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1
Introduction

We are more and more dependent on our computing infrastructure. For example, most financial
transactions are now automated, ranging from cash withdrawals at ATMs to high-frequency algo-
rithmic trading with execution times of microseconds. Health information systems provide another
complex example: medical records are now mostly produced, stored, and processed on computers,
and they may be shared between various medical and administrative staffs, belonging to various
hospitals and institutions. Even so, the security of this computing infrastructure is challenged
every day. For example, many frauds result from unintended access to customer accounts over the
internet, for instance, because the network communications are insecure, or because the banking
application does not correctly restrict the privileges of its different users (including its own em-
ployees), or because an attacker got into the computer of the client and leveraged his access to
the bank account using a keylogger. Likewise, medical records contain useful information, and
many privacy breaches have been much publicised, as they challenge an important aspect of our
private live. For instance, an employer may want to know if a future hire is at risk of long-term
illness, or a journalist may be curious about the family of a politician. Given the demand for
this kind of information, it would be foolish to give all doctors access to all medical records. On
the other hand, any medical doctor present at an accident should be granted some access to the
health history of the victims (e.g., allergies or coagulation factor anomalies). These examples sug-
gest that, although it is reasonably easy to secure databases and network communications against
outsiders, the security of systems whose legitimate users are also potential attackers is much more
challenging.

1.1 Enforcing security by construction

From a research viewpoint, a lot of language-based formal techniques have been developed to
improve the security of computing systems. A first approach is to review the security of existing
systems, either automatically or by manual code inspection, and find and fix any flaws as part of
the process. This approach is necessary, since even new systems are at least partly based on legacy
systems. However, this approach is limited, in particular, existing systems rely on languages such
as C or Javascript which are difficult to verify. In addition, it may rely on a monitoring software
that reads the input and outputs of the program and react accordingly, for instance by removing
or rewriting messages. A related, but slightly different approach, logs the messages, and then later
verifies whether security has been compromised. But, in spite of these results, it is still hard to
gain strong confidence that a program is correct and secure. An other, more radical approach, the
one followed in this thesis, is to build tools that enable the programmer to build from scratch a
new secure system, for example, as a compiler, which transforms a program so that it enforces a
given security policy. This has led to a first few small, exemplary verified systems and protocols
such as the TLS protocol [Bhargavan et al., 2008], the sel4 microkernel [Klein et al., 2009], some
cryptographic algorithms [Barthe et al., 2009], a C compiler [Leroy, 2009].
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In this thesis, we focus on language-based security by construction. We take as input the spec-
ification of a distributed computation involving multiple participants, together with its expected
security properties. We then verify that this specification is sound, using static verification tech-
niques such as type systems, and we then automatically generate a program for each participant.
During this compilation process, we select adequate cryptographic and hardware mechanisms,
such that the compiled programs correctly implement the computation with the required security
properties.

1.2 How to specify security?

Before describing any secure implementations, a first step is to precisely express our security goals.
We can distinguish three aspects of computer security: privacy, integrity, and availability.

Confidentiality and Privacy. Confidentiality concerns restrictions over read access to information.
Indeed, the information owner generally wants to retain some control over who can access it.
Then, security holds when this control is reliably enforced. For example, as we saw before,
it is important that health records remain private, but also that they may be selectively
read when necessary. Access control is sometimes not sufficient, as the usage of information
also needs to be carefully restricted. For example, if an hospital publishes an anonymized
database of its patients, it may still be possible to de-anonymize the database by comparing
the records with public databases, or more generally, extract more information than intended.
Another complication is that, as data from different owners is processed, the result of the
computation may be subject to multiple confidentiality policies.

Integrity. Integrity concerns active control over both data and computations. For instance, one
may wonder whether some piece of data is the correct result of a computation, and, if the
computation is distributed, which participants may have influenced this particular result.
Continuing with our banking example, examples of integrity failures include unauthorized
transfers, and also transfers whose details are calculated from corrupted data. As for con-
fidentiality, one often needs to enforce integrity beyond direct write access, to also capture
other, more subtle dependencies. For example, when generating a new cryptographic key, it
is essential to ensure that the pseudo random number generator has collected enough entropy,
as otherwise the attacker may cause the key to be generated in a predictable state of the
system.

Availability. Availability concerns reliable access to information and guarantees that some com-
putations complete in a timely manner. For instance, denial of service attacks specifically
target availability properties of a system. Availability is hard to specify as it involves fairness
or timeliness rather than just trace properties. In this thesis, we do not formally consider
availability.

These aspects of security are interdependent. For example, an attack on the confidentiality
of a password can result in an attack on the integrity of the account protected by this password.
Symmetrically, an attack on the integrity of a password, such as its reset to a known factory
default, may result in a breach of confidentiality by giving read access to the account. Similarly,
an attack on the integrity of a publicly available encryption key, for instance the replacement of
the genuine encryption key of a website with a key generated by the attacker, may lead to insecure
encryption.

Irrespective of the security goal, any security guarantee can only be expressed for a given system,
with some given assumptions on its structure and its participants. For example, one may consider
a simple system formed by two participants that trust one another, that locally execute their own
programs, and that communicate over an untrusted network. When the system is defined, it is
possible to study its security properties, for instance the security of a joint computation on shared
secrets.
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However, most of the time, the participants of the system do not fully trust one another.
In fact, from a security viewpoint, a system is distributed inasmuch as its different components
enjoy different levels of trust, and thus can be corrupted independently. For example, a bank
may generally be trusted with personal financial information, but not with personal health data.
Conversely, the bank generally trusts its clients only for a very small subset of actions; it must
protect its security no matter what the client does. A system that consists of the bank, the client,
and the network can be defined by specifying the partial trust between its participants. We may
first consider the threat of a compromised network, and ensure that the security of the interaction
between the bank and the client cannot be compromised by the network. We may also consider
the threat of a compromised client, and ensure that the client cannot make unauthorized banking
operations. Last, we may consider the threat of a compromised bank, and ensure that the bank
do not get any private data from the client besides its financial information.

On the web, the situation becomes more complex since, when a user visit a website, he down-
loads some code from a remote server (untrusted) and executes it on his computer. Code of the
server runs on the user’s machine, hence the computer of the user cannot be considered as a unique
unit of trust anymore. In this case, the web browser that runs on the user’s machine and controls
the execution of the code of the server is responsible of the security of the user. However, this
raises another problem: the security of the user’s computer depends on the security of its browser.

Similarly, when a computer is accessed by multiple users, the programs called by the different
users have different levels of trust. The operating system is responsible of this separation. And
once again, the security of the different users depends on the security of a complex program. A
similar situation arises with virtualization, when multiple operating systems can run on a single
machine.

In all these cases, and for a given security goal, we refers to the set of all the components that
must be trusted to achieve that goal as the Trusted Computing Base (TCB). An important design
goal for secure systems is to minimize the size and complexity of the TCB.

In the following, we reason about active attacks and partly compromised systems by replacing
their compromised components with arbitrary programs that have the same privileges as these
components, for instance, they can read and write the same variables, and they have access to the
same keys.

1.3 How to enforce security?

Once the security goals have been precisely stated, the next step is to select adequate security
mechanisms to enforce them, ideally without too much overhead. We detail below the main
security mechanisms we consider in this thesis.

1.3.1 Hardware mechanisms

One may protect its computer against remote attacks by disconnecting it from the network, or
even shutting it down. These are valid hardware protecting mechanisms, however, they may be
incompatible with intended use of the computer. There are many, more subtle hardware protection
mechanisms. For instance, operating systems use memory page tables to limit memory access of
user programs. A piece of hardware called memory management unit uses pages tables to translate
memory addresses seen by the programs into physical address. Distinct page tables can be used
for different programs and effectively limit their accessible address ranges. Operating systems can
also use an other hardware mechanism called NX bit to separate executable memory from storage
memory. Certain parts of the memory can be marked as non executable using this NX bit; the
CPU then refuses to execute instructions stored there. In our work, we mostly focus on Trusted
Platform Modules, which are present on most computers, and which, in concordance with the
CPU, allow for execution of a program in isolation with very strong guarantees on its identity. At
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a call to a specific instruction of the CPU, the identity of the program is stored in a specific register
in the TPM, and the program is launched with any interruptions disabled. The program can then
call specific instructions of the TPM to, for instance, attest its identity with a secret of the TPM,
or encrypt some data so that it can only be decrypted by a program with the same identity, and
on the same TPM. The program runs at a different level of trust and its TCB is very small since
its security is enforced by hardware. This mechanism is used, for instance, by BitLocker to protect
an encryption key for the disk from extraction by other programs.

1.3.2 Cryptography

The secrecy and the integrity of a piece of data that is transmitted over an untrusted network
(or an untrusted shared memory) can be enforced using various cryptographic mechanisms, such
as encryption or signature. These mechanisms effectively shift the problem from securing data
to the security of keys. It does not completely solve the problem, but keys can be shared more
easily since they are small and can be exchanged only once at the beginning of the computation
since they can be used to protect many messages. We now detail some cryptographic mechanisms,
which help enforce different aspects of computer security.

Privacy. In the concrete word, a padlock can be used to ensure the privacy of a suitcase. Encryp-
tion schemes work similarly for digital information. The scheme is a triple: key generation,
encryption and decryption algorithm. The key generation algorithm generate a pair of key,
one for encryption, which can be left public, and one for decryption, which should stay
private. Strong encryption schemes are generally probabilistic, so that it is not possible to
tell if two values are equal by comparing their encryption. The security guarantees of such
encryption scheme are also probabilistic, and they assume that the attacker has a limited
computation time. Otherwise, he could try all keys, and succeed with certainty.

Integrity. In the concrete word, seals can be used to guarantee the author of a letter. Signature
schemes work similarly for digital information. The scheme is a triple: key generation,
signature, and signature verification algorithm. The key generation algorithm generate a
pair of key, one for signature, which should stay private, and one for verification, which can
be left public. As for the encryption schemes, the security guarantees of signature schemes
are probabilistic, since the attacker can find the correct signing key by accident.

Availability. It is generally easier to attack availability than integrity or confidentiality. There is
generally not much that can be done with cryptography to stop an attacker from cutting a
cable, destroying a hard drive, or overloading a server. That being said, there are mitigation
techniques, for instance, the replication and repartition of storage devices.

We describe above some examples of cryptographic schemes and their relation with the different
aspects of computer security, but there exists a wide range of cryptographic schemes. For instance,
some schemes are homomorphic, that is, some functions can be applied directly on ciphertexts,
without decrypting them. For example, the ElGamal encryption scheme is homomorphic for
multiplications. If we consider a system with a client and a server, which is not trusted by the
client. The client can encrypt some data, then send the ciphertexts to the server. The server can
then multiply the encrypted data and send the result to the client, even if he cannot learn anything
about the contents of the cypertexts. The client can then decrypt the resulting ciphertext and
read the result of the multiplication. However, there is no guarantee for the client that the server
did the computation as intended; the client may need to use some other mechanism to ensure the
integrity of the computation.
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1.4 Our work

We focus on the systematic enforcement of language-based security for distributed systems using
cryptography and hardware mechanisms. We outline our main results below. One of our recurring
technique to express specifications is typing: our type system associates a security level to each part
of the program and of its states, and ensures that the program verifies some property by comparing
these levels. For instance, a type system may associate confidentiality levels to variables, and verify
that private variables are never copied into public variables.

1.4.1 Secure Enforcement for Global Process Specifications

We first consider the enforcement of communication security. The system consists of any number
of participants that do not trust one another, and that communicate over an untrusted network.
In this first approach, the system is specified by the global pattern of communication between
the participants, but not the local computation: the local program of each participant is left
unspecified. For example, in a protocol with three participants: a client, a bank, and a merchant, it
may be specified that the merchant can send a specific message to the bank (e.g., asking for a money
transfer) only after receiving a message of agreement from the client. Corin et al. [2007] develop
a compiler that can generate a defensive implementation that uses cryptography to enforce this
specification. For example, it ensures that, if the client has not sent his agreement, a compromised
merchant cannot convincingly forge a message that the implementation of the bank will accept.
However, their compiler only accepts specifications that are sequential, that is, in which only one
of participants is authorized to send a message at any given time. We improve on their work by
providing support for more elaborate (parallel) specifications and by generalizing the condition for
compilation using a new type system. We detail this work in Chapter 2, described below.

To specify our sessions, each participant is associated to a process in the style of CCS [Milner,
1989]. Their global session specification itself consists of the tuple of these processes. The global
semantics consists of the possible communications between processes. We specify the local im-
plementation of each participant with an automata. We label their transitions with the message
being sent or received. Each message of the implementation corresponds to one high-level commu-
nication of the source specification. Concretely, implementation messages may carry an additional
payload, such as an anti-replay nonce or some authenticated data about the states of the others
participants. The implementations then use the additional information from the payload to accept
or reject a message. For example, a local implementation is protected against messages replays if
none of its traces receives two messages with the same nonce. Implementations are defined to be
secure against particular classes of active adversaries. Classes of adversaries define what messages
an adversary can produce depending on its knowledge and the set of compromised participants.
For example, the implementation may assume that the adversary cannot forge messages from
honest participants, in line with classic symbolic models of cryptography pioneered by Dolev and
Yao [1983]. We then specify two properties on implementations: soundness and completeness.
Soundness states that for every trace in the implementation, there exist a global source trace in
the specification that explains all the messages sent and received by the honest participants. This
ensure that the adversary cannot make the honest participants deviate from the specification. In
our example, if the client and the bank are honest, a compromised merchant cannot convincingly
forge a message that the implementation of the bank will accept if the client has not sent his
agreement. Completeness states that, for every global source trace, there exist an implementation
trace which messages sent and received are explained by the global source trace. This ensure that
the implementation does implement the specification. However, we show that some global ses-
sion specifications cannot be safely implemented, because implementations try to locally enforce
a global specification. For example, consider a source specification with three participants, and
where the first participant can send a particular message either to participant two or to participant
three but not to both. This specification is unimplementable since, when the first participant is
compromised, the participant three cannot know whether he should accept the message, since he
cannot know whether the message as already been sent to participant two. We propose a type
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system that ensures that source specifications are implementable. This type system is based on
a fine tracking of the causality between messages. We then propose a generic implementation for
all sessions, which is based on a fine tracking of the dependence between messages. For instance,
when a message must be received before another is sent, the second message carries a copy of the
first message to prove that it can be sent. Our main result is that this implementation is always
complete, and that it is sound for well-typed specifications.

1.4.2 Information flow enforcement

We still consider systems where participants partially trust one another. But now, the programmer
writes the full imperative program (not only the patterns of communication), specifies the different
levels of confidentiality and integrity of the variables of the program assuming a shared memory,
and specifies on which participant each part of the program should run. For example, considering
two participants: a bank and a client, the programmer may specify secret variables of the client,
and secret variables of the bank, and a computation that runs partially on the client machine, and
partially on the bank machine. Fournet et al. [2008, 2009] develop a compiler that generates the
code for every participant, adding cryptography so that the security specified by the programmer
is respected. For instance, the variables exchanged between the bank and the client are encrypted
so that they cannot be read by others. In our work, we study more varied cryptographic primitives,
and we add support of secure hardware mechanisms. We described the remaining chapters below.

Information Flow and Non-Interference

In Chapter 3, we define our core imperative language and the security specification, and we give
some general properties of these security specifications. We describe below the results of the
chapter.

Computations are expressed as commands in an imperative while language, which is proba-
bilistic so that we can model cryptography; the mutable memory is a function from variables to
values. We define its semantics in terms of Markov chains between configurations, which are pairs
of commands and memories. We define security labels as a product lattice of confidentiality and
integrity labels. Security policies associate a security label to each variable of the program. We
are interested in the security of the flows of information between variables, and not simply the
security of access to variables. Intuitively, in a secure program, private variables should not flow
into public variables, that is, they should not influence public variables, and similarly, untrusted
variables should not flow to trusted variables. This is formalized as non-interference [Goguen and
Meseguer, 1982]. A program is non-interferent, if, for two initial memories that coincide on their
public (respectively trusted) variables, the two final memories (after execution of the program)
coincide on their public (respectively trusted) variables. We enforce non-interference with a stan-
dard type system [Volpano et al., 1996]. This type system also assigns a program counter level to
commands, recording the level of the variables they write. We then introduce active adversaries,
for any fixed level, as commands that can read public variables (variables that are less confidential
than the adversary level), that can write untrusted variables (variables that are less trusted than
the adversary level), and that run in placeholders (some predefined points in the program). We
introduce a new typing rule for adversary placeholders and prove non-interference for well-typed
programs against active adversaries. However, the limitation to non-interferent programs is restric-
tive, and some interesting programs may contain declassification, that is flows from confidential
to public variables, and endorsements, that is flows from untrusted to trusted variables. For ex-
ample, a program that declassifies a secret if a password is guessed might be considered secure,
but it is not non-interferent. Similarly, a program that encrypts a variable and declassifies the
ciphertext to send it over the internet might be considered secure, since an attacker that does not
know the decryption key do not gain any information by reading the ciphertext, but it is not non-
interferent. In order to study this kind of programs, we give new ’lax’ typing rules that allows for
declassification and endorsement, but still enforce two security properties, which are useful, even
if weaker than non-interference. The first property, confinement, states that the program counter
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level of a command still limits which variables are written by the command. The second property,
robust non-interference, states that, if the program counter integrity level is untrusted, then no
confidential variable is declassified. With these two lemmas, we know that commands with a high
integrity program counter might do privileged operations, and thus need to be considered with
care, for instance in our compilers. Finally, in order to better understand what are the capabilities
of the adversary in the presence of endorsement and declassification, we introduce a refined active
adversary model, namely semi-active adversary model, that further limits which variables the ad-
versary can read and write, and when. For example, given a program with adversary placeholders,
our semi-adversary cannot read low confidentiality variables in placeholders were the variable con-
tains no declassified information, since it would not give him any interesting information. We then
introduce a new type system and prove that, when the semi-active refinement of the program is
well typed, then for every active attack, there exists a semi-active attack of the program that ends
with the same memory. Hence, our semi-active adversary is a correct model of what can happened
with the active adversary.

We also introduce an abstract notion of program transformations so that we can describe the
properties of our different compilers. Source and transformed systems are formed of programs,
adversaries, states, and a function that evaluates (runs) them. We introduce two simulation
properties for program transformations: security and correctness. Security states that attacks on
the transformed programs are not more powerful than attacks on the source programs, hence that
the compilation preserves security. This is more general than, for example, proofs that the compiled
program is non-interferent if the source program is non-interferent. Conversely, correctness states
that some attacks on the source programs (e.g., honest adversaries who cooperate to run the
program as intended) have equivalent attacks on the implementation programs. Formally, security
states that, for every adversary of the transformed program, there exists an adversary of the
source program such that their semantics are equivalent. Conversely, correctness states that for
every source adversary, there exists an implementation adversary such that their semantics are
equivalent.

Cryptographic Information Flow Compiler (CFLOW)

In Chapter 4, we describe the cryptographic compiler of Fournet et al. [2009] and recall their re-
sults. The security of the source program is specified with information flow policies. We first add
localities in our language so that we can specify where each part of the code is supposed to run
and add a new typing rule for these localities. We then describe the compiler, which takes as input
a well-typed source program with localities and security annotations and outputs a distributed
program secured with cryptography. To prove the security properties of the compiler, we first
define encryption schemes as a triple: key generation, encryption, and decryption function, with
functional and security properties, and signature schemes defined as a triple: key generation, sig-
nature, and signature verification function, with functional and security properties. The functional
properties state, for example, that the decryption function is an inverse of the encryption func-
tion when used with correctly generated keys. We then state classic computational cryptographic
assumptions (the security properties) for asymmetric encryption and signature in terms of games
indistinguishability against adaptive chosen ciphertext attacks (IND-CCA2), indistinguishability
against chosen plaintext attacks (IND-CPA), and existential unforgeability under chosen message
attacks (CMA). Finally, we state the security and completeness of the compiler as an instance of
program transformation.

Information-Flow Types for Homomorphic Encryptions

The CFLOW compiler produces programs using cryptography. We study properties of programs
using various cryptographic primitives (more varied than those currently used by the compiler).
Using a type system, we prove that, if the cryptography is correctly used, none of the private
information leaks to information that is less private and none of the untrusted information leaks
to information marked as trusted. For example, we may consider a program that consists of an
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encryption of a confidential variable followed by the publication of the ciphertext and its decryption.
We can prove by typing that if the encryption key is trusted, if the decryption key is secret, if
the decrypted value is written in a confidential variable, then an adversary who only reads public
values and write untrusted values cannot get any information on the initial value of the private
variable. The goal is to understand how to integrate more diverse cryptographic primitives in our
compiler, in order to compile efficiently more programs. We detail this work in Chapter 5 described
below.

We first add datatypes to our security types to differentiate between ciphertexts, keys, and
non-cryptographic data. Additionally, our security types for ciphertexts and encryptions carry
additional information. For instance, the type of a ciphertext indicates the types of data that
may be encrypted within such ciphertext. We then define blinding schemes, which contain a pre-
encryption and a blinding function instead of a single encryption function. The pre-encryption does
not hide its inputting plaintext since it is not randomizing, but prepare the blinding by producing a
ciphertext. The blinding then randomizes ciphertexts. A pre-encryption followed by a blinding has
the same properties than an encryption. However, the particularity of the blinding function is that
it can be applied any number of time without changing the size of the plaintext, and, every time,
it hides the relation between the inputting and outputting ciphertext. For example, a participant
that is supposed to choose one ciphertext among two can blind its choice so that none knows which
was chosen. We then describe the security assumption for these schemes, similar to CPA, which
ensure that the blinding is hiding. We then describe homomorphic encryption schemes, which
allows some function on plaintext to be computed on the ciphertext. This allows for remote secret
computation. We then give a type system for programs using these different schemes (under the
CPA or CCA assumption), allowing for limited declassification, for instance, after encryption or
blinding. We also add some global conditions so that we can apply our cryptographic hypotheses.
First, we need to avoid key cycles. Second, we need to ensure that CPA decryption of untrusted
ciphertext never flows to the adversary. The security of the program is expressed as a computational
non-interference property since our cryptographic assumptions themselves are computational. A
program is computationally non-interferent, if, for two initial memories that coincide on their
public (respectively trusted) variables, the probability that a polynomial program distinguishes
the public (respectively trusted) restriction of the two final memory is negligible. Our main result
is that well typed programs are non-interferent. We then develop two challenging applications of
our approach.

Compiling Information-Flow Security to Minimal Trusted Computing Bases

The programs produced with the CFLOW compiler are secure only if they run on participants of
the required level of trust. To continue with our example about the client and the bank, if the
programmer wants to make a computation on the client that manipulates secret variables from
the bank, the compilation will fail since the bank doesn’t trust the client with its data. In fact,
with the compiler above, it is not possible to enforce the security of a program that computes
both on secret variables of the bank and secret variables of the client without a trusted third
participant. We model the functionalities of the secure hardware discussed above and then use
these functionalities to simulate this trusted third participant on an untrusted machine, with a
minimal TCB. We detail this work in Chapter 6 described below.

We first enrich our language with a command that turns data into executable code, so that we
can model a secure command that executes data as code. We then describe its semantics and its
typing, and restrict its use by the adversary. We then model some security commands available on
modern processors with TPMs: a command that increments a monotonic counter; a command that
stores the identity of its argument, then runs it in isolation, as executable code; a command that
adds information on the current identity; a command that seals data so that it can only be read by
a code with a specific identity; a command that certifies some data produced by some code with its
identity. We then illustrate the use of these secure commands during secure boots. We prove that
the model for active adversary used in Sections 4.3 and 6.6 can be deduced from a more complex
model where the active adversary controls the scheduling of machines. Finally, we describe our
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new compilation scheme, where we simulate a trusted host using the TPM functionalities. In our
example, the computation of secrets of the bank and the client is not possible because they do not
trust each other. However, with this compiler, it is possible to simulate a trusted third party to do
the computation using the TPM functionalities. The simulation is based on the previously modeled
functionalities, which allow us to run some code in isolation with strong identity guarantees and
to simulate secure storage. Our main result, expressed as an instance of program transformation
is that this compilation scheme is secure.

1.5 Roadmap

This thesis contains revised material from three papers, published at CONCUR [Planul et al.,
2009], ESOP [Fournet and Planul, 2011], and CCS [Fournet et al., 2011]. Chapter 2 describes our
work on Secure Enforcement for Global Process Specifications; it is independent from the other
chapters. Chapter 3 gives the core definitions of our language and policies used in Chapters 4-6.
Chapter 4 describes a cryptographic compiler, which we use as a front-end in Chapter 6. Chapter 5
describes our information flow type system for cryptography, and may be read independently from
Chapters 4 and 6. Chapter 6 describes our model and compiler for secure hardware. The proofs of
the theorems are at the end of the corresponding chapters, and can be skipped without affecting
the general understanding.

The CFLOW compiler, and various code samples are available at http://msr-inria.inria.
fr/projects/sec/cflow.
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2
Secure Enforcement for Global Process Specifications

2.1 Introduction

In this chapter, we consider high-level specifications of distributed applications, which focus on
global interactions and hide local implementation details. These high-level specifications define a
protocol interface, that can be used to program and verify the conformance of local implementa-
tions. In an adversarial setting, however, there is no guarantee that every local implementation
complies with the protocol. In this chapter, we propose a generic defensive implementation scheme
ensuring that the protocol is performed correctly.

The whole thesis concerns the construction of defensive implementation schemes; the next
chapters consider lower level specifications that include local implementation details, and use a
more concrete model of cryptography (computational instead of semantics). However, the higher
level of abstraction of this chapter is adequate for the control-flow problem considered here and
we believe that the semantics properties used to prove our theorems are easily implemented (and
computationally proved) with basic cryptography.

2.1.1 Distributed Programming with Sessions

Distributed applications may be structured around their global interactions: the pattern in which
they exchange messages (often called a protocol) is specified, but not their local implementation
details.

For example, we consider an e-commerce protocol, involving three participants: a customer, a
merchant, and a bank. The customer wants to negotiate a good with the merchant, who wants to
verify that the customer is able to pay. We can define the global interactions of this protocol:

• First, the customer requests the price of the good to the merchant.

• Then, the merchant responds with its price.

• Then, the customer accepts or refuse the offer.

• Then, if the customer accepts the offer, the merchant asks the bank for a wiring authorization.

• Last, the bank sends an authorization or a refusal of payment.

This protocol specifies the global interactions, but gives no details on how the merchant chooses the
price, how the customer estimates the offer, or how the bank chooses if it authorizes the payment.
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When the protocol is specified, each machine that takes part in the application is assigned a
fixed initial process corresponding to its role in the protocol, e.g., customer (hence, often called a
role) and may run any local code that implements its process, under the global assumption that
all other participating machines will also comply with their respective assigned processes. In our
example, the role of the bank specifies that it should send an authorization or refusal of payment
when it receives the request of the merchant. Moreover, when the bank receives the request, it can
assume that the protocol has been respected until this point. For instance, it can assume that the
merchant contactes him only if the customer has accepted the transaction.

This approach yields strong static guarantees, cuts the number of cases to consider at runtime,
and thus simplifies distributed programming. It is explored with binary sessions [Honda et al.,
1998, Takeuchi et al., 1994, Gay and Hole, 1999] i.e., sessions with only two participants, and, more
recently, multiparty sessions [Corin et al., 2007, Honda et al., 2008]. Within sessions, machines
exchange messages according to fixed, pre-agreed patterns, for instance a sequence of inputs and
outputs between a client and a server; these patterns may be captured by types, expressed as
declarative contracts (also known as workflows), or more generally specified as processes.

Multiparty session types are an active subject of research. The multiparty session type theory
is developed in process calculi [Bettini et al., 2008, Capecchi et al., 2010, Mostrous et al., 2009],
and used in several different contexts such as distributed object communication optimizations
[Sivaramakrishnan et al., 2010], design by contract [Bocchi et al., 2011], parallel and web service
programming [Pernet et al., 2010, Yoshida et al., 2009] and medical guidelines [Nielsen et al.,
2010]. Deniélou and Yoshida [2011a] use types to determine the maximum size of message buffers
necessary to run the session. Deniélou and Yoshida [2011b] study more dynamic sessions, where
the number of participants can change during the session. Yoshida et al. [2010] study sessions
parametrized by indexes. Dezani-Ciancaglini and de’Liguoro [2010] do an overview on session
types.

2.1.2 The secure implementation problem

These global specifications provide an adequate level of abstraction to address distributed security
concerns. Each machine is interpreted as a unit of trust, under the control of a principal authorized
to run a particular role in the application. Conversely, these principals do not necessarily trust
one another. Indeed, many applications commonly involve unknown parties on open networks,
and a machine may participate in a session run that also involves untrustworthy machines (either
malicious, or compromised, or poorly programmed). In this situation, we still expect session
integrity to hold: an “honest” machine should accept a message as genuine only if it is enabled
by the global specification. To this end, their implementation may perform cryptographic checks,
using for example message signatures, as well as checks of causal dependencies between messages.
In our example, the bank should not accept the merchant’s message if the customer did not accept
the transaction. To this end, the bank may ask for the signed message of the customer as a
justification for the merchant’s request.

2.1.3 Automated protocol synthesis for sequential sessions

Cryptographic implementation mechanisms need not appear in the global specification. They can
sometimes be automatically generated from the specification. Corin et al. [2007] and Bhargavan
et al. [2009] perform initial steps in this direction, by securing implementations of n-ary sequential
sessions. Their sessions specify sequences of communications between n parties as paths in directed
graphs. A global session graph is compiled down to secure local implementations for each role,
using a custom cryptographic protocol that protects messages and monitors their dependencies.
Their main security result is that session integrity, that is, the respect of the session specification,
is guaranteed for all session runs—even those that involve compromised participants. They also
report on prototype implementations, showing that the protocol overhead is small. Although
their sequential sessions are simple and intuitive, they also lack flexibility, and are sometimes
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too restrictive. For instance, concurrent specifications must be decomposed into series of smaller,
sequential sessions, and the programmer is left to infer any security properties that span several
sub-sessions. More generally, they leave the applicability of their approach to more expressive
specification languages as an open problem.

In this chapter, we consider a much larger class of session specifications that enable concurrency
and synchronization within session runs; and we systematically explore their secure implementa-
tion mechanisms, thereby enforcing more global properties in a distributed calculus. We aim at
supporting arbitrary processes, and as such we depart significantly from prior work: our specifica-
tion language is closer to a generic process algebraic setting, such as CCS [Milner, 1989]. On the
other hand, we leave the cryptography implicit and do not attempt to generalize their concrete
protocol design. The example below illustrates our session calculus, with concurrent specification.

Example 1 To illustrate our approach, consider a simple model of an election, with three voting
machines (V1, V2, and V3) and one election officer machine (E) in charge of counting the votes
for two possible candidates (c1 and c2) and sending the result (r1 or r2) to a receiver machine (R).
We specify the possible actions of each machine using CCS-like processes (defined in Section 2.2),
as follows:

V1 = V2 = V3 = c1 + c2 E = c1.c1.r1 | c2.c2.r2 R = r1 + r2

Machines running process Vi for i = 1, 2, 3 may vote for one of the two candidates by emitting
one of the two messages c1 or c2; this is expressed as a choice between two output actions. The
machine running process E waits for two votes for the same candidate and then fires the result;
this is expressed as a parallel composition of two inputs followed by an output action. Finally, the
machine running process R waits for one of the two outcomes; this is expressed as a choice between
two input actions.

2.1.4 Protocols and applications

We now give an overview of the protocols and the attacker model. Our processes represent protocol
specifications, rather than the application code that would run on top of the protocol. Accord-
ingly, our protocol implementation monitors and protects high-level actions driven by an abstract
application. The implementation immediately delivers to the application any input action enabled
by the specification, and sends to other machines any action output enabled by the specification
and selected by the application. The application is in charge of resolving internal choices between
different message outputs enabled by the specification, and to provide the message payloads. In
our e-commerce example, the application on the bank machine is in charge of accepting or refus-
ing the wiring, while our implementation is in charge of verifying that the merchant’s request is
legitimate. And in Example 1, the application on the voters machine is in charge of choosing a
vote.

We intend that our implementations meet two design constraints: (1) they rely only on the
global specification—not on the knowledge of which machines have been compromised, or the
mediation of a trusted third party; and (2) they do not introduce any extra message: each high-level
communication is mapped to an implementation message. This message transparency constraint
excludes unrealistic implementations, such as a global, synchronized implementation that reaches a
distributed consensus on each action. For instance, the implementation of our e-commerce example
cannot add a message from the customer to the bank confirming that he accepted the trade. And
in Example 1, the voters cannot directly send a confirmation to the receiver machine.

2.1.5 Attacker Model

We are interested in the security of any subset of machines that run our implementation, under the
assumption that the other machines may be corrupted. In Example 1, for instance, the receiver
machine should never accept a result from the election officer if no voter has cast its vote.
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Our implementations provide protection against active adversaries that controls parts of the
session run: We assume an unsafe network, so the adversary may intercept, reorder, and inject
messages—this is in line with classic symbolic models of cryptography pioneered by Dolev and Yao
[1983]. We also assume partial compromise, so the adversary may control some of the machines
supposed to run our implementation, and run instead arbitrary code; hence, those machines need
not follow their prescribed roles in the session specification and may instead collude to forge
messages in an attempt to confuse the remaining compliant, honest machines.

We focus on global control flow integrity, rather than cryptographic wire formats; thus, we
assume that the message components produced by the compliant machines cannot be forged by
our adversary. (This can be achieved by standard cryptographic integrity mechanisms, such as
digital signatures.) Conversely, the adversary controls the network and may forge any message
component from compromised machines. For instance, our implementation of the e-commerce
example should ensures that a corrupt merchant cannot forge a convincing message to the bank
without the customer agreement. And in Example 1, a corrupt election officer should not be able
to forge a result without the corresponding votes. Also, we do not address other security properties
of interest, such as payload confidentiality or anonymity.

2.1.6 Contents

Section 2.2 defines a global semantics for specifications. Section 2.3 describes their generic imple-
mentations, and states their soundness and completeness properties. Section 2.4 considers binary
specifications. Section 2.5 explains our difficulties with implementing multiparty specifications.
Section 2.6 defines our type system to avoid unimplementability. Section 2.7 presents our history-
tracking implementation and establishes its correctness for well-typed specifications. Section 2.8
considers sequential n-ary sessions. Section 2.9 concludes.

2.2 Global process specifications

We consider specifications that consist of distributed parallel compositions of local processes, each
process running on its own machine. In the remainder of the chapter, we let n be a fixed number
of machines, and let P̃ range over global process specifications, that is, n-tuples of local processes
(P0, . . . , Pi, . . . , Pn−1).

2.2.1 Syntax and informal semantics

Our local processes use a CCS syntax, given below. For simplicity, we choose not to include
message payloads in our description of the protocol, since the enforcement of their security is
mostly independent to the enforcement of the session control flow (our focus in this chapter).
Also, our message outputs are asynchronous (i.e., no action can directly depend on the correct
emission of a message) since, in a distributed protocol, it is not possible to know whether a message
has been received (without an extra acknowledgment message).

P ::= Local processes
0 inert process
a asynchronous send
a.P receive
P + P ′ choice
P |P ′ parallel fork
!P replication

The inert process cannot do any action. The process a can send a message a then stop. The
process a.P can receive a then it behaves as process P . The process P +P ′ can behave as process
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P or as process P ′. The process P |P ′ can run P and P ′ in parallel. The process !P behaves as

a parallel composition of an infinite number of P . The specification P̃ = (P0, . . . , Pn−1) sets a
global “contract” between n machines; it dictates that each machine i behaves as specified by Pi.
For instance, in Example 1 we have n = 5 and P̃ = (V1, V2, V3, E,R).

2.2.2 Local operational semantics (−→P)

We define standard labeled transitions for local processes, with the rules given below. We write
P
β−→P P

′ when process P evolves to P ′ with action β ranging over a and a. We omit the symmetric
rules for sum and parallel composition.

a.P
a−→P P a

a−→P 0
P0

β−→P P
′
0

P0 + P1
β−→P P

′
0

P0
β−→P P

′
0

P0|P1
β−→P P

′
0|P1

P
β−→P P

′

!P
β−→P!P |P ′

We omit structural rules to simplify parallel compositions with 0. In examples, we often implicitly
simplify P |0 and 0 |P to P .

We instantiate these definitions with Example 1:

V1 = V2 = V3 = c1 + c2
c1−→P 0

V1 = V2 = V3 = c1 + c2
c2−→P 0

Each of the voter can send either the message c1 or c2. Also:

c1.c1.r1
c1−→P c1.r1

c1−→P r1
r1−→P 0

c2.c2.r2
c2−→P c2.r2

c2−→P r2
r2−→P 0

Both parallel process in E can independently receive their respective votes and send the result as
soon as two vote are casted for the same candidate. Hence, for example, E can successively receive
c2, c1, and c2:

E = c1.c1.r1 | c2.c2.r2 c2−→P

c1−→P

c2−→P

r2−→P c1.r1

We also have:
R = r1 + r2

r1−→P 0 R = r1 + r2
r2−→P 0

2.2.3 Global operational semantics (−→S)

We also define labeled transitions for global configurations, with the communication rule below. We
write P̃

i a j−−−→S P̃
′ when P̃ evolves to P̃ ′ by action a with sender Pi and receiver Pj . (The case i = j

is for local, but still observable communications.) We let α range over high-level communication
i a j, and let ϕ range over sequences of these communications (written for instance (i a j).α)

representing high-level traces. A source execution is a reduction P̃
α0

−→S P̃
1 . . . P̃n−1 αn−1

−−−→S P̃
n.

In this case, the trace ϕ = α0. . . . .αn−1 is a source (execution) trace, and we can write P̃
ϕ−→S P̃

n.
We write α ∈ ϕ when α occurs in ϕ. The semantic rule is given below

Pi
a−→P P

◦
i (Pk = P ◦

k )
k 6=i P ◦

j
a−→P P

′
j (P ◦

k = P ′
k)
k 6=j

P̃
i a j−−−→S P̃

′

Hypotheses (Pk = P ◦
k )
k 6=i and (P ◦

k = P ′
k)
k 6=j ensure that only process i and process j change

during a communication i a j. When i 6= j, the rule instantiate to

Pi
a−→P P

′
i Pj

a−→P P
′
j

P̃
i a j−−−→S (P1, . . . , P

′
i , . . . , P

′
j , . . . , Pn)
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When i = j, the rule instantiate to

Pi
a−→P P

◦
i P ◦

i
a−→P P

′
i

P̃
i a j−−−→S (P1, . . . , P

′
i , . . . , Pn)

In examples, we often use the initial processes names instead of process indexes, e.g., writing
V1 c2 E instead of 0 c2 3). For instance, here is one of the possible source executions of Example 1:

(V1, V2, V3, E,R)
V1 c2 E−−−−−→S (0, V2, V3, (c1.c1.r1 | c2.r2), R)
V3 c1 E−−−−−→S (0, V2,0, (c1.r1 | c2.r2), R)
V2 c2 E−−−−−→S (0,0,0, (c1.r1 | r2), R)
E r2 R−−−−−→S (0,0,0, c1.r1,0)

2.3 Distributed process implementations

We describe distributed implementations of the specifications of Section 2.2, each process being
mapped to one machine. A distributed implementation defines the messages the machine can
send or receive depending on its implementation state, but it also sets their assumptions on the
adversary, i.e., what the adversary is able to do depending on which machines are compromised.
Hence, we first specify how we separate compliant (honest) machines from compromised (dishonest)
machines, then we define their implementations, their semantics, and their properties (soundness
and completeness). The implementation of the compliant machines does not depend on knowing
which machines are compromised, as discussed in Section 2.1. However, the global implementation
semantics that defines the possible executions in our adversarial model is necessarily parametrized
by the set of compliant machines.

We let C range over subsets of {0, . . . , n − 1}, representing the indexes of P̃ whose machines
are compliant. We let P̂ range over tuples of processes indexed by C. Intuitively, these machines
follow our implementation semantics, whereas the other machines are assumed to be compromised,
and may jointly attempt to make the compliant machines deviate from the specification P̃ . For
instance, if the election officer of Example 1 is compromised, it may immediately issue a result r1
without waiting for two votes c1. Similarly, a compromised voter may attempt to vote twice. We
are interested in protecting (the implementations of) compliant machines from such actions.

Next, we give a generic definition of process implementations. In the following sections, we show
how to instantiate this definition for a given specification. Informally, an implementation is a set
of programs, one for each specification process to implement, plus a definition of the messages that
the adversary may be able to construct, in the spirit of symbolic models for cryptography [Dolev
and Yao, 1983].

Definition 1 (Distributed implementation) A distributed implementation is a triple

〈(Qi)i<n, ( γ−→i)i<n, (⊢C)C⊆0..n−1〉 (abbreviated 〈Q̃, −̃→,⊢C〉) where, for each i ∈ 0..n − 1 and each
C ⊆ 0..n− 1,

• Qi is an implementation process;

• γ−→i is a labeled transition relation between implementation processes;

• ⊢C is a relation between message sets and messages.

In the definition, each Qi is an initial implementation processes, and each
γ−→i is a transition

relation between implementation processes of machine i, labeled with either the input (M) or
output (M) of a message M (the syntax of M is left abstract). We use the notation Qi only
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for implementation processes. Further processes are denoted Q′
i, Q

′′
i ,. . . . We let γ range over M

andM , and let ψ range over sequences of γ, representing low-level traces. For each implementation
process, these transitions define the messages that may be received and accepted as genuine and
the messages that may be sent. We assume that every message M implements a single high-
level communication α. (Intuitively, M is an unambiguous wire format for α, carrying additional
information.) We write ρ(γ) for the corresponding high-level communication α, obtained by parsing
γ (with, ρ(M) = ρ(M)).

The relations ⊢C model the capabilities of an adversary that controls all machines outside C
to produce (or forge) a message M after receiving (or eavesdropping) the set of messages M. For
instance, if the implementation relies on digital signatures, the definition of ⊢C may reflect the
capability of signing arbitrary messages on behalf of the non-compliant machines.

Example 2 We consider a protocol involving two participants with a request from the first par-
ticipant followed by a response from the second participant. The processes are A0 = a | b and
A1 = a.b. We may implement this protocol by re-using the syntax of specification processes and
labels (M carries no additional information, for instance, M = 0 a 1 or M = 0 a 1), with initial
implementation processes (A0, A1), implementation transitions

A0
0 a 1−−−→0 b

1 b 0−−−→0 0 A1
0 a 1−−−→1 b

1 b 0−−−→1 0

and an adversary that can replay intercepted messages and produce any messages from compromised
principals, modeled with the deduction rules

M ∈ M
M ⊢C M

i 6∈ C i, j ∈ {0, 1} x ∈ {a, b}
M ⊢C i x j

The transition relation on machine 0 allows its local program to send a message a to machine 1;
then, it transmits the first message b received from machine 1. In particular, we choose not to
allow the reception of b before the emission of a since this behavior is not possible in the global
specification. Conversely, the transition relation on machine 1 transmits the first message a received
from machine 0 to the program on machine 1; then, it allows it to send a message b to machine
0. Concretely, the first adversary rule models an open network, where the adversary can replay
messages. The second adversary rule is reminiscent of symbolic cryptography models. Suppose that
each participant has its private key and the public key of the other participant. If every participant
sign its messages and verify the signature of the messages it receives, the adversary can produces
fake messages for compromised participants, as modeled in the second rule.

〈(A0, A1), (
γ−→0,

γ−→1), (⊢0,1,⊢0,⊢1)〉 is a distributed implementation.

2.3.1 Distributed semantics (−→I)

For a given distributed implementation 〈Q̃, −̃→, ⊢̃C〉 and a given set of compliant machines C, we
define a global implementation semantics that collects all message exchanges between compliant
machines on the network. In our model, compromised processes do not have implementations;
instead, the environment represents an abstract adversary with the capabilities specified by ⊢C .
Thus, the global implementation transitions

γ−→I relate tuples of compliant implementation pro-
cesses Q̂′ and also collects all compliant messages M exchanged on the network (starting with an

empty set). The reductions are of the form M, Q̂
γ−→I M′, Q̂′, with the following two rules:

(SendI)

Q′
i
M−→i Q

′′
i (Q′

k = Q′′
k)
k 6=i

i ∈ C ρ(M) = i a j

M, Q̂′ M−→I M∪M, Q̂′′

(ReceiveI)

Q′
i
M−→i Q

′′
i (Q′

k = Q′′
k)
k 6=i

i ∈ C M ⊢C M ρ(M) = j a i

M, Q̂′ M−→I M, Q̂′′
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Rule (SendI) simply records the message sent by a compliant participant, after ensuring that its
index i matches the sender recorded in the corresponding high-level communication i a j (so that
no compliant participant may send a message on behalf of another). Rule (ReceiveI) enables a
compliant participant to input any messageM that the adversary may produce fromM (including,
for instance, any intercepted message) if its index matches the receiver i in the corresponding high-
level communication j a i; this does not affect M, so the adversary may a priori replay M several

times. An implementation execution is a reduction M, Q̂
γ0

−→I M1, Q̂1 . . .Mn−1, Q̂n−1 γn−1

−−−→I

Mn, Q̂n. In this case, the corresponding trace γ0. . . . .γn−1 is an implementation (execution)
trace. For instance, in Example 2:

• When both participants are honest (C = {0, 1}), we have Q̂ = Q̃. Also, using the first
adversary rule, both {0 a 1} ⊢C 0 a 1 because 0 a 1 ∈ {0 a 1} and {0 a 1, 1 b 0} ⊢C 1 b 0
because 1 b 0 ∈ {0 a 1, 1 b 0}. Hence:

∅, Q̂ 0 a 1−−−→I {0 a 1}, (b, A1)
0 a 1−−−→I {0 a 1}, (b, b)
1 b 0−−−→I {0 a 1, 1 b 0}, (b, 0)
1 b 0−−−→I {0 a 1, 1 b 0}, (0, 0)

• When only participant 0 is honest (C = {0}), we have Q̂ = A0. Also, {0 a 1} ⊢C 0 a 1 using
the first adversary rule with hypothesis 0 a 1 ∈ {0 a 1}, and {0 a 1} ⊢C 1 b 0 using the
second adversary rule with hypothesis 1 6∈ C. Hence:

∅, Q̂ 0 a 1−−−→I {0 a 1}, (b)
1 b 0−−−→I {0 a 1}, (0)

• When only participant 1 is honest (C = {1}), we have Q̂ = A1. Also, ∅ ⊢C 0 a 1 using the
second adversary rule with hypothesis 0 6∈ C, and {1 b 0} ⊢C 1 b 0 using the first adversary
rule with hypothesis 1 b 0 ∈ {1 b 0}. Hence:

∅, Q̂ 0 a 1−−−→I {}, (b)
1 b 0−−−→I {1 b 0}, (0)

• When both participants are dishonest (C = ε), we have Q̂ = ε, and the only implementation
trace is empty.

The wire formatM may include additional information, such as a nonce to detect message replays,
or some evidence of a previously-received message. The example below illustrates the need for both
mechanisms.

Example 3 We consider the specification (B0, B1), with B0 = b | b and B1 = b | b. The implemen-
tation of B1 must discriminate between a replay of B0’s first message and B0’s genuine second
message, so these two messages must have different wire formats. For instance, an implementation
may include a fresh nonce or a sequence number; using 0 b 1 0 as first message and 0 b 1 1 as
second message, with ρ(0 b 1 0) = ρ(0 b 1 1) = 0 b 1.

We consider the specification (C0, C1, C2), with C0 = a, C1 = a.b, and C2 = b. The imple-
mentation of C2 that receives b from C1 must check that C1 previously received a from C0. For
instance, the two messages may be signed by their senders, and C1’s message may also include
C0’s message, as evidence that its message on b is legitimate using 0 a 1 as first message and
(0 a 1) 1 b 2 as second message; with ρ(0 a 1) = 0 a 1 and ρ((0 a 1) 1 b 2) = 1 b 2.
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2.3.2 Concrete threat model and adequacy

Distributed implementations (Definition 1) are expressed in terms of processes and transitions,
rather than message handlers for a concrete, cryptographic wire format. (We refer to prior work for
sample message formats and protocols for sequential specifications [Corin et al., 2007, Bhargavan
et al., 2009].)

In the implementation, the use of cryptographic primitives such as digital signatures can pre-
vent the adversary to forge arbitrary messages. On the other hand, we do not want to consider
implementations with an adversary so weak that they are not realistically implementable. Since
the adversary controls the network, he can resend any intercepted messages and, when it controls
a participant, he can at least send any message that this participant would be able to send if it
were honest. Accordingly, for any realistic implementation, we intend that the two rules displayed
below follow from the definition of ⊢C .

Definition 2 (Adequacy) We say that an implementation is adequate when these two rules are
valid.

(Replay)

M ∈ M
M ⊢C M

(Impersonate)

i 6∈ C Qi
ψ−→i Q

′
i
M0−−→i Q

′′
i M ⊢C M for each M ∈ ψ

M ⊢C M0

In Rule Impersonate, if (1) the adversary controls machine i; (2) a compliant implementation Qi
can send the message M0 after a trace ψ has been followed; and (3) every message received by i in
ψ can be constructed from M by the adversary; then he can also construct the message M0 from
M.

Example 4 For instance, in Example 2, Rule Replay is one of the adversary rules. We instantiate
Rule Impersonate for i = 0 and i = 1, and get:

0 6∈ C A0
0 a 1−−−→0 b

M ⊢C 0 a 1

1 6∈ C A1
0 a 1−−−→1 Q

′
i

1 b 0−−−→1 Q
′′
i M ⊢C 0 a 1

M ⊢C 1 b 0

In the two cases, every message that can be deduced with these rules can be deduced with the second
adversary rule given in the example:

i 6∈ C
M ⊢C i c j

Hence, the implementation 〈(A0, A1), (
γ−→0,

γ−→1), (⊢0,1,⊢0,⊢1)〉 is adequate.

2.3.3 Soundness and completeness

We now introduce our security properties. We first formally relate high-level traces of the specifica-
tion, ranged over by ϕ, which include the communications of all processes, to low-level implementa-
tion traces, ranged over by ψ, which record only the inputs and outputs of the compliant processes.
We then define our property of soundness, stating that every implementation run corresponds to
a run of the specification; and our property of completeness, stating that every specification run
corresponds to a run of the implementation. These properties depend only on the implementation
and specification traces: trace-equivalent specifications would accept the same sound and complete
implementations. The correspondence between high-level and low-level traces is captured by the
following definition of valid explanations.
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Definition 3 (Valid explanations) A high-level trace ϕ = α0 . . . αp−1 is a valid explanation of
a low-level trace ψ = γ0 . . . γq−1 for a given set C when there is a partial function ι from (indexes
of) low-level messages γk of ψ to (indexes of) high-level communications αι(k) of ϕ such that
ρ(γk) = αι(k) for k ∈ Dom(ι) and

1. the restriction of ι on the indexes of the low-level inputs of ψ is an increasing bijection to
the indexes of the high-level communications of ϕ with honest receivers (i a j with j ∈ C);

2. the restriction of ι on the indexes of the low-level outputs of ψ is a partial bijection to the
indexes of the high-level communications of ϕ with honest senders (i a j with i ∈ C); and

3. whenever a low-level input precedes a low-level output, their images by ι are in the same
order when defined.

The definition relates every trace of messages sent and received by honest implementations to a
global trace of communications between specification processes (including compromised processes).
Suppose that the low-level trace is the trace of a global implementation execution and that the
high-level trace is the trace of a global source execution. The first condition guarantees that the
messages that have been accepted by honest participants in the implementation correspond to com-
munications in the source execution. The second condition guarantees that the communications
of the source execution with an honest emitter correspond to messages sent in the implementation
execution. However, since send are asynchronous, not all send need to be reflected in the source
trace, and their order is irrelevant. The third condition guarantees that the order of the messages
in the source execution is coherent with the order of the message emissions and receptions per-
ceived by the honest participants in the implementation execution. If all the processes are honest,
the only possible valid explanation of a trace corresponds to the trace of inputs. Otherwise, the
specification trace may have additional communications between compromised processes and may
also contain communications corresponding to messages sent by an honest participant to a dishon-
est participant. Valid explanation guarantees that the implementation messages are received in
the same order as the communications in the specification trace. Conversely, since the adversary
controls the network, the relation does not guarantee that all low-level outputs are received, or
that they are received in order.

For instance, in Example 2, with only honest participant 0 (C = {0}), (0 a 1) is an implemen-
tation trace. It is validly explained by the empty source trace, assuming that machine 1 never
received a, hence that no high-level communication occurred. It is also validly explained by the
source trace 0 a 1, assuming that the machine 1 received a, hence that the high-level communi-
cation occurred. As a more complex example, consider an implementation that uses high-level
communications as wire format (that is, M is just α), let n = 3, and let C = {0; 2}. We may
explain the low-level trace

ψ = (0 b 2).(0 c 1).(1 d 2).(0 a 1).(0 b 2)

with, for instance, the high-level trace ϕ1 = (0 c 1).(1 d 2).(0 b 2) and the index function ι from
ψ to ϕ1 defined by {0 7→ 2, 1 7→ 0, 2 7→ 1, 4 7→ 2}. Following Definition 3, we check that

1. the restriction of ι to the indexes of the low-level inputs is {2 7→ 1; 4 7→ 2} and relates the
inputs of compliant participants in ψ and in ϕ;

2. the restriction of ι to the indexes of the low-level outputs is {0 7→ 2; 1 7→ 0} and relates two
of the three outputs in ψ to the outputs of compliant participants in ϕ, out of order; and

3. (1 d 2) precedes (0 a 1) in ψ, but ι is undefined on that low-level output.

Another valid explanation is ϕ2 = (1 d 2).(0 a 1).(0 c 1).(0 b 2).

We are now ready to define our main security property, which states that an implementation is
sound when the compliant machines cannot be driven into an execution disallowed by the global
specification.

20



Definition 4 (Soundness) 〈Q̃, −̃→,⊢C〉 is a sound implementation of P̃ when, for every C ⊆
0..n − 1 and every implementation trace ∅, Q̂ ψ−→I M, Q̂′, there exists a source trace P̃

ϕ−→S P̃ ′

where ϕ is a valid explanation of ψ.

Also, an implementation is complete if, when all machines comply, every trace of the global
specification can be simulated by a trace of the implementation.

Definition 5 (Completeness) 〈Q̃, −̃→,⊢C〉 is a complete implementation of P̃ when, for C =

0..n−1 and for every source traces P̃
ϕ−→S P̃

′, there exists an implementation trace ∅, Q̃ ψ−→I M, Q̃′

where ϕ is a valid explanation of ψ.

Completeness is necessary to ensure that the implementation corresponds to the source program.
For example, an implementation that does nothing is sound for every source program since the
only implementation execution is the empty execution, but not complete.

We easily check that, with our definition of valid explanations, an implementation that is both
sound and complete also satisfies the message transparency property discussed in Section 2.1.

Example 5 We instantiate these definitions for the specification of Example 2. We list all the
non empty implementation traces and their respective valid explanation source traces:

implementation trace (−→I) explained by the source trace (−→S)
for C = {0, 1}
(0 a 1) ε
(0 a 1).(0 a 1) (0 a 1)

(0 a 1).(0 a 1).(1 b 0) (0 a 1)

(0 a 1).(0 a 1).(1 b 0).(1 b 0) (0 a 1).(1 b 0)
for C = {0}
(0 a 1) ε or (0 a 1)
(0 a 1).(1 b 0) (0 a 1).(1 b 0)
for C = {1}
(0 a 1) (0 a 1)

(0 a 1).(1 b 0) (0 a 1) or (0 a 1).(1 b 0)

For every C ⊆ {0, 1} and every implementation trace ∅, Q̂ ψ−→I M, Q̂′, there exists a source trace

P̃
ϕ−→S P̃ ′ where ϕ is a valid explanation of ψ. Hence, 〈(A0, A1), (

γ−→0,
γ−→1), (⊢0,1,⊢0,⊢1)〉 is a

sound implementation of (A0, A1). The implementation process A0 cannot receive b before sending

a. This is key for the soundness of the implementation since, if we had A0
1 b 0−−−→0 A′

0, with
C = {0}, the resulting implementation trace (1 b 0) has no valid explanation in the possible source
traces.

Conversely, for every source traces P̃
ϕ−→S P̃

′, there exists an implementation trace ∅, Q̃ ψ−→I

M, Q̃′ where ϕ is a valid explanation of ψ. Hence, 〈(A0, A1), (
γ−→0,

γ−→1), (⊢0,1,⊢0,⊢1)〉 is a complete
implementation of (A0, A1).

2.4 Implementing two-party specifications (application)

We instantiate our definitions to specifications with only two participants, such as a client and a
server. Such specifications have been much studied using session types [Honda et al., 1998, Takeuchi
et al., 1994, Gay and Hole, 1999]. For this section, we set n = 2 and implement specifications of

the form P̃ = (P0, P1). For simplicity, we also exclude local communications: for any action a,
each Pi for i = 0, 1 may include either a or a, but not both.
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2.4.1 A simple (insecure) implementation

An implementation that re-uses the syntax of specification processes and labels with initial imple-
mentation processes (P0, P1) (that is, Qi is just Pi, and M is just α) is generally not sound.

Example 6 Consider for instance the specification (D0, D1) with:

D0 = a.e | b.(e+ c) D1 = a | b | e | c

We have the following source execution:

(D0, D1)
1 a 0−−−→S (e | b.(e+ c), b | e | c)
0 e 1−−−→S (b.(e+ c), b | c)
1 b 0−−−→S (e+ c, c)
0 c 1−−−→S (0,0)

Hence, in order to have a complete implementation, we need to have the following reduction of
process 1:

D1
1 a 0−−−→1 b | e | c
0 e 1−−−→1 b | c
1 b 0−−−→1 c
0 c 1−−−→1 0

We deduce that in state c, machine 1 can receive the message c. We also have the following source
execution:

(D0, D1)
1 b 0−−−→S (a.e |(e+ c), a | e | c)
0 e 1−−−→S (a.e, a | c)
1 a 0−−−→S (e, c)

In this source execution, machine 1 cannot receive the message c . In order to have a complete
implementation, we need to have the following reduction of process 1:

D1
1 b 0−−−→S a | e | c
0 e 1−−−→S a | c
1 a 0−−−→S c

We know from the first source execution that c
0 c 1−−−→1 0. Thus, when only participant 1 is honest

(C = {1}), we have:

∅, Q̂ 1 b 0−−−→I {(1 b 0)}, a | e | c
0 e 1−−−→I {(1 b 0)}, a | c
1 a 0−−−→I {(1 b 0), (1 a 0)}, c
0 c 1−−−→I {(1 b 0), (1 a 0)},0

This implementation trace has no valid explanation source trace because the last input is not possible
after the actions 0 e 1, 1 a 0, and 0 c 1 in this order. In state c, machine 1 does not know whether
a message c from machine 0 is legitimate or not. Therefore, an implementation accepting the
message c is unsound, and an implementation refusing it is incomplete.

2.4.2 History-tracking Implementations

Our implementation relies on a refinement of the specification syntax and semantics to keep track
of past communications: local processes are of the form P : ψ where ψ is a sequence of global
communications, each tagged with a fresh nonce ℓ used to prevent message replays. (The following
rules ensure that no message can be received twice with the same tag.)
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• We use P0 : ε and P1 : ε as initial processes (where ε is the empty sequence).

• We define local implementation transitions −→i from the initial specification P̃ and the spec-
ifications traces:

P̃
ρ(ψ)−−−→S P̃ ′ i a j−−−→S P̃ ′′ i a j ℓ 6∈ ψ

P ′
i : ψ

i a j ℓ−−−−→i P
′′
i : ψ.(i a j ℓ)

P̃
ρ(ψ)−−−→S P̃ ′ i a j−−−→S P̃ ′′ i a j ℓ 6∈ ψ

P ′
j : ψ

i a j ℓ−−−−→j P
′′
j : ψ.(i a j ℓ)

where i, j is either 0, 1 or 1, 0 and where ρ yields an high-level trace by erasing all nonces ℓ
in ψ.

• We define the adversary capability ⊢C by
M ∈ M
M ⊢C M

and
i 6∈ C

M ⊢C i a j ℓ
.

Hence, an action is locally enabled only when it extends the specification trace recorded so far
and the nonce ℓ is locally fresh. The adversary may send a message either after eavesdropping it
or by constructing it with a compromised sender. (Pragmatically, a concrete implementation may
generate ℓ at random, or increment a message sequence number, and may use a more compact
representation of ψ.)

We illustrate this scheme with an implementation of example 2. The main source execution is

(A0, A1)
0 a 1−−−→S (b, b)

1 b 0−−−→S (0,0)

Hence, we get (for any ℓ 6= ℓ′)

A0 : ε
0 a 1 ℓ−−−−−→0 b : (0 a 1 ℓ)

1 b 0 ℓ′−−−−−→0 0 : (0 a 1 ℓ).(1 b 0 ℓ′)

A1 : ε
0 a 1 ℓ−−−−−→1 b : (0 a 1 ℓ)

1 b 0 ℓ′−−−−−→1 0 : (0 a 1 ℓ).(1 b 0 ℓ′)

In the implementation defined above, the history carried by the implementation processes forbids
the first process to wrongly receive the response b before sending the request a. This implementa-
tion is sound and complete.

Our implementation scheme is sound and complete:

Theorem 1 Let (P0, P1) be a specification. 〈(P0 : ε, P1 : ε), −̃→,⊢C〉 is a sound and complete
implementation of (P0, P1).

The soundness of our implementation above relies on every machine recording every communication
(since every message is sent by one machine and received by the other one); this approach does not
extend to specifications with more than two machines, inasmuch as these machines do not directly
observe actions between two remote machines.

The proof of Theorem 1 is at the end of this chapter, in Subsection 2.10.1.

2.5 Unimplementability

In the preceding section, we presented a complete and sound implementation for binary sessions.
We now illustrate some difficulties in the general n-ary case and introduce restrictions that aim at
avoiding these problematic specification.

Example 7 Consider a variant of Example 1 with the same V1, V2, V3 and R but with the election
officer E split into E1 and E2:

V1 = V2 = V3 = c1 + c2
E1 = c1.c1.r1
E2 = c2.c2.r2
R = r1 + r2
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One of the voters (say, V1) may cheat, and send both c1 to E1 and c2 to E2. To prevent this
unsound execution, E1 and E2 would need to communicate with one another, thereby breaking
message transparency. Therefore no adequate implementation (Definition 2) of this example can
be both sound and complete.

This unimplementability problem, and those discussed below, originate in the linearity of our
choice, send, and receive operators. In the specification, the choice operator allows two mutually
exclusive behaviors; however, in the implementation, it is sometime not possible to enforce that
both behaviors are not taken at the same time.

2.5.1 Unimplementable patterns

Next, we further investigate the problem and identify a number of minimal specification patterns
for which there is no adequate, complete and sound implementation.

Simple-fork Consider the following specification

A = b+ c

B = b

C = c

The process A can send a message to either B or C. A dishonest machine in charge of running
A can send both messages. Any complete adequate implementation of this specification is
unsound.

Proof: By completeness, the implementation must have two traces that are validly ex-
plained by 0 b 1 and 0 c 2, respectively. Hence, there exist A1, A

′
1, B1, C1 such that:

A
Mb−−→A A1 A

Mc−−→A A
′
1 B

Mb−−→B B1 C
Mc−−→C C1

with ρ(Mb) = A b B and ρ(Mc) = A c C. Now, with C = {B;C}, as the implementation is

adequate, ∅ ⊢C Mb and ∅ ⊢C Mc. We get ∅, (B,C) Mb−−→I (B1, C)
Mc−−→I (B1, C1), which has no

valid explanation: the implementation is unsound. �

To prevent this pattern, we demand that the two sides of a sum always emit to the same
participant. This excludes some implementable specifications, for instance when one of the
send can never be received (because the reception is never reached).

Duplicate-message Consider the following specification

A = a

B = a

C = a

The process A can send a message to either B or C. A dishonest machine in charge of
running A can send the same message to both. Any complete adequate implementation of
this specification is unsound

Proof: By completeness, the implementation must have two traces that are validly ex-
plained by A a B and A a C. Hence, there exist A1, A

′
1, B1, C1 such that:

A
Ma−−→A A1 A

M ′
a−−→A A

′
1 B

Ma−−→B B1 C
M ′

a−−→C C1

with ρ(Ma) = A a B and ρ(M ′
a) = A a C. Now, with C = {B;C}, as the implementation is

adequate, ∅ ⊢C Ma and ∅ ⊢C M ′
a. We get ∅, (B,C) Ma−−→I (B1, C)

M ′
a−−→I (B1, C1), which has

no valid explanation: the implementation is unsound. �
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To prevent this pattern, we demand that receives of each action a occur only at one partici-
pant.

Delayed-fork Consider the following specification

A = a+ b

B = a.c | b.d
C = c

D = d

The process A can send either a or b to B; B subsequently sends a message to C or D. Here,
dishonest machines in charge of running A and B can collude: A sends both messages to B
who sends in turn both messages to C and D. Any complete adequate implementation of
this specification is unsound.

Proof: By completeness, the implementation must have two traces that are validly ex-
plained by A a B.B c C and A b B.B d D. Hence, there exist A1, A

′
1, B1, B2, B1, B2, C1,

D1 such that:

A
Ma−−→A A1 A

Mb−−→A A
′
1 B

Ma−−→B B1
Mc−−→B B2 B

Mb−−→B B′
1
Md−−→B B′

2

C
Mc−−→C C1 D

Md−−→D D1

with ρ(Ma) = A a B, ρ(Mb) = A b B, ρ(Mc) = B c C, ρ(Md) = B d D. Now, with
C = {C;D}, as the implementation is adequate, ∅ ⊢C Ma,Mb andMa,Mb ⊢C Mc,Md. We get

∅, (C,D)
Mc−−→I (C1, D)

Md−−→I (C1, D1), which has no valid explanation: the implementation
is unsound. �

To prevent this pattern, we demand that the two sides of a sum affect the same participants
in the same order (the restriction on the two sides of a sum should not stop at the first level).

Early-duplicate-fork Consider the following specification

A = a

B = a.c | a.d
C = c

D = d

The process A sends a message to B. Depending on what part of B receives it, B can sends
a message to either C or D. A dishonest machine in charge of running B can send both
messages to C and D after a single receive. Any complete adequate implementation of this
specification is unsound.

Proof: By completeness, the implementation must have two traces that are validly ex-
plained by A a B.B c C and A a B.B d D. Hence, there exist A1, A

′
1, B1, B

′
1, B2, B

′
2, C1,

D1 such that:

A
Ma−−→A A1 A

M ′
a−−→A A

′
1 B

Ma−−→B B1
Mc−−→B B2 B

M ′
a−−→B B′

1
Md−−→B B′

2

C
Mc−−→C C1 D

Md−−→D D1

with ρ(Ma) = A a B, ρ(M ′
a) = A a B, ρ(Mc) = B c C, ρ(Md) = B d D. Now, with C =

{C;D}, as the implementation is adequate, ∅ ⊢C Ma,M
′
a and Ma,M

′
a ⊢C Mc,Md. We get

∅, (C,D)
Mc−−→I (C1, D)

Md−−→I (C1, D1), which has no valid explanation: the implementation
is unsound. �

To prevent this pattern, we demand that each occurrence of an action affect the same par-
ticipants, in the same order.
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Mixed-fork Consider the following specification

A = (b0 | c0) + (b1 | c1)
B = b0 | b1
C = c0 | c1

The process A can send either b0 to B and c0 to C, or b1 to B and c1 to C. A dishonest
machine in charge of running A can send b0 to B and c1 to C. Any complete adequate
implementation of this specification is unsound.

Proof: By completeness, the implementation must have four traces that are validly ex-
plained by A b0 B, A b1 B, A c0 C and A c1 C. Hence, there exist A1, A

′
1, A

′′
1 , A

′′′
1 , B1,

B′
1, C1, C

′
1 such that:

A
Mb0−−−→A A1 A

Mc0−−−→A A
′
1 A

Mb1−−−→A A
′′
1 A

Mc1−−−→A A
′′′
1 B

Mb0−−−→B B1

B
Mb1−−−→B B′

1 C
Mc0−−−→C C1 C

Mc1−−−→C C ′
1

with ρ(Mb0) = A b0 B, ρ(Mb1) = A b1 B, ρ(Mc0) = A c0 C, ρ(Mc1) = A c1 C. Now,
with C = {B;C}, as the implementation is adequate, ∅ ⊢C Mb0 ,Mc0 ,Mb1 ,Mc1 . We get

∅, (B,C) Mb0−−−→I (B1, C)
Mc1−−−→I (B1, C

′
1), which has no valid explanation: the implementation

is unsound. �

To prevent this pattern, we demand in some cases that actions in parallel affect the same
participants in the same order.

2.6 Implementability by typing

We develop a type system that guarantees implementability by tracking of causality in process
actions. Corin et al. [2007] and Bhargavan et al. [2009] use a list of semantic rules to prevent
unimplementability. In comparison, our type system is more uniform and efficient. However,
as most type systems, it may refuse some specifications that are implementable (e.g., programs
with unimplementable subprograms that can never be reached). Yet, we believe that practical
specifications are typable.

This type system uses two kinds of types, for sequential processes and (possibly) parallel
processes:
σ ::= sequential types

0 completion
i.σ sequence

π ::= parallel types
σ sequential type
i.π sequence
π |π parallel composition

Intuitively, our types indicate (with machine indexes i) which other participants may be affected
by each action, and in what order. In Example 1, with E = c1.c1.r1 | c2.c2.r2 and R = r1 + r2, the
action c1 is of type E.R since it is received by process E and this reception may contribute to the
emission of r1 to process R.

We define subtyping with three base rules and two context rules:

0 ≤ σ π |π ≤ π π ≤ π′ |π π ≤ π |π′ π ≤ π′

i.π ≤ i.π′
π1 ≤ π′

1 π2 ≤ π′
2

π1 |π2 ≤ π′
1 |π′

2

For example, with 0 ≤ σ, we state that an action that is never received can be considered, if
necessary, as a potential dangerous action that sequentially affect processes in σ. This set of
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rules ensure that, for a sequential type, we can “forget” potential future actions and obtain a less
precise type and, for parallel types, we can duplicate or merge parallel copies carrying the same
information. For simplicity, we inlined structural equivalence (e.g., we would not need the rule
π ≤ π |π′ if π′ |π was structurally equivalent to π′ |π).

We type local processes at each machine i ∈ 0..n − 1, in a given environment Γ that map
channels to types. The typing judgment Γ ⊢i P : π indicates that P can be given type π at
machine i in environment Γ, with the rules below:

(Send)

Γ, a : π ⊢i a : i.(π\i)

(Receive)

Γ, a : π ⊢i P : π′ π′ ≤ π

Γ, a : π ⊢i a.P : π′

(Sub)

Γ ⊢i P : π π ≤ π′

Γ ⊢i P : π′

(Nil)

Γ ⊢i 0 : i

(Plus)

Γ ⊢i P0 : σ Γ ⊢i P1 : σ

Γ ⊢i P0 + P1 : σ

(Par)

Γ ⊢i P0 : π Γ ⊢i P1 : π′

Γ ⊢i P0 |P1 : π |π′

(Repl)

Γ ⊢i P : π

Γ ⊢i!P : π

where π\i is π after erasure of every occurrence of i.

Rule (Send) gives to the output a the type of action a (minus i) preceded by i. This records
that a at host i affects any process that receives on a. Conversely, rule (Receive) gives to a.P the
type of the continuation process P , and checks that it is at least as precise as the type of action a.
Rule (Sub) enables subtyping. Rule (Nil) gives type i to an empty process, since it has no impact
outside i. Rule (Plus) ensures that the two branches of a choice have the same effect, a sequential
type, excluding e.g., the typing of the specifications in Example 7. Rules (Par) and (Repl) deal
with parallel compositions.

For instance, in the environment Γ = r1 : R, r2 : R, c1 : E.R, c2 : E.R, the processes of
Example 1 have types

Γ ⊢V1 V1 : V1.E.R Γ ⊢V2 V2 : V2.E.R Γ ⊢V3 V3 : V3.E.R Γ ⊢E E : E.R Γ ⊢R R : R

Conversely, the processes V1 = V2 = V3 = c1 + c2 are not typable within the unsafe specification
of Example 7 (in which E is replaced by E1 = c1.c1.r1 and E2 = c2.c2.r2), because c1 (e.g., ) and
c2 necessarily have incompatible types, e.g., Γ ⊢V1

c1 : V1.E1.R and Γ ⊢V1
c2 : V1.E2.R.

We end this section by defining typability for global specifications, with a shared environment
for all machines and a technical condition to ensure consistency on channels with parallel types.

Definition 6 (Well-typed) A global specification P̃ is well-typed when, for some environment
Γ and each i ∈ 0..n− 1, we have Γ ⊢i Pi : πi and, for each (a : π) ∈ Γ, either π is (a subtype of)

a sequential type, or P̃ has at most one receive on a.

We informally check that the unimplementable patterns are not well-typed.

Simple-fork By Rule Nil, ⊢B 0 : B, ⊢C 0 : C. In order to type B = b.0 and C = c.0 with
Rule Receive, we need Γ(b) = B and Γ(c) = C. Then, Γ ⊢A b : A.B and Γ ⊢A c : A.C by
Rule Send. We cannot apply Rule Plus and type process A since A.B and A.C are different.

Duplicate-message By Rules Receive and Nil, in order to type B and C, we need Γ(a) = B
and Γ(a) = C. This is not possible.

Delayed-fork By Rules Receive and Nil, in order to type C and D, we need Γ(c) = C and
Γ(d) = D. By Rules Receive and Send, in order to type B, we need Γ(a) = B.C and
Γ(b) = B.D. Then, Γ ⊢A a : A.B.C and Γ ⊢A b : A.B.D by Rule Send. We cannot apply
Rule Plus and type process A.

Early-duplicate-fork By Rules Receive and Nil, in order to type C and D, we need Γ(c) = C
and Γ(d) = D. By Rule Send, Γ ⊢B c : B.C and Γ ⊢A d : B.D. Then, by Rule Receive, in
order to type B, we need Γ(a) = B.C and Γ(a) = B.D. This is not possible.
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Mixed-fork By Rules Receive and Nil, in order to type B and C, we need Γ(b0) = B, Γ(b1) = B,
Γ(c0) = C and Γ(c1) = C. By Rules Send and Par ⊢A b0 | c0 : A.(B |C) and ⊢A b1 | c1 :
A.(B |C). We cannot apply Rule Plus and type process A in this case since the types are
parallels.

2.7 History-tracking implementations

In this section we present an implementation for session specifications. We prove that the imple-
mentation is complete, and that it is sound when the specification is well-typed (Definition 6).
The resulting family of implementations subsumes the one presented in the special case of binary
sessions (Section 2.4).

2.7.1 Multiparty specifications and history-tracking implementations

As seen in Example 1, in a multiparty system, a local action at one machine may causally depend
on communications between other machines. To prevent cheating, we embed evidence of past
execution history in our implementation messages. Thus, to implement Example 1, the code for
the election officer E explicitly forwards evidence of receiving c1 twice in order to convince R that
it can send the result r1.

As a preliminary step, we enrich processes with histories of prior communications. Then, we
equip these processes with a refined semantics, with rules that define how histories are collected
and communicated. Finally, the presence of histories allows us to constrain each local implemen-
tation by prescribing what messages may be sent and received at runtime. (Our history-tracking
implementation is related to locality semantics for CCS; for instance Boudol and Castellani [1994]
use proved labeled transitions that keep track of causality by recording where each action occurs
in a process.)

Histories and messages are defined by the following grammar:

H ::= Histories
ε empty history
H.M recorded receive

M ::= Messages
(H i a j ℓ)

Histories are sequences of messages. Each message H i a j ℓ records an action a between sender i
and receiver j (where i and j are indexes of processes in the global specification), with a history
H that provides evidence that action a is indeed enabled. In addition, ℓ denotes a unique nonce,
freshly generated for this message, used to avoid replays.

The syntax of local processes is extended with histories as follows:

T ::= Threads
0 inert thread
a asynchronous send
a.P receive
P + P ′ choice
!P replication

R ::= History-tracking processes
(T0 : H0 |T1 : H1 | . . . |Tk−1 : Hk−1) parallel composition history-annotated threads

R̃ ::= Global history-tracking specifications
(R0, R1, . . . , Rn−1) tuple of n history-tracking processes
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where P ranges over the local processes of Section 2.2. Our specification processes are split into
different parallel components, each with its own history. For example, when P = a.b | c receives
a, this receive enables action b (and is tracked in its history) but is independent from action c.
So, a thread T is a (specification) process without parallel composition at top-level, a history-
tracking process R is a collection of threads in parallel, each annotated with its history, and a
global history-tracking specification R̃ is a tuple of n history-tracking processes. We write M ∈ R̃
when M appear in R̃.

When P is not a single thread, we write P : H for the parallel composition of its threads, each
annotated with the same history H (i.e., P0 |P1 : H stands for P0 : H |P1 : H). Further, the
function [[·]]0 adds empty histories to a global specification, effectively generating a global history-
tracking specification. Conversely, since any thread is a local process, an history-tracking process
(resp. a global history specification) stripped of its histories is a local process (resp. a global
specification).

2.7.2 Semantics of history specifications (−→h and −→H)

We define labeled transitions for history specifications. We write R
γ−→h R

′ when R can evolve to
R′ with action γ. It corresponds to an input or an output on one of its threads.

(SendH)

T
a−→P P

T : H
H i a j ℓ−−−−−−→h P : H

(ReceiveH)

T
a−→P P

T : H ′ H i a j ℓ−−−−−−→h P : H ′.(H i a j ℓ)

(ParH)

R
γ−→h R

′

R |R′′ γ−→h R
′ |R′′

Rule (ReceiveH) records the message in the thread history. In contrast, rule (SendH) does not
record the message, since our semantics is asynchronous. Rule (ParH) is a rule for parallel contexts;
we omit the symmetric rule.

We write R̃
M−→H R̃

′ to represent communications between history-tracking specifications, with
a single global rule:

Ri
H i a j ℓ−−−−−−→h R

◦
i (Rk = R◦

k)
k 6=i

R◦
j
H i a j ℓ−−−−−−→h R

′
j (R◦

k = R′
k)
k 6=j H i a j ℓ 6∈ R̃

R̃
H i a j ℓ−−−−−−→H R̃

′

A communication step consists of a send (at machine i) followed by a receive (at machine j) for

local history-tracking processes (possibly with i = j). The condition H i a j ℓ 6∈ R̃ excludes
multiple usage of the same message.

The example below illustrates the semantics of history specifications.

Example 8 We consider a protocol involving three participant, with a request form the first partic-
ipant to the second, followed by a response from the second participant to the third. The processes
are C0 = a, C1 = a.b, and C2 = b. The following is a trace of its global history specification.

[[(C0, C1, C2)]] = (a : ε, a.b : ε, b : ε)0
ε 0 a 1 ℓ−−−−−−→H (0 : ε, b : ε 0 a 1 ℓ, b : ε)

(ε 0 a 1 ℓ)1 b 2 ℓ′−−−−−−−−−−−−→H (0 : ε,0 : ε 0 a 1 ℓ,0 : (ε 0 a 1 ℓ) 1 b 2 ℓ
′)
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2.7.3 Local semantics (−→i)

We are now ready to define distributed implementation transitions locally, for each machine i ∈
0..n− 1, written Ri

M−→i R
′
i:

[[P̃ ]]0
ψ−→H R̃′ H i a j ℓ 6∈ R̃′

R′
i
H i a j ℓ−−−−−−→h R

◦
i (R′

k = R◦
k)
k 6=i

R◦
j
H i a j ℓ−−−−−−→h R

′′
j (R◦

k = R′′
k)
k 6=j

R′
i
H i a j ℓ−−−−−−→i R

◦
i

[[P̃ ]]0
ψ−→H R̃′ H i a j ℓ 6∈ R̃′

R′
i
H i a j ℓ−−−−−−→h R

◦
i (R′

k = R◦
k)
k 6=i

R◦
j
H i a j ℓ−−−−−−→h R

′′
j (R◦

k = R′′
k)
k 6=j

R◦
j
H i a j ℓ−−−−−−→j R

′′
j

These rules (with identical premises) prescribe that a distributed implementation can send or
receive a message when the corresponding communication is enabled in some global history speci-
fication state that is reachable from the initial history specification process [[P̃ ]]0.

For instance, with the specification of Example 8, we get

a : ε
ε 0 a 1 ℓ−−−−−−→0 0

a.b : ε
ε 0 a 1 ℓ−−−−−−→1 b : (ε 0 a 1 ℓ)

(ε 0 a 1 ℓ)1 b 2 ℓ′−−−−−−−−−−−−→1 0 : (ε 0 a 1 ℓ)

b : ε
(ε 0 a 1 ℓ) 1 b 2 ℓ′−−−−−−−−−−−−−→2 0 : ((ε 0 a 1 ℓ) 1 b 2 ℓ′)

A naive concrete implementation may enumerate all possible runs at every communication.
A more efficient implementation may cache this computation and perform incremental checks, or
perform this computation at compile-time. (See Corin et al. [2007], Bhargavan et al. [2009] for
optimized implementations in the sequential case.)

2.7.4 Distributed implementation

We finally define our distributed implementation, with Q̃ = [[P̃ ]]0 as initial implementation pro-

cesses, with (
γ−→i)i defined above as transition relations between implementation processes, and

with capabilities ⊢C for the adversary defined by

M ∈ M
M ⊢C M

(M ⊢C Mm)m<k i 6∈ C
M ⊢C M0. · · · .Mk−1 i a j ℓ

The first rule states that the adversary can eavesdrop messages on the network. The second rule
states that the adversary can build any message sent by a dishonest participant, with an history
composed of sequence of messages previously obtained. Conversely, the adversary cannot forge
any message from a compliant machine (i.e., a machine i ∈ C). This can be cryptographically
enforced by signing messages and their histories. Our implementation is adequate, in particular a
dishonest participant can behave as an honest participant.

(The global transition rules −→I for our distributed implementation follow from the general
definitions of Section 2.3.)

2.7.5 Soundness and completeness

Our implementation is complete, that is, it can simulate any specification trace:

Theorem 2 (Completeness) 〈[[P̃ ]]0, −̃→,⊢C〉 is a complete implementation of P̃ .

The proof of Theorem 2 is at the end of this chapter, in Subsection 2.10.2.
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Our main result states that our implementation is also sound when applied to well-typed speci-
fications; as explained in Section 2.6, many other specifications cannot be safely implemented.

Theorem 3 (Soundness by Typing) If P̃ is well-typed, then 〈[[P̃ ]]0, −̃→,⊢C〉 is sound.

The proof of Theorem 3 is at the end of this chapter, in Subsection 2.10.3.

2.8 Sequential multiparty sessions (application)

We consider secure implementations of sequential multiparty sessions, as defined by Corin et al.
[2007]. Their sessions are a special case of process specifications. We recall their grammar, which
defines a session as a parallel composition of role processes, each process specifying the local actions
for one role of the session.

τ ::= Payload types
int | string base types

p ::= Role processes
!(fi : τ̃i ; pi)i<k send
?(fi : τ̃i ; pi)i<k receive
µχ.p recursion declaration
χ recursion
0 end

S ::= Sequential session (with n roles)
(ri = pi)i∈0..n−1

Their role processes must alternate between send and receive actions, and moreover only the
initiator role process (p0) begins with a send. Thus, there is always at most one role that can send
the next message, as expected of a sequential session. From a more global viewpoint, a session
is represented as a directed graph, whose nodes represent roles and whose arrows are indexed by
unique communication labels. The paths in the graph correspond to the global execution traces
for the session. Given an additional implementability property on these paths, named “no blind
fork”, they construct a cryptographic implementation that guarantees session integrity, even for
sessions with dishonest participants, a property closely related to Soundness (Definition 4).

For example, the session graph:

A
a−−−−−−−−−−−→ B

b−−−−−−−−−−−→ A

corresponds to the source code:

A0 = !(a : int ; ?(b : int ; 0)) A1 = ?(a : int ; !(b : int ; 0))

In our grammar, it can be modeled with the two processes:

A0 = a | b A1 = a.b

To illustrate our approach, we show that our generic implementation directly applies to every
session that they implement (although with less compact message formats). We translate their
role processes into our syntax as follows:

[[p]] =
∑
i<k(fi) when p = !(fi : τ̃i ; pi)i<k

|∏
(?(fi:τ̃i ; pi)i<k)∈p, i<k, pi=!(f ′

j
:τ̃ ′

j
; p′

j
)j<l

!fi.
∑
j<l(f

′
j)

|∏(?(fi:τ̃i ; pi)i<k)∈p, i<k, pi=χ, (µχ.!(fj :τ̃j ; pj)j<l)∈p!fi.
∑
j<l(f

′
j)

[[(ri = pi)i∈0..n−1]] = ([[pi]])i∈0..n−1
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Each node in a session graph has an input arrow and one or several output arrows, representing an
internal choice between outputs. Accordingly, our translation associates to each node a replicated
input followed by a choice between asynchronous outputs. In addition, the initial role for the session
is an internal choice between outputs, translated to an internal choice of asynchronous outputs.
We can check that our translation behaves as the initial sequential session. (The sequentiallity of
the session follows from the presence of a single choice between outputs in every reachable state,
so we can replicate all inputs, whether they occur in recursive loops or not.) Also, for any given
sequential session, typability of the translation (Definition 6) coincides with the “no blind fork”
property Corin et al. [2007]. Hence, every sequential session supported by their implementation is
typable, and can also be implemented in our general framework.

2.9 Conclusion

We have given an account of distributed specifications and their implementations in three steps:
(1) a global specification language; (2) a distributed implementation semantics; (3) correctness
and completeness results, depending on an implementability condition. In combination, this yields
a general framework for designing and verifying n-ary communication abstractions with strong,
guaranteed security properties. (In comparison, the work on sequential multiparty sessions Corin
et al. [2007] can now be seen as a specialized cryptographic implementation for the sequential
case.)

2.10 Proofs

2.10.1 Proof of Theorem 1

In order to prove soundness, we first show some properties of low level traces when both participants
are honest (C = {0; 1}):

Lemma 1 Let P ′
0 and P ′

1 be two processes, M be a set of low level messages and ψ, ψ0, ψ1 be
three low level traces such that

0, (P0 : 0, P1 : 0)
ψ−→I M, (P ′

0 : ψ0, P
′
1 : ψ1)

Let γ be a low level action and i a j ℓ a low level message. We have:

1. if i a j ℓ ∈ ψ then i a j ℓ ∈ ψi;

2. if i a j ℓ ∈ ψ, then i a j ℓ ∈ ψj;

3. if i a j ℓ ∈ ψ, then i a j ℓ occurs in ψ before i a j ℓ;

4. γ occurs at most once in ψ.

Proof: The proof is by induction on the length of ψ. If ψ = ε, the lemma holds. Otherwise,
there exists ψ′, ψ′

0, ψ
′
1, γ, M′, P ′′

0 and P ′′
1 such that

0, (P0 : 0, P1 : 0)
ψ′

−→I M′, (P ′′
0 : ψ′

0, P
′′
1 : ψ′

1)
γ−→I M, (P ′

0 : ψ0, P
′
1 : ψ1)

We consider three cases for γ:

• If γ = i a j ℓ, by definition of −→I, and −→i, we have ψi = ψ′
i.i a j ℓ, ψ′

j = ψj , and M =
M′.i a j ℓ. Using the induction hypothesis, we prove items 1-3 on ψ, ψ0, and ψ1. By
definition of −→i, we have i a j ℓ 6∈ ψ′

i. Using induction hypothesis applied to item 1, we
deduce that i a j ℓ 6∈ ψ. We thus prove item 4 for ψ′.
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• If γ = i a j ℓ, by definition of −→I, and −→j , we have ψ′
i = ψi, ψj = ψ′

j .i a j ℓ, and M′ = M.
Using the induction hypothesis, we prove items 1-3 on ψ, ψ0, and ψ1. By definition of −→j , we
have i a j ℓ 6∈ ψ′

j . Using induction hypothesis applied to item 2, we deduce that i a j ℓ 6∈ ψ′.
We thus prove item 4 for ψ.

• Otherwise, if γ = i′ a ′ j′ ℓ or γ = i′ a ′ j′ ℓ with i′ a ′ j′ ℓ 6= i a j ℓ, we conclude by induction.

�

To prove soundness when both participants are honest (C = {0; 1}), we introduce an interme-
diate semantics that independently gathers the inputs and outputs of a couple of process. Given
two processes (P ′

0, P
′
1), its rules are:

P ′
0
a−→P P

′′
0

(P ′
0, P

′
1)

0 a 1 ℓ−−−−−→ (P ′′
0 , P

′
1)

P ′
0
a−→P P

′′
0

(P ′
0, P

′
1)

1 a 0 ℓ−−−−−→ (P ′′
0 , P

′
1)

and symmetrically for P ′
1. We first show that implementation traces are traces of this semantic:

Lemma 2 Let P ′
0 and P ′

1 be two processes, M be a set of low level messages and ψ, ψ0, ψ1 be
three low level traces such that

0, (P0 : 0, P1 : 0)
ψ−→I M, (P ′

0 : ψ0, P
′
1 : ψ1)

Then

(P0, P1)
ψ−→ (P ′

0, P
′
1)

Proof: From rules on −→i and −→P. �

This semantics has some reordering properties:

Lemma 3 Let P ′
0, P

′′
0 , P

′
1, and P ′′

1 be four processes, i a j ℓ and i′ a ′ j′ ℓ be two low level
messages, and ψ1 and ψ2 be two low level traces.

• If (P ′
0, P

′
1)

i a j ℓ−−−−→ i′ a′ j′ ℓ−−−−−−→ (P ′′
0 , P

′′
1 ) then (P ′

0, P
′
1)

i′ a′ j′ ℓ−−−−−−→ i a j ℓ−−−−→ (P ′′
0 , P

′′
1 ) and a valid

explanation of a trace ψ1.(i′ a ′ j′ ℓ).(i a j ℓ).ψ2 is also a valid explanation of the trace
ψ1.(i a j ℓ).(i′ a ′ j′ ℓ).ψ2.

• If (P ′
0, P

′
1)

i a j ℓ−−−−→ i′ a′ j′ ℓ−−−−−−→ (P ′′
0 , P

′′
1 ) and i a j ℓ 6= i′ a ′ j′ ℓ then (P ′

0, P
′
1)

i′ a′ j′ ℓ−−−−−−→ i a j ℓ−−−−→
(P ′′

0 , P
′′
1 ) and a valid explanation of the trace ψ1.(i

′ a ′ j′ ℓ).(i a j ℓ).ψ2 is also a valid expla-
nation of a trace ψ1.(i a j ℓ).(i′ a ′ j′ ℓ).ψ2.

Proof: From rules on −→P and definition of valid explanations. �

We are interested in low-level traces that follow a particular order, which makes them easier
to relate to high-level traces.

Definition 7 We say that a low-level trace ψ is sorted when

• every input in ψ is immediately preceded by its unique corresponding output;

• outputs not received in ψ are at the end of the trace.
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We now show that we can sort traces of our intermediary semantic if they follow certain
properties.

Lemma 4 Let P ′
0 and P ′

1 be two processes, and ψ a low level trace such that:

• (P0, P1)
ψ−→ (P ′

0, P
′
1);

• any low level action γ occurs at most once in ψ;

• for any low level message i a j ℓ occurring in ψ, i a j ℓ occurs in ψ before i a j ℓ.

Then, there exists a sorted trace ψ′ that follows the same properties and is such that every valid
explanation of ψ′ is a valid explanation of ψ.

Proof: In a trace following the hypotheses of Lemma 4, we call uncoupled outputs that have
no corresponding input. We define an algorithm sorting the trace:

• If there exists an uncoupled output immediately followed by an action which is not an
uncoupled output, we swap them. We repeat this operation until the uncoupled outputs are
at the end of the trace. This terminates since uncoupled outputs are only moved toward the
end of the trace.

• Otherwise, if there exist an input not immediately preceded by its corresponding output, we
consider the output corresponding to the last of these inputs and we swap it with the action
immediately after. We repeat this operation until there are no input immediately preceded
by its corresponding output. This terminates since each step lower the distance between an
input and its corresponding output, while leaving the end of the trace (containing already
sorted actions) unchanged.

After each step, the resulting trace respects the hypotheses of the lemma (by hypotheses on ψ and
Lemma 3). Also, every valid explanation of this new trace is a valid explanation of the original
trace ψ.

�

Now, we show that we can build a valid explanation for low-level traces that are sorted.

Lemma 5 Let P ′
0 and P ′

1 be two processes, and ψ a sorted low-level trace such that (P0, P1)
ψ−→

(P ′
0, P

′
1); Let ρ0 be the function from low level messages to high levels messages (and extended to

traces) defined by ρ0(i a j ℓ) = ε and ρ0(i a j ℓ) = i a j. Then, the high level trace ϕ = ρ0(ψ) is

a valid explanation of ψ. There exists P ′′
0 and P ′′

1 such that (P0, P1)
ϕ−→S (P ′′

0 , P
′′
1 ). Furthermore,

if there is no uncoupled output in ψ, then (P0, P1)
ϕ−→S (P ′

0, P
′
1).

Proof: The proof is by induction on the length of the trace ψ. Let ψ be a low level trace
following the hypotheses of Lemma 5. we distinguish three possible cases:

• The last action of ψ is an output, of the form i a j ℓ : there exists a low level trace ψ′ such
that ψ = ψ′.i a j ℓ. The trace ψ′ verifies the hypotheses of the lemma and is smaller that ψ,

hence, by induction, there exists P ′′
0 and P ′′

1 such that (P0, P1)
ρ0(ψ

′)−−−−→S (P ′′
0 , P

′′
1 ). Moreover,

ρ0(ψ) = ρ0(ψ
′).ρ0(i a j ℓ) = ρ0(ψ

′), hence (P0, P1)
ρ0(ψ

′)−−−−→S (P ′′
0 , P

′′
1 ), and we conclude.

34



• The last action of ψ is an input, of the form i a j ℓ, by hypothesis, it must be preceded
by its unique corresponding output i a j ℓ : there exists a low level trace ψ′ such that ψ =

ψ′.i a j ℓ.i a j ℓ, and there exists P ′′
0 and P ′′

1 such that (P0, P1)
ψ′

−→ (P ′′
0 , P

′′
1 )

i a j ℓ−−−−→ i a j ℓ−−−−→
(P ′

0, P
′
1). Also, ψ does not finish by an output, hence, there is no uncoupled output in ψ or

in ψ′. ψ′ verifies the hypotheses of the lemma and is smaller that ψ, hence, by induction,

(P0, P1)
ρ0(ψ

′)−−−−→S (P ′′
0 , P

′′
1 ). By definition of −→, we have P ′′

i
a−→P P

′
i and P ′′

j
a−→P P

′
j . Hence,

by definition of −→S, (P0, P1)
ρ0(ψ

′).ρ(i a j ℓ)−−−−−−−−−−−→S (P ′
0, P

′
1). By definition of ρ0, we have ρ0(ψ) =

ρ0(ψ
′).ρ0(i a j ℓ).ρ0(i a j ℓ) = ρ0(ψ

′).i a j. We conclude.

• Otherwise, ψ is empty and the lemma holds.

�

Our last lemma states (and prove by induction) a property slightly stronger than completeness.

Lemma 6 For C = {0; 1} and for every source execution P̃
ϕ−→S P̃

′, there exist a memory M, and
three low-level traces ψ, ψ0, ψ1 such that ϕ is a valid explanation of ψ, ϕ = ρ(ψ0) = ρ(ψ1) and

ε, (P0 : ε, P1 : ε)
ψ−→I M, (P ′

0 : ψ0, P
′
1 : ψ1)

Proof: The proof is by induction on the trace ϕ. If ϕ = ε, ϕ is a valid explanation of ψ = ε.
Otherwise, there exist ϕ′, α, P ′′

0 and P ′′
1 such that ϕ = ϕ′.α and:

P̃
ϕ′

−→S P̃ ′′ α−→S P̃ ′

By induction on ϕ′, there exists ψ′, ψ′
0, ψ

′
1 such that ϕ′ valid explanation of ψ′, ϕ′ = ρ(ψ′

0) = ρ(ψ′
1)

and

ε, (P0 : ε, P1 : ε)
ψ′

−→I M, (P ′′
0 : ψ′

0, P
′′
1 : ψ′

1)

From the definition of −→i and −→I, we get

ε, (P0 : ε, P1 : ε)
ψ′·(α ℓ)·(α ℓ)−−−−−−−−−→I M′, (P ′

0 : ψ0 · (α ℓ), P ′
1 : ψ1 · (α ℓ))

Furthermore, ϕ′ ·α is a valid explanation of ψ′ ·(α ℓ) ·(α ℓ); and ϕ′ ·α = ρ(ψ0 ·(α ℓ)) = ρ(ψ1 ·(α ℓ)),
we conclude. �

Proof of Theorem 1 Completeness follows from Lemma 6.

We prove soundness separately for the three kinds of sets C of honest participants:

• When both participants are honest (C = {0; 1}), we conclude by applying Lemmas 1, 2, 4,
and 5.

• When exactly one of the participants is honest (assume C = {0}, the other case is symmetric),
we have

∅, P0 : 0
ψ−→I M, P ′

0 : ψ

We focus on the last action of ψ, and consider three possible cases:

– The last action of ψ is an output: there exists ψ′ such that ψ = ψ′.(1 a 0 ℓ) (the case

ψ = ψ′.(0 a 1 ℓ) is similar). From the definition of −→I and −→0, there exists P ′
1 and P̃ ′′

such that

P̃
ρ(ψ′)−−−→S P̃ ′′ 1 a 0−−−→S P̃ ′ 1 a 0 ℓ 6∈ ψ′

P ′
0 : ψ′ 1 a 0 ℓ−−−−−→0 P

′′
0 : ψ′.(1 a 0 ℓ)

35



We have P̃
ρ(ψ′).(1 a 0)−−−−−−−−→S P̃ ′ and the high level trace ρ(ψ′).(1 a 0) is equal to ρ(ψ),

which is a valid explanation of ψ.

– Similarly, if the last action of ψ is an input: there exists ψ′ such that ψ = ψ′.(1 a 0 ℓ)
(the case ψ = ψ′.(0 a 1 ℓ) is similar). From the definition of −→I and −→0, there exists

P ′
1 and P̃ ′′ such that

P̃
ρ(ψ′)−−−→S P̃ ′′ 1 a 0−−−→S P̃ ′ 1 a 0 ℓ 6∈ ψ′

P ′
0 : ψ′ 1 a 0 ℓ−−−−−→ P ′′

0 : ψ′.(1 a 0 ℓ)

We have P̃
ρ(ψ′).(1 a 0)−−−−−−−−→S P̃ ′ and the high level trace ρ(ψ′).(1 a 0) is equal to ρ(ψ),

which is naturally a valid explanation of ψ.

– If ψ = ε, we conclude.

• When no participant is honest, the only implementation trace is ε, we conclude.

�

2.10.2 Proof of Theorem 2

We first introduce a lemma that states (and prove by induction) a property slightly stronger than
completeness.

Lemma 7 For C = {0 . . . n} and for every high level trace P̃
ϕ−→S P̃

′, there exist a memory M, an

implementation trace ψ, and an history-tracking specification R̃′ such that ϕ is a valid explanation
of ψ, P̃ ′ is R̃′ after erasing of the histories and

ε, [[P̃ ]]0
ψ−→I M, R̃′

Proof: The proof is by induction on the trace ϕ. If ϕ = ε, ϕ is a valid explanation of ψ = ε.
Otherwise, there exist ϕ′, α, and P̃ ′′ such that ϕ = ϕ′.α and:

P̃
ϕ′

−→S P̃ ′′ α−→S P̃ ′

We conclude by induction on ϕ′ and definitions of −→i and −→I. �

Proof of Theorem 2 Completeness follows from Lemma 7. �

2.10.3 Proof of Theorem 3

The proof relies on auxiliary lemmas. In these lemma we assume a specification P̃ , its history-
tracking implementation R̃, and a set of honest participants C. We first define the notion of
inclusion for messages in traces or history-tracking process.

Definition 8 (History inclusion) Let R be an history-tracking process, ψ a low-level trace, M
a memory, H and H ′ two history, and M and M ′ two low-level messages. We use ⊳ for the
relation of subterm:

• M ⊳R when M is a subterm of R;

• M ⊳ ψ when M is a subterm of ψ;
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• M ⊳M when M is a subterm of M;

• M ⊳H when M is a subterm of H;

• M ⊳M ′ when M is a subterm of M ′;

• H ⊳R when H is a subterm of R;

• H ⊳ ψ when H is a subterm of ψ;

• H ⊳M when H is a subterm of M;

• H ⊳H ′ when H is a subterm of H ′;

• H ⊳M when H is a subterm of M .

We use ∈ for inclusion at top level:

• M ∈ R when M ∈ H and H ∈ R;

• M ∈ ψ and M ∈ ψ are already defined;

• M ∈ M when M is one of the message of the set M;

• M ∈ H when H is of the form . . . .M. . . . ;

• M ∈M ′ when M ∈ H and H ∈M ′;

• H ∈ R when T : H appear in R for some T ;

• H ∈ ψ when H ∈M and M ∈ ψ;

• H ∈ M when H ∈M and M ∈ M;

• H ∈ H ′ when H ∈M and M ∈ H ′;

• H ∈M when M is of the form H i a j ℓ.

We say that H i a j ℓ is from i and addressed to j.

In the next lemma, we show that each message that is part of an history of one of the history
tracking process appear in the trace of the history tracking execution, and reciprocally. Also, we
show that each message that is a subterm of an history of one of the history tracking process
appear in the trace of the history tracking execution.

Lemma 8 Let ψ be a low-level trace, let M be a message addressed to j, let R̃′ be an history-

tracking specification. If R̃
ψ−→H R̃′, then

• M ∈ R′
j ⇔M ∈ ψ;

• M ⊳R′
j′ ⇒M ∈ ψ.

Proof: We let M = H i a j ℓ. The proof is by induction on the length of ψ. If ψ = ε, R̃′ = R̃,
and we conclude. Otherwise, there exist ψ′, M ′, and R̃′′ such that

R̃
ψ′

−→H R̃′′ M ′

−−→H R̃′

We consider two cases (we assume i 6= j, the other case is similar):
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• If M ′ = M , by definition of −→H, there exist R′′′
i , R

′′′
j , H

′ and P such that R′′
i = a : H|R′′′

i ,
R′
i = 0 : H|R′′′

i R′′
j = a.P : H ′|R′′′

i , R
′
j = P : H ′.M |R′′′

j , and R
′
k = R′′

k for k 6= i′ and k 6= j′.
Thus M ∈ R′ and M ∈ ψ. We conclude.

• Otherwise, M ∈ ψ ⇔ M ∈ ψ′. We let M ′ = H ′′ i′′ a ′′ j′′ ℓ′′ and, by definition of −→H,
there exist R′′′

i′′ , R
′′′
j′′ , H

′′′ and P such that R′′
i′′ = a′′ : H ′′|R′′′

i′′ , R
′
i′′ = 0 : H ′′|R′′′

i′′ , R
′
j′′ =

a.P : H ′′′|R′′′
j′ , R

′
j′′ = P : H ′′′.(M ′)|R′′′

j′′ , and R′
k = R′′

k for k 6= i′′ and k 6= j′′. Hence,
M ∈ R′

j ⇔M ∈ R′′
j , we conclude our first point. For the second point:

– If M ⊳R′
j′ , we conclude by induction.

– If M ⊳ R′′
j′ but M 6 ⊳R′

j′ , we have M ⊳H ′′ (and j′ = j′′). Hence, we have M ⊳ R′′
i′′ ,

and we conclude by induction.

�

In the next lemma, we show that an action can only occurs once in an implementation trace.

Lemma 9 Let ψ be an implementation trace, let R̃′ be an history-tracking specification and let M
be a memory such that R̃

ψ−→H R̂′ or R̂, ε
ψ−→I R̂′,M. Let γ be an action, γ occurs at most once in

ψ.

Proof: By definition of −→H, and Lemma 8, if R̃
ψ−→H R̂′, γ occurs at most once in φ. The other

case is a corollary, from the definition of −→i and −→I. �

In the next lemma, we show the consistency of histories.

Lemma 10 Let ϕ be an implementation trace, let R̃′ be an history tracking specification such that

R̃
ϕ−→H R̃′, let H0 be an history, let M and M ′ be two messages. If H0 ⊳ R̃′, M.M ′ ⊳ R̃′ and

M ′ ∈ H0 then M.M ′ ∈ H0.

Proof: Let M = H i a j ℓ and M ′ = H ′ i′ a ′ j′ ℓ′. The proof is by induction on the length of
ϕ. If ϕ = ε, R̃′ contains no messages, and we conclude. Otherwise, there exist ϕ′, M ′′, and R̃′′

such that

R̃
ϕ′

−→H R̃′′ M ′′

−−→H R̃′

We consider two cases (we assume that M ′′ is from i and addressed to j with i 6= j, the other case
is similar):

• If M ′′ = M = H i a j ℓ, by definition of −→H, there exist R′′′
i , R

′′′
j , H

′′ and P such that
R′′
i = a : H|R′′′

i′ , R
′
i = 0 : H ′′|R′′′

i′ , R
′
j′ = a.P : H ′′|R′′′

j′ , R
′
j = P : H ′′.M |R′′′

j′ , and R
′
k = R′′

k

for k 6= i and k 6= j. By Lemma 9, M 6∈ ϕ′, hence, by Lemma 8, M 6 ⊳R′′. Hence M.M ′⊳ R̃′

is not possible. We conclude.

• If M ′′ = M ′ = H ′ i′ a ′ j′ ℓ′, by definition of −→H, there exist R′′′
i′ , R

′′′
j′ , H

′′ and P such

that R′′
i′ = a′ : H ′|R′′′

i′ , R
′
i′ = 0 : H ′|R′′′

i′ , R
′
j′ = a′.P : H ′′|R′′′

j′ , R
′
j′ = P : H ′′.M ′|R′′′

j′ , and
R′
k = R′′

k for k 6= i′ and k 6= j′. By Lemma 9, M ′ 6∈ ϕ′, hence, by Lemma 8, M ′ 6 ⊳R′′.

Hence M ′ ∈ H0 and H0 ⊳ R̃′ implies that H ′′.M ′ ends with H0. Also, M.M ′ ⊳ R̃′ implies
that H ′′.M ′ ends with M.M ′. We conclude.

• Otherwise, we conclude by induction on ϕ′.

�
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In the next lemma, we show that, under certain conditions, we can swap messages in history-
tracking traces.

Lemma 11 Let R̃′,R̃′′, and R̃′′′ be history-tracking specifications, let M and M ′ be two messages.

If R̃′ M−→H R̃′′ M ′

−−→H R̃′′′, M 6∈ H and (M.M ′) 6∈ R̃′′′, then, R̃′ M ′

−−→H

M−→H R̃′′′.

Proof: We let M = H i a j ℓ and M ′ = H ′ i′ a ′ j′ ℓ′. By definition of −→H (assuming that
i 6= j and i′ 6= j′), there exist R◦

i′ , R
◦
j′ , H

◦ and P such that R′
i′ = a : H|R◦

i′ , R
′′
i′ = 0 : H|R◦

i′ ,
R′
j′ = a.P : H◦|R◦

j′ , R
′′
j′ = P : H◦.M |R◦

j′ , and R′
k = R′′

k for k 6= i′ and k 6= j′, and there exist

R◦◦
i , R◦◦

j , H◦◦ and P ′ such that R′′
i = a′ : H ′|R◦◦

i , R′′′
i = 0 : H ′|R◦◦

i , R′′
j = a′.P ′ : H◦◦|R◦◦

j ,
R′′′
j = P ′ : H◦◦.(M ′)|R◦◦

j , and R′′
k = R′′′

k for k 6= i′ and k 6= j′. M 6∈ H, hence H ′ 6= H.M and

a′ : H ′ is not in P : H.M . (M.M ′) 6∈ R̃′′′, hence H◦◦.(M ′) 6= H◦.M.M ′, hence H◦◦ 6= H◦.M and
a′.P ′ : H◦◦ is not in P : H ′.M . The part consumed in R′′ are not part of P , hence, by definition

of −→H, R̃′ H i a j ℓ−−−−−−→H

M−→H R̃′′′. �

We extend typing on messages, threads and histories; checking that those are compatible. For
example, a thread i should contains, at top level of his history, only messages that are addressed
to him.

Definition 9 (Implementation typing) Let Γ be an environment, H an history, and H i a j ℓ
and T a thread, we extend typing for message, histories, and threads:

(Message)

Γ, a : π ⊢ H : i.(π\i) j.π′ ≤ π

Γ, a : π ⊢ H i a j ℓ : j.π′

(History)

Γ ⊢M : π Γ ⊢ H : π

Γ ⊢ H.M : π

(Thread)

Γ ⊢ H : π Γ ⊢i T : π

Γ ⊢i (T : H) : π

We also write ⊢ X ≥ π when for all π′ such that ⊢ X : π′, π ≤ π′.

In the next lemma, we show subject reduction for this extended typing.

Lemma 12 (Subject Reduction) Let R̃′ and R̃′′ be two history tracking specifications, let M
be a message, let γ be a low level action (either M or M , let M and M′ be two memories. If

Γ ⊢ R̃′ and h̃p′
M−→H R̃′′ then Γ ⊢ M and Γ ⊢ R̃′′. If Γ ⊢ R̃′, Γ ⊢ M and M, h̃p′

γ−→I M′, R̃′′ then
Γ ⊢M , Γ ⊢ R̃′′, and Γ ⊢ M′.

Proof: We let M = H i a j ℓ and Γ(a) = π. By definition of −→H (assuming that i 6= j),
there exist R◦

i , R
◦
j , H

◦ and P such that R′
i = a : H|R◦

i , R
′′
i = 0 : H|R◦

i , R
′
j = a.P : H◦|R◦

j ,
R′′
j = P : H◦.(M)|R◦

j , and R′
k = R′′

k for k 6= i and k 6= j. By Rule Send, Γ ⊢i a : i.(π\i).
Since Γ ⊢ R′, we have by Rule Thread Γ ⊢ H : i.(π\i). Also, by Rule Receive, Γ ⊢j a.P : π′,
hence Γ ⊢ H◦ : π′. Γ ⊢j a.P : π′, hence π′ ≤ π from Rule Receive. Also, π′ = j.π′′ (since
all types typed by ⊢j start by j). Thus j.π′′ ≤ π and Γ ⊢ M : π′ with Rule Message. Finally,
Γ ⊢j (P : H◦.(M)) : π′ and we conclude.

The proof for −→I is similar. �

In the next lemma, we show that if a message sent by an honest participant is a subterm of a
message known from the memory, then this message is contained in the memory.

Lemma 13 Let M be a memory, let M and M ′ be two messages such that M is from an honest
participant and M ⊳M ′. If M ⊢C M ′ then M ⊳M.
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Proof: The proof is by induction on the derivation of M ⊢C M ′. If M ′ ∈ M we conclude.

Otherwise, it is obtained by the rule
(M ⊢C Mm)m<k i 6∈ C
M ⊢C M0. · · · .Mk−1 i a j ℓ

withM ′ =M0. · · · .Mk−1 i a j ℓ.

If Mm = M for some m < k, M ⊢C implies M ∈ M since M is from an honest participant.
Otherwise , M ∈Mm for some m < k, and we conclude by induction. �

In the next lemma, we show that if a message is typable, its history should contain, at top
level, only messages that are addressed to its sender.

Lemma 14 Let M and M ′ be two messages such that Γ ⊢M ′. If M ∈M ′ and M ′ is from i then
M is addressed to i.

Proof: By Rule Message and History, we need ⊢M : i.(π\i) to typeM ′, henceM is addressed
to i. �

In the next lemma, we show that if a message is received by an honest participant, is known
from the memory, and contains another message, then this message is contained in the memory.

Lemma 15 Let M be a typable memory, let M and M ′ be two typable messages such that M ⊢C
M ′ and M is addressed to an honest participant. If M ⊳M ′ then, there exists M ′′ ∈ M such that
M ⊳M ′′ and M ′′ ⊳M ′.

Proof: The proof is by induction on the derivation of M ⊢C M ′. If M ′ ∈ M we conclude.

Otherwise, it is obtained by the rule
(M ⊢C Mm)m<k i 6∈ C
M ⊢C M0. · · · .Mk−1 i a j ℓ

withM ′ =M0. · · · .Mk−1 i a j ℓ.

If Mm = M for some m < k, by Lemma 14 we have i ∈ C since M is addressed to an honest
participant. Hence M ′ ∈ M (this case is already treated). Otherwise, M ⊳Mm for some m < k,
and we conclude by induction. �

In the next lemma, we show relation between contents of the implementation traces and history-
tracking processes.

Lemma 16 Let ψ be an implementation trace, let R̃′ be an history tracking specification, let M
be a memory, let M be a message from i addressed to j, and let H be an history such that H ∈M .

If R̂, ε
ψ−→I R̂′,M, then

1. M ∈ ψ ⇔M ∈ R′
j;

2. M ∈ ψ ⇔M ∈ M;

3. M ∈ ψ ⇒ M ⊢M ;

4. M ∈ ψ ⇒ H ∈ R′
i.

Proof: We let M = H i a j ℓ. The proof is by induction on the length of ψ. If ψ = ε, R̂′ = R̂,
and we conclude. Otherwise, there exist ψ′, γ, M′, and R̂′′ such that

R̂, ε
ψ′

−→I R̂′′,M′ γ−→I R̂′,M

We consider four cases:

1. If γ = M , by definition of −→I, and −→j , there exist R′′′
j , H

′ and P such that R′′
j = a.P :

H ′|R′′′
j , R

′
j = P : H ′.M |R′′′

j , and R
′
k = R′′

k for k 6= j. Also, M ⊢M and M = M′.
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2. If γ = M , by definition of −→I, and −→i, there exist R′′′
i such that R′′

i = a : H|R′′′
i , R

′
i = 0 :

H|R′′′
i , and R

′
k = R′′

k for k 6= i. Also, M′ = M.M .

3. Otherwise, if γ = H ′ i′ a ′ j′ ℓ′ = M ′, by definition of −→I, and −→i′ , there exists R′′′
i′ such

that R′′
i′ = a′ : H ′|R′′′

i′ , R
′
i′ = 0 : H ′|R′′′

i′ , and R
′
k = R′′

k for k 6= i′. Also, M = M′.M ′.

4. Otherwise γ = H ′ i′ a ′ j′ ℓ′ = M ′, by definition of −→I, and −→j′ , there exist R′′′
j′ , H

′′, and
P such that R′′

j′ = a′.P : H ′′|R′′′
j′ , R

′
j′ = P : H ′′.M ′|R′′′

j′ , and R′
k = R′′

k for k 6= j′. Also,
M ⊢M ′ and M = M′.

We now prove the four points of the lemma depending on these cases:

1. In Case 1, M ∈ R′
j and M ∈ ψ; in Cases 2,3,4 M ∈ R′

j ⇔ M ∈ R′′
j and M ∈ ψ ⇔ M ∈ ψ′,

and we conclude by induction.

2. In Case 2, M ∈ ψ and M ∈ M; in Cases 1,3,4 M ∈ ψ ⇔ M ∈ ψ′ and M ∈ M ⇔ M ∈ M′,
and we conclude by induction.

3. In Case 1, M ⊢M (and M ∈ ψ); in Cases 2,3,4 M ∈ ψ ⇒M ∈ ψ′ and M′ ⊢M ⇒ M ⊢M ,
and we conclude by induction.

4. In Case 2, H ∈ R′
i (and M ∈ ψ); in Cases 1,3,4 M ∈ ψ ⇒ M ∈ ψ′ and H ∈ R′′

i ⇒ H ∈ R′
i,

and we conclude by induction.

�

We define a notion on consistency on memories, that ensure that histories of messages present
in the memory are formed from other messages present in the memory.

Definition 10 (Memory consistency) Let M be a memory, we say that M is consistent if,
⊢ M and, if, for every message M ∈ M and M ′ ⊳M such that M ′ is from an honest participant,
M ′ ∈ M.

In the next lemma, we show that memory generated by an execution are consistent.

Lemma 17 Let ψ be an implementation trace, let M be a memory, let R̃′ be an history-tracking

specification. If R̂, ε
ψ−→I R̂′,M, then M is consistent.

Proof: The proof is by induction on the length of ψ. If ψ = ε, M = ∅, and we conclude.
Otherwise, there exist ψ′, γ, M′, and R̂′′ such that

R̂, ε
ψ′

−→I R̂′′,M′ γ−→I R̂′,M

We consider two cases:

• If γ =M , M = M′, we conclude by induction on M′.

• If γ = H i a j ℓ, by definition of −→I, and −→i, M = M.H i a j ℓ and for every message
M ′ ∈ H, we have M ′ ∈ R′′. Hence, by Lemma 16, M ′ ∈ ψ′ and by Lemma 12, M′ ⊢ M ′.
If M ′ is from an honest participant, by definition M ′ ∈ M′. Otherwise, by Lemma 15, for
every message M ′′ ∈ H ′ such that M ′′ is from an honest participant, there exists M ′′′ ∈ M′

such that M ′′ ⊳M ′′′, and we conclude by induction on M′.

�
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In the next lemma, we show that if a message is sent by an honest participant and contains
another message that is known from a consistent memory, then the first message is present in the
memory.

Lemma 18 Let M be a consistent memory, let M and M ′ be two messages such that M is from
an honest participant and M ⊳M ′. If M ⊢C M ′ then M ∈ M.

Proof: The proof is direct from the definition of consistent memory and Lemma 13. �

In the next lemma, we show that the order of messages in implementation traces and histories
is consistent.

Lemma 19 Let ψ be an implementation trace, M a memory, R̃′ an history-tracking specification

such that R̂, ε
ψ−→I R̂′,M. Let M be a message such that M ⊳R′.

• If M is from an honest participant, then M ∈ ψ.

• If M is addressed to an honest participant, then M ∈ ψ.

Proof: M ⊳ R′, hence, there exists M ′ ∈ R′
i such that M ⊳M ′ for some i we consider the

smaller of such M ′. By Lemma 16, M ′ ∈ ψ and M ⊢M ′. Also, by Lemma 17, M is consistent.

• Suppose thatM is from an honest participant. By Lemma 18,M ∈ M. Then, by Lemma 16,
M ∈ ψ.

• Suppose that M is addressed to an honest participant. If M =M ′, we conclude. Otherwise,
by Lemma 15, there exists a message M ′′ such that M ′′ ∈ M such that M ⊳ M ′′ and
M ′′ ⊳M ′. By definition of ⊳, and since M 6= M ′, there exist H ∈ M ′′ such that M ⊳ H.
Hence, by Lemma 16, H ∈ R. Since M ′ was the smaller message in R′ containing M , it is
not possible.

�

In the next lemma, we show an other property on the order of messages in an implementation
trace.

Lemma 20 Let ψ be an implementation trace, M a memory, R̃′ an history-tracking specification

such that R̂, ε
ψ−→I R̂′,M. Let M and M ′ be two messages such that M ⊳M ′ or M.M ′ ∈ R′. Let

γ =M or γ =M . If γ ∈ ψ and M ′ ∈ ψ, M ′ appear after γ.

Proof: M ′ ∈ ψ, hence there exist an implementation trace ψ′, memories M′ and M′′, and

history-tracking specifications R̃′′ and R̃′′′ such that R̂, ε
ψ′

−→I R̂′′,M′ M ′

−−→I R̂′′′,M′′. By Lemma 16

and hypothesis, M ⊳R′′′, we conclude with Lemma 19 and Lemma 9. �

We define a partition on sequence of messages. Each part of this partition contains the messages
that are eventually received by a process i after a sequence of adversary messages. These are defined
on source and implementation traces.

Definition 11 (Trace projection) Let ψ be a low-level trace. ψ can be a trace of actions (send
and receive), e.g., an implementation trace or ψ can be a trace of communications, e.g., a trace on
−→H. We define projection on such trace. φini (ψ) is the list of the messages received by the process
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i (keeping their order). φouti (ψ) is the list of honest messages that appear in dishonest message
received by the process i(in their order). φi(ψ) is their union (keeping the order of the actions.

φini (ψ) = {γ ∈ ψ | γ is addressed to i}
φouti (ψ) = {γ | γ ∈ ψ with γ =M or γ =M,

γ is addressed to a dishonest participant,
∃M1, . . .Mk | M ∈M1

Mj ∈Mj+1, j < k
Mj is addressed to a dishonest participant, j < k
Mk is addressed to i
Mk ∈ ψ

We also let φi(ψ) be the union of these two projection, and φalli (ψ) be the union of these two
projections, plus the intermediate adversary messages.

In the next lemma, we show that messages in φouti (ψ) have a particular type.

Lemma 21 Let ψ be a typed implementation trace, let M be a message. If M ∈ φouti (ψ), then
⊢M : ⊖.i (we let ⊖ be any sequence of dishonest indexes).

Proof: By definition of φi(ψ), there exists M1, . . .Mk, Mj ∈ Mj+1 and Mj is addressed to a
dishonest participant for j < k,Mk is addressed to i. ⊢ ψ andMk ∈ ψ, hence, using Rules Message

and History, ⊢Mk : i, then, for every j < k, we have ⊢Mj : ⊖.i, finally ⊢M : ⊖.i. �

In the next lemma, we show that if a process send a message, then it contains a thread with
the corresponding history that can emit the corresponding action, with the corresponding history.

Lemma 22 Let ψ be an implementation trace, let R′ and R′′ be two history-tracking specifications,
M and M ′ be two messages such that M ′ is a message on action a, M 6∈ ψ, and M ∈ M ′. If

R′ ψ−→h

M−→h R
′′, there exist T , H0, and R

′′′ such that R′ = T : H0|R′′′, =M ∈ H0, and ⊢ T ≥ Γ(a).

Proof: We let M ′ = H i a j ℓ. The proof is by induction on the number of actions in ψ. If
ψ = ε, by definition of −→h, there exists R◦ such that R′ = a : H|R◦. We have ⊢ a ≥ Γ(a): we

conclude. Otherwise, there exist ψ′, γ and R′′′ such that R′ ψ′

−→h R
′′′ γ−→h

H i a j ℓ−−−−−−→h R
′′. There

are two cases:

• If γ = H ′ i′ a ′ j′ ℓ′, by definition of −→h, there exists R◦ such that R′ = a′ : H ′|R◦ and
R′′′ = 0 : H|R◦. We conclude by induction.

• If γ = H ′ i′ a ′ j′ ℓ′, by definition of−→h, there existR
◦,H ′′ and P such thatR′ = a′.P : H ′′|R◦

and R′′′ = P : H ′′.(H ′ i′ a ′ j′ ℓ′)|R◦. By induction, there exist T , H ′′′, and R◦◦ such that
R′′′ = T : H ′′′|R◦◦, M ∈ H ′′′, and ⊢ T ≥ Γ(a). If T is part of R◦◦, we conclude. If T is part
of P , and since H ′ i′ a ′ j′ ℓ′ 6=M , M ∈ H ′′. Also, ⊢ P ≥ Γ(a), hence ⊢ a′.P ≥ Γ(a).

�

We are interested in low-level traces that follow a particular order, which makes them easier
to relate to high-level traces.

Definition 12 We say that two low-level trace Ω and ψ are compatible for i when

• φini (Ω) = φini (ψ);
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• M ∈ φouti (Ω) ⇔M ∈ φouti (ψ);

• for every M ∈ φouti (ψ) and M ′ ∈ φini (ψ) such that M appear after M ′ in ψ, M appear after
M ′ in Ω.

We say that two low-level trace Ω and ψ are opposite compatible for i when

• φini (Ω) = φini (ψ);

• M ∈ φouti (Ω) ⇔M ∈ φouti (ψ);

• for every M ∈ φouti (ψ) and M ′ ∈ φini (ψ) such that M appear after M ′ in ψ, M appear after
M ′ in Ω.

In this lemma, we show that an implementation trace that share a particular set of actions
with another implementation trace can be reordered so that their order on these actions are the
same.

Lemma 23 Let ψ and Ω be two low-level traces, let R̃′ and R̃′′ be two history-tracking specification
and let M be a memory such that

• R̂, ε
ψ−→I R̂′,M;

• R̃
Ω−→H R̃′′;

• R′
i = R′′

i ;

• M ∈ φini (Ω) ⇔M ∈ φini (ψ).

• M ∈ φouti (Ω) ⇔M ∈ φouti (ψ).

There exists a low-level trace Ω compatible with ψ for i and such that R̃
Ω′

−→H R̃′′

Proof: We define an algorithm sorting the trace: We consider the first action in φini (ψ) that is

not sorted in Ω (M). We say that a message M depends on M ′ if M ′ ⊳M , if M ′.M ⊳ R̃′′, or if
there exists M ′′ such that M depends on M ′′ and M ′′ depends on M . We consider M plus all the
messages that it depends on. One by one, we swap all these messages with the messages preceding
them in Ω, in order to place them before the corresponding actions following M in φini (ψ). From
Lemma 21, and the typing rules, we verify that, since R′

i = R′′
i , if M depends on M ′′′ ∈ φouti (Ω),

then M depends on M ′′′ ∈ ψ. From Lemma 20, we know that none of the messages after M
in φini (ψ) depend on him. So we can always swap one of these actions until M is sorted. After
each step, the trace respect the hypothesis of the lemma (by induction hypothesis and Lemma 10

and 11). This terminates since we sort each action of φi(Ω) one by one, and each sorting take a
finite time since the group of actions only goes backward.

�

We extend −→h on tuple of processes.

Definition 13 (Intermediate semantics) Let R̂′ and R̂′′ be two global history specifications,

let γ be and action. We say that R̂′ γ−→h R̂′′ when there exists i such that R′
i
γ−→h R

′′
i and R′′

j = R′
j

for j 6= i.

In the next lemma, we show that, under certain conditions, we can swap messages in traces of
−→h.
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Lemma 24 Let R̂′ and R̂′′ be history-tracking specifications, let M and M ′ be two messages such
that i, j, i′, j′ ∈ C.

1. If R̂′ M−→h

M ′−−→h R̂′′ then R̂′ M ′−−→h

M−→h R̂′′ and a valid explanation of a trace ψ1.M ′.M.ψ2 is
also a valid explanation of the trace ψ1.M.M ′.ψ2.

2. If R̂′ M−→h

M ′

−−→h R̂′′ then R̂′ M ′

−−→h

M−→h R̂′′ and a valid explanation of a trace ψ1.M
′.M.ψ2 is

also a valid explanation of the trace ψ1.M.M ′.ψ2.

Proof:

1. We let M = H i a j ℓ and M ′ = H ′ i′ a ′ j′ ℓ′. By definition of −→h, there exist R̂′′′ such

that R̂′ M−→h R̂′′′ M ′−−→h R̂′′. By definition of −→h, there exists R◦
i , such that R′

i = a : H|R◦
i ,

R′′′
i = 0 : H|R◦

i , and R
′′′
k = R′

k for k 6= i, and there exists R◦◦
i′ such that R′′′

i′ = a′ : H ′|R◦◦
i′ ,

R′′
i′ = 0 : H ′|R◦◦

i′ , and R
′′
k = R′′′

k for k 6= i′. The part consumed in R̂′′′ is not modified by the
first action, we conclude. Following the definition of valid explanations, we can check that a
valid explanation of a trace ψ1.M ′.M.ψ2 is also a valid explanation of the trace ψ1.M.M ′.ψ2.

2. Similarly, by definition of −→h there exist R̂′′′ such that R̂′ M−→h R̂′′′ M ′−−→h R̂′′. By definition
of −→h, there exists R◦

i′ such that R′
i′ = a : H|R◦

i′ , R
′′′
i′ = 0 : H|R◦

i′ , and R
′′′
k = R′

k for k 6= i′,
R◦
j , H

◦ and P such that R′′′
j = a′.P : H◦|R◦

j , R
′′
j = P : H◦.M |R◦

j , and R
′
k = R′′

k for k 6= j,
The part consumed in R′′′ is not modified by the first action, we conclude. Following the
definition of valid explanations, we can check that a valid explanation of a trace ψ1.M

′.M.ψ2

is also a valid explanation of the trace ψ1.M.M ′.ψ2.

�

In this lemma, we show that an implementation trace can be reordered so that is honest outputs
precede the corresponding inputs.

Lemma 25 Let ψ be a low-level traces, let R̂′ be an history-tracking specification, let M be a

memory such that R̂, ε
ψ−→I R̂′,M; Then, there exists a low level trace ψ′ such that

• R̂
ψ′

−→h R̂′;

• every valid explanation of ψ′ is a valid explanation of ψ;

• every input in ψ′ from and addressed to an honest participant is immediately preceded by its
unique corresponding output;

• the order of actions that are not from and addressed to an honest participant is left unchanged.

Proof: We define an algorithm sorting the trace: We consider the last output in ψ which is not
immediately followed by its corresponding input. We swap the output messages forward until it
is well-placed. From Lemma 20, we know that it is before any message containing it in ψ. So we
can always swap the output until it is sorted. After each step, the trace respect the hypothesis of
the lemma (by induction hypothesis and Lemma 24). This terminates we sort actions one by one.

�

Definition 14 We say that a low-level trace ψ is well-formed when every input in ψ with a
dishonest sender is immediately preceded by its unique corresponding output.
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In the next lemma, we show that, since messages with a parallel type can only be received once,
it is possible to force the different alternatives of this reception to agree on the message received.

Lemma 26 Let ϕ and ϕ′ be two well-formed implementation traces, let M be a message on action
a, let R̃′, R̃′′, and R̃a be three history-tracking specification such that:

• R̃
ϕ−→h R̃′ ϕ′

−→h R̃′′;

• there exist only one a in R̃;

• – R̃′ M−→h R̃a and M is from an honest participant; or

– R̃′ M−→h

M−→h R̃a.

We define two functions on messages (by extension on low-level traces) and history-tracking spec-
ifications:

f(H ′ i′ a ′ j′ ℓ′) = ε if a′ = a
= g(H ′) i′ a ′ j′ ℓ otherwise

g(H ′ i′ a ′ j′ ℓ′) =M if a′ = a
= g(H ′) i′ a ′ j′ ℓ otherwise

h(a : H ′) = h(0 : H ′)
h(a.P : H ′) = h(P : H ′.M)
h(T : H ′) = T : g(H ′) otherwise

There exists R̃′′′ such that h(R̃′′′) = h(R̃′′) and

• R̃′ M−→h R̃a
f(ϕ′)−−−→h R̃′′′ and M is from an honest participant; or

• R̃′ M−→h

M−→h R̃a
f(ϕ′)−−−→h R̃′′′.

Proof: We treat the case where M is not from an honest participant, the other case is similar.
We proceed by induction on the length of ϕ′. If ϕ′ = ε, by definition of −→h (assuming that i 6= j),
there exist R◦

i , R
◦
j , H

◦ and P such that R′
i = a : H|R◦

i , R
a
i = 0 : H|R◦

i , R
′
j = a.P : H◦|R◦

j ,
Raj = P : H◦.(H i a j ℓ)|R◦

j , and R
′
k = Rak for k 6= i and k 6= j. We have: h(R′

k) = h(Rak) for k 6= i
and k 6= j;

h(R′
i) = h(a : H)|h(R◦

i )
= h(0 : H)|h(R◦

i )
= h(Rai )

h(R′
j) = h(a.P : H◦)|h(R◦

j )
= h(P : H◦.H i a j ℓ)|h(R◦

j )
= h(Raj )

and ε = f(ε):we conclude. Otherwise, let γ be the last action of ϕ′, we assume that γ =
H ′ i′ a ′ j′ ℓ′ (we let H ′ i′ a ′ j′ ℓ′ = M ′), with i 6∈ C (the other cases are similar). Hence,

the action before γ in ϕ′ is M ′. Hence, there exist ϕ′′, γ and R̃′′′′ such that h̃p
ϕ−→h R̃′ ϕ′′

−−→h

R̃′′′′ M ′−−→h

M ′

−−→h R̃′′. By induction hypothesis, there exists R̃′′′ such that h(R̃′′′) = h(R̃′′′′) and

h̃p
ϕ−→h R̃′ M−→h

f(ϕ′′)−−−−→h R̃′′′. By definition of −→h (assuming that i′ 6= j′), there exist R◦
i , R

◦
j , H

◦

and P such that R′′′′
i = a′ : H ′|R◦

i , R
′′
i = 0 : H ′|R◦

i , R
′′′′
j = a′.P : H◦|R◦

j , R
′′
j = P : H◦.M ′|R◦

j ,
and R′′′′

k = R′′
k for k 6= i and k 6= j.
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• If a = a′, we have h(R′′
k) = h(R′′′′

k ) = h(R′′′
k ) for k 6= i and k 6= j;

h(R′′′
i ) = h(R′′′′

i )
= h(a : H ′)|h(R◦

i )
= h(0 : H ′)|h(R◦

i )
= h(R′′

i )
h(R′′′

j ) = h(R′′′′
j )

= h(a.P : H◦)|h(R◦
j )

= h(P : H◦.M)|h(R◦
j )

= h(P : H◦.M ′)|h(R◦
j )

= h(R′′
j )

and f(ϕ′′) = f(ϕ′.H ′ i′ a j′ ℓ): we conclude.

• Otherwise, we know that h(R′′′
i ) = h(a′ : H ′|R◦

i ), hence, either there exist P , H ′′ and
R◦◦
i such that R′′′

i = a.P : H ′′|R◦◦
i with a′ ∈ P or there exist R◦◦

i and H ′′ such that

R′′′
i = a′ : H ′′|R◦◦

i , g(H ′′) = g(H ′), and h(R◦◦
i ) = h(R◦

i ). There is only one a in R̃,

there is one reception on a before R̃′′′, hence, there is no a in R̃′′′, the first case is not
possible. Similarly, h(R′′′

j ) = h(a′.P : H◦|R◦
j ),hence, there exist P ′, R◦◦

j , and H◦◦ such that
R′′′
j = a′.P ′ : H◦◦|R◦◦

j , h(P ′) = h(P ), g(H◦◦) = g(H◦), and h(R◦◦
j ) = h(R◦

j ). By definition

of −→h, we have R̃′′′ H′′ i′ a′ j′ ℓ−−−−−−−−−→h

H′′ i′ a′ j′ ℓ−−−−−−−−−→h R̃′′′′′ with R′′′′′
i = 0 : H ′′|R◦◦

i , R′′′′′
j = P :

H◦◦.M |R◦◦
j , and R′′′′′

k = R′′′
k for k 6= i and k 6= j. By Lemma 8, if H ′′′ i′′ a j′′ ℓ⊳H ′′, we have

H ′′′ i′′ a j′′ ℓ ∈ ϕ.H i a j ℓ.f(ϕ′). There is only one a in R̃, hence H ′′′ i′′ a j′′ ℓ = H i a j ℓ,
hence g(H ′′) = H ′′. Thus H ′′ i′ a ′ j′ ℓ = f(H ′ i′ a ′ j′ ℓ′). We have h(R′′

k) = h(R′′′′
k ) =

h(R′′′
k ) = h(R′′′′′

k ) for k 6= i and k 6= j;

h(R′′
i ) = h(0 : H ′|R◦

i )
= h(0 : H ′′|R◦◦

i )
= h(R′′′′′

i )
h(R′′

j ) = h(P : H◦.M ′|R◦
j )

= h(P : H◦◦.M |R◦◦
j )

= h(R′′′′′
j )

and f(ϕ′′).f(M ′) = f(ϕ′.M ′): we conclude.

�

Proof of Theorem 3 The soundness theorem states that for all execution ∅, R̂ ψ0−−→I M, R̂0,

there is a valid explanation ϕ of ψ0 such that P̃
ϕ−→S P̃

′.

2.10.4 Building a local trace

We now focus on one process i chosen among the compliant ones, and show that

(Ω-property) if ∅, R̂ ψ0−−→I M, R̂0, there is a trace Ωi compatible with ψ for i and such that

R̃
Ωi−→H R̃′′.

Let γ be the last message of this process in ψ0. By definition of −→I and −→i, there exist an

high-level trace ω, and two history-tracking process R̃′ and R̃′′ such that R̃
ω−→H R̃′ M−→H R̃′′, with

R′′
i = R0

i . We let Ωi = ω.M .

Using Lemma 8 and 16, as R′′
i = R0

i , the actions received by i in Ω and in ψ0 are the same:
M ∈ φini (Ω) ⇔ M ∈ φini (ψ) For the same reasons, plus Lemma 17 and 18: M ∈ φouti (ψ) ⇔ M ∈
φouti (Ω).

We conclude by applying Lemma 23.
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2.10.5 A correct explanation of ψ0

We use the Ωis from (Ω-property) to build a correct explanation of ψ0 by induction. We keep
an invariant on growing sub-parts of the implementation trace, the valid explanation and traces
extracted from the Ωis.

Let Ψ, ψ, θ, (Υk)k∈C , and (ωk)k∈C be low-level well-formed traces; let R̃′, (R̃k)k∈C , and (R̃′k)k∈C
be history-tracking processes. Our invariant states that:

R̂
Ψ−→h R̂0

(R̃
Υk−−→h R̃′k)k∈C

R̂
ψ−→h R̂′

R̃
Θ−→H R̃′

(R̃
ωk−−→h R̃

k)k∈C

• ψ is a prefix of Ψ;

• for all k, ωk is a prefix of Υk;

• every valid explanation of Ψ is a valid explanation of ψ0;

• every input in Ψ from and addressed to an honest participant is immediately preceded by
its unique corresponding output;

• Θ is a valid explanation of ψ;

• for all k, Υk is opposite compatible with Ψ for k;

• for all k, ωk is opposite compatible with ψ for k;

• for all k, R̃k coincide with R̃′ on its restriction to threads T such that ⊢ T ≥ ⊖.k, and such
that :

– it is of the form a.P : H and there exists a message M ⊳ φi(Ψ) on a;

– it is of the form a : H.

The initial Ψ is obtained by Lemma 25 on ψ0. The initial Υk are obtained by flattening of the
Ωk. The initial ψ and ωk are empty.

We build an algorithm that makes ψ, φ and ωi grow while conserving the invariants. By
Lemma 12, all the traces and messages here type. We assume that the next action in Ψ is γ =M
or γ =M .

If there exist no k ∈ C such that M ∈ φink (Ψ) or M ∈ φoutk (Ψ), the invariant is valid with the
new trace ψ′ = ψ.γ. Otherwise, we let S = {k ∈ C | M ∈ φk(Ψ)}. We assume that, for every
k ∈ S, the next action in Υk is γk:

R̂
ψ−→h R̂′ γ−→h R̂′′

R̃
θ−→H R̃′

(R̃
ωk−−→h R̃

k γk−→H R̃′′k)k∈S

(R̃
ωk−−→h R̃

k)k 6∈S

• If γk 6∈ φallk (Ψ), γk is a send from an honest participant, or γk is a reception addressed
to an honest participant for some k, the invariant is valid with the new trace ω′

k = ωk.γk.
Otherwise, we let γk =MK = Hk ik ak jk ℓk or γk =MK = Hk ik ak jk ℓk andM = H i a j ℓ
and we continue.
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• Suppose that there exist k0 ∈ S such that (ik0 , jk0) 6∈ C. Since Υ is well-formed, γk =Mk and
the action after is Mk. By definition of −→h (assuming that ik0 6= jk0), there exist R

◦
ik0

, R◦
jk0

,

H◦ and P such that Rk0ik0
= ak0 : Hk0 |R◦

ik0
, R′k0

ik0
= 0 : Hk0 |R◦

ik0
, Rk0jk0

= ak0 .P : H◦|R◦
jk0

,

R′′
jk0

= P : H◦.Mk0 |R◦
jk0

. Let S′ = {k ∈ C | Mk0 ∈ φk(Ψ)}. For every k ∈ S′, we have

⊢Mk0 : ⊖.k by Lemma 21, hence ⊢ ak0 ≥ ⊖.k.

– If S′ is the singleton {k0}, then, by Lemma 22, ⊢ ak0 .P ≥ ⊖.k. Also, ⊢ ak0 ≥ ⊖.k.
Hence, by hypothesis, R̃k0 coincide with R̃′ on these threads. Hence, R̃′ Mk0−−−→H R̃′′ for
some R̃′′ that coincide on the threads of the invariants.

– Otherwise, ak0 is a parallel action. Hence, it appear only once. By Lemma 22, for every

k ∈ S′, ⊢ ak0 .P ≥ ⊖.k. Also, ⊢ ak0 ≥ ⊖.k. Hence, by hypothesis, R̃k0 coincide with

R̃′ on these threads, and, for all k ∈ S′, R̃k coincide with R̃′ on these threads. Hence,

R̃′ Mk0−−−→H R̃′′ and R̃k
Mk0−−−→h

Mk0−−−→h R̃ka for some R̃ka, and R̃′′ that coincide on the
threads of the invariants. We apply Lemma 26 and get, for every k ∈ S′, Υ′

k respecting

the invariant and such that their next action corresponds to R̃k
Mk0−−−→h

Mk0−−−→h R̃ka.

We conclude with ψ′ = ψ.Mk0 and ω′
k = ωk.Mk0 .Mk0 for every k ∈ S′.

• Suppose that i ∈ C and j 6∈ C, then γ = M . If there exist no k0 ∈ S such that M = γk0 ,
we swap γ with the next action in Ψ (we may have to swap more than one action at a time
to ensure progress). Otherwise, By definition of −→h and −→I (assuming that i 6= j), there
exist R◦

i , R
◦
j , H

◦ and P such that Ri = ak : Hk|R◦
i , R

′
i = 0 : H|R◦

i , R
◦
j , H

◦ and P such

that Rkj = ak0 .P : H◦|R◦
j , R

′′
j = P : H◦.Mk0 |R◦

j . Let S′ = {k ∈ C | M ∈ φk(Ψ)}. For every
k ∈ S′, we have ⊢M : ⊖.k by Lemma 21.

– If S′ is the singleton {k0}, then, by Lemma 22, ⊢ ak0 .P ≥ ⊖.k. Hence, by hypothesis,

R̃k0 coincide with R̃′ on these threads. Hence, R̃′ Mk0−−−→H R̃′′ for some R̃′′ that coincide
on the threads of the invariants.

– Otherwise, ak0 is a parallel action. Hence, it appear only once. By Lemma 22, for every

k ∈ S′, ⊢ ak0 .P ≥ ⊖.k. Hence, by hypothesis, R̃k0 coincide with R̃′ on this thread,

and, for all k ∈ S′, R̃k coincide with R̃′ on this threads. Hence, R̃′ Mk0−−−→H R̃′′ and

R̃k
Mk0−−−→h R̃ka for some R̃ka, and R̃′′ that coincide on the threads of the invariants. We

apply Lemma 26 and get, for every k ∈ S′, Υ′
k respecting the invariant and such that

their next action corresponds to R̃k
Mk0−−−→h R̃ka.

We conclude with ψ′ = ψ.Mk0 and ω′
k = ωk.Mk0 for every k ∈ S′.

• Suppose that i 6∈ C and j ∈ C, then γ = M . Also, M ∈ φk(Ψ) only for k = j. Since Υj is
compatible with Ψ for j, and γj ∈ φj(Ψ), γj = M . By definition of −→h and −→I, and since

R̃i coincide with R̃′ on thee emitting thread, R̃′ M−→H R̃′′ for some R′′, and we conclude with
ψ′ = ψ.M and ω′

j = ωj .M for every k ∈ S′.

• Suppose that i ∈ C and j ∈ C, we conclude similarly.

We stop when Ψ = ψ, which result in Θ being a global explanation of ψ0.

�
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3
Information-Flow and Non-Interference

In the following chapters, we consider full descriptions of distributed applications. They are spec-
ified as an imperative programs with shared memory. The communications that implement the
shared memory and the control flow, and (for now) the locality of the code is left abstract in these
specifications. Instead, the shared memory is annotated with security levels specifying which parts
the participants can read or write. Then, their security is defined as information flow policies,
specifying the allowed flows of data in the program. These specifications are more precise than the
session specifications studied above since they cover the computation and not only the interactions
between participants.

In this chapter, we define our core language, which is used in the next chapters (with some
extensions). We also define the information flow policies, and state standard non-interference
theorems. We then define our adversaries, and a refinement that precises the security of programs
that are not non-interferent. We then define the settings of our main simulation theorems. These
definitions pave the way for the main result presented in the following chapters.

In an adversarial setting, there is no guarantees that every participant complies with the speci-
fied computation and security policies. Using cryptography, it is possible to provide guarantees on
the security of the data, even when it flows through unsecure networks and compromised partici-
pants. In the chapters below, we develop a type system to verify the correct use of cryptography
in accordance to information flow policies, and we propose a defensive implementation that uses
secure hardware and cryptography to enforce information flow policies, even when no participant
is trusted enough to handle the data.

3.1 An imperative probabilistic While language

We want precise and realistic guarantees, hence we need a more concrete model of cryptography. A
probabilistic semantics is necessary for modeling encryption security [Goldwasser and Micali, 1982].
Encryptions are modeled as probabilistic functions that follow cryptographic hypothesis proven
by cryptographers, stated in term of probabilistic polynomial-time games. Our core language is
a probabilistic while-language, (a small core of the C programming language) with the following
grammar:

e ::= x | op(e1, . . . , en)
P ::= x := e | x1, . . . , xm := f(e1, . . . , en)

| P ;P | if e then P else P | while e do P | skip
where x ranges over variables, v ranges over literal values (bitstrings, which may represent integers,
strings, booleans), and op ranges and f range over deterministic and probabilistic n-ary functions,
respectively, with arity n ≥ 0. Expressions e consist of variables and operations. We assume
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(Assign)

[[e]](µ) = v

〈x := e, µ〉 1 〈√, µ{x 7→ v}〉

(Fun)

p = [[f ]](µ(e1), . . . , µ(en))(ṽ) p > 0

〈x̃ := f(ẽ), µ〉 p 〈√, µ{x̃ 7→ ṽ}〉
(SeqS)

〈P, µ〉 p 〈P1, µ1〉 P1 6= √

〈P ;P ′
, µ〉 p 〈P1;P

′
, µ1〉

(SeqT)

〈P, µ〉 p 〈√, µ1〉
〈P ;P ′

, µ〉 p 〈P ′
, µ1〉

(Cond)

P
′ = if [[e]](µ) 6= 0 then P1 else P0

〈if e then P1 else P0, µ〉 1 〈P ′
, µ〉

(SkipS)

〈skip, µ〉 1 〈√, µ〉
(Stable)

〈√, µ〉 1 〈√, µ〉

(While)

P
′ = if [[e]](µ) 6= 0 then P1; while e do P1 else

√

〈while e do P1, µ〉 1 〈P ′
, µ〉

Figure 3.1: Probabilistic operational semantics

given (polynomial-time) functions for standard boolean and arithmetic constants (0, 1, . . . ) and
operators (||, +, . . . ). We let =0 be comparison on booleans, true when both its arguments are
either 0 or non-0. Commands P consist of variable assignments, using deterministic expressions
and probabilistic functions, composed into sequences, conditionals, and loops. We write if e then P
for if e then P else skip. We write ẽ (respectively P̃ ) for a tuple of variables e1, . . . , en (respectively
commands P1, . . . , Pn) for some n ≥ 0. We let rv(P ) and wv(P ) be the sets of variables that
are syntactically read and written by P : x ∈ rv(P ) when x occurs in an expression of P ; and
x ∈ wv(P ) when a command of the form x := e occurs in P . We let v(P ) = rv(P ) ∪ wv(P ).

3.1.1 Probabilistic Semantics

Every function f is equipped with an associated parametric probability distribution [[f ]]. Hence,
in the special case f is a deterministic function, the distribution [[f ]](ṽ) gives probability 1 to f(ṽ)
and 0 to any other output. We write {0, 1} for the fair “coin-tossing” function that returns either 0
or 1 with probability 1

2 . We use probabilistic functions mainly to model cryptographic algorithms
as commands.

Program configurations (s) are of the form 〈P, µ〉 where P is a program and µ is a memory,
that is, a function from variables to values. We write µ{x 7→ v} for the memory that maps x to v
and y 6= x to µ(y). The special program

√
represents termination. Figure 3.1 gives the operational

semantics of commands as Markov chains between program configurations, with probabilistic steps
s  p s

′ induced by the probabilistic functions. We omit the usual rules for expressions [[e]](µ).
We lift these reduction steps to configuration distributions (d), and write d  d′ when, for all
configurations s′, d′(s′) =

∑
s ps′

p × d(s). We need Rule Stable to have full distributions

(
∑
s d

′(s) =
∑
s d(s) = 1).

We define the semantics of a configuration 〈P, µ〉 by a series of distributions (di)i≥0 such that
d0(〈P, µ〉) = 1 and di  di+1 for i ≥ 0. We write Pr[〈P, µ〉;ϕ] for the probability that P terminates
with a final memory that meets condition ϕ: Pr[〈P, µ〉;ϕ] = limi→∞

∑
s=〈√,µ〉|ϕ di(s) (the limit

exists because the sum increases with i and is bounded by 1). When P always terminates, that
is, Pr[〈P, µ〉; true] = 1, we let d∞(d0) be the limit of (di)i≥0. Since all the configurations of d∞
are of the form 〈√, µ′〉, we write ρ∞(d0) for the corresponding final distribution of memories µ′.
For a given domain S, we write µ|S for µ restricted to S, ρ|S for the projection of ρ on S, that
is, ρ|S(µ|S) =

∑
µ′|µ|S=µ′

|S
ρ(µ′), and d|S for the projection of d on S, that is, d|S(〈P, µ|S〉) =

∑
µ′|µ|S=µ′

|S
d(〈P, µ′〉). When it is clear from the context, we may write µ for the single point

distribution ρ defined by ρ(µ) = 1 and ρ(µ′) = 0 for µ′ 6= µ.
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Example 9 As an example of our language and probabilistic semantic, we consider the command

P
·
=

x := 1;
while x do {
y := y + 1;
x := {0, 1}}

In this command, x := 1 and y := y + 1 are deterministic assignments and x := {0, 1} is a proba-
bilistic function application. For convenience, we define

P1
·
=

while x do {
y := y + 1;
x := {0, 1}}

P2
·
=

y := y + 1;
x := {0, 1};
P1

P3
·
=

x := {0, 1};
P1

We now consider the initial program configuration

s = 〈P, {x 7→ 0, y 7→ 0}〉

We have 〈x := 1, {x 7→ 0, y 7→ 0}〉 1 〈√, {x 7→ 1, y 7→ 0}〉 by Rule Assign. Hence, by Rule SeqT,

〈P, {x 7→ 0, y 7→ 0}〉 1 〈P1, {x 7→ 1, y 7→ 0}〉

By Rule While, since x 7→ 1 in the memory,

〈P1, {x 7→ 1, y 7→ 0}〉 1 〈P2, {x 7→ 1, y 7→ 0}〉

Then, by Rules Assign and SeqT,

〈P2, {x 7→ 1, y 7→ 0}〉 1 〈P3, {x 7→ 1, y 7→ 1}〉

{0, 1} is the fair coin-tossing function, with [[{0, 1}]](0) = 1/2 and [[{0, 1}]](1) = 1/2. By Rules Fun

and SeqT,

〈P3, {x 7→ 1, y 7→ 1}〉 1
2
〈P1, {x 7→ 1, y 7→ 1}〉

and

〈P3, {x 7→ 1, y 7→ 1}〉 1
2
〈P1, {x 7→ 0, y 7→ 1}〉

Then, by Rule While,

〈P1, {x 7→ 0, y 7→ 1}〉 1 〈√, {x 7→ 0, y 7→ 1}〉

and by Rule Stable,

〈√, {x 7→ 0, y 7→ 1}〉 1 〈√, {x 7→ 0, y 7→ 1}〉

Finally, we let

si
·
= 〈P1, {x 7→ 1, y 7→ i}〉

s2i
·
= 〈P2, {x 7→ 1, y 7→ i}〉

s3i
·
= 〈P3, {x 7→ 1, y 7→ i}〉

qi
·
= 〈P1, {x 7→ 0, y 7→ i}〉

ri
·
= 〈√, {x 7→ 0, y 7→ i}〉

and we get

s  1 s0
si  1 s2i  1 s3i
s3i  1

2
si+1

s3i  1
2

qi+1

qi  1 ri  1 ri
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If we consider the series of distributions (di)i≥0, we have

d0(s) = 1 d1(s0) = 1 d2(s
2
0) = 1 d3(s

3
0) = 1

d4(s1) =
1
2

d4(q1) =
1
2

d5(s
2
1) =

1
2

d5(r1) =
1
2

d6(s
3
1) =

1
2

d6(r1) =
1
2

d7(s2) =
1
4

d7(q2) =
1
4

d7(r1) =
1
2

. . .

d10(s3) =
1
8

d10(q3) =
1
8

d10(r2) =
1
4

d10(r1) =
1
2

. . .

d13(s4) =
1
16

d13(q4) =
1
16

d13(r3) =
1
8

d13(r2) =
1
4

d13(r1) =
1
2

. . .

We have Pr[s; y = 3] = limi→∞ di(r3) since r3 is the only possible final distribution with a memory
in which y 7→ 3. Hence Pr[s; y = 3] = 1

8 .

We have
Pr[s; true] = limi→∞

∑
s=〈√,µ〉 di(s)

= limi→∞
∑
j di(rj)

= limi→∞
∑
j≤(i−4)/3

1
2j

= 1

Hence P always terminates, and we have

ρ∞(d0)(x)(0) = 1 ρ∞(d0)(y)(1) =
1

2
ρ∞(d0)(y)(2) =

1

4
ρ∞(d0)(y)(3) =

1

8

ρ∞(d0)(y)(4) =
1

16
. . . ρ∞(d0)(y)(i) =

1

2i

In the following, we only consider programs that terminates in a bounded time, for simplicity and
in previsions of limitations of computational cryptography. Most of our proofs that do not depend
on computational assumptions can be generalized by taking the limit.

3.2 Security policies

Security is often about protecting information. For example, military files have confidentiality
levels that can be read with different levels of security clearance. Conversely, military plan have
different levels of integrity, and may only be modifiable by top officials. We use similar security
labels that indicate both the confidentiality of the value (ex: “secret” or “public”) and its integrity
(ex:“trusted” or “untrusted”). Those are two different (but linked) aspects of security. For ex-
ample, if a military plan is protected by a secret password, breaking the secrecy of the password
may allow for an unauthorized modification of the plan. Conversely, breaking the integrity of a
password, by setting it to its default value, may break the secrecy of protected files. Formally, the
different labels are ordered in a lattice, thus defining their relation. For example, a value is more
secret if its label is higher in the confidentiality lattice. (Different instances of security lattices
have been studied, in particular, the Decentralized Label Model of Myers and Liskov [1998])

3.2.1 Security labels

We annotate each program variable with a security label. These labels specify the programmer’s
security intent. They do not affect the operational semantics of programs. The security labels form
a lattice (L,≤) obtained as the product of two lattices, for confidentiality levels (LC ,≤C) and for
integrity levels (LI ,≤I). We write ⊥L and ⊤L for the smallest and largest elements of L, and ⊔
and ⊓ for the least upper bound and greatest lower bound of two elements of L, respectively. We
write ⊥C , ⊥I , ⊤C , and ⊤I for the smallest and largest elements of LC and LI , respectively. In
examples, we often use a four-point lattice defined by LH < HH < HL and LH < LL < HL, where
LH for instance is low-confidentiality high-integrity.

54



For a given label ℓ = (ℓC , ℓI) of L, the confidentiality label ℓC specifies a read level for variables,
while the integrity label ℓI specifies a write level; the meaning of ℓ ≤ ℓ′ is that ℓ′ is at least as
confidential (can be read by fewer entities) and at most as trusted (can be written by more
entities) than ℓ. We let C(ℓ) = ℓC and I(ℓ) = ℓI be the projections that yield the confidentiality
and integrity parts of a label. Hence, the partial order on L is defined as ℓ ≤ ℓ′ if and only if
C(ℓ) ≤C C(ℓ′) and I(ℓ) ≤I I(ℓ′). We overload ≤C and ≤I , letting ℓ ≤C ℓ′ be C(ℓ) ≤C C(ℓ′) and
ℓ ≤I ℓ′ be I(ℓ) ≤I I(ℓ′). We let ℓI

·
= (⊥C , I(ℓ)) be the label with low confidentiality and the

integrity of ℓ.

The example below illustrates a simple security lattice (a variant of the DLM for two partici-
pants)

Example 10 As an example, we consider two participants A and B that do not trust each other.
To each of these participants, we associate a confidentiality label (ℓaC for A and ℓbC for B) and an
integrity label (ℓaI for A and ℓbI for B). A value written by A and that only A is allowed to read
has the label ℓaC , ℓ

a
I . A value written by A that only B is allowed to read has the label ℓbC , ℓ

a
I . These

labels do not form a proper lattice by themselves; we introduce:

• An integrity label for values that are untrusted (that can come from any of the participants):
⊤I

• An integrity label for values that are trusted by both participants: ⊥I

• A confidentiality label for values that are public: ⊥C

• A confidentiality label for values that are secret (that cannot be read by any of the partici-
pants): ⊤C

and we obtain a lattice defined by the rules:

⊥C≤ ℓaC ≤ ⊤C ⊥C≤ ℓbC ≤ ⊤C ⊥I≤ ℓaI ≤ ⊤I ⊥I≤ ℓbI ≤ ⊤I

3.2.2 Policies

We now define a security policy by labeling the variables of the program. Formally, memory
policies are functions Γ from variables to security labels. (The variables are untyped for now,
but we add datatypes to the policy in one of the following chapters.) Once a security policy is
defined, it is possible to partially compare two memories relatively to this policy. For example, if
we determine that two memory are equal on their public variables, it is not possible distinguish
them by accessing only the public variables. Formally, we define two variants low equality between
memories relative to a label ℓ ∈ L:

• Letting S = {x | Γ(x) ≤ ℓ}, we define µ =ℓ µ
′ as µ|S = µ′

|S . We also define low equality

between distributions ρ =ℓ ρ
′ as ρ|S = ρ′|S .

• Similarly, letting S′ = {x | ℓ 6≤ Γ(x)}, we define µ =ℓ µ′ as µ|S′ = µ′
|S′ . We also define low

equality between distributions ρ =ℓ ρ′ as ρ|S′ = ρ′|S′ .

The first variant relates couple of memories that are equal on all variables below a security label.
The second variant relates couple of memories that are equal on all variables that are not above
a security label. These two notions are similar, but one may be more practical depending on the
situation.
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3.3 Information-flow and Non-interference

The security policies defined above do not influence the semantic of programs, however, it is
possible to define access control policies (e.g., based on the memory policy) that limit which part
of the program or which participant can access each variable. Still, a trusted program can access
a secret variable and leak (by mistake) its value to a public variable. Thus, these access control
policies are unsatisfactory for protecting information on large systems, because they control access
to information but not its propagation. Therefore, it may be useful to control information flows
through the program and to verify, for instance, that secret variables only flows to secret variables.
We want to enforce information-flow policies.

When a program is secure, we expect the public final memory not to be influenced by the
private initial memory. This is formalized as a property of non-interference [Goguen and Meseguer,
1982]: if two initial memories coincide on their public (respectively trusted) variables, the two final
memories (after execution of the program) should coincide on their public (respectively trusted)
variables. Formally, our property of non-interference is parametrized by a label ℓ; and memories
are compared using low equality for ℓ (thus, for example, public variables are variables that are
more public than ℓ). A program is then non-interferent when it is non-interferent for any label ℓ.

In a concrete setting, private information can flow by other channels than the memory. For
example, a program can be considered insecure if does not terminate (or terminate slowly) on a
particular private input, since it may leak information on the private input if its termination is
observable. The most famous example of a side channel attack is the timing attack on implemen-
tation of cryptographic operations from Kocher [1996] that allows to retrieve encryption keys by
timing decryptions. In this thesis, we consider only termination insensitive non-interference, we
assume that the adversary cannot observe termination or any other side channel. Other works
study information-flow non-interference in the presence of side channels. For instance, Volpano
and Smith [1997] tackles termination sensitive non-interference.

Denning [1976] is the first to study static checking of potential information flows to verify the
security of a programs. Dynamic methods to track information flows have been developed, for
instance by Suh et al. [2004]. The current preferred static method, first introduced by Volpano
et al. [1996], uses an information-flow type system. We present such type system in the subsection
below.

3.3.1 A strict type system for non-interference

We equip our language with a type system that enforces (termination-insensitive) non-interference.
Typing judgments for commands are of the form Γ ⊢ P : ℓ. Typing judgments for expressions are
of the form Γ ⊢ e : ℓ. We often omit the policy Γ when it is clear from the context (because it is
fixed).

The typing rules for commands and expressions appear in Figure 3.2. This type system is
similar to those typically used for non-interference [see e.g. Volpano et al., 1996].

We have ⊢ e : ℓ when e contains only variables at a level lower than ℓ, i.e., variables that are
less confidential and more trusted than ℓ. This is enforced by the rules Var, TOp and SubE. We
have ⊢ P : ℓ when P is non-interferent, and when it only writes variables with a level higher than
ℓ (sometimes called its ‘program counter’ level), i.e., variables that are more confidential and less
trusted than ℓ. We explain some of the rules:

• When executing a program that consists of a simple assignment (x := e), the final value
of x depends on e. In Rule TAssign Strict, ⊢ e : Γ(x) ensures that all the variables of e
are less confidential and at least as trusted as x, hence guaranteeing non-interference of the
command. The resulting type of the command corresponds to the type of the only variable
written: Γ(x).
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(Var)

⊢ x : Γ(x)

(TOp)

⊢ e : ℓ for e ∈ ẽ

⊢ op(ẽ) : ℓ

(SubE)

⊢ e : ℓ ℓ ≤ ℓ
′

⊢ e : ℓ′

(TAssign Strict)

⊢ e : Γ(x)

⊢ x := e : Γ(x)

(TFun)

⊢ e : ℓ for e ∈ ẽ

ℓ ≤ Γ(x) for x ∈ x̃

⊢ x̃ := f(ẽ) : ℓ

(TSeq)

⊢ P : ℓ ⊢ P
′ : ℓ

⊢ P ;P ′ : ℓ

(TCond)

⊢ e : ℓ ⊢ P : ℓ ⊢ P
′ : ℓ

⊢ if e then P else P
′ : ℓ

(TWhile)

⊢ e : ℓ ⊢ P : ℓ

⊢ while e do P : ℓ

(TSkip)

⊢ skip : ⊤

(TInert)

⊢ √
: ⊤

(TSubC)

⊢ P : ℓ ℓ
′ ≤ ℓ

⊢ P : ℓ′

Figure 3.2: Security type system (for a fixed policy Γ)

• When executing a program that consists of a conditional branch (if e then P else P ′), the final
values of the variables written in P or P ′ may be influenced by the result of the conditional
expression, hence by the values of the variables in e. In Rule TCond, ⊢ e : ℓ, ⊢ P : ℓ, and
⊢ P ′ : ℓ ensure that all the variable in e are less confidential and at least as trusted as the
variables written in P and P ′, hence guarantying the non-interference of the command.

• The Rule TSeq is a subtyping rule. It states that, if P is non-interferent, P only writes
variables with a level higher than ℓ, and ℓ′ ≤ ℓ, then P only writes variables with a level
higher than ℓ′. It is necessary, for example, to type with Rule TCond a conditional branch
with two commands of different type. In this case, the level considered is a level below the
level of the two commands, e.g., the greatest lower bound.

The example below illustrates typing.

Example 11 Let Γ be defined by Γ(s) = HH (s is secret) and Γ(p) = LH (p is public). As an
example of typing, we consider the command

P
·
= if p ≤ s then s := s− p

We have Γ(p) = LH, hence ⊢ p : LH using Rule Var. Then, since LH ≤ HH, we have ⊢ p : HH
using Rule SubE. Similarly, ⊢ s : HH using Rule Var. Hence ⊢ p ≤ s : HH and ⊢ s− p : HH using
Rule TOp. Hence ⊢ s := s− p : HH using Rule TAssign Strict and ⊢ if p ≤ s then s := s− p : HH
using Rule TCond. P types at level HH, is non interferent, and only writes confidential variables.

A program that types with the typing rules of Figure 3.2 is (termination insensitive) non-
interferent:

Theorem 4 (Non-interference) Let Γ be a security policy, P a well-typed command, ℓ ∈ L,
and µ0 and µ1 two initial memories such that P terminates.

If µ0 =ℓ µ1, then ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉). If µ0 =ℓ µ1, then ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉).

The proof of Theorem 4 is at the end of this chapter, in Subsection 3.6.1.

We illustrate our non interference theorem in the example below.

Example 12 By Theorem 4, the program of Example 11 is non-interferent (with the corresponding
policy). We instantiate this definition for some ℓ = LL and some memories µ0 = {s 7→ 7, p 7→ 10}
and µ1 = {s 7→ 12, p 7→ 10}. The two memories differ only on their secret values: µ0|ℓ = {s 7→
10} = µ1|ℓ. Also, ρ∞(〈P, µ0〉) is a single point distribution, with ρ∞(〈P, µ0〉)({s 7→ 2, p 7→ 10}) = 1
and ρ∞(〈P, µ1〉) is a single point distribution, with ρ∞(〈P, µ1〉)({s 7→ 7, p 7→ 10}) = 1. The two
memory distributions differ only on their secret values: ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉).
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3.3.2 Active adversaries

In this thesis, we consider the security of systems against active adversaries. In our information-flow
settings, we consider a compromise level, and we model these adversary with commands that read
and write variables according to this level. If we consider a single machine, the compromise level
may correspond to the users that are compromised, allowing the adversary to read or write data
that these user can read or write. In a distributed model, the compromise level may correspond
to the machines that are compromised, the networking traffic that can be spied, etc. These
restrictions on the adversary commands are access control policies, but the adversary does not
necessarily follows information-flow policies (i.e., it is not typed). As a first step, these commands
are interleaved with the legitimate parts of the program, but we will later consider adversaries
that control the scheduling of the programs.

Formally, for a given α ∈ L, we let α-adversaries range over tuple of commands Ã that read
variables in a set V CA = {x | x ≤C α} with confidentiality level less than or equal to C(α) and write
variables in a set V IA = {x | α ≤I x} with integrity level more than or equal to I(α). We consider
programs obtained by composing commands with α-adversaries. To this end, we add command
variable to the grammar of P :

P ::= · · · | X
Command variables X are placeholders for commands, bound in command contexts. As usual, we
often use anonymous command variables in command contexts, writing P [Q̃] instead of P [Q̃/X̃].
For instance, (X1;X2;X1)[P1, P2] stands for P1;P2;P1. In the following, we sometimes use for
anonymous command variables that are filled with adversary commands. Command context are
commands with free command variables. We add a typing rule for command variables X:

(TAdversary)

⊢ X : (C(α),⊤I)

With this additional rule, we state that command variables, which are placeholders for unknown
adversary commands, might leak the program counter.

We now update our theorem on non-interference (Theorem 4) to account for active adversaries.
Since the adversary commands are not restricted on flow of information but only on variables it
can read or write, non-interference is limited to labels more secret and more trusted than α.

Theorem 5 (Non-interference against active adversary) Let Γ be a security policy, P a

well-typed command context, ℓ, α ∈ L, Ã an α-adversary, and µ0 and µ1 two initial memories
such that P [Ã] terminates.

If µ0 =ℓ µ1, and C(α) ≤ C(ℓ) or I(α) 6≤ I(ℓ), then ρ∞(〈P [Ã], µ0〉) =ℓ ρ∞(〈P [Ã], µ1〉). If

µ0 =ℓ µ1, and C(ℓ) 6≤ C(α) or I(ℓ) ≤ I(α), then ρ∞(〈P [Ã], µ0〉) =ℓ ρ∞(〈P [Ã], µ1〉).

The proof of Theorem 5 is at the end of this chapter, in Subsection 3.6.2.

With a variant of Example 11, we illustrate an active attack that is correctly banned by our
type system.

Example 13 Let α = LL, we consider a variant of command P of Example 11 with an additional
placeholder for the adversary:

P ′ ·
= if p ≤ s then {s := s− p; }

P ′ does not type since ⊢ : LL. Indeed, we choose ℓ = LL, α = LL, A
·
= l := 1 (Γ(l) = LL),

µ0 = {s 7→ 7, p 7→ 10, l 7→ 0} and µ1 = {s 7→ 12, p 7→ 10, l 7→ 0}. ρ∞(〈P ′[A], µ0〉) is a single
point distribution, with ρ∞(〈P ′[A], µ0〉)({s 7→ 2, p 7→ 10, l 7→ 1}) = 1 and ρ∞(〈P ′[A], µ1〉) is a
single point distribution, with ρ∞(〈P ′[A], µ1〉)({s 7→ 7, p 7→ 10, l 7→ 0}) = 1. The two memory
distributions differ on the public value of l: ρ∞(〈P ′[A], µ0〉) 6=ℓ ρ∞(〈P ′[A], µ1〉).
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3.4 Declassifications and endorsements

Our strict type system yields non-interference, hence it necessarily excludes many useful programs
that (by design) selectively allow some flows from private to public values (declassifications) or
flows from untrusted to trusted values (endorsements). We illustrate one of those programs below.

Example 14 (Password protection) Consider a program that releases a secret after verifying
a password entered in variable guess:

P
·
= if guess = pwd then r := secret

with Γ(guess) = LL, Γ(pwd) = HH, Γ(r) = LH, and Γ(secret) = HH. The password is highly
trusted and confidential. The guess is untrusted and public: it is a tentative to log-in, for example
from a terminal. The secret is secret an trusted, but may be leaked to the result r if the guess
match the password. Although this program is arguably secure, it endorses guess (which is a
priori untrusted), declassifies the outcome of the test (which is secret, since pwd is), then possibly
declassifies secret.

In some of the following chapters, we intend to compile such programs, considering bad flows
as part of the specification of the program and letting the programmer take responsibility for the
source properties of his program, but still ensuring that the compilation process does not introduce
any further potentially-unsafe information flows. Hence, we need a laxer type system that does
not enforce non-interference, but still guarantees interesting properties.

Robustness

The research on information flow properties of programs that are not non-interferent is active.
Zdancewic and Myers [2001] consider systems that include declassification and characterize what
information is leaked. In particular, they define a notion of robustness, which ensure that an at-
tacker is not able to influence what information is declassified. Sabelfeld and Myers [2004] consider
programs were possible leaks of information are specified by the initial value of the declassified
expression, this implies that values declassified are not controlled by an attacker. Askarov and
Myers [2010] compare traces that have the same endorsement, also with a notion of robustness
for release events. Chong and Myers [2006] also consider that the attacker should not control
the information that is declassified. They introduce a function that defines what is the necessary
integrity level of the declassification so that it is robust. They also allows for some endorsement
(considering them as non-deterministic assignment). Sabelfeld and Sands [2005] wrote a review of
declassifications approaches.

As we see in Example 14 and the works discussed above, declassification is useful, but may
need to be controlled. In our example, in particular, the declassification depends on the low-
integrity variable guess, letting the adversary influence what is declassified. In this case, it is
arguably safe, but it is generally dangerous. For instance, the example would be entirely broken
with Γ(pwd) = HL, since the untrusted password could be set to 0. As in the works discussed
above, we say that a declassification is robust when it does not depend on low-integrity data. We
rely on a monotonic robustness function, R : LC → LI , that indicates the minimum integrity level
required to declassify each confidentiality level. For instance, in a system where a participant B
is associated with a confidentiality level ℓbC and an integrity level ℓbI , we may choose R(ℓbC) = ℓbI
to ensure that only B (and participants trusted by B) has the authority to declassify values that
only him can read. We also support non-robust declassifications, treating them as a high-integrity
endorsement followed by a robust declassification,

When using the lax type system with active adversaries, we only consider robustness functions
that ensure that adversaries can read any robust level they can write.
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(TAssign Endorse)

⊢ e : (c, ) c ≤ C(x)

⊢ x := e : Γ(x)

(TAssign Robust)

⊢ e : (c, ) c 6≤ C(x)

⊢ x := e : Γ(x) ⊓ (⊤, R(c))

Figure 3.3: Lax rules for the security type system (for a fixed policy Γ)

Definition 15 R is robust against an adversary level α when, for all confidentiality levels c ∈ LC ,
if I(α) ≤ R(c), then c ≤ C(α).

3.4.1 A more permissive type system

For typing unsafe programs, we define a new type system, whose typing rules allow declassifications
and endorsements but take them into account to compute the level of the command. The new type
system uses two new ‘lax’ typing rules appearing in Figure 3.3 instead of Rule TAssign Strict.
Every typing judgment in this subsection uses this lax type system. The Rules TAssign Endorse

and TAssign Robust are two generalization of rule TAssign Strict. TAssign Endorse is TAssign

Strict only when e has at least the integrity of x; otherwise, the assignment endorses e. Irrespective
of e, the command is typed at the level of x. TAssign Robust enables the declassification of e
into x (c � C(x)) but it records this privileged operation by raising the command type up to the
associated robust integrity level R(c).

The lax type system enforces two fundamental properties. First, if a command has level ℓ, then
it does not write variables below ℓ. The lax type system enforces same containment properties
than the strict type system (see Lemma 28).

Theorem 6 (Lax-Containment) Let Γ be a policy, ℓ ∈ L a label, P a command, and µ a
memory such that P terminates.

If ⊢ P : ℓ, then ρ∞(〈P, µ〉) =ℓ µ and for any ℓ′ such that ℓ 6≤ ℓ′, we have ρ∞(〈P, µ〉) =ℓ′ µ.

The proof of Theorem 6 is at the end of this chapter, in Subsection 3.6.3.

Second, a command at level ℓ may declassify values of confidentiality c only if I(ℓ) ≤ R(c).
This theorem is weaker than Theorem 4 of non-interference for the strict type system: it only
guarantees the non-interference of low-integrity commands for high-confidentiality values.

Theorem 7 (Robust non-interference) Let Γ be a policy, ℓ ∈ L a label, c ∈ LC such that
I(ℓ) 6≤ R(c). Let P be a command and µ0, µ1 memories such that P terminates.

If ⊢ P : ℓ and µ0 =(c,H) µ1, then ρ∞(〈P, µ0〉) =(c,H) ρ∞(〈P, µ1〉).

The proof of Theorem 7 is at the end of this chapter, in Subsection 3.6.4.

3.4.2 Semi-active adversaries

The guarantees of a program that contains declassification and endorsement in an active adversary
model are thin. A programmer who wants to estimate the security of its program has to consider
all possible adversaries and all possible executions. We intend to ease this process by limiting
the number of possible adversaries to consider, for example, by enforcing that these adversaries
only write variables that are going to be endorsed. To this end, we study a refined version of our
active adversaries, which is more constrained. We then prove that, under certain circumstances,
constrained adversaries cover all attacks.
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We define semi-active command context P with a grammar obtained from that of P by adding
annotations to command variables. We write Xd,n instead of X, where d and n range over sets of
variables. As in the section above, we may write [ ]d,n instead of Xd,n for anonymous command
variables. The set d limits the variables the adversary can read (in this placeholder) and the set n
limits the variables the adversary can write (in this placeholder). For a given command context P ,

we let semi-active α-adversaries range over α-adversaries Ã such that, for each placeholder [ ]d,n
and each command Ai filling this placeholder in P [Ã]:

• rv(Ai) ∩ v(P ) ⊆ d and

• wv(Ai) ∩ v(P ) ⊆ n.

We illustrate this model below.

Example 15 Let α = LL, we consider a variant of the command of Example 14 with an interme-
diary variable test such that Γ(test) = LH and additional placeholders for the adversary :

P
·
= [ ]∅,{guess}; test := (guess = pwd); [ ]{test},∅; if test then r := secret; [ ]{r},∅

A semi-active adversary for this command can only write guess at the start of the program, read
the intermediate result test, and read r at the end of the program. However, it is still as powerful
as active adversaries for the command context

P
·
= ; test := (guess = pwd); ; if test then r := secret;

Our semi-active adversary model gives a good idea of the weak points of the program.

3.4.3 Refining active attacks to semi-active attacks

We intend to prove that, while a semi-active command context limit the number of attacks to
consider, it may still covers all attacks of the corresponding unrestricted command context. We
do not directly generate the best correct semi-active command context. However, we use a type
system to check them, and their generation becomes an inference problem.

The typing rules for semi-active command context appear in Figure 3.4. The typing rules for
expressions are left unchanged from Figure 3.2. Our type system uses local policies that track the
levels of values inside the variables. For instance, a public variable is marked as secret if its current
contents results from a declassification, thus indicating that the adversary may want to read it.
On the contrary, when the variable is zeroed, its level is updated to public. We still consider a
global policy Γ, and we use γ (with the same domain) instead of Γ for those policies that can be
different from the global policy. Typing judgments for commands are of the form γ ⊢ P : ℓ, γ′. In
this case, we say that P types at level ℓ with initial policy γ and final policy γ′.

We generalize operation on labels to operations on security policies, and we set a default
policy γ0:

C(γ) = {x 7→ C(γ(x)) | x ∈ dom(Γ)} I(γ) = {x 7→ I(γ(x)) | x ∈ dom(Γ)}
γ ⊓ γ′ = {x 7→ γ ⊓ γ′ | x ∈ dom(Γ)} γ ⊔ γ′ = {x 7→ γ ⊔ γ′ | x ∈ dom(Γ)}
γ ≤ γ′ ⇔ ∀x ∈ dom(Γ), γ(x) ≤ γ′(x) γ =S γ

′ ⇔ ∀x ∈ S, γ(x) = γ′(x)

γ0 = {x 7→ (⊥I ,⊤C) | x ∈ dom(Γ)}

for S ⊆ dom(Γ). We write S for the complement of set S in dom(Γ), that is S = Γ\S.

In Rule TsAssign, the hypothesis binds a type for expression e in the initial policy γ. Then,
it updates the type of x with the flow from e. There is no specific rule for declassification or
endorsement in this type system system with local policies:
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(TsAssign)

γ ⊢ e : ℓ

γ ⊢ x := e : ℓ, γ{x 7→ ℓ}

(TsFun)

γ ⊢ ẽ : (H, i)

γ ⊢ x1, . . . , xm := f(e1, . . . , en) : (i,⊤C), γ{x 7→ (H, i)}
(TsSeq)

γ ⊢ P : ℓ, γ′
γ
′ ⊢ Q : ℓ, γ′′

γ ⊢ P ;Q : ℓ, γ′′

(TsCond)

γ ⊢ P : ℓ, γ′
γ ⊢ P

′ : ℓ, γ′
γ ⊢ e : ℓ

γ ⊢ if e then P else P
′ : ℓ, γ

′

(TsWhile)

γ ⊢ P : ℓ, γ γ ⊢ e : ℓ

γ ⊢ while e do P : ℓ, γ

(TsSkip)

γ ⊢ skip : ℓ, γ

(TsInert)

γ ⊢ √
: ℓ, γ

(TsSubC)

γ
′
1 ≤ γ1 γ2 ≤ γ

′
2 ℓ

′ ≤ ℓ γ1 ⊢ P : ℓ, γ2

γ
′
1 ⊢ P : ℓ′, γ′

2

(TsAdversary)

I(γ′) =n I(Γ) ⊔ I(γ)
I(γ) ≤ R(C(γ))

C(γ) =d C(Γ) ⊓ C(γ′)
C(γ′) =d C(Γ)

i = ⊓x∈nI(γ
′(x)) ⊓x∈d R(C(γ(x)))

γ ⊢ [ ]d,n : (C(α), i), γ′

Figure 3.4: Type system for semi-active adversaries

• If the command is a declassification compared to the global Γ, γ′(x) has higher confidentiality
than Γ(x) to keep track of the high-confidentiality contents of x;

• If the command is an endorsement compared to the global Γ, the variables endorsed in e
have an higher integrity in γ to keep track of their high integrity footprint.

These variations from the global Γ are accounted for when typing semi-active placeholders (see
also Example 16).

In Rule TsAdversary, we type a semi-active placeholder, ensuring that the capabilities given in
the sets d and n are sufficient to cover all attacks. In particular, the adversary may want to read low
confidentiality variables with high-confidentiality payloads (i.e., x such that C(Γ(x)) ≤ C(γ(x))),
but has no interest in reading low confidentiality variables with low-confidentiality payload. Simi-
larly, the adversary may want to write low integrity variables with high integrity footprint (i.e., x
when I(γ′(x)) ≤ I(Γ(x))). The first hypothesis covers endorsement: the values that the adversary
cannot write (i.e., outside of n) need to respect the global policy Γ and the preceding flows of
the program. The second hypothesis is a robustness conditions covering all variables (see also
Examples 17 and 18). The third hypothesis ensures that the variables that are not declassified
respect the global policy Γ and the preceding flows of the program. The fourth hypothesis ensures
that variables are not declassified more than the global policy.

Rule TsFun, is similar to Rule TsAssign. However, outputs of random functions cannot be
inferred from their input and they carries some additional information that may need to be read
by the adversary (see also Example 19).

In Rule TsSeq, the first hypothesis types a first command at level ℓ with initial policy γ and
updated policy γ′. The second hypothesis types a second command at level ℓ with initial policy
γ′ and updated policy γ′′. We can type the sequence of the two commands at level ℓ, with initial
policy γ and updated policy γ′′.

In Rule TsCond, we ensure that the guard can type at level ℓ and that both commands can
type at level ℓ with initial policy γ and updated policy γ′. The symmetry of the rule gives strong
guarantees against implicit flows, as seen in Example 18.

In Rule TsWhile, we ensure that the guard can type at level ℓ and that the command can type
at level ℓ with initial and updated policy γ, both policies have to be the same since it is a loop.
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In Rule TsSubC, we allows for weakening of a typing statement, with a stronger initial policy
or a weaker updated policy.

A semi-active command context P is well-typed when there exists ℓ such that γ0 ⊢ P : ℓ, γ0.
The confidentiality of the initial policy ensures that all initial variables that are public can be
read by the first adversary commands (this is similar to the restriction on Rule TsFun that ensure
that public randomly generated variables can be read by the adversary). The integrity of the
final policy ensures that all the variables that are untrusted can be written by the last adversary
commands.

3.4.4 Examples

We first give two small examples on how the typing inference constraints placeholder annotations
(hence on adversary capabilities) .

Example 16 (Semi-active placeholders) Consider the command context

p := s; p′ := 0; [ ]n,d

Let Γ(p) = Γ(p′) = HL and Γ(s) = HH. If γ0 ⊢ p := s; p′ := 0 : ℓ, γ′, then C(γ′(p)) = H 6≤ C(Γ(p)).
Hence p ∈ d: it is a low confidentiality variable with a high confidentiality content that the adversary
may want to read. However, we can type this command with C(γ′(p′)) = L ≤ C(Γ(p′)) and have
p′ 6∈ d: the adversary does not gain anything by reading p′.

Consider the command context

[ ]n,d;h := l; l′ := 0;h′ := l′

Let Γ(h) = Γ(h′) = HL and Γ(l) = Γ(l′) = LL. If γ ⊢ h := l; l′ := 0;h′ := l′ : ℓ, γ0, we have
I(γ(l)) = H 6≥ I(Γ(l)), hence l ∈ n: it is a low integrity variable with a high integrity footprint that
the adversary may want to write. However, we can type this command with I(γ(l′)) = L ≥ I(Γ(l′))
and have l′ 6∈ n: the adversary does not gain anything by writing l′.

In the example below, we illustrate the need for the robustness condition in Rule TsAdversary.
In particular, we show that some variables might be indirectly endorsed because of confidentiality
issues.

Example 17 (Carry-on endorsement) Consider the command context

[ ]n1,d1
; s′ := s⊕ l;

[ ]n2,d2
; p := s′;

[ ]n3,d3

Let Γ(p) = HL, Γ(s′) = LH, and Γ(l) = LL. In general, the adversary only needs to write endorsed
variables (s′) as late as possible and, if Γ(s) = HL, there is no reason for him to write l since
it can write s′ and simulate any computation appearing before. But if Γ(s) = HH, the adversary
cannot simulate the computation anymore since it does not know s. The condition I(γ) ≤ R(C(γ))
in Rule TsAdversary ensure that he is able to write l (in n1) as well as s

′ (in n2) in this program,
even if l is not directly endorsed.

In the example below, we illustrate how some variables may be indirectly endorsed for their
exploitation in indirect flows.

Example 18 (Robustness and conditional branches) Consider the command context

l := 0; [ ]n1,d1
;

if s then l := 0 else skip;
[ ]n2,d2
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Let Γ(s) = HH and Γ(l) = LL. If we only consider the implicit flow from s to l, we may suppose
that the adversary only gains in reading l at the end of the program but does not need anything else.
However, if the adversary does not modify l at the start (e.g., writing 1 in l), it cannot exploit the
implicit flow from s (since l is always 0). Hence, semi-active adversaries need to be able to write
in l, even if there is no explicit endorsement of l. This emerges from the robustness condition in
Rule TsAdversary and the symmetry of Rule TsCond.

We detail its typing. Suppose that γ ⊢ if s then l := 0 else skip : ℓ, γ′, with γ(s) = HH. By
Rule TsCond, γ ⊢ l := 0 : ℓ, γ′, hence we have C(γ′(l)) = H. With the robustness condition of
Rule TsAdversary applied on the next command, we need I(γ′(l)) ≤ C(γ′(l)), hence I(γ′(l)) = H.
By Rule TsSkip, γ ⊢ skip : ℓ, γ′ if γ = γ′. In particular γ(l) = H, hence, by Rule TsAdversary,
l ∈ n1, the semi-active adversary can write l in the first placeholder.

In the example below, we illustrate the need to consider random sampling as a declassification.

Example 19 (Random assignments) Consider the command context

[ ]n1,d1 ;
r := rand(); [ ]n2,d2 ;
if r = g then p := s; [ ]n3,d3

Let Γ(r) = Γ(p) = HL, Γ(g) = LL, and Γ(s) = HH. The value r does not explicitly depend on
any confidential variable, but it is still an interesting read for the adversary. This justifies the high
confidentiality output of probabilistic functions in Rule TsFun.

3.4.5 Simulation theorem

Our theorem states that a well-typed semi-active command context, which is only susceptible to a
very limited set of attacks, still covers all the attacks of the corresponding active command context.
We consider the program transformation [[P ]] that replaces every semi-active placeholder [ ]d,n in
P with .

Theorem 8 Let Γ be a policy. Let α ∈ L be such that R is robust against α. Let P be a well-typed
semi-active command context.

For every α-adversary Ã, such that [[P ]][Ã] terminates, there exists a semi-active α-adversary

Ã′ such that [[P ]][Ã′] terminates and, for every memory µ,

ρ∞〈P [Ã′], µ〉 = ρ∞〈[[P ]][Ã], µ〉

Example 20 For instance, in the commands of Example 15 (P and P ), the active adversary

A0
·
= guess := “foo′′ A1

·
= r := 0 A2

·
= if r = 0 then g := 0 else g := 1

can be replaced by the following semi-active adversary that never writes r

A′
0

·
= guess := “foo′′ A′

1
·
= testcopy := test

A′
2

·
= if testcopy = 0 then g := 0 else if r = 0 then g := 0 else g := 1

For every memory µ,

ρ∞〈P [Ã′], µ〉 = ρ∞〈P [Ã], µ〉

The proof of Theorem 8 is at the end of this chapter, in Subsection 3.6.5.

64



3.5 Properties of program transformations

In the section above, we proved the security of a simple program transformation that only modify
the allowed adversaries. In the chapters below, we consider similar properties on more complex
transformations (compilations) that affect the programs themselves. We present the main prop-
erties we establish for our different compilers, as regards both security and functional correctness.
The properties are stated below for an abstract program transformation between source and target
programs; they are instantiated before each of our main theorems in chapters 4 and 6.

We are interested in transformations that operate on programs that are (possibly) not perfectly
secure, so, as in the case above, we cannot define security as the preservation of non-interference.
Instead, for each of our transformations, we demand, as in the section above, that there is an
inverse map from target adversaries to source adversaries, essentially showing how to ‘decompile’
each attack into an attack already present before the transformation is applied.

We consider system configurations obtained by composing a program (e.g. a command context)
P ∈ P , an adversary (e.g. a tuple of commands) A ∈ A, and an initial state (e.g. a memory)
µ ∈ M. Their semantics is given by an evaluation function, written 〈〈·〉〉 : P → A → M → M, and
an observational equivalence on states, written ≈ ⊆ M2. For a given program and an arbitrary
adversary, we are interested in the properties of final states up to ≈.

For instance, if we consider commands for a client and a bank scheduled by an adversary that
controls the network, we may let programs range over pairs of commands Qc, Qb, let adversaries
range over binary command contexts, let ≈ be low-equality on memory distributions, and use the
evaluation function

〈〈(Qc, Qb), A, µ〉〉 ·
= ρ∞(〈A[Qc, Qb], µ〉)

Given definitions for source (P,A,M,≈, 〈〈〉〉) and target (P ′,A′,M′,≈′, 〈〈〉〉′) configurations,
we consider program transformations, written [[·]] : P → P ′, together with state projections (that
is, surjective functions), written π : M′ → M. (The role of π is to erase any auxiliary variable
introduced by the transformation.) We arrive at the following definitions:

Definition 16 (Security) ([[·]], π) is secure when, for every source program P ∈ P and target
adversary A′ ∈ A′, there is a source adversary A ∈ A such that, for every target initial memory
µ′ ∈ M′, we have

〈〈P,A, π(µ′)〉〉 ≈ π〈〈[[P ]], A′, µ′〉〉′

Definition 17 (Correctness) ([[·]], π) is correct when, for every source program P ∈ P and source
adversary A ∈ A, there is a target adversary A′ ∈ A′ such that, for every target initial memory
µ′ ∈ M′, we have

〈〈P,A, π(µ′)〉〉 ≈ π〈〈[[P ]], A′, µ′〉〉′

The two definitions differ in their quantification on adversaries. Informally, all attacks must be
reflected, but not all of them need to be preserved, so we expect functional correctness only for
a well-behaved subset of adversaries, acting for instance as reliable networks and fair schedulers,
and we will use a smaller set A for Definition 17 than for Definition 16.

3.6 Proofs

3.6.1 Proof of Theorem 4

We now prove the theorem. We first state a semantic property of sequential evaluation:
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Lemma 27 Let P and Q be two commands and µ0 a memory such that P ;Q terminates. We
have

ρ∞(〈P ;Q,µ0〉) =
∑

µ

ρ∞(〈P, µ0〉)(µ) ∗ ρ∞(〈Q,µ〉)

Proof: Let n be a bound on the maximum number of steps for 〈P, µ0〉 to terminate. We proceed
by induction on n.

• If n = 0, we have P =
√
, hence ρ∞(〈P, µ0〉) = µ0, and by Rule SeqT we have ρ∞(〈P ;Q,µ0〉)

= ρ∞(〈Q,µ0〉).
• Otherwise, decomposing the first reduction step of P , we get ρ∞(〈P, µ0〉) =

∑
i piρ∞(〈Pi, µi〉)

for some k ≥ 1 and pi, Pi, and µi with i = 1..k where each 〈Pi, µi〉 terminates in at most
n−1 step. By Rule SeqS, we also have ρ∞(〈P ;Q,µ0〉) =

∑
i piρ∞(〈Pi;Q,µi〉). By inductive

hypothesis, we obtain

ρ∞(〈P ;Q,µ0〉) =
∑

i

piρ∞(〈Pi;Q,µi〉)

=
∑

i

pi
∑

µ

ρ∞(〈Pi, µi〉)(µ) ∗ ρ∞(〈Q,µ〉)

=
∑

µ

(
∑

i

piρ∞(〈Pi, µi〉)(µ)) ∗ ρ∞(〈Q,µ〉)

=
∑

µ

ρ∞(〈P, µ0〉)(µ) ∗ ρ∞(〈Q,µ〉)

�

In this lemma, we show that a typable command does not influence memory at a level below
its type.

Lemma 28 (Containment) Let Γ be a policy, ℓ ∈ L a label, P a command, and µ a memory
such that P terminates.

If ⊢ P : ℓ, then ρ∞(〈P, µ〉) =ℓ µ and for any ℓ′ such that ℓ 6≤ ℓ′, we have ρ∞(〈P, µ〉) =ℓ′ µ.

Proof: The proof is by induction on the maximum number of reduction steps for 〈P, µ〉 to
terminate. The base case P =

√
is trivial. The inductive case is by analysis on P :

Case P is x := e. By Rules TAssign Strict and TSubC, we have ℓ ≤ Γ(x), hence ρ∞(〈P, µ〉) =ℓ
µ. Additionally, if ℓ 6≤ ℓ′, then Γ(x) 6≤ ℓ′ and ρ∞(〈P, µ〉) =ℓ′ µ.

Case P is x̃ := f(ẽ). By Rules TFun and TSubC, we have (for all x in ~x) ℓ ≤ Γ(x). The conclusion
follows as for the case above.

Case P is if e then P1 else P2. By rules TCond and TSubC, if ⊢ P : ℓ′ then ⊢ P1 : ℓ′ and
⊢ P2 : ℓ′. Also, either 〈P, µ〉  1 〈P1, µ〉 or 〈P, µ〉  1 〈P2, µ〉. We conclude by induction on
〈P1, µ〉 and 〈P2, µ〉.

Case P is while e do P ′. By rulesWhile, TSubC, and TSeq, if ⊢ P : ℓ′ then ⊢ P ′; while e do P ′ :
ℓ′. Also, either 〈P, µ〉 1 〈P ′; while e do P ′, µ〉 or 〈P, µ〉 1 〈√, µ〉. We conclude by induction
on 〈P ′; while e do P ′, µ〉 and 〈√, µ〉.

Case P is P ;P ′. By Lemma 27, we have ρ∞(〈P ;P ′, µ〉) = ∑
µ′ ρ∞(〈P ′, µ′〉)∗ρ∞(〈P, µ〉)(µ′). We

first consider the case =ℓ. By inductive hypothesis on 〈P, µ〉 , ρ∞(〈P, µ〉) =ℓ µ. Hence
ρ∞(〈P, µ〉)(µ′) 6= 0 if and only if µ′ =ℓ µ. By inductive hypothesis on each of the 〈P ′, µ′〉,
ρ∞(〈P ′, µ′〉) =ℓ µ′ =ℓ µ. We conclude that ρ∞(〈P ;P ′, µ〉) =ℓ µ. Similarly, if ℓ 6≤ ℓ′, then
ρ∞(〈P, µ〉) =ℓ′ µ.
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Case P is skip. 〈P, µ〉 1 〈√, µ〉. We conclude.

�

In the next lemma, we show that the evaluation of a typed expression on two memories equal
below its type yield the same values.

Lemma 29 Let Γ be a policy, ℓ, ℓ′ ∈ L two labels, e an expression such that ⊢ e : ℓ, and µ0 and µ1

two memories. If µ0 =ℓ µ1, then [[e]](µ0) = [[e]](µ1). If ℓ
′ 6≤ ℓ and µ0 =ℓ

′

µ1, then [[e]](µ0) = [[e]](µ1).

Proof: The proof is by induction on the typing derivation:

• e is x. By typing hypothesis, Rule Var, and Rule SubE, we have Γ(x) ≤ ℓ, hence, if µ0 =ℓ µ1,
then µ0(x) = µ1(x). Also, if ℓ

′ 6≤ ℓ, then ℓ′ 6≤ Γ(x). Hence, if µ0 =ℓ
′

µ1, then µ0(x) = µ1(x).
We conclude.

• e is op(ẽ). We conclude by induction hypothesis on ⊢ e : ℓ for e ∈ ẽ by Rule SubE (Rule SubE

commutes with Rule TOp).

�

We now prove our theorem.

Proof of Theorem 4 For the case µ0 =ℓ µ1, if P ⊢ ℓ then we conclude by Lemma 28 that
ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉). For the case µ0 =ℓ µ1, if there exists ℓ′ such that ⊢ P : ℓ′ and ℓ′ 6≤ ℓ
then we conclude with Lemma 28 that ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉). In all the other cases, the proof
is by induction on the number of reduction steps for P to terminate. We assume that ⊢ P : ℓ′.

Case P is x := e. By Rule TAssign Strict, ⊢ e : ℓ′. For the case µ0 =ℓ µ1, we have ℓ
′ ≤ ℓ, hence,

by Rule SubE ⊢ e : ℓ and [[e]](µ0) = [[e]](µ1) by lemma 29. For the case µ0 =ℓ µ1, we have
ℓ′ 6≤ ℓ, hence [[e]](µ0) = [[e]](µ1) by lemma 29. We conclude by the semantic definition Assign.

Case P is if e then P1 else P2. By rule TCond, ⊢ e : ℓ′, similarly [[e]](µ0) = [[e]](µ1) by lemma
29. Thus, [[e]](µ0) = [[e]](µ1) = b for some b ∈ {0, 1} and

ρ∞(〈if e then P1 else P2, µ0〉) =ρ∞(〈Pb, µ0〉)
ρ∞(〈if e then P1 else P2, µ1〉) =ρ∞(〈Pb, µ1〉)

We conclude by induction on 〈Pb, µ0〉 and 〈Pb, µ1〉.

Case P is while e do P ′. By rule TWhile, ⊢ e : ℓ′, similarly [[e]](µ0) = [[e]](µ1) by lemma 29.
Thus, either

• [[e]](µ0) = [[e]](µ1) = 0 and

ρ∞(〈while e do P ′, µ0〉) =µ0

ρ∞(〈while e do P ′, µ1〉) =µ1

and we conclude from hypothesis µ0 =ℓ µ1;

• or [[e]](µ0) = [[e]](µ1) 6= 0 and

ρ∞(〈while e do P ′, µ0〉) =ρ∞(〈P ′; while e do P ′, µ0〉)
ρ∞(〈while e do P ′, µ1〉) =ρ∞(〈P ′; while e do P ′, µ1〉)

and we conclude by induction on 〈P ′; while e do P ′, µ0〉 and 〈P ′; while e do P ′, µ1〉.
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Case P is P0;P1. We first consider the case =ℓ. We write

ρ0 = ρ∞(〈P0, µ0〉)
ρ1 = ρ∞(〈P0, µ1〉)

By induction on P0, we know that ρ0 =ℓ ρ1. By definition of low-equality on distributions,
for every µi, pi such that ρ0|ℓ(µi) = pi, there exist (µ0

i,j)j≤n0
i
and (p0i,j)j≤n0

i
such that

• µ0
i,j =ℓ µi,

• ρ0(µ
0
i,j) = p0i,j ,

• ∑
j p

0
i,j = pi

Similarly, there exist (µ1
i,j)j≤n1

i
and (p1i,j)j≤n1

i
such that

• µ0
i,j =ℓ µ

1
i,j =ℓ µi,

• ρ0(µ
0
i,j) = p0i,j ,

• ρ1(µ
1
i,j) = p1i,j ,

• ∑
j p

0
i,j =

∑
j p

1
i,j = pi

By Lemma 27,
ρ∞(〈P0;P1, µ0〉) =

∑
µ ρ0(µ) ∗ ρ∞(〈P1, µ〉)

=
∑
i

∑
j ρ∞(〈P1, µi,j〉) ∗ p0i,j

ρ∞(〈P0;P1, µ1〉) =
∑
µ ρ1(µ) ∗ ρ∞(〈P1, µ〉)

=
∑
i

∑
j ρ∞(〈P1, µi,j〉) ∗ p1i,j

For every couple (i, j), we have ρ∞(〈P1, µ
0
i,j〉) =ℓ ρ∞(〈P1, µ

1
i,j〉) and we conclude. We con-

clude similarly for the case =ℓ

�

3.6.2 Proof of Theorem 5

We first update our containment lemma for active adversaries.

Lemma 30 (Containment against active adversary) Let Γ be a policy, P a command con-

text , ℓ, ℓ′, α ∈ L three labels, Ã an α-adversary, and µ a memory such that P [A] terminates.

If ⊢ P : ℓ, and C(ℓ) 6≤ C(α) or I(ℓ) ≤ I(α), then ρ∞(〈P [Ã], µ〉) =ℓ µ. Additionally, if ⊢ P : ℓ,

ℓ 6≤ ℓ′, and C(α) ≤ C(ℓ) or I(α) 6≤ I(ℓ), then ρ∞(〈P [Ã], µ〉) =ℓ′ µ.

Proof: The proof is by induction on the maximum number of reduction steps for 〈P [Ã], µ〉 to
terminate. The base case P =

√
is trivial. The inductive case is by analysis on P . The proof is

similar to the one of Theorem 28, so we only consider the additional case

Case P [Ã] is A. By Rules TAdversary and TSubC, for the first case, either C(ℓ) 6≤ C(α) in which
case rv(A) ⊆ {x | ℓ 6≤ Γ(x)}, hence ρ∞(〈A, µ〉) =ℓ µ; or I(ℓ) ≤ I(α) in which case wv(A)∩{x |
ℓ 6≤ Γ(x)} = ∅, hence ρ∞(〈A, µ〉) =ℓ µ. By Rules TAdversary and TSubC, for the second
case, either C(α) ≤ C(ℓ) in which case rv(A) ∈ {x | Γ(x) ≤ ℓ}, hence ρ∞(〈A, µ〉) =ℓ µ; or
I(α) 6≤ I(ℓ) in which case wv(A)∩ {x | Γ(x) ≤ ℓ} = 0, hence ρ∞(〈A, µ〉) =ℓ µ. We conclude.

�

68



Proof of Theorem 5 If P ⊢ ℓ and µ0 =ℓ µ1, then, we conclude with Lemma 28 that
ρ∞(〈P [Ã], µ0〉) =ℓ ρ∞(〈P [Ã], µ1〉). If there exist ℓ′ such that ⊢ P : ℓ′, ℓ′ 6≤ ℓ, and µ0 =ℓ µ1, then

we conclude with Lemma 28 that ρ∞(〈P [Ã], µ0〉) =ℓ ρ∞(〈P [Ã], µ1〉). In all the other cases, the

proof is by induction on the number of reduction steps for P [Ã] to terminate. We suppose that
⊢ P : ℓ′. The proof is similar to the one of Theorem 4 (with the updated containment lemma), so
we only consider the additional case

Case P [Ã] is A. The case is the same than in Lemma 30.

�

3.6.3 Proof of Theorem 6

Proof: In Rules TAssign Endorse and TAssign Endorse, the type of the command is the type
of the variable being written (as in TAssign Strict). Hence, the proof of Lemma 28 works as well
with the lax type system. �

3.6.4 Proof of Theorem 7

Proof of Theorem 7 If ⊢ P : (c,H), then, we conclude with Theorem 6 that ρ∞(〈P, µ0〉) =(c,H)

ρ∞(〈P, µ1〉). Otherwise, for every ℓ such that ⊢ P : ℓ, we have (c,H) 6≤ ℓ and the proof is by
induction on the number of reduction steps for P to terminate. The proof is similar to the one of
Theorem 4, so we only consider the cases that differ:

Case P is x := e. Type with Rule TAssign Endorse. By typing rule TAssign Endorse, ⊢ e :
(C(ℓ), i) for some i. Hence [[e]](µ0) = [[e]](µ1) by lemma 29. We conclude by the semantic
definition Assign.

Case P is x := e. Type Rule TAssign Robust. By typing rule TAssign Robust, ⊢ e : (c′, i) (for
some c′ and i′), with I(ℓ) ≤ R(c′). Since R is monotonic and I(ℓ) 6≤ R(c), we have c � c′.
Hence [[e]](µ0) = [[e]](µ1) by lemma 29. We conclude by the semantic definition Assign.

�

3.6.5 Proof of Theorem 8

We first extend our definitions of =ℓ and =ℓ to deal with dynamic policies. We write µ0 =ℓ,γ µ1

(respectively µ0 =ℓ,γ µ1) when µ0 =ℓ µ1 (respectively µ0 =ℓ µ1) with policy γ.

In the next lemma, we prove that commands of high confidentiality do not contain command
variables.

Lemma 31 Let Γ be a policy, P a semi-active command context, ℓ, α ∈ L two labels.

If ⊢ P : ℓ and C(ℓ) 6≤ C(α), then P does not contain command variables.

Proof: The proof is by induction on the typing of P , and deduces from the fact that the only
rule to type [ ]d,n is Rule TsAdversary (and TsSubC). We have ℓ 6≤ (C(α), L), hence 6⊢ [ ]d,n : ℓ.

�

In the next lemma, we show a property of containment for confidentiality. Also, we show a
property on the set of variables readable that the adversary such that =(C(α),L),γ⊆=(C(α),L),γ′ .
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Lemma 32 (Containment-Confidentiality) Let Γ be a policy, P a command, ℓ, α ∈ L two
labels. Let µ be a memory such that P terminates.

If γ ⊢ P : ℓ, γ′, C(ℓ) 6≤ C(α), then {x | C(γ′(x)) ≤ C(α)} ⊆ {x | C(γ(x)) ≤ C(α)}, and

ρ∞(〈P, µ〉) =(C(α),L),γ′ µ

Proof: The proof is by induction on the maximum number of reduction steps for 〈P, µ〉 to
terminate. The base case P =

√
is trivial. The proof is similar to the one of Lemma 28, so we

only consider the cases that differ:

Case P is x := e. By Rules TsAssign and TsSubC, we have ℓ ≤ γ′(x), hence C(γ′(x)) 6≤ C(α).
Hence {x | C(γ′(x)) ≤ C(α)} ⊆ {x | C(γ(x)) ≤ C(α)} and ρ∞(〈P, µ〉) =(C(α),L),γ′ µ.

Case P is x̃ := f(ẽ). By Rules TsFun and TsSubC, we have C(ℓ) = L. Our hypothesis states
C(ℓ) 6≤ C(α), this is not possible.

�

In the next lemma, we show a property of containment for integrity. Also, we show a prop-
erty on the set of variables that are not writable by the adversary such that, for instance,
=(L,I(α)),γ⊆=(L,I(α)),γ′

.

Lemma 33 (Containment-Integrity) Let Γ be a policy, P be a semi-active command context,
ℓ, α ∈ L two labels. Let A be a semi-active α-adversary . Let A′ be an α-adversary. Let µ be a
memory such that P [A] and [[P ]][A′] terminates.

If γ ⊢ P : ℓ, γ′ and I(α) ≤ I(ℓ), then {x | I(α) 6≤ I(γ′(x))} ⊆ {x | I(α) 6≤ I(γ(x))}, and

ρ∞(〈[[P ]][A′], µ〉) =(L,I(α)),γ′

ρ∞(〈P [A], µ〉) =(L,I(α)),γ′

µ

Proof: The proof is by induction on the maximum number of reduction steps for [[P ]][A′] (and
〈P [A], µ〉) to terminate. The base case P [A] =

√
is trivial. The proof is similar to the one of

Lemma 28, so we only consider the cases that differ:

Case P is x := e. By Rules TsAssign and TsSubC, we have ℓ ≤ γ′(x), hence and I(α) ≤ I(γ′(x)).
Hence {x | I(α) 6≤ I(γ′(x))} ⊆ {x | I(α) 6≤ I(γ(x))} and ρ∞(〈[[P ]][A′], µ〉) =(L,I(α)),γ′

ρ∞(〈P [A], µ〉) =(L,I(α)),γ′

µ.

Case P is x̃ := f(ẽ). ℓ ≤ γ′(x), we conclude similarly.

Case P [A′] is A′ (and P [A] is A). By Rule TsAdversary and TsSubC, I(γ) ≤n I(γ′) and I(α)
≤ I(ℓ) ≤ ⊓x∈nI(γ′(x)), hence {x | I(α) 6≤ I(γ′(x))} ⊆ {x | I(α) 6≤ I(γ(x))}. Moreover,
I(Γ) ≤n I(gamma′) and I(α) ≤ I(ℓ) ≤ ⊓x∈nI(γ′(x)). Also, wv(A′)∩{x | α 6≤ Γ(x)} = ∅ (and
wv(A)∩{x | α 6≤ Γ(x)} = ∅), hence ρ∞(〈[[P ]][A′], µ〉) =(L,I(α)),γ′

ρ∞(〈P [A], µ〉) =(L,I(α)),γ′

µ.

�

In the next lemma, we prove our invariant for the theorem. We prove that for every adversary,
there exist a semi-active adversary plus a command on adversary intermediary variables such that
the command have the same semantic on some part of the memory.
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Lemma 34 Let P be a semi-active command context. Let Γ be a policy. Let ℓ be a label. Let γ and
γ′ be two security policies such that γ ⊢ P : ℓ, γ′. Let α ∈ L be such that R is robust against α. Let
Ã be an α-adversary. For every variable x, let xcopy be a fresh variable, with xcopy 6∈ dom(Γ). For
every policy γ◦, let F (γ◦) be an endomorphism on memories (and, by extension, on distributions)
defined on every memory µ by:

F (γ◦)(µ)(x) = µ(xcopy) if C(γ◦(x)) ≤ C(α)
= µ(x) otherwise

Let Acopy be an adversary command such that v(Acopy) ∩ dom(Γ) = ∅. There exists a semi-
active α-adversary A′ (if γ ⊢ P : ℓ′, γ′ with I(α) ≤ I(ℓ′), A′ = skip) and an adversary command

A′
copy with v(A′

copy) 6∈ dom(Γ) such that for every memory µ0 such that [[P ]][Ã] terminates and µ1

such that F (γ)(ρ∞〈Acopy, µ0〉) =(C(α),L),γ µ1 and ρ∞〈Acopy, µ0〉 =(L,I(α)),γ µ1 then P [Ã′];A′
copy

terminates on µ1 and

F (γ′)(ρ∞〈P [Ã′];A′
copy, µ0〉) =(C(α),L),γ′ ρ∞〈[[P ]][Ã], µ1〉

ρ∞〈P [Ã′];A′
copy, µ0〉 =(L,I(α)),γ′

ρ∞〈[[P ]][Ã], µ1〉

Proof: The proof is by structural induction on P . The basis case (skip) is trivial. We first
provide a command A′

copy and prove the equality on =(C(α),L),γ′ when [[P ]] is not a placeholder.

Acopy can be easily swapped with commands that do not share any variable with him. If γ ⊢ P :

ℓ′, γ′ with C(ℓ′) 6≤ C(α) then, by Lemma 31, P [Ã′] contains no command variables, we can write

it P , and we have P = P [Ã′] = [[P ]][Ã]. Also, choosing A′
copy = Acopy, by Lemma 32, we have

F (γ′)(ρ∞〈P ;A′
copy, µ0〉) =(C(α),L),γ′ F (γ)(ρ∞〈Acopy, µ0〉)

=(C(α),L),γ′ µ1

=(C(α),L),γ′ ρ∞〈P, µ1〉

Otherwise, we now assume that γ ⊢ P : ℓ′, γ′ with C(ℓ′) ≤ C(α), and without using the
Rule TsSubC at top level.

Case P [ ] is x := e. By typing Rule TsAssign, ⊢ e : ℓ′, with γ′(x) = ℓ′. We let ecopy be e where
every variable y is replaced by ycopy. We have F (γ)(µ0) =(C(α),L),γ µ1, also v(e) ⊆ {x |
C(γ(x)) ≤ C(α)}, hence [[ecopy]](µ0) = [[e]](µ1) by Lemma 29. Finally, choosing A′

copy
·
=

Acopy;xcopy := ecopy, and since γ′(x) ≤ C(α) and γ′ is unchanged for every other variable,
we conclude by the semantic definition Assign:

F (γ′)(ρ∞〈x := e;A′
copy, µ0〉) =(C(α),L),γ′ ρ∞〈x := e, µ1〉

Case P [ ] is if e then P−
1 [ ] else P−

2 [ ]. By rule TCond, γ ⊢ P−
1 [ ] : ℓ′, γ′ and ⊢ P−

2 [ ] : ℓ′. Let

Ã1 and Ã2 be the two part of the adversary that corresponds to the two branches. By
induction, there exist A′

1, Acopy1 and A′
2, Acopy2 such that, for b ∈ {1, 2}: For every memory

µ0 and µ1 such that F (γ)(µ0) =(C(α),L),γ µ1 and µ0 =(L,I(α)),γ µ1 and [[P−
b ]][Ab] terminates

on µ1, F (γ
′)(ρ∞〈P−

b [Ã′
b];Acopyb, µ0〉) =(C(α),L),γ′ ρ∞〈[[P−

b ]][Ãb], µ1〉.
We let A′

copy = if ecopy then Acopy1 else Acopy2. ⊢ e : ℓ′, hence, similarly to the item above
[[ecopy]](µ0) = [[e]](µ1) by lemma 29.

• If I(α) ≤ I(γ(ℓ′)), A′
1 = skip = A′

2, hence v(P−
b [Ã′

b]) do not contain any of the
∗copy variables, which are the only variables compared by =(C(α),L),γ′ . Hence, we have

F (γ′)(ρ∞〈P−
b [Ã′

b];Acopyb, µ0〉) =(C(α),L),γ′ F (γ′)(ρ∞〈Acopyb, µ0〉). We have [[ecopy]](µ0)

71



= [[e]](µ1) = b for some b ∈ {0, 1} and

F (γ′)(ρ∞(〈if e then P−
1 [Ã′

1] else P
−
2 [Ã′

2];A
′
copy, µ0〉))

=(C(α),L),γ′ F (γ′)(ρ∞(〈A′
copy, µ0〉))

=(C(α),L),γ′ F (γ′)(ρ∞(A′
copyb, µ0)

=(C(α),L),γ′ F (γ′)(ρ∞(〈P−
b [Ã′

b];A
′
copyb, µ0〉))

=(C(α),L),γ′ ρ∞(〈P−
b [Ã′

b], µ1〉)
=(C(α),L),γ′ ρ∞(〈if e then P−

1 [Ã′
1] else P

−
2 [Ã′

2], µ1〉)

We conclude.

• If I(α) 6≤ I(γ(ℓ′)), and since ρ∞〈Acopy, µ0〉 =(L,I(α)),γ µ1, [[e]](µ0) = [[e]](µ1) by lemma
29. Thus [[e]](µ0) = [[e]](µ1) = [[ecopy]](µ0) = b for some b ∈ {0, 1} and

ρ∞(〈if e then P−
1 [Ã′

1] else P
−
2 [Ã′

2];A
′
copy, µ0〉) =ρ∞(〈P−

b [Ã′
b];A

′
copyb, µ0〉)

ρ∞(〈if e then P−
1 [Ã′

1] else P
−
2 [Ã′

2], µ1〉) =ρ∞(〈P−
b [Ã′

b], µ1〉)

We conclude by induction.

Case P is while e do P . We conclude similarly.

Case P is P−
0 [ ];P−

1 [ ]. There exists a policy γ′′ such that

γ ⊢ P−
0 [ ] : ℓ, γ′′

γ′′ ⊢ P−
1 [ ] : ℓ, γ′

Hence, by induction, there exist A′
0, A

′
copy0 such that

F (γ′′)(ρ∞〈P−
0 [Ã′

0];A
′
copy0, µ0〉) =(C(α),L),γ′′ ρ∞〈[[P−

0 ]][Ã0], µ1〉

ρ∞〈P [Ã′
0];A

′
copy0, µ0〉 =(L,I(α)),γ′′

ρ∞〈[[P ]][Ã0], µ1〉
Also by induction, there exist A′

1, A′
copy1, such that for every µ′

0 and µ′
1 such that

F (γ′′)(ρ∞〈Acopy0, µ′
0〉) =(C(α),L),γ′′ µ′

1 and ρ∞〈Acopy0, µ′
0〉 =(L,I(α)),γ′′

µ′
1

F (γ′)(ρ∞〈P−
1 [Ã′

1];A
′
copy1, µ

′
0〉) =(C(α),L),γ′ ρ∞〈[[P−

1 ]][Ã1], µ
′
1〉

ρ∞〈P [Ã′
1];A

′
copy1, µ

′
0〉 =(L,I(α)),γ′

ρ∞〈[[P ]][Ã1], µ
′
1〉

We conclude using Lemma 27 in a technique similar to the one used for the other non-
interference theorems.

We now prove the equality on =(L,I(α)),γ′

when [[P ]] is not a placeholder. If γ ⊢ P : ℓ′, γ′ with
I(α) ≤ I(ℓ), then by Lemma 33, we have

ρ∞〈P [A′];A′
copy, µ0〉 =(L,I(α)),γ′

ρ∞〈Acopy, µ0〉
=(L,I(α)),γ′

µ1

=(L,I(α)),γ′

ρ∞〈[[P ]][A], µ1〉

Otherwise, we now assume that γ ⊢ P : ℓ′, γ′ with I(α) 6≤ I(ℓ), and without using the Rule TsSubC

at top level. Most of the cases are standard, thus not explored here.

Case P [ ] is x := e. By typing Rule TsAssign, ⊢ e : ℓ′, with γ′(x) = ℓ′. I(α) 6≤ I(ℓ), hence
[[e]](µ0) = [[e]](µ1) by Lemma 29. We conclude:

ρ∞〈P [Ã′];A′
copy, µ0〉 =(L,I(α)),γ′

ρ∞〈[[P ]][Ã], µ1〉
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We now consider the last case:

Case P [ ] is [ ]d,n. We recall the typing Rule TsAdversary:

I(γ′) =n I(Γ) ⊔ I(γ)
I(γ) ≤ R(C(γ))

C(γ) =d C(Γ) ⊓ C(γ′)
C(γ′) =d C(Γ)

i = ⊓x∈nI(γ′(x)) ⊓x∈d R(C(γ(x)))
γ ⊢ [ ]d,n : (C(α), i), γ′

We let Aroot be A where every assignment to a variable x such that x 6∈ n and C((Γ ⊓
γ)(x)) 6≤ C(α) is removed; and every variable x such that C((Γ ⊓ γ)(x)) 6≤ C(α) is re-
placed by its copy xcopy. We let A′ ·

= Acopy; (xcopy := x; )x∈d|C(Γ(x))≤C(α)Aroot; (x :=
xcopy; )x∈n|C((Γ⊓γ)(x))≤C(α) and I(α)≤I(Γ(x))} and A′

copy
·
= skip. Let x ∈ domΓ.

• If C(γ(x)) ≤ C(α), by hypothesis, ρ∞〈Acopy, µ0〉(xcopy) = µ1(x)

• Otherwise, by robustness hypothesis on γ, I(α) 6≤ I(γ(x)), hence ρ∞〈Acopy, µ0〉(x) =
µ1(x)

We then copy the values from d, hence we have

F (Γ ⊓ γ)(ρ∞〈Acopy; (xcopy := x; )x∈d|C(Γ(x))≤C(α), µ0〉) = µ1

We can weaken this result in:

F (Γ ⊓ γ)(ρ∞〈Acopy; (xcopy := x; )x∈d|C(Γ(x))≤C(α), µ0〉) =(C(α),L),Γ⊓γ µ1

F (Γ ⊓ γ)(ρ∞〈Acopy; (xcopy := x; )x∈d|C(Γ(x))≤C(α), µ0〉) =(L,I(α)),γ′

µ1

The command A and Aroot perform the same operations on both memory (except for assign-
ments to variables in variables x such that x 6∈ n and C((Γ ⊓ γ)(x)) 6≤ C(α)). Since x 6∈ n
and x ∈ wv(A) implies I(α) ≤ γ′(x), we can verify that the invariant is conserved:

F (Γ ⊓ γ)(ρ∞〈Acopy; (xcopy := x; )x∈d|C(Γ(x))≤C(α)Aroot, µ0〉) =(C(α),L),Γ⊓γ ρ∞〈A, µ1〉

F (Γ ⊓ γ)(ρ∞〈Acopy; (xcopy := x; )x∈d|C(Γ(x))≤C(α)Aroot, µ0〉) =(L,I(α)),γ′

ρ∞〈A, µ1〉
The first invariant implies

F (γ′)(ρ∞〈P [Ã′];A′
copy, µ0〉) =(C(α),L),γ′ ρ∞〈[[P ]][Ã], µ1〉

since Γ ⊓ γ ≤ γ′. The second invariant, after copy of the endorsed variables implies

ρ∞〈P [Ã′];A′
copy, µ0〉 =(L,I(α)),γ′

ρ∞〈[[P ]][Ã], µ1〉

If γ ⊢ P : ℓ′, γ′ with I(α) ≤ I(ℓ′), {x ∈ d | C(Γ(x)) ≤ C(α)} = ∅ and {x ∈ n | I(α) ≤
I(Γ(x))} = ∅. v(A′) 6∈ dom(Γ). We can set instead A′

copy = A′ and A′ = skip.

�

Proof of Theorem 8 By hypothesis, there exists a level ℓ such that γ0 ⊢ P : ℓ, γ0. By
Lemma 34, for every α-adversary A such that [[P ]][A] terminates (we take Acopy = skip), there
exist a semi-active α-adversary A′ and an adversary command A′

copy with v(A′
copy) 6∈ dom(Γ) such

that [[P ]][Ã];A′
copy terminates and for every memory µ0 and µ1 such that F (γ0)(ρ∞〈Acopy, µ0〉)

=(C(α),L),γ0 µ1 and µ0 =(L,I(α)),γ0 µ1 then

F (γ0)(ρ∞〈P [Ã′];A′
copy, µ0〉) =(C(α),L),γ0 ρ∞〈[[P ]][Ã], µ1〉
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ρ∞〈P [Ã′];A′
copy, µ0〉 =(L,I(α)),γ0 ρ∞〈[[P ]][Ã], µ1〉

We have F (γ0) = Id. We can take µ0 = µ1. Also, since α 6≤⊥I , the equality =(L,I(α)),γ0 is an
equality on all variables of dom(Γ). Furthermore, v(A′

copy) 6∈ dom(Γ), hence

ρ∞〈P [Ã′], µ〉 =dom(Γ) ρ∞〈[[P ]][Ã], µ〉

�
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4
Cryptographic Information Flow Compiler

In the chapter above, we describe how to specify (and sometimes verify) the security of programs
using information flow annotations. In the following chapters, we are interested in the implemen-
tation of those programs in a system composed of multiple machines that do not necessarily trust
each other and that communicate trough an untrusted network. If one machine has the required
level of trust to read an write all the variables of the program, and if they are stored locally, then
the implementation is trivial. However, this is generally not the case, and the implementation may
need to be distributed on several of these machines (“units of trust”). For example, a program
handling secrets of a client and a bank may be partly running on the client machine, an partly
running on the bank machine with secure communications between the two.

Jif/Split [Zdancewic et al., 2002, Zheng et al., 2003] and Swift [Chong et al., 2009] automatically
partition information flow annotated distributed programs into local code, each running at a given
security level, representing the level of trust granted to each host in a distributed system. However,
the partitioned code still assumes secure channels between the participants. It is sometimes possible
to implement the security of these channels using protection mechanisms based on cryptography.
However, their hand-writing is difficult and error-prone, and traffic analysis or active attacks may
be hard to deal with. Fournet et al. [2009] automatically generate the required cryptographic
mechanisms to secure communications between the participants as well as the control flow. More
precisely, they compile imperative programs with security and locality annotations to distributed
programs using cryptography to preserve information-flow security under standard cryptographic
assumptions and against an active adversary that can control the network and the scheduling of
the program.

We describe this compiler, giving its specification and outlining its algorithms; we refer to
Fournet et al. [2009] for a precise description of the compiler. We slightly improve on their work
by handling more source programs (e.g., programs with endorsement), and by providing more
precise theorems based on the definitions of Section 3.5.

4.1 Cryptographic Information Flow Compiler

4.1.1 Source language, with locations

We consider a finite set of hosts, or locations, {1, 2, . . . , i, b, c, v, . . . , n} intended to represent units
of trust (principals) and of locality (runtime environments). The source language is the language
of Section 6.2 extended with host annotations:

P ::= . . . | b : P

75



The locality command b : P states that command P should run on host b. Locality commands can
be nested, as in c : {Pc; v : Pv}. We assume that every source program has a locality command at
top level, setting an initial host. Variables are transparently shared between hosts, hence locality
annotations do not affect our semantics for commands.

4.1.2 Typing locality commands rules

We extend our security policy to assign a level Γ(b) to each host b; this level indicates which
variables b can read and write. We only consider robust hosts, such that I(b) ≤ R(C(b)). In this
chapter, we use the lax type system of Figure 3.3, with the additional typing rule for localities:

(TLocality)

⊢ P : ℓ I(b) ≤I I(ℓ)
⊢ (b : P ) : (⊥, I(ℓ))

The rule states that locality commands are public, thereby reflecting that the transfer of control
between hosts can be observed by the adversary.

We illustrate CFLOW with the example of a loan application. The source code and its policy
specify levels of protection, but leave the choice of cryptographic mechanisms to the compiler. The
actual source and compiled programs are available online.

Example 21 (Applying for a loan: source code) Consider a program involving two parties,
a bank that offers loans, and a client that wishes to apply for a loan without disclosing private
information (at least until the loan is granted). Suppose also that the bank does not want to
disclose the parameters used for evaluating loan applications. In this chapter we assume a third
participant, trusted to securely run the loan-evaluation code. The code of this computation is:

b: {xb := eb}; c:{yc := ec};
v: {x′b, y′c := f(xb, yc)};
b: {print(x′b)}; c: {print(y′c)}

It involves three hosts: the client c with Γ(c) = (Cc, Ic), the bank b with Γ(b) = (Cb, Ib), and
the trusted host v with Γ(v) = (Cc ⊔ Cb, Ic ⊓ Ib). All variables indexed by b, c or v are private to
b, c or v, respectively. For instance, Γ(xc) = (Cc, Ic).

The bank and the client first write their secret values (in xb and yc); then v computes the two
results (x′b and y′c); finally, the bank and the client print them (locally).

To define the intended security of this program, we consider a modified version where all local-
ities are replaced by adversary placeholders (such that the adversary interleaves with the code of
the source program):

; xb := eb; ; yc := ec;
; x′b, y

′
c := f(xb, yc);

; print(x′b); ; print(y′c)

Then we consider that, for any given adversary level, any behavior that can be obtain with this
command context plus an adversary is an authorized behavior.

For instance, an adversary at the level of the bank can read and write bank variables, hence it
can learn something from the client secret trough the variable x′b, but it cannot directly read the
client secret, and vice versa.
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4.1.3 Compiler transformation

The compiler inputs a command with localities P and a security policy Γ, and outputs an ini-
tialization command Q0, used to specify initial trust assumptions, plus a series of commands Q̃,
which include one command Qi for each host i that occurs in the source program. We write Γ′ for
the security policy of these commands. Informally, Qi is a single command that implements and
schedules all code fragments of P located on i. After type checking, the compilation proceeds in
4 passes:

1. The source program is sliced into local threads, each running on a single host.

2. The distributed control flow between threads is protected, using dynamic checks on auxiliary
program-counter variables, so that the adversary cannot run high-integrity threads out of
schedule.

3. Relying on a single-static-assignment transformation, each variable shared between different
hosts (including the program counters) is replaced by a series of local replicas, with explicit
transfers between replicas.

4. Depending on their security levels, memory transfers between replicas are cryptographically
protected, by inserting encryptions to transfer instead low-confidentiality encrypted values,
and inserting authentication primitives to transfer instead low-integrity values. The compiler
determines which symmetric keys to use for these operations, and generates an initial key-
exchange protocol to distribute them. After this pass, the only variables shared between
different hosts are (1) the signature verification keys used by the initial protocol, and (2)
public-untrusted variables at level (⊥,⊤).

(The compiler also generates untrusted code for scheduling these commands and transferring
public-untrusted data.)

Example 22 (Simplified implementation) Continuing with our example, and in preparation
for Chapter 6, we give a simplified, hand-written implementation of Example 21 that illustrates
the main mechanisms of CFLOW while avoiding those irrelevant here. For instance, the ordering
of xb := eb and yc := ec is irrelevant; the ordering of xb := eb and x′b, y

′
c := f(xb, yc) is protected

because x′b, y
′
c := f(xb, yc) does not run unless xb has been verified. So, instead of the globally shared

and signed programs counter, we use one local anti-replay counter for each host. Communications
between b and v are cryptographically protected, but we let v and c share local memory (since
v will run on c’s machine with a technique explained on chapter 6). Otherwise, all the new
(communication) variables are public and untrusted; the only shared high-integrity variables are
the public keys (k+b and k+v ), which are assumed to be known beforehand. The commands are :

Q0
·
= k−b ,k

+
b := Ge(); k−v ,k+v := Ge()

Qb
·
= if cb=1 then (∗ set the bank input ∗)

{ cb++; xb:= eb; xe := E(xb, k+v ); xs := S(xe, k−b ) }
else if cb = 2 then (∗ get the bank output ∗)
{ cb++; if V(x′e, x′s, k+v ) then print(D(x′e, k

−
b )) }

Qc
·
= if cc=1 then { cc++; yc := ec }

else if cc=2 then { cc++; print(y′c) }
Qv

·
= if cv=1 then (∗ run the computation ∗)

{ cv++; if V(xe, xs, k+b ) then
{ xv := D(xe, k

−
v );

x′v, y
′
c := f(xv, yc);

x′e := E(x′v, k+b ); x′s := S(xe, k−v ) } }
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• Q0 initialize the keypairs used b and v.

• Qb is the code that runs on the bank machine. The first time it runs, it encrypts and signs
its secret for v. The second time it runs, it verifies and decrypt the result sent by v, and then
print it locally.

• Qc is the code that runs on the client machine. The first time it runs, it write down it secret
. The second time it runs, it read the result given by v, and then print it locally.

• Qv is the code that is run by the trusted participant. It runs only once. It verifies and check
the value sent by the bank then it computes the result of the bank and the client; finally, it
encrypt and sign the result for the bank.

In the implementation, we assume that the adversary explicitly schedule the code of these partic-
ipants. For an adversary command context A, the program considered is Q0;A[Qb, Qc, Qv]. For
example, the adversary can schedule the code as intended: Q0;Qb;Qc;Qv;Qb;Qc].

4.2 Cryptographic assumptions

Following the idea of section 3.5, the ideal theorem would state that for any attack on the compiled
program, there exist an attack on the source program that produce the same resulting memory
distribution. However, the compiler relies on cryptography and it is always possible (though
unlikely or very slow) for an adversary to guess a decryption key: this is an attack that has no
counterpart in the source program. In this section, we state, using games, our cryptographic
assumptions, which are typically of those proven by cryptographer for standard schemes. For
example, we assume that an adversary cannot reliably fake a cryptographic signature without the
signing key, even with access to as many real signatures as he wants. In the section below, we use
these assumptions to prove that for any adversary of the implementation program (terminating
reasonably fast), there exist an adversary in the source program such that the final memories
distributions coincide with an overwhelming probability.

4.2.1 Polynomial-time assumptions

We assume that all primitive operations run in polynomial time in the size of their arguments, and
that all primitive probabilistic functions yield distributions that are polynomial-time samplable.
As we use cryptographic primitives, we assume that they take an additional parameter included
in the initial memory whose length matches a security parameter η. We overload Pr[〈P, µ〉;ϕ] to
denote a probability function parametrized by η. This function is deemed negligible when, for all
c > 0, there exists ηc such that, for all η ≥ ηc, we have Pr[〈P, µ〉;ϕ] ≤ η−c.

4.2.2 Encryptions

We consider cryptographic algorithms for asymmetric (public key) encryption. These algorithms
are generally used in three steps:

• First, one of the participant generates a key pair. These two keys are long bitstrings. One
of them (the decryption key) is kept secret; the other (the encryption key) is left public and
sent to every other participant. This is analogous to the production of a pair key/padlock
with a copy of the padlock sent to every other participant.

• Second, another participant uses the encryption key to hide a secret. It results in a bitstring
that can be made public, with the assurance that it is very hard to deduce anything about the
secret hidden in this bitstring without the decryption key. This is analogous to the sealing
of a secret using the padlock, then sent to the other participants.
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• Last, the first participant decrypts the bitstring with its private key and read the secret.
This is analogous to the opening of the padlock, which gives access to the secret.

We model them in our language as probabilistic functions Ge, E , and D that meet both functional
and security properties, given below.

Definition 18 (Encryption scheme) Let publickeys, secretkeys, plaintexts, and ciphertexts be
sets of polynomially-bounded bitstrings indexed by η. An asymmetric encryption scheme is a triple
of algorithms (Ge, E ,D) such that

1. Ge, used for key generation, ranges over publickeys× secretkeys;

2. E, used for encryption, ranges over ciphertexts;

3. D, used for decryption, ranges over plaintexts;

4. for all ke, kd := Ge(), if y := E(m, ke) with m ∈ plaintexts, then D(y, kd) = m.

There are many different notions of security for encryption. The notion of indistinguishability
against adaptive chosen ciphertext attacks (IND-CCA2), introduced by Rackoff and Simon [1991],
is the strongest usually considered. To code the definition in our target language, we rely on
auxiliary operations on functional lists: 0 for the empty list, + for concatenation, and ∈ for
membership test.

Definition 19 (IND-CCA2 security) Consider the probabilistic commands

E
·
= if b = 0 then m := E(x0, ke) else m := E(x1, ke);

log := log+m

D
·
= if m ∈ log then x := 0 else x := D(m, kd)

CCA
·
= b := {0, 1}; log := 0; ke, kd := Ge();A[E,D]

The encryption scheme (Ge, E ,D) provides indistinguishability against adaptive chosen-plaintext
and chosen-ciphertext attacks when the advantage |Pr[CCA; b =0 g]− 1

2 | is negligible for any poly-
nomial command context A such that b, kd /∈ rv(A) and b, kd, ke, η, log /∈ wv(A).

The definition involves an indistinguishability game where the adversary command A attempts
to guess (and write in variable g) whether the oracle encrypts x0 or x1. The trivial adversary
A

·
= g := {0, 1} wins with probability 1

2 , so the security property states that any adversary that
meets our hypothesis cannot do (much) better, despite its control on the usage of the key.

We recall a similar but weaker security notion for encryption, indistinguishability against chosen
plaintext attacks (IND-CPA):

Definition 20 (CPA Security) The scheme (Ge, E ,D) provides indistinguishability against adap-
tive chosen-plaintexts attacks when, for the commands

E
·
= if b = 0 then m := E(x0, ke) else m := E(x1, ke)

CPA
·
= b := {0, 1}; ke, kd := Ge();A[E]

and for any polynomials command context A such that b, kd /∈ rv(A) and b, kd, ke, η /∈ wv(A), the
advantage of the adversary defined as |Pr[CPA; b =0 g]− 1

2 | is negligible.

This notion of security does not involve the decryption algorithm. In particular, it does not cover
chosen-ciphertext attacks, where, for example, the attacker try to leverage an advantage on future
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descriptions from an limited access to a computer that can encrypt and decrypt with the user’s
key.

By definition, a scheme that is IND-CCA2 is also IND-CPA secure [Bellare et al., 1998], how-
ever, encryption schemes that are CCA are generally less efficient that those that are only CPA.

In the following example, we show that the probability that two encryptions of a CPA scheme
coincide is negligible (in particular, it implies that ecryptions are probabilistic).

Example 23 Let (Ge, E ,D) be an IND-CPA encryption scheme. For any value v, Consider the
command context:

A[E]
·
= x0 := 0;

x1 := v;
m′ := E(v, ke);
E;
g := (m = m′);

We have |Pr[CCA; b =0 g]− 1
2 |. At the end of CCA, if b = 0 then g = 0 since two encryption of

different values cannot coincide; if b = 1 then g = 1 if the two encryptions of v coincide. Hence,
the probability that two encryption of the same value coincide is negligible.

4.2.3 Cryptographic signatures

We consider cryptographic algorithms for asymmetric (public key) signature. These algorithms
are generally used in three steps:

• First, one of the participant generates a key pair. These two keys are long bitstrings. One of
them (the signing key) is kept secret; the other (the verification key) is left public and sent
to every other participant. The other participants need a guarantee that the verification key
they receive is the correct one. It can be hand delivered, or certified by a third party.

• Second, the first participant uses the private key to sign some data. It results in a bitstring
that can be made public, with the assurance that it is very hard to deduce anything about
the secret key or to forge other signatures.

• Last, any other participant can verify, with the public key, that the signature correspond to
the data and that it has been made by a participant knowing the private key.

We model them in our language as probabilistic functions Gs, S, and V that meet both functional
and security properties, given below.

Definition 21 (Signature scheme) Let sigkeys, verifykeys, signedtexts, and plaintexts be sets
of polynomially-bound bitstrings indexed by η.

A signature scheme is a triple of algorithms (Gs,S,V) such that

• Gs, used for key generation, ranges over sigkeys× verifykeys;

• S, used for signing, ranges over signedtexts;

• V, used for signature verification, ranges over {0, 1} and is such that, for all ks, kv := Gs()
and m ∈ plaintexts, we have V(m,S(m, ks), kv) = 1.

For convenience, we assume that V is deterministic, so that we can use test expressions V(e, e′, e′′)
in conditional commands.

80



There are also many notions of security for signature schemes. We use a standard notion
introduced by Goldwasser et al. [1988], namely existential unforgeability under chosen message
attacks (CMA):

Definition 22 (CMA security) Consider the commands

S
·
= x := S(m, ks); log := log+m;

CMA
·
= ks, kv := Gs(); log := 0;A[S];

if m ∈ log then b := 0 else b := V(m,x, kv)

The signature scheme (Gs,S,V) is secure against forgery under adaptive chosen-message attack
when Pr[CMA; b = 1] is negligible for any polynomial command context A that cannot read ks and
cannot write ks, kv, log, η.

The definition involves an indistinguishability game where the adversary command A, after request-
ing as many signatures as he wants from the signing oracle S, attempts to produce an original pair
(m,x) such that x is the signature for a message m not signed by S.

4.2.4 Cryptographic hashes

We consider cryptographic algorithms for hashing. Hash functions map values of unbounded size
to small values of a fixed size. It may be used, for instance, to map a program to a small hash
value. This small value can be stored (or transferred) securely more easily than the program itself.
Then, it is possible to know if the program has been tampered with by comparing its hash with
the securely stored hash. This method is efficient, and secure if the hash of two different program
are different. Yet, given the difference in size between their domain and their range, hash functions
are not injective. However, good hash functions can guarantee that it is hard to find collisions. We
consider an additional computational assumption on hash function [Preneel, 1993, Zheng et al.,
1990].

Definition 23 (Collision-Resistant Hash Functions) A fixed size collision resistant hash
function family is a family of polynomial functions (G,H)η such that G is probabilistic, H is deter-
ministic, ranges over bitstrings of length η, and, for all polynomial commands A that do not write
ν, the probability

Pr[〈ν := G();A, µ⊥〉;x0 6= x1 ∧H(ν, x0) = H(ν, x1)]

is negligible.

In the definition, a random seed G is first sampled, then the adversary A tries to find any collision
for the resulting hash function, represented as a pair of values written to the variables x0 and x1.
The hash function is deemed secure if this happens with negligible probability. The random seed
is formally needed to prevent A from pre-computing a collision, but the parameters η and ν are
otherwise usually kept implicit.

4.3 Security and completeness of the compiler

The 4 passes of the compilation presented in the section 4.1 define a program transformation

Q0, Q̃
·
= [[P ]]

such that each command Qi has type ℓIi . Next, we instantiate Definitions 16 and 17 for this
transformation.
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4.3.1 Source programs and their adversaries

We let source programs range over well-typed polynomial commands with locality annotations.
Informally, source programs enable their active adversaries to run whenever they pass control
between hosts (since the adversary controls at least the network). To each source command

P , we associate the command context P̂ obtained from P by replacing every subcommand of
the form b : P ′ by a command context with two placeholders ;P ′; . For a given adversary
level α, we let Ã range over tuples of polynomial adversary commands, with one command for
each command variable. Hence, P̂ [Ã] ranges over commands that interleave the code of P with
adversary commands. (This is analogous to models of non-interference for concurrency, where the
adversary runs between any two program steps.) Thus, we define source evaluation by

〈〈P,A, µ〉〉 ·
= ρ∞〈P̂ [A], µ〉

4.3.2 Implementations and their adversaries

Implementation programs range over our compiler outputs Q0, Q̃. Once Q0 has run, we simulate
concurrency by letting the adversary explicitly schedule commands (Q̃) that represent parallel

threads of computation (rather than having P̂ schedule Ã). The resulting low-level model re-
alistically accounts for all interleaving of these threads. Implementation adversaries range over
adversaries command contexts A′ with one command variable for each host. Thus, we define
target evaluation by

〈〈(Q0, Q̃), A′, µ′〉〉 ·
= ρ∞〈Q0;A

′[Q̃], µ′〉

We let π be the erasure of all variables added in Γ′: π(µ′) = µ′
|dom(µ) and we define equivalence

on final memory distributions (ρ0 ≈ ρ1) as computational indistinguishability : for all polynomial
commands T , |Pr[〈T, ρ0〉; g = 0] − Pr[〈T, ρ1〉, g = 0]| is negligible. (We use indistinguishability,
similar to that of that of Section 4.2, instead of distribution equality because our compiler relies
on cryptographic security assumptions.)

Although we allow endorsement and non-robust declassification, in the following, we still usually
demand that our security policies be robust:

Definition 24 (Robust policies) For a given robustness function R, ℓ ∈ L is robust when I(ℓ) ≤
R(C(ℓ)); Γ is robust for R when Γ(x) is robust for all x ∈ dom(Γ).

With the definitions above, and under standard security assumptions, our new compilation
theorem for CFLOW is

Theorem 9 (Fournet et al. [2009]) Let α ∈ L be such that R is robust against α. Let Γ be a
robust policy.

1. ([[·]], π) is secure;

2. ([[·]], π) is correct when α = (⊥C ,⊤I).

The theorem demands that the source policy Γ be robust (Definition 24), so that the adversary
can read any shared variable that it can write. This hypothesis stems from our decision to support
endorsements in source programs. In particular, the control flow integrity enforced by pass 2 may
otherwise fail to protect programs that combine endorsements and declassifications, as illustrated
below.
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Example 24 (Non-robust shared variables) Consider a source program that writes a secret
s with Γ(s) = HH into a (non robust) variable x with Γ(x) = HL, then erases the content of x,
and finally declassifies x by copying it to p with Γ(p) = LL:

P
·
= 1:{x := s}; 2 :{x := 0}; 3 :{p := x}

Let α = LL. With our source semantics, the command context

P̂
·
= X1;x := s;X2;x := 0;X3; p := x;X4

ensures that p finally contains either 0 or a value written by the adversary, but not the value of s.

In the implementation, however, the two local commands at hosts 1 and 2 have low integrity,
so pass 2 does not guarantee their sequential execution, and an implementation adversary that
schedules Q2 before Q1 lead Q3 to declassify s into p.

Cryptographic protection (pass 4) is also problematic for programs that share non-robust vari-
ables, such as x in Example 24. Although their confidentiality is protected by encryption, an
implementation adversary can swap their contents (by swapping their encrypted values) and sim-
ilarly lead the program to declassify the wrong data.

83





5
Information-Flow Types for Homomorphic Encryptions

In the chapter above, we described a compiler that takes as input a program with locality an
information flow annotations and outputs a distributed program secured with cryptography. In this
chapter, we verify, with a type system, the correct use of cryptography mechanisms on information
flow annotated programs. The approach is different since we do not try to compile the program,
but only check its security. However, we consider more varied cryptographic primitives. This work
help us to understand other cryptographic primitives, and may lead to an improved compiler.

5.1 Introduction

Information flow security is a well-established, high-level framework for reasoning about confiden-
tiality and integrity, with a clear separation between security specifications and mechanisms. At
a lower level, encryption provides essential mechanisms for confidentiality, with a wide range of
algorithms reflecting different trade-offs between security, functionality, and efficiency. Thus, the
secure usage of adequate algorithms for a particular system is far from trivial.

Even with plain encryption, the confidentiality and integrity of keys, plaintexts, and ciphertexts
are interdependent: encryption with untrusted keys is clearly dangerous, and plaintexts should
never be more secret than their decryption keys. Integrity also matters: attackers may swap
ciphertexts, and thus cause the declassification of the wrong data after their successful decryp-
tion. Conversely, to protect against chosen-ciphertext attacks, it may be necessary to authenticate
ciphertexts, even when plaintexts are untrusted.

Modern encryption schemes offer useful additional features, such as the ability to blind cipher-
texts, thereby hiding dependencies between encrypted inputs and outputs, and more generally to
compute homomorphically on encrypted data, for instance by multiplying ciphertexts instead of
adding their plaintexts. These features are naturally explained in terms of information flows; they
enable computations at a lower level of confidentiality—homomorphic operations can be delegated
to an “honest but curious” principal—but they also exclude CCA2 security and require some care
in the presence of active adversaries.

In this chapter, we develop an information-flow type system for cryptography, with precise typ-
ing rules to reflect the diverse functional and security features of encryption schemes. Our adver-
saries attempt to gain information about higher-confidentiality data, or to influence higher-integrity
data, by interacting with our programs. Our main theorem states that well typed probabilistic
polynomial programs using any combination of encryptions, blinding, homomorphic functions, and
decryptions are such that our adversaries succeed only with a negligible probability. Depending on
the relative security levels of keys, plaintexts, and ciphertexts, we propose different typing rules.
Our rules are sound with regards to standard cryptographic assumptions such as CPA or CCA2;
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they enable the selective re-use of keys for protecting different types of payloads, as well as blinding
and homomorphic properties.

Secure Distributed Computations Our work is part of a research project on the synthesis
and verification of distributed cryptographic implementations of programs from a description of
their information flow security requirements. The current compiler is presented in Chapter 4.
As illustrated in our programming examples, an important motivation for a new type system is
to justify its efficient use of cryptography. For instance, we strive to re-use the same keys for
protecting different types of data at different levels of security, so that we can reduce the overall
cost of cryptographic protection. More generally, we would like to automatically generate well-
typed code for performing blind computations, such as those supported by the systems of Henecka
et al. [2010] and Katz and Malka [2010].

Formally, our work is based on the type system of Fournet and Rezk [2008], who introduce the
notion of computational non-interference against active adversaries to express information flow
security in probabilistic polynomial-time cryptographic systems and present a basic type system
for encryption and authentication mechanisms. In comparison, their typing rules are much more
restrictive, and only support CCA2 public-key encryptions with a single payload type.

Applications We illustrate our approach using programming examples based on classic encryp-
tion schemes with homomorphic properties [ElGamal, 1984, Paillier, 1999]. We also develop two
challenging applications of our approach. Both applications rely on a security lattice with in-
termediate levels, reflecting the structure of their homomorphic operations, and enabling us to
prove confidentiality properties, both for honest-but-curious servers and for compromised servers
controlled by an active attacker.

• We program and typecheck a practical protocol for private search on data streams proposed
by Ostrovsky and Skeith III [2005], based on a Paillier encryption of the search query. This
illustrates that our types protect against both explicit and implicit information flows; for
instance we crucially need to apply some blinding operations to hide information about
secret loop indexes.

• We program and typecheck the bootstrapping part of Gentry’s fully homomorphic encryption
[Gentry, 2009]. Starting from the properties of the bootstrappable algorithms given by
Gentry–being CPA and homomorphic for its own decryption and for some basic operations—
we obtain an homomorphic encryption scheme for an arbitrary function. This illustrates
three important features of our type system: the ability to encrypt decryption keys (which
is also important for typing key establishment protocols); the use of CPA encryption despite
some chosen-ciphertext attacks; and an interesting instance of homomorphism where the
homomorphic function is itself a decryption.

This chapter exclusively treats public-key encryptions. We believe that their symmetric-key
counterparts can be treated similarly. We also refer to Fournet and Rezk [2008] for cryptographic
types for authentication primitives, such as public-key signatures. A typechecker for our system is
available online at msr-inria.inria.fr/projects/sec/cflow.

Contents The rest of this chapter is composed as follows. Section 5.2 refines the security types of
Section 3.3 with datatypes for encryptions. Section 5.3 gives typing rules for encryption schemes.
Section 5.4 defines blinding schemes and gives typing rules for blinding schemes. Sections 5.5
defines homomorphic schemes and gives typing rules for homomorphic schemes. Section 5.6 states
our theorem. Sections 5.7 and 5.8 illustrate our theorem with two applications.
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5.2 Datatypes for encryptions and keys

In this chapter, we use the language introduced in Section 3.1. We also consider information-flow
properties and labels similar to those of Chapter 3. However, we manipulate keys and ciphertexts
and we try to enforce their correct usage. Hence, we need to track datatypes and not only security
levels. For example, we ensure that only public keys are used for encryptions. We use the following
grammar for security types:

τ ::= t(ℓ) | τ ∗ τ | Array τ Security types
t ::= Data Payload Data types

| Enc τ Kq | KeEK | KdEK Encryption Data types

where ℓ ∈ L is a security label, E is a set of security types, K is a key label, and q is an encryp-
tion index, as explained below. The simplest security type, e.g., for variables contaning integers,
booleans, chars . . . at level ℓ is Data (ℓ). We have pairs at the level of the security types to keep
track of tuples of values with different security types or levels, e.g. for encrypting tuples of mixed
values. Pairs are also used in our proofs for eliminating cryptography. We have standard operators
for pairs and functional arrays: we use 〈e0, e1〉 and (e)i for constructing and projecting pairs, and
use e[ei] and update(x, e, ei) for reading and updating arrays. We use syntactic sugar for arrays,
writing x[ei] := e instead of x := update(x, e, ei), and for loops, writing for x := e to e′ do P
instead of x := e; while x ≤ e′ do {P ;x := x+ 1}.

Encryption Datatypes

We explain our datatypes for encryptions, but defer their typing rules to the next sections. Enc τ K
represents an encryption of a plaintext with security type τ ; KeEK and KdEK represent encryp-
tion and decryption keys, respectively, with a set E that indicates the range of security types τ for
the plaintexts that may be encrypted and decrypted with these keys. This set enables us to type
code that uses the same key for encrypting values of different types, which is important for effi-
ciency. For example, E

·
= {Data (LH) ∗Data (HL)} indicates a single type of plaintexts consisting

of pairs whose first elements has low-confidentiality high-integrity (e.g. a tag) and second elements
have high confidentiality (e.g. a secret payload); E′ ·

= {KdEK(HH),Data (HH)} indicates two
types of plaintexts with different datatypes, either decryption keys for E or plain data, but with
the same security level. An encryption key with type KeE′K ′(LH) can encrypt either decryption
keys for E or plain data, with security level LH. A ciphertext with type Enc (KdEK(HH))K(LH)
is an encryption of a decryption key of label K. It has itself a level LH.

Static key labels The key labels K are used to keep track of keys, grouped by their key-
generation commands. For example, we latter ensure that there is only one keypair generation for
a given label.

These labels are attached to the types of the generated keypairs, and propagated to the types
of any derived cryptographic materials. They are used to match the usage of key pairs and to
prevent key cycles.

The encryption indexes q are used to distinguish between different datatypes for encryptions,
for instance when they range over different groups before and after some homomorphic operations.
In all other cases, we use a single, implicit index q = 0.

Relations between security types and security labels We define a projection L from se-
curity types to security labels:

L(t(ℓ)) = ℓ L(τ ∗ τ ′) = L(τ) ⊓ L(τ ′) L(Array τ) = L(τ)
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(Var)

⊢ x : Γ(x)

(TOp)

op : τ1 . . . τn → τ

⊢ ei : τi for i = 1..n

⊢ op(e1, . . . , en) : τ

(SubE)

⊢ e : τ
τ ≤ τ

′

⊢ e : τ ′

(TAssign)

⊢ e : Γ(x)

⊢ x := e : L(x)

(TFun)

⊢ e : Data (ℓ) for e ∈ ẽ

Data (ℓ) ≤ Γ(x) for x ∈ x̃

⊢ x̃ := f(ẽ) : ℓ

(TCond)

⊢ e : Data (ℓ)
⊢ P : ℓ ⊢ P

′ : ℓ

⊢ if e then P else P
′ : ℓ

(TWhile)

⊢ e : Data (ℓ) ⊢ P : ℓ

⊢ while e do P : ℓ

Figure 5.1: Non-cryptographic typing rules for expressions and commands with policy Γ.

We define subtyping on types as partial-ordering on their security labels, as follows:

ℓ ≤ ℓ′

t(ℓ) ≤ t(ℓ′)

τ0 ≤ τ ′0
τ1 ≤ τ ′1

τ0 ∗ τ1 ≤ τ ′0 ∗ τ ′1
τ ≤ τ ′

Array (τ) ≤ Array (τ ′)

For example Data (HH) ∗ Data (LH) ≤ Data (HL) ∗ Data (LL). We overload ≤ as follows:

t(ℓ) ≤⋆ ℓ ℓ ≤⋆ t(ℓ)
τ0 ≤⋆ ℓ τ1 ≤⋆ ℓ

τ0 ∗ τ1 ≤⋆ ℓ
ℓ ≤⋆ τ0 ℓ ≤⋆ τ1

ℓ ≤⋆ τ0 ∗ τ1

τ ≤⋆ ℓ
Array (τ) ≤⋆ ℓ

ℓ ≤⋆ τ
ℓ ≤⋆ Array (τ)

where ≤⋆ is ≤C , ≤I or ≤. For example, Data (HH)∗Data (LL) ≤ HL and Data (HH)∗Data (LL) ≤I
L. We also extend ⊔ from labels to types:

t(ℓ′) ⊔ ℓ ·
= t(ℓ′ ⊔ ℓ) (τ0 ∗ τ1) ⊔ ℓ ·

= (τ0 ⊔ ℓ) ∗ (τ1 ⊔ ℓ) Array (τ) ⊔ ℓ ·
= Array (τ ⊔ ℓ)

For example Data (HH) ∗ Data (LL) ⊔ LL = Data (HL) ∗ Data (LL). Memory policies are now
functions Γ from variables to security types. For a given policy Γ, we write x ≤⋆ and ≤⋆ x for
Γ(x) ≤⋆ and ≤⋆ Γ(x).

Core Type System We adapt our (strict) type system of Figure 3.2 to security types in Fig-
ure 5.1; Rules TSeq, TInert, TSubC, and TSkip are inchanged from Figure 3.2. In Rule TOp, the
first hypothesis refers to the type signature of op, defined below for generic operations, and for
operations on pairs and arrays:

op : Data (ℓ) ∗ · · · ∗ Data (ℓ) → Data (ℓ)
〈〉 : τ0, τ1 → (τ0 ∗ τ1)
()i : (τ0 ∗ τ1) → τi
[] : Array (τ)
[] : Array (τ),Data (L(τ)) → τ

update : Array (τ), τ,Data (L(τ)) → Array (τ)
+ : Array (τ), τ → Array (τ)
size : Array (τ) → Data (L(τ))

5.3 Typing Encryptions

5.3.1 Typing encryptions against Chosen-Plaintext Attacks

We now describe our cryptographic rules for typing the algorithms of a CPA encryption scheme.
Figure 5.2 gives rules for typing key generation, encryption, and decryption.
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(GenE)

(Ge, E ,D) is CPA
Γ(ke) = KeEK(ℓe)
Γ(kd) = KdEK(ℓd)
∀τ ∈ E, τ ≤C ℓd

⊢ ke, kd := Ge() : ℓe ⊓ ℓd

(Encrypt)

Γ(y) = Enc τK(ℓy)
⊢ e : τ τ ∈ E

⊢ ke : KeEK(ℓy)
α 6≤I ke or τ ≤C α

⊢ y := E(e, ke) : ℓy

(Decrypt)

τ ≤ Γ(x) τ ∈ E

⊢ y : Enc τK(L(x))
⊢ kd : KdEK (ℓd) ℓd ≤I x
(α 6≤I y and α 6≤I ℓd) or ℓd ≤C x or ℓd ≤C α

⊢ x := D(y, kd) : L(x)

Figure 5.2: Typing rules for CPA encryption with policy Γ.

GenE For key generation, the first hypothesis requires that the encryption scheme (implicitly
parametrized by the key label K) be at least CPA secure. Alternatively, one may use keys
with datatype Data , and type generation, encryption, and decryption using rule TFun. The
next two hypotheses give matching encryption-key and decryption-key types to variables ke
and kd, with the same key label K and the same range of plaintexts E.

The constraint τ ≤C ℓd for every type τ ∈ E states that the decryption key kd is at least as
confidential as every plaintext, thereby preventing confidentiality leaks by key compromise.
(The constraint appears in GenE rather than Decrypt, to ensure that all copies of the
decryption key are sufficiently confidential.)

Encrypt The first three hypotheses bind types to the ciphertext y, plaintext e, and key ke involved
in the encryption; these types are related by τ ∈ E and K. The type of y carries two security
labels: ℓy, the level of the encryption, and L(τ) within Enc τ K, the level of the encrypted
plaintext. The label ℓy in the typing of ke records an ordinary flow from ke to y: by subtyping,
we must have L(ke) ≤ ℓy. Conversely, there is no constraint on the flow from e to y, so our
typing rule can be sound only with cryptographic assumptions:

• For confidentiality, this flow reflects that encryption is a form of declassification: e can
be more confidential than y. In that case, that is τ 6≤C y, we say that K declassifies
C(τ).

• For integrity, this flow reflects that encryption is also a form of endorsement: intuitively,
y is only a carrier for e, not in itself an observable outcome of the program; its integrity
indicates that y is the result of a correct encryption, even when e itself is not trusted.

Finally, the disjunction is a robustness condition on the encryption key, requiring that its
integrity be sufficient to protect the confidentiality of the plaintext. This disjunction, as well
as all the other conditions on α in our type system, can be expressed with the robustness
function R introduced in Section 3.4. In this case, the condition would be ke ≤I R(C(τ)).
However, we feel that this type system is easier to understand if we keep α explicit.

• The first disjunct excludes that an α-adversary may affect the encryption key (for
instance overwriting it with an ill-formed key or a key he knows).

• The second disjunct states that the confidentiality protection provided by the key is nil,
since an α-adversary may directly read the plaintext.

Hence, in case E contains plaintexts with different levels of secrecy, a key with relatively low
integrity may still be used to encrypt a plaintext with relatively low confidentiality.
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Decrypt The first three hypotheses on the left bind types to the plaintext x, the ciphertext y,
and key kd involved in the decryption; these types are related by τ and K. The label L(x)
flows from y to x, as in a normal assignment. The label ℓd and the hypothesis ℓd ≤I x record
integrity flows from kd to x, as in a normal assignment. Conversely, there is no constraint
on the confidentiality flow from kd to the plaintext x, so our typing rule can be sound only
with cryptographic assumptions. Informally, this reflects that the decrypted plaintext yields
no information on the decryption key itself, thereby enabling decryptions of plaintexts with
different confidentiality levels. When ℓd 6≤C x, we say that K declassifies C(ℓd).

The disjunction deals with the integrity of the ciphertext y and the decryption key kd, with
three cases: either

• both ciphertext and decryption key have high integrity; or

• the plaintext is at least as confidential as the key; or

• cryptographic protection is nil, since an α-adversary may read the decryption key then
decrypt the plaintext.

The first case intuitively reflects our CPA security assumptions: it requires that the integrity
of the ciphertext and the decryption key suffices to guarantee a correct decryption.

When y 6≤I α and ℓd 6≤C α, the second case covers some chosen-ciphertext attacks, which
may come as a surprise: in that case, we say that K depends on C(x) and we rely on an
additional safety condition (see also Examples 27 and 28). When ℓd 6≤I α and ℓd 6≤C α,
the second case also covers compromise of the decryption key, which may then flow to the
decrypted value, as discussed in Example 26.

For reference, we give two derived rule for typing encryptions and decryptions as ordinary
probabilistic function on Data , rather than relying on cryptographic assumptions. These rules are
correct, but do not allow any declassification.

(Encrypt (by TFun))

⊢ e : Data (L(y))
⊢ ke : Data (L(y))

⊢ y := E(e, ke) : L(y)

(Decrypt (By TFun))

⊢ e : Data (L(x))
⊢ kd : Data (L(x))

⊢ x := D(y, kd) : L(x)

5.3.2 Examples

We provide a series of examples that illustrate the relative information-flow security properties of
encryptions. In the examples, unless specified otherwise, we use a four-point, we assume that α is
LH and ke, kd is a secure keypair, that is, we set L(ke) = LH and L(kd) = HH and assume that
(Ge, E ,D) is CPA. We also write for instance xLH for a variable such that L(xLH) = LH.

We first encrypt a pair of mixed integrity into a ciphertext of high integrity:

Example 25 (Higher-integrity Encryptions) Consider the command context

ke, kd := Ge();
x := 〈xHH, xHL〉; yLH := E(x, ke);
;
x′ := D(yLH, kd);x

′
HH := (x′)0;x′HL := (x′)1

Let Γ(x) = Γ(x′) = Data (HH) ∗ Data (HL). This command typechecks; it is safe, inasmuch as the
adversary can influence the values of xHL, x

′
HL, and, indirectly, the value the ciphertext yLH, but

not the final value of x′HH.

Encrypting secrets with a low-integrity key clearly leads to confidentiality leaks, as the adver-
sary may overwrite the key with its own key before the encryption. Decrypting with a low-integrity
decryption key may also be problematic, especially when the plaintext is not secret, as illustrated
below:
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Example 26 (Low-Integrity Keys) Consider the command context

ke, kd := Ge(); k′d := kd;
yLH := E(1, ke);
;
if xHH then k′′d := kd else k′′d := k′d;
xLL := D(yLH, k

′′
d )

We let k′d and k′′d be low-integrity copies of the decryption key, that is L(k′d) = L(k′′d ) = HL. The
command is not typable, and is actually unsafe, since we may fill the placeholder with the command
k′d := 0; thus, k′′d contains the correct key if and only if xHH 6= 0, and the adversary can finally
compare xLL with 1, the correct decryption, and infer the confidential value xHH.

Similarly, since we rely on CPA (for chosen plaintext) and not CCA (for chosen ciphertext),
decrypting a low-integrity ciphertext may also be problematic, as illustrated below:

Example 27 (Chosen-Ciphertext Attacks) When decrypted, low-integrity ciphertexts may
leak information about their decryption keys. For a given CPA encryption scheme (Ge, E ,D),
we derive a new scheme (G′

e, E ′,D′) as follows:

G′
e()

·
= Ge()

E ′(x, ke)
·
= 1|E(x, ke)

D′(y, kd)
·
= b|y′ := y; if b = 0 then kd else D(y′, kd)

(where b|y′ := y abbreviates decomposing y into b and y′). In the new scheme, decryption leaks its
key when called on an ill-formed ciphertext (prefixed with a 0 instead of a 1).

Although this new scheme is still CPA, decryption of a low-integrity ciphertext may cause a
confidentiality flow from kd to the decrypted plaintext, letting the adversary decrypt any other value
encrypted under ke.

5.3.3 CPA versus chosen ciphertext attacks

As illustrated in Sections 5.7 and 5.8, our typing rules for CPA allow the decryption of low-
integrity ciphertexts when the plaintext is secret, as long as the resulting plaintext never flows to
any cryptographic declassification.

We define a notion of key dependencies, used to express the absence of key cycles as an as-
sumption for our theorem (in Section 4.2), and we give a counter-example showing an implicit
information flow for one such cycle.

Definition 25 (Key Dependencies and Free Labels) For a given policy Γ, K and K ′ two
key labels, and P a command context typable with Γ, we say that K depends on K ′ when either

1. there exists KeE′K ′(ℓ) in Γ such that KdEK(ℓ) occurs in E′; or

2. K depends on c, c ≤C c′, and K ′ declassifies c′.

Example 28 We illustrate a confidentiality leak when a low-integrity ciphertext is decrypted and
the resulting plaintext is later declassified. For a given CPA encryption scheme (Ge, E ,D), we
define a modified scheme (Ge, E ′,D′) as follows:

E ′(x, ke)
·
= r := random plaintext();

if D(E(r, ke), x) = r then 0|x else 1|E(x, ke)
D′(b|y′, kd) ·

= if b = 0 then kd else D(y′, kd)
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In the modified scheme, the encryption of a decryption key with the corresponding encryption key
leaks the decryption key. This scheme is still CPA since an adversary would have to guess the
decryption key for a successful attack. However, this scheme leaks kd when the decryption of a
compromised plaintext appears in an encryption:

ke, kd := Ge();
yLL := E(0, ke);
;
xHL := D(yLL, kd);
y′LL := E(xHL, ke);

This command has a key-dependency cycle, but it is otherwise typable, and it is unsafe: we may
fill the placeholder with a command injecting an ill-formed ciphertext; thus y′LL = xHL = kd and
the adversary can obtain the private key by reading y′LL.

5.3.4 Typing CCA2 encryptions

If the scheme is CCA2 secure, we may use an additional rule for typing decryptions that takes
advantage of its stronger guarantees. The rule is given below.

(Decrypt CCA2)

(Ge, E ,D) is CCA2
τ ≤ Γ(x) τ ∈ E

⊢ y : Enc τK(L(x))
⊢ kd : KdEK (ℓd) ℓd ≤I x ℓd ≤I α or ℓd ≤C α
∀τ ′ ∈ E, τ ′ ≤ τ ⊔ (⊥,⊤)

⊢ x := D(y, kd) : L(x)

Except for the CCA2 cryptographic assumption, the rule differs from rule Decrypt only on the
last line of hypotheses, so Decrypt CCA2 effectively adds a fourth case for decryptions of low-
integrity ciphertexts. In this new case, the adversary may be able to mix encryptions for values
of type τ with those of values of any other type τ ′ ∈ E, so we must statically exclude some of the
resulting flows between plaintexts: τ and τ ′ must have the same datatypes at the same levels of
confidentiality, as illustrated below.

Example 29 (Ciphertext Rewriting) Consider a command context using the same keypair for
payloads at levels HH and LL:

ke, kd := Ge();
yLL := E(xLL, ke); y′LL := E(xHH, ke); ;x′LL := D(yLL, kd)

The command is not typable, and is unsafe: indeed, we may fill the placeholder with an adversary
command yLL := y′LL, thereby causing the program to leak a copy of the secret xHH into x′LL.

5.4 Blinding Schemes: Security and Typing

We now consider blinding schemes introduced by Blaze et al. [1998] and also known as reencryption
schemes. These schemes enable the re-randomization of a ciphertext, effectively providing a new
ciphertext, which is difficult to link to the original one.

To precisely keep track of their information flows, we separate encryption into two stages, each
with its own primitive and typing rule:

• Pre-encryption P() inputs a plaintext and outputs its representation as a ciphertext, but
does not in itself provides confidentiality; it can be deterministic; it is typed as an ordinary
operation and does not involve declassification.
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• Blinding B() operates on ciphertexts; it hides the correlation between its input and its output,
by randomly sampling another ciphertext that decrypts to the same plaintext; it is typed
with a declassification, similarly to rule Encrypt.

As shown below, some standard encryption schemes can easily be decomposed into pre-encryption
and blinding. This enables us for instance to blind a ciphertext without knowing its plaintext,
and to perform multiple operations on ciphertexts before blinding. For conciseness, we may still
write E instead of P;B when the two operations are executed together. We define the functional
properties of blinding encryption schemes below:

Definition 26 (Blinding Scheme) A blinding encryption scheme is a tuple (Ge,P,B,D) such
that (Ge,P;B,D) is an encryption scheme and B is a probabilistic function such that, for all
ke, kd := Ge(), if v encrypts m, then D(v, kd) = m, where ‘encrypts’ is defined by

1. v encrypts m when v := B(P(m, ke)) with m ∈ plaintexts;

2. v′ encrypts m when v′ := B(v, ke) and v encrypts m.

Blinding hides whether an encrypted value is a copy of another, as shown in the example below:

Example 30 Consider a service that, depending on a secret, either forwards or overwrites an
encrypted message. We distinguish a third confidentiality level S such that L ≤C S ≤C H.

ke, kd := Ge();
yLH := E(mHH, ke);
if sSH then ySH := P(mSH, ke) else ySH := yLH;
y′LH := B(ySH, ke)

The resulting ciphertext ySH is itself secret, as an adversary may otherwise compare it with yLH
and infer the value of sHH. After blinding, however, y′LH still protects the same message but can
be safely treated as public, as an adversary reading yLH and y′LH learns nothing about mHH or sSH.

5.4.1 CPA for Blinding

We now describe the cryptographic assumptions necessary to use blinding schemes. A blinding
scheme (Ge,P,B,D) is secure when for every possible ciphertext, the blinding operation hides any
link between the original and the resulting ciphertext. This corresponds to a property of CPA for
the scheme (Ge,B,D). This property is stronger than the CPA property of the original scheme
(Ge, E ,D), since B must be hiding for every ciphertext, not only those that are the direct result of
the first phase of the encryption (P). It is possible to shown this property for the blinding schemes
based on ElGamal [1984] (GE

e ,PE,BE,DE) , and Paillier [1999] (GP
e ,PP,BP,DP). The proof are

similar to the proof of CPA for the original encryption shemes.

Proposition 1 (GE
e ,BE,DE) is CPA.

Proposition 2 (GP
e ,BP,DP) is CPA.

5.4.2 Typing rules for Pre-Encryption and Blinding

The typing rules for pre-encryption and blinding appear in Figure 5.3.

Pre-Encrypt This rule is similar to Encrypt, but constrains the confidentiality flow from e to y,
which forbids any declassification by typing.
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(Pre-Encrypt)

Γ(y) = Enc τKq(ℓy)
⊢ e : τ τ ≤C y
⊢ ke : KeEK(ℓy)
τ ∈ E

⊢ y := P(e, ke) : ℓy

(Blind)

(Ge,B,D) is CPA
Γ(y) = Enc τ Kq(ℓy) τ ′ ≤ τ
⊢ z : Enc τ ′Kq(L(τ))
⊢ ke : KeEK(ℓy) τ, τ ′ ∈ E

α 6≤I ke or τ ≤C α

⊢ y := B(z, ke) : ℓy

(Hom-Fun)

FK(f) = fK : q̃ → q′

Γ(y) = Enc τ Kq′(ℓy)
⊢ zi : Enc τiKqi(ℓy) for zi ∈ z̃
⊢ ke : KeEK(ℓy) τ̃ , τ ∈ E

Γ, x : τ ⊔ ℓy, x̃ : ~τ ⊔ ℓy ⊢ x := f(x̃) : L(τ) ⊔ ℓy
⊢ y := fK(z̃, ke) : ℓy

Figure 5.3: Additional typing rules for pre-encryption, blinding, and encryption homomorphisms
with policy Γ.

Blind The first three hypotheses bind types to the variables ke, z, and y. These types are related
by τ, τ ′ ∈ E and K, which are also typing assumptions for encryptions with key ke.

The label ℓy in the typing of ke records the flow from ke to y (by subtyping, we must have
ke ≤ ℓy).

The label L(τ) in the typing of z records the flow from z to the encrypted value in y. The
hypothesis τ ≤ τ ′ ensures the correctness of the flow from the encrypted value in z to the
encrypted value in y. Similarly to Encrypt, there is no constraint on the flow from z to y,
so our typing rule may be sound only with cryptographic assumptions. When z 6≤C y, we
say that K declassifies C(z).

5.5 Homomorphic encryptions

We now consider encryption schemes with homomorphic properties: some functions on plaintexts
can instead be computed on their ciphertexts, so that the command that performs the computation
may run at a lower level of confidentiality. These schemes enable private remote evaluation:
supposing that fK is a function that homomorphically compute a function f , a client may delegate
its evaluation to a server as follows:

1. the client encrypts the secret plaintext x into z1;

2. the server applies fK to the encrypted value (possibly encrypting its own secret inputs);

3. the client decrypts the result.

Programmatically, to implement x′ := f(x), we use a sequence of three commands sharing the
variables z and z′ and the encryption key ke:

z := E(x, ke); z′ := fK(z, ke);x
′ := D(z′, kd)

For simplicity, we do not consider probabilistic homomorphic functions, or homomorphic func-
tions that take non-ciphertext arguments.

As a first, trivial example, blinding can be seen as an homomorphic computation, associated
with the identity function on plaintexts. The two sample schemes of Section 5.4 have more inter-
esting homomorphic functions.
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The number of consecutive homomorphic applications is typically bounded, either because
“noise” is accumulated after each application and may lead to incorrect decryptions or because
homomorphic applications of certain functions change the domain of the ciphertext. We use the
encryption index to model these limitations.

We define the functional properties of homomorphic encryption schemes below:

Definition 27 (Homomorphic Encryption scheme) An homomorphic encryption scheme is
a tuple (Ge,P,B,D,F) such that (Ge,P,B,D) is a blinding encryption scheme and F is a partial
map on polynomial deterministic functions such that for all ke, kd := Ge() if v encryptsq m, then
D(v, kd) = m, where ‘encrypts’ is defined by

1. v encrypts0 m when v := B(P(m, ke)) with m ∈ plaintexts;

2. v′ encryptsq m when v′ := B(v, ke) and v encryptsq m.

3. v encryptsq′ f(m1, . . . ,mn) when f 7→ fK : q → q′ ∈ F , v := fK(v1, . . . , vn), and each vi
encryptsq mi for i ∈ 1..n.

Also, practical encryption schemes usually support a few fixed functions f , and often put limits
on the number of consecutive applications of fK . (This is the purpose of indexes in our model.)
Intuitively, these homomorphic application are not perfect; they also produce noise, which may
eventually lead to incorrect decryptions. For example, Boneh et al. [2005] provides a scheme with
an unlimited number of additions but only one homomorphic multiplication. In our model, this
translate to: F = {+ 7→ +K : 0 → 0; ∗ 7→ ∗K : 0 → 1;+ 7→ +K : 1 → 1}.

Figure 5.3 includes our additional rule for homomorphic computation, Hom-Fun. This rule
is parametric on the homomorphic encryption scheme, and relies on a typing assumption on the
corresponding ‘virtual’ computation on plaintexts, using a security policy extended with fresh
plaintext variables: Γ, x : τ ⊔ ℓy, x̃ : τ̃ ⊔ ℓy ⊢ x := f(x̃) : L(τ) ⊔ ℓy.

The first hypotheses bind types to the variables ke, y, and ~z involved in the homomorphic
operation; these types are related by ~τ , τ ∈ E and K, which describe the typing assumptions for
encryptions with key ke. They also ensure that the function f is homomorphically implementable
in this encryption scheme with the corresponding indexes. The last hypothesis ensures that f
would be typable if applied on the decrypted ciphertext.

The label ℓy in the typing of ke, y, and z̃ records the flow from ke and z̃ to y.

In comparison, without cryptographic assumptions, we can also type homomorphic operations
as probabilistic expressions using TFun, as follows:

(Hom-Fun (by TFun))

⊢ ke : Data (ℓe) ⊢ ỹ : Data (ℓe) ⊢ x : Data (ℓe)

⊢ x := fK(ỹ, ke) : ℓe

Our typing rule ensures that if an homomorphic function types, its equivalent non-homomorphic
version would also type, as illustrated in Example 31.

5.5.1 Examples

The examples below use Paillier encryption, which enables us to add plaintexts by multiplying
their ciphertexts. Thus, we use f = + and fK = ∗, and for F(+) = ∗ : 0 7→ 0 we obtain a single
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instance of Rule Hom-Fun:

(Hom-Paillier)

Γ(y) = Enc (Data (ℓ))K (ℓy)
⊢ zi : Enc (Data (ℓi))K (ℓy) for i = 0, 1

⊢ ke : KeEK(ℓy) Data (ℓ),Data (ℓ0),Data (ℓ1) ∈ E

ℓ0 ⊔ ℓ1 ⊔ ℓy ≤ ℓ ⊔ ℓy
⊢ y := z0 ∗ z1 : ℓy

Example 31 To illustrate our typing rule, we compare two programs that perform the same ad-
dition, on plaintexts (on the left) and homomorphically (on the right):

P
·
= ke, kd := Ge(); P ′ ·

= ke, kd := Ge();
z1 := E(x1, ke); z1 := E(x1, ke);
x′1 := D(z1, kd)
x := x′1 + x′1; y := z1 ∗ z1;
y := E(x, ke);
r := D(y, kd); r := D(y, kd);

Suppose that we type P with a policy Γ, then, relying on the plaintext-typing assumption in rule
Hom-Fun, we can also type P ′ with the same policy.

Example 32 We show how to homomorphically multiply an encrypted value by a small integer
factor.

ke, kd := Ge();
yLH := E(xHH, ke);
zSH := E(0, ke);
for iSH := 1 to nSH do zSH := zSH ∗ yLH;
zLH := B(zSH, ke); ;
xHH := D(zLH, kd)

By typing, we have that an honest-but-curious adversary (α = SH) does not learn xHH, and
that a network adversary (α = LH) learns neither xHH nor nSH. The latter guarantee crucially
relies on blinding the result at the end of the loop, since otherwise the adversary may also iterate
multiplications of yLH and compare them to the result to guess nSH.

Another classic example of homomorphic scheme is the ElGamal encryption, which enables
us to multiply plaintexts by multiplying their ciphertexts; we omit similar, typable programming
examples.

Homomorphic properties are usually incompatible with CCA2 security, as illustrated below for
an additive scheme:

Example 33 (Homomorphic schemes cannot be CCA2) For a given homomorphic scheme
(Ge,P,B,D,F) with + ∈ Dom(F), consider the CCA2 adversary:

A[E,D]
·
= x0 := 1;x1 := 2;E;

m := F(+)(m,m, ke);D;
if x = 2 then g := 0 else g := 1

The result from the encryption oracle E and the input of the decryption oracle D are different.
Hence, D is going to decrypt is input. However, since the scheme is homomorphic, the result of
the decryption is going to be either 2 or 4, depending on the initial encrypted value. Our adversary
always wins the CCA2 game.
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5.6 Computational Soundness

The security of cryptographic programs depends on cryptographic assumptions on probabilistic
games. In particular, we cannot prove non-interference of these programs, since high confidentiality
values leaks to low confidentiality values during an encryption and a lucky adversary could guess the
keys and decrypt the ciphertext. Hence, we define security properties for probabilistic command
contexts as computational variants of noninterference, expressed as games [Fournet and Rezk,
2008]. For instance, the confidentiality version of the game states that an adversary that can only
observe public variables cannot distinguish between two runs of a program with the same public
initialization.

Definition 28 (Computational Non-Interference) Let Γ be a policy, α an adversary level,
and P a command context.

P is computationally non-interferent against α-adversaries when, for both V = V CA and V =
V IA , and for all polynomial commands J , B0, B1, T containing no cryptographic variables, such

that wv(Bb) ∩ V = ∅ and rv(T ) ⊆ V , Ã α-adversaries such that P [Ã] is a polynomial command,

g /∈ v(J,B0, B1, P, Ã), and some variable b /∈ v(J,B0, B1, P, Ã, T ) in the command

CNI
·
= b := {0, 1}; J ; if b = 0 then B0 else B1;P [Ã]

if we have Pr[CNI;
∧
x∈rv(T ) x 6= ⊥] = 1, then the advantage |Pr[CNI;T ; b =0 g]− 1

2 | is negligible.

In the game of the definition, the command J ; if b = 0 then B0 else B1 probabilistically initializes
the memory, depending on b. Definition 28, then runs the command context applied to adversaries
P [Ã]. Finally, T attempts to guess the value of b and set g accordingly. T cannot read cryptographic
variables, which are not an observable outcome of the program. The condition

∧
x∈rv(T ) x 6= ⊥

rules out commands T that may read uninitialized memory. Hence, the property states that the
two memory distributions for b = 0 and b = 1 after running CNI cannot be separated by an
adversary that reads V .

5.6.1 Assigning cryptographic schemes and lengths to types

Our cryptographic assumptions demands the length of the plaintext to be fixed (otherwise the
adversary can get information about the plaintext by measuring the length of the ciphertext.
Hence, each security type is given a length.

To every type τ , we associate the binary length ⌈τ⌉(η) of any value of that type, assumed to
be a polynomial in η. (In a more detailed model with values of variable sizes, we would include
explicit marshaling, truncating, and padding operations.) We also let ⌈plaintextsK⌉ be the binary
length of any value in plaintextsK , also a polynomial in η.

We cannot use a single instance of each cryptographic scheme because there is no correct CCA2
encryption scheme for unbounded plaintext, and because e.g. ciphertexts for one scheme may be
treated as plaintext for some other schemes. On the other hand, our model must account for
potential information leakage via the length of encrypted messages.

We assume the constraints below on the relative lengths (for each η) for each scheme for
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encryption or for signing.

⌈t(ℓ)⌉ = ⌈t⌉
⌈τ ∗ τ ′⌉ = ⌈τ⌉+ ⌈τ ′⌉

⌈Array τ⌉ is a fixed polynomial in η and ⌈τ⌉

⌈Data ⌉ is a fixed polynomial in η

⌈Enc τ K⌉ = ⌈ciphertextsK⌉ with ⌈τ⌉ = ⌈plaintextsK⌉
⌈KeEK⌉ = ⌈publickeysK⌉
⌈KdEK⌉ = ⌈secretkeysK⌉

(One can solve these constraints given schemes parametrized by the size of their plaintexts, starting
with the inner types.)

5.6.2 Safety

Besides the cryptographic assumptions, we state additional safety conditions for soundness.

Definition 29 Let α ∈ L be security label. A command context P is safe against α-adversaries
when Γ ⊢ P and

1. Each key label is used in at most one (dynamic) key generation.

2. Each cryptographic variable read in P is first initialized by P .

3. There is no dependency cycle between key labels.

We rely on these conditions to apply cryptographic games in the proof of type soundness, for
instance to guarantee the integrity of decrypted values. They can be enforced by static analysis,
for instance by collecting all relevant static occurrences of variables and forbidding encryption-key
generation within loops.

Condition 1 prevents decryption-key mismatches. Condition 2 recalls our assumption on unini-
tialized cryptographic variables. Condition 3 recalls our assumption on key dependencies.

We also assume that each static key label is associated to a fixed scheme for encryption that
meets Definitions 18, 26, or 27 and we impose constraints on the length of ciphertexts in order to
prevent information leakage via the length of encrypted messages (explained above).

Relying on these conditions, we obtain our main security theorem: well-typed programs are
computationally non-interferent (Definition 28).

Theorem 10 Let α ∈ L be a security label. Let Γ be a policy. Let P be a polynomial-time
command context, safe against α-adversaries. P satisfies computational non-interference against
α-adversaries.

The proof of Theorem 10 is at the end of this chapter, in Subsection 5.9.

5.7 Private Search on Data Streams

We illustrate the use of Paillier encryption on a simplified version of a practical protocol developed
by Ostrovsky and Skeith III [2005] for privately searching for keywords in data streams (without
the Bloom filter).
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The protocol has two roles: an agency P and a service S. Assume that the service issues, or
processes, confidential documents such as mail orders or airline tickets, and that the agency wishes
to retrieve any such document whose content matches some keywords on a secret black list. The
two roles communicate using a public network. The black list is too sensitive to be given to the
service. Conversely, the service may be processing a large number of documents, possibly at many
different sites, and may be unwilling to pass all those documents to the agency.

We formally assume that the agency is more trusted than the service. We suppose that the
documents are arrays of words, and that all words (including the keywords on the black list) appear
in a public, trusted dictionary. We model the public network using variables shared between P
and S. We rely on the additive property of Paillier encryption, detailed in Section 5.5. We code
the protocol using three commands, explained below.

Initially, the agency generates a keypair and encodes the list of keywords as an array (mask) of
encryptions indexed by the public dictionary that contains, for each word, either an encryption of
1 if the word appears in the black list or an encryption of 0 otherwise. The agency can distribute
this array to the service without revealing the black list.

P0
·
= ke, kd := Ge();

for i := 0 to size(words)− 1 do

if words[i] ∈ keywords then wb := 1 else wb := 0;
mask[i] := E(wb, ke)

Then, for each document d, the service homomorphically computes the number of matching
keywords, as the sum of the 0 and 1s encrypted in mask for all indexes of the words (d[j]) present
in the document, by multiplying those encryptions in e. Moreover, the service homomorphically
multiplies e and the value of the document d (seen as a large integer) in z—the loop computes ed,
and may be efficiently replaced with a fast exponentiation. In particular, if they were no matches,
z is just an encryption of 0. Finally, the service blinds both e and z before sending them to the
agency—this step is necessary to declassify these encryptions without leaking information on the
document.

S
·
= e := 1;

for j := 0 to size(d)− 1 do

e := e ∗mask[words−1(d[j])];
e′ := B(e, ke);
z := 1;
for j := 0 to d− 1 do z := z ∗ e;
z′ := B(z, ke)

Last, for each pair e′ and z′, the agency decrypts the value containing the number of matches
(in n) and, if n is different from 0, retrieves the value of the document by decrypting the product
and dividing by n.

P
·
= n := D(e′, kd);

if n > 0 then
nd := D(z′, kd); log := log + (nd/n)

Adding an outer loop for the documents processed by the service, the whole protocol is modeled
as the command

Q
·
= P0;

for l := 0 to nb docs do

d := docs[l];S;P ;

As discussed by Ostrovsky and Skeith III, this algorithm is reasonably efficient for the service,
as it requires just a multiplication and a table lookup for each word in each document. Relying
on Bloom filters, the authors of the protocol and Danezis and Diaz [2007] develop more advanced
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variants, requiring less bandwidth and guaranteeing additional privacy properties for the service,
but the overall structure of the protocol remains unchanged.

We now specify the security of the protocol as a policy Γ that maps the variable of Q to labels.
We distinguish three levels of integrity: H for the agency, S for the service, and L for untrusted
data, with H <I S <I L.

• ke and keywords have high integrity (H);

• all other variables have service integrity (S).

We also distinguish four levels of confidentiality: H and P for the agency, S for the service,
and L for public data. With L <C P <C H and L <C S <C H.

• words, mask, e′, z′, i, nb docs, and ke are public ( at level L);

• docs, d, e, z, j, l are readable by the service (level S) and the agency;

• keywords, kd, bw are readable only by the agency (level P );

• log, n, and nd are also readable by the agency, but moreover they depend on low-integrity
decryptions, and thus should not flow to any further encryption with key ke (level H).

We prove the security properties of the protocol as instances of computational non-interference,
established by typing our code with different choices of adversary level α.

Theorem 11 Γ ⊢ Q when α ranges over SH, SS, and LS, hence Q is computationally non inter-
ferent against these adversaries.

• The case α = SS corresponds to a powerful adversary that entirely controls the service but
still learns nothing about the blacklist: it cannot distinguish between any two runs of the
protocol with different values of keywords.

• If the service is honest but curious (α = L), the protocol also completes with the correct
result.

• If the adversary controls only the network (α = LL), it learns nothing either about the
documents contents (docs).

Danezis and Diaz [2007] develop more advanced variants of the protocol, requiring less band-
width, such that S sends back only a small number of linear combinations of values n′ and z′, under
the assumption that n is almost always 0. We can program and type such variants in our setting,
with the same theorems; on the other hand, our type discipline does not capture the additional
privacy guarantee from the service’s viewpoint, e.g. that the volume of information passed to the
agency is low as comparison with the stream of documents.

5.8 Bootstrapping Homomorphic Encryptions

Gentry [2009] proposes a first fully homomorphic encryption (FHE) scheme, that is, a scheme that
supports arbitrary computations on encrypted data, thereby solving a long-standing cryptographic
problem [Goldwasser and Micali, 1982]. Others, e.g. Smart and Vercauteren [2010], develop more
efficient constructions towards practical schemes.

These constructions are based on bootstrappable encryption schemes, equipped with homomor-
phic functions for the scheme’s own decryption function as well as some more basic functions;
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these basic operations may represent e.g. logical gates. (Designing a bootstrappable encryption
scheme is in itself very challenging, as it severely constrains the decryption algorithm, but is not
our concern here.)

The bootstrap relies on a series of keys. Whenever the noise accumulated as the result of
homomorphic evaluation needs to be canceled, the intermediate result (encrypted under the cur-
rent key) is encrypted using the next encryption key, then homomorphically decrypted using an
encryption of the current decryption key under the next encryption key. This bootstrapping yields
an homomorphic scheme for any function as long as the computation can progress using other
homomorphic functions between encryptions and decryptions to the next key. (Following Gentry’s
terminology, the resulting scheme is a leveled FHE: the key length still depends on the max size of
the circuit for evaluating f; some additional key-cycle assumption is required to get a fixed-length
key.)

Next, we assume the properties of the base algorithms given by Gentry—being CPA and
homomorphic for its own decryption plus basic operations fi that suffice to evaluate some arbitrary
function f . We then show that these properties suffice to program and verify by typing the
bootstrapping part of Gentry’s construction, leading to homomorphic encryption for this arbitrary
function f . Typing of Gentry’s bootstrapping relies on typing rules for CPA with multiple keys
and types of encrypted values, and on instances of rule Hom-Fun with f = D.

We assume given a bootstrappable scheme using a set of homomorphic functions for decrypting
and for computing: F = {D 7→ DK : 0 → 1; f i 7→ f iK : 1 → 2 for i = 1..n}.

We are now ready to program the bootstrapping for f . Both parties agree on the function
to compute, f , and its decomposition into successive computation steps (fi)i=1..n such that f =
f1; . . . ; fn. This may be realized by producing a circuit to evaluate f and then letting the fi be the
successive gates of the circuit. For simplicity, we assume that each fi operates on all the bits of the
encrypted values; Gentry instead uses a tuple of functions f j=1..w

i for each step, each f ji computing
one bit of the encrypted values. This more detailed bootstrapping can be typed similarly.

For the plaintexts, we write x0 for the input, x1, . . . xn−1 for the intermediate results, and xn
for the final result, so the high-level computation is just xi := fi(xi−1) for i = 1..n.

The client generates all keypairs; encrypts the input using the first encryption key; encrypts
each decryption key using the next encryption key; calls the server; and decrypts the result using
the final key:

Pc
·
= kei, kdi := Ge(); for i = 1..n
skdi := E(kdi, kei+1); for i = 1..n− 1
y0 := E(x0, ke1);
; calling the server
xn := D(zn, kdn)

The message consists of the content of the shared variables y0, ke1, skd1, . . . , ken−1, skdn−1,
ken. The server performs the homomorphic computation for each fi, interleaved with the re-keying.

Ps
·
=

(
zi := f iKi

(yi−1, kei);
ti := E(zi, kei+1);
yi := DKi+1

(ti, skdi, kei+1);
)

for i=1..n−1

zn := fnKn
(yn−1, ken);

We specify the security of the protocol as a policy Γ that maps the variable of Pc and Ps to
labels. We distinguish three levels of integrity: H for the agency, S for the service, and L for
untrusted data, with H <I S <I L.

• kei and kdi have high integrity (H) for i = 1..n;

• all other variables have service integrity (S).
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Since our scheme is only CPA, we need n+ 1 levels of confidentiality to separate the results of
low integrity decryptions: H0..Hn for the agency and L for public data, such that L <C H0 <C
· · · <C Hn.

• kei, skdi, zi, ti, yi are public for i = 1..n (at level L);

• x0 is readable only by the agency (level H0);

• kdi is readable only by the agency for i = 1..n (level Hi);

• xn is also readable by the agency, but moreover it depends on low-integrity decryptions, and
thus should not flow to any further encryption with any of the key kei for i = 1..n (level
Hn).

Let τi = Data (HiS). We type our variables as follows, for i = 1..n− 1.

Γ(kei) =KeEiKi(LH)
Γ(kdi) =KdEiKi(HiH)
Γ(x0) = τ0
Γ(skdi)=Enc (KdEiKi(Hi−1S))Ki+10(LS)
Γ(y0) =Enc τ0K10(LS)
Γ(zi) =Enc τi−1Ki2(LS)
Γ(ti) =Enc (Enc τi−1Ki2(LS))Ki+10(LS)
Γ(yi) =Enc τiKi+11(LS)
Γ(zn) =Enc τn−1Kn2(LS)
Γ(xn) = τn

with the encrypted sets below, for i = 2..n:

E1 = {τ0}
Ei = {τi−1,KdEi−1Ki−1(Hi−2S),Enc τi−1Ki−1(HS)}

We verify that the commands above are typable with the resulting policy Γ:

Theorem 12 Γ ⊢ Pc[Ps] when α ranges over LL and LS, hence Pc[Ps] is computationally non-
interferent against these adversaries.

The theorem yields strong indistinguishability guarantees.

• The case α = LL corresponds to an “honest but curious” adversary, who can observe all
server operations on ciphertexts (that is, read all intermediate values) but still learn nothing
about the plaintexts.

• The case α = LS corresponds to an active adversary in full control of the service, who can
disrupt its operations, and still learns nothing about the plaintexts.

To clarify these confidentiality guarantees, we verify by typing that our construction is in particular

102



CPA. We let S abbreviate the scheme (Ghe , Eh,Dh, {f 7→ fK : 0 → 1}) defined as follows:

ke, kd := Ghe ()
·
=

(
kei, kdi := Ge();

)
for i=1..n(

skdi := E(kdi, kei+1);
)

for i=1..n−1

ke := (ke1, ..., ken, skd1, skdn−1);
kd := (kd1, kdn)

y := Eh(e, ke) ·
= y := E(e, (ke)1);

y := fhK(z, ke)
·
= y0 := z;(

zi := f iKi
(yi−1, (ke)i);

ti := E(zi, (ke)i+1);
yi := DKi+1

(ti, (ke)i+n, (ke)i+1);
)

for i=1..n−1

y := fnKn
(yn−1, (ke)n)

x := Dh(y, kd)
·
= ifis enc(y, (kd)1)

then x := D(y, (kd)1)
else x := D(y, (kd)2)

Theorem 13 S is a CPA homomorphic encryption scheme.

Proof: We consider the program

P
·
= ke, kd := Ghe ();

;
if bCPA = 0 then m := Eh(x0, ke) else m := Eh(x′0, ke)
;

with the following types: Let τi = Data (HiL). We type our encryption variables as follows, for
i = 1..n− 1.

Γ(kei) =KeEiKi(LH)
Γ(kdi) =KdEiKi(HiH)
Γ(skdi)=Enc (KdEiKi(Hi−1H))Ki+10(LH)
Γ(ke) = 〈(〉Γ(ke1), . . . ,Γ(ken),Γ(skd1), . . . ,Γ(skdn−1))
Γ(kd) = 〈(〉Γ(kd1),Γ(kdn))
Γ(x0) = τ0
Γ(x′0) = τ0
Γ(m) =Enc τ0K10(LL)

with the encrypted sets below, for i = 2..n:

E1 = {τ0}
Ei = {τi−1,KdEi−1Ki−1(Hi−2H),Enc τi−1Ki−1(HL)}

In particular

• ke, kd and bCPA have high integrity

• m, x0 and x′0 have low integrity

• kd is confidential

• ke, m, x0 and x′0 are public

We have Γ ⊢ P for α = LL. More precisely, P is safe against LL-adversaries. By Theorem 10, it
is thus computationally non-interferent against LL-adversaries.
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We instantiate Definition 28 for P , B0 = bCPA := 0,B1 = bCPA := 1, J = skip and T = skip.For
every polynomial A1 and A2 that reads ke and m, writes g, does not read b, kd nor write b, kd
and ke, we get

CNIh
·
= b := {0, 1}; if b = 0 then bCPA := 0 else bCPA := 1;

ke, kd := Ghe ();
A1;
if bCPA = 0 then m := Eh(x0, ke) else m := Eh(x′0, ke)
A2

or, with a simple rewriting:

CNIh
·
= b := {0, 1}; ke, kd := Ghe ();

A1;
if b = 0 then m := Eh(x0, ke) else m := Eh(x′0, ke)
A2

|Pr[CNIh; b =0 g] − 1
2 | is negligible. This corresponds to the CPA game, hence (Ghe , Eh,Dh) is

CPA. �

5.9 Proof of Theorem 10

The proof of our main security theorem relies on a series of typability-preserving program trans-
formations that match the structure of the games used in cryptographic security assumptions
(Definitions 19). These transformations eliminate the cryptographic primitives, one static key
label at a time. Hence, after eliminating a keypair for encrypting and decrypting, the values
that were encrypted are now stored into auxiliary high-confidentiality logs, and we are left with
encryptions of zero.

The proof is organized as follows: we first modify the lattice, and introduce new typing rules
in order to be able to type P [A], then, we show that typable programs with no declassification are
non-interferent. Last, we show that if a typable program with cryptography breaks computational
non-interference then it also breaks the hypothesis on the cryptographic schemes. In the whole
section, we implicitly assume that all commands are polynomial. In the following, we will abuse
memory notation µ to also denote a memory distribution with a unique point µ mapping to
probability 1.

5.9.1 Reduced Lattice

Without loss of generality once α is set, we use a reduced lattice that collapses all levels controlled
by the adversary.

Definition 30 (Reduced lattice) Let (L,≤) be a security lattice, α ∈ L a security label, we
defie a reduced lattice Lr with integrity levels L and H, and with confidentiality levels L, M , H,
and c for c 6≤C C(α) in the lattice L. The relations in this lattice are the smallest reflexive and
transitive relations verifying: H ≤I L, L ≤C M ≤C c ≤C H and c ≤C c′ for every c and c′ such
that c 6≤C C(α), c′ 6≤C C(α), and c ≤ c′ in the lattice L. Let H be a function from L to Lr defined
by :

H(ℓ)
·
= ( (if C(ℓ) ≤C C(α) then L else ℓ),

(if I(α) ≤I I(ℓ) then L else H) )

Let H(t(ℓ)) = t(H(ℓ)), H(τ0 ∗ τ1) = H(τ0) ∗ H(τ1) and H(Array τ) = ArrayH(τ). For a given
policy Γ, let H(Γ) be such that H(Γ)(x) = H(Γ(x)).
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We show below that any typing judgment is preserved by this reduction, and that program
that meets the hypotheses of Theorem 10 for an arbitrary lattice also meets them in this more
abstract reduced lattice. Hence, for the rest of the proof, we assume a reduced lattice.

Lemma 35 (Reduced Lattice) Let (L,≤) be a security lattice. Let α ∈ L be a security label.
We have:

1. The reduced lattice forms a product lattice such that H preserves ≤.

2. If Γ ⊢ e : τ , then H(Γ) ⊢ e : H(τ).

3. If Γ ⊢ P : ℓ with α then H(Γ) ⊢ P : H(ℓ) with LH.

4. If P is safe with the policy Γ, then P it is safe with the policy H(Γ).

Proof:

Property 1. By case analysis on security levels ℓ0, ℓ1 ∈ L such that ℓ0 ≤ ℓ1, with three cases for
confidentiality:

• C(H(ℓ1)) = L, in which case C(H(ℓ0)) = L and H(ℓ0) ≤C H(ℓ1); or

• C(H(ℓ1)) = c1 = C(ℓ1) and C(H(ℓ0)) = L, in which case H(ℓ0) ≤C H(ℓ1); or

• C(H(ℓ1)) = c1 = C(ℓ1) and C(H(ℓ0)) = c0 = C(ℓ0), in which case H(ℓ0) ≤C H(ℓ1);

and two cases for integrity:

• I(H(ℓ0)) = L, in which case C(H(ℓ1)) = L and H(ℓ0) ≤I H(ℓ1); or

• I(H(ℓ0)) = H in which case H(ℓ0) ≤I H(ℓ1).

We conclude that H(ℓ0) ≤ H(ℓ1).

Property 2. By induction on the expression typing derivation.

Case e is x. By typing Rule Var, we have Γ ⊢ x : τ and H(Γ) ⊢ x : H(τ).

Case e is op(ẽ). By typing Rule TOp, we have op : τ1 . . . τn → τ and Γ ⊢ ei : τi for i =
1..n. Hence, using the corresponding signature, op : H(τ1) . . .H(τn) → H(τ) and by
inductive hypothesis H(Γ) ⊢ ei : H(τi) for i = 1..n We obtain, by typing Rule TOp

Γ ⊢ op(e1, . . . , en) : H(τ).

Property 3. It follows from Properties 2 and 1 since all typing rules depend only positively on
≤.

Property 4. By analyzing the definition of safe. A command is safe if it is typable and:

1. each key label is used in at most one (dynamic) key generation;

2. each key variable read in P is first initialized by P ; and

3. there is no dependency cycle between key labels.

Typing of P with the policy H(Γ) follows from Property 3. Item 1 and 2 do not depend on
the policy. Item 3 depend on 6≤I α and 6≤C α, which are preserved by Property 1.

�
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5.9.2 Extended typing rules and adversary typing

We do not require for adversary commands to be typed, thus it can write low-integrity values
without respecting their datatypes. In order to formally type the adversary, we add the following
typing rules:

(Coerce-LL)

⊢ e : τ τ ≤C L L ≤I τ ′
⊢ e : τ ′

(Coerce-ProbFun-LL)

⊢ e : Data (LL) L ≤I x
⊢ x̃ := f(ẽ) : LL

The Coerce-LL typing rule is only applicable to low confidentiality expressions and permits to
change their data type. In order to preserve soundness, the coerced expressions must be typed at
a low integrity level.

We further extend the type system with typing rules for equality between encryptions:

(Coerce-equality)

⊢ e : Enc τK(cH) ⊢ e′ : Enc τK(cH)

⊢ e = e′ : Data (L(τ) ⊔ cH)

(Coerce-encrypt)

Γ(y) = Enc τ K(ℓy) ⊢ ke : KeEK(ℓy) τ ∈ E

⊢ y := E(0, ke) : ℓy
Rule Coerce-equality permits the typing of comparisons of encryptions that the adversary cannot
modify (with high integrity). This kind of comparisons are used later in the proof and the new rule
deems them typable. Rule Coerce-encrypt permits the typing of encryptions of default values
(e.g., a bitstring of 0 of the correct size). This kind of encryption are used latter in the proof in
indistinguishability games.

Any typing judgment is preserved by this extension, hence, for the rest of the proof we use
this extended type system. Moreover, any low-confidentiality expression is now typable at level
LL with any datatype:

Lemma 36 Let Γ be a policy, e an expression such that C(x) = L for every x ∈ rv(e), and τ a
security type such that τ ≤I L. Then ⊢ e : τ .

Proof: The proof is by structural induction on e:

• e is x. By hypothesis, C(x) = L. We conclude using Coerce-LL to replace Γ(x) by τ .

• e is op(e1, . . . , en). We use inductive hypotheses on e1 . . . en and conclude with Rule TOp.

�

In the extended types system for the reduced lattice, any adversary command is now typable:

Lemma 37 Let Γ be a policy, and A an adversary command. We have H(Γ) ⊢ A : LL.

Proof: The proof is by structural induction on A:

Case A is x := e. e contains only low confidentiality variables; also, x has low integrity, hence,
by Lemma 36 and Rule TAssign, we have ⊢ x := e : LL.

Case A is x̃ := f(ẽ). Similarly any of the e ∈ ẽ contains only low confidentiality variables, hence ⊢
e : Data (LL) by Lemma 36. Also, any of the x ∈ x̃ has low integrity. Hence, by Rule Coerce-

ProbFun-LL, we have ⊢ x̃ := f(ỹ) : LL.

Case A is if e then P1 else P2. e contains only low confidentiality variables, hence ⊢ e : LL.
Also, by induction, ⊢ P1 : LL and ⊢ P2 : LL. We conclude with Rule TCond
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Case A is while e do P . Analog to previous case using Rule TWhile.

Case A is P ;P ′. By Rule TSeq and inductive hypothesis.

Case A is skip. ⊢ skip : LL.

�

Thus, we can also type the command obtained by applying a well-typed command context to
any adversary commands.

Lemma 38 Let Γ be a policy, let ℓ ∈ L be a security label, let P be a command context such that
H(Γ) ⊢ P : ℓ, and let Ã be adversary commands. Then H(Γ) ⊢ P [Ã] : ℓ.

Proof: By structural induction on the typing derivation of P . For the base case P contains no
, hence P = P [Ã] and H(Γ) ⊢ P [Ã], otherwise:

Case if e then P1 else P2. By hypothesis, ⊢ if e then P1 else P2 : ℓ. By Rule TCond, we have
H(Γ) ⊢ P1 : ℓ and H(Γ) ⊢ P2 : ℓ. We apply the induction hypothesis on P1 and P2, and we

get H(Γ) ⊢ P1[Ã] : ℓ and H(Γ) ⊢ P2[Ã] : ℓ. We conclude with Rule Cond.

Case while e do P ′. Analog to previous case using Rule TWhile.

Case P1;P2. By Rule TSeq and inductive hypothesis.

Case [Ã]. P is typed at level LL by Rule TVar. Hence, ℓ = LL, and we conclude with Lemma 37.

�

We introduce a property of safeness for such programs P [Ã] typed with the extended typing
rules. This property derives from the safeness property of P . Additionnaly, it is used as an
invariant in the following states of the proof, and it is parametrised by a set of keys K that that
contains the key labels allready treated (initially K is empty). At the end of the proof, when K
contains all keys labels, Item 7 ensures that our programs contains no declassifications.

Definition 31 (Safe for K) Let Γ be a policy. Let K be a set of key labels occuring in Γ. Let α
be the LH security label. A command P is safe for K against α-adversaries when Γ ⊢ P and

1. Each key label is used in at most one (dynamic) key generation.

2. Each cryptographic variable, with high integrity, read in P is first initialized by P .

3. There is no dependency cycle between key labels.

4. Every encryption with a high integrity result and a label in K is an encryption of 0.

5. Rule Coerce-encrypt is only used with labels K ∈ K in the typing derivation of P ;

6. Every equality typed by Coerce-equality is such that K ∈ K;

7. For all confidentiality level c, there is no K, with K ∈ K such that K declassifies c;

8. No decryption with a high integrity result is typed with K ∈ K.
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5.9.3 Well-formed memory

We define a property of well-formedness on values, memories, and distributions used as an invariant
in the execution of a program for proving non-interference. Intuitively, in a well-formed memory,
high integrity values of a key type with label K are correctly generated keys consistent with the
other keys of label K. Similarly, high integrity values with an encrypted type of label K are
encryptions of well-formed values with a key of label K.

Definition 32 (Semantic Typing) Let Γ be a policy, µ̂ a function from key labels to pair of
keys values, K a set of encryption labels, v a value , τ a type, and ℓ a level, we define semantic
typing |= v : τ as follows:

|= ⊥: τ |= v : Data (ℓ)
L ≤I τ
|= v : τ

|= v0 : τ0 |= v1 : τ0

|= (v0, v1) : (τ0, τ1)

t(τ) = Enc τ ′Kq v encrypts(µ̂(K))1 v
′ |= v′ : τ ′

|= v : τ

t(τ) = Enc τ ′Kq K ∈ K
|= v : τ

|= (µ̂(K))1 : KeEK(ℓ) |= (µ̂(K))2 : KdEK(ℓ)

A memory µ is well-formed when, there exists µ such that, for every K, µ̂(K) is in the range
of Ge, and for every x ∈ Γ, |= µ(x) : Γ(x).

Similarly, a distribution of memory ρ is well-formed when, for every memory µ such that
ρ(µ) 6= 0, µ is well-formed.

In this lemma, we prove that the evaluation of a typed expression on values of a well-formed
memory result in a well-formed value.

Lemma 39 Let e be an expression and τ a security type such that ⊢ e : τ . If µ is a well-formed
memory then |= [[e]](µ) : τ .

Proof: The proof is by induction on the typing derivation:

Case e is x, typed by Var. By typing hypothesis, Γ(x) ≤ τ . Also, |= µ(x) : Γ(x) since µ is
well-formed. Hence |= µ(x) : τ by Rule SubE.

Case e is 〈e0, e1〉, typed by TOp. We conclude by induction on ⊢ e0 : τ0, ⊢ e1 : τ1 and by
definition 32.

Case e is (e′)i, typed by TOp. We conclude by induction on ⊢ e′ : τ ′ and by definition 32.

Case e is e1 = e2, typed by Rule Coerce-equality. Hence, τ = Data (ℓ) for some ℓ, and we
conclude by Definition 32.

Case e is typed by Rule Coerce-LL. Hence, L ≤I τ , and we conclude by Definition 32.

Case e is op(e1, . . . , en), typed by TOp. By typing, τ = Data (ℓ) for some ℓ, and we conclude
by definition 32.

�

In the next lemma, we show that a safe command running on a well-formed memory yields a
well-formed memory.

Lemma 40 Let K be a set of encryption labels. Let P be a polynomial-time command safe for K
such that If the cryptographic variables of µ are un-initialized then ρ∞(〈P, µ〉) is well-formed.
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Proof: The proof is by induction on the maximum number of reduction steps for P to terminate.
Our induction hypothesis is:

• Let P ′ be a polynomial-time command and µ′ a memory such that 〈P, µ〉 reduces to 〈P ′, µ′〉
with an non-null probability. If µ′ is well-formed for µ̂ were the domain of µ̂ corresponds to
the keys that have been initialized, then ρ∞(〈P, µ′〉) is well-formed for some µ̂ with a domain
corresponds to the keys that have been initialized in P .

Case P ′ is y := E(e, ke). If P ′ is typed with Rule Coerce-encrypt with a label K, then by hy-
pothesis,K ∈ K and we conclude by definition 32. If I(ke) 6= H then L ≤I y by Rule Encrypt
and we conclude by definition 32. Otherwise, µ′(ke) = (µ̂(K))1 since µ

′ is well-formed. Hence
it is a correct encryption with key (µ̂(K))1. For every µ

′′ such that ρ∞(〈P, µ′〉)(µ′′) 6= 0, we
have:

µ′′(z) = µ′(z) ifz 6= y
µ′′(y) encrypts(µ̂(K))1 µ

′(x)

and we conclude by definition 32.

Case P ′ is y := fK(z̃, ke). and must be typed using Rule Hom-Fun at some level ℓP , for some
security types τ̃ , τ ∈ E such that ℓd ≤ L(τ) and

Γ(y) = Enc (τ)K (ℓP )

⊢ zi : Enc (τi)K (ℓP )

⊢ ke : KeEK(ℓP )

Γ(x 7→ (τ ⊔ ℓP ), x̃ 7→ (τ̃ ⊔ ℓP )) ⊢ x := f(x̃) : τ ⊔ ℓP

If I(ke) 6= H or I(zi) 6= H for some i, thenL ≤I y, and we conclude by definition 32.
Otherwise, µ′(ke) = (µ̂(K))1 and for each i there exists vi such that µ′(zi) encrypts(µ̂(K))1 vi
and |= vi : τi since µ

′ is well-formed. Hence it is a correct homomorphic operation with key
(µ̂(K))1. For every µ

′′ such that ρ∞(〈P, µ′〉)(µ′′) 6= 0, we have:

µ′′(z) = µ′(z) ifz 6= y
µ′′(y) encrypts(µ̂(K))1 µ

′(x)

and we conclude by definition 32.

Case P ′ is x := D(y, kd). If I(kd) 6= H or I(y) 6= H, then L ≤I x by Rule Decrypt and we
conclude by definition 32. Otherwise, K 6∈ K by hypothesis. Hence µ′(kd) = (µ̂(K))2 and
there exists v such that µ′(y) encrypts(µ̂(K))1 v and |= v : τ since µ′ is well-formed. Hence
it is a correct decryption operation with key (µ̂(K))2. ρ∞(〈P, µ′〉)(µ′{x 7→ v}) = 1 and we
conclude by definition 32.

Case P ′ is ke, kd := Ge(). P is safe, so there is only one key initialization for each key label.
Hence K is not in the domain of µ̂. For each memory µ′′ such that ρ∞(〈P, µ′〉)(µ′′) 6= 0, µ′′

is well-formed with µ̂′ = µ̂{K 7→ (µ′′(ke), µ′′(kd))}.

Case P ′ is x := e. We conclude by Lemma 39, Rule TAssign, and Definition 32.

Case P ′ is if e then P ′
1 else P ′

2. By semantic, either 〈P ′, µ′〉 1 〈P ′
1, µ

′〉 and P ′
1 or 〈P ′, µ′〉 1

〈P ′
2, µ

′〉 and P ′
2. We conclude by induction on P ′

1 or P ′
2.

Case P ′ is while e do P ′′. By semantic, either 〈P ′, µ′〉 1 〈√, µ′〉 and we conclude, or 〈P ′, µ′〉 1

〈P ′′;P ′, µ′〉 and P ′′;P ′ and we conclude by induction on P ′′;P ′.

Case P ′ is P ′
0;P

′
1. By lemma 27, and by induction on 〈P ′

0, µ
′〉 and 〈P ′

1, µ
′′〉 for each of the µ′′

such that 〈P ′
0, µ

′〉(µ′′) 6= 0.

�
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5.9.4 Non-interference for programs without declassifications

We define a projection on values, memories, and distributions that erases high-level information;
our definition is parametrized by a set of encryption labels, K, used later to keep track of keys that
do not depend (anymore) on cryptogramhic assumptions; it has a special case for high-integrity
encryptions , which are flattened then projected.

Definition 33 For a given Γ, a function µ̂ from key labels to pair of keys values, a set of encryption
labels K, a security label ℓ, and a type τ , we define the projection of value v as follows:

v|ℓ,τ
·
=





⊥ if ℓ ≤ τ

v′|ℓ,τ ′ if




ℓ 6≤ τ I(τ) = H I(ℓ) = L
t(τ) = Enc τ ′Kq K /∈ K
v encrypts(µ̂(K))1 v

′

(v0|ℓ,τ0 , v1|ℓ,τ1) if ℓ 6≤ τ v = (v0, v1) τ = (τ0, τ1)

v otherwise

Let µ|ℓ be the projection of memory µ defined as:

µ|ℓ(x)
·
= (µ(x))|ℓ,Γ(x)

Let ρ|ℓ be the projection of a distribution of memories ρ defined as:

ρ|ℓ(µ)
·
=

∑

µ′|µ′
|ℓ
=µ

ρ(µ′)

We write µ0 ≡ℓ µ1 for two memories µ0 and µ1 when µ0|ℓ = µ1|ℓ . We write ρ0 ≡ℓ ρ1 for two
distributions ρ0, ρ1 when ρ0|ℓ = ρ1|ℓ.

In this lemma, we show that ≡ℓ is preserved when ℓ decreases.

Lemma 41 Let τ and τ ′ be two security types such that τ ≤ τ ′, let v1 and v2 be two values, and
let ℓ be a label. If v1|ℓ,τ = v2|ℓ,τ then v1|ℓ,τ ′ = v2|ℓ,τ ′

Proof: By Definition 33. �

In this lemma, we show that the projection on (LL, τ ⊔ ℓ) is equivalent to the projection on
LL, τ if I(ℓ) = H.

Lemma 42 Let τ be a type, let v be a value, and let ℓ be a label such that I(ℓ) = H. We have
v|ℓ,τ⊔ℓ = v|ℓ,τ .

Proof: By Definition 33. �

In this lemma, we show that two values equivalent with a low datatype must be equal if the
encrypts rule is not available.

Lemma 43 Let K be a set of encryption labels, let ℓ and ℓ′ be two security label, let τ be a security
type such that ℓ 6≤ ℓ′ and τ ≤ ℓ′, let v0 and v1 be two values such that v0|ℓ,τ = v1|ℓ,τ . Then, if
either I(ℓ) = H or τ contains only encryption on labels in K then v0 = v1.
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Proof: By Definition 33. �

In this lemma, we show that we can lift relation on memories to distributions.

Lemma 44 Let ρ0 and ρ1 be two distributions and ℓ a label such that ρ0 ≡ℓ ρ1. Let ϕ be a predicate
on memories such that for all memories µ such that ρ0(µ) 6= 0 or ρ1(µ) 6= 0, ϕ(µ). Let P0 and P1

be two commands and R a relation between distributions preserved by weighted sum, such that for
every memory µ0 and µ1 such that ϕ(µ0), ϕ(µ1) and µ0 ≡ℓ µ1, we have ρ∞(P0, µ0) R ρ∞(P1, µ1).
Then (

∑
µ ρ0(µ) ∗ ρ∞(〈P0, µ〉)) R (

∑
µ ρ1(µ) ∗ ρ∞(〈P1, µ〉)).

Proof: Let (µi)i≤n be the set of memories such that ρ0|ℓ(µi) 6= 0 (and ρ1|ℓ(µi) 6= 0 since
ρ0 ≡ℓ ρ1) , we let pi be such that ρ0|ℓ(µi) = pi. By definition of the projection on distributions,
for every µi, pi such that ρ0|ℓ(µi) = pi, there exists (µ0

i,j)j≤n0
i
and (p0i,j)j≤n0

i
such that

• µ0
i,j|ℓ = µi|ℓ,

• ρ0(µ
0
i,j) = p0i,j ,

• ∑
j p

0
i,j = pi

Similarly, there exists (µ1
i,j)j≤n1

i
and (p1i,j)j≤n1

i
such that

• µ0
i,j|ℓ = µ1

i,j|ℓ = µi|ℓ,

• ρ0(µ
0
i,j) = p0i,j ,

• ρ1(µ
1
i,j) = p1i,j ,

• ∑
j p

0
i,j =

∑
j p

1
i,j = pi

We can split the initial sum for these µi,j , and get:

∑
µ ρ0(µ) ∗ ρ∞(〈P0, µ〉) =

∑
i

∑
j ρ∞(〈P0, µi,j〉) ∗ p0i,j∑

µ ρ1(µ) ∗ ρ∞(〈P1, µ〉) =
∑
i

∑
j ρ∞(〈P1, µi,j〉) ∗ p1i,j

By hypothesis, for every couple (i, j), we have ρ∞(P0, µ
0
i,j)Rρ∞(P1, µ

1
i,j) and we conclude. �

In this lemma, we show that a command typable at level ℓ does not influence memory at a
level below ℓ.

Lemma 45 (Confinement) Let Γ be a policy, ℓ ∈ L a security label, P a command, and µ a
memory.

If ⊢ P : ℓ, then ρ∞(〈P, µ〉) ≡ℓ µ.

Proof: The proof is by induction on the maximum number of reduction steps for 〈P, µ〉 to
terminate. The base case P =

√
is trivial. The inductive case is by analysis on P :

Case x := e. By Rules Assign and TSubC, we have ℓ ≤ L(x). Hence, by definition 33, for every
µ′ such that ρ∞(〈P, µ〉)(µ′) 6= 0, we have:

µ′(z) = µ(z) ifz 6= x
µ′(x)|ℓ,Γ(x) =⊥= µ(x)|ℓ,Γ(x)

and we conclude.
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Case x := E(e, ke). By Rule TSubC and Rule Encrypt (or Coerce-encrypt), we have ℓ ≤ L(x).
Hence, by definition 33, for every µ′ such that ρ∞(〈P, µ〉)(µ′) 6= 0, we have:

µ′(z) = µ(z) ifz 6= x
µ′(x)|ℓ,Γ(x) =⊥= µ(x)|ℓ,Γ(x)

and we conclude.

Case x̃ := f(ẽ). By Rule TSubC and one of the Rules TFun, GenE, Hom-Fun, Decrypt, Blind

and Pre-Encrypt, we have (for all x in x̃) ℓ ≤ L(x). The conclusion follows as the two cases
above.

Case if e then P1 else P2. By Rules TCond and TSubC, if ⊢ P : ℓ then ⊢ P1 : ℓ and ⊢ P2 : ℓ.
Also, either 〈P, µ〉 1 〈P1, µ〉 or 〈P, µ〉 1 〈P2, µ〉. We conclude by induction on 〈P1, µ〉 and
〈P2, µ〉.

Case while e do P ′. By Rules TWhile, TSubC, and TSeq, if ⊢ P : ℓ then ⊢ P ′; while e do P ′ : ℓ.
Also, either 〈P, µ〉  1 〈P ′; while e do P ′, µ〉 or 〈P, µ〉  1 〈√, µ〉. We conclude by induction
on 〈P ′; while e do P ′, µ〉 and 〈√, µ〉.

Case P ;P ′. By Lemma 27, we have ρ∞(〈P ;P ′, µ〉) =
∑
µ′ ρ∞(〈P ′, µ′〉) ∗ ρ∞(〈P, µ〉)(µ′). By

inductive hypothesis on 〈P, µ〉 , ρ∞(〈P, µ〉)|ℓ = µ|ℓ. Hence ρ∞(〈P, µ〉)(µ′) 6= 0 if and only if
µ′
|ℓ = µ|ℓ. By inductive hypothesis on each of the 〈P ′, µ′〉, ρ∞(〈P ′, µ′〉)|ℓ = µ′

|ℓ = µ|ℓ. We

conclude that ρ∞(〈P ;P ′, µ〉)|ℓ = µ|ℓ.

Case skip. 〈P, µ〉 1 〈√, µ〉. We conclude.

�

In the next lemma, we show that the evaluation of a typed expression on two equivalent
memories yield equivalent values at least for the equivalences that are relevant to the proof of CNI
for integrity and confidentiality (equivalences for high integrity values, and equivalences for public
values.

Lemma 46 Let ℓ be LL or cH for some confidentiality level c 6= L . Let τ be a security type.
Let Γ be a policy. Let K be a set of encryption labels. Let µ0 and µ1 be memories and e be an
expression such that ⊢ e : τ and every instance of Rule Coerce-equality with a premise Enc τK(ℓ)
is such that K ∈ K.

If µ0 ≡ℓ µ1, then [[e]](µ0) ≡|ℓ,τ [[e]](mu1).

Proof: If ℓ ≤ τ we conclude by Definition 33. Otherwise, the proof is by induction on the
typing derivation:

Case e is e0 = e1, typed by Rule Coerce-equality. We have e0 : Enc τ ′K(c′H) (= τ0) and
⊢ e1 : Enc τ ′K(c′H) (= τ1). By induction, [[e0]](µ0)|ℓ,τ0 = [[e0]](µ1)|ℓ,τ0 and [[e1]](µ0)|ℓ,τ1 =
[[e1]](µ1)|ℓ,τ1 . By hypothesis K ∈ K. Hence, by Lemma 43, and since ℓ 6≤ τ , [[e0]](µ0) =
[[e0]](µ1) and [[e1]](µ0) = [[e1]](µ1). We conclude.

Case e is typed at level τ (with I(τ) = L) by Rule Coerce-LL. e must be typed at level τ ′

with C(τ ′) = L before the Rule Coerce-LL. We have ℓ ≤ τ , hence ℓ 6= LL. Also, τ ′ ≤ LH,
and ℓ 6≤ LH. We conclude by induction and with Lemma 43.

Case e is x. By typing hypothesis, Γ(x) ≤ τ . We conclude with Lemma 41.

Case e is 〈e0, e1〉. We conclude by induction on ⊢ e0 : τ0, ⊢ e1 : τ1.

Case e is (e′)i. We conclude by induction on ⊢ e′ : τ ′.
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Case e is op(e1, . . . , en). We use inductive hypotheses on ⊢ e1 : τ, . . . ,⊢ en : τ .

�

In the next lemma, we show that a safe command running on well-formed equivalent memories
yield well-formed equivalent memories.

Lemma 47 Let ℓ be a security label, either LL, or cH for some confidentiality level c 6= L. Let
Γ be a policy. Let K be a set of encryption labels. Let P be a polynomial-time command safe for
K and µ0 and µ1 be two well-formed memories such that for every key label K and confidentiality
level c′ such that K declassifies c′, c 6≤ c′

If µ0 ≡ℓ µ1 then ρ∞(〈P, µ0〉) ≡|ℓ ρ∞(〈P, µ1)〉.

Proof: If ⊢ P : ℓ, we conclude with Lemma 45. Otherwise, ⊢ P : ℓP with ℓ 6≤ ℓP and without
using Rule ?? and the proof is by induction on the number of reduction steps for P to terminate.

Case P is y := E(0, ke). By typing Rule Coerce-encrypt (or Encrypt) ⊢ ke : KeEK(L(y)). By
hypothesis and Lemma 41, µ0(ke)|ℓ,Γ(y) = µ1(ke)|ℓ,Γ(y). Since ⊢ P : ℓ, and by definition 33,
µ0(ke) = µ1(ke), and we conclude by semantic definition Fun.

Case P is y := E(e, ke) (with e 6= 0) The command is typed by Rule Encrypt with some secu-
rity type τ ∈ E such that

Γ(y) = Enc τ K(ℓP )

⊢ e : τ
⊢ ke : KeEK(ℓP )

α 6≤I ke or τ ≤C α

We distinguish between two possible cases related to the equivalence definition. In all the
cases, Γ(ke) ≤C ℓP ℓ 6≤ ℓP , and ke has a key type, hence µ0(ke) = µ1(ke) by Lemma 43.

• If I(ℓ) = H. By the non-declassification hypothesis, either there is a declassification
and directly ℓ 6≤ τ or τ ≤C ℓP which, together with ℓ 6≤ ℓP implies that ℓ 6≤ τ . Hence,
[[e]](µ0) = [[e]](µ1) by Lemma 46 and 43. We conclude by the semantic definition Fun.

• Otherwise, ℓ = LL, and ℓ 6≤ ℓP , hence I(ℓP ) = H and K 6∈ K, I(ke) = H and since µb
is well-formed, for b ∈ {0; 1}, µb(ke) = (µ̂(K))1 , it is a correct encryption and for every
µ′
0, µ

′
1 such that ρ∞(〈P, µb〉)(µ′

b) 6= 0 we have:

µ′
b(z) = µ0(z) ifz 6= y
µ′
b(y) encryptsK,b [[e]](µb)

Since µ0 ≡ℓ µ1, we get

µ′
0|ℓ(z) = µ0|ℓ(z) ifz 6= y

= µ1|ℓ(z) ifz 6= y
= µ′

1|ℓ(z) ifz 6= y

(µ′
0(y))|ℓ,Γ(y) = [[e]](µ0)|ℓ,τ

= [[e]](µ1)|ℓ,τ
= (µ′

1(y))|ℓ,Γ(y)

Case P is y := fK(z̃, ke). The command is typed by Rule Hom-Fun, with some security type
τ̃ , τ ∈ E such that ℓd ≤ L(τ) and

Γ(y) = Enc (τ)K (ℓP )

⊢ zi : Enc (τi)K (ℓP )

⊢ ke : KeEK(ℓP )

Γ(x 7→ (τ ⊔ ℓP ), x̃ 7→ (τ̃ ⊔ ℓP )) ⊢ x := f(x̃) : τ ⊔ ℓP
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We distinguish between two possible cases related to the equivalence definition.

• If K ∈ K or I(ℓ) = H, zi ≤ ℓP and ℓ 6≤ ℓP , hence µ0(zi) = µ1(zi) by Lemma 43.
Similarly µ0(ke) = µ1(ke). We conclude by the semantic definition Fun.

• Otherwise, ℓ = LL and ℓ 6≤ ℓP , hence I(ℓP ) = H, I(zi) = H, and I(ke) = H. Since
µb is well-formed, for b ∈ {0; 1}, µb(ke) = (µ̂(K))1 and, for each i, there exists wb,i
such that µ(zb,i) encrypts(µ̂(K))1 wb,i, with w0,i ≡τ̃ℓ w̃1,i. We set Γ◦ = Γ{x 7→ (τ ⊔
ℓP ), x̃ 7→ (τ̃ ⊔ ℓP )}, and µ◦

b = µb{x̃ 7→ w̃b}. Using Lemma 41, we have µ◦
0 ≡ℓ µ◦

1

and by induction: ρ∞(〈x := f(~x), µ◦
0〉)|ℓ = ρ∞(〈x := f(~x), µ◦

1〉). This implies that
(f(w̃0))|ℓ,τ⊔ℓP = (f(~w1))|ℓ,τ⊔ℓP . By Lemma 42, (f(w̃0))|ℓ,τ = (f(~w1))|ℓ,τ . It is a correct
homomorphic operation with key (µ̂(K))1 hence, fK(~µb(z)) encrypts(µ̂(K))1 f(w̃b).

Since µ0 ≡ℓ µ1, we get

µ′
0|ℓ(z) = µ0|ℓ(z) if z 6= y

= µ1|ℓ(z) if z 6= y
= µ′

1|ℓ(z) if z 6= y

(µ′
0(y))|ℓ,Γ(y) = (f(w̃0))|ℓ,Γ(τ̃)

= (f(w̃1))|ℓ,Γ(τ̃)
= (µ′

1(y))|ℓ,Γ(y)

Case P is x := D(y, kd). and must be typed using Rule Decrypt for some security type τ ∈ E

such that

τ ≤ Γ(x)

⊢ y : Enc τKℓP

⊢ kd : KdEKℓd ℓd ≤I x
(α 6≤I y and α 6≤I ℓd) or ℓd ≤C x or ℓd ≤C α

We distinguish between two possible cases related to the equivalence definition.

• If K ∈ K or I(ℓ) = H, y ≤ ℓP and ℓ 6≤ ℓP , hence µ0(y) = µ1(y) by Lemma 43. For
the key, either there is a declassification and directly ℓ 6≤ Γ(ke) or Γ(ke) ≤C ℓP which,
together with ℓ 6≤ ℓP implies that ℓ 6≤ Γ(ke). Hence, µ0(ke) = µ1(ke) by Lemma 43. We
conclude by the semantic definition Fun.

• Otherwise K 6∈ K, ℓ = LL, and ℓ 6≤ ℓP , hence I(ℓP ) = H, I(y) = H, and I(kd) = H.
Since µb is well-formed, for b ∈ {0; 1}, µb(kd) = (µ̂(K))2, and there exist vb such
that µb(y) encrypts(µ̂(K))1 vbwith v0|ℓ,Γ(x) = v1|ℓ,Γ(x) (using Lemma 41 with hypothesis
(τ ≤ Γ(x)). It is a correct decryption and for every µ′

0, µ
′
1 such that ρ∞(〈P, µb〉)(µ′

b) 6= 0
we have:

µ′
0|ℓ(z) = µ0|ℓ(z) if z 6= x

= µ1|ℓ(z) if z 6= x
= µ′

1|ℓ(z) if z 6= x

(µ′
0(x))|ℓ,Γ(x) = (v0)|ℓ,Γ(x)

= (v1)|ℓ,Γ(x)
= (µ′

1(y))|ℓ,Γ(y)

Case P is x := e. By typing Rule TAssign, ⊢ e : Γ(x), hence [[e]](µ0)|ℓ,Γ(x) = [[e]](µ1)|ℓ,Γ(x) by
Lemma 46. We conclude by the semantic definition Assign.

Case P is if e then P1 else P2. By Rule TCond, t(e) = Data , also e ≤ ℓP , hence, by Lemma 46,

[[e]](µ0) ≡Γ(e)
ℓ [[e]](µ1), in consequence [[e]](µ0) = [[e]](µ1) = b for some b ∈ {0, 1}, hence

ρ∞(〈if e then P1 else P2, µ0〉) =ρ∞(〈Pb, µ0〉)
ρ∞(〈if e then P1 else P2, µ1〉) =ρ∞(〈Pb, µ1〉)

We conclude by induction on 〈Pb, µ0〉 and 〈Pb, µ1〉.
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Case P is while e do P . By Rule TWhile, t(e) = Data , also e ≤ ℓP hence ℓ 6≤ e and, by

Lemma 46, [[e]](µ0) ≡Γ(e)
ℓ [[e]](µ1), in consequence [[e]](µ0) = [[e]](µ1) = b for some b, hence

either

• [[e]](µ0) = [[e]](µ1) = 0 and

ρ∞(〈while e do P, µ0〉) =µ0

ρ∞(〈while e do P, µ1〉) =µ1

and we conclude from hypothesis µ0 ≡ℓ µ1;

• or [[e]](µ0) = [[e]](µ1) 6= 0 and

ρ∞(〈while e do P, µ0〉) =ρ∞(〈P ; while e do P, µ0〉)
ρ∞(〈while e do P, µ1〉) =ρ∞(〈P ; while e do P, µ1〉)

and we conclude by induction on 〈P ; while e do P, µ0〉 and 〈P ; while e do P, µ1〉.

Case P is P0;P1. By Lemma 27, 44, and 40, and by induction on 〈P0, µ〉 and 〈P1, µ
′〉 for each of

the µ′ such that 〈P0, µ〉(µ′) 6= 0.

�

The following lemma states that, if no information is declassified from any level above c, then
we can replace commands of level cL by skip without affecting results for memory below LL or
MH.

Lemma 48 (Skipify) Let Γ be a policy. Let c 6= L be a confidentiality level. Let ℓ be LL or
cH. Let µ be a well-formed memory, and K a set of encryption labels. Let P be a polynomial-
time command safe for K, and let P{skip/c} be the command obtained from P by replacing every
sub-command Q in P such that ⊢ Q : cL by skip.

For every key label K and confidentiality level c′ such that K declassifies c′, c 6≤ c′.

We have

ρ∞(〈P, µ〉) ≡|ℓ ρ∞(〈P{skip/c}, µ〉)

Proof: The proof is by induction on the number of reduction steps for 〈P, µ〉 to terminate.
If ⊢ P : cL, P{skip/c} = skip, and by Lemma 45 ρ∞(〈P, µ〉)|ℓ = µ|ℓ = ρ∞(〈P{skip/c}, µ〉)|ℓ.
Otherwise

Case x := e. Case x̃ := f(ỹ). P has no strict sub-command and 6⊢ P : cL, hence P = P{skip/c}
and we conclude.

Case if e then P1 else P2. Since 6⊢ P : cL by Rule TCond, we have

P{skip/c} = if e then P1{skip/c} else P2{skip/c}

For some b = 0, 1 depending on e and µ, we have both 〈P, µ〉 1 〈Pb, µ〉 and 〈P{skip/c}, µ〉 1

〈Pb{skip/c}, µ〉. We conclude by induction on 〈Pb, µ〉.

Case while e do P . Analog to previous case using Rule TWhile.

Case P ;P ′. By Lemma 27, we have

ρ∞(〈P ;P ′, µ〉) = ∑
µ′ ρ∞(〈P ′, µ′〉) ∗ ρ∞(〈P, µ〉)(µ′)

ρ∞(〈P ;P ′{skip/c}, µ〉) = ∑
µ′ ρ∞(〈P ′{skip/c}, µ′〉) ∗ ρ∞(〈P{skip/c}, µ〉)(µ′)
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By Lemma 40, ρ∞(〈P, µ〉) and ρ∞(〈P{skip/c}, µ〉) are well-formed. By inductive hypothesis
on 〈P, µ〉:

ρ∞(〈P, µ〉)|ℓ = ρ∞(〈P{skip/c}, µ〉)|ℓ
Then, for every well-formed memory µ′, by inductive hypothesis on 〈P ′, µ′〉:

ρ∞(〈P ′, µ′〉)|ℓ = ρ∞(〈P ′{skip/c}, µ′〉)|ℓ

By Lemma 47, for every well-formed memory µ′′, such that µ′ ≡ℓ µ′′:

ρ∞(〈P ′, µ′〉)|ℓ = ρ∞(〈P ′{skip/c}, µ′′〉)|ℓ

Hence, by Lemma 44

ρ∞(〈P ;P ′, µ〉) = ∑
µ′ ρ∞(〈P ′, µ′〉) ∗ ρ∞(〈P, µ〉)(µ′)

=
∑
µ′ ρ∞(〈P ′{skip/c}, µ′〉) ∗ ρ∞(〈P{skip/c}, µ〉)(µ′)

= ρ∞(〈P ;P ′{skip/c}, µ〉)

Case skip. ⊢ skip : cL

�

The next series of lemmas deal with the commands of the game that defines computational
non-interference in Definition 28. In the lemma below, we show that the two possible initialization
of the CNI game yields equivalent memories.

Lemma 49 (Init) Let Γ be a policy. Let ℓ be a security label, either LL, or with cH for some
confidentiality level c 6= L. Let V be {x | ℓ 6≤ x}. Let J , B0, B1 be polynomial commands containing
no cryptographic variables, such that wv(Bb) ∩ V = ∅. Let µ⊥ be an uninitialized memory. The
memory distributions ρ∞(〈J ;B0, µ⊥〉) and ρ∞(〈J ;B1, µ⊥〉) are well formed and such that

ρ∞(〈J ;B0, µ⊥〉) ≡ℓ ρ∞(〈J ;B1, µ⊥〉)

Proof: By Lemma 27, we have

ρ∞(〈J ;B0, µ⊥〉) =
∑
µ ρ∞(〈J, µ⊥〉)(µ) ∗ ρ∞(〈B0, µ〉)

ρ∞(〈J ;B1, µ⊥〉) =
∑
µ ρ∞(〈J, µ⊥〉)(µ) ∗ ρ∞(〈B1, µ〉)

B0 and B1 only write values x such that ℓ ≤ x. Hence, for every memory µ, ρ∞(〈B0, µ〉) ≡ℓ
ρ∞(〈B1, µ〉). We conclude that

ρ∞(〈J ;B0, µ⊥〉) ≡ℓ ρ∞(〈J ;B1, µ⊥〉)

Also, J , B0, B1 contains no cryptographic variables, hence for every non-Data variable x, and
for every memory µ such that ρ∞(〈J ;B0, µ⊥〉)(µ) 6= 0, µ(x) =⊥. Hence, ρ∞(〈J ;B0, µ⊥〉) and
ρ∞(〈J ;B1, µ⊥〉) are well formed. �

Newt, lemma, we show that the witness of the CNI game cannot distinguish between equivalent
memories.

Lemma 50 (Test) Let Γ be a policy. Let ℓ be either LL or cH for some c 6= L. Let V be
{x | ℓ 6≤ x}. Let T be a polynomial command with no cryptographic variables such that rv(T ) ⊆ V .
Let µ0 and µ1 be two memory such that µ0 ≡ℓ µ1. Let g be a variable uninitialized in both µ0 and
µ1. We have

Pr[〈T, µ0〉; g = 0] = Pr[〈T, µ1〉; g = 0]
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Proof: T reads only non-cryptographic variables x such that ℓ 6≤ Γ(x) and µ0 ≡ℓ µ1, hence T
only read variables which are equal on the two memories. g is written by T , hence equal for the
two executions. �

In this lemma, we show that a fully reduced command (with no declassifications left, and with
all labels in K) is CNI.

Lemma 51 (CNI\K) Let Γ be a policy, α = LL an adversary level, and P polynomial-time
command safe for the set of all key labels.

P is CNI.

Proof: Let ℓ be MH if V = V CA and LL if V = V IA . We verify that V = {x | ℓ 6≤ x}. By
semantics (and repeated usage of Lemma 27), if b = 0, Pr[CNI;T ; b =0 g] = Pr[J ;B0;P ;T ; 0 =0 g]
and if b = 1, Pr[CNI;T ; b =0 g] = Pr[J ;B1;P ;T ; 1 =0 g]. Hence

Pr[CNI;T ; b =0 g] =
Pr[J ;B0;P ;T ; 0 =0 g] + Pr[J ;B1;P ;T ; 1 =0 g]

2

By Lemma 27

ρ∞(〈J ;B0;P, µ⊥〉) =
∑
µ ρ∞(〈J ;B0, µ⊥〉)(µ) ∗ ρ∞(〈P, µ〉)

ρ∞(〈J ;B1;P, µ⊥〉) =
∑
µ ρ∞(〈J ;B1, µ⊥〉)(µ) ∗ ρ∞(〈P, µ〉)

By Lemma 49, ρ∞(〈J ;B0, µ⊥〉) and ρ∞(〈J ;B1, µ⊥〉) are well formed and

ρ∞(〈J ;B0, µ⊥〉) ≡ℓ ρ∞(〈J ;B1, µ⊥〉)

Then, by Lemma 47, for every well-formed memory µ0 and µ1 such that µ0 ≡ℓ µ1, we have
ρ∞(〈P, µ0〉) = ρ∞(〈P, µ1〉). Hence, by Lemma 44,

∑
µ ρ∞(〈J ;B0, µ⊥〉)(µ) ∗ ρ∞(〈P, µ〉) ≡ℓ∑

µ ρ∞(〈J ;B1, µ⊥〉)(µ) ∗ ρ∞(〈P, µ〉), which gives us

ρ∞(〈J ;B0;P, µ⊥〉) ≡ℓ ρ∞(〈J ;B1;P, µ⊥〉)

By Lemma 27

ρ∞(〈J ;B0;P ;T, µ⊥〉) =
∑
µ ρ∞(〈J ;B0;P, µ⊥〉)(µ) ∗ ρ∞(〈T, µ〉)

ρ∞(〈J ;B1;P ;T, µ⊥〉) =
∑
µ ρ∞(〈J ;B1;P, µ⊥〉)(µ) ∗ ρ∞(〈T, µ〉)

By Lemma 50, for every µ0 and µ1 two memories such that µ0 ≡ℓ µ1, we have Pr[〈T, µ0〉; g = 0] =
Pr[〈T, µ1〉; g = 0]. We define a relation R between distributions by:ρ0Rρ1 ⇔ ∑

µ/µ(g)=0 ρ0(µ) =∑
µ/µ(g)=0 ρ0(µ). We apply Lemma 44 with the relation R, and we get Pr[〈J ;B0;P ;T, µ⊥〉; g =

0] = Pr[〈J ;B1;P ;T, µ⊥〉; g = 0]. Finally, we conclude:

Pr[CNI;T ; b =0 g] = Pr[J;B0;P ;T ;0=0g]+Pr[J;B1;P ;T ;1=0g]
2

= Pr[J;B0;P ;T ;0=0g]+(1−Pr[J;B1;P ;T ;0=0g])
2

= Pr[J;B0;P ;T ;0=0g]+(1−Pr[J;B0;P ;T ;0=0g])
2

= 1
2

�

Finally, we show that every command equivalent to a CNI command is CNI.

Lemma 52 Let P and P ′ be two safe commands such that, for every well-formed µ with the
uninitialized crypto variables, ρ∞(〈P, µ〉) ≡LL ρ∞(〈P ′, µ〉) and ρ∞(〈P, µ〉) ≡MH ρ∞(〈P ′, µ〉). If P
is CNI then P ′ is CNI.
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Proof: Let V be V CA or V IA . Let J , B0, B1, T be polynomial commands containing no cryp-
tographic variables, such that wv(Bb) ∩ V = ∅ and rv(T ) ⊆ V . Let g and b be such that g /∈
v(J,B0, B1, P ), and b /∈ v(J,B0, B1, P, T ). Let µ be such that ρ∞(J ; if b = 0 then B0 else B1)(µ) 6=
0, µ is well-formed by Lemma 40 (and all its cryptographic variables are uninitialized). Hence
ρ∞(〈P, µ〉) ≡LL ρ∞(〈P ′, µ〉) and ρ∞(〈P, µ〉) ≡MH ρ∞(〈P ′, µ〉). Thus, ρ∞(〈CNI, µ⊥〉) ≡LL ρ∞(〈CNI′, µ⊥〉)
and ρ∞(〈CNI, µ⊥〉) ≡MH ρ∞(〈CNI′, µ⊥〉).

If V = V CA , for all x such that x ∈ rv(T ), MH 6≤ Γ(x), also, x is non cryptographic. Hence,
ρ∞(〈CNI, µ⊥〉) =|rv(T ) ρ∞(〈CNI′, µ⊥〉). Thus Pr[CNI;T ; b =0 g] = Pr[CNI′;T ; b =0 g] and we
conclude.

Similarly, if V = V IA , for all x such that x ∈ rv(T ), LL 6≤ Γ(x) and x is non cryptographic.
Hence, ρ∞(〈CNI, µ⊥〉) =|rv(T ) ρ∞(〈CNI′, µ⊥〉). Thus Pr[CNI;T ; b =0 g] = Pr[CNI′;T ; b =0 g] and
we conclude. �

5.9.5 From encryptions to confidentiality

In this section, when we mention typability, we refer to typability with the extended type system
on the reduced lattice, including the rules for coercion.

Assume P ′ is a command safe for K against α-adversaries, with α = LL, and typable with a
policy Γ.

We will transform P ′ in order to eliminate, using the cryptographic hypotheses, all encryptions
with a given key label K.

The main proof proceeds as follows, until all labels K are in K:

1. We say that a label K 6∈ K is free for K when he does not depend on any label outside of K.
We choose a free label K 6∈ K for K (since P ′ is safe, it ensures, for example, that there is
no encryption of the decryption key).

2. We move the key generation command for label K in P ′, and then define P by transform-
ing commands in P ′ to track the value of low integrity keys, and eliminating from P ′ all
subcommands of confidentiality level c such that K depends on c.

3. We define two commands, namely P ⋆ and P\K, obtained by transformation of P . Command
P ⋆ is P where cryptographic commands are substituted by corresponding cryptographic ora-
cles. Similarly, command P\K is P where typable cryptographic commands are substituted
by cryptographic commands that do not involve confidential data. We perform a log lookup
before decryption and encrypt 0 instead of confidential data.

4. We show that P\K is typable and safe for K ∪ {K}.

5. We show, by using P ⋆ and cryptographic hypotheses, that if an adversary breaks P then he
also breaks P\K.

6. We iterate the process for P\K and K ∪ {K} (until there are no more free labels).

Tranformation of P ′ into P

Let K be a free key label for K such that there exists at least a key generation command ke, kd :=
Ge() within P ′, typable with rule GenE using label K, and with kd 6≤C L. By Safety Conditions
1 and 2, K is used to type at most one dynamic key generation command.
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Log variables In the transformation, we use variables named logℓτK , one for each security level
ℓ, data type τ , and key label K used in the typing of P ′.

Log variables logℓτK are used in the transformed commands to log a pair of a ciphertext of
security level ℓ (encrypted with a key of label K) together with data of type τ . The ciphertext is
an encryption of the associated data.

For convenience, we also treat logℓτK as a function that maps ciphertexts to data of type τ .

We represent by (logℓτK)ℓ≤L(y) a tuple of log variables: one log variable for each security level
ℓ ≤ L(y), if the log variable is defined for the program being transformed. When the vector is of
length one, then we just write logℓτK to simplify the notation.

Moving key generations in front of the command We obtain P ′′ from P ′ by making some
replacements in commands containing key variables of label K.

We first transform P ′ such that the key generation command for K is the first command. We
use k0e and k0d, for some fresh variables k0e and k0d, such that k0e and k0d are never overwritten. We
replace P ′ with

k0e , k
0
d := Ge(); (logℓτK := 0; )for each τ∈E,ℓ∈L P

′′

where P ′′ is P ′ with every generation command ke, kd := Ge() (where ke and kd have label K) is
replaced with ke := k0e ; kd := k0d. Relying on P ’s single-generation for K (safety condition 1) and
read-after-assign for all key variables (safety condition 2), the transform above does not affect the
semantics of our command.

Flags for low integrity decryption keys We add flags for low integrity decryption keys. For
every low integrity decryption key of label K (k′d) in P

′′, we use a fresh variable k′d
init to track if

k′d contains the original key or contains a key that has been modified by the adversary. We then
replace every key assignment k′d := e in the above command by

• k′d := k′′d ; k
′
d
init := 1 if k′′d is a high integrity key of label K;

• k′d := k′′d ; k
′
d
init := k′′d

init if k′′d is a low integrity key of label K;

• k′d := e; k′d
init := 0 otherwise.

Additionally we replace ~x := e such that ~x contains k′d by ~x′ := e; k′d
init := 0.

We call the new command P ′′′ .

Elimination K dependencies We eliminate K dependencies. For each security level c such
thatK depends on c (that is, when there is a CPA decryption of a low integrity plaintext with a low
integrity key of label K, see explanation of the decryption rule), we apply Lemma 48 to eliminate
all subcommands in P ′′′ typable as cL. After elimination, we obtain an equivalent program P with
no low integrity CPA decryption.

Definition of P ⋆ and P\K

We define variants of the program P for applying cryptographic hypotheses (either CPA or CCA2)
when the decryption key is confidential and for eliminating declassifications for a given key label,
respectively.

Figure 5.4 shows the definition of P ⋆ and P\K. In the figure, we show suitable substitutions
for encryption, decryption, pre-encryption, blinding, and fully homomorphic functions commands.
In the figure, for each command, we assume that Γ(y) = Enc τ K(ℓy).
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We use x := assoc(z, (logℓτK)ℓ≤L(y)) as syntactic sugar for

if z = (logℓτK [0])0 then x := (logℓτK [0])1 else if z = (logℓτK [1])0 then x := (logℓτK [1])1 else . . .
(5.1)

It represents the association of ciphertext z1 with its corresponding data in the first log variable
of vector (logℓτK)ℓ≤L(y)). If no vector has z1 in its domain assoc() returns ⊥.

Notice that the guard in command 5.1 can be typed by Coerce-equality.

We also use operations to search in the logs.

We use if exists(y, (logℓτK)ℓ≤L(y)) then . . . else . . . as syntactic sugar for

if z = (logℓτK [0])0 then . . . else if z = (logℓτK [1])0 then . . . else . . . (5.2)

That is, exists represents a boolean operation that determines if ciphertext in y appears in
some log variable of vector (logℓτK)ℓ≤L(y).

Notice that the guard in command 5.2 can be typed by Coerce-equality.

Explanations follow for each of the substitutions in the figure.

Encryptions If the adversary writes ke (I(ke) = L), we leave this command unchanged in P ⋆

and P\K. Otherwise:

• In P ⋆, we replace this encryption by a command that uses E, the command that performs
oracle encryptions. (We assume that the oracle E uses variables x0 and x1 and that these
variables are not used in P otherwise.) We then log the encryption in the corresponding log
variable, to be used later if there is a decryption in P ⋆.

• In P\K, we replace encryption of e by an encryption of 0 and we log the encryption for a
future decryption in P\K.

Homomorphic applications If the adversary writes y, we leave this command unchanged in
both P ⋆ and P\K. Otherwise, in both P ⋆ and P\K, we replace this operation by a search in the
log variables for each variable zi. If all variables zi are previously encrypted, they should appear
in one of the logs. In this case, a pair is added to the log corresponding to the y variable to be
used for future decryptions.

Decryptions We present two variants for decryptions. The first one applies to the case where
decryption is typed using the CPA hypothesis, the second case applies to decryption typed using
CCA.

There are four different cases:

• If I(ℓd) = L and the decryption command is typed with the CPA variant (5.11) we replace
the decryption by a command in P ⋆ (resp. P\K) to check if the low integrity key has been
modified by the adversary.

Notice that y necessarily has high integrity, since decryption of low integrity ciphertexts
with low integrity keys were eliminated from P . Hence the ciphertext in y exists in a log
variable since it is encrypted before by safety condition 2. If the key is not modified by
the adversary, we replace the original decryption by an assignment to x of the corresponding
plaintext associated to y in the log. Otherwise, if the key has been modified, we keep the
decryption as is.
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• If I(ℓd) = H and the decryption command is typed with the CPA variant (5.11), there is
no need to check for kinitd since the key cannot be modified by the adversary. Notice that
since the key is of high integrity, by the decryption typing rule with CPA, y is also of high
integrity. Hence by safety condition 2, y has been written before and hence it has been
encrypted and stored in a log variable before being read in the decryption command.

• If I(ℓd) = L and the decryption command is typed with the CCA2 variant (5.12), we replace
the decryption by a command in P ⋆ (resp. P\K) to check if the low integrity key has been
modified by the adversary. If the key is not modified by the adversary, and if the ciphertext in
y exists in the corresponding log variable then x contains the corresponding value associated
to y in the log. In P ⋆ if ciphertext y is not in the log variable, we use the decryption oracle
D from CCA2. We assume here that variable m and x are fresh in P ⋆.

• If I(ℓd) = H and the decryption command is typed with the CCA2 variant (5.12), we apply
a similar transformation as in the low integrity case, except that there is no need to check
whether the adversary has modified the key.

Blindings If the encryption key is of low integrity, we do not replace the command. If the
encryption key is of high integrity:

• In P ⋆, we replace this encryption by a command that uses B, the command that performs
oracle blinding. Here we assume that x0 and x1 are fresh variables. As with simple encryption
commands, we need to log the new encryption in the corresponding log. The process is more
complicated than for encryptions since we need to associate the blinding to the correct
plaintext (already encrypted and stored in a log variable). If the value in z does not exist in
any log, we associate y with z.

• In P\K, we replace this encryption by a blinding of 0 and again we log the encryption with
its corresponding plaintext as in P ⋆.

Types for P\K

We show that every transformation in P\K is typable with Γ\K, given that the original command
was typable with Γ. Γ\K is an extension of Γ, featuring fresh variables k′d

init for every low
integrity key of label K (k′d) with type Data (L(k′d)) and log variables with type Γ\K(logℓτK) =
Array (Enc τ K(ℓ) ∗ (τ ⊔ ℓ)) for each τ ∈ E and ℓ ∈ L such that Kd EK(ℓ′) is in Γ.

Lemma 53 (Encryption Elimination) Let P\K be the command defined above from a com-
mand P ′ safe for K. Then, P\K is safe for K ∪ {K} using Γ\K.

This lemma implies that there is no encryption of confidential decryption key under the label K.

Proof. Most of the points of the safe invariant are direct by semantics of P\K. We prove the
typing. Notice that with the modified policy Γ\K, the (unique) key-generation command for K
in front of P\K can be typed by Rule GenE.

Since P\K is obtained from P ′ and P ′ is a safe command typable with policy Γ and without
rules for coercion, we just show for the substitution commands that they are typable with Γ\K.

Encryption If I(ke) = H, we show that the replacement command in P\K can also be typed
at level ℓy in Γ\K using rule Encrypt without declassification.

We use the typability hypothesis of the original encryption and typing Rule Coerce-encrypt

to type the encryption of 0. Using the signature for + with τ = Enc τ K(ℓy) ∗ (τ ⊔ ℓy) and
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P ⋆ P\K
y := E(e, ke) typed with Rule Encrypt

if I(ke) = L

y := E(e, ke) y := E(e, ke)
if I(ke) = H

x0 := 0;x1 := e;E; y := m; logℓyτK := logℓyτK + (y, e) y := E(0, ke); logℓyτK := logℓyτK + (y, e)

y := fK(z1, . . . , zn, ke) typed with Rule Hom-Fun

if I(y) = L

y := fK(z1, . . . , zn, ke) y := fK(z1, . . . , zn, ke)

if I(y) = H

y := fK(z1, . . . , zn, ke);
ifexists(z1, (logℓτ1K)ℓ≤ℓy )& . . .&exists(zn, (logℓτnK)ℓ≤ℓy )
then

logℓyτK := logℓyτK + (y, f(assoc(z1, (logℓτ1K)ℓ≤ℓy ),

. . . , assoc(zn, (logℓτnK)ℓ≤ℓy ))

y := fK(z1, . . . , zn, ke);
ifexists(z1, (logℓτ1K)ℓ≤ℓy )& . . .&exists(zn, (logℓτnK)ℓ≤ℓy )
then

logℓyτK := logℓyτK + (y, f(assoc(z1, (logℓτ1K)ℓ≤ℓy ),

. . . , assoc(zn, (logℓτnK)ℓ≤ℓy ))

x := D(y, kd) typed with Rule Decrypt

if I(kd) = L

if kd
init then

x := assoc(y, (logℓτK)ℓ≤ℓy ) else x := D(y, kd);
if kd

init then
x := assoc(y, (logℓτK)ℓ≤ℓy ) else x := D(y, kd);

if I(kd) = H

x := assoc(y, (logℓτK)ℓ≤ℓy ) x := assoc(y, (logℓτK)ℓ≤ℓy )

x := D(y, kd) typed with Rule 5.3.4 (CCA2)

if I(kd) = L

if kd
init then

if exists(y, (logℓτ ′K)ℓ≤ℓy,τ
′≤τ ) then

x := assoc(y, (logℓτ ′K)ℓ≤ℓy,τ
′≤τ ) else

m := y;D;x := xCCA

else x := D(y, kd);

if kd
init then

if exists(y, (logℓτ ′K)ℓ≤ℓy ,τ
′≤τ ) then

x := assoc(y, (logℓτ ′K)ℓ≤ℓy,τ
′≤τ ) else x := D(y, kd)

else x := D(y, kd);

if I(kd) = H

if exists(y, (logℓτ ′K)ℓ≤ℓy ,τ
′≤τ ) then

x := assoc(y, (logℓτ ′K)ℓ≤ℓy ,τ
′≤τ )

else
m := y;D;x := xCCA

if exists(y, (logℓτ ′K)ℓ≤ℓy ,τ
′≤τ ) then

x := assoc(y, (logℓτ ′K)ℓ≤ℓy ,τ
′≤τ )

else
x := D(y, kd)

y := B(z, ke) typed with Rule Blind

if I(ke) = L

y := B(z, ke) y := B(z, ke)
if I(ke) = H

x0 := 0;x1 := z;B; y := m;
if exists(z, (logℓτ ′K)ℓ≤L(τ),τ ′≤τ ) then

logℓyτK := logℓyτK + (y, assoc(y, (logℓτ ′K)ℓ≤L(τ),τ ′≤τ ))

else
logℓyτK := logℓyτK + (y, z)

y := E(0, ke);
if exists(z, (logℓτ ′K)ℓ≤L(τ),τ ′≤τ ) then

logℓyτK := logℓyτK + (y, assoc(y, (logℓτ ′K)ℓ≤L(τ),τ ′≤τ ))

else
logℓyτK := logℓyτK + (y, z)

Figure 5.4: Substitutions in P , typable with Γ(y) = Enc τ K(ℓy), to obtain command contexts P ⋆

and P\K
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Rule TOp, we type the concatenation operation on the log variable. Variable logℓyτK has the type
Array (Enc τ K(ℓy)∗ (τ ⊔ ℓy)) and (y, x) has the type Enc τ K(ℓy)∗ τ , so the command can be typed
at level ℓy with Rule Assign. We finally apply TSeq to type the command (5.9.5) at level ℓy.

Homomorphic Applications We consider the case I(y) = H. For every homomorphic com-
mand

y := fK(z1, . . . , zn, ke)

typed with Rule Hom-Fun at some level ℓy, (for some security types ~τ , τ ∈ E such that ℓd ≤ L(τ)),
we have:

Γ(y) = Enc (τ)K (ℓy) (5.3)

⊢ zi : Enc (τi)K (ℓy) (5.4)

⊢ ke : KeEK(ℓy) (5.5)

Γ(x 7→ (τ ⊔ ℓy), ~x 7→ (~τ ⊔ ℓy)) ⊢ x := f(~x) : τ ⊔ ℓy (5.6)

We type the first command at level ℓy with Hom-Fun with the same hypotheses. For the second
command:

• The conditional expression is typed with Rule Coerce-equality (see 5.2); hence, by sub-
typing, the guard expression has type Data (ℓy);

• Γ\K ⊢ f(assoc(z1, (logℓτ1K)ℓ≤ℓy ) : τ ⊔ ℓy from hypothesis (5.6), Rule Coerce-equality (see
5.1), and TOp;

• logℓyτK has type Array (Enc (τ)K (ℓy) ∗ (τ ⊔ ℓy)).

We conclude with TCond and TSeq.

Decryptions Every decryption command

x := D(y, kd)

typed with Rule Decrypt:

τ ≤ Γ(x) τ ∈ E (5.7)

⊢ y : Enc τK(L(x)) (5.8)

⊢ kd : KdEK(ℓd) ℓd ≤I x (5.9)

(α 6≤I ℓd and (5.10)

(α 6≤I y (5.11)

or (Ge, E ,D) is CCA2 and τ ′ ≤ τ for τ ′ ∈ E)) (5.12)

or ℓd ≤C x or ℓd ≤C α (5.13)

We check that the replacements command can also be typed with Γ\K at level L(x) in P\K,
using Rule Assign instead of Decrypt. There are four different cases:

• If I(kd) = L in the CPA variant.

– We have kd
init ≤C x from hypothesis 5.13 and kd

init ≤I x from hypothesis (5.9). We
can type the guard at level Data (L(x)).

– In the then branch, ⊢ assoc(y, (logℓτK)ℓ≤ℓy ) : τ
′ ⊔ ℓ from Rule TOp; thanks to hypoth-

esis (5.7) we type the command with Rule Assign at level L(x).
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– We type the next alternative command at level L(x) with Rule Decrypt. The original
decryption command is typable with Rule Decrypt, and by 5.9, we have that ℓd =
L ≤I I(x), then I(x) = L. That is, the decryption rule is applied to a low integrity
result.

We conclude with TCond.

• If I(kd) = H in the CPA variant. We type ⊢ assoc(y, (logℓτK)ℓ≤ℓy ) : τ
′ ⊔ ℓ from Rule TOp;

thanks to hypothesis (5.7) we type the command with Rule Assign at level L(x).

• If I(kd) = L in the CCA variant. Typing is as the low integrity case in the CPA variant,
except we have an extra guard and an extra decryption command typed with Rule Decrypt.
As in the CPA case, from here we conclude that I(x) = L. For the extra guard,we type it
from definition of logs and Rule Coerce-equality. By subtyping and from hypothesis (5.8),
we type it at level Data (L(x)).

• If I(kd) = H in the CCA variant. Similar to previous cases. We just need to show that the
rule decrypt is applied only to low integrity results. Rule decrypt is used if the ciphertext is
not in the log variables. We show by contraction that in this case, variable y is low integrity
and by the decryption rule, this means that L(x) = L as well. Assume that variable variable
y is of high integrity. Then it can only be defined by an encryption or blinding command
with a key of label K. By safety condition 2, variable y has to be defined before being read in
a decryption command. If it is a high integrity variable then by the transformation applied
to P ′, then y must appear in a log variable.

• Every blinding command
y := B(z, ke)

typed using Rule Blind at some levels ℓy, with some security types τ, τ ′ ∈ E such that
ℓd ≤ L(τ) and

Γ(y) = Enc τ K(ℓy) (5.14)

τ ′ ≤ τ (5.15)

⊢ z : Enc τ ′K(L(τ)) z ≤I y (5.16)

⊢ ke : KeEK(ℓy) τ, τ
′ ∈ E (5.17)

α ≤I ke or τ ≤C α (5.18)

In all cases, we show that the replacement command in P\K can also be typed at level ℓy
in Γ\K using rule Blind with no declassification:

For the first encryption command we use the typability hypothesis of the original blinding
and typing Rule Coerce-encrypt to type the encryption of 0. We type the assignments in
the branches as in previous cases. We conclude with TCond and TSeq.

Computational Non Interference

azer

Relying on P\K and P ⋆, our next lemmas show how to eliminate the use of cryptographic
types for static key label K.

The following auxiliary definition and lemmas are useful to assume that the adversary cannot
guess the ciphertexts of an encryption of 0.

Definition 34 (Randomly secure ciphertexts) Consider the probabilistic commands

RAND
·
= ke, kd := Ge();ARAND;mRAND := E(0, ke)
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The encryption scheme (Ge, E ,D) provides randomly secure ciphertext when the probability
Pr[RAND;mRAND = xRAND] is negligible for any polynomial command context ARAND such
that kd /∈ rv(A) and kd, ke, η /∈ wv(A).

Lemma 54 If (Ge, E ,D) is CCA2 then it provides randomly secure ciphertext.

Proof: Let A be a polynomial command context such that kd /∈ rv(A) and kd, ke, η /∈ wv(A).

AI [E,D]
·
= ARAND;x0 := 0;x1 := 1;E

ACCA[E,D]
·
= ARAND;x0 := 0;x1 := 1;E;

if mRAND = m then g := 0 else g := {0, 1}

By simple renaming, we have Pr[ke, kd := Ge();ACCA, g = bCCA|bCCA = 0] = Pr[ke, kd :=
Ge();ARAND;mRAND := E(0, ke);mRAND = xRAND]. Also, Pr[ke, kd := Ge();ACCA, g = bCCA|bCCA =
1] = frac12. Hence, Pr[ke, kd := Ge();ARAND;mRAND := E(0, ke);mRAND = xRAND] is negligi-
ble, and (Ge, E ,D) provides randomly secure ciphertext. �

Lemma 55 If CNIIα(P\K), then CNIIα(P ).

Proof: We prove equivalence for the high-integrity memory using the invariant: if ⊢ y :
Enc τ K(ℓy) such that I(ℓy) = H, and µ(y) 6=⊥ then D(µ(y), kd) = assoc(µ\K(y), logℓyτK).

�

Lemma 56 (Encryption) An opponent that breaks CNICα (P ) also breaks CNICα (P\K).

The proof relying on CPA instead of CCA2 is the same, but there is no oracle decryption in
P ⋆.

Proof:

In case I(τ) = H, we show that the decryption table lookup always succeeds by keeping
the invariant that if ⊢ y : Enc τ K(ℓy) such that I(ℓy) = H, and µ(y) 6=⊥ then D(µ(y), kd) =
assoc(µ\K(y), logℓyτK).

Otherwise, both branches of the decryption command return the decryption of y.

Otherwise, assume that the commands J , Bb, ~A, T meet the hypotheses of computational non-
interference against active adversaries (Definition 28) and let G[ , ] be the polynomial command
context defined by

G[E,D]
·
= bCNI := {0, 1};

J ; if bCNI then B0 else B1;

P ⋆⋆[ ~A];T ;

if bCNI =0 gCNI then gCCA := 1 else gCCA := 0

where the command P ⋆⋆ is obtained from P ⋆ with the elimination of assignments of the form
kd := k0d. Notice that the decryption key k0d is not used for decryptions in P ⋆ in the cases where
kd is high integrity or if kd is low integrity but has not been modified by the adversary. Hence
the semantics of P ⋆ and P ⋆⋆ is the same. Hence the variable k0d does not occur in any of these
commands except within D, and the variable ke is not written by any of these commands, so G is
a valid CCA2 adversary (A in Definition 19) and, by IND-CCA2 security for (Ge, E ,D), we know
that its advantage is negligible:

|Pr[CCA; gCCA =0 bCCA]− 1
2 | ≤ ǫ(η) (5.19)

We separate two cases in the runs of CCA, depending on its initial sampling of bCCA:
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• When bCCA =0 1 (that is, when E encrypts x), we have gCCA =0 1 after running CCA
with the same probability as that of the opponent winning the game CNICα for P ′ (command
CNI): except for the auxiliary operations on the fresh CCA variables and logτK , the two
computations yield identical memory assignments at every step.

Pr[CCA; gCCA =0 1|bCCA =0 1] = Pr[CNI(P ′); bCNI =0 gCNI] (5.20)

To relate the two commands, compare the CCA game after specializing bCCA

log := 0;

ke, kd := Ge();
G[(m := E(x1, ke); log := log+m), D]

that is, by definition of G,

log := 0;

ke, kd := Ge();
bCNI := {0, 1};
J ; if bCNI =0 0 then B0 else B1;

P ⋆⋆[ ~A];T ;

if bCNI =0 gCNI then gCCA := 1 else gCCA := 0

where the encryption command (??) within P ⋆⋆ after inlining E and simple rewriting is

y := E(x, ke);
logτK := logτK + (y, x)

x0 := 0;x1 := x;m := y; log := log+ y

. . . to the CNI game

bCNI := {0, 1};
J ; if bCNI =0 0 then B0 else B1;

ke, kd := Ge();
P ′[ ~A];T

We perform the following series of code transformations: we move the key generation forward;
we insert the initializations logτK := 0 before P ′; we replace encryption and decryption
commands, as defined above for P ⋆⋆.

As a reduction invariant, each logτK holds a list of pairs of bitstrings m, v such that D(m, kd)
= v, and log (if we consider a CCA scheme) holds a list of bitstrings m for which there is
such a pair in one of the logτK . Indeed, the logs are updated only by the replaced encryption
commands then E, respectively, with correct encryptions under ke in m, and Definition 18(4)
guarantees their correct decryption.

If a value m is produced by E, it is in one of the logτK . If D is called on m, it means
that the corresponding logτK has not been checked. Using Lemma 54, we prove that this is
only possible with negligible probability. In all other cases the command that replaces the
decryption also returns the decryption of y.

• When bCCA = 0, we have gCCA = after running CCA with the same probability as that of
the opponent winning the game CNICα for P\K (command CCA for P\K).

Pr[CCA; gCCA = 0|bCCA = 0] = Pr[CNI(P\K); bCNI = gCNI] + ǫ (5.21)

Where ǫ is negligible.

To relate the two commands, similarly compare the specialized CCA game

log := 0; ke, kd := Ge();G[(m := E(x0, ke); log := log+m), D]
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to the CNI game above. We perform the following series of code transformations: we move
the key generation forward; we insert the initialization logK := 0 before P ′; we replace
encryptions and decryptions commands, as defined above for P ⋆.

As an invariant, logτK holds a list of pairs of bitstrings m, v such that D(m, kd) = 0, and
log holds a list of bitstring m for which there is such a pair in one of the logτK . Thus, D is
never called on any value m produced by E. The command that replaces decryptions in P ⋆

behaves as the command that replaces decryptions in P\K except when m ∈ log but not in
one of the logτK checked. We check all the logs which can flow to m .

Moreover, by induction hypothesis on P\K for the same opponent parameters J , Bb, ~A, and
T , this probability is 1

2 up to a negligible function.

By definition, bCCA is sampled from {0, 1}, so each case has probability 1
2 and we have

Pr[CCA; gCCA = bCCA]− 1
2 = 1

2 (Pr[CCA; gCCA = bCCA|bCCA = 0]− 1
2 )

+ 1
2 (Pr[CCA; gCCA = bCCA|bCCA = 1]− 1

2 )

= 1
2 (Pr[CNI(P ); bCNI = gCNI]− 1

2 )

+ 1
2 (Pr[CNI(P\K); bCNI = gCNI]− 1

2 )

|Pr[CNI(P ); bCNI = gCNI]− 1
2 | ≤ 2|Pr[CCA; gCCA = bCCA]− 1

2 |
+ |Pr[CNI(P\K); bCNI = gCNI]− 1

2 |

The triangular inequality above bounds the advantage in the CNI game with opponents J , Bb, ~A,
and T with a sum of two functions that are negligible, by IND-CCA2 security (5.19) and induction
hypothesis (5.21), respectively. �

Proof of Theorem 10 Let P be a safe command, and ~A an adversary. We let P ′ = P [ ~A]. P ′

is safe for K =. Then, the proof is by induction on the number of static key labels outside of K.

For the base case (K contains all key labels), we apply Lemma 51 to P ′, and we get computa-
tional non-interference.

For the inductive case, we select a free label K for K. If K depends c for some c, we apply
Lemma 48, and get a safe command P such that :

• For all well-formed memory µ, ρ∞(〈P, µ〉) ≡LL ρ∞(〈P ′, µ〉).

• For all well-formed memory µ, and some c ρ∞(〈P, µ〉) ≡cH ρ∞(〈P ′, µ〉). By Lemma 41, for
all well-formed memory µ, ρ∞(〈P, µ〉) ≡MH ρ∞(〈P ′, µ〉).

• There is no low-integrity decryption for label K.

Hence, by Lemma 52, if P is CNI then P ′ is CNI. Then, using Lemma 55 and 56, we show that
P ′ is CNI if P\K is CNI. Also, by Lemma 53 P\K follows the invariant and we conclude by
induction. �
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6
Compiling Information-Flow Security to Minimal Trusted Computing

Bases

In this chapter, we use hardware mechanisms to enforce security. We consider distributed appli-
cations specified as a set of imperative program with information flow annotations (the output of
the compiler of Chapter 4), one for each machine plus one for a virtual trusted participants. Then,
we use hardware mechanisms (and not only cryptographic mechanisms) to simulate, with strong
security guarantees, this trusted participant on an untrusted machine.

6.1 Programming with TPMs

When designing or reviewing the security of a system, a first step is to identify its trusted com-
puting base (TCB), that is, the set of components that need to be trusted to achieve a given level
of security. For general-purpose networked machines, this set is large and complex; it includes the
hardware, an operating system, a runtime environment and their libraries (maybe 108 LOCs over-
all) plus drivers, applications, and dynamically loaded code. This leads to a best-effort approach
to security, at odds with formal verification, which provides strong guarantees only for smaller,
simpler systems.

Minimal TCBs Modern computer architectures provide hardware support for reducing TCBs
and protecting privileged operations. Thus, most computers come bundled with some form of
secure coprocessor with a dedicated secure instruction set—for example, most laptops now embed
a Trusted Platform Module (TPM) [TCG, 2005] and many high-end processors feature a special
late launch functionality (AMD’s Secure Virtual Machine Architecture, 2005, and Intel’s Trusted
Execution Technology, 2009). These instructions can run a given piece of code in isolation, with
strong code-based identity and privileged cryptographic operations, for instance to seal persistent
state or to perform remote attestation. Such hardware mechanisms can greatly reduce the TCB
of security applications, by removing the need to trust the host operating system and other appli-
cations, and thus help protect critical data and computations from malicious software. TPMs are
routinely used for secure booting, e.g. BitLocker [Microsoft, 2006] guards access to the master keys
for disk encryption, so that the disk content may be read only after authenticating the user and the
operating system. Research papers also describe e.g. how to build secure online payment systems
[Balfe and Paterson, 2008] and how to use late launches to run small pieces of application code in
isolation [McCune et al., 2008, 2009]. Still, the secure instructions are remarkably seldom used in
practice. We believe that the complexity of their low-level interface and the lack of programming
tools are major obstacles to their mainstream adoption for writing security applications.
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′
c := f(xb, yc)

(3) x′b, y
′
c

(2) xb, yc shared
memory

Example: applying for a loan We consider Example 21 introduced in Chapter 4. In this
example, the program involve two distrustful parties, a bank and a client. Contrarily to Chapter 4,
we assume that we do not have a trusted third party. Although the client and the bank do not
trust one another, they may agree to securely run the loan-evaluation code on a TPM-enabled
client machine. This simple computation is depicted above.

The bank sends its (encrypted, signed) secret input (xb) to the client; the client forwards it to
the code running the loan evaluation, together with its own input (yc), using shared local memory;
after securely booting, the TPM-protected code decrypts its input, evaluates the loan, and returns
its results; finally, the client gets its result (y′c) and may forward the (encrypted, signed) output
(x′b) to the bank if the loan is granted.

The messages passed between the bank and TPM-protected code must be cryptographically
protected, so that for instance the bank input may be read and processed only by that code—not
by the client or the network. Also, this code must refuse to run multiple loan evaluations for
different client inputs without the bank’s consent, as this may enable the extraction of the bank
input.

Compiling with minimal TCBs We take as input a tuple of programs with information flow
annotations, each supposed to run on and host with a given level of trust (e.g., the output of the
security compiler of Chapter 4). We then implement one of the hosts on any untrusted machine
using cryptography and hardware mechanisms. This result in a new set of programs, that run
on hosts of the same level of trust except for one, which can run on any host with a sufficiently
trusted TPM. We then show that our compilation scheme preserves information-flow security under
standard cryptographic assumptions.

To this end, we first extend our imperative language with dynamic code linking, so that we can
compute on core represented as data (e.g., to compute a code identity) and run this code. We then
specify a subset of the TPM instructions within our core imperative programming language. Our
model aims at formal simplicity while still reflecting the main security features of hardware and
cryptographic specifications, at a level of detail sufficient for reasoning about information flows.
We model secure instructions to manage monotonic counters; measure code; run code in isolation;
cryptographically sign data using the private attestation key of the TPM; and cryptographically
seal and unseal data associated with some code. We also encode the Static Root of Trust (SRTM)
protocol using these commands. We then build our new security-preserving compiler using these
secure instructions to simulate a trusted third party when necessary. The compiler and some
implementation example can be found at http://msr-inria.inria.fr/projects/sec/cflow.

6.1.1 Contents

The rest of this chapter is composed as follows. Section 6.2 refines the imperative language of
Section 3.1 with an higher-order primitive. Section 6.3 updates our information-flow policies and
active adversaries for higher-order. Sections 6.4 and 6.5 describe and formalize secure hardware
instructions and their use for securing boot sequences. Section 6.6 shows how to use TPM capabil-
ities to implement secure virtual hosts, such as those produced by CFLOW. Section 6.7 provides
experimental results and concludes.
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6.2 An imperative higher-order language

One of the capabilities of secure hardware is to execute a piece of code from the memory in isolation
and register its identity. In order to model this functionality, we need to be able to run code that
is represented as data. Thus, we enrich the language from chapter 3 with a command to turn data
into executable code, with the following grammar:

P ::= · · · | link e [P̃ ] ℓ

Programs P can now use this command to dynamically load, link, and run code with command
link. The expression e encodes the command that is dynamically loaded. The commands in P̃ are
subroutines that can be called by the dynamic code in e; they are used to model callbacks (e.g.,
to other commands of the secure hardware, as seen below in Section 6.4). The level ℓ limits the
level of the commands that can be dynamically loaded.

6.2.1 Commands as Data

We use data constructors to embed commands (and their expressions) as expressions, such as
op if(e1,e2,e3) for conditional (if “the expression represented by e1” then “the command represented
by e2” else “the command represented by e3”) and opx for variable x. For instance, the command
c := c + 5 is represented by the expression op assign(opc, (op plus(opc,5))). To ease the writing
of expressions representing commands, we let 〈P 〉 be the expression that represents command P .
Command expressions can also contain free variables; these variables are quoted within 〈P 〉. For
instance, the expression op assign(opc,(op plus(opc,t))) is written 〈c := c + ‘t〉.

We give the operational semantic for the link command:

(Link)

[[e]](µ) = 〈P 〉 ⊢ P : ℓ

〈link e [P̃ ] ℓ, µ〉 1 〈P [P̃ /X̃], µ〉

The command link e [P̃ ] ℓ dynamically checks that the result of expression e represents a valid

command at level ℓ parametrized by subcommand variables X̃, and then runs that command
after replacing each Xi with the command Pi. If the check fail, the program is stuck and does
not terminates. The commands in P̃ are not dynamically checked and may be more privileged
than ℓ. We write link e ℓ instead of link e [] ℓ when P̃ is empty. These checks occur at link-time,
before running the command, as would be the case with a high-level virtual machine that performs
typchecking before loading code. In contrast, low-level protection for executable memory and data
memory is usually enforced later, at runtime (e.g. by triggering memory page faults). Thus, for
instance, information flows due to low-level memory error handling are outside the scope of our
model. See also Askarov and Sabelfeld [2009] for a information-flow model of dynamic loading
with run-time monitoring.

To illustrate this rule, consider three commands P , P ′ and P ′′ such that ⊢ P : ℓ and ⊢ P ′ : ℓ,
and P ′ contains the free command variable X. Let c and t be two variables, and µ a memory such
that µ(t) = 7. We have

〈link 〈P 〉 ℓ , µ〉  1 P
〈link 〈P ′〉 [P ′′]ℓ, µ〉  1 P ′[P ′′/X]

〈link 〈c := c+ ‘t〉 ℓ , µ〉  1 c := c+ 7

6.3 Information flow security

Next, we extend the strict and lax type systems from Section 3.3, and we prove the corresponding
theorems taking into consideration the link command.
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6.3.1 A strict typing rule for link

We first give a typing rule for link in our strict type system that appear in Figure 3.2 (without
the additional Rule TLocality). Since code variables are now used with link (and not only as
adversaries placeholders), we also give a new typing rule for codes variables:

(TLink Strict)

⊢ e : ℓ ⊢ P̃ : (⊥,⊤)

⊢ link e [P̃ ] ℓ : ℓ

(TVar)

⊢ X : (⊥C ,⊤I)

As defined in the semantic Rule Link, the command link e [P̃ ] ℓ, when executed, will check that
the expression e represents a valid command at level ℓ before running it. Accordingly, we type
the link command also at level ℓ, after checking that its actual auxiliary commands (P̃ ) have level
(⊥C ,⊤I), as anticipated by Rule TVar. (We considered typing auxiliary commands and command
variables at other levels, but this is not needed for our present purpose.) Rule TLink Strict also
checks that the expression e has level ℓ, to keep track of the implicit flow from command values
to their runtime effects.

To illustrate those rules, consider two variables secret and x at levels ℓs = Γ(secret) and
ℓx = Γ(x) such that ℓs � ℓx. We have:

1. The command x := secret is not typable, since it implements a direct flow from secret to x.

2. The command link 〈x := secret〉 ℓ types at level ℓ for every level ℓ, but runtime type check-
ing fails when the command is executed. Indeed, 〈x := secret〉 is a closed expression (con-
trarily to the command x := secret), so we have ⊢ 〈x := secret〉 : ℓ by Rule TOp. Hence
⊢ link 〈x := secret〉 ℓ : ℓ by Rule TLink Strict. However, since the command x := secret is
not typable, the reduction Rule Link does not apply.

3. The command link 〈x := ‘secret〉 ℓx is not typable and is not non-interferent since the state
〈link 〈x := ‘secret〉 ℓx, µ〉 reduces to 〈x := µ(secret),µ〉 for every µ, and this results in an
insecure flow from secret to x. Indeed, the expression 〈x := ‘secret〉 has a free variable
secret of level ℓs such that ℓs � ℓx, hence the command 〈x := ‘secret〉 does not type at level
ℓx and Rule TLink Strict does not apply.

4. The command link 〈x := ‘secret〉 ℓs types at level ℓs but runtime type checking fails when the
command is executed. Indeed, we have ⊢ 〈x := ‘secret〉 : ℓs, hence, by Rule TLink Strict,
⊢ link 〈x := ‘secret〉 ℓs : ℓs. However, irrespective of the value v of secret at runtime, the
command x := v does not type at level ℓs since ℓs � ℓx, and the reduction Rule Link does
not apply.

5. The command link 〈if secret then X〉[ x := 0 ] ℓs is not typable unless ℓx = (⊥C ,⊤I), since
we need ⊢ x := 0 : (⊥C ,⊤I) to apply Rule TLink Strict.

6. The command link 〈if secret then X〉[ x := 0 ] ℓs is typable at level ℓs if ℓx = (⊥C ,⊤I)
but runtime type checking fails when the command is executed, since it implements an
implicit flow from secret to x trough execution of the the auxiliary command. Indeed, using
Rule TVar, we get ⊢ X : (⊥C ,⊤I), hence the command ‘if s then X’ is not typable and the
reduction Rule Link does not apply.

We state our typing theorem of non-interference with the additional strict typing rules TLink

Strict and TVar:

Theorem 14 (Non-interference with link) Let Γ be a security policy, P a (strictly) well-typed
command, ℓ ∈ L, and µ0 and µ1 two initial memories such that P terminates.

If µ0 =ℓ µ1, then ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉). If µ0 =ℓ µ1, then ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉).

The proof of Theorem 14 is at the end of this chapter, in Subsection 6.8.1.
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6.3.2 Declassifications and endorsements

Our strict type system yields non-interference, and thus excludes interesting usages of link such
as, for example, privileged callbacks (i.e., callbacks that are more privileged that the code calling
them). We illustrate a program using privileged callbacks below.

Example 34 (Password protection) Consider a system that provides a subcommand that con-
ditionally releases a secret after verifying a password, and tolerates up to three failed attempts (to
protect against brute-force attacks on the password):

c := 0;
link a[if c < 3 && guess = pwd then r := secret else c++] LL

with Γ(guess) = LL, Γ(pwd) = HH, Γ(r) = LH, and Γ(secret) = HH (as in Example 14), using a
trusted counter variable c with Γ(c) = LH, and a variable a with Γ(a) = LL for dynamically loading
code that may call this subcommand. Intuitively, a contains arbitrary low-level code, representing
an active adversary, that cannot leak pwd or secret and cannot write pwd, secret, or c. If linking
succeeds, this code can only access the secret by calling its privileged subcommand, and only the
first three calls may succeed. For instance, running the command above with an initial memory
where a is set to the command

guess := 0; while guess < 10 && r = 0 do { X; guess++ }

leaks secret to r only if pwd is 0, 1, or 2. More generally, if we also assume that pwd is sampled
at random, the probability that any adversary command learns anything about secret is bounded
by the sum of the probabilities of the three most probable passwords (3/N if there are N uniformly
distributed passwords). Although this program is arguably secure, it is not typable, even in our lax
type system, since the callback is more privileged than LL.

6.3.3 A more permissive type system

For typing those unsafe programs, we introduce a new typing rule for link, which allows for implicit
flows trough privileged callbacks but take them into account to compute the level of the command.
The Rule TVar is left unchanged. This typing rule comes in addition of the lax rules of Figure 3.3.

(TLink Privileged)

⊢ e : ℓ ⊢ P̃ : ℓ ℓ ≤ ℓ′

⊢ link e [P̃ ] ℓ′ : ℓ

The Rule TLink Privileged generalizes the Rule TLink Strict by allowing the caller to link e
with auxiliary commands at arbitrary levels of integrity (the Rule TLink Strict already allows
for arbitrary levels of confidentiality since Rule TVarsuppose that it is the case), but it records
those levels in the type of the command. In particular, it allows for explicit declassifications in
the auxiliary commands, as in Example 34. This endorses at link-time any calls to the auxiliary
commands, since dynamic typing of the callee ignores the integrity of auxiliary command variables
(Rule TVar).

As for commands without link, the lax type system enforces two fundamental properties (see
Theorems 6 and 7). First, if a command has level ℓ, then it does not write variables below ℓ.

Theorem 15 (Lax Containment with link) Let Γ be a policy, ℓ ∈ L a label, P a command,
and µ a memory such that P terminates.

If ⊢ P : ℓ, then ρ∞(〈P, µ〉) =ℓ µ and for any ℓ′ such that ℓ 6≤ ℓ′, we have ρ∞(〈P, µ〉) =ℓ′ µ.

The proof of Theorem 15 is at the end of this chapter, in Subsection 6.8.2.
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Second, a command at level ℓ may declassify values of confidentiality c only if I(ℓ) ≤ R(c).

Theorem 16 (Robust non-interference with link) Let Γ be a policy, ℓ ∈ L a label, c ∈ LC
such that I(ℓ) 6≤ R(c). Let P be a command and µ0, µ1 memories such that P terminates.

If ⊢ P : ℓ and µ0 =(c,H) µ1, then ρ∞(〈P, µ0〉) =(c,H) ρ∞(〈P, µ1〉).

The proof of Theorem 16 is at the end of this chapter, in Subsection 6.8.3.

Active adversaries

We now update our active adversary model such that adversaries commands can use the new
command link, but cannot use it to transgress its privileges. Formally, for a given α ∈ L, we let
α-adversaries range over tuple of commands Ã that read variables in V CA with confidentiality level
less than or equal to C(α), write variables in V IA with integrity level more than or equal to I(α),
and use link only with an integrity level above I(α).

In the theorem below, we prove that those new adversaries can only write variables with an
integrity level above I(α), and can only declassify variables with a confidentiality level below C(α).

Theorem 17 Let α ∈ L be an adversary level, R be a robustness function robust against α, Γ be
a security policy, and A an command that reads only variables of lower confidentiality than C(α),
write only variables of higher integrity than I(α), and use links only with a level above α. Let µ,
µ0, and µ1 be three memories such that A terminates, and such that µ0 =C(α),⊤I

µ1.

Then ρ∞(〈A, µ〉) =⊤C ,I(α) µ and ρ∞(〈A, µ0〉) =C(α),⊤I ρ∞(〈A, µ1〉)

The proof of Theorem 17 is at the end of this chapter, in Subsection 6.8.4.

6.4 Command semantics for secure instructions

The section above introduces an high level language primitive so we can model one particular
functionality of modern processors with a TPM. We now present our model of a core subset of
the security features of this modern hardware. Aiming at formal simplicity, we do not account
for all the details of their hardware specification, but still intend to reflect their gist. We set an
robust security level ℓTPM for the TPM, and assign that level to fixed variables that model parts
of the hardware-protected memory, together with fixed commands that model secure instructions
and have privileged access to these variables. (Their initialization is described at the end of
the section.) Intuitively, the level ℓTPM is very high, since the only way to read variables at
confidentiality C(ℓTPM) or to write variables at integrity level I(ℓTPM) is by breaking into the
TPM, trough physical attacks. We then model software as commands linked to these privileged
subcommands, thereby gaining indirect access to protected variables.

6.4.1 Monotonic counters

The TPM features a collection of monotonic counters, that is, persistent protected memory whose
contents can only be read and incremented, but not reset [TCG, 2006, p 681]. Such counters are
essential for protection against replays.

We model just one of these counters, using a public variable c at the integrity level of the
TPM. Thus, our counter can be read by any command but it is exclusively assigned by the fixed
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command INC below. In particular, c cannot be reset or decremented.

INC
·
= c := c+1 Γ(c) = ℓITPM

(Concretely, TPMs manage a few independent counters with finer access control, and the operating
system is in charge of restricting increments to prevent denial of service.)

We illustrate the use of a monotonic counter below.

Example 35 Continuing with Example 34, we may use the monotonic counter to reliably keep
track of guessing attempts:

link a[ if c < 3 && guess = pwd then r := secret else INC ] LL

6.4.2 Platform configuration registers

The TPM also features a collection of Platform Configuration Registers (PCR), which are cleared
when the machine reboots, then selectively written by TPM commands. As detailed in Section 6.5,
these registers usually contain measurements of the code running on the machine. PCRs are
specialized: the first PCRs are used for static root of trust measurements as the machine boots
(SRTM) [Grawrock, 2007], while PCRs 17–19 are used for dynamic root of trust measurements
(DRTM) and may be selectively reset without rebooting [TCG, 2006, AMD, 2005]. PCRs are read
as high-integrity implicit parameters for many other TPM commands, such as attestation and
seals.

We model PCRs as variables hi at level ℓ
I
TPM. For simplicity, we use just two registers, h1 for

SRTM, modified only by EXTEND1, and h17 for DRTM, initialized by SKINIT and modified by
EXTEND17, as explained below.

EXTENDi appends some identity to hi (typically the identity of some code that is called) and
can be used to record a delegation chain starting from a secure kernel [TCG, 2006, p 284]. To
keep the size of hi constant, the chain is implemented as a nested hash, using a cryptographic hash
functions H. We model it as

EXTENDi
·
= hi := H(hi|identity) Γ(hi) = ℓITPM

where ‘|’ is bitstring concatenation and identity is a public-untrusted variable (endorsed in the
command): Γ(identity) = (⊥C ,⊤I).

SKINIT writes a special value (vinit) in h17, extends the identity in h17 with a new command
passed as input, usually called a ‘secure kernel’, then runs that command, and finally resets h17 to a
default value (vdefault) [AMD, 2005, p 53]. We model it as an assignment to h17, an EXTEND from
the content of a public-untrusted variable kernel, followed by a link of kernel with subcommands
parameters that pass to the new kernel the rest of the TPM interface (written T̃PM), then a reset

of h17. We let T̃PM
·
= {INC,EXTEND17,ATTEST17,SEAL17,UNSEAL17} (commands that are

launched with SKINIT cannot call SKINIT themselves).

SKINIT
·
= h17:=vinit

identity := kernel;
EXTEND17;

link kernel[T̃PM] ℓIsystem;

h17 := vdefault

Thus, h17 either is at its default value or it holds the identity of the kernel that is currently running,
possibly extended by a chain of hashes that records further identity information.

Concretely, the command SKINIT loads code at a privileged (kernel) level. This is reflected in
our model by the link label ℓIsystem. It is the responsibility of the operating system to validate the
kernels passed by user commands before calling SKINIT e.g. to prevent privilege escalation.
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6.4.3 Remote attestation

We now consider a command that attest the current identity stored in the TPM. Each TPM uses
a fixed public-key-signature keypair, set during manufacturing and used to uniquely identify and
authenticate this particular TPM. ATTEST signs an input value (typically a random challenge
generated by a remote machine) and a subset of the PCRs with the private signing key [TCG, 2006].
The resulting signature guarantees that this value has been ‘attested’ by a command running on
a machine with this TPM and these PCR values. This signature can be verified by any command
that knows the verification key for the TPM, typically running on a remote machine; the verifier
can then interpret the authenticated value and PCRs.

We model attestation with two variables for the TPM keypair, k+TPM of level ℓITPM and k−TPM

of level ℓTPM, and two commands

ATTESTi
·
= tag := S(i|hi|plain, k−TPM)

VERIFYi
·
= if V(i|source|plain, tag, k+TPM) then X

with public-untrusted inputs source and plain for the presumed value of hi and the attested value,
and output tag for the signature. These commands rely on public-key signing (S) and signature-
verification (V) functions. Since the verification key is public, VERIFY need not be a privileged
command; its variable X stands for the command guarded by the cryptographic verification.

Security and functionality properties for attestation

We specify the cryptographic properties of ATTEST and VERIFY by relating them to an ideal
implementation that maintains a global table for all values attested so far and verifies only values
present in this table.

ATTESTi
0 ·
= tag := S(i|hi|plain, k−TPM);

logi := logi + (hi|plain)
VERIFYi

0 ·
= if exist(logi,(source|plain))

then if V(i|source|plain, tag, k+TPM) then X

Security means that, provided the keypair is properly generated, log is initially empty (see ini-
tialization below), and no other part of the code accesses k−TPM or log, no probabilistic polynomial
program can distinguish between (ATTESTi,VERIFYi) and (ATTEST0

i ,VERIFY0
i ), except with

negligible probability. This property can be reduced to resistance against forgery attacks for the
signing primitive (Definition 22).

Functionality means that verifying an attestation with matching hash and value always suc-
ceeds.

Proof outline This reduction is almost by definition, since the ATTESTi and VERIFYi
command are small variants of the SIG and VERIFY commands that specify computational cryp-
tographic resistance against forgery attacks. The specific proof step is to check that the signed
payload i|h i|plain is a non-ambiguous binary representation of the triple (i, hi, plain). �

6.4.4 Sealing

We now consider our last couple of commands, which use the identity stored in the PCR to protect
data between calls to the TPM. SEAL encrypts and macs the content of a variable together with
the current identity of the sender and the intended identity of the receiver [TCG, 2006, p 298].
Conversely UNSEAL decrypts the contents of a variable and verifies its mac, then verifies the
identity of the sender and the current identity of the receiver [TCG, 2006, p 364] before returning
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the plaintext. The TPM can handle several keys, but we only model sealing and unsealing keyed
with two fixed hardware secrets s.ke and s.ka, both at level ℓTPM.

SEALi
·
= enc := SE(plain,s.ke);

mac := M(i|hi|target|enc,s.ka);
cipher := enc|mac;
enc := 0; mac := 0

UNSEALi
·
= enc|mac := cipher;

if VM(i|source|hi|enc, mac, s.ka)
then plain := SD(enc,s.ke)
else plain := 0;
enc := 0; mac := 0

where enc|mac := cipher is syntactic sugar for assigning to enc and mac substrings of cipher at
fixed indexes (since the size of mac is fixed). As illustrated in the rest of the chapter, SEAL
and UNSEAL can be used to emulate a persistent, secure memory, and to communicate securely
between TPM commands.

6.4.5 Security and functionality properties for seals

We specify the cryptographic properties of SEAL and UNSEAL by relating them to an ideal
implementation that maintains a global table for all values sealed so far and encrypts 0s instead of
the actual plaintexts. We assume that the values sealed have a fixed length so that no information
leaks trough the length of the seal.

SEAL0
i

·
= enc := SE(0. . .0,s.ke);

mac := M(i|hi|target|enc,s.ka);
cipher := enc|mac;
logi := logi + ((hi|target|enc),plain)
enc := 0; mac := 0

UNSEAL0
i

·
= if VM(i|source|hi|enc, mac, s.ka)

then if exist(logi,(source|hi|enc))
then plain := assoc(logi,(source|hi|enc))
else plain := 0;
enc := 0; mac := 0

Security means that, provided s is generated uniformly at random and no other part of the code
accesses s or log, no probabilistic polynomial program can distinguish between (SEAL, UNSEAL)
and (SEAL0,UNSEAL0). This property can be reduced to indistinguishability against chosen
plaintext attacks for encryption and resistance against forgery attacks for signing.

Functionality means that UNSEAL is a partial inverse of SEAL: unsealing a value sealed with
matching source and target hashes always yields the plain sealed value.

6.4.6 Auxiliary notations

For programming convenience, we define simple macros for calling these commands.
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EXTENDi(e)
·
= identity := e; EXTENDi

x := SEALi(ev, et)
·
= target := et; plain := ev; SEALi;

x := cipher; target := 0; plain := 0; cipher := 0

x := UNSEALi(ec, es)
·
= source := es; cipher := ec; UNSEALi;

x := plain; source := 0; cipher := 0; plain := 0

x := ATTESTi(e)
·
= plain := e; ATTESTi;

x := cipher; plain := 0; cipher := 0;

VERIFYi(es, ep)
·
= source := es; plain := ep;

VERIFYi(k
−
TPM, cipher, y)[source := 0; plain := 0; X]

Example 36 Continuing with our password example, we define code that seals the secret and the
password to its own code identity (using the current value of h17 as the target identity) then store
the result in a public-untrusted variable. Thus, protected by the TPM hardware keys, the secret
and the password can only be retrieved by re-running this code. When re-run, the code behaves as
in the password example, retrieving the password and the secret then granting access to the secret
only if the password is correct after less than three attempts.

kernel := 〈
if c = 0 then store := SEAL(pwd|secret, h17)
else { pwd|secret := UNSEAL(store, h17);

if c < 4 && guess = pwd then r := secret};
INC; pwd := 0; secret := 0 〉;

SKINIT;
A[T̃PM,SKINIT]

Assuming that, initially we have c = 0 and pwd is sampled at random, the probability that
a polynomial adversary than does not read or write ℓTPM (an adversary that controls at most
the system, but not the TPM hardware) learns anything about secret is bounded by the sum of
the probabilities of the three most probable passwords plus the (negligible) probabilities that the
adversary finds a collision in the hash function or breaks the cryptography used in SEAL and
UNSEAL.

6.4.7 Initialization

In our model, the protected variables of the TPM must be correctly initialized before use. We
write TPM0 for the initialization command. Informally, this command runs once as the TPM is
manufactured. It generates cryptographic keys and sets h1, h17, and c to zero. For cryptographic
reasons, we also need to randomly sample H in a family of universal one-way hash functions; this
is modeled as an implicit parameter ν for H. Concretely, the public key of the TPM may also be
certified by some authority, so that its high integrity can be dynamically verified.

TPM0
·
= k−TPM,k+TPM := Gs();

s.ke := GSE(); s.ka := GM();
ν := G();
h1 := 0; h17 := 0; c := 0

6.5 Attested boot sequences

We now illustrate our model of the secure commands with a model of secure boots.
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From a security viewpoint, the boot of a computer consists of running a series of increasingly
complex and less trusted code, each piece of code loading and launching the next one. At each
stage, if a TPM is available, this code can keep track of the boot sequence by relying on integrity
measurements (SRTM), as described in Section 6.4, typically by setting or extending PCRs with
the hash of each piece of code (the BIOS, the bootloader, the system kernel) just before running
it. This code can also check (and attest) the boot sequence, and use it to unseal data.

A limitation of SRTM is that it provides guarantees only on the initial state of the machine,
just after booting; if the measured code launches a full-fledged operating system, the PCRs do not
say much about the current state of the system. In contrast, or in addition, DRTM can provide
more recent and more specific guarantees, as it only identifies a small, isolated part of the system:
the code that is run using the late launch functionality.

After explaining our model for memory and parallelism, we define simplified 2-stage boot
sequences for machines in a distributed system, and finally relate those distributed systems to the
more abstract distributed configurations that model our system in Chapter 4 (model used again
in Section 6.6).

6.5.1 Shared memory

In our language, shared variables represent all mutable state, including the local memory but also
the TPM secrets and registers, the network, and persistent storage. Although our operational
semantics lets any command read and write any variable, we can (formally) restrict their access
by using a security policy (Γ) for a lattice whose labels represent these different kinds of variables,
with for instance a label representing all variables that can be read or written by software running
on a given machine (This is the target architecture of the compiler of Chapter 4).

We let i = 0..n range over machine identifiers, and let ℓi.TPM be the label granting unrestricted
access to all its local state. We assume that the labels ℓi.TPM are pairwise incomparable, so that
one machine cannot directly access the local state of another machine. Intuitively, an adversary
that can read and write at level ℓi.TPM is able to tamper with the hardware of machine i (including
its TPM).

Further, we let ℓi.system be the label granting system-level access to local memory on machine i
(with weaker integrity and confidentiality than ℓi.TPM). Intuitively, an adversary that can read
and write at level ℓi.system has obtained root privileges on machine i (but still cannot tamper with
its TPM state). Similarly, the system can run user-level commands with different, lower privileges,
also represented as labels in the policy.

We set up naming conventions for local variables and local commands, writing i.x for a variable
x on machine i, and writing i.Q for the command Q where all local variables are prefixed by i
(i.Q

·
= Q{i.x/x}). In addition to local variables, commands running on different machines may

access variables representing shared resources; for instance we represent an untrusted network as
a public, untrusted variable.

6.5.2 Scheduling

As usual with models that account for concrete cryptography, our commands are sequential, and we
simulate concurrent systems by letting the adversary explicitly schedule commands that represent
parallel threads of computation. To this end, the commands representing machines, systems, and
processes are programmed as co-routines, called by the adversary each time they are scheduled, and
completing each time their thread would yield. The resulting low-level model realistically accounts
for all interleaving of these threads (provided they yield often enough), and at the same time
enables us to specify non-interruptible commands, for instance to reflect that a TPM command
runs to completion.
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6.5.3 A simple boot sequence

Conservatively, we assume that the adversary controls the scheduling for all machines, and can
either let them continue their computation or trigger their reboot. Unless the machine hardware
is compromised, the machine command has privileged access to its local state, and can include (in
particular) an indexed version of the TPM commands specified in Section 6.4.

The variable i.system has level ℓi.system and, by convention, contains the system loaded when
the machine reboots. The adversary can effectively take control of the system if he can write in
this variable, but he cannot interfere with its integrity measurement without tampering with the
machine itself. We model the initial (hardware) boot on machine i as the command

i.M
·
=

if i.reset then
{ i.h1 := 0; i.h17 := 0; (∗ clear the PCRs ∗)
i.temp.∗ := 0; (∗ clear the machine volatile memory ∗)
i.temp.up := i.system; (∗ endorse the system to boot ∗)
i.identity := i.temp.up; i.EXTEND1}

if i.temp.up 6= 0 then

{ link i.temp.up [i.T̃PM,i.SKINIT] ℓIi.system }

The adversary controls the reset of the machine via the untrusted variable i.reset. The other
variables introduced above have the level of the machine. All variables with prefix i.temp. represent
volatile memory, initialized at 0, and reset to 0 at each reboot; after booting, i.temp.up contains
the system command currently running on the machine, linked to its privileged TPM commands.

Next, we define the command of a minimal system initially stored in variable i.system (unless
overwritten by the adversary):

i.SYSTEM
·
=

if i.temp.n = 0 then (∗ boot ∗)
{ i.temp.n++; i.process[0] := i.app[0] }
else if i.next in 0..(i.temp.n) then (∗ resume ∗)
{ link (i.process[i.next]) [

i.T̃PM, {if testℓI
i.process[i.next]

i.kernel then i.SKINIT},
i.FORK] ℓIi.process[i.next] }

i.FORK
·
= i.process[i.temp.n] := i.app[i.temp.n]; i.temp.n++

When run for the first time, the command loads a first user command. When rerun, the adversary
controls which of the loaded command it resumes (with the subroutines to call the TPM and
a FORK subroutine to load a new command) by setting the untrusted variable i.next. The
user-command variables i.app[i] can be given distinct security labels ℓi.process[i.next], to reflect
adversaries that have compromised some, but not all of these commands. The other variables
introduced above have level ℓi.system.

As it links a user command (either to launch it or to resume it), the system provides privileged
subcommands for the TPM and for starting new commands (i.FORK). The i.SKINIT command
enables to run system-level commands, so its usage is restricted by defining a subcommand that
first checks that the kernel has at most the privileges of the user command. To this end, it uses
an auxiliary function test that type checks the code in its argument, specified by [[testℓe]](µ) = 1
if and only if [[e]](µ) = 〈P 〉 and ⊢ P : ℓ.
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6.5.4 Application: a BitLocker-like boot sequence

To illustrate our definitions, we present a variant of our system command i.SYSTEM that relies
on the TPM to seal some key (which may be used, for instance, as the master key for disk
encryption, as in BitLocker Microsoft [2006], or for keeping user credentials). Our code relies on
the mechanisms presented for password protection, starting from Example 14.

The sealed key is stored in a new persistent, but unprotected variable i.sealed key (e.g. written
on the non-encrypted part of the disk, together with the system code). Assuming the adversary
cannot tamper with the TPM, the key is released only if (1) this specific system is loaded (if i.h1
holds a different value, then i.UNSEAL will fail) and (2) the user enters the right password.

i.SYSTEM
·
=

if i.temp.n = 0 then (∗ the system is booting ∗)
{ if i.sealed key = 0 then (∗ BitLocker initialization ∗)
{ i.temp.k := GSE(); (∗ generate a strong secret ∗)
i.temp.pwd := readline(); (∗ set the password ∗)
i.sealed key := i.SEAL1(i.temp.k|i.temp.pwd|i.c, i.h1) }

else (∗ BitLocker attempts to unseal its key ∗)
{ i.guess := readline(); (∗ asking for the password ∗)
(i.temp.k|i.temp.pwd|i.c0) := i.UNSEAL1(i.sealed key, i.h1);
if (i.guess = i.pwd && i.c < i.c0+3)
then (∗ ok, release the key and reset anti−replay ∗)
{ i.sealed key := i.SEAL1(i.temp.k|i.temp.pwd|i.c,i.h1) }

else (∗ bad password, clear the key before returning ∗)
{ i.INC; i.temp.k := 0 }

i.identity := ’’end’’; EXTEND1;
i.temp.pwd := 0;
i.temp.n++; i.process[0] := i.app[0] }}

else if i.next in 0..i.temp.n then (∗ the system continues ∗)
{ link (i.process[i.next]) [

i.T̃PM, {testIℓi.process[i.next]
kernel ; SKINIT},

i.FORK] ℓIi.process[i.next] }

(We leave the user-input command readline() unspecified.) The other variables introduced above
also have level ℓi.system. The first time it runs (or if its sealed key has been erased), the BitLocker
code generates a secret key, asks for a password, and seals them together with the current value
of the TPM counter. Implicitly, SEAL also records the current system identity. Otherwise, as the
machine reboots, the user is prompted to enter the password; the BitLocker code verifies it, checks
the number of failed attempts, and then release the key to the system. In all cases, the password is
cleared and h1 is extended before letting the system run. (The extension changes the code identity
of the system, excluding any further successful sealing/unsealing on i.sealed key until the machine
reboots.)

The probability that an adversary controlling the system (but not the machine) obtains the
key is the same as in Example 36 (unless of course the user can be tricked to reveal its password).
However, if the system is running and the key loaded, an adversary of level ℓi.system can obviously
directly read the key. Concretely, the system should clear the key when it is suspended, with a
trade-off between performance and security. For instance, BitLocker may be vulnerable to cold
boot attacks, where one exploits the fact that the memory is not reliably erased when rebooting
[Halderman et al., 2009].

6.5.5 Bootstrapping abstract distributed configurations

We now consider a model where the adversary schedule a group of machines preloaded with
commands, and we compare it to the more abstract model used in Chapter 4 (used again in
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Section 6.6) where the adversary directly schedule the commands.

The abstract configurations produced by our compiler consist of an initialization command,
Q0, used to specify initial trust assumptions, plus a series of commands Q̃ consisting of one
command Qi for each machine involved in the source program. For simplicity, we assume that
these commands use at most the SKINIT instruction of their host machine. We are interested in
the security properties of commands of the form Q0;A[Q̃] where A is an adversary that controls

(at least) the “network” variables used by the commands Q̃ to communicate with one another,
and is also in charge of their scheduling.

The more concrete machine configurations, relying on the system code and boot sequences
above, run each Qi as a user-level command on each machine i. This gives additional power to the
adversary, which may also reboot machines and, depending on its level, tamper with their system
code.

We express security and functional correctness theorems for our transformation using instances
of definitions 16 and 17. We set a sound and correct transformation from the abstract model to the
more concrete one. Source adversaries are parametrized by α and range over adversary command
contexts for Γ. The commands of the distributed programs are scheduled by the adversary after
running Q0, and can use i.SKINIT on their host machine to run code typed at level ℓi. Thus, we
define source configurations as commands

S
·
= Q0;

A[Q1[{if testℓI1 kernel then 1.SKINIT}],
. . .,
Qn[{if testℓIn kernel then n.SKINIT}],
{if testℓI1 kernel then 1.SKINIT},
. . .,
{if testℓIn kernel then n.SKINIT}]

with ℓi.process[0] =⊥, I(Qi) and we let 〈〈Q̃, A, µ〉〉 ·
= ρ∞〈S,µ〉. In this case, we say that two

memory distributions are equivalent when they are equal.

Implementation programs and adversary are the same as source programs and adversary. We
define implementation configurations using the command

S′
·
= Q0;i.temp.up := 0;

i.system := i.SYSTEM;i.app := Qi;
A′[1.M . . . n.M ]

〈〈Q̃, A′, µ〉〉′ ·
= ρ∞〈S’,µ〉

Finally, we let π (the memory projection) be the erasure of all variables added for the machines
(the i.∗): π(µ′) = µ′

|dom(µ).

Our theorem states that, for the same commands ([[Q0, Q̃]] = Q0, Q̃), our more concrete model,
accounting for machines and reboots, does not enable more attacks than those enabled against
source programs. It enables us to focus on the configurations Q0, Q̃ for stating the properties of
our compilers.

Theorem 18 For every adversary parameter α, ([[·]], π) is secure and functionally correct.

The proof of Theorem 18 is at the end of this chapter, in Subsection 6.8.5.

6.6 Implementing virtual hosts on TPMs

Chapter 4 shows how to compile an imperative program with shared access-controlled memory
into a distributed program protected by cryptography. The resulting program runs on a series of
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machines, and preserves the security properties of the source program, subject to the assumption
that each local command Qb of the distributed implementation runs on a machine with (at least)
the security of its declared level ℓb. However, for many useful programs, it is difficult to find such
machines for the most trusted parts of the computation.

This section introduces a transformation that relies on secure instructions to boot trusted
virtual machines. This transformation applies to any distributed programs, including those pro-
duced by CFLOW in Chapter 4. Before giving general definitions and theorems, we illustrate the
transformation on Example 22.

Example 37 (Securely booting Qv) The command Qv requires a machine trusted by both the
client and the bank. Assume that the bank trusts the client TPM for running Qv and knows its
public key for attestation.

We may use the code

Q0
·
= k−b ,k

+
b := Ge(); TPM0; c := 0;

Qb
·
= if cb=1 then

{ cb++; xb:= eb;
if VERIFY17(H(〈Kv〉|vinit,k+v ,certv)
[ b.k+v := k+v ;

xe := E(xb, k+v ); xs := S(xe, k−b ) ] }
else if cb=2 then
{ cb++;

if V(x′e, x′s, k+v ) then print(D(x′e, k
−
b )) }

Qc
·
= if cc=1 then { cc++; yc := ec }

else if cc=2 then { print(y′c) }
Qv

·
= kernel := 〈Kv〉; SKINIT

Kv
·
= if c=0 then

{ INC;
k−v ,k

+
v := Ge(); certv := ATTEST17(k

+
v );

key := SEAL17(k
−
v ,h17) }

else if c=1 then
{ INC;
k−v := UNSEAL17(key,h17);

if V(xe, xs, k+b ) then
{ xv := D(xe, k

−
v );

x′v, y
′
c := f(xv, yc);

x′e := E(x′v, ‘k+b ); x′s := S(x′e, k−v ) } }

In this transformed distributed program, the command Qv now only calls SKINIT on a fixed code
Kv. Hence, it does not need to be trusted. The first execution of this command Kv with SKINIT
generates a key pair, attest it and store it securely using SEAL. Then, when the code of the bank
Qb runs, it verifies that the key he received (trough and unsecure memory) has been produced by the
code Kv run with SKINIT using a TPM. Then, the program proceed as before the transformation,
except that each time Kv is called, it starts by retrieving its keypair.

In contrast with the host commands of Section 4, TPM-attested host commands do not have a
persistent, protected local memory to keep their trusted key pair. Instead, as we dynamically set up
host v, we generate its key pair, we use remote attestation to convince the bank to encrypt its secret
towards the implementation of Qv, and we simulate the persistent local memory using seal/unseal
and the TPM counter to protect against replays.
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The transformation, for this particular program is secure for all adversary sets Aα, A′
α; and func-

tionally correct for the adversary sets A⊥,⊤, A′
⊥,⊤. A more systematic and generic transformation

is presented below.

6.6.1 A general transformation

Our transformation takes as input a policy Γ, a tuple of typed commands Q̃ for hosts b̃, including
the command of a virtual host v, and a subset of the variables x̃ of Qv (informally, x̃ represents
the private, trusted local state of v). It assumes the existence of a TPM on host a, at least as
trusted as v and not used in the source program. It generates an implementation policy Γ′ and a
series of implementation commands Q′

0, Q̃
′, defined below.

We let Q̃ range over commands such that

3. no command in Q̃ \Qv accesses x̃ (i.e. the variables of x̃ are local to Qv);

4. Qv does not read x̃ before initializing them;

5. ⊢ Qb : ℓIb for b ∈ b̃;

6. ⊢ Qv : ℓITPM (i.e. the TPM is at least as trusted as Qv); and

7. R(C(ℓTPM)) 6≤ I(ℓb) for b ∈ b̃ (i.e. no host can access the TPM private variables).

Initialization Recall that the commands Q̃ (including Qv) rely on trusted variables formally
initialized in Q0. In contrast, our implementation of Qv uses SKINIT, so its own initialization is
deferred until runtime and must be explicitly coded.

For simplicity, we assume that, for each host b ∈ b̃, initialization is a command of the form
Q0,b

·
= k−b , k

+
b := Ge();. . . that writes private variables and generates a single keypair, with v

initialized last. We also assume that the keys written in Q0 are not overwritten in Q̃. (These
assumptions hold with the CFLOW compiler, up to a reordering of hosts.)

8. Q0
·
= (Q0,b; )b 6=v;Q0,v;

9. no command in Q̃ \ Qb accesses variables written in Q0,b except for k+b for b ∈ b̃ (i.e. the
variables initialized in Q0,b are local to Qb);

10. no command in Q̃ writes k+b , k
−
b for b ∈ b̃.

Implementation of Q0 Initialization in the implementation Q′
0 is obtained from Q0 by adding

initialization for the TPM and removing initialization for v:

Q′
0

·
= TPM0; (Q0,b;b.k

+
v := ⊥;)b 6=v

Implementation of Qv The command Q′
v uses SKINIT to dynamically launch a secure kernel

Kv that implements Qv:

Q′
v

·
= kernel := 〈Kv〉; a.SKINIT

Kv
·
=

a.INC; if a.c = c0v+1 then
{ v.c := a.c; Qv,0; certv := a.ATTEST17(k

+
v )}

else
{ k−v |k+v |v.c|v.x̃ := a.UNSEAL17(storev, a.h17);

if v.c = a.c then Qv {v.x/x, x ∈ x̃}{‘k+b /k+b , b 6= v}};
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storev := a.SEAL17((k
−
v |k+v |v.c+1|v.x̃), a.h17));

k−v , v.c, v.x̃ := 0

The variables v.x̃ (and v.c) are volatile for each run of Q′
v; they can be public and untrusted, but

must be cleared before returning. By eliminating trusted and confidential variables, the transfor-
mation lowers the level of Qv hence the level required to run it.

The identity of Kv is verified by the other hosts, so the command Q′
v itself need not be trusted.

The other new variables k+v , certv, storev are also (formally) public and untrusted. They need not
be trusted for security, although an adversary that can overwrite them may cause the system to
fail. The value c0v is a constant of the program and corresponds to the initial value of the TPM
monotonic counter. If the participants disagree on this constant, the adversary could run the
participants with different instances of Kv. Alternatively, we could let c0v be an untrusted variable,
and verify in Kv that everybody has agreed to interact with the same instance.

Implementation of Qb for b 6= v, b ∈ b̃ As it runs for the first time, each host command Q′
b

verifies the attested public key for v and stores it in a new local variable, b.k+v , a local trusted copy
to be used instead of k+v in Qb. To this end, Q′

b recomputes the expected value of h, including the
values for c0v and any other keys k+b′ used in Qv, and verifies its concatenation with the received
public key k+v using the trusted verification key of the supporting TPM.

Q′
b,i

·
=

if b.k+v = 0
then { a.VERIFY17(v.H(〈Kv〉|vinit),k+v ,certv)[b.k+v := k+v ] }
else { Qb,i{b.k+v /k+v } }

Implementation of Γ The formal implementation of Γ is Γ′ = Γ{v.x̃, v.c, k+v , certv,
storev 7→ (⊥,⊤)}{b.k+v 7→ ℓb, b 6= v}.

Security and functional correctness We express the security and functional correctness of
our transformation as instances of definitions 16 and 17.

Source programs range over commands Q̃ that meet conditions 3–10 above. Source adversaries
are parametrized by α and range over adversary command contexts for Γ. The commands of the
distributed programs are scheduled by the adversary after the execution of Q0; formally:

〈〈Q̃, A, µ〉〉 ·
= ρ∞〈Q0;A[Q̃], µ〉

Implementation programs [[Q̃]] range over Q̃′, as defined above. Implementation adversaries are
parametrized by α and range over valid adversary command contexts for Γ′. The commands of
the distributed program are scheduled by the adversary after the execution of Q′

0 but additionally,
the adversary and Qv have access to protected versions of the subroutine SKINITa: we let

S′
·
= Q′

0;

A′[a.SKINITIα,Q̃
′,

Q′
v[a.SKINITℓ′Iv ]]

〈〈Q̃′, A′, µ′〉〉′ ·
= ρ∞(〈S′, µ′〉)

where a.SKINITℓ runs a.SKINIT after testing that kernel contains code typed at level ℓ.

We let π be the erasure of all variables added in Γ′: π(µ′) = µ′
|dom(µ) and we define equivalence

on final memory distributions (ρ0 ≈ ρ1) as computational indistinguishability: for all polynomial
commands T such that T does not read {x̃, k−v , k+v }, |Pr[〈T, ρ0〉; g = 0] − Pr[〈T, ρ1〉; g = 0]| is
negligible. Relying on these definitions, our main theorem for virtual hosts on TPMs is
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Theorem 19 Let α ∈ L be such that R is robust against α. Let Γ be a robust policy.

1. ([[·]], π) is secure;

2. ([[·]], π) is correct when α = (⊥C ,⊤I).

The proof of Theorem 19 is at the end of this chapter, in Subsection 6.8.6.

6.7 Experimental results

Our experimental work is based on the prototype compiler of Fournet et al. [2009]. The compiler
takes as input a program written in an extension of the source language of Chapter 3 with locality
and security annotations. It is parametrized by a module that defines the security lattice (e.g.
variants of the DLM of Myers and Liskov [1998]). It applies the translations of Chapter 4 and
produces a source F# program. The compiled programs reads its initial information (the values
initialized in Q0) from a trusted configuration file.

We modified the compiler to produce straight, statically-linked C code with minimal libraries.
This yields a much smaller TCB than with F#, which depends on the .NET runtime environment
and a sophisticated memory manager. This also leads us to use simpler, more compact message
formats. We tested it on small distributed examples (see for instance rpc.dwl and its compiled
code).

We added compiler support for declassification and endorsement, for type checking with the lax
type system of Section 3.4, and for enforcing robustness. We tested it on variants of the password
example (see for instance password_endorse.dwl).

We implemented the virtual-host transformation of Section 6.6, using a trivial software imple-
mentation of the TPM instructions. We tested it on variants of the loan-application example (see
tpm_BC.dwl) and a similar example involving a bank, a client, a merchant, and a virtual host that
maintains a ‘wallet’ storing the current balance of a bank account and running a client-purchase
loop for as long as this account remains in credit (see tpm_MC.dwl).

The code of the loan-application example is in Figure 6.1

The first line specifies our lattice. This lattice has confidentiality and integrity levels L, b, c,
and H, with the relations:

L ≤C b ≤C H L ≤C c ≤C H H ≤I b ≤I L H ≤I c ≤I L
The levels b and c are independents since the bank and the client do not trust each other. The three
lines after specify the roles in the program. The trusted role TPMC is the virtual participant that
is implemented with the TPM. The four lines after specify the types and levels of the variables of
the program. Then, there is the code of the specification. We see the initialization on the bank
machine and the client machine, the computation, then the print on the bank machine and client
machine.

The architecture of the compiled distributed program is in Figure 6.1. The code of Bank.c,
Client.c, and Client.c is the secure code produced following the compilation process specified in
Chapter 4 and 6. The code for sch Bank.c, sch Client.c, and sch Client.c is additional untrusted
code that schedule the programs and manage the communications trough the network. These
schedulers behave as honest adversaries that cooperate to run the program as intended, but the
security does not depend on them. Additional libraries are used for cryptography, network com-
munication, and secure hardware calls. TPMLib.h in only a trivial software implementation of the
secure hardware.

We did not experiment with physical TPMs so far, but McCune et al. [2008, 2009] provides
roughly the functionality we need. As a first step, we are targeting virtual machines with minimal
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rpc.dwl
password_endorse.dwl
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tpm_MC.dwl


SLattice HL;

Role #HH# TPMC;
Role #bb# Bank;
Role #cc# Client;

global string(2) #bb# x;
global string(2) #cc# y;
global string(4) #bb# z;
global string(4) #cc# t;

TPMC:[
Bank:[
‘print string "\nBank secret: ";
x := ‘read line ()

];
Client:[
‘print string "\nClient secret: ";
y := ‘read line ()

];
z:="";
t:="";
‘concat x 3 y 3 t;
‘concat x 3 y 3 z;
Bank:[
‘print string "\nBank result: ";
‘print string z
];
Client:[
‘print string "\nClient result: ";
‘print string t
]

]

Figure 6.1: Source code and compiled architecture for the loan example

TCBs using virtual TPMs. Their main advantage is to enable direct communication via shared
memory between minimal virtual hosts (with almost no libraries) and ordinary hosts (with standard
libraries e.g. for networking). Although virtual TPMs are less secure, they can be much faster than
physical ones, e.g. for counters and public-key cryptography. We also use a variant of HyperV
with support for emancipated partitions (so that the root partition cannot directly access the
memory our our virtual machines) and virtual TPM instructions. We produced small test kernel
machines (TMKs), which enable to ‘boot’ simple stand-alone statically-linked C programs in their
own partition, instead of a full-fledged system. The total amount of binary code of our TMKs is
around 100K.

6.8 Proofs

6.8.1 Proof of Theorem 14

We first give an updated version of Lemma 28
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Lemma 57 (Containment with link) Let Γ be a policy, ℓ ∈ L a label, P a command, and µ a
memory such that P terminates.

If ⊢ P : ℓ, then ρ∞(〈P, µ〉) =ℓ µ and for any ℓ′ such that ℓ 6≤ ℓ′, we have ρ∞(〈P, µ〉) =ℓ′ µ.

Proof: The proof is by induction on the maximum number of reduction steps for 〈P, µ〉 to
terminate. The base case P =

√
is trivial. The inductive case is by analysis on P . We only

consider the case that differs from Lemma 28:

Case P is link e [P̃ ′] ℓ. We have ⊢ P̃ ′ : (⊥,⊤) by Rule TLink Strict, and [[e]](µ) = 〈P ′′〉 and
⊢ P ′′ : ℓ by Rule Link. Hence ⊢ P ′′[P̃ ′] : ℓ, and we conclude by induction, and by Rule Link.

�

Proof of Theorem 14 For the case µ0 =ℓ µ1, if P ⊢ ℓ then we conclude by Lemma 57 that
ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉). For the case µ0 =ℓ µ1, if there exists ℓ′ such that ⊢ P : ℓ′ and ℓ′ 6≤ ℓ
then we conclude with Lemma 57 that ρ∞(〈P, µ0〉) =ℓ ρ∞(〈P, µ1〉). In all the other cases, the proof
is by induction on the number of reduction steps for P to terminate. We suppose that ⊢ P : ℓ′.
We only consider the case that differs from Theorem 4:

Case P is link e [P̃ ′] ℓ′. By Rule TLink Privileged, ⊢ P̃ ′ : (⊥,⊤) and ⊢ e : ℓ′. For the case
µ0 =ℓ µ1, we have ℓ′ ≤ ℓ, hence, by Rule SubE ⊢ e : ℓ and [[e]](µ0) = [[e]](µ1) by Lemma 29.
For the case µ0 =ℓ µ1, we have ℓ′ 6≤ ℓ, hence [[e]](µ0) = [[e]](µ1) by Lemma 29. Thus,
[[e]](µ0) = [[e]](µ1) = 〈P ′′〉 for some command P ′′ and

ρ∞(〈link e [P̃ ′] ℓ, µ0〉) =ρ∞(〈P ′′[P ′], µ0〉)
ρ∞(〈link e [P̃ ′] ℓ, µ1〉) =ρ∞(〈P ′′[P ′], µ1〉)

and we conclude by induction on 〈P ′′[P ′], µ0〉 and 〈P ′′[P ′], µ1〉

�

6.8.2 Proof of Theorem 15

We first prove a lemma slightly more general that Theorem 15.

Lemma 58 Let Γ be a policy, ℓ ∈ L a label, P a command, P̃ ′ a tuple of commands and µ a
memory such that P [P̃ ′] terminates.

If ⊢ P : ℓ and ⊢ P̃ ′ : (⊥C , I(ℓ)), then ρ∞(〈P [P̃ ′], µ〉) =ℓ µ and for any ℓ′ such that ℓ 6≤ ℓ′, we

have ρ∞(〈P [P̃ ′], µ〉) =ℓ′ µ.

Proof: The proof is by induction on the maximum number of reduction steps for 〈P [P̃ ′], µ〉 to
terminate and the numbers of processes in [P̃ ′]. The base case P =

√
is trivial. The inductive

case is by analysis on P [P̃ ′]. We only consider the cases that differ from those of Lemma 6:

Case P [P̃ ′] is X[P̃ ′] By Rules TVar and TSubC, C(ℓ) =⊥C . X is replaced by one of process in

P̃ ′, we conclude by induction.

Case P [P̃ ′] is link e [P̃ ′′] ℓ. We have ⊢ P̃ ′′ : ℓ, [[e]](µ) = 〈P ′′〉, and ⊢ P ′′ : ℓ. Hence we conclude
by induction, and by Rule Link.
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�

Proof of Theorem 15 The proof follows from Lemma 58 �

6.8.3 Proof of Theorem 16

We first prove a lemma slightly stronger that Theorem 16.

Lemma 59 Let Γ be a policy, ℓ ∈ L a label, c ∈ LC such that I(ℓ) 6≤ R(c). Let P be a command,

P̃ ′ a tuple of commands and µ0, µ1 memories such that P [P̃ ′] terminates.

If ⊢ P : ℓ, ⊢ P̃ ′ : (⊥C , I(ℓ)) and µ0 =(c,H) µ1, then ρ∞(〈P [P̃ ′], µ0〉) =(c,H) ρ∞(〈P [P̃ ′], µ1〉).

Proof: If ⊢ P : (c,H), then, we conclude with Theorem 58 that ρ∞(〈P [P̃ ′], µ0〉) =(c,H)

ρ∞(〈P [P̃ ′], µ1〉). Otherwise, for every ℓ′ such that ⊢ P : ℓ′, we have (c,H) 6≤ ℓ′ and the proof is
by induction on the number of reduction steps for P to terminate. The proof is similar to the one
of Theorem 7, so we only consider the case that differ:

Case P [P̃ ′] is X[P̃ ′ By Rules TVar and TSubC, C(ℓ) =⊥C . X is replaced by one of process in

P̃ ′, we conclude by induction.

Case P [P̃ ′] is link e [P̃ ′] ℓ′. By Rule TLink Privileged, ⊢ P̃ ′ : ℓ′ and ⊢ e : ℓ′. We have µ0 =ℓ µ1,
hence ℓ′ 6≤ ℓ, hence [[e]](µ0) = [[e]](µ1) by Lemma 29. Thus, [[e]](µ0) = [[e]](µ1) = 〈P ′′〉 for
some command P ′′ and

ρ∞(〈link e [P̃ ′] ℓ, µ0〉) =ρ∞(〈P ′′[P ′], µ0〉)
ρ∞(〈link e [P̃ ′] ℓ, µ1〉) =ρ∞(〈P ′′[P ′], µ1〉)

and we conclude by induction on 〈P ′′[P ′], µ0〉 and 〈P ′′[P ′], µ1〉

�

Proof of Theorem 16 The proof follows from Lemma 59 �

6.8.4 Proof of Theorem 17

We first state a lemma for programs that call adversary commands

Lemma 60 Let Γ be a security policy, ℓ, α ∈ L, c a confidentiality level, R a robustness function
robust against α, Ã an α-adversary, and P a command such that ⊢ P : ℓ. Let µ, µ0, and µ1 be
three memories such that P [Ã] terminates, and such that µ0 =C(ℓ),⊤I

µ1.

If I(ℓ) ≤ I(α), then ρ∞(〈P [Ã], µ〉) =⊤C ,I(ℓ) µ.

If I(ℓ) 6≤ R(c) and c 6≤ C(α), then ρ∞(〈P [Ã], µ0〉) =c,⊤I ρ∞(〈P [Ã], µ1〉).

Proof of Theorem 17 and Lemma 60 The proof is by induction on the maximum number
of reduction steps for A (Theorem 17) and P [Ã] (Lemma 60) to terminate on memories µ, µ0 and
µ1. We first prove Lemma 60. The base case P =

√
is trivial. The inductive case is by analysis

on P [Ã]. The proof are similar to those of Lemma 58 and 59, so we only consider the case that
differ:
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Case A[Ã] is X[Ã] X is replaced by one of the process in A, we conclude by induction on Theo-
rem 17.

We now prove Theorem 17 The base case A =
√

is trivial. The inductive case is by analysis on A.

Case A is is link e [Ã′] ℓ. By Rule TLink Privileged, SubE, and definition of α-adversaries, we

have Ã′′ are α-adversaries and I(α) ≤ ℓ. For the first point, we have [[e]](µ) = 〈P 〉 for some
P such that ⊢ P : α by Rule Link. We conclude by induction on Lemma 60. For the second
point, by definition of α-adversaries, v(e) ⊆ {C(x) | Γ(x) ≤ C(α)}, hence, [[e]](µ0) = [[e]](µ1)
Thus, in both cases, [[e]](µ0) = [[e]](µ1) = 〈P 〉 for some command P and

ρ∞(〈link e [Ã′] ℓ, µ0〉) =ρ∞(〈P ′′[A′], µ0〉)
ρ∞(〈link e [Ã′] ℓ, µ1〉) =ρ∞(〈P ′′[A′], µ1〉)

with ⊢ P : α by Rule Link and we conclude by induction on 〈P [Ã′], µ0〉 and 〈P [Ã′], µ1〉 with
Lemma 60.

Case A is x := e. By definition of α-adversaries, I(α) ≤ I(x). We conclude for the first point.
By definition of α-adversaries, v(e) ⊆ {C(x) | Γ(x) ≤ C(α)}, hence, [[e]](µ0) = [[e]](µ1), we
conclude for the second point.

Case A is x̃ := f(ẽ) The conclusion follows as for the case above.

Case A is if e then A1 else A2. We have 〈if e then A1 else A2, µ〉 1 〈Ab, µ〉 for some b ∈ {0, 1}.
We conclude by induction for the first case. By definition of α-adversaries, v(e) ⊆ {C(x) |
Γ(x) ≤ C(α)}, hence, [[e]](µ0) = [[e]](µ1) = b for some b ∈ {0, 1} and

ρ∞(〈if e then A1 else A2, µ0〉) =ρ∞(〈Ab, µ0〉)
ρ∞(〈if e then A1 else A2, µ1〉) =ρ∞(〈Ab, µ1〉)

We conclude by induction on 〈Ab, µ0〉 and 〈Ab, µ1〉.

Case A is while e do A′. The conclusion follows as for the case above.

Case A is A0;A1 We conclude with Lemma TSeq.

�

6.8.5 Proof of Theorem 18

Proof: The theorem states that, for every implementation adversary, there exists an equivalent
source adversary. In this proof, we construct a source adversary and build a simulation mapping
each state of the implementation execution to a state of the source execution. The source adversary
is simulating the machines and their operating system; these commands are detailed here as slight
variants of i.SYSTEM and i.M . The new variables are read and written by the adversary, hence
are at level α (not necessarily the same level as in the implementation program).

i.advSYSTEM[i.SKINIT, Q i]
·
=

if i.temp.n = 0 then (∗ boot ∗)
{ i.temp.n++; i.process[0] := i.app[0] }
else if i.next in 0..(i.temp.n) then

{ if I(α) ≤ I(ℓIi.process[i.next])

link (i.process[i.next]) [
{ if testℓI

i.process[i.next]
i.kernel then i.SKINIT },

i.FORK] ℓIi.process[i.next]
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else
{ if i.next = 0 then Q i
else link 0 α }}

i.FORK
·
= i.process[i.temp.n] := i.app[i.temp.n]; i.temp.n++

i.advM[i.SKINIT, Q i]
·
=

if i.reset then
{ i.temp.∗ := 0;
i.temp.up := i.system }

if i.temp.up 6= 0 then

{ if I(α) ≤ I(ℓIi.system) then

link i.temp.up [i.SKINIT] ℓIi.system
else i.advSYSTEM[i.SKINIT, Q i]}

In the proof, we will use abbreviations

W [A′]
·
= A′[1.advM[1.SKINIT, Q1]

. . . n.advM[n.SKINIT, Qn]]

W ′[A′]
·
= A′[1.M . . . n.M ]

1. Initialization, from Q0 to A′.

We map the target configuration 〈S′, µ′〉 to the source configuration 〈P, µ′〉, where

P
·
= Q0;i.temp.up := 0;

i.system := i.SYSTEM;i.app := Qi;
W [A′]

These commands perform matching steps (keeping equal memories) until they reach the
commands W ′[A′] and W ′[A′]. Then:

2. Running an adversary.

We consider 〈W ′[A′], µ′〉 (for all valid A′, not only the initial one) when µ′ is such respect
the property Inv(µ′) defined by as follows:

• I(α) 6≤ I(ℓIi.system) ⇒ i.system = i.SY STEM

• I(α) 6≤ I(ℓIi.process[0]) ⇒ (i.app[0] = Qi&(i.temp.n 6= 0 ⇒ (i.process[0] = Qi)))

• I(α) 6≤ I(ℓIi.process[i.next]) ⇒ (i.process[i.next] = 0)

We map it to 〈W [A′], µ′〉. We leave this case when the adversary runs a machine, reaching
i.M ;W ′[A′] and i.advM [i.SKINIT,Qi];W [A′], respectively. Then:

3. Running a machine i.M .

We consider 〈i.M ;W ′[A′], µ′〉 when µ′ respect the property Inv(µ′). We map it to
〈i.advM ;W [A′], µ′〉. The invariant implies that these commands perform matching steps,
keeping equal memories and Inv(µ′). We leave this case either by resuming case 2 (as both
host commands terminate), or if I(α) ≤ I(ℓIi.system), µ′(i.reset) = 0 and µ′(i.temp.up) 6= 0
reaching i.SY STEM ;W ′[A′] and i.advSY STEM [i.SKINIT,Qi];W [A′], respectively. Then:

4. Running a system i.SY STEM .

We consider 〈i.SY STEM ;W ′[A′], µ′〉 when µ′ respect the property Inv(µ′). We map it to
〈i.advSY STEM ;W [A′], µ′〉. The invariant implies that these commands perform matching
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steps, keeping equal memories and Inv(µ′). We leave this case either by resuming case 2 (as
both host commands terminate), or if I(α) ≤ I(ℓIi.process[0]) and µ

′(i.next) = 0 by reaching

Qi;W
′[A′] and Qi;W [A′], respectively. Then:

5. Running Qi.

We consider 〈Qi;W ′[A′], µ′〉 when µ′ respect property Inv(µ′). We map it to 〈Qi;W [A′], µ′〉.
The invariant implies that these commands perform matching steps, keeping equal memories
and Inv(µ′). We leave this case by resuming case 2 (as both host commands terminate).

�

6.8.6 Proof of Theorem 19

To prove the theorem, before constructing a source adversary, we rewrite our target configurations
to eliminate the cryptography. The lemma below applies our cryptographic hypotheses to our
target configurations. After this lemma, we only consider execution that have no hash collisions,
since they probability is negligible. The next lemma anticipates the initialization of Qv (to perform
random sampling at the same time as in the source configuration).

Lemma 61 Let logH be a free variable. We consider

EXTEND0
17

·
= h17 := H(h17|identity);

logH := logH + (h17,h17|identity)
·
=

SKINIT0 ·
= identity := kernel;

EXTEND17;
link kernel[INC,EXTEND17,ATTEST

0
17,

SEAL0
17,UNSEAL

0
17] ℓ

I
system;

h17 := 0

S′0
·
= logH := ∅;

Q′
0;

A′[{testαI k; a.SKINIT0},Q̃′,
Q′
v[testℓ′Iv kernel; a.SKINIT0]]

For all implementation memory µ′, we have

ρ∞(〈S’, µ′〉) ≈ ρ∞(〈S′0, µ′〉)

Proof: We successively apply our security hypotheses for SEAL/UNSEAL, and ATTEST. �

Lemma 62 Consider a variant of Kv that reads the result of initialization instead of running it,
defined by

K ′
v

·
=

a.INC; if a.c = c0v+1 then
{ v.c := a.c;
(x := copy.x;)x∈wv(Qv,0)

certv := a.ATTEST0
17(k

+
v )}

else
{ k−v |k+v |v.c|v.x̃ := a.UNSEAL0

17(storev, a.h17);

if v.c = a.c then Qv {v.x/x, x ∈ x̃}{‘k+b /k+b , b 6= v}};
storev := a.SEAL0

17(k
−
v |k+v |v.c+ 1|v.x̃, a.h));

k−v , v.c, v.x̃ := 0
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and let S′′ be a variant of S′0 that runs initialization for all hosts (using Q0 as in S′,instead of
Q′

0, defined by

S′′
·
= Q0;

a.TPM0

(b.k+v := 0;)b 6=v
(copyx := x;)x∈rv(Qv,0)\k+v
A′[{testαI k; a.SKINIT0},Q̃′,

Q′
v[testℓ′Iv kernel; a.SKINIT0]]

For all implementation memory µ′, we have

ρ∞(〈S′0, µ′〉)|dom(µ′)\{copy.∗} = ρ∞(〈S′′, µ′〉)|dom(µ′)\{copy.∗}

Proof of Theorem 19 for Security In the proof, we will use abbreviations

W [A′]
·
= A′[{testαI k; adv.SKINIT0},Q̃′′,

Q′′
v [{testℓ′Iv kernel; adv.SKINIT0}]]

W ′[A′]
·
= A′[{testαI k; a.SKINIT0},Q̃′,

Q′
v[testℓ′Iv kernel; a.SKINIT0]]

Q′′
v

·
= kernel := 〈K′′

v〉; adv.SKINIT0

K ′′
v

·
= adv.INC; if adv.c = c0v+1 then

{ v.c := adv.c;
(x := copy.x;)x∈wv(Qv,0)

current k+v := copy.k+v ;
certv := adv.ATTEST0

17(current k
+
v )}

else
{ v.c := adv.UNSEAL0

17(storev, adv.h17);
if v.c = adv.c then Qv };

storev := adv.SEAL0
17((v.c+1), adv.h17));

k−v , v.c, v.x̃ := 0

Q′′
b

·
= if b.k+v = 0

then { adv.VERIFY0
17[b.k

+
v := current k+v ]

(v.H(〈K ′
v〉|vinit),current k+v ,certv)}

else

(
Qb,i when I(α) 6≤ I(ℓb)
Qb,i{b.k+v /k+v } when I(α) ≤ I(ℓb)

)

The theorem states that for every implementation adversary, there exists an equivalent source
adversary. In this proof, we first apply Lemmas 61 and 62, then we construct a source adversary
and build a simulation mapping each state of the implementation execution to a state of the source
execution. The proof is by case analysis on the state:

1. Initialization, from Q0 to A′.

We map the target configuration 〈S′′, µ′〉 (with S′′ defined in Lemma 62) to the source
configuration 〈P, µ〉, where

P
·
= Q0;

adv.TPM0;
(b.k+v := 0;)b 6=v;
(copyx := x;)x∈rv(Qv,0)\k+v
current k+v :=k

+
v ;

W[A′{k+v /current k+v }]
µ

·
= µ′

|dom(µ)
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These commands perform matching steps until reachingW ′[A′] andW [A], respectively, with
memories µ′ and µ such that

µ|dom(µ)\current k+v = µ′
|dom(µ)

µ(current k+v ) = µ′(k+v )

Then:

2. Running an adversary W ′[A′].

We consider〈W ′[A′], µ′〉 (for all valid A′, not only the initial one) when µ′ respect the property
Inv(µ′) defined by as follows:

• for each b ∈ b̃ such that I(α) 6≤ I(ℓb), µ
′(b.k+v ) = µ′(copy.k+v ) or µ

′(b.k+v ) = 0

• there is at most one val such that

exist(µ′(logseal),17|(H(Kv’’)|H(Kv’’)|((a.c+ 1)|val)))

• there is no valc, val such that µ(a.c) + 1 < valc and

exist(µ′(logseal), 17|H(〈K ′′
v 〉|vinit)|H(〈K ′′

v 〉|vinit)|(valc|val))

• for each val such that

exist(µ′(logattest), (17|H(KV |val)))

we have val = k+v .

We map it to 〈P, µ〉, where

P
·
= W[A’{k+v /current k+v }]

and µ is defined by:

• µ(z) = µ′(z) when z /∈ {x̃, current k+v , k+v , k−v , logseal, logattest}
• µ(current k+v ) = µ′(k+v )

• µ(x̃) = {val/exist(µ′(logseal),
17|(H(〈K ′′

v 〉|vinit)|H(〈K ′′
v 〉|vinit)|µ′(copy.k−v |copy.k+v |a.c + 1)|val))} or there is no val

such that exist(µ′(logseal),
17|(H(〈K ′′

v 〉|vinit)|H(〈K ′′
v 〉|vinit)|µ′(copy.k−v |copy.k+v |a.c+ 1)|val))

• µ(logattest) = µ′(logattest){17|H(K ′′
V |val)/

17|H(KV |val)}
• µ(logseal) = µ′(logseal){(17|H(〈K ′′

v 〉|vinit)|H(〈K ′′
v 〉|vinit)|(valc))/

(17|H(K ′
v)|H(K ′

v)|(valc|val))}

We let g be the function such that g(µ′) = µ. We leave this case when the adversary runs a
host command, reaching Q′

i and Q
′′
i , respectively. Then:

3. Running a host command Q′
i.

We consider 〈Q′
i;W

′[A′], µ′〉 when µ′ respect the property Inv(µ′). We map it to
〈Q′′

i ;W [A′{k+v /current k+v }], g(µ′)〉. These commands perform matching steps, keeping µ =
g(µ′) and Inv(µ′). We leave this case either by resuming case 2 (as both host commands
terminate), or, if we were running Q′

v, by booting the secure kernel, as described next:

4. Booting Kv.

We consider 〈a.SKINIT 0;W ′[A′], µ′〉 when µ′ respect the property Inv(µ′), where µ′(kernel)
= 〈K ′

v〉. We map it to 〈adv.SKINIT 0;W [A′{k+v /current k+v }], µ = g(µ′){kernel 7→ 〈K ′′
v 〉}〉.

Then:
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5. Running Kv.

We consider 〈K ′
v;W

′[A′], µ′〉 when µ′ respect the property Inv(µ′), and µ′(kernel) = 〈K ′
v〉.

We map it to

〈K ′′
v ;W [A′{k+v /current k+v }], g(µ′){adv.kernel 7→ 〈K ′′

v 〉}〉

These commands perform matching steps, keeping µ = g(µ′){adv.kernel 7→ 〈K ′′
v 〉} and

Inv(µ′{a.c 7→ µ′(a.c)− 1}).
We leave this case either by resuming case 2 (if µ′(adv.c = c0v + 1), as both commands
terminate), or, after the unsealing of local variables, as described next:

6. Starting Qv (within Kv).

We consider 〈P ′, µ′〉 when µ′ respects the property

Inv(µ′{a.c 7→ µ′(a.c)− 1})

with either µ′(v.x̃) = {val/exist(µ′(logseal), (17|H(〈K ′′
v 〉|vinit)|H(〈K ′′

v 〉|vinit)|µ′(copy.k−v )|
µ′(copy.k+v )|µ′(a.c)|µ′(val))))} or v.c 6= a.c, and when P ′ is of the form:

if v.c = a.c then Qv {v.x/x, x ∈ x̃}{‘k+b /k+b , b 6= v};
storev := a.SEAL0

17(k
−
v |k+v |v.c+ 1|v.x̃, a.h17);

k−v , v.c, v.x̃ := 0
W’[A’]

where µ′(adv.kernel) = 〈K ′
v〉.

We map it to 〈P, µ〉, where

P
·
= if v.c = adv.c then Qv;

storev := adv.SEAL0
17(v.c+1, adv.h17));

k−v , v.c, v.x̃ := 0;
W[A’{k+v /current k+v }]

and µ = g(µ′){adv.kernel 7→ 〈K ′′
v 〉}.

We leave this case either jumping to case 8 (if µ′(v.c 6= adv.c), as both commands terminate),
or, at the next instruction:

7. Running Qv (within Kv).

We consider 〈P ′, µ′〉 when µ′ respect the property Inv(µ′{a.c 7→ µ′(a.c) − 1}) and P ′ is of
the form:

Qv {v.x/x, x ∈ x̃}{‘k+b /k+b , b 6= v};
storev := a.SEAL0

17(k
−
v |k+v |v.c+ 1|v.x̃,a.h17);

k−v , v.c, v.x̃ := 0;
W’[A’]

where µ′(adv.kernel) = 〈K ′
v〉. We map it to 〈P, µ〉, where

P
·
= Qv;

storev := adv.SEAL0
17(v.c+1, adv.h17));

k−v , v.c, v.x̃ := 0;
W[A’{k+v /current k+v }]

and µ = g(µ′){adv.kernel 7→ 〈K ′′
v 〉, x̃ 7→ µ′(v.x̃)}. These commands perform matching steps,

keeping µ = g(µ′){adv.kernel 7→ 〈K ′′
v 〉, x̃ 7→ µ′(v.x̃), (k−v , k

+
v ) 7→ µ′(k−v , k

+
v )} and Inv(µ′)

until reaching the next case:

155



8. Closing Kv.

We consider 〈k−v , v.c, v.x̃ := 0;W ′[A′], µ′〉 when µ′ respect the property Inv(µ′),and µ′(kernel)
= 〈K ′

v〉. We map it to 〈P, µ〉, where

P
·
= k−v , v.c, v.x̃ := 0;

W[A’{k+v /current k+v }]

and µ = g(µ′). We then resume case 2 with matching commands.

The simulation terminates in a case 2, in which the invariant implies that π(µ′) = µ. Composing
with Lemma 61 and Lemma 62, we obtain that ρ∞(〈S’, µ′〉) ≈ ρ∞(〈Q0;A[Q1, . . . , Qn], πµ

′〉) with

A
·
= adv.TPM0;

(b.k+v := 0;)b 6=v;
(copyx := x;)x∈rv(Qv,0)\k+v
current k+v :=k

+
v ;

W[A′{k+v /current k+v }]

hence, the program transformation is secure for all adversary parameter α. �
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