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Soutenue le 7 décembre 2011 devant le jury composé de:
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Abstract

Abstract

The transmembrane β-barrel proteins (TMBs) are found in the outer membrane of
Gram-negative bacteria, mitochondria and chloroplasts. They entirely span the biologi-
cal membrane and perform a wide range of important functions. As the number of TMB
structures known today is very limited, due to difficulties in experimental methods, it is
arguable whether the learning-based prediction methods could work well for recognizing
and folding TMBs which are not homologous to those currently known. We present a
novel graph-theoretic model for classification and prediction of permuted super-secondary
structures of TMBs from their amino acid sequence, based on energy minimization. The
model does not essentially depend on learning. The algorithms are fast, robust with com-
parable performance to the best currently known learning-based methods. This method
can be thus a useful tool for the genome screening. Besides the performance on prediction
and classification, this study gives an insight into TMB structures regarding the physic-
ochemical constraints of biological membranes. The predicted permuted structures can
also enhance the understanding on the folding mechanism of TMBs.

Keywords: transmembrane protein, β-barrel, super-secondary structure prediction,
permuted structure, Greek key, ab initio modeling

Résumé

Les protéines transmembranaires canaux-β (TMBs) se trouvent dans les membranes
externes des bactéries à Gram négatif, des mitochondries ainsi que des chloroplastes.
Elles traversent entièrement la membrane cellulaire et exercent différentes fonctions im-
portantes. Vu qu’il y a un petit nombre des structures des TMBs déterminées, en raison
des difficultés avec les méthodes expérimentales, il est douteux que ces approches puis-
sent bien trouver et prédire les TMBs qui ne sont pas homologues avec celles connues.
Nous construisons un modèle de graphe pour la classification et la prédiction de struc-
tures super-secondaires permutées des TMBs à partir de leur séquence d’acides aminés,
en se basant sur la minimisation d’énergie. Le modèle ne dépend essentiellement pas
de l’apprentissage. Les algorithmes sont rapides, robustes avec des performances com-
parables à celles des meilleures méthodes actuelles qui utilisent l’apprentissage. Cette
méthode peut être donc utile pour le screening des génomes. Outre la performance de
prédiction et de classification, cette étude donne une vue plus profonde de la structure des
TMBs en tenant compte des contraintes physicochimiques des membranes biologiques.
Les structures permutées prédites peuvent aussi aider à mieux comprendre le mécanisme
du repliement des TMBs.

Mots-clefs: protéine transmembranaire, canaux-β, prédiction de structure super-
secondaire, structure permutée, clé grecque, modélisation ab initio
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Introduction

Motivation

Proteins can be considered as major elements and tools of life at the molecular scale
as they carry out various functions in living organisms. These functions are expressed
through their three-dimensional conformations, i.e. the way that amino acids are ar-
ranged in the 3D space. Therefore, discovering the structures helps understand the
functions associated to the proteins. Besides the experimental methods, the prediction
of protein structure in silico from the amino acid sequence with high accuracy and reli-
ability is one of the most important tasks, yet remains a challenge in bioinformatics and
computational biology.

Transmembrane proteins play many important roles in the functioning of cells such
as enzymes, receptors, transporters, and channels. They are also involved in many hu-
man diseases including heart disease, cancer, Alzheimer’s, depression, migraine, retinitis
pigmentosa, hereditary deafness, diabetes, cystis fibrosis, etc. [29, 42, 85]. As a result,
they are the targets of a majority of current medicine and of an important research area.
These proteins make up 20 − 30% of identified proteins in most whole genomes. How-
ever, determining the structure of transmembrane proteins with experimental methods is
difficult as they are totally destabilized by the change of environment after their removal
from the membrane. Solved transmembrane protein structures constitute only about
1− 2% of the RCSB Protein Data Bank (PDB) [6, 13, 23, 40, 118]. Therefore, structure
prediction by computational methods for this class of proteins is of particular importance
for both biological and medical sciences.

Transmembrane proteins are divided into two main types according to their conforma-
tion: α-helical bundles and β-barrels, in which the transmembrane β-barrel (TMB) pro-
teins are much less abundant than α-helical bundles in the PDB. These TMB proteins are
found in the outer membrane of Gram-negative bacteria, mitochondria and chloroplasts.
They entirely span the biological membrane and perform a wide range of functions, such
as porins, passive or active transporters, enzymes, defense or structural support, multi-
drug resistance [54, 117]. Nevertheless, only a few non-homologous TMB structures have
been experimentally determined due to difficulties in the experimental methods such as
X-ray crystallography or nuclear magnetic resonance spectroscopy. Moreover, the folding
mechanism of TMB proteins has not been well understood yet, though they are observed

1



Introduction

in spontaneous folding process in certain experiments in vitro [17, 117, 131, 132].

We particularly concentrate, in this thesis, on the super-secondary structure of TMB
proteins, which describes the arrangement and interaction of the β-strands in the 3D
space.

State of the art

Contrarily to the great progress in structure prediction on α-helical bundles [40], due to
a tiny number of determined TMB structures, the learning-based predictions for these
proteins are still far from being reliable, although various techniques have been recently
developed for discriminating TMB proteins from globular and transmembrane α-helical
proteins [41, 50, 51, 130], and for predicting TMB secondary structures [7, 50, 51, 96,
103, 130].

Gromiha et al. [50, 51] used the amino acid compositions of both globular and outer
membrane proteins (OMPs) to discriminate OMPs and developed a feed forward neural
network-based method to predict the transmembrane segments. Bagos et al. [7] pro-
duced a consensus prediction from different methods based on hidden Markov models,
neural networks and support vector machines [1, 9, 16, 51, 59, 86, 89, 94]. Waldispühl
et al. [130] used a structural model and pairwise interstrand residue statistical potentials
derived from globular proteins to predict the supersecondary structure of TMB proteins.
Randall et al. [103] tried to predict the TMB secondary structure with 1D recursive neural
network using alignment profiles. Ou et al. [96] proposed a method based on radial basis
function networks to predict the number of β-strands and membrane spanning regions in
β-barrel outer membrane proteins. Freeman et al. [41] introduced a statistical approach
for recognition of TMB proteins based on known physicochemical properties. Most of
these rely on the learning assumptions in the underlying models as well as the sampling
of proteins in their training data set. As the number of TMB structures known today is
very limited, it is arguable whether these approaches can work well for recognizing and
folding TMB proteins which are not homologous to those currently known.

Moreover, the Greek key motifs are the topological signature of many β-barrel and
β-sandwich structures [139]. This raises an open question whether the TMB structures
are not merely a series of β-strands where each is bonded to the preceding and succeeding
ones in the sequence order, but may contain Greek key or Jelly roll motifs as well: for
instance, the C-terminal domain of the outer membrane usher protein PapC (PDB:3L48).
This level of structure may be described as a permutation on the order of the bonded
strands.

Contribution

We present a novel graph-theoretic model (see Chapter 2 and 3) for predicting the super-
secondary structure of transmembrane β-barrel proteins from their amino acid sequence.

2



Introduction

This structure is considered as a permuted arrangement or β-strands in a barrel, in
which the β-strands are paired antiparallely or parallely. The problem consists in finding
the thermodynamically most stable structure, i.e. the structure of minimum energy.
This protein structure prediction problem can be modeled into finding the longest cycle-
attached path in a graph with respect to a given permutation.

Each vertex in the graph represents an amino acid segment that satisfies the con-
formational constraints, for instance, the length of β-strands, the hydrophobicity of side
chains, the propensity for each segment to be a β-strand. . . A probabilistic model is built
from the determined structures to calculate these propensities. It is applied as a filter
for potential β-strands. Each edge presents a pair of segments whose loop in between
satisfies the constraints on length, flexibility, polarity, etc. The energies are assigned to
the vertices, the edges, as well as to the interaction between each pair of pairing segments.

The amino acids are constructed in the three-dimensional space using the Dunbrack
rotamer library. We then calculate the energies as the average on all rotamers. The
hydrophobic interaction is computed on each pair of residue side chains using well-known
hydrophobicity scales, while the electrostatic interactions between two amino acids are
obtained thanks to the partial charges in the molecular mechanics force fields.

We prove the NP-completeness of the problem of finding the optimal permuted super-
secondary structure. Then, a dynamic programming-based algorithm is proposed and
implemented. This algorithm can find the optimum with a complexity in time of at most
O(N4) for the structures containing disjoint Greek key motifs (see Chapter 2). This
complexity is improved to O(N3) with another algorithm that uses the concept of tree
decomposition (see Chapter 3).

To evaluate the performance of our method, we test the program on all TMB se-
quences with known structures in the PDBTM database (see Chapter 4). We show the
accuracy of the approach with the F-score, sensitivity, specificity of more than 90% in the
measure on β-strands and more than 74% in the measure on residues, which are compara-
ble to the best learning-based methods. The ability of discrimination is also robust with
100% of α-helical transmembrane proteins and 97% β-barrel lipocalins being rejected. It
also shows the ability to find the arrangement of β-strands with the “right permutation”
locating in the zone of 0.7% - 1.5% of lowest-energy permutations. This method is thus
potentially a useful tool for the genome screening. Beside the performance on prediction
and classification, this study provides insight into TMB structures regarding the physic-
ochemical constraints of biological membranes. The predicted permuted structures can
also enhance the understanding on the folding mechanism of TMB proteins.

The program can be executed via the web-server BBP (Beta Barrel Predictor) (http://
www.lix.polytechnique.fr/Labo/Van-Du.Tran/bbp/).
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Introduction

Organization

The manuscript is organized as follows:

Introduction

This chapter presents the motivation of the work, the state of the art in this research
area, the summary of our contribution and an outline of the manuscript.

Chapter 1

Fundamental review of proteins. We remind the fundamental notions in biology concern-
ing the proteins and the methods of protein structure prediction.

Chapter 2

Folding β-barrels. We introduce our model and algorithm for determining the protein
structure of minimal energy, then provide an analysis on the computational complexity
with regard to different types of structures.

Chapter 3

Tree-decomposition based algorithm. We present an algorithmic improvement based on
the tree decomposition technique, followed by an analysis on its computation complexity.

Chapter 4

Evaluation of performance of BBP (Beta-Barrel Predictor). We assess the performance
of our prediction model on the experimentally determined structures.

Conclusion and perspectives

The final chapter summarizes our work and suggests further research directions.
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Chapter 1

Fundamental review of proteins

1.1 Introduction

This chapter provides the reader with fundamental notions in biology that are men-
tioned throughout the manuscript and necessary for understanding the practical moti-
vation of our work. The content is inspired from the Ecole Polytechnique text book of
molecular and cellular biology by Yves Gaudin, Arnaud Echard and Sandrine Etienne-
Manneville [44], the book on membrane structural biology by Mary Luckey [82], and
Jérôme Waldispühl’s PhD thesis [129].

We rapidly present the amino acids, constituent of proteins, before describing the
properties and structures of the proteins themselves. Then, we focus on the class of
transmembrane proteins, especially the β-barrels which are the subject of our whole
work. We finally describe the problem of protein structure prediction and present the
methods that have been developed to solve it.

1.2 Proteins

1.2.1 Amino acids

Amino acids have the general form:

............................

............................

............................

......

......

......

......

....

Cα COOH

R

H2N

H
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Chapter 1. Fundamental review of proteins

They contain an amine group NH2, a carboxylic group COOH and an organic sub-
stituent R. In aqueous solution at neutral pH, amino acids exist in the zwitterionic form
where the amine functional group is protonated (NH+

3 ) and the carboxylic functional
group is deprotonated (COO−). The substituent R, also called side chain, varies be-
tween 20 different standard amino acids. The four groups attached to the α-Carbon are
distinguished (except for Glycine in which the side chain R consists of a hydrogen atom).
Therefore, there exists two reflection-symmetric isomers L and D (see Figure 1.1), of
which only L isomers are present in proteins.
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RH
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3 N COO−

Figure 1.1: Isomers L and D of amino acids

The 20 standard amino acids are shown in Figure 1.2. Each amino acid is associated
with a 3-letter abbreviation and a 1-letter code which we will use throughout our work.

1.2.2 Properties of amino acids

The individual properties of constituent amino acids play a major role in determining
the conformation and function of the protein. They are determined by the amino acid
side chains. We make use of certain particular properties in this work, such as electric
charge, polarity and hydrophobicity which are able to be quantified.

Among these, the hydrophobicity is the most important factor. It measures the
capacity of the amino acid to interact with water molecules or more generally its behavior
in the solvent. Several hydrophobic scales have been developed [31, 36, 37, 61, 72, 107,
108, 131, 133, 134] (see Table 1.1). They are clearly different due to the various methods
that are used for measuring the hydrophobicity. Some methods examine proteins with
known three-dimensional structures and define the hydrophobic character as the tendency
for a residue to be found inside the protein rather than on its surface. Others result
from the physiochemical properties of the amino acid side chains. The widely used Kyte-
Doolittle scale [72] can help detect hydrophobic regions in proteins, in which regions with
a positive value are considered hydrophobic. This scale can work for predicting surface-
exposed regions as well as for finding transmembrane domains. The Engelman scale [37],
or GES scale, is useful for prediction of transmembrane regions in proteins. Eisenberg
et al. [36] proposed a normalized consensus scale which has many common features with
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Méthionine (Met/M)

..............................
...............

...............
......
.....
....

C
α

COO−+H3N

H

...............

CH2

.......................................................................................
...........

...........
.........
......
......
......
......
......
.........
...........
...........
.................................................

......
......
......
......
....

.................
........
...............................

............................

............................ .......
..........

...........

Phenylalanine (Phe/F)

..................
........................

......
......

+H2N C
α

............................
.........

. CH2

CH2

H2C

COO−

H

...............
.....
.....
.....

Proline (Pro/P)

..............................
...............

...............
.....
.....
.....

C
α

COO−+H3N

H

...............

CH2

OH

Serine (Ser/S)

..............................
...............

...............
.....
.....
.....

C
α

COO−+H3N

H

...............
...............

............... C OH

CH3

H

Threonine (Thr/T)

..............................
...............

...............
.....
.....
.....

C
α

COO−+H3N

H

...............

CH2

...............
...............

C ...............

CH

NH
.......................................................................................

...........
...........

.........
......
......
......
......
......
.........
...........
...........
.................................................

......
......
......
......
....

.................
........
...............................

............................

............................ .......
..........

........... ...........
........

.....

......

.....

...

Tryptophane (Trp/W)

..............................
...............

...............
.....
.....
.....

C
α

COO−+H3

H

...............

CH2

.......................................................................................
...........

...........
.........
......
......
......
......
......
.........
...........
...........
.................................................

......
......
......
......
....

.................
........
...............................

............................

............................ .......
..........

...........

...................

OH
......
.....
....

Tyrosine (Tyr/Y)

..............................
...............

...............
.....
.....
.....

C
α

COO−+H3N

H

...............
...............

CH

CH3H3C

Valine (Val/V)

Figure 1.2: The 20 amino acids. The side chains are in red.
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Chapter 1. Fundamental review of proteins

other hydrophobicity scales. Hopp-Woods scale [58] can be used for identification of
putative antigenic sites in proteins. Cornette et al. [31] compared thirty-eight published
hydrophobicity scales for their ability to identify the amphipathic α-helices and proposed
an optimized scale using the eigenvector method. Janin scale [61] and Rose scale [107]
evaluate the accessible and buried amino acid residues of globular proteins. Certain scales
are calculated for specific classes of proteins: for instance, White & Wimley scale [131]
evaluates the ability of amino acids to penetrate the hydrophobic membrane environment.

Amino
acid

Kyte-
Doolittle

Hopp-
Woods

Cornette Eisenberg Rose Janin Engelman
(GES)

Wimley-
White

A 1.80 -0.50 0.20 0.62 0.74 0.30 1.60 0.50
R -4.50 3.00 1.40 -2.53 0.64 -1.40 -12.3 1.81
N -3.50 0.20 -0.50 -0.78 0.63 -0.50 -4.80 0.85
D -3.50 3.00 -3.10 -0.90 0.62 -0.60 -9.20 0.43
C 2.50 -1.00 4.10 0.29 0.91 0.90 2.00 -0.02
Q -3.50 0.20 -2.80 -0.85 0.62 -0.70 -4.10 0.77
E -3.50 3.00 -1.80 -0.74 0.62 -0.70 -8.20 0.11
G -0.40 0.00 0.00 0.48 0.72 0.30 1.00 1.15
H -3.20 -0.50 0.50 -0.40 0.78 -0.10 -3.00 0.11
I 4.50 -1.80 4.80 1.38 0.88 0.70 3.10 -1.12
L 3.80 -1.80 5.70 1.06 0.85 0.50 2.80 -1.25
K -3.90 3.00 -3.10 -1.50 0.52 -1.80 -8.80 2.80
M 1.90 -1.30 4.20 0.64 0.85 0.40 3.40 -0.67
F 2.80 -2.50 4.40 1.19 0.88 0.50 3.70 -1.71
P -1.60 0.00 -2.20 0.12 0.64 -0.30 -0.20 0.14
S -0.80 0.30 -0.50 -0.18 0.66 -0.10 0.60 0.46
T -0.70 -0.40 -1.90 -0.05 0.70 -0.20 1.20 0.25
W -0.90 -3.40 1.00 0.81 0.85 0.30 1.90 -2.09
Y -1.30 -2.30 3.20 0.26 0.76 -0.40 -0.70 -0.71
V 4.20 -1.50 4.70 1.08 0.86 0.60 2.60 -0.46

Table 1.1: Hydrophobic scales

Table 1.2 shows other physicochemical properties, such as polarity [48], flexibility [15],
volume [138] and surface area [27] associated to amino acids.

The 20 amino acids are classified into different categories regarding the properties of
their side chain. The following is the most common classification.

• Glycine is the most simple amino acid with a hydrogen atom in the side chain.

• Alanine, valine, leucine and isoleucine possess an aliphatic side chain that makes
them hydrophobic.
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1.2. Proteins

Amino acid Polarity Flexibility Volume Surface

A 8.1 0.36 88.6 115
R 10.5 0.53 173.4 225
N 11.6 0.46 114.1 160
D 13.0 0.51 111.1 150
C 5.5 0.35 108.5 135
Q 10.5 0.49 143.8 180
E 12.3 0.50 138.4 190
G 9.0 0.54 60.1 75
H 10.4 0.320 153.2 195
I 5.2 0.46 166.7 175
L 4.9 0.370 166.7 170
K 11.3 0.47 168.6 200
M 5.7 0.30 162.3 185
F 5.2 0.31 189.9 210
P 8.0 0.51 112.7 145
S 9.2 0.51 89.0 115
T 8.6 0.44 116.1 140
W 5.4 0.31 227.8 255
Y 6.2 0.42 193.6 230
V 5.9 0.39 140.0 155

Table 1.2: Polarity, flexibility and other physicochemical parameters of amino acids

• Serine and threonine have an aliphatic side chain with a polar hydroxyl group.

• Phenylalanine, tyrosine and tryptophan contain an aromatic group. The hydroxyl
function of tyrosine is a weak acid with pKa ∼ 10. Tyrosine is then ionizable but
not ionized in physiological conditions.

• Lysine, arginine and histidine are basic. Lysine and arginine have a high pKa in
solution (10.5 and 12.5, respectively), and thus positively charged in physiological
conditions. The low pKa of histidine (∼ 6) makes it neutral or protonated following
the pH of the solution.

• Aspartate and glutamate are acid (with low pKa of about 3.9 and 4.3, respectively)
and negatively charged at neutral pH (named also aspartic acid and glutamic acid).

• Asparagine and glutamine are the amidated products of aspartate and glutamate,
and thus not ionisable.

• Cysteine and methionine possess a sulphur atom in their side chain. The sulfhydryl
group in cysteine is a highly potent nucleophile and also a weak acid. It can be
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Chapter 1. Fundamental review of proteins

easily oxidized to form with another cysteine a disulfide bond which stabilizes the
tridimensional conformation of proteins.

• Proline has a formula that is different from other amino acids. The cyclic secondary
amino function gives it a specific role in the establishment of the tridimensional
structure of proteins.

1.2.3 Peptide bond

A peptide bond is a covalent bond formed between the α-carboxylic group of an amino
acid and the α-amine group of the other one. This process combines two amino acids
into an amide (dipeptide) and releases a molecule of water (H2O). It is thus called a
dehydration reaction or a condensation reaction, which is written as:
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+ H2O

Amino acids in a protein are covalently linked together by peptide bonds to form a
non-branching polypeptide chain. A unit of amino acid is called a residue. A polypeptide
possesses an amino-terminal extremity (N-terminus) and an carboxy-terminal extremity
(C-terminus). The synthesis of a polypeptide is carried out in a so-called “translation”
process, where residues are consecutively added from its N-terminus. The N-terminus is
then considered as the beginning of the chain.
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A polypeptide chain is composed of a series of repetitive bonded atoms, namely
backbone or main-chain,
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and a variable part of amino acid side chains Ri, where i denotes the residue position
counting from the N-terminus. These side chains precisely determine the specific prop-
erties and functions of each protein. The sequence of amino acids of a polypeptide chain
is known as its primary structure.

The peptide bond has characteristics of a double bond due to the mesomeric (reso-
nance) effect, thus the six atoms above are coplanar, making a peptide plan.
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Two configurations, called trans and cis, occur according to whether the two α-carbons
are on the same or opposite side, respectively.
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The trans configuration is energetically favored as it causes less repulsion between non-
bonded atoms. The crystallographic studies showed almost constant values of distances
and angles of the peptide bond for every polypeptide chain (see Figure 1.3).

As the geometry of a peptide plane is fixed, the torsion angles φ and ψ are two degrees
of freedom in determining the conformation of the polypeptide chain. φ is the dihedral
angle around the N–Cα bond, determined by the two carbons CO. ψ is around C–Cα
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Figure 1.3: Peptide bond geometry in trans configuration

bond, determined by the two nitrogens N (see Figure 1.4. There are strong constraints
on the angles φ and ψ. Certain combinations are clearly impossible, while some others
are energetically unfavorable. Ramachandran et al. [100, 101] introduced Ramachandran
diagram to visualize graphically the backbone dihedral angles φ and ψ in the polypeptide
chain of proteins. Each amino acid in the protein is represented with the coordinate
(φ,ψ) in the plot in the range of [−180◦, 180◦] [81]. The Ramachandran diagram of the
constituent amino acids of the outer membrane protein A (PDB:1BXW) is presented in
Figure 1.51. The limited regions of distribution of (φ,ψ) prove the restricted flexibility
of the polypeptide chain.

1.2.4 Protein

Proteins are macromolecules constituted by a large number of amino acids, from a few
dozens to several hundred. This is one of the four important organic macromolecules in
living organisms, along with nucleic acids, carbohydrates and lipids. Many proteins are
composed of only one polypeptide chain (namely monomer). Others can be formed of
more than one chains, and thus are called oligomers (e.g., dimer, trimer, tetramer. . . ).
If these chains are identical, the protein is called homo-oligomer. Otherwise, it is a
hetero-oligomer. Each constituent chain is a subunit, also known as a protomer.

Proteins are essential in organisms and take part in almost every process in the
cells. They are usually classified into three major classes according to their overall three-

1Image generated by MolProbity web-server [26, 32]
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Figure 1.4: Torsion angles between two peptide plans

dimensional structures and their functional roles: fibrous, globular and membrane pro-
teins.

• Fibrous proteins (or scleroproteins), which tend to be elongated fibers, are generally
inert and insoluble. These proteins are usually constructed of repetitive amino acid
sequences. These characteristics make them appropriate to play structural roles in
organisms for supportive and protective function. For example, keratin constructs
hair, nails, and skin. . . ; collagen is abundantly found in connective tissues such
as cartilage, tendons. . . ; elastin is important in ligaments, blood vessels. . . . An
example of collagen is given in Figure 1.62.

• Globular proteins, which comprise a large variety of proteins, are soluble and exist in
an aqueous environment. Hence, these proteins generally have compact structures
with polar residues on the surface and hydrophobic residues in the core. These

2Image generated by PyMOL [113]
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Figure 1.5: Ramachandran plot for the outer membrane protein A (PDB:1BXW)

Figure 1.6: Structure of collagen (PDB:1BKV)

proteins are the most described in the Protein Data Bank (PDB) [13], since their
structures are usually stable, and thus easy to determine experimentally. Two of
the most known globular proteins, myoglobin and hemoglobin, are the first two
experimentally determined structures by John Cowdery Kendrew [67] and Max
Ferdinand Perutz [97], which led to them receiving a Nobel Prize in Chemistry in
1962. The structure of myoglobin is presented in Figure 1.73.

• Membrane proteins exist in the cell membranes – a phospholipid bilayer with hy-
drophobic core. They typically have hydrophobic exposed regions in order to be
stable in such an environment. Some proteins slightly adhere to the membrane,

3Image generated by PyMOL [113]
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1.2. Proteins

Figure 1.7: Structure of myoglobin (PDB:1A6M)

while others are embedded in the lipid bilayer. Among the latter, some proteins,
namely transmembrane proteins, entirely span the biological membrane one or sev-
eral times (polytopic proteins). Figure 1.84 illustrates the structure of insulin re-
ceptor, a well known transmembrane protein which helps induce glucose uptake,
thus causes diabetes in case of its insensitivity.

Figure 1.8: Structure of insuline receptor (PDB:1GAG)

4Image generated by PyMOL [113]
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1.2.5 Protein structure

The structure of a protein can be decomposed into different structural elements which
allow to describe it in some level of precision. The standard classification proposed by
Linderstrom-Lang [78, 79] defined four structural levels: primary, secondary, tertiary and
quaternary.

a. Primary structure

As mentioned in 1.2.3, the primary structure is the sequence of amino acids constituting
the polypeptide chain: R1R2 . . . Rn.

b. Secondary structure

The secondary structure represents the local conformation of the polypeptide chain.
Three main types of secondary structures are found: α-helices, β-sheets and loops.

α-helix

An α-helix is stabilized with hydrogen bonds between the C=O group in the main
chain of residue i and the N−H group in the main chain of residue i+4. In such a regular
structure, all residues are involved in hydrogen bonds. Generally, there are two other
kinds of bonding though they are much less frequent. The 3.10 -helices and π-helices are
characterized by hydrogen bonds between residues i and i + 3, and between residues i
and i + 5, respectively.

An α-helix is geometrically considered as a chain of periodic tours which correspond
to a 5.4Å translation along the helix axis. Each tour contains, on average, 3.6 amino
acids, thus the amino acids are translated 1.5Å along the axis. The structure of an
α-helix is illustrated in Figure 1.9.

β-sheet

A β-sheet is composed of β-strand subunits. A β-strand can be considered as a
degenerated helix with 2 amino acids per tour. Each strand interacts with its neighbors
through hydrogen bonds between the C=O and N−H groups in the main chains. As in
helices, all residues in a regular β-sheet are involved in hydrogen bonds. This bonding
associates the β-strands to each other, making the β-sheet stable.

β-sheets are separated into two types regarding whether the constitutive β-strands
are parallel or antiparallel, which is determined by the direction of the pairing β-strands
(see Figure 1.10). The β-sheet structure generated by antiparallel pairing is found more
frequently than the one with parallel pairing, as the former is naturally more stable
thanks to a better arrangement of residues.

The torsion angles φ and ψ are respectively around −119◦ and +113◦ for parallel
β-sheets, and around −139◦ and +135◦ for antiparallel ones. The distance between two
consecutive residues in a strand is about 3.5Å. In addition, the large β-sheets are not
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Figure 1.9: Structure of an α-helix

(a) (b)

Figure 1.10: Antiparallel pairing (a) and parallel pairing (b) of β-strands
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plane, but rather make the curved surfaces. The residue side chains are alternatively
located on the two sides of the β-sheet. Frequently, the β-sheets possess a hydrophobic
surface oriented towards the protein interior and a hydrophilic surface oriented towards
the solvent. An illustration of β-sheet characteristics is presented in Figure 1.115.

Figure 1.11: Characteristics of a β-sheet.

c. Tertiary structure

The tertiary structure is the tridimensional conformation of the polypeptide chain, i.e.
the relative coordinates of all atoms constituting the protein. This level of structure is
essentially stabilized by hydrophobic interaction. There is a considerable difference on
the precision of description between secondary and tertiary structures. Hence, the super-
secondary structure appears as an intermediary description level. This describes the
secondary structure as well as its interactions. Figure 1.126 illustrates the tertiary and
super-secondary structure of the cystic fibrosis transmembrane conductance regulator.

5Figure retrieved from http://wps.prenhall.com/wps/media/objects/602/616516/Chapter 24.

html
6Image generated by PyMOL [113]
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1.2. Proteins

Figure 1.12: Tertiary structure (a) and super-secondary structure (b) of the cystic fibrosis
transmembrane conductance regulator (PDB:1R0W)

d. Quaternary structure

When the protein is a multi-subunit complex, i.e. a composition of several polypeptide
chains, the quaternary structure describes the arrangement of these chains (stoichiometry,
interaction interface, symmetry,. . . ). Figure 1.137 presents the quaternary structure of
human hemoglobin, which is a heterotetramer (α2β2) composed of two heterodimers
(αβ).

Figure 1.13: Quaternary structure of human hemoglobin (PDB:1MKO)

7Image generated by PyMOL [113]
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1.3 Transmembrane proteins

1.3.1 Biological membrane

Before introducing the transmembrane proteins, it is appropriate to start with biolog-
ical membranes, the environment where those proteins are located. The constitutive
molecules of living organisms are contained in cells − compartments that allow the exis-
tence of a privileged environment in a restricted volume that differs from outside. This
presents a thermodynamic advantage since it increases the probability of interaction of
molecules, and thus the occurrence of chemical reactions. Such an enclosed space is
defined by a plasma membrane (or cell membrane). This membrane separates the intra-
cellular compartment, namely cytoplasm, and the extracellular environment. It not only
determines the border of the cell, but it also helps maintain the difference of concentra-
tions between the exterior and interior mediums, favor the entrance of nutrients into the
cell, contribute to the elimination of waste of metabolism, and play an important role in
intercellular communication.

All the biological membranes have a common structure. This is a two-layered sheet
(also bilayer) composed of two layers of lipid molecules [2, 47, 82] with embedded proteins
(see an illustration in Figure 1.14). The essential property of the membrane lipids, such
as phospholipids, glycolipids and cholesterol, is their amphiphilic (or amphipathic) na-
ture, i.e. they comprise both hydrophilic regions (dissolvable in water or “water-loving”)
and hydrophobic regions (insoluble in water or “water-fearing”). The lipid bilayer is
spontaneously formed as an assemblage of lipid molecules, thanks to such a character-
istic, with hydrophobic portions pointing toward the interior of the sheet, making this
region free from water. The two hydrophilic surfaces of the sheet are then exposed to the
aqueous mediums (intra- and extra-cellular environments). This gives the lipid bilayer
two important properties. On the one hand, with a hydrophobic core, the membrane is
impermeable to most biological molecules, such as nucleic acids, amino acids, proteins,
sugars or ions. Thus, the membrane acts as barrier between intra- and extra-cellular
mediums. On the other hand, the lipid bilayer forms a two-dimensional liquid in which
the constituent molecules can be rapidly laterally rearranged.

Membrane proteins are embedded in the lipid bilayer and ensure most of membrane
functions. They constitute about 50% of the membrane mass [115]. We distinguish mem-
brane proteins according to their interaction with the membrane. These are illustrated
in Figure 1.148.

• Transmembrane proteins are permanently attached to the membrane and span
across the bilayer.

• Lipid-anchored proteins are attached to the lipid bilayer by a lipidated anchor.

8Figure retrieved from http://commons.wikimedia.org/wiki/File:Cell membrane detailed

diagram en.svg
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1.3. Transmembrane proteins

• Peripheral proteins are located at the membrane surface. They are essentially
bound to lipid bilayer or transmembrane proteins by electrostatic interaction.

Figure 1.14: Illustration of a biological membrane and embedded membrane proteins.

1.3.2 Transmembrane proteins

Transmembrane proteins entirely span across the biological membranes. The hydrophobic
domains included in the proteins allow them to interact with the hydrophobic center of
the lipid bilayer (see Figure 1.159). They can possess one or more successive hydrophobic
domains, and thus, can traverse the membrane one or several times. Certain proteins
can also partially penetrate the bilayer. The extraction of these proteins is difficult and
requires detergents, nonpolar solvents or denaturing agents, causing a denaturation.

Transmembrane proteins play several key roles in the human body including inter-
cell communication, transportation of nutrients, and ion transport, etc. They also play
key roles in human diseases like heart disease, cancer, Alzheimer’s, depression, migraine,
retinitis pigmentosa, hereditary deafness, diabetes, cystis fibrosis, etc. [29, 42, 85], and
thus are targeted by a majority of pharmaceuticals being manufactured today.

The transmembrane proteins are divided into two main types according to their con-
formation: α-helical bundles and β-barrels. These proteins make up 20−30% of identified
proteins in most whole genomes. However, due to difficulties in determination of their
structures, solved TMB structures constitute only a meagre 2% of the RCSB Protein
Data Bank (PDB) [6, 13, 23, 118].

9Figure retrieved from http://commons.wikimedia.org/wiki/File:Polytopic membrane protein.

png
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Figure 1.15: Transmembrane proteins: (1) a single transmembrane hydrophobic α-helix -
bitopic membrane protein, (2) several transmembrane hydrophobic α-helices, (3) transmem-
brane β-barrel protein.

a. α-helical bundles

Transmembrane α-helices dominate the picture of transmembrane proteins with early
structural information on bacteriorhodopsin in 1970s [57, 68] and with the first X-ray
structure solved for membrane proteins, that of the photosynthetic reaction center [34]
(which led to authors receiving a Nobel Prize in Chemistry in 1988). The majority of
transmembrane proteins with solved structures fall in this class. These α-helical bundles
are found in all types of biological membranes. A bundle is composed of a certain number
of helices arranging in such a way as to create a channel through the membrane. These
membrane spanning helices are generally constituted by a large majority of hydropho-
bic amino acids in order to adapt to the hydrophobic characteristics of the biological
membrane.

The folding process of α-helical bundles is assumed to be decomposed into two
stages [98]. In stage 1, the transmembrane α-helical segments are formed (stabilized by
hydrogen bonds along the backbone) and insert independently into the bilayer (driven
by the hydrophobic effect), and in stage 2, they assemble by packing together (driven by
intrinsic forces such as packing, electrostatic interactions, hydrogen bonds between side
chains, interactions between the loops between helices and components at the surface of
the membrane, etc.).

Bacteriorhodopsin, which is shown in Figure 1.1610, is the well-known representative
of transmembrane α-helices.

10Image generated by PyMOL [113]
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Figure 1.16: Bacteriorhodopsin in purple membrane (PDB:2BRD)

b. β-barrels

This class is central to our concern in this thesis. The transmembrane β-barrel (TMB)
proteins whose solved structures are much less abundant than those of helical bundles are
found in the outer membrane of Gram-negative bacteria, mitochondria and chloroplasts.
Gram-negative bacteria characteristically possess two membranes: an inner cytoplasmic
membrane and an outer membrane facing the extracellular environment. The latter is
an asymmetric bilayer with an outer leaflet composed of lipopolysaccharide and an inner
leaflet composed of phospholipids [117]. Beside the important roles in the interaction of
symbiotic or pathogenic bacteria with the host organisms, the outer membrane usually
acts as a permeability barrier to prevent the penetration of noxious substances and to
allow the influx of nutrient molecules [95]. This is similar to mitochondria and chloro-
plasts. The TMB proteins located in those outer membranes perform diverse functions
such as porins, passive or active transporters, enzymes, defense or structural support,
multi-drug resistance [54, 117]. The structure of TMB proteins is thus very important
for both biological and medical sciences.

As the number of determined TMB structures are very limited [125], the principles
governing their formation are still not thoroughly clear. The folding mechanism of TMB
proteins is unlike that of α-helical bundles, because each helix can be formed indepen-
dently thanks to hydrogen bonds along the backbone while β-barrels necessitate hydrogen
bonds between neighboring strands. Certain experiments in vitro result in observations
that the outer membrane proteins spontaneously fold into lipid bilayers [17, 117, 131, 132].
TMB proteins are assumed to insert and fold into lipid bilayers in such a way that the
transmembrane β-hairpins are concertedly translocated. The closure of β-barrels is syn-
chronized to its formation, i.e. the hydrogen bonds between β-strands have to form along
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with the translocation of the protein across the membrane [70, 117].

The TMB proteins are usually created by a succession of antiparallely paired β-
strands forming a channel. A β-barrel can be considered as a self-closed β-sheet. The
observed structures are formed by 8 to 22 β-strands which incline at an angle of 20◦to
45◦with respect to the barrel axis. Each of these β-strands comprises about 9 to 11
residues. While 8 appears to be the lower bound on the number of necessary β-strands
to form a channel [112], the upper bound of 22 is only obtained by experimental observa-
tion [102]. The β-barrels are usually constituted by an even number of β-strands, which
allows an antiparallel pairing at the barrel closure. An illustration of TMB protein is
given in Figure 1.1711.

Figure 1.17: Outer membrane protein X (PDB:1QJ8)

1.4 Folding energy

The function of a protein is determined by the arrangement of its atoms in the 3D
space. This conformation is stabilized by non-covalent interactions (except for disulfide
bonds) between protein atoms as well as between protein atoms and water molecules in
the medium. These interactions induce an energy, namely folding energy. It is widely
assumed that the most stable structure is the one possessing the minimal folding energy,
yet we will not discuss the pertinency of this assumption in this thesis. The folding
energy involves various components that are briefly described below.

11Image generated by PyMOL [113]
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1.4.1 Partial charges

A partial charge is a charge with a magnitude of less than one elementary charge unit (i.e.
the charge of an electron). Partial charges of atoms are created due to the asymmetric
distribution of electrons in chemical bonds. These charges are used to assess the energy
of interactions. Their values are computed in various molecular mechanics force fields,
such as AMBER [24], CHARMM [22], GROMOS [126], OPLS [63], etc. The values
of partial charges from GROMOS force field (see Table 1.3) are used throughout our
implementation.

1.4.2 Electrostatic interaction

Following Coulomb’s law, two charged particles interact to each other with a potential
energy:

V =
qiqj

4πǫ0ǫrrij

where qi and qj represent the charges of particles i and j, rij is the distance between
them, ǫ0 ≈ 8.85×10−12 F.m−1 is the vacuum permittivity and ǫr is the dielectric constant
(or relative permittivity) of the medium (some examples are given in Table 1.4).

The amino acid side chains can carry a ionized group (such as the ammonium (NH+
3 )

cation of lysine, the guanidinium ([CH5N3]
+) cation of arginine, carboxylate (COO−)

anion of aspartate and glutamate) or a polar group (such as the hydroxyl groups of
serine, threonine and tyrosine). The polypeptide main chain also contains a positively
charged amino-terminal extremity, a negatively charged carboxy-terminal extremity, as
well as the polar groups C=O and N−H. These cause numerous electrostatic interactions
between charged groups (potential ∼ O(1/r)), between a charge and a dipole (potential
∼ O(1/r2)) or between two dipoles (potential ∼ O(1/r3)), where r denotes their distance.

1.4.3 Hydrogen bond

The hydrogen bond is a particular type of electrostatic interaction, which can be con-
sidered as an intermediary between covalent and ionic bonds. It is, intermolecularly or
intramolecularly, formed by a dipole-dipole attraction between a hydrogen covalently at-
tached to an electronegative atom (donor) and another electronegative atom (acceptor).
The hydrogen atom has a positive partial charge, while the electronegative atom, usually
oxygen, nitrogen or fluorine, has a negative partial charge. The hydrogen bond is viewed
as an in-between state in the proton transfer from the donor D to the acceptor A:

D − H + A ⇄ Dδ− · · ·Hδ+ · · ·A ⇄ D− · · ·H − A+

The energy of a hydrogen bond depends on its bonding geometry. The optimal energy
is obtained when H is aligned with D and A. Figure 1.18 illustrates the two popular
examples of hydrogen bond.
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Amino acid Atom type PDB codes Charge (e)

D, E C CG (CD) 0.270
O ODi(OEi), i = 1,2 -0.635

N, Q N ND2 (NE2) -0.830
H HD2i (HE2i), i = 1,2 0.415
C CG (CD) 0.380
O OD1 (OE1) -0.380

C S SG -0.064
H HG 0.064

T C CB 0.150
O OG1 -0.548
H HG1 0.398

S C CB 0.150
O OG -0.548
H HG 0.398

R C CD 0.090
N NE -0.110
C CZ 0.340
N NHi, i = 1,2 -0.260
H HE, HHij, i, j = 1,2 0.240

K C CE 0.127
N NZ 0.129
H HZi, i =1,2,3 0.248

H (A/B)† C CD2/CG 0.130
N NE2/ND1 -0.580
C CE1 0.260
H HD1/HE2 0.190

F C CDi, CEi, i = 1,2, CZ -0.100
H HDi, HEi, i = 1,2, HZ 0.100

Y C CDi, CEi, i = 1,2 -0.100
H HDi, HEi, i = 1,2 0.100
C CZ 0.150
O OH -0.548
H HH 0.398

W C CG -0.140
C CD1, CE3, CZi, i = 2,3, CH2 -0.100
H HD1, HE3, HZi, i = 2,3, HH2 0.100
N NE1 -0.050
H HE1 0.190

† The partial charges for Histidine represent two possible ionized states which carry neutral
charge.

Table 1.3: Partial charges from the Gromos force field for standard amino acids. e is the
absolute value of elementary charge unit.
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Medium ǫr

Vacuum 1.0 (by definition)
Paraffin 2.0 − 2.5

Methanol 33.6
Water 20◦C 80.3
Water 0◦C 87.7

Table 1.4: The dielectric constant of selected mediums

O

H

H

OH

Hδ+

δ+

δ− δ+ δ−

δ+

(a)

C O H N
δ+ δ+ δ− δ+

(b)

Figure 1.18: Hydrogen bonds represented in dash lines: (a) between water molecules and
(b) between carboxylic and amino groups. δ+ and δ− are positive and negative partial
charges, respectively.

Only oxygen, nitrogen and sulfur take part in hydrogen bonding in protein structures.
The groups OH, NH, SH are donors, while oxygen and non-protonated nitrogen play the
role of acceptors. Each residue, except for proline, in the polypeptide chain possesses
a donor (N-H) and an acceptor (C=O) that can take part in hydrogen bonds in the
main chain. Moreover, the side chains of more than half of residues are also capable to
hydrogen bond with other residues or water molecules.

1.4.4 Van der Waals forces and steric repulsion

When two atoms approach each other, the modification of the electron distribution in-
duces a polarization. There appears an attractive interaction by van der Waals forces.
These forces include forces between polar molecules (Keesom force), between a polar
molecule and a corresponding induced dipole (Debye force), and between two instanta-
neously induced dipoles (London dispersion force). Van der Waals forces have a potential
of order 1/r6, where r is the distance between molecules.

Nevertheless, when two atoms are too close to each other, the steric repulsion becomes
stronger and lead to a counterbalance to attractive forces. Its potential varies as O(1/r12).

These two forces cause a Lennard-Jones potential, in the case of interaction between
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two atoms of the same type, given by:

V = E0

[

(

2r0

r

)12

− 2

(

2r0

r

)6
]

where E0 is the van der Waals well depth and r0 is the van der Waals radius of the atom.
The interaction is quite weaker than normal chemical bonds, yet these forces play an
important role in folding stability thanks to their abundance. Table 1.5 shows typical
values for these parameters of common atoms.

Atom van der Waals well depth (kcal/mol) van der Waals radius (Å)

H 0.02 1.00
C 0.12 1.85
N 0.16 1.75
O 0.20 1.60
S 0.20 2.00
P 0.20 2.10

Table 1.5: Typical values for van der Waals well depth and radius

1.4.5 Hydrophobic effect and interaction with the environment

The hydrophobic effect is the fact that a nonpolar molecule (or part of molecule) is inca-
pable of hydrogen bonding with water molecules, thus agglomerate together in aqueous
medium and exclude water molecules. It is not an attractive or repulsive force, but rather,
it is entropically driven. Each water molecule is able to form four hydrogen bonds with
its neighbors, thus in order that a nonpolar molecule dissolves into water, such hydrogen
bonds have to be broken. The hydrogen bonding network of water disrupted by the
nonpolar molecule will reform, by making a cage, around the molecule. This structure
of cage is ordered, and thus is unfavored by the second law of thermodynamics which
requires an increase in entropy. Hence, the corresponding free energy is unfavorable.
The reorganization of water molecules is easier when the nonpolar surface exposed to
the aqueous solution is reduced by aggregating the nonpolar molecules together. The
hydrophobic effect plays the most important role in protein folding, compared to other
non-covalent interactions. It helps polypeptide chains fold in a relatively compact form
with a hydrophobic core.

Besides, due to the polarity of water molecules, amino acids with ionized or polar side
chains have a tendency to interact with the aqueous medium through hydrogen bonds
(see 1.4.3). This allows proteins to exist in water with a hydrophilic exterior.
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1.4.6 Torsion energy around peptide bonds

The angles φ and ψ determining the polypeptide chain can differ from the theoretically
optimal values which correspond to the equilibrium configuration. Such a deformation
causes a energetic penalty, namely torsion energy.

1.4.7 Other interactions

Certain other interactions can also make an important contribution to the stability of a
protein structure, such as salt bridge, cation-π interaction, π − π stacking. Salt bridge
which often occurs between the carboxylate anion of aspartic acid (D) or glutamic acid
(E) and the ammonium cation of lysine (K) or guanidinium cation of arginine (R) can be
considered as a combination of hydrogen bonding and electrostatic interactions. Cation-π
interaction arises from the face of an electron-rich π system and a cation. π−π stacking or
aromatic-aromatic interaction consists of an attractive noncovalent interaction between
aromatic rings. These interactions have an order of magnitude equivalent to hydrogen
bonds.

The folding energy is finally defined as the sum of all the energies above.

1.5 Protein structure determination

The functions of proteins are performed through their conformations. Thus, it is crucial
to determine the protein structures in order to understand the functions associated.
Two different classes of methods have been used for protein structure determination:
experimental methods which are based on physical measures and in silico prediction
methods which used a wide range of computational tools.

1.5.1 Experimental methods

These methods are considered as providing the best approximation to real protein struc-
tures as they are based on observations and physical measures on real proteins. There
currently exists a number of methods for protein structure determination, in which the
most popular ones are X-ray crystallography and NMR spectroscopy.

X-ray crystallography

Most structures archived in the PDB were determined using X-ray crystallography [73].
Starting with the first two proteins crystallized (myoglobin and hemoglobin) at the end
of the 1950s, the number of entries determined with X-ray crystallography reached over
55000 in 2010, following the annual report of the PDB [13]. For this method, a beam of
X-rays strikes a purified and crystallized protein, and thus is diffracted by the protein
crystal. Measuring the diffraction pattern allows to determine the distribution of elec-
trons in the protein crystal. This distribution, or the map of electron density, is then
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used to determine the location of each atom. The method of X-ray crystallography can
give detailed atomic information, however, the crystallization process is difficult depend-
ing upon the type of proteins studied. It is well appropriate for rigid proteins forming
well-ordered crystals, but not for flexible proteins with poor crystals.

NMR spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy [25] can also be used to determine
protein structures. It is the use of NMR phenomenon to study the interaction of elec-
tromagnetic radiation with protein atoms. After being purified, the protein is placed in
a strong magnetic field. The magnetic nuclei, with nonzero spin, absorb electromagnetic
radiation at a resonance frequency which depends on the magnetic field strength and the
magnetic properties of the isotope of the atoms. The resultant NMR spectra reflect the
transitions between energy levels when the nuclei, which are close to one another, change
their spin from up to down or inversely. This allows to characterize the local conforma-
tion of atoms that are bonded together, and then lead to determining the location of each
atom. The method of NMR spectroscopy provides detailed information not only about
the structure, but also about the molecular dynamics of the protein. This technique does
not necessitate to crystallize the protein, thus can be studied in a medium similar to the
one in vivo. As opposed to X-ray crystallography, it is useful for studying the atomic
structure of flexible structures. However, the technique is still limited to small proteins
(about a hundred residues) due to difficulties with overlapping peaks in the NMR spectra.

Some other techniques have also been used, such as electron microscopy [56, 57], X-
ray microscopy [69], etc. Each of them has advantages and disadvantages. An atomic
model cannot be entirely constructed with only the experimental information obtained
in each method. Some additional knowledge about the molecular structure is required
to build a model which is consistent with both the experimental data and the expected
composition and geometry of the molecule.

1.5.2 In silico prediction

The computational methods of protein structure prediction are much more various. Al-
though several approaches show a reasonable prediction performance, none of them ap-
pear to dominate the others. However, the CASP (Critical Assessment of Techniques
for Protein Structure Prediction) [90, 128] competition allows to assess the efficiency of
published methods.

Since it is difficult, expensive and time-consuming to obtain the protein structures
from experimental methods, the in silico can propose useful structural models for gen-
erating hypotheses about protein’s functions and pointing to further experimental work.
The reliability of a prediction is determined by the prediction concept and the refinement
of the used model.

Three standard approaches are widely used for predicting protein structures. The
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first one includes the methods of molecular dynamics which are based on thermody-
namic models. They allow to simulate the folding of a protein and then to deter-
mine its three-dimensional structure [11, 52, 55, 64]. These methods are implemented
in the software packages like CHARMM [22, 83] or GROMACS [12, 77]. However,
they are not quite helpful in practice as only polypeptide chains of very limited size
can be studied due to an enormous complexity of computing. Other than that, the
projects of distributed computing also aim to predicting the tertiary structure of proteins
based on ab initio modeling, such as Folding@Home (http://folding.stanford.edu),
POEM@Home (http://boinc.fzk.de/poem/), Predictor@Home (http://predictor.
chem.lsa.umich.edu), Rosetta@Home (http://boinc.bakerlab.org), etc. They make
use of the help of several active volunteered computers around the world to deal with the
problem on huge complexity.

The second approach, namely comparative or homology modeling, tries to approxi-
mate the tertiary structure by aligning the sequences or the structural subunits [10, 49,
62, 60, 87, 109, 111]. Several softwares like COMPOSER [116], MODELLER [38, 110],
PRISM [137], SEGMOD [74] or SWISS-MODEL [114] are developed based on this con-
cept. Their predicting quality depends on the homology of the analyzed sequence to some
ones in the database. Hence, the resulting prediction is far from correct with the proteins
whose structural topology does not exist in the database. Moreover, these techniques are
not suitable for discovering new protein structures. The most reliable strategy for finding
the tertiary structure of a protein is proposed as a combination of comparative modeling
and refinement by an optimization of force fields.

The third approach is known as protein threading or fold recognition. It is used to
predict the structures of the proteins which have the same fold as proteins of known
structures, but do not have homologous sequences with the latter. This is distinguished
from homology modeling, even though they are both template-based methods. When
no significant homology between sequences is found (for instance, the sequence identity
is less than 30%), homology modeling is not helpful and protein threading can be used
for prediction using the structural information of the target protein. This method has
been applied in several applications, such as 3D-PSSM [66], PHYRE/PHYRE2 [65],
RAPTOR [136], etc.

The prediction of secondary structures appears simpler than that of tertiary struc-
tures but it is still a difficult problem. It consists in assigning regions of an amino
acid sequence to secondary motifs (α-helix, β-strand or turn). Due to a limited number
of characteristics for determining the formation of those motifs, it is more appropriate
to specialize a particular class of proteins for each predictor. The existing predicting
methods can be classified into two categories: those aiming to globular proteins and
those aiming to transmembrane proteins. With a large number of globular proteins with
known structures in the PDB at present, the machine learning based techniques seem
to be an efficient approach for this class of proteins. This is still reasonable for trans-
membrane α-helical proteins, although their known structures are much less abundant.
However, with less than 200 available structures of TMB proteins which are reduced to
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about 40 non-redundant ones [125], the structure prediction problem becomes intractable
while the reliability of learning based methods is far from being approved.
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Folding β-barrels

2.1 Introduction

We present in this chapter the model that we developed for classification and structure
prediction of TMB proteins [119, 121, 123]. TMB proteins are hard to identify, however,
it is relatively easy to identify a majority of other proteins which are not TMB. We use
physicochemical properties and a simple probabilistic model based on a sliding window for
filtering amino acid segments that are obviously not involved in any β-barrel structures
as a membrane spanning β-strand. Proteins that are considered to be putative TMB
proteins by this initial phase are then further analyzed. Next, we try to fold the given
protein, treating it as a TMB protein, using the pseudo-energy minimization model. If the
protein cannot be folded into β-barrels according to the energy minimization framework,
the protein is rejected and classified as a non-TMB protein.

Before presenting the simple model that we used for filtering the transmembrane
β-strands in Section 2.4, we discuss some geometric constraints (Section 2.2) and physic-
ochemical constraints (Section 2.3) that a protein must obey to be a TMB protein. We
enforce these constraints in both the filtering and folding steps of our algorithm. We give
our concrete folding problem definition in the next section before describing a dynamic
programming approach to solve the problem [120, 124].

2.2 Geometric framework for β-barrels

The backbone geometry of a regular β-barrel [84, 91, 92] is entirely determined by n, the
number of strands composing the barrel, and by S, the shear number, which is defined
below.

Definition 2.1. Shear number of a β-barrel

In a regular β-barrel, the shear number S is unambiguously defined as the ordinal
distance between an amino acid A and an amino acid B that is located on the same
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strand as A and linked to A through a path of hydrogen bonds. B is the projection of the
“copy” of A after one turn on the first strand of the barrel.
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Figure 2.1: The simplified geometry of a β-barrel, a schematic planar view for 6 strands
(strand 1 is duplicated for clarity). Thick lines denote the peptide bonds that link consecutive
amino acids along their strand. Thin lines denote the hydrogen bonds that link the amino
acids of two adjacent strands. In this example, the shear number is S = 8, which is the
ordinal distance between amino acids A and B. We note that all known β-barrels have a
positive shear number [80] and are slanted “to the right”, as illustrated here.

Structural constants are h(≈ 3.3Å), the jump per amino acid along a strand, and
d(≈ 4.4Å), the mean distance between adjacent strands, given respectively by the peptide
bond and hydrogen bond geometries. The other geometric characteristics, such as θ, the
slant angle of the strands relative to the barrel z-axis, are given from n, S, h and d [28]:

tan θ =
hS

dn

Angle θ, in association with a given membrane thickness, is involved in the energetic
rules and restricts the membrane spanning β-strand length. Then, n and S have to be
fixed as parameters.

Definition 2.2. Relative shear number

Given a shear number S, the relative shears between adjacent strands remain as n−1
degrees of freedom. As a convention, we consider the relative shears on the extracellular
side of the barrel. So, ∀ i > 1, si, the relative shear of strand i + 1 with respect to strand
i (strand n + 1 being identified with 1), is measured on strand i as the ordinal distance
between the undermost amino acid of strand i and the one that is directly bound to the
undermost amino acid of strand i + 1.

On the example of Figure 2.1, the sequence of relative shears (si) is (1 1 1 2 1 2).
The sum of consecutive relative shears naturally defines the shear between two extreme
strands, thus we have the constraint for the β-barrel, where the two extreme strands are
strand 1, for instance, and itself after a round on the barrel:

∑

1≤i≤n

si = S
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2.3. Physicochemical constraints

We define the shear number, by extension, for the case of a β-sheet (i.e. an open β-barrel)
to make our algorithms capable of dealing with the structure of β-sheets.

Definition 2.3. Shear number of a β-sheet

The shear number of a n-strand β-sheet is defined as the sum of relative shears on
consecutive pairs of adjacent strands:

S =
∑

1≤i≤n−1

si

where si is the relative shear of strand i + 1 with regard to strand i.

Each β-strand is directed with respect to the sequence order from N-terminal to C-
terminal. A strand is said to be upward if it is oriented from the extracellular environment
to the periplasmic space, i.e. the N-terminal of the strand is located on the extracellular
side and its C-terminal is on the periplasmic side. Inversely, the strand is said to be
downward. The upward/downward orientation of the strand, relatively to the barrel axis,
defines another degree of freedom.

Finally, considering a β-strand as a ribbon where the amino acids direct their side-
chains alternatively on both sides, toward the barrel interior (channel) or toward the
surrounding lipid (membrane), we will distinguish two ways of facing, neglecting small
swivel adjustments. A strand is said to be odd inward if the odd indexed amino acids
face to the channel and odd outward if those face to the membrane (see Section 2.3 for
more details). We have one more degree of freedom.

These notions of orientation are illustrated in Figure 2.2.

2.3 Physicochemical constraints

On the amphipathic β-strand of TMB proteins, the side-chains of amino acids are directed
towards the membrane and the channel alternatively. Hydrophilic and polar side-chains
orient towards the aqueous interior while hydrophobic ones contact the hydrophobic
bilayer [117]. We use the Kyte-Doolittle scale [72] (see Section 1.2.2) to measure the
hydrophobicity H(r) of each amino acid r. In this scale, a higher value represents higher
hydrophobicity, and vice versa. The necessary condition for a segment ri....rj to be a
potential membrane spanning β-strand is that one side is hydrophobic and the other side
is hydrophilic. Formally, we define

He
i,j =

〈

H(r2k)
〉

, i ≤ 2k ≤ j

Ho
i,j =

〈

H(r2k+1)
〉

, i ≤ 2k + 1 ≤ j, k ∈ N

as the average hydrophobicity on the respective even and odd numbered sides. Hence,
the constraints

max{He
i,j,H

o
i,j} > ζ− and min{He

i,j,H
o
i,j} < ζ+
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Figure 2.2: A schematic planar representation of 3 β-strands in a transmembrane β-barrel.
The black residues direct their side chains toward the membrane and white ones toward the
channel. The first and third strands are upward and the second one is downward. The first
and second strands are odd outward and the third one is odd inward.

are necessary for a segment of j − i + 1 consecutive amino acids ri....rj to be a potential
membrane spanning β-strand, where ζ− is a lower bound for the hydrophobic side and
ζ+ is an upper bound for the hydrophilic side. We use the values ζ− = −1 and ζ+ = 1,
which were obtained through an statistical data analysis on known TMB structures (see
Figures 2.3, 2.4). Then, with respect to the TMB structure, the segment ri....rj is defined
as odd inward oriented if Ho

i,j < He
i,j and odd outward oriented if He

i,j < Ho
i,j.
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Figure 2.3: The distribution of average hydrophobicity index of the hydrophilic side of the
membrane spanning β-strands from PDBTM40 (see Section 4.2)
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Figure 2.4: The distribution of average hydrophobicity index of the hydrophobic side of
the membrane spanning β-strands from PDBTM40 (see Section 4.2)

37



Chapter 2. Folding β-barrels

2.4 Classification filtering

In order to identify substrings as potential membrane spanning β-strands (the vertices)
or turns/loops (the edges), we introduce a simple probabilistic model that acts as a
primary filter. We use a sliding window (segment) as a sequence of consecutive l-residue
subsegments (or blocks) (l = 3 in our implementation). Let r denote the occurrence
of a given block (r = r1r2...rl) and let τ be the event that a block is found in a given
conformation (β-strand or turn/loop). The information that τ gets from r is defined as:

I(τ ; r) = log
P (τ |r)

P (τ)
= log

fτ,r/f · ,r
fτ, · /f · , ·

,

where fτ,r represents the frequency observed in the training dataset for a block r to be
found in conformation τ and we denote for short [39]:

f · ,r =
∑

τ

fτ,r

fτ, · =
∑

r

fτ,r

f · , · =
∑

τ

∑

r

fτ,r

Thus, I(τ ; r) measures the influence of r on the occurrence of τ . If I(τ ; r) = 0,
there is no influence; whereas I(τ ; r) > 0 indicates that r is favorable to the occurrence
of τ and vice versa. Formally, the preference of r in favor of τ as opposed to τ , any
conformation different from τ [45], is:

I(τ : τ ; r) = I(τ ; r) − I(τ ; r) = log
fτ,r/fτ, ·
fτ ,r/fτ , ·

A simple measure is associated to each segment r1r2...rp that helps determine if it is
likely a β-strand or a coil. It is defined as the sum of informations on all the l-residue
blocks:

Ĩ(τ : τ ; r1r2...rp) =

p−l+1
∑

i=1

I(τ : τ ; riri+1...ri+l−1) − log ρ

p − l + 1

The segment is then considered as a candidate for conformation τ if Ĩ(τ : τ ; r1r2...rp) > 0.

The non-redundant training set of TMB proteins described in Section 4.2 is used to
learn this probabilistic model. Due to the small size of the training set, we apply the
filter with a relatively low threshold at ρ = 2

3 to avoid overfitting. This ensures that on
average, each block r is accepted in conformation τ if the propensity for r to be in τ (i.e.
fτ,r/fτ, · ) is at most 1.5 times less than the propensity to be in τ (i.e. fτ ,r/fτ , · ). Only
substrings that pass these very stringent criteria are considered to be putative strands.
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2.5 Folding problem definition

Let S be the sequence of the N amino acids constituting the primary structure of a given
protein. We will consider G(V,E, Eintr, Eadj, Eloop), the weighted directed acyclic graph
(DAG) [30] built from S as follows:

2.5.1 Vertices

Let V = V∗ ∪ {⊤,⊥} be the set of vertices. Each vertex of V∗ represents a candidate
secondary structure item as a β-strand associated with a given set of parameters. It
corresponds to a contiguous part (a substring, defined by its starting and ending indices
1 ≤ ν < κ ≤ N) of S that satisfies given conformational constraints (such as length,
propensity to be a β-strand, . . . ). The associated parameters provide information about
the discretized spatial laying of this part relatively to the whole structure. So, combining
the upward/downward and inward/outward degrees of freedom introduced in 2.2, we
consider 4 different orientations for each given candidate β-strand. We could also consider
the different instances of relative shear to multiply the number of vertices, but we do not
for reasons to be clarified later.

A canonical order is defined on V∗ as the lexicographic order on tuples formed by
the respective starting/ending indices in S and the associated parameters. The length
constraint implies that the number of candidate substrings and thus |V|, the number of
vertices, are bounded above by kN for a small value k. To simplify further definitions,
a dummy vertex ⊤ will be used to represent an empty substring at the start of S and,
similarly, ⊥ will represent an empty substring at the end of the sequence. To extend the
order on all of the vertices, we set ⊤ < v < ⊥,∀ v ∈ V∗ (see Figure 2.5).

2.5.2 Edges

Let E ⊂ V × V be the set of directed edges. Intuitively, an edge corresponds to a turn
or a loop that connects two consecutive β-strands. To be more precise, ∀ v,w ∈ V∗, with
νv,κv , νw,κw denoting their respective starting and ending indices, (v,w) is an edge,
if κv < νw − 2 and the substring of amino acids from κv + 1 to νw − 1 satisfies the
constraints that allow to form a turn or a loop (such as conditions on length, flexibility,
propensity, . . . ) also depending on the relative laying of the two substructures. We have
the elementary property:

∀ v,w ∈ V∗, (v,w) ∈ E =⇒ v < w

for the lexicographic order, and this ensures the DAG structure.

The set E also contains edges of the form (⊤, v) that define the subset of starting
vertices - the leading substrings satisfying specific constraints. Similarly, E contains edges
of the form (v,⊥) that define the subset of ending vertices, with a satisfactory trailing
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Chapter 2. Folding β-barrels

substring. Again, the length constraints applied to the substrings associated to edges
imply that |E|, the number of edges, is O(|V|) or O(N).

Figure 2.5 gives a small example of such a graph (to simplify, only one orientation
has been considered). An edge like (v1, v2) is forbidden, since the two corresponding
substrings overlap. Edges like (v2, v3) or (v2, v6) are also forbidden, since the inserted
substrings are respectively too short for a turn or too long for a loop.

MSHAIQIREAHFPGRAPIDAYGNGGFRFADMSHRPGSIICIPSGIYGIDMTGPV

SHAIQIREAHF v1
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Figure 2.5: A short example of the graph structure. Edge (v1, v2) is not allowed, since the
two corresponding substrings overlap. Edges (v2, v3) or (v2, v6) are not allowed, since the
substrings in between are respectively too short for a turn or too long for a loop, etc.

2.5.3 Energy attributes:

The attributes that complete the definition of the graph G are pseudo-energy functions
defined as follows:

• ∀ v ∈ V∗, Eintr(v) represents the intrinsic energy of the given strand in the given
orientation. This term is the sum of both the internal energy of the substructure,
i.e. the interactions between its own amino acids, and the interaction energy with
the environment (e.g. membrane and channel) apart from the rest of the considered
protein.
Note that Eintr(⊤) = Eintr(⊥) = 0.

• ∀ (v,w) ∈ V∗ ×V∗, Eadj(v,w, s) represents the interaction energy of the pair (v,w)
when the two corresponding strands are placed side by side along the barrel, with
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2.5. Folding problem definition

respect to the respective orientation parameters associated to the vertices and ac-
cordingly to the relative shear s. The energy will take into account the number of
contacts and different side-chain interactions such as the packing of hydrophobic
cores and bonding abilities.

Then, ∀ (v,w) ∈ V∗ × V∗, Eadj(v,w) = mins Eadj(v,w, s) is the interaction energy
of the pair (v,w) for an optimal relative shear. It is further assumed that Eadj is
defined over a superset of E, since we will consider the case where two adjacent
strands are not consecutive along the sequence.

We also introduce the particular values:

Eadj(⊤, v) = Eadj(v,⊥) = 0,∀ v ∈ V.

• An associated function sadj is defined such that:
∀ (v,w) ∈ V∗ ×V∗, Eadj(v,w, sadj(v,w)) = Eadj(v,w), which is a relative shear that
leads to the optimal interaction energy.

An arising question is why the orientation degrees of freedom are described as
a multiplicity of nodes but the relative shear degrees of freedom are considered
when calculating the Eadj terms. A first answer comes from the fact that wrong
orientations are rather absolute and will result in pruning the sets E and V while
the shear parameters are not so discriminative. The main reason is that we will
consider “floating” parts in which adjacencies are already set, while a relative shear
between any two parts is not yet known. In such a situation, attaching the relative
shears to node pairs allows a significant factorization.

• ∀ (v,w) ∈ E, ∀ t ∈ {1, 2, . . . , n−1} and ∀ s−a relative shear, Eloop(v,w, t, s) is related
to the intrinsic energy of the turn/loop between the strands v and w (consecutive
along the sequence) when they are placed at a distance t along the barrel with a
relative shear s. The distance t = 1 corresponds to the case where the strands are
placed consecutively on the barrel, while an integer value t > 1 will correspond to
the case where t − 1 other strands are interleaf.

To simplify, we will also use Eloop(⊤, v) or Eloop(v,⊥) for denoting the intrinsic
energy of the outer fragment attached respectively to a starting or an ending vertex
v. As such a fragment has a free side, the position parameters may be dropped.

Then, in the usual case of two β-strands that fold as a hairpin, the related energy is
considered to be Eadj(v,w) + Eloop(v,w, 1, sadj(v,w)). It is supposed a relative flexibility
for turns and loops, so, when a fold is feasible, Eloop is weak compared to Eadj and the
relative placement of the two β-strands is enforced to be close to sadj. Nevertheless, Eloop

will result in a strong penalty in the case of an unfeasible turn or loop, for example a
loop with a majority of hydrophobic residues.
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Chapter 2. Folding β-barrels

2.5.4 Protein folding problem

Given a graph G(V,E, Eintr, Eadj, Eloop) defined as above, two integers n, S, and a per-
mutation1 σ as 3 parameters, we look for the path P in G that maximizes the following
objective function:

E =
∑

v∈P

Eintr(v) +
∑

(v,w)∈P

Eloop(v,w) +
∑

(v,w)∈σ(P)

Eadj(v,w)

such that
∑

(v,w)∈P

sadj(v,w) = S.

Such a path P whose vertices are arranged onto a circle is called a circle-attached
path. The adjacent vertices in the path are not necessarily successive on the circle. This
order of succession is determined by the given permutation σ (see Figure 2.6).

1 2 3 6 5 4
P: v1 v2 v3 v6 v5 v4

Eintr(v1)

Eloop(v3, v4)

1 4

2 5

3 6

Figure 2.6: Different views of a β-barrel with a Greek key motif 3654, σ = 1 2 3 6 5 4

1The notion of permutation is described in detail in 2.7.1
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2.6 Dynamic programming approach

2.6.1 Solving as the longest path problem

We will first consider an open structure, as a β-sheet, where the adjacency of strands
follows their natural order along the amino acid sequence, i.e. σ is an identity permuta-
tion. We involve here the constraint

∑

1<i≤n si = S. Hence, solving such a structure will
result in finding a path P in G whose overall “energy” is given by the sum:

E = Σv∈PEintr(v) + Σ(v,w)∈P [ Eadj(v,w) + Eloop(v,w, 1, sadj(v,w)) ]

Aiming at minimizing E , the protein folding problem will turn into finding the path
from ⊤ to ⊥ that maximizes the criterion C = −E . Let Ch

v be the maximum value for C

over all the paths from ⊤ to v, with a shear number of h of the corresponding β-sheet,
then C0

⊤ = 0 and, ∀ v ∈ V\{⊤},∀h,Ch
v is defined as:

Ch
v = max

u∈V,(u,v)∈E

[

C
h−sadj(u,v)
u − Eintr(v) − Eadj(u, v) − Eloop(u, v, 1, sadj(u, v))

]

Since the graph is a DAG, the longest path problem is solved with a well known
dynamic programming scheme [30] of complexity O(|V|) in space and O(|V| + |E|) in
time, that is also O(N) for both, from the structural constraints that relate |V|, |E|
and N . The objective is the computation of CS

⊥ and the optimal structure is then
reconstructed by a usual traceback post-processing. Note that, for each path, we only
have to consider its last vertex, so, we have to track single index states.

2.6.2 Solving as the longest closed path problem

For a barrel secondary structure, we have to consider a closing spatial adjacency between
the last and the first strands. σ is still an identity permutation. The constraint on the
shear number becomes

∑

1<i≤n+1 si = S. The dynamic programming scheme is almost
the same as previously, except that we also have to keep track of the first vertex of any
path. So, ∀ v ∈ V∗, such that (⊤, v) ∈ E, let C0

(v,v) = −Eintr(v) − Eloop(⊤, v), then the

general recurrence is: ∀ v,w ∈ V∗,∀h, such that (⊤, v) ∈ E,

Ch
(v,w) = max

u∈V,(u,w)∈E

[

C
h−sadj(u,w)

(v,u) − Eintr(w) − Eadj(u,w) − Eloop(u,w, 1, sadj(u,w))
]

and a special closing step is needed: ∀ v ∈ V∗,∀h, such that (⊤, v) ∈ E,

Ch
(v,⊥) = max

u∈V,(u,⊥)∈E

[

C
h−sadj(u,v)

(v,u) − Eadj(u, v) − Eloop(u,⊥)
]

The goal is to calculate maxv,(⊤,v)∈E CS
(v,⊥). Thus the scheme is of complexity O(|V|2) in

space and O(|V|.|E|) in time, that is also O(N2) for both, from the structural constraints.
This may produce paths of any length and the constraint of n strands is applied as a cut
in the recurrence.
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2.6.3 Generalization

In a more general case, we consider permutations to deal with the fact that the ar-
rangements of the strands along the barrel do not necessarily follow their order along the
sequence. This usually occurs with Greek key motifs or more rarely with Jelly roll motifs.
Hence, the protein folding problem becomes finding the longest path P in a graph with
respect to a given permutation σ, i.e. the vertices of P, seen on a circle as in Figure 2.6
are permuted according to σ.

Let σ be a circular permutation of {1, 2, . . . , n}. When 1, 2, . . . , n are numbering
the positions along the barrel, values σ(1),σ(2), . . . σ(n) will give the respective ranks of
the strands in the sequence order. A position of reference along the barrel is fixed by
setting σ(1) = 1. The Greek key example of Figure 2.6 is described by the permutation
σ = (1, 2, 3, 6, 5, 4). Hereafter, we will consider σ = (1, 2, 5, 4, 3, 6) which is a bit trickier
situation (see Figure 2.7).

1 2 5 4 3 6
P: v1 v2 v5 v4 v3 v6

Eintr(v1)

Eloop(v5, v6)

1 6

2 3

5 4

Figure 2.7: A permuted β-barrel with a Greek key motif 5436, σ = 1 2 5 4 3 6

The dynamic programming scheme now consists in building a barrel, by adding a
next candidate strand, taken in the sequence with respect to the graph edges, but that
is inserted at the position defined by the given permutation. Useful values are the ranks
(in the sequence order) of the two strands between which a given one will be inserted.
For instance, with the given example, the 5th strand will be inserted between the 2nd and
the 4th strands.

Let now k denote the level of construction (1 ≤ k ≤ n), that is the number of strands
already placed.

Proposition 2.1. The kth strand (in the sequence order) is inserted between the two
strands whose ranks (in the sequence order) are leftk and rightk, defined as:

leftk =

{

σ(σ−1(k) − 1) if σ−1(k) > 1

σ(n) otherwise

rightk =

{

σ(σ−1(k) + 1) if σ−1(k) < n

1 otherwise
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With the current example, we get:

left1 = 6 left2 = 1 left3 = 4
left4 = 5 left5 = 2 left6 = 3

right1 = 2 right2 = 5 right3 = 6
right4 = 3 right5 = 4 right6 = 1

An important piece of information to be stored for the dynamic programming scheme
is the set of active indices, i.e. ranks of the strands (in the sequence order) that are either
not definitively bonded on both sides along the barrel or not linked along the sequence,
and thus have to be kept as degrees of freedom. So, in the given example, we have to keep
in mind every valid instance as 2nd and 4th strands until an optimal choice is recorded
for each instance as a 5th strand. At that time, any instance as a 5th strand is kept as a
candidate for a link with a 6th, by a turn or loop, while the different instances as the 3rd

and 1st are kept for proceeding to an insertion in between.

Definition 2.4. Two ranks i and j, which refer to the sequence order, are said adjacent
if:

|σ−1(i) − σ−1(j)| ∈ {1, n − 1} ,

where the case n − 1 is intended for the adjacency that will close the barrel.

Proposition 2.2. The set of active indices (in the sequence order) at level k is defined
by:

confk = {k} ∪ { i | (1 ≤ i < k) ∧ (∃j : k < j ≤ n | i, j are adjacent ) } (2.1)

With the current example, we get:

conf 1 = {1} conf 2 = {1, 2} conf3 = {1, 2, 3}
conf 4 = {1, 2, 3, 4} conf 5 = {1, 3, 5} conf6 = {6}

Thus, in this example, the maximal complexity in space, O(N4), is reached for the set
of subsolutions with 4 strands. Then looping over this set, for computing the set of
subsolutions with 5 strands, will also cost O(N4) in time, since the choice for the 5th

strand is bounded by the structural constraints embedded as edges in the graph.

Proposition 2.3. ∀i < j,

conf i ∩ conf j ⊂ confk,∀k ∈ [i + 1, j − 1]

Proof. For any i, let kmax be the maximum index such that i ∈ confkmax
. We have

kmin = i is the minimum index such that i ∈ confkmin
. Following 2.1, there exists

j > kmax ≥ k,∀k ∈ [kmin, kmax], so that i and j are adjacent. Hence, i ∈ conf k,∀k ∈
[kmin, kmax].
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Chapter 2. Folding β-barrels

This property proves the necessity to keep definitely an active index since it is “ac-
tivated” until it is “deactivated”, i.e. the rank of a strand must be stored since it is
involved in a substructure in the dynamic programming process until it is totally ab-
sorbed in another substructure (see Figure 2.8).

4

2

3

1

5 6

conf1

conf2

conf3

conf4

conf5

conf6

Figure 2.8: Schema of sets confk corresponding to σ = {1, 2, 5, 4, 3, 6}

Now we have to decide at which minimal level k the quantities Eadj and Eloop are
determined and can be integrated in the dynamic programming scheme. For the Eadj

terms, it is easily checked that the previous or the next strand along the barrel is already
placed when leftk < k or rightk < k, respectively.

Proposition 2.4. For all k, we have:

leftk < k ⇐⇒ leftk ∈ conf k−1,

rightk < k ⇐⇒ rightk ∈ conf k−1

Proof. This results from the definition of the active indices of conf k−1 (2.1).
(⇒)

• If leftk = k − 1, then leftk ∈ conf k−1.

• If leftk < k − 1, as leftk and k are adjacent, we have also leftk ∈ conf k−1.

(⇐)
leftk ∈ conf k−1 implies leftk ≤ k − 1 < k.

To simplify the energy expression, we use the following notation for an ifelse function:

ifk(i, E) =

{

E if i < k

0 otherwise
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For the Eloop terms, the problem is to wait until the relative shear between the two ends
of a turn or loop is solved by the interleaf adjacencies. So, in the given example, the energy
of the loop between the 2nd and 3rd strands can only be evaluated when the 5th strand has
been laid and the optimal relative shear s∗adj(v2, v3) = sadj(v2, v5)+sadj(v5, v4)+sadj(v4, v3)
is known.

Definition 2.5. Let ∆k be the relation on positive integers, defined as: ∀ i, j,

i∆k j ⇐⇒

[

i = j
(i ≤ k) ∧ (j ≤ k) ∧ (i, j are adjacent)

then let ∆∗
k denote the equivalence relation defined by the transitive closure of ∆k and let

Ak = { i < k | i∆∗
k (i + 1) }.

Thus, i ∈ Ak means that the ith and (i + 1)th strands are geometrically linked
by adjacency when the kth substructure is laid (see Figure 2.9) and we can compute
by composition an optimal relative shear s∗adj(vi, vi+1). We temporarily forget here the
closure of the substructures.

i i + 1

i∆k(i + 1)
i i + 1

i∆∗
k(i + 1)

Figure 2.9: Relation ∆k and its transitive closure ∆∗

k
on the kth substructure

Corollary 2.5. The sequence {Ak}k=2,3... is increasing: ∀k ≥ 2,Ak ⊂ Ak+1.

This explains the fact that if the ith and (i + 1)th strands are linked to each other by
adjacency in the (k−1)th substructure, then they are also linked in the kth substructure.
We will now focus on the set δAk = Ak\Ak−1, ∀ k > 1.

Proposition 2.6. For all k, we have:

(k − 1) ∈ δAk ⇐⇒ leftk ∆∗
k−1 (k − 1) ∨ rightk ∆∗

k−1 (k − 1)

Proof. We have straightforwardly:

(k − 1) ∈ δA = Ak\Ak−1

⇐⇒ (k − 1) ∈ Ak, (as (k − 1) /∈ Ak−1)

⇐⇒ (k − 1)∆∗
k k

⇐⇒ (k − 1)∆∗
k−1 leftk ∨ rightk ∆∗

k−1 (k − 1),

( since k is adjacent to leftk and rightk)

47



Chapter 2. Folding β-barrels

Proposition 2.7. For all i < k − 1,

i ∈ δAk ⇐⇒







i 6∈ Ak−1
[

leftk ∆∗
k−1 i ∧ rightk ∆∗

k−1 (i + 1)
rightk ∆∗

k−1 i ∧ leftk ∆∗
k−1 (i + 1)

Proof.
(⇒) If i ∈ δAk then i 6∈ Ak−1 and i ∈ Ak, which means that the ith and (i + 1)th

strands are linked in the kth substructure, but not in (k−1)th substructure. This implies
that the kth strand is located between the ith and (i+1)th strands in the kth substructure.
We then deduce the links in the (k − 1)th substructure, that is:

[

leftk ∆∗
k−1 i ∧ rightk ∆∗

k−1 (i + 1)

rightk ∆∗
k−1 i ∧ leftk ∆∗

k−1 (i + 1)

(⇐) Reversely, the links determined in the (k − 1)th substructure by

[

leftk ∆∗
k−1 i ∧ rightk ∆∗

k−1 (i + 1)
rightk ∆∗

k−1 i ∧ leftk ∆∗
k−1 (i + 1)

lead to the link of the ith and (i+1)th strands in the kth substructure, i.e. i ∈ Ak. Thus,
i ∈ δAk.

i leftk k rightk i + 1

i ∈ δAk

Figure 2.10: Illustration for property 2.7

Definition 2.6. Let Tk ⊂ V∗|confk| denote the set of all tuples of |conf k| vertices such
that there is at least one path (of k edges) starting from ⊤ and passing through these
vertices in order.

For any instance z ∈ Tk of such a tuple and, ∀ i ∈ confk, let z[i] denote the ith vertex
of the corresponding path.
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This notation (not to be confused with zi, the ith component of tuple z) is not
ambiguous since, from definition, the vertex z[i] is in common to any path associated to
z. Particularly, z[k] is the last vertex of any path associated to z.

Proposition 2.8. For all z ∈ Tk, the set of tuples corresponding to the paths of length
k − 1 that can be extended to a path corresponding to z is defined as:

pre(z) = {y ∈ Tk−1 | ((y[k − 1], z[k]) ∈ E) ∧ (∀ i ∈ conf k ∩ conf k−1, y[i] = z[i]) }

Let Ch
k,z be the maximum value for C over all paths starting from ⊤ and leading

in order through the vertices of a given tuple z ∈ Tk with a shear number of h of the
corresponding β-barrel. The general recurrence relation is: ∀z ∈ Tk,

Ch
k,z = max

y∈pre(z)

(

C
h−sadj(y[leftk],z[k])−sadj(z[k],y[rightk ])+sadj(y[leftk],y[rightk])
k−1,y − Eintr(z[k])

− ifk(leftk, Eadj(y[leftk], z[k]) − ifk(rightk, Eadj(z[k],y[rightk])

−
∑

i∈δAk

Eloop

(

y[i],y[i + 1],σ−1(i + 1) − σ−1(i), s∗adj(y[i],y[i + 1])
)

)

Note that, from proposition 2.4, ∀y ∈ Tk−1, if leftk < k then the vertex y[leftk] is
defined (and the same is worth for rightk). We can check that each Eadj term is finally
counted exactly once in the sum, at the level corresponding to the position of its further
vertex in the sequence order. The optimum is found at k = n and h = S.

2.7 Complexity on permuted structures

Corollary 2.9. The complexities both in time and space are O(
∑n

k=2(
|V |
n )|confk|), that

is O(nNmaxk |confk|).

For any permutation, we have

|confn−k| ≤ min{1 + 2k, n − k} ,∀k = 0, ..., n − 1

Hence maxk |confk| ≤ 1 + (2n − 2)/3.

We study below the complexity of our dynamic programming scheme for certain
classes of permuted structures. We first remind some notions of permutation and group
theory.

2.7.1 Preliminaries

Definition 2.7. Permutation

A permutation on a set of objects is a sequential arrangement of these objects into
certain order. In other words, it is a bijection from the set of objects to itself.
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Chapter 2. Folding β-barrels

A permutation σ is noted as:

(

1 2 · · · n − 1 n

σ(1) σ(2) · · · σ(n − 1) σ(n)

)

where the first row is the list of objects, and the image of each object under permutation
σ is put below itself in the second row.

It can also be briefly written as σ(1)σ(2) . . . σ(n − 1)σ(n). Obviously, the number of
permutations on a set of n distinct objects is n! = n.(n − 1)...2.1.

Example 2.1.

σ =

(

1 2 3 4 5 6
3 4 2 5 6 1

)

= 342561

represent the sequential arrangement where the object with label 3 is first, the item with
label 4 is second, etc. ⊳

The composition, or product, of two permutations σ and π, denoted σ • π is defined
as a bijection from the set of objects to itself that maps any object i to σ(π(i)) (the
permutations are applied from right to left). This is again a permutation on this set of
objects.

As the composition of functions is always associative, so is the composition of per-
mutations:

σ • (π • ρ) = (σ • π) • ρ = σ • π • ρ, for all permutations σ,π, ρ

It should be also noted that the composition is not commutative.

Example 2.2.

σ =

(

1 2 3 4 5 6
3 4 2 5 6 1

)

π =

(

1 2 3 4 5 6
2 4 5 1 3 6

)

The computation of σ • π can be represented in three rows. The second row is the
image of the objects in the first row under π. The third row is the image of the second
one under σ.





1 2 3 4 5 6
2 4 5 1 3 6
4 5 6 3 2 1





By eliminating the intermediary rows, we finally have:

σ • π =

(

1 2 3 4 5 6
4 5 6 3 2 1

)

⊳
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2.7. Complexity on permuted structures

The identity permutation Idn = 12 . . . (n−1)n which maps each object to itself is the
neutral element for the composition.

σ • Idn = Idn • σ = σ, for all permutations σ

Any permutation, as a bijection, σ has its inverse σ−1 that is also a permutation:

σ(i) = j ⇐⇒ σ−1(j) = i

The inverse σ−1 can be obtained by interchanging the two rows of σ, then sorting the
first row accordingly.

Example 2.3.

σ−1 =

(

1 2 3 4 5 6
3 4 2 5 6 1

)−1

=

(

3 4 2 5 6 1
1 2 3 4 5 6

)

=

(

1 2 3 4 5 6
6 3 1 2 4 5

)

⊳

Definition 2.8. Cycle

A permutation σ = σ1σ2 . . . σt is said to be a cycle if and only if
{

σ(k) = σk+1, ∀k = 1, . . . , t − 1
σ(t) = σ1

It is written as (σ1 σ2 . . . σt).

A permutation can be represented in cycle form by a decomposition into disjoint
cycles. Thus, an element in a permutation of size n belongs to a unique cycle of length
from 1 to n, and the permutation is comprised of a set of from 1 to n cycles. We can
decompose a permutation σ as follows: choose some element i from σ, the cycle containing
i is constructed by taking successively images under σ until the image would be i:

(i σ(i) σ(σ(i)) . . .).

We repeat this process by choosing an element of σ that is not taken into account until
all elements have been considered.

Example 2.4.

σ =

(

1 2 3 4 5 6
4 5 1 3 2 6

)

= (1 4 3)(2 5)(6) = (2 5)(1 4 3)(6) = (2 5)(6)(4 3 1)

⊳

This might be read ad “1 goes to 4 goes to 3 goes to 1”, and so on. The elements i
such that i = σ(i) are called fixed points of σ, for instance 6 in the permutation above.
Without confusion, we can ignore the cycles of length 1, or fixed points, in the notation.
For example,
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Chapter 2. Folding β-barrels

• (1 4 3)(2 5)(6) = (1 4 3)(2 5)

• Id4 = (1)

In this cycle notation, the reverse of a permutation can be obtained by reversing the
order of the elements in each of its cycles.

Example 2.5.

σ = (1 4 3)(2 5)(6), then σ−1 = (3 4 1)(5 2)(6) = (1 3 4)(2 5)(6)

⊳

We use in this thesis a notion of circular permutation that can be defined in a different
way in the literature. A circular permutation is a sequential arrangement of the objects
along a fixed circle. We distinguish here clock-wise and anti-clock-wise orders to take
into consideration the slant angle of β-barrels in our application. Since the circle can be
rotated, the number of circular permutations on a set of n distinct objects is (n − 1)!.
For example, 123 is the same as 231, but different from 132.

Definition 2.9. Group

Let G be a finite or infinite set of elements and • be a binary operation. We note, for
simplicity, a • b as ab. A group is the pair (G, •) that satisfies:

i. Closure: ∀a, b ∈ G, ab ∈ G.

ii. Associativity: ∀a, b, c ∈ G, (ab)c = a(bc).

iii. Identity: ∃e ∈ G,∀a ∈ G, ae = ea = a. The identity element e is also denoted 1G.

iv. Inverse: ∀a ∈ G,∃a−1 ∈ G, aa−1 = e.

• is also called the group operation. G is said to be a group under this operation.
The order of a group is its cardinality, i.e. the number of its elements.

If the binary function is commutative, i.e. ∀a, b ∈ G, ab = ba, then the group is called
an abelian group, or commutative group.

Definition 2.10. Subgroup

A subset H of G is a subgroup of group G under the operation • if H also forms
a group under •. In other words, H is nonempty and closed under operations • and
inverse: ∀a, b ∈ H,ab ∈ H and a−1 ∈ H. It is written as H ≤ G and read as “H is a
subgroup of G”.

The order of any subgroup of a group of order n must be a divisor of n.

Let S be a subset of G. There exists a minimum subgroup of G containing S. It is
said to be the subgroup generated by S and is denoted 〈S〉.
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Definition 2.11. Symmetric group

The symmetric group Sn is the group whose elements are permutations on n symbols,
and whose group operation is the composition of such permutations.

The order of Sn is the number of possible permutations, i.e. n!. In case of circular
permutations, the order of Sn is (n − 1)!.

Definition 2.12. Permutation group

A permutation group is a subgroup of the symmetric group Sn. The order of a
permutation group is then a divisor of n!, or (n − 1)! with circular permutations.

Example 2.6. S4 is the symmetric group on the set M = {1, 2, 3, 4}. We consider the
set G of permutations that contains:

• e = (1)(2)(3)(4) = Id4 = (1)

• a = (1 2)(3)(4) = (1 2)

• b = (1)(2)(3 4) = (3 4)

• ab = (1 2)(3 4)

G forms a permutation group, since

• aa = bb = e, ba = ab, aab = aba = b, abb = bab = b, abab = e

• a−1 = a, b−1 = b, (ab)−1 = ab

⊳

Theorem 2.10. The set AP of circular permutations corresponding to permuted bar-
rel structures of size n that ensure the antiparallel pairing is a permutation group or a
subgroup of the symmetric group Sn under composition, where n is even.

Proof. A permuted barrel structure of size n ensures the antiparallel pairing if and only
if the corresponding circular permutation has the cycle-decomposition form of:

(e1 . . . ei1)(ei1+1 . . . ei2) . . . (eir+1 . . . ek)(o1 . . . oj1)(oj1+1 . . . oj2) . . . (ojs+1 . . . ok)

where n = 2k, ei is even, and oi is odd for all i. We can choose 1 as a fixed point since
the permutation is circular.

• AP contains Idn

• The composition of two such permutations gives a circular permutation in which 1
is still a fixed point and the parity of cycles is kept unchanged. AP is then closed
under composition.
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• The inverse is obtained by reversing the order of the elements in each cycle, thus
the fixed point 1 and the parity of cycles are unchanged. Therefore, AP is also
closed under inversion.

So, AP is a subgroup of Sn.

Lemma 2.11. Any permutation containing a Greek key motif can be written as (k k+2)
for some k.

Proof. This can be straightforwardly deduced from Greek key motifs that have the form
k(k + 3)(k + 2)(k + 1) (denoted g+) or (k + 2)(k + 1)k(k + 3) (denoted g−) [139]. The
permutation has all cycles of length 1, except for ((k + 1) (k + 3)) or (k (k + 2)).

Theorem 2.12. The subgroups H1 =
〈

{((4k + 1) (4k + 3))}k=0,1...

〉

, H2 =
〈

{((4k +

2) (4k + 4))}k=0,1...

〉

, H3 =
〈

{((4k + 3) (4k + 5))}k=0,1...

〉

, H4 =
〈

{((4k + 4) (4k +

6))}k=0,1...

〉

represent the barrel structures with disjoint Greek key motifs. These sub-

groups are abelian.

Proof. We prove the theorem for the subgroup H1 =
〈

{((4k + 1) (4k + 3))}k=0,1...

〉

. The

proof is the same for the others.
Straightforwardly, the cycles ((4k +1) (4k +3))’s are either disjoint or identical. The

composition applied on them is then commutative, and thus the subgroup H1 is abelian.
For every permutation σ in H1, the Greek key motifs in σ are of form: (4k)(4k +

3)(4k+2)(4k+1). There does not exist two different values k1 and k2 such that (4k1)(4k1+
3)(4k1 + 2)(4k1 + 1) and (4k2)(4k2 + 3)(4k2 + 2)(4k2 + 1) are overlapped. Hence, the
Greek key motifs in σ are disjoint.

We also note that
〈

{((4k + 1) (4k + 3))}k=0,1..., {((4k + 2) (4k + 4))}k=0,1..., {((4k +

3) (4k+5))}k=0,1..., {((4k+4) (4k+6))}k=0,1...

〉

=
〈

{((2k−1) (2k+1))}k=1,2..., {((2k) (2k+

2))}k=1,2...

〉

is the subgroup AP .

We study different possible configurations for disjoint Greek key motifs in permu-
tations. The regular expression is used to describe the permutation. We consider the
alphabet Σ = {Id, g+, g−}, where Id represents the identity motifs, g+ represents Greek
key motifs of form k(k + 3)(k + 2)(k + 1) and g− represents (k + 2)(k + 1)k(k + 3). A
permutation with disjoint Greek key motifs can be written as a word of Σ∗. For example,
14325678 = g+Id = Idg−Id, 14327658 = g+g−.

• For σ ∈ H1:

– σ = Id : maxk |conf k| = 2. The complexity of the prediction algorithm is
O(nN2).
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– σ = (1 3) = g−Id : maxk |conf k| = 2. The complexity is O(nN2).

– σ = Idg−(Id + g−)∗ + g−(Id + g−)∗g−(Id + g−)∗ : maxk |conf k| = 4. The
complexity is O(nN4).

• For σ ∈ H2:

– σ = Id : O(nN2).

– σ = (2 4) = g+Id : maxk |conf k| = 3. The complexity is then O(nN3).

– σ = Idg+ : maxk |confk| = 2. The complexity is then O(nN2).

– σ = g+Idg+ + g+g+ : maxk |conf k| = 3. The complexity is then O(nN3).

– σ = (Id + g+)+g+(Id + g+)+ : maxk |conf k| = 4. The complexity is O(nN4).

• For σ ∈ H3:

– σ = Id : O(nN2).

– σ = Idg+(Id + g+)+ : maxk |conf k| = 4. The complexity is O(nN4).

• For σ ∈ H4:

– σ = Id : O(nN2).

– σ = Idg+ : maxk |confk| = 2. The complexity is then O(nN2).

– σ = Idg+(Id + g+)+ : maxk |conf k| = 4. The complexity is O(nN4).

Thus, the complexity of the prediction algorithm for the subgroups H1,H2,H3,H4 is
from O(nN2) to O(nN4), according to the given permutation. For a β-barrel structure
with identity permutation, which we observed the most in nature, it is possible to compute
the optimal structure in O(nN2) running time.

More generally, for a permutation σ that differs from the identity permutation by
disjoint Greek key motifs, i.e. σ = (Id + g+ + g−)+, we also have a complexity in time
and space from O(nN2) to O(nN4).
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Tree-decomposition based
algorithm

3.1 Introduction

Our previous dynamic programming scheme can be seen as a way to extract from a
graph optimal paths following a given pattern. It can find the optimal permuted β-
barrel structures with disjoint Greek key motifs in time from O(N2) to O(N4). We
describe in this chapter yet another algorithm based on tree decomposition that predicts
more efficiently these structures. Our tree decomposition based algorithm is able to deal
with such β-barrel structures in time at most O(N3) [122], a non trivial improvement.

In Section 3.2, we introduce the essential graph-theoretic background on tree decom-
position and modular decomposition. The NP-completeness of the problem of finding
the arbitrarily permuted structure of minimum energy is discussed in Section 3.3. We
describe the algorithm in Section 3.4, followed by a complexity analysis regarding the
Greek key motifs.

3.2 Graph-theory background

We recall some standard notions from graph theory. Let G = (V,E) be an undirected
graph with vertex set V and edge set E that has no edge connecting a vertex to itself
(no loop) and no more than one edge between any two different vertices. A subgraph H
of a graph G is a graph whose vertex set is a subset of V , and whose edge set is a subset
of E restricted to its vertex set. A subgraph H is said to be induced if the edges of H
are the ones appearing in G over the same vertex set, i.e.

∀x, y ∈ V (H), (x, y) ∈ E(H) ⇐⇒ (x, y) ∈ E(G).

H can be constructed from G by removing all vertices in V (G)\V (H) and their incident
edges. For a subset X of V (G), G[X] denotes the induced subgraph of G, and is said to
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be induced by X.

A set of vertices X is called a separator of a connected graph G if G[V \X] is discon-
nected.

An outerplanar graph is a graph that can be drawn in the plane in such a way that
no edges cross each other and all the vertices belong to the unbounded face.

3.2.1 Tree decomposition

Roberton and Seymour introduced the concept of tree decomposition, treewidth, path
decomposition and pathwidth in their studies on graph minors in 1980’s [106, 105]. This
concept has been widely studied and applied to solve several combinatorial problems that
are NP-hard for general graphs. Such problems can be efficiently solved in polynomial
time by using dynamic programming on a tree decomposition (or path decomposition)
of graphs of bounded treewidth (or pathwidth) [3, 5, 14, 18]. The protein structure
prediction problems such as protein threading for backbone prediction and protein side-
chain prediction can also be solved using this technique [135].

Definition 3.1. Tree decomposition - Treewidth

A tree decomposition, denoted DT (G), of a graph G(V,E) is a pair (X ,T ), where
X = {Xi|i ∈ I} is a family of subsets of V , and T a tree whose nodes are the subsets Xi

satisfying:

•
⋃

i∈I Xi = V

• ∀(u, v) ∈ E,∃i ∈ I : u, v ∈ Xi

• ∀i, j, k ∈ I: if Xj is in the path from Xi to Xk, then Xi ∩ Xk ⊆ Xj

The width of a tree decomposition DT (G) is maxi |Xi| − 1 . The treewidth of a graph
G, denoted tw(G), is the minimum width among all tree decompositions of G.

Definition 3.2. Path decomposition - Pathwidth

A path decomposition, DP (G), is a tree decomposition where the tree T is reduced
to a path. The pathwidth of a graph G, denoted pw(G), is the minimum width among
all path decompositions of G.

The treewidth and pathwidth of a graph G measure the distance from G to a tree and a
chain, respectively. The smaller the treewidth (pathwidth), the more “tree-like” (“chain-
like”) the graph is. For any graph, its treewidth is always less than its pathwidth, as
every path decomposition is also a tree decomposition. The simplest tree decomposition
or path decomposition of a graph G is a single set containing all vertices of G that gives
the width of |V | − 1. For example,

• A graph G has treewidth 1 if and only if G is a forest;
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Figure 3.1: A graph and a tree decomposition of width 3
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Figure 3.2: A path decomposition of width 3 of the graph in 3.1

• If G is a cycle then tw(G) = pw(G) = 2.

• If G is an outerplanar graph then tw(G) = 2.

• If G is a k-clique then tw(G) = pw(G) = k − 1.

It is worth reminding the fundamental properties observed and proved in [21, 19,
46, 106] which are usually used for the analysis of tree decomposition based dynamic
programming algorithms.

i. If H is a subgraph of G then tw(H) ≤ tw(G).

ii. Let (X = {Xi|i ∈ I},T ) be a tree decomposition of G. For any clique G[X], X ⊆ V ,
there exists i ∈ I such that X ⊆ Xi.

iii. If graph G has treewidth at most k then G has a vertex of degree at most k.

iv. If graph G = (V,E) has treewidth at most k then G has at most k|V | −

(

k + 1

2

)

edges.

v. Let (X ,T ) be some tree decomposition of G, ij an edge of T , and T1,T2 the two
connected components of T − ij, then Xi ∩ Xj is a separator between ∪i∈T1

and
∪i∈T2

.
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vi. Graph G has treewidth at most k if and only if G can be decomposed using only
separators of size at most k.

In an arbitrary graph G, finding tw(G) or pw(G) are NP-complete problems [4]. How-
ever, the problem with a fixed parameter is tractable: testing if a graph G has treewidth
(or pathwidth) at most k and construct a tree decomposition (or path decomposition)
accordingly [19]. This can be solved in a time that is linear in the size of the graph
but exponential in parameter k. It is also NP-hard to absolutely approximate treewidth
and pathwidth of arbitrary graphs [20]. It is still an open question whether there is a
polynomial-time approximation scheme (PTAS) for treewidth and pathwidth.

3.2.2 Modular decomposition

The technique of modular decomposition has been introduced by Gallai [43]. This concept
arises in various algorithmic topics. It is an important preprocessing step of several
combinatorial algorithms [53, 93].

Definition 3.3. Module

A module of a graph G(V,E) is a subset of vertices M ⊆ V such that, for every
vertex v /∈ M , either v is a neighbor of every element of M or v is not a neighbor of any
element of M . In other words, M is a module if and only if all elements of M have the
same neighbors that are not in M .

∅, singletons, V are trivial modules. A graph is prime if it admits only trivial modules.
A strong module of a graph G is a module M that does not strictly overlap any

other module M ′: for any module M ′of G, either M ∪ M ′ = ∅ or M ⊆ M ′ or M ′ ⊆ M

Definition 3.4. Modular decomposition

A modular partition of a graph G(V,E) is a partition P of the vertex set V where
each part is a module of G.

The quotient graph G/P is the induced subgraph obtained by assigning each part of
P to a vertex.

3.3 NP-Completeness

We first prove the NP-completeness of the traveling salesman problem where we look for
the longest tour in which a salesman can visit each city exactly once. Note that this is
similar, but not the same, to the problem of finding the shortest tour which is mentioned
more frequently in the literature [30].

TRAVELING SALESMAN:

Input Given n cities c1, c2, . . . , cn, a distance dij > 0 between each pair (ci, cj) and a
positive m.
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Figure 3.3: A graph and its modular decomposition are on the left. The quotient graph is
on the right.

Question Is there a circular tour that visits each city exactly once of distance at least
m?

Corollary 3.1. TRAVELING SALESMAN is NP-complete.

Proof. TRAVELING SALESMAN is in NP.
The same to the traveling salesman problem where we look for a shortest tour, to

prove that TRAVELING SALESMAN is NP-complete, we describe a reduction from
Hamiltonian Cycle Problem.

Let G an instance of Hamiltonian Cycle Problem, with n vertices, we create an
instance of TRAVELING SALESMAN. For each vertex v, create a city cv . If there is an
edge (u, v), then the distance between cu and cv is 1; otherwise, the distance is 1/2. Let
m = n.

We now prove that G has a Hamiltonian cycle if and only if there is a tour of distance
at least n.

(⇒) If G contains a Hamiltonian cycle, then this cycle forms a tour of distance n
through all the cities.

(⇐) If there is a tour of distance at least n through the n cities, where each city is
visited exactly once, then the distance between each pair of cities along the tour must
be 1. Thus each corresponding pair of vertices are adjacent in G. G has therefore a
Hamiltonian cycle.

We recall circle-attached path (see Section 2.5.4) a path in which the vertices are
arranged onto a circle. The weight is defined on the adjacency of vertices in the path
and the succession of vertices on the circle. Note that adjacent vertices in the path are
not necessarily successive on the circle. We are interested in finding the order of vertices
in such a circle-attached path. The problem is defined as followed:
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Chapter 3. Tree-decomposition based algorithm

PERMUTED BARREL:

Input Given a directed acyclic graph G(V,E), a weight w defined on every vertex, a
positive weight c on every edge, a positive weight e on every pair of vertices and a positive
m. A circle-attached path has a weight of

∑

w(vi)+
∑

c(vi, vj)+
∑

e(vh, vk), where vi, vj

are adjacent in the path and vh, vk are successive on the circle.

Question Is there a circle-attached path of weight at least m?

Corollary 3.2. PERMUTED BARREL is NP-complete.

Proof. The weight of a circle-attached path is easily computed. PERMUTED BARREL
is in NP.

We describe a reduction from TRAVELING SALESMAN.
Let (C, d,m) be an instance of TRAVELING SALESMAN, where C is the set of

cities, d is the distance function between cities. For each city, we create a vertex in G.
These vertices have weight w = 0. We add randomly directed edges of weight c = 0 to
form a unique path through all vertices of G. Weight e between every pair of vertices is
set to d.

It is clear that there is a tour of distance at least m if and only if there is a circle-
attached path of weight at least m.

Then, finding the right permuted β-barrel structures is an NP-complete problem.

We are interested in finding the permuted super-secondary structure of transmembrane
β-barrel proteins corresponding to a given permutation σ. That is to find the maximum
weighted circle-attached path, with the succession on the circle defined by the permuta-
tion σ of vertices in the path.

CONSTRAINT PERMUTED BARREL:

Input Given a directed acyclic graph G(V,E), a weight w defined on every vertex, a
positive weight c on every edge, a positive weight e and a shift s on every pair of vertices,
a permutation σ of size n, an integer S, and a positive m. A circle-attached path has a
weight of

∑

w(vi) +
∑

c(vi, vj) +
∑

e(vh, vk), where vi, vj are adjacent in the path and
vh, vk are successive on the circle.

Question Is there a circle-attached path corresponding to σ, which satisfies the con-
straint

∑

svh,vk
= S, of weight at least m?

Conjecture 3.1. CONSTRAINT PERMUTED BARREL is NP-complete?

We propose a dynamic programming approach that is described in the next section to
solve the problem.
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3.4. Algorithm for finding barrel structures of minimum energy

3.4 Algorithm for finding barrel structures of minimum en-

ergy

We call n-strand barrel graph corresponding to a permutation σ the contact graph Gc =
(Vc, Ec) of n vertices named by the ranks of the β-strands along the amino acid sequence,
with edges representing the contact of strands in the barrel (see Figure 3.4). Thus,
Gc is the superposition of the open path (1, 2, .., n) and the σ-permuted closed path of
{1, 2, ...n}, i.e. the closed path (σ1,σ2, ...,σn).

We claim in Propositions 3.3 and 3.4 some fundamental properties of the n-strand
barrel graph Gc.

Proposition 3.3. Every vertex v in Gc has degree at least 2 and at most 4.

Proof. Every vertex v has 1 or 2 neighbors in the path and 2 neighbors in the σ-permuted
cycle. We have then 2 ≤ deg(v) ≤ 4

Proposition 3.4. n ≤ |Ec| ≤ 2n − 1

Proof. The σ-permuted cycle has n edges while the path (1, 2, .., n) has n− 1 edges. |Ec|
gets the minimum value of n when σ is the identity permutation and gets the maximum
value of 2n − 1 when there is no common edge between the path and the cycle.

1 2

3

4

56

7

8

(b) 3,2,4 2,4,1,5 1,5,8 5,8,6 8,6,7(c)

1 4 3 2 5 6 7 8

(a)

Figure 3.4: The β-barrel(a), Gc(b) and the tree/path decomposition(c) of σ = 1 4 3 2 5 6
7 8

We consider a path decomposition constructed by an elimination process as described
below (see Procedure 1). Gc is modified at each step by removing some vertices and edges.
Let Nc(r) be the set of neighbors of r in Gc, dc(r) the degree of r in Gc or dc(r) = |Nc(r)|,
deg(r) the degree of r in the initial Gc, mdc(A) be the vertex of A that has the lowest
degree in Gc, and Gc[A] = (A,Ec[A]) be the graph induced by the set of vertices A.
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Chapter 3. Tree-decomposition based algorithm

Procedure 1 Elimination process

Input: n-strand barrel graph Gc

1: X0 ← {mdc(Vc),σ(σ−1(mdc(Vc)) + 1)}, where σn+1 = σ1

2: Remove Ec[X0] from Gc.
3: k ← 1, r1 ← mdc(X0),X1 ← X0 ∪ Nc(r1),
4: repeat

5: Remove Ec[Xk], then all unconnected vertices, from Gc.
6: rk+1 ← mdc(Xk \ {rk})
7: Xk+1 ← (Vc ∩ (Xk \ {rk})) ∪ Nc(rk+1)
8: k ← k + 1.
9: until Vc is empty.

Output: {Xk}k∈I={0,1,...,K}

The construction of rk and Xk implies that rk has at least one neighbor in

k−1
⋃

i=0

Xi.

So, ∀k ≥ 1, dc(rk) ≤ deg(rk) − 1, and thus, 1 ≤ dc(rk) ≤ 3. We also have
K

∑

i=1

dc(ri) =

|
K
⋃

i=1

Nc(ri)| = n − 2, hence, K ≤ n − 2 ≤ 3K, where K = |I| − 1,

We derive then the bounds on the number K of subsets Xk:

Corollary 3.5.
n − 2

3
≤ K ≤ n − 2

The cardinal of Xk’s is bounded above as:

Lemma 3.6. ∀k ≥ 1, |Xk| ≤ 3 +
k

∑

i=1

(dc(ri) − 1) ≤ 3 +
k

∑

i=1

(deg(ri) − 2)

Proof. We have: |X1| = 1 + deg(r1) = 3 + (dc(r1) − 1).
By induction,

∀k ≥ 1, |Xk+1| ≤ |Xk| − 1 + |N (rk+1)|

≤ 3 +
k

∑

i=1

(dc(ri) − 1) + (dc(rk+1) − 1)

= 3 +

k+1
∑

i=1

(dc(ri) − 1)

Moreover, dc(rk) ≤ deg(rk) − 1,∀k ≥ 1.
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Thus, ∀k ≥ 1, |Xk| ≤ 3 +

k
∑

i=1

(dc(ri) − 1) ≤ 3 +

k
∑

i=1

(deg(ri) − 2)

As Xk ∩ Xk+1 ! Xk, then |Xk ∩ Xk+1| ≤ |Xk| − 1,∀k ≥ 1, we deduce:

Lemma 3.7. ∀k ≥ 1, |Xk ∩ Xk+1| ≤ 2 +

k
∑

i=1

(dc(ri) − 1) ≤ 2 +

k
∑

i=1

(deg(ri) − 2)

We firstly prove the following lemma in order to establish an upper bound on the
cardinal of the intersections of Xk’s.

Lemma 3.8.

• If there exists k such that |Xk ∩ Xk+1| ≥
⌈n

2

⌉

+ 1, then:

[

k = K − 1
|Xk+1 ∩ Xk+2| ≤ |Xk ∩ Xk+1|

• If there exists k such that |Xk ∩ Xk+1| ≥
⌈n

2

⌉

, then:

[

k = K − 1
|Xk+1 ∩ Xk+2| ≤ |Xk ∩ Xk+1| + 1

Proof.

• If there exists k such that |Xk ∩ Xk+1| ≥
⌈n

2

⌉

+ 1, then:

2 +

k
∑

i=1

(dc(ri) − 1) ≥
⌈n

2

⌉

+ 1 (Lemma 3.7)

⇒ 2k ≥
⌈n

2

⌉

(since dc(r1) ≤ 2, dc(ri) ≤ 3,∀i > 1)

⇒ k ≥
1

2

⌈n

2

⌉

Let uk be the number of non-visited vertices (uk = n−|
k

⋃

i=1

Xi|) and tk the number

of edges of Gc after removing Ec[Xk] and all unconnected vertices (i.e. step 5 in
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the elimination process). We have:

uk = n − |
k

⋃

i=1

Xi| = n − (

k−1
∑

i=1

|Xi\Xi+1| + |Xk|) ≤ n − (k − 1 + |Xk|)

≤ n − (k + |Xk ∩ Xk+1|)

≤ n −

(

1

2

⌈n

2

⌉

+
⌈n

2

⌉

+ 1

)

≤
n

4
− 1

Each non-visited vertex has degree at most 4. Therefore,

tk ≤ 4uk ≤ n − 4 (3.1)

Following the construction of Xk+1 from Xk, rk+1 is the vertex of minimum degree
in Xk ∩ Xk+1. Then,

tk ≥ dc(rk+1)|Xk ∩ Xk+1| ≥
(⌈n

2

⌉

+ 1
)

dc(rk+1) (3.2)

(3.1) and (3.2) infer that, if there exists k such that |Xk ∩ Xk+1| ≥
⌈n

2

⌉

+ 1, then

dc(rk+1) ≤ 1. Hence, k + 1 = K or |Xk+1| = |Xk ∩ Xk+1| + 1. We have then
k + 1 = K or |Xk+1 ∩ Xk+2| ≤ |Xk+1| − 1 = |Xk ∩ Xk+1|.

• Similarly, if there exists k such that |Xk ∩ Xk+1| ≥
⌈n

2

⌉

, then k ≥
1

2

⌈n

2

⌉

−
1

2
. So,

uk ≤ n− (k+ |Xk ∩Xk+1|) ≤ n−

(

1

2

⌈n

2

⌉

+
⌈n

2

⌉

−
1

2

)

≤
n

4
+

1

2
. Hence, tk ≤ n+2.

We have also tk ≥ dc(rk+1)|Xk ∩ Xk+1| ≥
⌈n

2

⌉

dc(rk+1). Then, n + 2 ≥
n

2
dc(rk+1).

This implies that for n ≥ 4, dc(rk+1) ≤ 2. So, k + 1 = K or |Xk+1 ∩ Xk+2| ≤
|Xk+1| − 1 ≤ |Xk ∩ Xk+1| + 1.

So, the cardinal of (Xk ∩ Xk+1) is bounded by:

Theorem 3.9. ∀k ≥ 1, 2 ≤ |Xk ∩ Xk+1| ≤
⌈n

2

⌉

+ 1

Proof. We first prove by contradiction that |Xk ∩ Xk+1| ≥ 2. The path decomposition
requires that Xk ∩ Xk+1 is the separator of two non-empty sets (

⋃k
i=1 Xi)\(Xk ∩ Xk+1)

and (
⋃K

i=k+1 Xi)\(Xk ∩Xk+1). If ∃k, |Xk ∩Xk+1| = 1, or Xk ∩Xk+1 = {rk+1}, then there
would be no Hamiltonian cycle in the n-strand barrel graph, as in every complete tour,
rk+1 is visited at least twice.

We now prove |Xk ∩ Xk+1| ≤
⌈n

2

⌉

+ 1.
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3.4. Algorithm for finding barrel structures of minimum energy

• For n ≤ 3, we have K = 1. There is only X1.

• For 3 < n ≤ 5, if K ≥ 2, then 4 ≥ |Xk| > |Xk ∩ Xk+1|, so |Xk ∩ Xk+1| ≤ 3 ≤
⌈n

2

⌉

+ 1,∀k.

• For n ≥ 6, ∀k ≥ 1, we have: (Xk+1 ∩ Xk+2)\(Xk ∩ Xk+1) ⊆ Xk+1\(Xk ∩ Xk+1) =
Xk+1\Xk = Nc(rk+1) and (Xk ∩ Xk+1)\(Xk+1 ∩ Xk+2) ⊇ {rk+1}

Hence,

|Xk+1 ∩ Xk+2| − |Xk ∩ Xk+1|

= |(Xk+1 ∩ Xk+2)\(Xk ∩ Xk+1)| − |(Xk ∩ Xk+1)\(Xk+1 ∩ Xk+2)|

≤ |Nc(rk+1)| − |{rk+1}| = dc(rk+1) − 1 ≤ 2

So,

|Xk+1 ∩ Xk+2| ≤ |Xk ∩ Xk+1| + 2,∀k (3.3)

Following the elimination process,

|X1 ∩ X2| ≤ |X1| − 1 = deg(r1) ≤ 3 ≤
⌈n

2

⌉

(3.4)

Let k0 be the minimum index such that |Xk0
∩Xk0+1| ≥

⌈n

2

⌉

(if k0 is not determined,

the theorem is proved). (3.3) and (3.4) imply that |Xk0
∩ Xk0+1| =

⌈n

2

⌉

or |Xk0
∩

Xk0+1| =
⌈n

2

⌉

+ 1. This, with regard to Lemma 3.8, ensures that |Xk ∩ Xk+1| ≤
⌈n

2

⌉

+ 1,∀k = k0, ...,K.

Such an elimination process allows to construct a path decomposition with a bounded
width in a linear time with regard to the number of edges in the n-strand barrel graph. A
question arises as to whether there is a polynomial time algorithm to find out an optimum
tree decomposition of such a graph.

Conjecture 3.2. Finding treewidth of an n-strand barrel graph is NP-hard?

We describe here the algorithm based on dynamic programming with a constraint on
the shear number of the barrel. Let Wi denote the set of potential vertices in V for the

ith β-strand in sequence order, Ui ⊂
∏

k∈Xi

Wk and Ti ⊂
∏

k∈Xi∩Xi+1

Wk, the set of tuples

of |Xi| and |Xi ∩ Xi+1| vertices, respectively, such that there is at least a substructure
of the barrel through these vertices, E(Gc[A](z)) the weight of the contact graph Gc[A]
where the tuple z of size |A| is assigned to A.
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Definition 3.5. For all x ∈ Ti, the set of tuples which determine the substructures
corresponding to x is defined as:

ext(x) = {z ∈ Ui | ∀k ∈ Xi ∩ Xi+1, z[k] = x[k]}

Definition 3.6. For all z ∈ Ui, the reduced tuple of z is defined as:

red(z) = x ∈ Ti−1, such that ∀k ∈ Xi−1 ∩ Xi, z[k] = x[k]

We have the recurrence: Ck
x = −E(Gc[X0](x)),∀x ∈ T0, where k is the relative shear

defined by pairing vertices in Gc[X0](x), and

∀x ∈ Ti, Ck
x = max

z∈ext(x)
(Ck′

red(z) − E(Gc[Xi] \ Gc[Xi−1](z)))

where k is defined by k′ and the relative shears of pairing vertices in Gc[Xi]\Gc[Xi−1](x).
G1 \G2 is determined by removing from G1 all the edges of G2 and then the unconnected
vertices.

The solution is obtained when we reach the optimum at the end of the path decom-
position with the shear number k = S. The sum of the relative shears gives a constant
factor τ ∼ 2n. Length constraints on turns or loops between two consecutive strands and
on themselves imply that the number of assignments to a strand with regard to the other
one is bounded by a constant λ ∼ O(1). Hence, the complexity can be reduced by 1 in
the exponent of N , the constant being then multiplied by a factor of λ. The dynamic
programming runs in time and space O(nNmaxi |Xi∩Xi+1|).

Theorem 3.9 gives an upper bound of
⌈n

2

⌉

+1 on the exponent of N , which is strictly

smaller than the previous upper bound of 1 + (2n − 2)/3 (see Section 2.7). In standard
β-barrels, where σ is the identity permutation Id, we have |Xk∩Xk+1| = pw(Gc) = 2,∀k.
The complexity is then O(nN2) in time and space.

3.5 About Greek key motifs in β-barrels

Following the standard structure corresponding to the identity permutation, the β-barrels
are found more commonly in such a way that the β-strands are paired in an antiparallel
manner to each other. Among this, the most popular structures are those containing
disjoint Greek key motifs (see Figure 2.6), for which, our approach can efficiently solve
the optimization problem.

We study different possible configurations for disjoint Greek key motifs in permuta-
tions. For such structures, we can apply the elimination process to the quotient graph
of the n-strand barrel graph Gc to construct its tree decomposition. The notations men-
tioned in this section are those of Section 2.7. The regular expression is used to describe
the permutation. We consider the alphabet Σ = {Id, g+, g−}, where Id represents the
identity motifs, g+ represents Greek key motifs of form k(k + 3)(k + 2)(k + 1) and g−
represents (k + 2)(k + 1)k(k + 3). A permutation with disjoint Greek key motifs can be
written as a word of Σ∗. For example, 14325678 = g+Id = Idg−Id, 14327658 = g+g−.
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• For σ ∈ H1:

– σ = Id: Gc is a cycle, thus has treewidth 2. The complexity is then O(nN2).

– σ = (1 3) = g−Id: The n-strand barrel graph is an outerplanar graph, thus has
treewidth 2 (see Figure 3.5) The complexity is then O(nN2).

1 2

3

4

56

7

8

(a)

1,2,4 2,3,4

3,4,5 3,5,6

3,6,7 3,7,8

(b)

Figure 3.5: Gc(a) and its tree decomposition(b) of σ = 3 2 1 4 5 6 7 8

– σ = Idg−(Id+g−)∗+g−(Id+g−)∗g−(Id+g−)∗: The quotient graph of Gc is an
outerplanar graph, in which each module is of size at most 2 and the modules
of size 2 are not adjacent. Hence, we can easily construct a tree decomposition
of Gc that has width 3 (see Figure 3.6). The complexity is O(nN3).

• For σ ∈ H2:

– σ = Id : O(nN2).

– σ = (2 4) = g+Id: Gc has treewidth 3, thus the complexity is O(nN3) (see
Figure 3.7).

– σ = Idg+ : Gc is outerplanar, thus has treewidth 2. The complexity is then
O(nN2) (see Figure 3.8).

– σ = g+Idg+ + g+g+ + (Id + g+)+g+(Id + g+)+: The quotient graph of Gc is
also an outerplanar graph, in which each module is of size at most 2 and the
modules of size 2 are not adjacent. Hence, the complexity is O(nN3) (see
Figure 3.9).

• For σ ∈ H3:

– σ = Id : O(nN2).
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Figure 3.6: Gc(a), its quotient graph(b) and its tree decomposition(c) of σ = 3 2 1 4 7 6 5
8 11 10 9 12
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Figure 3.7: Gc(a), its quotient graph(b) and its tree decomposition(c) of σ = 1 4 3 2 5 6 7
8

– σ = Idg+(Id + g+)+: The quotient graph of Gc is also an outerplanar graph,
in which each module is of size at most 2 and the modules of size 2 are not
adjacent. Hence, the complexity is O(nN3) (see Figure 3.10).

• For σ ∈ H4:

– σ = Id : O(nN2).

– σ = Idg+: Gc is outerplanar, thus has treewidth 2. The complexity is then
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Figure 3.9: Gc(a), its quotient graph(b) and its tree decomposition(c) of σ = 1 4 3 2 5 8 7
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O(nN2) (see Figure 3.11).

– σ = Idg+(Id + g+)+: Similarly to the case σ ∈ H3, the complexity is O(nN3)
(see Figure 3.12).

More generally, for a permutation σ that differs from the identity permutation by
disjoint Greek key motifs, i.e. σ = (Id + g+ + g−)+, the width of the tree decomposition
is determined at the motifs g−g+ or g+g−. The motifs g−g− or g+g+ can be reduced to
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Figure 3.11: Gc(a) and its tree decomposition(b) of σ = 1 2 3 4 5 6 7 10 9 8

the previous cases of H1, H2, H3 and H4, thus give the width at most 3.

• For motifs g−g+, either g− = 3214 or g− takes part in a standard complete Greek
key motif 14325 [99], the quotient graph of Gc is always an outerplanar graph, in
which each module is of size at most 2 and the modules of size 2 are not adjacent.
Hence, the complexity is O(nN3).

• For motifs g+g−, the width of the tree decomposition is max{3, tw(G+−)}, where
tw(G+−) is the treewidth of the graph G+− in Figure 3.13. Since all vertices of
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Figure 3.12: Gc(a), its quotient graph(b) and its tree decomposition(c) of σ = 1 2 3 6 5 4
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G+− have degree 3, tw(G+−) ≥ 3. We can easily construct a tree decomposition of
width 3, thus tw(G+−) = 3. Therefore, the complexity is also O(nN3).
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5 6

(a)

1,2,4,5 2,4,5,6 2,3,4,6

(b)

Figure 3.13: The reduced graph G+− for g+g−(a) and its tree decomposition of width 3(b)

So, we also have a complexity in time and space O(nN2) to O(nN3) for this tree
decomposition based algorithm for this popular class of structures. The algorithm favor-
ably compares to our previous algorithm in Section 2.7 regarding the complexity in time
and space (O(nN2) to O(nN4)).
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Chapter 4

Evaluation of performance of
BBP (Beta-Barrel Predictor)

4.1 Introduction

Beside the theoretical study, our major focus in this work is to deal with the super-
secondary prediction of transmembrane β-barrel proteins. We describe in this chapter
the evaluation of the performance of our predictor, namely Beta-Barrel Predictor (BBP),
in comparison with other existing approaches [119, 120, 123].

We describe at first several TMB datasets used for the comparison with different
softwares. The details of our implementation are discussed in the next section, followed
by the concepts and measures that will be used for the assessment. Finally, we present
and discuss the evaluation results in the last section.

4.2 Experimental setup

4.2.1 Software

We compare our folding prediction accuracy to TMBpro [103] and TMBETAPRED-
RBF [96]. We compare our classification results to Freeman et al. [41], TMBETAPRED-
RBF [96], PRED-TMBB [9] and transFold [130]. These are currently state-of-the-art
softwares for prediction and discrimination of TMB proteins which perform better than
other approaches in literature. The results of these approaches are executed from their
web-server.

4.2.2 Datasets

We used TMB proteins from the PDBTM database [125] to train and test our approaches.
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• Folding: We used CD-HIT [76] to constrain the redundancy in proteins. A threshold
of 40% similarity was applied to reduce the dataset, resulting in 49 sequences (set-
PDBTMB40). We retain only the monomeric barrels, i.e. the sequences that form
a unique complete barrel. Thus, setPDBTMB40 contains 41 sequences 1OH2 Q,
3A2R X, 3AEH A, 3BRZ A, 3CSL A, 2R4P A, 3DWO X, 2FGQ X, 3EFM A, 3EMN X,
2ERV A, 2IWW A, 2F1T A, 1FEP A, 3FHH A, 3FID A, 1ILZ A, 1BY3 A, 2GSK A,
1BH3 A, 2HDF A, 2J1N A, 2IAH A, 3JTY A, 1BXW A, 2VDF A, 1PNZ A, 3GP6 A,
1AF6 A, 3NJT A, 2O4V A, 2ODJ A, 1QJ8 A, 1P4T A, 2POR A, 1TLW A, 1UXF A,
1UYN X, 2WJQ A, 2X4M A, 1XKW A. It is important to note that while other
learning based methods use the available entire dataset of TMB structures for
training, we use these known structures to build a statistical model which only
plays the role of a filter to discard the obviously non-putative β-strands and does
not take part in our folding algorithm. While this may result in overfitting for a
learning-based approach, the effect on our approach should be very small.

In order to evaluate the performance of BBP, with regard to mutation, geomet-
rical details, we use a subset of setPDBTMB40, namely setECOLI40, which
contain the TMB proteins from Escherichia coli. This choice of TMB structures
from a specific species is to make our prediction under the physicochemical prop-
erties of the membrane, given that these are not quite varied in the same species.
setECOLI40 contains then 17 sequences: 1AF6 A, 1BXW A, 1BY3 A, 1FEP A,
1ILZ A, 1PNZ A, 1QJ8 A, 1TLW A, 2F1T A, 2GSK A, 2HDF A, 2IWW A, 2J1N A,
2R4P A, 2WJQ A, 3AEH A, 3GP6 A.

We also used the two sets of TMB proteins reported in [103]. The first dataset which
is described in [130] contains 14 non-redundant TMB proteins with PDB codes of
1A0S, 1E54, 1I78, 1K24, 1PRN, 1QJ8, 1QJP, 2OMF, 2POR, 1QD6, 1P4T, 1AF6,
1THQ and 1TLY. This set will be referred as setTransFold. The second dataset
described in [8] also contains 14 non-redundant TMB proteins: 1A0S, 1E54, 1I78,
1K24, 1PRN, 1QJ8, 1QJP, 2OMF, 2POR, 1QD5, 1FEP, 2MPR, 1KMO and 2FCP,
where the first nine are in common with setTransFold. We refer to this second
set as setPREDTMBB.

• Classification: We used a set of 177 α-helical transmembrane proteins of length from
140 to 800 residues, at 40% redundancy reduction, from PDBTM, that is named
setPDBTMH40 and 32 non-redundant lipocalins taken from PDB (setLIPOC).
setPDBTMH40 contains 1AIG H, 1AIG L, 1AR1 B, 1BCC C, 1C17 M, 1C51 B,
1DOP D, 1ET2 S, 1EYS M, 1F6G A, 1FFT A, 1FFT B, 1FFT C, 1FX8 A, 1IZL A,
1J4N A, 1JB0 F, 1JB0 L, 1KAD A, 1KPW A, 1KQF B, 1KQF C, 1L7V A, 1LBN A,
1LNQ A, 1LVI A, 1M0K A, 1O5W A, 1OED B, 1OED C, 1ORQ C, 1OZ5 A, 1P49 A,
1P7B A, 1PB2 A, 1PB4 C, 1PB4 D, 1PRC H, 1PW4 A, 1Q90 A, 1QLE C, 1RH5 A,
1S6E A, 1SR1 A, 1SUK A, 1UPE A, 1XIO A, 1Y36 A, 1Y8S A, 1Y9C A, 1YEW C,
1YG7 A, 1YO9 L, 1Z8E A, 1ZAS A, 1ZC7 A, 1ZCD A, 1ZTI A, 2A06 E, 2A0D A,
2A65 A, 2AC6 A, 2AKH Y, 2AMK A, 2AUI A, 2AXT B, 2AXT C, 2B0X A, 2B2F A,
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PDB Species Protein Chain Length

1AF6 Escherichia coli Maltoporin A 421
1BH3 Rhodobacter blasticus Porin A 289
1BXW Escherichia coli Outer membrane protein A A 172
1BY3 Escherichia coli Ferrichrome-Iron receptor precursor A 714
1FEP Escherichia coli Ferric enterobactin receptor A 724
1ILZ Escherichia coli Outer membrane phospholipase A A 275
1OH2 Salmonella typhimurium Sucrose specific porin Q 413
1P4T Neisseria meningitidis Outer membrane protein NspA A 155
1PNZ Escherichia coli Ferric citrate transporter A 751
1QJ8 Escherichia coli Outer membrane protein X A 148
1TLW Escherichia coli Nucleoside-specific channel-forming protein Tsx A 278
1UXF A. peuropneumoniae Hemoglobin binding protein HgbA A 550
1UYN Neisseria meningitidis Autotransporter Nalp X 308
1XKW Pseudomonas aeruginosa Fe(III)-pyochelin receptor A 665
2ERV Pseudomonas aeruginosa Outer membrane enzyme PagL A 150
2F1T Escherichia coli Outer membrane protein W A 197
2FGQ Delftia acidovorans Porin outer membrane protein 32 X 332
2GSK Escherichia coli Vitamin B12 transporter BtuB A 590
2HDF Escherichia coli Colicin I receptor A 639
2IAH Pseudomonas aeruginosa Ferripyoverdine receptor A 772
2IWW Escherichia coli Outer membrane protein G A 281
2J1N Escherichia coli Outer membrane protein C A 346
2O4V Pseudomonas aeruginosa Porin P A 411
2ODJ Pseudomonas aeruginosa Porin D A 428
2POR Rhodobacter capsulatus Porin A 301
2R4P Escherichia coli Long-chain fatty acid transport protein A 427
2VDF Neisseria meningitidis Outer membrane protein A 253
2WJQ Escherichia coli Outer membrane protein NanC A 215
2X4M Yersinia pestis Coagulase/Fibrinolysin A 298
3A2R Neisseria meningitidis Outer membrane protein II X 355
3AEH Escherichia coli Hemoglobin-binding protease autotransporter A 308
3BRZ Pseudomonas putida Toluene transporter TodX A 439
3CSL Serratia marcescens HasR protein A 753
3DWO Pseudomonas aeruginosa Outer membrane protein X 451
3EFM Bordetella pertussis Ferric alcaligin siderophore receptor A 707
3EMN Mus musculus Voltage-dependent anion-selective channel 1 X 295
3FHH Shigella dysenteriae Outer membrane heme receptor ShuA A 640
3FID Salmonella typhimurium Outer membrane protein LpxR A 296
3GP6 Escherichia coli Protein pagP A 163
3JTY Pseudomonas fluorescens BenF-like porin A 402
3NJT Bordetella pertussis Filamentous hemagglutinin transporter fhaC A 566

Table 4.1: Transmembrane β-barrel proteins in setPDBTMB40
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2B6S A, 2BG9 A, 2BG9 E, 2BL2 A, 2BMN A, 2BS2 C, 2C3E A, 2CFP A, 2D2C A,
2D2C B, 2D2C D, 2D57 A, 2EVU A, 2F75 A, 2F93 A, 2F95 B, 2FBW C, 2FYN A,
2FYN B, 2FYN C, 2G1X A, 2G2A A, 2GFP A, 2GFZ A, 2H8A A, 2HE6 , 2HYD A,
2IC8 A, 2IIL , 2IK3 , 2IQP A, 2IUB A, 2J58 A, 2J7A C, 2JIZ G, 2JLN A, 2K73 A,
2KSE A, 2NQ2 A, 2NR9 A, 2OAR A, 2OAU A, 2Q7M A, 2QFI A, 2R6G F, 2RH1 A,
2VL0 A, 2VPW C, 2W1P A, 2WCD A, 2WIT A, 2WLH A, 2WSC 1, 2WSC 2,
2WSC 3, 2WSC A, 2WSC F, 2WSC G, 2WSC H, 2YVX A, 2Z73 A, 2ZJS Y, 2ZW3 A,
3A3Y B, 3A7K A, 3ABK B, 3ABK D, 3B4R A, 3B5W A, 3B9W A, 3BEH A, 3BVD B,
3C02 A, 3C1G A, 3C9L A, 3CHX A, 3CHX B, 3CN5 A, 3CX5 D, 3D31 C, 3DDL A,
3DET A, 3DH4 A, 3DHW A, 3DTU A, 3DWW A, 3EAM A, 3EGW C, 3EH3 A,
3FH6 G, 3FWL A, 3G67 A, 3GI8 C, 3H9V A, 3HD6 A, 3HFX A, 3HGC A, 3HKK A,
3HQK A, 3IXZ B, 3JYC A, 3K3F A, 3KBC A, 3KCU A, 3KP9 A, 3LLQ A, 3LNM B,
3M71 A. setLIPOC contains 1AVG I, 1BEB A, 1BJ7 A, 1DZK A, 1E5P A, 1GT1 A,
1I4U A, 1JYD A, 1JZU A, 1KXO A, 1LF7 A, 1MUP A, 1OEJ A, 1PM1 X, 1QFT A,
1QWD A, 1VPR A, 1X8Q A, 1XKI A, 1Y0G A, 2CM4 A, 2HZQ A, 2RA6 A,
2WEW A, 2WWP A, 3BRN A, 3BS2 A, 3CQN A, 3DSZ A, 3KQ0 A, 3L4R A.

4.3 Implementation details

The number of strands n and the shear number S determine the geometry of the barrel,
particularly the membrane spanning part of the segments, and are thus involved in the
computation of the energy terms. If they are known, the algorithm can enforce these
values and fold the protein accordingly. The values for n, which are usually even, are
governed by the consideration on the length of the sequence, the thickness of membrane
and the length of turns or loops and vary between 8 and 22 [117]. The values for S are
usually even and comprised between n and 2n [82, 91, 92]. The problem is then solved
by the constraint dynamic programming with the constraints of given n and S. A small
number of couples (n, S) have to be explored and our algorithm is fast enough for that.

Side-chain interactions between contiguous residues along a segment on the same side
and interactions with the environment of channel or bilayer define the intrinsic energy
of the corresponding vertex. The pairing energy of two adjacent segments in the barrel
is computed by optimizing the relative positions between the constitutive amino acids.
These energies involve hydrogen bonds in main chains, electrostatic interactions between
side-chains, hydrophobic effect as well as environmental effect. More specifically, the ex-
tracellular and intracellular environments with distinct hydrophobicity indices can have
significantly different hydrophobic effects. In addition, the membrane thickness gives
constraints on the segment size and helps identify the interactions inside or outside the
membrane region. We use here by default a parameter of 3nm for the membrane thick-
ness, thus making it about 8 residues thick [75, 104]. The features on size, polarity [48],
and flexibility [15] of turns and loops are also taken into consideration, i.e. turns and
loops satisfy threshold constraints on their polarity and flexibility indices and their length.
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PDB Species Protein Chain Length

1AVG Triatoma pallidipennis Triabin I 142
1BEB Bos taurus Beta-lactoglobulin A 162
1BJ7 Bos taurus Allergen Bos d 2 A 156
1DZK Sus scrofa Odorant-binding protein A 157
1E5P Mesocricetus auratus Aphrodisin A 151
1GT1 Bos taurus Odorant-binding protein A 159
1I4U Synthetic construct alpha-crustacyanin A 181
1JYD Homo sapiens Plasma retinol-binding protein A 183
1JZU Coturnix coturnix Q83 A 157
1KXO Pieris brassicae DigA16 A 184
1LF7 Homo sapiens Complement Protein C8gamma A 182
1MUP Mus musculus Major urinary protein A 166
1OEJ Escherichia coli Yoda A 193
1PM1 Rhodnius prolixus Nitrophorin 2 X 180
1QFT Rhipicephalus appendiculatus Female-specific histamine binding protein 2 A 175
1QWD Escherichia coli Lipoprotein blc A 177
1VPR Lingulodinium polyedrum Luciferase A 374
1X8Q Rhodnius prolixus Nitrophorin 4 A 184
1XKI Homo sapiens Von Ebner’s gland protein A 162
1Y0G Escherichia coli YceI A 191
2CM4 Ornithodoros moubata Complement inhibitor OmCI A 150
2HZQ Homo sapiens Apolipoprotein D A 174
2RA6 Trichosurus vulpecula Trichosurin A 166
2WEW Homo sapiens Apolipoprotein M A 172
2WWP Homo sapiens Prostaglandin-H2 D-Isomerase A 176
3BRN Argas monolakensis Amine-binding protein A 157
3BS2 Argas monolakensis Monomine A 148
3CQN Arabidopsis thaliana Violaxanthin de-epoxidase A 185
3DSZ Homo sapiens Engineered human lipocalin 2 A 186
3FIQ Rattus norvegicus Odorant-binding protein 1F A 157
3KQ0 Homo sapiens Alpha-1-acid glycoprotein 1 A 192
3L4R Canis familiaris Minor allergen Can f 2 A 170

Table 4.2: β-barrel proteins in setLIPOC

Their energies are approximated by hydrophobicity, using Kyte-Doolittle scale [72].

We use the Dunbrack backbone-dependent rotamer library [35] and the partial charges
from GROMOS force field [126] to compute pairwise interaction energies. The hydropho-
bic interaction between two side-chains u, v is assessed by the amount of contacts between
non-polar groups, calculated by taking the average on all rotamer pairs of the two side-
chains euv =< euv|rotamers >. Each side-chain plays the role of a group of partial charges
in the electrostatic interaction. The main-chain hydrogen bond is measured by the elec-
trostatic potential energy between peptide C=O and N−H groups.
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The probabilistic model and the constraints on hydrophobicity help discard the un-
likely membrane spanning β-strands (see Chapter 2). A threshold on overall energy can
also be involved to enhance the discrimination. We studied the per-strand energy value
for a variety of TMB proteins including the training dataset and other TMB proteins.
Even though this value is always higher than 0.9 for these proteins, we chose 0.85 as a
threshold to avoid overfitting. Note that this does not affect the prediction results, and
is only used for discrimination.

4.4 Method of evaluation

4.4.1 Concepts on predicted secondary structures

We first introduce the notions of secondary structure assignment and elementary sec-
ondary structure. These are followed by the concepts of overlap of secondary structures,
on which we define a correctly predicted elementary secondary structure and a correctly
predicted structure. The concepts are inspired from Waldispühl’s PhD thesis [129] with
modifications according to our context.

Notion 4.1. Secondary structure assignment

A secondary structure assignment of an amino acid sequence S is a sequence of des-
ignations of a secondary structure type (α, β or turn/loop) to residues of S. Particularly,
given an alphabet Σ = {S,−}, as β-barrel structures is the main target of our work, the
secondary structure assignment can be described as a word of Σ∗ with the same length to
S. S corresponds to a residue belonging to a membrane spanning β-structure, − to other
structures in non-membrane regions.

Notion 4.2. Elementary secondary structure

Let Γ be a secondary structure assignment. We call elementary secondary structure
a maximal segment of consecutive residues that belongs to the same kind of secondary
structure (S or −).

Example 4.1.

An N-terminal subsequence of protein OmpX (1QJ8) aligned with its secondary struc-
ture assignment:

10 20 30 40 50 60 70

| | | | | | |

ATSTVTGGYAQSDAQGQMNKMGGFNLKYRYEEDNSPLGVIGSFTYTEKSRTASSGDYNKNQYYGITAGPAYR

---SSSSSSSSSS------SSSSSSSSSSS--------SSSSSSSSS-------------SSSSSSSSSS--

It comprises 4 elementary secondary structures. The first one is a membrane-spanning
strand stretching from residue 4 to residue 13, the second strand contains residues from
20 to 30, the third one from 39 to 47 and the fourth one from 61 to 70. ⊳
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Definition 4.1. Overlap of secondary structures

Given an alignment of two secondary structure assignments Γ1 and Γ2 of an amino
acid sequence. Let Ei

1 and E
j
2 be two elementary secondary structures in Γ1 and Γ2, re-

spectively. We say that Ei
1 and E

j
2 overlap each other if and only if the two corresponding

β-strands have at least 4 common residues.

Definition 4.2. Correctly predicted elementary secondary structure

Given an alignment of two secondary structure assignments Γobs and Γpred of an
amino acid sequence that correspond to the experimentally observed structure and the
predicted structure, respectively. Let Ei

obs and E
j
pred be two elementary secondary struc-

tures in Γobs and Γpred, respectively. We say that the elementary secondary structure

Ei
obs is correctly predicted by E

j
pred if and only if Ei

obs overlaps E
j
pred and only E

j
pred,

and reversely, E
j
pred overlaps Ei

obs and only Ei
obs.

Example 4.2.

An alignment of two secondary structure assignments corresponding to an observed
structure (the first line) and a predicted structure (the second line):

10 20 30 40 50 60 70

| | | | | | |

---SSSSSSSSSS---------SSSSSSSSSSS----SSSSSSSSSSS-----SSSSSSSSSSS---------

----SSSSSSSSSSSS-----------SSSSSSSSSSSSSS----SSSSSSSSS------SSSSSSSSSS---

The first observed elementary secondary structure (the membrane-spanning strand from
residue 4 to 13) only overlaps the first predicted strand (from residue 5 to 16) and
reversely. The second predicted strand overlaps both the second and third observed
strands while the third predicted strand does not overlap any observed strand. The
fourth predicted and observed strands overlap each other. Hence, only the first and the
fourth elementary secondary structures are predicted. ⊳

Definition 4.3. Correctly predicted structure

Given an alignment of two secondary structure assignments Γobs and Γpred of an
amino acid sequence S that correspond to the experimentally observed structure and the
predicted structure, respectively. The structure of protein S is said to be correctly pre-
dicted if and only if every observed elementary secondary structure overlaps one and only
one predicted elementary secondary structure and, reversely, if every predicted elementary
secondary structure overlaps one and only one observed elementary secondary structure.

Example 4.3. Two alignments of secondary structure assignment, in which the first
line corresponds to the observed structure and the second line is the predicted structure.

• Correctly predicted structure:
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10 20 30 40 50 60 70

| | | | | | |

---SSSSSSSSSS---------SSSSSSSSSSS----SSSSSSSSSSS-----SSSSSSSSSSS---------

----SSSSSSSSSSSS----SSSSSSSSSSSSS-----SSSSSSSS--------------SSSSSSSSSS---

• Non-correctly predicted structure:

10 20 30 40 50 60 70

| | | | | | |

---SSSSSSSSSS---------SSSSSSSSSSS----SSSSSSSSSSS-----SSSSSSSSSSS---------

----SSSSSSSSSSSS-----------SSSSSSSSSSSSSS----SSSSSSSSS------SSSSSSSSSS---

⊳

4.4.2 Measures of performance

We have just presented the notions that allow to evaluate the quality of super-secondary
structure prediction. The prediction can be considered as a binary classification, which is
to classify a set of objects into two different classes. We now describe the measures for the
performance of the our prediction and other approaches, starting with the fundamental
measures of true positive (also known as hit), true negative (or correct rejection), false
positive (or false alarm), false negative (or miss), which are the four different possible out-
comes of a binary classification. For two classes, let’s say “positive” and “negative”, or
“yes” and “no”, true positive (TP ) is a correct classification of an object into “positive”
class, true negative (TN) is a correct classification into “negative” class. False positive
(FP ) is when an object is incorrectly classified as “positive”, and false negative (FN) is
when it is incorrectly classified as “negative”. In this work, we consider two classes of
membrane spanning β-strands (S) and non-membrane region (−). Without confusion,
we also use these two notations to mention the two classes. The measures are defined
on residues as well as on segments, in order to evaluate not only the capacity to assign
some sort of secondary structure to residues, but also to recognize membrane-spanning
segments.

On residues:

• TP = number of residues S which are predicted in S.

• TN = number of residues − which are predicted in −.

• FP = number of residues − which are predicted in S.

• FN = number of residues S which are predicted in −.
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On segments:

• TP = number of elementary secondary structures S which are correctly predicted.

• TN = number of elementary secondary structures − which are correctly predicted.

• FP = number of elementary secondary structures − which are not correctly pre-
dicted.

• FN = number of elementary secondary structures S which are not correctly pre-
dicted.

These four outcomes can represented in a contingency table (also known as confusion
matrix), as follows:

prediction outcome

S −

actual value
S True Positive False Negative
− False Positive True Negative

Based on these basic quantities, the principal measures of the performance of a binary
classifier are defined:

• Sensitivity (or true positive rate, recall) is the proportion of actual positive objects
which are correctly identified, i.e. the percentage of residues S (or elementary
secondary structures S) which are correctly predicted.

Sensitivity =
TP

TP + FN

i.e.

Sensitivity =
number of residues S correctly predicted

number of residues observed in S
or

Sensitivity =
number of elementary secondary structures S correctly predicted

number of elementary secondary structures observed in S

• Specificity (or true negative rate) is the proportion of actual negative objects which
are correctly identified, i.e. the percentage of residues − (or elementary secondary
structures −) which are correctly predicted.

Specificity =
TN

TN + FP
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• Positive predictive value (PPV or precision) measures the proportion of objects
with positive prediction results which are correctly predicted, i.e. the percentage of
residues S (or elementary secondary structures S) among all residues (or elementary
secondary structures) that are predicted in S.

PPV =
TP

TP + FP

i.e.

PPV =
number of residues S correctly predicted

number of residues predicted in S
or

PPV =
number of elementary secondary structures S correctly predicted

number of elementary secondary structures predicted in S

• F-score [127] is a measure of accuracy of the prediction. It is the harmonic mean
of the recall and the precision. The F-score has a value between 0 and 1. The
prediction is ideal when the F-score reaches 1.

F-score = 2 ×
recall × precision

recall + precision

• Matthews correlation coefficient (MCC) [88] is also a measure of quality of the
binary classification. This measure takes into account all the four outcomes of true
positive, true negative, false positive and false negative. It can be considered as
a correlation coefficient between the observed and predicted secondary structures.
Its value is included between −1 and +1. An MCC value of +1 ensures a per-
fect prediction, while −1 represents an inverse prediction. When MCC is 0, the
prediction shows an average random. The MCC is calculated using the formula:

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

We also use the score Q2 which evaluates the proportion of correctly predicted residues
over the whole sequence [129] for the measure of prediction performance:

Q2 = 100% ×
number of correctly predicted residues

number of residues

4.5 Experimental results

BBP can execute the prediction rapidly. The results reported here were obtained through
an Intel Pentium IV 3.2-GHz processor with 4 GB of memory.
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4.5.1 Folding

On setTransFold with transFold and TMBpro

The evaluation results in comparison with transFold and TMBpro-SS in Tables 4.3 show
that our method outperforms transFold, which is based on pseudo-energy minimization,
and is equivalent to TMBpro-SS which is based on 1D recursive neural network using
alignment profiles.

Method Q2 MCC Sensitivity PPV

transFold 69.9 0.38 94.9 85.2
TMBpro-SS 77.8 0.54 97.2 88.2
BBP 79.1 0.56 96.5 92.6

Table 4.3: Comparison of prediction accuracy on setTransFold. Q2 and MCC are mea-
sures on residues. Sensitivity and PPV are measures on β-strands.

On setPREDTMBB with PRED-TMBB and TMBpro

Method Q2 MCC TP FP FN TOP

PRED-TMBB 84.2 0.72 203 13 11 8
TMBpro-SS 88.3 0.75 204 6 10 11
BBP 79.0 0.57 199 21 15 11

Table 4.4: Comparison of prediction accuracy on setPREDTMBB. Q2 and MCC are
measures on residues. TP , FP , TN are measures on β-strands. TOP is the number of
proteins with correctly predicted topology, i.e. the proteins with correctly predicted number
of β-strands.

In setPREDTMBB with the bigger barrels, our method performs worse considering
the residues, but gives as good results as the others with regard to the topology. We point
out the fact that, in our work, the probabilistic model only plays the role of a filter for
potential β-strands, but does not take part in the pseudo-energy function. Furthermore,
our method is fairly independent of the learning set. The refinements we are carrying out
on structural constraints, hydrophobicity may help to improve the prediction accuracy.
Our scores Q2 and MCC are equivalent for the two datasets while there are deviations
in TMBpro-SS’s score which might come from their two different training sets.

On setPDBTMB40 with TMBpro

The folding prediction results are presented in Table 4.5 and Figure 4.1. Figure 4.1 plots
the Matthews Correlation Coefficient for our approach BBP and TMBpro for different
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proteins along the x-axis. The results of our approach are comparable to those of TMBpro
but more consistent as we do not rely on training for folding. We note that in the cases
the program predicts an optimal structure with a wrong number of strands, the optimal
energy is really close to the energy of the topologically right structure.

(a) Residues

Method Q2 Specificity Sensitivity F − score MCC

TMBpro 81.2 ± 6.1∗ 79.3 ± 7.9 84.2 ± 11.2 0.76 ± 0.1 0.61 ± 0.14
BBP 79.2 ± 5.4 78.4 ± 6.3 80.4 ± 9.9 0.74 ± 0.1 0.57 ± 0.12

(b) Segments

Method Specificity Sensitivity F − score MCC

TMBpro 90.1 ± 15.0∗ 94.2 ± 12.5 0.93 ± 0.12 0.85 ± 0.26
BBP 91.4 ± 12.0 91.4 ± 11.3 0.92 ± 0.11 0.83 ± 0.22

* Standard Deviation

Table 4.5: Comparison of prediction accuracy on setPDBTMB40

On setPDBTMB40 with TMBETAPRED-RBF

The TMBETAPRED-RBF web-server predicted non-TMB for 24 over 41 proteins of set-

PDBTMB40, or 58.5%. The structures for correctly identified proteins were completely
accurate. This might be because they were included in the training set.

4.5.2 Evaluation of the shear numbers

We studied the energy distribution of 17 TMB structures in Escherichia coli taken
from setPDBTMB40 (setECOLI40: 1AF6 A, 1BXW A, 1BY3 A, 1FEP A, 1ILZ A,
1PNZ A, 1QJ8 A, 1TLW A, 2F1T A, 2GSK A, 2HDF A, 2IWW A, 2J1N A, 2R4P A,
2WJQ A, 3AEH A, 3GP6 A) with regard to the slant angle, hence the shear number
(see Figure 4.2). Most optimal structures incline with an angle of 41◦ − 49◦, as observed
in databases. This suggests that our model takes well into account the physicochemical
properties of TMB structures. It should be also noted that there is no natural way to
define the shear number a priori.

4.5.3 Influence of the filtering threshold

We applied the filtering thresholds ρ =
1

3
,
1

2
and

2

3
on setECOLI40. These thresholds

ensure that on average, considering 3-residue blocks as subunits, each segment is accepted
as a β-strand if its propensity to be β-strand is at most 3, 2, 1.5 times, respectively, less
than its propensity to be other structure (α-helices or turns/loops). The observed minor
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Figure 4.1: Comparison of BBP and TMBpro on structure prediction results.
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Figure 4.2: Energy distribution of setECOLI40, θ = arctan hS

dn
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PDB Protein n S Angle Length

1AF6 Maltoporin 18 24 45.0 421
1BXW Outer membrane protein 8 10 43.2 172
1BY3 Ferrichrome-Iron receptor precursor 22 32 47.5 714
1FEP Ferric enterobactin receptor 22 32 47.5 724
1ILZ Outer membrane phospholipase 12 14 41.2 275
1PNZ Ferric citrate transporter 22 26 41.6 751
1QJ8 Outer membrane protein X 8 8 36.9 148
1TLW Nucleoside-specific channel-forming protein Tsx 10 14 46.4 278
2F1T Outer membrane protein W 8 14 52.7 197
2GSK Vitamin B12 transporter BtuB 22 26 41.6 590
2HDF Colicin I receptor 22 30 45.6 639
2IWW Outer membrane protein G 12 18 48.4 281
2J1N Outer membrane protein C 16 20 43.2 346
2R4P Long-chain fatty acid transport protein 14 24 52.1 427
2WJQ Outer membrane protein NanC 12 16 45.0 215
3AEH Hemoglobin-binding protease autotransporter 12 16 45.0 308
3GP6 Protein pagP 8 10 43.1 163

Table 4.6: Predicted optimal structures of transmembrane β-barrel proteins in
setECOLI40. n is the number of β-strands, S is the shear number, the slant angles are
expressed in degrees.

difference in accuracy with such considerably distinguished thresholds reinforces the fair
independence of our approach from the training data. The results in Table 4.7 show the
strong predicting ability of BBP from a poor known database. The lower the parameter
ρ, the more independent to the training the predictor. This reduced the prediction
performance of the model on the known structures, however, it may be useful to discover
new TMB proteins.

4.5.4 Evaluation on mutated sequences

We generate the mutated sequences from setECOLI40 by substituting the amino acids
at turns or loops using the PAM250 substitution matrix [33]. Each sequence in setECOLI40

is mutated up to 5% of amino acids into 10 new sequences. Figures 4.3 and 4.4 show
the Matthews Correlation Coefficient and F-score for residues and β-strands. We observe
from these results the stability of our predictions. It also suggests that the TMB proteins
are stable against these mutations at their turns and loops. The difference in structures of
those mutated proteins may merely come from the shift of membrane spanning β-strands
when their two extremities are mutated.
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Figure 4.3: MCC of mutated setECOLI40
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Figure 4.4: F-score of mutated setECOLI40
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(a) Residues

ρ Q2 Specificity Sensitivity F-score MCC

2/3 80.9 ± 4.8∗ 80.4 ± 5.2 82.7 ± 8.4 0.77 ± 0.04 0.61 ± 0.08
1/2 79.7 ± 6.0 78.5 ± 5.1 82.4 ± 8.6 0.76 ± 0.05 0.58 ± 0.11
1/3 77.7 ± 5.6 75.6 ± 6.5 81.1 ± 8.6 0.74 ± 0.05 0.55 ± 0.11

(b) Strands

ρ Specificity Sensitivity F-score MCC

2/3 94.8 ± 5.7 93.3 ± 5.9 0.94 ± 0.05 0.88 ± 0.1
1/2 96.1 ± 4.8 95.4 ± 5.3 0.96 ± 0.05 0.91 ± 0.09
1/3 91.7 ± 9.2 94.9 ± 6.5 0.94 ± 0.07 0.87 ± 0.07

* Standard Deviation

Table 4.7: Comparison of prediction accuracy on setECOLI40 with different thresholds

4.5.5 Permuted structures

For 3L48, the C-terminal domain of the PapC usher in E. coli, the observed structure
topology containing a Greek key motif corresponds to the permutation σ = (1, 4, 3, 2, 5, 6, 7)
and is predicted with an accuracy (Q2) of 70.2% at ρ = 0.2.

Following the experimental observations that were published previously on the effi-
ciency of the in vivo membrane assembly of OmpA variants [71], we tested our algorithm
with different given permutations. OmpA (1BXW) consists of eight β-strands, thus
without feasibility being taken into account, there are (8-1)! = 5040 circular permuta-
tions to check (see Figure 4.5). The pseudo-energy 10.21 of the observed permutation is
found in the lowest energy zone. 41 permuted structures, or 0.81%, reach an energy of
(10.21±0.3). A ratio of about 1.31% is found in the case of OmpX 1QJ8 (see Figure 4.6).
These results are not surprising since a protein may be folded into more than one spatial
conformation. In both cases, a Poisson-like distribution is found. This observation may
help to discriminate most of infeasible conformations with the use of a threshold on the
global energy. Hence, the method is expected to rapidly find a small set containing the
right structure within a threshold of, for instance, 2% from the lowest energy and with
structural feasibility conditions on permutations. This set might be much smaller be re-
fining the biologically plausible permutations. Other proposed solutions in this set may
be the candidates for in vivo and in vitro studies.

4.5.6 Classification

100% of the non-redundant set of 177 α-helical transmembrane proteins of length from 140
to 800 residues in setPDBTMH40 are rejected, whereas 31 out of 32 non-redundant
lipocalins taken from PDB are predicted as non-TMB. Though lipocalins are also β-
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Figure 4.5: Distribution of 7! permutations on E. Coli OmpA 1BXW 8-strand barrel
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barrels which reverse the TMB pattern with a hydrophobic core, the environmental effects
on both sides of the barrel are still different. Our pseudo-energy model yields unfavorably
on such structures and discriminates considerably better than the learning-based meth-
ods like Freeman-Wimley [41], TMBpro [103], PRED-TMBB [9] and TMBETAPRED-
RBF [96], but also of transFold [130].
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Conclusion

We have presented, in this thesis, a new pseudo-energy minimization method for the clas-
sification and prediction of transmembrane protein super-secondary structure based on a
variety of potential structures. Our approach takes into account many physicochemical
constraints and minimizes the global free energy of the structure. It also accounts for
permuted structures, thus giving more complete information on the folded structure. Our
method is quite accurate with more than 90% sensitivity and F-score, over 80% M.C.C.
score on strands; and over 74% accuracy and F-score on residues. The results are compa-
rable to those given by the best currently known approaches, which are based on learning.
Moreover, our results are more consistent and have a significantly less variation across
different TMB proteins. This is especially interesting given that our algorithm is based
mainly on pseudo-energy minimizations, and the probabilistic model only plays a small
role. While the model presented here is only for TMB proteins, it can be easily extended
to accommodate α-helical bundles. We did not use a more sophisticated statistical model
for classifying β-barrel strands because that would risk overfitting and reliance on the
training dataset. It is also interesting to note that our approach performs very well for
identification of TMB proteins, rejecting all the α-helical bundles and most of the glob-
ular β-barrels. Our approach provides the best overall classification results amongst the
methods that try to predict structures. Our model learns the probabilistic model from
the training dataset, but it is mainly to screen out obvious non-TMB strands. Therefore,
there are no concerns about the size of the training data or overfitting.

Even though the results presented in our evaluation are comparable to other methods,
the methodology presented here is novel and gives insight into the actual physicochemical
constraints and energy. Moreover, our approach should be able to predict TMB proteins
which are significantly different from known proteins. Finally, our approach provides
more information than the current approaches by providing the permutations of the
strands. This can give an insight into the understanding of the folding mechanism of
TMB proteins.

We show that it is possible to design models for classification and structure prediction
for transmembrane β-barrel proteins which do not essentially depend on training sets
but on combinatorial properties of the structures to be proved. These models are fairly
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accurate, robust and can be run very efficiently on PC-like computers. Such models are
useful for the genome screening.

The BBP program allows users to set up freely the physicochemical parameter values
according to their own choice. This is helpful for discovering the structure as well as the
folding process of specific proteins. BBP is also available for use as a web server.

Future work

The model can be applied to the the prediction of TM α-helical bundles and a mixed
helice-strand structures, as well as globular β-barrels like lipocalins or membrane tar-
geting proteins (C2 domain) where permuted structures are usually found. Appropriate
energetic functions should be developed to embed into the current model.

Similar to the other methods, at present, we only propose single-domain protein
structures. A pretreatment to determine protein domains will be necessary for long
sequences with several domains.

The refinements in structural constraints and hydrophobicity, which may help to
improve the accuracy of our predicted structure, can always be improved. A context-
dependent physiochemical model, depending on specific biological membranes, can pro-
vide insight into predicted structures. Finally, it will be interesting to investigate more
sophisticated statistical models for the initial screening, both to improve the results and
understand how effective a mixed approach can be.
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Ecole Polytechnique, 2010. Biology course book.

[45] J.-F. Gibrat, J. Garnier, and B. Robson. Further developments of protein secondary
structure prediction using information theory. New parameters and consideration
of residue pairs. J. Mol. Biol., 198:425–443, 1987.

[46] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academy Press,
New York, 1980.

[47] E. Gorter and F. Grendel. On bimolecular layers of lipoids on the chromocytes of
the blood. J. Exp. Med., 41(4):439–443, 1925.

[48] R. Grantham. Amino acid difference formula to help explain protein evolution.
Science, 185:862–864, 1974.

[49] J. Greer. Comparative modeling methods: application to the family of the mam-
malian serine proteases. Proteins, 7:317–334, 1990.

[50] M. Gromiha, S. Ahmad, and M. Suwa. Neural network-based prediction of trans-
membrane β-strand segments in outer membrane proteins. J. Comp. Chem.,
25:762–767, 2004.

100



Bibliography

[51] M. M. Gromiha, S. Ahmad, and M. Suwa. TMBETA-NET: discrimination and
prediction of membrane spanning β-strands in outer membrane proteins. Nucleic
Acids Res., 33:W164–W167, 2005.

[52] W. Gu, S. J. Rahi, and V. Helms. Solvation free energies and transfer free energies
for amino acids from hydrophobic solution to water solution from a very simple
residue model. Journal of Physical Chemistry B, 108(18):5806–5814, 2004.

[53] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decompo-
sition. Computer Science Review, 4(1):41–59, 2010.

[54] E. M. Hearn, D. R. Patel, B. W. Lepore, M. Indic, and B. van den Berg. Transmem-
brane passage of hydrophobic compounds through a protein channel wall. Nature,
458:367–370, 2009.

[55] V. Helms and J. A. McCammon. Conformational transitions of proteins from atom-
istic simulations. In P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich,
and R. D. Skeel, editors, Computational Molecular Dynamics: Challenges, Meth-
ods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering,
pages 66–77. Springer-Verlag, 1998.

[56] R. Henderson, J. M. Baldwin, T. A. Ceska, F. Zemlin, E. Beckmann, and K. H.
Downing. Model for the structure of bacteriorhodopsin based on high-resolution
electron cryo-microscopy. Journal of Molecular Biology, 213(4):899–929, 1990.

[57] R. Henderson and P. N. Unwin. Three-dimensional model of purple membrane
obtained by electron microscopy. Nature, 257(5521):28–32, 1975.

[58] T. P. Hopp and K. R. Woods. A computer program for predicting protein antigenic
determinants. Mol. Immunol., 20(4):483–489, 1983.

[59] I. Jacoboni, P. L. Martelli, P. Fariselli, V. D. Pinto, and R. Casadio. Prediction of
the transmembrane regions of β-barrel membrane proteins with a neural network-
based predictor. Protein Sci., 10:779–787, 2001.

[60] M. Jacobson and A. Sali. Comparative protein structure modeling and its appli-
cations to drug discovery. In Annual Reports in Medicinal Chemistry, volume 39,
pages 259–276. Academic Press, 2004.

[61] J. O. E. L. Janin. Surface and inside volumes in globular proteins. Nature,
277(5696):491–492, 1979.

[62] M. S. Johnson, N. Srinivasan, R. Sowdhamini, and T. L. Blundell. Knowledge-based
protein modeling. Crit. Rev. Biochem. Mol. Biol., 29:1–68, 1994.

101



Bibliography

[63] W. L. Jorgensen and T. J. Rives. The opls force field for proteins. energy minimiza-
tions for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 110:1657–1666,
1988.

[64] H. Kamberaj and V. Helms. Monte carlo simulation of biomolecular systems with
biomcsim. Computer Physics Communications, 141(3):375 – 402, 2001.

[65] L. Kelley and M. Sternberg. Protein structure prediction on the Web: a case study
using the Phyre server. Nature protocols, 4(3):363–371, 2009.

[66] L. A. Kelley, R. M. MacCallum, and M. J. Sternberg. Enhanced genome annotation
using structural profiles in the program 3D-PSSM. J. Mol. Biol., 299:499–520, 2000.

[67] J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C.
Phillips. A three-dimensional model of the myoglobin molecule obtained by x-ray
analysis. Nature, 181(4610):662–666, 1958.

[68] H. G. Khorana, G. E. Gerber, W. C. Herlihy, C. P. Gray, R. J. Anderegg, K. Nihei,
and K. Biemann. Amino acid sequence of bacteriorhodopsin. Proc. Natl. Acad.
Sci. USA, 76(10):5046–5050, 1979.

[69] J. Kirz, C. Jacobsen, and M. Howells. Soft x-ray microscopes and their biological
applications. Quarterly Reviews of Biophysics, 28(1):33–130, 1995.

[70] J. H. Kleinschmidt and L. K. Tamm. Secondary and tertiary structure formation of
the beta-barrel membrane protein ompa is synchronized and depends on membrane
thickness. J. Mol. Biol., 324(2):319–330, 2002.
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[130] J. Waldispühl, B. Berger, P. Clote, and J.-M. Steyaert. Predicting transmembrane
β-barrels and interstrand residue interactions from sequence. Proteins: Struct.
Funct. Bioinf., 65:61–74, 2006.

[131] S. H. White and W. C. Wimley. Membrane protein folding and stability: physical
principles. Annual Review of Biophysics and Biomolecular Structure, 28(1):319–
365, 1999.

[132] W. C. Wimley, K. Hristova, A. S. Ladokhin, L. Silvestro, P. H. Axelsen, and
S. H. White. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide
model. J. Mol. Biol., 277:1091–1110, 1998.

[133] C. R. Woese, D. H. Dugre, S. A. Dugre, M. Kondo, and W. C. Saxinger. On
the fundamental nature and evolution of the genetic code. Cold Spring Harbor
Symposia on Quantitative Biology, 31:723–736, 1966.

[134] R. Wolfenden, L. Andersson, P. M. Cullis, and C. C. B. Southgate. Affinities of
amino acid side chains for solvent water. Biochemistry, 20(4):849–855, 1981.

[135] J. Xu, F. Jiao, and B. Berger. A tree-decomposition approach to protein structure
prediction. In Proceedings of the 2005 IEEE Computational Systems Bioinformatics
Conference, Washington, DC, USA, 2005.

[136] J. Xu, M. Li, D. Kim, and Y. Xu. RAPTOR: optimal protein threading by linear
programming. J Bioinform Comput Biol, 1:95–117, 2003.

[137] A. S. Yang and B. Honig. An integrated approach to the analysis and modeling of
protein sequences and structures. I. Protein structural alignment and a quantitative
measure for protein structural distance. J. Mol. Biol., 301:665–678, 2000.

[138] A. A. Zamyatnin. Protein volume in solution. Prog. Biophys. Mol. Biol., 24:107–
123, 1972.

[139] C. Zhang and S.-H. Kim. A comprehensive analysis of the Greek key motifs in
protein β-barrels and β-sandwiches. Proteins: Struct. Funct. Genet., 40:409–419,
2000.

107


	Introduction
	Fundamental review of proteins
	Introduction
	Proteins
	Amino acids
	Properties of amino acids
	Peptide bond
	Protein
	Protein structure

	Transmembrane proteins
	Biological membrane
	Transmembrane proteins

	Folding energy
	Partial charges
	Electrostatic interaction
	Hydrogen bond
	Van der Waals forces and steric repulsion
	Hydrophobic effect and interaction with the environment
	Torsion energy around peptide bonds
	Other interactions

	Protein structure determination
	Experimental methods
	In silico prediction


	Folding -barrels
	Introduction
	Geometric framework for -barrels
	Physicochemical constraints
	Classification filtering
	Folding problem definition
	Vertices
	Edges
	Energy attributes:
	Protein folding problem

	Dynamic programming approach
	Solving as the longest path problem
	Solving as the longest closed path problem
	Generalization

	Complexity on permuted structures
	Preliminaries


	Tree-decomposition based algorithm
	Introduction
	Graph-theory background
	Tree decomposition
	Modular decomposition

	NP-Completeness
	Algorithm for finding barrel structures of minimum energy
	About Greek key motifs in -barrels

	Evaluation of performance of BBP
	Introduction
	Experimental setup
	Software
	Datasets

	Implementation details
	Method of evaluation
	Concepts on predicted secondary structures
	Measures of performance

	Experimental results
	Folding
	Evaluation of the shear numbers
	Influence of the filtering threshold
	Evaluation on mutated sequences
	Permuted structures
	Classification


	Conclusion and perspectives
	Bibliography

