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Résumé

On propose une perspective originale d’analyser les différents flux hautes fréquences
d’information provenant des marchés financiers et fournit des modèles simples et
intuitives qui reflètent étroitement la réalité. On observe les données empiriques et
note certains faits stylisés et propose des modèles pour capturer ces faits.

Dans le chapitre 1, on passe en revue les définitions et propriétés de base des
marchés électroniques. En particulier, on revoit les travaux de microstructure et
de modélisation du marché, et leurs relations à ce travail. On introduit la taille du
"tick", qu’on utilise pour classifier les actifs et interpréter les différents résultats.

Dans le chapitre 2, on montre empiriquement que l’impact d’une seule transac-
tion dépend de la durée inter-transactions. En effet, lorsque le taux des échanges
devient plus rapide, la variance des rendements des transactions augmente forte-
ment et que ce comportement persiste à des échelles de temps plus grossières. On
montre également que la valeur du spread augmente avec l’activité et on en déduit
que les carnets d’ordres sont plus vide lorsque le taux des échanges est élevé.

Dans le chapitre 3, on présente un modèle pour capturer le bruit de microstruc-
ture. Les prix des actifs sont représentés par la somme des rendements "tick"
arrivant à des temps de Poisson aléatoires. Le modèle se compose d’une martin-
gale diffusive contaminée par un bruit autocorrélé mais disparaissant aux échelles
grossières. On est capable de capturer la signature de la variance et l’autocorrélation
faible mais significative des rendements "tick".

Dans le chapitre 4, on utilise les processus ponctuels de Hawkes pour modéliser
l’arrivée aléatoire des transactions. On modélise la transformation échelle fine -
échelle grossière des prix et en particulier l’effet sur les moments des rendements
des prix. On propose une technique simple d’estimation non paramétrique de la
structure de dépendance des processus de Hawkes dans le cas unidimensionnel et
dans quelques cas particuliers multidimensionnels. On applique la méthode à des
actifs de Future et trouve des noyaux de dépendance en loi de puissance.
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Abstract

We offer an original way to analyse at the various high frequency streams of in-
formation originating from financial markets and to provide simple intuitive models
that closely mirror reality. We observe empirical data and report some of its stylized
facts and propose models to capture these facts.

In chapter 1, we review the basic definitions and properties of electronic ex-
changes. In particular, we review the background work done in microstructure and
trade modeling, show how they relate to our work and introduce the tick size, used
to classify our assets and interpret the various results.

In chapter 2, we bring qualitative empirical evidence that the impact of a single
trade depends on the intertrade time lags. We find that when the trading rate be-
comes faster, the return variance per trade strongly increases and that this behavior
persists at coarser time scales. We also show that the spread value is an increasing
function of the activity and deduce that orderbooks are more likely empty when
the trading rate is high.

In chapter 3, we present a model to capture microstructure noise. Asset prices
are represented as the sum of tick returns arriving at random Poisson times. The
model consists of an underlying diffusive martingale which is contaminated by some
vanishing autocorrelated noise. We are able to capture the signature form of the
sampled realized variance and the weak but significant autocorrelation of tick re-
turns.

In chapter 4, we use Hawkes point processes to model the random arrival of
trades in the market. We model fine to coarse behavior of prices and how it affects
the moments of price returns. We propose a simple non parametric estimation
technique of the dependence structure of Hawkes processes in the one dimensional
case and very particular multidimensional cases. We apply the method to Futures
assets and find decay kernels having a power law form.

8





CHAPTER1

Introduction

1.1 Motivation, Topics and Thesis Axis

This thesis was originally motivated by a desire to offer an original way to look
at the various streams of information originating from financial markets and to
provide models that closely mirror reality. In order to achieve that, we have to
explore financial markets and their manifestation through an exchange. We do
this by empirically observing data and providing original stylized facts. Then we
propose to capture these facts by models that are intuitive, easy to understand and
conceptually simple. We shall see that these models capture rather well some of
the empirical facts, and provide a satisfying intuitive interpretation of reality.

From a modeling perspective, our ultimate wish is to have models that are
robust across observation scales. This means that the models should capture styl-
ized facts of the price distribution when observed at different frequencies, from the
highest (also called tick frequency) to lower ones (daily or even monthly). For in-
stance, on the coarse scale, prices are fairly well represented by a continuous time
Brownian semi-martingale. On the fine scale, this structure breaks down and some
original stylized facts appear. So in order to capture the statistical particularities
present at the fine scale, we need to start by observing and reporting them, then
provide models that replicate them. However, the model should allow for the ob-
served disappearance of theses stylized facts at coarse scale, and the morphing of
the fine scale process into a coarse scale diffusion.

10



CHAPTER 1. INTRODUCTION 11

In this work, we attempt to give elements that contribute to this approach. Each
chapter of this thesis has a place in this enterprise. We present below the main ideas
behind every of them. Please refer to the section 1.6 later in this introduction, for
a more detailed presentation of each work.

In chapter 2, we observe and report empirical properties at the fine scale and see
how they change as the scale increases. In particular, we look at the distribution
of prices conditionally to the intensity of trading. We examine if the variance of
the return changes conditionally to the time it took for these returns to arrive.
So we answer the following question: is the realized variance created
by 10 trades arriving over 10 seconds similar to the realized variance
created by those very same trades had they arrived during 10 minutes?
Any model that uses a transaction time clock implies that the two situations are
similar. Our empirical findings show that they are not, and that trades arriving
in a shorter duration have higher variance, thus showing the importance of the
physical inter-trade time duration. We observe this behavior at fine scale and see
how it dissipates at coarser observation scales. This chapter has appeared as an
article in "Econophysics of order-driven markets", Springer Verlag, co-authored
with Emmanuel Bacry and Jean-Francois Muzy.

In chapter 3, we turn our attention to the problem of microstructure noise. In
the spirit of building parsimonious models that represent reality, and inspired by
the results of chapter 2, we provide a model that captures some of the stylized
facts present at the fine scale, while converging to a diffusion at coarse scale. Those
facts in particular are the signature form of the sampled realized variance and
the weak but significant autocorrelation of tick returns1. We model the asset
price as the sum of tick returns arriving at random Poisson times. In particular,
the model consists of an underlying diffusive martingale which is contaminated by
some vanishing autocorrelated noise. This type model, consisting of a latent price
contaminated by some microstructure noise, have been widely studied in the past
with various assumptions on the underlying and on the noise processes and have
been proven to successfully capture the variance signature plot while converging to
a diffusion on the coarse scale. However, we provide a model that captures, in
addition to the signature plot, different microstructure properties, such
as the autocovariance of tick returns, the discrete nature of tick prices,
and the random arrival of market orders, and provide an original point
of view to interpret these properties. This chapter will be submitted as an
article for publication soon, with Mark Hoffmann as co-authors.

In chapter 4, we further move in the direction of Statistics of Processes. By
now, we are convinced that the key for a fine to coarse modeling approach lies

1In our work, we call tick return the price differential from one trade to the next. We also
exclusively use the term return for price differentials and do not consider log returns at all.
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in the modeling of the arrival times of prices. This means using point processes
to model the random arrival to the market of different observable elements - the
trades for instance. In particular, self exciting point processes, known as Hawkes
processes, have been gaining particular traction in finance lately. These are point
processes whose instantaneous intensity is linearly dependent on their past events.
They have been used to model the arrival of various market events, for instance mi-
crostructure events like the arrival of trades or limit orders. Lately, they have been
used by Bacry, Delattre, Hoffmann and Muzy [9] to model fine to coarse behavior
of the prices and the manifestation of such behavior through the moments of price
returns (variance and correlation). Inspired by their usefulness and pertinence in
representing financial events, we propose a simple non parametric estimation
technique of the dependence structure of Hawkes processes and apply it
to futures price data. This chapter will be submitted as an for publication soon,
with Emmanuel Bacry and Jean-Francois Muzy as co-authors.

From a presentation perspective, we show and interpret our results by clas-
sifying the assets according to their tick size, which we quantify in section 1.3.
This is a market microstructure parameter that qualifies the traders’ aversion to
price movements at the highest frequency. Surprisingly we have that this param-
eter is not entirely explained by liquidity or coarse scale volatility. We interpret
most of our empirical results according to this criterion and we see that the market
microstructure of different assets changes according to their tick size.

Let us now introduce the different terms and general framework we will consider
throughout this thesis. We define the continuous electronic auction in section 1.2,
going over the exchange framework and the orderbook. In section 1.3, we define
what we mean by tick size and how it can influence the microstructure of assets. In
section 1.4, we offer a reminder of previous work that has been done in modeling
the market microstructure and see in what ways they have motivated our work.
In section 1.5, we present the data we use in numerical applications. Finally, we
introduce the main results of the thesis in section 1.6.

1.2 Continuous Auction and Electronic Markets

In this section, we present generalities about financial markets and the regula-
tory framework we consider in particular. Section 1.2.1 contains generalities that
are true for any type of auction based market, and section 1.2.2 expands on it to
give particularities about financial exchanges.
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1.2.1 Continuous Auction

We consider the framework of a continuous electronic market where any market
participant can freely enter and exit the market at any time. Market participants are
free to submit or remove their preferences to the market (also called the exchange)
directly and without going through a third party (as opposed to specialist markets
for example [23]). Market participants, or traders, like in any other auction, enter
the market by submitting their ultimate preference for a particular asset. If they
are buying, they inform the community of the maximum quantity of assets they
are willing to buy at a particular price or differently, the price they are willing to
pay for any quantity below a maximum quantity. This price is called their bid
price. Similarly, if they are selling, they inform the community of the minimum
price they are willing to receive for a particular quantity. This price is called their
ask price. When another market participant agrees to the presented price, both
participants engage in a trade. Naturally, if a trader has an ask price which is
lower than another trader’s bid a trade will occur at some price they both agree
to, causing the disappearance of both preferences from the marketplace. Once all
agreeing preferences have been cleared, those who are left keep their preferences
known and wait for someone to engage with them. This leads to the formation in
the market of a maximum buy price and a minimum sell price, called respectively
called the best bid and ask prices. The difference between the best bid and best
ask is then always strictly greater than zero and is called the bid-ask spread and
the average between these prices is called the midpoint price.

In an electronic market, all transmission of information is handled electron-
ically. An electronic market typically operates at very high speeds, and has the
capability of publishing large amounts of information in a very short time. This
means that market participants are kept extremely well informed of the state of the
market. They are then able to make informed trading decisions.

The exchange keeps track of all the information currently available in the market
through a record called the orderbook. We discuss the orderbook in details in the
following section.

1.2.2 The Orderbook

Limit Orders and Cancel Orders
A trader communicates with the market through the use of orders. For ex-

ample, when a market participant wants to buy the quantity q at the maximum
price p, he sends what is called a buy limit order of q shares at the price p.
When he wants to sell, he sends a sell limit order. The set of preferences (all the
limit orders, their prices and their quantities) of all market participants is called
the orderbook. The orderbook contains each participants’ buy or sell orders for
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all price levels. For example, for any given price, the orderbook contains the total
volume available for trading at that price level. When a new limit order arrives
at this price, it gets added to the top of the queue by an order placement engine.
Similarly, a participant can decide to cancel his order through a cancel order and
the placement engine removes his entry from that queue.

Market Orders
When a participant sends an order to buy a certain quantity q regardless of the

price, called a market order, a matching engine fills his order with the ask orders
present at the best ask. The entire volume of the market order always gets executed
even if it needs several matching ask limit orders to satisfy it. A similar situation
can occur in the event of a buy limit order with a price higher or equal than the
best ask. These are calledmarketable limit orders and we rarely distinguish them
from market orders. However, it is interesting to note that in this case, only ask
orders whose prices are less or equal than the buy limit price will get executed. If
any volume of the buy limit order is left, it will be placed in the orderbook as a
new limit order and effectively becoming the new best bid.

Without the arrival of news orders (limit, market and cancel), the market is
frozen in time. No new information is relayed, except the trivial time duration
elapsed since the last order. Therefore, the process of price formation is basically
the result of the dynamics of these various types of orders and their interactions.
Thus a theory of prices can be achieved by modeling the dynamics of orders, in other
words modeling the dynamics of the orderbook. We will discuss this modeling
approach in more details in section 1.4, after we have presented other pertinent
information about the orderbook.

Order Matching Algorithm
In our work, most of the markets are First In First Out markets (FIFO). This

means that there is a time priority rule in the matching of orders. In particular,
this means that in the event of two market participants having similar bids or asks,
execution priority is given to whomever made his preferences known first. The
orderbook keeps track of the age of the limit orders on each price level and gives
the older orders priority in execution. When a market order needs more than one
limit order to be entirely filled, the oldest orders get filled first, followed by the
newer ones. If all the limit orders at the best ask are filled, the matching starts
with the oldest order of the immediately higher price, which has effectively become
the new best ask. So, a succession of trades at increasingly higher prices is triggered,
one for each different filled limit order, until all the totality of the market order’s
volume is filled.

This version is adopted by most electronic markets with some few exceptions. A
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pro rata matching, where the orders are executed proportionally to their quantity,
is also common (cf [1] for a detailed look at the different matching algorithms
used at the Chicago Mercantile Exchange). However, these differences are of no
importance to our presentation. In fact, when required, we only use the total
number of shares available at a particular price level and do not pay any attention
to their decomposition by limit orders. This is also reflected in the way we handle
our data in section 1.5. Indeed, when one market order hits several limit orders
it results in several trades being reported, one for each limit order counterpart.
In practice, we aggregate together all such transactions and consider them as one
trade whose size is the size of the market order and whose price is the price of the
last limit order filled.

The Tick Value
The market fixes a price grid on which traders can place their prices. The grid

step is the smallest interval between two prices and it is called the tick value. It
is measured in the currency of the asset. For a given security, it is safe to consider
this grid to be evenly spaced even though the market may change it at times. In
some markets the spacing of the grid can depend on the price. For example, stocks
trading on the Euronext in Paris have a price dependent tick scheme. Stocks priced
0 to 9.999 e have a tick size of 0.001 e but all stocks above 10 e have a tick
of 0.005 e. In our work we made sure to choose assets whose tick value does not
change with the price and we were careful to keep track of exchange rules changes
regarding this variable.

Published Orderbook Snapshot
In general the exchange publishes snapshots of the orderbook as often as possi-

ble. What the traders receive as information varies with the rules of the exchange,
but the most important thing is that they see the total amount of shares available
at a significant number of price levels (ticks) below the best bid and above the
best ask. Depending on the market, the exchange will typically publish the total
number of shares available 5 or 10 price levels (with non zero volume) deeper than
the best bid or ask. A picture of what an orderbook looks like for a market partic-
ipant is shown in Figure 1.1. It shows a snapshot of the March 2009 DAX futures
orderbook on February 16 2009. There are 10 price levels for buy limit orders and
10 price levels for sell limit orders. The grid where the prices can be put is shown
clearly and the tick value in this case is easily seen to be 0.5 e. To make the figure
easier to read, we display the negative of the buy limit quantities (blue bars on the
left) while keeping the sell limit quantities (red bars on the right) positive. The
best bid is the pair (3 shares, 4365.5 e) and the best ask is (3 shares, 4368 e), and
the spread is 2.5 e or 5 ticks.

Within each price level, there might be several orders; we represent each limit



CHAPTER 1. INTRODUCTION 16

order by its own rectangle. The abscissa of the rectangle is the price of the limit
order, while its length is the quantity of the limit order. At each price level, the
total length of the bar is the total number of shares available to be bought or sold
at the price level.

4361 4361.5 4362 4362.5 4363 4363.5 4364 4364.5 4365 4365.5 4366 4366.5 4367 4367.5 4368 4368.5 4369 4369.5 4370 4370.5 4371 4371.5 4372 4372.5
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Figure 1.1: A graphical snapshot of the orderbook of the March 2009 DAX fu-
ture contract on February 16 at time 13:22:48.165. The EUREX exchange only
publishes the first 10 levels of each side the orderbook at any given time, and it
does not publish the different orders composing each price levels. We show here a
hypothetical distribution of different limit orders within each price level.

Liquidity
The liquidity of the market is a term used to describe the cost of trading in the

market. Direct Transaction costs are defined as the cost differential between the
actual price paid for a certain trade and the observed midpoint price at the moment
the decision to trade was taken. A market where large quantities can be bought and
sold with few transaction costs is called a liquid market. A small bid-ask spread,
large quantities of shares available for trading, a deep orderbook, fast arrivals of new



CHAPTER 1. INTRODUCTION 17

limit orders; all reflect that the market is liquid and imply little transaction costs.
More generally though, transaction costs are not limited to direct ones such as the
ones implied by the spread or the depth of book, they also include the reaction of
the market to any particular order. This is commonly known as market impact
and we discuss it in more details in section 1.4.

Now that we have presented the most important market mechanisms and defined
the market microstructure in which we place ourselves, we discuss the notion of tick
size. It is a relative measure of the absolute tick value presented in section 1.2.2
and it is often seen as a qualitative notion that depends on the trader’s aversion to
a price movement of one tick.

1.3 Tick Size

We present in this section our thoughts on the tick size. We thought it pertinent
to assign a whole section of the introduction to this notion and not put it in the
previous section because of its importance as a general basis for the analysis of
our data and results. Indeed, in chapters 2 and 3, we present and interpret the
results as a function of the tick size. Furthermore, the tick size was used as an
order relation to classify assets that trade on different markets and have different
characteristics. In the following, we give an intuitive qualitative definition of the
tick size and give our opinion as to why we think it is important to use it as a
backbone for the analysis of our results. We then move to provide a quantitative
definition of the tick size, which will allow us to use it as an order relation. Finally,
we give descriptive statistics that show the effect of the tick size in practice.

As we explain in section 1.2.2, the tick value is a standard characteristic of any
asset and is measured in its currency. It is the smallest increment by which the price
can move. In all our work, all variations of transaction prices are normalized by
the tick value and expressed in ticks (integers). Similarly, all variations of midpoint
prices are expressed in half ticks (half integers).

As one can see in table 1.1, column Tick Value2, our assets have very different
tick values, corresponding to different contract sizes, and denominated in different
currencies. In order to bring these assets on the same level, we qualitatively intro-
duce the notion of tick size: A trader considers that an asset has a small tick when
he "feels" it to be negligible, in other words, when he is not averse at all to price

2The Tick Value expressed in the table factors in the lot size i.e. the minimal number of shares
that can be exchanged with one trade. That is why the tick of the DAX (lot size is 25 shares)
is 12.5 e in table 1.1, while we said it was 0.5 e in section 1.2.2. This number reflects more
accurately the minimal possible increment between two prices, as traders would have to exchange
assets by the lot size and not by individual shares and we use it as the tick value throughout this
work.
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variations of the order of a single tick. In general then, the trader’s perception of
the tick is qualitative and empirical, and depends on many parameters such as the
tick value, the price and the usual amounts traded in the asset and even his own
trading strategy. All this leads to the counter-intuitive though very well known
remark : the tick value is not an good absolute measure of the perceived size of the
tick. It has to be viewed relatively to other market statistics. For instance, every
trader "considers" that the ESX index futures has a much greater tick than the
DAX index futures though the tick values are of the same orders (cf table 1.1).

We now give some quantitative aspect of the tick size. Indeed, there have
been several attempts to quantify the perceived tick size. Kockelkoren, Eisler and
Bouchaud in [33], write that "large tick stocks are such that the bid-ask spread
is almost always equal to one tick, while small tick stocks have spreads that are
typically a few ticks".

Following these lines, in chapter 2 of the thesis, we calculate the number of
times (observed at times ti) the spread is equal to 1 tick:

P= =
#{i, sti = 1}

N
(1.1)

where N is total number of trades in the sample, i represent the ith trade, ti its
time, and sti the value of the observed spread when the trade occurred. We show
the results in table 1.1. According to this criterion, SP futures have the largest
tick, with the spread equal to 1 99.8% of the time, whereas the DAX futures have
the smallest tick. We use this criterion to classify our assets in part in chapter 2 of
the thesis.

In a different approach, Robert and Rosenbaum in [76] introduce a model for
ultra high frequency data with a parameter η quantifying the perceived tick size.
They show that this parameter can easily be estimated in the following way. In
a sample of non null price variations in ticks observed over the time [0, T ], they
classify each price variation as either a k-alternation or a k-continuation (k ∈ N).
A k-continuation is a price variation of size k ticks whose direction is the same as
the one of the preceding variation. A k-alternation is a price variation of size k
ticks whose direction is opposite to the one of the preceding variation. If Na

k is the
number of k-alternations and N c

k be the number of k-continuation, they define η̂,
an estimator of η, by

η̂ =
m∑
k=1

λkuk (1.2)
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where m is the maximal absolute return variation observed in the sample and

uk =
1

2
(k(

N c
k

Na
k

− 1) + 1)

are estimators of η for each k and

λk =
Na
k +N c

k∑m
k=1N

a
k +N c

k

are weighting factors.

A simpler version of η̂ that uses only the variations of 1 tick can be used in
general and this is the definition we use in chapter 2 and 3 of this work. In this
case η̂ is reduced to:

η̂ =
N c

1

2Na
1

. (1.3)

The parameter η is intended to represent the aversion to price changes. If η is
small, the price will be mainly doing alternations, also known as bid ask bounces.
This translates into a large tick, because in this case market participants are more
averse to changes in the midpoint price. If they are market makers3 then they are
satisfied by keeping the spread collapsed to the minimum (1 tick) and collecting the
spread. If they are market takers4 then a movement of only one price level is very
significant for them and they are satisfied to keep trading at constant current levels.
As this is put in [75], all market participants "feel more comfortable when the asset
price is constant than when it is moving". So the best bid and ask price levels (and
hence the midpoint price) would only move when it becomes clear that the current
price level is unsustainable. Indeed, in section 2 we show that the probability of
times the midpoint return is null is related to both the notion of a collapsed spread
as defined in equation (1.1) and the η defined in equation (3.12).

To illustrate our thought, in table 1.1, we give for each asset during June 2009,
an estimation of η and P= along with other descriptive statistics and see that the
rankings of the assets using this criterion almost matches the ranking using [33]’s
P= criterion.

3Market makers are patient traders who prefer to send limit orders and wait to be executed,
thus avoiding to cross the spread but taking on volatility risk.

4Market takers are impatient traders who prefer to send market orders and get immediate
execution, thus avoiding volatility risk but crossing the spread in the process.
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Naturally, these observations have an important consequence for the asset’s
return distribution. Most importantly, the distribution function of a small tick
asset has a much bigger support and fatter tails than that of a large tick asset (cf
the difference in the probability distribution functions of the BUS5 futures against
that of the SP futures for example in Figure 3.9). Other straightforward remarks
that one can observe about the effect of the tick size on the distribution of returns
include the increase in the probability of null midpoint returns (cf Figure 3.17) and
the higher number of significant autocorrelation lags (cf Figure 3.15) as the tick
size increases. This is a direct consequence of the increase in the proportion of
alternations to continuations. Some of these properties were indeed noticed in [68]
and require a more detailed presentation in a later work.

Finally, we point out that in the model for discrete prices studied in chapter 3,
we come across a statistic that is conceptually very similar to η and behaves in a
similar way as the tick size changes.

Throughout this work, some less straightforward influences of the tick size on
the distribution of returns appear. Hence, we analyze and present our finding in
this scope. We refer to chapter 2 and 3 for more details as it is too early to discuss
these findings at this point.

1.4 Background and Models

A lot of information is contained in the orderbook and studying it opened a
world of quite new research [20]. This research is intimately tied to the theory of
transaction costs [19]. For example, the bid-ask spread is seen as a transaction
cost, since the sender of a market order would have to pay a premium for instant
execution. The depth of the orderbook is also a transaction cost, since the sender
of a large market order would have to pay a premium for full execution. As we
discussed in section 1.2.2-paragraph Liquidity, the most straightforward costs of
trading constitute direct transaction costs that the trader can observe and assess
at the moment of execution. However, a trader is also wary of how the market will
react to his own intervention in the market, and consequently, the future value of
his trades.

One question that always haunts any trader is "what will happen after I execute
a trade"? Indeed, while the trader does worry about direct transaction costs (see
section 1.2.2) and tries his best to reduce them, the value of the asset he holds de-
pends on the dynamics of the market after his trade is completed. When the trader
intervenes in the market, his action in itself is a new information that the market
will incorporate. Hence, the market will behave differently after his intervention
from how it would have behaved otherwise. So he is keen to know or even control
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the future behavior after his trade, and minimize the effect on the market caused
by his own trading. This overall difference in market behavior is called market
impact. In particular, it can be quantified as a difference in prices, between the
midpoint price at the time of the intervention, and the midpoint price at some time
in the future. Seen in this light, the market impact is a transaction cost.

1.4.1 Transaction Impact Models

During the past decade, the explosion of the amount of available data associated
with electronic markets has permitted important progress in the description of
price fluctuations at the microstructure level. In particular the pioneering works
of Farmer, Lillo et al. [54, 38, 43, 37] and Bouchaud et al. [22, 21, 33] relying on
the analysis of orderbook data, have provided new insights in the understanding
of the complex mechanism of price formation (see e.g [20] for a recent review).
A central quantity in these works and in most approaches that aim at modeling
prices at their microscopic level, is the market impact function, which describes the
average response of prices to "events" (trade, limit and cancel orders). Indeed, the
price value of some asset is obtained from its cumulated variations caused by the
(random) action of sell/buy market orders. In that respect, the price dynamics is
formulated as a discrete "trading time" model like:

pn =
∑
i<n

G(n− i, Vi)εi + diffusion (1.4)

where n and i are transaction "times", i.e., integer indices of market orders. Vi is the
quantity traded at index i, εi is the sign of the ith market order (εi = −1 if selling
and εi = +1 if buying). The function G(k, V ) is the bare impact corresponding
to the average impact after k trades of a single trade of volume V (cf [41] for a
detailed review of these models).

Among all significant results obtained within such a description, one can cite
the weak dependence of impact on the volume of market orders, i.e., G(n, V ) ∼
G(n) lnV , the long-range correlated nature of the sign of the consecutive trades
εi and the resulting non-permanent power-law decay of impact function G(n) [20].
Beyond their ability to reproduce most high frequency stylized facts, models like
(2.1) or their continuous counterparts [6] have proven to be extremely interesting
because of their ability to control the market impact of a given high frequency
strategy and to optimize its execution cost [40].
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1.4.2 Orderbook Models

Building a model that replicates empirical behavior of prices at the smallest
of scales as well as the largest scales, naturally leads to modeling the dynamics of
the different orders and their interactions. If we observe how the exchange works
(section 1.2.2) we can see that the orders’ interactions are governed by a rigid
framework that guides the flow of information. This framework is the orderbook,
and can be summed up by three simple interactions: limit orders arrive and fill
different predetermined price levels. Cancel orders arrive and remove the limit
orders from the orderbook. Market orders consume limit orders that are on one
particular price level: to top of book (the best bid or best ask). So at every price
level we have a birth-death phenomena where elements are born by the arrival of
new limit orders and die according to the arrival of cancel and market orders. The
whole process can be summarized as the arrival at random times of three marked
point processes where the mark is size for market orders, price and size for limit
orders and price and size for cancel orders.

There is a substantial number of work made in the direction of modeling these
three interactions (cf [81, 20] and the references therein). Among those, we mention
early attempts in [60, 27, 31, 18] which do a good job in replicating and predicting
the behavior at the top of the book, such as the the spread, the depth of the best
bid and ask, and probabilities of execution per unit time. However they do no
capture actual price statistics, such as the variance of price returns, since the price
was considered as an exogenous variable and the orderbook as a stationary process
around it. On the other hand, models such in [11, 34, 82, 59, 80] addressed the
price dynamics and considered the influence of the order flow on the price formation.
However, these models focus mainly on explaining the variance of prices and pay
secondary attention to direct consequences over the trading microstructure like the
spread and the depth of book.

In [29], the authors provide a model that fills that gap. They provide a model
that allows for the formation of the price as a consequence of the order flow and
thus making the price a variable that is truly "formed" by the flow. This gives the
advantage of recuperating immediate first order consequences of the order flow, as
well as indirect second order consequences, such as the diffusive property of prices
(cf [29, 81, 39]). We present in the following a quick review of their work.

Zero Intelligence

In this presentation, we describe the workings of the model for the sell limit
orderbook and it is similar for the buy limit part. Hence, all market orders here
are buy market orders and all limit orders are sell limit orders. For simplicity, the
size of all orders has been reduced to 1, as was the tick value.
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The arrival of limit orders is described as a Poisson process with constant in-
tensity λ at each price level. The process of arrivals of all limit orders can be
seen as a "Poisson" process at a rate λ share per unit price and per unit time and
whose price is chosen "uniformly" from [a,∞[ where a is the price of the best ask.
Thus λ is not a straightforward Poisson intensity as it has a physical dimension of
shares/(price.time).

Each limit order comes with an independent Poisson process of constant inten-
sity δ attached to it. This process serves as the cancelation process, allowing the
limit order to be canceled with a probability δ per unit time. This means that each
new limit order gets canceled at the time of first arrival of a Poisson process of
intensity δ. δ has a physical dimension of 1/time.

Finally, market orders hit only the best ask and they arrive according to an
independent Poisson process with constant intensity µ. µ has a physical dimension
of shares/time. Since the sizes of all orders have been reduced to 1, then each
market order consumes only one limit order.

In short the quantity available at each tick price level is a birth death process,
with a birth intensity described by λ, and the death intensity depends on the price
level. If the price level is the best ask, then the death rate involves both the market
orders rate and the cancel rate. If not, then it only involves the cancel rate.

This model can accurately predict some statistics of the orderbook that were
traditionally considered as exogenous, such as the variance, the depth of book,
the bid-ask spread, the price impact, and the probability and time to fill. Using
dimensional analysis followed by a mean field analysis, the authors in [81] find that
the spread is equivalent to µ

λ
, the asymptotic volume depth of the book to λ

δ
and the

variance to µ2δ
λ2 . Furthermore, when confronted with real data in [39], the authors

show that the model accurately predicts the empirical spread, and to a good extent
the variance of financial assets. Furthermore, they show that the model produces
a plausible market impact function.

The importance of this model lies in its mechanistic simplicity. Indeed, using
very few parameters, and very little hypothesis about the behavior of agents or
their strategies, they were able to create a bottom-up model that reproduce many
empirical observations in the market. This completely transforms the modeling
approach. At this level, they are modeling the most basic blocks in the process of
price formation and the process of the price becomes a product of the combination
of these elements. Furthermore, this modeling approach proves that some statistics
are just regulated by the mechanics of the market regardless of the agents’ behavior.
Indeed, there are no assumptions made on the traders active in this framework, as
orders arrive randomly in time, and are independent of each others and of the past.
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Hence the model is called a Zero Intelligence market model, which reflects the
lack of strategy of those sending the orders.

1.4.3 Relationship to Our Work

We find the modeling approach presented above particularly appealing. First,
we relish the idea of having models that are built from the ground up as they are in
good position to replicate market behavior over multiple observation scales, from
fine scales to coarse scales in particular. In this framework, the modeling frontier is
pushed to the most elementary level by modeling the arrival of different orders and
their interactions. The price therefore becomes a byproduct of the inner workings
of the model.

We also appreciate the fact that these models are conceptually simple and im-
itate realistically the workings of the market and do not make any assumptions
about what is not observable, like the traders’ strategies or behavior. Hence, their
input parameters can be directly estimated from observing the market. The results
of the models, when compared against real data, would be interpreted in light of
assumed participants’ behavior, but the behavior is never a parameter of the model.

In this work, we pretend to bring additional elements that contribute to the
understanding of a fine to coarse model. For instance, if we look at the models
described in section 1.4.1 equation (2.1), we notice that physical time does not play
any role in the way market prices vary from trade to trade. This implies notably that
the variance per trade (or per unit of volume traded) is constant and therefore that
the volatility over a fixed physical time scale, is only dependent on the number of
trades. In chapter 2 of the thesis, we critically examine this underlying assumption
and provide empirical evidence portraying in what way this is assumption is broken.

We follow in chapter 3 with a simple model that mimics the random arrivals
of trades whose prices present a mean reverting behavior at the fine scale, that
vanishes at coarse scales. Tested against real data, the model was able to replicate
multiscale empirical observations on the variance and the autocorrelation of trade
prices. This also provides a new way to look at the tick size as defined in section
1.2.2.

Finally, chapter 4 studies a statistical method to estimate a powerful class of
point processes. Inspired by previous work on modeling mutually and self exciting
processes [9] and convinced by their potential in modeling the arrival of orders, we
provide a non parametric moment method to estimate the decay kernel of these
processes.

We introduce the works in section 1.6 of this introduction and present them in
details in parts 2, 3 and 4. But now let’s introduce the data we worked with.
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The database we use is extensive, covering several world markets and different
Futures asset classes that we describe in detail in section 1.5.

1.5 Data Presentation

The large scope of the data is necessary to show the universality of our findings,
in electronic double auctions at least. Thus, we restrict our analysis to assets
that trade in markets that match the framework of the electronic double auction
described above (section 1.2).

In particular, we use level 15 data6 of 10 futures contracts on assets of different
classes that trade in different exchanges. The data has millisecond accuracy and
was recorded over the past three years. In chapter 2 we have a date range going
from 2008/08 till 2010/03, in chapter 3 we mainly use data from June 2009, and in
chapter 4 we use data from October 2009.

On the EUREX exchange, localized in Zürich, Switzerland, we use futures on
the DAX index (DAX) and on the EURO-STOXX 50 index (ESX), and on three
interest rates based on German government debt: 10-years Euro-Bund (Bund),
5-years Euro-Bobl (Bobl) and the 2-years Euro-Schatz (Schatz). On the CBOT
exchange, localized in Chicago, US, we use the futures on the Dow Jones index
(DJ) and the 5-Year U.S. Treasury Note Futures (BUS5). On the CME, also in
Chicago, US, we use the forex EUR/USD futures (EURO) and the the futures on
the SP500 index (SP). Finally we use the Light Sweet Crude Oil Futures (CL) that
trades on the NYMEX, localized in New-York, US. As for their asset classes, the
DAX, ESX, DJ, and SP are equity futures, the Bobl, Schatz, Bund, and BUS5 are
fixed income futures, the EURO is a foreign exchange futures and finally the CL is
an energy futures. This information is summarized in table 1.1.

A futures contract is a contract allowing the purchase of an underlying physical
good (be that a government bond, natural gas tankers, stocks or currency) on a
future settlement date, at a price determined in the present [23]. It allows the
traders of these contracts to secure the price of the good that they will physically
deliver or receive at the settlement date. Therefore at any particular time, there may
exist infinitely many contracts, one for every conceivable future settlement date. On
an exchange however, settlement dates are standardized, one every three months
(March, June, September and December) and generally three future settlement
months are trading at the same time. We dealt with this issue by keeping, on each

5Level 1 data covers only what happens at the first level of the orderbook: every single market
order is reported along with any change in the price or in the quantity at the best bid or the best
ask price.

6Data provided by QuantHouse data providers. http://www.quanthouse.com/
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day, the contract that recorded the most number of trades and, discarding the other
maturities.

We also remind that when one market order hits several limit orders it results
in several trades being reported (section 1.2.2). We aggregate together all such
transactions and consider them as one market order whose size is the the sum of
the volumes of all the reported trades and whose price is the price of the last limit
order filled.

We refer the reader to table 1.1 for a summary of the information presented
above and some simple statistics about the assets, such as the daily trading session,
the average number of trades per day, and the proxies for the tick size η and P=.
We can see in that table that the assets are not homogenous: they have different
exchanges (CBOT, CME, EUREX and NYMEX), different classes (Energy, Equity,
Foreign Exchange and Interest Rates), different tick values and currency (e.g. DAX:
12.5e, DJ: 5$), different daily trading sessions, and different trading behavior:
average trades per day (e.g. Schatz: 10000 trades per day, SP: 100000 trades per
day) and different tick sizes (e.g. DAX: small, DJ: large). Throughout this work,
we rely on this diversity in order to confirm the universality of our findings.

Futures Exchange Class Tick Value Session # Trades/Day 1/2-η P=

DAX EUREX Equity 12.5e 8:00-17:30 56065 0.082 67.9
CL NYMEX Energy 10$ 8:00-13:30 76173 0.188 79.8
DJ CBOT Equity 5$ 8:30-15:15 36981 0.227 92.2
BUS5 CBOT Interest Rate 7.8125$ 7:20-14:00 22245 0.288 95.1
EURO CME Foreign Exchange 12.5$ 7:20-14:00 42271 0.252 95.2
Bund EUREX Interest Rate 10e 8:00-17:15 30727 0.335 97.6
Bobl EUREX Interest Rate 10e 8:00-17:15 14054 0.352 99.1
ESX EUREX Equity 10e 8:00-17:30 55083 0.392 99.2
Schatz EUREX Interest Rate 5e 8:00-17:15 10521 0.385 99.4
SP CME Equity 12.5$ 8:30-15:15 97727 0.464 99.8

Table 1.1: Data Statistics. The assets are listed from top to bottom following the
increasing order of the P= column (see section 1.3), i.e., from the smaller (top) to the
greater (bottom) "perceived" tick size. The Exchange column contains the exchange
where the asset trades. The Class column contains the asset class of the underlying.
The Tick Value column contains minimum possible price change in value (expressed
in the local currency). The Session column indicates the considered trading hours
(local time). The # Trades/Day is the average of the daily number of trades. η
is the aversion to price change (section 1.3). P= is defined in equation (1.1) and
reported here in percent.
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1.6 Thesis Results

We introduce in this section the thesis results. We go over the main questions
that we raised and present our main conclusions.

In section 1.6.1, we show that the average variance created by one trade depends
on the instantaneous rate of trading. This means that the distribution of transaction
time returns is dependent on the intertrade durations.

In section 1.6.2, we give a price model with random trade arrival times and
integer price returns that presents a mean reverting behavior at fine scales and
a diffusive behavior at coarse scales. This model is able to capture the variance
signature effect and the tick returns autocorrelation.

In section 1.6.3, we give a non-parametric spectral method to estimate the decay
kernels of mutually exciting point processes.

1.6.1 Intensity of Trading and the Orderbook

As we have pointed in section 1.4, we have seen in recent years the development
of what is usually referred to as transaction time models. Early works on alternative
time clocks [56, 26] show that an asset price can be modeled as a Brownian motion
with an alternative time clock Xt = Bτt where Bt is the Brownian motion and
τt a stochastic time clock independent of Bt [43]. Since then, a lot of research has
been made in effort to find the best plausible time clock τt ([84] and the references
therein) and today, there is a general consensus that the cumulated number of
transactions is a good choice for the time clock τ ([7, 28]). This transaction time
clock is rightfully seen to account for the highly intermittent nature of the volatility,
a feature that manifests itself at practically all time scales, from intradaily scales
(where periods of intense variations are observed, for instance around publications
of important news), to monthly scales ([23, 28]).

In [43], the authors critically examine this view about transaction time. They
show that while the transaction time clock is indeed an adequate Brownian subor-
dination, it does not account for the clustered nature of the volatility nor for large
price movements. Our article sheds a different light on the matter by looking at
what role the physical time still plays in the series of prices, even as we look at
the data in transaction time. In fact, the transaction time subordinated Brownian
motion model suggests that the physical time does not play any role in the way
prices vary from trade to trade. This implies notably that the variance per trade
is constant as a function of the physical time and therefore that the volatility over
a fixed physical time scale, is only dependent on the number of trades.
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We present in our work empirical evidence showing to what extent transaction
time models are able to explain volatility, and show the limit of such hypothesis.
Using the extensive database presented in section 1.5 for a dozen high frequency
Futures prices of varying tick sizes, we calculate the conditional first and second
moments of various market statistics against the instantaneous rate of trading. We
present the results graphically and show that the variance per trade, among other
orderbook statistics, increases in a peculiar way as the speed of trading increases.
We summarize the results below.

Realized Variance per Trade

In section 2.3, we define the Realized Variance per Trade. For a series ofN trades
spanning a duration of ∆t, the variance per trade is the total realized variance
divided by the number of trades. It is meant to represent the average variance
contribution of one trade to the variance of the whole price process. Formally we
go about it in the following way.

Let ∆t be an intraday time scale and let N be a number of trades. We define
V (∆t, N) as the estimated price variance over the scale ∆t conditioned by the fact
that N trades occurred, or inversely, the estimated price variance of N trades,
conditioned by the fact that they occurred during ∆t seconds.

So, when ∆t = ∆t0 is fixed and N is varying, V (∆t = ∆t0, N) is seen as:

V (∆t = ∆t0, N) = E
[
(pt+∆t0 − pt)2 | NT [t, t+ ∆t0] ∈ [N − δN , N + δN ]

]
(1.5)

where E is the historical average, NT [t, t+∆t0] corresponds to the number of trades
in the time interval [t, t+ ∆t0] and δN is some transactional bin size.

Along the same line, when N = N0 is fixed and ∆t is varying, one defines a
temporal bin size δ∆t and computes V (∆t, N = N0) as

V (∆t, N = N0) = E
[
(pti+N0

− pti)2 | ti−1+N0 − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]
]

(1.6)

where i is the index of the ith trade and ti its time.

Finally, we define the corresponding conditionalRealized Variance per Trade
as:

v(∆t, N) =
V (∆t, N)

N
(1.7)
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We perform a certain number of numerical experiences summarized below.

Realized Variance is Linearly Correlated to the Number of Trades
The first thing we do is confirm the idea that the number of trades is indeed a

good explanation for the volatility fluctuation. We do this by dividing the trading
days into 5 minutes non overlapping intervals and looking at some measure of the
realized variance during these 5 minutes. We clearly see what others have confirmed
before (see for eg. [28]) that realized variance is indeed linearly correlated to the
number of trades (cf Figure 2.1 and Figure 2.2).

However, these observations do not show what happens at the "second order".
Indeed, if we believe this linear relationship to be true, then the realized variance
per trade v(∆t, N) (Eq. (1.7)) must be constant when N is held constant. As a
function of ∆t, any dependence that does not look like a random noise suggests
that a second order contribution of the rate of trading is being ignored.

This is what we find in the early test with 5 minutes interval bin (Figure 2.2).
We find that the constant variance per trade hypothesis works well for most trading
regimes, but that it breaks down when the rate of incoming market orders becomes
high.

Impact of a Single Trade
Our motivation of taking a bottom up approach to modeling instead of a top

down one have pushed us into looking at the impact of a single trade on the following
price change. We do this in section 2.4 for the many futures assets present in our
database.

In this presentation, we show the results for the large tick asset SP. In Figure 1.2
below, we show how the variance of the return rti = pti+1

− pti behaves when
conditioned by ti − ti−1, the time elapsed since the previous transaction. We see
that the obtained curve has a peak of 0.1 ticks2 for very small ∆t and stabilizes
around an asymptotic constant value of 0.005 ticks2 for larger ∆t. This represents
a 2000% increase above the asymptote. If we think of the asymptote as a regime
where the variance is linearly related to the number of trade, then this figure shows
that the actual behavior presents a significant break from this regime!
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Figure 1.2: v(∆t, N = 1) as a function of ∆t over very short ∆t’s for SP. The
variance per trade increases dramatically below ∆t ≈ 30 ms. The results for the
other assets are shown in Figure 2.5

In order to further investigate this behavior, we try to give an idea about the
distribution of the returns across different states of market activity. We do this
by answering the question of whether the price moves more strongly or more often
when the rate of trading varies. So we concern ourselves with the variable of tick
returns conditioned to having non null returns, and find that the variance per trade
of this variable is constant across all periods of market activity (Figure 2.7). This
result is particularly true for large tick assets where the orderbook is always well
furnished and where it is extremely rare for a trade to penetrate more than one
level of it. This result mirrors [43]’s finding that the tails of the returns distribution
cannot be explained by fluctuations in market activity. In fact, the distribution of
returns and that of returns conditioned to them being non null have the same tails.
So, while the tails cannot be explained by market activity, our result shows that on
average the size of the price movement is also independent of market activity.

This observation is compatible with the general knowledge that even "impa-
tient" traders (those who would rather send market orders and be filled immedi-
ately rather than send limit orders and wait for a market order to fill them) almost
never send orders that consume more than what is available at the top of the book.
Even if they have a large quantity to trade, they tend to wait for the consumed top
of book to refill before trying to execute again. They do this in an effort to hide
their intentions from the rest of the market, reduce their immediate execution cost,
and potentially their future market impact [6]. So if the market is active enough,



CHAPTER 1. INTRODUCTION 31

0 1 2 7 20 54 148 403 1096 2980
0

0.02

0.04

0.06

0.08

0.1

0.12

Faster Trading ← ∆t (ms) → Slower Trading

P
(∆

t)

SP

(a) Probability

20 33 55 90 148 245 403 665 1097
1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

Faster Trading ← ∆t/100 (ms) → Slower Trading

S
(∆

t,
N

=
1
0
0
)
(t
ic
k
)

SP

(b) Spread

Figure 1.3: For the large tick asset SP. The plot on the left (1.3a) is the probability
P (∆t) as defined by (1.8) as a function of ∆t. We see that the probability of
getting a price move increases with market order rate and entirely responsible for
the increase in variance seen in Figure 1.2. The plot on the right (1.3b) is the
average spread over N = 100 trades, as a function of ∆t/100. The form of the
curve confirms the decrease in liquidity when the trading rate is increasing.

and the top of book is refilled fast enough, such traders are able to send many
orders in a very short time that are large enough to consume the top of the book,
but not large enough to consume the second level. This idea is seen in Figure 2.6,
and reproduced here for the large tick asset SP in Figure 1.3. Defining P (∆t) as
the probability for the return to be non zero conditioned by the intertrade duration
ti − ti−1 = ∆t,

P (∆t) = Prob{rti 6= 0 | ti − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]} (1.8)

we show in Figure 1.3a that the frequency of price movement seen as a function of
market activity increases as the rate of trading increases and is basically respon-
sible for the behavior observed on the variance in Figure 1.2. See Figure 2.7 in
subsection 2.4.2 for the plots of other assets.

As a consequence of these observations, one can say that the variance increase
in high trading rate period is mostly caused by the increase in the probability that
a market order moves the price by absorbing only the first level of the book (best
bid or best ask). There is hardly any perforation of the book in the deeper levels.
See subsection 2.4.1 for a more detailed discussion.

Before we move to the next section, we want to point out that the form of
the variance curves observed is quasi universal (see figures 2.5, 2.6, 2.8). One
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qualitatively observes over all assets, that the variance is almost constant over a
large range of relatively slow rates of trading (or increases very slowly) and then
suffers an explosion as ∆t becomes smaller than a certain threshold. This behavior
can be interpreted as a sudden disappearance of liquidity that we qualify by "mini
liquidity crisis". We have some speculation about the origin of these crises but
further research is required to confirm our thoughts. We elaborate on this point in
the conclusion part of this introduction (section 1.6.1). But first, let us review our
results for coarse scales.

Impact of Several Concatenated Trades
In the spirit of our bottom up approach to financial modeling, we then move

to explore how this phenomenon builds up into the coarse scales. So we look at
the situation when we aggregate the trades in section 2.5.1. We check whether the
variance averaged locally over a large number of trades still displays a dependence
with respect to the trading rate and similarly, we find that an increase in the
trading rate is also reflected by an increase in the variance per trade. However,
we also see that this effect is dampened, as the increase in the variance is less
pronounced quantitatively. Also, the curves in figures 2.9 and 2.10 do not display
the threshold-like behavior of the single trade curves and go smoothly from small to
large values as the trading rate increases. This indicates that while not all activity
fluctuation is transmitted to the coarse time variance, part of it is. To put it in
[20]’s terms, the market slowly "digest" the fluctuations in demand and it will take
an averaging over much coarser scales in order for the variance-activity dependance
to disappear.

Liquidity

The final result that we present is a look at the average spread over N trades
in section 2.5.2. We see in Figure 2.11 a relationship that is similar to the one
observed for the variance: an overall increase of the spread value with the rate of
trading for all assets suggesting that the orderbook is thinner during periods of
intense trading. We reproduce this observation in Figure 1.3b.

This observation is compatible with [87], where the authors shows that the
average spread is linked to the variance per trade through a two-way feedback. The
first one relies on the fact that when the spread is high, the orderbook is thin and
the gap between the first level and the second level of the book is equivalent to
the spread. Moreover, movements of the price are the result of a change in the
top of book, from its current value to the value at the second level of the book.
Therefore, any price change would have to be proportional to the spread. As a
consequence, the volatility per trade is also proportional to the spread. The second
feedback relies on an arbitrage analysis by the market maker. In periods of large



CHAPTER 1. INTRODUCTION 33

volatility, the risk for the market maker is increased. He compensates for that risk
by increasing the spread.

In all cases, an increase in the spread is synonymous with a decrease in the
available liquidity.

However, our work with the single trade impact of the rate of trading show that
the increase in the variance per trade comes from the number of price moves as
opposed to their amplitude. This is true for all the assets except ones with very
small ticks (primarily the DAX - see figures 2.6 and 2.7). So while the interpretation
of a deeper book penetration is compatible with very small tick assets like the
DAX, it does not hold for other ones because the book does not get penetrated by
more than one level (as this is seen from the amplitude of non null price returns
in Figure 2.7). So what is really going on? We reflect on this problem in our
concluding remarks.

Conclusion and Further Research

Using an extensive Futures database covering many asset classes across different
exchanges and displaying different tick sizes we clearly show that the distribution
of price returns changes significantly and systematically with the rate of trading.
Starting with the intention to shed a light on the underlying assumption behind
transaction time models, namely the idea that transaction time is a good Brownian
subordinator for the series of prices, we find that there is a positive correlation be-
tween the variance per trade and the rate of trading. We show this by sampling the
trading day with constant trade intervals and looking at the time elapsed between
the first trade and the last trade of that interval. We show results for the finest
scale of N = 1 trade as well as the coarser scales of N = 100, 200.

As we have mentioned in the above paragraphs, we see that the increase in
variance during periods of high activity is due to the increase in the probability of
getting a price movement, and not to the amplitude of the movement. This is true
except for the assets with the smallest ticks. This means that trades that penetrate
the book by more than one level are extremely rare.

While this means that most of our results are not compatible with the first
part of [87]’s two-way feedback effect because most of the assets we considered
have ticks that are too large, they are still compatible with the second feedback
effect of the market maker increasing his spread in response to the increase in total
variance created by the additional arrival of trades. Hence, an increase in the total
realized variance translates into an increase in the variance per trade by means of
the market maker’s strategy. At coarse scale, the smooth form of the spread curves
in Figure 2.11, suggest the existence of a strategy dictating the average spread for
each trading rate.
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However, the form of the curves at N = 1 makes us dubious about this inter-
pretation. Figures 2.6 and 2.4 clearly show the existence of a rate threshold above
which the variance per trade has an explosive behavior. If we believe the explana-
tion that a market maker is controlling spread, we would expect a similar behavior
like with the coarse scale case: a smooth and slow increase in the variance.

This brutal and sudden change turns our attention to the rate of limit orders.
Our current preliminary research has shown that the rate of limit order is strongly
linearly correlated with the rate of market orders but with the market orders slightly
leading (an observation also confirmed in [83]) as if the limit orders react to the
arrival of market orders and not the opposite. In other words, market makers will
increase their offer of liquidity only after observing the increase in the demand
of liquidity. This interaction is limited by the liquidity providers’ ability to see
the increase in the demand of liquidity. One physical limitation naturally lies in
the market framework itself. When a market order comes in, it gets matched by
the exchange and a message is published about that event. The market maker
receives this information and reacts to it by sending a limit order intended to
replace the liquidity depleted by the market order. The market receives the limit
order from the market maker and incorporates this information in the book thus
refilling the liquidity consumed by the market order. We call liquidity latency
the time elapsed from right after the execution of the market order to right after the
placement of the reactionary limit order in the book. While we could not find any
references that give an estimation of this latency, a discussion with high frequency
traders, concluded that this latency can be very variable but no less than 5 ms, and
probably averaging around 15 ms (most of it comes from the final part, the insertion
of the new limit order in the orderbook by the exchange’s order placement engine).
Interestingly, this number is of the same order of magnitude as the threshold that
we observe in Figure 1.3a (see section 2.4.1 for the results on many assets).

In fact a toy model in which market orders arrive according to a Poisson point
process, and such that a limit order replaces every market order, except for those
orders arriving faster than a certain threshold, would give price movement proba-
bilities that are very similar to what we observe in Figure 1.3a.

Confirming this idea would however requires more research into the rate of limit
orders and its relationship to that of market and cancel orders. It would also require
access to more time accurate limit and cancel orders data, which we do not currently
possess.

1.6.2 Discrete Microstructure Noise

We have established in section 1.6.1 the importance the rate of trading plays in
determining the variance per trade. We now start exploring the possibilities offered
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by a rate modeling approach. We begin by describing a jump process model con-
sisting of a random walk to which we add an autocorrelated moving average process
and find it particulary powerful in reproducing the signature plot effect commonly
observed in financial prices [8]. In this model, the random walk is interpreted as
a latent price process, and the autocorrelated process is interpreted as a noise
process (cf section 1.6.2 for more details). Furthermore, our model has the partic-
ularity of having a discrete jump distribution that can replicate the autocovariance
of tick returns and their unconditional distribution.

Microstructure Noise

In section 3.1, we introduce the issue of microstructure noise associated with
high frequency financial data. This problem gained relevance in finance when re-
searchers started using high frequency financial data. They were confronted with
problems that were until then circumvented such as bid-ask bounces and asyn-
chronous trading. Among these events we mention the Signature Plot of the
Sampled Average Realized Variance and the Epps Effect of the correlations. In
particular, the variance Signature Plot is the phenomenon which produces an in-
crease in the realized variance as the sampling duration goes to 0, whereas the Epps
Effect is the phenomenon which produces a decrease to 0 of the correlation of two
correlated but asynchronous processes. We focus in chapter 3 on the Signature
Plot. The classical idea for modeling the Signature Plot effect is that there exists a
latent price process (a diffusive martingale) which gets contaminated with noise or
measurement error (an idea inspired from physics were measurements are contam-
inated with white noise). Although we do not have a physical measurement error
in financial data, the effect that appears is highly similar and the contamination
process is called microstructure noise process. In the following paragraphs we
will show the empirical stylized facts we encounter at high frequency and suggest
a model to capture them.

Empirical Observations and Fine Scale Abnormalities
In this paragraph we show the empirical observations that we try to replicate

in chapter 3. First we point out that we use the series of tick returns (i.e. price
differentials normalized with the tick value) and not log returns. This will allow
us to interpret the results by using the tick size (section 1.3) in section 3.4.3. This
translates to having a series of integer price returns with often a tight compact
support. This can be seen in Figure 1.4 below, where the cumulative distribution
function of the Bund tick returns is displayed and where the support is practically
{−2,−1, 0, 1, 2} (cf table 3.1 in section 3.4 for a breakdown of the probabilities).

The other empirical observation is that the autocovariance of tick returns is
significant but decreases very fast. The is seen on the Bund in Figure 1.4 below,
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where the first lag autocovariance is clearly significant, whereas it is statistically
null for bigger lags. The same phenomenon is seen in other assets, as we can see in
Figure 3.7.

So on the fine scale, there are "abnormalities" in the series of tick returns which
makes them weakly but significantly autocorrelated. If we are looking at the trade
prices, these autocorrelations are interpreted as bid-ask bounces, whereby arriving
trades "bounce" from one side of the book to the other. Nevertheless, the autoco-
variance effect is also present when looking at midpoint prices and last buy prices,
as we can see figures 3.11 and 3.15 of chapter 3. So the origins of the autocovari-
ance of tick returns is not merely bouncing effects, and we need a model capable of
capturing it.

On the coarse scale, this autocovariance quickly disappear, and the price displays
a diffusive behavior and the diffusion variance is the asymptote of the sampled
realized variance seen in Figure 1.4.
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Figure 1.4: Some empirical statistics of the distribution of tick returns of the Bund
futures in October 2009. The graph on the right shows the cumulative distribution
function (CDF) (cf table 3.1 for details). The graph in the middle (ACF) shows
the autocovariance of tick returns. The third graph on the left (ESRV) shows the
empirical sampled realized variance.

We propose a discrete model built around the principle of random trade arrival
time. The model displays some of the properties of high frequency prices like the
autocorrelation of tick returns while being diffusive when observed at coarse scales.
Consequently, the unconditional variance of sampled returns will be influenced by
the sampling period, while converging to a constant (the variance of the coarse scale
diffusion) when the sampling period goes to ∞. Such a model is at the heart of
our view on financial modeling. First, we are faithful to the fine to coarse approach
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described earlier and second, we incorporate random arrival of trades after we have
seen the importance of the intensity of trading on the distribution of tick returns
in section 1.6.1.

Thoughts About the General Model

The idea is to have a model of prices as a stochastic process that displays empir-
ical behavior of prices at high frequency similar to those observed on the markets,
while at the same time converging to a diffusive martingale at large scales. Other
properties that we want to replicate is the arrival of trades at random times and
the discrete returns of assets. So we look for a a model that can be presented with
a marked point and whose marks are discrete random variables. The cumulative
sum of the marks represent the price process.

In order to get a macroscopic diffusion process with some "abnormalities" at
fine scales, we propose the sum of two independent point processes. The first, a
compound Poisson process, contains the diffusive martingale term is little different
from a random walk and we call it the fundamental term. The second contains
all the abnormalities observed at fine scale and we call it the noise term [4]. In
order for the sum of these two processes to diffuse at coarse scales, we make the
noise term a vanishing telescopic sum which only influences the behavior of the
price at the highest frequencies. This choice is motivated by two things. First,
we want to be able to clearly distinguish between the fundamental term and the
noise term as we do not want the noise to contribute any variance to the diffusive
variance. Second, a simple vanishing telescopic noise term is enough to replicate
the variance signature and the autocorrelation of tick returns. In the following, we
present the model, and the closed form formulas for the sampled variance as well
as the autocovariance of tick returns.

Model Description

We consider a price model process (Xt)t≥0 in continuous time, consisting of the
sum of two independent compound Poisson processes such that:

Xt = Rt + Et (1.9)

where Rt and Et are independent compound Poisson processes.

The fundamental term

Rt =
Nt∑
i=1

εi
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where Nt is a Poisson counting process of rate λ independent of εi, is a diffusive
martingale under the assumption that εi are symmetrical, independent identically
distributed (iid) random variables.

The noise term

Et =
Mt∑
i=1

ei

where Mt is a Poisson counting process of rate µ independent of ei, is an autocor-
related vanishing process under the assumption that

ei = ε̃i − ε̃i−1

where ε̃i is a symmetrical, discrete random variable (cf section 3.4).

We have that (ei)i≥1 is a weakly stationary process such that its moments and
autocovariance are independent of the index i and we define Γe(j), the autocovari-
ance function at lag j of ei by

Γe(j) = E(eiei−j)

This model allows us to write a closed form formula for the sampled realized
variance and the autocovariance of tick returns of Xt. We quickly review these
results in the following.

Realized Variance
The Sampled Average Realized Variance (SRV) estimator is defined by:

VT (∆) = E(
1

T

bT/∆c∑
k=1

(Xk∆ −X(k−1)∆)2) (1.10)

where T is the final time in the sample and ∆ is the sampling period. As we have
seen in 1.6.2, the plot of VT (∆) against ∆ has a particular form and it is called the
variance signature plot.
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For the model (1.9), in section 3.2.1 we give an explicit formula for VT (∆):

VT (∆) = E(ε2
i )λ+ E(e2

i )µ+ 2
∞∑
j=1

Γe(j)W (µ,∆, j) (1.11)

where W (x,∆, j) : R2 ×N→ R is calculated by:

W (µ,∆, 0) = µ

W (µ,∆, j + 1) = µ− 1

∆

j∑
k=0

P (M∆ > k)

In section 3.2.2, we also give an explicit formula for the autocovariance of tick
returns.

Autocovariance of Tick Returns
Let τ0 = 0, τ1, τ2, · · · , τN , be the series of jumps of either Nt or Mt (or equiva-

lently those of the Poisson process Nt +Mt) put in a strict ascending order. In the
vocabulary of section 1.6.1, τi is the transaction time clock of Xt, i.e. τi corresponds
to the arrival of the ith transaction of X.

Consider the series J = (Ji)i≥0 = (Xτi −Xτi−1
)i≥0 of successive tick returns of

Xt. The series J , is weakly stationary and we can define its autocovariance function
at lag j, ΓJ(j). In section 3.2.2 we exhibit a closed form formula for ΓJ(j).

We use this model to replicate the fine to coarse behavior observed on real data
(cf section 1.6.2).

Application to Financial Data
For financial asset prices, we find that taking ε̃i as a symmetrical (centered),

discrete random variable with values in {−1, 0, 1} does a good job of replicating the
empirical SRV and the autocovariance of tick returns. In this case the distribution
of εi can be described with one parameter p:

p = P (ε̃i = 1)

giving ei a distribution with a support in {−2,−1, 0, 1, 2}. We then give εi a
distribution with a similar support that is described by two parameters pε2 = P (εi =

2) and pε1 = P (εi = 1) (cf section 3.4). Under these conditions, the SRV and the
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autocovariance can be written as:

VT (∆) = (8pε2 + 2pε1)λ+
4p

∆
(1− e−∆µ) (1.12)

and the jth lag (j ≥ 0) autocovariance of J defined in equation (3.11) as:

ΓJ(0) =
λ

λ+ µ
(8pε2 + 2pε1) + 4p

µ

λ+ µ
(1.13)

ΓJ(j) = −2p(
µ

λ+ µ
)2(

λ

λ+ µ
)j−1 for j > 0. (1.14)

We then have that

lim
∆→∞

VT (∆) = E(ε2
i )λ

and

lim
∆→0

VT (∆) = E(ε2
i )λ+ E(e2

i )µ

guaranteeing that VT (∆) > VT (∞) similar to what is observed on most assets
(section 3.1.1).

We now explain the method we use for fitting the model and show an example
of the results we get on financial data but first we note that equation (1.12) is
not enough to fully determine our model. Indeed while p and µ can be determined
uniquely from equation (1.12), we can only get an estimate for E(ε2

i )λ = (8pε2+2pε1)λ

but not pε2, pε1 and λ separately. We see in the following paragraph how to use the
distribution of Ji in order to fully define our model.

Parameter Fitting: We fit the model in three steps beginning with the SRV.
We reproduce in Figure 1.5 the calibration of the model on the Bund futures. We
use a moment method and do a non linear leat squares to fit the empirical SRV to
equation (1.12). This uniquely determines µ, p and χ = E(ε2

i )λ = (8pε2 + 2pε1)λ.
This means that the parameters pε2, pε1 and λ are constraint by the condition χ =

(8pε2 +2pε1)λ but not uniquely determined. This first fit is here shown in Figure 1.5,
upper left graph (SRV).

Once we have the values for χ, µ and p we use them to fit the autocovariance
function of J , ΓJ(j) for j ≥ 0. We use a least squares fit of the empirical autoco-
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variance to ΓJ(j), j ≥ 0. This means that we try to find the best model possible
that fits the unconditional variance and the autocovariance of the tick returns of
X. This allows us to uniquely determine λ and E(ε2

i ) = (8pε2 + 2pε1). This is shown
in Figure 1.6, graph on the left (Auto Covariance).

Finally, we are left to determine pε2 and pε1. We already know µ, λ, p and E(ε2
i )

from the previous fits. The last information that we can use is the unconditional
distribution of J . We use a non linear least square fit of the cumulative distribution
function of J to the one suggested by the model and that gives us pε2 and pε1 uniquely.
This is shown in Figure 1.6, graph on the right (PDF).

This method gives priority to reproducing the signature plot first, followed by
the second moments of Ji and finally the unconditional distribution of Ji. We pay
attention that the estimated parameters are consistent with the requirements of the
model such that λ, µ > 0, {pε2, pε1, p} ⊂ [0, 1

2
] and pε2 + pε1 ≤ 1

2
.
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Figure 1.5: Fit result of the SRV for the process of trade prices of Bund Futures.
The blue curve is for the empirical data and the red one is the one produced by the
calibration of model (1.12).
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Figure 1.6: Graphic comparisons between empirical statistics for the process of
trade prices of Bund Futures and the statistics produced by the calibration of
model (1.12). The blue curves are for the empirical data and the red are for the
calibrated model. From left to to right: in the first graph we show ΓJ for 5 lags
with the 95% significance in a dotted black line, in the second we show the density
of J , fJ(x). fJ(0) was removed to make the plot more readable.

We conclude this model by looking at how the model fairs when confronted with
real data. For a concise view of the results, please see section 3.4.2 where we show
and discuss the results for the Bund futures asset. We discuss the analysis done for
other assets (in section 3.4.3) and the interpretation vis-a-vis of the tick size in the
following paragraph.

Tick Size: In section 3.4.3 we discuss the results of the model calibration with
the 10 futures presented in section 1.5. We calibrate the model with three price
types, the trade price, the last buy price and the midpoint price. We mainly give
here analysis and interpretations regarding the trade price and for more information
please refer to section 3.4.3.

We notice that the diffusion deviation measure

d =
VT (0)− VT (∞)

VT (∞)
(1.15)

changes significantly with the tick size or the price type. In particular, d is larger
for large tick sizes and it is the highest for the trade prices, followed by the midpoint
prices and it is smallest for the bid prices. The closer d is to zero, the weaker the
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signature effect. In terms of the model d translates into7

r =
µ(1− pe0)

µ(1− pe0) + λ(1− pε0)
(1.16)

Now for the trade prices, we see in Figure 3.6 that the SRV displays its usual
signature form for all assets and the model was able to capture it. After the fit
however, we compare r to η (η is the proxy for the tick size defined in section 1.3) in
Figure 3.4 and saw a linear relationship between the two: as the tick size grows, the
contribution of the autocorrelated noise grows as well. For the trades prices, this
represents an increase in the bid-ask bounces, a trait that is particularly present in
large tick assets.

Before concluding, we point out that in section 3.5 we explore the possibility
of a model that does not allow for tick returns of size zero. The model in this
case becomes a true point process (i.e. meaning that the jumps of Nt + Mt would
correspond to a non null movement or a jump of Xt), and would have the advantage
of being more easily interpreted. Indeed, if that was the case, it would suffice to
use the Poisson rates µ and λ to define r in equation (1.16) instead of µ(1 − pe0)

and λ(1 − p1e
0 ). However, we find that our restriction made the model much less

flexible with a very small range for the diffusion deviation measure d. This is seen
in the fit attempt on the Bund shown in Figure 3.5.

Conclusion and Further Research We present in this paper a simple model
for asset prices on the ultra high frequency scale. The model described in equation
(1.9) is the sum of two independent point processes. The first one, that we call the
fundamental component, consists of the cumulative sum of a series of iid random
variables arriving at independent Poisson times. The second one, that we call the
noise component, consists of the cumulative sum of an autocorrelated degenerate
MA(1) process also arriving at independent Poisson times.

The model has the particularity of quickly converging to a diffusion as the ob-
servation scale becomes coarser, a property that is fundamental for the theory of
asset pricing. However, on the microscopic scale, the model is flexible enough to
reproduce one of the commonly observed statistics of prices at this scale, the signa-
ture plot effect, the phenomenon in which the Sampled Average Realized Variance
(SRV) increases with the sampling period of the prices.

This model is intended almost as toy model to explore the possibilities of mod-
eling discrete prices arriving at random times. The fact that we are working with

7cf subsection 3.4.3 for an explanation about this choice of r
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discrete prices expressed in tick value, as opposed to logarithmic returns, puts a lot
of constraints on the form of the noise component and on the estimation method.
Nevertheless, the model fits in a satisfactory way to Futures data and with different
definitions of the price (trade price, last buy price and midpoint price). It is capa-
ble of reproducing both the form of the observed SRV and the weak but significant
autocovariance of tick returns for assets of varying tick size, which to our knowledge
was not considered in previous models that portray microstructure noise.

This work has a lot of room for development. Notably, the estimation method
needs improving and we need to give convergence results. Also the model itself can
be improved by allowing for more flexible trade arrival times or a more complex
noise error term.

1.6.3 Non Parametric Estimation of Hawkes Decay Kernels

Hawkes Processes

In chapter 4, we propose a non parametric method to estimate the decay kernel
of a mutually exciting multidimensional point process, generally known as Hawkes
process and apply the method to financial data. We do this in the one dimensional
case (the process in this case is called self exciting) and in the special multidimen-
sional case where the process is invariant under arbitrary permutations, i.e. when
all the components of the process are identically distributed. We go through a
brief review of these processes and present the main results of the paper in this
introduction. We keep to the one dimensional case out of simplicity.

One dimensional Hawkes processes are a class of point processes that were
first introduced by Alan Hawkes in [46, 47]. They are point processes whose instan-
taneous Poisson intensity is linearly dependent on the arrival past of past events.
They exhibit a self exciting behavior by which the arrival of one event increases
the probability of occurrence of new ones. In its most basic form and in the one
dimensional case, the Hawkes process is a counting process defined by λt, the rate
of arrival of events by:

λt = µ+

∫ t

−∞
φt−sdNs (1.17)

where µ > 0 is a constant background rate, Nt is the cumulative counting process
and φ a positive real function called decay kernel.

We can clearly see in equation (1.17) that when an event occurs at time t, we
have dNt = 1 and hence dλt = φ0. The influence of the event is transmitted to
future times through φ such that at time u > t, the increase in λt due to the time
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t event is φu−t. Thus a self exciting behavior is observed (cf Figure 1.6.3 for an
example of how λt evolves in time). It has been pointed out that this kind of self
exciting behavior governs the process of order arrivals in financial markets, and
Hawkes processes have been used to model it (cf. [9, 17, 24, 48]).

In section 4.1, we review the origin of these processes and their applications.
Most importantly, we are concerned with the estimation of the decay kernel φ and
the applications in finance. Our work is inspired by the previous works by Bacry,
Delattre, Hoffmann and Muzy [9] and it is a continuation of [10]. In a similar way
to how it was originally done, we use the autocovariance function of the cumulative
counting process to give a non parametric estimation of the decay φ. We do that in
the one dimensional case and in some special multidimensional cases, using Fourier
transforms and phase recuperation techniques. Finally, we apply the method to
financial data. We go over the main results in this presentation, restricting ourselves
to the one dimensional case.

Definitions and Notations

Hawkes in [46] introduces the self exciting point process as follows. Let (Nt)t≥0,
the process of cumulative number of events up to time t, is defined via its random
intensity process

λt = µ+

∫ t

−∞
φt−sdNs (1.18)

where µ > 0 and φt, the kernel, obeys to the following assumptions:

(H1) φt is positive and causal, i.e.,

φ : R→ R+, ∀t < 0, φt = 0, and ∀t ≥ 0, φt ≥ 0, (1.19)

(H2) the spectral radius of φ̂0 =
∫
R
φtdt (i.e., its largest eigenvalue) is strictly

smaller than 1.

Under these assumptions (Nt)t≥0 is a point process with stationary increments
and the conditional intensity λt is itself a stationary process with mean

Λ = E(λt) = E(dNt)/dt.
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that can be expressed as

Λ =
µ

1− φ̂0

,

Before moving on, we need to introduce some more notations that will be used
all along this presentation.

Notations 1.6.1. In the following

• For any function ft, f̂z =
∫
R
e−ztftdt corresponds to its Laplace transform.

The Fourier transform of ft is then expressed f̂iω, the restriction of the Laplace
transform to the imaginary line.

• For any real functions at and bt the convolution product of at and bt is defined
as a ? bt =

∫
R
asbt−sds =

∫
R
at−sbsds.

Assumption (H2) allows us to define

Ψt =
∞∑
n=1

φ
(?n)
t (1.20)

where φ(?n)
t is the nth auto convoluted function of φt. Which translates in the

Laplace domain to:

Ψ̂z =
φ̂z

1− φ̂z
(1.21)

Covariance Operator

In section 4.3.2, we define the infinitesimal covariance operator of a stationary
Hawkes process Nt and link it to the decay kernel φ in prop. 4.3.1. Then, we use the
stationary property of the Hawkes process to define its (normalized) covariance
operator, for any scale h > and lag τ ∈ R:

v(h)
τ =

1

h
E

(
(

∫ h

0

dNs − Λh)(

∫ τ+h

τ

dNs − Λh)

)
(1.22)
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The main result of the paper, theorem 4.3.2, will allow us to use the covariance
operator in practice in order to retrieve the decay kernel. Here, we restate it in the
1D case:

Theorem 1.6.1. Let g(h)
t = (1 − |t|

h
)+. v(h)

τ can be expressed as a function of g(h)
τ

and Ψτ :

v(h)
τ = Λg(h)

τ ? (δτ + Ψ̃τ + Ψτ + Ψ̃ ?Ψτ ) (1.23)

where δ is the dirac distribution and Ψ̃τ = Ψ−τ

Which gives in the Laplace domain the following corollary:

Corollary. In Laplace domain equation (1.23) becomes:

v̂(h)
z = Λĝ(h)

z |1 + Ψ̂z|2 (1.24)

We now go over the method used to estimate φ from the empirical observation
of v(h)

τ .

Estimation

Equation (1.24), shows that if we calculate v(h)
τ and take its Fourier transform

we get the module of 1 + Ψ̂iω multiplied by ĝ
(h)
iω = hsinc2(ωh

2π
), which is null for

all ω of the form 2nπ
h
, n ∈ Z, n 6= 0 (sinc is the sin cardinal function defined by

sinc(t) = sin(πt)
πt

). This problem is dealt with from a practical point by using a
sampling period ∆ for τ in the empirical estimation of v(h)

τ small enough and by
setting ∆ = h. In this case ĝ(h)

iω does not become 0 on [−π/∆, π/∆] and we can
simply divide by it (cf section 4.4.1). This allows us to observe an approximation
of

|1 + Ψ̂iω|2 =
v̂

(h)
iω

Λĝ
(h)
iω

(1.25)

And now we are left with the problem of finding 1 + Ψ̂iω from |1 + Ψ̂iω|2. Recu-
perating a frequency response function from the sole observation of its amplitude, is
equivalent to finding the corresponding phase. Under certain conditions, it is pos-
sible to find a particular frequency response whose amplitude is equal to |1 + Ψ̂iω|2.
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In particular, thanks to assumption (H2) we have that 1 + Ψ̂z satisfies the Paley-
Wiener criterion (Theorem 4.4.2):

∫
R

log(|f̂iω|)
1 + ω2

dω < ∞, (1.26)

and we can find 1 + Ψ̂iω using the Hilbert transform. In this case 1 + Ψ̂iω is given
by (cf Equation 4.28):

1 + Ψ̂iω = elog(|1+Ψ̂iω |)−iH(log(1+Ψ̂iω)) (1.27)

where the operator H(.) refers to the Hilbert transform.

The estimation method in the 1D case can be summarized as follows:

Main steps for kernel estimation

• Set ∆,

• Estimate the unconditional intensity Λ,

• Estimate the auto-covariance operator v(∆)
t and compute its Fourier transform

v̂
(h)
iω ,

• Compute |1 + Ψ̂iω|2 using Eq. (1.25),

• Compute 1 + Ψ̂iω using Eq. (1.27),

• Go back to the initial basis and Inverse Fourier transform to get the estimation
of φt.

Applications

In sections 4.5 and 4.6, we apply the estimation method to 1D and 2D point
processes. In particular, we illustrate the method for simulated Hawkes processes
with exponential and power law decay kernels in section 4.5, whereas we use the
trade arrival times data for the Bund futures in section 4.6. In this presentation,
we reproduce some of the results from the 1D case. We go through the main results
below.
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Application to a Simulated Hawkes Process With an Exponential Decay
Kernel

In section 4.5.1 we simulate a one dimensional exponential decay Hawkes process
such that

φt = αe−βt1t≥0

An example of a simulated intensity is shown in Figure 1.6.3. The result of the
fit is shown in Figure 1.8. The original φ is shown in red and the estimated one is in
blue. We see that the estimated φe is indeed causal, and looks to be a noisy version
of the real kernel. Smoothing techniques could be applied to the causal part of φe

that might effectively reduce the error, for example a moving average or a low pass
filter. However we have not studied the benefits of such options and do not further
explore them in the course of this thesis.

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

t, sec

λ
t,
se
c−

1

Figure 1.7: Realized Intensity λt of a simulated 1D Hawkes with µ = 1, α = 1,
β = 4. We can clearly see in this case that the process is self exciting because the
arrival of an event increases λt which triggers the arrival of more events.

Application to the Process of Trade Arrivals
When it comes to empirical data, the method is valuable because it gives an idea

of the form of the decay function, which can be complemented with a parametric
estimation. In the case of financial data, a power law with slow decay function is
expected and our estimations confirm that. This is seen in section 4.6. We test the
method for the point process of trade arrival times of Bund futures. The result is
shown in Figure 1.9 for ∆ = 0.1. We get a causal φ in the form of a power law
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Figure 1.8: Non parametric estimation of the one dimensional Hawkes exponential
kernel φ ((4.35)) with α = 1, β = 4. We used ∆ = 0.01.

decay with an exponent close to −1.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

t, sec

φ
,
se
c−

1

 

 

φ - Bund Estimation

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

t, sec

φ
,
se
c−

1

 

 

φ - Bund Estimation
Power fit

Figure 1.9: The plot on the left is the non parametric estimation of the Hawkes
kernel assumed for the rate of incoming market orders of the Bund Futures. We
used ∆ = 0.1 and τmax = 100. On the right is that very same plot in log-log scale
and the corresponding power law fit axb. We find a = 0.09863 , b = −1.053.
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Error Analysis
When it comes to the efficiency of the method, we point out in section 4.5.1,

paragraph Error Analysis several properties of the error series. Most of the
arguments presented here or in that section are heuristic and backed by empirical
evidence. Mathematical proofs are either provided in [10] or need to be confirmed
in future work.

In particular, we find that, when observed at k∆ instances, the series of errors,
(xk∆)k>0, defined by xk∆ = φk∆−φek∆ is a gaussian white noise, which confirms our
thoughts that it can simply be removed with a white noise filter. Moreover, for a
fixed ∆, we find that the L2 estimation error

e2 =

τmax
∆∑
k=1

|φk∆ − φek∆|2 (1.28)

decreases with the total length of the sample T , as T−1 (Figure 4.3).

It is also interesting to that e2 depends on the sampling rate ∆ (for T fixed).
If ∆ is large, then we do not have enough data points observed for v(h)

τ and e2

increases as information is lost and the Fourier transforms do not converge. If ∆ is
small, then the variations of the point process become uncorrelated ("Epps Effect")
and the noise to signal ratio in the empirical v(h)

τ becomes high, which translates
into more noise in the estimation of φ. Indeed, Figure 4.5 shows just that, and we
are able to deduce an optimal ∆ that minimizes the variance.

Conclusion
In chapter 4, we adapt the estimation method to multidimensional point pro-

cesses. We are able to estimate the decay kernels in the very special case of a
process whose components are invariant under arbitrary permutations (cf section
4.4.2, assumption (H3)). In this case we are able to diagonalize the fourier trans-
form of the covariance operator v̂(h)

iω using a constant orthogonal base (which does
not depend on ω), and apply the 1D estimation method to its eigenvalues. Please
refer to section 4.4.3 for details about the estimation process and sections 4.5.2 and
4.6.2 for an illustration with simulated data and symmetrical financial data like the
series of arrivals of buy and sell orders.
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The Nature of Price Returns
During Periods of High Market
Activity

By studying all the trades and best bids/asks of ultra high frequency snapshots
recorded from the order books of a basket of 10 futures assets, we bring qualitative
empirical evidence that the impact of a single trade depends on the intertrade time
lags. We find that when the trading rate becomes faster, the return variance per
trade or the impact, as measured by the price variation in the direction of the trade,
strongly increases. We provide evidence that these properties persist at coarser time
scales. We also show that the spread value is an increasing function of the activity.
This suggests that order books are more likely empty when the trading rate is high.

2.1 Introduction

During the past decade, the explosion of the amount of available data associated
with electronic markets has permitted important progress in the description of
price fluctuations at the microstructure level. In particular the pioneering works
of Farmer’s group [54, 38, 43, 37] and Bouchaud et al. [22, 21, 33] relying on the
analysis of orderbook data, has provided new insights in the understanding of the
complex mechanism of price formation (see e.g [20] for a recent review). A central

52
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quantity in these works and in most approaches that aim at modeling prices at
their microscopic level, is the market impact function that quantifies the average
response of prices to “trades”. Indeed, the price value of some asset is obtained from
its cumulated variations caused by the (random) action of sell/buy market orders.
In that respect, the price dynamics is formulated as a discrete "trading time" model
like:

pn =
∑
i<n

G(n− i, Vi)εi + diffusion (2.1)

where n and i are transaction "times", i.e., integer indices of market orders. Vi
is the quantity traded at index i, εi is the sign of the ith market order (εi =

−1 if selling and εi = +1 if buying). The function G(k, V ) is the bare impact
corresponding to the average impact after k trades of a single trade of volume
V . Among all significant results obtained within such a description, one can cite
the weak dependence of impact on the volume of market orders, i.e., G(n, V ) ∼
G(n) lnV , the long-range correlated nature of the sign of the consecutive trades
εi and the resulting non-permanent power-law decay of impact function G(n) [20].
Beyond their ability to reproduce most high frequency stylized facts, models like
(2.1) or their continuous counterparts [6] have proven to be extremely interesting
because of their ability to control the market impact of a given high frequency
strategy and to optimize its execution cost [40].

Another well known stylized fact that characterizes price fluctuations is the high
intermittent nature of volatility. This feature manifests at all time scales, from in-
tradaily scales where periods of intense variations are observed, for instance, around
publications of important news to monthly scales [23]. Since early works of Mandel-
brot and Taylor [57], the concept of subordination by a trading or transaction clock
that maps the physical time to the number of trades (or the cumulated volume)
has been widely used in empirical finance as a way to account for the volatility
intermittency. The volatility fluctuations simply reflects the huge variations of the
activity. The observed intradaily seasonal patterns [28] can be explained along the
same line. Let us remark that according to the model (2.1), the physical time does
not play any role in the way the market prices vary from trade to trade. This im-
plies notably that the variance per trade (or per unit of volume traded) is constant
and therefore that the volatility over a fixed physical time scale, is only dependent
on the number of trades.

The goal of this paper is to critically examine this underlying assumption as-
sociated with the previously quoted approaches, namely the fact that the impact
of a trade does not depend in any way on the physical time elapsed since previous
transaction. Even if one knows that volatility is, to a good approximation, propor-
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tional to the number of trades within a given time period (see Section 2.3), we aim
at checking to what extent this is true. For that purpose we use a database which
includes all the trades and level 1 (i.e., best ask and best bid) ultra high-frequency
snapshots recorded from the orderbooks of a basket of 10 futures assets. We study
the statistics of return variations associated to one trade conditioned by the last
intertrade time. We find that the variance per trade (and the impact per trade)
increases as the speed of trading increases and we provide plausible interpretations
to that. We check that these features are also observed on the conditional spread
and impact. Knowing that the spread is a proxy to the fullness of the book and
the available liquidity [87], we suspect that in high activity periods the orderbooks
tend to deplete. These "liquidity crisis" states would be at the origin of considerable
amounts of variance not accounted for by transaction time models.

The paper is structured as follows: In Section 2.2 we describe the futures data
we used and introduce some useful notations. In Section 2.3, we study the variance
of price increments and show that if it closely follows the trading activity, the
variance per trade over some fixed time interval is not constant and increases for
strong activity periods. Single trade variance of midpoint prices conditioned to the
last intertrade duration are studied in Section 2.4. We confirm previous observations
made over a fixed time interval and show that, as market orders come faster, their
impact is greater. We also show that, for large tick size assets, the variations
of volatility for small intertrade times translates essentially on an increase of the
probability for a trade to absorb only the first level of the book (best bid or best
ask). There is hardly no perforation of the book on the deeper levels.

In Section 2.5.1 we show that the single trade observations can be reproduced at
coarser scales by studying the conditional variance and impact over 100 trades. We
end the section by looking at the spread conditioned to the intertrade durations.
This allows us to confirm that in period of high activity, the orderbook tends to
empty itself and therefore the increase in the trading rate corresponds to a local
liquidity crisis. Conclusions and prospects are provided in Section 2.6.

2.2 Data Description

In this paper, we study highly liquid futures data, over two years during the
period ranging from 2008/08 till 2010/03. We use data of ten futures on different
asset classes that trade on different exchanges. On the EUREX exchange (localized
in Germany) we use the futures on the DAX index (DAX) and on the EURO
STOXX 50 index (ESX), and three interest rates futures: 10-years Euro-Bund
(Bund), 5-years Euro-Bobl (Bobl) and the 2-years Euro-Schatz (Schatz). On the
CBOT exchange (localized in Chicago), we use the futures on the Dow Jones index
(DJ) and the 5-Year U.S. Treasury Note Futures (BUS5). On the CME (also in
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Chicago), we use the forex EUR/USD futures (EURO) and the the futures on the
SP500 index (SP). Finally we also use the Light Sweet Crude Oil Futures (CL)
that trades on the NYMEX (localized in New-York). As for their asset classes, the
DAX, ESX, DJ, and SP are equity futures, the Bobl, Schatz, Bund, and BUS5 are
fixed income futures, the EURO is a foreign exchange futures and finally the CL is
an energy futures.

The date range of the DAX, Bund and ESX spans the whole period from 2008/08
till 2010/03, whereas, for all the rest, only the period ranging from 2009/05 till
2010/03 was available to us. For each asset, every day, we only keep the most
liquid maturity (i.e., the maturity which has the maximum number of trades) if
it has more than 5000 trades, if it has less, we just do not consider that day for
that asset. Moreover, for each asset, we restrict the intraday session to the most
liquid hours, thus for instance, most of the time, we close the session at settlement
time and open at the outcry hour (or what used to be the outcry when it no longer
exists). We refer the reader to Table 2.1 for the total number of days considered for
each asset (column D), the corresponding intraday session and the average number
of trades per day. It is interesting to note that we have a dataset with a variable
number of trading days (around 350 for the DAX, Bund and ESX, and 120 for the
rest) and a variable average number of orders per day, varying from 10 000 trades
per day (Schatz) to 95 000 (SP).

Our data consist of level 1 data : every single market order is reported along
with any change in the price or in the quantity at the best bid or the best ask
price. All the associated timestamps are the timestamps published by the exchange
(reported to the millisecond).

It is important to point out that, since when one market order hits several limit
orders it results in several trades being reported, we chose to aggregate together all
such transactions and consider them as one market order. We use the sum of the
volumes as the volume of the aggregated transaction and as for the price we use
the last traded price. In our writing we freely use the terms transaction or trade
for any transaction (aggregated or not). We are going to use these transactions as
our "events", meaning that all relevant values are calculated at the time of, or just
before such a transaction. As such, we set the following notations:

Notations 2.2.1. For every asset, let D be the total number of days of the con-
sidered period. We define:

(i) Nk, k ∈ {1 . . . D} the total number of trades on the kth day

(ii) ti is the time of the ith trade (i ∈ [1,
∑

kNk])
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(iii) bti and ati are respectively the best bid and ask prices right before the ith

trade

(iv) pti =
bti+ati

2
is midpoint price right before the ith trade

(v) sti = ati − bti is spread right before the ith trade

(vi) rti = pti+1
− pti is the return caused by the ith trade, measured in ticks

(vii) NT [s, t] = #{ti, s ≤ ti < t} corresponds to the number of trades in the time
interval [s, t]

(viii) Et[...] or Ei[...] indifferently refers to the historical average of the quantity in
between backets, averaging on all the available days and on all the trading
times t = ti. The quantity is first summed up separately on each day (avoiding
returns overlapping on 2 consecutive days), then the so-obtained results are
summed up and finally divided by the total number of terms in the sum.

Let us note that in the whole paper, we will consider that the averaged returns
are always 0, thus we do not include any mean component in the computation of
the variance of the returns.

Futures Exchange Tick Value D Session # Trades/Day 1/2-η P0 P=

DAX EUREX 12.5e 349 8:00-17:30 56065 0.082 49 67.9
CL NYMEX 10$ 127 8:00-13:30 76173 0.188 72.8 79.8
DJ CBOT 5$ 110 8:30-15:15 36981 0.227 72.6 92.2
BUS5 CBOT 7.8125$ 126 7:20-14:00 22245 0.288 81.6 95.1
EURO CME 12.5$ 129 7:20-14:00 42271 0.252 79.5 95.2
Bund EUREX 10e 330 8:00-17:15 30727 0.335 80.9 97.6
Bobl EUREX 10e 175 8:00-17:15 14054 0.352 86.5 99.1
ESX EUREX 10e 350 8:00-17:30 55083 0.392 88.3 99.2
Schatz EUREX 5e 175 8:00-17:15 10521 0.385 89.3 99.4
SP CME 12.5$ 112 8:30-15:15 97727 0.464 96.6 99.8

Table 2.1: Data Statistics. The assets are listed from top to bottom following the
increasing order of the P= column (see (2.2)), i.e., from the smaller (top) to the
greater (bottom) "perceived" tick size. D : number of days that are considered.
The Tick Value is the smallest variation (expressed in the local currency) by which
a trading price can move. The Session column indicates the considered trading
hours (local time). The # Trades/Day is the average of the daily number of
trades (i.e.,

∑D
k=1 Nk/D using Notations 2.2.1). P0 and P= are defined in equations

(2.4) and (2.2) and reported here in percent.
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"Perceived" Tick Size and Tick Value
The tick value is a standard characteristic of any asset and is measured in

its currency. It is the smallest increment by which the price can move. In all
the following, all the price variations will be normalized by the tick value to get
them expressed in ticks (i.e., in integers for price variations and half-integers for
midpoint-price variations).

As one can see in Table 2.1, column Tick Value, our assets have very different
tick values. It is important to note a counter-intuitive though very well known fact
: the tick value is not a good measure of the perceived size (by pratitionners) of
the tick. A trader considers that an asset has a small tick when he "feels" it to be
negligible, consequently, he is not averse at all to price variations of the order of a
single tick. For instance, every trader "considers" that the the ESX index futures
has a much greater tick than the DAX index futures though the tick values are
of the same orders ! There have been several attempts to quantify the perceived
tick size. Kockelkoren, Eisler and Bouchaud in [33], write that "large tick stocks
are such that the bid-ask spread is almost always equal to one tick, while small
tick stocks have spreads that are typically a few ticks". Following these lines, we
calculate the number of times (observed at times ti) the spread is equal to 1 tick:

P= =
#{i, sti = 1}

N
(2.2)

and show the results in Table 2.1. We classify our assets according to this criterion
and find SP to have the largest tick, with the spread equal to 1 99.8% of the time,
and the DAX to have the smallest tick.
In a more quantitative approach, in order to quantify the aversion to price changes,
Rosenbaum and Robert in [76] give a proxy for the perceived tick size using last
traded non null returns time-series. If Na

t (resp. N c
t ) is the number of times a

trading price makes two jumps in a row in the same (resp. different) directions,
then the perceived tick size is given by 1/2− η where η is defined by

η =
N c
t

2Na
t

(2.3)

For each asset, we computed η for every single day, and average over all the
days in our dataset and put the result in the 1/2− η column in Table 2.1. We find
that the rankings of the assets using this criterion almost matches the ranking using
[33]’s P= criterion (two slight exceptions being the ESX/Schatz and BUS5/EURO
ranking). One interpretation of the η based proxy is that if the tick size is large,
market participant are more averse to changes in the midpoint price and market
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makers are happy to keep the spread collapsed to the minimum and the midpoint
would only move when it becomes clear that the current price level is unsustainable.
To check that, we calculate the number of times (observed at times ti) the return
(as defined in notation 2.2.1) is null:

P0 =
#{i, rti = 0}

N
(2.4)

and show the result in Table 2.1. Again, it approximately leads to the same ranking
which has nothing to do with the ranking using Tick Values.

2.3 Realized Variance Versus Number of Trades

It is widely known that, in a good approximation, the variance over some period
of time is proportional to the number of trades during that time period (see e.g.
[28]). Figure 2.1 illustrates this property on Bund data. On 15 minutes intraday
intervals, averaging on every single day available, we look at (dashed curve) the
average intraday rate of trading (i.e., the average number of trades per second) and
(solid curve) the average (15 minutes) realized variance (estimated summing on
1mn-squared returns (pt+1mn−pt)2). We see that the so-called intraday seasonality
of the variance is highly correlated with the intraday seasonality of the trading rate
[28].

In order to have more insights, we look at some daily statistics : Figure 2.2 shows
a scatter plot in which each point corresponds to a given day k whose abscissa is
the number of trades within this day, i.e., Nk, and the ordinate is the daily variance
(estimated summing over 5-mn quadratic returns) of the same day k. It shows that,
despite some dispersion, the points are mainly distributed around a mean linear
trend confirming again the idea shown in Figure 2.1 that, to a good approximation,
the variance is proportional to the number of trades. In that respect, trading time
models (Eq. (2.1)) should capture most of the return variance fluctuations through
the dynamics of the transaction rate. However, in Figure 2.2, the points with high
abscissa values (i.e., days with a lot of activity) tend to be located above the linear
line, whereas the ones with low abscissa (low activity) cluster below the linear line,
suggesting that the variance per trade is dependant on the daily intensity of trading.

Before moving on, we need to define a few quantities. Let ∆t be an intraday
time scale and let N be a number of trades. We define V (∆t, N) as the estimated
price variance over the scale ∆t conditioned by the fact that N trades occurred.
Using notations, 2.2.1 (vii) and (viii), from a computational point of view, when
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Figure 2.1: Bund intraday seasonality of both trading rate and volatility (abscissa
are expressed in hours, local time). Averages are taken on all available days. Dashed
line : average intraday rate of trading (average number of trades per second) using
15mn bins. Solid line : average 15-minutes-realized variance (estimated summing
on 15 1mn-squared returns).

∆t = ∆t0 is fixed and N is varying, V (∆t = ∆t0, N) is estimated as:

V (∆t = ∆t0, N) = Et
[
(pt+∆t0 − pt)2 | NT [t, t+ ∆t0] ∈ [N − δN , N + δN ]

]
. (2.5)

where δN is some bin size. And, along the same line, when we study V (∆t, N) for
a fixed N = N0 value over a range of different values of ∆t, one defines a temporal
bin size δ∆t and computes V (∆t, N = N0) as1

V (∆t, N = N0) = Ei
[
(pti+N0

− pti)2 | ti−1+N0 − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]
]
.

(2.6)

Let us note that, in both cases, the bins are chosen such that each bin in-
1Let us point out that we used the index i − 1 in the condition of (2.6) and not the index i

since, for the particular case N0 = 1 (extensively used in Section 2.4), we want to use a causal
conditioning of the variance. For N0 large enough, using one or the other does not really matter.
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Figure 2.2: For each asset (in increasing perceived tick size P=) : Daily variance
(estimated summing over 5-mn quadratic returns) against daily number of trades.
Each dot represents a single day. The solid line is the linear regression line with
zero intercept. We see strong linearity between the variance and the number of
trades but there seem to be clustering of dots above (resp. below) the solid line for
days with high (resp. low) activity.

volves approximately the same number of terms. We also define the corresponding
conditional variance per trade as:

v(∆t, N) =
V (∆t, N)

N
. (2.7)

In order to test the presence of an eventual non-linear behavior in the last scatter
plots (Figure 2.2), we show in Figure 2.3 the 5-minutes variance per trade v(∆t =

5mn,N) as a function of the average intertrade duration 5mn
N

as N is varying. We
clearly see that the estimated curve (solid line) is below the simple average variance
(dashed line) for large intertrade durations and above the average variance when
the trades are less than 600 milliseconds apart. Note that we observed a similar
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behavior for most of the futures suggesting a universal behavior.
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Figure 2.3: For each asset (in increasing perceived tick size P=), Solid line : condi-
tional v(∆t = 5mn,N) variance per trade (see (2.5)) as a function of the average
intertrade duration 5mn

N
when varying N . Dashed line : unconditional 5mn-variance

per trade. The solid line is almost constant for average times above 0.6 seconds,
and it increases when the trading becomes faster.

To say that the realized variance is proportional to the number of trades is
clearly a very good approximation as long as the trading activity is not too high
as shown both on a daily scale in Figure 2.2 and on a 5mn-scale in Figure 2.3.
However, as soon as the trading activity is high (e.g., average intertrade duration
larger than 600ms on a 5mn-scale), the linear relationship seems to be lost. In the
next section we will focus on the impact associated with a single trade.
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Figure 2.4: v(∆t, N = 1) as a function of ∆t over very short ∆t’s for DAX and SP.
The variance per trade increases dramatically below a certain ∆t.

2.4 Single Trade Impact on the Midpoint Price

In this section, we will mainly focus on the impact of a trade i, and more
specifically on the influence of its arrival time ti on the return rti = pti+1

− pti . In
order to do so, it is natural to consider the return rti conditioned by ti − ti−1, the
time elapsed since previous transaction. We want to be able to answer questions
such as : how do compare the impacts of the ith trade depending on the fact that
it arrived right after or long after the previous trade ? Of course, in the framework
of trading time models this question has a very simple answer : the impacts are the
same ! Let us first study the conditional variance of the returns.

2.4.1 Impact on the Return Variance

In order to test the last assertion, we are naturally lead to use Eqs (2.6) and
(2.7) for N0 = 1, i.e,

v(∆t, N = 1) = Ei
[
r2
ti
| ti − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]

]
. (2.8)

Let us illustrate our purpose on the DAX and the SP futures. They trade on
two different exchanges, (EUREX and CME) and have very different daily statistics
(e.g., DAX has the smallest perceived tick and SP the largest as one can see in
Table 2.1). Figure 2.4 shows for both assets v(∆t, N = 1) (expressed in squared
tick) as a function of ∆t (in milliseconds). We notice that both curves present a
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peak for very small ∆t and stabilize around an asymptotic constant value for larger
∆t. This value is close to 0.7 ticks2 for the DAX and to 0.005 ticks2 for the SP. The
peak reaches 0.95 (35% above the asymptote) for the DAX, and 0.1 (2000% above
the asymptote).
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Figure 2.5: For each asset (in increasing perceived tick size P=), v(∆t, N = 1) as a
function of ∆t (logarithm scale). We see an "explosion" of the variance when the
trading is getting faster.

Figure 2.5 switches (for all assets) to a log scale in order to be able to look
at a larger time range. A quick look at all the assets show that they present a
very similar behavior. One sees in particular for the ESX curve that the variance
increases almost linearly with the rate of trading, and then suffers an explosion as ∆t

becomes smaller than 20 ms. The "same" explosion can be qualitatively observed
over all assets albeit detailed behavior and in particular the minimal threshold ∆t

may vary for different assets.

Let us note that the variance v(∆t, N = 1) as defined by (2.8) can be written
in the following way:

v(∆t, N = 1) = P (∆t)A(∆t), (2.9)
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where P (∆t) is the probability for the return to be non zero conditioned by the
intertrade duration ti − ti−1 = ∆t, i.e.,

P (∆t) = Prob{rti 6= 0 | ti − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]} (2.10)

and where A(∆t) is the expectation of the squared return conditioned by the fact
that it is not zero and by the intertrade duration ti − ti−1 = ∆t, i.e.,

A(∆t) = Ei
[
r2
ti
| rti 6= 0 and ti − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]

]
(2.11)
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Figure 2.6: For each asset (in increasing perceived tick size P=), Probability P (∆t)
as defined by (2.10) as a function of ∆t. We see that the probability of getting a
price move increases with market order rate for most assets.

In short P (∆t) is the probability that the midpoint price moves while A(∆t) is
the squared amplitude of the move when non-zero. In Figure 2.6, we have plotted,
for all assets, the function P (∆t) for different ∆t. One clearly sees that, as the
trading rate becomes greater (∆t → 0), the probability to observe a move of the
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Figure 2.7: For each asset (in increasing perceived tick size P=), Size of Absolute
squared returns A(∆t) as a function pf ∆t. For very small tick assets, like DAX
and CL we see that the absolute size of a return increases with the rate of market
orders. This property quickly stops being true as the tick increases. The orderbook
of a large tick asset is generally much thicker than that of a small tick asset and
therefore it is extremely hard to to empty more than one level.

midpoint price increases. One mainly recovers the behavior we observed for the
analog variance plots. Let us notice that (except for the DAX), the values of
the moving probabilities globally decrease as the perceived ticks P= increases (for
large ticks, e.g. SP, at very low activity this probability is very close to zero).
The corresponding estimated moving squared amplitudes A(∆t) are displayed in
Figure 2.7. It appears clearly that, except for the smallest perceived ticks assets
(DAX and CL basically), the amplitude can be considered as constant. This can
be easily explained : large tick assets never make moves larger than one tick while
small tick assets are often “perforated” by a market order. One can thus say that,
except for very small ticks assets, the variance increase in high trading rate period
is mostly caused by the increase of the probability that a market order absorb only
the first level of the book (best bid or best ask). There is hardly no perforation of
the book on the deeper levels.
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2.4.2 Impact on the Return

Before moving to the next section, let us just look at the direct impact on the
return itself, as defined for instance by [20], conditioned by the intertrade time:

I(∆t, N = 1) = Ei [εirti |ti − ti−1 = ∆t] . (2.12)

According to [87], we expect the impact to be correlated with the variance per
trade and therefore for I(∆t) to follow a very similar shape to that of v(∆t, N =

1) shown in Figure 2.5 . This is confirmed in Figure 2.8 where one sees that,
for all assets, the impact goes from small values for large intertrade intervals to
significantly higher values for small intertrade durations.
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Figure 2.8: For each asset (in increasing perceived tick size P=), I(N = 1|∆t) as
defined by (2.12) as a function of ∆t. The shape of the curves confirms the idea
that the impact is high correlated with the variance per trade.
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2.5 From Fine to Coarse

2.5.1 Large Scale Conditional Variance and Impact
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Figure 2.9: For each asset (in increasing perceived tick size P=), v(∆t, N = 100),
as defined by (2.7), as a function of ∆t. Clearly the variance of a speedy 100 trades
is higher than the variance of 100 slow trades.

One of the key issue associated to our single trade study is the understanding
of the consequences of our findings to large scale return behavior. This question
implies the study of (conditional) correlations between successive trades, which
is out of the scope of this paper and will be addressed in a forthcoming work.
However one can check whether the impact or the variance averaged locally over
a large number of trades still display a dependence with respect to the trading
rate. Indeed, in Figure 2.3 we have already seen that this feature seems to persist
when one studies returns over a fixed time (e.g., 5 min) period conditioned by the
mean intertrade duration over this period. Along the same line, one can fix a large
N = N0 value and compute v(∆t, N = N0) and I(∆t, N = N0) as functions of ∆t.
Note that v(∆t, N = N0) is defined in Eq. (2.7) while the aggregated impact can
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Figure 2.10: For each asset (in increasing perceived tick size P=), I(∆t, N = 200),
as defined by (2.13), as a function of ∆t. The impact of speedy trades propagates
well into the future. Even 200 trades away, one speedy trade has caused more
impact than a slower one.

be defined similarly as:

I(∆t, N = N0) = Ei
[
εi(pti+N0

− pti) | ti−1+N0 − ti−1 ∈ [∆t− δ∆t,∆t+ δ∆t]
]
.

(2.13)

In Figure 2.9 and 2.10 are plotted respectively the variance v(∆t, N = 100)

and the return impact I(∆t, N = 200) as functions of ∆t. One sees that at these
coarse scales, the increasing of these two quantities as the activity increases is clear
(except maybe for the variance of the EURO). As compared to single trade curves,
the threshold-like behavior are smoothed out and both variance and return impacts
go continuously from small to large values as the trading rate increases.

2.5.2 Liquidity Decreases When Trading Rate Increases

One possible interpretation of these results would be that when the trading rate
gets greater and greater, the liquidity tends to decrease, i.e., the orderbook tends
to empty.
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In [87], the authors mention that the spread is an indicator of the thinness
of the book and that the distance from the best bid or ask to the next level of
the orderbook is in fact equivalent to the spread. Moreover, they bring empirical
evidence and theoretical no-arbitrage arguments suggesting that the spread and the
variance per trade are strongly correlated. Accordingly, we define the mean spread
over N trades as

sti,N =
1

N

N−1∑
k=0

sti+k , (2.14)

and the conditional spread at the fixed scale N = N0 as

S(∆t, N = N0) = Ei [sti,N | ti+N − ti ∈ [∆t− δ∆t,∆t+ δ∆t]] . (2.15)

Figure 2.11 displays, for each asset, S(∆t, N = 100) as a function of ∆t/100

(using log scale). One observes extremely clearly an overall increase of the spread
value with the rate of trading for all assets, This clearly suggests that the orderbook
is thinner during periods of intense trading. This seems to be a universal behavior
not depending at all on the perceived tick size.

2.6 Concluding Remarks

In this short paper we provided empirical evidence gathered from high frequency
futures data corresponding to various liquid futures assets that the impact (as mea-
sured from the return variance or using the standard definition) of a trading order
on the midpoint price depends on intertrade duration. We have also shown that
this property can also be observed at coarser scale. A similar study of the spread
value confirmed the idea that orderbooks are less filled when trading frequency is
very high. Notice that we did not interpret in any causal manner our findings, i.e.,
we do not assert that a high transaction rates should be responsible for the fact that
books are empty. It just appears that both phenomena are highly correlated and
this observation has to be studied in more details. In a future work, we also plan
to study the consequences of these observations on models such those described in
the introductory section (Eq. (2.1)). A better understanding of the aggregation
properties (i.e., large values of N) and therefore of correlations between successive
trades will also be addressed in a forthcoming study.
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Figure 2.11: For each asset (in increasing perceived tick size P=), S(∆t, N = 100)
as defined in (2.15) as a function of ∆t/100. The form of the curves confirms that
there is a strong liquidity decrease when the trading rate is increasing.



CHAPTER3

Discrete Microstructure Noise

Now that we have established in chapter 2 the importance the rate of trading
plays in determining the variance per trade, we start exploring the possibilities of-
fered by a rate modeling approach. We begin by describing a jump process model
consisting of a random walk to which we add an autocorrelated moving average
process and find it particulary powerful in reproducing the signature plot effect
commonly observed in financial prices. Furthermore, our model has the particular-
ity of having a discrete jump distribution that can replicate the autocovariance of
tick returns and their unconditional distribution.

3.1 Introduction

Since Bachelier and the seminal work of Black and Scholes, most popular mod-
els for price processes at a coarse time scale – for daily data, say – are Brownian
diffusions, see for instance the classical textbooks of Musiela [64] or Bouchaud and
Potters [23] and the references therein. In particular, diffusion models aim at de-
scribing more or less faithfully the volatility dynamics, characterized by stylized
facts such as volatility clustering or leverage effect [23]. A key issue that natu-
rally emerges when one studies high frequency data is the problem of reproducing
the local characteristics of the price process such as mean-reversion and volatility
behavior across scales. The discrete nature of time trade arrivals and of price vari-
ations (prices are point processes living on a tick grid), the presence of so-called

71
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microstructure noise (described as strong mean reversion effects at small scales)
make this question non trivial. At a very high frequency, price variations are also
characterized by well documented stylized facts like the signature plot behavior or
the Epps Effect [36].

3.1.1 The Signature Plot Effect

If X = (Xt)t≥0 stands for the price of some asset at time t in continuous time
(defined indifferently as the last traded price, the midpoint price between the best
bid and best offer in the orderbook or the last buy or last sell price), the Sampled
Realized Variance (SRV) can be defined from the quadratic variation of X over a
time periods [0, T ] at a scale ∆ > 0

VT (∆) =
1

T

bT/∆c∑
k=1

(
Xk∆ −X(k−1)∆

)2
. (3.1)

and whose plot as a function of ∆ corresponds to the so called Signature Plot
[8]. The microstructure noise effect manifests through an increase of the observed
daily variance when one goes from large to small scales i.e. in the limit ∆ → 0

(see e.g. Figure 3.1 for T = 1 month). This behavior is different from what one
would expect if the data were sampled from a Brownian diffusion, in which case
the function plotted in Figure 3.1 should be flat. From the perspective of statistical
estimation, this leads to a simple paradox : on one side, the smaller is ∆, the larger
is the dataset that can be used to estimate the volatility. However, how should one
be using high-frequency data in order to obtain better estimates of the volatility is
not trivial, since the realized volatility (3.1) is not stable as τ decreases.

In the literature the most popular approaches attempt to model microstructure
noise with the concept of a latent price. One starts with a Brownian diffusion
X̃t defined as an efficient price, which is latent, in the sense that it cannot be
observed directly. Instead the practitioner only has access to a noisy version Xt

of X̃t that accounts for microstructure noise. The most successful version – as far
as mathematical development is concerned – is the additive microstructure noise
model, introduced in 2001 by Gloter and Jacod [44, 45] and in the context of
financial data by Ait-Sahalia, Mykland, Zhang et al. [3, 89, 88]. Given a sampling
scale τ , one rather observes

Xk∆ = Yk∆ + ε̃k,∆, (3.2)

where the microstructure noise term ε̃n,τ satisfies E(ε̃k,∆) = 0 for obvious identi-
fiability conditions. (Hereafter, E denotes the expectation operator.) The goal is
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then to separate the noise from the true signal Xt, from which a classical volatility
estimator can be performed. This has raised a vast research program over the last
decade, mostly covered by econometricians and statisticians, see [4, 79, 30, 77, 78,
72, 13, 12, 14, 50, 62, 63, 73, 49] and the references therein. Whereas representa-
tion (3.2) produces an elegant pilot model to describe microstructure noise effects
at the scale of a few minutes, it cannot faithfully reproduce the data as they are
observed on a microscopic scale of a few seconds: for instance, the discreteness of
price changes is left out and the mathematical artefact of forcing VT (∆) to explode
when ∆→ 0 becomes unavoidable.

3.1.2 Our Approach

We introduce a "fine-to-coarse" model that starts from the description of the
changes of prices in continuous time compatible with the empirical observations
at fine scale, and that allows us to recover a large scale diffusion behavior from
the microscopic properties of the model. In essence, we invert the point of view of
the latent price approach of the preceding section. Considering (3.2) again, Let us
re-write the latent price model in its incremental form

X(k+1)∆ −Xk∆ = Y(k+1)∆ − Yk∆ + ε̃k+1,∆ − ε̃k,∆
= εk,∆ + ek,∆

for instance. We see that our observed price has two component: a diffusive incre-
ment εk,∆ ∼ N (0, σ2∆), where ∆ is the diffusive volatility, and a microstructure
noise term ek,∆, which has the form of a moving average MA(1) process

ek,∆ = ε̃k+1,∆ − ε̃k,∆

whose variance has to be set as a function of ∆. The classical approach of [3, 4,
50] assumes that ek,∆ should be of order one, i.e. E(e2

k∆) should not depend on
∆ asymptotically. This stems from the fact that ∆ is related to the scheme of
observation, set prior to the experiment by the statistician, and that this shall not
affect in any way the nature of the microstructure noise ek,∆. Let us temporarily
escape from this point of view by seeing rather ∆ as a time scale, irrespectively of
any statistical experiment of measurement. Then, comparing the two terms εk,∆
and ek,∆, we see that the diffusive component εk,∆ shall essentially be of the same
order as the microstructure noise term ek,∆ for instantaneous price changes, which
leads us to set E(e2

k∆) := a2∆, up to some pre-factor a > 0. So alternatively, we
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construct a standard microstructure noise model (in distribution) by setting

X(k+1)∆ −Xk∆ := σ∆1/2εk + a∆1/2(ε̃k+1 − ε̃k),

where εk and ε̃k are centered independent discrete white noise with unit variance.
We see that we have negative correlation in the increments by construction of the
MA(1) process. Moreover, our model diffuses on coarse scales. Indeed, consider a
large time scale ∆? in the sense that ∆? � ∆. Up to boundary effects and time
shift, we have

X∆? −X0 =
k∆=∆?∑
k∆=0

(X(k+1)∆ −Xk∆)

= σ∆1/2

k∆=∆?∑
k∆=0

εk + a∆1/2

k∆=∆?∑
k∆=0

(ε̃k+1 − ε̃k)

≈ σ(∆?)1/2N (0, 1) + a∆1/2(ε̃b∆?/∆c − ε̃0)

≈ σ(∆?)1/2N (0, 1)

the first term being approximated by a Gaussian random variable by the central
limit theorem

σ∆1/2

k∆=∆?∑
k∆=0

εk = σ∆1/2
(

∆?

∆

)1/2
((

∆?

∆

)−1/2
k=b∆?/∆c∑

k=0

εk

)
≈ σ∆1/2N (0, 1)

and the second term being negligible since ∆ � ∆?. In conclusion, we have a
diffusive behavior toward a Brownian motion at large scales, and mean-reversion in
small scales.

This is the essence of our approach. We start with εk and ε̃k as centered in-
dependent discrete white noises with unit variance and we adopt the same line as
before. As for the discreteness of the prices in microscopic scales, we simply have to
assume that εk and ε̃k live on a lattice. We still have to escape the time discretiza-
tion k∆ at scale ∆. This is obtained by assuming that the discrete variables or
jumps εk and ε̃k are produced continuously in time following the clock of counting
processes. Two independent simple Poisson processes (with different intensities) do
the job, and will not essentially alter the spatial properties of our decomposition
as described above. Our approach shows some similarities with Oomen [69]. How-
ever, thanks to our scale approach, we can model the jumps as integers, accounting
faithfully for price discreteness. Moreover, since the empirical distribution of tick
returns valued in tick values is symmetric without skewness and not log normal with
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positive skewness so we do not model log returns, but price differentials. We will
see how our use of a simple MA(1) process for the microstructure noise is powerful
enough to obtain a rate modeling approach even with a trivial autoregressive noise
term.

3.2 General Framework Model

We consider a price model process Xt living on the lattice Z, each integer in-
crement consisting of one tick. Xt can represent a trade price, a midpoint price or
the last bid or last ask price. We postulate that the process Xt has a fundamental
decomposition as the sum of two independent processes of the form:

Xt =
Nt∑
i=1

εi +
Mt∑
i=1

ei (3.3)

where Nt and Mt are independent Poisson counting processes with rates λ and µ
respectively, that are also independent of their compounding jumps εi and ei. We
also suppose that the jumps εi and ei are centered, independent (and that they
have values in Z) and satisfy

E(ε2
i ) <∞, E(e2

i ) <∞.

If we make the additional assumption that εi are symmetrical (and in particular
centered), independent and identically distributed random variables (later abbrevi-
ated by iid) we guarantee that

Rt =
Nt∑
i=1

εi

is a diffusion if observed on a coarse enough scale. This means that the process

R
(T )
t =

1√
T
RtT

converges in law to a processDt as T →∞ such thatDt is a continuous-time Markov
process with continuous sample paths. We also have that Rt is a martingale which
is crucial for modeling financial prices and we call it the fundamental component
of Xt.
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If we choose ei carefully we can obtain that

Et =
Mt∑
i=1

ei

is asymptotically vanishing in front of Rt as t →∞. This guarantees that X(T )
t =

R
(T )
t + E

(T )
t converges to the same asymptotic limit as R(T )

t as t → ∞. In this
context, Et is called the microstructure noise component of Xt. We pay special
attention to make Xt diffusive because we intend to use our process to model
financial prices, which are known to display diffusive behavior over the macroscopic
scale, see section 3.1 or section 1.6.

Finally, we assume that the series of random variables (ei)i≥0 is weakly station-
ary and that ei are symmetrical, centered variables. This implies that the moments
and autocovariance of ei are independent of the index i, and we can define Γe(j),
the autocovariance function (ACF) at lag j of (ei) by

Γe(j) = E(eiei−j).

This assumption over (ei) is deliberately weak because it gives us much freedom
for Et and therefore allows us to use Xt as a model for financial prices.

We now present our results regarding the Sampled average Realized Variance
(SRV) defined in (3.4) and the autocovariance function of the tick returns of Xt,
and conclude the first part of the paper with an application to financial data that
shows that the model (3.3) can be used to estimate the variance in a high frequency
setting.

3.2.1 Realized Variance

The Sampled average Realized Variance (SRV) is defined as

VT (∆) = E(
1

T

bT/∆c∑
k=1

(Xk∆ −X(k−1)∆)2) (3.4)

where T is the final time in our sample and ∆ is the sampling frequency, both
measured in seconds [4]. In the financial literature [8], the plot of VT (∆) against
∆ has a particular form, a signature if one may call it, and its distinctive plot is
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called the variance signature plot. We show an example signature plot for the Bund
Futures trade prices in Figure 3.1 below.

0 20 40 60 80 100 120 140 160 180 200
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Figure 3.1: Empirical VT (∆) in ticks2 against ∆ in seconds for Bund futures trade
price series in October 2011.

For the model (3.3), we can give an explicit formula for VT (∆):

Proposition 3.2.1.

VT (∆) = E(ε2
i )λ+ E(e2

i )µ+ 2
∞∑
j=1

Γe(j)W (µ,∆, j) (3.5)

where W (µ,∆, j) : R2 ×N→ R is given by: W (µ,∆, 0) = µ and

W (µ,∆, j + 1) = µ− 1

∆

j∑
k=0

P (M∆ > k). (3.6)

Proof. Since εi and ei are independent and centered for any i ≥ 0 and the ei are
independent then E(εiej) = 0 for all i, j ≥ 0 and E(εiεj) = 0 for all i, j ≥ 0, i 6= j.
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We then have

E
(
(Xk∆ −X(k−1)∆)2

)
= E

(∑
i∈N

ε2
i1i∈]N(k−1)∆,Nk∆]

)
+ E

(∑
i∈N

e2
i1i∈]M(k−1)∆,Mk∆]

)

+E

(
2
∑
j≥1

∑
i∈N

eiei−j1i∈]M(k−1)∆,Mk∆]1i−j∈]M(k−1)∆,Mk∆]

)

Taking expectation and using that εi and ei are stationary and independent of Nt

and Mt, we successively have

E(
1

T

bT/∆c∑
k=1

∑
i∈N

ε2
i1i∈]N(k−1)∆,Nk∆]) = E(ε2

i )E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i∈]N(k−1)∆,Nk∆]),

E(
1

T

bT/∆c∑
k=1

∑
i∈N

e2
i1i∈]M(k−1)∆,Mk∆])) = E(e2

i )E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i∈]M(k−1)∆,Mk∆])

and

E(
1

T

bT/∆c∑
k=1

∑
j≥1

∑
i∈N

eiei−j1i∈]M(k−1)∆,Mk∆]1i−j∈]M(k−1)∆),Mk∆]) =
∑
j≥1

Γe(j)W (µ,∆, j),

where

W (µ,∆, j) = E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i∈]M(k−1)∆,Mk∆]1i−j∈]M(k−1)∆,Mk∆]).

By inverting sums and expectations we have

E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i∈]N(k−1)∆,Nk∆]) = E(
1

T

∑
i∈N

1i∈]0,NT ]) = λ,

E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i∈]M(k−1)∆,Mk∆]) = E(
1

T

∑
i∈N

1i∈]0,MT ]) = µ
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which yields equation (3.5). Finally we have the explicit formula for W : the term
W (µ,∆, j) is equal to

W (µ,∆, j) = E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i∈]M(k−1)∆,Mk∆]1i−(j−1)∈]M(k−1)∆,Mk∆])

− E(
1

T

bT/∆c∑
k=1

∑
i∈N

1i=M(k−1)∆+j
1Mk∆−M(k−1)∆>j−1)

= W (µ,∆, j − 1)− 1

T

bT/∆c∑
k=1

P (j − 1 < M∆)

= W (µ,∆, j − 1)− 1

∆
P (M∆ > j − 1)

which gives (3.6).

A variance signature plot like the one shown in Figure 3.1 is characterized by
an asymptote at ∞ and a finite limit at 0. The SRV in model (3.3) displays the
same property and we discuss that in the next paragraph.

Behavior at 0 and ∞
As ∆ goes to 0 or to ∞, we can calculate the limits of W (µ,∆, j) and therefore

that of VT (∆).

Let j > 1 ∈ N fixed. The limits in 0 and ∞ can be calculated by:

(i) ∆→∞:

Since
∑j−1

k=0 P (M∆ > k) ≤ j, we have

µ− j

∆
≤ W (µ,∆, j) ≤ µ (3.8)

which yields

W (µ,∆, j) = µ− jO(
1

∆
)

So for each j > 1, for ∆→∞, we have W (µ,∆, j) = µ−O( 1
∆

).
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(ii) ∆→ 0:

We have that:

0 ≤ W (µ,∆, j) ≤ µ− 1

∆
P (M∆ > 0)

and

µ− 1

∆
P (M∆ > 0) = µ− 1

∆
(1− P (M∆ = 0))

= µ− 1

∆
(1− e−µ∆)

= µ− 1

∆
(−µ∆ + o(∆))

= o(1)

So for ∆→ 0, for all j > 1, W (µ,∆, j) = o(1), uniformly in j.

We summarize some consequences of these computations in the following

Proposition 3.2.2. We have for j ∈ N fixed,

(i) lim∆→0W (µ,∆, j) = 0

(ii) lim∆→+∞W (µ,∆, j) = µ.

If we furthermore assume that there exists A > 0 such that for all n ≥ 0, we
have −A ≤∑n

j=0 jΓe(j) ≤ A, we derive:

(i) lim∆→0 VT (∆) = E(ε2
i )λ+ E(e2

i )µ

(ii) lim∆→+∞ VT (∆) = E(ε2
i )λ+ E(e2

i )µ+ 2µ
∑∞

j=1 Γe(j)

Note that the second point is seen by using the uniform bounds of
∑n

j=0 jΓe(j)

and W (µ,∆, j) = µ− jO( 1
∆

).

We conclude this discussion about the SRV by saying that the usual form of
the signature plot that we observe dictates that lim∆→+∞ VT (∆) exists and that



CHAPTER 3. DISCRETE MICROSTRUCTURE NOISE 81

lim∆→0 VT (∆) > lim→∞ VT (∆). Therefore we must have that the noise term is
more negatively than positively autocorrelated in the long run such that:

∞∑
j=1

Γe(j) < 0. (3.9)

We discuss the nature of empirical tick returns autocovariance in more details in
section 3.4 and suggest a simple expression for ei that would match this criterion.

3.2.2 Autocovariance

We now provide a formula for the autocovariance function of the tick returns
of Xt. Since jumps are conventionally non zero movements in the process Xt, the
tick return is the increment in Xt between each arrival of either of the Poisson
processes, Nt or Mt, even if the size of the movement (respectively εi or ei) is null.
More precisely, we know that Nt and Mt are two independent Poisson counting
processes and therefore the probability of both of them jumping at the same time
is null. Therefore, we can define τ0 = 0, τ1, τ2, · · · , τN as the series of jumps of
either Nt or Mt put in a strict ascending order (i.e. the series of jumps of the
Poisson process Nt +Mt). For any i ∈ N, we have that that τi is a jump of Nt with
probability λ

µ+λ
and similarly, it is a jump of Mt with probability µ

µ+λ
.

Next we define N = {i ∈ N|dNτi = 1} and M = {i ∈ N|dMτi = 1} respectively
as the set of jump indexes which belong to either Nt or Mt. Consider the variables
Ji = Xτi−Xτi−1

of successive tick returns of Xt. We have that the series (Ji), i ≥ 0

is weakly stationary (this is actually shown in the proof that will follow) and thus
we can define its autocovariance function at lag j by

ΓJ(j) = E(JiJi−j)

We have the following formula for the autocovariance at lag j of (Xτi)i≥0:

ΓJ(0) = E(ε2
i )

λ

µ+ λ
+ E(e2

i )
µ

µ+ λ
(3.10)

ΓJ(j) =

j∑
k=1

Γe(k)

(
k − 1

j − 1

)
(

µ

λ+ µ
)k+1(

λ

λ+ µ
)j−k, for j > 0. (3.11)

For j = 0, the expression of the variance of Ji, ΓJ(0) = E(J2
i ), is seen as the
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average of the variances of εi and ei weighted with their respective probabilities of
occurrence λ

µ+λ
and µ

µ+λ
(since they are independent). For j > 0 equation (3.11) is

seen by first noticing that since εi is independent of Mt and ei we can write:

ΓJ(j) = E(JiJi−j) = E(eMτi
1i∈MeMτi−j

1i−j∈M).

Now, we suppose that τi and τi−j are both jumps of Mt, they are j − 1 obser-
vations apart that could correspond to either jumps of Nt or Mt. Because Nt and
Mt are independent, we can find the probability that k of these jumps are jumps
of Nt. This can be written as:

E(eMτi
1i∈MeMτi−j

1i−j∈M) = E(eMτi
eMτi−11i∈M1i−j∈M1i−s∈N∀s∈]i−j,i[

+eMτi
eMτi−21i∈M1i−j∈M1∃s∈]i−j,i[,|i−s∈M

+eMτi
eMτi−31i∈M1i−j∈M1∃s1,s2∈]i−j,i[,|i−s1,i−s2∈M

+ . . .)

+eMτi
eMτi−j1i∈M1i−j∈M1i−s∈M∀s∈]i−j,i[)

=

j∑
k=1

E(eMτi
eMτi−k1i∈M1i−j∈M1#{s∈]i−j,i[,|i−s∈M}=k−1)

where # symbol denotes cardinality. Since ei is stationary and independent of Nt

and Mt we can write

E(eMτi
eMτi−k1i∈M1i−j∈M1#{s∈]i−j,i[,|i−s∈M}=k−1)

=E(eMτi
eMτi−k)E(1i∈M1i−j∈M1#{s∈]i−j,i[,|i−s∈M}=k−1)

and

E(eMτi
eMτi−k) = E(eMi

eMi−k) = Γe(k) for all 1 ≤ k ≤ j.

Furthermore, we have that for any k ∈ N

E(1i∈M1i−j∈M1#{s∈]i−j,i[,|i−s∈M}=k) = (
µ

λ+ µ
)2

(
k

j − 1

)
(

λ

λ+ µ
)j−1−k(

µ

λ+ µ
)k
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therefore

E(eMτi
eMτi−k1i∈M1i−j∈M1#{s∈]i−j,i[,|i−s∈M}=k) = Γe(k)( µ

λ+µ
)2
(
k
j−1

)
( λ
λ+µ

)j−1−k( µ
λ+µ

)k

which yields (3.11) and that (Ji)i≥0 is weakly stationary.

We apply the model described above to financial data. In section 3.4, we use
a particular case of the general model (3.3) inspired by what we observed on the
data. In the next section we review some aspects of the data and microstructure
that we have detailed in the introduction (subsection 3.1.2 and also section 1.6.2,
section 1.3, and section 1.5).

3.3 Data Presentation and Tick Size

Data Presentation
We use level 1 data provided by QuantHouse Trading Solutions 1 of 10 futures

contracts on assets of different classes that trade in different exchanges for the
month of June 2009. The data has millisecond accuracy and it has been treated in
such a way that each market order is equivalent to exactly one trade2. In particular
we use Futures data for the DAX index (DAX), the EURO-STOXX 50 index (ESX),
the 10-years Euro-Bund (Bund), the Euro-Bobl (Bobl), the Euro-Schatz (Schatz),
the Dow Jones index (DJ), the 5-Year U.S. Treasury Note Futures (BUS5), the
exchange rate EUR/USD (EURO) and the the futures on the SP500 index (SP)
and finally the Light Sweet Crude Oil Futures (CL). For more information please
refer to the introduction of the thesis (section 1.5).

Tick Size
We now give a quick reminder of the tick size and of the estimator we used

for it. As we saw in section section 1.3, the tick size is a notion used to describe
just how important the tick value is for the traders. On average, it describes the
market’s aversion to a movement in the midpoint price of half a tick.

Robert and Rosenbaum in [75] introduce a model for ultra high frequency data
with a parameter η quantifying the perceived tick size. They show that this pa-
rameter can easily be estimated from the observation of the number of alternations

1http://www.quanthouse.com/
2When one market order hits several limit orders it results in several trades being reported

(cf. section 1.2.2). We aggregate together all such transactions and consider them as one trade
with an equivalent size and price.
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and continuations of tick returns. One simple estimator of η is for example:

η̂ =
N c

1

2Na
1

. (3.12)

where Na
1 is the number of price variations of size 1 ticks whose direction is the

same as the one of the preceding variation and N c
1 is the number of price variations

whose direction is opposite to the one of the preceding variation.

The parameter η is intended to represent the aversion to price changes. If η is
small, the price will be mainly doing alternations, also known as bid ask bounces.
This translates into a large tick, because in this case market participants are more
averse to changes in the midpoint price. As this is put in [75], all market participants
"feel more comfortable when the asset price is constant than when it is moving". So
the best bid and ask price levels (and hence the midpoint price) would only move
when it becomes clear that the current price level is unsustainable.

We use the tick size to classify our assets and we interpret the results of our
model according to this notion. Let us now describe how we used model (3.3) to
capture microstructure noise and the autocovariance of tick returns.

3.4 Application to Financial Data

The variance signature plot is characterized by an increase in the calculated SRV
VT (∆) as ∆ goes to 0 (cf Figure 3.1). We provide in this section a simple discrete
model, based on model (3.3), that attempts to replicate the signature plot, has
a similar tick returns distribution and displays a tick autocovariance function not
unlike the one we find with asset price series. In this section, the Poisson process
(Nt + Mt)t≥0 represents the arrival of a new price (that would be the time arrival
of a trade when we are looking at trade prices or midpoint prices, or the arrival of
a trade on the bid (ask) when we are looking at last sell (buy) prices). The series
of price differentials between two price arrivals (Ji)i≥0, represents then the series of
tick returns and Ji can be equal to 0. Ji cannot be called a "jump" of Xt since it
can be null. We now explain the choices we make for the particular model we use
to fit financial data.

First, if we look at the distribution of tick returns, say the Bund futures for
example (cf table 3.1 or Figure 3.3, graphs for the cumulative distribution function
(CDF) or the probability distribution function (PDF)), we find it discrete symmet-
ric, with a probability distribution mostly concentrated in {−2,−1, 0, 1, 2}. The
autocovariance function of tick returns (Figure 3.3) is negative with significant val-
ues for lags 1 and 2. Based on these observations we suggest that the support of the
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distributions of εi and ei be in {−2,−1, 0, 1, 2} and that an autoregressive moving
average is a good choice for the noise tick returns component of Xt. We remind
that Xt is a continuous time discrete price process, that can represent, indifferently,
a trade price, a midpoint price or a last buy or last sell price, is expressed as:

Xt =
Nt∑
i=1

εi +
Mt∑
i=1

ei (3.13)

In particular, based on our argument developed in section 3.1, we propose that
ei is a simple MA(1) process such that

ei = ε̃i − ε̃i−1

where ε̃i is a symmetrical, discrete random variable with values in {−1, 0, 1} whose
distribution can be described with one parameter:

p = P (ε̃i = 1)

This means ei has a distribution that can also be described with the same parameter
p such that:


P (ei = −2)

P (ei = −1)

P (ei = 0)

P (ei = 1)

P (ei = 2)

 =


p2

2p− 4p2

1− 4p+ 6p2

2p− 4p2

p2

 (3.14)

The support of ei taken as {−2, . . . , 2} is motivated by Table 3.1 for Bund futures
but could presumably be adjusted to other assets with different support in a similar
fashion. Furthermore, ei is autocorrelated only at lag 1 such that:

Γe(1) = −2p

Γe(j) = 0 ∀j > 1.

Giving εi the same support as ei, in order to avoid any trivial distinctions between
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tick return nb. occurrences
-6 1
-4 1
-3 5
-2 135
-1 19005
0 137846
1 19143
2 120
3 6
4 1

Table 3.1: Empirical number of observations per tick returns the Bund Futures
trade prices. We can see that returns of more than 2 ticks are very rare.

εi and ei, we then need two parameters to describe the distribution of εi:


P (εi = −2)

P (εi = −1)

P (εi = 0)

P (εi = 1)

P (εi = 2)

 =


pε2
pε1

1− 2(pε1 + pε2)

pε1
pε2

 . (3.15)

As a consequence we have

E(ε2
i ) = 8pε2 + 2pε1

E(e2
i ) = 4p

Γe(1) = −2p

Γe(j) = 0 ∀j > 1

W (µ,∆, 1) = µ− 1

∆
(1− e−∆µ)

And we can then rewrite equation (3.5) as:

VT (∆) = (8pε2 + 2pε1)λ+
4p

∆
(1− e−∆µ). (3.16)

Also, the jth lag (j ≥ 0) autocovariance of J defined in equations (3.10) and (3.11)
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as:

ΓJ(0) =
λ

λ+ µ
(8pε2 + 2pε1) + 4p

µ

λ+ µ
(3.17)

ΓJ(j) = −2p

(
µ

λ+ µ

)2(
λ

λ+ µ

)j−1

for j > 0. (3.18)

This model satisfies the autocovariance convergence condition of equation (3.9)
guaranteeing that lim∆→∞ VT (∆) exists and it is bigger than lim∆→0 VT (∆). In the
following, we see how this model fairs when calibrated to real data.

3.4.1 Parameter Fitting

Let us briefly explain the method we used for fitting the model and show on an
example the results we get on financial data. First we note that equation (3.16) is
not sufficient to fully determine our model. Indeed while p and µ can be determined
uniquely, we could only get an estimate for (8pε2 + 2pε1)λ as a whole with pε2, pε1 and
λ undetermined but related through a linear equation. We see in the following
paragraph how to use the distribution of Ji in order to fully define our model.
Our main priority in this work is to replicate the signature plot effect observed in
financial prices. So we start by fitting the following function:

VT (∆) = χ+
4p

∆
(1− e−∆µ)

where χ replaces (8pε2 + 2pε1)λ, to the empirical SRV defined in (3.16). We do this
using a non linear least squares method under the constraints that χ > 0, µ > 0

and 0 ≤ p ≤ 1/2.

Once we have the values for χ, µ and p we use them to fit the autocovariance
function of J , ΓJ(j) for j ≥ 0, which means we try to create the best model possible
that fits the variance and the autocovariance of the jumps of X. However, even
with the use of the autocovariance, the constraint χ = (8pε2 + 2pε1)λ will give us the
following system of equations:

ΓJ(0) =
χ

λ+ µ
+ 4p

µ

λ+ µ

ΓJ(j) = −2p(
µ

λ+ µ
)2(

λ

λ+ µ
)j−1, for j > 0.

with which we can only uniquely determine λ, because pε2 and pε1 are constrained by
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χ. Furthermore, the model requires that 0 ≤ E(ε2
i ) ≤ 4, and hence that λ ≥ χ/4.

A constraint least squares fit on ΓJ gives us λ.

Finally, it remains to determine pε2 and pε1. We already know µ, λ, p from the
previous fits and have the linear relationship (8pε2 +2pε1)λ = χ. The last information
that we can use is the unconditional distribution of J . Setting x = λ

µ+λ
, the

distribution fJ(x) of J has the form


P (J = −2)

P (J = −1)

P (J = 0)

P (J = 1)

P (J = 2)

 =


xpε2 + (1− x)p2

xpε1 + (1− x)(2p− 4p2)

x(1− 2(pε1 + pε2)) + (1− x)(1− 4p+ 6p2)

xpε1 + (1− x)(2p− 4p2)

xpε2 + (1− x)p2

 (3.19)

Which means that with all the other parameters estimated, the cumulative
distribution function of J , is parameterizable with only pε2 and pε1. However, using
the constraint (8pε2 + 2pε1) = χ

λ
the distribution becomes only dependant on one of

the two probabilities. We choose pε2 as the parameter and we refer to the cumulative
distribution of J by FJ(x|pε2).

We fit FJ(x|pε2) to the empirical distribution of jumps again using a non linear
least squares fit and we get the full distribution of εi and thus completely defining
our model. We also put bounds on pε2 in a way to make it compatible with the
definition of the model and the previous estimated parameters. We find the lower
bound to be max(0, (χ

λ
− 1)/6) and the upper one min( χ

8λ
, 0.5).

In conclusion, this method gives priority to reproducing the signature plot first,
followed by the second moments of the jumps of Xt and finally the unconditional
distribution of the jumps. We were careful as to ensure that the parameters are
consistent with the requirements of the model such that λ, µ > 0, {pε2, pε1, p} ⊂
[0, 1

2
] and pε2 + pε1 ≤ 1

2
.

In next section, we look at the model calibration for Bund futures data, before
concluding with an overview of results for other assets

3.4.2 Application to the Bund Futures

In this paragraph, we show the results of the model calibration over Bund fu-
tures. We find that the model replicates well the variance signature plot, produces
jumps with similar distributions (CDF and autocovariance function) to the empir-
ical ones.
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We use 21 days covering the month of June 2009. The data is handled in the
way described in section 3.3. Figure 3.2 shows that the model fits very well the
signature plot. In particular, we get the following results: for the random walk
component of the process

∑Nt
i=1 εi, we get λ = 0.12 for rate of arrival of jumps and

8pε2 + 2pε1 = 0.31 for their variance; for the autocorrelated component,
∑Mt

i=1 ei, we
get µ = 0.55 for the rate of arrival of jumps and 4p = 0.22 for their variance. More
explicitly, the statistics break down as following:

Random Walk Component Noise Component

λ 0.119 µ 0.549
pε2 0.001 pe2 0.003
pε1 0.152 pe1 0.096
pε0 0.693 pe0 0.802

E(ε2
i ) 0.312 E(e2

i ) 0.215

Table 3.2: Calibration Result applied to the Bund Futures trade prices during
November-December 2011. On the left are the statistics relating to the random
walk component of the model, where as on the right are those relating for the
autoregressive component or noise. We see that the noise component displays a
higher arrival and a smaller variance than the martingale part.

One interpretation of these results is as following: the vanishing noise component
Et has a smaller amplitude then the fundamental martingale component Rt, but it
occurs almost 5 times more often. Since these results are for trade prices, the noise
component represents the bid ask bounce phenomenon where as the random walk
component represents fundamental changes in the prices.

Figure 3.3 shows that the model replicates the variance of the tick returns and
their unconditional distribution. The fast decaying autocorrelation function of the
model corresponds well with what happens in reality where the autocovariance is
significant merely at lag 1 and decays very quickly afterwards (cf also Figure 3.7
Bund graph for a more detailed look at the autocovariance, where ΓJ(0) was ignored
in order to make the figure more readable.)
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Figure 3.2: Fit result of the SRV for the process of trade prices of Bund Futures.
The blue dots are for the empirical data and the red one is the one produced by
the calibration of model (3.16).
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Figure 3.3: Graphic comparisons between empirical statistics for the process of
trade prices of Bund Futures and the statistics produced by the calibration of
model (3.16). The blue curves are for the empirical data and the red are for the
calibrated model. From left to to right: in the first graph we show ΓJ for 10 lags,
in the second we show FJ(x) and finally we show the density of J , fJ(x). fJ(0) was
removed to make the plot more readable

3.4.3 Results for Other Assets

We discuss in this section the results for the rest of the assets and for different
types of tick returns, the traded prices, the last bid prices and the midpoint prices.
The results of the fits are shown in section 3.A of the appendix, whereas the figures
are shown in sections 3.B.1, 3.B.2, 3.B.3. We ordered the assets by tick size in a
similar fashion to [5] and as we have discussed in section 3.3. We present in the
following sections the results of the model calibration to the data and discuss them
according to the type of the series and the tick size.

We focus primarily on the series of trade prices because most of the results are
similar for other types of price series. However there are some interesting differences
that we point us in the subsequent paragraphs.

Trade Prices
We now consider the process of trade prices. We remind that the series consists

of the arrival times of market orders, coupled with the execution price expressed in
ticks.

Description of the Figures: First, Figure 3.6 shows that the model is able
to reproduce the signature form of the SRV for all the assets. We plot the SRV
in tick2 against ∆, the sampling duration, in seconds. The signature behavior is
present across all assets regardless of the tick size. However, we notice that as the
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tick increases, the diffusion deviation measure defined by the ratio

d =
VT (0)− VT (∞)

VT (∞)

increases, reflecting an increase in the noise contribution to the SRV and signifying
a more pronounced departure from the efficient diffusion behavior. In terms of the
model parameters, this means that −2µΓe(1)

λE(ε2i )
increases. In the particular case of our

model we have −2µΓe(1) = 4p = E(e2
i ) exactly equal to the variance of the noise,

and so we would expect the ratio µE(e2i )

λE(ε2i )
to be increasing with the tick size.

Figure 3.7 shows that all the tick returns series present significant autocovariance
at the first and second lag. The fitted model also has non null autocovariance of
the tick returns series and it does capture some of the assets’ ACF functions like
the FCL, DJ and the SP. However, even though its autocovariance function has
fast exponential decay (cf equation (3.18)), it is less successful in other cases where
the empirical ACF decays brutally after the first lag. The DAX, for example, has
significant autocovariance only at lag 1, and we do not get very adequate fits. This
is due in part to the way we fit the ACF. We explained in section 3.4.1 that we
fit ΓJ(j) even when j = 0, which means that we also fit the variance of the series,
which gives us a very good fit for the unconditional distribution as well. If we fit
ΓJ(j) for j ≥ 1 then we would get a better fit for the ACF but we loose in the
unconditional distribution of J . Nevertheless, our objective is to show that we are
able to capture some of the negative autocorrelation of tick returns responsible for
the signature plot, and the model is able to do that.

Figures 3.8 and 3.9 show the distribution of the tick returns compared to that
of J of the fitted model. Figure 3.8 shows the cumulative distribution function with
a support restricted to [−5, 5] while Figure 3.9 shows the probability distribution
function of all values which we put to show the distribution tail difference between
small tick and large tick assets. Indeed, small tick assets show fatter tails and
more extreme values, whereas large tick assets have a compact support basically
restricted to {−2,−1, 0, 1, 2}. Nevertheless, even with ignoring the tails the fitted
model presents a distribution that is very close to the empirical one across all assets
(except maybe for the CL futures). This becomes more and more obvious with large
tick assets since their distribution becomes more and more compact to the point of
having a support limited to {−2,−1, 0, 1, 2} exactly like the model in section 3.4.

Analysis of Fitting Results: The fitting results are shown in table 3.3. We
present four groups of statistics: the fit statistics for Rt and Et, some descriptive
statistics about our database and finally a group that we call "tick statistics" con-
taining results relating to the tick size of the asset. In it there is η (section 1.3) that
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we have used as a proxy for the tick size and a sorting parameters for the assets

and the ratios µ
λ
, µ(1−pe0)

λ(1−pε0)
, µ
√
E(e2i )

λ
√
E(ε2i )

and r =
µ(1−pe0)

µ(1−pe0)+λ(1−pε0)
which gives the relative

importance of "noisy" ticks to "fundamental" ones.

We have seen in section 3.4.2, that the vanishing noise component has a higher
occurrence rate than the fundamental one but has a smaller variance. This not true
across all the other assets as we can see in assets like the EURO futures where µ < λ

and E(ei) > E(εi). However, µ, λ and E(ei), E(εi) alone, are not good indicators
of the noise to martingale contribution. Good indicators of the contribution of
Et and Rt are µ

√
E(e2

i ) and λ
√
E(ε2

i ) respectively. However, since we have some
assets with fatter tails and whose variances are influenced by the values outside the
support of the model’s distribution, more robust indicators of the contribution of
Et and Rt are µ(1−pe0) and λ(1−pε0) respectively. As we were expecting, the ratios
of these statistics are increasing in tick size. The larger the tick size, the bigger the
contribution of the noise is. This can be interpreted as an increase in the number
of bid ask bounces, which is more important in a big tick asset. Let

r =
µ(1− pe0)

µ(1− pe0) + λ(1− pε0)

be the the relative contribution of the noise term to the total movement in price.
Figure 3.4 shows r plotted against η, and features a decreasing linear relationship
confirming our initial thoughts. Since η is calculated as the ratio of the number of
continuation to the number of alternations, this falls perfectly within the spirit of
our model. As the tick increases the weight of the vanishing autocorrelated noise
term increases.

We end this section by saying that we notice that the sum of the fitted rates
µ + λ is very close to the total rate of trading displayed in the Observation per
Second row. Although we did not set out to match this statistic, the fact the
the distribution of the model matches that of the empirical observations and the
fact that we were able to closely replicate the signature plot, makes it sufficient to
capture the average trading rate.
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Figure 3.4: Noise to fundamental variance contribution represented by r =
µ(1−pe0)

µ(1−pe0)+λ(1−pε0)
, plotted against a decreasing tick size represented by an increasing

η. Each blue dot represent one asset and the red line is the linear fit.

Last Buy Prices
We now consider the process of last buy prices. We recall that the series con-

sists of only the arrival times of market orders hit the ask price, coupled with the
execution price expressed in ticks.

Description of the Figures: For the ask prices Figure 3.10 shows that the
buy prices are closer to a martingale than the trade prices. This is seen by noticing
that the ratio d is, on average, smaller in the case of the ask prices than it is for
the trade prices. In this sense the ask prices are closer to a diffusion than the trade
prices. Indeed, two of the assets (BUS5 and CL futures) no longer display the
signature form of the variance they did when using trade prices. In spite of that,
the other assets do present the signature variance behavior and the model fits them
well.

The situation is more interesting for the autocovariance in Figure 3.11, where
the empirical autocovariance of most assets is significant for more lags than in
the case of trades, especially for large tick assets such as the DJ, Bobl, Schatz,
Eurostoxx and SP futures. The model in this situation displays a behavior that is
very similar to the empirical ACF.

Finally Figures 3.12 and 3.13 show the model comes close to the empirical
distribution even though that distribution is not symmetric (the distribution of
buy price returns is traditionally positively skewed).
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Analysis of Fitting Results: η calculated on ask prices is not the same
as η calculated on trade prices. Still r is (to some extent) increasing with the
tick size (measured with η calculated with trade prices). This means that the
autocorrelated noise behavior persists in a similar fashion when looking at ask
prices, although this time it could not be interpreted as bid-ask bounces. There
is indeed a deeper interpretation of the autocovariance of tick returns besides the
bid-ask bounces originating in the orderbook, but this topic is beyond the scope of
this presentation.

Midpoint Prices
We now consider the process of midpoint prices. We recall that the series consists

of the arrival times of market orders, coupled with the midpoint price measured
right before the arrival of the market order.

Contrary to the trade and bid prices, the series of midpoint returns has half
integer support because the midpoint is the average of the bid and ask whose sum
can be odd. For this reason we multiplied the series of tick returns by 2 in this
case.

Description of the Figures: The mid point’s efficiency (interested by the
importance of d) is half way between that of the bid prices and that of the trade
price. The results show that the ratio d is, on average, between that of the trade
prices and that of the bid prices. Now, only one of the assets (CL futures) no
longer displays the signature form of the variance. And similarly the other assets
do present the signature variance behavior and the model fits them well.

Similarly to the last buy prices, the empirical autocovariance in Figure 3.15 of
most assets is significant for more lags than in the case of trades, and we can see
that on the EURO, DJ, Bobl, Bund, Schatz, Eurostoxx futures. The model in this
situation displays a behavior that very similar to the empirical ACF.

Finally, Figures 3.12 and 3.13 show that the model fails to replicate the dis-
tribution of ticks. This is due to the empirical distribution of the midpoint tick
returns whose series had to multiplied by 2 in order to put it on the lattice Z. Now
while this causes no problem with small tick assets whose prices often jumps by
half ticks, the situation is more complicated for large tick assets whose midpoint
almost never moves by less than a tick. So it is understandable that the model,
whose distribution has a restricted support, can not replicate the distribution of
tick returns in this case. We point out that we tested the model on large tick assets
without multiplying their prices by 2 and the model performed well, similarly to
the case of trade and buy prices.

Analysis of Fitting Results: Same remark as for the last buy price.
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Conclusion and Further Research
We have presented in this chapter a simple model for asset prices on the high

frequency scale. The model described in equation (3.3) is just the sum of two
jump processes with values living on a lattice. The first one, that we call the
random walk component, consists of the cumulative sum of a series of iid random
variables arriving at independent Poisson times. The second one, that we can
the autocorrelated noise component, consists of the cumulative sum of an MA(1)
process also arriving at independent Poisson times.

The model has the particularity of converging to a diffusion as the scale becomes
coarser, a property that is fundamental for the theory of asset pricing. However,
on the microscopic scale, the model is flexible enough to reproduce one of the
commonly observed statistics of prices at this scale, the signature plot effect, the
phenomenon in which the Sampled Average Realized Variance (SRV) increases with
the sampling frequency of the prices.

In practice, we use symmetric discrete compact distributions for the compound-
ing jumps and a degenerated vanishing MA(1) process for the noise component.
We wanted to see how much flexibility such a simple approach offers and we were
happily surprised by the results. Indeed, we fit our model to several Futures assets
and used different definitions for the price, the last traded price, the midpoint price,
and the last buy price. We see that the model is robust with respect these changes
and accounts for the weak but significant autocorrelation structure of tick returns
and matches to a very large extent the unconditional distribution of observed tick
returns. The results that we get are consistent with our expectations that the
noise component becomes more important as the tick size becomes larger. The
autocovariance of tick returns was not always well reproduced, however the model
does provide an autocovariance structure that allows us to successfully capture the
signature plot.

In the last section of this chapter below, we modify the model of section 3.4 in
order to make it a true point process. This means that we discard the tick returns
of size 0 and model jumps only. The following material is exploratory only, and
since the results obtained only poorly fit the data – see below, Figure 3.5– we have
decided not to investigate this approach further.

3.5 Supplemental material: a point process ap-
proach

What happens in the case we decide to look at the price as point process? This
means that we neglect all the tick returns of size 0 and we look only at jumps.
We propose in this section to construct a model in the same spirit of the model in
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section 3.4, from which we artificially remove the tick returns of size 0. Let ei be
defined as in section 3.4, and define fi as the "observed" non null part of ei:

fi = eσ(i) (3.20)

where σ is a random function N→ N defined by

σ(i) = ith element in {j ∈ N, ej 6= 0}. (3.21)

Next we define the process Xt that will represent the continuous time price
process

Xt =
Nt∑
i=1

εi +
Mt∑
i=1

fi (3.22)

where εi are discrete symmetric iid random variables with support in {−2,−1, 1, 2}
and Nt, Mt are independent Poisson processes that are also independent of their
respective compounding jumps εi and fi. In this presentation, the arrival times of
the Poisson process (Nt + Mt)t≥0 corresponds to a jump of the process Xt. The
jumps of Xt correspond to the observation of a new price and the series of price
differentials (Ji)i≥0 is no longer the series of tick returns, but the series of non null
price returns.

In the following, we will express the unconditional distribution and the autoco-
variance function of fi and provide an algorithm to calculate it. We are also going
to see that fi is weakly stationary as it can be written as a linear combination of a
2 dimensional stationary Markov Chain.

Introducing a 2 dimensional Markov Chain
First note that ei can be written as

ei = A.Ei

where Ei = (ε̃i, ε̃i−1) a 2 dimensional random vector, A = (1,−1) and . denotes
the scalar product. We easily see that Ei is a time homogenous irreducible ergodic
Markov Chain of order 1 with a finite state space E (all the states are aperiodic
and positive recurrent).

Next, define H = {E ∈ E , A.E = 0} and H its complementary. We can then
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rewrite σ(i) as:

σ(1) = min{j > 0, Ej ∈ H}
σ(i) = min{j > σ(i− 1), Ej ∈ H}; for all i > 1.

This shows that the random variables σ(i), i ≥ 1, are strictly increasing finite
stopping times (exit times from H, or entry times into H, with P (σ(i) < ∞) = 1

thanks to the irreducibility of Ei). Now define the stopped Markov Chain Fi = Eσ(i).
We have that Fi is also an irreducible Markov Chain of order 1. This is seen by the
Strong Markov Property. Indeed we have that each i ≥ 1, the process (Eσ(i)+k)k,
k ≥ 0 starting at e = Eσ(i) is a Markov Chain independent of the past (up to σ(i))
and conditionally to the initial condition they all have the same law. So we can
write for s1, . . . , si−1 ∈ H:

P (Fi = si|F1 = s1, . . . , Fi−1 = si−1) = P (Eσ(i) = si|Eσ(1) = s1, . . . , Eσ(i−1) = si−1)

= P (Eσ(i) = si|Eσ(i−1) = si−1)

= P (Eσ(2) = si|Eσ(1) = si−1)

Now let PE and PF be respectively the transition matrices of E and F . The
stationary probability of F is given by the vector π that satisfies P ′Fπ = π (exists
since F is irreducible). We also have that the nth order transition matrices are just
P n
E and P n

F . Furthermore, we make the assumption that F0 is drawn according to
S, which gives that (Fi)i≥0 is stationary.

By construction, F can never transit into or from a state in H. Let a ∈ E =

(H
⋃
H) and b ∈ H. We then define an intermediate transition matrix P̃F . P̃F (a, b)

is the probability that the process Ei starts in a and arrives in b in "one step of F"
i.e. while completely forgetting any stops made any element of H. This means that
Ei can start in a, which may or may not be an element of H, stop many consecutive
times in any intermediate element of H, and when it finally reaches b, the whole
trajectory is considered as only one transition. This property is expressed with the
following relationship:

P̃F (a, b) = PE(a, b) +
∑
n∈H

PE(a, n)P̃F (n, b)

As a consequence, for each b ∈ H we have a linear system that allows us to
calculate P̃F (a, b) for all a ∈ E and in particular for all a ∈ H. Restricting P̃F over
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elements in H ×H gives us PF .

First and Second Moments of fi
fi is now seen as

fi = A.Fi

and since (Fi)i≥0 is a stationary Markov Chain, (fi)i≥0 is also stationary. We have
that its distribution lives in {−2,−1, 1, 2} and since it is the distribution of ei
conditioned to ei 6= 0, it can be expressed as a function of p such that


P (fi = −2)

P (fi = −1)

P (fi = 1)

P (fi = 2)

 =


p

4−6p
1−2p
2−3p
1−2p
2−3p
p

4−6p

 (3.23)

The autocovariance of fi at lag j is defined by:

Γf (j) = E(fifi−j) = E(A.FiA.Fi−j)

Γf (j) can only be expressed as a function of PF and we do not have simple
closed form formulas for it. However it can be numerically calculated by:

Γf (j) =
∑
S,T∈H

(A.S)(A.T )P (Fi = S)P (Fi = T |Fi−j = S)

Γf (j) =
∑
S,T∈H

(A.S)(A.T )π(S)P j
F (S, T ) (3.24)

where π(S) = P (Fi = S) is the stationary probability of the state S and PF (S, T ) =

P (Fi = T |Fi−1 = S) is the transition matrix.

Realized Variance and Autocovariance of Tick Returns
The realized variance in this situation does not have a closed form formula and it

has to be calculated using the full version of equation (3.5). Using the assumptions
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of this section we can write:

VT (∆, µ, λ, p, pε1) = (4− 6pε1)λ+
2

2− 3p
µ+ 2

∞∑
j=1

Γf (j)W (µ,∆, j) (3.25)

whereW (µ,∆, j) is defined in equation (3.6) and Γf (j) is calculated using equation
(3.24). The autocovariance of the series of jumps (Ji) i ≥ 1 of Xt for lag j > 0,
is calculated as in equation (3.11) since none of the underlying assumption of the
model have changed (fi is weakly stationary and independent of εi, Nt andMt) and
we can write

ΓJ(j) =

j∑
k=1

Γf (k)

(
k − 1

j − 1

)
(

µ

λ+ µ
)k+1(

λ

λ+ µ
)j−k (3.26)

Application to Financial Data
Tested against real data, the model does not perform very well. Indeed the

form of the SRV produced is extremely restricted and the ratio d = VT (0)−VT (∞)
VT (∞)

it
produces is more tightly bounded than in the case of the model in section 3.4. This is
due to the fact that the autocovariance function of f has an alternating behavior,
negative for odd lags and positive for even lags, which reduces the amplitude of
|∑∞j=1 Γf (j)W (µ,∆, j)| and therefore the effect of the negative reversion. So the
model behaves even more poorly as the empirical ratio d of the asset increases,
in other words for large tick assets. As an example we show the fit for the Bund
futures in Figure 3.5.
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Figure 3.5: SRV plotted against ∆. The blue dots are for the empirical VT (∆) of
the process of trade prices of Bund Futures and the red curve is the fitted curve of
equation (3.25).
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BUS5 EURO Dax CL DJ Bobl Bund Schatz Eurostoxx SP

Random Walk

λ 0.227 0.459 0.406 0.142 0.696 0.159 0.162 0.128 0.176 0.982
pε2 0.018 0.013 0.067 0.497 0.007 0.002 0.001 0.000 0.000 0.000
pε1 0.109 0.125 0.163 0.003 0.098 0.102 0.134 0.041 0.064 0.016
pε0 0.746 0.724 0.540 0.000 0.790 0.792 0.728 0.919 0.871 0.967

E(ε2
i ) 0.359 0.357 0.861 3.981 0.254 0.220 0.280 0.082 0.130 0.033

λ(1− pε0) 0.058 0.127 0.187 0.142 0.146 0.033 0.044 0.010 0.023 0.032
λ
√
E(ε2

i ) 0.136 0.274 0.377 0.284 0.351 0.075 0.086 0.037 0.063 0.179

Noise Component

µ 0.320 0.216 0.343 2.392 0.622 0.205 0.435 0.118 0.459 1.780
pe2 0.000 0.008 0.028 0.002 0.010 0.003 0.004 0.005 0.005 0.007
pe1 0.035 0.150 0.223 0.082 0.157 0.095 0.105 0.119 0.122 0.135
pe0 0.928 0.682 0.496 0.833 0.667 0.804 0.782 0.753 0.745 0.716

E(e2
i ) 0.074 0.368 0.674 0.180 0.390 0.214 0.239 0.276 0.285 0.323

µ(1− pe0) 0.023 0.069 0.173 0.400 0.207 0.040 0.095 0.029 0.117 0.505
µ
√
E(e2

i ) 0.087 0.131 0.281 1.013 0.388 0.095 0.213 0.062 0.245 1.011

Desc. Stats

# Days 21 21 21 21 21 21 21 21 21 21
# Trades 85687 217082 191962 585321 411036 62572 107061 46858 260616 452989

Start Date 6/5/2009 6/5/2009 6/5/2009 6/5/2009 6/12/2009 6/5/2009 6/5/2009 6/5/2009 6/5/2009 6/12/2009
End Date 7/7/2009 7/3/2009 7/3/2009 7/3/2009 7/10/2009 7/3/2009 7/3/2009 7/3/2009 7/3/2009 7/13/2009

Obervations/sec 0.574 0.766 0.847 2.665 1.446 0.414 0.708 0.310 0.766 3.105

Tick Stats

η 0.335 0.324 0.286 0.239 0.229 0.201 0.146 0.134 0.084 0.031
µ
λ

1.411 0.471 0.845 16.792 0.893 1.286 2.689 0.924 2.603 1.811
µ(1−pe0)

λ(1−pε0)
0.397 0.541 0.926 2.812 1.414 1.216 2.157 2.805 5.135 15.609

µ
√
E(e2i )

λ
√
E(ε2i )

0.638 0.478 0.747 3.566 1.107 1.267 2.485 1.698 3.861 5.666

r 0.284 0.351 0.481 0.738 0.586 0.549 0.683 0.737 0.837 0.940

Table 3.3: Calibration results and descriptive statistics using trade prices. The assets are ordered from left right by the tick size.
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BUS5 EURO Dax CL DJ Bobl Bund Schatz Eurostoxx SP

Random Walk

λ 0.294 0.321 0.355 1.295 0.315 0.136 0.278 0.111 0.259 1.072
pε2 0.019 0.038 0.085 0.029 0.035 0.011 0.005 0.001 0.001 0.000
pε1 0.055 0.105 0.143 0.102 0.139 0.084 0.061 0.041 0.040 0.013
pε0 0.851 0.714 0.543 0.737 0.651 0.810 0.869 0.917 0.920 0.974

E(ε2
i ) 0.265 0.511 0.969 0.439 0.561 0.256 0.159 0.090 0.084 0.028

λ(1− pε0) 0.044 0.092 0.162 0.341 0.110 0.026 0.036 0.009 0.021 0.028
λ
√
E(ε2

i ) 0.151 0.229 0.349 0.858 0.236 0.069 0.111 0.033 0.075 0.178

Noise Component

µ 0.004 0.068 0.081 0.000 0.405 0.071 0.065 0.046 0.102 0.428
pe2 0.138 0.012 0.047 0.000 0.002 0.001 0.002 0.001 0.001 0.000
pe1 0.191 0.171 0.245 0.000 0.081 0.055 0.081 0.066 0.053 0.023
pe0 0.342 0.634 0.416 1.000 0.835 0.889 0.834 0.864 0.893 0.954

E(e2
i ) 1.487 0.439 0.864 0.000 0.177 0.116 0.178 0.143 0.111 0.047

µ(1− pe0) 0.003 0.025 0.047 0.000 0.067 0.008 0.011 0.006 0.011 0.020
µ
√
E(e2

i ) 0.005 0.045 0.075 0.000 0.171 0.024 0.027 0.017 0.034 0.092

Desc. Stats

# Days 21 21 21 21 21 21 21 21 21 21
# Trades 45005 107874 95090 278871 192027 32216 56474 24988 128102 226837

Start Date 6/5/2009 6/5/2009 6/5/2009 6/5/2009 6/12/2009 6/5/2009 6/5/2009 6/5/2009 6/5/2009 6/12/2009
End Date 7/7/2009 7/3/2009 7/3/2009 7/3/2009 7/10/2009 7/3/2009 7/3/2009 7/3/2009 7/3/2009 7/13/2009

Obervations/sec 0.302 0.381 0.420 1.270 0.676 0.213 0.374 0.166 0.377 1.555

Tick Stats

η 0.393 0.436 0.421 0.429 0.351 0.358 0.365 0.270 0.274 0.274
µ
λ

0.013 0.210 0.229 0.000 1.289 0.523 0.234 0.416 0.392 0.399
µ(1−pe0)

λ(1−pε0)
0.059 0.270 0.293 0.000 0.611 0.304 0.297 0.677 0.520 0.712

µ
√
E(e2i )

λ
√
E(ε2i )

0.032 0.195 0.216 0.000 0.725 0.352 0.248 0.526 0.451 0.520

r 0.056 0.212 0.226 0.000 0.379 0.233 0.229 0.404 0.342 0.416

Table 3.4: Calibration results and descriptive statistics using Last Buy Prices. The assets are ordered from left right by the tick
size.



C
H

A
P

T
E

R
3.

D
ISC

R
E

T
E

M
IC

R
O

ST
R

U
C

T
U

R
E

N
O

ISE
106
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Random Walk

λ 0.480 0.591 0.685 0.567 0.863 0.104 0.199 0.069 0.327 1.166
pε2 0.074 0.138 0.236 0.499 0.100 0.167 0.113 0.074 0.033 0.013
pε1 0.030 0.000 0.071 0.000 0.004 0.000 0.000 0.000 0.000 0.000
pε0 0.793 0.724 0.386 0.000 0.792 0.666 0.775 0.851 0.934 0.975

E(ε2
i ) 0.652 1.104 2.030 3.996 0.811 1.335 0.901 0.596 0.265 0.100

λ(1− pε0) 0.100 0.163 0.421 0.567 0.180 0.035 0.045 0.010 0.022 0.029
λ
√
E(ε2

i ) 0.388 0.621 0.976 1.133 0.777 0.120 0.189 0.053 0.168 0.369

Noise Component

µ 0.027 0.151 0.186 35.471 0.616 0.251 0.408 0.159 0.326 1.709
pe2 0.169 0.128 0.250 0.000 0.028 0.017 0.012 0.016 0.008 0.001
pe1 0.147 0.203 0.000 0.001 0.223 0.191 0.169 0.190 0.148 0.052
pe0 0.369 0.337 0.500 0.997 0.498 0.584 0.638 0.586 0.687 0.896

E(e2
i ) 1.642 1.434 2.000 0.003 0.672 0.515 0.432 0.512 0.363 0.109

µ(1− pe0) 0.017 0.100 0.093 0.104 0.310 0.104 0.148 0.066 0.102 0.179
µ
√
E(e2

i ) 0.035 0.181 0.264 1.919 0.505 0.180 0.268 0.114 0.196 0.564

Desc. Stats

# Days 21 21 21 21 21 21 21 21 21 21
# Trades 85687 217082 191962 585321 411036 62572 107061 46858 260616 452989

Start Date 6/5/2009 6/5/2009 6/5/2009 6/5/2009 6/12/2009 6/5/2009 6/5/2009 6/5/2009 6/5/2009 6/12/2009
End Date 7/7/2009 7/3/2009 7/3/2009 7/3/2009 7/10/2009 7/3/2009 7/3/2009 7/3/2009 7/3/2009 7/13/2009

Obervations/sec 0.574 0.766 0.847 2.665 1.446 0.414 0.708 0.310 0.766 3.105

Tick Stats

η 0.320 0.379 0.394 0.411 0.370 0.206 0.200 0.114 0.153 0.160
µ
λ

0.057 0.256 0.272 62.576 0.714 2.416 2.053 2.324 0.995 1.466
µ(1−pe0)

λ(1−pε0)
0.173 0.613 0.221 0.183 1.723 3.009 3.298 6.456 4.699 6.110

µ
√
E(e2i )

λ
√
E(ε2i )

0.090 0.292 0.270 1.693 0.650 1.501 1.421 2.155 1.164 1.528

r 0.148 0.380 0.181 0.155 0.633 0.751 0.767 0.866 0.825 0.859

Table 3.5: Calibration results and descriptive statistics using Midpoint Prices. The assets are ordered from left right by the tick
size.
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3.B Figures
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3.B.1 Trade Prices
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Figure 3.6: SRV fit results for the series of trade prices. The assets are ordered
according to their tick size. Each blue dots represent the VT (∆) for the sampling
duration ∆. The red curve is the function (3.16) fitted to the cloud of blue dots.
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Figure 3.7: 6 lags autocovariance functions of trade tick returns. The empirical
ACF is in blue and the one of the fitted model is in red. The black dotted lines
are the 95% significance bounds under the assumption that the return series are iid
gaussian. We can see that the empirical autocovariance for most assets is significant
and that the model does capture some of it.
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Figure 3.8: Cumulative distribution functions of trade tick returns. The blue line
is the empirical cdf while the red dotted curve is the CDF of the fitted model.
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Figure 3.9: Probability distribution functions (fJ(x)) of trade tick returns. fJ(0)
was removed to improve readability. The blue line is the empirical PDF while the
red line is the PDF of the fitted model. We notice that as as the tick becomes
larger the distribution of tick returns becomes more compact with a support that
matches that of our model. We also notice that most of the tick returns are zero
valued.
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3.B.2 Last Bid Prices
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Figure 3.10: SRV fit results for the series of Last Bid prices. The assets are ordered
according to their tick size. Each blue dots represent the vT (∆) for the sampling
duration ∆. The red curve is the function (3.16) fitted to the cloud of blue dots.
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Figure 3.11: 6 lags autocovariance functions of last bid tick returns. The empirical
ACF is in blue and the one of the fitted model is in red. The black dotted lines
are the 95% significance bounds under the assumption that the return series are iid
gaussian. We can see that the empirical autocovariance for most assets is significant
and that the model does capture some of it.
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Figure 3.12: Cumulative distribution functions of last bid tick returns. The blue
line is the empirical CDF while the red dotted curve is the CDF of the fitted model.
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Figure 3.13: Probability distribution functions (fJ(x)) of last buy tick returns.
fJ(0) was removed to improve readability. The blue line is the empirical PDF while
the red line is the PDF of the fitted model. We notice that as as the tick becomes
larger the distribution of tick returns becomes more compact with a support that
matches that of our model. We also notice that most of the tick returns are zero
valued.
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3.B.3 Midpoint Prices
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Figure 3.14: SRV fit results for the series of midpoint tick returns. The assets are
ordered according to their tick size. Each blue dots represent the VT (∆) for the
sampling duration ∆. The red curve is the function (3.16) fitted to the cloud of
blue dots.
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Figure 3.15: 6 lags autocovariance functions of midpoint tick returns. The empirical
ACF is in blue and the one of the fitted model is in red. The black dotted lines
are the 95% significance bounds under the assumption that the return series are iid
gaussian. We can see that the empirical autocovariance for most assets is significant
and that the model does capture some of it.
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Figure 3.16: Cumulative distribution functions of midpoint tick returns. The blue
line is the empirical CDF while the red dotted curve is the CDF of the fitted model.
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Figure 3.17: Probability distribution functions (fJ(x)) of midpoint tick returns.
fJ(0) was removed to improve readability. The blue line is the empirical PDF while
the red line is the PDF of the fitted model. We notice that as as the tick becomes
larger the distribution of tick returns becomes more compact with a support that
matches that of our model. We also notice that most of the tick returns are zero
valued.



CHAPTER4

Hawkes Kernel Estimation

4.1 Introduction

Although the concept of self excitement was commonly used for a long time by
seismologists (see [85] and the references therein), Alan Hawkes was the first to
provide a well defined point process with a self exciting behavior [46, 47, 55]. This
model was first introduced to reproduce the ripple effects generated after the oc-
currence of an earthquake [86, 2]. Since then, it has been successfully used in many
areas, ranging from seismology (see e.g., [66], for a recent review), biology [74], to
even criminology and terrorism [61, 32] (cf [55] and references therein for a detailed
review of Hawkes processes and their applications). As far as financial applications
are concerned, since transactions and price changes are discrete events, Hawkes
processes have naturally been generating more and more interest. Applications can
be found in the field of order arrival rate modeling [48, 24, 83], noise microstructure
dynamics [9], volatility clustering [35], extreme values and VaR estimation [25] and
credit modeling [42].

Hawkes models account for a self exciting behavior of events by which the arrival
of one event increases the probability of occurrence of new ones. In its most basic
form and in the one dimensional case, the Hawkes process is a counting process

123
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defined by λt, the rate of arrival of events by:

λt = µ+

∫ t

−∞
φt−sdNs (4.1)

where µ > 0 is a constant background rate, Nt is the cumulative counting process
and φ a positive real function called decay kernel. We can clearly see in equation
(4.1) that when event occurs at time t, we have dNt = 1 and hence dλt = φ0. The
influence of the event is transmitted to future times through φ such that at time
u > t the increase in λt due to the time t event is φu−t. Thus a self exciting behavior
is observed.

A basic issue in applications of Hawkes processes concerns their estimation. In
early applications, parametric estimation used spectral analysis by means of the
Bartlett spectrum (the Fourier transform of the autocovariance of the process)
[15, 16] and it was indeed through that light that Hawkes presented his model,
however this method was later seen to be less satisfactory.A maximum likelihood
method for estimating the parameter of exponential, power law and Laguerre class
of decay kernels was developed in [70, 67] and it became the standard method
for estimating Hawkes processes. Furthermore, the Laguerre decay kernels were
seen to be very pertinent decay kernels because they allowed to account for long
term dependencies as well as offering short term flexibility. More recently, other
types of estimation procedures were developed. When the form of the decay ker-
nel is unknown non-parametric methods are desirable because they give an idea of
the general form of the decay kernel. For example, by using the branching prop-
erty of the Hawkes process [90], the authors in [58] and [53] were able to provide
Expectation-Maximization algorithms to estimate both background rate and the
decay kernel. In [74], the authors present also an algorithmic method for decay
estimation by using a penalized projection method.

In this paper, we propose an alternative simple non parametric estimation
method for multivariate symmetric Hawkes processes based on the Bartlett spec-
trum Fourier transform. We present the method and its numerical feasibility with-
out going too much in details about convergence speeds or error optimization. By
studying one dimensional and two dimensional examples, we show that our ap-
proach provides reliable estimates on both fast and slowly decaying kernels. We
then apply our method to high frequency financial data and find power-law kernels.
This implies that the arrival of events display long range correlations, a phenomena
well known in finance, similarly to what was suggested in [17].

This paper is organized as follows. In section 4.2, we introduce a basic ver-
sion of a multivariate Hawkes processes. We place ourselves in the context of an
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n−dimentional linear Hawkes process with a constant background rate and a non-
negative decay kernel. We set some notations and give out a martingale representa-
tion of the rate function λt in Eq. (4.1). In section 4.3, we study the autocovariance
of the process. Along the same line as [47], we establish its relationship with the
decay kernel in both direct and Fourier spaces. The estimation method in the case
of symmetric Hawkes processes is then provided in section 4.4. This method, based
on a Hilbert transform phase recuperation method, is explicitly detailed in both
univariate and special symmetric bivariate cases. In section 4.5, the method is illus-
trated by numerical examples for both exponential and power law kernels. We also
address some statistical issues concerning the estimation errors. Finally, in section
4.6, we apply our method to high frequency financial data for which we deduce a
long range nature of the decay kernels.

4.2 Multivariate Hawkes Processes

4.2.1 Notations and Definitions

As introduced by Hawkes in [46] and [47], let us consider an n-dimensional point
process process (Nt)t≥0, where N i

t 1 ≤ i ≤ n represents the cumulative number of
events in the ith component of the process Nt up to time t.

The conditional intensity vector at any time t is assumed to be a random process
that depends on the past as

λt = µ+

∫ t

−∞
φt−sdNs (4.2)

where µ > 0 is a vector of size n and φt referred to as the decay kernel, is an
n× n matrix.

Notations 4.2.1. In the following

• Mn,p(R) (resp. Mn,p(C)) denotes the set of n × p matrices with values in
R (resp. C). For any matrix M (resp. vector v), M ij (resp. vi) denotes its
elements.

• For any function ft, f̂z =
∫
R
e−ztftdt corresponds to its Laplace transform.

• By extension ifMt ∈Mn,p(R) then M̂z ∈Mn,p(C) corresponds to the matrix
whose elements are the Laplace transforms of the elements of Mt.
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Using these notations, one of the main results of Hawkes is that if

(H1) the kernel is positive and causal, i.e.,

φ : R→Mn,n(R+), ∀t < 0, φt = 0, and ∀t ≥ 0, φijt ≥ 0, (4.3)

(H2) and if the spectral radius of φ̂0 (i.e., its largest eigen value) is strictly smaller
than 1,

then (Nt)t≥0 is a n-dimensional point process with stationary increments. The
conditional intensity λt is itself a stationary process with mean

Λ = E(λt) = E(dNt)/dt.

Combining this last equation with Eq. (4.2), one easily gets Λ = µ+
∫ t
−∞ φt−sdsΛ =

µ+
∫∞

0
φuduΛ and consequently

Λ = (I− φ̂0)−1µ,

where I refers to the n× n identity matrix.

Before moving on, we need to introduce some more notations that will be used
all along the paper.

Notations 4.2.2. If At ∈ Mm,n(R) and Bt ∈ Mn,p(R) then the convolution
product of At and Bt is naturally defined as A ? Bt =

∫
R
AsBt−sds =

∫
R
At−sBsds.

Of course it is associative and distributive however it is generally not commutative
(unless At and Bt are commutative). The neutral element is δIt, i.e., the diagonal
matrix with Dirac distribution on the diagonal. In the following we will use the
notation :

A ? dNt =

∫
R

At−sdNs.
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Combining both Notations 4.2.1 and 4.2.2, it is easy to show that the convolution
theorem on matrices translates in

Â ? Bz = ÂzB̂z.

4.2.2 Martingale Representation of λt
We roughly follow a similar path to Hawkes in [47]. Let (Mt)t≥0 be the martin-

gale compensated process of (Nt)t≥0 defined by:

dMt = dNt − λtdt . (4.4)

Then λt can be represented as a stochastic integral with respect to the martingale
(Mt)t≥0:

Proposition 4.2.1. One has:

λt = Λ + Ψ ? dMt, (4.5)

where Ψt is defined as

Ψt =
∞∑
n=1

φ
(?n)
t , (4.6)

where φ(?n)
t refers to the nth auto-convolution of φt (i.e., φ̂(?n)

z = (φ̂z)
n)

Proof. Using equations (4.2) and (4.4) one has:

λt = µ+ φ ? dNt = µ+ φ ? dMt + φ ? λt,

and consequently

(δI− φ) ? λt = µ+ φ ? dMt.

Let us note that the inverse of δIt − φt for the convolution product is nothing but
ht = δIt + Ψt. Thus convoluting on each side of the last equation by ht, one gets
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(since h ? φt = Ψt)

λt = h ? µ+ Ψ ? dMt.

Since µ is a constant one has h ? µ = ĥ0µ. Using the convolution theorem one gets
ĥ0µ = (I− φ̂0)−1µ = Λ which proves the proposition.

4.3 The Covariance Operator of Hawkes Processes

The kernel estimator we are going to build is based on the empirical auto-
covariance of (Nt)t≥0. This section is devoted to the covariance operator of the n-
dimensional Hawkes processes. However, we first discuss some useful results about
their infinitesimal auto-covariance operator.

4.3.1 The Infinitesimal Covariance Operator

Let us define the infinitesimal covariance matrix:

νt−t′ = E(dNtdN
†
t′),

where M † denotes the hermitian conjugate of a matrix M . Along the same way
as Hawkes’s in [47], νt−t′ can be related to the kernel φ defining the process. We
now present in proposition 4.3.1 an equation linking the infinitesimal covariance
matrix to Λ and Ψ but, unlike Hawkes, we express ν explicitly as a function of Ψ

and Λ instead of an integral equation in ν. This result will be at the heart of the
estimation method we propose in this paper.

Proposition 4.3.1. Let (Nt)t≥0 be an n-dimensional Hawkes process with intensity
λt as defined in Section 4.2.1 (assuming both (H1) and (H2)). Let Ψ̃t = Ψ−t. We
have the following result:

E(dNtdN
†
t′) =

(
Σδt−t′ + Ψt−t′Σ + ΣΨ†t′−t + ΛΛ† + Ψ̃ ?ΣΨ†t′−t

)
dtdt′ (4.7)

where Σ is the diagonal matrix defined by Σii = Λi for all 1 ≤ i ≤ n and δt is the
dirac distribution.
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Proof. By using equation (4.4), we can write:

E(dNtdN
†
t′) = E((dMt + λtdt)(dMt′ + λt′dt

′)†)

= E(dMtdM
†
t′) (4.8a)

+E(λtdM
†
t′)dt (4.8b)

+E(dMtλ
†
t′)dt

′ (4.8c)

+E(λtλ
†
t′)dtdt

′ (4.8d)

We begin by noticing that for t 6= t′ E(dMtdM
†
t′) = 0. Indeed if τ > 0, and s < t

E((Mt −Ms)(Mt+τ −Ms+τ )
†) = E(Mt(Mt+τ −Ms+τ )

†)− E(Ms(Mt+τ −Ms+τ )
†)

= E(MtE((Mt+τ −Ms+τ )
†|Mt))− E(MsE((Mt+τ −Ms+τ )

†|Ms))

Thanks to the martingale property, we have E(MsE((Mt+τ−Ms+τ )
†|Ms)) = 0 and,

as t − s goes to 0, we have s + τ > t and E((Mt+τ −Ms+τ )
†|Mt) = 0. We thus

obtain:

E(dMtdM
†
t′) = δt−t′E(dMtdM

†
t′)

As for when t = t′ we have for all 1 ≤ i < j ≤ n

E(dM i
tdM

j
t ) = 0

since the N i’s (and hence the M i’s) for 1 ≤ i ≤ n have no jumps in common. For
i = j we have

E(dM i
tdM

i
t ) = Λidt

because E(dM i
tdM

i
t ) = E(dN i

tdN
i
t ) and E(dN i

tdN
i
t ) = E(dN i

t ) = Λidt since the
jumps of Nt are of size 1. To sum up, the term (4.8a) becomes:

E(dMtdM
†
t′) = Σδt−t′dtdt

′ (4.9)

The remaining of terms can be then calculated along the same line. Replacing
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λt’s expression from equation (4.5) in the term (4.8b), gives:

E(λtdM
†
t′)dt = E((Ψ ? dMtdM

†
t′)dt+ E(ΛdM †

t′)dt

and using Fubini’s theorem and the fact that Mt is a martingale we get:

E(λtdM
†
t′)dt =

∫
R

Ψt−sE(dMsdM
†
t′)dtds

and thanks to equation (4.9),

E(λtdM
†
t′)dt =

∫
R

Ψt−sΣδs−t′dsdt
′dt

that is simplified to:

E(λtdM
†
t′)dt = Ψt−t′Σdtdt

′ (4.10)

Similarly, the term (4.8c) becomes:

E(dMtλ
†
t′)dt

′ = ΣΨ†t′−tdtdt
′ (4.11)

and finally, using Eq. (4.9), the term (4.8d) can be written as:

E(λtλ
†
t′)dtdt

′ =
(

ΛE(λ†t′) + E((Ψ ? dMt)λ
†
t′

)
dtdt′

=

(
ΛΛ† +

∫
R

Ψt−sE(dMsλ
†
t′ds)

)
dtdt′

=

(
ΛΛ† +

∫
R

Ψt−sΣΨ†t′−sds)

)
dtdt′

By setting u = t′ − s, we get:

E(λtλ
†
t′)dtdt

′ =
(

ΛΛ† + Ψ̃ ?ΣΨ†t′−t

)
dtdt′ (4.12)
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4.3.2 The Covariance Operator

The (normalized) covariance operator of the Hawkes process can be defined, at
scale h and lag τ , by

v(h)
τ = h−1Cov (Nt+h −Nt, Nt+h+τ −Nt+τ ) , (4.13)

where we normalized by h in order to avoid a trivial scale dependence in expressions
below. Let us note that, since the increments of Nt are stationary, the previous
definition does not depend on t. Thus, it can be rewritten as

v(h)
τ =

1

h
E

(
(

∫ h

0

dNs − Λh)(

∫ τ+h

τ

dN †s − Λ†h)

)
(4.14)

The information contained in the ACF allows one to recover the classical Signature
Plot of the prices. Because it is more general, we will see that it can be used, in
some case, to get a non-parametric estimation of the kernel matrix φ.

Indeed, let us choose a fixed value of the increment scale h and consider v(h)
τ

as a function of the time lag τ . This function contains information about lead-lag
behavior of the process that originates in the kernel φ. While in reference [9], the
authors used v(h)

0 in order to estimate the parameters of an exponential kernel, we
are going to use the more general v(h)

τ in order to find a non parametric estimation
of φ. Theorem 4.3.2 holds the key to that.

Theorem 4.3.2. Let g(h)
t = (1 − |t|

h
)+. v(h)

τ can be expressed as a function of g(h)
τ

and Ψτ :

v(h)
τ = g(h)

τ Σ + g(h) ?Ψ−τΣ + g(h) ?ΣΨ†τ + g(h) ? Ψ̃ ?ΣΨ†τ (4.15)

Proof of theorem 4.3.2. Let us begin the proof by noticing that for any function f
with values in R+ we have:

h−1

∫ h

0

∫ τ+h

τ

ft−t′dt
′dt = f ? g

(h)
−τ (4.16)
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It follows that

v(h)
τ =

1

h
E

(∫ h

0

dNs

∫ τ+h

τ

dN †s −
∫ h

0

dNsΛ
†h− Λh

∫ τ+h

τ

dN †s + ΛΛ†h2

)
=

1

h
E

(∫ h

0

∫ τ+h

τ

dNtdN
†
t′ − ΛΛ†h2

)
.

Using equation (4.7), we can split dNtdN
†
t′ into four parts and write:

v(h)
τ =

1

h

∫ h

0

∫ τ+h

τ

(
Σδt−t′ + Ψt−t′Σ + ΣΨ†t′−t + Ψ̃ ?ΣΨ†t′−t

)
dtdt′

By applying equation (4.16) to each of the terms under the double integral we get
equation (4.15) and achieve the proof.

It is more convenient to rewrite the result of theorem 4.3.2 in Laplace domain.
Since φ̂(n)

z = φ̂nz , Eq. (4.6) translates into :

Ψ̂z =
+∞∑
n=1

φ̂nz = φ̂(I− φ̂)−1 (4.17)

and conversely:

φ̂z = (I + Ψ̂z)
−1Ψ̂z (4.18)

Theorem 4.3.2 gives way to the following corollary.

Corollary. In Laplace domain equation (4.15) becomes:

v̂(h)
z = ĝ(h)

z (I + Ψ̂∗z)Σ(I + Ψ̂∗z)
† (4.19)

4.4 Non-parametric Estimation of the Kernel φt

4.4.1 The Estimation Principle

In this paper, we aim at building an estimator of φt based on empirical mea-
surements of v(h)

τ . Let us note that empirical measurements of v(h)
τ are naturally

obtained replacing probabilistic mean by empirical mean in Eq. (4.14) (see [10] for
proof of convergence of the empirical mean towards the probabilistic mean). Thus,
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in order to build an estimator, we need to express φt as a function of v(h)
τ . In the

Laplace domain, since a given Ψ̂z corresponds to a unique φ̂z (through Eq. (4.18)),
it translates in trying to express Ψ̂z as a function of v̂(h)

z which exactly corresponds
to inverting Eq. (4.19) (i.e., computing the square root of (I + Ψ̂∗z)Σ(I + Ψ̂∗z)

†).
Indeed, knowing Ψ̂z, one easily gets φ̂z (from Eq. (4.18)) and finally φt. Actu-
ally, let us note that, from a practical point of view, we don’t need to work in the
full complex domain z ∈ C of the Laplace transform. Working with the Fourier
transform restriction (i.e., z = iω with ω ∈ R) is enough to recover φt.

Discretizing and Dealing With Cancelations of ĝ(h)
z

The first problem that seems to appear for inverting this formula (4.19) (i.e.,
expressing Ψ̂z as a function of v̂(h)

z only for z = iω) is the scalar term ĝ
(h)
z that

may become null. Indeed, since g(h)
τ = (1 − |τ |

h
)+, its Fourier transform, ĝ(h)

iω =

hsinc2(ωh
2π

) = (4/ω2h) sin2(ωh/2), cancels for all ω of the form 2nπ
h
, n ∈ Z, n 6= 0.

Actually, this is not a real problem as long as τ in the empirical estimation of v(h)
τ is

sampled using a sampling period ∆ strictly greater than h/2, and choosing ∆ small
enough to consider that the support of Ψ̂iω, [−a, a] is included in [−π/∆, π/∆].

Indeed, let h < 2∆ and define, to ease the notations, Âz = (I + Ψ̂∗z)Σ(I +

Ψ̂∗z)
† and let u(h)

τ =
∑∞

k=−∞ v
(h)
τ δτ−n∆ be the uniform sampling of v(h)

τ and û
(h)
iω =

1
∆

∑∞
k=−∞ v̂

(h)

i(ω− 2kπ
∆

)
its Fourier Transform. Then (4.19) becomes

û
(h)
iω −

1

∆

∞∑
k=−∞

ĝ
(h)

i(ω− 2kπ
∆

)
Σ =

1

∆

∞∑
k=−∞

ĝ
(h)

i(ω− 2kπ
∆

)
(Âi(ω− 2kπ

∆
) −Σ)

But the support of Âiω − Σ is also [−a, a] ⊂ [−π/∆, π/∆] . Then for all
ω ∈ [−π/∆, π/∆] we have

û
(h)
iω −

1

∆

∞∑
k=−∞

ĝ
(h)

i(ω− 2kπ
∆

)
Σ =

1

∆
ĝ

(h)
iω (Âiω −Σ)

which gives, for all ω ∈ [−π/∆, π/∆]

Âiω = ∆
û

(h)
iω

ĝ
(h)
iω

+ Σ(1−
∑∞

k=−∞ ĝ
(h)

i(ω− 2kπ
∆

)

ĝ
(h)
iω

) (4.20)

Note that h must not take a value too close to 2∆ in order to avoid the division
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by values that are too close to 0. If we choose for instance h = ∆, then for all
ω ∈ [−π/∆, π/∆], 1

∆
ĝ

(∆)
iω > 4

π2 ≈ 0.4, and
∑∞

k=−∞ ĝ
(∆)

i(ω− 2kπ
∆

)
= ∆. Hence (4.20)

becomes

Âiω = ∆
û

(∆)
iω

ĝ
(∆)
iω

+ Σ(1− ∆

ĝ
(∆)
iω

)

Now if we choose ∆ such that a� π
∆
, (i.e. the support of Âiω−Σ is much smaller

than [−π/∆, π/∆]) then for all ω ∈ [−a, a] we have ĝ(h)
iω ≈ ∆, and Âiω ≈ û

(∆)
iω . But

for ω /∈ [−a, a], Âiω = û
(∆)
iω = Σ, so for all ω ∈ [−π/∆, π/∆]

Âiω ≈ û
(∆)
iω

Consequently dividing on both handsides Eq. (4.19) by ĝ
(h)
z is not, from a

practical estimation point of view, a real problem. So, in the following we will
write

(I + Ψ̂∗z)Σ(I + Ψ̂∗z)
† = v̂(h)

z /ĝ(h)
z , (4.21)

without bothering with eventual cancelations of ĝ(h)
z .

Computing the Square Root of (I + Ψ̂∗z)Σ(I + Ψ̂∗z)
†

In the estimation process, once we have estimated v(h)
τ and consequently (using

Discrete Fourier transform) v̂(h)
z (for z = iω), using this last equation, we can

estimate (I + Ψ̂∗z)Σ(I + Ψ̂∗z)
†. We need to go from there to the estimation of Ψ̂z

(then using Eq. (4.18), we get φ̂z and then by inverse Fourier transform φt). This
problem requires therefore to take the square root of the left hand side of Eq. (4.21).
In dimension n = 1, it means being able to go from |1+Ψ̂z|2 to Ψ̂z. There is clearly
a phase determination problem. We will see that this phase is uniquely determined
by the hypothesis (H1) and (H2). However, in dimension n > 1, they are many
possible solutions and determining the correct one is not necessarily possible in
general. We need to make a strong additional hypothesis.

4.4.2 Further Hypothesis on the Kernel φt
In the following, we suppose that:

(H3) Σ = ΛI, Λ ∈ R+, and φ̂z can be diagonalized into a matrix D with some
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constant unitary matrix U (that does not depend on z):

φ̂z = U †DzU. (4.22)

Clearly (H3) is a strong hypothesis. If we don’t consider the special non-
symmetric cases when (H3) is verified, this hypothesis is obviously satisfied when
all the components of the process are identically distributed, i.e. when the process
is invariant under arbitrary permutations.

4.4.3 The Estimator

Using Eq. (4.17) along with (H3), one gets that I + Ψ̂∗z is diagonalizable in the
same basis U and that

I + Ψ̂∗z = U †(I−D∗z)−1U, (4.23)

and thus from (4.21) , one gets

Ez = Uv̂(h)
z U †Σ−1/ĝ(h)

z , (4.24)

where Ez is the diagonal matrix with the real positive coefficients :

Ekk
z = |1−Dkk

z |−2. (4.25)

So the estimation problem reduces to being able to recover the coefficients Dkk
z

from the coefficients Ekk
z = |1 − Dkk

z |−2. This problem is solved by the following
Lemma.

Lemma 4.4.1. Let k be fixed. Let z = iω (with ω ∈ R). Then

(1−Dkk
iω )−1 = e

1
2

log |Ekkiω |−iH( 1
2

log |Ekkiω |), (4.26)

where the operator H(.) refers to the Hilbert transform.

The proof is based on the following theorem:
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Theorem 4.4.2 (Paley-Wiener [71]). Let’s suppose that we observe the amplitude
|f̂iω| of the Fourier transform of a real filter ft. If

∫
R

log(|f̂iω|)
1 + ω2

dω < ∞, (4.27)

then the filter gt defined by its Fourier transform

ĝiω = elog(|f̂iω |)−iH(log(|f̂iω |)), (4.28)

is the only causal filter (i.e., supported by R+), which is a phase minimal filter1 and
which satisfies |ĝiω| = |f̂iω|.

Proof of Lemma 4.4.1. It is a simple application of this theorem with |f̂iω| =
√
Ekk
z =

|1 − Dkk
iω |−1. Indeed, let us first show that ĝz = (1 − Dkk

z )−1 is a minimal phase
filter, i.e., that both the poles and zeros are such that <(z) < 0.

• Let z be a zero of (1 −Dkk
z )−1, then it is a pole of Dkk

z and consequently of
φ̂z. However, from (H1) and (H2) one concludes that |φ̂z| ≤

∫ +∞
0
|e−zt|φtdt

cannot be infinite, unless <(z) < 0.

• Let z be a pole of (1 − Dkk
z )−1. It thus satisfies Dkk

z = 1. Thus 1 is an
eigenvalue of φ̂0 which is in contradiction with (H2). Thus (1 − Dkk

z )−1 has
no pole.

Consequently ĝz = (1−Dkk
z )−1 is a phase minimal filter. Moreover, since every

coefficients of φt are positive and in L1, the Fourier transforms Dkk
iω , for any k,

are continuous functions of ω and goes to 0 at infinity. Along with the fact that
(1 − Dkk

z )−1 has no pole and has its zeros on the half-plane <(z) < 0 we easily
conclude that |f̂iω| = |1−Dkk

z |−1 satisfies (4.28). The theorem above can be applied
and the Lemma follows.

Main steps for kernel estimation.
The different steps for the final kernel estimator, in the fully symmetric case,

can be summarized as follows

• Set ∆,

• Estimate the unconditional intensity Λ

1a minimal phase filter is a filter whose all the zeros and the poles of its Laplace transform
satisfy <(z) < 0
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• Estimate the auto-covariance operator v(∆)
t and compute its Fourier transform

v̂
(h)
iω

• Compute (I + Ψ̂∗iω)(I + Ψ̂∗iω)† using Eq. (4.21). Diagonalize it and compute
the matrix Eiω defined by Eq. (4.24)

• Compute the diagonal matrix Diω using (4.26)

• Go back to the initial basis and Inverse Fourier transform to get the estimation
of φt

4.4.4 Some Particular Cases

The One Dimensional Case n = 1

As we already pointed out, the hypothesis (H3) is always true in this case since
all the functions are scalar functions (so no diagonalization is needed). So in this
case the phase determination problem is solved without adding any assumption
(except (H1) and (H2) of course). The kernel estimator simply consists in first
computing

|1 + Ψ̂iω|2 =
v̂

(h)
iω

Λĝ
(h)
iω

, (4.29)

and then inverting the Fourier transform of

φ̂iω = 1− e− log |1+Ψ̂iω |+iH(log |1+Ψ̂iω |). (4.30)

The 2-dimensional Case n = 2

In the two-dimensional case (n = 2), the hypothesis (H3) is satisfied in the
particular case the kernel φt is bisymmetric, i.e., has the form

φt =

(
φ11
t φ12

t

φ12
t φ11

t

)
(4.31)

The matrix of the Laplace transform φ̂z can be indeed decomposed as follows:

φ̂z = U †

(
−φ̂11

z + φ̂12
z 0

0 φ̂11
z + φ̂12

z

)
U
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where U = 1√
2

( −1 1

1 1

)
is constant and is not a function of ω.

Diagonalizing and identifying the diagonal coefficients in both hand sides of
(4.24) leads to

1

Λ1ĝ
(h)
iω

(v̂
(h)11
iω + v̂

(h)12
iω ) = |1 + Ψ̂11

iω + Ψ̂12
iω|2 (4.32)

1

Λ1ĝ
(h)
iω

(v̂
(h)11
iω − v̂(h)12

iω ) = |1 + Ψ̂11
iω − Ψ̂12

iω|2 (4.33)

Applying the same method used in the case n = 1 to equations (4.32) and (4.33)
we get an estimate of Ψ̂. Finally we apply

φ̂ = (I + Ψ̂)−1Ψ̂ (4.34)

giving φ̂. Applying the inverse transform to φ̂ we finally get φ.

In the following section we illustrate these results and our methods on numerical
simulations of 1D and 2D Hawkes processes.

4.5 Numerical Illustrations

Let us discuss some examples illustrating the estimation method as defined pre-
viously using simulated Hawkes processes. All the simulations have been performed
with the thinning algorithm described in appendix 4.A.

We suppose that we have estimated the ACF from the observation of a Hawkes
process (Nt)t≥0 (1D or 2D), with an unknown kernel φ. We then strictly follow the
method described in previous section where the Fourier and Hilbert transforms are
replaced by their discrete versions. v(h)

τ is sampled at rate ∆ and, for a given fixed
value of the scale h, is considered as a function of the lag τ = n∆. As discussed
previously (section 4.4.1), in order to avoid problems related to the zeros of ĝ(h) we
naturally choose h = ∆. From a practical point of view, ∆ has to be chosen small
enough in order to work with a large sample size N but also to finely cover the
support of the kernel functions φ, and to avoid Fourier aliasing effects. However,
∆ has also to be chosen large enough in order to allow a reliable estimation of
the empirical covariance that is not perturbed by the "Epps noise". Indeed, for
very small lags, it is well known that the variations of point processes become
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uncorrelated when studying the correlation between the returns of two assets. This
is known as the Epps effect in the Finance literature (see, e.g., [9]). In fact, as
illustrated below, there is an optimal choice of the sampling rate ∆. However, in
order to set an order of magnitude, one can choose ∆ ' 1/(10Λ) as a starting value.
We denote by T the overall sample size of the process and N = T∆−1 the size of the
sample used to estimate to covariance function v

(∆)
k∆ . We suppose that this latter

is estimated over the interval [−τmax, τmax] with τmax large enough so that v(h)
τ is

negligible when |τ | ≥ τmax.

4.5.1 The Case n = 1

We test the estimation with two types of kernels, exponential (4.35) and power-
law (4.36).

Exponential kernel

We first simulate a one dimensional Hawkes process with the exponential kernel:

φt = αe−βt1t≥0 (4.35)

where we choose (µ = 1, α = 1, β = 4). This gives φ̂0 = 1/4, Λ = 4/3. Each
simulated sample contains about 130000 jumps (T ' 105 secs). In Figure 4.1 we
have reported an example of the estimated kernel function φt for a single sample.
We see that φ that we estimated is indeed causal, and up to some noise, is very
close to the real kernel (reported in a red solid line). Smoothing techniques could be
applied to the causal part of φ that might effectively reduce the error, for example a
moving average of φ or a low pass filter. However we have not studied the benefits
(with regards to the series of error data) of such options and do not further explore
them in the current presentation.
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Figure 4.1: Non parametric estimation of the one dimensional Hawkes exponential
kernel φ (4.35) with α = 1, β = 4. We used ∆ = 0.01 and τmax = 2.

Power Law Decay

We now consider slowly decaying kernels such as the power-law function defined
as:

φt = α(t+ γ)β)1t≥0 (4.36)

with β < −1. In this case we have φ̂0 = − α
β+1

γβ+1. We choose α = 32 and
β = −5 and γ = 2 making φ̂0 = 0.5 < 1 and Λ = 2 and again With 130000
jumps (T ' 65000 secs). However, for numerical computation purposes, we used
the following similar kernel with a bounded support:

φ′t = (φt − φ10)+

where x+ = max(x, 0). This would reduce the complexity of the simulation by
reducing the number of calculations made when updating the intensity of Hawkes
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process (cf 4.A). The kernel estimated on a single sample is reported in Figure 4.2.
Once again, one can see that, up to an additive noise, the estimated kernel fits well
the real one.

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

t, sec

φ
,
se
c−

1

 

 

φ - Theoretical
φe - Estimation

Figure 4.2: Non parametric estimation of the one dimensional Hawkes exponential
kernel φ (4.36) with α = 32, β = −5 and γ = 2. We used ∆ = 0.05 and τmax = 20.

Error Analysis

Let us briefly discuss some issues related to the errors associated with our kernel
estimates. In ref. [10], a central limit theorem as been proved that shows that,
asymptotically, the errors of empirical covariance function estimates are normally
distributed with a variance that decreases as T−1 (or N−1 for ∆ fixed). One thus
expects the same kind of results in the estimates of the components of φ.

Let us define the L2 estimation error as:

e2 =

τmax
∆∑
k=1

|φk∆ − φek∆|2 (4.37)
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where φe is the estimated kernel. In Figure 4.3, we have reported e2 as a function
of the sample length T for an example of exponential kernel φt for ∆ = 0.01 fixed.
As expected, one observes a behavior very close to T−1.
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e2(T)
Power Law fit

Figure 4.3: Mean square error as a function of the sample length T in log-log
coordinates for 1D Hawkes processes exponential kernel φ (4.36) (α = 1, β = 4).
We used ∆ = 0.01 and τmax = 2

Let us now fix T = 105 and look at the empirical squared error between the
real φ and the estimated one for t > 0. We find that the series of errors are
centered gaussian and mainly uncorrelated. The normality of the observed errors
is illustrated in Figure 4.4 where we report, for 4 different values of t, the normal
probability plots. We point out that we observe that the variance of the law slightly
increases when t goes to zero (while remaining centered Gaussian) and so we have
standardized the error series before plotting them in the normal probability plot of
Figure 4.4. Note that we do notice a slight deviation from the Gaussian behavior in
the left tail of the errors, however standard tests that we performed did not reject
the null hypothesis of a Gaussian distribution.

As we discussed above, the estimation error depends, a priori, on the sampling
rate ∆ and should be minimal in a range between large ∆ values corresponding
to small N and small ∆ values where the "Epps noise" becomes important. In
Figure 4.5, we have plotted the measured error e2 for different values of ∆ in the
exponential case with ∆ ∈ [0.02 0.5], and τmax = 6. We clearly observe, a minimum
value around ∆∗ = 0.15. Notice however that, despite significative increase of the
errors around the optimal value of ∆, we have observed, in both exponential and
power-law cases, that the estimates of the kernel parameters remain reliable in a
wide range of ∆ values. Furthermore, seeing that the decay kernels go to 0 rather



CHAPTER 4. HAWKES KERNEL ESTIMATION 143

quickly one may want to use a sampling rate ∆ < ∆∗ in order to get a better idea
of the form of the decay kernel in the neighborhood of 0.
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Figure 4.4: Normal probability plots obtained from the empirical error distributions
at 4 different times t in the case of a 1D Hawkes processes exponential kernel φ
(α = 1, β = 4). We used ∆ = 0.01 and τmax = 2. The x-axis represents the data
value for each point in the data. The y-axis contains the empirical probabilities.
The scale of the y-axis is not linear but proportional to the quantiles of a standard
Gaussian. The dashed lines connect the 25th and 75th percentiles in the data. As
we can see, the data points fall near their corresponding lines, indicating that the
error data are reasonably Gaussian.
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Figure 4.5: e2 error as function of the sampling rate ∆ a in the case of a 1D Hawkes
processes exponential kernel φ (α = 1, β = 4). We used τmax = 6.

4.5.2 The Case n = 2

Let us now consider a 2 dimensional example of a Hawkes process with a bisym-
metric kernel matrix such that:

φ11
t = φ22

t = φd,t = αde
−βdt1t≥0 (4.38)

φ12
t = φ21

t = φa,t = αae
−βat1t≥0 (4.39)

where φd and φa are respectively the diagonal and anti-diagonal terms of φ. We
use the following parameters for the simulations, αd = 0.5, βd = 8, αa = 1, βa = 4,
µ = (1, 1). We have T = 40.104 and we simulate about 60000 jumps for each of the
two components the Hawkes process. The Figure 4.6 below shows the theoretical
and estimated versions of φd and φa. We see that, as in the 1D case, we get a
reliable estimate of both kernels φd and φa.
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Figure 4.6: Non parametric estimation of the two dimensional Hawkes bisymmetric
exponential kernel φ ((4.38)) with αd = 0.5, βd = 8, αa = 1, βa = 4, µ = (1, 1). We
used ∆ = 0.05 and τmax = 2

4.6 Application to High Frequency Market Data

As mentioned in the introduction, Hawkes point processes have found many
applications, notably as models for high frequency financial data. Indeed, because
of the discrete and correlated nature of trade and limit order arrival times, point
processes are naturally used as statistical models of market dynamics at the mi-
crostructure level. One can mention for instance [48] where buy and sell trades
arrivals are represented by a bivariate Hawkes process with exponential kernels (see
also [52]). Another approach developed in [9] models high frequency price dynamics
as the difference between two coupled Hawkes processes representing respectively
up and down discrete price variations. The authors emphasized that such model
allows one to account for the main stylized facts characterizing the observed noise
microstructure (Signature plot behavior and Epps Effect).

We use level 1 data provided by QuantHouse Trading Solutions2 of 3 futures
contracts. The data has millisecond accuracy and it has been treated in such a
way that each market order is equivalent to exactly one trade3. In particular we
mainly Futures data the 10-years Euro-Bund (Bund), and to a lesser extent for the
DAX index (DAX) and the SP500 index (SP). For more information about the data

2http://www.quanthouse.com/
3When one market order hits several limit orders it results in several trades being reported

(cf. section 1.2.2). We aggregate together all such transactions and consider them as one trade
with an equivalent size and price.
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please refer to the introduction of the thesis (section 1.5). In this paper, we use 75

days covering the period between 2009-06-01 and 2009-09-15. We also restricted
our intraday dataset to the time between 9 AM and 11 AM where we think that the
rate of incoming market orders is stationary and ignored the days with too little
trades.

4.6.1 1D Model

In the following we test our method on the process of incoming trade times
(market orders) for the Bund Future (FGBL). We then calculate the empirical
ACFs for each of the days and average them out over the 75 days. We apply the
estimation method to this averaged ACF.

The results are shown in the Figure 4.7 below. We get a causal φ that fits a
power law function of the form axb, with a = 0.09863 , b = −1.053, with 95%

confidence bounds for b equal to (−1.064,−1.043). So b ≈ −1, and we assume that
φt = 0 for t larger than τmax = 100 (this is not a bad approximation, seeing that
the φt looks like a white noise for large t), and that it is bounded for t close to 0.
We test the estimator with crude parameters τmax = 100, ∆ = 0.1 but we check
that the results are robust for different values of the parameters (see Table 4.1).
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Figure 4.7: The plot on the left is the non parametric estimation of the Hawkes
kernel assumed for the rate of incoming market orders of the Bund Futures. We
used ∆ = 0.1 and τmax = 100, but only show the first 10 seconds in the left plot.
On the right is that very same plot in log-log scale and the corresponding power
law fit axb. We find a = 0.09863 , b = −1.053.
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Furthermore, we provide in table 4.1 below results of the power law fits for
τmax ∈ {5, 10, 50, 100} and ∆ ∈ {0.01, 0.05, 0.1, 0.5}. We see that the fit remains
close to the same values (a = 0.1, b = −1) for different τmax and ∆. In particular, we
see that the fit is very robust when we change τmax for a ∆ fixed. Indeed, increasing
τmax beyond a certain value is superfluous. This is not surprising, seeing that the
estimated decay kernel is a power law that goes to 0 at ∞, so increasing τmax just
produces noise in the tail. We notice also that the values of a and b stabilize as ∆

becomes small. In our case, table 4.1 shows that fit becomes stable around (a = 0.1,
b = −1), for ∆ ≤ 0.1.

We conclude that our estimator is fairly robust with respect to the sampling
scheme, ∆, and the range of τ .

τmax ∆ a b

5 1 0.158909 -1.46839
5 0.5 0.12547 -1.27377
5 0.1 0.109257 -1.0123
5 0.05 0.102258 -1.00491
5 0.01 0.095562 -0.98297

10 1 0.152666 -1.40213
10 0.5 0.122812 -1.27191
10 0.1 0.104953 -1.02776
10 0.05 0.098544 -1.01665
10 0.01 0.093251 -0.98835

50 1 0.14688 -1.40274
50 0.5 0.118427 -1.29464
50 0.1 0.099606 -1.0491
50 0.05 0.093841 -1.03284
50 0.01 0.090346 -0.99546

100 1 0.146276 -1.41515
100 0.5 0.117503 -1.30292
100 0.1 0.098624 -1.05329
100 0.05 0.092975 -1.03596
100 0.01 0.089227 -0.99899

Table 4.1: Results of the Power Law fit axb, applied to the estimated Hawkes kernel
assumed for the rate of incoming market orders of the Bund Futures. We show the
results for different input parameters to the empirical ACF, τmax and ∆.
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4.6.2 2D model

Trading order model
In this section we will test the estimation method with two empirical jump

process that we believe are very well described by a mutually exciting Hawkes
process. Similarly to the one dimensional case we test our method on the process
of incoming trade times (market orders) for the Bund Future (FGBL) over the
same date range and using the same intraday range. The process of prices Xt is
considered as:

Xt = N+
t −N−t

where N+
t and N−t are respectively the cumulative positive and negative jumps of

Xt, and we look at the two dimensional process

Nt =

(
N+
t

N−t

)

We choose in the 2-dimensional case to use the series of midpoint prices. This
choice is justified by the fact that for this type of series, the matrix of ACF (shown
in Figure 4.8) is indeed bisymmetric and that Λ+ and Λ− the respective average
rates of N+ and N− (daily values shown in Figure 4.9) are similar. In particular,
Figure 4.8 shows that hypothesis (H3), i.e. the matrix v(h)

τ is bisymmetric, holds.
Indeed we see that v(h)11

τ (blue curve, in the plot on the left) is equal to v(h)22
τ (red

curve on the left) for all t > 0, proving that v(h)11
τ = v

(h)22
τ for all t, and that

v
(h)12
τ = v

(h)21
τ , for all t > 0 also proving that v(h)12

τ = v
(h)21
τ for all t. Furthermore,

in Figure 4.9, we show for each day Λ1 against Λ2. The plot shows that the Λ1 ' Λ2

with a very small variation and therefore that we are within our assumption that
Σ = ΛI.

We point out that the choice of the midpoint series is motivated by a two factors.
First, if we choose the series of traded prices, we have an important bouncing artifact
that is very hard to capture by our modeling approach and we get negative decay
functions on the diagonal of φ. Second, if we choose the series of the last traded
prices of buy orders only as in [9], the bouncing artifact disappears, however the
symmetry of Λ+ and Λ− is no longer verified. The series of midpoint prices has the
advantage of having a reduced bouncing effect and of presenting symmetrical N+

and N− processes. Notice that in the one dimensional case these considerations are
irrelevant since assumption H(3) is always trivially verified.

Still, when actually going through the estimation process, we took Λ = (Λ+ +
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Λ−)/2 and we symmetrize v(h)
τ with respect to τ . This reduces the fourier noise

and we have that the components of v(h)
τ are even which means that their Fourier

Transforms are real and similarly even (this is the case for a process which is
invariant under permutation, cf condition (H3)). This manipulation is only just
aesthetic, as it helps reduce the noise, and we have checked that our final results
are practically unchanged without it.

After verifying that v̂(h)11
τ + v̂

(h)12
τ > 0 and v̂(h)11

τ − v̂(h)12
τ > 0 we can then use

equations (4.32)-(4.33) in order to estimate Ψ̂ followed by φ.
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Figure 4.8: v(h)
τ , τ > 0 of the ACF of Nt for the series of midpoints of the Bund

Futures. We used τmax = 200 but only show the first 50 seconds. In order to clearly
see that we are in a bisymmetric world, we plotted v(h)11

τ (blue curve, figure on the
left) on top of v(h)22

τ (red curve, figure on the left) for h > 0, and similarly for v(h)12
τ

and v(h)21
τ (figure on the right). We see that the matrix is clearly bisymmetric.
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Figure 4.9: Λ1 and Λ2 for each of the 75 days we used (each blue dot represents
one day). The red line is the y = x line. We see that Λ1 ' Λ2.

The result of the non parametric estimation is shown in Figure 4.10. We imme-
diately notice that φ11 is small in comparison to φ12 and can almost be considered
as white noise (i.e. φ11 = 0). This means that N+ and N− are not self exciting
and exclusively mutually exciting. However, it is important to note that while φ11

does look flat, we notice that it becomes negative for small values of τ . This effect
shows the limit of our model and we will elaborate on this point in the following
paragraph.

Before doing that, we analyze the form of the φ12. We found that φ12 fits a
power law function of the form axb, with a = 0.09531 , b = −0.9931, with 95%

confidence bounds on b equal to (−1.008,−0.9786). So b ≈ −1, and we assume
that φt = 0 for t larger than τmax = 200 (this is not a bad approximation, seeing
that the φt looks like a white noise for large t), and that it is bounded for t close
to 0. We show in Figure 4.11, the fit of φ12 to a power law in a log-log plot.
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Figure 4.10: Non parametric estimation of the two dimensional Hawkes kernel
assumed for the process Nt composed from the up and down jumps of the midpoint
prices of the Bund Futures. We used τmax = 200 but only show the first 50 seconds.
We see the φ11 is negligible when compared to φ12 confirming that the N+ and N−

are mutually but not self exciting.
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Figure 4.11: In log-log scale: Estimated φ12 (blue dots) and its corresponding power
law fit (red line) axb. We find a = 0.09531 , b = −0.9931 ' −1

Bouncing Effects and Inhibitory Decay Kernels
As we have seen above (Figure 4.10), φ11 can come out to be negative, which de-

fies the assumption of our model. Indeed, if φ11 becomes negative, there is a priori
no guarantees that λt remains positive, and a negative rate of arrival is unaccept-
able. As we have mentioned above, bouncing artifacts are difficult to capture with
our modeling approach. The bouncing artifacts translates in practice to a strong
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negative autocorrelation of the tick returns (this has been well documented in chap-
ter 3 of this thesis). These effects are most apparent on the series of trade prices
and while they are heavily dampened when we use the series of midpoint prices,
they do not completely disappear. Moreover, this effect depends on the microstruc-
ture of the asset we consider, and more particularly on its tick size. In chapters
2 and 3, we have documented the microstructure property called the tick size. It
is a measure of the traders’ perceived importance of the tick value and describes
the market’s aversion to a movement in the price. In this paper we will limit the
discussion and say that the tick size influences the strength of the autocorrelation
of tick returns and increases the bouncing effects and the mean reversion of prices.
This phenomenon cannot be captured by our model and we get negative decay
kernels for the diagonal terms φ. However, when the tick is small, the effect of the
tick size is minimal and the estimation we find falls within the model’s assumption.
We illustrate this by showing the estimation of the decay function for a large tick
asset, the SP in Figure 4.12, and a small tick asset, the DAX in Figure 4.13. For
the SP, we can see that φ11 is now clearly negative for small t, whereas the effect
completely disappears in the DAX, where φ11 is of the same order of magnitude
as φ12, which means that the arrival of a price movement of a certain direction
certainly increases the probability of arrival of a new movement, but has very little
influence on its direction.

We conclude this discussion by saying that model (4.2) only assumes that λt
needs to stay positive at all times. For that non-negative decay kernels are required.
In practice however, we can conceive an a situation with a negative φ11, provided
that µ and and φ12 are chosen in such a way that λt has a vanishing probability
of becoming negative over a large but finite period of time. This is often used to
portray inhibitory effects heuristically even though the assumption of the model
are not verified [51, 74]. This is exactly what we have in our situation: since
|φ11| � φ12 the probability of having λt < 0 over the time we are conducting
our experiment is infinitesimally small and the arrival of jump of N+ (resp. N−)
decreases the probability of getting another jump of N+ (resp. N−) for a short
duration afterwards, but highly increases the probability of getting a jump of N−

(resp. N+). We also note that this effect becomes more pronounced when using
the series of trade prices.
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Figure 4.12: Non parametric estimation of the two dimensional Hawkes kernel
assumed for the process Nt = (N+

t , N
+
t ) composed from the up and down jumps of

the midpoint prices of the SP Futures (a large tick asset). We used τmax = 200 but
only show the first 50 seconds. We see the φ11 is negative but small when compared
to φ12 hinting that there are self inhibitory pressures acting on the processes N+

and N− .
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Figure 4.13: Non parametric estimation of the two dimensional Hawkes kernel
assumed for the process Nt = (N+

t , N
+
t ) composed from the up and down jumps of

the midpoint prices of the DAX Futures (a small tick asset). We used τmax = 200

but only show the first 50 seconds. We see the φ11 and φ22 are both positive and
almost of the same order of magnitude. This means that the arrival of one jump of
N+ (resp. N−) increases the similarly both probabilities of arrival of N+ and N−.
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4.A Example of a 2D Mutually Exciting Hawkes
Process

4.A.1 A Mutually Exciting Process

In this section we turn our attention to the particular case where n = 2 that
we use for simulation and validation of equation (4.15). We consider a symmetric,
exclusively mutually exciting 2D Hawkes process with the following decay kernel:

φt =

(
0 ϕt
ϕt 0

)

where

ϕt = αe−βt1t≥0

This type of kernel was chosen for ease of numerical considerations and also
because we can easily see the mutually exciting behavior when we plot the intensity
process (cf Figure 4.14).

4.A.2 Simulation

We use a thinning algorithm like the one described in [65]. The algorithm
requires us to start by simulating a standard Poisson with a very high intensity
Intensity M from which we remove jumps that do would not belong to the Hawkes
process. We must guarantee that

λ1
t + λ2

t < M for all t ∈ [0, T ]

and whenever this condition is breached we stop the algorithm, increase M and
start over. Assuming this condition satisfied, we apply a thinning procedure to
each jump of the obtained process, rejecting it altogether with probability 1− λ1

t+λ
2
t

M

or marking it as a jump of N i (i ∈ {1, 2}) with probability λit
M
. Once this is done

we recalculate λit, i = 1, 2 using Equation 4.2, when we observe the next jump and
repeat the thinning procedure. Note that in the exponential case the complexity of
simulating N observations is reduced to O(N) from O(N2) for the general case.

An example of λ1
t and λ2

t over 5 seconds, with µ = (1, 1), α = 1, β = 4 is shown
in Figure 4.14. The unit of µ, α, β is seconds−1 because they are akin to intensities.
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Figure 4.14: Realized Intensities λ1
t and λ2

t of a simulated 2D Hawkes with µ =

(1, 1), α = 1, β = 4. We can clearly see in this case that the two process are
mutually exciting because the arrival of one event causes the intensity of the other
to increase, and increases its probability of a arrival.

4.A.3 Covariance Operator

The covariance operator defined in Equation 4.14 for a sample of length T and
a fixed h and τ is calculated empirically with

V (h)
τ (T ) =

1

T

bT/hc∑
i=1

(Nih −N(i−1)h − Λh)(Nih+τ −N(i−1)h+τ − Λh)† (4.40)

Using discrete Fourier transforms we can get a very good approximation of the
right hand side matrix of equation (4.15). In our example, we fix h = 0.5 and we
sample φt over [−2, 2] very thinely with ∆ = 10−4 (∆ is the sampling period for τ).
Using Equation (4.18), we get the matrix Ψ̂iω. As for g(h)

τ , its Fourier Transform
is ĝ(h)

iω = hsinc2(ωh
2π

) where sinc(t) = sin(πt)
πt

is the sin cardinal function. Finally, we
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take the inverse Fourier transforms and get the right hand side of equation (4.15).
Because the matrix of v(h)

τ is bisymmetric, we only need to represent its first row.
This is shown in Figure 4.15.
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Figure 4.15: Theoretical representations of v(h)
τ as a function of τ and for h = 0.5

computed using the right hand side of equation (4.15). The first graph is the
function in the first row, first column of the matrix of v(h)

τ , while the second is the
function in the first row, second column.

4.A.4 Convergence of the Covariance Operator

In [10], the author show that that V (h)
τ (T ) converges towards v(h)

τ as T goes to
∞ with an L2 error that decreases as T−1. The L2 error is defined

ev2(T ) =

τmax
∆∑
k=1

|V (h)
k∆ (T )− v(h)

k∆|2 (4.41)

where the sum is taken for each component of the matrix v(h)
k∆. Looking at ev2(T )

as a function of T will allow us to validate equation (4.15) and give us an idea
of the convergence speed. We simulate a Hawkes process like the one described
above with µ = (1, 1), α = 1, β = 4 and T = 40104 and estimate ev2(kT/10) for
k = 1 . . . 10. We plot the result in Figure 4.16 below (blue dots). We fit the data
with a power law function of the form axb (red line shown in log-log plot). We find
that the two error data points follow a very similar power law in T , ev2(T ) = aT b

with (a, b) = (2.0,−0.9) for the left graph and (a, b) = (2.1,−0.9).
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