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Résumé

L’utilisation des antennes MIMO est une technique qui permet d’exploiter de fagon tres
efficace la diversité spatiale et temporelle présente dans certains systémes de communica-
tion, dont le canal sans fil. Le principal avantage de cette technique est une trés grande
efficacité spectrale. De nos jours, ou le canal radio-mobile est de plus en plus utilisé pour
transmettre tout type d’information, les méthodes permettant une utilisation plus efficace
du spectre électromagnétique ont une importance fondamentale.

Les algorithmes de réception connus aujourd’hui sont trés complexes, méme en ce
qui concerne les systémes MIMO avec les codes espace-temps les plus simples. Cette
complexité reste I'un des obstacles principaux a I'exploitation réelle.

Cette thése présente une étude trés détaillée de la complexité, la performance et les
aspects les plus intéressants du comportement des algorithmes de la réception pour le
décodage MIMO, étude qui présente un moyen rapide pour une éventuelle conception des
architectures adaptées a ce probléme.

Parmi les sujets présentés dans cette thése, une étude approfondie de la performance et
la complexité de ces algorithmes a été réalisée, ayant pour objectif d’avoir une connaissance
suffisante pour pouvoir choisir, parmi le grand nombre d’algorithmes connus, le mieux
adapté a chaque systéme particulier. Des améliorations aux algorithmes connus ont aussi
été proposées et analysées.
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Abstract

The use of MIMO antennas is a technique that allows to exploit in a very effective way
the spatial and temporal diversity in certain systems of communication, of which the
wireless communication systems. The main advantage of this technique is a good spectral
efficiency. Nowadays, the mobile radio channel is increasingly used to transmit all type of
information and methods allowing a more effective use of the spectrum have a fundamental
importance.

Today, the well-known reception algorithms are very complex, even as regards the
MIMO systems with the simplest space-time codes. This complexity remains one of the
main obstacles in the real exploitation of this technique.

This thesis presents a detailed study of the complexity, the performance and the
most interesting aspects of the behavior of the reception algorithms for MIMO decoding.
This study presents a quick mean for a possible architectural conception adapted to this
problem.

Among the subjects presented in this thesis, an in-depth study of the performance and
the complexity of these algorithms was realized, having for objective to acquire enough
knowledge to be able to choose, among the large number of known algorithms, the best
adapted to every particular system. Improvements in the known algorithms were also
proposed and analyzed.
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Résumé en Francais

Dans un premier temps, on présente le fonctionnement général d’un systéme de commu-
nication numérique. On se focalise particuliérement sur les systémes MIMO. D’abord,
on présente le modéle du canal pour un systéme MIMO. Ainsi, différentes techniques de
modélisation sont présentées et quelques modéles issus de la littérature sont classifiés. On
introduit ensuite les techniques de diversité et les propriétés de lattice. La probabilité de
coupure et le gain de multiplexage sont présentés. Le tradeoff diversité-multiplexage est
aussi détaillé.

0.1 Canal MIMO et Modélisation du Systeme

0.1.1 Schemas de Transmission

Un diagramme pour un systéme de communication radio sans fils est présenté dans la
figure (1.1). Dans cette figure, la source d’information pourrait étre de la voix, de la vi-
déo ou des données. Le codeur source traite I'information et la formate en une séquence
binaire bits € {£1}. L’objectif du codage source est de supprimer la redondance non
structurée de la source. Le codage canal ajoute de la redondance structurée dans I’objec-
tif de protéger 'information de la distorsion et du bruit du canal grace & cette diversité.
Le modulateur va mapper la séquence des bits codés en ondes radio convenantes pour une
transmission & travers le canal. L’amplitude du signal décroit & cause de la distance entre
Iémetteur et le récepteur. C’est la perte de propagation. A cause des obstacles, 'ampli-
tude du signal est atténué, c’est ce qu'on appelle shadowing. Finalement, & cause de la
propagation multi-trajets entre I’antenne émettrice et l’antenne réceptrice, le signal est
déformé. [’évanouissement multi-trajets peut étre constructif ou destructif. Le caractére
constructif ou destructif de I’évanouissement du canal dépend de la fréquence porteuse du
signal et ainsi appelé canal sélectif en fréquence. En plus des effets de propagation, vient
s’ajouter un bruit au niveau du récepteur décorrelé du signal transmis : bruit thermique
et interférences co-canal et issus des canaux adjacents.

L’objectif du récepteur est de reproduire a la sortie du décodeur source le signal émis
aussi précisément que possible.




2 RESUME EN FRANGCAIS

Source Channel ig |«Front-End>| |

— Source > _ — N Digital | Radio ;
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' | Radio _
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FIGURE 1 — Generic Architecture of a Digital Communication System

Ainsi, la modélisation du canal de transmission est essentielle pour concevoir un systéme
de communication numérique performant, le modéle du canal dépend ainsi de ’environ-
nement et du modéle de propagation. Comme montré dans la figure (1.2), le récepteur
détecte les différentes versions du signal. L’écho de ce méme signal n’est autre que 'interac-
tion de 'onde avec I'environnement de propagation réel : diffraction, réflexion, dispersion

(2).

La représentation mathématique simple pour un canal de communication est la repré-
sentation avec un filtre linéaire dont s’ajoute un bruit additif. Le signal transmis est ainsi
corrompu par le bruit additif (3).

Figure (1.3) illustre les différentes configurations d’antennes utilisées pour pour défi-
nir des systémes spatio-temporels. Single-input single-output (SISO) est le modele sans
fil le plus connu, single-input multiple-output (SIMO) utilises une seule antenne de trans-
mission et plusieurs en réception. Multiple-input single-output (MISO) utilises plusieurs
antennes en transmission et une seule en réception. Considérons un systéme MIMO avec
M antennes de transmission et N antennes en réception. Ainsi le signal en block recu :

Ynxr = Hyxn - Xyxr + Whxr, (1)

Avec H est la matrice du canal avec des entrées complexes h;; représentant les coefficients
d’évanouissement entre le "¢ antenne de réception et le j¢ antenne de transmission, et
sont modélisées par des variables gaussiens indépendants de moyenne zéro et de variance
0.5 par composante.
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FIGURE 2 — Multipath Propagation of Radio Signals

Le canal MIMO H peut étre représenté a un instant donné par une matrice de taille
N x M

hll h12 e th
h21 h22 e hQM

HNXM - . . . . ) (2)
th hNQ e h'NM

La figure (1.4) représente ce systéme. Xprx7 est le bloc du signal transmis sur un T
périodes symbole et une matrice de dimensions M X T'. T est la dimension temporelle, c’est
ainsi le nombre d’utilisations canal (uc). Wyt € N(0,02.1) est un bruit additif gaussien.
Le canal est supposé constant durant la transmission d’un bloc ( applé aussi des fois :
trame) et change d’un bloc a un autre. Le canal est supposé aussi sans mémoire entre les
blocs : ainsi les matrices associés aux différents blocs sont statistiquement indépendants.
Ce canal est connu comme un canal plat en fréquence, un canal a évanouissement lent ou
tout simplement un canal & évanouissement par bloc. Ces caractéristiques sont typiques
dans des applications sans fils fixes (WiFi...), ou un changement lent du canal est prévu :
un exemple sera un environnement bureautique ou les gens peuvent bouger en marchant.
La matrice H est supposé de rang plein. Ceci étant justifié car la probablilité de generer
une matrice aléatoirement présentant des lignes ou des colonnes non-indépendant est tres
proche de zero. En pratique, cela veut dire que les antennes de réception ou d’émission
doivent étre bien espacées. Cette exigence n’est pas considéré comme déraisonnable dans
les applications modernes sans fil ou la fréquence porteuse est dans la gamme de quelques
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FIGURE 3 — Different antenna configurations in space-time systems.

gigahertz et donc la séparation requise serait de quelques centimétres. Chaque récepteur
est supposé voir estimé H parfaitement a travers ['utilisation de certains procédés appro-
priés, telle qu'une séquence d’apprentissage transmis a chaque bloc. Cette situation est
souvent décrite dans la littérature comme le récepteur ayant une connaissance parfaite de
I’état du canal (CSI).

Les entrées |h;;| sont supposés avoir une distribution de Rayleigh. Les entrées de la ma-
trice de canal H sont complexes et gaussiens. Chaque composant définit un gaussien réel
et une partie imaginaire gaussienne de moyenne nulle et de variance égale a 0,5. Ainsi, le
canal H est considéré comme un canal de Rayleigh.

0.1.2 Modulation and Demodulation

Modulation et la démodulation sont utilisées dans de nombreux types de transmission
de données analogique et numérique. Le choix d'un type de modulation est basé sur la
bande passante et le rapport signal bruit. Dans la modulation numérique, une porteuse
analogique est modulée par un train de bits numériques. Les procédés de modulation
numériques peuvent étre considérés comme convertisseur numérique-analogique, et la dé-
modulation comme convertisseur analogique-numérique. Les changements dans le signal
de porteuse sont choisis parmi un nombre fini de symboles (I’alphabet de modulation). Si
'alphabet se compose de 2 M symboles, chaque symbole représente un message constitué
de N, bits. Habituellement, pour nos simulations, nous allons utiliser la Quadrature Am-
plitude Modulation (QAM). La modulation QAM est tout simplement une combinaison
de modulation d’amplitude et de modulation par déplacement de phase. Ses points de la
constellation sont généralement organisés dans une grille carrée avec un espacement verti-
cal et horizontal égale. L’ensemble des points des constellations est un sous-ensemble final
de Zl[i]. Depuis dans les télécommunications numeériques, les données sont généralement
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binaires, le nombre de points dans la grille est généralement une puissance de 2 (2, 4, 8
...). Quelques exemples de constellations ¢ — QAM avec ¢ = 4,8,16 sont présentées dans
la figure (1.5).

En passant a une constellation d’ordre supérieur, il est possible de transmettre plus de bits
par symbole. Toutefois, si I'énergie moyenne de la constellation reste la méme, les points
doivent étre rapprochés et sont donc plus sensibles au bruit ; il en résulte un taux d’erreur
binaire plus élevé et d’ordre supérieur QAM peut fournir des données moins fiable que
d’ordre inférieur QAM, pour une énergie moyenne constante.

0.1.3 Les Techniques de diversité

Les techniques de diversité fonctionnent sur la dimension temps, fréquence ou espace, mais
Iidée de base est la méme. En envoyant des signaux qui transportent la méme informa-
tion par des voies différentes, multiples indépendamment atténués. Plusieurs répliques du
signal sont obtenues au niveau du récepteur et une plus fiable détection peut étre atteinte.
Il ya trois types de schémas de diversité dans les communications sans fil

la diversité temporelle : Dans ce cas, les répliques du signal émis sont fournis dans le
temps par une combinaison de codage de canal et des stratégies d’entrelacement tempo-
relle. La principale exigence ici pour cette forme de diversité pour étre efficace est que le
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FIGURE 5 — Example of a Z[i] lattice of dimension 2

canal doit fournir suffisamment de variations dans le temps. Elle est applicable dans le
cas ou le temps de cohérence du canal est faible par rapport a la durée d’entrelacement
désirée de symbole. Dans un tel cas, nous sommes assurés que le symbole entrelacé est
indépendant du symbole précédent. Ceci le rend une réplique tout a fait nouvelle du sym-
bole d’origine.

diversité fréquentielle : Ce type de diversité offre des répliques du signal original dans
le domaine fréquentiel. Ceci est applicable dans les cas ot la bande de cohérence du canal
est faible par rapport a la bande passante du signal. Cela nous assure que les différentes
parties du spectre verront des évanouissements indépendants.

La diversité spatiale : Elle est également appelé la diversité de l'antenne et est elle un
moyen efficace de lutte contre I’ évanouissement multi-trajets. Dans ce cas, les répliques
du méme signal transmis sont prévues dans différentes antennes du récepteur. Ceci est
applicable dans les cas ou ’espacement d’antenne est plus grande que la la distance de
cohérence pour assurer des évanouissements indépendants a travers différentes antennes.
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Fondamentalement, D'efficacité de tout schéma de diversité réside dans le fait que, au
récepteur on doit fournir des versions indépendantes s du signal transmis. Dans un tel cas
nous sommes assurés que la probabilité que deux signaux ou plus encourent un évanouis-
sement profond sera trés faible. Les contraintes qui pésent sur le temps de cohérence,
la bande de cohérence, et la distance de cohérence le confirme. Le schéma de diversité
doit donc combiner de facon optimale les formes d’onde regues diversifiées de maniére a
maximiser la qualité du signal qui en résulte.

Nous pouvons également classer la diversité en diversité d’émission et de réception.

diversité de réception : Maximum Ratio Combining est un schéma de diversité souvent
appliqué dans les récepteurs pour améliorer la qualité du signal. Dans les téléphones cel-
lulaires, il devient coiiteuse et lourde a déployer. C’est une des raisons principales que la
diversité d’émission est devenue populaire, puisque la diversité d’émission est plus facile
a mettre en ASuvre au niveau de la station de base.
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FIGURE 6 — Spatial Receive Diversity

Diversité de tranmission Dans ce cas, nous introduisons de la redondance controlée
au niveau de I’émetteur, qui peut étre ensuite exploité par des techniques de traitement
de signal appropriées au niveau du récepteur. En général, cette technique nécessite une
connaissance parfaite du canal au niveau de I’émetteur. Mais avec I'invention du codage
espace-temps, comme le systéme Alamouti (4), il est devenu possible de mettre en oeuvre
la diversité de transmission sans connaissance du canal. Ce fut I’'une des raisons fondamen-
tales pour lesquelles le MIMO industriel commence a prendre essort. Codes espace-temps
pour la transmission MIMO exploite a la fois la diversité d’emission et de reception ce qui
aboutit & une bonne qualité en reception.

Par conséquent, en MIMO, nous parlons beaucoup de la diversité de réception ou d’émis-
sion. En diversité de réception, le récepteur qui a plusieurs antennes recoit plusieurs
répliques du signal transmis méme, en supposant que le la transmission est venu de la
méme source. Cela est vrai pour les canaux SIMO. Si le trajet du signal entre chaque paire
d’antennes s’évanouit de maniére indépendante, ainsi, quand un chemin s’évanouit, il est
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FIGURE 7 — Spatial Transmit Diversity

extrémement peu probable que tous les autres chemins sont aussi en évanouissement. Si le
nombre d’antennes de réception tend vers l'infini, la diversité tend vers I'infini et le canal
tend vers un canal & bruit blanc gaussien additif (AWGN) (5).

Dans la catégorie de la diversité spatiale, il ya deux types de diversité en plus que nous
devons examiner. Ce sont :

diversité de polarisation : Dans ce type de diversité de polarisation horizontale et ver-
ticale, les signaux sont transmis par deux antennes polarisées différemment et recues
respectivement par deux antennes polarisées différemment au niveau du récepteur. Diffé-
rentes polarisations assurent qu’il n’y ait pas de corrélation entre les données, sans avoir
a se soucier de la distance de cohérence entre les antennes.

Diversité d’Angle Cela s’applique a des fréquences porteuses de plus de 10 GHz. A ces
fréquences, les signaux transmis sont hautement dispersés dans I’espace. Dans un tel cas,
le récepteur peut avoir deux antennes trés directives face dans des directions totalement
différentes. Ceci permet au récepteur de détecter deux échantillons du méme signal, qui
sont totalement indépendantes les unes des autres.

Considérant un systéme MIMO N x M, le gain de diversité maximal possible est égal
a N x M. A haut SNR, la probabilité d’erreur P. diminue a d™° en puissance de SNR,
correspondant & une pente de —d dans la courbe de probabilité d’erreur (en échelle dB /
dB).

1

P
% SNRi ®)
Alinsi, la diversité est
log(F%)
d=— o) 4
SNItso0 og(SNR) 4)

Donc, pour SNR élevé, en moyenne la probabilité d’erreur diminue asymptotiquement,
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donc la probabilité d’erreur diminue si nous envoyons des informations sur d chemins
indépendants.

0.1.4 Définition de Lattice et ses propriétés

Un lattice A est un sous ensemble de rang p; pour p < n , de R™. A est ainsi un lattice

de dimension p et il existe p vecteurs v;,vs,...,v, € R" de dimension n tel que :
A=A(S) ={av1 + ava+ ...+ ayv, : a; € Z} (5)

avec S = [v1,v9,...,v,] est une matrice de dimensions n x p. L'ensemlbe des vecteurs

colonnes {v1,vs,...,v,} et la matrice S sont appelés respectivement la base et la matrice

de base de A. Ainsi, un lattice est une combinaison linéaire entiére des vecteurs de base.
Dans le reste de document, un lattice ayant S comme matrice de base sera noté Ag.
Considérons ainsi quelques définitions utiles, (voir figure (1.8)) :

e La matrice de Gram d’un lattice Ag est G = ST S.

e Le lattice équivalent
Soit Q dansM, (R), de telle sorte que QQ” = I,.
Les deux lattices Ag et Ag ¢ sont équivalents (méme lattice).

e volume fondamental d’un lattice
la volume fondamentale d’un lattice Ag ayant une base {vq,vs,...,v,} dans R™ est donné
par :

V={zxcR"\x=aqv;+avs+...+a,v,,0<aq, <1li=1...p} (6)

Géométriquement, le determinant det (A) d’un lattice A est défini comme étant le contenu
du parallélépipede engendré par les bases du lattice. Généralement, un lattice peut avoir
plusieurs bases possibles mais toujours le méme déterminant.

e Cellule de Voronoi
La cellule de Voronoi d’un point w dans un lattice A est la région défini par

v(u) ={z € R"\[|z —ul| <[z —y|.y € A} (7)

Ainsi, la cellule de Voronoi est une structure ou chaque interieur d’une cellule consiste
en tous les points proches d’un point particulier du lattice que tout autre point dans le
lattice. Comme le lattice est uniforme, toutes les cellules de Voronoi sont identiques. Le
volume fondamental d’un lattice est égale au volume d’une cellule de Voronoi. La repré-
sentation des systémes MIMO comme lattice et les décoder avec un décodeur lattice a
été initialement exploré by Damen et al. dans (6). On peut séparer la partie imaginaire
et la partie réelle et vectorizer le systéme MIMO (codé et non codé) et obtenir ainsi une
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représentation en lattice du modéle du canal.

0.1.4.1 Pour le cas du systéme non codé

Ici, on suppose que 7', la dimension temporelle, est égale a 1. Soit le mapping inversible
U : CM — RM du vecteur complexe v en empilant la partie réelle du vecteur v sur la
partie imaginaire, défini par

v = U(v) = { Pe(v) } , (8)

Ou M =2M.
Ou N # 1, le mapping ¥ : CV*M — RNXM and N = 2N d’une matrice complexe A 2
une matrice reelle A est definit comme suit :

Re(A) —Tm(A)
=¥(4) = {Jni(A) Re(A) } (%)

Ainsi, on peut réécrire ’équation (1.5) en séparant la partie réelle et la partie imaginaire
comme suit :

Yy = Hy, yxy+2zy. (10)

Comme la matrice Hynx s est de rang plein, la matrice H ., 5, est ainsi de rang plein. On
obtient donc une représentation en lattice du systéme MIMO non codé. Les dimensions
du lattice sont NV X M et la matrice génératrice est H y ;-
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0.1.4.2 Pour le cas du systéme codé

Dans ce cas X n’est plus un vecteur symbole comme dans le cas d'un systéme non
codé. Mais, il représente plutot la matrice mot de code a envoyer. Le mot de code recu
reste comme décrit dans I’équation (1.5). Deux étapes doivent étre suivies pour avoir une
représentation en lattice du systéme MIMO codé :

1) représenter le systéme code comme un systéme non code,

2) séparer les parties imaginaires et réelles. Premier pas consiste dans la vectorisation.
Ainsi, I’équation (1.5) devient

Hyyxm 0 $11 .. PLmT T 21
YNt = ' : ' : +
0 Hpynxnm oMTA oo OMT,MT TM.T ZN.T
SM.TXM-T TNM-T

Avec Comme rAZesultat, on obtient un systéme AZequivalent a (1.5)

ynr = HiNTxMT PMTXM.T TM.T + ZN.T
= HN.TxM.T *TM.T + ZN.T (11)

La séparation de la partie réelle et imaginaire est appliquée a I’équation précédente comme pour
Iéquation (1.15), et le systéme codé devient

Ynr — ﬂN-IXM-I *Tyr T ENT (12)

Ou on definit par H .y pr.p la matrice équivalente génératrice du lattice.

0.2 Décodage MIMO

0.2.1 Introduction

Dans cette partie, on présente l'etat de l'art des algorithmes de décodage MIMO existant en
littérature. On discutera dans un premier temps, les decodeurs sous-optimaux, comme le decodeur
de Forcage a Zero (Zero Forcing : ZF), l'algorithme de me minimisation de l'erreur quadratique
(Minimum Mean Square Error : MMSE), et les algorithmes a retour de décision, etc.

On présente ensuite, les décodeurs MIMO optimaux, et on se focalisera en particulier sur ceux
basés sur une représentation en lattice et sur les algorithmes séquentiels. On distingue ainsi deux
categories, les decodeurs utilisant la stratégie de Pohst comme le Sphére Décodeur et le Schnorr-
Euchner, algorithmes utilisants la stratégie de Dijkstra (ex : best-first-search) comme le decodage
par stack et le decodage de Fano. On montrera que cette derniére catégorie offrira un compromis
complexité-performance.
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0.2.2 Du modéle canal vers le design de Lattice

La théorie de Lattice est appliquée efficacement pour encoder et décoder 'information dans la
transmission numérique avec antennes multiples. La théorie de lattice est un outil mathématique
puissant pour représenter le canal géométriquement et comprendre son comportement dans 1’ob-
jectif de designer un bon modulateur et un bon démodulateur.

0.2.3 Décodeurs MIMO : Principes de base et structures

Dans cette thése, les schémas MIMO étudiés sont les schémas spatio-temporels. Ainsi, il est pos-
sible de représenter le systéme comme un systéme non-codé équivalent. Pour guise de simplicité,
on considérera le schémas de transmission non codé. Donc, les algorithmes de décodage étudiés
et proposés pour la suite reste valable pour un systéme codé, seulement les dimensions du sys-
téme vont changer. Rappelons, ’equation qui represente le systéme MIMO avec M antennes de
transmission et N antennes de réception. Soit la matrice mot de code X de dimension M x Tet
le signa recu Yde dimensions N x T vérifiant :

Y =HX+W (13)

Apres vectorisation, le systéme peut étre écrit sous cette forme :

Yeq — Heqs + Wegq (14)

Ol yeq €t weq sont les vecteurs colonnes composés de NT' éléments obtenus de Y et W. s
est le vecteur composé de p symboles encodés avec la matrice mot de code X. La matrice du
canal équivalente H ¢4 de dimensions NT' X p inclut la réponse du canal et 'opération du codage
spatio-temporel. Dans la suite, pour simplifier les notations, on va plus mentionner l'indice ¢q.
Soit aussi n = NT'. Comme résultat, les nouveaux dimensions du systéme sont n x p.

On suppose aussi une transmission cohérente (matrice canal connu & l’émission). Le system
devient ainsi :

y=H s+ w, (15)

L’objectif derriére la transmission MIMO est de trouver l’estimation du vecteur transmis. Le
decodage optimal est le maximum de vrai ressemblance (maximum likelihood : ML). Il s’agit de
trouver le vecteur le plus proche s qui minimise la métrique

s =argmin ||y — H - 5| (16)

Ou Cs est I'ensemble formé par les vecteurs de la constellation. Le récepteur ML cherche dans
tous les vecteurs de la constellation, le vecteur signal le plus probablement transmis. En analy-
sant la structure des décodeurs, on peut déduire que trois phases peuvent étre distinguées dans
la construction. Chaque décodeur peut inclure quelques phases ou toutes les phases. Ceci dépen-
dra du compromis compexité-performance recherché. Les décodeurs incluant toutes les phases
offriront une estimation plus optimale mais souffriront néanmoins d’une énorme complexité.
Phase Zéro : Prétraitement
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Le prétraitement est une phase optionnelle. Etant donné un probléme de recherche, la phase de
prétraitement est utile pour améliorer Iefficacité du décodage. Le prétraitement peut étre séparé
en deux étapes indépendantes : le prétraitement a gauche et le prétraitement & droite. Ces deux
étapes seront détaillés plus tard.

Phase deux : Un premier point

Cette phase permet d’obtenir une premiére estimation. L’avantage est d’obtenir rapidement un
premier résultat qui n’est pas forcement optimal. Quelques fois, le récepteur a besoin d’obtenir
une estimation rapide. Dans ce cas, cette phase peut etre suffisante puisque elle offre une com-
plexité trés réduite méme si le résultat n’est pas optimal. Ce premier point peut étre amélioré
en utilisant d’autres phases, mais ca rendra le cout de la complexité plus important.

Phase deux : un meilleur Point

Le premier point obtenu précédemment sera ameélioré pour avoir une estimation plus fiable. Ce
premier point est généralement utilisé comme initialisation pour la deuxiéme phase pour trouver
un point plus fiable. Cette phase ne peut pas étre indépendante de la premiére phase.

0.2.4 Les classes des décodeurs MIMO
0.2.4.1 Les décodeurs MIMO sous-optimaux

Le décodeur ZF Le récepteur ZF est un récepteur linéaire. Il se comporte comme un filtre linéaire
F et il sépare les flux des datas pour décoder ainsi indépendamment chaque flux. On suppose
que le matrice du canal H est inversible et on estime le vecteur transmis comme suit :

= (H"H) 'Hs=H's (17)

ou T représente le pseudo-inverse. Puisque 'inverse de H ne peut exister que si les colonnes de
H sont independents, il est supposé que les elements de H sont i.i.d. Ainsi :

Fzr— (H'H)'H (18)

et
Fzp-y=s+Fzp w. (19)

Alinsi, une simple détection permettra d’estimer § en utilisant une quantification dans la constel-
lation QAM gréce a la fonction Qgans :

= Qoam {FzF y} (20)

Le décodage ZF peut étre vu comme une projection orthogonale du vecteur regu sur la base
constitué des vecteurs lignes de la matrice H. Figure (2.1) montre un exemple de projection en
dimension 2. Si la base n’est pas orthogonal, la projection de y génére une erreur de décodage. Si
la base est orthogonale, la projection n’induit pas une erreur de décodage et la solution obtenue
est bien la solution ML.

En pratique, la matrice du canal n’est pas orthogonale. Plusieurs travaux dans la littérature
permettent d’obtenir des bases équivalentes composées des vecteurs les plus courtes et les plus
orthogonales possibles, ces techniques sont appelées les techniques de réduction (43). Ainsi, apl-
liquer ces tes techniques comme le prétraitement suivi un décodage ZF permettent d’obtenir un

>
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décodage pré-ML en terme de performance.
A la sorite du filter ZF, le bruit résultant est w = F zp - w. La matrice de covariance est défini
par

R = E (@) - (w)7] =0 (H" - H) ' =G (21)
Par conséquence, le bruit n’est pas blanc, Rga # Rww = o2I. En plus, si on applique la
decomposition SVD de la matrice de Gram G, on obtient G = U - D - V¥ ou U et V sont
des matrices unitaires et D est une matrice diagonale contenant les valeurs singuliéres de G.. En
utilisant la proprieté que les valeurs singuliéres de la matrice de Gram sont égales au carré des

valeurs propres de H, noté A\i,A\s,...,\,, la matrice de covariance w est donné par
NV 0
Raa = 02V . : : .Ut (22)

0 !

Ainsi, le probléme connu de forgage a zero est 'amplification du bruit provoqué par l'inversion
des valeurs propres de H. Ces valeurs propres sont grandes pour une matrice mal-conditionnée.
Le décodeur a retour de decision : ZF-DFE L’idée générale du décodeur ZF-DFE est de traiter le
vecteur regu y pour estimer le vecteur transmis s en estimant chaque composante s, une par une,
en annulant les effets de ces symboles déj & décodés, et annulant ceux déj & inconnus. En pratique,
si un symbole 5 est estimé, le décodeur exploite cette décision pour estimer S;_1, Sk_9,..., 51.
Ainsi, ce décodeur non linéaire est appelé un décodeur a retour de décision ( DFE : Decision
Feedback Equalization). Le décodeur The ZF-DFE utilise le critére ZF pour décoder le symbole
5x. Le DFE inclut un filtre feedforward qui opére sur le signal regu pour supprimer l'interférence
inter-symboles ISI, un filtre de feedback qui opére sur les symboles déj & détectés pour supprimer
I’ISI. Le DFE est généralement plus performant que le I’égaliseur linéaire traditionnel. Et puisqu’il
s’agit d’une détection successive, la décomposition QR est trés utile.

y = H-s+w
= QR s+w (23)

Dans l'objectif d’exploiter la structure triangulaire supérieure de la matrice R, on multiplie les
deux parties de I’équation (2.11) du coté gauche par le transposé de Q.

y, = Q'y
= R-s5+Q"w (24)
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Comme R est triangulaire supérieure, pour la premiére itération, le décodeur estime le symbole
sp en utilisant cette équation

. Y1,
Sn=Qqam {—n} (25)
T'nn
Pour decoder le symbole d’information sj, le décodeur utilise les symboles §;, j = k+1,...,n

précédemment estimés, en utilisant cette équation

. 1 . .
5 =Qqam § — [Yin— D 13| g 1<k<n (26)
Tkk j=k+1

Malheureusement, ZF-DFE performance est entravée par la propagation des erreurs. La degra-
dation dans les performances du décodeur DFE survient quand une détection erronée est injectée
dans le filtre feedback. Ainsi, au lieu de supprimer I'ISI, le DFE peut amplifier I'ISI. La propa-
gation d’erreur peut induire des erreurs de décision et augmenter ainsi la probabilité d’erreur
binaire et symbole. Le décodeur MMSE Le récepteur ZF élimine l'interférence mais amplifie le
bruit. Ceci, peut étre pas trop signifiant pour des hauts SNR, mais pour des SNR faibles, il
sera pratique de designer un filtre qui maximise le rapport global signal sur bruit et interférence
(SINR). Une possibilité sera de minimiser le bruit total résultant, i.e. trouver le filtre optimal
Fprvse qui minimise Uerreur quadratique moyenne :

Fyvmse = argn};n (E{ll5—sll})

= argmin (E{|[F -y - s[}) (27)

Ainsi, le filtre MMSE peut étre écrit comme suit :

2 -1

FMMSE:HH-<HHH—|—%I> R (28)
S

oil o2 représente la puissance moyenne des composantes du vecteur s, i.e F [ssH] = azIp.

Le critére MMSE a des performances meilleur que le Forgage a Zero pour des SNR faibles, mais

avec un désavantage : le récepteur doit connaitre la variance du bruit. Aussi, pour des SNR

élevés, le MMSE et le ZF sont équivalents.

Le récepteur MMSE offre un bon compromis entre la suppression d’interférence et la réduction

du bruit. Pour un SNR élevé, le récepteur MMSE devient un récepteur ZF. Pour les SNR faibles,

le récepteur MMSE devient similaire & un filtre adapté :

Fyzr  if SNR is high

Fynse = { g_EHH if SNR is low

Comparaison des décodeurs sous-optimaux Dans la figure (3.13), on compare les performances
et les complexités des différents décodeurs sous-optimaux présentés ultérieurement. Ainsi, on
considére un systéme MIMO 2 x 2 avec un multiplexage spatial. On utilise simplement une
constellation 4-QAM. Le canal est Rayleigh quasi-statique. L’efficacité spectrale est de 4b/s/Hz.
Les performances sont calculés en terme de BER en fonction du SNR. Le SNR est calculé avec

cette équation :
n>.P . E,
SNR = 10log19 < =15 > dB
23771 loga (q) No
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ou Ej, est I’énergie moyenne par dimension de l'information complexe appartenant & un constel-
lation ¢ — QAM et 0? = 2N,.

Dans la figure (3.13), on montre aussi la complexité des décodeurs sous-optimaux en terme de
nombre de multiplications par mot de code. Pour tous ces décodeurs, les opérations sont des
opérations matricielles appliquées au signal recu et complétement indépendantes de la variance
du bruit. Ce qui peut explique la complexité constante avec le SNR.

Meéme si tous les décodeurs sous-optimaux offrent une complexité faible et constante 4AS qui est
trés utile dans les implémentations pratiques - ils ne permettent pas des bonnes performances et
ne profitent pas de la diversité offerte par les systémes MIMO.

D’un autre coté, I'utilisation des décodeurs sous-optimaux peut étre trés intéressante si le nombre
des antennes de réception est grand comparé au nombre d’antennes de transmission car on profite
de la diversité de réception élevé. Mais, afin de récupérer la diversité totale offerte par les systémes
MIMO et les codes espace-temps, nous devrions nous concentrer sur les décodeurs optimales.
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0.2.4.2 Les decodeurs MIMO pour lattice

Le maximum likelihood (ML) conduit & la meilleure performance en terme de taux d’erreur,
mais il est extrémement exigeantes en termes de complexité. Pour les constellations, de taille g,
le décodage ML consiste & chercher parmi ¢P candidats possibles. Ce ci est abordable quand ¢ et
p sont petits, mais pas pour les systémes & grande efficacité spectrale. La complexité croissante
est causée par la recherche dans toutes les combinaisons possibles , bien que beaucoup d’entre
eux sont probablement pas le bon candidat : en raison de la distribution gaussienne du bruit,
des mots de code qui sont loin du vecteur regu sont beaucoup moins probable que des mots de
code proche du vecteur recu. Le décodage par Lattice permet une réduction significative de la
complexité comparé au ML exhaustif, d’abord 1) ca évite le besoin d'un controle compliqué des
bornes (44) et 2 ) permet une utilisation plus efficace des algorithmes des prétraitements (ex.,
lalgorithme LLL (43)) qui sont connus pour avoir offrir une réduction significative de complexiteé.
La recherche du point le plus proche d’un point donné a été tres largement étudié dans la théorie
de lattice. En général, ’algorithme de recherche optimal doit exploiter dans la structure de lattice.
Pour les lattices en général, qui n’ont pas une structure particuliére, le probléme est NP-difficile.

Une approche commune au probléme du point le plus proche est d’identifier une région dans
lequel le point optimal de lattice doit exister, et aprés étudier tous les points de lattice dans cette
région, et et éventuellement de réduire sa taille dynamiquement. En général, le développement des
algorithmes du point le plus proche suivent deux branches inspirées par deux articles fondateurs :
Phost (45) en 1981 a examiné les points de lattice qui appartiennent a un hyper spheére, Kannan
(49) en 1983 a utilisé un parallélépipéde rectangulaire. Les deux papiers apparaissent plus tard
dans des versions étendus : Pohst (48) et Kannan ( en suivant les travaux de Helfrich (47)) et
(46). En (45), cependant, Pohst a proposé une stratégie efficace pour énumeérer tous les points
du réseau intérieur d’une sphére avec un certain rayon. Bien au pire des cas, la complexité est
exponentielle en ¢, cette stratégie a été largement utilisé dans plusieurs problAZematiques de
recherche de points en raison de son efficacité dans de nombreux scénarios (voir (52) pour un
examen exhaustif des ouvrages connexes).

La stratégie d’énumération de Pohst a été initialement introduite en communication numé-
rique par Viterbo et Biglieri (50). Dans (51), Viterbo et Boutros l'ont appliqué pour la détection
ML pour les constellations multi-dimensionnelles transmis sur un canal évanouissant a une an-
tenne et donnent le diagramme d’une éventuelle implémentation. Agrell et al. (52) ont propose
l'utilisation d’un raffinement Schnorr-Euchner (53) de I’énumération de Pohst dans la recherche
du point le plus proche. Algorithme du décodeur par Sphére L’algorithme de décodeur par
sphére a été initialement développé dans les années 1980, mais a récemment attiré beaucoup
d’attention dans la communauté MIMO grace a sa performance similaire au décodeur ML ex-
haustive & une complexité raisonnable. L’idée principale est de limiter la recherche parmi les
candidats possibles localisés dans un sphére de rayon v/C' centré sur le vecteur recu (voir figure
(2.3)). Dans cette partie on suppose un systéme MIMO symétrique, M = N. En appliquant un
mapping du systéme complexe vers un systéme réelle de I’équation (2.3) comme décrit dans les
équations (1.13) et (1.14), on obtient

y=H s+w. (29)
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Aprés, on considére la décomposition QR de la matrice H = QR. Aprés la multiplication de
deux cotés de I'équation (2.17) par QT le systéme devient

Y = QT‘Q
= R -s+ws. (30)

Q est orthogonale et la multiplication par Q' ne change pas le systéme précédent. Le systéme est
de dimension 2n puisque M = N et puisqu’on est passé a la représentation dans le domaine réel.
Maintenant, trouver le point le plus proche dans le sphére est équivalent & résoudre I'inéquation
suivante :

; —R-s|2< 1
égglllyl s|*<C (31)

FIGURE 11 — Sphere Decoding

L’algorithme de décodage Schnorr-Euchner L’algorithme de Schnorr-Euchner nous étudions
ici a été présenté dans (52). Il a été utilisé dans des applications de cryptographie. Cet algorithme
a le méme principe que le SD : la recherche du point le plus proche. Cet algorithme est basé sur
deux étapes. La premiére étape consiste a rechercher le point de Babai (BP), ce qui représente
une premiére estimation, mais n’est pas nécessairement le point le plus proche. Trouver le BP
nous donne une borne sur erreur. Dans la deuxiéme étape, nous modifions le BP jusqu’ a ce
que le point le plus proche est atteint. Nous zigzagons autour de chaque composant BP en vue
de construire le point le plus proche(contrairement au sphére décodeur, il n’ya pas de minimum
et maximum pour chaque composante du BP). Le temps nécessaire pour trouver le point le plus
proche est étroitement liée & BP, ce qui signifie étroitement liée au SNR. En fait, si le BP est trés
loin du point le plus proche, c¢’est & dire pour les rapports signal sur bruit faible, I’algorithme
prend beaucoup plus de temps a converger. Toutefois, si le BP est proche de point le plus proche,
c’est a dire pour les rapports signal sur bruit élevés, 'algorithme converge rapidement.
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FIGURE 12 — SE Search Strategy

L’idée clef est de voir le lattice comme une superposition des hyperplans et puis commencer
la recherche pour le point le plus proche dans 'hyperplan (voir figure 2.4).
Rappelons ’équation (2.18). La forme triangulaire supérieure de R permet de voir le lattice
comme plusieurs couches. Ainsi, la matrice R peut étre écrit comme suit

(2.30)

Ou R; est une matrice (2n — 1) x 2n Composée du top 2n — 1 lignes de la matrice R. La
matrice R est triangulaire, le vecteur 7o, = (0,,0,r2,2,,) est orthogonal & I'espace généré par
la matrice Rq. Maintenant, ’algorithme de recherche dans le lattice de dimension 2n va étre
détaillé récursivement comme un nombre fini de 2n — 1 opérations dimensionnelles. Le lattice
AR peut etre vu comme une superposition infini d’hyperplans de dimension 2n — 1 générés par
la matrice Ry :

Ap=U {C + tgn’l"2n/c S AR1at2n S Z} . (2.31)

Une projection successive sur les différents hyperplans du lattice permet de trouver une premiére
estimation du point le plus proche. C’est le 'Babai point’ et il correspond au point ZF-DFE
(55). Une fois ce point est trouvé, il constitue le point de départ pour visiter les autres points.
L’objectif est de trouver le point le plus proche, il n’est donc pas nécessaire de considérer les
points ayant une distance supérieure au 'Babai point’. Ainsi, le Schnorr-Euchner (SE) est un
algorithme dans une sphére centre sur le point regu avec comme rayon initial la distance entre
le point recu et le BP.
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0.3 Décodeur par Stack a bornes sphériques dur et
souple

0.3.1 Introduction

Le décodage ML consiste & chercher le point le plus proche au point requ appartenant au lattice.
La recherche exhaustive consiste a visiter tous les points de lattice qui est impossible & réaliser en
pratique. Ainsi, pour décoder le vecteur recu, il est nécessaire de définir une région de recherche
finie.

Le décodage par stack était originalement designé pour décoder les codes binaires a treillis, ou le
mot de code est choisi dans un alphabet fini. Néanmoins, considérant le lattice, le mot de code
est pris dans le corps fini Z?" ce qui aboutira & une structure en arabre. Appliquer le decodage
par stack semble impossible dans ce cas. Notre objectif est de proposer une version modifié de
I'algorithme stack dans le but de decoder le lattice et de réduire la complexité. Donc, on propose
ici un nouvel algorithme qui combine la région de recherche du sphére décodeur et la stratégie
de recherche du décodage par stack.

0.3.2 Deécodeur par Stack a bornes sphériques
0.3.2.1 Décodage SB-Stack pour les lattices

A - 1°"¢ approche

Appliquant le décodage par stack, on cherche le point le plus proche dans une région finie ACZ?".
Malheureusement, la troncature de I’arbre aura une incidence sur les performances du décodeur.
En fait, si le mot de code transmis appartient & A, le décodeur saura systématiquement le déco-
der, mais une erreur se produira si le mot de code est en dehors de la zone de recherche. Ainsi,
le principal défi est de savoir comment choisir la zone de recherche optimale A. Déj a, la forme
triangulaire de la base de lattice rappelle la strategie d’enumeration Schnorr Euchner (SE) (52).
Notre algorithme de recherche est similaire au SE et base sur I'utilisation du BP, néanmoins la
stratégie de recherche et la construction de l’arbre sont totalement différents. En effet, le SE
consiste a énumérer tous les noeuds possibles dans une région borné en zigzagant autour du BP
en utilisant la stratégie de recherche en profondeur (Depth First Search : DeFS). Dans cette
premiére approche, on s’inspire de algorithme SE et on propose un arbre centré sur le BP w.

A chaque niveau, il énumeére les points voisins dans le lattice u £t = (uy £t1,us £ito,...,u0y top)
oil t est un vecteur dans Z2", la stratégie BeFS est encore appliquée sur cet arbre. En appliquant
cet algorithme, on peut délimiter la taille de I’arbre en choisissant le nombre des noeuds voisins
de lattice du BP & prendre. Néanmoins, le point ML n’est pas garanti d’étre dans l'arbre. Pour
I’atteindre, on doit élargir la région de recherche ce qui implique d’avoir un arbre dense ce qui
implique plus de complexité. Dans la figure (3.1), on montre les performances du décodage par
stack contraint & quelques régions de recherche. Ainsi, on trace le taux d’erreur symbole comme
fonction du SNR, pour un systéme MIMO 4 x 4 en utilisant le multiplexage spatial et un canal
quasi statique de Rayleigh. Au début, on procéde en considérant une région de recherche défini
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par A, = {u; — Lu,u;+1,i = 1,...,2n}. Ceci veut dire que les points de lattice concernés direc-
tement par l’algorithme de recherche sont les points voisins directs du BP. Néanmoins, dans des
mauvaises conditions canal, le point ML peut étre loin et inaccessible. Ceci est visible dans le
graphe (a), ou les performances sont sous-optimales et provoque une perte de 2dB du ML. Pour
le méme systéme, on a progressivement élargi la région de recherche et on a observé le comporte-
ment de l'algorithme. Les graphes (a)-(d) montrent les performances obtenues en considérant les
régions de recherche A, = {u; — Lu,u; + 1}, Ay = Ag U{wi — 2,u; + 2}, Ac = Ay U{wi —3,u; + 3}
et Ag = AcU{y; —4,u; +4}. Comme montré dans la figure (3.1), le décodeur fournit des perfor-
mances sous-optimales, mais on s’approche des performances ML quand on elargit la région de
recherche. Mais la complexité augmente avec les performances. Ainsi, un compromis peut étre
établi et cet algorithme de décodage peut étre d’un grand intérét. Ainsi, au début de l'algo-
rithme, le compromis performance-complexité est fixé ce qui définit la région approprié. Dans les
simulations de la figure (3.1), on a considéré un vecteur uniforme t. On peut également utilisé
un vecteur t avec des valeurs larges de t; pour les premiers composants et des petites valeurs de
t; pour les derniers. Le choix peut étre judicieux a cause du probléme de propagation d’erreur
dans I’arbre de recherche.

B - 2"approach (Décodeur SB-Stack)

Dans la premiére approche, 'arbre de recherche est centré autour du BP. Toutefois, cette
derniére est généralement une estimation approximative de la transmise mot de code, puis le
centrage de la région de recherche sur ce point n’est pas optimale puisque la solution ML peut
ne pas étre a U'intérieur, comme le montre la figure (3.2). Par conséquent, nous proposons ici une
seconde approche pour le décodage du lattice inspiré de ’algorithme de décodeur par sphere.
Le principe du décodeur sphére consiste & énumérer tous les points du lattice trouvés dans une
sphére d’un rayon v/C centrée sur le point recu. Chaque fois un point est trouvé , le rayon est
mis a jour, ce qui limite la nombre des points énumeérés, mais garantit également le critére du
point le plus proche. Le décodeur par sphére utilise la stratégie de DeFS. Nous appelons cette
deuxiéme approche : le decodeur par stack a bornes sphAZeriques. (SB-Stack). L’algorithme SB-
Stack explore seulement les points du réseau l'intérieur de la sphére de rayon v/C en utilisant la
stratégie BeFS, qui conduit & la définition d’une limite supérieure et une inférieure pour chaque
point du lattice.

Le but de la SB-Stack est de trouver le noeud feuille ayant le moindre cotit et se situant
dans la zone de recherche sphérique. A partir du noeud racine, l'algorithme calcule les limites
supérieure et inférieure de la premiére composante s,,,, notés respectivement b;yr 2, et bsup2n €t
géneére tous les noeuds a l'intérieur de ces limites.
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Noeuds générés sont stockés avec leurs cotts respectifs dans la pile (le stack). Aprés cela,
I’algorithme réordonne les noeuds dans la mémoire dans un ordre croissant en fonction de leurs
colits, sélectionne le haut noeud, puis calcule les limites du niveau suivant. Puis, il génére tous les
enfants possibles du noeud supérieur et les stocke dans la mémoire. Aprés cela, le noeud supérieur
est retiré de la pile. Cette procAZedure est répétée jusqu’ & ce qu'un noeud de feuille atteint le
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haut de la mémoire. Notez que, bien que la similitude apparente entre le traditionnel décodeur
par sphére et l'algorithme SB-Stack, ces deux algorithmes de recherche soulévent de grandes
différences. De cette facon, contrairement au décodeur par sphére, le rayon dans le décodeur
SB-stack reste inchangée au cours de tout le processus de décodage, alors que pour le décodeur
par sphére, le rayon est mis a jour chaque fois qu’un point est trouvée. Cependant, la stratégie de
recherche pour I'algorithme de stack est tout a fait différente. En fait, a chaque étape, I’algorithme
peut revenir en arriére a un niveau supérieur ayant un moindre cotit avant d’atteindre un noeud
feuille qui correspond & une solution candidate. Ainsi, il n’est pas possible de surveiller la distance
ML lorsque I'algorithme est en cours. Par conséquent, le rayon doit étre fixé.

0.4 Reéduction de la complexité de ’algorithme de dé-
codage par stack

0.4.1 Introduction

Cette partie vise a améliorer le décodage par stack en termes de complexité. Comme montré avant,
I’algorithme de décodage par stack est un bon candidat pour résoudre le compromis complexité-
performance tout en donnant une excellente structure qui fournit des sorties souples. Notre but
est alors de proposer une version modifiée de ’algorithme afin de réduire la consommation de la
complexité et le temps.

0.4.2 Deécodage par Stack paralléle

Le décodage par stack montre des bonnes caractéristiques pour étre mis en oeuvre et améliore la
complexité par rapport aux décodeurs ML SE et SD. Mais il souffre encore de grande complexité.
Le traitement paralléle peut réduire le temps en exécutant des instructions simultanément. Nous
proposons ici une nouvelle version du décodeur par stack basée sur un traitement paralléle. SD
a été traitée en paralléle in (91) mais avec une perte de performance.

Le parallélisme est une forme de calcul dans lequel de nombreuses instructions sont effectuées
simultanément. Toutefois, les programmes paralléles sont plus difficiles & écrire que ceux séquen-
tiels.

Pour résoudre un probléme, un algorithme est réalisé, qui produit un flux série d’instructions. ces
instructions sont exécutées sur une unité centrale de traitement. Une seule instruction peut etre
exécuté & un moment donné aAS apres que linstruction est terminée, la suivante est exécutée. Le
traitement en paralléle utilise plusieurs ressources de calcul simultanément pour résoudre un pro-
bléme. Le probléme est divisé en parties qui sont indépendantes de sorte que chaque ressource
de calcul peut exécuter sa partie de l'algorithme simultanément avec les autres. La structure
paralléle permet le décodage des parties réelle et imaginaire de chaque symbole de maniére indé-
pendante et en méme temps. La représentation en lattice donné avant par la fonction ¥ impose
une restriction majeure de l'algorithme de recherche arborescente. Plus précisément, la recherche
doit étre exécutée en série d’un niveau & un autre sur ’arbre. Traitement de chaque niveau pour
estimer les symboles doit avoir I’estimation de symboles précédents qui sont nécessaires pour cal-




0.4. REDUCTION DE LA COMPLEXITE DE L’ALGORITHME DE DECODAGE PAR STACR)

culer les cotits pour chaque enfant. La pile standard de décodage en utilisant ’arbre de recherche
commence au plus haut niveau et de traverser I’arbre avec un niveau & la fois, et calcule pour
chaque étape des coiits du noeud enfant.

0.4.3 Représentation en nouveau lattice

Selon la représentation en lattice W, il est impossible, par exemple de calculer le cotit pour un
noeud dans le niveau k sans assigner une estimation pour les niveaux d’avant. Cette approche
signifie que le décodage de toute s;, nécessite une valeur estimée pour tous les s; précédents, ot
j=k—1,..2n.

L’idée derriére ce travail est de détendre la structure d’arbre de recherche qui le rend plus souple
pour le parallélisme. Ainsi, on peut décoder chaque paire de niveaux adjacents dans ’arbre, et
chaque niveau de cette paire est indépendant de 'autre. Pour cela, on devrait commencer par
donner une seconde forme de la représentation matrice de canal. Au lieu de la fonction ¥ défini
par :

H - w(H)
- (32)

On utilise une autre fonction 2 et on donne une autre représentation en lattice défini dans (91)

par :
H - QH)
V(Hyp) - V(Hin)
= : : ; (33)

On suppose que ¥ peut étre appliqué aux composantes complexes comme pour le cas matriciel.
En utilisant cette représentation du canal, on change l'ordre de détection des symboles recus a
la forme suivante :

[t
Il
=
N

Ce qui veut dire que le premier et le second niveau de ’arbre correspondent aux parties réelle et
imaginaire de s,.
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0.4.3.1 Apercu des techniques de decodage parallele

Apres 'application de la décomposition QR, cette structure devient trés intéressante. En effet,
grace a lorthogonalité entre les colonnes de chaque ensemble, tous les elements ry .., pour
k=1,3,--- ,2n dans la matrice triangulaire supérieure sont nulles. La localisation de ces zéros
est trés importante puisque ils introduisent une orthogonalité entre la partie réelle et la partie
imaginaire pour chaque symbole détecté. Par exemple, pour la matrice triangulaire supérieure
4 x 4 R, on obtient la forme suivante

rig 0 i3z Tig

S 0 Too2 T2z Tgy
R = 0 0 r33 O ’ (35)
0 0 0 14y

En utilisant cet exemple, la figure (4.2) définit le décodage par stack paralléle qui va traiter deux
niveaux dans chaque AZetape en dupliquant le traitement et en gardant une seule mémoire pour
sauvegarder les fils.
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lattice permits to calculate the four nodes simultaneously
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) The four nodes calculation is distributed on two state machines

FI1GURE 15 — Parallel processing principle

A travers la figure (4.1), on peut comprendre l'importance du traitement paralléle dans
I’amélioration du vitesse de décodage. La nouvelle représentation du lattice permet de calculer
deux dimensions dans une seule AZetape grace a I'indépendance entre les deux derniéres couches
de la matrice de génération du lattice. Ainsi, le temps de I'exécution est deux fois plus faible
puisque deux dimensions sont visitées pour chaque noeud.
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Introduction

Except for the written word, human communication has always been transmitted over the

atmosphere. Voice, sounds, smoke signals, etc. use mechanical or visual cues to transmit messages.
With the advent of telephony and telegraphy, long-distance communications became possible
while being inexpensive and reliable. These techniques used electrical wire as the communication
medium with great success : thousands of homes and cities all over the world deployed hundreds of
thousands of kilometers of cable to allow people to communicate. However, it was soon determined
that the exclusive use of wires severely limited the use and flexibility of the new communication
systems. From an economic perspective, providing each home with a wired telephone cable is very
expensive. Replacing the wired infrastructure when it fails is even more so. From a practical point
of view, the end point of the wire is, by necessity, fixed ; this means that, in order to profit from
it, a person has to be present in a specific place. Also, wired communications are essentially one-
to-one ; sharing the same connection between several people is, at best, cumbersome. Over the
last century, enormous advances have been made in telecommunications. Ever greater amounts
of information have been made available to the public from a variety of sources : radio, television,
internet, multimedia mobile phones. The old wire seems to be ill-suited to the new possibilities
offered by technology. In fact, more and more information is transmitted wirelessly, returning to
the ancient use of the atmosphere as communication medium. The reasons are simple ; in short,
wireless communications overcome the basic limitations described above. There is no need to lay
out huge amounts of material to homes, businesses and offices. The transmitted signal can cover
a large area (even the whole planet), allowing the use of the medium from any location, and
making broadcasting trivially easy.
That’s why, wireless communications is among the most active fields of technology development
of our time and is becoming a key element of modern society. This huge development is especially
driven by the transformation of what has been previously considered as a medium for supporting
voice telephony into a medium for supporting other services, such as the transmission of video,
images, text, and data. Thus, from satellite transmission, radio and television broadcasting to
mobile telephony, wireless communications has revolutionized the way societies function.

Similar to gains in wireline capacity over the last two decades, the demand for new wireless
capacity is growing at a very rapid speed and there is an increasing demand for higher data rates,
better quality of service, and higher network capacity compared with that obtainable from DSL
(Digital Subscriber Line) and cable.

Even if there are still many technical problems to be solved in wireline communications,
demands for additional wireline capacity can be easily realized with the addition of new infra-
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structure, such as additional optical fibers, routers, switches, and so on. On the other hand, the
traditional resources that have been used to add capacity to wireless systems are radio band-
width and transmitter power. Thus, wireless system designers are facing a number of challenges.
These include the limited availability of the radio frequency spectrum and a complex space-time
varying wireless environment.

Unfortunately, the two needed resources are among the most severely limited in the deploy-
ment of modern wireless networks : radio bandwidth because of the very tight situation with
regard to useful radio spectrum, and transmitter power because mobile and other portable ser-
vices require the use of battery power, which is limited. So, the appearance of systems using the
spatial dimension to increase spectral efficiency and quality of transmission constituted a real
revolution at the end of 1990s.

As a result, Multiple-Input Multiple-Output (MIMO) systems have emerged as a most promi-
sing technology in these measures and offering a powerful paradigm for meeting these challenges.
MIMO communication systems can be defined intuitively by considering that multiple antennas
are used at the transmitting end as well as at the receiving end. The core idea behind MIMO is
that signals sampled in the spatial domain at both ends are combined in such a way that they
either create effective multiple parallel spatial data pipes (therefore increasing the data rate),
and/or add diversity to improve the quality (Bit-Error Rate or BER) of the communication.
Clearly, the benefits from multiple antennas arise from the use of a new dimension-space. Hence,
because the spatial dimension comes as a complement to time (the natural dimension of digi-
tal communication data), MIMO technology is also known as ’space-time’ wireless or ’smart’
antennas. In 1995, Telatar shows that the capacity of a MIMO system grows linearly with the
minimum of the number of antennas at the transmitter and at the receiver (7). Thus, with the
emergence of MIMO systems, multipaths were effectively converted into a benefit for commu-
nication systems. MIMO indeed takes advantage of random fading, and possibly delay spread,
to multiply transfer rates. The prospect of dramatic improvements in wireless communication
performance at no cost of extra spectrum was further illustrated in the now famous paper by
Telatar (7).

Simultaneously, Bell Labs developed the so-called BLAST architecture (19) that achieved
spectral efficiencies up to 10-20 bits/s/Hz, while the first space-time coding architectures appea-
red (25).

Space-time coding is a powerful approach to exploit features of MIMO systems. The design
of high-performance high-rate space-time codes has been a problem of great interest and several
recent approaches have been developed to obtain such codes. These codes permit to further
exploit degrees of freedom of the MIMO system by introducing dependency between temporal
and spatial domains in order to bring spatial diversity and coding gain.

The MIMO success story had begun. Today, MIMO appears as an ideal technology for large-
scale commercial wireless products such as wireless local area and third generation networks.

In the commercial area, lospan Wireless Inc. developed the first commercial system in 2001
that used MIMO-OFDMA technology. Iospan technology supported both diversity coding and
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spatial multiplexing. In 2005, Airgo Networks had developed a pre-11n version based on their
patents on MIMO. Following that in 2006, several companies (including at least Broadcom, Intel,
and Marvell) have fielded a MIMO-OFDM solution based on a pre-standard for IEEE 802.11n
WiFi standard. Also in 2006, several companies (Beceem Communications, Samsung, Runcom
Technologies, etc.) have developed MIMO-OFDMA based solutions for IEEE 802.16e WIMAX
broadband mobile standard. All upcoming 4G systems will also employ MIMO technology. Se-
veral research groups have demonstrated over 1 Gbit/s prototypes.

Facing this very promising technique, the main difficulty is to define optimal systems for an
aimed application. Furthermore, the notion of complexity is essential in the conception of an
optimal system. Today, only schemes with low number of antennas or using orthogonal space-
time codes with low coding gain are implemented in commercialized wireless communication
systems thanks to their low complexities.

On the other hand, the complexity of reception of high spectral efficiency systems, using a
large number of antennas, considerably increases with spectral efficiency. In 2007 and for 4G
communication, NTT DoCoMo completed a trial in which they reached a maximum packet
transmission rate of approximately 5 Gbit/s in downlink with 12 x 12 MIMO technique using a
100 MHz frequency bandwidth while moving at 10 km/h, and is planning on releasing the first
commercial network (10). Samsung also proposed a demonstrator with an 8 x 8 MIMO system
capable of transmitting up to 3.5 Gbit/s (11) (12). Throughputs offered by these systems are
revolutionary for the wireless communications world. However their complexity of implementa-
tion is still too important to consider their integration in the commercialized public systems of
communications who must be ergonomic, cheap and reliable.

Thus, this thesis confronts the problem of receiver design and the main goal of this research is
to propose powerful MIMO decoding algorithms with low complexity and offering a complexity-
performance tradeoff.

Several decoding algorithms offering optimal performances were proposed in the literature.
We distinguish in particular decoders having strategies based on searching inside a tree such as
the Sphere Decoder, the algorithm of Schnorr-Euchner and sequential decoders such as the Fano
decoder and the Stack decoder. Although these latter ones present low complexity compared to
exhaustive decoders, their complexity increases in function of the number of antennas and the
size of the used constellation. Thus, the purpose behind this work is to bring bring as many
enhancements as possible for the MIMO decoder especially in terms of complexity. This thesis
consists of four chapters. Chapter 1 provides an overview of the recent developments in space-
time coding and signal processing techniques appropriate for MIMO communication systems.
First, we will introduce the MIMO channel and system modeling. Then, we will review the
information theory results on the capacities of wireless systems employing multiple transmit and
receive antennas. Finally, some space time codes are described and their construction techniques
and criteria are also briefly touched upon. Chapter 2 begins by examining the basic principles
and structures of MIMO decoders. Then, it details the different decoder classes and gives an
overview of their way of working. After that, some well-known pre-processing techniques are
described. At the end of this chapter, we focus on the diversity Multiplexing Tradeoff of MIMO
decoders. In Chapter 3, we propose at first a new sequential decoding algorithm that we call
SB-Stack (Spherical Bound-Stack decoder). This one is based, at the same time, on the Sphere
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Decoder and the Sequential Stack Decoder. The Sphere Decoder uses the DeFS (Depth-First-
Search) strategy while the stack decoder uses the BeFS (Best-First-Search) strategy. We show
that the SB-Stack decoder combines the advantages of both decoders. In fact, it uses the search
strategy of stack decoder and the search region defined by the sphere centered on the received
point. Consequently, the SB-Stack decoder offers lower complexity than the original decoders
without sacrificing optimal performances. In the second half of this chapter, a new soft output
MIMO decoder is proposed. We exploit the suitable structure of the stack algorithm to provide
a soft output, required when STBC are concatenated with error correcting codes. The proposed
algorithm is an extension of the hard SB-Stack decoder. A straightforward idea was to exploit
internal nodes still stored in the stack at the end of hard decoding process to calculate the
LLR (Log-Likelihood Ratio). We show that the potential gain of such a method is rather large
relative to classical soft decoders. In Chapter 4, we focus on reducing the complexity of the stack
decoding algorithm using different techniques. First, we propose the use of parallel processing
for stack decoding, this is in order to decode signals transmitted on linear MIMO channels while
reducing time consumption of hardware architecture. Then, we detail some strategies reducing
the stack decoding complexity like the child-sibling strategy and the complex strategy (decoding
over complex symbol alphabets) . We show also the improvement introduced by these strategies
compared to the original stack decoding. At the end of this chapter, we suggest a solution to
the problem of the increase in decoder complexity in the case of severe channels. Indeed, these
decoders seem to be converted to exhaustive search decoders visiting all constellation points.
Thus, we introduce time and complexity constraints and we propose to finish the stack decoding
by a ZF-DFE decoding for hard decoding and a K-Best decoding for soft outputs.

In summary, a range of signal processing tools appropriate for use in MIMO communication
systems have been developed in the work presented in this thesis and simulation results are
provided to demonstrate the effectiveness of the proposed techniques.
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Chapitre 1

MIMO Channel Description and
Information Theory notions

In this first chapter, we will first present the general functioning of a digital communication
system. We will focus particularly on MIMO systems. First, we will present the channel mode-
ling problem for MIMO systems. Thus, different techniques of modeling are presented and some
MIMO models found in literature are classified. After that, we will introduce diversity techniques
and lattice properties. In the second half of this chapter, we will recall some information theory
notions applied to MIMO systems. Different formulations of capacity for MIMO channels are
presented for different cases such as the knowledge of Channel State Information at the Trans-
mitter and the Receiver and the knowledge of Channel State Information at the Receiver only.
Then, the outage probability and the multiplexing gain are presented. Also, we will detail the
Diversity Multiplexing Tradeoff which is an essential notion for the comprehension of MIMO
systems’ functioning.

By the end of this chapter, we will present some known Space Time Codes.

1.1 MIMO Channel and System Modeling

1.1.1 Transmission Scheme

A block diagram of a wireless communications system is shown in Figure (1.1). In this figure
the source of information could be a voice signal, a video signal or a data. The source enco-
der processes the information and formats the information into a sequence of information bits
€ {£1}. The goal of the source encoder is to remove the unstructured redundancy from the
source so that the rate of information bits at the output of the source encoder is as small as
possible within a constraint on complexity. The channel encoder adds structured redundancy
to the information bits for the purpose of protecting the data from distortion and noise in the
channel. The modulator maps the sequence of coded bits into waveforms that are suitable for
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transmission over the channel. First, the signal amplitude decreases due to the distance between
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FIGURE 1.1 — Generic Architecture of a Digital Communication System

the transmitter and receiver. This is generally referred to as propagation loss. Second, due to
obstacles the signal amplitude is attenuated. This is called shadowing. Finally, because of mul-
tiple propagation paths between the transmitter antenna and the receiver antenna, the signal
waveform is distorted. Multipath fading can be either constructive, if the phases of different
paths are the same, or destructive, if the phases of the different paths cause cancellation. The
destructive or constructive nature of the fading depends on the carrier frequency of the signal
and is thus called frequency selective fading. In addition to propagation effects, typically there
is noise at the receiver that is uncorrelated with the transmitted signal. Thermal noise due to
motion of the electrons in the receiver is one form of this noise. Other users occupying the same
frequency band or in adjacent bands with interfering sidelobes is another source of this noise.
The receiver’s goal is to reproduce at the output of the source decoder the information-bearing
signal, be it a voice signal or a data, as accurately as possible. The structure of the receiver is
that of a demodulator, channel decoder, and source decoder. The demodulator maps a received
waveform into a sequence of decision variables for the coded data. The channel decoder attempts
to determine the information bits using the knowledge of the codebook (set of possible encoded
sequences) of the encoder. The source decoder then attempts to reproduce the information. In
the following, we will not focus on source coding.

Thus, the modeling of transmission channel is essential to conceive a performing digital
communications system and we can conclude that channel model depends on system environment
and the propagation model. As it is shown in figure (1.2) the receiver detects different versions
of signal. This echo of the same signal is the interaction of wave with the real propagation
environment : diffraction, reflection, dispersion (2).

The simplest mathematical model for a communication channel is its representation with a
linear filter with an additive noise where transmitted signal is corrupted by an additive random
noise process (3). Such linear filters are characterized by time-variant channel impulse response
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FIGURE 1.2 — Multipath Propagation of Radio Signals

h(t,7). For an input signal s(¢), the channel output signal r(t) is given by

“+oo
)= [ bem)s(t = rdr -+ no) (L1)
— 0o

where n(t) is the random noise process. However, we are interested in a characterization that
is valid. That is, we recognize that the channel filter taps must be measured, but we want a
statistical characterization of how many taps are necessary, how quickly they change and how
much they vary. Such a characterization requires a probabilistic model of the channel tap values,
perhaps gathered by statistical measurements of the channel. From this, we derived a discrete-
time baseband model in terms of channel filter taps as

r[m] = hlm,l]s[m — 1] + n[m]. (1.2)
l

Each tap h[m,l] is the sum of a large number of such small independent circular symmetric
random variables. This assures us that h[m,l] is in fact circular symmetric CA'(0,07). With this
assumed Gaussian probability density, we know that the magnitude |h[m,l]| of the I** tap is a
Rayleigh random variable with density

T —2
— — 7, >0, 1.3
012 exp{ 2012 } = (1.3)

and the squared magnitude |h[m,l]|? is exponentially distributed with density

1 —x?
— — > 0. 1.4
Ul2 ea;p{ 2012 } = (1.4

This model called Rayleigh fading, is quite reasonable for scattering mechanisms where there are
many small reflectors, but is adopted primarily for its simplicity in typical cellular situations with
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a relatively small number of reflectors. Fading can then drastically reduce the received power. If
reliable communication over wireless channels is to be achieved, measures must be put in place
to counteract its effects. The most common technique against fading is to transmit many replicas
of the original signal, in the hope that at least one of them will not fade; this technique is known
as diversity. Diversity has the drawback of causing inefficiencies in the system, since at least part
of the available resources must be used to send the signal replicas. This introduces redundancy.
In recent years, researchers have realized that multipath, as well as giving rise to fading, can
help to combat it. Multiple refections are a natural phenomenon in wireless channels, and they
can be harnessed to provide diversity ; no other system resource such as bandwidth needs to be
employed. Furthermore, it has been determined that the capacity available in wireless channels
can be enhanced using many antennas at the transmitter and the receiver side. Thus, the spatial
dimension is a new aspect to be considered for the channel modeling.

Figure (1.3) illustrates different antenna configurations used in defining space-time systems.
Single-input single-output (SISO) is the well-known wireless configuration, single-input multiple-
output (SIMO) uses a single transmitting antenna and multiple ( receive antennas, multiple-input
single-output (MISO) has multiple transmitting antennas and one receive antenna and, finally,
MIMO has multiple transmitting antennas and multiple receive antennas.

RARE RARS
7

Tx Rx TX Rx

SISO MISO

7 T

A 4 A 4
L -
Tx L Rx Tx J L Rx

SIMO MIMO

FIGURE 1.3 — Different antenna configurations in space-time systems.

Let us consider a MIMO system with M transmit and N receive antennas. Then the receive
signal block is

YnxT = Hnxm - XvxTr + WNxT, (1.5)

where H is the channel transfer matrix with complex entries h;; representing the fading coef-
ficients between the i" receive and the j** transmit antennas and are modeled by independent
Gaussian random variables of zero-mean and variance 0.5 per component. The MIMO channel
H at a given time instant may be represented as an N x M matrix

hir hi2 - hiu

ho1  haa -+ hom
Hyyxn = ;

hni hn2 -+ hyum
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The figure (1.4) represents this system. X arx 7 is the transmit signal block over T symbol times
and is a matrix of dimension M xT'. T is the temporal dimension, thus it’s the number of channel
use (cu). W xr € N(0,02.1) is an additive white gaussian noise. The channel is assumed to be
constant during the transmission of a block (also sometimes referred to as a frame) and to change
from one block to another. Also, it is assumed that the channel is memoryless between blocks ;
that is, matrices associated with different blocks are statistically independent. Such a channel
is known as a frequency-flat, slow fading channel,or simply as a block-fading channel. These
characteristics are typical in fixed wireless applications, where some slow channel variations are
expected ; an example would be an office environment where people constantly move around at
walking speed. Matrix H is assumed to be full-rank. This is justified because the probability of a
randomly generated matrix presenting non-independent rows and columns is very close to zero.
In practice, this means that the receiver antennas must be adequately spaced. This requirement
is not considered unreasonable in modern wireless applications where the carrier frequency is
in the range of a few gigahertz and thus the required separation would be a few centimeters.
Each receiver is assumed to have estimated H perfectly through the use of some appropriate
method, such as a training sequence transmitted with each block. This situation is frequently
described in the literature as the receiver having perfect channel-state information (CSI). This
will be described later in this chapter.

The entries |h;;| are assumed to have a Rayleigh distribution. The entries of the channel matrix
H are complex and gaussian. Each component lays out a gaussian real part and a gaussian
imaginary part of null average and variance equal to 0.5. Thus, the channel H is considered as
a Rayleigh channel.
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FIGURE 1.5 — Example of a Z[i] lattice of dimension 2

1.1.2 Modulation and Demodulation

Modulation and demodulation are used in many kinds of data transmission, both analogue and
digital. The choice of one type of modulation is based on bandwidth and signal-to-noise ratio.
In digital modulation, an analog carrier signal is modulated by a digital bit stream. Digital
modulation methods can be considered as digital-to-analog conversion, and the corresponding
demodulation or detection as analog-to-digital conversion. The changes in the carrier signal are
chosen from a finite number of alternative symbols (the modulation alphabet). If the alphabet
consists of 2Vb alternative symbols, each symbol represents a message consisting of N, bits.
Usually for our simulations, we will use the Quadrature Amplitude Modulation (QAM). The
QAM modulation is simply a combination of amplitude modulation and phase shift keying. Its
constellation points are usually arranged in a square grid with equal vertical and horizontal spa-
cing. The set of constellations points is a final subset of Z[i]. Since in digital telecommunications
the data are usually binary, the number of points in the grid is usually a power of 2 (2, 4, 8 ...).
Some examples of ¢ — QAM constellations with ¢ = 4,8,16 are presented in figure (1.5).

By moving to a higher-order constellation, it is possible to transmit more bits per symbol. Ho-
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wever, if the mean energy of the constellation is to remain the same (by way of making a fair
comparison), the points must be closer together and are thus more susceptible to noise and other
corruption ; this results in a higher bit error rate and so higher-order QAM can deliver more data
less reliably than lower-order QAM, for constant mean constellation energy.

1.1.3 Fading Channels

The mobile radio channel experiences a lot of limitations on the performance of wireless systems.
The transmission path can vary from line-of-sight to one severely obstructed by buildings and
obstacles. Unlike wired channels, radio channels are extremely random and do not offer easy
analysis. This modeling is therefore based more on statistics and requires the understanding of
fading for an intended communication system. Fading is the deviation or the attenuation that
a carrier-modulated signal experiences over certain propagation channel. The fading may vary
with time, geographical position and/or radio frequency, and is often mathematically modeled
as a random change in the amplitude and phase of the transmitted signal. A fading channel is
a communication channel that experiences fading. In wireless systems, fading may either be due
to multipath propagation, referred to as multipath induced fading, or due to shadowing from
obstacles affecting the wave propagation, sometimes referred to as shadow fading.

A - Slow and Fast Fading

In the wireless communication literature, channels are often categorized as fast fading and slow
fading. A channel is fast fading if the coherence time T, is much shorter than the delay require-
ment of the application, and slow fading if T is longer. In a fast fading channel, one can transmit
the coded symbols over multiple fades of the channel, while in a slow fading channel, one cannot.
Thus, whether a channel is fast or slow fading depends not only on the environment but also
on the application ; voice, for example, typically has a short delay requirement of less than 100
ms, while some types of data applications can have a laxer delay requirement. The important
thing is to recognize that the major effect in determining time coherence is the Doppler spread
Dy, and that the relationship is reciprocal ; the larger the Doppler spread, the smaller the time
coherence :

1

T, ~ D, (1.7)
B - Frequency Flat and Frequency-Selective Fading
Frequency selectivity is also an important characteristic of fading channel. As the carrier fre-
quency of a signal is varied, the magnitude of the change in amplitude will vary. The coherence
bandwidth B, measures the separation in frequency after which two signals will experience un-
correlated fading. In flat fading, the coherence bandwidth of the channel B, is larger than the
bandwidth of the signal B,. Therefore, all frequency components of the signal will experience the
same magnitude of fading. Contrarily, in frequency-selective fading, the coherence bandwidth of
the channel is smaller than the bandwidth of the signal. Different frequency components of the
signal therefore experience decorrelated fading.
Since different frequency components of the signal are affected independently, it is highly unlikely
that all parts of the signal will be simultaneously affected by a deep fade. Certain modulation
schemes such as OFDM and CDMA are well-suited to employing frequency diversity to provide
robustness to fading. OFDM divides the wideband signal into many slowly modulated narrow-
band subcarriers, each exposed to flat fading rather than frequency selective fading. This can be
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combated by means of error coding, simple equalization or adaptive bit loading. Inter-symbol
interference is avoided by introducing a guard interval between the symbols. CDMA uses the
Rake receiver to deal with each echo separately.

Frequency-selective fading channels are also dispersive, in that the signal energy associated with
each symbol is spread out in time. This causes transmitted symbols that are adjacent in time to
interfere with each other. Equalizers are often deployed in such channels to compensate for the
effects of the intersymbol interference.The echoes may also be exposed to Doppler shift, resulting
in a time varying channel model.

C - Modeling of Channel Fading
Examples of fading models for the distribution of the attenuation are :

e The Rayleigh fading which is quite reasonable for scattering mechanisms where there are
many small reflectors, but is adopted primarily for its simplicity in typical cellular situations
with a relatively small number of reflectors. The word Rayleigh is almost universally used for
this model, but the assumption is that the tap gains are circularly symmetric complex Gaussian
random variables. The central limit theorem holds that, if there is sufficiently much scatter, the
channel impulse response will be well-modeled as a Gaussian process irrespective of the distri-
bution of the individual components. If there is no dominant component to the scatter, then
such a process will have zero mean and phase evenly distributed between 0 and 27 radians. The
envelope of the channel response will therefore be Rayleigh distributed.

e The Rice fading happens in the same conditions than the rayleigh fading and occurs when
one of the paths, typically a line of sight signal, is much stronger than the others. In Rician
fading, the amplitude gain is characterized by a Rician distribution.

The effects of fading can be combated by using diversity to transmit the signal over multiple
channels that experience independent fading and coherently combining them at the receiver. The
probability of experiencing a fade in this composite channel is then proportional to the probability
that all the component channels simultaneously experience a fade, a much more unlikely event.
Diversity can be achieved in time, frequency, or space

1.1.4 Diversity Techniques

The diversity techniques operate over time, frequency or space, but the basic idea is the same. By
sending signals that carry the same information through different paths, multiple independently
faded replicas of data symbols are obtained at the receiver end and more reliable detection can
be achieved. There are three types of diversity schemes in wireless communications

e Temporal diversity : In this case replicas of the transmitted signal are provided across time
by a combination of channel coding and time interleaving strategies. The key requirement here
for this form of diversity to be effective is that the channel must provide sufficient variations in
time. It is applicable in cases where the coherence time of the channel is small compared with
the desired interleaving symbol duration. In such an event, we are assured that the interleaved
symbol is independent of the previous symbol. This makes it a completely new replica of the
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original symbol.

o Frequency diversity : This type of diversity provides replicas of the original signal in the
frequency domain. This is applicable in cases where the coherence bandwidth of the channel is
small compared with the bandwidth of the signal. This assures us that different parts of the
relevant spectrum will suffer independent fades.

e Spatial diversity : This is also called antenna diversity and is an effective method for com-
bating multipath fading. In this case, replicas of the same transmitted signal are provided across
different antennas of the receiver. This is applicable in cases where the antenna spacing is larger
than the coherent distance to ensure independent fades across different antennas.

Basically the effectiveness of any diversity scheme lies in the fact that at the receiver we must
provide independent samples of the basic signal that was transmitted. In such an event we are
assured that the probability of two or more relevant parts of the signal undergoing deep fades
will be very small. The constraints on coherence time, coherence bandwidth, and coherence dis-
tance ensure this. The diversity scheme must then optimally combine the received diversified
waveforms so as to maximize the resulting signal quality.

We can also categorize diversity under the subheading of spatial diversity, based on whether
diversity is applied to the transmitter or to the receiver.

e Receive diversity : Maximum ratio combining is a frequently applied diversity scheme in recei-
vers to improve signal quality. In cell phones it becomes costly and cumbersome to deploy. This
is one of the main reasons transmit diversity became popular, since transmit diversity is easier
to implement at the base station.

o Transmit diversity : In this case we introduce controlled redundancies at the transmitter, which
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FIGURE 1.6 — Spatial Receive Diversity

can be then exploited by appropriate signal processing techniques at the receiver. Generally this
technique requires complete channel information at the transmitter to make this possible. But
with the invention of space-time coding schemes like Alamouti’s scheme (4) it became possible
to implement transmit diversity without knowledge of the channel. This was one of the funda-
mental reasons why the MIMO industry began to rise. Space-time codes for MIMO exploit both
transmit as well as receive diversity schemes, yielding a high quality of reception.
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Therefore, in MIMO we talk a lot about receive antenna diversity or transmit antenna di-
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FIGURE 1.7 — Spatial Transmit Diversity

versity. In receive antenna diversity, the receiver that has multiple antennas receives multiple
replicas of the same transmitted signal, assuming that the transmission came from the same
source. This holds true for SIMO channels. If the signal path between each antenna pair fades
independently, then when one path is in a fade, it is extremely unlikely that all the other paths
are also in deep fade. If the number of receive antennas tends to infinity, the diversity order tends
to infinity and the channel tends to additive white Gaussian noise (AWGN) (5).

In the category of spatial diversity there are two more types of diversity that we need to consider.
These are :

e Polarization diversity : In this type of diversity horizontal and vertical polarization signals are
transmitted by two different polarized antennas and received correspondingly by two different
polarized antennas at the receiver. Different polarizations ensure that there is no correlation bet-
ween the data streams, without having to worry about coherent distance of separation between
the antennas.

o Angle diversity : This applies at carrier frequencies in excess of 10 GHz. At such frequencies,
the transmitted signals are highly scattered in space. In such an event the receiver can have
two highly directional antennas facing in totally different directions. This enables the receiver to
collect two samples of the same signal, which are totally independent of each other.

Considering an N x M MIMO system, the maximum possible diversity gain is equal to N x M.
At high SNR, the error probability P. decreases as the d* power of SNR, corresponding to a
slope of —d in the error probability curve (in dB/dB scale).

1

Then, the diversity is

_ : log(Fe)
== NI Tog(SNR)’ (1.9)
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Thus, for high SNR, error probability average decreases asymptotically, therefore the probability
of error will decrease if we send information on d independent paths.

1.1.5 Lattice Definition and Properties

A lattice A is a subset of rank p; for p < n , of R™. A is then a lattice of dimension p and there

exists p linearly independent n-dimensional vectors vy,v2,...,v, € R" such that
A=A(S) ={a1v1 + aava + ...+ apvp i a; € L} (1.10)
where § = [v1,v2,...,vp] is an n x p matrix. The set of column vectors {v1,v2,...,v,} and the

matrix S are said to be the basis and the basis matrix of A, respectively. Thus, a lattice is an
integer linear combination of the basis vectors. In the following, a lattice having S as a basis
matrix will be denoted Ag.

Let’s now consider some useful definitions (see figure (1.8)) :

e Gram matrix of a lattice Ag is G = ST'8S.

e The equivalent lattice
Let Q € M, (R), such that QQT = I,,.
Both lattices Ag and Ag ¢ are equivalent (same lattice).

e Fundamental volume of a lattice
The fundamental volume of a lattice Ag with a basis {vi,v2,...,v,} of R is given by

V={xeR"\x=aqv+avs+...+av,0<a; <1l,i=1...p} (1.11)

Geometrically, the determinant det (A) of a lattice A is defined as the common content of the
parallelepiped spanned by any lattice bases. Generally, a lattice has many possible bases but it
has the same determinant.

e Voronoi Cell
The Voronoi Cell of a point w in a lattice A is the space region defined by

v(u) = {z e R"\|z —ul| < |z —ylly € A} (1.12)

The Voronoi Cell is then a cell structure where each cell’s interior consists of all points that
are closer to a particular lattice point than to any other lattice point. Since lattice is uniform,
all Voronoi Cells are identic. The fundamental volume of a lattice is equal to the Voronoi Cell
volume.

The representation of MIMO systems as a lattice and decoding them with a lattice decoder was
first explored by Damen et al. in (6). One can separate imaginary part and real part, then vec-
torizing MIMO systems (coded or non-coded) and get lattice representation of the channel model.




42 1. MIMO CHANNEL DESCRIPTION AND INFORMATION THEORY NOTIONS

SRR AR SIS
S SN aru R S
bl le e e

od
I
V<
N
1
\444.\444

.8

® |attice Point

(V1,V2) Lattice Base
[J Fundamental Parallelotope
.| Voronoi Cell

FIGURE 1.8 — Example of a Z[i] lattice of dimension 2

1.1.5.1 For the non-coded System case

Here we assume that 7', the temporal dimension, is equal to 1. Let’s the invertible mapping
U : CM — RM from complex valued vector v to real valued vector v by stacking the real part of
v over its imaginary part, be defined as :

v="U(v)= [ ?ﬂi% ] : (1.13)

where M = 2M.
When N # 1, the mapping ¥ : CV*M — RNXM and N = 2N from complex valued matrix A
to real valued matrix A is defined as follows :

B | Re(A) —-Im(A)
A=w(4)= [ Im(A)  %e(A) (1.14)
Then, one can rewrite equation (1.5) by separating real and imaginary parts as follows :
QM=ﬂﬁxM§M+gﬂ. (1.15)

Since the matrix Hnxps is full rank , the matrix Eﬂxﬂ is then of full rank. We get then
a lattice representation of non-coded MIMO systems. The lattice dimension is N x M and the
generating matrix is H -

1.1.5.2 For the coded System case

In this case X is no longer an information symbols vector as described in the non coded case.
But, it represents the codeword matrix to be sent. Then, the received codeword stays as described
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in equation (1.5).
Two steps should be done to get a lattice representation of MIMO coded system :
1) represent the coded system as a non coded system,

2) separate real and imaginary parts.

The first step consists of vectorization. Thus, the equation (1.5) becomes therefore

Hnxm 0 é11 .- QLmMT 71 21
Ynr = : ' : +
0 Hnxm émT1 - OMTMT TyMT ZN.T
¢M-’1:;<M-T @t

where ¢nr.rx v-T-X a7 is the vectorization of X prwr .

As a result, we get a system equivalent to (1.5)

ynr = HiNTxMT PMTXM-T TM.T + ZN.T
= HN.TxM.T *TM.T + ZN.T (1.16)

The separation of the real and imaginary parts is applied on the former equation as in equation
(1.15), and the coded system is therefore given by

Ynr = Hnrxmr Zur+zZnr (1.17)

where we defined by H N-TxM-T the equivalent lattice generator matrix.

1.2 Some Mathematical Tools for MIMO Decoding

Once the equivalent lattice generator matrix is defined, many different optimal and sub-optimal
decoders algorithms can be developed and implemented. Among these decoders we can mention
lattice decoders and sequential decoders. Those decoders can be seen as tree search decoders.
In order to construct the tree search, we need to transform the lattice generator matrix using
some mathematical tools for matrix decomposition like the QR decomposition, the Cholesky
decomposition and the the singular value decomposition (SVD), etc. Here, we will present those
three decompositions that will be used later for MIMO Decoding.

1.2.1 QR Decomposition

1.2.1.1 principle

A QR decomposition of a matrix is a decomposition of the matrix into an orthogonal and a
upper triangular matrix. Let’s 2 be a real matrix of dimension n x m, there exists an orthogonal




44 1. MIMO CHANNEL DESCRIPTION AND INFORMATION THEORY NOTIONS

matrix @ (its columns are orthogonal unit vectors meaning QT - Q = I) of dimension n x n and
an upper triangular matrix R (also called right triangular matrix) of dimension n X m such that

H=Q R (1.18)

1.2.1.2 Application

By applying this decomposition to the previously defined channel matrix H, the MIMO system
becomes

y = QR zxz+z (1.19)

Since @ is orthogonal, the multiplication of the previous equation by QT gives an equivalent
system since the noise stays white and gaussian.

u=Q" - y=R-z+Q" -z (1.20)

R is then considered as the new lattice generator matrix of Agr. Making the lattice generator
matrix triangular is used in many decoding algorithms and is generally used in the 'pre-decoding’
phase.

1.2.1.3 Complexity

The complexity of this phase depends on the lattice dimensions. For a lattice of dimension n,
the complexity of the algorithm is given by %n?’ (8) to which we should add the complexity of
the multiplication of the matrix QT by the received vector Y.

1.2.2 Cholesky factorization
1.2.2.1 Principle

Similarly to the QR decomposition, the Cholesky factorization is a decomposition of a symmetric,
positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose.
Thus, for a lattice Ay, it can be used to factorize the Gram matrix (G = H* - H). It consists
of determining a lower triangular matrix L with strictly positive diagonal entries such that

G=(LU) (LU)T (1.21)
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Algorithm 1 QR Decomposition

e Input : H,n
e Initialization : For i =1 :n, for j =1:n, R(i,j) = 0.

=S H(i1); Q =H(: 1)/R(11);

i=1

e Fork=2:n
R1:k—1k)=Q(:,1:
k) =3(: k) - Q(:,

Q(:,
R(k k) = ZQ (i.k)
Q(: k) = ( k)/R(k.k)

k=1 H(: k);
1:k—

k—1)-R(1:k—1k);

or quite simply :

G=L-L"
U is a unitary matrix (U -UT =UT .U =1).

1.2.2.2 Application

(1.22)

We can show that the Cholesky factorization and the QR decomposition are equivalent. Let’s

H =Q - R be the QR decomposition of H. The Gram matrix can be written as :

G = H"-H
= (QR)T-(QR)
= RT. QT QR
- RT.' R
= L. LT

(1.23)

We can remark that R = LT. Q is obtained by the equation Q@ = #-R~'. Thus, we conclude
that both factorizations are equivalent. Another useful application for the Cholesky factorization
is to calculate the inverse matrix of G, calculate its determinant, etc. The determinant is equal

to the square of the product of diagonal elements of L. In fact :

[det (G)

[det (LLT) ||
= |ldet(L)[| ||det (LT)]|
= ||det (L)|]

(1.24)
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And since the determinant of the triangular matrix is the product of diagonal elements :

Idet (G)I| = (T}, Lai)® (1.25)

1.2.2.3 Complexity

The complexity of the Cholesky decomposition is given by %n?’ + n (8). It’s inferior to the
complexity of the QR method. But since the Cholesky factorization is done for the Gram matrix,
this adds n?® multiplications to the complexity. Moreover, the QR decomposition algorithm is
numerically stable. Consequently, we chose this method for our pre-decoding phase.

Algorithm 2 Cholesky Factorization
e Input : G(i,5)1<j<i<n representing the lower triangular part of G (G symmetric,
positive-definite).

e Output : G(4,))1<i<j<n representing L satisfying G = L - LT.
e G(1,1) = sqrt(G(1,1)).

e Fort=2:n
G(i,1) =G(i,1)/G(1,1);

e Fork=2:n-1

G (k,k) = sqrt(G(k,k) — '_ G*(k,5));

Fori=k+1:n - =

G(i.k) = (G(i.k) — ' G(i,j) - G(k,j))/G(kk);
e G(n,n)=sqrt(G(n,n) — g G*(n.j));
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1.2.3 SVD Decomposition
1.2.3.1 Principle

The singular value decomposition is an important factorization of a rectangular real or complex
matrix of dimensions n x m . It consists of writing the matrix H as :

H=U D-VT.5s (1.26)

where U is a unitary matrix of dimensions n x n, D is a n X m diagonal matrix with positive
or null elements and V' is an m x m unitary matrix. The matrix D contains the singular values

of H.

1.2.3.2 Application

This method can be used for MIMO decoding. For example, using the SVD decomposition for
a MIMO system with m < n, we can prove that decoding of the initial system of dimensions
n X m can be brought back to a decoding in lattice of dimensions m x m. Thus, let’s recall the
equation

y = H-ztz (1.27)

where y, H, x and z are respectively of dimensions n X 1, n X m, m X 1 and n x 1. SVD
decomposition applied to this system gives :

y=U-D-VT .z +2 (1.28)

Since the matrix U is unitary, multiplication by U7 leads to an equivalent system :

UT . y= D- VT .2 +UT .2 (1.29)

Y1 = P -z +z

Let’s remind that the diagonal matrix D contains the singular values of . But, since H has at
maximum m singular values, consequently, rows of D of index > m are null.

dy
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In the system (1.30), multiplication of D by VT gives a matrix ® null for rows beyond m.

B Q1 Pim [z, ]
<I>' <1>: o
_ ml " mm .
= |+ (1.30)
Lm
Lwnl [0 o 0 |z, |

(1.31)

Consequently, we can estimate that the last n —m elements of the vector y; are also null. It’s

then unnecessary to apply decoding until the n'* order, the initial lattice of dimensions n x m
will be reduced to a lattice of less dimensions m x m.
The SVD decomposition permits also to calculate the rank of the matrix. It was shown in (8)
that the rank of the matrix H is equal to the number of non-null singular values of D. The
decomposition into singular values permits also to calculate the pseudo-inverse of a matrix. In
fact, the pseudo-inverse of the matrix H is given by :

#HT =V .DT.UT (1.32)

where DT represents the diagonal matrix D where each non-null component is replaced by
its inverse.

1.2.3.3 Complexity

For a matrix H of dimensions n x m, the complexity of this phase is of the order 8n?m +
8nm? +9m?3. It’s widely bigger than the complexity of the QR and the Cholesky decompositions.
Nevertheless, by applying the SVD decomposition in the pre-decoding phase, we can limit the
initial problem to a smallest lattice dimensions which means a significant gain in complexity of
decoding.

1.3 Information Theory

1.3.1 Mutual Information and MIMO Channel Capacity
1.3.1.1 Mutual Information

A communication system can be modeled by a source and a destination. The source transmits
a message which is detected by the receiver. If considering the transmitted signal & and the
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received signal y as random processes, information theory introduces the the following notions :

Definition 1 (The entropy) the entropy is a measure of the uncertainty associated with a
random variable. The term by itself in this context usually refers to the Shannon entropy, which
quantifies, in the sense of an expected value, the information contained in a message. The entropy
of a random process x is

H(@) = B l-logpe (@) (1.3
= Z_pw (z)log pe () (1.34)
zeX

with pg () is the probability density function of the random variable  and X = {x : py (x) # 0}.
The entropy measurement unit depends on the used logarithmic base ( for the natural logarithm,
we use the nat per symbol, and for the base 2 logarithm we use the bit per symbol).

Definition 2 (The mutual information) the mutual information I(x,y) of two random va-
riables © and y is a quantity that measures the mutual dependence of the two variables.

pwvy(x7y)

P () py (y) (1.35)

I@y) = Y payley)log
reX Yyey

where X = {x : pp(z) # 0} and Y = {y : py(y) # 0}.
The mutual information can also be expressed as a function of entropy

I(zyy) = H(z)—- H(z/y)
H(y) — H(y/x) (1.36)
= H(z)+ H(y) — H(z,y)

The results of Shannon permaitted to show that propagation channel can be assimilated to a func-
tion from the input process space to the output process space. This function includes the set of all
deterministic and random transformations that occurred to the signal. Shannon showed also that
there exists a theoretical limit for information throughput, exceeding this limit the information
can’t be transmitted without error. This maximum rate is called channel capacity.

1.3.1.2 MIMO Channel Capacity

The system capacity is defined as the maximum possible transmission rate such that the pro-
bability of error is arbitrarily small. ShannonSs pioneering work showed that the capacity of a
channel can be simply characterized in terms of the mutual information between the input and
the output of the channel. Thus, the capacity of MIMO channel is defined as (7)(9)

C =maxI(xz,y) (1.37)

pa(T)

The ergodic capacity of a MIMO channel is the ensemble average of the information rate over
the distribution of the elements of the channel matrix (13). It is the capacity of the channel when
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every channel matrix is an independent realization |i.e., it has no relationship to the previous
matrix but is typically representative of it class (ergodic)]. This implies that it is a result of
infinitely long measurements. Since the process model is ergodic, this implies that the coding is
performed over an infinitely long interval.

e Channel State Information at Transmitter and at Receiver

This case is generally denoted by the abbreviation CSITR ( Channel State Information at Trans-
mitter and Receiver). For a particular channel response (deterministic channel), the capacity can
be expressed as

C=F max I(x|HyH) ;. 1.38
. {M:EWMT (w|Hy >} (1.33)
Now, the mutual information I(z,y) is given by :
1
I(z,y) = log det (IN + —QHREHH> (1.39)
o

The equation (1.38) assumes that @ is a circular symmetric complex Gaussian vector!. Knowing
H | one should look for the covariance matrix of «, R,, maximizing the mutual information and
verifying tr (R;) < Pr and R, is definite positive .

Applying the singular value decomposition (SVD) factorization for the known channel matrix H

H=UxVH, (1.40)

where U € CV*N and V. € CM*M are unitary complex matrices and ¥ is a diagonal matrix
constituted of r = rank(H) channel singular values o1 > 09 > -+ > 0,.

The mutual information can be rewritten as 2

1
I(z|H,y|H) = log det (IN + —QZVHRIVZ> : (1.41)
g

) , (1.42)
and the two quantities are equal if Q is diagonal. 3
The mutual information is then maximized if @ is diagonal with eigenvalues @Q;;. Thus, the
capacity can be written as

The matrix Q = VIR,V is definite positive, then

2
110
0—2

det (IN + 2@2) < H (1 n
=1

r=rank(H) QZZO'Zz
CosiTr = Z log [ 1+ 2 (1.43)
=1

The water-filling technique consists of optimal energy allocation over the » MIMO channel modes

Q, = (,u - ”—z) where y such that 327, Q;; = Pr

9i

'A complex Gaussian vector @ is circular symmetric if the covariance matrix of the vector z has the
form F [(g — Flz]) (z — E[Q])H} =1/2.Q, where Q is an hermitian definite positive matrix

By applying the determinant identity : det (I + AB) = det (I + BA)
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Pr is the total transmitted energy over the M transmit antennas. Let’s define the function (.)*
as

T ifa>0
(a) _{0 else

Finally, the capacity formula, when channel is known at the transmitter and the receiver, is given

by
r /.LO'2 —+
CosiTr = E <log ( 2 >> (1.44)

i=1

e Channel State Information at the Receiver Only

We assume in the following and throughout this report that channel knowledge is available only
at the receiver. Thus, we speak about CSIR (Channel State Information at the Receiver Only).
In these conditions, the channel matrix is assumed to be random and independent from the
transmitted signal and the noise. In 1999, Telatar showed in (7) that the channel capacity is rea-
ched for a transmitted signal & which is circular symmetric of null average and with a covariance
matrix R, = %I M- Then, the ergodic capacity can be expressed as

Cesir = Exr [log det (IN + A];; HHY ﬂ . (1.45)
Telatar results (7), Foschini and Gans results (9) permitted to establish the analytical capacity
formulas in the case of Rayleigh channel with no spatial correlation.

Here, we will detail the channel capacity in the case of Rayleigh Channel (without spatial cor-
relation). The stochastic Rayleigh model for a N x M MIMO system is defined by an N x M
matrix where the components h; ; are random complex i.i.d gaussian centered and with unitary
variance such that

1
hij ~ == [N(01) + VEDN(O.1)] (1.46)
V2
For an M = N =1 channel, the capacity, taking into account equations (1.46) and (1.45), is
P,
Cesin = log (1 + —§X§> : (1.47)
o

where X2 is a chi-square random variable with 2 degrees of freedom?.
If we have a receive diversity (M =1, N > 1 : SIMOsystem), the ergodic capacity is given by

Pr
CEEO — Jog <1 + §X22N> . (1.48)

Now, if we have transmit diversity (N = 1,M > 1 : MI1SOsystem), the ergodic capacity is
expressed by

P,
CMISO _ 15 (1 + M_;ng> | (1.49)

3 A random variable is said to have a chi-square distribution XY if it equals the sum of the squares of
k statistically independent standard Gaussian random variables.
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For a MIMO channel such that M = N = N,, Telatar established the following analytical
expression for systems of high dimensions (7) :

4
C~ Na/o log <1 + %T) % % — %dT. (1.50)
Thus, for an identical and big antennas number at the transmission and the reception sides, the
ergodic capacity for a Rayleigh channel with a flat frequency fading becomes linear in function
of antennas number.

More generally, Oyman et al. established in (14) the ergodic capacity for a non-correlated Ray-
leigh channel with dimensions M x N with a high SNR = £&

o2

m n—1
SNR 1 1
C =~ mlog, <7> + 2 E E P ym b/s/Hz (1.51)

Jj=1p=1

where m = min(M,N), n = max(M,N) and v ~ 0.5772 denotes the Euler constant. Thus,
the ergodic capacity of the MIMO channel (where h;; are random complex i.i.d variables) is an
increasingly linear in function of the SNR (in dB).

The instantaneous capacity can be expressed as a function of the eigenvalues \; of the Wishart

matrix W :
min(M,N)

P
Cosrr= Y. log <1 + M—LMW)) (1.52)
=1

where

W HH? ifN<M
| HYH iftN>M

The MIMO system can be decomposed into an equivalent system of n = min(M,N) SISO sub-
channels whose path power gains are the eigenvalues of W. Thus, the concept of effective degrees
of freedom (EDOF) was introduced in (15). this concept represents the number of subchannels
actively participating in conveying information under a given set of operating conditions. It is
well known that for an SISO channel, at high SNR, a G — fold increase in the transmitter power
results in an increase in the channel capacity of logy G b/s/H z. If a system is equivalent to EDOF
SISO channels in parallel, the capacity of the system should increase by (EDOF.logy G) b/s/Hz
when the transmitter power is raised by a factor of G . In light of this, we define EDOF at a
given SNR

epor = Yo (25 - SNR)
min(M,N) 1
_ _ 1.53)
B (
ZZ:; L+ syrx

The value of EDOF depends on correlation between different channel matrix components. For
example, for a channel with a strong Line Of Sight path, EODF will tend to 1. In other hand,
for a NLOS channel without spatial correlation, EDOF will tend to min(M,N).
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But, this Shannon capacity is valid for channels governed by a stationary ergodic * random
process but is typically greater for general channels.

1.3.2 Outage Probability

In reality, the block lengths are finite. The common example is speech transmission. In such cases,
we speak of outage capacity. Outage capacity is the capacity that is guaranteed with a certain
level of reliability. Non-ergodic channels (i.e., the channel is randomly drawn but remains fixed
for the whole channel use) often use the cumulative distribution function (CDF) to indicate the
probability that the channel fails to support a given rate threshold. When ergodicity condition
is not respected, the maximum rate that can be transmitted without error is random. Thus, the
value of capacity using the previous capacity definition is null. As result, the outage probability
is introduced and it represents the probability that the mutual information is less than a given
rate R.

Py = Pr(I(xz,y) < R) (1.54)

The exact value of outage probability is difficult to calculate, some approximations were
proposed in (16). But, one can show that if NV and M tend to infinity, the capacity C'(H) tends
to a gaussian variable. Let’s pc and 0'% respectively the average and the variance of C(H), an
approximation of the outage probability can be given by °

Pout ~ Q <“C_R> (1.55)

oc

1.3.3 Multiplexing Gain

MIMO systems offer a linear increase in data rate through spatial multiplexing r (7)(17)(18)(19),
i.e., transmitting multiple, independent data streams within the bandwidth of operation. Under
suitable channel conditions, such as rich scattering in the environment, the receiver can separate
the data streams. Furthermore, each data stream experiences at least the same channel quality
that would be experienced by a SISO system, effectively enhancing the capacity by a multiplica-
tive factor equal to the number of streams. In general, the number of data streams that can be
reliably supported by a MIMO channel equals the minimum of the number of transmit antennas
and the number of receive antennas. Thus, the spatial multiplexing gain increases the capacity
of a wireless network.

The maximum multiplexing gain 7,4, that can be achieved over a MIMO channel is given by
the asymptotic (in SNR) slope of the outage capacity ( for fixed Frame Error Rate FER) plotted
as a function of the SNR on a linea-log scale, i.e.,

Cout(SNR)

= 1 _— 1.56
maz = N RSeo logy SNR (1.56)

4 A stochastic process is said to be ergodic if its statistical properties (such as its mean and variance)
can be deduced from a single, sufficiently long sample (realization) of the process.

®Formally, the Q-function is defined as Q(z) = \/% [ exp (—“72) du
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For H MIMO channel with optimal transceiver design (i.e., Gaussian code books, asymptotically
large frame length, maximum-likelihood detection, ect..) 7,4, = min (M,N) indicating that for a
fixed FER, the transmission rate may be increased by min (M,N) b/s/Hz for every 3dB increase
in SNR.

For a high SNR and for a fixed rate R, we have :

R =rlogSNR, where 0 <r <min(M,N) (1.57)

1.3.4 Diversity Multiplexing Tradeoff

A diversity gain d*(r) is obtained for a given multiplexing gain r. This diversity gain verifies :

() = —  lim log Pyt (r-log SNR)

1.
SNR—+0co log SNR (1.58)

The curve of d*(r) represents the diversity-multiplexing tradeoff. Similarly, it’s possible to cha-
racterize a diversity-multiplexing tradeoff for a space time coding scheme by just substituting
the outage probability P,,; by the average error probability P.

A space time codes family indexed on the SNR reaches a multiplexing gain r and a diversity
gain d¢ if :

d I log P, (r-log SNR)
= — im
¢ SNR—+400 log SNR

(1.59)

For the i.i.d. Rayleigh-flat-fading channel, the optimal tradeoff turns out to be very simple for
most system parameters of interest. Consider a slow-fading environment in which the channel
gain is random but remains constant for a duration of I symbols. In (20), authors show that as
long as the block length [ > M + N —1, the optimal diversity gain d*(r) achievable by any coding
scheme of block length [ and multiplexing gain r ( r integer) is precisely :

d(r)y=(M —r)(N —r) (1.60)

This suggests an appealing interpretation : out of the total resource of M transmit and N receive
antennas, it is as though 7 transmit and r receive antennas were used for multiplexing and the
remaining M — r transmit and N — r receive antennas provided the diversity. It should be
observed that this optimal tradeoff does not depend on [ as long as Il > M + N — 1; hence, no
more diversity gain can be extracted by coding over block lengths greater than M + N — 1 than
using a block length equal to M + N — 1. Thus, higher diversity comes at the price of sacrificing
spatial multiplexing gain. The maximum diversity gain is obtained for r =0 :

d*(r)y=(M —r)(N —r) (1.61)
In the figure (1.9) the diversity-multiplexing tradeoff is represented. Conceiving space time codes

should lead to a diversity multiplexing tradeoff d¢(r) near to the optimal channel tradeoff d*(r)
(21).
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FIGURE 1.9 — Diversity Multiplexing Tradeoff for a Rayleigh Channel with M transmit
and N receive antennas

1.4 Space Time Codes

Space-time codes aim to take advantage of the enormous potential of MIMO systems by com-
bining space and time diversity. They have received considerable attention in academic and
industrial circles due to their many advantages. The ST coding permits to introduce dependency
between time and spatial domains. ST codes may be split into two main types : Space-time trellis
codes (STTCs) (22) (23) and Space-time block codes (STBCs)(24). The space-time trellis codes
are based on the generalization of trellis coded modulations (TCM) for MIMO systems. The joint
decoding technique is usually based on the use of Viterbi’s algorithm. However, identification
of the most successful codes required an exhaustive search whose complexity quickly becomes
prohibitive when the number of states of the encoder increases. In the following, we will only
introduce Space-time block codes which are more interesting in practice.
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1.4.1 Space Time Codes Construction Criteria

Let’s the space-time codeword matrix X of dimensions M x T represented as

2 2 2
:El :EQ ... :E
x=| " T, (1.62)
The t*" column z; = [m%,x?, s zM ]T is the symbols vector transmitted at the ¢ instant throu-

ghout the M antennas.
We define the Pairwise error probability Pr (X ,X ) as the probability of detecting one codeword

A

X = [&1,Z2, - ,&7] when another (different) codeword X = [x1,x2, - ,@7| is transmitted. The
"pair" is the transmitted codeword and the detected codeword. In (25), Tarokh et al. showed
that this pairwise error probability verified

~ E A

Pr (X,X) <exp [ ——2d? (X,X) , (1.63)
4Ny

where F is the energy per symbol transmitted by each antenna and Ny is the power spectral

density of the AWGN. The euclidian distance d7 (X X ) between the two codeword matrices is

defined by

A A T N | M 4 P
@ (X.X) = H (X = X) 2 =D |3 byt — a) (1.64)
t=1 j=1 |i=1
We define the difference between the matrices by B (X X )
B (XX) - X-X
T — &) @y vp — Iy
x? — 1?2 ¥ — &5 - xh— 32
_ 1'1 2'2 | T'T . (1.65)
e vyl — &y
The distance matrix of the two codewords is defined by
. . NN\ H
A (X,X) - B (X,X) (B (X,X)) . (1.66)
For a slow fading channel, matrix coefficients stay invariant during the 7" symbol periods, i.e h;fj =
hij Vt € 1,2,...,T. Thus, the euclidian distance between the two codewords can be expressed as
A~ N A
&2 (X,X) =Y hA (X,X) Y, (1.67)

Jj=1
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where hj = [hj1,hj2,...,hj ] Then, the pairwise error probability can be upper bounded by

N
. E, N i
Pr (X,X) < jl:[lexp <—4—N0th (X,X) hj>,
N E M
s 2
< TTew |~ 20 (1.68)

where )\; is the i eigenvalue of A (X,X) and f3;; = hjUZH, the vector v; is the i** eigenvector
of A (XX)

In the case of Rayleigh fading channel, the upper bound of the pairwise error probability is
obtained by averaging Pr (X X ) over H. The inequality (1.68) becomes

Pr (X,X) < (ﬁ <1 + A¢4%O>)_N, where r =rank (A (X,X)) . (1.69)

=1

For a high SNR :

Pr (XX) < (1:[ )\i> - ( 4%0>_TN - <Gc 5\;0)—@1 (1.70)

with
r 1/r
G, = (H )\i> , (1.71)

and
Gg=r1rN. (1.72)

G4 is the space time code diversity gain. Graphically, it’s the slope of the error probability in
function of the SNR ( in dB and for high SNR). The coding gain G, can be viewed as an hori-
zontal translation of the error probability curve (in function of SNR). Increasing diversity and
coding gains reduce the pairwise error probability. Thus, we conclude that we can define two
criteria for the construction of space time codes :

e The rank criterion : consists of maximizing the rank of the matrix A (X,X) among all
pairs of codewords.
e The determinant criterion : consists of maximizing the minimum determinant of A (X X ) among

all pairs of codewords.
If the diversity gain 7N is high (i.e 7N > 4), the pairwise error probability can be upper bounded

by (26)(27) :
E,
v, ;)\> . (1.73)

A new construction criterion is then introduced to minimize the pairwise error probability.
e The trace criterion : consists of maximizing the minimum trace » ;_; A; of the matrix

A (X X ) among all pairs of codewords.

Pr (X,X) < %exp (—N
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1.4.2 Space Time Block Codes

Space time codes have been proposed in the literature as an efficient means for improving the
data rates over fading MIMO channels (28)(29)(30)(31)(32)(33). The most famous example was
discovered by Alamouti (34). The Alamouti code is the simplest of all the STBCs. It was designed
for a two transmit antenna system and has the coding matrix

X = [ T } . (1.74)
Ty I

where * denotes complex conjugate.

For the alamouti code, the maximum likelihood detection can be reduced to a simple Zero Forcing
decoding. Thanks to this simplicity in implementation, Alamouti code was adopted in wireless
standards such as UMTS, IEEE 802.11n, and IEEE 802.16. In addition, the alamouti code is the
only complex orthogonal space time code reaching the maximum diversity equal to 2 with a rate
R=1 symbol/cu

From 1999, Tarokh et al. presented a generalization of the Alamouti code for any number of
antennas at the transmitting side and one antenna at the reception side (32)(35). Unfortunately,
these constructions are penalized by their rates lower than 1 symbol/cu. To reach a rate equal
to 1 for more than two antennas, it’s necessary to sacrifice the orthogonality property (36) (37)
(38)

1.4.3 Linear Dispersion Space Time Codes

Hassibi and Hochwald proposed a new concept Linear Dispersion Codes in (39). In fact, space
time block codes are conceived to satisfy construction criteria of Tarokh et al. in order to take
advantage of spatial diversity at the expense of spectral efficiency.

Linear Dispersion Codes optimize the mutual information but also with benefiting from spatial
diversity of MIMO channel. In addition, these codes structure permits to benefit from decoding
simplicity.

Space time codes with linear dispersion spread a vector of ¢ complex symbols [z1,22, ... ,2/]
belonging to a linear constellation (q-QAM and ¢-PSK) over time and space. The codeword
matrix verifies

x=% (Re(acq)Aq + \/(—1)Im(acq)Bq) , (1.75)
q=1

where X, A4 and By € CM*T | Linear Dispersion codes family is very big and includes many
existing space time codes. Thus, spatial multiplexing scheme can be considered as a linear dis-
persion code with 7'=1 and ¢ = M and can be formulated as

)4
Xy = Z (Re(:rq)eq + (—1)Im(:13q)eq) , where Agq = Bg = eq. (1.76)
q=1

Similarly, the Alamouti code can be written as

XAla:[(l) ?]Re(x1)+[(l) _Ol]lm(acl)—l—[(l) . }Re(@)—i—[(l) é]]m(@) (1.77)
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To combine robustness criterion and mutual information maximization criterion, Sandhu and
Paulraj proposed a new construction method (40). Later on, in (41), Gohary and Davidson
provide a design technique for Linear Dispersion codes that generates codes which enable large
capacities and perform well when decoded with a standard suboptimal detector. Their design
technique is motivated by the observation that for an independent Rayleigh fading channel, as the
number of transmit antennas grows, Linear Dispersion codes with a certain orthogonal structure
simultaneously approach a maximized upper bound on the capacity, and a minimized lower bound
on a certain mean square error performance measure. Recently, a new design scheme, that directly
minimizes the block error rate in arbitrary fading statistics and various detection algorithm, was
proposed (42). The proposed method can be applied to design the minimum-error-rate Linear
Dispersion codes for a variety of detector structures including the maximum-likelihood (ML)
detector and several suboptimal detectors. It can also design optimal codes under arbitrary
fading channel statistics; in particular, it can take into account the knowledge of spatial fading
correlation at the transmitter and receiver ends.

1.5 Conclusion

In this chapter, we have introduced the MIMO Channel and system modeling. Then, we defi-
ned the different types of fading channels. Diversity techniques are then discussed and the huge
increase in capacity that can be obtained in rich scattering environment thanks to these tech-
niques is presented. In addition, we presented the diversity-multiplexing tradeoff introduced by
Zheng and Tse. Next, we have recalled the fundamental concepts of information theory and we
have given an overview of the main classes of space-time techniques recently developed in the
literature.

In conclusion, the area of space-time coding and signal processing is new, active and full of chal-
lenges. In fact, one of the major issues in implementing a MIMO based system is the very high
complexity of the detection algorithm at the receiver.
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Chapitre 2

MIMO Decoding

2.1 Introduction

In this chapter, we present the state of the art of the main MIMO decoding algorithms existing
in the literature. First, we will discuss the sub-optimal decoders such as the Zero Forcing (ZF)
decoder, the Minimum Mean Square Error (MMSE) decoder, feedback decision decoders, etc.
Then, we will present optimal MIMO decoders and particularly those based on lattice represen-
tation and sequential algorithms. We distinguish two categories : decoders using Pohst strategies
like the Sphere Decoder algorithm and the Schnorr-Euchner algorithm and decoders using Dijks-
tra strategy (ex : best-first-search) like the stack decoder and the Fano decoder. We will show
also that this last category of decoders can provide a Complexity-Performance tradeoff.

2.2 From a Channel Model to a lattice design

Lattice theory and coding theory are applied to efficiently encode and decode information in a
digital transmission system with multiple antennas. Lattice theory is a powerful mathematical
tool to represent the channel geometrically and help us understand its behavior in order to design
a good modulator and its corresponding demodulator.

2.3 MIMO Decoders : Basic Principles and Structures

In this thesis, approached MIMO schemes are space time block codes schemes. Thus, it is possible
to represent the system as an equivalent non-coded system. Seeking simplicity, we will consider
the equivalent non-coded transmission scheme .Then, decoding algorithms that we will detail
later stay true for systems using space-time coding and only system dimensions will change.
Let’s recall the equation that gives the representation of MIMO system with M transmit and N
receive antennas. Let’s the codeword matrix X of dimension M x T and the received signal Y
of dimension N x T verifying :

Y=HX+W (2.1)
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After vectorization, the system can be written as
Yeq — Heqs + Wegq (22)

where Y., and weq are column vectors of NT elements obtained from Y and W. s is the vector
composed of the p symbols encoded by the codeword matrix X. The equivalent channel matrix
H .4 of dimensions NT' x p includes the channel response and the space time coding operation.
In the following, in order to simplify notations, we will not mention the index ¢q. Let’s also
n = NT. As a result, the new system dimension is n X p.

We assume a coherent transmission (channel matrix known to the receiver). Then, the system
becomes :

y=H s+w, (2.3)

The purpose behind MIMO decoding is to find an estimation of the transmitted vector. The
optimal decoding is the maximum likelihood (ML) decoding. It consists of finding the closest
vector to s minimizing the metric :

§=arg E%ICH ly — H - s (2.4)

where Cy is the set of symbol vectors of the constellation. The ML receiver searches through
all the vector constellation for the most probable transmitted signal vector. Analyzing decoders
structure, one can deduce that three phases can be distinguished in their construction. Every
decoder can include some phases. This will depend on : The required Complexity-Performance
Tradeoff. Decoders including much phases provide a more optimal estimation but they suffer
from a huge complexity.

Phase Zero : Pre-processing

Pre-processing is an optional phase. Given a search problem, pre-processing phase is useful in
order to make the most efficient use of Decoding. Preprocessing can be divided into two inde-
pendent steps : left pre-processing and right pre-processing. This two steps will be detailed later.
Phase One : One First Point

This phase permits to obtain one first estimation. The advantage is to get a quick result but not
efficient. Sometimes, the receiver need to get a fast estimation. In this case, one first point phase
can be enough since it offers a very low complexity even if it’s not optimal. This first point can be
enhanced using other phases, but this will make the complexity cost more and more important.
Phase Two : One better Point

Generally, this phase is called : One better point phase, and it comes after phase one. The one
first point gotten in phase one will be enhanced to get a more reliable one. This first point is
generally used as an initialization for the phase two in order to start a more efficient search for
the nearest point. This phase can not be independent from phase one .
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2.4 MIMO Decoder Classes

2.4.1 Sub-Optimal MIMO Decoders
2.4.1.1 The ZF Decoder

The ZF receiver is a linear receiver. It behaves like a linear filter F' and separates the data
streams and thereafter independently decodes each stream. We assume that the channel matrix
H is invertible and we estimate the transmitted data symbol vector as

$=(H"H) 'Hs=H's (2.5)

where T represents pseudoinverse. Since an inverse of H can only exist if the columns of H are
independent, it is assumed that the entries of H are i.i.d. Then

Fzr=(H"H) 'H (2.6)
and
Fzr-y=s+ Fzp w. (27)

Then, a simple detection permits to estimate § using a quantification in the QAM constellation
thanks to the quantification function Qg :

$=Qqam {Fzr y} (2.8)

The ZF decoding can be viewed as an orthogonal projection of the received vector on the base
constituted of the raw vectors of H. Figure (2.1) shows an example of projection in dimension
2. If the base is not orthogonal, the projection of y generates a decoding error. If the base is
orthogonal, the projection doesn’t induce a decoding error and the obtained solution is the ML
one.

In practice, the channel matrix is not orthogonal. Many research works in literature permit

y2
€,
e, Y,
(@ randomH (b) Orthogonal H

FIGURE 2.1 — Orthogonal Projection of the received vector

to obtain equivalent bases composed of the shortest and the most orthogonal vectors. These
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techniques are called "Reduction Techniques" (43). Thus, applying those techniques like the pre-
processing followed by the ZF decoding permit to obtain near-ML performances.
At the output of the ZF filter, the resulting noise is w = Fzp - w. The covariance matrix is
defined by :

Raw = E (@) - (w)7] =02 (H" - H) ' =G (2.9)
Consequently, this noise is no longer white, Rga # Ruww = o2I. Moreover, if we apply the
singular value decomposition (SVD) to the Gram matrix G, we get G = U - D - VH | where
U and V are unitary matrices and D is a diagonal matrix containing the singular values of G.
Using the property that the singular values of the Gram matrix are equal to the square of the
eigenvalues of H, noted A1,\2,...,\,, the covariance matrix of w is given by

N5 VI |

Rags = o2V - U (2.10)

0 N s W
Thus, the well-known problem of the zero forcing is the noise amplification caused by the inverse
of the eigenvalues of H. These eigenvalues are big for badly conditioned matrix.

2.4.1.2 The Decision Feedback Decoder : ZF-DFE

The general idea of the ZF-DFE decoder is to process the received vector y to estimate the
transmitted vector s estimating each component s, one at a time, canceling the effect of those
symbols already decoded, and nulling those yet unknown. In practice, if a symbol §, is estimated,
the decoder exploits this decision to estimate Si_1, Sp_o9,..., §1. Thus, this non linear decoder
is called a decision feedback decoder ( DFE : Decision Feedback Equalization). The ZF-DFE
decoder uses the ZF criterion to decode the symbol §;. The DFE incorporates a feedforward
filter that operates on the received signal to suppress precursor ISI, with a feedback filter that
operates on previously detected channel symbols to suppress postcursor ISI. The DFE generally
outperforms the traditional linear equalizer. And since it’s a successive symbol detection, the QR
decomposition is very useful.

y = H-s+w
= QR -s+w (2.11)

In order to exploit the upper triangular form of the matrix R, we multiply both sides of equation
(2.11) on the left by the transpose of Q

v = Qy
= R-s5+Q"w (2.12)

Since R is upper triangular, for the first iteration, the decoder estimates the symbol s, using
the following equation
Sn=Qqam {&} (2.13)
TTLTL
To decode the information symbol sj, the decoder uses the information symbols estimated before
3j,j =k +1,...,n using this equation

) 1 “ )
$=Qoam{ — [wn— D mii- 8| p 1<k<n (2.14)
T'kk =kt 1
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Unfortunately, ZF-DFE performance is hampered by error propagation. Degradation in DFE
performance occurs when incorrectly detected symbols are fed through the feedback filter. Then
instead of mitigating ISI from the cursor sample, the DFE enhances ISI. Error propagation may
result that causes bursts of decision errors and a corresponding increase in the average probability
of bit and symbol error.

2.4.1.3 The MMSE Decoder

The ZF receiver eliminates the interference but enhances noise. This might not be significant
at high SNR, but at low SNR, it is both sensible and practical to design a filter maximizing
the global signal to noise plus interference ratio (SNIR). One possibility is to minimize the total
resulting noise, i.e. to find the suitable optimal filter F'pspr5E minimizing the mean square error :

Fyusp = argmin (E{lls—sl})
= argmin (E{|[F -y — s} (2.15)
Thus, the MMSE optimal filter can be written as :
o2 \ 1
Fyuvse =H™- (HHH + —21> : (2.16)
US
where 03 represents the average power of the s vector components, i.e F [ssH ] = J?I » The

MMSE criterion has better performances than zero-forcing for low SNR, but it has one major
drawback : it requires the receiver to know the noise variance. Also, for large SNR, MMSE and
zero-forcing are equivalent.

The MMSE receiver offers a compromise between interference suppression and reducing noise.
For high SNR, the MMSE receiver becomes a ZF receiver. For low SNR, the MMSE receiver
becomes similar to an adapted filter :

. Fyp if SNR is high
MMSE = g_z HY if SNR is low

2.4.1.4 Comparison of Sub-Optimal MIMO Decoders

In the figure (3.13), we compare performances and complexities of different sub-optimal decoders
that we have presented before. Thus, we consider a 2 x 2 MIMO system employing two transmit
and two receive antennas with a spatial multiplexing technique. We used also a 4-QAM constel-
lation. The considered channel is a quasi-static Rayleigh channel.

This MIMO scheme has a spectral efficiency equal to 4 b/s/Hz. Performances are calculated in
terms of BER in function of SNR. The SNR is calculated using the following expression :

n>.P . E,
SNR = 10lo =15 > dB
910 <2 >0 log () No




66 2. MIMO DECODING

where E, is the average energy per dimension of complex information symbol belonging to
the ¢ — QAM constellation and 02 = 2Np. In the figure (3.13), we showed also complexities
of the sub-optimal decoders in terms of the average number of multiplications per codeword.
For all these decoders, operations are matrix operations applied on the received signal and are
completely independent of noise variance . This explains constant complexities for all the values
of SNR.

Even if these sub-optimal decoders offer low and constant complexities - which is very useful in
practical implementation- , they don’t allow good performances and they don’t take advantages
of diversity offered by the MIMO system. In other hand, using sub-optimal decoders can be very
interesting if the number of receive antennas is very high compared to the number of transmit
antennas because it allows a high receive diversity .

In order to recover the total diversity offered by the MIMO systems and the Space Time Codes,
we should focus on the Optimal Decoders.

2.4.2 Lattice MIMO Decoders

ML decoding leads to the best performance in terms of error rate but it is extremely demanding in
terms of complexity. For a constellation of size ¢, ML decoding involves searching over ¢” possible
candidates. This is affordable when ¢ and p are small, but not for large spectral efficiency systems.
The increasing complexity is caused by the search over all possible combinations, although many
of them are most probably not the correct candidate : owing to the Gaussian distribution of noise,
codewords that are far away from the received vector are much less probable than codewords
close to the received vector. Lattice decoding allows for significant reductions in complexity,
compared to maximum likelihood (ML) decoding, since 1) it avoids the need for complicated
boundary control (44) and 2) It allows for using efficient preprocessing algorithms (e.g., the LLL
algorithm (43)) which are known to offer significant complexity reduction. The search for the
closest lattice point to a given point has been widely investigated in lattice theory. In general,
the optimal search algorithm should exploit the structure of the lattice. For general lattices,
that do not exhibit any particular structure, the problem was shown to be NP-hard. A common
approach to the general closest-point problem is to identify a certain region within which the
optimal lattice point must lie, and then investigate all lattice points in this region, possibly
reducing its size dynamically. In general, the development of closest-point algorithms follows two
main branches, inspired by two seminal papers : Phost (45) in 1981 examined lattice points lying
inside a hyperspher, whereas Kannan (49) in 1983 used a rectangular parallelpiped. Both papers
appeared later in revised and extended versions, Pohst’s as (48) and Kannan’s ( following the work
of Helfrich (47)) as (46). In (45), however, Pohst proposed an efficient strategy for enumerating
all the lattice points within a sphere with a certain radius. Although its worst-case complexity
is exponential in g, this strategy has been widely used ever since in closest lattice point search
problems due to its efficiency in many useful scenarios (see (52) for a comprehensive review of
related works). The Pohst enumeration strategy was first introduced in digital communications
by Viterbo and Biglieri (50). In (51) , Viterbo and Boutros applied it to the ML detection of
multi-dimensional constellations transmitted over single antenna fading channels, and gave a
flowchart of a specific implementation. More recently, Agrell et al. (52) proposed the use of the
Schnorr-Euchner refinement (53) of the Pohst enumeration in the closest lattice point search.
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2.4.2.1 Sphere Decoding Algorithm

The sphere decoder algorithm was originally developed in the 1980s but has recently attracted
much attention in the MIMO community thanks to its similar performance to the exhaustive
ML decoder at a reasonable complexity.

The main idea is to limit the search among the possible candidates to those located within a
sphere of radius v/C' centered on the received vector (see figure (2.3)). In this part, we assume a
symmetric MIMO system, M = N. Applying the mapping from complex valued matrix to real
valued matrix of equation (2.3) as described in equations (1.13) and (1.14), we get

y=H s+w. (2.17)

Then, we consider the QR decomposition of the matrix H = QR. After multiplication of both
sides of equation (2.17) by QT the system becomes

Y1 = QT "y
Q is orthogonal, and the multiplication by Q7 does not modify the previous system. The system

is of dimension 2n since M = N and since we have passed to the real domain representation.
Now, finding the closest point inside the sphere is equivalent to resolving the following inequality

min ||y, — R-s||* < C (2.19)
seC

s

/ I
— o & — o — 6
AN

FIGURE 2.3 — Sphere Decoding

Let’s the two vectors p and & defined as :

p=R"' -y, (p1,....p2) €R"
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E:p_§’ (£17"'7£2n)€R2n

p is the ZF point, it represents the coordinates of y; in the lattice Ag and &, 1 <1¢ < 2n are
the coordinates of the vector s in the new reference. By Substituting in the previous inequality,
we get

2
2n 2n

IR -&[1* = Z rii&i + Z"f’ijfj <C (2.20)
i=1 j=1

In the new coordinate system defined by &, the sphere with radius v/C centered at the received
point is transformed to an ellipsoid centered at the origin. In order to simplify the inequality
(2.21), we note

2 .
Qiz = Ty 5 Z:1,...,2n
Tij . .
g =— , Jj=i+1,...2n
Tii

Then, the previous inequality becomes :

2
2n 2n
IR-E1P=>qi|&+ > 4| <C (2.21)
i=1 j=it1

In order to determine the limits of the ellipsoid, it will be judicious to process first o, then the
&i=2n—1,...,1. Thus,

VG Ve
< £2n <
v 42n,2n Vv 42n,2n

And since &o,, = pon — So,, We can determine using the inequality (2.22) the interval to which
belongs s,

Gon2nés, < C 4> — (2.22)

C
_ + pan | » 2.23
|7 \ 42n,2n p2 J ( )

where [z] is the smallest integer bigger than = and |z | is the biggest integer less than x. Given
the interval of s,,,, we can determine the interval of s,,,_; :

[ C = qonon? C — q2n,2083
|2 Bn2nSon + pon—1+ @n-12n€2n | < S9,p_1 < — INn Pon—1+ @2n-12n&2n | ,
q2n—1,2n—1 q2n—12n—1
(2.24)
Similarly, we have for the i** component :
2n 2n 2n
— =D &+ D a)? | +eit+ D 4| <s
l=i+1 =141 j=i+1
1 2n 2n 2n
5 < ™ C— > au&+ D a&)? | +ri+ > & (2.25)
5

l=i+1 j=l+1 j=i+1




70 2. MIMO DECODING

In order to simplify the inequality (2.25), we assume :

2n
Si = pit+ > @&

J=i+1
2n 2n

T, = C=> aul&+ > a&) (2.26)
=1 j=l+1

= Ti1— qi(Si — 5,)*

We can define bounds for each interval I; = [b;, f7z-,b8up7i] corresponding to the component s; as :

Starting from the (2n)th order, the algorithm calculates all the components. As a result, the
algorithm found a first candidate s' = (§2n,§2n_1,§2n_2, . ,31). The distance between this point
and the received one is given by :

d* =C — Ty + q11(S1 — 5,)°

The algorithm is then restarted by reducing the radius of the sphere to this distance.

The algorithm defines for each component s; of the vector s an interval I;. In order to find
the closest point, the algorithm visits the components of the interval I; and the distance d? is
evaluated for each visited combination of s;. Each point verifying d> < C is stored. And the
search continues until all points belonging to the sphere are visited.

Each time a point is found inside the sphere, the algorithm updates the sphere radius and then
the bounds b;,r; and bsyp i, © = 1,...,2n. This induces a significant decrease of complexity for
the search phase since each time we restart a search in a sphere with a smaller radius.
However, we note that the complexity depends on the choice of the initial radius. Clearly, if v/C
is too large, we obtain too many points, but if v/C' is too small, we obtain no points. Since we
manipulate a white gaussian noise, choosing judiciously a radius taking into account the noise
can accelerate the search for the closest point. We can claim intuitively that, for low SNR, the
received point is deeply affected by the noise. But, for high SNR, the received point is slightly
affected by the noise. This observation leads us to choose a large radius for low SNR and small
radius for high SNR. For this reason, taking initially a small radius for high SNR limits the
search time. In (54), Hassibi et al. proposed a method to calculate the optimal radius based
on a probability calculation. This radius is a function of the noise variance and the size of the
dimension of the lattice.

VO =4-n-o? (2.28)

This formula permits to define a sphere centered at the received point such that we can have at
least one point inside the sphere with a probability equal to 99%. In our simulations, we will use
this formula to calculate the initial radius.

The sphere Decoder permits to enumerate points inside the sphere and optimizes the search
for the closest point. Nevertheless, it doesn’t guarantee that these points belong to the used
constellation. The algorithm given before is available when infinite lattices are used, but in our
transmission scheme the information symbols belong generally to QAM constellations. Therefore,
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there is no longer an infinite lattice but a finite lattice constellation, which means a finite subset of
a lattice. Consequently the vector found by the SD must imperatively belong to this constellation.
There are two ways to proceed :
1) Checking over the whole lattice, and keeping only vectors belonging to the constellation.
2) Seeking lattice constellation directly by checking only vectors belonging to the constellation.
The first method is more expensive than the second in terms of operations. In our simulations
we apply the second method. The second method consists of imposing a constraint on the search
interval I; so that only points belonging to the constellation will be visited. This is equivalent to
calculating boundaries of the interval I; taking into account the constellation boundaries. For a
q — QAM constellation, symbols s; belong to the interval I, = [:l:l, +3,..., £ (/7 1)] Thus,
the search interval that should be considered is the intersection of I; and I.. I.. is a finite subset
of 2Z + 1. In order to bring back the search to Z, we can consider the following transformation :
w; = L*fl) (2.29)
For example, for the 16-QAM constellation, the symbols s; belong to the interval I.274+1 =
[£1, £ 3]. The new interval is I. 7 = [0,3] = {0,1,2,3}. We noticed ¢ and ¢pqe the lower and
the upper bounds of this interval. The search for the closest lattice point consists of enumerating
points u; in this interval.

2.4.2.2 Schnorr-Euchner Decoding Algorithm

The Schnorr-Euchner algorithm we are studying here was presented in (52). It was used in
cryptography applications. This algorithm has the same principle as the SD : the search for the
closest point. This algorithm is based on two stages. The first stage consists in searching the
'Babai point’ (BP), which represents a first estimation, but is not necessarily, the closest point.
Finding the BP gives us a bound on the error. In the second stage, we modify the BP until the
closest point is reached. We zigzag around each BP component in order to build the closest point
(unlike the sphere decoder, there is no minimum and maximum bound for each BP component).
The time needed to find the closest point is closely related to BP, which means closely related
to the SNR. In fact, if the BP is very far from the closest point, i.e for low SNRs, the algorithm
takes much more time to converge. However, if the BP is close to the closest point, i.e for high
SNRs, the algorithm converges rapidly.

el
- —
27

FIGURE 2.4 — SE Search Strategy
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The key idea is to view the lattice as a superposition of hyperplanes and then start the search
for the closest point in the nearest hyperplane ( see figure 2.4).
Let’s recall the equation (2.18). The upper triangular form of R permits to view the lattice as a
multi-layered hyperplanes. Thus, the matrix R can be written as
R, }

T2n

R= [ (2.30)
where Ry is an (2n — 1) X 2n matrix consisting of the top 2n — 1 rows of the matrix R. The
matrix R is triangular, the vector roy, = (0,,0,r2,,2y,) is orthogonal to the space generated by the
matrix Ry. Now, the search algorithm for the 2n-dimensional lattice will be described recursively
as a finite number of 2n — 1 dimensional search operations. The lattice Ag can be viewed as the
infinite superposition of hyperplanes of dimensions 2n — 1 generated by the matrix R; :

Arp =U {C + thTzn/C € ARl,th € Z} . (2.31)

A successive projection on the different hyperplanes of the lattice permits to find a first estimation
of the closest point. This is the ’Babai point’ and it corresponds to the ZF-DFE point (55). Once
this point is found, it constitutes the departure point to visit other lattice points. The purpose
is to find the closest lattice point, it is then unnecessary to consider points having distance more
than that of the 'Babai point’. Thus, the Schnorr-Euchner (SE) is a search algorithm inside a
sphere centered at the received point and with initial radius equal to the distance between the
received point and the BP.

In the following, we propose to calculate the BP. The projection of y; onto the vector ray, gives
the (2n)™ component of the Babai point :

T2n,2n

Let’s sy, = [89,,] such that [z] is the nearest integer to x. The distance that separates y; to the
layer 2n is given by :

don, = |§2n - §2n| : |T2n,2n| . (233)

Considering the ZF vector, p = y1 - R™1, we get :

§2n = P2n
don = |[p2n] = p2n| - [r2n,2n|

To calculate 55,1, we can start from this equation
y1=R-p. (2.34)
Then, we can write :
Y1,2n—1 = P2n—172n—12n—1 T P2nT2n—12n

And since the component s,,, was calculated in the previous layer, we can use this estimation to
deduce po,_1 :

yl,Qn—l - T2n—1,2n s Son
pn-1 = (2.35)
Toan—1,2n—1
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Similarly to the (2n)™ order, the component s,, ; can be calculated as :

Sop—1 = [pQTL—l]

don—1 = |lp2n—1] — pan—1| - |T2n-1,2n-1] -

By a successive substitution, we can calculate all the components of the BP :

Yii— E Tij * 85

&
l
Il

Tii

d; o] — pil - lIrasl] -

Once the BP is found, the distance between this point and the received point is :
2n
= "d (2.36)
i=1

As shown in figure (2.5), the idea of SE algorithm is to zigzag around components of the BP. For
every detected point, the distance d? is recalculated. If the new distance is less than the previous
one, this point is stored and the distance d? is updated. Then, the searching phase continues.
In the original paper of the SE (52), authors considered a radius initialized to infinity and once
the BP is found, the radius is updated and adjusted to the distance d?. However, in (56), it was
shown that if we consider a finite radius calculated with the same manner as for the SD, this
permits to accelerate the decoding by 30%. In our simulations, we will consider a finite radius
calculated as in equation (2.28).

The SE algorithm described above permits to decode lattices with s € Z2". In the case of finite
constellations, one should check that the final solution belongs to the constellation.

layer i
| | | | | | |
A f I I l I [ f
layer i-1
| | | | |
T T T T T T T T
4>
<\<{_//> @

FIGURE 2.5 — SE zigzag Strategy

Let’s I. = [¢min,Cmaz] the interval to which belong the real and the imaginary parts of the
symbols constellation. In the algorithm, we should verify that BP components are correctly
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chosen from this interval. That is why, we should take sy, = Qg ns(32,) instead of sy, = [39,,]
such that :

Cmin ) it [5271] < Cmin
QQAM@%) = 3, i cmin < [82,] < Cmaa -(2.37)
Crmazx 71f [5211] > Crmaz

The zigzag around every component of Babai point can probably go outside .. One should return
to the interval each time it goes outside. Two possible cases can happen :

1) If the point components are inside I. : Continue the search.

2) If the point components are not inside I., this proves that all points were tested. In this case,
we should go up to the next component.

2.4.2.3 Comparison of the SE and the SD algorithms

Even if both strategies for visiting points inside the sphere are quite different, they lead to the
same maximum likelihood solution. Many studies were realized to evaluate complexity of the
two strategies (52)(57) and it was shown that the strategy of SE requires less time than the SD
proposed by Viterbo et al..

Here, we will compare the performance of SD and the SE algorithms using simulations. We
present in the figure (2.6) performances in terms of BER in function of the SNR for a 4 x 4
MIMO system with a 4 — QAM constellation and using a spatial multiplexing. We will first
check that the SD and the SE permit to obtain ML performances. Also compared to sub-optimal
decoders, the SD and the SE offer a maximum diversity equal to N.

In the figure (2.6), we compare also complexities in terms of the average number of multiplications
per codeword. We have considered here only the search phase. The Pre-decoding phase is similar
for both decoders. As a result, we conclude that the complexity of the SD is more important
than that of the SE for low SNRs. In fact, the complexity of the SD is especially related to
the chose of the sphere radius. If the radius is very small, the decoder does'nt find any point
and it will be obliged to restart search with higher radius. However, for the SE, the radius is
initially equal to infinity or to a higher value containing at least the ZF-DFE point, the algorithm
convergence is then guaranteed from the first iteration. For high SNRs, the complexity of both
decoders converge and the complexity of the SD is slightly better than the complexity of the SE.
This can be explained by the fact that the ZF-DFE point is far from the ML point as it can be
seen through the performance curve of the ZF-DFE decoder. In this case, the SE zigzags around
this point which requires more iterations to reach the ML point.

2.4.3 Sequential MIMO Decoders

Other types of decoders are sequential decoders. These decoders were initially introduced to
decode binary trellis codes (58). They are based on some search algorithms inside a binary tree
where tree branches represent the binary values of the code. Two principle algorithms were spe-
cially used : the Fano decoder (59) and the stack decoder (60). In (61), authors rediscovered these
decoders and they applied them to MIMO systems. The tree search is no longer a binary tree but
constituted of the different possible values of real and imaginary parts of symbols. Nevertheless,
decoding main idea keeps the same. To apply tree-search algorithms, we need first to expose the
tree structure. A QR or a Cholesky decomposition can be applied on the lattice generator matrix
H . These two methods are quite equivalent, however the QR is more complex than the Cholesky
decomposition but it allows a numerical stability (62).
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FIGURE 2.6 — SE and SD Performance and Complexity Comparison
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Let’s recall the equation (2.18) :
yp=R-s+w;. (2.38)

Exploiting the upper triangular form of R , one can solve the decoding problem using a tree
search algorithm.

We consider a tree rooted at a fictive node w;q0t- The node at level k is denoted by the vector
85) = (891,89 _1,-8%) Where $j,J = 1,...,2n are the components of s. Moreover, the branches
of the tree at level £ define all the possible values that can be taken by s;, and each node s(k)
is associated with the squared distance

2n
F(8™) =" filsy), (2.39)
i=k

2
where fi(s;) = |y1,i — Z?iz 7,555

We call f(s*)) the cost function of the node s®). It represents the “sub-distance” between
the received and the transmitted signal at the level k. As shown in figure (2.7), a node to be
expanded is called a father node and its successors are called child nodes.

O Leaf Node [0 Father Node

/\  child Node

FIGURE 2.7 — Tree search for a point with tree depth = 4

The tree search consists in exploring the tree nodes in order to find the leaf node (85,,,89,,_1,-++»51)
with the least cost. In the literature, we find different tree search strategies. In the next para-

graph, we will present the most known ones. @.oo
level 5

level 4
level 3

level 2

level 1
§(1) = (§47§37§27§1)

FIGURE 2.8 — Example of a tree structure with a depth = 4
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2.4.3.1 Tree Search Strategies

A - Breadth-First Search(BrFS)

The breadth first search algorithm as given in figure (2.9) is a tree search algorithm that starts
from a root node @, and explores all its children, the children of those and so on until it hits
the end of the tree. From this point of view, the BrE'S is like a tree of generations. It will visit the
ancients, then the offspring of those and follow oy th the descendants of those, and so forth.

@ @

(o) (0

FIGURE 2.9 — Breadth-First Search Strategy

All we need to do is to store the current level and to increase it as we go deeper and deeper
into the tree. The BrFS is then an exhaustive tree search algorithm. It moves from level k£ + 1
to the level k until it explores all the nodes in the first one. The solution found is then the ML
one. From the standpoint of the algorithm, all child nodes obtained by expanding a node are
added to a FIFO queue. The algorithm works by putting the ending node in the queue then
pull a node from the beginning of the queue and examine it. If the searched element is found
in this node, then the algorithm quit the search and returns result. Otherwise we push all the
successors of this node into the end of the queue. If there is a solution breadth first search will
find it regardless of the kind of graph. However, if the graph is infinite and there is no solution
breadth first search will diverge.

B-Depth-First Search(DeFS)

of

FIGURE 2.10 — Depth-First Search Strategy

Like the BrFS, our objective is to visit nodes of the tree by starting from a root item and
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traveling through edges. The DeFS algorithm as given in figure (2.10) starts from the root node,
explores its first child node and proceeds by going deeper and deeper until the end of the tree or
until it hits a node that has no children. Then, the algorithm backtracks and returns to the most
recent node being expanded and visits its second child and so on. We note that this algorithm
needs more memory to 'remember’ which nodes having been already visited. However, since it
explores all the possible paths in the tree, the DeFS is an exact-ML algorithm. In a non-recursive
implementation, all freshly expanded nodes are added to a LIFO stack for expansion. Space com-
plexity of DeF'S is much lower than BrFS. It also lends itself much better to heuristic methods
of choosing a likely-looking branch. Time complexity of both algorithms are proportional to the
number of nodes and the number of edges in the graphs they traverse. When searching large
graphs that can be fully contained in memory, DeFS suffers from non-termination when the
length of path in the search tree is infinite.

C-Best-First Search(BeFS)

One can see the BeFS as an optimization of the BrFS. In fact, the BeFS strategy aims to
find the best path in the tree by expanding only the most promising nodes chosen according to
some rule. In general, the BeFS uses a cost function and selects the next node to expand with the
best score (the least one). In fact, starting from a given node, the algorithm evaluates first all its
successors and selects the one to expand with the best score and so on until finding the final node.

D-Branch and Bound algorithm (BB)

Visiting all the tree nodes to find the one with the shortest path, using one of the three strategies
described above, is prohibitively complex. However, this complexity can be reduced using the
Branch and Bound algorithm (BB) which comes to establish constraints on the tree search by
using a bounding function as explained in figure (2.11). This means that the algorithm chooses
the nodes to expand by comparing their costs against this function. If the cost node is within
the defined bounders, the node will be explored, else the node will be jumped, which allows to
limit the expanding of some unnecessary nodes and advantages the most promising ones.

The Sphere Decoder and the Schnorr-Euchner algorithms can be viewed as BB algorithms using
a depth-first-search strategy. In fact, they start from the upper level in the tree and first consider
one possible value $,,, inside the bounded region and conducts a depth search over the sub-trees
{8/89,, = 39,,} before going back to another sub-trees {s/ss, # 3, }, and so on.

The sequential decoders, that we study here, conducts also BB algorithms using a BeFS stra-
tegy. In the following, we will focus on the most known ones, namely the Fano and the stack
algorithms. A description of these sequential decoding algorithms is therefore given.
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FIGURE 2.11 — Branch and Bound

2.4.3.2 Fano & Stack Decoding Algorithms

As given before, the sequential decoders were originally proposed to decode binary trellis codes
(63). The most used one is the Fano decoder introduced in 1963 (64). Later, Zigangirov proposed
in 1966 a sequential algorithm using a stack storage (or memory). In the 1960s, memory allo-
cation represented a very important constraint. Thus, studies were oriented toward discovering
the Fano decoder features which were more suitable for hardware implementation and so far the
stack decoder has not been widely used. Nowadays, the price of memories is continually dropping
and the stack decoder is therefore becoming of great interest.

In (61), the authors have rediscovered the Fano decoder and applied it to decode MIMO schemes.
In this work, we will focus on the stack decoder and bring the necessary modifications to decode
lattice and finite constellations. Let’s first recall the principles of the original Fano and stack
algorithms.

A - Fano decoder

Here, we will detail the search strategy of the Fano decoder. Let us suppose that the deco-
der is at a some node s) of a level k in the tree. The decoder can choose to proceed forward to
a child node at level k — 1 or to move back to the parent node s*+1). At each step, the decoder
looks forward to the best child node. The best node is the one having the least cost. The decoder
can visit a node if its metric is smaller than a certain threshold Y. Note that T is allowed to
take values only in multiples of the step size A(i.e., 0, £A, £2A, ...).
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cost

FIGURE 2.12 — Fano Decoder

Each time a new node is visited by the Fano Decoder for the first time, the threshold T is
tightened to the least possible value higher than the cost function of the node. If the current
node does not have a child node with cost function below the threshold, then the decoder moves
back to the parent node if this parent node has a cost function below the threshold as shown in
figure (2.12) . Then, the decoder attempts moving forward to the next best node. However, if
the decoder cannot move back, the threshold is relaxed and attempt is made to move forward
again, proceeding in this way until a leaf node is reached. We note that, from a current node,
the Fano algorithm moves either to its parent or to a child but never jumps. For example, if we
find the node s*) such that f(§(k)) < T. In this case, the constraint is readjusted as follow :

T="T-6-A (2.40)
where § € N is the biggest integer such that
T—(6+1) A< fs®)y<r—06-A. (2.41)

In the original papers focusing on Fano decoders, A is usually chosen equal to 1. However, we
can choose A in R. The value of this parameter can have an influence on the speed of decoding
and thus on complexity. The ideal choice is a step with the same order as f (§(k)).

Based on the equation (2.21), the new constraint is chosen such that the successors nodes will
have a less or an equal cost as the visited node. If there is not any node s~ verifying this
constraint, the algorithm will go upper to the higher level and generate the best s*) except
the one visited before. If the algorithm doesn’t succeed to find any node, and this means that
all nodes have a cost bigger than Y. In this case T is incremented by A, T =T + A and the
search algorithm continues. The algorithm ends when a full path is reached. However, since the
decoder requires no memory, it may visit the same node several times which induces additional
complexity.

Unlike the SD and SE which update the radius once a vector s is found - which means a complete
path in the tree -, the Fano decoder constraint is readjusted each time an intermediate node s(*)
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is visited. This is due to the difference in strategies between those algorithms.

B - Stack decoder

For the stack algorithm, the main search idea and strategy remain the same. However, the
main difference is that the stack stores all the paths crossed by the algorithm in an ordered list
called "stack” or "memory”, whereas the Fano only retains the best path. In fact, starting from a
root node wyq0t, the stack algorithm generates all the children of w,oo. As given in figure (2.13),
the algorithm computes the costs of those nodes according to the cost function given in equation
(2.39) and stores them in an increasing order in the memory such that the top node of the stack is
the one having the best cost. After that, the algorithm takes the top node, generates its children,
computes their costs, places them in the memory and removes the top node being just expanded.
The algorithm reorders the stack again, generates the child nodes of the current top node, and
so on. Note also that some information concerning each node are also stored with this node, like
its cost, its level in the tree, and its path. The algorithm terminates when a path of length 2n
is found on the top of the stack, in other words, when a leaf node reaches the top of the list.
The flowchart of the stack algorithm is presented in figure (2.15), where we define by Gen(w)
the function that generates all the children nodes of @ and calculates their costs, Sort(List) the
function that reorders the nodes stored in the stack, top(List) the function that selects the top
of List and store() the function that stores the children in List. In this flowchart, I is the set of
generated children of the node w. Note that, since the stack decoder stores potential candidates,
it visits fewer nodes than the Fano decoder which may visit nodes having already been visited.
Consequently, the stack decoder is faster and less complex than the Fano decoder.

One can here highlight a few of the stack decoder properties that are very important in the
study of MIMO detection algorithms :
e Nodes are distributed over 2n levels, numbered from root node w;,, at level 0 to leaf nodes
at level 2n. Non-leaf nodes are those at levels 0 through 2n — 1
e Branches and nodes weights are non-negative.
e Fach node weight is the sum of branch weights along its path from the root node or equivalently
the sum of the weights of its parent node and the connecting branch.
e For any path from the root node to a leaf node the weights are non-decreasing.
Let’s now ask this question "For a tree based tree search, what’s the smallest number of nodes
that should be expanded in order to obtain ML solution? "
One Obvious remark is : given the weight of the smallest weight leaf node, it’s clear that all non-
leaf nodes having weights less than this weight must be expanded. Let’s denote fpes: the smallest
weight leaf node. If we expand non-leaf nodes whose weights are greater than or equal to fpest,
this can lead to the discovery of leaf nodes whose weights are also greater than or equal to fpest.
Therefore, the SE and the SD may expand more nodes than necessary because they rely on a
search radius to dictate whether or not a node should be expanded during the enumeration. Even
though it may be adaptively reduced if the squared search radius is ever larger than fp.s, then
it’s possible for nodes having weights greater than or equal to fp.st to be expanded. In contrast,
the stack decoding is designed to expand precisely the minimum number of nodes necessary to
establish an ML solution. It’s also able to do so without prior knowledge of the optimal leaf node
frest- The stack decoder explores nodes of the tree in order of increasing weight starting from
the root. In the sequel, we will propose a modified stack decoder in order to enhance the original
one and to reduce its complexity.
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FIGURE 2.13 — Stack management for the Stack Decoding algorithm
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FIGURE 2.14 — Best-First Search Algorithm
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2.4.3.3 Complexity-Performance Tradeoff : The use of bias

Let’s first recall the cost function given in equation (2.39)

2n
F(8™) =" fils), (2.42)
i=k

This gives the cost function of any node stored in memory at any instant. Rewriting this cost
function by adding a bias value gives

2n
F(8™)y=>"fi(s;) —b-k, (2.43)
i=k

where we refer to b € R as the bias coefficient. In (61), it was established that the efficiency of
the stack decoder with b = 0 is an ML result. And since the SD and the SE can be viewed as
tree search algorithms, it was also shown in (61) that the stack decoding algorithm with b = 0
generates the least number of nodes among all optimal tree search algorithms including the SE
and the SD.

We report two advantages of stack decoding algorithm. First, it offers a natural solution for the
problem of choosing an initial radius which is a problem faced in the design of sphere decoder.
Second, it allows for a trading off performance complexity as shown in figure (2.16) where we
plotted performances in terms of SER and complexities in terms of multiplications per codeword
for different values of bias b for a 2 x 2MIMO system using a 16-QAM constellation. To illustrate
this point, if we choose b = 0 we obtain the closest point with best performance but with very high
complexity. On the other extreme, when b — oo, the stack decoder reduces to the MMSE-DFE
point.

2.4.4 Soft MIMO Decoders

In the literature, soft-output MIMO decoding was studied. Some solutions to this issue have been
proposed in (65),(66) and the so called ’list’” or ’candidate list” was introduced. The most known
soft-output lattice decoder for MIMO systems is the List Sphere Decoder (LSD).

Soft decoding can be realized using a posteriori probability techniques. A posteriori probability
(APP) techniques are a judicious choice for high performance receivers with reasonable com-
plexity. Maximizing the APP for a given bit minimizes the probability of making an error on
that bit. The APP is usually expressed as a log-likelihood ratio (LLR) value. A decision is made
from a LLR value by using its sign to tell whether the bit is one or zero. The magnitude of the
LLR value indicates the reliability of the decision. LLR values near zero correspond to unreliable
bits. In the following, the logical zero for a bit is represented by amplitude level b, = —1 and
logical one by by = +1. The modulator maps each layer of the bits into data symbols through
the mapping

fo{-1,+1}"P 5 ¢

where € denotes the data symbol constellation and B = log, |€] is the number of bits represented
by each data symbol.
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FIGURE 2.16 — Stack Decoding using bias : a Complexity-Performance Tradeoff
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The LLR of the i bit, where i € [1,B - p], is defined as

Pr(b; = +1/y,H)
Pr (bz = _1/y)H)7

LLR(b;) = log (2.44)

where p, as defined before, denotes the number of symbols belonging to each transmitted code-
word. One can assume that data bits are independent (an interleaver at the encoder can be used
to scramble the bits). Using Bayes theorem, the bit metric can be written as

Zbepi,+l Pr(y/b,H)

LLR(bZ) = log ZbEDiY71 Pr (y/b7H) .

(2.45)

where D; 11 and D; _; are the set of 25P=1 hit vectors b with b; being respectively +1 and —1.
If we assume an additive zero mean white circularly symmetric complex Gaussian noise, the
equation (2.45) can be written as

S ben e—C,%IIy—HwS(b)II2
i1

1 2"
—=lly—H-s(d)]
zbEDi’_l e -

LLR(b;) = log (2.46)

In order to reduce the corresponding computational complexity, one can employ the maz-log
approximation (78) to get

1 1
ror) ~ x-Sy Hos@F | - o {- Gy - H s @)

1
= | - s @F - i - B0

i,—1 €D; 11

Soft-output detection on MIMO channels can be achieved via an exhaustive list as in (79) or
a limited size list of spherical shape as in (80) and (81).

The APP detector based on an exhaustive has a relatively large complexity exponential in
the number of transmit antennas and the number of bits per modulated symbol. In other hand, a
non-exhaustive list APP detector is sub-optimal but has a low complexity which is proportional
to the list size. Several list decoders were already proposed. We recall in the following the most
known ones and we propose a new soft-decoder based on the SB-Stack.

A. List Sphere Decoder (LSD)

An exhaustive search needs to examine all the constellation points. The sphere decoder avoids
an exhaustive search by examining only the points that lie inside a sphere with a given radius
V/C. The performance of the algorithm is closely tied to the choice of the initial radius vC. If
V/C is chosen too small, the algorithm could fail to find any point inside the sphere, requiring
that v/C be increased. However, the larger v/C is chosen, the larger the search will spend time.
In (66), a simple modification to the sphere decoder was introduced. The sphere decoder keeps
in memory a list £ of N, points. These points make ||y — H s||? smallest among all the points
inside the sphere. The list, by definition, must include the ML point. To create £, the sphere
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decoder needs to be modified in two ways : when a candidate is found inside the sphere, the
radius v/C should not be reduced. In addition, the candidate is added to the list if one of the
following conditions is satisfied : either the list is not full or at least one candidate in the list
has a higher cost than the new candidate. In this last case, the new candidate replaces the one
having the large euclidean distance to the received point. Thus, the constructed list contains the
ML point and N, — 1 neighbors for which the square error is the smallest. The soft information
about any given bit by is essentially contained in £ : if there are more entries in £ with by = 1
than those with b, = —1, then it can be concluded that the likely value for by is +1, whereas if
there are fewer entries in £ with by, = 1, then the likely value is —1. A larger radius v/C generally
allows for a larger IV, which makes the list more reliable.

There is also a tradeoff between the accuracy and the decoding delay of the LSD. Finding N,
points is generally slower than just finding one point, because the search radius always stays fixed
and does not decrease with each found point. One problem of this algorithm is the variable size
of the list. In(66), a radius, function of the desired number of points, is proposed. The decoding
error can be written as

2 2
ly —H - s|* = |w|® o*x3w, (2.47)

where X% N, is a chi-square random variable with 2NV,, degrees of freedom. The expected value of
this random variable is 02E[X§Np] = 202 N,. One possible choice of the radius is

C = 20%CN, — y"! (I —H(H"H)™ HH> y (2.48)

where ¢ > 1 is chosen so that one can be reasonably sure, as measured by a confidence interval
for the X% N, random variable, that the true transmitted s will be found.

The important weak point in the LSD is the instability of the list size. The number of visited
points before reaching the ML point can not be fixed exactly, only an approximate number can
be provided. The sphere radius is selected to give nearly the needed number. Moreover, the
constructed list is not centered at the ML point. A Shifted Spherical List Decoder was proposed
in (80) to resolve this problem.

B. Shifted Spherical Decoder (SSD)

The APP detector starts by applying a sphere decoder to find the ML point, then a spherical
list centered around the ML point is built. This list depends on the ML point position and the
channel state. The trick behind this idea is to center the spherical list £ on the ML point instead
of the ZF point. Fig.2.17 shows in two dimensional lattice the sphere centered on the ML point
compared to the one centered on the ZF point.
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FIGURE 2.17 — Sphere Centered on the ML Point and the Sphere Centered on the Received
point

Usually the received point y is outside the constellation, especially when considering large
dimension. The sphere decoder centered at the received point visits a lot of lattice points to
find a small number of constellation points. However, when the sphere is centered at the ML
point, the number of enumerated points is reduced and higher likelihood constellation points are
considered. But to guarantee a high stability for the number of points required in the list, one
should be careful for the choice of the shifted list radius. This radius should take into account the
number of points to create the list. In (66), an approximation is made : the volume of the sphere
containing N, points is equal to the volume of IV, fundamental parallelotopes. As a result, the
radius v/C can be computed as

VG <Np X;OZ(A)YL | (2.49)

where vol(A) = |det(H)|, H is the lattice generator matrix, n is the dimension of H and V is
the unit radius sphere volume in the real space R", V = %n This method has the disadvantage
of being stable only for high values of N,. If we assume N, the effective number of points found
inside the list £, one can check that

Ne
li — =1 2.
Nplgloo N ( 50)

But when considering a finite constellation, N, will decrease because of the limited shape of the
intersection between the sphere and the constellation. This depends on the ML point position
inside the constellation and the shape of this constellation. As a result, the radius v/C of the
shifted spherical list for the constellation can be given by

[ anpgy] X py x Ny X vol(A) "
\/5_< ”’V 2 > : (2.51)

where « is an expansion factor of the list size which depends on the number of hyperplanes ny,,
at the constellation boundaries passing through the ML point. u, is an additional expansion
factor depending on the shape of the constellation (65).
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C. K-Best Decoding

The K-Best decoding algorithm was proposed by Wong et al. in (72). This algorithm uses the
breadth-first search strategy. At each level of the tree, the K best candidates regarding the
optimization metric are memorized and expanded. Thus, in the following level, the N}, possible
child nodes for each one of the K candidates are generated and only the K best candidates
among the k - Nj child nodes are conserved for the next level, etc.

The advantage of such decoder is its constant complexity which doesn’t depend on the reception
conditions. However, to obtain near-ML results, we should use a sufficiently high number K
which induces an augmentation of complexity. In fact, if the vector to decode contains p symbols
and belongs to a constellation of dimension equal to ¢ = 2™¥v, the number of metrics to calculate
is equal to

L log(K)
E k—1 + : _

In (72), the proposed algorithm adds a constraint which selects the K nodes belonging to the
sphere of radius v/C and centered at the received point. This constraint reduces the complexity
of the algorithm. It’s also possible to combine the K-Best decoding with the Schnorr-Euchner
algorithm (73). At the end of the search phase, the decoder gets K x Nj solutions which are
used to provide a soft output. Nevertheless, these K solutions are not necessarily the nearest to
the ML point. Guo and Nilsson proposed a modified K-Best algorithm using the paths in the
tree which were not already expanded. Thus, a supplementary information can be recuperated
to refine the soft output (73).

2.5 Pre-processing Techniques

The purpose of preprocessing is to transform the original constrained search problem into a
form which is easier to the search algorithm. A friendly structure can be derived through two
techniques : left preprocessing and right preprocessing. The left preprocessing, MMSE-GDFE;,
permits to have a well conditioned channel matrix. The right preprocessing consists of making
the channel matrix the most orthogonal.

Thus, preprocessing followed by a sub-optimal decoder permits to have better performances.
In the case of optimal decoding, preprocessing permits to accelerate decoding and reducing
complexity of the search phase.

2.5.1 Left Pre-processing : MMSE-GDFE

Let’s recall the equation of a MIMO system defined by :
y=H s+w
By multiplying the system by the matrix HY, we get

yLp :HHH'S—i—’IULP
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The decoder can be a sub-optimal decoder like the ZF or the MMSE decoder , or optimal like
the SD or the SE.

The MMSE-GDFE ( Minimum Mean Square Error-Generalized Decision Feedback Equalizer )
is a decoder with decision feedback. It permits to find information symbols using this equation :

Z:FprLP—(BLp—I)§ (2.52)

where Fpp and Brp € C™" and Bypp is upper triangular with diagonal elements equal to 1.
Firp and Bpp are called respectively the forward and the backward filter, z is the output of
the MMSE-GDFE decoder and 8 represents the estimation of the transmitted vector. Thanks to
the triangular structure of Brp — I, information symbols are recursively calculated starting by
the n'* component.

Contrary to cases where MMSE-GDFE is used for decoding, it’s used here as a preprocessing
step. The idea is to find an equivalent system depending on Frp and Brp. A decoder can be
used after to calculate s. The forward and the backward MMSE-GDFE filters can be calculated
based on the new channel matrix representation H ,

The QR decomposition of H gives :

T-0.rR—| ¢ |.
H_QR_[QJR

with Q € C2"*" R e C"™ ", Q, € C" ™ represents the upper part of Q. Taking :

We can verify that BEB = HHH = HHH + ¢lpI = S and F = (B~Y)™ HH. The

new system becomes :

y = Fy

FHs + Fw

FHs +~ Fw + Bs — Bs
Bs+ Fw— (B— FH)s
Bs + w’

= Rs+w'
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Note that the transformed signal y’ is not equivalent to the initial signal y. Generally, Q1 is
not orthogonal. Also, the resulting noise :

w =Fw— (B—FH)s=Q"¥w— (R-QH)s

contains some gaussian components given by Q{{ w and some non-gaussian components given by
— (R — Q{{ H ) s and depending on information symbols. However, w’ is white and gaussian,
which doesn’t affect system performances (67). In fact :

E [w'w™] = (B - FH)(B - FH)" + s*FFH"
Let’s first calculate FFH :

FH = QFH

(BY)YY HEH
_ (p-1\H I (B
= (B™Y) (HHH + SNR) ~ " SNR
_ (B-1)"
= B-"5yr
And :
FFH — (B! HFHB!
Thus, the covariance matrix of the noise w’ is equal to :
1 H 1 H
H -1 -1 -1 H -1
Elwwh] = (BB + = (87" HIHB

1
= (B—I)H <0_2HHH+ SNR2> B—l

_ 1 —1\H H I -1
~ B (B ) B

At the output of the MMSE-GDFE;, the system to be resolved is 4y’ = Rs + w’. The decoding
will be done in function of the new matrix R which still has a full rank. Moreover, R is better
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conditioned than the original matrix H. In fact, and since RFR = HHH + ﬁI , We can
write :

1

bR = Ao+ NE (2.53)

such that A% represents the eigenvalues of the matrix A. Considering the initial matrix H, the
eigenvalues can have very different values. Multiplying the constellation by the channel matrix
H can induce a distortion to the constellation. Thus, it will be difficult to decode a constellation
point. Nevertheless, by considering the next system, the second term ﬁ permits to better
equilibrate eigenvalues of R and better keeping the initial constellation.

Let’s the SVD decomposition of the initial matrix H :

y = H.s+w
UDVH .s+w

such as U and V are unitary of dimension n x n and D is diagonal of dimension n X n.
The elements of D represent the singular values of H or also the square root of eigenvalues of
HHH VX\ii=1,.r with r =rank (HHH) < min(M,N). A multiplication by V applied to
the signal in the transmission side permits to write :

Uy = UH@WUDVHE)V .5+ U w

y = D-.-s+w
or also for a component 7 : ; = Vs + w;(2.-24)

The MIMO system can be viewed as r parallel sub-channels such as each eigenvalue is consi-
dered as a fading for one sub-channel. The sub-channels represent the number of symbols that
can be transmitted simultaneously.

From the equation (2.5.1), a null eigenvalue A’ breeds a loss of the information symbol s; and
if the eigenvalue is very low it induces a bad channel.

By considering the preprocessing MMSE-GDFE, the previous equation becomes

Ji = \/ !

RTR'Si_‘_’LZ)i

R is of full rank, moreover and based on equation (2.53), the X’;.
As a result, there’s no loss of information. And for the initially low eigenvalues, the new values

are necessarily higher. Thus, the channel is better conditioned.

is not null for i =1,....M.
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2.5.2 Right Pre-processing
2.5.2.1 Definition

Let’s A a lattice from R™. A lattice has an infinity of bases, let’s By be a base of A. By is another

base if By = B1.U, where U is an unitary matrix. In the figure (2.18), B1 = (u1,u2) = ((3,2),(2,1))
and By = (v1,v2) = ((1,0), (0,1)) are two bases from Z2. The relation between the two bases

is given by the following transformation :

By = B,.T (2.55)

with

FIGURE 2.18 — Example of bases in Z?

By is a better base than By, we say that Bq is reduced to B2. The aim of lattice reduction

is to transform a given basis into a new basis with vectors of shortest length and into a basis
consisting of roughly orthogonal basis vectors. Usually, the new basis is much better conditioned
than the previous one and therefore leads to less noise enhancement for linear detection.
The matrix T that permits to find the reduction base is called the reduction matrix. Choosing
the base is very important in decoding. In the paragraph 2.4.1 of this chapter, we illustrated the
case of ZF decoding for an orthogonal base and a non-orthogonal base. It’s clear that for the
second base, the ZF decoding is optimal. Thus, if the base is composed of the shortest vectors
and is highly orthogonal as possible :
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e the sub-optimal decoding presents better performances.

e the optimal decoding is faster and converges rapidly.

The reduction consists of transforming a given channel matrix H to a matrix H having better
structure :

H=HT! (2.56)

In the literature, many reduction methods methods were proposed.

2.5.2.2 Reduction Methods

In literature, three reduction methods exist : Minkowski reduction, Korkine-Zolotareff reduction
and Lenstra-Lenstra-Lovasz (LLL) reduction. The two first methods permit to obtain an optimal
reduced base but their complexities are not polynomial. The LLL reduction produces a base with
vectors relatively short and reasonably orthogonal with low complexity. In the next part, we will
present the strategy of each technique.

2.5.3 Minkowski Reduction

The purpose of the Minkowski reduction is to find the base with the shortest vectors in the lattice
(68).

Let’s A a lattice and B is the corresponding base. This base is the reduced base if it verifies
the following conditions :

1. by is the shortest vector of A.

2. For i = 1,...,n, b; is the shortest vector in A independent from vectors by,...,b;_1 such
that the set (by,...,b;_1,b;) represents vectors linearly independent and can be completed
to form a lattice base.

As a result, the search of the optimal base is done with a progressive manner by considering all
possible linear combinations. It’s evident that the obtained base contains the shortest vectors in
the lattice.

To conclude, the use of the Minkowski reduction method in practice is very limited because of
its huge complexity.
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2.5.4 Korkine-Zolotareff Reduction

The KZ reduction is a variant of the Minkowski reduction. It permits to obtain the shortest
vectors in the lattice which are also orthogonal and generated by the base obtained before.

The reduced base B verifies :

1. by is the shortest vector of A.

2. Let’s A; the lattice obtained by projecting A;_; on the sub-space R"~(—1) perpendicular
to b;_1. b; is the shortest vector of A;.

2.5.5 LLL Reduction

The LLL reduction is the classical one and is widely used. Contrarily to previous methods, it
doesn’t provide an optimal solution but a base which is enough good with polynomial complexity
(69). For these reasons, it’s very used in the number theory and in cryptography.

In (53) and (70), a practical reduction algorithm was proposed based on the orthogonality tech-
nique of ’Gram-Shmidt’.

Let’s B* = (b’l‘, .. ,b:;) an orthogonal base obtained with this process. Vectors bj,...,b}
are calculated using the following formula :

1—1
j=1

(8545)

The base B* is orthogonal but not orthonormal.

Let’s consider for example a lattice of dimension 2. The reduced base is constituted of two vectors
B = (by,b2). From equation (2.-26) and equation (2.-27), by = b] and by = 01 b] + b3 verifying
the following conditions :

<b1)b2> < 1

2 —
[|b1]] 2
ba]> < [|ba

In order to accelerate the search for the reduced base, the second inequality is replaced by a
more selective constraint :

b1]” < 2 b2 (2.57)

QO >
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Generally, for a lattice A of dimension n, we define by A; the lattice generated by the vectors
(b;,bit1). An orthogonal projection of A; on the hyperplane (by,...,b;+1) gives a lattice with the
base (b;,b;+1) such that :

bi(i) = b

(3

bit1 (i) = b;_|_1 + Hi—l—l,ib;

Applying the constraints in equation (2.-28) and equation (2.57) on (b;,b;41), the reduced
base B should verify the following conditions :

1 .
‘/’LZ,]‘ S 57 1 S 1,] S n
* 2 4 * * 2
‘ bi_|_1H < 3 ‘ bi_|_1 + Ni—i—l,ibi
Or also :
2 3 9
et = (3= ot 258

We note that the LLL algorithm apply the orthogonality process locally by considering each
time two adjacent vectors. Consequently, the obtained base is quasi-orthogonal and vectors consti-
tuting this base are orthogonal two by two. In other hand, bases provided by Minkowski and KZ
reductions are perfectly orthogonal.

2.6 The Diversity Multiplexing Tradeoff of MIMO De-
coders

Sub-optimal receivers are an attractive low-complexity alternative to optimal processing for
multi-antenna MIMO communications. In this section and for fixed number of antennas, we
investigate the limit of their error probability in the high-SNR regime in terms of the Diversity-
Multiplexing Tradeoff (DMT).

As far as the DMT is concerned, we report a negative result : we show that both linear Zero-
Forcing (ZF) and linear Minimum Mean-Square Error (MMSE) receivers achieve the same DMT,
which is largely suboptimal.

Let’s first recall that the optimal DMT is the best possible error probability exponent d*(r)
achievable by any space-time scheme at multiplexing gain r. While d*(r) is achievable under
the optimal receiver, the following result characterizes the DMT of the MIMO channel when
the linear receiver is either the ZF or the MMSE receiver defined before. As given in (71), the
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DMT of the M-transmit, N-receive i.i.d Rayleigh MIMO channel with N > M, constrained to
use Gaussian codes under either MMSE or ZF linear receivers is given by

Ginr) = (N = 1) (1= ) (259)

for both the cases of coding across antennas or pure spatial multiplexing and where (z)* £

max{x,0}. The use of lattice reduction (LR) aided versions (75) (76) of the sub-optimal (linear
and no-linear) decoders can highly improve performances and diversity. The work in (74) showed
that LR (lattice reduction)-aided ZF decoding can achieve maximal receive diversity for uncoded
V-BLAST systems.

In (77), authors prove that MMSE regularized lattice decoding, as well as the computationally
efficient lattice reduction (LR) aided MMSE decoder, allows for efficient and DMT optimal
decoding of any approximately universal lattice based code. The result identifies an explicitly
constructed encoder and a computationally efficient decoder that achieve DMT optimality for
all multiplexing gains and all channel dimensions. Particularly, they proved that LLL based LR-
aided decoding can in fact achieve the most general diversity-related optimality, by showing that
the LLL based LR-aided MMSE decoder can, in the context of lattice codes, achieve the maximal
diversity gain for all multiplexing gains r and fading statistics.

2.7 Conclusion

In this chapter, we have presented some well-known MIMO decoders available in literature. Thus,
we highlighted the functioning of these decoders and their performances. We have showed that
these decoders can be classified into three classes : the sub-optimal decoders, the optimal de-
coders and the decoders offering a complexity-performance tradeoff like the stack decoder. We
remarked that optimal decoders have a prohibitive computational complexity and this later in-
creases proportionally to constellation size which makes their use in practical applications very
difficult especially for systems with high number of antennas. That’s why the sequential deco-
ding and particularly the stack algorithm using the bias parameter to tune and adjust decoder
complexity can be a good alternative. However, it leads to sub-optimal results.

In order to improve the stack decoding capabilities, we propose in the next chapter a new
sequential decoding algorithm based on the Stack decoding Algorithm and the SD algorithm.
We will show that this decoder offers the lowest complexity when compared to all other known
ML decoders and guarantees optimal ML performances.
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Chapitre 3

Hard and Soft Spherical-Bound Stack
decoder for MIMO systems

3.1 Introduction

ML decoding consists in looking for the closest point to the received one belonging to the lattice.
Exhaustive search consists in visiting all the lattice points which is impossible to realize in
practice. Thus, to decode the received vector, it’s necessary to define a finite search region.

As stated before, Stack Decoding was originally designed to decode binary trellis codes, where the
codeword is taken in a finite alphabet. However, considering a lattice, the codeword is taken in
the infinite field Z?" which leads to an infinite tree structure. Applying the stack decoder seems
to be impossible in this case. Our purpose is then to propose a modified version of the stack
algorithm in order to decode lattices and to reduce the prohibitive computational complexity.
Next, we will propose a new algorithm combining the search region of the SD and the Stack
Decoding Search strategy.

3.2 Spherical-Bound Stack decoder for MIMO systems

3.2.1 SB-Stack Decoding for lattices

A - 1% approach

Applying the stack decoder, we look for the closest point in a finite region ACZ?". Unfortu-
nately, the truncation of the tree will affect the decoder performances. In fact, if the transmitted
codeword belongs to A, the decoder will systematically decode it, however an error occurred if
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the codeword is outside the search region. Thus, the main challenge is how to choose the optimal
search region A.

Yet, the triangular form of the lattice basis reminds the Schnorr Euchner (SE) enumeration
strategy (52). As detailed in the previous chapter, the key strategy of this algorithm is to consi-
der the lattice as a superposition of 2n hyperplanes and to start the search by projecting the
received vector on the nearest hyperplane. The resulting point is then recursively projected on
the following 2n — 1 hyperplanes. The found point is the 'Babai Point’ (BP) and it corresponds
to the ZF-DFE point (44).

Our proposed search algorithm is similar to SE and is based on the BP, however the search
strategy and the construction of the tree are quite different. In fact, the SE consists of enumerating
all possible nodes inside a bounded region by zigzagging around the BP using a DeFS strategy.

In this first approach, we inspire from the SE algorithm and we propose a tree centered at the
BP u (we considered the transformation given in equation (2.29)). At each level, it enumerates
the neighbor lattice points defined as w £t = (uy & t1,u9 + to,...,us, * to,) where t is a vector
in Z?", a BeFS strategy is further applied on this tree.

Applying this algorithm, we can delimit the size of the constructed tree by choosing the
number of the neighboring lattice nodes of the BP that we will consider. However, the ML point
is not guaranteed to be inside the considered tree. To reach it, we should enlarge the search
region and that implies to have a denser tree which leads to a more complex decoding task.

In figure (3.1), we show the performances of the stacked decoding constrained to some search
regions. Thus, we plot the symbol error rate as a function of the signal to noise ratio (SNR) , for
a 4 x 4 MIMO scheme using a SM and in a quasi-static Rayleigh Channel. First, we proceed by
considering the search region defined as A, = {u; — L,u,u; + 1,4 =1,... ,2n}. This induces that
the lattice points concerned with the search algorithm are only the immediate neighbors of the
BP. Nevertheless, in bad channel conditions, the ML point may be far-off and unreachable. This
is shown through curve (a), where the performances are sub-optimal and exhibit a loss of 2dB
from ML. For the same system, we have progressively enlarged the search region and observed
the algorithm’s behavior. The curves (a)-(d) report the performances obtained by respectively
considering the search regions A, = {w; — Lu,u; +1}, Ay = Ay U{wi — 2,u;+2}, Ae = Ay U{u; —
3u;+3} and Ag = Ac U{u, —4,u; +4}. As shown in figure (3.1), the decoder provides sub-optimal
performances, but it approaches the ML as well as we cover a larger search region. However,
the complexity increases with performances. Therefore, a compromise may be established and
this decoding algorithm can be of great interest. Thus, in the beginning of the algorithm, the
complexity-performance tradeoff is fixed which defines the appropriate search region.

In figure (3.1) simulations, we have considered a uniform vector ¢t. We can also use a vector
t with large ¢; for first components and small ¢; for the last ones. This choice may be efficient
due to the problem of error propagation in the tree search.

B - 2"approach (SB-Stack decoder)

In the 1% approach, the search region is centered at the BP. However, this latter is generally
a rough estimation of the transmitted codeword, then centering the search region on it is not
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optimal since the ML solution may not be inside, as shown in figure (3.2).

Therefore, we propose here a second approach for the lattice decoding inspired from the sphere

decoder algorithm. The principle of the sphere decoder is to enumerate all the lattice points found
in a sphere of a radius v/C centered at the received point. Each time a point is found, the radius
is updated, which limits the number of the enumerated points but also guarantees the closest
point criterion. The sphere decoder uses the DeFS strategy.
We call this second approach : the Spherical Bounds Stack decoder (SB-Stack). The SB-Stack
algorithm explores only the lattice points inside the sphere with the radius v/C using the BeFS
strategy, which leads to the definition of an upper and a lower bounds for each lattice point
component. The purpose of the SB-Stack is to find the leaf node having the least cost and within
the spherical search region. Starting from the root node, the algorithm computes the upper and
lower bounds of the first component s,,, denoted respectively b;y 2, and bgyp 2, and generates
all the nodes within these bounds.

-1

10 T

=B~ Stack, (a)
=P~ Stack, (b)
=+ Stack, (c)
O Stack, (d)
= = ML

2|

-3 I I I I I I I

|
9 10 11 12 13 14 15 16 17 18
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10

FIGURE 3.1 — Performance of a MIMO System using a SM with M = N = 4, obtained
for different search regions
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search
region

u—+t

‘; ML point

FIGURE 3.2 — Example of a Lattice defined in Z?; the Search Region does not contain
the ML point

Generated nodes are stored with their respective costs in the stack memory. After that, the
algorithm reorders the nodes in the memory in an increasing order according to their costs,
selects the top node, then computes the bounds of the next level. Then, it generates all possible
children of the top node and stores them in the memory. After that, the top node is removed
from the stack. This procedure is repeated until a leaf node reaches the top of the memory.

Note that, although the apparent similarity between the traditional sphere decoder and the
SB-Stack algorithm, these two search algorithms raise great differences. In this way, unlike the
sphere decoder the radius in the SB-Stack decoder remains unchanged during all the decoding
process, while for the sphere decoder the radius is being updated each time a point is found.

However, the search strategy for the stack algorithm is quite different. In fact, at each step
the algorithm may backtrack to a higher node level having lower cost before reaching a leaf node
which corresponds to a candidate solution. Thus, it’s not possible to supervise the ML distance
when the algorithm is in progress. Therefore, the radius should be fixed.

In the following, we will detail bounds calculation which is very similar to the case of the
Sphere Decoder in (51).

3.2.1.1 Bounds calculation

First, remind that the distance to minimize is given by ||y; — R - s|*. Let us write y1 = R - p,
where p is the ZF point. p represents the coordinate of the vector y; in the new lattice generated
by R. The Euclidean distance is now written in the lattice system as :[|[R - (p — s)||* = || R - £||?,
where £ defines the coordinate of the translated point s.

In this case, the lattice points considered in the metric minimization are those within a




3.2. SPHERICAL-BOUND STACK DECODER FOR MIMO SYSTEMS 103

maximum distance v/C' from the received point s. Thus, we can write

2n

IR-€P =Y (Timg) <o (1)

i=1

Let’s now define : qZZ = r fore=1,...,2n, and qilj = % fore=1,...2n,and j =i+1,...,2n.
The equation (3.1) is rewrltten as

2n

IR =3 o (6+T0ahs) <C

i=1

(3.3)
By working backward, we define the bounds at any level ¢ by
T; T;
where we refer to T; and S; by
2
Tiew = C-— Z au | &+ Z 056 | =T — qi;(Si — x:)
j=l+1
2n
Si o= pit Y. (3.4)

l=i+1

The flowchart of the SB-Stack decoder is given in figure (3.3).

For each generated node w, many informations concerning this node are also stored with it like
its cost, its level, the path to this node and parameters T3, S;, bint,i, bsupif the node is at the
level ¢ . Programming with Matlab, we use data structure with several fields. Let’s the function
Gen : (w,bint) — [bing,w| , that generates a child of w by stacking b, s over w and store(w)
the function that stores w and all its parameters.
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[ INPUT :y,H,/C ]

(Q,R] = QR(H)
Y1 = QT Yy
R~ =inv(R)

1.2 )

=" ,i=1,...,2n
1 Tig

Qi =

Tii

j=i+1,...,20)
p=R71.y;

List = {}
Ton = \/6
Son = P2n

Si=pit+2itial(p;—s5)
VC++

binf,i < bsup,i

T, =Ts — qz'1+1’i+1(sw - §'L+1)2

Sort(List)

bing,i = bingi +1 1 = 2n — length(w)

| No

@e = Gen(@, bing.) w = leaf node Return w
w =Top(List) Store(w.) EXIT

FIGURE 3.3 — Flowchart of the Spherical-Bound-Stack decoder

The SB-Stack stores more information than the classical stack algorithm and the price to

pay is an increasing memory size. But the search region limitation allows visiting fewer nodes
and converging quickly and ensures also obtaining the ML solution.
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If the stack is empty, that means that no lattice point was found inside the sphere. In this
case, the sphere radius must be increased and the algorithm is then restarted.

From this observation, it is clear that the complexity of the algorithm depends also on the
sphere radius. In fact, if v/C' is too large, we obtain too many points, and so a large tree search.
But if v/C is too small, we obtain no points. Furthermore, for small SNR, the received signal is
much affected by the noise and a large radius is needed, while for high SNR, the ML point is
close to the received signal and a small radius is sufficient. As stated before, in (54), a formula
to choose the optimal radius as a function of the SNR was first reported by Hassibi el al. as

C = 4.n.0° (3.5)

But in presence of a deep fading, the lattice can be much distorted and may be more stretched
from some axes than others. It is then more suitable to compute the sphere radius taking into
account the fading. Therefore, the following formula was proposed in (21)

C = min(4.n.0?, min(diag(HT - H))) (3.6)

As for the Sphere Decoder, the SB-Stack offers ML performances. Thus, we will focus our
comparison on the complexity which we count as the total number of multiplications of the
search phase. Since the multiplications are the most expensive operations in terms of machine
cycles compared to additions and comparisons, only multiplications will be taken into account to
measure the complexity. The complexity of the algorithm is defined by the number of multiplica-
tions carried out until convergence. Both algorithms are composed of three stages : initialization,
pre-decoding and searching. The complexity of the two first stages are quite similar, although to
evaluate the complexity of the third stage simulation results is necessary. In Fig.3.4, we plot the
complexity as a function of the SNR for a 2 x 2 and a 4 x 4 MIMO systems using SM.

We can remark that the SB-Stack offers a considerable complexity reduction for different
lattice dimensions, which is about 40% less than the sphere decoder for the 2 x 2 system and
50% less for the 4 x 4 one for low SNRs. This important complexity reduction is due to the
search strategy of the SB-Stack decoder which allows to look inside the sphere only for the most
promising points and unlike the sphere decoder which checks all the lattice points inside the
sphere.
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FIGURE 3.4 — Performance and complexity of the SB-Stack decoder for a 2 x2 and a 4 x4
MIMO systems using a SM

In practical transmission schemes, we do not consider information symbols in Z" but in finite
constellations. The most used ones for MIMO schemes are the QAM constellations. We propose
in the sequel to adapt the SB-stack decoder to take into account the finite QAM constellations.

3.2.2 SB-Stack Decoding for constellations

In this section, we will focus on the decoding of finite constellations using the stack decoder.
As in the previous paragraph, we propose two approaches : the first approach is largely inspired
from the original stack decoder, while the second one is a readjustment of the proposed SB-Stack
algorithm described before.

A - 1%tapproach

Using finite constellations tasks, the decoding problem is nearly in its original context where
the stack decoder was applied to decode binary codes. In our case, the tree is no longer binary
even though it remains finite. As a first and a natural approach, we propose to use the original
stack decoder, but instead of the binary values of the tree nodes, we consider the correspondent
interval of the g— QAM constellation. For example, for a 16 — QAM constellation, each tree edge
belongs to the set I, = {£1, 4+ 3}. Then, we have a 4 — ary tree. More generally, for a ¢ — QAM,
the nodes to consider are in {jzl, £3,...,£/q— 1}. Consequently, the tree structure is directly
linked to the used constellation. For large constellation sizes, the information to which belong
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the symbols is too large which leads to an excessively dense tree and thus to a very complex
decoding. To illustrate this, we represent in figure (3.5) the complexity of the stack decoder for
16 and 64 — QADM constellations as a function of SNR for a 4 x 4 MIMO system using SM. We
conclude that the complexity increases as the constellation size increases. We also note that, for
large sizes, the stack decoder is much more complex than the sphere decoder. In fact, for each
level the stack decoder generates all possible children, while the sphere decoder selects only the
closer ones. Moreover, this complexity is especially high for low SNR where the decoder crosses
more nodes to reach the optimal solution.

1 ;(10
T T
\ ~q~ Stack, 64-QAM
\ -4~ SD, 64-QAM
A -©~ Stack, 16-QAM
12 \\ — SD, 16-QAM |/
\
4
\
o \ ]
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\
\

- \ —
28 .
) <
= ~
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F1GURE 3.5 — Complexity Comparison of the Stack Decoder and the Sphere Decoder using
different QAM Constellations, for a MIMO System with SM, M = N =4

The complexity therefore comes from the high number of visited nodes. In (82), a tree search
algorithm was proposed. This one performs a stack algorithm but it limits the size of the stack
so that it only retains 7 nodes at each level of the tree ( with n < ,/g). Nevertheless, the nodes
selected in the stack may not lead to the shortest path but conversely nodes with the smallest
metric may be discarded in high levels in the tree. Consequently, the ML solution will be rarely
reached. So, this algorithm allows to reduce complexity by limiting the number of the generated
nodes but at the cost of a performance loss.

We propose in the sequel to use the SB-Stack decoder described before. We will detail in
the following the necessary modifications needed to adapt this algorithm for finite constellations

decoding.

B - 2" approach using the SB-Stack algorithm
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The SB-Stack algorithm as presented before is conceived to decode lattices. For information
symbols taken in a g — QAM constellation, each component of s belongs to the finite interval
I. = [:l:l, +3,...,£/q— 1] C Z2". The nodes concerned with the search algorithm are inside
the sphere and belong to the constellation. Furthermore, in order to restrict the search to a set of
Z*", we consider the transformation u; = s; + /g — 1)/2. The new bounders of the constellation
are then given by I.7 = [0,1,2, N 1]. Consequently, the nodes that we look for are taken
in the interval [sup (binf,i,0) sin f (bsup,i,\/é — 1)] instead of the interval [bi,fi,bsup,i] computed
in (3.4).

Remark 1 :
Once at a given level, the algorithm can be unable to find a valid node §(k) if bingr = bsupk,
this means that the path (sg,,59,_1,--.Sk41,5;) doesn’t exist inside the tree and this node

doesn’t correspond to a point in the sphere. In this case, the algorithm deletes the node sk+1)

from the stack and the algorithm continues by considering a new node (the first one in the stack).

Remark 2 :

If the stack is empty, this implies that the algorithm is not able to find a valid path in the tree.
In this case, the radius is increased and the search is restarted. But, in order to guarantee the
convergence, the initial radius should be chosen as given in equation (radius) which guarantees
at least one point in the sphere.

Remark 3 :

Unlike the SD, the radius of the sphere for the SB-Stack can not be adjusted during the search
phase since we use the BeF'S strategy. In the beginning of the search phase, we can’t get a finite
path to a leaf node contrary to the SD which uses a DeFS and looks for a finite path at the
beginning of the algorithm.

3.2.3 Comparison of the SB-Stack Decoder and the original Stack
Decoder

The stack and the SB-Stack decoders adopt the same BeFs strategy and provide the same ML
performances (for a null bias). However, the considered trees are quit different. In fact, for the
stack decoder, the tree is constituted of all possible combinations of information symbols of the
used constellation. At each level of the tree, the vector components are defined by

Cmin S Sk S Crmax (36)

The size of the tree and consequently the complexity of the search phase depends on the constel-
lation size. For example, for a g-QAM constellation, each tree node generates logy(q) child nodes.
In other hand, the SB-Stack decoder constraints the search to a sphere instead of all the constel-
lation. Taking into account this constraint, the SB-Stack algorithm discarded all points that
don’t belong to the sphere. As a result, for a same constellation, the tree is less dense and the
search is less complex.
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FIGURE 3.6 — Comparison of the Stack and the SB-Stack decoding in terms of visited
nodes for a 4 x 4 system with spatial multiplexing
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In figure (3.6), we plotted the average of decoding complexities for both decoders where

average number of visited nodes to decode one ST codeword

n =

number of bits per ST codeword

Here, we considered a 4 x 4 MIMO system using spatial multiplexing with 4-QAM and 16-QAM
constellations. Thus, we verified that the SB-Stack decoder expands less nodes than the original
Stack decoder. The gain in terms of the average number of visited nodes is nearly equal to 60 %
for the 16-QAM and 80% for the 64-QAM (average over the considered SNR). We conclude that
by increasing the size of the constellation, it becomes more interesting to use the SB-Stack.
But, by adding the sphere constraint, the SB-Stack decoder should calculate the upper and lower
bounds for each expanded node which increases in practice the number of needed operations for
each node compared to the original Stack decoder. In fact, bounds are also stored in the stack
in order to calculate intervals for the following levels. As a result, the SB-Stack decoder stores
more information and requires more memory. However, the huge reduction of the number of the
expanded nodes compensates the added complexity. In order to explore complexity in terms of
the number of multiplications, we plot in figure (3.7) the complexity of the same 4 x 4 system
such that

n —

average number of multiplications to decode one ST codeword
number of bits per ST codeword '

We note that the gain in complexity of the SB-Stack is 46% for the 16-QAM constellation and
is 78% for the 64-QAM constellation (average over the considered SNR).

3.2.4 Comparison of the SB-Stack Decoder and the Sphere De-
coder

Similarly to the SD, the SB-Stack algorithm constraints the search to a spherical region centered
at the received point. Thus, both algorithms share the same search region but they don’t adopt
the same search strategy.

For each component s;, the SB-Stack browses all the elements of [}, = [bmf,k,bsup,k]. The node
with the least metric is selected and all its children are generated. The selected node can be at
a level different from the current one and the algorithm can return back to a higher level in the
tree.

The SD browses the same interval Ij, and selects the first valid component corresponding to b, -
This generated node will be expanded in the next iteration and this continues until reaching a
leaf node (level 1). Once a leaf node is reached, the algorithm updates the sphere radius and the
algorithm continues with a smaller radius. This corresponds to the DeFS strategy. As shown in
figure (3.8), we plotted the complexity in terms of the number of visited nodes for MIMO systems
using 64-QAM counstellation. We notice that the SB-Stack decoder allows a minimum average
gain of 57% compared to the SD. We note also that this gain increases if the system dimension
increases. It’s equal to 63% and 70% for respectively the 4 x 4 and 6 x 6 MIMO systems. The
gain is particularly high for low SNR.

Considering the same system, we present in figure (3.9) the complexity calculated in terms of
the number of multiplications. The SB-Stack decoder shows a great enhancement in complexity
compared to the SD.
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FIGURE 3.7 — Comparison of the Stack and the SB-Stack decoding in terms of the number
of multiplications for a 4 x 4 system with spatial multiplexing
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constellation
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3.2.5  Sub-optimal SB-Stack decoder

The SB-Stack algorithm searches for the shortest path (§2n,§2n_1,...,§1) that minimizes the
metric f(s(?"). The final solution provided by this algorithm is then the ML one. However, by
introducing a parameter in the cost function as defined in section 2.4.3.3, we can rewrite (2.39)
as

n
F® Yy =Y fils)—b-k, (3.5)
i=2n—k+1

where b € RT is called the bias. Then, a ne%ative weight is added to the cost of each visited node
depending on its level in the tree. Under this constraint, the algorithm advantages the deepest
nodes in the tree. Hence, this biased version allows the SB-Stack decoder to visit less nodes.
Consequently, the complexity is reduced and the decoder converges rapidly, however the solution
is not guaranteed to be ML. The performance decreases as b increases, and for a high value
of b, it approaches the ZF-DFE. In fact, since the decoding rule is no longer the minimization
of the euclidean distance as in (2.39), the performances obtained are not optimal. Though, at
very small values of b, the second term —b - k is negligible in equation (3.5), the cost function
is approximately equal to (2.39) and then near-ML performances are achieved. The complexity
however decreases continuously with b. This parameterized version of the SB-Stack decoder is
therefore very interesting since it allows a complexity-performance tradeoff by only adapting the
value of the bias.

3.3 Soft Decoding using the stack decoder with Sphe-
rical Bounds

3.3.1 Soft Stack Decoding Strategy

We propose here an extension of the new proposed SB-Stack decoder to support soft information
outputs. We have modified this algorithm to generate soft-output information in the form of LLR.
Stack decoders have the capability of generating a candidate list in their original algorithm. In
each iteration, children nodes are generated and stored in the stack ordered in function of their
costs. At the end of the algorithm, the first leaf node reaching the top of the stack is the ML
point. In this work, we improve the SB-Stack algorithm to make it suitable for a soft output by
constructing a list instead of selecting only the ML point. In fact, after the end of the process,
one can remark that stack is still full of nodes with different sizes (with different levels in the
tree) and no one among them is reaching the top of the stack. The most straightforward idea
is to extract the ML point from the original stack, to put it in another stack and to continue
the searching phase. The next node reaching the top of the stack is also removed and putted in
the second stack with its corresponding cost and so on. There are two possibilities to stop the
algorithm :

e cither we fix the number of points in the list (the size of the second stack). In this
case the algorithm continues in this manner until the second stack will be full.

e another possible criterion is to fix a lower bound on the node costs (worst cost to
be admissible), and when the cost falls below this limit value, the algorithm gives

up.
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Thus, only the nodes stored in the second stack will contribute to the soft decision. This new
Soft SB-Stack decoder is an extension of the first one and aims at generating more leaf nodes.
The second stack is used later to generate the LLR. The main advantages of this algorithm are

e the stability : the algorithm will stop as soon as the number of candidates is rea-
ched. The issue regarding the computation or estimation of the ideal radius value is
removed.

e the list is centered at the ML point. In other words, the list is filled up with the
closest points only in an ascending cost order, leading to an optimal LLR computa-
tion for a given list size.

e a low complexity since we only pursue the stack algorithm with no additional
search method and exploit the nodes being already computed and still in the stack.

The disadvantage of all the previous soft decoders is their inability to provide soft outputs with
low complexity, and the worst case corresponds to the exhaustive search (66; 78; 89).

The Soft SB-Stack decoder provides less complexity than these latter. Moreover, we can apply
the bias parameter as in the equation (3.5). This leads to a complexity-performance tradeoff with

soft outputs and one can even impose an aggregate run time constraint.

A straightforward conclusion is the flexibility of the new Soft SB-Stack decoder with practical
constraints that system engineers can be faced with the design of the receiver.
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F1GURE 3.10 — LLR Density Distribution for SNR=0 dB and SNR=3 dB

3.3.2 Soft Decoders Comparison

In this part, we illustrate the application of the Soft SB-Stack decoder for MIMO space time
transmission. The binary information is encoded using a rate R-convolutional code. The coded
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bits are fed to a ¢-QAM mapper (Gray mapping) that generates symbols. The spectral efficiency
in the V-BLAST case is R x N, x M bits per channel use, N, = log, (q).

Error Correcting | Interleaving Binary to Signal Space Time

Code Conversion Coding

|
A A

Propagation
Channel
Y Y
chtoerrZiz:ln%g;eError De-Interleaving Space Time Decoding with
9 Soft Outputs

FIGURE 3.11 — Communication Chain

The figure (3.10) shows the LLR distribution of the candidates found inside the stack for
SNR =0dB and SNR = 3dB. It can be observed that when SNR increases, the LLR distribution
curve is going to get a concave shape with a cavity around zero. This can be expected since
zero — LLR means ambiguity in the decision which is diminished when SNR increases.

For high SNR, the LLR values stretch to infinity and in practice they are saturated to a high
chosen value. The LLR distribution curves provide us with information about the intervals to
which LLR belong. LLR will be sampled into 2™ — 1 levels of their interval distribution and then
quantized to m bits to serve as input for the soft Viterbi decoder. The considered transmission
chain is given in figure (3.11). This transmission chain enhances performances of MIMO systems
and space time codes that will be used. We associate it to an error correcting code followed by
an interleaver juste before the space time coding bloc. This transmission scheme was introduced
by Tonello (90) in 2000, and is an extension to space time codes of bit-interleaved coded modu-
lation (BICM). The idea of concatenating an error correcting code with a binary interleaver and
the operation of binary to signal conversion comes from Zehavi who shows experimentally (91)
that the interleaving of bits conduces to better performances in terms of BER that interleaving
symbols, for an equivalent complexity, in a rayleigh channel. In (92), Caire et al. confirmed these
results theoretically for BICM. Thus, the figure (3.11) represents a communication chain ST-
BICM constituded of an error correcting code, a binary interleaver, a binary to signal converter,
and STBC ( or just a ST multiplexing).

In error correcting codes, we associate a codeword C constituted of N, bits to the information
codeword constituted of Ny bits. The rate of the code is equal to R, = %. In the paper of
Tonello (90) , the used error correcting code is the convolutional code. However, other types of
codes can be used in the ST-BICM scheme, like for example the turbo-codes (93) and the LDPC
( Low Density Parity Check) codes (94) (90) .

The binary interleaver is the principal element of the BICM. It has a double role. In one hand, it
allows a decorrelation of channel fading subjected to coded bits and maximize the diversity order
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of the system. In other hand, it guarantees a decorrelation of bits belonging to the same codeword
of the error correcting code. This last property is very important if we want in future works to
upgrade the system to iterative decoding. Here, the considered interleaver is a pseudo-random
one.

The simulated MIMO system is constituted of 2 transmit and 2 receive antennas. The pro-
pagation channel is modeled by a quasi-static Rayleigh channel model. The error correcting code
is a convolutional code with a rate R. = 1/2, the constraint length is L = 7 and the generator
polynomial is [133,171]p. The interleaver length is equal to 9216 bits and the length of code-
words of the error correcting code is also equal to 9216 coded bits (and thus 4608 information
bits per codeword). The considered space-time coding scheme is a spatial multiplexing (7' = 1)
scheme and symbols belong to a 16-QAM constellation. The spectral efficiency of this system is
equal to 4b/s/Hz. Performances in terms of bit error rate are given in figure (3.12) in function
of Ey/Ny. Concerning the Stack Decoder, the LSD, the Shifted SD and the SB-Stack, we limited
the number of generated nodes to a maximum number N,,,, = 148 which corresponds to the
constant complexity of the K-BEST Decoder with K = 16. The size of the candidates list is
fixed to N, = 16. In figure (3.12), we observe that the best performance is attained by the Stack
Decoder, the SB-Stack Decoder and the K-BEST Decoder with K=16. In other hand, the sphe-
rical decoders (LSD and Shifted SD) give degraded performances. This degradation is related
to the spherical limits constraining these decoders. In fact, if the chosen radius is too small, the
number of the required candidates is not reached. In this case, the algorithm can stop the search
and content with candidates in the list, it can also update the sphere radius in order to obtain
the needed number of candidates. In our results, we have chosen to implement this latter one.
However, since we have limited the number of visited nodes to Ny,q, = 148, the SD can be unable
to reach the required number of candidates N,. This can happen if the radius of the sphere is
badly calibrated in the beginning which makes a big disadvantageous for the SD especially that
it can influence the complexity of the decoder. It can be remarkable that the SB-Stack which
has spherical bounds is not sensitive to these performances degradation. This can be explained
by the fact that we realize a quick termination when the maximum authorized number of nodes
is reached. This termination consists of calculating the ZF-DFE for the most min(NNs,N, — Nr,)
advanced nodes in the tree, where Ny is the present size of the stack and Ny, is the present size
of the soft List. We conclude also that the K-Best decoder offers the same performances as the
SB-Stack but with a sufficiently high K. The average and the standard deviation of decoding
complexities for different decoders are given in figures (3.13). Complexities are given here as
follows :

average number of visited nodes to decode one ST codeword

Hn = number of bits per ST codeword

standard deviation of the number of visited nodes to decode one ST codeword

Op =

number of bits per ST codeword

As shown in those figures, the K-Best Decoder with K = 16 is the most complex. The SB-Stack
decoder offers the best performance-complexity tradeoff with an average complexity less than all
other decoders. The Stack Decoder presents a complexity inferior or similar to the Shifted SD
for high FE} /Ny, but its performances are better than the Shifted SD.
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with Spatial Multiplexing, 16-QAM, CC[133,171]p, R. = 1/2, in a Rayleigh Channel
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3.4 Conclusion

The main purpose of this chapter was to apply sequential decoders, especially the stack one, for
multi-antenna systems. We saw that the MIMO decoding can be tasked on a CLPS problem.
Toward this end, we proposed approaches that apply the stack decoder to decode lattice. Our
main contribution was to introduce a novel version of the stack decoder for MIMO systems with
reduced complexity. The proposed decoder, that we called the Spherical Bound Stack decoder,
consists in a modified stack decoder combining both the stack algorithm search strategy and the
sphere decoder properties. In a first time, this modified decoder was introduced to decode lattice.
In a second time, we brought the necessary modifications to apply it in the case of constellations
and we showed by simulations that the SB-Stack decoder outperforms the SD decoder and the
original stack decoder in terms of complexity.

In the second part, we extended the SB-Stack decoder to support soft output MIMO detec-
tion. By exploiting the advantage of the memory use to deliver a soft output, a good improvement
in performance is distinguished. The simulation results show that the Soft SB-Stack decoder out-
performs the known List Sphere Decoder and the Shifted Sphere Decoder. Moreover, due to the
stack properties, the Soft SB-Stack decoder is also easily implemented and is more flexible to an
increase in the size of the list of candidates
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Chapitre 4

On Reducing Complexity of MIMO
Stack Decoding

4.1 Introduction

The present chapter is intended to improve the stack decoding in terms of complexity. As shown
before the stack decoding algorithm is a good candidate for resolving the complexity-performance
tradeoff while giving an excellent structure that provides soft outputs. Our purpose is then
to propose a modified version of the stack algorithm in order to reduce complexity and time
consumption.

This chapter is organized as follows. First, we exploit a specific lattice representation to
define stack decoding with parallel processing. Thus, many instructions can be carried out si-
multaneously which is not possible with SE and SD. This accelerates the decoder and permits
to reach the ML point in less time. In the second part, we give some different strategies for ex-
panding tree nodes and we show that those strategies can scale down the decoder complexity. At
the end of this chapter, we propose some new techniques to resolve the high noise effect problem
that can slow down the speed of the stack decoder.

4.2 Parallel Stack Decoding

Stack decoding shows good features to be implemented and improves complexity compared to
ML decoders SE and SD. But it still suffers from big complexity. Parallel processing can reduce
time by executing instructions simultaneously. We propose here a new stack decoder based on a
parallel processing. SD was parallel processed in (91) but with a loss in performance.
Parallelism is a form of computing in which many instructions are carried out simultaneously.
However, parallel programs are harder to write than sequential ones.

To solve a problem, an algorithm is constructed which produces a serial stream of instructions.
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These instructions are executed on a central processing unit on one computer. Only one ins-
truction may execute at a given time - after that instruction is finished, the next is executed.
Parallel processing uses multiple compute resources simultaneously to solve a problem. The pro-
blem is broken into parts which are independent so that each compute resource can execute its
part of the algorithm simultaneously with others. Frequency scaling was the dominant reason
for computer performance increases from the mid 1980s until our days. The total runtime of a
program is proportional to the total number of instructions multiplied by the average time per
instruction.

Everything else constant, increasing the clock frequency decreases the average time it takes to
execute an instruction. An increase in frequency thus decreases runtime for all computation-
bounded programs.

In this part, we improve the stack decoding complexity efficiency by proposing a new structure
performing parallel processes. This structure enables decoding the real and imaginary parts of
each symbol independently and at the same time. The lattice representation given before by ¥
function imposes a major restriction on the tree search algorithm. Specifically, the search has
to be executed serially from one level to another on the tree. Processing each level to estimate
symbols needs to have estimation of previous symbols which are necessary to calculate costs for
each child. The standard stack decoding using the tree search starts at the top level and traverse
down the tree with one level at a time, and computes for each step the costs of child nodes.

4.2.1 New Lattice Representation

According to the W lattice representation, it’s impossible, for instance to calculate the cost for a
node in level k without assigning an estimate for the levels before.

This approach means that decoding of any s; requires an estimate value for all preceding sy,
where j =k —1,....2n.

The idea behind this work is to relax the tree search structure making it more flexible for
parallelism. Thus, one can decode each pair of adjacent levels in the tree, and each level of this
pair is independent from the other. For that, one should start by giving a second shape to the
channel matrix representation. Instead of the W function defined as :

H - w(H)
B Re(H) —Im(H) (4.0)
| Jm(H) Re(H) ’
we use another function Q and we give another lattice representation defined in (91) as :
H - o)
V(Hyp) -+ V(Hin)

where we assume that ¥ can be applied to a complex component as for the matrices case.
Using this channel representation changes the order of detection of the received symbols to the




4.2. PARALLEL STACK DECODING 123

following form

[t
I
=
=

which means that the first and the second levels of the tree search correspond to the real and
imaginary parts of s,.

4.2.2 Overview of Parallel Decoding technique

After applying the QR decomposition, this structure becomes very interesting. In fact, due to
the orthogonality between the columns of each set, all the elements ry ;4 for k =1,3,--- 2n in
the upper triangular matrix are null. The localizations of these zeros are very important since
they introduce orthogonality between the real and imaginary parts of every detected symbol. For
example, for the 4 x 4 R upper triangular matrix, we got the following form

rig 0 i3 Tig

S 0 Too To3 Tay
R = 0 0 14y O . (4.1)
0 0 0 £474

Using this example, figure (4.2) defines the parallel stack decoder which will treat two layers in
each step by duplicating the treatment and keeping only one memory to store children.

Throughout figure(4.1), we can understand the importance of parallel processing in speeding
execution of decoding. The new lattice representation permits to calculate two dimensions in
only one step thanks to the independence between the two last layers of the generating lattice
matrix. Then, the run time is twice lower since two dimensions are crossed over for each node
computation. Figure (4.3) shows the first step in parallel decoding. we use : w to design node,
b to design branch, f is the node cost and p is the branch weight. It consists on generating two
layers simultaneously. Paths [s3s,] are then generated, and one gets 4 candidates which are the
combination of two possible estimation for each tree, costs are also combined (the sum). In the
following step, the algorithm will select the best candidate among these four and will proceed
similarly.

Assume the decoder chooses [s3s4] = [1,1]. In the next step the decoder acts as follows :
the list of new candidates found in the step described in figure (4.4) is added to the previous
list. The algorithm continues to run by selecting the most promising node among all nodes in
the complete list stored in the stack. This example gives an illustration overview of the general
algorithm to understand the idea behind parallel processing for stack decoding. The proposed
structure is optimal in performance and keeps the same ML results.
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lattice permits to calculate the four nodes simultaneously
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) The four nodes calculation is distributed on two state machines

FIGURE 4.1 — Parallel processing principle

In figure (4.5), a hardware architecture of the standard stack decoder is proposed. The stack
architecture is composed of 3 main state machines(SM) :
- the first one performs the nodes computation, especially the cost function,
- the second one ensures the stack management, i.e. the reordering of its elements according to
their cost.
- The last one masters the overall processing, including the loading of the input data and the
output of the decoding processing.
Due to the specificity of the stack algorithm, where the number of reading/writing operations in
memory is large, it has been decided :
- to allow a concurrent operation of the 2 first state machines,
- to scale down the arithmetic processing capability so that both SMs operates in approximately
the same duration for each new node computation.
The other components of the stack are memories or registers. In the figure(4.6), we propose a
parallel stack decoder hardware architecture. More state machines are in use for the architecture
of the parallel stack decoder in figure (4.6) exploiting the parallelism which enhances the decoder
speed.
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4.3 Optimized Stack Decoding Strategies

A

A N

FIGURE 4.2 — Parallel processing : Four dimension in two steps

(54, 5,]

4.3.1 Child - Sibling Stack Decoding Strategy

In this strategy, in each step of stack decoding, one child and one sibling are generated instead of

all possible childs of one node. The decoder decomposes the equivalent cost function as follows

f(2nyy)

|y - Rs[’

Y1

Yon—1
Yon

Yo, — Lon,2nS2n

Yo, — Lon,2nS2n

2
+

T12n-1 T1.2n
Ton—-12n—-1 Topn—12n
0 Z2n,2n

Y, — Iy 9nSon

Yon—1 ~ Lon—1,2n82n

2
+ f(2’I’L - 17(Z - £2n§2n)\2n)

Sop—1
Son

51

T1on-1

Ton—1,2n—1

This first stage of decomposition leads to write the overall cost function as the sum of a partial

2

cost associated with the optimization variable s, , i.e., the squared distance |y, — o, 2,52, | ;

and a cost sub-function f(.,.) whose second argument is the residual target where r,, is the
2nt" column of the matrix R . For the more general case, i.e., the subsequent stages of the
decomposition, a residual target may be of dimension d = 2n,...,0 and respectively encapsulate

(4.2)
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f(wo) =0 f(wo) =0
sy =—1 4=1 83 =1 =1
a1(br) =17, + 14l 01(b2) = |9, — 744]° 02(b1) = [, +r33/° 02(b2) = [§y — 3317
fi(wm1) = e1(b1) f1(w2) = 01(b2) fa(w1) = 02(b1) fo(w2) = 02(b2)
| 8354] | flowm) = fi(ww) + fo(m) + f(@0)
|-1,1] | f(wan) = fi(w) + falw1) + f(@0)
|-1,-1] | f(w1) = fi(w) + fol@r) + f(@0)
|1,1] | f(wa2) = fi(wa) + folwa) + f(@0)
[1,-1] | f(em12) = fi(m1) + fa(w) + f(@0)

FIGURE 4.3 — Parallel Processing Stack Decoding : estimation of s, and s,

the dependence of its associated cost sub-function on the last 0,...,2n optimization variables.
Thus leading to the following recursive definition of residual targets :

Y d=2n
(X - £2n§2n)\2n d=2n—-1

~ A '
v (d Sd“) ) @ (d +1sgts) ~ Lapisapi a1 d=2n-2,....1 -

k 0 0
v resides in the same orthogonal space as y. Equation 4.1 can then be also written as follows

. 2 |- 2
= |Q(2n7 @)271 —Iop 2n§2n| + ‘X(zn - 17§2n) - E\Qn,2n§\2n

= E : ‘ d, Sd+1 — L4dSd

d=2n

2
‘ (4.2)
In the summation (4.2), each term can be interpreted as the partial cost incurred by assigning
a particular value to each variable s; in the dimension d. Therefore, the accumulation of these
costs over all 2n variables is precisely the value of the overall cost function.

In this sequel, one can observe that it’s often the case that only one or perhaps two children per
set of siblings are selected from the nodelist and themselves expanded. In other words, at the
termination of the algorithm, many more nodes than needed remain in the Stack. One can reduce
space and time complexity by modifying the expansion procedure so that unnecessary children
are not placed in the border nodelist. That’s why , the expansion procedure can be optimized
by computing only the first sibling of each set in the first instance and only the first child of
a parent node instead of all children. The next sibling nodes are then computed as each node
in the set is expanded. Siblings are enumerated in order of non decreasing weight. The smallest
weight sibling is generated first. In order to execute such a node expansion procedure, the node
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f(w22) Jlem2)
s =1 s =1
Sy =—1 sy =1
01(01) = |G, — 103 =124 +1|>  01(b1) =1, —ra3 —rag —r2al®  ea(b1) =7, —ryy — g+ P 02(b2) =7, — iy — iz — )P
fi(@) = erbr) fi(@2) = o1(b2) fa(@1) = ea(by) Fal32) = oa(b2)
| 81898354] | f(wwm) = fi(ww) + falm) + f(w22)
[-1,1,1,1] | flowa) = fi(w2) + fa(w@1) + f(22)
[-1,-1,1,1] | f(wwn) = fi(wr) + fol@mr) + f(w22)
|LLLL] | f(wma) = fi(wa) + fo(wa) + f(w22)
[17'17171] f(w12) = fl(wl) + f2(w2) + f(w22)

FIGURE 4.4 — Parallel Processing Stack Decoding : estimation of s; and s,

data structure should be augmented by the addition of four components :

{ the position with respect to its siblings ¢ € {1,...,Ny}

$ the weight f’ of its parent node

¢ the unconstrained target ¥’ of its parent node.

¢ the constrained value s~ of its previous sibling.

These additional components are required to determine the value associated with the next sibling
in the set, as well as to compute the properties of the next sibling node. This new expansion can
then be defined as follows :

Definition

Given upper triangular matrix R , alphabet A = {z;,...,z,} of size ¢ and non leaf node @, let
expanding w be defined as generating its first child node w, and its next sibling w; if it exists.
The time and space complexities of the stack decoding can be significantly reduced because of
a smaller number of node. But, in other hand, there’s an increase in the amount of data to be
stored for each node. Also, an increase in the computations is required for each expansion.

The elements of A can be written as (for the 4-ASK modulation case )

Tpnin, iNter-element separation Az, and indices k = 1,...,q. For an un-
constrained value z; € R, the nearest element is

for some lower bound z

: 2

T, =argmin|r —x 4.2

£, = argminz ~ 42)

Thus, the algorithm generated the second and subsequent elements of A = {zy,...,z,} in order

of non decreasing squared distance from z,.

Through Figures (4.7), an illustration of the way the algorithm of stack decoding with child
sibling generation, visited symbols. The argument values z;, are shown as filled dots, those repre-
senting previously processed values as circled crosses, and the computed next values are designed
by the arrow. Others crosses represent values that are valid but that have not been selected.
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FIGURE 4.5 — The Standard Stack Decoder Hardware Architecture
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FIGURE 4.7 — 4-ASK order of visited symbols

4.3.2 Complex Stack Decoding Strategy

The idea is to perform detection over complex symbol alphabets. As before, branch weights are
non negative and node weights are monotonically non decreasing along rooted paths. Therefore,
the basic ordered traversal detection philosophy could be extended directly to operations over
complex alphabets. However, the expansion procedure would then involve generating all Nb2
complex child nodes and the additional complexity incurred by such an approach would be far
greater than the savings afforded by the complex QR factorization. A more desirable idea is to
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FIGURE 4.6 — Parallel Stack decoder hardware architecture

extend the Child-Sibling Algorithm to complex symbol alphabets. But unlike the real numbers,
the complex number field lacks a natural notion of ordering. The root node is associated with
the unconstrained value zg and its first child with the nearest element

. R . : 1
= — + — xpt
X arg Igréln |l‘ 330 ‘ jJarg Izréln |l‘ 330 |
= z1 + JQ{ (4.2)

which is the combination of the nearest real and imaginary values. We define the weight of each
node as the sum of the weight of the root node and the squared distance from its associated
constraint value to the unconstrained value. Thus, the node weights are monotonically non-
decreasing along root paths as well as across sets of siblings. Therefore, we can enumerate the
nodes of the tree in order of non decreasing weight by maintaining a border nodelist and removing
the smallest weight elements and generating its first child and its next sibling nodes.

Figures (4.9)and (4.10) show the way the complex stack visited symbols in 4-dimension(ex 4 x 4
BLAST) 16-QAM constellation.

In Figure (4.11), we distinguish two kinds of symbols : type 1 and type 2 symbols. We
introduce this notion of type so that the algorithm will not visit twice the same node. For type 1
nodes, generating both siblings in the two dimension is permitted. In other hand, type 1 nodes are
only permitted to generate nearest sibling in only one dimension. An additional node component
called type is required. The expansion procedure may produce one or two new border nodes in
the same level
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FI1GURE 4.8 — Comparison of different Stack Decoding Strategies in terms of visited nodes
for a 4 x 4 system with spatial multiplexing and 16-QAM constellation
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FIGURE 4.9 — Complex Stack decoding : (a) First step : x4 symbol detection , (b) Second
step x3 symbol detection

Figure (4.8) shows the improvement introduced by the use of complex stack decoding strategy
and the child-sibling strategy compared to the original stack decoding. The number of visited
nodes is reduced. One can’t also negligate the reduced complexity of QR decomposition when
using the complex stack decoding strategy, since this decomposition is held in less dimension.

4.4 Early Termination Stack Decoding

A drawback of the sphere decoders family (SD and SE) is that, for close-to-ML performance,
complexity remains high in the low signal-to-noise ratio (SNR) regime or when there’s correlation.
Clipping can be an evident solution but it induces a big loss in performance. For severe channels,
these decoders seem to be converted to exhaustive search decoders visiting all constellation
points. Then, clipping for a fixed time provide a non-optimized point.

The question involving this issue is : How to resolve a slow decoding for the Stack Decoder ?
Slow decoding is the major problem for actual used ML decoders. All proposed ML decoders
suffer from big complexity for low SNR and for Correlated Channels. Providing ML solution in
these conditions with usual time constraint seems to be unreachable for the moment. Researchers
focused on how to stop algorithm when it exceeds fixed time. This constraint of time is important
in practical realizations. In the following, we will detail two techniques that we propose for the
case of hard and soft decoding and one last technique that can be used for both cases.

4.4.1 ZF-DFE and K-BEST early termination for hard and soft
decoding

For this case, we propose to finish the stack decoding by a ZF-DFE decoding. To put this idea
into practice, we should add a control system to compute time elapsed for decoding one codeword.
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FIGURE 4.10 — Complex Stack decoding : (¢) Third step : x5 symbol detection , (d)(e)
Fourth step x; symbol detection

When time is exceeded, a message will be sent to the stack decoder block to inform it to move
to the second regime : ZF-DFE.

This move from the standard execution to the ZF-DFE is simple to put in practice especially
with the easy structure of stack decoding. Stack Decoding can be transformed to a ZF-DFE
decoder keeping the same execution architecture and only limiting the size of memory to one
candidate. We take the best candidate in the list and we erase all others. Once generating all
children, we pick only the best one and reject others. This process will lead to get rapidly a
solution which is not optimal. The solution is not ML but it’s better than the ZF-DFE point
because the DFE process started later with an intermediate point in the tree. Nevertheless, the
structure of this algorithm permits to get also ZF-DFE point directly if we fix time control to
zero. In this case, the algorithm will use the stack decoder structure to get exactly the same
ZF-DFE solution. Figure (4.14) shows the transition from Stack decoding to ZF-DFE for the
case of 4-QAM (two children) and 3 symbols to be decoded (6 in real dimension). In the first
phase, stack decoding spent a lot of time to generate nodes. The SNR. is low ; the stack decoder
met difficulties to pursue a strict direction and is lost in visiting nearly all nodes. Once the time
constraint is elapsed, the decoder will pick the best candidate and reject others. A quick result
is then provided with the ZF-DFE process.

For the case of soft decoding, Figure (4.15) shows the transition from Stack decoding to K-
BEST for the case of 16-QAM (four children) and 3 symbols to be decoded (6 in real dimension).
In the first phase, stack decoding spent a lot of time to generate nodes. The SNR is low; the
stack decoder met difficulties to pursue a strict direction and is lost in visiting nearly all nodes.
Once the time constraint is elapsed, the decoder will pick the best candidate and reject others.
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A quick result is then provided with the K-BEST process. K-BEST provides k candidates at the
end of decoding.

Since Time constraint is related to the number of operations which are performed during this
time. Time constraint can be translated also into complexity constraint. Thus, we can set a time
or a complexity constraint. The multiplicative complexity constraint is for example the maximal
number of multiplications allowed to decode the signal. In the sequel, for our simulations we will
set a complexity constraint in terms of multiplications. We will compare the stack decoding using
the ZF-DFE early termination and the SD using a clipping. Decoding clipping can be defined as
stopping the algorithm when the configured constraint is reached. Concerning the SD algorithm,
clipping consists of selecting the actual visited point inside the sphere as an output of the decoding
process. Figure (?7) shows that stack decoding using the ZF-DFE early termination outperforms
the SD algorithm with clipping under a constraint of complexity in terms of multiplications.

4.4.2 Bias update for early termination

We propose here to accelerate the stack decoder by increasing the bias. As for other methods,
one should control time elapsed for decoding one codeword. When time is exceeded, a message
will be sent to the stack decoder block to inform it to update the bias (increase). This implies
that there is a small optimistic bias in the beginning and it’s not enough to accomplish decoding
in needed time.

Initial Standard
Processing Execution

Time Control

ZF-DFE

FIGURE 4.12 — Early Termination Control for hard decoding

Initial Standard
Processing| Execution

Time Control Soft Stack Decod%r

™ K-BEST
FIGURE 4.13 — Early Termination Control for soft decoding
Big bias favor more advanced paths in the tree since bias is the product of dimension times a

constant value b. Thus, advanced paths will reach a leaf node quicker. To accomplish this task,
stack nodes should be arranged in order of dimension. Dimension can be stored for each node
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during stack decoding process or also can be determined using the path. The number of allocated
values in each node path is equal to the dimension. Once arranged, a supplement bias will be
subtracted for each node as function of its dimension. A node at dimension k will see its cost
decreasing of k*b. The reduction in costs will not be uniform for all stack nodes. Nodes with
higher dimension will get a big decrease and will gain some steps in stack cost ranking. The stack
will be arranged another time with cost values criterion, and one can remark that nodes with
higher dimensions advanced in the stack rank and are fortunate to reach a leaf node of the tree
with a first rank in the stack.

Initial Standard
ProcessincJ Execution

Time Control —- 1 ‘Soft Stack Decode#r
Elapse
— ™ Update Bias

Stack Decoding

/ ZF-DFE

Best candidate
before moving to ZF-DFE

e*Nodes previously stored in the stack
e Children generated in the ZF-DFE phase and rejectec

= Leaf node solution
FIGURE 4.14 — Stack decoding to ZFE-DFE transition
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FIGURE 4.15 — Stack decoding to K-BEST transition (k=3)

4.5 Conclusion

In this chapter, stack decoder is shown to be capable of supporting parallel processing. Our main
contribution was to exploit a novel lattice matrix representation to make the parallel processing
possible. By exploiting the advantage of the new sparser matrix a good improvement in run time
was distinguished. The simulation results show that the proposed parallel decoder outperforms
the classical one in terms of complexity, keeping the same ML performances. Moreover, due to
the stack decoder properties, the parallel processing is also easily implemented in practice. This
algorithm can further be enhanced by looking for space time codes that introduce more zeros in
the lattice representation matrix. Thus, parallel processing can be done for 3 layers or even more
in only one step.

Then, we detailed the child-sibling strategy and the complex domain strategy. We showed also
that using these two techniques we can enhance the stack decoding complexity and reduce the
number of visited nodes.

At the end of this chapter, we focused on the early termination in order to avoid clipping
which can be an evident solution but which induces a big loss in performance. Thus, we proposed
to terminate the stack decoding by a ZF-DFE in the case of hard decoding and with a K-Best
in the case of soft decoding.
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FIGURE 4.16 — Comparison of Sphere Decoding with clipping and Stack Decoding with
ZF-DFE early termination with a multiplication complexity constraint of 1700 operations
per codeword for a 2 x 2 MIMO system with spatial multiplexing and using a 16-QAM
constellation.




137

Conclusions and perspectives

Conclusions

At the outset, the objective for this thesis was to explore the performance and complexity of
MIMO decoders for communication systems using a linear dispersion space-time coding in the
case of coherent transmission with quasi-static channel. After analyzing, implementing, simu-
lating and comparing a large number of algorithms, all the while gathering big quantities of
data, it is time to look at the results and draw conclusions. The complexity analysis presented
in this thesis are useful, because they provide information that is needed for future practical
implementations of MIMO decoders that meet economic constraints of cost, power consumption,
and reliability.

The first two chapters allowed to establish a state of the art of MIMO systems, the necessary pre-
requisite to answer the problematic of this thesis. So, the first chapter begins with a description
of the MIMO channel. The purpose of this chapter is to present the various techniques of mode-
ling the MIMO radio channel. Fading phenomenon and diversity techniques are also described.
A plethora of information theory concepts and techniques for transmission over MIMO channels
are given. The second chapter shows that lattice representation of linear dispersion codes allows
the use of lattice decoding algorithms on the reception side. The most known of them are the
sphere decoder and the Schnorr-Euchner decoder. Thus, we compared lattice decoders with sub-
optimal decoders like the ZF, ZF-DFE and the MMSE. Then, we introduced sequential decoders
and different tree search strategies. Recently, decoders based on sequential search inside a tree,
like Fano and the Stack decoders, were generalized for the decoding of MIMO systems. These
decoders offer a natural solution for the problem of choosing an initial radius which is a problem
faced in the design of sphere decoding. Second, they allow for complexity-performance tradeoff
by using the bias parameter to tune and adjust decoder complexity .

After that, soft-output MIMO decoding was studied and some well-known soft decoders in the
literature were presented. Pre-processing techniques are also presented. The purpose of pre-
processing is to transform the original constrained search problem into a form which is easier to
the search algorithm. The left preprocessing, MMSE-GDFE returns a well conditioned channel
matrix. The right pre-processing consists in making the channel matrix the most orthogonal. In
the third chapter, we propose a new algorithm combining the search region of the SD and the
Stack Decoding Search strategy. Our purpose is then to propose a modified version of the stack
algorithm in order to reduce the prohibitive computational complexity of the SD and the stack
decoder. The proposed decoder enables ML performance with complexity lower than the original
decoders. Then, we proposed an extension of the new proposed SB-Stack decoder to support
soft information outputs. We have modified this algorithm to generate soft-output information
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in the form of LLR. We showed that the soft SB-Stack outperforms other soft decoders in terms
of performance and complexity. In the fourth chapter, we exploit a specific lattice representa-
tion to define stack decoding with parallel processing. Thus, many instructions can be carried
out simultaneously, which is not possible with SE and SD. Then, we introduced some different
strategies for expanding tree nodes and we showed that those strategies can enhance the deco-
der complexity. At the end of this chapter, the limitation of ML decoder due to their inability
to provide quick solution for bad channels has been exposed and an early termination control
technique was proposed to resolve this problem.

Perspectives

The decoders which we have proposed and studied can be applied to any ST linear dispersion
codes. However, we propose in future work to exploit some structures of certain ST codes to
conceive adapted, less complex decoders with better performances. Another very interesting idea
consists in proposing ST codes with an easy decoding algorithms like the Silver code and its
variants (92) (93) (94) and their appropriate decoders.

In the short term, it will be also interesting to pursue comparison of different decoders with
other types of channels by introducing correlation and evaluate its effect on complexity and
performance of MIMO receivers. Also, the presence of a LOS component is a particular case of
radio propagation and it is important to test it. In fact, for professional radio systems, there’s
no particular propagation case that can be neglected and systems should guarantee a minimum
quality of service. A study of all the proposed algorithms can be realized for realistic channel
models like TGn channels. Concerning soft decoding, it will be interesting to compare MIMO
decoders with an error correcting code which is more powerful than the convolutional code by
using for example LDPC codes or turbo-codes which can conduct to different conclusions than
obtained here.

The proposed MIMO decoders can also be optimized and improved by integrating the turbo’
concept to the reception scheme. Thus, we can imagine an iterative Stack decoding and using the
bias parameter to tune the complexity-performance tradeoff. One can think also of developing a
complexity control algorithm by theoretically establishing a formula for the bias for a targeted
complexity and given SNR.

In summary, much remains to be done in this area. Even though work in MIMO systems and
space-time codes can be traced back to at least 1998, it still has not left research laboratories.
The perennial problem of receiver complexity is still present. Code design and construction is
still in large part an open field, as is constellation design. The hypothesis that receivers have
perfect channel state information needs to be tested, as well as all the assumptions about the
channel model.




139
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Annex B : Flowchart of the SE
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