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Résumé

Nous présentons un système de tracking optique-inertiel qui consiste en deux caméras
stationnaires et une Sensor Unit avec des marqueurs optiques et une centrale inertielle. La
Sensor Unit est fixée sur l’objet suivi et sa position et son orientation sont déterminées par
un algorithme de fusion de données. Le système de tracking est destiné à asservir un outil
à main dans un système de chirurgie naviguée ou assistée par ordinateur. L’algorithme
de fusion de données intègre les données des différents capteurs, c’est-à-dire les données
optiques des caméras et les données inertielles des accéléromètres et gyroscopes. Nous
présentons différents algorithmes qui rendent possible un tracking à grande bande passante
avec au moins 200Hz avec des temps de latence bas grâce à une approche directe et des
filtres dits invariants qui prennent en compte les symétries du système. Grâce à ces
propriétés, le système de tracking satisfait les conditions pour l’application désirée. Le
système a été implémenté et testé avec succès avec un dispositif expérimental.

Abstract

We present an optical-inertial tracking system which consists of two stationary cameras
and a Sensor Unit with optical markers and an inertial measurement unit (IMU). This
Sensor Unit is attached to the object being tracked and its position and orientation are
determined by a data fusion algorithm. The tracking system is to be used for servo-
controlling a handheld tool in a navigated or computer-assisted surgery system. The
data fusion algorithm integrates data from the different sensors, that is optical data from
the cameras and inertial data from accelerometers and gyroscopes. We present different
algorithms which ensure high-bandwidth tracking with at least 200Hz with low latencies
by using a direct approach and so-called invariant filters which take into account system
symmetries. Through these features, the tracking system meets the requirements for being
used in the desired application. The system was successfully implemented and tested with
an experimental setup.

xi
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Chapter 1

Introduction

Les systèmes de chirurgie assistée par ordinateur sont de plus en plus utilisés dans les salles
opératoires. Pour la pose de prothèses de genou, par exemple, un tel système mesure des
points anatomiques, calcule la position optimale de la prothèse et indique les lignes de
coupe. Actuellement, les coupes sont exécutées à l’aide de guides de coupe mécaniques,
mais une technique de coupe sans guide mécanique est demandée par les chirurgiens.
Différentes méthodes ont été proposées, par exemple utilisant un feedback visuel pour le
chirurgien ou des systèmes robotiques. Nous considérons un outil à main asservi qui utilise
un système de tracking pour déterminer la position de l’outil par rapport au patient et aux
plans de coupe désirés. Le tracking doit avoir une bande passante d’au moins 200Hz pour
pouvoir suivre le mouvement rapide de l’outil.

Comme aucun système adapté aux conditions de la salle opératoire et au coût possible
d’un système de chirurgie n’existe, nous proposons un nouveau système de tracking qui
utilise des capteurs optiques et inertiels pour déterminer la position et l’orientation d’un
outil à main asservi.

Le système a une grande bande passante grâce aux capteurs inertiels haute fréquence.
Il a un temps de latence réduit par rapport à des systèmes similaires grâce à deux
caractéristiques: nous proposons une approche directe utilisant les données brutes des
capteurs sans faire des calculs complexes comme dans l’approche standard, et nous
utilisons des algorithmes de fusion de données qui prennent en compte les symmétries
du système ce qui réduit le temps de calcul.

Nous présentons des résultats de simulation pour un modèle simple d’un outil à main
asservi avec différents systèmes de tracking illustrant l’intérêt d’un tel systéme.
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Chapter 1. Introduction

1.1 Navigated Surgery Systems

Computer-assisted or navigated surgery systems have become more and more common in
operating rooms over the last 15 years [DiGioia et al., 2004].

In orthopedic surgery systems, e.g. for knee replacement, it is important to make
accurate bone cuts and place the prosthesis correctly. The system acquires relevant
patient anatomical landmarks and calculates appropriate prosthesis placement based
on built up frame of reference. It then defines the desired cutting planes for the
knee prosthesis [DiGioia et al., 2004]. Such a computer-assisted surgery system for knee
replacement is described in detail in [Stulberg et al., 2004].

Here we consider so-called image-free or CT-free surgery systems. Image-guided
systems [Jolesz et al., 1996] use image data from video, computer tomography (CT),
magnetic-resonance imaging (MRI) or ultrasound (US) to obtain patient anatomical
information before and during surgery. These imaging techniques demand for important
processing and some, like CT scans, also expose the patient to radiation. In contrast
to this, image-free systems use optical tracking to determine anatomical landmarks
[Mösges and Lavallé, 1996, DiGioia et al., 2004]. They make use of cameras but unlike
image-based systems they do not treat the whole image. Instead, the cameras observe
optical markers which are attached to the patient’s bones. The optical markers are
detected in the images and only the information of their point coordinates are used
in the subsequent analysis instead of the whole image. The first image-free system
for knee replacement used in an operating room was presented in [Leitner et al., 1997].
This system was later commercialized as OrthoPilot (Aesculap AG, Tuttlingen, Germany
[Aesculap AG, 2011]). Figure 1.1 shows the OrthoPilot.

It is important to note the difference between computer-assisted surgery systems and
robotic surgery systems. In the latter, surgical procedures are executed autonomously
by a robotic system [Taylor and Stoianovici, 2003]. Robotic systems can perform these
procedures with high accuracy but rise questions about safety and liability [Davies, 1996].
Computer-assisted surgery systems on the other hand, let the surgeon keep the control
over the whole surgical procedure.

We now return to the original problem of cutting bones for knee replacement. In
current systems, the bone cuts are executed with the help of cutting guides (also called
cutting jigs) which are fixed to the patient’s bone in accordance with the desired cutting
planes [Stulberg et al., 2004]. They guide the bone saw mechanically with good accuracy.
A cutting guide is depicted in Figure 1.2. Cutting guides have two main drawbacks:
Mounting and repositioning the guide takes time and the procedure is invasive because
the guide is pinned to the bone with screws.

2



1.1. NAVIGATED SURGERY SYSTEMS

Figure 1.1: OrthoPilot® orthopaedic navigation system for knee replacement. Copyright
Aesculap AG

3



Chapter 1. Introduction

Figure 1.2: cutting guide. Copyright Aesculap AG
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1.2. HANDHELD TOOLS FOR NAVIGATED SURGERY

1.2 Handheld Tools for Navigated Surgery

Using a handheld saw without any cutting guides would have several advantages: the
procedure would be less invasive, demand less surgical material and save time. Obviously,
it would have to produce cuts with the same or even better accuracy to be a valuable
improvement.

While a robotic system could achieve this task of cutting along a desired path, many
surgeons wish to keep control over the cutting procedure. Therefore, an intelligent
handheld tool should be used which combines the surgeon’s skills with the accuracy,
precision and speed of a computer-controlled system. Such a tool should be small and
lightweight so as not to impede on the surgeon’s work, compatible with existing computer-
assisted surgery systems and relatively low-cost.

Controlling the tool position and keeping it along the desired cutting path necessitate
the following steps:

1. define desired cutting plane relative to the patient,

2. track tool position and orientation relative to the patient and

3. compare desired and actual positions and correct the tool position accordingly.

The first step is done by the surgery system and the second by a tracking system. Step 3
can be executed either by the surgeon, by a robotic arm or directly by the handheld tool.

Several handheld tools have been developed in recent years, employing different
strategies for the control of the tool position. In [Haider et al., 2007], the patient’s bone
and a handheld saw are tracked by an optical tracking system and the actual and desired
cutting planes are shown on a screen. The surgeon corrects the position of the saw
based on what he sees on the screen to make the actual and desired planes coincide.
This approach is called "navigated freehand cutting" by the authors. A robotic arm
is used in [Knappe et al., 2003] to maintain the tool orientation and correct deviations
caused by slipping or inhomogeneous bone structure. The arm is tracked by an optical
tracking system and internal encoders. The optical tracking also follows the patient’s
position. In [Maillet et al., 2005], a cutting guide is held by a robotic arm at the desired
position, thus eliminating the problems linked to attaching cutting guides to the bone and
repositioning. Several commercial systems with robotic arms are available, for example
the Mako Rio (Mako Surgical, Fort Lauderdale, USA [Mako Surgical Corp., 2011]) and
the Acrobot Sculptor (Acrobot LTD) [Jakopec et al., 2003].

Several "intelligent" handheld tools which are able to correct deviations from the
desired cutting plane automatically by adapting the blade/drill position without a
robotic arm have been developed. The systems presented in [Brisson et al., 2004]
and [Kane et al., 2009] use an optical tracking system. [Schwarz et al., 2009] uses an

5



Chapter 1. Introduction

optical tracking system to determine the position of the patient and of the tool which also
contains inertial sensors. The authors estimated the necessary tracking frequency to be
of 100Hz to be able to compensate the surgeon’s hand tremor which range is up to 12 Hz
and the patient’s respiratory motion.

The systems presented so far determine a desired cutting path based on absolute
position measurements of tools and patients. In contrast, tools have been developed
which are controlled relative to the patient only. [Ang et al., 2004] presents a handheld
tool which uses accelerometers and magnetometers for tremor compensation. A handheld
tool with actuators controlling the blade position is presented in [Follmann et al., 2010].
The goal is to cut the skull only up to a certain depth while the surgeon guides the tool
along a path. While an optical tracking system is used in this work, an alternative version
with a tracking system using optical and inertial sensors is presented in [Korff et al., 2010].

Three different approaches to bone cutting without cutting guides have been compared
in [Cartiaux et al., 2010]: freehand, navigated freehand (surgeon gets visual feedback
provided by a navigation system; similar to [Haider et al., 2007]) and with an industrial
robot. The authors find that the industrial robot gives the best result and freehand
cutting the worst.

The authors of [Haider et al., 2007] compared their navigated freehand cuts to those
with conventional cutting jigs and found the cuts had rougher surfaces but better
alignment.

1.3 Smart Handheld Tool

The handheld tool we consider here is supposed to be an extension for an image-free
or image-based computer-assisted surgery system, hence it can make use of an optical
tracking system but not of an active robotic arm. The tool is to be servo-controlled with
motors in the tool joints which can change the blade position. We use a saw as an example
but the same applies to drilling, pinning or burring tools. In the case of a saw for knee
replacement surgery, the new smart handheld tool would eliminate the need for cutting
guides.

The tracking system and particularly its bandwidth are a key for good performance of
the servo-control. Firstly, the tracking system should be able to follow human motion and
especially fast movements - these could be due to a sudden change of bone structure while
cutting or to slipping of the surgeon’s hand. These are the movements to be corrected.
Secondly, it should be fast enough to let the servo-control make the necessary corrections.
The faster the correction, the smaller the deviation will be. Finally, the servo-control
should make the correction before the surgeon notices the error to avoid conflict between
the control and the surgeon’s reaction. We estimate the surgeon’s perception time to be

6



1.4. TRACKING FOR THE SMART HANDHELD TOOL

of 10ms which corresponds to a frequency of 100Hz and therefore consider the necessary
bandwidth for the tracking system to be at least 200Hz.

Commercially available optical tracking systems suitable for surgery have a bandwidth
of only 60Hz, thus ruling out the use of this type of tracking for the smart handheld
tool. Alternatively, there are are electro-magnetic, mechanical and inertial tracking
technologies. Electro-magnetic sensors are difficult to use in an operating room because
of interferences of the electro-magnetic field with the surgical material. A robotic arm
would provide mechanical tracking of the handheld tool but has been excluded because
it would be too constrictive for the surgeon. Inertial sensors cannot be used on their own
because of their drifts which cannot be compensated.

We propose to use a novel tracking system using both inertial and optical sensors
which will be described in the next Section.

1.4 Tracking for the Smart Handheld Tool

In this thesis, we propose an optical-inertial tracking system which combines an optical
tracking system with inertial sensors. These inertial sensors have a high bandwidth of
typically 100-1000Hz [Groves, 2008, p. 111] and are suitable for use in an operating room.
Since the inertial sensors we use are lightweight, of small size and relatively low-cost, they
hardly change the size and weight of the handheld tool and add little cost to the existing
optical systems. Even if high-frequency optical tracking became less expensive in the
future, our optical-inertial setup with low frequency cameras would still be less expensive
due to the low cost of inertial sensors. Also, inertial sensors bring further advantages as
they can be used for disturbance rejection as will be shown in the following Section.

Our tracking system is to be used for servo-controlling a handheld tool. The proposed
setup is shown in Figure 1.3 with a bone saw as an example for a tool. A servo-controlled
handheld tool in combination with our proposed optical-inertial tracking system thus
meets the requirements for an intelligent tool cited earlier. Such a tool would eliminate
the need for cutting guides to perform bone cuts for total knee replacement and could
also be used in other surgical applications.

In this thesis, we do not aim at developing such a tool but instead our tracking systems
is intended to be used with an existing handheld tool.

An algorithm, called data fusion algorithm, is the heart of the proposed tracking
system. It integrates inertial and optical sensor data to estimate the motion of the
handheld tool and we study several algorithms with the goal of meeting the requirements
for tracking for the handheld tool.

In contrast to other systems using optical and inertial sensors, we do not try to solve
the line-of-sight problem. This is a problem occurring in optical tracking systems which
can track an object only when there is a line-of-sight between cameras and markers.

7
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cameras

PC
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Figure 1.3: Optical-inertial tracking system with a servo-controlled handheld tool. Inertial
sensors and optical markers are attached to the handheld tool.
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1.5. SERVO-CONTROL FOR 1D MODEL

In some optical-inertial systems presented in the literature, tracking depends on the
inertial sensors only when there is no line-of-sight. Our goal is a tracking system with
a high bandwidth and low latency, i.e. the tracking values should be available with as
little delay as possible after a measurement has been made. This requires an algorithm
which is particularly adapted to this problem and which reduces latency compared to
similar systems using optical and inertial sensors as presented in [Tobergte et al., 2009]
or [Hartmann et al., 2010] for example. High-bandwidth tracking is achieved by using
inertial sensors with a sample rate of at least 200Hz and by executing the data fusion
algorithm at this rate. To make tracking with low latencies possible, we propose an
algorithm with a direct approach, i.e. it uses sensor data directly as inputs. This
is opposed to the standard indirect approach which demands for computations on the
measured values before using them in the data fusion algorithm. To further reduce latency,
our algorithm takes into account the system geometry which should reduce computational
complexity.

The following Section shows the positive effect of high-bandwidth optical-inertial
tracking on servo-control of a handheld tool by means of a simulation with a simple
model. In the rest of the thesis, we will concentrate on the setup of the optical-inertial
tracking system and on the data fusion algorithm which integrates optical and inertial
sensor data. We will discuss calibration of the hybrid setup and present an experimental
setup and experimental results which show that the optical-inertial tracking system can
track fast human motion. While we do not implement the servo-control we develop the
necessary components for a high-bandwidth low-latency tracking system suitable to be
used to servo-control a handheld tool in a computer-assisted surgery system.

1.5 Servo-Control for 1D model

In this Section, we are going to show the effect of a higher bandwidth in a Mat-
lab/Simulink [Mathworks, 2011] simulation using a simple model of a handheld bone-
cutting tool which is servo-controlled using different kind of measurements.

The tool in Figure 1.4 consists of a handle and a blade connected by a gearing
mechanism which is actuated by a motor. The goal is to cut in y direction at a desired
height zr. The surgeon moves the tool in y direction at a speed v. A deviation from
the desired zr due to a change of bone structure is modeled by a disturbance D acting
along z. In this simple model we assume that the disturbances can make the tool move
in z direction only, which means that the tool’s motion is constrained along z except for
the cutting motion along y.

9
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Figure 1.4: Handheld tool
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1.5. SERVO-CONTROL FOR 1D MODEL

The blade position z is determined by

z = Rθ + z0 (1.1)
and mz̈ = F +D +mg (1.2)

where R is the radius of the gear wheel, θ the wheel’s angular position, z0 the handle
position, F the force applied by the gear, m the mass of the subsystem carrying the blade
and g is gravity. The motor is governed by

Jθ̈ = U −RF

where J is the motor and gear inertia and U the control input. Combining these equations
gives

z̈ = U

mR + J/R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u

+ D

m + J/R2
+ z̈0 − g

1 +mR2/J
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

+g . (1.3)

This yields the simplified system

ż = v (1.4)
v̇ = u + d + g . (1.5)

The variable d includes the disturbance D due to bone structure as well as disturbances
due to the surgeon motion (modeled by z̈0).

An optical tracking system measures the position zm = z with a frequency of
1/T = 50Hz at discrete instants zm,k = zm(kT ), an inertial sensor (accelerometer) measures
am = u + d + ab where ab is the accelerometer constant bias.

The inertial measurements are considered continuous because their frequency is much
higher than that of the optical ones.

We now present three systems using different types of measurements in a standard
servo-control design. In all three cases, we do not take measurement noise into account
and l, L, L̃, h and K are appropriately calculated constant gains. The disturbance d is
modeled as a constant:

ḋ = 0 .

System 1 uses only optical measurements zm,k. An observer estimates the state
x = [z, v, d + g]T :

prediction: ˙̂x− =
⎡⎢⎢⎢⎢⎢⎣

v̂−

u + (̂d + g)
−

0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
x̂− +

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
u (1.6)

correction: x̂k = x̂−k +L(zm,k−1 − ẑk−1) (1.7)
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where x̂−k = ∫
kT

kT−T
˙̂x−(τ)dτ with x̂−(kT − T ) = x̂k−1. The state estimation is used in the

controller which reads
uk = −Kx̂k + hzr .

This system corresponds to the case where only an optical tracking system is used.
System 2 uses both optical and inertial data and represents the setup we propose in

Chapter 2. A first observer with state x = [z, v, ab − g]T , measured input am and discrete
optical measurements zm,k reads:

prediction: ˙̂x− =
⎡⎢⎢⎢⎢⎢⎣

v̂

am − ̂(ab − g)
−

0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
x̂− +

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
am (1.8)

correction: x̂k = x̂−k +L(zm,k−1 − ẑk−1) (1.9)

where x̂−k = ∫
kT

kT−T
˙̂x−(τ)dτ with x̂−(kT − T ) = x̂k−1. This observer gives a continuous

estimation ẑ(t) which is used as a measurement zm(t) for a second observer with state
x̃ = [z̃, ṽ, d̃ + g]T :

˙̃̂x =

⎡⎢⎢⎢⎢⎢⎢⎣

ˆ̃v
̂(g + ˜ )d + u

0

⎤⎥⎥⎥⎥⎥⎥⎦

+ L̃(zm − ˆ̃z) =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦

ˆ̃x +
⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
u + L̃(zm − ˆ̃z) (1.10)

This continuous state estimation of the second observer is used in the controller which
reads

u = −K ˆ̃x + hzr .

In system 3 which uses optical and inertial data we suppose that tracking and control
are more tightly coupled than in system 2. A first observer is used to estimate the
disturbance d with inertial measurements am = u + d + ab:

˙̂
d + ab = l(am − u − (d̂ + ab)) (1.11)

This observer gives a continuous estimation d̂ + ab(t) which is used as input for the second
controller-observer. Its state is x = [z, v, ab−g]T and it uses discrete optical measurements
zm,k:

prediction: ˙̂x− =
⎡⎢⎢⎢⎢⎢⎣

v̂−

u + (d̂+ab) − (âb−g)−
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
x̂− +

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
(u + (d̂+ab)) (1.12)

correction: x̂k = x̂−k +L(zm,k−1 − ẑk−1) (1.13)
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Figure 1.5: Simulation results for the 1D model of a handheld tool, showing the form of
the cut for three different servo-control systems in response to a disturbance.

where x̂−k = ∫
kT

kT−T
˙̂x−(τ)dτ with x̂−(kT − T ) = x̂k−1. The control input is

uk = −Kx̂k + hzr − (d̂ + ab) .

The handheld tool model and the three servo-control systems were implemented in a
Simulink model. Figure 1.5 shows the simulated cuts for these three systems for a desired
cutting position zr = 0cm and a disturbance d occurring from t = 2.002s and t = 2.202s. At
a speed of 0.5cm/s, this means the disturbance acts from y = 1.001cm to y = 1.101cm. The
disturbance causes the largest and longest deviation in the first system. In system 2, the
position deviation can be corrected much faster and its amplitude is much smaller. Using
the system 3 can correct the deviation even better. This simulation shows that using
inertial sensors with a higher bandwidth allows the servo-control to correct a deviation
caused by a disturbance much better than a system with a low bandwidth such as an
optical tracking system.

It is important to note that the controller-observer for system 1 cannot be tuned to
reject the disturbance faster; the choice of K and L is constrained by the frequency of the
optical measurements.

System 1 corresponds to the case in which the existing optical tracking system in
a computer-assisted surgery system would be used for a servo-controlled handheld saw
without cutting guides. In the following chapters, we will look at an optical-inertial
tracking system like the one in system 2. Here, the tracking is independent of the handheld
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Chapter 1. Introduction

tool. In system 3, the tracking and servo-control are more tightly coupled. This allows
for a even better disturbance rejection than in system 2 but the setup is more complex
since the tool’s model has to be known.

1.6 Outline
Optical-Inertial Tracking System The system setup and a mathematical model for
the optical-inertial tracking system are described in Chapter 2.

State of the Art An overview of the state of the art of computer vision and optical
tracking and of optical-inertial tracking systems is given in Chapter 3. The motivation of
several choices for our optical-inertial tracking system as opposed to existing systems are
exposed. Calibration methods for the individual sensors and for the hybrid optical-inertial
system are discussed in Section 3.3.

Data Fusion Chapter 4 starts by presenting the Extended Kalman Filter (EKF) which
is commonly used for data fusion of a nonlinear system and gives two of its variants: the
Multiplicative EKF (MEKF) for estimating a quaternion which respects the geometry of
the quaternion space and the continuous-discrete EKF for the case of a continuous system
model and discrete measurements. Both of these variants are relevant to the considered
problem since the Sensor Unit orientation is expressed by a quaternion and because the
model for the Sensor Unit dynamics is continuous while the optical measurements are
discrete.

The second part of the Chapter presents several data fusion algorithms for the
optical-inertial tracking system, starting with an MEKF. Since our goal is to reduce the
complexity of the algorithm, other variants are proposed, namely so-called invariant EKFs
which exploit symmetries which are present in the considered system. We also discuss a
fundamental difference of our data fusion algorithms to those presented in the literature
which consists in using optical image data directly as a measurement instead of using
triangulated 3D data. We call our approach a "direct" filter as opposed to "indirect"
filters using 3D optical data.

The last part of the Chapter is dedicated to the analysis of the influence of parameter
errors on one of the invariant EKFs for the optical-inertial system. Using this analysis,
we propose a method for calibrating the optical-inertial setup using estimations from the
invariant EKF.

Implementation Different aspects of the implementation of an optical-inertial tracking
system are studied in Chapter 5. An experimental setup was developed consisting of
low-cost cameras from the Wiimote and a Sensor Unit. A microcontroller is used for
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1.7. PUBLICATIONS

synchronized data acquisition from optical and inertial sensors with sample rates of
50Hz and 250Hz respectively. The data fusion algorithm is implemented in Simulink
and executed in real-time with an xPC Target application.

Several experiments have been conducted and analyzed to evaluate the performance
of the tracking system. They show that the optical-inertial system can track fast motion
and does so better than an optical tracking system.

This Chapter also discusses calibration of the individual sensors and of the hybrid
setup. It gives the results of several calibration procedures and shows their influence on
the tracking performance.

Conclusion To conclude, we give a summary of the work presented in this thesis and
an outlook on future work.

1.7 Publications
Part of the work described in this thesis was published in articles at the following
conferences:

• Claasen, G., Martin, P. and Picard, F.: Hybrid optical-inertial tracking system
for a servo-controlled handheld tool. Presented at the 11th Annual Meeting of the
International Society for Computer Assisted Orthopaedic Surgery (CAOS), London,
UK, 2011

• Claasen, G. C., Martin, P. and Picard, F.: Tracking and Control for Handheld
Surgery Tools. Presented at the IEEE Biomedical Circuits and Systems Conference
(BioCAS), San Diego, USA, 2011

• Claasen, G. C., Martin, P. and Picard, F.: High-Bandwidth Low-Latency Tracking
Using Optical and Inertial Sensors. Presented at the 5th International Conference
on Automation, Robotics and Applications (ICARA), Wellington, New Zealand,
2011

The authors of the above articles have filed a patent application for the optical-inertial
tracking with a direct data fusion approach. It has been assigned the Publication no.
WO/2011/128766 and is currently under examination.

15





Chapter 2

Optical-Inertial Tracking System

Ce chapitre présente le système optique-inertiel que nous proposons. Nous expliquons
les bases du fonctionnement du système optique et des capteurs inertiels et leurs erreurs
et bruits respectifs. La deuxième partie traite du modèle mathématique du système en
précisant les coordonnées utilisées, les équations de la dynamique et de sortie et les modèles
des bruits.

2.1 System Setup

The goal of this tracking system is to estimate the position and orientation of a handheld
object. A so-called Sensor Unit is attached to the object. The Sensor Unit consists of
an IMU with triaxial accelerometers and triaxial gyroscopes and optical markers. The
IMU and the markers are rigidly fixed to the Sensor Unit. A stationary stereo camera
pair is placed in such a way that the optical markers are in its field of view. The setup is
depicted in Figure 2.1.

The tracking system uses both inertial data from the IMU and optical data from the
cameras and fuses these to estimate the Sensor Unit position and orientation.

This Section presents a few basic elements of the optical system and the inertial sensors
which will serve as groundwork for the mathematical model of the system in Section 2.2.

2.1.1 Optical System

Vision systems treat images obtained from a camera, a CT scan or another imaging
technique to detect objects, for example by their color or form. In contrast to this,
an optical tracking system observes point-like markers which are attached to an object.
Instead of treating and transmitting the whole image captured by the camera, they detect
only the marker images and output their 2D coordinates.
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Figure 2.1: Optical-inertial tracking system with Sensor Unit and handheld tool
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Figure 2.2: Pinhole camera model

The 2D marker coordinates can then be used to calculate information about the object
position. For this, we need to model how a 3D point which represents an optical marker
is projected to the camera screen. This Section describes the perspective projection we
use and discusses problems and errors which can occur with optical tracking systems.

2.1.1.1 Pinhole Model

The pinhole model is the standard model for projecting object points to the camera image
plane for CCD like sensors [Hartley and Zisserman, 2003, p. 153].

The model is depicted in Figure 2.2 [Hartley and Zisserman, 2003, p. 154]. C is the
camera center. u is the principal point. A 3D point is denoted M and its projection in
the image plane m. The distance between the camera center and the image plane is the
focal distance f .

Figure 2.3 shows the concept of projection as given in [Hartley and Zisserman, 2003, p.
154]. The y coordinate of the image m can be calculated with the theorem of intercepting
lines:

my

Y
= f

Z
⇔ my = f

Y

Z
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Figure 2.3: Projection

mx can be calculated analogously. This gives for the image m:

m = f

Z

⎡⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎦

Often, images are expressed in the image plane, in coordinates attached to one corner
of the image sensor. In this case, the principal point offset has to be taken into account:

m = [f
X
Z + u0

f YZ + v0
] (2.1)

where u = [u0, v0]T is the principal point, expressed in image plane coordinates.
Focal distance and principal point are camera parameters. They are called intrinsic

values and have to be determined for each individual camera by a calibration procedure.

Projection in homogeneous coordinates Perspective projection for pinhole camera
model is often expressed in homogeneous coordinates. In homogeneous coordinates,
point M reads M̃ = [X,Y,Z,1]T and image m reads m̃ = [mx,my,1]T . Point M̃ is
then projected to m̃ by:

m̃ = PM̃ (2.2)
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where P is the camera matrix. It is equal to

P =
⎡⎢⎢⎢⎢⎢⎣

f 0 u0
0 f v0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

[I3 0] (2.3)

The projection (2.2) then writes

m̃ =
⎡⎢⎢⎢⎢⎢⎣

f 0 u0 0
0 f v0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

M̃ (2.4)

=
⎡⎢⎢⎢⎢⎢⎣

fX + u0Z
fY + v0Z

Z

⎤⎥⎥⎥⎥⎥⎦
= Z

⎡⎢⎢⎢⎢⎢⎣

fX/Z + u0
fY /Z + v0

1

⎤⎥⎥⎥⎥⎥⎦
= Z [m

1
] (2.5)

The image m can then be retrieved from the homogeneous image m̃. The image is
expressed in the image plane as in Equation (2.1).

The matrix K is called the intrinsic matrix. If f and [u0, v0] are given in pixels,
the projected image will be in pixels. If the pixels are not square, the aspect ration a
which describes the relation between the width and height of a pixel has to be taken into
account:

K =
⎡⎢⎢⎢⎢⎢⎣

f 0 u0
0 af v0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
Alternatively, two focal lengths fx and fy for the sensor x and y dimensions can be used
instead of the common focal length f [Szeliski, 2011, p. 47]. The intrinsic matrix K then
writes

K =
⎡⎢⎢⎢⎢⎢⎣

fx 0 u0
0 fy v0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
In this model, skew and lens distortion are not taken into account.
The values of the intrinsic matrix are usually determined for a individual camera by

a calibration procedure as described in Section 3.3.1.

2.1.1.2 Noise/Error Sources

The image data measured by a camera can be corrupted by measurement noise and
quantization noise where the latter depends on pixel size and resolution. When point
images are considered, they may contain segmentation or blob detection errors.
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For projection using the pinhole model, errors in the intrinsic values cause errors in
the projected image.

2.1.2 Inertial Sensors

Inertial sensors designate accelerometers and gyroscopes which measure specific accelera-
tion resp. angular rate without an external reference [Groves, 2008, p. 97].

An accelerometer measures specific acceleration along its sensitive axis. Most
accelerometers have either a pendulous or a vibrating-beam design [Groves, 2008, p. 97].

A gyroscope measures angular rate about its sensitive axis. Three types of gyroscopes
can be found which follow one of the three following principles: spinning mass, optical,
or vibratory [Groves, 2008, p. 97].

Inertial sensors vary in size, mass, performance and cost. They can be grouped in five
performance categories: marine-grade, aviation-grade, intermediate-grade, tactical-grade,
automotive grade [Groves, 2008, p. 98].

The current development of inertial sensors is focused on micro-electro-mechanical
systems (MEMS) technology. MEMS sensors are small and light, can be mass produced
and exhibit much greater shock tolerance than conventional designs [Groves, 2008, p. 97].

An inertial measurement unit (IMU) consists of multiple inertial sensors, usually three
orthogonal accelerometers and three orthogonal gyroscopes. The IMU supplies power to
the sensors, transmits the outputs on a data bus and also compensates many sensor
errors [Groves, 2008].

2.1.2.1 Noise/Error Sources

Several error sources are present in inertial sensors, depending on design and performance
category. The most important ones are

• bias

• scale factor

• misalignment of sensor axes

• measurement noise

Each of the first three errors source has four components: a fixed term, a temperature-
dependent variation, a run-to-run variation and an in-run variation [Groves, 2008]. The
fixed and temperature-dependent terms can be corrected by the IMU. The run-to-run
variation changes each time the IMU is switched but then stays constant while it is in
use. The in-run variation term slowly changes over time.
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Figure 2.4: Sample plot of Allan variance analysis results from [IEEE, 1997]

Among the error sources listed above, bias and measurement noise are the dom-
inant terms while scale factors and misalignment can be considered constant and
can be corrected by calibration [Gebre-Egziabher, 2004, Gebre-Egziabher et al., 2004,
Groves, 2008]. Bias and measurement noise for inertial sensor noise are often de-
scribed using the Allan variance [Allan, 1966]. The Allan variance is calculated from
sensor data collected over a certain length of time and gives power as a function of
averaging time (it can be seen as a time domain equivalent to the power spectrum)
[Gebre-Egziabher, 2004, Gebre-Egziabher et al., 2004]. For inertial sensors, different noise
terms appear in different regions of the averaging time τ [IEEE, 1997] as shown in
Figure 2.4 for a gyroscope. The main noise terms are the angle random walk, bias
instability, rate random walk, rate ramp and quantization noise.

Since the Allan variance plots of the gyroscopes used in the implementation in Section 5
(see Section 5.1.5.3 for details on the noise parameters used in the implementation) can
be approximated using only the angle random walk (for the measurement noise) and rate
random walk (for the time-variation of the bias), we will use only these two terms in the
gyroscope models presented in the following Section. The angle random walk corresponds
to the line with slope -1/2 and its Allan variance is given [IEEE, 1997] as

σ2(τ) = N
2

τ

where N is the angle random walk coefficient. The rate random walk is represented by
the line with slope +1/2 and is given [IEEE, 1997] as

σ2(τ) = K
2τ

3
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where K is the rate random walk coefficient.
The accelerometer error characteristics can be described analogously to the gyroscope

case, also using only two of the terms in the Allan variance plot. We will consider that
possible misalignment and scale factors have been compensated for in the IMU or by a
calibration procedure.

2.2 Mathematical Model

2.2.1 Coordinate systems

The motion of the Sensor Unit will be expressed in camera coordinates which are denoted
by C and are fixed to the right camera center. Cv is a velocity in camera coordinates,
for example. The camera frame unit vectors are E1 = [1,0,0]T , E2 = [0,1,0]T and
E3 = [0,0,1]T . The camera’s optical axis runs along E1. Image coordinates are expressed
in the image sensor coordinate system S which is attached to one of the corners of the
camera’s image sensor.

The left camera coordinate system is denoted by CL and the image sensor coordinate
system by SL. The left camera unit vectors are Ẽ1, Ẽ2 and Ẽ3. Coordinates C and CL
are related by a constant transformation.

The body coordinates, denoted by B, are fixed to the origin of the IMU frame and
are moving relative to the camera frames. Ba is an acceleration in body coordinates, for
example.

The optical markers are defined in marker coordinates M . Marker and body
coordinates are related by a constant transformation.

Finally, we also use an Earth-fixed world coordinate system, denoted by W .
The different frames are depicted in Figure 2.5. Figure 2.6 shows the image sensor

and its frames in detail.

2.2.2 Quaternions

A quaternion q [Stevens and Lewis, 2003] consists of a scalar q0 ∈ R and a vector q̃ ∈ R3:

q = [q0, q̃T ]T .

The quaternion product of two quaternions s and q is defined as

s ∗ q = [ s0q0 − s̃q̃
s0q̃ + q0s̃ + s⃗ × q̃

] .

The cross product for quaternions reads:

s × q = 1

2
(s ∗ q + q ∗ s) = s̃ × q̃ .
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A unit quaternion can be used to represent a rotation:

R(q)a = q ∗ a ∗ q−1

where a ∈ R3 and R(q) is the rotation matrix associated with quaternion q. If q depends
on time, we have q̇−1 = −q−1 ∗ q̇ ∗ q−1. If

q̇ = q ∗ a + b ∗ q (2.6)

with a,b ∈ R3 holds true, then ∥q(t)∥ = ∥q(0)∥ for all t.

2.2.3 Dynamics Model

We have three equations representing the Sensor Unit motion dynamics:

C ṗ = Cv (2.7)
C v̇ = CG + BCq ∗ Ba ∗ BCq−1 (2.8)

BC q̇ = 1

2
BCq ∗ Bω (2.9)

where CG = WCq ∗ WG ∗ WCq−1 is the gravity vector expressed in camera coordinates.
WG = [0,0, g]T is the gravity vector in the world frame with g = 9.81ms2 and WCq describes
the (constant) rotation from world to camera coordinates. Cp and Cv are the Sensor Unit
position and velocity, respectively. The orientation of the Sensor Unit with respect to
camera coordinates is represented by the quaternion BCq. Ba and Bω are the Sensor Unit
accelerations and angular velocities.

2.2.4 Output Model

To project the markers to the camera we use the standard pinhole model from (2.1) but
rewrite it using scalar products:

Cyi =
f

⟨Cmi,CE1⟩
[⟨
Cmi,CE2⟩
⟨Cmi,CE3⟩

] (2.10)

with
Cmi = Cp + BCq ∗ Bmi ∗ BCq−1

where yi is the 2D image of marker i with i = 1, . . . , l (l is the number of markers). f is
the camera’s focal distance. To simplify notations, we use only one common focal length;
if pixels are not square (see Section 2.1.1), we should write diag(f, af) instead of f . Cmi

and Bmi are the position of marker i in camera and body coordinates, respectively. ⟨a, b⟩
denotes the scalar product of vectors a and b.
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The 2D image can be transformed from camera to sensor coordinates by a translation:

Syi = Cyi + Su

where Su is the camera principal point.
The camera coordinate system in which the Sensor Unit pose is expressed is assumed

to be attached to the right camera of the stereo camera pair. The transformation between
the left and right camera coordinates is expressed by RSt and tSt:

CLp = RSt
Cp + tSt (2.11)

To project a marker to the left camera, replace Cmi in (2.10) by

CLmi = RSt
Cmi + tSt (2.12)

and use corresponding parameters and unit vectors:

CLyi =
fL

⟨CLmi,CLẼ1⟩
[⟨
CLmi,CLẼ2⟩
⟨CLmi,CLẼ3⟩

] . (2.13)

2.2.5 Noise Models

2.2.5.1 Inertial Sensor Noise Models

The noise models are motivated in Section 2.1.2.1 and will now be described mathemati-
cally as part of the dynamics model.

The gyroscope measurement ωm is modeled as

ωm = Bω + νω + Bωb

where ωm is the gyroscope measurement, Bω is the true angular rate, νω is the
measurement noise and Bωb is the gyroscope bias. Note that the parameter νω corresponds
to the angle random walk coefficient N in the Allan variance in Section 2.1.2.1.

The gyroscope bias Bωb can be represented by a sum of two components: a constant
one and a varying one. The bias derivative depends on the varying component which is
modeled as a random walk as described in Section 2.1.2.1:

Bω̇b = νωb . (2.14)

Note that the parameter νωb corresponds to the rate random walk coefficient K in the
Allan variance in Section 2.1.2.1.

A more complex noise model is proposed in [Gebre-Egziabher et al., 2004,
Gebre-Egziabher, 2004] which also models the variation of the time-varying part of the
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Figure 2.7: Allan variance for a hypthetical gyroscope

bias with an additional parameter. The bias ωb is written as the sum of the constant
part ωb0 and the time-varying part ωb1:

ωb = ωb0 + ωb1 .

ωb1 is modeled as a Gauss-Markov process:

˙ωb1 = −
ωb1
τ

+ νωb1

where τ is the time constant and νωb1 the process driving noise. This model contains three
parameters and the Allan variance is approximated by three terms as shown in Figure 2.7.
We use a special case of this model with τ =∞ which simplifies the model but still gives
a reasonable approximation in the interval of the Allan variance which we considered and
which is given in the inertial sensor datasheet used in the implementation as described in
Section 5.1.5.3. The approximated Allan variance with τ =∞ is illustrated in Figure 2.7.
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The accelerometer model is of the same form as the gyroscope model:

am = Ba + νa + Bab

where Ba is the true specific acceleration, νa is the measurement noise and Bab is the
accelerometer bias. Note that the parameter νa corresponds to the velocity random walk
coefficient N in the Allan variance in Section 2.1.2.1.

The accelerometer bias Bab can be represented by a sum of two components: a constant
one and a varying one. The bias derivative depends on the varying component which is
modeled as a random walk as described in Section 2.1.2.1:

Bȧb = νab (2.15)

Note that the parameter νab corresponds to the velocity random walk coefficient K in the
Allan variance in Section 2.1.2.1.

Since the IMU consists of a triad of identical accelerometers and a triad of identical
gyroscopes and since we consider the inertial sensor noises to be independent white noises
with zero mean, we can write for the auto-covariance

E(νj(t)νTj (t + τ)) = ξ2j I3δ(τ) (2.16)

for j ∈ {a,ω, ab, ωb}.

2.2.5.2 Camera Noise Model

The marker images are measured in the sensor frame and are corrupted by noise ηy:

ym = [
Sy
SLy

] + ηy .

We use the simplest possible noise model which assumes the noise to be white. The
camera noise is not actually white but the camera which will be used in the experimental
setup in Section 5.1 does not have a datasheet. Thus we do not have any information
about its noise characteristics which could permit us to model the noise realistically. Also,
we consider that the camera noise model is not critical for the performance of the data
fusion algorithms which will be presented in Section 4.3. However, it is important to use a
correct noise model for the inertial sensors because these are used in the prediction steps
of the data fusion algorithm.
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2.2.6 Complete Model

The complete model with noises then reads:

C ṗ = Cv (2.17)
C v̇ = CG + BCq ∗ (am − νa − Bab) ∗ BCq−1 (2.18)

BC q̇ = 1

2
BCq ∗ (ωm − νω − Bωb) (2.19)

Bȧb = νab (2.20)
Bω̇b = νωb . (2.21)

The outputs for the right and the left camera:

Syi =
fR

⟨Cmi,CE1⟩
[⟨
Cmi,CE2⟩
⟨Cmi,CE3⟩

] + SuR (2.22)

SLyi =
fL

⟨CLmi,CLẼ1⟩
[⟨
CLmi,CLẼ2⟩
⟨CLmi,CLẼ3⟩

] + SLuL (2.23)

where i = 1, . . . , l. Indices R and L refer to right and left camera resp. (e.g. fL is the focal
distance of the left camera). The measured outputs are:

yim = Syi + ηyi (2.24)
y(i+l)m = SLyi + ηy(i+l) . (2.25)

The six accelerometer and gyroscope measurements

u = [am, ωm]

are considered as the inputs of our system and the marker images

y = [Sy1, . . . , Syl
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sy

, SLy1, . . . ,
SLyl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SLy

]

as its outputs. y is a vector of length 2l+2l = 4l. The state vector which is to be estimated
by the data fusion filter in Chapter 4 is of dimension 16 and has the form:

x = [Cp,Cv,BCq,Bab,Bωb] .

This system is observable with l = 3 or more markers. This is a condition for this model
to be used in an observer/data fusion algorithm as the ones presented in Chapter 4. See
Section 4.3.1 for an observability analysis.
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Chapter 3

State of the Art

La présentation de l’état de l’art comporte trois volets: la vision par ordinateur et le
tracking optique, le tracking optique-inertiel, et enfin le calibrage.

Dans le volet vision par ordinateur et tracking optique, nous abordons des méthodes
pour déterminer la position et l’orientation d’un point ou d’un objet à partir d’images d’un
système de caméra monoculaire ou stéréo. Ces méthodes seront utilisées pour le calibrage
des caméras et comme référence pour le tracking optique-inertiel.

Des systèmes de tracking utilisant des capteurs optiques et inertiels présentés dans
la litérature sont décrits dans la deuxième partie. Ici, nous donnons la motivation de
notre approche pour le tracking optique-inertiel et indiquons les différences par rapport
aux systèmes existants.

Finalement, nous traitons la question du calibrage des caméras, des capteurs inertiels
et du système optique-inertiel.

3.1 Computer Vision and Optical Tracking

Optical tracking uses optical markers attached to an object and one or more cameras
which look at these markers. With a camera model and several camera parameters, it
is possible to calculate the object position and/or orientation from the marker images,
depending on the setup used. The camera model used here is the pinhole model presented
in Section 2.1.1.1.

The markers can be active or passive. Active markers send out light pulses. Passive
markers are reflecting spheres which are illuminated by light flashes sent from the camera
housing [Langlotz, 2004]. The markers are attached to a rigid body which is fixed to the
object being tracked. Often, infrared (IR) light and infrared filters are used to simplify
marker detection in the images.
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Examples of commercially available optical tracking systems are: Optotrak, Polaris
(both Northern Digital Inc., Waterloo, Canada [NDI, 2011]), Vicon (Vicon Motion
Systems Limited, Oxford, United Kingdom [Vicon, 2011]) and ARTtrack (advanced
realtime tracking GmbH, Weilheim, Germany [advanced realtime tracking GmbH, 2011]).

The field of computer vision provides algorithms for calculating an object’s position
and orientation from the marker images. Here we look into monocular and stereo tracking
which use one and two cameras respectively. For monocular tracking, at least four
coplanar markers have to be attached to the object to determine the object position
and orientation. In stereo tracking, the 3D marker position can be determined from a
single marker with a method called triangulation presented in Section 3.1.2.1. In order to
calculate an object’s orientation, at least 3 non-collinear markers are needed. Calculating
the the object position and orientation from the three triangulated markers is called the
"absolute orientation problem" and is discussed in Section 3.1.2.2. While the monocular
setup is simpler and does not need synchronization between cameras, it only has a poor
depth precision. Stereo tracking is the most common setup for optical tracking systems.

Although the optical-inertial tracking system we propose does not use any of these
computer vision algorithms which can be computationally complex we study these
algorithms here for several reasons. Monocular tracking is the basis of the camera
calibration procedure implemented in the Camera Calibration Toolbox [Bouguet, 2010]
and used for calibrating the cameras in the experimental setup in chapter 5 which led us
to study this method. Wanting to show that the proposed optical-inertial tracking system
is more suitable for following fast motion than an optical tracking system, we examined
stereo tracking algorithms to calculate pose using only optical data from our experimental
setup. This permits us to compare pose estimation from our optical-inertial system to
that of a purely optical system in Section 5.3.

3.1.1 Monocular Tracking

With a single camera, it is possible to calculate position and orientation of a rigid
body with four non-collinear points lying in a plane. Using less then four markers or
four nonplanar markers does not yield a unique solution while five markers in general
positions yield two solutions. To obtain a unique solution at least six markers in
general positions have to be fixed to the object. The problem of determining an object
position depending on the number and configuration of markers has been called the
"Perspective-n-point problem" where n is the number of markers and the solution was
given in [Fischler and Bolles, 1981].

We use the setup and frame notations as presented in Figure 2.5 and Section 2.2.1.
The four marker points are known in marker coordinates and we define the object position
as the origin of the marker frame. The position of marker i in camera coordinates then
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reads
Cmi = MCRMmi +MCt for i = 1, ...,4

where the rotation MCR and the translation MCt represent the object pose. Mmi is the
position of marker i and the Mmi with i = 1, ...,4 are called the marker model. The goal
is to determine the object pose from the camera images Syi.

Images and marker model are related by

S ỹi =KCmi =K[MCRMCt]Mm̃i

where we have used homogeneous coordinates (see Section 2.1.1.1). Since we have a planar
rigid body, the marker coordinates read

Mmi = [MXi,
MYi,0]T

and we can write the homogeneous marker model as

Mm̃i,2D = [MXi,
MYi,1]T

This makes it possible to calculate the homography matrixH between markers and images:

S ỹi =HMm̃i,2D . (3.1)

The solution presented here first calculates the homography matrix H between markers
and images and then determines MCt and MCR usingH and the camera intrinsic matrixK.

Solving for homography H between model and image This calculation fol-
lows [Zhang, 2000] for the derivation of the equations and [Hartley and Zisserman, 2003,
ch. 4.1] for the solution for H.

We note the homography matrix:

H =
⎡⎢⎢⎢⎢⎢⎣

hT1
hT2
hT3

⎤⎥⎥⎥⎥⎥⎦
.

and the homogeneous image:
S ỹi = [u, v,1]T .

Equation (3.1) gives us:

S ỹi ×H ⋅ Sm̃i,2D =
⎡⎢⎢⎢⎢⎢⎣

ui
vi
1

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

hT1
Sm̃i,2D

hT2
Sm̃i,2D

hT3
Sm̃i,2D

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

vihT3
Sm̃i,2D − hT2 Sm̃i,2D

hT1
Sm̃i,2D − ui hT3 Sm̃i,2D

uihT2
Sm̃i,2D − vihT1 Sm̃i,2D

⎤⎥⎥⎥⎥⎥⎦
= 0
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Since only two of the three equations above are linearly independent, each marker i
contributes two equations to the determination of H. We omit the third equation and
use hTi S ỹi,2D = S ỹTi,2Dhi to rewrite the first two equations:

[M̃
T
i,2D 0 −ui M̃T

i,2D

0 M̃T
i,2D −vi M̃T

i,2D

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ai

⋅
⎡⎢⎢⎢⎢⎢⎣

h1
h2
h3

⎤⎥⎥⎥⎥⎥⎦
±
h

= 0

Matrix Ai is of dimension 2 × 9. The four matrices Ai are assembled into a single matrix
A of dimension 8 × 9.

The vector h is obtained by a singular value decomposition of A. The unit singular
vector corresponding to the smallest singular value is the solution h which then gives
matrix H. Note that H is only determined up to a scale.

The estimation of H can be improved by a nonlinear least squares which minimizes
the error between the measured image points Syi and the projection S ŷi of the marker
coordinates using the homography H. The projection reads

S ŷi =
1

hT3
Mm̃i,2D

[h
T
1
Mm̃i,2D

hT2
Mm̃i,2D

]

The cost function which is to be minimized with respect to H is

∑
i

∥Syi − S ŷi∥ .

Closed-form solution for pose from homography and intrinsic matrix Having
determined matrix H up to a scale, we can write

sS ỹi =HMm̃i,2D (3.2)

where s is a scale. The homogeneous image can be expressed as

S ỹi =K [MCR MCt]Mm̃i =K [r1 r2 r3 MCt]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MXi
MYi

0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

=K [r1 r2 MCt]
⎡⎢⎢⎢⎢⎢⎣

MXi
MYi

1

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
m̃i,2D

(3.4)
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where K is the intrinsic matrix. With (3.2) and (3.4) we can then write

λ [h∗1 h∗2 h∗3]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H

=K [r1 r2 MCt]

where λ is an arbitrary scale and h∗j are the columns of matrix H. This gives:

r1 = λK−1h∗1 (3.5)
r2 = λK−1h∗2 (3.6)
r3 = r1 × r2 (3.7)

MCt = λK−1h∗3 (3.8)

Theoretically, we should have

λ = 1

∥K−1h∗1∥
= 1

∥K−1h∗2∥

but this is not true in presence of noise. [DeMenthon et al., 2001] proposes to use the
geometric mean to calculate λ:

λ =
√

1

∥K−1h∗1∥
⋅ 1

∥K−1h∗2∥
(3.9)

Matrix MCR = [r1 r2 r3] is calculated according to (3.5)–(3.7) and MCt according
to (3.8), using the scale λ given in (3.9).

3.1.2 Stereo Tracking

3.1.2.1 Triangulation

Knowing the camera intrinsic parameters, a marker image point can be back-projected
into 3D space. The marker lies on the line going through the marker image and the
camera center but its position on this line cannot be determined. When two cameras
are used, the marker position is determined by the intersection of the two back-projected
lines. This concept is called triangulation.

However, these two lines only intersect in theory. In the presence of noise (and
due to inaccurate intrinsic parameters), the two back-projected lines will not intersect.
Several methods have been proposed to estimate the marker position for this case. The
simplest one is the midpoint method [Hartley and Sturm, 1997] which calculates the
midpoint of the common perpendicular of the two lines. In the comparison presented
in [Hartley and Sturm, 1997] the midpoint method gives the poorest results. This is
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explained by the fact that the method is not projective invariant and that the midpoint is
not a projective concept. Alternative methods which will be presented in this chapter are
linear triangulation and optimal triangulation which minimizes a geometric cost function.

In this section, we want to calculate the position Cmi of marker i in camera coordinates
given left and right marker images SRyi and SLyi in right and left sensor coordinates, the
camera intrinsic matrices KR and KL and the transformation (RSt, tSt) between left and
right camera. The right and left camera matrices can be written as:

PR =KR [I 0] =
⎡⎢⎢⎢⎢⎢⎣

p1TR
p2TR
p3TR

⎤⎥⎥⎥⎥⎥⎦
and

PL =KL [RSt tSt] =
⎡⎢⎢⎢⎢⎢⎣

p1TL
p2TL
p3TL

⎤⎥⎥⎥⎥⎥⎦
.

The homogeneous images read:

SRỹi = PRCm̃i =
⎡⎢⎢⎢⎢⎢⎣

uiR
viR
1

⎤⎥⎥⎥⎥⎥⎦
and SLỹi = PLCm̃i =

⎡⎢⎢⎢⎢⎢⎣

uiL
viL
1

⎤⎥⎥⎥⎥⎥⎦
.

Basic Linear Triangulation Here we describe the homogeneous method given in
[Hartley and Zisserman, 2003, ch. 12.2]. The first step is to eliminate the homogeneous
scale factor by using the fact that although a projected point and the image are not equal
in homogeneous coordinates, they have the same direction and thus their cross product
is zero:

SRỹi × PR Cm̃i = 0⇒
⎡⎢⎢⎢⎢⎢⎣

viR(p3TR Cm̃i) − p2TR Cm̃i

p1TR
Cm̃i − uiR(p3TR Cm̃i)

uiR(p2TR Cm̃i) − viR(p1TR Cm̃i)

⎤⎥⎥⎥⎥⎥⎦
= 0

Out of these three equations, only two are linearly independent. We use only the first two
equations and write them for both right and left cameras:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uiR p3TR − p1TR
viR p3TR − p2TR
uiL p3TL − p1TL
viL p3TL − p2TL

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

Cm̃i = 0

We then solve for Cm̃i by singular value decomposition of A. The unit singular vector
corresponding to the smallest singular value is the solution Cm̃i. Since Cm̃i is a
homogeneous vector, bring it into the form [CmT

i ,1]
T to calculate Cmi.
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Optimal Triangulation [Hartley and Zisserman, 2003, ch. 12.5] presents a triangula-
tion method which is optimal if the noise is Gaussian. It minimizes the sum of squared
distances between image and projected point subject to the epipolar constraint

SLyTi F
SRyi = 0

where F is the fundamental matrix which can be computed from intrinsic matrices KR

and KL according to [Hartley and Zisserman, 2003, p.246]:

F = [KLtStereo]×KLRStereoK
−1
R /det(KL)

Two measured stereo image points usually do not satisfy the epipolar constraint due
to the presence of noise. The optimal triangulation method corrects the measured points
in such a way that they satisfy the epipolar constraint and then triangulates the corrected
points using the basic linear method presented above.

Planar Triangulation A special triangulation method [Chum et al., 2005] has been
developed for the case when the markers are coplanar. It makes use of the homography
matrix between the two cameras. However, this matrix has to be calculated with noise-
free image data which is impossible in practice. In consequence, planar triangulation is
not treated here.

Comparison of different methods using synthetic data To compare basic and
optimal triangulation using synthetic data we proceeded the following way:

1. Generation of a trajectory defined by translation MCt and quaternion MCq with
n = 214 frames as shown in Figure 3.3.

2. Computation of 3D marker positions Cmi from MCt and MCq using marker
coordinates Mmi for i = 1...4.

3. Projection of 3D marker positions to left and right cameras as in (2.4) using intrinsic
matrices KL and KR to obtain image coordinates.

• Test 1: Addition of noise to image coordinates with σ = 1pixel

• Test 2: Addition of error to intrinsic matrices:

K̃R =
⎡⎢⎢⎢⎢⎢⎣

491 1344 0
396 0 1337
1 0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

KR

+
⎡⎢⎢⎢⎢⎢⎣

10 −25 0
−5 0 10
0 0 0

⎤⎥⎥⎥⎥⎥⎦
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Figure 3.1: synthetic trajectory
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basic optimal
Cm1rms(mm) 0.8523 0.8522
Cm2rms(mm) 0.8644 0.8644
Cm3rms(mm) 0.8697 0.8697
Cm4rms(mm) 0.8832 0.8829

Table 3.1: RMS for triangulation error with noisy data and correct intrinsic values (test
1)

basic optimal
Cm1rms(mm) 9.9640 10.1745
Cm2rms(mm) 9.8547 10.0385
Cm3rms(mm) 10.9958 11.1846
Cm4rms(mm) 11.3301 11.5958

Table 3.2: RMS for triangulation error for noise-free data and incorrect intrinsic values
(test 2)

K̃L =
⎡⎢⎢⎢⎢⎢⎣

491 1344 0
396 0 1337
1 0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

KL

+
⎡⎢⎢⎢⎢⎢⎣

0 30 0
10 0 −20
0 0 0

⎤⎥⎥⎥⎥⎥⎦

4. Basic and optimal triangulation to obtain estimated marker positions Cm̂i.

5. Calculation of RMS (root mean square) for error xj = Cm̂ij −Cmij for each marker i:

xrms =

√
∑nj=1 ∣∣xj ∣∣2

n

Figure 3.2(a) shows the position error norms for both methods for test 1 and
Figure 3.2(b) shows those for test 2. The RMS results for test 1 and 2 are listed in Tables
3.1 and 3.2 resp. Note that we use Marker and Camera frames as described in Section
2.2.1. For test 1 with noisy data we see that optimal triangulation only brings a very
small improvement over basic triangulation. When using incorrect intrinsic values - which
could happen in practice when the cameras have not been calibrated exactly - optimal
triangulation even increases the position error. This is probably due to the fact that this
method uses the intrinsic values to correct the measured images which obviously demands
for correct intrinsic values.

In the light of the results of this simulation of basic and optimal triangulation using
synthetic data we decide to use the basic method in the following because the small
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improvement of accuracy it brings does not justify the additional computational load and
because it might even deteriorate the estimation when using incorrect intrinsic values.

3.1.2.2 Absolute Orientation Problem

Triangulating marker images gives information about their position only, not about
their orientation relative to the camera frame. To determine the orientation of an
object, at least three rigidly fixed non-collinear markers are needed. The problem of
computing the transformation between two sets of corresponded feature measurements
(here markers and their triangulated 3D positions) is called the "absolute orientation
problem" [Eggert et al., 1997].

We define the position and orientation of a rigid body to be the position and orientation
of the origin of the marker frame in camera coordinates. We can express each marker i
in camera coordinates:

Cmi = MCt +MCRMmi

where MCt is the translation and MCR the rotation between marker and camera frame.
These two variables represent the position and orientation of the rigid body and are to
be determined by the solution to the absolute orientation problem.

Several methods have been proposed to compute a closed-form solution to calculate
the transformation (rotation and translation) between two 3D point sets. In our case, one
3D point set is the marker model Mmi (coordinates of each marker in marker coordinates)
and the other 3D point set is the set of 3D marker positions in camera coordinates
Cmi (calculated from 2D marker images by e.g. triangulation, see Section 3.1.2.1). The
solution then is the position and orientation of the origin of the marker model in camera
coordinates, the desired variables MCt and MCR.

In this section, we present three different methods to solve the absolute orientation
problem.

Horn’s method using unit quaternions This method was presented in [Horn, 1987].

step 1: calculate centroids and normalize vector centroids:

Cm = 1

l

l

∑
i=1

Cmi,
Mm = 1

l

l

∑
i=1

Mmi

normalize:
Cm′

i = Cmi − Cm, Mm′
i = Mmi −Mm

step 2: calculate matrix S
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S =
⎡⎢⎢⎢⎢⎢⎣

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

⎤⎥⎥⎥⎥⎥⎦
with

Suv =
l

∑
i=1

(Mm′
i)u(Cm′

i)v

where (Mm′
i)u is the uth element of vector Mm′

i and (Cm′
i)v the vth element of

vector Cm′
i.

step 3: calculate matrix N

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx
Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz

⎤⎥⎥⎥⎥⎥⎥⎥⎦

step 4: calculate quaternion q

Calculate the eigenvalues and eigenvectors of N . The quaternion q is the eigenvector
corresponding to the most positive eigenvalue of N . Then MCq = q and MCR =
R(MCq).

step 5: calculate scale s = ∑
l
i=1

Cm′i(MCRMm′i)
∑l

i=1∥Mm′i∥
2

step 6: calculate translation MCt = Cm − sMCRMm

Arun’s method by singular value decomposition and Umeyama’s strict solution

step 1: calculate centroids and normalize vectors like in step 1 of Horn’s method

step 2: calculate matrix H

H =
l

∑
i=1

Mm′
i
Cm′T

i

step 3: calculate SVD of H = UΛV T , then X = V UT .

step 4: solution for MCR
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Arun’s solution: The result depends on the value of d = det(X):

d =
⎧⎪⎪⎨⎪⎪⎩

1 then MCR =X
−1 then the solution depends on the singular values of H.

If det(X) = −1 and the kth singular value of H is zero (this corresponds to the case
of coplanar point sets), then

MCR = X̃ = Ṽ UT

where Ṽ is obtained from V by multiplying the kth column by −1. If more or less
than one singular value of H is zero, the algorithm fails.

Umeyama’s strict solution:
MCR = V SUT

where

S =
⎧⎪⎪⎨⎪⎪⎩

I ifdet(U)det(V ) = 1

diag(1,1, ...,1,−1) ifdet(U)det(V ) = −1

which can be expressed [Eggert et al., 1997] as

S =
⎡⎢⎢⎢⎢⎢⎣

1
1

det(V UT )

⎤⎥⎥⎥⎥⎥⎦

step 5: calculate translation MCt = Cm −MCRMm

Walker’s method using dual number quaternions Another method for solving the
absolute orientation problem is proposed in [Walker et al., 1991]. In contrast to the last
two algorithms, this approach can incorporate both positional and directional information
and uses weighting factors reflecting data reliability. Here, we present a form of the
algorithm which uses only positional data and no weighting factors [Eggert et al., 1997]
and is thus comparable to the other two.

A second difference to the other two algorithms is that rotation and translation are
estimated in the same step and not separately as in the other two algorithms.

step 1: Calculate position quaternions

A position quaternion is defined in [Walker et al., 1991] as m̃ = 1
2 [
m
0
] where m is a

3D position vector. Calculate position quaternions Cm̃i and Mm̃i.
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step 2: Calculate rotation

Calculate matrices

C1 = −2
l

∑
i=1
Q(Cm̃i)TW (Mm̃i)

C2 =m ∗ Im

C3 = 2
l

∑
i=1

(W (Mm̃i) −Q(Cm̃i))

where

K(v) =
⎡⎢⎢⎢⎢⎢⎣

0 −v2 v1
v2 0 −v0
−v1 v0 0

⎤⎥⎥⎥⎥⎥⎦

Q(v) = Q
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v0
v1
v2
v3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
= [v3 ∗ I3 +K(v0..2) v0..2

−vT0..2 v3
]

W (v) = [v3 ∗ I3 −K(v0..2) v0..2
−vT0..2 v3

] .

A vector r is calculated as the eigenvector corresponding to the largest positive
eigenvalue of the matrix

A = 1

2
(CT

3 (C2 +CT
2 )−1C3 −C1 −CT

1 ) .

The rotation matrix MCR is determined from this vector r = [r0, r1, r2, r3]T :

MCR = (r23 − rT0...2r0...2)I3 + 2r0...2r
T
0...2 + 2r3K(r0...2)

step 3: Calculate translation

Calculate s = −(C2 +CT
2 )−1C3r and then the position quaternion of the translation

MC t̃ =W (r)T s. Finally, convert to give the translationMCt.

Comparison of different methods using synthetic data We use the generated
trajectory and projected image data from the comparison of triangulation methods in
Section 3.1.2.1 and consider the same two cases: in test 1, the image data are corrupted
by noise and in test 2, the triangulation uses erroneous intrinsic values. We apply three
absolute orientation algorithms (Horn, Umeyama and Walker) and compare the results.
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Figure 3.3: synthetic trajectory
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Figure 3.4: Position and quaternion error norm for test 1

Horn Umeyama Walker
MCtrms(mm) 0.4949 0.4770 0.4770
MCqrms 0.0020 0.0020 0.0020

Table 3.3: RMS errors for test 1

The true trajectory defined by translation MCt and quaternion MCq with n frames is
shown in Figure 3.3.

To analyze the results, we calculate the position error x =MC t̂ − MCt and quaternion
error x = 1 − MC q̂ ∗ MCq−1 for each frame and also the RMS (root mean square) of these
errors over all frames:

xrms =

√
∑nj=1 ∣∣x∣∣2

n

Figure 3.4 shows the position and quaternion error norm for test 1 and Figure 3.5
displays those for test 2. The RMS errors are listed in Tables 3.3 and 3.4.

These results show that the methods proposed by Umeyama and by Walker give the
same results. Horn’s method gives a slightly larger position error in both tests but the
same quaternion.
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Figure 3.5: Position and quaternion error norm for test 2

Horn Umeyama Walker
MCtrms(mm) 10.7835 10.6980 10.6980
MCqrms 0.0052 0.0052 0.0052

Table 3.4: RMS errors for test 2
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In the light of these results, we choose to implement Walker’s method because it gives a
smaller position error than Horn’s method and because it is more elegant than Umeyama’s
method since it calculates position and quaternion in the same step.

3.1.3 Problems/Disadvantages

Optical tracking suffers from the following drawbacks. The most important one with
regard to the surgical tool tracking application considered here is its low bandwidth.
Typical optical tracking system used in computer-assisted surgery have a maximum
bandwidth of 60Hz which might be lower when multiple objects have to be tracked.
This bandwidth is too low to capture rapid human motion. Systems with higher
bandwidths exist, for example the Vicon (Vicon Motion Systems Limited, Oxford, United
Kingdom [Vicon, 2011]) tracking system which runs at 120Hz, but cannot be used in
surgery due to their high cost. Additionally, computer vision algorithms demand complex
computations which cause latencies.

Another problem regarding optical tracking is that the object has to always be in the
cameras’ field of view. A person or an object blocking the line-of-sight or one marker
occluding another leads to complete or partial loss of tracking information.

The tracking performance is affected by noise in the cameras, camera model errors,
inaccurate camera calibration, segmentation errors and motion blur which depends on
shutter speed [Szeliski, 2011, p.66].

3.2 Optical-Inertial Tracking Systems

3.2.1 Systems Presented in the Literature

In [Parnian and Golnaraghi, 2008] and [Parnian and Golnaraghi, 2010], the system tracks
a pen-like tool to which is attached an IMU and whose tip is detected by four cameras
placed on a curved line. The cameras are placed in a way as to prevent line-of-sight
problems.

[Roetenberg, 2006] presents a setup consisting of a Vicon optical tracking system with
6 cameras and an optical marker attached to an IMU which is fixed to the object being
tracked. The system is to be used for offline human motion analysis. Optical data is
used to calculate the marker position and inertial data to calculate position, velocity,
acceleration and orientation. A Kalman Filter estimates the inertial state errors using
the difference between optical and inertial positions. Since the data are analyzed offline,
a Kalman filter smoothing algorithm is applied. The inertial sample rate is 100Hz and
the optical sample rate is varied from 100Hz to 10Hz. The author finds that in the hybrid
system, the optical rate can be lowered to 10Hz and the pose estimation is as good as
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the Vicon’s at 100Hz. In the case of occlusions, the hybrid estimation is better than the
interpolation of optical data with a spline function.

The authors of [Tobergte et al., 2009] combine an optical tracking system with two
cameras and three markers with a sample rate of about 55Hz with an IMU being sampled
at 500Hz which is attached to the optical markers. They take into account the latency
of the optical measurements and find that pose estimation is possible even during short
marker occlusions, as long as at least one marker is visible to the cameras.

In [Hartmann et al., 2010], only one camera is used which tracks the position (and the
yaw angle when the object is moving) of a fiducial marker pattern which is attached to an
IMU being sampled at 400Hz. The camera sample rate is 5 to 10Hz. An EKF is used to
fuse optical and inertial data. In simulation, the hybrid system can overcome short-time
marker occlusions. Following experiments with a marker pattern and IMU fixed to a
test person’s wrist, the authors assume that this system can track a moving object and
compensate short-time marker occlusions although they do not have proof for this due to
a lack of ground truth.

[Korff et al., 2010] presents a tracking system for a handheld surgery tool (which is
also presented in [Follmann et al., 2010]) with inertial sensors and an optical tracking
system (OTS). Two Unscented Kalman Filters are employed: one for position, using
position and orientation as given by an OTS, updated at the corresponding frequency,
and one for orientation, using inertial data, updated at inertial frequency.

3.2.1.1 System Setups

The systems presented in the literature differ in the number of markers and the number of
cameras. This choice determines the number of degrees of freedom which can be estimated.

The system considered here and the systems cited in Section 3.2.1 all consist of optical
markers and inertial sensor rigidly fixed to the moving object and of stationary cameras.
Thus they belong to the group of "outside-in" setups. A lot of the early research on optical-
inertial data fusion has been carried out on "inside-out" setups in which the inertial sensors
and cameras are rigidly attached to the moving object (see for example [You et al., 1999,
Rehbinder and Ghosh, 2003, Lobo and Dias, 2003, Bleser and Stricker, 2008]). Most of
these systems use only one camera which provides poor precision. Also, the systems in
the listed references use visual tracking and detect objects in the surrounding scene which
obviously changes both requirements and the mathematical model. Consequently we do
not consider inside-out system here.

3.2.1.2 Motivations

Line-of-sight Problem A problem experienced in purely optical tracking systems is
the occurrence of occlusions when there is no line-of-sight between camera and markers
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which makes pose estimation impossible during the time of the occlusion. Several optical-
inertial systems have been presented in the literature to solve this problem by using
only inertial data to estimate pose when markers are out of the cameras’ line-of-sight
for several frames [Parnian and Golnaraghi, 2010, Hartmann et al., 2010]. Roetenberg
compares optical-inertial tracking to optical tracking and shows that in the case of
short-time marker occlusions, the optical-inertial motion estimate is better than the
interpolation of optical data with a spline function [Roetenberg, 2006].

Reduction of Optical Sample Rate In some applications, inertial sensors are
added to an optical tracking system with the goal of lowering the optical sample rate,
thus saving processing time compared to optical tracking [Parnian and Golnaraghi, 2008,
Roetenberg, 2006].

The authors of [Parnian and Golnaraghi, 2008] present a system which samples the
IMU at 100Hz and the cameras at 20Hz and they find that with this setup it is possible
to lower the camera sample rate to 2Hz. This saves processing time compared to purely
optical tracking systems.

In [Roetenberg, 2006], an optical sample rate of 10Hz and an IMU sample rate of
100Hz are used. With this configuration, the system accuracy is found to be as good as
the Vicon’s at 100Hz.

Augmentation of Bandwidth Inversely to the previous approach of reducing the
optical sample rate, optical-inertial tracking is used in several cases to augment the
bandwidth of optical tracking by adding inertial sensors and fusing the different sensor
data. Thanks to the high sample rates of inertial sensors, the system bandwidth can be
increased. This is the main motivation for the present work as well as for the systems
in [Tobergte et al., 2009, Hartmann et al., 2010].

3.2.1.3 Applications

Optical-inertial tracking systems are commonly used for human motion tracking. Appli-
cations include gait analysis [Roetenberg, 2006], biomechanical research, virtual reality
and motion capture for animation.

In augmented reality, inside-out systems are used for head-mounted dis-
plays (HMD) [Bleser and Stricker, 2008].

Object tracking with optical and inertial sensors is done for handheld
tools, for example of surgery tools [Tobergte et al., 2009], and for industrial
tools [Parnian and Golnaraghi, 2010].

[Hartmann et al., 2010] proposes a general indoor tracking system and studies the
example of hand tracking in the presented experiment.

52



3.2. OPTICAL-INERTIAL TRACKING SYSTEMS
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Figure 3.6: Diagram for direct and indirect approach

3.2.2 Motivation of Our Approach

The intended use of our optical-inertial tracking system for servo-controlling a handheld
tool in a computer-assisted surgery system imposes several choices to meet the require-
ments stated in Section 1.2. In order to be compatible with existing optical tracking
systems, we use stereo cameras. The use of three optical markers and an three-axis IMU
is necessary to obtain the pose with six degrees of freedom. The optical bandwidth is
augmented through the use of an IMU with a high bandwidth (at least 200Hz) and of a
data fusion algorithm running at the inertial frequency.

The most important difference to existing approaches is the use of optical data directly
as inputs to the data fusion algorithm instead of triangulated 3D data. This should
reduce latency because it omits the computationally complex computer vision algorithms
necessary for obtaining 3D data. It also prevents the optical marker position estimation
errors from being propagated in the data fusion algorithm. We call our approach "direct"
as opposed to the "indirect" one using 3D data.

Both approaches are shown in Figure 3.6. Among the systems presented in
Section 3.2.1, [Hartmann et al., 2010, Korff et al., 2010] and [Tobergte et al., 2009] are
similar to our setup. They all use an indirect data fusion approach.

To further reduce the data fusion algorithm’s complexity, we will develop algorithms
in Chapter 4 which take into account system symmetries.

Our optical-inertial tracking system will have a high bandwidth (due to the inertial
sensors) and a small latency (due to the direct approach and suitable algorithm which
reduces computational complexity) and will thus be suitable for servo-controlling a
handheld tool, in contrast to existing tracking systems which run with a low bandwidth
and/or an important latency or do not meet the requirements to be used in an operating
room.
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3.3 Calibration

Mathematical system models generally contain a number of parameters which describe,
for example, scale factors, coordinate transformations and biases. The parameters can
either be measured, obtained from calibration or from a sensor datasheet.

Using sensors also demands knowledge of several parameters. First of all, the sensor
readings have to be converted into physical measurements. Secondly, when employing
several sensors their relative positions and orientations and possible interactions have to
be known.

For the system presented in Chapter 2, we have to determine the camera intrinsic
values and misalignment and scale factors for the triaxial inertial sensors. Calibration
procedures for these cases are described in Sections 3.3.1 and 3.3.2. Since we are using
two different kind of sensors, optical and inertial ones, we also have to calibrate this hybrid
setup. Calibration of optical-inertial systems is studied in Section 3.3.3.

Calibrating the sensors and other parameters in the system model is important in this
work because the sensor measurements and the system model will be used in the data
fusion algorithms for the optical-inertial tracking system. If the parameters used in the
model differ from their true values, this will have an impact on the data fusion algorithm.
This explains why special care has to be taken to calibrate the optical-inertial tracking
system.

3.3.1 Camera Calibration

Camera calibration methods determine camera intrinsic parameters which are used in the
pinhole model as described in Section 2.1.1.1. These parameters are the focal length f ,
the aspect ratio a (relation between pixel length and height) and the principal point u.
It is also possible to estimate distortion but this parameter will not be treated here.

A widely used method is the one proposed by Zhang [Zhang, 2000] using a planar
calibration pattern which can be a chessboard pattern printed out with an ordinary
printer. It uses the fact that with a camera and a planar target with at least four
non-collinear points it is possible to calculate the pattern position and orientation (see
Section 3.1.1). Since this method uses only a very simple pattern it is much easier to
use than other methods using 3D calibration objects. Zhang’s method is implemented in
the Camera Calibration Toolbox for Matlab [Bouguet, 2010]. The cameras used in the
implementation in Chapter 5 are calibrated using this toolbox.
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3.3.1.1 Stereo Calibration

When using a stereo camera rig, the transformation (rotation RSt and translation tSt)
between the rigidly fixed cameras

CLp = RSt
Cp + tSt

has to be known. It can be calculated using a stereo calibration method, for example the
one implemented in the Camera Calibration Toolbox for Matlab [Bouguet, 2010] which is
the one used in Chapter 5 for the experimental setup.

3.3.2 IMU Calibration

We consider the calibration of a triad of accelerometers and of a triad of gyroscopes. These
calibration procedures usually estimate the following parameters: biases and scale factors
(also called sensitivities or gains) for accelerometers and gyroscopes and additionally axis
misalignments for accelerometers.

For gyroscopes, it is usually sufficient to know and compensate only the biases among
the above mentioned parameters. This is the case for our optical-inertial tracking system
which is why we will not study gyroscope calibration methods here. The biases can
be determined by averaging the gyroscope measurements over several second for a static
position. Since in this case the angular velocities are zero, the measured values correspond
to the gyroscope biases.

Traditionally, IMUs have been calibrated using mechanical platforms, for example
a turntable, which turns the IMU with known velocity into known orientations . This
approach does not seem appropriate for low-cost MEMS IMUs because in this case the
calibration would be more expensive than the sensor itself. Instead, other accelerometer
calibration procedures have been developed which do not need a turntable. All the
accelerometer calibration procedures presented here use the fact that the sensed specific
acceleration in a static position should be equal to gravity. Neither of these methods need
any additional material. We will compare them here with regard to the data collection
process.

One group of methods demands the IMU to be placed in several different orientations
and then kept stationary during data collection. In [Skog and Händel, 2006] the IMU is
placed by hand in 18 different positions (the 6 sides and 12 edges of the IMU) and 100
samples are collected for each orientation. The cost function is the sum over all samples of
the norm of the difference of the measured acceleration and 1g. The estimated parameters
are scale factors, biases and misalignments. The calibration in [Fong et al., 2008] is similar
to the one in [Skog and Händel, 2006], but additionally estimates cross-axis sensitivities.
The authors propose two different procedures. For the first one, the IMU is placed in
18 different positions (IMU resting on its 6 flat surfaces and 12 edges). A quasi-static
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detector chooses data parts for which the IMU was static. The static signals are averaged
over 1s to reduce noise. In the second procedures, the IMU is placed on the head or
hand of a non-technical user and is moved and paused at least 24 times. A quasi-static
detector indicates parts where the sensors were static for 0.25s. In both procedures, the
data are used to compute a cost function which measures the deviation from 1g for each
position which is then minimized to calculate the calibration parameters. The procedure in
[Panahandeh et al., 2010] estimates the same parameters as in [Skog and Händel, 2006]
but also two Euler angles for each of the stationary positions. The cost function is
again equal to the sum over all samples of the norm of the difference of the measured
acceleration and 1g. It is first minimized w.r.t. the Euler angles and then w.r.t. to the
parameters. A simulation for 9 positions with 25 samples each showed that the square-
root of the empirical mean square error converges to the square-root of the Cramer-Rao
bound which is the lower limit for the estimation error [Panahandeh et al., 2010] after a
few measurements.

A different method is proposed in [Lötters et al., 1998] for which data can be collected
while the sensors are in use. A quasi-static moments detector discards all samples for
which the variance of the norm of the measured acceleration vector is above a certain
threshold. The sensor model which is a nonlinear function of the parameters is linearized
around the previous parameter estimation. The cost function for the estimation of the bias
and scale factor parameters is again the difference of the norm to 1g, using the linearized
sensor model. This method has been developed for the case of movement monitoring
of a patient wearing an IMU attached to his lower back. Simulations and experimental
data show that the best results are obtained when the IMU is placed in such a way that
gravity is equally distributed over the three axes. The authors also observe that accuracy
is increased the more different orientations are used.

With regard to our optical-inertial tracking system, the first group of methods might
be difficult to apply when the Sensor Unit is attached to a handheld tool. It also seems
improbable to have the scenario necessary for the in-use method in [Lötters et al., 1998]
in our application.

A method with less constraints on the data collection process is presented
in [Dorveaux et al., 2009]. It only demands the IMU to be moved slowly into different
orientations, ideally covering the whole sphere of possible orientations. N accelerometer
measurements yi with i = 1...N are collected. The actual value of the acceleration is
expressed as

Yi = Ayi +B (3.10)

where the matrix A represents scale factors and misalignment terms and B is the bias
vector. Since the IMU moves very slowly, we can consider that the acceleration norm is
always equal to 1g, i.e. ∥Yi∥ = g. The authors propose to estimate the parameters by
iterations of least square problems. The following cost function is formulated for the kth
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iteration:

h(A,B, k) =
N

∑
i=1

∥Ayi +B − g
yi,k

∥yi,k∥
∥2 (3.11)

The least-squares minimization of this cost function with respect to A and B gives
(Ak+1,Bk+1) which are used to update the data vectors:

yi,k+1 = Ak+1yi,k +Bk+1 (3.12)

After K iterations, the so-called "calibrated" data vectors are obtained:

yi,K = ÃKyi,k + B̃K (3.13)

where ÃK and B̃K contain the estimated parameters; they have been determined
recursively by

Ãk = AkÃk−1 (3.14)

B̃k = AkB̃k−1 +Bk (3.15)

This method is used in the implementation in Chapter 5 because of its simple data
collection process.

3.3.3 Optical-Inertial Calibration

When different kind of sensors are used in a setup, the transformations between the
sensor frames has to be known. In many cases, the transformation cannot be measured
directly but has to be determined by some kind of calibration procedure. For optical-
inertial systems, this transformation is between IMU and camera for inside-out systems
and between IMU and markers for outside-in systems.

3.3.3.1 IMU-Camera for inside-out systems

In an inside-out system, the transformation between the rigidly connected IMU and
camera has to be determined. All the methods presented here consider monocular systems.

The most demanding procedure in regard to the data collection and hardware
requirements was proposed in [Lobo and Dias, 2007]. The translation is estimated using
a turntable by which the system can be turned about the IMU origin into several static
poses and then applying a variant of the hand-eye calibration [Tsai and Lenz, 1989].
The rotation is determined from several measurements when the camera is looking at
a vertical chessboard pattern in different poses. The problem then corresponds to finding
the rotation between two sets of vectors as in [Horn, 1987].
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Two methods which do not need additional hardware except for a chessboard
pattern are presented in [Hol et al., 2008] and [Mirzaei and Roumeliotis, 2008]. The latter
estimates the translation and rotation as additional states in the Kalman Filter developed
for tracking the sensor position, velocity and orientation. The former first estimates the
same parameters in a Kalman Filter and uses these values as a predictor for a least squares
minimization. Neither of these methods require specific positions or trajectories during
data collection but a motion which sufficiently excites the different sensors.

A joint calibration of IMU-camera transformation and of IMU parameters (scale
factors, biases and misalignments) with a recursive Sigma-Point Kalman Filter was
proposed in [Zachariah and Jansson, 2010]. This method was only tested in simulation
with a generated trajectory with continuous accelerations.

3.3.3.2 IMU-Marker for outside-in systems

[Kim and Golnaraghi, 2004] presents a calibration procedure which estimates several IMU
parameters (biases, scale factors, misalignments) and the rotation between the IMU and
several optical markers which are rigidly connected. An optical tracking system provides
position and orientation measurements of the optical markers while the system is rotated
and accelerated manually. The optical measurements are derived twice to calculate the
IMU’s angular velocities and specific accelerations. The difference between these values
and the velocities and accelerations measured by the IMU equals the cost function which is
minimized with a least squares approach. The IMU-marker translation was not estimated
in the calibration because the authors consider it is "not sensitive to millimeter-level
accuracy" and thus use the design specifications from manufacturing.

As mentioned earlier, calibration of our optical-inertial system is important to ensure
good performance, but few calibration procedures exist for this setup. It might be possible
to adapt methods for inside-out systems can be adapted to the outside-in case, but
the method in [Lobo and Dias, 2007] demands for a precise data collection which is not
possible for our setup. The method in [Mirzaei and Roumeliotis, 2008] is implemented in
Section 5.4.4 but does not converge either with synthetic or real data. Instead we propose
a novel method Section 4.4.2 which uses estimations from the optical-inertial data fusion
algorithm to determine the rotation between the optical marker frame and the body
frame of the IMU. After having calibrated this rotation, we apply a method similar to
the one in [Kim and Golnaraghi, 2004] using optical data as reference to determine the
translation between marker and body coordinates. The Sensor Unit calibration procedure
for the experimental optical-inertial setup is described in Section 5.4.4.
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Data Fusion

Le coeur de notre système optique-inertiel est un algorithme de fusion de données qui
intègre les données des différents capteurs pour déterminer la position et l’orientation d’un
objet. Il utilise les informations complémentaires des capteurs pour donner une estimation
avec une grande bande passante. L’algorithme prend la forme d’un observateur dont nous
rappellons le fonctionnement. Un type d’observateur pour les systèmes nonlinéaires est le
filtre de Kalman étendu. Ce filtre est présenté dans la deuxième partie du chapitre.

La troisième partie présente des filtres pour notre système optique-inertiel. Nous
commençons avec une première modification du filtre de Kalman étendu standard qui
respecte la géometrie des quaternions qui sont utilisés pour représenter l’orientation.
Ensuite, nous proposons deux autres modifications: le filtre de Kalman étendu invariant
à droite et celui invariant à gauche. Ces deux filtres prennent en compte les symmétries
du système. Le système est invariant par rapport à une rotation et il est logique d’utiliser
un filtre qui soit aussi invariant par rapport à cette rotation.

Le calibrage est un point important pour la performance de notre système de tracking.
Dans la dernière partie de ce chapitre, nous étudions d’abord l’influence de différents
erreurs paramétriques sur l’estimation du filtre de Kalman invariant à droite et proposons
ensuite une méthode de calibrage de la rotation entre les repères marqueurs et body qui
utilise les estimations du filtre.

4.1 Motivation

The optical-inertial system presented in Chapter 2 measures data from two types of
sensors. The optical sensors output image data from which the object’s absolute position
and orientation can be determined. The bandwidth is usually too low to follow fast human
motion. Inertial sensors measure angular velocities and specific accelerations at a high
bandwidth which is suitable for tracking fast human motion. However, when using inertial
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data to calculate the object position and orientation, these are always relative to an initial
position and will also drift with time due to sensor errors which cannot be compensated
for. The fact that optical and inertial sensors give complementary information leads to
the idea of using both in a hybrid optical-inertial tracking system.

When using data from different types of sensors, these data are integrated in a so
called data fusion algorithm to calculate the desired variables. These kind of algorithms
demand for a mathematical model of the system dynamics and output:

ẋ = f(x,u)
y = h(x,u)

where x is the state, u the input and y the output. The algorithm usually takes the form
of an observer. An observer is a filter which estimates the system state x using the known
input u and the known output y [Besancon, 2007] and which makes the estimated state x̂
converge to the real state x. In its most common form, an observer consists of a copy of
the system dynamics plus a correction term depending on the measured output:

x̂ = f(x̂, u) −K(y − h(x̂, u))

where x̂ is the estimated state and y is the measured output. K is the matrix observer
gain which has to be determined and which can be constant or depend on y, x̂, u and/or
time.

To design an observer, the considered system must be observable, i.e. it must be
possible to recover information on the system state from the measured output and known
input [Besancon, 2007]. Conditions for observability are given in [Besancon, 2007].

In the mathematical model for the optical-inertial tracking system as described
in Section 2.2.6, the system dynamics describe the Sensor Unit motion. Inertial
measurements are considered to be the system inputs and the optical measurements its
outputs.

A common algorithm for data fusion is the Kalman Filter for linear systems and the
Extended Kalman Filter (EKF) for nonlinear systems. It has the form of the observer
given above and calculates the filter gain as well as the estimation uncertainty at each time
step. Introductions to Kalman Filtering can be found in [Simon, 2006, Grewal et al., 2001,
Farrel and Barth, 1998, Groves, 2008], for example.

We have chosen an Extended Kalman Filter as a data fusion algorithm for our optical-
inertial tracking system. To adapt the filter to our system and to improve its performance,
we make several modifications which take into account, and make use of, the system
geometry.

The general equations for the continuous EKF are presented in Section 4.2.1. The next
Section presents the first modification we have to make in the EKF when one of the states
to be estimated is an quaternion: this gives the Multiplicative EKF which respects the
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quaternion geometry. Section 4.2.3 presents a continuous-discrete form of the EKF which
takes into account that the system dynamics are continuous but the output measurements
discrete.

Section 4.3 treats data fusion for our particular application of an optical-inertial
tracking system. It begins with an observability analysis to show that the system state is
indeed observable. We then explain the choice of the system output which distinguishes
our system from other optical-inertial tracking systems. Our approach is a direct one
which saves processing time compared to the standard indirect approach. We then
continue by giving three different versions of the EKF: an MEKF, a Right-Invariant EKF
and a Left-Invariant EKF. The invariant EKFs take into account system symmetries
which are studied in Section 4.3.4.2. For each of these filters, we give the filter equation
and then analyse an error system to calculate the Kalman Filter gain and propagate
estimation uncertainties. Finally, we give the continuous-discrete multi-rate version of
the Right-Invariant EKF which takes into account the different sample rates of optical
and inertial sensors.

The system model we use in the data fusion algorithms for the optical-inertial tracking
system contains several parameters which have been measured, obtained from calibration
or from a datasheet, such as the camera’s intrinsic values, the marker model and the
rotation between camera and world frames. The parameters used in the model might
differ from their true values which will have an impact on the data fusion algorithm. In
Section 4.4 we study the influence of parameter errors on the estimated state and propose
a calibration procedure which uses RIEKF estimates to determine the rotation between
body and marker frames.

4.2 Extended Kalman Filter

4.2.1 Continuous EKF

We consider a system

ẋ = f(x,u) +Mν (4.1)
y = h(x,u) +Nη (4.2)

where ν and η are independent white noises. M is of dimension n× r and N of dimension
s×s where n is the number of states, r is the number of input noises and s is the number of
outputs. The input u and the output y are known. x is the state which is to be estimated.
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The EKF calculates an estimate x̂(t) of the state x(t) according to

˙̂x = f(x̂, u) −K(y − h(x̂, u)) (4.3)
K = PCTR−1 (4.4)

Ṗ = AP + PAT +Q − PCTR−1CP (4.5)

where A = ∂1f(x̂, u) and C = ∂1h(x̂, u). In this notation, ∂i is the partial derivative with
respect to the ith argument. P is the estimate error covariance. The matrices Q (of
dimension n × n) and R (of dimension s × s) depend on Q̃ and R̃ through

Q =MQ̃MT (4.6)

R = NR̃NT (4.7)

where Q̃ contains the covariance parameters of ν and R̃ those of η.
The estimation error ∆x = x̂ − x satisfies up to higher-order terms the linear equation

∆x̂ = (A −KC)∆x −Mν +KNη . (4.8)

Recall that when A and C are constant, e.g. around a steady state point, the EKF
converges when (A,M) is stabilisable and (A,C) detectable [Goodwin et al., 2001, pp.
704], [Wonham, 1968].

4.2.2 Multiplicative EKF (MEKF)

When a quaternion has to be estimated, care has to be taken to preserve its unit norm.
This is not the case with the standard correction term K(y −h(x̂, u)) because it does not
respect Equation (2.6). The differential equation for the quaternion reads

q̇ = 1

2
q ∗ ω

where ω is the angular rate. With the standard correction time, we would have the
following equation for the estimated quaternion:

˙̂q = 1

2
q̂ ∗ ω −K(y − h(x̂, u))

which does not respect (2.6) for unit quaternion differential equations.
The so-called Multiplicative EKF (MEKF) [Lefferts et al., 1982, Crassidis et al., 2007]

respects the geometry of the quaternion space and preserves the quaternion unit
norm. The first possible correction term for the quaternion differential equation
is q̂ ∗Kq(y − h(x̂, u)). The quaternion differential equation then reads

˙̂q = 1

2
q̂ ∗ ω − q̂ ∗Kq(y − h(x̂, u)) = q̂ ∗ (1

2
ω −Kq(y − h(x̂, u))) .
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The second possible correction term is Kq(y −h(x̂, u))∗ q̂ which yields for the quaternion
differential equation:

˙̂q = 1

2
q̂ ∗ ω −Kq(y − h(x̂, u)) ∗ q̂ .

Both equations respect (2.6) and thus preserve the quaternion unit norm.
Also, the standard linear error q̂ − q in the error system analysis does not make sense

for quaternions. A multiplicative error like q̂−1 ∗ q or q̂ ∗ q−1 has to be used instead.

4.2.3 Continuous-Discrete EKF

The Extended Kalman Filter exists in a continuous - as presented in Section 4.2.1 - and
in a discrete form. However, in many cases the model is continuous while the output
measurements are discrete. In this case, a continuous-discrete form of the EKF can be
used. This can also be applied to systems with several different sample rates; if one sample
rate is much higher than the others it can be considered to be continuous.

In the continuous-discrete EKF, the filter equations are split up into two parts: one
which uses the continuous model and continuous input measurements and one which
uses the discrete output measurements. The continuous step is called prediction and the
discrete one correction or measurement update. Both steps output an estimated state:
the prediction calculates an "a priori" state and the correction an "a posteriori" state.

In the prediction step, the continuous a priori state and matrix P − are calculated
according to

˙̂x−(t) = f(x̂−(t), u(t)) (4.9)

Ṗ −(t) = AP (t) + P (t)AT +Q (4.10)

where A = ∂1f(x̂−(t), u(t)) and Q =MQ̃MT .
For the correction step at a discrete time tk, sampled variables P −

k = P −(tk), x̂−k = x̂−(tk)
and yk = y(tk) are used. The estimated a priori state and matrix P are corrected to give
an a posteriori state according to

x̂k = x̂−k −K(yk − h(x̂−k , uk)) (4.11)
Pk = (I −KCk)P −

k . (4.12)

with Ck = ∂1h(x̂−k , uk) and K = P −
k C

T
k (CkP −

k C
T
k + Rd)−1. Note that for discrete

measurements we have set
Rd = NR̃dN

T . (4.13)

The discrete R̃d is related to the continuous R̃ by R̃d = R̃/∆t where ∆t is the time between
two discrete measurements [Simon, 2006, p. 232].

Figure 4.1 shows a diagram for the continuous-discrete EKF.
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Figure 4.1: continuous-discrete EKF diagram

4.3 Data Fusion for Optical-Inertial Tracking

4.3.1 System Observability

To design a data fusion algorithm which takes the form of an observer as presented in
Section 4.1, the system has to be observable [Besancon, 2007]. Otherwise it would not be
possible to estimate the entire state.

The system is observable if the system states can be expressed as a function of the
inputs, outputs and their derivatives. We will now analyze the observability of the
considered optical-inertial system and show that the system is indeed observable and
especially that the inertial sensor biases have been placed in a way such that they are
observable. Note that we neglect the noise terms in this analysis.

The Cmi can be determined as a function of the output y via triangula-
tion [Hartley and Sturm, 1997]. A solution to the absolute orientation problem,
e.g. [Walker et al., 1991], calculates position Cp and quaternion BCq using the Cmi. Hence,
Cp and BCq can be expressed as a function of the output:

[CpT ,BCqT ] = ζ1(y) . (4.14)

According to (2.17), Cv = C ṗ and since Cp is a function of y,

Cv = ζ2(y, ẏ) . (4.15)

Equation (2.18) gives
Bab = am − BCq−1 ∗ (C v̇ − CG) ∗ BCq
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which can be written as
Bab = ζ3(u, y, ẏ, ÿ)

thanks to (4.14) and (4.15). Finally, (2.19) can be transformed to
Bωb = ωm − 2BCq−1 ∗ BC q̇

which yields, thanks to (4.14):
Bωb = ζ4(u, y, ẏ) .

All the states can be expressed as a function of the inputs, outputs and their derivatives
and hence the system proposed in Section 2.2.6 is observable.

4.3.2 Direct and Indirect Approaches

The direct approach uses inertial and optical (2D marker images) data directly in the
EKF. The output model is the one used here as given in Section 2.2.4:

Cyi =
f

⟨Cmi,CE1⟩
[⟨
Cmi,CE2⟩
⟨Cmi,CE3⟩

]

with
Cmi = Cp + BCq ∗ Bmi ∗ BCq−1 .

This is the output which will be used for all of the data fusion algorithms in the following
Sections.

This direct approach which uses 2D optical data as measurements in the EKF is a
novel one. It is in contrast the indirect approach which employs 3D marker positions as
optical measurements which have been previously calculated from the 2D marker images.
The output model for this case reads

Cyi = Cmi = Cp + BCq ∗ Bmi ∗ BCq−1 .

The indirect approach seems to be the standard in the literature on optical-inertial
tracking as presented in Section 3.2.1. Our direct data fusion algorithm saves processing
time otherwise necessary for 3D marker computations and should thus reduce latency. It
also prevents the optical marker position estimation errors from being propagated in the
estimation. See also Section 3.2.2 for a motivation of the direct approach.

4.3.3 MEKF

The first data fusion algorithm we propose for the system presented in Chapter 2 is a
multiplicative Extended Kalman Filter (MEKF). It uses the system model presented
in Section 2.2.6 and a multiplicative error term for the quaternion as discussed in
Section 4.2.2. All other error terms are the standard linear ones of the Extended Kalman
Filter presented in Section 4.2.1.
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Filter Equations We propose the following MEKF for the system presented in
Section 2.2.6.

C ˙̂p = C v̂ +Kpey (4.16)
C ˙̂v = CG + BC q̂ ∗ (am − Bâb) ∗ BC q̂−1 +Kvey (4.17)

BC ˙̂q = 1

2
BC q̂ ∗ (ωm − Bω̂b) + BC q̂ ∗Kqey (4.18)

B ˙̂ab =Kaey (4.19)
B ˙̂ωb =Kωey (4.20)

with output error ey = ym − ŷ. The gain

K = (−Kp,−Kv,Kq,−Ka,−Kω)T

is calculated according to
K = PCTR−1

where P satisfies
Ṗ = AP + PAT +Q − PCTR−1CP .

The matrices A and C are calculated using a linearized error system as shown in the
following section. The choice of the covariance parameters and the computation of Q
and R will be explained in Section 4.3.5.

Error System We consider the state error

e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ep
ev
eq
ea
eω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C p̂ − Cp
C v̂ − Cv

BC q̂−1 ∗ BCq
Bâb − Bab
Bω̂b − Bωb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The error system reads

ėp =ev +Kpey

ėv =BC q̂ ∗ (am − Bâb) ∗ BC q̂−1 + ν̃a
+ BC q̂ ∗ eq ∗ (am − Bâb + ea) ∗ e−1q ∗ BC q̂−1 +Kvey

ėq = − (ωm − Bω̂b) × eq +
1

2
eq ∗ eω −

1

2
eq ∗ νω −Kqeyeq

ėa = − νab +Kaey

ėω = − νωb +Kωey
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where we have set ν̃a = BCq ∗ νa ∗ BCq−1. Notice ν̃a also is a white noise with the same
characteristics as νa. Indeed,

E(ν̃a(t)ν̃Ta (t + τ)) = E((Rtνa(t))(Rt+τνa(t + τ))T )
= RtE(νa(t)νTa (t + τ))RT

t+τ
(2.16)= ξ2aRtR

T
t+τδ(τ)

= ξ2aI3δ(τ)

where Rt = R(BCq(t)).
We linearize the corresponding error system around e = (0,0,1,0,0) to bring it into

the form (4.8):
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δėp
δėv
δėq
δėa
δėω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (A −KC)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δep
δev
δeq
δea
δeω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν̃a
νω
νab
νωb

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+KNηy

with matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 0 0
0 0 2R(BC q̂)[am − âb]× –R(BC q̂) 0
0 0 −[ωm − ω̂b]× 0 1

2I
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

Ci =
1

α2
[β –α 0
γ 0 –α] [I 0 2R(BC q̂)[Bmi]× 0 0] (4.22)

Ci+l =
1

χ2
[µ –χ 0
κ 0 –χ]RSt [I 0 2R(BC q̂)[Bmi]× 0 0] (4.23)

M = [ 0
diag(−I3, 12I3, I3, I3)

] (4.24)

N = −I4l (4.25)

where Cm̂i = C p̂ + BC q̂ ∗ Bmi ∗ BC q̂−1 = [α,β, γ]T and CLm̂i = RSt
Cm̂i + tSt = [χ,µ, κ]T . Ci

and Ci+l each correspond to two lines of the matrix C, associated with marker i. For the
cross product, we use the notation [a]×b = a × b.

4.3.4 Right- and Left-Invariant EKF

We now present two more filters for the system presented in Chapter 2, called Right-
Invariant Extended Kalman Filter (RIEKF) and and Left-Invariant Extended Kalman
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Filter (LIEKF) [Bonnabel et al., 2009]. The system and the filter are right- resp. left-
invariant w.r.t. a transformation group, i.e. applying this transformation to the system
equations and the correction terms leaves them invariant. In other words, these filters
takes into account system symmetries.

We begin by giving a motivation for invariant filters and go on to explaining the
concept of system symmetries and invariance and giving two transformation groups for
the system studied here. We then give the filter equations for a Right-Invariant and a
Left-Invariant EKF and show that they are indeed invariant with respect to the respective
transformation group.

4.3.4.1 Motivation for Invariant Kalman Filters

Many physical systems possess symmetries which means that they are left unchanged by
one or more transformations, for example by rotation or translation. It seems logical to
design a filter which will also have these symmetries.

A symmetry-preserving observer are proposed in [Bonnabel et al., 2008]. It gives a
constructive method for designing observers for invariant systems. [Bonnabel et al., 2009]
introduces the notion of Invariant Kalman Filters. Here, geometrically adapted correction
terms depending on invariant output errors are used instead of the standard linear
correction and error terms in an Extended Kalman Filter. Also, the gain matrix is
calculated using an invariant state error instead of the standard linear state error. The
matrices A and C in Equation (4.8) are constant on a larger set of trajectories than the
EKF which is only constant for equilibrium points [Salaün, 2009].

The Invariant EKF is in fact a generalization of the Multiplicative EKF presented
in Section 4.2.2. The MEKF is a modification of the general EKF taking into account
the geometry of the quaternion space and using a multiplicative quaternion error because
a linear error does not make sens for quaternions. Indeed, applying the Invariant EKF
concept to a system which estimates a quaternion leads to the same correction term for
the quaternion differential equation as the MEKF.

The system presented in Chapter 2 is not completely invariant and thus we cannot
apply the method for symmetry-preserving observers in [Bonnabel et al., 2008]. Instead
we propose two Invariant EKFs which take into account the fact that the system is
invariant with respect to a rotation. Since the Sensor Unit works the same way when
rotated into a different orientation, it is indeed logical that the filter should also behave
the same way no matter how the Sensor Unit is oriented in space.

4.3.4.2 System Symmetries

In this Section we study the symmetries of the system presented in Section 2.2.6,
that is we study the system’s invariance with respect to a transformation group. We
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start by defining transformation groups and invariance as in [Bonnabel et al., 2008,
Martin and Salaün, 2010].

Definition 1. Let G be a Lie Group with identity e and Σ an open set (or more generally
a manifold). A transformation group (φg)g∈G on Σ is a smooth map

(g, ξ) ∈ G ×Σ↦ φg(ξ) ∈ Σ

such that:

• φe(ξ) = ξ for all ξ

• φg2 ○ φg1(ξ) = φg2g1(ξ) .

By construction φg is a diffeomorphism on Σ for all g.
We now consider the smooth output system

ẋ = f(x,u) (4.26)
y = h(x,u) (4.27)

where (x,u, y) belongs to an open subset X ⊂ Rn × U ⊂ Rm × Y ⊂ Rp (or more generally
a manifold). The signals u(t), y(t) are assumed known (y is measured, u is measured or
a known control input). Consider also the local group of transformations on X × U × Y
defined by

(X,U,Y ) ∶= (ϕg(x), ψg(u), ρg(y))

where ϕg,ψg and ρg are local diffeomorhpisms.

Definition 2. The system (4.26)-(4.27) is invariant with equivariant output if for all g,
x, u

f(ϕg(x), ψg(u)) =Dϕg(x) ⋅ f(x,u)
h(ϕg(x), ψg(u)) = ρg(h(x,u))

This property also reads Ẋ = f(X,U) and Y = h(X,U), i.e. the system is left
unchanged by the transformation.

Next we define invariance for an observer:

Definition 3. The observer ˙̂x = F (x̂, u, y) is invariant if F (ϕg(x), ψg(u)) = Dϕg(x̂) ⋅
F (x̂, u, y) for all g, x̂, u, y.
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The property also reads ˙̂
X = F (X̂,U, Y ).

After having given the definitions for a transformation group and for invariance of a
system and of an observer, the rest of this Section will deal with two transformation groups
for the system presented in Section 2.2.6. These transformation represent the system
symmetries. These transformation groups will be used in the following two Sections 4.3.4.3
and 4.3.4.4 where two observers will be presented which are invariant with respect to these
transformation groups.

The first transformation group considered here is

ϕRq0

⎛
⎜⎜⎜⎜⎜⎜
⎝

p
v
q
ab
ωb

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

p
v

q ∗ q0
q−10 ∗ ab ∗ q0
q−10 ∗ ωb ∗ q0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=∶

⎛
⎜⎜⎜⎜⎜⎜
⎝

p○

v○

q○

a○b
ω○b

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.28)

ϕR is indeed a transformation group since we have ϕRq1(ϕRq0(x)) = ϕRq0∗q1(x). The
system (2.17)–(2.21) is invariant w.r.t. ϕR; for example, we have for (2.19):

BC q̇○ =
˙³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

BCq ∗ q0 = ˙BCq ∗ q0

= 1

2
(BCq ∗ q0) ∗ q−10 ∗ (ωm − νω − Bωb) ∗ q0

= 1

2
BCq○ ∗ (ω○m − ν○ω − Bω○b)

Here we have used the transformation group ψ for the input:

ψRq0

⎛
⎜
⎝

am
ωm
Bmi

⎞
⎟
⎠
=
⎛
⎜
⎝

q−10 ∗ am ∗ q0
q−10 ∗ ωm ∗ q0
q−10 ∗ Bmi ∗ q0

⎞
⎟
⎠
=∶

⎛
⎜
⎝

a○m
ω○m
Bm○

i

⎞
⎟
⎠

with i ∈ {1,2...l}. The output

yim = fR
⟨Cmi,CE1⟩

[⟨
Cmi,CE2⟩
⟨Cmi,CE3⟩

] + SuR + ηyi = [
Syi,u
Syi,v

]
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respects the transformation ϕR which we will show for the component Syi,u of the output:

Syim,u = fR
⟨Cmi,CE2⟩
⟨Cmi,CE1⟩

+ SuRu + ηyi,u

= fR
⟨Cp + BCq ∗ Bmi ∗ BCq−1,CE2⟩
⟨Cp + BCq ∗ Bmi ∗ BCq−1,CE1⟩

+ SuRu + ηyi,u

= fR
⟨Cp + (BCq ∗ q0) ∗ (q−10 ∗ Bmi ∗ q0) ∗ (q−10 ∗ BCq−1),CE2⟩
⟨Cp + (BCq ∗ q0) ∗ (q−10 ∗ Bmi ∗ q0) ∗ (q−10 ∗ BCq−1),CE1⟩

+ SuRu + ηyi,u

= fR
⟨Cp○ + BCq○ ∗ Bm○

i ∗ BCq○−1,CE2⟩
⟨Cp○ + BCq○ ∗ Bm○

i ∗ BCq○−1,CE1⟩
+ SuRu + ηyi,u

Thus we have
ym = h(x,u) = h(ϕR(x), ψR(u))

The transformation group ϕR corresponds to a quaternion multiplication by the right and
thus the system is called "right-invariant".

The second transformation group for the system considered here is

ϕLq0

⎛
⎜⎜⎜⎜⎜⎜
⎝

p
v
q
ab
ωb

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

q0 ∗ p ∗ q−10
q0 ∗ v ∗ q−10
q0 ∗ q
ab
ωb

⎞
⎟⎟⎟⎟⎟⎟
⎠

=∶

⎛
⎜⎜⎜⎜⎜⎜
⎝

p○

v○

q○

a○b
ω○b

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.29)

ϕL is indeed a transformation group since we have ϕLq1(ϕLq0(x)) = ϕLq1∗q0(x). The system
(2.17)–(2.21) is invariant w.r.t. ϕL; for example, we have for (2.19):

BC ˙̃q =
«̇
BCq = q0 ∗ ˙BCq

= 1

2
q0 ∗BC q ∗ (ωm − νω − Bωb)

= 1

2
BC q̃ ∗ (ωm − νω − Bωb)

Here we have used the transformation group ψL for the input:

ψLq0

⎛
⎜⎜⎜
⎝

am
ωm
Ej
Ẽj

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

am
ωm

q0 ∗Ej ∗ q−10
q0 ∗ Ẽj ∗ q−10

⎞
⎟⎟⎟
⎠
=∶

⎛
⎜⎜⎜⎜
⎝

a○m
ω○m
E○
j

Ẽ○
j

⎞
⎟⎟⎟⎟
⎠

with j ∈ {1,2,3}. The output

yim = fR
⟨Cmi,CE1⟩

[⟨
Cmi,CE2⟩
⟨Cmi,CE3⟩

] + SuR + ηyi = [
Syi,u
Syi,v

]
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respects the transformation ϕL which we will show for the component Syi,u of the output:

Syim,u = fR
⟨Cmi,CE2⟩
⟨Cmi,CE1⟩

+ SuRu + ηyi,u

= fR
⟨Cp + BCq ∗ Bmi ∗ BCq−1,CE2⟩
⟨Cp + BCq ∗ Bmi ∗ BCq−1,CE1⟩

+ SuRu + ηyi,u

= fR
⟨q0 ∗ (Cp + BCq ∗ Bmi ∗ BCq−1) ∗ q−10 , q0 ∗ CE2 ∗ q−10 ⟩
⟨q0 ∗ (Cp + BCq ∗ Bmi ∗ BCq−1) ∗ q−10 , q0 ∗ CE1 ∗ q−10 ⟩

+ SuRu + ηyi,u

= fR
⟨Cp○ + (q0 ∗ BCq) ∗ Bmi ∗ (BCq−1 ∗ q−10 ),CE○

2⟩
⟨Cp○ + (q0 ∗ BCq) ∗ Bmi ∗ (BCq−1 ∗ q−10 ),CE○

1⟩
+ SuRu + ηyi,u

= fR
⟨Cp○ + BCq○ ∗ Bmi ∗ BCq○−1,CE○

2⟩
⟨Cp○ + BCq○ ∗ Bmi ∗ BCq○−1,CE○

1⟩
+ SuRu + ηyi,u

Thus we have
ym = h(x,u) = h(ϕL(x), ψL(u))

The transformation group ϕL represents a quaternion multiplication by the left. This is
why the system is called "left-invariant".

4.3.4.3 Right-Invariant EKF

Filter Equations We propose the following right-invariant EKF for the system
presented in Section 2.2.6.

C ˙̂p = C v̂ +Kpey (4.30)
C ˙̂v = CG + BC q̂ ∗ (am − Bâb) ∗ BC q̂−1 +Kvey (4.31)

BC ˙̂q = 1

2
BC q̂ ∗ (ωm − Bω̂b) +Kqey ∗ BC q̂ (4.32)

B ˙̂ab = BC q̂−1 ∗Kaey ∗ BC q̂ (4.33)
B ˙̂ωb = BC q̂−1 ∗Kωey ∗ BC q̂ (4.34)

with ey = ym − ŷ. The gain

K = −[Kp,Kv,Kq,Ka,Kω]T

is calculated according to
K = PCTR−1

where P satisfies
Ṗ = AP + PAT +Q − PCTR−1CP

with A and C as given in the next section.
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The transformation group considered here is ϕR as defined in (4.28). The filter (4.30)–
(4.34) is invariant w.r.t. ϕR as shown for (4.34):

B ˙̂̃ωb =

⋅
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
q−10 ∗ Bω̂b ∗ q0 = q−10 ∗ B ˙̂ωb ∗ q0

= q−10 ∗ BC q̂−1 ∗Kωey ∗ BC q̂ ∗ q0
= BC ˜̂q−1 ∗Kωey ∗ BC ˜̂q

Since the transformation group ϕR represents a quaternion multiplication by the right,
this type of EKF is called "right-invariant EKF" (RIEKF).

Error System For the proposed system and filter we consider the state error

e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ep
ev
eq
ea
eω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C p̂ − Cp
C v̂ − Cv

BC q̂ ∗ BCq−1
BCq ∗ (Bâb − Bab) ∗ BCq−1
BCq ∗ (Bω̂b − Bωb) ∗ BCq−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These errors are all expressed in camera coordinates. The error system reads:

ėp =ev +Kpey (4.35)
ėv = − e−1q ∗ BC q̂ ∗ (am − Bâb) ∗ BC q̂−1 ∗ eq + ν̃a (4.36)

+ BC q̂ ∗ (am−Bâb) ∗ BC q̂−1−ea +Kvey (4.37)

ėq = −
1

2
eq ∗ eω +

1

2
ν̃ω +Kqeyeq (4.38)

ėa =[e−1q ∗ BC q̂ ∗ (ωm−Bω̂b) ∗ BC q̂−1 ∗ eq + eω] × ea (4.39)
− ν̃ω × ea − ν̃ab + e−1q ∗Kaey ∗ eq (4.40)

ėω =[e−1q ∗ BC q̂ ∗ (ωm−Bω̂b) ∗ BC q̂−1 ∗ eq] × eω (4.41)
− ν̃ω × eω − ν̃ωb + e−1q ∗Kωey ∗ eq (4.42)

where we have set ν̃j = BCq∗νj ∗BCq−1 for j ∈ {a,ω, ab, ωb}. Notice ν̃j also is a white noise
with the same characteristics as νj. Indeed,

E(ν̃j(t)ν̃Tj (t + τ)) = E((Rtνj(t))(Rt+τνj(t + τ))T )
= RtE(νj(t)νTj (t + τ))RT

t+τ
(2.16)= ξ2jRtR

T
t+τδ(τ)

= ξ2j I3δ(τ)
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where Rt = R(BCq(t)).
The output error is:

ey = ym − ŷ = [
Cy
CLy

] + ηy − [
C ŷ
CLŷ

] .

We linearize the error system around (ep, ev, eq, ea, eω) = (0,0,1,0,0), neglecting higher-
order terms, to bring it into the form (4.8):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δėp
δėv
δėq
δėa
δėω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (A −KC)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δep
δev
δeq
δea
δeω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν̃a
ν̃ω
ν̃ab
ν̃ωb

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+KNηy

with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I3 0 0 0
0 0 −2[R(BC q̂)(am−âb)]× −I3 0
0 0 0 0 −0.5I3
0 0 0 A1 0
0 0 0 0 A1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.43)

A1 =[R(BC q̂)(ωm − ω̂b)]× (4.44)

Ci =fR
1

α2
[β –α 0
γ 0 –α] [I3 0 –2[R(BC q̂)Bmi]× 0 0] (4.45)

Ci+l =fL
1

χ2
[µ –χ 0
κ 0 –χ]RSt [I3 0 –2[R(BC q̂)Bmi]× 0 0] (4.46)

M = [ 0
diag([−I3,−0.5I3, I3, I3])

] (4.47)

N =I4l (4.48)

where Cm̂i = C p̂ + BC q̂ ∗ Bmi ∗ BC q̂−1 = [α,β, γ]T and CLm̂i = RSt
Cm̂i + tSt = [χ,µ, κ]T . Ci

and Ci+l each correspond to two lines of the matrix C, associated with marker i. For the
cross product, we use the notation [a]×b = a × b.

74



4.3. DATA FUSION FOR OPTICAL-INERTIAL TRACKING

4.3.4.4 Left-Invariant EKF

Filter Equations We propose the following left-invariant EKF for the system presented
in Section 2.2.6.

C ˙̂p = C v̂ + BC q̂ ∗Kpey ∗ BC q̂−1 (4.49)
C ˙̂v = CG + BC q̂ ∗ (am − Bâb) ∗ BC q̂−1 + BC q̂ ∗Kvey ∗ BC q̂−1 (4.50)

BC ˙̂q = 1

2
BC q̂ ∗ (ωm − Bω̂b) + BC q̂ ∗Kqey (4.51)

B ˙̂ab =Kaey (4.52)
B ˙̂ωb =Kωey (4.53)

with ey = ym − ŷ. The gain

K = [−Kp,−Kv,Kq,−Ka,−Kω]T

is calculated according to
K = PCTR−1

where P satisfies
Ṗ = AP + PAT +Q − PCTR−1CP

with A and C as given in the next section.
The transformation group considered here is ϕL as defined in (4.29). The filter (4.49)–

(4.53) is invariant w.r.t. ϕL as shown for (4.49):

C ˙̂̃pb =

⋅
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
q0 ∗ C p̂ ∗ q−10 = q0 ∗ C v̂ ∗ q−10 + q0 ∗ BC q̂ ∗Kpey ∗ BC q̂−1 ∗ q−10

= C ˜̂v + BC ˜̂q ∗Kpey ∗ BC ˜̂q−1

Since the transformation group ϕL represents a quaternion multiplication by the left, this
type of EKF is called "left-invariant EKF" (LIEKF).

Error System For the proposed system we consider the state error

e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ep
ev
eq
ea
eω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BCq−1 ∗ (C p̂ − Cp) ∗ BCq
BCq−1 ∗ (C v̂ − Cv) ∗ BCq

BC q̂−1 ∗ BCq
Bâb − Bab
Bω̂b − Bωb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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These errors are all expressed in body coordinates. The error system reads:

ėp = − (ωm − Bω̂b − νω) × ep + ev + e−1q ∗Kpey ∗ eq
ėv = − (ωm − Bω̂b − νω) × ev − e−1q ∗ (am − Bâb) ∗ eq + (am − Bâb) − ea

+ νa + e−1q ∗Kvey ∗ eq

ėq = − (ωm − Bω̂b) × eq +
1

2
eq ∗ eω −

1

2
eq ∗ νω −Kqey ∗ eq

ėa = − νab +Kaey

ėω = − νωb +Kωey .

The output error is:

ey = ym − ŷ = [
Cy
CLy

] + ηy − [
C ŷ
CLŷ

] .

We linearize the error system around (e) = (0,0,1,0,0), neglecting higher-order terms, to
bring it into the form (4.8):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δėp
δėv
δėq
δėa
δėω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (A −KC)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δep
δev
δeq
δea
δeω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

νa
νω
νab
νωb

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+KNηy

with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−[ωm − ω̂b]× I3 0 0 0
0 −[ωm − ω̂b]× 2[am−âb]× −I3 0
0 0 −[ωm − ω̂b]× 0 0.5I3
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.54)

Ci =fR
1

α2
[β –α 0
γ 0 –α] [R(BC q̂) 0 2R(BC q̂)[Bmi]× 0 0] (4.55)

Ci+l =fL
1

χ2
[µ –χ 0
κ 0 –χ]RSt [R(BC q̂) 0 2R(BC q̂)[Bmi]× 0 0] (4.56)

M = [ 0
diag([−I3,0.5I3, I3, I3])

] (4.57)

N = − I4l (4.58)

where Cm̂i = C p̂ + BC q̂ ∗ Bmi ∗ BC q̂−1 = [α,β, γ]T and CLm̂i = RSt
Cm̂i + tSt = [χ,µ, κ]T . Ci

and Ci+l each correspond to two lines of the matrix C, associated with marker i. For the
cross product, we use the notation [a]×b = a × b.
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4.3.5 Covariance Parameters

Matrices Q and R are calculated according to (4.6) and (4.7) with M , N of the filter
being considered and with noise covariance parameters for noises ν and ηy resp. which
are

Q̃ = diag(ξ2aI3, ξ2ωI3, ξ2abI3, ξ2ωbI3)
R̃ = ξ2yI4l

with

• ξa: accelerometer velocity random walk or output noise density in m/s2/
√
Hz

• ξω: gyroscope angle random walk or output noise density in ○/s/
√
Hz

• ξab: accelerometer rate random walk in m/s3/
√
Hz

• ξωb: gyroscope rate random walk in ○/s2/
√
Hz

• ξy: output noise density in pixels/
√
Hz.

ξa and ξω are given in the IMU data sheet. ξab and ξωb are tuning parameters; their
values are given in the IMU data sheet, but it is reasonable to increase these values to
take into account uncompensated bias temperature drift. ξy is a tuning parameter as well,
including measurement noise and calibration errors.

4.3.6 Continuous-Discrete and Multi-rate

The system model considered here and presented in Section 2.2.6 is continuous. Since the
inertial sensor sample rate is 5 to 15 times higher than the optical sample rate, inertial
sensor readings are considered continuous and optical sensor readings discrete.

We take this into account for the implementation of the data fusion algorithms by
choosing a continuous-discrete multi-rate form.

In the continuous-discrete EKF [Simon, 2006] as it is presented in Section 4.2.3 for
the general case, the prediction step is continuous and the correction step discrete. In
the following Section, the equations for the continuous-discrete RIEKF will be given as
an example for the continuous-discrete case. Continuous-discrete versions of other EKFs
follow the same pattern.

Since the two sensors have different sample rates, the filter has to be multi-rate, i.e.
predictions and corrections are executed at different rates. In our case, a prediction step is
executed at each new IMU reading. Whenever a camera reading is available, a correction
step is done. Since the IMU sample rate is an integer multiple of the optical sample rate,
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a correction is always preceded by a prediction. Both steps calculate an estimation of
the system state: the prediction outputs the so-called a priori estimate x̂(t)− and the
correction the a posteriori estimate x̂k.

In an ideal case where perfect mathematical models and parameters are used in the
filter, the predictions would estimate the state correctly and no corrections would be
needed. In practice, models and parameters will always deviate from their real values and
thus both predictions and corrections are necessary to estimate the system state.

4.3.6.1 Continuous-discrete RIEKF

The right-invariant EKF (RIEKF) in its continuous-discrete version has the following
form: In the prediction step, we have

C ˙̂p−(t) = C v̂(t)
C ˙̂v−(t) = CG + BC q̂−(t) ∗ (Ba(t) − Bâb(t))(BC q̂−(t))

−1

BC ˙̂q−(t) = 1

2
BC q̂−(t) ∗ (Bω(t) − Bω̂b(t)) + λ(1 − ∥BC q̂−(t)∥2)BC q̂−(t)

B ˙̂a−b (t) = 0
B ˙̂ω−b (t) = 0

and
Ṗ −(t)− = AP (t) + P (t)AT +Q

where A is calculated as in (4.43) with x̂ = x̂− and Q as in (4.6).
The term λ(1 − ∥BC q̂−(t)∥2) ∗ BC q̂−(t) is added to keep the quaternion norm at 1, since

the norm might deviate due to numerical errors. λ is a positive scalar. We now show how
this term keeps the norm at one. To simplify notations, we note q̂ ∶= BC q̂−(t). We write
the derivative

˙
¬
∥q̂∥2 =2q̂ ˙̂qT + 2 ˙̂qq̂T

=2q̂(1

2
(ωm − Bω̂b)T q̂T + λ(1 − ∥q̂∥2)q̂T ) + 2(1

2
q̂(ωm − Bω̂b) + λ(1 − ∥q̂∥2)q̂)q̂T

= q̂((ωm − Bω̂b)T + (ωm − Bω̂b))q̂T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+4λ(1 − ∥q̂∥2) q̂q̂T
°
∥q̂∥2

=4λ(1 − ∥q̂∥2) ∥q̂∥2

If 0 ≤ ∥q̂∥ < 1, then the derivative is positive and ∥q̂∥ will increase and tend to 1. If 1 > ∥q̂∥,
then the derivative is negative and ∥q̂∥ will decrease and tend to 1. Thus the norm will
always tend to 1 with the help of this term.
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For the correction step at a discrete time tk, we use P −
k = P −(tk) and x̂−k = x̂−(tk). The

estimated a priori state is corrected according to

C p̂k =C p̂−k +Kpey,k
C v̂k =C v̂−k +Kvey,k

BC q̂k =BC q̂−k +Kqey,k ∗ BC q̂−k
Bâb,k =Bâ−b,k + (BC q̂−k )−1 ∗Kaey,k ∗ BC q̂−k
Bω̂b,k =Bω̂−b,k + (BC q̂−k )−1 ∗Kωey,k ∗ BC q̂−k

to give the a posteriori estimate x̂k. The discrete output error ey,k at time k is
ey,k = ymk − ŷk where ymk are the measured outputs at time k, and ŷk are the
estimated marker images calculated with Equations (2.22) and (2.23) using x̂−k . The
gain K = −[Kp,Kv,Kq,Ka,Kω]T is determined according to

K = P −
k C

T
k (CkP −

k C
T
k +Rd)−1 .

where the matrix Ck is calculated using equations (4.45) and (4.46) for the continuous
case with x̂ = x̂−k . Since the quaternion norm might deviate from 1 due to numerical
problems, we normalize BC q̂−k after the correction step.

Finally, the matrix P is updated according to

Pk = (I −KkCk)P −
k .

Note that for discrete measurements we have set

Rd = NR̃dN
T . (4.59)

The discrete R̃d is related to the continuous R̃ by R̃d = R̃/∆t where ∆t is the time between
two optical measurements [Simon, 2006, p. 232].

4.4 RIEKF for Calibration
The system model we use in the data fusion algorithms for the optical-inertial tracking
system contains several parameters which have been either measured, obtained from
calibration or from a datasheet. The parameters used in the model might differ from their
true values which will have an impact on the data fusion algorithm. Most importantly,
these errors will be absorbed by the estimated biases. Incorrect biases lead to errors in the
predicted state. However, it especially important in our optical-inertial tracking system
to have correct prediction steps because these are the steps which give high-bandwidth
information. This shows the importance of a correct calibration of the model parameters
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for the performance of the tracking system. Several calibration procedures are presented
in Section 3.3 and Section 5.4 treats the calibration of the experimental setup.

The parameters in question are the marker model, the camera intrinsic values, the
transformation between stereo cameras and the rotation between camera and world
frames. In Section 4.4.1 we study the influence of errors in these parameters on the
estimated state. It turns out that the errors in the Marker-Body transformation - that is
errors in the translation and rotation - lead to very simple expressions of their influence
on the estimated state. In fact, a translation error causes an additive error in the
position only. A rotational error leads to additive errors in the position, quaternion
and accelerometer bias.

The influence of the other parameters cannot be described by simple terms which
explains why we go on to analyze only the effect of the camera intrinsic values as an
example and do not cover the remaining parameters.

Having determined the influence of parameter errors on the estimated state, the next
logical step is to try to determine the parameter errors from the estimated state. However,
we do not know the true position, velocity or quaternion and thus cannot determine
estimation errors. The only true values of the state we can obtain are accelerometer and
gyroscope biases calculated by a calibration procedure as described in Section 5.4. Since
an error in the Marker-Body rotation causes an error on the accelerometer biases and we
know the true bias, we propose a calibration method for the Marker-Body rotation using
RIEKF estimates in Section 4.4.2.

4.4.1 Influence of calibration errors on the RIEKF

4.4.1.1 Error in Marker-Body transformation

True position of marker i:

Cmi = Cp + BCq ∗ (MBRMmi + Bd)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bmi

∗BCq−1

In the estimated position of each marker i, we make an error ∆d in the Marker-Body
translation and an error qE in the Marker-Body rotation:

Cm̂i = C p̂ + BC q̂ ∗ (MB q̂ ∗Mmi ∗MB q̂−1 + Bd̂) ∗ BC q̂−1 (4.60)
= C p̂ + BC q̂ ∗ (qE ∗MBq ∗Mmi ∗MBq−1 ∗ q−1E + Bd +∆d) ∗ BC q̂−1 (4.61)

To calculate the influence of the Marker-Body transformation error on the estimated state
in the direct RIEKF, we consider the error system as for the RIEKF in Section 4.3.4.3.
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The errors are
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ep
ev
eq
ea
eω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C p̂ − Cp
C v̂ − Cv

BC q̂ ∗ BCq−1
BCq ∗ (Bâb − Bab) ∗ BCq−1
BCq ∗ (Bω̂b − Bωb) ∗ BCq−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.62)

with additional errors ∆d = Bd̂ − Bd and qE = MB q̂ ∗MBq−1. The error system is the same
as for the RIEKF (4.35)-(4.42), except for the output error which now writes for marker i:

ey,i =
1

⟨Cmi,E1⟩
[⟨
Cmi,E2⟩
⟨Cmi,E3⟩

] − 1

⟨Cm̂i,E1⟩
[⟨
Cm̂i,E2⟩
⟨Cm̂i,E3⟩

]

with
Cmi =C p̂ − ep + e−1q ∗ BC q̂ ∗ (Bd̂ −∆d) ∗ BC q̂−1 ∗ eq

+ e−1q ∗ BC q̂ ∗ (q−1E ∗MB q̂ ∗Mmi ∗MB q̂−1 ∗ qE) ∗ BC q̂−1 ∗ eq.

Note that we have omitted the focal distances and principal point parameters to simplify
notations.

The solution of the error system in steady state when the filter has converged would
give us the steady-state error e as a function of x̂,∆d and qE. Since we are only interested
in small errors, we linearize the error system around

(ep, ev, eq, ea, eω,∆dd, qE) = (0,0,1,0,0,0,1), am = a + ab = BG + ab, ωm = ωb

When we neglect the noise terms, this gives for steady-state:

0 = δėp =δev +∑
i

Kpiδey,i (4.63)

0 = δėv = − 2[BC q̂ ∗ (am − Bab) ∗ BC q̂−1] × δeq − δea +∑
i

Kviδey,i

= − 2[BC q̂ ∗ a ∗ BC q̂−1]×δeq − δea +∑
i

Kviδey,i (4.64)

0 = δėq = −
1

2
δeω +∑

i

Kqiδey,i (4.65)

0 = δėa =[BC q̂ ∗ (ωm − Bωb) ∗ BC q̂−1] × δea +∑
i

Kaiδey,i =∑
i

Kaiδey,i (4.66)

0 = δėω =[BC q̂ ∗ (ωm − Bωb) ∗ BC q̂−1] × δeω +∑
i

Kωiδey,i =∑
i

Kωiδey,i (4.67)

Here we have expressed the correction terms as sums of the output errors associated with
each marker, for example for the position correction term:

KpE = [Kp1Kp2...Kpl][δey,1δey,2...δey,l]T =∑
i

Kpiδey,i
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where each Kpi is a 3x2 matrix. Equations (4.63)-(4.67) give

δev = −∑
i

Kpiδey,i (4.68)

δea = −2[R(BC q̂)a]×δeq +∑
i

Kviδey,i (4.69)

δeω = 2∑
i

Kqiδey,i (4.70)

0 =∑
i

Kaiδey,i (4.71)

0 =∑
i

Kωiδey,i (4.72)

The linearized output error ey,i = yi − ŷi for marker i:

δey,i =
1

⟨Fi,E1⟩
[⟨−δep + 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq,E2⟩
⟨−δep + 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq,E3⟩

]

−
⟨−δep + 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq,E1⟩

⟨Fi,E1⟩2
[⟨
C p̂ + BC q̂ ∗ Bmi ∗ BC q̂−1,E2⟩
⟨C p̂ + BC q̂ ∗ Bmi ∗ BC q̂−1,E3⟩

]

+ 1

⟨Fi,E1⟩
[⟨
BC q̂ ∗ (2[MBq ∗Mmi ∗MBq−1] × δqE − δd) ∗ BC q̂−1,E2⟩
⟨BC q̂ ∗ (2[MBq ∗Mmi ∗MBq−1] × δqE − δd) ∗ BC q̂−1,E3⟩

]

− ⟨BC q̂ ∗ (2[MBq ∗Mmi ∗MBq−1] × δqE − δd) ∗ BC q̂−1,E1⟩
⟨Fi,E1⟩2

[⟨Fi,E2⟩
⟨Fi,E3⟩

]

= 1

⟨Fi,E1⟩2
[⟨Fi,E2⟩ −⟨Fi,E1⟩ 0
⟨Fi,E3⟩ 0 −⟨Fi,E1⟩

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Gi

⋅ (δep − 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq
− BC q̂ ∗ (2[MBq ∗Mmi ∗MBq−1] × δqE − δd) ∗ BC q̂−1)

where Fi = C p̂ + BC q̂ ∗ Bmi ∗ BC q̂−1. We can rewrite the linearized output error as

δey,i =Gi(δep − 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq + BC q̂ ∗ δd ∗ BC q̂−1

− 2[BC q̂ ∗MBq ∗Mmi ∗MBq−1 ∗ BC q̂−1] × BC q̂ ∗ δqE ∗ BC q̂−1)
=Gi(δep − 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq + BC q̂ ∗ δd ∗ BC q̂−1

− 2[BC q̂ ∗ (Bmi − Bd) ∗ BC q̂−1] × BC q̂ ∗ δqE ∗ BC q̂−1)
=Gi(δep − 2(R(BC q̂)Bmi) × (δeq +R(BC q̂)δqE)

+ 2R(BC q̂)(Bd × δqE) +R(BC q̂)δd) (4.73)
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Replacing (4.73) in (4.68) gives

δev = −∑
i

KpiGi(δep − 2(R(BC q̂)Bmi) × (δeq +R(BC q̂)δqE)

+ 2R(BC q̂)(Bd × δqE) +R(BC q̂)δd)
⇔ δep =(∑

j

KpjGj)−1(−δev + 2∑
j

KpjGj(R(BC q̂)Bmj) × (δeq +R(BC q̂)δqE))

− 2R(BC q̂)(Bd × δqE) −R(BC q̂)δd (4.74)

Replacing the expression for δep in the linearized output error gives

δey,i =Gi((∑
j

KpjGj)−1(−δev + 2∑
j

KpjGj(R(BC q̂)Bmj) × (δeq +R(BC q̂)δqE))

− 2R(BC q̂)(Bd × δqE) −R(BC q̂)δd − 2(R(BC q̂)Bmi) × (δeq +R(BC q̂)δqE)
+ 2R(BC q̂)(Bd × δqE) +R(BC q̂)δd)

=Gi((∑
j

KpjGj)−1(−δev + 2∑
j

KpjGj(R(BC q̂)Bmj) × (δeq +R(BC q̂)δqE))

− 2(R(BC q̂)Bmi) × (δeq +R(BC q̂)δqE))
=Gi(−(∑

j

KpjGj)−1δev

+ [2(∑
j

KpjGj)−1∑
j

KpjGj[(R(BC q̂)Bmj]× − 2[R(BC q̂)Bmi]×] (δeq +R(BC q̂)δqE))

=Gi(Hvδev +Hqi(δeq +R(BC q̂)δqE))

The linearized output error can be expressed as a function of δev and δeq +R(BC q̂)δqE.
Thus, according to (4.68)-(4.72) and (4.74), all the linearized errors can be expressed as
functions of δev, δeq, δqE and δd. We will now solve for δev and δe∗q ∶= δeq +R(BC q̂)δqE.

Starting with equation (4.71), we have:

∑
i

Kaiδey,i =∑
i

KaiGi(Hvδev +Hqiδe
∗
q) = 0 (4.75)

Equation (4.72) gives:

∑
i

Kωiδey,i =∑
i

KωiGi(Hvδev +Hqiδe
∗
q) = 0 (4.76)

Equations (4.76) and (4.75) form a homogeneous linear system in δev and δe∗q :

[∑iKaiGiHv ∑iKaiGiHqi

∑iKωiGiHv ∑iKωiGiHqi
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H

[δev
δe∗q

] = [0
0
] (4.77)
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We consider H is invertible because it is a submatrix of A−KC. This matrix is constant
in steady-state and since we look at the case where the filter has converged, all the
eigenvalues have negative real parts and the matrix is invertible. We verified numerically
that the submatrix H of A −KC is also invertible. Consequently, δev = 0, δe∗q = 0 and
δey,i = 0. The complete linear state error reads

from (4.74): δep = −2R(BC q̂)(Bd × δqE) −R(BC q̂)δd (4.78)
δev = 0 (4.79)
δeq = −R(BC q̂)δqE (4.80)

from (4.69): δea = −2[R(BC q̂)a]×δeq = 2R(BC q̂)[a]×δqE (4.81)
from (4.70): δeω = 0 (4.82)

An error ∆d in the Marker-Body translation produces an error in the estimated position
but does not affect the other estimated states.

An error qE in the Marker-Body rotation causes errors in the estimated position,
quaternion and accelerometer biases but does not affect the other estimated states. When
using calibrated accelerometer measurements we know the true biases and can use this
information to determine the error caused by the rotation error. From the error, we can
calculate the rotation error and the true Marker-Body rotation. In Section 4.4.2, we
propose a method for calibration of the Marker-Body rotation using this reasoning.

Here, we have considered the case where a single (right) camera is used. We omitted
the second (left) camera from the calculations to avoid further complicating the equations,
but using two cameras would lead to the same result.

4.4.1.2 Error on Principal Point

True position of marker i:

Cmi = Cp + BCq ∗ (MBRMmi + Bd)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bmi

∗BCq−1

In the estimated position of marker i:

Cm̂i = C p̂ + BC q̂ ∗ (MBRMmi + Bd)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bmi

∗BC q̂−1

The true principal point is Su and the estimated principal point is Sû = Su + ∆u where
∆u = [∆u0, ∆v0]T is the principal point error.

For the error analysis, we follow the same reasoning as in the previous section. We
start by examining the steady-state error system with the same state error as in the
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previous Section in Equation (4.62) with an additional error eu = ∆u. We linearize the
error system around

(ep, ev, eq, ea, eω, eu) = (0,0,1,0,0,0), am = a + ab = BG + ab, ωm = ωb

which gives the same result as in equations (4.68)-(4.72). The output error ey,i = yi − ŷi
for marker i reads:

ey,i =
1

⟨Cmi,E1⟩
[fu⟨

Cmi,E2⟩
fv⟨Cmi,E3⟩

] + (Sû −∆u) − 1

⟨Cm̂i,E1⟩
[f̂u⟨

Cm̂i,E2⟩
f̂v⟨Cm̂i,E3⟩

] − Sû (4.83)

For the linearized output error we obtain:

δey,i =
1

⟨Fi,E1⟩2
[fu⟨Fi,E2⟩ −fv⟨Fi,E1⟩ 0
fv⟨Fi,E3⟩ 0 −fv⟨Fi,E1⟩

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Gi

⋅(δep−2(BC q̂∗Bmi∗BC q̂−1)×δeq)−δu

where Fi = C p̂+Bi = Cm̂i. Note that the matrix Gi is the same as in the previous section,
except for the focal distances which are taken into account here. We now rewrite the
term −δu, using the expression δU = [0, δu0/fu, δv0/fv]T :

−δu = − [δu0
δv0

] = − [fu⟨∆U,E2⟩
fv⟨∆U,E3⟩

] = − [0 fu 0
0 0 fv

] δU

= 1

⟨Fi,E1⟩2
[0 −fu⟨Fi,E1⟩ 0
0 0 −fv⟨Fi,E1⟩

] ⟨Fi,E1⟩δU

Since ⟨δU,E1⟩ = 0, we can finally write

−δu = 1

⟨Fi,E1⟩2
[fu⟨Fi,E2⟩ −fu⟨Fi,E1⟩ 0
fv⟨Fi,E3⟩ 0 −fv⟨Fi,E1⟩

] ⟨Fi,E1⟩δU = Gi⟨Fi,E1⟩δU

This yields for the linearized output error:

δey,i = Gi(δep − 2(BC q̂ ∗ Bmi ∗ BC q̂−1) × δeq + ⟨Fi,E1⟩δU)

which we can approximate to

δey,i = Gi(δep − 2Bi × δeq + ⟨F ,E1⟩δU) for all i .

The principal point error ∆u causes an error of the same form as in (4.73) for the Marker-
Body translation error. Thus all the errors are zero except for the position error which
is

δep = −⟨F ,E1⟩δU = −⟨F ,E1⟩
⎡⎢⎢⎢⎢⎢⎣

0
∆u0/fu
∆v0/fv

⎤⎥⎥⎥⎥⎥⎦
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This is the result for an optical-inertial system with a single (right) camera. Using
two cameras would lead to a different error on the estimated state because the error has
an effect on the projection to the right camera only. We do not consider this case further
because we cannot exploit this result to determine the principal point in the absence of
the reference of the true position.

4.4.1.3 Error on Focal Distance

The true focal distances are fu and fv and the estimated ones f̂u = fu + ∆fu and
f̂v = fv +∆fv. The focal distance errors are noted ∆fu and ∆fv.

For the error analysis, we follow the same reasoning as in the Section 4.4.1.1. We start
by examining the steady-state error system with the same state error as in the previous
Section in equation (4.62) with additional errors efu = ∆fu and efv = ∆fv. We linearize
the error system around

(ep, ev, eq, ea, eω, efu, efv) = (0,0,1,0,0,0,0), am = a + ab = BG + ab, ωm = ωb

which gives the same result as in equations (4.68)-(4.72). The output error ey,i = yi − ŷi
for marker i reads:

ey,i =
1

⟨Cmi,E1⟩
[(f̂u −∆fu)⟨Cmi,E2⟩
(f̂v −∆fv)⟨Cmi,E3⟩

] + Su − 1

⟨Cm̂i,E1⟩
[f̂u⟨

Cm̂i,E2⟩
f̂v⟨Cm̂i,E3⟩

] − Su

For the linearized output error we obtain:

δey,i =
1

⟨Fi,E1⟩2
[fu⟨Fi,E2⟩ −fu⟨Fi,E1⟩ 0
fv⟨Fi,E3⟩ 0 −fv⟨Fi,E1⟩

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Gi

(δep − 2Bi × δeq)

+ 1

⟨Fi,E1⟩
[δfu⟨Fi,E2⟩
δfv⟨Fi,E3⟩

]

=Gi(δep − 2Bi × δeq) +
⎡⎢⎢⎢⎢⎣

⟨Fi,E2⟩
⟨Fi,E1⟩ 0

0 ⟨Fi,E3⟩
⟨Fi,E1⟩

⎤⎥⎥⎥⎥⎦
[δfu
δfv

]

=Gi(δep − 2Bi × δeq) + diag(ŷi)δf .

The term with δf depends on the marker i which prevents simple expressions for the
linearized state errors like we found in sections 4.4.1.1 and 4.4.1.2 for Marker-Body
transformation and principal point errors. Also, we only considered one (right) camera
in the above calculations. The use of two cameras would further complicate the analysis
since an error on the focal distances of one camera only affects the projection to this
camera.
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4.4.2 Calibration of Marker-Body Rotation with RIEKF

The analysis of the influence of marker-body transformation errors on the estimated state
in Section 4.4.1.1 shows that the errors are propagated to certain state variables only. We
would like to use this fact to determine the marker-body transformation errors and thus
calibrate the marker-body transformation. We will propose here a method to determine
the marker-body rotation using the RIEKF estimation for several static measurements.

The position, quaternion and accelerometer biases are affected by the transformation
errors. Since we do not know the true position and orientation, we cannot compute the
position and quaternion error. However, we can determine the true accelerometer biases
from one of the accelerometer calibration routines described in Section 3.3. From the
biases estimated by the RIEKF, we can compute the bias error. The accelerometer bias
error was calculated in (4.81):

δea = 2R(BC q̂)[am − Bâb] × δqE

Also, from the definition of the bias error in Section 4.3.4.3 we have

ea = BCq ∗ (Bâb − Bab) ∗ BCq−1 ⇒ δea = BC q̂ ∗ (Bâb − Bab) ∗ BC q̂−1

in steady state. These equations give

2R(BC q̂)[am − Bâb] × δqE =R(BC q̂)(Bâb − Bab) (4.84)
⇔ 2[am − Bâb] × δqE =Bâb − Bab (4.85)

This equation permits us to compute δqE from the accelerometer measurements am, the
true biases ab as determined by an accelerometer calibration procedure and the biases Bâb
estimated by an RIEKF. This is done for a static case.

Equation (4.85) provides only two linearly independent equations for the three
elements of vector δqE. Consequently we have to measure am and estimate Bâb for at
least two different orientations. The equations (4.85) for different orientations are then
stacked to give

2

⎡⎢⎢⎢⎢⎢⎣

[a′m − Bâ′b]×
[a′′m − Bâ′′b ]×

⋯

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

δqE =
⎡⎢⎢⎢⎢⎢⎣

Bâ′b − Ba′b
Bâ′′b − Ba′′b

⋯

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

A is a 3N ×3 matrix and b is a vector of length 3N where N is the number of different
orientations. The rank of A is 3 if the orientations are different. We solve this over-
determined set of linear equations with a linear least-squares solution using the SVD
[Hartley and Zisserman, 2003, p.589].
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The above equations and the analysis of the calibration result can be simplified by
using calibrated accelerometer measurements in which the biases have been compensated
for. The calibrated measurements are noted

ãm = am − Bab .

Equation (4.85) then becomes
2ãm × δqE = Bâb .

With calibrated accelerometer measurements, the accelerometer biases estimated by the
RIEKF should be zero.

This method is implemented and tested for the experimental setup in Section 5.4.4.2.
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Chapter 5

Implementation and Experimental
Results

Ce chapitre porte sur l’implémentation d’un système de tracking optique-inertiel et des
algorithmes de fusion de données proposés.

La première partie décrit le dispositif expérimental avec des capteurs optiques et iner-
tiels, l’acquisition de données par un microcontrôleur et l’implémentation des algorithmes
en Simulink et avec xPC Target pour une exécution en temps réel.

Nous présentons ensuite les expériences faites avec le dispositif expérimental et les
résultats obtenus. Ils montrent que le système optique-inertiel peut suivre le mouvement
de la Sensor Unit avec une grande bande passante. Nous montrons aussi l’intérêt du
calibrage du système optique-inertiel.

Finalement, nous traitons des différentes méthodes utilisées pour calibrer les différents
capteurs et le système optique-inertiel.

5.1 Experimental Setup

5.1.1 Cameras and Optical Markers

The camera used in the experimental setup is a Wiimote image sensor. The Wi-
imote is the remote control of the Wii game console (Nintendo Co., Ltd., Japan
[Nintendo Co., Ltd., 2011]) and is depicted in Figure 5.1. The image sensor was
unsoldered and put on a dedicated PCB board [Jürss and Rudolph, 2008] to be used
on its own. Figure 5.2(b) shows the PCB board with the image sensor and Figure 5.2(a)
the sensor on its own.

The image sensor sees up to four luminous points which are called blobs and outputs
the 2D image coordinates and the blob size. In [Hay et al., 2008] the sensors were sampled
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Figure 5.1: Wiimote
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(a) Image sensor on PCB board

(b) Image sensor

Figure 5.2: Wiimote image sensor
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left image sensor
with infrared filter

right image sensor
with infrared filter

I2C switch

Figure 5.3: stereo rig

at 120Hz but this rate seems to be too high for such a low-cost sensor; the true rate at
which the sensor processes new data is probably lower. We decided to sample the image
sensor at 50Hz. Each sensor reading consists of three bytes for each of the four blobs.
The first two bytes correspond to the lower eight bits of the two blob coordinates. The
third byte includes the coordinates’ higher two bits and the blob size.

The image sensor communicates via the Inter-Integrated Circuit (I2C) protocol which
is a two-wire interface with a clock (SCL) and a data (SDA) line.

To build a stereo system, two image sensors are fixed relative to each other in a rig
with a baseline of approximately 30cm. Since all the image sensors have the same I2C
address we use an I2C switch to commute between the two sensors. Figure 5.3 depicts
the stereo rig with the I2C switch and the STK600 development board.

Four Vishay light-emitting diodes (LEDs) are used as optical markers. An infrared
filter in front of the image sensor ensures that it only detects the LEDs and no other light
sources.

This image sensor was chosen as a camera in the experimental setup because it is
low-cost (a Wiimote costs about 35e), can be easily interfaced and synchronized with a
microcontroller and because it does image processing internally.
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(a) ADIS 16355 IMU

(b) inside of ADIS 16355 IMU

Figure 5.4: ADIS 16355 IMU from Analog Devices
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5.1.2 Inertial Sensors

The inertial measurement unit "ADIS 16355" [ADIS16355, 2009] from Analog Devices
is used in this experimental setup. It consists of 3 orthogonal accelerometers and 3
orthogonal gyroscopes. The sensor with its casing is shown in figure 5.4(a). Figure 5.4(b)
illustrates the positioning of the different sensors and other components in the inside of
the ADIS IMU.

The ADIS 16355 outputs a 14-bit value per sensor which has to be transformed
to a specific acceleration resp. an angular velocity following the format given in the
datasheet [ADIS16355, 2009]. The measurements are temperature-compensated and have
a bandwidth of 350Hz. Default settings were used for all parameters (maximum internal
sample rate of 810.2 samples/s, dynamic range of ±300°/s, no automatic calibration)
except for the linear acceleration bias compensation which was enabled for the gyroscopes.

The IMU communicates via the Serial Peripheral Interface (SPI) Bus. This is a four
wire serial bus, consisting of the four logic signals SCLK (serial clock), MOSI (master
output, slave input), MISO (master input, slave output) and SS (slave select).

5.1.3 Sensor Unit

Four LEDs are mounted on a board (see Figure 5.5) and connected at the back to an an
external power supply. They are arranged in a plane with distances such that they can
be detected by the image sensor. The ADIS IMU is fixed on the back of the board as
shown in Figure 5.5. Figure 5.6 pictures the Sensor Unit without its casing and illustrates
how the IMU is attached to the Sensor Unit front. The Sensor Unit is connected to a
microcontroller for communication and power supply.

Note that the size of this experimental Sensor Unit is much bigger than that of the
final Sensor Unit which would be attached to a handheld tool. This size was chosen to
be able to adapt the setup during the development of this experimental setup and to fix
it to the rail carriage. Also, the low-cost camera we use demands a distance of several
centimeters between the LEDs.

5.1.4 Data Acquisition

An Atmega2560 microcontroller [ATmega2560, 2007] from Atmel on a STK600 develop-
ment board reads sensor data from the image sensor via I2C and from the IMU via SPI
and sends them to a PC via its UART. A counter triggers the different sensor readings
at the chosen frequency.

The SPI protocol is intended for use over short distances of a few centimeters, but in
this case a distance of 1m has to be overcome between the IMU and the microcontroller.
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x
M

y
M

x
B

y
B

IMU

m4

m3

m1

m2

26cm

Figure 5.5: Sensor unit
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IMU

optical fibre 
receiver and 
transmitter

(a) inside

IMU

optical 
markers

(b) side

Figure 5.6: Sensor Unit without its casing
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Figure 5.7: Setup

To prevent problems due to interferences, we used optical fiber for transmission of MISO
and MOSI signals.

The setup in figure 5.7 shows how the IMU and image sensors are connected to the
microcontroller.

5.1.5 Algorithm Implementation

The different data fusion algorithms for the optical-inertial tracking systems presented in
Section 4.3 were implemented in two ways: at first offline with Simulink and secondly in
real-time.

5.1.5.1 Offline implementation with Simulink

Several data fusion algorithms were implemented in their continuous-discrete forms (see
Section 4.3.6) in Simulink [Mathworks, 2011] for offline analysis of saved data sequences.
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The data sequences have been acquired by the ATmega2560 microcontroller, then read
by the PC via its serial port and saved in a Matlab file. In the data sequences, each frame
is time-stamped. Correction steps are triggered at the chosen optical sample rate by a
pulse function.

Figure 5.8 shows the Simulink model for the RIEKF. Subfigure 5.8(a) gives an overview
of the model. The measured data are read in "from workspace" blocks in the upper left
corner and inertial data are transformed from raw data to physical values. The lower
left corner contains several constant parameters. The block "RIEKF" represents the data
fusion algorithm and outputs the estimated vector "xhat" which is saved in a Matlab
file. The inside of the RIEKF block is illustrated in Subfigure 5.8(b). Corrections and
predictions are placed in separate blocks. The correction block is executed according to
the optical sample rate; it is triggered by signal generated in the "pulse generator". The
integrators are reset at the same frequency.

5.1.5.2 Real-time implementation with xPC Target

The RIEKF was implemented in real-time using xPC Target, the real-time software
environment in Matlab/Simulink [Mathworks, 2011]. Sensor data are acquired by the
ATmega2560 microcontroller and sent via UART and are then read on the serial port
by the xPC Target application. This application executes the RIEKF (as implemented
in Simulink in Section 5.1.5.1) with a step of 1ms and outputs the estimated state.
Predictions are executed when new inertial measurements are available. Corrections are
triggered by new optical measurements.

Figure 5.9 shows the setup for the real-time implementation with xPC Target.
Data acquisition timing in xPC Target: Sending one frame via the UART with a baud

rate of 115200bps takes a little under 4ms. This latency is not taken into account in the
analysis. However, the frames comprise a variable latency of up to 1ms due to the fact that
xPC Target samples the serial port every 1ms and that this sampling is not synchronized
with the microcontroller. This leads to variable time gaps between consecutive predictions
and between consecutive corrections.

The xPC target application logs the state estimated by the RIEKF but also the data
frames read on the serial port. These data are sent to the host PC and can then be used
for offline analysis for optical tracking or other data fusion algorithms under the same
conditions as for the real-time RIEKF.

5.1.5.3 Filter Tuning

The filter’s covariance parameters are presented in Section 4.3.5. For the ADIS16355,
the white noise parameters can be read from the Allan variance plots given in the
datasheet [ADIS16355, 2009] which give the Allan variance on a certain time interval.
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Figure 5.9: Experimental setup for real-time implementation with xPC Target
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The remaining parameters were found by graphically approximating the Allan variance
values given in the datasheet by the two lines representing the two terms we use in the
sensor model.

Figure 5.10(a) shows the points read from the datasheet plot for the accelerometer
Allan variance, the two lines and the approximated Allan variance. The velocity random
walk ξa is equal to 2.84mg/

√
Hz and the accelerometer rate random walk ξab has been

determined as 0.04mg/s/
√
Hz.

Figure 5.10(b) shows the points read from the datasheet plot for the gyroscope Allan
variance, the two lines and the approximated Allan variance. The angle random walk ξω
is equal to 0.07○/s/

√
Hz and the gyroscope rate random walk ξωb has been determined as

9 ⋅ 10−4○/s2/
√
Hz.

The output noise density ξy of the Wiimote image sensor is not known and can only
be estimated. We chose ξy = 1.5pixels/

√
Hz for an optical sample rate of 50Hz which

takes into account the estimated noise density but also calibration errors.

5.1.5.4 Data Association

Data association is the process of finding the correspondence between a) markers in stereo
images and b) marker images and the marker model.

Stereo Matching Left and right images can be matched using epipolar geometry. A
corresponding pair of right and left images (yR, yL) satisfies [Hartley and Zisserman, 2003,
p. 245] the relation

yTLFyR = 0

where F is the fundamental matrix. For a stereo rig with known camera ma-
trices PR = KR [I 0] and PL = KL [RSt tSt], the fundamental matrix reads
[Hartley and Zisserman, 2003, p. 244]

F = [PLB]×PLP +
R . (5.1)

P +
R is the pseudo-inverse of PR, i.e. PRP +

R = I [Hartley and Zisserman, 2003, p. 244], and
B = [0,0,0,1]T . Equation (5.1.5.4) can be developed to

F = [KLtSt]×KLRStK
−1
R .

Association of Marker Images with Marker Model This association can be
achieved in the Kalman filter (see for example Section 4.3.4.3 for the RIEKF) using the
Mahalanobis distance [Jung and Wohn, 1997] which depends on the difference between
measured and estimated outputs and on their respective covariances:

dij = (ym,i − ŷj)T (Ri +CjPCT
j )−1(ym,i − ŷj)
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ym,i is the 2D measurement vector of the ith image and Ri its measurement covariance.
Cj are two lines of matrix C, corresponding to jth model marker. P is the estimate error
covariance.

5.1.6 Tracking References

Obviously, one of the main goals for the experimental setup and the implementation of the
optical-inertial data fusion algorithm was to study the accuracy of the pose tracking and
to show that our proposed optical-inertial system determines the object motion correctly.
For this, we needed a reference to which to compare the optical-inertial pose estimation.
This reference had to give the true pose at a high sample rate.

One possibility was to use an independent optical tracking system and attach this
system’s rigid body and our Sensor Unit to the same object. With this setup interferences
occurred between the two optical systems and the transformation between the rigid body
and the Sensor Unit could only be determined approximately. The same was true for
the transformation between the two reference frames in which the pose estimation were
expressed. The main problem which prevented this setup from being used as reference
was that the optical tracking bandwidth was too low to follow fast motion which is the
case we are interested in.

The best solution we found was to use a motorized linear rail. The Sensor Unit is
attached to the rail carriage. The rail measures the carriage position with a resolver with
a sample rate of 250Hz. We know the movements executed by the rail carriage to be
linear, that is the Sensor Unit moves along a line, which permits us to interpolate the
true carriage position between resolver measurements. Note that there is no automatic
synchronization between the rail resolver measurement and the optical-inertial setup. The
resolver values are shifted in time until they are superposed with the optical-inertial data
where the beginning and end of a movement serve as reference points.

A second goal for this implementation was to compare the performance of our optical-
inertial tracking system and of purely optical tracking to show the advantages of the first
one. For this, we used the optical data from our setup to determine the Sensor Unit
position using computer vision algorithms presented in Section 3.1.

In the following we present a few details on how we obtained references from the linear
rail and for optical tracking.

5.1.6.1 Linear Rail

A 3m motorized linear rail was used to execute repeatable experiments with known linear
motions. Figure 5.11 shows the linear rail.

The rail can be controlled manually in the "JOG mode" or automatically in the
"Positioning mode". In the latter a motion profile can be defined. This motion profile
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motor

carriage

Figure 5.11: linear rail
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stereo image sensors sensor unit

linear rail

micro-
controller

rail motor

Figure 5.12: Experimental setup with stereo camera rig, Sensor Unit and linear rail

or trajectory consists of ramps and static parts. For each ramp, the desired position is
defined together with the maximal acceleration, deceleration and velocity values allowed
for attaining the desired position.

The Sensor Unit is mounted rigidly on the carriage. Figure 5.12 shows the experimental
setup with the Sensor Unit mounted on the carriage.

The rail measures the carriage position with a resolver with a sample time of 4ms.
The measurements may contain small errors due to the fact that it does not measure the
absolute position of the carriage on the rail but deduces the position from the resolver
measurements in the motor which introduces uncertainties caused by the transmission.
The resolver measurement gives this carriage position in 1D, that is its position along the
linear rail. We use this information to determine the 3D position of the Sensor Unit by
taking the position estimated by the RIEKF at the beginning and at the end of a motion
along the rail to be the beginning and end of the linear motion in 3D. The resolver
measurement then gives the position along this line.
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5.1.6.2 Optical Tracking

Computer Vision algorithms for calculating the pose of the Sensor Unit using only
optical data from the experimental setup were implemented in Matlab [Mathworks, 2011].
Image data were first triangulated by basic triangulation [Hartley and Zisserman, 2003]
as presented in Section 3.1.2.1 to obtain 3D marker positions. The Sensor Unit pose was
calculated by Walker’s solution [Walker et al., 1991] to the absolute orientation problem
as presented in Section 3.1.2.2.

5.2 Experiments

The following experiments were conducted using the setup presented in Section 5.1.

5.2.1 Experiment 1: static case

The Sensor Unit was set on a horizontal surface during several minutes.

5.2.2 Experiment 2: slow linear motion

In this experiment, the Sensor Unit was rigidly fixed to the carriage of the linear rail and
moved along the rail according to a pre-defined trajectory.

Figure 5.13 shows the trajectory for the linear rail. The position varies between 0 and
10cm with a maximal acceleration/deceleration of 4m/s2 and maximal velocity of 30cm/s.

5.2.3 Experiment 3: fast oscillating linear motion

The linear rail was used to execute an oscillating motion with an amplitude of 1cm.
Figure 5.14 shows the planned trajectory for the linear rail. The position oscillates

between 0 and 1cm with a maximal acceleration/deceleration of 10m/s2 and maximal
velocity of 30cm/s. Note that due to the high accelerations and decelerations overshoots
occurred during the oscillations. A detail of the actual trajectory executed by the rail
carriage and measured by the resolver is shown in Figure 5.15.

5.2.4 Experiment 4: static orientations

For the calibration of marker-body rotation 5.4.4.2, the Sensor Unit was fixed in 7 different
static orientations and kept static for about 90s in each orientation. A tripod was used
to rotate the Sensor Unit as shown in figure 5.16.
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Figure 5.13: Trajectory for the linear rail in positioning mode for experiment 2 (slow
linear motion)
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Figure 5.14: Planned trajectory for experiment 3 (fast linear oscillating motion)
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Figure 5.15: Actual trajectory for the linear rail in positioning mode for experiment 3
(fast oscillating linear motion)
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Figure 5.16: Sensor unit attached to tripod for calibration
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5.3 Results

The algorithm can be executed offline with Simulink or in real time on an xPC Target.
The experimental results shown in this Section have all been obtained in real-time. To
compare different algorithms under the same conditions, the sensor data from the real-
time run was saved and then used to re-run a different algorithm with the same data
sequence. Data association works correctly if the state estimation is not too far from the
truth; for this, the position has to be initialized with values which are approximately less
than 20mm from the true position.

Most of the results in this Section were obtained with the Right-Invariant Extended
Filter presented in Section 4.3.4.3. We chose this filter over the left-invariant one (see
Section 4.3.4.4) because it expresses all errors in camera coordinates and this seems
sensible since we are interested in the Sensor Unit motion expressed in the camera frame.
However, our analysis has not shown any significant difference between estimations from
the Right or Left-Invariant EKF.

5.3.1 General Observations

5.3.1.1 Position and Orientation

Figure 5.17 shows the estimated position and the Euler angles calculated from the
estimated quaternions for the static case in experiment 1. The position is compared to
the resolver measurement which shows that the RIEKF estimates the position correctly.
We do not have a reference for the orientation; we can only say that the RIEKF estimates
a constant orientation which is correct.

Figures 5.18 and 5.19 show the estimated position and Euler angles resp. for the
linear motion in experiment 2. A comparison with the rail resolver measurement shows
that the RIEKF estimates the motion correctly, except for occasional small deviations at
the beginning or end of the motion. The RIEKF also detects a change in orientation, but
again we do not have a reference to compare this estimation to.

5.3.1.2 Filtering of Inertial Measurements

The RIEKF filters noisy measurements. Figures 5.20 and 5.21 show the measured inertial
data for experiment 1. All the signals are noisy and the accelerometer signals also show
numerous peaks. These peaks and most of the noise are filtered by the RIEKF in the
position and orientation as illustrated in Figure 5.17.

Figure 5.22 show the accelerometer data for experiments 2 and 3, illustrating what
kind of signals the IMU measures for these motions.
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Figure 5.17: RIEKF estimation of position and Euler angles (calculated from estimated
quaternions) for experiment 1 (static)
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Figure 5.18: RIEKF position estimation for experiment 2 (linear motion)
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Figure 5.19: Euler angles calculated from quaternions estimated by the RIEKF for
experiment 2 (linear motion)
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Figure 5.20: Accelerometer measurements for experiment 1
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Figure 5.21: Gyroscope measurements for experiment 1

5.3.1.3 Bias estimation

The estimated accelerometer and gyroscope biases should theoretically be identical to
the true biases present in the sensors. In fact, the estimated biases might also absorb
parameter errors as mentioned in Section 4.4. The additional error terms can be constant
or depend on the Sensor Unit position and/or orientation, implying that the estimated
biases might change when the Sensor Unit moves although the true bias stays constant.

Figure 5.23 shows the estimated biases for an experiment in which the Sensor Unit was
kept static for 150s and was then moved along the rail (several runs of the the trajectories
from experiments 2 and 3). Since the accelerometer biases need longer than 150s to
converge, they have not been initialized with 0 but with their final values. The gyroscope
biases have been initialized with 0.

The gyroscope biases converge quickly and stay almost constant during the Sensor
Unit motions. The largest variation of about 7% occurs in the bias X. The accelerometer
biases are affected more strongly by the Sensor Unit motion. They vary by 9% for the X
axis, by 5% for the Y axis and by 15% for the Z axis.
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Figure 5.24: Real-time execution times for direct and indirect RIEKF and direct MEKF

5.3.1.4 Latency

The real-time implementation with xPC Target permits us to study the computational
cost of a data fusion algorithm. The xPC Target application runs with a step of 1ms
and measures the execution time for each step, called target execution time (TET). For
an algorithm to run in real-time, the TET for each step has to be below 1ms. The TET
measures the algorithm latency because it gives the time between a new measurement
and the corresponding filter output.

Our first goal is to show that the direct approach reduces latency compared to the
indirect approach. For this we implemented an indirect RIEKF and compared the TET
for the direct and indirect RIEKF.

The second goal is to show that the RIEKF presented in Section 4.3.4.3 has a smaller
latency than the MEKF from Section 4.3.3 because we consider that it is computationally
less complex since it takes into account system symmetries.

Figure 5.24 illustrates task execution times for the direct and indirect RIEKF and the
direct MEKF. The upper lines (marked "C") indicate times for corrections. The lower
lines (marked "P+I") and the intermediate points represent times for prediction and
integration steps (note that the red line for direct RIEKF is masked almost completely
by the blue line for the indirect RIEKF). The direct RIEKF yields the smallest execution
time, thus it has the lowest latency of the three algorithms. However, the differences
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between the algorithms are too small to be significant. A more precise measurement
would be necessary to evaluate latencies.

5.3.1.5 Discussion

In this Section, we made general observations about the RIEKF estimations. We showed
that the optical-inertial tracking system with the RIEKF can estimate the motion of the
Sensor Unit while filtering the noise inertial measurements. Gyroscope biases converge
quickly and stay constant during the motion of the Sensor Unit, which is in accordance
with our model. The accelerometer biases however depend on the Sensor Unit motion
which is probably due to parameter errors. Finally, we also studied the latency of the
direct RIEKF and compared to the indirect RIEKF and to the MEKF.

5.3.2 Precision and Accuracy

Measurement systems are often evaluated regarding their precision and accuracy, and
these terms are also applied to indirect measurements where values are obtained
by some computation from measured data [Miller et al., 2009]. Precision is the de-
gree to which repeated measurements under unchanged conditions show the same
results [Miller et al., 2009]. For our optical-inertial tracking system for example, we would
like to study the precision of the position estimation, that is by how the estimated position
varies when the true position is constant. Accuracy describes how close a measurement is
to its true value [Miller et al., 2009]. In our case, accuracy describes whether the estimated
position is equal to the true position or whether it is offset by a systematic error.

5.3.2.1 Precision (static case)

We study the precision using data from experiment 1 (static case) from t=10s to t=100s
(we leave out the first 10s because the filter has not converged yet during this time).
Figure 5.17(a) shows the position estimationand Figure 5.17(b) the Euler angles calculated
from the estimated quaternions.

The position has the following mean and standard deviation:

C p̂ =
⎡⎢⎢⎢⎢⎢⎣

884.1436
−6.6690
−27.3574

⎤⎥⎥⎥⎥⎥⎦
mm std(C p̂) =

⎡⎢⎢⎢⎢⎢⎣

0.0996
0.0452
0.0404

⎤⎥⎥⎥⎥⎥⎦
mm .

The position varies from

C p̂min =
⎡⎢⎢⎢⎢⎢⎣

883.8088
−6.8435
−27.5295

⎤⎥⎥⎥⎥⎥⎦
mm to C p̂max =

⎡⎢⎢⎢⎢⎢⎣

884.4879
−6.4642
−27.1763

⎤⎥⎥⎥⎥⎥⎦
mm
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which gives a difference of

∆C p̂ =
⎡⎢⎢⎢⎢⎢⎣

0.6790
0.3794
0.3532

⎤⎥⎥⎥⎥⎥⎦
mm .

Both the standard deviation and the difference between minimum and maximum values
show that the precision is approximately the same in Y and Z and that it is twice as good
in these directions than depth precision (coordinate X).

The angles have the following mean and standard deviation:

⎡⎢⎢⎢⎢⎢⎣

φ

θ

ψ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−1.6196
1.5756
−2.2812

⎤⎥⎥⎥⎥⎥⎦
degrees std(

⎡⎢⎢⎢⎢⎢⎣

φ
θ
ψ

⎤⎥⎥⎥⎥⎥⎦
) =

⎡⎢⎢⎢⎢⎢⎣

0.3628 ⋅ 10−3

0.6661 ⋅ 10−3

0.5064 ⋅ 10−3

⎤⎥⎥⎥⎥⎥⎦
degrees .

The angles vary from

⎡⎢⎢⎢⎢⎢⎣

φ
θ
ψ

⎤⎥⎥⎥⎥⎥⎦min
=
⎡⎢⎢⎢⎢⎢⎣

−1.6208
1.5735
−2.2825

⎤⎥⎥⎥⎥⎥⎦
degrees to

⎡⎢⎢⎢⎢⎢⎣

φ
θ
ψ

⎤⎥⎥⎥⎥⎥⎦max
=
⎡⎢⎢⎢⎢⎢⎣

−1.6185
1.5774
−2.2793

⎤⎥⎥⎥⎥⎥⎦
degrees

which gives a difference of
⎡⎢⎢⎢⎢⎢⎣

∆φ
∆θ
∆ψ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0.0023
0.0038
0.0032

⎤⎥⎥⎥⎥⎥⎦
degrees .

5.3.2.2 Accuracy

Since we do not have an absolute reference for the Sensor Unit position and orientation,
we cannot evaluate the accuracy of the optical-inertial system with the RIEKF.

5.3.3 High-Bandwidth Tracking

Figures 5.25-5.27 show the position estimated by the RIEKF (with an optical frequency
of 50Hz and an inertial frequency of 250Hz) for two repeats of the oscillation with 1cm
amplitude during experiment 3. Figure 5.25 depicts the X coordinate (which represents
depth), Figure 5.26 the horizontal Y coordinate and Figure 5.25 the vertical Z coordinate
of the position. The RIEKF follows the oscillating motion well. There are a few deviations,
namely at the points where the rail carriage changes direction. At these inversions, there
might be a problem with the resolver measurement which is used as ground truth. Since
it is only an indirect measurement counting the number of turns of the motor, it possibly
does not give the correct value at inversions due to transmission errors. Thus we cannot
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Figure 5.25: X position coordinate for oscillation in experiment 3
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Figure 5.26: Y position coordinate for oscillation in experiment 3
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Figure 5.27: Z position coordinate for oscillation in experiment 3
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Figure 5.28: Angles for oscillation in experiment 3

judge the RIEKF estimation at these points because we might not have a correct ground
truth.

Having compared the RIEKF estimation to the rail reference, we next look at it
in contrast to optical tracking. The optical position is determined as described in
Section 5.1.6.2 and plotted in Figures 5.25-5.27. We start by examining the Y coordinate
in Figure 5.26 which is the axis in which most of the motion took place. The optical
position gives only a very imprecise approximation of this curve. This is even more
evident when looking at the Z coordinate in Figure 5.27. The Sensor Unit moved by
only approximately 1.5mm in this axis and the optical system does not see this motion
correctly. This shows that the optical-inertial tracking system with its high bandwidth is
more suitable than an optical tracking system to follow fast motion.

Figure 5.28 illustrate the Euler angles estimated by the RIEKF and from optical
tracking for the 1cm oscillation in experiment 3. We cannot judge the accuracy of this
estimation since we do not have a reference but the optical Euler angles obviously display
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Figure 5.29: X position coordinate for oscillation in exp. 3 with an optical rate of 12.5Hz

sudden changes which is not correct.
Having determined that the optical-inertial tracking system with an inertial sample

rate of 250Hz and an optical sample rate of 50Hz can in fact follow the fast motion
of the Sensor Unit we would now like to study if it is possible to further augment the
system bandwidth. The experimental setup described in Section 5.1 does not permit us
to increase the inertial sample rate beyond 250Hz. Augmenting the inertial rate means
augmenting the number of predictions between two corrections. Since we cannot increase
the inertial rate we lower the optical rate to 12.5Hz instead. This gives a factor of 20
between the optical and inertia sensor rates and consequently 20 predictions are executed
in the RIEKF between two corrections. Figures 5.29-5.31 show the position estimation
from the RIEKF and optical tracking for this case. The RIEKF estimation is of course
less good than for the case of a 50Hz optical rate, but it still detects the oscillating motion
and does so much better than the optical tracking.

5.3.4 Influence of Sensor Unit Calibration

In Section 4.4.1.1 we studied the influence of Marker-Body transformation errors on
the RIEKF estimation in theory. Now we look at the effect of a change of Marker-
Body transformation on the RIEKF estimations obtained from real data and will
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Figure 5.30: Y position coordinate for oscillation in exp. 3 with an optical rate of 12.5Hz
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Figure 5.31: Z position coordinate for oscillation in exp. 3 with an optical rate of 12.5Hz
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Figure 5.32: Difference of the position estimated with Bd = [6.0429,−4.6087,9.5305]T and
Bd = 0 (blue), and error −R(BC q̂)∆Bd as calculated in the error analysis (red), static case

see that the theoretical values are confirmed. We compare the case of the marker
model measured with a ruler (here, Bd = 0 and MBR = I3) and that with a Marker-
Body transformation determined from calibration procedures. The different models are
described in Section 5.4.4.

We start by looking at the effect of a change of the translation vector. Using different
translation vectors Bd leads to a translation in the estimated Sensor Unit position as
determined in the error analysis in Section 4.4.1.1. Figure 5.33 plots the difference between
two positions for experiment 1, one estimated with

Bd = [6.0429,−4.6087,9.5305]T

and the other with Bd = 0. This figure also shows the term −R(BC q̂)∆Bd where ∆Bd is the
difference between the two translation vectors considered here. The term −R(BC q̂)∆Bd
is the one given in Equation (4.78) for a translation error ∆Bd. Since both curves overlap
after the initialization phase, this illustrates that the theoretical result from the error
analysis is confirmed when using experimental data. The error analysis was done for
steady-state and consequently it is only true for the static case. This is illustrated in
Figure 5.33 where the same variables are shown for the oscillating motion in experiment 3:
in this non-static case, the two variables are not equal.
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Figure 5.33: Difference of the position estimated with Bd = [6.0429,−4.6087,9.5305]T and
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motion
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We now move on the effect of the Marker-Body rotation matrix. Two different
rotation matrices MBR lead to small changes in position and orientation as given in
Equations (4.78) and (4.80). The main difference lies in the estimated accelerometer
biases which will be illustrated in Section 5.4.4.2 about the calibration of the Marker-
Body rotation.

5.4 Calibration

5.4.1 Optical System

Regarding the calibration of the optical system, we have to determine the camera intrinsic
values, the rotation between the world and camera frame and the transformation between
the two stereo cameras.

The optical system has to be calibrated only once since its parameters are constant.
The rotation between world and camera frame and the stereo transformation have to be
re-calibrated when the setup has been changed.

5.4.1.1 Camera

Each camera is calibrated using the method presented in Section 3.3.1 and a planar
calibration target consisting of four LEDs. This gives the camera’s intrinsic parameters.

For the left camera, we obtained

fu,L = 1366.2208, fv,L = 1368.8532, SuL = [542.6768, 366.07549]T

and for the right camera

fu,R = 1366.5736, fv,R = 1358.715, SuR = [531.61743, 360.94375]T .

All the parameters are in pixels.

Rotation between world and camera frame The orientation WCq of the camera
frame C with respect to the world frame W has to be known in order to calculate
CG = WCq ∗WG ∗WCq−1 in the differential equation for the Sensor Unit velocity (2.8).
We chose the following procedure to determine WCq.

1 The Sensor Unit is placed in such a way in front of the cameras that the marker plane
is aligned with the vertical axis.

2 The orientation BCq is calculated using optical data.
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3 Since the world and marker frames are aligned, the rotation matrix

Mp = WMRWp

can be determined easily; the quaternion WMq is then deduced from WMR.

4 WCq can then be calculated from BCq :

WCq = BCq ∗MBq ∗WMq

where the rotation MBq between marker and body frame has been determined by
calibration (see Sensor Unit Calibration below).

5.4.1.2 Stereo rig

The stereo rig is calibrated according to the method [Bouguet, 2010] as described in
Section 3.3.1.1. The procedure yielded the following stereo transformation:

RSt =
⎡⎢⎢⎢⎢⎢⎣

0.9698 −0.2421 −0.0283
0.2410 0.9698 −0.0366
0.0363 0.0287 0.9989

⎤⎥⎥⎥⎥⎥⎦
, tSt =

⎡⎢⎢⎢⎢⎢⎣

42.7094
−374.9868
−2.4414

⎤⎥⎥⎥⎥⎥⎦
mm

5.4.2 Accelerometers

Axis misalignment, scale factors and biases were calibrated with an iterative algorithm
[Dorveaux et al., 2009] as described in Section 3.3.2.

For one calibration procedure we obtained a matrix

A =
⎡⎢⎢⎢⎢⎢⎣

1.0003 −0.0022 −0.0001
0.0032 0.9997 −0.0008
0.0006 0.0011 0.9977

⎤⎥⎥⎥⎥⎥⎦

containing scale factor and misalignments and a bias vector

B =
⎡⎢⎢⎢⎢⎢⎣

32.2661
668.4856
70.2366

⎤⎥⎥⎥⎥⎥⎦

mm

s2
.

Note that these values might change every time the sensors are turned on.
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5.4.3 Gyroscopes

Regarding the gyroscopes, we do not consider scales or misalignment but only biases. The
bias consists of a constant part ωb and a term depending on the specific acceleration, called
g-dependent bias [Groves, 2008]: Bg

Ba. Most of this g-dependent bias can be compensated
in the IMU used here [ADIS16355, 2009], but a small dependency remains. To determine
the constant bias term ωb, the Sensor Unit is rotated into several different orientations
and then kept static for several second. The gyroscope measurements are averaged over
10s to give ωi for each orientation i. Accelerometer measurements are compensated for
misalignment, scale factors and biases as described in the previous Section and averaged
over 10s to give ai. The g-dependent bias matrix Bg and the gyroscope bias are calculated
using linear least squares:

Bgai + ωb = ωi

⇔
⎡⎢⎢⎢⎢⎢⎣

g1
g2
g3

⎤⎥⎥⎥⎥⎥⎦
ai + ωb = ωi

⇔
⎡⎢⎢⎢⎢⎢⎣

aTi 0 0 ∥
0 aTi 0 ∥ I3
0 0 aTi ∥

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g1T

g2T

g3T

ωb

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= ωi

5.4.4 Sensor Unit

The calibration of the Sensor Unit consists in determining the optical marker positions in
the Body frame which is the frame of the inertial sensors. In a first step, the positions were
measured with a ruler as given in Section 5.4.4.1. These measurements are inaccurate due
to two reasons: Firstly, it was impossible to perfectly align the IMU and the circuit board
containing the optical markers. Secondly, the center of the IMU frame inside the casing
is not given in the datasheet and could only be estimated. This explains the need for a
calibration of the Marker-Body transformation as described in Section 5.4.4.2.

The marker model and the Marker-Body transformation have to be determined only
once since they only depend on the Sensor Unit geometry and are constant.

5.4.4.1 Marker Model

Positions Mmi are measured with a ruler:

[Mm1
Mm2

Mm3
Mm4] =

⎡⎢⎢⎢⎢⎢⎣

−30 48.5 31 −122
−63.5 −63.5 78.5 78.5
−58 −58 −58 −60

⎤⎥⎥⎥⎥⎥⎦
mm
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Figure 5.34: Estimated accelerometer biases for different orientations, with MBR = I (solid
lines) and with MBR from calibration (dashed lines).

5.4.4.2 Marker-Body Transformation

The Marker-Body transformation (MBR, Bd) has to be known in order to transform the
marker model to body coordinates:

Bmi = MBRMmi + Bd

Estimation as Additional State in the RIEKF We adapted the idea of adding the
transformation as additional states as presented in [Mirzaei and Roumeliotis, 2008] to the
outside-in case. That is we added the quaternion MBq and Bd to the state of the system
to be estimated and changed the RIEKF accordingly. But this filter did not converge
either in simulation or with real data.

Method Using RIEKF Bias Estimates The Marker-Body rotation was estimated
with the method described in Section 4.4.2. For this calibration, the Sensor Unit was
rotated into seven different orientation as described in Section 5.2.4. For each orientation,
the system state was estimated using the RIEKF. The measured calibrated accelerometer
measurements and the estimated accelerometer biases were then averaged over 10s to give
am and Bab which are the values used in the calibration procedure.

The Marker-Body rotation found through this calibration is
MBq = [0.9987 − 0.0079 0.0478 − 0.0143]

which gives a rotation matrix

MBR =
⎡⎢⎢⎢⎢⎢⎣

0.9950 0.0277 0.0959
−0.0292 0.9995 0.0146
−0.0954 −0.0173 0.9953

⎤⎥⎥⎥⎥⎥⎦
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Figure 5.34 shows the biases estimated by the RIEKF for the 7 different static orientations
for MBR = I (before calibration) and for the matrix MBR determined by calibration using
these 7 orientations. In call cases, "calibrated" accelerometer measurements have been
used in which the biases have been removed; thus the biases estimated by the RIEKF
should be zero.

Firstly, we see that the estimated biases depend on the orientation which is due
to parameter errors as discussed in Section 4.4.1. Obviously, the goal of calibration
procedures would be to eliminate these errors from the model in order to remove parameter
error terms from the accelerometer biases. With correct parameters, the estimated biases
would be equal to the true sensor biases. Secondly, and most importantly, the Figure
shows that with the calibrated MBR, the biases are reduced for almost all orientations.
They are not equal to zero, probably due to other calibration errors which have not yet
been compensated, but this result still shows the positive effect of this calibration method.

Least Squares Approach Using Optical Measurements We adapted the calibra-
tion in [Kim and Golnaraghi, 2004] which uses pose information from an optical tracking
system as ground truth. [Kim and Golnaraghi, 2004] estimates biases, gains and axes
misalignments for a triad of gyroscopes and accelerometers. We use this approach to
estimate the transformation only because biases, gains and misalignments have already
been compensated for by the accelerometer calibration.

The marker positions are determined by triangulation:
Cmi =Cp + BCq ∗ Bmi ∗ BCq−1

=Cp + BCq ∗ Bd ∗ BCq−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Cr

+ (BCq ∗MBq)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶MCq

∗Mmi ∗ (BCq ∗MBq)−1

Cr is the origin of the marker frame in camera coordinates and MCq is the Marker-body
rotation. Cr and MCq are determined by one of the solutions of the Absolute Orientation
Problem (see Section 3.1.2.2), in our case by Walker’s method [Walker et al., 1991].

We differentiate the Marker-Camera quaternion to get the angular velocity:

MC q̇ =BC q̇ ∗MBq = 1

2
BCq ∗ ω ∗MBq

=1

2
MCq ∗MBq−1 ∗ ω ∗MBq

⇔ ω =2MBq ∗MCq−1 ∗MC q̇ ∗MBq−1

and we differentiate ω to get ω̇:

ω̇ =2MBq ∗ (MCq−1 ∗MC q̈ −MCq−1 ∗MC q̇ ∗MCq−1 ∗MC q̇) ∗MBq−1

=2MBq−1 ∗MCq−1 ∗ (MC q̈ −MC q̇ ∗MCq−1 ∗MC q̇) ∗MBq
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The position Cr is now derived twice to obtain the acceleration:

C r̈ =C p̈ + BCq ∗ (ω × (ω × Bd) + ω̇ × Bd) ∗ BCq−1

=CG +MCq ∗MBq−1 ∗ (a + ω × (ω × Bd) + ω̇ × Bd) ∗MBq ∗MCq−1

⇔ a =MBq ∗MCq−1 ∗ (C r̈ − CG) ∗MCq ∗MBq−1 − ω × (ω × Bd) − ω̇ × Bd

We have now expressed ω and a as functions of the measured optical position and
orientation and their derivatives and of the transformation (Bd,MBq).

The rotation MBq has been determined in the previous Section and does not need to
be re-estimated here. In this case, the equation for the specific acceleration is linear in
Bd and can be written as

([ω]×[ω]× + [ω̇]×)Bd = −a +MBq ∗MCq−1 ∗ (C r̈ − CG) ∗MCq ∗MBq−1

This equation is written for each frame. We obtain an overdetermined linear system which
will be of rank 3 if ω and ω̇ are different from zero and vary from frame to frame. The
solution of this system will give the translation vector Bd.

The necessary IMU and optical measurements are obtained from a calibration routine
during which the Sensor Unit is moved in front of the stereo camera rig. The optical
measurements give Cr and MCq. The accelerometer measurements are "calibrated" (i.e.
biases, gains and misalignments are compensated for) to give a for each frame.

This calibration procedure yielded the following translation vector:

Bd =
⎡⎢⎢⎢⎢⎢⎣

6.0429
−4.6087
9.5305

⎤⎥⎥⎥⎥⎥⎦
mm

5.4.4.3 Final Sensor Unit Model

The marker coordinates in Body coordinates after calibration read:

Bmi = MBRMmi + Bd

with

MBR =
⎡⎢⎢⎢⎢⎢⎣

0.9950 0.0277 0.0959
−0.0292 0.9995 0.0146
−0.0954 −0.0173 0.9953

⎤⎥⎥⎥⎥⎥⎦
and

Bd =
⎡⎢⎢⎢⎢⎢⎣

6.0429
−4.6087
9.5305

⎤⎥⎥⎥⎥⎥⎦
mm
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which gives

[Bm1
Bm2

Bm3
Bm4] =

⎡⎢⎢⎢⎢⎢⎣

−31.1281 46.9800 33.5022 −118.9256
−68.0422 −70.3373 72.0986 76.5428
−44.2353 −51.7264 −52.5117 −39.9018

⎤⎥⎥⎥⎥⎥⎦
mm .
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Chapter 6

Conclusion

Dans cette thèse, nous avons présenté un système de tracking qui utilise des capteurs
optiques et inertiels pour déterminer la position et l’orientation d’une Sensor Unit. Le
tracking a une grande bande passante d’au moins 200Hz et un petit temps de latence.

Le système permet de suivre un outil à main dans un système de chirurgie assistée par
ordinateur. Grâce au tracking, l’outil peut être asservi pour rester dans un plan ou sur
une trajectoire.

Le cœur du système est un algorithme de fusion de données qui intègre les données
des différents capteurs pour déterminer la position et l’orientation de la Sensor Unit. Il
a une grande bande passante car il tourne à la fréquence élevée des capteurs inertiels. Le
filtre repose sur une approche directe utilisant des données brutes pour réduire le temps de
calcul et il prend en compte les symmétries du système.

L’implémentation en temps réel avec un dispositif expérimental avec des caméras et
des capteurs inertiels a permis de montrer que le tracking optique-inertiel peut en effet
suivre un objet en mouvement avec une grande bande passante. Nous suggérons plusieurs
améliorations pour les versions futures du dispositif expérimental.

In this work, we presented an optical-inertial tracking system. It consists of two
stationary cameras and a Sensor Unit with optical markers and an inertial measurement
unit. This Sensor Unit is attached to the object being tracked.

The tracking system was developed with an application in a computer-assisted surgery
system in mind. The goal is to track a handheld tool and to servo-control it to make it
stay in a desired plane or make it move along a desired trajectory. The fact of using the
tracking for servo-control introduces two main requirements which are not met by the
optical tracking systems currently used for computer-assisted surgery. The system has
to have a high bandwidth of at least 200Hz and a low latency, i.e. the delay between
a measurement and the tracking output has to be small. Our optical-inertial tracking
system meets these requirements. Optical tracking systems used today have a bandwidth

135



Chapter 6. Conclusion

of 60Hz. Faster systems exist but are too expensive for applications in computer-assisted
surgery. Even if the cost for faster systems were to be reduced in the future, an optical-
inertial tracking system like the one we propose would always be less expensive due to
the low cost of the inertial sensors. Also, the use of inertial sensors has the advantages of
improving disturbance rejection which is important for servo-control.

The heart of the optical-inertial tracking system is the data fusion algorithm which
integrates data from the different sensors, that is optical data from the cameras and
inertial data from accelerometers and gyroscopes. It uses a mathematical model of the
system dynamics and output. The algorithm runs at the inertial sensor frequency of
200Hz or more which ensures high-bandwidth tracking. In order to reduce latency, we
propose a direct approach using sensor data directly in the filter without any previous
computations and we also present algorithms taking into account system symmetries and
thereby reducing the computational complexity. They are called Right-Invariant and
Left-Invariant Extended Kalman Filters. This low-latency approach presents the most
important distinction of our system from others presented in the literature.

Calibration of individual sensors and of the optical-inertial setup is important for
the system performance. Since the inertial sensors are used to provide high-bandwidth
information, they have to be correctly calibrated because the tracking depends solely on
the inertial data and the system model between two optical measurements. Determination
of the relation between optical markers and the IMU in the Sensor Unit also turned out
to be crucial to the system performance. We proposed a novel method to determine the
rotation between the optical markers and the IMU using estimations from our data fusion
algorithm.

To test the proposed data fusion algorithms, we developed an experimental setup with
images sensors from the Wiimote and an IMU. Sensor data was read by a microcontroller
at 50Hz from the cameras and at 250Hz from the inertial sensors. The algorithms were
implemented in Simulink and executed in real time with an xPC Target application. To
evaluate the performance, estimations from the optical-inertial system were compared
to resolver measurements from a linear rail and to optical tracking. Experiments with
movements executed by the linear rail show that our system can track the movements
correctly and with a high bandwidth.

In the future, the experimental setup would have to be improved to make a more
accurate evaluation possible. The cameras would have to be replaced by more performing
ones which can see more than four points and would thus be able to track more than
one object. In the final application, the handheld tool has to be tracked relative to the
patient, requiring at least two rigid bodies with optical markers attached to the patient.
In the OrthoPilot [Aesculap AG, 2011], for example, three rigid bodies are currently used:
on attached to the tibia, on to the femur and one which can be fixed to the foot or to
an instrument. The size of the Sensor Unit could also be reduced because it is currently
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needlessly large. In order to provide real-time tracking, the data transmission speed should
be increased.

Ultimately, the goal is to test the tracking system with a servo-controlled tool in order
to evaluate its performance.
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Capteur de mouvement intelligent
pour la chirurgie prothétique naviguée

Résumé: Nous présentons un système de tracking optique-inertiel qui consiste en deux
caméras stationnaires et une Sensor Unit avec des marqueurs optiques et une centrale
inertielle. La Sensor Unit est fixée sur l’objet suivi et sa position et son orientation sont
déterminées par un algorithme de fusion de données. Le système de tracking est destiné à
asservir un outil à main dans un système de chirurgie naviguée ou assistée par ordinateur.
L’algorithme de fusion de données intègre les données des différents capteurs, c’est-à-dire les
données optiques des caméras et les données inertielles des accéléromètres et gyroscopes.
Nous présentons différents algorithmes qui rendent possible un tracking à grande bande
passante avec au moins 200Hz avec des temps de latence bas grâce à une approche directe
et des filtres dits invariants qui prennent en compte les symétries du système. Grâce à
ces propriétés, le système de tracking satisfait les conditions pour l’application désirée. Le
système a été implémenté et testé avec succès avec un dispositif expérimental.
Mots clés: fusion de données optiques-inertielles, filtrage de Kalman, observateurs non-
linéaires, chirurgie assistée par ordinateur, outil à main asservi

Smart motion sensor
for navigated prosthetic surgery

Abstract: We present an optical-inertial tracking system which consists of two stationary
cameras and a Sensor Unit with optical markers and an inertial measurement unit (IMU).
This Sensor Unit is attached to the object being tracked and its position and orientation
are determined by a data fusion algorithm. The tracking system is to be used for servo-
controlling a handheld tool in a navigated or computer-assisted surgery system. The
data fusion algorithm integrates data from the different sensors, that is optical data from
the cameras and inertial data from accelerometers and gyroscopes. We present different
algorithms which ensure high-bandwidth tracking with at least 200Hz with low latencies
by using a direct approach and so-called invariant filters which take into account system
symmetries. Through these features, the tracking system meets the requirements for being
used in the desired application. The system was successfully implemented and tested with
an experimental setup.
Keywords: optical-inertial data fusion, Kalman filtering, nonlinear observers, computer-
assisted surgery, servo-controlled handheld tool
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