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Abstract

The contribution of this thesis is in providing a tractable framework for solving the product

rollover problem subject to an uncertain approval date and in determining the optimal strategy

to remove a product from the market and introduce a new one. We present our research work in

the form of three papers evolving around the product rollover problem from optimization under

risk for a constant demand case, to the optimization of the expected net loss for a time depen-

dent product demand rate, and finally optimization under an unknown probability distribution

using the data-driven approach.

Shorter product life cycles and rapid product obsolescence provide increasing incentives to in-

troduce new products to markets more quickly. As a consequence of these rapidly changing

market conditions, firms focus on improving their new product development processes to reap

the advantages of early market entry. Researchers have analyzed market entry, but have rarely

provided quantitative approaches for the product rollover problem. This research builds upon

the literature by using established optimization methods like the Conditional Value at Risk and

the data- driven optimization approach to examine how firms can minimize their net losses dur-

ing the rollover process. Specifically, our work explicitly optimizes the timing of removal and

introduction of old and new products, respectively, the optimal strategy, and the magnitude of

net losses.

In the first paper of the thesis, we use the conditional value at risk to optimize the net loss
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and investigate the effect of risk perception of the manager on the rollover process. We apply

CVaR minimization to a product rollover problem with uncertain regulatory approval date and

compare it to the minimization of the classical expected net loss. Results show that the optimal

strategy is dependent on the parameters (costs and prices) and/or probability distribution of the

approval date and risk. We derive conditions for optimality and unique closed-form solutions

for single and dual rollover cases. Furthermore, we present the variation of optimal costs and

solutions under different probability distribution families. Many possibilities extensions and

directions for research exist, such as, optimizing with respect to a distribution free regulatory

approval date, or for different products and lifecycles, and rollover for time-dependent demand.

In the second paper, we investigate our rollover problem, but for a time-dependent demand

rate for the second product trying to approximate the Bass Model. This is a more realistic set-

ting than the first paper where we use to examine the effect on product entry timing decisions.

Finally, in the third paper, we apply the data-driven approach to the product rollover problem

where the probability distribution of the approval date is unknown; rather we have historical

observations of approval dates. We develop the optimal times of rollover and the show superior-

ity of the data-driven method over the conditional value at risk in the case when it is difficult to

guess the probability distribution.
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Introduction de Nouveaux Produits dans la Supply Chain : Optimisation et Man-

agement des Risques

Intérêt et question de recherche

Aujourd’hui les consommateurs cherchent les produits les plus récents et ayant des

goûts très variés. Avec l’accélération technologique, les cycles de vie des produits se

sont raccourcis et donc, de nouveaux produits doivent être introduits au marché plus

souvent et les anciens doivent être progressivement retirés.

L’introduction d’un nouveau produit est une source de croissance et d’avantage con-

currentiel. Les directeurs du Marketing et Supply Chain se sont confrontés à la question

de savoir comment gérer avec succès le remplacement de leurs produits et d’optimiser

les coûts de la chaîne d’ approvisionnement.

Dans une situation idéale, la procédure de rollover est efficace et claire: l’ancien pro-

duit est vendu jusqu’à une date prévue où un nouveau produit est introduit. Dans la

vie réelle, la situation est moins favorable. Une étude de sociétés américaines sur les bi-

ens de consommation durable a montré que, pour plusieurs raisons, plus de cinquante

pourcent de nouveaux produits n’ont pas réussis après avoir été introduis sur le marché

car les lancements des produits se sont confrontés à de nombreuses perturbations de

type potentiel aléatoire, comme des retards inattendus ou de logistique industrielle, les

problèmes de qualité, les mauvais prévisions de demande, la réaction inattendue des

marchés à l’annonce de ces nouveaux produits, etc. ..

La façon d’introduire de nouveaux produits en retirant progressivement les anciens

est devenue un problème reconnu dans la gestion. Si la production de l’ancien pro-
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duit est arrêtée trop tôt, c’est à dire avant que le nouveau produit ne soit suffisamment

disponible sur le marché, l’entreprise perd des profits et d’écart d’acquisition. D’autre

part, si la production du produit existant est arrêtée trop tard, l’entreprise connaîtra un

coût d’obsolescence pour le produit existant, parce que la demande et/ou le prix aurait

diminué et ce produit sera considéré par les clients comme "ancienne génération". En

outre, si la production du nouveau produit est lancée trop tôt, l’entreprise connaîtra un

coût de mise à disposition des stocks jusqu’à ce que le marché se tourne vers ce produit.

Le processus de lancement ou d’introduction d’un nouveau produit dans le marché et

la suppression d’un ancien est dénoté par product rollover.

Une question importante dans la gestion du lancement d’un nouveau produit est de

savoir si les deux générations du produit doivent coexister sur le marché pour un temps

donné et de savoir s’il y a un chevauchement de quelque sorte dans l’inventaire des

produits successifs. Dans ce travail, nous nous concentrons sur trois stratégies fonda-

mentales du product rollover:

- Planned Stockout Rollover

- Single Rollover

- Dual Rollover

Pour la stratégie du Planned Stockout Rollover (Voir Figure 1), l’introduction du nouveau

produit est prévue de telle sorte qu’il y a une rupture de stock durant la transition au

nouveau produit. Au cours de cette période de rupture de stock, aucun produit n’est

disponible pour le marché (ce qui aboutit à une sorte de coût de rupture de stock).
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Figure 1: Politique du Planned Stockout Rollover

Suivant la stratégie du Single Rollover, le nouveau produit est introduit et simultané-

ment l’ancien produit est retiré du marché, alors nous avons en tout moment un seul

produit disponible dans le marché.

D’autre part, la stratégie du Dual Rollover (Voir Figure 2) consiste à ce que le nouveau

produit soit introduit d’abord, puis l’ancien produit est retiré. Ainsi, dans ce contexte,

deux générations du produit coexistent sur le marché pour une certaine durée.

L’avantage de la stratégie du Dual Rollover, comparée à la celle du Planned Stock-

Figure 2: Politique du Dual Rollover

out Rollover est que la première assure une certaine ’protection’ contre des événements

aléatoires (délais, qualité, niveau de la demande du marché) qui affectent l’élimination
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prévue de l’ancien produit. L’inconvenient de la politique du Dual Rollover est le coût

additionnel correspondant à l’inventaire supplémentaire de la chaîne d’ approvision-

nement.

Le but de notre travail est d’analyser et de caractériser l’optimalité de chaque type de

stratégie avec une date de disponibilité stochastique pour l’introduction du nouveau

produit sur le marché. Nous considérons une approche quantitative: une telle analyse

nécessite un modèle d’évaluation de performance.

Notre modèle de départ est inspiré du modèle de Hill et Sawaya (2004). En résolvant

le problème d’optimisation associé, nous présentons les conditions d’optimalité pour

les trois politiques : Planned Stockout, Single, et Dual Rollover.

Pour résoudre le problème d’optimisation, nous utilisons dans notre première article

deux mesures de minimisation: le coût moyen et le coût du Conditional Value at Risk

(CVaR). Le CVaR est une mesure du risque efficace largement pris en compte dans

la littérature de finance. C’est un critère de risque assez récent qui a émergé comme

présentant tout à fait des propriétés théoriques intéressantes. On obtient des solu-

tions en forme explicite pour les politiques optimales. En outre, nous caractérisons

l’influence des paramètres de coûts sur la structure de la politique optimale. Dans cet

esprit, nous analysons aussi le comportement de la politique de rollover optimale dans

des contextes différents (plus grande variance etc..).

Dans notre deuxième article, nous examinons le même problème mais avec une de-

mande constante pour le premier produit et une demande linéaire au début puis con-

stante pour le deuxième. Ce modèle est inspiré par la demande de Bass. Dans notre

troisième article, la date de disponibilité du nouveau produit existe mais elle est in-
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connue. La seule information disponible est un ensemble historique d’échantillons

qui sont tirées de la vraie distribution. Nous résoudrons le problème avec l’approche

data-driven est nous obtenons des formulations tractables. Nous développons aussi des

bornes sur le nombre d’échantillons nécessaires pour garantir qu’avec une forte prob-

abilité, le coût n’est pas très loin du vrai coût optimal.

Cadre conceptuel : le management du Product Rollover

Figure 3: Les Trois Articles de la Recherche

Plusieurs articles ont traité la question de la gestion efficace du lancement de nou-

veaux produits, et le retirement de l’ancien. Une première tendance de recherche sur le

développement de nouveaux produits est principalement de nature qualitative et de-

scriptive (voir Krishnan et Ulrich(2002)) dans les domaines de marketing et de gestion

des opérations.

Chryssochoidis et Wong (1998) ont étudié d’un point de vue empirique l’ensemble du

processus dans un grand nombre d’entreprises. Cette recherche présente les causes es-

sentielles de retard dans le rollover des produits dans un environnement international.

Saunders et Jobber (1994) identifient les différents types de stratégies et de chevauche-
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ment dans une application de rollover. Certains facteurs clés sont exposés et associés à

l’efficacité de chaque stratégie.

Plusieurs articles ont porté sur l’analyse de l’introduction de nouveaux produits et

selon différentes hypothèses et de différents points de vue. Erhun et al (2007) ont menu

une étude qualitative sur les différents pilotes touchant les transitions de produits chez

Intel Corp. Ils présentent un cadre qui guide les gestionnaires à concevoir et à mettre en

oeuvre des politiques appropriées en tenant compte des risques de la transition liée au

produit, les processus de fabrication, les caractéristiques chaîne d’approvisionnement,

et les politiques de gestion dans un environnement concurrentiel. Les auteurs sug-

gèrent que les entreprises doivent élaborer des stratégies claires pour le lancement de

produits, pour ne pas risquer son échec. Ils comparent les stratégies du planned stock-

out et du dual rollover. La politique du planned stockout rollover peut être considérée

d’un risque élevé très sensible au potentiel des événements aléatoires. Au contraire, la

politique du dual rollover est moins risquée, mais aboutit à des coûts plus élevés de

stocks.

Hendricks et Singhal (1997) ont démontré par une recherche empirique que le retard

dans le lancement de nouveaux produits diminue la valeur marchande de l’entreprise.

Certains articles portent sur la modélisation quantitative et l’optimisation des proces-

sus de renversement.

Lim et Tang (2006) ont développé un modèle déterministe qui permet la détermina-

tion des prix de produits nouveaux et anciens ainsi que les dates d’introduction et

d’élimination de ces produits. En outre, ils mettent au point des conditions du coût

marginal pour déterminer dans quels cas la politique du dual rollover est plus favor-

able que celle du planned stockout rollover.
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Hill et Sawaya (2000) ont examiné un problème de planification et d’élimination de

l’ancien produit et l’introduction d’un nouveau qui va le remplacer, en vertu d’une

date d’approbation réglementaire incertaine pour le nouveau produit. Ils présentent la

structure de la politique optimale.

Un problème très simple a été analysé dans le travail de Ronen et Trietsch (1993) où

il examine la question de trouver la date de départ pour une activité dans un envi-

ronnement aléatoire. Les modèles de risque sensibles à l’inventaire, la modélisation et

la gestion de la chaîne d’approvisionnement ont été proposés dans quelques papiers.

Tang (2006) présente des modèles quantitatifs divers pour la gestion des risques de la

chaîne d’approvisionnement. La plupart d’articles de recherche essayent de maximiser

un profit cible prédéterminé, mais ca peut introduire un risque haut.

Design de recherche et méthode CVaR et résultats

En général, la modélisation des risques a constitué un domaine de recherche impor-

tant dans la finance. Une façon moderne de prendre en compte le risque consiste à se

concentrer sur le déficit, grâce à une absolue liée à la perte tolérable ou en définissant

une borne sur la valeur à risque conditionnel. Les propriétés théoriques de la mesure

de la valeur à risque ont été largement étudié (voir Rockafellar et Uryasev 2000,2002).

Ozler et al. (2009) utilisent la Value at Risk (VaR) comme mesure de risque dans

un cadre de newsboy avec multi-produits sous une contrainte de VaR. Le Value at Risk

(VaR) est la perte maximale sur un horizon donné qui ne devrait être dépassée qu’avec

une probabilité donnée. La VaR est toujours accompagnée du degré de confiance (en

général 95 % ou 99 %) et de l’horizon (en général 1, 3, 5, 10 ou 30 jours). Contrairement
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Figure 4: VaR vs CVaR

à la VaR, la " Conditional Value at Risk " (CVaR) nommée aussi " Expected shortfall "

est une mesure de risque cohérente.

La Value at Risk est sans doute l’outil le plus utilisé pour mesurer et contrôler les

risques financiers, mais cette méthode connait des limites dans les situations de risque

extrême. D’autre part, la VaR ne signale rien sur les pertes effectives en cas de dépasse-

ment. Ces pertes peuvent être bien plus élevées que le prévoit une VaR normale, en

raison de queues de distribution épaisses des rendements. D’autres mesures de risque

ont donc été proposées, notamment la VaR conditionnelle ou la CVaR.

La CVaR mesure justement les pertes en dépassement de la VaR. C’est une mesure

cohérente du risque. En outre, l’optimisation de portefeuille sous contrainte de CVaR

se résous facilement par des méthodes de programmation linéaire, ce qui n’est pas le

cas de la VaR (en l’absence de propriété de convexité).

La VaR n’est pas la mesure de risque parfaite. Comme toute mesure, la VaR n’a pas de
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précision absolue et même parfois, elle n’est pas pratique. Il faut néanmoins préciser

que la VaR a ses inconvénients. Il peut être judicieux de déterminer d’autres mesures

de risque telle la Conditional Value-at-Risk (CVaR), appelée aussi Expected Shortfall.

L’alternative à la VaR est le CVaR.

Le CVaR est en effet une mesure cohérente du risque, contrairement à la VaR, car elle

respecte le critère de sous-additivité. Le principe de diversification est donc satisfait,

ce qui n’est pas le cas de la VaR : en effet, la VaR globale d’un portefeuille peut être

supérieure à la somme des VaR des sous-portefeuilles qui le composent.

Les conditions sur les paramètres et la politique optimale pour le coût moyen sont

présentées dans Tableau 1 avec des exemples dans Tableau 2. Par contre, pour le CVaR

il y a plusieurs tableaux et conditions pour les politiques optimales du problème qui

dépend sur la géométrie de la perte et des coûts.

Demande de Bass

Nous procédons notre travail à résoudre une autre version du problème. Le Modèle

de diffusion Basse pour les ventes de nouveaux produits a été présenté par Bass (1969).

Depuis sa publication en Management Science, ce modèle a été cité plus de 600 fois

et il est considéré comme l’un des modèles les plus remarquables pour les nouveaux

produits de prévision. En fait, la majorité des recherches sur les nouveaux produits

durables ont porté sur le processus de diffusion.

Ce modèle a été initialement développé pour les biens durables. Cependant, le modèle

se révèle applicable à une catégorie plus large de produits et services tels que les pro-

duits B2B, les services de télécommunications, les équipements, les semi-conducteurs,
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Figure 5: Modéle de Bass

les produits médicaux, les autres produits technologiques et les services.

La communication est un facteur d’influence essentiel du décollage des ventes. La

théorie de la diffusion représente l’adoption d’un nouveau produit à partir de la diffu-

sion de l’information. Deux types d’informations sont représentés d’après Bass (1969):

l’information dans les médias de masse et le bouche à oreilles. Ces deux types d’informations

limitent l’incertitude des consommateurs associée au nouveau produit. Le bouche

à oreilles ne pouvant être contrôlé et ne représentant pas une variable d’action pour

les firmes, nous nous intéressons uniquement à la politique publi-promotionnelle. De

plus, la représentation du bouche à oreille et de la communication impersonnelle est

liée à la notion de pénétration du marché déjà abordée plus haut.

Les actions publi-promotionnelle apportent une certaine visibilité au produit et infor-

ment les consommateurs sur le nouveau produit. En effet, la publicité dans les mé-

dias de masse (télévision, affichage, Ě.) permet une visibilité importante et touche la

grande majorité de la population cible. Elle permet de dévoiler les attributs objectifs

du nouveau produit comme la couleur, le poids, la taille, la puissanceĚ (Kalish 1985).
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Ainsi, l’ensemble des actions de communication a un effet accélérateur du décollage

des ventes.

De nombreuses études présentent les paramètres dans diverses industries, des valeurs

moyennes de q et p pour les biens durables se sont avérés comme suit : p = 0.03, q

= 0.38. Christophe Van den Bulte (Lilien et al.,2000) a construit une base de données

de 1586 ensembles de paramètres p et q. Les nouveaux produits qui ont connus une

croissance sont ceux de divertissement par exemple, ceux qui ont généralement une vie

courte, qui sont très saisonniers, et dont le lancement sur le marché est parfois précédé

par la publicité excessive et de la communication marketing.

Nous voulons examiner le problème du rollover avec une demande de Bass pour le

nouveau produit, mais ce problème était trop complexe et c’était impossible de trouver

des solutions explicites ou des conditions d’optimalités. Nous avons décidé d’utiliser

une demande linéaire par morceaux, où la demande du nouveau produit augmente

linéairement puis devient constante.

Design de recherche et méthode d’Optimisation Data-Driven et résultats

Le plus souvent, les modèles et algorithmes d’aide à la décision supposent implicite-

ment que les données d’entrée soient connues de manière exacte. Pourtant, la plu-

part des problèmes rencontrés en pratique peuvent difficilement être traitées dans ce

cadre. Le désir de tenir compte d’incertitudes sur les données d’entrée d’un problème

d’optimisation n’est pas nouveau mais ce thème de recherche reste l’un des plus ac-

tifs jusqu’aujourd’hui, et a connu récemment un fort intérêt pour une grande variété

d’applications. Il est clair que quand la distribution de probabilité n’est pas connue,

il est impossible d’utiliser la méthode CVaR. Divers modèles ont été proposés pour
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rendre compte de manière aussi satisfaisante que possible d’incertitudes sur la distri-

bution.

Nous proposons une approche data-driven au problème du rollover avec une date

d’admission incertaine.Nos résultats numériques sont très encourageants. Notre méth-

ode est caractérise par

- le travail direct avec les données historiques

- les solutions robustes qui intègrent les préférences de risque en utilisant un paramètre

scalaire, plutôt que des fonctions d’utilité

- les solutions explicites sous closed-form

La question de maximiser le profit en présence d’une date d’admissibilité incertaine

pour la gestion des rollovers n’a pas reçu assez d’attention dans la littérature quanti-

tative, et a été traité sous l’hypothèse que la distribution de la date d’admissibilité est

connue et que le décideur est neutre au risque.

La volatilité de la date d’admissibilité de la plupart des produits n’est pas connue et il

est difficile d’obtenir des distributions précises. Scarf (1958) suggère que nous pouvons

avoir des raisons de soupçonner que la future demande dans le problème de newsboy

proviendra d’une distribution différente des observations historiques. Cette imprévis-

ibilité constitue une incitation forte pour le décideur de mettre en oeuvre des solutions

robustes qui donneront de bons résultats pour un large éventail de résultats de la de-

mande réelle, ou dans notre cas la date de l’admissibilité.

La question de l’imperfection de l’information a été traitée dans le passé en supposant

que seulement les deux premiers moments sont connus. En 1958, Scarf a dérivé la quan-

tité optimale de commande pour le problème de newsboy classique avec une moyenne

et une variance données, et son travail a été poursuivi par Gallego et. al. (2001). Toute-
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fois, une telle méthode est fondée sur l’estimation correcte des deux moments mais

manque le lien fort aux préférences des risques, qui dans la pratique joue un rôle clé

dans le choix de la solution du problème.

Les préférences du risque ont été considéré par Lau (1980) qui tient compte de deux

critères alternatifs: l’espérance d’utilité et la probabilité de parvenir à un certain profit.

Plus récemment, Eeckhoudt et al.(2007) ont revisité le cadre fondé sur l’utilité espérée.

Cependant, il est difficile en pratique d’articuler l’utilité.

L’approche que nous utilisons ici s’écarte de ces cadres dans deux grands points:

- entièrement piloté par les données, en ce sens que nous construisons directement sur

l’échantillon de données disponibles au lieu d’estimer les distributions de probabilité.

- repose sur un paramètre scalaire intégré dans le modèle de robustesse. Ce paramètre

correspond ici à un quantile pré-spécifiée. Dans ce cadre, la valeur de la variable aléa-

toire est déterminée par le calcul de la perte attendue de moins que le quantile. Le

décideur se concentre sur une évaluation plus prudente de son perte que celui fourni

par une approche devrait-valeur, mais est capable d’adapter le degré de prudence en

choisissant le facteur de correction approprié.

L’approche garde la convexité des problèmes lorsque la fonction de perte est convexe.

Nous développons notre modèle dans un cadre d’un seul rollover sous horizon infini.

Cette méthode est bien adapté pour les problèmes statiques et dynamiques et elle a

un lien fort avec l’attitude du décideur à l’égard des risques. De même, elle peut être

appliquée dans de nombreux domaines, y compris la gestion de stock et l’optimisation

de portefeuille.
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Conclusion et piste de future recherches

L’objet de ce travail est d’étudier le problème du product rollover avec une date in-

certaine d’admission pour le nouveau produit dans plusieurs contextes. On présente

trois articles avec une synthèse de la littérature qui illustre ce problème. Malgré l’intérêt

des entreprises au product rollover, il n’y a pas encore de recherches qualitatives ap-

profondies dans ce domaine. Amélioration du marketing-coordination des opérations

est largement considérée comme une occasion pour améliorer les performances des

entreprises. Un besoin important pour le marketing-opérations de coordination est la

planification et l’introduction de nouveaux produits où un produit existant est sup-

primé et un produit de remplacement est progressivement introduit. Ce problème

est particulièrement important dans le contexte de la fabrication ou il y a une date

d’admission incertaine pour les nouveaux produits. La thèse a formulé cette classe de

product rollover comme un problème d’optimisation stochastique. Les articles dévelop-

pés présentent des solutions optimales et uniques ainsi que les politiques optimales du

rollover. Des expressions en closed-form ont été développées afin de rendre les résul-

tats faciles à mettre en oeuvre. Notre étude a plusieurs limitations. Le modèle ignore les

mesures concurrentielles qui pourraient influer la demande pour le nouveau produit

si le nouveau produit est introduit plus tard que le produit du compétiteur. Toutefois,

les demandes pour l’admission de produits sont parfois des informations publiques. Il

est donc favorable que l’entreprise anticipe la réaction du marché et de la concurrence

et prend cela en considération dans le modèle. Dans certaines situations, les anciens

et nouveaux produits partagent certaines machines et la capacité de production peut

être limitée. Nous pouvons encore utiliser notre modèle, cependant, l’affirmation des

capacités devrait être considérée dans le processus de back-ordering. Dans cette thèse,

la demande est supposée constante ou linéaire par morceaux pour chaque produit.
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Les délais de livraison des produits, les rendements d’approvisionnement, les délais et

les rendements de fabrication sont également supposés être déterministe. Un modèle

de simulation stochastique peut être mis en oeuvre pour explorer ces questions. Nous

avons proposé une approche robuste au problème du rollover qui construit directement

sur les données historiques, sans exiger aucune estimation de la distribution de prob-

abilité. Cette approche intègre la robustesse grâce à un paramètre scalaire unique qui

peut être ajusté pour atteindre un niveau approprié de protection contre l’incertitude.

Par ailleurs, le cadre data-driven présenté dans cette thèse est relié à la théorie des

préférences de risque. Nous avons pu dériver les propriétés structurelles des solutions

optimales, et ces expressions ont fourni des informations précieuses sur les politiques

optimales.
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CHAPTER 1

Introduction

1.1 Overview

The thesis addresses the product rollover problem under an uncertain approval date.

The results presented here are based on the research performed during my five years

of doctoral studies at HEC. This chapter will provide background and motivation for

solving this problem and discuss the objectives, methodology, and scope of the work

presented in the remainder of the thesis.

1.1.1 Background and Motivation

Today, product development and introduction to the market are strategic issues for

companies. Product life cycles have become short due to technological advancement,

and thus, new products have to be introduced and old products phased out frequently.

This relatively rapid new product development process can be viewed by a company

as a competitive weapon with the underlying cost trade-off. Consider a company that

must plan the phase-out of an existing product and the phase-in of a replacement prod-

uct. If production of the existing product is stopped too early, i.e., before the new prod-

uct is available for the market, the firm will lose profit and customer goodwill. On the

other hand, if production of the existing product is stopped too late, the firm will ex-
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CHAPTER 1: INTRODUCTION

perience an obsolescence cost for the existing product, because demand and/or price

would have decreased as this product can be considered "old generation". Further-

more, if the production of the new product is started too early, the firm will experience

an inventory carrying cost until the market will turn to this product since it needs to

fill in the pipeline to launch sales (Hill and sawaya (2004)).

As new products appear in the market, many old products could become obsolete,

and hence, they should be phased out. The process of launching or introducing a new

product in the market place and the removal of an old one is known as product rollover.

Classically, there are two rollover strategies: single-product and dual-product rollover.

In the single-product rollover strategy, there is a simultaneous introduction of the new

product and elimination of the old product, i.e., at any time there is a unique product

generation available in the market. On the contrary, in the dual-product rollover strat-

egy, the new product is introduced first and then the old product is phased out. Thus,

in this setting, two product generations coexist in the market, for a given time length.

Several papers have addressed the analysis of new product introduction and product

rollover processes, under different assumptions and from various viewpoints. Krish-

nan and Ulrich (2002) present an excellent review of product development decisions

encompassing work in marketing, operations management, and engineering design.

Erhun et al (2007) conduct a qualitative study on different drivers affecting product

transitions at Intel Corp., and they design a framework that guides managers to design

and implement appropriate policies taking into consideration transition risks related

to the product, manufacturing process, supply chain features, and managerial policies

in a competitive environment.
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Cohen et al (1996) analyzed performance trade-off for new product development pro-

cesses. In particular, they proved that it is more favorable to use the faster speed of

improvement to develop a better product rather than to develop a product faster, con-

tradicting conventional practice concerning the dominance of incremental over signif-

icant improvements in product enhancements.

Saunders and Jobber (1994) study different strategies for the simultaneous deletion and

introduction of new products and claim that launch and deletion strategies should be

synchronized and that rapid launch strategies should be accompanied by rapid dele-

tion, whereas low price launches should be accompanied by even lower priced dele-

tions.

Billington et al (1998) argue that there has been a low success rate for product rollovers

and present many cases of companies that have failed in product rollovers due to tech-

nical problems leading to delay in introduction of the new product to the market, ex-

cess old product inventory, bad timing of new product announcement, and overly op-

timistic sales. Furthermore, the authors suggest that companies should have a clear

strategy for product rollover in addition to contingency plans in case their strategy

fails. They compare and contrast single and dual product rollover strategies. They

argue that a single product rollover strategy can be viewed as a high-risk, high re-

turn strategy, sensitive to potential random events. On the contrary, the dual product

rollover strategy is less risky, but induces higher inventory costs. For complex situ-

ations, the authors argue that in addition to the choice of the best strategy, planners

should develop contingency plans in anticipation of certain events such as competitors

introducing new products, technical problems with the new products, stock-out of old

products, and too much inventory of the new or old product.
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Hendricks and Singhal (1997) go further and investigate the effect of delays in new

product introductions on the market value of the firm. The results of their study indi-

cate that the stock market reacts negatively to delayed product introduction, and that

on average, delayed introductions decrease the market value of the firm. Some papers

develop quantitative models for the product rollover analysis. Lim and Tang (2006)

developed a deterministic model that allows for the determination of prices of old and

new products and the times of phase-in and phase-out of the products. Moreover, they

developed marginal cost based conditions to determine when a dual product rollover

strategy is more favorable than a single rollover one.

Hill and Sawaya (2004) examine the problem of simultaneously planning the phase-

out of the old product and the phase-in of a new one that will replace the old product,

under an uncertain regulatory approval date for the new product. Furthermore, they

exhibit the structure of the optimal policy for an expected profit objective function.

In their setting, the manufacturing and procurement lead-times for these products are

significant, making it necessary to commit to the planning date before the earliest ap-

proval date. The new product is not available for sale until the distribution channel is

filled with a minimal number of units. The old product is sold until the firm runs out

of inventory or until it is replaced by an approved new product. The firm’s policy is

to scrap all old product units immediately when an approved new product is available

for sale. The fundamental structure of the problem, namely planning a starting date

for an activity in a random setting, can be linked to the well known newsboy problem.

A very simple setting has been analyzed in the paper of Ronen and Trietsch (1993).

We examine the product rollover under risk. In general, risk modeling has constituted

an important research stream for years. In particular, a modern way to take into ac-

count the risk consists of focusing on shortfall as in Scaillet (2000). This can be done
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through an absolute bound on the tolerable loss or by setting a bound on the condi-

tional value at risk as in Artzner et al (1997, 1999). The latter has become a very popular

tool in finance.

The conditional value at risk, denoted as CVaR, was introduced in Artzner et al (1997)

to remedy several shortcomings of the more familiar value at risk approach. The CVaR

measure of risk has very interesting theoretical properties and possesses the attractive

feature of being computationally tractable (see Rockafellar and Uryasev (2000, 2002)),

in particular, in the framework of stochastic programming. Setting an upper bound

constraint on CVaR is often imposed by financial institutions and is thus very relevant

in the supply chain context. Risk-sensitivity models in inventory modeling and supply

chain management have been proposed in a few papers.

In the real world, managers and planners are not satisfied by maximizing profit only,

and rather they may be concerned with other objectives such as trying to attain a pre-

determined target profit as much as possible. Yet, such a criterion may result in inad-

equately large losses. To reduce such a loss, Lau (1980),inspired by Markowitz (1952),

proposed to minimize the standard deviation of the profit. Yet, profit above some tar-

get level is not regarded as a risk to be hedged, but rather additional gain. To minimize

a downside risk measure capturing a risk of the profit going down to some target level

is more interesting than the other risk measures such as the standard deviation, and in

the newsboy framework literature, many researchers consider minimizing such down-

side risk measures as alternatives to the expected profit maximization.

Tang (2006) provides a review of various quantitative models for managing supply

chain risks, yet presents no literature that directly discusses product development and

in particular product rollover under an uncertain regulatory approval date. Most in-
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ventory related papers try to maximize a predetermined target profit, and that may

lead to an increased risk.

Supply chain literature has shown the importance of incorporating a risk measure in

inventory management problems, such as Gallego and Moon (1993) who use the max-

min approach to determine the optimal order quantity in a newsboy problem. The

maxmin approach is considered as an extremely conservative or pessimistic approach

to taking decisions in which one evaluates all the minimum possible returns associated

with different decisions and selects the decision yielding maximum value of minimum

returns. In their research, they derive the maximin order quantity when only the mean

and the variance of the demand variable are known. Thus, in this method, the or-

dering decisions are based on the worst case within the considered family of demand

variables, which often may not reflect real-life demand situations as mention Bertsimas

and Thiele (2005).

Parlar and Weng (2003) consider the expected profit in place of the fixed target. These

objectives are very intuitive, but the related optimization problems have no convex

structure, and accordingly, they are very tough to handle for general distribution func-

tions. Besides, these models seek higher profit, whereas a possibility of suffering great

loss is not considered.

On the other hand, Bogataj and Hvalica (2003) use a tradeoff between the expected

value criterion and maxmin, others focus on discounted cash flow methodologies such

as Luciano and Pecatti (1999), Grubbstro and Thorstenson (1986), and Koltai (2006).Cash

flow-oriented models are useful when a time lag exists in the model, i.e., a time lag be-

tween starting production of a product and the transportation of the product, or in

other words the delay,(Dyckhoff H. et al. (2003)). Chen et al (2005) analyze risk aver-
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sion inventory problems comparing risk measures and expected utility optimization.

Ahmed et al (2007) derive the structure of the solution of coherent risk measure op-

timization for the newsboy loss function.This method is a unified treatment of risk

averse and minimax inventory models, the latter objective dealing with minimising

worst-case consequences. Borgonovo and Peccati (2006) discuss sensitivity analysis of

inventory management models when uncertainty in the input parameters is given full

consideration.

Ozler et al (2008) utilize Value at Risk (VaR) as a risk measure in a newsboy framework

and investigate the multi-product newsboy problem under a VaR constraint.This for-

mulation does not take into account the risk of earning less than a desired target profit

or losing more than an acceptable level due to the randomness of demand. VaR is a

popular measure of risk representing the percentile of the loss distribution with a spec-

ified confidence level.Furthermore, when analyzed with scenarios, VaR is non-convex

as well as non-differentiable, and hence, it is difficult to find a global minimum via con-

ventional optimization techniques. Alternatively, Conditional VaR (CVaR), introduced

by Rockafellar and Uryasev (2000) allows the determination of optimal solutions and

conditions in a relatively easier way.

Gotoh and Takano (2007) solve the newsboy problem by considering the minimization

of the conditional value at risk (CVaR), a preferred risk measure in financial risk man-

agement and develop unique closed form solutions due to the convexity of the CVaR.

In the supply chain context, van Delft et al (2004) used a CVaR criterion approach in

a stochastic programming model aimed at evaluating option purchasing contracts in a

risk management perspective. Chen et al (2009) study the newsvendor model under

the CVaR criterion for additive and multiplicative demand models, and provide suffi-
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cient conditions for the existence and uniqueness of the optimal policy.

The CVaR is a downside risk used in financial risk management, in the single-period

newsboy situation. The CVaR enjoys preferable properties that are induced from some

axiomatization of rational investors’ behavior under uncertainty and, thus, they are

meaningful also to a manager who faces uncertain profit/loss situation as in the news-

boy problem. In particular, the consistency with the stochastic dominance implies that

minimizing the CVaR never conflicts with maximizing the expectation of any risk-

averse utility function (Ogryczak and Ruszczynski, 2002). On the other hand, some

researchers directly treat the risk aversion through the newsboy’s utility function (Eeck-

houdt et al., 1995). In practice, utility function is, however, too conceptual to identify

and, thus, the use of risk measures has advantage over that of utility functions.

Moreover, the lower partiality of the CVaR plays an important role in preserving the

concavity of the profit or, equivalently, the convexity of the cost. In financial portfolio

management as in Rockafellar and Uryasev (2002), the return from an asset portfolio is

often represented as a linear function of the portfolio, which is to be determined. This

is why the standard deviation results in a convex quadratic function. On the contrary,

the profit in the newsboy problem is a non-linearly concave function of the order quan-

tities. Consequently, minimizing the standard deviation of the profit may turn into a

non-convex optimization, though many researchers introduce it in order to capture the

profit variation (Lau, 1980) and develop a CAPM by following the modern portfolio

theory (Anvari, 1987).

CVaR preserves the concavity of the profit function by virtue of its lower partiality, and

the resulting risk minimization becomes a convex program. By making use of such a

nice structure, we use the CVaR measure and achieve analytical results of the CVaR
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minimizations and thus we are able to find interesting properties of the solutions. The

tractability makes the CVaR minimization into a basic tool for more advanced analysis

of the risk-averse newsboy problems.

In this thesis, we develop a risk-sensitivity optimization approach for product rollover

in a stochastic setting. Namely, we consider a Conditional Value at Risk (CVaR)-type

objective function in a product rollover problem under an uncertain approval and

where both products have a constant demand rate. Such an uncertain date can corre-

spond to the situation where the replacement product requires an external or an inter-

nal approval decision before being sold in the market, as in Hill and Sawaya (2004).We

believe our study to be the first that applies a risk-sensitiv optimization model in a

stochastic product rollover problem. This approach is important for product rollover

situations concerning key products for a company, and for which the risk issue has

to be explicitly considered (see Billington et al (1998) for practical examples). In our

methodology, we use analytical models which are tractable, yet capture important fac-

tors influencing decision making. In particular, we give explicit closed-form expres-

sions for the optimal policies.

Intuition may lead to the hypothesis that, in product rollover stochastic settings, higher

regulatory approval date variability result in larger variances and in higher costs. This

intuition is correct for many distributions that are commonly used in practice, such as

for the normal distribution function. However, we show that in some cases stochasti-

cally larger or more variable regulatory approval dates may not necessarily result in a

higher optimal cost, because sometimes the variability effects may dominate. On the

other hand, a more variable regulatory approval date always leads to a higher opti-

mal average cost. To characterize these regulatory approval date distributions we use

stochastic dominance relations.
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We proceed with our work and solve another version of the problem where the de-

mand is no longer constant but follows a Bass demand rate. The Bass Diffusion Model

for sales of new products was presented by Bass (1969). Since its publication in Manage-

ment Science, it has been cited over 600 times and is one of the most notable models for

new-product forecasting. It was originally developed for application only to durable

goods. However, the model has proven applicable to a wider class of products and ser-

vices such as B2B products, telecom services, equipment, semiconductor chips, medical

products, and other technology-based products and services.

The Bass model assumes that a population of potential adopters for a new product

is subject to two means of communication: mass- media communication and word-of-

mouth communication. The former affects potential adopters directly, while the later

influences the interaction between customers who already adopted the product as well

as the future potential adopters.

For the Bass demand rate, we can no longer consider a constant inventory and have

to develop a time varying inventory policy that follows the diffusion of the product.

The optimization problem turns into a very complex one where it is not possible to

obtain closed form solutions, therefore we perform different numerical simulations for

different types of products with different life-cycles from durable goods to intertwine-

ment products to services. To simplify our problem, we try to model the demand with a

linearly increasing demand for the second product that becomes constant after a certain

period of time. We develop conditions of convexity and give optimal timing decisions

for product rollover while comparing our model to a constant demand.

We now introduce our third paper. The purpose of this paper is to analyze and charac-
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terize the optimality of each type of strategy (single or dual) for a setting with a stochas-

tic approval date for the new product. Hill and Sawaya (2004) examine the problem of

simultaneously planning the phase-out of the old product and the phase-in of a new

one that will replace the old product, under an uncertain approval date for the new

product. Our problem setting is inspired from their model. In El Khoury et al. (2011),

we assumed that the approval date follows a known probability distribution; in prac-

tice, however, the volatility of the approval approval date makes it difficult to obtain

accurate forecasts of the probability distribution. The assumption that the approval

date distribution is known is unrealistic especially since only partial information about

the approval is available for the manager.

Thus, we adopt a non-parametric data-driven approach where we build directly upon

available historic data samples instead of estimating the probability distributions rely-

ing on a scalar parameter to incorporate robustness in the model which corresponds to

a pre-specified quantile of the cost. The random variable is determined by computing

the expected cost above that quantile, that is, by removing (trimming) the instances

of the cost below the quantile and taking the average over the remaining ones. The

fraction of data points removed will be referred to as the trimming factor that deter-

mines the degree of conservatism. This is a one-sided trimming approach studied by

Bertsimas et. al. (2004) and Thiele (2004).The only information available is a set of in-

dependent samples drawn independently from the true approval date distribution, but

the true distribution is unknown to the manager.This approach was first proposed by

Thiele (2004) where she applied it to different variances of the newsboy problem. The

importance of this method is the tractability and the possibility of formulating unique

closed-form solutions for problems that are convex and piecewise linear.

To our knowledge, this is the first work that addresses the product rollover problem
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under uncertainty using a data-driven optimization approach. In fact, approval date

distributions are very hard to model and often the manager has only historical obser-

vations. We derive theoretical insights into the optimal strategies depending on the

cost parameters and the degree of conservatism chosen by the decision-maker. We also

compare our solutions to the CVaR solutions obtained in our previous work when the

probability distribution is known. The structure of this work is as follows: in Chapters

2, 3, and 4 we present our three papers along with their appendicies and in Chapter 5

we present our findings, conclusions, and propose future research directions.

Figure 1.1: Product Rollover under Uncertainty in Three Different Settings

1.1.2 Research Objectives

Previous work on product rollover has mainly focused on the new product develop-

ment process, such as technology selection and market uncertainty. Researchers usu-

ally try to maximize profits. More recent works have expanded the scope that involve

pricing.

One of the key challenges for managing product rollovers successfully is determining
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times of introduction and removal of products. Our main research question is trying to

develop an optimal rollover strategy so we try to answer timing issues:

When shall we phase out the old product and introduce the new product? Should we phase

out the old product and introduce the new product simultaneously or should we introduce the

new product first and then phase out the old product later on?

Whatever strategy the firm decides to adopt, it has to decide how much of the new

product to stock and how much is the acceptable lost sales to minimize its losses.

We try to answer our research questions in three papers:

Paper 1: Optimal Strategy for Stochastic Product Rollover under risk using CVaR

analysis

We consider an inventory/production rollover process between an old and a new prod-

uct, with a random approval date for the new product. First, we derive closed forms

for the structure of the optimal rollover strategy. Then, we study the impact of uncer-

tainty and of the decision maker’s risk position on the optimal strategy structure and

on the corresponding cost. We analyze theoretically and partially confirm/infirm some

conjectures obtained via empirical research. We illustrate all these results via numerical

examples.

Paper 2: Product Rollover Optimization with an Uncertain Approval Date and Piece-

wise Linear Demand

Consider a company that must plan the phase-out of an existing product and the phase-

in of a replacement product. If production of the existing product is stopped too early,

i.e., before the new product is available for the market, the firm will lose profit and
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customer goodwill. On the other hand, if production of the existing product is stopped

too late, the firm will experience an obsolescence cost for the existing product. In our

paper, we consider a product rollover process with an uncertain approval date for the

new product, and develop the optimal rollover strategies by minimizing the expected

loss. We derive the optimal strategy and dates to remove an old product and to intro-

duce a new one into the market.

Paper 3: Data-Driven Optimization for Stochastic the Product Rollover Problem

We consider an inventory/production rollover process between an old and a new prod-

uct, with a random approval date for the new product. Unlike our previous work, the

approval date distribution, although exists, is not known. Instead the only information

available is a set of independent random samples that are drawn from the true approval

date distribution. The analysis we present characterizes the properties of the approval

date distribution as a function of the number of historic samples and optimization in a

single framework. We present data-driven solutions and incorporate risk preferences

using a scalar parameter and tractable formulations leading to closed-form solutions

based on the ranking of the historical dates, which provide key insights into the role of

the cost parameters and optimal rollover policy. Moreover, we establish bounds on the

number of samples required to guarantee that with high probability, the expected cost

of the sampling-based policies is arbitrarily close (i.e., with arbitrarily small relative er-

ror) compared to the expected cost of the optimal policies which have full access to the

approval date distributions. The bounds that we develop are general, easy to compute

and do not depend at all on the specific approval date distributions. We finally test the

’robustness’ of our solutions though numerical computations.
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1.2 Research Methodology

In this section, we discuss the different methodologies and models used in the three

different papers.

1.2.1 RISK ANALYSIS: Description of the CVaR CRITERION

In order to introduce the impact of risk in the decision process, we consider our prob-

lem in a CVaR-minimization context, an approach mainly developed by Rockafellar

and Uryasev (2000, 2002) who propose the following definition to minimize the loss

with respect to the decision variables t1 and t2

lβ(t1, t2) = min
{α∈R}

{
α +

1
1 − β

E[L(t1, t2, T)− α]+
}

. (1.2.1)

where z+ = max{0, z} and β reflects the degree of risk aversion for the planner (the

larger β is, the more risk averse the planner is).

Hsieh and Lu (2010) study the manufacturer’s return policy and the retailers’ deci-

sions in a supply chain consisting of one manufacturer and two risk-averse retailers

under a single-period setting with price-sensitive random demand. They character-

ize each retailer’s risk-embedded objective via conditional value-at-risk, and construct

manufacturer-Stackelberg games with and without horizontal price competition be-

tween the retailers.

Sawik (2010) studies the optimal selection of supply portfolio in a make-to-order envi-

ronment in the presence of supply chain disruption risks. Given a set of customer or-
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ders for products, the decision maker needs to decide from which supplier to purchase

custom parts required for each customer order to minimize total cost and mitigate the

impact of disruption risks.

Chen et al. (2009) present some convex stochastic programming models for single and

multi-period inventory control problems where the market demand is random and or-

der quantities need to be decided before demand is realized. Both models minimize the

expected losses subject to risk aversion constraints expressed through VaR and CVaR

measures.

Gotoh and Takano (2007) solve the newsboy problem by considering the minimization

of the conditional value at risk (CVaR), a preferred risk measure in financial risk man-

agement and develop unique closed form solutions due to the convexity of the CVaR.

In the supply chain context, van Delft et al (2004) used a CVaR criterion approach in

a stochastic programming model aimed at evaluating option purchasing contracts in a

risk management perspective. Chen et al (2009) study the newsvendor model under

the CVaR criterion for additive and multiplicative demand models, and provide suffi-

cient conditions for the existence and uniqueness of the optimal policy.

Let L(t1, t2, T) be the loss associated with the decision variables t1, t2, and the random

variable T. Let us denote the distribution function of L(t1, t2, T) by

Φ(η|t1, t2) = Pr{L(t1, t2, T) ≤ η}. (1.2.2)

For β ∈ [0, 1), we define the β-VaR of this distribution by

αβ(t1, t2) = min{α|Φ(α|t1, t2) ≥ β}, (1.2.3)

By definition, it can be expected that the loss L(t1, t2, T) exceeds αβ only by (1 − β)×

100%. Rockafellar and Uryasev (2000, 2002) introduce the β-tail distribution function
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to focus on the upper tail part of the loss distribution as

Φβ(η|t1, t2) =

{ 0 for η < αβ(t1, t2),

Φβ(η|t1,t2)−β

1−β for η ≥ αβ(t1, t2).
(1.2.4)

Using the expectation operator Eβ[T] under the β-tail distribution Φβ(·|·, ·), we define

the β-conditional value-at-risk of the loss L(t1, t2, T) by

Eβ[L(t1, t2, T)]. (1.2.5)

To minimize Eβ[L(t1, t2, T)] with respect to the decision variables (here t1 and t2), ac-

cording to Rockafellar and Uryasev (2002) , one can introduce an auxiliary function

lβ(·, ·, ·) defined by

lβ(t1, t2, α) := α +
1

1 − β
E
[
[L(t1, t2, T)− α]+

]
, (1.2.6)

where [Y]+ := max(Y, 0). It is known that lβ(t1, t2, α) is convex with respect to α (see

Rockafellar and Uryasev (2002) ). Also, the minimal value Φβ(t1, t2) can be achieved

by minimizing the function lβ(t1, t2, α) with respect to t1, t2, and α (see Rockafellar and

Uryasev (2002)).

In our setting, this minimization problem is represented by the following convex pro-

gram:

min lβ(t1, t2, α) := α +
1

(1 − β)

∫ ∞

0
[L(t1, t2, T)− α]+ f (T)dT, (1.2.7)

s.t. 0 ≤ t1, t2 ≤ ∞, −∞ ≤ α ≤ ∞. (1.2.8)

1.3 What is the Bass Model and Could we Use it?

Traditionally, diffusion models as Bass (1969) were designed to describe the diffusion

of single-purchase durable goods. However, the driving forces of diffusion, namely the
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combination of external influences and the interaction between customers, are relevant

for other product types as well. In this section, we present some interesting examples

for the market growth of new products in several industries. We will start by durable

goods for which the Bass Model was initially intended, and then we discuss other non-

durable goods with different product life-cycles.

Figure 1.2: Classical Bass Diffusion Model

Though numerous studies have estimated the parameters in various industries, the

average values of q and p for durable goods were found to be pi = 0.03, qi = 0.38. Es-

timation issues are discussed in Bass (1969). Christopher Van den Bulte (Lilien et al.,

2000) has constructed a database of 1586 sets of pi and qi parameters. Figure ( 1.2)

presents the classical Bass model.

The growth of new entertainment products (films, books, and music) usually have a

short life, are highly seasonal, and their market launch is sometimes preceded by mas-

sive advertising and marketing communication, so that customers can decide to adopt

them even prior to launch (Moe and Fader 2002); their distribution is through relatively

19



CHAPTER 1: INTRODUCTION

powerful channels such as exhibitors (theater owners), record stores, and media broad-

casting, which share the revenues with the producers and determine product approval

to consumers (Ainslie, Dreze, and Zufryden, 2005).

Telecommunication products and services are occupying an increasing share of the

world’s economies. Many telecom markets are growing markets; the penetration pro-

cesses of telecom products are interrelated (e.g., penetration of unified messaging ser-

vices depends on penetration of mobile phones); they depend on the existence of in-

frastructures (e.g., Skype depends on broadband penetration); in some products and

services there are network externalities; some services such as mobile services suffer

from fierce competition and high churn rates. Furthermore, the distribution structure

of the telecom industry is complex. A single 3G telephony end-user application de-

pends on hardware and software manufacturers, service providers, compatibility is-

sues, and global infrastructures. Despite the market richness and complexity, telecom

products are mostly treated as if they were durable goods ( Krishnan, Bass, and Kumar,

2000; Jain, Mahajan, and Muller, 1991).

For the Bass demand rate, we can no longer consider a constant inventory and have

to develop a time varying inventory policy that follows the diffusion of the product.

The optimization problem turns into a very complex one.

In our model, the manufacturing and procurement lead-times for our products are

significant, making it necessary to commit to the planning date before the earliest ap-

proval date. The new product is not available for sale until the distribution channel is

filled with a minimal number of units proportional to demand. The old product is sold

until the firm runs out of inventory or until it is replaced by an approved new product.

The firm’s policy is to scrap all old product units immediately when an approved new
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product is available for sale. The fundamental structure of the problem, namely plan-

ning a starting date for an activity in a random setting, can be linked to the well known

newsboy problem. The demand for the old product is constant, whereas the demand of

the new product is initially linearly increasing then constant. In our main model, when

the new product is delayed, all demand for this product is lost and there is inventory

buildup. In another special case, when the new product is delayed, a portion of the

demand is lost whereas another portion is maintained (See Figure 1.3). The portion of

the demand that was not met but maintained is sold immediately after the approval is

granted.

Druehl et Al (2009) argue that delaying a product too long may fail to capitalize on

customer willingness-to pay for more advanced technology in addition to the possibil-

ity that competitors may (further) infiltrate the market, furthermore, sales of existing

product may decline due to market saturation. If a firm introduces too early, it may can-

nibalize the previous generation too quickly, not taking advantage of market growth.

If it waits too long, sales may have slowed considerably as the product has already dif-

fused through the market. If there is not a sufficient base of customers of the innovator

type, then the pace will be slow. But once this base of innovators exists, the pace will

be increased by either innovators or imitators.

In our problem, the market knows the time at which the new product will be intro-

duced. The customer purchases the product if it has been approved by the regulatory

authority where the demand rate is linear and dependent on time. If the product has

not been approved, the demand is lost until the date the approval is given, and the

demand of the new product remains linearly dependent on time.

Hill and Sawaya (2004) examine the problem of simultaneously planning the phase-
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Figure 1.3: New Product Adoption

out of the old product and the phase-in of a new one that will replace the old product,

under an uncertain approval date for the new product. Furthermore, they character-

ize the structure of the optimal policy for an expected profit objective function. Their

setting is similar to ours, when the demand of the new and old products are constant

and when the new product is not available all of the demand is lost. In this paper, we

examine if considering a linearly increasing demand for the new product changes the

optimal strategy or the timing decisions compared to the constant demand examined

in Hill and Sawaya (2004).

In our first paper, we have considered a problem similar to that of Hill and Sawaya

(2004), where demand of both new and old products was constant and where we ex-

amined the rollover problem under expected loss and risk minimization. This was

important to gain insight on the problem at hand, yet, a constant demand does not ap-

ply in real settings where products are subject to a diffusion rate and usually modeled

through the Bass Model. Demand usually increases to reach a peak and then decreases

after the product achieves maturity. In addition, in our first paper, if neither product
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was available in the market we assumed that all the demand was lost. Bass model lit-

erature contradicts this assumption where, when customers ask for a product and it is

not available, not all demand is lost: some customers may be willing to wait at a cer-

tain waiting cost and will later purchase the product when it is available. On the other

hand, some of the customers will choose not to wait and go on to purchase another

product. This decreases lost profit as discussed by Norton and Wilson (1989).

Furthermore, in the first paper we consider the old product demand is equal to the

new product demand and that the demand of the new product is not affected if it is

delayed. Both of those assumptions are violated in real life settings where there is ac-

cumulated inventory and there is a potential market loss when a product is delayed

(Druehl et Al (2009)).

In this paper, we model a more realistic setting where demand increases linearly and

another special case where not all demand is lost in case of delay. While we can model

the old product demand as constant since at the end of the lifecycle of a product, its

demand after decreasing becomes constant (See Figure 1.2). The demand of a new

product usually increases incrementally over time and this has an effect on product

entry timing decisions.

We believe this study to be the first that examines this kind of setting of the product

rollover problem. This approach is important for product rollover situations concern-

ing key products for a company. We try to prove the uniqueness of the optimal solu-

tions and approximate the optimal solutions through Mathematica as it is not possible

to provide analytical closed-form solutions.
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1.4 Unknown Probability Distributions and Data-Driven Op-

timization

In the data-driven approach, the random variable is determined by computing the ex-

pected cost above a certain quantile, that is, by removing (trimming) the instances of

the cost below the quantile and taking the average over the remaining ones. The frac-

tion of data points removed will be referred to as the trimming factor which is in fact

the same as β used in the CVaR method. We are thus able to compare our solutions us-

ing the data-driven approach to the solutions obtained through the CVaR method. In

this paper, we replace our original CVaR objective function with an average-based on

the drawn samples (Thiele 2006). The sampling-based approximated objective is then

minimized.

Suppose that there are N independent samples drawn from the true distribution, la-

beled as T1, ..., TN . The data-driven approach approximates the true distribution with

the empirical distribution that puts a weight of 1, ...N on each of the samples and the

expected cost evaluated under this empirical distribution. We denote the a − quantile

of the approval date T by qa(T) where

qa(T) = in f {t|F(T ≤ t) ≥ a}, (1.4.1)

for any aϵ(0, 1) as have done Levy and Kroll (1978) to describe investor preferences.

We adapt their approach to a cost objective as follows:

Theorem 1: E[U(T1)] ≤ E[U(T2)] for all U decreasing and convex if and only if E[T1|T1 ≤

qa(T1)] ≤ E[T2|T2 ≤ qa(T2)] for any aϵ(0, 1), and we have strict inequality for some a.

Therefore, a strategy chosen to minimize the tail conditional expectation E[T1|T1 ≤

qa(T1)] is non-dominated. Equivalently, minimizing E[T1|T1 ≤ qa(T1)] for a specific a
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guarantees that no other strategy can worsen the value (expected utility) of the ran-

dom variable for all risk-averse planners. Furthermore, this method does not require

any assumptions for the probability distribution of the approval date.

Let N be the total number of observations of T where (T(1), ...T(N)) be those obser-

vations ranked in increasing order (T(1) ≤, ... ≤ T(N)).

Let the trimming factor be the fraction of scenarios that are removed, as β = 1 − a,

and the number of scenarios left after trimming as Nβ = ⌊N(1 − β) + β⌋ so that there

is no trimming at β = 0 (Nβ = N) and that only the worst scenario remains at β = 1

(Nβ = 1).

It follows that the value associated with the random Li(t1, t2, T) is computed by:

1
Nβ

Nβ

∑
k=1

Li(t1, t2, T)(k) (1.4.2)

where L(t1, t2, T)(k) is the kth smallest L(t1, t2, Tj). From Thiele (2004), problem (1.4.2)

becomes

Min
1

Nβ

N

∑
k=1

tkyk (1.4.3)

s.t
N

∑
k=1

yk = Nβ

0 ≤ yk ≤ 1∀k

The feasible set of Eq. 1.4.3 is nonempty and bounded, therefore by strong duality, Eq.

1.4.3 is equivalent to:

min Nβϕ +
N

∑
k=1

ψk (1.4.4)

s.t ϕ + ψk ≥ tk, ∀k

ψk ≥ 0∀k
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Problem (1.4.3) is a convex problem if Li(t1, t2, T) is convex in t1 and t2 , and a linear

programming problem since is piecewise linear Li(t1, t2, T) and ς is a polyhedron.

As the cost functions in our product rollover problem are piecewise linear with linear

ordering constraints, we will be able to derive tractable, linear programming formula-

tions of the data-driven model.

The conditional value at risk (CVaR) is at the core of the data-driven approach, as the

method’s objective is to minimize its sample value over the historical realizations of

the approval date. CVaR at level β refers to the conditional expectation of losses in

the top 100(1 − β)% and refers to the risk perception of the manager. According to the

data-driven approach, the fundamental optimization problem considered here consists

of finding the phase-in and phase-out dates which minimize the worst expected cost,

the associated optimization problem is

min
t1,t2∈R+

1
Nβ

Nβ

∑
k=1

L(t, T)(k). (1.4.5)
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CHAPTER 2

First Paper: Optimal Strategy for

Stochastic Product Rollover under

Risk using CVAR Analysis

Abstract

We consider an inventory/production rollover process between an old and a new product, with a

random approval date for the new product. In absence of risk, this optimization problem consists

in finding the phase-in and phase-out dates to minimize the expected loss. In addition, in this

paper, we characterize, under risk, the rollover decision making and provide explicit closed-form

expressions for the optimal policies. We illustrate all these results via numerical examples and

we provide managerial insights for different cases.

KEYWORDS: Product rollover; Uncertain approval date; Planned stockout rollover

(PSR); Single product rollover (SPR); Dual product rollover(DPR); Risk sensitive opti-

mization criterion; Conditional value at risk (CVaR); Stochastic dominance; Stochastic

comparisons
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2.1 INTRODUCTION

Due to rapid technological development and increased variety demanded by consumers,

product life cycles have shortened. Therefore, new productshave to be introduced and

old products phased out more and more frequently. As new product introduction is a

source of growth, renewal and competitive advantage, decision makers are facing the

issue of how to successfully manage product replacement and optimize the associated

supply chain cost trade-offs. In an ideal setting, the optimal rollover strategy is clear:

the old product is phased out at the planned introduction date of the new product, and

the new product is readily available. Unfortunately, real-life is quite less favorable.

A study of U.S. durable goods companies showed that, for various reasons, more than

50 percent of new products failed after being introduced to the market. These poor

product launch performances are due to numerous potential random disruption in the

process (unexpected logistic or industrial delays, quality problems, bad demand fore-

casts, unexpected market reaction to the new product announcement, etc...). How to

phase in new products while phasing out old ones has become a challenging manage-

rial problem in companies. Obviously, when a company is planning the phase-out of

an existing product and the phase-in of a replacement product, classical stochastic pro-

duction/inventory trade-offs have to be considered. If the production of the existing

product is stopped too early, i.e., before the new product is available for the market,

the firm will lose sales and customer goodwill. On the other hand, if the production of

the existing product is stopped too late, the firm will experience an obsolescence cost

for the existing product, because demand and/or price would have decreased as this

product will be considered "old generation" by the customers. Furthermore, if the pro-

duction of the new product is started too early, the firm will experience an inventory

carrying cost until the market will turn to this product. The process of launching or in-

troducing a new product in the market place and the removal of an old one is known as
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product rollover. In this paper, we focus on three fundamental strategies: rollover with

planned stockout, single-product rollover and dual-product rollover. An important is-

sue in new product launch management is whether two product generations coexist in

the market for a given length of time; in other words, whether there is an overlapping

of some sort in successive product inventory/production/supply chain. In the planned

stockout rollover (PSR) strategy, the introduction of the new product is planned in such

a way that a stockout phenomenon occurs during the product transition. During this

stockout period, no product of any type is available for the market (which induces some

kind of backorder cost). In the single-product rollover (SPR) strategy, there is a simul-

taneous introduction of the new product and elimination of the old product, i.e., at any

time there is a unique product generation available in the market. On the contrary, in

the dual-product rollover (DPR) strategy, the new product is introduced first and then

the old product is phased out. Thus, in this setting, two product generations coexist in

the market, for a given length of time. The advantage of the DPR strategy, with respect

to the SPR policy, is to allow some protection against potential random events (delays,

quality, market demand level) affecting the planned phasing.However, its drawback is

the cost corresponding to the additional supply chain inventory. The purpose of this

paper is to analyze and characterize the optimality of each type of strategy (PSR, SPR

and/or DPR) for a setting with a stochastic approval date for the new product. As we

consider a quantitative approach, such an analysis requires a performance evaluation

model for the supply chain rollover process between two successive products. We pro-

vide a newsboy type planning/inventory model for the rollover process between two

successive products. Our starting model is inspired from Hill and Sawaya (2004). By

solving the associated optimization problem, we exhibit the optimality conditions for

PSR, SPR or DPR. As product rollovers occur in stochastic settings, different rollover

strategies exhibit different properties w.r.t. the risk (i.e., cost or profit variability). Ef-

ficient risk measure and optimization is a complex issue, extensively considered in
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finance research literature. A somewhat recent risk criterion, called conditional value

at risk and usually denoted as CVaR, has emerged as exhibiting quite interesting theo-

retical properties and the attractive feature of being computationally tractable (see for

example Rockafellar and Uryasev ([30, 31])). Our CVaR model captures the risk issue in

the rollover decision making and provides explicit closed-form expressions for the op-

timal policies. Furthermore, we characterize the influence of the parameters of the set-

ting on the optimal policy structure (namely the different type of costs, the magnitude

of the randomness, the manager appetite w.r.t. the risk). We are able to formally prove

several conjectures or observations concerning optimal structures reported in other pa-

pers, obtained by empirical research. Along this line, we also analyze the behavior of

the optimal rollover policy in response to stochastically larger approval process.

2.2 Literature Review

Several papers have addressed the question of efficient management of new product

launch, old product destruction/salvage/scrap/liquidation and/or combination of the

two processes. A first trend of papers about new product development and launch

is mainly of qualitative and descriptive nature (see [23] for a review, encompassing

work in marketing, operations management, and engineering design). Chryssochoidis

[10, 11] has studied from an empirical point of view the whole process in a large num-

ber of companies. This research exhibits critical causes of delay in international prod-

uct rollover implementation. Saunders and Jobber [33] identify the different types of

strategies and overlapping when implementing a phase-in phase-out process. Several

papers have addressed the analysis of new product introduction and product rollover

processes, under different assumptions and from various viewpoints. Erhun et al ([12])

conduct a qualitative study on different drivers affecting product transitions at Intel

Corp., and they develop a framework that guides managers to design and implement

appropriate policies taking into consideration transition risks related to the product,
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manufacturing process, supply chain features, and managerial policies in a competi-

tive environment. The authors suggest that companies should develop clear strategies

for product rollover, in addition to contingency plans in case of failure. They com-

pare and contrast single and dual product rollover strategies. They argue that a single

product rollover strategy can be viewed as a high-risk, high return strategy, sensitive

to potential random events. On the contrary, the dual product rollover strategy is less

risky, but it induces higher inventory costs. Hendricks and Singhal ([18]) have shown

by empirical research that delays in new product introductions decrease the market

value of the firm.

Some papers address quantitative modeling and optimization of rollover processes.

Lim and Tang ([25]) developed a deterministic model that allows for the determina-

tion of prices of old and new products and the times of phase-in and phase-out of

the products. Moreover, they developed marginal cost based conditions to determine

when a dual product rollover strategy is more favorable than a single rollover one. Hill

and Sawaya ([19]) examine the problem of simultaneously planning the phase-out of

the old product and the phase-in of a new one to replace the old product, under an

uncertain regulatory approval date for the new product. Furthermore, under a usual

expected profit criterion, they exhibit the structure of the optimal policy. The funda-

mental structure of the problem, namely planning a starting date for an activity in a

random setting, can be linked to the well known newsvendor problem. A very simple

setting has been analyzed in the paper of Ronen and Trietsch ([32]). In our paper, we

develop explicit closed-form expressions for the optimal policies.

Risk-sensitivity models in inventory modeling and supply chain management have

been proposed in a few papers. Tang ([38]) provides a review of various quantitative

models for managing supply chain risks. Most inventory-related papers maximize a
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predetermined target profit; yet that may lead to an increased risk. In general, risk

modeling has constituted an important research stream in finance. A way to take into

account the risk consists of focusing on shortfall, through an absolute bound on the tol-

erable loss or by setting a bound on the conditional value at risk. Theoretical properties of

the CVaR measure of risk has been extensively studied (see for example [30, 31]). In in-

ventory theory, some papers have adapted standard results to such risk criterion. Ozler

et al ([29]) utilize Value at Risk (VaR) as a risk measure in a newsboy framework and

investigate the multi-product newsboy problem under a VaR constraint. Some papers

([8, 17]) developed closed form solutions due for a CVaR newsboy problem.

2.3 The product rollover evaluation model

In this section, we will define the product rollover problem and introduce the different

notation and assumptions.

2.3.1 Stochastic rollover process and profit/cost rates

The problem context requires a production plan for the phase-out of an existing prod-

uct (hereafter called old product, or product 1) and phase-in of a replacement product

(called new product or product 2) under an uncertain (internal or external) approval date,

denoted T, for the new product delivery. A typical example for such approval decisions

are those of medical devices and pharmaceutical products which cannot be sold until

an approval body grants permission. Two decision variables have to be fixed in such a

rollover process: t1, the date the firm plans to phase out the old product and t2, the date

the new product is planned to be ready and available for the market. The existing prod-

uct is sold until the firm runs out of inventory or until it is replaced by the approved

new product. The manufacturing and procurement lead times are assumed to be large,

thus making it necessary to commit to the planning dates before the random approval
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date is revealed. Therefore, the decision process relies exclusively on the probabil-

ity distribution of this date T. Such large procurement/manufacturing/distribution

lead-times are frequent in practice: for instance, the regulatory affairs department in

a medical device firm uses a forecast interval for the approval date that is longer than

6 months. During their regular commercial life span, each product has a specific con-

stant demand rate, namely d1 and d2. A channel inventory is needed to support each

product in the market, which induces carrying inventory cost rates ch,1 and ch,2. During

the commercial life, the contribution-to-profit rate for product i, is defined as

mi = di(pi − ci)− ch,i, (i = 1, 2), (2.3.1)

with pi the selling price and ci the production cost.

Furthermore, in the considered random setting, the profit/cost structure, defined over

an infinite time horizon, depends on the relative values of t1, t2 and T. Indeed, if the

strategy t1 ≤ t2 is chosen, the structure of the profit/cost rates is given in Figure 2.1,

Figure 2.1: the profit rates when t1 ≤ t2

As shown in Figure 2.1, there are three main cases to be considered.

Case 1: T ≤ t1, Here, the profit rate is m1 over the time interval [0, T[. Then, if t1 ≤ T ≤

t2, the new product is approved, but not yet physically available in the supply chain.

As the market is assumed to be informed that the new product 2 will soon substitute

product 1, the product 1 profit rate changes from m1 to m′
1 as long as product 1 is
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available, i.e., over [T, t1[. This contribution rate m′
1 is formally given by

m′
1 = d′1(p′1 − c1)− ch,1. (2.3.2)

Then, over the interval [t1, t2[, when the old product is sold out, shortages occur until

new product 2 delivery date t2, at a corresponding shortage cost rate g. Once the new

product is available, at t2, the profit rate becomes m2 over the remaining time horizon

[t2, ∞[. Then, if t2 ≤ T, the profit/cost rates are similar to the previous situation, except

over the interval [t2, T[, where the new product is physically available in the supply

chain, but still not approved. A shortage cost rate g occurs until new product 2 is ap-

proved. In addition, an inventory cost rate ch,2 associated with the product 2 physical

inventory is incurred.

If the strategy t2 ≤ t1 is chosen, the structure of the costs and profit rates is given

in Figure 2.2. First, let us consider the instance where T < t2. The profit rate is m1 over

the time interval [0, T[ and m′
1 over [T, t2[. Then, over the time interval [t2, t1[, as the

new product is approved and physically available, it is sold with a profit rate m2. How-

ever, in the current setting, it is assumed that the firm immediately scraps, at a cost rate

s1, all the remaining inventory of product 1 when an approved product 2 is available

for sale, i.e., over the time interval [T, t1]). This is justified by the higher margins for

product 2 and by the need to maintain brand equity as a leading-edge provider. Finally,

over the remaining time horizon [t1, ∞[, the profit rate becomes to m2.

Case 2: t2 ≤ T ≤ t1 Here, the profit rate is m1 over [0, t2[. Then over the interval

[t2, T[, the profit rate is still m1, but as the new product is physically available in the

supply chain, but not approved for sale, an inventory cost rate ch,2 is incurred. Over

the remaining horizon starting at T, the new product is sold with a profit rate m2. In

the time interval [T, t1[, the old product is scrapped at a cost rate s1 while over the re-

maining time horizon [t1, ∞[, the profit rate becomes to m2.
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Figure 2.2: the profit rates when t2 ≤ t1

Case 3: t1 ≤ T The profit rate is m1 over [0, t2[. Then, over the interval [t2, t1[ the

profit rate is still m1, but an inventory cost rate ch,2 has to be incurred. Over [t1, T[, the

old product is phased out and the new product is not yet approved. Thus, this cre-

ates shortages and a shortage cost rate g is incurred. Finally, over the remaining time

horizon [T, ∞[, the profit rate reverts to m2.

2.3.2 Model Notation

For this rollover optimization model, we adopt the following notation. For each prod-

uct type i ∈ {1, 2}, we define

ci : the unit cost for product i,

pi : the unit price for product i,

pi − ci : the gross margin for product i,

di : the demand rate for product i,

mi : the contribution-to-profit rate for product i, defined as mi = di(pi − ci)− ch,i,

g : the shortage cost rate when the firm has neither of the products to sell,

m′
1 : the new contribution-to-profit rate of product 1 after the admissability of product
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2 is granted; this value is externally given,

ch,i : the carrying cost rate for product i,

s1 : the scrap cost rate for product 1.

Furthermore, we denote

T : the random approval date for the new product (i.e., for product 2). This random

variable has a density probability function f (·) and an associated probability distribu-

tion function F(·), both defined over [0, ∞[.

The decision variables are,

t1 : the planned run-out date for inventory of the existing product (i.e., product 1),

t2 : the planned approval date for the new product (i.e., product 2).

2.3.3 The Global Optimization Criterion

Hill and Sawaya ([19]) solve this problem by maximizing, over the maximal approval

date horizon, the contribution to profit, which is the sum of the contribution to profit for

products 1 and 2 minus the scrap loss for product 1, the carrying cost for both products,

and lost goodwill during the time the firm cannot sell either product. The approval date

is the unique random variable of the problem. We consider a performance criterion de-

fined as the difference between the profit, under complete information about approval

date, and the profit when the approval date is random and known exclusively through

its probability distribution. This performance criterion is defined as follows:

In order to set up the optimization model, let us consider two cases:

Case 1: Availability of perfect information about the approval date

In this case, the regulatory date is known before the decisions t1 and t2 are made. This

situation is depicted in Figure 2.3. In this ideal setting, the optimal strategy is clear :

t1 = t2 = T, i.e., the old product is phased out at the planned introduction date of the
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Figure 2.3: Full information case

new product, corresponding to the regulatory date. Over the time interval [0, T[, the

profit rate is m1, while on the remaining horizon [T, ∞], the profit rate is m2.

Case 2: The approval date is random and only known through its probability dis-

tribution

In order to characterize the impact of randomness on the rollover process, we consider

an objective function defined as the difference between the perfect information cost rate

function (Figure 2.3) and the cost rates functions with imperfect information (Figures

2.1 and 2.2). This difference can be interpreted as the loss caused by the randomness

of the approval date T. Formally, according to the description given above, these loss

functions are piecewise linear and exhibit different structures, depending on the rela-

tive values of the decision variables t1 and t2. If the planned stock-out strategy t1 ≤ t2

is chosen, the loss rate function is denoted as L1(t1, t2, T) and amounts to

L1(t1, t2, T) = (m′
1 − m2)(t1 − T) + (−m2 − g)(t2 − t1) if 0 ≤ T ≤ t1,

(−g − m1)(T − t1) + (−g − m2)(t2 − T) if t1 ≤ T ≤ t2,

(−g − m1)(t2 − t1) + (−g − m1 − ch,2)(T − t2) if t2 ≤ T,

= (m1 + g)[T − t1]
+ − (g + m′

1)[t1 − T]+

+ ch,2[T − t2]
+ + (m2 + g)[t2 − T]+, (2.3.3)

where [Y]+ := max(Y, 0). If the dual rollover strategy t2 ≤ t1 is chosen, the loss func-
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tion is denoted as L2(t1, t2, T) and is given by

L2(t1, t2, T) = (m′
1 − m2)(t2 − T)− s1(t2 − t1) if 0 ≤ T ≤ t1,

−ch,2(T − t2)− s1(t1 − T) if t1 ≤ T ≤ t2,

−ch,2(t2 − t1)− (g + m1)(T − t1) if t2 ≤ T,

= (m2 − m′
1 − s1)[t2 − T]+ + ch,2[T − t2]

+

+ (m1 + g)[T − t1]
+ + s1[t1 − T]+. (2.3.4)

If we formally introduce the two regions, R1 = {(t1, t2) ∈ IR+ × IR+ : t1 ≤ t2} and

R2 = {(t1, t2) ∈ IR+ × IR+ : t1 ≥ t2}, the piecewise loss rate functions can be rewritten

as

L(t1, t2, T) = Li(t1, t2, T) if (t1, t2) ∈ Ri (i = 1, 2). (2.3.5)

with

L1(t1, t2, T) = (m1 + g)[T − t1]
+ − (g + m′

1)[t1 − T]+

+ch,2[T − t2]
+ + (m2 + g)[t2 − T]+ (2.3.6)

L2(t1, t2, T) = (m2 − m′
1 − s1)[t2 − T]+ + ch,2[T − t2]

+

+(m1 + g)[T − t1]
+ + s1[t1 − T]+, (2.3.7)

On the boundary between regions R1 and R2, i.e., for Rb = {(t1, t2) ∈ IR+ × IR+ : t1 =

t2}, the expression of the objective function is obtained from (2.3.6) and/or (2.3.7) as

Lb(t, T) = (m2 − m′
1)[t − T]+ + (m1 + g + ch,2)[T − t]+. (2.3.8)

2.3.4 Parameter Assumptions

We introduce some assumptions for the different parameters. These assumptions are

as follows. First the contribution-to-profit rate for the products under regular sales is

positive, i.e.,

m1, m2 > 0. (2.3.9)
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Furthermore, for product 1, the contribution-to-profit rate under regular sales is greater

than the contribution to the profit per period after the new product 2 is available, i.e.,

m1 ≥ m′
1. (2.3.10)

In order to avoid cases for which it would be optimal to delay infinitely the new prod-

uct launch, we assume

m2 ≥ m′
1. (2.3.11)

Finally, as for any classical inventory problem, we assume,

g, ch,2, s1 > 0. (2.3.12)

2.4 Formulation of the stochastic product rollover problem

In absence of risk, the classical optimization problem considered here consists of find-

ing the phase-in and phase-out dates which minimize the expected loss. This formu-

lation will be developed in the first subsection. However, the main objective of this

paper is also to characterize the rollover decision making, under risk, and provide ex-

plicit closed-form expressions for the optimal policies. This formulation is given in the

second subsection.

2.4.1 Minimization of the expected loss function problem

The associated optimization problem is

min
(t1,t2)∈IR+×IR+

l(t1, t2) = EF[L(t1, t2, T)], (2.4.1)

where EF[.] is the expectation operator w.r.t. the probability distribution F(·) for the

random approval date T. Due to the structure of the cost function given in (2.3.5), we

introduce the following auxiliary subproblems, for i = 1, 2,

min
(t1,t2)∈Ri

li(t1, t2) = EF[Li(t1, t2, T)], (2.4.2)
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these function given as

l1(t1, t2) = (m1 + g)EF[T − t1]
+ − (g + m′

1)EF[t1 − T]+

+ ch,2EF[T − t2]
+ + (m2 + g)EF[t2 − T]+, (2.4.3)

l2(t1, t2) = (m2 − m′
1 − s1)EF[t2 − T]+ + ch,2EF[T − t2]

+

+ (m1 + g)EF[T − t1]
+ + s1EF[t1 − T]+, (2.4.4)

and the boundary problem,

min
t∈IR+

lb(t) = EF[Lb(t, T)], (2.4.5)

with

lb(t) = (m2 − m′
1)EF[t − T]+ + (m1 + g + ch,2)EF[T − t]+. (2.4.6)

Structural properties of this problem

Solving problem (2.4.1) is not straightforward: indeed, it can be seen that for some pa-

rameter values the objective function is not convex over the definition set IR+ × IR+.

However, we show here that the objective function of each subproblem (2.4.2) is uni-

modal (or convex) and differentiable when defined over IR+ × IR+ (or over IR+ for the

boundary function lb(·)). We show how these properties can be used to develop op-

timality conditions for the solution of the initial problem (2.4.1). The following prop-

erties characterize these unimodality/convexity properties and associated optimality

conditions.

PROPERTY 1: Under assumption (2.3.10), the loss functions L1(·, ·, T) and l1(·, ·) are

strictly jointly convex over R+ × R+.

Proof. See Appendix A-1.

PROPERTY 2: If

m′
1 < −g and (m2 + g)(m1 + g) < −ch,2(g + m′

1), (2.4.7)
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then the minimum of the loss function l1(t1, t2) over region R1 is in the interior of region R1

and the optimal solution of problem (2.4.1) is given by

t∗1 = F−1
(

m1 + g
m1 − m′

1

)
, t∗2 = F−1

(
ch,2

m2 + ch,2 + g

)
. (2.4.8)

Otherwise, the minimum of the loss function l1(t1, t2) over region R1 is on the boundary of R1

and the optimal solution of problem (2.4.1) is given by

t∗1 = t∗2 = F−1
(

m1 + ch,2 + g
m2 − m′

1 + m1 + ch,2 + g

)
. (2.4.9)

The solutions given in Property 2 are unique since l1(t1, t2) is strictly jointly convex

over R+ × R+, as given in Property 1.

2.4.2 Dual Product Rollover

For an expected value minimization objective and dual rollover strategy, the associated

optimization problem is

l2(t1, t2) = min
t1,t2∈R+

{
E[L2(t1, t2, T)]

}
, (2.4.10)

s.t. t1 ≥ t2. (2.4.11)

To solve the problem given in (2.4.10), we derive the following properties:

PROPERTY 3: The loss function L2(·, ·, T) is strictly jointly convex over R+ × R+ under

the assumption m2 − m′
1 − s1 + ch,2 > 0.

COROLLARY 3.1: The loss function l2(t1, t2) is strictly jointly convex over R+ × R+ un-

der the assumption m2 − m′
1 − s1 + ch,2 > 0.

PROPERTY 4: If

m2 − m′
1 − s1 + ch,2 > 0 and s1(m1 + g + ch,2) < (m1 + g)(m2 − m′

1), (2.4.12)
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then the minimum of the loss function l2(t1, t2) over region R2 is in the interior of the region

R2 and the optimal solution of problem (2.4.10) is given by

t∗1 = F−1
(

m1 + g
m1 + g + s1

)
, t∗2 = F−1

(
ch,2

m2 − m′
1 + ch,2 − s1

)
. (2.4.13)

Otherwise, the minimum of the loss function l2(t1, t2) over region R2 is on the boundary of R2

and the optimal solution of problem (2.4.10) is given by

t∗1 = t∗2 = F−1
(

m1 + ch,2 + g
m2 − m′

1 + m1 + ch,2 + g

)
. (2.4.14)

The solutions given in Property 4 are unique since l2(t1, t2) is strictly jointly convex

over R+ × R+, as given in Corollary 3.1.

2.4.3 CVaR Reformulation of the Optimal rollover problem

In order to introduce the impact of risk aversion in the decision process, we consider

our problem in a CVaR-minimization context (see [30, 31]). In this section, we exhibit

the CVaR reformulation of the rollover optimization problem, we give the correspond-

ing analytical expression for the optimal solutions, and we analyze the impact of risk-

aversion on the selected rollover policy.

Conditional Value at Risk formulation

For a given probability distribution F(·) associated with the random approval date T,

let us denote the probability distribution function of the loss function L(t1, t2, T) by

LF(η|t1, t2) = Pr{L(t1, t2, T) ≤ η}. (2.4.15)

For β ∈ [0, 1), we define the β-VaR of this distribution by

αβ(t1, t2) = min{α|LF(α|t1, t2) ≥ β}. (2.4.16)

It is now possible to introduce the β-tail distribution function to focus on the upper tail

part of the loss distribution as

LF,β(η|t1, t2) =

{ 0 for η < αβ(t1, t2),

Lβ(η|t1,t2)−β

1−β for η ≥ αβ(t1, t2).
(2.4.17)
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Using the expectation operator Eβ[·] under the β-tail distribution LF,β(·|·, ·), we define

the β-conditional value-at-risk of the loss L(t1, t2, T) by

l̃β(t1, t2) = Eβ[L(t1, t2, T)]. (2.4.18)

Finding the optimal rollover structure and the corresponding values for the phase-in

and phase-out dates, which minimize the CVaR cost criterion amounts to the optimiza-

tion problem

min
(t1,t2)∈IR+×IR+

l̃β(t1, t2) =

{
Eβ[L(t1, t2, T)]

}
. (2.4.19)

According to [30, 31], it is known that the minimization of Eβ[L(t1, t2, T)] with respect to

the decision variables t1 and t2, amounts to the minimization of the auxiliary function

lβ(t1, t2, α) := α +
1

1 − β
EF

[
[L(t1, t2, T)− α]+

]
. (2.4.20)

It is known that lβ(t1, t2, α) is convex with respect to α (see [30, 31]). According to the

specific structure of the loss function (2.3.3)-(2.3.4), it is natural to associate to (2.4.20) a

pair of auxiliary functions

lβ,i(t1, t2, α) =

{
α +

1
1 − β

EF[Li(t1, t2, T)− α]+
}

, (2.4.21)

and an auxiliary function on the boundary,

lβ,b(t1, t2, α) =

{
α +

1
1 − β

EF[Lb(t, T)− α]+
}

. (2.4.22)

Structural properties of the CVaR Problem

The optimal solution structure is essentially determined by concavity/convexity char-

acteristics of these functions (2.4.21)-(2.4.22) in the regions R1 and R2.

PROPERTY 5: The CVaR loss functions lβ,1(·, ·, ·) and lβ,2(·, ·, ·) are differentiable over

R+ × R+ × R+. The CVaR loss function lβ,b(·, ·) is differentiable over R+ × R+.

(see Appendix D).
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PROPERTY 6: Under assumption (2.3.10), the CVaR loss function lβ,1(·, ·, ·) is strictly

jointly convex on R+ × R+ × R+.

PROPERTY 7 : Under the assumption m2 ≥ m1 ≥ m′
1, for 0 ≤ β < 1 values satisfying

m′
1 < βm1 − g(1 − β), and (2.4.23)

m′
1 < −g (2.4.24)

the CVaR-loss function lβ,1(·, ·, ·) has a unique finite minimum over R+ × R+ × R+

corresponding to

t∗,r
β,1,1 = F−1

(
(m1 + g)(1 − β)

m1 − m′
1

)
, (2.4.25)

t∗,r
β,2,1 =

(
m1 + ch,2 + g
m2 + ch,2 + g

)
F−1

(
ch,2 + β(m2 + g)

m2 + ch,2 + g

)
+

(
m2 − m1

m2 + ch,2 + g

)
F−1

(
ch,2(1 − β)

ch,2 + m2 + g

)
, (2.4.26)

Proof. (see Appendix B-1).

PROPERTY 8 : Under the assumptions m1 > m2 ≥ m′
1, m′

1 < −g, and m2 −m1 + ch,2 > 0

for 0 ≤ β < 1 values satisfying

m′
1 < βm1 − g(1 − β) and (2.4.27)

m2 < m1 − ch,2(1 − β), (2.4.28)

the CVaR-loss function lβ,1(·, ·, ·) has a unique finite minimum over R+ × R+ × R+

corresponding to,

t∗,r
β,1,1 =

(
m2 − m′

1
m1 − m′

1

)
F−1

(
(m1 + g)(1 − β)

m1 − m′
1

)
+

(
m1 − m2

m1 − m′
1

)
F−1

(
m1 − βm′

1 + g(1 − β)

m1 − m′
1

)
, (2.4.29)

t∗,r
β,2,1 = F−1

(
m1 + g + ch,2β

m2 + g + ch,2

)
. (2.4.30)

Proof.(see Appendix B-2).

PROPERTY 9.: Under the assumption m2 − m′
1 − s1 + ch,2 > 0, the CVaR-loss function

lβ,2(·, ·, ·) is strictly jointly convex over R+ × R+ × R+.
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Proof. It is a known result that if L2(·, ·, T) is convex for any fixed value T, then the CVaR

minimization leads to a convex problem (see [30, 31]). Convexity of L2(·, ·, T) over

R+×R+ was previously proved in Property 3 under assumption m2 −m′
1 − s1 > −ch,2.

Property 10: Under the assumptions ch,2 ≥ s1 and m2 − m′
1 − s1 > 0, the CVaR-loss

function lβ,2(·, ·, ·) has a unique minimum over R+ × R+ × R+ corresponding

t∗,r
β,1,2 = F−1

(
m1 + g + s1β

m1 + g + s1

)
, (2.4.31)

t∗,r
β,2,2 =

(
m2 − m′

1
m2 − m′

1 − s1 + ch,2

)
F−1

(
ch,2(1 − β)

m2 − m′
1 − s1 + ch,2

)
+

(
ch,2 − s1

m2 − m′
1 − s1 + ch,2

)
F−1

(
ch,2 + β(m2 − m′

1 − s1)

m2 − m′
1 − s1 + ch,2

)
. (2.4.32)

Proof. (see Appendix C-1).

PROPERTY 11: Under the assumptions ch,2 < s1 and m2 − m′
1 − s1 + ch,2 > 0 for

0 ≤ β < 1 values the CVaR-loss function lβ,2(·, ·, ·) has a unique finite minimum over

R+ × R+ × R+ corresponding to

t∗,r
β,1,2 =

(
m1 + g + ch,2

m1 + g + s1

)
F−1

(
m1 + g + s1β

m1 + g + s1

)
+

(
s1 − ch,2

m1 + g + s1

)
F−1

(
(m1 + g)(1 − β)

m1 + g + s1

)
, (2.4.33)

t∗,r
β,2,2 = F−1

(
ch,2(1 − β)

m2 − m′
1 − s1 + ch,2

)
(2.4.34)

Proof. The result is direct via first order conditions (see Appendix C-2).

PROPERTY 12: Under assumption (2.3.11), the boundary loss function lb(·) is strictly

convex R+ and the minimum is given by

t∗b =

(
m2 − m′

1
m2 − m′

1 + m1 + ch,2 + g

)
F−1

(
(m1 + ch,2 + g)(1 − β)

m2 − m′
1 + m1 + ch,2 + g

)
+

(
m1 + ch,2 + g

m2 − m′
1 + m1 + ch,2 + g

)
F−1

(
m1 + ch,2 + g + β(m2 − m′

1)

m2 − m′
1 + m1 + ch,2 + g

)
, .(2.4.35)
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Proof. The result is direct (see Appendix B-2).

Clearly, the structure of the optimal policy depends on the cost parameters and values,

and we observe three types of policies: planned rollover stock-outs, single rollover, and

dual rollover. The optimal policy structure is displayed in the following table:

lβ,1(t1, t2) properties: (tr,∗
β,1,1, tr,∗

β,2,1) ∈ R1

Case 1 Case 2

lβ,2(t1, t2) properties Strictly decreasing w.r.t. t2 or convex Convex

(tr,∗
β,1,2, tr,∗

β,2,2) ∈ R1 (tr,∗
β,1,2, tr,∗

β,2,2) ∈ R2

Global Optimal Solution (tr,∗
β,1,1, tr,∗

β,2,1) ?

↓ ↓

Optimal Policy Structure Planned Stockout ?

lβ,1(t1, t2) properties: (tr,∗
β,1,1, tr,∗

β,2,1) ∈ R2

Case 3 Case 4

lβ,2(t1, t2) properties Strictly decreasing w.r.t. t2 or convex Convex

(tr,∗
β,1,2, tr,∗

β,2,2) ∈ R1 (tr,∗
β,1,2, tr,∗

β,2,2) ∈ R2

Global Optimal Solution On the boundary t1 = t2 : t∗β,b (tr,∗
β,1,2, tr,∗

β,2,2)

↓ ↓

Optimal Policy Structure Single Product Rollover Dual Product Rollover

Table 2.1: Convexity properties and structure of the optimal rollover policy

Analysis of results: Impact of Risk Perception on optimal product rollover policies

The optimal policy structure simultaneously depends on the different parameters of the

problem, on the probability distribution F(·) and on the risk aversion defined through

β. While it is tedious to find explicit necessary and sufficient optimality conditions

for each type of rollover policy w.r.t. these different factors, the specific impact of risk

aversion over the optimal policy structure can be analyzed. As discussed previously, β

reflects the degree of risk aversion for the planner (the larger β is, the more risk averse

the planner is). By using above properties of the CVaR-loss functions, the following

tables can be developed for two significantly different situations : low risk aversion
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(i.e., β value near zero) and high risk aversion (i.e., β value near 1).

m2 ≥ m1 ≥ m′
1 m1 ≥ m2 ≥ m′

1

m1+g
m1−m′

1
≤

ch,2
m2+g+ch,2

otherwise m1 < m2 + ch,2 otherwise

m′
1 < −g m′

1 < −g

m1 − m′
1 > m2 + g + ch,2

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO

m2 − m′
1 − s1 > 0 lβ,2 : DR lβ,2 : DR lβ,2 : DR lβ,2 : DR

m1+g
m1+g+s1

>
ch,2

m2−m′
1−s1+ch,2

→ PSO or DR → DR → PSO or DR → DR

ch,2 ≥ s1 lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO

otherwise lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR

→ PSO → SR → PSO → SDR

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO

m2 − m′
1 − s1 > 0 lβ,2 : DR lβ,2 : DR lβ,2 : DR lβ,2 : DR

→ PSO or DR → DR → PSO or DR → DR
m1+g

m1+g+s1
≤

ch,2
m2−m′

1−s1+ch,2

ch,2 < s1

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO

otherwise lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR

→ PSO → SR → PSO → SR

Table 2.2: Optimal Rollover Policy under low risk averse assumption
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m2 ≥ m1 ≥ m′
1 m1 ≥ m2 ≥ m′

1

β > 1 − m1−m2
ch,2

β ≤ 1 − m1−m2
ch,2

Otherwise β ≤ 1 − m1−m2
ch,2

β ≤ 1 − m1−m2
ch,2

m1 < m2 + ch,2 m1 ≥ m2 + ch,2 , or

m′
1 < −g m1 ≥ m2 + ch,2 , or

m1 − m′
1 > m2 + g + ch,2 m1 − m′

1 ≤ m2 + g + ch,2

−
m′

1+g

m1−m′
1
<

ch,2
m2+g+ch,2

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO(?)

ch,2 ≥ s1 ; m2 − m′
1 − s1 < 0 lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR

→ PSO → SR → PSO → SR → PSO or SR

lβ,1 : PSO lβ,1 : not PSO lβ,1 :PSO lβ,1 : not PSO lβ,1 : PSO(?)

ch,2 ≥ s1 ; m2 − m′
1 − s1 ≥ 0 lβ,2 : DR lβ,2 : DR lβ,2 : DR lβ,2 : DR lβ,2 : DR

m1+g
m1+g+s1

>
ch,2

m2−m′
1−s1+ch,2

→ PSO or DR → DR → PSO or DR → DR → PSO or DR

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO(?)

ch,2 ≥ s1 ; m2 − m′
1 − s1 ≥ 0 lβ,2 : DR(?) lβ,2 : lβ,2 : DR(?) lβ,2 : DR(?) lβ,2 : DR(?) lβ,2 : DR(?)

m1+g
m1+g+s1

≤
ch,2

m2−m′
1−s1+ch,2

→ PSO or DR → SR or DR → PSO or DR → SR or DR → PSO or DR

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO(?)

ch,2 < s1 ; m2 − m′
1 − s1 + ch,2 ≤ 0 lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR lβ,2 : not DR lβ,1 : PSO(?)

→ PSO → SR → PSO → SR → PSO or SR

lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO lβ,1 : not PSO lβ,1 : PSO(?)

ch,2 < s1 ; m2 − m′
1 − s1 + ch,2 > 0 lβ,2 : DR lβ,2 : DR lβ,2 : DR lβ,2 : DR lβ,2 : DR

→ PSO or DR → DR → PSO or DR → DR → PSO or DR

Table 2.3: Optimal Rollover Policy under high risk averse assumption

It is worth noting that the optimal policy structure is highly dependent on the decision

maker risk aversion. A main paper about rollover efficient strategies (Billington et al

(1998)) presents the SR rollover strategy as a high risk strategy, suited to situations with

low uncertainty and the DR rollover strategy as a low risk strategy, suited to situations

with a higher uncertainty. Our theoretical analysis complements (Billington et al (1998))

and rigorously show how each strategy (PSO, SR and DR) can be optimally associated

to the risk aversion and uncertainty level. In particular, it can be seen that risk aversion

and uncertainty level have a completely different impact on the structure of the optimal

policy. Increasing uncertainty level reinforces the rollover policy type (i.e., increase the

overlap (positive or negative)), while the decision maker risk aversion can change the

optimal policy structure.
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2.5 Impact of Uncertainty

In this section, we study the variation of the optimal solution structure, and the as-

sociated optimal cost, when increasing stochasticity of the random approval date T.

The global motivation of this section consists of theoretically analyzing a conjecture by

Billington et al. (1998) claiming that when the variability of the new product approval

date increases, then basically the overlap, i.e., the positive/negative gap between t1

and t2, in the optimal solution has to increase too. This property is theoretically known

as a dispersive ordering property.

2.5.1 A motivating example.

In order to illustrate this mecanism from a heuristic and intuitive point of view, i.e.,

how significant larger variance (with equal means) nearly induces increasing values for

t1 − t2, we consider a numerical example. If we consider a long administrative agree-

ment procedure involving several technical quality control procedures, in practice the

distribution of T can be expected to be a complex combination of a (possibly random)

number of general random variable. As a typical illustration, we assume the regulatory

approval date to be the sum of a random number of i.i.d. Gaussian variables, i.e., one

has T ∼ ∑N
k=1 Tk, with Tk i.i.d. Gaussian random variables, with mean µ and standard-

deviation σ, and N randomly distributed as a geometric random variable with param-

eter p. The numerical illustration proceeds as follows. We have considered a numerical

example with nominal values µ = 319, σ = 137 and p = 0.5, corresponding to the

nominal probability distribution for T, denoted as F(·). Then, we have considered

a sequence of alternative distributions F̃i(·) with increasing standard-deviations (but

equal means). Recall that the optimal decisions of the considered rollover problem are

defined as quantiles of the probability distribution characterizing the regulatory date.

We are interested in the evolution of the overlap when problem variability increases.
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We thus numerically estimate for which fraction of pairs (a, b) (with 0 < a < b < 1) the

following property holds,

(F−1(a)− F−1(b))− (F̃−1
i (a)− F̃−1

i (b)) ≤ 0, whenever 0 < a < b < 1. (2.5.1)

Figure 2.4 displays the differences (F−1(a) − F−1(b)) − (F̃−1
i (a) − F̃−1

i (b)), for every

pair (a, b) (with 0 < a < b < 1).

Figure 2.4: Numerical simulations of the differences (2.5.1)

We try to increase the variance until we nearly double it and we give our results in Table

2.4 where we notice that it is enough to increase the variance by 50% to have around

95% of the cases where the gap increases between the rollover dates with increased

variance.

Here we formally give conditions guaranteeing this conjecture. It can be seen that the

impact of variability on the approval date is threefold : impact on the optimal global

cost, impact on the optimal value of each of the two decision variables t∗1 and t∗2 , and

impact on the structure of the optimal policy (basically on the size of the overlap, i.e.,

the difference between the two optimal decision variables, if any). The key element in
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Variance Increase Valid Cases

% %

10 90

20 91

30 92

40 93

50 95

60 96

70 98

80 99

90 99

99 99

Table 2.4: Numerical simulations : synthesis

such an analysis is the definition of variability or stochasticity increase between a pair

of probability distribution functions.

In order to assess the variability effects on the considered model, we conduct a stochas-

tic comparison between two rollover processes. We consider two rollover processes

i = 1, 2, with approval dates Ti, known through their cumulative probability distribu-

tion functions Fi. We focus here on the variability effects of Ti and thus we assume that

the approval dates have equal means, E[T1] = E[T2]. In order to compare the variabili-

ties of the pair of random variables T1 and T2, we will have to define criteria, known as

stochastic ordering criteria.

First, we focus on the change, when the problem variability increases, of the optimal

solution values (increase or decrease) and on the change of the optimal cost (increase

or decrease). This change can be theoretically characterized along the lines of ([37, 40]).
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In order to define the concept of variability increase, we consider a stochastic ordering

based on a comparison of the spread of the probability density functions.

Second, we focus on the change of the optimal strategy structure, namely the change

of the overlap size associated to the optimal policies. We recall that in case of a positive

overlap, the pair of products are simultaneously available for the market during some

time period, while in case of a negative overlap, no product is available for the market

over some time horizon. To do so, we need to use a more restrictive stochastic ordering

assumption, known as dispersive ordering condition [20, 21, 36, 40].

2.5.2 Impact of Uncertainty on the cost and on the optimal decisions

The Considered Stochastic Ordering

We consider in this first part the usual stochastic ordering, based on the shapes of the

density functions (or the distribution functions), and defined as follows. Let u(t) be a

real function defined on an ordered set U of the real line and let S(u) be the number of

sign changes of u(t) when t ranges over the entire set U.

Definition. Consider two random variables T1 and T2 with same mean, i.e., E[T1] =

E[T2], having probability distributions F1(·) and F2(·) with densities f1(·) and f2(·). We

say T1 is more variable than T2, denoted T1 ≥var T2, if

S( f1 − f2) = 2 with sign sequence +, -, +. (2.5.2)

That is, f1(·) crosses f2(·) exactly twice, first from above and then from below. It is

known (see [40]), that when E[T1] = E[T2], condition (2.5.2) implies that

F1(x) ≤ F2(x) for all x and E[h(T1)] ≥ E[h(T2)] (2.5.3)

for all nondecreasing functions h(·). Observe that condition (2.5.2) also implies that

S(F1 − F2) = 1 (2.5.4)
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with sign sequence +,−, +, in other words, F1(·) crosses F2(·) exactly once, and the

crossing is from above. Furthermore, it is also known (see [40]) that equation (2.5.4)

implies

∫ t

−∞
(F1(x)− F2(x))dx ≤ 0. (2.5.5)

Examples of pairs of distributions satisfying condition (2.5.4) are given in [37] and in-

clude a large number of important standard unimodal densities arising in statistical

applications, as seen from the following pairs (i = 1, 2):

- fi(·) are Gamma (Weibull) with shape parameter η1, η2, with η2 < η1;

- fi(·) are Uniform (ai, bi), with a1 < a2, b1 > b2, but a1 + b1 = a2 + b2;

- Fi(·) are Gaussian with parameters µi and σi, with µ1 = µ2 and σ2 < σ1;

- fi(·) are truncated Gaussian with parameters µi and σi, with µ1 = µ2 ≫ 0 and σ2 < σ1;

- f1(·) is decreasing (e.g., exponential) and f2(·) is Uniform.

Impact of variability on the decision variables

We now present our results regarding the effect of approval date variability on the

optimal times.

Property 13. If T1 ≥var T2, then there exists a critical number θF1,F2 such that
F−1

1 (r) ≤ F−1
2 (r) if 0 ≤ r ≤ θF1,F2 ,

F−1
1 (r) ≥ F−1

2 (r) if θF1,F2 ≤ r ≤ 1.

Proof : the proof follows [37]. Condition T1 ≥var T2 implies that F1(·) crosses F2(·)

exactly once for x = x∗ (i.e., one has F1(x∗) = F2(x∗)), and the crossing is from above.

That means, there exists x∗ such that for 0 < x < x∗, F1(x) is at least as large as F2(x)

and for x < x∗, F1(x) is at most as large as F2(x). Setting θF1,F2 = F1(x∗) = F2(x∗), the

results regarding the order of F−1
i (r) are immediate.

A direct application of above proposition is the following corollary.
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Corollary 13.1 Let us formally denote the distribution dependence of the optimal solu-

tions as tr,∗
i,j (F) and tb,∗(F), with

tr,∗
i,j (F) = F−1(ri,j) and tb,∗(F) = F−1(rb) (i, j = 1, 2) (2.5.6)

with

r1,1 =
m1 + g

m1 − m′
1

, r2,1 =
ch,2

m2 + ch,2 + g
, (2.5.7)

r1,2 =
m1 + g

m1 + g + s1
, r2,2 =

ch,2

m2 − m′
1 + ch,2 − s1

, (2.5.8)

and

rb =
m1 + ch,2 + g

m2 − m′
1 + m1 + ch,2 + g

. (2.5.9)

Then, if T1 ≥var T2, then there exists a critical number θF1,F2 such that t∗,r
i,j (F1) > t∗,r

i,j (F2) if F−1
1 (ri,j) > θF1 ,F2 ,

t∗,r
i,j (F1) ≤ t∗,r

i,j (F2) if F−1
1 (ri,j) ≤ θF1 ,F2 .

This shows that for increasingly variable distributions, the sign of the change of the

optimal solutions (i.e., decreasing or increasing with variability) is not straightforward

and depends on the order relationship between the threshold θF1,F2 and the different

ratios (2.5.7)-(2.5.9) defining the optimal solution values.

Impact of variability on the average loss

The following proposition establishes the intuitive result that increasing variability in-

creases the expected loss.

Property 14. If T1 ≥var T2, then

min
(t1,t2)∈ IR+×IR+

EF1 [L(t1, t2, T)] ≤ min
(t1,t2)∈ IR+×IR+

EF2 [L(t1, t2, T)]. (2.5.10)

Proof. See Appendix E.
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2.5.3 Impact of Uncertainty on structure of the optimal rollover policy

Stochastic Ordering Definitions

This subsection analyzes the impact of uncertainty on the structure of the optimal

rollover policy, e.g. on the size of the overlap between the planning of the new and

the old product. The analysis, focused on the difference between t∗1 and t∗2 , and not on

their individual values, relies on another class of stochastic ordering, called dispersive

ordering, as defined below.

Definition. Consider two random variables T1 and T2 with same mean E[T1] = E[T2],

having distributions F1(·) and F2(·) with densities f1(·) and f2(·). T1 is said to be less

dispersed than T2, denoted by T1 <disp T2, if

F−1
2 (a)− F−1

2 (b) < F−1
1 (a)− F−1

1 (b), whenever 0 < a < b < 1. (2.5.11)

This means that the difference between any pair of quantiles of F2(·) is smaller than

the difference between the corresponding quantiles of F1(·). It is well known that this

condition is more restrictive than (2.5.2) or (2.5.4). Examples include a large number

of important standard unimodal densities (see [20]) as pairs of Gamma densities, Uni-

forms, Gaussians, truncated Gaussians, and others.

Impact of variability on the overlap of the optimal rollover structure

Property 15. If T1 >disp T2,

then if the optimal policy is dual rollover, the overlap increases, i.e., one has

t∗1,F1
− t∗2,F1

> t∗1,F2
− t∗2,F2

, (2.5.12)

if the policy is planned stockout, the stockout period increases, i.e.,

t∗2,F1
− t∗1,F1

> t∗2,F2
− t∗1,F2

. (2.5.13)
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Proof This is a direct application of the stochastic ordering to the optimality conditions.

This proposition establishes the general conditions guaranteeing that when the reg-

ulatory date process is more random (in some sense), then the optimal policies are

reinforced: in case of planned stockout, the stockout period is increased, and in case of

dual rollover, the "dual product pipe-line inventory period" is increased. This formally

establishes the conjecture empirically given in Billington et al (1998). These authors ar-

gue single rollover to be a high-risk, high-return strategy while dual rollover to be less

risky. In the next section, a rollover model including the decision maker risk attitude is

developed and analyzed.

2.6 Closed-form solutions, numerical experiments, and useful

managerial insights

This section presents some closed form solutions, some numerical experiments, and

some useful managerial insights.

2.6.1 Examples of Optimal Cost Closed Forms solutions

According to classical inventory theory models (see Gallego [16]), closed forms can be

given for the optimal cost for certain probability distributions. Indeed, the loss func-

tions (2.3.3), (2.3.4) and (2.3.8) have a piecewise linear structure which can be exploited.

2.6.2 Numerical experiments

In this section, first, we solve the problem using an exponential distribution and as-

sume that we are in a high risk environment, with β = 0.95. From the conditions given

in Table 2.5, we obtain the optimal rollover strategy to be a dual one with the following
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Optimal loss (The Gaussian case :mean µ and standard deviation σ )

Optimal Planned Stockout ((m1 − m′
1)F( t∗1−µ

σ ) + (m2 + g + ch)F( t∗2−µ
σ )) σ.

Optimal Single Product Rollover ((m1 + g + ch + m2 − m′
1)F( t∗b−µ

σ )) σ.

Optimal Dual Product Rollover ((m1 + g + s1)F( t∗1−µ
σ ) + (m2 − m′

1 − s1 + ch)F( t∗2−µ
σ )) σ.

Optimal loss (The LogNormal case with parameters υ and τ)

Optimal Planned Stockout (m1 − m′
1)µF(τ − (Ln(t∗1 )−υ)

τ ) + (m′
1 − m2)µ + (m2 + ch + g)µF(τ − (Ln(t∗2 )−υ)

τ )

Optimal Single Product Rollover (m2 − m′
1 + m1 + g + ch)µF(τ − (Ln(t∗1 )−υ)

τ ) + (m′
1 − m2)µ

Optimal Dual Product Rollover (m1 + g + s1)µF(τ − (Ln(t∗1 )−υ)
τ ) + (m2 − m′

1 − s1 + ch)µF(τ − (Ln(t∗2 )−υ)
τ )− (m2 − m′

1)µ

Table 2.5: Examples : Closed form for the optimal loss

closed form optimal solutions:

t∗1 = −Ln
(

s1(1 − β)

m1 + g + s1

)
1
λ

(2.6.1)

t∗2 = −
(

m2 − m′
1

m2 − m′
1 − s1 + ch,2

)
Ln

(
m2 − m′

1 − s1 + ch,2β

m2 − m′
1 − s1 + ch,2

)
1
λ

(2.6.2)

with t∗1 = 127.94, t∗2 = 0.07, and optimal expected net loss $26, 596.

Second, we assume that the approval date T follows a gamma distribution with shape

parameter of 80 and scale parameter equal of 0.75. For an expected net loss minimiza-

tion criterion, we obtain the optimal rollover strategy to be a dual one with t∗1 = 81.60,

t∗2 = 43.51, and optimal expected net loss $4216.7.

2.6.3 Managerial insights, summary, and future research

In this paper, we apply CVaR minimization to a product rollover problem with un-

certain regulatory approval date and compare it to the minimization of the classical

expected net loss. Results show that the optimal strategy is dependent on the param-
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eters (costs and prices) and/or probability distribution and risk. We derive conditions

for the optimality and the uniqueness of the closed-form solutions for single and dual

rollover cases. Furthermore, we present the variation of optimal costs and solutions

under different probability distribution families. Many possible extensions and direc-

tions for research exist, such as optimizing with respect to a distribution free regulatory

approval date, or for different products and lifecycles, and rollover for time-dependent

demand. We are currently working on the expected value criterion under a Bass diffu-

sion rate demand and present part of our work in Chapter 3.
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Appendix

APPENDIX A: Classical Analysis: Optimal Solutions with Respect to Expected Loss

APPENDIX A-1: The region R1.

In R1, the objective loss function is given by

l1(t1, t2) := E[L1(t1, t2, T)] =
∫ t1

0
[(m2 − m′

1)(t1 − T) + (m2 + g)(t2 − t1)] f (T)dT

+
∫ t2

t1

[(m1 + g)(T − t1) + (m2 + g)(t2 − T)] f (T)dT

+
∫ ∞

t2

[(m1 + g)(T − t1) + ch(T − t2)] f (T)dT

= (m2t2 − m′
1t1)F(t1) + (m′

1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch + g)(µ − G(t2)− t2(1 − F(t2))) + g(t2 − t1).(2.6.3)

The associated optimization problem is

min
{(t1,t2)∈R1}

l1(t1, t2) = (m2t2 − m′
1t1)F(t1) + (m′

1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch + g)(µ − G(t2)− t2(1 − F(t2))) + g(t2 − t1). (2.6.4)

Proof of Property 1

The second order derivatives of expression (2.6.3) are given by:

dl2
1(t1, t2)

dt2
1

= (m1 − m′
1) f (t1), (2.6.5)

dl2
1(t1, t2)

dt2
2

= (m2 + ch + g) f (t2). (2.6.6)

It is thus direct to see that the objective function is jointly convex in R1 since m1 > m′
1.
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APPENDIX A-2: The region R2.

In region R2, the objective function is given by

l2(t1, t2) := E[L2(t1, t2, T)] =
∫ t2

0
[(m2 − m′

1)(t2 − T) + s1(t1 − t2)] f (T)dT

+
∫ t1

t2

[s1(t1 − T) + ch,2(T − t2)] f (T)dT

+
∫ ∞

t1

[(m1 + g)(T − t1) + ch,2(T − t2)] f (T)dT

= ((m2 − m′
1)t2 + s1(t1 − t2))F(t2) + (m′

1 − m2)G(t2)

+ (s1t1 − ch,2t2)(F(t1)− F(t2)) + (ch,2 − s1)(G(t1)− G(t2))

− ((m1 + g)t1 + ch,2t2)(1 − F(t1))

+ (m1 + ch,2 + g)(µ − G(t1)). (2.6.7)

The optimization problem becomes in this case

min
{(t1,t2)∈R2}

l2(t1, t2) = ((m2 − m′
1)t2 + s1(t1 − t2))F(t2) + (m′

1 − m2)G(t2)

+ (s1t1 − ch,2t2)(F(t1)− F(t2)) + (ch,2 − s1)(G(t1)− G(t2))

− ((m1 + g)t1 + ch,2t2)(1 − F(t1))

+ (m1 + ch,2 + g)(µ − G(t1)). (2.6.8)

Proof of Property 2

The first order derivatives of expression (2.6.8) are given by

dl2(t1, t2)

dt1
= −(m1 + g) + (m1 + g + s1)F(t1), (2.6.9)

dl2(t1, t2)

dt2
= −ch,2 + (m2 − m′

1 + ch,2 − s1)F(t2). (2.6.10)
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If m2 − m′
1 − s1 < 0, expression (2.6.10) is negative and l2(t1, t2) is strictly decreasing.

Proof of Property 3

The second order derivatives of expression (2.6.8) are given by

dl2
2(t1, t2)

dt2
1

= (m1 + g + s1) f (t1), (2.6.11)

dl2
2(t1, t2)

dt2
2

= (m2 − m′
1 + ch,2 − s1) f (t2), (2.6.12)

dl2
2(t1, t2)

dt1dt2
=

dl2
2(t1, t2)

dt1dt2
= 0. (2.6.13)

It is thus direct to see that the objective function is jointly convex in R2 when m2 −m′
1 −

s1 + ch,2 > 0, else it is strictly jointly concave.
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APPENDIX B: CVaR Minimization

In our setting, the minimization problem is represented by the following convex pro-

gram:

min lβ(t1, t2, α) := α +
1

(1 − β)

∫ ∞

0
[L(t1, t2, T)− α]+ f (T)dT, (2.6.14)

s.t. 0 ≤ t1, t2 ≤ ∞, −∞ ≤ α ≤ ∞. (2.6.15)

This optimization problem and the associated optimality conditions are not straight-

forward and the optimal solution cannot be expected to be given by classical first order

conditions. First, because the L(·, ·, ·) function is not differentiable for t1 = t2. Second,

due to the [·]+ function in equation (2.6.14), which again is not differentiable around

the 0 value. It is the reason why the state space is first divided into complementary

regions chosen in such a way that the objective function is differentiable in each region.

The standard optimization methods will then be applied over each region. Clearly, the

boundaries of the regions, which correspond to states for which the objective function

(2.6.14) are not differentiable, and thus, will be carefully analyzed. Depending on the

parameters numerical values, it will be shown that while solving the first order opti-

mization conditions two types of situations occur:

• the sign of the derivative of the objective function (2.6.14) with respect to a vari-

able is strictly positive, or strictly negative over the considered region, and in this

case, the optimal solution exists on the boundary of the considered region

• the objective function (2.6.14) is strictly convex on the considered region and the

optimal solution exists in the interior of the region and is computed via the clas-

sical first order optimality conditions.

The solution approach will consist in combining these two ideas in order to analyze the

whole state space region. Nevertheless, the whole analysis is tedious, due to the fact

that the number of different cases associated to the regions and/or to the boundaries
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to consider is significative.

First, we will first start by defining the regions. The (t1, t2) state space is divided in

the regions (t1, t2) : t1 ≤ t2 and (t1, t2) : t1 ≥ t2, as the expression of the objective func-

tion depends on the relative value of t1 w.r.t. t2. Second, the α values are decomposed

in complementary intervals, such that on each interval the fundamental structure of

the term
(

L(t1, t2, T)− α

)
is fixed.

The optimization problem is given as follows:

min lβ(t1, t2, α) = α +
1

1 − β
ET[L(t1, t2, T)− α]+.

s.t. 0 ≤ t1, t2 ≤ ∞, −∞ ≤ α ≤ ∞. (2.6.16)

As the state space has to be divided in two regions, Ri with i = 1, 2, one defines thus

lβ,i(t1, t2, α) = α +
1

1 − β
ET[Li(t1, t2, T)− α]+, with i = 1, 2. (2.6.17)

The region R1.

In R1, the associated optimization problem is thus given by

min lβ,1(t1, t2, α) = α +
1

1 − β

(∫ t1

0
[m′

1(T − t1) + g(t2 − t1) + m2(t2 − T)− α]+ f (T)dT

+
∫ t2

t1

[m1(T − t1) + g(t2 − t1) + m2(t2 − T)− α]+ f (T)dT

+
∫ ∞

t2
[m1(T − t1) + g(t2 − t1) + (ch,2 + g)(T − t2)− α]+ f (T)dT

)
(2.6.18)

s.t. (t1, t2) ∈ R1, −∞ ≤ α ≤ ∞. (2.6.19)

We have to consider two cases:

• m2 ≥ m1 ≥ m′
1,

• m1 ≥ m2 ≥ m′
1.
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Appendix B-1 Case 1 : m2 ≥ m1 ≥ m′
1

It can be seen that the critical values for the α parameters corresponding to the slope

discontinuities for the piecewise linear function (2.6.18), as functions of t1 and t2, are

given by

α̃1,1(t1, t2) = m1(t2 − t1) + g(t2 − t1), (2.6.20)

α̃1,2(t1, t2) = m2(t2 − t1) + g(t2 − t1), (2.6.21)

α̃1,3(t1, t2) = m2t2 − m′
1t1 + g(t2 − t1), (2.6.22)

with α̃1,1(t1, t2) ≤ α̃1,2(t1, t2) ≤ α̃1,3(t1, t2) (see Figure (2.5)),

Figure 2.5: Four cases in minimization of CVaR in the region R1 for Case 1.

In order to characterize the first order conditions, we define the regions C1,1, C1,2, C1,3
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and C1,4, as

C1,1 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]∞, α̃1,1(t1, t2)[, (2.6.23)

C1,2 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,1(t1, t2), α̃1,2(t1, t2)[, (2.6.24)

C1,3 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,2(t1, t2), α̃1,3(t1, t2)[, (2.6.25)

C1,4 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,3(t1, t2), ∞[. (2.6.26)

Determination of the optimal policies.

First step : expression of the first order conditions.

The region C1,1.

In this region, the objective function given in expression (2.6.18) is

lβ,1(t1, t2, α) = α +
1

1 − β

[
(m2t2 − m′

1t1)F(t1) + (m′
1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch,2 + g)(µ − G(t2)− t2(1 − F(t2)))

+ g(t2 − t1)− α

]
. (2.6.27)

The optimization problem can be rewritten

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m2t2 − m′

1t1)F(t1) + (m′
1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch,2 + g)(µ − G(t2)− t2(1 − F(t2)))

+ g(t2 − t1)− α

]
, (2.6.28)

s.t. (t1, t2, α) ∈ C1,1. (2.6.29)

The first order derivatives of (2.6.28) are given by

dlβ,1(t1, t2, α)

dα
=

−β

1 − β
< 0, (2.6.30)

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

, (2.6.31)

dlβ,1(t1, t2, α)

dt2
=

(m2 + ch,2 + g)
1 − β

F(t2)−
ch,2

1 − β
. (2.6.32)
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The region C1,2.

According to Figure 2.5, let’s define T2(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(t2 − t1) + m2(t2 − T) (2.6.33)

and T3(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(t2 − t1) + (ch,2 + g)(T − t2) (2.6.34)

The optimization problem can be rewritten

min lβ,1(t1, t2, α) = α +
1

1 − β

(
(m1 − m′

1)t1F(t1) + (m′
1 − m1)G(t1)

+ (m1 − m2)G(T2(t1, t2, α))

+ (−m1t1 + g(t2 − t1) + m2t2 − α)F(T2(t1, t2, α))

+ (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

+ (−m1t1 − gt1 − ch,2t2

− α)(1 − F(T3(t1, t2, α)))

)
, (2.6.35)

s.t. (t1, t2, α) ∈ C1,2. (2.6.36)

The first order derivatives of (2.6.35) are given by:

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

F(T2(α, t1, t2))

− (m1 + g)
1 − β

(1 − F(T3(α, t1, t2))), (2.6.37)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

F(T2(α, t1, t2))−
ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.38)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α))− F(T2(t1, t2, α))− β

1 − β
. (2.6.39)

The region C1,3.

According to Figure 2.5, let’s define T1(α, t1, t2) as the T value corresponding to:

α = −m′
1(t1 − T) + g(t2 − t1) + m2(t2 − T). (2.6.40)
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The optimization problem becomes

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m1 − m2)G(T1(t1, t2, α)) + (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

+ (−m′
1t1 + g(t2 − t1) + m2t2 − α)F(T1(t1, t2, α))

+ (−m1t1 − gt1 − ch,2t2 − α)(1 − F(T3(t1, t2, α)))

]
, (2.6.41)

s.t. (t1, t2, α) ∈ C1,3. (2.6.42)

The first order derivatives of (2.6.41) are given by:

dlβ,1(t1, t2, α)

dt1
= − (m′

1 + g)
1 − β

F(T1(α, t1, t2))

− (m1 + g)(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.43)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

F(T1(α, t1, t2))−
ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.44)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.45)

The region C1,4.

The optimization problem becomes

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

+ (−m1t1 − gt1 − ch,2t2 − α)(1 − F(T3(t1, t2, α)))

]
, (2.6.46)

s.t. (t1, t2, α) ∈ C1,4. (2.6.47)

The first order derivatives of (2.6.46) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(
m1 + g
1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.48)

dlβ,1(t1, t2, α)

dt2
= −

(
ch,2

1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.49)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α)− β

1 − β
. (2.6.50)

Corollary. In the interior of region R1, the CVaR loss function lβ,1(t1, t2, α) is differen-

tiable w.r.t. α, t1 and t2.
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Corollary. By convexity, for fixed t1 and t2 in region R1, the optimal α value can always

be found as the solution of the first order conditions.

Corollary. By convexity and derivability, if the optimal solution lies in the interior of

the region R1, then it is given by the solution of the first order condition.

Second step : optimal solution in the interior of a region.

It is direct to see that the only case where the first order conditions possibly have a

solution is the region C1,2. Under adequate assumptions, the first order conditions

(2.6.37)-(2.6.39) have the solution

t∗1 = F−1
(
(m1 + g)(1 − β)

m1 − m′
1

)
, (2.6.51)

t∗2 =

(
m1 + ch,2 + g
m2 + ch,2 + g

)
F−1

(
ch,2 + β(m2 + g)

m2 + ch,2 + g

)
+

(
m2 − m1

m2 + ch,2 + g

)
F−1

(
ch,2(1 − β)

m2 + ch,2 + g

)
, (2.6.52)

α∗ =

(
m1 + ch,2 + g

)
F−1

(
ch,2 + β(m2 + g)

m2 + ch,2 + g

)
− (m1 + g)t∗1 − ch,2t∗2 . (2.6.53)

We also find the following parameter values

T3(t∗1 , t∗2 , α∗) = F−1
(

ch,2 + β(m2 + g)
m2 + ch,2 + g

)
, (2.6.54)

T2(t∗1 , t∗2 , α∗) = F−1
(

ch,2(1 − β)

m2 + ch,2 + g

)
. (2.6.55)

Now, several assumptions are required in order to guarantee that this solution belongs

to the interior of C1,2. Basically these assumptions are the following

(m1 + g)(1 − β)

m1 − m′
1

< 1, (2.6.56)

t∗1 < t∗2 , (2.6.57)

α̃1,1(t∗1 , t∗2) = m1(t∗2 − t∗1) + g(t∗2 − t∗1) < α∗

< α̃1,2(t∗1 , t∗2)

= m2(t∗2 − t∗1) + g(t∗2 − t∗1). (2.6.58)
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From Figure (2.5) it can be seen that the last condition is equivalent to

t∗1 ≤ T2(t∗1 , t∗2 , α∗), T2(t∗1 , t∗2 , α∗) ≤ t∗2 , (2.6.59)

t∗2 ≤ T3(t∗1 , t∗2 , α∗). (2.6.60)

First condition analysis. The first assumptions is independent of the probability dis-

tribution and amounts to the condition on the parameters:

m′
1 < −g(1 − β) + βm1. (2.6.61)

If m′
1 < −g, then condition 1 holds for any probability distribution and for all β values

one has existence of t∗1 .

If m1 ≥ m′
1 ≥ −g, then for any probability distribution F, there exists a lower bound

βF such that for any β values with β ≥ βF, one has no existence of t∗1 .

Second condition analysis. The second condition is not easy and in general, for ar-

bitrary values of the parameters and of β, it can depend on the probability distribu-

tion. However, it can be seen that under parameter conditions corresponding to Case

1, the expression of t∗2 corresponds to a convex combination of F−1
(

ch,2+β(m2+g)
m2+ch,2+g

)
and

of F−1
(

ch,2(1−β)
m2+ch,2+g

)
. As a consequence some properties can be found, depending on the

order associated with ch,2+β(m2+g)
m2+ch,2+g , ch,2(1−β)

m2+ch,2+g and (m1+g)(1−β)
m1−m′

1
.

If m1+g
m1−m′

1
<

ch,2
m2+ch,2+g then for any probability distribution and for all β values one has

t∗1 < t∗2 .

If m1+g
m1−m′

1
≥ ch,2

m2+ch,2+g then for any probability distribution F, there exists an upper bound

βF such that for any β values with β ≤ βF, one has t∗1 > t∗2 .

Third condition analysis. It is direct to see that conditions (2.6.59) and (2.6.60) hold

for any distribution and any parameters. In fact, condition (2.6.59) amounts again to

m1+g
m1−m′

1
<

ch,2
m2+ch,2+g .

Third step : optimal solution on a boundary of a region. If the optimal solution is
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not in the interior of a region (i.e., if above conditions do not hold) then the optimal

solution has to be found in the boundary region between two regions. The potential

boundaries are defined as

• t1 = t2

• α(t1, t2) = α̃1,i(t1, t2) for i = 1, .., 3.

The boundary t1 = t2.

In this case the associated optimization problem is thus given by (See Figure 2.6.62

min lβ,1(t, t, α) = α +
1

1 − β

(∫ t

0
[m′

1(T − t) + m2(t − T)− α]+ f (T)dT

+
∫ ∞

t
[m1(T − t) + (ch,2 + g)(T − t)− α]+ f (T)dT

)
s.t. −∞ ≤ α ≤ ∞. (2.6.62)

It can be seen that the critical values for the α parameters corresponding to the slope

discontinuities for the piecewise linear function (2.6.18), as functions of t are given by

α̃1,1(t, t) = 0, (2.6.63)

α̃1,2(t, t) = (m2 − m′
1)t. (2.6.64)

with α̃1,1(t, t) ≤ α̃1,2(t, t) (see Figure (2.5)),

We define the regions Cb,1,1, Cb,1,2, Cb,1,3 and Cb,1,4, defined as

Cb,1,1 = {(t, α) with (t, t) ∈ R1 and α ∈]∞, α̃1,1(t, t)[, (2.6.65)

Cb,1,2 = {(t, α) with (t, t) ∈ R1 and α ∈]α̃1,1(t, t), α̃1,2(t, t)[, (2.6.66)

Cb,1,3 = {(t, α) with (t, t) ∈ R1 and α ∈]α̃1,2(t, t), ∞[. (2.6.67)

First step : expression of the first order conditions.

The region Cb,1,1.
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Figure 2.6: Three cases in minimization of CVaR on the boundary
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In this region, the objective function given in expression (2.6.18) is

lβ,1(t, t, α) = α +
1

1 − β

[
(m2t − m′

1t)F(t) + (m′
1 − m2)G(t)

+ m1(µ − G(t)− t(1 − F(t)))

+ (ch,2 + g)(µ − G(t)− t(1 − F(t)))− α

]
. (2.6.68)

The first order order derivatives of expression (2.6.68) are given by:

dlβ,1(t, t, α)

dt
=

(m1 − m′
1 + m2 + ch,2 + g)

1 − β
F(t)− (m1 + g + ch,2)

1 − β
, (2.6.69)

dlβ,1(t, t, α)

dα
=

−β

1 − β
< 0. (2.6.70)

The region Cb,1,2.

According to Figure 2.5, let’s define T1(α, t, t) as the T value corresponding to:

α = −m′
1(t − T) + g(t − t) + m2(t − T). (2.6.71)

The optimization problem becomes

min lβ,1(t, t, α) = α +
1

1 − β

[
(m1 − m2)G(T1(t, t, α)) + (m1 + ch,2 + g)(µ − G(T2(t, t, α)))

+ (−m′
1t + m2t − α)F(T1(t, t, α))

+ (−m1t − gt − ch,2t − α)(1 − F(T2(t, t, α)))

]
, (2.6.72)

s.t. (t, t, α) ∈ Cb,1,2. (2.6.73)

The first order derivatives of (2.6.72) are given by:

dlβ,1(t, t, α)

dt
=

(m2 − m′
1)

1 − β
F(T1(α, t, t))

− (m1 + g + ch,2)

1 − β
(1 − F(T2(α, t, t))), (2.6.74)

dlβ,1(t, t, α)

dα
=

F(T2(t, t, α))− F(T1(t, t, α))− β

1 − β
. (2.6.75)
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The region Cb,1,3.

The optimization problem becomes

min lβ,1(t, t, α) = α +
1

1 − β

[
(m1 + ch,2 + g)(µ − G(T2(t, t, α)))

− ((m1 + g + ch,2)t + α)(1 − F(T2(t, t, α)))

]
, (2.6.76)

s.t. (t, t, α) ∈ Cb,1,3. (2.6.77)

The first order derivatives of (2.6.76) are given by:

dlβ,1(t, t, α)

dt
= −

(
m1 + g + ch,2

1 − β

)(
1 − F(T2(t, t, α))

)
< 0, (2.6.78)

dlβ,1(t, t, α)

dα
=

F(T2(t, t, α))− β

1 − β
. (2.6.79)

Second step : optimal solution on the boundary.

It is direct to see that the only case where the first order conditions possibly have a

solution is the region Cb,1,2. Under adequate assumptions, the first order conditions

(2.6.37)-(2.6.39) have the solution

t∗ =

(
m2 − m′

1

)
F−1

(
(m1+ch,2+g)(1−β)

m2−m′
1+m1+ch,2+g

)
m2 − m′

1 + m1 + ch,2 + g

+

(
m1 + ch,2 + g

)
F−1

(
m1+ch,2+g+β(m2−m′

1)
m2−m′

1+m1+ch,2+g

m2 − m′
1 + m1 + ch,2 + g

, (2.6.80)

α∗ =

(
m2 − m′

1

)
t∗. (2.6.81)

The assumptions which imply optimality of a solution on the boundary are the com-

plementary conditions which guarantee optimality of interior optimal solution (see

(2.6.56)-(2.6.57)).
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Appendix B-2 Case 2 : m1 ≥ m2 ≥ m′
1

It can be seen that the critical values for the α parameters corresponding to the slope

discontinuities for the piecewise linear function (2.6.18), as functions of t1 and t2, are

given by

α̃1,1(t1, t2) = m2(t2 − t1) + g(t2 − t1), (2.6.82)

α̃1,2(t1, t2) = m1(t2 − t1) + g(t2 − t1), (2.6.83)

α̃1,3(t1, t2) = m2t2 − m′
1t1 + g(t2 − t1), (2.6.84)

In order to characterize the first order conditions, we define the regions for

Figure 2.7: Four cases in minimization of CVaR in the region R1 for m1 ≥ m2 ≥ m′
1
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• α̃1,1(t1, t2) ≤ α̃1,2(t1, t2) ≤ α̃1,3(t1, t2) C1,1, C1,2, C1,3 and C1,4, as

C1,1 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]∞, α̃1,1(t1, t2)[, (2.6.85)

C1,2 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,1(t1, t2), α̃1,2(t1, t2)[, (2.6.86)

C1,3 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,2(t1, t2), α̃1,3(t1, t2)[, (2.6.87)

C1,4 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,3(t1, t2), ∞[. (2.6.88)

The main result for CVAR in region R1

Determination of the optimal policies.

First step : expression of the first order conditions.

The region C1,1.

In this region, the objective function given in expression (2.6.18) is

lβ,1(t1, t2, α) = α +
1

1 − β

[
(m2t2 − m′

1t1)F(t1) + (m′
1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch,2 + g)(µ − G(t2)− t2(1 − F(t2)))

+ g(t2 − t1)− α

]
. (2.6.89)

The optimization problem can be rewritten

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m2t2 − m′

1t1)F(t1) + (m′
1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch,2 + g)(µ − G(t2)− t2(1 − F(t2)))

+ g(t2 − t1)− α

]
, (2.6.90)

s.t. (t1, t2, α) ∈ C1,1. (2.6.91)
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The first order derivatives of (2.6.90) are given by

dlβ,1(t1, t2, α)

dα
=

−β

1 − β
< 0, (2.6.92)

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

, (2.6.93)

dlβ,1(t1, t2, α)

dt2
=

(m2 + ch,2 + g)
1 − β

F(t2)−
ch,2

1 − β
. (2.6.94)

The region C1,2.

According to Figure 2.7, let’s define T1(α, t1, t2) as the T value corresponding to:

α = −m′
1(t1 − T) + g(t2 − t1) + m2(t2 − T). (2.6.95)

and T2(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(t2 − t1) + m2(t2 − T) (2.6.96)

The optimization problem can be rewritten

min lβ,1(t1, t2, α) = α +
1

1 − β

(
−(m′

1 + g)t1 + (m2 + g)t2 − α)F(T1(t1, t2, α)) + (m′
1 − m2)G(T1(t1, t2, α))

+ (m1 − m2)(G(t2)− G(T2(t1, t2, α)))

+ (−m1t1 + g(t2 − t1) + m2t2 − α)(F(t2)− F(T2(t1, t2, α)))

+ (m1 + ch,2 + g)(µ − G(t2))

+ (−m1t1 − gt1 − ch,2t2 − α)(1 − F(t2))

)
, (2.6.97)

s.t. (t1, t2, α) ∈ C1,2. (2.6.98)

The first order derivatives of (2.6.97) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(m′
1 + g)

1 − β
F(T1(α, t1, t2)) +

(m1 + g)
1 − β

F(T2(α, t1, t2))

− (m1 + g)
1 − β

, (2.6.99)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

(F(T1(α, t1, t2))− F(T2(α, t1, t2)))−
ch,2

1 − β
(1 − F(t2)) + (

m1 + g)
1 − β

F(t2),(2.6.100)

dlβ,1(t1, t2, α)

dα
=

F(T2(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.101)

The region C1,3.

According to Figure 2.7, let’s define T3(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(t2 − t1) + (ch,2 + g)(T − t2) (2.6.102)
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The optimization problem becomes

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m1 − m2)G(T1(t1, t2, α)) + (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

+ (−m′
1t1 + g(t2 − t1) + m2t2 − α)F(T1(t1, t2, α))

+ (−m1t1 − gt1 − ch,2t2 − α)(1 − F(T3(t1, t2, α)))

]
, (2.6.103)

s.t. (t1, t2, α) ∈ C1,3. (2.6.104)

The first order derivatives of (2.6.103) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(m′
1 + g)

1 − β
F(T1(α, t1, t2))−

(m1 + g)
1 − β

(1 − F(T3(α, t1, t2))), (2.6.105)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

F(T1(α, t1, t2))−
ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.106)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.107)

The region C1,4.

The optimization problem becomes

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

+ (−m1t1 − gt1 − ch,2t2 − α)(1 − F(T3(t1, t2, α)))

]
, (2.6.108)

s.t. (t1, t2, α) ∈ C1,4. (2.6.109)

The first order derivatives of (2.6.108) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(
m1 + g
1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.110)

dlβ,1(t1, t2, α)

dt2
= −

(
ch,2

1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.111)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α)− β

1 − β
. (2.6.112)

In the interior of region R1, the CVaR loss function lβ,1(t1, t2, α) is differentiable w.r.t.

α, t1 and t2.

By convexity, for fixed t1 and t2 in region R1, the optimal α value can always be found

as the solution of the first order condition. By convexity and derivability, if the optimal

solution lies in the interior of the region R1 it is given by the solution of the first order

condition.
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Second step : optimal solution in the interior of a region.

It is direct to see that the only case where the first order conditions possibly have a

solution is the region C1,2. Under adequate assumptions, the first order conditions

(2.6.99)-(2.6.101) have the solution

t∗1 =

(
m2 − m′

1

)
F−1

(
(m1+g)(1−β)

m1−m′
1

)
m1 − m′

1

+

(
m1 − m2

)
F−1

(
m1−βm′

1+g(1−β)
m1−m′

1

)
m1 − m′

1
, (2.6.113)

t∗2 = F−1
(

m1 + g + ch,2β

m2 + ch,2 + g

)
(2.6.114)

α∗ =

(
m1 + ch,2 + g

)
F−1

(
m1 − βm′

1 + g(1 − β)

m1 − m′
1

)
− (m1 + g)t∗1 − ch,2t∗2 . (2.6.115)

We also find the following parameter values

T1(t∗1 , t∗2 , α∗) = F−1
(
(m1 + g)(1 − β)

m1 − m′
1

)
, (2.6.116)

T2(t∗1 , t∗2 , α∗) = F−1
(

m1 − βm′
1 + g(1 − β)

m1 − m′
1

)
. (2.6.117)

Now, several assumptions are required in order to guarantee that this solution belongs

to the interior of C1,2. Basically these assumptions are the following

(m1 + g)(1 − β)

m1 − m′
1

< 1, (2.6.118)

t∗1 < t∗2 , (2.6.119)

α̃3,1(t∗1 , t∗2) = m2(t∗2 − t∗1) + g(t∗2 − t∗1) <

α∗ < α̃3,2(t∗1 , t∗2) = m1(t∗2 − t∗1) + g(t∗2 − t∗1). (2.6.120)
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From Figure (2.7) it can be seen that the last condition is equivalent to

T1(t∗1 , t∗2 , α∗) ≤ t∗1 , (2.6.121)

t∗1 ≤ T2(t∗1 , t∗2 , α∗), (2.6.122)

T2(t∗1 , t∗2 , α∗) ≤ t∗2 . (2.6.123)

First condition analysis. The first assumption is independent of the probability distri-

bution and amounts to the condition on the parameters:

m′
1 < −g(1 − β) + βm1. (2.6.124)

If m′
1 < −g then condition 1 holds for any probability distribution and for all β values

one has existence of t∗1 .

If m1 ≥ m′
1 ≥ −g, then for any probability distribution F, there exists a lower bound

βF such that for any β values with β ≥ βF, one has no existence of t∗1 .

Second condition analysis. The second condition is not easy and in general, for ar-

bitrary values of the parameters and of β, can depend on the probability distribu-

tion. However, it can be seen that under parameters conditions corresponding to Case

2, expression of t∗1 corresponds to a convex combination of F−1
(

(m1+g)(1−β)
m1−m′

1

)
and of

F−1
(

m1−βm′
1+g(1−β)

m1−m′
1

)
. As a consequence some properties can be found, depending on

the order associated with m1−βm′
1+g(1−β)

m1−m′
1

, m2+g+ch,2β
m2+ch,2+g and (m1+g)(1−β)

m1−m′
1

.

If m1−βm′
1+g(1−β)

m1−m′
1

<
m2+g+ch,2β
m2+ch,2+g then for any probability distribution and for all β values

one has t∗1 < t∗2 .

If m1−βm′
1+g(1−β)

m1−m′
1

≥ m2+g+ch,2β
m2+ch,2+g then for any probability distribution F, there exists an

upper bound βF such that for any β values with β ≤ βF, one has t∗1 ≥ t∗2 .

Third condition analysis. It is direct to see that conditions (2.6.121) and (2.6.122) hold

for any distribution and any parameters. In fact, condition (2.6.123) amounts again to

m1−βm′
1+g(1−β)

m1−m′
1

<
m2+g+ch,2β
m2+ch,2+g .
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Third step : optimal solution on a boundary of a region. If the optimal solution is

not in the interior of a region (i.e., if above conditions do not hold) then the optimal

solution has to be found on the boundary of region between two regions (Solved Pre-

viously).

• α̃1,1(t1, t2) ≤ α̃1,3(t1, t2) ≤ α̃1,2(t1, t2) C1,1, C1,2, C1,3 and C1,4, as

C1,1 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]∞, α̃1,1(t1, t2)[, (2.6.125)

C1,2 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,1(t1, t2), α̃1,3(t1, t2)[, (2.6.126)

C1,3 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,3(t1, t2), α̃1,2(t1, t2)[, (2.6.127)

C1,4 = {(t1, t2, α) with (t1, t2) ∈ R1 and α ∈]α̃1,2(t1, t2), ∞[. (2.6.128)

Proof: Determination of the optimal policies.

First step : expression of the first order conditions.

The region C1,1. In this region, the objective function is given by

lβ,1(t1, t2, α) = α +
1

1 − β

[
(m2t2 − m′

1t1)F(t1) + (m′
1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch + g)(µ − G(t2)− t2(1 − F(t2))) + g(t2 − t1)

− α

]
. (2.6.129)

The optimization problem can be rewritten

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m2t2 − m′

1t1)F(t1) + (m′
1 − m2)G(t1)

+ m1(µ − G(t1)− t1(1 − F(t1))) + m2t2(F(t2)− F(t1))

+ (ch + g)(µ − G(t2)− t2(1 − F(t2))) + g(t2 − t1)

− α

]
, (2.6.130)

s.t. (t1, t2, α) ∈ C1,1. (2.6.131)
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Figure 2.8: Four cases in minimization of CVaR in the region R1
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The first order derivatives of (2.6.130) are given by

dlβ,1(t1, t2, α)

dα
=

−β

1 − β
< 0, (2.6.132)

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

, (2.6.133)

dlβ,1(t1, t2, α)

dt2
=

(m2 + ch + g)
1 − β

F(t2)−
ch

1 − β
. (2.6.134)

The region C1,2.

According to Figure 2.8, let’s define T1(α, t1, t2) as the T value corresponding to:

α = −m′
1(t1 − T) + g(t2 − t1) + m2(t2 − T). (2.6.135)

and T2(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(t2 − t1) + m2(t2 − T) (2.6.136)

The optimization problem can be rewritten

min lβ,1(t1, t2, α) = α +
1

1 − β

(
−(m′

1 + g)t1 + (m2 + g)t2 − α)F(T1(t1, t2, α)) + (m′
1 − m2)G(T1(t1, t2, α))

+ (m1 − m2)(G(t2)− G(T2(t1, t2, α)))

+ (−m1t1 + g(t2 − t1) + m2t2 − α)(F(t2)− F(T2(t1, t2, α)))

+ (m1 + ch + g)(µ − G(t2))

+ (−m1t1 − gt1 − cht2 − α)(1 − F(t2))

)
, (2.6.137)

s.t. (t1, t2, α) ∈ C1,2. (2.6.138)

The first order derivatives of (2.6.137) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(m′
1 + g)

1 − β
F(T1(α, t1, t2)) +

(m1 + g)
1 − β

F(T2(α, t1, t2))

− (m1 + g)
1 − β

, (2.6.139)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

(F(T1(α, t1, t2))− F(T2(α, t1, t2)))−
ch

1 − β
(1 − F(t2)) + (

m1 + g)
1 − β

F(t2),(2.6.140)

dlβ,1(t1, t2, α)

dα
=

F(T2(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.141)

The region C1,3.
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According to Figure 2.8, let’s define T3(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(t2 − t1) + (ch + g)(T − t2) (2.6.142)

The optimization problem becomes

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m1 − m2)(G(t2)− G(T2(t1, t2, α))) + (m1 + ch + g)(µ − G(t2))

+ (−m1t1 + g(t2 − t1) + m2t2 − α)(F(t2)− F(T2(t1, t2, α)))

+ (−m1t1 − gt1 − cht2 − α)(1 − F(t2))

]
, (2.6.143)

s.t. (t1, t2, α) ∈ C1,3. (2.6.144)

The first order derivatives of (2.6.143) are given by:

dlβ,1(t1, t2, α)

dt1
= − (m1 + g)

1 − β
(F(t2)− F(T2(α, t1, t2)))−

(m1 + g)
1 − β

(1 − F(t2)), (2.6.145)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

(F(t2)− F(T2(α, t1, t2)))−
ch

1 − β
(1 − F(t2)), (2.6.146)

dlβ,1(t1, t2, α)

dα
=

F(T2(t1, t2, α))− β

1 − β
. (2.6.147)

The region C1,4.

The optimization problem becomes

min lβ,1(t1, t2, α) = α +
1

1 − β

[
(m1 + ch + g)(µ − G(T3(t1, t2, α)))

+ (−m1t1 − gt1 − cht2 − α)(1 − F(T3(t1, t2, α)))

]
, (2.6.148)

s.t. (t1, t2, α) ∈ C1,4. (2.6.149)

The first order derivatives of (2.6.148) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(
m1 + g
1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.150)

dlβ,1(t1, t2, α)

dt2
= −

(
ch

1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.151)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α)− β

1 − β
. (2.6.152)

Corollary. In the interior of region R1, the CVaR loss function lβ,1(t1, t2, α) is differen-

tiable w.r.t. α, t1 and t2.

Corollary. By convexity, for fixed t1 and t2 in region R1, the optimal α value can always

be found as the solution of the first order condition.
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Corollary. By convexity and derivability, if the optimal solution lies in the interior of

the region R1 it is given by the solution of the first order condition.

Second step : optimal solution in the interior of a region. It is direct to see that

the only case where the first order conditions possibly have a solution is the region

C1,2. Under adequate assumptions, the first order conditions (2.6.139)-(2.6.141) have

the solution

t∗1 =

(
m2 − m′

1

)
F−1

(
(m1+g)(1−β)

m1−m′
1

)
+

(
m1 − m2

)
F−1

(
m1−βm′

1+g(1−β)

m1−m′
1

)
m1 − m′

1
, (2.6.153)

t∗2 = F−1
(

m1 + g + chβ

m2 + ch + g

)
(2.6.154)

α∗ =

(
m1 + ch + g

)
F−1

(
m1 − βm′

1 + g(1 − β)

m1 − m′
1

)
− (m1 + g)t∗1 − cht∗2 . (2.6.155)

We also find the following parameter values

T1(t∗1 , t∗2 , α∗) = F−1
(
(m1 + g)(1 − β)

m1 − m′
1

)
, (2.6.156)

T2(t∗1 , t∗2 , α∗) = F−1
(

m1 − βm′
1 + g(1 − β)

m1 − m′
1

)
. (2.6.157)

Now, several assumptions are required in order to guarantee that this solution belongs

to the interior of C1,2. Basically these assumptions are the following

(m1 + g)(1 − β)

m1 − m′
1

< 1, (2.6.158)

t∗1 < t∗2 , (2.6.159)

α̃3,1(t∗1 , t∗2) = m1(t∗2 − t∗1) + g(t∗2 − t∗1) < α∗ < α̃3,3(t∗1 , t∗2)

= (m2 + g)t∗2 − (m′
1 + g)t∗1 . (2.6.160)

From Figure (2.8) it can be seen that the last condition is equivalent to

T1(t∗1 , t∗2 , α∗) ≤ t∗1 , (2.6.161)

t∗1 ≤ T2(t∗1 , t∗2 , α∗), (2.6.162)

T2(t∗1 , t∗2 , α∗) ≤ t∗2 . (2.6.163)

First condition analysis. The first assumption is independent of the probability distri-

bution and amounts to the condition on the parameters:

m′
1 < −g(1 − β) + βm1. (2.6.164)
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Corollary. If m′
1 < −g then condition 1 holds for any probability distribution and for

all β values one has existence of t∗1 .

Corollary. If m1 ≥ m′
1 ≥ −g, then for any probability distribution F, there exists a

lower bound βF such that for any β values with β ≥ βF, one has no existence of t∗1 .

Second condition analysis. The second condition is not easy and in general, for ar-

bitrary values of the parameters and of β, can depend on the probability distribu-

tion. However, it can be seen that under parameters conditions corresponding to Case

2, expression of t∗1 corresponds to a convex combination of F−1
(

(m1+g)(1−β)
m1−m′

1

)
and of

F−1
(

m1−βm′
1+g(1−β)

m1−m′
1

)
. As a consequence some properties can be found, depending on

the order associated with m1−βm′
1+g(1−β)

m1−m′
1

, m2+g+chβ
m2+ch+g and (m1+g)(1−β)

m1−m′
1

.

Corollary. If m1−βm′
1+g(1−β)

m1−m′
1

< m2+g+chβ
m2+ch+g then for any probability distribution and for all

β values one has t∗1 < t∗2 .

Corollary. If m1−βm′
1+g(1−β)

m1−m′
1

≥ m2+g+chβ
m2+ch+g then for any probability distribution F, there

exists an upper bound βF such that for any β values with β ≤ βF, one has t∗1 ≥ t∗2 .

Third condition analysis. It is direct to see that conditions (2.6.161) and (2.6.162) hold

for any distribution and any parameters. In fact, condition (2.6.163) amounts again to

m1−βm′
1+g(1−β)

m1−m′
1

< m2+g+chβ
m2+ch+g .

Third step : optimal solution on a boundary of a region. If the optimal solution is

not in the interior of a region (i.e., if above conditions do not hold) then the optimal

solution has to be found on the boundary of region between two regions.
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Appendix C: The region R2.

In R2, the associated optimization problem is thus given by

min lβ,2(t1, t2, α) = α +
1

1 − β

(∫ t2

0
[−m′

1(t2 − T) + m2(t2 − T) + s1(t1 − t2)− α]+ f (T)dT

+
∫ t1

t2

[+s1(t1 − T) + ch,2(T − t2)− α]+ f (T)dT

+
∫ ∞

t1

[m1(T − t1) + g(T − t1) + ch,2(T − t2)− α]+ f (T)dT
)

(2.6.165)

s.t. (t1, t2) ∈ R2, −∞ ≤ α ≤ ∞. (2.6.166)

Depending on the convexity/concavity of lβ,2(t1, t2, α) , we divide our analysis into

two cases: If m2 − m′
1 − s1 + ch,2 > 0 then lβ,2(t1, t2, α) is strictly convex, else if m2 −

m′
1 − s1 + ch,2 < 0 then lβ,2(t1, t2, α) is strictly concave.

Furthermore, there there are two cases have to be considered, these values characteriz-

ing the structure of the solution :

• ch,2 ≥ s1,

• ch,2 ≤ s1.

Appendix C-1 ch,2 ≥ s1 :

It can be seen that the critical values for the α parameters corresponding to the slope

discontinuities for the piecewise linear function (2.6.165), as functions of t1 and t2, are

given by

α̃2,1(t1, t2) = s1(t1 − t2), (2.6.167)

α̃2,2(t1, t2) = (m2 − m′
1)t2 + s1(t1 − t2), (2.6.168)

α̃2,3(t1, t2) = ch,2(t1 − t2). (2.6.169)
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with α̃2,1(t1, t2) ≤ α̃2,2(t1, t2) ≤ α̃2,3(t1, t2) (see Figure (2.9)).

It can be seen that the critical values for the α parameters corresponding to the slope

discontinuities for the piecewise linear function (2.6.165), as functions of t1 and t2, are

given by

α̃2,1(t1, t2) = s1(t1 − t2), (2.6.170)

α̃2,2(t1, t2) = (m2 − m′
1)t2 + s1(t1 − t2), (2.6.171)

α̃2,3(t1, t2) = ch,2(t1 − t2). (2.6.172)

with α̃2,1(t1, t2) ≤ α̃2,2(t1, t2) ≤ α̃2,3(t1, t2) (see Figure (2.9)). In order to characterize the

Figure 2.9: Four cases in minimization of CVaR in the region R2 for ch,2 ≥ s1

first order conditions, we define the regions C2,1, C2,2, C2,3 and C2,4, as

C2,1 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]∞, α̃2,1(t1, t2)[, (2.6.173)

C2,2 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,1(t1, t2), α̃2,2(t1, t2)[, (2.6.174)

C2,3 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,2(t1, t2), α̃2,3(t1, t2)[, (2.6.175)

C2,4 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,3(t1, t2), ∞[. (2.6.176)

The main result for CVAR in region R2

Proof: Determination of the optimal policies.
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First step : expression of the first order conditions.

The region C2,1. In this region, the objective function given in expression (2.6.165) is

lβ,2 = α +
1

1 − β

[
((m2 − m′

1)t2 + s1(t1 − t2))F(t2) + (m′
1 − m2)G(t2)

+(s1t1 − ch,2t2)(F(t1)− F(t2)) + (ch,2 − s1)(G(t1)− G(t2))

−((m1 + g)t1 + ch,2t2)(1 − F(t1)) + (m1 + ch,2 + g)(µ − G(t1))− α

]
(2.6.177)

The optimization problem can be rewritten

lβ,2 = α +
1

1 − β

[
((m2 − m′

1)t2 + s1(t1 − t2))F(t2) + (m′
1 − m2)G(t2)

+(s1t1 − ch,2t2)(F(t1)− F(t2)) + (ch,2 − s1)(G(t1)− G(t2))

−((m1 + g)t1 + ch,2t2)(1 − F(t1)) + (m1 + ch,2 + g)(µ − G(t1))− α

]
(2.6.178)

s.t. (t1, t2, α) ∈ C2,1. (2.6.179)

The region C2,1. The first order derivatives of (2.6.178) are given by

dlβ,2(t1, t2, α)

dα
= − β

(1 − β)
, (2.6.180)

dlβ,2(t1, t2, α)

dt1
=

(s1 + m1 + g)F(t1)− (m1 + g)
(1 − β)

, (2.6.181)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch,2)F(t2)− ch,2

(1 − β)
. (2.6.182)

The region C2,2.

According to Figure 2.9, let’s define T1(α, t1, t2) as the T value corresponding to:

α = −m′
1(t2 − T) + m2(t2 − T) + s1(t1 − t2) (2.6.183)

and T2(α, t1, t2) as the T value corresponding to:

α = +s1(t1 − T) + ch,2(T − t2) (2.6.184)

The optimization problem can be rewritten

lβ,2 = α +
1

1 − β

[
(m2 − m′

1)t2 + s1(t1 − t2)− α

]
F(T1(α, t1, t2))

+
1

1 − β
[m′

1 − m2]G(T1(α, t1, t2))

+
1

1 − β

[
(s1t1 − ch,2t2 − α)(F(t1)− F(T2(α, t1, t2)))

+ (ch,2 − s1)(G(t1)− G(T2(α, t1, t2)))

]
+

1
1 − β

[
−((m1 + g)t1 + ch,2t2 + α)(1 − F(t1)) + (m1 + ch,2 + g)(µ − G(t1))

]
, (2.6.185)

s.t. (t1, t2, α) ∈ C2,2. (2.6.186)
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The first order derivatives of (2.6.185) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1(F(t1) + F(T1(α, t1, t2))− F(T2(α, t1, t2)) + (m1 + g)(F(t1)− 1)
1 − β

, (2.6.187)

dlβ,2(t1, t2, α)

dt2
=

(m2 − s1 − m′
1)F(T1(α, t1, t2))− ch,2(1 − F(T2(α, t1, t2)))

1 − β
, (2.6.188)

dlβ,2(t1, t2, α)

dα
=

F(T2(α, t1, t2))− F(T1(α, t1, t2))− β

1 − β
. (2.6.189)

The region C2,3.

According to Figure 2.9, let’s define T3(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(T − t1) + ch,2(T − t2). (2.6.190)

The optimization problem becomes

min lβ,2(t1, t2, α) = α +
1

1 − β

[
(s1t1 − ch,2t2 − α)(F(t1)− F(T2(α, t1, t2)))

+ (ch,2 − s1)(G(t1)− G(T2(α, t1, t2)))

]
+

1
1 − β

[
−((m1 + g)t1 + ch,2t2 + α)(1 − F(t1)) + (m1 + ch,2 + g)(µ − G(t1))

]
,(2.6.191)

s.t. (t1, t2, α) ∈ C2,3. (2.6.192)

The first order derivatives of (2.6.191) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1

1 − β
(F(t1)− F(T2(t1, t2, α)))− 1

1 − β
(m1 + g)(1 − F(t1))), (2.6.193)

dlβ,2(t1, t2, α)

dt2
=

−ch,2

1 − β
(1 − F(T2(t1, t2, α))), (2.6.194)

dlβ,2(t1, t2, α)

dα
=

F(T2(t1, t2, α))− β

1 − β
. (2.6.195)

The region C2,4.

The optimization problem becomes

min lβ,2(t1, t2, α) = α +
1

1 − β

[
−((m1 + g)t1 + ch,2t2 + α)(1 − F(T3(t1, t2, α))

+ (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

]
(2.6.196)

s.t. (t1, t2, α) ∈ C2,4. (2.6.197)

The first order derivatives of (2.6.196) are given by:

dlβ,2(t1, t2, α)

dt1
=

−1
1 − β

(m1 + g)(1 − F(T3(α, t1, t2))), (2.6.198)

dlβ,2(t1, t2, α)

dt2
=

−ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.199)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− β

1 − β
. (2.6.200)

In the interior of region R2, the CVaR loss function lβ,2(t1, t2, α) is differentiable w.r.t.

α, t1 and t2.
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By convexity, for fixed t1 and t2 in region R2, the optimal α value can always be found

as the solution of the first order condition.

By convexity and derivability, if the optimal solution lies in the interior of the region

R2 it is given by the solution of the first order condition.

Second step : optimal solution in the interior of a region. It is direct to see that the only

case where the first order conditions possibly have a solution is the region C2,2. Under

adequate assumptions, the first order conditions (2.6.324)-(2.6.326) have the solution

t∗1 = F−1
(

m1 + g + s1β

m1 + g + s1

)
, (2.6.201)

t∗2 =

(
m2 − m′

1
m2 − m′

1 − s1 + ch,2

)
F−1

(
ch,2(1 − β)

m2 − m′
1 − s1 + ch,2

)
−

(
s1 − ch,2

m2 − m′
1 − s1 + ch,2

)
F−1

(
ch,2 + β(m2 − m′

1 − s1)

m2 − m′
1 − s1 + ch,2

)
, (2.6.202)

α∗ =

(
ch,2 − s1

)
F−1

(
ch,2 + β(m2 − m′

1 − s1)

m2 − m′
1 − s1 + ch,2

)
+ s1t∗1 − ch,2t∗2 . (2.6.203)

We also find the following parameter values

T1(t∗1 , t∗2 , α∗) = F−1
(

ch,2(1 − β)

m2 − m′
1 − s1 + ch,2

)
, (2.6.204)

T2(t∗1 , t∗2 , α∗) = F−1
(

ch,2 + β(m2 − m′
1 − s1)

m2 − m′
1 − s1 + ch,2

)
. (2.6.205)

Now, several assumptions are required in order to guarantee that this solution belongs

to the interior of C2,2. Basically these assumptions are the following

F
(

ch,2 + β(m2 − m′
1 − s1)

m2 − m′
1 − s1 + ch,2

)
< 1, (2.6.206)

t∗2 < t∗1 , (2.6.207)

α̃2,1(t∗1 , t∗2) = s1(t∗1 − t∗2) < α∗ < α̃2,2(t∗1 , t∗2)

= (m2 − m′
1)t

∗
2 + s1(t∗1 − t∗2). (2.6.208)
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From Figure (2.9) it can be seen that the last condition is equivalent to

T1(t∗1 , t∗2 , α∗) ≤ t∗2 , (2.6.209)

t∗2 ≤ T2(t∗1 , t∗2 , α∗), (2.6.210)

T2(t∗1 , t∗2 , α∗) ≤ t∗1 . (2.6.211)

First condition analysis. The first assumption is independent of the probability distri-

bution and amounts to the condition on the parameters:

ch,2 + β(m2 − m′
1 − s1) < m2 − m′

1 − s1 + ch,2 (2.6.212)

If m2 − m′
1 − s1 ≥ 0 then condition 1 holds for any probability distribution and for all

β values one has existence of t∗2 .

Second condition analysis. The second condition is not easy and in general, for ar-

bitrary values of the parameters and of β, can depend on the probability distribution.

However, it can be seen that under parameters conditions corresponding to Case 1,

expression of t∗2 corresponds to a convex combination of F−1
(

ch,2(1−β)
m2−m′

1−s1+ch,2

)
and of

F−1
(

ch,2+β(m2−m′
1−s1)

m2−m′
1−s1+ch,2

)
. As a consequence some properties can be found, depending on

the order associated with m1+g+s1β
m1+g+s1

, ch,2(1−β)
m2−m′

1−s1+ch,2
and ch,2+β(m2−m′

1−s1)
m2−m′

1−s1+ch,2
.

If ch,2+β(m2−m′
1−s1)

m2−m′
1−s1+ch,2

< m1+g+s1β
m1+g+s1

then for any probability distribution one has t∗2 < t∗1 .

If ch,2+β(m2−m′
1−s1)

m2−m′
1−s1+ch,2

≥ m1+g+s1β
m1+g+s1

then for any probability distribution F, there exists an

upper bound βF such that for any β values with β ≤ βF, one has t∗2 ≥ t∗1 .

If m2 − m′
1 − s1 < 0, then for any probability distribution F, there is no finite minimum

inside the region.

Third condition analysis. It is direct to see that conditions (2.6.209) and (2.6.210) hold

for any distribution and any parameters. In fact, condition (2.6.211) amounts again to

ch,2+β(m2−m′
1−s1)

m2−m′
1−s1+ch,2

< m1+g+s1β
m1+g+s1

.

Third step : optimal solution on a boundary of a region. If the optimal solution is

not in the interior of a region (i.e., if above conditions do not hold) then the optimal

solution has to be found on the boundary of region between two regions. The potential

boundaries are defined as

• t1 = t2
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• α(t1, t2) = α̃2,i(t1, t2) for i = 1, .., 3.

Solved previously for case t1 ≤ t2.

Now, for the case

• α̃2,1(t1, t2) ≤ α̃2,3(t1, t2) ≤ α̃2,2(t1, t2) (see Figure (2.10)).

Figure 2.10: Four cases in minimization of CVaR in the region R2

In order to characterize the first order conditions, we define the regions C2,1, C2,2, C2,3

and C2,4, as

C2,1 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]∞, α̃2,1(t1, t2)[, (2.6.213)

C2,2 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,1(t1, t2), α̃2,3(t1, t2)[, (2.6.214)

C2,3 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,3(t1, t2), α̃2,2(t1, t2)[, (2.6.215)

C2,4 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,2(t1, t2), ∞[. (2.6.216)

Proof:Determination of the optimal policies.

First step : expression of the first order conditions.
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The region C2,1. In this region, the objective function given in expression is

lβ,2 = α +
1

1 − β

[
((m2 − m′

1)t2 + s1(t1 − t2))F(t2) + (m′
1 − m2)G(t2)

+(s1t1 − cht2)(F(t1)− F(t2)) + (ch − s1)(G(t1)− G(t2))

−((m1 + g)t1 + cht2)(1 − F(t1)) + (m1 + ch + g)(µ − G(t1))

− α

]
(2.6.217)

The optimization problem can be rewritten

lβ,2 = α +
1

1 − β

[
((m2 − m′

1)t2 + s1(t1 − t2))F(t2) + (m′
1 − m2)G(t2)

+(s1t1 − cht2)(F(t1)− F(t2)) + (ch − s1)(G(t1)− G(t2))

−((m1 + g)t1 + cht2)(1 − F(t1)) + (m1 + ch + g)(µ − G(t1))

− α

]
(2.6.218)

s.t. (t1, t2, α) ∈ C2,1. (2.6.219)

The first order derivatives of (2.6.218) are given by

dlβ,2(t1, t2, α)

dα
= − β

(1 − β)
, (2.6.220)

dlβ,2(t1, t2, α)

dt1
=

(s1 + m1 + g)F(t1)− (m1 + g)
(1 − β)

, (2.6.221)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch)F(t2)− ch

(1 − β)
. (2.6.222)

The region C2,2.

According to Figure 2.10, let’s define T1(α, t1, t2) as the T value corresponding to:

α = −m′
1(t2 − T) + m2(t2 − T) + s1(t1 − t2) (2.6.223)

and T2(α, t1, t2) as the T value corresponding to:

α = +s1(t1 − T) + ch(T − t2) (2.6.224)
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The optimization problem can be rewritten

lβ,2 = α +
1

1 − β

[
(m2 − m′

1)t2 + s1(t1 − t2)− α

]
F(T1(α, t1, t2))

+
1

1 − β
[m′

1 − m2]G(T1(α, t1, t2))

+
1

1 − β

[
(s1t1 − cht2 − α)(F(t1)− F(T2(α, t1, t2)))

+ (ch − s1)(G(t1)− G(T2(α, t1, t2)))

]
+

1
1 − β

[
−((m1 + g)t1 + cht2 + α)(1 − F(t1))

+ (m1 + ch + g)(µ − G(t1))

]
, (2.6.225)

s.t. (t1, t2, α) ∈ C2,2. (2.6.226)

The first order derivatives of (2.6.225) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1(F(t1) + F(T1(α, t1, t2))− F(T2(α, t1, t2)) + (m1 + g)(F(t1)− 1)
1 − β

, (2.6.227)

dlβ,2(t1, t2, α)

dt2
=

(m2 − s1 − m′
1)F(T1(α, t1, t2))− ch(1 − F(T2(α, t1, t2)))

1 − β
, (2.6.228)

dlβ,2(t1, t2, α)

dα
=

F(T2(α, t1, t2))− F(T1(α, t1, t2))− β

1 − β
. (2.6.229)

The region C2,3.

Let’s define T3(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(T − t1) + ch(T − t2). (2.6.230)

The optimization problem becomes

min lβ,2(t1, t2, α) = α +
1

1 − β

[
(m′

1 − m2)G(T1(t1, t2, α)) + ((m2 − m′
1 − s1)t2 + s1t1 − α)F(T1(t1, t2, α))

]
+

1
1 − β

[
−((m1 + g)t1 + cht2 + α)(1 − F(T3(t1, t2, α))

+ (m1 + ch + g)(µ − G(T3(t1, t2, α)))

]
, (2.6.231)

s.t. (t1, t2, α) ∈ C2,3. (2.6.232)

The first order derivatives of (2.6.231) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1F(T1(α, t1, t2))− (m1 + g)(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.233)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1)F(T1(α, t1, t2))− ch(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.234)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− F(T1(α, t1, t2))− β

1 − β
. (2.6.235)
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The region C2,4.

The optimization problem becomes

min lβ,2(t1, t2, α) = α +
1

1 − β

[
−((m1 + g)t1 + cht2 + α)(1 − F(T3(t1, t2, α))

+ (m1 + ch + g)(µ − G(T3(t1, t2, α)))

]
(2.6.236)

s.t. (t1, t2, α) ∈ C2,4. (2.6.237)

The first order derivatives of (2.6.236) are given by:

dlβ,2(t1, t2, α)

dt1
=

−1
1 − β

(m1 + g)(1 − F(T3(α, t1, t2))), (2.6.238)

dlβ,2(t1, t2, α)

dt2
=

−ch
1 − β

(1 − F(T3(α, t1, t2))), (2.6.239)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− β

1 − β
. (2.6.240)

Corollary. In the interior of region R2, the CVaR loss function lβ,2(t1, t2, α) is differen-

tiable w.r.t. α, t1 and t2.

Corollary. By convexity, for fixed t1 and t2 in region R2, the optimal α value can always

be found as the solution of the first order condition.

Corollary. By convexity and derivability, if the optimal solution lies in the interior of

the region R2 it is given by the solution of the first order condition.

Second step : optimal solution in the interior of a region. It is direct to see that

the only case where the first order conditions possibly have a solution is the region

C2,2. Under adequate assumptions, the first order conditions (2.6.227)-(2.6.229) have
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the solution

t∗1 = F−1
(

m1 + g + s1β

m1 + g + s1

)
, (2.6.241)

t∗2 =

(
m2 − m′

1
m2 − m′

1 − s1 + ch

)
F−1

(
ch(1 − β)

m2 − m′
1 − s1 + ch

)
−

(
s1 − ch

m2 − m′
1 − s1 + ch

)
F−1

(
ch + β(m2 − m′

1 − s1)

m2 − m′
1 − s1 + ch

)
, (2.6.242)

α∗ =

(
ch − s1

)
F−1

(
ch + β(m2 − m′

1 − s1)

m2 − m′
1 − s1 + ch

)
+ s1t∗1 − cht∗2 . (2.6.243)

We also find the following parameter values

T1(t∗1 , t∗2 , α∗) = F−1
(

ch(1 − β)

m2 − m′
1 − s1 + ch

)
, (2.6.244)

T2(t∗1 , t∗2 , α∗) = F−1
(

ch + β(m2 − m′
1 − s1)

m2 − m′
1 − s1 + ch

)
. (2.6.245)

Now, several assumptions are required in order to guarantee that this solution belongs

to the interior of C2,2. Basically these assumptions are the following

F
(

ch + β(m2 − m′
1 − s1)

m2 − m′
1 − s1 + ch

)
< 1, (2.6.246)

t∗2 < t∗1 , (2.6.247)

α̃2,1(t∗1 , t∗2) = s1(t∗1 − t∗2) < α∗ < α̃2,3(t∗1 , t∗2) = ch(t∗1 − t∗2). (2.6.248)

From Figure (2.10) it can be seen that the last condition is equivalent to

T1(t∗1 , t∗2 , α∗) ≤ t∗2 , (2.6.249)

t∗2 ≤ T2(t∗1 , t∗2 , α∗), (2.6.250)

T2(t∗1 , t∗2 , α∗) ≤ t∗1 . (2.6.251)

First condition analysis. The first assumption is independent of the probability distri-

bution and amounts to the condition on the parameters:

ch + β(m2 − m′
1 − s1) < m2 − m′

1 − s1 + ch (2.6.252)
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Corollary. If m2 − m′
1 − s1 ≥ 0 then condition 1 holds for any probability distribution

and for all β values one has existence of t∗2 .

Corollary. If m2 − m′
1 − s1 < 0, then for any probability distribution F, there exists a

lower bound βF such that for any β values with β ≥ βF, one has no existence of t∗2 .

Second condition analysis. The second condition is not easy and in general, for ar-

bitrary values of the parameters and of β, can depend on the probability distribution.

However, it can be seen that under parameters conditions corresponding to Case 1,

expression of t∗2 corresponds to a convex combination of F−1
(

ch(1−β)
m2−m′

1−s1+ch

)
and of

F−1
(

ch+β(m2−m′
1−s1)

m2−m′
1−s1+ch

)
. As a consequence some properties can be found, depending on

the order associated with m1+g+s1β
m1+g+s1

, ch(1−β)
m2−m′

1−s1+ch
and ch+β(m2−m′

1−s1)
m2−m′

1−s1+ch
.

Corollary. If ch+β(m2−m′
1−s1)

m2−m′
1−s1+ch

< m1+g+s1β
m1+g+s1

then for any probability distribution one has

t∗2 < t∗1 .

Corollary. If ch+β(m2−m′
1−s1)

m2−m′
1−s1+ch

≥ m1+g+s1β
m1+g+s1

then for any probability distribution F, there

exists an upper bound βF such that for any β values with β ≤ βF, one has t∗2 ≥ t∗1 .

Third condition analysis. It is direct to see that conditions (2.6.249) and (2.6.250) hold

for any distribution and any parameters. In fact, condition (2.6.251) amounts again to

ch+β(m2−m′
1−s1)

m2−m′
1−s1+ch

< m1+g+s1β
m1+g+s1

.

Third step : optimal solution on a boundary of a region. If the optimal solution is

not in the interior of a region (i.e., if above conditions do not hold) then the optimal

solution has to be found on the boundary of region between two regions. The potential

boundaries are defined as

• t1 = t2

• α(t1, t2) = α̃2,i(t1, t2) for i = 1, .., 3.
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Solved previously for case t1 ≤ t2.

Appendix C-2 ch,2 ≤ s1 :

It can be seen that the critical values for the α parameters corresponding to the slope

discontinuities for the piecewise linear function (2.6.165), as functions of t1 and t2, are

given by

α̃2,1(t1, t2) = s1(t1 − t2), (2.6.253)

α̃2,2(t1, t2) = (m2 − m′
1)t2 + s1(t1 − t2), (2.6.254)

α̃2,3(t1, t2) = ch,2(t1 − t2). (2.6.255)

with α̃2,3(t1, t2) ≤ α̃2,1(t1, t2) ≤ α̃2,2(t1, t2) (see Figure (2.11)).

Figure 2.11: Four cases in minimization of CVaR in the region R2 for ch,2 ≤ s1

In order to characterize the first order conditions, we define the regions C2,1, C2,2, C2,3
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and C2,4, as

C2,1 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]∞, α̃2,3(t1, t2)[, (2.6.256)

C2,2 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,3(t1, t2), α̃2,1(t1, t2)[, (2.6.257)

C2,3 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,1(t1, t2), α̃2,2(t1, t2)[, (2.6.258)

C2,4 = {(t1, t2, α) with (t1, t2) ∈ R2 and α ∈]α̃2,2(t1, t2), ∞[. (2.6.259)

The main result for CVAR in region R2 for ch,2 ≤ s1

Proof:Determination of the optimal policies.

First step : expression of the first order conditions.

The region C2,1. In this region, the objective function given in expression (2.6.165) is

lβ,2 = α +
1

1 − β

[
((m2 − m′

1)t2 + s1(t1 − t2))F(t2) + (m′
1 − m2)G(t2)

+(s1t1 − ch,2t2)(F(t1)− F(t2)) + (ch,2 − s1)(G(t1)− G(t2))

−((m1 + g)t1 + ch,2t2)(1 − F(t1)) + (m1 + ch,2 + g)(µ − G(t1))

− α

]
(2.6.260)

The optimization problem can be rewritten

lβ,2 = α +
1

1 − β

[
((m2 − m′

1)t2 + s1(t1 − t2))F(t2) + (m′
1 − m2)G(t2)

+(s1t1 − ch,2t2)(F(t1)− F(t2)) + (ch,2 − s1)(G(t1)− G(t2))

−((m1 + g)t1 + ch,2t2)(1 − F(t1)) + (m1 + ch,2 + g)(µ − G(t1))

− α

]
(2.6.261)

s.t. (t1, t2, α) ∈ C2,1. (2.6.262)

The first order derivatives of (2.6.261) are given by

dlβ,2(t1, t2, α)

dα
= − β

(1 − β)
, (2.6.263)

dlβ,2(t1, t2, α)

dt1
=

(s1 + m1 + g)F(t1)− (m1 + g)
(1 − β)

, (2.6.264)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch,2)F(t2)− ch,2

(1 − β)
. (2.6.265)
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The region C2,2.

According to Figure 2.11, let’s define T2(α, t1, t2) as the T value corresponding to:

α = +s1(t1 − T) + ch,2(T − t2) (2.6.266)

and T3(α, t1, t2) as the T value corresponding to:

α = m1(T − t1) + g(T − t1) + ch,2(T − t2). (2.6.267)

The optimization problem can be rewritten

lβ,2 = α +
1

1 − β

[
(m2 − m′

1 − s1 + ch,2)t2F(t2) + (ch,2 − s1)G(T2(t1, t2, α))

− (m2 − m′
1 − s1 + ch,2)G(t2) + (s1t1 − ch,2t2 − α)F(T2(t1, t2, α))

− ((m1 + g)t1 + ch,2t2 + α)(1 − F(T3(t1, t2, α)))

+ (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

]
, (2.6.268)

s.t. (t1, t2, α) ∈ C2,2. (2.6.269)

The first order derivatives of (2.6.268) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1F(T2(α, t1, t2))− (m1 + g)(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.270)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch,2)F(t2)− ch,2F(T2(α, t1, t2))− ch,2(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.271)

, (2.6.272)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− F(T2(α, t1, t2))− β

1 − β
. (2.6.273)

The region C2,3.

According to Figure 2.11, let’s define T1(α, t1, t2) as the T value corresponding to:

α = −m′
1(t2 − T) + m2(t2 − T) + s1(t1 − t2) (2.6.274)

The optimization problem becomes

min lβ,2(t1, t2, α) = α +
1

1 − β

[
(m′

1 − m2)G(T1(t1, t2, α)) + ((m2 − m′
1 − s1)t2 + s1t1 − α)F(T1(t1, t2, α))

]
+

1
1 − β

[
−((m1 + g)t1 + ch,2t2 + α)(1 − F(T3(t1, t2, α))

+ (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

]
, (2.6.275)

s.t. (t1, t2, α) ∈ C2,3. (2.6.276)

The first order derivatives of (2.6.275) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1F(T1(α, t1, t2))− (m1 + g)(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.277)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1)F(T1(α, t1, t2))− ch,2(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.278)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− F(T1(α, t1, t2))− β

1 − β
. (2.6.279)
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The region C2,4.

The optimization problem becomes

min lβ,2(t1, t2, α) = α +
1

1 − β

[
−((m1 + g)t1 + ch,2t2 + α)(1 − F(T3(t1, t2, α))

+ (m1 + ch,2 + g)(µ − G(T3(t1, t2, α)))

]
(2.6.280)

s.t. (t1, t2, α) ∈ C2,4. (2.6.281)

The first order derivatives of (2.6.280) are given by:

dlβ,2(t1, t2, α)

dt1
=

−1
1 − β

(m1 + g)(1 − F(T3(α, t1, t2))), (2.6.282)

dlβ,2(t1, t2, α)

dt2
=

−ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.283)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− β

1 − β
. (2.6.284)

In the interior of region R2, the CVaR loss function lβ,2(t1, t2, α) is differentiable w.r.t. α,

t1 and t2.

By convexity, for fixed t1 and t2 in region R2, the optimal α value can always be found

as the solution of the first order condition.

By convexity and derivability, if the optimal solution lies in the interior of the region

R2 it is given by the solution of the first order condition.

Second step : optimal solution in the interior of a region. It is direct to see that the only

case where the first order conditions possibly have a solution is the region C2,2. Under

adequate assumptions, the first order conditions (2.6.270)-(2.6.273) have the solution

t∗1 = F−1
((

m1 + g + ch,2

)
F−1

(
m1+g+s1β
m1+g+s1

)
m1 + g + s1

+

(
s1 − ch,2

)
F−1

(
(m1+g)(1−β)

m1+g+s1

)
m1 + g + s1

)
(2.6.285)

t∗2 = F−1
(

ch,2(1 − β)

m2 − m′
1 − s1 + ch,2

)
, (2.6.286)
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α∗ =

(
ch,2 − s1

)
F−1

(
(m1 + g)(1 − β)

m1 + g + s1

)
+ s1t∗1 − ch,2t∗2 . (2.6.287)

We also find the following parameter values

T2(t∗1 , t∗2 , α∗) = F−1
(
(m1 + g)(1 − β)

m1 + g + s1

)
, (2.6.288)

T3(t∗1 , t∗2 , α∗) = F−1
(

m1 + g + s1β

m1 + g + s1

)
. (2.6.289)

Now, several assumptions are required in order to guarantee that this solution belongs

to the interior of C2,2. Basically these assumptions are the following

F
(

ch,2(1 − β)

m2 − m′
1 − s1 + ch,2

)
< 1, (2.6.290)

t∗2 < t∗1 , (2.6.291)

α̃2,1(t∗1 , t∗2) = ch,2(t∗1 − t∗2) < α∗ < α̃2,3(t∗1 , t∗2)

= s1(t∗1 − t∗2). (2.6.292)

From Figure 2.11 it can be seen that the last condition is equivalent to

t∗2 ≤ T2(t∗1 , t∗2 , α∗), (2.6.293)

T2(t∗1 , t∗2 , α∗) ≤ t∗1 , (2.6.294)

t∗1 ≤ T3(t∗1 , t∗2 , α∗). (2.6.295)

First condition analysis. The first assumption is independent of the probability distri-

bution and amounts to the condition on the parameters:

ch,2(1 − β) < m2 − m′
1 − s1 + ch,2 (2.6.296)

Second condition analysis. The second condition is not easy and in general, for ar-

bitrary values of the parameters and of β, can depend on the probability distribution.

However, it can be seen that under parameters conditions corresponding to Case 1,
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expression of t∗2 corresponds to a convex combination of F−1
(

(m1+g)(1−β)
m1+g+s1

)
and of

F−1
(

m1+g+s1β
m1+g+s1

)
. As a consequence some properties can be found, depending on the

order associated with m1+g+s1β
m1+g+s1

, ch,2(1−β)
m2−m′

1−s1+ch,2
and (m1+g)(1−β)

m1+g+s1
.

If m2 − m′
1 − s1 + ch,2 ≥ 0 then condition 1 holds for any probability distribution and

for all β values one has existence of t∗2 .

If ch,2(1−β)
m2−m′

1−s1+ch,2
≥ (m1+g)(1−β)

m1+g+s1
then for any probability distribution F, there exists an

upper bound βF such that for any β values with β ≤ βF, one has t∗2 ≥ t∗1 .

If m2 − m′
1 − s1 < 0, then for any probability distribution F, there exists a lower bound

βF such that for any β values with β ≥ βF, one has no existence of t∗2 .

Third condition analysis. It is direct to see the conditions (2.6.295) and (2.6.294) hold

for any distribution and any parameters. In fact, condition (2.6.293) amounts again to

ch,2(1−β)
m2−m′

1−s1+ch,2
< (m1+g)(1−β)

m1+g+s1
.

Third step : optimal solution on a boundary of a region. If the optimal solution is

not in the interior of a region (i.e., if above conditions do not hold) then the optimal

solution has to be found on the boundary of region between two regions. The potential

boundaries are defined as

• t1 = t2

• α(t1, t2) = α̃2,i(t1, t2) for i = 1, .., 3.

Solved previously for case t1 ≤ t2.
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APPENDIX D: Differentiability of the CVaR Function

Differentiability of the CVaR loss function lβ,1(t1, t2, α) inside R1 × R

Case 1 : m2 ≥ m1 ≥ m′
1

According to the 4 regions, the expressions of the the first order conditions of lβ,1(t1, t2, α)

are as follows:

The region C1,1.

The first order derivatives of (2.6.28) are given by

dlβ,1(t1, t2, α)

dα
=

−β

1 − β
, (2.6.297)

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

, (2.6.298)

dlβ,1(t1, t2, α)

dt2
=

(m2 + ch,2 + g)
1 − β

F(t2)−
ch,2

1 − β
. (2.6.299)

The region C1,2.

The first order derivatives of (2.6.35) are given by:

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

F(T2(α, t1, t2))

− (m1 + g)
1 − β

(1 − F(T3(α, t1, t2))), (2.6.300)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

F(T2(α, t1, t2))

− ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.301)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α))− F(T2(t1, t2, α))− β

1 − β
. (2.6.302)
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The region C1,3.

The first order derivatives of (2.6.41) are given by:

dlβ,1(t1, t2, α)

dt1
= − (m′

1 + g)
1 − β

F(T1(α, t1, t2))

− (m1 + g)
1 − β

(1 − F(T3(α, t1, t2))), (2.6.303)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

F(T1(α, t1, t2))

− ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.304)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.305)

The region C1,4.

The first order derivatives of (2.6.46) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(
m1 + g
1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.306)

dlβ,1(t1, t2, α)

dt2
= −

(
ch,2

1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.307)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α)− β

1 − β
. (2.6.308)

From the expression of the first order derivatives in the 4 regions, it is clear that lβ,1(t1, t2, α)

is differentiable within each region, yet we have to examine the differentiability at the

critical points of α̃1,1(t1, t2), α̃1,2(t1, t2), and α̃1,3(t1, t2) as follows:

Differentiability at α̃1,1(t1, t2)

If α → α̃−
1,1(t1, t2), we are in region C1,1 and the first order derivatives are given by the

expressions (2.6.297-2.6.299).

If α → α̃+
1,1(t1, t2), we are in region C1,2 and and the first order derivatives are given by

the expressions (2.6.300-2.6.302).

Yet for α = α̃+
1,1(t1, t2), one gets T2(t1, t2, α) = T3(t1, t2, α) = t2, and thus the first order

derivatives of region C1,1 become equal to that of region C1,2 and the function is differ-

entiable at α̃1,1(t1, t2).
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Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃1,2(t1, t2)

If α → α̃−
1,2(t1, t2), we are in region C1,2 and the first order derivatives are given by the

expressions (2.6.300-2.6.302).

If α → α̃+
1,2(t1, t2), we are in region C1,3 and and the first order derivatives are given by

the expressions (2.6.303-2.6.305).

Yet for α = α̃+
1,2(t1, t2), one gets T1(t1, t2, α) = T2(t1, t2, α) = t1, and thus the first order

derivatives of region C1,2 become equal to that of region C1,3 and the function is differ-

entiable at α̃1,2(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃1,3(t1, t2)

If α → α̃−
1,3(t1, t2), we are in region C1,3 and the first order derivatives are given by the

expressions (2.6.303-2.6.305).

If α → α̃+
1,3(t1, t2), we are in region C1,4 and and the first order derivatives are given by

the expressions (2.6.306-2.6.308).

Yet for α = α̃+
1,3(t1, t2), one gets T1(t1, t2, α) = 0, and thus the first order derivatives

of region C1,3 become equal to that of region C1,4 and the function is differentiable at

α̃1,3(t1, t2).
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Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Case 2 : m1 ≥ m2 ≥ m′
1

From the expression of the first order derivatives in the 4 regions, it is clear that lβ,1(t1, t2, α)

is differentiable within each region, yet we have to examine the differentiability at the

critical points of α̃1,1(t1, t2), α̃1,2(t1, t2), and α̃1,3(t1, t2) as follows:

According to the 4 regions, the expressions of the the first order conditions of lβ,1(t1, t2, α)

are as follows:

The region C1,1. The first order derivatives of (2.6.90) are given by

dlβ,1(t1, t2, α)

dα
=

−β

1 − β
, (2.6.309)

dlβ,1(t1, t2, α)

dt1
=

(m1 − m′
1)

1 − β
F(t1)−

(m1 + g)
1 − β

, (2.6.310)

dlβ,1(t1, t2, α)

dt2
=

(m2 + ch,2 + g)
1 − β

F(t2)−
ch,2

1 − β
. (2.6.311)

The region C1,2.

The first order derivatives of (2.6.97) are given by:

dlβ,1(t1, t2, α)

dt1
= − (m′

1 + g)
1 − β

F(T1(α, t1, t2)) +
(m1 + g)

1 − β
F(T2(α, t1, t2))

− (m1 + g)
1 − β

, (2.6.312)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

(F(T1(α, t1, t2))− F(T2(α, t1, t2)))

− ch,2

1 − β
(1 − F(t2)) + (

m1 + g)
1 − β

F(t2), (2.6.313)

dlβ,1(t1, t2, α)

dα
=

F(T2(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.314)

The region C1,3.
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The first order derivatives of (2.6.103) are given by:

dlβ,1(t1, t2, α)

dt1
= − (m′

1 + g)
1 − β

F(T1(α, t1, t2))

− (m1 + g)
1 − β

(1 − F(T3(α, t1, t2))), (2.6.315)

dlβ,1(t1, t2, α)

dt2
=

(m2 + g)
1 − β

F(T1(α, t1, t2))

− ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.316)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α))− F(T1(t1, t2, α))− β

1 − β
. (2.6.317)

The region C1,4.

The first order derivatives of (2.6.108) are given by:

dlβ,1(t1, t2, α)

dt1
= −

(
m1 + g
1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.318)

dlβ,1(t1, t2, α)

dt2
= −

(
ch,2

1 − β

)(
1 − F(T3(t1, t2, α))

)
, (2.6.319)

dlβ,1(t1, t2, α)

dα
=

F(T3(t1, t2, α)− β

1 − β
. (2.6.320)

Differentiability at α̃1,1(t1, t2)

If α → α̃−
1,1(t1, t2), we are in region C1,1 and the first order derivatives are given by the

expressions (2.6.309-2.6.311).

If α → α̃+
1,1(t1, t2), we are in region C1,2 and and the first order derivatives are given by

the expressions (2.6.312-2.6.314).

Yet for α = α̃+
1,1(t1, t2), one gets T1(t1, t2, α) = T2(t1, t2, α) = t1, and thus the first order

derivatives of region C1,1 become equal to that of region C1,2 and the function is differ-

entiable at α̃1,1(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.
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Differentiability at α̃1,2(t1, t2)

If α → α̃−
1,2(t1, t2), we are in region C1,2 and the first order derivatives are given by the

expressions (2.6.312-2.6.314).

If α → α̃+
1,2(t1, t2), we are in region C1,3 and and the first order derivatives are given by

the expressions (2.6.315-2.6.317).

Yet for α = α̃+
1,2(t1, t2), one gets T2(t1, t2, α) = T3(t1, t2, α) = t2, and thus the first order

derivatives of region C1,2 become equal to that of region C1,3 and the function is differ-

entiable at α̃1,2(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃1,3(t1, t2)

If α → α̃−
1,3(t1, t2), we are in region C1,3 and the first order derivatives are given by the

expressions (2.6.315-2.6.317).

If α → α̃+
1,3(t1, t2), we are in region C1,4 and and the first order derivatives are given by

the expressions (2.6.108-2.6.320).

Yet for α = α̃+
1,3(t1, t2), one gets T1(t1, t2, α) = 0, and thus the first order derivatives

of region C1,3 become equal to that of region C1,4 and the function is differentiable at

α̃1,3(t1, t2). Now for the differentiability with respect to t1 and t2, if F is continuous,

then the objective function is derivable with respect to t1 and t2.

115



CHAPTER 2: FIRST PAPER: OPTIMAL STRATEGY FOR STOCHASTIC PRODUCT

ROLLOVER UNDER RISK USING CVAR ANALYSIS

Differentiability of the CVaR loss function lβ,2(t1, t2, α) inside R2 × R

Case 1: ch,2 ≥ s1

The region C2,1.

The first order derivatives of (2.6.178) are given by

dlβ,2(t1, t2, α)

dα
= − β

(1 − β)
, (2.6.321)

dlβ,2(t1, t2, α)

dt1
=

(s1 + m1 + g)F(t1)− (m1 + g)
(1 − β)

, (2.6.322)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch,2)F(t2)− ch,2

(1 − β)
. (2.6.323)

The region C2,2.

The first order derivatives of (2.6.185) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1(F(t1) + F(T1(α, t1, t2))− F(T2(α, t1, t2)) + (m1 + g)(F(t1)− 1)
1 − β

, (2.6.324)

dlβ,2(t1, t2, α)

dt2
=

(m2 − s1 − m′
1)F(T1(α, t1, t2))− ch,2(1 − F(T2(α, t1, t2)))

1 − β
, (2.6.325)

dlβ,2(t1, t2, α)

dα
=

F(T2(α, t1, t2))− F(T1(α, t1, t2))− β

1 − β
. (2.6.326)

The region C2,3.

The first order derivatives of (2.6.191) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1

1 − β
(F(t1)− F(T2(t1, t2, α)))− 1

1 − β
(m1 + g)(1 − F(t1))), (2.6.327)

dlβ,2(t1, t2, α)

dt2
=

−ch,2

1 − β
(1 − F(T2(t1, t2, α))), (2.6.328)

dlβ,2(t1, t2, α)

dα
=

F(T2(t1, t2, α))− β

1 − β
. (2.6.329)

The region C2,4.

The first order derivatives of (2.6.196) are given by:

dlβ,2(t1, t2, α)

dt1
=

−1
1 − β

(m1 + g)(1 − F(T3(α, t1, t2))), (2.6.330)

dlβ,2(t1, t2, α)

dt2
=

−ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.331)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− β

1 − β
. (2.6.332)
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Differentiability at α̃2,1(t1, t2)

If α → α̃−
2,1(t1, t2), we are in region C2,1 and the first order derivatives are given by the

expressions (2.6.321-2.6.323).

If α → α̃+
2,1(t1, t2), we are in region C2,2 and and the first order derivatives are given by

the expressions (2.6.324-2.6.326).

Yet for α = α̃+
2,1(t1, t2), one gets T1(t1, t2, α) = T2(t1, t2, α) = t1, and thus the first order

derivatives of region C2,1 become equal to that of region C2,2 and the function is differ-

entiable at α̃2,1(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃2,2(t1, t2)

If α → α̃−
2,2(t1, t2), we are in region C1,2 and the first order derivatives are given by the

expressions (2.6.324-2.6.326).

If α → α̃+
2,2(t1, t2), we are in region C2,3 and and the first order derivatives are given by

the expressions (2.6.327-2.6.329).

Yet for α = α̃+
2,2(t1, t2), one gets T1(t1, t2, α) = 0 or disappears, and thus the first order

derivatives of region C2,2 become equal to that of region C2,3 and the function is differ-

entiable at α̃2,2(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃2,3(t1, t2)
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If α → α̃−
2,3(t1, t2), we are in region C2,3 and the first order derivatives are given by the

expressions (2.6.327-2.6.329).

If α → α̃+
2,3(t1, t2), we are in region C2,4 and and the first order derivatives are given by

the expressions (2.6.330-2.6.332).

Yet for α = α̃+
2,3(t1, t2), one gets T2(t1, t2, α) = T3(t1, t2, α) = t1, and thus the first order

derivatives of region C2,3 become equal to that of region C2,4 and the function is differ-

entiable at α̃2,3(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Case 2:ch,2 ≤ s1

The region C2,1.

The first order derivatives of (2.6.261) are given by

dlβ,2(t1, t2, α)

dα
= − β

(1 − β)
, (2.6.333)

dlβ,2(t1, t2, α)

dt1
=

(s1 + m1 + g)F(t1)− (m1 + g)
(1 − β)

, (2.6.334)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch,2)F(t2)− ch,2

(1 − β)
. (2.6.335)

The region C2,2.

The first order derivatives of (2.6.268) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1F(T2(α, t1, t2))− (m1 + g)(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.336)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1 + ch,2)F(t2)− ch,2F(T2(α, t1, t2))− ch,2(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.337)

, (2.6.338)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− F(T2(α, t1, t2))− β

1 − β
. (2.6.339)
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The region C2,3.

The first order derivatives of (2.6.275) are given by:

dlβ,2(t1, t2, α)

dt1
=

s1F(T1(α, t1, t2))− (m1 + g)(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.340)

dlβ,2(t1, t2, α)

dt2
=

(m2 − m′
1 − s1)F(T1(α, t1, t2))− ch,2(1 − F(T3(α, t1, t2)))

1 − β
, (2.6.341)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− F(T1(α, t1, t2))− β

1 − β
. (2.6.342)

The region C2,4.

The first order derivatives of (2.6.280) are given by:

dlβ,2(t1, t2, α)

dt1
=

−1
1 − β

(m1 + g)(1 − F(T3(α, t1, t2))), (2.6.343)

dlβ,2(t1, t2, α)

dt2
=

−ch,2

1 − β
(1 − F(T3(α, t1, t2))), (2.6.344)

dlβ,2(t1, t2, α)

dα
=

F(T3(α, t1, t2))− β

1 − β
. (2.6.345)

Differentiability at α̃2,1(t1, t2)

If α → α̃−
2,1(t1, t2), we are in region C2,1 and the first order derivatives are given by the

expressions (2.6.333-2.6.335).

If α → α̃+
2,1(t1, t2), we are in region C2,2 and and the first order derivatives are given by

the expressions (2.6.336-2.6.339).

Yet for α = α̃+
2,1(t1, t2), one gets T2(t1, t2, α) = T3(t1, t2, α) = t1, and thus the first order

derivatives of region C2,1 become equal to that of region C2,2 and the function is differ-

entiable at α̃2,1(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃2,2(t1, t2)

If α → α̃−
2,2(t1, t2), we are in region C1,2 and the first order derivatives are given by the
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expressions (2.6.336-2.6.339).

If α → α̃+
2,2(t1, t2), we are in region C2,3 and and the first order derivatives are given by

the expressions (2.6.340-2.6.342).

Yet for α = α̃+
2,2(t1, t2), one gets T1(t1, t2, α) = T2(t1, t2, α) = t2 or disappears, and thus

the first order derivatives of region C2,2 become equal to that of region C2,3 and the

function is differentiable at α̃2,2(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.

Differentiability at α̃2,3(t1, t2)

If α → α̃−
2,3(t1, t2), we are in region C2,3 and the first order derivatives are given by the

expressions (2.6.327-2.6.329).

If α → α̃+
2,3(t1, t2), we are in region C2,4 and and the first order derivatives are given by

the expressions (2.6.343-2.6.345).

Yet for α = α̃+
2,3(t1, t2), one gets T1(t1, t2, α) = 0, and thus the first order derivatives

of region C2,3 become equal to that of region C2,4 and the function is differentiable at

α̃2,3(t1, t2).

Now for the differentiability with respect to t1 and t2, if F is continuous, then the objec-

tive function is derivable with respect to t1 and t2.
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APPENDIX E

One finds in the literature on stochastic dominance relations a family of rules to com-

pare variability between the two demands (Fishburn and Vickson 1978).

Definition 1. Approval date T2 is more n-variable than approval date T1, denoted by

If

T1 ≥n T2, (2.6.346)

Hn(x) ≥ 0 for all x ≥ 0, (2.6.347)

Where

H1(x) = F2(x)− F1(x),

Hn(x) =
∫ x

0 Hn−1(t)dt (n = 2, 3, ...)

In Lemma 1 (below) we show that 2-variability implies higher approval date variances

in with higher costs. The proof is based on the following theorem.

Theorem 1 (Fishburn, 1980). If T1 ≥n T2 for some n ≥ 2 then

µ1 = µ2

σ2
1 ̸= σ2

2

⇒ σ2
1 < σ2

2 .

Property 14 If T1 ≥var T2, then

min
(t1,t2)∈IR+×IR+

EF1 [L(t1, t2, T)] ≤ min
(t1,t2)∈IR+×IR+

EF2 [L(t1, t2, T)]. (2.6.348)

Proof. We successively consider the three strategies and the associated cost functions.

We show that if the variability increases, each cost function increases. Apply Theorem

1, the definition of t∗j,i and the definition of optimal costs for regions R1 and R2 and the

boundary in between the regions to see what happens when T1 ≥var T2
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We know that

E([ti − T]+) =
∫ t1

0
F(T)dT (2.6.349)

and

E([T − ti]
+) =

∫ t1

0
F(T)dT + µ − t1. (2.6.350)

For the minimum of L1 The optimal expected costs associated to probability distribu-

tions F1(·) and F2(·) can be rewritten as

EFi [L1(t∗1(Fi), t∗2(Fi))] = −gt∗1(Fi)− m1t∗1(Fi)− ch,2t∗2(Fi) + (m1 − m′
1)

∫ t∗1(Fi)

0
Fi(T)dT

+ (m2 + ch,2 + g)
∫ t∗2(Fi)

0
Fi(T)dT, (2.6.351)

and we thus have the following difference expression

EF2 [L1(t∗1(F2), t∗2(F2))] − EF1 [L1(t∗1(F2), t∗2(F2)] = (m1 − m′
1)

∫ t∗1(F2)

0
(F2(T)− F1(T))dT

+ (m2 + ch,2 + g)
∫ t∗2(F2)

0
(F2(T)− F1(T))dT. (2.6.352)

As by optimality, one has

EF2 [L1(t∗1(F2), t∗2(F2))] − EF1 [L1(t∗1(F1), t∗2(F1))]

≥

EF2 [L1(t∗1(F2), t∗2(F2))] − EF1 [L1(t∗1(F2), t∗2(F2))], (2.6.353)

by (2.5.5), we conclude

EF2 [L1(t∗1(F2), t∗2(F2))]− EF1 [L1(t∗1(F1), t∗2(F1))] ≥ 0. (2.6.354)

For the minimum of Lb

The optimal expected costs associated to probability distributions F1(·) and F2(·) can

be rewritten as

EFi [Lb(t∗i )] = −(g + m1 + ch,2)t∗1(Fi)

+ (m1 − m′
1 + m2 + ch,2 + g)

∫ t∗1(Fi)

0
Fi(T)dT, (2.6.355)
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and we thus have the following difference expression

EF2 [Lb(t∗2)] − EF1 [Lb(t∗2)] =

+ (m2 − m′
1 + m1 + ch,2 + g)

∫ t∗1(F2)

0
(F2(T)− F1(T))dT. (2.6.356)

As by optimality, one has

EF2 [Lb(t∗2)]− EF1 [Lb(t∗1)] ≥ EF2 [Lb(t∗2)]− EF1 [Lb(t∗2)], (2.6.357)

by (2.5.5), we conclude

EF2 [Lb(t∗2)]− EF1 [Lb(t∗2)] ≥ 0 (2.6.358)

EF2 [Lb(t∗2)]− EF1 [Lb(t∗2)] ≥ 0. (2.6.359)

For the minimum of L2 (under assumption m2 − m′
1 − s1 + ch,2 > 0). The optimal

expected costs associated to probability distributions F1(·) and F2(·) can be rewritten

as

EFi [L2(t∗1(Fi), t∗2(Fi))] = −ch,2t∗2(Fi)− (m1 + g)t∗1(Fi) + (m2 − m′
1 − s1 + ch,2)

∫ t∗2(Fi)

0
Fi(T)dT

+ (m1 + g + s1)
∫ t∗1(Fi)

0
Fi(T)dT, (2.6.360)

and we thus have the following difference expression

EF2 [L2(t∗1(F2), t∗2(F2))] − EF1 [L2(t∗1(F2), t∗1(F2))] = +(m2 − m′
1 − s1 + ch,2)

∫ t∗2(F2)

0
(F2(T)− F1(T))dT

+

(
m1 + g + s1

) ∫ t∗1(F2)

0
(F2(T)− F1(T))dT. (2.6.361)

As by optimality, one has

EF2 [L2(t∗1(F2), t∗2(F2))] − EF1 [L2(t∗1,1, t∗2(F1))]

≥

EF2 [L2(t∗1(F2), t∗2(F2))] − EF1 [L2(t∗1(F2), t∗1(F2))], (2.6.362)

by (2.5.5), one concludes

EF2 [L2(t∗1(F2), t∗2(F2))]− EF1 [L2(t∗1(F2), t∗1(F2))] ≥ 0. (2.6.363)
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Therefore, as the minimum in each region decreases with T1 ≥2 T2, then the global

minimum which is the minimum of the minimum found in each region also decreases.
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CHAPTER 3

Second Paper: Product Rollover

Optimization with an Uncertain

Approval Date and Piecewise Linear

Demand

Abstract

Consider a company that must plan the phase-out of an existing product and the phase-in of a

replacement product. If production of the existing product is stopped too early, i.e., before the

new product is available for the market, the firm will lose profit and customer goodwill. On

the other hand, if production of the existing product is stopped too late, the firm will experience

an obsolescence cost for the existing product. In our paper, we consider a product rollover

process with an uncertain approval date for the new product, and develop the optimal rollover

strategies by minimizing the expected loss. The new product demand is piecewise linear, initially

it increases linearly until it reaches a certain demand level where it becomes constant. This

demand dynamics can be viewed as an approximation for the classical Bass demand dynamics

for new products. We derive the optimal strategy and dates to remove an old product and to
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CHAPTER 3: SECOND PAPER: PRODUCT ROLLOVER OPTIMIZATION WITH AN

UNCERTAIN APPROVAL DATE AND PIECEWISE LINEAR DEMAND

introduce a new one into the market.

KEYWORDS: Product rollover; Uncertain approval date, Solo Product Rollover, Dual

Product Rollover, Risk management, Bass demand, Product demand diffusion.

3.1 Introduction and Literature Review

Several papers have addressed the analysis of new product introduction and product

rollover processes under different assumptions and from various viewpoints such as

marketing, operations management, and engineering design. Some researchers such

as Erhun et al (2007) have performed qualitative studies on different drivers affecting

product transitions and designed a framework that guide managers to design and im-

plement appropriate policies taking into consideration transition risks related to the

product, manufacturing process, supply chain features, and managerial policies in a

competitive environment. The stock market reacts negatively to delays in product in-

troduction, and that on average, delayed announcements decrease the market value of

the firm, as Hendricks and Singhal (1997) claim.

Some papers develop quantitative models for the product rollover analysis. Lim and

Tang (2006) developed a deterministic model that allows for the determination of prices

of old and new products and the times of phase-in and phase-out of the products.

Moreover, they developed marginal cost based conditions to determine when a dual

product rollover strategy is more favorable than a single rollover one.

Classically, there are two rollover strategies: planned stockout and dual rollover. In the

planned stockout-product rollover strategy, there is a simultaneous introduction of the

new product and elimination of the old product, i.e., at any time there is a unique prod-

uct generation available in the market. On the contrary, in the dual-product rollover

strategy, the new product is introduced first and then the old product is phased out.
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Thus, in this setting, two product generations coexist in the market, for a given time

length. A planned stockout product rollover strategy can be viewed as a high-risk,

high return strategy, sensitive to potential random events. On the contrary, the dual

product rollover strategy is less risky, but induces higher inventory costs. For complex

situations, Billington et al (1998) argue that in addition to the choice of the best strat-

egy, planners should develop contingency plans in anticipation of certain events such

as competitors introducing new products, technical problems with the new products,

stock-out of old products, and too much inventory of the new or old product.

Few researchers examined different strategies for the simultaneous deletion of old

products and the introduction of new products. In general, literature argues that there

has been a low success rate for product rollovers and presents many cases of compa-

nies that have failed in product rollovers due to technical problems leading to delay in

introduction of the new product to the market, excessive old product inventory, bad

timing of new product announcement, and overly optimistic sales. It is suggested that

companies should have a clear strategy for product rollover in addition to contingency

plans in case their strategy fails.

A review of the literature reveals that the timing of market entry is a strategic qual-

itative decision as well as a tactical quantitative decision. The strategic choice between

pioneering and following is a problem of balancing different costs and profits. Further-

more, the tactical decision of entry time is a problem of balancing the risks of premature

entry and the missed opportunity of late entry. Usually, firms who enter earlier expect

higher returns especially if they are successful, but bear the risk of lower likelihood of

success than later entrants.

We examine the problem of simultaneously planning the phase-out of the old prod-
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uct and the phase-in of a new one that will replace the old product, under an uncertain

approval date for the new product whose demand is piecewise linear. Initially, demand

increases linearly until it reaches a certain level after which it becomes constant. These

demand dynamics can be viewed as an approximation for the classical Bass demand

dynamics for new products.

The Bass Diffusion Model for sales of new products was presented by Bass (1969). Since

its publication in Management Science, it has been cited over 600 times and is one of the

most notable models for new-product forecasting. It was originally developed for ap-

plication only to durable goods. However, the model has proven applicable to a wider

class of products and services such as B2B products, telecom services, equipment, semi-

conductor chips, medical products, and other technology-based products and services.

The Bass model assumes that a population of potential adopters for a new product

is subject to two means of communication: mass-media communication and word-of-

mouth communication. The former affects potential adopters directly, while the later

influences the interaction between customers who already adopted the product, as well

as the future potential adopters.

Figure 3.1: Classical Bass Diffusion Model
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In our model, the manufacturing and procurement lead-times for our products are

significant, making it necessary to commit to the planning date before the earliest ap-

proval date. The new product is not available for sale until the distribution channel is

filled with a minimal number of units proportional to demand. The old product is sold

until the firm runs out of inventory or until it is replaced by an approved new product.

The firm’s policy is to scrap all old product units immediately when an approved new

product is available for sale. The fundamental structure of the problem, namely plan-

ning a starting date for an activity in a random setting, can be linked to the well known

newsboy problem. The demand for the old product is constant, whereas the demand

of the new product is initially linearly increasing then constant. In our main model,

when the new product is delayed, all demand for this product is lost and there is in-

ventory buildup. We also study another case, where when the new product is delayed,

a portion of the demand is lost whereas another portion is maintained (See Figure 3.2).

The portion of the demand that was not met but maintained is sold immediately after

the approval is granted.

Druehl et Al (2009) argue that delaying a product too long may fail to capitalize on

customer willingness-to pay for more advanced technology in addition to the possibil-

ity that competitors may (further) infiltrate the market, furthermore, sales of existing

product may decline due to market saturation. If a firm introduces the new product

too early, it may cannibalize the previous generation too quickly, not taking advantage

of market growth. If it waits too long, sales may have slowed considerably as the prod-

uct would have already diffused through the market. If there is not a sufficient base

of customers of the innovator type, then the pace will be slow. But once this base of

innovators exists, the pace will be increased by either innovators or imitators. In our

problem, the market knows the time at which the new product will be introduced. The
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Figure 3.2: New Product Adoption

customer purchases the product if it has been approved by the regulatory authority

where the demand rate is piecewise and dependent on time. If the product has not

been approved, the demand is lost until approval is given. The demand of the new

product remains piecewise linear dependent on time.

Hill and Sawaya (2004) examine the problem of simultaneously planning the phase-

out of the old product and the phase-in of a new one that will replace the old product,

under an uncertain approval date for the new product. Furthermore, they exhibit the

structure of the optimal policy for an expected profit objective function. Their setting

is similar to ours, when demands of the new and old products is constant and when

the new product is not available all of the demand is lost. In this paper, we examine if

considering a piecewise linearly increasing demand for the new product changes the

optimal strategy or the timing decisions compared to the constant demand examined

in Hill and Sawaya (2004).

In our first paper, we have considered a problem similar to Hill and Sawaya (2004),
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where demands of both new and old products were constant and we examined the

rollover problem under expected loss and risk minimization. This was important to

gain insight on the problem at hand, yet, a constant demand does not apply in real

settings where products are subject to a diffusion rate and usually modeled through

the Bass Model. Demand usually increases to reach a peak and then decreases after

the product achieves maturity. In addition, in our first paper, if neither product was

available in the market we assumed that all the demand was lost. Bass model liter-

ature contradicts this assumption where, when customers ask for a product and it is

not available, not all demand is lost: some customers may be willing to wait at a cer-

tain waiting cost and will later purchase the product when it is available. On the other

hand, some of the customers will choose not to wait and go on to purchase another

product. This decreases lost profit as discussed by Norton and Wilson (1989). Due to

the difficulty of obtaining closed-form solutions in case when not all demand is lost, we

can only produce numerical simulations in this case that we present in our appendix.

Furthermore, in the first paper we consider the old product demand is equal to the

new product demand and that the demand of the new product is not affected if it is

delayed. Both those assumptions are violated in real life settings where there is ac-

cumulated inventory and there is a potential market loss when a product is delayed

Druehl et Al (2009).

In this paper, we model a more realistic setting where demand is piecewise linear and

another special case where not all demand is lost in case of delay, yet part of the market

demand is lost. While we can model the old product demand as constant since at the

end of the lifecycle of a product, its demand after decreasing becomes constant (See

Figure 3.1). The demand of a new product usually increases incrementally over time

and this has effect on product entry timing decisions.
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We believe this study to be the first that examines this kind of setting of the product

rollover problem. This approach is important for product rollover situations concern-

ing key products for a company. We prove the uniqueness of the optimal solutions and

approximate the optimal solutions through Mathematica as it is not possible to provide

analytical closed-form solutions in case not all demand is lost.

This paper is organized as follows: we start by presenting the main product rollover

evaluation model, then we discuss the optimal conditions and convexity. We then

present a numerical study and conclude the paper with a summary of our findings

and reflections for future research directions. We provide in an appendix the problem

when not all demand is lost and which we can only solve numerically.

3.2 The Product Rollover Evaluation Model

In this section, we will define the product rollover problem and introduce the different

notation and assumptions.

3.2.1 Stochastic rollover process and profit/cost rates

The problem context requires a production plan for the phase-out of an existing prod-

uct (hereafter called old product, or product 1) and phase-in of a replacement product

(called new product or product 2) under an uncertain (internal or external) approval date,

denoted T, for the new product delivery. A typical example for such approval decisions

are those of medical devices and pharmaceutical products which cannot be sold until

an approval body grants permission. Two decision variables have to be determined in

such a rollover process: t1, the date the firm plans to run-out of the old product and

t2, the date the new product is planned to be ready and available for the market. The
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existing product is sold until the firm runs out of inventory or until it is replaced by the

approved new product. The manufacturing and procurement lead times are assumed

to be large, thus making it necessary to commit to the planning dates before the random

approval date is revealed. The decision process relies thus exclusively on the probabil-

ity distribution of this date T. Such large procurement/manufacturing/distribution

lead-times are frequent in practice: for instance, the regulatory affairs department in a

medical device firm uses a forecast interval for the approval date that is more than 6

months long.

At the end of the lifetime of a product, its demand decreases to become constant, here

denoted by d1. On the other hand, the demand of a new product is piecewise linear,

initially increases with respect to time then becomes constant and is denoted by d2,a(t).

A channel inventory is needed to support each product in the market, which induces

per unit carrying inventory cost rate h. During the commercial life, the contribution-

to-profit rate per unit for product i, is defined as

mi = pi − ci, (i = 1, 2), (3.2.1)

with pi the selling price and ci the production cost per unit.

In the considered random setting, the profit/cost structure, defined over an infinite

time horizon, depends furthermore on the relative values of t1, t2 and T. Indeed, if the

planned stock-out strategy t1 ≤ t2 is chosen, the structure of the profit/cost rates is

given in Figure 3.6,

Two main cases have to be considered. First, if T ≤ t1, the profit rate is m1 − h per

unit sold of the first product over the time interval [0, T[, therefore the total contribu-

tion to profit is given by (m1 − h)d1 per unit time. Then, if t1 ≤ T ≤ t2, the new product

is approved, but not physically available in the supply chain. The market is assumed to
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be informed that the new product will substitute the old product only at time t2. Then,

over the interval [t1, t2[, when the old product is sold out, shortages occur until new

product delivery date t2, at a corresponding shortage cost rate g per unit and the total

shortage cost would be gd1 per unit time. Once the new product is available, at t2, the

profit rate over the remaining time horizon [t2, ∞[:

(
m2 − h

) 
∫ d2−b2,a

a2,a
t2

(
a2,a(t − t2) + b2,a

)
dt if 0 ≤ t − t2 ≤ d2−b2,a

a2,a
,∫ ∞

d2−b2,a
a2,a

d2dt if t − t2 > d2−b2,a
a2,a

.
(3.2.2)

Then, for the second case, one has t2 ≤ T. The profit/cost rates are similar to the

previous situation, except over the interval [t2, T[, where the new product is physically

available in the supply chain, but still not approved. Then, over the interval [t1, t2[,

when the old product is sold out, the shortage cost rate is given by gd1 per unit time.

All of the demand d2,a(t) of the new product is lost at a shortage cost rate of g per unit

until new product 2 is approved at time T and the shortage cost incurred would be:

−g


∫ d2−b2,a

a2,a
t2

(
a2,a(t − t2) + b2,a

)
dt if 0 ≤ t − t2 ≤ d2−b2,a

a2,a
,∫ T

d2−b2,a
a2,a

d2dt if d2−b2,a
a2,a

< t − t2 < T.
(3.2.3)

On the other hand an inventory proportional to d2,a(t − t2) at holding cost rate per unit

of h and the cost rate is given by:

−h


∫ d2−b2,a

a2,a
t2

(
a2,a(t − t2) + b2,a

)
dt if 0 ≤ t − t2 ≤ d2−b2,a

a2,a
,∫ T

d2−b2,a
a2,a

d2dt if d2−b2,a
a2,a

< t − t2 < T.
(3.2.4)

At T once the approval is given, the contribution to profit is given by

(m2 − h)


∫ d2−b2,a

a2,a
T

(
a2,a(t − T) + b2,a

)
dt if 0 ≤ t − T ≤ d2−b2,a

a2,a
,∫ ∞

d2−b2,a
a2,a

d2dt if t − T > d2−b2,a
a2,a

.
(3.2.5)

In case the dual rollover strategy t2 ≤ t1 is chosen, the structure of the costs and profit

rates is given in Figure 3.7. Let us consider first the case T < t2. The profit rate is

m1 − h per unit over the time interval [0, t2[ when T < t2 so the total contribution to
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profit would be (m1 − h)d1 per unit time. Then, over the time interval [t2, t1[, the new

product is approved and physically available, it is sold with a profit rate per unit m2 − h

and the contribution to profit would be the same as that given in equation 3.2.2. In the

current setting, it is however assumed that the firm scraps, at a cost rate s1 per unit,

all the remaining inventory of product 1 immediately when an approved product 2 is

available for sale, i.e., over the time interval [t2, t1] if T < t2 and [T, t1] if t2 < T < t1)

giving a scrap cost of s1d1 per unit time. This can be linked to several typical market

forces that can be observed in some sectors. First, in some situations, it is considered as

important (if not necessary) to provide customers with the latest technology, i.e., with

the newest product type. Second, higher demand, higher prices, and higher commis-

sions drive sales organizations to shift to the new product. Third, marketing organi-

zations want products that accentuate the leading edge nature of the firm’s brand and

do not want to lose the opportunity to sell the best and latest product. This is justified

by the higher margins for product 2 and by the need to maintain brand equity as a

leading-edge provider.

In the second situation, one has t2 ≤ T ≤ t1. The total profit is (m1 − h)d1 per unit

over [0, t2[. Then over the interval [t2, T[, the profit rate is still (m1 − h)d1 per unit time;

however, as the new product is physically available in the supply chain, but the de-

mand d2,a(t) of the new product is lost at a shortage cost rate of g per unit until new

product 2 is approved at time T giving a shortage cost given as shown in equation

3.2.3. On the other hand a channel inventory proportional to d2,a(t) is kept at a holding

cost rate per unit of h with the cost given in equation 3.2.4. At T once the approval is

given, the demand of the new product becomes d2,a(t − T) giving a profit as depicted

in equation 3.2.5. In the time interval [T, t1[, the old product is scrapped at a cost rate

s1 per unit or s1d1 per unit time.
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In the last case, t1 ≤ T, the profit/cost rates are similar to the previous situation, over

all the time intervals, except that there is no longer any scraping for product 1 as t1 < T.

3.2.2 Notation for the Model

For this rollover optimization model, we adopt the following notation. As we have

explained in the previous section, all profits/costs depend on time since the demand

of the new product is a piecewise linear function of time.

Deterministic Parameters:

ci is the per unit cost for product i,

pi is the per unit unit price for product i,

pi − ci is the gross margin per unit for product i,

mi is the contribution to profit per unit for product i and is defined as

mi = pi − ci, (3.2.6)

g is the shortage cost per unit when the firm has neither of the products to sell,

h is the carrying cost per unit of product 1 or 2,

s1 is the per unit scrap cost for product 1 (note that if there is some positive margin

when getting rid of product 1 inventory, then one has s1 < 0 and one can speak of

"scrap margin". Clearly in this case one has |s1| < m1,

d1 is the rate of demand of product 1 per unit time and it is constant,
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d2,a(t) is the rate of demand of product 2 when product 2 is granted approval on time

and is given by

d2,a(t) =


a2,at + b2,a if 0 ≤ t ≤ d2−b2,a

a2,a
,

d2 if t > d2−b2,a
a2,a

.
(3.2.7)

Based on our discussion on late product diffusion in the previous section, b2,a > d1,

and d2 > 0 and constant.

Random Parameters:

T is the random approval date for the new product (i.e., for product 2). This random

variable has a probability density function f (·) and a probability distribution function

F(·) defined on the range [0, ∞[, i.e., one has

Prob[0 ≤ T ≤ u] =
∫ u

0
f (T)dT = F(u). (3.2.8)

We denote G(·), the partial distribution function defined as

G(t) =
∫ t

0
T f (T)dT. (3.2.9)

Let µ be mean of the approval date distribution, where µ = G(∞).

Decision Variables:

t1 is the planned run-out date for inventory of the existing product (i.e., product 1),

t2 is the planned approval date for the new product (i.e., product 2).

tb is when t1 = t2 = tb which is the case of the single rollover strategy .

The following constraint for the decision variables

0 ≤ t1, t2 ≤ ∞. (3.2.10)
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Figure 3.3: Approval granted before t2

Inventory Policy:

We suppose that the production capacity is unlimited and the firm chooses to produces

as much as the cumulative demand at time t.

3.2.3 Demand Process

As we have previously mentioned, the demand of the old product is constant and de-

noted by d1. The market knows that a new product will be introduced at time t2 (Figure

3.3). If T < t2, the customer purchases the product as of time t2 and the demand of the

new product is piecewise linear increasing with time given by

d2,a(t) =


a2,at + b2,a if 0 ≤ t ≤ d2−b2,a

a2,a
,

d2 if t > d2−b2,a
a2,a

.
(3.2.11)

On the other hand, if T > t2, all of the demand between t2 and T is lost (See Figure 3.4).

3.2.4 Net Loss Function

Due to the structure of the problem, the state space has to be divided in two regions,

R1 = {t1, t2 ∈ R+ with t1 ≤ t2} and R2 = {t1, t2 ∈ R+ with t1 ≥ t2}. Over region
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Figure 3.4: Approval granted after t2

R1 the objective function is denoted as L1(t1, t2, T) (and L2(t1, t2, T) for region R2) and

both functions are continuous throughout the space and at boundary t1 = t2. We define

the objective function as the net loss incurred between the ideal case or the case of full

information and the cases where the approval date is uncertain. Formally, according to

the description previously given, the net loss functions L1(t1, t2, T) and L2(t1, t2, T) are

continuous and can be decomposed into functions defined on bounded intervals. This

decomposition can be expressed as

Lj(t1, t2, T) = Lj,i(t1, t2, T) if T ∈ Ii, for j = 1, 2; i = 1, 2, ..., k (3.2.12)

with k, the functions Lj,i(t1, t2, ·) and the intervals Ii to be defined in the following sec-

tions.

Let Lb(tb, T) be the net loss functions at the boundary t1 = t2 = tb defined as follows:

Lb(tb, T) = Lb,i(tb, T) if T ∈ Ii , for i = 1, 2 (3.2.13)

3.2.5 Ideal Case

In this ideal setting, the optimal solution is clear : t1 = t2 = T, i.e., the old product

is sold out at the planned introduction date of the new product, corresponding to the

approval date. Over the time interval [0, T[, the profit rate is m1 − h per unit, while on
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Figure 3.5: Perfect Information Case

the remaining horizon [T, ∞[, the profit rate is m2 − h per unit. In order to characterize

the impact of randomness on the rollover process, we consider an objective function

defined as the difference between the perfect information cost rate function (Figure

3.5) and the cost rates functions with imperfect information (Figures 3.6 and 3.7). This

difference can be interpreted as the loss caused by the randomness of the approval

date T. Formally, according to the description given above, these loss functions are

piecewise linear and exhibit different structures, depending on the relative values of

the decision variables t1 and t2.

3.2.6 Planned Stockout Rollover t1 ≤ t2:

For a planned stockout rollover strategy; the company plans to run out of the old prod-

uct before introducing product 2 into the market. The random approval date T falls

into one of these two cases: 0 ≤ T < t2 and t2 ≤ T < ∞. The firm sells product 1

during (0, t1) at a demand rate of d1 and a net profit of m2 − h per unit demand. Be-

tween (t1, t2) there are no products to sell in the market, incurring a shortage cost of

g. The market knows that at time t2 the firm plans to introduce a new product into the

market. If T ≤ t2, product 2 will be available in the market and sold at the rate of d2,a(t)

with a contribution to profit of m2 − h per unit. On the other hand, if t2 ≤ T, product

2 is not available in the market, no customer is willing to wait and all demand is lost
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Figure 3.6: Planned Stockout Rollover Strategy

incurring a shortage cost of g per unit. When the product is available in the market, the

new product will then be sold at a demand rate of d2,a(t) and a contribution to profit of

m2 − h per unit.

Over region R1, the decomposition (3.2.12) is given in Figure 3.6. The net loss in this

case is given by:

L1(t1, t2, T) =



(m1 − h)(T − t1)d1 + g(t2 − t1)d1 + (m2 − h)d2(t2 − T)

if 0 ≤ T ≤ t2,

(m1 − h)(T − t1)d1 + g(t2 − t1)d1 + (g + h)d2(T − t2)

if t2 ≤ T,

(3.2.14)

and I1 = [0, t2] and I2 = [t2, ∞].

It is clear from Figure (3.6) and expression (3.2.14) that for any given value of t2, the

firm can always increase the contribution to profit and reduce lost goodwill by increas-

ing t1. This means that the optimal policy can either be t1 = t2 or t1 > t2, which is the

same result presented by Hill and Sawaya (2004).
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3.2.7 Single Rollover Strategy

For the single rollover strategy, the net the loss function becomes

Lb(tb, T) =



(m1 − h)(T − tb)d1 + (m2 − h)d2(tb − T)

if 0 ≤ T ≤ tb,

(m1 − h)(T − tb)d1 + (g + h)d2(T − tb)

)
if tb ≤ T,

(3.2.15)

and I1 = [0, tb] and I2 = [tb, ∞].

3.2.8 Dual Rollover t2 ≤ t1

Over region R2, the decomposition is given in Figure 3.7 and the net loss becomes:

L2(t1, t2, T) =



(m1 − h)(T − t2)d1 + s1(t1 − t2)d1 + (m2 − h)d2(t2 − T)

if 0 ≤ T ≤ t2,

s1(t1 − T)d1 + (g + h)d2(T − t2)

)
if t2 ≤ T ≤ t1,

(m1 − h)(T − t1)d1 + (g + h)d2(T − t2)

if t1 ≤ T,

(3.2.16)

and I1 = [0, t2], I2 = [t2, t1], and I3 = [t1, ∞]

3.2.9 Parameter Assumptions

As usual in a stochastic production/inventory model, it is necessary to introduce some

assumptions for the different parameters. These assumptions are as follows. First the

contribution-to-profit rate per unit for the products under regular sales is positive, i.e.,

m1, m2 > 0. (3.2.17)
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Figure 3.7: Dual Rollover Strategy

We also have the standard assumptions from classical inventory theory, namely

g, h, s1 > 0. (3.2.18)

For the demand process we have the following assumptions:

a2,a > 0, b2,a > d1 > 0, d2 > d1 (3.2.19)

3.3 Optimality Conditions and Convexity

In this section, we present the optimality conditions through the first-order derivatives

and try to obtain closed form solutions.
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3.3.1 Planned Stock-out

l1(t1, t2) =
∫ t2

0

(
(m1 − h)(T − t1)d1 + g(t2 − t1)d1

+ (m2 − h)d2(t2 − T)
)

f (T)dT (3.3.1)

+
∫ ∞

t2

(
(m1 − h)(T − t1)d1 + g(t2 − t1)d1

+ (g + h)d2(T − t2)

)
f (T)dT

The first order derivative of l1(t1, t2) with respect to t1 is given by

dl1(t1, t2)

dt1
= −d1(m1 + g − h) (3.3.2)

Expression (3.3.2) is strictly decreasing with respect to t1, therefore the optimal value

of t1 occurs at the maximum possible value of t1, which is, in our case, t2, and therefore

the optimal solution occurs on the boundary t1 = t2 or t1 > t2, as was proven in Hill

and Sawaya (2004).

3.3.2 Single Rollover

lb(tb) =
∫ tb

0

(
(m1 − h)(T − tb)d1 + (m2 − h)d2(tb − T)

)
f (T)dT

+
∫ ∞

tb

(
(m1 − h)(T − tb)d1 + (g + h)d2(T − tb)

)
f (T)dT (3.3.3)

The first order derivative of lb(tb) with respect to tb is given by

dlb(tb)

dtb
= d1(h − m1)− d2(g + h) +

(
m2 + g

)
d2F(tb) (3.3.4)

The optimal value of t∗b occurs when expression (3.3.4) is zero as follows:

dlb(t∗b)
dtb

= d1(h − m1)− d2(g + h) +
(

m2 + g
)

d2F(t∗b) = 0 (3.3.5)
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Therefore, we have

t∗b = F−1
(
(m1 − h)d1 + (g + h)d2

(m2 + g)d2

)
(3.3.6)

Since m2 > m1 and d2 > d1, then t∗b always exists.

3.3.3 Convexity

The second order derivative of lb(tb) with respect to tb is given by

dl2
b(tb)

dt2
b

=

(
(m2 − h)d2 + (g + h)d2

)
f (t∗b) (3.3.7)

The second order derivative given in (3.3.7) is convex since m2 > h (See Figure 3.8 as

an example).

Figure 3.8: Single Rollover with Piecewise Linear Demand for a convex lb(tb) where

m1 = 49, m2 = 50, g = 0, h = 0, a2,a = 105, b2,a = 6, d1 = 1, and d2 = 8,

F(T) is uniform [0, 20].
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3.3.4 Dual Rollover

l2(t1, t2) =
∫ t2

0

(
(m1 − h)(T − t2)d1 + s1(t1 − t2)d1

+ (m2 − h)d2(t2 − T)
)

f (T)dT

+
∫ t1

t2

(
s1(t1 − T)d1 + (g + h)d2(T − t2)

)
f (T)dT (3.3.8)

+
∫ ∞

t1

(
(m1 − h)(T − t1)d1 + (g + h)d2(T − t2)

)
f (T)dT

The first order derivative of l2(t1, t1) with respect to t1 is given by

dl2(t1, t2)

dt1
= −d1(m1 − h) + d1(m1 − h + s1)F(t1) (3.3.9)

Setting expression (3.3.9) to zero, we get the optimal value of t1 to be:

t∗1 = F−1
(

m1 − h
m1 − h + s1

)
(3.3.10)

The first order derivative of l2(t1, t1) with respect to t2 is given by

dl2(t1, t2)

dt2
= −

(
g + h

)
d2 +

(
(m2 + g)d2 − (m1 − h + s1)d1

)
F(t2) (3.3.11)

The optimal value of t∗2 occurs when expression (3.3.11) is zero as follows:

t∗2 = F−1
(

(g + h)d2

(m2 + g)d2 − (m1 − h + s1)d1

)
(3.3.12)

For t∗2 to exist the following condition should be satisfied

(m2 + g)d2 − (m1 − h + s1)d1 > 0 (3.3.13)

Furthermore t∗2 < t∗1 , or the following condition should be satisfied

(m2 − h)d2 − (m1 − h + s1)d1 > 0 (3.3.14)

3.3.5 Convexity

The second order derivative of l2(t1, t1) with respect to t2 is given by

d2l2(t1, t2)

dt2
2

=

(
(m2 + g)d2 − (m1 − h + s1)d1

)
f (t2) (3.3.15)
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Figure 3.9: Optimal Solution Dual Rollover t∗1 = 11.11 and t2 = 5.79 with optimal cost

1.264 million US Dollars for m1 = 6, m2 = 22, g = 3, h = 1, d1 = 5, s1 = 4,

a2,a = 0.15, and b2,a = 20, d2 = 50 F(T) is uniform [0, 20].

The objective function l2(t1, t1) is convex with respect to t2 if

(m2 + g)d2 − (m1 − h + s1)d1 > 0 (3.3.16)

3.4 Numerical Example

A hypothetical example is presented here to illustrate our model. The product is selling

d1 = 5 units a month of medical device 1 and has submitted product 2 for FDA approval

on January 1, 2011. Product 2 is expected to be approved sometime between January 1,

2011 and August 1, 2012, following a uniform distribution. We consider the following

parameters for costs in thousands US$ and demand: m1 = 20, m2 = 22, g = 3, h = 10,

a2,a = 0.15, b2,a = 20, a2,l = 0.10, b2,a = 15, w = 8, d1 = 5, and d2 = 50. Let the

probability distribution of time T be a uniform one given by f (T) = 1
20 . For this setting,

we can see that the optimal strategy is a dual rollover one. We get the optimal removal
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date t∗1 = 11.11, or November 3, 2011 and the introduction date t∗2 = 5.79 or May 24,

2011 (Refer to Figure 3.9).

3.5 Conclusion and Limitations

In this paper, we tried to approximate a bass demand model in a product rollover set-

ting under an uncertain regulatory approval date. There are many limitations to this

research as we have not taken into consideration the effect of the customer’s willing-

ness to wait or buy another product in case of delay. For the time being, we have

presented a model along with closed form solutions and conditions for convexity. We

have tried solve the more complex model presented in our appendix, but could only

obtain solutions through numerical simulations. It would be worth it to approximate

that complex model to get a closed form if possible, but that is left for future research.
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Appendix

The Product Rollover Evaluation Model

In this section, we will define the product rollover problem and introduce the different

notation and assumptions.

Stochastic rollover process and profit/cost rates

The problem context requires a production plan for the phase-out of an existing prod-

uct (hereafter called old product, or product 1) and phase-in of a replacement product

(called new product or product 2) under an uncertain (internal or external) approval date,

denoted T, for the new product delivery. A typical example for such approval decisions

are those of medical devices and pharmaceutical products which cannot be sold until

an approval body grants permission. Two decision variables have to be determined in

such a rollover process: t1, the date the firm plans to run-out of the old product and

t2, the date the new product is planned to be ready and available for the market. The

existing product is sold until the firm runs out of inventory or until it is replaced by the

approved new product. The manufacturing and procurement lead times are assumed

to be large, thus making it necessary to commit to the planning dates before the random

approval date is revealed. The decision process relies thus exclusively on the probabil-

ity distribution of this date T. Such large procurement/manufacturing/distribution

lead-times are frequent in practice: for instance, the regulatory affairs department in a

medical device firm uses a forecast interval for the approval date that is more than 6

months long.

At the end of the lifetime of a product, its demand decreases to become constant, here

denoted by d1. On the other hand, the demand of a new product increases with respect
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to time and is denoted by d2,a(t). A channel inventory is needed to support each prod-

uct in the market, which induces per unit inventory carrying cost rate h. During the

commercial life, the contribution-to-profit rate per unit for product i, is defined as

mi = pi − ci, (i = 1, 2), (3.5.1)

with pi the selling price and ci the production cost per unit.

In the considered random setting, the profit/cost structure, defined over an infinite

time horizon furthermore depends on the relative values of t1, t2 and T. Indeed, if the

planned stock-out strategy t1 ≤ t2 is chosen, the structure of the profit/cost rates is

given in Figure 3.13,

Two main cases have to be considered. First, if T ≤ t1, the profit rate is m1 − h per

unit sold of the first product over the time interval [0, T[, therefore the total contribu-

tion to profit is given by (m1 − h)d1 per unit time. Then, if t1 ≤ T ≤ t2, the new product

is approved, but not physically available in the supply chain. The market is assumed

to be informed that the new product will substitute the old product only at time t2.

Then, over the interval [t1, t2[, when the old product is sold out, shortages occur until

new product delivery date t2, at a corresponding shortage cost rate g per unit and the

total shortage cost would be gd1 per unit time. Once the new product is available, at t2,

the profit rate per unit becomes m2 − h over the remaining time horizon [t2, ∞[ where

the demand of the new product is linearly time dependent and defined as d2,a(t) and

the total contribution to profit would be (m2 − h)d2,a(t − t2) per unit time. Then, for

the second case, one has t2 ≤ T. The profit/cost rates are similar to the previous situ-

ation, except over the interval [t2, T[, where the new product is physically available in

the supply chain, but still not approved. A portion ξ of the demand d2,a(t) of the new

product is lost at a shortage cost rate of g per unit until new product 2 is approved at

time T and the shortage cost incurred would be gξd2,a(t − t2) per unit time. On the
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other hand a portion 1 − ξ of the demand d2,a(t) is accumulated at a waiting and hold-

ing cost rate per unit of h + w and the invetory and waiting cost would be given by

(h + w)(1− ξ)d2,a(t − t2) per unit time. At T once the approval is given, all of the accu-

mulated demand between t2 and T is sold at profit m2(1 − ξ)d2,a(t − t2) per unit time

and the demand of the new product becomes d2,l(t) where a2,a > a2,l and b2,a > b2,l and

the contribution to profit per unit time is given by (m2 − h)d2,l(T − t2).

On the other hand, if the dual rollover strategy t2 ≤ t1 is chosen, the structure of

the costs and profit rates is given in Figure 3.14. Let us consider first the case T < t2.

The profit rate is m1 − h per unit over the time interval [0, t2[ when T < t2 so the total

contribution to profit would be (m1 − h)d1 per unit time. Then, over the time inter-

val [t2, t1[, the new product is approved and physically available, it is sold with a profit

rate per unit m2 − h and the contribution to profit would be (m2 − h)d2,a(t− t2) per unit

time. In the current setting, it is however assumed that the firm scraps, at a cost rate

s1 per unit, all the remaining inventory of product 1 immediately when an approved

product 2 is available for sale, i.e., over the time interval [t2, t1] if T < t2 and [T, t1] if

t2 < T < t1) giving a scrap cost of s1d1 per unit time. This can be linked to several

typical market forces that can be observed in some sectors. First, in some situations,

it is considered as important (if not necessary) to provide customers with the latest

technology, i.e., with the newest product type. Second, higher demand, higher prices,

and higher commissions drive sales organizations to shift to the new product. Third,

marketing organizations want products that accentuate the leading edge nature of the

firm’s brand and do not want to lose the opportunity to sell the best and latest product.

This is justified by the higher margins for product 2 and by the need to maintain brand

equity as a leading-edge provider. Finally, over the remaining time horizon [t1, ∞[, the

profit rate becomes to (m2 − h)d2,a(t − t2) per unit time of product.
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In the second situation, one has t2 ≤ T ≤ t1. The total profit is (m1 − h)d1 per unit

over [0, t2[. Then over the interval [t2, T[, the profit rate is still (m1 − h)d1 per unit time,

but as the new product is physically available in the supply chain, but a portion ξ of

the demand d2,a(t) of the new product is lost at a shortage cost rate of g per unit until

new product 2 is approved at time T giving a shortage cost of gξd2,a(t − t2) per unit

time. On the other hand a portion 1 − ξ of the demand d2,a(t) is accumulated at a wait-

ing and holding cost rate per unit of h + w giving a total (h + w)(1 − ξ)d2,a(t − t2) per

unit time. At T once the approval is given, all of the accumulated demand between

t2 and T is sold at profit m2 for a profit m2(1 − ξ)d2,a(t − t2) per unit time and the

demand of the new product becomes d2,l(t) where a2,a > a2,l and b2,a > b2,l giving a

profit per unit time of (m2 − h)d2,l(T − t2). From T until the whole remaining horizon,

the new product is sold with a profit rate (m2 − h)d2,l(T − t2) per unit time. In the time

interval [T, t1[, the old product is scrapped at a cost rate s1 per unit or s1d1 per unit time.

In the last case, t1 ≤ T, the profit/cost rates are similar to the previous situation, except

over all the time intervals, except that there is no longer any scraping for product 1 as

t1 < T.

Notation for the Model

For this rollover optimization model, we adopt the following notation. As we have

explained in the previous section, all profit/cost depend on time since the demand of

the new product is a initially a linearly increasing function with respect to time.

Deterministic Parameters:

ci is the per unit cost for product i,
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pi is the per unit unit price for product i,

pi − ci is the gross margin per unit for product i,

mi is the contribution to profit per unit for product i and is defined as

mi = pi − ci, (3.5.2)

g is the shortage cost per unit when the firm has neither of the products to sell,

h is the carrying cost per unit of product 1 or 2,

s1 is the per unit scrap cost for product 1 (note that if there is some positive margin

when getting rid of product 1 inventory, then one has s1 < 0 and one can speak of

"scrap margin". Clearly in this case one has |s1| < m1,

w is the waiting cost per unit for product 2 if the product is not available,

ξ is the portion of demand of product 2 that is lost when product 2 is not available,

and 1 − ξ is the portion of demand willing to wait till product 2 is available,

d1 is the rate of demand of product 1 per unit time and it is constant,

d2,a(t) is the rate of demand of product 2 when product 2 is available on time and

is given by d2,a(t) = a2,at + b2,a where a2,a > 0, b2,a > 0, and d2 > 0 and constant.
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d2,a(t) =


a2,at + b2,a if 0 ≤ t ≤ d2−b2,a

a2,a
,

d2 if t > d2−b2,a
a2,a

.
(3.5.3)

d2,l(t) is the rate of demand of product 2 when product 2 is late and is give by

d2,l(t) =


a2,lt + b2,l if 0 ≤ t ≤ d2−b2,l

a2,l
,

d2 if t > d2−b2,l
a2,l

.
(3.5.4)

where a2,l > 0 and b2,l > 0.

Based on our discussion on late product diffusion in the previous section, we note

that a2,a > a2,l , b2,a > b2,l > d1, and d2 > 0 and constant.

Random Parameters:

T is the random approval date for the new product (i.e., for product 2). This random

variable has a density probability function f (·) and a probability distribution function

F(·) defined on the range [0, ∞[, i.e., one has

Prob[0 ≤ T ≤ u] =
∫ u

0
f (T)dT = F(u). (3.5.5)

We denote G(·), the partial distribution function defined as

G(t) =
∫ t

0
T f (T)dT. (3.5.6)

Let µ be mean of the approval date distribution, where µ = G(∞).

Decision Variables:

t1 is the planned run-out date for inventory of the existing product (i.e., product 1),

t2 is the planned approval date for the new product (i.e., product 2).
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tb is the date when the inventory of the existing product is equal to the approval date

of the new product, or t1 = t2 = tb which is the case of the single rollover strategy .

Clearly it is necessary to consider the following constraint for the decision variables

0 ≤ t1, t2 ≤ ∞. (3.5.7)

Inventory Policy:

We suppose that the production capacity is unlimited and the firm chooses to produces

as such as the cumulative demand at time t.

Demand Process

As we have previously mentioned, the demand of the old product is constant and de-

noted by d1. The market knows that a new product will be introduced at time t2. If

T < t2, the customer purchases the product if it has been approved by the regulatory

authority (Figure 3.10) and the demand of the new product is initially linearly increas-

ing with time given by d2,a(t) = a2,at + b2,a where a2,a > 0 and b2,a > 0 until it reaches a

time d2−b2,a
a2,a

when it becomes constant. On the other hand, if T > t2, part of the demand

is accumulated between t2 and T and sold at T or as soon as the approval is given. The

demand of the new product then becomes d2,l(t) = a2,lt + b2,l where a2,a > a2,l > 0 and

b2,a > b2,l > 0 (Figure 3.11) until it reaches a time d2−b2,l
a2,l

when it becomes constant.

Net Loss Function:

Due to the structure of the problem, the state space has to be divided in two regions,

R1 = {t1, t2 ∈ R+ with t1 ≤ t2} and R2 = {t1, t2 ∈ R+ with t1 ≥ t2}. Over re-

gion R1 the objective function is denoted as L1(t1, t2, T) (and L2(t1, t2, T) for region R2)

and are continuous throughout the space and at boundary t1 = t2 (See Appendix A).
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Figure 3.10: Approval granted before t2

Figure 3.11: Approval granted after t2
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Figure 3.12: Perfect Information Case

We define the objective function as the net loss incurred between the ideal case or the

case of full information and the cases where the approval date is uncertain. Formally,

according to the description given previously, the net loss functions L1(t1, t2, T) and

L2(t1, t2, T) are continuous and can be decomposed into functions defined on bounded

intervals. This decomposition can be expressed as

Lj(t1, t2, T) = Lj,i(t1, t2, T) if T ∈ Ii, for j = 1, 2; i = 1, 2, ..., k (3.5.8)

with k, the functions Lj,i(t1, t2, ·) and the intervals Ii to be defined in the following sec-

tions.

Let Lb(tb, T) be the net loss functions at the boundary t1 = t2 = tb defined as follows:

Lb(tb, T) = Lb,i(tb, T) if T ∈ Ii , for i = 1, 2 (3.5.9)

Ideal Case

In this ideal setting, the optimal solution is clear : t1 = t2 = T, i.e., the old product

is sold out at the planned introduction date of the new product, corresponding to the

approval date. Over the time interval [0, T[, the profit rate is m1 − h per unit, while on

the remaining horizon [T, ∞], the profit rate is m2 − h per unit. In order to characterize

the impact of randomness on the rollover process, we consider an objective function
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defined as the difference between the perfect information cost rate function (Figure

3.12) and the cost rates functions with imperfect information (Figures 3.13 and 3.14).

This difference can be interpreted as the loss caused by the randomness of the approval

date T. Formally, according to the description given above, these loss functions are

piecewise linear and exhibit different structures, depending on the relative values of

the decision variables t1 and t2.

Planned Stockout Rollover t1 ≤ t2:

For a planned stockout rollover strategy; the company plans to run out of the old prod-

uct before introducing product 2 into the market. The random approval date T falls

into one of these cases, 0 ≤ T < t2 and t2 ≤ T < ∞. The firm sells product 1 during

(0, t1) at a demand rate of d1 and a net profit of m2 − h per unit demand. Between

(t1, t2) there are no products to sell in the market, incurring a shortage cost of g. The

market knows that at time t2 the firm plans to introduce a new product into the market.

If T ≤ t2, product 2 will be available in the market and sold at the rate of d2,a(t) with

a contribution to profit of m2 − h per unit. On the other hand, if t2 ≤ T, product 2 is

not available in the market, a proportion of customers 1 − ξ decides to wait at a certain

waiting and inventory cost w + h per unit and another proportion ξ of the customers

decides to give up on purchasing the product incurring a shortage cost of g per unit.

When the product is available in the market, the customers who have waited for the

product will immediately purchase it and introduce a profit of m2 per unit to the firm.

The new product will then be sold at a demand rate of d2,l(t) and a contribution to

profit of m2 − h per unit.

Over region R1, the decomposition (3.5.8) is given in Figure 3.13. The net loss in this
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Figure 3.13: Planned Stockout Rollover Strategy

case is given by:

L1(t1, t2, T) =



(m1 − h)(T − t1)d1 + g(t2 − t1)d1 +

(
m2 − h

)(
T − t2

)(
d2 − b2,a

)
if 0 ≤ T ≤ t2,

(m1 − h)(T − t1)d1 + g(t2 − t1)d1 +

(
m2 − h

)(
(a2,a − a2,l)

T2

2

+(b2,l − b2,a)T
)

+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2−t2
2

2 − t2T) + b2,a(T − t2)

)
if t2 ≤ T,

(3.5.10)

and I1 = [0, t2] and I2 = [t2, ∞].

It is clear from Figure (3.13) and expression (3.5.10) that for any given value of t2, the

firm can always increase the contribution to profit and reduce lost goodwill by increas-

ing t1. This means that the optimal policy can either be t1 = t2 or t1 > t2, which is the

same result presented by Hill and Sawaya (2004).
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Single Rollover Strategy

On the boundary for the single rollover strategy, the net the loss function becomes

Lb(tb, T) =



(m1 − h)(T − tb)d1 +

(
m2 − h

)(
T − tb

)(
d2 − b2,a

)
if 0 ≤ T ≤ tb,

(m1 − h)(T − tb)d1 +

(
m2 − h

)(
(a2,a − a2,l)

T2

2 + (b2,l − b2,a)T
))

+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2−t2
b

2 − tbT) + b2,a(T − tb)

)
if tb ≤ T,

(3.5.11)

and I1 = [0, tb] and I2 = [tb, ∞].

Dual Rollover t2 ≤ t1

Over region R2, the decomposition is given in Figure 3.14) and the net loss becomes:

L2(t1, t2, T) =



(m1 − h)(T − t2)d1 + s1(t1 − t2)d1 +

(
m2 − h

)(
T − t2

)(
d2 − b2,a

)
if 0 ≤ T ≤ t2,

s1(t1 − T)d1 +

(
m2 − h

)(
(a2,a − a2,l)

T2

2 + (b2,l − b2,a)T
)

+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2−t2
2

2 − t2T) + b2,a(T − t2)

)
if t2 ≤ T ≤ t1,

(m1 − h)(T − t1)d1 +

(
m2 − h

)(
m2 − h

)(
(a2,a − a2,l)

T2

2 + (b2,l − b2,a)T
)

+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2−t2
2

2 − t2T) + b2,a(T − t2)

)
if t1 ≤ T,

(3.5.12)

and I1 = [0, t2], I2 = [t2, t1], and I3 = [t1, ∞]

Parameter Assumptions

As usually in stochastic production/inventory model, in order to guarantee the sig-

nificance of the model, it is necessary to introduce some assumptions for the different

parameters. These assumptions are as follows. First the contribution-to-profit rate per

unit for the products under regular sales is positive, i.e.,

m1, m2 > 0. (3.5.13)
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Figure 3.14: Dual Rollover Strategy

We also have the standard assumptions from classical inventory theory,

g, ch, s1 > 0. (3.5.14)

For the demand process we have the following assumptions:

a2,a > a2,l > 0, b2,a > b2,l > d1 > 0, d2 > d1 (3.5.15)

Optimal Conditions and Convexity

Optimal Conditions

In this section, we present the optimal conditions through the first order derivatives

and try to obtain closed form solutions.

Planned Stockout

l1(t1, t2) =
∫ t2

0

(
(m1 − h)(T − t1)d1 + g(t2 − t1)d1

+

(
m2 − h

)((
T − t2

)(
d2 − b2,a

)))
f (T)dT

+
∫ ∞

t2

(
(m1 − h)(T − t1)d1 + g(t2 − t1)d1

+

(
m2 − h

)(
(a2,a − a2,l)

T2

2
+ (b2,l − b2,a)T

)
+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2 − t2
2

2
− t2T) + b2,a(T − t2)

))
f (T)dT (3.5.16)
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The first order derivative of l1(t1, t2) with respect to t1 is given by

dl1(t1, t2)

dt1
= −d1(m1 + g − h) (3.5.17)

Expression (3.5.17) is strictly decreasing with respect to t1, therefore the optimal value

of t1 occurs at the maximum possible value of t1 which is in our case t2, and therefore

the optimal solution occurs on the boundary t1 = t2 or t1 > t2, as was reached in Hill

and Sawaya (2004).

Single Rollover

lb(tb) =
∫ tb

0

(
(m1 − h)(T − tb)d1 +

+

(
m2 − h

)(
T − tb

)(
d2 − b2,a

))
f (T)dT

+
∫ ∞

tb

(
(m1 − h)(T − tb)d1

+

(
m2 − h

)(
(a2,a − a2,l)

T2

2
+ (b2,l − b2,a)T

)
+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2 − t2
b

2
− t2T) + b2,a(T − tb)

))
f (T)dT (3.5.18)

The first order derivative of lb(tb) with respect to tb is given by

dlb(tb)

dtb
= d1(h − m1) +

(
b2,a − a2,atb

)(
(m2 − h − w)(1 − ξ)− gξ

)(
1 − F(tb)

)
−

(
m2 − h

)(
a2,atb − b2,a

)
F(tb)

+ a2,a

(
(m2 − h − w)(1 − ξ)− gξ

)(
µ − G(tb)

)
+

(
m2 − h

)(
(a2,a − a2,l)

2
t2
b + (b2,a − b2,l)tb

)
f (tb) (3.5.19)

The optimal value of t∗b occurs when expression (3.5.19) is zero as follows:

dlb(t∗b )
dtb

= d1(h − m1) +

(
b2,a − a2,at∗b

)(
(m2 − h − w)(1 − ξ)− gξ

)(
1 − F(t∗b )

)
−

(
m2 − h

)(
a2,at∗b − b2,a

)
F(t∗b )

+ a2,a

(
(m2 − h − w)(1 − ξ)− gξ

)(
µ − G(t∗b )

)
+

(
m2 − h

)(
(a2,a − a2,l)

2
t∗2
b + (b2,a − b2,l)t∗b

)
f (t∗b ) = 0 (3.5.20)
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Therefore, we have

F(t∗b ) =

d1(m1 − h)−
(

b2,a − a2,at∗b

)(
(m2 − h − w)(1 − ξ)− gξ

)
((m2 − h)ξ + w(1 − ξ) + gξ)(a2,at∗b − b2,a)

− a2,a

(
(m2 − h − w)(1 − ξ)− gξ

)(
µ − G(t∗b )

)
((m2 − h)ξ + w(1 − ξ) + gξ)(a2,at∗b − b2,a)

−

(
m2 − h

)(
(a2,a−a2,l )

2 t∗2
b + (b2,a − b2,l)t∗b

)
((m2 − h)ξ + w(1 − ξ) + gξ)(a2,at∗b − b2,a)

f (t∗b ) (3.5.21)

The second order derivative of lb(tb) with respect to tb is given by

dl2
b (tb)

dt2
b

= −a2,a

(
(m2 − h − w)(1 − ξ)− gξ

)(
1 − F(tb)

)
− b2,a

(
(m2 − h − w)(1 − ξ)− gξ

)
f (tb)

−
(

m2 − h
)

a2,a F(tb)−
(

m2 − h
)(

a2,atb − b2,a

)
f (tb)

+

(
m2 − h

)(
(a2,a − a2,l)tb + (b2,a − b2,l)

)
f (tb)

+

(
m2 − h

)(
(a2,a − a2,l)

2
t2
b + (b2,a − b2,l)tb

)
f ′(tb) (3.5.22)

The second order derivative given in (3.5.22) cannot be guaranteed to be convex. We

produce several plots to prove our point, despite that it is not convex, but we can see

that there is a unique global minimum. If we study expression (3.5.22), we can say that

if f is strictly increasing i.e., f ′ > 0 and b2,a >>> a2,a, then (3.5.22) is convex and the

minimum in this case is unique.

Another case where we can guarantee convexity is when the demand of product 2

is constant and is not affected by a delay, i.e., a2,a = a2,l = 0 and b2,a = b2,l = d2. The

second order derivative of lb(tb) with respect to tb is

dl2
b(tb)

d2tb
=

(
(m2 − h)ξ + w(1 − ξ) + gξ

)
d2 f (tb) (3.5.23)

We have ((m2 − h)ξ + w(1 − ξ) + gξ)d2 > 0 for all cost parameters, therefore lb(tb) is

convex.

In the case of constant demand, the optimal value of t∗b is given by

t∗b = F−1
( d1(m1 − h)− d2

(
(m2 − h − w)(1 − ξ)− gξ

)
((m2 − h)ξ + w(1 − ξ) + gξ)d2

)
(3.5.24)
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Furthermore, for tb to exist, the following condition should be satisfied:

0 <

d1(m1 − h)− d2

(
(m2 − h − w)(1 − ξ)− gξ

)
((m2 − h)ξ + w(1 − ξ) + gξ)d2

< 1 (3.5.25)

For
d1(m1−h)−d2

(
(m2−h−w)(1−ξ)−gξ

)
((m2−h)ξ+w(1−ξ)+gξ)d2

< 1, we should have

d1(m1 − h) < d2(m2 − h) (3.5.26)

Knowing that d1 < d2 and m1 < m2, we have this condition always satisfied.

For 0 < d1(m1−h)−d2((m2−h−w)(1−ξ)−gξ)
((m2−h)ξ+w(1−ξ)+gξ)d2

, knowing that ((m2 − h)ξ + w(1 − ξ) + gξ)d2,

we should have

0 < d1(m1 − h)− d2((m2 − h − w)(1 − ξ)− gξ) (3.5.27)

If d1(m1 − h)− d2((m2 − h − w)(1 − ξ)− gξ) < 0, then expression (3.5.19) is positive

for a constant demand and lb(tb) is strictly increasing with respect to tb and the optimal

value of tb occurs at the minimum possible value of tb, i.e., tb = 0.

Economic Analysis: Examining the condition d1(m1 − h)− d2((m2 − h − w)(1 − ξ)−

gξ), this condition can be negative when d1m1 << d2m2 combined with a low portion

of lost demand ξ in case product 2 is late, and a low waiting cost. In other words, prod-

uct 2 is much valuable for teh customer or in demand than product 1 and the waiting

cost is very low compared to the high contribution to profit of product 2.

Now if the inventory cost h is too high then the condition in expression (3.5.25) is vio-

lated and t∗b → ∞.

Convexity when all demand is lost: We examine the convexity in case ξ = 1 or

when all the demand is lost when T > tb, in this case the second order derivative is
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Figure 3.15: Case of All Demand Lost: Single Rollover with Linear Demand

given by:

dl2
b(tb)

dt2
b

= a2,ag
(

1 − F(tb)

)
+ b2,ag f (tb)−

(
m2 − h

)
a2,aF(tb)−

(
m2 − h

)(
a2,atb − b2,a

)
f (tb)

+

(
m2 − h

)(
(a2,a − a2,l)tb + (b2,a − b2,l)

)
f (tb)

+

(
m2 − h

)(
(a2,a − a2,l)

2
t2
b + (b2,a − b2,l)tb

)
f ′(tb) (3.5.28)

Expression (ref) is positive if a2,a → 0 or in other words,the new product diffuses very

slowly, therefore the objective function is convex with respect to tb if a2,a → 0.

Figure (3.15) presents an example where all demand is lost for the following cost pa-

rameters in thousands m1 = 20, m2 = 22, ξ = 1, g = 3, h = 10, and w = 8, and the

following demand parameters a2,a = 0.15, a2,l = 0.01, b2,a = 20, a2,l = 0.1, b2,l = 15,

d1 = 5, and d2 = 50. The probability distribution is a uniform one where 0 ≤ T ≤ 20.

The optimal solution in this case is t∗b = 9.7 and l∗b = 9626 U.S.$. On the other hand,

Figure (3.16) represents the case of ξ = 1 when the demand of the new product is con-

stant and equal to d2. The optimal solution in this case is t∗b = 5.33 and l∗b = 1466670

U.S.$.
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Figure 3.16: Case of All Demand Lost: Single Rollover with Constant Demand

Dual Rollover

l2(t1, t2) =
∫ t2

0

(
(m1 − h)(T − t2)d1 + s1(t1 − t2)d1

+

(
m2 − h

)(
m2 − h

)(
T − t2

)(
d2 − b2,a

))
f (T)dT

+
∫ t1

t2

(
s1(t1 − T)d1 +

(
m2 − h

)(
m2 − h

)(
(a2,a − a2,l)

T2

2
+ (b2,l − b2,a)T

)
+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2 − t2
2

2
− t2T) + b2,a(T − t2)

)
f (T)dT (3.5.29)

+
∫ ∞

t1

(
(m1 − h)(T − t1)d1 +

(
m2 − h

)(
m2 − h

)(
(a2,a − a2,l)

T2

2
+ (b2,l − b2,a)T

)
+

(
(m2 − h − w)(1 − ξ)− gξ

)(
a2,a(

T2 − t2
2

2
− t2T) + b2,a(T − t2)

))
f (T)dT

The first order derivative of l2(t1, t1) with respect to t1 is given by

dl2(t1, t2)

dt1
= −d1(m1 − h) + d1((m1 − h) + s1)F(t1) (3.5.30)

Setting expression (3.5.30) to zero, we get the optimal value of t1 to be:

t∗1 = F−1
(

m1 − h
m1 − h + s1

)
(3.5.31)

The first order derivative of l2(t1, t1) with respect to t2 is given by

dl2(t1, t2)

dt2
=

(
d1(h − m1 − s1) + (m2 − h)(b2,a − a2,at2)

)
F(t2)

+ a2,a

(
(m2 − h − w)(1 − ξ)− gξ

)(
µ − G(t2)

)
+

(
b2,a − a2,at2

)(
(m2 − h − w)(1 − ξ)− gξ

)(
1 − F(t2)

)
+

(
m2 − h

)(
(a2,l − a2,a)

t2
2
2
+ (b2,a − b2,l)t2

)
f (t2) (3.5.32)
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The optimal value of t∗2 occurs when expression (3.5.32) is zero as follows:

F(t∗2) = a2,a

(
(m2 − h − w)(1 − ξ)− gξ

)(
µ − G(t∗2)

)
d1(m1 − h + s1) + (a2,at∗2 − b2,a)((m2 − h + g)ξ + w(1 − ξ))

+

(
b2,a − a2,at∗2

)(
(m2 − h − w)(1 − ξ)− gξ

)
d1(m1 − h + s1) + (a2,at∗2 − b2,a)((m2 − h + g)ξ + w(1 − ξ))

+

(
m2 − h

)(
(a2,l − a2,a)

t∗2
2
2 + (b2,a − b2,l)t∗2

)
d1(m1 − h + s1) + (a2,at∗2 − b2,a)((m2 − h + g)ξ + w(1 − ξ))

f (t∗2) (3.5.33)

The second order derivative of l2(t1, t1) with respect to t2 is given by

d2l2(t1, t2)

dt2
2

=

(
d2((m2 − h + g)ξ + w(1 − ξ))− d1(m1 − h + s1)

)
f (t2)

− a2,at2

(
(m2 − h − w)(1 − ξ)− gξ

)(
1 − F(t2)

)
+

(
m2 − h

)(
(a2,l − a2,a)

t2
2
2
+ (b2,a − b2,l)t2

)
f ′(t2)

+

(
m2 − h

)(
(a2,l − a2,a)t2 + (b2,a − b2,l)

)
f (t2) (3.5.34)

The second order derivative given in (3.5.34) cannot be guaranteed to be convex. We

produce several plots to prove our point, despite that it is not convex, but we can see

that there is a unique global minimum. If we study expression (3.5.34), we can say that

if f is strictly increasing i.e., f ′ > 0 and b2,a >>> a2,a, then (3.5.34) is convex and the

minimum in this case is unique.

Now we consider the special case when the demand of product 2 is constant. Another

case where we can guarantee convexity is when the demand of product 2 is constant

and is not affected by a delay, i.e., a2,a = a2,l = 0 and b2,a = b2,l = d2. In this case, the

second order derivative of l2(t1, t1) with respect to t1 is given by

dl2
2(t1, t2)

d2t1
= d1((m1 − h) + s1) f (t1) (3.5.35)

Since m1 > h, expression (3.5.35) is always positive and l2(t1, t1) is convex with respect

to t1.

The second order derivative of l2(t1, t1) with respect to t2 is given by

dl2
2(t1, t2)

dt2
2

= (d2((m2 − h + g)ξ + w(1 − ξ))− d1(m1 − h + s1)) f (t2) (3.5.36)
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We distinguish between two cases:

CASE A

In this case, (d2((m2 − h + g)ξ + w(1 − ξ)) − d1(m1 − h + s1)) > 0, and therefore

l2(t1, t1) is convex with respect to t2. Now for t∗2 to exist, the following condition has to

be satisfied,

0 <

−d2

(
(m2 − h − w)(1 − ξ)− gξ

)
d2((m2 − h + g)ξ + w(1 − ξ))− d1(m1 − h + s1)

< 1 (3.5.37)

This simplifies to the following two conditions:

−d2

(
(m2 − h − w)(1 − ξ)− gξ

)
d2((m2 − h + g)ξ + w(1 − ξ))− d1(m1 − h + s1)

< 1 (3.5.38)

Then

d2(m2 − h) > d1(m1 − h + s1) (3.5.39)

If d2(m2 − h) < d1(m1 − h + s1), then the first order derivative of l2(t1, t2) with respect

to t2 is strictly decreasing with respect to t2, and the optimal value occurs at the maxi-

mum possible value of t2, i.e., t2 = t1 = tb.

Economic Analysis: Examining the condition d2(m2 − h) < d1(m1 − h + s1), this may

occur when the salvage cost s1 is very high, therefore it makes more economic sense to

introduce the new product and remove the old at the same time.

For

0 <

−d2

(
(m2 − h − w)(1 − ξ)− gξ

)
d2((m2 − h + g)ξ + w(1 − ξ))− d1(m1 − h + s1)

(3.5.40)

then −d2

(
(m2 − h−w)(1− ξ)− gξ

)
> 0 since d2((m2 − h+ g)ξ +w(1− ξ))− d1(m1 −

h + s1) > 0. Now, if −d2

(
(m2 − h − w)(1 − ξ) − gξ

)
< 0, then then the first order
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derivative of l2(t1, t2) with respect to t2 is strictly increasing with respect to t2, and the

optimal value occurs at the minimum possible value of t2, i.e., t2 = 0.

Economic Analysis: Examining the condition −d2((m2 − h − w)(1 − ξ) − gξ), this

condition can be negative when there is a low portion of lost demand ξ in case prod-

uct 2 is late and a low waiting cost. In other words, product 2 is very valuable for the

customer and the waiting cost is very low compared to the high contribution to profit

of product 2.

Now, in the case when t2 exists, we have to further satisfy a condition t∗2 < t∗1 given by

−d2

(
(m2 − h − w)(1 − ξ)− gξ

)
d2((m2 − h + g)ξ + w(1 − ξ))− d1(m1 − h + s1)

<
m1 − h

m1 − h + s1
(3.5.41)

In case condition (3.5.41) is violated, then the optimal value occurs at t1 = t2 = tb.

If the inventory cost h is too high, then the first order derivative of l2(t1, t2) with re-

spect to t2 is decreasing and the optimal value of t∗2 occurs at t2 → t1.

CASE B

- In this case, (d2((m2 − h + g)ξ + w(1 − ξ)) − d1(m1 − h + s1)) < 0, then l2(t1, t1) is

concave with respect to t2 and the minimum will occur at a boundary depending on

−d2

(
(m2 − h − w)(1 − ξ)− gξ

)
.

- If

0 < −d2

(
(m2 − h − w)(1 − ξ)− gξ

)
(3.5.42)

Then expression the first order derivative of l2(t1, t2) with respect to t2 is strictly de-

creasing with respect to t2, and the optimal value occurs at the maximum possible

value of t2, i.e., t2 = t1 = tb.
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Now if

−d2

(
(m2 − h − w)(1 − ξ)− gξ

)
< 0 (3.5.43)

we distinguish two cases:

- If
−d2

(
(m2−h−w)(1−ξ)−gξ

)
d2((m2−h+g)ξ+w(1−ξ))−d1(m1−h+s1)

< 1, knowing that d2((m2 − h + g)ξ + w(1 − ξ))−

d1(m1 − h + s1) < 0, if −d2

(
(m2 − h − w)(1 − ξ)− gξ

)
> d2((m2 − h + g)ξ + w(1 −

ξ)) − d1(m1 − h + s1), then the first order derivative of l2(t1, t2) with respect to t2 is

decreasing with respect to t2 and the minimum occurs at t1 = t2 = tb.

- If −d2

(
(m2 − h − w)(1− ξ)− gξ

)
< d2((m2 − h + g)ξ + w(1− ξ))− d1(m1 − h + s1),

then the first order derivative of l2(t1, t2) with respect to t2 is increasing with respect to

t2 and the minimum occurs at t2 = 0.

If the inventory cost h is too high, then the first order derivative of l2(t1, t2) with re-

spect to t2 is decreasing and the optimal value of t∗2 occurs at t2 → t1.

Convexity when all demand is lost: We examine the convexity in case ξ = 1 or

when all the demand is lost when T > t2, in this case the second order derivative is

given by:

d2l2(t1, t2)

dt2
2

=

(
d2(m2 − h + g)− d1(m1 − h + s1)

)
f (t2) + a2,at2g

(
1 − F(t2)

)
+

(
m2 − h

)(
(a2,l − a2,a)

t2
2
2
+ (b2,a − b2,l)t2

)
f ′(t2)

+

(
m2 − h

)(
(a2,l − a2,a)t2 + (b2,a − b2,l)

)
f (t2) (3.5.44)

Knowing that a2,l > a2,a, expression (3.5.44) is positive and l2(t1, t2) is convex with re-

spect to t2 if
(

d2(m2 − h + g)− d1(m1 − h + s1)

)
> 0.
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Figure 3.17: Case of All Demand Lost: Dual Rollover with Linear Demand and(
d2(m2 − h + g)− d1(m1 − h + s1)

)
> 0

Figure 3.18: Case of All Demand Lost: Dual Rollover with Linear Demand and(
d2(m2 − h + g)− d1(m1 − h + s1)

)
< 0

Figure (3.17) presents an example where all demand is lost for the following cost pa-

rameters in thousands m1 = 20, m2 = 22, ξ = 1, g = 3, h = 10, s1, and w = 8, and

the following demand parameters d1 = 5, and d2 = 50. The probability distribution

is a uniform one where 0 ≤ T ≤ 20. The optimal solution in this case is t∗1 = 14.3,

t∗2 = 4.8 and l∗b = 1180360 U.S.$. In another example presented in Figure (3.18), s1 = 8

and d1 = 49, the other parameters are unchanged. The optimal solution in this case is

t∗1 = 14.3, t∗2 = 4.8 and l∗b = 1180360 U.S.$.
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CHAPTER 4

Third Paper: Data-Driven

Optimization for the Stochastic

Product Rollover Problem

Abstract

We consider an inventory/production rollover process between an old and a new product, with

a random approval date for the new product. Unlike our previous work, where the approval date

distribution was known, here it is not known. Instead the only information available is a set

of independent random samples that are drawn from the true approval date distribution. The

analysis we present characterizes the properties of the approval date distribution as a function of

the number of historic samples and optimization in a single framework. We present data-driven

solutions and incorporate risk preferences using a scalar parameter and tractable formulations

leading to closed-form solutions based on the ranking of the historical dates, which provide key

insights into the role of the cost parameters and optimal rollover policy. Moreover, we establish

bounds on the number of samples required to guarantee that with high probability, the expected

cost of the sampling-based policies is arbitrarily close (i.e., with arbitrarily small relative error)

compared to the expected cost of the optimal policies which have full access to the approval date

178



CHAPTER 4: THIRD PAPER: DATA-DRIVEN OPTIMIZATION FOR THE STOCHASTIC

PRODUCT ROLLOVER PROBLEM

distributions. The bounds that we develop are general, easy to compute and do not depend at

all on the specific approval date distributions. We finally test the ’robustness’ of our solutions

though numerical computations.

Keywords: Product rollover; Uncertain approval date; Planned stockout rollover (PSR);

Single product rollover (SPR); Dual product rollover(DPR); Data-Driven

4.1 Introduction

Frequent introduction of new products and phasing out of old ones creates enormous

challenges to managing product rollovers in today’s market. It is essential that com-

panies develop clear strategies for product rollover, in addition to contingency plans

in case of failure to minimize their loss in the presence of uncertainty. Several papers

have addressed the question of efficient management of new product launch, old prod-

uct destruction/salvage/scrap/sold and/or combination of the two processes.

In an ideal setting, efficient rollover is clear : the old product is sold out at the planned

introduction date of the new product, and the new product is readily available.Clearly,

when a company is planning the phase-out of an existing product and the phase-in of

a replacement product, classical stochastic production/inventory trade-offs have to be

considered. If production of the existing product is stopped too early, i.e., before the

new product is available for the market, the firm will lose profit and customer goodwill.

On the other hand, if production of the existing product is stopped too late, the firm
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will experience an obsolescence cost for the existing product, because demand and/or

price would have decreased as this product will be considered "old generation" by the

customers. Furthermore, if the production of the new product is started too early, the

firm will experience an inventory carrying cost until the market will turn to this prod-

uct. Real-life is usually less favorable.

In this paper, we focus on three fundamental strategies: planned stockout rollover

(PSR), single-product rollover (SPR) ,and dual-product rollover (DPR). An important

issue in new product launch management is whether two product generations should

coexist in the market for some time; in other words, whether there should be an over-

lapping of some sort in successive product inventory/production/supply chain. In

the PSR strategy, the introduction of the new product is planned in such a way that

a stock-out phenomenon occurs during the product transition. During this stock-out

period, no product of any type is available for the market (which introduces some kind

of back-order cost). In the SPR strategy, there is a simultaneous introduction of the new

product and elimination of the old product, i.e., at any time there is a unique product

generation available in the market. On the contrary, in the DPR strategy, the new prod-

uct is introduced first and then the old product is phased out. Thus, in this setting, two

product generations coexist in the market for some time. The advantage of the DPR

strategy, with respect to the SPR policy, is to allow some protection against potential

random events (delays, quality, market demand level) affecting the planned phasing-

out process, but its drawback is the cost corresponding to the additional supply chain

inventory.

The purpose of this paper is to analyze and characterize the optimality of each type

of strategy (PSR, SPR and/or DPR) for a setting with a stochastic approval date for the

new product. Hill and Sawaya (2004) examine the problem of simultaneously planning
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the phase-out of the old product and the phase-in of a new one that will replace the old

product, under an uncertain approval date for the new product. Our problem setting

is inspired from their model. In El Khoury et al. (2011), we assumed that the approval

date follows a known probability distribution, in practice however, the volatility of the

approval approval date makes it difficult to obtain accurate forecasts of the probability

distribution. The assumption that the approval date distribution is known is unrealistic

especially that only partial information about the approval is available for the manager.

Thus, we adopt a non-parametric data-driven approach where we build directly upon

available historic data samples instead of estimating the probability distributions rely-

ing on a scalar parameter to incorporate robustness in the model which corresponds to

a pre-specified quantile of the cost. The random variable is determined by computing

the expected cost above that quantile, that is, by removing (trimming) the instances

of the cost below the quantile and taking the average over the remaining ones. The

fraction of data points removed will be referred to as the trimming factor that deter-

mines the degree of conservatism. This is a one-sided trimming approach studied by

Bertsimas et. al. (2004) and Thiele (2004).The only information available is a set of in-

dependent samples drawn independently from the true approval date distribution, but

the true distribution is unknown to the manager.This approach was first proposed by

Thiele (2004) where she applied it to different variances of the newsboy problem. The

importance of this method is the tractability and the possibility of formulating unique

closed-form solutions for problems that are convex and piecewise linear.

To our knowledge, this is the first work that addresses the product rollover problem

under uncertainty using a data-driven optimization approach. In fact, approval date

distributions are very hard to model and often the manager has only historical obser-

vations. We derive theoretical insights into the optimal strategies depending on the
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cost parameters and the degree of conservatism chosen by the decision-maker. We also

compare our solutions to the Conditional Value at Risk (CVaR) solutions obtained in

our previous work when the probability distribution is known.

The structure of this paper is as follows: in section 5.2, we review product rollover and

data-driven literature. In section 5.3, we present the stochastic product rollover prob-

lem under consideration and in section 5.4 we discuss the data-driven cost approach

and compare it to the conditional value at risk. In section 5.5, we give the structural

properties and solutions to our problem. In section 5.6, we present the numerical con-

vergence through bounds and finally in section 5.7, we test our solutions through nu-

merical simulations and show that the data-driven approach may give better solutions

than the conditional value of risk in case of guessing wrongly the probability distribu-

tion. We finally conclude the paper in section 5.8 reporting our findings and proposing

future research directions.

4.2 Literature Review

A first trend of papers about new product development and launch is mainly of qual-

itative and descriptive nature (Chryssochoidis and Wong (1998), Saunders and Jobber

(1994), Erhun et al (2007), Hendricks and Singhal (1997)) that guide managers to design

and implement appropriate policies taking into consideration transition risks related to

the product, manufacturing processes, supply chain features, and managerial policies

in a competitive environment.

Choosing the optimal strategy - planned stockout, single, or dual - is central in the

product rollover problem. Literature has reported that a planned stock-out rollover

(PSR) and single product rollover (SPR) can be viewed as high-risk, high return strate-

gies, sensitive to potential random events. On the contrary, the dual product rollover
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(DPR) strategy is less risky, but induces higher inventory costs.

Despite the importance of optimizing revenues of product rollover, very few papers

address the problem quantitatively such as Billington et al (1998). Lim and Tang (2006)

developed a deterministic model that allows the determination of prices of old and

new products and the times of phase-in and phase-out of the products. A very simple

setting has been analyzed in the paper of Ronen and Trietsch (1993).

Risk-sensitivity models in inventory modeling and supply chain management have

been proposed in many papers. Most inventory-related papers try to maximize a pre-

determined target profit such as Lau (1980), who first modeled risk. This criterion may

result in an unacceptably large loss and researchers like Markowitz (1952) propose to

minimize the standard deviation of the profit. Tang (2006) provides a review of various

quantitative models for managing supply chain risks.

In general, risk modeling has constituted an important research stream in finance. A

way to take into account the risk consists of focusing on shortfall, through an abso-

lute bound on the tolerable loss or by setting a bound on the conditional value at risk.

Theoretical properties of the CVaR measure of risk has been extensively studied by

Rockafellar and Uryasev (2000). Gotoh and Takano (2007) and Chen et al. (2009) de-

veloped closed form solutions using Conditional Value at Risk (CVaR) for the newsboy

problem. Others like Ozler et al (2009) utilize Value at Risk (VaR) as risk measure in a

newsboy framework and investigate the multi-product newsboy problem under a VaR

constraint.

All methods discussed above require the knowledge of the probability distribution

of the stochastic variable. In case the variance of the distribution is unknown, the

183



CHAPTER 4: THIRD PAPER: DATA-DRIVEN OPTIMIZATION FOR THE STOCHASTIC

PRODUCT ROLLOVER PROBLEM

min-max approach is a way to address this situation. Several researchers have cho-

sen this method to solve the newsboy problem when the exact demand distribution is

not known like Bienstock and Ozbay (2006) and Gallego et al (2001). The min-max ap-

proach knowing only the mean and the variance was first introduced by Scarf (1958). In

this method, smaller where smaller profits are preferred if they exhibit less variability.

Kasugai and Kasegai (1960) applied dynamic programming and the min-max regret or-

dering policy to the distribution-free multi-period newsboy problem. Scarf (1959) and

Liyanage and Shanthikumar (2005) assume that the ’unknown’ distribution belongs to

a parametric family of distributions, but the values of the parameters are unknown.

Gallego and Moon (1993,1994) extended Scarf’s method to the single-period newsboy

model with a fixed order quantity and under periodic review.

Moon and Silver (2000) develop distribution-free models and heuristics for a multi-

item newsboy problem with a budget constraint and fixed ordering costs. A compre-

hensive literature reviews and suggestions for future research on the newsboy problem

are complied by Khouja (1999)

Supply chain literature has explored sampling-based optimization in the form of a

data-driven approach to solve stochastic optimization problems with unknown dis-

tributions. In this approach, historical data or sample evaluations are generated from

the true distribution. This method was pioneered by van Ryzin and McGill (2000).

Bertsimas and de Boer (2005) developed a stochastic gradient algorithm to solve a rev-

enue management problem using the scenario samples. Levi et al. (2007) apply the

data-driven framework to the newsvendor problem and establish bounds on the num-

ber of samples required to guarantee with some probability that the real expected cost

of the sample based policies approximates the expected optimal cost. Ben-Tal and Ne-

mirovski (1998, 1999, 2000), Goldfarb and Iyengar (2003) and Bertsimas and Sim (2004)
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developed the data-driven approach and applied it to various settings. The data-driven

approach is usually appropriate for risk-averse managers, but it can give quite conser-

vative solutions.

The approach proposed in this paper is entirely data-driven building directly upon

the sample of available data instead of estimating the probability distributions. It does

not rely on utilities but rather on a scalar parameter to incorporate robustness to the

model. This scalar parameter corresponds to a pre-specfied quantile of the loss. The

random variable is determined by computing the expected revenue below that quan-

tile, that is, by removing (trimming) the instances of the profit above the quantile and

taking the average over the remaining ones. The fraction of data points removed will

be referred to as the trimming factor. By this, the planner focuses on a more conserva-

tive valuation of his revenue/loss and is able to adjust the degree of conservatism by

selecting the trimming factor appropriately. Two-sided trimming has been studied by

Rousseeuw and Leroy (1987), Ryan (1996), Wilcox (1997) One-sided trimming has been

studied by Bertsimas et. al. in (2004) and Levy and Kroll (1978). The importance of this

approach lies in the uniquness of the strategy that will minimize losses in the case of

convex utilities and allowing for nonparametric estimators and tractable formulations.

4.3 The product rollover evaluation model

In this section, we recall the product rollover problem that we introduced in El Khoury

et al. (2011) and introduce the different notation and assumptions.

4.3.1 Stochastic rollover process and profit/cost rates

The problem context requires a production plan for the phase-out of an existing prod-

uct (here called old product, or product 1) and phase-in of a replacement product (called
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new product or product 2) under an uncertain (internal or external) approval date, de-

noted T, for the new product delivery. A typical example for such approval decisions

are those of medical devices and pharmaceutical products which cannot be sold until

an approval body grants permission. Two decision variables have to be fixed in such

a rollover process: t1, the date the firm plans to run-out of the old product and t2, the

date the new product is planned to be ready and available for the market. The existing

product is sold until the firm runs out of inventory or until it is replaced by the ap-

proved new product. The manufacturing and procurement lead times are assumed to

be large, thus making it necessary to commit to the planning dates before the random

approval date is revealed. The decision process relies thus exclusively on the probabil-

ity distribution of this date T, which, in our case, is not known. Such large procure-

ment/manufacturing/distribution lead-times are frequent in practice: for instance, the

regulatory affairs department in a medical device firm uses a forecast interval for the

approval date that is more than 6 months long. During their regular commercial life,

each product has a specific constant demand rate, namely d1 and d2. A channel inven-

tory is needed to support each product in the market, which induces inventory cost

rates ch,1 and ch,2. During the commercial life, the contribution-to-profit rate for prod-

uct i, is defined as

mi = di(pi − ci)− ch,i, (i = 1, 2), (4.3.1)

with pi the selling price and ci the production cost.

In the considered random setting, the profit/cost structure, defined over an infinite

time horizon, depends furthermore on the relative values of t1, t2 and T. Indeed, if the

planned stock-out strategy (t1 ≤ t2) is chosen, the structure of the profit/cost rates is

given in Figure 4.2,

Three main cases have to be considered. First, if T ≤ t1, the profit rate is m1 over

the time interval [0, T[. Then, if t1 ≤ T ≤ t2, the new product is approved, but not

physically available in the supply chain. As the market is assumed to be informed that
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the new product 2 will substitute product 1 in a supposedly short delay, the product 1

profit rate changes from m1 to m′
1 as long as product 1 is available, i.e., over [T, t1[. This

contribution rate m′
1 is formally given by

m′
1 = d′1(p′1 − c1)− ch,i. (4.3.2)

Then, over the interval [t1, t2[, when the old product is sold out, shortages occur until

new product 2 delivery date t2, at a corresponding shortage cost rate g. Once the new

product is available, at t2, the profit rate becomes m2 over the remaining time horizon

[t2, ∞[. Then, for the third case, one has t2 ≤ T. The profit/cost rates are similar to the

previous situation, except over the interval [t2, T[, where the new product is physically

available in the supply chain, but still not approved. A shortage cost rate g occurs until

new product 2 is approved. In addition, an inventory cost rate ch,2 associated to the

product 2 physical inventory is to be incurred.

If the dual rollover strategy (t2 ≤ t1) is chosen, the structure of the costs and profit rates

is given in Figure 4.3.

Let us consider first the case T < t2. The profit rate is m1 over the time interval [0, T[

and m′
1 over [T, t2[. Then, over the time interval [t2, t1[, as the new product is approved

and physically available, it is sold with a profit rate m2. In the current setting, it is

however assumed that the firm scraps, at a cost rate s1, all the remaining inventory

of product 1 immediately when an approved product 2 is available for sale, i.e., over

the time interval [T, t1]). This can be linked to several typical market forces that can

be observed in some sectors. First, in some situations, it is considered as important (if

not necessary) to provide customers with the latest technology, i.e., with the newest

product type. Second, higher demand, higher prices, and higher commissions drive

sales organizations to shift to the new product. Third, marketing organizations want

products that accentuate the leading edge nature of the firm’s brand and do not want

to lose the opportunity to sell the best and latest product. This is justified by the higher
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margins for product 2 and by the need to maintain brand equity as a leading-edge

provider. Finally, over the remaining time horizon [t1, ∞[, the profit rate becomes to

m2.

In the second situation, one has t2 ≤ T ≤ t1. The profit rate is m1 over [0, t2[. Then

over the interval [t2, T[, the profit rate is still m1, but as the new product is physically

available in the supply chain, but not approved for sale, an inventory cost rate ch,2 to

be incurred. From T until the whole remaining horizon, the new product is sold with

a profit rate m2. In the time interval [T, t1[, the old product is scrapped at a cost rate s1.

Over the remaining time horizon [t1, ∞[, the profit rate becomes to m2. In the last case,

t1 ≤ T. The profit rate is m1 over [0, t2[. Then, over the interval [t2, t1[ the profit rate

is still m1, but an inventory cost rate ch,2 has to be incurred. Over [t1, T[ old product is

sold out and new product is not approved, shortages induce thus a shortage cost rate

g. Finally, over the remaining time horizon [T, ∞[, the profit rate becomes to m2.

4.3.2 Model Notation

For this rollover optimization model, we adopt the following notation. For each prod-

uct type i ∈ {1, 2}, we define

ci : the unit cost for product i,

pi : the unit price for product i,

pi − ci : the gross margin for product i,

di : the demand rate for product i,

mi : the contribution-to-profit rate for product i, defined as mi = di(pi − ci)− ch,i,

g : the loss of goodwill rate when the firm has neither of the products to sell,

m′
1 : the new contribution-to-profit rate of product 1 after the admissability of product

2 is granted; this value is externally given,

ch,i : the carrying cost rate for product i,

s1 : the scrap cost rate for product 1.
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Furthermore, we denote

T : the random approval date for the new product (i.e., for product 2).

The decision variables are,

t1 : the planned run-out date for inventory of the existing product (i.e., product 1).

t2 : the planned availability date for the new product (i.e., product 2),

tb : is the planned availability date for the new product and the removal of the old

product when t1 = t2 for a single rollover strategy.

4.3.3 The Global Optimization Criterion

We consider a performance criterion defined as the difference between the cost when

the approval date is random and known exclusively through observation and the cost

under complete information about approval date. This performance criterion is de-

fined as follows.

Let’s first consider the perfect information case for which the value of the regulatory

date is known before the decisions t1 and t2 are made. This situation is depicted in

Figure 4.1.

Figure 4.1: Full information case

In this ideal setting, the optimal solution is clear : t1 = t2 = T, i.e., the old product

is sold out at the planned introduction date of the new product, corresponding to the

approval date. Over the time interval [0, T[, the profit rate is m1, while on the remain-
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ing horizon [T, ∞], the profit rate is m2.

In order to characterize the impact of randomness on the rollover process, we consider

an objective function defined as the difference between the cost rates functions with

imperfect information (Figures 4.2 and 4.3) and the perfect information cost rate func-

tion (Figure 4.1). This difference can be interpreted as the loss caused by not knowing

the approval date T. Formally, according to the description given above, these cost

functions are piecewise linear and exhibit different structures, depending on the rela-

tive values of the decision variables t1 and t2.

Figure 4.2: The profit rates when t1 ≤ t2

If the planned stock-out strategy (t1 ≤ t2) is chosen, the cost rate function is denoted as

L1(t1, t2, T) and amounts to

L1(t1, t2, T) =


(m2 − m′

1)(T − t1)− (m2 + g)(t2 − t1) if 0 ≤ T ≤ t1,

−(g + m1)(T − t1)− (g + m2)(t2 − T) if t1 ≤ T ≤ t2,

−(g + m1)(t2 − t1)− (g + m1 + ch,2)(T − t2) if t2 ≤ T,

= (m1 + g)[T − t1]
+ − (g + m′

1)[t1 − T]+

+ ch,2[T − t2]
+ + (m2 + g)[t2 − T]+. (4.3.3)
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where [Y]+ := max(Y, 0).

If the dual rollover strategy (t2 ≤ t1) is chosen, the cost function is denoted as L2(t1, t2, T)

and is given by

L2(t1, t2, T) =


(m2 − m′

1)(T − t2)− s1(t2 − t1) if 0 ≤ T ≤ t2,

−ch,2(T − t2)− s1(t1 − T) if t2 ≤ T ≤ t1,

−ch,2(t2 − t1)− (g + m1)(T − t1) if t1 ≤ T,

= (m2 − m′
1 − s1)[t2 − T]+ + ch,2[T − t2]

+

+ (m1 + g)[T − t1]
+ + s1[t1 − T]+. (4.3.4)

If we formally introduce the two regions, R1 = {(t1, t2) ∈ R+ × R+ : t1 ≤ t2} and

Figure 4.3: The profit rates when t2 ≤ t1

R2 = {(t1, t2) ∈ R+ × R+ : t1 ≥ t2}, the piecewise loss rate functions can be rewritten

as

L(t1, t2, T) = Li(t1, t2, T) if (t1, t2) ∈ Ri (i = 1, 2). (4.3.5)
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On the boundary between regions R1 and R2, i.e., for Rb = {(t1, t2) ∈ R+ × R+ : t1 =

t2}, the expression of the objective function is obtained from (4.3.3) and/or (4.3.4) as

Lb(t, T) = (m2 − m′
1)[t − T]+ + (m1 + g + ch,2)[T − t]+. (4.3.6)

4.3.4 Parameter Assumptions

As in all stochastic production/inventory models, it is necessary to introduce some

assumptions for the different parameters. These assumptions are as follows. First, the

contribution-to-profit rate for the products under regular sales is positive, i.e.,

m1, m2 > 0. (4.3.7)

Furthermore, for product 1 (the old product), the contribution-to-profit rate under reg-

ular sales is greater than contribution to the profit per period after the new product 2 is

available, i.e.,

m1 ≥ m′
1. (4.3.8)

In order to avoid cases for which it would be optimal to infinitely delay the new prod-

uct launch, it is assumed that

m2 ≥ m′
1. (4.3.9)

We also have the standard assumptions from classical inventory theory,

g, ch,2, s1 > 0. (4.3.10)

4.4 Data-Driven Cost Approach vs Conditional Value at Risk

In our rollover problem, the manager has to determine the optimal rollover dates and

strategy of introduction and removal of two products from the market. The manager
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has to plan his resources prior to observing the approval date T to satisfy the market

while minimizing the net loss given by:

min
(t1,t2)∈R+

l(t1, t2, T) = E[Li(t1, t2, T)] if (t1, t2) ∈ Ri (i = 1, 2). (4.4.1)

The expectation is taken with respect to the stochastic approval date T, which has a

cumulative distribution function (cdf) F.

We have thoroughly studied the net loss function objective function and the optimal

solutions and strategies (see El Khoury (2011)). In particular, l1(t1, t2) and lb(t1, t2) are

continuous and convex functions (Properties 1 and 2 in El Khoury (2011)). On the other

hand, l2(t1, t2) is continuous and convex for m2 − m′
1 − s1 + ch,2 > 0 (Property 3 in El

Khoury et al. (2011)). Therefore, the optimal solution can be characterized through

first-order conditions.

Given the convexity of our objective functions and knowing the probability distribu-

tion of T, we could also apply the Conditional Value at Risk (CVaR) approach. For

β ∈ [0, 1), we define the β-VaR of this distribution by

αβ(t1, t2) = min{α|LF(α|t1, t2) ≥ β}. (4.4.2)

It is now possible to introduce the β-tail distribution function to focus on the upper tail

of the loss distribution as

LF,β(η|t1, t2) =

{ 0 for η < αβ(t1, t2),

Lβ(η|t1,t2)−β

1−β for η ≥ αβ(t1, t2).
(4.4.3)

Using the expectation operator Eβ[·] under the β-tail distribution LF,β(·|·, ·), we define

the β-conditional value-at-risk of the loss L(t1, t2, T) by

l̃β,i(t1, t2) = Eβ[Li(t1, t2, T)]. (4.4.4)

Finding the optimal rollover strategy and the corresponding values of the phase-in and

phase-out dates, which minimize the CVaR cost criterion amounts to the optimization
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problem

min
(t1,t2)∈R+×R+

l̃β,i(t1, t2) =

{
Eβ[Li(t1, t2, T)]

}
. (4.4.5)

The CVaR is a viable risk measure when the probability distribution of the approval

date is known, and this was the case in El Khoury et al. (2011). In real life applications,

the probability distribution is rarely known and we have to revert to data-driven opti-

mization methods to calculate optimal solutions.

In the data-driven approach, the random variable is determined by computing the ex-

pected cost above a certain quantile, that is, by removing (trimming) the instances of

the cost below the quantile and taking the average over the remaining ones. The frac-

tion of data points removed will be referred to as the trimming factor which is in fact

the same as β used in the CVaR method. We are therefore able to compare our solutions

using the data-driven approach to the solutions obtained through the CVaR method. In

this paper, we replace our original CVaR objective function with an average based on

the drawn samples (Thiele 2006). The sampling-based approximated objective is then

minimized.

Suppose that there are N independent samples drawn from the true distribution, la-

beled as T1, ..., TN . The data-driven approach approximates the true distribution with

the empirical distribution that puts a weight of 1
N on each of the N samples and the

expected cost evaluated under this empirical distribution. We denote the a − quantile

of the approval date T by qa(T) where

qa(T) = in f {t|F(T ≤ t) ≥ a}, (4.4.6)

for any aϵ(0, 1) as have done Levy and Kroll (1978) to describe investor preferences.

We adapt their appraoch to a cost objective as follows:
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Theorem 1: E[U(T1)] ≤ E[U(T2)] for all U decreasing and convex if and only if E[T1|T1 ≤

qa(T1)] ≤ E[T2|T2 ≤ qa(T2)] for any aϵ(0, 1), and we have strict inequality for some a.

Therefore, a strategy chosen to minimize the tail conditional expectation E[T1|T1 ≤

qa(T1)] is non-dominated. Equivalently, minimizing E[T1|T1 ≤ qa(T1)] for a specific a

guarantees that no other strategy can worsen the value (expected utility) of the ran-

dom variable for all risk-averse planners. Furthermore, this method does not require

any assumptions for the probability distribution of the approval date.

Let N be the total number of observations of T where (T(1), ...T(N)) be those obser-

vations ranked in increasing order (T(1) ≤, ... ≤ T(N)).

Let the trimming factor be the fraction of scenarios that are removed, as β = 1 − a,

and the number of scenarios left after trimming as Nβ = ⌊N(1 − β) + β⌋ so that there

is no trimming at β = 0 (Nβ = N) and that the worst scenario is at β = 1 (Nβ = 1).

It follows that the value associated with the random Li(t1, t2, T) is computed by:

1
Nβ

Nβ

∑
k=1

Li(t1, t2, T)(k) (4.4.7)

so we generate random realizations of T based on T(1), ...T(k), T(k+1), ..., T(N), each with

equal probability, where L(t1, t2, T)(k) is the kth smallest L(t1, t2, Tj). From Thiele (2004),

problem (4.4.7) becomes

Min
1

Nβ

N

∑
k=1

tkyk (4.4.8)

s.t
N

∑
k=1

yk = Nβ

0 ≤ yk ≤ 1∀k
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The feasible set of Eq. 4.4.8 is nonempty and bounded, therefore by strong duality, Eq.

4.4.8 is equivalent to:

min Nβϕ +
N

∑
k=1

ψk (4.4.9)

s.t ϕ + ψk ≥ tk, ∀k

ψk ≥ 0∀k

t1, t2 ≥ 0 (4.4.10)

Problem (4.4.8) is a convex problem if Li(t1, t2, T) is convex in t1 and t2 , and a linear

programming problem since is piecewise linear Li(t1, t2, T).

As the cost functions in our product rollover problem are piecewise linear with linear

ordering constraints, we will be able to derive tractable, linear programming formula-

tions of the data-driven model.

The conditional value at risk (CVaR) is at the core of the data-driven approach, as the

method’s objective is to minimize its sample value over the historical realizations of

the approval date. CVaR at level β refers to the conditional expectation of losses in

the top 100(1 − β)% and refers to the risk perception of the manager. According to the

data-driven approach, the fundamental optimization problem considered here consists

of finding the phase-in and phase-out dates which minimize the maximum (worst) ex-

pected cost objective, the associated optimization problem is

min
t1,t2∈R+

1
Nβ

Nβ

∑
k=1

L(t, T)(k). (4.4.11)

Due to the structure of the cost function given in (4.3.5), we introduce the following

auxiliary subproblems, for i = 1, 2, (See El Khoury et al.(2011))

min
(t1,t2)∈Ri

1
Nβ

Nβ

∑
k=1

Li(t1, t2, T)(k), (4.4.12)

196



CHAPTER 4: THIRD PAPER: DATA-DRIVEN OPTIMIZATION FOR THE STOCHASTIC

PRODUCT ROLLOVER PROBLEM

and the boundary problem,

min
(tb)∈R+

1
Nβ

Nβ

∑
k=1

Lb(tb, T)(k), (4.4.13)

4.5 Structural Properties and Optimal Solutions

The optimal solution structure is essentially determined by convexity characteristics of

these functions (4.3.3)-(4.3.4) in the regions R1 and R2.

Property 1: Under assumption (4.3.8), the loss function L1(t1, t2, T) is strictly jointly

convex on R+ × R+.

Proof. See El Khoury et al. (2011)

We distinguish two cases, m2 ≥ m1 and m1 ≥ m2 to solve the following problem (See

El Khoury et al. 2011)

min
(t1,t2)∈R1

1
Nβ

Nβ

∑
k=1

L1(t1, t2, T)(k). (4.5.1)

We know that L1(t1, t2, T) is jointly convex with respect to t1 and t2, therefore we are

able to apply Theorem 1 and solve for tractable solutions by distinguishing two cases:

- m2 ≥ m1 where L1(t1, t2, T) is strictly decreasing with respect to Tk < t2 and strictly

increasing with respect to Tk > t2

- m1 ≥ m2 where L1(t1, t2, T) is strictly decreasing with respect to Tk < t1 and strictly

increasing with respect to Tk > t1.

PROPOSITION 1 : Under the assumption m2 ≥ m1 ≥ m′
1, if m′

1 < −g, and m1+g
m1−m′

1
<

ch,2
m2+ch,2+g , problem (4.4.8) has a unique finite minimum over R1 × R1 corresponding to,
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t∗1 = min
{

T(j)|T(j) ≥ T(M1
β)

}
, (4.5.2)

t∗2 = min
{

T(h)|T(h) ≥
(

m2 − m1

m2 + ch,2 + g

)
T(M2

β)

+

(
m1 + ch,2 + g
m2 + ch,2 + g

)
T(N−Nβ+M2

β)

}
. (4.5.3)

where M1
β = ⌈ m1+g

m1−m′
1
Nβ⌉ and M2

β = ⌈ ch,2
m2+ch,2+g Nβ⌉, otherwise, there exists no finite min-

imum for problem (4.4.8) in R1 and the optimal rollover strategy will either be single

or dual rollover.

Proof. See Appendix A, Proposition 1.

PROPOSITION 2 : Under the assumption m1 ≥ m2 ≥ m′
1, if m′

1 < −g and m1+g
m1−m′

1
<

ch,2
m2+ch,2+g problem (4.4.8) has a unique finite minimum over R1 × R1 corresponding to,

t∗1 = min
{

T(j)|T(j) ≥
(

m2 − m′
1

m1 − m′
1

)
T(M1

β)
+

(
m1 − m2

m1 − m′
1

)
T(N−Nβ+M1

β)

}
, (4.5.4)

t∗2 = min
{

T(h)|T(h) ≥ T(N−Nβ+M2
β)

}
. (4.5.5)

where M1
β = ⌈ m1+g

m1−m′
1
Nβ⌉ and M2

β = ⌈ ch,2
m2+ch,2+g Nβ⌉, otherwise, there exists no finite min-

imum for problem (4.4.8) in R1 and the optimal rollover strategy will either be single

or dual rollover.

Proof. See Appendix A, Proposition 2.

Property 2: Under the assumption m2 − m′
1 − s1 + ch,2 > 0,the loss function L2(t1, t2, T)

is strictly jointly convex over R+ × R+, else it is strictly concave and the optimal strat-

egy will be a planned stockout or single rollover.
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We distinguish two cases, ch,2 ≥ s1 and s1 ≥ ch,2 to solve the following problem (See El

Khoury et al. 2011)

min
(t1,t2)∈R2

1
Nβ

Nβ

∑
k=1

L2(t1, t2, T)(k). (4.5.6)

We know that L2(t1, t2, T) is jointly convex with respect to t1 and t2 for m2 − m′
1 − s1 +

ch,2, therefore we are able to apply Theorem 1 and solve for tractable solutions by dis-

tinguishing two cases:

- ch,2 ≥ s1 where L2(t1, t2, T) is strictly decreasing with respect to Tk < t2 and strictly

increasing with respect to Tk > t2

- s1 ≥ ch,2 where L2(t1, t2, T) is strictly decreasing with respect to Tk < t1 and strictly

increasing with respect to Tk > t1.

PROPOSITION 3 : Under the assumption ch,2 ≥ s1, if m2 − m′
1 − s1 > 0 and (m1 +

g + chh)s1 < (m1 + g)(m2 − m′
1) problem (4.4.8) has a unique finite minimum over

R2 × R2 corresponding to,

t∗1 = min
{

T(j)|T(j) ≥ T(N−Nβ+M1
β)

}
, (4.5.7)

t∗2 = min
{

T(h)|T(h) ≥
(

m2 − m′
1

m2 − m′
1 − s1 + ch,2

)
T(M2

β)

+

(
ch,2 − s1

m2 − m′
1 − s1 + ch,2

)
T(N−Nβ+M2

β)

}
(4.5.8)

where M1
β = ⌈ m1+g

m1+g+s1
Nβ⌉ and M2

β = ⌈ ch,2
m2−m′

1−s1+ch,2
Nβ⌉, otherwise, there exists no fi-

nite minimum for problem (4.4.8) in R2 and the optimal rollover strategy will either be

single or planned stockout.
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Proof. See Appendix B, Proposition 3.

PROPOSITION 4 : Under the assumption ch,2 < s1, if m2 − m′
1 − s1 > 0 and (m1 +

g + chh)s1 < (m1 + g)(m2 − m′
1) problem (4.4.8) has a unique finite minimum over

R2 × R2 corresponding to,

t∗1 = min
{

T(j)|T(j) ≥
(

m1 + g + ch,2

m1 + g + s1

)
T(N−Nβ+M1

β)

+

(
s1 − ch,2

m1 + g + s1

)
T(M1

β)

}
, (4.5.9)

t∗2 = min
{

T(h)|T(h) ≥ T(M2
β)

}
(4.5.10)

where M1
β = ⌈ m1+g

m1+g+s1
Nβ⌉ and M2

β = ⌈ ch,2
m2−m′

1−s1+ch,2
Nβ⌉, otherwise, there exists no fi-

nite minimum for problem (4.4.8) in R2 and the optimal rollover strategy will either be

single or planned stockout.

Proof. See Appendix B, Proposition 4.

Property 3: Under the assumption (4.3.9),the loss function Lb(tb, T) is strictly jointly

convex on R+ × R+ over R+. Proof. See El Khoury et al. (2011)

Proposition 5 : A unique finite minimum on the boundary exists over R+ correspond-

ing to,

t∗b = min
{

T(j)|T(j) ≥
(

m2 − m′
1

m1 − m′
1 + m2 + ch,2 + g

)
T(Mβ)

+

(
m1 + g + ch,2

m1 − m′
1 + m2 + ch,2 + g

)
T(N−Nβ+Mβ)

}
(4.5.11)

where Mβ = ⌈ m1+g+ch,2
m1−m′

1+m2+ch,2+g Nβ⌉.

Proof. See Appendix C, Proposition 5.
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4.6 Numerical Convergence: Bound Analysis

In this paper, we consider the rollover problem under the assumption that the explicit

approval date distribution is not know, but the only information available is a set of

independent samples drawn from the true distribution. We have already studied the

model in El Khoury et al. (2011) where the date distribution was given explicitly and

we developed closed-form solutions. However, in most real-life situations, the true dis-

tributions are not available or may be too complex to work with. Thus, a data-driven

algorithmic framework is recommended and gives very reasonable solutions. In this

section, we establish bounds on the number of samples required to guarantee that with

a high pre-specified confidence probability the expected cost of sampling-based poli-

cies is close, with a relative small error, compared to the expected cost of the optimal

policies which have full access to the date distributions. The bounds that we develop

are general, easy to compute and do not depend at all on the specific demand distri-

butions. They depend on the specified confidence probability and the relative error, as

well as on the ratio between the cost parameters. This approach was suggested by Levy

et al. (2007) who discuss the robust optimization solution with respect to the original

problem as a function of Nβ. For a specified accuracy level ϵ > 0 and a confidence level

1 − δ (where 0 < δ < 1), there exists a number of samples Nβ such that, with proba-

bility at least 1 − δ, the optimal solution has an expected cost li(t̂1, t̂2) that is at most

(1 + ϵ)li(t∗1 , t∗2). They also define "closeness" between li(t̂1, t̂2) and (t∗1 , t∗2) by how close

are F(t̂1) and F(t̂2) to F(t∗1) and F(t∗2) respectively.

Our results are valid for negative values of T and for any date distribution T.

For each strategy, planned stock-out, single, and dual rollovers, the worst-case bound

is different. Therefore we propose the following theorems :
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THEOREM A Consider a planned stock-out rollover problem with a random variable

T and E[T] < ∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1)

be a specified confidence level. Suppose that

Nβ ≥ Max
(

9
2ϵ2

(
min(−(m′

1+g),m1+g)
m1−m′

1

)−2

log
(

2
δ

)
, 9

2ϵ2

(
ch,2

m2+g+ch,2

)−2

log
(

2
δ

))
and the data-driven counterpart is solved with respect to Nβ i.i.d samples of T. Let

T̂1 be the optimal solution to the data-driven counterpart and t̂1 denote its realization.

Then, with probability at least 1 − δ, the expected cost of t̂1 is at most 1 + ϵ times

the expected cost of an optimal solution t∗1 to the rollover problem. In other words,

l1(T̂1, t2) ≤ (1 + ϵ)l1(t∗1 , t2) with probability at least 1 − δ.

Proof. See Appendix D.

THEOREM B Consider a dual rollover problem with random variable T and E[T] < ∞.

Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1) be a specified

confidence level. Suppose that

Nβ ≥ Max
(

9
2ϵ2

(
s1

m1+g+s1

)−2

log
(

2
δ

)
, 9

2ϵ2

(
min(m2−m′

1−s1,ch,2)
m2−m′

1+ch,2−s1

)−2

log
(

2
δ

))
and the data-driven counterpart is solved with respect to Nβ i.i.d samples of T. Let

T̂1 be the optimal solution to the data-driven counterpart and t̂1 denote its realization.

Then, with probability at least 1 − δ, the expected cost of t̂1 is at most 1 + ϵ times

the expected cost of an optimal solution t∗1 to the rollover problem. In other words,

l1(T̂1, t2) ≤ (1 + ϵ)l1(t∗1 , t2) with probability at least 1 − δ.

Proof. See Appendix E.

THEOREM C Consider a single rollover problem with random variable T and E[T] <

∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1) be a specified

confidence level. Suppose that

Nβ ≥ 9
2ϵ2

(
min(m2−m′

1,m1+g+ch,2)
m2−m′

1+m1+g+ch,2

)−2

log
(

2
δ

)
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and the data-driven problem is solved with respect to Nβ i.i.d samples of T. Let T̂1

be the optimal solution to the data-driven counterpart and t̂1 denote its realization.

Then, with probability at least 1 − δ, the expected cost of t̂1 is at most 1 + ϵ times

the expected cost of an optimal solution t∗1 to the rollover problem. In other words,

lb(T̂1) ≤ (1 + ϵ)lb(t∗1) with probability at least 1 − δ.

Proof. See Appendix F.

THEOREM D: For the expected cost to be at most 1 + ϵ times the expected cost of

an optimal solution t∗1 to the rollover problem with probability at least 1 − δ, then the

upper bound N should satisfy

N

∏
w=N−Nβ+1

w ≥ (1 − δ)Nβ

(
β

1 − β

)Nβ

(4.6.1)

where Nβ is one of the bounds calculated in the Theorems A, B, or C depending on the

rollover strategy.

Proof: By definition, the trimming factor or the fraction of scenarios that are removed is

β, and the number of scenarios left after trimming as Nβ = ⌊N(1 − β) + β⌋. We recall

the definition of a binomial probability distribution where for having a probability of

Nβ successes/observations left as follows:

( N

Nβ

)
(1 − β)Nβ βN−Nβ (4.6.2)

We know that we have 1 − β of the scenarios taken, therefore we have

1 − δ ≤
( N

Nβ

)
(1 − β)Nβ βN−Nβ (4.6.3)
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Planned Stock-out Rollover Dual Rollover Planned Stock-out Rollover Dual Rollover

Nβ t1 t2 Data-driven t1 t2 Data-driven t1 t2 CVAR t1 t2 CVAR

Cost Cost Optimal Cost Optimal Cost

5 21.50 44.21 2106.95 60.00 18.01 966.67 6.00 32.22 1462.69 58.71 5.21 461.57

10 11.66 38.55 1624.82 60.00 5.38 463.59 6.00 32.22 1462.69 58.71 5.21 461.57

50 8.08 36.28 1521.64 56.53 5.60 467.62 6.00 32.22 1462.69 58.71 5.21 461.57

100 6.51 33.38 1471.40 59.62 7.45 478.41 6.00 32.22 1462.69 58.71 5.21 461.57

500 6.47 33.13 1468.59 58.94 5.25 461.64 6.00 32.22 1462.69 58.71 5.21 461.57

1,000 5.89 32.42 1465.37 58.99 5.12 461.69 6.00 32.22 1462.69 58.71 5.21 461.57

5,000 6.16 32.20 1461.13 58.94 5.26 461.64 6.00 32.22 1462.69 58.71 5.21 461.57

10,000 6.13 32.38 1463.02 58.82 5.20 461.59 6.00 32.22 1462.69 58.71 5.21 461.57

100,000 6.04 32.21 1462.24 58.70 5.18 461.58 6.00 32.22 1462.69 58.71 5.21 461.57

1,000,000 6.00 32.23 1462.76 58.72 5.20 461.57 6.00 32.22 1462.69 58.71 5.21 461.57

Table 4.1: Optimal Costs for the two Strategies for Different Sample Values

Simplifying, we get

N

∏
w=N−Nβ+1

w ≥ (1 − δ)Nβ

(
β

1 − β

)Nβ

(4.6.4)

4.7 Numerical Experiments

4.7.1 Bound Analysis and Convergence

In our numerical convergence section, we have computed the worst-case upper bounds

on the number of samples required, and we see in this section that we need a signifi-

cantly fewer number of samples to achieve close optimal costs. We start by simulating

for different numbers of samples the data-driven solution attained and the optimal cost

and we compare it to the optimal solution when the distribution of T is known. We sim-

ulate a case where we have the following parameters: m1 = 20, m′
1 = −30, m2 = 40,

g = 5, s1 = 3, ch,2 = 9, and for a uniform distribution [0, 60] for T where β = 0.8. We

see that for a total number of samples N = 500, we can get an error of less than 1% in

both planned stockout and dual rollover strategies (See Figure 4.4 and Table 1) and we

have the optimal strategy as dual both in the CVaR and the data-driven.

We present another example with Gaussian distribution for T with mean being 50 and
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Figure 4.4: Percentage Error vs. Nβ

variance 2 and the cost parameters m1 = 20, m′
1 = −30, m2 = 40, g = 5, s1 = 3, ch,2 = 9

in thousands, and β = 0.9. The optimal solution with the CVAR approach is t1 = 54.6,

t2 = 46.05 and optimal cost 72813 US$. We simulate for different values of N and get

an error of around 2% for N ≥ 100. We plot the errors with respect to N in Figure 4.5.

4.7.2 Effect of ’Wrongly’ Guessing the Probability Distribution

In this section, we try to prove the superiority of the data-driven approach to the CVAR

when we wrongly estimate the probability distribution. In other words, suppose that

we have a set of historic date samples, we estimate the mean and the variance from

this set and the only information available to us is this mean and variance. We try to

guess the probability distribution and apply the CVAR method. We will see through

different examples that as N increases, the data-driven approach gives better solutions

than the CVAR one in case we wrongly guess the probability distribution family.

We examine two cases, when we estimate correctly the probability distribution method

and another case when we estimate the mean or standard deviation of the probability
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Figure 4.5: Percentage Error vs. N for the Dual Rollover Strategy

distribution correctly. Consider the following case:

m1 = 20, m′
1 = −30, m2 = 40, g = 5, s1 = 3, ch,2 = 9 with the data samples gener-

ated through a uniform probability distribution[0, 100] for T. The optimal strategy is

the dual rollover one and if we correctly use the uniform distribution to calculate the

CVAR optimal cost we get an average error of 1.7% for N ≥ 500. Now we examine

the case where we wrongly estimate the probability distribution to be a normal distri-

bution mean 50 and variance 29, in other words the same mean and variance as the

correct probability distribution. We get the optimal strategy to be planned stockout

one, unlike the real one that we should have (dual) with the optimal dates t1 = 2.29

and t2 = 52.39. The optimal cost is $2901 compared to a an optimal cost of 299 for a

uniform distribution (See Figure 4.6). We can conclude, in this case, that incorrectly

estimating the probability distribution can lead to an incorrect rollover strategy and

around ten times greater costs.
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N t1 t2 Data Driven Cost t1 t2 CVAR Cost

5 60.00 39.42 3850.57 59.36 4.97 299.89

50 60.00 7.70 3199.93 59.36 4.97 299.89

100 59.34 6.40 321.19 59.36 4.97 299.89

500 59.90 5.08 310.13 59.36 4.97 299.89

1000 59.67 5.25 303.51 59.36 4.97 299.89

5000 59.48 5.15 303.16 59.36 4.97 299.89

10000 59.39 4.81 303.49 59.36 4.97 299.89

Table 4.2: Dual Rollover Optimal Dates and Costs for data-driven and CVAR for Cor-

rect Guessing Case

Figure 4.6: Optimal Costs in Case of Wrong Probability Distribution Guessing
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4.8 Conclusion and Future Research Directions

In our third paper, we have proposed a data-driven approach to the rollover problem

that builds directly upon the historical data without requiring any probability distri-

bution. We have compared our approach to the CVAR one, and we showed that the

data-driven approach can give the correct rollover strategy and a very close optimal

cost with a relatively low number of observations. We have also showed that, in case

a probability distribution has been wrongly estimated, the data-driven approach is far

superior and can provide more valuable insights into the rollover strategy.

We have also established bounds on the number of samples required to guarantee

that with high pre-specified confidence probability the expected cost of sampling-based

policies is close, with a relative small error, compared to the expected cost of the opti-

mal policies which have full access to the date distributions.

Having obtained these results, we believe that the data-driven approach can be used

for other extensions of the rollover problem. It would be worth it to solve for optimal

pricing, inventory and other extensions of the rollover problem using the data-driven

approach.
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Appendices

APPENDIX A

For a planned stock-out product rollover strategy the net cost is given by:

L1(t1, t2, T) = (m1 + g)[T − t1]
+ − (g + m′

1)[t1 − T]+

+ch,2[T − t2]
+ + (m2 + g)[t2 − T]+. (4.8.1)

We can rewrite (4.8.1) as follows:

L1(t1, t2, T) = −(m1 + g)t1 + ch,2t2 − (m′
1 − m1)[t1 − T]+

+ (m2 + ch,2 + g)[t2 − T]+ + (m1 + ch,2 + g)T (4.8.2)

Our goal is to minimize the trimmed mean of the cost:

min
0≤t1≤t2

−(m1 + g)t1 − ch,2t2 +
1

Nβ

Nβ

∑
k=1

(
−(m′

1 − m1)[t1 − T]+ (4.8.3)

+ (m2 + ch,2 + g)[t2 − T]+ + (m1 + ch,2 + g)T
)

k
.

where for any yϵRn, y(k) is the kth smallest component of y.

We know that L1(t1, t2, T) is jointly convex with respect to t1 and t2, therefore we are

able to apply Theorem 1 and solve for tractable solutions by distinguishing two cases:

- m2 ≥ m1 where L1(t1, t2, T) is strictly decreasing with respect to Tk < t2 and strictly

increasing with respect to Tk > t2

- m1 ≥ m2 where L1(t1, t2, T) is strictly decreasing with respect to Tk < t1 and strictly

increasing with respect to Tk > t1.

Case 1: m2 ≥ m1

Proposition 1:
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(a) The optimal times t1 and t2 in (4.8.3) are the solution of the linear programming

problem:

min
0≤t1≤t2

−(m1 + g)t1 − ch,2t2 +
1

Nβ

N

∑
k=1

ψ2
k +

1
Nβ

N

∑
k=1

ψ1
k , (4.8.4)

s.t ϕ + ψ1
k −

(
(m′

1 − m1)Z1
k

)
≥ 0, ∀k

ϕ + ψ2
k +

(
(m2 + ch,2 + g)Z2

k

)
≥ (m1 + ch,2 + g)Tk, ∀k (4.8.5)

Z1
k + t1 ≥ Tk∀k,

Z2
k + t2 ≥ Tk∀k,

Z1
k ≥ 0, Z2

k ≥ 0, ψk ≥ 0∀k

Moreover, t∗1 = T(j) for some j and t∗2 = T(h) for some h.

(b) Let M1
β = ⌈ m1+g

m1−m′
1
Nβ⌉.t∗1 satisfies

t∗1 = min
{

T(j)|T(j) ≥ T(M1
β)

}
(4.8.6)

(c) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
Nβ

k=1 L1(t1, t2, T)(i) =

∑iϵSβ
L1(t1, t2, Ti), and let T

Sβ

(j) the j − th highest approval date within that set. We have:

t∗1 = T
Sβ

(M1
β)

(4.8.7)

where M1
β is defined in (b).

(d) Let M2
β = ⌈ ch,2

m2+ch,2+g Nβ⌉.t∗2 satisfies

t∗2 = min
{

T(h)|T(h) ≥
(

m2 − m1

m2 + ch,2 + g

)
T(M2

β)
+

(
m1 + ch,2 + g
m2 + ch,2 + g

)
T(N−Nβ+M2

β)

}
(4.8.8)

(e) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
Nβ

k=1 L2(t1, t2, T)(i) =

∑iϵSβ
L2(t1, t2, Ti), and let T

Sβ

(h) the h− th highest approval date within that set. We have:

t∗2 = T
Sβ

(M2
β)

(4.8.9)
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where M2
β is defined in (d).

(f)If t∗1 < t∗2 , then the optimal strategy may be planned stock-out, else it is a single

or dual rollover one.

Proof

(a) Let L1(t1, t2, T) = L1(t1, T) + L2(t2, T) where L1(t1, T) = −(m′
1 − m1)[t1 − T]+ and

L2(t2, T) = +(m2 + ch,2 + g)[t2 − T]+ + (m1 + ch,2 + g)T. We know that L1(t1, t2, T) is

continuous and piecewise linear.

We consider L1(t1, T) which is non-decreasing in T, and the kth smallest [t1 − T]+ at

t1 is equal to [t1 − T(k)]
+.

Applying Theorem 1 to Problem (4.8.3), at optimality, t∗2 = T(h) for some h because

the function to minimize in L2(t2, T) is convex piecewise linear with breakpoints in the

set (T(i)).

Therefore, the worst case scenarios of L1(t1, T) and L2(t2, T) would give the Nβ worst

case scenarios of L1(t1, t2, T) and Problem (4.8.3) is equivalent to:

Min ϕ1 + ϕ2 +
1

Nβ

N

∑
k=1

ψ1
k +

1
Nβ

N

∑
k=1

ψ2
k (4.8.10)

s.t ϕ1 + ψ1
k ≥ 0, ∀k

ϕ2 + ψ2
k ≥ +(m1 + ch,2 + g)Tk, ∀k

ψ1
k , ψ2

k ≥ 0∀k,

tϵς.
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Problem (4.8.10) is a convex problem since L1(t1, T) and L2(t2, T) are decreasing in t1

and increasing t2 respectively and a linear programming problem since L1(t1, T) and

L2(t2, T)are piecewise linear and ς is a polyhedron.

For any vector t with ranked components T(1) ≤ ... ≤ T(N), is the optimal solution

of:

Max
1

Nβ

N

∑
k=1

tkyk (4.8.11)

s.t
N

∑
k=1

yk = Nβ

0 ≤ yk ≤ 1∀k

The feasible set of Eq. 4.8.11 is nonempty and bounded, therefore by strong duality, Eq.

4.8.11 is equivalent to:

Min Nβϕ1 + Nβϕ2 +
N

∑
k=1

(
ψ1

k + ψ2
k

)
(4.8.12)

s.t ϕ1 + ψ1
k ≥ t1

k , ∀k

ϕ2 + ψ2
k ≥ t2

k , ∀k

ψ1
k ≥ 0, ψ2

k ≥ 0∀k

Reinjecting Eq. (4.8.12) into Eq. (4.8.3) with t1
k = 0 and t2

k = +(m1 + ch,2 + g)Tk for all k

yields Eq. (4.8.10).

It follows immediately that Eq. (4.8.10) is a convex problem since L1(t1, T) and L2(t2, T)

are convex in t1 and t2. Moreover, since L1(t1, T) and L2(t2, T) are (convex) piecewise

linear in t1 and t2 and ς is a polyhedron, then Eq. (4.8.10) is a linear programming

problem.

As the cost functions in our product rollover problem are piecewise linear with linear

ordering constraints, Theorem 1 will allow us to derive tractable, linear programming
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formulations of the data-driven models.

(b) The slope of the cost function with respect to t1 is : −(m1 + g)− 1
Nβ
(m′

1 −m1).{iϵS(t1), Ti ≤

t1} where S(t1) is the set of indices of the Nβ smallest (m1 − m′
1)[t1 − T]+ at t1 given.

It is easy to show that for any iϵS(t1) and for any k such that Tk ≤ Ti ≤ t1, kϵS(t1) as

well. Similarly, for any iϵS(t1) and any k such that Tk ≥ Ti ≥ t1, kϵS(t1). Hence, S(t1)

consists of the indices of T(1), ...., T(M1
β)

and T(N−Nβ+M1
β+1), .....TN for some 0 ≤ M1

β ≤ N,

with TM1
β
≤ t1 ≤ T(N−Nβ+M1

β+1). The slope of the trimmed cost function is then propor-

tional to − m1+g
m1−m′

1
Nβ + M1

β, and at optimality M1
β is equal to ⌈ m1+g

m1−m′
1
Nβ⌉. We now have

to determine the optimal value of t1.

Let f j
i = (m1 − m′

1)[T(j) − T(i)]
+ be the cost realized when t1 = T(j) and T = T(i),

for all i and j. The optimal M1
β is the largest integer less than or equal to Nβ such that

f j
M1

β

≥ f j
N−Nβ+M1

β

. (Otherwise, we would remove M1
β from S(t1) and add N − Nβ + M1

β

instead.) Plugging the expression of f j
M1

β

and f j
N−Nβ+M1

β

yields:

−(m1 − m′
1)T(M1

β)
+ (m1 − m′

1)T(j) ≥ 0 (4.8.13)

Combining the previous results, Equation (4.8.6) follows immediately.

(c) Considering only the scenarios in S1β, we inject N = Nβ into Equation (4.8.6).

(d) The slope of the cost function with respect to t2 is : −ch,2 +
1

Nβ
(m2 + ch,2 + g).{iϵS(t2), Ti ≤

t2} where S(t2) is the set of indices of the Nβ smallest (m2 + ch,2 + g)[t2 − T]+ + (m1 +

ch,2 + g)T at t2 given. It is easy to show that for any iϵS(t2) and for any k such that

Tk ≤ Ti ≤ t2, kϵS(t2) as well. Similarly, for any iϵS(t2) and any k such that Tk ≥ Ti ≥ t2,

kϵS(t2). Hence, S(t2) consists of the indices of T(1), ...., T(M2
β)

and T(N−Nβ+M2
β+1), .....TN
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for some 0 ≤ M2
β ≤ N, with TM2

β
≤ t2 ≤ T(N−Nβ+M2

β+1). The slope of the trimmed cost

function is then proportional to − ch,2
m2+ch,2+g Nβ + M2

β, and at optimality M2
β is equal to

⌈ ch,2
m2+ch,2+g Nβ⌉. We now have to determine the optimal value of t2.

Let f h
i = (m2 + ch,2 + g)[T(h) − T(i)]

+ + (m1 + ch,2 + g)T(i) be the cost realized when

t2 = T(h) and T = T(i), for all i and h. The optimal M2
β is the largest integer less than or

equal to Nβ such that f h
M2

β
≥ f h

N−Nβ+M2
β
. (Otherwise, we would remove M2

β from S(t2)

and add N − Nβ + M2
β instead.) Plugging the expression of f h

M2
β

and f h
N−Nβ+M2

β
yields:

−(m2 − m1)T(M2
β)
+ (m2 + ch,2 + g)T(h) ≥ +(m1 + ch,2 + g)T(N−Nβ+M2

β)
(4.8.14)

Combining the previous results, Equation (4.8.8) follows immediately.

(e) Considering only the scenarios in Sβ, we inject N = Nβ into Equation (4.8.8).

(f) For the planned stock-out solutions to exist, the condition t∗1 < t∗2 or m1+g
m1−m′

1
<

ch,2
m2+ch,2+g should be satisfied, furthermore, for t∗1 to exist, g < −m′

1.

Remark:

When N → ∞, Nβ → N , therefore expression (4.8.8) becomes:

t∗2 = min
{

T(h)|T(h) ≥ T(M2
β)

}
(4.8.15)

where M2
β = ⌈ ch,2

m2+ch,2+g Nβ⌉ and in this case we go back to having the same solution as

when the probability distribution of T is known.

Case 2: m2 ≤ m1
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Proposition 2:

We can re-write expression (4.8.3) as follows:

min
0≤t1≤t2

−(m1 + g)t1 − ch,2t2

+
1

Nβ

Nβ

∑
k=1

(
−(m′

1 − m1)[t1 − T]+ − (m2 − m1)T + (m2 + ch,2 + g)[t2 − T]+

+ (m2 + ch,2 + g)T
)

k
. (4.8.16)

(a) The optimal times t1 and t2 in (4.8.3) are the solution of the linear programming

problem:

min
0≤t1≤t2

−(m1 + g)t1 − ch,2t2 +
1

Nβ

N

∑
k=1

ψ2
k +

1
Nβ

N

∑
k=1

ψ1
k , (4.8.17)

(4.8.18)

s.t ϕ + ψ1
k +

(
(m1 − m′

1)Z1
k

)
≥ −(m2 − m1)Tk, ∀k

ϕ + ψ2
k +

(
(m2 + ch,2 + g)Z2

k

)
≥ +(m2 + ch,2 + g)Tk, ∀k (4.8.19)

Z1
k + t1 ≥ Tk∀k,

Z2
k + t2 ≥ Tk∀k,

Z1
k ≥ 0, Z2

k ≥ 0, ψk ≥ 0∀k

Moreover, t∗1 = T(j) for some j and t∗2 = T(h) for some h.

(b) Let M1
β = ⌈ m1+g

m1−m′
1
Nβ⌉.t∗1 satisfies

t∗1 = min
{

T(j)|T(j) ≥
(

m2 − m′
1

m1 − m′
1

)
T(M1

β)
+

(
m1 − m2

m1 − m′
1

)
T(N−Nβ+M1

β)

}
(4.8.20)

(c) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
N1β

k=1 L1(t1, t2, T)(i) =

∑iϵSβ
L1(t1, t2, Ti), and let T

Sβ

(j) the j − th highest approval date within that set. We have:

t∗1 = T
Sβ

(M1
β)

(4.8.21)
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where M1
β is defined in (b).

(d) Let M2
β = ⌈ ch,2

m2+ch,2+g Nβ⌉.t∗2 satisfies

t∗2 = min
{

T(h)|T(h) ≥ T(N−Nβ+M2
β)

}
(4.8.22)

(e) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
Nβ

k=1 L2(t1, t2, T)(i) =

∑iϵSβ
L2(t1, t2, Ti), and let T

Sβ

(h) the h− th highest approval date within that set. We have:

t∗2 = T
Sβ

(M2
β)

(4.8.23)

where M2
β is defined in (d).

(f)If t∗1 < t∗2 , then the optimal strategy may be planned stock-out, else it is a single

or dual rollover one.

Proof (a) (a) Let L1(t1, t2, T) = L1(t1, T) + L2(t2, T) where L1(t1, T) = −(m′
1 − m1)[t1 −

T]+ − (m2 − m1)T and L2(t2, T) = +(m2 + ch,2 + g)[t2 − T]+ + (m2 + ch,2 + g)T. We

know that L1(t1, t2, T) is continuous and piecewise linear.

We consider L1(t1, T) which is nonincreasing in T, and the kth smallest [t1 − T]+ at

t1 is equal to [t1 − T(k)]
+.

Applying Theorem 1 to Problem (4.8.16), at optimality, t∗2 = T(h) for some h because

the function to minimize in L2(t2, T) is convex piecewise linear with breakpoints in the

set (T(i)).

Therefore, the worst case scenarios of L1(t1, T) and L2(t2, T) would give the Nβ worst
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case scenarios of L1(t1, t2, T). and Problem (4.8.16) is equivalent to:

Min ϕ1 + ϕ2 +
1

Nβ

N

∑
k=1

ψ1
k +

1
Nβ

N

∑
k=1

ψ2
k (4.8.24)

s.t ϕ1 + ψ1
k ≥ −(m2 − m1)Tk, ∀k

ϕ2 + ψ2
k ≥ +(m2 + ch,2 + g)Tk, ∀k

ψ1
k , ψ2

k ≥ 0∀k,

tϵς.

Problem (4.8.24) is a convex problem since L1(t1, T) and L2(t2, T) are decreasing in t1

and increasing t2 respectively and a linear programming problem since L1(t1, T) and

L2(t2, T)are piecewise linear and ς is a polyhedron.

It follows immediately that Eq. (4.8.24) is a convex problem since L1(t1, T) and L2(t2, T)

are convex in t1 and t2. Moreover, since L1(t1, T) and L2(t2, T) are (convex) piecewise

linear in t1 and t2 and ς is a polyhedron, then Eq. (4.8.24) is a linear programming

problem.

As the cost functions in our product rollover problem are piecewise linear with linear

ordering constraints, Theorem 1 will allow us to derive tractable, linear programming

formulations of the data-driven models.

(b) The slope of the cost function with respect to t1 is : −(m1 + g)− 1
Nβ
(m′

1 −m1).{iϵS(t1), Ti ≤

t1} where S(t1) is the set of indices of the Nβ smallest (m1 − m′
1)[t1 − T]+ at t1 given.

It is easy to show that for any iϵS(t1) and for any k such that Tk ≤ Ti ≤ t1, kϵS(t1) as

well. Similarly, for any iϵS(t1) and any k such that Tk ≥ Ti ≥ t1, kϵS(t1). Hence, S(t1)

consists of the indices of T(1), ...., T(M1
β)

and T(N−Nβ+M1
β+1), .....TN for some 0 ≤ M1

β ≤ N,

with TM1
β
≤ t1 ≤ T(N−Nβ+M1

β+1). The slope of the trimmed cost function is then propor-

tional to − m1+g
m1−m′

1
Nβ + M1

β, and at optimality M1
β is equal to ⌈ m1+g

m1−m′
1
Nβ⌉. We now have

to determine the optimal value of t1.
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Let f j
i = (m1 − m′

1)[T(j) − T(i)]
+ − (m2 − m1)T be the cost realized when t1 = T(j)

and T = T(i), for all i and j. The optimal M1
β is the largest integer less than or equal to

Nβ such that f j
M1

β

≥ f j
N−Nβ+M1

β

. (Otherwise, we would remove M1
β from S(t1) and add

N − Nβ + M1
β instead.) Plugging the expression of f j

M1
β

and f j
N−Nβ+M1

β

yields:

−(m2 − m′
1)T(M1

β)
+ (m1 − m′

1)T(j) ≥ −(m2 − m1)T(N−Nβ+M1
β)

(4.8.25)

Combining the previous results, Equation (4.8.20) follows immediately.

(c) Considering only the scenarios in S1β, we inject N = Nβ into Equation (4.8.20).

(d) The slope of the cost function with respect to t2 is : −ch,2 +
1

Nβ
(m2 + ch,2 + g).{iϵS(t2), Ti ≤

t2} where S(t2) is the set of indices of the Nβ smallest (m2 + ch,2 + g)[t2 − T]+ + (m1 +

ch,2 + g)T at t2 given. It is easy to show that for any iϵS(t2) and for any k such that

Tk ≤ Ti ≤ t2, kϵS(t2) as well. Similarly, for any iϵS(t2) and any k such that Tk ≥ Ti ≥ t2,

kϵS(t2). Hence, S(t2) consists of the indices of T(1), ...., T(M2
β)

and T(N−Nβ+M2
β+1), .....TN

for some 0 ≤ M2
β ≤ N, with TM2

β
≤ t2 ≤ T(N−Nβ+M2

β+1). The slope of the trimmed cost

function is then proportional to − ch,2
m2+ch,2+g Nβ + M2

β, and at optimality M2
β is equal to

⌈ ch,2
m2+ch,2+g Nβ⌉. We now have to determine the optimal value of t2.

Let f h
i = (m2 + ch,2 + g)[T(h) − T(i)]

+ + (m2 + ch,2 + g)T(i) be the cost realized when

t2 = T(h) and T = T(i), for all i and h. The optimal M2
β is the largest integer less than or

equal to Nβ such that f h
M2

β
≥ f h

N−Nβ+M2
β
. (Otherwise, we would remove M2

β from S(t2)

and add N − Nβ + M2
β instead.) Plugging the expression of f h

M2
β

and f h
N−Nβ+M2

β
yields:

(m2 + ch,2 + g)T(h) ≥ (m2 + ch,2 + g)T(N−Nβ+M2
β)

(4.8.26)

Combining the previous results, Equation (4.8.22) follows immediately.
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(e) Considering only the scenarios in Sβ, we inject N = Nβ into Equation (4.8.22).

(f) For the planned stock-out solutions to exist, the condition t∗1 < t∗2 or m1+g
m1−m′

1
<

ch,2
m2+ch,2+g should be satisfied, furthermore, for t∗1 to exist, g < −m′

1.

Remark:

When N → ∞, Nβ → N , therefore expression (4.8.22) becomes:

t∗2 = min
{

T(h)|T(h) ≥ T(M2
β)

}
(4.8.27)

where M2
β = ⌈ ch,2

m2+ch,2+g Nβ⌉ and in this case we go back to having the same solution as

when the probability distribution of T is known.

Appendix B

For a dual product rollover strategy the net cost is given by:

L2(t1, t2, T) = (m1 + g)[T − t1]
+ + s1[t1 − T]+

+ch,2[T − t2]
+ − (m2 − m′

1 − s1)[t2 − T]+. (4.8.28)

We can rewrite (4.8.28) as follows:

L2(t1, t2, T) = −(m1 + g)t1 − ch,2t2 + (m1 + g + s1)[t1 − T]+

+ (m2 − m′
1 − s1 + ch,2)[t2 − T]+ + (m1 + ch,2 + g)T (4.8.29)

Our goal is to minimize the trimmed mean of the cost:

min
0≤t2≤t1

−(m1 + g)t1 − ch,2t2 +
1

Nβ

Nβ

∑
k=1

(
+(m1 + g + s1)[t1 − T]+ (4.8.30)

+ (m2 − m′
1 − s1 + ch,2)[t2 − T]+ + (m1 + ch,2 + g)T

)
k
.

224



CHAPTER 4: THIRD PAPER: DATA-DRIVEN OPTIMIZATION FOR THE STOCHASTIC

PRODUCT ROLLOVER PROBLEM

where for any yϵRn, y(k) is the kth smallest component of y.

We distinguish two major cases:

Case A: m2 − m′
1 − s1 + ch,2 > 0

and Case B: m2 − m′
1 − s1 + ch,2 < 0.

Case A: m2 − m′
1 − s1 + ch,2 > 0

For this case,problem (4.8.30) is convex with respect to t2 (and t1) and we distinguish

two subcases: ch,2 ≥ s1 and ch,2 < s1. We know that L2(t1, t2, T) is jointly convex with

respect to t1 and t2 when m2 − m′
1 − s1 + ch,2, therefore we are able to apply Theorem 1

and solve for tractable solutions by distinguishing two cases:

- ch,2 ≥ s1 where L2(t1, t2, T) is strictly decreasing with respect to Tk < t2 and strictly

increasing with respect to Tk > t2

- s1 ≥ ch,2 where L2(t1, t2, T) is strictly decreasing with respect to Tk < t1 and strictly

increasing with respect to Tk > t1.

Case 1: ch,2 ≥ s1

Proposition 3:

(a) The optimal times t1 and t2 in (4.8.30) are the solution of the linear programming
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problem:

min
0≤t2≤t1

−(m1 + g)t1 − ch,2t2 +
1

Nβ

N

∑
k=1

ψ2
k +

1
Nβ

N

∑
k=1

ψ1
k , (4.8.31)

s.t ϕ + ψ1
k +

(
(m1 + g + s1)Z1

k

)
≥ (m1 + g + s1)Tk, ∀k

ϕ + ψ2
k +

(
(m2 − m′

1 − s1 + ch,2)Z2
k

)
≥ (ch,2 − s1)Tk, ∀k (4.8.32)

Z1
k + t1 ≥ Tk∀k,

Z2
k + t2 ≥ Tk∀k,

Z1
k ≥ 0, Z2

k ≥ 0, ψk ≥ 0∀k

Moreover, t∗1 = T(j) for some j and t∗2 = T(h) for some h.

(b) Let M1
β = ⌈ m1+g

m1+g+s1
Nβ⌉.t∗1 satisfies

t∗1 = min
{

T(j)|T(j) ≥ T(N−Nβ+M1
β)

}
(4.8.33)

(c) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
N1β

k=1 L1(t1, t2, T)(i) =

∑iϵSβ
L1(t1, t2, Ti), and let T

Sβ

(j) the j − th highest approval date within that set. We have:

t∗1 = T
Sβ

(M1
β)

(4.8.34)

where M1
β is defined in (b).

(d) Let M2
β = ⌈ ch,2

m2−m′
1−s1+ch,2

Nβ⌉. t∗2 satisfies

t∗2 = min
{

T(h)|T(h) ≥
(

m2 − m′
1

m2 − m′
1 − s1 + ch,2

)
T(M2

β)

+

(
ch,2 − s1

m2 − m′
1 − s1 + ch,2

)
T(N−Nβ+M2

β)

}
(4.8.35)

(e) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
Nβ

k=1 L2(t1, t2, T)(i) =

∑iϵSβ
L2(t1, t2, Ti), and let T

Sβ

(h) the h− th highest approval date within that set. We have:

t∗2 = T
Sβ

(M2
β)

(4.8.36)
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where M2
β is defined in (d).

(f)If t∗1 > t∗2 , then the optimal strategy may be dual, else it is a single or dual rollover

one.

Proof

(a) Let L2(t1, t2, T) = L1(t1, T) + L2(t2, T) where L1(t1, T) = (m1 + g + s1)[t1 − T]+ +

(m1 + g+ s1)T and L2(t2, T) = +(m2 −m′
1 − s1 + ch,2)[t2 − T]++(ch,2 − s1)T. We know

that L(t1, t2, T) is continuous and piecewise linear.

Applying Theorem 1 to Problem (4.8.30), at optimality, t∗1 = T(j) for some j because

the function to minimize in L1(t1, T) is convex piecewise linear with breakpoints in the

set (T(i)).

Applying Theorem 1 to Problem (4.8.30), at optimality, t∗2 = T(h) for some h because

the function to minimize in L2(t2, T) is convex piecewise linear with breakpoints in the

set (T(i)).

Therefore, the worst case scenarios of L1(t1, T) and L2(t2, T) would give the Nβ worst
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case scenarios of L2(t1, t2, T) and Problem (4.8.28) is equivalent to:

Min ϕ1 + ϕ2 +
1

Nβ

N

∑
k=1

ψ1
k +

1
Nβ

N

∑
k=1

ψ2
k (4.8.37)

s.t ϕ1 + ψ1
k ≥ +(m1 + g + s1)Tk, ∀k

ϕ2 + ψ2
k ≥ +(ch,2 − s1)Tk, ∀k

ψ1
k , ψ2

k ≥ 0∀k,

tϵς.

Problem (4.8.37) is a convex problem since L1(t1, T) and L2(t2, T) are increasing in t1

and increasing t2 respectively and a linear programming problem since L1(t1, T) and

L2(t2, T)are piecewise linear and ς is a polyhedron.

It follows immediately that Eq. (4.8.37) is a convex problem since L1(t1, T) and L2(t2, T)

are convex in t1 and t2. Moreover, since L1(t1, T) and L2(t2, T) are (convex) piecewise

linear in t1 and t2 and ς is a polyhedron, then Eq. (4.8.37) is a linear programming

problem.

As the cost functions in our product rollover problem are piecewise linear with linear

ordering constraints, Theorem 1 will allow us to derive tractable, linear programming

formulations of the data-driven models.

(b) The slope of the cost function with respect to t1 is : −(m1 + g) + 1
Nβ
(m1 + g +

s1).{iϵS(t1), Ti ≤ t1} where S(t1) is the set of indices of the Nβ smallest (m1 + g +

s1)[t1 − T]+ + (m1 + g + s1)T at t1 given. It is easy to show that for any iϵS(t1) and

for any k such that Tk ≤ Ti ≤ t1, kϵS(t1) as well. Similarly, for any iϵS(t1) and any k

such that Tk ≥ Ti ≥ t1, kϵS(t1). Hence, S(t1) consists of the indices of T(1), ...., T(M1
β)

and T(N−Nβ+M1
β+1), .....TN for some 0 ≤ M1

β ≤ N, with TM1
β
≤ t1 ≤ T(N−Nβ+M1

β+1). The

slope of the trimmed cost function is then proportional to − m1+g
m1+g+s1

Nβ + M1
β, and at op-

timality M1
β is equal to ⌈ m1+g

m1+g+s1
Nβ⌉. We now have to determine the optimal value of t1.
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Let f j
i = (m1 + g + s1)[T(j) − T(i)]

+ + (m1 + g + s1)T(i) be the cost realized when t1 =

T(j) and T = T(i), for all i and j. The optimal M1
β is the largest integer less than or equal

to Nβ such that f j
M1

β

≥ f j
N−Nβ+M1

β

. (Otherwise, we would remove M1
β from S(t1) and

add N − Nβ + M1
β instead.) Plugging the expression of f j

M1
β

and f j
N−Nβ+M1

β

yields:

(m1 + g + s1)T(j) ≥ (m1 + g + s1)T(N−N1
β+M1

β)
(4.8.38)

Combining the previous results, Equation (4.8.33) follows immediately.

(c) Considering only the scenarios in S1β, we inject N = Nβ into Equation (4.8.33).

(d) The slope of the cost function with respect to t2 is : −ch,2 +
1

Nβ
(m2 − m′

1 − s1 +

ch,2).{iϵS(t2), Ti ≤ t2} where S(t2) is the set of indices of the Nβ smallest +(m2 − m′
1 −

s1 + ch,2)[t2 − T]+ + (ch,2 − s1)Ti at t2 given. It is easy to show that for any iϵS(t2) and

for any k such that Tk ≤ Ti ≤ t2, kϵS(t2) as well. Similarly, for any iϵS(t2) and any k

such that Tk ≥ Ti ≥ t2, kϵS(t2). Hence, S(t2) consists of the indices of T(1), ...., T(M2
β)

and T(N−Nβ+M2
β+1), .....TN for some 0 ≤ M2

β ≤ N, with TM2
β
≤ t2 ≤ T(N−Nβ+M2

β+1). The

slope of the trimmed cost function is then proportional to − ch,2
m2−m′

1−s1+ch,2
Nβ + M2

β, and

at optimality M2
β is equal to ⌈ ch,2

m2−m′
1−s1+ch,2

Nβ⌉. We now have to determine the optimal

value of t2.

Let f h
i = (m2 − m′

1 − s1 + ch,2)[T(h) − T(i)]
+ + (ch,2 − s1)T(i) be the cost realized when

t2 = T(h) and T = T(i), for all i and h. The optimal M2
β is the largest integer less than or

equal to Nβ such that f h
M2

β
≥ f h

N−Nβ+M2
β
. (Otherwise, we would remove M2

β from S(t2)

and add N − Nβ + M2
β instead.) Plugging the expression of f h

M2
β

and f h
N−Nβ+M2

β
yields:

−(m2 − m′
1)T(M2

β)
+ (m2 − m′

1 − s1 + ch,2)T(h) ≥ (ch,2 − s1)T(N−Nβ+M2
β)

(4.8.39)
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Combining the previous results, Equation (4.8.35) follows immediately.

(e) Considering only the scenarios in Sβ, we inject N = Nβ into Equation (4.8.35).

Case 2: ch,2 < s1

Proposition 4:

(a) The optimal times t1 and t2 in (4.8.30) are the solution of the linear programming

problem:

min
0≤t2≤t1

−(m1 + g)t1 − ch,2t2 +
1

Nβ

N

∑
k=1

ψ2
k +

1
Nβ

N

∑
k=1

ψ1
k , (4.8.40)

s.t ϕ + ψ1
k +

(
(m1 + g + s1)Z1

k

)
≥ +(m1 + g + ch,2)Tk, ∀k

ϕ + ψ2
k +

(
(m2 − m′

1 − s1 + ch,2)Z2
k

)
≥ 0Tk, ∀k (4.8.41)

Z1
k + t1 ≥ Tk∀k,

Z2
k + t2 ≥ Tk∀k,

Z1
k ≥ 0, Z2

k ≥ 0, ψk ≥ 0∀k

Moreover, t∗1 = T(j) for some j and t∗2 = T(h) for some h.

(b) Let M1
β = ⌈ m1+g

m1+g+s1
Nβ⌉.t∗1 satisfies

t∗1 = min
{

T(j)|T(j) ≥
(

m1 + g + ch,2

m1 + g + s1

)
T(N−Nβ+M1

β)
+

(
s1 − ch,2

m1 + g + s1

)
T(M1

β)

}
(4.8.42)

(c) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
N1β

k=1 L1(t1, t2, T)(i) =

∑iϵSβ
L1(t1, t2, Ti), and let T

Sβ

(j) the j − th highest approval date within that set. We have:

t∗1 = T
Sβ

(M1
β)

(4.8.43)

where M1
β is defined in (b).
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(d) Let M2
β = ⌈ ch,2

m2−m′
1−s1+ch,2

Nβ⌉.t∗2 satisfies

t∗2 = min
{

T(h)|T(h) ≥ T(M2
β)

}
(4.8.44)

(e) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
Nβ

k=1 L2(t1, t2, T)(i) =

∑iϵSβ
L2(t1, t2, Ti), and let T

Sβ

(h) the h− th highest approval date within that set. We have:

t∗2 = T
Sβ

(M2
β)

(4.8.45)

where M2
β is defined in (d).

(f)If t∗1 > t∗2 , then the optimal strategy may be dual, else it is a single or dual rollover

one.

Proof

(a) Let L2(t1, t2, T) = L1(t1, T) + L2(t2, T) where L1(t1, T) = (m1 + g + s1)[t1 − T]+ +

(m1 + g+ ch,2)T and L2(t2, T) = +(m2 −m′
1 − s1 + ch,2)[t2 −T]+. We know that L(t1, t2, T)

is continuous and piecewise linear.

Applying Theorem 1 to Problem (4.8.30), at optimality, t∗1 = T(j) for some j because

the function to minimize in L1(t1, T) is convex piecewise linear with breakpoints in the

set (T(i)).

Applying Theorem 1 to Problem (4.8.30), at optimality, t∗2 = T(h) for some h because

the function to minimize in L2(t2, T) is convex piecewise linear with breakpoints in the

set (T(i)).

Therefore, the worst case scenarios of L1(t1, T) and L2(t2, T) would give the Nβ worst
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case scenarios of L2(t1, t2, T) and Problem (4.8.30) is equivalent to:

Max ϕ1 + ϕ2 +
1

Nβ

N

∑
k=1

ψ1
k +

1
Nβ

N

∑
k=1

ψ2
k (4.8.46)

s.t ϕ1 + ψ1
k ≥ +(m1 + g + ch,2)Tk, ∀k

ϕ2 + ψ2
k ≥ 0, ∀k

ψ1
k , ψ2

k ≥ 0∀k,

tϵς.

Problem (4.8.46) is a convex problem since L1(t1, T) and L2(t2, T) are increasing in t1

and increasing t2 respectively and a linear programming problem since L1(t1, T) and

L2(t2, T)are piecewise linear and ς is a polyhedron.

It follows immediately that Eq. (4.8.46) is a convex problem since L1(t1, T) and L2(t2, T)

are convex in t1 and t2. Moreover, since L1(t1, T) and L2(t2, T) are (convex) piecewise

linear in t1 and t2 and ς is a polyhedron, then Eq. (4.8.46) is a linear programming

problem.

As the cost functions in our product rollover problem are piecewise linear with linear

ordering constraints, Theorem 1 will allow us to derive tractable, linear programming

formulations of the data-driven models.

(b) The slope of the cost function with respect to t1 is : −(m1 + g) + 1
Nβ
(m1 + g +

s1).{iϵS(t1), Ti ≤ t1} where S(t1) is the set of indices of the Nβ smallest (m1 + g +

s1)[t1 − T]+ + (m1 + g + s1)T at t1 given. It is easy to show that for any iϵS(t1) and

for any k such that Tk ≤ Ti ≤ t1, kϵS(t1) as well. Similarly, for any iϵS(t1) and any k

such that Tk ≥ Ti ≥ t1, kϵS(t1). Hence, S(t1) consists of the indices of T(1), ...., T(M1
β)

and T(N−Nβ+M1
β+1), .....TN for some 0 ≤ M1

β ≤ N, with TM1
β
≤ t1 ≤ T(N−Nβ+M1

β+1). The

slope of the trimmed cost function is then proportional to − m1+g
m1+g+s1

Nβ + M1
β, and at op-

timality M1
β is equal to ⌈ m1+g

m1+g+s1
Nβ⌉. We now have to determine the optimal value of t1.
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Let f j
i = (m1 + g + s1)[T(j) − T(i)]

+ + (m1 + g + ch,2)T(i) be the cost realized when

t1 = T(j) and T = T(i), for all i and j. The optimal M1
β is the largest integer less than or

equal to Nβ such that f j
M1

β

≥ f j
N−Nβ+M1

β

. (Otherwise, we would remove M1
β from S(t1)

and add N − Nβ + M1
β instead.) Plugging the expression of f j

M1
β

and f j
N−Nβ+M1

β

yields:

−(s1 − ch,2)T(M1
β)
+ (m1 + g + s1)T(j) ≥ (m1 + g + ch,2)T(N−N1

β+M1
β)

(4.8.47)

Combining the previous results, Equation (4.8.42) follows immediately.

(c) Considering only the scenarios in S1β, we inject N = Nβ into Equation (4.8.42).

(d) The slope of the cost function with respect to t2 is : −ch,2 +
1

Nβ
(m2 − m′

1 − s1 +

ch,2).{iϵS(t2), Ti ≤ t2} where S(t2) is the set of indices of the Nβ smallest +(m2 − m′
1 −

s1 + ch,2)[t2 − T]+ at t2 given. It is easy to show that for any iϵS(t2) and for any k

such that Tk ≤ Ti ≤ t2, kϵS(t2) as well. Similarly, for any iϵS(t2) and any k such

that Tk ≥ Ti ≥ t2, kϵS(t2). Hence, S(t2) consists of the indices of T(1), ...., T(M2
β)

and

T(N−Nβ+M2
β+1), .....TN for some 0 ≤ M2

β ≤ N, with TM2
β
≤ t2 ≤ T(N−Nβ+M2

β+1). The

slope of the trimmed cost function is then proportional to − ch,2
m2−m′

1−s1+ch,2
Nβ + M2

β, and

at optimality M2
β is equal to ⌈ ch,2

m2−m′
1−s1+ch,2

Nβ⌉. We now have to determine the optimal

value of t2.

Let f h
i = (m2 − m′

1 − s1 + ch,2)[T(h) − T(i)]
+ + (ch,2 − s1)T(i) be the cost realized when

t2 = T(h) and T = T(i), for all i and h. The optimal M2
β is the largest integer less than or

equal to Nβ such that f h
M2

β
≥ f h

N−Nβ+M2
β
. (Otherwise, we would remove M2

β from S(t2)

and add N − Nβ + M2
β instead.) Plugging the expression of f h

M2
β

and f h
N−Nβ+M2

β
yields:

(m2 − m′
1 − s1 + ch,2)T(h) ≥ (m2 − m′

1 − s1 + ch,2)TM2
β

(4.8.48)

Combining the previous results, Equation (4.8.44) follows immediately.
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(e) Considering only the scenarios in Sβ, we inject N = Nβ into Equation (4.8.44).

(f) For the dual rollover solutions to exist, the conditions t∗2 < t∗1 or s1(m1 + g + ch,2) <

(m1 + g)(m2 − m′
1), m2 − m′

1 − s1 > 0, and m2 − m′
1 − s1 + ch,2 > 0 should be satisfied.

Case B: m2 − m′
1 − s1 + ch,2 < 0

For this case,problem (4.8.30) is concave with respect to t1, but strictly decreasing with

respect tot2, and therefore disregarding the distribution of T, we know that the optimal

solution should always be the greatest possible value of t2, i.e., t2 = t1, and by this we

go back to the single rollover strategy.

APPENDIX C

For a single rollover strategy the net cost is given by:

Lb(tb, T) = (m1 + g + ch,2)[T − tb]
+ − (m′

1 − m2)[tb − T]+. (4.8.49)

We can rewrite (4.8.49) as follows:

Lb(tb, T) = −(m1 + g + ch,2)tb − (m′
1 − m1 − m2 − ch,2 − g)[tb − T]+

+ (m1 + ch,2 + g)T. (4.8.50)

Our goal is to minimize the trimmed mean of the cost:

min
0≤tb

−(m1 + g + ch,2)tb +
1

Nβ

Nβ

∑
k=1

(
(m1 − m′

1 + m2 + ch,2 + g)[tb − T]+

+ (m1 + g + ch,2)T
)

k
. (4.8.51)

where for any yϵRn, y(k) is the kth smallest component of y.
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Proposition 5:

(a) The optimal time tb in (4.8.51) are the solution of the linear programming problem:

min
0≤tb≤t2

−(m1 + g + ch,2)tb +
1

Nβ

N

∑
k=1

ψk, (4.8.52)

s.t ϕ + ψk +

(
(m1 − m′

1 + m2 + ch,2 + g)Zk

)
≥ +(m1 + g + ch,2)Tk, ∀k

Zk + tb ≥ Tk∀k,

Zk ≥ 0, ψk ≥ 0, ∀k

0 ≤ tb. (4.8.53)

Moreover, t∗b = T(j) for some j.

(b) Let Mβ = ⌈ m1+g+ch,2
m1−m′

1+m2+ch,2+g Nβ⌉.t∗b satisfies

t∗b = min
{

T(j)|T(j) ≥
(

m2 − m′
1

m1 − m′
1 + m2 + ch,2 + g

)
T(Mβ)

+

(
m1 + g + ch,2

m1 − m′
1 + m2 + ch,2 + g

)
T(N−Nβ+Mβ)

}
(4.8.54)

(c) Let Sβ be the set of the Nβ worst-case scenarios at optimality, that is ∑
N1β

k=1 Lb(tb, T)(i) =

∑iϵSβ
Lb(tb, Ti), and let T

Sβ

(j) the j − th highest approval date within that set. We have:

t∗b = T
Sβ

(Mβ)
(4.8.55)

where Mβ is defined in (b).

Proof (a) This follows from applying Theorem 1 to Problem (4.8.51). At optimality,

t∗b = T(j) for some j because the function to minimize in (4.8.51) is convex piecewise

linear with breakpoints in the set (T(i)).

(b) The slope of the cost function with respect to tb is : −(m1 + g + ch,2) +
1

Nβ
(m1 −
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m′
1 + m2 + ch,2 + g).{iϵS(tb), Ti ≤ tb} where S(tb) is the set of indices of the Nβ smallest

(m1 − m′
1 + m2 + ch,2 + g)[tb − T]+ + (m1 + g + ch,2)Ti at tb given. It is easy to show

that for any iϵS(tb) and for any k such that Tk ≤ Ti ≤ tb, kϵS(tb) as well. Similarly,

for any iϵS(tb) and any k such that Tk ≥ Ti ≥ tb, kϵS(tb). Hence, S(tb) consists of

the indices of T(1), ...., T(Mβ) and T(N−Nβ+Mβ+1), .....TN for some 0 ≤ Mβ ≤ N, with

TMβ
≤ tb ≤ T(N−Nβ+Mβ+1). The slope of the trimmed cost function is then proportional

to − m1+g+ch,2
m1−m′

1+m2+ch,2+g Nβ + Mβ, and at optimality Mβ is equal to ⌈ m1+g+ch,2
m1−m′

1+m2+ch,2+g Nβ⌉.

We now have to determine the optimal value of tb.

Let f j
i = (m1 − m′

1 + m2 + ch,2 + g)[T(j) − T(i)]
+ + (m1 + g + ch,2)T(i) be the cost re-

alized when tb = T(j) and T = T(i), for all i and j. The optimal Mβ is the largest integer

less than or equal to Nβ such that f j
Mβ

≥ f j
N−Nβ+Mβ

. (Otherwise, we would remove

Mβ from S(tb) and add N − Nβ + Mβ instead.) Plugging the expression of f j
Mβ

and

f j
N−Nβ+Mβ

yields:

−(m2 − m′
1)T(Mβ) + (m1 − m′

1 + m2 + ch,2 + g)T(j) ≥

+(m1 + g + ch,2)T(N−Nβ+Mβ) (4.8.56)

Combining the previous results, Equation (4.8.54) follows immediately.

Remark:

When N → ∞, Nβ → N , therefore expression (4.8.54) becomes:

t∗b = min
{

T(j)|T(j) ≥ T(Mβ)

}
(4.8.57)

where Mβ = ⌈ m1+g+ch,2
m1−m′

1+m2+ch,2+g Nβ⌉ and in this case we go back to having the same solu-

tion as when the probability distribution of T is known.

(c) Considering only the scenarios in S1β, we inject N = Nβ into Equation (4.8.54).
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Appendix D

Since we have two variables, we need to calculate the worst bound for each variable,

then take the maximum of the bounds to obtain the worst bound required. The ex-

pected net cost function was previously defined in our first work and proved to be

convex is given by:

l1(t1, t2) = (m1 + g)E[T − t1]
+ − (g + m′

1)E[t1 − T]+

+ ch,2E[T − t2]
+ + (m2 + g)E[t2 − T]+. (4.8.58)

It is important to start this section by recalling from our previous work that the exis-

tence of t∗1 and t∗2 is possible only if the following conditions are satisfied:

m′
1 < −g (4.8.59)

and

m′
1 > −g

(
m2 + g + ch,2

ch,2

)
− m1

(
m2 + g

ch,2

)
, (4.8.60)

We denote the right-hand and left-hand derivatives of l1(t1, t2) with respect to t1 by

lr
1(t1, t2) and ll

1(t1, t2), respectively and express them as follows:

lr
1(t1, t2) = −(m1 + g) + (m1 − m′

1)F(t1), (4.8.61)

and

ll
1(t1, t2) = −(m1 + g) + (m1 − m′

1)F(T < t1). (4.8.62)

Since F is assumed continuous, then l1(t1, t2) is continuously differentiable with

l′1(t1, t2) = −(m1 + g) + (m1 − m′
1)F(t1). (4.8.63)

From the classical optimization theory, t∗1 zeros the derivative and we have lr
1(t

∗
1 , t2) ≥ 0
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and ll
1(t

∗
1 , t2) ≤ 0 and 0 is a sub-gradient at t∗1 .

Definition 1.1 Let t̂1 be a realization of T̂1 with ψ > 0. t̂1 is ψ-accurate if F(t̂1) ≥
m1+g

m1−m′
1
− ψ and F̄(t̂1) ≥ − m′

1+g
m1−m′

1
− ψ.

This definition can be translated to bounds on the right-hand and left-hand deriva-

tives of l1 at t̂1. Observe that F(T < t1) = 1 − F̄(t1). It is straightforward to verify that

we could equivalently define t̂1 to be ψ-accurate exactly when lr
1(t̂1, t2) ≥ −ψ(m1 −m′

1)

and ll
1(t̂1, t2) ≤ ψ(m1 − m′

1). This implies that there exists a sub-gradient r ∈ ∆l1(t̂1, t2)

such that |r| ≤ ψ(m1 − m′
1). Intuitively, this implies that, for ψ sufficiently small, 0 is

’almost’ a sub-gradient at t̂1, and hence t̂1 is "close" to being optimal.

LEMMA 1.1 Let ψ > 0 and assume that t̂1 is ψ − accurate. Then:

(i)

l1(t̂1, t2)− l1(t∗1 , t2) ≤ ψ(m1 − m′
1)|t̂1 − t∗1 |. (4.8.64)

(ii)

l1(t∗1 , t2) ≥
(
(m1 − m′

1)(m1 + g)
m1 − m′

1
− ψmax(m1 − m′

1, m1 + g)
)
|t̂1 − t∗1 |. (4.8.65)

Proof. Suppose t̂1 is ψ-accurate. Clearly, either t̂1 ≥ t∗1 or t̂1 < t∗1 . Suppose first that t̂1 ≥

t∗1 . We will obtain an upper bound on the difference l1(t̂1, t2)− l1(t∗1 , t2). If T ∈ (−∞, t̂1),

then the difference between the costs incurred by t̂1 and t∗1 is at most −(m′
1 + g)(t̂1 − t∗1).

On the other hand, if T ∈ [t̂1, ∞), then t∗1 has higher cost than t̂1, by exactly(m1 + g)(t̂1 −

t∗1) . Since t̂1 is ψ-accurate, we have the following

F([T ∈ [t̂1, ∞)]) = F(T ≥ t̂1) = F̄(t̂1) ≥ − m′
1 + g

m1 − m′
1
− ψ (4.8.66)

and

P([T ∈ [0, t̂1)]) = F(T < t̂1) = 1 − F̄(t̂1) ≤
m1 + g

m1 − m′
1
+ ψ (4.8.67)
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Therefore,

l1(t̂1, t2)− l1(t∗1 , t2) ≤ −
(

m′
1 + g

)(
m1 + g

m1 − m′
1
+ ψ

)(
t̂1 − t∗1

)
−
(

m1 + g
)(

− m′
1 + g

m1 − m′
1
− ψ

)(
t̂1 − t∗1

)
= ψ(m1 − m′

1)(t̂1 − t∗1) (4.8.68)

Similarly, if t̂1 < t∗1 , then for each realization T ∈ (t̂1, ∞) the difference between the

costs of t̂1 and t∗1 , respectively, is at most (m1 + g)(t∗1 − t̂1), and if T ∈ (−∞, t̂1], then the

cost of t̂1 exceeds the cost of t∗1 by exactly −(m′
1 + g)(t∗1 − t̂1). Given that t̂1 is assumed

to be ψ-accurate, we have

F(T ≤ t̂1) = F̄(t̂1) ≥
m1 + g

m1 − m′
1
− ψ (4.8.69)

and

F(T > t̂1) = 1 − F̄(t̂1) ≤ − m′
1 + g

m1 − m′
1
+ ψ (4.8.70)

Therefore

l1(t̂1, t2)− l1(t∗1 , t2) ≤
(

m1 + g
)(

− m′
1 + g

m1 − m′
1
+ ψ

)(
t∗1 − t̂1

)
+

(
m′

1 + g
)(

m1 + g
m1 − m′

1
− ψ

)(
t∗1 − t̂1

)
= ψ(m1 − m′

1)(t
∗
1 − t̂1) (4.8.71)

The proof of part (i) then follows.

The above arguments also imply that if t̂1 ≥ t∗1 then

l1(t̂1, t2) ≥ E[(T ≥ t̂1)(m1 + g)(t̂1 − t∗1)] = (m1 + g)F̄(t̂1)(t̂1 − t∗1). (4.8.72)

We conclude that l1(t∗1 , t2) is at least
(

m1 + g
)(

− m′
1+g

m1−m′
1
− ψ

)(
t̂1 − t∗1

)
. Similarly, in

the case t̂1 < t∗1 , we conclude that l1(t∗1 , t2) is at least

E[(T ≤ t̂1)(−m′
1 − g)(t∗1 − t̂1)] ≥ −

(
m′

1 + g
)(

m1 + g
m1 − m′

1
− ψ

)(
t∗1 − t̂1

)
. (4.8.73)
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In other words,

l1(t∗1 , t2) ≥
(−(m′

1 + g)(m1 + g)
m1 − m′

1
− ψmax(−m′

1 − g, m1 + g)
)
|t̂1 − t∗1 |. (4.8.74)

COROLLARY 1.1 For a given accuracy level ϵ ∈ (0,≤ 1], if t̂1 is ψ-accurate for

ψ =
ϵ

3
min(−m′

1 − g, m1 + g)
m1 − m′

1
, (4.8.75)

then the cost of t̂1 is at most (1 + ϵ) dates the optimal cost, i.e., l1(t̂1, t2) ≤ (1 + ϵ)l1(t∗1 , t2).

Proof.

Let ψ = ϵ
3

min(−m′
1−g,m1+g)

m1−m′
1

By Lemma 1.1, we know that in this case

l1(t̂1, t2)− l1(t∗1 , t2) ≤ ψ(m1 − m′
1)|t̂1 − t∗1 |. (4.8.76)

and that

l1(t∗1 , t2) ≥
(−(m′

1 + g)(m1 + g)
m1 − m′

1
− ψmax(−m′

1 − g, m1 + g)
)
|t̂1 − t∗1 |. (4.8.77)

It is then sufficient to show that

ψ

(
m1 − m′

1

)
≤ ϵ

(−(m′
1 + g)(m1 + g)
m1 − m′

1
− ψmax(−m′

1 − g, m1 + g)
)

(4.8.78)

Indeed,

ψ(m1 − m′
1) ≤ (2 + ϵ)ψmax(−m′

1 − g, m1 + g)− ϵψmax(−m′
1 − g, m1 + g)

=
(2 + ϵ)ϵ

3
max(−m′

1 − g, m1 + g)min(−m′
1 − g, m1 + g)

m1 − m′
1

− ϵψmax(−m′
1 − g, m1 + g)

≤ ϵ

(−(m′
1 + g)(m1 + g)
m1 − m′

1
− ψmax(−m′

1 − g, m1 + g)
)

(4.8.79)

We substitute ψ = ϵ
3

min(−m′
1−g,m1+g)

m1−m′
1

in the first inequality and the second inequality

follows as ϵ ≤ 1. We conclude that l1(T̂1, t2) − l1(t∗1 , t2) ≤ ϵl1(t∗1 , t2), from which the

corollary follows.
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We now establish upper bounds on the number of samples Nβ required in order to

guarantee that t̂1 is ψ-accurate with high probability (for each specified ψ > 0 and confi-

dence probability 1− δ). Since T̂1 is the sample m1+g
m1−m′

1
- quantile and t∗1 is the true m1+g

m1−m′
1
-

quantile, we can use known results regarding the convergence of sample quantiles to

the true quantiles or more generally, the convergence of the empirical CDF FNβ
(t1) to

the true CDF F(t1). (For Nβ independent random samples all distributed according to

T, we define FNβ
(t1) := 1

Nβ
∑

Nβ

k=1 Tk
1 , where for each k = 1, ..., Nβ, Tk

1 = (Tk
1 ≤ T), and

T1
1 , ...., T

Nβ

1 are i.i.d. according to T.)

Lemma 1.2 For each ψ > 0 and 0 < δ < 1, if the number of samples is = Nβ > Nβ(ψ, δ) =

1
2

1
ψ2 log( 2

δ ), then T̂1, the m1+g
m1−m1

-quantile of the sample, is ψ-accurate with probability at least

1 − δ.

Lemma 1.2 is a direct consequence of the fact that the empirical CDF converges uni-

formly and exponentially fast to the true CDF.

Combining Lemma 1.1, Corollary 1.1 and Lemma 1.2 above, we can obtain the fol-

lowing theorem.

THEOREM A.1 Consider a rollover problem specified by a date distribution T with

E[T] < ∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1)

be a specified confidence level. Suppose that Nβ ≥ 9
2ϵ2

(
min(−(m′

1+g),m1+g)
m1−m′

1

)−2

log
(

2
δ

)
and the data-drive counterpart is solved with respect to Nβ i.i.d samples of T. Let

T̂1 be the optimal solution to the data-drive counterpart and t̂1 denote its realization.

Then, with probability at least 1 − δ, the expected cost of t̂1 is at most 1 + ϵ times

the expected cost of an optimal solution t∗1 to the rollover problem. In other words,
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l1(T̂1, t2) ≤ (1 + ϵ)l1(t∗1 , t2) with probability at least 1 − δ.

Nβ does not depend on the date distribution T, but on the square of the reciprocal

of min(−(m′
1+g),m1+g)

m1−m′
1

. This means that large samples are required when might be large

when m1+g+ch,2
m2−m′

1+m1+g+ch,2
is very close to either 0 or 1. Since the optimal solution t∗1 is the

m1+g
m1−m′

1
-quantile of T, this is consistent with the well-known fact that in order to approx-

imate an extreme quantile one needs many samples. Nβ is a worst-case upper bound

and it is likely that in many cases a significantly fewer number of samples will suffice.

We now continue our analysis with respect to t2. We already proved that l1(t1, t2) is

convex in t2. We denote right-hand and left-hand derivatives of l1(t1, t2) with respect

to t2, denoted by lr
1(t1, t2) and ll

1(t1, t2), respectively and are given by:

lr
1(t1, t2) = −ch,2 + (m2 + g + ch,2)F(t2) (4.8.80)

and

ll
1(t1, t2) = −ch,2 + (m2 + g + ch,2)F(T < t2). (4.8.81)

Since F is assumen continuous, then l1(t1, t2) is continuously differentiable with

l′1(t1, t2) = −ch,2 + (m2 + g + ch,2)F(t2). (4.8.82)

Using the explicit expressions of the derivatives, one can characterize the optimal so-

lution t∗2 . Specifically, t∗2=inf{t2 : F(t2) ≥ ch,2
m2+g+ch,2

}. That is, t∗2 is the ch,2
m2+g+ch,2

-quantile

of the distribution of T. From the classical optimization thereof, we have l′1(t1, t∗2) = 0

and lr
1(t1, t∗2) ≥ 0 and ll

1(t1, t∗2) ≤ 0 and 0 is a sub-gradient at t∗2 .
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Definition 1.2 Let t̂2 be a realization of T̂2 and let ψ > 0. t̂2 is ψ-accurate if F(t̂2) ≥
ch,2

m2+g+ch,2
− ψ and F̄(t̂2) ≥ m2+g

m2+g+ch,2
− ψ.

This definition can be translated to bounds on the right-hand and left-hand deriva-

tives of l1 at t̂2. Observe that F(T < t2) = 1 − F̄(t2) and equivalently t̂2 is ψ-accurate

exactly when lr
1(t1, t̂2) ≥ −ψ(m2 + g + ch,2) and ll

1(t1, t̂2) ≤ ψ(m2 + g + ch,2). This im-

plies that there exists a sub-gradient r ∈ ∆l1(t1, t̂2) such that |r| ≤ ψ(m2 + g + ch,2).

This implies that, for ψ sufficiently small, 0 is "almost" a sub-gradient at t̂2, and hence

t̂2 is "close" to being optimal.

LEMMA 1.3 Let ψ > 0 and assume that t̂2 is ψ − accurate. Then:

(i)

l1(t1, t̂2)− l1(t1, t∗2) ≤ ψ(m2 + g + ch,2)|t̂2 − t∗2 |. (4.8.83)

(ii)

l1(t1, t∗2) ≥
(

ch,2(m2 + g)
m2 + g + ch,2

− ψ(m2 + g)
)
|t̂2 − t∗2 |. (4.8.84)

Proof. Suppose t̂2 is ψ-accurate, we have either t̂2 ≥ t∗2 or t̂2 < t∗2 . Suppose first that

t̂2 ≥ t∗2 . We will obtain an upper bound on the difference l1(t1, t̂2) − l1(t1, t∗2). If the

realized date T ∈ (−∞, t̂2), then the difference between the costs incurred by t̂2 and t∗2

is at most (m2 + g)(t̂2 − t∗2). On the other hand, if T ∈ [t̂2, ∞), then t∗2 has higher cost

than t̂2, by exactly ch,2(t̂2 − t∗2). t̂2 is assumed to be ψ-accurate, we have

P([T ∈ [t̂2, ∞)]) = F(T ≥ t̂2) = F̄(t̂2) ≥
m2 + g

m2 + g + ch,2
− ψ (4.8.85)

and

P([T ∈ [0, t̂2)]) = F(T < t̂2) = 1 − F̄(t̂2) ≤
ch,2

m2 + g + ch,2
+ ψ (4.8.86)
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Therefore

l1(t1, t̂2)− l1(t1, t∗2) ≤
(

m2 + g
)(

ch,2

m2 + g + ch,2
+ ψ

)(
t̂2 − t∗2

)
−ch,2

(
m2 + g

m2 + g + ch,2
− ψ

)(
t̂2 − t∗2

)
= ψ(m2 + g + ch,2)(t̂2 − t∗2) (4.8.87)

Similarly, if t̂2 < t∗2 , then for each realization T ∈ (t̂2, ∞) the difference between the

costs of t̂2 and t∗2 , respectively, is at most ch,2(t∗2 − t̂2), and if T ∈ (−∞, t̂2], then the cost

of t∗2 exceeds the cost of t̂2 by exactly (m2 + g)(t∗2 − t̂2). t̂2 is assumed to be ψ-accurate,

we have

F(T ≤ t̂2) = F̄(t̂2) ≥
ch,2

m2 + g + ch,2
− ψ (4.8.88)

and

F(T > t̂2) = 1 − F̄(t̂2) ≤
m2 + g

m2 + g + ch,2
+ ψ (4.8.89)

Therefore

l1(t1, t̂2)− l1(t1, t∗2) ≤ ch,2

(
m2 + g

m2 + g + ch,2
+ ψ

)(
t∗2 − t̂2

)
−
(

m2 + g
)(

ch,2

m2 + g + ch,2
− ψ

)(
t∗2 − t̂2

)
= ψ(m2 + g + ch,2)(t∗2 − t̂1) (4.8.90)

The proof of part (i) then follows.

The above arguments also imply that if t̂2 ≥ t∗2 then

l1(t1, t∗2) ≥ E[(T ≥ t̂2)(t̂2 − t∗2)ch,2] = ch,2 F̄(t̂2)(t̂2 − t∗2). (4.8.91)

We conclude that l1(t1, t∗2) is at least

ch,2

(
m2 + g

m2 + g + ch,2
− ψ

)(
t̂2 − t∗2

)
. (4.8.92)
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Similarly, in the case t̂2 < t∗2 , we conclude that l1(t1, t∗2) is at least

E[(T ≤ t̂2)(m2 + g) (t∗2 − t̂2)] ≥(
m2 + g

)(
ch,2

m2 + g + ch,2
− ψ

)(
t∗2 − t̂2

)
. (4.8.93)

In other words,

l1(t1, t∗2) ≥
(

ch,2(m2 + g)
m2 + g + ch,2

− ψmax(m2 + g, ch,2)

)
|t̂2 − t∗2 |. (4.8.94)

Since we know that ch,2 < m2, then expression (4.8.94) becomes

l1(t1, t∗2) ≥
(

ch,2(m2 + g)
m2 + g + ch,2

− ψ(m2 + g)
)
|t̂2 − t∗2 |. (4.8.95)

COROLLARY 1.2 For a given accuracy level ϵ ∈ (0,≤ 1], if t̂2 is ψ-accurate for

ψ =
ϵ

3
ch,2

m2 + g + ch,2
, (4.8.96)

then the cost of t̂2 is at most (1 + ϵ) dates the optimal cost, i.e., l1(t1, t̂2) ≤ (1 +

ϵ)l1(t1, t∗2).

PROOF.

Let ψ = ϵ
3

ch,2
m2+g+ch,2

By Lemma 1.3, we know that in this case

l1(t1, t̂2)− l1(t1, t∗2) ≤ ψ(m2 + g + ch,2)|t̂2 − t∗2 |. (4.8.97)

and that

l1(t1, t∗2) ≥
(

ch,2(m2 + g)
m2 + g + ch,2

− ψ(m2 + g)
)
|t̂2 − t∗2 |. (4.8.98)

It is then sufficient to show that

ψ

(
m2 + g + ch,2

)
≤ ϵ

(
ch,2(m2 + g)
m2 + g + ch,2

− ψ(m2 + g)
)

(4.8.99)

Indeed,

ψ(m2 + g + ch,2) ≤ (2 + ϵ)ψ(m2 + g)− ϵψ(m2 + g) (4.8.100)

=
(2 + ϵ)ϵ

3
(m2 + g)ch,2

m2 + g + ch,2
− ϵψ(m2 + g)

≤ ϵ

(
ch,2(m2 + g)
m2 + g + ch,2

− ψ(m2 + g)
)

(4.8.101)
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We substitute ψ = ϵ
3

ch,2
m2+g+ch,2

in the first inequality and the second inequality follows

since ϵ ≤ 1. We conclude that l1(t1, T̂2)− l1(t1, t∗2) ≤ l1(t1, t∗2), from which the corollary

follows.

We now establish upper bounds on Nβ to guarantee that t̂2 is ψ-accurate with high

probability (for each specified ψ > 0 and confidence probability 1 − δ). Since T̂2 is

the sample ch,2
m2+g+ch,2

- quantile and t∗2 is the true ch,2
m2+g+ch,2

-quantile, we can use known

results regarding the convergence of sample quantiles to the true quantiles or more

generally, the convergence of the empirical CDF FNβ
(t2) to the true CDF F(t2). (For

Nβ independent random samples all distributed according to T, we define FNβ
(t2) :=

1
Nβ

∑
Nβ

k=1 Tk, where for each k = 1, ..., Nβ, Tk
2 = (Tk

2 ≤ T), and T1
2 , ...., T

Nβ

2 are i.i.d. ac-

cording to T.)

Lemma 1.4 For each ψ > 0 and 0 < δ < 1, if the number of samples is = Nβ > Nβ(ψ, δ) =

1
2

1
ψ2 log( 2

δ ), then T̂2, the ch,2
m2+g+ch,2

-quantile of the sample, is ψ-accurate with probability at least

1 − δ.

Lemma 1.4 is a direct consequence of the fact that the empirical CDF converges uni-

formly and exponentially fast to the true CDF.

Combining Lemma 1.3, Corollary 1.2 and Lemma 1.4 above, we can obtain the fol-

lowing theorem.

THEOREM A.2 Consider a rollover problem specified by a date distribution T with

E[T] < ∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1) be a

specified confidence level. Suppose that Nβ ≥ 9
2ϵ2

(
ch,2

m2+g+ch,2

)−2

log
(

2
δ

)
and the data-

drive counterpart is solved with respect to Nβ i.i.d samples of T. Let T̂1 be the optimal

246



CHAPTER 4: THIRD PAPER: DATA-DRIVEN OPTIMIZATION FOR THE STOCHASTIC

PRODUCT ROLLOVER PROBLEM

solution to the data-drive counterpart and t̂2 denote its realization. Then, with proba-

bility at least 1 − δ, the expected cost of t̂2 is at most 1 + ϵ times the expected cost of an

optimal solution t∗2 to the rollover problem. In other words, l1(t1, T̂2) ≤ (1 + ϵ)l1(t1, t∗2)

with probability at least 1 − δ.

Nβ does not depend on the date distribution T, but on the square of the reciprocal

of ch,2
m2+g+ch,2

. This means that large samples are required when might be large when

ch,2
m2+g+ch,2

is very close to either 0 or 1. Since the optimal solution t∗2 is the ch,2
m2+g+ch,2

-

quantile of T, this is consistent with the well-known fact that in order to approximate

an extreme quantile one needs many samples. Nβ is a worst-case upper bound and it

is likely that in many cases a significantly fewer number of samples will suffice.

Appendix E

Since we have two variables, we need to calculate the worst bound for each variable,

then take the maximum of each. We have defined the expected loss function to be

convex and given by

l2(t1, t2) = (m2 − m′
1 − s1)E[t2 − T]+ + ch,2E[T − t2]

+

+ (m1 + g)E[T − t1]
+ + s1E[t1 − T]+. (4.8.102)

It is important to start this section by recalling from our previous work that the exis-

tence of t∗1 and t∗2 is possible only if the following conditions are satisfied:

m2 − m′
1 − s1 > 0 (4.8.103)

and

s1 <
(m1 + g)(m2 − m′

1)

m1 + g + ch,2
. (4.8.104)
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We denote the right-hand and left-hand derivatives of l2(t1, t2) by lr
2(t1, t2) and ll

2(t1, t2),

respectively and are given by:

lr
2(t1, t2) = −(m1 + g) + (m1 + g + s1)F(t1), (4.8.105)

and

ll
2(t1, t2) = −(m1 + g) + (m1 + g + s1)(T < t1). (4.8.106)

Since F is continuous, then l2(t1, t2) is continuously differentiable with

l′2(t1, t2) = −(m1 + g) + (m1 + g + s1)F(t1). (4.8.107)

The optimal solution t∗1 is given by:

t∗1 = in f {t1 : F(t1) ≥
m1 + g

m1 + g + s1
}. (4.8.108)

t∗1 is the m1+g
m1+g+s1

-quantile of the distribution of T. From the classical optimization the-

ory, l′2(t
∗
1 , t2) = 0, and lr

2(t
∗
1 , t2) ≥ 0 and ll

2(t
∗
1 , t2) ≤ 0 and 0 is a sub-gradient at t∗1 .

Definition 2.1 Let t̂1 be some realization of T̂1 and let ψ > 0. We will say that t̂1 is

ψ-accurate if F(t̂1) ≥ m1+g
m1+g+s1

− ψ and F̄(t̂1) ≥ s1
m1+g+s1

− ψ.

This definition can be translated to bounds on the right-hand and left-hand deriva-

tives of l2 at t̂1. Observe that F(T < t1) = 1 − F̄(t̂1) and equivalently t̂1 is ψ-accurate

exactly when lr
2(t̂1, t2) ≥ −ψ(m1 + g + s1) and ll

2(t̂1, t2) ≤ ψ(m1 + g + s1). This implies

that there exists a sub-gradient r ∈ ∆l2(t̂1, t2) such that |r| ≤ ψ(m1 + g+ s1). Intuitively,

this implies that, for ψ sufficiently small, 0 is ’almost’ a sub-gradient at t̂1, and hence t̂1

is ’close’ to being optimal.
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LEMMA 2.1 Let ψ > 0 and assume that t̂1 is ψ − accurate. Then:

(i)

l2(t̂1, t2)− l2(t∗1 , t2) ≤ ψ(m1 + g + s1)|t̂1 − t∗1 |. (4.8.109)

(ii)

l2(t∗1 , t2) ≥
(

s1(m1 + g)
m1 + g + s1

− ψ(m1 + g)
)
|t̂1 − t∗1 |. (4.8.110)

Proof. Suppose t̂1 is ψ-accurate. We have either t̂1 ≥ t∗1 or t̂1 < t∗1 . Suppose first that

t̂1 ≥ t∗1 . We will obtain an upper bound on the difference l2(t̂1, t2)− l2(t∗1 , t2). Clearly, if

the realized date T ∈ (−∞, t̂1), then the difference between the costs incurred by t̂1 and

t∗1 is at most s1(t̂1 − t∗1). On the other hand, if T ∈ [t̂1, ∞), then t∗1 has higher cost than

t̂1, by exactly(m1 + g)(t̂1 − t∗1) . Now since t̂1 is assumed to be ψ-accurate, we have

P([T ∈ [t̂1, ∞)]) = F(T ≥ t̂1) = F̄(t̂1) ≥
s1

m1 + g + s1
− ψ (4.8.111)

and

P([T ∈ [0, t̂1)]) = F(T < t̂1) = 1 − F̄(t̂1) ≤
m1 + g

m1 + g + s1
+ ψ (4.8.112)

Therefore

l2(t̂1, t2)− l2(t∗1 , t2) ≤ s1

(
m1 + g

m1 + g + s1
+ ψ

)(
t̂1 − t∗1

)
−
(

m1 + g
)(

s1

m1 + g + s1
− ψ

)(
t̂1 − t∗1

)
= ψ(m1 + g + s1)(t̂1 − t∗1) (4.8.113)

Similarly, if t̂1 < t∗1 , then for each realization T ∈ (t̂1, ∞) the difference between the

costs of t̂1 and t∗1 , respectively, is at most (m1 + g)(t∗1 − t̂1), and if T ∈ (−∞, t̂1], then

the cost of t̂1 exceeds the cost of t∗1 by exactly s1(t∗1 − t̂1). Given that t̂1 is ψ-accurate, we

know that

F(T ≤ t̂1) = F̄(t̂1) ≥
m1 + g

m1 + g + s1
− ψ (4.8.114)
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and

F(T > t̂1) = 1 − F̄(t̂1) ≤
s1

m1 + g + s1
+ ψ (4.8.115)

Therefore

l2(t̂1, t2)− l2(t∗1 , t2) ≤
(

m1 + g
)(

s1

m1 + g + s1
+ ψ

)(
t∗1 − t̂1

)
−s1

(
m1 + g

m1 + g + s1
− ψ

)(
t∗1 − t̂1

)
= ψ(m1 + g + s1)(t∗1 − t̂1) (4.8.116)

The proof of part (i) then follows.

The above arguments also imply that if t̂1 ≥ t∗1 then

l2(t̂1, t2) ≥ E[(T ≥ t̂1)(m1 + g)(t̂1 − t∗1)] = (m1 + g)F̄(t̂1)(t̂1 − t∗1). (4.8.117)

We conclude that l2(t∗1 , t2) is at least
(

m1 + g
)(

s1
m1+g+s1

− ψ

)(
t̂1 − t∗1

)
. Similarly, in

the case t̂1 < t∗1 , we conclude that l2(t∗1 , t2) is at least

E[(T ≤ t̂1) s1(t∗1 − t̂1)]

≥ s1

(
m1 + g

m1 + g + s1
− ψ

)(
t∗1 − t̂1

)
. (4.8.118)

In other words,

l1(t̂1, t2) ≥
(

s1(m1 + g)
m1 + g + s1

− ψ(m1 + g)
)
|t̂1 − t∗1 |. (4.8.119)

COROLLARY 2.1 For a given accuracy level ϵ ∈ (0,≤ 1], if t̂1 is ψ-accurate for ψ =

ϵ
3

s1
m1+g+s1

, then the cost of t̂1 is at most (1 + ϵ) dates the optimal cost, i.e., l2(t̂1, t2) ≤

(1 + ϵ)l2(t∗1 , t2).

PROOF.

Let ψ = ϵ
3

s1
m1+g+s1

By Lemma 2.1, we know that in this case

l2(t̂1, t2)− l2(t∗1 , t2) ≤ ψ(m1 + g + s1)|t̂1 − t∗1 |. (4.8.120)
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and that

l2(t∗1 , t2) ≥
(

s1(m1 + g)
m1 + g + s1

− ψ(m1 + g)
)
|t̂1 − t∗1 |. (4.8.121)

It is then sufficient to show that

ψ

(
m1 + g + s1

)
≤ ϵ

(
s1(m1 + g)
m1 + g + s1

− ψ(m1 + g)
)

(4.8.122)

Indeed,

ψ(m1 + g + s1) ≤ (2 + ϵ)ψ(m1 + g)− ϵψ(m1 + g) (4.8.123)

=
(2 + ϵ)ϵ

3
(m1 + g)s1

m1 + g + s1
− ϵψ(m1 + g)

≤ ϵ

(
s1(m1 + g)
m1 + g + s1

− ψ(m1 + g)
)

(4.8.124)

We substitute ψ = ϵ
3

s1
m1+g+s1

in the first inequality and the second inequality follows

as ϵ ≤ 1. We conclude that l2(T̂1, t2)− l2(t∗1 , t2) ≤ l2(t∗1 , t2), from which the corollary

follows.

We now establish upper bounds on Nβ required in order to guarantee that t̂1 is ψ-

accurate with high probability (for each specified ψ > 0 and confidence probability

1 − δ). Since T̂1 is the sample m1+g
m1+g+s1

- quantile and t∗1 is the true m1+g
m1+g+s1

-quantile, we

can use known results regarding the convergence of sample quantiles to the true quan-

tiles or more generally, the convergence of the empirical CDF FNβ
(t1) to the true CDF

F(t1). (For Nβ independent random samples all distributed according to T, we define

FNβ
(t1) := 1

Nβ
∑

Nβ

k=1 Tk, where for each i = 1, ..., Nβ, Tk
1 = (Tk

1 ≤ T), and T1
1 , ...., T

Nβ

1 are

i.i.d. according to T.)

Lemma 2.2 For each ψ > 0 and 0 < δ < 1, if the number of samples is = Nβ > Nβ(ψ, δ) =

1
2

1
ψ2 log( 2

δ ), then T̂1, the m1+g
m1+g+s1

-quantile of the sample, is ψ-accurate with probability at least

1 − δ. Lemma 2.2 is a direct consequence of the fact that the empirical CDF converges

uniformly and exponentially fast to the true CDF.
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Combining Lemma 2.1, Corollary 2.1 and Lemma 2.2 above, we can obtain the fol-

lowing theorem.

THEOREM B.1 Consider a rollover problem specified by a date distribution T with

E[T] < ∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1) be a

specified confidence level. Suppose that Nβ ≥ 9
2ϵ2

(
s1

m1+g+s1

)−2

log
(

2
δ

)
and the data-

drive counterpart is solved with respect to Nβ i.i.d samples of T. Let T̂1 be the optimal

solution to the data-drive counterpart and t̂1 denote its realization. Then, with proba-

bility at least 1 − δ, the expected cost of t̂1 is at most 1 + ϵ times the expected cost of an

optimal solution t∗1 to the rollover problem. In other words, l1(T̂1, t2) ≤ (1 + ϵ)l1(t∗1 , t2)

with probability at least 1 − δ.

Nβ does not depend on the date distribution T, but on the square of the reciprocal of

s1
m1+g+s1

. This means that large samples are required when might be large when m1+g
m1+g+s1

is very close to either 0 or 1. Since the optimal solution t∗1 is the m1+g
m1+g+s1

-quantile of T,

this is consistent with the well-known fact that in order to approximate an extreme

quantile one needs many samples. Nβ is a worst-case upper bound and it is likely that

in many cases a significantly fewer number of samples will suffice.

We now continue our analysis with respect to t2. We already proved that l2(t1, t2) is

convex in t2. We denote the right-hand and left-hand derivatives of l2(t1, t2) by lr
2(t1, t2)

and ll
2(t1, t2), respectively and are given below

lr
2(t1, t2) = −ch,2 + (m2 − m′

1 − s1 + ch,2)F(t2), (4.8.125)

and

ll
2(t1, t2) = −ch,2 + (m2 − m′

1 − s1 + ch,2)F(T < t2). (4.8.126)
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Since F is continuous l2(t1, t2) is continuously differentiable with

l′2(t1, t2) = −ch,2 + (m2 − m′
1 − s1 + ch,2)F(t2). (4.8.127)

We characterize the optimal solution t∗2 by

t∗2 = in f {t2 : F(t2) ≥
ch,2

m2 − m′
1 − s1 + ch,2

} (4.8.128)

and t∗2 is the ch,2
m2−m′

1−s1+ch,2
-quantile of the distribution of T. From the classical opti-

mization theory, we have l′2(t1, t∗2) = 0 and lr
2(t1, t∗2) ≥ 0 and ll

2(t1, t∗2) ≤ 0 and 0 is a

sub-gradient at t∗2

Definition 2.2 Let t̂2 be a realization of T̂2 and let ψ > 0. t̂2 is ψ-accurate if F(t̂2) ≥
ch,2

m2−m′
1−s1+ch,2

− ψ and F̄(t̂2) ≥ m2−m′
1−s1

m2−m′
1−s1+ch,2

− ψ.

This definition can be translated to bounds on the right-hand and left-hand deriva-

tives of l2 at t̂2 . Observe that F(T < t2) = 1 − F̄(t2) and equivalently we define

t̂2 to be ψ-accurate exactly when lr
2(t1, t̂2) ≥ −ψ(m2 − m′

1 − s1 + ch,2) and ll
2(t1, t̂2) ≤

ψ(m2 − m′
1 − s1 + ch,2). This implies that there exists a sub-gradient r ∈ ∆l2(t1, t̂2) such

that |r| ≤ ψ(m2 − m′
1 − s1 + ch,2). Intuitively, this implies that, for ψ sufficiently small,

0 is "almost" a sub-gradient at t̂2, and hence t̂2 is "close" to being optimal.

LEMMA 2.3 Let ψ > 0 and assume that t̂2 is ψ − accurate. Then:

(i)

l2(t1, t̂2)− l2(t∗2) ≤ ψ(m2 − m′
1 − s1 + ch,2)|t̂2 − t∗2 |. (4.8.129)

(ii)

l2(t1, t∗2) ≥
(

(m2 − m′
1 − s1)ch,2

m2 − m′
1 − s1 + ch,2

− ψmax(m2 − m′
1 − s1, ch,2)

)
|t̂2 − t∗2 |. (4.8.130)
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Proof. Suppose t̂2 is ψ-accurate. We have t̂2 > t∗2 or t̂2 < t∗2 . Suppose first that t̂2 > t∗2 .

We will obtain an upper bound on the difference l2(t1, t̂2) − l2(t1, t∗2). If the realized

date T ∈ (−∞, t̂2), then the difference between the costs incurred by t̂2 and t∗2 is at

most (m2 − m′
1 − s1)(t̂2 − t∗2). On the other hand, if T ∈ [t̂2, ∞), then t∗2 has higher cost

than t̂2, by exactlych,2(t̂2 − t∗2). Given that t̂2 is ψ-accurate, we have the following

F([T ∈ [t̂2, ∞)]) = F(T ≥ t̂2) = F̄(t̂2) ≥
m2 − m′

1 − s1

m2 − m′
1 − s1 + ch,2

− ψ (4.8.131)

and

P([T ∈ [0, t̂2)]) = F(T < t̂2) = 1 − F̄(t̂2) ≤
ch,2

m2 − m′
1 − s1 + ch,2

+ ψ (4.8.132)

Therefore

l2(t1, t̂2)− l2(t1, t∗2) ≤
(

m2 − m′
1 − s1

)(
ch,2

m2 − m′
1 − s1 + ch,2

+ ψ

)(
t̂2 − t∗2

)
−ch,2

(
m2 − m′

1 − s1

m2 − m′
1 − s1 + ch,2

− ψ

)(
t̂2 − t∗2

)
= ψ(m2 − m′

1 − s1 + ch,2)(t̂2 − t∗2) (4.8.133)

Similarly, if t̂2 < t∗2 , then for each realization T ∈ (t̂2, ∞) the difference between the

costs of t̂2 and t∗2 , respectively, is at most ch,2(t∗2 − t̂2), and if T ∈ (−∞, t̂2], then the cost

of t̂2 exceeds the cost of t∗2 by exactly (m2 − m′
1 − s1)(t∗2 − t̂2). As t̂2 is assumed to be

ψ-accurate, we know that

F(T ≤ t̂2) = F̄(t̂2) ≥
ch,2

m2 − m′
1 − s1 + ch,2

− ψ (4.8.134)

and

F(T > t̂2) = 1 − F̄(t̂2) ≤
m2 − m′

1 − s1

m2 − m′
1 − s1 + ch,2

+ ψ (4.8.135)

Therefore

l2(t1, t̂2)− l2(t1, t∗2) ≤ ch,2

(
m2 − m′

1 − s1

m2 − m′
1 − s1 + ch,2

+ ψ

)(
t∗2 − t̂2

)
−
(

m2 − m′
1 − s1

)(
ch,2

m2 − m′
1 − s1 + ch,2

− ψ

)(
t∗2 − t̂2

)
= ψ(m2 − m′

1 − s1 + ch,2)(t∗2 − t̂2) (4.8.136)
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The proof of part (i) then follows.

The above arguments also imply that if t̂2 ≥ t∗2 then

l2(t1, t∗2) ≥ E[(T ≥ t̂2)ch,2(t̂2 − t∗2)] = ch,2 F̄(t̂2)(t̂2 − t∗2). (4.8.137)

We conclude that l2(t1, t∗2) is at least ch,2

(
m2−m′

1−s1
m2−m′

1−s1+ch,2
− ψ

)(
t̂2 − t∗2

)
. Similarly, in the

case t̂2 < t∗2 , we conclude that l2(t1, t∗2) is at least

E[(T ≤ t̂2)(m2 − m′
1 − s1) (t∗2 − t̂2)] ≥ (4.8.138)(

m2 − m′
1 − s1

)(
ch,2

m2 − m′
1 − s1 + ch,2

− ψ

)(
t∗2 − t̂2

)
.

In other words,

l2(t1, t∗2) ≥
(

ch,2(m2 − m′
1 − s1)

m2 − m′
1 − s1 + ch,2

− ψmax(m2 − m′
1 − s1, ch,2)

)
|t̂2 − t∗2 |. (4.8.139)

COROLLARY 2.2 For a given accuracy level ϵ ∈ (0,≤ 1), if t̂2 is ψ-accurate for ψ =

ϵ
3

min(m2−m′
1−s1,ch,2)

m2−m′
1−s1+ch,2

, then the cost of t̂2 is at most (1 + ϵ) dates the optimal cost, i.e.,

l2(t1, t̂2) ≤ (1 + ϵ)l2(t1, t∗2).

PROOF.

Let ψ = ϵ
3

min(m2−m′
1−s1,ch,2)

m2−m′
1−s1+ch,2

By Lemma 2.3, we know that in this case

l2(t1, t̂2)− l2(t1, t∗2) ≤ ψ(m2 − m′
1 − s1 + ch,2)|t̂2 − t∗2 |. (4.8.140)

and that

l2(t1, t∗2) ≥
(

(m2 − m′
1 − s1)ch,2

m2 − m′
1 − s1 + ch,2

− ψmax(m2 − m′
1 − s1, ch,2)

)
|t̂2 − t∗2 |. (4.8.141)

It is then sufficient to show that

ψ

(
m2 − m′

1 − s1 + ch,2

)
≤ (4.8.142)

ϵ

(
(m2 − m′

1 − s1)ch,2

m2 − m′
1 − s1 + ch,2

− ψmax(m2 − m′
1 − s1+, ch,2)

)
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Indeed,

ψ(m2−m′
1+m1+g+ch,2) ≤ (2+ϵ)ψmax(m2−m′

1−s1,ch,2)−ϵψmax(m2−m′
1−s1,ch,2) (4.8.143)

= (2+ϵ)ϵ
3

max(m2−m′
1−s1,ch,2)min(m2−m′

1−s1,ch,2)

m2−m′
1−s1+ch,2

−ϵψmax(m2−m′
1−s1,ch,2)

≤ ϵ

(
(m2−m′

1−s1)ch,2
m2−m′

1−s1+ch,2
−ψmax(m2−m′

1−s1,ch,2)

)
(4.8.144)

We substitute ψ = ϵ
3

min(m2−m′
1−s1,ch,2)

m2−m′
1−s1+ch,2

in the first inequality and The second inequality

follows as ϵ ≤ 1. We conclude that l2(t1, T̂2) − l2(t1, t∗2) ≤ l2(t1, t∗2), from which the

corollary follows.

We now establish upper bounds on Nβ required to guarantee that t̂2, the realization

of T̂2, is ψ-accurate with high probability (for each specified ψ > 0 and confidence

probability 1 − δ). Since T̂2 is the sample ch,2
m2−m′

1−s1+ch,2
- quantile and t∗2 is the true

ch,2
m2−m′

1−s1+ch,2
-quantile, we can use known results regarding the convergence of sam-

ple quantiles to the true quantiles or more generally, the convergence of the empiri-

cal CDF FNβ
(t2) to the true CDF F(t2). (For Nβ independent random samples all dis-

tributed according to T, we define FNβ
(t2) := 1

Nβ
∑

Nβ

k=1 Tk, where for each k = 1, ..., Nβ,

Tk = (Tk
2 ≤ T), and T1

2 , ...., T
Nβ

2 are i.i.d. according to T.)

Lemma 2.4 For each ψ > 0 and 0 < δ < 1, if the number of samples is = Nβ > Nβ(ψ, δ) =

1
2

1
ψ2 log( 2

δ ), then T̂2, the ch,2
m2−m′

1+ch,2−s1
-quantile of the sample, is ψ-accurate with probability at

least 1 − δ.

Lemma 2.4 is a direct consequence of the fact that the empirical CDF converges uni-

formly and exponentially fast to the true CDF.

Combining Lemma 2.3, Corollary 2.2 and Lemma 2.4 above, we can obtain the fol-

lowing theorem.
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THEOREM B.2 Consider a rollover problem specified by a date distribution T with

E[T] < ∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1)

be a specified confidence level. Suppose that Nβ ≥ 9
2ϵ2

(
min(m2−m′

1−s1,ch,2)
m2−m′

1+ch,2−s1

)−2

log
(

2
δ

)
and the data-drive counterpart is solved with respect to Nβ i.i.d samples of T. Let T̂1

be the optimal solution to the data-driven counterpart and t̂2 denote its realization.

Then, with probability at least 1 − δ, the expected cost of t̂2 is at most 1 + ϵ times

the expected cost of an optimal solution t∗2 to the rollover problem. In other words,

l2(t1, T̂2) ≤ (1 + ϵ)l2(t1, t∗2) with probability at least 1 − δ.

Nβ does not depend on the date distribution T, but on the square of the reciprocal

of min(ch,2,m2−m′
1−s1)

m2−m′
1+ch,2−s1

. This means that large samples are required when might be large

when ch,2
m2−m′

1+ch,2−s1
is very close to either 0 or 1. Since the optimal solution t∗2 is the

ch,2
m2−m′

1+ch,2−s1
-quantile of T, this is consistent with the well-known fact that in order to

approximate an extreme quantile one needs many samples. Nβ is a worst-case upper

bound and it is likely that in many cases a significantly fewer number of samples will

suffice.

Appendix F

We have defined the expected loss function at the boundary to be convex and given by

lb(tb) = (m2 − m′
1)E[tb − T]+ + (m1 + g + ch,2)E[T − tb]

+. (4.8.145)

We denote the right-hand and left-hand derivatives of lb(tb), denoted by lr
b(tb) and

ll
b(tb), the one-sided derivatives of lb(tb) as follows:

lr
b(tb) = −(m1 + g + ch,2) + (m2 − m′

1 + m1 + g + ch,2)F(tb), (4.8.146)

whereF(tb) := F(T ≤ tb)
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and

ll
b(tb) = −(m1 + g + ch,2) + (m2 − m′

1 + m1 + g + ch,2)F(T < tb). (4.8.147)

We assume F to be continuous and therefore lb(tb) is continuously differentiable with

l′b(tb) = −(m1 + g + ch,2) + (m2 − m′
1 + m1 + g + ch,2)F(tb). (4.8.148)

We can characterize the optimal solution t∗b by

t∗b = in f {tb : F(tb) >
m1 + g + ch,2

m2 − m′
1 + m1 + g + ch,2

}, (4.8.149)

and t∗b is the m1+g+ch,2
m2−m′

1+m1+g+ch,2
-quantile of the distribution of T. From classical optimiza-

tion theory, l′b(t
∗
b) = 0, lr

b(t
∗
b) ≥ 0, and ll

b(t
∗
b) ≤ 0 with 0 being a sub-gradient at t∗b , and

hence optimality conditions for lb(tb) are satisfied (see Scarf (1959) for details).

Definition 3.1 Let t̂b be a realization of T̂1 and ψ > 0. We define t̂b to be ψ-accurate

if F(t̂b) ≥
m1+g+ch,2

m2−m′
1+m1+g+ch,2

− ψ and F̄(t̂b) ≥
m2−m′

1
m2−m′

1+m1+g+ch,2
− ψ.

This definition can be translated to bounds on the right-hand and left-hand deriva-

tives of lb at t̂b . We know thatF(T < tb) = 1 − F̄(tb) and equivalently t̂b is ψ-accurate

when lr
b(t̂b) ≥ −ψ(m2 − m′

1 + m1 + g + ch,2) and ll
b(t̂b) ≤ ψ(m2 − m′

1 + m1 + g + ch,2).

This implies that there exists a sub-gradient r ∈ ∆lb(t̂b) such that |r| ≤ ψ(m2 − m′
1 +

m1 + g + ch,2). Therefore, for ψ sufficiently small, 0 is ’almost’ a sub-gradient at t̂b, and

hence t̂b is "close" to being optimal.

LEMMA 3.1 Let ψ > 0 and assume that t̂b is ψ − accurate. Then:

(i)

lb(t̂b)− lb(t∗b) ≤ ψ(m2 − m′
1 + m1 + g + ch,2)|t̂b − t∗b |. (4.8.150)
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(ii)

lb(t∗b) ≥ (4.8.151)(
(m2 − m′

1)(m1 + g + ch,2)

m2 − m′
1 + m1 + g + ch,2

− ψmax(m2 − m′
1, m1 + g + ch,2)

)
|t̂b − t∗b |.

Proof. Suppose t̂b is ψ-accurate. We have t̂b ≥ t∗b or t̂b < t∗b . Suppose first that t̂b > t∗b .

We will obtain an upper bound on the difference lb(t̂b) − lb(t∗b).If T ∈ (−∞, t̂b), then

the difference between the costs incurred by t̂b and t∗b is at most (m2 − m′
1)(t̂b − t∗b). On

the other hand, if T ∈ [t̂b, ∞), then t∗b has higher cost than t̂b, by exactly(m1 + ch,2 +

g)(t̂b − t∗b) . Given that t̂b is assumed ψ-accurate, we have the following:

P([T ∈ [t̂b, ∞)]) = F(T ≥ t̂b) = F̄(t̂b) ≥
m2 − m′

1
m2 − m′

1 + m1 + g + ch,2
− ψ (4.8.152)

and

F([T ∈ [0, t̂b)]) = F(T < t̂b) = 1 − F̄(t̂b) ≤
m1 + g + ch,2

m2 − m′
1 + m1 + g + ch,2

+ ψ (4.8.153)

Therefore

lb(t̂b)− lb(t∗b) ≤
(

m2 − m′
1

)(
m1 + g + ch,2

m2 − m′
1 + m1 + g + ch,2

+ ψ

)(
t̂b − t∗b

)
−
(

m1 + g + ch,2

)(
m2 − m′

1
m2 − m′

1 + m1 + g + ch,2
− ψ

)(
t̂b − t∗b

)
= ψ(m2 − m′

1 + m1 + g + ch,2)(t̂b − t∗b) (4.8.154)

Similarly, if t̂b < t∗b , then for each realization T ∈ (t̂b, ∞) the difference between the

costs of t̂b and t∗b , respectively, is at most (m1 + g + ch,2)(t∗b − t̂b), and if T ∈ (−∞, t̂b],

then the cost of t̂b exceeds the cost of t∗b by exactly (m2 − m′
1)(t

∗
b − t̂b). Given that t̂b is

assumed ψ-accurate, we have

F(T ≤ t̂b) = F̄(t̂b) ≥
m1 + g + ch,2

m2 − m′
1 + m1 + g + ch,2

− ψ (4.8.155)

and

F(T > t̂b) = 1 − F̄(t̂b) ≤
m2 − m′

1
m2 − m′

1 + m1 + g + ch,2
+ ψ (4.8.156)
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We conclude that

lb(t̂b)− lb(t∗b) ≤
(

m1 + g + ch,2

)(
m2 − m′

1
m2 − m′

1 + m1 + g + ch,2
+ ψ

)(
t∗b − t̂b

)
−
(

m2 − m′
1

)(
m1 + g + ch,2

m2 − m′
1 + m1 + g + ch,2

− ψ

)(
t∗b − t̂b

)
= ψ(m2 − m′

1 + m1 + g + ch,2)(t∗b − t̂b) (4.8.157)

The proof of part (i) then follows.

The above arguments also imply that if t̂b ≥ t∗b then

lb(t∗b) ≥ E[(T ≥ t̂b)(m1 + g + ch,2)(t̂b − t∗b)] = (m1 + g + ch,2)F̄(t̂b)(t̂b − t∗b).(4.8.158)

We conclude that lb(t∗b) is at least
(

m1 + g + ch,2

)(
m2−m′

1
m2−m′

1+m1+g+ch,2
− ψ

)(
t̂b − t∗b

)
.

Similarly, in the case t̂b < t∗b , we conclude that lb(t∗b) is at least

E[(T ≤ t̂b)(m2 − m′
1)(t

∗
b − t̂b)] ≥ (4.8.159)(

m2 − m′
1

)(
m1 + g + ch,2

m2 − m′
1 + m1 + g + ch,2

− ψ

)(
t∗b − t̂b

)
.

In other words,

lb(t∗b) ≥ (4.8.160)(
(m2 − m′

1)(m1 + g + ch,2)

m2 − m′
1 + m1 + g + ch,2

− ψmax(m2 − m′
1, m1 + g + ch,2)

)
|t̂b − t∗b |.

COROLLARY 3.1 For a given accuracy level ϵ ∈ (0,≤ 1], if t̂b is ψ-accurate for

ψ =
ϵ

3
min(m2 − m′

1, m1 + g + ch,2)

m2 − m′
1 + m1 + g + ch,2

, (4.8.161)

then the cost of t̂b is at most (1 + ϵ) dates the optimal cost, i.e.,

lb(t̂b) ≤ (1 + ϵ)lb(t∗b). (4.8.162)
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PROOF.

Let ψ = ϵ
3

min(m2−m′
1,m1+g+ch,2)

m2−m′
1+m1+g+ch,2

By Lemma 3.1, we know that in this case

lb(t̂b)− lb(t∗b) ≤ ψ(m2 − m′
1 + m1 + g + ch,2)|t̂b − t∗b |. (4.8.163)

and that

lb(t∗b )≥

(
(m2−m′

1)(m1+g+ch,2)

m2−m′
1+m1+g+ch,2

−ψmax(m2−m′
1,m1+g+ch,2)

)
|t̂b−t∗b |. (4.8.164)

It is then sufficient to show that

ψ

(
m2−m′

1+m1+g+ch,2

)
≤ϵ

(
(m2−m′

1)(m1+g+ch,2)

m2−m′
1+m1+g+ch,2

−ψmax(m2−m′
1,m1+g+ch,2)

)
(4.8.165)

Indeed,

ψ(m2 − m′
1 + m1 + g + ch,2) ≤ (2 + ϵ)ψmax(m2 − m′

1, m1 + g + ch,2)

−ϵψmax(m2 − m′
1, m1 + g + ch,2)

=
(2 + ϵ)ϵ

3
max(m2 − m′

1, m1 + g + ch,2)min(m2 − m′
1, m1 + g + ch,2)

m2 − m′
1 + m1 + g + ch,2

−ϵψmax(m2 − m′
1, m1 + g + ch,2)

≤ ϵ

(
(m2 − m′

1)(m1 + g + ch,2)

m2 − m′
1 + m1 + g + ch,2

− ψmax(m2 − m′
1, m1 + g + ch,2)

)
(4.8.166)

We substitute ψ = ϵ
3

min(m2−m′
1,m1+g+ch,2)

m2−m′
1+m1+g+ch,2

in the first equality and the second inequality

follows as ϵ ≤ 1. We conclude that lb(T̂1)− lb(t∗b) ≤ ϵlb(t∗b), from which the corollary

follows.

We now establish upper bounds on the number of samples Nβ required in order to

guarantee that t̂b is ψ-accurate with high probability (for each specified ψ > 0 and

confidence probability 1 − δ). Since T̂1 is the sample m1+g+ch,2
m2−m′

1+m1+g+ch,2
- quantile and t∗b

is the true m1+g+ch,2
m2−m′

1+m1+g+ch,2
-quantile, we can use known results regarding the conver-

gence of sample quantiles to the true quantiles or more generally, the convergence of

the empirical CDF FNβ
(tb) to the true CDF F(tb). (For Nβ independent random sam-

ples all distributed according to T, we define FNβ
(tb) := 1

Nβ
∑N

k=1 Tk, where for each
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k = 1, ..., Nβ, Tk = (Tk ≤ T), and T1, ...., TN
β are i.i.d. according to T.)

Lemma 3.2 For each ψ > 0 and 0 < δ < 1, if the number of samples is = Nβ > Nβ(ψ, δ) =

1
2

1
ψ2 log( 2

δ ), then T̂b, the m1+g+ch,2
m2−m′

1+m1+g+ch,2
-quantile of the sample, is ψ-accurate with probability

at least 1 − δ.

Lemma 3.2 is a direct consequence of the fact that the empirical CDF converges uni-

formly and exponentially fast to the true CDF (Hoeffding Inequality (1963)).

Combining Lemma 3.1, Corollary 3.1 and Lemma 3.2 above, we can obtain the fol-

lowing theorem.

THEOREM C Consider a rollover problem specified by a date distribution T with

E[T] < ∞. Let 0 < ϵ ≤ 1 be a specified accuracy level and 1 − ϵ (for 0 < δ < 1) be a

specified confidence level. Suppose that Nβ ≥ 9
2ϵ2

(
min(m2−m′

1,m1+g+ch,2)
m2−m′

1+m1+g+ch,2

)−2

log
(

2
δ

)
and

the data-driven problem is solved with respect to Nβ i.i.d samples of T. Let T̂1 be the op-

timal solution to the data-driven counterpart and t̂b denote its realization. Then, with

probability at least 1 − δ, the expected cost of t̂b is at most 1 + ϵ times the expected cost

of an optimal solution t∗b to the rollover problem. In other words, lb(T̂1) ≤ (1 + ϵ)lb(t∗b)

with probability at least 1 − δ.

Nβ does not depend on the date distribution T, but on the square of the reciprocal

of min(m2−m′
1,m1+g+ch,2)

m2−m′
1+m1+g+ch,2

. This means that large samples are required when might be large

when m1+g+ch,2
m2−m′

1+m1+g+ch,2
is very close to either 0 or 1. Since the optimal solution t∗b is the

m1+g+ch,2
m2−m′

1+m1+g+ch,2
-quantile of T, this is consistent with the well-known fact that in order

to approximate an extreme quantile one needs many samples. Nβ is a worst-case upper

bound and it is likely that in many cases a significantly fewer number of samples will
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suffice.
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CHAPTER 5

Limitations and Future Research

Directions

This PhD thesis is based on three papers. We have presented different variations of the

product rollover problem. My research work has mainly been concerned with solving

the problem and providing managerial insights. We have used tractable methodologies

to provide closed form solutions when possible.

Each of the three papers answers questions, but also suggests new ones for future re-

search. Some specific follow-up questions are discussed in the respective papers. In

all three papers, we develop the problem over a single period for one product. Real-

world supply chain structures are often more complex, and may have multiple rollover

processes over several cycles. In the context of product rollover, it is extremely inter-

esting to extend the results to more complex systems and extend it to include capacity

constraints. One difficulty is how to establish valid order bounds for stages that serve

multiple products or demand markets. Supply chains with both capacity constraints

and multiple products are left for future investigations.

This speaks to a general theme: it is often challenging to analytically address various
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challenges one at the time. However, when multiple complications arise it is often very

difficult, if not impossible, to mathematically characterize the necessary optimal con-

ditions and determine uniqueness of solutions. The resolution may be higher reliance

on simulation and numerical solutions.

In our three papers, we assume that discounting cash flows is not necessary, and this

may be a limitation. All parameters should be adjusted to reflect the effect of interest

and tax also.

Furthermore, our model ignores competitive action that might impact the demand for

the new product if the new product is introduced later than the competition’s product.

However, planners usually know that their product are subject to an approval date in

our case thus giving management some forewarning about competitive actions. There-

fore, managers most likely can anticipate the market reaction to new product introduc-

tion and estimate reflective price and demand parameters for the model.

In some situations, the old and new products share some machine and labor capac-

ity. We can still use our model to optimize rollover procedure, however, capacity con-

tention should be considered in the inventory build-up.

We have assumed in our model that procurement leadtimes, procurement yields, man-

ufacturing leadtimes and manufacturing yields are deterministic. A stochastic simula-

tion model could be implemented to explore these issues.

From both a theoretical and a practical perspective, it would be desirable to explore

further the points listed above. It would be valuable to investigate in depth how differ-

ent these issues affect optimality criteria and conditions and lead to different strategies,
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and if there are specific situations for which our assumption framework is not particu-

larly well suited.
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Introduction de Nouveaux Produits dans la Supply Chain : Optimisation et Management des 

Risques 

Résumé 

Les consommateurs d’aujourd’hui ont des goûts très variés et cherchent les produits les plus récents. Avec 
l’accélération technologique, les cycles de vie des produits se sont raccourcis et donc, de nouveaux produits 
doivent être introduits au marché plus souvent et progressivement, les anciens doivent y être retirés. 
L’introduction d’un nouveau produit est une source de croissance et d’avantage concurrentiel. Les directeurs 
du Marketing et Supply Chain se sont confrontés à la question de savoir comment gérer avec succès le 
remplacement de leurs produits et d’optimiser les coûts de la chaîne d’approvisionnement associée. Dans une 
situation idéale, la procédure de rollover est efficace et claire: l’ancien produit est vendu jusqu’à une date 
prévue où un nouveau produit est introduit. Dans la vie réelle, la situation est moins favorable. Le but de notre 
travail est d’analyser et de caractériser la politique optimale du rollover avec une date de disponibilité 
stochastique pour l’introduction du nouveau produit sur le marché. Pour résoudre le problème d’optimisation, 
nous utilisons dans notre premier article deux mesures de minimisation: le coût moyen et le coût de la valeur 
conditionnelle à risque. On obtient des solutions en forme explicite pour les politiques optimales. En outre, 
nous caractérisons l’influence des paramètres de coûts sur la structure de la politique optimale. Dans cet 
esprit, nous analysons aussi le comportement de la politique de rollover optimale dans des contextes 
différents. Dans notre deuxième article, nous examinons le même problème mais avec une demande 
constante pour le premier produit et une demande linéaire au début puis constante pour le deuxième. Ce 
modèle est inspiré par la demande de Bass. Dans notre troisième article, la date de disponibilité du nouveau 
produit existe mais elle est inconnue. La seule information disponible est un ensemble historique 
d’échantillons qui sont tirés de la vraie distribution. Nous résoudrons le problème avec l’approche data driven 
et nous obtenons des formulations tractables. Nous développons aussi des bornes sur le nombre 
d’échantillons nécessaires pour garantir qu’avec une forte probabilité, le coût n’est pas très loin du vrai coût 
optimal. 
 
Mots-clés: Product rollover, date de disponibilité, planned stock-out rollover, single product rollover, dual 
product rollover, critère d'optimisation des risques, valeur conditionnelle à risque, dominance stochastique; 
comparaison stochastique, modèle de Bass, théorie de diffusion, optimisation data-driven. 

Introduction of New Products in the Supply Chain: Optimization and Management of Risks 
Abstract 

Shorter product life cycles and rapid product obsolescence provide increasing incentives to introduce new 
products to markets more quickly. As a consequence of rapidly changing market conditions, firms focus on 
improving their new product development processes to reap the benefits of early market entry. Researchers 
have analyzed market entry, but have seldom provided quantitative approaches for the product rollover 
problem. This research builds upon the literature by using established optimization methods to examine how 
firms can minimize their net loss during the rollover process. Specifically, our work explicitly optimizes the 
timing of removal of old products and introduction of new products, the optimal strategy, and the magnitude 
of net losses when the market entry approval date of a new product is unknown. In the first paper, we use the 
conditional value at risk to optimize the net loss and investigate the effect of risk perception of the manager 
on the rollover process. We compare it to the minimization of the classical expected net loss. We derive 
conditions for optimality and unique closed-form solutions for single and dual rollover cases. In the second 
paper, we investigate the rollover problem, but for a time-dependent demand rate for the second product 
trying to approximate the Bass Model. Finally, in the third paper, we apply the data-driven optimization 
approach to the product rollover problem where the probability distribution of the approval date is unknown.  
We rather have historical observations of approval dates. We develop the optimal times of rollover and show 
the superiority of the data-driven method over the conditional value at risk in case where it is difficult to guess 
the real probability distribution.  
  
Keywords: Product rollover, uncertain approval date, planned stock-out rollover, single product rollover, dual 
product rollover, risk sensitive optimization criterion, conditional value at risk, stochastic dominance; 
stochastic comparisons, bass demand, product demand diffusion, data-driven optimization. 


