
HAL Id: pastel-00712006
https://pastel.hal.science/pastel-00712006

Submitted on 26 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging streaming for deterministic parallelization:
an integrated language, compiler and runtime approach

Antoniu Pop

To cite this version:
Antoniu Pop. Leveraging streaming for deterministic parallelization: an integrated language, compiler
and runtime approach. Automatic. École Nationale Supérieure des Mines de Paris, 2011. English.
�NNT : 2011ENMP0090�. �pastel-00712006�

https://pastel.hal.science/pastel-00712006
https://hal.archives-ouvertes.fr

T

H

È

S

E

INSTITUT DES SCIENCES ET TECHNOLOGIES

École doctorale nO432:
Sciences des Métiers de l’Ingénieur

Doctorat européen ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

l’École nationale supérieure des mines de Paris

Spécialité “Informatique temps-réel, robotique et automatique”

présentée et soutenue publiquement par

Antoniu POP
le 30 septembre 2011

Exploitation du streaming pour la parallélisation déterministe
– approche langage, compilateur et système de runtime intégrée –

∼ ∼ ∼

Leveraging Streaming for Deterministic Parallelization
– an Integrated Language, Compiler and Runtime Approach –

Directeur de thèse: François IRIGOIN

Jury
Philippe CLAUSS, Professeur, ICPS/LSIIT, Université de Strasbourg Rapporteur
Albert COHEN, Directeur de Recherche, PARKAS, INRIA Examinateur
François IRIGOIN, Maître de Recherche, CRI, MINES ParisTech Directeur de thèse
Paul H J KELLY, Professeur, SPO, Imperial College London Rapporteur
Fabrice RASTELLO, Chargé de Recherche, Compsys/LIP/ENS Lyon, INRIA Examinateur
Pascal RAYMOND, Chargé de Recherche, Verimag, CNRS Examinateur
Eugene RESSLER, Professeur, EECS, United States Military Academy Président

MINES ParisTech
Centre de recherche en Informatique

35, rue Saint Honoré, 77305 Fontainebleau Cedex, France

Remerciements

Cette thèse a été préparée au Centre de recherche en Informatique (CRI) de l’École des
mines de Paris (MINES ParisTech), entre septembre 2008 et septembre 2011, sous la
direction de François Irigoin.

Je voudrais tout d’abord exprimer ma reconnaissance à François Irigoin (professeur
au CRI), qui a encadré cette thèse, et à Robert Mahl (directeur du CRI) : cette thèse
n’aurait pas été possible sans leur confiance et la liberté absolue qu’ils m’ont accordée,
à la fois sur le sujet et sur les axes explorés. Avec l’aide de Pierre Jouvelot (mâıtre de
recherche au CRI), ils ont réussi à modérer mes excès d’enthousiasme et à apporter la
rigueur nécessaire à ce travail.

Je remercie tout particulièrement Albert Cohen (directeur de recherche à l’INRIA,
École Normale Supérieure) qui a pris intérêt à ma thèse dès les premiers mois, en a suivi
l’évolution et m’a soutenu par sa collaboration pendant ces trois années ; à son insu, il
m’avait déjà, dès 2005, contaminé par sa passion pour la recherche. Son enthousiasme,
sa disponibilité et les nombreux échanges d’idées ont grandement contribué à cette thèse.
Son aide et ses conseils ont été inestimables.

Je suis très reconnaissant envers les membres de mon jury, en particulier envers
Philippe Clauss (professeur à l’ICPS/LSIIT, Université de Strasbourg) et Paul Kelly
(professeur au SPO, Imperial College London) pour l’attention qu’ils ont portée à mes
travaux, pour le soin avec lequel ils ont relu cette thèse et pour leurs conseils éclairés. Je
remercie également Pascal Raymond (chargé de recherche CNRS à Verimag) et Fabrice
Rastello (chargé de recherche INRIA à Compsys/LIP/ENS Lyon) pour leur participation
à ce jury. Je remercie enfin Eugene Ressler (professeur au EECS, United States Military
Academy) de m’avoir fait l’honneur de présider ce jury.

Je me rappellerai toujours avec un grand plaisir des passionnantes discussions avec
Robert Mahl, et de l’excellente ambiance et la bonne humeur qui régnait au CRI. Je
repense à tous les bons moments passés dans la compagnie des membres du centre, tout
particulièrement Benôıt Pin, Pierre Jouvelot et Samuel Benveniste, de Laurent Daverio,
Corinne Ancourt, Fabien Coelho, Claire Médrala, Amira Mensi, Dounia Khaldi et bien
entendu notre secrétaire Jacqueline Altimira dont l’efficacité et la bonne humeur ne m’ont
jamais fait défaut.

Merci enfin à ma famille, et aux amis que je n’ai pas cités, pour leur soutien incondi-
tionnel et leurs encouragements, avec une dernière pensée particulière pour ma compagne,
Miryam.

i

ii

Abstract

As single processing unit performance has reached a technological limit, the power wall,
the past decade has seen a shift from the prevailing trend of increasing single-threaded
performance to an exponentially growing number of processing units per chip. Higher
performance returns on newer architectures are contingent on the amount of parallelism
that can be efficiently exploited in applications, either exposed through parallel program-
ming or by parallelizing compilers. However, uncovering raw parallelism is insufficient
if a host of cores vie for limited off-chip memory bandwidth. Mitigating the memory
wall, the stream-computing model provides an important solution for exploiting upcoming
architectures.

This thesis explores streaming as a general-purpose parallel programming paradigm,
rather than a model dedicated to a class of applications, by providing a highly expressive
stream-computing extension to a de facto standard for shared memory programming,
OpenMP. We rely on a new formal framework to investigate the properties of streaming
programs, without the restrictions usually attached to dataflow models, and we prove
that such programs benefit from deadlock and functional determinism, key assets in the
productivity race. Finally, we focus on the efficient exploitation of our model, with
optimized runtime support and compiler optimizations, through an implementation in
the GCC compiler.

iii

iv

Résumé

La performance des unités de calcul séquentiel a atteint des limites technologiques qui
ont conduit à une transition de la tendance à l’accélération des calculs séquentiels vers
une augmentation exponentielle du nombre d’unités de calcul par microprocesseur. Ces
nouvelles architectures ne permettent d’augmenter la vitesse de calcul que proportion-
nellement au parallélisme qui peut être exploité, soit via le modèle de programmation soit
par un compilateur optimiseur. Cependant, la disponibilité du parallélisme en soi ne suffit
pas à améliorer les performances si un grand nombre de processeurs sont en compétition
pour l’accès à la mémoire. Le modèle de streaming répond à ce problème et représente
une solution viable pour l’exploitation des architectures à venir.

Cette thèse aborde le streaming comme un modèle général de programmation parallèle,
plutôt qu’un modèle dédié à une classe d’applications, en fournissant une extension pour le
streaming à un langage standard pour la programmation parallèle avec mémoire partagée,
OpenMP. Un nouveau modèle formel est développé, dans une première partie, pour étudier
les propriétés des programmes qui font appel au streaming, sans les restrictions qui sont
généralement associées aux modèles de flot de données. Ce modèle permet de prouver
que ces programmes sont déterministes à la fois fonctionnellement et par rapport aux
deadlocks, ce qui est essentiel pour la productivité des programmeurs. La deuxième partie
de ce travail est consacrée à l’exploitation efficace de ce modèle, avec support logiciel à
l’exécution et optimisations de compilation, à travers l’implantation d’un prototype dans
le compilateur GCC.

v

vi

Contents

Remerciements i

Abstract iii

Résumé v

Introduction en français 1
Motivation . 2
Objectifs de la thèse . 5
Organisation de cette thèse . 6

1 Introduction 9
1.1 Motivation . 10
1.2 Statement of Purpose . 12
1.3 Thesis Outline . 13

2 A Stream-Computing Extension to OpenMP 15
2.1 Background . 15
2.2 Motivation and Related Work . 16
2.3 Design Goals of the Extension . 18
2.4 Proposed Streaming Extension . 20

2.4.1 Definitions . 20
2.4.2 Syntactic Extension to the OpenMP Language 20
2.4.3 Stream Communication Between Tasks 21
2.4.4 Stream Communication with the Enclosing Context 24
2.4.5 Hierarchical Streaming . 27
2.4.6 Execution and Memory Model . 29

2.5 Semantics of the Extension . 31
2.5.1 Foreword on OpenMP Tasks . 31
2.5.2 Coding Patterns . 32
2.5.3 Buffering Semantics of Stream Communication 38
2.5.4 Sampling Patterns . 42
2.5.5 Multi-Producer Multi-Consumer Streams 44
2.5.6 Deadlocks and Dependence Cycles 47
2.5.7 Execution Model . 48

2.6 Interaction with Current OpenMP Semantics 49

vii

2.6.1 Streaming Constructs in Parallel Loops 50
2.6.2 Nesting in Non-Streaming Tasks . 51
2.6.3 OpenMP Synchronization Constructs 52

2.7 Modular Compilation . 54
2.8 Concluding Remarks . 54

3 Control-Driven Data-Flow Model of Computation 57
3.1 Introduction . 58
3.2 Definitions and Notations . 60

3.2.1 CDDF Program Structure . 60
3.2.2 Ordering Constraints on Task Activations Execution 65
3.2.3 Program Progress and Deadlocks 69
3.2.4 Deadlock Characterization . 70

3.3 Stream Causality in CDDF Programs . 79
3.3.1 Stream Causality . 79
3.3.2 Deadlock-Freedom in Stream Causal CDDF Programs 83

3.4 Task Causality and Sufficient Deadlock-Freedom Conditions 86
3.4.1 CDDF Tasks . 86
3.4.2 Task Causality . 87
3.4.3 Statically Analyzable Condition for Spurious Deadlock-Freedom . . 89
3.4.4 Condition Ensuring that Only Insufficiency Deadlocks Occur 91
3.4.5 Weaker Statically Analyzable Sufficient Condition for Spurious

Deadlock-Freedom . 92
3.5 Functional and Deadlock Determinism . 94

3.5.1 Deterministic Task Activations . 95
3.5.2 Deterministic Data Schedule in Streams 95
3.5.3 Program Functional Determinism 96
3.5.4 Deadlock Determinism . 97
3.5.5 Determinism, Productivity and Portability 99

3.6 Strict Consistency . 99
3.7 Serializability . 100

3.7.1 Dynamic Sequential Schedule . 100
3.7.2 Static Sequential Schedule . 101

3.8 Summary of the Properties and Associated Conditions 102
3.9 Conclusion . 104

4 Generalization of the CDDF Model 105
4.1 Introduction . 105
4.2 Communication with the Control Program 106

4.2.1 Adjustment to the CDDF Model for Firstprivate and Lastprivate
Communication . 107

4.2.2 Impact on the Properties of the CDDF Model 109
4.2.3 Summary of the Deadlock-Freedom Properties 115

4.3 Parallelizing the Control Program . 116
4.3.1 Control Program Concurrency Constraints 116
4.3.2 Ad Hoc Parallelization of the Control Program 118

viii

4.3.3 Parallel Synchronous Execution of the Control Program 119
4.4 Execution with Bounded Stream Buffers 120

4.4.1 Characterization of Resource Deadlocks 121
4.4.2 Resource Deadlock Detection and Resolution 123
4.4.3 Deadlock Determinism . 128

4.5 Conclusion . 129

5 CDDF Semantics of Dependent Tasks in OpenMP 131
5.1 Introduction . 131
5.2 OpenMP Streaming as an Instance of the CDDF Model 132

5.2.1 From OpenMP Task Directives to CDDF Activation Points 133
5.2.2 OpenMP Tasks vs. CDDF Tasks 134

5.3 Static Analysis of OpenMP Streaming Programs 137
5.3.1 Regular and Irregular Streaming Tasks 138
5.3.2 Arrays of Streams and Broadcast Arrays 142
5.3.3 Static Over-Approximation of the Dynamic Task Graph 145
5.3.4 Statically Decidable Deadlock-Freedom Conditions 147
5.3.5 Optimizing Communications between Streaming Tasks and the

Control Program . 148
5.4 Control Program Parallelization in OpenMP 150

5.4.1 Explicit Parallelization of the Control Program in OpenMP 150
5.4.2 Streaming Programs with Static Control and Automatic Paralleliza-

tion . 152
5.5 Conclusion . 154

6 Runtime Support for Streamization 157
6.1 Introduction . 157
6.2 Synchronization of Stream Communication 158

6.2.1 Synchronization Patterns . 160
6.2.2 Synchronization Algorithm for Regular Tasks 162
6.2.3 Correctness of the Synchronization Algorithm with Relaxed Mem-

ory Models . 164
6.2.4 Synchronization Algorithm for Irregular Tasks 169
6.2.5 Optimized Cache Traffic Synchronization Algorithm 172
6.2.6 Synchronizing Data-parallel Tasks 173
6.2.7 Evaluation of Stream Synchronization vs. Scheduling Overhead . . 174

6.3 Activation Points and Task Activations . 175
6.3.1 Evaluation of Activation Points . 175
6.3.2 Scheduling of Task Activations . 177
6.3.3 Load Balancing Through Dynamic Data-Parallelization 179

6.4 Resource Deadlock Detection and Stream Memory Management 184
6.4.1 Stream Level Quiescence . 185
6.4.2 Dynamic Stream Buffer Size Management 198
6.4.3 Towards a Low Overhead Runtime Deadlock Detection Algorithm . 198

6.5 Runtime API for Code Generation . 200
6.5.1 Initialization and Termination . 201

ix

6.5.2 Stream Communication . 202
6.5.3 Activation Point Evaluation and Scheduling of Task Activations . . 202

6.6 Conclusion . 203

7 Work-Streaming Compilation 205
7.1 Introduction . 205
7.2 Control Program Code Generation . 206

7.2.1 Initialization . 207
7.2.2 Evaluation of Activation Points . 209
7.2.3 Communication with Streaming Tasks 210

7.3 Generating Task Worker Thread Functions 210
7.3.1 Task Body Outlining . 212
7.3.2 Scheduler Loop . 212
7.3.3 Stream Synchronization . 212

7.4 Optimized Code Generation . 215
7.4.1 Work Aggregation . 216
7.4.2 Data Aggregation . 217
7.4.3 Optimization of the Code Generated for the Control Program . . . 220

7.5 Providing an Infinite Continuous Buffer View 224
7.6 Conclusion . 227

8 Experimental Evaluation 229
8.1 Experimental Settings . 229

8.1.1 Applications . 230
8.1.2 Experimental Platforms . 231

8.2 Software defined radio: FMradio . 231
8.3 Wifi: 802.11a . 234
8.4 1D FFT . 234
8.5 Concluding Remarks . 237

9 Conclusion 243
9.1 Contributions . 243
9.2 On-Going and Future Work . 245
9.3 Perspectives . 246

Conclusion en français 247
Contributions . 247
Travaux en cours et opportunités . 249
Perspectives . 251

Personal Publications 253

Bibliography 255

Index 260

x

List of Tables

3.1 Properties of CDDF programs. 102

4.1 Deadlock-freedom conditions for CDDF programs extended with lastpri-
vate communication semantics. 116

6.1 Informal semantics of SPARC memory fences and their replacement in
terms of Linux Kernel primitives, x86 instructions and for x86 with coherent
write-back memory (x86-CC). 165

6.2 Interpretation of pressure and back-pressure information to deduce relative
imbalance. 182

xi

xii

List of Figures

2.1 Syntax for input and output clauses. 20
2.2 Examples of input and output clauses. 22
2.3 Using arrays of streams and streams of arrays. 23
2.4 Broadcasting an output window over an array of streams. 24
2.5 Streaming to and from the enclosing context of a task. 26
2.6 Avoiding over-synchronization with the lastprivate clause. 27
2.7 Incorrect usage of input and output clauses. 28
2.8 Using a shared clause to connect tasks at different levels of nesting. 28
2.9 Using the firstprivate and lastprivate clauses to connect tasks at

different levels of nesting. 29
2.10 Task instances need to be differentiable. Multiple undifferentiated instances

(left) and properly differentiated (right). 31
2.11 Pipeline using the single worksharing construct. 32
2.12 Sequential filter because of a self-loop. 33
2.13 Parallel replicated pipelines with a worksharing construct. 34
2.14 Parallel loop worksharing construct within a filter. 34
2.15 Pipelines parallelized with a parallel construct (left) or with a num_threads

clause (right). 35
2.16 Dynamic pipeline of filters generated from a loop by using an array of streams. 36
2.17 Restricting the horizon size to be a constant does not forbid a task to

consume a variable number of elements. 37
2.18 Partial sums computation using an access window with variable horizon

and burst. 38
2.19 Streaming tasks nested within arbitrary control-flow. 39
2.20 Instantiation of the example on Figure 2.19. 39
2.21 SSA form for the instantiated example from Figure 2.20. 41
2.22 Implementation of a static decimation pattern. 42
2.23 Dynamic down-sampling of a stream using variable burst rates. 43
2.24 Dynamic down-sampling of a stream using variable burst rates. 43
2.25 Dynamically merging output data from multiple producer tasks in a single

stream. 44
2.26 Dynamically splitting input data from a stream among different consumer

tasks. 45
2.27 Legal (left) and illegal (right) dynamic merge inside a broadcast array of

streams. 46
2.28 Introducing delays on streams. 47

xiii

2.29 Parallel pipelines (left) and single pipeline built in parallel (right). 50
2.30 Streaming tasks nested in data-parallel loops, connecting outside of the loop. 51
2.31 Streaming task nested in non-streaming tasks. 52
2.32 Streaming across a barrier. 53
2.33 Streaming tasks in a function call. 54
2.34 Connecting a function containing streaming tasks to a pipeline. 55

3.1 CDDF execution rules. 67
3.2 Overview of CDDF execution model. 68
3.3 Hierarchy of weak deadlock states. 78
3.4 Example of a spurious deadlock in a CDDF program. 84

4.1 CDDF execution rules with lastprivate communication semantics. 108
4.2 Dynamic partition of activation points for concurrent evaluation. 119
4.3 Outline of the resource deadlock detection and resolution (DDR) algorithm

(continued on next page). 125
4.4 Outline of the resource deadlock detection and resolution (DDR) algorithm. 126

5.1 Streaming clauses as descriptors of stream accesses in activation points. . . 134
5.2 Example of an OpenMP streaming program and its CDDF model. 135
5.3 Example of regular and irregular tasks in the case of scalar streams. 140
5.4 Identifying single-producer single-consumer streams in arrays of streams. . 144
5.5 Static task graph construction algorithm. 146
5.6 Optimizing communication between tasks and the control program. Orig-

inal code (left) and optimized (right). 148
5.7 Impossible optimization of the communication between tasks and the con-

trol program. 149
5.8 Evaluating activation points of different tasks in parallel. 151
5.9 Control program parallelization and communication with the control pro-

gram. 152
5.10 Equivalent programs with buffering semantics for streams. Data flow

dependences in streams are implicit. 153

6.1 Pressure (left) and back-pressure (right) in stream communication. 159
6.2 Stream circular buffer separation between read-exclusive and write-exclusive

areas. 159
6.3 Sequence diagram (bottom) for synchronization in a streaming program

(top). 161
6.4 Synchronization code required for stream communication of regular tasks. . 163
6.5 Synchronization primitives for regular tasks. 164
6.6 Communication patterns in pressure and back-pressure algorithms, with

the required fences for POWER (green, left) and x86 (blue, right) archi-
tectures. 165

6.7 Memory fences required on relaxed memory systems. 167
6.8 Synchronization code for stream communication of irregular tasks. 169
6.9 Synchronization primitives for irregular tasks. 171

xiv

6.10 Maximum required memory fences for irregular task synchronization. . . . 186
6.11 Cache-optimized synchronization of regular tasks. 187
6.12 Cache-optimized synchronization of irregular tasks. 188
6.13 Synchronization algorithm enabling data-parallelization of irregular tasks

with control program dispatch. 189
6.14 Exploration: persistent vs. short-lived tasks. 190
6.15 Evaluation of an activation point in a regular task. 190
6.16 Evaluation of an activation point in an irregular task. 190
6.17 Simple task executor loop. 191
6.18 Simple sequential scheduler using a blocking function. 191
6.19 Work-aggregating sequential scheduler. 192
6.20 Concurrent scheduler function without aggregation (see Figure 6.18). . . . 192
6.21 Imbalance induced by a heavy filter in a pipeline and effect on connecting

streams. 192
6.22 Monitoring the relative load balance of a task with respect to an input

stream’s pressure. 193
6.23 FMradio task graph and the proportion of computational load in each task. 193
6.24 Evolution of stream pressure and back-pressure relative load with dynamic

load-balancing in FMradio. 194
6.25 Stream level quiescence algorithm, requesting thread side. 195
6.26 Stream level quiescence algorithm, adjustment to stall and update prim-

itives. 196
6.27 Dynamic task creation algorithm. 198
6.28 Stream buffer resizing algorithm. 199

7.1 Running example for the generation of control program code. 207
7.2 Generation of initialization code for our running example on Figure 7.1. . . 208
7.3 Generated activation point evaluation code for our running example on

Figure 7.1. 209
7.4 Generation of firstprivate communication code. 211
7.5 Running example for the generation of task work functions. 211
7.6 Outlined work function where stream accesses are converted to accesses

through views in the stream buffer. 212
7.7 Addition of a scheduler loop on activation indexes. 213
7.8 Addition of stream communication synchronization. 213
7.9 Aggregated stream synchronization functions. 214
7.10 Enabling work aggregation in worker threads. 216
7.11 Enabling data aggregation in worker threads. 218
7.12 Advancing in stream buffers in the case of regular tasks. 219
7.13 Elimination of the view pointer advancement function call. 219
7.14 Automatically vectorized innermost loop of the worker function. 220
7.15 Regular tasks: evaluation of activation points inlined in the control program.221
7.16 Calls to get dynamic task and counter incrementation hoisted out of the

innermost loop. 222
7.17 Data aggregation for firstprivate communication in the control program. . . 223

xv

7.18 Allowing write accesses acquired as a range to overshoot the end of the
stream buffer. 225

7.19 Allowing read accesses acquired as a range to overshoot the end of the
stream buffer. 225

7.20 Preventing circular buffer wrap-around in acquired ranges of stream access
indexes. 226

8.1 Annotated code of the main loop in FMradio. 232
8.2 FMradio task graph. 233
8.3 Data-flow graph for FFT. 235
8.4 FFT implementation using dynamic task pipelines and the corresponding

task graph. 238
8.5 FFT performance on Opteron. 239
8.6 FFT performance on Xeon. 240

xvi

Introduction en français

La performance des unités de calcul séquentiel a atteint des limites technologiques qui ont
conduit l’industrie des microprocesseurs à développer des architectures multi-cœurs [2,
37,39,61], où plusieurs cœurs, ou unités de calcul, sont gravés sur la même puce. Alors
que le nombre de transistors continue à augmenter de façon exponentielle, la complexité
des unités de calcul stagne, voire même décrôıt, les fabricants de processeurs utilisant les
transistors additionnels pour fournir davantage de cœurs simplifiés, moins gourmands en
énergie et souvent avec une vitesse d’horloge plus faible. Par conséquent, les applications
séquentielles ne verront pas leur performance augmenter avec ces nouvelles générations de
processeurs de la même façon que par le passé. L’accélération des calculs dépend désormais
essentiellement du parallélisme qui peut être efficacement exploité dans les applications,
directement par programmation parallèle ou par parallélisation automatique avec des
compilateurs paralléliseurs. Cependant, le parallélisme en soi n’est pas suffisant et même
les applications massivement parallèles ne sont pas assurées d’obtenir des accélérations
linéaires en fonction du nombre d’unités de calcul et encore moins de passer a l’échelle
de manière portable, ce qui est essentiel dans un contexte où les architectures matérielles
deviennent obsolètes très rapidement.

Paralléliser efficacement une application requiert en premier lieu d’exposer le par-
allélisme latent. Bien que ce problème ait été largement étudié, il s’est révélé être
extrêmement difficile à résoudre, à la fois sous forme de paradigmes de programmation
visant à faciliter l’expression du parallélisme par les développeurs et sous la forme de
traduction automatique de codes séquentiels en codes parallèles. La première solution est
très onéreuse en termes de ressources de développement et mène souvent à des problèmes
de portabilité ou de portabilité des performances, alors que la deuxième solution semble
mettre les compilateurs optimiseurs devant une difficulté insurmontable : choisir une
transformation de code qui améliore les performances, sans même parler de transformation
optimale, pour un modèle de machine donné.

En second lieu, il faut exploiter le parallélisme ainsi exposé sur une plateforme
d’exécution tout en veillant à ce que les gains de performance puissent passer à l’échelle.
La plus grande difficulté à cet égard vient d’un problème qui précède l’avènement des
architectures multi-cœurs, le memory wall. Alors que les architectures mono-processeur
sont fortement impactées par une latence élevée de l’accès à la mémoire, ces nouvelles ar-
chitectures sont également soumises à une forte insuffisance de la bande passante mémoire.
L’adoption de modèles de consistance mémoire relaxés, ainsi que le développement de
hiérarchies de mémoires de cache complexes, ont permis de pallier les problèmes de
latence et de bande passante pour les mono-processeurs, mais ces solutions deviennent

1

2

vite insuffisantes lorsqu’un nombre élevé d’unités de calcul se trouvent en concurrence
pour une bande passante limitée vers la mémoire.

Motivation

Afin de faciliter l’exploitation d’architectures matérielles dont la complexité évolue rapi-
dement et présentant un faible rapport de bande passante mémoire disponible par in-
struction, des langages de haut niveau ont été conçus pour exprimer l’(in)dépendance,
les schémas de communication et la localité sans faire référence à une plateforme
d’exécution particulière. Les compilateurs et systèmes de runtime sont responsables
d’abaisser le niveau d’abstraction et d’orchestrer les threads d’exécution et la gestion
de la mémoire. En particulier, le modèle de programmation par stream a récemment
attiré beaucoup d’attention, étant un mode de programmation parallèle ayant un large
champ d’application et qui garantit le déterminisme fonctionnel1, un atout de taille pour
améliorer la productivité. Ce modèle est aussi propice pour rendre le flôt de données ex-
plicite et pour structurer les programmes de façon à permettre d’exploiter simultanément
le parallélisme de pipeline, de données et de tâches. Enfin le streaming permet également
de réduire la sévérité du memory wall à travers deux effets complémentaires : (1) la
latence d’accès à la mémoire est naturellement cachée par le découplage entre producteurs
et consommateurs dans un pipeline ; et (2) la communication par streams favorise le
transfert de données local à la puce, contournant la mémoire globale, ce qui réduit la
pression exercée sur le système mémoire. C’est pourquoi le streaming parâıt être une
approche parfaitement adaptée aux problèmes soulevés par le memory wall.

Sous des formes diverses et variées, le streaming a été présent pendant près de
cinquante ans, bien que le principal objectif d’organiser les calculs autour de streams
de données ait beaucoup évolué durant cette période. Dans son étude du streaming [67],
Stephens passe en revue l’histoire du développement de ce modèle de calcul, depuis la
conception des modèles sémantiques pour formaliser le calcul avec des streams et jusqu’à
l’analyse de flôts de données, au traitement du signal, aux systèmes réactifs ou à la
conception et la vérification matérielles. Il classifie les systèmes de calcul en streaming
sur la base de trois critères : la synchronie, le déterminisme et le type des canaux de
communication. Les modèles de calcul par streams partagent, fondamentalement, la
même structure, qui peut généralement être représentée sous forme de graphe, où des
nœuds de calcul sont connectés à travers des arrêtes qui représentent des streams.

Le modèle de réseaux de processus de Kahn (Kahn Process Networks (KPN)) [36]
est l’un des premiers modèles et aussi l’un des plus influents. Dans un KPN, des
processus data-driven communiquent par des canaux de type FIFO non bornés, où les
opérations d’écriture sont non-bloquantes alors que les opérations de lecture attendent
qu’une quantité de données suffisante soit disponible. Les processus étant considérés
être déterministes, l’une des propriétés les plus importantes de ce modèle est que le
réseau dans son intégralité est également fonctionnellement déterministe par composition.

1Un programme est fonctionnellement déterministe s’il évalue une fonction de ses entrées, donc si ses
sorties sont entièrement déterminées par ses entrées.

3

Cependant, les réseaux contenant des cycles peuvent mener à des interblocages, ce qui
a motivé le développement d’une forme très restreinte de réseaux de processus de Kahn,
le Synchronous Data-Flow (SDF) [43]. Contrairement aux processus d’un KPN qui
s’exécutent de manière asynchrone et qui peuvent produire ou consommer une quantité
arbitraire de données à chaque activation, les processus SDF ont un comportement
déterminé statiquement. En connaissant les taux de production et de consommation de
données lors de la compilation, il est possible de déterminer statiquement si l’exécution
d’un SDF va mener à un interblocage et de construire un ordonnancement statique de
l’exécution. Il est également possible de garantir l’absence d’interblocages dus au manque
de ressources lors d’une exécution en mémoire bornée et de calculer précisément la place
qu’occupent les canaux de communication. Certaines restrictions du modèle SDF sont
relaxées dans le Cyclo-Static Data-Flow [13]. StreamIt [68] est l’incarnation la plus récente
de ce modèle, se basant sur les fortes restrictions statiques du modèle sous-jacent pour
rendre possible des optimisations agressives dans le compilateur. Il permet d’obtenir
d’excellents résultats de performance et de portabilité de la performance sur diverses
plateformes d’exécution [26] pour un ensemble restreint de programmes qui se conforment
à ce modèle.

Les langages synchrones, qui comprennent LUSTRE [28], Signal [27] et Esterel [12],
ont connu un grand succès dans les applications industrielles, en grande partie dus à
leurs propriétés qui garantissent le déterminisme, l’absence d’interblocages et la sécurité.
Fondés sur les modèles de systèmes réactifs ou de réseaux de traitement du signal,
avec la distinction que les systèmes réactifs utilisent des canaux de communication bi-
directionnels, ces langages ne requièrent pas de périodicité. Les processus y commu-
niquent à travers des signaux, qui permettent aussi de définir une notion de temps et de
causalité. Les signaux diffèrent des streams par le fait qu’ils sont échantillonnés plutôt
que consommés.

Des langages flôt de données ont aussi été développés, où l’exécution est déterminée
par les dépendances de données au lieu d’un flôt de contrôle. Ils s’apparentent au
streaming par l’importance accordée aux dépendances de flôt de données, qui représentent
les relations producteur-consommateur, au cœur des deux modèles. Le langage Lucid [7]
utilise le mot-clé next à l’intérieur des boucles pour créer un effet semblable à l’avancement
dans un stream de données, en consommant ou en produisant dans un canal, ou bien,
dans le domaine des langages synchrones, à l’avancement des horloges sur les signaux.
Les programmes Lucid sont, fondamentalement, des systèmes d’équations de récurrence.
Le langage de programmation fonctionnelle Sisal [25] introduit la notion de stream de
manière explicite, sous une forme naturellement très proche des listes. Si l’on comprend les
systèmes de calcul avec streams comme une implantation concurrente des transformeurs
de stream, qui est l’interprétation fonctionnelle d’un réseau de processus qui à un en-
semble de streams d’entrée associe un ensemble de streams de sortie, alors tout langage
fonctionnel peut être utilisé pour la programmation streaming. Cela correspond à une
interprétation paresseuse des langages fonctionnels ; voir [18] pour une implantation de
Lucid Synchrone [17] en Haskell [32].

Le modèle Communicating Regular Processes (CRP) [23], lui, se fonde sur un schéma
de communication non-FIFO, où les processus écrivent et lisent dans les canaux de com-
munication à des indices spécifiques, en respectant une propriété d’affectation dynamique

4

unique. Les processus consommateurs ne peuvent lire dans les canaux qu’à des indices
ayant précédemment été écrits par le producteur, ce qui permet de faire respecter les
dépendances de flôt pour chaque élément individuellement. Cette approche est bien plus
flexible que les modèles basés sur le SDF, mais il serait très difficile d’implémenter cette
méthode de manière efficace dans un langage de programmation streaming. Les propriétés
des programmes écrits dans ce modèle ne peuvent être statiquement déterminées que
lorsque les relations sont affines. Cependant, l’objectif dans ce cas est d’isoler les con-
traintes d’ordonnancement des différents processus afin de réduire la taille du problème
au niveau du programme entier.

Chacune de ces diverses approches de la programmation streaming a le potentiel
d’aider à réduire la sévérité du memory wall, mais cela n’est applicable qu’à des classes
restreintes d’applications. Les programmes de streaming sont généralement considérés
comme construits autour une notion de streams réguliers de données, ce qui s’adapte
parfaitement aux modèles où les canaux de communication sont implémentés sous la forme
de queues FIFO avec un seul producteur et un seul consommateur. Si l’on veut donner au
streaming un rôle plus central dans la programmation d’applications pour les architectures
multi-cœurs actuelles et les architectures many-core à venir, il faut adopter un modèle plus
général, où les schémas de communication ne sont pas toujours réguliers et statiquement
déterminés, mais où des schémas entièrement dynamiques peuvent apparâıtre et être
dynamiquement exploités, en fonction de l’exécution du programme. L’intuition selon
laquelle le flôt des données joue un rôle central dans tout programme n’est pas fausse,
mais ce flôt de données se trouve souvent conditionné par du flôt de contrôle complexe,
dû à des événements irréguliers, comme c’est le cas dans les programmes synchrones.

Un modèle général de programmation doit permettre d’exprimer le parallélisme sous
toutes ses formes, et en particulier sous sa forme la plus générale, le parallélisme de
contrôle, tout en donnant suffisamment d’informations au compilateur pour générer du
code de streaming. Le parallélisme de tâches n’est pas toujours le meilleur choix en
termes de performance, mais si le flôt de données entre les tâches est connu, alors la
communication peut être implémentée avec des streams, ce qui permet d’appliquer un
nombre d’importantes optimisations. Par exemple, lorsque le compilateur découvre que les
invariants SDF sont satisfaits, il peut déclencher des transformations de boucle agressives
pour adapter le parallélisme de tâches à l’architecture cible, permettant ainsi d’obtenir
le même niveau de portabilité de performance que celui des langages basés sur le modèle
SDF, ce qui est le cas dans StreamIt.

Il est essentiel, par ailleurs, que ces nouvelles approches du streaming préservent
autant que possible les propriétés fortes que fournissent les modèles existants, comme
le déterminisme fonctionnel ou l’absence d’interblocages. Le debugging d’applications
concurrentes est bien plus compliqué que dans le cas séquentiel, principalement en
raison de la nature non-déterministe des erreurs liées aux interblocages et aux courses
critiques. Lorsque le comportement d’une application n’est pas facilement reproductible,
les procédures de test deviennent statistiques et l’identification des erreurs devient difficile
puisque tout outil de debugging impacte le comportement des applications.

Cependant, développer un nouveau langage de programmation serait inutilement
coûteux en termes de formation des développeurs et cela requiert de fournir et maintenir de
nouvelles châınes de compilation et de debugging. Un nouveau langage ne protège pas pour

5

autant les programmeurs de la nécessité de mélanger différents styles de programmation
et de constructions parallèles. Alors que plusieurs langages ont déjà été conçus pour
exploiter le parallélisme autour du streaming, nous partons du principe qu’il est plus
intéressant, et suffisant, d’introduire des modifications minimales et incrémentales dans
un langage qui a fait ses preuves en programmation parallèle, ce qui permet de mettre à
profit des interactions mâıtrisées entre le streaming et les constructions séquentielles et
parallèles fournies.

Dans cette thèse, nous étudierons le streaming en tant que modèle général de pro-
grammation parallèle, plutôt qu’un modèle dédié à une classe d’applications donnée,
en élaborant une extension pour l’un des langages les plus couramment utilisés pour la
programmation parallèle à mémoire partagée, OpenMP.

Objectifs de la thèse

L’objectif principal de cette thèse est de développer et de promouvoir l’usage du streaming
comme un modèle général de programmation parallèle. Dans cette perspective, nous
identifions les cinq principaux axes de recherche suivants :

1. Développer le streaming dans le cadre d’un langage de programmation parallèle
bien établi, pour permettre de mélanger la programmation streaming avec d’autres
formes de parallélisme dans un environnement intégré et entièrement contrôlé. Cela
permet de réduire le coût de la barrière du langage pour les programmeurs, et de
réutiliser des outils préexistants et largement disponibles pour la compilation.

2. Limiter autant que possible les restrictions habituellement associées à la program-
mation par streaming, telles que la synchronie, la périodicité ou la régularité. Ces
restrictions réduisent fortement le champ d’application du streaming, et le confinent
à quelques classes d’applications.

3. Montrer qu’il est possible de préserver les propriétés utiles des modèles de streaming,
comme le déterminisme ou l’efficacité, malgré la relaxation des contraintes men-
tionnées ci-dessus.

4. Fournir une aide au debugging, à travers, par exemple, la détection automatique
d’interblocages.

5. Permettre d’utiliser le streaming en mémoire partagée, mais aussi en mémoire
distribuée. Les nouvelles architectures adoptent des modèles de consistance mémoire
de plus en plus flexibles afin de réduire le coût de la cohérence de mémoire de cache
entre un nombre de cœurs toujours plus grand, mais en fin de compte le passage à
l’échelle est toujours plus limité dans un seul nœud de calcul qu’en augmentant le
nombre de nœuds.

Les moyens à mettre en œuvre pour atteindre ces objectifs sont les suivants :

6

• Développer une modèle sémantique pour l’extension de langage streaming, en pre-
mier lieu en se basant sur des hypothèses fortes pour simplifier le modèle, puis en
second lieu en relaxant ces hypothèses pour s’aligner avec la sémantique du langage
de programmation parallèle sous-jacent.

• Implémenter une plateforme de démonstration complète pour motiver l’intégration
de cette extension dans le standard du langage sous-jacent, en fournissant:

– un compilateur capable de détecter les applications streaming régulières et
de générer, le cas échéant, un code au même niveau d’optimisation que l’on
pourrait obtenir en compilant le programme écrit dans l’un des langages de
streaming plus restreints,

– un système de runtime efficace, en particulier pour l’implantation des synchro-
nisations,

– des résultats expérimentaux validant l’efficacité de cette approche pour les ap-
plications streaming régulières, afin de montrer qu’il n’y a pas de conséquences
négatives à adopter ce type de langage plus général pour la programmation
streaming, ainsi que des résultats qui montrent l’utilité de cette extension
pour des applications qui ne seraient pas programmables dans les langages
de streaming plus classiques ou pour l’exécution en mémoire distribuée.

Ces objectifs étant trop ambitieux pour être entièrement atteints dans le cadre de
cette thèse, nous avons décidé d’en limiter la portée. Nous laisserons les considérations
d’exécution sur des systèmes à mémoire distribuée comme opportunité de recherche
ultérieure et nous prendrons certains raccourcis dans l’implantation du prototype de com-
pilateur, où nous réutiliserons, dans la mesure du possible, les fonctionnalités disponibles
dans le compilateur GCC.

Organisation de cette thèse

Cette thèse est structurée en neuf chapitres. Le chapitre 2 présente notre extension au
langage OpenMP permettant d’exprimer le flôt de données entre les tâches. Nous y
décrivons, à travers un grand nombre d’exemples, les nouvelles constructions syntaxiques,
qui s’intègrent avec les autres constructions du langage. Nous détaillons la sémantique
de cette extension et montrons comment elle permet d’introduire le streaming de manière
incrémentale dans OpenMP.

Afin de prouver les propriétés les plus importantes dont bénéficie cette extension,
telles que le déterminisme d’interblocage et fonctionnel, la sérialisabilité et des garanties
d’absence d’interblocage sous certaines conditions, nous développons et décrivons, dans
le chapitre 3, un nouveau modèle de calcul Control-Driven Data-Flow (CDDF). Dans
une première section, nous introduisons les notations et la caractérisation de certaines
propriétés à l’égard de notre formalisme. Dans les sections suivantes, nous étudions les
propriétés des programmes streaming qui peuvent être représentés dans le modèle CDDF

7

et nous prouvons des conditions suffisantes, et dans la mesure du possible décidables
statiquement, pour l’absence d’interblocage et pour la sérialisabilité.

Dans le chapitre 4, nous affaiblissons les hypothèses faites dans le modèle CDDF
présenté au chapitre 3, afin de réduire l’écart entre ce modèle abstrait et les contraintes
plus pragmatiques de l’exécution de programmes en mémoire bornée ou de la nécessité de
paralléliser le programme de contrôle.

Nous analysons notre extension du langage OpenMP dans la perspective de sa
sémantique CDDF dans le chapitre 5. Nous y identifions les analyses statiques nécessaires
à la génération de code optimisé et montrons comment les analyses de flôt de données
existantes peuvent être adaptées aux besoins de programmes rentrant dans le cadre du
modèle CDDF, évitant ainsi de développer un ensemble d’analyses spécifiques à ce modèle.

Le chapitre 6 décrit notre système de runtime. La première section propose une
solution pour la synchronisation des streams et présente notre algorithme de synchroni-
sation, ne faisant pas appel aux opérations atomiques ou aux barrières mémoire, avec
une discussion détaillée sur les implications du modèle de consistance mémoire fourni
par l’architecture sous-jacente. Les deux sections suivantes sont dédiées aux algorithmes
d’ordonnancement de tâches, d’équilibrage de charge et de détection d’interblocage.
L’interface cible pour la génération de code est décrite dans la quatrième section.

La passe de génération de code pour notre extension streaming d’OpenMP, dont nous
avons implémenté un prototype dans le compilateur GCC, est présentée au chapitre 7. Les
deux premières sections y décrivent la technique d’expansion des pragmas non optimisée,
sur laquelle nous nous rabattons en cas d’échec des analyses statiques, et une troisième
section présente la génération de code optimisé.

Nos résultats expérimentaux sont réunis au chapitre 8.
Nous concluons cette thèse dans le chapitre 9.

8

Chapter 1

Introduction

The design complexity and power constraints of large monolithic processors forced the
industry to develop Chip-Multiprocessor (CMP) architectures [2,37,39,61], where multiple
processor cores are tiled on a single chip. As the number of transistors per chip continues to
experience an unabated exponential growth, the prevailing trend during the past decade
has been towards providing an increasing number of simpler, more power-efficient and
often slower cores per chip. The performance of single-threaded applications is therefore
expected to stagnate or even decline with new generations of processors. Increased
performance returns on new architectures are contingent on the amount of parallelism that
can be efficiently exploited in applications, thanks to parallel programming or parallelizing
compilers. However, uncovering raw parallelism is insufficient. Even massively parallel
applications are not guaranteed to experience speedups linear with the number of cores
and to scale in a portable way, an essential property with the fast obsolescence of current
architectures.

The efficient parallelization of an application presents two fundamental problems. The
first problem is to expose, or uncover, parallelism in the computation. Though a widely
studied problem, it has proven to be extremely hard to solve, both in the form of support
for programmers developing parallel applications and in the form of automatic translation
of sequential code into parallel code. The former is expensive in terms of development
and often leads to either portability or performance portability issues, while the latter
appears to present an unsurmountable challenge to optimizing compilers: the choice of a
performance improving code transformation, let alone an optimal transformation, for a
given machine model.

The second problem is to exploit the parallelism on a specific platform and scalably
improve performance. The most acute part of this problem, known as the memory wall, is
a pre-existing condition. While uniprocessor architectures are strongly impacted by high
memory latency, multiprocessors also experience severe bandwidth insufficiencies. Com-
plex memory hierarchies and relaxed memory consistency models have been developed to
deal with memory latency and bandwidth issues, but this is insufficient if a host of cores
vie for the limited off-chip memory bandwidth.

9

10 CHAPTER 1. INTRODUCTION

1.1 Motivation

As architectures become increasingly difficult to exploit efficiently, because of their rapidly
evolving complexity and their low ratio of off-chip memory bandwidth available per
instruction, high-level languages are designed to express (in)dependence, communica-
tion patterns and locality without reference to any particular hardware. The compilers
and runtime systems are responsible for lowering these abstractions to well-orchestrated
threads and memory management. In particular, stream programming has recently
attracted a lot of attention. It is a widely applicable form of parallel programming
that guarantees functional determinism1, a major asset in the productivity race. It
is also conducive to making relevant data-flow explicit and to structuring programs in
ways that allow simultaneously exploiting pipeline, data and task parallelism. Stream
computations also help reduce the severity of the memory wall in two complementary
ways: (1) decoupled producer/consumer pipelines naturally hide memory latency; and
(2) they favor local, on-chip communications, bypassing global memory and therefore
reducing the pressure on the memory subsystem. Thus streaming appears as a natural
choice for approaching the problems raised by the memory wall.

In its various forms, streaming has been around for almost half a century, though
the purpose of organizing computation around streams of data has varied along the way.
In his survey [67] of stream processing, Stephens reviews the history of the development
of streaming, from the design of semantic models formalizing stream computations to
the analysis of data-flow, signal processing, reactive systems or design and verification of
hardware. He classifies stream processing systems based on three criteria: synchrony,
determinism and the type of communication channel. Fundamentally, stream-based
models of computation all share the same structure, which can generally be represented
as a graph, where computing nodes are connected through streaming edges.

Kahn Process Networks (KPN) [36] is one of the first, and most influential, models.
Data-driven processes communicate through unbounded FIFO channels, which means
that write operations are non-blocking while read operations will wait until sufficient
data is available. As the processes are deterministic, a key property of this model is
that the network as a whole is also functionally deterministic by composition. However,
cyclic networks can lead to deadlocks, which has spurred the development of a restricted
form of Kahn Process Networks, Synchronous Data-Flow (SDF) [43]. While processes in
KPNs execute asynchronously and can produce or consume variable amounts of data, SDF
processes have a statically defined behaviour. With rates of production and consumption
known at compile time, it is possible to statically decide whether the execution is free of
deadlocks and to statically schedule the execution. It can also guarantee the absence of
resource deadlocks when executing on bounded memory, a realistic restriction. Extensions
like Cyclo-Static Data-Flow [13] relax some of the constraints. StreamIt [68] is a recent
instantiation of the synchronous data-flow model, building on the strong static restrictions
of the underlying model to enable aggressive compiler optimizations, it achieves excellent
performance and performance portability across a variety of targets [26] for a restricted
set of benchmarks that properly map on this model.

1A program is functionally deterministic if it evaluates a function of its inputs, in other words, if its
output is entirely determined by its inputs.

1.1. MOTIVATION 11

Synchronous languages, including LUSTRE [28], Signal [27] and Esterel [12], have
been very successful in industrial applications, due to their determinism, deadlock-freedom
and safety properties. Based on the reactive systems or the signal processing networks
models, with the distinction that reactive systems rely on bidirectional communication
channels, these languages do not require periodicity. Processes responding instantaneously
communicate through signals, also used to define a notion of time and causality. Signals
differ from streams in that they are sampled rather than consumed.

Data-flow languages have also been developed, where the execution is explicitly driven
by data dependences rather than control flow. The connection between these languages
and streaming comes from the focus on data flow dependences, which represent producer-
consumer relationships. The Lucid [7] language relies on the next keyword within loops
to achieve a similar effect to advancing in a stream of data, by consuming or producing
in a channel, or, in the synchronous languages domain, to the advancement of clocks on
signals. Lucid programs are fundamentally systems of recursion equations. The Sisal [25]
functional language explicitly introduces the notion of stream, which is naturally very close
to lists. If stream processing systems are understood as the parallel implementation of
stream transformers, which is the functional interpretation of a process network mapping
a set of input streams to a set of output streams, then any functional language can be
used for stream programming. This corresponds to the lazy interpretation of functional
languages; see [18] for a Haskell [32] implementation of Lucid Synchrone [17].

Communicating Regular Processes (CRP) [23] relies on a non-FIFO communication
scheme, where processes write in channels at specific indexes with a Single Dynamic
Assignment property. Consumers can only read channels at indexes that have previously
been written, therefore enforcing flow dependences at the element level. While much
more flexible than Synchronous Data-Flow models, this approach would be difficult to
implement efficiently as a streaming language. Program properties, in this model, can
only be statically determined when relations are affine. The goal, however, is to isolate
the scheduling requirements of processes in order to reduce the size of the scheduling
problem.

While all of these diverse approaches to stream programming have the potential to
help mitigate the memory wall, they only apply to restricted classes of applications.
Stream programs are generally considered built around regular streams of data, which
fits the models where channels of communication are implemented as single-producer and
single-consumer FIFO queues. If streaming is to take center stage in the development of
applications for current and upcoming multi- and many-core architectures, a more general-
purpose model is necessary, where communication patterns are not always regular and
statically defined, but can occur and be exploited dynamically, depending on program
execution. The insight that the flow of data plays a central role in all programs is not
flawed, but data flow often needs to be predicated by complex control flow due to irregular
events, as is the case in synchronous programs.

A general-purpose parallel programming model must express all forms of parallelism,
including the most general form, control parallelism, while providing the compiler with
sufficient information to generate streaming code. Task parallelism is not always the best
answer for performance, but if the data flow between tasks is known, the communication
can be implemented with streams and many powerful optimizations can be enabled. When

12 CHAPTER 1. INTRODUCTION

the compiler discovers that, for example, the SDF invariants are satisfied, it triggers
aggressive loop transformations to adapt the task parallelism to the target, matching
the performance portability of synchronous data-flow based languages, as is the case in
StreamIt.

Importantly, new approaches to streaming should try to preserve the strong properties
provided by some of the existing models, like functional determinism or deadlock-freedom.
Debugging concurrent applications is a daunting task, orders of magnitude more compli-
cated than for sequential programs, mostly because of the non-deterministic nature of
races and deadlock-related errors. If reproducibility is elusive, testing becomes statistical
and the identification of errors difficult when all debugging tools impact the behaviour of
programs.

However, developing yet another new language is wasteful in terms of programmer ex-
pertise and requires building new compiler and debugging tool-chains. Yet new languages
do not shield programmers from the necessity of mixing different programming styles and
constructions. While many languages have been designed to exploit stream parallelism,
we believe it is more interesting and sufficient to introduce minimal and incremental
additions to an existing and well-established language, leveraging the interaction between
streaming and the existing, proven, sequential and parallel constructs.

This thesis explores streaming as a general-purpose parallel programming paradigm,
rather than a model dedicated to a class of applications, by providing a highly expressive
stream-computing extension to a de facto standard for shared memory programming,
OpenMP.

1.2 Statement of Purpose

Our overarching goal is to develop and promote the use of streaming as a model for general
purpose parallel programming. To this end, we identify five research axes:

1. Develop streaming within a well-established and proven parallel programming lan-
guage, to allow mixing stream programming with other parallel constructs in a
controlled and integrated environment. This mitigates the language barrier, with
respect to programmers, and allows reusing existing widely-available compilation
frameworks;

2. Relax as many of the restrictions usually attached to stream programming, such
as synchrony, periodicity or regularity, as possible. These restrictions reduce the
applicability of streaming to a few classes of applications;

3. Show that it is possible to preserve the useful properties of streaming models, such
as determinism or efficiency, notwithstanding the relaxation of the aforementioned
restrictions;

4. Provide debugging support, for example with a deadlock detection scheme;

5. Support streaming on shared memory as well as on distributed memory. New
architectures adopt relaxed memory models to reduce the cost of cache coherence

1.3. THESIS OUTLINE 13

across an increasing number of cores, but scaling up (i.e., adding resources to a
single node) is more limited than scaling out (i.e., increasing the number of nodes).

The means towards this end include: (1) developing a semantical model for the
streaming extension, first with strong simplifying assumptions, and then generalized to
fit the semantics of the underlying parallel programming language, and (2) implementing
a full demonstration framework to motivate the integration of the streaming extension in
the language standard. The latter means further requires providing: (a) a compiler that
can detect regular streaming applications and optimizes them as would the compilation
of more restrictive streaming languages, (b) an efficient runtime, and (c) experimental
results that validate the efficiency of the framework for regular streaming applications, to
show that there is no down-side in adopting this more general streaming language, and
that also validate the usefulness of the extension for non-streaming applications or for
execution on distributed memory systems.

As these objectives cannot be reasonably achieved within the framework of this thesis,
we had to add some limitations to the scope, in particular by leaving the distributed
memory considerations for future work, and take some shortcuts, in particular for the
implementation of the compiler prototype where we reuse as much as possible what is
available in the GCC compiler.

1.3 Thesis Outline

This thesis is organized in nine chapters. Chapter 2 presents our extension to the OpenMP
language to enable expressing data flow between tasks. We explain the additional syntax,
seamlessly integrated with the existing constructs, on a large set of coding patterns.
We further detail the semantics of our extension and show how it incrementally enables
stream-computing in OpenMP.

To prove that our streaming extension benefits from important properties, like dead-
lock and functional determinism, serializability and some form of deadlock-freedom, a
new formal framework is developed in Chapter 3, the Control-Driven Data-Flow (CDDF)
model of computation. The first section introduces the notations and characterizes a
set of program properties with respect to our formalism. In the following sections, we
investigate the properties of streaming programs that fit the CDDF model and prove
sufficient, and when possible statically decidable, program conditions for different classes
of deadlock-freedom and serializability.

Chapter 4 weakens the assumptions made in the original model, partially bridging
the gap between the abstract model and the more pragmatic constraints of executing in
bounded memory or parallelizing the control code.

We analyze our OpenMP extension in the perspective of its CDDF semantics in
Chapter 5. After mapping the extension onto the CDDF model, we discuss the static
analysis requirements for generating optimized code. We detail the way existing data-
flow analyses can be adjusted to fit our needs, rather than developing a new ad hoc static
analysis framework.

Chapter 6 presents our runtime system. The first section addresses the issue of the
synchronization of streams and presents our atomic operation-free and memory fence-free

14 CHAPTER 1. INTRODUCTION

algorithm, with a strong emphasis on memory consistency issues. The second and third
sections focus on scheduling, load-balancing and deadlock detection algorithms. The API
we provide as a target for code generation is detailed in the fourth section.

Chapter 7 describes the code generation pass, implemented as a prototype in GCC,
for our stream-computing extension. The first two sections provide the default expansion
scheme, which serves as a fall-back strategy when all static analyses fail, and a third
section presents the optimized code generation.

Our performance experiments are gathered in Chapter 8.
We conclude in Chapter 9.

Chapter 2

A Stream-Computing Extension to
OpenMP

In this chapter, we introduce an extension to OpenMP3.0 enabling stream programming
with minimal, incremental additions that integrate into the current specification while
preserving backward compatibility. The stream programming model decomposes pro-
grams into tasks and makes the flow of data explicit among them, thus exposing data,
task and pipeline parallelism. It helps the programmers to express concurrency and
data locality properties, avoiding non-portable low-level code and early optimizations.
We survey the diverse motivations and constraints converging towards the design of our
simple yet powerful language extension, and we detail the semantics of the extension as
well as the interaction with current OpenMP semantics.

Dans ce chapitre, nous présentons une extension au langage OpenMP permettant
la programmation streaming avec un ensemble d’additions minimes et qui s’intègrent
entièrement à la spécification actuelle, sans impact pour la compatibilité des programmes
existants. Le modèle de programmation par streams décompose les programmes en tâches
et rend explicite le flôt de données entre celles-ci, permettant ainsi d’exposer à la fois
du parallélisme de données, de tâches et de pipeline. Ce modèle aide les programmeurs
à exprimer les propriétés de concurrence et de localité de données des programmes, en
évitant les constructions de bas niveau, non-portables, et les optimisations précoces. Nous
détaillons les diverses motivations et contraintes qui ont dirigé nos choix dans l’élaboration
de cette extension de langage et nous en décrivons la sémantique, ainsi que les interactions
avec la sémantique des constructions OpenMP existantes.

2.1 Background

The performance of single-threaded applications is expected to stagnate with new gen-
erations of processors. Improving performance requires changing the code structure to
harness complex parallel hardware and memory hierarchies. But this is a nightmare for
programmers: translating more processing units into effective performance gains involves
a never-ending combination of target-specific optimizations. These manual optimizations

15

16 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

involve subtle concurrency concepts and non-deterministic algorithms, as well as complex
transformations to enhance memory locality. As optimizing compilers and runtime
libraries no longer shield programmers from the complexity of processor architectures,
the gap to be filled by programmers increases with every processor generation.

High-level languages are designed to express (in)dependence, communication patterns
and locality without reference to any particular hardware, leaving compilers and runtime
systems with the responsibility of lowering these abstractions to well-orchestrated threads
and memory management. In particular, stream programming has recently attracted a
lot of attention. It is a widely applicable form of parallel programming that guarantees
functional determinism, a major asset in the productivity race. It is also conducive
to making relevant data-flow explicit and to structuring programs in ways that allow
simultaneously exploiting pipeline, data and task parallelism. Stream computations also
help reduce the severity of the memory wall in two complementary ways: (1) decoupled
producer/consumer pipelines naturally hide memory latency; and (2) they favor local,
on-chip communications, bypassing global memory. While many languages have been
designed to exploit pipeline parallelism, we believe it is more interesting and sufficient to
introduce minimal and incremental additions to an existing and well-established language.

This chapter introduces an extension to the OpenMP3.0 language [69] to enable stream
programming. It requires only minor additions that integrate in the current language
specification without impacting the behaviour of existing OpenMP programs.

The remainder of this chapter is structured as follows. Section 2.2 discusses our
motivation and related work. Section 2.3 details the analysis driving the design of our
streaming extension. Section 2.4 presents the extension itself. Section 2.5 defines the
semantics of the new constructs and validates the execution model. Section 2.6 further
analyzes the interaction of this extension with the existing OpenMP specification. Finally,
in Section 2.7 we introduce a function prototype annotation scheme for enabling modular
compilation of streaming programs.

2.2 Motivation and Related Work

Many languages and libraries are being developed for the stream-computing model.
Some are general purpose programming languages that hide the underlying architecture’s
specificities, while others are specifically targeted at accelerator architectures. While a
complete survey is outside the scope of this thesis, we present a selection of the most
related efforts in this field. We also discuss the motivations and constraints that drive our
proposal.

Data-parallel execution puts a high pressure on the memory bandwidth of multi-
core processors. There is a well known tradeoff between synchronization grain and
private memory footprint, as illustrated by performance models for bulk-synchronous
data-parallel programs [14]. But there are few answers to the limitations of the off-chip
memory bandwidth of modern processors. Pipeline parallelism provides a more scalable
alternative to communication through main memory, as the communication buffers can
be tailored to fit in the caches, effectively making cores communicate through a shared
cache or through the cache coherence protocol.

2.2. MOTIVATION AND RELATED WORK 17

Furthermore, a stream-programming model naturally exposes data, task and pipeline
parallelism through its high-level semantics, avoiding the loss in expressiveness of other
parallel-programming models. A stream computation is divided in pipeline stages, or
filters, where the producer-consumer relationships are explicit. Stages can be either
sequential, if there is a dependence between successive executions of the stage, or parallel,
in which case, the stage can be replicated at will for load balancing and/or exploiting
data parallelism. The sequential filters are an issue that is shared with other forms of
parallelism as it stems from the presence of state in the filter, or equivalently from a
loop-carried dependence. Closely related to pipelining, doacross parallelization [19], can
be used in such cases, but it is more restrictive and requires communication of the state
between threads.

Because of this problem, the use of pipelining can be the only efficient solution for
parallelizing some applications. As an example, the recent study [51] by Pankratius et al.
of the parallelization of Bzip2 shows that this application is not only hard to parallelize,
but more specifically that only pipelining allows it to be efficient and to achieve decent
scalability levels. The authors of the study remark that OpenMP is not well suited for
parallelizing Bzip2, but this was reversed by implementing FIFO queues to communicate
between tasks, making it one of the best choices. We will elaborate on this aspect in the
experimental chapters. Our objective is to show that it is neither necessary to develop
a new language for streaming, nor to require developers to write the pipelining code by
hand.

The StreamIt language [68] is an explicitly parallel programming language rooted
in the Synchronous Data Flow (SDF) model of computation [43]. StreamIt provides
three interconnection modes: the Pipeline allows the connection of several tasks in a
straight line, the SplitJoin allows for nesting data parallelism by dividing the output
of a task in multiple streams, then merging the results in a single output stream, and
the FeedbackLoop allows the creation of streams from consumers back to producers. The
channels connecting tasks are implemented either as circular buffers, or as message passing
for small amounts of control information. Thanks to these static restrictions (periodicity,
split-join structure), a single StreamIt source can be compiled very efficiently on a variety
of shared and distributed memory targets [26]. But we believe these expressiveness
restrictions are not necessary to achieve excellent performance, assuming the programmer
is willing to spend a minimal effort to balance the computations and tune the number
of threads to dedicate to each task manually. This is the pragmatic approach OpenMP
has successfully taken for years. In addition, when the compiler discovers that the SDF
invariants are satisfied, it may trigger aggressive loop transformations to adapt the task
parallelism to the target, matching the performance portability of StreamIt.

The Brook language [15] provides language extensions to C with Single Program
Multiple Data (SPMD) operations on streams. Unlike StreamIt, it is control-centric, with
control flow operations taking place at synchronization points. Streams are defined as
collections of data that can be processed in parallel. For example: “float s<100>;” is
a stream of 100 independent floats. User defined functions that operate on streams are
called kernels. The user defines input and output streams for the kernels that can execute
in parallel by reading and writing to separate locations in the stream. Brook kernels are
blocking and isolated: the execution of a kernel must complete before the next kernel

18 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

can execute. This is the same execution model that is available on graphics processing
units (GPUs): a task queue contains the sequence of shader programs to be applied on
the texture buffers.

Another interesting approach to generate the data transmission towards the accelerator
boards is that of the CAPS enterprise: codelets are functions [60] whose parameters can
be marked with input, output or inout. The codelets are intended to be executed remotely
after the input data has been transmitted.

Dynamic data-flow principles [6,21,70] have regained popularity as pragma-based
extensions to imperative languages. Based on CellSs [10], StarSs [53] defines a complete set
of pragmas to program distributed-memory and heterogeneous architectures; it supports
both data-flow and control-flow programming styles. SMPSs is one of the StarSs incar-
nations for shared-memory targets [46]. TFlux follows a similar approach [66], focusing
on data flow and targeting the Data-Driven Multithreading (DDM) execution model [41].
StarSs and TFlux are closely related to streaming languages, but they differ from our
approach in two fundamental aspects:

• their design and implementation assume a short-lived task execution model, relying
on data-driven scheduling of lightweight user-level threads and work stealing; this is
excellent for load-balancing, but induces significant overheads for finer grain tasks,
as our experiments confirm;

• they are not compatible with OpenMP, but introduce other pragmas with different
semantics; StarSs handles distributed memory and heterogeneous targets, unlike
OpenMP, but is not as expressive on shared-memory targets; TFlux is currently
restricted to nested loops.

Closest to our work is the Streaming Programming Model of the ACOTES project [16].
This model takes its inspiration from the OpenMP3.0 tasks, but is not compatible with
OpenMP. It adds decoupled communication channels and pioneered the persistent inter-
pretation of tasks, among other contributions. Our proposal derives from this experimental
platform, but it is more expressive, it achieves a complete and incremental integration
within OpenMP.

2.3 Design Goals of the Extension

Our primary design goal is to enable OpenMP programmers to exploit pipeline parallelism
without explicitly handling communication and synchronization, which is both error-prone
and time-consuming. We also want to offer highly efficient decoupled pipelined executions
to programmers with no experience in shared-memory concurrency. To achieve these goals,
we propose extensions to the OpenMP language, exposing the necessary information for
the generation of pipelined parallel code, while ensuring this additional expressiveness
does not introduce excessive complexity and does not break the semantics of the current
specification.

More specifically, we deem the three objectives of expressiveness, efficiency and sim-
plicity to be the most important ones to enable stream programming in OpenMP. In
Section 2.4, we will show how to achieve these goals.

2.3. DESIGN GOALS OF THE EXTENSION 19

Expressiveness

The extension aims to provide a way for programmers to expose producer-consumer
relationships. The current OpenMP specification lacks the capability to make the flow
of data explicit, as the existing sharing clauses only allow shared and private data to be
distinguished. In order to use task constructs in non-embarrassingly parallel problems,
manual synchronization is required to communicate through shared memory.

The convenience of “peek” operations and non-unitary production and consumption
rates is often provided in streaming frameworks. The manual implementation is cumber-
some enough to deserve a simplified mechanism at the language level, which in addition
allows the compiler to generate in-place operations in stream buffers, avoiding the explicit
state management and the spurious dependences it induces, and avoiding the overhead of
copying from streams to local buffers and back.

We also consider dynamic taskgraphs and split-join patterns to be important in order
to exploit non-streaming applications, that present complex dependence patterns that do
not fit the static producer-consumer model.

Productivity

One of the drawbacks of new stream-programming languages is that they come with a
whole new programming environment, which lacks debugging support, interoperability
and mature accompanying libraries. To this startup cost, one should often add the cost of
target-specific tweaking required by the lower level languages (e.g., hard-wired offloading
directives for accelerators). By extending a well-known parallel-programming language,
OpenMP, with incremental, natural and target-independent constructs for streaming, the
programmer’s productivity is maximized. We believe backward compatibility is essential
to avoid making the extension an additional burden on current developers. They should
not change the way they are used to work with OpenMP for non-streaming applications.
The semantics of the extension should therefore be incremental and any new interaction
should, as far as possible, follow the existing rules. This practical constraint turns
into a research challenge: building compositional data-flow constructs over an existing
imperative, shared-memory semantics.

Efficiency

The execution model of OpenMP3.0 specification tasks is similar to that of coroutines or
fibers. A task instance is created whenever the execution flow of a thread encounters
a task construct, but the execution of the newly created task is contingent on the
cooperative scheduling policy. No ordering of the execution of tasks can be assumed.
Such an execution model is well suited for unbalanced loads, but the overhead of creating
and scheduling tasks is significantly higher than synchronizing persistent tasks.1 There
is a strong case for relying on persistent tasks rather than on data-driven scheduling
of short-lived tasks. We substantiate this claim in Chapter 6 where we compare the
overhead incurred by our synchronization algorithm on persistent tasks with the overhead
of scheduling short-lived tasks.

1Except when the target architecture offers some support for very lightweight thread scheduling [41].

20 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

2.4 Proposed Streaming Extension

This section introduces the syntactic constructs, as well as the modifications to the current
OpenMP specification, we need to meet the design goals outlined in Section 2.3. The
OpenMP specification is provided as an annotation scheme for sequential programming
languages, where the underlying language can be any of C, C++ or Fortran. We generally
use a C syntax although everything can easily be transposed to Fortran or C++.

2.4.1 Definitions

Let us first define a few terms we commonly use in the remainder of this thesis.

Stream A stream is an infinite sequence of typed elements, that can also be understood
as a typed communication channel. Any type defined in the underlying program
(scalar, structure or array) can be used as a base type for a stream. The type of
each data element in the stream is the base type of the stream.

Horizon The horizon of a task in a stream is the amount of data that can be accessed by
the task’s activation in that particular stream. It represents the number of elements
in the stream that can be accessed by the task at one time.

Burst The burst of a task in a stream is the number of elements effectively “consumed”
or produced in the stream by the execution of one activation of the task.

Window A window is a stream accessor. It must have a compatible type with the
stream it connects to, which is either the type of the stream’s elements or an array
of elements of this type. In the latter case, the window is accessed with a subscript
in the range [0 : horizon− 1].

2.4.2 Syntactic Extension to the OpenMP Language

input/output (list)
 list ::= list, item
 | item
 item ::= stream
 | stream >> window
 | stream << window
 stream ::= var
 | array[expr]
 expr ::= var
 | value

input (s >> Rwin[burstR])

s

Rwin

Wwin

peek

poke

burst

burst

int s, Rwin[Rhorizon];
int Wwin[Whorizon];

output (s << Wwin[burstW])

Figure 2.1: Syntax for input and output clauses.

In order to make the data flow explicit between tasks and thus allow data dependence
relations to be expressed between them, we propose to extend OpenMP3.0 with two
additional clauses for task constructs, the input and output clauses presented on Figure 2.1.
Both clauses take a list of items, each of which describes a stream and its behaviour w.r.t.
the task to which the clause applies.

2.4. PROPOSED STREAMING EXTENSION 21

In the abbreviated item form, input (stream), the stream can only be accessed one
element at a time through an implicit window that uses the same name as the stream.
In a more complete form, input (stream >> window[burst]), the programmer uses the
C++ flavoured << >> stream operators to connect a window to a stream, gaining access,
within the body of the task, to horizon elements in the stream. The specification of
burst is optional; if absent, in the case of the full syntax relying on the stream operators,
it is considered to be equal to the horizon, which is the declaration size of the window,
by default. Of course, in the simplified syntax, where we use no stream operators and an
implicit window, the burst is always 1.

Though we also make some further adjustments to the semantics of existing constructs
of the OpenMP language, this is the single syntactic modification required to provide
streaming. We use this additional syntax to enable stream communication between tasks.

2.4.3 Stream Communication Between Tasks

Any variable (scalar or array) can be used as a stream by any task in the variable’s
scope. This is fully transparent for programmers: the compiler is responsible for allocating
memory and for indexing stream buffers, thus converting the user-level stream access
window to a view 2 inside the stream buffer. The horizon of a task in a stream is the
number of contiguous stream elements the task can access at any point of its execution,
and by extension it also denotes the size of the stream access window. The burst rate of a
task is the number of stream elements that are consumed or produced by each execution
of the task, therefore representing the number of elements the stream view needs to slide
after the execution of the task.

Our programming model is more general than scalar data-flow: tasks compute streams
of values and not individual values. To the programmer, streams are plain C variables,
transparently expanded into streams by the compiler. An array declaration (in C) defines
the sliding access window, which is directly accessible within the task, and its declaration
size defines the horizon. Connecting a window to a stream in an input or output clause
allows to indicate the burst, which is the number of elements by which the corresponding
stream view is shifted after each activation. In Figure 2.1 the input window Rwin is shifted
by two elements, while the output window Wwin is shifted by three elements. Scalar data-
flow corresponds to horizon = burstR (resp. burstW). In the more general case where
horizon > burstR (resp. burstW), the window elements beyond the burst are accessible
to the task; for an output window, the values of these elements will only be committed
and made accessible to consumers in subsequent activations. Task activation requires the
availability, on each input stream, of all horizon elements in input windows.

The examples on Figure 2.2 illustrate the syntax of the input and output clauses for
some common use-cases. On the left, the first task produces data on stream x without
specifying a window for accessing the stream. An implicit window is provided that uses

2The stream view is a notion that does not directly concern programmers. A view is a range of
elements in a stream that can be accessed by a task. It is very similar to the window and shares the same
horizon. However, the window is a user-defined accessor to the stream, that is accessed by indices in the
range [0 : horizon− 1], while the view is the result of the mapping of a window on a stream buffer. We
will elaborate on this in Chapters 3 and 7.

22 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

int x; // The stream

int v; // The access window

#pragma omp task output (x)

{

// Implicit window "x" on stream x

// burst == horizon == 1

x = ...;

}

#pragma omp task input (x >> v)

{

// Explicit window "v" on stream x

// burst == horizon == 1

... = ... v ...;

}

int y; // The stream

int V[3]; // The access window

#pragma omp task output (y)

{

// Implicit window "y" on stream y

// burst == horizon == 1

y = ...;

}

#pragma omp task input (y >> V[1])

{

// Explicit window "V" on stream y

// burst == 1, horizon == 3

... = ... V[0] ... V[2];

}

Figure 2.2: Examples of input and output clauses.

the name of the stream, x, with implicit unitary burst and horizon values. The second
task on the left consumes data from stream x, but uses an explicit scalar window, v.
The use of the stream name within the task is therefore forbidden and all accesses to the
stream must happen through the stream access window. In this case, the programmer did
not specify the burst, which is then implicitly evaluated to be the same as the horizon,
1. Note the direction of the stream operator >> , that behaves exactly as the common
C++ stream operator. The programmer perceives a copy semantics from stream x to
the window v, but, as we discuss later, the compiler transparently replaces the window
accesses with a sliding window, the view, directly inside the stream buffer, therefore
incurring no overhead.

On the right of Figure 2.2, we show the behaviour of array windows, where the horizon
is greater than one. The first task on the right is identical to the first task on the left, but
the second task uses the access window V to access the stream y. This means that the task
will not execute as long as there are less than horizon (here 3) values available on stream
y. The stream operator >> connects the window V to the stream y. It provides access,
within the task, to the next 3 elements in stream y, through the window V which can be
indexed as V[0] .. V[2]. Once again, these accesses are directly translated to accesses in
the proper place inside the stream buffer, and the read view corresponding to this window
is shifted by burst elements (here 1) once the task completes. Any subsequent task with
an input clause on this stream will only see the remainder of the values.

Note that the window array used to access the stream does not need to be allocated
and will altogether be removed by the compiler and replaced with direct accesses to the
stream buffer. Its syntactic presence is motivated by compatibility reasons and to ensure
the code can compile and execute even if the OpenMP annotations are omitted. It also
helps to improve code readability as it avoids overloading the stream symbol. Of course
the validity of the sequential code is doubtful in this example and this highlights a more

2.4. PROPOSED STREAMING EXTENSION 23

general isue with respect to the serialization of streaming programs, which we address in
Section 3.7. We prove conditions under which serialization can be achieved by ignoring
the pragmas, as well as a more general condition under which serialization is statically
possible with some additional code generation work. In the general case, ignoring the
streaming annotations does not yield semantically equivalent code.

int S[K]; // Array of streams

int X[horizon]; // Access window

#pragma omp task \

output(S[0] << X[burst])

{

// burst <= horizon

for (i = 0; i < burst; ++i)

X[i] = ...;

}

#pragma omp task \

input(S[1] >> X[burst])

{

// burst <= horizon

for (i = 0; i < horizon; ++i)

... = ... X[i];

}

int A[5]; // Stream of arrays

int V[2][5]; // Window on stream of arrays

#pragma omp task output(A)

{

// Each element is an array

// burst == horizon == 1

for (int i = 0; i < 5; ++i)

A[i] = ...

}

#pragma omp task input(A >> V[1])

{

// burst = 1, horizon = 2

for (int i = 0; i < 5; ++i)

... = ... V[0][i];

for (int i = 0; i < 5; ++i)

... = ... V[1][i];

}

Figure 2.3: Using arrays of streams and streams of arrays.

The examples on Figure 2.3 illustrate the more complex syntax of using arrays of
streams, on the left, and how it differs from streams of arrays, on the right. The possibility
of using arrays of streams is very important as it brings a dynamic dimension to the
pipelines that can be expressed. Without this notion, only static taskgraphs can be
expressed in our model.

On the left hand side, we first declare two arrays, one that will be used as an array
of streams of integer values, S, and the second will be used as an access window of size
horizon. The first task on the left produces data on the first stream in the array and
uses the window X to access the stream S[0] within its body. The second task consumes
data from the same array of streams, but on stream S[1] instead. The two tasks are not
connected to the same stream.

The right side of Figure 2.3, illustrates the syntax for using streams of arrays, which
means that the base element of the stream is an array. The first task produces data on
stream A using the implicit access window syntax. The task’s horizon and burst on this
stream are both unitary, though as the body of the task shows, it corresponds to arrays of
5 integers. The bottom right task shows the way windows can be used to access streams
of arrays. The window is declared as a higher dimension array on the base type of the
stream: the base type being an array type, a second dimension is added in front of the

24 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

base array type declaration. The rest of the syntax is identical to the scalar case once
the type of the stream’s elements is abstracted. Note that the type of the window must
always be compatible with the stream base type; in this case, for instance V[0] has the
same type int [5] as the stream. The same can be used to handle streams of arrays of
any dimension or streams of structures.

int X[3]; // An array of streams

int x; // A scalar window

int V[2]; // Array window

#pragma omp task output (x >> X)

{

// Explicit window "x" on array of streams X

// burst == horizon == 1

x = ...;

}

#pragma omp task input (X[0] >> x)

{

// Explicit window "x" on stream X[0]

// burst == horizon == 1

... = ... x ...;

}

#pragma omp task input (X[1] >> V[2])

{

// Explicit window "V" on stream X[1]

// burst == horizon == 2

... = ... V[0] ... V[1];

}

Figure 2.4: Broadcasting an output window over an array of streams.

Finally, Figure 2.4 shows how data produced by a task can be broadcast over an array
of streams. The first task connects, in its output clause, the scalar window x to the array
of streams X. From the programmer’s perspective, the data stored in the window is copied
to each stream in the array. The second task consumes data from the stream X[0], while
the third task consumes from X[1]. For this reason, both tasks will see the same sequence
of values and their execution is independent from one another. In practice, there is no
need to replicate the streams and we implement this behaviour without incurring any
copy overhead.

2.4.4 Stream Communication with the Enclosing Context

The term enclosing context is commonly used in the context of the OpenMP language to
refer to the code immediately nesting a given OpenMP construct, such as a task.

We do not allow the syntax for communication between tasks to be used to communi-
cate with the enclosing context, because it results in ambiguous communication patterns

2.4. PROPOSED STREAMING EXTENSION 25

and, in many cases, would not allow data produced within a task to be used by the outer
context immediately after the task construct. Another reason is that all the necessary
constructs for enabling communication with the enclosing context are already present in
OpenMP.

The firstprivate and lastprivate clauses provide the proper semantics, but in
OpenMP3.0 only the firstprivate clause is allowed on task constructs. Importantly,
the reason that lastprivate clauses are not supported on task constructs in the OpenMP
specification is not based on semantical grounds, but rather on pedagogical grounds.
Indeed, the use of lastprivate would be misleading to programmers and of little use in
the current OpenMP model as it would result in blocking the main program until the
task construct bearing the lastprivate clause terminates. We illustrate this behaviour on
Figure 2.5, where the first task is rendered useless, under current OpenMP semantics,
by the presence of the implicit synchronization point required for the lastprivate clause.
However, in our case this clause is not quite as useless, and we will discuss, in Section 2.4.5,
an example substantiating the necessity of the lastprivate clause’s semantics for our
extension.

We therefore need to amend the specification to allow lastprivate clauses on
OpenMP tasks. The syntax and semantics of both clauses are left unchanged, the
firstprivate clause corresponding to a privatizing copy of the variable it applies to, and
the lastprivate clause corresponds to a private memory where the last state is copied-out,
upon completion of the OpenMP task, to the main program.

In the case of firstprivate and lastprivate clauses, the notions of window, horizon and
burst are irrelevant as the semantics are fundamentally scalar, in the sense that only a
single stream element can be produced or consumed in one activation. The addition of
lastprivate clauses on task constructs by itself enables some restricted form of streaming.
As we will see, this form of communication is mostly used for enabling hierarchical
streaming.

We illustrate the way tasks can communicate with the enclosing context on Figure 2.5.
In the current OpenMP specification, a task can only use firstprivate and shared

variables to communicate with the enclosing context. This is sufficient for expressing
consumer behaviour, through firstprivate, but it clearly falls short of allowing to
express a producer behaviour. The only way currently allowed to communicate data
out of a task is to use shared variables and explicit synchronization, as is shown in the
second task of our example for variable x with a taskwait directive. This is ambiguous
on the behaviour of the task w.r.t. the variable x, as it could be either defined or used by
the task, or even both or none.

In contrast, the first task on Figure 2.5 shows our proposed extension, where the
variable y is produced and annotated as lastprivate. The semantics of this annotation
guarantee that there is no reason to synchronize accesses to this variable during the
execution of the task as it is privatized, and it introduces an implicit synchronization
point after the task which ensures that the value of y is made available in the enclosing
context before proceeding.

It is easy to see that this implicit synchronization point serializes the execution of
the task with that of its enclosing context. However, the lastprivate clause would only
synchronize one task and not the full program, as would a barrier, or a part of the program,

26 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

int x, y; // Scalar, structure or array

x = 5; y = 3;

#pragma omp task firstprivate (x) lastprivate (y)

{

// "y" is private to the task

y = 2 * x;

}

// copy-out of the last value of "y" within the task

// implicit synchronization point

if (condition ())

{

#pragma omp task shared (x, y)

{

// "x" and "y" are shared with the rest of the program

// synchronization may be required for atomicity and ordering

x = y - 1;

}

#pragma omp taskwait

}

// the value of "x" depends on the "condition()"

Figure 2.5: Streaming to and from the enclosing context of a task.

as would a taskwait. One of the main differences between the two solutions lies in the avail-
ability of precise information on what data is really being synchronized. Using a lastprivate
clause, the programmer not only minimizes the amount of over-synchronization, but also
provides important information to the compiler. Explicit synchronization directives, like
taskwait, are anonymous; in the previous example, the last task’s synchronization cannot
be statically resolved as only bearing on the last task and for the variable x. Let us show an
example, on Figure 2.6, of how the lastprivate clause allows avoiding over-synchronization.

In this example, data read from a file is processed by two independent tasks, but
the file is not necessarily processed in its entirety. Depending on a test in Task 2, the
processing may end before the end of the file is reached. Task 2 uses a lastprivate clause to
make the result of the test, flag, visible in the outer context. Task 1 is computationally
intensive, but Task 2 is relatively lightweight, which makes these two tasks unbalanced.

If this example were implemented using a shared variable for flag with a taskwait

directive to synchronize, the program would wait, in each iteration of the loop, for the
termination of both tasks. This means that the two tasks would be coupled and the heavy
workload of Task 1 would be unnecessarily forced on the critical path. The main program
cannot exit the loop and execute the rest of the program until all activations of both
tasks complete. There can be no overlapping of computation between the computationally
intensive Task 1 and the rest of the program, therefore leading to an important loss of
concurrency.

On the other hand, the implementation using the lastprivate clause only synchronizes

2.4. PROPOSED STREAMING EXTENSION 27

int x, y; // Streams

bool flag = true;

while (!eof (file) && flag)

{

x = read (file);

#pragma omp task firstprivate (x) // Task 1

{

heavy_workload (x);

}

#pragma omp task firstprivate (x) output (y) \ // Task 2

lastprivate (flag)

{

y = light_workload (x);

flag = test (y);

}

// No ‘‘taskwait’’ required: no coupling between tasks 1 and 2

}

// Rest of the program

Figure 2.6: Avoiding over-synchronization with the lastprivate clause.

the activations of the second task, therefore allowing the decoupling of the execution of
Task 1 from the rest of the program. The main program, along with Task 2 which is
synchronized with it, can finish the loop and go on to execute the rest of the program
while Task 1 is concurrently finishing up the outstanding activations.

2.4.5 Hierarchical Streaming

To enable hierarchical streaming, where streaming tasks and possibly whole pipelines
are nested in other streaming tasks, it is necessary to use both types of communication
described above. This is due to the fact that we do not alter the visibility scope of
variables in the underlying sequential program. Let us consider the incorrect example on
Figure 2.7, where a programmer tries to build a pipeline between two tasks at different
hierarchical levels.

The problem in this example is that the variable x seen by Task 1 is not the same as
that seen by Task 3, because the firstprivate clause on Task 2 creates a new variable to
privatize x. The streaming clauses on Task 1 and Task 3 do not match the same stream.
There is an additional issue on the second stream y, that cannot be seen from outside of
Task 2.

There are two ways to propagate streams from one level to the next, either by using
the shared clause or by using the firstprivate clause to bring data from the enclosing
context. The first solution is illustrated on Figure 2.8, where the stream variable is
transparently forwarded by the shared clause through Task 2. This solution is not always

28 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

int x, y; // Streams

#pragma omp task output (x) // Task 1

{

x = ...

}

#pragma omp task firstprivate (x, y) // Task 2

{

#pragma omp task input (x) output (y) // Task 3

{

y = ... x ...;

}

}

Figure 2.7: Incorrect usage of input and output clauses.

acceptable as it results in a decoupling between the control flow of the two streaming tasks
(1 and 3), which leads to an out-of-order consumption of data on stream x. Depending
on the application, this may be acceptable.

int x, y; // Streams

#pragma omp task output (x) // Task 1

{

x = ...

}

#pragma omp task shared (x, y) // Task 2

{

#pragma omp task input (x) output (y) // Task 3

{

y = ... x ...;

}

}

Figure 2.8: Using a shared clause to connect tasks at different levels of nesting.

The second solution consists in respecting the canonical behaviour of stream com-
munication and remaining within the same hierarchical level, then using the second
communication scheme between a task and its enclosing context to forward the data
to the nested task. This solution is presented on Figure 2.9, where the crossing of the
nesting level is done using firstprivate and lastprivate clauses. In this example, the
outer task behaves as a streaming task at its own level of nesting, but it forwards data
from stream x to Task 3 and also from Task 3 back to stream y. It is easy to see that
the two clauses of Task 3 use the implicit access windows stemming from the input and
output clauses of Task 2 rather than the stream variables x and y.

2.4. PROPOSED STREAMING EXTENSION 29

int x, y; // Streams

#pragma omp task output (x) // Task 1

{

x = ...

}

#pragma omp task input (x) output (y) // Task 2

{

#pragma omp task firstprivate (x) lastprivate (y) // Task 3

{

y = ... x ...;

}

}

Figure 2.9: Using the firstprivate and lastprivate clauses to connect tasks at different
levels of nesting.

The example on Figure 2.9 also serves as motivation for enabling lastprivate clauses on
OpenMP tasks. While using shared memory communication with explicit synchronization
would be semantically correct, it results in lost optimization opportunities. If we replace
the lastprivate(y) clause by shared(y) and we add a #pragma omp taskwait after Task 3,
the compiler will not necessarily be able to remove the synchronization and properly
forward the data stream instead. In a more general way, we aim at reducing the usage of
shared clauses, which do not provide data dependence information and allow data races.
When it is possible, programmers should be shielded from such behaviour and should
not have to resort to improvized synchronization schemes that are error prone both for
correctness and for performance.

2.4.6 Execution and Memory Model

The efficient compilation and exploitation of our extension requires the following adjust-
ments to the execution and memory models provided in the OpenMP specification.

Execution model

The OpenMP3.0 execution model states that, whenever a thread encounters a task con-
struct, a task instance is generated from the code of the associated structured block. This
task may either be scheduled immediately on the same thread or deferred and assigned
to any thread in the team. The data environment of the task is created according to the
data-sharing attribute clauses on the task construct and any defaults that apply.

Such a model is well suited for very unbalanced loads, but in most cases the overhead
of creating and scheduling the tasks is significantly higher than synchronizing persistent
tasks. This is particularly acute on streaming tasks with regular production/consumption
rates, operating on large sliding windows of live data. More generally, streaming allows to
exploit any amount of regularity that exists in the program’s communication, by serializing
the data in the communication channels, even in the case of dynamic streaming patterns.

30 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

This can also be understood as a prefetching scheme where producers gather the data in
streams and the consumers benefit from ordered and contiguous reads. For this reason,
the execution model should leverage this advantage and allow a regular execution on
regular data.

We propose to make streaming tasks persistent in our OpenMP extension. We
emphasize the fact that this change only affects the execution model : the semantics of
OpenMP programs is not impacted. This choice puts a heavier load on the compiler:
it needs to convert the dynamic scheduling of new instances of a task into data-driven
synchronization (i.e., based on the availability of data in the input streams). The impact
of this conversion, as well as the optimizations it enables in terms of coarsening, and the
efficiency considerations, in particular with respect to load balancing, are described in
Chapter 7.

In this new model, all streaming tasks are created at the beginning of the enclosing
OpenMP context and they can only execute when sufficient data is present on all input
channels. When a task has no input channels, but has output channels (thus qualifying it
for streaming), an implicit input stream is created to carry the control-flow, thus converted
to data-flow.

Memory model

The extension of the memory model to include streaming across distributed memory
spaces is work in progress and is not addressed in this thesis. This is a natural extension
when no shared memory clause is used, as demonstrated by CellSs for example [10]. But
supporting arbitrary OpenMP applications efficiently on distributed platforms remains
an open problem and is the topic of on-going research by Millot et al. in the STEP
project [47].

The memory consistency model of OpenMP is relaxed-consistency and requires explicit
flush operations and atomic operations to enforce stronger consistency properties. While
the choice of this memory consistency model is motivated by performance concerns, in
particular mitigating the memory wall, this model is not natural for programmers. In all
but embarassingly parallel applications, the handling of potential data races is one of the
most daunting tasks in parallel programming, even with strong memory consistency guar-
antees, and this problem is exacerbated by the need for programmers to also understand
the additional constraints introduced by the relaxed consistency model.

As we prove in Section 3.6, our extension provides the most stringent form of memory
consistency, strict consistency, for all read and write operations in streams. Along with
the high level of determinism that this extension provides, see Section 3.5, this improves
productivity and simplifies the understanding of parallel programs. As these guarantees
only hold for stream communication, this also further motivates our choice of avoiding
the use of the shared clause. Note that these strong memory consistency guarantees do
not incur a memory access overhead, as properly implemented streams will favor local
on-chip communications where only relevant data is actually transferred.

2.5. SEMANTICS OF THE EXTENSION 31

2.5 Semantics of the Extension

In this section, we elaborate on the semantical interpretation of our proposed extension.
The OpenMP specification provides many illustrative examples that help understanding
of the semantics and we also adopt this stance. This section mostly provides clarifications
on the behaviour of our extension over some common and relevant use-cases.

2.5.1 Foreword on OpenMP Tasks

Before we delve into the semantics of our extension and the coding patterns that it
enables, it is important to first understand how non-streaming tasks behave in an OpenMP
program.

For instance, because of its execution model, the task construct is mostly used within
the scope of a worksharing construct3. As every thread encountering a task construct
will create a dynamic instance of the task, it is necessary to be able to discriminate the
different instances, in a context where tasks can be scheduled anytime, anywhere (barring
tied tasks and “if” clauses). For this reason the task construct will actually be meaningful
only in cases where threads are already differentiated, like e.g., within a worksharing
construct.

#pragma omp parallel num_threads (2)

{

for (i = 0; i < N; ++i)

{

#pragma omp task

{

work (i);

}

}

}

#pragma omp parallel num_threads (2)

{

#pragma omp for

for (i = 0; i < N; ++i)

{

#pragma omp task

{

work (i);

}

}

}

Figure 2.10: Task instances need to be differentiable. Multiple undifferentiated instances
(left) and properly differentiated (right).

Figure 2.10 illustrates this issue. On the left, the task construct is used directly
within the parallel directive. The duplicate instances of the task, one for each of the
two threads executing this parallel section, are impossible to differentiate. This is not
only a performance issue. We duplicate the work, but we also duplicate shared memory
accesses, so that synchronization would be required if the task accesses any shared data:
the duplicate instances would use the same shared memory locations. By contrast, on
the right, the worksharing construct (the omp for) distributes loop iterations onto the
available threads and ensures a single instance of the task will be activated for each value
of i.

3OpenMP3.0 defines the following worksharing constructs: loop, sections, single and workshare.

32 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

The same semantics apply to streaming tasks. We do not forbid their use outside of a
worksharing construct, but the alternative is to manually differentiate threads, which is
seldom portable and often considered a bad coding practice.

Another important point is that, by nature, pipelining requires tasks to be part of
a loop structure as filters are applied to a sequence of elements. It is possible to use
streaming tasks outside of a loop nest, which then behaves as a loop with a single iteration.
This is of little interest overall as it only incurs the overhead of creating streams for single
elements.

In the remainder of this chapter, we will only discuss the cases where streaming tasks
are enclosed by a loop, which itself must be nested within a worksharing construct.
However, as these constructs can be part of a caller function, the callee can possibly
only exhibit freestanding tasks, which is sometimes the case in our examples for brevity.

2.5.2 Coding Patterns

Though this is by no means an exhaustive list of the possible uses of streaming tasks
or of their interaction with other OpenMP constructs, we will present in the following
paragraphs how our extensions can provide the necessary building blocks for programming
streaming applications.

Pipeline parallelism

To provide the fundamental basis for pipelining, we use the single worksharing construct
for building a simple pipeline, as for example on Figure 2.11. The two task constructs com-
municate through stream x, which decouples their execution by privatizing the sequence
of values of x.

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

#pragma omp task input (x)

... = ... x ...;

}

}

x=...

...=x

1

1
x

Figure 2.11: Pipeline using the single worksharing construct.

2.5. SEMANTICS OF THE EXTENSION 33

Parallel and sequential filters

The activations of filters can be executed concurrently, provided that there is sufficient
data on input streams and that the filter has no self-dependences. The presence of self-
dependences on a task denotes the presence of state carried-over from an activation to
the next. Figure 2.12 illustrates this situation, where the first task is both producer and
consumer of the same stream. This pattern is used to express statefullness and inhibit
the concurrent execution of the task’s activations.

int counter, x;

for (i = 0; i < N; ++i)

{

#pragma omp task input (counter) output (x, counter)

{

counter++;

x = ... ;

}

#pragma omp task input (x)

... = ... x ...;

}

x = ...
1

1
x

counter++
1

1
counter

... = ...x...

Figure 2.12: Sequential filter because of a self-loop.

In this example, the first filter must execute sequentially while the second could be
data-parallelized. The ordering of the elements in the stream is preserved by the stream
library implementation even if multiple threads concurrently process different activations
of a task. The runtime focuses on scheduling data inside the stream rather than scheduling
the activations, which minimizes ordering constraints on the execution of task activations.

This pattern is extremely common. It happens for instance when a filter reads or
writes to a file. In that case, the file descriptor is both read and written at every access
to the file and it should be considered as filter state. If a task does not properly specify
inputs and outputs, the resulting behaviour is unspecified.

Note that the example on Figure 2.12 is incomplete as the self-dependence on the first
task is unsatisfiable. In order to provide an initial value to the state, we will introduce a
delay on the stream counter that encodes the state. The pattern used for delays will be
presented later.

Mixing data and pipeline parallelism

While the runtime may exploit data parallelism within a pipeline by executing multiple
instances of parallel filters (starting with the heaviest ones for load balancing), the
programmer can decide to make data-parallelism explicit at the pipeline or individual
filter level.

For example the code on Figure 2.13 creates parallel pipelines of filters by using the
loop worksharing construct instead of single. We must note that the correctness of
this parallelization depends on the behaviour of the tasks. The user is responsible for

34 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

int x, A[N];

#pragma omp parallel private (x)

#pragma omp for shared (A)

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

#pragma omp task input (x) shared (A)

A[i] = ... x ...;

}

1

1
x

x = ...

A[i]=...x
1

1
x

x = ...

A[i]=...x

A

Figure 2.13: Parallel replicated pipelines with a worksharing construct.

ensuring no dependence is violated and for using proper synchronization if required. The
programmer could even introduce a second level of data parallelism within a filter, by
nesting a parallel loop within a streaming task as illustrated on Figure 2.14. However,
this may result in unnecessary overhead if the implicit barrier at the end of the nested
parallel loop cannot be removed by the compiler, as the cost of barrier synchronization is
significantly higher than our stream synchronization scheme, presented in Chapter 6.

Critically in this example, the stream variable x is private to each thread, using the
private clause on the parallel construct, which means that each thread executing the
parallel loop will have its own stream and therefore build separate pipelines. The case
where x is not private but shared, and therefore leading to a single stream that is used
by all threads, will be discussed later. It then corresponds to a single pipeline where the
computation in the enclosing context is parallelized, but not necessarily the execution of
the filters.

int x,X[k];

#pragma omp parallel

#pragma omp single

for (i = 0; i < N; i+=k)

{

#pragma omp task output (x << X[k])

{

#pragma omp parallel for

for (j = 0; j < k; ++j)

X[j] = ... ;

}

#pragma omp task input (x)

... = ... x ...;

}

X[j]=... X[j]=...

X

... = x

X
k
1

Figure 2.14: Parallel loop worksharing construct within a filter.

2.5. SEMANTICS OF THE EXTENSION 35

Figure 2.14 shows an alternative way of forcing data-parallelism inside a filter, albeit
a rather inelegant and likely inefficient one. The first task uses an access window with
horizon and burst of size k to concurrently produce multiple values on stream x. As the
data is not committed before the activation completes, the second task will have to wait.
Also note that in this example the first task produces k × N integers to stream x, while
the second task only consumes N . As we will see, this type of behaviour is detrimental
to bounding the amount of memory required for stream communication.

Exploiting data and pipeline parallelism

In the previous two paragraphs, we have seen how the programmer can introduce state in
filters, therefore precluding all data parallelization of such filters, and how it is possible
to explicitly mix data and pipeline parallelism. We must stress the fact that it is not
necessary to use any parallel constructs in order to exploit any available data-parallelism.
Indeed, as we have mentioned earlier, any stateless task is inherently data parallel, so
the runtime system is allowed to dynamically schedule activations from such tasks on
concurrent threads. Exploiting data parallelism in stateless filters is an essential part of
any load-balancing strategy as it allows reducing bottlenecks in pipelines; when one filter
is slower than all the others the throughput of the pipeline is equal to that of the slowest
filter.

As a shorthand for expressing data-parallelism in streaming tasks, while also allowing
programmers to specify the amount of data-parallelism for each task, we are considering
to allow using the num_threads clause on task constructs. This would only serve as a hint
to the compiler and runtime system that a specific task needs to be executed on a specific
number of threads for best performance.

int x;

#pragma omp parallel num_threads (2)

#pragma omp for shared (x, A)

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

#pragma omp task input (x) shared (A)

A[i] = ... x ...;

}

int x;

for (i = 0; i < N; ++i)

{

#pragma omp task output (x) \

num_threads (2)

x = ... ;

#pragma omp task input (x) \

shared (A) num_threads (3)

A[i] = ... x ...;

}

Figure 2.15: Pipelines parallelized with a parallel construct (left) or with a num_threads

clause (right).

The two examples presented on Figure 2.15 have the same semantics for the first task,
the task’s activations are executed on two threads, but the second task is, for example,
more finely tuned with three threads. Note that this example differs from Figure 2.13 as
the stream variable x is shared. As a result, there is only one pipeline in this example
and a single stream x. The data-parallelism is exploited within the same pipeline.

36 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

Dynamic pipelines

In some cases, like the butterfly stages of an FFT, it is necessary to build a pipeline where
the depth is parametric. The dynamic nature of a pipeline is captured by the array of
streams construct that we added in the stream clauses. We can build dynamic pipelines
by connecting tasks with successive streams in an array of streams as for example on
Figure 2.16. The array of streams A is used to communicate through the pipeline for
different instances of the second task.

int A[K];

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < N; ++i)

{

#pragma omp task output (A[0] << x)

x = ... ;

}

for (j = 0; j < K-1; ++j)

{

for (i = 0; i < N; ++i)

#pragma omp task input (A[j] >> x) output (A[j+1] << y)

{

y = ... x ...;

}

}

for (i = 0; i < N; ++i)

{

#pragma omp task input (A[K-1] >> x)

... = ... x ... ;

}

}

x=...

y=...x...

y=...x...

A[0]
1

1

1

1

A[1]

A[K-1]

Figure 2.16: Dynamic pipeline of filters generated from a loop by using an array of streams.

In this example, the first task initiates the pipeline by producing some data on the
first stream of the array A. The second task effectively builds the dynamic pipeline by
accessing different streams depending on the value of j which is the induction variable
of its outermost loop. At iteration j0, each task instance reads data on stream A[j0],
processes the data, then writes the output on the next stream in the array, A[j0+1].

This example also illustrates the dynamic nature of the taskgraph that is generated
from our streaming extension as a single static task construct generates K − 2 actual
pipeline filters. Until now, there was a one to one correspondence between task constructs
and pipeline filters. With this pattern, we illustrate the need to identify pipeline filters

2.5. SEMANTICS OF THE EXTENSION 37

not only by a syntactic task construct, but also by the set of input and output streams it
is connected to.

Our extension not only allows data-flow to be expressed between tasks, but also
provides a way to statically specify how the dynamic taskgraph of an application is built.

Variable burst and horizon sizes

The use of variable burst and horizon sizes for stream access windows improves the
expressiveness of the model, but it comes at a cost, both in terms of efficiency and on the
properties that can be extracted from the program with static analysis.

In C99, it is possible to declare arrays whose size is only known when entering a block,
which means that our syntax can lead to variable-sized bursts and horizons in streams.
Variable horizons make it very problematic to determine the global buffer size for a stream
variable. There are two options: either (1) the programmer provides the maximal horizon
across all iterations to make this computation possible, as illustrated on Figure 2.17, but
this reduces the concurrency between the two filters; or (2) the programmer uses variable
horizon sizes, as shown on Figure 2.18, and can gain additional pipeline parallelism at
the cost of a more difficult program to analyze. The difference in the amount of pipeline
parallelism comes from the fact that the second task either waits for N values to be
available on the input stream or just for i, as the stream synchronization needs to wait
for enough data in the stream to fill the horizon of the window.

int X[N];

for (i = 0; i < N * (N-1) / 2; ++i)

{

#pragma omp task output (x)

{

x = ... ;

}

}

for (i = N-1; i >= 0; --i)

{

#pragma omp task input (x >> X[i])

{

// i <= N

... = ...X[0]...X[1]...X[i];

}

}

x = ...

... = ...X[0]...X[i]...

x
1

i

Figure 2.17: Restricting the horizon size to be a constant does not forbid a task to consume
a variable number of elements.

Note that both approaches have the same expressiveness: bursts can be dynamic
so each instance of a task can consume or produce a different number of elements, as
illustrated on Figure 2.17, where the remainder of the horizon is left unused.

38 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

Let us take a closer look at these two approaches using the example on Figure 2.18
as reference. When horizons are variable, once the first task starts producing data, the
second task is immediately able to start executing because it only requires one value on
its input stream. If instead of a variable horizon, the user declares the access window with
the maximum horizon value, the second task will need to wait for N values before starting.
This is not the only issue, however, as the Figure 2.17 illustrates, using the maximum
required horizon rather than the actual value will lead to a termination problem. The
second task waits, in its last activation, for more data than is really necessary as it asks
for N values whereas only one is needed. The programmer will have to add fake values
at the end of the stream to compensate.

int x, y;

// int X[N];

for (i = 0; i < N; ++i)

{

int X[i+1];

#pragma omp task output (x)

{

x = ... ;

}

#pragma omp task input (x >> X[0]) output (y)

{

y = 0;

for (j = 0; j < i; ++j)

y += X[j];

}

}

Figure 2.18: Partial sums computation using an access window with variable horizon and
burst.

Programs that include either of these patterns, where some streams have access win-
dows with variable burst or horizon sizes, do not allow the compiler to bound the amount
of memory required for streaming. We provide a scheme for dynamically increasing the size
of stream buffers, but that may not be a sufficient solution and we may decide to require
programmers to declare the maximum amount of memory that should be allocated for
such streams. Another issue is that this behaviour generally makes it undecidable whether
a deadlock can occur, which will also lead to increased overhead from our runtime deadlock
detection scheme.

2.5.3 Buffering Semantics of Stream Communication

The semantics of communication with the input and output streaming clauses is defined
such that data is never discarded without being used. The semantics can be likened to
that of a FIFO queue where output clauses push some amount of data and input clauses

2.5. SEMANTICS OF THE EXTENSION 39

pop some data. This leads to coding patterns that would not respect the sequential
semantics4 of the program, and that can therefore appear misleading. The following
discussion on nesting of streaming tasks in arbitrary control flow will also allow us to
emphasize the difference between streaming between tasks using input and output clauses
and communicating with the outer context with firstprivate and lastprivate clauses.

Conditional execution

Streaming tasks can be nested into arbitrary control flow, like for instance the conditional
blocks on Figure 2.19.

for (i = 0; i < N; ++i) {

if (condition_1 (i)) {

#pragma omp task firstprivate (i) output (x)

x = i ;

}

if (condition_2 (i)) {

#pragma omp task firstprivate (i) input (x)

y = x + i ;

}

}

Figure 2.19: Streaming tasks nested within arbitrary control-flow.

In the example presented on Figure 2.19, the values of x computed by the first task
are buffered and consumed by the second task when it activates. Streaming clauses allow
bypassing the control flow, so that the k − th activation of the second task consumes the
value produced by the k− th activation of the first task, irrespectively of the truth values
of the conditions.

for (i = 0; i < 2; ++i) {

if (i == 0) {

#pragma omp task firstprivate (i) output (x)

x = i ;

}

if (i == 1) {

#pragma omp task firstprivate (i) input (x)

y = x + i ;

}

}

Figure 2.20: Instantiation of the example on Figure 2.19.

This highlights the semantic difference between the input and firstprivate clauses, as
the latter does not have buffering semantics and is control flow sensitive. The firstprivate

clause simply forwards values from the enclosing context to the task in compliance with
OpenMP3.0 semantics. As a result, depending on the conditions predicating both tasks,

4The semantics of the program where all OpenMP annotations are stripped.

40 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

the second task may not compute y = i+i as it is possible that x 6= i. To clarify this issue,
let us consider the case presented on Figure 2.20, where we instantiate the conditions.
Each task is activated exactly once: when the first task activates, it uses i = 0 to define
x and commits the value 0. When the second task is activated, we have i = 1, but the
task still reads x = 0 on its input stream, therefore computing y = 0 + 1.

We motivate this choice of a buffering semantics for streaming clauses as follows.

• It offers maximal expressiveness, unlike a “sampling” semantics where in-flight data
on input and output clauses would be implicitly discarded. Defining when this data
should be discarded is also problematic since the task may be nested into arbitrary
control flow.

• It simplifies the compilation: the conditional expression does not have to be sunk
inside tasks, resulting in undesired if-conversion with spurious task activations when
the condition is false.

• It is fully in line with the formal basis for data-flow and stream computing defined
by Kahn [36], it matches directly the underlying execution model of our proposal,
and it is compatible with OpenMP 3.0.

• But it is also a challenge for static buffer sizing. Programs with diverging queues of
in-flight data can be written easily. This is a well known issue, solved with a type
system (clock calculus) in data-flow synchronous languages [29], or with periodic
restriction on the production/consumption rates [43]. Because of its expressiveness
and modularity, we consider the type-based approach in further refinements of our
streaming extension.

The ability to ignore pragmas or to generate code that can run sequentially is further
discussed in Chapters 3 and 5. Ignoring pragmas is the canonical trivial serialization
approach in OpenMP, but it is usually not possible with our extension.

The compilation of persistent tasks requires a way to enable the activation of a task
only when the control dependences guarding the task are satisfied. This scheme is one
of the main issues developed in Chapter 7. It relies on a stream of task activations that
carries the control dependences and preserves the order of task activations in the serial
schedule. This avoids sinking the task’s enclosing control flow inside the persistent process
and activating the task when there is no work to be done. It also allows to deterministically
schedule the data inside streams, based on the order information on task activations.

firstprivate and lastprivate vs. input and output

These clauses are semantically very close, especially if we consider input and output clauses
with unitary bursts and horizons. From a task’s perspective, firstprivate and input both
represent a privatizing copy-in of a value, while lastprivate and output represent copying
out, upon termination, the last value of some variable.

Yet as discussed above, their semantics differ with regard to the control flow. This is
easier to understand as an issue of reaching definitions or merging functions in the Single
Static Assignment (SSA) representation [20]. To better understand this difference, let us

2.5. SEMANTICS OF THE EXTENSION 41

consider the SSA form of a similar example to that on Figure 2.20, which we present on
Figure 2.21. The SSA form is built using a loop-closed SSA form distinguishing between
loop-Φ and cond-Φ nodes. The latter take an additional condition argument, appearing
as a subscript, to make the selection condition explicit.

x0 = 42;

y0 = 42;

z0 = 42;

for (i0 = 0; (i1 = Φloop(i0, i2)) < 2; i2 = i1 + 1) {

// Writes to x and y are not visible in the main program’s loop.

z1 = Φloop(z0,z3);

if (i1 == 1) {

#pragma omp task firstprivate (i1) output (x1) lastprivate (z2)

{

x1 = i1;

z2 = i1;

}

}

z3 = Φcond
(i1 == 1)(z1, z2);

if (i1 == 0) {

#pragma omp task firstprivate (i1) input (x1) firstprivate (z3)

{

y1 = x1 + i1;

y2 = z3 + i1;

}

}

}

Figure 2.21: SSA form for the instantiated example from Figure 2.20.

This example highlights the difference between these clauses. The first task produces
new values for both x and z, the first using an output clause and the second with a
lastprivate clause. One difference that can be seen right away is that only variable z has
a loop-Φ node at the beginning of the loop because the writes to both y and z are never
visible outside of the tasks where they occur. For z in particular, this shows the difference
between the output and the lastprivate clause: the latter forwards the data to its enclosing
context, thus constituting a definition operation on z that is captured by the SSA version
z2, while the former only produces one value of x on a private channel that cannot be
seen from the loop’s body.

This difference becomes even more pronounced when considering the second task,
that reads both the x and z variables, the first with an input clause and the second
with a firstprivate clause. The variables’ SSA versions once again differ between the two
clauses, because of the same fundamental semantical difference. Variable z behaves as if
the OpenMP annotations were absent: the firstprivate clause copies the value of z3 from
the enclosing context, which is merged by the cond-Φ node, while the input clause reads
directly from the private channel. As a result, z3 being read under the i1 == 0 condition,
the Φcond

i1 == 1 node resolves the value to z1 which itself is z0. The streaming clauses output
and input bypass altogether the control flow and there can be no Φ nodes on x.

42 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

The result of the computation, in this particular instantiation, is that the second task
computes a first value of y that is defined using the first data element from the stream,
which is therefore resolved to the data produced in the first task’s first activation. This
occurs for i1 == 1, so the first value on stream x is 1. The second task therefore computes
y1 = x1 + i1 = 1 + 0 as this task executes when i1 == 0, therefore copying the value 0
from i1. On the other hand, the second value of y computed by this task is the one we
could expect if we removed all OpenMP annotations: y2 = z3 + i1 = z0 + i0 = 42 + 0.

One important semantical consideration is that streams implicitly carry control flow
information. The availability of data in a stream satisfies both data and control depen-
dences of the consumer. We implement firstprivate clauses in a way that is similar to
input clauses, with streams, as our choice of a persistent-task execution model means the
expansion of the clause needs a stream to forward copy-in values to the thread in charge
of executing the successive instances of the task.

2.5.4 Sampling Patterns

Sampling patterns are very frequent in digital signal processing applications, which are one
of the main classes of programs that best fit the stream programming model. Sampling
patterns can very easily be implemented with our OpenMP extension, both for static
and regular patterns, like for example decimation patterns, or for dynamically variable
downsampling patterns that allow, for example, to refine the sampling rate at runtime.
We present, on Figures 2.22 and 2.23, two examples to illustrate this type of coding
patterns.

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ...;

}

for (i = 0; i < N/4; ++i)

{

#pragma omp task input (x >> X[4])

use (X[0]);

}

Figure 2.22: Implementation of a static decimation pattern.

The example presented on Figure 2.22 shows how a static decimation pattern can
trivially be implemented with our extension. The second task consumes 4 elements on
stream x at each activation of the task, but it only actually reads the first value, thus
achieving a 4× down-sampling of stream x.

The second example, presented on Figure 2.23, shows how a dynamic rate down-
sampling can be achieved. This is a simple example where the rate does not depend
on the data itself. The first task is simply a source of N data samples, the second task

2.5. SEMANTICS OF THE EXTENSION 43

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ...;

}

rate = ...;

sum = 0;

while ((sum += rate) < N)

{

#pragma omp task input (x >> X[rate])

use (X[0], X[1]);

rate = ...;

}

Figure 2.23: Dynamic down-sampling of a stream using variable burst rates.

processes this stream with a dynamically computed down-sampling rate. The programmer
must use a dynamic burst rate, while ensuring that the task does not read too far ahead.
In our example, the second task accesses two data elements at each activation, so the
window’s size should at least be 2 elements even if the burst rate falls below that.
int S[2];

int s;

for (i = 0; i < N; ++i)

{

#pragma omp task output (s >> S)

s = ...;

rate = ...;

sum = 0;

while ((sum += rate) < N)

{

#pragma omp task input (S[0] >> X[rate])

use (X[0], X[1]);

#pragma omp task input (S[1] >> X[rate]) lastprivate (rate)

rate = compute_next_rate (X[0..rate-1]);

}

Figure 2.24: Dynamic down-sampling of a stream using variable burst rates.

If the programmer needs a dynamic down-sampling rate that depends on the data
within the stream itself, then there are two possible implementations, but we only present
the most efficient one on Figure 2.24. This example is much more complex and requires a
broadcast array of streams, S, with a scalar access window used by the source task, s. The

44 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

intuition is that we use an inspector task, the third task, that also reads the same data
as the main computational task, the second task. The inspector decides on the amount
of data that should be consumed on the next activation and pushes this new rate value
in the enclosing context with a lastprivate clause. The inspector task is serialized with
the main program because of this pattern, but its computational load can be low enough
to not constitute a bottleneck. It is also possible to merge the second and third tasks,
but this would result in introducing a lastprivate clause on the computational task, which
would serialize the main workload.

2.5.5 Multi-Producer Multi-Consumer Streams

Unlike most streaming frameworks, our extension provides multi-producer multi-consumer
streams that do not rely on static interleaving patterns. As such, our programming model
is more versatile, in particular for expressing dynamic dependence patterns.

Multiple connections

It is possible to connect multiple filters to the same stream, both as input and as output.
The semantics of multiple filters using the same stream is to interleave the stream accesses
according to the sequential schedule. This interleaving scheme is a powerful way of defining
fully dynamic split and join operations on streams. Our approach departs from the regular
patterns and statically defined split-join models proposed in common stream programming
languages like StreamIt [68].

We illustrate the way data from multiple producers can be dynamically merged into
one stream on Figure 2.25 and how it can be conversely split between multiple consumers
in Figure 2.26.

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = 0;

if (i % 2)

{

#pragma omp task output (x << X[2])

X[0] = X[1] = 1;

}

// x = 0 0 1 1 0 0 1 1 ...

#pragma omp task input (x >> X[2])

use (X[0], X[1]);

}

Figure 2.25: Dynamically merging output data from multiple producer tasks in a single
stream.

On Figure 2.25, the first task produces one 0 on stream x per iteration of the loop. The

2.5. SEMANTICS OF THE EXTENSION 45

second task only activates on odd iterations and produces two values on stream x that
are interleaved with those produced by the first task. The sequential schedule provides
the interleaving order which, in this case, yields the sequence of values 00110011... for
stream x. The dynamic split pattern is very similar, as illustrated on Figure 2.26 where
the first task produces data, here the loop counter, on stream x and the second and third
tasks consume from x. As the consumers interleave their stream accesses, the second task
always reads even values in the stream and the third task always reads odd values.

for (i = 0; i < N; ++i)

{

#pragma omp task firstprivate (i) output (x)

x = i;

if (i % 2)

{

#pragma omp task input (x)

// x == i - 1

#pragma omp task input (x)

// x == i

}

}

Figure 2.26: Dynamically splitting input data from a stream among different consumer
tasks.

Note that it is also possible to enable multiple consumers to see the same data, which
we call broadcast semantics. As we have seen in Section 2.4.3, this is achieved by producing
data in an array of streams and having all consumers that need to access all the data
produced read in a different stream in the array. The compiler only generates one stream,
but the presence of the array of streams is important to properly identify whether a
consumer task interleaves its accesses with another or if they both read the same data.
To avoid statically undecidable cases, where the compiler needs to conservatively generate
multiple streams for broadcast patterns and therefore incur the copy overhead, we do not
allow mixing dynamic merging of data inside arrays of streams used for broadcast patterns,
unless all of the tasks merging data use the same broadcast pattern. As Figure 2.27
shows, either all producers broadcast to the same array of streams, or there is no dynamic
interleaving.

On the left, the first two tasks broadcast the value they compute in their access window
x to all streams in the array of streams A. The third and fourth tasks read the same
sequence of values. As they do not read from the same stream in the array, their accesses
are not interleaved, but independent. On the right, the first task broadcasts the values
computed in its access window x to the streams of the array A, but the second task only
produces data to stream A[0], which results in different data being produced in streams
belonging to the same broadcast array. This is not semantically wrong, but we do not
allow breaking-up broadcast arrays of streams as this does not allow to implement them
as a single stream. This code will result in a compiler error in our implementation: all

46 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

arrays of streams used to broadcast data can only be used in broadcast mode in all output
clauses.
int A[4];

int x;

for (i = 0; i < N; ++i)

{

if (i%2)

{

#pragma omp task output (x >> A)

x = 1;

}

else

{

#pragma omp task output (x >> A)

x = 0;

}

#pragma omp task input (A[0])

// x == (i%2)

#pragma omp task input (A[3])

// x == (i%2)

}

int A[4];

int x;

for (i = 0; i < N; ++i)

{

if (i%2)

{

#pragma omp task output (x >> A)

x = 1;

}

else

{

#pragma omp task output (x >> A[0])

x = 0;

}

// Compilation error ...

}

Figure 2.27: Legal (left) and illegal (right) dynamic merge inside a broadcast array of
streams.

Making the interleaving of stream accesses the default behaviour and requiring the use
of a broadcast array to enable multiple consumers to access the same data differs with
our previous work [56]. The initial model was asymmetric: multiple producers would
interleave their data in streams while multiple consumers would all consume the same
data, which appeared to be potentially misleading to programmers. This new semantics
was first motivated by our attempt at unifying the syntax and semantics of the input and
output clauses. It finally imposed itself when we started working on the code generation for
more dynamic programs than the automatically generated examples in [56], as the former
syntax proved to lack the information required for initialization and termination of stream
programs, namely the number of broadcast consumers per stream was not decidable until
program termination. This meant that stream buffer space could not be reused. In this
new syntax, the number of broadcast consumers is known from the size of the broadcast
array; even if it is only known at runtime, this is sufficient to generate the appropriate
code.

Delays

Among stateful filters, delays play a central role. A unit delay prepends an initial value
to the stream it takes as input, effectively delaying input values by one activation of

2.5. SEMANTICS OF THE EXTENSION 47

the task. Delays are used to break instantaneous dependence cycles in the SDF model
of computation [43]; they take the form of the “pre” operator (akin to a synchronous
register) in synchronous data-flow languages [29]. Their role is paramount in the modeling
of hardware circuits and control-dominated embedded systems. Strangely, delays have not
met the same success for parallel stream programming (yet), as illustrated by their absence
from the StreamIt benchmark suite [68].

#pragma omp task output (x << A[k])

for (i = 0; i < k; ++i)

A[i] = ...;

for (i = 0; i < N; ++i)

{

#pragma omp task input (y) output (x)

x = ... y ...;

#pragma omp task input (x) output (y)

y = ... x ... ;

}

Figure 2.28: Introducing delays on streams.

Delays can be implemented as a special case of the multi-producer pattern, through
tasks producing the desired amount of data before the producer filters start executing.
This is illustrated on Figure 2.28, where k initial elements are inserted in the stream
x by the first task. The interleaving behaviour guarantees that this data is inserted at
the beginning of the stream. Thanks to the multiple output semantics defined above,
this first task implements a k-delay operator. If k > 1, this is sufficient to break the
instantaneous dependence cycle among the two following tasks. No internal state is
required to implement delays, the state is hidden in the stream, by storing the delay
values, and outside in the control flow. This guarantees that delays do not waste data-
parallelism by inducing spurious serialization due to internal state.

This pattern provides a stateless alternative to the “pre” operator. It also allows
introducing delays dynamically, during the execution of a program, which gives even
more flexibility.

2.5.6 Deadlocks and Dependence Cycles

The previous constructs can induce dependence cycles among tasks, through the input

and output clauses. Delays can be used to break such cycles. Unfortunately, high
expressiveness has a cost: with arbitrary control flow enclosing task activations and
variable burst rates, detection of instantaneous (i.e., delay-free) dependence cycles is
generally undecidable during compilation. We have to accept deadlocks as part of the
semantics of the language extension, though we show in Chapter 3 that we can provide
some guarantees and some coding rules that can eliminate them altogether.

At least, we know that if deadlocks occur, they will occur deterministically, indepen-
dently of the number of threads or scheduling policy. This means that traditional test
and debugging procedures for sequential programs are still applicable. We also provide,

48 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

in Chapter 3, a runtime deadlock detection algorithm that allows to gracefully exit the
program and provide debug information on the deadlock state.

Although no complete method to avoid deadlocks can exist, conservative approaches
have been very successful for embedded system design; they are based on control-flow and
burst rate restrictions [43] (also adopted by StreamIt), or they rely on type systems of
synchronous clocks [29]. Integrating some of these principles in the compiler could provide
debugging help and support more aggressive optimizations; these research directions are
left for future work.

2.5.7 Execution Model

Following are a few important considerations on the execution model underlying these
language constructs. Our scope here is mainly what a programmer perceives, in terms
of execution model, rather than a comprehensive analysis of our execution model, which
will be further developed in Chapters 6 and 7.

Persistent tasks

To improve performance, we propose to adjust the execution model to make streaming
tasks persistent. Instead of having one instance of the task for each point in the iteration
space of the enclosing OpenMP context (worksharing construct or any other OpenMP
construct), we have a single instance that traverses the full iteration space, consuming
data on the input streams and producing on the output streams. We emphasize the
fact that this modification of the execution model is not a requirement of the extension
we propose. Under the right circumstances, in particular w.r.t. the target architecture
support for lightweight scheduling [41], the compiler might still generate code that fits
the current execution model for tasks.

To prove the validity of this transformation, let us consider the acceptable schedules
of the task instances. In the old schedule, no ordering, no exclusion and no thread locality
could be assumed. All schedules were therefore acceptable (without explicit locking). In
the new execution model, the persistent task traverses the iteration space in a statically-
defined partial order, thus restricting the possible schedules to a subset of the acceptable
schedules. The particular case where a parallel filter is replicated to benefit from data
parallelism means that the iteration space has been strip-mined and that the different
instances will impose a local order for the execution. The resulting set of possible schedules
is still a subset of the acceptable schedules in the old execution model.

Correctness is of course the burning question at this point. Overall, the transformation
is always possible and correct when the only scheduling constraints are the data-driven
ones imposed by input and output clauses. Obviously, introducing atomic sections within
tasks will not interfere with task-level scheduling constraints. However causality problems
may arise when combining our streaming extensions with arbitrary locking mechanisms,
if the acquisition of a lock escapes outside task boundaries. In real applications, locking
may be legitimate to handle other forms of concurrency unrelated with the parallelization
itself (e.g., I/O or user interfaces). Conversion to persistent tasks forces the ordering
of successive task instances. Whereas valid schedules may exist for independent, freely
schedulable tasks, it is possible that none of them be compatible with the sequential

2.6. INTERACTION WITH CURRENT OPENMP SEMANTICS 49

execution of dynamic instances of a given task. Without further precautions, conversion
to persistent tasks may thus result into deadlocks (of the evil, target-dependent kind).

Because of the critical performance advantage of the persistent-task execution model,
and because of the importance of compiler optimizations to tune the grain of task and
pipeline parallelism [26], we choose to (minimally) constrain the usage of cross-task locking
mechanisms. Since OpenMP encourages programmers to make the sequential execution a
subset of the legal schedules of the parallel program [69], one may require cross-task locking
to be compatible with the serial execution of tasks. When generating persistent tasks, the
compiler can safely assume that the original schedule of task instances is deadlock-free.
Regarding debugging and test, one only has to compile the program for serial execution
to make sure it is deadlock-free.

Nesting

For all nesting purposes, we consider that the nesting of a streaming task within any
OpenMP construct behaves in the same way standard task constructs behave. The
iteration space taken into account for a streaming task is relative to the nearest enclosing
OpenMP construct. However, the visibility of input and output clauses and therefore
the visibility of the resulting task graph spans across all constructs within the nearest
enclosing parallel region. This of course is also limited by the visibility scope of the
stream variables.

Data parallelism

Data parallelism is typically exploited automatically at runtime as all tasks that do not
belong to a dependence cycle (induced by input and output clauses) are fully data-parallel.
Note that our choice to represent statefullness as a self-dependence, with both input

and output clauses on the same task for a given stream, allows this generalization of
data-parallelism. The programmer is also free to mix pipelining with other data-parallel
OpenMP constructs: the compiler will generate broadcast, splitter and selector patterns
to handle synchronization and stream buffer indexing.

Streaming tasks are data-parallel by nature, because they only read from and write
to private memory (including their stream horizon). Unless the task uses shared memory
with explicit synchronization or it is part of an inter-task dependence cycle, it is deemed
parallel.

2.6 Interaction with Current OpenMP Semantics

We have already presented some of the ways our extension integrates and interacts with
other OpenMP constructs in the previous sections and we further elaborate here on
the interaction with a focus on the semantical implications. As streaming tasks are
connected with ordered communication channels, nesting such tasks in other OpenMP
constructs that lead to out-of-order execution of the task instances can result in non-
determinism of the schedule of data in streams and sometimes require introducing some
level of serialization. More specifically, we discuss the interaction of streaming tasks with

50 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

their environment when nested in concurrent contexts, like parallel loops, or when they
are nested in non-streaming tasks, where the notion of order is lost.

As we have seen, load-balancing of streaming tasks can be achieved by exploiting data-
parallelism within the pipeline as long as streaming tasks are stateless. However, the main
program can also become a bottleneck if it cannot produce enough task activations to keep
the worker threads busy. One solution is to exploit parallelism in the main program as
well, either in the form of data-parallel loops or as task parallelism.

2.6.1 Streaming Constructs in Parallel Loops

When nesting streaming tasks in data-parallel loops, it is important to first understand
that the visibility scope of stream variables plays a key role in distinguishing between a
set of parallel pipelines within the parallel loop and a parallel loop being used to build a
single pipeline of tasks that can independently exploit data-parallelism in stateless tasks.

int x;

#pragma omp parallel private (x)

#pragma omp for shared (A)

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

#pragma omp task input (x) shared (A)

A[i] = ... x ...;

}

int x;

#pragma omp parallel shared (x)

#pragma omp for shared (A)

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

#pragma omp task input (x) shared (A)

A[i] = ... x ...;

}

Figure 2.29: Parallel pipelines (left) and single pipeline built in parallel (right).

To clarify this issue, let us consider the example presented on Figure 2.29. The only
difference between the left and right sides is that the stream variable x is either private

or shared within the parallel loop. The result is that on the left side, where x is private,
the variable used to define the stream connecting the two tasks is different between the
different threads executing the parallel loop. For this reason, different threads build
different pipelines and we have the same behaviour as that presented on Figure 2.13. On
the right side, however, the stream variable x is shared, which means that each thread
executing the parallel loop does indeed see the same stream connecting the two tasks.
The result is a single pipeline built concurrently by all threads executing the loop. This
is a desirable behaviour as it allows exploiting data-parallelism in the enclosing context,
but it also requires more work from the compiler as the schedule of data written in the
stream by the first task needs to be consistent with the schedule of the data read by the
second.

In a more general case, illustrated on Figure 2.30, the schedule of data may need to
be precisely the sequential schedule as the streaming tasks nested in the parallel loop
are connected with tasks that are activated sequentially. We will always consider that

2.6. INTERACTION WITH CURRENT OPENMP SEMANTICS 51

int x, y, z;

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

}

#pragma omp for

for (i = 0; i < N; ++i)

{

#pragma omp task input (x) output (y)

y = ... x ... ;

#pragma omp task input (y) output (z)

z = ... y ...;

}

for (i = 0; i < N; ++i)

{

#pragma omp task input (z)

... = ... z ...;

}

Figure 2.30: Streaming tasks nested in data-parallel loops, connecting outside of the loop.

the schedule of data either respects the sequential schedule of the program or that it is
unordered.

The example presented on Figure 2.30 requires the compiler to properly evaluate the
placement of data in the streams in order to compile correctly. The first task produces
data on stream x, where the data is placed according to the sequential schedule. When
the second task consumes from x, the compiler evaluates, for each iteration, the position
in the stream where the data corresponding to this iteration should be found. While this
is simple in the case of constant burst rates, things become more complicated once bursts
can be dynamic; this case would require pre-computing the partial sums of the bursts of
all previous iterations before deciding on the index of a stream access.

2.6.2 Nesting in Non-Streaming Tasks

Another way to exploit parallelism in the main program is to use non-streaming tasks.
Depending on the way tasks are implemented in the general case, it may be impossible to
provide a deterministic schedule of data produced by a task nested in a non-streaming task,
let alone consistent with the sequential program schedule. In fact the order information is
lost due to the semantics of OpenMP tasks, and cannot be preserved. Let us consider the
example on Figure 2.31, where a first non-streaming task is used to parallelize some non-
streaming computation as well as the generation of the activations of a nested streaming
task. In the existing OpenMP model, the first task can execute in any order, and as we

52 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

cannot rely on a loop counter5 or any other means of relating to the serial schedule, we
cannot generate the proper schedule of data on stream x. In this case, the consumer task
is performing a reduction on integers where, assuming commutativity and associativity,
the order is not important as long as the operation is atomic.

int x, y;

int a = 0;

int A[N];

for (i = 0; i < N; ++i)

{

#pragma omp task shared (A, x) firstprivate (i) private (y)

{

y = foo (A[i]);

#pragma omp task output (x) firstprivate (y)

{

x = bar (y);

}

}

#pragma omp task input (x) shared (a)

{

#pragma omp atomic

a += x;

}

}

Figure 2.31: Streaming task nested in non-streaming tasks.

However, one of our main objectives is to avoid the non-determinism that usually
results from exploiting parallelism. We therefore consider that preserving the information
on the serial schedule, and therefore preserving a deterministic schedule of data in stream
x, takes precedence over performance concerns. In the example on Figure 2.31, a control
stream (presented more in detail in Chapter 6) is required from the enclosing context
to the non-streaming task. It represents essentially an if-conversion and consists, in this
case, of a stream of the values of the induction variable i. Based on this information,
the schedule of data in stream x is computed, in the general case sequentially across
all instances of the enclosing task. This serializing constraint, which still allows some
concurrency, can be relaxed in the case of regular tasks and provided that no dynamic
control flow predicates the activation of the streaming task producing x within the body
of its enclosing task. Regular tasks are defined and discussed in Section 5.3.1.

2.6.3 OpenMP Synchronization Constructs

Synchronization is very important in OpenMP as this model relies heavily on shared
memory communication. In many cases, OpenMP constructs imply a barrier at the end

5To the OpenMP program, the loop counter i is just a variable without any specific semantics.

2.6. INTERACTION WITH CURRENT OPENMP SEMANTICS 53

unless a nowait directive explicitly dismisses the synchronization point. We will only give
here semantics for the two most relevant synchronization schemes for tasks in OpenMP:
the barrier and taskwait directives.

OpenMP barrier directive

Barriers are the main synchronization tool in OpenMP and they are particularly important
for parallel loops. The example we used above, on Figure 2.30, perfectly illustrates this:
as we did not add a nowait clause on the for directive, an implicit barrier is added at the
end of the parallel loop. The way streaming tasks interact with barriers is quite simple,
all task activations generated before the program reaches the barrier must have executed,
but the main issue is to ensure that no deadlock results from the lack of resources.

int x;

#pragma omp for

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)

x = ... ;

}

// Implicit barrier at end of parallel loop

for (i = 0; i < N; ++i)

{

#pragma omp task input (x)

... = ... x ...;

}

Figure 2.32: Streaming across a barrier.

Let us consider the simple example on Figure 2.32, where the first task is the producer
on stream x and is in a parallel loop. The consumer is outside the loop, so the main
program cannot reach it before passing the implicit barrier at the end of the parallel
loop. This means that the consumer will not start consuming data until the producer
has finished producing data for all iterations of the loop. Depending on the size of the
iteration space, this may lead to a resource deadlock as at least N integers will need to
be stored in the stream buffer of x.

OpenMP taskwait directive

A different form of barrier that is used to synchronize tasks without necessarily synchro-
nizing the whole program is the taskwait directive. Its semantics in OpenMP is to wait
for the completion of all outstanding tasks issued by the context in which the taskwait
directive is encountered. The taskwait directive is a local barrier that only synchronizes
the sons in the taskgraph, but not the siblings. The same applies for streaming tasks,
and we also have the same issue, with potential resource deadlocks, as with barriers.

54 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

2.7 Modular Compilation

The separate compilation of functions containing streaming tasks requires additional
information to identify which variables are used as streams. This could possibly be
resolved at link time, but not without much complications. In order to make modular
compilation easy, we introduce additional annotations at function declaration sites, that
describe the streaming behaviour of the function. We do not require additional call-site
annotations.
#pragma omp parallel

#pragma omp single

{

int a;

for (i = 0; i < N; ++i)

{

foo (i, &a);

#pragma omp task input (a)

{

... = ... a ...;

}

}

}

void foo (int i, int *y)

{

int x;

#pragma omp task firstprivate (i) output (x)

{

x = ... i ...;

}

#pragma omp task input (x) output (*y)

{

*y = ... x ...;

}

}

Figure 2.33: Streaming tasks in a function call.

Let us consider the example presented on Figure 2.33, where a function foo contains
two streaming tasks. If the left and right side are compiled separately, the compiler cannot
know that the foo function contains such tasks, which does not allow connecting these
tasks with the consumer task on the left. This would result in a compiler error as, on the
left, the variable a is used both as a stream and as a variable in the computation.

In order to provide the necessary information, we need to add annotations to the
function prototype visible during the compilation, to describe how the function would
integrate in a pipeline. The chosen annotation has been added on Figure 2.34. This
annotation allows re-constructing the proper streaming structure. Starting from the code
on the left, the annotation is sufficient to decide that a is an output stream of the task
and to generate the equivalent annotation on the right.

2.8 Concluding Remarks

In this chapter, we presented an extension to enable stream programming in OpenMP. Our
work is driven by the quest for increased productivity in parallel programming, which led
us to propose a language extension rather than yet another new language, thus leveraging
the existing knowledge and tool base of a de facto industry standard for shared memory
parallel programming. The strong evidence that has been gathered on the importance of
pipeline parallelism for mitigating the memory wall, and therefore gaining scalability and

2.8. CONCLUDING REMARKS 55

#pragma omp output (*y)

void foo (int i, int *y);

#pragma omp parallel

#pragma omp single

{

int a;

for (i = 0; i < N; ++i)

{

foo (i, &a);

#pragma omp task input (a)

{

... = ... a ...;

}

}

}

#pragma omp output (*y)

void foo (int i, int *y);

#pragma omp parallel

#pragma omp single

{

int a;

for (i = 0; i < N; ++i)

{

#pragma omp task firstprivate (i) output (a)

{ foo (i, &a); }

#pragma omp task input (a)

{

... = ... a ...;

}

}

}

Figure 2.34: Connecting a function containing streaming tasks to a pipeline.

efficiency, has further motivated and guided the development of our programming model.
One key choice is to favor an execution model where the tasks are persistent: this choice
often allows static scheduling and grain coarsening, which we discuss in Chapter 7 and
enables lightweight, lock-free implementations for streaming communications, on which
we elaborate in Chapter 6.

We discussed the design principles necessary to maximize the expressiveness and
performance benefits of our extension, while also preserving backward compatibility. We
presented a detailed description of the extension’s semantics and of the coding patterns it
enables, satisfying most common use cases both for regular, streaming applications, like
digital signal processing, or for non-streaming applications, through the use of dynamic
communication patterns and control flow.

As our long term goal is to integrate this extension in the OpenMP specification,
we were especially cautious to ensure backward compatibility and to avoid introducing
conflicts with the existing specification. We therefore chose to provide a purely incremen-
tal extension, that requires no modification to the existing semantics. In order to make
a stronger case for our extension proposal, and substantiate our claims on the strong
guarantees provided by our programming model, we analyze our programming model
through the formalization of a general computational model for streaming, presented in
Chapter 3, and the specialization of this formal model for our stream-computing extension,
in Chapter 5.

An earlier version of part of the work presented in this chapter was published in [56].

56 CHAPTER 2. A STREAM-COMPUTING EXTENSION TO OPENMP

Chapter 3

Control-Driven Data-Flow Model of
Computation

Streaming and task-parallel programming are rapidly growing, in the current context of
stalling processor frequencies and increasing hardware concurrency which continuously
exacerbates the lack of off-chip memory bandwidth, as a performance and productivity
oriented solution to parallel programming. Data-flow computing has been used in the
past decades not only as a memory-efficient way of exploiting pipeline parallelism, but
also because many important properties can be proven on these programs. Our stream-
computing extension to OpenMP does not fit the existing data-flow models because of
its generality. In this chapter we present a novel formal model of computation, that
fits our programming model, and that allows us to prove deadlock-freedom properties,
in Sections 3.3 and 3.4, functional and deadlock determinism, in Section 3.5, as well as
serializability of streaming programs, in Section 3.7. We discuss the hypotheses necessary
to prove these properties and the static analysis requirements. The generalization of
the Control-Driven Data-Flow (CDDF) model to tackle issues raised by constraints of
bounded memory execution and scalability concerns is presented in Chapter 4.

En raison de la tendance actuelle à l’augmentation du parallélisme des architectures,
qui est généralement une réponse aux limitations en fréquence et en puissance des pro-
cesseurs, la programmation parallèle par tâches ou en streaming s’installe comme une
solution pour la programmation de ces architectures qui vise à la fois la performance et
la productivité dans un contexte où la bande passante mémoire est le principal goulot
d’étranglement. Le calcul sur flôts de données est utilisé depuis plusieurs décennies, non
seulement pour son efficacité mémoire en exploitant le parallélisme de pipeline, mais aussi
à cause des propriétés essentielles qui peuvent être prouvées sur ces programmes. Notre
extension pour le streaming n’est pas bien modélisée par les modèles de calcul par flôts de
données existants, en raison de sa généralité, ne respectant pas les contraintes imposées
par ceux-ci. Nous présentons, dans ce chapitre, un nouveau modèle de calcul, répondant
aux besoins de notre modèle de programmation, qui nous permet de prouver l’absence
d’interblocages, dans les sections 3.3 et 3.4, le déterminisme à la fois fonctionnel et
d’interblocage, dans la section 3.5, ainsi que la sérialisabilité des programmes en stream-
ing, section 3.7. Nous détaillons les hypothèses nécessaires pour prouver ces propriétés,
ainsi que les analyses statiques requises pour décider de la satisfaction de ces hypothèses.

57

58 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

La généralisation du modèle Control-Driven Data-Flow (CDDF) en mémoire bornée est
étudiée au chapitre 4.

3.1 Introduction

In stream programming models, programs are structured as graphs of computational tasks,
also called filters, connected with explicit communication channels, or streams. Each filter
consists of a work function that is a semantically atomic execution unit, that consumes
data on input channels and produces data on output channels. In general, filters regularly
iterate the execution of the work function as long as there is data on the input channels.
These programming models generally implement more or less restricted instances of Kahn
Process Networks (KPN) [36].

The current interest in stream-computing has led to the development, in recent
years alone, of many new stream programming models. Among others, we can cite
StreamIt [68], based on the Synchronous Data Flow [43] model, where task graphs are
built by combining straight pipelines of filters with feedback-loops and split-join patterns.
While this could give the wrong impression that StreamIt supports multi-producer or
multi-consumer streams, these operations rely on static patterns, which give an ad hoc
order semantics to join operations and enforce determinism. Similar to StreamIt on
these aspects, FastFlow [4] also provides dynamic multi-producer and, separately, multi-
consumer streams, which are not order-preserving. To preserve the order, it relies on a
secondary tag stream, which is not distributed in split-join patterns and that allows to
reconstruct the order when joining the separate branches. Of course this order can be
reconstructed because communication patterns are unitary, so the correspondence between
data tokens and tags can be preserved.

Common to all of these models and, to the best of our knowledge, more generally to
stream programming models, is the notion that the computation is driven by the avail-
ability of sufficient input data1. The OpenMP extension for stream-computing, presented
in the first chapter of this thesis, extends the OpenMP task-parallel programming model
in a way that is also similar, in certain aspects, to KPNs. Intuitively, the difference lies
in the fact that, in our model, the main OpenMP program specifies both data-flow and
control-flow, so instead of providing a work-function to be applied to data from some input
streams, we know that this work-function must be applied a specific number of times. One
way to handle this would be to rely on if-conversion, creating an additional input stream
to encode the control-dependence, but this stream needs to be given a special status as
it does not represent only an upper bound on the number of iterations to execute, but
also a strict lower bound. This behaviour conflicts with Kahn semantics, as there can be
a discrepancy between the required number of firings mandated by the control flow and
the least fixed point solution to a feedback-loop a process belongs to. In our model, this
generally leads to deadlocks, which we consider to be functional in that they result from
discrepancies between the control-flow and the data-flow in the source program.

1With the exception of demand-driven models, where producers stall until a consumer requests data,
like for example in Communicating Sequential Processes [31]. This model is non-deterministic and it does
not fit our streaming extension to OpenMP.

3.1. INTRODUCTION 59

Even more problematic is the generality of our model with respect to communication
patterns. As we allow the arbitrary and dynamic interleaving of accesses to streams from
different tasks, the functional determinism cannot be deduced from the monotonicity of
processes as their composition is less restricted. In our model, even in the absence of
feedbacks, the composition of monotonic processes may not be monotonic. This forces
us to adopt a new definition of causality, stream causality, that possibly spans multiple
processes, though we still rely in some cases on a weaker version, task causality, which is
much closer to Kahn causality.

An OpenMP streaming program behaves as a dynamic directed task graph, where the
vertices represent tasks that communicate and synchronize through streams modeled by
the edges. This model diverges from KPNs in the following ways:

1. Streams can support multiple producers and multiple consumers that determinis-
tically interleave their accesses, hence the task graph needs to be represented by a
hypergraph in our model.

2. A control program, which is the OpenMP main program, orchestrates the schedule
of data in streams to ensure determinism and enable the efficient synchronization
of tasks.

3. The use of shared memory communication between tasks as well as explicit barrier
synchronization are allowed.

4. The activation of tasks can be predicated by arbitrary control flow.

Our goal, in this chapter, is to introduce a new model of computation, the Control-
Driven Data-Flow (CDDF) model, that captures the semantics of our programming model
and can be used to prove that, under certain conditions, programs implementing this
model are guaranteed to be: (1) free of spurious deadlocks (i.e., deadlocks introduced by
the operational semantics of the model rather than functional deadlocks); (2) deterministic
both functionally and for the state of the program when a deadlock occurs; and (3)
serializable.

Our model is related to the Kahn process networks model, as well as to the tags system
meta-model proposed by Lee et al. [44], but the similarities are limited to the reliance
on streams viewed as either FIFO channels or tagged collections of events with an order
relation on tags, integer indexes in our case, for communicating between processes. Some
similarities can also be noted with Feautrier’s communicating regular processes [23], but
his model relies on a point-to-point synchronization scheme that we do not consider to
be amenable to an efficient implementation. Furthermore, as we discuss in Section 3.4,
the very notion of process is slightly blurred in our case due to the dynamic nature of
our task graph, mostly introduced by coding patterns like the dynamic pipeline presented
in Section 2.5.2. We also introduce a new concept, the control program, that cannot be
accounted for in current models, either KPN or dataflow models.

The remainder of this chapter is organized as follows. Section 3.2 starts by presenting
the CDDF model in its basic version, it discusses ordering constraints on the execution
of tasks, it defines and characterizes the various classes of deadlocks that can occur in

60 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

CDDF programs. Section 3.3 introduces the notion of stream causality and analyzes the
impact of stream causality on deadlocks. Section 3.4 introduces the notion of CDDF
tasks, as well as task causality, and shows that some deadlock-freedom conditions can be
guaranteed under this weaker form of causality. In Section 3.5, we prove that all CDDF
programs, where the control program and the task work functions are deterministic, are
guaranteed to be functionally deterministic and to deadlock deterministically. Section 3.6
briefly discusses the memory consistency model of stream communication. Section 3.7
shows that CDDF programs are serializable when they are deadlock-free and possibly
even serializable in control program order under strict conditions. Finally, Section 3.8
summarizes the properties guaranteed for CDDF programs and the sufficient conditions
proven in the previous sections.

3.2 Definitions and Notations

The CDDF model of computation is not exclusively meant as a modeling tool for our
streaming extension to OpenMP, even though we specialize its semantics in a later stage
to match our programming model, but rather as a general computational model for
stream computing, that captures the semantics of many other stream based programming
languages.

In our abstraction, we primarily focus on memory accesses and the implicit stream
synchronization is only aimed at enforcing data-flow dependences. Before we generalize
this model, we rely on the following simplifying assumptions: (1) the memory space is
unbounded, which allows us to model stream accesses as Single Dynamic Assignment
(SDA); and (2) the control program is a deterministic sequential process.

3.2.1 CDDF Program Structure

Our model focuses on the communication patterns in streams and on the scheduling
constraints resulting from data dependences. For this reason, streams play a key role in
this model, though only as identifiers in a first instance.

Definition 3.1 (Stream). A stream is a symbol s ∈ S, where S is an infinite set of
symbols.

Stream communication is not based on the FIFO queue paradigm, as in many related
frameworks, but rather on an indexing scheme that behaves, in an infinite memory model,
as an injective function from S × N to the set of memory locations. Streams can be
understood as infinite arrays of typed elements or even as typed communication channels.
The key property is that there can be no overlap or alias issues: if (s, i) ∈ S × N and
(s′, i′) ∈ S × N are two different stream locations, either s 6= s′ or i 6= i′, then the two
stream locations cannot reach the same memory location.

Definition 3.2 (Stream access). We define the set X of stream accesses, where we
distinguish between read (R) and write (W) accesses:

X = {R,W} × S × N

3.2. DEFINITIONS AND NOTATIONS 61

Contrary to existing streaming models, we do not give much importance to the notion
of task, also often called filter in related work, which is usually presented as a work function
iteratively applied to data present on input streams and producing data on output streams.
As our model is inherently dynamic, it tends to be less focused on regular communication
patterns between sequential or regular processes. Instead, our abstraction only keeps the
notion of task activation, which is the fundamental atomic unit of work2 in the form of
one execution of a work function. As work functions can be called with different input
and output streams, they cannot constitute or fully identify filters.

We further abstract the notion of task activations to only consider the stream accesses
necessary for the task activation’s execution, irrespectively of the work function applied.

Definition 3.3 (Task activation). A task activation a is defined by the set of stream
accesses it uses to read and write data in streams:

a ⊂ X

The set A of task activations is the powerset of X :

A = P(X)

This view is entirely focused on the sets of memory locations, or equivalently streams
and stream indexes, that are read and written during the execution of the task activation.
This represents the minimal information necessary to characterize the data dependences
between task activations.

Definition 3.4 (Input and output streams). We say that a stream s ∈ S is an input
(resp. output) stream to a task activation a ∈ A and we write s ∈ I(a) (resp. s ∈ O(a))
if the task activation a contains a read (resp. write) access to stream s.

I(a) = {s ∈ S | ∃i ∈ N, (R, s, i) ∈ a}

O(a) = {s ∈ S | ∃i ∈ N, (W, s, i) ∈ a}

The core of our model is the control program, a deterministic sequential process3 which
dynamically constructs a deterministic schedule of data in each stream. This schedule is
based on the dynamic control flow of the control program.

As we are not interested in the semantics of the underlying programming language,
we only require that this program’s execution be non-blocking aside from synchronization
barriers. We model the control program by its execution trace where we only keep two
types of operations: activation points and barriers. All other operations are omitted from
the control program trace in our model.

Activation points can be thought of as either a short-lived task spawn call or as a task
activation scheduling call and its evaluation results in the creation of a new task activation

2Not to be mistaken with the notion of atomicity in this context. However, and we will develop on
this in a latter section, task activations are atomic, in our model, with respect to stream accesses.

3We will later relax this hypothesis to avoid the bottleneck that can result from this process being
sequential, at a cost either to the determinism of the model or requiring more complex code generation.

62 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

that needs to be executed. The barrier’s informal semantics is to stall the control program
until all the task activations it produced up to the barrier operation are executed.

Definition 3.5 (Activation point). An activation point π is a control program operation
that generates a task activation. It is modeled as a set of descriptors of stream access
operations:

π ⊂ {(u, s, b, h) ∈ {R,W} × S × N× N}

where u determines if the activation will consume from or produce to stream s, b is the
burst, or amount of data produced or consumed, and h is the horizon, which is the amount
of data accessed in the stream. The horizon allows read accesses ahead in the stream,
which is also called a peek operation in related work.

The set of activation points is defined as:

Π =

{

π ∈ P
(

{R,W} × S × N2
)

|
(

∀(u, s) ∈ {R,W} × S, ∃!(u, s, b, h) ∈ π ∨ ∄(u, s, b, h) ∈ π
)

∧
(

∀(u, s, b, h) ∈ π (b 6 h) ∧ ((u = W) ⇒ (b = h))
)

}

This means that an activation point can only have one descriptor of stream operations
per stream s and operation type u, so only one instance of burst and horizon values. It
also restricts the value of the burst to be lower than the horizon, and forces the equality
of burst and horizon values for write operations.

Definition 3.6 (Control program trace). The execution trace of the control program is a,
possibly infinite, word on Π∪{barrier}. The set K of possible execution traces is defined
as:

K = (π + barrier)∗

A CDDF program’s execution is driven by the control program that generates task
activations. Using the previous notations, we define the program state as the control
program’s execution trace and two sets of task activations, one for already executed
activations and the other for outstanding task activations.

Definition 3.7 (CDDF program state). We define the set Σ of possible program states:

Σ = K ×
(

P(A)
)2

A state σ = (Ke,Ae,Ao) ∈ Σ is defined by the trace of the control program Ke, which
is the sequence of operations in Π ∪ {barrier} that have already been executed by the
control program, and the sets Ae of executed task activations and Ao of outstanding task
activations.

Definition 3.8 (Control program execution). The execution of the control program is
modeled by two functions: (1) an oracle function NEXT : K → Π∪{barrier}∪{⊤}4 that

4The additional possible result ⊤ marks the end of the control program.

3.2. DEFINITIONS AND NOTATIONS 63

models the sequence operator for the control program’s execution and provides the next
operation to be executed by the control program; and (2) the activation point evaluation
function ξ : K×Π → A that defines the way an activation point is evaluated to generate
a task activation:

ξ(k, π) =

{

(u, s, i) ∈ X | ∃(u, s, b, h) ∈ π ∧ i ∈
[

α, α + h
[

, where α =
∑

π′∈k
(u,s,b′,h′)∈π′

b′

}

For a given control program trace k at the time of the evaluation of the activation point
π, the function ξ computes the placement of data produced or consumed by the new task
activation inside each stream. It relies on the past activation points that were executed
by the control program, summing the bursts b′ of all activations with the same operation
type u on the same stream s. As the burst is the amount of data produced or consumed
by a task activation, it determines the shift inside the stream required for the activation,
and the sum of all such shifts since the beginning of the control program’s execution
determines the indexes of the stream accesses that will be attributed to the task activation
being generated.

In order to clarify these notions, let us consider the following running example that
shows how the control program evaluates activation points.

Example 3.2.1. Let us consider the following pre-determined control program sequence
(π1, π2, π3, π4), which defines the function NEXT in the scope of this example:

NEXT (ǫ) = π1 = {(R, s1, 1, 2), (W, s2, 2, 2)}

NEXT (π1) = π2 = {(W, s1, 2, 2)}

NEXT (π1.π2) = π3 = {(R, s2, 0, 2), (W, s2, 1, 1)}

NEXT (π1.π2.π3) = π4 = {(R, s2, 1, 2), (W, s1, 1, 1)}

The successive evaluation of these activation points by the ξ function will yield the

64 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

task activations (a1, a2, a3, a4):

a1 = ξ(ǫ, π1) = {(R, s1, i) ∈ X | i ∈ [α, α + 2[∧ α =
∑

π∈ǫ
(R,s1,b,h)∈π

b = 0}

∪{(W, s2, i) ∈ X | i ∈ [α, α + 2[∧ α =
∑

π∈ǫ
(W,s2,b,h)∈π

b = 0}

= {(R, s1, 0), (R, s1, 1), (W, s2, 0), (W, s2, 1)}

a2 = ξ(π1, π2) = {(W, s1, i) ∈ X | i ∈ [α, α + 2[∧ α =
∑

π∈π1

(W,s1,b,h)∈π
b = 0}

= {(W, s1, 0), (W, s1, 1)}

a3 = ξ(π1.π2, π3) = {(R, s2, i) ∈ X | i ∈ [α, α + 2[∧ α =
∑

π∈π1.π2

(R,s2,b,h)∈π
b = 0}

∪{(W, s2, i) ∈ X | i ∈ [α, α + 1[∧ α =
∑

π∈π1.π2

(W,s2,b,h)∈π
b = 2}

= {(R, s2, 0), (R, s2, 1), (W, s2, 2)}

a4 = ξ(π1.π2.π3, π4) = {(R, s2, i) ∈ X | i ∈ [α, α + 2[∧ α =
∑

π∈π1.π2.π3

(R,s2,b,h)∈π
b = 1}

∪{(W, s1, i) ∈ X | i ∈ [α, α + 1[∧ α =
∑

π∈π1.π2.π3

(W,s1,b,h)∈π
b = 2}

= {(R, s2, 0), (R, s2, 1), (W, s1, 2)}

As can be seen on this example, the burst values determine the shift of stream access
indexes in each stream. This is illustrated on activations a3 and a4 which both read the
same indexes in s2 because the activation point π3 has a null burst on that stream, which
means that no shift is made and no data is consumed. The horizon represents the number
of indexes actually needed and accessed starting from a given beginning position, while the
burst represents the shift of the beginning position needed for the scheduling of the indexes
of the next task activation.

Note that the order of evaluation of activation points, and therefore the underlying
deterministic control program order, is essential in the attribution of stream access indexes
to task activations. We refer to this behaviour as the scheduling of data in streams, which
does not need to proceed in a satisfiable order: in our example π1 requests to read two data
elements from stream s1, which could not possibly be available as no operation has yet
occurred. This request will be satisfied by π2 which schedules the production of the desired
elements in task activation a2. As we see below, this data schedule allows to avoid relying
on an execution schedule; the execution of task activations will be much less constrained.

As we have seen, our model is centered around the data schedule computed by the
control program. In order to model the possible future of the data schedule, if the control
program were to continue past the already executed trace, we introduce a special task
activation that captures and aggregates all possible continuations of the control program.
This will play a key role in modelling, for example, barriers as it will represent all the
stream accesses that cannot occur before the barrier completes.

We call this special activation the continuation activation. As it depends on the
executed control program trace, it will be defined for a given trace Ke and noted C(Ke).
This activation cannot be executed: it models the possible future of the program after
the control program trace Ke. For that reason, it contains all stream accesses that could
be attributed to a task activation in any continuation of the control program.

3.2. DEFINITIONS AND NOTATIONS 65

Definition 3.9 (Continuation activation). In all CDDF program states σ = (Ke,Ae,Ao),
the continuation activation C(Ke) is implicitly added to Ao. This continuation is defined
by:

C(Ke) =

{

(u, s, i) ∈ X | i >
∑

π∈Ke

(u,s,b,h)∈π

b

}

The initial state of a CDDF program is therefore:

σinit = (ǫ,∅, {C(ǫ)}) where C(ǫ) = X

In the general case, this continuation activation models the stream accesses, and in
particular the write accesses, that cannot occur before the control program makes progress.
When the control program reaches a barrier, it models all write stream accesses that can
only happen after the barrier passes. If for example a write stream access (W, s, i) belongs
to the continuation activation and there is an outstanding activation containing (R, s, i),
then unless the control program can make further progress, there is an unsatisfiable flow
dependence and hence a deadlock.

Proposition 3.10. The state σ = (Ke,Ae,Ao) of a CDDF program satisfies:

⋃

a∈Ae∪Ao

a = X

This state invariant holds by construction of the continuation activation, which attributes
to the continuation, on every stream, each stream access not yet scheduled in a task
activation generated by the execution of the control program trace. There is also some
overlap for read accesses as accesses in C(Ke) start at the sum of bursts on each stream,
which can be lower than the highest horizon. This property can also be rewritten as:

∀(u, s, i) ∈ X , ∃a ∈ Ae ∪ Ao, (u, s, i) ∈ a

3.2.2 Ordering Constraints on Task Activations Execution

One of the key insights of our model is the separation of constraints between the control
program, which executes a deterministic sequence of activation points, and the execution
of task activations. We elaborate, in Section 3.3.1, on the issue of the order relation
induced by NEXT on activation points, and therefore by precedence in the control
program trace, while in this section we discuss the ordering constraints that need to
be enforced on the execution of task activations.

As we see below, the only fundamental order requirement for task activations execution
is induced by the enforcement of flow dependences between activations. However, the
implementation of our synchronization scheme, presented in Chapter 6, does not rely
on hardware schemes that would allow for inexpensive synchronization of individual
memory locations, which is the approach advocated by Feautrier in Communicating
Regular Processes [23]. Instead, we rely on the synchronization of closed prefixes of stream

66 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

indexes, where indexes lower than a given threshold become read-only once all producers
have moved past that point. In our view, this is a mandatory aspect, barring hardware
support like full-empty bits, for efficient synchronization of stream communication. This
means that our synchronization scheme over-approximates the real scheduling constraint
requirements, which brings us to one of the principal issues tackled in this chapter: to
which extent does this over-approximation induce new errors, like spurious deadlocks, and
what conditions must be satisfied by a CDDF program to avoid these errors.

To model our synchronization scheme, we define the stream prefix order relation and
the derived scheduling constraints enforced on the execution of task activations.

Definition 3.11 (Stream prefix order). We define a binary relation < in P(A2) on task
activations as:

∀(a, a′) ∈ A2 : a < a′ , ∃(s, i) ∈ S × N, ∃j 6 i, (W, s, j) ∈ a ∧ (R, s, i) ∈ a′

Which means that a′ reads data in a stream s while a writes in stream s somewhere
in the prefix of a′’s read access. Note that this relation is not transitive as any relations
a < a′ and a′ < a′′ can arise from different streams, nor reflexive or antisymmetric, so it
is not an order relation.

We derive the relation ⋉ ∈ P(A) × A that models our scheduling constraint for the
execution of task activations, which we define as:

a ∈ A,A0 ⊂ A
(

A0 ⋉ a , ∀(R, s, i) ∈ a, ∀j ≤ i, ∃a′ ∈ A0, (W, s, j) ∈ a′
)

Intuitively, we want to say that, for a given program state σ = (Ke,Ae,Ao), an
outstanding task activation a ∈ Ao is in a relation Ae ⋉ a, and therefore has all of its
ordering constraints satisfied by the already executed activations in Ae, if and only if
there is no task activations a′′ ∈ Ao such that a′′ < a, recalling the role of C(Ke) ∈ Ao as
an aggregator of possible futures. As there can only be one single write access operation
per stream index, and as Proposition 3.10 ensures that no write access escapes Ae ∪ Ao,
this relation can be defined more concisely as:

∀a ∈ Ae ∪ Ao, Ae ⋉ a , ∀a′ ∈ Ae ∪ Ao, a
′ < a ⇒ a′ ∈ Ae

, ∄a′ ∈ Ao, a′ < a

For the second version of the definition, we note that under the hypothesis of sin-
gle dynamic access to streams, there is a single write operation per stream index and
Proposition 3.10 ensures this operation belongs to one of the task activations in Ae ∪Ao.
Considering that Ae and Ao are disjoint, which we will see holds by construction of any
valid program state, concludes the reasoning.

We finally give, on Figure 3.1, the operational semantics of the execution of CDDF
programs, as well as an overview of the CDDF execution model on Figure 3.2. The
execution rules have the following meaning:

(GEN) The activation generation rule states that the control program can execute an
activation point as soon as it is reached by its oracle function, NEXT. The result of

3.2. DEFINITIONS AND NOTATIONS 67

(GEN)
π := NEXT (Ke) π ∈ Π

(Ke,Ae,Ao) −→ (Ke.π,Ae,Ao ∪ {ξ(Ke, π), C(Ke.π)} \ {C(Ke)})

(BAR)
Ao = {C(Ke)} NEXT (Ke) = barrier

(Ke,Ae,Ao) −→ (Ke.barrier,Ae,Ao)

(TERM)
Ao = {C(Ke)} NEXT (Ke) = ⊤

(Ke,Ae,Ao) −→ (Ke,Ae,Ao)

(EXEC)
Ao = {a} ∪ A′

o Ae ⋉ a

(Ke,Ae,Ao) −→ (Ke,Ae ∪ {a},A′
o)

Figure 3.1: CDDF execution rules.

its evaluation by ξ is added toAo and the activation point is appended to the existing
program trace Ke. The old continuation, C(Ke), activation is removed from Ao and
a new one, C(Ke.π), reflecting the restriction in possible futures of the program, is
added.

(BAR) The barrier rule states that the control program only passes a barrier once all
outstanding activations are executed, with the natural exception of the continuation
activation. The barrier is also appended to the control program trace once cleared.

(TERM) The termination rule marks the end of the program as soon as the control
program finishes, which is marked by the ⊤ operation, and no outstanding acti-
vations remain. It has similar semantics to the barrier rule, but does not modify
the control program’s trace. Termination of the CDDF program occurs as soon as
the termination rule is executed once. This rule is used as a guard for program
termination as it allows an infinite number of transitions once the program reaches
termination.

(EXEC) The execution rule states that an outstanding activation a can only be executed
once all the activations that need to be scheduled before it, in the stream prefix
order, are executed, which as we have discussed is modeled by Ae ⋉ a. Note that
Lemma 3.17 guarantees that the continuation activation C(Ke) cannot be executed.

Example 3.2.2. To illustrate the stream prefix order and the resulting execution sched-
ules, let us continue our running Example 3.2.1.

We had successfully generated four task activations, (a1, a2, a3, a4), so the state of the

68 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

σ = (Ke , Ae , Ao)
(GEN) ∨ (EXEC) ∨ (BAR)

σ'

NEXT(Ke)

(GEN)

(BAR)

(TERM)

(EXEC)

}

Ke

ξ(Ke, πi)

Ao ⊂ P(Χ) Ae ⊂ P(Χ)

{(u,s,i)}{(u,s,i)}

{(u,s,b,h)}≡

π... Bπ... π...πi-1 πi πi+1

Figure 3.2: Overview of CDDF execution model.

program would be:

σ = (Ke,Ae,Ao) where Ke = π1.π2.π3.π4, Ae = ∅, Ao = {a1, a2, a3, a4, C(π1.π2.π3.π4)}

and

a1 = {(R, s1, 0), (R, s1, 1), (W, s2, 0), (W, s2, 1)}

a2 = {(W, s1, 0), (W, s1, 1)}

a3 = {(R, s2, 0), (R, s2, 1), (W, s2, 2)}

a4 = {(R, s2, 0), (R, s2, 1), (W, s1, 2)}

At this point, only the (GEN) rule has been applied four times, but no task activation has
been executed. The rule (EXEC) is predicated by the stream prefix order relation, which
requires all writes occurring in the prefix of any read access operation to a given stream
to be scheduled before the task activation containing that read access.

The stream prefix order relations between these task activations are:

a2 < a1 ∧ a1 < a3 ∧ a1 < a4

As Ae is initially empty, the only task activation ai that satisfies the predicate ∅⋉ ai,
is a2. As it has no read operations, it satisfies ∅⋉ a2, which is reflected by the fact that
no activation is ordered before it on the stream prefix order. Once the execution of a2
completes, the new state of the program will be:

σ = (Ke,Ae,Ao) where Ke = π1.π2.π3.π4, Ae = {a2}, Ao = {a1, a3, a4, C(π1.π2.π3.π4)}

We can see that, in this new state, the next activation to be ready to execute will be a1

3.2. DEFINITIONS AND NOTATIONS 69

as {a2} ⋉ a1, then a3 and a4 will become ready at once, and could possibly be executed
concurrently, as we have:

{a1, a2}⋉ a3 ∧ {a1, a2}⋉ a4

3.2.3 Program Progress and Deadlocks

Based on the CDDF model, and in particular on the execution rules, we define a simple
artificial measure of program progress that adds the length of the control program trace
to the number of executed activations:

|(Ke,Ae,Ao)| = |Ke + |Ae|

Note that all rules on Figure 3.1, except (TERM), are strictly monotonically increasing the
state of the program with respect to this measure.

Definition 3.12 (Program progress). A CDDF program makes progress from state σ
if any execution rule can be applied. The resulting state σ′ satisfies |σ| < |σ′| or the
program has terminated. Termination of CDDF programs occurs as soon as the (TERM)

rule executes once.

This measure and the definition of program progress could be construed as flawed if
we do not accept as correct schedules where an infinite sequence of (GEN) occurs. While
intuitively there is no point in generating an infinity of activations if they never get
executed, a bounded memory model would convert such livelocks into resource deadlocks,
but for the purpose of the CDDF model we admit such schedules.

The definition of deadlocks simply corresponds to the impossibility of progress from a
given state.

Definition 3.13 (Program deadlock). A CDDF program is in a deadlock in state σ, and
we note D(σ), if no execution rule can apply in that state.

From this definition, we deduce the following property on the state of a deadlocked
CDDF program.

Lemma 3.14 (Deadlock state). The state σ = (Ke,Ae,Ao) of a CDDF program in a
deadlock satisfies:

D(σ) ⇔
(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao,¬Ae ⋉ a
)

Proof. We derive, from the definition of the execution rules on Figure 3.1, the following
equivalences in a given state σ = (Ke,Ae,Ao):

(GEN) ⇔
(

NEXT (Ke) ∈ Π
)

(BAR) ⇔
(

(

Ao = {C(Ke)}
)

∧
(

NEXT (Ke) = barrier
)

)

(TERM) ⇔
(

(

Ao = {C(Ke)}
)

∧
(

NEXT (Ke) = ⊤
)

)

(EXEC) ⇔
(

∃a ∈ Ao | Ae ⋉ a
)

)

70 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Definition 3.13 states that a deadlock occurs when no rule can be fired in a given state
of the program. We deduce that:

D(σ) ⇔ ¬(GEN) ∧ ¬(BAR) ∧ ¬(TERM) ∧ ¬(EXEC)

⇔

(

NEXT (Ke) /∈ Π
)

∧
(

(

Ao 6= {C(Ke)}
)

∨
(

NEXT (Ke) 6= barrier
)

)

∧
(

(

Ao 6= {C(Ke)}
)

∨
(

NEXT (Ke) 6= ⊤
)

)

∧
(

∀a ∈ Ao : ¬Ae ⋉ a
)

The second and third propositions can be simplified, given that:

NEXT (Ke) 6= barrier ∧ NEXT (Ke) 6= ⊤ ⇒ NEXT (Ke) ∈ Π

Which yields:

D(σ) ⇔ ¬(GEN) ∧ ¬(BAR) ∧ ¬(TERM) ∧ ¬(EXEC)

⇔

(

NEXT (Ke) /∈ Π
)

∧
(

(

Ao 6= {C(Ke)}
)

∨
(

NEXT (Ke) ∈ Π
)

)

∧
(

∀a ∈ Ao : ¬Ae ⋉ a
)

Merging the first and second propositions concludes the proof:

D(σ) ⇔

(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao : ¬Ae ⋉ a
)

3.2.4 Deadlock Characterization

In order to define the different types of deadlocks that can occur in our model, we first
need to introduce a flow dependence relation on task activations. We will use Bernstein’s
definition of data dependences [11] and adjust it to task activations. As stream accesses
are single dynamic assignment and all reads come, by definition, after the unique write
operation, only data-flow dependences are possible.

Definition 3.15 (Task activation dependence relation). We define the data-flow depen-
dence relation between task activations δ ∈ P(A2) using the definition of flow depen-
dences:

3.2. DEFINITIONS AND NOTATIONS 71

∀(a, a′) ∈ A2 : a δ a′ , ∃(s, i) ∈ S × N, (W, s, i) ∈ a ∧ (R, s, i) ∈ a′

, W (a) ∩R(a′) 6= ∅ where

{

W (a) = {(s, i) ∈ S × N | (W, s, i) ∈ a}

R(a′) = {(s′, i′) ∈ S × N | (R, s′, i′) ∈ a′}

As with the stream prefix order relation, we derive a relation ⊲ : P(A)×A → Bool, that
models the fundamental scheduling constraint corresponding to a set of task activations
A0 satisfying all flow dependences for the execution of a task activation a:

A0 ⊲ a , ∀(R, s, i) ∈ a, ∃a′ ∈ A0, (W, s, i) ∈ a′

, R(a) ⊂
⋃

a′∈A0

W (a′)

The write access operations belonging to the task activations in A0 cover all the read
operations in a, so all flow dependences of a are satisfied by the execution of the task
activations in A0.

From this definition, it is easy to see that the stream prefix order we enforce in the
CDDF model is much more restrictive than necessary. We do not detail the proof of the
following proposition, as it directly results from Definitions 3.11 and 3.15.

Proposition 3.16. Flow dependences are subsumed by the stream prefix order relation.

∀a, a′ ∈ A : aδa′ ⇒ a < a′

∀a ∈ A, ∀A0 ∈ P(A) : A0 ⋉ a ⇒ A0 ⊲ a

This proposition also implies that enforcing the stream prefix order is sufficient to
enforce flow dependences in CDDF programs. We also provide the following lemma,
that guarantees that the continuation activation can never be a candidate for execution,
irrespectively of the dependence relation used.

Lemma 3.17. For a CDDF program in state σ = (Ke,Ae,Ao), the continuation activa-
tion’s dependences are never satisfied:

¬
(

(Ae ∪ Ao \ {C(Ke)})⋉ C(Ke)
)

∧ ¬
(

(Ae ∪ Ao \ {C(Ke)}) ⊲ C(Ke)
)

We do not explicit the proof of this lemma as it is trivial from the definitions of the
relations and remarking: (1) that, by construction, Ae is a finite set of task activations,
each containing a finite number of write operations by definition of ξ; and (2) that C(Ke)
contains an infinite number of read stream accesses. All read accesses of C(Ke), and
therefore its flow dependences, cannot be satisfied by a finite number of write accesses.

The earlier blanket definition of deadlocks can be further refined, based on the
source of the deadlock, in three categories: functional deadlocks, insufficiency deadlocks
and spurious deadlocks. We will respectively note FD(σ), ID(σ) and SD(σ) when a
functional, insufficiency or spurious deadlock occurs in state σ.

72 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

These types of deadlocks can be informally defined in the following way:

Functional deadlocks occur when all outstanding activations have unsatisfied flow
dependences and the control program cannot make progress. This type of deadlocks
corresponds to an algorithmic error as they correspond to situations where no
schedule that would preserve flow dependences can exist, for example because of
an unsatisfiable flow dependence cycle.

Insufficiency deadlocks occur when the control program cannot make progress, be-
cause of a synchronization point or because of its termination, and insufficient data
has been scheduled to be produced to meet the requirements of consumers in some
stream. The control program cannot generate any more task activations that could
produce the missing data and there is at least one outstanding task activation that
cannot execute. In our model, this happens whenever any outstanding activation
depends on the continuation activation C(Ke).

Spurious deadlocks are all remaining deadlocks, which are due to the over-synchronization
scheme we enforce rather than a more fundamental issue. While insufficiency and
functional deadlocks are a program correctness issue, arising from algorithmic errors,
which cannot be resolved and are considered to fall under the programmer’s respon-
sibility, the presence of spurious deadlocks highlight inconsistencies in our model,
induced by the over-synchronization of flow dependences. The existence of spurious
deadlocks, and the conditions under which we can prove freedom thereof, are the
price to pay for enabling an efficient implementation of stream synchronization on
closed prefixes.

A fourth type of deadlocks, resource deadlocks, stem from the limitations of the
amount of memory available for stream buffers or outstanding activations, so they are
naturally absent from an unbounded memory abstraction; however, resource deadlocks
are an issue in the generalized CDDF model that we present in Section 4.

Functional deadlocks

The definition of functional deadlocks is similar to that of CDDF deadlocks. They occur
when no progress can be made in a program where the stream access ordering enforces
only flow dependences (Definition 3.15) instead of our over-approximated stream prefix
order (Definition 3.11).

Definition 3.18 (Functional deadlock). A CDDF program is in a functional deadlock in
state σ, and we note FD(σ), if no execution rule can apply in that state, replacing rule
(EXEC) with:

(EXEC⊲)
Ao = {a} ∪ A′

o Ae ⊲ a

(Ke,Ae,Ao) −→ (Ke,Ae ∪ {a},A′
o)

We can also prove the following lemma for functional deadlock states of CDDF
programs. The proof is identical to that of Lemma 3.14.

3.2. DEFINITIONS AND NOTATIONS 73

Lemma 3.19 (Functional deadlock state). The state σ = (Ke,Ae,Ao) of a CDDF
program in a functional deadlock satisfies:

FD(σ) ⇔
(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao,¬Ae ⊲ a
)

Insufficiency deadlocks

Insufficiency deadlocks represent deadlocks where the control program stopped too early
and did not generate the task activations necessary for the completion of the existing
outstanding task activations. They are therefore linked to the continuation of the control
program, which is why we rely on the continuation activation to define them. Note,
however, that we primarily define insufficiency deadlocks using the flow dependence
relation rather than the stream prefix order, and that there is no equivalence between
the corresponding deadlock states. However, we will get an equivalence once we relax the
definition of deadlock states.

Definition 3.20 (Insufficiency deadlocks). A CDDF program is in an insufficiency dead-
lock in state σ = (Ke,Ae,Ao), and we note ID(σ), when the control program cannot make
progress and all outstanding task activations depend, transitively, on the continuation
activation:

ID(σ) ,
(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao, C(Ke) δ
+ a

)

We also similarly define insufficiency deadlocks on the stream prefix order (Defini-
tion 3.11):

ID<(σ) ,
(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao, C(Ke) <
+ a

)

The following lemma shows that this definition is consistent with that of functional
deadlocks.

Lemma 3.21. Insufficiency deadlocks are functional deadlocks.

For a CDDF program in a state σ = (Ke,Ae,Ao), we have:

ID(σ) ⇒ FD(σ)

Proof. The proof relies on Lemma 3.17, which ensures that the continuation activation is
never executable with (EXEC⊲):

¬
(

(Ae ∪ Ao \ {C(Ke)}) ⊲ C(Ke)
)

By Definition 3.20, we have:

ID(σ) ⇒
(

∀a ∈ Ao, C(Ke) δ
+ a

)

74 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Which can be rewritten and expanded from the definition of flow dependences:

ID(σ) ⇒
(

∀a ∈ Ao, ∃a
′ ∈ Ao, C(Ke) δ

∗ a′ ∧ a′ δ a
)

⇒
(

∀a ∈ Ao, ∃a
′ ∈ Ao, ∃(s, i) ∈ S × N, (W, s, i) ∈ a′ ∧ (R, s, i) ∈ a

)

⇒
(

∀a ∈ Ao, ∃(R, s, i) ∈ a, ∀a′ ∈ Ae, (W, s, i) /∈ a′
)

⇒
(

∀a ∈ Ao, ¬
(

Ae ⊲ a
))

By adding the remainder of the definition of ID(σ), that
(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6=
{C(Ke)}

)

, allows to conclude the proof.

Spurious deadlocks

We finally define spurious deadlocks as deadlocks that are not functional.

Definition 3.22 (Spurious deadlock). A spurious deadlock is a non-functional deadlock.
For a state σ = (Ke,Ae,Ao), we note:

SD(σ) , D(σ) ∧ ¬FD(σ)

This is the only type of deadlocks that are due to our over-approximation of data-flow
dependences (Definition 3.11) and not to the program semantics. Our primary objective
is to ensure that we avoid such deadlocks in CDDF programs.

Weak deadlock states

In many cases, we are able to show that the program will necessarily deadlock in the
future of a given state, without knowing precisely when it will deadlock or whether the
current state is already a deadlock state. A state from which all execution schedules lead
to a deadlock will be called a weak deadlock state. The purpose here is to switch from
universal quantifiers in the conditions of deadlock states to existential quantifiers in the
conditions of weak deadlock states.

Definition 3.23 (Weak deadlock state). A state σ = (Ke,Ae,Ao) of a CDDF program
is a weak deadlock state, for any type of deadlock, if there is a maximum state σ′ =
(K′

e,A
′
e,A

′
o) such that:

D(σ′) ∧ |σ| 6 |σ′| ∧ Ke = K′
e

We note WD(σ), WFD(σ), WID(σ) and WSD(σ) when the state σ satisfies the
weak deadlock condition respectively for a CDDF deadlock, a functional deadlock, an
insufficiency deadlock or a spurious deadlock.

This definition is entirely directed at simplifying the definition of deadlock states. As
we require D(σ′) ∧ Ke = K′

e, we ensure that the control program cannot make further
progress and therefore cannot generate new task activations:

NEXT (K′
e) = NEXT (Ke) ∈ {barrier,⊤}

3.2. DEFINITIONS AND NOTATIONS 75

This condition is very important as it precludes a form of live-lock where only a part of the
program is in a deadlock, the remainder progressing possibly indefinitely if the program
is non-terminating.

It also preserves the continuation activation, as it depends only on the control program
trace, and, considering that only the (EXEC) rule can apply, allows to know that:

A′
o ⊂ Ao

This ensures that |σ′| − |σ| is finite, so the maximum number of transitions required
to reach a deadlock from a weak deadlock state is finite.

Weak insufficiency deadlock state

This weaker definition of deadlock states allows to reason in terms of local deadlock
conditions rather than global conditions, on all outstanding task activations. For example,
a program is in an insufficiency deadlock state only if all outstanding activations depend
on the continuation activation, but we show that it is sufficient to know that a single
outstanding activation depends on the continuation C(Ke) to conclude that the state is a
weak insufficiency deadlock once the control program has reached the barrier.

This approach weakens the deadlock conditions sufficiently to show, for instance, the
equivalence of weak insufficiency deadlock states when occurring due to the enforcement
of flow dependences or of the stream prefix order.

Lemma 3.24 (Weak insufficiency deadlock state). A CDDF program in a state σ =
(Ke,Ae,Ao) satisfies:

WID(σ) ⇔ NEXT (Ke) /∈ Π ∧
(

∃a ∈ Ao, a 6= C(Ke) ∧ C(Ke) δ a
)

⇔ NEXT (Ke) /∈ Π ∧
(

∃a ∈ Ao, a 6= C(Ke) ∧ C(Ke) < a
)

Proof. First, we show that WID(σ) ⇒ NEXT (Ke) /∈ Π ∧
(

∃a ∈ Ao, a 6= C(Ke) ∧
C(Ke) δ a

)

.
By Definition 3.23 of a weak deadlock state, there is a state σ′ = (K′

e,A
′
e,A

′
o) that

satisfies:
ID(σ′) ∧ |σ| 6 |σ′| ∧ Ke = K′

e

Which can be further expanded using the Definition 3.20 of insufficiency deadlocks on σ′:

(

(

NEXT (K′
e) /∈ Π

)

∧
(

A′
o 6= {C(Ke)}

)

∧
(

∀a ∈ A′
o, C(Ke) δ

+ a
)

)

∧ |σ| 6 |σ′| ∧ Ke = K′
e

As we know that A′
o 6= {C(Ke)}, and we recall that the set of outstanding task

activations Ao always contains at least the continuation activation, there is a′ ∈ A′
o, a

′ 6=
C(Ke) ∧ C(Ke) δ a′.

As Ke = K′
e, there can be no task activation generation in between the two states of

the program, so A′
o ⊂ Ao, and therefore a′ ∈ Ao, which concludes the first part of the

proof.

76 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

The second part must show: WID(σ) ⇐ NEXT (Ke) /∈ Π ∧
(

∃a ∈ Ao, a 6=
C(Ke) ∧ C(Ke) δ a

)

.

Let σ′ = (Ke,Ae ∪ Ao \ {C(Ke), a}, {C(Ke), a}). As {C(Ke), a} ⊂ Ao, we deduce that
|Ae| 6 |Ae ∪ Ao \ {C(Ke), a}|, which yields that:

|σ| = |Ke|+ |Ae| 6 |Ke|+ |Ae ∪ Ao \ {C(Ke), a}| = |σ′|

As we know that NEXT (Ke) /∈ Π and both states have the same trace Ke, we only
need to show that ID(σ′) is true to conclude the proof. A′

o = {C(Ke), a} satisfies A′
o 6=

{C(Ke)} and the only remaining activation in a ∈ A′
o satisfies C(Ke) δ a, which concludes

this second part of the proof.

Finally, to prove the equivalence of weak deadlock states defined by either flow
dependence or stream prefix order enforcement, we need to show that:

∀a ∈ Ao, C(Ke) < a ⇔ C(Ke) δ a

Proposition 3.16 yields:

∀a ∈ Ao, C(Ke) < a ⇐ C(Ke) δ a

So we need only prove the reverse in order to conclude this proof. By definition of the
stream prefix order:

C(Ke) < a ⇔ ∃s ∈ S, ∃i, j ∈ N, j 6 i ∧ (W, s, j) ∈ C(Ke) ∧ (R, s, i) ∈ a

From the Definition 3.9 of the continuation activation, we deduce that:

∀s ∈ S, ∃α ∈ N : ∀k ∈ N | k > α, (W, s, k) ∈ C(Ke)

Which allows us to conclude that:

(W, s, j) ∈ C(Ke) ⇒ j > α

And as j 6 i, we further deduce that:

(W, s, j) ∈ C(Ke) ⇒ i > j > α ⇒ (W, s, i) ∈ C(Ke)

By definition of the flow dependence relation, (W, s, i) ∈ C(Ke) ∧ (R, s, i) ∈ a ⇒
C(Ke) δ a, which concludes the proof.

Note that this equivalence of weak insufficiency deadlock states is possible only because
we do not require a global condition on the set of outstanding activations. Indeed, the real
insufficiency deadlock states are possibly different when enforcing either of the constraints,
but the cause is the same: these deadlocks represent states where insufficient data can be
produced on some streams, which are filled incrementally and therefore any data missing
in the prefix of a stream index leads to data missing in the remainder.

3.2. DEFINITIONS AND NOTATIONS 77

We can show that a state σ satisfies:

ID<(σ) ⇒ WID<(σ) ⇔ WID(σ) ⇐ ID(σ)

This is sufficient to say that any insufficiency deadlock stems from an unsatisfiable
flow dependence. Even though our over-synchronization scheme may cause the program
to deadlock earlier, we do not introduce additional deadlocks.

Weak functional deadlock state

The characterizations of weak functional deadlock states and of general CDDF weak
deadlock states are very similar, and their proofs identical, so we present them at the
same time. Note that this definition is very general, thanks to the continuation activation
modelling the future schedule of data in streams, and encompasses all types of deadlocks.

Lemma 3.25 (Weak (functional) deadlock state). All deadlocks result from the presence
of a cycle between task activations based on the order relation corresponding to the deadlock
type.

For a CDDF program in state σ = (Ke,Ae,Ao), we have:

WD(σ) ⇔ NEXT (Ke) /∈ Π ∧ Ao 6= {C(Ke)}

∧ ∃a ∈ Ao, a 6= C(Ke), a <+
Ao

a ∨ C(Ke) <
+
Ao

a

WFD(σ) ⇔ NEXT (Ke) /∈ Π ∧ Ao 6= {C(Ke)}

∧ ∃a ∈ Ao, a 6= C(Ke), a δ+Ao
a ∨ C(Ke) δ

+
Ao

a

Proof of Lemma 3.25. The proof of both propositions is very similar, so we only present
the first one. We first show that, in a weak deadlock state, we can always either find a
dependence cycle or a dependence chain starting at the continuation.

Let us consider state σ = (Ke,Ae,Ao):

WD(σ) ⇒ ∃σ′, D(σ′) ∧ Ke = K′
e

⇒ ∃σ′,
(

NEXT (Ke) /∈ Π
)

∧
(

A′
o 6= {C(Ke)}

)

∧
(

∀a ∈ A′
o,¬A

′
e ⋉ a

)

We use Definition 3.11 of the stream prefix order in ∀a ∈ A′
o,¬A

′
e ⋉ a, which yields:

∀a ∈ A′
o, ∃(R, s, i) ∈ a, ∃j 6 i, ∀a′ ∈ A′

e, (W, s, j) /∈ a′

Proposition 3.10 ensures that all stream accesses are covered by an activation in A′
e ∪

A′
o:

⋃

a∈A′

e∪A
′

o

a = X

This allows us to deduce that, since (W, s, j) is not present in activations from A′
e, it

78 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

necessarily belongs to an activation in A′
o:

∀a ∈ A′
o, ∃(R, s, i) ∈ a, ∃j 6 i, ∃a′ ∈ A′

o, (W, s, j) ∈ a′

⇔ ∀a ∈ A′
o, ∃a

′ ∈ A′
o : a′ < a

We can recursively build an chain ... < a′′ < a′ < a by applying this last proposition
to a, then a′ which satisfies a′ < a and so on. As A′

o is a finite set, we deduce that either
we stop once we reach the continuation activation or there must be at least one cycle. As
A′

o 6= {C(Ke)}, we can choose a 6= C(Ke), which concludes the proof.

The proof of the reverse simply requires building a state σ′ withA′
o = {C(Ke), a1, a2, ..., an},

where a1...an are the activations forming the cycle or the dependence chain, which is a
deadlock state as the cycle or the dependence on the continuation prevents any activation
to be executable:

∀a ∈ A′
o,
(

∃a′ ∈ A′
o, a′ < a

)

⇒ ¬ A′
e ⋉ a

Hierarchy of weak deadlock states

Based on Proposition 3.16 and the Lemmas 3.24 and 3.25, we can provide a hierarchy of
weak deadlock states. It is important to stress the fact that any given state can satisfy
the weak deadlock condition for multiple types of deadlocks, possibly in a completely
independent manner. If such is the case, the stronger deadlock property is naturally
taken into account.

Proposition 3.26 (Weak deadlock state hierarchy). Any state σ of a CDDF program
satisfies:

WID(σ) ⇒ WFD(σ) ⇒ WD(σ)

And the definition of spurious deadlocks is preserved for weak deadlock states:

WSD(σ) ⇔ WD(σ) ∧ ¬WFD(σ)

WID WFD WD

WSD = WD \ WFD

Σ

Figure 3.3: Hierarchy of weak deadlock states.

3.3. STREAM CAUSALITY IN CDDF PROGRAMS 79

Figure 3.3 illustrates this hierarchy.

Proof. We prove Proposition 3.26 in two parts. First we show that WID(σ) ⇒ WFD(σ),
which is a direct result of Lemma 3.21:

WID(σ) ⇒ ∃σ′, ID(σ′) ⇒ FD(σ′) ⇒ WFD(σ)

To prove that WFD(σ) ⇒ WD(σ), we need only consider Lemmas 3.14 and 3.19,
which respectively provide the characterization of a deadlock and a functional deadlock
state.

WFD(σ) ⇒ ∃σ′, FD(σ′)

⇒ ∃σ′,
(

NEXT (Ke) /∈ Π
)

∧
(

A′
o 6= {C(Ke)}

)

∧
(

∀a ∈ A′
o,¬A

′
e ⊲ a

)

⇒ ∃σ′,
(

NEXT (Ke) /∈ Π
)

∧
(

A′
o 6= {C(Ke)}

)

∧
(

∀a ∈ A′
o,¬A

′
e ⋉ a

)

⇒ ∃σ′, D(σ′)

⇒ WD(σ)

On the third line, we use Proposition 3.16 which gives A′
e ⋉ a ⇒ A′

e ⊲ a or conversely
¬(A′

e ⊲ a) ⇒ ¬(A′
e ⋉ a).

In the remainder of this chapter, we analyze the properties of the CDDF model.
In particular, we provide static and dynamic conditions under which our model does
not introduce spurious deadlocks in programs and we prove the serializability and the
determinism of programs in this model.

3.3 Stream Causality in CDDF Programs

This section starts by introducing the notion of stream causality and a characterization
of stream causal programs based on the existence of stream causal schedules. In a second
step, we prove that CDDF programs that are stream causal in each state whenever the
control program reaches a barrier are free of all forms of deadlocks.

3.3.1 Stream Causality

As our model is asynchronous, we cannot use a global notion of time as a basis for
the definition of causality. Instead, we can use streams as a set of independent local
clocks. Each stream can be considered to define its own time based on access indices, each
task activation representing a synchronization point between the clocks of the streams it
writes to and, to a lesser extent, those it reads from. As write accesses to streams are
exclusive in our single dynamic assignment model, we can define the Stream Clock (SC)
of an activation as its set of write accesses. More importantly, this allows us to define
a precedence relation between task activations producing data in the same stream. This
relation is a subset of a total order relation, which is the control program order.

80 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Definition 3.27 (Stream clock precedence relation). We define a reflexive and antisym-
metric binary relation 4sc∈ P(A2) on task activations as:

∀(a, a′) ∈ A2, a 4sc a
′ , ∃s ∈ S, ∃i, j ∈ N, j 6 i ∧ (W, s, j) ∈ a ∧ (W, s, i) ∈ a′

In any state σ = (Ke,Ae,Ao) of a CDDF program, we extend this relation, in the case
of sink task activations (i.e., that contain no write accesses and would therefore not be
in any relation wrt. stream clocks) in order to ensure that the continuation activation is
a maximum:

∀a ∈ Ae ∪ Ao : a 4sc C(Ke)

Remark 3.28. This relation is antisymmetric by definition of the activation point eval-
uation function ξ (Definition 3.8), as it enforces the same order of attribution of write
access indexes in all streams. The underlying order relation is the precedence of activation
points in the control program trace: if task activations a, a′ are the result of the evaluation
of activation points π, π′, then the order of occurrence of these activation points in the
control program trace determines the direction of the precedence relation 4sc:

a 4sc a
′ ⇒ π = π′ ∨ π → π′

Which can be used to re-define the 4sc relation, using the notations from Definition 3.4:

a 4sc a
′ ⇔ O(a) ∩ O(a′) 6= ∅ ∧ (π = π′ ∨ π → π′)

Flow dependence chains between task activations can naturally be assimilated to
causality chains, and we use them to this effect in our definition of causality, but they
are not sufficient in our model. Flow dependences alone are sufficient when dealing with
shared memory communication, but in the case of streaming it is necessary to also take
into account the communication channels, or stream clocks in our case. We define stream
causality in CDDF programs as the absence of time reversal inside causality chains.

Definition 3.29 (Stream causality). A CDDF stream s ∈ S is causal in a state σ =
(Ke,Ae,Ao) of a program if the stream’s local clock is positive along all causality chains:

∀a, a′ ∈ Ae ∪Ao,
(

a 6= a′ ∨ a′ 6= C(Ke)
)

, s ∈ O(a) ∩O(a′), ¬
(

a 4sc a
′ ∧ a′ δ+(Ae∪Ao)

a
)

The restriction a 6= a′ ∨ a′ 6= C(Ke) is necessary as the case a = a′ = C(Ke) always
invalidates the expression. Indeed, C(Ke) 4sc C(Ke) and C(Ke) δ C(Ke) are always true,
which validates our intuition that the continuation activation is inherently non-causal.
However, as long as the continuation activation is only found at the end of causality
chains, it does not preclude stream causality.

A CDDF program is stream causal in a state σ if each stream in the program is causal.
We note:

SC(σ) , ∀a, a′ ∈ Ae ∪ Ao,
(

a 6= a′ ∨ a′ 6= C(Ke)
)

, ¬
(

a 4sc a
′ ∧ a′ δ+(Ae∪Ao)

a
)

3.3. STREAM CAUSALITY IN CDDF PROGRAMS 81

Remark 3.30. It is important to note that stream causality is entirely determined by the
schedule of data in streams and not by the execution schedule of task activations. For this
reason, the causal nature of a CDDF program state only depends on the control program’s
trace in that state. This can be seen in Definition 3.29 of stream causality, where no
difference is made between executed and outstanding activations.

As stream causality only depends on the control program trace, this property is deter-
ministic for a given program as long as the control program itself is deterministic.

Remark 3.31 (Barrier modelization). A second important remark is that our choice of
modeling the behaviour of barriers through the continuation activation is entirely consistent
with this definition of stream causality. Indeed, as we have noted above, the stream clock of
this activation is greater than that of any task activation generated by the control program,
which is consistent with its role as a model of the possible continuation of the program after
the barrier passes. If any data produced before the barrier may be consumed afterwards,
the order will be strict, which is consistent with the semantics of barriers in our model.

The restriction, in the Definition 3.29 of stream causality, that we do not check the
causality of the barrier itself, which appears as a 6= a′ ∨ a′ 6= C(Ke), means that the
current state of the program does not allow us to deduce whether its possible future may
or may not be causal.

Stream causality violations correspond to conflicts between flow dependences and
stream clocks. In order to model causal program schedules, we define the minimal
constraints for a scheduling function that respects both forward time in each stream
and flow dependences.

Definition 3.32 (Stream causal schedule). A scheduling function θ : A → N enforces a
stream causal schedule iff:

∀(a, a′) ∈ A :

{

a δ+ a′ ⇒ θ(a) < θ(a′)

a 4sc a
′ ⇒ θ(a) 6 θ(a′)

We use the existence of causal schedules, irrespectively of their capacity to enforce the
stream prefix order, to characterize stream causality in CDDF programs. For this reason,
we do not pay any attention to the task activations that have already been executed in a
given state as the execution schedule up to that state may not be consistent with a causal
schedule. In general, we only need to know whether a causal schedule exists, but we do
not enforce it on the execution of task activations.

Proposition 3.33 (Causal CDDF program). A CDDF program is causal in a state σ =
(Ke,Ae,Ao) if and only if the program admits at least one causal schedule in that state.

Proof. We first prove that program causality is necessary to the existence of a causal
schedule, according to our definitions. Let us assume, by way of contradiction, that the
program is not causal in a state σ = (Ke,Ae,Ao):

∃a, a′ ∈ Ae ∪ Ao,
(

a 6= a′ ∨ a 6= C(Ke)
)

, a 4sc a
′ ∧ a′ δ+(Ae∪Ao)

a

82 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Which means that any scheduling function θ, that enforces a causal schedule in this state
(Definition 3.32), meets the following constraints:

(θ(a) 6 θ(a′)) ∧ (θ(a′) < θ(a))

This contradiction allows us to conclude that there can be no causal schedule for a non
causal program.

Let us now show that program causality is sufficient to ensure the existence of a causal
schedule. Before constructing a causal schedule, we verify that this kind of schedule is
indeed consistent with stream causality. Assume the program is causal in state σ =
(Ke,Ae,Ao):

∀a, a′ ∈ Ae ∪ Ao,
(

a 6= a′ ∨ a 6= C(Ke)
)

, ¬
(

a 4sc a
′ ∧ a′ δ+(Ae∪Ao)

a
)

This yields the following constraints on any causal scheduling function:

¬

(

(θ(a) 6 θ(a′)) ∧ (θ(a′) < θ(a))

)

⇔ (θ(a′) < θ(a)) ∨ (θ(a) 6 θ(a′))

These constraints are always satisfiable, which ensures that a causal schedule is possible
for a causal program in a state σ.

Let us consider a scheduling function θ that enforces all flow dependences. This
schedule, which is obtained by using the (EXEC⊲) transition rule, satisfies, by definition:

∀a, a′ ∈ Ae ∪ Ao : a δ+(Ae∪Ao)
a′ ⇒ θ(a) < θ(a′)

The program is stream causal in state σ, SC(σ), so there cannot be any flow dependence
cycles between activations as a 4sc a is always true for activations that contain at least
one write access, which is necessarily the case if an activation is the source of a flow
dependence:

∃a ∈ Ae ∪ Ao, a 6= C(Ke), a δ+(Ae∪Ao)
a ⇒ ¬SC(σ)

Furthermore, as all activations are in a stream clock precedence relation with the contin-
uation activation:

∃a ∈ Ae ∪ Ao, a 6= C(Ke), C(Ke) δ
+
(Ae∪Ao)

a ⇒ ¬SC(σ)

As there can be no cycles and no dependence chains containing the continuation
activation, Lemma 3.25 allows us to conclude that this state is not a weak functional
deadlock state, irrespectively of the fact that the control program has reached a barrier
or not. This means that this schedule built on (EXEC⊲) is able to schedule all task
activations in Ae ∪ Ao. As a side note, this already proves that a CDDF program
that is stream causal every time the control program reaches a barrier cannot experience
functional deadlocks.

Let us verify that, in a stream causal program state, this schedule is itself stream

3.3. STREAM CAUSALITY IN CDDF PROGRAMS 83

causal. From the definition of stream causality, we have:

∀a, a′ ∈ Ae ∪ Ao,
(

a 6= a′ ∨ a 6= C(Ke)
)

, a 4sc a
′ ⇒ ¬(a′ δ+(Ae∪Ao)

a)

And by definition of the schedule:

∀a, a′ ∈ Ae ∪ Ao : a δ+(Ae∪Ao)
a′ ⇒ θ(a) < θ(a′)

We deduce that:

∀a, a′ ∈ Ae ∪ Ao,
(

a 6= a′ ∨ a 6= C(Ke)
)

, a 4sc a
′ ⇒ ¬(a′ δ+(Ae∪Ao)

a)

⇒ ¬(θ(a′) < θ(a))

⇒ θ(a) 6 θ(a′)

Which concludes the proof: θ, and any schedule enforcing flow dependences, is indeed a
stream causal schedule for the program in state σ.

3.3.2 Deadlock-Freedom in Stream Causal CDDF Programs

Without any restriction, spurious deadlocks may occur in CDDF programs due to the
over-approximation, and therefore over-synchronization, of data dependences. As the
model allows absolute freedom in the communication patterns between task activations,
we can build a schedule that leads to a state where a CDDF program is in a deadlock, but
not in a functional deadlock. This situation occurs, for instance, in the following example.

Example 3.3.1 (Spurious deadlock in a CDDF program). Consider a program state
σ = (Ke,Ae,Ao) where:

Ae = {a1} where a1 = {(W, s1, 1)}

Ao = {a2, a3, a4} where

a2 = {(W, s1, 0), (R, s2, 0}

a3 = {(R, s1, 1), (W, s2, 0)}

a4 = {(R, s1, 0)}

Figure 3.4 shows the true dependences δ as well as the additional constraints <
introduced by our synchronization scheme on stream prefixes. It also marks, for the
discussion, the stream clock relation 4sc between activations a2 and a1.

The following flow dependences are present in this program state:

a1 δ a3 a3 δ a2 a2 δ a4

As flow dependences allow the simple schedule (a3, a2, a4) to complete the execution,
considering that a1 has already been executed, there is no functional deadlock. However,
the addition of the stream prefix constraint leads to a cycle between activations a2 and a3,
and therefore to a deadlock when the control program reaches a barrier:

a1 < a3 a3 < a2 a2 < a4 and a2 < a3

84 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

a1
(W,s1,1)

a3
(R,s1,1)
(W,s2,0)

a2
(R,s2,0)
(W,s1,0)

a4
(R,s1,0)

δ
δ

δ

<

SC

Figure 3.4: Example of a spurious deadlock in a CDDF program.

The intuition we get from this example is that a stream causality violation, between
activations a1 and a2, was the necessary factor that allowed this spurious deadlock to
occur:

a2 4sc a1 ∧ a1 δ a3 δ a2 ⇒ θ(a1) < θ(a2) 6 θ(a1)

⇒ ¬SC(σ)

Though stream causality is a strong condition that is neither amenable to static
analysis, nor fit as a programming model restriction because of its complexity, it is a
semantically important condition for deadlock-freedom, and for some strong forms of
serializability, as we show in Section 3.7.

Theorem 3.34. A CDDF program is free of all deadlocks if it is stream causal in
each state σ = (Ke,Ae,Ao) where the control program reaches a barrier or terminates,
NEXT (Ke) /∈ Π.

A CDDF program’s state σ always satisfies:

SC(σ) ⇒ ¬WD(σ)

Proof. We prove this theorem by showing that SC(σ) ∧ WD(σ) is impossible.
Let σ = (Ke,Ae,Ao) be the state of a CDDF program that satisfies SC(σ) ∧ WD(σ).
From Proposition 3.10, we know that:

⋃

a∈Ae∪Ao

a = X ⇒ ∀(u, s, i) ∈ X , ∃a ∈ Ae ∪ Ao, (u, s, i) ∈ a

We add this expression to the Definition 3.11 of the stream prefix order relation <,
which allows us to rewrite the stream prefix relation in terms of the flow dependence and

3.3. STREAM CAUSALITY IN CDDF PROGRAMS 85

the stream clock relations:

∀a, a′ ∈ Ae ∪ Ao, a < a′

⇔ ∃(s, i) ∈ S × N, ∃j 6 i, (W, s, j) ∈ a ∧ (R, s, i) ∈ a′

⇔ ∃(s, i) ∈ S × N, ∃j 6 i, (W, s, j) ∈ a ∧ (R, s, i) ∈ a′ ∧ (∃a′′ ∈ Ae ∪ Ao, (W, s, i) ∈ a′′)

⇔ ∃a′′ ∈ Ae ∪ Ao, a 4sc a
′′ ∧ a′′ δ a′

As the program is causal in this state, Proposition 3.33 guarantees the existence of at
least one causal schedule in this state. Let θ be a scheduling function for such a schedule.
By Definition 3.32 of a causal schedule, we have:

∀a, a′ ∈ Ae ∪ Ao :

{

a δ+ a′ ⇒ θ(a) < θ(a′)

a 4sc a
′ ⇒ θ(a) 6 θ(a′)

We use our previous result and the definition of the causal schedule to determine the
scheduling function constraints with respect to the stream prefix order:

∀a, a′ ∈ Ae ∪ Ao, a < a′ ⇒ ∃a′′ ∈ Ae ∪ Ao, a 4sc a
′′ ∧ a′′ δ a′

⇒ ∃a′′ ∈ Ae ∪ Ao, θ(a) 6 θ(a′′) ∧ θ(a′′) < θ(a′)

⇒ θ(a) < θ(a′)

As the state σ corresponds to a weak deadlock, Lemma 3.25 yields:

WD(σ) ⇒ ∃a ∈ Ao, a 6= C(Ke), a <+
Ao

a ∨ C(Ke) <
+
Ao

a

⇒ ∃(a1, ..., an) ∈ An
o , a1 6= C(Ke),

(

a1 < ... < an < a1
)

∨
(

C(Ke) < a1 < ... < an
)

As we have proved that a < a′ ⇒ θ(a) < θ(a′), we use this constraint in the task
activation dependence chains:

a1 < a2 < ... < an < a1 ⇒ θ(a1) < θ(a2) < ... < θ(an) < θ(a1) ⇒ θ(a1) < θ(a1)

C(Ke) < a1 < ... < an ⇒ θ(C(Ke)) < θ(a1) < ... < θ(an) ⇒ θ(C(Ke)) < θ(an)

Both results are contradictory. The first result, θ(a1) < θ(a1) is trivially impossible.
The second result is contradictory because an 4sc C(Ke) is always true, which means
that θ(an) 6 θ(C(Ke)), thus in contradiction with the result θ(C(Ke)) < θ(an). These
contradictions conclude the proof.

86 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

3.4 Task Causality and Sufficient Deadlock-Freedom

Conditions

As we have seen, stream causality, in states where the control program reaches a barrier or
terminates, is a sufficient condition for deadlock-freedom in CDDF programs. However,
stream causality is, at best, very difficult to prove statically. Though less semantically
important, we need to provide some alternative deadlock-freedom conditions, or at least
spurious deadlock-freedom conditions, that: (1) fit the programming model and the
semantic restrictions that come from the base languages, and (2) are more practical either
for automatic static and dynamic analysis, or even for programming rules to be enforced by
developers. In this section, we present some alternative conditions for deadlock-freedom
and the formal framework for their analysis.

3.4.1 CDDF Tasks

We have avoided, until now, the additional complexity of introducing a definition of tasks
in the CDDF model, as they do not play an important role. The definition we provide
here is purposefully weaker than that of the programming model as we solely focus on
communication and we overlook the work functions. The mapping of the OpenMP stream-
computing extension onto the CDDF model is discussed in Chapter 5.

Definition 3.35 (CDDF task). A task is an equivalence class in the set of task activations
based on the following equivalence relation ∼∈ P(A2):

∀(a, a′) ∈ A2 : a ∼ a′ ,

{

∀(u, s, i) ∈ a, ∃i′ ∈ N, (u, s, i′) ∈ a′

∀(u, s, j′) ∈ a′, ∃j ∈ N, (u, s, j) ∈ a

, I(a) = I(a′) ∧ O(a) = O(a′)

Two activations are equivalent in this relation iff they access exactly the same streams,
both for input and for output. This definition disregards, in the OpenMP streaming
instantiation of this model, the work function and therefore the task pragma that is
associated with a task activation.

The set of tasks in a CDDF program in a state σ = (Ke,Ae,Ao) is:

T (σ) = (Ae ∪ Ao \ {C(Ke)})/∼

For a task activation a, we write [a]∼ its equivalence class on the ∼ relation. This
equivalence class is the CDDF task to which a belongs.

Using this definition, we can build the task graph of a program state. We note S(σ)
the set of streams used by a program in state σ. It is simply defined as the set of streams

3.4. TASK CAUSALITY AND SUFFICIENT DEADLOCK-FREEDOMCONDITIONS87

accessed by any activation in that state:

S(Ke,Ae,Ao) ,
{

s ∈ S | ∃u ∈ {R,W}, ∃i ∈ N, ∃a ∈ Ae ∪ Ao \ {C(Ke)}, (u, s, i) ∈ a
}

,
⋃

a∈Ae∪Ao\{C(Ke)}

(

I(a) ∪ O(a)
)

Definition 3.36 (Task graph). A CDDF program in a state σ = (Ke,Ae,Ao) can be
represented as a directed hypergraph:

H(σ) =
(

T (σ), S(σ)
)

where tasks are vertices and streams are hyperedges connecting a set of producer tasks
to a set of consumer tasks.

For a program in state σ and a stream s ∈ S(σ), we define the sets of producer tasks
P (σ, s) and of consumer tasks C(σ, s) as:

P (σ, s) =
{

[a]∼ ∈ T (σ) | s ∈ O(a)
}

C(σ, s) =
{

[a]∼ ∈ T (σ) | s ∈ I(a)
}

Note that, despite the fact that, by definition, C(Ke) is a producer and consumer of
each stream, we do not count the continuation activation in any producer or consumer
set.

This task graph clearly depends on the current state of the control program, and
is therefore dynamic. While it could appear useless for static analysis, it is possible to
build a static version that over-approximates the program taskgraph in all states of the
program. We show, in Section 5.3.3, that this can easily be achieved in the case of our
stream-computing extension to OpenMP. This type of static task graph will be presented
in Chapter 5, where we further show how the deadlock-freedom conditions that use the
dynamic task graph can be mapped onto the static one.

3.4.2 Task Causality

In our model, tasks are sets of activations that share the same input and output streams.
We will derive, in the same way as stream clocks, a second precedence relation, called task
order, on task activations from the control program order. The stream access indices of
activations define a total order on the activations within the task. This order is induced by
the definition of the activation point evaluation function ξ and the total order of activation
points in the trace of the program. However, this relation’s extension to the whole set of
task activations would not be an order relation as it lacks transitivity.

88 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Definition 3.37 (Task order). Task activations belonging to the same task in a program
state σ = (Ke,Ae,Ao) are ordered by the relation 4

T
∈ P(A2):

∀(a, a′) ∈ Ae ∪ Ao,

a 4
T
a′ ,

(

a ∼ a′
)

∧
(

∀s ∈ I(a) ∪ O(a), ∃i, j ∈ N, j 6 i ∧ (u, s, j) ∈ a ∧ (u, s, i) ∈ a′
)

This relation is transitive as we restrict it to a ∼ a′, reflexive because we use j 6 i
and antisymmetric by construction of task activations in the evaluation function ξ.

This order relation may appear to be artificial at this point, especially if we were
to require that the execution schedule of task activations respect this order. However,
and we will develop this discussion later, this corresponds to a property provided by the
semantics of the OpenMP language. Note also that this order relation is very similar to
the stream clock relation, 4sc, that we introduced in the previous section, which was used
to define stream causality. We will use here the task order relation to define task causality
in the same way.

Definition 3.38 (Task causality). A CDDF task is causal in a state σ = (Ke,Ae,Ao) of
a program if the task’s activations appear in task order along all causality chains:

∀t ∈ T (σ), ∀a, a′ ∈ t, ¬

(

a 4
T
a′ ∧ (a′ δ+(Ae∪Ao)

a)

)

A CDDF program is task causal in a state σ if each task in the program is causal in
that state. We note:

TC(σ) ⇔ ∀a, a′ ∈ Ae ∪ Ao \ {C(Ke)}, ¬

(

a 4
T
a′ ∧ (a′ δ+(Ae∪Ao)

a)

)

Note that this definition is similar to process monotonicity in Kahn process networks,
though here the equivalent notion of process is slightly different. Indeed, our definition
requires that no flow dependence chain goes back in task order, which would mean that
the execution of task activation a′ enables the latter execution of a. Because a 4

T
a′,

the outputs of a are written in the prefix of the outputs of a′, so the result of adding
additional data on the input streams of task [a]∼ can result in more than just additional
outputs, which violates Kahn causality.

It is easy to see that this property is weaker than stream causality, because the stream
clock relation is defined across task activations producing data in a given stream, even if
these activations are not in the same task:

∀a, a′ ∈ A : a 4sc a
′ ⇒ ∃s ∈ S, ∃i, j ∈ N, j 6 i ∧ (W, s, j) ∈ a ∧ (W, s, i) ∈ a′

⇒
(

a ∼ a′ ⇒ a 4
T
a′
)

The only exception are sink tasks, that are only consumers, and in which activations
are only in a stream clock precedence relation with the continuation activation. We
extended the stream clocks relation in that case, but task causality does not allow the
same simplification. Indeed, as we have discussed above, the continuation activation does

3.4. TASK CAUSALITY AND SUFFICIENT DEADLOCK-FREEDOMCONDITIONS89

not belong in any task, because tasks are defined as equivalence classes of task activations
and the continuation activation is the only activation that has an infinite number of input
and output streams. For this reason, the continuation activation can never be in a task
order relation 4

T
with task activations.

Definition 3.39 (Task causal schedule). A scheduling function θ : A → N enforces a
task causal schedule iff:

∀a, a′ ∈ A :

{

a δ+ a′ ⇒ θ(a) < θ(a′)

a 4
T
a′ ⇒ θ(a) 6 θ(a′)

Proposition 3.40 (Task causal CDDF program). A CDDF program is task causal in a
weak insufficiency deadlock free state σ = (Ke,Ae,Ao) if and only if the program admits
at least one task causal schedule in that state.

Proof. The proof of this proposition is very close to that of Proposition 3.33, with a
simple substitution of relations and properties. The only difference comes from the fact
that contrary to stream clocks, task order does not allow ordering task activations with
respect to the continuation activation. This means that the existence of a dependence
chain starting at the continuation activation does not allow to conclude to a violation of
causality:

∃a ∈ Ae ∪ Ao, a 6= C(Ke), C(Ke) δ
+
(Ae∪Ao)

a ; ¬TC(σ)

For this reason, the application of Lemma 3.25 only allows to conclude that, in a
task causal state σ, all functional deadlocks are insufficiency deadlocks. The existence
of the schedule depends on the absence of the weak insufficiency deadlock condition
C(Ke) δ

+
(Ae∪Ao)

a.

Even though task causality is not a sufficient condition, it constitutes a fair starting
point for searching new deadlock-freedom conditions. As this property is required for
program correctness in the programming model, it naturally falls under the programmer’s
responsibility.

3.4.3 Statically Analyzable Condition for Spurious Deadlock-
Freedom

Theorem 3.41. A CDDF program can only experience insufficiency deadlocks if it is task
causal and each stream in the program is either single-producer or single-consumer. In
each state σ = (Ke,Ae,Ao):

TC(σ) ∧
(

∀s ∈ S(σ) : |P (σ, s)| = 1 ∨ |C(σ, s)| = 1
)

⇒ WID(σ) ∨ ¬WD(σ)

90 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Proof. Let us consider the state σ = (Ke,Ae,Ao) of a program that satisfies these
conditions. We need to show that:

TC(σ) ∧
(

∀s ∈ S(σ) : |P (σ, s)| = 1 ∨ |C(σ, s)| = 1
)

∧ WD(σ) ⇒ WID(σ)

We use the results from Lemmas 3.25 and 3.24 instead of the definition to characterize
weak deadlock states. Merging the two, we obtain:

WD(σ) ⇒ WID(σ) ∨
(

∃a ∈ Ao, a 6= C(Ke), a <+
Ao

a
)

Merging the two expressions shows that our objective is to prove that no task activation
cycle on the stream prefix order relation, < (Definition 3.11), can exist in such states:

TC(σ) ∧
(

∀s ∈ S(σ) : |P (σ, s)| = 1 ∨ |C(σ, s)| = 1
)

⇒ ¬
(

∃a ∈ Ao, a 6= C(Ke), a <+
Ao

a
)

Let us assume, by way of contradiction, that the program is in a weak deadlock state σ,
but not in a weak insufficiency deadlock, and therefore that ∃a ∈ Ao, a 6= C(Ke), a <+

Ao
a.

As the program is also task causal in this state, it admits a task causal schedule. Let θ
be such a schedule.

Let us now expand this stream prefix order cycle:

∃a ∈ Ao, a 6= C(Ke), ∃n ∈ N, n > 0, ∃(a1, ..., an) ∈ An
o ,

(

a1 = an = a
)

∧
(

a1 < ... < an
)

From the definition of the stream prefix order, we deduce that:

∀k ∈ [1, n− 1], ak < ak+1 ⇒ ∃(s, i) ∈ S ×N, ∃j 6 i, (W, s, j) ∈ ak ∧ (R, s, i) ∈ ak+1

The stream s is either single-producer or single-consumer, so we will handle the cases
separately.

If |P (σ, s)| = 1, then we look at the producer task activation ak and its equivalence
class. Either the precise write operation (W, s, i) belongs to a task activation in this class,
or this operation is not yet scheduled and therefore belongs to the continuation activation:

(

∃a′k ∈ [ak]∼, (W, s, i) ∈ a′k

)

∨ (W, s, i) ∈ C(Ke)

If the write operation is in the continuation activation, then we would have C(Ke)δak+1,
which is a weak insufficiency deadlock condition and contradicts the hypothesis.

We can therefore assume that (W, s, i) ∈ a′k and a′k δ ak+1. We deduce that:

ak 4T
a′k ∧ a′k δ ak+1 ⇒ θ(ak) 6 θ(a′k) ∧ θ(a′k) < θ(ak+1)

We conclude that, in the case of a single-producer stream connecting ak and ak+1, we
have:

ak < ak+1 ⇒ θ(ak) < θ(ak+1)

3.4. TASK CAUSALITY AND SUFFICIENT DEADLOCK-FREEDOMCONDITIONS91

If |C(σ, s)| = 1, then we will look at the consumer task activation ak+1, instead, and
its equivalence class. In this case, as the higher read access operation (R, s, i) has already
been scheduled to a task activation, the lower index operation (R, s, j) is guaranteed to
have also been scheduled, so we know that:

∃a′k+1 ∈ [ak+1]∼, (R, s, j) ∈ a′k+1

So we have ak δ a′k+1 and a′k+1 4T
ak+1, which trivially leads to:

θ(ak) < θ(a′k+1) ∧ θ(a′k+1) 6 θ(ak+1) ⇒ θ(ak) < θ(ak+1)

By aggregating the results of the two cases, we conclude the proof with the contradic-
tion:

a1 < ... < an ⇒ θ(a1) < ... < θ(an) ⇒ θ(a) < θ(a)

3.4.4 Condition Ensuring that Only Insufficiency Deadlocks Oc-
cur

In the absence of cycles in the program hypergraph, we can show that only insufficiency
deadlocks can occur and Proposition 3.26 guarantees such deadlocks are never spurious
deadlocks. While this condition may appear restrictive, it is satisfied by a wide class of
streaming applications. Kudlur and Mahlke analyze a dozen such applications in [40] and
find that the pattern never occurs and limit their study to acyclic task graphs.

Theorem 3.42. A CDDF program can only have insufficiency deadlocks in a state σ =
(Ke,Ae,Ao) if its hypergraph H(σ) contains no strongly connected components in that
state:

H(σ) contains no cycles ⇒ WID(σ) ∨ ¬WD(σ)

With the following definition, using Definition 3.36 for the set of tasks producing a
stream s in state σ, P (σ, s), and the set of consumer tasks C(σ, s):

H(σ) contains no cycles : ∀n ∈ N, n > 0, ∄(s1, ..., sn) ∈ S(σ)n |

C(σ, s1) ∩ P (σ, s2) 6= ∅

C(σ, s2) ∩ P (σ, s3) 6= ∅

...

C(σ, sn) ∩ P (σ, s1) 6= ∅

Proof. The proof of this theorem derives from Lemma 3.24, which characterizes a weak
insufficiency deadlock state, and Lemma 3.25, characterizing weak deadlock states as
dependence cycles. To prove this theorem, we show below that:

H(σ) contains no cycles ∧ ¬WID(σ) ⇒ ¬WD(σ)

92 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Let σ be a CDDF program state satisfying H(σ) contains no cycles ∧ ¬WID(σ).
Lemma 3.24 yields:

¬WID(σ) ⇔ NEXT (Ke) ∈ Π ∨ (∄a ∈ Ao, a 6= C(Ke) ∧ C(Ke) < a)

As NEXT (Ke) ∈ Π gives ¬WD(σ), we only keep the condition ∄a ∈ Ao, a 6=
C(Ke) ∧ C(Ke) < a, which means that C(Ke) cannot appear in any task activation cycle
in this state.

We need to show that the absence of cycles in the taskgraph H(σ) means that there
can be no task activation cycles in Ae ∪ Ao \ {C(Ke)}. This is intuitively simple as the
taskgraph is an over-approximation of the communication patterns in task activations
where we lose the precise information on stream access indexes.

Let us assume by way of contradiction that there is a cycle of task activations in
Ae ∪ Ao \ {C(Ke)}:

∃(a1, ..., an) ∈ (Ae ∪ Ao \ {C(Ke)})
n | a1 < a2 < ... < an ∧ an = a1

Each stream prefix order relation < translates, by Definition 3.11, into:

∀k ∈ [1, n− 1] : ak < ak+1 ⇔ ∃(R, sk, ik) ∈ ak+1, ∃jk 6 ik, (W, sk, jk) ∈ ak

From the previous relation, we deduce that the set of streams (s1, s2, ...sn−1) satisfies:

(R, s1, i1) ∈ a2 ∧ (W, s2, j2) ∈ a2 ⇒ C(σ, s1) ∩ P (σ, s2) = {a2} 6= ∅

(R, s2, i2) ∈ a3 ∧ (W, s3, j3) ∈ a3 ⇒ C(σ, s2) ∩ P (σ, s3) = {a3} 6= ∅

...

(R, sn, in) ∈ an = a1 ∧ (W, s1, j1) ∈ a1 ⇒ C(σ, sn) ∩ P (σ, s1) = {a1} 6= ∅

This contradicts the hypothesis of no cycles in H(σ) and therefore concludes the
proof.

In the general case, this condition cannot be statically verified because of the dynamic
nature of the task graph. We will see that building a static over-approximation of the task
graph is generally easy in our streaming extension to OpenMP. If no strongly connected
components are present in the static taskgraph, we also know that there are none in
the dynamic taskgraph for any state of the program, so the result holds, as we show in
Section 5.3.3.

3.4.5 Weaker Statically Analyzable Sufficient Condition for
Spurious Deadlock-Freedom

The two conditions presented in Theorems 3.41 and 3.42 can be easily analyzed statically,
even though in some cases only a conservative over-approximation may be evaluated at
compilation time. One of the drawbacks of both conditions is that they restrict the
expressiveness of the model, either excluding multi-producer multi-consumer streams or

3.4. TASK CAUSALITY AND SUFFICIENT DEADLOCK-FREEDOMCONDITIONS93

excluding cyclic communication patterns. One way to mitigate this issue is to merge the
results of the two theorems and require that only the disjunction of the two conditions be
true overall. The resulting condition is much weaker as it only excludes the use of multi-
producer multi-consumer streams for cyclic communication patterns. The additional
condition of task causality is generally available by default in the case of OpenMP
programs, but we keep this condition as tight as we can by requiring task causality only
within strongly connected components of the program’s taskgraph.

Corollary 3.43. A CDDF program is free of all but insufficiency deadlocks if all tasks
belonging to a strongly connected component of the program’s taskgraph are causal and each
stream belonging to a strongly connected component is either single-producer or single-
consumer.

A CDDF program in state σ = (Ke,Ae,Ao) satisfies:

WID(σ) ∨ ¬WD(σ) ⇐

∀(s1, s2, ..., sn) ∈ S(σ)n |

C(σ, s1) ∩ P (σ, s2) 6= ∅

C(σ, s2) ∩ P (σ, s3) 6= ∅

...

C(σ, sn) ∩ P (σ, s1) 6= ∅

∀k ∈ [1, n] :
(

|P (σ, sk)| = 1 ∨ |C(σ, sk)| = 1
)

∀t ∈
⋃

k∈[1,n−1]

(

C(σ, sk) ∩ P (σ, sk+1)
)

∪
(

C(σ, sn) ∩ P (σ, s1)
)

,

∀(a, a′) ∈ t2 : ¬

(

a′ 4
T
a ∧ (a δ+(Ae∪Ao)

a′)

)

Proof. The proof relies on the same principles as that of Theorems 3.41 and 3.42. We start,
similarly to the proof of Theorem 3.41, by noting that applying Lemmas 3.25 and 3.24
allows to prove the following instead:

Hypothesis ⇒ ¬
(

∃a ∈ Ao, a 6= C(Ke), a <+
Ao

a
)

We assume, by way of contradiction, that the program is in a weak deadlock state,
but not in a weak insufficiency deadlock, in state σ, and therefore that ∃a ∈ Ao, a 6=
C(Ke), a <+

Ao
a. We expand this stream prefix order cycle:

∃a ∈ Ao, a 6= C(Ke), ∃n ∈ N, n > 0, ∃(a1, ..., an) ∈ An
o ,

(

a1 = an = a
)

∧
(

a1 < ... < an
)

Based on this expression, we use the same reasoning as in the proof of Theorem 3.42
to deduce the existence of a strongly connected component in the program’s taskgraph
based on the tasks (t1, t2, ..., tn) = ([a1]∼, [a2]∼, ..., [an]∼) to which belong the activations
(a1, a2, ..., an) and the set of streams (s1, s2, ..., sn−1) that connect these tasks, from the
definition of the stream prefix precedence relation <.

By hypothesis of our theorem, these sets of tasks and streams verify the following

94 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

expressions:

∀k ∈ [1, n− 1] :
(

|P (σ, sk)| = 1 ∨ |C(σ, sk)| = 1
)

(3.1)

∀k ∈ [1, n], ∀(a, a′) ∈ t2k : ¬

(

a′ 4
T
a ∧ (a δ+(Ae∪Ao)

a′)

)

(3.2)

Our objective will be to show, in a similar manner to the end of the proof of
Theorem 3.41, that the existence of the task activations cycle along with the single-
producer or single-consumer property on the streams connecting these activations, from
expression (3.1), lead to a violation of the task causality property (3.2).

We remark that if any ak is actually the continuation activation, then the we directly
obtain a contradiction as we would have an weak insufficiency deadlock condition. Fur-
thermore, if a non-insufficiency functional deadlock occurs, then Lemma 3.25 allows to
characterize the state by a cycle ∃a ∈ Ao, a 6= C(Ke), a δ+Ao

a, and as this can only happen
in a strongly connected component of the taskgraph, this would violate the causality
hypothesis as a 4

T
a is always true.

This ensures that, under the current hypotheses, the same schedule θ, that we have
used previously, built on the (EXEC⊲) rule, and that satisfies ∀a, a′ ∈ A, a δ a′ ⇒
θ(a) < θ(a′), is a possible schedule in this state. We can further deduce, from the task
causality property (3.2) that:

∀k ∈ [1, n], ∀(a, a′) ∈ t2k, a 4
T
a′ ⇒ ¬(a′ δ+(Ae∪Ao)

a)

⇒ ¬(θ(a′) < θ(a))

⇒ θ(a′) > θ(a)

The schedule is therefore causal at least for the tasks of the same strongly connected
component. We can follow the remainder of the proof of Theorem 3.41, with the
disjunction of the two cases, of single-producer or single-consumer streams, for all of
the streams sk,k∈[1,n−1], which shows that, in both cases, we either get a contradiction
because of a weak insufficiency deadlock condition or the following holds:

ak < ak+1 ⇒ θ(ak) < θ(ak+1)

Which concludes the proof with the contradiction:

a1 < ... < an ⇒ θ(a1) < ... < θ(an) ⇒ θ(a) < θ(a)

3.5 Functional and Deadlock Determinism

Determinism in programming environments is a major asset for productivity, but it is
often missing in parallel programming environments. Sequential programming languages,
like C, C++ and Fortran, the underlying languages of OpenMP, provide functional

3.5. FUNCTIONAL AND DEADLOCK DETERMINISM 95

determinism, while OpenMP itself does not. Indeed, race conditions due to shared
memory communication are non-deterministic.

One of the most important properties of our computational model, and it is one of the
design goals of our programming model, is to guarantee functional determinism. In this
section we prove that our model guarantees not only functional determinism, but also
that deadlocks occur deterministically, which is highly valuable for debugging.

Remark 3.44. We focus in this section on data produced and consumed in streams, which
means that functional determinism, in a way similar to Kahn process networks, is defined
as producing the same output inside streams for a given input.

In this section, we make the two following assumptions in order to prove determinism.

1. We assume that either no shared memory communication happens, or that it does
not constitute a source of indeterminism (i.e. a race condition). This assumption is
natural as we only allow shared memory communication as a convenience and under
the programmer’s responsibility.

2. We assume that a task that declares writing in a stream does indeed define all of
the elements it declares, leaving no undefined values in streams. If a task declares
producing a given amount of data for a given output stream, but either does not
write this data or writes less than the amount specified, then undefined memory
locations may be read by consumers, breaking all functional determinism guarantees.

3.5.1 Deterministic Task Activations

Until now, we have disregarded the work functions of tasks, modelling task activations as
a set of stream accesses where the actual data stored inside the stream is unimportant.
Work functions are relevant in the current context because determinism concerns both
data placement and the data itself. As a simplifying assumption, we postulate that all
work functions are inherently deterministic. This is not self-evident, in particular if we
were to allow nested streaming constructions or in the case where tasks have dynamic
burst rates, but it is of little interest here. The functional determinism of work functions
is directly derived from that of the underlying sequential programming language.

We will therefore consider task activations to be deterministic in the sense that,
irrespectively of the location of the stream accesses involved, their work functions are
deterministic. As a result, for a given set of stream accesses characterizing the activation,
if the data present in the input streams at the locations of all read accesses is the same,
the data written on all output streams at the locations of write accesses will be the same.

The key insight is that if the data placement in all streams is deterministic, then the
work functions’ determinism will be sufficient to guarantee functional determinism for the
program.

3.5.2 Deterministic Data Schedule in Streams

In our model, the schedule of data in streams is entirely determined by the control
program. This choice is made in Section 3.2 specifically to guarantee determinism. As the

96 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

control program is a sequential and, by hypothesis, deterministic process, the schedule of
data will also be deterministic.

Lemma 3.45 (Deterministic data schedule). For a CDDF program with a given input,
the schedule of data is deterministic in all streams.

Proof. We have modeled the control program’s execution, see Definition 3.8, with the
oracle function NEXT , which in the case of a sequential program is simply the sequence
operator, and the evaluation function ξ that builds task activations from activation points,
determining the stream access indices of each task activation and therefore the data
schedule in streams.

Our axiomatic hypothesis is that the oracle function is deterministic5, so for a given
execution trace Ke the next operation that the control program executes, NEXT (Ke), is
always the same. As a result, the control program trace of a CDDF program is always
the same at termination when the control program executes sequentially.

We conclude the proof by remarking that, for a given CDDF program, the evaluation
function ξ only depends on the control program’s execution trace to build the next task
activation.

Note that while the execution of task activations is only ordered by stream and barrier
synchronization, the generation of task activations is sequential, which ensures that the
same task activation will be assigned the production of data for a given stream location
in all executions.

3.5.3 Program Functional Determinism

CDDF programs are deterministic by design, relying on a sequential deterministic control
program to orchestrate the schedule of data rather than that of the execution.

Theorem 3.46. CDDF programs, where the control program executes sequentially, are
deterministic.

More specifically, for a given input, the data produced by the program in all streams
is the same in a given program state σ, regardless of the execution schedule of task
activations. The state of streams is a function of the program state and, in particular, the
final state is a function of the initial state.

Proof. The proof of this theorem is based on Lemma 3.45 and the hypothesis that work
functions are deterministic and that the two assumptions made at the beginning of this
Section 3.5 hold.

One can notice that, as mentioned in Section 3.2, stream memory behaves as single
dynamic assignment, where the only possible race condition is if a read operation could
occur before the single write operation to a given location. The ordering requirement
to avoid races are given by the flow dependence relation δ. As the stream prefix order
subsumes flow dependence requirements, see Proposition 3.16, the order enforced by our
stream synchronization scheme is stricter than necessary to avoid this type of races. It
follows that there are no race conditions in a CDDF programs’ stream communication,
so this does not constitute a source of non-determinism.

5We relax this hypothesis when we parallelize the control program in Section 4.3.

3.5. FUNCTIONAL AND DEADLOCK DETERMINISM 97

Let us assume, by way of contradiction, that there is a state σ = (Ke,Ae,Ao) where two
different executions can lead to different data in some stream location. Let (s, i) ∈ S ×N
be the location where this occurs and ap ∈ Ae the task activation that produced the data,
so (W, s, i) ∈ ap. Lemma 3.45 guarantees that the same task activation produces the piece
of data for a given location since this is not dependent on the execution schedule.

As we consider that all work functions are deterministic, the execution of ap can only
produce different data for location (s, i) if its inputs differ between the two executions. So
there exists (R, s′, i′) ∈ ap such that the value read by ap at location (s′, i′) differs between
the two executions.

As ap ∈ Ae, the execution rule (EXEC) guarantees that we have Ae ⋉ ap. By
Definition 3.11, of the stream prefix order, there is another task activation a′p ∈ Ae

such that (W, s′, i′) ∈ a′p and trivially ap 6= a′p or we would have a functional deadlock,
which would contradict the hypothesis that ap ∈ Ae, as the activation cannot execute in
that case.

We can recursively build an infinite chain of task activations, causally tracing upstream
the source of the inconsistency, and all elements in this chain are in Ae, which is a finite
set, built by the execution of task activations. We deduce that there must be a cycle
in the chain, which once again leads to an impossibility. Any cycle of flow dependences
represents a functional deadlock, see Lemma 3.25, and all activations in the cycle cannot
have executed, so they do not belong in Ae. This contradiction concludes the proof.

3.5.4 Deadlock Determinism

Theorem 3.47 (Deterministic deadlocks). CDDF programs deadlock deterministically:
for a given input set, the program either does not deadlock or it deadlocks in the same
state in all executions.

Proof. To prove this theorem, it is sufficient to show that if a CDDF program admits, for
a given input, an execution schedule in which a deadlock occurs, then that deadlock state
is the maximum state that can and will be reached in all executions.

Let us consider such a program that deadlocks in state σ = (Ke,Ae,Ao) with a schedule
modeled by a scheduling function θ. Let us now assume, by way of contradiction, that
there exists another schedule θ′ that, irrespectively of deadlocks, allows the program to
execute up to a state σ′ = (K′

e,A
′
e,A

′
o) such that |σ| < |σ′|.

By definition, this means that |Ke| + |Ae| < |K′
e| + |A′

e|, which leads to the following
two relevant cases to handle: (1) traces have different lengths, |Ke| < |K′

e|; or (2) the set
of executed task activations is different, |Ae| < |A′

e|.

Case (1): |Ke| < |K′
e|. As σ is a deadlock state, we know from Lemma 3.14 that

NEXT (Ke) /∈ Π. As we have argued in the proof of Lemma 3.45, the control program
trace is necessarily deterministic for the same input, so |Ke| < |K′

e| trivially implies that
Ke is a prefix of K′

e. We deduce that NEXT (Ke) = barrier, as the trace continues, and
therefore that in the schedule θ′ the program was able to pass the barrier while in schedule
θ, it was unable to make further progress.

From Lemma 3.14, we also know that Ao 6= {C(Ke)}. As Ke is a prefix of K′
e and task

98 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

activations are created deterministically, we have:

(

π ∈ Ke ⇒ π ∈ K′
e

)

⇔
(

a ∈ Ae∪Ao\{C(Ke)} ⇒ a ∈ A′
e∪A

′
o\{CK′

e
}
)

In order to pass the barrier all activations in Ae ∪Ao \ {C(Ke)} must be executed. As
in the second execution the barrier has been able to pass, and Ao 6= {C(Ke)}, we have:

∃a ∈ Ao \ {C(Ke)}, a ∈ A′
e

The rest of the proof is similar with the second case, where we first prove this same
property before continuing.

Case (2): |Ae| < |A′
e|. If at this point |Ke| < |K′

e|, then we just consider this to fall
in Case (1), so we consider here that |Ke| > |K′

e|. Using the same reasoning as above, we
deduce that:

a ∈ A′
e ∪ A′

o \ {CK′

e
} ⇒ a ∈ Ae ∪ Ao \ {C(Ke)}

We also trivially have:

|Ae| < |A′
e| ⇒ ∃a ∈ A′

e, a /∈ Ae

From these two expressions we also get the same property as in Case (1):

∃a ∈ A′
e, a ∈ Ao \ {C(Ke)}

Cases (1) and (2) continued.
The last property we have from Lemma 3.14 is that ∀a ∈ Ao,¬(Ae ⋉ a), which is true

in particular for the activation we have been able to find in both cases:

∃a ∈ Ao \ {C(Ke)} |
(

a ∈ A′
e

)

∧
(

¬(Ae ⋉ a)
)

As a ∈ A′
e, this activation was executed in the second execution schedule, so its

dependences were satisfied by some subset of A′
e that does not contain a′. Let A′′

e (A′
e

be the smallest set of activations such that A′′
e ⋉ a. As ¬(Ae ⋉ a), we deduce that:

∃a′ ∈ A′′
e | a′ < a ∧ a′ /∈ Ae

If a′ /∈ Ao ∧ a′ < a then the barrier was impossible to pass as the deadlock was an
insufficiency deadlock. If a′ ∈ Ao, then we found the same property that allowed us to
continue from cases (1) and (2):

∃a′ ∈ A′′
e | a′ ∈ Ao \ {C(Ke)}

We can recursively apply this reasoning and, as A′′
e (A′

e, build an infinite sequence
of strictly decreasing sets of task activations, which is impossible and therefore concludes
this proof.

3.6. STRICT CONSISTENCY 99

The fact that this particular maximum state is actually reached in all executions is
trivially deduced by swapping the role of states in the proof. If any execution cannot
reach the state σ, but stops in state σ′′ instead with |σ′′| < |σ|, then the proof can be
applied using σ′′ as the base deadlock state.

3.5.5 Determinism, Productivity and Portability

An important result of Theorems 3.47 and 3.46 is that, when debugging a CDDF program,
deadlock reproducibility is absolute. In most parallel programming environments, running
with some kind of code instrumentation, or in a debugger, leads to reduced deadlock or
race reproducibility. In our model, this cannot happen.

Even more, our model guarantees that if a program experiences a deadlock-free run for
a given input set, there can be no deadlocks in that program for that input set. This is true
irrespectively of the underlying architecture, so application testing becomes equivalent to
that of sequential applications: changing the level of concurrency (or communication
latencies, or bandwidth, etc.) of the execution platform does not result in observing new
spurious race conditions or deadlocks. A test suite that provides proper code coverage is
therefore as efficient for uncovering errors in CDDF programs as it is for finding errors in
sequential programs.

Lemma 3.45 and Theorem 3.46 further guarantee that stopping the control program
(e.g. breakpoint) will lead to a deterministic whole program state. This property in
itself is very useful to facilitate the debugging process. The programmer can rely on this
guarantee to deterministically observe the program state by stopping the control program,
and allowing the outstanding task activations to execute until quiescence is reached6.

These properties therefore strongly improve the productivity and portability of appli-
cations that fit the CDDF model:

• Program testing is as effective as for sequential programs, independently of the
architecture used for testing.

• Errors can be deterministically reproduced, like in sequential programs.

• Deadlocks occur deterministically, on all execution platforms.

• Programs can be interrupted deterministically for debugging.

3.6 Strict Consistency

Current architectures offer increasingly relaxed memory consistency models [3]. This
choice is motivated by performance concerns, but it makes parallel programming all
the more complicated. Current architectures do no longer offer sequential consistency
(SC) [42], but more relaxed and complex memory models like x86 [34,50,64], Sun’s total
store order (TSO) or relaxed memory order (RMO) [65], or IBM’s relaxed memory model

6Quiescence occurs when no further progress can be made. The time necessary to reach that point is
undecidable, but finite as we have seen in the discussion of weak deadlock states.

100 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

for Power [63]. Programmers can no longer ignore these issues and must insert memory
fences with varying patterns depending on the architecture [5], which makes parallel
programming ever more complicated and races more elusive.

As we have discussed, in Section 2.4.6, OpenMP does not shield programmers from
this additional complexity. Stream-computing, in general, allows to altogether hide this
issue from developers. Because of the (perceived) single dynamic assignment behaviour
of stream accesses, and the synchronization mechanisms enforcing flow dependences, all
read operations in streams are guaranteed to return the last, and unique, value written at
a given index in a stream. This is the strongest possible memory consistency guarantee,
strict consistency [30], therefore allowing programmers to focus on algorithmic problems
rather than on architecture-dependent issues.

In the case of CDDF programs, strict consistency is only guaranteed for stream
accesses. As our model allows shared memory communication, it is still possible to be
affected by relaxed memory consistency issues. Our position is that disallowing shared
memory communication is too restrictive and would go against the OpenMP specification.
Instead, we advocate only using shared memory if no stream communication patterns can
be substituted.

3.7 Serializability

Serializability is a very important property for parallel programs as it allows efficient
execution on non-concurrent platforms and sequential functional testing. In our case, as
we have discussed in Section 3.5, the latter is much less relevant because of the strong
determinism guarantees our model offers. Nevertheless, sequential execution of CDDF
programs is relevant and we need to ensure it is possible.

Intuitively, this should mostly be a question of whether there is a possible interference
between the implicit synchronization of stream accesses of different task activations that
would require an interleaving of operations that cannot be achieved in a sequential
schedule of the execution of task activations.

3.7.1 Dynamic Sequential Schedule

Proposition 3.48 (Serializability). All deadlock-free CDDF programs admit at least one
sequential schedule.

Proof. This property is almost self-evident from the definition of the execution rules on
Figure 3.1, where the (EXEC) rule aggregates all the dependences of task activations in
the ⋉ relation, therefore only allowing the execution of task activations that have all their
dependences satisfied before they can start executing. This means that a task activation
behaves atomically, it cannot enable the execution of another task activation until all of
its own dependences are satisfied.

Let us consider that, in a CDDF program in a state σ = (Ke,Ae,Ao), there are two
outstanding task activations (a, b) ∈ A2

o that cannot be serialized, so it is impossible to
schedule a before b or b before a. By definition of the scheduling constraints, we trivially

3.7. SERIALIZABILITY 101

have a <+ b and b <+ a, which means that there is a cycle a <+ a and therefore a
deadlock according to Lemma 3.25. This contradicts the deadlock-freedom hypothesis.

A trivial sequential schedule, in an unbounded memory abstraction, consists in running
the control program until it reaches a barrier or terminates, then executing all task
activations in any order allowed by the ⋉ relation, then repeat until termination.

If we only consider correct programs, so excluding all programs that have functional
deadlocks, we can therefore guarantee serializability under the same conditions as spurious
deadlock-freedom. However, this type of serialization is more akin to the dynamic
scheduling of some ad hoc user-level threads, or fibers. This scheme incurs scheduling
runtime overhead and disables many compiler optimizations that would apply to a static
sequential schedule.

3.7.2 Static Sequential Schedule

While serializability can be guaranteed without requiring strong conditions on CDDF
programs, it is much harder to guarantee the existence of a static serial schedule, let
alone providing an automatic way of building such a schedule. There is, however, a trivial
static sequential schedule for which we can provide a necessary and sufficient condition:
the control program order. This schedule is semantically important in the case of OpenMP,
where this serialization strategy is the default strategy advocated in the specification.

Theorem 3.49. A CDDF program can be sequentially executed in control program order
if and only if it is stream causal in each state.

Proof. Given the hypothesis that the program is stream causal in each state, we can add a
barrier after each activation point in the control program and this barrier is guaranteed, by
Theorem 3.34, to be able to pass, which means that each newly generated task activation
can execute immediately.

Conversely, if the program can execute sequentially, with the execution of each task
activation tied to the generation of the task activation, then the program can admit one
barrier after each activation point without deadlocking. As the stream clock order is
a subset of the order relation defined by the control program order, the execution of
task activations was possible in strictly positive stream clock order for all streams in the
program, while also respecting flow dependences, which is by definition a stream causal
schedule, which guarantees, using Proposition 3.33, that the program is stream causal in
each state.

This result is of great practical relevance, in particular for OpenMP-based instantia-
tions of this model, as it provides a necessary and sufficient condition for the default type
of serializability, and this condition also provides the strongest deadlock-freedom property.
It also provides closure with respect to OpenMP semantics and therefore establishes our
definition of stream causality as founded, at least for our OpenMP extension incarnation
of the CDDF model.

In practice, we will also rely on static analysis to determine, when possible, if the
program falls in one of the categories where previous work provides ways to statically
compute schedules, like in the case of synchronous [43] or cyclo-static [13] dataflow
programs.

102 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

Remark 3.50. This approach is the usual serialization strategy for OpenMP programs,
where serialization is achieved by ignoring the OpenMP compiler directives during pro-
gram compilation, therefore compiling the semantically equivalent underlying sequential
program.7

In the case of our OpenMP extension for streaming, merging the execution of an acti-
vation point and the execution of the activation is very similar to ignoring (or stripping)
the program annotations. However, this is not possible for streaming programs, where
streams are still required to buffer the data if the production/consumption rates are not a
statically perfect match. Only the programs that verify synchronous data-flow conditions
can be simply stripped of streaming annotations. Still, the necessary code generation is
trivial if the annotations cannot be simply ignored.

3.8 Summary of the Properties and Associated Con-

ditions

In order to give a better idea of what guarantees can be obtained in CDDF programs, we
present on Table 3.1 the properties provided by each of the program conditions we have
analyzed in this section.

Condition on state Deadlock Freedom properties Serializability Determinism Strict
σ = (Ke,Ae,Ao) ¬D(σ) ¬ID(σ) ¬FD(σ) ¬SD(σ) Dyn. order CP Funcal & Dlock Consist.
TC(σ) ∧

no no yes yes if ¬ID(σ) no yes yes∀s ∈ SCC(H(σ)),
¬MPMC(s)

TC(σ) ∧
no no yes yes if ¬ID(σ) no yes yes

∀s,¬MPMC(s)

SCC(H(σ)) = ∅ no no yes yes if ¬ID(σ) no yes yes

SC(σ) ∨
yes yes yes yes yes no yes yes

NEXT (Ke) ∈ Π

∀σ, SC(σ) yes yes yes yes yes yes yes yes

Table 3.1: Properties of CDDF programs.

Table 3.1 presents the conditions required to provide the various properties guaranteed
in our model: D(σ), ID(σ), FD(σ) and SD(σ) respectively mean that the program can
experience a deadlock8, an insufficiency deadlock, a functional deadlock or a spurious
deadlock. The conditions range from the weakest to the strongest. Note that each
condition provides spurious deadlock freedom, which is one of our main objectives, as
well as functional and deadlock determinism and strict consistency. In the following, we
describe the conditions, which are presented in an abbreviated form in the table, and we
discuss the results.

7The semantical equivalence is not actually a requirement, but a desirable property. When the
annotations cannot be ignored without changing the semantics of a program, that program is considered
non-serializable and the resulting behaviour unspecified.

8This general deadlock property is the disjunction of the three other properties.

3.8. SUMMARY OF THE PROPERTIES AND ASSOCIATED CONDITIONS 103

1. The first, and weakest, condition comes from Corollary 3.43. It requires that no
stream belonging to a strongly connected component (SCC) of the hypergraph H(σ)
be both multi-producer and multi-consumer (MPMC), though different streams can
be either one or the other. It also requires that the program be task causal in that
state, which is stronger than the original condition where only the tasks belonging to
a SCC need to be task causal. Programs can only experience insufficiency deadlocks,
and their absence would further guarantee serializability.

Note that insufficiency deadlocks are easier to analyze as it is only necessary to
verify the amounts of data produced and consumed on each stream, regardless of
the indexes of stream accesses. We stress the fact that this condition does not
provide a blanket freedom of functional deadlocks, but only freedom from the subset
of functional deadlocks that are not insufficiency deadlocks.

2. The second condition corresponds to Theorem 3.41. It requires that no stream in
the program be multi-producer and multi-consumer (MPMC) in that state and that
the program be task causal, TC(σ). Programs meeting these requirements can only
experience insufficiency deadlocks and, similarly to the first condition, can benefit
from serializability when no insufficiency deadlocks occur.

3. The third condition, from Theorem 3.42, requires the hypergraph H(σ) to be
free of strongly connected components. This condition is sufficient to avoid non-
insufficiency deadlocks.

4. The fourth condition requires stream causality of the program state whenever the
control program reaches a barrier or terminates. This strong condition is sufficient,
in Theorem 3.34, to prove the absence of any type of deadlocks.

5. Finally, the last and strongest condition, from Theorem 3.49, requires stream causal-
ity SC(σ) in each state σ of the program, providing all of the possible properties.

Remark 3.51. Stream causality in each state of the program is the most restrictive
condition, that also provides the most guarantees. While this condition might be construed
as very restrictive to the expressiveness of CDDF programs, it is a natural condition in
many cases of interest for our stream-computing extension to OpenMP. Indeed OpenMP
is primarily designed to parallelize sequential programs, which necessarily have only for-
ward dependences with respect to the program’s control flow. Interestingly, this property
guarantees stream causality in each state of the program as it means that the past of the
program always produces the data required for its present. This condition is not always
satisfied, but our experience shows that most algorithms are naturally expressed in this way
rather than using more complicated, and counter-intuitive, backward dependence patterns.

For instance, all the applications9 and micro-kernels that we have implemented using
our extension, before developing this formal model, satisfy this condition. However, we
believe that this may not necessarily be the case when the development does not start from
a sequential implementation.

9FMradio, 802.11a and FFT.

104 CHAPTER 3. CONTROL-DRIVEN DATA-FLOW MODEL OF COMPUTATION

As a concluding remark, we consider that in order to ensure the correctness of the
implementation of a programming construct formalized with the CDDF computational
model, only spurious deadlock-freedom can be required. The other additional properties
are beneficial for productivity and for enabling optimizations, but they are not necessary.
The other deadlock types stem from algorithmic errors, serializability is always available
in correct10 programs, as are determinism properties and strict consistency.

3.9 Conclusion

In this chapter, we introduced a new computational model for streaming applications.
This model heavily relies on the notion of control program which serves as a scheduler
of data in streams. The deterministic schedule of data achieved in this manner allows
to reduce the scheduling requirements, and the synchronization overhead, of streaming
applications. We used this model to prove a set of important properties provided by
programs implementing this model, like deadlock-freedom, determinism and serializability.

The main contributions of this chapter are as follows.

• A new, general model of computation for stream-computing programs.

• A set of conditions that guarantees, to varying degrees, deadlock-freedom of stream-
ing programs and the proofs that such conditions are sufficient.

• The proof of functional and deadlock determinism of programs fitting in our model.

This shows that the streaming extension to OpenMP presented in Chapter 2 can be
implemented efficiently, allowing to synchronize streams over prefixes without introducing
new deadlocks, and has good debugging, and more generally productivity, properties:
functional and deadlock determinism, independently of the execution platform, seri-
alizability and strict consistency. However, this model relies on a set of simplifying
assumptions, notably unbounded memory, sequential control program and the absence of
feedback from task activations to the control program. We need to relax these restrictions,
in Chapter 4, in order to allow mapping our streaming extension onto the CDDF model,
in Chapter 5.

10If we consider programs with functional deadlocks to be incorrect.

Chapter 4

Generalization of the CDDF Model

The CDDF model in its original form, presented in Chapter 3, makes some important
simplifying assumptions that limit its applicability. The CDDFmodel assumes unbounded
memory, sequential execution of the control program and the absence of communication
between the control program and task activations. In this chapter, we relax these assump-
tions and introduce some practical notions that bring the model closer to its intended
target, modelling our streaming extension to OpenMP. Our objective is to generalize the
model while preserving the properties proved in the previous chapter or, when this is not
possible, provide the conditions under which these properties still hold. In Chapter 5
we take this one step further and show how our programming model can map onto this
computational model while integrating the semantics and properties of the underlying
programming language.

Le modèle CDDF, tel qu’il est présenté au chapitre 3, fait un certain nombre
d’hypothèses, qui simplifient le problème, mais en réduisent l’applicabilité. Dans ce
chapitre, nous cherchons à prouver les conditions nécessaires pour garantir les mêmes
propriétés, mais sans faire les hypothèses de mémoire non bornée, d’exécution séquentielle
du programme de contrôle et d’absence de communication entre le programme de contrôle
et les activations de tâches. Ces considérations d’ordre pratique sont nécessaires pour
permettre d’utiliser le CDDF afin de modéliser les applications utilisant notre extension
streaming au langage OpenMP. Au chapitre 5 nous montrerons comment ce modèle de
calcul peut être appliqué à notre modèle de programmation tout en intégrant la sémantique
et les propriétés du langage de programmation sous-jacent.

4.1 Introduction

This chapter presents an attempt at generalizing the CDDF model, by removing some of
the simplifying assumptions that are the most constraining for any programming model
that would implement this model of computation, and extending the proofs of sufficiency
of either the same or stronger conditions to preserve the original properties.

We first introduce a communication scheme between task activations and the control
program, modelling the firstprivate and lastprivate clauses in our streaming extension to

105

106 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

OpenMP. This type of communication introduces new synchronization constraints on the
control program and hence new deadlocks. Secondly, we analyze the ordering constraints
that must be enforced to preserve the program’s semantics when evaluating activation
points concurrently in the control program. This is an essential step towards achieving
scalability. Finally we evaluate the impact of bounding the size of stream buffers on
deadlock conditions and on determinism.

The remainder of this chapter is organized as follows. Section 4.2 relaxes the restriction
on the communication between task activations and the control program, providing for the
semantics of the OpenMP firstprivate and lastprivate sharing clauses. The new resulting
deadlocks are characterized and the proofs of the deadlock-freedom properties in the
CDDF model are extended to cover these new deadlocks. In Section 4.3, we analyze the
ordering requirements for the evaluation of activation points that allow to preserve the
CDDF determinism property while enabling concurrent execution of the control program.
This section sets the stage for evaluating the static analysis requirements for parallelizing
the control program, in Section 5.4. Finally, Section 4.4 evaluates the impact of bounding
stream buffers, a necessary step towards enabling the execution of CDDF programs in
bounded memory. The resulting resource deadlocks are characterized and we provide an
algorithm for detecting and resolving resource deadlocks at runtime. The instantiation of
this algorithm is discussed in Section 6.4.

4.2 Communication with the Control Program

The control program behaves as the driver of CDDF programs with respect to control
flow. It is possible to write programs that do not communicate with the control program,
simply initiating pipelines with a source task like in Kahn process networks, but this
is a rather strong restriction that users may tend to circumvent using shared memory
communication. Our goal is to eliminate the use of shared memory communication
whenever possible, which allows to guarantee many important properties, like functional
and deadlock determinism, beyond relying on programmer discipline, and possibly to
compile the programs for distributed memory targets.

In Chapter 2, we used firstprivate and lastprivate clauses to enable communication
between tasks and their enclosing context. We introduce here a model for this type of
communication. While we could continue with our very general approach in modelling
communication, in this particular case we do not allow as much freedom as for stream
communication between tasks. This is necessary because of the strong constraints that
this type of communication introduces in our model and is justified by the semantics of
the firstprivate and lastprivate clauses, which are similar to that of synchronous data-flow:

• Production and consumption rates are always unitary, so production and consump-
tion rates always match.

• The horizons are always unitary as well, no peek operations are possible.

• A single producer and a single consumer are allowed per stream. This is in no way
restrictive as there is no real merging of data occurring because of the previous

4.2. COMMUNICATION WITH THE CONTROL PROGRAM 107

restrictions, so a stream can be split in multiple streams without impacting the
semantics.

• Each communication channel can be implemented with a buffer of size one, larger
sizes are used only to allow decoupling and therefore tolerate latencies.

The communication from the control program to a task activation can be properly
modeled by a stream where the aforementioned restrictions apply, so burst = horizon = 1
for both producer and consumer and the amount of data produced1 is always identical to
the amount consumed.

The communication between a task activation and the control program is, by defini-
tion, synchronous: as the control program is the generator of the task activation, this
activation cannot start executing until the control program passes the activation point
that generates the task activation. In the case of lastprivate clauses, the semantics of this
communication requires that the data produced by the task activation be read by the
control program just after the activation point. For this reason, there can never be more
than one data element in the streams used to communicate data from task activations to
the control program. Communicating between a task activation and the control program
introduces a serializing synchronization and hence this type of communication is modeled
as a stream with a buffer of size one, which behaves as a semaphore synchronization
between the task and the control program.

For simplicity, and to keep the same terminology, we call communication from the
control program to a task activation firstprivate communication and the reverse lastprivate
communication. This naming convention does not mean that we restrict the applicability
of the CDDF model to OpenMP and our extension.

4.2.1 Adjustment to the CDDF Model for Firstprivate and Last-
private Communication

As firstprivate and lastprivate communication is restricted to synchronous semantics, the
addition of this type of communication does not require major changes to the existing
model. We introduce the following definitions.

Definition 4.1 (Firstprivate communication). All task activations in a CDDF program
can receive data from the control program using firstprivate communications. The control
program produces exactly one value, during the generation of the task activation, on a
dedicated stream connecting exclusively the control program and the task activation’s
task, as defined in Definition 3.35. When it executes, the task activation consumes exactly
one value on that stream.

We define the function FP : A/∼ → P(S) such that FP ([a]∼) is the set of firstprivate
streams consumed by the task [a]∼.

1The number of times data is produced multiplied by the burst.

108 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

Definition 4.2 (Lastprivate communication). All task activations in a CDDF program
can send data to the control program using lastprivate communications. When the task
activation a executes, it produces exactly one value on a dedicated stream connecting
exclusively the task [a]∼ to the control program. The control program consumes exactly
one value on that stream after executing the activation point that created the task
activation.

We define the function LP : A/∼ → P(S) such that LP ([a]∼) is the set of lastprivate
streams produced by the task [a]∼.

Note that lastprivate communication introduces an additional operation in the control
program’s trace. But as it is always associated with, and executed immediately after, an
activation point, we do not add this operation to the trace. This operation is equivalent
to the execution of an activation in the sense that it represents a subset of X , a set
of read accesses to the lastprivate streams. As our semantics require this read to come
exclusively from the activation generated by this activation point, this also represents a
synchronization satisfied by waiting for the activation to execute. The case of firstprivate
communication is somewhat similar, as it adds a set of write accesses to the firstprivate
streams, but there is no synchronization semantics required for the control program.

To account for this synchronization point in the model, we need to adjust the exe-
cution rules from Figure 3.1 in case a task activation is generated, that uses lastprivate
communication. We replace the previous set of execution rules by those presented on
Figure 4.1. Once a task activation is generated that uses lastprivate communication, the
control program cannot make progress, in the sense that all rules increasing the trace Ke

are disallowed, until that task activation is executed. This should impact rules (GEN),
(BAR) and (TERM), but in practice this condition is subsumed by the existing rule
conditions for (BAR) and (TERM), so only (GEN) needs to be modified.

(GEN)
π := NEXT (Ke) π ∈ Π ∀a ∈ Ao : LP ([a]∼) = ∅

(Ke,Ae,Ao) −→ (Ke.π,Ae,Ao ∪ {ξ(Ke, π)})

(BAR)
Ao = {C(Ke)} NEXT (Ke) = barrier

(Ke,Ae,Ao) −→ (Ke.barrier,Ae,Ao)

(TERM)
Ao = {C(Ke)} NEXT (Ke) = ⊤

(Ke,Ae,Ao) −→ (Ke,Ae,Ao)

(EXEC)
Ao = {a} ∪ A′

o Ae ⋉ a

(Ke,Ae,Ao) −→ (Ke,Ae ∪ {a},A′
o)

Figure 4.1: CDDF execution rules with lastprivate communication semantics.

The (GEN) rule is modified to include the additional synchronization resulting from
lastprivate communication. We add the condition that no task activation producing on

4.2. COMMUNICATION WITH THE CONTROL PROGRAM 109

lastprivate streams can still be outstanding, in the set Ao, when the rule is executed.
Only one such task activation can be present in Ao at a time and it has to be the latest
task activation generated by the control program.

4.2.2 Impact on the Properties of the CDDF Model

The modifications pertaining to communications with the control program are limited to
the (GEN) execution rule and the simplifying restrictions on firstprivate and lastprivate
streams. We will not go through all the proofs of the properties of the model with these
adjustments as many are obvious. Determinism, both functional and that of deadlocks,
cannot be impacted by this addition, nor can serializability. The only significant impact is
on deadlock properties. The particular case of lastprivate communication and its control
program synchronization semantics make the existing proofs obsolete.

Let us first start by reassessing, in the presence of lastprivate communications, the no-
tion of deadlock program state, which we originally presented in Lemma 3.14, on page 69.
Until now, the sources of deadlocks were barriers, for insufficiency deadlocks, dependence
cycles based on the data-flow dependence relation, δ (Definition 3.15), for functional
deadlocks and dependence cycles on the stream prefix order relation, < (Definition 3.11),
for spurious deadlocks.

Lastprivate communication introduces a new type of deadlock, similar to the barrier-
induced insufficiency deadlocks in that a lastprivate communication also blocks the control
program. This means that some or all of the outstanding task activations must be able to
execute without additional data that would be produced by newer task activations not yet
generated. Informally, when the data produced by all task activations generated by the
control program before it reaches an activation point that has lastprivate communications
is insufficient to satisfy the dependences of the task activation being generated, we have
a lastprivate insufficiency deadlock.

Before defining this new type of deadlocks, we characterize the overall possible dead-
locks in the model based on the execution rules of Figure 4.1. This characterization
clarifies the changes that are required.

Remark 4.3 (Notation). In order to distinguish between the original model properties, as
defined in the CDDF model before generalization, and the new properties resulting from
this generalization, we will subscript the property name. For example, in the case of a
deadlock state we replace D(σ) with DL(σ) to show that the model includes lastprivate
communication semantics.

Lemma 4.4 (Deadlock characterization with lastprivate communication semantics). In
the presence of lastprivate communications, the state σ = (Ke,Ae,Ao) of a CDDF program
in a deadlock satisfies:

DL(σ) ⇔ D(σ) ∨
(

(∃a ∈ Ao, LP ([a]∼) 6= ∅) ∧ (∀a ∈ Ao,¬(Ae ⋉ a))
)

In the same way, the state of a CDDF program in a functional deadlock satisfies:

FDL(σ) ⇔ FD(σ) ∨
(

(∃a ∈ Ao, LP ([a]∼) 6= ∅) ∧ (∀a ∈ Ao,¬(Ae ⊲ a))
)

110 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

Proof. The proof is similar to that of the original Lemma 3.14, on page 69.

We derive, from the definition of the execution rules on Figure 4.1, the following
equivalences in a given state σ = (Ke,Ae,Ao):

(GEN) ⇔
(

(

NEXT (Ke) ∈ Π
)

∧
(

∀a ∈ Ao, LP ([a]∼) = ∅
)

)

(BAR) ⇔
(

(

Ao = {C(Ke)}
)

∧
(

NEXT (Ke) = barrier
)

)

(TERM) ⇔
(

(

Ao = {C(Ke)}
)

∧
(

NEXT (Ke) = ⊤
)

)

(EXEC) ⇔
(

∃a ∈ Ao, Ae ⋉ a
)

)

Definition 3.13 states that a deadlock occurs when all rules are impossible in a given
state of the program. We deduce that:

DL(σ) ⇔ ¬(GEN) ∧ ¬(BAR) ∧ ¬(TERM) ∧ ¬(EXEC)

⇔

(

(

NEXT (Ke) /∈ Π
)

∨
(

∃a ∈ Ao, LP ([a]∼) 6= ∅
)

)

∧
(

(

Ao 6= {C(Ke)}
)

∨
(

NEXT (Ke) 6= barrier
)

)

∧
(

(

Ao 6= {C(Ke)}
)

∨
(

NEXT (Ke) 6= ⊤
)

)

∧
(

∀a ∈ Ao, ¬(Ae ⋉ a)
)

By definition, the codomain of NEXT is Π ∪ {barrier} ∪ {⊤}.

We trivially deduce that
(

NEXT (σ) 6= barrier ∧NEXT (σ) 6= ⊤
)

⇔ NEXT (σ) ∈
Π, which allows us to simplify the second and third propositions, yielding:

DL(σ) ⇔

(

(

NEXT (Ke) /∈ Π
)

∨
(

∃a ∈ Ao, LP ([a]∼) 6= ∅
)

)

∧
(

(

Ao 6= {C(Ke)}
)

∨
(

NEXT (Ke) ∈ Π
)

)

∧
(

∀a ∈ Ao, ¬(Ae ⋉ a)
)

Finally, we notice that
(

∃a ∈ Ao, LP ([a]∼) 6= ∅
)

⇒
(

Ao 6= {C(Ke)}
)

, because the
guard activation is not considered as a lastprivate synchronized activation even though it
does contain write accesses to all streams, which allows us to eliminate

(

NEXT (σ) ∈ Π
)

in the second proposition:

DL(σ) ⇔

(

(

NEXT (Ke) /∈ Π
)

∨
(

∃a ∈ Ao, LP ([a]∼) 6= ∅
)

)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao, ¬(Ae ⋉ a)
)

We finally use the same reasoning as above to distribute and simplify this expression,

4.2. COMMUNICATION WITH THE CONTROL PROGRAM 111

which yields the desired result:

DL(σ) ⇔

(

(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao, ¬(Ae ⋉ a)
)

)

∨
(

(

∃a ∈ Ao, LP ([a]∼) 6= ∅
)

∧
(

∀a ∈ Ao, ¬(Ae ⋉ a)
)

)

Lemma 4.4 allows us to isolate the deadlocks created by the lastprivate communication
pattern from all previously analyzed deadlock types and conditions. Based on the result
of this lemma, we can now define what we will call lastprivate deadlocks.

Definition 4.5 (Lastprivate Deadlock state). A CDDF program is in a lastprivate
deadlock in a state σ = (Ke,Ae,Ao), LD(σ), if and only if there is an outstanding task
activation a ∈ Ao that has lastprivate communications LP ([a]∼) 6= ∅ and no outstanding
task activation can be executed by the (EXEC) rule. We write:

LD(σ) , (∃a ∈ Ao, LP ([a]∼) 6= ∅) ∧ (∀a ∈ Ao,¬(Ae ⋉ a))

Note the difference between DL(σ) and LD(σ): the former represents a deadlock state
when the model includes lastprivate communications, irrespectively of the origin of the
deadlock, while the latter means that the deadlock is precisely induced by the presence
of lastprivate communications.

Remark 4.6. We can rewrite Lemma 4.4 with the new notation introduced in Defini-
tion 4.5:

DL(σ) ⇔ D(σ) ∨ LD(σ)

¬DL(σ) ⇔ ¬D(σ) ∧ ¬LD(σ)

The important result in this expression is that we can keep the existing deadlock property
proofs from the original model and simply extend them to lastprivate deadlocks. Note that
there is no interference between the types of deadlocks because they use different conditions
on the control program. While we could merge the deadlock conditions by removing the last
distribution step in the proof of Lemma 4.4, this would result in greatly over-approximating
the deadlock-freedom conditions.

From this, we can deduce that requiring stream causality for each control program
trace prefix ending with an activation point that generates lastprivate communications is
a sufficient condition for deadlock-freedom as it guarantees that all activations in Ao can
execute, but it is not necessary. In a more general way, all existing conditions are sufficient
if a barrier is added after each such activation point. We could, for example, require that
the program be stream causal not only when reaching a barrier as in Theorem 3.34, but
also when reaching an activation point with lastprivate communication semantics.

The semantics of lastprivate communication is that of a local barrier, that synchronizes
only the set of outstanding task activations belonging to causality chains leading to the
activation using the lastprivate streams. Instead of the barrier behaviour we had until

112 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

now where all task activations in Ao needed to be executed, we now need to define the
subsets of Ao that are needed for the control program to make further progress.

Definition 4.7 (Sets of needed task activations). For a CDDF program in a state σ =
(Ke,Ae,Ao), we define the sets A

<
n and Aδ

n of task activations that need to execute if the
control program has generated a task activation using lastprivate communication:

A<
n (σ) =

{

a ∈ Ao | ∃a′ ∈ Ao, LP ([a′]∼) ∧ a <∗ a′
}

Aδ
n(σ) =

{

a ∈ Ao | ∃a′ ∈ Ao, LP ([a′]∼) ∧ a δ∗ a′
}

Note that the definition of these sets includes the lastprivate task activation itself.
The sets are empty if no lastprivate task activation is outstanding.

The real issue is to characterize the difference between real causality chains, that
are based on flow dependences in streams, leading to a task activation using lastprivate
communications and the over-approximated chains enforced by the stream prefix order.
We do not detail and characterize every type of deadlock in this case, but only distinguish
between functional and spurious deadlock states. Once again we rely on the notion of
weak deadlock state to simplify the proofs.

In any given state σ, the functional soundness of the program requires that the activa-
tions in Aδ

n(σ) be able to execute, while the synchronization we enforce require the activa-
tions in A<

n (σ) to be able to complete. We can trivially show that ∀σ,Aδ
n(σ) ⊂ A<

n (σ), so
the problematic cases occur when the task activations in A<

n (σ) \ A
δ
n(σ) cannot execute.

We first define a weak lastprivate deadlock state that characterizes the new possible
deadlock states as well as its counterpart in terms of flow dependences, the weak lastprivate
functional deadlock state. Based on these definitions, we then discuss how new spurious
deadlocks can be characterized in case they do not coincide with existing deadlock
conditions. Finally, we analyze the conditions necessary to prove the deadlock-freedom
properties provided by the CDDF model.

Proposition 4.8 (Weak deadlock states with lastprivate communications). A CDDF
program is in a weak lastprivate deadlock (resp. functional deadlock) in a state σ =
(Ke,Ae,Ao), and we write WLD(σ) (resp. WLFD(σ)), if and only if its state satisfies:

WLD(σ) ⇔ A<
n (σ) 6= ∅ ∧

(

∃a ∈ A<
n (σ), C(Ke) < a ∨ a <+ a

)

WLFD(σ) ⇔ Aδ
n(σ) 6= ∅ ∧

(

∃a ∈ Aδ
n(σ), C(Ke) δ a ∨ a δ+ a

)

Proof. The proof of this proposition is not detailed as it simply requires noting that
both deadlock states are indeed reached once all outstanding task activations that can be
executed complete, but the task activations in A<

n (σ) (resp. A
δ
n(σ)) that depend on either

the continuation activation or on task activations within a cycle will never be executable
as some of their dependences cannot be satisfied.

4.2. COMMUNICATION WITH THE CONTROL PROGRAM 113

The reverse is trivial as deadlock states, where none of the outstanding activations can
execute once a lastprivate task activation is outstanding, will at least have the outstanding
lastprivate task activation in their needed sets.

In order to define the new spurious deadlocks, we once again use the same basic
definition as deadlock states that are not functional deadlocks:

WLSD(σ) h WLD(σ) ∧ ¬WLFD(σ)

In order to simplify this definition and provide a more convenient characterization,
we rely on the insight that both deadlocks in Proposition 4.8 are due to the lastprivate
task activation being impossible to execute because of dependences transitively origi-
nating from one or more task activations that cannot be executed, irrespectively of the
execution schedule. This means that the lastprivate task activation either depends on an
unsatisfiable cycle of task activations or on the continuation activation.

If an unsatisfiable cycle is present in the set of outstanding task activations, the
conditions for a deadlock are met even if no barrier has been reached. If such a cycle
happens to occur within A<

n , then the deadlock will be concretized earlier, but even in
the absence of lastprivate communications it would finally lead to a deadlock state when
the control program either reaches a barrier or terminates. For this reason, we will simplify
the cases of weak lastprivate spurious deadlock states by only considering the insufficiency
cases, where the lastprivate task activation depends on the continuation activation.

Definition 4.9 (Weak Lastprivate Spurious Deadlock state). A CDDF program is in a
weak lastprivate spurious deadlock in a state σ = (Ke,Ae,Ao), and we write WLSD(σ),
if and only if its state satisfies:

WLSD(σ) , ∃a ∈ Ao,
(

LP ([a]∼) 6= ∅
)

∧
(

C(Ke) <
+
Ao

a
)

∧ ¬
(

C(Ke) δ
+
Ao

a
)

This definition is partial, but all missing cases are covered by weak spurious (non-
lastprivate) deadlock conditions. For this reason, if the underlying program is free of such
deadlocks, which is the case for all of the conditions we have studied, the definition is
valid. The remaining cases are not subsumed by the existing spurious deadlock cases,
despite the similarity of having task activations depend on the continuation in the stream
prefix order but not based on flow dependences. This is due to the fact that a barrier
may not have been reached and, therefore, that the continuation activation could change
before this happens.

Theorem 4.10. A CDDF program is free of lastprivate spurious deadlocks if it is free
of insufficiency deadlocks, is task causal and each stream in the program is either single-
producer or single-consumer. In each state σ = (Ke,Ae,Ao):

¬WID(σ) ∧ TC(σ) ∧
(

∀s ∈ S(σ), |P (σ, s)| = 1 ∨ |C(σ, s)| = 1
)

⇒ ¬WLSD(σ)

Proof. This theorem is an extension of Theorem 3.41. It includes the additional lastprivate
deadlock conditions. We are only interested in the absence of weak lastprivate spurious
deadlocks, so we use as hypothesis the absence of weak insufficiency deadlock conditions.

114 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

Let us assume, by way of contradiction, that a CDDF program is experiencing a last-
private spurious deadlock in a state σ = (Ke,Ae,Ao), and that the theorem’s conditions
are satisfied in this state. We first expand the expression based on the Definition 4.9:

¬WID(σ) ∧ TC(σ) ∧
(

∀s ∈ S(σ) : |P (σ, s)| = 1 ∨ |C(σ, s)| = 1
)

∧
(

∃a ∈ Ao,
(

LP ([a]∼) 6= ∅
)

∧
(

C(Ke) <
+
Ao

a
)

∧ ¬
(

C(Ke) δ
+
Ao

a
)

)

As the program is task causal in this state, and it is not in a weak insufficiency deadlock
state, Proposition 3.40 allows to deduce that it admits a task causal schedule. Let θ be
such a schedule. We expand the incriminating stream prefix precedence chain:

∃a ∈ Ao, a 6= C(Ke), ∃n ∈ N, n > 0, ∃(a1, ..., an) ∈ An
o ,

(

an = a
)

∧
(

C(Ke) < a1 < ... < an
)

A set of streams (s1, s2, ..., sn) connect these tasks, based on the definition of the
stream prefix precedence relation <. We can reuse the disjunction of the two cases, of
single-producer or single-consumer streams, for all of the streams sk,k∈[1,n], from the proof
of Theorem 3.41, and similarly show that we always either get a contradiction because of
a weak insufficiency deadlock condition or the following holds:

∀k ∈ [1, n− 1], ak < ak+1 ⇒ θ(ak) < θ(ak+1)

As the continuation activation is always considered to be acausal and is not taken into
account for the property of single-producer or single-consumer streams, we cannot rely on
this reasoning to further extend the chains to include C(Ke) < a1 ⇒ θ(C(Ke)) < θ(a1).
However, we rely on the proof of Lemma 3.24, which states:

∀a ∈ Ae ∪ Ao, C(Ke) < a ⇔ C(Ke) δ a

In our case, this yields:

C(Ke) < a1 ⇒ C(Ke) δ a1 ⇒ θ(C(Ke)) < θ(a1)

C(Ke) < a1 < ... < an ⇒ θ(C(Ke)) < θ(a1) < ... < θ(an) ⇒ θ(C(Ke)) < θ(a)

As the second part of the original expression to prove yields:

¬
(

C(Ke) δ
+
Ao

a
)

⇒ ¬
(

θ(C(Ke)) < θ(a)) ⇒ θ(C(Ke)) > θ(a)

We conclude the proof with the contradiction:

θ(C(Ke)) < θ(a) ∧ θ(a) 6 θ(C(Ke))

4.2. COMMUNICATION WITH THE CONTROL PROGRAM 115

4.2.3 Summary of the Deadlock-Freedom Properties

We present, on Table 4.1, a brief summary of the properties and conditions analyzed for
deadlock-freedom after extending the model with lastprivate semantics. We explain the
conditions and briefly discuss each case as follows.

1. The first, and weakest, condition comes from Corollary 3.43. It requires that no
stream belonging to a strongly connected component of the taskgraph be both
multi-producer and multi-consumer, though different streams can be either one or
the other. It also requires that the program be task causal in that state, which
is stronger than the original condition. This condition is insufficient to avoid
lastprivate spurious deadlocks as it only focusses on cycles.

2. The second condition is an adaptation of the conditions proven for Theorem 4.10
and Corollary 3.43. This condition extends the first condition to also require all
the streams from which a lastprivate task can be reached in the taskgraph be also
either single-producer or single-consumer. This condition is expressed, for brevity,
through the informal iterated closure of the function I which is meant to gather
the set of input streams of a task activation a, then iteratively the input streams
of the producer tasks. This adjustment provides the constraints required to ensure
freedom of weak lastprivate spurious deadlocks and can be easily proved by noting
that the additional streams that are covered correspond exactly to the set of streams
(s1, s2, ..., sn) used in the proof of Theorem 4.10.

3. The third condition corresponds to the original Theorem 3.41 and its extended
version 4.10, requiring that no stream in the program be multi-producer and multi-
consumer (MPMC) and that the program be task causal. Programs meeting these
requirements can only experience insufficiency and functional lastprivate deadlocks.

4. The fourth condition, from Theorem 3.42, requires the taskgraph to be free of
strongly connected components. While this condition was sufficient to avoid non-
insufficiency deadlocks in the basic version of the CDDF model, it is insufficient
to avoid lastprivate deadlocks, which are closer to insufficiency deadlocks than to
cycle-induced deadlocks.

5. The fifth condition, from Theorem 3.34, requires stream causality of the program
state whenever the control program reaches a barrier. As this gives no additional
information on the program state when reaching a lastprivate activation point, this
condition is trivially insufficient to prevent lastprivate spurious deadlocks.

6. The sixth condition adjusts the fifth by adding this missing information, therefore
requiring stream causality also when the control program reaches a lastprivate
activation point. As we discussed in Remark 4.6, this condition is trivially sufficient.

7. Finally, the last and strongest condition, required by Theorem 3.49, requires stream
causality in each state of the program. This condition still provides all of the possible
properties, even in the presence of lastprivate communications.

116 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

Condition on state Deadlock Freedom properties
σ = (Ke,Ae,Ao) ¬D(σ) ¬ID(σ) ¬FD(σ) ¬SD(σ) ¬LD(σ) ¬LSD(σ)

TC(σ) ∧ ∀s ∈ SCC(H(σ)),¬MPMC(s) no no yes yes no no

∀a ∈ Ao, LP ([a]∼) 6= ∅,
no no yes yes no yes∀s ∈ I+(a) ∪ SCC(H(σ)) ¬MPMC(s)

TC(σ)

TC(σ) ∧ ∀s,¬MPMC(s) no no yes yes no yes

SCC(H(σ)) = ∅ no no yes yes no no

SC(σ) ∨ NEXT (Ke) ∈ Π yes yes yes yes no no

SC(σ) ∨ NEXT (Ke) ∈ Π
yes yes yes yes yes yes

∨ ∀a ∈ Ao, LP ([a]∼) = ∅

∀σ, SC(σ) yes yes yes yes yes yes

Table 4.1: Deadlock-freedom conditions for CDDF programs extended with lastprivate
communication semantics.

4.3 Parallelizing the Control Program

All of the major distinctions and advantages of the CDDF model over other streaming
computational models come from the semantics of the control program, and in particular
from its sequential semantics that allow for both determinism and a global understanding
of the schedule of data in streams. However, all good things come at a cost, and in our
case the cost is all too obvious: the control program’s execution constitutes a perfect
bottleneck if it cannot be parallelized itself.

Parallelizing the control program is not easy if we want to preserve all the program
properties exhibited this far. In this section, we first analyze the weak spots where
the control program’s sequential execution is a crucial condition and isolate the specific
serializing constraints that enable the properties’ proofs. In a second part, we show
how parallelization can preserve the necessary semantical information of the original
sequential control program, either through ad hoc parallelization or through restrictions
on the parallelism that can be exploited in the control program. Finally, we discuss how
concurrent control program traces can be merged to build a sequential control program
trace.

4.3.1 Control Program Concurrency Constraints

We model the control program’s execution with the two functions NEXT and ξ that
respectively provide the next operation to be executed and evaluate an activation point.
This means that we completely hide the execution of anything but activation points
and barriers, so the concurrency constraints that we derive in this section can only be
necessary conditions for the concurrent evaluation of activation points. If the control
program’s underlying program is inherently sequential, nothing can be done to parallelize
its execution. However, as we will see, the evaluation of activation points can, to some

4.3. PARALLELIZING THE CONTROL PROGRAM 117

extent, be parallelized.
We restrict our study to the parallelization of the evaluation of activation points,

which is the crux of our model. The possible parallelization of the underlying program
results in a new oracle function NEXTn : Kn → (Π ∪ {barrier} ∪ {⊤})n, where n is the
number of threads executing the control program. This new function returns a set of
next operations to execute, one for each thread. This issue is specific to the programming
model, in Chapter 2, and is therefore discussed in Chapter 5, where we map our streaming
extension onto the CDDF model.

We recall the definition of the activation point evaluation function, from Definition 3.8,
on page 62:

ξ(Ke, π) =

{

(u, s, i) ∈ X | ∃(u, s, b, h) ∈ π ∧ i ∈
[

α, α+h
[

, where α =
∑

π′∈Ke

(u,s,b′,h′)∈π′

b′

}

It is immediately apparent that the main issue to concurrently evaluate multiple
activation points comes from the explicit state embodied by the first parameter of this
function, the control program trace. This trace is used to decide the placement of data
read or written by the new task activation inside its input and output streams. However,
the ξ function does not use all the operations in the program trace to compute the stream
access indexes, but only a subset of the activation points in the trace.

We define the function Use : K × Π → P(Π) which evaluates the set of activation
points in a program trace that will be used by the activation point evaluation function ξ
in order to generate a new task activation from an activation point. From the definition
of ξ, we can define this function as:

Use(Ke, π) =

{

π′ ∈ Ke | ∃(u, s) ∈ {R,W} × S, ∃b, b′ ∈ N, ∃h, h′ ∈ N∗ :

(u, s, b, h) ∈ π ∧ (u, s, b′, h′) ∈ π′

}

Intuitively, we can see that in the case of single-producer and single-consumer streams,
this means that only the past activation points of the same task are required to evaluate
the new activation of that task as (u, s) would be unique to a single equivalence class.
In the general case of multi-producer and multi-consumer streams, this does not hold as
the deterministic interleaving of data requires the knowledge of past activation points of
more than the task itself.

The counterpart of the Use function which evaluates the set of activation points writ-
ten by the evaluation function ξ, is the identity on the activation point: Def(Ke, π) = {π}.
From this, we can deduce the ordering requirements for the execution of activation points
as the preservation of the sequential evaluation order: for two activation points π1 and
π2 such that the sequential execution of the control program evaluates π1 before π2, if
π1 ∈ Use(Ke, π2), then π2 must be executed after π1 in the concurrent schedule. This is
equivalent to requiring that both activation points need to be in the same partition of

118 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

activation points, therefore evaluated by the same thread, and that the original sequential
order of evaluation be respected.

Note that the fundamental property we have used is the order relation on activation
points evaluation induced by the precedence of the occurrence of activation points in the
deterministic, sequential control program trace. We used, for stream causality and for
task causality, binary relations that are sub-relations of this order relation. In order to
preserve the same properties, we need to ensure that any interleaving of activation points
evaluation from concurrent control program traces preserves the sub-relations that we
have used in our definitions of the stream clocks and of the task order.

If we consider a concurrent evaluation of activation points, where we do not need to
synchronize between the threads evaluating activation points, then a thread can evaluate
an activation point π only if it has itself evaluated all of the activation points used by the
evaluation of π. Considering that n threads are used for this, and that Ke =

⋃

16i6n Ki

where Ki contains the set of activation points evaluated by thread i, the condition for
allowing π to be evaluated by thread i is:

Use(Ke, π) ⊂ Ki

The partition of the evaluation of activation points between threads, or a synchroniza-
tion scheme, must preserve these ordering constraints for the observed behaviour of the
control program to remain the same, which is to say that the schedule of data in streams
remains deterministic and consistent with sequential execution of the control program
and the sequential evaluation of activation points in control program order.

4.3.2 Ad Hoc Parallelization of the Control Program

A natural way of parallelizing the control program’s execution, irrespectively of any
parallelization effort on the underlying program2, is to off-load the evaluation of activation
points to different threads, while enforcing, or ensuring the preservation of, the ordering
constraints highlighted in the previous section. The order can be preserved by scheduling
the evaluation of all dependent activation points on the same thread, thus partitioning
the activation points in independent groups that can be evaluated concurrently.

A maximal partition can be dynamically built using the algorithm presented on
Figure 4.2. This algorithm increases the number of partitions as soon as an independent
activation point needs to be evaluated. If the activation point depends on a single existing
partition, it adds the new activation point to that partition. Finally, if the new activation
point depends on multiple partitions, it needs to merge all such partitions into a single
one so that the new activation point can be evaluated within a partition that satisfies all
of its dependences. This final step reduces, when necessary, the number of partitions.

In this case, the control program is not parallelized itself, so the control program trace
is kept sequential. As the partitions of activation points we build are all independent,
there is no harm from concurrently evaluating activation points from different partitions.

This technique does not entirely solve the control program bottleneck issue, but does

2This type of parallelization must still provide some order information on the generation of activation
points, but this is a programming model issue.

4.3. PARALLELIZING THE CONTROL PROGRAM 119

For a CDDF program in state σ = (Ke,Ae,Ao), where NEXT (Ke) = π,
the following algorithm allows to decide on which thread π can be eval-
uated. This algorithm maximally partitions the evaluation of activation
points on concurrent threads. The algorithm starts with n = 0.

• If ∀i ∈ [1, n], Use(Ke, π) ∩ Ki = ∅ then evaluate π on a new
thread n+ 1 and update the number of threads n := n+ 1.

• If ∃i ∈ [1, n], Use(Ke, π) ⊂ Ki then evaluate π on thread i.

• If ∃i1, ..., ik ∈ [1, n], ∀j ∈ [1, k], Use(Ke, π) ∩ Kij 6= ∅ then
synchronize the threads i1, ..., ik, waiting for the completion of
any scheduled evaluation of activation points on these threads,
and merge them into a single thread at index i1. Evaluate π on i1
and update the number of threads n := n − k + 1, as well as all
other thread indexes.

This ensures that the condition we previously identified is satisfied
for this merged partition i1:

Use(Ke, π) ⊂ Ki1

Figure 4.2: Dynamic partition of activation points for concurrent evaluation.

contribute to reduce the load of the control program, which is likely to become the
critical path once load-balancing techniques, as described in Section 6.3.3, are applied.
Importantly, it shows that the additional computation involved in pre-computing the data
schedule, which is one of the overheads our model incurs, does not by itself constitute a
scalability limitation in most cases. The programs where one partition needs to evaluate
all activation points would correspond to a program where each stream is produced or
consumed by all task activations, or more generally to programs where the task graph is
strongly connected. In both cases scalability cannot be achieved, even disregarding this
overhead.

4.3.3 Parallel Synchronous Execution of the Control Program

One way to simplify the partitioning constraints for the evaluation of activation points
is to rely on a synchronous execution model for the control program. When such an
execution is possible, the implicit order induced by synchrony on the control program
traces will strongly restrict the possible interleavings of the local traces when merging
them. Indeed, for each pair of events, either they happen at the same time or there is a
precedence relation between them.

This restriction is equivalent to enforcing an order for the evaluation of activation
points reached by different executions of NEXTn. In other words, in a given state σ =

120 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

(Ke,Ae,Ao), all activation points in NEXTn(K1, ...,Kn) must complete before a new set
of operations can be obtained with NEXTn(K

′
1, ...,K

′
n).

In this case, the only restriction on evaluation of activation points (π1, ..., πn) =
NEXTn(K1, ...,Kn) is that these activation points will not generate task activations
reading or writing to common streams:

∀i, j ∈ [1, n], i 6= j, ∀(u, s) ∈ {R,W} × S :
(

∀(b, h) ∈ N2, (u, s, b, h) /∈ πi

)

∨
(

∀(b, h) ∈ N2, (u, s, b, h) /∈ πj

)

As the past of each thread is known to all threads in a synchronous execution, which
ensures that the execution of all preceding activation points is complete on all threads
before allowing to start evaluating new ones, we need only ensure that an activation point
does not depend on activation points reached in the same clock tick.

4.4 Execution with Bounded Stream Buffers

Until now, we have relied on the strong simplifying assumption that CDDF programs
executed in an infinite memory space, therefore allowing each stream to dispose of an
infinite amount of memory. This has enabled our model to rely on the single dynamic
assignment property for stream accesses, which can of course not be achieved on real
architectures. The common approach for executing streaming applications in a bounded
memory space is to implement streams as circular buffers instead of infinite arrays, while
using a modulo indexing scheme that allows the program to still perceive single dynamic
assignment. However, with a circular buffer implementation, the data dependence rela-
tions also need to take into account anti and output dependences. This greatly complicates
the synchronization constraints, and the resulting deadlock conditions, to the extent
that we will no longer be able to provide simple and non-restrictive program conditions
for deadlock-freedom. We will call resource deadlocks the new class of deadlocks thus
introduced.

There are two ways to handle this issue: (1) constrain the CDDF program to simpler
classes of programs, like synchronous or cyclo-static dataflow programs, where it is possible
to prove the boundedness or divergence of the amount of memory required by the execution
and even to compute the bound; or (2) rely on a resource deadlock detection scheme and
a dynamic resizing of stream buffers to resolve the deadlock.

The first solution provides the best performance results, but is less general as it not
only imposes very stringent conditions on programs, but it may also fail in deciding on the
boundedness or divergence of the amount of memory required for the program’s execution.
As the problem of finding an upper bound on the amount of memory necessary to buffer
data in communication channels has been very extensively covered, we do not offer here
any improvement over the existing work, neither for computing this bound nor for deciding
on the bound’s existence. For example, Parks provides an analysis and execution scheme
for general Kahn process networks [52], first deciding whether the size of a program is
bounded or diverges, then running with an approximate bound and resizing the buffers

4.4. EXECUTION WITH BOUNDED STREAM BUFFERS 121

when necessary. However, only a small set of CDDF programs fit in the KPN model,
and only such programs would benefit from this result. Though this is not a priority,
at a later stage of the development of our implementation, we may try to apply such
techniques and statically ascertain that a program satisfies the necessary conditions and
rely on its result. In our case, this approach is very difficult to use in practice as our
model is entirely dynamic, so not even a runtime analysis of the taskgraph can conclude
for the remainder of the execution, let alone a static analysis.

The second solution allows all programs to run with some arbitrary initial buffer sizes,
then detects any resource deadlocks and dynamically re-adjusts the size of the buffer of
the streams responsible for the deadlock. This allows to resolve deadlocks as long as
the program does not run out of memory. If all resource deadlocks can be detected and
resolved in such a manner, preferably without incurring a substantial runtime overhead,
this solution becomes significantly more interesting than the first one, even in cases where
the first approach yielded a theoretical bound. Indeed, this bound can be much higher
than what an execution really requires and can exceed the system’s memory size.

Note that this second approach, if tuned to increase conservatively the size of buffers
only when it is the only alternative to resource deadlock, effectively computes a precise
bound at runtime while implicitly also finding one of the schedules that minimize the size
of stream buffers required. Of course, this choice is not efficient, as it also maximizes the
overhead incurred. The buffer resizing policy should, in practice, rely on a geometrical
progression. As we discuss below, this breaks determinism for resource deadlocks, but
still preserves determinism for the other forms of deadlocks as long as there is sufficient
memory to concretize the deadlock state.

In the remainder of this section, we take a closer look at the changes that are required
in the CDDF model in order to account for the new way of modelling streams. We
characterize resource deadlocks and we provide a resource deadlock detection scheme. The
details of the implementation of this algorithm, as well as the buffer resizing scheme, are
discussed in Chapter 6. Finally, we discuss the impact on determinism and in particular
on deadlock determinism.

4.4.1 Characterization of Resource Deadlocks

In the CDDF model, the only ordering constraints enforced on the execution of task
activations are those resulting from the stream prefix order, where the read operations
block the execution of a task activation if data is missing in the prefix of the read
access. The characterization of spurious deadlocks relies on the comparison of deadlock
occurrences between this synchronization scheme and the minimal, necessary constraint
of enforcing flow dependences. In this generalization step, we broaden the data depen-
dences taken into account in the synchronization scheme to include the anti and output
dependences introduced by the reuse of memory locations in buffers. As we still only use
flow dependences as a basis for defining true synchronization requirements, all resource
deadlocks will naturally fall in the spurious deadlock class3.

3Except in case the user is responsible to provide a size for stream buffers. This is an option we keep
as it allows to eliminate the overhead of running the resource deadlock detection algorithm.

122 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

Each stream is initially attributed an arbitrary amount of memory4 which varies during
program execution. We define the function B : Σ × S → N which returns the size of a
stream’s buffer in a given program state. In addition to the stream prefix order, our
new synchronization scheme also enforces the anti-dependences from the reuse of memory
space, which is commonly called the back-pressure, waiting for data to be consumed in a
stream before new data can be produced.

Definition 4.11 (Stream buffer reuse order). In a CDDF program state σ = (Ke,Ae,Ao),
we define a binary relation ≺σ∈ P((Ae ∪ Ao)

2) on task activations as::

a ≺σ a′ , ∃s ∈ S, ∃i, j ∈ N, i− j > B(σ, s) ∧ (R, s, j) ∈ a ∧ (W, s, i) ∈ a′

A task activation a′ that needs to write to index i, in a stream s, needs to wait until
all task activations reading any index j that is less or equal to i−B(σ, s) have completed.
This ensures that, in a stream implemented as a circular buffer of size B(σ, s), all read
operations to the memory location to be written have been executed before overwriting.
Note that the read operations in streams are prefix-closed, due to the construction of such
operations in ξ, which allows to overlook output dependences which are all covered by
flow and anti dependences in this case.

Using this additional constraint, we define the new ordering requirement for executing
a task activation ⋊ ∈ P(A) × A which models the fact that all dependences of a task
activation in terms of the buffer reuse constraint are met by the execution of a set of task
activations:

∀a ∈ Ao,Ae ⋊ a , ∀(W, s, i) ∈ a, ∀j ≤ i− B(σ, s), ∄a′ ∈ Ao, (R, s, j) ∈ a′

And finally we define the relation ⊲⊳∈ P(A)×A merging both the stream prefix order
and the buffer reuse constraint:

∀a ∈ Ao,Ae ⊲⊳ a , Ae ⋉ a ∧ Ae ⋊ a

Once again, the role of the continuation activation is to ensure that all read accesses
that could still be scheduled by the control program are represented within Ao as they
could occur in the continuation of the program. If any such read operation is lagging too
far behind, then write operations that would reuse the memory location are to be delayed
until we know that there can be no further use of the value stored at that particular
stream index, which makes the value dead and preserves the perceived single dynamic
assignment property on stream accesses while allowing to reuse the memory.

The new deadlock conditions can be expressed in terms of the absence of progress
possible in a state σ when replacing the task activation execution rule (EXEC) with:

(EXEC⊲⊳)
Ao = {a} ∪ A′

o Ae ⊲⊳ a

(Ke,Ae,Ao) −→ (Ke,Ae ∪ {a},A′
o)

4In the case of our implementation of the OpenMP streaming extension, this amount is computed
during initialization to ensure that all stream buffers fit in cache.

4.4. EXECUTION WITH BOUNDED STREAM BUFFERS 123

Which allows to define resource deadlocks as deadlocks where no task activation can
execute with (EXEC⊲⊳) while there still are task activations that can execute with (EXEC).

Definition 4.12 (Resource deadlock). A CDDF program is in a resource deadlock in
state σ, and we note RD(σ), if no task activation is ready to execute based on the ⊲⊳
relation in that state, but some activations have all their dependences satisfied:

RD(σ) ,
(

NEXT (Ke) /∈ Π
)

∧
(

Ao 6= {C(Ke)}
)

∧
(

∀a ∈ Ao, ¬(Ae ⊲⊳ a)
)

∧
(

∃a ∈ Ao, Ae⋉a
)

This definition once again allows using the continuation activation to ensure that any
deadlock condition is characterized by a cycle, like in Lemma 3.25, but this time on the
stream prefix order and the buffer reuse constraints.

4.4.2 Resource Deadlock Detection and Resolution

The detection of resource deadlocks is easy to express in terms of global conditions,
as presented in Definition 4.12, but this is not a satisfactory runtime solution because
it requires reaching consensus and waiting for quiescence, both equally expensive and
impractical. It also requires to wait for the control program to run until it reaches a
barrier, or its termination, before any deadlock is concretized, which also does not fit the
notion of a bounded memory space as the size of the set of outstanding activations, Ao,
may diverge.

Therefore, our objective is to provide a detection scheme that does not require global
knowledge of the program state and detects and solves deadlock conditions prior to
deadlock concretization. This means that a deadlock condition like a dependence cycle
should be identified, and possibly broken if resizing the buffers is enough, even when the
control program or another part of the program are still able to make progress. Finally,
we also need to ensure that this detection scheme does not introduce undue overhead and
pressure on the communication subsystem.

The key insight for our deadlock detection scheme is that any deadlock condition
stems from the presence of a cycle of dependences between task activations, this time
including both stream prefix order < (Definition 3.11) and stream buffer reuse order ≺σ

(Definition 4.11). This can easily be proved in a way very similar to Lemma 3.25. As we
do not want to rely on global information, and in particular we want to avoid impacting
the control program, we adopt a runtime state exploration pattern, where some condition
triggers the exploration of the dynamic taskgraph. Since we are not interested in non-
resource deadlocks, the triggering condition is the existence of an activation a that is
impossible to execute because of memory reuse constraints in the original state σ, while
all of its true dependences are satisfied in their over-approximated form:

Ae ⋉ a ∧ ¬(Ae ⋊ a)

In this case, we use the time that the task activation would be stalled waiting for space
to become available in one of its output buffers to explore the taskgraph in search of a
possible cycle. The search runs along all unsatisfied dependences, either the stream prefix

124 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

order or the memory reuse constraint. If such a cycle is found, all the stream buffers that
are full and blocking the execution along this cycle are resized. The search results are
scrapped if the state of any task on the dependences path from the original task activation
changes.

We present, in this section, the high-level view of the Deadlock Detection and
Resolution (DDR) algorithm, which is instantiated in Chapter 6. Many of the models we
use here, like the continuation activation or the tasks viewed as equivalence classes on task
activations, are instantiated through specific runtime information and data structures.

We consider that the overall system memory is able to fit the computation, which
should fall under the programmer’s responsibility. This assumption means that each
“correct” CDDF program must admit a schedule that can execute within the bounds of
the available memory.

In order to model bounded sets of outstanding activations, we extend the definition of
the bound of stream buffers, B(σ, �), to also provide a bound of the number of outstanding
task activations allowed in a given state, B(σ,Ao). We use the same notation despite the
typing discrepancy because, in our case, the implementation of this set relies on streams.

The objective of the algorithm, presented on Figure 4.4, is to detect and resolve
resource deadlocks while ensuring that:

1. The size of stream buffers is only increased when necessary. This is important for
the efficient implementation of streams, as we try to always keep stream buffers in
cache, which allows stream communication to be achieved through cache coherence
traffic, on targets that support it with no external memory access.

2. The size of the outstanding activation set is not allowed to diverge needlessly. This
constraint is less important and we choose to resolve resource deadlocks through
increased outstanding activation sets rather than stream buffer resizing when pos-
sible.

3. The deadlock determinism property is preserved for all but resource deadlocks. This
is the strongest and most difficult constraint for a concurrent algorithm as it requires
to ensure that any non-resource deadlock will lead to the same final deadlock state,
irrespectively of the execution schedule and the way resource deadlocks are resolved.
This is only possible when the concretized deadlock state fits in memory.

The DDR algorithm is executed as soon as a trigger condition is met during the
normal execution of the stream synchronization algorithm, which enforces the stream
prefix order and the memory reuse order. The proof of correctness of the DDR algorithm
relies on showing that, under certain assumptions, it converges in a finite number of steps
towards either executing the task activation that triggered the DDR algorithm or finding
a non-resource deadlock condition.

Proof of the resource deadlock detection and resolution algorithm on Figure 4.4. Wemake
the following assumptions in order to prove the convergence of this algorithm for a task
activation a.

4.4. EXECUTION WITH BOUNDED STREAM BUFFERS 125

The program is in a current state σ, where one thread attempts to execute task activation a ∈ Ao. The
following steps describe the workings of the deadlock detection algorithm.

• If Ae ⋉ a ∧ Ae ⋊ a: execute the task activation. This test is part of the synchronization scheme.

• Otherwise, if ¬(Ae ⋉ a): the task is not executable because of missing input data. Yield to the
scheduler.

• Deadlock detection and resolution trigger condition: Ae⋉a ∧ ¬(Ae⋊a) which means that all input
data is available but the task cannot execute due to lack of space in output stream buffers. This
condition will be re-tested at every step to ensure it still holds. If it is invalidated the algorithm
stops as the task activation becomes executable.

1. If a non-resource deadlock condition has already been identified, so if the step Handle detected

deadlock has been executed once, we deduce from the trigger condition that:

∃a′ ∈ Ao, a′ ≺σ a ⇒ ∃s ∈ S, ∃i, j ∈ N, i− j > B(σ, s) ∧ (R, s, j) ∈ a′ ∧ (W, s, i) ∈ a

We increase the size of the buffer of stream s to fit the data produced by a, setting B(σ, s) :=
i− j + 1.

2. Otherwise, explore the outstanding activations depth-first along all unsatisfied dependence
chains starting at task activation a0 = a, building a chain of activations (a0, ..., ak), where
each consecutive pair is either in the < or the ≺σ relation, until one of the following:

2.1. One of the task activations ai in the chain is executed by another thread. Restart the
search at ai−1. If a0 is executed, abort the search.

2.2. Reaching an executable task activation ak. Execute this activation (or wait until
another thread does). Restart the search for unsatisfied dependences at ak−1.

2.3. Reaching the continuation activation ak = C(Ke).

2.3.1. If the control program can make progress, which changes Ke and therefore C(Ke),
allow the control program to execute and retry from ak−1. We consider that at
least one new activation is generated.

2.3.2. If the control program cannot make progress:

2.3.2.1. If NEXT (Ke) /∈ Π:

2.3.2.1.1. C(Ke) < ak−1 means an insufficiency deadlock. Execute the Handle detected

deadlock step.

2.3.2.1.2. C(Ke) ≺σ ak−1 is a hard anti-dependence. Resize the buffer of the stream
along this dependence to fit the data from ak−1. Retry from ak−1.

2.3.2.2. If ∃a′ ∈ Ao, LP ([a′]∼) 6= ∅:

2.3.2.2.1. If ∃ai ∈ (a0, ..., ak), ai = a′, then either: (1) ∃j ∈ [i, k − 1], aj+1 ≺σ aj where
we choose the highest such j, to resolve the issue closest to the continuation
activation, and we increase the size of the corresponding stream buffer,
then retry from aj ; or (2) ∀j ∈ [i, k − 1], aj+1 < aj which is a lastprivate
insufficiency deadlock: execute step Handle detected deadlock.

2.3.2.2.2. Otherwise, restart the exploration step from a′, to eagerly try and detect
potential lastprivate deadlock conditions, and then retry executing a.

2.4. Reaching a task activation ak that is already present in (a0, ..., ak−1) at the index i,
which means that there is a cycle. In this case, the cycle needs to be broken.

2.4.1. If ∄aj ∈ (ai, ..., ak−1), aj ≺σ aj+1 then this means that we have a cycle on the
stream prefix order alone, which is a non-resource deadlock condition.

2.4.2. Otherwise, increase the size of the buffers of all streams defining a ≺σ relation
between two activations in the cycle.

Figure 4.3: Outline of the resource deadlock detection and resolution (DDR) algorithm
(continued on next page).

126 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

• Handle detected deadlock: once a non-resource deadlock condition is detected, which is not
necessarily a deadlock yet, we set a flag that changes the policy of stream buffer resizing to avoid
converging to a final deadlock state that could occur earlier than in the infinite memory model.

Additionally, at this point, the algorithm has a precise knowledge of the deadlock condition, so a
warning or other form of feedback can be provided on the source of the problem, like an insufficiency
of data produced on a given stream or an unsatisfiable cycle of dependences, causality violation,
etc.

• Independently, the control program can increase the limit for the set of outstanding task activations
if the program is quiescent ∀a′ ∈ Ao, ¬(Ae ⊲⊳ a′), and the set of outstanding task activations has
reached its limit |Ao| = B(σ,Ao).

Figure 4.4: Outline of the resource deadlock detection and resolution (DDR) algorithm.

4.4. EXECUTION WITH BOUNDED STREAM BUFFERS 127

• We assume that that the number of task activations generated by the control
program between the creation of a task activation containing a stream access (u, s, i)
and the creation of any other task activation containing (u′, s, i) is finite. This means
that this property does not hold for programs that are non-terminating and that
produce (resp. consume) data on some stream index, but never consume (resp.
produce) that particular stream index.

• We further assume that a task activation cannot depend, transitively, on an infinite
number of task activations. An infinite dependence chain leading to a task activation
means that it will never be executable, so if there is no deadlock condition, our
algorithm cannot converge. This case only occurs if the program generates an
infinite number of streams, otherwise the number of stream accesses on which an
activation can transitively depend is finite which also ensures that the number of
task activations to which these accesses belong is finite.

We prove the finite convergence of this algorithm by showing that it takes our algorithm
a finite number of steps to ensure that one of the task activations on which the current
task activation a depends is executed or to conclude to a non-resource deadlock5. As we
assume that the set of task activations on which it can transitively depend is finite and
as the number of such task activations is strictly decreasing, the algorithm converges in
a finite number of steps.

Once the algorithm is triggered, it first checks whether a deadlock condition has already
been detected. If such is the case, the algorithm behaves in a relaxed mode, executing
step (1), where it provides any stream with as much space as it requests, even if the
program’s execution could continue without increasing the size of stream buffers. This
avoids converging to a local deadlock state before reaching the maximum deadlock state
that could be reached in the case of unbounded memory.

If no deadlock condition has been found yet, the program will execute (2), where the
algorithm explores the dependence chains leading to task activation a. As we suppose that
there can only be a finite number of task activations on which a can transitively depend,
each such dependence chain is finite. We also know that, as the set of outstanding
activations Ao is finite, the exploration either finds the end of a chain or a cycle of
dependences. We argue that each substep of (2) is finite and no infinite sequence of
substeps can exist before a task activation, on which a depends, is executed.

(2.1) and (2.2) are the execution steps, which inherently decrease the number of
outstanding task activations on which a depends.

(2.3.1) does not decrease the number of outstanding task activations on which a
depends, but instead it serves to allow the control program to generate the missing task
activations. In this case, we have C(Ke) < ak−1 ∨ C(Ke) ≺σ ak−1, which can be rewritten,

5There is an additional possibility, if the buffer resizing scheme fails to allocate more memory, the
algorithm terminates (gives up) but can still provide information on the sizes of streams, which can
be used by developers to identify the source of the error, considering that the program’s execution is
supposed to fit in memory.

128 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

by definition, as:

∃(s, i) ∈ S × N,
(

(R, s, i) ∈ a ∧
(

∃j 6 i, (W, s, j) ∈ C(Ke)
)

)

∨
(

(W, s, i) ∈ a ∧
(

∃j 6 i− B(σ, s), (R, s, j) ∈ C(Ke)
)

)

As the allocation of stream indices to task activations is prefix-closed, the generation
of any (u, s, j), where j 6 i, occurs before that of (u, s, i). Finally, as we assume
that only a finite number of task activations can be generated between any two task
activations containing respectively (u, s, i) and (u′, s, i), we deduce that only a finite
number of iterations of step (2.3.1) are required before all dependences from C(Ke) to ak−1

are materialized in dependences from generated task activations or the control program
becomes unable to make progress. In the former case, the length of the dependence chains
increase, which cannot occur infinitely as we argued above, while in the latter case the
algorithm cannot execute this step any longer.

(2.3.2.1) corresponds to a case where the control program has reached either termi-
nation or a barrier. There are two subcases. The first one immediately concludes to
a deadlock condition and the second one eliminates a dependence C(Ke) ≺σ ak−1 by
resizing the buffer of the stream carrying that dependence. As we require task activations
to be finite, with a finite number of streams, there can only be a finite number of such
dependences, which ensures that a finite number of executions of this step will either allow
ak−1 to execute, or make this step impossible to further execute.

In (2.3.2.2), the control program has generated a lastprivate task activation a′ and can
therefore not make progress until a′ completes. The two subcases consider whether a′ is
in a dependence chain leading to a or not, artificially switching the focus of the algorithm
to a′ if there is no dependence chain between a′ and a, thus implicitly making a depend
on a′. As the dependence chains are finite in the case of a′ as well, the same reasoning
as for a will apply. This step takes a finite number of iterations to either conclude to a
deadlock condition or to execute a task activation on which a depends.

Finally, (2.4) deals with the case where the continuation activation is not reached
during the exploration, and it immediately concludes to either a non-resource deadlock
condition or it resolves at least one dependence, leading in a finite number of steps to
executing one task activation on which a depends.

4.4.3 Deadlock Determinism

The only case where deadlock determinism could be impacted is if the memory available
does not hold the concretized deadlock state, which requires that the control program be
blocked by either a barrier, a lastprivate activation point or the program termination. This
can be resolved by introducing an artificial maximal bound on the set of outstanding task
activations, which would therefore serve as a concretization point, but this can introduce
a new form of spurious resource deadlocks.

4.5. CONCLUSION 129

4.5 Conclusion

In this chapter, we generalized the CDDF model by removing some of the original
simplifying assumptions. We started by allowing communication to occur between the
control program and the streaming tasks, which led to the appearance of the new class of
lastprivate spurious deadlocks, we proved that these deadlocks can be avoided under con-
ditions summarized on Table 4.1. In a second step, we analyzed the ordering constraints
required to allow the parallelization of the control program, and provided a simple runtime
algorithm for partitioning the evaluation of activation points among multiple threads of
execution while preserving the semantics of the program. This is not entirely sufficient
to ensure scalability, but it provides a mitigating solution, that does not rely on static
analyses that may fail, and it also sets the groundwork for designing static analyses, in
Chapter 5, to enable a more satisfactory form of control program parallelization presented
in Section 5.4. Finally, we removed, in Section 4.4, the assumption that memory is
unbounded. This introduces a last form of deadlocks, resource deadlocks. In order to
avoid this type of deadlocks, for which we cannot prove any sufficient freedom condition for
general CDDF programs, we introduced a deadlock detection and resolution algorithm.

130 CHAPTER 4. GENERALIZATION OF THE CDDF MODEL

Chapter 5

Control-Driven Data-Flow Semantics
of Dependent Tasks in OpenMP

At the confluence between the OpenMP stream programming model, presented in Chap-
ter 2, and the control-driven dataflow model of computation, presented in Chapters 3
and 4, this chapter presents the application of CDDF properties to OpenMP streaming
programs. We first show how our stream-computing extension to OpenMP implements the
CDDF model and discuss the discrepancies. In a second step, we provide a static analysis
framework for streaming annotations to apply the results proven in the CDDF model
to OpenMP streaming programs. Finally, we show that this static analysis framework
also enables relying on more efficient stream communication synchronization code (in
Chapter 6), compiler optimizations, including control program parallelization, and the
generation of optimized activation point evaluation code (in Chapter 7).

A la confluence entre notre modèle de programmation streaming, présenté au chapitre 2,
et le modèle de calcul Control-Driven Data-Flow, présenté dans les chapitres 3 et 4, ce
chapitre étudie l’application des propriétés CDDF aux programmes écrits avec l’extension
streaming d’OpenMP. Nous montrons tout d’abord que cette extension est compatible avec
le modèle CDDF, à quelques divergences près, que nous analysons. Nous décrivons ensuite
un ensemble d’analyses statiques des directives de compilation dédiées au streaming,
qui permettent d’appliquer les résultats prouvés dans le modèle CDDF aux programmes
streaming OpenMP. Nous montrons enfin, dans ce chapitre, que ces analyses statiques
permettent aussi : de faire appel à un algorithme optimisé pour la synchronisation des
communications, présenté au chapitre 6, d’appliquer des optimisations de compilation,
avec en particulier la parallélisation du programme de contrôle, et de générer du code
optimisé pour l’évaluation des points d’activation des tâches, au chapitre 7.

5.1 Introduction

The objective of the CDDF model is primarily to represent OpenMP streaming programs
in order to reason about their properties. This is an important step, that ensures that
such programs have a well-defined behaviour and allows to prove that desirable behaviours

131

132 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

can be guaranteed by satisfying some simpler, possibly static, conditions. However, this
does not show that such conditions are satisfied by a given program. This would require
developing new, ad hoc, static analysis techniques, and implementing them, which is of
little interest if we can avoid it. A better solution is to find common ground between
the conditions we wish to infer from the program source and the conditions required by
existing program optimization techniques. We adopt this approach to re-use and adapt
existing static analysis techniques commonly used in optimizing compilers, like dataflow
analysis [38] and array dataflow analysis [9,22], as well as existing compiler intermediate
representations, in particular the single static assignment form [20]. Indeed, we show that
small adjustments to these techniques let us analyze properly OpenMP programs using
our streaming features from Chapter 2 and to infer whether the sufficient conditions from
Chapter 3 are satisfied or not.

We further rely on these static analysis tools in order to enable both our own code
generation in GCC and runtime optimizations, which we discuss in Chapters 6 and 7, and
some existing compiler optimizations which allow, for example, to parallelize the control
program. Central to our optimization framework is the notion of regular tasks, which
we define as tasks that present a closed-form relation between their stream accesses and
their activation indexes. Such tasks can use simpler, faster synchronization mechanisms
and require less control program side code generation. Detecting regular tasks is therefore
essential if we are to efficiently exploit streaming programs and bridge the gap between our
highly expressive programming model and the performance of simpler, more restrictive,
stream programming languages.

Our objective in this chapter is to set the groundwork for the efficient implementa-
tion of the necessary runtime support and code generation for our OpenMP streaming
extension. The first issue we have to deal with is that, while the CDDF model is built in
the perspective of modeling OpenMP streaming programs, the abstractions required to
simplify its representation and allow the proof of properties has led to some discrepancies.
The representation of an OpenMP streaming program as a CDDF program results in
the loss of some information, more specifically the work function of an OpenMP task is
abstracted away in the CDDF model. In order to benefit from the properties proven on
the CDDF model for OpenMP programs, we first need to reconcile the model and the
language.

This chapter is organized as follows. Section 5.2 presents the relation between our
stream programming language and the CDDF computational model. It presents the
simple mapping between the model and the language and discusses how their discrepancies
are reconciled. Section 5.3 explores the requirements, in terms of static analysis, of our
code generation framework and shows how this can be achieved with existing analysis
tools. Finally, Section 5.4 details the case of control program parallelization.

5.2 OpenMP Streaming as an Instance of the CDDF

Model

In this section, we describe the way our stream-computing extension to OpenMP im-
plements the CDDF model. The mapping between our programming language and

5.2. OPENMP STREAMING AS AN INSTANCE OF THE CDDF MODEL 133

our computational model is rather obvious for the most part, but some adjustment is
necessary to account for some specificities of the semantics of the OpenMP language and
our streaming extension. These specificities work both ways, in some cases we need to
ensure that the hypotheses made in the CDDF model are satisfied by the semantics of
OpenMP tasks, while in other cases the programming model’s semantics allows us to
provide stronger properties.

We recall that the CDDF model is entirely structured around the notion of control
program, in which we only focus on activation points and barrier operations. The CDDF
control program naturally models the main OpenMP program, which serves as a driver
for the rest of the computation. Its execution is modeled by the oracle function NEXT,
and the activation point evaluation function ξ, see Definition 3.8 in Section 3.2.1. In
the remainder of this section, we first show that activation points reached by the NEXT
function properly model OpenMP streaming task directives reached by the control flow
of the main program. We then proceed to compare OpenMP streaming tasks and their
model, as well as the semantics of streams. Finally, we discuss some of the important
impacts of OpenMP semantics on this instance of the CDDF model, in particular showing
that the explicit parallelization of the control program is greatly simplified.

5.2.1 From OpenMP Task Directives to CDDF Activation
Points

We defined activation points, in Definition 3.5 on page 62, as sets of descriptors of stream
access operations. These descriptors are tuples specifying for a given stream, and a given
direction (read or write), the amount of data to be accessed and discarded, which is
the shift of position in the stream before the next activation point. The semantics of
the streaming clauses, input and output, that we added to OpenMP tasks, is exactly the
same. The clause itself encodes the direction of the operations, read for input and write for
output, the stream identifier is explicit in the clause, and finally the stream access window
provides the information on the burst and horizon of this descriptor. The equivalence is
illustrated by the example on Figure 5.1.

The direct translation of streaming clauses into stream access descriptors, presented
on Figure 5.1, also matches the restrictions we imposed both in the programming model
and the computational model on the accepted values for bursts and horizons. This defines
the conversion of task directives and their streaming clauses to CDDF activation points.

Figure 5.2 provides an example of the CDDF model of a simple OpenMP streaming
program. In this example, a first task produces data on a stream x which is read by
two tasks that interleave their read accesses to this stream. All tasks are executed twice
because of the iteration space of the enclosing loop. The equivalent CDDF control program
trace that will be generated contains six activation points and a final implicit barrier that
comes from the semantics of the OpenMP parallel region.

The first observation we make on this toy example, and more generally on OpenMP
programs, is that unlike the general view of activation points in the CDDF model,
activation points can be extremely regular, in particular when burst rates and horizons
are constant. This allows defining closed-form expressions for the indexes of stream access

134 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

// General case:

int stream, window[horizon];

input (stream >> window[burst]) −→ (R, stream, burst, horizon)

output (stream << window[burst]) −→ (W, stream, burst, horizon)

// Shorthand versions:

int x;

input (x) −→ (R, x, 1, 1)

output (x) −→ (W, x, 1, 1)

firstprivate (x) −→ (R, x, 1, 1)

lastprivate (x) −→ (W, x, 1, 1)

Figure 5.1: Streaming clauses as descriptors of stream accesses in activation points.

patterns, therefore strongly simplifying the parallelization constraints for the control pro-
gram by avoiding the stateful evaluation of activation points, as discussed in Section 4.3.
Furthermore, the construction of activation points from streaming clauses ensures that
their evaluation will lead to finite sets of stream accesses, thus finite task activations, which
is one of the assumptions we relied on for the proof of the resource deadlock detection
algorithm, in Section 4.4.

A second observation is that this example highlights one of the main differences
between the CDDF model and OpenMP task directives: in the CDDF model we have
completely abstracted away the work function, which corresponds, in the case of OpenMP
streaming tasks, to the block of code which is annotated with the task directive. This
work function is a completely syntactical notion, and both consumer tasks could even have
the same code as in the example, yet those tasks are indeed differentiated in OpenMP.
The names of the functions called within tasks, bar in our example, is irrelevant with
respect to OpenMP as it considers each task construct to define its own work function,
irrespectively of possible similarities with other tasks. This is of little consequence for
the semantics of activation points and task activations, but it changes the notion of task.
The resulting activation points in the CDDF model of the program, (π2, π3) and (π5, π6),
are indistinguishable and would be evaluated into task activations that would fall in the
same equivalence class, so the same CDDF task.

5.2.2 OpenMP Tasks vs. CDDF Tasks

Let us first remark that the CDDF definition of task activations is simply a set of
stream access operations. This correlates directly with OpenMP streaming tasks, where
we disregard all non-streaming specific information, like non-streaming clauses and the
associated memory operations or the work-functions themselves.

As mentioned above, the main difference between CDDF and OpenMP tasks is that
OpenMP tasks are syntactically differentiated, so two tasks are always distinct, even

5.2. OPENMP STREAMING AS AN INSTANCE OF THE CDDF MODEL 135

int x, X[2];

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < 2; ++i)

{

#pragma omp task firstprivate (i) output (x << X[2])

{

X[0..1] = foo (i);

}

#pragma omp task input (x)

bar (x);

#pragma omp task input (x)

bar (x);

}

} // implicit barrier at end of parallel region

// Leads to a control program generating the trace

// (π1.π2.π3.π4.π5.π6.barrier)

Where

π1 =
{

(R, i, 1, 1), (W,x, 2, 2)
}

π2 =
{

(R, x, 1, 1)
}

π3 =
{

(R, x, 1, 1)
}

π4 =
{

(R, i, 1, 1), (W,x, 2, 2)
}

π5 =
{

(R, x, 1, 1)
}

π6 =
{

(R, x, 1, 1)
}

Figure 5.2: Example of an OpenMP streaming program and its CDDF model.

if they are identical in all respects, while CDDF tasks are equivalence classes on task
activations which disregard the work-function associated with the streaming task. For this
reason, CDDF tasks can overlap multiple OpenMP tasks as is the case, in the example on
Figure 5.2, for the second and third tasks. Indeed, in this case, the activations of these
two tasks would be in the same equivalence class and therefore belong to the same CDDF
task.

We identify three different, partially overlapping, notions of tasks:

OpenMP task construct – static task represents a purely syntactical and hence
static notion of task. In OpenMP, it also implicitly defines the work function,
which is the syntactical body of the task construct. Unless otherwise specified, we
refer to such constructs as OpenMP tasks or static tasks.

OpenMP task instance is a task activation. It represents the dynamic instantiation of

136 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

an OpenMP task construct, spawned when the control flow of an execution thread
encounters a task construct.

CDDF task from Definition 3.35, only looks at the stream communication. It is defined
as an equivalence class on input and output streams that disregards the work
function. For this reason, it can overlap multiple OpenMP task constructs, as
is the case in the example on Figure 5.2 for the two last OpenMP task constructs.

It is important to note that the reverse is also true, and a single OpenMP task
construct can overlap multiple CDDF tasks, when an array of streams is used and
the subscript in this array is not static. Let us consider the following example.
int A[2];

for (i = 0; i < 2; ++i)

#pragma omp task output (a >> A[i])

a = ...;

In this case, the static task construct translates to two activation points, each
communicating on a different stream. The resulting task activations belong to two
distinct equivalence classes on the ∼ relation, from Definition 3.35, and therefore
they belong to two distinct CDDF tasks.

Streaming task is the pragmatic association of a CDDF task with a work function,
and therefore with an OpenMP task construct. In the example above, the single
OpenMP task construct leads to two streaming tasks, one communicating on stream
A[0] and the other on A[1]. In the example on Figure 5.2, the last two task
constructs are seen as a single CDDF task, but despite having a similar body, they
are syntactically distinct and therefore produce two streaming tasks.

Streaming tasks are the prevailing notion in the implementation-oriented Chapters 6
and 7.

This difference between the notions of tasks constitutes the only major weakness of
the CDDF model to closely model OpenMP streaming. Indeed, we have based the notion
of task causality on the CDDF notion of task, which means that multiple OpenMP tasks
would need to be causal together, so that there would be no causality chain going back-
wards in the task order when considering the control program order for task activations
across all OpenMP tasks that belong to the same CDDF task. In other words, the control
program order should be a viable schedule not only for the execution of instances of the
same task, but for groups of tasks. On the previous example, on Figure 5.2, task causality
should require that at least one schedule be admissible, where the task activations of the
same OpenMP task execute in order (e.g., π2 before π5 for the second task). However,
once we convert to the CDDF model, the requirement spans across both the second and
third task, therefore requiring that π2 can be scheduled before π3 itself scheduled before
π5 and then π6 in at least one admissible schedule. This much stronger constraint should
be avoided.

Our objective is to keep the weaker task causality condition on OpenMP tasks, where
the condition only applies to individual task constructs. This proves to be quite easy,

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 137

despite the discrepancy in the notion of task causality between the CDDF model and
OpenMP, as we have always used the notion of task causality in conjunction with a
restriction for such tasks to only communicate on streams that are either single-producer
or single-consumer. This means that all OpenMP tasks that are both producers and
consumers of data are equal to the CDDF task. This comes from the definition of CDDF
tasks as equivalence classes, and noticing that the task being either single-producer or
single consumer on some stream will lead to the activations of this task belonging to
an equivalence class of their own. The only issue remaining is for tasks, as is the case
on Figure 5.2, that are either only consumers or only producers. In this case, we can
no longer have an equivalence between OpenMP tasks and CDDF tasks, but instead we
can simply show that the existing properties guaranteed under task causality are trivially
correct for source and sink tasks.

We do not detail the proof here, but it is easy to observe that source tasks, that only
produce data, can only lead to resource deadlocks. This comes from the fact that their
activations are ready to execute as soon as they are generated, being independent of all
other task activations. As resource deadlocks only exist in the case of bounded stream
buffers, and they are handled dynamically, this does not modify the deadlock-freedom
results involving task causality. On the other hand, sink tasks only read data without
producing anything. For this reason, no task activations can depend on activations of
sink tasks, which means that any task activation of a sink task is at the end of a causality
chain. Only insufficiency deadlocks can occur for sink tasks, which preserves the results
involving task causality in the CDDF model.

Another simple way to show that source and sink tasks do not pose any problems
for task causality is to note that their activations can only be at the beginning or at the
end of causality chains, therefore precluding any CDDF task causality violation which
requires task activations from the same equivalence class to be both at the beginning and
the end of a flow dependence chain. For this reason, all schedules of source and sink tasks
are causal according to Definition 3.39, on page 89, of task causal schedules.

5.3 Static Analysis of OpenMP Streaming Programs

Our static analysis of OpenMP streaming programs is not intended as a substitute for
other program analyses, but rather as a way of understanding the information provided by
OpenMP streaming clauses to determine some important properties either at the program
level or more locally at the task level. This analysis will serve as a basis for deciding the
appropriate code generation for each task and the optimizations that can be performed.
In general, we ignore the underlying sequential C code and only focus on the OpenMP
streaming annotations, which has the advantage of simplifying our analysis, relying on
assumption that the compiler pragmas, inserted by the programmer, are correct and
consistent with the code of OpenMP tasks.

In this section, our objectives are to decide statically whether a program satisfies
the conditions exhibited in the CDDF model and to identify tasks or communication
patterns that are susceptible to allow aggressive compiler optimizations. We first start
by characterizing regular and irregular streaming tasks and we propose a static analysis
technique for identifying regular tasks, even in the presence of dynamic communication

138 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

patterns. We then present a simple algorithm for building a static over-approximation
of the program task graph, which we further use, as discussed in Chapter 3, to evaluate
conservative conditions for some of the CDDF deadlock-freedom properties. Finally, we
discuss some pragmatic ways to remove or optimize communications between tasks and
the control program.

5.3.1 Regular and Irregular Streaming Tasks

Our programming model allows a very high level of freedom in the communication patterns
that can be used, in particular because of the duality of our understanding of OpenMP
tasks, simultaneously as the short-lived task model used in the current specification of
OpenMP and which we model as a task activation, and also as a long-lived, persistent
and regular process which is often called filter in related work. We model the latter
as an equivalence class on task activations, which means that the same syntactic task
construct in an OpenMP streaming program can actually represent multiple such filters,
which we call streaming tasks. This is best illustrated by the pattern of dynamic pipeline
of filters on Figure 2.16. The number of streaming tasks generated by a single OpenMP
task construct is entirely dynamic, bounded only by the number of possible combinations
of streams on which this construct can communicate. This number does not only depend
on the control flow, but possibly even on program input.

Allowing completely dynamic tasks and communication patterns in our model al-
lows for unchecked expressiveness, but also comes at a cost in terms of optimization
opportunities. In the general case, the behaviour of our programs cannot be statically
analyzed, which inhibits most of our performance optimizations. However, we show that
this can be overcome, at least in the case of regular applications, by applying simple
data-dependence analysis techniques that we slightly adapt to our needs. Note that such
regular applications simply correspond to the applications that can be written in other
stream programming languages where the communication patterns are restricted. In
general, common streaming applications, like for instance digital signal processing, tend
to be highly regular, as demonstrated by the reliance on less expressive programming
models for such programs.

We define regular tasks as tasks that communicate through streams where the stream
access indexes can be expressed as closed-form linear expressions of the number of past
activation points belonging to the same CDDF task, which we call the task activation
index. We also require that such patterns be detected during program compilation, which
means that we conservatively reject as irregular all other tasks, where the pattern could
not be found.

We write K′
e ⊑ Ke if K

′
e is a prefix of the trace Ke. We note ǫ the empty trace.

Definition 5.1 (Regular task). A task t is regular in a CDDF program in a state σ =
(Ke,Ae,Ao) if for each stream s it connects to, and for each direction u ∈ {R,W} of such
connections, there exist two positive integer constants B〈t,u,s〉 and D〈t,u,s〉 such that:

∀K′
e ⊑ Ke,

∑

π∈K′

e

(u,s,b,h)∈π

b = B〈t,u,s〉 ·
∣

∣

∣

{

π ∈ K′
e | ξ(ǫ, π) ∈ t

}

∣

∣

∣
+D〈t,u,s〉

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 139

This expression relates directly to the definition of the activation point evaluation
function ξ, from Definition 3.8, and more specifically to the computation of the indexes
of stream accesses that constitute a task activation. The two constants represent the
implicit burst perceived by the task on a given communication channel B〈t,u,s〉 and its
delay D〈t,u,s〉.

In the general case, the computation of the schedule of stream access indexes in ξ
requires computing a sum, on the set of past activation points, of all the bursts b where
the direction u and the stream smatch. For regular tasks, it is only necessary to know how
many activation points of a given task t occurred in the trace prefix. This statelessness
appears on the right side of the expression in the form of the ǫ, which is the empty trace,
in the evaluation function ξ.

We say more generally that a task is regular in a program if it is regular in each
admissible state of the program.

This definition relies on the stronger CDDF notion of tasks, but we can easily see
that this has a limited impact and that we can replace it with OpenMP streaming tasks.
When tasks communicate through streams identified by scalar variables, we identify four
possible cases where we can infer task regularity from static analysis:

1. The simplest case corresponds to tasks that only communicate through single-
producer single-consumer streams, with an exception that we will discuss shortly
for delay patterns, and use constant bursts.

2. The second case allows multi-producer multi-consumer streams, but requires that all
other tasks that interleave their stream accesses share the same control dependence,
also using constant bursts.

3. The third case is a generalization of the second one. It does not require secondary
producers or consumers to be in the same control dependence, but all tasks must be
in a static control relative to each other, which allows to statically determine their
relative interleaving patterns. Bursts should also be constant.

4. Finally, the bursts can be allowed to vary provided that this variation presents a
cyclical pattern that can be identified statically.

Note that, in this context, we are not interested in the behaviour of producer/con-
sumer relations, but rather producer/producer and consumer/consumer relations on tasks
sharing the same streams. In our analysis, the body of a task is not taken into account
and is considered to be a black-box for which the OpenMP directive entirely specifies
the behaviour. The analysis will therefore exclusively bear on stream variables; access
windows only serve as a syntactic tool within the bodies of streaming tasks.

Let us consider the example presented on Figure 5.3, where we illustrate the two first
cases of regularity. First of all, note that all of the bursts used here are constant, so this
condition is satisfied for all tasks.

The first regularity condition further requires that tasks be single-producer or single-
consumer of the streams on which they communicate. This can be very easily verified
statically, when streams are represented as scalar variables, using simple scope analysis on

140 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

int a, b, c; // Scalar streams

int w_in[3], w_out[2]; // Stream access windows

int delay[2]; // Window used to implement a delay operation

// Implement a delay of 2 values on stream ‘‘a’’

#pragma omp task output (a << delay[2]) // (t1)

{

delay[0] = ...;

delay[1] = ...;

}

for (i = 0; i < N; ++i) {

#pragma omp task output (a) firstprivate (i) // (t2)

a = ... i ...;

#pragma omp task output (c) firstprivate (i) // (t3)

c = ... i ...;

if (condition()) {

#pragma omp task input (a >> w_in[1]) output (b << w_out[2]) // (t4)

foo (w_in, w_out);

#pragma omp task input (a >> w_in[1]) output (c << w_out[2]) // (t5)

bar (w_in, w_out);

}

#pragma omp task input (b, c) // (t6)

use (b, c);

}

Figure 5.3: Example of regular and irregular tasks in the case of scalar streams.

stream variables, to determine if, for instance, the stream variable a used in the first task’s
output clause is the same as in the second task. If a stream variable appears in more than
one clause of a given type, then the stream is either multi-producer or multi-consumer.
In our example, only the last task is regular based on this condition as streams b and c
are consumed only by this task.

The case of the first and second tasks is particular in that the first task implements
a delay pattern, providing two initial values on stream a. For this reason, when it is
possible, based on stream variable scoping, to know that this task only has one activation
for the lifetime of the stream variable, its semantics are captured by the constant shift in
the linear expression with D〈t2,W,a〉 = 2 for the second task. If this can be determined,
then the first and second tasks are also regular. We must also note that the semantics of
firstprivate and lastprivate clauses is always regular, as they correspond to single-producer
single-consumer streams by definition. A more common case of dynamic delays occurs
when there is a barrier, as it guarantees that the prefixes of all streams up to the highest
reached index are closed. A dynamic delay can then be used for the rest of the computation
on all streams to model the past of the execution, so it is possible to have, after a barrier,

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 141

regular tasks communicating on streams that were not fit before the barrier.

The remaining third, fourth and fifth tasks are more complicated. Indeed, the third
and fifth are both producers of stream c, while the fourth and fifth are consumers of
stream a. To complicate matters further, the latter are both nested in dynamic control
flow, predicated by the evaluation of a condition function. In this case, the second
regularity condition applies to the fourth and fifth tasks with respect to stream a as
they have the same control dependence. What happens in this case is that despite the
impossibility to know statically when these tasks activate, we know that if one activates, so
does the second one. This means that the linear closed-form relation allowing to compute
the stream access indexes for the read operations in stream a can be simply determined.
Indeed, the multiplier constant B, which we will call the perceived burst, is the sum of
the bursts of tasks four and five and the delay D is null for the fourth task and equal to
one burst of the fourth task for the fifth task. If we call i4 the counter of task activations
of the fourth task t4 and i5 that of t5, then the base offsets are respectively 2 ∗ i4 + 0 for
t4 and 2 ∗ i5 + 1 for t5. As stream a has a closed-form solution for these consumers, the
fourth task is regular, being the only producer of the stream b. However, the fifth task
is not regular because there is no chance of finding a closed-form pattern for its access
indexes on stream c. Indeed, the interleaving on c between t3 and t5 is dynamic because
of the predicate.

Even when they are nested in dynamic control flow, like tasks four and five in
our previous example, regular tasks benefit from the buffering semantics of our stream
communication, which avoids holes in the stream buffers. This means that the activations
of such tasks are executed over a downsampled iteration domain with respect to the loop
nest they belong to in the original code, but they only perceive the iterations where
such tasks are indeed reached. On their local iteration space, they access streams in the
form of contiguous arrays indexed linearly using the expression from Definition 5.1, which
enables us to aggressively aggregate both data and work and to generate code that can
be further optimized (e.g., vectorized across multiple task activations) by the compiler.
These optimizations and opportunities for more efficient code generation are presented in
Chapters 6 and 7. An important additional benefit of regular tasks is that the evaluation
of activation points is stateless and can be implicitly done during the execution of the
activation itself. Indeed, the control program can do as little as incrementing1 a counter
that dynamically expands the iteration domain of a given task. This allows to exploit
parallelism, when available, in the control program, by simply making the incrementation
operation atomic.

On the other hand, irregular tasks are much harder to optimize and we need to rely
mostly on runtime techniques for orchestrating their execution. For this reason, we often
distinguish between these two types of tasks and rely on separate runtime and code
generation algorithms when dealing with irregular tasks.

The more complicated cases of regularity, cases 3 and 4, are in certain aspects similar to
cyclo-static data-flow [13], where the strict regularity of synchronous data-flow programs

1This must be done atomically when the task is activated by concurrent control program threads. The
evaluation of activation points is not entirely stateless in this regard, but the order of evaluation is no
longer important as long as atomicity is ensured.

142 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

is relaxed by only requiring that regular patterns appear in the form of static cyclic
behaviour. We do not address these cases in the scope of this dissertation.

While the static analysis required to decide the regularity of tasks is very simple in
the case of scalar stream variables, this is not usually the case when the program uses
arrays of streams or broadcast arrays for communication. In the next section, we discuss
some simple cases where static analysis can determine the regularity of tasks using such
communication patterns.

5.3.2 Arrays of Streams and Broadcast Arrays

The analysis of communication patterns involving arrays, either as arrays of streams or
as broadcast arrays, is more complicated, in particular because a single task directive
can represent multiple CDDF tasks depending on the subscripting expressions in arrays
of streams. Exact array analyses exist, and we see below that they can be successfully
applied in our case, but they are not absolutely necessary to decide the regularity of tasks.
We discuss the application of array dataflow analysis [22] to OpenMP streaming tasks in
Section 5.4.2.

In this section, our objective is to provide a simple static analysis technique that
determines, in common cases, the regularity of tasks using arrays of streams. While less
precise than exact array dataflow analysis, this technique is also less restricted as it covers
cases where array subscripts are not affine.

Firstly, let us recall that task regularity is fundamentally a question of the possibility
of expressing stream access indexes as closed-form affine expressions. This is true when
constant bursts are used on single-producer single-consumer streams, and we restrict the
current analysis to this simple case for the sake of brevity. The constant burst property
is often statically decidable, so our main objective is to decide whether, for instance, the
streams used to build a dynamic pipeline are all single-producer and single-consumer.

Let us consider the example on Figure 5.4, where an array of streams A is used to
communicate between a statically undefined set of dynamic tasks generated by the inner
loop on j and the indirect subscript expressions using the array B. At first sight, static
analysis of this type of subscripts fails in general for dataflow analysis techniques. How-
ever, our case is slightly different, and we do not require precise information to conclude
because flow dependences are implicitly synchronized by stream communication and we
only need to know if it is possible that the second task construct would communicate
in non-regular patterns. This would happen if, for example, the task reads on the same
input stream and writes on different streams. It would imply that the two task activations
belong to different CDDF tasks, therefore making the input stream multi-consumer.

From this, we deduce that the condition that must be verified is that the set of CDDF
tasks T covered by a given OpenMP task construct must have non-overlapping sets of
input and output streams:

∀t, t′ ∈ T, t = t′ ∨ I(t) ∩ I(t′) = ∅ ∧ O(t) ∩ O(t′) = ∅ (5.1)

Indeed, this ensures that no stream is either produced or consumed by more than one
CDDF task in this construct, recalling that we are only concerned here with a single,

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 143

isolated, task construct. The interaction with the rest of the program must be handled
separately.

Proposition 5.2. To guarantee property (5.1), a necessary and sufficient condition is the
existence of bijections between each pair of effective streams used in the streaming clauses
of a task construct. In other words, if the stream used in one streaming clause of the task
construct is set, then this stream uniquely determines the streams in all other streaming
clauses. In the case of the task construct presented below, the CDDF tasks verify (5.1) iff
S1[a] uniquely determines S2[b] and conversely S2[b] uniquely determines S1[a].

#pragma omp task input (S1[a] >> view1) output (S2[b] << view2)

Proof. To prove this, one needs only consider that in the absence of a bijection between
any pair of streams in streaming clauses, one of the sets of effective streams is of lower
cardinality and therefore leads to a re-use of the same stream between different CDDF
task, which immediately invalidates property (5.1). In our example above, if there are
two possible values of S2[b] for a given choice of S1[a], then that specific stream S1[a]

is multi-consumer as it belongs to two distinct CDDF tasks. The reverse is true by
construction as the presence of such bijections immediately guarantees the independence
of equivalence classes as it yields, by Definition 3.35 of the CDDF tasks as equivalence
classes on the sets of input and output streams:

∀t, t′ ∈ T,
(

I(t) ∩ I(t′) 6= ∅ ∧ O(t) ∩ O(t′) 6= ∅
)

⇒ t = t′

There is a particular case is of interest, where the same array of streams is used in
multiple streaming clauses of the OpenMP task construct, in our example when S1 ==

S2. If such is the case, the condition from Proposition 5.2 becomes a requirement for
bijections between the subscripts used in the different clauses relying on the same array
of streams.

We must stress that this condition only applies to single task constructs and the
presence, as in Figure 5.4, of additional task constructs communicating through streams
in the same array, need to be handled separately. Also note that if different arrays
of streams occur in different streaming clauses, the condition remains unchanged as it
merely requires that the actual streams used be interdependent.

The problem with the condition from Proposition 5.2 is that it is hardly applicable
to static analysis. However, most common cases can be covered by simply eliminating
common subexpressions in stream array subscripts. As we only need a bijection between
the image sets of both subscripts, the trivial bijection on Figure 5.4 is a function f defined
on the set of values stored in the array B and with values in that same set where all values
are incremented by one: f(x) = x+ 1.

This ensures that, as far as the second task construct is concerned, there is no multi-
producer or multi-consumer streams involved. In order to decide whether this is also
the case when factoring in the first and third task, it is necessary to also analyze the
interaction with other OpenMP task constructs, which is much harder. A rather ad hoc
solution, for the common case illustrated by our example, is to consider the constraints

144 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

int A[K]; // Array of streams

int B[K]; // Array of subscripts (not necessarily a permutation)

int w_in[3], w_out[2]; // Stream access windows

B[0..K-1] = ...; // Compute a dynamic map of subscripts

for (i = 0; i < N; ++i) {

#pragma omp task output (A[0] << w_out[2]) firstprivate (i)

foo (w_out, i);

for (j = 0; j < K-1; ++j) {

#pragma omp task input (A[B[j]] >> w_in[2]) \

output (A[B[j] + 1] << w_out[2])

{

bar (w_in, w_out);

}

}

#pragma omp task input (A[K-1] >> w_in[1])

use (w_in);

}

Figure 5.4: Identifying single-producer single-consumer streams in arrays of streams.

on the subscripts in the second task construct, originating from the bounds of accesses to
array A:

{

0 6 B[j] < K

0 6 B[j] + 1 < K
⇒ 0 6 B[j] < K − 1

This implies that the set of output clauses of this task construct is limited to subscripts
in [1, K − 1] and that the set of input clauses only touch subscripts in [0, K − 2]. This
allows to conclude that there is no overlapping with the first and third constructs, therefore
validating that each stream in the array A is single-producer and single-consumer stream
and all tasks are regular, even though the number of tasks cannot be known statically as it
depends on the number of distinct values stored in B. Note that there is no need to know
that each stream in the array is used, so if for example the array B only contains zeroes,
then there is only one CDDF task associated with the second OpenMP task construct.

This type of analysis is very restricted, but it corresponds to many cannonical uses
of the dynamic pipeline of filters pattern. In particular, this pattern apears in this form
in one of our applications, FFT, which is presented in Section 8.4. This analysis can be
applied to our implementation of FFT.

If the stream initiating the pipeline, which is A[0] on Figure 5.4, or that exiting the
dynamic pipeline, A[K−1] here, rely on a subscript that cannot be statically evaluated, the
analysis may fail. However, such cases should not be common. If there are intermediate
results that come out of the pipeline, they would generally rely on a different array
of streams. Finally, this analysis is only necessary for optimization. If it fails, we
conservatively fall back to considering all tasks communicating over arrays of streams as

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 145

irregular. The program will still properly compile and execute, relying on the techniques
presented in Sections 7.2 and 7.3, where we provide a fall-back code generation framework
that relies on no static analysis.

5.3.3 Static Over-Approximation of the Dynamic Task Graph

One of the important program representations used in the CDDF model is the dynamic
task graph, that is used to check deadlock conditions based on properties such as the
absence of strongly connected components (SCC) or the reachability of a lastprivate task
from a multi-producer and multi-consumer stream. The task graph naturally emerges from
the underlying model by assimilating CDDF tasks to vertices and streams to edges. The
problem with this approach is mainly that the task graph cannot be determined statically,
in particular because of the possible presence of dynamic control flow predicating the
activation of a task, which can lead to the task never existing during an execution, or
because of the use of arrays of streams, which can generate a dynamic number of tasks
with a statically undecidable connection pattern. A simple solution to this issue is to
build an over-approximation of the dynamic task graph that covers all possible dynamic
task graphs.

Our over-approximation scheme relies on hiding all dynamic communication patterns
in opaque aggregated supernodes and superstreams. Supernodes typically correspond to
groups of CDDF tasks that cannot be statically differentiated, as is the case in the example
on Figure 5.4 for the second task construct, and superstreams are generally all streams
within an array of streams. The only things that matters for such special vertices and
edges is the way they connect with the rest of the graph and whether there is a self-loop.
The latter is conservatively always present unless it can be proven to be otherwise. A
second over-approximation consists in hiding the control flow enclosing OpenMP tasks,
which could mean that some tasks are absent in the dynamic task graph at some point of
the execution, yet in the static task graph all tasks are conservatively represented.

The static task graph is naturally represented, as presented in Definition 3.36, as a
directed hypergraph:

H =
(

T, S
)

where S ∈ P(T)2

In our context, the set of tasks T is not a set of CDDF tasks, but rather a set of syntactic
OpenMP task constructs, which can correspond to either multiple CDDF tasks, when the
task construct is really a supernode, or to only a part of a CDDF task, when multiple
syntactic task constructs have identical communication channels. The set of streams is
abstracted to only represent relations between tasks, a stream s ∈ S is defined as a set of
producer tasks P (s) and a set of consumer tasks C(s).

Figure 5.5 presents a very simple algorithm for building our static task graph over-
approximation. It does not require any context information, relying on a purely syntactical
analysis of each OpenMP task construct. Our main goal is to ensure that analyzing this
static task graph allows us to guarantee the absence of strongly connected components
in the real, dynamic, task graph for any state of the program. We verify this by showing
that the presence of a cycle in the dynamic task graph is a sufficient condition to the
existence of a cycle in the static task graph.

We first need to remark that, using notations from Definition 3.36, any cycle in the

146 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

Iterate over OpenMP task constructs:
#pragma omp task input (s1, ..., sm) output (sm+1, ..., sn)

Add a new vertice t in the set of tasks T . Further iterate over all input and
output clauses, only considering the stream identifiers:

• If the stream identifier is a scalar sk, then add t to P (sk) or C(sk)
depending on the type of the clause it appears in.

• If the stream identifier is an access in an array of streams sk = A[expr],
then a single superstream represents all streams in this array. Add t
to P (A) or C(A). We will trivially have:

P (A) =
⋃

s∈A[]

P (s) ∧ C(A) =
⋃

s∈A[]

C(s) (5.2)

Figure 5.5: Static task graph construction algorithm.

dynamic task graph H(σ) is defined by the existence of a set of streams (s1, ..., sn) ∈ S(σ)n

such that:

C(σ, s1) ∩ P (σ, s2) 6= ∅

C(σ, s2) ∩ P (σ, s3) 6= ∅

...

C(σ, sn) ∩ P (σ, s1) 6= ∅

As the static task graph represents all streams in the program, either precisely in the
case of scalar stream variables or aggregated in a superstream for arrays of streams, each
of the streams in (s1, ..., sn) have a unique static representative (s′1, ..., s

′
n). Using relation

(5.2) from Figure 5.5, we have:

∀i, C(σ, si) ∩ P (σ, si+1) 6= ∅ ⇒ C(s′i) ∩ P (s′i+1) 6= ∅

This very coarse over-approximation can be refined, using more precise static analysis
tools. The first refinement we consider relies on the analysis proposed in Section 5.3.2 for
determining task regularity in the presence of arrays of streams. Indeed, let us consider
the result of applying the algorithm from Figure 5.5 to the example on Figure 5.4. The
algorithm would create three vertices (t1, t2, t3) and a single edge A = (P (A), C(A)) such
that P (A) = {t1, t2} and C(A) = {t2, t3}. As we trivially have C(A) ∩ P (A) = {t2} 6= ∅,
the static over-approximation concludes that this program contains a strongly connected
component, which is not true.

Refinement strategies are left for future work, though some simple ad hoc solutions can
be easily implemented to cover simple cases of dynamic pipelines of filters. In Section 5.3.2,
we relied on finding bijections between the sets of subscripts used in arrays of streams
appearing in streaming clauses in the same OpenMP task construct to determine task
regularity. The same kind of approach can allow to conservatively determine the absence
of cycles in a supernode of the static task graph. Indeed, a sufficient condition, though

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 147

by no means necessary, to the absence of cycles within a supernode, is that all subscripts
used for arrays of streams in output clauses be consistently always strictly greater (resp.
always strictly lesser) than the maximum (resp. minimum) of all subscripts used for input
clauses. This monotonicity ensures the absence of cycles within the supernode, and allows
to remove self-edges in the static task graph. In the previously discussed example, this
does indeed allow to remove the self-loop on task t2 as its output subscripts are always
greater than input subscripts: the bijection f : x 7→ x+ 1 we found is monotonic.

When the size of an array is static, it may be possible to refine the superstream,
and all resulting supernodes, by analyzing each stream separately. However, this does
not appear necessary for our current uses of the static task graph. More complex cases
can also be handled, in restricted cases like static control programs, by relying on array
dataflow analysis techniques that determine static patterns of communication. This topic
is further discussed in Section 5.4.2, but the application of such techniques is not within
the scope of this thesis.

5.3.4 Statically Decidable Deadlock-Freedom Conditions

Based on the results from Sections 5.3.2 and 5.3.3, we can apply the deadlock-freedom
results from Chapter 3 to statically determine deadlock-freedom of OpenMP streaming
programs.

The first result comes from applying Theorem 3.42, on page 91, that ensures the
absence of all but insufficiency deadlocks in CDDF programs in states where no strongly
connected components are present in the dynamic task graph. As the absence of SCCs in
the static task graph ensures the absence of SCCs in all states of the dynamic task graph,
a streaming program benefits from this result over all executions.

Before discussing the next deadlock-freedom conditions, we need to verify that the
notion of task causality is consistent not only across the discrepancy between CDDF
tasks and OpenMP tasks, which is addressed in Section 5.2.2, but also in the case of
supernodes. Indeed, our static task graph may contain vertices that aggregate multiple
CDDF tasks, and we need to ensure that they are causal. This is not difficult as each
supernode represents one OpenMP task construct. As task constructs are considered task
causal as a whole, they admit a sequential control program order across all CDDF tasks
they represent. This condition is sufficient to obtain causality of the underlying CDDF
tasks, though it is much stronger than necessary. The supernode as a whole is task causal.

The second result comes from the application of Theorem 3.41, on page 89, which
also ensures the absence of all but insufficiency deadlocks, if all tasks are causal and no
stream is both multi-producer and multi-consumer. The latter can be determined with
the analysis framework for task regularity from Sections 5.3.1 and 5.3.2, while the former
is a global guarantee if the OpenMP semantics is respected.

Putting together the first and second deadlock-freedom results yields the third, which
is the direct application of Corollary 3.43. This requires using both the regularity analysis
and the static task graph to check that no stream is multi-producer and multi-consumer
within a strongly connected component.

Finally the fourth result concerns lastprivate spurious deadlocks, and more precisely
their impossibility when no multi-producer and multi-consumer streams can reach a

148 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

lastprivate task in the task graph, as proved in Theorem 4.10.

5.3.5 Optimizing Communications between Streaming Tasks
and the Control Program

Common scalar dataflow analysis techniques, available in all current optimizing compilers,
can help to decide when it is legal to eliminate, or optimize, some of the communica-
tions between tasks and the control program. Indeed, the control program is the most
performance-sensitive part in our model and, for this reason, any communication involving
the control program is a potential source of overhead on the critical path. In particular, the
presence of communication towards the control program, in the form of lastprivate clauses,
represents a blocking operation that can greatly hinder performance and scalability.

As this type of communication relies on non-buffering semantics, and therefore has
the same semantics as a simple use of a variable for firstprivate clauses and a definition
of a variable for lastprivate clauses, we can integrate the semantics of such clauses in
existing static analysis schemes. The result is generally in the form of reaching definitions
information, which gives the origin of possible definitions of a variable at the site of a use
of that variable. In our case, such information is generally sufficient to decide whether we
can optimize communications with the control program.

In order to make things easier, we rely once more on the SSA representation to reason
about reaching definitions in our examples on Figures 5.6 and 5.7. We identify two main
optimizations, the first one consists in removing lastprivate clauses when the definition
they represent has no uses, and the second one consists in replacing a matching pair
of lastprivate and firstprivate clauses by a pair of output and input clauses, when the
control flow and reaching definitions allow relying on buffering communication semantics,
therefore avoiding the involvement of the control program in the communication and
removing a blocking synchronization on the likely critical path.

x0 = ...; y0 = ...;

#pragma omp task lastprivate (x1)
x1 = ...;

x2 = ...;

#pragma omp task lastprivate (y1)
y1 = ...;

#pragma omp task firstprivate (x2, y1)
use (x2, y1);

#pragma omp task

x1 = ...;

x2 = ...;

#pragma omp task output (y)

y = ...;

#pragma omp task firstprivate (x2)\
input (y)

use (x2, y);

Figure 5.6: Optimizing communication between tasks and the control program. Original
code (left) and optimized (right).

The required information is entirely provided by representing the program in SSA
form, as shown on Figure 5.6, where both optimization opportunities are present. The
first task defines the variable x through the lastprivate clause, but this value is lost because
of the subsequent definition of variable x, which yields the second SSA name x2. As can

5.3. STATIC ANALYSIS OF OPENMP STREAMING PROGRAMS 149

be seen on the third task that reads the value of x, only the second version is seen, so
the definition by the first task is killed before it can be used. The lastprivate clause can
therefore be removed.

The second opportunity is illustrated by the second and third tasks in the example,
as the definition of variable y, in the form of the lastprivate clause on the second task,
only reaches the third task.2 As the control program is only involved in forwarding this
value from the second to the third task, this case can be optimized to avoid involving the
control program by replacing the firstprivate and lastprivate clauses by input and output,
as shown on Figure 5.6.

This example intentionally simplifies many aspects, like the presence of control flow or
uses of data in the control program, as complications usually inhibit these optimizations.
Consider, for example, the code on Figure 5.7, where a variable x is defined alternatively
by the first or the second task, depending on the evaluation of a predicate condition.
This leads to the presence of a cond-Φ node that merges the possible definitions x1 and
x2 of x in variable x3. The reaching definition to the use site, which is the fourth task,
is that of x3, which prohibits forwarding the stream directly from the producer tasks.
The second case is illustrated by the third task, which produces y1. In this case, the
reaching definition at the use site is the proper one, but it is not the only use. As the
control program also needs the information produced by the third task, no optimization
is possible.

if (condition()) {

#pragma omp task lastprivate (x1)
x1 = ...;

} else {

#pragma omp task lastprivate (x2)
x2 = ...;

}

x3 = Φcond
condition() (x1, x2);

#pragma omp task lastprivate (y1)
y1 = ...;

use (y1);

#pragma omp task firstprivate (x3, y1)
use (x3, y1);

Figure 5.7: Impossible optimization of the communication between tasks and the control
program.

Current on-going work aims at improving the applicability of these optimizations by
creating a new task to implement the cond-Φ node. This task simply relies on a stream
of the values of the condition predicate to choose the proper value to forward to the
consumer task. This work is still in progress and is not within the scope of this thesis.

2Assuming that there is no further use of y1 in the rest of the code.

150 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

5.4 Control Program Parallelization in OpenMP

In the CDDF model, the control program is assumed to be sequential in order to guarantee
the determinism of data schedules in streams. This property is used to prove several
conditions provided by our model, like stream and task causality. They derive from
the total order on the evaluation of activation points in the control program. However,
as discussed in Section 4.3, requiring a total order, and therefore serial evaluation of
activation points by the control program, is not a necessary condition. In fact, we
characterize weaker, yet sufficient, conditions for preserving the same semantics, and
the determinism, of CDDF programs in Section 4.3.

In this section, we explore two approaches for parallelizing the control program, the
first relies on OpenMP compiler directives added to streaming programs to explicitly
parallelize the control program, while the second consists in an extension to the static
analyses used by existing automatic compiler optimization and parallelization schemes to
properly integrate the additional semantics and constraints of OpenMP streaming tasks.

As previously discussed, the issue of control program parallelization is of utmost
importance for scalability. A sequential control program is a perfect bottleneck, both in
the sense of the computational load imbalance and in the way it centralizes communication
with all other parts of the program, therefore leading to a high, centralized, pressure on
the communication subsystem and a high level of synchronization.

5.4.1 Explicit Parallelization of the Control Program in OpenMP

As seen in Section 3.4, OpenMP tasks need to be nested in worksharing constructs in
order to be properly differentiated. These constructs can have sequential semantics, as
is the case for the OpenMP single construct, or parallel semantics in the case of loop
or sections. In the general case, and matching the default behaviour in the CDDF
model for the control program, we have considered that the worksharing construct was
the sequential execution single construct. We now take a closer look at the semantics
of OpenMP streaming programs that use the parallel types of worksharing constructs.

Among these constructs, a difference must be made between those that preserve
sequential program order information in some form, as is the case with the loop construct,
and those that do not, e.g. the sections construct. In the remainder of this section, we
focus on the OpenMP loop construct3 as it is both the most commonly used and because
the induction variable of the loop is correlated with the sequential order.

The fundamental problem of the evaluation of activation points, presented in Sec-
tion 4.3, is that it generally relies on the past control program trace, or equivalently on a
more compressed carried-over state, which requires the serial execution of the evaluation
of some subsets of activation points. In the case of irregular tasks, these subsets are
determined by the interleaving patterns of stream accesses, from different tasks, in the
same stream. The minimal ordering requirement in this case is that all activation points
accessing one stream either for reading or for writing need to be in the same partition

3The loop construct is used to annotate DOALL loops and will appear as a omp parallel for

construct in the C version of OpenMP annotations.

5.4. CONTROL PROGRAM PARALLELIZATION IN OPENMP 151

of the control program and be evaluated in sequential control program order. This is a
strong constraint, which is difficult to check statically.

To clarify this, let us consider the example presented on Figure 5.8, where it is
understood that the analysis has failed to determine whether the tasks are regular. In
order to verify the validity of a control program parallelization directive with respect to
activation point evaluation, we will rely on the automatic compiler parallelization scheme
presented in Section 5.4.2, where we only need to consider the analysis of OpenMP task
annotations. Indeed, in this example, the programmer guarantees that any work occurring
in the loop nest is data-parallel with respect to the j loop, so this does not require further
attention.

#pragma omp parallel for

for (j = 0; j < K-1; ++j) {

for (i = 0; i < N; ++i) {

// do some work

#pragma omp task input (A[B[j]] >> w_in[2]) \

output (A[B[j] + 1] << w_out[2])

{

bar (w_in, w_out);

}

}

}

Figure 5.8: Evaluating activation points of different tasks in parallel.

We need to determine whether some activation points, belonging to different iterations
of the j loop, may use the same stream for either input or output. We do not have a better
tool than the existing array dataflow analysis framework, which we extend in Section 5.4.2
for this purpose. On Figure 5.8, the control program parallelization is perfectly acceptable
if B represents a permutation on [0, K − 1], for example if ∀j ∈ [0, K − 1], B[j] = j, as
this would imply that each partition of the iteration domain contains activation points
accessing different streams. However, if the analysis fails, we need to conservatively
execute the loop sequentially.

The case of regular tasks is more appealing, because the evaluation of activation points
is stateless4 and therefore easy to parallelize. In this case, a task activation needs only
know its activation index in the task’s activation space in order to evaluate, on its own,
the indexes it needs to access in streams. A task’s activation space is defined by the
number of activations that have been generated for the task, so it is independent of the
control program control flow.

If such a task has no firstprivate and lastprivate clauses, and its horizons are constant for
each stream, then a simple task activation counter incrementation is sufficient to generate
a new task activation. This must be done atomically if multiple threads of execution can
generate activations for the same task.

The parallelization of loop nests where tasks communicate with the control program is
more complicated. Such communication creates a relation between the iteration set of the

4Once the incrementation of the activation counter is made atomic.

152 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

#pragma omp parallel for

for (i = 0; i < N; ++i)

{

#pragma omp task firstprivate (i) output (x)

x = foo (i);

if (condition (i)) {

#pragma omp task firstprivate (i) output (y)

y = foo (i);

}

#pragma omp task input (x) lastprivate (z)

z = foo (x);

}

Figure 5.9: Control program parallelization and communication with the control program.

loop in the control program and the activation indexes of any task which communicates
with the control program. Let us consider the three regular task constructs on Figure 5.9.
The first task represents the favourable case: it is possible to evaluate its activation points
concurrently. As the task’s activation index is fully identified by the induction variable i,
it is possible to preserve the order of the stream identified by i. This is not the case for
the second task, which is nested in non-static control. Unless it is possible to know how
many times the condition () predicate evaluates to true over the set of iterations lower
than i executed by other threads, it is impossible to decide the stream index where the
value of i should be written by the control program when evaluating the activation point
at iteration i. This task construct therefore forces the sequential execution of the whole
i loop in the control program. Finally, the third task construct uses a lastprivate clause,
which inherently serializes the execution of both the control program and the task.

While firstprivate and lastprivate communication is regular, with respect to our defini-
tion of regularity, it can represent major hurdles to control program parallelization. For
now, we only allow such parallelization to occur when no lastprivate clause occurs and
when no control flow downsamples the activation space of tasks communicating with the
control program.

5.4.2 Streaming Programs with Static Control and Automatic
Parallelization

Optimizing compilers rely on dataflow analyses to determine the validity of program
transformations aiming at reducing the execution time in many different ways, such as
improving locality or enabling parallel execution. Automatic program parallelization is
of great interest for the control program required by the CDDF model as it can improve
its performance and reduce its scalability issue.

Such techniques generally cannot understand the effects on memory of the opaque
runtime calls generated by the expansion of compiler directives, such as OpenMP con-
structs. In order to improve the applicability of dataflow analyses to OpenMP programs,

5.4. CONTROL PROGRAM PARALLELIZATION IN OPENMP 153

we modify these analyses to include the proper semantics and constraints of OpenMP
directives.

Dataflow analyses are rooted in the divergence between the mathematical, declarative,
notion of a variable and their temporal values in imperative programs. The analysis of
memory dependences requires the existence of a logical time to order events and commonly
distinguishes between true and false data dependences. False data dependences, anti
(write after read) and output (write after write) dependences, are sometimes eliminated by
expansion techniques, that avoid reuses of memory. To sum up, the fundamental objective
of any form of dataflow analysis is to determine the relations between statements that write
a variable and those that read it. This allows to ensure that a program transformation
does not modify the semantics of a program.

In our case, things are quite different. The semantics of stream communication
naturally enforce all flow dependences within streams, so there is no need to worry about,
for example, a consumer task occurring in the main program before its producer. On
Figure 5.10, both codes have exactly the same semantics, because streams implicitly syn-
chronize reads and block consumers until the appropriate value is written. Furthermore,
as streams are perceived as infinite arrays (even though this is also handled through
synchronization), privatization is already baked in, so there can be no issue with memory
reuse.

#pragma omp task input (a)

... = a;

#pragma omp task output (a)

a = ...;

#pragma omp task output (a)

a = ...;

#pragma omp task input (a)

... = a;

Figure 5.10: Equivalent programs with buffering semantics for streams. Data flow
dependences in streams are implicit.

However, while the usual data dependences are not an issue, a new type of dependences
occur, which are due to the main specificity of our streaming model: the sequential order
of the control program determines the schedule of data in streams. This effectively means
that the flow dependences themselves could change if this order is not respected, in the
spatial sense rather than in the temporal sense, which is a consequence of replacing the
notion of time in the control program with the notion of position, or precedence, in a
stream. As we have discussed in Section 4.3, the real issue is to ensure that the original
schedule of data is preserved, which requires that stream operations of the same type and
on the same stream occur in the sequential program order.

The adjustment required to common dataflow analysis techniques is simply replacing
the usual definition of data dependences, only for the analysis of the streaming clauses
in OpenMP task constructs, by input5 and output dependences only, when considering
that stream variables are written when they appear in output clauses and read when they
appear in input clauses. The analysis for the remainder of the program is unchanged,
except that the bodies of streaming tasks are simply considered as black-boxes that have

5We recall the definition of the often left aside input dependence, which is a read after read dependence.
It is generally of no interest in dataflow analysis.

154 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

no memory effects. Other clauses, like firstprivate or lastprivate, are simply considered to
be either a read or a write operation on the variable that appears in such clauses. The
case of shared variables is more complicated and requires to also analyze the body of the
task.

Enabling dataflow analyses for streaming programs, and properly incorporating the
semantics of activation point evaluation, allows the control program to potentially benefit
from all program transformations enabled by these analyses. This includes both common
loop nest optimizations and automatic parallelization, with the obvious restrictions that
expansion and privatization of streams is not possible in the general case. The study of
stream communication patterns that would allow, in a certain sense, to de-multiplex the
interleaving of data in streams, therefore allowing to statically decide to split (or privatize)
streams is left for future work.

This first benefit is to mitigate the bottleneck effect of the control program’s semantics
in the OpenMP streaming extension’s implementation, but we can go even further. In the
restricted case of static control programs, or even just static control parts of programs, we
can also rely on the powerful array dataflow analysis [22] and make the same adjustment
to the dependences that need to be taken into account.

Array dataflow analysis has the same objective as the scalar version, to determine
source functions which provide the origin, in a loop nest’s iteration space, among the
statements present and at a given time, of a variable’s definition. The main difference is
that in this case the variable is an element in an array.

In our case, this analysis can be applied to cases where arrays of streams are used for
communication, and can allow determining whether the CDDF tasks present in a loop
nest are regular. Indeed, if the schedule constraint derived from array dataflow analysis
is affine and the source functions of all streams used by a task are identical6, then the
task is regular in the static control part analyzed. In order to ensure that regularity is
not broken by past stream accesses, it would still be necessary to insert a barrier before
the static control part, to allow considering the past of each such stream as a delay in
Definition 5.1.

The generalization of dataflow analysis to stream data structures, instead of arrays, is
a very complex problem in the general case. Restricted cases, for instance when all tasks
are regular, may be more tractable, but are not covered in this thesis.

5.5 Conclusion

In this chapter, we presented the static analysis framework required to apply the results
of Chapter 3 to OpenMP streaming programs and to enable their optimization. We
started by showing how the semantics of our programming model maps onto the rep-
resentation of control-driven dataflow programs. We discussed the differences between
the two semantics, in particular the divergence on the notion of task, and concluded

6These functions are adjusted to consider input and output dependences only, so they provide the
source of the previous occurrence of a given stream either as input or, independently, as output of a task.
In CDDF terminology, this represents the previous activation point in the control program trace that
accesses the same stream with the same (read or write) direction, which is precisely the information we
require.

5.5. CONCLUSION 155

that this difference does not preclude applying the results proven in the CDDF model
to OpenMP streaming programs. In a second step, we developed our static analysis
framework, which heavily relies on existing analyses and optimizations. This allows us to
determine whether streaming tasks are regular, and can benefit from optimized runtime
support, which we present in Chapter 6, and code generation, presented in Chapter 7.
These analyses also enable existing transformations like loop nest optimizations or even
control program parallelization, transparently handled by adjusting their static analyses
to properly account for the semantics of streaming tasks.

Some particular classes of streaming applications, like synchronous dataflow [43] or
cyclo-static dataflow [13], have been extensively studied and present a high level of
regularity that can be exploited in very efficient ways. A natural extension of our static
analysis framework would attempt to determine when programs conform to the stricter
conditions imposed in these models and allow to integrate the optimizations, as well as
the guarantees, developed for these models in our code generation. The first step in
this direction consists in recognizing regular tasks when there are multiple producers and
consumers using the same streams, by finding cyclic patterns of stream access interleaving.
A second step requires to show that the production and consumption rates are identical
on some constant control program iteration range. The development of such techniques
presents interesting opportunities for further research.

156 CHAPTER 5. CDDF SEMANTICS OF DEPENDENT TASKS IN OPENMP

Chapter 6

Runtime Support for Streamization

In this chapter we present the design and implementation of our runtime support for
streaming. We provide stream communication synchronization primitives functionally
consistent with the semantics of the stream prefix constraints presented in Chapter 3,
as well as an implementation of the activation point evaluation function and scheduling
functions for task activations. We further present a dynamic load-balancing scheme and
a runtime deadlock detection algorithm. Focused on performance, the implementation
avoids atomic operations and memory fences on architectures that provide a total store
order memory model, except in some uncommon situations.

Ce chapitre présente la conception et l’implantation de notre système de runtime
pour le streaming. Il fournit des primitives de synchronisation des communications par
streams fonctionnellement compatibles avec la sémantique des contraintes sur les préfixes
de streams, voir chapitre 3, ainsi que les fonctions d’évaluation des points d’activation et
d’ordonnancement des activations de tâches. Nous y présentons également un mécanisme
d’équilibrage dynamique des charges et un algorithme de détection dynamique des in-
terblocages. L’implantation cible tout particulièrement la performance, évitant l’utilisation
d’opérations atomiques et de barrières mémoire sur toute architecture fournissant un
modèle mémoire de type Total Store Order, sauf dans des situations peu communes.

6.1 Introduction

The natural focus of our runtime implementation is to avoid any unwarranted overhead
on the critical path. In a streaming application, the critical path is generally materialized
by the heaviest filter, though of course, in our programming model, this can also be the
control program. As we argue in Section 6.3.3, the key insight is that, unless the task
graph is perfectly balanced, one of the tasks is slower than the others and this leads to a
pattern of communication where all of its input stream buffers are consistently full while
all of its output stream buffers are consistently empty. As a result, this task never has to
wait for input data or available output space, yet the synchronization necessary to ensure
that the task can proceed still constitutes an overhead on the critical path.

Our primary objective is to ensure that the synchronization of such a task is as
inexpensive as possible, considering that in the common case it should only require a

157

158 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

single load operation from a locally cached variable or a register and that, in the worst
case, it should not represent more than a few load operations from non-local variables.
We achieve this by relying on the monotonicity of all stream access indexes, which allows
us to use a software cache scheme and to avoid memory fences and atomic operations
on architectures where the memory model provides at least total store order consistency.
To further ensure that this critical task runs unimpeded, even in the event that, for
some extraneous reason, quiescence is requested on this task, we designed a quiescence
algorithm that allows this task to continue working as long as it does not have down time,
which leads to it being the last to converge to consensus and therefore the one that spends
the least amount of time in quiescence.

Less pragmatically, we try to achieve a real decoupling of threads through stream
communication, which means that all memory latency is tolerated rather than explicitly
synchronized. As we know that indexes are always monotonically increasing, reading
stale information about the state of another task cannot impact the correctness of our
synchronization scheme, it can only delay the moment the synchronization primitive
passes. By ensuring that information always only flows into one direction, with respect
to each synchronization primitive, we avoid most memory consistency issues on our main
target architecture, x86.

This chapter is organized as follows. Section 6.2 presents the synchronization algorithm
used by our stream communication, with a particular focus on the impact of memory
model relaxations on our algorithms and a discussion on the memory fences required
to ensure correctness in the case of more relaxed architectures. Section 6.3 provides the
necessary runtime support for evaluating activation points and scheduling task activations,
including load balancing concerns. Section 6.4 presents the instantiation of our resource
deadlock detection and resolution algorithm from Chapter 3, with the required schemes for
achieving quiescence of all tasks connected to a stream and for dynamically resizing stream
buffers. Finally, Section 6.5 presents the code generation interface used in Chapter 7.

6.2 Synchronization of Stream Communication

The synchronization algorithm for stream communication relies on four synchronization
primitives each handling the specific synchronization requirements of producer or con-
sumer tasks, with two distinct versions for regular and irregular tasks. Before we present
the algorithms and discuss the different cases, we need to give a better view of the way
stream communication is organized. Unlike the abstract CDDF view of infinite stream
buffers, the implementation relies on circular buffers that require synchronization for both
flow dependences and anti dependences (see Section 4.4).

As discussed in Chapter 3, our communication scheme over-synchronizes flow depen-
dences by enforcing the stream prefix order, which synchronizes dependences over closed
prefixes. This means that the data stored at a given stream index can only be read once
all indexes equal or lower have been written. It results in a clear separation, in contiguous
areas, between read and write areas in the stream. Figure 6.1 illustrates this behaviour.
On the left-hand side, the frontier between the areas where read operations are allowed,
which is commonly called pressure, is determined by the lowest stream index that has

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 159

not yet been written. All lower indexes having already been produced, they form a closed
prefix in which read operations are allowed; but no write operations can occur anymore
in this area.

Reads allowed Writes allowed

Pressure Lowest non written indexHighest readable index

Reads still possibleReads no longer possible

Back-pressure Lowest live indexHighest dead index

Figure 6.1: Pressure (left) and back-pressure (right) in stream communication.

The counterpart of pressure is back-pressure, illustrated on the right-hand side of
Figure 6.1, which delimits the stream indexes that can no longer be read from those
that are still live. Pressure and back-pressure are used to implement infinite streams
with circular buffers: the space behind the back-pressure frontier is used to write new
pieces of data. Figure 6.2 presents the circular buffer view, where the pressure and back-
pressure frontiers define the live window, consisting in all stream indexes that are written,
accessible to the consumers and still needed by some consumer task.

Live window

Reads allowed Writes allowedWrites allowed

Back-pressure Pressure

Figure 6.2: Stream circular buffer separation between read-exclusive and write-exclusive
areas.

Our synchronization algorithm is based on this implementation of streams, with two
synchronization primitives for each of the frontiers, one for the production side and one
for the consumption side. Pressure is implemented through the commit and update pair,
while back-pressure relies on stall and release. These primitives are informally defined
as follows. All primitives take a stream and an index as parameters.

commit allows producers to make data produced available for consumption. We require
strict monotony of stream accesses in each thread, so once an index is committed
by a thread on a stream, this thread relinquishes all rights to write to any index
equal or lower in that stream.

release allows consumers to relinquish the memory space in a stream after consuming
data. This operation is also always monotonic and the consumer waives all rights
to further access indexes in streams lower or equal to the highest index released.

update is a blocking operation that ensures, upon completion, that the caller thread can
read up to a given index in a stream.

stall is also blocking and corresponds to the equivalent request for a producer. Upon
completion, the caller may write up to the requested index in the stream.

160 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

In order to allow evaluating the frontier positions without re-constructing the stream
index contiguity from scratch, all producers (resp. consumers) need to commit (resp.
release) up to a given index for the prefix up to that index to be considered closed.
Relying on this restriction, the decision of the highest readable index or highest dead
index (which can be therefore re-used), as shown on Figure 6.1, requires only computing
the minimum across all producers (resp. consumers) of the maximum committed (resp.
released) index. Indeed, this minimum computation allows to find the lowest non-written
index (resp. lowest live index), which is just across the frontier.

Remark 6.1. A very important note: we consider all threads to communicate on mono-
tonically increasing indexes. This plays a key role in our synchronization algorithm, and
allows to avoid memory fences on architectures providing the total store order memory
model [65], which is partially true for x86 architectures [34,50]. Total store order only
allows reordering stores after loads, which does not invalidate our synchronization algo-
rithm [3]. However, when this consistency model restriction is unavailable, we require
store and load memory fences, as we discuss below.

Note that, in our execution model, this monotonicity restriction does not mean that
task activations need to be executed in sequential program order, but rather that on each
thread executing task activations from a given CDDF task we preserve this order.

6.2.1 Synchronization Patterns

To give a better view of the way our runtime is organized, we provide, on Figure 6.3, a
sequence diagram for the synchronization occurring between the control program and the
threads responsible for executing task activations. Some of the constructs on this diagram,
in particular the program trace after the expansion pass and the control streams, are only
introduced later, in the remainder of this chapter as well as in Chapter 7. They have been
partially simplified to make reading easier.

The code for this example, annotated with our extension, is at the top of Figure 6.3. It
contains two streaming tasks, communicating through a stream x. The sequence diagram
for the execution of this program shows the interaction between the control program and
the two tasks, as well as in between the two tasks, with streams as intermediaries. Because
they mediate interactions, streams are created before any synchronization operation can
be issued. In our example, the data stream, x, is created at the very beginning of the
control program’s execution, before any activation point is evaluated. The control streams,
one for each streaming task, are created just before the task itself.

The control program trace, on the left of the figure, presents the most relevant
operations making up each of the four activation point evaluations shown on our example.
The first evaluation of an activation point, for a given streaming task, also initializes the
task’s data structures, among which is its control stream, and launches its first thread1.
Subsequent evaluations of activation points do not have these two first operations.

Aside from this initialization phase, the evaluation of activation points generates task
activations, which are stored in the control streams. Hence the control program needs

1Because of the growing diagram complexity, we do not show teams of worker threads for tasks, nor
multiple threads for the control program.

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 161

int x;

for (i = 0; i < N; ++i) {

#pragma omp task output (x) /* Task T1 */

x = ...;

#pragma omp task input (x) /* Task T2 */

use (x);

}

Control Program Task T1 Task T2C Program trace
(unrolled loops)

create_control_stream (CS_T1);
create_task (T1);
stall (CS_T1);

Control Stream
(CS_T1)

Control Stream
(CS_T2)

Stream "x"

CS_T1 = evaluate_activation (T1);
commit (CS_T1);

create_stream (x);
stream_id x;

{

#pragma omp task output (x) /* T1 */
{

}

stall (CS_T1);

CS_T1 = evaluate_activation (T1);
commit (CS_T1);

#pragma omp task output (x) /* T1 */
{

}

get_activation()

stall (x)

x = ...; // T1 Body

commit (x)

stall (x)

x = ...

commit (x)

create_control_stream (CS_T2);
create_task (T2);
stall (CS_T2);

CS_T2 = evaluate_activation (T2);
commit (CS_T2);

#pragma omp task input (x) /* T2 */
{

}

get_activation()

get_activation()

update (x)

use (x); // T2 Body

release (x)

get_activation()

stall (CS_T2);

CS_T2 = evaluate_activation (T2);
commit (CS_T2);

#pragma omp task input (x) /* T2 */
{

}

update (x)

use (x); // T2 Body

release (x)

get_activation()

get_activation()

}

//

Figure 6.3: Sequence diagram (bottom) for synchronization in a streaming program (top).

162 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

to call the stream synchronization primitives stall and commit. As stall is a block-
ing operation, synchronizing the control program. Once the stall operation completes,
the control program computes the stream indexes for the new task activation, with
evaluate activation, and commits this activation to the control stream. This same
sequence of operations occurs for all subsequent evaluations of activation points.

Once created, task T1 requests work from its control stream, CS T1. This uses a
different function, get activation, than the update primitive as the control stream
has a slightly different semantics than the data stream x. It carries the control flow
information. The get activation call is blocking and task T1 only resumes execution
once the commit from the control program completes. Once the task has acquired an
activation, it proceeds to acquire space in its output stream buffer with a call to stall

on stream x. It can then execute the body of the task and finally commit the new value
produced for x.

In the meantime, the control program creates the second task, and its control stream,
and generates the first activation for task T2. This task acquires this first activation, then
requests input data from x. It blocks until task T1 produces sufficient data elements on
x, then it can execute its body, release the memory space in stream x and request a new
activation from its control stream CS T2.

6.2.2 Synchronization Algorithm for Regular Tasks

The synchronization algorithm for regular tasks relies on the assumption that the threads
executing any outstanding task activations respect task order as defined in Definition 3.37.
Each thread of execution is further limited to task activations of a given OpenMP
streaming task, which means they all belong to the same CDDF task and share the
same work function. This ensures that, on each individual thread, the order of accesses
to all streams is monotonically increasing.

We present here the algorithm for regular tasks (see Definition 5.1 and their static
identification in Section 5.3.1), where a closed-form expression allows the task to know
the position where possible subsequent stream accesses would occur, while the general
case of irregular tasks is presented in the next section.

The code generation required for the synchronization of stream communication is
presented on Figure 6.4. It consists in issuing update calls for each input stream on
the highest stream index read, in that stream, in the activation to be executed2. These
blocking calls ensure that the necessary input data is already available on all input streams.
Then, we need to similarly ensure that enough space is available in all output streams
with calls to stall. After the work function of the task activation completes, calls to
commit and release on all proper streams make the new data produced visible and allow
reuse of stream buffer space occupied by data no longer needed. The indexes used for
release and commit calls is based on the knowledge of the amount of data in streams
that can be skipped due to regularity. These indexes are one less than the lowest index
accessed by the next activation in this task. The precise code generation is detailed in
Chapter 7. Note that we possibly commit and release more than the burst on each stream,

2As the synchronization is restricted to closed prefixes on stream indexes, the synchronization of a
task activation always requires requesting access to the highest index it accesses in each stream.

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 163

which helps release resources in the stream buffer.

// Execute activation a:

∀s ∈ I(a) : update (s, max(R,s,i)∈a (i));

∀s ∈ O(a) : stall (s, max(W,s,i)∈a (i));

execute_work_function (a);

∀s ∈ O(a) : commit (s, next_stall_index - 1);

∀s ∈ I(a) : release (s, next_update_index - 1);

Figure 6.4: Synchronization code required for stream communication of regular tasks.

At this point, we are not interested on how task activations are represented or how
the indexes are computed, but rather on how the four synchronization primitives enforce
dataflow pressure and back-pressure.

Each thread, called p to avoid confusion with tasks, stores information pertaining to
its current stream access positions for each stream on which it communicates. This data is
shared among all threads communicating on the same streams, but only the owner thread
updates its own information. Our algorithm relies on a complete separation of load and
store operations. Each pair of primitives, commit/update or release/stall, relies only on
one-way communication from one group of threads (i.e., producers or consumers of a
stream) to another group. It is important that different store operations from one given
thread be perceived in the same order by load operations on threads from the group at
the other side of the stream communication, but we do not assume any other preservation
of the order of memory operations.

The data structure we use for simplicity is a globally visible map M(p, u, s) indexed by
thread identifiers, stream access directions (i.e., read or write) and stream identifiers. The
data stored in this map are stream access indexes and it is initialized with zero values.
All operations on this map occur within calls to synchronization primitives.

Figure 6.5 presents the pseudo-code of the four synchronization primitives. The first
two are blocking primitives that only read data from the map M , while the last two are
non-blocking and only write to M . In order to prove the correctness of this algorithm, we
first remark that the commit and release primitives always monotonically increase the
value in the map M , which ensures that any stale value that could be read in the update
or stall primitives can only result in lower results of the minimum computation. This
can induce delays before the primitives complete and allow the thread to make progress,
but it only requires that the latest updates on M be seen at some point.

Critically, our algorithm requires that subsequent write operations performed by a
given thread be seen in the original order by all other threads. This ensures that the
write operations performed during the execution of the work function of the task are
visible before the updates on map M are perceived. On the other side, we further require
that load operations occur in program order, which ensures that the read operations in
map M occur before any read operation in streams during the execution of a consumer’s
work function. Overall, these two constraints allow to ensure that a producer’s store

164 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

update (s, index) {

while (minp∈producers(s)(M(p,W, s)) < index);

}

stall (s, index) {

while (minp∈consumers(s)(M(p,R, s)) < index);

}

commit (s, index) {

M(th_id,W, s) = index;

}

release (s, index) {

M(th_id, R, s) = index;

}

Figure 6.5: Synchronization primitives for regular tasks.

operations to a stream index and a consumer’s load operations to that same index can
only occur in the data-flow order.

6.2.3 Correctness of the Synchronization Algorithm with Re-
laxed Memory Models

In order to use architectures with weaker memory models than TSO, we introduce memory
fences in the synchronization primitives to prevent relaxed memory ordering to modify
the semantics of our algorithm. To that effect, we primarily rely on the set of memory
ordering primitives provided by the memory models of the SPARC [65] architecture
as they provide the most fine-grained control of ordering, though we also provide the
requirements for x86 and POWER architectures as well as the sufficient Linux Kernel
memory fences. We present the informal semantics of the fence operations, along with
their conversion to Linux primitives and x86 instructions on Table 6.1. We discuss the
POWER architecture subsequently, as its model does not provide for a trivial mapping.
The lack of control on the granularity of ordering provided by the Linux primitives forces
us to rely on much stronger fences than required, notably in the case of load load fence

and load store fence, where the implementation leads to conservatively relying on the
stronger x86 LFENCE and MFENCE instructions.

Note that the memory fences we add also work as compiler fences, preventing the
compiler from re-ordering the memory operations across fences. When the memory fences
are unnecessary on a given architecture, we replace them with a compiler fence, which
uses the following pattern for the GCC compiler.
// Compiler fence

__asm__ __volatile__ ("" ::: "memory");

Before we provide an implementation of our synchronization algorithm with memory
fences, let us first analyze the underlying communication patterns and the synchronization

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 165

Informal semantics Linux Kernel x86 x86-CC

load load fence Order prec. loads before subseq. loads smp rmb () LFENCE NOP

load store fence Order prec. loads before subseq. stores smp mb () NOP NOP

store load fence Order prec. stores before subseq. loads smp mb () MFENCE MFENCE

store store fence Order prec. stores before subseq. stores smp wmb () SFENCE NOP

Table 6.1: Informal semantics of SPARC memory fences and their replacement in terms
of Linux Kernel primitives, x86 instructions and for x86 with coherent write-back memory
(x86-CC).

mechanisms required to enforce their correctness. Figure 6.6 illustrates the two commu-
nication patterns involved, where the sequentially consistent behaviour must be observed:
the message passing (MP) pattern for pressure and the load buffering (LB) pattern for
back-pressure.

Pressure (message passing pattern)

Back-Pressure (load buffering pattern)

Producer thread (P) Consumer thread (C)

Execution:

Commit:

Update:

Execution:

W[stream_buffer(idx)] = B

W[commit_index] = idx

Initial state: [stream_buffer] = A [commit_index] = 0

R[commit_index] = idx

R[stream_buffer(idx)] = B

[release_index] = 0

Flow-dependenceLWSYNC ADDR or DATA SFENCE LFENCE

Objective: (C:R[commit_index] = idx) => (C:R[stream_buffer(idx)] = B)

Producer thread (P)Consumer thread (C)

Execution:

Release:

Stall:

Execution:

R[stream_buffer(idx)] = A

W[release_index] = idx

R[release_index] = idx

W[stream_buffer(idx)] = B

Anti-dependence ADDR or DATA -------- --------

Objective: (C:R[stream_buffer(idx)] = A)

ADDR or DATA

Figure 6.6: Communication patterns in pressure and back-pressure algorithms, with the
required fences for POWER (green, left) and x86 (blue, right) architectures.

The pressure algorithm enforces a flow dependence, implementing a message passing
pattern. In order to achieve the objective that if the consumer thread can read the value
idx in the commit index, then it necessarily also reads the new value, B when accessing
stream buffer(idx), we need to add memory fences to prevent the reordering of write
operations by the producer and that of read operations by the consumer.

The back-pressure algorithm enforces an anti-dependence, which fits the load buffering
pattern issue. Indeed, if loads can be reordered after subsequent stores, then our objective,
that the consumer reads the old value of the data in the stream buffer, before the producer

166 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

can overwrite this value, requires to add synchronization.
In order to guarantee that the synchronization proposed on Figure 6.6, we rely on the

two analyses of the x86 and POWER architectures [63,64] by Sarkar et al. as well as on
Intel ’s white paper (IWP) on memory ordering [33].

For the x86 architecture, the LFENCE (load fence) and SFENCE (store fence) in-
structions used on Figure 6.6 correspond to the Linux implementation of memory fences,
and the specification in the Linux Kernel. However, in the IWP, the first principle states
that no load is reordered with other loads and that no writes are reordered with other
writes, with the restriction to the case of coherent write-back memory, which per the
IWP: “[Write-back] memory is what is typically used for memory made available by C
malloc library calls [...]”. For this reason, we do not rely on this type of fences in our
implementation3 and simply use compiler fences. The case of the back-pressure algorithm
falls within the scope of the second principle stated within the IWP, and does not require
synchronization.

The POWER architecture relies on a much weaker memory model, where memory
operations can be reordered in any patterns, and the store operations may be propagated
to other cores out of order. For this reason, we need stronger memory synchronization.
The LWSYNC (lightweight sync) is a barrier instruction that will ensure that the order
of propagation of stores is enforced across the barrier. It represents a much stronger
synchronization than we require, but it is the weakest sufficient synchronization provided
in the POWER model. In our case, for the pressure algorithm, it ensures that the second
store cannot be propagated to any core that has not yet seen the first store. On the
consumer side, a data or address dependence is required to ensure that loads are not
reordered with each-other. Because of the existing control dependence in our algorithm,
an ISYNC operation could be used, as argued in [63], but it is more expensive than
simulating a dependence4, by adding the value of idx, XORed with itself, to the pointer
through which the stream buffer is accessed. For the back-pressure, it is sufficient to
use the simulated dependence pattern in both producer and consumer code, though the
authors of [63] note that this type of load buffering issue was impossible to observe in
their tests on the PowerPC architecture, despite its presence in the specification.

When the architecture does not provide sufficient guarantees on memory ordering, we
need to add fences to the synchronization primitives as shown on Figure 6.7. We also
present here the ordering operations for POWER, which we will omit in the subsequent
algorithms as we consistently rely on the same two communication patterns.

update requires a memory fence that prevents reordering load operations after other
load operations. As this primitive guards the read accesses to streams, this prevents
loads from M being executed after some data in streams has already been loaded,
therefore enforcing flow dependences.

3Our view is further confirmed by the authors of [64] as they qualify the LFENCE and SFENCE
instructions as “(perhaps costly) no-ops” for x86-CC.

4There is not always a real data dependence, in our implemented algorithm, between the address
computed for accessing the stream buffer and the value of idx. Indeed, the computation of this address
can rely, in the case of regular tasks as defined in Section 5.3.1, on the known values of constant burst
values and the previous access address, which means that idx is not used in the address computation, as
we show in Chapter 7. In such cases, a dependence on idx can be simulated.

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 167

update (s, index) {

while (minp∈producers(s)(M(p,W, s)) < index);

load_load_fence (); // NOP on x86-CC

// For POWER:

// control dependence + ISYNC or either data or address dependence

}

stall (s, index) {

while (minp∈consumers(s)(M(p,R, s)) < index);

load_store_fence (); // NOP on x86-CC

// POWER: either data or address dependence

}

commit (s, index) {

// POWER: LWSYNC barrier

store_store_fence (); // NOP on x86-CC

M(th_id,W, s) = index;

}

release (s, index) {

// POWER: either data or address dependence

load_store_fence (); // NOP on x86-CC

M(th_id, R, s) = index;

}

Figure 6.7: Memory fences required on relaxed memory systems.

stall relies on a load-store fence that prevents loads from being scheduled after subsequent
stores. This primitive guards against violation of anti dependences, so it needs to
ensure that the data in M is read before anything can be altered in stream buffers.

commit needs a store-store fence where store operations cannot be reordered with
respect to other store operations. Committing data is also part of enforcing flow
dependences, and it is necessary to ensure that M is not updated before all data
produced on output streams is stored.

release needs the same load-store fence as stall. It also enforces anti dependences,
ensuring that read operations in streams have all completed before the update of
M allows reuse of memory.

Most importantly, all these fences are unnecessary in total store order (TSO) and
would only be required on x86 in special configurations, when running in the uncommon
out-of-order stores mode or when using non-temporal instructions. Fences are, however,
needed on architectures implementing the relaxed memory order (RMO), the POWER
memory model or IA64. On the intermediate partial store order (PSO) model, only the
store-store fence would be required in the commit primitive.

168 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

In a recent publication, Attiya et al. [8] show that the implementation of many common
concurrent algorithms, like sets, stacks, mutual exclusion or, more importantly for us,
queues, is impossible without relying on either a read-after-write (RAW) or an atomic
write-after-read (AWAR) pattern. Both patterns inherently rely on memory fences or
atomic operations, the common example being Dekker’s mutual exclusion for RAW,
where all non-sequentially consistent architectures would fail because of a store after
load reordering, and a compare-and-swap lock for AWAR.

However, our algorithm does not fall within the scope of their proof because we do not
exactly implement FIFO queues for stream communication. Despite the similarities, our
algorithm does not have the fundamental issue of a multi-consumer or multi-consumer
FIFO queue: there is no contention, no consensus must be reached between concurrent
producers or concurrent consumers to a given stream. As stream access indexes are
pre-computed, or pre-scheduled, by the control program, accesses only need a one-way
communication between the set of producers to a given consumer for the pressure side or
from the set of consumers to a given producer for the back-pressure side.

Another perspective on this issue is that the authors require an algorithm to rely on
strongly non-commutative methods to obtain their result. A method is strongly non-
commutative if its sequential execution by a thread can influence the result of the execu-
tion of another instance, of possibly the same method, by another thread, irrespectively
of the order of execution of the two methods. Such is the case, for example, with an add

or a remove method in a concurrent set implementation. Our algorithm contains no such
methods. The commit and release primitives are exclusive writers of their respective
locations in the map M , therefore precluding all interference, while update and stall

only read from M .

Our original objective was to avoid expensive memory fences in the TSO model, which
means that store-load fences should not be needed. Such fences represent the fundamental
synchronization requirement in RAW patterns, as they force preceding stores to be ordered
before subsequent loads. To avoid fences, our intuition was that a one-way communication
scheme would allow to rely mostly on store-store and load-load ordering patterns. Our
approach is validated by this result as our solution to avoid store-load fences has led
us to avoid strongly non-commutative methods by relying on one-way communication.
Indeed, each of our primitives either exclusively reads or exclusively writes to shared data
structures, and the two primitives that write to shared memory use exclusive locations
for each thread.

As for the AWAR pattern, we rely indeed on a write-after-read (WAR) pattern because
of the load operations in stall followed by stores to the output stream synchronized by
stall or equivalently in the case where the loads from an input stream must be ordered
before the store operations in the subsequent release primitive. These cases, however, do
not call for an atomic write-after-read as the write operations occur in memory locations
guaranteed, by design, to be exclusively written by a single thread. As there is no race,
the atomicity of the operation is unimportant: no external write operation can interleave
between the thread’s read and write operations.

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 169

6.2.4 Synchronization Algorithm for Irregular Tasks

In the case of regular tasks, the precise information on the stream access indexes required
by future activations allows committing or releasing ahead of time all stream indexes that
will not be used. This is necessary because a task may be assigned the production of
index k in stream s, then be dormant for a long period of time. If all other producers to
that stream make progress and the actual full prefix would allow consuming up to index
k′ > k, then the previous algorithm will fail and prevent all consumption past k. So if
the task only commits the indexes actually produced, then it will hinder the progress of
all other tasks connected to stream s.

However, this precise information is generally not available for irregular tasks, as their
stream access patterns may not be decidable either statically or even dynamically, until
the control program assigns their next access indexes. Our synchronization algorithm for
irregular tasks must therefore be extended to allow disregarding the stream access indexes
of tasks that lag behind because they are not activated.

In order to mitigate this issue, we rely once more on the information that can be
obtained from the control program. While the future of that task remains undecidable,
the control program can tell that no index in s has been scheduled to be produced by this
streaming task up to at least index k′, which should therefore allow consuming up to k′

even though one of the producer tasks of s has not committed up to that point.
We present here the general case, where no information is available on the future of

a task’s stream access patterns. It is used for irregular tasks or when regularity is unde-
cidable. The code generation required for the synchronization of stream communication,
presented on Figure 6.8, is similar to that of regular tasks, except for the commit and
release primitives where we conservatively only commit or release the index warranted
by the original activation point, which is exactly burst elements from the lowest index
accessed5. The additional burst information is considered available through outside means.
We present the precise code generation in Chapter 7.

// Execute activation a:

∀s ∈ I(a) : update (s, max(R,s,i)∈a (i));

∀s ∈ O(a) : stall (s, max(W,s,i)∈a (i));

execute_work_function (a);

∀s ∈ O(a) : commit (s, min(W,s,i)∈a (i) + burst (a) - 1);

∀s ∈ I(a) : release (s, min(R,s,i)∈a (i) + burst (a) - 1);

Figure 6.8: Synchronization code for stream communication of irregular tasks.

In addition to the map M that stores the latest, and by monotonicity also the highest,
committed or released index of each thread, we need two additional data structures, also
presented here as global maps for the sake of brevity. The first is the mapMaxSched(u, s)
which stores the highest index scheduled, by the control program, for production or

5We recall that task activations always access intervals of indexes in streams to which they connect,
so that the maximum and minimum expressions simply represent the bounds of the interval.

170 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

consumption in a stream. It is indexed by the stream access direction u and the stream
identifier s. The second data structure is a map MaxTaskSched(t, u, s) which stores the
highest index scheduled for production or consumption, by a given task t, in a stream s.
Both new data structures are exclusively written by the control program and only read
by the concerned execution threads.

Before we expose the synchronization algorithm, we must stress the fact that this
algorithm further requires that all task activations belonging to the same task be executed
on the same thread. The generalization of this algorithm, allowing multiple threads
of execution to concurrently execute multiple activations of the same task, is detailed
in Section 6.2.6. For this reason, in the current context, a thread and a task are
interchangeable (t ≡ p) and we allow indexing the map M by task identifiers instead
of thread identifiers.

The synchronization algorithm for irregular tasks is presented on Figure 6.9. This
synchronization algorithm relies on an adjusted computation of the minimum from the
original algorithm. We focus on the algorithm for the update primitive, as the algorithm
for stall is identical after a trivial substitution W → R and producers → consumers.

This adjusted minimum computation uses the information provided by the control
program on the maximum scheduled write access for stream s, MaxSched(W, s), and the
maximum scheduled write access by the task t for stream s, MaxTaskSched(t,W, s). If
a task, among the producers for stream s, has already successfully committed its highest
scheduled write access (when M(t,W, s) = MaxTaskSched(t,W, s)), this means that it
is not involved in writing to any stream index in the interval [MaxTaskSched(t,W, s) +
1,MaxSched(W, s)]. We can therefore replace its real highest committed index,
M(t,W, s), by its adjusted index MaxSched(W, s).

The correctness of this algorithm on TSO architectures is rather complex to prove.
We rely instead on the algorithm of Figure 6.10, where fences have been added to ensure
proper execution on architectures allowing any kind of reordering of memory operations.
As this algorithm, which we need to prove correct, contains no store-load fences, and the
algorithm is identical when removing the fences, we deduce that the previous algorithm
is valid on platforms providing the total store order memory model.

The proof of the algorithm on Figure 6.10 takes into account an indirect synchroniza-
tion effect between the control program and all tasks. Since the control program stores
the task activation after it updates the MaxSched and MaxTaskSched structures, and
there is a store-store fence, the execution of the task activation necessarily starts after
the updates relative to the activation’s generation have been stored. As the activation
further relies on either update or stall to synchronize on any streams, which contain
either a load-load or a load-store fence that will also cover the activation’s own load
into memory for the thread to execute. The further reliance on commit or release,
which also force the ordering of memory operations, finally ensure that the update of
M occurs after that of MaxSched and MaxTaskSched with any possible information
concerning that particular task activation. As all of these data structures only contain
monotonically increasing values, we necessarily haveM(t,W, s) 6 MaxTaskSched(t, u, s)
at any time. When they are equal, the load-load fence between the loads to MaxSched
and MaxTaskSched in update, as well as the store-store fence between their updates by
the control program, guarantee that the values read in MaxTaskSched are more recent

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 171

// Evaluation of an activation point π by the control program:

{

t = get_dynamic_task (static_task_id, π);
for ((u, s, b, h) ∈ π) {

start_index = MaxSched(u, s);
MaxTaskSched(t, u, s) = start_index + b;
MaxSched(u, s) = start_index + b;
// ...

}

// rest of computation and memory store of the task activation.

}

update (s, index) {

do {

adjusted_min = ∞;

for (t ∈ producers(s)) {

task_index = M(t,W, s);
adjusted_index = MaxSched(W, s);
if (task_index == MaxTaskSched(t,W, s)) {

task_index = adjusted_index;

}

if (adjusted_min > task_index) {

adjusted_min = task_index;

}

}

} while (adjusted_min < index);

}

stall (s, index) {

// Similar to update, up to a substitution R/W ...

}

commit (s, index) {

M(th_id,W, s) = index;

}

release (s, index) {

M(th_id, R, s) = index;

}

Figure 6.9: Synchronization primitives for irregular tasks.

than those read in MaxSched(u, s), which allows us to conclude that there can be no
overshoot.

172 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

6.2.5 Optimized Cache Traffic Synchronization Algorithm

Our synchronization algorithm is based on spinning in the general case. As we consider
that only one execution thread is created per hardware thread, this approach provides
the best reactivity. Our experiments with other implementations, like futexes or POSIX
condition variables, have proven unsatisfactory when no over-scheduling occurs.

However, spinning usually has a strong negative impact on cache traffic as each task
checking for data on input streams, or checking for available space in output stream
buffers, continuously queries the shared data structures for updates, continuously re-
computing the minimum, thus generating a high volume of cache traffic. Our objective
in this section is to minimize the amount of cache traffic generated by our algorithm.
To achieve this, we use a secondary software cache to avoid requesting updates from the
threads writing to the three shared data structures M , MaxSched and MaxTaskSched.

Our algorithm relies on the idea that as long as the stream access index that is
synchronized by update (resp. stall) is lower than a known value of the highest
committed (resp. released) index of a given thread, then that known value already allows
the update operation to succeed. A new, and by monotonicity greater, value would not
change the result.

We add two new data structures, both corresponding to data entirely private to a
thread, represented once more as maps. The first map MCache(p, p′, u, s) simply stores
the last values loaded by thread p from the original, shared, mapM(p′, u, s). As the values
stored in M are monotonically increasing, we will have at all times MCache(p, p′, u, s) 6
M(p′, u, s). The second map MinCache(p, u, s) stores the latest minimum computed by
thread p for stream s and direction u. We stress the fact that these two data structures are
private to threads, therefore requiring no special care for memory ordering concerns. We
do not present the memory fences that would be requires on very weak memory models
as they are similar to the original algorithms.

We present the algorithms for synchronization of both regular and irregular tasks,
but we only show the case of the update primitive. The stall primitive is handled in
an identical manner, and the commit and release primitives require no modifications
whatsoever. In the case of irregular tasks, the control program side remains unchanged
as well.

Figure 6.11 presents the cache-optimized version of the synchronization algorithm
(see Figure 6.5) for regular tasks. This algorithm minimizes the number of accesses to
the shared data structure M , relying instead on the local data stored in MinCache
and MCache whenever possible. The algorithm first checks whether any previous local
evaluation of the minimum returned a value that is already satisfactory for the index
currently synchronized. If indeed MinCache contains a value higher than index, then
there is no reason to recompute as the synchronization requirements are already met.

The second level of caching, in MCache, allows the simple computation of the
minimum to use a possibly old value if this old value is high enough. Indeed as the
data stored in M is monotonically increasing, older values can only be lower, therefore
not impacting the validity of the computation. If for some thread the cached value is lower
than required by the current synchronization, then a load is performed on the shared data
structure and the cache is updated.

6.2. SYNCHRONIZATION OF STREAM COMMUNICATION 173

As a side note, we could also consider caching the set of producers that have already
been verified to have committed beyond the synchronized index. This would allow to
re-compute the minimum only on a subset of the producers, but in practice this set is too
small to be of interest. Furthermore, all threads that would not be checked have values
necessarily satisfactory in the local cache, so this would not save loads from the shared
data structure.

The case of irregular tasks, presented on Figure 6.12, is very similar to the previous
algorithm. The main difference is that the values stored in the MCache data structure
are not necessarily the original values read from M , but possibly the adjusted values
read from MaxSched. This is inherently safe once again because of the monotonicity of
updates in these data structures. Once a given index is deemed committed or released
by a task, it is always safe to access lower indexes, at least with respect to that task.
This behaviour ensures that data from tasks that were previously adjusted do not always
generate cache traffic.

6.2.6 Synchronizing Data-parallel Tasks

As we have previously mentioned, stateless streaming tasks are naturally data-parallel,
in the sense that there can be no dependences between different activations of the same
task, with some simple exceptions. The first exception concerns statefulness, which we
represent as a self-cycle where the task produces and consumes in the same stream, and
more generally any task belonging to a strongly connected component of the task graph. In
this case, task activations can be executed concurrently, but the implicit synchronization
of flow dependences in streams will serialize their execution. The second exception comes
from the possible reliance of OpenMP tasks on shared memory communication through
the shared clause. However, the semantics of OpenMP tasks ensure that the programmer
is fully responsible for any synchronization required by this communication, considering
that no order of execution can be assumed for any task activation.

One of the most important optimizations of stream programs consists in executing task
activations of computationally intensive tasks concurrently, to improve the load balance of
the task graph. Indeed, the overall throughput of a pipeline is limited by that of the slowest
filter. However, the concurrent execution of task activations means an additional level of
concurrency for the stream synchronization algorithm. Until now, we have accounted for
the concurrent execution of synchronization primitives on the same stream from a group
of producer tasks and a group of consumer tasks. We add the possibility that any such
task may actually correspond to multiple threads of execution.

In the case of regular tasks, our synchronization algorithm does not require any
modifications as it is essentially independent of task semantics. For irregular tasks,
however, the notion of task was central to adjust the computation of the minimum and
we explicitly restricted the algorithm on Figure 6.9, as well as its cache-optimized version
on Figure 6.12, to single threaded execution of individual streaming tasks. Because of the
importance of exploiting data-parallelism in irregular tasks as well, we need to adapt this
algorithm.

We identify two solutions to this problem. The first is essentially a static approach
involving the control program, while the second is fully dynamic, but requires atomic

174 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

operations. In both solutions, the central point will be the way task activations are
dispatched to one thread or another among the team of threads that executes a given
task.

The first solution, presented on Figure 6.13, is almost identical to the original algorithm
on Figure 6.12. References to tasks t are replaced with threads p in the update primitive,
but the main difference lies in the fact that the control program has additional work,
as shown by the call to decide thread placement. This method simply implements a
dispatch strategy, for the task activation being generated, among the team of threads
executing the task t. Such a dispatch strategy can be either very inexpensive in the case
of static patterns, like a round-robin dispatch, but this may result in very poor load-
balance among the team of threads. A more expensive strategy would consist in checking
the progress status of each thread in the team before assigning the new activation. This
solution can also be implemented through an off-load to a helper thread, that still serially
dispatches the work. Because of the order enforced within the sequential dispatcher, and
the fact that the shared memory communication pattern is still one-way, this algorithm
is still devoid of memory fences.

To make things clearer, we could rename theMaxTaskSchedmap toMaxThreadSched,
but as the data structure preserves the same semantics in all other respects, we keep the
old name.

The second solution requires the use of a concurrent multi-consumer FIFO scheduler
queue, where the control program enqueues the new task activations and each thread of
the team atomically acquires work and updates its own MaxTaskSched entries for all
task activations it acquires. We do not present the code for this case, as it is easy to
derive from the previous algorithm.

The choice between the two solutions is very dependent on the application, in par-
ticular on the load of the control program, the load regularity of the task activations
within the same task and the amount of concurrency that can be exploited compared
to the number of available hardware threads. We do not propose a general answer, but
we note that both regular and irregular tasks have the same fundamental problem with
respect to the distribution of task activations to the threads of the team. Indeed, if
the control program, or equivalently a dispatcher thread, is not involved in sequentially
and unilaterally deciding on the dispatch strategy, then a consensus must be reached
within the team on the attribution of work. This cannot be done without either of the
aforementioned RAW or AWAR patterns.

The scheduling of task activations is presented in Section 6.3.2 where we further discuss
this issue.

6.2.7 Evaluation of Stream Synchronization vs. Scheduling
Overhead

To conclude this section on stream communication, we present an experiment to evaluate
the difference in overhead between our optimized synchronization algorithm and the
scheduling of lightweight tasks. We use a synthetic benchmark, called exploration,
conceptually consisting of a sequential producer task generating values (e.g., from ex-
ploring a tree) and a consumer task performing a simple, inexpensive, operation on the

6.3. ACTIVATION POINTS AND TASK ACTIVATIONS 175

values. In the streaming version, the producer writes values in a stream, by groups of
burst values at a time, and the consumer is a single task reading from that stream and
synchronizing with the producer for every block of burst values. In the Cilk version the
producer spawns a new task to process each block of burst values. The burst parameter
allows to study the parallelization overhead as a function of the synchronization grain.

To ensure that the implementation of the lightweight task scheme is not at fault,
we compare with a Cilk [24] implementation rather than with OpenMP tasks, which
only provide rudimentary scheduling in the GCC implementation. We call our streaming
version persistent tasks to contrast with the Cilk version, where tasks are short-lived. As
our streaming tasks are seen as equivalence classes on their input and output streams,
there are only two streaming tasks in this benchmark, and they are persistent throughout
the execution of the program.

The results, obtained on an Intel Core2 Quad Q9550 with 4 cores at 2.83GHz, are
presented on Figure 6.14. While the benefits of scheduling lightweight tasks for load-
balancing are undeniable, the higher overhead of scheduling requires a significantly higher
task granularity to amortize. In order to evaluate the granularity required to break even
between persistent and short-lived tasks, we compare, on Figure 6.14, the execution time
on the exploration synthetic benchmark. On one side we use persistent tasks, while on
the other we have a Cilk implementation spawning short-lived user-level tasks [24]. Cilk is
run with the --nproc 4 option to generate parallel code, and with the --nproc 1 option
to specialize the code for sequential execution. The sequential Cilk version takes almost
7 s for the finest synchronization grain, and 5 s for larger ones. The parallel Cilk version
with the finest synchronization takes 221.4 s and the corresponding persistent task version
takes 107.7 s. The performance gap widens significantly for bursts of intermediate size,
and approaches 5× when the persistent task version reaches its performance plateau. The
most important figure, in practice, is that the persistent tasks break even for grain size 80×
smaller than Cilk. This demonstrates the need for data-flow interactions among long-lived,
persistent tasks as an essential implementation mechanisms for scalable concurrency.

6.3 Activation Points and Task Activations

The focus of this section is the runtime support required for the evaluation of activation
points, which naturally leads to the emergence of the dynamic task graph, and the way the
execution of the resulting task activations is orchestrated. We discuss the synchronization
requirements and show that it is often possible to avoid atomic operations and memory
fences altogether. Exceptional events such as task creation, program initialization and
termination or explicit barrier synchronization are clear exceptions. We further discuss
the scheduling techniques for task activations and present our current approach to load
balancing, which is still an open issue, with some improvements proposed for future work.

6.3.1 Evaluation of Activation Points

The control program is responsible for generating task activations from activation points,
which we modeled as the ξ function in the CDDF model. The evaluation of activation
points distinguishes between regular and irregular tasks, as defined in Section 5.3.1.

176 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

Regular tasks can benefit from a simplified generation algorithm. It is reduced to the
incrementation of a counter and all stream access indexes have a closed-form representa-
tion as a function of this counter.

The activation point evaluation algorithm for regular tasks is presented on Figure 6.15.
It relies on a dynamic lookup function get_dynamic_task, which identifies a streaming task
based on the static_task_id and the set of input and output streams used by the task
to communicate. The static task identifier can be understood as a pointer to the work
function outlined from the body of the task. As such, this identifier is a purely syntactical
item, linked to the OpenMP task construct. The set of input and output streams is
obtained from the activation point, which we recall is a set of stream access descriptors in
the form (u, s, b, h) ∈ {R,W}×S×N×N. The only information required from the control
program is the number of times such a task activates, which defines the dynamic iteration
set of the task, in the interval [0, t.activation counter − 1]. We introduce here the first
internal field of the data structure representing streaming tasks in the runtime, which is
the counter of activations. This data item is exclusively written by the control program,
and therefore benefitting from the same memory fence free communication pattern.

The parallelization of the control program would require making the incrementation
operation atomic, depending on the partition of the control program. If the generation of
task activations of the same task is devolved to a single thread of execution, this operation
can be non-atomic. This incrementation operation behaves in the same way as adding
a task activation on a scheduler queue, except that the implicit knowledge of the task
activation from the context of the task t allows to compress this implicit if-conversion.

Remark 6.2. This implementation hides two important points. Firstly, the burst and
delay constants, B〈t,u,s〉 and D〈t,u,s〉, that determine the closed-form expression for com-
puting the stream access indexes, are not always contained in the activation point. When
multiple tasks regularly interleave their accesses in a given stream, the perceived burst6 is
the sum of the actual bursts of each such task. Furthermore, the delay is strongly linked
to the control flow context and to the possible presence of explicit delay patterns. This
information is generated, possibly in the form of a parametric expression, by the compiler.
It is made available to the runtime from the static task identifier.

Secondly, the get_dynamic_task function hides the creation of new dynamic tasks when
it is called for the first time with a given static identifier and a given set of input and
output streams, contained in the parameter π. This operation then requires a consensus
among all producers and consumers of all streams in π. This is an exceptional case; in the
general case, the task has already had previous task activations and no synchronization
is required. We present the corresponding algorithm in Section 6.4, on Figure 6.27, as it
relies on the notion of stream level quiescence, itself only introduced in that section.

Figure 6.16 presents the algorithm evaluating the activation points of irregular tasks.
This algorithm completes the partial view of the control program side of stream com-
munication synchronization from Figure 6.9, so we reuse the same data structures. The
main difference is that, because of the impossibility of relying on closed-form expressions
for computing stream access indexes based solely on the activation counter, we need to

6Which we recall is the notion of shift in the stream before the next iteration can access the stream.

6.3. ACTIVATION POINTS AND TASK ACTIVATIONS 177

create a control stream, linked to the task, to provide the task activation with the start
position of its stream accesses. For this, we build a data structure to hold, for each couple
(u, s) of a stream and the direction of accesses, the start index of allowed accesses and the
horizon h which gives the size of the access interval. This data structure is written to the
control stream at the position corresponding to the current task activation in the task’s
iteration set. Note that this stream is itself always regular as it has a single producer, a
single consumer and its burst is always unitary.

As a final note, the dynamic task graph is not purposefully built, but rather emerges
from the interconnection of dynamic tasks through streams. These interconnections are
registered dynamically whenever a new task is created. The abstract functions that we
use in the stream communication synchronization algorithms, like producers(s) which
returns the set of producers of stream s, can be used to traverse this task graph.

6.3.2 Scheduling of Task Activations

The scheduling of task activations considers that task causality is always respected, which
means that there are no dependences to enforce from latter activations of a task to earlier
activations of the same task. This ensures the validity of our most basic form of scheduling,
which is a sequential schedule, in control program order, of all activations of a given task.

The scheduler is presented as a set of simple scheduling functions, that return either
one point or a range of points in the iteration space of the task, which is a flattened
space that hides the original control flow. This function is used in a form similar to that
presented in Figure 6.17, where the get_activation(t) represents the scheduling function.

Note that it is possible to entirely execute a CDDF task graph as a pure runtime
solution. We call it a task graph interpreter. The code generation effort is limited to the
bare minimum: outlining work functions and issuing calls to the evaluation of activation
points. However, this solution is rather heavy and misses many compiler optimization
opportunities. We will rely on this technique, in future work, to develop runtime task-
level optimizations like task fusion.

Sequential scheduler: a persistent regular process view

The basic sequential scheduler, presented on Figure 6.18, only consists in returning the
next unassigned activation index, with an incrementation of the counter of assigned
activations. The function waits until the activation counter, of the task from which
an activation is requested, is greater than the highest assigned activation index. During
the wait, it queries a termination flag associated with the task data structure to ensure
that other activations are still possible. Of course this test is inexpensive as the variable
is set only once at program termination.

Once termination is signaled, and it is understood that this may only be seen once the
latest value of the activation counter is seen as well7, a last check is required to ensure
that no work is available. If this check fails, in the sense that there is no more work, the
task can execute its termination sequence.

7This does trivially not require memory fences in the TSO model, for the same reasons as previously
exposed, but it cannot avoid a fence in weaker memory models.

178 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

Enabling work aggregation

Aggregation is one of the most important performance optimizations, simultaneously re-
ducing runtime overhead, through a reduced number of runtime calls, often nullifying false
cache sharing, more generally reducing cache misses and enabling compiler optimizations,
and notably, vectorization. This will be discussed more in detail in the code generation
sections of Chapter 7.

Aggregation comes in two flavours. The aggregation of work consists in acquiring
multiple units of work at a time, in our case task activations, and the aggregation of data
consists in communicating bundles of data elements at a time, which can be for example
aligned on cache line boundaries to avoid false sharing. The aggregation of data is entirely
a code generation issue as our stream communication primitives already allow arbitrary
data aggregation patterns.

We are interested here in the aggregation of work and hence of task activations, which
is achieved with a scheduler function that returns more than one task activation at each
call. Figure 6.19 presents a simple solution for such a scheduler in our runtime. It takes as
parameter not only a task identifier, but also a limit on the amount of work it can return
at a time. This feature is essentially necessary for fairness issues and will be discussed in
the next paragraph.

This algorithm is almost identical to the previous one, but it returns a range of task
activation indexes that can be executed.

Concurrent scheduling

The two schedulers presented above are clearly not meant for concurrent use, meaning
that they are only safe to use for tasks where all activations are executed on a single
thread. If we want to also exploit data-parallelism within a task, we need to make those
algorithms thread safe.

Concurrently dispatching task activations requires either memory fences or an atomic
operation. Indeed, this problem does fall in the scope of the result by Attiya et al. [8],
which is discussed above, in Section 6.2. We use an atomic operation for simplicity and
we only present the first algorithm for brevity. The second scheduler can be handled
identically.

The concurrent algorithm is presented on Figure 6.20. The only difference is the use of
the atomic operation for the incrementation of the assigned activation counter. Note that
the task termination function requires further synchronization, in the form of a critical
section, to reach consensus and ensure that de-allocation is performed by the last exiting
thread.

Aside from the necessity of atomic operations, the main issue of concurrent schedulers
is that work aggregation can lead to load imbalance by way of unfair acquisition of work.
Indeed, if there are only a limited number of activations available and the first worker
thread acquires all of them, then all other worker threads will be left waiting. This issue
is generally solved through work-stealing, which consists in allowing work-less threads to
take units of work not only from the scheduler, but also from other worker threads that
have acquired task activations on which they are not currently working. This strategy
is relatively simple to implement naively, but more advanced techniques must include

6.3. ACTIVATION POINTS AND TASK ACTIVATIONS 179

strategies to avoid excessive stealing events. We choose not to implement such techniques
at this stage for these three main reasons.

1. Work-stealing requires consensus to avoid conflict between two threads that decide
they can both start executing a task activation. This consensus requires each thread
to re-check atomically that it is entitled to execute an activation before starting.
This is equivalent in the number of synchronization, and therefore overall cost, to
simply not aggregating at all and just atomically acquiring one unit of work at a
time. This nullifies all benefits of our scheme, where the scarcity of memory fences
and atomic operations is critical for performance.

2. We rely, in order to efficiently synchronize stream communication, on the mono-
tonicity of stream access operations. Without monotonicity, our scheme would be
trivially incorrect. If work-stealing were to be implemented, each work-stealing
attempt would need to also ensure that the task activation being stolen by a thread
is of a higher activation index (i.e., that it was generated later in sequential control
program order) than the highest task activation it has yet executed. As task
activations are not tagged in our system, and this allows to much more efficiently
handle synchronization as there are implicitly no holes in the sequence of task
activations. Work-stealing would come with expensive modifications to the current
scheme.

3. Finally, the general case of streaming applications corresponds to regular tasks that
iterate on large amounts of data, therefore on large iteration spaces. The particular
case where some tasks only have a low number of task activations which can be
acquired by a single thread at once does not appear, at the current time, as a
sufficient motivation to incur the aforementioned overheads.

Our solution instead lies in the heuristic choice of a max_aggregation_factor, which is
a parameter of the aggregating scheduler on Figure 6.19. This limits the number of task
activations a worker thread can acquire at once and it appears to be a sufficient solution
in our current applications. Finally, we note that this issue does not impact correctness.
Lack of fairness may reduce performance, but it should not have a strong impact as tasks
with few activations generally do not represent a high overall workload.

6.3.3 Load Balancing Through Dynamic Data-Parallelization

Load imbalance is inherent to most pipeline parallelization schemes in the sense that load
balance can only be achieved if each stage of that pipeline has the same computational
load and the same arithmetic intensity. Contrary to data-parallelization, where generally
a loop’s iteration space is distributed across multiple threads of execution and therefore
each thread executes the same instructions on different data, each pipeline stage usually
consists of a different work function. If pipeline stages are executed sequentially, then the
highest possible speedup is obtained through Amdahl’s law applied to the proportion of
work found in the stage with the heaviest computational load.

One of the possible solutions is to exploit data-parallelism within pipeline stages,
which also allows to increase the amount of parallelism exploited when the pipeline depth

180 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

is insufficient. As we have discussed, all stateless filters are inherently data-parallel and
their iterations can be executed concurrently on multiple threads. In a certain sense, the
analysis required to ensure the validity of data-parallelization is performed statically and
completed, or enforced in the case of tasks belonging to strongly connected components
of the task graph, dynamically.

To dynamically exploit data-parallelism in tasks, we need a scheme to add worker
threads to help execute the filter representing a bottleneck in the pipeline. Even more
importantly, we need a decision-making tool, that can dynamically choose in which tasks
to exploit data-parallelism, without requiring global consensus, yet allowing to balance
the execution of the task graph. We first present the simple runtime framework required
to allow the dynamic addition of worker threads for a task, then we show that we can
exploit the stream communication synchronization information to monitor the relative
load balance of a task in a pipeline, with almost no overhead. Finally, we discuss the
decision making heuristics by analyzing the case of lad-balancing the execution of the
FMradio application and we propose guidelines for future developments.

Dynamically enabling the concurrent execution of tasks

In order to enable a dynamic switch from single threaded execution of a task to concurrent
execution of its task activations, it is first necessary either to generate code that uses,
by default, the stream communication synchronization and the scheduler functions that
support concurrent execution, or to provide a way to dynamically switch between the
sequential to the concurrent versions of these functions. However, dynamically switching
requires that such functions be called through an indirection and also an atomic operation
at each call to ensure that the proper version is used. There is little benefit overall, so
we generate code that uses the concurrent versions from the start for all tasks that are
susceptible of being data-parallelized. Of course all stateful tasks, or those in strongly
connected components, would use the sequential versions as they cannot benefit from
data-parallelism in general.

Adding new worker threads to help execute a task relies on the same mechanism as
the creation of a new task. If the task to which this thread is added already relies on
atomic task activation acquisition, its addition is inherently safe and does not require
further attention.

Monitoring relative load imbalance in a pipeline

Monitoring load balance often rely on hardware counters or other means of evaluating the
amount of work performed during a certain amount of time, which is then compared
to the same information gathered in the rest of the program. This is more or less
efficient, depending on the way it can be turned on and off, as well as on the difficulty
of aggregating the information to make a decision. In our case, however, the pressure
and back-pressure algorithms can provide us with a similar type of information for free.
Indeed, the knowledge that input or output streams are either full or empty is enough. It
provides the relative load (im)balance between a task and its neighbours in the pipeline
and, as we discuss below, this transitively extends to the whole connected component of
the taskgraph in which the task belongs.

6.3. ACTIVATION POINTS AND TASK ACTIVATIONS 181

This is simple to understand with the example presented on Figure 6.21, where a heavy,
slower, filter creates congestion upstream and starvation downstream. In both cases, the
heavier filter determines the throughput of lighter filters, by either forcing them to stall
either for free space in an output stream buffer or for data in an input stream buffer.
This kind of information is naturally local to some part of the task graph, though some
influence can be propagated even from more remote parts, which is why we talk about
relative imbalance. Our main objective is to define a test to decide in a purely local
manner, at the task level, whether a task should be data-parallelized.

We present the case of obtaining such information for input streams, the handling of
output streams being symmetrical. In order to know whether an input stream is mostly
full or not, we can rely on the pressure based algorithm presented on Figure 6.22. We mod-
ify the algorithm from Figure 6.13 to test whether a call had to wait for input data or not.
We simply accumulate the information, by incrementing a counter on stalling events and
decrementing it on non-stalling invocations, in a data structure called RelBalance(t, u, s).
It stores, for each task, the aggregated history of the behaviour of a given input or output
stream. Note that the data structure is shared by all threads executing a given task, but
we do not synchronize the concurrent accesses as lost incrementations or decrementations
have little impact on the overall trends.

This score-keeping is compared to a threshold value, which indicates whether the
stream is mostly full or mostly empty. This knowledge is then used to locally decide
whether a given task is rather heavier or rather lighter than its neighbours in the program
task graph. The possible cases are presented on Table 6.2. Note that our monitoring
scheme is only capable of precisely determining negative patterns, where input streams
are consistently empty or output streams are consistently full, while the cases of full input
buffers or empty output buffers would cost additional operations to determine. However,
this is of little importance as we have precise information on what really matters to
us. Indeed, if a single input stream is empty, then there is no point in improving the
throughput of a task, and conversely if a single output stream is full, no throughput
improvement can come from this task alone.

We therefore consider, as is apparent on Table 6.2, that it is sufficient for a single
input stream to be consistently empty or a single output stream to be full in order to
reject a task as a candidate for data-parallelization.

Decision heuristics: case study of FMradio

In order to give a better view of the benefits of such a scheme, and to discuss some
concerns with respect to algorithm stabilization and convergence towards a well-balanced
execution, let us consider the case of the software defined radio application FMradio. A
streaming OpenMP annotated kernel is given on Figure 8.1, but we are only interested
here in the application’s task graph and its balance issues. We present, on Figure 6.23,
the task graph of FMradio with a rough approximation of the overall computational load
represented by each filter obtained by profiling. We represent the team of threads that
execute the four heaviest tasks, with one thread each at the beginning of the program.

The first thing of importance on this task graph is the load imbalance. Indeed,
executing this program with only pipeline parallelism cannot yield large speedups as
Amdahl’s law gives an upper bound of roughly 3.3× speedup because of the two heavy

182 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

Detected state Relative workload Interpretation

Indeterminate
Insufficient upstream production
Downstream irrelevant: blocked by empty input stream
⇒ Reject

Low
Insufficient upstream production
Insufficient downstream consumption
⇒ Reject

High
Upstream production exceeds processing capabilities
Downstream consumption exceeds processing capabilities
⇒ Candidate for data-parallelization

Indeterminate
Upstream irrelevant: task blocked by full output stream
Insufficient downstream consumption
⇒ Reject

Table 6.2: Interpretation of pressure and back-pressure information to deduce relative
imbalance.

filters, each representing 30% of the computation. This is apparent in our performance
results, reaching a maximum speedup of 3×, on all configurations from four hardware
threads up. In order to gain load balance, and of course reduce the bottleneck effect of
such heavy filters, our only option8 is to exploit data-parallelism.

Let us now consider what happens in such a task graph once execution starts. Fig-
ure 6.24 shows the evolution of stream states with respect to pressure and back-pressure
when we dynamically adjust the load balance through our scheme, adding new worker
threads to the teams of all tasks that fit the condition on the input and output stream
states. Let us consider this evolution step by step, as shown on Figure 6.24.

(a) After the program starts executing, the source filter fm_quad_demod is able to produce
data much faster than any of its consumers. Once the stream buffers are full,
it cannot make further progress and its throughput is naturally limited to the
throughput of its slowest consumer. On Figure 6.24, we represent the state of
each stream through the value of the relative balance monitoring variable, where
red corresponds to full streams which stall for output operations and violet marks
empty streams that often stall all consumers trying to read from them. So once
the source filter is forced to produce at the pace of the slowest consumer, the data
propagates through the task graph faster on all other paths, but it remains stuck
at all confluence points between a fast and a slow path. There are four blocking
streams in the first equilibrium state, in front of the slowest tasks and in front of
confluence tasks that are blocked by absence of data from the slow paths.

In this configuration, once the threshold is reached, the two heaviest tasks make the
decision to increase the size of their worker team as they fit our condition. Note
that no other task in the graph does meet the condition. For all tasks that have
teams represented, we provide the task’s share of the total workload on top and a
worker thread’s share below.

(b) Once the two heaviest tasks added one worker thread each, all worker threads in the

8Of course, provided that such filters are stateless. Otherwise, the program cannot scale any further.

6.3. ACTIVATION POINTS AND TASK ACTIVATIONS 183

four heavy tasks have a workload share of 15%. For this reason, the new equilibrium
is reached with each of their input threads full, and only another stream is full at
a confluence point with a faster path. As the confluence point also has an empty
input buffer, it is not a candidate for adding a thread to its team, but all four heavy
ntaps_filter_ffd tasks are candidates for increasing their respective teams.

(c) Each of the four tasks has added a thread, and we get a situation similar to the first
equilibrium, in state (a). Indeed, the two leftmost heavy filters have a thread-level
load once again higher than all other threads in the program, at 10% of overall load,
so the streams will present the same configuration. These tasks can add threads to
their work teams. Note that this time the imbalance relative to their siblings, which
have a load of 7.5%, is lower, so the dynamic equilibrium will take longer to reach.

(d) We have reached again the same state as in (b), with however a much lower difference
between the heaviest and lightest thread loads. If the algorithm is allowed to
proceed, it will reach a point where all threads have a load comprised between
1% and 2% in just another eight transitions. If for example the execution platform
only disposes of 20 hardware threads, then this state is a good point for stopping
the load-balancing process.

In order to obtain such a result, two important things are needed. Firstly, the
threshold must be chosen large enough for the program to reach some form of dynamic
equilibrium before any decision is made. Of course, we represent the decisions happening
simultaneously, but this would not be the case in an actual execution. If one task makes
the decision early, it does not impact the behaviour of the algorithm as the tasks making
the decision later perceive an even greater relative load imbalance. In order to avoid
hasty decisions, in particular as the program takes longer to stabilize once the sizes of
worker teams grow and the difference between the highest and lowest loads decreases, the
threshold should also increase, for example with some form of slow geometric progression,
after each decision.

Secondly, this algorithm cannot converge. Unless a perfect load balance can be
achieved, and the execution load is constant, the algorithm continuously refines the load
balance with an implicit exploration of a sequence of dynamic equilibrium states. While
the decision is made locally at a task level, the monitoring actually aggregates, through
the flow of data in the task graph, relative pressure and back-pressure information for
the whole task graph. In a certain sense, the flow of data in the task graph, or the lack
thereof, that we monitor in our scheme, represents a perfect exploration mechanism for
finding bottlenecks and the information is readily available to the concerned party, the
critical task. To stop this refinement process, we need to rely on a global (or local to
a node in more distributed systems) shared resource that is requested each time a new
thread is created. This resource can simply be the identifier of a hardware thread that
is still available, or a counter of such threads. Once no more resources are available, the
refinement process stops, like in our example for a total number of 20 threads.

184 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

Future work

The current scheme is only designed to work in one way, which is sufficient for programs
that have the same behaviour throughout their entire execution. For applications that
have varying workloads or different computational phases, it is necessary to also be able
to reduce teams of worker threads that become too large for a new, reduced load. This
is quite simple to handle with a very similar approach where the full and empty stream
buffers are reversed, but the difficulty is in finding a way of enabling team reduction
without starting oscillatory phenomenons. We leave the handling of such cases for future
work.

Another possible extension of this thesis concerns dynamic task fusion, which can be
thought of, in the case where a more integrated fusion is impossible, as simply scheduling
two tasks with low loads on the same thread. This does constitute an important challenge,
to properly orchestrate their execution to avoid breaking ordering constraints and avoiding
deadlocks.

6.4 Resource Deadlock Detection and Stream Mem-

ory Management

In the generalized CDDF model, it is not always possible to prove that no deadlocks
can occur, nor that the amount of memory required for the execution can fit within
the hardware limits. To mitigate these issues, and also provide enhanced debugging
support for functional deadlocks, we introduced a runtime deadlock detection algorithm
that is mostly meant for the correctness issue of resource deadlocks, but can also detect
functional deadlocks. This algorithm uses a dynamic stream buffer resizing scheme to
resolve resource deadlocks, when memory is available.

These techniques are not applied when it is possible to statically guarantee the good
behaviour of the streaming program, but, when they are required, the design ensures
minimal interference with the normal execution of the program. They are only activated
when a task’s execution is unable to proceed because of ordering constraints. Furthermore,
our objective of avoiding all atomic operations or memory fences, assuming a TSO memory
model, is preserved for the most frequent cases. Atomic operations are required to ensure
correctness exclusively in the exceptional cases of resolving a resource deadlock or any
operation that changes the structure of the program, like the dynamic creation of a new
task, the addition of new worker threads to a task’s execution team or resizing the buffer
of a stream.

We first present the algorithm required to ensure the quiescence of all tasks connected
to a given stream, with a slight adjustment to the implementation of the stall and update

stream synchronization primitives, and we provide the implementation of the dynamic
task creation algorithm which requires the stream quiescence algorithm, as mentioned in
Remark 6.2. Then we show how stream buffers can be dynamically resized, and finally
we discuss some implementation considerations for the resource deadlock detection and
resolution algorithm, presented above on Figure 4.4.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT185

6.4.1 Stream Level Quiescence

Stream level quiescence is a state where all threads executing tasks connected to a given
stream have reached a consensus and stopped all operations. This consensus allows to
make modifications to the local structure of the task graph without impacting the normal
operation of communication. In order to achieve this, we rely on unsynchronized one-way
notification of threads of a quiescence request, which is then acknowledged atomically by
each thread. The performance and convergence delay aspects of quiescence are considered
of lesser importance than the avoidance of atomic operations and memory fences on the
common path of execution.

The algorithms are presented on Figures 6.25 and 6.26, with the algorithm for the
thread requesting quiescence on the former and the adjustment to the update, and by
symmetry to the stall, primitives on the latter.

The algorithm for requesting stream level quiescence is presented on Figure 6.25. The
requesting thread first acquires a lock on the stream for which it requests quiescence. This
step is necessary as multiple threads may attempt to modify the state of this stream (e.g.,
replace its buffer or add new threads as producers or consumers) and these modifications
need to occur atomically. During the acquisition step, the thread cannot just wait as
it could block another thread requesting quiescence from the current thread for another
stream, which could lead to a deadlock. For this reason, each thread waiting needs to
regularly check whether new quiescence requests have been posted in its queue. We rely
on a queue of quiescence requests because it is necessary to know which threads have
requested one’s quiescence in order to properly acknowledge the event to the requester.

Once a thread has acquired the quiescence lock on a stream, it can issue quiescence
requests to all threads connected to that stream. Note that the set of such threads cannot
evolve as this would require another thread owning the quiescence lock. After issuing the
requests, the thread waits until each request is acknowledged, while still responding to
any incoming requests. The thread keeps a count of the number of requests it has received
itself to know whether it needs to wait at the end of the quiescence phase.

After the thread achieves quiescence and performs the operations it intended on the
stream, it calls the resume_after_quiescence function. This function posts a quiescence
release to each thread from which it requested quiescence, then releases the quiescence
lock on the stream. Finally, it ensures that it properly waits the release of each request it
received since the beginning of the quiescence phase. On exit, it is possible that it may
not have seen any last minute request, but as it is no longer blocked, the thread will see
any such request during a stall or update operation.

Figure 6.26 presents the necessary updates for the stream communication synchro-
nization primitives update and stall. As in Section 6.2, only the update primitive
is presented, as the stall primitive is modified in the same way. We add a check for
incoming quiescence requests. It is performed exclusively when threads fail to acquire the
data from ingoing streams, or the space in outgoing stream buffers, they requested. If a
request for quiescence has been made, the thread acknowledges it and recursively descends
into quiescence for any new request. Once it receives a release notification for every
acknowledged request, it exits quiescence. An important step after exiting quiescence is
to ensure that all pointers the thread may have acquired in all streams are up-to-date. If
the quiescence was used to replace a stream’s buffer, some of the accesses obtained with

186 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

// Evaluation of an activation point π by the control program:

{

t = get_dynamic_task (static_task_id, π);
for ((u, s, b, h) ∈ π) {

start_index = MaxSched(u, s);
MaxTaskSched(t, u, s) = start_index + b;
store_store_fence ();

MaxSched(u, s) = start_index + b;
// ...

}

store_store_fence ();

// rest of computation and memory store of the task activation.

}

update (s, index) {

do {

adjusted_min = ∞;

for (t ∈ producers(s)) {

task_index = M(t,W, s);
adjusted_index = MaxSched(u, s);
load_load_fence ();

if (task_index == MaxTaskSched(t, u, s)) {

task_index = adjusted_index;

}

if (adjusted_min > task_index) {

adjusted_min = task_index;

}

}

} while (adjusted_min < index);

load_load_fence ();

}

stall (s, index) {

// Identical to update, with a trivial substitution R/W ...

load_store_fence ();

}

commit (s, index) {

store_store_fence ();

M(th_id,W, s) = index;

}

release (s, index) {

load_store_fence ();

M(th_id, R, s) = index;

}

Figure 6.10: Maximum required memory fences for irregular task synchronization.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT187

update (s, index) {

if (MinCache(th_id,W, s) > index)

return;

do {

current_min = ∞;

for (p ∈ producers(s)) {

task_index = MCache(th_id, p,W, s);

if (task_index < index) {

task_index = M(p,W, s);
MCache(th_id, p,W, s) = task_index;

}

if (current_min > task_index) {

current_min = task_index;

}

}

} while (current_min < index);

MinCache(th_id,W, s) = current_min;

}

Figure 6.11: Cache-optimized synchronization of regular tasks.

188 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

update (s, index) {

if (MinCache(th_id,W, s) > index)

return;

do {

adjusted_min = ∞;

for (t ∈ producers(s)) {

task_index = MCache(th_id, t,W, s);

if (task_index < index) {

task_index = M(t,W, s);
adjusted_index = MaxSched(W, s);
if (task_index == MaxTaskSched(t,W, s)) {

task_index = adjusted_index;

}

MCache(th_id, t,W, s) = task_index;

}

if (adjusted_min > task_index) {

adjusted_min = task_index;

}

}

} while (adjusted_min < index);

MinCache(th_id,W, s) = adjusted_min;

}

Figure 6.12: Cache-optimized synchronization of irregular tasks.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT189

// Evaluation of an activation point π by the control program:

{

t = get_dynamic_task (static_task_id, π);
p = decide_thread_placement (t);
for ((u, s, b, h) ∈ π) {

start_index = MaxSched(u, s);
MaxTaskSched(p, u, s) = start_index + b;
MaxSched(u, s) = start_index + b;
// ...

}

// rest of computation and memory store of the task activation.

}

update (s, index) {

if (MinCache(th_id,W, s) > index)

return;

do {

adjusted_min = ∞;

for (p ∈ producers(s)) {

task_index = MCache(th_id, p,W, s);

if (task_index < index) {

task_index = M(p,W, s);
adjusted_index = MaxSched(W, s);
if (task_index == MaxTaskSched(p,W, s)) {

task_index = adjusted_index;

}

MCache(th_id, p,W, s) = task_index;

}

if (adjusted_min > task_index) {

adjusted_min = task_index;

}

}

} while (adjusted_min < index);

MinCache(th_id,W, s) = adjusted_min;

}

Figure 6.13: Synchronization algorithm enabling data-parallelization of irregular tasks
with control program dispatch.

190 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

1 2 4 8 16 32 64 128 256 1024 2048 4096 8192 16384 32768 65536
1

10

100

1000

Persistent tasks Cilk (--nproc 4) Cilk (--nproc 1)

Burst size

E
xe

cu
tio

n
tim

e

Figure 6.14: Exploration: persistent vs. short-lived tasks.

evaluate_regular_activation_point (static_task_id, π)
{

t = get_dynamic_task (static_task_id, π);
t.activation_counter += 1;

}

Figure 6.15: Evaluation of an activation point in a regular task.

evaluate_irregular_activation_point (static_task_id, π)
{

t = get_dynamic_task (static_task_id, π);
stream_indexes_map = build_map (π);

for ((u, s, b, h) ∈ π) {

start_index = MaxSched(u, s);
stream_indexes_map(u,s) = (start_index, h, b);
MaxTaskSched(t, u, s) = start_index + b;
MaxSched(u, s) = start_index + b;

}

current = t.activation_counter + 1;

add_to_stream (t.control_stream, current, stream_indexes_map);

t.activation_counter = current;

}

Figure 6.16: Evaluation of an activation point in an irregular task.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT191

t = get_self_task_identifier ();

while (activation_index = get_activation (t))

{

// Irregular task: acquire access indexes from t.control_stream

// Regular task: compute access indexes as

// B〈t,u,s〉 * activation_index + D〈t,u,s〉

// issue update and stall calls

execute_work_function ();

// issue commit and release calls

}

Figure 6.17: Simple task executor loop.

get_activation (t)

{

while (t.max_assigned_activation >= t.activation_counter)

{

if (t.finished == true)

if (t.max_assigned_activation >= t.activation_counter)

execute_task_termination ();

}

t.max_assigned_activation += 1;

return t.max_assigned_activation;

}

Figure 6.18: Simple sequential scheduler using a blocking function.

192 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

get_activation_range (t, max_aggregation_factor)

{

while (t.max_assigned_activation >= t.activation_counter)

{

if (t.finished == true)

if (t.max_assigned_activation >= t.activation_counter)

execute_task_termination ();

}

base_outstanding = t.max_assigned_activation + 1;

available = t.activation_counter - t.max_assigned_activation;

if (available > max_aggregation_factor) {

available = max_aggregation_factor;

}

t.max_assigned_activation += available;

return [base_outstanding, base_outstanding + available - 1];

}

Figure 6.19: Work-aggregating sequential scheduler.

get_activation (t)

{

while (t.max_assigned_activation >= t.activation_counter)

{

if (t.finished == true)

if (t.max_assigned_activation >= t.activation_counter)

execute_task_termination ();

}

result = __sync_add_and_fetch (&t.max_assigned_activation, 1);

return result;

}

Figure 6.20: Concurrent scheduler function without aggregation (see Figure 6.18).

Low workload High workload Low workload

Full stream buffer Empty stream buffer

Figure 6.21: Imbalance induced by a heavy filter in a pipeline and effect on connecting
streams.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT193

update (s, index) {

t = get_self_task_identifier ();

if (MinCache(th_id,W, s) > index) {

RelBalance(t, R, s) -= 1;

return;

}

wait_flag = false;

do {

adjusted_min = ∞;

// compute adjusted_min value as before ...

if (adjusted_min < index) {

wait_flag = true;

}

} while (adjusted_min < index);

if (wait_flag == true)

RelBalance(t, R, s) = max (0, RelBalance(t, R, s) + 1);

else

RelBalance(t, R, s) -= 1;

MinCache(th_id,W, s) = current_min;

}

Figure 6.22: Monitoring the relative load balance of a task with respect to an input
stream’s pressure.

fm_quad_demod

ntaps_filter_ffdntaps_filter_ffd ntaps_filter_ffd ntaps_filter_ffd

subctract subctract

multiply_square

ntaps_filter_ffd

ntaps_filter_ffd

stereo_sum

output_filter

1%

15%30%

2%

1%

1%

1% 1%

2%

1%

30% 15%

30% 30% 15% 15%

Figure 6.23: FMradio task graph and the proportion of computational load in each task.

194 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

fm_quad_demod

ntaps_filter_ffdntaps_filter_ffd ntaps_filter_ffd ntaps_filter_ffd

subctract subctract

multiply_square

ntaps_filter_ffd

ntaps_filter_ffd

stereo_sum

output_filter

1%

15%30%

2%

1%

1%

1% 1%

2%

1%

30% 15%

30% 30% 15% 15%

(a)

fm_quad_demod

ntaps_filter_ffdntaps_filter_ffd ntaps_filter_ffd ntaps_filter_ffd

subctract subctract

multiply_square

ntaps_filter_ffd

ntaps_filter_ffd

stereo_sum

output_filter

1%

15%30%

2%

1%

1%

1% 1%

2%

1%

30% 15%

10% 10% 7.5% 7.5%

(c)

fm_quad_demod

ntaps_filter_ffdntaps_filter_ffd ntaps_filter_ffd ntaps_filter_ffd

subctract subctract

multiply_square

ntaps_filter_ffd

ntaps_filter_ffd

stereo_sum

output_filter

1%

15%30%

2%

1%

1%

1% 1%

2%

1%

30% 15%

7.5% 7.5% 7.5% 7.5%

(d)

fm_quad_demod

ntaps_filter_ffdntaps_filter_ffd ntaps_filter_ffd ntaps_filter_ffd

subctract subctract

multiply_square

ntaps_filter_ffd

ntaps_filter_ffd

stereo_sum

output_filter

1%

15%30%

2%

1%

1%

1% 1%

2%

1%

30% 15%

15% 15% 15% 15%

(b)

Figure 6.24: Evolution of stream pressure and back-pressure relative load with dynamic
load-balancing in FMradio.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT195

wait_quiescence (s) {

q = get_self_thread ();

// Acknowledge all requests while waiting to acquire stream lock

while (! __sync_bool_compare_and_swap (&s.quiescence_lock, false, true)) {

if (is_empty (q.quiescence_requests_queue) == false) {

p = atomic_dequeue (q.quiescence_requests_queue);

__sync_add_and_fetch (&p.acknowledged_requests, 1);

q.received_requests += 1;

}

}

// Notify all producers and consumers that they should stop

// except the thread itself if it is connected to the stream

for (p ∈ producers(s) ∪ consumers(s) \ {q}) {

atomic_enqueue (p.quiescence_requests_queue, q);

}

// Wait until all acknowledge receipt of request

while (q.acknowledged_requests < |producers(s) ∪ consumers(s) \ {q}|) {

if (is_empty (q.quiescence_requests_queue) == false) {

p = atomic_dequeue (q.quiescence_requests_queue);

__sync_add_and_fetch (&p.acknowledged_requests, 1);

q.received_requests += 1;

}

}

// Quiescence achieved on stream s

}

resume_after_quiescence (s) {

q = get_self_thread ();

// Notify all producers and consumers of release

for (p ∈ producers(s) ∪ consumers(s) \ {q}) {

__sync_add_and_fetch (&p.quiescence_release, 1);

}

// Release stream lock

s.quiescence_lock = false;

// Handle received quiescence requests

while (q.received_requests > q.quiescence_release) {

if (is_empty (q.quiescence_requests_queue) == false) {

p = atomic_dequeue (q.quiescence_requests_queue);

__sync_add_and_fetch (&p.acknowledged_requests, 1);

q.received_requests += 1;

}

}

__sync_sub_and_fetch (&q.quiescence_release, q.received_requests);

}

Figure 6.25: Stream level quiescence algorithm, requesting thread side.

196 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

update (s, index) {

p = get_self_thread ();

while (minp∈producers(s)(M(p,W, s)) < index) {

if (is_empty (p.quiescence_requests_queue) == false) {

q = atomic_dequeue (p.quiescence_requests_queue);

quiescence_descent (q);

// Repair damaged pointers upon emergence from quiescence

for (s’ ∈ input(p) ∪ output(p)) {

// request new stream access pointers

}

}

}

}

quiescence_descent (q) {

p = get_self_thread ();

// Acknowledge receipt of quiescence request to the originator

__sync_add_and_fetch (&q.acknowledged_requests, 1);

while (p.quiescence_release == 0) {

if (is_empty (p.quiescence_requests_queue) == false) {

r = atomic_dequeue (p.quiescence_requests_queue);

quiescence_descent (r);

}

}

__sync_sub_and_fetch (&p.quiescence_release, 1);

}

Figure 6.26: Stream level quiescence algorithm, adjustment to stall and update primi-
tives.

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT197

previous stall or update operations are now invalid.

Note that a thread either notices quiescence requests before it starts executing the
work function or9 it executes the current activation to completion and have another chance
to notice the request at the next iteration. This ensures that failure to notice a request
cannot impair a thread’s ability to execute properly, which means that the memory latency
between the issuance of a request and its perception is unimportant and properly tolerated.

Remark 6.3. This algorithm requires that quiescence requests be acknowledged by all
threads in a timely manner, which may not be possible if external synchronization mech-
anisms are used. Each thread must regularly check quiescence requests10, which occurs in
stall and update calls. Once quiescence is requested for stream s, the only case where
high delays can be observed correspond to requests issued by a thread not involved in stream
communication through s and if the production and consumption is perfectly balanced, so
that none of the involved threads ever need to wait for data or for available space. Of
course, this cannot occur when any of the threads involved at any level in the execution of
tasks, or the control program, request quiescence as the requesting thread stops operations,
therefore leading to either a stall or update miss.

If, however, a synchronization is performed within the body of tasks, so inside their
work function, then it is necessary for the thread to continuously check for quiescence
requests while waiting for the synchronization event. It is also necessary to ensure, with
a store store fence or a LWSYNC memory barrier, that all store operations due to the
execution of the work function are effective before acknowledging the request, therefore
ensuring that the memory effects are moved along with the stream buffer data.

Using stream level quiescence, we can now provide an algorithm for the dynamic
creation of tasks, which we had postponed. The algorithm, presented on Figure 6.27,
corresponds to the case where a request for identification of a dynamic task fails. This
occurs when the control program attempts to generate a task activation for a task that
had no activation points before. In such a case, the task lookup returns a null pointer. The
algorithm attempts to acquire a lock on the static task identifier because it is possible that
multiple threads that execute the control program see a null pointer if activation points
of the same task can be evaluated concurrently. The first thread to acquire this lock is
able to re-test the lookup function and still receive a null pointer, therefore creating the
task. All threads subsequently acquiring the lock get a non-null pointer on their second
test.

The implementation of the task creation itself is straightforward. Each connection
between a task and a stream changes the structure of the task graph, notably the sets
of producers and consumers defining the hyperedge representing the stream, so it is not
sufficient to simply add the new task atomically, as it invalidates the computation of
minima in the stall and update synchronization primitives. If only an atomic operation

9In the absence of extraneous synchronization within tasks.
10This does not imply a high overhead as the check is only performed during down time and it can

be serviced from a local cache unless a request has already been issued. As requests are considered
exceptional events, the common case of this check only represents a read of a local variable, and it is
outside of the critical path.

198 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

get_dynamic_task (static_task_id, π)
{

t = identify_task (static_task_id, π);

while (t == NULL) {

lock (&static_task_id.lock);

t = identify_task (static_task_id, π);
if (t == NULL) {

t = build_task (static_task_id, π);
for (s ∈ input(t) ∪ output(t)) {

wait_quiescence (s);

connect (t, s);

resume_after_quiescence (s);

}

launch_task (t);

}

unlock (&static_task_id.lock);

}

}

Figure 6.27: Dynamic task creation algorithm.

is used to add new tasks, then each minimum computation needs to occur atomically,
which means making the common case more expensive and opposing the primary design
objective of our runtime. We therefore rely on the stream level quiescence algorithm to
connect this new task to the task graph.

6.4.2 Dynamic Stream Buffer Size Management

In order to resize a stream buffer, which often involves replacing it with another one, it
is necessary to guarantee first that no producer or consumer is still accessing any data
in the stream. A second requirement is that no thread has previously acquired handles
(i.e., pointers) on data within the old buffer and that are still valid (i.e., not released
or committed) upon completion of the operation. Both of these conditions are met, by
design, if we rely on stream level quiescence.

The algorithm, presented on Figure 6.28, is entirely straightforward. Note that the
realloc function copies the old data if the buffer is moved to a new memory location.

6.4.3 Towards a Low Overhead Runtime Deadlock Detection
Algorithm

The algorithm presented in Chapter 3, on Figure 4.4, is purposefully designed for brevity
while guaranteeing a finite convergence, but it is impractical to implement. In particular,

6.4. RESOURCE DEADLOCKDETECTION AND STREAMMEMORYMANAGEMENT199

resize_stream_buffer (s, new_size)

{

wait_quiescence (s);

s.buffer = realloc (s.buffer, new_size);

resume_after_quiescence (s);

}

Figure 6.28: Stream buffer resizing algorithm.

the form of work-stealing it uses, where a stalled task is allowed to search for and execute
activations of other tasks that satisfy its own dependences, is cumbersome to implement in
our scheme. As our task activations are not individually tagged but only counted instead,
this would only further complicate the algorithm (see Section 6.3.2 for a discussion of
the issues with work-stealing in our streaming framework). However, if we postulate that
task activations that have their dependences satisfied will eventually execute on their
own threads11, then instead of executing the task activations found during exploration,
a stalled task simply backs-off and allows the threads responsible for these activations to
proceed. Thus the algorithm becomes slightly less complicated to implement, but it can
only be proven to finitely converge under stronger hypotheses, notably on the fairness of
the thread scheduler of the execution platform.

The original algorithm is instantiated as follows.

• Trigger condition: within the stall and update stream synchronization primitives,
if the spinning loop exceeds a threshold count, check that the current thread is
executing the lowest task activation index in the worker thread team. If such is
the case, start exploring the dynamic task graph. Let s be the stream the current
thread is waiting for, when the condition is satisfied, and let idx be the index that
was requested.

• Exploration: as specified in Figure 4.4. To determine the dependences, the existing
runtime information is sufficient. Indeed, in order to build the dependence chain,
the thread polls the tasks at the other end of stream s (so the set of producers if
the exploration was triggered in update or the set of consumers for stall). Each
task knows the stream access indexes for a given task activation index, so this
polling operation consists in finding the task activation index that produces idx or
consumes idx - s.buffer size.

Once this task activation index is found, recursively check that if the stream access
indexes it requires are themselves satisfiable.

• If a task activation is found to be executable, all lower activation indexes of the same

11Which we recall is supposed to always be possible in the control program order because of task
causality.

200 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

streaming task are executable as well, so the exploration can safely back-off and let
the responsible worker team make progress. Continue exploring other dependences.

• Else a deadlock condition is identified. If it is a functional deadlock, then it can
be reported directly, without waiting for the whole program to stop. This kind of
deadlock is not subject to an issue of interleaving of memory accesses, even if the
data gathered by the exploring thread is stale or inconsistent with respect to the
perceived order of memory operations from different threads.

However, if the deadlock condition corresponds to a resource deadlock, then it is
possible that recent activity, occurring on other threads during the exploration
phase, may have changed the state and invalidated the condition. Rather than
attempting to reach consensus among all the threads involved, we only re-check
the whole dependence chain for any possible alterations. If the resource deadlock
condition still holds, we conservatively consider that the identified blocking stream
buffer should be resized. If there was no resource deadlock, the only drawback is
the time lost in the quiescence algorithm required for resizing, but it is likely that a
larger buffer, for a stream experiencing a high level of contention, will be beneficial
to the execution.

• The continuation activation (C(Ke) in the CDDF model) is not directly represented
in the runtime. However, if the search for dependences yields a task activation index
greater than the activation_counter of the task, then it is understood to belong
to the continuation activation. If such is the case, the thread checks if the control
program has reached a barrier, possibly concluding to an insufficiency deadlock.

• Deadlock condition reporting consists in printing the dependence chain, with task
identifiers, task activation indexes and incriminating stream access indexes.

The overhead of such an algorithm is primarily due to the cache traffic generated by
polling remote threads. As the exploration is only performed while waiting on a stream
synchronization, it does not introduce overhead at that point. The only problematic case
occurs when the system is over-scheduled, that is when more execution threads are used
than available hardware threads. In such a case, the spinning stream synchronization
algorithm must include a scheduler yield() call to allow other threads to be scheduled.
The choice of the threshold for the trigger condition is the key factor, both for the
reactivity of the detection scheme and for the overhead incurred.

6.5 Runtime API for Code Generation

The implementation of our runtime support for streaming extends the current implemen-
tation of the GCC runtime for OpenMP, libGOMP. We provide a set of primitives that are
used by our code generation pass, also implemented in the GCC compiler. In this section,
we detail the interface of our runtime and briefly present the functionality provided by
each visible function.

6.5. RUNTIME API FOR CODE GENERATION 201

6.5.1 Initialization and Termination

In our model, the task graph of a streaming application is dynamic. It is necessary to
create dynamically new streams and tasks, which are then connected to the existing task
graph. For this reason, the initialization phase is almost absent in our model. Some
data structures must be initialized by the control program before they can be used, in
particular if the control program is itself concurrent.

The first such data structure is the stream. It must be initialized with the following
call prior to any evaluation of an activation point that uses it. In the case of parallel
control programs, such a call must be issued before entering the parallel region to avoid
duplicates.

stream_id

GOMP_stream_create_stream (element_type_size, array_size, broadcast_size);

This call allocates a new stream, or an array of streams of size array size, where
the underlying stream elements is of size element type size. When a broadcast array is
used, no additional dimensions are created, but the runtime knows how many producers
and consumers to wait for in the minimum computation. Scalar stream variables have
array_size == 1, and non-broadcasting streams should use broadcast_size == 1.

Stream deallocation is performed dynamically by the last consumer to disconnect from
a stream. The control program must mark the end of use of a stream with the following
function.

void

GOMP_stream_finish_stream (stream_id);

This call needs to be executed by a single thread for a given stream, and it cannot
happen before the last activation point that communicates on this stream has been
evaluated.

The case of streaming tasks is particular because they are dynamically created. We
need a lock to ensure that only one instance is created if the control program is concurrent.
Instead of relying on a program-level lock, we initialize a lock for each OpenMP task
construct at any non-concurrent point in the control program’s control flow that dominates
the task construct with the following function.

static_task_id

GOMP_stream_init_static_task_id (void);

The function returns a static task id, which only represents the syntactical task
construct. We generate it in the runtime to facilitate modular compilation, but it is a
purely static identifier.

Termination of a streaming program occurs cooperatively when all streams have been
deallocated. Indeed, as streaming tasks cannot connect to new streams12, once a task
sees any of its connections broken, it can immediately either conclude to an insufficiency
deadlock, if it has unexecuted activations, or it can terminate.

12If such a thing is necessary, this simply creates a new task, thus preserving the CDDF view of tasks
as equivalence classes on input and output connections.

202 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

6.5.2 Stream Communication

The synchronization of stream communication is entirely handled by the four primitives
presented in Section 6.2. The following functions implement them in our runtime:

void GOMP_stream_update (stream_id, stream_access_index);

void GOMP_stream_stall (stream_id, stream_access_index);

void GOMP_stream_release (stream_id, stream_access_index);

void GOMP_stream_commit (stream_id, stream_access_index);

In order to reduce the code generation effort, we also provide more aggregated methods
that allow to either acquire all the necessary stream resources, including data on input
streams and free space on output streams, or to release the previously acquired resources,
in the following functions.

void

GOMP_acquire_stream_accesses (thread, activation_index_start, activation_index_end);

void

GOMP_release_stream_accesses (thread, activation_index_end);

The implementation of these functions is provided in Chapter 7, on Figure 7.9. The
first parameter is the thread data structure associated with the current thread. These
functions work on ranges of task activation indexes, requesting in bulk all stream resources
required to execute all activations in the range.

To enable this behaviour, the compiler needs to handle stream access views, which as
we will see behave as simple C pointers, and issue the following call to register views with
the runtime.

void GOMP_stream_register_view (thread, &view_pointer, access_direction, stream_id);

This function is issued by each worker thread individually to register its view pointers.
The second parameter is used to pass the addresses of the thread’s views. The caller
further needs to specify the stream and access direction, either read or write, for which
this view will be used.

Relying on this information, the runtime is able to set the view pointers automatically
for the next activation, with a call to the following function.

bool GOMP_stream_next (thread, current_activation_index);

This is also used, as we have discussed for the stream buffer resizing scheme, in
Section 6.4, to allow re-setting the pointers that were invalidated by a stream buffer
replacement.

6.5.3 Activation Point Evaluation and Scheduling of Task Acti-
vations

The evaluation of activation points is almost entirely handled by the following runtime
functions. In the general case, the code generation only needs to handle the marshalling
of firstprivate data, which is then passed to the two functions:

void

GOMP_stream_regular_activation (static_task_id, firstprivate_data,

extended_stream_access_descriptors);

void

6.6. CONCLUSION 203

GOMP_stream_irregular_activation (static_task_id, firstprivate_data,

stream_access_descriptors);

The first function handles the activation points of regular tasks. It only takes as
parameters the static task identifier, the firstprivate marshalled data and a set of stream
access descriptors, each extended with two additional fields storing the statically deter-
mined constants B〈t,u,s〉 and D〈t,u,s〉. We recall that a task’s regularity is contingent on
the static determination of these constants, even if they are parametric. Instead of the
usual (u, s, b, h) stream access descriptors that make up activation points, a regular task
t will have descriptors of the form (u, s, b, h, B〈t,u,s〉, D〈t,u,s〉).

The second function is similar, but uses the default stream access descriptors. It would
be useful, however, to allow it to also rely on the additional information of extended stream
access descriptors when some of the streams it connects to have regular accesses and only
a subset of its connections requires the more complex, irregular, mechanisms.

The scheduling functions are introduced in Section 6.3:

bool

GOMP_get_activation (thread, &activation_index);

bool

GOMP_get_activation_range (thread, &activation_index_start,

&activation_index_end, max_aggregation);

The first function requests a new unit of work and blocks until work is available and
returns true when a task activation is acquired. It returns false when the task does not
have further activations. The second function acquires a range of task activations, limited
by the max aggregation cap.

6.6 Conclusion

In this chapter, we presented the runtime algorithms used to perform stream communica-
tion synchronization, activation point evaluation and task activation scheduling, as well
as the mechanisms used to improve load balancing, to dynamically resize stream buffers
and to detect and resolve deadlocks. We finally provided an API for the code generation
pass presented in Chapter 7.

We have achieved our goal of minimizing the overhead incurred on the critical path.
In the common cases of execution, tasks only require atomic operations in the scheduler
functions and this, only when they are executed by a team of worker threads. The
particular case of critical tasks, the slowest tasks that determine the throughput of the
task graph, is specifically optimized to avoid unwarranted overheads. For such tasks,
the usual cost of stream synchronization is a single test of a local variable and, in the
worst case, a number of loads of non-local variables proportional to the number of threads
executing tasks connected to it.

204 CHAPTER 6. RUNTIME SUPPORT FOR STREAMIZATION

Chapter 7

Work-Streaming Compilation

This chapter presents our code generation framework for our stream-computing extension
to OpenMP. We detail the code generation required for the control program and the way
we build the worker thread functions that execute task activations. In a second step,
we discuss the techniques used to generate optimized code, in particular in the case of
regular tasks. We focus on optimizations that are conducive to threads accessing memory
in regular patterns, improving cache locality and reducing false sharing, to reduce the
strain on the memory subsystem. A second objective is to generate code that does not
preclude further compiler optimizations, for instance by laying the groundwork for the
vectorization of worker thread code.

Ce chapitre présente l’algorithme de génération de code utilisé pour compiler notre
extension streaming au langage OpenMP. Nous y distinguons la génération de code
nécessaire au programme de contrôle et la construction des fonctions de travail qui
exécutent les activations de tâches. Nous développons ensuite les techniques utilisées
pour générer du code optimisé dans le cas particulier des tâches régulières. Afin de
réduire la pression sur la mémoire, nous ciblons tout particulièrement les optimisations
qui favorisent des accès réguliers à la mémoire dans les threads, améliorant ainsi la localité
des caches, et, en second lieu, nous évitons de générer du code difficile à optimiser par le
compilateur, préparant le terrain, par exemple, pour la vectorisation du code des threads
de calcul.

7.1 Introduction

Our code generation framework applies code transformations enabled by the static
analyses presented in Chapter 5 and targeting the runtime support API presented in
Chapter 6. The first part of this chapter details the default code generation that results
from expanding the OpenMP streaming task constructs without any knowledge of the
program. This approach represents the conservative fall-back code generation when all of
the static analyses fail. As we remark in the first two sections, there is little hope to achieve
significant performance improvements with this default code generation scheme, let alone
scalability, barring some very high granularity of work and computational intensity in task

205

206 CHAPTER 7. WORK-STREAMING COMPILATION

activations. It is important, however, to ensure that programs compile and can execute
even if all analyses fail.

In a second step, we explore some of the essential optimized code generation patterns
enabled by the static analyses outlined in Chapter 5. We detail the aggressive aggregation
techniques that can be applied to task worker threads to reduce runtime overhead,
improve cache behaviour and enable further compiler optimizations. We also discuss the
optimizations that can be enabled for the control program, in particular for the evaluation
of activation points and for regular tasks.

The remainder of this chapter is organized as follows. Section 7.2 presents the basic
code generation algorithm for the expansion of streaming tasks in the control program,
detailing the generation of initialization code, activation point evaluation and firstprivate
communication. Section 7.3 describes the generation of worker thread code, including
the outlining of the body of streaming tasks in functions, where the original accesses
to variables are replaced with direct accesses in stream buffers, and the addition of a
scheduler loop and of stream synchronization code. Section 7.4 focuses on the essential
optimizations that can be enabled during code generation, in particular for regular tasks.
Finally, Section 7.5 presents a technique that allows task worker threads to perceive stream
buffers as continuous, enabling simple traversal of stream data as an array.

7.2 Control Program Code Generation

In this section, we present the code generation algorithm for the control program. In
OpenMP terminology, this is also called the outer context with respect to a task, or the
main program. In addition to the generation of code for evaluating activation points, we
also take care of a few additional issues, like the initialization of streams, the generation of
static task identifiers and the generation of communications between the control program
and the tasks.

Throughout this section, we rely on a simple, yet representative, running example.
Presented on Figure 7.1, the example exhibits all of the most important behaviours with
respect to the necessary code generation patterns for the control program. It consists
of two task constructs communicating through a stream x. The first task construct
communicates with the control program through a firstprivate clause, then produces data
on stream x, while the second task construct reads data from x and produces data on
some stream within an array of streams A. The program does not include consumers for
the streams within A which are used at some later point.

The array of streams A is declared outside the loop nest, which means that these
streams are persistent throughout the execution of the loop nest. On the other hand,
stream x is declared within the first loop, which means that its lifespan, determined by
its scoping, is only one iteration of the outermost loop. For this reason, the first task
construct generates K different tasks, each producing N values on one of the streams x
relative to one iteration of this loop. The stream used by the firstprivate clause is always
tied to the streaming task, so this will also generate different streams for the values
communicated for j, one for each of the K streaming tasks.

The second task construct also generates K streaming tasks, both because of the

7.2. CONTROL PROGRAM CODE GENERATION 207

int A[K];

#pragma omp parallel

#pragma omp single

for (i = 0; i < K; ++i) {

int x;

for (j = 0; j < N; ++j) {

#pragma omp task firstprivate (j) output (x)

x = ... j ... ;

#pragma omp task input (x) output (A[i] << y)

y = x;

}

}

}

Figure 7.1: Running example for the generation of control program code.

stream x, which is a different stream in each iteration of the outermost loop, and because
of the array of streams A, which is subscripted by the induction variable of the outermost
loop, i.

In the remainder of this section, we present the successive expansion steps, necessary
for these two OpenMP task annotations, in the control program. We first generate
initialization code, then we issue the calls to the runtime functions for evaluating the
activation points and finally we handle the communication between the control program
and the streaming tasks, resulting from the firstprivate clause on the first task construct.

7.2.1 Initialization

In our semantics, the task graph is generated by the execution of the control program. We
have a small initialization phase, that is only required for concurrent control programs. It
enables a simple synchronization scheme to avoid the creation of duplicate dynamic tasks.
Our running example uses a sequential control program, relying on the OpenMP single

worksharing construct, but we generate this code nonetheless as it does not introduce
significant overhead and it may be needed if the control program is parallelized in a later
stage of the compilation.

Figure 7.2 presents the code generated after the initialization pass for our running
example. We replace the declaration of stream variables, here A and x, by stream
identifiers, which are pointers to stream data structures. They are initialized just after
their declaration with a call to the runtime. This allocates the stream buffers, with an
initial size either provided as an execution parameter or computed at run time based
on the size of the cache, and all necessary data structures. The array of streams A is
not declared as an array of identifiers, though in fact the runtime does allocate the K
streams1. As discussed, the stream x is initialized within the outermost loop, as its scope

1We may, in future work, relax this allocation policy and just allocate the data structures of streams,
then allocate the buffers when the first producer requests an access with the stall primitive.

208 CHAPTER 7. WORK-STREAMING COMPILATION

static_task_id t1, t2;

stream_id A;

t1 = GOMP_stream_init_static_task_id ();

t2 = GOMP_stream_init_static_task_id ();

A = GOMP_stream_create_stream (sizeof(int), K, 1);

#pragma omp parallel

#pragma omp single

for (i = 0; i < K; ++i) {

stream_id x; // Stream private to the iteration (visibility scoping)

x = GOMP_stream_create_stream (sizeof(int), 1, 1);

for (j = 0; j < N; ++j) {

#pragma omp task firstprivate (j) output (x) // Static id: t1

x = ... j ... ;

#pragma omp task input (x) output (A[i] << y) // Static id: t2

y = x;

}

GOMP_stream_finish_stream (x);

}

// ... use of the streams in A[i]

GOMP_stream_finish_stream (A);

Figure 7.2: Generation of initialization code for our running example on Figure 7.1.

is restricted to one iteration. The streams thus created are marked for destruction at the
end of their visibility scope. The destruction only occurs once the last task activation that
accesses the stream completes. In the same way, the array of streams A is also marked
once the variable A reaches the end of its scope and it can no longer be used by the control
program to generate new task activations that would use it.

The second step consists in attributing static task identifiers to each task construct.
This is a purely syntactical issue in general2 but in order to avoid relying on a global
program-level lock, we prefer to instantiate an individual lock for each task construct.
This lock is needed when activation points of the same task can be evaluated by multiple
threads, as the first thread to evaluate such an activation point is responsible for gen-
erating the dynamic task and launching its first worker thread. We therefore rely on a
runtime function to generate unique static identifiers and initialize a lock for each task
construct. These functions must be called in a non-concurrent context and before any
activation points of the same tasks can be evaluated.

2In the case of modular programs, it is not possible to attribute contiguous integer identifiers, but a
simple naming convention can be substituted.

7.2. CONTROL PROGRAM CODE GENERATION 209

7.2.2 Evaluation of Activation Points

The evaluation of activation points is, in the general case, performed by a runtime
function, so the compiler needs only to issue the proper call. In some cases, which we
discuss in Section 7.4, this is replaced by direct code generation to avoid the overhead of
a function call and enable further optimizations.

static_task_id t1, t2;

stream_id A;

t1 = GOMP_stream_init_static_task_id ();

t2 = GOMP_stream_init_static_task_id ();

A = GOMP_stream_create_stream (sizeof(int), K, 1);

#pragma omp parallel

#pragma omp single

for (i = 0; i < K; ++i) {

stream_id x;

x = GOMP_stream_create_stream (sizeof(int), 1, 1);

for (j = 0; j < N; ++j) {

//#pragma omp task firstprivate (j) output (x) // Static id: t1

GOMP_stream_regular_activation (t1, NULL, [(W,x,1,1,1,0)]);

//#pragma omp task input (x) output (A[i] << y) // Static id: t2

GOMP_stream_irregular_activation (t2, NULL, [(R,x,1,1), (W,A[i],1,1)]);

}

GOMP_stream_finish_stream (x);

}

}

Figure 7.3: Generated activation point evaluation code for our running example on
Figure 7.1.

The code generated for evaluating activation points is presented on Figure 7.3. The
first task construct is identified as corresponding only to regular tasks because it uses
a single scalar stream variable, x, which is not produced by any other task. Note that
firstprivate clauses do not need to be taken into account for this decision. The second task
can be identified as regular, but we assume that the analysis fails for this task to show
the code generation for irregular tasks.

The compiler issues a call to either the regular or the irregular version of the runtime
function, and removes the original annotation as well as the body of the task. The param-
eters are the static task identifier, a pointer to a data structure built for communicating
between the control program and the task3 and a set of stream access descriptors defining
the activation point. This set is aggregated in a data structure passed as argument, which
we represent as a list in the parameter list.

Two additional parameters are added to the stream access descriptors for regular tasks:

3This data structure is introduced, and the parameter filled, in the next section.

210 CHAPTER 7. WORK-STREAMING COMPILATION

the constants that define the closed-form expression for evaluating the stream access
indexes in a given stream. In our example, and using the notation from Definition 5.1 on
page 138, we have a perceived burst of 1 and a delay of 0 for task t1 on stream x with
write accesses:

B〈t1,W,x〉 = 1 ∧ D〈t1,W,x〉 = 0

We recall (see Section 5.3.1) that the perceived burst is the required shift in the stream
after each execution and it is identical to the actual burst if there is no other task
interleaving accesses in the same stream. These two values appear in the last parameter
of the activation point evaluation function, generated for the first task construct, on
Figure 7.3.

7.2.3 Communication with Streaming Tasks

The firstprivate clause that appears on the first task construct is not translated yet. This
relies on a mechanism similar to classical OpenMP expansion of non-streaming tasks,
where firstprivate variables are marshalled in a data structure passed as argument to the
task. We also rely on the same marshalling technique and pass the structure to the
activation point evaluation function, which forwards it to the task. The forwarding is
handled by a control stream, which is uniquely produced by the control program and
consumed by the task to which it belongs. This stream is always guaranteed to contain
the data required for the execution of a given activation at a stream access index equal
to the activation index itself. In other words, does not require any index computation.

Figure 7.4 presents the result of this last step. An assignment of the firstprivate variable
j is added just before the activation point evaluation call. The null pointer in the following
call is replaced with a pointer to the marshalling data structure.

Now the code generation is complete in the control program and we handle the general,
unoptimized, case of generating functions for worker threads.

7.3 Generating Task Worker Thread Functions

In this section, we present the generation of code for the tasks, which is also called the
“inner context”. In OpenMP, this consists in outlining the body of a task in a function
and adding the marshalling and unmarshalling statements required to re-construct the
execution environment of the code contained in the original task block. A pointer to
this outlined work function is then packed along with the data that was copied from the
outer context and placed on a scheduler queue. However, as our execution model imposes
the monotonicity of activation indexes that can be executed by a given thread, general
task schedulers cannot be used for streaming task activations. We do not generate work
functions that correspond to executing one task activation, but rather build a function that
contains its own scheduler loop, therefore representing a worker thread with a scheduler
queue dedicated to a task and its team of workers. This reduces the contention due to a
single centralized queue, or the need to balance distributed queues, therefore simplifying
the implementation.

As above, we use a single running example, presented on Figure 7.5, to show the

7.3. GENERATING TASK WORKER THREAD FUNCTIONS 211

static_task_id t1, t2;

stream_id A;

t1 = GOMP_stream_init_static_task_id ();

t2 = GOMP_stream_init_static_task_id ();

A = GOMP_stream_create_stream (sizeof(int), K, 1);

#pragma omp parallel

#pragma omp single

for (i = 0; i < K; ++i) {

stream_id x;

x = GOMP_stream_create_stream (sizeof(int), 1, 1);

for (j = 0; j < N; ++j) {

//#pragma omp task firstprivate (j) output (x) // Static id: t1

t1_firstprivate_data.j = j;

GOMP_stream_regular_activation (t1, &t1_firstprivate_data,

[(W,x,1,1,1,0)]);

//#pragma omp task input (x) output (A[i] << y) // Static id: t2

GOMP_stream_irregular_activation (t2, NULL, [(R,x,1,1), (W,A[i],1,1)]);

}

GOMP_stream_finish_stream (x);

}

}

Figure 7.4: Generation of firstprivate communication code.

code generation patterns with respect to the inner context. This example has a single
streaming task, performing a simple moving average computation on an input stream x,
weighted by a coefficient, a, read from the enclosing context, and writing its output on a
stream y. The stream x is viewed through a window X with a burst of 2 elements and
a horizon of 3 elements. This means that the task can see 3 elements of the stream at a
time, but only 2 elements are consumed.

int x, a;

int X[3];

#pragma omp task firstprivate (a) input (x >> X[2]) output (y)

{

y = a * (X[0] + X[1] + X[2]);

}

Figure 7.5: Running example for the generation of task work functions.

The steps of this code generation are: (1) the outlining of the task body in a function,
(2) the adition of unmarshalling and initialization code, (3) wrapping a scheduler loop
around the original body of the task, and (4) the insertion of the necessary calls for stream
synchronization and access to stream buffers through views.

212 CHAPTER 7. WORK-STREAMING COMPILATION

7.3.1 Task Body Outlining

The generation of code for task worker functions starts with outlining the task body
in a separate function. We replace all non-local variables, with the exception of shared
variables, by pointers that are used to access data directly in the stream buffers connected
to the task.

On Figure 7.6, the generated worker function takes as parameter a data structure that
provides a pointer to the thread data structure. Calls to a registration function are issued
for all pointers replacing non-local variables. These calls register the association between
this pointer and the stream identifier to which they should provide access. This creates a
view data structure in the runtime, associated to the current thread.

worker_function (void *parameters) {

int *view_X;

int *view_y;

// Unpacking parameters and initialization

p = parameters->thread;

GOMP_stream_register_view (p, &view_X, R, parameters->stream_id_x);

GOMP_stream_register_view (p, &view_y, W, parameters->stream_id_y);

// Body of the task

view_y[0] = p->control_view[0].a * (view_X[0] + view_X[1] + view_X[2]);

}

Figure 7.6: Outlined work function where stream accesses are converted to accesses
through views in the stream buffer.

7.3.2 Scheduler Loop

The second step consists in generating a scheduler loop, traversing the iteration space
of the task. This while loop is presented on Figure 7.7. If multiple worker threads
are present in the task’s team, then the GOMP get activation function will switch to
assigning activation indexes atomically.

Note that the GOMP get activation function also synchronizes the control stream
associated with the task and sets the control view, local to the thread, that can be
accessed for any firstprivate data as well as control information when necessary.

7.3.3 Stream Synchronization

Finally, we add the stream synchronization calls and update the view pointers registered
with the thread, to ensure that the access of stream data through the view point-
ers corresponds to the current activation. Figure 7.8 shows the two additional calls
to GOMP acquire stream accesses and GOMP release stream accesses, which provide
this functionality.

In order to reduce code generation for the unoptimized case, all the required calls to
synchronization primitives, as well as any index computations, are aggregated in these

7.3. GENERATING TASK WORKER THREAD FUNCTIONS 213

worker_function (void *parameters) {

int *view_X;

int *view_y;

// Unpacking parameters and initialization

p = parameters->thread;

GOMP_stream_register_view (p, &view_X, R, parameters->stream_id_x);

GOMP_stream_register_view (p, &view_y, W, parameters->stream_id_y);

// Scheduler loop

while (GOMP_get_activation (p, &act_idx))

{

// Body of the task

view_y[0] = p->control_view[0].a * (view_X[0] + view_X[1] + view_X[2]);

}

}

Figure 7.7: Addition of a scheduler loop on activation indexes.

worker_function (void *parameters) {

int *view_X;

int *view_y;

// Unpacking parameters and initialization

p = parameters->thread;

GOMP_stream_register_view (p, &view_X, R, parameters->stream_id_x);

GOMP_stream_register_view (p, &view_y, W, parameters->stream_id_y);

// Scheduler loop

while (GOMP_get_activation (p, &act_idx))

{

GOMP_acquire_stream_accesses (p, act_idx, act_idx);

// Body of the task

view_y[0] = p->control_view[0].a * (view_X[0] + view_X[1] + view_X[2]);

GOMP_release_stream_accesses (p, act_idx);

}

}

Figure 7.8: Addition of stream communication synchronization.

two functions, presented on Figure 7.9. In the case the code can be optimized, e.g. in
regular tasks, the useful part of the functions is inlined in the worker function.

The first function aggregates all the blocking primitives used to wait for data available
in input streams or for space in output streams. To work on ranges of task activations,
it takes as parameters both the lowest and the highest indexes requested. The function
traverses all the views registered with the thread p and computes the base stream access
indexes for the lowest and highest task activation requested. If the thread p happens to

214 CHAPTER 7. WORK-STREAMING COMPILATION

GOMP_acquire_stream_accesses (p, act_idx_low, act_idx_high) {

t = p->task;

span = act_idx_high - act_idx_low;

for (v ∈ p->registered_views) {

// compute the stream access index

if (t->is_regular) {

base_index_low = B(t,v->u,v->s) * act_idx_low + D(t,v->u,v->s);

base_index_high = B(t,v->u,v->s) * act_idx_high + D(t,v->u,v->s);

horizon = H(t,v->u,v->s);

} else {

base_index_low =

p->control_view[0].stream_indexes_map(v->u,v->s).start_index;

base_index_high =

p->control_view[span].stream_indexes_map(v->u,v->s).start_index;

horizon = p->control_view[span].stream_indexes_map(v->u,v->s).horizon;

}

// Request access to the highest accessible indexes

if (v->u == R) {

GOMP_stream_update (s, base_index_high + horizon);

} else { // (v->u == W)

GOMP_stream_stall (s, base_index_high + horizon);

}

// Set the view pointer in the stream buffer to the beginning

*v->view_pointer = v->s->buffer + (base_index_low % v->s->buffer_size);

}

}

GOMP_release_stream_accesses (p, act_idx) {

t = p->task;

for (v ∈ p->registered_views) {

// compute the stream access index for the release

if (t->is_regular) {

release_index = B(t,v->u,v->s) * (act_idx + 1) + D(t,v->u,v->s) - 1;

} else {

release_index =

p->control_view[0].stream_indexes_map(v->u,v->s).start_index;

release_index += p->control_view[0].stream_indexes_map(v->u,v->s).burst;

}

if (v->u == R) {

GOMP_stream_release (s, release_index);

} else {

GOMP_stream_commit (s, release_index);

}

}

}

Figure 7.9: Aggregated stream synchronization functions.

7.4. OPTIMIZED CODE GENERATION 215

be working for a regular task, then this computation relies on the closed-form expression4,
otherwise the control stream is accessed through the control view to retrieve the starting
point of stream accesses computed during the evaluation of the activation point (see
Figure 6.16). Once all the indexes are computed, the function issues the update or stall
call depending on whether the view is for reading or for writing to the stream. Finally, the
view pointer, registered by the worker function with the thread, is set to the first accessible
index. This pointer is updated, for the sake of brevity, with a modulo computation, which
is too slow if the buffer size is not a power of 2. We further discuss this computation in
Section 7.5, where we show the mechanism that ensures that all of the buffer elements for
which a thread is granted access with this call are contiguous. This is essential to prevent
the buffer wrap-around issue from occurring within the worker function code, which would
hinder possible optimizations on its code.

The second function is similar, but computes the stream access index that can be
released. It is understood that once a range of task activations is acquired with the first
function, GOMP acquire stream accesses, the upper bound of the range must be released
with the second function, GOMP release stream accesses. For regular tasks, the release
or commit index for each stream is computed as one less than the known next access index
that will be acquired. This knowledge is, however, absent in the case of irregular tasks.
We need to get the starting point of the task activation that is released and add the burst
to account for the elements discarded by the current activation. This does not allow to
release all of the indexes that will not be accessed, due to the absence of knowledge on the
future of an irregular task, and leads to the use of the adjusted minimum computation
pattern presented on Figure 6.9.

7.4 Optimized Code Generation

The code generated so far does not look very appealing. A lot of overhead is introduced
and the resulting code is quite hard to analyze by an optimizing compiler, due to the
opaque runtime calls. Unless the granularity of work and the computational intensity
are very high, this may not lead to any performance improvements. The code generation
can be improved by using results obtained by the static analysis framework presented in
Chapter 5.

In this section, we present some of the most important cases where optimized code can
be generated. We first present two optimizations for the worker function, the aggregation
of work and the aggregation of data. We discuss their implications both from the
perspective of the positive execution behaviour they foster and in the way they enable
further compiler optimizations of the worker code. In a second part, we focus on the
optimizations on the control program side, first through sequential code optimizations
and second through control program parallelization.

We use the same running examples as before. For the control program code generation,
we use the example on Figure 7.1, but its second task construct is no longer considered
irregular5, to generate optimized code. For the generation of optimized worker function
code, we reuse the example on Figure 7.5.

4Note that horizons are always constant in regular tasks.
5We recall that it was decided, in Section 7.3, to consider it irregular to exhibit the code generation

216 CHAPTER 7. WORK-STREAMING COMPILATION

7.4.1 Work Aggregation

Worker functions can be optimized by acquiring multiple units of work, i.e. multiple task
activation indexes, in a single call to the runtime. Figure 7.10 shows this pattern, where
the GOMP get activation call is replaced by a call to GOMP get activation range. A
second loop must be added to iterate over the task activation indexes obtained. The rest
of the code remains unchanged.

worker_function (void *parameters) {

//Initialization code (same as before)

// Scheduler loop

while (GOMP_get_activation_range (p, &low_idx, &high_idx, max_aggregation))

{

for (act_idx = low_idx; act_idx <= high_idx; act_idx += 1)

{

GOMP_acquire_stream_accesses (p, act_idx, act_idx);

// Body of the task

view_y[0] = p->control_view[0].a * (view_X[0] + view_X[1] + view_X[2]);

GOMP_release_stream_accesses (p, act_idx);

}

}

}

Figure 7.10: Enabling work aggregation in worker threads.

The first benefit of this scheme is that fewer calls to the runtime scheduler function
are required. This can have a high impact on performance when multiple threads share
the same scheduler as it reduces the number of atomic operations and reduces contention.
However, as mentioned in Section 6.3, this raises some fairness issues when one thread
acquires too many task activations at once and deprives of work other threads in the team.
The solution introduced on Figure 6.19, in the form of a maximum work aggregation
factor, is far from perfect as it relies on the heuristic choice of this factor. We have
further argued, in Section 6.3, that work stealing, the common approach to this type of
issue, is impractical to implement in our framework. One solution is to use an adaptive
refinement of the aggregation factor. Such a scheme could be implemented by allowing
threads stalling for work to inspect the other threads in the team and, if they have
acquired significantly too much work, reduce their aggregation factor to prevent them
from acquiring as much in the future. On the other hand, threads could also be allowed
to increase their aggregation factor when the amount of available work is significantly
greater than this factor multiplied by the size of the worker team. Note that this type
of intervention requires no synchronization, as it does not impact correctness, and it
can tolerate any amount of memory latency, or even being lost due to another thread
overwriting the variable.

patterns for irregular tasks.

7.4. OPTIMIZED CODE GENERATION 217

The second and more important benefit is that this transformation enables to further
aggregate data. The scheduler loop ensures that the control dependences of the original
task, before outlining from the control program, are satisfied. Once a task activation
index is acquired, it is guaranteed to be executable, provided that stream synchronization
allows it. For this reason, work aggregation is inherently safe. Note that this aggregation
cannot block and wait for sufficient activations to be available to match the aggregation
factor, as this could lead to a deadlock. Instead, our implementation returns immediately
the lesser of the available task activations and the maximum aggregation factor.

7.4.2 Data Aggregation

Once work aggregation is performed, the acquisition of a range of task activations guaran-
tees that either the data required to enable all of the activations is or will be made available
in the future, or there is a deadlock in the program. It is very important, however, to
note that synchronizing all of the stream accesses in the range of activations at once is not
safe. It can introduce deadlocks if the task belongs to strongly connected components.
Indeed the task not only requires a block of data that may not be available at once in a
cycle, which depends on the delay or slack in the cycle, but it also withholds its commit
and release operations, therefore doubling the amount of slack required in the cycle. In
general, we do not perform this optimization for tasks belonging to strongly connected
components of the static over-approximation of the task graph unless it is possible to
statically prove that sufficient delay has been introduced in cycles to avoid deadlocks. A
more interesting approach consists in adjusting this data aggregation factor at runtime.
This would allow a much more precise decision on whether the task does indeed belong
to a strongly connected component of the dynamic task graph and it would also allow to
precisely adjust the data aggregation factor to the best fitting amount, given the delay
present in the cycle(s) to which it belongs.

Figure 7.11 contains the code generated to aggregate data in worker functions. The
loop introduced on Figure 7.10 for traversing the range of task activations acquired
is blocked with factor, block size, the data aggregation factor. The synchronization
operations for the acquisition of stream resources are merged. An additional loop is
generated to traverse each block, and we need to issue a call to an advancement function,
GOMP stream next, which updates the view pointers for the next task activation. This
function works like the GOMP acquire stream accesses function, of Figure 7.9, with
respect to the update of the view pointers. It also will be subject to further optimization.

This scheme firstly reduces the number of synchronization operations per stream
communication. It also changes the way communication occurs. Indeed, if the aggre-
gation factor allows to ensure that, in particular for regular tasks, the amount of data
synchronized by each operation is an aligned multiple of the cache line size, this virtually
eliminates false sharing6 in stream communication. This constitutes one of the most
important performance optimizations in our model.

6The only case where false sharing can still occur is for output streams where multiple producer tasks
interleave their accesses in the same stream. If such is the case, then they will compete for exclusive
ownership of the cache lines if their execution leads them to produce in the same range of indexes at the
same time. Note that sharing between worker threads of the same team cannot occur as they acquire

218 CHAPTER 7. WORK-STREAMING COMPILATION

worker_function (void *parameters) {

//Initialization code (same as before)

// Scheduler loop

while (GOMP_get_activation_range (p, &low_idx, &high_idx, max_aggregation))

{

for (base_idx = low_idx; base_idx <= high_idx; base_idx += block_size)

{

upper_bound = min (high_idx, base_idx + block_size - 1);

GOMP_acquire_stream_accesses (p, base_idx, upper_bound);

for (act_idx = base_idx; act_idx <= upper_bound; act_idx += 1)

{

// Body of the task

view_y[0] = p->control_view[0].a * (view_X[0] + view_X[1] + view_X[2]);

GOMP_stream_next (p, act_idx);

}

GOMP_release_stream_accesses (p, upper_bound);

}

}

}

Figure 7.11: Enabling data aggregation in worker threads.

The GOMP stream next function call prevents the compiler from optimizing the in-
nermost loop. We can generate more palatable code to replace this call, at least for
regular tasks. We present, on Figure 7.12, the code of the GOMP stream next function
for a regular task. The closed-form expression for evaluating the next activation’s stream
access indexes is used. One issue remains, which is not simple to address at this point:
the computation of the next pointer position in the stream buffer needs to account for
the wrap-around at the end of circular buffers. However, as we discussed in Section 7.3.3
for the Figure 7.9, the GOMP acquire stream accesses function ensures that the block of
data to which it grants access is contiguous and can be accessed sequentially. This strong
guarantee is obtained thanks to the scheme we present in Section 7.5. This advancement
function also advances the control view, which only requires an incrementation in all cases.

Thanks to this property, the wrap-around code can be omitted, as can most of the
computation. The only thing left to do is to increase the current view pointer by the
perceived burst of the task on that stream B(t,v->u,v->s). We present the resulting
code on Figure 7.13, where we generate this advancement operation directly in the body
of the innermost loop. We do not require a loop on the set of registered views as it
can trivially be statically unrolled as each view corresponds to a syntactically different
clause on the original OpenMP task construct. Note that the perceived burst is a static
information, even if it comes in the form of a constant parameter. In the case of our
example, originally presented on Figure 7.5, the task is always single-producer and single-
consumer of its streams, so the perceived burst is equal to the actual burst, 2 on stream

different task activation index ranges.

7.4. OPTIMIZED CODE GENERATION 219

GOMP_stream_next (p, act_idx) {

t = p->task;

for (v ∈ p->registered_views) {

base_index = B(t,v->u,v->s) * (act_idx + 1) + D(t,v->u,v->s);

// Set the view pointers

*v->view_pointer = v->s->buffer + (base_index % v->s->buffer_size);

}

p->control_view += 1;

}

Figure 7.12: Advancing in stream buffers in the case of regular tasks.

x and 1 on stream y.

worker_function (void *parameters) {

//Initialization code (same as before)

// Scheduler loop

while (GOMP_get_activation_range (p, &low_idx, &high_idx, max_aggregation))

{

for (base_idx = low_idx; base_idx <= high_idx; base_idx += block_size)

{

upper_bound = min (high_idx, base_idx + block_size - 1);

GOMP_acquire_stream_accesses (p, base_idx, upper_bound);

for (act_idx = base_idx; act_idx <= upper_bound; act_idx += 1)

{

// Body of the task

view_y[0] = p->control_view[0].a * (view_X[0] + view_X[1] + view_X[2]);

view_y += 1;

view_X += 2;

p->control_view += 1;

}

GOMP_release_stream_accesses (p, upper_bound);

}

}

}

Figure 7.13: Elimination of the view pointer advancement function call.

Now the code is simpler and we can discuss the third benefit of this optimization.
This last version of the generated code is compatible with static analysis, and can
result in essential optimizations, like vectorization. Indeed, the innermost loop no longer
depends on the activation index itself and is free of pointer arithmetic. The compiler can
simply generate code similar to the common pattern for the innermost loops presented
on Figure 7.14, if the body of the task is vectorizable.

220 CHAPTER 7. WORK-STREAMING COMPILATION

worker_function (void *parameters) {

//Initialization code (same as before)

// Scheduler loop

while (GOMP_get_activation_range (p, &low_idx, &high_idx, max_aggregation))

{

for (base_idx = low_idx; base_idx <= high_idx; base_idx += block_size)

{

upper_bound = min (high_idx, base_idx + block_size - 1);

GOMP_acquire_stream_accesses (p, base_idx, upper_bound);

// Automatically vectorized version

for (i = 0; i < upper_bound - base_index; i += 4)

{

// Vectorized body of the task

}

// Fall-back version (remainder of the iterations)

for (i = max (0, i-4); i < upper_bound - base_index; i++)

{

// Original body of the task

}

GOMP_release_stream_accesses (p, upper_bound);

}

}

}

Figure 7.14: Automatically vectorized innermost loop of the worker function.

This case does occur in GCC, which automatically vectorizes the innermost loops of
some of the simpler streaming task worker functions we generate.

This concludes our work on optimizing the task worker functions. Figure 7.14
represents the end goal of our optimization framework at this stage. This depends on
the successful identification of regular tasks that do not belong to strongly connected
components of the task graph.

7.4.3 Optimization of the Code Generated for the Control Pro-
gram

We now focus our attention on the control program. The unoptimized version of the
code generated for the evaluation of activation points, on Figure 7.4 on page 211, is not
appealing and will probably not be further optimized by the compiler. If the workload of
tasks is not high enough, the control program becomes the limiting factor for performance.
From a scalability perspective, the control program is definitely one of the weakest links
of our scheme because of the strong order requirements on its execution. However, if tasks
are regular, we can generate efficient and concurrent code for the control program.

7.4. OPTIMIZED CODE GENERATION 221

Serial optimizations

For the optimized code generation in the control program, we reuse example of Figure 7.1.
We assume, however, that the second task construct generates regular streaming tasks
only. The code generated in that case is presented on Figure 7.15, where the code of the
activation point evaluation functions is inlined and the initialization part that remains
unchanged is ignored for the sake of brevity.

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < K; ++i) {

stream_id x;

x = GOMP_stream_create_stream (sizeof(int), 1, 1);

for (j = 0; j < N; ++j) {

//#pragma omp task firstprivate (j) output (x) // Static id: t1

t1_firstprivate_data.j = j;

dyn_t1 = get_dynamic_task (t1, [(W,x,1,1,1,0)]);

GOMP_stream_stall (dyn_t1->control_stream, dyn_t1->activation_counter);

dyn_t1->control_view->view_pointer =

dyn_t1->control_stream->buffer +

(dyn_t1->activation_counter % dyn_t1->control_stream->buffer_size);

dyn_t1->control_view->view_pointer[0] = t1_firstprivate_data;

GOMP_stream_commit (dyn_t1->control_stream, dyn_t1->activation_counter);

dyn_t1->activation_counter += 1;

//#pragma omp task input (x) output (A[i] << y) // Static id: t2

dyn_t2 = get_dynamic_task (t2, [(R,x,1,1,1,0), (W,A[i],1,1,1,0)]);

dyn_t2->activation_counter += 1;

}

GOMP_stream_finish_stream (x);

}

}

Figure 7.15: Regular tasks: evaluation of activation points inlined in the control program.

At this point, the resulting code does not look much better than before. First, we
need to resolve the dynamic task, from the static task identifier and the set of input and
output streams, the latter provided by the activation point passed as second parameter
to the get dynamic task function calls. As the first task construct also has a firstprivate

clause, we need to synchronize the communication with the control stream, which is quite
cumbersome as it requires two runtime calls and computing the view position. The second
task is simpler, but both task constructs also require identifying the dynamic streaming
task with a call to get dynamic task.

First of all, we want to avoid requesting continuously the identification of the dynamic
task. As we know what this function does (see Figure 6.27), we understand that it is only
necessary here to create the task on its first call for a given static task identifier and a
given set of input and output streams. In all other cases, its behaviour would qualify it
as a pure function, with a behaviour entirely determined by its parameters. As both calls

222 CHAPTER 7. WORK-STREAMING COMPILATION

have parameters that are either entirely static or constant within the innermost loop, we
can hoist them out of the loop without impacting the execution.

For the second task construct, the activation counter is only defined within the inner-
most loop and never used aside from its incrementation statement. Its incrementation can
therefore be hoisted out of the innermost loop as well, as shown on Figure 7.16. While
static analysis would not allow these transformations in general, the knowledge of the
side-effects of each of the operations we generate is the enabling factor.

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < K; ++i) {

stream_id x;

x = GOMP_stream_create_stream (sizeof(int), 1, 1);

dyn_t1 = get_dynamic_task (t1, [(W,x,1,1,1,0)]);

dyn_t2 = get_dynamic_task (t2, [(R,x,1,1,1,0), (W,A[i],1,1,1,0)]);

dyn_t2->activation_counter += N;

for (j = 0; j < N; ++j) {

t1_firstprivate_data.j = j;

GOMP_stream_stall (dyn_t1->control_stream, dyn_t1->activation_counter);

dyn_t1->control_view->view_pointer =

dyn_t1->control_stream->buffer +

(dyn_t1->activation_counter % dyn_t1->control_stream->buffer_size);

dyn_t1->control_view->view_pointer[0] = t1_firstprivate_data;

GOMP_stream_commit (dyn_t1->control_stream, dyn_t1->activation_counter);

dyn_t1->activation_counter += 1;

}

GOMP_stream_finish_stream (x);

}

}

Figure 7.16: Calls to get dynamic task and counter incrementation hoisted out of the
innermost loop.

The last control program code generation optimization is similar to data aggregation
in task worker functions. It also reduces the number of stream synchronization calls
and false sharing. In general, we do not have a loop body as easy as the current one, on
Figure 7.16, where only our own generated code is left and the firstprivate communication
requires no index computation. A systematic transformation, that requires no analysis
to apply, is presented on Figure 7.17. However, the resulting code only achieves the
first two objectives of the transformation, vectorization remaining just as hard in this
case. This transformation can be replaced by loop blocking in simple cases, which enables
vectorization.

7.4. OPTIMIZED CODE GENERATION 223

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < K; ++i) {

stream_id x;

x = GOMP_stream_create_stream (sizeof(int), 1, 1);

dyn_t1 = get_dynamic_task (t1, [(W,x,1,1,1,0)]);

t1_acquired_index = -1;

dyn_t2 = get_dynamic_task (t2, [(R,x,1,1,1,0), (W,A[i],1,1,1,0)]);

dyn_t2->activation_counter += N;

for (j = 0; j < N; ++j) {

t1_firstprivate_data.j = j;

if (t1_acquired_index < dyn_t1->activation_counter) {

t1_acquired_index = dyn_t1->activation_counter + block_size;

GOMP_stream_stall (dyn_t1->control_stream, t1_acquired_index);

dyn_t1->control_view->view_pointer =

dyn_t1->control_stream->buffer +

(dyn_t1->activation_counter % dyn_t1->control_stream->buffer_size);

}

dyn_t1->control_view->view_pointer[0] = t1_firstprivate_data;

dyn_t1->control_view->view_pointer += 1;

if (t1_acquired_index == dyn_t1->activation_counter || j + 1 >= N) {

GOMP_stream_commit (dyn_t1->control_stream, dyn_t1->activation_counter);

}

dyn_t1->activation_counter += 1;

}

GOMP_stream_finish_stream (x);

}

}

Figure 7.17: Data aggregation for firstprivate communication in the control program.

Parallelized control program

When the control program contains parallelizing directives, especially when it relies on
the loop worksharing construct rather than on the single construct, we cannot, always
allow the concurrent execution of the loop. Indeed, when irregular tasks are found within
the loop, and there are streams in which multiple tasks interleave their accesses, the
parallelization is only correct if all of the activation points of such tasks are in the same
thread. This condition, which is presented in Section 4.3 on page 116, comes from the fact
that we store a state, in the MaxSched(u, s) data structure, as shown on Figure 6.16.
This precludes parallelization if concurrent writes can occur for the same direction u
and the same stream s. A solution is to perform the actual evaluation with a separate
thread. It only performs the partial sums of the bursts of successive activation points

224 CHAPTER 7. WORK-STREAMING COMPILATION

in the sequential control program order and provides the stream access indexes to tasks
through the control streams. The control program would send to such a helper thread the
sequence of bursts observed, which can be ordered with respect to the sequential traversal
order of the loop nest, based on induction variables. Note that as streams allow writing
out of order as long as the write index is known in some way, this is valid. We leave
the development of such a solution for future work, and for now conservatively reject the
parallelization in such cases.

However, in the example of Figure 7.1, we remark that, as each task is connected
to at least one stream with a local visibility scope, each iteration of the outermost loop
defines its own local pipeline. As explained in Section 2.5.2 on Figure 2.13, the stream
identifier x is different for each iteration of the outermost loop, which means that each
iteration necessarily generates activations for different tasks. This qualifies this loop nest
for parallelization, with respect to streaming tasks, as each iteration is independent, both
for the x streams and for the A[i] streams.

We do not list code for this case. The only difference is the replacement of the OpenMP
single construct by a loop construct on Figure 7.17, requesting parallelization of the
outermost loop.

We can now verify that the code evaluating the activation points does not present any
kind of dependence conflicts if the outermost loop was parallelized. Each iteration of the
outermost loop works on tasks that are local to the loop iteration and the only shared
data structures are the static task identifiers, t1 and t2, and the array of streams A. It is
therefore not even necessary to make the operations on the activation counters atomic,
the loop is indeed data-parallel.

7.5 Providing an Infinite Continuous Buffer View

To avoid the circular buffer wrap-around checks, we provide a mechanism ensuring that a
range of stream access indexes, once acquired with a call to GOMP acquire stream accesses,
can be accessed in the same way as an array. Instead of verifying at every access
whether the access view pointer is still valid or recomputing the pointer with a call to
GOMP stream next, as shown on Figure 7.11, this scheme enables the generation of code
relying on pointer incrementation for traversing the range of stream elements, as shown
on Figure 7.13.

Our scheme allows stream accesses to overshoot the stream buffer limit, and resolves
the out-of-bounds accesses that result. In fact, we allocate a larger buffer than what is
used by the stream circular buffer. The stream accesses that should have wrapped around,
at the beginning of the buffer, occur in this additional memory space.

To illustrate this, let us consider the case of a producer to a stream that acquires a
range of 8 elements in a stream, as illustrated on Figure 7.18. This producer can proceed
as there are more than eight elements of unused space in the stream buffer. However, as
the first stream index to which this producer is scheduled to write is located four elements
before the buffer wrap-around, it would normally write the first four elements at the end
of the buffer and the last four elements at the beginning. This means that there should
be a re-computation of its view pointer for this stream in the middle of its activation

7.5. PROVIDING AN INFINITE CONTINUOUS BUFFER VIEW 225

or activation range. Instead, we allow the producer to write outside of the buffer, in a
space reserved for such occurrences, then we copy the offending last four elements to their
rightful place. This copy is performed during the commit phase, where we check whether
an overshoot has occurred and handle the case accordingly.

Live window

Back-pressure Pressure

7654 3210 4 5 6 7 8

acquire_stream_access (W, 0, 7)

Copy back on "commit"

Figure 7.18: Allowing write accesses acquired as a range to overshoot the end of the
stream buffer.

For a consumer requesting stream access indexes that cross the boundary of the buffer,
we handle the case in a symmetrical way, but this time the copy operation needs to happen
before the overshoot is allowed, as Figure 7.19 illustrates. We check if the set of accesses
requested would normally wrap around the end of the stream buffer, and copy any missing
data after the end of the stream buffer, therefore providing a continuous view of the range
of stream elements that can be accessed through a simple C pointer or with a subscripted
array.

Back-pressurePressure

7654 3210 4 5 6 7 8

acquire_stream_access (R, 0, 7)

Copy to on "update"

Figure 7.19: Allowing read accesses acquired as a range to overshoot the end of the stream
buffer.

We present, on Figure 7.20, the algorithm used by our scheme. We integrate it to the
aggregating functions for acquiring and releasing stream resources, GOMP acquire stream accesses

and GOMP release stream accesses, but of course this could also be added directly in
the GOMP stream update and GOMP stream commit synchronization primitives. Note that
the copy operation is performed after the update operation completes, ensuring that the
data was ready to be read in its original position, and that it is performed before the
commit operation to ensure that the data at the beginning of the buffer is written before
any consumer can access it.

To ascertain that there can be no conflict between copies to or from the beginning of
the stream buffer or the overshoot area, one needs only consider that: (1) the stream access
indexes being extended in the overshoot area are necessarily either read-only or write-only
because the synchronization scheme applies to these indexes as well as to the beginning
of the stream buffer, therefore ensuring exclusivity between producers and consumers to

226 CHAPTER 7. WORK-STREAMING COMPILATION

GOMP_acquire_stream_accesses (p, act_idx_low, act_idx_high) {

t = p->task;

span = act_idx_high - act_idx_low;

for (v ∈ p->registered_views) {

// Compute the stream access index (same as before)

// [...]

// Request access to the highest accessible indexes

if (v->u == R) {

GOMP_stream_update (s, base_index_high + horizon);

if ((base_index_low / v->s->buffer_size)

< ((base_index_high + horizon) / v->s->buffer_size))

{

memcpy (v->s->buffer + v->s->buffer_size, v->s->buffer,

((base_index_high + horizon) % v->s->buffer_size) + 1);

}

} else { // (v->u == W)

GOMP_stream_stall (s, base_index_high + horizon);

}

// Set the view pointer in the stream buffer to the beginning

*v->view_pointer = v->s->buffer + (base_index_low % v->s->buffer_size);

}

}

GOMP_release_stream_accesses (p, act_idx) {

t = p->task;

for (v ∈ p->registered_views) {

// compute the stream access index for the release (same as before)

// [...]

if (v->u == R) {

GOMP_stream_release (s, release_index);

} else {

if ((v->current_base / v->s->buffer_size)

< (release_index / v->s->buffer_size))

{

memcpy (v->s->buffer, v->s->buffer + v->s->buffer_size,

(release_index % v->s->buffer_size) + 1);

}

GOMP_stream_commit (s, release_index);

}

}

}

Figure 7.20: Preventing circular buffer wrap-around in acquired ranges of stream access
indexes.

this area mirroring the beginning of the stream buffer; and (2) that any overwriting by
another thread will rewrite the same data, but with possibly different lengths after the

7.6. CONCLUSION 227

end of the buffer. This overwrite cannot impact correctness.

Remark 7.1. One of the main issues with this scheme is that it works best if there
is a known bound for the highest possible horizon size for each stream, and how much
aggregation may be enabled. Otherwise, it is impossible to decide how much overshoot
space should be allocated. It is still possible to check that enough space is available in
the same algorithm and trigger a stream buffer resizing event if the space is insufficient.
In practice, if memory space is not an issue on the execution platform, and considering
that this space will mostly not be used and therefore not waste cache space, we can simply
allocate the double of the size of the circular buffer, and resize along with the buffer size.
The overshoot can never exceed the buffer size without leading to a resource deadlock,
which is then resolved, as a single request for more data that can fit the stream buffer is
impossible to satisfy.

7.6 Conclusion

In this chapter, we presented the code generation framework for our stream-computing
extension to OpenMP. We provided a fall-back code generation scheme, that can be relied
on when all static analyses fail, as well as optimized versions that are enabled by the static
analyses presented in Chapter 5. The optimizations enabled by task regularity in worker
threads not only result in reduced runtime overhead, but they also reduce the negative
impact of streamization on the applicability of serial compiler optimizations.

In the current state of our implementation in the GCC compiler, we can only rely on
ad hoc analyses because the OpenMP expansion pass occurs very early in the compilation
flow. In fact it is performed just after parsing the program, which means that most of
the static analysis information is unavailable. To overcome this issue, we have designed
an intermediate representation [55] for OpenMP annotations that will be used, in future
work, to preserve the high-level information through the compilation flow and postpone
the OpenMP expansion until the latter compiler optimization passes.

228 CHAPTER 7. WORK-STREAMING COMPILATION

Chapter 8

Experimental Evaluation

In this chapter, we present the experimental results we measured for three applications,
FMradio, 802.11 a and 1D-FFT, on off-the-shelf x86 multicore machines. For each appli-
cation, we first generate stream code by hand, relying on our runtime implementation,
to evaluate the potential of our approach once the code generation is complete and
all optimizations are applied. In a second step, we rely on the automatic generation
of streaming code by our GCC prototype, from an OpenMP code annotated with our
streaming extension. We present the speedups obtained by both methods relative to
sequential code execution. For instance, we measure maximum speedups of 12.6×, 13×
and 6.5× respectively for FMradio, 802.11 a and FFT on a 16 cores machine with hand-
“compiled” code.

Nous présentons, dans ce chapitre, les résultats expérimentaux obtenus pour trois
applications, FMradio, 802.11 a et la FFT unidimensionnelle, sur des architectures x86
grand public. Pour chacune de ces applications, nous avons écrit, à la main, une version
streaming, faisant appel à notre système de runtime, qui nous permet d’évaluer le potentiel
de notre approche dès lors que la passe de génération de code sera achevée avec toutes
les optimisations que nous avons décrites précédemment. Nous évaluons une deuxième
version, de chaque application, dans laquelle le code est écrit directement avec OpenMP,
étendu pour le streaming, et compilée avec notre prototype basé sur GCC. Nous présentons
les accélérations obtenues par ces deux versions relativement à une exécution séquentielle.
Nous obtenons ainsi, par exemple, des accélérations allant jusqu’à 12.6×, 13× et 6.5×
respectivement pour FMradio, 802.11 a et la FFT sur une machine dotée de 16 cœurs
avec la version “compilée à la main”.

8.1 Experimental Settings

The implementation of our streaming extension is under way in the omp-stream public
branch of GCC. This implementation has followed the various stages [56–59] of the
design of our extension which have converged towards the current extension, presented in
Chapter 2. Earlier designs differ on some of the finer points, but the general approach, to
make explicit the flow of data between tasks, has been the same throughout this evolution.

229

230 CHAPTER 8. EXPERIMENTAL EVALUATION

The results presented in this chapter correspond to the version we published in [56]. It
only differs with this thesis on the semantics of broadcast over streams versus interleaving
of read accesses. The discussion over this point in Section 2.5.5 reflects and motivates this
choice, which mostly serves to simplify the work of the compiler by providing a missing
piece of information. This is unlikely to have an impact on our performance results as our
applications do not rely on dynamic interleaving patterns of read accesses to streams.

While the current implementation of the runtime and code generation framework
is still incomplete, the essential building blocks are available to allow evaluating the
performance potential of our streaming framework. Indeed, the runtime implementation is
advanced enough to provide the necessary support for compiling by hand our applications
without major limitations. Important parts of our algorithmic framework are still under
development, in particular load-balancing and deadlock detection, but the essential part
of our runtime is in the stream synchronization.

The code generation is less advanced, mostly because of design adjustments that have
set us back along the way. In its current state, it is capable of generating code for
FMradio and 802.11 a, but not for FFT. This difference is mostly due to earlier design
choices, where the code generation was directly generating some of the functionality
now provided by the runtime, in particular the evaluation of activation points and the
forwarding of firstprivate communications. The relatively recent shift in design comes
from a much stronger emphasis on dynamic codes, which has brought the requirement of
the quiescence and stream buffer resizing schemes, leading to a stronger integration with
the runtime. In prior versions, stream buffer sizes were set either statically or through
execution parameters.

The comparison between the speedups measured on the hand-compiled and the
automatically-compiled versions reflects the advancement of our code generation frame-
work. As we see below, there is still a gap between the two versions, that we are currently
working to fill.

8.1.1 Applications

For our experiments, we use three applications, FMradio, 802.11 a and FFT, briefly
presented below.

FMradio is a kernel extracted from the GNU radio package1. This kernel was originally
re-engineered to expose pipeline parallelism for the needs of the ACOTES project [1].
For this reason, the insertion of directives in the code required minimal effort. Some
minor adjustments were required to remove needless state in some of the filters.

FMradio presents a high amount of data-parallelism, each filter with non-negligible
load is in fact stateless. For this reason, and as discussed in Section 6.3.3, load
balancing is easily achieved by exploiting the data-parallelism.

802.11a is an industrial code from Nokia [49], also a code from the ACOTES project, in
which pipeline parallelism had been exposed by members of the project. However,
in this case things were much more complicated. No care was taken in the original

1http://gnuradio.org/redmine/projects/gnuradio

8.2. SOFTWARE DEFINED RADIO: FMRADIO 231

code to avoid coding patterns that negatively impact parallelization and we had to
extensively refactor the code in order to eliminate state in filters. After this step,
annotating the program is straightforward.

This application is much more unbalanced, or rather balance is much more difficult
to achieve, because some filters remain stateful.

1D FFT is based, for the parallelized versions, on our own unoptimized implementation
of the Cooley-Tukey FFT algorithm, while the sequential version is a more optimized
version which serves as a baseline of comparison in the StreamIt [68] benchmark
suite.

The annotation of our algorithm is fairly straightforward and data-parallelism is
naturally present. In fact, we used an unoptimized algorithm precisely because it
does not impede data-parallelism.

Most importantly, we underline the fact that we do not evaluate FFT with a
standard streaming approach. We evaluate the performance achieved on a single
execution of FFT rather than the common streaming approach which uses a pipeline
of successive FFTs applied to blocks of data in a stream. This is the case, as we
discuss below, in the results reported for StreamIt in [26]. We use FFT in a single
instance mode as an example of “non-streaming” code that can be more efficiently
exploited with our streaming approach than other parallel constructs. Here, by non-
streaming we mean that it does not fall in the usual category of streaming programs
where a set of filters is applied to a regular stream of data.

While this small set of applications does not cover the full breadth of the expressiveness
enabled by our streaming extension, we believe that it is sufficient to illustrate its potency.
We still lack an application with truly dynamic dataflow patterns; as we discuss later, FFT
is a dynamic task graph, but communication is entirely regular, FMradio and 802.11 a are
inherently streaming applications, with static behaviour (synchronous dataflow in fact).

8.1.2 Experimental Platforms

We use the two following experimental platforms for our performance evaluation.

• 4-socket AMD quad-core Opteron 8380 (Shanghai) with 16 cores at 2.5GHz, 64KB
L1 and 512KB cache per core, 6MB shared L3 cache and 64GB of memory.

• 4-socket Intel hexa-core Xeon E7450 (Dunnington) with 24 cores at 2.4GHz, 32KB
L1 cache per core, 3MB L2 cache shared by 2 cores, 12MB shared L3 cache and
64GB of memory.

These targets are respectively called Opteron and Xeon in the remainder of this chapter.

8.2 Software defined radio: FMradio

As a synchronous dataflow application, FMradio fits the stream programming models.
The kernel annotated with OpenMP and our streaming constructs is presented on Fig-
ure 8.1. The application is structured around a stream of data, read from a file in the main

232 CHAPTER 8. EXPERIMENTAL EVALUATION

program. This operation could also be made in a new task, but the file read operation
predicates the main while loop. For this reason the task would require a lastprivate clause,
which would serialize its execution with the control program and would only result in
performance degradation.

// Implement delay on fm_qd stream

#pragma omp task output (fm_qd << fm_qd_pre[maxtaps_minus_one]) private (i)

for (i = 0; i < maxtaps_minus_one; ++i)

fm_qd_pre[i] = 0;

// Implement delay on ffd stream

#pragma omp task output (ffd << view_3[lp_3_taps_minus_eight]) private (i)

for (i = 0; i < lp_3_taps_minus_eight; ++i)

view_3[i] = 0;

// Main loop

while ((16 == fread (read_buffer, sizeof(float), 16, input_file))) {

#pragma omp task firstprivate (read_buffer) output (fm_qd << view8[8])

for (i = 0; i < 8; i++)

fm_quad_demod (&fm_qd_conf, read_buffer[2*i], read_buffer[2*i + 1], &view8[i]);

for (i = 0; i < 8; i++) {

#pragma omp task input (fm_qd[0] >> view_11[1]) output (band_11) num_threads (3)

ntaps_filter_ffd (&lp_11_conf, 1, &view_11[diff_11], &band_11);

#pragma omp task input (fm_qd[1] >> view_12[1]) output (band_12) num_threads (3)

ntaps_filter_ffd (&lp_12_conf, 1, &view_12[diff_12], &band_12);

#pragma omp task input (fm_qd[2] >> view_21[1]) output (band_21) num_threads (6)

ntaps_filter_ffd (&lp_21_conf, 1, &view_21[diff_21], &band_21);

#pragma omp task input (fm_qd[3] >> view_22[1]) output (band_22) num_threads (6)

ntaps_filter_ffd (&lp_22_conf, 1, &view_22[diff_22], &band_22);

#pragma omp task input (band_11, band_12) output (resume_1)

subctract (band_11, band_12, &resume_1);

#pragma omp task input (band_21, band_22) output (resume_2)

subctract (band_21, band_22, &resume_2);

#pragma omp task input (resume_1, resume_2) output (ffd)

multiply_square (resume_1, resume_2, &ffd);

}

#pragma omp task input (fm_qd[4] >> view_2[8]) output (band_2)

ntaps_filter_ffd (&lp_2_conf, 8, &view_2[diff_2], &band_2);

#pragma omp task input (ffd >> view_3[8]) output (band_3)

ntaps_filter_ffd (&lp_3_conf, 8, view_3, &band_3);

#pragma omp task input (band_2, band_3) output (out)

stereo_sum (band_2, band_3, &out.a, &out.b);

#pragma omp task input (out)

{

output_short[0] = dac_cast_trunc_and_normalize_to_short (output1);

output_short[1] = dac_cast_trunc_and_normalize_to_short (output2);

fwrite (output_short, sizeof(short), 2, output_file);

}

}

Figure 8.1: Annotated code of the main loop in FMradio.

We re-print, on Figure 8.2, the task graph graph of FMradio from Section 6.3.3,
originally on Figure 6.23, for the convenience of the reader. This figure shows the structure
of the application and helps understanding the code. There is a total of 14 task constructs,

8.2. SOFTWARE DEFINED RADIO: FMRADIO 233

fm_quad_demod

ntaps_filter_ffdntaps_filter_ffd ntaps_filter_ffd ntaps_filter_ffd

subctract subctract

multiply_square

ntaps_filter_ffd

ntaps_filter_ffd

stereo_sum

output_filter

1%

15%30%

2%

1%

1%

1% 1%

2%

1%

30% 15%

30% 30% 15% 15%

Figure 8.2: FMradio task graph.

12 are represented on the task graph.

The Tasks 1 and 2 on Figure 8.1 implement the delay pattern, presented in Sec-
tion 2.5.5. The first task produces sufficient 0 values to prime the fm qd stream. Note that
this stream is a multi-producer stream, filled in by Tasks 1 and 3. The interleaving only
occurs once, so this is considered as a delay on stream fm qd rather than an interleaving.
Task 2 also introduces a delay on stream ffd, while this stream is primarily produced by
Task 12. These two tasks are not represented on the task graph of Figure 8.2.

The main loop of this program reads data from a file in a buffer, by chunks of 16 data
elements. This read buffer is passed on to Task 3 through a firstprivate clause. This
task processes the data and produces 8 elements in its output window, view8, which is
output on the fm qd stream. On the task graph, Figure 8.2, this task is at the very top,
marked with the name of the work function, and it provides data to five other tasks. This
is achieved by a stream broadcast array pattern (see Section 2.4.3). The stream variable,
fm qd, is declared as an array of five elements. In the output clause of Task 3, it appears
non-subscripted, which means that all consumers see the same data. Tasks 4 to 7, as well
as Task 11, in the code on Figure 8.1, use their own “stream” in the array, differentiated
by the subscript, to read from this broadcast stream. The code generated for this pattern
uses only one physical stream with multiple consumers.

One of the features introduced by our extension is the num threads clause for stream-
ing tasks. This clause specifies the number of worker threads that should execute the
activations of the task. As our runtime load-balancing scheme, presented in Section 6.3.3
is not yet available, we performed the load-balancing by hand, specifying the appropriate
number of threads for the four most computationally intensive tasks. The code presented
was used on the Xeon platform, where 24 hardware threads are available, and it lowers
the execution time of the slowest thread to 5% of total execution. This corresponds to a
maximum 20× speedup.

The code presented on Figure 8.1 is, with minor cosmetic modifications, the code
that is used in the compiler-generated version. We did, however, adjust the broadcast

234 CHAPTER 8. EXPERIMENTAL EVALUATION

array fm qd to reflect the current state of the streaming extension, but this is the only
semantical change.

The results measured on this benchmark, using a hand-compiled version show a 12.6×
speedup on Opteron (16 cores) and a 18.8× speedup on Xeon (24 cores). The Xeon result
comes quite close to the limit speedup of 20× discussed above.

The speedup obtained with our compiler prototype is lower, with only a 10.5× speedup
on Opteron, a 20% lower result than with the hand-generated code. We do not present, at
this time, the results from the compiler generated code on Xeon due to machine availability
issues.

We stress the importance of data-parallelization for load-balancing. Pipeline paral-
lelism alone, with num threads = 1, only provides a 3.1× speedup on Opteron and 2.9×
speedup on a desktop machine equipped with an Intel Core2 Quad Q9550 with 4 cores at
2.83GHz. This is to be expected as the slowest filter, as shown on Figure 8.2, accounts
for roughly 30% of the execution time, therefore bounding speedup by 3.3×.

8.3 Wifi: 802.11a

We do not review the details of this application as its code is excessively long and does not
present any interesting new coding patterns. It is also a synchronous dataflow program,
with a static behaviour that guarantees the regularity of all tasks.

For this application, the hand generated code reaches 13× on the Opteron platform (16
cores) versus a more modest 6× for the compiler generated code on this same platform.

We measured a speedup of 14.9× on Xeon (24 cores) with hand generated code, which
shows the limits to scalability on this application. As discussed in Section 8.1.1, we were
unable to remove the state in some of the filters. These cannot be data parallelized.
For this reason, we do not expect performance to improve much further in the current
implementation of this application.

8.4 1D FFT

The two applications presented above are inherently streaming applications, that perfectly
fit the synchronous dataflow model. This is not the case for FFT. While the computation
of multiple, independent, FFTs is an embarrassingly parallel problem where each thread
can work on its own computation, the parallelization of a single FFT computation presents
a limited amount of parallelism. When the size of the problem increases, the amount of
parallelism increases in the inner stages. However, this additional parallelism is only
available for decreasing portions of the total work. As we argue below, the overall
parallelism available only scales logarithmically with the size of the problem.

We measure “real” speedups: the algorithm used as the sequential comparison baseline
is the fastest one and differs from the parallelized ones. In order to expose parallelism,
we privatize the data to eliminate “false” data-dependences and we also need to use the
Cooley-Tukey algorithm with the reorder stages. Using computed array subscripts is faster
for sequential implementations, but it results in array accesses in a much wider range for
each iteration within a stage of the computation and hence increases false-sharing between

8.4. 1D FFT 235

concurrent threads. These two differences introduce a lot of overhead, so we use instead
an algorithm optimized for serial execution.

FFT cannot be compiled by our prototype and we only present results for hand
generated code. We hand-tuned the amount of parallelism to achieve the best results,
as explained below, and this leads to different configurations for different FFT sizes. In
the results presented on Figures 8.5 and 8.6, we show separately the speedups achieved
with a single configuration for all sizes and with the best configuration for each size.
The single configuration version uses the configuration best suited for large sizes of FFT,
therefore leading to the highest speedups only for a few of the FFT sizes.

We present the code of our implementation, as well as the resulting task graph, on
Figure 8.4. The global structure is a linear pipeline of filters using two dynamic pipelines
with an array of streams, STR[]. The first task construct, represented on the left of the
task graph, serves as a source of data for the FFT. The second and third task constructs
implement the dynamic pipeline of filters pattern, as presented in Section 2.5.2, and
build the two dynamic pipelines of reorder stages and DFT stages. Finally the last task
construct is a sink task that prints the results of the computation.

The second and third constructs are the most interesting ones. First, we can notice
that we can easily apply our analysis scheme, presented in Section 5.3.2, on the subscripts
in the array of streams STR[], by eliminating the common subexpression j for the reorder
stage and j + log(N) for the DFT stage, between the two streaming clauses of each task,
which shows the regularity of each streaming task generated by these two constructs.
Furthermore, we note that the horizons and rates are constant, for each stream in the
array STR, but they vary across the different filters in the dynamic pipelines, as shown
on the task graph at the top of Figure 8.4. This accounts for varying degrees of available
data parallelism within the filters, which is a well-known issue for FFT.

Reorder stages DFT stages

Loops on stages (j)

Lo
op

 o
n

ch
un

ks
 (i

)

Figure 8.3: Data-flow graph for FFT.

Figure 8.3 presents the data-flow graph for our FFT implementation. The dependence

236 CHAPTER 8. EXPERIMENTAL EVALUATION

patterns show that data-parallelism is available in each stage, or vertical slice, of the data-
flow graph. It is possible to exploit data-parallelism by parallelizing the loops on chunks,
with the induction variable i, or to exploit task-parallelism, each chunk being exploited
by an independent task, spawned as soon as its dependences are satisfied. This greedy
parallelization pattern maximizes the amount of parallelism exploited. Pipelining relaxes
the synchronization and enables wavefront parallelization. We control the granularity by
varying the depth of the pipeline, thus changing the number of times the data is split.

Though we only present one version of the FFT algorithm, on Figure 8.3, we present,
on Figures 8.5 and 8.6, the speedups measured of five parallelized versions compared to
our sequential baseline:

Mixed pipeline and data-parallelism corresponds to our streaming implementation
where we exploit both types of parallelism, with possibly multiple worker threads per
task. On the data-flow graph (Figure 8.3) this corresponds to a wavefront traversal
where we execute multiple chunks concurrently once we reach a given depth. The
main idea is that pipeline parallelism does not hurt locality, but it is insufficient in
and of itself. By exploiting pipeline parallelism only up to a given depth, we can
reach a chunk size that properly fits in the shared cache of a processor, at which
point we switch to exploiting data-parallelism.

Pipeline parallelism is our streaming implementation where a single worker thread is
enabled per task: no data parallelism. This is a wavefront traversal of the data-flow
graph, where all chunks in a vertical slice are serially executed. However, once a
chunk is executed, both the chunk below and the chunks that get their dependences
satisfied in the next stage (to the right on Figure 8.3) become executable.

Data-parallelism (OpenMP loops) corresponds to a simple data-parallel implemen-
tation exploiting the loop on chunks, with the induction variable i in our implemen-
tation, on Figure 8.4. In this case, we execute concurrently all the chunks belonging
to vertical slices of the data-flow graph, with a barrier at the end of each stage.

Task-parallelism (OpenMP tasks) is an implementation exploiting task parallelism,
but we limit the partition at a given depth, which improves performance by limiting
the scheduling overhead. The traversal of the data-flow graph is only limited, in this
case, by the data-flow dependences. This minimizes synchronization, but it leads to
poor locality.

Task-parallelism (Cilk tasks) is similar to OpenMP tasks, but we do not limit the
depth, therefore achieving a maximal partition, which the coding pattern advocated
in Cilk [24]. This shows that task scheduling techniques alone are insufficient to
properly exploit a maximal partition of the 1D FFT.

Speedups for FFT are presented on Figures 8.5 and 8.6. Combined pipeline- and data-
parallelism achieve the best results, compared to pure data-parallelism or pure pipelining.
We report two sets of results for each target: the single configuration results (top graph)
correspond to speedups obtained when using the same tuning parameters (number of
threads, granularity, etc.) for all the data sizes and for all the code versions; the best

8.5. CONCLUDING REMARKS 237

configuration results (bottom graph) correspond to the optimal performance achieved
with the best configuration for each individual data size point. The size of the machines
and the associated cost of inter-processor communication set the break-even point around
vectors of 256 elements and more. The maximum speedup of 6.5× on Opteron and 4.85×
on Xeon is achieved for vectors of 220 elements.

The analysis of the Opteron results, presented on Figure 8.5, shows a few noticeable
points of interest. The most apparent one occurs in the single configuration graph (top)
when the size of the FFT increases from 219 to 220, in which case the speedup almost
doubles. This is mostly due to the serial execution becoming significantly slower because
it no longer fits in the L3 cache. Indeed, as the access patterns of FFT are non-linear,
as soon as the data array no longer fits in one of the cache levels, the computation will
necessarily experience increased memory latency as it needs to fetch data from lower levels
of cache or from main memory. The same behaviour is observed on the Xeon platform, on
Figure 8.6, where this occurs when the L2 cache is no longer sufficient to fit the FFT data,
between FFT sizes of 218 and 219. It also appears, to a less noticeable degree, between
sizes 212 and 213 as the L1 cache size is exceeded.

Finally, the speedups of our streaming implementation (blue) decrease, on both ma-
chines, from FFT sizes 220 to 222. This same phenomenon is observed in other places; it
is very apparent on the bottom graph for Opteron results on Figure 8.5 when the FFT
size increases from 211 to 213 of from 217 to 219. All data points in each range actually
correspond to the same configuration, before a new configuration becomes better suited
as the size exceeds a threshold. This is very clearly visible on both “single configuration”
graphs (at the top of both figures), as the speedups form a wave that ebbs once the
“optimal” size is exceeded for the configuration. On the bottom graphs, the three local
speedup optima occur for FFT sizes 211, 217 and 220 on Opteron and for sizes 29, 216 and
220 on Xeon. They exhibit the three configurations used to compose these graphs.

On a PRAM machine, is is possible to evaluate the theoretical speedup that can
be reached and it is comprised, for a given problem size, between log2(size)/2 and
(log2(size) + 1)/2. This leads us to conclude that our highest speedup, reached for a
problem size of 220, the highest PRAM speedup would be between 10× and 10.5×. Our
6.5× speedup on Opteron is therefore close to 65% of the theoretical optimum. In a
certain sense it is higher, as we recall our sequential baseline is an optimized algorithm
while the streaming results use an unoptimized one, but this is the natural price to pay
for exposing parallelism. Note that the speedup of 5.9× achieved on the FFT of size
217 represents close to 70% of the theoretical speedup on Opteron. This shows that
non-streaming applications can also be efficiently executed with our extension.

8.5 Concluding Remarks

We evaluated our stream-computing framework on three applications: two streaming ap-
plications, FMradio and 802.11 a, and a non-streaming application, FFT. With speedups
of up to 18.8× and 14.9× for FMradio and 802.11 a on a 24 cores platform, these
applications show that our framework is capable of efficiently exploiting dataflow ap-
plications. The performance measured on FFT, a non-streaming application, shows that

238 CHAPTER 8. EXPERIMENTAL EVALUATION

x=... print(...)

Dynamic reorder pipeline Dynamic DFT pipeline

1 2N 2N 2N 2N 1N 16 8 48 4 8 N
STR[0] STR[1] STR[2log(N)-1]STR[log(N)-3] STR[log(N)-2] STR[log(N)-1] STR[2log(N)-2]

float x, STR[2*(int)(log(N))];

for(i = 0; i < 2 * N; ++i)

#pragma omp task output (STR[0] << x)

{

x = (i % 8) ? 0.0 : 1.0;

}

// Reorder stages

for(j = 0; j < log(N)-1; ++j) {

int chunks = 1 << j;

int size = 1 << (log(N) -j + 1);

float X[size], Y[size];

for (i = 0; i < chunks; ++i)

#pragma omp task input (STR[j] >> X[size]) output (STR[j+1] << Y[size])

{

// Y[0..size-1] = reorder (X[0..size-1]);

}

}

// DFT stages

for(j = 1; j <= log(N); ++j) {

int chunks = 1 << (log(N) - j);

int size = 1 << (j + 1);

float X[size], Y[size];

for (i = 0; i < chunks; ++i)

#pragma omp task input (STR[j+log(N)-2] >> X[size]) \

output (STR[j+log(N)-1] << Y[size])

{

Y[0..size-1] = compute_DFT (X[0..size-1]);

}

}

for(i = 0; i < 2 * N; ++i)

#pragma omp task input(STR[2*log(N)-1] >> x) input (stdout) output (stdout)

{

printf ("%f\t", x);

}

Figure 8.4: FFT implementation using dynamic task pipelines and the corresponding task
graph.

8.5. CONCLUDING REMARKS 239

7

6

5

4

3

2

1

0

Sp
ee

du
p

vs
. s

eq
ue

nt
ia

l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core L2

core
L2
chip

L3
chip

L3
machine

7

6

5

4

3

2

1

0

Sp
ee

du
p

vs
. s

eq
ue

nt
ia

l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core

L3
machine

L2
chip

L2
core

L3
chip

Single configuration for all FFT sizes

Best configuration for each FFT size

Mixed pipeline
and data-parallelism

Pipeline parallelism Cilk

Data-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks

Figure 8.5: FFT performance on Opteron.

240 CHAPTER 8. EXPERIMENTAL EVALUATION

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core L2

2 cores
L2
chip

L3
chip

6

5

4

3

2

1

0

Sp
ee

du
p

vs
. s

eq
ue

nt
ia

l

6

5

4

3

2

1

0

Sp
ee

du
p

vs
. s

eq
ue

nt
ia

l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core L2

2 cores
L2
chip

L3
chip

Single configuration for all FFT sizes

Best configuration for each FFT size

Mixed pipeline
and data-parallelism

Pipeline parallelism Cilk

Data-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks

Figure 8.6: FFT performance on Xeon.

8.5. CONCLUDING REMARKS 241

our streaming framework is able to exploit parallelism on multicore architectures more
efficiently than data- or task-parallelism, showing more than twice higher speedups. The
best speedup, for a very large one million elements configuration, is 6.5×, about 65% of
the theoretical 1D FFT speedup on a PRAM machine. On very small sizes a slowdown is
observed, but the break even point with sequential execution occurs for a FFT size of 256
elements, much earlier than for other forms of parallelism. This shows the applicability
of our approach for general-purpose parallelization.

While still preliminary, the results presented in this chapter validate our approach and
motivate the development of this streaming compilation in GCC, as well as the integration
of our streaming extension in upcoming revisions of the OpenMP specification.

242 CHAPTER 8. EXPERIMENTAL EVALUATION

Chapter 9

Conclusion

To conclude this dissertation, we review the main contributions and results, we present on-
going and future work opportunities and we discuss some perspectives for our streaming
framework.

9.1 Contributions

This thesis makes five main contributions: an extension of OpenMP to support stream
computing, a formal model to prove its efficient implementation, a set of algorithms for
the necessary runtime, a code generation framework with a prototype implemented in
GCC and experiments.

Stream-Computing in OpenMP [56] The extension presented in Chapter 2, in-
crementally enables stream programming in OpenMP. This extension does not break
the semantics of existing OpenMP programs and is compatible with existing compilers,
notably with GCC. We provide a detailed description of the extension’s semantics and of
the most important coding patterns it enables.

A key property in our streaming extension is that, unlike other streaming frameworks,
it does not require regular and static communication patterns, but can accomodate any
type of dynamic connections, with a fully dynamic task graph, and allows streaming tasks
to be nested in arbitrary control flow, thus resulting in a high level of expressiveness.
Programmers expose task parallelism while providing the compiler with the dataflow
information required to generate code that dynamically builds a streaming program. It
allows to seamlessly exploit task, pipeline and data parallelism, while improving locality
and fostering on-chip communication, therefore helping to reduce the severity of the
memory wall.

The Control-Driven Data-Flow (CDDF) Model of Computation In order to
prove that programs written with our streaming extension can be efficiently executed
and benefit from essential properties that improve productivity, such as determinism, we
developed in Chapter 3 a new model of computation that accounts for both control flow
and data flow. By using a control program to deterministically schedule data in streams,

243

244 CHAPTER 9. CONCLUSION

the scheduling of task activations is simplified and the synchronization of streams can be
reduced to a form that allows an efficient implementation.

We prove that CDDF programs benefit from deadlock and functional determinism,
that they are serializable under conditions that are satisfied by default in the current
OpenMP semantics, and that statically decidable conditions are sufficient to provide free-
dom from spurious deadlocks, introduced by the synchronization scheme, or even in some
cases from functional deadlocks, resulting from insatisfiable cycles of flow dependences.

To bring the CDDF model closer to our OpenMP streaming extension, Chapter 4
relaxes some of the restrictions made in Chapter 3. We prove that the CDDF model is
compatible with bounded memory execution and that some level of parallelism can be
exploited in the control program without loss of determinism.

Chapter 5 further shows that these results apply to our OpenMP extension and lays
the groundwork for a static analysis framework for streaming programs. We address the
question of statically verifying deadlock-freedom conditions and we provide a scheme for
adjusting existing dataflow analyses to enable the generation of optimized code.

Runtime Deadlock Detection and Atomic Operation-Free/Fence-Free Syn-
chronization Algorithms To address the issue of possibly remaining deadlocks, we
designed a runtime deadlock detection algorithm, capable of detecting and resolving
resource deadlocks and of providing a much needed support for program debugging.
When the deadlock cannot be resolved, it can provide precise information on the tasks
and streams involved in the deadlock as well as on the stream accesses that could not be
satisfied. Along with the deadlock determinism property of our streaming programs,
this simplifies testing and deadlock identification. In the absence of shared memory
communication, no data races are possible. Debugging and testing such programs is
deterministic and their behaviour is target independent.

In Chapter 6, we present a synchronization algorithm for streams that makes the
best use of the Total Store Order (TSO) and x86 consistency models, providing stream
synchronization with neither atomic operations nor memory fences. We show that our
algorithm effectively uses all of the strengths of the TSO model, exploiting all non-relaxed
ordering constraints. We further provide the equivalent algorithm under some of the most
relaxed memory models, including IBM POWER and Relaxed Memory Order (RMO). We
show that the overhead introduced by this synchronization scheme is significantly lower
than scheduling lightweight tasks. A partial discussion of this work is published in [48].

Code Generation and Prototype Implementation in GCC [56,58,59] Chapter 7
presents our code generation algorithms. Designed for a complete integration in GCC’s
implementation of OpenMP, a simple code generation algorithm is provided that requires
no static analysis, in conformance with the OpenMP expansion pass in GCC.

In addition to the default code generation scheme, we provide algorithms for generating
optimized streaming code, by relying on the results of our static analysis framework
detailed in Chapter 5.

While still incomplete, the implementation of our prototype of the code generation pass
has reached a point where full applications like FMradio and 802.11 a can be compiled.

9.2. ON-GOING AND FUTURE WORK 245

Experimental Results We use three applications, FMradio, 802.11 a and FFT, pre-
sented in Chapter 8. We first generate stream code by hand, relying on the runtime
implementation, to evaluate the potential of our approach once the code generation is
complete and all optimizations are applied. In a second step, we rely on the automatic
generation of streaming code, by our GCC prototype, from an OpenMP code annotated
with the streaming extension.

We present the speedups obtained by both methods when compared to sequential
code execution, except for FFT which could not be automatically generated at this stage,
showing significant speedups on several off-the-shelf multicore machines. For instance,
using an AMD quad-core Opteron 8380 (Shanghai) with 16 cores at 2.5GHz, we measure
the following speedups for FMradio: 12.6× speedup with hand-compiled code and 10.5×
with automatic generated code. For 802.11 a hand generated code reaches 13× versus a
more modest 6× for the compiler generated code.

In the case of FFT, our results are obtained for a single FFT computation rather
than the usual pipeline of successive FFT computations that better fit the streaming
paradigm. The best performance, for a very large one million elements configuration, is
a 6.5× speedup, close to 65% of the theoretical speedup on a PRAM machine. On very
small sizes a slowdown is observed, but the break even point with sequential execution
occurs for a reasonably small FFT size of 256 elements. This shows the applicability of
our approach for general-purpose parallelization.

9.2 On-Going and Future Work

Many new ideas and opportunities for further research have popped up all along this
thesis. Some of these ideas are already being investigated and in the development stage,
while others present exciting perspectives and will provide the ground for new interesting
studies.

Two compiler-related developments have been spurred by this thesis. The first one is
related to one of our early approaches [57–59] to streamization, where we used streams
as a replacement for memory expansion in the loop distribution pass of GCC, and to
the decoupled software pipelining technique developed by Rangan et al. [62]. This
development [45], led by Feng Li, a PhD student at INRIA, relies on the single static
assignment (SSA) form to extract pipeline parallelism from sequential code, providing a
partitioning algorithm based on the hierarchy of control dependences, and relies on our
OpenMP streaming extension as a backend for code generation.

The second one stemmed from the need to rely on static analyses for the generation of
optimized streaming code. It revealed the difficulty of obtaining static analysis informa-
tion at the very early stages of the compilation flow in GCC, where OpenMP expansion
occurs. We developed an intermediate representation scheme to preserve the high-level
information of OpenMP constructs through the compilation flow, in order to perform
both the OpenMP and the streaming expansion at later stages of the compilation flow,
where the necessary static analysis information is available. This has many additional
benefits as it avoids obfuscating the code, because the expansion introduces many opaque
function calls and generates code that is not simple to analyze, before serial optimizations
occur. An early paper [55] covers this topic.

246 CHAPTER 9. CONCLUSION

In addition to this on-going work, many opportunities are open for further research.
On the applications side, as our model allows to dynamically adopt new dataflow paths,
applications from the fields of control systems and signal processing with dynamic mode
switching, like dynamic video encoding, naturally fit in our streaming extension. The im-
plementation of applications like low latency image processing for car and plane controllers
present characteristics that could exploit our model.

Some questions are still open in the compiler and runtime, in particular with respect
to the static analysis of streaming programs and the possibility to enable some of the
optimizations we could not allow. We mentioned many such cases along the dissertation,
for example with respect to the applicability of data aggregation in strongly connected
components of the task graph, which could use a mixed compiler and runtime approach,
where the runtime adapts the aggregation factor to the dynamic delay available in the
streams involved in a cycle. The questions of refining our over-approximation of the static
task graph and of providing a reversible load balancing strategy, which would improve the
efficiency of exploiting fully dynamic task graphs, present some interesting challenges.

A possible use of our extension is as a target for the compilation of higher-level dataflow
languages, for example for the generation of parallel, desynchronized, code from LUSTRE.
An attempt in this direction by Léonard Gérard revealed that modular compilation
support was required. While not yet implemented, this is supported by our compilation
scheme.

As mentioned in Chapter 5, one of the most ambitious ideas is to use array dataflow
analysis not only for deciding task regularity, but also to analyze the patterns of stream ac-
cesses. Powerful transformations like de-multiplexing the interleaving of data to privatize
streams or re-scheduling streams for purposes like task fusion or loop nest optimizations
would be within grasp. Along with a framework for detecting synchronous dataflow
invariants, this may bring the highest performance returns.

Finally, as our communication scheme naturally maps onto MPI channels, tasks that
do not rely on shared memory can be executed on different compute nodes. Extending
the work by Millot et al. in the STEP project [47], which relies on the source-to-source
optimizing compiler PIPS [35] to map OpenMP applications on distributed platforms,
would present an interesting challenge.

9.3 Perspectives

One of our goals is to integrate our streaming extension into upcoming revisions of the
OpenMP specification. We presented an early version of our work at IWOMP [54], the
main venue for discussion on OpenMP developments. This is a lengthy process, where a
full implementation is required before such an extension can be taken into consideration,
and we plan on pursuing this direction as soon as our compilation framework is complete.
This is of course not the only avenue for promoting our model. Indeed, our extension
transparently maps on any task-parallel programming model, with some adjustments and
accounting for the requirement of task causality which underlies many of our results. We
are especially interested in the upcoming OpenHMPP [60] standard, where our streaming
framework would naturally fit. Eventually this can extend to any language that uses
tasks, like Cilk [24].

Conclusion en français

En conclusion de cette thèse, nous passons tout d’abord en revue les principales contribu-
tions et résultats, nous présentons les travaux en cours et les opportunités de recherche que
cette thèse ouvre et enfin nous discutons des perspectives de notre modèle de streaming.

Contributions

Cette thèse apporte cinq principales contributions : une extension au langage OpenMP
pour permettre le streaming, un modèle formel utilisé pour prouver l’efficacité de son
implantation, un ensemble d’algorithmes de runtime, un prototype de générateur de code
implémenté dans le compilateur GCC et un ensemble d’expériences visant à valider ces
techniques.

Le stream-computing dans OpenMP [56] L’extension de langage que nous avons
présentée au chapitre 2 introduit incrémentalement la programmation en streaming
dans OpenMP. Cette extension ne casse pas la sémantique des programmes OpenMP
préexistants et est compatible avec les compilateurs existants, notamment avec GCC.
Nous décrivons en détail la sémantique de cette extension au travers d’exemples et des
principaux schémas de programmation rendus possibles.

L’une des propriétés essentielles de ce modèle de programmation par stream est
que, contrairement à d’autres modèles, il n’est pas nécessaire d’écrire des programmes
communiquant de manière régulière et statique. En effet, notre modèle permet d’utiliser
toute forme d’interconnexion entre tâches et de construire un graphe de tâches entièrement
dynamique, où les tâches peuvent se trouver dans du contrôle de flôt arbitraire, ce qui
confère à cette extension une expressivité complète. Le programmeur doit exposer le
parallélisme de tâches en fournissant au compilateur les informations sur le flôt de données
pour chaque tâche. Ces informations sont nécessaires, et suffisantes, pour permettre la
génération du code qui construit dynamiquement le programme de stream. Il est possible
d’y exploiter simultanément le parallélisme de tâches, de pipeline et de données, tout en
améliorant la localité de cache et en favorisant les communications locales, qui ne sortent
pas du processeur, réduisant ainsi la sévérité du memory wall.

Le modèle de calcul Control-Driven Data-Flow (CDDF) Afin de prouver que
les programmes écrits avec l’extension streaming peuvent être efficacement exécutés, et
qu’ils bénéficient d’un nombre de propriétés essentielles à la productivité telles que le
déterminisme, nous avons développé, au chapitre 3, un nouveau modèle de calcul qui prend

247

248 CHAPTER 9. CONCLUSION

en compte à la fois le contrôle de flôt et le flôt de données. En se basant sur un programme
de contrôle pour établir un ordonnancement déterministe des données dans les streams,
l’ordonnancement des activations de tâches peut être simplifié et la synchronisation de la
communication par streams peut être réduite à une forme permettant une implantation
particulièrement efficace.

Nous démontrons ainsi que les programmes CDDF sont déterministes, à la fois du point
de vue fonctionnel et des interblocages, et sérialisables, sous réserve de conditions qui sont
toujours satisfaites par défaut dans la sémantique OpenMP actuelle. Enfin, nous prouvons
un ensemble de conditions suffisantes, et surtout statiquement décidables, pour l’absence
d’interblocages non fonctionnels, qui sont introduits par le mode de synchronisation plutôt
que par la sémantique du programme, et, dans certains cas, pour l’absence d’interblocages
fonctionnels, qui sont dûs à des dépendances de flôt cycliques non satisfaisables.

Afin de rapprocher le modèle CDDF de notre extension pour le streaming dans
OpenMP, nous étudions le modèle sous des contraintes plus faibles au chapitre 4, en
particulier montrant ainsi que le modèle CDDF est compatible avec une exécution en
mémoire bornée et qu’il est possible d’exploiter le parallélisme du programme de contrôle
sans compromettre les garanties de déterminisme.

Le chapitre 5 montre comment l’extension d’OpenMP peut être modélisée dans CDDF
et décrit les bases de l’analyse statique de programmes de streams. Nous y proposons
une solution pour la vérification des conditions statiques d’absence d’interblocages et
nous fournissons une approche, basée sur la réutilisation des analyses de flôt de données
existantes, pour permettre de générer du code optimisé.

Détection dynamique d’interblocages et algorithme de synchronisation sans
opérations atomiques ou barrière mémoire L’analyse statique ne pouvant détecter
tous les cas d’interblocages fonctionnels, nous avons conçu un algorithme de détection
dynamique d’interblocage, à même de détecter et de résoudre les interblocages dûs au
manque de ressources — lorsque la taille des tampons mémoire des streams est insuffisante
— et de fournir une aide au debugging dans le cas des interblocages fonctionnels. En effet,
lorsqu’un interblocage ne peut être résolu, il est possible d’identifier très précisément les
tâches et les streams impliqués dans l’interblocage, ainsi que les accès aux streams qui
n’auraient pu être satisfaits. Couplée avec la garantie de déterminisme des interblocages,
cette approche permet de simplifier le processus de test des programmes et l’identification
des conditions d’interblocage. La vérification de ces programmes est déterministe et ne
dépend pas de la plateforme de test.

Nous présentons, au chapitre 6, un algorithme de synchronisation, spécifique aux
streams CDDF, qui fait un usage extensif de toutes les garanties d’ordonnancement des
accès mémoire dans les modèles de consistance mémoire Total Store Order (TSO) ainsi que
x86, permettant une synchronisation sans avoir recours aux opérations atomiques ou aux
barrières mémoire. Nous montrons que cet algorithme utilise effectivement chacune des
contraintes d’ordonnancement de ces modèles de consistance et fournissons un algorithme
équivalent pour des modèles mémoire très peu contraints tels que l’IBM POWER et le
Relaxed Memory Order (RMO), où nous sommes forcés d’avoir recours aux barrières
mémoire. Nous montrons également que le coût de cette forme de synchronisation est
significativement inférieur au coût d’ordonnancement de tâches légères. Une discussion

9.3. PERSPECTIVES 249

préliminaire de ce travail est publiée dans [48].

Génération de code et implantation d’un prototype dans GCC [56,58,59] Le
chapitre 7 présente notre algorithme de génération de code. Conçue pour une intégration
complète dans l’implantation d’OpenMP du compilateur GCC, une première version de cet
algorithme ne requiert aucune analyse statique, se conformant ainsi à la passe d’expansion
d’OpenMP de GCC. Une deuxième version se base sur les résultats des analyses statiques
présentées au chapitre 5 afin de générer un code streaming optimisé.

Bien qu’encore incomplète, l’implantation du prototype a atteint un stade où des
applications complètes peuvent être compilées, notamment FMradio et 802.11 a.

Résultats expérimentaux Nous évaluons notre approche streaming sur les trois ap-
plications présentées au chapitre 8: FMradio, 802.11 a et la FFT unidimensionnelle. Afin
de mesurer le potentiel de notre approche, nous comparons l’exécution séquentielle de ces
applications à la fois à la génération de code automatique à partir de notre extension du
langage OpenMP et aux applications parallélisées à la main utilisant la même librairie
de runtime. La génération de code à la main permet de montrer le potentiel de notre
approche une fois que la passe de génération de code sera achevée.

Nous présentons les accélérations obtenues par ces deux méthodes par rapport à
l’exécution séquentielle, à l’exception de la FFT qui n’a pu être générée automatiquement
à partir de la version annotée avec l’extension d’OpenMP à ce stade du développement.
Nos résultats montrent des accélérations importantes sur trois architectures grand public.
Par exemple, sur une plateforme équipée de quatre processeurs AMD Opteron 8380
(Shanghai), chacun ayant quatre coeurs pour un total de 16 coeurs cadencés à 2.5GHz,
nous mesurons les accélérations suivantes pour FMradio: accélération de 12.6× avec la
version écrite à la main et une accélération de 10.5× avec le code généré automatiquement.
Pour l’application 802.11 a, l’écriture manuelle permet d’atteindre une accélération de
13× comparée à une accélération plus modeste, de 6×, pour la version générée automa-
tiquement.

Pour la FFT, nos résultats correspondent au calcul d’une seule FFT unidimensionnelle,
plutôt qu’à un pipeline de calculs de FFT successives qui est plus adapté au modèle de
streaming classique. Le meilleur résultat, obtenu pour une très grande taille de FFT sur
un million d’éléments, est une accélération de 6.5×, qui est proche de 65% du résultat
théoriquement possible sur une machine PRAM. Sur les petites tailles de problèmes, nous
observons des décélérations, avec un point d’équilibre situé aux alentours d’une taille de
256 éléments. Ceci tend à montrer que notre approche s’applique non seulement à des
problèmes qui se prêtent au streaming, mais aussi pour la parallélisation d’applications
plus générales.

Travaux en cours et opportunités

De nombreuses idées nouvelles et opportunités de recherche diverses se sont dégagées
de cette thèse. Certaines sont déjà en cours de développement, d’autres présentent des
perspectives encourageantes pour de nouvelles études.

250 CHAPTER 9. CONCLUSION

Deux principaux axes de recherche en compilation ont été lancés par cette thèse. Le
premier provient de l’une de nos premières approches [57–59] de la streamisation, dans
laquelle nous utilisions les streams comme une forme optimisée d’expansion mémoire dans
la passe de distribution des boucles du compilateur GCC, et est également inspiré des
travaux de recherche sur le pipelining logiciel découplé (Decoupled Software Pipelining)
par Rangan et al. [62]. Ce développement [45], mené par Feng LI, étudiant en thèse à
l’INRIA, se base sur une représentation intermédiaire sous forme d’assignation statique
unique (Single Static Assignment) pour extraire du parallélisme de pipeline à partir de
programmes séquentiels, fournissant un algorithme de partition basé sur la hiérarchie
des dépendances de contrôle et utilisant notre extension streaming au langage OpenMP
comme cible de génération de code.

Le deuxième axe s’est dégagé de la nécessité à faire appel à des résultats d’analyses
statiques pour la génération de code streaming optimisé, en montrant les difficultés pour
obtenir ces informations dans les tout premières étapes du flôt de compilation dans GCC,
où se déroule l’expansion du langage OpenMP. Pour répondre à ce problème, nous avons
développé une représentation intermédiaire qui permet de préserver l’information de haut
niveau encodée dans les directives OpenMP tout au long du flôt de compilation, ce qui
permet d’effectuer l’expansion de ces directives dans un contexte où les résultats des
analyses statiques de dépendances sont disponibles. Cela présente de nombreux autres
avantages, en particulier en évitant une obfuscation précoce du code, due aux multiples
appels de fonctions opaques introduits par l’expansion d’OpenMP qui empêchent le bon
déroulement des optimisations classiques du code séquentiel. Une publication de résultats
préliminaires [55] couvre ce sujet.

En plus de ces travaux en cours, il reste plusieurs opportunités de recherche. Du côté
applicatif, comme notre modèle permet de changer dynamiquement les canaux de flôt de
données, les champs applicatifs des systèmes de contrôle et du traitement du signal avec
changement de mode dynamique, comme par exemple l’encodage vidéo dynamique, ont
naturellement une bonne affinité avec notre extension pour le streaming. L’implantation
d’applications comme le traitement d’images à faible latence pour les contrôleurs de
voitures ou d’avions présentent des caractéristiques pouvant mettre à profit notre modèle.

Il reste également des questions ouvertes, à la fois du côté compilateur et du côté
runtime, en particulier au sujet de l’analyse statique de programmes streaming pour
permettre d’appliquer les optimisations que nous avons dû laisser de côté. Tout au long de
cette thèse, nous avons mentionné des cas d’optimisations pour lesquels nous ne disposions
pas des informations requises à leur mise en œuvre, choisissant toujours une approche
conservatrice. Par exemple, l’agrégation des données dans les streams appartenant à
des composants fortement connexes du graphe de tâches pourrait être appliquée avec une
approche mixte compilateur-runtime, en faisant varier le facteur d’agrégation selon le délai
dynamique disponible dans chaque stream appartenant à un cycle. Les questions relatives
à l’affinage de notre sur-approximation statique du graphe de tâches et à la possibilité de
fournir une stratégie réversible d’équilibrage des charges, ce qui permettrait d’améliorer
l’efficacité pour les programmes très dynamiques, présentent des défis particulièrement
intéressants.

Une utilisation possible pour notre extension consiste à en faire un langage cible pour la
compilation de langages de flôts de données de haut niveau, par exemple pour la génération

9.3. PERSPECTIVES 251

de code parallèle et désynchronisé à partir du langage LUSTRE. Une tentative en ce sens
par Léonard Gérard a montré qu’il était nécessaire d’avoir recours à une compilation
modulaire. Bien que cela ne soit pas encore implémenté dans notre prototype, notre
schéma de compilation le permet.

Comme nous l’avons mentionné au Chapitre 5, l’une des idées les plus ambitieuses
serait de faire appel à l’analyse de flôt de données dans des tableaux non seulement afin
de décider de la régularité des tâches, mais aussi afin d’analyser les patterns des accès aux
streams. Des transformations très importantes pourraient alors être rendues possibles,
comme le démultiplexage des entrelacements de données produites ou consommées par
différentes tâches, permettant ainsi la privatisation des streams, ou le ré-ordonnancement
des streams dans le but de permettre la fusion de tâches ou l’optimisation des nids de
boucles. En complément d’analyses permettant de mettre en évidence les potentiels
invariants de flôt de données synchrones, cela pourrait s’avérer être l’une des optimisations
les plus importantes.

Enfin, comme notre mécanisme de communication se prête naturellement à une im-
plantation sous forme de canaux MPI, les tâches n’utilisant pas la mémoire partagée
pourraient être exécutées sur des nœuds de calcul distants, étendant ainsi les travaux
de Millot et al. dans le projet STEP [47], où le compilateur optimiseur source-à-source
PIPS [35] est mis en œuvre afin de compiler des applications écrites avec le langage
OpenMP pour une exécution en mémoire distribuée.

Perspectives

L’un de nos objectifs est de promouvoir l’intégration de notre extension pour le streaming
dans l’une des prochaines révisions du standard OpenMP. Nous avons présenté une version
préliminaire de ce travail au workshop IWOMP [54], qui est le principal lieu de rencontre
pour les discussions sur l’évolution de ce langage. L’intégration au standard est un
processus long, qui requiert entre autres une implantation complète dans un compilateur
de production, et nous prévoyons de poursuivre cette voie dès lors que notre prototype sera
complet. Ceci n’est évidemment pas la seule option pour promouvoir ces idées, puisque
notre extension s’applique de manière transparente à tout modèle de programmation
fournissant des primitives permettant une programmation parallèle par tâches, moyennant
quelques ajustements pour garantir la causalité des tâches, concept sous-jacent à un
bon nombre de nos résultats. Nous nous intéressons tout particulièrement au prochain
standard OpenHMPP [60], où notre extension pourrait très facilement être intégrée, mais
nous pouvons envisager d’étendre tout langage permettant la programmation par tâches,
comme Cilk [24].

252 CHAPTER 9. CONCLUSION

Personal Publications

[1] F. Li, A. Pop, and A. Cohen. Advances in parallel-stage decoupled software pipelin-
ing. In F. Bouchez, S. Hack, and E. Visser, editors, Proceedings of the Workshop on
Intermediate Representations, pages 29–36, 2011.

[2] C. Miranda, P. Dumont, A. Cohen, M. Duranton, and A. Pop. Erbium: a determin-
istic, concurrent intermediate representation for portable and scalable performance.
In N. M. Amato, H. Franke, and P. H. J. Kelly, editors, Proceedings of the 7th
Conference on Computing Frontiers, 2010, Bertinoro, Italy, May 17-19, 2010, pages
119–120. ACM, 2010.

[3] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. Erbium: a deter-
ministic, concurrent intermediate representation to map data-flow tasks to scalable,
persistent streaming processes. In Proceedings of the 2010 international conference
on Compilers, architectures and synthesis for embedded systems, CASES ’10, pages
11–20, New York, NY, USA, 2010. ACM.

[4] H. Munk, E. Ayguadé, C. Bastoul, P. Carpenter, Z. Chamski, A. Cohen, M. Cor-
nero, P. Dumont, M. Duranton, M. Fellahi, R. Ferrer, R. Ladelsky, M. Lindwer,
X. Martorell, C. Miranda, D. Nuzman, A. Ornstein, A. Pop, S. Pop, L.-N. Pouchet,
A. Ramirez, D. Rodenas, E. Rohou, I. Rosen, U. Shvadron, K. Trifunovic, and
A. Zaks. ACOTES Project: Advanced Compiler Technologies for Embedded
Streaming. International Journal of Parallel Programming, pages 1–54, 2010.
10.1007/s10766-010-0132-7.

[5] A. Pop and A. Cohen. A Stream-Comptuting Extension to OpenMP. In International
Workshop on OpenMP (IWOMP’10), Tsukuba, Japon, 2010. Poster.

[6] A. Pop and A. Cohen. Preserving high-level semantics of parallel programming
annotations through the compilation flow of optimizing compilers. In Proceedings of
the 15th Workshop on Compilers for Parallel Computers (CPC’10), Vienna Autriche,
07 2010.

[7] A. Pop and A. Cohen. A stream-computing extension to openmp. In Proceedings of
the 6th International Conference on High Performance and Embedded Architectures
and Compilers, HiPEAC ’11, pages 5–14, New York, NY, USA, 2011. ACM.

[8] A. Pop, S. Pop, H. Jagasia, J. Sjödin, and P. H. J. Kelly. Improving gnu compiler col-
lection infrastructure for streamization. In Proceedings of the 2008 GCC Developers’
Summit, pages 77–86, June 2008.

253

254 PERSONAL PUBLICATIONS

[9] A. Pop, S. Pop, and J. Sjödin. Automatic streamization in gcc. In Proceedings of the
2009 GCC Developers’ Summit, 2009.

[10] J. Sjödin, S. Pop, H. Jagasia, T. Grosser, and A. Pop. Design of graphite and
the polyhedral compilation package. In Proceedings of the 2009 GCC Developers’
Summit, pages 33–45, Montréal Canada, 06 2009. A/406/CRI.

Bibliography

[1] ACOTES: Advanced Compiler Technologies for Embedded Streaming. http://www.
hitech-projects.com/euprojects/ACOTES/.

[2] Advanced Micro Devices, Inc. White Paper: Multi-Core Processors – The next
evolution in computing. 2005.

[3] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, 29:66–76, December 1996.

[4] M. Aldinucci, M. Torquati, and M. Meneghin. FastFlow: Efficient Parallel Streaming
Applications on Multi-core. CoRR, abs/0909.1187, 2009.

[5] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models.
In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification, vol-
ume 6174 of Lecture Notes in Computer Science, pages 258–272. Springer Berlin /
Heidelberg, 2010.

[6] Arvind, R. S. Nikhil, and K. Pingali. I-Structures: Data Structures for Parallel
Computing. ACM Trans. on Programming Languages and Systems, 11(4):598–632,
1989.

[7] E. A. Ashcroft and W. W. Wadge. Lucid, a Nonprocedural Language with Iteration.
Communications of the ACM, 20(7):519–526, 1977.

[8] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M. Vechev.
Laws of order: expensive synchronization in concurrent algorithms cannot be elimi-
nated. SIGPLAN Not., 46:487–498, January 2011.

[9] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy Array Dataflow Analysis. J. on
Parallel and Distributed Computing, 40:210–226, 1997.

[10] P. Bellens, J. M. Pérez, R. M. Badia, and J. Labarta. CellSs: a programming model
for the Cell BE architecture. In SC, 2006.

[11] A. Bernstein. Program analysis for parallel processing. IEEE Transactions on
Computers, 15:757–762, October 1966.

[12] G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2):87–
152, 1992.

255

256 BIBLIOGRAPHY

[13] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-Static Data Flow.
Acoustics, Speech, and Signal Processing, IEEE International Conference on, 5:3255–
3258, 1995.

[14] R. H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP
and MPI. Oxford University Press, Mar. 2004.

[15] The Brook Language. http://graphics.stanford.edu/projects/brookgpu/

lang.html.

[16] P. M. Carpenter, D. Ródenas, X. Martorell, A. Ramı́rez, and E. Ayguadé. A
Streaming Machine Description and Programming Model. In SAMOS, pages 107–116,
2007.

[17] P. Caspi, G. Hamon, and M. Pouzet. Real-Time Systems: Models and verification
– Theory and tools, chapter Synchronous Functional Programming with Lucid Syn-
chrone. ISTE, 2007.

[18] P. Caspi and M. Pouzet. Synchronous Kahn networks. In Proceedings of the first ACM
SIGPLAN international conference on Functional programming, ICFP ’96, pages
226–238, New York, NY, USA, 1996. ACM.

[19] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Intl. Conf. on
Parallel Processing (ICPP), Saint Charles, IL, 1986.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13:451–490, October 1991.

[21] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architecture.
In Supercomputing (SC’88), pages 368–373, 1988.

[22] P. Feautrier. Array Dataflow Analysis. In S. Pande and D. Agrawal, editors,
Compiler Optimizations for Scalable Parallel Systems, volume 1808 of Lecture Notes
in Computer Science, pages 173–219. Springer Berlin / Heidelberg, 2001. 10.1007/3-
540-45403-9-6.

[23] P. Feautrier. Scalable and Structured Scheduling. International Journal of Parallel
Programming, 34:459–487, 2006.

[24] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5
Multithreaded Language. In ACM Symp. on Programming Language Design and
Implementation (PLDI’98), pages 212–223, Montreal, Quebec, June 1998.

[25] J.-L. Gaudiot, T. DeBoni, J. Feo, W. Böhm, W. Najjar, and P. Miller. The Sisal
Model of Functional Programming and its Implementation. In Proceedings of the
2nd AIZU International Symposium on Parallel Algorithms / Architecture Synthesis,
PAS ’97, pages 112–, Washington, DC, USA, 1997. IEEE Computer Society.

BIBLIOGRAPHY 257

[26] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting Coarse-Grained Task, Data,
and Pipeline Parallelism in Stream Programs. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, San Jose, CA,
Oct 2006.

[27] P. L. Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal – A Data Flow-
Oriented Language for Signal Processing. IEEE Transactions on Acoustics, Speech
and Signal Processing, 34(2):362–374, 1986.

[28] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[29] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, Sept. 1991.

[30] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’87, pages 13–26, New York, NY, USA, 1987. ACM.

[31] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

[32] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzmán, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain,
and J. Peterson. Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. SIGPLAN Not., 27:1–164, May 1992.

[33] Intel. 64 Architecture Memory Ordering White Paper. Technical report, Aug. 2007.

[34] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3A, 2006.

[35] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: an
overview of the pips project. In Proceedings of the 5th international conference on
Supercomputing, ICS ’91, pages 244–251, New York, NY, USA, 1991. ACM.

[36] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden, Aug.
1974. North Holland, Amsterdam.

[37] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: a dual-core multithreaded
processor. Micro, IEEE, 24(2):40–47, Mar-Apr 2004.

[38] G. A. Kildall. A unified approach to global program optimization. In Proceedings of
the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

[39] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded Sparc
processor. Micro, IEEE, 25(2):21–29, March-April 2005.

258 BIBLIOGRAPHY

[40] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on
multicore platforms. In Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’08, pages 114–124, New
York, NY, USA, 2008. ACM.

[41] C. Kyriacou, P. Evripidou, and P. Trancoso. Data-Driven Multithreading Us-
ing Conventional Microprocessors. IEEE Trans. on Parallel Distributed Systems,
17(10):1176–1188, 2006.

[42] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Progranm. IEEE Transactions on Computers, 28:690–691, 1979.

[43] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Trans. Computers, 36(1):24–25, 1987.

[44] E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of
Computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17:1217–1229, 1998.

[45] F. Li, A. Pop, and A. Cohen. Advances in Parallel-Stage Decoupled Software Pipelin-
ing. In F. Bouchez, S. Hack, and E. Visser, editors, Proceedings of the Workshop on
Intermediate Representations, pages 29–36, 2011.

[46] V. Marjanovic, J. Labarta, E. Ayguadé, and M. Valero. Effective communication
and computation overlap with hybrid MPI/SMPSs. In PPOPP, 2010.

[47] D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussumier. STEP: A Distributed
OpenMP for Coarse-Grain Parallelism Tool. In R. Eigenmann and B. de Supinski,
editors, OpenMP in a New Era of Parallelism, volume 5004 of Lecture Notes in
Computer Science, pages 83–99. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-
540-79561-2.

[48] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. Erbium: a deter-
ministic, concurrent intermediate representation to map data-flow tasks to scalable,
persistent streaming processes. In Proceedings of the 2010 international conference
on Compilers, architectures and synthesis for embedded systems, CASES ’10, pages
11–20, New York, NY, USA, 2010. ACM.

[49] H. Munk, E. Ayguadé, C. Bastoul, P. Carpenter, Z. Chamski, A. Cohen, M. Cor-
nero, P. Dumont, M. Duranton, M. Fellahi, R. Ferrer, R. Ladelsky, M. Lindwer,
X. Martorell, C. Miranda, D. Nuzman, A. Ornstein, A. Pop, S. Pop, L.-N. Pouchet,
A. Ramirez, D. Rodenas, E. Rohou, I. Rosen, U. Shvadron, K. Trifunovic, and
A. Zaks. ACOTES Project: Advanced Compiler Technologies for Embedded
Streaming. International Journal of Parallel Programming, pages 1–54, 2010.
10.1007/s10766-010-0132-7.

[50] S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO. In
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in

BIBLIOGRAPHY 259

Higher Order Logics, volume 5674 of Lecture Notes in Computer Science, pages 391–
407. Springer Berlin / Heidelberg, 2009.

[51] V. Pankratius, A. Jannesari, and W. F. Tichy. Parallelizing Bzip2: A Case Study in
Multicore Software Engineering. IEEE Softw., 26(6):70–77, 2009.

[52] T. M. Parks. Bounded scheduling of process networks. PhD thesis, Berkeley, CA,
USA, 1995. UMI Order No. GAX96-21312.

[53] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based
Programming With StarSs. Intl. J. on High Performance Computing Architecture,
23(3):284–299, 2009.

[54] A. Pop and A. Cohen. A Stream-Comptuting Extension to OpenMP. In International
Workshop on OpenMP (IWOMP’10), Tsukuba, Japon, 2010. Poster.

[55] A. Pop and A. Cohen. Preserving high-level semantics of parallel programming
annotations through the compilation flow of optimizing compilers. In Proceedings of
the 15th Workshop on Compilers for Parallel Computers (CPC’10), Vienna Autriche,
07 2010.

[56] A. Pop and A. Cohen. A stream-computing extension to OpenMP. In Proceedings of
the 6th International Conference on High Performance and Embedded Architectures
and Compilers, HiPEAC ’11, pages 5–14, New York, NY, USA, 2011. ACM.

[57] A. Pop and S. Pop. A proposal for last private clause on OpenMP task Pragma.
Technical report, MINES ParisTech, CRI - Centre de Recherche en Informatique,
Mathématiques et Systèmes, 35 rue St Honoré 77305 Fontainebleau-Cedex, France,
Jan. 2009.

[58] A. Pop, S. Pop, H. Jagasia, J. Sjödin, and P. H. J. Kelly. Improving GNU com-
piler collection infrastructure for streamization. In Proceedings of the 2008 GCC
Developers’ Summit, pages 77–86, June 2008.

[59] A. Pop, S. Pop, and J. Sjödin. Automatic streamization in GCC. In Proceedings of
the 2009 GCC Developers’ Summit, 2009.

[60] S. B. R. Dolbeau and F. Bodin. HMPP: A Hybrid Multi-core Parallel Programming
Environment. In Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU 2007), 2007.

[61] R. Ramanathan. Intel multi-core processors: Making the move to quad-core and
beyond. Technology@Intel Magazine, 4(1):2–4, Dec 2006.

[62] R. Rangan, N. Vachharajani, M. Vachharajani, and D. August. Decoupled software
pipelining with the synchronization array. In 13th International Conference on
Parallel Architecture and Compilation Techniques (PACT), Sept. 2004.

[63] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding
POWER multiprocessors. In PLDI 2011, to appear.

260 BIBLIOGRAPHY

[64] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant, M. O.
Myreen, and J. Alglave. The semantics of x86-CC multiprocessor machine code. In
Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’09, pages 379–391, New York, NY, USA, 2009.
ACM.

[65] SPARC International, Inc., CORPORATE. The SPARC architecture manual (ver-
sion 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[66] K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi, P. Evripidou, and P. Trancoso.
TFlux: A Portable Platform for Data-Driven Multithreading on Commodity Multi-
core Systems. In Intl. Conf. on Parallel Processing (ICPP’08), pages 25–34, Portland,
Oregon, Sept. 2008.

[67] R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541, 1997.

[68] The StreamIt Language. http://www.cag.lcs.mit.edu/streamit/.

[69] The OpenMP Architecture Review Board. OpenMP Application Program Interface.
http://www.openmp.org/mp-documents/spec30.pdf.

[70] I. Watson and J. R. Gurd. A Practical Data Flow Computer. IEEE Computer,
15(2):51–57, 1982.

Index

Symbols
(BAR) 66, see CDDF execution rules
(EXEC).66, see CDDF execution rules
(GEN) 66, see CDDF execution rules
(TERM) 66, see CDDF execution rules
A61, see task activation
Ae 62, see CDDF program state
Ao 62, see CDDF program state
C(Ke) 65, see continuation activation
K62, see control program trace
Ke 62, see CDDF program state
Π.62, see activation point
S . 60, see stream
Σ. .62
X .60, see stream access
δ 70, see task activation dependence
⊲ 71, see task activation dependence
< 66, see stream prefix order
≺σ 122, see stream buffer reuse order
4sc 79, see stream clock
4

T
. 87, see task order

⊲⊳ . . . 122, see stream buffer reuse order, see
stream prefix order

⋊ 122, see stream buffer reuse order
⋉ 66, see stream prefix order
σ 62, see CDDF program state
∼ . 86, see CDDF task
ξ 62, see control program
H . see task graph

A
activation index . 138
activation point 62, 133, 175, 209
array of streams 23, 142

B
back-pressure . 159
barrier . 52, 81
bounded memory . 120

broadcast array . 24, 142
buffering semantics . 38
burst .20

C
causality. .79, 86

stream causality 79–83
task causality 86–94

CDDF . 58
CDDF execution rules 66, 72, 108, 122
CDDF program state 62
circular buffer . 159, 224
coding patterns . 32

data parallelism . 33
delays . 46
dynamic pipeline.36
pipeline .32
sampling. .42
stateful filters . 33
variable burst . 37
variable horizon. .38

continuation activation 65, see control
program

control program. 61, 116, 150
execution model . 62

control program parallelization 50, 116
control program trace62

D
data aggregation . 217
deadlock . 47, 69, 72, 78

DDR algorithm 123, 125, 126, 198
freedom 83, 91, 102, 115
functional . 72, 77
insufficiency 73, 75, 91
lastprivate . 109–114
resource .123
spurious. .74, 83

determinism. .94

261

262 INDEX

deadlock . 97, 128
functional. .96

dynamic stream interleaving 44
dynamic task creation 197

E
enclosing context . 24
execution model . 29

F
firstprivate . 24, 40, 106

H
hierarchical streaming 27
horizon. .20

I
input . 20, 40, 133

L
lastprivate . 24, 40, 106
load-balancing . 179

M
memory model. .30
modular compilation.54

N
NEXT 62, see control program

O
output .20, 40, 133

P
pressure . 159
program progress . 69

Q
quiescence .185, see stream level quiescence

R
relative load balance 180
relaxed memory model 164

S
scheduling . 177, 212
serializability . 100
static task graph . 145
stream. .20, 60

control stream 52, 160, 210
stream access . 60

stream buffer . 120
stream buffer reuse order 122
stream causal schedule 81
stream causality .80
stream clock . 79
stream level quiescence 185–197
stream prefix order . 66
stream synchronization.158, 160, 172, 202,

212, 224
commit . 159
release . 159
stall . 159
update . 159

stream variable scope 27
streaming clause . 20

T
task . 21, 135

CDDF task. .86
irregular . 138, 169
OpenMP task 20, 31
persistent . 48
regular . 52, 138, 162

task activation . 61, 177
task activation dependence 70
task causal schedule . 89
task causality . 88
task graph . 87

H. 87
task order . 87
taskwait . 53
thread

worker thread
function . 210

W
weak deadlock state . 74
window . 20
work aggregation 178, 216
work-stealing . 178
worksharing construct 31

INSTITUT DES SCIENCES ET TECHNOLOGIES

Exploitation du streaming pour la parallélisation déterministe :
approche langage, compilateur et système de runtime intégrée

Résumé :
La performance des unités de calcul séquentiel a atteint des limites technologiques qui ont conduit

à une transition de la tendance à l’accélération des calculs séquentiels vers une augmentation expo-

nentielle du nombre d’unités de calcul par microprocesseur. Ces nouvelles architectures ne permettent

d’augmenter la vitesse de calcul que proportionnellement au parallélisme qui peut être exploité, soit

via le modèle de programmation soit par un compilateur optimiseur. Cependant, la disponibilité du

parallélisme en soi ne suffit pas à améliorer les performances si un grand nombre de processeurs

sont en compétition pour l’accès à la mémoire. Le modèle de streaming répond à ce problème et

représente une solution viable pour l’exploitation des architectures à venir.

Cette thèse aborde le streaming comme un modèle général de programmation parallèle, plutôt

qu’un modèle dédié à une classe d’applications, en fournissant une extension pour le streaming à

un langage standard pour la programmation parallèle avec mémoire partagée, OpenMP. Un nouveau

modèle formel est développé, dans une première partie, pour étudier les propriétés des programmes

qui font appel au streaming, sans les restrictions qui sont généralement associées aux modèles de flot

de données. Ce modèle permet de prouver que ces programmes sont déterministes à la fois fonction-

nellement et par rapport aux deadlocks, ce qui est essentiel pour la productivité des programmeurs.

La deuxième partie de ce travail est consacrée à l’exploitation efficace de ce modèle, avec support

logiciel à l’exécution et optimisations de compilation, à travers l’implantation d’un prototype dans le

compilateur GCC.

Mots clés : streaming, parallélisation, runtime, langages, compilation

Leveraging Streaming for Deterministic Parallelization:
an Integrated Language, Compiler and Runtime Approach

Abstract:
As single processing unit performance has reached a technological limit, the power wall, the past

decade has seen a shift from the prevailing trend of increasing single-threaded performance to an

exponentially growing number of processing units per chip. Higher performance returns on these

newer architectures are contingent on the amount of parallelism that can be efficiently exploited in

applications, either exposed through parallel programming or by parallelizing compilers. However,

uncovering raw parallelism is insufficient if a host of cores vie for limited off-chip memory bandwidth.

Mitigating the memory wall, the stream-computing model provides an important solution for exploiting

upcoming architectures.

This thesis explores streaming as a general-purpose parallel programming paradigm, rather than a

model dedicated to a class of applications, by providing a highly expressive stream-computing exten-

sion to a de facto standard for shared memory programming, OpenMP. We rely on a new formal frame-

work to investigate the properties of streaming programs, without the restrictions usually attached to

dataflow models, and we prove that such programs benefit from deadlock and functional determinism,

key assets in the productivity race. In a second part, we focus on the efficient exploitation of our

model, with optimized runtime support and compiler optimizations, through an implementation in the

GCC compiler.

Keywords: streaming, parallelization, runtime, stream-computing languages, compilation

