

PARIS-EST UNIVERSITY
DOCTORAL SCHOOL MSTIC

A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy
In Computer Science

Presented by Ramzi MAHMOUDI

Advised by Mohamed AKIL

Common parallelization strategy of topological
operators on SMP machines

September 20111

Committee in charge:

- Committee chair: Gilles Bertrand, Professor at ESIEE Engineering, Paris, FR
- First reviewer: Jean Luc GAUDIOT, Professor at the University of California Irvine, USA
- Second reviewer: Olivier DEFORGES, Professor at the University of INSA, Rennes, FR
- First reader : Antoine MANZANERA, Associated-Professor at ENSTA, France
- Director : Mohamed Akil, Professor at ESIEE Engineering Paris, France

1
 Last version : October 10, 2011

2 | P a g e

3 | P a g e

ABSTRACT

Topological features of an object are fundamental in image processing. In many applications,
including medical imaging, it is important to maintain or control the topology of the image. However
the design of such transformations that preserve topology and geometric characteristics of the input
image is a complex task, especially in the case of parallel processing.

Parallel processing is applied to accelerate computation by sharing the workload among multiple
processors. In terms of algorithm design, parallel computing strategies profits from the natural
parallelism (called also partial order of algorithms) present in the algorithm which provides two main
resources of parallelism: data and functional parallelism. Concerning architectural design, it is
essential to link the spectacular evolution of parallel architectures and the parallel processing. In
effect, if parallelization strategies become necessary, it is thanks to the considerable improvements in
multiprocessing systems and the rise of multi-core processors. All these reasons make
multiprocessing very practical. In the case of SMP machines, immediate sharing of data provides
more flexibility in designing such strategies and exploiting data and functional parallelism, notably
with the evolution of interconnection system between processors.

In this perspective, we propose a new parallelization strategy, called SD&M (Split Distribute and
Merge) strategy that cover a large class of topological operators. SD&M has been developed in order
to provide a parallel processing for many topological transformations.

Based on this strategy, we proposed a series of parallel topological algorithm (new or adapted
version). In the following we present our main contributions:

(i) A new approach to compute watershed transform based on MSF transform, that is parallel,
preserves the topology, does not need prior minima extraction and suited for SMP machines.
Proposed algorithm makes use of Jean Cousty streaming approach and it does not require any sorting
step, or the use of any hierarchical queue. This contribution came after an intensive study of all
existing watershed transform in the discrete case.

(ii) A similar study on thinning transform was conducted. It concerns sixteen parallel thinning
algorithms that preserve topology. In addition to performance criteria, we introduce two qualitative
criteria, to compare and classify them. New classification criteria are based on the relationship
between the medial axis and the obtained homotopic skeleton. After this classification, we tried to
get better results through the proposal of a new adapted version of Couprie’s filtered thinning
algorithm by applying our strategy.

(iii) An enhanced computation method for topological smoothing through combining parallel
computation of Euclidean Distance Transform using Meijster algorithm and parallel Thinning–
Thickening processes using the adapted version of Couprie’s algorithm already mentioned.

KEYWORDS: PARALLELIZATION STRATEGY, PARALLEL PROCESSING, TOPOLOGY, WATERSHED,
SKELETON, SMOOTHING, SHARED MEMORY, THREADS COORDINATION

4 | P a g e

RÉSUMÉ

Les caractéristiques topologiques d’un objet sont fondamentales dans le traitement d’image. Dans
plusieurs applications, notamment l’imagerie médicale, il est important de préserver ou de contrôler
la topologie de l’image. Cependant la conception de telles transformations qui préservent à la foi la
topologie et les caractéristiques géométriques de l’image est une tache complexe, en particulier dans
le cas du traitement parallèle.

Le principal objectif du traitement parallèle est d’accélérer le calcul en partagent la charge de travail
à réaliser entre plusieurs processeurs. Si on approche cet objectif sous l’angle de la conception
algorithmique, les stratégies du calcul parallèle exploite l’ordre partiel des algorithmes, désigné
également par le parallélisme naturel qui présent dans l’algorithme et qui fournit deux principales
sources de parallélisme : le parallélisme de données et le parallélisme fonctionnelle.

De point de vue conception architectural, il est essentiel de lier l'évolution spectaculaire des
architectures parallèles et le traitement parallèle. En effet, si les stratégies de parallèlisation sont
devenues nécessaire, c'est grâce à des améliorations considérables dans les systèmes de
multitraitement ainsi que la montée des architectures multi-core. Toutes ces raisons font du calcule
parallèle une approche très efficace. Dans le cas des machines à mémoire partagé, il existe un autre
avantage à savoir le partage immédiat des données qui offre plus de souplesse, notamment avec
l'évolution du système d'interconnexion entre processeurs, dans la conception de ces stratégies et
l'exploitation du parallélisme de données et le parallélisme fonctionnel.

Dans cette perspective, nous proposons une nouvelle stratégie de parallèlisation, baptisé SD&M
(Split, Distribute and Merge) stratégie qui couvrent une large classe d'opérateurs topologiques.
SD&M a été développée afin de fournir un traitement parallèle de tout opérateur basée sur la
transformation topologique. Basé sur cette stratégie, nous avons proposé une série d'algorithmes
topologiques parallèle (nouvelle version ou version adapté). Nos principales contributions sont :

(i) Une nouvelle approche pour calculer la ligne de partage des eaux basée sur ‘MSF transform’.

L’algorithme proposé est parallèle, préserve la topologie, n'a pas besoin d'extraction préalable de
minima et adaptée pour les machines parallèle à mémoire partagée. Il utilise la même approche
de calcule de flux proposé par Jean Cousty et il ne nécessite aucune étape de tri, ni l'utilisation
d'une file d'attente hiérarchique. Cette contribution a été précédé par une étude intensive des
algorithmes de calcule de la ligne de partage des eaux dans le cas discret.

(ii) Une étude similaire sur les algorithmes d'amincissement a été menée. Elle concerne seize

algorithmes d'amincissement qui préservent la topologie. En sus des critères de performance,
nous somme basé sur deux critères qualitative pour les comparer et les classés. Après cette
classification, nous avons essayé d'obtenir de meilleurs résultats grâce avec une version adaptée
de l'algorithme d'amincissement proposé par Michel Couprie.

(iii) Une méthode de calcul amélioré pour le lissage topologique grâce à la combinaison du calcul

parallèle de la distance euclidienne (en utilisant l'algorithme Meijster) et l’amincissement/
épaississement parallèle (en utilisant la version adaptée de l'algorithme de Couprie déjà
mentionné).

MOTS CLES: STRATÉGIE DE PARALLELISATION, TRAITEMENT PARALLELE, LA TOPOLOGIE, DES
BASSINS VERSANTS, SKELETON, LISSAGE, LA MEMOIRE PARTAGEE, FILS DE COORDINATION

5 | P a g e

ACKNOWLEDGEMENTS / REMERCIEMENTS

En premier lieu, je tiens à remercier particulièrement et à témoigner toute ma reconnaissance à
professeur Mohamed AKIL, qui m’a accompagner toutes ces années. Il a su dirigé mes travaux de
recherche tout en me laissant suffisamment d’autonomie. Je le remercie pour son beau sens d’écoute
et sa patience face à mon atonie lors des moments difficiles de rédactions et de révision des articles.
Merci professeur AKIL de m’avoir enseigné la science et m’avoir appris à aimer la recherche.

Je remercie également professeur Jean-Luc GAUDIOT et professeur Olivier DEFORGES qui
m’ont fait l’honneur d’être rapporteur de mon manuscrit de thèse. J’adresse mes plus sincères
remerciements à professeur Antoine MANZANERAT qui a accepté de consacrer du temps à la
relecture de ce manuscrit. Mes profonds remerciements s’adressent également à professeur Gilles

BERTRAND qui m’a fait l’honneur d’accepter la présidence du jury.

Je remercie très vivement touts les membres du laboratoire A3SI, chercheurs, techniciens, et
étudiants en thèse pour leur accueil chaleureux. Un grand merci à Thierry, Laurent, Eric, Christophe,
Eva, Christine, Jean-Claude, Michel, Denis, Rostom, Jean, Dalila, John, Imran, Oussama… Sachez
que je garderai un très bon souvenir de nos discussions au tour du café, du repas, ou du barbecue …

Mes remerciements s'adressent plus spécialement à ceux, invisibles, qui m’ont soutenu et cru en
moi : Merci à mes parents, mon frère et mes sœurs pour leur amour inconditionnel, leur soutien et
tout ce qu'ils m'ont apporté mais dont ils n'ont qu'une toute petite idée. Merci à celle qui m’a
enseigné que l’amour ne s’apprend pas dans les livres et qui m’a offert le plus beau cadeau du
monde, mes deux filles Nersrine et Lina : Un merci très spécial à ma femme Marina qui m’a
accompagné durant la préparation de cette thèse. Je lui suis très reconnaissant pour sa patience et ses
encouragements dans mes moments de doute.

6 | P a g e

PUBLICATIONS

Some of the work explained in this thesis was already presented in the following publications:

International journals:

- Mahmoudi, R. and Akil, M., “Enhanced Computation Method of Topological Smoothing on
SMP Machines” EURASIP JOURNAL – Real Time Image processing on Multi-Cores
FPGA-based Platforms. (22 p.) [Published]

- Mahmoudi, R. and Akil, M., “The watershed transform”, IJIP JOURNAL - International

Journal of Image Processing, Volume 5, Issue 4, 2011. (21 p.) [Published]

International conferences:

- Mahmoudi, R., and Akil, M., “Image segmentation based upon topological operators: real-
time implementation case study”, IS&T/SPIE Electronic Imaging conf., Paper 7244-1,
Volume 7244, 2008, San Jose, California, USA (12 pages) [Published]

- Mahmoudi, R., Akil, M., and Matas, P., “Parallel Image Thinning through Topological

Operators on Shared Memory Parallel Machines”, 43rd Asilomar Conf. on Signals, Systems,
and Computers., Paper 1327,2009, Pasific Grove, California, USA (13 pages) [Published]

- Mahmoudi, R. and Akil, M., “Real Time Topological Image Smoothing On Shared Memory

Machines”, IS&T/SPIE Electronic Imaging conf., Paper 7871-9, Volume 7247, 2011, San
Francisco, California, USA (12 pages) [Published]

- Mahmoudi, R., and Akil, M., “Lissage homotopique parallèle sur des architectures

multicoeurs à mémoire partagée”, AMINA conf. and Workshop, Paper 60, 2010, Monastir,
TN (9 pages) [INVITED]

- Mahmoudi, R. and Akil, M., “Thinning Algorithms Classification”, CIAE Conf and

Workshop, Paper 8, 2011, Casablanca, Ma (4 pages) [INVITED]

7 | P a g e

8 | P a g e

CONTENTS

ABSTRACT .. 3

RÉSUMÉ ... 4

ACKNOWLEDGEMENTS / REMERCIEMENTS .. 5

PUBLICATIONS .. 6

CONTENTS .. 8

LIST OF FIGURES ... 10

LIST OF TABLES .. 11

LIST OF DEFINITIONS ... 12

LIST OF ALGORITHMS ... 13

INTRODUCTION ... 14

1.1 Context and motivations .. 14

1.2 Contributions ... 15

1.3 Report organization ... 17

PARALLELIZATION STRATEGY ... 18

2.1 Lack of common parallelization strategy for topological operators .. 19

2.2 Fundamental basis for parallelization .. 19

2.3 Classification of SD&M strategy .. 22

2.4 SD&M strategy conception ... 23

2.4.1 The splitting phase ... 24

2.4.2 Distribution phase .. 27

2.4.3 The Merging phase .. 34

2.5 Conclusion ... 36

TOPOLOGICAL WATERSHED.. 37

3.1 Watershed transformations .. 37

3.1.1 Watershed based on flooding .. 39

3.1.2 Watershed based on path-cost minimization ... 42

3.1.3 Topological watershed ... 47

3.1.4 Watershed transform based on local condition .. 50

3.1.5 Watershed transform based on minimum spanning forest... 52

3.2 Classification of watershed algorithms .. 54

3.3 Construction of parallel topological watershed ... 55

3.3.1 Basic notions and definitions ... 56

3.3.2 Parallel stream computing ... 57

9 | P a g e

3.4 Performance testing ... 61

3.5 Conclusion ... 67

TOPOLOGICAL THINNING ... 69

4.1 Classification of thinning algorithms .. 70

4.2 Parallel lambda-skeleton algorithms ... 78

4.2.1 Theorical background .. 78

4.2.2 Illustration of original algorithm ... 79

4.2.3 Parallel thinning algorithm .. 80

4.2.4 Experimental analysis .. 81

4.3 Conclusion ... 83

TOPOLOGICAL SMOOTHING .. 84

5.1 Theoretical background ... 84

5.2 Parallel smoothing filter .. 87

5.2.1 Study on Euclidean distance algorithms .. 88

5.2.2 Parallelization of Meijster algorithm ... 90

5.2.3 Thinning and thickening computation ... 95

5.3 Global analysis .. 97

5.3.1 Execution time ... 97

5.3.2 Cache memory evaluation ... 98

5.4 Conclusion ... 102

CONCLUSION ... 103

6.1 Contributions ... 103

6.2 Perspectives ... 105

BIBLIOGRAPHY ... 108

10 | P a g e

LIST OF FIGURES

FIGURE 1 : OVERVIEW OF PARALLEL COMPUTING STEPS.. 20
FIGURE 2 : CIRCLE OF DECISION FOR THE ALGORITHM STRUCTURE DESIGN SPACE ... 23
FIGURE 3 : SD&M STRATEGY DESIGN .. 24
FIGURE 4 : AUTO-SUPPLYING TASK SYSTEM ... 29
FIGURE 5: ILLUSTRATION OF TASK DISTRIBUTION ON MULTI-CORE ARCHITECTURE .. 30
FIGURE 6: SPIN-WAIT SYNCHRONIZATION ... 33
FIGURE 7: ILLUSTRATION OF MERGING PHASE WITH FOUR THREADS ... 34
FIGURE 8 : WATERSHED APPLICATION 1979-2003 ... 38
FIGURE 9 : STREAM NOTION ILLUSTRATION FOLLOWING COUSTY APPROACH [1]. ... 56
FIGURE 10 : WATERSHED COMPUTING PRINCIPAL .. 57
FIGURE 11 : FLOW COMPUTE ILLUSTRATION ... 58
FIGURE 12 : MERGING ILLUSTRATION ... 59
FIGURE 13 : MERGING TECHNIQUES .. 60
FIGURE 14 : (A) EXECUTION TIME (B) PERFORMANCE IMPROVEMENT [PARALLEL WATERSHED ALGO.] 63
FIGURE 15 : CACHE PROFILING [PARALLEL WATERSHED] .. 64
FIGURE 16 : EFFICIENCY IMPROVEMENT [PARALLEL WATERSHED ALGO.] ... 65
FIGURE 17 : PERFORMANCE IMPROVEMENT FOR PARALLEL WATERSHED .. 67
FIGURE 18 : SEGMENTATION CHAIN BASED ON PARALLEL WATERSHEDS-CUT ... 68
FIGURE 19: USED SHAPES FOR THINNING ALGORITHMS COMPARISON [79] .. 70
FIGURE 20: ALGORITHM CLASSIFICATION ACCORDING TO SKELETON CONNECTIVITY CRITERIA (C1) 71
FIGURE 21: ALGORITHM CLASSIFICATION ACCORDING TO SKELETON SYMMETRY CRITERIA (C2) 72
FIGURE 22: EXECUTION TIME - SERIAL VERSIONS ON MONOCORE MACHINE [THINNING ALGO.] ... 73
FIGURE 23: CACHE PROFILING OF SERIAL VERSIONS ON MONOCORE MACHINE [THINNING ALGO.] 74
FIGURE 24: GUO AND HALL MASKS ... 75
FIGURE 25: JANG AND CHIN MASKS ... 77
FIGURE 26: BERNARD AND MANZANERA MASKS ... 77
FIGURE 27 : FILTERED SKELETON ILLUSTRATION [THINNING ALG.] .. 79
FIGURE 28 : EXECUTION TIME [PARALLEL THINNING] .. 81
FIGURE 29 : PERFORMANCE IMPROVEMENT [PARALLEL THINNING] ... 82
FIGURE 30 : EFFICIENCY IMPROVEMENT [PARALLEL LAMBDA SKELETON] .. 82
FIGURE 31 : ILLUSTRATION ON DYNAMIC LAMBDA SKELETON PROCESS ... 83
FIGURE 32 : SMOOTHING ILLUSTRATION.. 86
FIGURE 33 : OVERALL STRUCTURE [ORIGINAL SMOOTHING ALGORITHM] ... 87
FIGURE 34 : EXECUTION TIME [DANIESLSON, CUISENAIRE AND MEIJSTER ALGO.] ... 89
FIGURE 35 : EVALUATION OF INSTRUCTION DISTRIBUTION (MEIJSTER ALG.) .. 94
FIGURE 36: (A) PERFORMANCE EVALUATION (B) EFFICIENCY EVALUATION [MEISJTER ALGO.] .. 95
FIGURE 37 : (A) (B) (C) (D) CRITICAL POINT ILLUSTRATION (E) RESEARCH AREA ASSIGNMENT .. 96
FIGURE 38 : (A) PERFORMANCE EVALUATION (B) EFFICIENCY EVALUATION [COUPRIE’S ALGORITHM]. 97
FIGURE 39: TASKS DISTRIBUTION USING ‘BASIC-NPS’ [PARALLEL TOPOLOGICAL SMOOTHING] ... 97
FIGURE 40 : (A) GLOBAL PERFORMANCE IMPROVEMENT (B) GLOBAL EFFICIENCY IMPROVEMENT 98
FIGURE 41 : (A-1) INSTRUCTION - L1 MISSES; (A-2) ZOOM ON (A-1) [PARALLEL TOPOLOGICAL SMOOTHING] 99
FIGURE 42 : (A) DATA READ (B) DATA WRITE - L1 MISSES [PARALLEL TOPOLOGICAL SMOOTHING] 100
FIGURE 43 : (A-1) INSTRUCTION (B-1) DATA READ (B-1) DATA WRITE - L2 MISSES ... 101
FIGURE 44 : ILLUSTRATION OF 3D WATERSHED TRANSFORM APPLICATION FOR MEDICAL IMAGE SEGMENTATION 106
FIGURE 45 : ILLUSTRATION OF 4D WATERSHED TRANSFORM APPLICATION FOR MEDICAL IMAGE SEGMENTATION 107

11 | P a g e

LIST OF TABLES

TABLE 1 : PROCESSORS PERFORMANCE EVOLUTION .. 19
TABLE 2 : BASIC DEFINITIONS OF PROCESSING TIME .. 25
TABLE 3 : COMPARISON BETWEEN MAIN WATERSHED TRANSFORM ... 55
TABLE 4 : TESTED IMAGE [PARALLEL WATERSHED] .. 61
TABLE 5 : USED PROCESSORS FEATURES [PARALLEL WATERSHED ALG.] ... 62
TABLE 6 : WALL CLOCK (MS) – [PARALLEL WATERSHED ALG.] ... 62
TABLE 7 : PERFORMANCE IMPROVEMENT [PARALLEL WATERSHED ALG.] ... 62
TABLE 8 : CACHE PROFILING [PARALLEL WATERSHED] .. 64
TABLE 9 : EFFICIENCY IMPROVEMENT [PARALLEL WATERSHED ALGO.] ... 65
TABLE 10 : MAXIMUM AVERAGE UNIT SPEED [PARALLEL WATERSHED] .. 65
TABLE 11 : AVERAGE SPEED UNIT [PARALLEL WATERSHED ALGO.]... 66
TABLE 12 : SCALABILITY PROFILING [PARALLEL WATERSHED ALGO.] .. 66
TABLE 13 : CLASSIFICATION OF THINNING ALGORITHM ACCORDING TO TOPOLOGY PRESERVATION 69
TABLE 14 : EVALUATION OF PIXELS’ SKELETON (AI) AND (NI) [79] ... 71
TABLE 15 : EVALUATION OF MEDIAL AXIS (REFERENCE) PIXELS (RI) [79] .. 72
TABLE 16 : TOP FIVE THINNING ALGORITHM ACCORDING TO SKELETON CONNECTIVITY AND SYMMETRY 72
TABLE 17 : USED PROCESSORS FEATURES [THINNING ALG.].. 73
TABLE 18 : CLASSIFICATION OF THINNING ALGORITHM .. 75
TABLE 19 : TIME EXECUTION RATE [SMOOTHING ALGORITHM] ... 88
TABLE 20 : HARDWARE CONFIGURATION [PARALLEL SMOOTHING ALG.] .. 99
TABLE 21 : L2 – INSTRUCTIONS MISSES [TOPOLOGICAL SMOOTHING] .. 100

12 | P a g e

LIST OF DEFINITIONS

DEFINITION (1): FINDING CONCURRENCY DESIGN SPACE ... 20
DEFINITION (2): ALGORITHM DESIGN SPACE .. 21
DEFINITION (3): ARCHITECTURE DESIGN SPACE ... 21
DEFINITION (4): PARALLEL IMPLEMENTATION MECHANISMS ... 22
DEFINITION (5): PERFORMANCE METRICS OF PARALLEL PROGRAMS .. 22
DEFINITION (6): DIVIDE AND CONQUER PATTERN ... 24
DEFINITION (7): EVENT-BASED COORDINATION .. 24
DEFINITION (8): SCALABILITY .. 25
DEFINITION (9): SPEEDUP-(1ST

 EQUATION) ... 25
DEFINITION (10): SPEEDUP-(AMDAHL APPROACH) ... 26
DEFINITION (11): SPEEDUP-(2ND

 EQUATION) .. 26
DEFINITION (12): SPEEDUP-(3D

 EQUATION) ... 26
DEFINITION (13): EFFICIENCY ... 28
DEFINITION (14): PORTABILITY .. 32
DEFINITION (15): THRESHOLD SET OF (F) AT LEVEL (ALT) [VINCENT AND SOILLE] .. 39
DEFINITION (16): FLOODING WATERSHED .. 39
DEFINITION (17): THRESHOLD SET OF (F) AT LEVEL (ALT) [SHENGCAI AND LIXU] ... 41
DEFINITION (18): SET OF ALL CONNECTED NEIGHBOR [SHENGCAI AND LIXU] ... 42
DEFINITION (19): LOWER SLOPE OF (F) AT A PIXEL P [ROERDINK AND AL.] .. 43
DEFINITION (20): COST FUNCTIONS [ROERDINK AND AL.] .. 43
DEFINITION (21): TOPOGRAPHIC WATERSHED [ROERDINK AND AL.] ... 43
DEFINITION (22): MAX-ARC PATH-COST FUNCTION [FALCÃO AND AL.] .. 45
DEFINITION (23): SPANNING FOREST [FALCÃO AND AL.] ... 45
DEFINITION (24): ARC WEIGHT FUNCTIONS .. 46
DEFINITION (25): PATH-COST FUNCTIONS [LOTUFO AND AL.] ... 46
DEFINITION (26): TOPOLOGICAL WATERSHED [COUPRIE AND BERTRAND] .. 47
DEFINITION (27): SIMPLE POINT [COUPRIE AND BERTRAND] .. 47
DEFINITION (28): TOPOLOGICAL WATERSHED [COUPRIE AND BERTRAND] .. 48
DEFINITION (29): WATERSHED BASED ON LOCAL CONDITION [AUDIGIER AND LOTUFO] .. 50
DEFINITION (30): MINIMAL ALTITUDE OF AN EDGE [COUSTY AND AL.] .. 53
DEFINITION (31): PROXIMITY OF THE SKELETON FROM MEDIAL AXIS (MM) ... 70
DEFINITION (32): SKELETON CONNECTIVITY CRITERIA (C1) ... 71
DEFINITION (33): SKELETON SYMMETRY CRITERIA (C2) ... 72

13 | P a g e

LIST OF ALGORITHMS

ALGORITHM 1 : SCHEDULING POLICY [MAHMOUDI AND AKIL] ---31
ALGORITHM 2 : MERGING ALGORITHM [MAHMOUDI AND AKIL] --35
ALGORITHM 3 : FLOODING WATERSHED PROCESS --39
ALGORITHM 4 : FLOODING WATERSHED [VINCENT & SOILLE] ---40
ALGORITHM 5 : WATERSHED BY TOPOGRAPHIC DISTANCE PROCESS ---42
ALGORITHM 6 : WATERSHED BY TOPOGRAPHIC DISTANCE [MEYER] --44
ALGORITHM 7 : IFT ALGORITHM [FALCO AND AL.] ---45
ALGORITHM 8 : IFT – WATERSHED FROM MARKERS [LOTUFO] --46
ALGORITHM 9 : TOPOLOGICAL WATERSHED PROCESS ---47
ALGORITHM 10 : W-DESTRUCTIBLE FUNCTION [COUPRIE AND AL.] --48
ALGORITHM 11 : HIGHESTFORK FUNCTION [COUPRIE AND AL.] ---48
ALGORITHM 12 : TOPOLOGICAL WATERSHED [COUPRIE] --49
ALGORITHM 13 : TOBOGGAN WATERSHED PROCESS ---51
ALGORITHM 14 : TOBOGGAN ALGORITHM [LIN AND AL.] ---51
ALGORITHM 15 : RESOLVE FUNCTION [LIN AND AL.] --52
ALGORITHM 16 : WATERSHED-CUTS ALGORITHM [COUSTY AND AL.] ---53
ALGORITHM 17 : STREAM FUNCTION [COUSTY AND AL.] --54
ALGORITHM 18 : PARALLEL WATERSHED-CUT [MAHMOUDI AND AKIL.] --58
ALGORITHM 19 : FUNCTION S-LABELING [MAHMOUDI AND AKIL] ---59
ALGORITHM 20 : FUNCTION F-LABELING [MAHMOUDI AND AKIL] ---60
ALGORITHM 21 : THINNING ALGORITHM – SECOND VERSION [GUO AND HALL]--75
ALGORITHM 22 : THINNING ALGORITHM [ECKHARDT AND MADERLECHNER] --76
ALGORITHM 23 : THINNING ALGORITHM [COUPRIE, BEZERRA AND BERTRAND] --76
ALGORITHM 24 : THINNING ALGORITHM [JAN AND CHIN]---77
ALGORITHM 25 : THINNING ALGORITHM [BERNARD AND MANZANERA] --77
ALGORITHM 26 : DYNAMICALLY PARALLEL Λ –SKELETON [MAHMOUDI AND AKIL] --80
ALGORITHM 27 : E.D.T ALGORITHM – 1ST

 STEP – ORIGINAL VERSION [MEIJSTER] ---90
ALGORITHM 28 : E.D.T ALGORITHM - 2ND STEP – ORIGINAL VERSION [MEIJSTER] --92
ALGORITHM 29 : E.D.T ALGORITHM - 1ST STEP – PARALLEL VERSION [MAHMOUDI AND AKIL] -------------------------------93
ALGORITHM 30 : E.D.T ALGORITHM - 2ND STEP – PARALLEL VERSION [MAHMOUDI AND AKIL] ------------------------------93
ALGORITHM 31 : ADAPTED VERSION THINNING ALGO. [MAHMOUDI AND AKIL] --95

14 | P a g e

INTRODUCTION

1.1 Context and motivations

maging applications including medical imaging (MRI2 scan, PET3 scan, SPECT4 scan)
2D/3D (even 4D in some cases) implement different steps: acquisition (raw format), pre-
processing, processing, analysis, interpretation and display of results. The growing needs for

such applications, variety and complexity of their algorithms, new requirements in terms of
performance and quality, require the development of new methods, supports and packaged
software implementation of these application on new multi-processor based-architecture5 that
offer more computing power. Such software design flow must include all processing steps from
high level specification (algorithm specification) to the low level specification (optimized
implementation based on parallel code distributed between different processors of the platform)
with respect of real-time constraints such that throughput and latency.

Discrete topology offers a range of essential tools in image processing thus applications in
medical imaging calls several algorithms based on topological transformation (these algorithms
have the specificity to process over input image while preserving its topology which allows
keeping some important information intact). But the increasing size of processed data, due to the
improved of capture devices resolution, and constraints in terms of processing time, make the
development of such standard application very complex. Indeed, computing power required for
these applications currently uses parallel architectures as new computer machines (for reasons of
cost and availability). Only parallel processing provides a cost effective solution for this
required power by increasing the number of processors and adding an efficient communication
system between them which makes coding more complicated: exploring, in optimal way,
intra/inter processors parallelism and work distribution among different threads. The
availability, on SMP6 machines, of multi-core processor / RISC-based cores (where the work-
load can be shared between different processors) makes it necessary to study and develop
appropriate and effective parallelization strategies of such image processing algorithms for this
type of machine. However, there is no parallelization strategy common to a set of algorithms
based on topological operators to efficiently implement these algorithms on parallel machines.
This strategy unifies the optimized implementation of parallel algorithms on these specific
architectures via parallelization, work-load distribution and effective management of memory
hierarchy. We therefore propose to study and formalize such parallelization strategy and define
suitability metrics to assess performance on this type of architecture.

2
 Magnetic Resonance Imaging

3
 Positron Emission Tomography

4
 Single Photon Emission Computed Tomography

5
 Architecture interconnecting many processors: parallel processors (multi-core processor), parallel specific processors

(Graphic Processor Unit).
6
 Shared Memory Parallel machines

I

Chapter 1 | Introduction

15 | P a g e

1.2 Contributions

Research presented in this manuscript has been done in the Gaspard-Monge computer science
research laboratory (LIGM) of Paris-Est University, ESIEE A3SI team, CNRS-UMLV-ESIEE
(UMR 8046).

We frame our work in the field of algorithms based on topological transformation in order to
study their parallelization on shared memory parallel machines (SMP machines).

Topological features of an object are fundamental in image processing. In many applications,
including medical imaging, it is important to maintain or control the topology of the image.
However the design of such transformations that preserve topology and geometric characteristics
of the input image is a complex task, especially in the case of parallel processing. Here, the main
goal of parallel processing is to accelerate computation by sharing the workload among multiple
processors. In terms of algorithm design, parallel computing strategies profits from the partial
order of algorithms, called also the natural parallelism present in the algorithm which provides
two main resources of parallelism: data and functional parallelism. Now, from a viewpoint
architectural design, it is essential to link the spectacular evolution of parallel architectures and
the parallel processing. In effect, if parallelization strategies become necessary, it is thanks to the
considerable improvements in multiprocessing systems and the rise of multi-core processors.
And during the last decade, clock speed of processors in multi-core architectures has increased
by almost two and associated cache size has increased tenfold with the addition of a third cache
level L3 which ensures optimal L2 access speed while increasing the total cache. All these
reasons make multiprocessing very practical. In the case of SMP machines, it adds another
advantage that is the immediate sharing of data which provides more flexibility, notably with the
evolution of interconnection system between processors, in designing such strategies and
exploiting data and functional parallelism.

In this perspective, we propose a new parallelization strategy, called SD&M (Split Distribute
and Merge) strategy that cover a large class of topological operators. SD&M has been developed
in order to provide a parallel processing of any operator based on topological transformation. In
practice the most effective parallel algorithm design might make use of multiple algorithm
structures thus proposed strategy is a combination of the divide and conquer patterns and event-
based coordination patterns hence the name that we have assigned. Not to be confused with the
mixed-parallelism approach (combining data-parallelism and task-parallelism), it is important to
mention that proposed strategy (1) represents the last stitch in the decomposition chain of
algorithm design patterns and it provides a fine-grained description of topological operators
parallelization while mixed-parallelism strategy provides a coarse-grained description without
specifying target algorithm. (2) It covers only the case of recursive algorithms, while mixed-
parallelization strategy is effective only in the linear case. (3) It is especially designed for shared
memory architecture with uniform access.

Chapter 1 | Introduction

16 | P a g e

Although the cost of communication (Memory-processor and inter-processors) is high enough,
shared memory architectures meet our needs for different reasons: (a) These architectures have
the advantage of allowing immediate sharing of data with is very helpful in the conception of
any parallelization strategy (b) They are non-dedicated architecture using standard component
(processor, memory, buses ...) so economically reliable (c) They also offer some flexibility of
use in many application areas, particular image processing.

Based on this strategy, we proposed a series of parallel topological algorithm (new or adapted
version). In the following we present our main contributions:

� A new approach to compute watershed transform based on MSF7 transform, that is
parallel, preserves the topology, does not need prior minima extraction and suited for
SMP machines. Proposed algorithm makes use of Jean Cousty streaming approach [1]
and it does not require any sorting step, or the use of any hierarchical queue. This
contribution came after an intensive study of all existing watershed transform in the
discrete case: WT based on flooding, WT based on path-cost minimization, watershed
based on topology preservation, WT based on local condition and WT based on
minimum spanning forest. This study can be seen as an update of Roerdink research [2].
Actually, this study presents detailed description of each watershed approach, associated
processing procedure followed by mathematical foundations and the algorithm of
reference. Recent publications based on some approaches are also presented and
discussed. Our study concludes with a classification of different algorithms studied
according to solution uniqueness, topology preservation, prerequisites minima
computing and linearity.

� A similar study on thinning transform was conducted. It concerns five parallel thinning

algorithms that preserve topology: Bernard and Manzanera [3], Jang and Chin [4],
Eckhardt and Maderlechner [5], Guo and Hall [6], and Hall [7]. Based on the relationship
between the medial axis and the obtained homotopic skeleton, we introduce two
classification criteria to compare and classify them. After this classification, we tried to
get better results through the proposal of a new adapted version of Couprie’s filtered
thinning algorithm [8] by applying our strategy.

� An enhanced computation method for topological smoothing through combining parallel

computation of Euclidean Distance Transform using Meijster algorithm [9] and parallel
Thinning–Thickening processes using the adapted version of Couprie’s algorithm
already mentioned.

7
 Minimum Spanning Forest

Chapter 1 | Introduction

17 | P a g e

1.3 Report organization

This thesis initially aimed to study how to parallelize topological operators on SMP machines.
All along the chapters of this work, parallel version (adapted and new) of fundamental
algorithms of this class will be introduced. Beyond new parallel algorithms, we will also present
obtained results in terms of computation time, efficiency, cache consumption.

The second chapter will be about parallelization strategy. The global goal of the project
surrounding this work was to design an efficient strategy to parallelize algorithm based on
topological transform. To do so, we first start by identifying real needs for such strategy, then
we define fundamental basis for any parallelization moving from finding concurrency to
performance metrics of parallel programs. Then, we briefly introduce our strategy called
SD&M8 with the aim of classifying it among all existing strategy. Finally, we will conclude by
presenting all details of SD&M conception: splitting, merging and merging phases.

The third chapter is about watershed transform. Our work starts with a comparative study
between five different approaches: we present a review of several definitions of the watershed
transform and the associated sequential algorithms, emphasizing the distinction between
definition and algorithm specification. The study concludes with a classification of different
algorithms according to criteria of recursion, complexity, basins computing and topology
preservation. Since we identify the most suited approach to compute parallel watershed, we
propose a new algorithm that is parallel, preserves the topology of the input image, does not
need prior minima extraction and suited for SMP machines. Contrarily to previously published
algorithms, proposed algorithm do not require any sorting step, or the use of any hierarchical
queue.

The fourth chapter focuses on thinning algorithms in the framework of critical kernel. We start
by resuming Couprie’s study on verification methods for the topological soundness of thinning
algorithms. Based on this first evaluation of 2D topological thinning algorithm, we propose to
go further in this study through new quantitative and qualitative criteria. Since we have establish
a new classification of thinning operators and being convinced that best performance can be
reached, we propose an adapted version of Couprie’s thinning algorithm that we call parallel λ –
Skeleton algorithm.

In the fifth chapter, we move to another aspect of topological processing: smoothing filter. We
present a new parallel computation method for topological smoothing through combining
parallel computation of Euclidean Distance Transform using Meijster algorithm and parallel
Thinning–Thickening processes using an adapted version of Couprie’s algorithm.

In the sixth chapter, we present a review of the research in the form of a critical summary of
presented work restating contributions of the thesis. Future work is also presented, summarizing
the next steps to follow into the research of parallelization strategy.

8
 Split Distribute & Merge

18 | P a g e

PARALLELIZATION STRATEGY

ultiprocessor chips make computing more efficient by exploiting parallelism which
is one of the outstanding challenges of modern computer sciences. Parallel
processing can be defined as the division of a fixed amount of work among different

processors that run simultaneously with a common objective. The primary advantage of such
processing comes exactly out of its ability to handle a large volume of tasks (or data) with
reasonable latency and cadency. Obtained result should be faster with better efficiency,
scalability and portability in comparison with single processor implementation. Improving these
metrics doesn’t depend only on the parallel programming design. The scope of algorithm design
space should be expand by including finding concurrency design space, architecture design
space, parallel implementation mechanisms and performance metrics of parallel programs.
These steps, listed in chronological order, sets out a strategy for parallelization.

However, it is generally recognized that designing such strategy is not an easy task [10,11,12].
In fact, such design is significantly more complex than sequential programs design on single
processor computers. As cited in [13], some example of parallel software design [14,15,16]
illustrate encountered difficulty when scientific code has been hand-crafted for specific
machines and problems, at immense expense.

The study of parallelism, or how parallel process could be expressed in programming terms,
start since the sixties. Dijkstra [17] was among the first to develop an initial proposal for the
treatment of parallelism in a programming language by adding new concepts to sequential
programming, in order to extend it into a concurrent programming. He introduced new elements
such as mutual exclusion, event synchronization and critical section. The most important
concept that was introduced by Dijkstra is semaphores. He didn’t bring only solutions, He also
raise new issues related to parallel processing such as deadlock. Ten years later, things become
more formal and definitions more explicit with Hoare’s work [18]. Actually, he defines new
language for the formal specification of parallel algorithms, known as Communicating
Sequential Processes. His work starts by analyzing general basic structures used in programming
such as assignment, sequence, repetition, and selection. Then, he introduced new structures for
expressing parallelism, communication, and control of non-determinism between processes
within a multiprocessor architecture. More details about both approaches can be found in [13].
These different approaches [17, 18, 19] intersect at a common point: they emphasize the close
link between strategy and the nature of the application to parallelize. We therefore propose to
study and formalize parallelization strategy of image processing operators (topological
operators) and define suitability metrics to assess performance on SMP architecture.

This chapter is organized as follow: we begin, in section 2.1, by highlighting the real need for a
common parallelization strategy of topological operators. After introducing the basic foundation
for any successful parallelization (section 2.2), we will focus on Split Distribute and Merge
(SD&M) strategy that we propose by an initial classification over all existing strategies (section
2.3), followed by detailed description of SD&M conception in section 2.4.

M

Chapter 2 | Parallelization strategy

19 | P a g e

2.1 Lack of common parallelization strategy for topological operators

In 1996, Bertrand [20] introduced connectivity numbers for grayscale image. These numbers
describe locally (in a neighborhood of 3*3) the topology of a point. According to this
description any point can be characterized following its topological characteristics. He also
introduced some elementary operations able to modify gray level of a point without modifying
image topology. These elementary operations of point characterization present the fundamental
link of large class of topological operators including, mainly, skeletonization and crest restoring
algorithms [8]. This class can also be extended, under condition, to homotopic kernel and
leveling kernel transformation [21], topological 2D and 3D object smoothing algorithm [22] and
topological watershed algorithm [23]. All mentioned algorithms get also many algorithmic
structure similarities. In fact associated characterizations procedures evolve until stability with
induce common recursively between different algorithms. Also the grey level of any point can
be lowered or enhanced more than once. Finally, all the mentioned algorithms get a pixel’s
array as input and output data structure. Expect in special cases where graphs are used. It is
important to mention that, to date, this class has not been efficiently parallelized like other
classes as connected filter of morphological operator which recently has been parallelized in
Wilkinson’s work [24]. Parallelization strategy proposed by Sienstra [25] for local operators
and point to point operators can also be cited as example. For global operators, an adapted
parallelization strategy is given in Meijster work [9]. Hence the need of a common
parallelization strategy for topological operators that offers adapted algorithm structure design
space. Chosen algorithm structure patterns to be used in the design must be suitable for SMP
machines.

2.2 Fundamental basis for parallelization

Before defining parallelization’s stages of any sequential problem, it is essential to link the
spectacular evolution of parallel architectures and the parallel processing. In reality, if the
parallelization strategies are so valuable, it is thanks to substantial improvements in
multiprocessing systems and the rise of multi-core processors. In terms of feasibility, it will be
easier to design architecture with a single fast processor (clock speed over 3 GHz) than one with
many slow processors (clock speed around 1.5 GHz) with the same throughput. But during last
years the clock speed of processors in multi-core architectures has increased ,see (tab. 1), by
almost two and associated cache size has increased tenfold with the addition of a third cache
level L3 which ensures optimal L2 access speed while increasing the total cache. These twin
barriers have flipped the equation, making multiprocessing very practical and advised even for
small applications.

 Pentium 4 Processor Extreme

Edition

Intel Core 2 Duo

Processor E4300

Intel Xeon Processor

X7560

Code name Prescott Conroe Nehalem-EX
of Cores 1 2 8
of Threads 2 2 16
Clock Speed 3.73 GHz 1.8 GHz 2.266 GHz
Cache 2 MB L2 Cache 2 MB L2 Cache 24 MB L3 Cache
Bus Type FSB FSB QPI
System Bus 1066 MHz 800 MHz 6.4 GT/s

Table 1 : Processors performance evolution

Chapter 2 | Parallelization strategy

20 | P a g e

Generally five steps, see (fig. 1), are necessary to move from sequential algorithm running on
single core architecture to parallel algorithm that runs with better performance on a multi-core
architecture. G. Mattson and al., see [26], present the first four steps for parallel programming:
Finding concurrency, algorithm structure, support structure and implementation mechanisms.
Based on Mattson logic, we define all five steps. We should like to stress the importance that we
attach to the second and third phase which represent basis of our strategy as we will show later.

Figure 1 : Overview of parallel computing steps

DefinitionDefinitionDefinitionDefinition ((((1111)))):::: Finding Concurrency Design Space

It's the first analysis of the sequential algorithm to determinate the potential concurrency in
terms of tasks and groups of tasks, shared data and task-local data.

After analyzing the original problem to identify exploitable concurrency, usually by using the
patterns of Finding Concurrency Design Space (Def.1), information about existing concurrent
tasks, associated input data and dependencies are figured out. These elements are necessary to
move to the Algorithm Structure Design Space (Def.2). G. Mattson and al. propose three
possible organizations: organization by tasks, organization by data decomposition, and
organization by flow of data. To remain in the conceptual framework of this section, we provide
only the two original organizations: by tasks and by data [27].

Chapter 2 | Parallelization strategy

21 | P a g e

DefinitionDefinitionDefinitionDefinition ((((2222)))):::: Algorithm Design Space

The set of all possible algorithm designs and algorithm design parameters that represent how
the extracted concurrency can be mapped onto elementary preprocessors.

In several cases, the problem can be decomposed to a finite set of tasks. Tasks can be grouped
according to several criteria: nature of the operation to achieve required operands, action-zone or
returned result then groups of task can be defined. The way that the tasks within their group
interact is the major feature of the concurrency. If the final solution is obtained after a single
execution of all tasks and tasks dependency is null or quasi-null (temporary access to shared
variables or messages exchange for synchronization), we can define the parallel task design. If
processing is recursive, the problem can be solved by recursively dividing it into sub-problems,
solving each sub-problem independently, and then recombining the sub-solutions into a solution
to the original problem. This is the well know pattern of divide and conquer. It’s important to
note that the application of this principal cannot be independent from the type of the algorithm
[28]. In other cases, global processing comes down to a continuous updating of a data structure.
Thus it is better to think in terms of organizing data. G. Mattson goes further in this
classification. He distinguishes between two particular cases: if the organization focuses on the
distribution of data between elementary processors, then it’s a simple data decomposition
pattern. However, if the organization is the distribution of data between tasks groups: it is a data
flow decomposition pattern. More details will be given about this pattern in SD&M strategy
classification.

DefinitionDefinitionDefinitionDefinition ((((3333)))):::: Architecture Design Space

It describes the set of platform that support the extension of parallel programming.
Information about how instructions are executed and how memory is managed are presented
in this design.

Before moving to coding, it is important to find the most appropriate architecture to support the
parallel algorithm using parallel architecture design space (Def.3). This design presents standard
classification of parallel computer systems [29]. According to Flynn classification [30], there are
four types: SISD9, SIMD10, MISD11 and MIMD. The most significant structure encountered in
the parallel application [31] is MIMD (Multiple Instruction, Multiple Data). In a MIMD
machine the processors can execute different operations using their own data. Parallel
processing via the application of MIMD machines offers the promise of high performance, and
experience with parallel processing is accumulating rapidly. In [32], Buzbee show, through
different examples, that rapid progress is being made in the application of MIMD machines and
that parallel processing can yield high performance. We distinguish between two types of
MIMD computers: Shared Memory MIMD machines and Distributed Memory MIMD
machines. In the case of distributed memory machines, each processor has its own memory but
this does not prevent its access to the memories of other processors if necessary.

9
 Single Instruction Single Data

10
 Single Instruction Multiple Data

11
 Multiple Instruction Single Data

Chapter 2 | Parallelization strategy

22 | P a g e

DefinitionDefinitionDefinitionDefinition ((((4444)))):::: Parallel Implementation mechanisms

They are set of tools used to write parallel programs. They are able to manage threads.
Thread’s synchronization and communication must also be guaranteed.

In contrast, in shared memory parallel machines, all processors share the same memory.
Although the cost of inter-processor or memory communication can be high, SMPM design still
very efficient. In fact, this cost can be reduced by using the right mechanisms for parallel
programming (Def.4). These mechanisms allow better exploitation of target architecture through
the use of threads. The most used tools within this framework are: MPI [33], OpenMP [34] and
TBB [35]. After coding and running programs, it’s important to evaluate efficiency, scalability
and portability of the code by using performance metrics for parallel programs (Def.5). These
concepts will list in detail in the last part of this chapter.

DefinitionDefinitionDefinitionDefinition ((((5555)))):::: Performance metrics of parallel programs

They are a set of measurements that quantify the parallel code such as efficiency, scalability
and portability.

2.3 Classification of SD&M strategy

As mentioned in last section, chosen algorithm structure patterns to be used in the design must
be suitable for SMP machines. In fact, shared memory parallel machines allow access from any
processor to any location through shared memory using an interconnection network (processor-
processor and memory-processor). Flexibility of these architectures does not lie in such
interconnection network (which is usually predefined by manufacturer), but on shared memory.
Actually, programmer perceives a shared, central, and continuous memory. Each memory
location or address in unique and identical for any processor of the system. Thus, he take profits
of the immediate sharing of data with is very helpful in the conception of any parallelization
strategy: The global address space provides a user-friendly programming perspective to
memory and data sharing between tasks is both fast and uniform due to the proximity of
memory to CPUs. Communication between CPUs can be assured trough shared variables
(reading/writing). Network selects appropriate memory block when reading (writing) process
from a specific memory address is lunched. Data integrity is guaranteed by synchronization, and
coordination mechanizes such as semaphores (Dijkstra), and monitors (Hoare) already
introduced in introduction. SMP machines are also non-dedicated architecture using standard
component (processor, memory...) so economically reliable. They also offer some flexibility of
use in many application areas, particular image processing.

In practice the most effective parallel algorithm design might make use of multiple algorithm
structures thus proposed strategy is a combination of the divide and conquer patterns and event-
based coordination patterns, see (fig. 2), hence the name that we have assigned: SD&M (Split
Distribute and Merge) strategy. Not to be confused with mixed-parallelism approach (combining
data-parallelism and task-parallelism [36]), it is important to mention that our strategy represents
the last stitch in the decomposition chain of algorithm design patterns and it provides a fine-
grained description of topological operators parallelization while mixed-parallelism strategy

Chapter 2 | Parallelization strategy

23 | P a g e

provides a coarse-grained description without specifying target algorithm. It covers only the case
of recursive algorithms, while mixed-parallelization strategy is effective only in the linear case.
It is especially designed for shared memory architecture with uniform access. (Identical
processors, equal access times to memory …).

Figure 2 : Circle of decision for the algorithm structure design space

2.4 SD&M strategy conception

A parallelization strategy did not aim to optimize a single metric such as speedup. Other than
improved performance in terms of execution time, a good strategy has to provide a balance
between efficiency, scalability, and portability to dissolve all conflict that exists between these
three forces. These notions will be defined later in this section. Actually, any strategy is facing
two major barriers. First, the conflict between efficiency and portability: making a program
efficient almost requires that the code take into account the characteristics of the specific system
on which it is intended to run, which limits portability. A design that makes use of special
features of a particular programming environment (as multi-thread environment) may lead to an
efficient program for that particular environment, but unusable for a different platform. Second,
the conflict between scalability and portability: Improving the scalability is based on a good
distribution of work over a finite number of processors for a better exploitation of the N
processors’ potential. This distribution limits the portability of the program since the number of
processor is increased.

Chapter 2 | Parallelization strategy

24 | P a g e

Figure 3 : SD&M Strategy Design

The relative importance of these diverse metrics will vary according to the nature of the problem
at hand. In our case we are dealing with a class of topological operators with common feature, as
we shown in section 2.1. Shared memory parallel architectures turned out to be best suited for
our needs (section 2.3). Therefore, Split Distribute and Merge strategy, that we propose,
combines two patterns: Divide and Conquer pattern (Def.6) and Event-Based Coordination
(Def.7). In the following we detail all three phases of SDM strategy.

DefinitionDefinitionDefinitionDefinition ((((6666)))):::: Divide and Conquer pattern

It is based on multi-branched recursion. It solve problem by recursively dividing it into sub-
problems. After solving each sub-problem independently, it recombines the sub-solutions into
a solution to the original problem.

DefinitionDefinitionDefinitionDefinition ((((7777)))):::: Event-Based coordination

It is used when dealing with irregular, dynamic or unpredictable data flow.

2.4.1 The splitting phase

The Divide and Conquer pattern is applied first by recursively breaking down a problem into
two or more sub-problems of the same type, until these become simple enough to be solved
directly. Splitting the original problem take into account, in addition to the original algorithm’s
characteristics (mainly topology preservation), the mechanisms by which data are generated,
stored, transmitted over networks (processor-processor or memory-processor), and passed
between different stages of a computation.

Chapter 2 | Parallelization strategy

25 | P a g e

DefinitionDefinitionDefinitionDefinition ((((8888)))):::: Scalability

It is a property which exhibits performance linearly proportional to the number of processors
employed.

This first stage of division will primarily affect the rate of scalability (Def. 8) of our program. To
mount it, we propose the following formalization. Since speedup is the most commonly used
metrics for parallel programming, it seems to be a nature choice to begin. So we assume that
every program is made up of two parts, sequential and parallel, to establish the following
definitions (with 2≥N):

st Processing time of the serial part of a program using one processor.

()1pt Processing time of the parallel part of a program using one processor.

)(Nt p Processing time of the parallel part of a program using N CPUs.

)1()1(psT ttt += Total processing time of the serial and parallel part of the program using
one processor.

)()(NttNt psT += Total processing time of the serial and parallel part of the program using
N CPUs.

)1(
)1(

ps

s

tt

t

+
=α

Non-Scaled percentage of the serial part of the program using one
processor.

)(
)(

Ntt

t
N

ps

s

+
=α

Scaled percentage of the serial part of the program using N CPUs

)1(

)1(
))1(1()1(

ps

p

tt

t

+
=−= αβ

Scaled percentage of the parallel part of the program using one
processor.

)(

)(
))(1()(

Ntt

Nt
NN

ps

p

+
=−= αβ

Scaled percentage of the parallel part of the program using N CPUs

Table 2 : Basic definitions of processing time

Now we can formalize the fixed-size speedup, which fixes the problem size and emphasizes how
fast a problem can be solved. By first theoretical approach speedup can be seen as the ratio of a
quantity of works by a period of time:

DefinitionDefinitionDefinitionDefinition ((((9999)))):::: Speedup-(1st equation)

Speedup =
Time

Work
=

T

W

A second formal definition can be given by applying Amdahl’s law [37] so the speedup can be
defined by the ratio of total processing time of the serial and parallel part of the program using
one processor by the total processing time of the same parts using N processors.

Chapter 2 | Parallelization strategy

26 | P a g e

DefinitionDefinitionDefinitionDefinition ((((10101010)))):::: Speedup-(Amdahl approach)

Speedup=
)(

)1(

Nt

t

T

T =

+

+

N

t
t

tt

p

s

ps

)1(

)1(

This formula can be written differently using non-scaled percentage (1)β previously defined in

(tab.2):

DefinitionDefinitionDefinitionDefinition ((((11111111)))):::: Speedup-(2nd equation)

 Speedup=

−
+

N

)1(1
)1(

1
β

β

An alternative formulation referred to as Gustafson’s law [38] exists. This formulation calibrates
the serial percentage according to the total parallel time using N processors.

�))(1()()(NNNtT αα −+=
�))(1()()1(NNNtT αα −+=

Thus we can define the speedup as follows:

DefinitionDefinitionDefinitionDefinition ((((12121212)))):::: Speedup-(3d equation)

 Speedup=

)(

)1(

Nt

t

T

T = []))(1()(NNN αα −+ = [])()1(NNN α−−

To show work partition influence on the scalability rate)',(NNψ , suppose that an algorithm

runs on a first architecture using N processors with Nη efficiency. Shared amount of work is

NW . The same program runs on a second architecture using 'N processor with 'Nη efficiency.

Shared amount of work is 'NW . We recall that the efficiency is considered as the ratio of speedup

by the number of processor (More details about efficiency will be given in the second section).
Ideally, an algorithm should be effective on wide range of numbers of processing elements, from

two up to decade. So if Nη and 'Nη represent the optimal efficiency rate, we can draw the

following equation using (Def. 9):

 If 'NN ηη =
'

)'()(

N

NSpeedup

N

NSpeedup
=⇔

'

)'()(

N

NSpeedup

N

NSpeedup
=⇔

)'('*)(*

'

NtN

W

NtN

W

T

N

T

N =⇔)',(
*

'*

)'(

)(

'

NN
NW

NW

Nt

Nt

N

N

T

T ψ==⇔

Chapter 2 | Parallelization strategy

27 | P a g e

Thus it follows that the only parameter that provides a linear performance in proportion to the

number of processors (Def. 8) is the ratio

'N

N

W

W
. Hence the importance of splitting step.

Unfortunately such impact can’t be shown by applying simply Gustafson approach (Def. 12).
Scalability will be express only in term of the number of processor.

If 'NN ηη =
'

)'()1'(')()1(

N

NNN

N

NNN αα −−
=

−−
⇔

[] [])'()1'(')()1(' NNNNNNNN αα −−=−−⇔

[] [])'()1'('*)()1(''* NNNNNNNNNN αα −−=−−⇔

[] [])'()1'()()1(' NNNNNN αα −=−⇔

+
−=

+
−⇔

)'(
)1'(

)(
)1('

Ntt

t
NN

Ntt

t
NN

ps

s

ps

s

+

−
=

+

−
⇔

)'(

)1'(

)(

)1'(

Ntt

tNN

Ntt

tNN

ps

s

ps

s

+

−
=

+

−
⇔

)'(

)'(

)(

)''(

Ntt

tNNN

Ntt

tNNN

ps

s

ps

s

+

−
=

+

−
⇔

)'(

)1'(*

)(

)1'*(

Ntt

NN

Ntt

NN

psps

 −
=

 −
⇔

)'(

)1'(*

)(

)1'*(

Nt

NN

Nt

NN

TT

)',(
)1'(*

)1'*(

)'(

)(
NN

NN

NN

Nt

Nt

T

T ψ==

−

−
=

⇔

2.4.2 Distribution phase

We attach great importance to work distribution because it is a fundamental step to assure a
perfect exploitation of multi-cores architecture’s potential. We'll start by recalling briefly some
basic notion of distribution techniques then we introduce our minimal synchronization approach
that is particularly suitable for topological recursive algorithms where simple point
characterization is necessary. Our approach is general and applicable to shared memory parallel
machines.

Chapter 2 | Parallelization strategy

28 | P a g e

The main challenge when performing parallel operations on simple point characterization is the
dynamic nature of work distribution. Since the workload is not known a priori, assigning work
units to different cores in advance is impossible. In the literature, there are two main approaches
for multi-core work distribution: the first one, called work queues approach, consist on using a
shared work queue in main memory and control access to it via synchronization primitive. The
second approach is work stealing. In this case, every core has a separate work queue which is
still accessible to other processors. Cores can steal work units from others’ queues whenever
their own queue is empty.

However, all these techniques do not currently work well on new architectures as Xeon for
many reasons. Primarily, work-stealing has also been known to be cache-unfriendly for some
applications due to randomized stealing [39]. For tasks that share the same memory footprints,
randomized locality oblivious work-stealing schedulers do nothing to ensure scheduling of these
tasks on workers that share a cache. This significantly limits, not only scalability, but also
efficiency (Def. 13) for some memory-bandwidth bounded applications on machines that have
separate caches.

DefinitionDefinitionDefinitionDefinition ((((13131313)))):::: Efficiency

It is the cost of what is actually produced or performed with what can be achieved with the
same consumption of resources (processor frequency, memory size, surface, etc.). It is an
important factor in determination of productivity.

Efficiency = Nη =

N

Speedup

 =

 −−

N

NNN)()1(α
according to (Def. 11)

 =

TNt

W
according to (Def. 9)

It is also important to mention that using memory fence operations, consistency can be enforced,
but with relatively high overhead. Even if memory consistency were not a problem, busy
waiting such as by spinning on a lock variable is relatively inefficient on an architecture with
high memory latency and hardware multi-threaded execution can also lead to priority inversion
and prevent other threads on the same core from performing useful work.

The main idea of our approach is to imagine an auto-supplying task system, see (fig.4). Keeping
the local queues filled will be our major goal. Local threads should never have to broadcast over
processors because of an empty queue. They should always find something in their local queues
due to an auto-supplying task system that allows an automatic check of different queues then
permanent redistribution of tasks to maintain a certain balance between all processors.

Chapter 2 | Parallelization strategy

29 | P a g e

Figure 4 : Auto-Supplying task system

 Let’s consider a distributed job list where no jobs are duplicated anywhere so each processor
local list is unique and exclusive and jobs can be moved between processor only before they go
into "executing" status. In spite of each processor balances itself by requesting or stealing work
units from others’ queues whenever its own queue is empty, we design an auto-supplying system
using a shared work queue located in principal memory that supply the processor shortage of
work. System maintains a minimum level of work in its queue by importing extra work from
others’ processors queues. This load balancing feature will keeps all processors busy.

Before detailing our approach, we start by recalling briefly some basic notion of distribution
techniques then we introduce our minimal distribution approach that is particularly suitable for
topological recursive algorithms where simple point characterization is necessary. Our approach
is general and applicable to shared memory parallel machines. Critical cases are also introduced
and discussed.

Indeed there are two main types of scheduler. There are those designed for real-time systems
(RTS). In this case, the most commonly approaches used to schedule real-time task system are:
Clock-Driven, Processor-Sharing and Priority-Driven. Further description of different
scheduling approaches can be found in [40,41,42]. According to [42] the Priority-Driven is far
superior the other approaches. These schedulers must provide an operational RTS: completed
work and delivered results on a timely basis. Other schedulers are designed for Non Real-time
system. In this case, schedulers are not subject to the same constraints. Thus, "Symmetric
Multiprocessing" scheduler distributes tasks to minimize total execution time without load
balancing between processors, see (fig. 5. a). On multi-core architectures, this can lead to high
occupancy rate of one processor while the others are free.

Chapter 2 | Parallelization strategy

30 | P a g e

 (a) Non-real time symmetric task distribution (b) Task distribution based upon uniformity principle

Figure 5: Illustration of task distribution on multi-core architecture

We propose a novel tasks scheduling approach to prevent improper load distribution while
improving total execution time, see (fig. 5. b). In literature, there are several schedulers that
provide a balanced distribution of tasks such as RSDL “Rotating Staircase Deadline” [43] which
incorporates a foreground-background descending priority system (the staircase) with run-queue
managing minor and major epochs (rotation and deadline). Other scheduler, as CFS
“Completely Fair Scheduler” [44], shows consistence. It handles resource allocation for
executing processes, and aims to maximize overall CPU utilization while maximizing interactive
performance. These schedulers are based on tasks uniformity principle. Through the tasks
homogeneity, better distribution can be achieved and total execution time reduced.

Unfortunately, these schedulers are not available in all operating system versions especially for
small system. Based on the same principle of tasks uniformity, we propose an adapted
scheduling algorithm, simpler to implement and more adapted to topological algorithm
implementation.

Let be a basic non-preemptive scheduler ‘Basic-NPS’, { }1 2, ,..., kT t t t= is the set of all tasks,

{ }1 2, ,...,T iT t t t= is the set of tasks to process with TT T⊂ , { }1 2, ,..., nP p p p= is the set of all

processors and { }1 2, ,...,a jP p p p= is the set of available processors with aP P⊂ .

Basic-NPS (x yT P⇒) is able to schedule a set of xT tasks on yP processor. Let { }p be the

maximum of processors that yP will contain. Then { }p can be defined as the maximum of

available processors already defined by the set aP and { } max /j j ap p p P= ∈ . While

[] []()a TP T≠ ∅ ∧ ≠ ∅ then :x yT P⇒ ;x TT T∈ y aP P∈ .

I1 I2 I3 I4 I5 I6

P1

P2

T1

T2

T3

I1 I2 I3 I4 I5 I6

P1

P2

T4

T3

T5

Waiting for CPU

T1

T6

T2

Blocked

T4

T5

T6

Currently running Exited

I7

(a) (b)

I7

Chapter 2 | Parallelization strategy

31 | P a g e

In this scheduler, each processor will treat at maximum max / max()i i j

T
m t t p

P
= → ≤ tasks

with { }1,2,...,j n∈ . Then, the worst case to process T is

{ }1
...

() max max ,...,maxT T k
i j i

K T T p T p
< <

= → → . As proof, let suppose that it exist a set ()L T as

() ()L T K T≥∑ ∑ . As ‘Basic-NPS’ manage ()L T and ()K T , so we can introduce the

following: ()L T m≤

and ()K T m≤ . Thus, if (() ())L T K T≥∑ ∑ then there is at least one

task { }l , with ()k K T∈ , such as: ()A B C∧ ∧ with (()), (()), ()A l L T B l K T C l k= ∈ = ∉ = > .

This is impossible according to the definition of ()K T which was defined as the worst case.

Algorithm 1 : Scheduling policy [Mahmoudi and Akil]

Aux: T : Set of all tasks, P : Set of all processors

1. While ()T ≠ ∅ repeat :

2. TN = Nbr_active_tasks() ;

3.
 PN = Nbr_ available_processors();

4. If (0)PN ≠ then

5. If (TN < PN) then

6. For each processor PiN :

7. Generate-new-process (TiN);

8. Identify-class (TiN , SCHED_FIFO);

9. Endfor

10. Else : DTN = Desable_tasks (PN - TN) ;

11. Insert_desabled_tasks (DTN ,T);

12. For each processor PiN :

13. Generate-new-process (TiN);

14. Identify-class (TiN , SCHED_FIFO);

15. Endfor

16. EndIf

17. EndIf

18. EndWhile

 ‘Basic-NPS’ policy is described by (Alg. 1). The first step consists on asking operating system
to determine the number of available processor. Depending on this number, algorithm will
generate process. One active process will be assigned for each available processor. These new
processes will belong to the SHED_FIFO class in order to ensure preemption and especially to
avoid context switching. Process will only stop running if work is complete or less frequently
when another process, belonging to the same class, with higher priority requesting processor.
The global execution will stop if there no more task to process.

Chapter 2 | Parallelization strategy

32 | P a g e

This approach, and despite the centralized aspect, does not depend on the number of processors
(number of processor is not predefined) or the minimum load of processors witch make this
approach more generic and the parallelization strategy more portable. In fact portability is
increasingly cited as a desirable goal in parallelization strategy conception.

DefinitionDefinitionDefinitionDefinition ((((14141414)))):::: Portability

It is a property which assures that parallel programs are both code portable and performance
portable to various parallel machines.

Portability: %100*)(
B
n

T
n

n
S

S
tb =→ΡΡ =

[]
[]

%100*
)()1(

)()1(
BS

TS

NNN

NNN

α

α

−−

−−

Despite disagreement about the exact meaning of “Portability”, we can consider (Def.14) as
working definition. According to James D. Mooney [45] the primary goal of portability is to
facilitate the activity of porting an application from an environment in which it currently
operates to a new or target environment. This activity has two major aspects:

(i) Transportation: physical movement of the program's instructions and data to the new environment.

(ii) Adaptation: modification of the information as necessary to work satisfactorily in the new environment.

We skip “Adaptation” which involves higher level modifications that might be necessary to
adjust the program to work with aspects of the new environment that are intentionally or
unavoidably different from the old one. We focus on physical transportation which includes use
of compatible media or communication channels between processor, and interpreting and
translating file formats, character codes, data representations, processor design. Standard
languages and portable compilers bridge the gap between programs and the variety of CPU
interfaces that exist in target environments. However, many of these mechanisms still define
only part of the environment interface that many applications need. Elements such as file
structures, memory management, or especially asynchronous event handling are not adequately
defined by most language standards or library specifications. When requirements for
communication, concurrency, or timing constraints exist, conventional languages are clearly
insufficient.

Here is another major challenge in multi-core multithread architecture programming. In an ideal
case, moving from one-core to multi-core should provide n fold increase in computational
power. But practically, it is something that never happened. In fact, all existing computational
problems cannot be efficiently parallelized without incurring the costs of inter-processor
coordination.

This kind of analysis was evoked in many researches. Let’s come back to (Def.10) and we focus
on Amdahl’s law [36]. It captures the notion that the extent to which we can speed up any
complex work is limited by percentage of the sequential part in the executed work. Amdahl’s
Law defines the maximum speed up S that can be achieved by n processors collaborating on
an application, where k is the fraction of the work that can be executed in parallel. Assume, for

Chapter 2 | Parallelization strategy

33 | P a g e

simplicity, that a single processor completes the work in one second. With n concurrent

processors, the parallel part takes ()
p

n
seconds and the sequential part takes (1)p− seconds.

Overall, the parallelized computation takes ((1))
p

p
n

− + seconds. Thus, () 1/ ((1))
p

S n p
n

= − + .

Through this formula, for the given problem and an eight-core machine, Amdahl’s law says that
even if we parallelize 90% of the solution, but not the remaining 10%, then we end up with only
four-fold speedup, and not the expected eight-fold speedup. In fact, these additional parallel
parts involve substantial communication and coordination.

In our dynamic parallelization strategy, as we explained later in nest section, each two threads
will share only one FIFO queue in order to push neighbors of lowered pixels. Intuitively we are
going to opt towards a solution with a simple lock-based shared FIFO queue. Associated push
and pop methods will be synchronized by a mutual exclusion lock. Even if this implementation
is a correct concurrent FIFO queue, because each method accesses and updates fields while
holding an exclusive lock, the method calls take effect sequentially. And according to Amdahl’s
law, this sequential communication can substantially affect the performance of our program as a
whole. In multi-core architecture, such synchronization technique can also be the origin of costly
overheads. Even if we opt to second method based on lock-free solution [46] in order to
minimize the overheads, it is demanded that at least one thread (of all the threads that are
executing the push or pop function at one moment) is progressing (inserting or extracting pixels
from or to the FIFO queue). Unfortunately, we do not know in advance how many parallel
threads will call push or pop functions. And method calls still take effect sequentially. Other
solution is wait-free technique [47], it is required that a process finishes within a finite number
of execution steps. Something that we cannot also guarantee because we cannot predict how
many points will be characterized and then how many pixels will be inserted in the FIFO queue.
Finally we decide to move to spin-wait mechanism [48], illustration is given by (fig. 6), and a
thread waiting to push an item might spin for a brief duration without being added to the queue
of waiting threads. As a result, the thread is effectively put to sleep without relinquishing the
remainder of its CPU time slot. It is potentially more efficient to spin and wait, instead of using
either lock-free or wait-free mechanisms, because those force a thread context switch, which is
one of the most expensive operations performed by the operating system.

Figure 6: Spin-wait synchronization

Chapter 2 | Parallelization strategy

34 | P a g e

2.4.3 The Merging phase

The key problem of each parallelization is merging obtained results. Normally this phase is done
at the end of the process when all results are returned by all threads what usually means that
only one output variable is declared and shared between all fighting threads. But as we
mentioned in section 3.1, we are dealing with a dynamic evolution and if we take into account
different steps of simple point detection then pixel characterizations, we can plan the following:
The original shared data structure, containing all pixels, is divided into n research zones

{ }1 2, ..., nz z z . We associate one thread from the following list { }1 2, ..., nT T T to each zone. Each

thread can browse freely its zone and if it detects target pixel types, it lowers characterized pixel
and it pushes its eight neighbors in one of the available FIFO queues. A queue is said available if
only one thread (owner) is using it. One queue cannot be shared by more than two threads so if
no queue is available, threads can create a new one and become owners.
Since two threads finished, they directly merge and a new thread is created and then same
process is lunched again. New created thread will inherit queue shared between his parents.
Thus it can restart research. It is also important to mention that there is no hierarchical order in
thread merging, only criteria is finishing time. We mention also that one neighbor cannot be
inserted twice. It is a precaution in order to minimize consumed cache. More formal description
of merging techniques is given in by (Algo. 2).

It is important to highlight similarity and difference that may exist between our merging
algorithm and KPN [49]. In effect, both are deterministic and do not depend on execution order.
But KPN algorithm may be executed in sequentially or in parallel with the same outcome while
our merging algorithm is designed only for parallel execution. KPN support recurrence and
recursion while our merging algorithm support only recursion.

In large scale application, KPN showed consistence. Examples include Daedalus project [50]
where generated KPN models are used to map process into FPGA architecture. Ambric
architectures [51] implement also a KPN model using bounded buffers to create massively DMP
Machines based on structural object programming model.

Figure 7: Illustration of merging phase with four threads

Chapter 2 | Parallelization strategy

35 | P a g e

In a narrower framework limited to simple point characterization, the implementation of such a
model will be very expensive and it would be better to find an easier and more specific
algorithm.

An illustration of the merging algorithm with four threads is given by (fig.7). The original

shared data structure is divided into 4 research areas{ }1 2 3 4, , ,z z z z . Threads { }1 2 3 4, , ,T T T T will

start browsing different zones in parallel.

1T is the first to detect target point (constructible, destructible …) so it lowers characterized pixel

(in 1z) and it pushes its eight (or four) neighbors in FIFO queue 1F that it has created before

continue browsing. Later, 3T will detect new target point so it will lower characterized pixel in 3z

then push neighbors in 1F before continue browsing. 3T don’t need to create new FIFO queue

since 1F is available. 1T and 3T will repeat this procedure twice. Since they finish browsing, they

merge and new thread 5T is born. 5T will start browsing only 1F . Since it detect new target point

so it will lower characterized pixel (in 5z = 1z + 3z) then push neighbors in 3F that it has created

before continue browsing.

Similarly 2T and 4T will generate the creation of 2F and 6T . Here 6T will eventually merge with

5T to give birth to 7T . Finally there will be a single thread 7T which will brows 3F without

detection any target points.

Algorithm 2 : Merging Algorithm [Mahmoudi and Akil]

Aux: Z : Set of research zones, T : Set of threads, _FIFO Q : Set of available FIFO queues and TP : Target pixel type ;

DP : Detected pixel

1. For all zones ()iZ Z∈ do

2. Parallel_browsing (iT , iZ) ;

3. End_for

4. For each thread ()iT T∈ do

5. If (pixel_caract(iT , TP)==True) then

6. Modify_value(DP);

7. If ((_)FIFO Q ≠ ∅ then

8. Usedstatus(_ jFIFO Q ,true) ;

9. Insert_neighbors(iT , DP , _ jFIFO Q);

10. Else : add_new_fifo (_FIFO Q);

11. Usedstatus (1_ jFIFO Q +
,False) ;

12. Insert_neighbors (iT , DP , 1_ jFIFO Q +
);

13. EndIf ; EndIf ;
14. EndFor;

Chapter 2 | Parallelization strategy

36 | P a g e

2.5 Conclusion

In this chapter we have identified needs for a common parallelization strategy of topological
operators on shared memory parallel architectures. After studying theoretical basis of
parallelization strategies, we presented our approach called SD&M. It is important to mention
that some similarity may exist between our split/merging phases and alpha-extension/beta-
reduction phases from structural perspective. Actually both approaches intended to put in place
more guarantees that the parallelism will actually be met. But uses contexts are different. In
effect, Jean Paul Sansonnet [52, 53, 54] team introduced alpha-extension (diffusion) and beta-
reduction (merging) notions for stream manipulation in the framework of Declarative Data
Parallel language definition and there techniques cannot be applied without a scalar function.
While our proposal is restricted to topological characterization in the framework of topological
operator’s parallelization and no scalar function is required during the application of these two
phases.

37 | P a g e

TOPOLOGICAL WATERSHED

he watershed is now used as a fundamental step in many powerful segmentation
procedures. Judged by the great diversity of applications in which this transform appears
relevant, watershed can be seen as one of the most popular segmentation tools coming

from the field of mathematical morphology. In general, five large classes of algorithms to
compute watershed transform can be figured out. The first one is based on flooding approach,
the second is based on a path-cost minimization, third class is based on topological approach,
fourth class is based on local condition and finally a fifth class based on minimum spanning
approach. These classes will be studied in details in the second section of this chapter.

In addition to this study, we will focus also in the parallel implementation of watershed. In fact,
the difficulty of such implementation resides in the non-local criteria of the watershed transform.
The decision whether a pixel belongs to a basin cannot be based on purely local considerations
as Roerdink and al. [2] introduced. He also explains that results given by some algorithms
depend on the order in which pixels are treated during execution. In the sequential case, fixing
the scanning order can resolve this problem, so that a deterministic result is obtained. In a
parallel implementation this is no longer true since the outcome depends on the relative time
instants at which different processors treat the pixels, and this is unpredictable in the case of
asynchronous processors. Throughout this section, we will leave in search of more adapted
parallel algorithm to compute watershed transform suited for shared memory parallel machines.

We start by presenting an intensive study of all existing watershed transform in the discrete case
in section (3.1). This study concludes with a classification of different algorithms according to
criteria of recursion, complexity, basins computing and topology preservation in section (3.2).
Once best approach identified, we present, in section (3.3), a new algorithm to compute
watershed that is parallel, preserves the topology of the input image, does not need prior minima
extraction and suited for SMP machines. Based on stream notion introduced by Cousty [1], this
algorithm does not require any sorting step, or the use of any hierarchical queue. Experimental
analyzes such as execution time, performance enhancement and cache consumption are also
presented and discussed.

3.1 Watershed transformations

The watershed concept began with Maxwell [55] who introduces the theory behind representing
physical characteristics of a land by means of lines drawn on a map. He highlights relationships
between the numbers of hills, dales and passes which can co-exist on a surface. Subsequently,
through the work of Beucher and al. [56], watershed transform was introduced to image
segmentation and nowadays it represents one of the basic foundations of image processing [57].

In this framework, the most simplified description of the watershed approach is to consider a
grayscale image as a topographic surface: the gray level of a pixel becomes the elevation of a

T

Chapter 3 | Topological watershed

38 | P a g e

point, the basins and valleys correspond to dark areas, whereas the mountains and crest lines
correspond to the light areas. If topographic relief is flooded by water, watersheds will be the
divide lines of the attraction’s domains of rain falling over the region [58] or sources of water
springing from reliefs’ peaks. Another synopsis has shown consistency is that topographic
surface is immersed in a lake with holes pierced in local minima. Catchment basins will fill up
with water starting at these local minima, and, at points where water coming from different
basins would meet, dams are built. As a result, the topographic surface is partitioned into
different basins separated by dams, called watershed lines. Figure 8 gives a very symbolic
description of the mentioned approach. In fact, it shows trends watershed transform use for
image processing.

(a) Cleavage fractures in steel, (b) contour of (a) obtained truth watershed definition introduced by Beusher and al. [56] in
1979, (c) Maximum intensity projection of original human lower limb (d) Bone tissue removed using mask extended with

3D watershed transform introduced by Straka and al.[59] in 2003.

Figure 8 : Watershed application 1979-2003

Despite its simplicity, this concept has been formalized in different ways giving rise to several
definitions of watershed transform. In the discrete case, which is our main interest in this
chapter, this problem is amplified since there is no unique definition of the path that the drop of
water would follow. This led to a multitude of algorithm to compute watershed transform. Some
of these algorithms don’t even meet associated watershed definition. We also note that some
definitions take the form of algorithm specification which makes the distinction between
algorithm specification and implementation very complicated. This problem in literature has
been partially resolved by Roerdink and al. [2] ten years ago. Actually authors presented a
critical review of several definitions of the watershed transform and the associated sequential
algorithms. Even they discuss various issues which often cause confusion in the literature; they
don’t go further in the classification or comparison of different approaches. They instead focus
on parallelization aspect. In other more recent publications, authors tentatively drawn a
comparison chart of some watershed transform definition to serve their end goals: showing the
relationships that may exist between some discrete definition of watershed [60] or showing that
most classical watershed algorithm do not allow the retrieval of some important topological
features of the image [61]. In the following we present our analysis of watershed transform
(WT) in the discrete case: WT based on flooding, WT based on path-cost minimization,
watershed based on topology preservation, WT based on local condition and WT based on

Chapter 3 | Topological watershed

39 | P a g e

minimum spanning forest. For each approach, we start by giving informal definition, then we
present processing procedure followed by mathematical foundations and the algorithm of
reference. Recent publications based on some approach are also presented and discussed.

3.1.1 Watershed based on flooding

Based on flooding paradigm [62,63,64], the intuitive idea underlying this method comes from
geography. Since grayscale image can be seen as topographic surface, the intensity of a pixel
can be considered as the altitude of a point. Now, let immerge this surface in still water, with
holes created in local minima. Water fills up basins starting at these local minima. As described
in (Alg. 3), the filling of basins is an iterative process that involves gradually raising the water
level from Altmin to Altmax. Algorithm must, foreach iteration, fill existing basins (extension
regions) and possibly create new basins (new regions). LR will denote region list. Dams will be
built where waters coming from different basins meet.

For mathematical formulation of the mentioned process, let Ν→Df : be a digital grey value

image, with Altmin and Altmax the minimum and the maximum value of. The threshold set of f at

level Alt can be defined as:

Definition (15): Threshold set of (f) at level (Alt) [Vincent and Soille]

{ }/ ()AltT p D f p Alt= ∈ ≤

Algorithm 3 : Flooding watershed process

1. for level from Altmin to Altmax
2. // Action 1 : Extend existing region
3. foreach (R∈ LR) do Growing [R] until level Alt;
4. end_for

5. // Action 2 : Create new region
6. foreach (Pixel P ∈ level)
7. if (Pixel P is not associated to any region R) then
8. Create new region [R] in LR ;
9. Add Pixel P to region [R];
10. Growing [R] until level ;

This threshold set define a recursion with a gray level Alt increasing from Altmin to Altmax, the
basin associated with the minima of f are successively expanded. Let XAlt denote the union of
the set of basins computed at level Alt. A connected component of the threshold set TAlt+1 at
level Alt+1 can be either a new minimum or an extension of the basin in XAlt . The geodesic
influence zone (IZ) of XAlt within TAlt+1 can be computed resulting in an update XAlt+1. Thus we
can introduce the following definition. MINh will denote the union of all regional minima at
altitude Alt.

Definition (16): Flooding watershed

{ } minminmin)(/ AltAlt TAltpfDpX ==∈=

)(
111 AltTAltAlt XIZMINX

ALT+
∪= ++

The watershed)(fWshed of f is the complement of

maxAltX in D : max/)(AltXDfWshed =

Chapter 3 | Topological watershed

40 | P a g e

Vincent and Soille [65] presented an original and efficient implementation (Alg. 4) of the
flooding watershed. This implementation uses FIFO queue and it needs two steps:

(1) Sorting pixels in increasing order of grey values (from Altmin to Altmax)

(2) Flooding process: All nodes with grey level h are first given an initial label. Then those
nodes that have labeled neighbors from the previous iteration are inserted in the queue,
and then pixels geodesic influence zones are propagated inside the set of initial pixels.

In their study [2] Roerdink and Meijster have removed two points of inconsistency in Vincent
algorithm’s recursion. (i) Only pixels with grey value h are masked for flooding (line 13), instead
of all non-basin pixels of (level h≤), as (Def.16) would require. This explains why labels of
‘wshed-pixels’ (line 15) are also propagated with labels of catchment basins. (ii) If a pixel is
adjacent to two different basins, it is initially labeled ‘wshed’. But it is allowed to be
overwritten at the current grey level by another neighbor’s label, if that neighbor is part of a
basin (lines 35-36).

They also propose some modification to implement the recursion (Def.16) exactly. In line 13, all
pixels with [] hpim ≤ have to be masked, the queue has to be initialized with basin pixels only
(drop the disjunct lab[q] = wshed in line 15), the resetting of distances (line 50) has to be done in
line 14, and the propagation rules in (lines 32-47) have to be slightly changed.

Algorithm 4 : Flooding watershed [Vincent & Soille]

input : Digital grey scale image G=(D,E,im)
Output: Labeled watershed image lab on D

1. #define INIT -1 //initial value of lab image
2. #define MASK -2 //initial value of each level
3. #define WSHED 0 //label of the watershed pixels
4. #define FICTITIOUS (-1,1) //fictitious pixel ∉ D

5. 0←curlab //curlab is the current label
6. fifo_init(queue)
7. for all (P∈D) do

8. [] ;INITplab ←

9. [] ;0←pdist //dist is a work image of distances

10. end_for
11. SORT pixels in increasing order of grey values (hmin , hmax)

 // starting flooding process
12. for h = hmin to hmax do //geodesic SKIZ of level h-1 inside level h
13. for all (P∈D) with im[p]=h do // mask all pixels at level h

 //these are directely accessible because of the sorting step

14. [] ;MASKplab ←

15. if (p has a neighbour q) with ((lab[p] > 0 or lab[q]=WSHED)) then
 //initialize queue with neighbours at level h of current basins or watersheds

16. [] ;1←pdist

17.);,(_ queueqaddfifo

18. end_if

19. end_for

20. ;1←curdist

21.);,(_ queueFICTITOUSaddfifo

22. loop //extend basins

23.);(_ queueremovefifop ←

24. if (p = FICTITIOUS) then

25. if))(_(queueemptyfifo then

Chapter 3 | Topological watershed

41 | P a g e

From the introduction about immersion simulation above, we can see that the level-by-level
method during the flood procedure is uniform. Unfortunately, this can cause over-segmentation
in several cases. Based on this original simulating immersion, Shengcai and Lixu [66] propose,
in 2005, a novel implementation using multi-degree immersion. To our knowledge, it is the last
update that can be found in the literature, the proposed implementation resists to over-
segmentation problem effectively. It starts by redefining the threshold set of f at level Alt.
Instead of the original formula (Def.15), they propose the following one:

Definition (17): Threshold set of (f) at level (Alt) [Shengcai and Lixu]
 { }AltpDiffpfDpTAlt ≤−∈=)()(/

In latest definition,)(pDiff refers to immersion level when the flooding reaches a pixel p .
Segmentation results are sensitive to this function. In fact, if 0)(=pDiff , (Def.17) can be seen
as a special case of (Def.15). Other extreme case, if)(pDiff reaches its maximum values, all

26. BREAK ;

27. else),(_(queueFICTITOUSaddfifo ;

28. ;1+← curdiscurdist

29.);(_ queueremovefifop ←

30. end_if

31. end_if

32. for all (q∈NG(p)) do //labeling p by inspecting neighbours
33. if (dist[q] < curdist) and (lab[q]>0 or lab[q]=WSHED) then

 / /q belongs to an existing basin or to watersheds
34. if (lab[q]>0) then

35. if ((lab[p]=MASK) or (lab[p]=WSHED)) then

36. [] [];qlabplab ←

37. else if [] []qlabplab ≠ then

38. [] ;WSHEDplab ←

39. end_if

40. else if (lab[p]=MASK) then

41. [] ;WSHEDplab ←

42. end_if

43. else if ((lab[q]=MASK) and (dist[q]= 0)) then //q is plateau pixel

44. [] ;1+← curdisqdist

45.);,(_ queueqaddfifop ←

46. end_if

47. end_for

48. end_loop

 //detect and process new minima at level h

49. for all (p∈D) with (im[p]=h) do

50. [] ;0←pdist // reset distance to zero

51. if (lab[p]=MASK) then // p is inside a new minimum

52. ;1+← curlabcurlab //create new label

53.);,(_ queuepaddfifo

54. [] ;curlabplab ←

55. while not))(_(queueremovefifo do

56.);(_ queueremovefifoq ←

57. for all (r∈NG(q)) do // inspect neighbours of q

58. if (lab[r]=MASK) then

59.);,(_ queueraddfifo

60. [] ;curlabrlab ←

Chapter 3 | Topological watershed

42 | P a g e

pixels susceptible to be dumped, will be. According to the user requirement,)(pDiff can be
even a constant function or a function computed according to the local characteristic of pixel p .
In their paper, Shengcai and Lixu define as the following.)(pNeighbor will denote the set of all
p neighbors. And conn will refer to the predefined connectivity:{ }8,4 .

Definition (18): Set of all connected neighbor [Shengcai and Lixu]

 ∑ ∈

−
=

)(

)()()(
pNeighborq conn

qfpfpDiff

Obtained results through two implementations of the original and the multi-degree watershed
shows that multi-degree immersion method resists the over-segmentation problem effectively.
Indeed, the number of detected region in brain crop frame (181*217*181 voxel volume),
decreases from 10991, using the old method, to only 35 using the new method. Computation
time and consumed memory size are practically the same. More information about
implementation can be found in [66].

3.1.2 Watershed based on path-cost minimization

In this class, there are two possible approaches. The first one associates a pixel to a catchment
basin when the topographic distance is strictly minimal to the respective regional minimum.
While the second one builds a forest of minimum-path trees, each tree representing a basin. In
the following we start by introducing watershed by topographic distance [67] before moving to
the watershed by image foresting transform [69,70].

Algorithm 5 : Watershed by topographic distance process

1. Foreach (marked area ∈ MS)

2. insert pixels into priority queue Q ;

3. end_for

4. While (φ≠Q)

5. pEx = extract pixels with highest priority level;

6. if (neighbors of pExp ∈ have the same label Lab) then

7. pLab = Lab ;

8. Q = all non-marked neighbors

9. end_if

10. end_while

Based on the drop of water principle, the intuitive idea behind topographic watershed approach
is the steepest descent path principal [67, 68]. A drop of water falling on a topographic relief
flows down, as "quickly" as possible, until it reaches a regional minimum.

Let Ν→Df : be a digital grey value image. Let MS be the set of markers, pixels where the
flooding shall start, are chosen. Each is given a different label Lab .

Topographic watershed process can be described by (Alg. 5). Let us note that priority level when
inserting neighbors (line 2) corresponds to the gray level of the pixel. In line 6, only neighbors
that have already been labeled are compared. Finally, only neighbors (in line 8) that are not yet in
the priority queue are pushed into the priority queue. The watershed lines set are the
complement of labeled points set.

Chapter 3 | Topological watershed

43 | P a g e

For mathematical formulation of the mentioned process, we follow presentation in [2] which is
based on [67]. For the sake of simplicity, we restrict our self to the minimal set of notion that
will be useful for our propos. And we start by introducing the topographic distance.

Let us consider)(pNG as the set of neighbors of pixel p , and),(qpd as the distance associated
to the edge),(qp . Then the lower slope)(pLS of f at a pixel p and the cost for walking from a
pixel p to a neighboring pixel q can be defined as following:

Definition (19): Lower slope of (f) at a pixel p [Roerdink and al.]

{ }

 −
=

∪∈),(

)()(
)(

)(qpd

qfpf
MAXpLS

ppNq G

Definition (20): Cost functions [Roerdink and al.]

()

=+

<

>

=

)()(/),(.)()(
2

1

)()(/),().(

)()(/),().(

),cos(

qfpfqpdqLSpLS

qfpfqpdqLS

qfpfqpdpLS

qp

The topographical distance between p and q is the minimum of the topographical distances

),(qpTf
π along all paths between p and q :

[]
),(),(qpTqpT f

qp
f MIN π

π →∈

= .

We recall also that the topographical distance along a general path),...,(0 lqp=π is defined as

),(cos),(),(1

1

1 +

−

+∑= ii

l

i iif pptppdqpT π .

Finally we can define the topographic watershed for a grey value image f , with *f the lower

completion of f . Note that each pixel, which is not in a minimum, has a neighbor of lower grey

value (LCff =*).

Definition (21): Topographic watershed [Roerdink and al.]

Let Iiim ∈)(be the collection of minima of f . The basin)(imCB of f corresponding to a

minimum Iiim ∈)(is defined as a basin of the lower completion of f :

{ }{ }),()(),()(:/,)(**
**

jfjifii mpTmfmpTmfiIjDpmCB +<+∈∈=

And the watershed is the set of points which do not belong to any catchment basin:

c
iIi mCBDfWshed)(()(∈∪∩=

Several shortest paths algorithms for the watershed transform with respect to topographical
distance can be found in the literature but the reference algorithm is Fernand Meyer one. In the
following we present a variant of Meyer algorithm with integrate the lower slope (Def. 19) of
the input image as introduced Roerdink and al. [2].

Chapter 3 | Topological watershed

44 | P a g e

Algorithm 6 : Watershed by topographic distance [Meyer]

Input : Lower complete image im on a digital grey scale image G=(D,E) with cost
Output : Labeled watershed image lab on D

1. #define WSHED 0 //label of the watershed pixels
2. //Uses distance image dist. On output, div[v]=im[v], for all v ∈ D
3. for all (v∈D) do //Initialize

4. [] ;0←vlab

5. [] ;∞←vdist

6. end for
7. for all (local minima mi) do
8. for all (v∈mi) do

9. [] ;ivlab ←

10. [] [];vimvdist ← //Initialize distance with the values of minima

11. end for

12. end for

13. ;truestable ← //stable is a Boolean variable

14. repeat

15. for all pixels u in forward raster scan order do

16. propagate(u)
17. end for

18. for all pixels u in backward raster scan order do

19. propagate(u)
20. end for

21. until stable

22. procedure propagate(u)

23. for all (v∈NG(u)) in the future (w.r.t scan order) for u do

24. if [] [] []()udistvutudist <+ ,cos then

25. [] [] ()vutudistvdist ,cos+←

26. [] []ulabvlab ←

27. falsestable ←

28. else if [] WSHEDvlab ≠ and [] [] []()vdistvutudist =+ ,cos then

29. if [] []()ulabvlab ≠ then

30. [] WSHEDvlab =

31. falsestable ←

The second approach to compute a watershed based on path-cost minimization, as we introduced
in the beginning, consists on building a forest of minimum-path trees where each tree represent a
basin. This approach is described in the framework of image foresting transform [69]. The IFT
defines a minimum-cost path forest in a graph, whose nodes are the image pixels and whose arcs
are defined by an adjacency relation between pixels. The cost of a path in this graph is
determined by a specific path-cost function, which usually depends on local image properties
along the path, such as color or gradient. The roots of the forest are drawn from a given set of
seed pixels. For suitable path-cost functions, the IFT assigns one minimum-cost path from the
seed set to each pixel, in such a way that the union of those paths is an oriented forest, spanning
the whole image. The IFT outputs three attributes for each pixel: its predecessor in the optimum
path, the cost of that path, and the corresponding root. Returned solution is usually obtained in
linear time and requires a variant of Dijkstra [71], Moore [72] or Dial’s shortest-path algorithm
[73].

For mathematical formulation of the IFT-watershed, we start by defining some basic notions of
image foresting transform as introduced in [69]. Actually, an image ImgIn can be seen as a pair
(,)J I where J refers to a finite set of pixels and I refers to a mapping that assigns to each
pixel ()p J∈ , a pixel value ()I p in some arbitrary value space. Distinct binary relation

Chapter 3 | Topological watershed

45 | P a g e

between pixels of J will define an adjacency relation A . Once the adjacency has been fixed,
ImgIn can be interpreted as a directed graph, whose nodes are image pixels and whose arcs are
pixel pairs in A .

Before moving to path cost definition, let’s remember that a sequence of pixels 1 2, ,..., kt t tπ =
where 1(,)i it t A+ ∈ for (1 1)i k< < − constitute a path. In the following we will denote by ()org π
the origin it of π and by ()dst π the destination kt of π . Now let assume a given function f
that assigns to each path π a path cost ()f π , in some totally ordered setυ of cost values. We
introduce the max-arc path-cost function maxf that will be used later. Note that ()h t and (,)w s t
are fixed.

Definition (22): Max-arc path-cost function [Falcão and al.]

max () ()f t h t=

{ }max max(,) max (), (,)f s t f w s tπ π⋅ =

For IFT use, a specific function ()Sf π can be defined since the search to paths start in a given
set ()S J⊂ of seed pixels.

{ () (())()S f if org S
otherwisef π ππ ∈

+∞

Now, we can introduce the spanning forest concept. We remember that a predecessor map is a
function P that assigns to each pixel t J∈ either some other pixel J∈ or a distinctive marker

J∉Μ . Thus, a spanning forest (SF) can be seen as a predecessor map which contains no
cycles.

Definition (23): Spanning forest [Falcão and al.]

For any pixel t J∈ , a spanning forest P defines a path *()P t recursively as t if ()P t = M
and *() ,P s s t⋅ if ()P t s= ≠ M , we denote by 0 ()P t the initial pixel of *()P t .

Algorithm 7 : IFT Algorithm [Falco and Al.]

 Input: Img = (,)J I : Image, A JxJ⊂ : Adjacency relation, f :path-cost function

Output: P : optimum path forest, ,α β : two sets of pixels with Jα β∪ = .

1. Set { }α ← , Jβ ← //Initialize

2. for all pixels t J∈ do //Initialize

3. Set ()P t ← M

4. end for

5. while β φ≠ do //Compute

6. remove from β a pixel s such that
*(())f P s is minimum,

7. add s to α

8. for each pixel tsuch that (,)s t A∈

9. If
* *(() ,) (())f P s s t f P t⋅ < then

10. Set ()P t s← ;

Falcão and al. algorithm describes IFT computing. Its algorithm is based on Dijkstra’s procedure
[71] for computing minimum-cost path from a single source in a graph and returns an optimum-

Chapter 3 | Topological watershed

46 | P a g e

path forest P for a seed-restricted cost function sf or any pixel twith finite cost (*())sf P t .

Pixels will belong to a tree whose root is a seed pixel.

The IFT-watershed assumes that seeds pixel correspond to regional minima of the image or to

markers that can be considered as imposed minima. The max-arc path-cost function maxf is the

same as (Def. 22). We remember that ()h t is fixed but arbitrary handicap cost for any paths

starting at pixel t. We remember also that (,)w s t is the weight of arc ,s t A∈ , ideally, higher on

the object boundaries and lower inside the objects.

Definition (24): Arc weight functions

1(,) () ()w s t J s J t= −

2 (,) ()w s t G t=

There are two usual arc weight functions (Def 24): (w1) where ()J s refers to the intensity of
pixel of s . In that case IFT-Watershed is said by dissimilarity and (w2) where ()G t is the
morphological gradient of ImgIn at pixel t. In that case IFT-Watershed is said on gradient.

In [74] Lotufo and al. introduced IFT-watershed from markers, (Algo. 8), which can be
computed by a single IFT where the labeled markers are root pixels. Proposed algorithm use
hierarchical FIFO queue (HFQ). In this case, the root map can be replaced by the label map
which corresponds to the catchment basins and the used path-cost function is given by the

following formula. Note that, the maximum of the set { }()/ (1,)jI p j n∈ is computed only if (p1) is

already a marker pixel. And ()iI p refer to the value of the pixel ip in the image I .

Definition (25): Path-cost functions [Lotufo and al.]
{ }{ 1 2max ((), (),..., ()

1 1 1(, ,...,) nI p I p I p

mf p p p +∞< > =

Algorithm 8 : IFT – Watershed from markers [Lotufo]

Input : I : input image, wshed : labeled marker image

Output : wshed : watershed catchment basins

Aux : C : cost map, initialized to infinity; FIFO :hierarchical FIFO queue

1. for all pixels () 0wshed p ≠ do //Initialize

2. () ()C p I p←

3. Insert p in FIFO with cost ()C p

4. end for

5. while FIFO do //Propagation

6. p ← remove from FIFO

7. for each ()q N p∈

8. If { }(() max (), ())C q C p I q> then

9. { }() max (), ()C q C p I q← ;

10. Insert q in the FIFO with cost ()C q ;

11. () ()wshed p wshed q←

Chapter 3 | Topological watershed

47 | P a g e

3.1.3 Topological watershed

The original concept behind topological watershed [75] is to define a “topological thinning” that
transforms the image while preserving some topological properties, namely the number of
connected components of each lower cross-section as we will explain in the following.

Before introducing global process to compute topological watershed, (Algo. 9), we define some
basic notions that will be resumed in next paragraph for mathematical formulation : Let F be

grayscale image and λ be a grey level, the lower cross-section λF is the set composed of all the

points having an altitude strictly lower than λ . A point x is said to be ‘w-destructible’ for F
if its altitude can be lowered by one without changing the number of connected components of

λF , with)(xFk = . A map G is called a ‘w-thinning’ of F if it may be obtained from F by

iteratively selecting a ‘w-destructible’ point and lowering it by one. Thus a basic definition of
the topological watershed and a global description of its computing process can be given by
(Def. 26) and (Alg. 9). Note that this process is repeated on loop until no more ‘w-destructible’
point remains.

Definition (26): Topological watershed [Couprie and Bertrand]
A topological watershed of F is a ‘w-thinning’ of F which contains no W-destructible
point. The major feature of this transform is to produce a grayscale image.

Algorithm 9 : Topological watershed process

1. For all p in E , check number of connected components of the lower cross-section at level p which are adjacent to p .

2. Lower the value of p by one if this number is exactly one

For deep mathematical formulation, we follow description provided in [64]. We start by
defining a simple point in a graph, in a sense which is adapted to the watershed, and then we
extend this notion to weighted graphs through the use of lower sections [75].

Couprie and al. define a transform that acts directly on the grayscale image, by lowering some

points in such a manner that the connectivity of each lower cross-section λF is preserved. The

regional minima of the result, which have been spread by this transform, can be interpreted as
the catchment basins. The formal definition of topological watershed (Def. 28) relies on the
following particular notion of simple point.

Definition (27): Simple point [Couprie and Bertrand]

Let ()Γ= ,EG be a graph and let EX ⊂ .

A point Xx ∈ is simple (for X) if the number of connected components of { }xX ∪ is equal to
the number of connected components of X . In other words, x is simple (for X) if x is
adjacent to exactly one connected component of X .

Chapter 3 | Topological watershed

48 | P a g e

Definition (28): Topological watershed [Couprie and Bertrand]

Let ()EFF ∈ , Ex ∈ and)(xFk = . The point x is destructible for F if x is simple for kF .

We say that ()EFW ∈ is a topological watershed of F if W may be derived from F by

iteratively lowering destructible points by one until stability (that is, until all points of E
being non-destructible forW).

Actually checking whether a point is ‘w-destructible’, or not, cannot be done locally if only

available information are graph (),E Γ and a function F . Couprie and al. [76] propose a new

algorithms (Algo. 10) making possible to perform this test on all the vertices of a weighted
graph in linear time, and also to check directly how low the ‘w-destructible’ point may be
lowered until it is no more w-destructible, thanks to the component tree which may be built in
quasi-linear time. In the following, we introduce Couprie’s functions to identify ‘w-destructible’
point.

Algorithm 10 : w-destructible function [Couprie and al.]

 Input : Ψ),(, FCF ;

1. ←V Set of element of)(FC pointed by)(qΨ for all q in)(1 p−Γ ;

2. If)(φ=V then return []φ,∞ ;

3. [] ←mm ck , HighestFork)),((VFC ;

4. If [] []φ,, ∞=mm ck then return)min(V ;

5. If))((pFkm ≤ then return []mm ck , else return []φ,∞ ;

Previous algorithm gives correct results with regard to the definition (Def. 28) and is linear in
time complexity with respect to the number of neighbors of p . Checking whether a point is ‘w-

destructible’ or not, involves the computation of the highest fork of different elements of the set
V(p),see (Algo. 11). This may require a number of calls to BLCA (Binary lowest common
Ancestor) which is quadratic with respect to the cardinality of V(p): every pair of elements of
V(p) has to be considered.

Algorithm 11 : HighestFork Function [Couprie and al.]

 Input : C : a component tree, V : a set of components of C

1. [] ←11 , ck)min(V ; // let [k2,c2]...[kn,cn]be the other elements of V

2. 1kkm ← ;

3. 1ccm ← ;

4. for ifrom 2 to n do

5. [] ←ck , BLCA [] []),,,,(mmii ckckC ;

6. If [] []ii ckck ,, ≠ then 1kkm ← ;

7. 1ccm ← ;

8. If)(1kkm = then return []φ,∞ else return []mm ck , ;

Chapter 3 | Topological watershed

49 | P a g e

The HighestFork function returns the highest fork of the set V , or the indicator []φ,∞ if there is

no highest fork. This algorithm makes (n-1) calls of the BLCA operator, where n is the number
of elements inV .

Let C be a component tree, let V be a set of components of C, we denote by min(V) an element
of V which has the minimal altitude. For the following algorithm, we assume that C is
represented in a convenient manner for BLCA. Thus, we must propose a criterion for the
selection of the remaining ‘w-destructible’ points, in order to avoid multiple selections of the
same point.

Couprie and al. introduce the idea to give the greatest priority to a ‘w-destructible’ point which
may be lowered down to the lowest possible value. They prove that an algorithm which uses this
strategy never selects the same point twice. A priority queue could be used to select ‘w-

destructible’ points in the appropriate order. Here, we present their specific linear watershed
algorithm which may be used when the grayscale range is small.

Algorithm 12 : Topological watershed [Couprie]

Input: Ψ),(, FCF ;

Output: F ;

1. For k from mink to)1(max −k do φ←kL

2. For all)(Ep ∈ do

3. [])),(,,(, Ψ−← FCpFleDestructibWci

4. If)(∞≠i then

5. { };11 pLL ii ∪← −−

6. { } ;1−← ipK

7. { }←pH pointer to []ci, ;

8. end if
9. end for

10. For k from mink to)1(max −k do

11. While)(kLp ∈∃ do

12. { }pLL kk /= ;

13. If))((kpK = then

14. ;)(kpF ←

15.);()(pHp ←Ψ

16. For all)(),((qFkpq <Γ∈ do

17. [])),(,,(, Ψ−← FCqFleDestructibWci ;

18. If)(∞=i then ∞←)(pk ;

19. Else if))1()((−≠ ipk then

20. { }qLL ii ∪← −− 11 ;

21.)1()(+← ipk ;

22. { }←qH pointer to []ci, ;

Chapter 3 | Topological watershed

50 | P a g e

3.1.4 Watershed transform based on local condition

There is a big similarity between this approach and the drop of water one. Actually basin surface
increases in a progressive manner. The local condition of label continuity is iteratively applied
along the steepest descent path that reaches the basin minimum. The downhill algorithm, the hill
climbing algorithm and the toboggan algorithm are based on this approach. More details of the
first two algorithms are given by [67,68] and the toboggan algorithm will be detailed later in this
section. Differences between these three algorithms lie in the processing strategy and data
structure as shown in [2].

For mathematical formulation, we follow description provided in [60]. In witch Audigier and al.

start by presenting the following catchment basin formulation { }() V, L() L()LC i iCB m v v m= ∈ = ,

since local condition watershed assigns to each pixel the label of some minimum im . Thus

watershed can be defined as follow. We recall that the condition of ‘ { }()steepest v ≠P ’ means that

‘ v ’ has at least one lower neighbor.

Definition (29): Watershed based on local condition [Audigier and Lotufo]

For any lower complete image CBL , a function L assigning a label to each pixel is called

watershed segmentation if:

a) () ()i jL m L m i j≠ ∀ ≠ /{ }km is the set of minima of LCL .

b) For each pixel v with { }()steepest v ≠P , (), L() L()steepestp v v p∃ ∈ =P .

As we mentioned earlier, we will introduce the toboggan algorithm [77, 78] as a reference of the
local condition watershed approach. Actually this algorithm is referred as a drainage analogy. It
seeks to identify the steepest descent from each pixel of the gradient magnitude of the input
image to a local minimum of the topographic surface. Then pixels that belong to the same
minima are merged by assigning them a unique label. Sets of pixels having the same label will
define catchment basins. The resulting watershed regions are divided by a boundary path which
will build the watershed lines.

Let consider :G D R+→ as a gradient magnitude image, where D is the indexing domain of the
image. D can be decomposed into a finite number of disjoint level sets since pixels are sorted in

the increasing order. Sets can be denoted by: { }| ()hD p D G p h= ∈ = . Lin and al [77] define the

following pixels classes: Class 1C refers to all pixels p in hD with an altitude strictly greater than

the altitude of its lowest neighbor. Class 2C refers to all pixels p in hD belonging to a connected

component with one or more catchment basin and 1p C∉ . Finally, class 3C refers to all pixels p

in hD belonging to a connected component without any catchment basin. Thus we can give a

global description of the computing process (Algo. 13) followed by the toboggan algorithm
(Algo. 14).

Chapter 3 | Topological watershed

51 | P a g e

Algorithm 13 : Toboggan watershed process

1. Records the sliding directions for all 1 2() ()p C p C∈ ∪ ∈ in D

a. Records the lowest neighbours of all 1()p C∈ in D .

b. Grown region from all 1()p C∈

2. Assign label for all 3()p C∈

3. Assign label to each unlabeled image by first tobogganing then backtracking using best first search.

Algorithm 14 : Toboggan Algorithm [Lin and al.]

Input : Img : a gradient magnitude image;

Output: L : a label image, Q : empty FIFO queue ;

1. For all ()p D∈ do //Simulation of sliding for all C1 pixels

2. ()h G p=

3. { }min (), ()MINh G q q Neighbor p= ∈

4. If ()MINh h> then

5. { }(| ())&&(())MINS q G q h q Neighbor p= = ∈

6. ()SlidingList p S=

7. Q p←

8. () 0GrowingDist p =

9. Else if :

10. ()SlidingList p φ=

11. End if
12. End for

13. While Q φ≠ do //Simulation of keep- sliding for all C2 pixels

14. Qp ←

15. () 1d GrowingDist p= +

16. ()h G p=

17. For all (())q Neighbor p∈ and (())G q h= do

18. If (())SlidingList q φ= then

19. Append ()p to ()SlidingList q

20. ()GrowingDist q d=

21. Q ;q←

22. Else If (())GrowingDist q d= then

23. Append ()p to ()SlidingList q

24. End if

25. End while

26. For all 0()p D∈ and 0(())SlidingList p φ= do // labeling C3 pixels

27. If 0()L p is not assigned then

28. 0()L p =new_label

29. 0()h G p=

30. While Q φ≠ do

31. Qp ←

32. For all (())p Neighbor p∈ and (())G q h= do

Chapter 3 | Topological watershed

52 | P a g e

33. If ()L q is not assigned then

34. 0(() ())L q L p=

35. Q p←

36. End if
37. End for
38. End while
39. End if
40. End for

41. For all ()p D∈ do // Tobogganing – Depth first search

42. Resolve()p

43. End For

Algorithm 15 : Resolve function [Lin and al.]

Input : Pixel site p

1. If ()L p is not assigned then

2. ()S SlidingList p=

3. For all ()q S∈ do

4. Resolve(q)
5. End for

6. If S has a unique label α then

7. ()L p α=

8. Else

9. () _L p RIDGE label=

10. End if

11. End if

3.1.5 Watershed transform based on minimum spanning forest

The original idea is very close to the second case of the path cost minimization based watershed
that consist on building a spanning forest from a graph. Actually, the beginning was with Meyer
[79] who proposes to compute watershed transform from a weighted neighborhood graph whose
nodes are the catchment basins corresponding to the minima of the image. Arcs of the graph,
that separate neighbor catchment basins, are weighted by the altitude of the pass between these
basins. Extracted minimum spanning forests define partitions that are considered solution of
watersheds. It’s important to mention that returned solutions are multiple. Authors established
also the links between the minimum spanning forest and flooding from marker algorithms.
Trough Meyer’s bases, Cousty and al. [1] introduce the watershed-cuts and establish the
optimality of this approach by showing the equivalence between the watershed-cuts and the
separations induced by minimum spanning forest relative to the minima.

For mathematical foundations, we will follow notations in [1] to present some basic definitions
to handle with minimum spanning forest cuts and watershed-cuts.

Let G be graph with ((), ())G V G E G= . ()V G is a finite set of vertex of G . Unordered pairs of

()V G , called also edge of G , constitute the element of ()E G set.

Chapter 3 | Topological watershed

53 | P a g e

Let denote the set of all maps from E toℤ by F and we consider that any maps of F weights
the edges of G . Let F F⊆ and ()u E G∈ , F()u will refers to the altitude of u and M(F) will

refers the graph whose vertex set and edge set are, respectively, the union of the vertex sets and
edge sets of all minima of F .

Let X and Y be two sub-graphs of G . We say that Y is a forest relative to X if Y is an
extension of X and for any extension Z X⊂ of X , we have Y=Z whenever V(Z)=V(Y) .

(i) Y is said a spanning forest relative to X (for G) if Y is a forest relative to X and if

V(Y)=V . In this case, there exists a unique cut S for Y . It is composed by all edges of

G whose extremities are in two distinct components of Y . Since Y is an extension of X,
it can be seen that this unique cut S (induced by Y) is also a cut for X .

(ii) Y is said a minimum spanning forest relative to X (for F, in G) if Y is a spanning forest

relative to X and if the weight of Y is less than or equal to the weight of any other

spanning forest relative to X . In this case, S is considered as a minimum spanning forest
cut for X .

Trough these equivalences, Cousty demonstrate that the set S E⊆ is a minimum spanning forest

cut for M(F) if and only if S is a watershed cut of F , that can be computed by any minimum

spanning tree algorithm. And he proposes a linear algorithm to compute it using a new ‘stream’
notion that we will not detail later. Only the stream algorithm will be introduced. Now, before
presenting the watershed-cuts algorithm we just recall the definition of the minimal altitude of
an edge.

Definition (30): Minimal altitude of an edge [Cousty and al.]

Let denote by ()F x− the map from V to ℤ such that for any x V∈ , ()F x− is the minimal

altitude of an edge which contains x . Then a path 0,..., lx xπ = , is considered as a path of

steepest decent for F (in G) if for any []1,i l∈ , { }1 1(,) ()i i iF x x F x−

− −= .

Algorithm 16 : Watershed-cuts algorithm [Cousty and al.]

Input : (V,E,F) : Edge-weighted graphs;

Output: Ψ: a flow mapping of F

1. Foreach (V)x ∈ do ψ(x) NO_LABEL← ;

2. _ 0nb labs ←

3. Foreach (V)x ∈ such that (ψ(x)=NO_Label) do

4. []L,Lab Stream(V,E,F,ψ,x)← ;

5. If (1)lab = − then

6. _nb labs + +

7. Foreach (L)y ∈ do ψ(y) nb_labs← ;

8. Else Foreach (L)y ∈ do ψ(y) labs← ;

Chapter 3 | Topological watershed

54 | P a g e

Previous algorithm computes a watershed-cut using a stream function that is described as the
following:

Algorithm 17 : Stream function [Cousty and al.]

Input : (V,E,F) : Edge-weighted graphs; Ψ : a label of V; x : point of V;

Output: [L, lab] : L is a flow obtained from x (source of L) ; lab is the associated label to an Θflux included in L or (–1).

1. L ←{x}
2. L’←{x} // the set of sources not yet explored of L
3. While there exists (y ∈ L’) do
4. L’ ← L’ \ {y};
5. breadth_first ← TRUE ;
6. While (breadth_first) and (∃ {y,z} ∈ E / z ∉L and F({y,z})= F(y)) do
7. If (Ψ(z) # No_label) then
8. return [L,Ψ(z)] // exist an Θflow L already labeled

9. Else if (()F z−
< ()F y−

) then

10. L ← L ∪ {z}; // z is the only well of L
11. L’ ← {z}; // switch the in-depth exploration first
12. breadth_first ← FALSE
13. Else

14. L ← L ∪ {z}; // therefore z is a well of L
15. L’ ← L’ ∪ {z}; // continue exploration in width first
16. return [L,-1]

3.2 Classification of watershed algorithms

In this section we will learn from different syntheses present in Roerdink [2] and Audigier [60]
works. The following table summarizes some characteristic of introduced watershed transforms.
Selected criteria are justified by our objective to identify the most suitable algorithm for parallel
implementation.

The starting point is the definition space; we note that IFT-Watershed and MSF-Watershed
definitions are limited to the discrete space while the other watersheds definitions are spread into
continue space. IFT-Watershed, MSF-watershed and LC-Watershed form the region based
watershed transform family since pixels are assigned to basins. Flooding-Watershed, TD-
Watershed and Topological-Watershed form the line based watershed family since some pixels
are labeled as watershed. Only Topological-Watershed defines lines that consistently separate
basins while Flooding-Watershed and TD-Watershed merely swing between thick and
disconnected watershed lines.

Through definitions, only Flooding-Watershed and TD-Watershed return unique solution while
all other definitions return multiple solutions. Note that set of solutions returned by the IFT-
Watershed can be unified by creating litigious zones when solutions differ [60]. All six
algorithms, that don’t exactly include their definitions, return unique solution but don’t preserve
the number of connected components of the original input image. Actually, Vincent-Soille,
Meyer and Lin’s algorithm don’t preserve important topological features. Only Lotufo, Couprie
and Cousty’s algorithm are correct from this point of view.

Regarding computing process, only Flooding-Watershed needs pixel’s sorting while others
transforms will pass this costly step. But this does not preclude associated algorithms to use
hierarchical structures when implementing. Except Cousty’s algorithm that doesn’t need any
hierarchical queue.

Chapter 3 | Topological watershed

55 | P a g e

Watershed based on

 Flooding

Path-cost

 minimization Topology
Local

condition
MSF

TD IFT

Vincent &

Soille [65]

Meyer

[67]

Lotufo

[70]

Couprie

 [75]

Lin

[77]

Cousty

[1]

Defined in
Disc. cont.

Space

Disc.

cont.

space

Only on

discret.

 space

Disc. cont.

space

Disc.

cont.

space

Only on

discrete

space

Classified as
Line

WT

Line

WT

Region

WT

Line

WT

Region

WT

Region

WT

Gives unique

solution
Yes Yes No No No No

Preserve

topology
No No Yes Yes No Yes

Requires a

sorting step

Yes No No No No No

Use of

h.queue

Yes Yes Yes Yes Yes No

Minima

computing

Yes Yes No No - No

Is linearity Linear - linear Linear* - Linear

 Table 3 : Comparison between main watershed transform

Vincent-Soille and Meyer’s algorithms impose also a prior minima computation, which is not
the case of the others. For complexity, observe that Vincent and Soille algorithm runs in linear
with respect to the number N of pixels in the image which is processed. In most current
situations of image analysis, where the number of possible values for the priority function is
limited and the number of neighbors of a point is small constant, Couprie’s algorithm runs also
in linear time with O(n + m) complexity. Lotufo and Cousty’s algorithm run also in linear time.
Cousty’s algorithm is executed at most O(|E|) times.

Trough this analysis, (Algo. 16) holds best characteristics. The fact that sorting step is not
required, hierarchical queue is not used and minima are not computed, make it an excellent
candidate for parallelization on shared memory architecture.

3.3 Construction of parallel topological watershed

In this section, we start by introducing some basic definitions of stream notion which is crucial
to the flooding paradigm. Then, we introduce in detail our parallel watershed-cut. Illustration of
parallel compution process is given. Execution time and cache consumption are performed and
analyzed. Efficiency and scalability are also presented and discussed.

Chapter 3 | Topological watershed

56 | P a g e

3.3.1 Basic notions and definitions

Based on Cousty approach [1], we define and illustrate stream notion. For the sake of simplicity,
we restrict ourselves to the minimal set of notions that will be useful for our purpose.

We denote by V an edge-weighted graph. Let L V⊂ . We say that L is a stream if, for any two
points x and y of L , there exists, in L , either a path from x to y or from y to x , with steepest
descent for F . We recall that steepest descent principal is already defined on section 3.1.2.

Now, Let consider a stream L , we say that x L∈ is a top of L if the altitude of x is greater
than, or equal to the altitude of any y L∈ . If the altitude of x is less than the altitude of any y ,
then x is considered as a bottom of L .

Let consider two disjoint streams 1L and 2L , with 1 2L L φ∩ = . Let L be the union of both
streams with 1 2L L L= ∪ .We say that 1L is under 2L , written 1 2L L≺ , if there exist a top x of

1L and a bottom y of 2L , and there is from y to x a path L , with steepest decent for F . If
1 2L L≺ the L is a stream. If there is no stream under L , L is considered as an stream−≺ . Now

any stream L which contains streams−≺ is itself an streams−≺ .

Basic illustration of stream notion is given by (fig. 9): (a) the red graphs superimposed are the
minima of corresponding functions. Let us consider G and F as associated graph and depicted
function, (b) the sets { }, , ,L a b e i= and { }, ,j m n are two examples of streams, (c) the set

{ }' , ,L i j k= is not a stream since there is no path in 'L , between iand k , with steepest descent
for F .

Note that the sets { },a b and { }b are respectively the set of bottoms and tops of L . Here the sets
L is under the stream { }, ,j m n and thus { }, , , , , ,a b e i j m n is also a stream. There is no stream
under{ }, , ,a b e i and { }, , , , , ,a b e i j m n . They are considered as two streams−≺ and they contain
the set{ },a b which is the vertex set of minimum of F .

Figure 9 : Stream notion illustration following Cousty approach [1].

Streams extracted by Cousty function are streams−≺ . In the following we recall the link that
exist between streams−≺ and minima. Let L be a stream. If L is stream−≺ then L contains
the vertex set of minimum of F and for any \y V L∈ adjacent to a bottom x of L ,

({ , }) ()F x y F x> .

Actually, if L is an streams−≺ , then the set of all bottoms 1 2{ , ,..., }nb b b L∈ constitutes the
vertex set of a minimum of F . A subset L of V is considered as the vertex set of a minimum of
F if and only if it is an streams−≺ minimal for the inclusion relationship.

 a b c d

 e f g h

 i j k l

 m n o p

1 5 5

4 4 1

6 5 0

3 4 0

4 7 0 3

4 5 2 3

5 8 1 2

 a b

 e

 i j

 m n

1

3

4

3

2

 i j k 6 5

(a) (b) (c)

Chapter 3 | Topological watershed

57 | P a g e

We will now move on to define flow family notions. Actually the vertices of a graph can be
arranged in the following manner with the aim of partition the vertex set of G from streams−≺

of F . Let 1{ ,..., }nL Lζ = be a set of n streams−≺ . ζ is said a flow family if

{ | {1,..., }}i i n Vζ∪ ∈ = and for any two family 1L and 2L in ζ , if 1 2L L φ∩ ≠ , then 1 2L L∩ is

the vertex set of a minimum of F .

(a) Input image (b) associated weighted graph (c) output watershed

Figure 10 : watershed computing principal

Trough these notions we can more formally define the watershed-cut. Let L be a flow family.

Let us denote by 1M ,…, nM the minima of F . Let ψ be the map from V to {1,..., }n which

associates to each vertex x of V , the label i such that iM is the unique minimum of F

included in an stream−≺ of L which contains x ; we say that ψ is a flow mapping of F . In

that case, the set {{ , } | () ()}S x y E x yψ ψ= ∈ ≠ can be considered as a flow cut for F . As result

the set S E⊂ is considered as a watershed of F if and only if S is a flow cut for F . In order to

compute a watershed, we will go through this relationship established by Jean Cousty, and we
propose algorithm 18, that is based on parallel extraction of streams, able to produce a flow-cut
hence a watershed. A general illustration is given by (fig.10).

3.3.2 Parallel stream computing

For that propose, following algorithm will assigns, in parallel way, a label to each point of the

graph. Actually, from each non-labeled point x , a stream L composed of non-labeled points and
whose top is x is computed. It is important to mention that streams computing at this level are
completely independent than streams can be completely computed in parallel, see (fig. 11). For
N point (x1, x2… xn), their associated flows are simultaneously extracted: (L1, L2… Ln).

Each flow ‘Li’ is composed of point not yet labeled and whose source is xi. Stream function
proposed by Cousty, pleaded in line 5 (Alg. 18), is launched N times. It allows the extraction of

Li∈{1,2,3…n}. Intuitively, it explores the path of greatest slope, by mixing iterations first in-depth
and width of the approaches.

The main invariants of this function are:

(i) The set ‘L’ is, for each iteration, a stream (flow).
(ii) The set L' (line 2 - stream function) includes all wells of L not yet explored.

(a) (b) (c)

Chapter 3 | Topological watershed

58 | P a g e

The stream function (Alg. 17) halts at line 16 when all bottoms of L have been explored or, at
line 8, if a point z already labeled is found. In the former case, the returned set L is an

stream−≺ . In the latter case, the label lab of z is also returned and there exists a bottom y of

L such that ,y z is a path with steepest descent. Thus, there is an stream−≺ 1L , under L ,

included in the set of all vertices labeled lab.

Remark that, in stream function, the use of breadth-first iterations is required to ensure that

produced set L is always an stream−≺ . Otherwise, if only depth-first iterations were used,
Stream could be stuck on plateaus (connected sub-graphs of G with constant altitude) since
some bottoms of L would never be explored.

(a) Partition of input image (b) Parallel stream computation
 Figure 11 : Flow compute illustration

At the end of flow function executing, a family , of N streams (L1, L2… Ln) whose elements
must be labeled is generated. The initial procedure [in the iterative case] is to assign a new label
(nb_labs) to each ‘Li’ element if the latter is a stream−≺ . If it is not the case, the old returned
label lab, of the stream−≺ ‘Hi’, included in ‘Li’, is assigned to the different elements of ‘Li’.
Now if we want to launch this procedure in parallel manner, N/2 flows can be treated at ones.

Algorithm 18 : Parallel watershed-cut [Mahmoudi and Akil.]

Input : (V, E, F) : Edge-weighted graphs;

Output : Ψ : Flow partition of F

1. foreach x ∈ V do Ψ(x) ← No-Label ; // No data dependency - FULL PARALALISM
2. nb_labs ← 0 ; // Global shared attributed label
3. i ←0 ; treated stream
4. foreach (x ∈ V) such as (Ψ(x) = = No-Label) do // lunch N process in parallel
5. [Li,labi] ← Stream (V, E, F, Ψ,xi) ; // to get associated stream for each xi
6. nb-fusion = i ;
7. while (nb_fusion != 1)
8. for (j =0 ; j <= nb_fusion ; j+=2) do // lunch (nb_fusion/2) process at once
9. if (Lj ∩ Lj+1) = ∅ then s-labeling ([Lj,labj] , nb_labs) ;
10. s-labeling ([Lj+1,labj+1] , nb_labs) ;
11. else f-labeling ([Lj,labj] , [Lj+1,labj+1] , nb_labs) ;
12. nb-fusion = nb-fusion / 2 ;

The procedure, in the parallel case, is based on the idea of labeling and merging two obtained

flows at once. If two flows (to merge) ‘Li’ and ‘Li+1’ contain no common summit, (Li ∩ Li+1)=∅,
meaning there are no common wells between the two sources ‘xi’ and ‘xi+1’, in this case the
merging is simple, for each flow ‘Li’ and ‘Li+1’, see (fig 12.a). Note that s-labeling function
(Algo. 19) launches only the initial procedure [used previously in the iterative case].

L1

L2

L8

X1 X2 X8 A B

Chapter 3 | Topological watershed

59 | P a g e

A B

Algorithm 19 : Function s-labeling [Mahmoudi and Akil]

Input: (L, lab, nb_labs)

1. if (lab = -1) then // L is stream−≺
2. nb_labs ++ ;
3. foreach (y ∈ L) do Ψ(y) ← nb_labs ;
4. else

5. foreach (y ∈ L) do Ψ(y) ← lab ;
6. return NULL

If the two flows (to merge) ‘Li’ and ‘Li +1’ contain common summit, (Li ∩ Li+1) ≠ ∅, meaning
there are common wells between the two sources ‘xi’ and ‘xi +1’, see (fig 12.b). In this case,
merging is more complicated. We developed f-labeling procedure (Algo. 19) able to make
fusion in the following special cases: (i) ‘Li’ and ‘Li +1’are two streams−≺ , (ii) ‘Li’ and ‘Li +1’are
two streams including two streams−≺ , (iii) ‘Li’ is an stream−≺ and ‘Li +1’ is a stream
including an stream−≺ .

(a) Merging streams with common wells (b) Merging streams with common wells
Figure 12 : Merging illustration

The major problem in concurrent merging of multiple flows is summed up in labels assignment.
If two streams share the same well, which label should be given to involved pixels? Proposed
solution is inspired from the flooding paradigm. Indeed, we start by studying all possible cases
of merging two water streams gushing from different sources, see (fig. 13). Our goal is to
identify which stream will be the first to reach the well. This latest will mark the well by its own
label. The starting point is the steepest decent approach with the following conditions: (i) Water
flow rate is identical for all sources, (ii) Flow surface is perfectly smooth and (iii) Runoff
velocity is uniform for each flow

If these conditions are fully met, three factors come into play to determine the flow velocity: the
source altitude, distance between source and sink, and finally the slope. In fact, topographic
slope particularly influence the runoff. The inclination of the slope is surely the most important

X1 X2 Xk-1 Xk Xi Xj Xm Xn

Chapter 3 | Topological watershed

60 | P a g e

B A C

topographical aspect. Normally, its impact is limited on short slope. It is more visible on longer
slope even if runoff needs a certain distance to reach its maximum velocity. Mathematic

formulation of flow medium speed can be is given by the Chezy formula: ()
1/2

*cV c h s=

introduced in 1769. ‘C’ refers to roughness coefficient of Chezy. ‘S’ refers to the slope, and ‘h’
refers to the altitude of the source.

Figure 13 : Merging techniques

If we draw the truth table with these three factors (d: distance, s: slope, s: altitude), by varying
one parameter each time, we can identify only five possible cases: The two streams have the
same altitude, slope and distances that separates sources from well. In the 2nd case, both flows
traverse the same distance but slopes and sources altitudes are different. In the 3rd case, the two
streams run down the same slope but they travel different distances since sources’ altitudes are
different. In the 4th case, the altitude is the same for both sources, but traveled distances and
slopes are different. Finally, the altitude of the sources, the distances separating them from the
well and the slopes of followed paths are different for the two streams.

The question now is: does one of these five situations necessarily appear when merging. If we
are dealing with two stream−≺ , this problem does not arise because we are forced to generate a
new label for identified wells (line 1, Algo. 20). Also, if one of the two streams includes an

stream−≺ , it means there exist a label already generated that we can assign to the common
wells (line 5, Algo. 20). Finally, if both streams include stream−≺ then two labels already
exist. In order to decide which one to assign, we compute approximately the flow’s average
speed using Chezy formula. It is important to mention that gray level of a pixel represent its
altitude. Slope and distance between sources and wells can be computed trough pixels
coordinate. According to fixed conditions, roughness coefficient is equal to one.

Algorithm 20 : Function f-labeling [Mahmoudi and Akil]

Input: (La, laba, Lb, labb, nb_labs)

1. // La AND Lb ARE two stream−≺

2. if (laba = -1) && (labb = -1) then
3. nb_labs ++ ;
4. Attrib_lab(La,Lb,nb_lab) ;
5. // La OR Lb INCLUDES an stream−≺ already labeled

d s a

Chapter 3 | Topological watershed

61 | P a g e

6. else if ((laba ≠ -1) && (labb = -1))
7. Attrib_lab(La,Lb,laba) ;
8. else if ((laba = -1) && (labb ≠ -1))
9. Attrib_lab(La,Lb,labb) ;
10. // La AND Lb INCLUDE two stream−≺ already labeled
11. else if (AVspeed(La)> AVspeed(Lb))
12. Attrib_lab(La,Lb,laba) ;
13. else Attrib_lab(La,Lb,labb) ;
14. Return NULL

15. Function Attrib_lab(L1,L2,lab) :
16. foreach (z ∈ {L1 ∩ L2}) do Ψ(z) ← lab ;
17. foreach (x ∈ L1) such as (Ψ(x) = = No-Label) do Ψ(x) ←lab;
18. foreach (y ∈ L2) such as (Ψ(y) = = No-Label) do Ψ(y) ←lab;
19. Return Null

3.4 Performance testing

In this section we present an overall assessment of the parallel watershed operator. We begin by
presenting test conditions. Then, obtained results in terms of execution time and cache use are
presented and discussed. Based on these results, we compute efficiency and scalability of our
implementation. We enhance discussion on scalability by computing the amount of work
required to reach the average speed. Unfortunately, portability of our application will not be
assessed for purely technical reasons.

TESTED IMAGES

Original size 199*199 256*256 640*640 1024*1024 1600*1600
Original colors 256 256 256 256 256

Number of

unique colors
146 149 152 152 152

Disk size 38,7 KB 64,04 400 KB 1,00 MB 2,44 MB
Memory size 40 KB 65,04 401 KB 1,00 MB 2,44 MB

Number of

processed

pixels

39601 65536 409600 1048576 2560000

Number of

intersection
7.928 29.249 193.950 466.478 1.614.014

Empty

intersection
7.901 28.955 192.612 463.997 1.096.307

Full

intersection
27 294 1.338 2.481 6.139

Table 4 : Tested Image [parallel watershed]

For profiling we used a microscopic view of a cross-section of a uranium oxide ceramics (see
fig. 11.a). To choose the right size, we compared number of streams intersections during
merging step for each image. Obtained results, see table 4, show that cut-size (640*640) is the
most appropriate for profiling. Indeed, for cuts with less size, number of full intersection (which
means that some common wells are detected) is very low compared to the number of empty
intersections (which is the ideal case - labeling is done in parallel with new labels) . Concerning
big size cuts, total intersection number is very high which may cause much confusion when
profiling cache. (Determinate instructions number)

Chapter 3 | Topological watershed

62 | P a g e

 Intel P4- 660 Intel Dual C. E8400 Intel C2 Quad E5335 Intel Xeon E5405

Number of processor 1 2 4 2 x 4
SMT Yes Yes Yes Yes

Frequency 3,60 GHz 3,00 GHz 2,00 GHz 2,00 GHz

L1 Instruction

Cache

Size 16Kb 32Ko 4 x 32Ko 8 x 32Ko

Asso. 8-way 8-way 8-way 8-way

Block size 32byte 64byte 64byte 32byte

L1 Data Cache

Size 16Kb 32Ko 4 x 32Ko 32Ko

Asso. 8-way 8-way 8-way 8-way

Block size 64byte 64byte 64byte 64byte

L2 Cache

Size 2Mb 6 MB 2 x 4Mb 2 x 6Mb

Asso. 8-way 16-way 8-way 8-way

Block size 64byte 64byte 64byte 64byte

RAM size 2Gb 2Gb 2Gb 8Gb

Table 5 : Used processors features [parallel watershed alg.]

Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8, 16 and 32 were
determined. Different characteristics of used architectures are presented in table 5. The
minimum value of 2 timings was taken as most indicative of algorithm speed. Results of
implementation on the different architecture are shown in the following table.

 1 CPU 2 CPUs 4 CPUs 8 CPUs

1 Thread 4638 4448 4898 5190

2 Threads 5321 3182 3114 3092

4 Threads 4898 3303 1384 1709

8 Threads 5253 3253 1639 713

16 Threads 5129 3278 1744 990

32 Threads 5190 3303 1794 1235

Table 6 : wall clock (ms) – [parallel watershed Alg.]

We note that execution time drops from an average of 4636 ms with a single thread on one CPU
down to 713 ms with 8 threads on 8 CPUs. The speed up was computed using formula Ts/Tp
with Ts for 1 CPU = 4360 ms (definition 11 chapter 2). A remarkable result about speedup is
also shown in table 4. In fact, speed-up increases as we increase the number of threads beyond
the number of processors in our machines. In the first implementation, using two CPUs, the
speedup at 2 threads is 1.37 ± 0.01. However, for the second implementation, using 8 CPUs, the
speedup has increased to 6.11 ± 0.01. Another common result between different architecture is
stability of execution time on each n-core machine since the code uses n or more threads. For
better illustration we establish execution time and speedup curve (see fig. 14).

 1 CPU 2 CPUs 4 CPUs 8 CPUs

1 Thread 0,94 0,98 0,89 0,84

2 Threads 0,87 1,37 1,4 1,41

4 Threads 0,89 1,32 3,15 2,55

8 Threads 0,83 1,34 2,66 6,11

16 Threads 0,85 1,33 2,5 4,4

32 Threads 0,84 1,32 2,43 3,53

Table 7 : Performance improvement [parallel watershed Alg.]

Chapter 3 | Topological watershed

63 | P a g e

 (a) (b)

Figure 14 : (a) execution time (b) performance improvement [parallel watershed Algo.]

In the following we present our experimental analysis. We consider a commonly used Intel
processor configuration. Number of processor varies from one to eight. The frequency varies
between 1,73 GHz and 3,4 GHz as shown in table 5. The L1 caches have at least a 32-byte block
size, while capacity vary between 16 Kbytes and 32 Kbytes, and for the associativity, only eight
ways is considered. The L2 caches have at least a 64-byte block size, while capacities vary
between 512 Kbytes and 8 Mbytes, and the associativity varies between two and sixteen ways.

As a result of this experiment, fig. 15 (A), we found that two performance regions are clearly
evident: In the leftmost region, as long as the cache capacity can effectively serve the growing
number of threads, increasing the number of threads improves performance, as more processors
are utilized. This area is generally identified as cache-efficiency zone. Balanced workloads offer
higher locality and better exploit the cache and hence expand the cache efficiency zone to the
right and up. An outstanding example is given by the following table which summarizes number
of instruction, L1 and L2 data misses on four architectures using SMP scheduling policy. We
note that number of instruction increase from an average of (34x106) instr. on 1 CPU to
(790x106) instr. on 8 CPUs.

To highlight cache performance, we compute wait status which refers to the delay experienced
by processor when accessing external L2 caches each time that information is missing in L1.
Since L1miss is followed either by an L2hit (success) or L2miss, wait status can be computed by
following formula: the sum of L2hit and L2miss.

We suppose that L2 access time is estimated at 10 cycles (in hit case) and 100 cycles (in miss

case). ((1 2)*10) (2 *100)cmWS D miss L Dmiss L dmiss= − + . To estimate lost time during

memory access, we simply multiply the wait status by P4 660 frequency (3.6 GHz) and E5405
frequency (2 GHz). Thus we realize that estimated lost time on 8CPU is insignificant compared
to lost time on 1CPU. This result is very visible on the E8400 and E5335 architectures. For the
E5405 architecture, result is less visible due to cache structure: While E5405 is considered as
eight CPUs architectural, but physically they are two Quads on the same chip (L2 = 2x4Mb).

Chapter 3 | Topological watershed

64 | P a g e

 (a) (b)

 (c) (d)

(a) Number of instruction (b) Data 1 Miss (c) L2d miss (d) Evaluation of wait status

Figure 15 : Cache profiling [parallel watershed]

 Nbr. Instr. D1 miss L2d miss WScm

1CPU

1 Thread 34.598.772 194.274 141.738 14 699 160

2 Threads 34.204.145 235.764 162.775 17 007 390

4 Threads 34.340.721 268.779 168.539 17 856 300
8 Threads 34.441.168 288.664 161.337 17 406 970

2CPUs

1 Thread 90.783.715 221.199 198.110 20 041 890

2 Threads 90.875.188 229.857 198.282 20 143 950

4 Threads 116.984.996 284.697 207.448 21 517 290
8 Threads 152.704.881 284.753 207.448 21 517 850

4CPUs

1 Thread 334.816.008 251.241 215.443 21 902 280

2 Threads 339.998.650 251.982 215.582 21 922 200

4 Threads 334.020.732 204.315 215.860 21 470 550

8 Threads 474.895.119 295.774 228.187 23 494 570

8CPUs

1 Thread 784.648.688 265.884 216.760 22 167 240
2 Threads 784.745.461 271.859 219.487 22 472 420

4 Threads 789.432.158 279.951 224.625 23 015 760

8 Threads 790.804.849 282.122 231.142 23 624 000

Table 8 : Cache profiling [parallel watershed]

In the sequel, we turn to efficiency evaluation, using def. 13 (with ts = 360ms), in order to
describe exploitation degree of each processor in used SMP machines. As introduced in [80],
this profiling will highlight limitations introduced by parallel watershed implementation on SMP
machines. Indeed, the efficiency decreases of 30% when switching from mono core architecture
to dual cores architecture. Despite a slight increase on quad cores architecture, the efficiency is
20% lower than that measured with 1Cpus. More details are shown in table 9, see also fig. 16.

Chapter 3 | Topological watershed

65 | P a g e

 Intel P4- 660 Intel Dual C. E8400 Intel C2 Quad E5335 Intel Xeon E5405

EFFICIENCY RATE 0,94 0,69 0,79 0,76

Table 9 : Efficiency improvement [parallel watershed Algo.]

Causes for losses of efficiency can be explained by the following reasons, partially introduced in
[84] as parallel computing delays: (i) I/0 delays due to the need to distribute parallel data across
local PE data stores. (ii) Communication delays, due to the need for PES to access data which is
not located in their local data stores. (iii) Set-up delays due to the set-up of control and
processing logic and the network for inter-PE communication.

Figure 16 : Efficiency improvement [parallel watershed algo.]

In further evaluation, we extend speedup profiling of parallel watershed computing into
scalability analysis. According to Intel theoric study [81], very high scalability can be achieved
on multicore architecture. By way of example, dual-core architecture offers a scalability of
roughly 80% for the second processor, depending on the OS, application, compiler, and other
factors. That means the first processor may deliver 100% of its processing power, but the second
processor typically suffers some overhead from multiprocessing activities. As a result, the two
processors do not scale linearly. Thus, a dual-processor system does not achieve a 200%
performance increase over mono-core architecture, but instead provides approximately 180% of
the performance that a single-processor system provides.

In our evaluation framework, we first introduce the average unit speed. This parameter, seen as
the ration between achieved speedup and the number of processor, will be very useful to
determinate scalability. We can also extend this definition into the maximum average speed
which is defined as ratio of maximum achieved speedup by number of processor.

max()
()

()
speed

us

A
Max Av

N
= . Obtained results are presented in the following table:

 Intel P4- 660 Intel Dual C. E8400 Intel C2 Quad E5335 Intel Xeon E5405

1 Thread 0,940 - - -

2 Threads - 0,685 - -

4 Threads - - 0,787 -

8 Threads - - - 0,763
16 Threads - - - -

32 Threads - - - -

Table 10 : Maximum Average Unit Speed [parallel watershed]

0

0,2

0,4

0,6

0,8

1

1 CPU 2 CPUs 4 CPUs 8 CPUs

Chapter 3 | Topological watershed

66 | P a g e

Concerning scalability, see Def. 9, it can be written as
'

'
(, ')

N W
N N

N W
ψ

×
=

×
. In this formula, W

refers to amount of work of our algorithm when N processors are employed and 'W refers to

amount of work of our algorithm when 'N processors are employed to maintain the average

speed. In ideal situation, 'W is equivalent to

'N W

N

×
thus (, ')N Nψ be equal to 1. Unfortunately,

this never happen in real situation, actually
'

' N W
W

N

×
> , thus (, ') 1N Nψ < .

To calculate different values of efficiency foreach architecture, we must first determine the

necessary amount of work 'W , as shown in Table 11, to reach Average Speed Unit usAv . Note

that chosen Average Unit Speed is 0,787 on 4 CPUs using 4 Threads (Associated W =
334.020.732).

 1 CPU 2 CPUs

1 Thread usAv 0,940 0,787
-

Work (W’) 34.598.772 28.967.270

2

Threads
usAv

-
0,685 0,787

Work (W’) 90.875.188 104.406.968

4

Threads
usAv

- -
Work (W’)

8

Threads
usAv

- -
Work (W’)

 4 CPUs 8 CPUs

1 Thread usAv
- -

Work (W’)

2

Threads
usAv

- -

Work (W’)

4

Threads
usAv 0,787

-
Work (W’) 334.020.732

8

Threads

Average Unit

Speed
-

0,763 0,787

usAv 790.804.849 815.679.444

Table 11 : Average speed Unit [parallel watershed Algo.]

The scalability results for parallel watershed processing are shown in table 12. Our experiments
demonstrate a very good scalability across all tested architectures.

 1 CPU 2 CPUs 4 CPUs 8 CPUs

1 CPU 1 0,554 0,338 0,284

2 CPUs 1 0,626 0,512

4 CPUs 1 0,819
8 CPUs 1

Table 12 : Scalability profiling [parallel watershed Algo.]

Chapter 3 | Topological watershed

67 | P a g e

As the number of thread increase, a linear speedup has been observed (see fig. 17). Also, the
speedup improves as the problem sizes increases. Note that when number of thread exceed
number of cores, total execution time dramatically reduces. The difference between each
efficiency curve with the ideal curve (constant efficiency equal to 1) decreases as the number of
thread increases.

Figure 17 : Performance improvement for parallel watershed

3.5 Conclusion

In this chapter, we have presented an intensive study of all existing watershed transform in the
discrete case: WT based on flooding, WT based on path-cost minimization, watershed based on
topology preservation, WT based on local condition and WT based on minimum spanning
forest.

First contribution is the global nature of the proposed study. In fact, for each approach, we give
informal definition, then we presented processing procedure followed by mathematical
foundations and the algorithm of reference. Recent publications based on some approach are
also presented and discussed.

Second contribution concerns classification of watershed algorithms according to criteria of
recursion, complexity, basins computing and topology preservation.

Third contribution concern a new algorithm to compute watershed that is parallel, preserves the
topology of the input image, does not need prior minima extraction and suited for SMP
machines. This algorithm does not require any sorting step, or the use of any hierarchical queue.
A global description of the computing process is given by fig. 18. Through this illustration, we
show links between parallel watershed-cut and the SD&M strategy application. In fact, splitting
step is applied directly on input graph when selecting sources. Unlike conventional technique of
division such as pixel division, or block division, the source selection is completely random.
Associated steam computing is fully parallel (read mode data accesses). Then distribution
depends only on the available processors. This flexibility in data manipulation allowed us to
obtain very good results especially in terms of efficiency fig. 14 (b) without using the 'Basic-
NPS' scheduler. Finally, the merging step contains procedures of s-labeling and f-labeling.
Through these two functions, we have remained confident in our approach for merging streams

Chapter 3 | Topological watershed

68 | P a g e

two by two (algorithm already introduced in section 2.4.3. Experimental analyzes such as
execution time, performance enhancement, cache consumption, efficiency and scalability are
also presented and discussed.

Note that our algorithm can’t be applied directly over grayscale image. Actually three major
steps are needed: the passage from grayscale image to edge-weighted graphs, then the
application of the parallel watersheds-cut algorithm on the plot and finally the visualization of
the graph in the Khalimsky space [82, 83].

 Figure 18 : Segmentation chain based on parallel watersheds-cut

69 | P a g e

TOPOLOGICAL THINNING

n many computer vision applications, standard techniques of pattern recognition are
thinning algorithms. As a preprocessing stage, these algorithms have been used for the
recognition of handwriting or printed characters, fingerprints, chromosomes and biological

cell structures, etc. [84]. Topological thinning and skeletonization are ones of the most cardinal
operators for this kind of preprocessing. In literature, several 2D parallel thinning methods can
be found, see [85, 86, 87, 88, 90]. Proving that such an algorithm always preserve topology is
not an easy task, even in 2D. We say that an algorithm preserves topology if obtained skeleton
through thinning method has the necessary information to reconstruct the original image. The
proofs found in the literature are often combinatorial and hardly extendable to 3D, a fortiori to
higher dimensions.

Couprie [89] present a study of fifteen parallel thinning algorithms, see table 13, based on the
framework of critical kernels. He proves that ten among these fifteen algorithms indeed
guarantee topology preservation, and give counter-examples for the five other ones. He also
investigates, for some of these algorithms, the relation between the medial axis and the obtained
homotopic skeleton.

 Topology

Preserved Not preserved

1 D. Rutovitz [91] 1966 ����

2 T. Pavlidis [87, 88] 1981 ����

3 R.T. Chin, H.K. Wan, D.L. Stover and R.D. Iverson [84] 1987 ����

4 C.M. Holt, A. Stewart, M. Clint and R.D. Perrott [89] 1987 ����

5 Y.Y. Zhang and P.S.P. Wang [94] 1988 ����

6 R.W. Hall [85] 1989 ����

7 R.Y. Wu and W.H. Tsai [95] 1992 ����

8 Z. Guo and R.W. Hall [90] (first version) 1992 ����

9 Z. Guo and R.W. Hall [90] (Second version) 1992 ����

10 Z. Guo and R.W. Hall [90] (Third version) 1992 ����

11 B.K. Jang and R.T. Chin [97] 1992 ����

12 B.K. Jang and R.T. Chin [91] 1993 ����

13 U. Eckhardt and G. Maderlechner [92] 1993 ����

14 S.S.O. Choy, C.S.T. Choy and W.C. Siu [100] 1995 ����

15 T. Bernard and A. Manzanera [83] 1999 ����

16 M. Couprie, F. N. Bezerra and G Bertrand [8] 2001 ����

Table 13 : Classification of thinning algorithm according to topology preservation

According to the above study, algorithms proposed by Pavlidis in 1981 [90, 92], by Chin and al.
in 1987 [87], by Holt and al. in 1987 [93], by Hall in 1989 [88], by Guo and Hall in 1992 [96] (3
variants), by Jang and Chin in 1993 [98], by Eckhardt and Maderlechner in 1993 [99], and by
Bernard and Manzanera in 1999 [86] preserve topology. However, algorithms proposed by
Rutovitz [91], by Zhang and Wang [94], by Wu and Tsai [95], by Jang and Chin [97] and by
Choy and al. [100] produce a Skeleton that don’t allows to reconstruct the original image. We
propose to extend this study by adding a new algorithm proposed by Couprie and al. [8]. This
algorithm is also able to act directly over grayscale image without modifying topology.

I

Chapter 4 | Topological thinning

70 | P a g e

Based on this first ‘classification’ of 2D thinning algorithm, we go further in this study and we
start by proposing new classification, in section 4.2, that takes into account not only the criterion
of topology preservation but also the proximity of the obtained skeleton from the medial axis,
necessary execution time and cache consumption. Since suited algorithm for parallelization is
identified and convinced that best performance can be achieved, we propose a concurrent
implementation of a powerful topological thinning algorithm that is originally introduced by
Couprie [8]. In section 4.3, we start by introducing theoric background, we give also some
illustration of original algorithm before presenting parallel lambda skeleton procedure. Based on
SD&M strategy, Distributed work during thinning process is done by a variable number of
threads. Tests on 2D grayscale image (512x512), using shared memory parallel machine
(SMPM) with 8 CPUs cores (2 × Xeon E5405 running at frequency of 2 GHz), showed an
enhancement of 6.2 with a maximum achieved cadency of 125 images/s using 8 threads.

 (1) (2) (3)

 Figure 19: Used shapes for thinning algorithms comparison [89]

4.1 Classification of thinning algorithms

In order to make a quantitative evaluation of selected algorithms, we start by presenting two
selection criteria based on Jang and Chin’s study [101]. Authors propose to compute ratio
between the number of pixels contained in the maximal disks (obtained from the skeleton) and
the effective number of pixels in the original image. This measure, see (Def. 31), is used to
determine the proximity of the skeleton from the medial axis as proof of skeletal connectivity

and convergence. ()Area function is a pixel’s counter, 'S refers to the number of pixels

contained in the maximal disks and S refers to the effective number of pixels (in the original
image).

Definition (31): Proximity of the skeleton from medial axis (Mm)
'()

()m

Area S
M

Area S
=

Inspired by Jang and al. study, we adopt this criterion of skeleton proximity from medial axis
with some modification, see (Def.32). Actually, we privilege the ratio between number of pixels
of the skeleton which belong to the medial axis (Ai) and number of pixels in the skeleton (Ni). Our
goal is to identify the algorithm that returns the most centered skeleton. Thus, most faithful

Chapter 4 | Topological thinning

71 | P a g e

algorithm is the one whose C1 value is closest to 1. An initial assessment, see table 14, using
three different images shown in fig.19, has allowed us to draw first curve (see fig. 20).

Definition (32): Skeleton connectivity criteria (C1)

1

()

()
i

i

Area A
C

Area N
=

 Shape (1) Shape (2) Shape (3)

N1 A1 N2 A2 N3 A3

1 T. Pavlidis [87, 88] 847 564 2829 1359 4241 2172
2 R.T. Chin, H.K. Wan, D.L. Stover and R.D. Iverson [84] 544 153 1572 334 3057 778

3 C.M. Holt, A. Stewart, M. Clint and R.D. Perrott [89] 590 466 1713 1079 2780 1444
4 R.W. Hall [85] 591 467 1773 1103 3060 1557
5 Z. Guo and R.W. Hall [90] (first version) 658 484 1993 1122 3508 1903

6 Z. Guo and R.W. Hall [90] (Second version) 591 468 1775 1104 3264 1863
7 Z. Guo and R.W. Hall [90] (Third version) 560 437 1664 993 3149 1750
8 B.K. Jang and R.T. Chin [91] 704 564 2394 1359 3787 2178

9 U. Eckhardt and G. Maderlechner [92] 724 564 2434 1359 3895 2171
10 T. Bernard and A. Manzanera [83] 678 534 1929 1219 3528 2018
11 M. Couprie [8] 707 545 1882 1114 3831 2069

Table 14 : Evaluation of pixels’ Skeleton (Ai) and (Ni) [89]

Figure 20: Algorithm classification according to Skeleton connectivity criteria (C1)

Unfortunately this quantitative measure is not sufficient to evaluate algorithms. Actually, even if
(C1) tends to 1, the gap between the number of skeleton’s pixels belonging to medial axis and
the number of reference pixels of medial axis can be great. For example, let’s consider two
algorithms. The first one provides 50 pixels belonging to medial axis, the total number of
skeleton’s pixels is also 50 and the number of reference pixels is 100. The second algorithm
provides respectively 100, 150 and 100. Thus, (C1) for the first algorithm is equal to 1 even if
medial axis doesn’t include many points from the medial reference axis; therefore, the deviation

Chapter 4 | Topological thinning

72 | P a g e

is wide 0.5. For the second algorithm, (C1) is over 1 even if all pixels of the median reference
axis are included in reference median axis. To resolve this problem, we propose a second
criterion (C2) to identify how mush generated Skeleton is symmetric and close to reference
medial axis, see Def. 33. Thus we compute the ratio between number of pixels of the skeleton
which belong to the medial axis (Ai) and number of pixels of reference medial axis (Ri).

Definition (33): Skeleton symmetry criteria (C2)

2

()

()
i

i

Area A
C

Area R
=

A second assessment using same images showed in fig.19, has allowed us to draw second curve
(see fig. 21). Measurements are presented in table 14 and table 15.

 Shape (1) Shape (2) Shape (3)

Medial axis (reference) 564 1359 2178

Table 15 : Evaluation of Medial axis (reference) pixels (Ri) [89]

 Figure 21: Algorithm classification according to Skeleton symmetry criteria (C2)

1 Bernard, Manzanera 1999

2 Jang, Chin 1993
3 Couprie and al. 2000
4 Eckhardt, Maderlechner 1993
5 Guo, Hall 1992 (b)

 Table 16 : Top five thinning algorithm according to Skeleton connectivity and symmetry

According to fig. 20 and fig. 21, first algorithm proposed by Pavlidis [87] has a very good factor
(C2) except that it has a bad factor (C1) which doesn’t exceed 0.7. Proposed algorithm by Chin
[84] has the worst classification according to two criteria so it can be automatically rejected.
Although, Holt [89] and Hall [85] algorithms have similar factors, Couprie [86] and Jang [91]
shows that Hall algorithm is an enhanced version of Holt algorithm, therefore we chose it for
assessment. The three versions of Guo [90] algorithm have similar results but second version

Chapter 4 | Topological thinning

73 | P a g e

(Guo, Hall 1992 - b) has a better classification in the two graphs thus this version will be also
selected. Jang [91], Eckhardt [92] and Bernard [83] have also a very good classification in both
graphs and can be kept. Finally we can conclude by the upper comparison chart that ranks
algorithm by qualitative descending factor [(C1) AND (C2)].

In the following, we conduct an initial evaluation of selected algorithms. Tested images are
those shown in fig. 19 (1) (2) (3). Respective sizes are (800x600), (755x755), and (755x755).
We turn sequential algorithms on mono core architecture Intel Pentium 4, more details about
used P4 processor are given in the following table.

 Intel P4 Intel Dual C. T1400 Intel Quad Q9550 Intel Xeon E5405

Number of processor 1 2 4 2 x 4

SMT Yes Yes Yes Yes

Frequency 3,40 GHz 1,73 GHz 2,83 GHz 2,00 GHz

L1 Instruction

Cache

Size 16Kb 32Ko 4 x 32Ko 8 x 32Ko

Asso. 8-way 8-way 8-way 8-way

Block size 32byte 64byte 64byte 32byte

L1 Data Cache

Size 16Kb 32Ko 4 x 32Ko 32Ko

Asso. 8-way 8-way 8-way 8-way

Block size 64byte 64byte 64byte 64byte

L2 Cache

Size 2Mb 512 kb 6Mb 2 x 6Mb
Asso. 8-way 2-way 24-way 24-way

Block size 64byte 64byte 64byte 64byte

RAM size 1Gb 2Gb 2Gb 8Gb

Linux version 2.6.21 2.6.3 2.6.29 2.6.18

Valgrind version 3.2.3 3.4.1 3.4.1 3.4.1

Table 17 : Used processors features [Thinning alg.]

Figure 22: Execution time - serial versions on monocore machine [Thinning Algo.]

Obtained results, see fig. 22, show that Guo and Hall algorithm is the most efficient in terms of
execution time. In fact, algorithms of Couprie, Guo and Eckhardt can be grouped together
because they display almost same performance for all tested images. Jans and Chin algorithm is
the most expensive. It consumes six times more than Guo algorithm. Concerning cache
consumption, see fig. 23) results are different. In fact, Jang and Bernard algorithms show better
performance despite significant loss of instructions at L1and L2 levels (High execution time).

Chapter 4 | Topological thinning

74 | P a g e

We note good data management when reading or writing. Algorithms that suffer from some
problems of data management are rather those of Couprie, Guo and Eckhardt. These results are
most visible especially when computing cache consumption for image 2.

 (1) (2)

 (3) (4)

 (5) (6)

 (7) (8)

(1) L1 Instruction miss (2) L2 Instruction miss (3) L1 Data read miss (4) L2 Data read miss (5) L1 Data write miss
(6) L2 Data write miss (7) Total L1 cache miss (8) Total L2 cache miss, (� Image 1 � Image 2 � Image 3)

Figure 23: Cache profiling of serial versions on monocore machine [Thinning Algo.]

Chapter 4 | Topological thinning

75 | P a g e

If we combine implementation features of these algorithms (execution time and cache use) with
classification criteria previously presented (C1 && C2), we can draw following classification on
table 18. Even if Guo and Hall algorithm has best performance, first three algorithms can be
classified in the same family. In fact, they have many similarities and close performances.
Second family is composed of two algorithms, Jang and Bernard. Despite their low cost of cache
consumption, execution times are quite high. Based on Couprie study, we will develop more all
of these five algorithms to identify the most suitable one for parallel implementation on SMPM.
For the sake of simplicity, we restrict ourselves to the minimal set of notions that will be useful
for our purpose.

1 Guo, Hall 1992 (b)
2 Eckhardt, Maderlechner 1993
3 Couprie and al. 2000
4 Jang, Chin 1993
5 Bernard, Manzanera 1999

Table 18 : Classification of thinning algorithm

Guo and Hall, see (Algo. 21), introduced the notion of delatable pixel

G Hx . Based on Boolean

expressions defined bellow, they classify a pixel as delatable if some conditions are hold: Let
2

GHx G∈ , let 2X G⊂ ,

.

The pixel(G Hx) is said delatable if and only if: (i) D(G Hx)=1, (ii) G(G Hx)=0, (iii) B(G Hx)>2 and

(iv) Neighborhood of (G Hx) does not match any the following masks.

 (a) (b) (c)

Figure 24: Guo and Hall masks

Algorithm 21 : Thinning algorithm – Second version [Guo and Hall]

Input: set X

Output: set X
1. repeat

2. Y ← set of pixels X which are GH-deletable

3. X ← \X Y

4. Until Y φ=

Eckhardt and Maderlechner, see (Algo. 22), introduced the notion of simple and perfect pixels.
First, they establish the following definitions: (i) Interior pixel: it is a pixel in X having all its
four strong neighbors in X (ii) Boundary pixel: it is a pixel in X which is not interior pixel.
(iii) Inner boundary pixel: it is a boundary pixel which has an interior pixel as strong neighbor.

Chapter 4 | Topological thinning

76 | P a g e

Thus, a pixel ()p in X can be classified as simple, if it is a boundary pixel and if there exist

exactly one strong connected component of pixels of X in the neighborhood of ()p which is

strongly connected to ()p .

Finally, inner boundary pixel ()p is classified as perfect, if there exists a strong neighbor

()i pΓ of ()p which is interior and such that ()j p XΓ ∉ with (4) mod8j i= + .

Algorithm 22 : Thinning algorithm [Eckhardt and Maderlechner]

Input: set X

Output: set X
1. repeat

2. Y ← set of pixels in X witch are both simple and perfect

3. X ← \X Y

4. Until Y φ=

Couprie and al., see (Algo. 23), introduced new notions and operators in the frame work of
cross-section topology. In particular, the notion of destructibleλ − pixels which allows to
selectively simplify the topology, based on a local contrast parameter λ .

To achieve this simplification; they introduce the notion of �-destructible point which is more
flexible then the notion of destructible point. In fact, a point is said to be a �-deletable point
(for F), λ being a positive integer, if it is either a �-destructible point, or a peak point such
that F�x� � α��x, F�
 λ. We remind that a point x is said �-destructible if it satisfies one of the
two following conditions:

(i) x is destructible or x is �-divergent.

(ii) At least k-1 connected components c of Γ—�x, F� are such that F�x� � F��c�
 λ,
with i � �1, … , k � 1�.

Let X � Z� and x � X, x is an end point (for X) if #�Γ�� �x� X�=1. Let F � φ and x ! Z�, x is an
end point (for F) if it is an end point for the set F" with k � F�x�. A point is said to be �-end
point (for F) if it is an end point for F and if: F�x� � α��x, F� # $.

Algorithm 23 : Thinning algorithm [Couprie, Bezerra and Bertrand]

Input: F ϕ∈ ,

Output: F
1. repeat until stability

2. Among all points which are deletableλ − and endλ −
3. Select a point x of minimal value

4. () (,)F x x Fα −=

Jan and chin, see (Algo. 24), use the medial axis (of the input object) when computing Skeleton
to enhance connectivity, unit-width convergence, medial axis approximation, noise immunity,
and efficiency.

Chapter 4 | Topological thinning

77 | P a g e

Let 2X G⊂ , let x X∈ , r ∈ℕ , the ball
4 (,)B x r is maximum for X if

4 (,)B x r X⊆ and if there is

no other ball included in X which contain
4 (,)B x r . Thus, medial axis of X is the set of the

centers of all the maximal balls for X . Jan and Chin masks are showed in fig. 25.

 (a) (b) (c) (d)

Figure 25: Jang and Chin masks

Algorithm 24 : Thinning algorithm [Jan and Chin]

Input: set X

Output: set X

1. A ← medial axis of X
2. repeat

3. Y ← set of pixels in X which match Jang and Chin masks

4. Y ← \Y A

5. X ← \X Y

6. Until Y φ=

Bernard and Manzanera, see (Algo. 25), introduce a parallel iterative thinning procedure that
respect homotopy, mediality, thickness, rotation invariance and noise immunity. Used masks by
thinning procedure are presented in the following:

 (a) (b)

Figure 26: Bernard and Manzanera masks

Algorithm 25 : Thinning algorithm [Bernard and Manzanera]

Input: set X

Output: set X
1. repeat

2. Y ← set of pixels in X which match Bernard and Manzanera masks

3. X ← \X Y

4. Until Y φ=

Algorithmic structures, previously presented, are very similar. An iterative process is always
launched until stability. In each iteration, some pixels are selected according to a set of criteria
then output image is updated. The only algorithm that requires pre-treatment is Jang and Chin
one (pixels of the medial axis are calculated). Unlike other algorithms, Couprie procedure
doesn’t exempt selected pixels from the output image but it changes their values. This will allow
greater independence in the data processing if we ever plan to launch a parallel processing. For
this reason, we selected the latter algorithm to propose a parallel version suitable for (SMPM).

Chapter 4 | Topological thinning

78 | P a g e

4.2 Parallel lambda-skeleton algorithms

In this section, some basic notions of topological operators are first summarized; Illustration of
the original algorithm is also introduced. Then, new adapted version of thinning is introduced.
Experimental analyzes results of different implementations are also presented and discussed.

4.2.1 Theorical background

First, we recall some basic notions of grayscale images. A 2D grayscale image may be seen as a
map % from &� to &. For each point ' � &�, %�'� is the graylevel value of '. We denote by (
the set composed by all maps from &� to &. Let) � (, the section of) at the level * is the set
%+ composed of all point ' � &� such that %+ , *. As for the binary case, if we use the n-

adjacency for the section %+ of) , we must use --adjacency for the section %+ with �-, -) =
(8,4) or (4,8).

We remind that for two points '�'., '��, /�/., /�� 0 &�, we consider that / is 4-adjacent to '
if |/. � '.| 2 |/� � '�|
 1, and / is 8-adjacent to ' if max �|/. � '.|, |/� � '�|�
 1. In the
following, we consider the two neighborhoods relations Γ5 and Γ6 defined by, for each
point x � Z�,

 75�'� � �/ � &� | / 89 4 adjacent @A '�,

 76�'� � �/ � &� | / 89 8 adjacent @A '�.

For more general presentation, we will define Γ�� �x� � Γ��x�\�x�. We will also denote by) the
complementary map of). We note that the complementary sets of the section of) are section

of). In all the rest of this paragraph, we will note n=8 for the section of) , thus we must use

-=4 for). It is also important to mention that a non-empty connected component D of a section
 %+ of % is a (regional) maximum for % if D %+E. � F and a set D � &�is a regional

minimum for % if it is a regional maximum for). Let F � φ, the point x � Z� is destructible
(for F) if x is a simple for F", with k � F�x�. We remind that a point x is said simple for X �
 Z� if T�x, X� � 1 and T�x, X� � 0 .

T�x, X� and T�x, X� are the two connectivity numbers defined as follows (# Dstands for the

cardinal of D): J�', D� � #KLM',Γ6� �'� DN; J�', D� � #KLM',Γ6� �'� DN;

So we can define the four neighborhoods:

 7EE�', %� � �/ � 76��'�; %�/� # %�'��

 7E�', %� � �/ � 76��'�; %�/� , %�'��

 7���', %� � �/ � 76��'�; %�/� P %�'��

Q��', %� � RST'�%�/�, / � 7���', %�, 8U7���', %� V F�
%�'� A@WXYZ89X [

Chapter 4 | Topological thinning

79 | P a g e

We define also some associated connectivity numbers:

(i)
(ii)
(iii)

Furthermore, the connectivity numbers allow the classification of the topological characteristics
of a point:

(i) is a peak point if .
(ii) is a -divergent if .

A point is said to be a -deletable point (for), being a positive integer, if it is either a -
destructible point, or a peak point such that . We remind that a point is
said -destructible if it satisfies one of the two following conditions: is destructible or is -

divergent and at least k-1 connected components of — are such that
, with .

Let and , is an end point (for) if =1. Let and , is an
end point (for) if it is an end point for the set with . A point is said to be -end
point (for) if it is an end point for and if: .

4.2.2 Illustration of original algorithm

, we say that is a skeleton of if is obtained from by iteratively selecting a destructible

and non-end point in and lowering it down to , until stability. In order to get a filtered skeleton,
that is to eliminate non significant branches and regional minima, Bertrand and Couprie allow -deletable
and not -end to be lowered. It is important to mention that each time that a pixel is lowered, its eight
neighbors must be reexamined to be sure that topology is still preserved. In Figure 1, we illustrate this
method on a gradient image (a) obtained from a 2D grayscale image of an MRI brain section by Deriche
gradient operator. (b) is obtained by a filtered thinning with Full algorithm is already introduced
in last section (Algo. 23).

(a) (b)

(a) After Deriche gradient operator; (b) filtered skeleton with
Figure 27 : Filtered Skeleton illustration [Thinning alg.]

Chapter 4 | Topological thinning

80 | P a g e

4.2.3 Parallel thinning algorithm

Now, we present a parallel version of the thinning according to strategy previously discussed.
Let the map F from Z� to Z represent the input grayscale image. For each point x � Z�, F�x� is
the graylevel value of x. We denote by φ the set composed by all maps from Z� to Z.

Let) � φ, the section of) at the level k is the set F" composed of all point x � Z� such
that F" , k.

Let T be the set of type sought in the characterization of pixels. For thinning algorithm: T �
�λ– deletable and not λ– end points�. It is important to mention that points from T can also be
end-point and isolate-point for crest restoring.

We will refer to global search space by Ime, and associated map (from Z� to Z) to each sub-
space Ime is F . For each point x � Z�, F�x� is the graylevel value of x in the search
space Ime.

The following dynamically parallel λ–Skeleton algorithm (it is adapted for two concurrent
threads, but it can be easily extended to N threads) starts by dividing the search space. m�c and
mdef define sub-region bounds. Since the distributed work starts, each thread will lower each

characterized pixel and then push its eight neighbors in Ed�. Ed� is the set of all selected
neighbors and it is shared between only two threads. Ed� is the new defined set to explore since
threads finished. Newly characterized pixels are pushed in a private set called E". The pixel set
assigned to the newly generated thread is nothing else than Ed� and the associated search space
is ��Ime h ImeE.� h E" h E"E.�.

Algorithm 26 : Dynamically Parallel i –Skeleton [Mahmoudi and Akil]

Input : m:colums, n:lines, b:image
1. For all p � Ime do
2. if km�c P Ime�p� P mdeflthen E n E h �p�;
3. Repeat until stability
4. Ed� n F;
5. While �k V 0�then
6. For all p � E do
7. if �p � T� then F�x� n α�kx, F�x�l;
8. Ed� n Ed� h �eight p neighbors�;
9. else E" n E" h �p�;
10. endif
11. For all p � EE. do
12. if �p � T� then ImeE.�x� n α�kx, ImeE.�x�l;
13. Ed� n Ed� h �eight p neighbors�;
14. else E"E. n E"E. h �p�;
15. endif
16. E n Ed�;
17. Ime n Ime 2 ImeE.;
18. Ime n Ime h E" h E"E.;
19. if �E � F� then k n 0;
20. clean �E, E", E"E.�;
21. end while

Chapter 4 | Topological thinning

81 | P a g e

0 1 2 4 8 16 20
0

10

20

30

40

50

60

70

Number of threads

W
a
ll-

c
lo

c
k
 t

im
e
 [

m
s
]

1 cores

2 cores

4 cores

8 cores

4.2.4 Experimental analysis

The proposed parallel λ -Skeleton algorithm was implemented in C in two variants: the first
implementation, based on a simple lock-based shared FIFO queue, using OpenMP critical
directive. The second is based on a spin-wait FIFO queue, already introduced in section 2.4.2.
Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8, and 16, for each one of
these implementations, were determined. The efficiency Ψ�-�, already defined in section 2.4.1.,
is also measured.

Times were performed on eight-core (2× Xeon E5405) shared memory parallel computer of the
Faculty of Electrical Engineering and Communication of Brno University, on Intel Quad-core

Xeon E5335, on Intel Core 2 Duo E8400 and Intel mono-processor Pentium 4 660. Each
processor of the Xeon E5405 and E5335 runs at 2 GHz and both of the two machines have 4 GB
of RAM. The E8400 processor runs at 3 GHz. The Pentium processor runs at 3.6 GHz (see
Table 17). The last two machines have 2 GB of RAM. The minimum value of 5 timings was
taken as most indicative of the speed of the algorithm. The measurements were done on 2D
grayscale image (512*512) of real brain MRI. Results of the two implementations are shown in
fig. 28 (a)(b).

On the eight-core machine, wall-clock execution time for the first implementation using a lock-
based shared FIFO queue drops from an average of 40.211 ms for a single thread down to
28.458 ms at 8 threads. For the second implementation using spin-wait FIFO queue, wall-clock
execution time drops from an average of 41.889 ms for a single thread down to 8.282 ms at 8
threads. As expected, the speed-up for the second implementation using Private-Shared FIFO
queue is higher than for the one using lock-based shared FIFO queue, because context changing
were nearly eliminated.

 (a) Using a lock based shared FIFO queue (b) Using a spin-wait shared FIFO queue

Figure 28 : Execution time [parallel thinning]

A remarkable result shown in (fig. 29) is the fact that the speed-up increases as we increase the
number of threads beyond the number of processors in our machine (eight cores). For the first
implementation, the speedup at 8 threads is 1.7 ± 0.05. However, for the second implementation

0 1 2 4 8 16 20
0

10

20

30

40

50

60

70

Number of threads

W
a
ll-

c
lo

c
k
 t

im
e
 [

m
s
]

1 cores

2 cores

4 cores

8 cores

Chapter 4 | Topological thinning

82 | P a g e

the speedup has increased to 6.2 ± 0.01. Another common result between fig. 28 (a) and fig. 28

(b) is stability of execution time on each n-core machine since the code uses n or more threads.

 (a) Using a lock based shared FIFO queue (b) Using a spin-wait shared FIFO queue

Figure 29 : Performance improvement [parallel thinning]

For better readability of our results, we tested the efficiency of our algorithm on various
architectures using the Ψ�-� formula introduced earlier with fixed serial time equal to 48.247

ms. For parallel time we use best parallel time obtained using 8 threads. As can be seen in fig.

30, second implementation is more efficient that the first one in all architectures. It is also
suitable to return to Amdahl’s law, introduced in section 4, in order to explain obtained results.

In fact the global speed up formula is u�-� � v�.�
v�L�. Then the defined efficiency Ψ�-� �

Jw �- �⁄ Jy� can be written as Ψ�-� � Jw �- �⁄ Jy� � S���
� � v�.�

L� v�L�. According to Amdahl’s

law u�-� � .
.�yE{

|
 , efficiency can be written as follows: Ψ�-� � .

L��.�y�Ey. Thus if the number

of cores increases, the speedup also increases (more work can be done simultaneously with more
threads). On the other hand the efficiency will decrease.

 Figure 30 : Efficiency improvement [parallel lambda Skeleton]

1 2 4 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Number of cores

E
ff
ic

ie
n
c
y

Using lock-based shared FIFO queue

Using private-shared FIFO queue

0 1 2 4 8 16 20
0

1

2

3

4

5

6

7

Number of threads

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

1 cores

2 cores

4 cores

8 cores

0 1 2 4 8 16 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of threads

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

1 cores

2 cores

4 cores

8 cores

Chapter 4 | Topological thinning

4.3 Conclusion

In this chapter, we have presented an intensive study of
work of critical kernels: Pavlidis [
and Hall [96] (3 variants), Jang and Chin [
Manzanera [86], Rutovitz [91], Zhang and Wang [
Couprie and al. [8].

First contribution is limited to the
criteria: (i) preservation of topology
execution time and (v) cache consumption
algorithm as the most suitable algorithm

Second contribution concern an adapted algorithm to compute
the topology of the input image and suited for
SD&M strategy and dynamic lambda
different sub-region bounds. Since distribution
pixel and then push its eight neighbors in
all selected neighbors and it is sh
synchronization techniques such that
and performance of our algorithm remain
based on spin-wait FIFO queue
Dynamic lambda skeleton algorithm
Couprie and al.[8]. Tests on 2D

machine (SMPM) with 8 CPUs
an enhancement of 6.2 with a maximum achieved cadency of

 Figure 31 :

e presented an intensive study of sixteen thinning algorithms
Pavlidis [90, 92], Chin and al. [87], Holt and al. [93

] (3 variants), Jang and Chin [97, 98], Eckhardt and Maderlechner [
], Zhang and Wang [94], Wu and Tsai [95], Choy and al. [

the classification of these algorithms according to
topology, (ii) skeleton connectivity, (iii) skeleton

cache consumption. Through this classification, we identified Couprie
algorithm for parallelization on shared-memory architecture

an adapted algorithm to compute skeleton that is parallel, preserves
the topology of the input image and suited for SMP machines. Fig. 31 makes link between

lambda skeleton algorithm: first step is dividing research area into
Since distribution start, each thread will lower each characterized

pixel and then push its eight neighbors in available FIFO queue. Each queue contains
all selected neighbors and it is shared between only two threads. Unfortunately
synchronization techniques such that lock-based shared FIFO queue have not given good results
and performance of our algorithm remained modest. Therefore we have applied our approach

wait FIFO queue, already introduced in section 2.4.2 for better performance.
algorithm becomes five times faster than original version proposed by

2D grayscale image (512x512), using shared memory para
 cores (2 × Xeon E5405 running at frequency of 2 GHz

with a maximum achieved cadency of 125 images/s using 8 threads.

: Illustration on dynamic lambda Skeleton process

83 | P a g e

en thinning algorithms in the frame
3], Hall [88], Guo

], Eckhardt and Maderlechner [99], Bernard and
], Choy and al. [100] and

according to five selection
skeleton symmetry, (iv)

Through this classification, we identified Couprie’s
memory architectures.

that is parallel, preserves
makes link between

research area into
will lower each characterized

contains the set of
Unfortunately, conventional

given good results
modest. Therefore we have applied our approach

for better performance.
faster than original version proposed by

), using shared memory parallel
of 2 GHz), showed

using 8 threads.

84 | P a g e

TOPOLOGICAL SMOOTHING

moothing filter is the method of choice for image preprocessing and pattern recognition.
For example, the analysis or recognition of a shape is often perturbed by noise, thus the
smoothing of object boundaries is a necessary preprocessing step. Also, when warping

binary digital images, we obtain a crenellated result that must be smoothed for better
visualization. The smoothing procedure can also be used to extract some shape characteristics:
by making the difference between the original and the smoothed object, salient or carved parts
can be detected and measured.

Smoothing shape has been extensively studied and many approaches have been proposed. The
most popular one is the linear filtering by Laplacien smoothing for 2D-vector [102] and 3D
mesh [103]. Other approach by morphological filtering can be applied directly to the shape
[104] or to curvature plot of the object's contour [105]. Unfortunately none of these operators
preserve the topology (number of connected components) of the original image. In 2004,
Couprie and Bertrand [22] introduced a new method for smoothing 2D and 3D objects in binary
images while preserving topology. Objects are defined as sets of grid points, and topology
preservation is ensured by the exclusive use of homotopic transformations defined in the
framework of digital topology [106]. Smoothness is obtained by the use of morphological
openings and closings by metric discs or balls of increasing radius, in the manner of alternating
sequential filters [107]. The authors' efforts have brought about two major issues such as
preserving the topology and the multitude of objects in the scene to smooth out without
worrying about memory management, latency or cadency of their filter. Inspired by their
approach, we propose a new algorithm for topological smoothing that is parallel and preserves
topology.

This chapter is organized as follows: in section 5.1, some basic notions of topological operators
are summarized; the original smoothing filter is introduced. In section 5.2, the new parallel
smoothing method is introduced. Evaluations of acceleration, efficiency and success rate of
cache memory access are presented and discussed in section 5.3. Finally, we conclude with
summary in section 5.4.

5.1 Theoretical background

In this section, we recall some basic notions of digital topology [106] and mathematical
morphology for binary images [58]. We define also the homotopic alternating sequential filters
[22]. For the sake of simplicity, we restrict ourselves to the minimal set of notions that will be
useful for our purpose. We start by introducing morphological operators based on structuring
elements which are balls in the sense of Euclidean distance, in order to obtain the desired
smoothing effect.

We denote by ℤ the set of relative integers, and by Ε the discrete plane 2

ℤ . A point x ∈Ε is

defined by 1 2(,)x x with ix ∈ℤ . Let x∈Ε , r ∈ℕ , we denote by ()rB x the ball of radius r

S

Chapter 5 | Topological smoothing

85 | P a g e

centered on x , defined by { }() , (,)rB x y E d x y r= ∈ ≤ , where d is a distance on Ε . We denote

by rB the map which associates to each x in Ε the ball ()rB x . The Euclidean distance d on Ε

is defined by:
1/ 22 2(,) A Bd x y = − with 1 1A ()x y= − and 2 2B ()x y= − .

An operator on E is a mapping from ()P E into ()P E , where ()P E denotes the set of all

subsets of E . Let r be an integer, the dilation by rB is the operator rδ defined by

() ()r x X rX B xδ ∈=∪ ()X P E∀ ∈ . The ball rB is termed as the structuring element of the

dilation. The erosion by rB is the operator rε defined by duality: r rε δ= ∗ .

Now, we introduce notion of simple point which is fundamental for the definition of topological
operators in discrete spaces. We give a definition of local characterization of simple points in

2E = ℤ . Let consider two neighborhoods’ relations 4Γ and 8Γ defined for each point x E∈ by:

{ }4 1 1 2 2() ; 1x y E y x y xΓ = ∈ − + − ≤ ,

{ }8 1 1 2 2() ;max , 1x y E y x y xΓ = ∈ − − ≤ .

For general case, we define { }* () () \n nx x xΓ = Γ with { }4,8n∈ . Thus y is said n-adjacent to x

if * ()ny x∈ Γ . We say also that two points x and y of X are n-connected in X if there is an n-

path between these two points. The equivalence classes for this relation are n-connected
components of X . A subset X of E is said to be n-connected if it consists of exactly one n-
connected component. The set of all n-connected components of X which are n-adjacent to a

point x is denoted by [],nC x X . To guarantee correspondence between X topology and X

topology, we use n-adjacency for X and n -adjacency for X , with (,)n n equal to (8; 4) or (4;

8).

Informally, a simple point p of a discrete object X is a point which is inessential to its

topology. In other words, we can remove p from X without changing its topology. A point

x X∈ is said simple if each n-component of X contains exactly one n-component of { }\X x

and if each n -component of { }X x∪ contains exactly one n -component of X . Let X E⊂ and

x E∈ , two connectivity numbers defined as follows (# X = cardinality of X):

()*
8(,) # ,nT x X C x x X = Γ ∩ ; ()*

8(,) # ,
n

T x X C x x X = Γ ∩ .

The following properties allow us to locally characterize simple points [106,108] hence to
implement efficiently topology preserving operators: x E∈ is simple for (,) 1X E T x X⊆ ↔ =

and (,) 1T x X = .

Chapter 5 | Topological smoothing

86 | P a g e

The homotopic alternating sequential filter is a composition of homotopic cuttings and fillings

by balls of increasing radius. It takes an original image X and a control image C as input, and
smoothes X while respecting its topology and geometrical constraints implicitly represented by
C . A simple illustration is given by fig. 32. Smoothed image (b) is obtained using Homotopic

Alternative Sequential filter (HAS) with a radius equaled to five and four connectedness (4Γ).

More examples can be found in [22].

 (a) (b)

 (a) Input image (b) Smoothed image

 Figure 32 : Smoothing illustration

Based on this filter, Authors [22] introduce a general smoothing procedure with a single

parameter to control smoothing degree. LetC X⊆ , r ∈ℕ and D X⊆ with X any finite subset

of E . The homotopic alternating sequential filter ()HASF of order n , with constraint setsC and

D , is defined as follows:

,
1 1...C D D C D C

n n nHASF HF HC HF HC= � � �

In the previous formula, C
nHC (i) refers to homotopic cutting of X by nB with constraint set C

and D
nHF (ii) refers to homotopic filling of X by nB with constraint set D . These two

homotopic operators can be defined as follows:

() (),C
nHC X H Y V=∗ With

()()
()(){ , n

n

Y H X X C

V Y X

ε

δ

= ∪

= ∩
 (i)

() (),D
nHF X H Z W= With ()

()(){ ,

()
n

n

Z H X X D

W Y X

δ

ε

=∗ ∩

= ∪
(ii)

Chapter 5 | Topological smoothing

87 | P a g e

We recall that (),H Z W is a homotopic constrained thinning operator. It gives the ultimate

skeleton of Z constrained byW . The ultimate skeleton is obtained by selecting simple point in
increasing order of their distance to the background thanks to a pre-computed Euclidian

distance map [109]. We recall also that (),H Y V∗ is an homotopic constrained thickening

operator. It thickens the set of Y by iterative addition of points which are simple for Y and
belong to the set V until stability.

5.2 Parallel smoothing filter

In this section we start by analyzing overall structure of original algorithm. Then we continue
with the parallelization of Euclidean distance, thinning and thickening algorithm. We conclude
by a performance analysis of each operator. Obtained execution time, efficiency, speedup and
cache misses will be introduced and discussed.

As we have shown previous section, smoothing algorithm receives as input a binary image and
maximum radius. It uses two procedures for homotopic opening and closing, see fig. 33 (a) (b).
The call is looped to ensure an ongoing relationship between input and output. The opening
process is a consecutive execution of erosion, thinning, dilatation and thickening. While closure
procedure ensures the same performance of the four consecutive functions with single
difference: the erosion instead of dilatation. Thinning and thickening ensure the topological
control of erosion and dilatation. This control is based on researching and removing of all
destructible points (already defined in section 4.2.1). When destructible point is deleted, its
neighbors are reviewed to ensure that they are not destructible either.

Figure 33 : Overall structure [Original smoothing algorithm]

Homotopic
Alternating
Sequential

Filter

Homotopic
Closing

(b)

Erosion

Thinning

Dilation

Thickening

Erosion

Thinning

Dilation

Thickening

Homotopic
Opening

(a)

Chapter 5 | Topological smoothing

88 | P a g e

A preliminary assessment of first implementation code, see Table 19, shows that Euclidean
distance computing (EucDis) takes more time than topological point characterization (Topcar).
For an image of (200*200), computation time of E.D with an infinite radius is 46.67% while
point characterization of 2.4 million points occupies only 18.15%. If we limit radius between 5
and 10, computation time of E.D. continues to increase. It can reach 64.44% of total time with a
radius equal to 5. However time for topological characterization is only 8.89% for 1 million
points. These finding remain the same if we increase image size. Beyond (512*512), computing
time of point characterization becomes considerable.

 200 x 200 168 x 168

r=5 r=10 r= ∞ r=5 r=10 r= ∞

EucDis (%) 64.44 54.93 46.67 59.25 49.79 35.25

TopCar (%) 8.89 13.89 18.15 11.58 16.50 24.03

(EucDis): Euclidian distance function; (TopCar): topological characterization function

Table 19 : Time execution rate [Smoothing algorithm]

5.2.1 Study on Euclidean distance algorithms

During previous evaluation, 4SED [109] algorithm was used for Euclidean distance
computation. So we are looking for another algorithm that is faster, and parallelizable. New
algorithm must have an Euclidean distance computation error less than, or equal to, that
produced by 4SED in order to maintain homotopic characteristics of the image.

In literature, several algorithms for Euclidean distance computing exist. Lemire [110] and Shih
[111] algorithms are bad candidates because Lemire’s algorithm does not use Euclidean circle
as structuring element. Then homotopic property will not be preserved. Shih’s algorithm has a
strong data dependency which penalizes parallelization. In [112], Cuissenaire propose a first
algorithm for Euclidian distance computing, called PSN "Propagation Using a Single
Neighborhood" that uses only four neighbors (on element structure). He also proposes a second
algorithm, called PMN "Propagation Using Multiple Neighborhood” that uses eight neighbors.

In [113], he also proposes a third algorithm with 3/2()nο complexity, which offers an accurate

computation of the Euclidean distance. Only drawback of this third algorithm is computation
time which is very important and goes beyond the two algorithms mentioned above. Even if
computing error produced by PSN is greater than computing error produced by PMN, it is
comparable to that produced by 4SED. Low data dependence and ability to operate on 3D
images, makes PSN algorithm a potential candidate to replace 4SED. Meijster [9] proposes an
algorithm to compute exact Euclidean distance. Algorithm complexity is ()nο and it operates in

two independent, but successive, steps. First step is based on looking over columns then
computing distance between each point and existing objects. Second step includes same
treatment looking over lines. It is important to note that strong independence between different
processing steps and computing error equal to zero makes Meijster algorithm another potential
candidate to replace 4SED. Algorithm is also able to operate on 3D images. Theory analysis of
Meijster and Cuissenaire algorithms can be found in Fabbri’s work [114].

Chapter 5 | Topological smoothing

89 | P a g e

In the following, we propose first analysis of selected algorithms (Danieslson-4SED version
[109], Cuisenaire-PSN version [112] and Meijster [9]) based on their implementation in order to
compare between them. We have implemented 4SED algorithm using a fixed size stack. This
stack uses a FIFO queue and it has small size while 4SED algorithm does not need to store
temporal image. Results are directly stored into the output image, we will retain this
implementation because 4SED assessment serve only as reference for comparison. For PSN
implementation, we used stacks with dynamic sizes. Memory is allocated using small blocks
defined at stack creation. When an object is added to queue, algorithm will use available
memory of last block. If no space is available, a new block is allocated automatically. Block
size is proportional to image size (N x M / 100). Finally we used a simple memory structure to
implement Meijster algorithm. A simple matrix was used to compute distance between points
and object of each column and three vectors were used to compute distance in each line. We
recall that this comparison is done in order to select the best algorithm among three candidates.

Figure 34 describes obtained results by different implementations on single processor
architecture P4. During this evaluation we used binary test image (200x200). We have also
varied ball radius. We used Valgrind software to evaluate different designs. Callgrind tool
returns the cost of implementing of each program by detecting IF (Instruction Fetch).

Results show that PSN algorithm is the most expensive in all cases (for any radius). Meijster
algorithm is moderately faster than 4SED. Their curves are practically parallel and their
returned values are proportional. However, difference between 4SED and PSN curves is more
visible, it become larger when we increase radius. The output images returned by Meijster
algorithm hold the best visual quality while Euclidean distance computation error is almost zero
thus our efforts will be brought on Meijster algorithm parallelization.

Figure 34 : Execution time [Danieslson, Cuisenaire and Meijster Algo.]

Chapter 5 | Topological smoothing

90 | P a g e

5.2.2 Parallelization of Meijster algorithm

We denote by I input image with m columns and n rows. We denote by B an object
included in I . The idea is to compute, for each point p I p B∈ ∧ ∉ , separating distance

between p and the closest point b with b B∈ and (0)b m∀ ≤ ≤ , (,)x yb b b= . This amount to

compute the following matrix: , ()x ydt p p EDT p = with ()EDT p =

2 2min() (,)y x x yp b G p b− + .

If we assume that minimum distance of an empty group K is ∞ and z K∀ ∈ , we have

()yz + ∞ = ∞ then ()EDT p formula can be written as follow: xb n∀ < , ,yb m∀ ≤

2 2() min() (,)y x x yEDT p p b G p b= − + with (,) min : (,)x x x xG p y p b b b y= − = . Thus we can split

the Euclidian distance transform procedure into two steps. The first step is to scan columns and
compute EDT for each column y . Second step consists on repeating the same procedure for

each line.

In the following we start by detailing these two steps: In the first step (,)xG p y can be computed

through the two following sub functions with 0 xb n∀ ≤ ≤ :

(,) min : (,)T x x x xG p y p b b b y= − = ,

(,) min : (,)B x x x xG p y b p b b y= − = .

To compute (,)T xG p y and (,)B xG p y , we scan each column y from top to bottom using the two

following formula: (,) (, 1) 1T x T xG p y G y p= − + (,) (, 1) 1B x B xG p y G y p= + + . Thus sequential

algorithm of the first step can be written as follows. Complexity order is ()n mο × .

Algorithm 27 : E.D.T algorithm – 1
st
 Step – Original version [Meijster]

Input : m:colums, n:lines, b:image

1. Forall []1..0 −∈ my do

2. If () By ∈,0 then [] 0..0 =yg

3. else [] ∞=yg ..0

4. endif

5. /* GT */

6. for ()1=x to ()1−n do

7. if [] Byx ∈, then [] 0.. =yxg

8. else [] [] 1,1, ++= yxgyxg

9. endif

10. endfor

11. /* GB */

12. for ()2−= nx downto ()0 do

13. if [] []yxgyxg ,,1 <+ then

14. [] [] 1,1, ++= yxgyxg

15. endif

16. Endfor; endforall

Chapter 5 | Topological smoothing

91 | P a g e

Let’s move to the second step. We start by defining 2 2(,) () (,)y xf p y p y G p y= − + .Then we can

define () min ()EDT p f p y= − , 0 y m∀ ≤ ≤ . For each row u , we note that there is, for the

same point p , the same value of (,)f p y for different values of y , so we can introduce the

concept of "region of column".

Let S be the set of y points such that (,)f p y is minimal and unique. The formula of S ,

0 y u∀ ≤ ≤ , is () m in : (,) (,)pS u y f p y f p i= ≤ . 0 i u u m∀ ≤ ≤ ∧ ≤ . Let T be the set

of points with coordinate greater than, or equal to, horizontal coordinate of the intersection with
a region: () ((1) ,) 1

xp p pT u S e p S u u= − + .

Let (,)Sep i u be the separation between regions of i and u , defined by the following with

2 2((,) (,))x xDif G p u G p i= − :

(,) (,)f p i f p u≤
2 2 2 2() (,) () (,)y x y xp i G p i p u G p u⇔ − + ≤ − +

2 2(,) () / 2(1)
xp ySep i u u i Dif u p⇔ = − + − = .

Thus lines will be processed, from left to right then from right to left. During the first term,
from left to right, two vectors S and T will be created. These two vectors will contain
respectively all regions and all intersections. During the second treatment, from right to left, we
compute f for each value of S . For each respective values of T , f is computed. Algorithm 28

is associated to second step. For the first term, complexity order is 2()q m u+ − whereas

complexity order of the second term is only m .

The independence of data processing between rows and columns is the key to apply of SD&M
parallelization strategy. In the first stage, column processing, we can define data
interdependence by the following equation:

{ }(,) min (,), (,)x T x B xG p y G p y G p y=

{ }(,)0
(,)(,) x

T x

if p y B
T x G p y elseG p y ∈⇔ =

{ }(,) min (1,), (,)B x B x T xG p y G p y G p y⇔ = +

It follows that values of each column y of G, depends only on lines: xp , 1xp + and 1xp − .

Similarly, at the second stage, we can introduce the following interrelationship:
() (, ())pEdt p f p S q= . Then (0), (0) ()y u i u u m∀ ≤ ≤ ≤ ≤ Λ < , ()pS u = min : (,) (,)y f p y f p i≤ .

Thus, if (())pu T q= so (1)q q= − which imply the following: () ((),) 1
xp p pT u Sep S q u= + .

Chapter 5 | Topological smoothing

92 | P a g e

Algorithm 28 : E.D.T algorithm - 2nd Step – Original version [Meijster]

Input : b:image, g: G_Table, m: columns, n:lines

1. Forall []1..0 −∈ nx do

2. 0=q

3. [] 00 =s

4. [] 00 =t

5. /* First part */

6. for ()1=u to ()1−m do

7. [] [](0) ((,),)A q f x t q s q = ≥ Λ

8. []((,),)B f x t q u=

9. while ()A B> then (1)q q← +

10. end while

11. if (0)q < then (0)q ←

12. [](0)s u←

13. else [](, ,) 1w Sep s q u x← +

14. if ()w m< then (1)q q← +

15. []s q u←

16. []t q w←

17. endif

18. endif

19. endfor

20. /* Second part */

21. for ()1u m= − to ()0 do

22. [] [], ((,),)Edt x u f x u s q=

23. if []()u t q= then (1)q q← −

24. endif

25. Endfor

26. end Forall

According to this formalization, values of (,)f p i and (,)xSep i u are independent of modified

data. So using two vectors S and T , a private variable q for each line ensures complete

independence in writing. We start applying the splitting step by sharing the columns and lines
processing between multiple processors. A thread can process one or more columns and the
number of threads used will depend on the number of processors. The results returned by all
threads in this first stage will be merged in order to start lines processing.

In the following we introduce the parallel version of Meisjter algorithm for both steps.

Associated algorithm complexity is ()() /n m Nο × . ()n m× refers to image size and N refers to

the number of processors.

Chapter 5 | Topological smoothing

93 | P a g e

Algorithm 29 : E.D.T algorithm - 1st Step – parallel version [Mahmoudi and Akil]

1. For max(, ,)y t y m y y t= < = + do

2. If () By ∈,0 then []0, 0g y ←

3. else []0,g y ←∞

4. endif

5. /* GT */

6. for ()1=x to ()1−n do

7. if [] Byx ∈, then [], 0g x y ←

8. else [] [], 1, 1g x y g x y← + +

9. endif

10. Endfor

11. /* GB */

12. for ()2−= nx downto ()0 do

13. if [] [](1, ,)g x y g x y+ < then

14. [] [], 1, 1g x y g x y← + +

15. endif

16. endfor

17. Endforall

Proposed parallel version of Meijster algorithm was implemented in C using OpenMP
directives. Speedup for numbers of threads equal to 1, 2, 4, 8, and 16 were determined. The
efficiency measure Ψ (n) is given by the following formula with n the number of processors:
Ψ (n) = seq. time /(n *p. time) (ii), already presented in section 2.4.1.

Times were performed on eight-core (2× Xeon E5405) shared memory parallel computer, on
Intel Quad-core Xeon E5335, on Intel Core 2 Duo E8400 and Intel mono-processor Pentium 4

660. The minimum value of 5 timings was taken as most indicative of algorithm speed. More
information about architectures characteristics are given in Table 20.

Algorithm 30 : E.D.T algorithm - 2nd Step – parallel version [Mahmoudi and Akil]

1. For max(, ,)x t x n x x t= < = + do

2. 0=q ; [] 00 =s ;

3. [] 00 =t ;

4. /* First part */

5. for ()1=u to ()1−m do

6. [] [](0) ((,),)A q f x t q s q ← ≥ Λ

7. []((,),)B f x t q u←

8. while ()A B> do (1)q q← +

9. end while

10. if (0)q < then (0)q ←

11. [](0)s u←

12. else [](, ,) 1w Sep s q u x← +

13. if ()w m< then (1)q q← +

Chapter 5 | Topological smoothing

94 | P a g e

14. []s q u←

15. []t q w←

16. endif

17. endif

18. Endfor

19. /* Second part */

20. for ()1u m= − downto ()0 do

21. [] [], ((,),)Edt x u f x u s q←

22. if []()u t q= then (1)q q← −

23. endif

24. endfor

25. end Forall

The measurements were done on 2D binary image (512*512). If we can get a satisfactory
outcome for this standard, it will be the same for smaller size images. View cache size limits,
larger image will not be tested. Figure 35 shows that number of instructions to compute
Euclidian distance drops from an average of 9.5x108 using 4SED algorithm down to 7.6x108 ms
with Meijster algorithm. Despite the passage from a sequential version running on single core to
a parallel version running on 8 processors, acceleration is only multiplied by 1.6 as shown in
fig. 36 (a).This can be explained by the choke point between columns processing and lines
processing. Waiting time between these two treatments significantly penalizes acceleration.
Figure 36 (b) shows that efficiency variation depends on the number of threads. It is also
proportional to the number of processors. Moving to 3, 5 or 7 threads (odd number) decreases
significantly the efficiency which reaches its maximum each time that the number of threads is
equal the number of processors.

 Figure 35 : Evaluation of instruction distribution (Meijster Alg.)

Chapter 5 | Topological smoothing

95 | P a g e

 (a) (b)

Figure 36: (a) Performance evaluation (b) Efficiency evaluation [Meisjter Algo.]

5.2.3 Thinning and thickening computation

Algorithms of thinning and thickening are almost the same. The only difference between them
is the following: in thinning algorithm, destructible points are detected then their values are
lowered. In thickening algorithm, constructible points, are detected then their values are
increased. For parallelization, we will apply the same techniques introduced in previous chapter.
Inspired from Couprie approach, we propose a similar version using two loops. Target points
are initially detected then their value lowered or enhanced according to appropriate treatment.
The set of their eight (or four) neighbors are copied into a "buffer" and rechecked. This
treatment is repeated until stability. In the following, we present an adapted version of
Couprie’s thinning algorithm.

Algorithm 31 : Adapted Version Thinning Algo. [Mahmoudi and Akil]

1. while ([]input x is destructible) do

2. (, 1)push x stack

3. 1x x← +

4. EndWhile

5. output input←

6. While (1) (max 0)iterstack ≠ ∅ ∧ > do

7. While (1)stack ≠ ∅ do

8. (1)x pop stack←

9. if ([]output x is destructible) then

10. [] _ ()output x reduce pt x←

11. (, 2)push x stack

12. endif

13. end while

14. While (2)stack ≠ ∅ do

15. (2)x pop stack←

16. ()v neighbors x←

17. 0i ←

18. While (8)i < do

19. if [](1)v i stack∉ then

Chapter 5 | Topological smoothing

96 | P a g e

20. [](, 1)push v i stack

21. endif

22. EndWhile

23. EndWhile

24. max max 1iter iter← −

25. EndWhile

Unfortunately direct application of introduced parallel processing is not possible with the set of
all points. Some points, called critical points, cannot be eliminated in parallel because initial
topology of the image may be broken. Figure 37 illustrates this case: Critical points of an input
image (a) are identified in (b). If these points are deleted in one iteration (c) topology necessary
is broken (d). To resolve this problem, we propose that research areas assigned to each thread
must be composed of at least six lines (of the image). Each thread will use two buffers to treat
each three lines thus four buffers are used to treat six lines as shown in fig 37 (e).

Figure 37 : (a) (b) (c) (d) Critical point illustration (e) Research Area Assignment

Through this organization threads can start running in parallel on Z11, Z21 and Z31. Once
processing is completed threads can restart running on Z12, Z22 and Z32. In some cases, a
neighbor of a destructible point is detected on the border of a contiguous area. To prevent that
such neighbor escape to recheck, it must be injected to buffer of the right thread. Let’s suppose
that a point p ∈Z2 is considered as destructible by T2, so its value will be lowered and its four

neighbors { }1 2 3 4, , ,v v v v should be rechecked. Neighbors { }1 2 4, ,v v v belong to Z2 so they will be

push in T2 buffers. The neighbor { }3v belongs to Z3 so it will stack T3 buffers.

Performance evaluation of introduced adapted version of Couprie’s algorithm is shown in fig.38

(a) (b). On eight cores architecture, acceleration does not exceed 3.4. Such moderate result can
be explained by critical borders processing. Regarding efficiency, the best performance is
achieved when the number of thread is equal to the number of processors. If this equality is not
ensured, the efficiency decreases. The problem threads’ add number still persists. The next step

Chapter 5 | Topological smoothing

97 | P a g e

is to combine the parallel version of Meijster algorithm and the adapted version of Couprie’s
algorithm to build the parallel processing of topological smoothing.

 (a) (b)

 Figure 38 : (a) Performance Evaluation (b) Efficiency Evaluation [Couprie’s Algorithm].

5.3 Global analysis

In this section, we present a global evaluation of the parallel smoothing operator. We start by
presenting performance evaluations in terms of acceleration and efficiency. Then we evaluate
cache memory consumption.

5.3.1 Execution time

We implemented two versions of the proposed parallel topological smoothing algorithm, the
first one using ‘Symmetric Multiprocessing’ scheduler and the second one using ‘basic-NPS’
scheduler. Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8 and 16 were
determined. The minimum value of 2 timings was taken as most indicative of algorithm speed.
The measurements were done on 2D binary image (512*512). Results of the second
implementation on the eight-core are shown in the following figure.

Figure 39: Tasks distribution using ‘Basic-NPS’ [parallel topological smoothing]

Chapter 5 | Topological smoothing

98 | P a g e

We note that number of instructions drops from an average of 1879 x10
8 FI with a single thread

down to 1652 x10
8 ms with 8 threads. As expected, the speed-up for the second implementation

using ‘basic-NPS’ scheduler is higher than for the one using "Symmetric Multiprocessing"
scheduler, thanks to balanced distribution of tasks. A remarkable result about speedup is also
shown in fig. 40 (a). In fact, speed-up increases as we increase the number of threads beyond
the number of processors in our machine (eight cores). In the first implementation, using
"Symmetric Multiprocessing" scheduler, the speedup at 8 threads is 1.9±0.01. However, for the
second implementation, using ‘basic-NPS’ scheduler, the speedup has increased to 5.2±0.01.
Another common result between different architecture is stability of execution time on each n-
core machine since the code uses n or more threads. For better readability of our results, we
tested also efficiency of our algorithm on various architectures (see fig. 40 (b)) using the ()nψ

formula introduced earlier. For parallel time ratio we used best obtained time with 8 threads
(‘basic-NPS’ scheduler).

 (a) (b)

 Figure 40 : (a) Global Performance improvement (b) Global efficiency improvement

5.3.2 Cache memory evaluation

As memory access is a principal bottleneck in current-day computer architectures, a key enabler
for high performance is masking the memory overhead. If we starts from basic theory that two
classic cache design parameters dramatically influence the cache performance: the block size
and the cache associativity. So the simplest way to reduce the miss rate is to increase the block
size even it increases the miss penalty. The second solution is to decrease associatively in order
to decrease hit time thus to retrieve a block in an associative cache, the block must be searched
inside of an entire set since there is more than one place where the block can be stored.

Unfortunately, we are dealing with non-reconfigurable architectures with caches whose
associativity and block size are predefined by the manufacturer. Nowadays, new approaches to
reduce cache miss are developed such as taking advantage of locality of references to memory
or using aggressive multithreading so that whenever a thread is stalled, waiting for data, the
system can efficiently switch to execute another thread. Despite their power, the application of
both approaches remains limited. In fact, applications of locality approach still experimental

Chapter 5 | Topological smoothing

99 | P a g e

even with Larrabee technology introduced by Intel. And the aggressive multithreading approach
has been specially designed for graphics processing engines, which manage thousands of in-
flight threads concurrently. So it is not recommended for general SMP machines with limited
number of processors and threads. With all these limitations, the most intuitive solution is to
rely on the scheduling. Thanks to the ‘basic-NPS’ scheduler, we have balanced the charges then
prevent context switching thus we minimize caches misses.

 Intel P4 Intel Dual C. T1400 Intel C2 Quad Q9550 Intel Xeon E5405

Num. of processor 1 2 4 2 x 4

SMT Yes Yes Yes Yes
Frequency 3,4 GHz 1,73 GHz 2,83 GHz 2,00 GHz

L1 Instr. Cache

Size 16Kb 32Ko 32Ko 32Ko

Asso. 8-way 8-way 8-way 8-way

Block size 32byte 32byte 32byte 32byte

L1 Data Cache

Size 16Kb 32Ko 32Ko 32Ko

Asso. 8-way 8-way 8-way 8-way
Block size 64byte 64byte 64byte 64byte

L2

Cache

Size 2Mb 512Kb 6Mb 6Mb

Asso. 8-way 8-way 8-way 8-way

Block size 64byte 64byte 64byte 64byte

RAM size 1Gb 2Gb 2Gb 8Gb

Table 20 : Hardware configuration [parallel smoothing alg.]

 (A-1) (A-2)

 Figure 41 : (A-1) Instruction - L1 misses; (A-2) zoom on (A-1) [parallel topological smoothing]

In the following we present our experimental analysis. We consider a commonly used Intel
processor configuration (More details are given by Table 20). Number of processor varies from
one to eight. The frequency varies between 1,73 GHz and 3,4 GHz. The L1 caches have at least
a 32-byte block size, while capacity vary between 16 Kbytes and 32 Kbytes, and for the
associativity, only eight ways is considered. The L2 caches have at least a 64-byte block size,
while capacities vary between 512 Kbytes and 6 Mbytes, and the associativity varies between
two and twenty four ways. The scheduler relies on our basic-NPS scheduling policy. As a result
of this experiment, see fig. 41 (A-1), we found that three performance regions are clearly
evident: In the leftmost region, as long as the cache capacity can effectively serve the growing
number of threads, increasing the number of threads improves performance, as more processors

Chapter 5 | Topological smoothing

100 | P a g e

are utilized. This area is generally identified as cache-efficiency zone. At some point, the cache
becomes too small for the growing stream of access requests, so memory latency is no longer
masked by the cache and instruction cache misses reduce more moderately. As the number of
available threads again increases, the multithread efficiency zone (on the right) is reached,
where adding more threads improves performance up to the maximal performance of the
machine, or up to the bandwidth wall. Balanced workloads offer higher locality and better
exploit the cache and hence expand the cache efficiency zone to the right and up.

An outstanding example is given by the following table which summarizes number of L1

instruction misses on Intel Dual Core T1400 architecture using SMP scheduling policy and
Basic-NPS scheduling policy. We note that number of instruction misses drops from an average
of 18844 L1 Instr. misses (using SMP) with two threads down to 6030 L1 Instr. misses (using
Basic-NPS) usually with two threads. Here success rate is largely above the average of 50%.
The same rate will be practically maintained when increasing the number of threads.

Number of threads 1 2 3 4 5 6 7 8

Instr.

L1 misses

Sym. Multi. Scheduler 10298 18844 19476 18638 19726 20058 20324 18946

Basic-NPS scheduler 3307 6030 6262 6035 6437 7202 7804 7085

(Symmetric Multiprocessing scheduler vs. Basic-NPS scheduler)

Table 21 : L2 – Instructions Misses [Topological smoothing]

 (A) (B)
 Figure 42 : (A) Data Read (B) Data Write - L1 misses [parallel topological smoothing]

Moreover, the shape of the performance curve depends on how fast the cache hit rate degrades
as a function of the number of threads. Any success access to L1 will eliminate an attempt to
access to L2 thus performance curve, fig. 43 (A-1)(A-2), will evaluate in the same way. By
reducing the number of cache miss from instruction cache, processor or thread of execution has
not to wait (stall) until the instruction is fetched from main memory which immediately impact
execution time.

Chapter 5 | Topological smoothing

101 | P a g e

 (A-1) (A-2)

 (B-1) (B-2)

 (C-1) (C-2)

 Figure 43 : (A-1) Instruction (B-1) Data Read (B-1) Data Write - L2 misses

Figures 42 (A) and fig. 43 (B-1) show so much load balancing and implicitly context switching
between processes can affect performance in terms of reading data from caches. However,
improvement in writing data, see fig. 42 (B) and fig. 43 (C-1), in two caches remains modest.
When there are more computation instructions per memory access, performance climbs more
steeply with additional threads. This is because as more instructions are available for each
memory access, fewer threads are needed to fill the stall time resulting from waiting for
memory.

Chapter 5 | Topological smoothing

102 | P a g e

5.4 Conclusion

In this chapter, we have presented a new parallel computation method for topological smoothing
through combining parallel computation of Euclidean Distance Transform using Meijster
algorithm and parallel Thinning–Thickening processes using an adapted version of Couprie’s
algorithm.

Introduced smoothing filter is parallel, preserve the topology and suited for SMP
implementation. SD&M strategy was applied twice. First time, when computation E.D.T, the
splitting step starts by sharing columns and rows to scan between different processes. A thread
can process one or more columns (rows). Number of threads will depend only on number of
processors. Second time, when computing thinning (thickening), splitting step starts by dividing
research area into different sub-region bounds. Since distribution start, each thread will lower
each characterized pixel and then push its eight neighbors in available FIFO queue. Each queue
contains the set of all selected neighbors and it is shared between only two threads.
Unfortunately, obtained results using SMP scheduling policy, are not sufficient especially for
cache consumption. For this reason, we move to PSN scheduler when distributing work. Finally
we apply the same approach of fusion threads in pairs when computing E.D.T, thinning and
thickening.

Chapter 6 | Conclusion

103 | P a g e

CONLUSION

his chapter presents the conclusions of the thesis, an extended summary of the research
work and restatements of contributions. Future work section summarizes the next steps
to follow into the research of parallelization strategy.

6.1 Contribution

The main idea behind the present thesis is basically to identify the best approach to parallelize
image processing operators based on topological transform. This approach, formally described
as a strategy, was designed for shared memory parallel machines.

Parallelization strategy is the science of planning and marshalling architecture resources for their
most efficient and effective use. Its main objective is to provide a mechanism to design parallel
algorithm by identifying existing concurrency, modifying their structure before any further
implementation (with right techniques) takes place. The idea is to take into consideration
algorithm characteristics and performance issues during parallel algorithm design from the
beginning. So, introduced strategy (SD&M) aims to give a full description of parallel
topological algorithm design approach, helping parallel designers to obtain powerful and
enhanced computation method of topological transforms on shared memory parallel machines. If
we consider a given topological operator, the parallelization strategy describes how such
algorithm can be modified with respect of the following algorithmic characteristics:

(i) Topology : structure allowing full topology preservation
(ii) Processing: structure providing parallel processing functionalities and best work

distribution. During parallel processing, structure assuring coordination and communication
are also used.

Thus, using SD&M strategy, a powerful parallel operator based on topological transform will be
the result of restructuring and splitting original amount of work between different processor.
Work distribution and processing activities take into account coordinating and communication.

In more formal way, SD&M strategy can be described as the combination of divide and conquer
patterns and event-based coordination patterns hence the name that we have assigned. Note that
introduced strategy represents the last stitch in the decomposition chain of algorithm design
patterns and it provides a fine-grained description of topological operators’ parallelization. It
covers recursive algorithms and it is especially designed for shared memory architecture with
uniform access. Although the cost of communication (Memory-processor and inter-processors)
is high enough, shared memory architectures appear to be among adapted platforms for this type
of processing. Actually, these architectures have the advantage of allowing immediate sharing of
data with is very helpful in the conception of any parallelization strategy. They are non-
dedicated architecture using standard component (processor, memory, buses ...) so economically

T

Chapter 6 | Conclusion

104 | P a g e

reliable and they also offer some flexibility of use in many application areas, particular image
processing.

Based on this strategy, we proposed a series of parallel topological algorithm (new or adapted
version). In the following we present our main contributions:

Major contribution concern a new algorithm to compute watershed that is parallel, preserves the
topology of the input image, does not need prior minima extraction and suited for SMP
machines. This algorithm does not require any sorting step, or the use of any hierarchical queue.
Links between parallel watershed-cut and the SD&M strategy application can be described as
follow: The splitting step is applied directly on input graph when selecting sources. Unlike
conventional technique of division such as pixel division, or block division, the source selection
is completely random. Associated steam computing is fully parallel (read mode data accesses).
Then distribution depends only on the available processors. This flexibility in data manipulation
allowed us to obtain very good results especially in terms of efficiency without using the 'Basic-
NPS' scheduler. Finally, the merging step contains procedures of s-labeling and f-labeling.
Through these two functions, we have remained confident in our approach for merging streams
two by two. Experimental analyzes such as execution time, performance enhancement, cache
consumption, efficiency and scalability are also presented and discussed. Note that proposed
parallel watershed-cut algorithm was preceded by an intensive study of different watershed
transform in the discrete case: WT based on flooding, WT based on path-cost minimization,
watershed based on topology preservation, WT based on local condition and WT based on
minimum spanning forest. For each approach, we give informal definition, then we presented
processing procedure followed by mathematical foundations and the algorithm of reference.
Recent publications based on some approach are also presented and discussed. This study led us
to classification of watershed algorithms according to criteria of recursion, complexity, basins
computing and topology preservation.

Second contribution concern an adapted algorithm to compute skeleton that is parallel, preserves
the topology of the input image and suited for SMP machines. Links between parallel
watershed-cut and the SD&M strategy application can be described as follow: first step is
dividing research area into different sub-region bounds. Since distribution start, each thread will
lower each characterized pixel and then push its eight neighbors in available FIFO queue. Each
queue contains the set of all selected neighbors and it is shared between only two threads.
Conventional synchronization techniques such that lock-based shared FIFO queue have not
given good results and performance of our algorithm remained modest. Therefore we have
applied our approach based on spin-wait FIFO queue for better performance. Dynamic lambda
skeleton algorithm becomes five times faster than original version proposed by Couprie and
al.[8]. Tests on 2D grayscale image (512x512), using shared memory parallel machine (SMPM)
with 8 CPUs cores (2 × Xeon E5405 running at frequency of 2 GHz), showed an enhancement
of 6.2 with a maximum achieved cadency of 125 images/s using 8 threads. Note that proposed
parallel lambda-skeleton algorithm was preceded by an intensive study of sixteen thinning
algorithms in the frame work of critical kernels. We conclude this study by the classification of
these algorithms according to five selection criteria: (i) preservation of topology, (ii) skeleton

Chapter 6 | Conclusion

105 | P a g e

connectivity, (iii) skeleton symmetry, (iv) execution time and (v) cache consumption. Through
this classification, we identified Couprie’s algorithm as the most suitable algorithm for
parallelization on shared-memory architectures.

Third contribution concern a new parallel computation method for topological smoothing
through combining parallel computation of Euclidean Distance Transform using Meijster
algorithm and parallel Thinning–Thickening processes using an adapted version of Couprie’s
algorithm. Introduced smoothing filter is parallel, preserve the topology and suited for SMP
implementation. SD&M strategy was applied twice. First time, when computing E.D.T, the
splitting step starts by sharing columns and rows to scan between different processes. A thread
can process one or more columns (rows). Number of threads will depend only on number of
processors. Second time, when computing thinning (thickening), splitting step starts by dividing
research area into different sub-region bounds. Since distribution start, each thread will lower
each characterized pixel and then push its eight neighbors in available FIFO queue. Each queue
contains the set of all selected neighbors and it is shared between only two threads.
Unfortunately, obtained results using SMP scheduling policy, are not sufficient especially for
cache consumption. For this reason, we move to PSN scheduler when distributing work. Finally
we apply the same approach of fusion threads in pairs when computing E.D.T, thinning and
thickening.

6.2 Perspectives

A possible extension of present work is the use of produced parallel algorithms and powerful
multicore/multithread architectures to improve modern 3D medical imaging software in which
segmentation procedure plays a crucial role.

Applications based on multiple detector–row computed tomography (CT) provide huge high-
resolution volumetric datasets which is extremely hard to inspect without computer aided pre-
processing. Straka and al. [59] work aimed at visualization and treatment planning of peripheral
arterial occlusive disease by means of CT-angiography. In fact, for the visualization and the
diagnostic assessment of vascular disease it is useful if tissues in images are segmented. To
highlight data volume and complexity of such application, note that CT-angiography of the
peripheral arteries is performed using multiple–detector row computed tomography. Thus
obtained series contain about 2000 transverse images (512x512-12bit/pixels). The analysis of
such data volume using currently medical workstation takes about four hours.

A first contribution to solve this problem is based on algorithmic solution proposed by Straka
[59]. The basic idea of his method, for bone tissue labeling in computed tomography data, is
reflected in the combined application of two techniques: a-prior knowledge derived from a
density based probabilistic atlas is used to locate characteristic parts of bones and a watershed
transform to identify spatially coherent sub volumes, regardless of their density. First step
consist a pre-computed atlas of bone density information to assign a bone-probability to each
voxel. Second step consist on partition the whole volume in homogenous regions using the

Chapter 6 | Conclusion

106 | P a g e

watershed transform, followed by classification of 3D watershed regions using the previously
acquired bone mask. Third step, masks are deleted to cope with partial volume effect.

Even if this method is designed specifically for bone extraction (robustness and efficiency of the
application is shown in fig. 45), Authors [59] believe that it is applicable for a large class of
software where object that might have variable densities throughout the dataset need to be
identified.

 (a) (b)

 (c) (d)

 (a) Maximum Intensity Projection (MIP) of the original dataset, (b) MIP, bone tissue partially removed using mask
obtained with probabilistic atlas. (c) MIP, bone tissue removed using mask extended with 3D watershed transform,

(d) MIP, bone tissue removed using the dilated mask. (Patella and sacro-coccygeal bone not modeled).[59]

Figure 44 : Illustration of 3D Watershed Transform application for Medical Image Segmentation

Chapter 6 | Conclusion

107 | P a g e

Other application on modern 3D medical imaging turns around cardiology software. In many
clinical applications, it is essential to obtain precise information on the size and the function of
the left ventricle (LV). Trough 3D images acquisition at different times of the heart cycle,
Magnetic Resonance (MR) imagery offers a complete and perfect morphological left ventricle
characterization. High precision in extracted measures make Magnetic Resonance imagery the
method of reference in left ventricle study and analysis. But like any application with high
precision in medical imaging, generated volume of data is very large. Thus, segmentation of
such datasets is not only complex but also very expensive.

Based on this segmentation framework, Jean Cousty [1,115] provides a new automated method
to segment the left ventricular myocardium in 4D (3D+t) cine-MR images, see fig. 45. For
object recognition, he used Exact Euclidean distance transforms to take into account prior
geometric properties and Homotopic transforms to guarantee topological soundness of the
segmentations. In order to assure time continuity of the successive 3D objects, he used a
watershed transform that can be applied directly on the 4D sequence considered as a whole. To
this end, he considered the watershed cuts in the watershed transform, and a temporal
component of a 3D+t image gradient.

In the future, we plan to study this application and revisit used algorithms: replacing the
watershed algorithm by the parallel watershed-cut to assess, in practice, the contribution of this
alternative.

 (a) (b) (c)

(a) Schematic view of three orthogonal sections of the objects of interest in left ventricle images (b) Three

orthogonal section of 3D MR images of the left ventricle. (c) A three dimensional rendering of these objects of
interest [115]

Figure 45 : Illustration of 4D Watershed Transform application for Medical Image Segmentation

108 | P a g e

BIBLIOGRAPHY

[1] Cousty, J., Bertrand, G., Najman, L. and Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water
Principle. IEEE Trans. Pattern Anal. Mach. Intell. (2009) pp. 1362-1374.

[2] Roerdink, J. B. T. M. and Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies.
Fundamenta Informaticae, 41. (2001) pp. 187-228.

[3] Bernard, T.M. and Manzanera, A.: Improved low complexity fully parallel thinning algorithm. Proceedings of the 10th
International Conference on Image Analysis and Processing. (1999) pp. 215.

[4] Jang, B. and Chin, R.T.: Reconstructable parallel thinning. International journal of pattern recognition and artificial
intelligence, vol. 7. (1993) pp. 1145-1181.

[5] Eckhardt, U. and Maderlechner G.: Invariant thinning. Edit. Inst. für Angewandte Mathematik. (1993) 37 pages.

[6] Guo, Z. and Hall, R.W.: Fast fully parallel thinning algorithms. CVGIP: Image Understanding Journal, vol. 55. (1992) pp. 317-
328.

[7] Hall, R.W.: Fast parallel thinning algorithms: Parallel speed and connectivity preservation. ACM Vol. 32 (1). (1989) pp. 124-
131.

[8] Couprie, M., Bezerra, F. N. and Bertrand, G.: Topological operators for grayscale image processing. Journal of Electronic
Imaging, vol. 10. (2001) pp. 1003-1015.

[9] Meijster, A., Roerdink, J.B.T.M., and Hesselink, W.H.: A general algorithm for computing distance transforms in linear time.
Mathematical Morphology and its Applications to Image and Signal Processing. (2000) pp. 331-340.

[10] Carriero, N., and Gelernter, D.: How to Write Parallel Programs. A Guide to the Perplexed. Yale University, Department of
Computer Science, New Heaven, Connecticut. (1988)

[11] Chandy, K. M., and Taylor, S.: An Introduction to Parallel Programming. Jones and Bartlett Publishers, Inc., Boston. (1992).

[12] Darlington, J. and To, H. W.: Building Parallel Applications without Programming. Department of Computing, Imperial
College. United Kingdom. In Abstract Machine Models, Leeds. (1993)

[13] Arjona, J. L. O.: Architectural Patterns for Parallel Programming, Models for Performance Estimation. University College
London. (2006).

[14] Andrews, G.R.: Concurrent Programming: Principles and Practice. The Benjamin/Cummings Publishing Company. (1991).

[15] Foster, I.: Designing and Building Parallel Programs, Concepts and Tools for Parallel Software Engineering. Addison-Wesley
Publishing Co. Reading, Massachusets. (1994).

[16] Culler, D., Singh, J. P., and Gupta, A.: Parallel Computer Architecture. A Hardware/Software Approach. Morgan Kaufmann
Publishers (1997).

[17] Dijkstra, E.W.: Co-operating Sequential Processes. F. Genyus. Ed. Programming Languages. Academic Press, New York,
1968.

[18] Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM vol. 21 (8). (1978).

[19] Brinch-Hansen, P.: Distributed Processes: A Concurrent Programming Concept. Communications of the ACM, vol.21 (11).
(1978).

[20] Bertrand, G., Everat, J. C., and Couprie, M.: Topological approach to image segmentation. In SPIE Vision Geometry V, vol.
2826. (1996) pp. 65-76.

[21] Bertrand, G., Everat, J. C., and Couprie, M.: Image segmentation through operators based on topology. Journal of Electronic
Imaging. (1997) pp. 395-405.

[22] Couprie, M., and Bertrand, G.: Topology preserving alternating sequential filter for smoothing 2D and 3D objects. Journal of
Electronic Imaging, vol. 13. (2004) pp. 720-730.

Bibliography |

109 | P a g e

[23] Bertrand, G.,: On Topological Watersheds. Journal of Mathematical Imaging and Vision, vol. 22. (2005) pp. 217 – 230.

[24] Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J., and Meijster, A.: Concurrent Computation of Attribute Filters on
Shared Memory Parallel Machines. Pattern Analysis and Machine Intelligence, IEEE Transactions on. (2008) pp. 1800-1813.

[25] Seinstra, F. J., Koelma, D., and Geusebroek, J. M.: A software architecture for user transparent parallel image processing on
MIMD computers. International Euro-Par conference. (2001) pp. 653-662.

[26] Mattson, T. G., Sanders, B. A., and Massingill., B.: Patterns for parallel programming. Addison-Wesley Professional, 1st
edition. (2004) 384 pages.

[27] Feldmann, S., Sgall, J., Teng, S-H.: Dynamic scheduling on parallel machines. 32nd Annual Symposium on Foundations of
Computer Science. (1991) pp. 111-129

[28] Wangqing, L., Mingren, S., and Ogunbona, P.: A New Divide and Conquer Algorithm for Graph-based Image and Video
Segmentation. Multimedia Signal Processing IEEE 7th processing. (2005) pp. 1-4.

[29] Quinn., J. M.: Parallel Computing: theory and practice. McGraw-Hill Inc, 2nd Edition. (1994) 446 pages.

[30] Flynn, M.: Some Computer Organizations and Their Effectiveness. Computers, IEEE Transactions on, vol. C-21 (9). (1972)
pp. 948-960.

[31] Steen, Aad. J., and Dongarra, Jack. J.: Overview of recent supercomputers. NCF report of Utrecht University. (2005) 90
pages.

[32] Buzbee, B. L.: Applications of MIMD machines. In Computer Physics Communications, Vol. 37(1-3). pp. 1-5.

[33] Foster, I.: Designing and Building Parallel Programs. Addison Wesley, 1st Edition. (1995) 430 pages.

[34] Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., and McDonald, J.: Parallel Programming in OpenMP. Morgan
Kaufmann, 1st Edition. (2000) 231 pages.

[35] Reinders, J.: Intel Threading Building Blocks. O'Reilly Media Inc. (2007) 303 pages.

[36] Ramaswamy, S., Sapatnekar, S., and Banerjee, P.: A framework for exploiting task and data parallelism on distributed
memory multicomputers. Parallel and Distributed Systems, IEEE Transactions on, vol.8. (1997) pp.1098-1116.

[37] Amdahl, Gene. M.: Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. AFIPS
Conference Proceedings, Vol. 30. (1967) pp. 483–485.

[38] Gustafson, John L.,: Reevaluating Amdahl's Law. Communications of the ACM vol.31. (1988) pp. 532-533.

[39] Acar, U. A., Blelloch, G. E., and Blumofe, R. D.: The data locality of work stealing. In Proceedings of the 20th ACM
symposium on Parallel algorithms and architectures. (2000) pp. 1–12.

[40] Natarajan, S.: Imprecise and Approximate Computation. Springer, 1st Edition. (1995) 200 pages.

[41] Tilborg, A. and Koob, G.M.: Foundations of Real-Time Computing: Scheduling and Resources Management. Springer, 1st
Edition. (1991) 340 pages.

[42] Leung, J., and Zhao, H.: REAL-TIME SCHEDULING ANALYSIS. Report of Computer Science Dep. New Jersey Ins.
(2005) 134 pages.

[43] Kolivas, C.: RSDL completely fair starvation free 64 interactive cpu scheduler. lwn.net, (March 2007).

[44] Molnar, I.: Modular Scheduler Core and Completely Fair Scheduler. lwn.net, 2007.

[45] James D. Mooney. “Strategies for Supporting Application Portability”

Bibliography |

110 | P a g e

[46] Anderson, J. H., Ramamurthy, S., and Jeffay, k.: Real Time computing with lock-free shared Object. ACM Transaction on
Computer System vol.15. (1997) pp.134 -165.

[47] Herlihy, M.: Wait-Free Synchronization. ACM transaction on programming languages and system, vol. 13. (1991) pp. 124-
149.

[48] Anderson, T. E.: The performance of spin locks alternatives for shared money multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, Vol. 1. (1990) pp. 6-16.

[49] Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In IFIP Congress 74 Proc. North-Holland
Publishing Co. (1974).

[50] Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A. D., Polstra, S. Bose, R., Zissulescu, C., and Deprettere, E. F.:
Daedalus: Toward Composable Multimedia MP-SoC Design. In ACM/IEEE Int Proc. Design Automation Conference. (2008), pp.
574-579.

[51] Halfhill, T.: Ambric's New Parallel Processor. Microprocessor Report. mdronline.com. (2008)

[52] Giavitto, L., and Sansonnet, P. : Introduction à 8 ½. Rapport interne LRI Orsay. (1994).

[53] Giavitto, L., and Sansonnet, P. : 8 1/2 : data-parallélisme et data-flow. Techniques et Sciences Informatiques Vol. 12. (1993).

[54] Mahiout, A., J.-L. Giavitto, L., and Sansonnet, P. : Distribution and scheduling data-parallel dataflow programs on massively
parallel architectures. Software for Multiprocessors and Supercomputers, Office of Naval Research USA & Russian Basic
Research Foundation. (1994).

[55] Maxwell, J.: On hills and dales. Philosophical Magazine, vol. 4(40). (1870) pp. 421-427.

[56] Beucher, S., and Lantuéjoul, C.: Use of watersheds in contour detection. International Workshop on Image Processing Real-
Time Edge and Motion Detection Estimation. (1979).

[57] Beucher, S., and Meyer, F.: The morphological approach to segmentation: the watershed transformation. Mathematical
Morphology in Image Processing. (1993) pp. 433-481.

[58] Serra, J.: Image Analysis and Mathematical Morphology. Academic Press. (1982) 610 pages.

[59] Straka, M., Cruz, A., Köchl, A., Šrámek, M., Gröller, E., and Fleischmann, D.: 3D Watershed Transform Combined with a
Probabilistic Atlas for Medical Image Segmentation. Journal of Medical Informatics and Technologies. (2003).

[60] Audigier, R.: and Lotufo., R. A.: Watershed by image foresting transform, tie-zone, and theoretical relationship with other
watershed definitions. In Mathematical Morphology and its Applications to Signal and Image Processing. (2007) pp. 277–288.

[61] Najman, L., and Couprie, M.: Watershed algorithms and contrast preservation. Lecture Notes in Computer Science, vol. 2886.
(2003) pp. 62-71.

[62] Soille, P. : Morphological Image Analysis. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. (1999).

[63] Dougherty, E., and Lotufo, R.: Hands-on Morphological Image Processing. SPIE Publications. (2003).

[64] Najman, L., Couprie, M., and Bertrand, G.: Watersheds, mosaics and the emergence paradigm. Discrete Applied
Mathematics, vol. 147. (2005) pp. 301-324.

[65] Vincent, L., and Soille, P.: Watersheds in digital spaces : An efficient algorithm based on immersion simulations. In IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 13. (1991) pp. 583-598.

[66] Shengcai, P., and Lixu., G.: A Novel Implementation of Watershed Transform Using Multi-Degree Immersion Simulation. In
27th Annual International Conference of the Engineering in Medicine and Biology Society. (2005) pp. 1754 – 1757.

[67] Meyer, F.: Topographic distance and watershed lines. Signal Processing, vol. 38. (1993) pp. 113-125.

Bibliography |

111 | P a g e

[68] Najman, L., and Schmitt, M.: Watershed of a continuous function. Signal Processing, vol. 38. (1993) pp. 68-86.

[69] Falcão, A. X., Stolfi, J., and Lotufo, R. A.: The Image Foresting Transform: Theory, Algorithms, and Applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26. (2004) pp.19-29.

[70] Lotufo, R. A., and Falcão, A. X.: The Ordered Queue and the Optimality of the Watershed Approaches. Procs. 5th
International Symposium on Mathematical Morphology. (2000) pp. 341-350.

[71] Dijkstra, E.W.: A Note on Two Problems in Connection with Graphs. Numeriche Mathematik, vol 1. (1959) pp. 269-271.

[72] Pape, U.: Implementation and Efficiency of Moore Algorithms for the Shortest Root Problem. Mathematical Programming,
vol. 7. (1974) pp. 212-222.

[73] Dial, R. B., Glover, F., Karney, D., and Klingman, D.: A Computational Analysis of Alternative Algorithms and Labeling
Techniques for Finding Shortest Path Trees. In Networks Journal, vol 9. (1979) pp. 215-248.

[74] Lotufo, R.A., Falcão, A. X., and Zampirolli, F. A.: IFT-Watershed from Gray-Scale Marker. 15th Brazilian Symposium on
Computer Graphics and Image Processing, Vol 2. (2002).

[75] Couprie, M., and Bertrand, G.: Topological grayscale watersheds transform. SPIE Vision Geometry V Proceedings, vol. 3168.
(1997) pp. 136-146.

[76] Couprie, M., Najman, L., and Bertrand, G.: Quasi-linear algorithms for the topological watershed. Journal of Mathematical
Imaging and Vision, vol. 22. (2005) pp. 231-249.

[77] Lin, Y.C., Tsai, Y.P., Hung, Y.P., and Shih, Z.C.: Comparison Between Immersion-Based and Toboggan-Based Watershed
Image Segmentation.15th IEEE Transactions on Image Processing, vol. 3. (2006) pp. 632-640.

[78] Mortensen, E.N., and Barrett, W.A.: Toboggan-based intelligent scissors with a four-parameter edge model. In IEEE Conf.
Computer Vision and Pattern Recognition. (1999) pp. 452–458.

[79] Meyer. F.: Minimum Spanning Forests for Morphological Segmentation. Proc. 2nd International Conference on Math.
Morphology. and Its Applications to Image Processing. (1994) pp. 77-84.

[80] Kumm, H.T., and Lea, R.M.: Parallel Computing Efficiency: Climbing the Learning Curve. 10's Ninth Annual International
Conference. Theme: Frontiers of Computer Technology. (1994) pp. 728 - 732

[81] Fruehe J.: Planning Considerations for Multicore Processor Technology. Dell Power Solutions. (2005).

[82] Khalimsky, E.: Topological graph theory foundations of design and control in multidimensional discrete systems. IEEE
international conference on System, Man, and cybernetics. (1994) pp. 1628-1933.

[83] Khalimsky, E.: Topological structures in computer science. J. Appl. Math. Simulation vol. 1 (1). (1987) pp. 25-40.

[84] Jain, Anil K.: Fundamentals of Digital Image Processing. Prentice-Hall 1st Edition. (1988).

[85] Arcelli, C., Cordella, L.P., and Levialdi., S.: Parallel thinning of binary pictures. In Electronic Letters, vol. 11(7). (1975) pp.
148-149.

[86] Bernard, T. M. and Manzanera, A.: Improved low complexity fully parallel thinning algorithm. 10th International Conference
on Image Analysis and Processing. (1999).

[87] Chin, R. T., Wan, H. K., Stover, D. L., and Iverson, R. D.: A one-pass thinning algorithm and its parallel implementation.
Computer Vision, Graphics, and Image Processing Journal, 40(1). (1987) pp. 30-40.

[88] Hall, R. W.: Fast parallel thinning algorithms: Parallel speed and connectivity preservation. Communications of the ACM
Magazine, 32(1). (1989) pp 124-131.

Bibliography |

112 | P a g e

[89] Couprie, M.: Note on fifteen 2d parallel thinning algorithms. UMLV Internal Report, IGM. (2005).

[90] Pavlidis, T.: An asynchronous thinning algorithm. Computer Graphics and Image Processing, vol. 20(2). (1982) pp. 133-157.

[91] Rutovitz, D.: Pattern recognition. Journal of the Royal Statistical Society. (1966) pp. 504-530,.

[92] Pavlidis, T.: A flexible parallel thinning algorithm. In Proc. IEEE Comput. Soc. Conf. Pattern Recognition, Image Processing.
(1981) pages 162-167.

[93] Holt, C.M., Stewart, A., Clint, M., and Perrott, R.H.: An improved parallel thinning algorithm. Communications on ACM,
30(2). (1987) pp.156-160.

[94] Zhang, Y.Y., and Wang, P.S.P.: A modified parallel thinning algorithm. In Pattern Recognition, 9th International Conference
on, (1988) pp. 1023-1025.

[95] Wu, R.Y., and Tsai, W.H.: A new one-pass parallel thinning algorithm for binary images. Journal of pattern recognition letter.
(1992) pp. 715-723.

[96] Guo, Z., and Hall, R.W.: Fast fully parallel thinning algorithms. CVGIP Image Understanding, vol.55(3). (1992) pp. 317-328.

[97] Jang , B.K., and Chin, R.T.: One-pass parallel thinning: Analysis, properties, and quantitative evaluation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on. (1992) pp.1129-1140.

[98] Jang, B., and Chin, R.T.: Reconstructable parallel thinning. International journal of pattern recognition and artificial
intelligence Journal, vol. 7. (1993) pp. 1145-1181.

[99] Eckhardt, U., and Maderlechner. G.: Invariant thinning. Int. J. Pattern Recogn. Artif. Intell. Vol. 7. (1993) pp. 1115-1144.

[100] Choy, S.S.O., Choy, C.S.T., and Siu, W.C.: New single-pass algorithm for parallel thinning. Journal Computer Vision and
Image Understanding vol. 62(1). (1995) pp. 69-77.

[101] Jang, B. K., and Chin, R. T.: One-pass parallel thinning: Analysis, properties and quantitative evaluation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 14(11). (1992) pp 1129-1140.

[102] Taubin, G.: Curve and surface smoothing without shrinkage. Fifth International Conference on Computer Vision.
Proceedings. (1999) pp. 852-857.

[103] Liu, X., Bao, H., Shum, H-Y. and Peng, Q.: A novel volume constrained smoothing method for meshes. Graphical Models,
vol.64. (2002) pp. 169-182.

[104] Asano, A., Yamashita, T. and Yokozeki, S.: Active contour model based on mathematical morphology. Fourteenth
International Conference on Pattern Recognition, Proceedings. (1998) pp. 1455-1457.

[105] Leymarie, F. and Levine, M.D.: Curvature morphology. Proceedings of Vision Interface. (1989) pp.102-109.

[106] Yung Kong, T. and Rosenfeld, A.: Digital topology: introduction and survey. Computer Vision, Graphics and Image
Processing, Vol. 48, (1989) pp. 357-393.

[107] Sternberg, S. R.: Grayscale Morphology”, Computer Vision Graphics and Image Understanding, vol. 35. (1986) pp. 333-
355.

[108] Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters,
vol.15. (1994) pp. 1003-1011.

[109] Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Processing vol. 14. (1980) pp. 227-248.

[110] Lemire, D.: Streaming Maximum-Minimum Filter Using No More than Three Comparisons per Element. Nordic Journal of
Computing, vol.13(4). (2006) pp 328-339.

Bibliography |

113 | P a g e

[111] Shih, F. Y. and Wu, Y.: Fast Euclidean distance transformation in two scans using a 3x3 neighborhood. Computer Vision
and Image Understanding, no. 94. (2004) pp. 195-205.

[112] Cuisenaire, O. and Macq, B.: Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods.
Computer Vision and Image Understanding vol.76(2), (1999) pp. 163-172.

[113] Cuisenaire, O. and Macq, B.: Fast and exact signed Euclidean distance transformation with linear complexity. IEEE Intl
Conference on Acoustics, Speech and Signal Processing. (1999) pp. 3293-3296.

[114] Fabbri, R., Costa, L. F., Torelli, J. C. and Bruno, O M.: 2D Euclidean distance transform algorithms: A comparative survey.
ACM Computing Surveys vol.40. (2008).

[115] Cousty, J., Najman, L., Couprie, M., Clément-Guinaudeau, S., Goissen, T., and Garot. J.: “Automated, Accurate and Fast
Segmentation of 4D cardiac MR images”. F.B. Sachse and G. Seemann (Eds), Procs. of Functional Imaging an Modeling of the
Heart. (2007) pp. 474-483.

