 
Discrete topology offers a range of essential tools in image processing thus applications in 
medical imaging calls several algorithms based on topological transformation (these algorithms 
have the specificity to process over input image while preserving its topology which allows 
keeping some important information intact). But the increasing size of processed data, due to the 
improved of capture devices resolution, and constraints in terms of processing time, make the 
development of such standard application very complex. Indeed, computing power required for 
these applications currently uses parallel architectures as new computer machines (for reasons of 
cost and availability). Only parallel processing provides a cost effective solution for this 
required power by increasing the number of processors and adding an efficient communication 
system between them which makes coding more complicated: exploring, in optimal way, 
intra/inter processors parallelism and work distribution among different threads. The 
availability, on SMP6 machines, of multi-core processor / RISC-based cores (where the work-
load can be shared between different processors) makes it necessary to study and develop 
appropriate and effective parallelization strategies of such image processing algorithms for this 
type of machine. However, there is no parallelization strategy common to a set of algorithms 
based on topological operators to efficiently implement these algorithms on parallel machines. 
This strategy unifies the optimized implementation of parallel algorithms on these specific 
architectures via parallelization, work-load distribution and effective management of memory 
hierarchy. We therefore propose to study and formalize such parallelization strategy and define 
suitability metrics to assess performance on this type of architecture. 

                                                             
2
 Magnetic Resonance Imaging 

3
 Positron Emission Tomography 

4
 Single Photon Emission Computed Tomography 

5
 Architecture interconnecting many processors: parallel processors (multi-core processor), parallel specific processors 

(Graphic Processor Unit). 
6
 Shared Memory Parallel machines 

I
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1.2 Contributions 
 
Research presented in this manuscript has been done in the Gaspard-Monge computer science 
research laboratory (LIGM) of Paris-Est University, ESIEE A3SI team, CNRS-UMLV-ESIEE 
(UMR 8046).  
 
We frame our work in the field of algorithms based on topological transformation in order to 
study their parallelization on shared memory parallel machines (SMP machines). 
 
Topological features of an object are fundamental in image processing. In many applications, 
including medical imaging, it is important to maintain or control the topology of the image. 
However the design of such transformations that preserve topology and geometric characteristics 
of the input image is a complex task, especially in the case of parallel processing. Here, the main 
goal of parallel processing is to accelerate computation by sharing the workload among multiple 
processors. In terms of algorithm design, parallel computing strategies profits from the partial 
order of algorithms, called also the natural parallelism present in the algorithm which provides 
two main resources of parallelism: data and functional parallelism. Now, from a viewpoint 
architectural design, it is essential to link the spectacular evolution of parallel architectures and 
the parallel processing. In effect, if parallelization strategies become necessary, it is thanks to the 
considerable improvements in multiprocessing systems and the rise of multi-core processors. 
And during the last decade, clock speed of processors in multi-core architectures has increased 
by almost two and associated cache size has increased tenfold with the addition of a third cache 
level L3 which ensures optimal L2 access speed while increasing the total cache. All these 
reasons make multiprocessing very practical. In the case of SMP machines, it adds another 
advantage that is the immediate sharing of data which provides more flexibility, notably with the 
evolution of interconnection system between processors, in designing such strategies and 
exploiting data and functional parallelism.  
 
In this perspective, we propose a new parallelization strategy, called SD&M (Split Distribute 
and Merge) strategy that cover a large class of topological operators. SD&M has been developed 
in order to provide a parallel processing of any operator based on topological transformation. In 
practice the most effective parallel algorithm design might make use of multiple algorithm 
structures thus proposed strategy is a combination of the divide and conquer patterns and event-
based coordination patterns hence the name that we have assigned. Not to be confused with the 
mixed-parallelism approach (combining data-parallelism and task-parallelism), it is important to 
mention that proposed strategy (1) represents the last stitch in the  decomposition chain of 
algorithm design patterns and it provides a fine-grained description of topological operators 
parallelization while mixed-parallelism strategy provides a coarse-grained description without 
specifying target algorithm. (2) It covers only the case of recursive algorithms, while mixed-
parallelization strategy is effective only in the linear case. (3) It is especially designed for shared 
memory architecture with uniform access.  
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Although the cost of communication (Memory-processor and inter-processors) is high enough, 
shared memory architectures meet our needs for different reasons: (a) These architectures have 
the advantage of allowing immediate sharing of data with is very helpful in the conception of 
any parallelization strategy (b) They are non-dedicated architecture using standard component 
(processor, memory, buses ...) so economically reliable (c) They also offer some flexibility of 
use in many application areas, particular image processing. 
 
Based on this strategy, we proposed a series of parallel topological algorithm (new or adapted 
version). In the following we present our main contributions: 
 

� A new approach to compute watershed transform based on MSF7 transform, that is 
parallel, preserves the topology, does not need prior minima extraction and suited for 
SMP machines. Proposed algorithm makes use of Jean Cousty streaming approach [1] 
and it does not require any sorting step, or the use of any hierarchical queue. This 
contribution came after an intensive study of all existing watershed transform in the 
discrete case: WT based on flooding, WT based on path-cost minimization, watershed 
based on topology preservation, WT based on local condition and WT based on 
minimum spanning forest. This study can be seen as an update of Roerdink research [2]. 
Actually, this study presents detailed description of each watershed approach, associated 
processing procedure followed by mathematical foundations and the algorithm of 
reference. Recent publications based on some approaches are also presented and 
discussed. Our study concludes with a classification of different algorithms studied 
according to solution uniqueness, topology preservation, prerequisites minima 
computing and linearity. 

 
� A similar study on thinning transform was conducted. It concerns five parallel thinning 

algorithms that preserve topology: Bernard and Manzanera [3], Jang and Chin [4], 
Eckhardt and Maderlechner [5], Guo and Hall [6], and Hall [7]. Based on the relationship 
between the medial axis and the obtained homotopic skeleton, we introduce two 
classification criteria to compare and classify them. After this classification, we tried to 
get better results through the proposal of a new adapted version of Couprie’s filtered 
thinning algorithm [8] by applying our strategy. 

 
� An enhanced computation method for topological smoothing through combining parallel 

computation of Euclidean Distance Transform using Meijster algorithm [9] and parallel 
Thinning–Thickening processes using the adapted version of Couprie’s algorithm 
already mentioned. 

 
 
 
 
 

                                                             
7
  Minimum Spanning Forest 
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1.3 Report organization 
 

This thesis initially aimed to study how to parallelize topological operators on SMP machines. 
All along the chapters of this work, parallel version (adapted and new) of fundamental 
algorithms of this class will be introduced. Beyond new parallel algorithms, we will also present 
obtained results in terms of computation time, efficiency, cache consumption. 
 

The second chapter will be about parallelization strategy. The global goal of the project 
surrounding this work was to design an efficient strategy to parallelize algorithm based on 
topological transform. To do so, we first start by identifying real needs for such strategy, then 
we define fundamental basis for any parallelization moving from finding concurrency to 
performance metrics of parallel programs.  Then, we briefly introduce our strategy called 
SD&M8 with the aim of classifying it among all existing strategy. Finally, we will conclude by 
presenting all details of SD&M conception: splitting, merging and merging phases.    
 

The third chapter is about watershed transform. Our work starts with a comparative study 
between five different approaches: we present a review of several definitions of the watershed 
transform and the associated sequential algorithms, emphasizing the distinction between 
definition and algorithm specification. The study concludes with a classification of different 
algorithms according to criteria of recursion, complexity, basins computing and topology 
preservation. Since we identify the most suited approach to compute parallel watershed, we 
propose a new algorithm that is parallel, preserves the topology of the input image, does not 
need prior minima extraction and suited for SMP machines. Contrarily to previously published 
algorithms, proposed algorithm do not require any sorting step, or the use of any hierarchical 
queue.  
 

The fourth chapter focuses on thinning algorithms in the framework of critical kernel. We start 
by resuming Couprie’s study on verification methods for the topological soundness of thinning 
algorithms. Based on this first evaluation of 2D topological thinning algorithm, we propose to 
go further in this study through new quantitative and qualitative criteria. Since we have establish 
a new classification of thinning operators and being convinced that best performance can be 
reached, we propose an adapted version of Couprie’s thinning algorithm that we call parallel  λ –
Skeleton algorithm.  
 

In the fifth chapter, we move to another aspect of topological processing: smoothing filter. We 
present a new parallel computation method for topological smoothing through combining 
parallel computation of Euclidean Distance Transform using Meijster algorithm and parallel 
Thinning–Thickening processes using an adapted version of Couprie’s algorithm.  
 

In the sixth chapter, we present a review of the research in the form of a critical summary of 
presented work restating contributions of the thesis. Future work is also presented, summarizing 
the next steps to follow into the research of parallelization strategy. 

                                                             
8
 Split Distribute & Merge  
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PARALLELIZATION STRATEGY  

ultiprocessor chips make computing more efficient by exploiting parallelism which 
is one of the outstanding challenges of modern computer sciences. Parallel 
processing can be defined as the division of a fixed amount of work among different 

processors that run simultaneously with a common objective. The primary advantage of such 
processing comes exactly out of its ability to handle a large volume of tasks (or data) with 
reasonable latency and cadency. Obtained result should be faster with better efficiency, 
scalability and portability in comparison with single processor implementation. Improving these 
metrics doesn’t depend only on the parallel programming design. The scope of algorithm design 
space should be expand by including finding concurrency design space, architecture design 
space, parallel implementation mechanisms and performance metrics of parallel programs. 
These steps, listed in chronological order, sets out a strategy for parallelization.   
 
However, it is generally recognized that designing such strategy is not an easy task [10,11,12]. 
In fact, such design is significantly more complex than sequential programs design on single 
processor computers. As cited in [13], some example of parallel software design [14,15,16] 
illustrate encountered difficulty when scientific code has been hand-crafted for specific 
machines and problems, at immense expense.  
 
The study of parallelism, or how parallel process could be expressed in programming terms, 
start since the sixties. Dijkstra [17] was among the first to develop an initial proposal for the 
treatment of parallelism in a programming language by adding new concepts to sequential 
programming, in order to extend it into a concurrent programming. He introduced new elements 
such as mutual exclusion, event synchronization and critical section. The most important 
concept that was introduced by Dijkstra is semaphores. He didn’t bring only solutions, He also 
raise new issues related to parallel processing such as deadlock. Ten years later, things become 
more formal and definitions more explicit with Hoare’s work [18]. Actually, he defines new 
language for the formal specification of parallel algorithms, known as Communicating 
Sequential Processes. His work starts by analyzing general basic structures used in programming 
such as assignment, sequence, repetition, and selection. Then, he introduced new structures for 
expressing parallelism, communication, and control of non-determinism between processes 
within a multiprocessor architecture. More details about both approaches can be found in [13]. 
These different approaches [17, 18, 19] intersect at a common point: they emphasize the close 
link between strategy and the nature of the application to parallelize. We therefore propose to 
study and formalize parallelization strategy of image processing operators (topological 
operators) and define suitability metrics to assess performance on SMP architecture. 
 
This chapter is organized as follow: we begin, in section 2.1, by highlighting the real need for a 
common parallelization strategy of topological operators. After introducing the basic foundation 
for any successful parallelization (section 2.2), we will focus on Split Distribute and Merge 
(SD&M) strategy that we propose by an initial classification over all existing strategies (section 
2.3), followed by detailed description of SD&M conception in section 2.4. 

M 
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2.1 Lack of common parallelization strategy for topological operators 
 
In 1996, Bertrand [20] introduced connectivity numbers for grayscale image. These numbers 
describe locally (in a neighborhood of 3*3) the topology of a point. According to this 
description any point can be characterized following its topological characteristics. He also 
introduced some elementary operations able to modify gray level of a point without modifying 
image topology. These elementary operations of point characterization present the fundamental 
link of large class of topological operators including, mainly, skeletonization and crest restoring 
algorithms [8]. This class can also be extended, under condition, to homotopic kernel and 
leveling kernel transformation [21], topological 2D and 3D object smoothing algorithm [22] and 
topological watershed algorithm [23]. All mentioned algorithms get also many algorithmic 
structure similarities. In fact associated characterizations procedures evolve until stability with 
induce common recursively between different algorithms. Also the grey level of any point can 
be lowered or enhanced more than once.  Finally, all the mentioned algorithms get a pixel’s 
array as input and output data structure. Expect in special cases where graphs are used. It is 
important to mention that, to date, this class has not been efficiently parallelized like other 
classes as connected filter of morphological operator which recently has been parallelized in 
Wilkinson’s work [24].  Parallelization strategy proposed by Sienstra [25] for local operators 
and point to point operators can also be cited as example. For global operators, an adapted 
parallelization strategy is given in Meijster work [9].  Hence the need of a common 
parallelization strategy for topological operators that offers adapted algorithm structure design 
space. Chosen algorithm structure patterns to be used in the design must be suitable for SMP 
machines. 

2.2 Fundamental basis for parallelization  
 
Before defining parallelization’s stages of any sequential problem, it is essential to link the 
spectacular evolution of parallel architectures and the parallel processing. In reality, if the 
parallelization strategies are so valuable, it is thanks to substantial improvements in 
multiprocessing systems and the rise of multi-core processors. In terms of feasibility, it will be 
easier to design architecture with a single fast processor (clock speed over 3 GHz) than one with 
many slow processors (clock speed around 1.5 GHz) with the same throughput. But during last 
years the clock speed of processors in multi-core architectures has increased ,see (tab. 1), by 
almost two and associated cache size has increased tenfold with the addition of a third cache 
level L3 which ensures optimal L2 access speed while increasing the total cache. These twin 
barriers have flipped the equation, making multiprocessing very practical and advised even for 
small applications. 

 Pentium 4 Processor Extreme 

Edition 

Intel Core 2 Duo 

Processor E4300  

Intel Xeon Processor 

X7560 

Code name Prescott Conroe Nehalem-EX 
# of Cores 1 2 8 
# of Threads 2 2 16 
Clock Speed 3.73 GHz 1.8 GHz 2.266 GHz 
Cache 2 MB L2 Cache 2 MB L2 Cache 24 MB L3 Cache 
Bus Type FSB FSB QPI 
System Bus 1066 MHz 800 MHz 6.4 GT/s 

Table 1 : Processors performance evolution 
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Generally five steps, see (fig. 1), are necessary to move from sequential algorithm running on 
single core architecture to parallel algorithm that runs with better performance on a multi-core 
architecture. G. Mattson and al., see [26], present the first four steps for parallel programming:  
Finding concurrency, algorithm structure, support structure and implementation mechanisms. 
Based on Mattson logic, we define all five steps. We should like to stress the importance that we 
attach to the second and third phase which represent basis of our strategy as we will show later. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Overview of parallel computing steps 

 

DefinitionDefinitionDefinitionDefinition    ((((1111))))::::  Finding Concurrency Design Space  

It's the first analysis of the sequential algorithm to determinate the potential concurrency in 
terms of tasks and groups of tasks, shared data and task-local data. 

 
After analyzing the original problem to identify exploitable concurrency, usually by using the 
patterns of Finding Concurrency Design Space (Def.1), information about existing concurrent 
tasks, associated input data and dependencies are figured out.  These elements are necessary to 
move to the Algorithm Structure Design Space (Def.2). G. Mattson and al. propose three 
possible organizations: organization by tasks, organization by data decomposition, and 
organization by flow of data. To remain in the conceptual framework of this section, we provide 
only the two original organizations:  by tasks and by data [27]. 
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DefinitionDefinitionDefinitionDefinition    ((((2222))))::::  Algorithm Design Space 

The set of all possible algorithm designs and algorithm design parameters that represent how 
the extracted concurrency can be mapped onto elementary preprocessors.  

 
In several cases, the problem can be decomposed to a finite set of tasks. Tasks can be grouped 
according to several criteria: nature of the operation to achieve required operands, action-zone or 
returned result then groups of task can be defined. The way that the tasks within their group 
interact is the major feature of the concurrency. If the final solution is obtained after a single 
execution of all tasks and tasks dependency is null or quasi-null (temporary access to shared 
variables or messages exchange for synchronization), we can define the parallel task design. If 
processing is recursive, the problem can be solved by recursively dividing it into sub-problems, 
solving each sub-problem independently, and then recombining the sub-solutions into a solution 
to the original problem. This is the well know pattern of divide and conquer. It’s important to 
note that the application of this principal cannot be independent from the type of the algorithm 
[28]. In other cases, global processing comes down to a continuous updating of a data structure. 
Thus it is better to think in terms of organizing data. G. Mattson goes further in this 
classification. He distinguishes between two particular cases: if the organization focuses on the 
distribution of data between elementary processors, then it’s a simple data decomposition 
pattern. However, if the organization is the distribution of data between tasks groups: it is a data 
flow decomposition pattern. More details will be given about this pattern in SD&M strategy 
classification.  

DefinitionDefinitionDefinitionDefinition    ((((3333))))::::  Architecture Design Space 

It describes the set of platform that support the extension of parallel programming. 
Information about how instructions are executed and how memory is managed are presented 
in this design.  

 
Before moving to coding, it is important to find the most appropriate architecture to support the 
parallel algorithm using parallel architecture design space (Def.3). This design presents standard 
classification of parallel computer systems [29]. According to Flynn classification [30], there are 
four types: SISD9, SIMD10, MISD11 and MIMD. The most significant structure encountered in 
the parallel application [31] is MIMD (Multiple Instruction, Multiple Data). In a MIMD 
machine the processors can execute different operations using their own data. Parallel 
processing via the application of MIMD machines offers the promise of high performance, and 
experience with parallel processing is accumulating rapidly. In [32], Buzbee show, through 
different examples, that rapid progress is being made in the application of MIMD machines and 
that parallel processing can yield high performance. We distinguish between two types of 
MIMD computers: Shared Memory MIMD machines and Distributed Memory MIMD 
machines. In the case of distributed memory machines, each processor has its own memory but 
this does not prevent its access to the memories of other processors if necessary.  
 

                                                             
9
 Single Instruction Single Data 

10
 Single Instruction Multiple Data 

11
 Multiple Instruction Single Data 
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DefinitionDefinitionDefinitionDefinition    ((((4444))))::::  Parallel Implementation mechanisms 

They are set of tools used to write parallel programs. They are able to manage threads. 
Thread’s synchronization and communication must also be guaranteed.  

 

In contrast, in shared memory parallel machines, all processors share the same memory. 
Although the cost of inter-processor or memory communication can be high, SMPM design still 
very efficient. In fact, this cost can be reduced by using the right mechanisms for parallel 
programming (Def.4). These mechanisms allow better exploitation of target architecture through 
the use of threads. The most used tools within this framework are: MPI [33], OpenMP [34] and 
TBB [35]. After coding and running programs, it’s important to evaluate efficiency, scalability 
and portability of the code by using performance metrics for parallel programs (Def.5).  These 
concepts will list in detail in the last part of this chapter. 

DefinitionDefinitionDefinitionDefinition    ((((5555))))::::  Performance metrics of parallel programs 

They are a set of measurements that quantify the parallel code such as efficiency, scalability 
and portability.  
 

2.3 Classification of SD&M strategy  
 
As mentioned in last section, chosen algorithm structure patterns to be used in the design must 
be suitable for SMP machines. In fact, shared memory parallel machines allow access from any 
processor to any location through shared memory using an interconnection network (processor-
processor and memory-processor). Flexibility of these architectures does not lie in such 
interconnection network (which is usually predefined by manufacturer), but on shared memory.  
Actually, programmer perceives a shared, central, and continuous memory. Each memory 
location or address in unique and identical for any processor of the system. Thus, he take profits 
of the immediate sharing of data with is very helpful in the conception of any parallelization 
strategy:  The global address space provides a user-friendly programming perspective to 
memory and data sharing between tasks is both fast and uniform due to the proximity of 
memory to CPUs. Communication between CPUs can be assured trough shared variables 
(reading/writing). Network selects appropriate memory block when reading (writing) process 
from a specific memory address is lunched. Data integrity is guaranteed by synchronization, and 
coordination mechanizes such as semaphores (Dijkstra), and monitors (Hoare) already 
introduced in introduction. SMP machines are also non-dedicated architecture using standard 
component (processor, memory...) so economically reliable. They also offer some flexibility of 
use in many application areas, particular image processing. 
 
In practice the most effective parallel algorithm design might make use of multiple algorithm 
structures thus proposed strategy is a combination of the divide and conquer patterns and event-
based coordination patterns, see (fig. 2), hence the name that we have assigned: SD&M (Split 
Distribute and Merge) strategy. Not to be confused with mixed-parallelism approach (combining 
data-parallelism and task-parallelism [36]), it is important to mention that our strategy represents 
the last stitch in the  decomposition chain of algorithm design patterns and it provides a fine-
grained description of topological operators parallelization while mixed-parallelism strategy 
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provides a coarse-grained description without specifying target algorithm. It covers only the case 
of recursive algorithms, while mixed-parallelization strategy is effective only in the linear case. 
It is especially designed for shared memory architecture with uniform access. (Identical 
processors, equal access times to memory …).  
 

 

  

 

 

 

 

 

 

 

Figure 2 :  Circle of decision for the algorithm structure design space 

 

2.4 SD&M strategy conception 
 
A parallelization strategy did not aim to optimize a single metric such as speedup. Other than 
improved performance in terms of execution time, a good strategy has to provide a balance 
between efficiency, scalability, and portability to dissolve all conflict that exists between these 
three forces. These notions will be defined later in this section. Actually, any strategy is facing 
two major barriers. First, the conflict between efficiency and portability: making a program 
efficient almost requires that the code take into account the characteristics of the specific system 
on which it is intended to run, which limits portability. A design that makes use of special 
features of a particular programming environment (as multi-thread environment) may lead to an 
efficient program for that particular environment, but unusable for a different platform. Second, 
the conflict between scalability and portability: Improving the scalability is based on a good 
distribution of work over a finite number of processors for a better exploitation of the N 
processors’ potential. This distribution limits the portability of the program since the number of 
processor is increased. 
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Figure 3 : SD&M Strategy Design 

 
The relative importance of these diverse metrics will vary according to the nature of the problem 
at hand. In our case we are dealing with a class of topological operators with common feature, as 
we shown in section 2.1. Shared memory parallel architectures turned out to be best suited for 
our needs (section 2.3). Therefore, Split Distribute and Merge strategy, that we propose, 
combines two patterns: Divide and Conquer pattern (Def.6) and Event-Based Coordination 
(Def.7). In the following we detail all three phases of SDM strategy. 

DefinitionDefinitionDefinitionDefinition    ((((6666))))::::  Divide and Conquer pattern 

It is based on multi-branched recursion. It solve problem by recursively dividing it into sub-
problems. After solving each sub-problem independently, it recombines the sub-solutions into 
a solution to the original problem. 

DefinitionDefinitionDefinitionDefinition    ((((7777))))::::  Event-Based coordination 

It is used when dealing with irregular, dynamic or unpredictable data flow. 

 

2.4.1 The splitting phase 

 
The Divide and Conquer pattern is applied first by recursively breaking down a problem into 
two or more sub-problems of the same type, until these become simple enough to be solved 
directly. Splitting the original problem take into account, in addition to the original algorithm’s 
characteristics (mainly topology preservation), the mechanisms by which data are generated, 
stored, transmitted over networks (processor-processor or memory-processor), and passed 
between different stages of a computation.  
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DefinitionDefinitionDefinitionDefinition    ((((8888))))::::  Scalability  

It is a property which exhibits performance linearly proportional to the number of processors 
employed. 

This first stage of division will primarily affect the rate of scalability (Def. 8) of our program. To 
mount it, we propose the following formalization. Since speedup is the most commonly used 
metrics for parallel programming, it seems to be a nature choice to begin. So we assume that 
every program is made up of two parts, sequential and parallel, to establish the following 
definitions (with 2≥N ):  
 
  

st  Processing time of the serial part of a program using one processor. 

( )1pt  Processing time of the parallel part of a program using one processor. 

)(Nt p  Processing time of the parallel part of a program using N CPUs. 

)1()1( psT ttt +=  Total processing time of the serial and parallel part of the program using 
one processor. 

)()( NttNt psT +=  Total processing time of the serial and parallel part of the program using 
N  CPUs. 

)1(
)1(

ps

s

tt

t

+
=α  

Non-Scaled percentage of the serial part of the program using one 
processor. 

)(
)(

Ntt

t
N

ps

s

+
=α  

Scaled percentage of the serial part of the program using N CPUs 

)1(

)1(
))1(1()1(

ps

p

tt

t

+
=−= αβ  

Scaled percentage of the parallel part of the program using one 
processor. 
 

)(

)(
))(1()(

Ntt

Nt
NN

ps

p

+
=−= αβ

 

Scaled percentage of the parallel part of the program using N CPUs 

Table 2 : Basic definitions of processing time 

Now we can formalize the fixed-size speedup, which fixes the problem size and emphasizes how 
fast a problem can be solved. By first theoretical approach speedup can be seen as the ratio of a 
quantity of works by a period of time: 

DefinitionDefinitionDefinitionDefinition    ((((9999))))::::  Speedup-(1st equation) 

Speedup = 
Time

Work
=

T

W
                                                                                            

A second formal definition can be given by applying Amdahl’s law [37] so the speedup can be 
defined by the ratio of total processing time of the serial and parallel part of the program using 
one processor by the total processing time of the same parts using N processors. 
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DefinitionDefinitionDefinitionDefinition    ((((10101010))))::::  Speedup-(Amdahl approach) 

Speedup= 
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This formula can be written differently using non-scaled percentage (1)β  previously defined in 

(tab.2): 

DefinitionDefinitionDefinitionDefinition    ((((11111111))))::::  Speedup-(2nd equation) 

             Speedup=
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An alternative formulation referred to as Gustafson’s law [38] exists. This formulation calibrates 
the serial percentage according to the total parallel time using N processors.  

� ))(1()()( NNNtT αα −+=  
� ))(1()()1( NNNtT αα −+=  

 
Thus we can define the speedup as follows:  

DefinitionDefinitionDefinitionDefinition    ((((12121212))))::::  Speedup-(3d equation) 

     Speedup= 
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To show work partition influence on the scalability rate )',( NNψ , suppose that an algorithm 

runs on a first architecture using N  processors with Nη  efficiency. Shared amount of work is

NW . The same program runs on a second architecture using 'N processor with 'Nη  efficiency. 

Shared amount of work is 'NW . We recall that the efficiency is considered as the ratio of speedup 

by the number of processor (More details about efficiency will be given in the second section). 
Ideally, an algorithm should be effective on wide range of numbers of processing elements, from 
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following equation using (Def. 9): 

              If 'NN ηη =
'

)'()(

N

NSpeedup

N

NSpeedup
=⇔  

'

)'()(

N

NSpeedup

N

NSpeedup
=⇔  

                                     
)'('*)(*

'

NtN

W

NtN

W

T

N

T

N =⇔ )',(
*

'*

)'(

)(

'

NN
NW

NW

Nt

Nt

N

N

T

T ψ==⇔                                     

 



Chapter 2 | Parallelization strategy  

 

27 | P a g e  

 

Thus it follows that the only parameter that provides a linear performance in proportion to the 

number of processors (Def. 8) is the ratio 








'N

N

W

W
. Hence the importance of splitting step. 

Unfortunately such impact can’t be shown by applying simply Gustafson approach (Def. 12). 
Scalability will be express only in term of the number of processor. 
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2.4.2 Distribution phase 

 

We attach great importance to work distribution because it is a fundamental step to assure a 
perfect exploitation of multi-cores architecture’s potential. We'll start by recalling briefly some 
basic notion of distribution techniques then we introduce our minimal synchronization approach 
that is particularly suitable for topological recursive algorithms where simple point 
characterization is necessary. Our approach is general and applicable to shared memory parallel 
machines.  
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The main challenge when performing parallel operations on simple point characterization is the 
dynamic nature of work distribution. Since the workload is not known a priori, assigning work 
units to different cores in advance is impossible. In the literature, there are two main approaches 
for multi-core work distribution: the first one, called work queues approach, consist on using a 
shared work queue in main memory and control access to it via synchronization primitive. The 
second approach is work stealing. In this case, every core has a separate work queue which is 
still accessible to other processors. Cores can steal work units from others’ queues whenever 
their own queue is empty. 
 
However, all these techniques do not currently work well on new architectures as Xeon for 
many reasons. Primarily, work-stealing has also been known to be cache-unfriendly for some 
applications due to randomized stealing [39]. For tasks that share the same memory footprints, 
randomized locality oblivious work-stealing schedulers do nothing to ensure scheduling of these 
tasks on workers that share a cache. This significantly limits, not only scalability, but also 
efficiency (Def. 13) for some memory-bandwidth bounded applications on machines that have 
separate caches.  

DefinitionDefinitionDefinitionDefinition    ((((13131313))))::::  Efficiency 

It is the cost of what is actually produced or performed with what can be achieved with the 
same consumption of resources (processor frequency, memory size, surface, etc.). It is an 
important factor in determination of productivity. 

Efficiency = Nη  = 
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according to (Def. 11)                                        
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TNt

W
according to (Def. 9)  

It is also important to mention that using memory fence operations, consistency can be enforced, 
but with relatively high overhead. Even if memory consistency were not a problem, busy 
waiting such as by spinning on a lock variable is relatively inefficient on an architecture with 
high memory latency and hardware multi-threaded execution can also lead to priority inversion 
and prevent other threads on the same core from performing useful work.  
 
The main idea of our approach is to imagine an auto-supplying task system, see (fig.4).  Keeping 
the local queues filled will be our major goal. Local threads should never have to broadcast over 
processors because of an empty queue. They should always find something in their local queues 
due to an auto-supplying task system that allows an automatic check of different queues then 
permanent redistribution of tasks to maintain a certain balance between all processors. 
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Figure 4 : Auto-Supplying task system 

 
 Let’s consider a distributed job list where no jobs are duplicated anywhere so each processor 
local list is unique and exclusive and jobs can be moved between processor only before they go 
into "executing" status. In spite of each processor balances itself by requesting or stealing work 
units from others’ queues whenever its own queue is empty, we design an auto-supplying system 
using a shared work queue located in principal memory that supply the processor shortage of 
work. System maintains a minimum level of work in its queue by importing extra work from 
others’ processors queues.  This load balancing feature will keeps all processors busy.  
 
Before detailing our approach, we start by recalling briefly some basic notion of distribution 
techniques then we introduce our minimal distribution approach that is particularly suitable for 
topological recursive algorithms where simple point characterization is necessary. Our approach 
is general and applicable to shared memory parallel machines. Critical cases are also introduced 
and discussed.  
 
Indeed there are two main types of scheduler. There are those designed for real-time systems 
(RTS). In this case, the most commonly approaches used to schedule real-time task system are: 
Clock-Driven, Processor-Sharing and Priority-Driven. Further description of different 
scheduling approaches can be found in [40,41,42]. According to [42] the Priority-Driven is far 
superior the other approaches. These schedulers must provide an operational RTS: completed 
work and delivered results on a timely basis. Other schedulers are designed for Non Real-time 
system. In this case, schedulers are not subject to the same constraints. Thus, "Symmetric 
Multiprocessing" scheduler distributes tasks to minimize total execution time without load 
balancing between processors, see (fig. 5. a). On multi-core architectures, this can lead to high 
occupancy rate of one processor while the others are free. 
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        (a) Non-real time symmetric task distribution (b) Task distribution based upon uniformity principle 

Figure 5: Illustration of task distribution on multi-core architecture 

 
We propose a novel tasks scheduling approach to prevent improper load distribution while 
improving total execution time, see (fig. 5. b). In literature, there are several schedulers that 
provide a balanced distribution of tasks such as RSDL “Rotating Staircase Deadline” [43] which 
incorporates a foreground-background descending priority system (the staircase) with run-queue 
managing minor and major epochs (rotation and deadline). Other scheduler, as CFS 
“Completely Fair Scheduler” [44], shows consistence. It handles resource allocation for 
executing processes, and aims to maximize overall CPU utilization while maximizing interactive 
performance. These schedulers are based on tasks uniformity principle. Through the tasks 
homogeneity, better distribution can be achieved and total execution time reduced.  
 
Unfortunately, these schedulers are not available in all operating system versions especially for 
small system. Based on the same principle of tasks uniformity, we propose an adapted 
scheduling algorithm, simpler to implement and more adapted to topological algorithm 
implementation. 
 

Let be a basic non-preemptive scheduler ‘Basic-NPS’, { }1 2, ,..., kT t t t= is the set of all tasks, 

{ }1 2, ,...,T iT t t t= is the set of tasks to process with TT T⊂ , { }1 2, ,..., nP p p p= is the set of all 

processors and { }1 2, ,...,a jP p p p=  is the set of available processors with aP P⊂ .  

Basic-NPS ( x yT P⇒ ) is able to schedule a set of xT  tasks on yP  processor. Let { }p be the 

maximum of processors that yP will contain. Then { }p can be defined as the maximum of 

available processors already defined by the set aP  and { } max /j j ap p p P= ∈ . While 

[ ] [ ]( )a TP T≠ ∅ ∧ ≠ ∅ then :x yT P⇒  ;x TT T∈  y aP P∈ .  
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In this scheduler, each processor will treat at maximum max / max( )i i j

T
m t t p

P
= → ≤ tasks 

with { }1,2,...,j n∈ . Then, the worst case to process T is

{ }1
...

( ) max max ,...,maxT T k
i j i

K T T p T p
< <

= → → . As proof, let suppose that it exist a set ( )L T as

( ) ( )L T K T≥∑ ∑ . As ‘Basic-NPS’ manage ( )L T and ( )K T , so we can introduce the 

following: ( )L T m≤
 
and ( )K T m≤ . Thus, if ( ( ) ( ))L T K T≥∑ ∑ then there is at least one 

task { }l , with ( )k K T∈ , such as: ( )A B C∧ ∧  with ( ( )), ( ( )), ( )A l L T B l K T C l k= ∈ = ∉ = > . 

This is impossible according to the definition of ( )K T  which was defined as the worst case. 

 
Algorithm 1 : Scheduling policy [Mahmoudi and Akil] 

 

Aux: T : Set of all tasks, P : Set of all processors 

1. While ( )T ≠ ∅  repeat : 

2.      TN = Nbr_active_tasks() ; 

3. 
     PN = Nbr_ available_processors(); 

4.       If  ( 0)PN ≠ then 

5.             If ( TN < PN ) then  

6.                  For each processor PiN : 

7.                         Generate-new-process ( TiN ); 

8.                          Identify-class ( TiN , SCHED_FIFO); 

9.                  Endfor 

10.              Else :  DTN = Desable_tasks ( PN - TN ) ; 

11.                          Insert_desabled_tasks ( DTN ,T ); 

12.                          For each processor PiN : 

13.                                 Generate-new-process ( TiN ); 

14.                                 Identify-class ( TiN , SCHED_FIFO); 

15.                          Endfor 

16.               EndIf 

17.          EndIf 

18. EndWhile    

 
 ‘Basic-NPS’ policy is described by (Alg. 1). The first step consists on asking operating system 
to determine the number of available processor. Depending on this number, algorithm will 
generate process. One active process will be assigned for each available processor. These new 
processes will belong to the SHED_FIFO class in order to ensure preemption and especially to 
avoid context switching. Process will only stop running if work is complete or less frequently 
when another process, belonging to the same class, with higher priority requesting processor. 
The global execution will stop if there no more task to process. 
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This approach, and despite the centralized aspect, does not depend on the number of processors 
(number of processor is not predefined) or the minimum load of processors witch make this 
approach more generic and the parallelization strategy more portable. In fact portability is 
increasingly cited as a desirable goal in parallelization strategy conception. 

DefinitionDefinitionDefinitionDefinition    ((((14141414))))::::  Portability 

It is a property which assures that parallel programs are both code portable and performance 
portable to various parallel machines. 
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Despite disagreement about the exact meaning of “Portability”, we can consider (Def.14) as 
working definition. According to James D. Mooney [45] the primary goal of portability is to 
facilitate the activity of porting an application from an environment in which it currently 
operates to a new or target environment. This activity has two major aspects:  
 
(i) Transportation: physical movement of the program's instructions and data to the new environment.  

(ii) Adaptation: modification of the information as necessary to work satisfactorily in the new environment. 

 
We skip “Adaptation” which involves higher level modifications that might be necessary to 
adjust the program to work with aspects of the new environment that are intentionally or 
unavoidably different from the old one. We focus on physical transportation which includes use 
of compatible media or communication channels between processor, and interpreting and 
translating file formats, character codes, data representations, processor design.  Standard 
languages and portable compilers bridge the gap between programs and the variety of CPU 
interfaces that exist in target environments. However, many of these mechanisms still define 
only part of the environment interface that many applications need. Elements such as file 
structures, memory management, or especially asynchronous event handling are not adequately 
defined by most language standards or library specifications. When requirements for 
communication, concurrency, or timing constraints exist, conventional languages are clearly 
insufficient. 
 
Here is another major challenge in multi-core multithread architecture programming. In an ideal 
case, moving from one-core to multi-core should provide n fold increase in computational 
power. But practically, it is something that never happened. In fact, all existing computational 
problems cannot be efficiently parallelized without incurring the costs of inter-processor 
coordination.  
 
This kind of analysis was evoked in many researches. Let’s come back to (Def.10) and we focus 
on Amdahl’s law [36]. It captures the notion that the extent to which we can speed up any 
complex work is limited by percentage of the sequential part in the executed work. Amdahl’s 
Law defines the maximum speed up S  that can be achieved by n  processors collaborating on 
an application, where k is the fraction of the work that can be executed in parallel. Assume, for 
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simplicity, that a single processor completes the work in one second. With n concurrent 

processors, the parallel part takes ( )
p

n
seconds and the sequential part takes (1 )p−  seconds. 

Overall, the parallelized computation takes ((1 ) )
p

p
n

− + seconds. Thus, ( ) 1/ ((1 ) )
p

S n p
n

= − + . 

Through this formula, for the given problem and an eight-core machine, Amdahl’s law says that 
even if we parallelize 90% of the solution, but not the remaining 10%, then we end up with only 
four-fold speedup, and not the expected eight-fold speedup. In fact, these additional parallel 
parts involve substantial communication and coordination. 
 
In our dynamic parallelization strategy, as we explained later in nest section, each two threads 
will share only one FIFO queue in order to push neighbors of lowered pixels. Intuitively we are 
going to opt towards a solution with a simple lock-based shared FIFO queue. Associated push 
and pop methods will be synchronized by a mutual exclusion lock. Even if this implementation 
is a correct concurrent FIFO queue, because each method accesses and updates fields while 
holding an exclusive lock, the method calls take effect sequentially. And according to Amdahl’s 
law, this sequential communication can substantially affect the performance of our program as a 
whole. In multi-core architecture, such synchronization technique can also be the origin of costly 
overheads. Even if we opt to second method based on lock-free solution [46] in order to 
minimize the overheads, it is demanded that at least one thread (of all the threads that are 
executing the push or pop function at one moment) is progressing (inserting or extracting pixels 
from or to the FIFO queue). Unfortunately, we do not know in advance how many parallel 
threads will call push or pop functions. And method calls still take effect sequentially. Other 
solution is wait-free technique [47], it is required that a process finishes within a finite number 
of execution steps. Something that we cannot also guarantee because we cannot predict how 
many points will be characterized and then how many pixels will be inserted in the FIFO queue. 
Finally we decide to move to spin-wait mechanism [48], illustration is given by (fig. 6), and a 
thread waiting to push an item might spin for a brief duration without being added to the queue 
of waiting threads. As a result, the thread is effectively put to sleep without relinquishing the 
remainder of its CPU time slot. It is potentially more efficient to spin and wait, instead of using 
either lock-free or wait-free mechanisms, because those force a thread context switch, which is 
one of the most expensive operations performed by the operating system. 
 
 
 
 
 

 
 
 
 
 

Figure 6: Spin-wait synchronization 
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2.4.3 The Merging phase 

 
The key problem of each parallelization is merging obtained results. Normally this phase is done 
at the end of the process when all results are returned by all threads what usually means that 
only one output variable is declared and shared between all fighting threads. But as we 
mentioned in section 3.1, we are dealing with a dynamic evolution and if we take into account 
different steps of simple point detection then pixel characterizations, we can plan the following: 
The original shared data structure, containing all pixels, is divided into n  research zones

{ }1 2, ..., nz z z . We associate one thread from the following list { }1 2, ..., nT T T  to each zone. Each 

thread can browse freely its zone and if it detects target pixel types, it lowers characterized pixel 
and it pushes its eight neighbors in one of the available FIFO queues. A queue is said available if 
only one thread (owner) is using it. One queue cannot be shared by more than two threads so if 
no queue is available, threads can create a new one and become owners.   
Since two threads finished, they directly merge and a new thread is created and then same 
process is lunched again. New created thread will inherit queue shared between his parents. 
Thus it can restart research. It is also important to mention that there is no hierarchical order in 
thread merging, only criteria is finishing time. We mention also that one neighbor cannot be 
inserted twice. It is a precaution in order to minimize consumed cache. More formal description 
of merging techniques is given in by (Algo. 2). 
 
It is important to highlight similarity and difference that may exist between our merging 
algorithm and KPN [49]. In effect, both are deterministic and do not depend on execution order. 
But KPN algorithm may be executed in sequentially or in parallel with the same outcome while 
our merging algorithm is designed only for parallel execution. KPN support recurrence and 
recursion while our merging algorithm support only recursion.  

In large scale application, KPN showed consistence. Examples include Daedalus project [50] 
where generated KPN models are used to map process into FPGA architecture. Ambric 
architectures [51] implement also a KPN model using bounded buffers to create massively DMP 
Machines based on structural object programming model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Illustration of merging phase with four threads 



Chapter 2 | Parallelization strategy  

 

35 | P a g e  

 

In a narrower framework limited to simple point characterization, the implementation of such a 
model will be very expensive and it would be better to find an easier and more specific 
algorithm. 

An illustration of the merging algorithm with four threads is given by (fig.7). The original 

shared data structure is divided into 4 research areas{ }1 2 3 4, , ,z z z z . Threads { }1 2 3 4, , ,T T T T  will 

start browsing different zones in parallel.  

1T is the first to detect target point (constructible, destructible …) so it lowers characterized pixel 

(in 1z ) and it pushes its eight (or four) neighbors in FIFO queue 1F  that it has created before 

continue browsing. Later, 3T will detect new target point so it will lower characterized pixel in 3z  

then push neighbors in 1F  before continue browsing. 3T don’t need to create new FIFO queue 

since 1F is available. 1T and 3T will repeat this procedure twice. Since they finish browsing, they 

merge and new thread 5T is born. 5T will start browsing only 1F . Since it detect new target point 

so it will lower characterized pixel (in 5z = 1z + 3z ) then push neighbors in 3F  that it has created 

before continue browsing.  

Similarly 2T  and 4T will generate the creation of 2F and 6T . Here 6T  will eventually merge with 

5T  to give birth to 7T . Finally there will be a single thread 7T  which will brows 3F without 

detection any target points.  

Algorithm 2 : Merging Algorithm [Mahmoudi and Akil] 
 

Aux: Z : Set of research zones, T : Set of threads, _FIFO Q : Set of available FIFO queues and TP  : Target pixel type ; 

DP : Detected pixel 

1. For all zones ( )iZ Z∈ do 

2.       Parallel_browsing ( iT , iZ ) ; 

3. End_for 

4. For each thread ( )iT T∈ do 

5.      If (pixel_caract( iT , TP )==True) then 

6.           Modify_value( DP ); 

7.           If ( ( _ )FIFO Q ≠ ∅ then  

8.                   Usedstatus( _ jFIFO Q ,true) ; 

9.                   Insert_neighbors( iT , DP , _ jFIFO Q ); 

10.          Else : add_new_fifo ( _FIFO Q ); 

11.                    Usedstatus ( 1_ jFIFO Q +
,False) ; 

12.                     Insert_neighbors ( iT , DP , 1_ jFIFO Q +
); 

13.           EndIf ; EndIf ; 
14. EndFor; 
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2.5 Conclusion  
 
In this chapter we have identified needs for a common parallelization strategy of topological 
operators on shared memory parallel architectures. After studying theoretical basis of 
parallelization strategies, we presented our approach called SD&M. It is important to mention 
that some similarity may exist between our split/merging phases and alpha-extension/beta-
reduction phases from structural perspective. Actually both approaches intended to put in place 
more guarantees that the parallelism will actually be met. But uses contexts are different. In 
effect, Jean Paul Sansonnet [52, 53, 54] team introduced alpha-extension (diffusion) and beta-
reduction (merging) notions for stream manipulation in the framework of Declarative Data 
Parallel language definition and there techniques cannot be applied without a scalar function. 
While our proposal is restricted to topological characterization in the framework of topological 
operator’s parallelization and no scalar function is required during the application of these two 
phases. 
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TOPOLOGICAL WATERSHED 

 
he watershed is now used as a fundamental step in many powerful segmentation 
procedures. Judged by the great diversity of applications in which this transform appears 
relevant, watershed can be seen as one of the most popular segmentation tools coming 

from the field of mathematical morphology. In general, five large classes of algorithms to 
compute watershed transform can be figured out. The first one is based on flooding approach, 
the second is based on a path-cost minimization, third class is based on topological approach, 
fourth class is based on local condition and finally a fifth class based on minimum spanning 
approach. These classes will be studied in details in the second section of this chapter.  
 
In addition to this study, we will focus also in the parallel implementation of watershed. In fact, 
the difficulty of such implementation resides in the non-local criteria of the watershed transform. 
The decision whether a pixel belongs to a basin cannot be based on purely local considerations 
as Roerdink and al. [2] introduced. He also explains that results given by some algorithms 
depend on the order in which pixels are treated during execution. In the sequential case, fixing 
the scanning order can resolve this problem, so that a deterministic result is obtained. In a 
parallel implementation this is no longer true since the outcome depends on the relative time 
instants at which different processors treat the pixels, and this is unpredictable in the case of 
asynchronous processors. Throughout this section, we will leave in search of more adapted 
parallel algorithm to compute watershed transform suited for shared memory parallel machines.  
 
We start by presenting an intensive study of all existing watershed transform in the discrete case 
in section (3.1). This study concludes with a classification of different algorithms according to 
criteria of recursion, complexity, basins computing and topology preservation in section (3.2). 
Once best approach identified, we present, in section (3.3), a new algorithm to compute 
watershed that is parallel, preserves the topology of the input image, does not need prior minima 
extraction and suited for SMP machines. Based on stream notion introduced by Cousty [1], this 
algorithm does not require any sorting step, or the use of any hierarchical queue. Experimental 
analyzes such as execution time, performance enhancement and cache consumption are also 
presented and discussed. 
 

3.1 Watershed transformations 
 
The watershed concept began with Maxwell [55] who introduces the theory behind representing 
physical characteristics of a land by means of lines drawn on a map. He highlights relationships 
between the numbers of hills, dales and passes which can co-exist on a surface. Subsequently, 
through the work of Beucher and al. [56], watershed transform was introduced to image 
segmentation and nowadays it represents one of the basic foundations of image processing [57].  

In this framework, the most simplified description of the watershed approach is to consider a 
grayscale image as a topographic surface: the gray level of a pixel becomes the elevation of a 

T
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point, the basins and valleys correspond to dark areas, whereas the mountains and crest lines 
correspond to the light areas. If topographic relief is flooded by water, watersheds will be the 
divide lines of the attraction’s domains of rain falling over the region [58] or sources of water 
springing from reliefs’ peaks. Another synopsis has shown consistency is that topographic 
surface is immersed in a lake with holes pierced in local minima. Catchment basins will fill up 
with water starting at these local minima, and, at points where water coming from different 
basins would meet, dams are built. As a result, the topographic surface is partitioned into 
different basins separated by dams, called watershed lines. Figure 8 gives a very symbolic 
description of the mentioned approach. In fact, it shows trends watershed transform use for 
image processing. 

 

 

 

 

 

 

 

(a) Cleavage fractures in steel, (b) contour of (a) obtained truth watershed definition introduced by Beusher and al. [56] in 
1979, (c) Maximum intensity projection of original human lower limb (d) Bone tissue removed using mask extended with 

3D watershed transform introduced by Straka and al.[59] in 2003. 

Figure 8 : Watershed application 1979-2003 

 
Despite its simplicity, this concept has been formalized in different ways giving rise to several 
definitions of watershed transform. In the discrete case, which is our main interest in this 
chapter, this problem is amplified since there is no unique definition of the path that the drop of 
water would follow. This led to a multitude of algorithm to compute watershed transform. Some 
of these algorithms don’t even meet associated watershed definition. We also note that some 
definitions take the form of algorithm specification which makes the distinction between 
algorithm specification and implementation very complicated. This problem in literature has 
been partially resolved by Roerdink and al. [2] ten years ago. Actually authors presented a 
critical review of several definitions of the watershed transform and the associated sequential 
algorithms. Even they discuss various issues which often cause confusion in the literature; they 
don’t go further in the classification or comparison of different approaches. They instead focus 
on parallelization aspect. In other more recent publications, authors tentatively drawn a 
comparison chart of some watershed transform definition to serve their end goals: showing the 
relationships that may exist between some discrete definition of watershed [60] or showing that 
most classical watershed algorithm do not allow the retrieval of some important topological 
features of the image [61]. In the following we present our analysis of watershed transform 
(WT) in the discrete case: WT based on flooding, WT based on path-cost minimization, 
watershed based on topology preservation, WT based on local condition and WT based on 
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minimum spanning forest. For each approach, we start by giving informal definition, then we 
present processing procedure followed by mathematical foundations and the algorithm of 
reference. Recent publications based on some approach are also presented and discussed. 

3.1.1  Watershed based on flooding 

 

Based on flooding paradigm [62,63,64], the intuitive idea underlying this method comes from 
geography.  Since grayscale image can be seen as topographic surface, the intensity of a pixel 
can be considered as the altitude of a point. Now, let immerge this surface in still water, with 
holes created in local minima. Water fills up basins starting at these local minima. As described 
in (Alg. 3), the filling of basins is an iterative process that involves gradually raising the water 
level from Altmin to Altmax. Algorithm must, foreach iteration, fill existing basins (extension 
regions) and possibly create new basins (new regions). LR will denote region list. Dams will be 
built where waters coming from different basins meet.  

For mathematical formulation of the mentioned process, let Ν→Df : be a digital grey value 

image, with Altmin and Altmax the minimum and the maximum value of. The threshold set of f at 

level Alt can be defined as: 
 

Definition (15):  Threshold set of (f) at level (Alt) [Vincent and Soille] 

{ }/ ( )AltT p D f p Alt= ∈ ≤    

 
Algorithm 3 : Flooding watershed process 

 
1. for level from Altmin to Altmax 
2.      // Action 1 : Extend existing region 
3.      foreach (R∈ LR) do Growing [R] until level Alt; 
4.      end_for 

5.      // Action 2 : Create new region 
6.      foreach (Pixel P ∈ level)  
7.           if (Pixel P is not associated to any region R) then   
8.               Create new region [R] in LR ; 
9.               Add Pixel P to region [R]; 
10.               Growing [R] until level ; 

                                
This threshold set define a recursion with a gray level Alt increasing from Altmin to Altmax, the 
basin associated with the minima of f are successively expanded. Let XAlt denote the union of 
the set of basins computed at level Alt. A connected component of the threshold set TAlt+1 at 
level Alt+1 can be either a new minimum or an extension of the basin in XAlt . The geodesic 
influence zone (IZ) of XAlt within TAlt+1 can be computed resulting in an update XAlt+1. Thus we 
can introduce the following definition. MINh will denote the union of all regional minima at 
altitude Alt. 
 

Definition (16):  Flooding watershed 
 

{ } minminmin )(/ AltAlt TAltpfDpX ==∈=  
 

)(
111 AltTAltAlt XIZMINX

ALT+
∪= ++  

 
The watershed )( fWshed  of f is the complement of 

maxAltX in D  : max/)( AltXDfWshed =  
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Vincent and Soille [65] presented an original and efficient implementation (Alg. 4) of the 
flooding watershed. This implementation uses FIFO queue and it needs two steps: 
 

(1) Sorting pixels in increasing order of grey values (from Altmin to Altmax) 
 

(2) Flooding process: All nodes with grey level h are first given an initial label. Then those 
nodes that have labeled neighbors from the previous iteration are inserted in the queue, 
and then pixels geodesic influence zones are propagated inside the set of initial pixels. 

 
In their study [2] Roerdink and Meijster have removed two points of inconsistency in Vincent 
algorithm’s recursion. (i) Only pixels with grey value h are masked for flooding (line 13), instead 
of all non-basin pixels of (level h≤ ), as (Def.16) would require. This explains why labels of 
‘wshed-pixels’ (line 15) are also propagated with labels of catchment basins. (ii) If a pixel is 
adjacent to two different basins, it is initially labeled ‘wshed’.  But it is allowed to be 
overwritten at the current grey level by another neighbor’s label, if that neighbor is part of a 
basin (lines 35-36).  
 
They also propose some modification to implement the recursion (Def.16) exactly. In line 13, all 
pixels with  [ ] hpim ≤  have to be masked, the queue has to be initialized with basin pixels only 
(drop the disjunct lab[q] = wshed in line 15), the resetting of distances (line 50) has to be done in 
line 14, and the propagation rules in (lines 32-47) have to be slightly changed.  

Algorithm 4 : Flooding watershed [Vincent & Soille] 

 

input : Digital grey scale image G=(D,E,im) 
Output: Labeled watershed image lab on D 

1. #define INIT -1   //initial value of lab image 
2. #define MASK -2   //initial value of each level 
3. #define WSHED 0   //label of the watershed pixels 
4. #define FICTITIOUS (-1,1)   //fictitious pixel ∉ D 

5. 0←curlab    //curlab is the current label 
6. fifo_init(queue) 
7. for all  (P∈D) do 

8.    [ ] ;INITplab ←  

9.     [ ] ;0←pdist  //dist is a work image of distances 

10. end_for 
11. SORT pixels in increasing order of grey values ( hmin , hmax) 

             // starting flooding process  
12. for h = hmin to hmax do //geodesic SKIZ of level h-1 inside level h 
13.         for all  (P∈D) with im[p]=h do // mask all pixels at level h 

               //these are directely accessible because of the sorting step 

14.               [ ] ;MASKplab ←  

15.                if (p has a neighbour q) with ((lab[p] > 0 or lab[q]=WSHED)) then  
                  //initialize queue with neighbours at level h of current basins or watersheds                  

16.                 [ ] ;1←pdist  

17.                   );,(_ queueqaddfifo  

18.               end_if 

19.          end_for 

20.      ;1←curdist  

21.     );,(_ queueFICTITOUSaddfifo  

22.      loop   //extend basins 

23.        );(_ queueremovefifop ←  

24.         if (p = FICTITIOUS) then  

25.              if ))(_( queueemptyfifo then  
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From the introduction about immersion simulation above, we can see that the level-by-level 
method during the flood procedure is uniform. Unfortunately, this can cause over-segmentation 
in several cases. Based on this original simulating immersion, Shengcai and Lixu [66] propose, 
in 2005, a novel implementation using multi-degree immersion. To our knowledge, it is the last 
update that can be found in the literature, the proposed implementation resists to over-
segmentation problem effectively. It starts by redefining the threshold set of f  at level Alt. 
Instead of the original formula (Def.15), they propose the following one: 
 

Definition (17):  Threshold set of (f) at level (Alt) [Shengcai and Lixu] 
 { }AltpDiffpfDpTAlt ≤−∈= )()(/  

 
In latest definition, )( pDiff refers to immersion level when the flooding reaches a pixel p . 
Segmentation results are sensitive to this function. In fact, if 0)( =pDiff , (Def.17) can be seen 
as a special case of (Def.15). Other extreme case, if )( pDiff reaches its maximum values, all 

26.                   BREAK ; 

27.              else ),(_( queueFICTITOUSaddfifo ; 

28.                      ;1+← curdiscurdist  

29.                      );(_ queueremovefifop ←  

30.               end_if 

31.           end_if 

32.          for all  (q∈NG(p)) do //labeling p by inspecting neighbours 
33.                if (dist[q] < curdist) and (lab[q]>0 or lab[q]=WSHED) then 

                   / /q belongs to an existing basin or to watersheds 
34.                   if (lab[q]>0) then 

35.                         if ((lab[p]=MASK) or (lab[p]=WSHED)) then 

36.                                   [ ] [ ];qlabplab ←  

37.                                else if   [ ] [ ]qlabplab ≠ then  

38.                                            [ ] ;WSHEDplab ←  

39.                                end_if 

40.                   else if (lab[p]=MASK) then  

41.                                       [ ] ;WSHEDplab ←  

42.                          end_if 

43.                    else if  ((lab[q]=MASK) and (dist[q]= 0)) then //q is plateau pixel 

44.                                [ ] ;1+← curdisqdist  

45.                                );,(_ queueqaddfifop ←  

46.                                 end_if 

47.          end_for 

48.      end_loop 

            //detect and process new minima at level h 

49.      for all (p∈D) with (im[p]=h) do 

50.             [ ] ;0←pdist   // reset distance to zero 

51.               if (lab[p]=MASK) then  // p is inside a new minimum 

52.                     ;1+← curlabcurlab //create new label 

53.                    );,(_ queuepaddfifo  

54.                    [ ] ;curlabplab ←  

55.                      while not ))(_( queueremovefifo do 

56.                                         );(_ queueremovefifoq ←  

57.                                          for all (r∈NG(q)) do // inspect neighbours of q 

58.                                               if (lab[r]=MASK) then 

59.                                                         );,(_ queueraddfifo  

60.                                                         [ ] ;curlabrlab ←  



Chapter 3 | Topological watershed 

 

42 | P a g e  

 

pixels susceptible to be dumped, will be. According to the user requirement, )( pDiff can be 
even a constant function or a function computed according to the local characteristic of pixel p . 
In their paper, Shengcai and Lixu define as the following. )( pNeighbor will denote the set of all
p neighbors. And conn will refer to the predefined connectivity:{ }8,4 .  

 
Definition (18):  Set of all connected neighbor [Shengcai and Lixu] 

 ∑ ∈

−
=

)(

)()()(
pNeighborq conn

qfpfpDiff
 

 
Obtained results through two implementations of the original and the multi-degree watershed 
shows that multi-degree immersion method resists the over-segmentation problem effectively. 
Indeed, the number of detected region in brain crop frame (181*217*181 voxel volume), 
decreases from 10991, using the old method, to only 35 using the new method. Computation 
time and consumed memory size are practically the same. More information about 
implementation can be found in [66].  
  

3.1.2  Watershed based on path-cost minimization 

 
In this class, there are two possible approaches. The first one associates a pixel to a catchment 
basin when the topographic distance is strictly minimal to the respective regional minimum. 
While the second one builds a forest of minimum-path trees, each tree representing a basin. In 
the following we start by introducing watershed  by topographic distance [67] before moving to 
the watershed by image foresting transform [69,70]. 
 

Algorithm 5 : Watershed by topographic distance process 
 

1. Foreach (marked area ∈ MS ) 

2.      insert pixels into priority queue Q ; 

3. end_for 

4. While  ( φ≠Q  ) 

5.      pEx = extract pixels with highest priority level;  

6.      if (neighbors of pExp ∈  have the same label Lab ) then   

7.               pLab = Lab ; 

8.             Q = all non-marked neighbors 

9.       end_if 

10. end_while 

 

Based on the drop of water principle, the intuitive idea behind topographic watershed approach 
is the steepest descent path principal [67, 68]. A drop of water falling on a topographic relief 
flows down, as "quickly" as possible, until it reaches a regional minimum.  
 
Let Ν→Df : be a digital grey value image. Let MS be the set of markers, pixels where the 
flooding shall start, are chosen. Each is given a different label Lab .  
 
Topographic watershed process can be described by (Alg. 5). Let us note that priority level when 
inserting neighbors (line 2) corresponds to the gray level of the pixel. In line 6, only neighbors 
that have already been labeled are compared. Finally, only neighbors (in line 8) that are not yet in 
the priority queue are pushed into the priority queue. The watershed lines set are the 
complement of labeled points set.  
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For mathematical formulation of the mentioned process, we follow presentation in [2] which is 
based on [67]. For the sake of simplicity, we restrict our self to the minimal set of notion that 
will be useful for our propos. And we start by introducing the topographic distance.  
 
Let us consider )( pNG as the set of neighbors of pixel p , and ),( qpd as the distance associated 
to the edge ),( qp . Then the lower slope )( pLS of f at a pixel p  and the cost for walking from a 
pixel p  to a neighboring pixel q  can be defined as following: 
 

Definition (19):  Lower slope of (f) at a pixel p [Roerdink and al.] 

{ } 
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Definition (20):  Cost functions [Roerdink and al.] 
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The topographical distance between p and q  is the minimum of the topographical distances 

),( qpTf
π along all paths between p and q : 

[ ]
),(),( qpTqpT f

qp
f MIN π

π →∈

=  .  

We recall also that the topographical distance along a general path ),...,( 0 lqp=π  is defined as

),(cos),(),( 1

1

1 +

−

+∑= ii

l

i iif pptppdqpT π .   

Finally we can define the topographic watershed for a grey value image f , with *f the lower 

completion of f . Note that each pixel, which is not in a minimum, has a neighbor of lower grey 

value ( LCff =* ). 

 
Definition (21):  Topographic watershed [Roerdink and al.] 
 

Let Iiim ∈)( be the collection of minima of f . The basin )( imCB of f corresponding to a 

minimum Iiim ∈)( is defined as a basin of the lower completion of f : 

{ }{ }),()(),()(:/,)( **
**

jfjifii mpTmfmpTmfiIjDpmCB +<+∈∈=  

And the watershed is the set of points which do not belong to any catchment basin: 
 

c
iIi mCBDfWshed )(()( ∈∪∩=  

 
Several shortest paths algorithms for the watershed transform with respect to topographical 
distance can be found in the literature but the reference algorithm is Fernand Meyer one. In the 
following we present a variant of Meyer algorithm with integrate the lower slope (Def. 19) of 
the input image as introduced Roerdink and al. [2]. 
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Algorithm 6 : Watershed by topographic distance [Meyer] 

 
Input : Lower complete image im on a digital grey scale image G=(D,E) with cost 
Output : Labeled watershed image lab on D 

1. #define WSHED 0 //label of the watershed pixels 
2. //Uses distance image dist. On output, div[v]=im[v], for all v ∈ D 
3. for all  (v∈D) do //Initialize 

4.    [ ] ;0←vlab  

5.     [ ] ;∞←vdist  

6. end for 
7. for all  (local minima mi) do  
8.   for all  (v∈mi) do 

9.      [ ] ;ivlab ←  

10.       [ ] [ ];vimvdist ← //Initialize distance with the values of minima 

11.   end for 

12. end for 

13. ;truestable ← //stable is a Boolean variable  

14. repeat 

15.    for all pixels u in forward raster scan order do 

16.        propagate(u) 
17.    end for 

18.    for all pixels u in backward raster scan order do 

19.        propagate(u) 
20.    end for 

21. until stable  

22. procedure propagate(u) 

23.   for all (v∈NG(u)) in the future (w.r.t scan order) for u do 

24.        if  [ ] [ ] [ ]( )udistvutudist <+ ,cos then 

25.              [ ] [ ] ( )vutudistvdist ,cos+←  

26.              [ ] [ ]ulabvlab ←  

27.              falsestable ←  

28.        else if [ ] WSHEDvlab ≠ and [ ] [ ] [ ]( )vdistvutudist =+ ,cos  then 

29.                   if [ ] [ ]( )ulabvlab ≠  then 

30.                        [ ] WSHEDvlab =  

31.                        falsestable ←  

 
The second approach to compute a watershed based on path-cost minimization, as we introduced 
in the beginning, consists on building a forest of minimum-path trees where each tree represent a 
basin. This approach is described in the framework of image foresting transform [69]. The IFT 
defines a minimum-cost path forest in a graph, whose nodes are the image pixels and whose arcs 
are defined by an adjacency relation between pixels. The cost of a path in this graph is 
determined by a specific path-cost function, which usually depends on local image properties 
along the path, such as color or gradient. The roots of the forest are drawn from a given set of 
seed pixels. For suitable path-cost functions, the IFT assigns one minimum-cost path from the 
seed set to each pixel, in such a way that the union of those paths is an oriented forest, spanning 
the whole image. The IFT outputs three attributes for each pixel: its predecessor in the optimum 
path, the cost of that path, and the corresponding root. Returned solution is usually obtained in 
linear time and requires a variant of Dijkstra [71], Moore [72] or Dial’s shortest-path algorithm 
[73]. 
 
For mathematical formulation of the IFT-watershed, we start by defining some basic notions of 
image foresting transform as introduced in [69]. Actually, an image ImgIn can be seen as a pair
( , )J I where J refers to a finite set of pixels and I  refers to a mapping that assigns to each 
pixel ( )p J∈ , a pixel value ( )I p  in some arbitrary value space. Distinct binary relation 
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between pixels of J will define an adjacency relation A . Once the adjacency has been fixed, 
ImgIn can be interpreted as a directed graph, whose nodes are image pixels and whose arcs are 
pixel pairs in A .  
 
Before moving to path cost definition, let’s remember that a sequence of pixels 1 2, ,..., kt t tπ =  
where 1( , )i it t A+ ∈ for (1 1)i k< < − constitute a path. In the following we will denote by ( )org π  
the origin it  of π  and by ( )dst π the destination kt of π . Now let assume a given function f
that assigns to each path π  a path cost ( )f π , in some totally ordered setυ of cost values. We 
introduce the max-arc path-cost function maxf  that will be used later. Note that ( )h t and ( , )w s t
are fixed. 
 

Definition (22):  Max-arc path-cost function [Falcão and al.] 

max ( ) ( )f t h t=  

{ }max max( , ) max ( ), ( , )f s t f w s tπ π⋅ =  

 
For IFT use, a specific function ( )Sf π  can be defined since the search to paths start in a given 
set ( )S J⊂ of seed pixels.  
 

{ ( ) ( ( ) )( )S f if org S
otherwisef π ππ ∈

+∞  
 
Now, we can introduce the spanning forest concept. We remember that a predecessor map is a 
function P that assigns to each pixel t J∈  either some other pixel J∈  or a distinctive marker

J∉Μ . Thus, a spanning forest (SF) can be seen as a predecessor map which contains no 
cycles.  

 
Definition (23):  Spanning forest [Falcão and al.] 

 

For any pixel t J∈ , a spanning forest P defines a path *( )P t recursively as t  if ( )P t = M
and *( ) ,P s s t⋅ if ( )P t s= ≠ M , we denote by 0 ( )P t  the initial pixel of *( )P t . 

 

Algorithm 7 : IFT Algorithm [Falco and Al.] 

      

 Input: Img = ( , )J I : Image, A JxJ⊂ : Adjacency relation, f :path-cost function 

Output: P : optimum path forest, ,α β : two sets of pixels with Jα β∪ = . 

1. Set { }α ← , Jβ ← //Initialize 

2. for all pixels t J∈  do //Initialize 

3.      Set ( )P t ← M  

4. end for 

5. while β φ≠ do //Compute 

6.    remove  from β a pixel s such that 
*( ( ))f P s is minimum, 

7.    add s to α  

8.    for each pixel tsuch that ( , )s t A∈  

9.          If 
* *( ( ) , ) ( ( ))f P s s t f P t⋅ < then 

10.               Set ( )P t s← ; 

 
Falcão and al. algorithm describes IFT computing. Its algorithm is based on Dijkstra’s procedure 
[71] for computing minimum-cost path from a single source in a graph and returns an optimum-
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path forest P  for a seed-restricted cost function sf or any pixel twith finite cost ( *( ))sf P t . 

Pixels will belong to a tree whose root is a seed pixel. 
 
The IFT-watershed assumes that seeds pixel correspond to regional minima of the image or to 

markers that can be considered as imposed minima. The max-arc path-cost function maxf is the 

same as (Def. 22). We remember that ( )h t is fixed but arbitrary handicap cost for any paths 

starting at pixel t. We remember also that ( , )w s t is the weight of arc ,s t A∈ , ideally, higher on 

the object boundaries and lower inside the objects.  
 

Definition (24):  Arc weight functions 

1( , ) ( ) ( )w s t J s J t= −
 

2 ( , ) ( )w s t G t=  
 

There are two usual arc weight functions (Def 24): (w1) where ( )J s refers to the intensity of 
pixel of s . In that case IFT-Watershed is said by dissimilarity and (w2) where ( )G t is the 
morphological gradient of ImgIn at pixel t. In that case IFT-Watershed is said on gradient. 
 
In [74] Lotufo and al. introduced IFT-watershed from markers, (Algo. 8), which can be 
computed by a single IFT where the labeled markers are root pixels. Proposed algorithm use 
hierarchical FIFO queue (HFQ). In this case, the root map can be replaced by the label map 
which corresponds to the catchment basins and the used path-cost function is given by the 

following formula. Note that, the maximum of the set { }( )/ (1, )jI p j n∈ is computed only if (p1) is 

already a marker pixel. And ( )iI p refer to the value of the pixel ip in the image I .    
 

Definition (25):  Path-cost functions [Lotufo and al.] 
{ }{ 1 2max ( ( ), ( ),..., ( )

1 1 1( , ,..., ) nI p I p I p

mf p p p +∞< > =  

 

Algorithm 8 : IFT – Watershed from markers [Lotufo] 

Input : I : input image, wshed : labeled marker image 

Output : wshed : watershed catchment basins 

Aux : C : cost map, initialized to infinity; FIFO :hierarchical FIFO queue 

1. for all pixels ( ) 0wshed p ≠  do //Initialize 

2.      ( ) ( )C p I p←  

3.      Insert p in FIFO with cost ( )C p  

4. end for 

5. while  FIFO do //Propagation 

6.    p ←  remove from FIFO   

7.      for each ( )q N p∈  

8.          If { }( ( ) max ( ), ( ) )C q C p I q> then 

9.                { }( ) max ( ), ( )C q C p I q← ; 

10.                 Insert q in the FIFO with cost ( )C q ; 

11.                ( ) ( )wshed p wshed q←  
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3.1.3  Topological watershed  

 
The original concept behind topological watershed [75] is to define a “topological thinning” that 
transforms the image while preserving some topological properties, namely the number of 
connected components of each lower cross-section as we will explain in the following.  
 
Before introducing global process to compute topological watershed, (Algo. 9), we define some 
basic notions that will be resumed in next paragraph for mathematical formulation : Let F be 

grayscale image and λ be a grey level, the lower cross-section λF  is the set composed of all the 

points having an altitude strictly lower than λ . A point x  is said to be ‘w-destructible’ for F   
if its altitude can be lowered by one without changing the number of connected components of 

λF , with )(xFk = . A map G is called a ‘w-thinning’ of F if it may be obtained from F by 

iteratively selecting a ‘w-destructible’ point and lowering it by one. Thus a basic definition of 
the topological watershed and a global description of its computing process can be given by 
(Def. 26) and (Alg. 9). Note that this process is repeated on loop until no more ‘w-destructible’ 
point remains. 
  

Definition (26):  Topological watershed [Couprie and Bertrand] 
A topological watershed of F  is a ‘w-thinning’ of F  which contains no W-destructible 
point. The major feature of this transform is to produce a grayscale image.  
 

Algorithm 9 : Topological watershed process 

 

1. For all p in E , check number of connected components of the lower cross-section at level p which are adjacent to p . 

2. Lower the value of p by one if this number is exactly one 

 
For deep mathematical formulation, we follow description provided in [64]. We start by 
defining a simple point in a graph, in a sense which is adapted to the watershed, and then we 
extend this notion to weighted graphs through the use of lower sections [75]. 
 
Couprie and al. define a transform that acts directly on the grayscale image, by lowering some 

points in such a manner that the connectivity of each lower cross-section λF is preserved. The 

regional minima of the result, which have been spread by this transform, can be interpreted as 
the catchment basins. The formal definition of topological watershed (Def. 28) relies on the 
following particular notion of simple point. 
 

Definition (27):  Simple point [Couprie and Bertrand] 
 

Let ( )Γ= ,EG be a graph and let EX ⊂ . 

 

A point Xx ∈ is simple (for X ) if the number of connected components of { }xX ∪ is equal to 
the number of connected components of X . In other words, x  is simple (for X ) if x  is 
adjacent to exactly one connected component of X . 
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Definition (28):  Topological watershed [Couprie and Bertrand] 
 

Let ( )EFF ∈ , Ex ∈ and )(xFk = . The point x  is destructible for F  if x  is simple for kF . 

We say that ( )EFW ∈  is a topological watershed of F  if W  may be derived from F  by 

iteratively lowering destructible points by one until stability (that is, until all points of E  
being non-destructible forW ). 
 

Actually checking whether a point is ‘w-destructible’, or not, cannot be done locally if only 

available information are graph ( ),E Γ and a function F . Couprie and al. [76] propose a new 

algorithms (Algo. 10) making possible to perform this test on all the vertices of a weighted 
graph in linear time, and also to check directly how low the ‘w-destructible’ point may be 
lowered until it is no more w-destructible, thanks to the component tree which may be built in 
quasi-linear time. In the following, we introduce Couprie’s functions to identify ‘w-destructible’ 
point.   

Algorithm 10 : w-destructible function [Couprie and al.] 

      

 Input : Ψ),(, FCF ; 

1. ←V Set of element of )(FC pointed by )(qΨ for all q in )(1 p−Γ ; 

2. If )( φ=V then return [ ]φ,∞ ; 

3. [ ] ←mm ck , HighestFork )),(( VFC ; 

4. If [ ] [ ]φ,, ∞=mm ck then return )min(V ; 

5. If ))(( pFkm ≤ then return [ ]mm ck , else return [ ]φ,∞ ; 

 
Previous algorithm gives correct results with regard to the definition (Def. 28) and is linear in 
time complexity with respect to the number of neighbors of p . Checking whether a point is ‘w-

destructible’ or not, involves the computation of the highest fork of different elements of the set 
V(p),see (Algo. 11). This may require a number of calls to BLCA (Binary lowest common 
Ancestor) which is quadratic with respect to the cardinality of V(p): every pair of elements of 
V(p) has to be considered. 
 

Algorithm 11 : HighestFork Function [Couprie and al.] 

 

  Input : C : a component tree, V : a set of components of C 

1. [ ] ←11 , ck )min(V ; // let [k2,c2]...[kn,cn]be the other elements of V 

2. 1kkm ← ; 

3. 1ccm ← ; 

4. for ifrom 2 to n do 

5.      [ ] ←ck , BLCA [ ] [ ]),,,,( mmii ckckC ; 

6.      If [ ] [ ]ii ckck ,, ≠ then 1kkm ← ; 

7.                                              1ccm ← ; 

8. If )( 1kkm = then return [ ]φ,∞ else return [ ]mm ck , ; 
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The HighestFork function returns the highest fork of the set V , or the indicator [ ]φ,∞ if there is 

no highest fork. This algorithm makes (n-1) calls of the BLCA operator, where n is the number 
of elements inV . 
 
Let C be a component tree, let V be a set of components of C, we denote by min(V) an element 
of V which has the minimal altitude. For the following algorithm, we assume that C is 
represented in a convenient manner for BLCA. Thus, we must propose a criterion for the 
selection of the remaining ‘w-destructible’ points, in order to avoid multiple selections of the 
same point.  
 
Couprie and al. introduce the idea to give the greatest priority to a ‘w-destructible’ point which 
may be lowered down to the lowest possible value. They prove that an algorithm which uses this 
strategy never selects the same point twice. A priority queue could be used to select ‘w-

destructible’ points in the appropriate order. Here, we present their specific linear watershed 
algorithm which may be used when the grayscale range is small. 
 

Algorithm 12 : Topological watershed [Couprie] 

 

Input: Ψ),(, FCF ; 

Output: F ; 

1. For k from mink  to  )1( max −k  do φ←kL   

2.    For all  )( Ep ∈ do 

3.         [ ] )),(,,(, Ψ−← FCpFleDestructibWci  

4.         If )( ∞≠i then 

5.               { };11 pLL ii ∪← −−  

6.                 { } ;1−← ipK  

7.                 { }←pH pointer to [ ]ci, ; 

8.         end if 
9.     end for 

10.     For k from mink  to  )1( max −k  do 

11.           While )( kLp ∈∃  do 

12.                         { }pLL kk /= ; 

13.                        If ))(( kpK = then 

14.                             ;)( kpF ←  

15.                                );()( pHp ←Ψ  

16.                               For all  )(),(( qFkpq <Γ∈ do 

17.                                                  [ ] )),(,,(, Ψ−← FCqFleDestructibWci ; 

18.                                              If )( ∞=i then ∞←)( pk ; 

19.                                              Else if ))1()(( −≠ ipk then 

20.                                                                 { }qLL ii ∪← −− 11 ; 

21.                                                                 )1()( +← ipk ; 

22.                                                                { }←qH pointer to [ ]ci, ; 
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3.1.4  Watershed transform based on local condition   

 
There is a big similarity between this approach and the drop of water one. Actually basin surface 
increases in a progressive manner. The local condition of label continuity is iteratively applied 
along the steepest descent path that reaches the basin minimum. The downhill algorithm, the hill 
climbing algorithm and the toboggan algorithm are based on this approach. More details of the 
first two algorithms are given by [67,68] and the toboggan algorithm will be detailed later in this 
section. Differences between these three algorithms lie in the processing strategy and data 
structure as shown in [2].   
 
For mathematical formulation, we follow description provided in [60]. In witch Audigier and al. 

start by presenting the following catchment basin formulation { }( ) V, L( ) L( )LC i iCB m v v m= ∈ = , 

since local condition watershed assigns to each pixel the label of some minimum im . Thus 

watershed can be defined as follow. We recall that the condition of ‘ { }( )steepest v ≠P ’ means that 

‘ v ’ has at least one lower neighbor.  
 

Definition (29):  Watershed based on local condition [Audigier and Lotufo] 
 

For any lower complete image CBL , a function L  assigning a label to each pixel is called 

watershed segmentation if: 

a) ( ) ( )i jL m L m i j≠ ∀ ≠ /{ }km is the set of minima of LCL . 

b) For each pixel v with { }( )steepest v ≠P , ( ), L( ) L( )steepestp v v p∃ ∈ =P . 

 
As we mentioned earlier, we will introduce the toboggan algorithm [77, 78] as a reference of the 
local condition watershed approach. Actually this algorithm is referred as a drainage analogy. It 
seeks to identify the steepest descent from each pixel of the gradient magnitude of the input 
image to a local minimum of the topographic surface. Then pixels that belong to the same 
minima are merged by assigning them a unique label. Sets of pixels having the same label will 
define catchment basins. The resulting watershed regions are divided by a boundary path which 
will build the watershed lines.  
 

Let consider :G D R+→ as a gradient magnitude image, where D is the indexing domain of the 
image. D can be decomposed into a finite number of disjoint level sets since pixels are sorted in 

the increasing order. Sets can be denoted by: { }| ( )hD p D G p h= ∈ = . Lin and al [77] define the 

following pixels classes: Class 1C refers to all pixels p in hD with an altitude strictly greater than 

the altitude of its lowest neighbor. Class 2C refers to all pixels p in hD  belonging to a connected 

component with one or more catchment basin and 1p C∉ . Finally, class 3C refers to all pixels p

in hD  belonging to a connected component without any catchment basin. Thus we can give a 

global description of the computing process (Algo. 13) followed by the toboggan algorithm 
(Algo. 14).  
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Algorithm 13 : Toboggan watershed process 

 

1. Records the sliding directions for all 1 2( ) ( )p C p C∈ ∪ ∈ in D  

a. Records the lowest neighbours of all 1( )p C∈  in D . 

b. Grown region from all 1( )p C∈  

2. Assign label for all 3( )p C∈    

3. Assign label to each unlabeled image by first tobogganing then backtracking using best first search. 
 

Algorithm 14 : Toboggan Algorithm [Lin and al.] 

 

Input : Img : a gradient magnitude image; 

Output: L : a label image, Q : empty FIFO queue ; 

1.    For all  ( )p D∈ do //Simulation of sliding for all C1 pixels 

2.         ( )h G p=  

3.         { }min ( ), ( )MINh G q q Neighbor p= ∈  

4.         If ( )MINh h> then 

5.               { }( | ( ) )&&( ( ))MINS q G q h q Neighbor p= = ∈  

6.                 ( )SlidingList p S=  

7.                 Q p←  

8.                 ( ) 0GrowingDist p =  

9.                 Else if : 

10.                ( )SlidingList p φ=  

11.          End if 
12.     End for 

13.     While Q φ≠  do //Simulation of keep- sliding for all C2 pixels 

14.         Qp ←  

15.           ( ) 1d GrowingDist p= +  

16.           ( )h G p=  

17.           For all  ( ( ))q Neighbor p∈ and ( ( ) )G q h= do 

18.              If ( ( ) )SlidingList q φ= then 

19.                   Append ( )p to ( )SlidingList q  

20.                     ( )GrowingDist q d=  

21.                     Q ;q←  

22.              Else If ( ( ) )GrowingDist q d= then 

23.                   Append ( )p to ( )SlidingList q  

24.                End if 

25.        End while 

26.    For all  0( )p D∈ and 0( ( ) )SlidingList p φ= do // labeling C3  pixels 

27.         If 0( )L p is not assigned then 

28.             0( )L p =new_label 

29.             0( )h G p=  

30.             While Q φ≠  do 

31.                Qp ←  

32.                 For all ( ( ))p Neighbor p∈ and ( ( ) )G q h= do                 
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33.                           If ( )L q is not assigned then 

34.                                0( ( ) ( ))L q L p=  

35.                                Q p←  

36.                           End if  
37.                      End for  
38.            End while 
39.     End if 
40. End for 

41. For all ( )p D∈ do // Tobogganing – Depth first search 

42.   Resolve( )p  

43. End For 
 

Algorithm 15 : Resolve function [Lin and al.] 

 

Input : Pixel site p  

1.    If ( )L p is not assigned then 

2.        ( )S SlidingList p=  

3.          For all ( )q S∈ do 

4.              Resolve(q) 
5.          End for 

6.         If S has a unique label α then 

7.             ( )L p α=     

8.         Else  

9.              ( ) _L p RIDGE label=  

10.         End if  

11.     End if 

 

3.1.5  Watershed transform based on minimum spanning forest 

 
The original idea is very close to the second case of the path cost minimization based watershed 
that consist on building a spanning forest from a graph. Actually, the beginning was with Meyer 
[79] who proposes to compute watershed transform from a weighted neighborhood graph whose 
nodes are the catchment basins corresponding to the minima of the image. Arcs of the graph, 
that separate neighbor catchment basins, are weighted by the altitude of the pass between these 
basins. Extracted minimum spanning forests define partitions that are considered solution of 
watersheds. It’s important to mention that returned solutions are multiple. Authors established 
also the links between the minimum spanning forest and flooding from marker algorithms. 
Trough Meyer’s bases, Cousty and al. [1] introduce the watershed-cuts and establish the 
optimality of this approach by showing the equivalence between the watershed-cuts and the 
separations induced by minimum spanning forest relative to the minima.   
 
For mathematical foundations, we will follow notations in [1] to present some basic definitions 
to handle with minimum spanning forest cuts and watershed-cuts.  
 
Let G be graph with ( ( ), ( ))G V G E G= . ( )V G  is a finite set of vertex of G . Unordered pairs of

( )V G , called also edge of G , constitute the element of ( )E G set.  
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Let denote the set of all maps from E toℤ by F and we consider that any maps of  F  weights 
the edges of G . Let F F⊆ and ( )u E G∈ , F( )u will refers to the altitude of u and M(F) will 

refers the graph whose vertex set and edge set are, respectively, the union of the vertex sets and 
edge sets of all minima of F . 
 

Let X  and Y be two sub-graphs of G . We say that Y is a forest relative to X  if Y is an 
extension of X  and for any extension Z X⊂ of X , we have Y=Z  whenever V(Z)=V(Y) . 
 

(i) Y is said a spanning forest relative to X  (for G ) if Y is a forest relative to X  and if  

V(Y)=V . In this case, there exists a unique cut S for Y  . It is composed by all edges of 

G  whose extremities are in two distinct components of Y . Since Y  is an extension of X, 
it can be seen that this unique cut S  (induced by Y ) is also a cut for X . 

 
(ii) Y is said a minimum spanning forest relative to X  (for F, in G) if Y  is a spanning forest 

relative to X  and if the weight of Y  is less than or equal to the weight of any other 

spanning forest relative to X . In this case, S  is considered as a minimum spanning forest 
cut for X . 

 

Trough these equivalences, Cousty demonstrate that the set S E⊆ is a minimum spanning forest 

cut for M(F) if and only if S is a watershed cut of F , that can be computed by any minimum 

spanning tree algorithm. And he proposes a linear algorithm to compute it using a new ‘stream’ 
notion that we will not detail later. Only the stream algorithm will be introduced. Now, before 
presenting the watershed-cuts algorithm we just recall the definition of the minimal altitude of 
an edge.  

 

Definition (30):  Minimal altitude of an edge [Cousty and al.] 
 

Let denote by ( )F x− the map from V to ℤ such that for any x V∈ , ( )F x− is the minimal 

altitude of an edge which contains x . Then a path 0,..., lx xπ = , is considered as a path of 

steepest decent for F (in G ) if for any [ ]1,i l∈ , { }1 1( , ) ( )i i iF x x F x−

− −= .   
 

Algorithm 16 : Watershed-cuts algorithm [Cousty and al.] 

 

Input : (V,E,F) : Edge-weighted graphs;  

Output: Ψ: a flow mapping of F 

1. Foreach ( V)x ∈ do ψ(x) NO_LABEL←  ; 

2. _ 0nb labs ←  

3. Foreach ( V)x ∈ such that (ψ(x)=NO_Label) do 

4.                [ ]L,Lab Stream(V,E,F,ψ,x)← ; 

5.                 If ( 1)lab = − then  

6.                         _nb labs + +  

7.                         Foreach ( L)y ∈ do ψ(y) nb_labs← ; 

8.                 Else Foreach ( L)y ∈ do ψ(y) labs← ; 
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Previous algorithm computes a watershed-cut using a stream function that is described as the 
following:  
 

Algorithm 17 : Stream function [Cousty and al.] 

 

Input : (V,E,F) : Edge-weighted graphs; Ψ : a label of V; x : point of V;  

Output: [L, lab] : L is a flow obtained from x (source of L) ; lab is the associated label to an Θflux included in L or (–1).  

1. L ←{x} 
2. L’←{x} // the set of sources not yet explored of L 
3. While there exists (y ∈ L’) do  
4.      L’ ← L’ \ {y}; 
5.      breadth_first ← TRUE ; 
6.      While (breadth_first) and (∃ {y,z} ∈ E / z ∉L and F({y,z})= F(y)) do 
7.          If (Ψ(z) # No_label) then  
8.                                           return [L,Ψ(z)] // exist an Θflow L already labeled 

9.         Else if ( ( )F z−
< ( )F y−

) then  

10.                      L  ← L ∪ {z}; // z is the only well of L 
11.                      L’  ← {z}; // switch the in-depth exploration first 
12.                      breadth_first ← FALSE 
13.                  Else 

14.                      L  ← L ∪ {z}; // therefore z is a well of L 
15.                      L’  ← L’ ∪ {z}; // continue exploration in width first 
16. return [L,-1] 

 

3.2 Classification of watershed algorithms   
 
In this section we will learn from different syntheses present in Roerdink [2] and Audigier [60] 
works.  The following table summarizes some characteristic of introduced watershed transforms. 
Selected criteria are justified by our objective to identify the most suitable algorithm for parallel 
implementation.  
 
The starting point is the definition space; we note that IFT-Watershed and MSF-Watershed 
definitions are limited to the discrete space while the other watersheds definitions are spread into 
continue space. IFT-Watershed, MSF-watershed and LC-Watershed form the region based 
watershed transform family since pixels are assigned to basins. Flooding-Watershed, TD-
Watershed and Topological-Watershed form the line based watershed family since some pixels 
are labeled as watershed. Only Topological-Watershed defines lines that consistently separate 
basins while Flooding-Watershed and TD-Watershed merely swing between thick and 
disconnected watershed lines.  
 
Through definitions, only Flooding-Watershed and TD-Watershed return unique solution while 
all other definitions return multiple solutions. Note that set of solutions returned by the IFT-
Watershed can be unified by creating litigious zones when solutions differ [60]. All six 
algorithms, that don’t exactly include their definitions, return unique solution but don’t preserve 
the number of connected components of the original input image. Actually, Vincent-Soille, 
Meyer and Lin’s algorithm don’t preserve important topological features. Only Lotufo, Couprie 
and Cousty’s algorithm are correct from this point of view. 
 
Regarding computing process, only Flooding-Watershed needs pixel’s sorting while others 
transforms will pass this costly step. But this does not preclude associated algorithms to use 
hierarchical structures when implementing. Except Cousty’s algorithm that doesn’t need any 
hierarchical queue. 
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Watershed based on 

 Flooding 

Path-cost 

 minimization Topology  
Local 

condition 
MSF 

TD IFT 

Vincent & 

Soille [65] 

Meyer  

[67] 

Lotufo 

[70] 

Couprie 

 [75] 

Lin  

[77] 

Cousty 

[1] 
 

Defined in 
Disc. cont. 

Space 

Disc. 

cont. 

space 

Only on 

discret. 

 space 

Disc. cont. 

space 

Disc. 

cont. 

space 

Only on 

discrete 

space 

Classified as 
Line  

WT 

Line  

WT 

Region 

WT 

Line  

WT 

Region 

WT 

Region 

WT 

Gives unique 

solution  
Yes Yes No No No No 

Preserve 

topology 
No No Yes Yes No Yes 

 

Requires a  

sorting step 

Yes No No No No No 

Use of 

h.queue 

Yes Yes Yes Yes Yes No 

Minima 

computing 

Yes Yes No No - No 

Is linearity Linear - linear Linear* - Linear 

   Table 3 : Comparison between main watershed transform 

 

Vincent-Soille and Meyer’s algorithms impose also a prior minima computation, which is not 
the case of the others. For complexity, observe that Vincent and Soille algorithm runs in linear 
with respect to the number N of pixels in the image which is processed. In most current 
situations of image analysis, where the number of possible values for the priority function is 
limited and the number of neighbors of a point is small constant, Couprie’s algorithm runs also 
in linear time with O(n + m) complexity. Lotufo and Cousty’s algorithm run also in linear time. 
Cousty’s algorithm is executed at most O(|E|) times.   
 
Trough this analysis, (Algo. 16) holds best characteristics. The fact that sorting step is not 
required, hierarchical queue is not used and minima are not computed, make it an excellent 
candidate for parallelization on shared memory architecture. 
 

3.3 Construction of parallel topological watershed 
 
In this section, we start by introducing some basic definitions of stream notion which is crucial 
to the flooding paradigm. Then, we introduce in detail our parallel watershed-cut. Illustration of 
parallel compution process is given. Execution time and cache consumption are performed and 
analyzed. Efficiency and scalability are also presented and discussed.  
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3.3.1  Basic notions and definitions 

 
Based on Cousty approach [1], we define and illustrate stream notion. For the sake of simplicity, 
we restrict ourselves to the minimal set of notions that will be useful for our purpose. 
 
We denote by V an edge-weighted graph. Let L V⊂ . We say that L  is a stream if, for any two 
points x  and y of L , there exists, in L , either a path from x  to y  or from y to x , with steepest 
descent for F . We recall that steepest descent principal is already defined on section 3.1.2. 
 
Now, Let consider a stream L , we say that x L∈  is a top of L if the altitude of x is greater 
than, or equal to the altitude of any y L∈ . If the altitude of x is less than the altitude of any y , 
then x  is considered as a bottom of L . 
 
Let consider two disjoint streams 1L  and 2L  , with 1 2L L φ∩ = . Let L be the union of both 
streams with  1 2L L L= ∪ .We say that 1L is under 2L , written 1 2L L≺ , if there exist a top x of 

1L and a bottom y of 2L , and there is from y  to x a path L , with steepest decent for F . If 
1 2L L≺ the L is a stream. If there is no stream under L , L is considered as an stream−≺ . Now 

any stream L which contains streams−≺ is itself an streams−≺ .  
 
Basic illustration of stream notion is given by (fig. 9): (a) the red graphs superimposed are the 
minima of corresponding functions. Let us consider G  and F as associated graph and depicted 
function, (b) the sets { }, , ,L a b e i=  and { }, ,j m n are two examples of streams, (c) the set 

{ }' , ,L i j k= is not a stream since there is no path in 'L , between iand k , with steepest descent 
for F .  
 
Note that the sets { },a b and { }b are respectively the set of bottoms and tops of L .  Here the sets 
L  is under the stream { }, ,j m n and thus { }, , , , , ,a b e i j m n is also a stream. There is no stream 
under{ }, , ,a b e i  and { }, , , , , ,a b e i j m n . They are considered as two streams−≺  and they contain 
the set{ },a b which is the vertex set of minimum of F . 
  
 
 
 
 
 
 
  
 
 
 
 

Figure 9 : Stream notion illustration following Cousty approach [1]. 

 

Streams extracted by Cousty function are streams−≺ . In the following we recall the link that 
exist between streams−≺ and minima. Let L be a stream. If L is stream−≺  then L contains 
the vertex set of minimum of F  and for any \y V L∈ adjacent to a bottom x of L ,

({ , }) ( )F x y F x> . 
  

Actually, if L  is an streams−≺ , then the set of all bottoms 1 2{ , ,..., }nb b b L∈  constitutes the 
vertex set of a minimum of F . A subset L  of V is considered as the vertex set of a minimum of 
F  if and only if it is an streams−≺ minimal for the inclusion relationship.  
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We will now move on to define flow family notions. Actually the vertices of a graph can be 
arranged in the following manner with the aim of partition the vertex set of G  from streams−≺

of F . Let 1{ ,..., }nL Lζ = be a set of n  streams−≺ . ζ  is said a flow family if 

{ | {1,..., }}i i n Vζ∪ ∈ =  and for any two family 1L and 2L in ζ  , if 1 2L L φ∩ ≠ , then 1 2L L∩  is 

the vertex set of a minimum of F . 
 
 

 

 

 

 

 

 

 

(a) Input image (b) associated weighted graph (c) output watershed 

Figure 10 : watershed computing principal 

 

Trough these notions we can more formally define the watershed-cut. Let L  be a flow family. 

Let us denote by 1M ,…, nM  the minima of F . Let ψ be the map from V  to {1,..., }n which 

associates to each vertex x  of V , the label i such that iM is the unique minimum of F  

included in an stream−≺ of L  which contains x ; we say that ψ is a flow mapping of F . In 

that case, the set {{ , } | ( ) ( )}S x y E x yψ ψ= ∈ ≠  can be considered as a flow cut for F . As result 

the set S E⊂   is considered as a watershed of F if and only if S is a flow cut for F . In order to 

compute a watershed, we will go through this relationship established by Jean Cousty, and we 
propose algorithm 18, that is based on parallel extraction of streams, able to produce a flow-cut 
hence a watershed. A general illustration is given by (fig.10). 

3.3.2  Parallel stream computing 

 
For that propose, following algorithm will assigns, in parallel way, a label to each point of the 

graph. Actually, from each non-labeled point x , a stream L composed of non-labeled points and 
whose top is x  is computed. It is important to mention that streams computing at this level are 
completely independent than streams can be completely computed in parallel, see (fig. 11). For 
N point (x1, x2… xn), their associated flows are simultaneously extracted: (L1, L2… Ln). 
 
Each flow ‘Li’ is composed of point not yet labeled and whose source is xi. Stream function 
proposed by Cousty, pleaded in line 5 (Alg. 18), is launched N times. It allows the extraction of 

Li∈{1,2,3…n}. Intuitively, it explores the path of greatest slope, by mixing iterations first in-depth 
and width of the approaches.  
 
The main invariants of this function are: 

(i) The set ‘L’ is, for each iteration, a stream (flow).  
(ii) The set L' (line 2 - stream function) includes all wells of L not yet explored. 

 

(a) (b) (c) 
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The stream function (Alg. 17) halts at line 16 when all bottoms of L  have been explored or, at 
line 8, if a point z  already labeled is found. In the former case, the returned set L  is an 

stream−≺ . In the latter case, the label lab of z  is also returned and there exists a bottom y  of 

L  such that ,y z is a path with steepest descent.  Thus, there is an stream−≺ 1L , under L , 

included in the set of all vertices labeled lab.  
 
Remark that, in stream function, the use of breadth-first iterations is required to ensure that 

produced set L  is always an stream−≺ . Otherwise, if only depth-first iterations were used, 
Stream could be stuck on plateaus (connected sub-graphs of G  with constant altitude) since 
some bottoms of L  would never be explored. 
 
  
 
 

 

 

 

 

(a) Partition of input image (b) Parallel stream computation  
                 Figure 11 : Flow compute illustration 

 

 

At the end of flow function executing, a family , of N streams (L1, L2… Ln) whose elements 
must be labeled is generated. The initial procedure [in the iterative case] is to assign a new label 
(nb_labs) to each ‘Li’ element if the latter is a stream−≺ . If it is not the case, the old returned 
label lab, of the stream−≺  ‘Hi’, included in ‘Li’, is assigned to the different elements of ‘Li’. 
Now if we want to launch this procedure in parallel manner, N/2 flows can be treated at ones. 
 

Algorithm 18 : Parallel watershed-cut [Mahmoudi and Akil.] 

 

Input : (V, E, F) : Edge-weighted graphs; 

Output : Ψ : Flow partition of F 

1. foreach x ∈ V do Ψ(x) ← No-Label ;  // No data dependency - FULL PARALALISM  
2. nb_labs ← 0 ; // Global shared attributed label  
3. i ←0 ; treated stream 
4. foreach (x ∈ V) such as (Ψ(x) = = No-Label) do // lunch N process in parallel 
5.     [Li,labi] ← Stream (V, E, F, Ψ,xi) ; // to get associated stream for each xi 
6. nb-fusion = i ; 
7. while ( nb_fusion != 1 ) 
8.     for (j =0 ; j <= nb_fusion ; j+=2) do // lunch (nb_fusion/2) process at once  
9.           if  (Lj ∩ Lj+1) = ∅ then s-labeling ([Lj,labj] , nb_labs) ; 
10.                                              s-labeling ([Lj+1,labj+1] , nb_labs) ; 
11.          else f-labeling ([Lj,labj] , [Lj+1,labj+1] , nb_labs) ; 
12. nb-fusion = nb-fusion / 2 ; 

 

The procedure, in the parallel case, is based on the idea of labeling and merging two obtained 

flows at once. If two flows (to merge) ‘Li’ and ‘Li+1’ contain no common summit, (Li ∩ Li+1)=∅, 
meaning there are no common wells between the two sources ‘xi’ and ‘xi+1’, in this case the 
merging is simple, for each flow ‘Li’ and ‘Li+1’, see (fig 12.a). Note that s-labeling function 
(Algo. 19) launches only the initial procedure [used previously in the iterative case].  

L1 

L2 

L8 

X1 X2 X8 A B 
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A B 

Algorithm 19 : Function s-labeling [Mahmoudi and Akil] 

 

Input: (L, lab, nb_labs)  

1. if  (lab = -1) then   //  L is  stream−≺  
2.      nb_labs ++ ; 
3.      foreach (y ∈ L) do Ψ(y) ← nb_labs ; 
4. else 

5.      foreach (y ∈ L) do Ψ(y) ← lab ; 
6. return NULL 

 

If the two flows (to merge) ‘Li’ and ‘Li +1’ contain common summit, (Li ∩ Li+1) ≠ ∅, meaning 
there are common wells between the two sources ‘xi’ and ‘xi +1’, see (fig 12.b).  In this case,  
merging is more complicated. We developed f-labeling procedure (Algo. 19) able to make 
fusion in the following special cases: (i) ‘Li’ and ‘Li +1’are two streams−≺ , (ii) ‘Li’ and ‘Li +1’are 
two streams  including two streams−≺ , (iii) ‘Li’ is an stream−≺ and ‘Li +1’ is a stream  
including an stream−≺ . 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

(a) Merging streams with common wells (b) Merging streams with common wells 
Figure 12 : Merging illustration  

 
The major problem in concurrent merging of multiple flows is summed up in labels assignment. 
If two streams share the same well, which label should be given to involved pixels? Proposed 
solution is inspired from the flooding paradigm. Indeed, we start by studying all possible cases 
of merging two water streams gushing from different sources, see (fig. 13). Our goal is to 
identify which stream will be the first to reach the well. This latest will mark the well by its own 
label. The starting point is the steepest decent approach with the following conditions: (i) Water 
flow rate is identical for all sources, (ii) Flow surface is perfectly smooth and (iii) Runoff 
velocity is uniform for each flow 
 
If these conditions are fully met, three factors come into play to determine the flow velocity: the 
source altitude, distance between source and sink, and finally the slope. In fact, topographic 
slope particularly influence the runoff. The inclination of the slope is surely the most important 

X1 X2 Xk-1 Xk Xi Xj Xm Xn 
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topographical aspect. Normally, its impact is limited on short slope. It is more visible on longer 
slope even if runoff needs a certain distance to reach its maximum velocity. Mathematic 

formulation of flow medium speed can be is given by the Chezy formula: ( )
1/2

*cV c h s=  

introduced in 1769. ‘C’ refers to roughness coefficient of Chezy. ‘S’ refers to the slope, and ‘h’ 
refers to the altitude of the source. 
 

 

 

 

 

 

 

 

 

 

 

Figure 13 : Merging techniques 

 
If we draw the truth table with these three factors (d: distance, s: slope, s: altitude), by varying 
one parameter each time, we can identify only five possible cases:  The two streams have the 
same altitude, slope and distances that separates sources from well. In the 2nd case, both flows 
traverse the same distance but slopes and sources altitudes are different. In the 3rd case, the two 
streams run down the same slope but they travel different distances since sources’ altitudes are 
different. In the 4th case, the altitude is the same for both sources, but traveled distances and 
slopes are different. Finally, the altitude of the sources, the distances separating them from the 
well and the slopes of followed paths are different for the two streams.  
 
The question now is: does one of these five situations necessarily appear when merging. If we 
are dealing with two stream−≺ , this problem does not arise because we are forced to generate a 
new label for identified wells (line 1, Algo. 20). Also, if one of the two streams includes an 

stream−≺  , it means there exist a label already generated that we can assign to the common 
wells (line 5, Algo. 20). Finally, if both streams include stream−≺  then two labels already 
exist. In order to decide which one to assign, we compute approximately the flow’s average 
speed using Chezy formula. It is important to mention that gray level of a pixel represent its 
altitude. Slope and distance between sources and wells can be computed trough pixels 
coordinate. According to fixed conditions, roughness coefficient is equal to one.   
      

Algorithm 20 : Function f-labeling [Mahmoudi and Akil] 

 

Input: (La, laba, Lb, labb, nb_labs) 

1. //  La AND Lb ARE two stream−≺  

2. if  (laba = -1) && (labb = -1) then     
3.      nb_labs ++ ;  
4.      Attrib_lab(La,Lb,nb_lab) ; 
5. // La OR Lb INCLUDES an stream−≺ already labeled 

d s a 
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6. else if ((laba ≠ -1) && (labb = -1))  
7.            Attrib_lab(La,Lb,laba) ; 
8.        else if ((laba = -1) && (labb ≠  -1))  
9.                Attrib_lab(La,Lb,labb) ; 
10.               // La AND Lb INCLUDE two stream−≺ already labeled 
11.                else if (AVspeed(La)> AVspeed(Lb)) 
12.                            Attrib_lab(La,Lb,laba) ; 
13.                        else Attrib_lab(La,Lb,labb) ; 
14. Return NULL 

 
15. Function Attrib_lab(L1,L2,lab) : 
16.      foreach (z ∈ {L1 ∩ L2}) do Ψ(z) ← lab  ; 
17.      foreach (x ∈ L1 ) such as (Ψ(x) = = No-Label) do Ψ(x) ←lab; 
18.      foreach (y ∈ L2 ) such as (Ψ(y) = = No-Label) do Ψ(y) ←lab; 
19. Return Null 

 

3.4 Performance testing 
 
In this section we present an overall assessment of the parallel watershed operator. We begin by 
presenting test conditions. Then, obtained results in terms of execution time and cache use are 
presented and discussed. Based on these results, we compute efficiency and scalability of our 
implementation. We enhance discussion on scalability by computing the amount of work 
required to reach the average speed. Unfortunately, portability of our application will not be 
assessed for purely technical reasons. 

 
TESTED IMAGES 

Original size 199*199 256*256 640*640 1024*1024 1600*1600 
Original colors 256 256 256 256 256 

Number of 

unique colors 
146 149 152 152 152 

Disk size 38,7 KB 64,04 400 KB 1,00 MB 2,44 MB 
Memory size 40 KB 65,04 401 KB 1,00 MB 2,44 MB 

Number of 

processed 

pixels 

39601 65536 409600 1048576 2560000 

Number of 

intersection 
7.928 29.249 193.950 466.478 1.614.014 

Empty 

intersection 
7.901 28.955 192.612 463.997 1.096.307 

Full 

intersection 
27 294 1.338 2.481 6.139 

Table 4 : Tested Image [parallel watershed] 

 
For profiling we used a microscopic view of a cross-section of a uranium oxide ceramics (see 
fig. 11.a). To choose the right size, we compared number of streams intersections during 
merging step for each image. Obtained results, see table 4, show that cut-size (640*640) is the 
most appropriate for profiling. Indeed, for cuts with less size, number of full intersection (which 
means that some common wells are detected) is very low compared to the number of empty 
intersections (which is the ideal case - labeling is done in parallel with new labels) . Concerning 
big size cuts, total intersection number is very high which may cause much confusion when 
profiling cache. (Determinate instructions number) 
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 Intel P4- 660  Intel Dual C. E8400 Intel C2 Quad E5335  Intel Xeon E5405 

Number of processor 1 2 4 2 x 4 
SMT Yes Yes Yes Yes 

Frequency 3,60 GHz 3,00 GHz 2,00  GHz 2,00 GHz 

L1 Instruction 

Cache 

Size 16Kb 32Ko 4 x 32Ko 8 x 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 32byte 64byte 64byte 32byte 

L1 Data Cache 

Size 16Kb 32Ko 4 x 32Ko 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 64byte 64byte 64byte 64byte 

L2 Cache 

Size 2Mb 6 MB 2 x 4Mb 2 x 6Mb 

Asso. 8-way 16-way 8-way 8-way 

Block size 64byte 64byte 64byte 64byte 

RAM size 2Gb 2Gb 2Gb 8Gb 

Table 5 : Used processors features [parallel watershed alg.] 

 

Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8, 16 and 32 were 
determined. Different characteristics of used architectures are presented in table 5. The 
minimum value of 2 timings was taken as most indicative of algorithm speed. Results of 
implementation on the different architecture are shown in the following table.  

 
 1 CPU 2 CPUs 4 CPUs 8 CPUs 

1 Thread 4638 4448 4898 5190 

2 Threads 5321 3182 3114 3092 

4 Threads 4898 3303 1384 1709 

8 Threads 5253 3253 1639 713 

16 Threads 5129 3278 1744 990 

32 Threads 5190 3303 1794 1235 

Table 6 : wall clock (ms) – [parallel watershed Alg.] 

 

We note that execution time drops from an average of 4636 ms with a single thread on one CPU 
down to 713 ms with 8 threads on 8 CPUs. The speed up was computed using formula Ts/Tp 
with Ts for 1 CPU = 4360 ms (definition 11 chapter 2). A remarkable result about speedup is 
also shown in table 4. In fact, speed-up increases as we increase the number of threads beyond 
the number of processors in our machines. In the first implementation, using two CPUs, the 
speedup at 2 threads is 1.37 ± 0.01. However, for the second implementation, using 8 CPUs, the 
speedup has increased to 6.11 ± 0.01. Another common result between different architecture is 
stability of execution time on each n-core machine since the code uses n or more threads. For 
better illustration we establish execution time and speedup curve (see fig. 14). 
 

 1 CPU 2 CPUs 4 CPUs 8 CPUs 

1 Thread 0,94 0,98 0,89 0,84 

2 Threads 0,87 1,37 1,4 1,41 

4 Threads 0,89 1,32 3,15 2,55 

8 Threads 0,83 1,34 2,66 6,11 

16 Threads 0,85 1,33 2,5 4,4 

32 Threads 0,84 1,32 2,43 3,53 

Table 7 : Performance improvement [parallel watershed Alg.] 
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                      (a)                                                                              (b) 

Figure 14 : (a) execution time (b) performance improvement [parallel watershed Algo.] 

 

In the following we present our experimental analysis. We consider a commonly used Intel 
processor configuration. Number of processor varies from one to eight. The frequency varies 
between 1,73 GHz and 3,4 GHz as shown in table 5. The L1 caches have at least a 32-byte block 
size, while capacity vary between 16 Kbytes and 32 Kbytes, and for the associativity, only eight 
ways is considered. The L2 caches have at least a 64-byte block size, while capacities vary 
between 512 Kbytes and 8 Mbytes, and the associativity varies between two and sixteen ways.  
 
As a result of this experiment, fig. 15 (A), we found that two performance regions are clearly 
evident: In the leftmost region, as long as the cache capacity can effectively serve the growing 
number of threads, increasing the number of threads improves performance, as more processors 
are utilized. This area is generally identified as cache-efficiency zone. Balanced workloads offer 
higher locality and better exploit the cache and hence expand the cache efficiency zone to the 
right and up. An outstanding example is given by the following table which summarizes number 
of instruction, L1 and L2 data misses on four architectures using SMP scheduling policy. We 
note that number of instruction increase from an average of (34x106) instr. on 1 CPU to 
(790x106) instr. on 8 CPUs. 
 
To highlight cache performance, we compute wait status which refers to the delay experienced 
by processor when accessing external L2 caches each time that information is missing in L1. 
Since L1miss is followed either by an L2hit (success) or L2miss, wait status can be computed by 
following formula: the sum of L2hit and L2miss.  
 
We suppose that L2 access time is estimated at 10 cycles (in hit case) and 100 cycles (in miss 

case). (( 1 2 )*10) ( 2 *100)cmWS D miss L Dmiss L dmiss= − + . To estimate lost time during 

memory access, we simply multiply the wait status by P4 660 frequency (3.6 GHz) and E5405 
frequency (2 GHz). Thus we realize that estimated lost time on 8CPU is insignificant compared 
to lost time on 1CPU. This result is very visible on the E8400 and E5335 architectures. For the 
E5405 architecture, result is less visible due to cache structure: While E5405 is considered as 
eight CPUs architectural, but physically they are two Quads on the same chip (L2 = 2x4Mb). 
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(a) Number of instruction (b) Data 1 Miss (c) L2d miss (d) Evaluation of wait status 

Figure 15 : Cache profiling [parallel watershed] 

 Nbr. Instr. D1 miss L2d miss WScm 

1CPU 

1 Thread 34.598.772 194.274 141.738 14 699 160 

2 Threads 34.204.145 235.764 162.775 17 007 390 

4 Threads 34.340.721 268.779 168.539 17 856 300 
8 Threads 34.441.168 288.664 161.337 17 406 970 

2CPUs 

1 Thread 90.783.715 221.199 198.110 20 041 890 

2 Threads 90.875.188 229.857 198.282 20 143 950 

4 Threads 116.984.996 284.697 207.448 21 517 290 
8 Threads 152.704.881 284.753 207.448 21 517 850 

4CPUs 

1 Thread 334.816.008 251.241 215.443 21 902 280 

2 Threads 339.998.650 251.982 215.582 21 922 200 

4 Threads 334.020.732 204.315 215.860 21 470 550 

8 Threads 474.895.119 295.774 228.187 23 494 570 

8CPUs 

1 Thread 784.648.688 265.884 216.760 22 167 240 
2 Threads 784.745.461 271.859 219.487 22 472 420 

4 Threads 789.432.158 279.951 224.625 23 015 760 

8 Threads 790.804.849 282.122 231.142 23 624 000 

Table 8 :   Cache profiling [parallel watershed] 

 

In the sequel, we turn to efficiency evaluation, using def. 13 (with ts = 360ms), in order to 
describe exploitation degree of each processor in used SMP machines. As introduced in [80], 
this profiling will highlight limitations introduced by parallel watershed implementation on SMP 
machines. Indeed, the efficiency decreases of 30% when switching from mono core architecture 
to dual cores architecture. Despite a slight increase on quad cores architecture, the efficiency is 
20% lower than that measured with 1Cpus. More details are shown in table 9, see also fig. 16.  
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 Intel P4- 660 Intel Dual C. E8400 Intel C2 Quad E5335 Intel Xeon E5405 

EFFICIENCY RATE 0,94 0,69 0,79 0,76 

Table 9 : Efficiency improvement [parallel watershed Algo.] 

 

Causes for losses of efficiency can be explained by the following reasons, partially introduced in 
[84] as parallel computing delays: (i) I/0 delays due to the need to distribute parallel data across 
local PE data stores. (ii)  Communication delays, due to the need for PES to access data which is 
not located in their local data stores. (iii)  Set-up delays due to the set-up of control and 
processing logic and the network for inter-PE communication. 
 

 

Figure 16 : Efficiency improvement [parallel watershed algo.] 

 

In further evaluation, we extend speedup profiling of parallel watershed computing into 
scalability analysis. According to Intel theoric study [81], very high scalability can be achieved 
on multicore architecture. By way of example, dual-core architecture offers a scalability of 
roughly 80% for the second processor, depending on the OS, application, compiler, and other 
factors. That means the first processor may deliver 100% of its processing power, but the second 
processor typically suffers some overhead from multiprocessing activities. As a result, the two 
processors do not scale linearly. Thus, a dual-processor system does not achieve a 200% 
performance increase over mono-core architecture, but instead provides approximately 180% of 
the performance that a single-processor system provides.  
 
In our evaluation framework, we first introduce the average unit speed. This parameter, seen as 
the ration between achieved speedup and the number of processor, will be very useful to 
determinate scalability. We can also extend this definition into the maximum average speed 
which is defined as ratio of maximum achieved speedup by number of processor. 

max( )
( )

( )
speed

us

A
Max Av

N
= .  Obtained results are presented in the following table: 

 Intel P4- 660 Intel Dual C. E8400 Intel C2 Quad E5335 Intel Xeon E5405 

1 Thread 0,940 - - - 

2 Threads - 0,685 - - 

4 Threads - - 0,787 - 

8 Threads - - - 0,763 
16 Threads - - - - 

32 Threads - - - - 

Table 10 :   Maximum Average Unit Speed [parallel watershed] 
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Concerning scalability, see Def. 9, it can be written as
'

'
( , ')

N W
N N

N W
ψ

×
=

×
. In this formula, W  

refers to amount of work of our algorithm when N processors are employed and  'W  refers to 

amount of work of our algorithm when 'N processors are employed to maintain the average 

speed. In ideal situation, 'W is equivalent to
 

'N W

N

×
thus ( , ')N Nψ  be equal to 1. Unfortunately, 

this never happen in real situation, actually
'

' N W
W

N

×
> , thus ( , ') 1N Nψ < .  

To calculate different values of efficiency foreach architecture, we must first determine the 

necessary amount of work 'W , as shown in Table 11, to reach Average Speed Unit usAv . Note 

that chosen Average Unit Speed is 0,787 on 4 CPUs using 4 Threads (Associated W = 
334.020.732).  

 1 CPU 2 CPUs 

1 Thread usAv  0,940 0,787 
- 

Work (W’) 34.598.772 28.967.270 

2 

Threads 
usAv  

- 
0,685 0,787 

Work (W’) 90.875.188 104.406.968 

4 

Threads 
usAv  

- - 
Work (W’) 

8 

Threads 
usAv  

- - 
Work (W’) 

 

 4 CPUs 8 CPUs 

1 Thread usAv  
- - 

Work (W’) 

2 

Threads 
usAv  

- - 

Work (W’) 

4 

Threads 
usAv  0,787 

- 
Work (W’) 334.020.732 

8 

Threads 

Average Unit 

Speed 
- 

0,763 0,787 

usAv  790.804.849 815.679.444 

Table 11 :   Average speed Unit [parallel watershed Algo.] 

 

The scalability results for parallel watershed processing are shown in table 12. Our experiments 
demonstrate a very good scalability across all tested architectures. 

 1 CPU 2 CPUs 4 CPUs 8 CPUs 

1 CPU 1 0,554 0,338 0,284 

2 CPUs  1 0,626 0,512 

4 CPUs   1 0,819 
8 CPUs    1 

Table 12 : Scalability profiling [parallel watershed Algo.] 
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As the number of thread increase, a linear speedup has been observed (see fig. 17). Also, the 
speedup improves as the problem sizes increases. Note that when number of thread exceed 
number of cores, total execution time dramatically reduces. The difference between each 
efficiency curve with the ideal curve (constant efficiency equal to 1) decreases as the number of 
thread increases.  
 

 

 

 

 

 

 

 

 

 

Figure 17 : Performance improvement for parallel watershed 

3.5 Conclusion  
 

In this chapter, we have presented an intensive study of all existing watershed transform in the 
discrete case: WT based on flooding, WT based on path-cost minimization, watershed based on 
topology preservation, WT based on local condition and WT based on minimum spanning 
forest. 
 
First contribution is the global nature of the proposed study. In fact, for each approach, we give 
informal definition, then we presented processing procedure followed by mathematical 
foundations and the algorithm of reference. Recent publications based on some approach are 
also presented and discussed.  
 
Second contribution concerns classification of watershed algorithms according to criteria of 
recursion, complexity, basins computing and topology preservation.  
 
Third contribution concern a new algorithm to compute watershed that is parallel, preserves the 
topology of the input image, does not need prior minima extraction and suited for SMP 
machines. This algorithm does not require any sorting step, or the use of any hierarchical queue. 
A global description of the computing process is given by fig. 18. Through this illustration, we 
show links between parallel watershed-cut and the SD&M strategy application. In fact, splitting 
step is applied directly on input graph when selecting sources. Unlike conventional technique of 
division such as pixel division, or block division, the source selection is completely random. 
Associated steam computing is fully parallel (read mode data accesses). Then distribution 
depends only on the available processors. This flexibility in data manipulation allowed us to 
obtain very good results especially in terms of efficiency fig. 14 (b) without using the 'Basic-
NPS' scheduler. Finally, the merging step contains procedures of s-labeling and f-labeling. 
Through these two functions, we have remained confident in our approach for merging streams 
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two by two (algorithm already introduced in section 2.4.3. Experimental analyzes such as 
execution time, performance enhancement, cache consumption, efficiency and scalability are 
also presented and discussed.  
 
Note that our algorithm can’t be applied directly over grayscale image. Actually three major 
steps are needed: the passage from grayscale image to edge-weighted graphs, then the 
application of the parallel watersheds-cut algorithm on the plot and finally the visualization of 
the graph in the Khalimsky space [82, 83].  
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 18 : Segmentation chain based on parallel watersheds-cut 
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TOPOLOGICAL THINNING 

n many computer vision applications, standard techniques of pattern recognition are 
thinning algorithms. As a preprocessing stage, these algorithms have been used for the 
recognition of handwriting or printed characters, fingerprints, chromosomes and biological 

cell structures, etc. [84]. Topological thinning and skeletonization are ones of the most cardinal 
operators for this kind of preprocessing. In literature, several 2D parallel thinning methods can 
be found, see [85, 86, 87, 88, 90]. Proving that such an algorithm always preserve topology is 
not an easy task, even in 2D. We say that an algorithm preserves topology if obtained skeleton 
through thinning method has the necessary information to reconstruct the original image. The 
proofs found in the literature are often combinatorial and hardly extendable to 3D, a fortiori to 
higher dimensions.  
 
Couprie [89] present a study of fifteen parallel thinning algorithms, see table 13, based on the 
framework of critical kernels. He proves that ten among these fifteen algorithms indeed 
guarantee topology preservation, and give counter-examples for the five other ones. He also 
investigates, for some of these algorithms, the relation between the medial axis and the obtained 
homotopic skeleton. 
 

 Topology 

Preserved Not preserved 

1 D. Rutovitz [91] 1966  ���� 

2 T. Pavlidis [87, 88] 1981 ����  

3 R.T. Chin, H.K. Wan, D.L. Stover and R.D. Iverson [84] 1987 ����  

4 C.M. Holt, A. Stewart, M. Clint and R.D. Perrott [89] 1987 ����  

5 Y.Y. Zhang and P.S.P. Wang [94] 1988  ���� 

6 R.W. Hall [85] 1989 ����  

7 R.Y. Wu and W.H. Tsai [95] 1992  ���� 

8 Z. Guo and R.W. Hall [90] (first version) 1992 ����  

9 Z. Guo and R.W. Hall [90] (Second version) 1992 ����  

10 Z. Guo and R.W. Hall [90] (Third version) 1992 ����  

11 B.K. Jang and R.T. Chin [97] 1992  ���� 

12 B.K. Jang and R.T. Chin [91] 1993 ����  

13 U. Eckhardt and G. Maderlechner [92] 1993 ����  

14 S.S.O. Choy, C.S.T. Choy and W.C. Siu [100] 1995  ���� 

15 T. Bernard and A. Manzanera [83] 1999 ����  

16 M. Couprie, F. N. Bezerra and G Bertrand [8] 2001 ����  

Table 13 :   Classification of thinning algorithm according to topology preservation 

 

According to the above study, algorithms proposed by Pavlidis in 1981 [90, 92], by Chin and al. 
in 1987 [87], by Holt and al. in 1987 [93], by Hall in 1989 [88], by Guo and Hall in 1992 [96] (3 
variants), by Jang and Chin in 1993 [98], by Eckhardt and Maderlechner in 1993 [99], and by 
Bernard and Manzanera in 1999 [86] preserve topology. However, algorithms proposed by 
Rutovitz [91], by Zhang and Wang [94], by Wu and Tsai [95], by Jang and Chin [97] and by 
Choy and al. [100] produce a Skeleton that don’t allows to reconstruct the original image. We 
propose to extend this study by adding a new algorithm proposed by Couprie and al. [8]. This 
algorithm is also able to act directly over grayscale image without modifying topology.  

I 
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Based on this first ‘classification’ of 2D thinning algorithm, we go further in this study and we 
start by proposing new classification, in section 4.2, that takes into account not only the criterion 
of topology preservation but also the proximity of the obtained skeleton from the medial axis, 
necessary execution time and cache consumption. Since suited algorithm for parallelization is 
identified and convinced that best performance can be achieved, we propose a concurrent 
implementation of a powerful topological thinning algorithm that is originally introduced by 
Couprie [8]. In section 4.3, we start by introducing theoric background, we give also some 
illustration of original algorithm before presenting parallel lambda skeleton procedure. Based on 
SD&M strategy, Distributed work during thinning process is done by a variable number of 
threads. Tests on 2D grayscale image (512x512), using shared memory parallel machine 
(SMPM) with 8 CPUs cores (2 × Xeon E5405 running at frequency of 2 GHz), showed an 
enhancement of 6.2 with a maximum achieved cadency of 125 images/s using 8 threads. 

 

 

 
 
 
 

 

 

                                     (1)                                                        (2)                                                             (3) 

            

  Figure 19: Used shapes for thinning algorithms comparison [89] 
 

 

4.1 Classification of thinning algorithms 
 
In order to make a quantitative evaluation of selected algorithms, we start by presenting two 
selection criteria based on Jang and Chin’s study [101]. Authors propose to compute ratio 
between the number of pixels contained in the maximal disks (obtained from the skeleton) and 
the effective number of pixels in the original image. This measure, see (Def. 31), is used to 
determine the proximity of the skeleton from the medial axis as proof of skeletal connectivity 

and convergence. ()Area function is a pixel’s counter, 'S refers to the number of pixels 

contained in the maximal disks and S  refers to the effective number of pixels (in the original 
image). 
 

Definition (31):  Proximity of the skeleton from medial axis (Mm) 
'( )

( )m

Area S
M

Area S
=  

 

Inspired by Jang and al. study, we adopt this criterion of skeleton proximity from medial axis 
with some modification, see (Def.32). Actually, we privilege the ratio between number of pixels 
of the skeleton which belong to the medial axis (Ai) and number of pixels in the skeleton (Ni). Our 
goal is to identify the algorithm that returns the most centered skeleton. Thus, most faithful 
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algorithm is the one whose C1 value is closest to 1. An initial assessment, see table 14, using 
three different images shown in fig.19, has allowed us to draw first curve (see fig. 20).  
 

Definition (32):  Skeleton connectivity criteria (C1) 

1

( )

( )
i

i

Area A
C

Area N
=

 
 

 Shape (1) Shape (2) Shape (3) 

N1 A1 N2 A2 N3 A3 

1 T. Pavlidis [87, 88] 847 564 2829 1359 4241 2172 
2 R.T. Chin, H.K. Wan, D.L. Stover and R.D. Iverson [84] 544 153 1572 334 3057 778 

3 C.M. Holt, A. Stewart, M. Clint and R.D. Perrott [89] 590 466 1713 1079 2780 1444 
4 R.W. Hall [85] 591 467 1773 1103 3060 1557 
5 Z. Guo and R.W. Hall [90] (first version) 658 484 1993 1122 3508 1903 

6 Z. Guo and R.W. Hall [90] (Second version) 591 468 1775 1104 3264 1863 
7 Z. Guo and R.W. Hall [90] (Third version) 560 437 1664 993 3149 1750 
8 B.K. Jang and R.T. Chin [91] 704 564 2394 1359 3787 2178 

9 U. Eckhardt and G. Maderlechner [92] 724 564 2434 1359 3895 2171 
10 T. Bernard and A. Manzanera [83] 678 534 1929 1219 3528 2018 
11 M. Couprie [8] 707 545 1882 1114 3831 2069 

Table 14 :   Evaluation of pixels’ Skeleton (Ai) and (Ni) [89] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Algorithm classification according to Skeleton connectivity criteria (C1) 
 
Unfortunately this quantitative measure is not sufficient to evaluate algorithms. Actually, even if 
(C1) tends to 1, the gap between the number of skeleton’s pixels belonging to medial axis and 
the number of reference pixels of medial axis can be great. For example, let’s consider two 
algorithms. The first one provides 50 pixels belonging to medial axis, the total number of 
skeleton’s pixels is also 50 and the number of reference pixels is 100. The second algorithm 
provides respectively 100, 150 and 100. Thus, (C1) for the first algorithm is equal to 1 even if 
medial axis doesn’t include many points from the medial reference axis; therefore, the deviation 
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is wide 0.5. For the second algorithm, (C1) is over 1 even if all pixels of the median reference 
axis are included in reference median axis. To resolve this problem, we propose a second 
criterion (C2) to identify how mush generated Skeleton is symmetric and close to reference 
medial axis, see Def. 33. Thus we compute the ratio between number of pixels of the skeleton 
which belong to the medial axis (Ai) and number of pixels of reference medial axis (Ri).   
 

Definition (33):  Skeleton symmetry criteria (C2) 

2

( )

( )
i

i

Area A
C

Area R
=  

 

A second assessment using same images showed in fig.19, has allowed us to draw second curve 
(see fig. 21). Measurements are presented in table 14 and table 15. 

 Shape (1) Shape (2) Shape (3) 

Medial axis (reference) 564 1359 2178 

Table 15 :   Evaluation of Medial axis (reference) pixels (Ri) [89] 

 

 

 

 

 

 

 

 

 

 

                       Figure 21: Algorithm classification according to Skeleton symmetry criteria (C2) 
 

1 Bernard, Manzanera 1999 

2 Jang, Chin 1993 
3 Couprie and al. 2000 
4 Eckhardt, Maderlechner 1993 
5 Guo, Hall 1992 (b) 

         Table 16 :   Top five thinning algorithm according to Skeleton connectivity and symmetry  

 

According to fig. 20 and fig. 21, first algorithm proposed by Pavlidis [87] has a very good factor 
(C2) except that it has a bad factor (C1) which doesn’t exceed 0.7. Proposed algorithm by Chin 
[84] has the worst classification according to two criteria so it can be automatically rejected. 
Although, Holt [89] and Hall [85] algorithms have similar factors, Couprie [86] and Jang [91] 
shows that Hall algorithm is an enhanced version of Holt algorithm, therefore we chose it for 
assessment. The three versions of Guo [90] algorithm have similar results but second version 
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(Guo, Hall 1992 - b) has a better classification in the two graphs thus this version will be also 
selected. Jang [91], Eckhardt [92] and Bernard [83] have also a very good classification in both 
graphs and can be kept. Finally we can conclude by the upper comparison chart that ranks 
algorithm by qualitative descending factor [(C1) AND (C2)]. 
 
In the following, we conduct an initial evaluation of selected algorithms. Tested images are 
those shown in fig. 19 (1) (2) (3). Respective sizes are (800x600), (755x755), and (755x755). 
We turn sequential algorithms on mono core architecture Intel Pentium 4, more details about 
used P4 processor are given in the following table.  
 

 Intel P4  Intel Dual C. T1400 Intel Quad Q9550  Intel Xeon E5405 

Number of processor 1 2 4 2 x 4 

SMT Yes Yes Yes Yes 

Frequency 3,40 GHz 1,73 GHz 2,83  GHz 2,00 GHz 

L1 Instruction 

Cache 

Size 16Kb 32Ko 4 x 32Ko 8 x 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 32byte 64byte 64byte 32byte 

L1 Data Cache 

Size 16Kb 32Ko 4 x 32Ko 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 64byte 64byte 64byte 64byte 

L2 Cache 

Size 2Mb 512 kb 6Mb 2 x 6Mb 
Asso. 8-way 2-way 24-way 24-way 

Block size 64byte 64byte 64byte 64byte 

RAM size 1Gb 2Gb 2Gb 8Gb 

Linux version 2.6.21 2.6.3 2.6.29 2.6.18 

Valgrind version 3.2.3 3.4.1 3.4.1 3.4.1 

Table 17 : Used processors features [Thinning alg.] 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Execution time - serial versions on monocore machine [Thinning Algo.] 

 
Obtained results, see fig. 22, show that Guo and Hall algorithm is the most efficient in terms of 
execution time. In fact, algorithms of Couprie, Guo and Eckhardt can be grouped together 
because they display almost same performance for all tested images. Jans and Chin algorithm is 
the most expensive. It consumes six times more than Guo algorithm. Concerning cache 
consumption, see fig. 23) results are different. In fact, Jang and Bernard algorithms show better 
performance despite significant loss of instructions at L1and L2 levels (High execution time). 
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We note good data management when reading or writing. Algorithms that suffer from some 
problems of data management are rather those of Couprie, Guo and Eckhardt. These results are 
most visible especially when computing cache consumption for image 2. 
 

 
                                   (1)                                                                                                (2) 

 
                                (3)                                                                                                (4) 

 
                                           (5)                                                                                                (6) 

 
 
 
 
 
 
 
 
                                (7)                                                                                              (8) 

(1) L1 Instruction miss (2) L2 Instruction miss (3) L1 Data read miss (4) L2 Data read miss (5) L1 Data write miss 
(6) L2 Data write miss (7) Total L1 cache miss (8) Total L2 cache miss, (� Image 1 � Image 2 � Image 3) 

Figure 23: Cache profiling of serial versions on monocore machine [Thinning Algo.] 
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If we combine implementation features of these algorithms (execution time and cache use) with 
classification criteria previously presented (C1 && C2), we can draw following classification on 
table 18. Even if Guo and Hall algorithm has best performance, first three algorithms can be 
classified in the same family. In fact, they have many similarities and close performances. 
Second family is composed of two algorithms, Jang and Bernard. Despite their low cost of cache 
consumption, execution times are quite high. Based on Couprie study, we will develop more all 
of these five algorithms to identify the most suitable one for parallel implementation on SMPM.  
For the sake of simplicity, we restrict ourselves to the minimal set of notions that will be useful 
for our purpose. 
 

1 Guo, Hall 1992 (b) 
2 Eckhardt, Maderlechner 1993 
3 Couprie and al. 2000 
4 Jang, Chin 1993 
5 Bernard, Manzanera 1999 

Table 18 :   Classification of thinning algorithm 

 
Guo and Hall, see (Algo. 21), introduced the notion of delatable pixel

G Hx . Based on Boolean 

expressions defined bellow, they classify a pixel as delatable if some conditions are hold: Let
2

GHx G∈ , let 2X G⊂ , 
 

. 
 

 

The pixel( G Hx ) is said delatable if and only if: (i) D( G Hx )=1, (ii) G( G Hx )=0, (iii) B( G Hx )>2 and 

(iv) Neighborhood of ( G Hx ) does not match any the following masks.  
 
 
 
 

                                                                   (a)                     (b)                           (c) 

Figure 24: Guo and Hall masks 

Algorithm 21 : Thinning algorithm – Second version [Guo and Hall] 

 

Input: set X  

Output: set X  
1. repeat  

2.      Y ← set of pixels X which are GH-deletable  

3.      X ← \X Y  

4. Until Y φ=  

 
Eckhardt and Maderlechner, see (Algo. 22), introduced the notion of simple and perfect pixels. 
First, they establish the following definitions: (i) Interior pixel: it is a pixel in X  having all its 
four strong neighbors in X (ii) Boundary pixel: it is a pixel in X  which is not interior pixel. 
(iii) Inner boundary pixel: it is a boundary pixel which has an interior pixel as strong neighbor. 
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Thus, a pixel ( )p  in X  can be classified as simple, if it is a boundary pixel and if there exist 

exactly one strong connected component of pixels of X  in the neighborhood of ( )p  which is 

strongly connected to ( )p .  

 
Finally, inner boundary pixel ( )p  is classified as perfect, if there exists a strong neighbor 

( )i pΓ  of ( )p which is interior and such that ( )j p XΓ ∉  with ( 4) mod8j i= + .  
 

Algorithm 22 : Thinning algorithm [Eckhardt and Maderlechner] 

 

Input: set X  

Output: set X  
1. repeat  

2.      Y ← set of pixels in X witch are both simple and perfect  

3.     X ← \X Y  

4. Until Y φ=  

 

Couprie and al., see (Algo. 23), introduced new notions and operators in the frame work of 
cross-section topology. In particular, the notion of destructibleλ −  pixels which allows to 
selectively simplify the topology, based on a local contrast parameter λ .  
 
To achieve this simplification; they introduce the notion of �-destructible point which is more 
flexible then the notion of destructible point. In fact, a point is said to be a �-deletable point 
(for F), λ being a positive integer, if it is either a �-destructible point, or a peak point such 
that F�x� � α��x, F� 
 λ. We remind that a point x is said �-destructible if it satisfies one of the 
two following conditions:  
 

(i) x is destructible or x is �-divergent.  

(ii) At least k-1 connected components  c of Γ—�x, F� are such that F�x� � F��c� 
 λ, 
with i � �1, … , k � 1�. 

Let X � Z� and x � X, x is an end point (for X) if #�Γ�� �x�  X�=1. Let F � φ and x ! Z�, x is an 
end point (for F) if it is an end point for the set  F" with k � F�x�. A point is said to be �-end 
point (for F) if it is an end point for F and if: F�x� � α��x, F� # $.  

Algorithm 23 : Thinning algorithm [Couprie, Bezerra and Bertrand ] 

 

Input: F ϕ∈ , 

Output: F  
1. repeat until stability 

2.      Among all points which are deletableλ −  and endλ −   
3.           Select a point x of minimal value 

4.          ( ) ( , )F x x Fα −=  

 
Jan and chin, see (Algo. 24), use the medial axis (of the input object) when computing Skeleton 
to enhance connectivity, unit-width convergence, medial axis approximation, noise immunity, 
and efficiency.  
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Let 2X G⊂ , let x X∈ , r ∈ℕ , the ball 
4 ( , )B x r is maximum for X if 

4 ( , )B x r X⊆   and if there is 

no other ball included in X which contain 
4 ( , )B x r . Thus, medial axis of X is the set of the 

centers of all the maximal balls for X . Jan and Chin masks are showed in fig. 25. 
 
 

 

                                                          (a)                    (b)                     (c)                    (d) 

Figure 25: Jang and Chin masks 

Algorithm 24 : Thinning algorithm [Jan and Chin] 

 

Input: set X  

Output: set X  

1. A ← medial axis of X  
2. repeat  

3.      Y ← set of pixels in X which match Jang and Chin masks  

4.      Y ← \Y A  

5.     X ← \X Y  

6. Until Y φ=  

 

Bernard and Manzanera, see (Algo. 25), introduce a parallel iterative thinning procedure that 
respect homotopy, mediality, thickness, rotation invariance and noise immunity. Used masks by 
thinning procedure are presented in the following: 

 

 

 

 

                                                                              (a)                    (b)                      

Figure 26: Bernard and Manzanera masks 

Algorithm 25 : Thinning algorithm [Bernard and Manzanera] 

 

Input: set X  

Output: set X  
1. repeat  

2.      Y ← set of pixels in X which match Bernard and Manzanera masks  

3.     X ← \X Y  

4. Until Y φ=  

 

Algorithmic structures, previously presented, are very similar. An iterative process is always 
launched until stability. In each iteration, some pixels are selected according to a set of criteria 
then output image is updated. The only algorithm that requires pre-treatment is Jang and Chin 
one (pixels of the medial axis are calculated). Unlike other algorithms, Couprie procedure 
doesn’t exempt selected pixels from the output image but it changes their values. This will allow 
greater independence in the data processing if we ever plan to launch a parallel processing. For 
this reason, we selected the latter algorithm to propose a parallel version suitable for (SMPM). 
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4.2 Parallel lambda-skeleton algorithms 
 

In this section, some basic notions of topological operators are first summarized; Illustration of 
the original algorithm is also introduced. Then, new adapted version of thinning is introduced. 
Experimental analyzes results of different implementations are also presented and discussed.  

4.2.1 Theorical background 

 

First, we recall some basic notions of grayscale images. A 2D grayscale image may be seen as a 
map  % from  &� to  &. For each point ' � &�,  %�'� is the graylevel value of '. We denote by ( 
the set composed by all maps from &� to  &. Let  ) � (, the section of ) at the level * is the set 
%+ composed of all point ' � &� such that %+ , *. As for the binary case, if we use the n-

adjacency for the section %+ of  ) , we must use --adjacency for the section %+ with �-, -) = 
(8,4) or (4,8).  
 
We remind that for two points  '�'., '��, /�/., /�� 0 &�, we consider that / is 4-adjacent to ' 
if |/. � '.| 2 |/� � '�| 
 1, and / is 8-adjacent to ' if max �|/. � '.|, |/� � '�|� 
 1. In the 
following, we consider the two neighborhoods relations Γ5 and Γ6 defined by, for each 
point  x � Z�, 
 

 75�'� � �/ �  &� | / 89 4 adjacent @A '�, 

 76�'� � �/ � &� | / 89 8 adjacent @A '�.  
 

For more general presentation, we will define Γ�� �x� �  Γ��x�\�x�. We will also denote by ) the 
complementary map of  ). We note that the complementary sets of the section of ) are section 

of ). In all the rest of this paragraph, we will note n=8 for the section of  ) , thus we must use 

-=4 for ). It is also important to mention that a non-empty connected component D of a section 
 %+ of  % is a (regional) maximum for  % if  D   %+E. � F and a set D � &�is a regional 

minimum for % if it is a regional maximum for ). Let F � φ, the point x � Z� is destructible 
(for F) if x is a simple for F", with k � F�x�. We remind that a point x is said simple for  X �
 Z� if T�x, X� � 1 and T�x, X� � 0 . 
 

T�x, X� and T�x, X� are the two connectivity numbers defined as follows (# Dstands for the 

cardinal of  D):  J�', D� � #KLM',Γ6� �'�  DN; J�', D� � #KLM',Γ6� �'�  DN;  
 
So we can define the four neighborhoods: 
 

 7EE�', %� � �/ � 76��'�; %�/� # %�'�� 

 7E�', %� � �/ � 76��'�; %�/� , %�'�� 

 7���', %� � �/ � 76��'�; %�/� P %�'�� 

Q��', %� �  RST'�%�/�, / �  7���', %�, 8U7���', %�  V F�
%�'�                                                      A@WXYZ89X [ 
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We define also some associated connectivity numbers:  

(i)   
(ii)    
(iii)   

Furthermore, the connectivity numbers allow the classification of the topological characteristics 
of a point: 

(i)   is a peak point if . 
(ii)   is a -divergent if . 

A point is said to be a -deletable point (for ),  being a positive integer, if it is either a -
destructible point, or a peak point such that . We remind that a point  is 
said -destructible if it satisfies one of the two following conditions:   is destructible or  is -

divergent and at least k-1 connected components  of —  are such that
, with . 

Let  and ,  is an end point (for ) if =1. Let  and ,  is an 
end point (for ) if it is an end point for the set  with . A point is said to be -end 
point (for ) if it is an end point for  and if: .  

4.2.2 Illustration of original algorithm 

 
, we say that  is a skeleton of  if  is obtained from  by iteratively selecting a destructible 

and non-end point in  and lowering it down to , until stability. In order to get a filtered skeleton, 
that is to eliminate non significant branches and regional minima, Bertrand and Couprie allow -deletable 
and not -end to be lowered. It is important to mention that each time that a pixel is lowered, its eight 
neighbors must be reexamined to be sure that topology is still preserved. In Figure 1, we illustrate this 
method on a gradient image (a) obtained from a 2D grayscale image of an MRI brain section by Deriche 
gradient operator. (b) is obtained by a filtered thinning with  Full algorithm is already introduced 
in last section (Algo. 23).   
 
 
 
 
 
 
 
 
 
 
 

(a)                                                         (b) 

(a) After Deriche gradient operator; (b) filtered skeleton with  
Figure 27 : Filtered Skeleton illustration [Thinning alg.] 
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4.2.3 Parallel thinning algorithm 

 

Now, we present a parallel version of the thinning according to strategy previously discussed. 
Let the map  F from  Z� to  Z represent the input grayscale image. For each point x � Z�,  F�x� is 
the graylevel value of x. We denote by φ the set composed by all maps from Z� to  Z.  
 
Let  ) � φ, the section of ) at the level k is the set F" composed of all point x � Z� such 
that F" , k.  
 
Let T be the set of type sought in the characterization of pixels. For thinning algorithm: T �
�λ– deletable and not λ– end points�. It is important to mention that points from T can also be 
end-point and isolate-point for crest restoring.  
 
We will refer to global search space by Ime, and associated map (from  Z� to  Z ) to each sub-
space Ime is F . For each point x � Z�,  F�x� is the graylevel value of x in the search 
space Ime.  
 
The following dynamically parallel λ–Skeleton algorithm (it is adapted for two concurrent 
threads, but it can be easily extended to N threads) starts by dividing the search space. m�c  and 
mdef define sub-region bounds. Since the distributed work starts, each thread will lower each 

characterized pixel and then push its eight neighbors in Ed�.  Ed� is the set of all selected 
neighbors and it is shared between only two threads.  Ed� is the new defined set to explore since 
threads finished. Newly characterized pixels are pushed in a private set called  E". The pixel set 
assigned to the newly generated thread is nothing else than  Ed� and the associated search space 
is ��Ime h ImeE.� h E" h E"E.�.  
 

Algorithm 26 : Dynamically Parallel i –Skeleton [Mahmoudi and Akil] 
 

Input : m:colums, n:lines, b:image 
1. For all p � Ime do 
2.   if km�c P Ime�p� P mdeflthen E  n E h �p�; 
3. Repeat until stability 
4.     Ed� n F; 
5.     While �k V 0�then 
6.        For all p � E do      
7.             if �p � T� then F�x� n α�kx, F�x�l; 
8.                                         Ed� n Ed� h �eight p neighbors�; 
9.                                else E" n E" h �p�; 
10.             endif 
11.        For all p � EE. do      
12.             if �p � T� then ImeE.�x� n α�kx, ImeE.�x�l; 
13.                                         Ed� n Ed� h �eight p neighbors�; 
14.                                else E"E. n E"E. h �p�; 
15.             endif 
16.        E n Ed�; 
17.        Ime n Ime 2 ImeE.;  
18.        Ime n Ime h E" h E"E.; 
19.        if �E � F� then k n 0; 
20.        clean �E, E", E"E.�; 
21.  end while  
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4.2.4 Experimental analysis  

 

The proposed parallel λ -Skeleton algorithm was implemented in C in two variants: the first 
implementation, based on a simple lock-based shared FIFO queue, using OpenMP critical 
directive. The second is based on a spin-wait FIFO queue, already introduced in section 2.4.2. 
Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8, and 16, for each one of 
these implementations, were determined. The efficiency Ψ�-�, already defined in section 2.4.1., 
is also measured. 
 
Times were performed on eight-core (2× Xeon E5405) shared memory parallel computer of the 
Faculty of Electrical Engineering and Communication of Brno University, on Intel Quad-core 

Xeon E5335, on Intel Core 2 Duo E8400 and Intel mono-processor Pentium 4 660. Each 
processor of the Xeon E5405 and E5335 runs at 2 GHz and both of the two machines have 4 GB 
of RAM. The E8400 processor runs at 3 GHz. The Pentium processor runs at 3.6 GHz (see 
Table 17). The last two machines have 2 GB of RAM. The minimum value of 5 timings was 
taken as most indicative of the speed of the algorithm. The measurements were done on 2D 
grayscale image (512*512) of real brain MRI. Results of the two implementations are shown in 
fig. 28 (a)(b).    
 
On the eight-core machine, wall-clock execution time for the first implementation using a lock-
based shared FIFO queue drops from an average of 40.211 ms for a single thread down to 
28.458 ms at 8 threads. For the second implementation using spin-wait FIFO queue, wall-clock 
execution time drops from an average of 41.889 ms for a single thread down to 8.282 ms at 8 
threads. As expected, the speed-up for the second implementation using Private-Shared FIFO 
queue is higher than for the one using lock-based shared FIFO queue, because context changing 
were nearly eliminated. 
 

 

 

 

 

 

 

     (a) Using a lock based shared FIFO queue                (b) Using a spin-wait shared FIFO queue 

Figure 28 : Execution time [parallel thinning]  

 
A remarkable result shown in (fig. 29) is the fact that the speed-up increases as we increase the 
number of threads beyond the number of processors in our machine (eight cores). For the first 
implementation, the speedup at 8 threads is 1.7 ± 0.05. However, for the second implementation 
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the speedup has increased to 6.2 ± 0.01. Another common result between fig. 28 (a) and fig. 28 

(b) is stability of execution time on each n-core machine since the code uses n or more threads. 
 

 

 

 

 

 

 

     (a) Using a lock based shared FIFO queue                (b) Using a spin-wait shared FIFO queue 

Figure 29 : Performance improvement [parallel thinning]  

 

For better readability of our results, we tested the efficiency of our algorithm on various 
architectures using the Ψ�-� formula introduced earlier with fixed serial time equal to 48.247 

ms. For parallel time we use best parallel time obtained using 8 threads. As can be seen in fig. 

30, second implementation is more efficient that the first one in all architectures. It is also 
suitable to return to Amdahl’s law, introduced in section 4, in order to explain obtained results. 

In fact the global speed up formula is u�-� � v�.�
v�L�. Then the defined efficiency Ψ�-� �

Jw �- �⁄ Jy� can be written as Ψ�-� � Jw �- �⁄ Jy� � S���
� � v�.�

L� v�L�. According to Amdahl’s 

law u�-� � .
.�yE{

|
 , efficiency can be written as follows: Ψ�-� � .

L��.�y�Ey. Thus if the number 

of cores increases, the speedup also increases (more work can be done simultaneously with more 
threads). On the other hand the efficiency will decrease. 
 

 

 

 

 

 

 

 

             Figure 30 : Efficiency improvement [parallel lambda Skeleton] 
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4.3 Conclusion 
 
In this chapter, we have presented an intensive study of 
work of critical kernels: Pavlidis [
and Hall [96] (3 variants), Jang and Chin [
Manzanera [86], Rutovitz [91], Zhang and Wang [
Couprie and al. [8].  
 
First contribution is limited to the
criteria: (i) preservation of topology
execution time and (v) cache consumption
algorithm as the most suitable algorithm 
 
Second contribution concern an adapted algorithm to compute 
the topology of the input image and suited for 
SD&M strategy and dynamic lambda
different sub-region bounds. Since distribution 
pixel and then push its eight neighbors in
all selected neighbors and it is sh
synchronization techniques such that 
and performance of our algorithm remain
based on spin-wait FIFO queue
Dynamic lambda skeleton algorithm
Couprie and al.[8]. Tests on 2D

machine (SMPM) with 8 CPUs 
an enhancement of 6.2 with a maximum achieved cadency of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 31 : 

e presented an intensive study of sixteen thinning algorithms
Pavlidis [90, 92], Chin and al. [87], Holt and al. [93

] (3 variants), Jang and Chin [97, 98], Eckhardt and Maderlechner [
], Zhang and Wang [94], Wu and Tsai [95], Choy and al. [

the classification of these algorithms according to
topology, (ii) skeleton connectivity, (iii) skeleton

cache consumption. Through this classification, we identified Couprie
algorithm for parallelization on shared-memory architecture

an adapted algorithm to compute skeleton that is parallel, preserves 
the topology of the input image and suited for SMP machines. Fig. 31 makes link between 

lambda skeleton algorithm: first step is dividing research area into 
Since distribution start, each thread will lower each characterized 

pixel and then push its eight neighbors in available FIFO queue. Each queue contains 
all selected neighbors and it is shared between only two threads. Unfortunately
synchronization techniques such that lock-based shared FIFO queue have not given good results 
and performance of our algorithm remained modest. Therefore we have applied our approach

wait FIFO queue, already introduced in section 2.4.2 for better performance. 
algorithm becomes five times faster than original version proposed by 

2D grayscale image (512x512), using shared memory para
 cores (2 × Xeon E5405 running at frequency of 2 GHz

with a maximum achieved cadency of 125 images/s using 8 threads.

:  Illustration on dynamic lambda Skeleton process 
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en thinning algorithms in the frame 
3], Hall [88], Guo 

], Eckhardt and Maderlechner [99], Bernard and 
], Choy and al. [100] and 
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TOPOLOGICAL SMOOTHING  

moothing filter is the method of choice for image preprocessing and pattern recognition. 
For example, the analysis or recognition of a shape is often perturbed by noise, thus the 
smoothing of object boundaries is a necessary preprocessing step. Also, when warping 

binary digital images, we obtain a crenellated result that must be smoothed for better 
visualization. The smoothing procedure can also be used to extract some shape characteristics: 
by making the difference between the original and the smoothed object, salient or carved parts 
can be detected and measured.  
 
Smoothing shape has been extensively studied and many approaches have been proposed. The 
most popular one is the linear filtering by Laplacien smoothing for 2D-vector [102] and 3D 
mesh [103].  Other approach by morphological filtering can be applied directly to the shape 
[104] or to curvature plot of the object's contour [105]. Unfortunately none of these operators 
preserve the topology (number of connected components) of the original image. In 2004, 
Couprie and Bertrand [22] introduced a new method for smoothing 2D and 3D objects in binary 
images while preserving topology. Objects are defined as sets of grid points, and topology 
preservation is ensured by the exclusive use of homotopic transformations defined in the 
framework of digital topology [106]. Smoothness is obtained by the use of morphological 
openings and closings by metric discs or balls of increasing radius, in the manner of alternating 
sequential filters [107]. The authors' efforts have brought about two major issues such as 
preserving the topology and the multitude of objects in the scene to smooth out without 
worrying about memory management, latency or cadency of their filter. Inspired by their 
approach, we propose a new algorithm for topological smoothing that is parallel and preserves 
topology. 
 
This chapter is organized as follows: in section 5.1, some basic notions of topological operators 
are summarized; the original smoothing filter is introduced. In section 5.2, the new parallel 
smoothing method is introduced. Evaluations of acceleration, efficiency and success rate of 
cache memory access are presented and discussed in section 5.3. Finally, we conclude with 
summary in section 5.4.  

5.1 Theoretical background  
 

In this section, we recall some basic notions of digital topology [106] and mathematical 
morphology for binary images [58]. We define also the homotopic alternating sequential filters 
[22]. For the sake of simplicity, we restrict ourselves to the minimal set of notions that will be 
useful for our purpose. We start by introducing morphological operators based on structuring 
elements which are balls in the sense of Euclidean distance, in order to obtain the desired 
smoothing effect. 
 
We denote by ℤ  the set of relative integers, and by Ε the discrete plane 2

ℤ . A point x ∈Ε is 

defined by 1 2( , )x x with ix ∈ℤ . Let x∈Ε , r ∈ℕ , we denote by ( )rB x the ball of radius r  

S 
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centered on x , defined by { }( ) , ( , )rB x y E d x y r= ∈ ≤ , where d  is a distance on Ε . We denote 

by rB  the map which associates to each x  in Ε  the ball ( )rB x . The Euclidean distance d on Ε  

is defined by: 
1/ 22 2( , ) A Bd x y  = −  with 1 1A ( )x y= − and 2 2B ( )x y= − . 

 

An operator on E  is a mapping from ( )P E into ( )P E , where ( )P E denotes the set of all 

subsets of E . Let r  be an integer, the dilation by rB  is the operator rδ  defined by 

( ) ( )r x X rX B xδ ∈=∪  ( )X P E∀ ∈ . The ball rB is termed as the structuring element of the 

dilation. The erosion by rB  is the operator rε defined by duality: r rε δ= ∗ . 

 
Now, we introduce notion of simple point which is fundamental for the definition of topological 
operators in discrete spaces. We give a definition of local characterization of simple points in

2E = ℤ . Let consider two neighborhoods’ relations 4Γ  and 8Γ defined for each point x E∈ by: 

 

{ }4 1 1 2 2( ) ; 1x y E y x y xΓ = ∈ − + − ≤ ,  

{ }8 1 1 2 2( ) ;max , 1x y E y x y xΓ = ∈ − − ≤ . 

 

For general case, we define { }* ( ) ( ) \n nx x xΓ = Γ  with { }4,8n∈ . Thus y  is said n-adjacent to x  

if * ( )ny x∈ Γ  . We say also that two points x and y of X are n-connected in X  if there is an n-

path between these two points. The equivalence classes for this relation are n-connected 
components of X . A subset X  of E  is said to be n-connected if it consists of exactly one n-
connected component. The set of all n-connected components of X  which are n-adjacent to a 

point x  is denoted by [ ],nC x X . To guarantee correspondence between X  topology and X

topology, we use n-adjacency for X and n -adjacency for X ,  with ( , )n n  equal to (8; 4) or (4; 

8). 
 
Informally, a simple point p of a discrete object X  is a point which is inessential to its 

topology. In other words, we can remove p  from X  without changing its topology. A point 

x X∈ is said simple if each n-component of X  contains exactly one n-component of { }\X x  

and if each n -component of { }X x∪  contains exactly one n -component of X . Let X E⊂ and

x E∈ , two connectivity numbers defined as follows ( # X = cardinality of X ): 

( )*
8( , ) # ,nT x X C x x X = Γ ∩  ; ( )*

8( , ) # ,
n

T x X C x x X = Γ ∩  .  

 
The following properties allow us to locally characterize simple points [106,108] hence to 
implement efficiently topology preserving operators: x E∈ is simple for ( , ) 1X E T x X⊆ ↔ =

and ( , ) 1T x X = . 
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The homotopic alternating sequential filter is a composition of homotopic cuttings and fillings 

by balls of increasing radius. It takes an original image X  and a control image C as input, and 
smoothes X  while respecting its topology and geometrical constraints implicitly represented by
C . A simple illustration is given by fig. 32. Smoothed image (b) is obtained using Homotopic 

Alternative Sequential filter (HAS) with a radius equaled to five and four connectedness ( 4Γ ). 

More examples can be found in [22]. 
 

 
 

 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 
 

                                                                  (a)                                                                                   (b) 
 

      (a) Input image (b) Smoothed image  

    Figure 32 : Smoothing illustration 

 
Based on this filter, Authors [22] introduce a general smoothing procedure with a single 

parameter to control smoothing degree. LetC X⊆ , r ∈ℕ  and D X⊆ with X any finite subset 

of E . The homotopic alternating sequential filter ( )HASF of order n , with constraint setsC and

D , is defined as follows: 
 

,
1 1...C D D C D C

n n nHASF HF HC HF HC= � � �  

In the previous formula, C
nHC (i) refers to homotopic cutting of X  by nB with constraint set C

and D
nHF (ii) refers to homotopic filling of X  by nB  with constraint set D . These two 

homotopic operators can be defined as follows:  

( ) ( ),C
nHC X H Y V=∗ With 

( )( )
( )( ){ , n

n

Y H X X C

V Y X

ε

δ

= ∪

= ∩
 (i)         

( ) ( ),D
nHF X H Z W= With ( )

( )( ){ ,

( )
n

n

Z H X X D

W Y X

δ

ε

=∗ ∩

= ∪
(ii) 
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We recall that ( ),H Z W is a homotopic constrained thinning operator. It gives the ultimate 

skeleton of Z constrained byW . The ultimate skeleton is obtained by selecting simple point in 
increasing order of their distance to the background thanks to a pre-computed Euclidian 

distance map [109]. We recall also that ( ),H Y V∗  is an homotopic constrained thickening 

operator. It thickens the set of Y by iterative addition of points which are simple for Y and 
belong to the set V until stability. 

5.2 Parallel smoothing filter 
 

In this section we start by analyzing overall structure of original algorithm. Then we continue 
with the parallelization of Euclidean distance, thinning and thickening algorithm. We conclude 
by a performance analysis of each operator. Obtained execution time, efficiency, speedup and 
cache misses will be introduced and discussed.  
 
As we have shown previous section, smoothing algorithm receives as input a binary image and 
maximum radius. It uses two procedures for homotopic opening and closing, see fig. 33 (a) (b). 
The call is looped to ensure an ongoing relationship between input and output. The opening 
process is a consecutive execution of erosion, thinning, dilatation and thickening. While closure 
procedure ensures the same performance of the four consecutive functions with single 
difference: the erosion instead of dilatation. Thinning and thickening ensure the topological 
control of erosion and dilatation. This control is based on researching and removing of all 
destructible points (already defined in section 4.2.1). When destructible point is deleted, its 
neighbors are reviewed to ensure that they are not destructible either. 
 

 

 

 

 

 

 

 

 

 

 

Figure 33 : Overall structure [Original smoothing algorithm] 
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A preliminary assessment of first implementation code, see Table 19, shows that Euclidean 
distance computing (EucDis) takes more time than topological point characterization (Topcar). 
For an image of (200*200), computation time of E.D with an infinite radius is 46.67% while 
point characterization of 2.4 million points occupies only 18.15%. If we limit radius between 5 
and 10, computation time of E.D. continues to increase. It can reach 64.44% of total time with a 
radius equal to 5. However time for topological characterization is only 8.89% for 1 million 
points. These finding remain the same if we increase image size. Beyond (512*512), computing 
time of point characterization becomes considerable. 

 
 200 x 200 168 x 168 

r=5 r=10 r= ∞ r=5 r=10 r= ∞ 

EucDis (%) 64.44 54.93 46.67 59.25 49.79 35.25 

TopCar (%) 8.89 13.89 18.15 11.58 16.50 24.03 

(EucDis): Euclidian distance function; (TopCar): topological characterization function 

Table 19 :   Time execution rate [Smoothing algorithm] 

5.2.1 Study on Euclidean distance algorithms  

 
During previous evaluation, 4SED [109] algorithm was used for Euclidean distance 
computation. So we are looking for another algorithm that is faster, and parallelizable. New 
algorithm must have an Euclidean distance computation error less than, or equal to, that 
produced by 4SED in order to maintain homotopic characteristics of the image.  
 
In literature, several algorithms for Euclidean distance computing exist. Lemire [110] and Shih 
[111] algorithms are bad candidates because Lemire’s algorithm does not use Euclidean circle 
as structuring element. Then homotopic property will not be preserved. Shih’s algorithm has a 
strong data dependency which penalizes parallelization. In [112], Cuissenaire propose a first 
algorithm for Euclidian distance computing, called PSN "Propagation Using a Single 
Neighborhood" that uses only four neighbors (on element structure). He also proposes a second 
algorithm, called PMN "Propagation Using Multiple Neighborhood” that uses eight neighbors. 

In [113], he also proposes a third algorithm with 3/2( )nο complexity, which offers an accurate 

computation of the Euclidean distance. Only drawback of this third algorithm is computation 
time which is very important and goes beyond the two algorithms mentioned above. Even if 
computing error produced by PSN is greater than computing error produced by PMN, it is 
comparable to that produced by 4SED. Low data dependence and ability to operate on 3D 
images, makes PSN algorithm a potential candidate to replace 4SED. Meijster [9] proposes an 
algorithm to compute exact Euclidean distance. Algorithm complexity is ( )nο  and it operates in 

two independent, but successive, steps. First step is based on looking over columns then 
computing distance between each point and existing objects. Second step includes same 
treatment looking over lines. It is important to note that strong independence between different 
processing steps and computing error equal to zero makes Meijster algorithm another potential 
candidate to replace 4SED. Algorithm is also able to operate on 3D images. Theory analysis of 
Meijster and Cuissenaire algorithms can be found in Fabbri’s work [114].  
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In the following, we propose first analysis of selected algorithms (Danieslson-4SED version 
[109], Cuisenaire-PSN version [112] and Meijster [9]) based on their implementation in order to 
compare between them. We have implemented 4SED algorithm using a fixed size stack. This 
stack uses a FIFO queue and it has small size while 4SED algorithm does not need to store 
temporal image. Results are directly stored into the output image, we will retain this 
implementation because 4SED assessment serve only as reference for comparison. For PSN 
implementation, we used stacks with dynamic sizes. Memory is allocated using small blocks 
defined at stack creation. When an object is added to queue, algorithm will use available 
memory of last block. If no space is available, a new block is allocated automatically. Block 
size is proportional to image size (N x M / 100). Finally we used a simple memory structure to 
implement Meijster algorithm. A simple matrix was used to compute distance between points 
and object of each column and three vectors were used to compute distance in each line.  We 
recall that this comparison is done in order to select the best algorithm among three candidates.  
 
Figure 34 describes obtained results by different implementations on single processor 
architecture P4. During this evaluation we used binary test image (200x200). We have also 
varied ball radius. We used Valgrind software to evaluate different designs. Callgrind tool 
returns the cost of implementing of each program by detecting IF (Instruction Fetch).  

Results show that PSN algorithm is the most expensive in all cases (for any radius). Meijster 
algorithm is moderately faster than 4SED. Their curves are practically parallel and their 
returned values  are proportional. However, difference between 4SED and PSN curves is more 
visible, it become larger when we increase radius. The output images returned by Meijster 
algorithm hold the best visual quality while Euclidean distance computation error is almost zero 
thus our efforts will be brought on Meijster algorithm parallelization. 

   
 

 

 

 

 

 

 

 

 

 

Figure 34 : Execution time [Danieslson, Cuisenaire and Meijster Algo.] 
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5.2.2 Parallelization of Meijster algorithm 

 

We denote by I  input image with m  columns and n  rows. We denote by B an object 
included in I . The idea is to compute, for each point p I p B∈ ∧ ∉ , separating distance 

between p and the closest point b with b B∈  and (0 )b m∀ ≤ ≤ , ( , )x yb b b= . This amount to 

compute the following matrix: , ( )x ydt p p EDT p  =   with ( )EDT p =

2 2min( ) ( , )y x x yp b G p b− + .  

 
If we assume that minimum distance of an empty group K is ∞ and z K∀ ∈ , we have 

( )yz + ∞ = ∞  then ( )EDT p formula can be written as follow: xb n∀ < , ,yb m∀ ≤

2 2( ) min( ) ( , )y x x yEDT p p b G p b= − + with ( , ) min : ( , )x x x xG p y p b b b y= − = . Thus we can split 

the Euclidian distance transform procedure into two steps. The first step is to scan columns and 
compute EDT for each column y . Second step consists on repeating the same procedure for 

each line.  
 

In the following we start by detailing these two steps: In the first step ( , )xG p y can be computed 

through the two following sub functions with 0 xb n∀ ≤ ≤ :  

( , ) min : ( , )T x x x xG p y p b b b y= − = ,  

( , ) min : ( , )B x x x xG p y b p b b y= − = .  

 

To compute ( , )T xG p y and ( , )B xG p y , we scan each column y  from top to bottom using the two 

following formula: ( , ) ( , 1) 1T x T xG p y G y p= − +  ( , ) ( , 1) 1B x B xG p y G y p= + + . Thus sequential 

algorithm of the first step can be written as follows. Complexity order is ( )n mο × . 
 

Algorithm 27 : E.D.T algorithm – 1
st
 Step – Original version [Meijster] 

Input : m:colums, n:lines, b:image 

1. Forall  [ ]1..0 −∈ my do 

2.       If ( ) By ∈,0 then [ ] 0..0 =yg  

3.                              else [ ] ∞=yg ..0  

4.       endif 

5.       /*  GT */ 

6.       for ( )1=x to ( )1−n do 

7.               if [ ] Byx ∈, then [ ] 0.. =yxg  

8.               else [ ] [ ] 1,1, ++= yxgyxg  

9.               endif 

10.       endfor 

11.       /*  GB */ 

12.       for ( )2−= nx downto ( )0 do 

13.               if [ ] [ ]yxgyxg ,,1 <+ then 

14.                   [ ] [ ] 1,1, ++= yxgyxg  

15.               endif 

16.      Endfor; endforall 
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Let’s move to the second step. We start by defining 2 2( , ) ( ) ( , )y xf p y p y G p y= − + .Then we can 

define ( ) min ( )EDT p f p y= − , 0 y m∀ ≤ ≤ . For each row u , we note that there is, for the 

same point p , the same value of ( , )f p y for different values of y , so we can introduce the 

concept of "region of column". 
 
Let S be the set of y points such that ( , )f p y is minimal and unique. The formula of S ,

0 y u∀ ≤ ≤ , is ( ) m in : ( , ) ( , )pS u y f p y f p i= ≤ . 0 i u u m∀ ≤ ≤ ∧ ≤ . Let T be the set 

of points with coordinate greater than, or equal to, horizontal coordinate of the intersection with 
a region: ( ) ( ( 1 ) , ) 1

xp p pT u S e p S u u= − + . 

 
Let ( , )Sep i u  be the separation between regions of i and u , defined by the following with 

2 2( ( , ) ( , ) )x xDif G p u G p i= −  :  
 

( , ) ( , )f p i f p u≤  
2 2 2 2( ) ( , ) ( ) ( , )y x y xp i G p i p u G p u⇔ − + ≤ − +  

2 2( , ) ( ) / 2( 1)
xp ySep i u u i Dif u p⇔ = − + − = . 

 

Thus lines will be processed, from left to right then from right to left. During the first term, 
from left to right, two vectors S and T will be created. These two vectors will contain 
respectively all regions and all intersections. During the second treatment, from right to left, we 
compute f for each value of S . For each respective values of T , f is computed. Algorithm 28 

is associated to second step. For the first term, complexity order is 2( )q m u+ − whereas 

complexity order of the second term is only m . 
 
The independence of data processing between rows and columns is the key to apply of SD&M 
parallelization strategy. In the first stage, column processing, we can define data 
interdependence by the following equation: 
 

{ }( , ) min ( , ), ( , )x T x B xG p y G p y G p y=  

{ }( , )0
( , )( , ) x

T x

if p y B
T x G p y elseG p y ∈⇔ =

 

{ }( , ) min ( 1, ), ( , )B x B x T xG p y G p y G p y⇔ = +
 

 

It follows that values of each column y of G, depends only on lines: xp , 1xp + and 1xp − . 

Similarly, at the second stage, we can introduce the following interrelationship: 
( ) ( , ( ))pEdt p f p S q= . Then (0 ), (0 ) ( )y u i u u m∀ ≤ ≤ ≤ ≤ Λ < , ( )pS u = min : ( , ) ( , )y f p y f p i≤ .  

Thus, if ( ( ))pu T q=  so ( 1)q q= − which imply the following: ( ) ( ( ), ) 1
xp p pT u Sep S q u= + .  
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Algorithm 28 : E.D.T algorithm - 2nd Step – Original version [Meijster] 

 

Input : b:image, g: G_Table, m: columns, n:lines 

1. Forall  [ ]1..0 −∈ nx do 

2.      0=q  

3.      [ ] 00 =s  

4.      [ ] 00 =t  

5.       /*  First part */ 

6.       for ( )1=u to ( )1−m do 

7.           [ ] [ ]( 0) (( , ), )A q f x t q s q = ≥ Λ    

8.           [ ](( , ), )B f x t q u=  

9.            while ( )A B> then ( 1)q q← +  

10.            end while 

11.             if ( 0)q < then ( 0)q ←  

12.                                       [ ]( 0 )s u←  

13.            else [ ]( , , ) 1w Sep s q u x← +  

14.                  if ( )w m< then ( 1)q q← +  

15.                                              [ ]s q u←  

16.                                               [ ]t q w←  

17.                  endif 

18.             endif 

19.          endfor 

20.         /*  Second part */ 

21.         for ( )1u m= − to ( )0 do 

22.               [ ] [ ], (( , ), )Edt x u f x u s q=  

23.                if [ ]( )u t q= then ( 1)q q← −  

24.                endif 

25.           Endfor 

26.    end Forall 

 

According to this formalization, values of ( , )f p i  and ( , )xSep i u are independent of modified 

data. So using two vectors S and T , a private variable q  for each line ensures complete 

independence in writing. We start applying the splitting step by sharing the columns and lines 
processing between multiple processors.  A thread can process one or more columns and the 
number of threads used will depend on the number of processors. The results returned by all 
threads in this first stage will be merged in order to start lines processing.  
 
In the following we introduce the parallel version of Meisjter algorithm for both steps. 

Associated algorithm complexity is ( )( ) /n m Nο × . ( )n m×  refers to image size and N refers to 

the number of processors. 
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Algorithm 29 : E.D.T algorithm - 1st Step – parallel version [Mahmoudi and Akil] 

1. For max( , , )y t y m y y t= < = + do 

2.       If ( ) By ∈,0 then [ ]0, 0g y ←  

3.                              else [ ]0,g y ←∞  

4.       endif 

5.       /*  GT */ 

6.       for ( )1=x to ( )1−n do 

7.               if [ ] Byx ∈, then [ ], 0g x y ←  

8.               else [ ] [ ], 1, 1g x y g x y← + +  

9.               endif 

10.       Endfor 

11.       /*  GB */ 

12.       for ( )2−= nx downto ( )0 do 

13.               if [ ] [ ]( 1, , )g x y g x y+ < then 

14.                    [ ] [ ], 1, 1g x y g x y← + +  

15.               endif 

16.      endfor 

17. Endforall 

 

Proposed parallel version of Meijster algorithm was implemented in C using OpenMP 
directives. Speedup for numbers of threads equal to 1, 2, 4, 8, and 16 were determined. The 
efficiency measure Ψ ( n ) is given by the following formula with n  the number of processors: 
Ψ ( n ) = seq. time /( n *p. time) (ii), already presented in section 2.4.1. 
 
Times were performed on eight-core (2× Xeon E5405) shared memory parallel computer, on 
Intel Quad-core Xeon E5335, on Intel Core 2 Duo E8400 and Intel mono-processor Pentium 4 

660. The minimum value of 5 timings was taken as most indicative of algorithm speed. More 
information about architectures characteristics are given in Table 20. 
 
Algorithm 30 : E.D.T algorithm - 2nd Step – parallel version [Mahmoudi and Akil] 

1. For max( , , )x t x n x x t= < = + do 

2.       0=q ;   [ ] 00 =s ; 

3.      [ ] 00 =t ; 

4.       /*  First part */ 

5.       for ( )1=u to ( )1−m do 

6.         [ ] [ ]( 0) (( , ), )A q f x t q s q ← ≥ Λ    

7.         [ ](( , ), )B f x t q u←  

8.          while ( )A B> do ( 1)q q← +  

9.          end while 

10.          if ( 0)q < then ( 0)q ←  

11.                                       [ ]( 0 )s u←  

12.          else [ ]( , , ) 1w Sep s q u x← +  

13.                  if ( )w m< then ( 1)q q← +  
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14.                                             [ ]s q u←  

15.                                              [ ]t q w←  

16.                  endif 

17.             endif 

18.          Endfor 

19.         /*  Second part */ 

20.         for ( )1u m= − downto ( )0 do 

21.               [ ] [ ], (( , ), )Edt x u f x u s q←  

22.                if [ ]( )u t q= then ( 1)q q← −  

23.                endif 

24.         endfor 

25.    end Forall 

 

The measurements were done on 2D binary image (512*512). If we can get a satisfactory 
outcome for this standard, it will be the same for smaller size images. View cache size limits, 
larger image will not be tested. Figure 35 shows that number of instructions to compute 
Euclidian distance drops from an average of 9.5x108 using 4SED algorithm down to 7.6x108 ms 
with Meijster algorithm. Despite the passage from a sequential version running on single core to 
a parallel version running on 8 processors, acceleration is only multiplied by 1.6 as shown in 
fig. 36 (a).This can be explained by the choke point between columns processing and lines 
processing. Waiting time between these two treatments significantly penalizes acceleration. 
Figure 36 (b) shows that efficiency variation depends on the number of threads. It is also 
proportional to the number of processors. Moving to 3, 5 or 7 threads (odd number) decreases 
significantly the efficiency which reaches its maximum each time that the number of threads is 
equal the number of processors. 

 

 

 

 

 

 

 

 

 
 
 

             Figure 35 : Evaluation of instruction distribution (Meijster Alg.) 
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      (a)                                                                                            (b)       

Figure 36: (a) Performance evaluation (b) Efficiency evaluation [Meisjter Algo.] 

 

5.2.3 Thinning and thickening computation  

 

Algorithms of thinning and thickening are almost the same. The only difference between them 
is the following: in thinning algorithm, destructible points are detected then their values are 
lowered. In thickening algorithm, constructible points, are detected then their values are 
increased. For parallelization, we will apply the same techniques introduced in previous chapter. 
Inspired from Couprie approach, we propose a similar version using two loops. Target points 
are initially detected then their value lowered or enhanced according to appropriate treatment. 
The set of their eight (or four) neighbors are copied into a "buffer" and rechecked. This 
treatment is repeated until stability. In the following, we present an adapted version of 
Couprie’s thinning algorithm. 
 

Algorithm 31 : Adapted Version Thinning Algo. [Mahmoudi and Akil] 

1. while ( [ ]input x is destructible) do 

2.      ( , 1)push x stack  

3.      1x x← +  

4.  EndWhile 

5. output input←  

6. While ( 1 ) (max 0)iterstack ≠ ∅ ∧ > do 

7.      While ( 1 )stack ≠ ∅ do 

8.             ( 1)x pop stack←  

9.              if ( [ ]output x is destructible) then 

10.                  [ ] _ ( )output x reduce pt x←  

11.                  ( , 2)push x stack  

12.              endif 

13.      end while 

14.      While ( 2 )stack ≠ ∅ do 

15.              ( 2)x pop stack←  

16.              ( )v neighbors x←  

17.              0i ←  

18.               While ( 8)i < do 

19.                    if [ ]( 1)v i stack∉  then 
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20.                       [ ]( , 1)push v i stack  

21.                    endif 

22.               EndWhile 

23.      EndWhile 

24.     max max 1iter iter← −  

25.  EndWhile 

 
Unfortunately direct application of introduced parallel processing is not possible with the set of 
all points. Some points, called critical points, cannot be eliminated in parallel because initial 
topology of the image may be broken. Figure 37 illustrates this case: Critical points of an input 
image (a) are identified in (b). If these points are deleted in one iteration (c) topology necessary 
is broken (d). To resolve this problem, we propose that research areas assigned to each thread 
must be composed of at least six lines (of the image). Each thread will use two buffers to treat 
each three lines thus four buffers are used to treat six lines as shown in fig 37 (e). 
 

 
Figure 37 : (a) (b) (c) (d) Critical point illustration (e) Research Area Assignment 

 
Through this organization threads can start running in parallel on Z11, Z21 and Z31. Once 
processing is completed threads can restart running on Z12, Z22 and Z32. In some cases, a 
neighbor of a destructible point is detected on the border of a contiguous area. To prevent that 
such neighbor escape to recheck, it must be injected to buffer of the right thread. Let’s suppose 
that a point p ∈Z2 is considered as destructible by T2, so its value will be lowered and its four 

neighbors { }1 2 3 4, , ,v v v v  should be rechecked. Neighbors { }1 2 4, ,v v v  belong to Z2 so they will be 

push in T2 buffers. The neighbor { }3v  belongs to Z3 so it will stack T3 buffers. 

 
Performance evaluation of introduced adapted version of Couprie’s algorithm is shown in fig.38 

(a) (b). On eight cores architecture, acceleration does not exceed 3.4. Such moderate result can 
be explained by critical borders processing.  Regarding efficiency, the best performance is 
achieved when the number of thread is equal to the number of processors. If this equality is not 
ensured, the efficiency decreases. The problem threads’ add number still persists. The next step 
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is to combine the parallel version of Meijster algorithm and the adapted version of Couprie’s 
algorithm to build the parallel processing of topological smoothing. 
 

 

 

 

 

 

 

 

      (a)                                                                           (b)       

        Figure 38 : (a) Performance Evaluation (b) Efficiency Evaluation [Couprie’s Algorithm]. 

5.3 Global analysis  
 

In this section, we present a global evaluation of the parallel smoothing operator. We start by 
presenting performance evaluations in terms of acceleration and efficiency. Then we evaluate 
cache memory consumption. 

5.3.1 Execution time  

 
We implemented two versions of the proposed parallel topological smoothing algorithm, the 
first one using ‘Symmetric Multiprocessing’ scheduler and the second one using ‘basic-NPS’ 
scheduler. Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8 and 16 were 
determined. The minimum value of 2 timings was taken as most indicative of algorithm speed. 
The measurements were done on 2D binary image (512*512). Results of the second 
implementation on the eight-core are shown in the following figure.  
 
 
 

 

 

 

 

 

 

 

Figure 39: Tasks distribution using ‘Basic-NPS’ [parallel topological smoothing] 
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We note that number of instructions drops from an average of 1879 x10
8 FI with a single thread 

down to 1652 x10
8 ms with 8 threads. As expected, the speed-up for the second implementation 

using ‘basic-NPS’ scheduler is higher than for the one using "Symmetric Multiprocessing" 
scheduler, thanks to balanced distribution of tasks. A remarkable result about speedup is also 
shown in fig. 40 (a). In fact, speed-up increases as we increase the number of threads beyond 
the number of processors in our machine (eight cores). In the first implementation, using 
"Symmetric Multiprocessing" scheduler, the speedup at 8 threads is 1.9±0.01. However, for the 
second implementation, using ‘basic-NPS’ scheduler, the speedup has increased to 5.2±0.01. 
Another common result between different architecture is stability of execution time on each n-
core machine since the code uses n or more threads. For better readability of our results, we 
tested also efficiency of our algorithm on various architectures (see fig. 40 (b)) using the ( )nψ

formula introduced earlier. For parallel time ratio we used best obtained time with 8 threads 
(‘basic-NPS’ scheduler). 

 

 

 

 

 

 

 

      (a)                                                                                            (b)       

             Figure 40 : (a) Global Performance improvement (b) Global efficiency improvement 

5.3.2 Cache memory evaluation  

 
As memory access is a principal bottleneck in current-day computer architectures, a key enabler 
for high performance is masking the memory overhead. If we starts from basic theory that two 
classic cache design parameters dramatically influence the cache performance: the block size 
and the cache associativity. So the simplest way to reduce the miss rate is to increase the block 
size even it increases the miss penalty. The second solution is to decrease associatively in order 
to decrease hit time thus to retrieve a block in an associative cache, the block must be searched 
inside of an entire set since there is more than one place where the block can be stored.  
 
Unfortunately, we are dealing with non-reconfigurable architectures with caches whose 
associativity and block size are predefined by the manufacturer. Nowadays, new approaches to 
reduce cache miss are developed such as taking advantage of locality of references to memory 
or using aggressive multithreading so that whenever a thread is stalled, waiting for data, the 
system can efficiently switch to execute another thread. Despite their power, the application of 
both approaches remains limited. In fact, applications of locality approach still experimental 
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even with Larrabee technology introduced by Intel. And the aggressive multithreading approach 
has been specially designed for graphics processing engines, which manage thousands of in-
flight threads concurrently. So it is not recommended for general SMP machines with limited 
number of processors and threads. With all these limitations, the most intuitive solution is to 
rely on the scheduling. Thanks to the ‘basic-NPS’ scheduler, we have balanced the charges then 
prevent context switching thus we minimize caches misses.  
 

 Intel P4 Intel Dual C. T1400 Intel C2 Quad Q9550 Intel Xeon E5405 

Num. of processor 1 2 4 2 x 4 

SMT Yes Yes Yes Yes 
Frequency 3,4 GHz 1,73 GHz 2,83  GHz 2,00 GHz 

L1 Instr. Cache 

Size 16Kb 32Ko 32Ko 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 32byte 32byte 32byte 32byte 

L1 Data Cache 

Size 16Kb 32Ko 32Ko 32Ko 

Asso. 8-way 8-way 8-way 8-way 
Block size 64byte 64byte 64byte 64byte 

L2 

Cache 

Size 2Mb 512Kb 6Mb 6Mb 

Asso. 8-way 8-way 8-way 8-way 

Block size 64byte 64byte 64byte 64byte 

RAM size 1Gb 2Gb 2Gb 8Gb 

Table 20 : Hardware configuration [parallel smoothing alg.] 

 

 

 

 

 

 

 

 

                                               (A-1)                                                                                                   (A-2) 

          Figure 41 : (A-1) Instruction - L1 misses; (A-2) zoom on (A-1) [parallel topological smoothing] 
 
In the following we present our experimental analysis. We consider a commonly used Intel 
processor configuration (More details are given by Table 20). Number of processor varies from 
one to eight. The frequency varies between 1,73 GHz and 3,4 GHz. The L1 caches have at least 
a 32-byte block size, while capacity vary between 16 Kbytes and 32 Kbytes, and for the 
associativity, only eight ways is considered. The L2 caches have at least a 64-byte block size, 
while capacities vary between 512 Kbytes and 6 Mbytes, and the associativity varies between 
two and twenty four ways. The scheduler relies on our basic-NPS scheduling policy. As a result 
of this experiment, see fig. 41 (A-1), we found that three performance regions are clearly 
evident: In the leftmost region, as long as the cache capacity can effectively serve the growing 
number of threads, increasing the number of threads improves performance, as more processors 
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are utilized. This area is generally identified as cache-efficiency zone. At some point, the cache 
becomes too small for the growing stream of access requests, so memory latency is no longer 
masked by the cache and instruction cache misses reduce more moderately. As the number of 
available threads again increases, the multithread efficiency zone (on the right) is reached, 
where adding more threads improves performance up to the maximal performance of the 
machine, or up to the bandwidth wall. Balanced workloads offer higher locality and better 
exploit the cache and hence expand the cache efficiency zone to the right and up.  
 
An outstanding example is given by the following table which summarizes number of L1 

instruction misses on Intel Dual Core T1400 architecture using SMP scheduling policy and 
Basic-NPS scheduling policy. We note that number of instruction misses drops from an average 
of 18844 L1 Instr. misses (using SMP) with two threads down to 6030 L1 Instr. misses (using 
Basic-NPS) usually with two threads. Here success rate is largely above the average of 50%. 
The same rate will be practically maintained when increasing the number of threads.  
 
Number of threads 1 2 3 4 5 6 7 8 

Instr. 

L1 misses 

Sym. Multi. Scheduler 10298 18844 19476 18638 19726 20058 20324 18946 

Basic-NPS scheduler 3307 6030 6262 6035 6437 7202 7804 7085 

(Symmetric Multiprocessing scheduler vs. Basic-NPS scheduler) 

Table 21 :   L2 – Instructions Misses [Topological smoothing] 

 

 

 

 

 

 

 

                                                  (A)                                                                                                 (B) 
           Figure 42 : (A) Data Read (B) Data Write - L1 misses [parallel topological smoothing] 

 

 
Moreover, the shape of the performance curve depends on how fast the cache hit rate degrades 
as a function of the number of threads. Any success access to L1 will eliminate an attempt to 
access to L2 thus performance curve, fig. 43 (A-1)(A-2), will evaluate in the same way. By 
reducing the number of cache miss from instruction cache, processor or thread of execution has 
not to wait (stall) until the instruction is fetched from main memory which immediately impact 
execution time.   
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                                              (B-1)                                                                                             (B-2) 

 

 

 

 

 

 

                                        

                                             (C-1)                                                                                             (C-2)                                                                                        

       Figure 43 : (A-1) Instruction (B-1) Data Read (B-1) Data Write - L2 misses 

 
Figures 42 (A) and fig. 43 (B-1) show so much load balancing and implicitly context switching 
between processes can affect performance in terms of reading data from caches. However, 
improvement in writing data, see fig. 42 (B) and fig. 43 (C-1), in two caches remains modest. 
When there are more computation instructions per memory access, performance climbs more 
steeply with additional threads. This is because as more instructions are available for each 
memory access, fewer threads are needed to fill the stall time resulting from waiting for 
memory. 
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5.4 Conclusion  
 
In this chapter, we have presented a new parallel computation method for topological smoothing 
through combining parallel computation of Euclidean Distance Transform using Meijster 
algorithm and parallel Thinning–Thickening processes using an adapted version of Couprie’s 
algorithm.  
 
Introduced smoothing filter is parallel, preserve the topology and suited for SMP 
implementation. SD&M strategy was applied twice. First time, when computation E.D.T, the 
splitting step starts by sharing columns and rows to scan between different processes. A thread 
can process one or more columns (rows). Number of threads will depend only on number of 
processors. Second time, when computing thinning (thickening), splitting step starts by dividing 
research area into different sub-region bounds. Since distribution start, each thread will lower 
each characterized pixel and then push its eight neighbors in available FIFO queue. Each queue 
contains the set of all selected neighbors and it is shared between only two threads. 
Unfortunately, obtained results using SMP scheduling policy, are not sufficient especially for 
cache consumption. For this reason, we move to PSN scheduler when distributing work. Finally 
we apply the same approach of fusion threads in pairs when computing E.D.T, thinning and 
thickening.  
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CONLUSION 

his chapter presents the conclusions of the thesis, an extended summary of the research 
work and restatements of contributions. Future work section summarizes the next steps 
to follow into the research of parallelization strategy. 

6.1 Contribution  
 

The main idea behind the present thesis is basically to identify the best approach to parallelize 
image processing operators based on topological transform. This approach, formally described 
as a strategy, was designed for shared memory parallel machines.    
 
Parallelization strategy is the science of planning and marshalling architecture resources for their 
most efficient and effective use. Its main objective is to provide a mechanism to design parallel 
algorithm by identifying existing concurrency, modifying their structure before any further 
implementation (with right techniques) takes place. The idea is to take into consideration 
algorithm characteristics and performance issues during parallel algorithm design from the 
beginning. So, introduced strategy (SD&M) aims to give a full description of parallel 
topological algorithm design approach, helping parallel designers to obtain powerful and 
enhanced computation method of topological transforms on shared memory parallel machines. If 
we consider a given topological operator, the parallelization strategy describes how such 
algorithm can be modified with respect of the following algorithmic characteristics: 
   

(i) Topology : structure allowing full topology preservation 
(ii) Processing: structure providing parallel processing functionalities and best work 

distribution. During parallel processing, structure assuring coordination and communication 
are also used.  

 
Thus, using SD&M strategy, a powerful parallel operator based on topological transform will be 
the result of restructuring and splitting original amount of work between different processor. 
Work distribution and processing activities take into account coordinating and communication. 
  
In more formal way, SD&M strategy can be described as the combination of divide and conquer 
patterns and event-based coordination patterns hence the name that we have assigned. Note that 
introduced strategy represents the last stitch in the decomposition chain of algorithm design 
patterns and it provides a fine-grained description of topological operators’ parallelization. It 
covers recursive algorithms and it is especially designed for shared memory architecture with 
uniform access. Although the cost of communication (Memory-processor and inter-processors) 
is high enough, shared memory architectures appear to be among adapted platforms for this type 
of processing. Actually, these architectures have the advantage of allowing immediate sharing of 
data with is very helpful in the conception of any parallelization strategy. They are non-
dedicated architecture using standard component (processor, memory, buses ...) so economically 

T
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reliable and they also offer some flexibility of use in many application areas, particular image 
processing. 
 
Based on this strategy, we proposed a series of parallel topological algorithm (new or adapted 
version). In the following we present our main contributions: 
 
Major contribution concern a new algorithm to compute watershed that is parallel, preserves the 
topology of the input image, does not need prior minima extraction and suited for SMP 
machines. This algorithm does not require any sorting step, or the use of any hierarchical queue. 
Links between parallel watershed-cut and the SD&M strategy application can be described as 
follow: The splitting step is applied directly on input graph when selecting sources. Unlike 
conventional technique of division such as pixel division, or block division, the source selection 
is completely random. Associated steam computing is fully parallel (read mode data accesses). 
Then distribution depends only on the available processors. This flexibility in data manipulation 
allowed us to obtain very good results especially in terms of efficiency without using the 'Basic-
NPS' scheduler. Finally, the merging step contains procedures of s-labeling and f-labeling. 
Through these two functions, we have remained confident in our approach for merging streams 
two by two. Experimental analyzes such as execution time, performance enhancement, cache 
consumption, efficiency and scalability are also presented and discussed. Note that proposed 
parallel watershed-cut algorithm was preceded by an intensive study of different watershed 
transform in the discrete case: WT based on flooding, WT based on path-cost minimization, 
watershed based on topology preservation, WT based on local condition and WT based on 
minimum spanning forest. For each approach, we give informal definition, then we presented 
processing procedure followed by mathematical foundations and the algorithm of reference. 
Recent publications based on some approach are also presented and discussed. This study led us 
to classification of watershed algorithms according to criteria of recursion, complexity, basins 
computing and topology preservation.    
 
Second contribution concern an adapted algorithm to compute skeleton that is parallel, preserves 
the topology of the input image and suited for SMP machines. Links between parallel 
watershed-cut and the SD&M strategy application can be described as follow: first step is 
dividing research area into different sub-region bounds. Since distribution start, each thread will 
lower each characterized pixel and then push its eight neighbors in available FIFO queue. Each 
queue contains the set of all selected neighbors and it is shared between only two threads. 
Conventional synchronization techniques such that lock-based shared FIFO queue have not 
given good results and performance of our algorithm remained modest. Therefore we have 
applied our approach based on spin-wait FIFO queue for better performance. Dynamic lambda 
skeleton algorithm becomes five times faster than original version proposed by Couprie and 
al.[8]. Tests on 2D grayscale image (512x512), using shared memory parallel machine (SMPM) 
with 8 CPUs cores (2 × Xeon E5405 running at frequency of 2 GHz), showed an enhancement 
of 6.2 with a maximum achieved cadency of 125 images/s using 8 threads. Note that proposed 
parallel lambda-skeleton algorithm was preceded by an intensive study of sixteen thinning 
algorithms in the frame work of critical kernels. We conclude this study by the classification of 
these algorithms according to five selection criteria: (i) preservation of topology, (ii) skeleton 



Chapter 6 | Conclusion 

105 | P a g e  

 

connectivity, (iii) skeleton symmetry, (iv) execution time and (v) cache consumption. Through 
this classification, we identified Couprie’s algorithm as the most suitable algorithm for 
parallelization on shared-memory architectures. 
 
Third contribution concern a new parallel computation method for topological smoothing 
through combining parallel computation of Euclidean Distance Transform using Meijster 
algorithm and parallel Thinning–Thickening processes using an adapted version of Couprie’s 
algorithm. Introduced smoothing filter is parallel, preserve the topology and suited for SMP 
implementation. SD&M strategy was applied twice. First time, when computing E.D.T, the 
splitting step starts by sharing columns and rows to scan between different processes. A thread 
can process one or more columns (rows). Number of threads will depend only on number of 
processors. Second time, when computing thinning (thickening), splitting step starts by dividing 
research area into different sub-region bounds. Since distribution start, each thread will lower 
each characterized pixel and then push its eight neighbors in available FIFO queue. Each queue 
contains the set of all selected neighbors and it is shared between only two threads. 
Unfortunately, obtained results using SMP scheduling policy, are not sufficient especially for 
cache consumption. For this reason, we move to PSN scheduler when distributing work. Finally 
we apply the same approach of fusion threads in pairs when computing E.D.T, thinning and 
thickening.   

6.2 Perspectives 
 

A possible extension of present work is the use of produced parallel algorithms and powerful 
multicore/multithread architectures to improve modern 3D medical imaging software in which 
segmentation procedure plays a crucial role. 
 
Applications based on multiple detector–row computed tomography (CT) provide huge high-
resolution volumetric datasets which is extremely hard to inspect without computer aided pre-
processing. Straka and al. [59] work aimed at visualization and treatment planning of peripheral 
arterial occlusive disease by means of CT-angiography. In fact, for the visualization and the 
diagnostic assessment of vascular disease it is useful if tissues in images are segmented. To 
highlight data volume and complexity of such application, note that CT-angiography of the 
peripheral arteries is performed using multiple–detector row computed tomography. Thus 
obtained series contain about 2000 transverse images (512x512-12bit/pixels). The analysis of 
such data volume using currently medical workstation takes about four hours. 

 
A first contribution to solve this problem is based on algorithmic solution proposed by Straka 
[59]. The basic idea of his method, for bone tissue labeling in computed tomography data, is 
reflected in the combined application of two techniques: a-prior knowledge derived from a 
density based probabilistic atlas is used to locate characteristic parts of bones and a watershed 
transform to identify spatially coherent sub volumes, regardless of their density. First step 
consist a pre-computed atlas of bone density information to assign a bone-probability to each 
voxel.  Second step consist on partition the whole volume in homogenous regions using the 
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watershed transform, followed by classification of 3D watershed regions using the previously 
acquired bone mask. Third step, masks are deleted to cope with partial volume effect.  
 
Even if this method is designed specifically for bone extraction (robustness and efficiency of the 
application is shown in fig. 45), Authors [59] believe that it is applicable for a large class of 
software where object that might have variable densities throughout the dataset need to be 
identified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                           (a)                                                     (b) 

 
 
 
 
 
 
 
 
 
 
 
 

                                           (c)                                                     (d) 

 (a) Maximum Intensity Projection (MIP) of the original dataset, (b) MIP, bone tissue partially removed using mask 
obtained with probabilistic atlas. (c) MIP, bone tissue removed using mask extended with 3D watershed transform, 

(d) MIP, bone tissue removed using the dilated mask. (Patella and sacro-coccygeal bone not modeled).[59] 

Figure 44 : Illustration of 3D Watershed Transform application for Medical Image Segmentation 
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Other application on modern 3D medical imaging turns around cardiology software. In many 
clinical applications, it is essential to obtain precise information on the size and the function of 
the left ventricle (LV). Trough 3D images acquisition at different times of the heart cycle, 
Magnetic Resonance (MR) imagery offers a complete and perfect morphological left ventricle 
characterization. High precision in extracted measures make Magnetic Resonance imagery the 
method of reference in left ventricle study and analysis. But like any application with high 
precision in medical imaging, generated volume of data is very large. Thus, segmentation of 
such datasets is not only complex but also very expensive.  
 
Based on this segmentation framework, Jean Cousty [1,115] provides a new automated method 
to segment the left ventricular myocardium in 4D (3D+t) cine-MR images, see fig. 45. For 
object recognition, he used Exact Euclidean distance transforms to take into account prior 
geometric properties and Homotopic transforms to guarantee topological soundness of the 
segmentations. In order to assure time continuity of the successive 3D objects, he used a 
watershed transform that can be applied directly on the 4D sequence considered as a whole. To 
this end, he considered the watershed cuts in the watershed transform, and a temporal 
component of a 3D+t image gradient. 
 
In the future, we plan to study this application and revisit used algorithms: replacing the 
watershed algorithm by the parallel watershed-cut to assess, in practice, the contribution of this 
alternative. 
 
 
 
 
 
 
 
 
 
 

                         (a)                                       (b)                                              (c) 

 
(a) Schematic view of three orthogonal sections of the objects of interest in left ventricle images (b) Three 

orthogonal section of 3D MR images of the left ventricle. (c) A three dimensional rendering of these objects of 
interest [115] 

 

Figure 45 : Illustration of 4D Watershed Transform application for Medical Image Segmentation 
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