

Bandwidth Allocation in Large Stochastic Networks

Mathieu Feuillet

Soutenance de thèse

12/07/2012

Introduction

Modeling

Objectives:

- Modeling
- Design
- Dimensioning

What Are We Talking About?

 In a distributed storage system with failures, what is the life expectancy of a file?

 Does the Internet collapse if users are selfish and don't use congestion control?

 Does CSMA/CA, as used in WiFi, ensure efficient use of bandwidth?

Contents

Mathematical tools

Modeling

Scaling methods

Stochastic averaging

Examples

Unreliable File System

The Law of the Jungle

Flow-Aware CSMA

Modeling

Modeling

Objectives:

- Modeling
- Design
- Dimensioning

Tools:

- Markov processes
- Queueing models
- Scaling methods

Stochastic Models

State: (X(t)) a Markov jump process in \mathbb{N}^d :

- Number of files,
- Number of active flows in the Internet,
- Number of messages to be transmitted.

Stochastic Models

State: (X(t)) a Markov jump process in \mathbb{N}^d :

- Number of files,
- Number of active flows in the Internet,
- Number of messages to be transmitted.

Markov assumptions:

- Poisson arrivals
- Exponentially distributed sizes/durations.

Stochastic Models

State: (X(t)) a Markov jump process in \mathbb{N}^d :

- generally, non-reversible,
- when ergodic, invariant distribution not known,
- results on transient properties are rare (for d ≥ 2).

Scaling Methods

Scaling Methods

Principle: *N* a scaling parameter

Analyze the evolution of the sample path of

$$\left(\frac{X^N(\Psi_N(t))}{\Phi_N}\right)$$

as $N \to \infty$, for some convenient $(\Psi_N(t))$ and (Φ_N) .

Time scale $t \to \Psi_N(t)$ is used as a tool to focus on some specific part of sample paths.

Scaling Methods

Principle: *N* a scaling parameter

Analyze the evolution of the sample path of

$$\left(\frac{X^N(\Psi_N(t))}{\Phi_N}\right)$$

as $N \to \infty$, for some convenient $(\Psi_N(t))$ and (Φ_N) .

Time scale $t \to \Psi_N(t)$ is used as a tool to focus on some specific part of sample paths.

There may be more than one time scale of interest!

Scaling Methods: Goals

Give a First order description of $(X^N(t))$:

$$X^N(\Psi_N(t)) \approx \Phi_N.x(t)$$

where,

(x(t)) is a simpler stochastic process or even a deterministic dynamical system:

$$\dot{x}(t) = F(x(t))$$

Classical Example: Fluid Limit

$$(\bar{X}(t)) = \left(\frac{X(Nt)}{N}\right), \text{ with } N = ||X(0)||.$$

Scaling parameter: initial state

Time scale: $t \mapsto Nt$

Classical Example: Fluid Limit

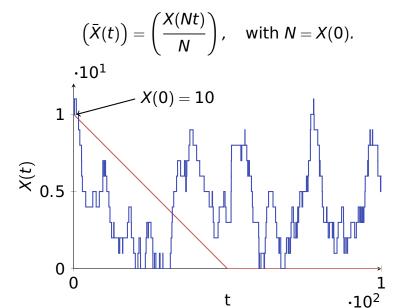
$$(\bar{X}(t)) = \left(\frac{X(Nt)}{N}\right), \text{ with } N = ||X(0)||.$$

Scaling parameter: initial state

Time scale: $t \mapsto Nt$

Fluid limit reaches 0

Process is stable



$$(\bar{X}(t)) = \left(\frac{X(Nt)}{N}\right), \text{ with } N = X(0).$$

$$1 \longrightarrow X(0) = 10^{2}$$

$$\lambda = 0.8 \ \mu = 1$$

$$(\bar{X}(t)) = \left(\frac{X(Nt)}{N}\right), \text{ with } N = X(0).$$

$$1 \longrightarrow X(0) = 10^{3}$$

$$\lambda = 0.8 \ \mu = 1$$

$$(\bar{X}(t)) = \left(\frac{X(Nt)}{N}\right), \text{ with } N = X(0).$$

$$1 \longrightarrow X(0) = 10^4$$

$$\lambda = 0.8 \ \mu = 1$$

$$(\bar{X}(t)) = \left(\frac{X(Nt)}{N}\right), \text{ with } N = X(0).$$

$$1 \longrightarrow X(0) = 10^{5}$$

$$\lambda = 0.8 \ \mu = 1$$

References

Fluid limits for queueing systems:

```
[Malyshev 93]
[Rybko-Stolyar 92]
[Dai 95]
```

Scaling methods:

```
[Khasminskii 56]
[Freidlin-Wentzell 79]
[Ethier-Kurtz 86]
[Robert 03]
```

Proof of the tightness of the scaled process

$$\left(\frac{X^N\left(\Psi_N(t)\right)}{\Phi_N}\right)$$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Proof of the tightness of the scaled process

$$\left(\frac{X^N\left(\Psi_N(t)\right)}{\Phi_N}\right)$$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Difficulties:

- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Proof of the tightness of the scaled process

$$\left(\frac{X^{N}\left(\Psi_{N}(t)\right)}{\Phi_{N}}\right)$$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Difficulties:

- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Proof of the tightness of the scaled process

$$\left(\frac{X^{N}\left(\Psi_{N}(t)\right)}{\Phi_{N}}\right)$$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Difficulties:

- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Each example has its specific difficulties

Stochastic Averaging

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t)),$$

 $\dot{y}_N(t) = G(x_N(t), y_N(t))$

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t)),$$
 Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t)),$$
 Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Fast time-scale:

$$\dot{x}_N(t/N) = F(x_N(t/N)).$$

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t)),$$
 Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Fast time-scale:

$$\dot{x}_N(t/N) = F(x_N(t/N)).$$

Slow time-scale: If x(t) tends to a fixed point x^* : $(y_N(t))$ converges to (y(t)) with

$$\dot{y}(t) = G(x^*, y(t))$$

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t), y_N(t)),$$
 Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t), y_N(t)),$$
 Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Fast time-scale: When
$$N \to \infty$$
, $y_N(t/N) \approx z$
 $\dot{x_N}(t/N) \approx F(x(t/N), z)$

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

$$\dot{x}_N(t) = NF(x_N(t), y_N(t)),$$
 Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Fast time-scale: When
$$N \to \infty$$
, $y_N(t/N) \approx z$
 $\dot{x_N}(t/N) \approx F(x(t/N), z)$

Slow time-scale: If $(x_N(t))$ tends to a fixed point x_Z^* : $(y_N(t))$ converges to (y(t)) with

$$\dot{y}(t) = G\left(\mathbf{x}_{y(t)}^{\star}, y(t)\right)$$

Stochastic vs Deterministic

	Deterministic	Stochastic
Fast process	ODE	Markov process
	(x(t))	(X(t))
	$\dot{x} = F(x(t), y)$	$\Omega(y)$
Slow process	ODE	Markov process
	(y(t))	(Y(t))
	Fixed point	Stationary
Equilibrium	X_V^{\star}	distribution
	j	$ \pi_{y} $
Convergence	Regularity of	Regularity of
	$y\mapsto x_y^*$	$y \mapsto \pi_y$

Stochastic vs Deterministic

	Deterministic	Stochastic
Fast process	ODE	Markov process
	(x(t))	(X(t))
	$\dot{x} = F(x(t), y)$	$\Omega(y)$
Slow process	ODE	Markov process
	(y(t))	(Y(t))
	Fixed point	Stationary
Equilibrium	X_V^{\star}	distribution
		π_y
Convergence	Regularity of	Regularity of
	$y \mapsto x_y^*$	$y \mapsto \pi_y$

References

Statistical mechanics:

[Bogolyubov 62]

Stochastic calculus:

[Khasminskii 68], [Papanicolaou et al. 77], [Freidlin-Wenzell 79].

Loss networks:

[Kurtz 92], [Hunt-Kurtz 94]

Contributions

The Law of the Jungle:

- Stochastic averaging
- Scaling over the stationary distributions

Flow-Aware CSMA:

- Suboptimality of CSMA (mono/multi-channel)
- Optimality of Flow-Aware CSMA (mono/multi)
- Time-scale separation

An unreliable file system:

- Three time-scales
- Stochastic averaging (simpler proof)

Transient properties of Engset and Ehrenfest:

- Positive martingales
- Asymptotics on hitting times

Contributions

The Law of the Jungle:

- Stochastic averaging
- Scaling over the stationary distributions

Flow-Aware CSMA:

- Suboptimality of CSMA (mono/multi-channel)
- Optimality of Flow-Aware CSMA (mono/multi)
- Time-scale separation

An unreliable file system:

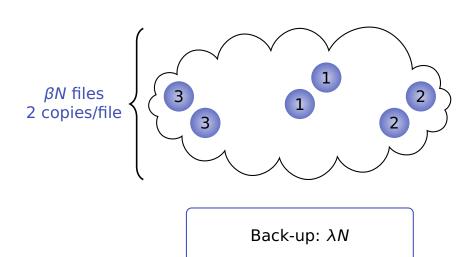
- Three time-scales
- Stochastic averaging (simpler proof)

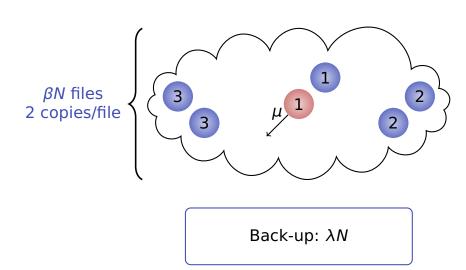
Transient properties of Engset and Ehrenfest:

- Positive martingales
- Asymptotics on hitting times

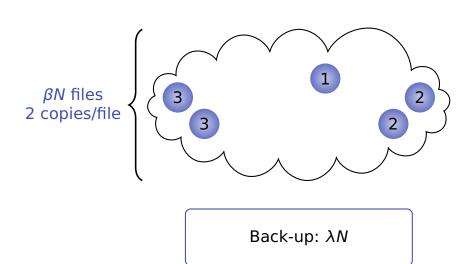
Example 1:

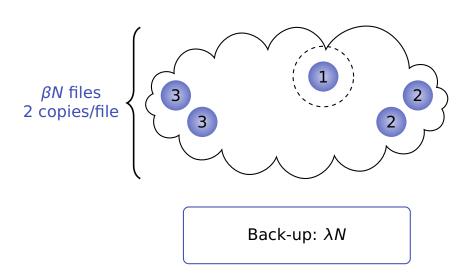
An Unreliable File System



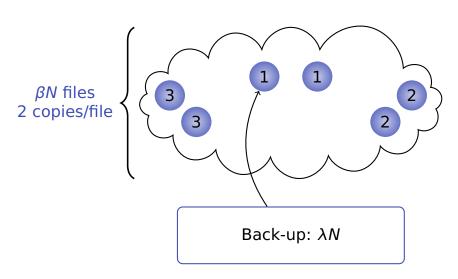


Each copy is lost at rate μ

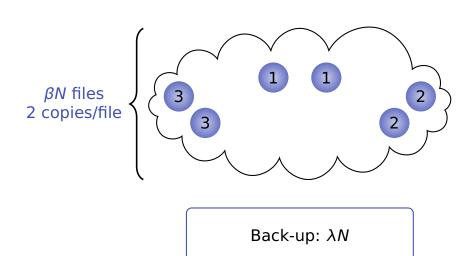


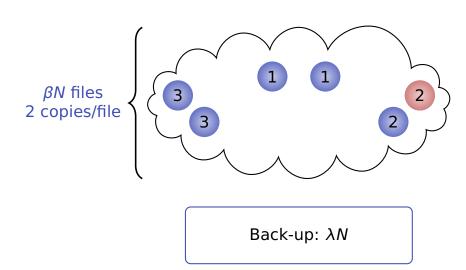


A file with 1 copy can be backed up

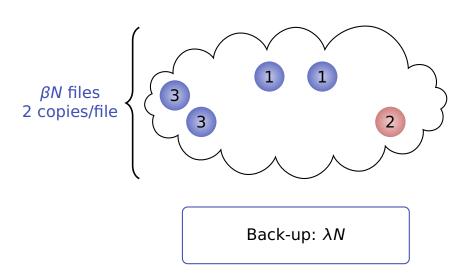


A file with 1 copy can be backed up

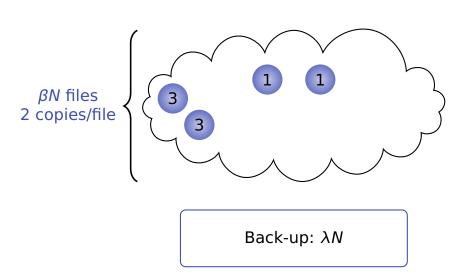




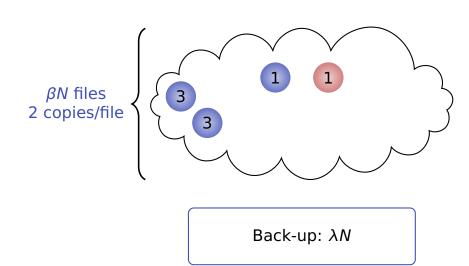
A file with 0 copies is lost

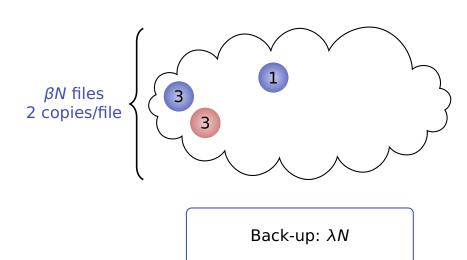


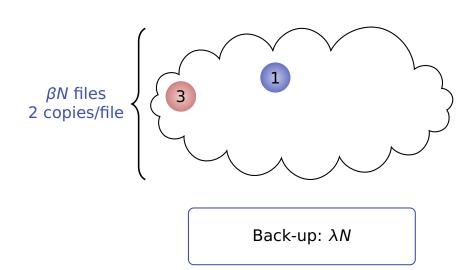
A file with 0 copies is lost

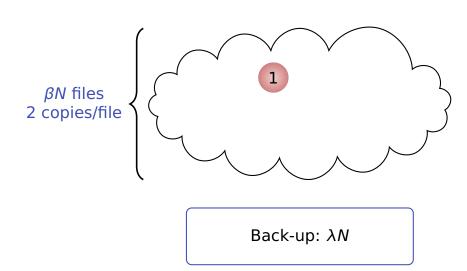


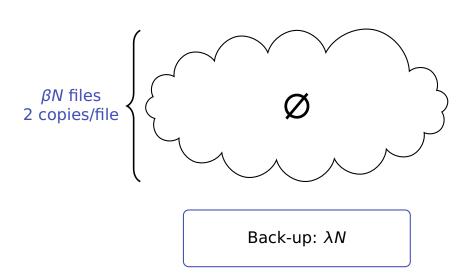
A file with 0 copies is lost











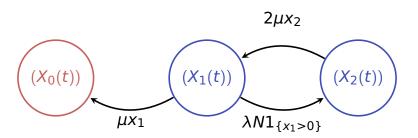
What is the decay rate of the network?

 $X_i(t)$: number of files with i copies at time t.

 $(X_0(t), X_1(t), X_2(t))$: a transient Markov Process.

$$X_0(t) + X_1(t) + X_2(t) = \beta N.$$

A unique absorbing state (βN , 0, 0).

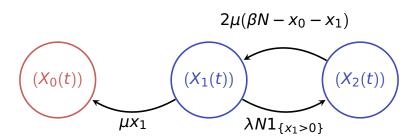


 $X_i(t)$: number of files with i copies at time t.

 $(X_0(t), X_1(t), X_2(t))$: a transient Markov Process.

$$X_0(t) + X_1(t) + X_2(t) = \beta N.$$

A unique absorbing state (βN , 0, 0).



Different Behaviors

Three time scales:

$$\begin{cases} t & \to t/N \\ t & \to t \\ t & \to Nt \end{cases}$$

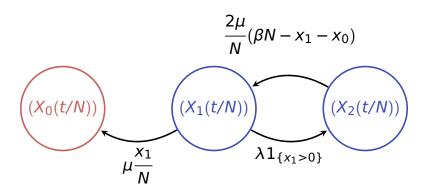
Three regimes:

Overload: $2\beta > \rho = \lambda/\mu$,

Critical load: $2\beta = \rho$,

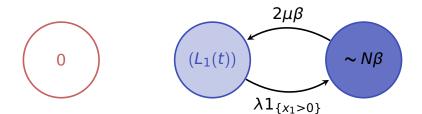
Underload: $2\beta < \rho$.

Time scale: $t \rightarrow t/N$



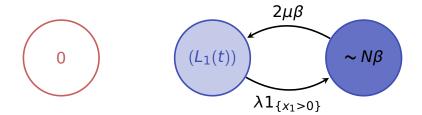
Time scale: $t \rightarrow t/N$

 $(L_1(t))$: an M/M/1 queue $\begin{cases} \text{ergodic if } 2\beta < \rho, \\ \text{transient if } 2\beta > \rho. \end{cases}$



Time scale: $t \rightarrow t/N$

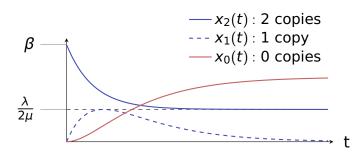
(
$$L_1(t)$$
): an $M/M/1$ queue $\begin{cases} \text{ergodic if } 2\beta < \rho, \\ \text{transient if } 2\beta > \rho. \end{cases}$



No loss!

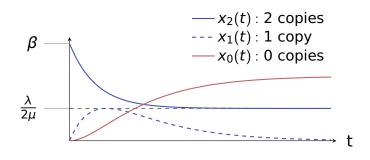
Time scale: $t \rightarrow t$ Overloaded network

If $2\beta > \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to a deterministic process $(x_0(t), x_1(t), x_2(t))$.



Time scale: $t \rightarrow t$ Overloaded network

If $2\beta > \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to a deterministic process $(x_0(t), x_1(t), x_2(t))$.

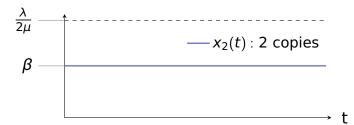


A fraction $N(\beta - \rho/2)$ is lost!

Time scale: $t \rightarrow t$ Underloaded network

If $2\beta < \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to

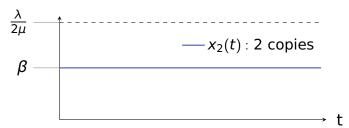
$$\begin{cases} x_0(t) &= 0, \\ x_1(t) &= 0, \\ x_2(t) &= \beta. \end{cases}$$



Time scale: $t \rightarrow t$ Underloaded network

If $2\beta < \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to

$$\begin{cases} x_0(t) &= 0, \\ x_1(t) &= 0, \\ x_2(t) &= \beta. \end{cases}$$



No significant loss!

Time Scale $t \rightarrow Nt$

$$\lim_{N\to+\infty}\left(\frac{X_0(Nt)}{N}\right)=\Psi(t),$$

where $\Psi(t)$ is the unique solution of

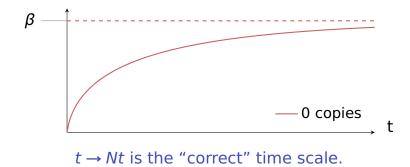
$$\Psi(t) = \mu \int_0^t \frac{2\mu(\beta - \Psi(s))}{\lambda - 2\mu(\beta - \Psi(s))} \, \mathrm{d}s.$$

Time Scale $t \rightarrow Nt$

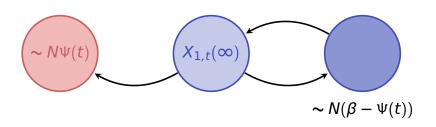
$$\lim_{N\to+\infty}\left(\frac{X_0(Nt)}{N}\right)=\Psi(t),$$

where $\Psi(t)$ unique solution in $(0,\beta)$ of

$$(1 - \Psi(t)/\beta)^{\rho/2} e^{\Psi(t)+t} = 1.$$

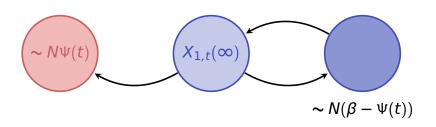


A Stochastic Averaging Phenomenon



```
Fast time scale: At "time" Nt, (X_1(Nt+u/N), u \ge 0): an M/M/1 with transition rates: +1 at rate 2\mu(\beta-\Psi(t)) -1 at rate \lambda.
```

A Stochastic Averaging Phenomenon



Slow time scale: $(X_0(Nt)/N)$ "sees" only X_1 at equilibrium:

$$\Psi(t)" = "\mu \int_0^t \mathbb{E}(X_{1,s}(\infty)) \, \mathrm{d}s = \mu \int_0^t \frac{2\mu(\beta - \Psi(s))}{\lambda - 2\mu(\beta - \Psi(s))} \, \mathrm{d}s.$$

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N, g \rangle = \frac{1}{N} \int_0^{Nt} g\left(X_1^N(s), s\right) ds$$

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N, g \rangle = \frac{1}{N} \int_0^{Nt} g\left(X_1^N(s), s\right) ds$$

Step 2 Control of limits of (μ^N) :

$$\lim_{N\to\infty} \frac{1}{N} \int_0^{Nt} X_1^N(s) \, ds = \Psi(t) = \int_0^t \langle \pi_s, I \rangle \, ds$$
$$\int_0^t \pi_s(\mathbb{N}) \, ds = t$$

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N, g \rangle = \frac{1}{N} \int_0^{Nt} g\left(X_1^N(s), s\right) ds$$

Step 2 Control of limits of (μ^N) :

$$\lim_{N\to\infty} \frac{1}{N} \int_0^{Nt} X_1^N(s) \, \mathrm{d}s = \Psi(t) = \int_0^t \langle \pi_s, I \rangle \, \mathrm{d}s$$
$$\int_0^t \pi_s(\mathbb{N}) \, \mathrm{d}s = t$$

Here: Proof by stochastic domination

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N, g \rangle = \frac{1}{N} \int_0^{Nt} g\left(X_1^N(s), s\right) ds$$

Step 2 Control of limits of (μ^N) :

$$\lim_{N\to\infty} \frac{1}{N} \int_0^{Nt} X_1^N(s) \, \mathrm{d}s = \Psi(t) = \int_0^t \langle \pi_s, I \rangle \, \mathrm{d}s$$
$$\int_0^t \pi_s(\mathbb{N}) \, \mathrm{d}s = t$$

Here: Proof by stochastic domination Step 3 Identification of π_s with martingale techniques and balance equations.

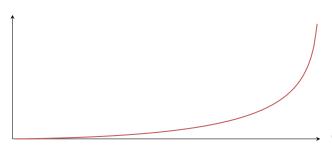
Decay Rate of the Network

$$T_N(\delta) = \inf \left\{ t \ge 0 : X_0^N(t) \ge \delta \beta N \right\}$$

Theorem:

$$\lim_{N\to\infty}\frac{T_N(\delta)}{N}=-\frac{\rho}{2}\log(1-\delta)-\delta\beta.$$

 $T_N(\delta)/N$



Conclusion

- Three different time scales
- A first example of stochastic averaging
- Asymptotics on a transitory property.

Extensions:

- Number of copies: $d > 2 \Rightarrow d 1$ times scales
- Decentralized back-up (mean-field)

Open problem:

- Modeling a DHT: geometrical considerations

The Law of the Jungle

Example 2:

Context

Congestion control:

- Rate adjustment to limit packet loss
- Retransmission of lost packets

Context

Congestion control:

- Rate adjustment to limit packet loss
- Retransmission of lost packets

No congestion control:

- No rate adjustment
- Sources send at their maximum rate
- Coding to recover from packet loss

Context

Congestion control:

- Rate adjustment to limit packet loss
- Retransmission of lost packets

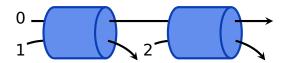
No congestion control:

- No rate adjustment
- Sources send at their maximum rate
- Coding to recover from packet loss

Does this bring congestion collapse?

Bandwidth Sharing Networks

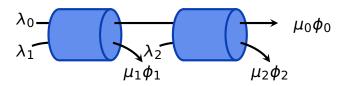
[Massoulié Roberts 00]



- A flow: a stream of packets
- Flows are considered as a fluid
- Users divided in classes/routes
- Poisson arrivals/Exponential sizes
- Resource allocation determined by congestion policy

Bandwidth Sharing Networks

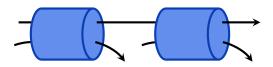
[Massoulié Roberts 00]



- A flow: a stream of packets
- Flows are considered as a fluid
- Users divided in classes/routes
- Poisson arrivals/Exponential sizes
- Resource allocation determined by congestion policy

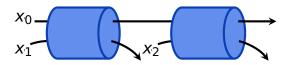
Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates



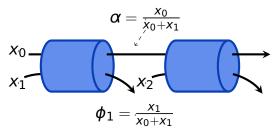
Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates



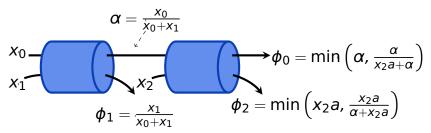
Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates

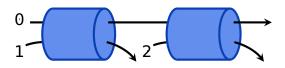


Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates



Ergodicity Condition



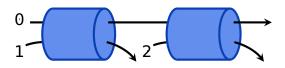
Optimal ergodicity condition:

$$\rho_0 + \rho_1 < 1$$
, $\rho_0 + \rho_2 < 1$

where $\rho_i = \lambda_i/\mu_i$.

We know α -fair policies are optimal [BM02].

Ergodicity Condition



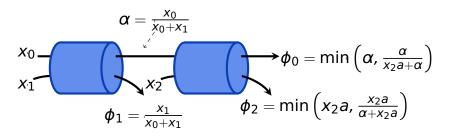
Optimal ergodicity condition:

$$\rho_0 + \rho_1 < 1$$
, $\rho_0 + \rho_2 < 1$

where $\rho_i = \lambda_i/\mu_i$.

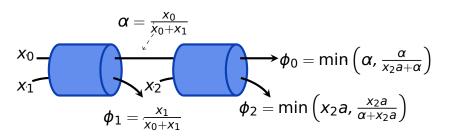
We know α -fair policies are optimal [BM02].

What about our policy?



If $x_2 \gg 0$, class 2 uses virtually all the second link. If $(z_0(t), z_1(t), z_2(t))$ is a fluid limit with $z_2(0) > 0$,

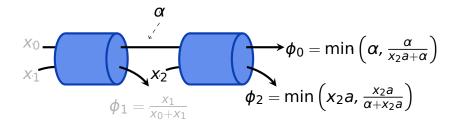
$$egin{aligned} \dot{z}_0(t) &= \lambda_0, \ \dot{z}_1(t) &= \lambda_1 - \mu_1 rac{z_1(t)}{z_0(t) + z_1(t)}, \ \dot{z}_2(t) &= \lambda_2 - \mu_2. \end{aligned}$$



If $x_2 \gg 0$, class 2 uses virtually all the second link. If $(z_0(t), z_1(t), z_2(t))$ is a fluid limit with $z_2(0) > 0$,

$$\begin{cases} \dot{z}_{0}(t) = \lambda_{0}, \\ \dot{z}_{1}(t) = \lambda_{1} - \mu_{1} \frac{z_{1}(t)}{z_{0}(t) + z_{1}(t)}, \\ \dot{z}_{2}(t) = \lambda_{2} - \mu_{2}. \end{cases}$$

If $\rho_2 < 1$, $(z_2(t))$ reaches 0 in finite time.



Classes 0 and 1 are frozen: π_2^{α} is the stationary distribution of class 2

$$ar{\Phi}_0(lpha) = \mathbb{E}_{\pi_2^lpha}\left(\Phi_0\left(lpha,rac{lpha}{x_2a+lpha}
ight)
ight).$$

When $z_2(t) = 0$:

$$\begin{cases} \dot{z}_0(t) = \lambda_0 - \mu_0 \bar{\phi}_0 \left(\frac{z_0(t)}{z_0(t) + z_1(t)} \right), \\ \dot{z}_1(t) = \lambda_1 - \mu_1 \frac{z_1(t)}{z_0(t) + z_1(t)}, \\ \dot{z}_2(t) = 0. \end{cases}$$

with

$$\bar{\Phi}_0(\alpha) = \mathbb{E}_{\pi_2^{\alpha}}\left(\Phi_0\left(\alpha, \frac{\alpha}{x_2 a + \alpha}\right)\right).$$

When $z_2(t) = 0$:

$$\begin{cases} \dot{z}_0(t) = \lambda_0 - \mu_0 \bar{\phi}_0 \left(\frac{z_0(t)}{z_0(t) + z_1(t)} \right), \\ \dot{z}_1(t) = \lambda_1 - \mu_1 \frac{z_1(t)}{z_0(t) + z_1(t)}, \\ \dot{z}_2(t) = 0. \end{cases}$$

with

$$ar{\Phi}_0(lpha) = \mathbb{E}_{\pi_2^{lpha}}\left(\Phi_0\left(lpha, rac{lpha}{x_2a + lpha}
ight)
ight).$$

Stochastic averaging

Ergodicity Conditions

Ergodicity conditions:

$$\rho_1 < 1, \quad \rho_2 < 1, \\
\rho_0 < \bar{\phi}_0 (1 - \rho_1)$$

Optimal conditions:

$$\rho_1 < 1, \quad \rho_2 < 1,
\rho_0 < \min(1 - \rho_1, 1 - \rho_2)$$

Ergodicity Conditions

Ergodicity conditions:

$$\rho_1 < 1, \quad \rho_2 < 1, \\
\rho_0 < \bar{\phi}_0 (1 - \rho_1)$$

Optimal conditions:

$$\rho_1 < 1, \quad \rho_2 < 1, \\
\rho_0 < \min(1 - \rho_1, 1 - \rho_2)$$

But:

$$\bar{\phi}_0(1-\rho_1) < \min(1-\rho_2, 1-\rho_1)$$

Ergodicity Conditions

Ergodicity conditions:

$$\rho_1 < 1, \quad \rho_2 < 1, \\
\rho_0 < \bar{\phi}_0 (1 - \rho_1)$$

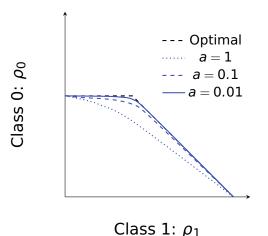
Optimal conditions:

$$\rho_1 < 1, \quad \rho_2 < 1,
\rho_0 < \min(1 - \rho_1, 1 - \rho_2)$$

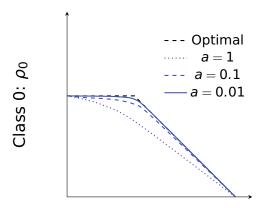
But:

$$\bar{\phi}_0(1-\rho_1) < \min(1-\rho_2, 1-\rho_1)$$
Not optimal!

Impact of Maximum Rate a



Impact of Maximum Rate a



Class 1: ρ_1 What happens when $a \rightarrow 0$?

We freeze α and consider the process $(X_2^S(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

 $q(x_2, x_2 - 1) = \mu_2 \min \left(x_2 a, \frac{x_2 a}{\alpha + x_2 a} \right)$

We freeze α and consider the process $(X_2^S(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

 $q(x_2, x_2 - 1) = \mu_2 \min \left(x_2 \frac{a}{5}, \frac{x_2 a/5}{\alpha + x_2 a/5} \right)$

Time-scale: $t \mapsto St$

We freeze α and consider the process $(X_2^S(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

 $q(x_2, x_2 - 1) = \mu_2 \min \left(x_2 \frac{a}{5}, \frac{x_2 a/5}{\alpha + x_2 a/5} \right)$

Time-scale: $t \mapsto St$

$$(X_2^S(St)/S) \Rightarrow (x_2(t))$$
 with

$$\dot{x}_2(t) = \lambda_2 - \mu_2 \min\left(ax_2(t), \frac{x_2(t)a}{\alpha + x_2(t)a}\right)$$

We freeze α and consider the process $(X_2^S(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

 $q(x_2, x_2 - 1) = \mu_2 \min \left(x_2 \frac{a}{5}, \frac{x_2 a/5}{\alpha + x_2 a/5} \right)$

Time-scale: $t \mapsto St$

$$(X_2^S(St)/S) \Rightarrow (x_2(t))$$
 with

$$\dot{x}_2(t) = \lambda_2 - \mu_2 \min \left(ax_2(t), \frac{x_2(t)a}{\alpha + x_2(t)a} \right)$$

Fixed point:

$$x_2 = \frac{\rho_2}{a} \max \left(1, \frac{\alpha}{1 - \rho_2} \right)$$

$$(X_{2}^{S}(St)/S) \xrightarrow{t \to \infty} X_{2}^{S}(\infty)/S$$

$$\downarrow S \to \infty \qquad \qquad \downarrow S \to \infty$$

$$(X_{2}(t)) \xrightarrow[t \to \infty]{} X_{2}(\infty)$$

$$(X_{2}^{S}(St)/S) \xrightarrow{t \to \infty} X_{2}^{S}(\infty)/S$$

$$\downarrow S \to \infty \qquad \qquad \downarrow S \to \infty$$

$$(X_{2}(t)) \xrightarrow[t \to \infty]{} X_{2}(\infty)$$

Convergence of processes

↓

Convergence of stationary distribution

$$(X_{2}^{S}(St)/S) \xrightarrow{t \to \infty} X_{2}^{S}(\infty)/S$$

$$\downarrow S \to \infty \qquad \qquad \downarrow S \to \infty$$

$$(X_{2}(t)) \xrightarrow[t \to \infty]{} X_{2}(\infty)$$

Convergence of processes

↓

Convergence of stationary distribution

$$\lim_{a \to 0} \bar{\Phi}_0(1 - \rho_1) = \min(1 - \rho_1, 1 - \rho_2)$$

The policy is asymptotically optimal

Conclusion

- Analysis of equilibrium,
- Inversion of limits: scaling on stationary distributions
- Impact of access rates

Extensions:

- Linear networks with I links
- Second order scaling: speed of convergence.
- Upstream trees

Open problem:

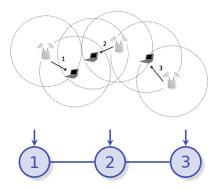
- General acyclic networks

Example 3:

Flow-Aware CSMA

Model

The network is represented by a conflict graph

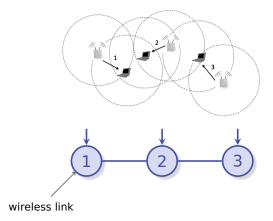


For each node i:

- $X_i(t)$ ∈ \mathbb{N} : number of flows at time t
- $Y_i(t) = 1$ if node is active at time t, 0 otherwise.

Model

The network is represented by a conflict graph

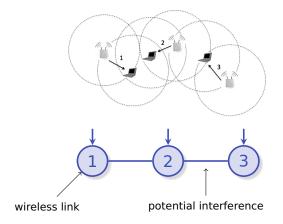


For each node i:

- $X_i(t)$ ∈ \mathbb{N} : number of flows at time t
- $Y_i(t) = 1$ if node is active at time t, 0 otherwise.

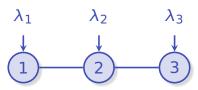
Model

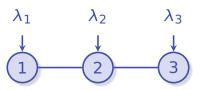
The network is represented by a conflict graph

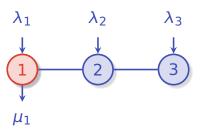


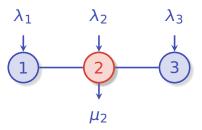
For each node *i*:

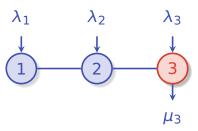
- $X_i(t)$ ∈ \mathbb{N} : number of flows at time t
- $Y_i(t) = 1$ if node is active at time t, 0 otherwise.

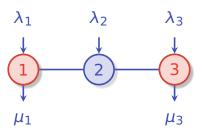


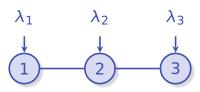






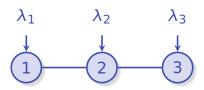






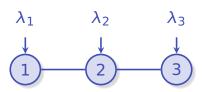
Schedules: Ø, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules



Schedules: Ø, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules In this example: $\{\rho_1 + \rho_2 \le 1, \ \rho_2 + \rho_3 \le 1\}$ with $\rho_i = \lambda_i/\mu_i$

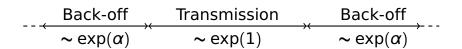


Schedules: Ø, {1}, {2}, {3}, {1,3}.

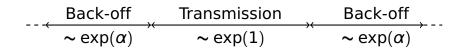
Optimal stability region: convex hull of schedules In this example: $\{\rho_1 + \rho_2 \le 1, \ \rho_2 + \rho_3 \le 1\}$ with $\rho_i = \lambda_i/\mu_i$

Stability region?

Standard CSMA

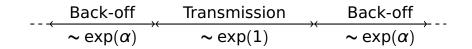


Standard CSMA

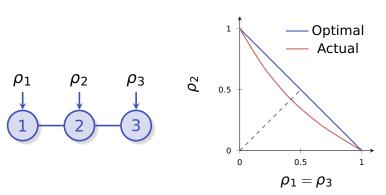


Optimal?

Standard CSMA



Optimal?



Proposed modification of CSMA:

Exponential backoff time for each flow

$$-- \underbrace{-- \text{Back-off}}_{\sim} \text{exp}(\alpha \mathbf{x_1}) \xrightarrow{\sim} \exp(1) \xrightarrow{\sim} \exp(\alpha \mathbf{x_1})$$

Proposed modification of CSMA:

Exponential backoff time for each flow

$$-- \leftarrow \underbrace{\begin{array}{ccc} \mathsf{Back-off} & \mathsf{Transmission} & \mathsf{Back-off} \\ \textcolor{red}{\sim} \exp(\alpha \mathbf{x_1}) & \textcolor{red}{\sim} \exp(1) & \textcolor{red}{\sim} \exp(\alpha \mathbf{x_1}) \\ \end{array}}_{--}$$

The process (X(t), Y(t)) is difficult to analyze:

Proposed modification of CSMA:

Exponential backoff time for each flow

The process $(X^N(t), Y^N(t))$ is difficult to analyze:

Idea: Separate network dynamics and flow dynamics.

When $N \to \infty$, $(Y^N(t))$: classical loss network.

Proposed modification of CSMA:

Exponential backoff time for each flow

$$-- \underbrace{-- \times \text{Back-off}}_{\sim \exp(\alpha \text{N} \mathbf{x_1})} \underbrace{-- \times \text{Transmission}}_{\sim \exp(\text{N})} \underbrace{-- \times \text{Back-off}}_{\sim \exp(\alpha \text{N} \mathbf{x_1})} --$$

The process $(X^N(t), Y^N(t))$ is difficult to analyze:

Idea: Separate network dynamics and flow dynamics.

When $N \to \infty$, $(Y^N(t))$: classical loss network.

Stochastic averaging

Optimality of Flow-Aware CSMA

Theorem:

Flow-aware CSMA algorithm is optimal for any network.

Sketch of proof:

- Asymptotically behaves as Max-Weight.
- Deduce a Lyapunov function and apply Foster's criterion.

Conclusion

- An optimal and fully distributed channel access mechanism
- Limiting process: jump process
- Simplification of the problem

Extension:

- Multi-channel

Open problem:

- Initial problem still open

General Conclusion Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

General Conclusion

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Mathematical tools:

- Several examples of scalings
- A simpler proof for stochastic averaging

General Conclusion

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Mathematical tools:

- Several examples of scalings
- A simpler proof for stochastic averaging

and...

- Scalings: A set of powerful tools
- Stochastic averaging: a not so rare phenomenon

General Conclusion

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Mathematical tools:

- Several examples of scalings
- A simpler proof for stochastic averaging

and...

- Scalings: A set of powerful tools
- Stochastic averaging: a not so rare phenomenon

Many interesting open questions...

Thank you!