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Introdu
tionModeling dependen
e between assets is a subje
t of 
ru
ial importan
e in �nan
e. It hasemerged during the 90's and in the last de
ade as a ne
essary improvement of previous modelsin order to develop and value 
omplex �nan
ial produ
ts or strategies on several underlyings,whose value is strongly sensitive to the dependen
e between these underlyings. For instan
e,basket options, and their sophisti
ations, su
h as the so-
alled mountain range options. Moregenerally, many options and strategies require hybrid models to be pri
ed. These are modelswhere two or more 
lass of assets are 
oupled in order to 
apture their multivariate behaviorand not only their individual dynami
s, su
h as, for instan
e, equity and interest rates (hybridHull-white), equity and volatility (sto
hasti
 volatility models). Furthermore, as `
orrelationbetween assets' be
omes an asset 
lass, just as volatility be
ame an asset 
lass when investorsstarted to have views on volatility and implemented them through the pur
hase of derivativeson volatility su
h as varian
e swaps, 
orrelation produ
ts su
h as 
orrelation swaps asks fora

urate dependen
e modeling. However, as proven by the 2007 �nan
ial 
risis, standardmodels of dependen
e might be insu�
ient when the market swit
h to an extreme regime,and there is 
learly a room for improvement for �nan
ial models to better represent the assets
omovements.The notion of linear 
orrelation is used as an ubiquitous measure of multivariate dependen
e.This notion dates ba
k to Fran
is Galton and Karl Pearson and provides a simple means toquantify the strength of the dependen
e between two real random variables. It 
hara
terizes
ompletely the dependen
e in Gaussian models. This simpli
ity explains the presen
e of
orrelation in �nan
ial models; it stems naturally from the fa
t that the 
lassi
 �nan
ialsmodels are based on Gaussian distribution. Su
h models are Markowitz' modern portfoliotheory, and the derived Capital Asset Pri
ing Model, or fa
tors model su
h as Arbitrage Pri
ingTheory. In 
ontinuous-time �nan
e, a wide 
lass of models is the 
lass of di�usion modelswith Gaussian noise and, on
e again, the dependen
e between assets is often modeled bydeterministi
 
orrelation parameters or 
orrelation matri
es, understating that the dependen
eis Gaussian. However, 
orrelation soon �nds its limits when the marginal distributions are notGaussian and is not a satisfa
tory tool when one wants to introdu
e non Gaussian dependen
e,see Embre
ht [3℄ for more examples where 
orrelation fails.6
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The assumption that �nan
ial assets have Gaussian dependen
e is quite restri
tive, espe
iallywhen derivatives produ
ts are involved, and this assumption might generate unwanted featuresand misunderstandings. For all these reasons, the notion of 
opula sparked a vivid interest inthe �nan
ial 
ommunity in the last de
ade. This obje
t has been long known to statisti
iansand has been used, although unnamed, by Hoe�ding and Fré
het in the 40's and 50's. It waswell later on used to build �nan
ial models of dependen
e, for instan
e in 
redit derivativemodeling. A 
opula is a fun
tion whi
h embeds all the possible information on the dependen
eof several random variables. Hen
e, modeling the dependen
e between n assets X1, . . . ,Xnamounts to �x a 
opula, whi
h in this 
ase is a fun
tion of n variables de�ned on the unithyper
ube [0, 1]n. It allows for a 
lear separation between the information on the marginals,summarized by the individual 
umulative distribution fun
tions, and the spe
i�
 informationon the dependen
e.Let us give some 
on
rete examples of how 
opulas have been used in �nan
e. In 
redit deriva-tives modeling, a 
riti
al feature of a model is to adequately represent the arrival of defaulttimes of government bonds, 
orporate bonds, et
. . . Li's method [7℄, whi
h introdu
ed the useof Gaussian 
opulas in �nan
ial modeling, 
onsists in 
hoosing the marginal distributions ofea
h default time, and then 
hoosing a Gaussian 
opula with some 
orrelation matrix Σ tomodel the dependen
e between the default times. Thus, although the distributions of thedefault times are not Gaussian at all, the dependen
e between them is the same as the de-penden
e of a Gaussian ve
tor with 
orrelation Σ. This works for any 
opula and allows toimpose any form on dependen
e; this approa
h is used in the so-
alled semi-dynami
 
opulamodeling (see S
hönbu
her's book [11℄, p. 337 et seq). In equity derivatives pri
ing, 
opulashave been used in the same fashion. The simplest 
ase where they have been used is for aEuropean option whi
h pays at maturity T a payo� g(S1
T , · · · , SNT ), where SiT the value ofunderlying i at T . The pri
e of su
h an option depends on the multivariate distribution of theassets at the maturity, whi
h 
an be split on
e again into the marginal distributions and the
opula.These examples give an opportunity to point out two drawba
ks of using 
opulas. Considerthe previous example of default times modeling. Assume that we want to value a 
omplex
redit derivative (su
h as a Credit Default Obligation), whose value depend on a pool of assetsthat 
an be split into two sets, e.g. 
orporate bonds on the one hand, and home loans on theother hand. Assume that the two 
opulas ruling the dependen
e among ea
h of these set ofassets is �xed. The dependen
e stru
ture of the model is 
ompletely spe
i�ed as soon as thedependen
e between the two sets is de�ned. As we have 
hosen to model dependen
e with
opulas, it appears natural to de�ne the 
opula whi
h rules the overall dependen
e as

C3(C1(u1, . . . , uN ), C2(v1, . . . , vM ))7
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where C1 is the 
opula for the N 
orporate bonds default times, C2 is the 
opula for the Mhome loans default times and C3 is a bivariate 
opula that handles the dependen
e betweenthe two. However, su
h a formula does not de�ne a 
opula in general, unless C3 is theindependen
e 
opula. This results from an impossibility theorem proved by Genest et al.[4℄. More generally, it is a stylized fa
t of 
opula theory that de�ning a multivariate 
opulais di�
ult. As a result, the 
opula might not be the tool to be preferred when fa
ing theproblem of aggregating the dependen
e.A se
ond drawba
k of 
opula fun
tions is their stati
 nature. Indeed, while they arewell suited to the valuation of �nan
ial derivatives whose pri
es depend on the distributionof the assets at a single time, they are more di�
ult to use in a dynami
 framework. Forinstan
e, a desirable feature of a pri
ing model is to give the assets a Markovian dynami
s.Combining this Markovian feature and the modeling of the `spatial dependen
e', i.e. the
ross-se
tional dependen
e between the assets, with 
opulas is no easy task. There exists anabundant literature on 
opulas and time-series (see Patton [9℄ and referen
es therein), wherethe 
opulas are used in a (dis
rete) dynami
 setting. Furthermore, the time dependen
estru
ture of (possibly 
ontinuous) real-valued Markov pro
esses is well understood in termsof 
opulas, see Darsow et al. [1℄ and Ibragimov [5℄. However, to the best of our knowledge,the problem of modeling the dynami
 spatial dependen
e of 
ontinuous Markov pro
esses by
opulas has not been thoroughly solved yet.More generally, 
opulas are de�ned from a s
aling of the marginals by their 
umulative dis-tribution fun
tion. While this is natural for a univariate random variable, as the resultingvariable has a uniform distribution over [0, 1], this does not make sense a priori for a multi-variate distribution, as well as the notion of quantile. Nevertheless, the problem of s
aling onedistribution to another, i.e. �nding a deterministi
 fun
tion fµ,ν su
h that fµ,ν(X) has law
ν if X has law µ, still remains. Similarly, multivariate dependen
e problems 
an be formu-lated in the same manner as their univariate analogs, su
h as determining whi
h distributionmaximizes 
orrelation when the marginals distributions are �xed:

sup
X∼p
Y∼q

E(XY )If µ and ν are probability distributions over R this problem amounts to �nd the 
opula whi
hmaximizes the 
orrelation between the marginals, but it does still perfe
tly make sense if µand ν are probabilities over RN , and the produ
t is repla
ed by a s
alar produ
t:
sup
X∼p
Y∼q

E(X · Y )This sort of �xed marginals problems in the 
ontext of multivariate dependen
e 
annot be8
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ta
kled by the same tools as in the univariate 
ase.This thesis aims at addressing the two topi
s sket
hed above, namely dependen
e aggregationand dependen
e modeling for Markovian di�usions. The two �rst 
hapters ta
kle the issue ofmultivariate dependen
e, i.e. dependen
e between multivariate marginal distributions. Morepre
isely, these 
hapters aim at des
ribing, 
hara
terizing and 
omputing extreme multivariatedependen
e between random ve
tors. The third 
hapter shows how 
opulas 
an be used tomodel the spatial dependen
e between two Markovian di�usions, and is a �rst step to buildgenuine 
ontinuous-time models of dependen
e with 
opulas.Chapter 1 The �rst 
hapter studies the modeling of the dependen
e between random ve
torswith �xed marginals, and in parti
ular the notion of 
omonotoni
ity between random ve
tors.Re
all that two real random variables X and Y are 
omonotone if and only if they 
an bewritten as an in
reasing fun
tion of a third variable. A simple pro
edure to obtain a pair of
omonotoni
 variables (X,Y ) with marginal distributions µ and ν is to 
onsider (X,F−1
ν ◦

Fµ(X)) where Fµ is the 
umulative distribution of µ, F−1
ν the quantile fun
tion of ν and Xis a random variable with law µ. Thus, a deterministi
 s
aling of one distribution to anotheris obtained, and this transform has moreover a parti
ularly simple expression. However thisapproa
h fails if the marginals are not univariate. The 
omplexity of the multivariate 
ase 
anbe seen from the fa
t that if µ is a probability on RN , the law of the variable Fµ(X), X ∼ µ, isnot the uniform law on the unit hyper
ube, 
ontrary to the one dimensional 
ase, and there isno unique notion of multivariate quantile. Nevertheless, optimal transport theory proposes as
aling of one multidimensional law of probability to another and therefore proposes a possiblede�nition of multivariate 
omonoti
ity.More pre
isely, if µ and ν are two probability distributions over RN , 
onsider the set ofprobability distributions π over RN×RN su
h that the distribution of the �rst N -dimensionalmarginal is µ and the distribution of the se
ond one is ν, i.e. π(A × RN ) = µ(A) and

π(RN × A) = ν(A) for every Borel set A ⊂ RN , and denote Π(µ, ν) this set. Among these
ouplings π, a distribution of spe
ial interest is the one solving the variational problem
inf

π∈Π(µ,ν)

∫RN×RN

|x− y|2dπ(x, y) (1)This problem has a unique solution and, by de�nition, this solution minimizes the quadrati
distan
e between the �rst N -dimensional marginal and the se
ond one. The study of su
hvariational problems is the subje
t of optimal transport theory and has found appli
ations inmany �elds, pure mathemati
s, e
onomi
s, numeri
al optimization, medi
al imaging et
. . . seethe book by C. Villani [12℄ for an introdu
tion to this theory. A

ording to the Monge-Kantorovit
h duality, the linear problem (1) admits a dual problem whi
h writes (up to addi-9
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tive 
onstants):
inf

ϕ∈L1(µ)

∫RN

ϕ(x)dµ(x) +

∫RN

ϕ∗(y)dν(y) (2)where ϕ∗(y) = supx∈RN (x ·y−ϕ(x)) is the Legendre transform of ϕ. From this duality, it 
anbe shown that the optimal 
oupling in (1) takes the form (under regularity assumptions onthe distributions µ and ν): πopt = (Id×∇ϕ)#µ, where ∇ϕ is the µ-a.e. unique gradient of a
onvex fun
tion su
h that ∇ϕ#µ = ν. In other words, the optimal 
oupling is the law of a pair
(X,∇ϕ(X)) where X has law µ, and, up to an additive fun
tion in x and y, ϕ is solution of thedual problem (2). Considering that ∇ϕ is somehow the multivariate analog of an in
reasingfun
tion, the optimal 
oupling exhibits a strong dependen
e between its marginals, and 
anbe seen as a generalization of the notion of 
omonotoni
ity in the multivariate 
ase. This
oupling 
an be used in pra
ti
e to de�ne multivariate and invariant in law risk measures,su
h as the maximum 
orrelation: ρY (X) = supX̃∼X

Y∼Y
E(X̃ · Ỹ ), see Rüs
hendorf [8℄.Unlike the 
omonotoni
 
oupling Y = F−1

ν ◦ Fµ(X) in the one dimensional 
ase, whi
h isreadily 
omputed, there is in general no analyti
 formula for the fun
tion ∇ϕ. To address theproblem of the 
omputation of ∇ϕ, we �rst treat the 
ase of a dis
rete target distribution ν.Writing yi the atoms of ν and qi = ν({yi}), the solution of the dual problem is easily seento be a pie
ewise a�ne fun
tion ϕv(x) = maxi(x · yi − vi), and the dual problem be
omes a�nite-dimensional variational problem
inf
v∈RN

∫RN

ϕv(x)dµ(x) + q · v (3)An essential feature of this problem is the 
onvexity and the boundedness of the obje
tivefun
tion. Thus problem (3) 
an be solved by 
lassi
 te
hniques, su
h as gradient des
entalgorithms. A steepest des
ent algorithm would read
vi+1 = vi −∇F(vi) (4)where F(v) is the obje
tive fun
tion of (3). Furthermore, this algorithm 
an be interpretedas a Walrasian au
tion algorithm, where a �nite set of sellers (lo
ated at the points yj) o�era good with supply qj . The steepest des
ent (4) mimi
s the behavior of buyers 
ompetingfor this good in su
h a way that the pri
es adjust so that supply and demand mat
h. Anequivalent interpretation is that the primal problem (1) is the so
ial planner's obje
tive �maximizing the total e
onomi
 surplus � and is equivalent to the dual problem (3) (adjustingsupply and demand), whi
h is one of Walras' theorem.The se
ond part of the 
hapter 
onsists in showing that dis
retizing the target measure isa valid approa
h to approximate an optimal Kantorovit
h potential ϕ. We give a rigorous10
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statement of the fa
t that, provided a sequen
e of dis
rete measures with a �nite number ofatoms νN 
onverges in law to ν, the sequen
e of optimal potentials ϕN (whi
h solves problem(3) with target measure νN ) 
onverges uniformly on the support of the initial measure µ toan optimal potential ϕ.Eventually, the last part of the 
hapter aims at 
omparing various algorithms that solve thetransport problem. More pre
isely we detail: Bertsekas' au
tion algorithm, whi
h solves thedual problem (3) when both measures are dis
rete and equally-weighted, thanks to a repeatedau
tion pro
ess; linear programming algorithms that use a slightly di�erent form of the dualproblem, namely:
sup

ϕ, ψ∈ RN

ϕi+ψj≥xi·yj ,∀i, j

ϕ · p+ ψ · qwhere µ is assumed dis
rete with atoms xi ∈ RN and p is the ve
tor of the mass of the atoms of
µ; the Iterative Proportional Fitting Pro
edure whi
h 
onsists in relaxing the primal problem(1) by the addition of an entropy term and then solving the relaxed problem with an analog ofVon Neumann's alternative proje
tion algorithm and, �nally, quasi-Newton method appliedto problem 3. Choosing the 
lassi
al Bertsekas algorithm as a ben
hmark, we tested thesealgorithms on three simple test 
ases, for whi
h the analyti
 form of the optimal transportmap is known. In these three 
ases, our experiments show that the 
ombination of the IPFPalgorithm that provide a `warm point', and then the use of a quasi-Newton algorithm beatsthe other algorithms. These latter 
ombination has an estimated 
omplexity O(N5/2), whilethe numeri
al speed of 
onvergen
e is O(1/

√
N).Chapter 2 While the �rst 
hapter aimed at 
omputing the quadrati
 optimal 
oupling,also 
alled the maximum 
orrelation 
oupling, the se
ond 
hapter aims at providing a simpleand wider notion of extreme dependen
e between random ve
tors. The maximum 
orrelation
oupling, whi
h 
an be seen as a multivariate 
omonotoni
ity 
oupling, is a rather restri
tivemodel for su
h dependen
e, as it only takes 
omponent-wise 
ovarian
es into a

ount. A simpleway to de�ne extremal 
ouplings 
onsists in 
onsidering the possibility of 
ross-dependen
e,and, with the same notations as above, studying the following variational problem

sup
π∈Π(µ,ν)

∫RN×RN

x ·My dπ(x, y) (5)where M is a given N dimensional square matrix (w.l.o.g. as the 
ase of marginals withdi�erent sizes is similar). The maximum 
orrelation 
oupling 
orresponds to M = Id. Then,a

ording to optimal transport theory (and up to some 
onditions on the marginal distri-butions), an optimal 
oupling solving (5) takes the form MY = ∇ϕM (X), for some 
onvexfun
tion ϕM . Su
h a 
oupling exhibits the same 
omonotoni
ity property as the maximum11
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orrelation 
oupling, up to a linear transform of one of the variables, and is proposed as apossible de�nition of multivariate extreme dependen
e. Su
h a de�nition takes into a

ountthe 
ross-dependen
e of the 
omponents of ea
h marginal law, and admits a geometri
 
hara
-terization. Indeed, the extremality of a 
oupling (X,Y ) 
an be 
he
ked on its 
ross-
ovarian
ematrix E(XY ′). Introdu
e the 
ovariogram
F(µ, ν) = {Eπ(XY

′), π ∈ Π(µ, ν)}whi
h is the set of all 
ross-
ovarian
e matri
es 
orresponding to 
ouplings whose �rst N -dimensional marginal has law µ and the se
ond one has law ν. The �rst part of this 
hapterproposes the following geometri
 
hara
terization: the extremal 
ouplings, as de�ned above,are the 
ouplings (X,Y ) ∈ Π(µ, ν) su
h that the 
ross-
ovarian
e matrix E(XY ′) is lo
atedon the boundary of F(µ, ν). The 
ovariogram is also useful to study another notion of ex-tremality. Namely, 
onsider some 
onvex order ≻ on the set F(µ, ν): then the 
ouplings whose
ross-
ovarian
e matrix is maximal with respe
t to this order should exhibit some strong formdependen
e. A
tually, with the help of a saddlepoint theorem, one 
an show that su
h 
ou-plings are also extremal, in the sense that there exists a matrixM belonging to a set of matrix
S≻, su
h that the 
oupling solves (5). These 
ouplings are 
alled positive extreme 
ouplingsand form a subset of extreme 
ouplings. For instan
e if ≻ is the (stri
t) Loewner order onmatri
es, de�ned by M ≻ N i� M − N has a stri
tly positive symmetri
 part, then positiveextreme 
ouplings are the one maximizing (5) for some nontrivial matrix M whose symmetri
part is nonnegative.In a se
ond part of this 
hapter, an algorithm is proposed to 
ompute these extreme 
ouplings.Given any 
oupling π̂ ∈ Π(µ, ν), we would like to �nd a means of asso
iating π̂ to an extremedependent 
oupling. Geometri
ally speaking, this amounts to 
onsider a matrix inside the
ovariogram, and proje
t it on the boundary of the 
ovariogram. Of 
ourse, there are severalway to perform su
h a proje
tion, and we propose one whi
h respe
ts the stru
ture of theinitial problem (5) and allows for expli
it 
omputations. As in the �rst 
hapter, an entropi
relaxation is used:

WT (M) := sup
π∈Π(µ,ν)

Eπ(X
′MY ) + TEnt(π) (6)where Ent(π) is the entropy of the 
oupling π, formally −Eπ(log(π(X,Y ))). This is a per-turbed version of the original problem, whi
h 
an be formulated as a proje
tion problemwith respe
t to the Kullbla
k-Leibler pseudo-distan
e. Moreover, if σπ̂ is the 
ross-
ovarian
ematrix of the 
oupling π̂, then the �rst order 
ondition of the following problem

inf
M∈MN (R)

WT (M)− σπ̂ ·M (7)reads σπ̂ = Eπ(T,M)(XY
′) where π(T,M) is a 
oupling a
hieving the supremum (6). Therefore,12
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a means to asso
iate an extremal 
oupling to π̂ is to �x T , e.g. T = 1, and then �nd the matrix
M̂ solving (7). M̂ is then the 
ross-
ovarian
e matrix of the 
oupling π1,M̂ maximizing (6)with T = 1. Thus a whole traje
tory of nondeterministi
 
ouplings πT,M̂ obtains that satisfy
Eπ1,M̂

(XY ′) = σπ̂ and π0,M̂ is an extremal 
oupling. Moreover, the proje
tion of σπ̂ onto theboundary of the 
ovariogram is parti
ularly simple to 
ompute, at least when the marginaldistributions are dis
rete, as the Iterative Proportional Fitting algorithm is then parti
ularlye�
ient to solve (6) whilst (7) is a standard 
onvex problem.The third part of the 
hapter fo
uses on appli
ations. First, performing a singular valuede
omposition of the matrix M̂ , we exhibit a linear transform of the marginal distributionsof an empiri
al 
oupling, whi
h allows interpret the extreme 
oupling π0,M̂ as the maximum
orrelation 
oupling on
e the marginal distributions are linearly transformed. This lineartransform is helpful in dependen
e problems where two e
onomies are involved to de�ne newindi
es from �nan
ial indi
es that would solve the problem of maximal 
orrelation under thelaw of the extreme 
oupling. Then, we apply this te
hnique to multivariate stress testing: aMarkowitz allo
ation model is 
onsidered, and the impa
t of the 
hange of the dependen
ebetween two subsets of the investment universe is assessed. Interestingly, it shows that whilethe maximum 
orrelation 
oupling might fail at stressing the portfolio, it is not the 
asewith the previous method on the 
onsidered examples. Moreover, this method provides awhole traje
tory of 
ouplings with in
reasing dependen
e. The same type of argument isapplied to derivatives pri
ing: a European option on several underlyings is 
onsidered, andour dependen
e stress test is 
ompared to the more 
lassi
 stress test of 
ovarian
e matri
es,whi
h typi
ally assumes that the 
ross-
ovarian
e matrix is �lled with a single parameter ρand let ρ tend to ±1. This last method has a major disadvantage when the marginals are �xed:the 
ovarian
e matrix has two �xed diagonal blo
ks (the 
ovarian
e matri
es of the marginals),and the parameter ρ is 
onstrained to belong to an interval to ensure the nonnegativity of the
ovarian
e matrix. It results that our method has a larger impa
t on the pri
es and avoids theproblem of maintaining the stressed 
ovarian
e matrix in the set of symmetri
 nonnegativematri
es.Chapter 3 The third 
hapter ta
kles the issue of des
ribing the dependen
e between sto
has-ti
 pro
esses with 
opulas, and shows how 
opulas 
an be used in a genuine dynami
 frame-work. The point is to be able to des
ribe the 
ross-se
tional dependen
e between two Marko-vian di�usions Xi, i = 1, 2, whose dynami
s are dXi
t = µi(t,X

i
t)dt + σi(t,X

i
t)dW

i
t . The
oupling between these di�usions is materialized by a 
oupling 
orrelation ρ(t,X1

t ,X
2
t ) be-tween the Brownian motions W i, these latter being de�ned in su
h a way that d〈X1

t ,X
2
t 〉 =

ρ(t,X1
t ,X

2
t )dt, i.e. ρ(t,X1

t ,X
2
t ) is the instantaneous 
orrelation between the Brownian mo-tions. Su
h models are reminis
ent of Dupire's lo
al volatility model [2℄, and 
an be usedin the same manner, that is to 
alibrate the 
orrelation fun
tion in order to mat
h today's13
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pri
es of options; this is the approa
h of the lo
al 
orrelation models introdu
ed by Langnau[6℄ and Reghai [10℄. The problem here is a bit di�erent as we want to adjust the 
orrelationfun
tion in su
h a way that the 
opula Ct between X1
t and X2

t , whi
h fully des
ribes the
ross-se
tional dependen
e at time t, is 
ontrolled. In the spirit of the 
opula approa
h todependen
e, we des
ribe the dynami
s of the 
opula Ct by �rst s
aling the marginal di�usions
Xi
t by their 
umulative distribution fun
tions F it : a pair (U1

t , U
2
t ) of sto
hasti
 pro
esses withstationary uniform distribution obtains, whose bivariate 
umulative distribution fun
tion is,by de�nition, the 
opula Ct. The dynami
s of the 
opula Ct is then derived by establishingthe Kolmogorov forward equation of the pro
ess (U1

t , U
2
t ). This equation writes

∂tCt(u, v) =
1

2

(
vol1(t, u)∂

2
uuCt(u, v) + vol2(t, v)

2∂2vvCt(u, v)
)

+ ρ̃(t, u, v)vol1(t, u)vol2(t, v)∂
2
uvCt(u, v)where voli(t, ·) = (f it .σi(t, ·))◦(F it )−1(·) is the volatility of the s
aled marginal i and ρ̃(t, u, v) =

ρ(t, (F 1
t )

−1(u), (F 2
t )

−1(v)) is the s
aled 
orrelation fun
tion. This equation des
ribes the evo-lution of Ct, whi
h depends on the marginal distributions and on the 
oupling 
orrelation ρ.This equation o�ers a means to 
ontrol the 
opula of the bivariate di�usion. For a �xed family
{Ct}t≥0 with smooth and positive densities, de�ne:

ρ̃(t, u, v) =
∂tCt(u, v)− 1

2

(
vol1(t, u)∂

2
uuCt(u, v) + vol2(t, v)

2∂2vvCt(u, v)
)

vol1(t, u)vol2(t, v)∂2uvCt(u, v)
(8)and ρ(t, x, y) = ρ̃(t, F 1

t (x), F
2
t (v)). If ρ is indeed a 
orrelation fun
tion, i.e. if |ρ̃(t, u, v)| ≤ 1for all (u, v) ∈ [0, 1]2, a sensible expe
tation is that the 
opula family of the bivariate di�usionwith 
oupling 
orrelation ρ(t, x, y) is indeed Ct. The �rst part of this 
hapter 
onsists inestablishing the 
opula PDE as well as this result of `
oheren
e'.In a se
ond part, the emphasis is put on the simplest 
oupling 
ase, whi
h 
orresponds toBrownian motions 
oupling. The 
oupling sto
hasti
 di�erential equation for Brownian mo-tions writes

dB2
t = ρ(t, B1

t , B
2
t )dB

1
t +

√
1− ρ(t, B1

t , B
2
t )

2dZt (9)where (B1, Z)t is a standard bivariate Brownian motion. The problem is to determine whethera given 
opula C is attainable by 
oupled Brownian motions, in other words, whether there ex-ists a 
orrelation fun
tion ρ su
h that the equation (9) makes sense and the resulting bivariatepro
ess (B1
t , B

2
t ) has a 
opula family Ct satisfying CT = C at some time T > 0. Furthermore,we are primarily interested in the 
opulas that are stationary, that is the 
opulas C su
h thatthere exists 
oupled Brownian motions (B1

t , B
2
t ) whose 
opula family Ct be
omes 
onstantand equal to C after some time T > 0. It turns out that the property of self-similarity andinvarian
e under time-inversion of the Brownian motion 
onsiderably simpli�es the analysis of14
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attainability, as a 
opula that is attainable at some time T > 0 is attainable at any time t > 0(and the same for stationary 
opulas). In order to show that the set of stationary 
opulas doesnot redu
e to the Gaussian 
opula, a detailed example is provided whi
h shows that non trivialmembers of the Farlie-Gumbel-Morgenstern 
opula family are indeed stationary 
opulas. Thisanalysis is followed by a short zoology of 
opulas, whi
h aims at listing some 
lassi
 
opulasthat are admissible or not as stationary 
opulas. The 
oupling 
orrelation fun
tion of these
opulas equals
ρ(u, v) = −1

2

e
Φ−1(v)2−Φ−1(u)2

2 ∂2uuC + e
Φ−1(u)2−Φ−1(v)2

2 ∂2vvC

∂2uvC
(10)after some time T > 0, a

ording to (8). Empiri
ally, and for the 
opula we tested, the 
opulasseem to divide in two 
ategories, the ones with sup(u,v)∈[0,1]2 |ρ(u, v)| ≤ 1 and the ones su
hthat ρ(u, v) explodes when (u, v) is 
lose to the boundary of the unit square. These latter
opulas are not stationary 
opulas, and numeri
al eviden
e suggests that 
lassi
 
opulas su
has the Student 
opula, or many ar
himedean 
opulas have this behavior. Furthermore it isworth noti
ing that all 
opulas with bounded 
orrelation are 
opulas without tail dependen
e,like the Gaussian 
opula, while the 
opulas for whi
h ρ(u, v) explodes exhibit tail dependen
e.This might prevent them from 
oupling Brownian motions.The �nal part of this 
hapter is devoted to a �nan
ial appli
ation of the previous 
ouplingmethod. The impa
t of introdu
ing non Gaussian dependen
e is assessed on a dynami
 strat-egy, namely a CPPI Long-Short strategy. This strategy involves two assets, the 
ore and thesatellite, and aims at guaranteeing a wealth that is proportional to the buy-and-hold strategyin the 
ore, while bene�ting from a possible rise of the satellite. This is a
hieved by alter-natively shorting one asset and being long the other a

ording to the value of the strategyrelative to the value of the guarantee. The di�usion model for the assets is a 
oupled Bla
k-S
holes, and we fo
us on the gap risk, materialized by the probability that the Long-ShortCPPI falls below the buy-and-hold strategy. The impa
t of 
opulas is monitored: althoughrelatively low (
ompared to the sensitivity of the gap risk with respe
t to the volatility forinstan
e), it is real and shows that some models of dependen
e are more 
onservative thanothers for the strategy under 
onsideration.

15
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Chapter 1Numeri
al approximation of optimaltransport maps
1.1 Introdu
tionThe problem of interest is to 
ompute numeri
ally a solution to the Monge-Kantorovi
h prob-lem in L2. It 
onsists in �nding a law of probability π of a pair of random variables (X,Y )with marginal distributions µ and ν over Rn that solves

Eπ(X · Y ) = max
π̃∈Π(µ,ν)

Eπ̃(X · Y ) (1.1)where Π(µ, ν) is the spa
e of all su
h joint laws, Eπ denotes the expe
ted value with respe
tto the law π and · is the Eu
lidean s
alar produ
t. This problem has re
eived a 
onsiderableattention. Originally formulated by Gaspard Monge in a stronger form in 1781, and underthe above form by Leonid Kantorovi
h in the forties, it has found many appli
ations in many�elds, both theoreti
al and pra
ti
al. Ex
ellent referen
es are the two volumes by Ra
hev andRüs
hendorf [18℄ as well as the books by Cédri
 Villani [22℄ and [24℄ that show the phenomenals
ope of the optimal transport theory.The primal problem (1.1) is equivalent to the dual problem
inf

ϕ∈L1(dµ)

∫
ϕdµ +

∫
ϕ∗dν (1.2)where ϕ∗ stands for the Legendre transform of ϕ,

ϕ∗(y) = sup
x∈Rn

[x · y − ϕ(x)] (1.3)
17
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Under light assumptions on the marginals µ and ν, Brenier's theorem [7℄ states that there isa unique solution to the primal problem, and this solution is the law of a 
ouple (X,∇ϕ(X)),with se
ond marginal is a deterministi
 fun
tion of the �rst one. Moreover ϕ, 
alled a Kan-torovit
h potential , is a solution to the dual problem (1.2) that is 
onvex, and ∇ϕ is theunique µ- a.e gradient of a 
onvex fun
tion su
h that ∇ϕ#µ = ν.The optimal transport map ∇ϕ is a rather 
ompli
ated obje
t. It is a solution of the highlynon-linear Monge-Ampère equation
detD2ϕ(x)fν(∇ϕ(x)) = fµ(x)when µ and ν have densities fµ and fν with respe
t to the Lebesgue measure.The numeri
al side of optimal transport has re
eived less attention 
ompared to the numeroustheoreti
al developments. Notable ex
eptions in
lude Brenier and Benamou [3℄ who derivea saddlepoint formulation of the transport problem and make use of augmented Lagrangiante
hniques to propose estimates for the optimal transport map; they present results when theinitial measure is uniform on the torus R

n/Zn. Loeper and Rapetti [15℄ solve the Monge-Ampère equation (with 
onstant right term) D2ψ = ρ, where ρ is a smooth density by using alinearization of the equation 
ombined with a Newton's algorithm. Results are provided againin the 
ase where ρ is the uniform measure on the torus. Angenent, Haker and Tannenbaum[1℄ and Dominitz and al. [9℄ use the equivalent problem of polar fa
torization to design agradient-des
ent algorithm.Another strand of literature that is not dire
tly 
onne
ted to the determination of the optimaltransport maps deals with optimal transport when the marginals are dis
rete. When theyhave the same number of equally-weighted atoms, this is the assignment problem . This is the
lassi
al mat
hing problem of assigning N people to N obje
ts while maximizing a mat
hingfun
tion c (the s
alar produ
t in the 
ase of L2 optimal transport). The problem redu
es to�nding a permutation of N elements that solves
max
σ

∑

i

ciσ(i)where the maximization is performed over the set of permutations of {1, . . . , N}.This problem has been extensively studied in 
ombinatorial optimization. An important
ontribution is the au
tion algorithm, proposed by Bertsekas [5℄, that is to our knowledge themost e�
ient algorithm for solving the assignment problem.In a �rst part, the transport problem with dis
rete target measure is investigated. A sim-ple but enlightening e
onomi
al interpretation is given. The approa
h proposed is related topower diagrams and least-square 
lustering: Aurenhammer et al. [2℄ detail a gradient-des
ent18
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algorithm for solving the least-square assignment problem. We then provide (under appropri-ate assumptions on the marginal measures) theoreti
al pointwise 
onvergen
e results statingthat the Kantorovi
h potential in the 
ase of dis
rete target measure νN 
onverges uniformlyto the Kantorovi
h potential of the dual problem as soon as νN 
onverges in distribution to
ν. Eventually, a gradient-des
ent algorithm is proposed as well as empiri
al experiments. We
ompare this type of gradient-des
ent algorithm 
oupled with a qui
k warm-point algorithmto linear programming algorithms as well as to the popular au
tion algorithm, and show thatit 
an be an e�
ient means to solve the transport problem.1.2 Related literature and 
ontributionThe algorithm presented in the �rst part of this 
hapter and 
ompared to other algorithmsin the last part is 
lose to a solution to the least-square assignment problem proposed inAurenhammer, Ho�mann and Aranov [2℄. This problem 
an be formulated in the followingway: �nd a polyhedral partition of the spa
e Rn by power diagrams with given volume. Apower diagram is a partition of the spa
e into `distorted Voronoï 
ells' , that 
an be writtenas

Pi(v) = {x| |x− yi|2 − wi ≤ |x− yj|2 − wj , j = 1, . . . ,M}where the M points yi ∈ Rn are the sites of the diagram and wi ∈ R are the weights. Theseare the analogue of the pla
es and the pri
es of the se
tion 1.3.3. The problem is to �nd,for a given ve
tor of `
apa
ities' c (that 
orresponds to the o�er of the sellers, q, in 1.3.3),and a probability distribution µ over [0, 1]n, a ve
tor of weights w su
h that ci = µ(Pi(v))for all i. This is almost exa
tly the problem of �nding the optimal transport map between
µ and ∑M

i=1 ciδyi as explained in the next se
tion 1.3; this was pointed out by Rüs
hendorfand U
kelmann [20℄. Aurenhammer et al. show that the optimal weights are the maximumof a 
on
ave fun
tion, just as the optimal pri
es of se
tion 1.3.3 are the minimum of a 
onvexfun
tion, and propose to 
ompute these weights by a gradient method, whi
h is the analogueof the method we use. Gangbo and M
Cann [11℄ 
onje
tured that su
h an algorithm shouldyield a solution. The results given in the se
tion 1.3 are a dire
t extension of those presented inEkeland, Gali
hon and Henry [10℄, se
tion 3, who 
over the 
ase of a dis
rete initial distributionand provide an e
onomi
 interpretation 
lose to the one exposed in 1.3.3.The se
ond part of the 
hapter 
onsists in proving that the optimal transport map betweentwo 
ontinuous measures 
an be approximated by solving the transport problem when thetarget measure ν is approa
hed by a sequen
e νN 
onverging in distribution to ν. This resulthas been proved in quite a general setting by Villani [23℄, and we provide here a detailed proofthat �ts into the setting of this 
hapter (optimal transport over the Eu
lidean spa
e R
n).The third part of this 
hapter 
ompares several algorithms, and espe
ially the 
lassi
 au
tion19
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algorithm of D. Bertsekas (see e.g. [5℄) taken as the ben
hmark. The Iterative ProportionalFitting Pro
edure (IPFP) is proposed as a means to provide a warm point for the gradientdes
ent algorithm. A similar entropi
 relaxation problem is studied, with no apparent 
on-ne
tion made with the transport problem, by Yuille and Kosowsky [13℄, who observe (as wedo) the la
k of performan
e of this algorithm when the dis
retization of the measures involvesa large number of atoms. Finally, let us insist on the fa
t that we 
hose to solve the transportproblem with measures on the Eu
lidean spa
e, while some authors (e.g. Loeper and Rapetti[15℄) solve it on the torus; it seems that, in this 
ase, the 
onvergen
e of the various algorithmsis way faster than it would have been in the Eu
lidean setting.1.3 Optimal transport with a dis
rete target measureIn what follows, µ and ν are always supposed to have 
ompa
t support and do not give massto small sets 1, so that Brenier theorem mentioned above applies and the optimal transportmap is well de�ned. The support of µ is supposed 
onne
ted so that Kantorovit
h potentialis de�ned up to a 
onstant. The 
ase of transport problem between µ and a dis
rete measureof probability with a �nite number of atoms is well-known and admits expli
it solutions.1.3.1 Form of the solutionLet νN be a dis
rete probability over R
n, with N atoms, νN =

∑N
i=1 qiδyi . A mapping ψpushing µ forward to νN satis�es

ψ(X) ∼
N∑

i=1

qiδyi , when X ∼ µwhere ∼ means equality in distribution.This implies that on suppµ, ψ takes values in the �nite set {yi, }1≤i≤N . A
tually, a

ordingto Brenier Theorem, we know that there exists a µ-a.e unique gradient of a 
onvex fun
tionwhi
h solves the problem: the previous remark indi
ates that this 
onvex fun
tion should belooked for under the form of a pie
ewise a�ne fun
tion on suppµ. More pre
isely:Proposition 1 An optimal 
onvex fun
tion ϕ satisfying ∇ϕ#µ = νN is pie
ewise a�ne, i.e.the Brenier Map ∇ϕ is a pie
ewise 
onstant fun
tion. More expli
itly, a solution ϕ is
ϕ(x) = max

i=1,...,N
[x · yi − vi] (1.4)Let v = (v1, . . . , vN )

′ and Vi(v) = {x ∈ suppµ|i ∈ argmaxk[x · yk − vk]}. The vi are su
h that
µ(Vi(v)) = qi, for all i1A small set is a measurable subset of Rn with Hausdor� dimension at most n− 1.20
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Proof: Let ϕv be as in (1.4), its gradient is given by
∇xϕv(x) =

N∑

i=1

1Vi(x)yi, a.e.Thus
∇xϕv#µ =

N∑

i=1

µ(Vi)δyithanks to the envelope theorem (here and thereafter the dependen
e on v in Vi is oftendropped). A ne
essary and su�
ient 
ondition on (vi)1≤i≤N for ∇ϕv to solve the problem is:
µ(Vi) = qi for all i. (1.5)

�However, it is not 
lear at this point whether su
h a set of vi a
tually exits. Theorem 1.4 andexample 1.6 in [11℄ state that this is indeed the 
ase. Alternatively, the proposition 2 belowproves also the existen
e of su
h a solution.The a
tual 
omputation of the optimal transport map redu
es to �nding su
h a v; thedual transport problem provides a means to do this.1.3.2 Dual problem and �rst order 
onditionThe Kantorovi
h potential is a solution of the dual problem
inf

ϕ∈L1(dµ)

∫
ϕ(x)dµ +

∫
ϕ∗(y)dνNThus, ϕv is optimal i� it is a solution of the following minimization problem :

inf
v∈RN

∫
ϕv(x)dµ +

∫
ϕ∗
v(y)dνN (y)A straightforward 
omputation yields ϕ∗

v(yj) = vj . Thus the dual problem writes
inf

v∈RN

[∫
ϕv(x)dµ + q · v

] (1.6)Formally, ∇vE(ϕv(X)) = E(∇vϕv(X)) = −(µ(V1) . . . µ(VN ))
′, and the �rst order 
onditionreads qj = µ(Vj), j = 1, . . . , N whi
h is pre
isely the 
ondition (1.5) for ϕv to be a Kantorovi
hpotential.A remark that is the 
ornerstone of the algorithm proposed below is the 
onvexity of theobje
tive fun
tion F(v) := E(ϕv(X)) + q · v. 21
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Proposition 2 F is a 
onvex fun
tion that is bounded below and thus admits a global mini-mizer in R
N . Moreover, F is 
ontinuously di�erentiable on R

N and any global minimizer vsatis�es the �rst order 
ondition
qi = µ(Vi(v)), for all iA proof 
an be found in appendix 1.7.1.1.3.3 An e
onomi
 interpretationA simple e
onomi
 interpretation gives some insight into the transport problem. Considera spatial distribution µ of buyers interested in a single type of good, supplied by sellerslo
ated at positions yi. qi models the o�er proposed by the i-th seller. Ea
h 
ustomer fa
esa trade-o� between a distan
e 
ost and the pri
es proposed by the sellers. The e
onomi
surplus of assigning the buyer lo
ated at x to the i-th seller (the one lo
ated at yi) is setas x · yi. The primal problem maxX∼µ,Y∼νN E(X · Y ) 
onsists in the maximization of thetotal e
onomi
 surplus, and is the problem the so
ial planner wants to solve: 
ontrolling the
oupling between the distribution of the 
ustomers and the distribution of the sellers, so as tomaximize the total surplus. Welfare theorems suggest that this problem should be related tosome pri
e equilibrium (Walrasian equilibrium) that arises from the pri
e 
ompetition betweenthe sellers. Indeed, the �rst order 
ondition of the dual problem states that µ(Vi) = qi for all

i. Re
all that:
Vi = {x|x · yi − vi ≥ x · yj − vj , ∀j}In other words, the set Vi is the set of 
ustomers whose net surplus is maximum when theybuy from seller i: this is in some way the basin of attra
tion of the seller i. Hen
e, µ(Vi)is the proportion of 
ustomers buying from the i-th seller. The dual problem amounts toadjusting the pri
es vi so that the proportion µ(Vi) equals qi, the o�er supplied by the i-thseller, that is equalizing supply and demand. Thus the dual problem 
onsists in adjusting thepri
es so that the equilibrium between supply and demand is attained. Therefore, market
learing is equivalent to maximizing total surplus. Finally, remark that the gradient-des
entalgorithm proposed below implements the Walrasian au
tion pro
ess: sellers that sell theirwhole produ
tion raise their pri
es, redu
ing the size of their basin of attra
tion, while thosewho fail at selling their entire o�er lower their pri
es, in
reasing their basin of attra
tion. Thepro
ess repeats until the market 
lears (possibly within an in�nite amount of time).1.4 Approximating the 
ontinuous 
aseThe solution to the problem in the 
ontinuous 
ase draws upon the previous results by dis-
retization of the target measure: let νN be any sequen
e of dis
rete probability measures22
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onverging in law to ν. For ea
h N , there exists a solution ∇ϕN to the optimal transportproblem between µ and νN . The problem of interest is to give su�
ient 
onditions that ensurethe 
onvergen
e of the sequen
e ∇ϕN to ∇ϕ and that justify the two steps approa
h `dis
retizethe target measure and take limits'.Convergen
e in measure in L2 A �rst result 
on
erning the 
onvergen
e of the optimaltransport map is given in [24℄ Corollary 5.23:For all ε > 0, µ{x : |∇ϕN (x)−∇ϕ(x)| > ε} → 0i.e. the 
onvergen
e in measure of ∇ϕN to ∇ϕ with respe
t to µ. This result holds underfairly general assumptions on µ and ν (
ompa
tness is not ne
essary). However, this resultdoes not tell anything about the possible pointwise 
onvergen
e of ϕN or its gradient, but theexisten
e of a subsequen
e ∇ϕNj (X) that 
onverges almost surely to ∇ϕ(X) as j → +∞. Asimilar result holds for the optimal transport plans πn when both initial and target measuresare approximated by sequen
es of dis
rete measures as proved in the �rst volume of [18℄.Pointwise 
onvergen
e A stronger form of 
onvergen
e 
an be proved under additionalhypothesis. Pointwise 
onvergen
e results are less known, see for instan
e an arti
le by Villani[23℄. The proof proposed below is adapted from this arti
le to our simpler setting. This prooffollows the strategy of �nding a uniformly 
onverging subsequen
e of ϕN , and proving thatany su
h subsequen
e 
onverges to the optimal transport map. The existen
e of a 
onvergingsubsequen
e relies is ensured by As
oli's theorem. In order to invoke this theorem we have tomake sure that the sequen
e {ϕk} in C(suppµ) is uniformly bounded. However in our settingwhere µ and ν have a 
ompa
t support, this is an easy lemma, proved in appendix 1.7.1.Lemma 1 The sequen
e of ve
tors {vN} are uniformly bounded, as well as the sequen
e {ϕN}.As a 
onsequen
e of As
oli theorem (see appendix 2):Lemma 2 There exists a subsequen
e {ϕk′} whi
h 
onverges in C(suppµ).The 
onvergen
e is proved under the following hypothesis (H)1. µ and ν have 
ompa
t and 
onvex support.2. They do not give mass to small sets.3. µ is absolutely 
ontinuous with respe
t to the Lebesgue measure λ and dµ
dλ > 0 almosteverywhere on the support of µ.As we will see, the limits of the 
onverging subsequen
es are de�ned up to 
onstant. To �xthings, every ϕk is supposed w.l.o.g to be zero at a �xed point x0 in the support of µ.23
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Theorem 1 Under (H), ϕk 
onverges uniformly to a 
onvex fun
tion whose gradient (de�nedalmost everywhere) is the optimal transport map.In the following proof, the value of the fun
tions outside the supports of µ or ν is not important.However, they must be de�ned everywhere (and possibly 
onvex), and this is done by givingthem the value +∞ outside these supports.Proof: The proof 
onsists in proving �rst that every 
onverging subsequen
e has a limit whosegradient is the optimal transport map. Then, we show that these fun
tions are equal up toan additive 
onstant, that is zero up to a normalization of ϕN . This 
on
ludes the proof asthe existen
e of a subsequen
e and the uniqueness of the limits of the 
onverging subsequen
eentails the 
onvergen
e of the sequen
e {ϕN}.Let {ϕk′} a subsequen
e of {ϕk}, and ϕ its limit in C(suppµ). Let us prove that the gradientof ϕ is a solution of the optimal transport, i.e. ∇ϕ#µ = ν.The restri
tion of ϕ∗
k to supp ν enjoys the same properties as ϕk: they are uniformly boundedand equi-Lips
hitz. Thus As
oli theorem implies that there exists a subsequen
e still noted

k′ su
h that both ϕk′ tends to ϕ and ϕ∗
k′ tends to a fun
tion (
ontinuous and 
onvex) ψ,respe
tively uniformly over suppµ and supp ν.The quantity ∫

|x|2/2− ϕk′(x)dµ(x) +

∫
|y|2/2− ϕ∗

k′(y)dν(y)tends to ∫suppµ |x|2/2 − ϕ(x)dµ(x) +

∫supp ν |y|2/2− ψ(x)dν(y)by dominated 
onvergen
e. However, the upper expression isW2
2 (µ, νk′) the quadrati
 Wasser-stein distan
e between µ and νk′ . A

ording to the 
ontinuity of the Wasserstein distan
e(Theorem 7.12 in [22℄), W2

2 (µ, νk′) → W2
2 (µ, ν) and thus

∫suppµ |x|2/2− ϕ(x)dµ(x) +

∫supp ν |y|2/2− ψ(x)dν(y) = W2
2 (µ, ν) (1.7)whi
h means that the 
ouple (|x|2/2−ϕ, |y|2/2−ψ) is optimal in the dual Monge-Kantorovi
hproblem. However, the solution of the dual problem is not ne
essarily unique, and we have toprove that ψ = ϕ∗ in order to 
on
lude.It is su�
ient to prove that ψ = ϕ∗ on supp ν. As ϕk′(x) +ϕ∗

k′(y) ≥ x · y, taking limits yields
ϕ(x) + ψ(y) ≥ x · y, ∀x ∈ suppµ, ∀y ∈ supp ν (1.8)As ϕ is in�nite outside suppµ, ϕ∗(y) = supx∈suppµ[x · y − ϕ(x)] and (1.8) implies that

ψ ≥ ϕ∗ on supp ν (1.9)24
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If there exists y ∈ Int(supp ν) su
h that ψ(y) > ϕ∗(y), the 
ontinuity of ψ and ϕ∗ on supp νimplies that there exists a ball B ⊂ supp ν over whi
h ψ − ϕ∗ ≥ ε > 0. So,
∫
ϕdµ +

∫
ψdν ≥

∫
ϕdµ +

∫
ϕ∗dν + ν(B)ε

>

∫
ϕdµ +

∫
ϕ∗dν

≥ inf
ϕ∈L1(dµ)

∫
ϕdµ +

∫
ϕ∗dν

(1.10)
However,

sup
(ϕ,ψ)∈L1(dµ)×L1(dν)

∫
ϕdµ +

∫
ψdν =

∫ |x|
2
dµ+

∫ |y|
2
dν

︸ ︷︷ ︸
=M2

− inf
ϕ∈L1(dµ)

∫
ϕdµ+

∫
ϕ∗dνBut we know a

ording to (1.7) thatM2−

∫
ϕdµ+

∫
ψdν is a solution of the Monge-Kantorovi
hproblem. Hen
e (1.10) is a 
ontradi
tion and ψ ≤ ϕ∗, on Int(supp ν). This holds on

Int(supp ν) by 
ontinuity. The 
onvexity of supp ν implies that Int(supp ν) = supp ν (a
-
ording to the `A

essibility Lemma', see [6℄).As a 
onsequen
e, every 
onverging subsequen
e has a limit whose gradient is the optimaltransport map. This map is unique µ a.e and as µ is supposed absolutely 
ontinuous withrespe
t to the Lebesgue measure with an almost everywhere positive density, it is uniquealmost everywhere on suppµ. This is su�
ient to ensure that the limits of the 
onvergingsubsequen
e are de�ned up to a 
onstant. �So far, we have seen 
onvergen
e results for the Kantorovit
h potential. This implies 
onver-gen
e of the optimal transport maps ∇ϕN in the 
ase where the limit Kantorovit
h potential ϕis regular enough, as pointed out by Villani [23℄. Without entering into the details of the Caf-farelli's regularity theory (see Th. 4.14 [22℄ or Th. 12.50 [24℄), if both supports are 
onvex andregular enough and that µ and ν are absolutely 
ontinuous with respe
t to the Lebesgue mea-sure with smooth and lo
ally bounded from below densities, then the Kantorovit
h potentialis regular. If it is C1, we haveLemma 3 (re
alled in [23℄) Let ϕ be a 
onvex fun
tion in C1(Rn,R) and ϕk a sequen
e of
onvex fun
tions 
onverging pointwise to ϕ on R
n. Then if C ⊂ R

n is an open 
onvex set onwhi
h ϕ is �nite, then ∂ϕk 
onverge to ∂ϕ lo
ally uniformly on the 
ompa
t subsets of C inthe sense that
∀S 
ompa
t subset of C, ||d(∂ϕk(·),∇ϕ(·))||+∞, S −→

k→+∞
025

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



where d is the Eu
lidean distan
e between a set and a point and ∂ϕ(x) denotes the subdi�er-ential of ϕ at point x.In other words, not only does ϕN 
onverge lo
ally uniformly to ϕ, but the subdi�erential ∂ϕN
onverges uniformly on the 
ompa
ts of suppµ to the optimal transport map.1.5 Numeri
al ExperimentsWe �rst des
ribe how is 
hosen the dis
retization of the target measures. A des
ription ofthe algorithms is then provided and examples allows for a 
omparison of their respe
tiveperforman
es.1.5.1 Dis
retization of νWe have not imposed any restri
tion so far as to the form of the approximating sequen
e νkex
ept that it must 
onverge in distribution to ν, and the above results hold for any su
hsequen
e.The purpose of optimal quadrati
 quantization 
onsists in �nding a dis
rete probability νNwith N atoms that is 
loser among su
h measures to a given probability ν, with respe
t to thequadrati
 Wasserstein distan
e . In other words, if PN is the set of dis
rete measures with Natoms, then an optimal quadrati
 N-quantizer νN is a measure that solves
min
Q∈PN

W2
2 (ν,Q) = min

Q∈PN

inf
π∈Π(Q,ν)

Eπ(|X − Y |2)It 
an be shown that su
h a measure takes the form νN (x) =
∑N

i=1 ν(Ci(x))δxi where x =

(x1, . . . , xN ) ∈ (Rn)N is 
alled an optimal quadrati
 quantizer , and
C(xi) = {x; |x− xi| ≤ |x− xj |, j = 1, . . . , N}are the Voronoï 
ells asso
iated to x.The dis
retization νN 
onverges indeed to ν as implied by the following theorem (whose proofas well as an extensive exposition of the theory 
an be found in [21℄):Theorem 2 (Graf-Lus
hgy) If ν has a �nite moment of order stri
tly above 2, then

W2(ν, νN (x)) ∼
N→∞

Cn,ν

N2/nfor some 
onstant Cn,ν whi
h depends on n and ν.Thus to use su
h an approximation we need two things: an optimal N-quantizer (x1, . . . , xN ) ∈
R
n and the weights of the Voronoï 
ells ν(C(xi)). The advantage of this approximation is 
anbe 
omputed on
e and for all for a given ν. 26
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Figure 1.1: Left: optimal quantization of the uniform law on the square [0, 1]2. Right: optimalquantization of the bivariate normal law. This latter (as well as the optimal quantization gridof the normal law used in what follows) is taken from G.Pagés and J. Printems website [17℄.1.5.2 The algorithmsWe make the distin
tion between two 
lasses of algorithms solving the transport problem. Onthe one hand, the algorithms that use the dis
retization of the original measure µ to redu
e theproblem to a linear programming problem or that use a very spe
i�
 form of the dis
retization(for instan
e with equally weighted atoms) su
h as the au
tion algorithm. On the other hand,the minimization problem (3.16) does not impose a dis
retization of the initial measure. Forinstan
e, when µ is an uniform measure on a bounded polytope, it is not ne
essary to performa dis
retization of µ to obtain a numeri
al solution. Furthermore, even if dis
retization ofthe target measure is 
hosen, it 
an take various forms: equally weighted atoms or not, samenumber of atoms as in the dis
retization of ν or not.Continuous to dis
rete 
aseThe dual problem formulation (3.16) is a 
onvex optimization problem. As su
h it is naturalto try a Newton-type algorithm that updates the pri
es iteratively a

ording to:
vi+1 = vi − tiH

−1
i ∇vF(vi) (1.11)where Hi is an approximation of the Hessian of F at vi. The gradient of F is given by

∇vF(v) = q −




µ(V1(v))...
µ(VN (v))


 (1.12)

27
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Des
ent algorithms The BFGS (Broyd, Flet
her, Goldfarb and Shanno) algorithm pro-vided by the Optimization Toolbox in MATLABr R14 (2005) is used. It falls into the broader
ategory of quasi-Newton methods that aim at using the 
urvature of the obje
tive fun
tion.It provides is a sequen
e Bk of semide�nite positive matri
es that hopefully provides a goodapproximation of the inverse of the Hessian H−1
k after a few steps and 
onverges to the trueHessian inverse at the optimum, see [16℄. B0 
an be set arbitrarily (it is the identity matrixin what follows) and a line-sear
h is performed to determine the best step αk.Evaluation of the mass µ(Vi) This is the 
ru
ial point, and the most time 
onsuming.When µ is a uniform law, it amounts to 
ompute the volume of Vi; if suppµ is a polytope, sois Vi and triangulation te
hniques 
an be used to 
ompute this volume a

urately. Howeverwhen the law µ di�ers from the uniform law, a dis
retization of µ is used.Initial guess Finally, a 
ru
ial parameter in des
ent algorithm is the starting point. Anheuristi
s 
onsists in remarking that when linearizing the optimal transport (in the 
ase where

µ and ν are 
lose), the order zero term is |x|2/2. As ϕ∗
v(yj) = vj , it is sensible to start from

vj = |yj|2/2 =
( |·|2

2

)∗
(yj), although it 
an be suboptimal in many situations. This 
hoi
eamounts to taking the initial Vi(v0) as the Voronoi 
ells asso
iated to (yi)1≤i≤N .Dis
rete µIn this se
tion, µ is the dis
rete distribution∑i piδxi . We tested three quite distin
t solutions.Linear programming methods The primal problem writes:

min
∀ i,j ϕi+ψj≥xi·yj

N∑

i=1

piϕi +

N∑

j=1

qjψjThis is a linear programming problem: the obje
tive is linear, as well as the inequality 
on-straints. Two standard algorithms are at our disposal, the 
ommon simplex algorithm, andprimal-dual methods, also known as interior point methods. This last algorithm shall haveour preferen
e, as it is known to perform better than the simplex on large-s
ale problems. Itis 
losely related to un
onstrained linear programming with log-barrier penalization (see [16℄).The set of 
onstraints in this parti
ular problem is huge: if there are N atoms, the number of
onstraints is N2. As we will see, this feature ruins the performan
e of both algorithms whenthe number of points in
reases.
28
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The au
tion algorithm This popular algorithm has been proposed by Bertsekas , see forinstan
e the survey paper [4℄. It solves the dual problem :
min
v∈RN





N∑

i=1

max
j=1,..., N

[xi · yj − vj] +

N∑

j=1

vj



 (1.13)This problem is the dis
rete version of the problem (3.16), in the 
ase where µ and ν are bothequally distributed dis
rete measures: this is the 
lassi
 assignment problem . In a few words,the algorithm pro
eeds as follows. A set of N 
ustomers is to be assigned to N obje
ts, in aone-to-one mapping. Ea
h 
ustomer starts unassigned. Then ea
h unassigned 
ustomer, saythe i-th one, bids for the obje
t ji that maximizes its net surplus si = maxj(xi · yj − vj), his`best obje
t'. His bid is su
h that he be
omes indi�erent between this best obje
t and these
ond best obje
t j′i (the obje
t that maximizes wi = maxj 6=ji(xi · yj − vj)): he is willingto in
rease the pri
e of ji by the bidding in
rement si − wi. On
e every unassigned bidderhas made a bid, ea
h obje
t j is assigned to the bidder that has proposed the highest biddingin
rement for j. The person, if any, that was assigned to this obje
t be
omes unassigned andthe pri
e of obje
t j rises by the highest bid. The pro
ess is repeated until everyone be
omesassigned.This would work �ne if there were not pri
es war: when there is a group of obje
ts thato�ers the same net surplus for some 
ustomer, the bidding in
rement may be zero. This 
anbe the 
ase for several 
ustomers that 
ompete for equally desirable obje
ts without raisingtheir pri
es. Su
h 
y
les are broken by assuming that the bidding in
rements are repla
ed by

si − wi + ǫ, ǫ > 0, imposing a minimum in
rease of the pri
e of a desired obje
t by ǫ. This
ondition ensures that the algorithm ends and that the pri
es are within Nǫ to be optimal.The pro
edure be
omes: for a given ǫ, unassign everyone and perform the au
tion pro
edureuntil everyone is assigned. Then lower ǫ and perform the au
tion pro
ess, starting with thepri
es that were found with the previous value of ǫ. Eventually, stop when ǫ falls below somethreshold.This algorithm is fast, in prin
iple: the time 
omplexity, for a given ǫ is
O(N2log(N.maxi,j |xi · yj|/ε)), when the surplus matrix (xi · yj)i,j is integer. In this 
ase,the threshold for ǫ is �xed at 1/N , be
ause pri
es will then be within Nǫ < 1 optimal, andthen optimal be
ause they are integer. This problem is over
ome by a proper s
aling: both
xi and yj are multiplied by an integer and then �oored. The solution v is then multiplied bythe same integer thus giving an approximate solution of the initial problem.An important remark is that this algorithm 
onverges very well when the surplus matrix issparse, but is less e�
ient with dense matri
es, whi
h is systemati
ally the 
ase in the follow-ing. The theoreti
al overall 
omplexity (in
luding the repeated ǫ-s
aling) in the worst-
ase is
O(N3 log(N.maxi,j |xi · yj|)).The algorithm tested here is the so-
alled forward au
tion algorithm (see [4℄), with the integer29
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s
aling des
ribed above; ǫ is set at 1 at the beginning, the ǫ-s
aling is 
hosen as the redu
tionby one fourth at ea
h iteration, and the terminal 
ondition is ǫ ≤ 1/N .The idea behind the appli
ation of this algorithm is that although is does not exa
tly solvethe problem we are interested in, its fastness makes it appealing 
ombined to a Monte-Carloapproa
h. Namely, instead of using a `
lever' dis
retization of the measures su
h as determinedby the quantization, they 
ould be dis
retized as a sum of a large number of equally weightedatoms and the au
tion algorithm would perform the assignment on this set of atoms.Simulated Annealing and the Iterative Proportional Fitting Pro
edure Simulatedannealing 
onsists in introdu
ing an entropi
 perturbation in the primal problem, yielding arelaxed version of the problem :
πT ∈ argmax

π̃∈Π(µ,ν)
{Eπ̃(X · Y ) + TEnt(π̃)} (1.14)As µ and ν are both dis
rete here, the entropy is de�ned as −∑i,j πij log πij . T is a temper-ature parameter, and as T goes to zero, the entropy penalization vanish and the probability

πT be
omes an approximate for the optimal 
oupling that solves
π ∈ argmax

π̃∈Π(µ,ν)
Eπ̃(X · Y )Let π0T ∝ ex·y be a probability density. Then is is straightforward to see that the relaxedproblem (1.14) is equivalent to the problem

min
π∈Π(µ,ν)

DKL(π|π0T ), where DKL(π|π0T ) = Eπ

(
log
( π(X,Y )

π0T (X,Y )

))

DKL is 
alled the Kullba
k-Leibler divergen
e . Thus the relaxed problem amounts to `proje
t'(in a broad sense, as DKL is not a distan
e) π0T onto the set Π(µ, ν) with respe
t to theKullba
k-Leibler divergen
e. It 
an be shown, and a detailed proof is given in [19℄, that thesolution πT has the following log-likelihood: log πT (x, y) =
x′y
T + aT (x) + bT (y), a ∈ L1(dµ),

b ∈ L1(dν).The IPFP algorithm, also known as Deming and Stefan algorithm is the alternative proje
tionalgorithm applied to the previous proje
tion problem. It 
onsists in alternatively proje
ting
π0T on the set Π(µ) of probabilities on R

n × R
n whose �rst N-dimensional marginals are µand Π(ν), the set of probabilities whose se
ond N-dimensional marginal are ν. This providesa sequen
e πn, su
h that π2n ∈ Π(µ), π2n+1 ∈ Π(ν) and πn → πT ∈ Π(µ) ∩ Π(ν) = Π(µ, ν),in total variation. The algorithm 
onsists in alternatively modifying aT and bT so that π2n ∈

Π(µ) ∝ e
x′y
T

+anT (x)+bnT (y) and π2n+1 ∈ Π(ν) ∝ e
x′y
T

+an+1
T (x)+bnT (y)

30
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If we let (p1, . . . , pN )′ be the atoms of µ and (q1, . . . , qM )′ the atoms of ν, the iteration writes:




eb
n+1
T (yj) =

qj
∑

i π
0
T (xi,yj)e

an
T
(xi)

ea
n+1
T (xi) = pi

∑
j π

0
T (xi,yj)e

b
n+1
T

(yj)with b0T = a0T ≡ 0. Eventually, T.b(yj) approximates vj as T → 0. On this latter fa
t, we referto an arti
le by Kosowski and Yuille [12℄ that relates the IPFP to Sinkhorn theorem and tothe Iterative S
aling Algorithm. We should emphasize the fa
t that, 
ontrary to the au
tionalgorithm, IPFP is meant to work with distributions µ and ν that do not ne
essarily havethe same type of atoms (for instan
e, they are not ne
essarily equally weighted sums of Dira
distributions).1.5.3 ExamplesWe have tested our algorithm on three examples in dimension 2. These examples are presentedas a proof of 
on
ept, in so far as the theoreti
al optimal transport map is obvious in ea
h
ase as they all involve a simple transformation of the marginals.1. The transport is between two uniform distributions and 
onsists in a translation: µ =

U[−6,−2]2 , ν = U[−2,2]2 . The optimal transport map is ∇ϕ(x) = x + 41 i.e ϕ(x) =

|x|2/2 + 41′x+ cst. We use a 
ube quantizer:
(−2 + 4 (2i−1)

2N ,−2 + 4 (2j−1)
2N )1≤i,j≤N .2. Departing from the theoreti
al framework des
ribed above, we investigate the 
ase ofa non 
ompa
tly supported target measure. µ is the uniform law on the unit squarewhile ν is the bivariate normal law. As the initial and target measures are the laws ofindependent variables, the optimal transport map is obtained a s
aling of the marginals:

∇ϕ(x) = (Φ−1(x1),Φ
−1(x2)).3. Dilatation of normal distribution : µ = N (0, Id) and ν = N (0, 2Id): ∇ϕ(x) = √

2x i.e ϕ(x) =
1√
2
|x|2 + cst.Optimal quantization grids (yi)i=1,...,N for the normal law N (0, Id) are those providedby [17℄.1.5.4 ResultsThe following numeri
al results were 
omputed with Matlab 7.5 running on a Xeon CPU � 3Ghz. We detail the results obtained for ea
h example, while putting the emphasis on the �rstone.

31
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Uniform 
aseNumeri
al results for the �rst example are given in appendix 1.7.2. Before entering the detailsof ea
h algorithm, we give here the 
on
lusions as to the best performing methods in this 
ase.Our experiments rule out the linear programming algorithms, that proved very 
ostly. TheIPFP algorithm is fast, even 
ompared to the au
tion algorithm, but generates a numeri
alerror that does not vanish on the boundary of the support of µ, and therefore is retained as awarm point provider for the des
ent algorithms. The au
tion algorithm is also fast (
omparedto the des
ent algorithm for a �xed number of points of the dis
retization of ν) but yieldshigher numeri
al error than the des
ent algorithm for 
omparable 
omputing time. Eventually,the des
ent algorithm that uses the quantization of the initial measure su�ers the drawba
kof providing a numeri
al error that is not a de
reasing fun
tion of the number of points ofthe quantization grids. This feature is even more pronoun
ed than in the 
ase of the au
tionalgorithm.Our 
on
lusion is that the BFGS algorithm 
oupled with a warm point provided by IPFP andan a

urate 
omputation of the volume of the 
ells Vi should be 
hosen, as it is faster thanthe au
tion algorithm.Exa
t Des
ent In the uniform 
ase we use the Multiparametri
 Toolbox [14℄ whi
h allowsfor polytopes manipulation. In parti
ular, µ(Vi) = vol(Vi)
vol(suppµ) is 
omputed with this toolbox.We 
all this method exa
t des
ent as it uses the BFGS algorithm to determine the des
entdire
tion and be
ause the volume of the polytopes Vi is 
omputed by triangulation te
hniquesvia the MPT Toolbox and does not rely on a dis
retization of the initial measure. Table1.2 sums up the results in the uniform 
ase. It 
ontains the number of points used in thequantization of U[−2,2]2 , the 
omputation time and the numeri
al error. This latter is de�nedas

sup
0≤i, j≤100

∣∣∣ϕtheory( i

100
,
j

100

)
− ϕnum( i

100
,
j

100

)∣∣∣Au
tion and IPFP Algorithm We use a regular grid2 to dis
retize the uniform law both inthe au
tion and IPFP algorithm. Table 1.4 shows it is extremely fast 
ompared to the gradientalgorithm for a �xed number of points. However, the exa
t des
ent is more e�
ient, as for
omparable 
omputation times, it yields a better numeri
al error. The IPFP is even fasterthan the au
tion algorithm (see table 1.5). However, when the number of points in
reases, theerror does not ne
essarily de
rease: it remains high on the boundary of the domain, and doesnot de
rease even when the size of both dis
retizations of µ and ν in
reases. This is likely dueto the fa
t that this algorithm fails at 
onverging when the temperature 
omes 
lose to zero.This is why this algorithm is also used as a provider of a warm point for the des
ent algorithm2whi
h is a near from the optimal quantizer of the uniform law on the unit square.32
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Figure 1.2: Numeri
al error: it is minimal on ∇ϕ−1(yi) where {yi}1≤i≤N is the regular gridthat quantizes the target measure U[−2,2]2 .rather than used per se.Quantization The quantization is used here to repla
e the evaluation of the expe
ted value
E(ϕv(X)) and of the 
ell volume µ(Vj) by their dis
retized 
ounterparts ∑N

i=1 piϕv(xi) and∑N
i=1 pi1Vj (xi). Table 1.6 shows the results when the initial measure has 10000 atoms whilethe number of atoms of the target measure varies. It suggests that this method is able toa
hieve an error that is 
omparable to the exa
t des
ent, with a time 
omplexity that has thesame order of magnitude. However, unlike to the exa
t des
ent, both the 
omputation timeand the numeri
al error are not de
reasing fun
tions of the number of points, whi
h makesit di�
ult to imply the a
tual time 
omplexity and speed of 
onvergen
e of this method.Experiments show that for a �xed number of points, the error 
an be lessened at the expenseof re�ning the quantization grid of the initial measure. Yet, our experiments in this 
ase donot suggest that this method should be preferred to the au
tion algorithm, and even less tothe exa
t des
ent. This points out that when performing a des
ent method, the a

urate
omputation of the gradient 
riti
ally impa
ts the output of the algorithm.Linear programming algorithms As said previously, the number of 
onstraints in
reasesvery rapidly: for a grid of size N (i.e. N2 points) on the square inR

2, there are N4 
onstraints.Pra
ti
ally, this makes the algorithm totally ine�
ient as soon as N ≥ 8 in dimension 2.Experiments show that the simplex algorithm is ruled out, even for a small number of points,as it is very slow. The interior point method is more e�
ient, but very slow too. Furthermore33
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memory restri
tions prevent from setting a number of points above 100 in dimension 2 due tothe in
reasing number of 
onstraints with N . Nevertheless, this algorithm provides a solutionthat has the same quality in terms of error than the one provided by the exa
t des
ent, butits time 
omplexity is worse than the exa
t des
ent.Table 1.1: Interior Point Algorithm, uniform 
asePoints number CPU Time Error25 1.202 0.160236 5.806 0.111149 33.564 0.081664 285.358 0.062481 1038.1 0.0494Des
ents algorithm 
ombined with a warm point As every des
ent algorithm, theperforman
e of the implemented BFGS pro
edure (the exa
t des
ent, or the quantization) is
riti
ally impa
ted by the quality of the starting point. Although some justi�
ations are givenabove to 
hoose a spe
i�
 starting point, there is no insuran
e as to its `optimality' in the 
asewhere µ and ν are not 
lose. A starting point that works very well, i.e. a �warm point�, isprovided by running the au
tion algorithm or IPFP prior to run a des
ent algorithm. Figure1.3 and table 1.3 show that a warm point speeds up 
onsistently the 
onvergen
e of the BFGSpro
edure (without improving the time-
omplexity yet, it just s
ales down the CPU time).Uniform measure to normal measureExa
t des
ent 
an be still used, as the initial measure is uniform on the square, and we fo
uson this sole method. This 
ase is not 
overed by our theoreti
al framework yet, as the targetmeasure is not 
ompa
t. Nevertheless, our experiments suggest that the same 
on
lusionsas for the �rst example hold. Figure 1.4 provides a 
omparison of the error a
hieved for a�xed number of points N , when the target measure is either optimally quantized or eitherapproximated by a weighted sum of equally-weighted Dira
 masses. The gain o�ered byquantization is obvious, as for a time 
omplexity that is roughly 
omparable the numeri
alerror is lower when using quantization.Dilatation of a bivariate normal variableA third type of example is investigated: it 
onsists in the 
omputation of the transport mapbetween the standard bivariate normal law and a bivariate normal law with 
ovarian
e matrix
2.Id, so that both measures are not 
ompa
tly supported anymore.This is also the �rst 
ase where the exa
t des
ent algorithm, that 
omputes the volume of the
Vi by triangulation 
an not be applied, as the initial measure is not the uniform one. The34
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Figure 1.3: CPU time in se
onds (log-s
ale) as a fun
tion of the number N of points for the exa
t des
entalgorithm applied to example 1. The 
urve with plus signs 
orresponds to no warm point; the 
urve with
ir
les 
orresponds to an IPFP warm point (1000 points of dis
retization)au
tion algorithm applied to a random dis
retization of both laws is 
ompared to the des
entalgorithm using a 1000 points optimal quantization for the initial measure, 
oupled with IPFPas a warm point. The results are summarized in table 1.8 3. The 
on
lusion remain similar tothose drawn from the previous examples: IPFP is fast but generates error on the boundarythat does not vanish when the dis
retization grid is re�ned.The au
tion algorithm seems to be of less interest than the des
ent method, as it fails toprovide an error below 10−1, even with distributions that have more than 2000 atoms. Yet,it must be remarked that although the biggest quantization grid that we used to quantize theinitial measure has 1000 points, this is not su�
ient to obtain an uniform error that is below
10−2 with the des
ent algorithm.A solution to this problem 
ould be to implement an a

urate method to 
ompute the mass(here for the normal measure) of polytopes in order to apply the same te
hnique as in theuniform 
ase. In view of the result of the previous se
tions, it seems that non 
ompa
tness isnot su
h a big impediment to this method as is the need for an a

urate 
omputation of theobje
tive fun
tion and its gradient.3The de�nition of the numeri
al error must be adapted as the support is the whole plane. We use the fa
tthat the bivariate standard normal law gives to the square Sα = [−q1−α/2, q1−α/2]

2 a mass at least equal to
1− 2α. α is set a t5% so that S5% ≈ [−1.96, 1.96]2. The numeri
al error is then de�ned as supG⊂S2.5%

|ϕopt −
ϕnum| where G is a regular grid with 100× 100 points on the square S2.5%.35
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Figure 1.4: Example 2. Curve with 
ir
les: error as a fun
tion of the number of points N ofthe exa
t des
ent with quantization of the initial measure. Curve with 
rosses: error with arandom dis
retization of the bivariate normal law.1.5.5 Complexity and order of 
onvergen
e in the planar 
aseFigure 1.6 displays the time 
omplexity of the exa
t des
ent method for the two �rst examples.Experiments suggest that the 
omplexity is O(N5/2), at least in the 
ase where the initialmeasure is uniform on the unit square. This is to be 
ompared to the algorithm proposedin [3℄, that involves O(N log(N)) operation at ea
h iteration (but the number of iterationsrequired for 
onvergen
e is unknown). Re
all the des
ent algorithm use a BFGS update, sothat ea
h step involves O(N2) operations; thus the 
omplexity of this algorithm is ne
essarilybounded below by O(N2). Figure 1.7 displays the numeri
al error as a fun
tion of the numberof points. Both examples suggest that the 
onvergen
e has a rate of O(1/
√
N).1.5.6 Convergen
e in higher dimensionIn higher dimension, although the prin
iple of the algorithm is still valid, the exa
t des
ent 
anbe
ome 
ostly. Indeed, its 
omplexity is driven by the speed at whi
h Delaunay triangulationsare 
omputed. In dimension 2, these are done at a 
ost O(N log(N)). As there are N 
ells,the gross 
omputational 
ost of a single evaluation of the fun
tion F should be O(N2 log(N)).In dimension d > 2, algorithms run at the worst 
omplexity O(N ⌈ d

2
⌉+1)4. Hen
e, the time
omplexity of the exa
t des
ent is exponential with respe
t to the dimension.4see for instan
e the DeWall algorithm, a divide and 
onquer algorithm presented in [8℄36
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The au
tion algorithm seems at �rst sight less sensitive to the dimension. However, as sug-gested by the rate of 
onvergen
e of the optimal quantization (
.f. theorem 2), when thedimension in
reases, the number of atoms that intervene in the optimal dis
retization of a
ontinuous law of probability in
reases at an exponential rate. Thus, the 
urse of dimension-ality is not over
ome by any of the algorithms we tested.1.6 Con
lusionThis 
hapter showed both theoreti
ally and empiri
ally that the approximation of the optimaltransport map 
an be done by �rst dis
retizing the target measure and then performing ades
ent algorithm. In parti
ular in dimension 2 when the initial measure is uniform over abounded polytope, this algorithm performs well 
ompared to the au
tion algorithm. Thismethod also bene�ts from the freedom left on the form of the dis
retization: we 
hose it `op-timal', in the sense of L2 optimal quantization.The same algorithm works when the dimension in
reases although the 
omplexity is exponen-tial with respe
t to the dimension. When the initial measure is not uniform over a polytope,it 
an be dis
retized. Yet we should emphasize that the performan
e of the des
ent algorithmsu�ers from su
h an approximation; this method best works when we have a means to 
omputea

urately the mass of polytopes with respe
t to the initial measure.

37
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Figure 1.5: Se
ond example: the 
omputed Kantorovit
h potential with a quantization gridof the normal law of size 100. The polytopes Vi appears on the surfa
e plot.

Figure 1.6: N is the number of points in the grid. Left: Example 1. Solid line is the 
urve N5/2, the dashedline is the 
omputed 
omplexity. Right: the same for the se
ond example
38
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Figure 1.7: Left: Example 1. Right: Example 2. In both 
ases, the solid line is the 
urve 1/
√
N and thedashed line the 
omputed error.
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1.7 Appendix1.7.1 Proofs of various resultsProof of proposition 2It 
onsists in verifying the de�nition of a 
onvex fun
tion. Let v and v′ be inR
N , and t ∈ [0, 1].For all x ∈ R

n,
(1− t)ϕv(x) + tϕv′(x) = (1− t)max

i
[x · yi − vi]) + tmax

i
[x · yi − v′i])

≥ (1− t)(x · yi − vi) + t(x · yi − v′i), for all i
= x · yi − ((1− t)vi + tv′i)Thus, for every x, (1 − t)ϕv(x) + tϕv′(x) ≥ maxi[x · yi − ((1 − t)vi + tv′i)] = ϕ(1−t)v+tv′ (x).The 
onvexity follows by taking the expe
ted value.The fun
tion is bounded below: let v ∈ R

n and ṽ = v − vi01 where i0 ∈ argmini vi so that ṽhas nonnegative 
omponents and mini ṽi = 0.
F(v) = F(ṽ) =

∫
ϕv(x)dµ(x) + q′v ≥ yi0 ·

∫
xdµ− ṽi0︸︷︷︸

=0

+ q′ṽ︸︷︷︸
≥0

≥ −(max
j

|yj|)|E(X)|The less obvious point that remains to prove is a
tually the smoothness of F and the formof its gradient, although the formula is easily found formally. We prove the existen
e and the
ontinuity of the dire
tional derivatives with respe
t to the 
anoni
al basis ej, j = 1, . . . , N ofthe fun
tion v 7→
∫
ϕv(x)dµ(x). First, for a given x, limt↓0

ϕv+tej
(x)−ϕv(x)

t exists is equal to
−1Vi(x), by an appli
ation of the envelope theorem, see prop 2.3.2 in [6℄.As, for all x, |ϕv+tej (x)− ϕv(x)| ≤ |t|, the fra
tion ϕv+tej

(x)−ϕv(x)

t is uniformly bounded withrespe
t to t, and one 
an invert limit and integral. The same applies to limt↑0
ϕv+tej (x)−ϕv(x)

t ,ex
ept that it is equal to −1Int(Vj)(x) and therefore,
lim
t↑0

∫
ϕv+tej (x)− ϕv(x)

t
dµ(x) = −µ(Int(Vi))However, as ∂Vi has Lebesgue measure zero, and µ is supposed to not 
harge small sets, thisequals µ(Vi). Eventually, E(ϕv(X)) has partial derivatives with respe
t to vi for all i, viz.

v 7→ µ(Vi(v)) whi
h are 
ontinuous fun
tions.�Proof of lemma 1First, every vki 
an be 
hosen nonnegative as (vki )1≤k≤Nk
is de�ned up to a multiple of (1, . . . , 1).For example one 
an impose for all k, mini=1...k v

k
i = 0. For ea
h k and 1 ≤ i ≤ k, let xi,kbe in V k

i (su
h a point exists as µ(V k
i ) = qk > 0). Moreover, let jk su
h that vkjk = 0. The42
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de�nition of xi,k being in V k
i implies:

xi,k · yki − vki ≥ xi,k · ykjkwhi
h gives
vki ≤ xi,k · (yki − ykjk) ≤ supsuppµ |x|.diam(suppν) < +∞Proof of lemma 2We show that {ϕk} satis�es the requirements of the As
oli theorem, namely that it is pointwisebounded and equi
ontinuous. It is pointwise bounded, as the sequen
e is uniformly boundedon suppµ. The equi
ontinuity results from the fa
t that this sequen
e is equi-Lips
hitz, i.e.ea
h ϕ is Lips
hitz with a Lips
hitz 
onstant that does not depend on k. Indeed, if x, x′belong to suppµ, and x 6= x′:
ϕk(x)− ϕk(x

′) = max
i

(x · yki − vki )−max
i

(x′ · yki − vki )

= x · yki(x) − vki(x) −max
i

(x′ · yki − vki )

≤ x · yki(x) − vki(x) − x′ · yki(x) + vki(x)

= (x− x′) · yki(x) ≤ |x− x′| sup
y∈suppν |y|Similarly, ϕk(x)−ϕk(x′) ≥ −|x−x′| supy∈suppν |y|, and 
onsequently |ϕk(x)−ϕk(x′)| ≤ |x−x′|.

43

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



1.7.2 Numeri
al ResultsTable 1.2: Exa
t des
ent, example 1Point Number CPU Time (se
) || · ||+∞ Error25 3.822 0.160064 21.512 0.062481 34.866 0.0494100 55.287 0.0400196 230.428 0.0204225 316.464 0.0178256 457.518 0.0156361 1147 0.0111400 1579 0.0096625 6148.9 0.0065Table 1.3: Exa
t des
ent with IPFP warm point, example 1Point Number CPU Time (se
) || · ||+∞ Error25 0.23 1.60E-0164 1.99 6.24E-0281 3.29 4.94E-02100 4.27 4.00E-02196 15.94 2.04E-02225 23.15 1.78E-02256 29.50 1.56E-02361 80.28 1.11E-02400 100.91 9.60E-03625 368.61 6.40E-03900 1346.20 4.50E-03

44

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Table 1.4: Au
tion algorithm, example 1Point Number CPU Time || · ||+∞ Error25 0.03 1.43E+00100 1.06 5.83E-01225 5.70 3.79E-01625 50.64 9.88E-02900 113.68 5.36E-021225 248.32 6.85E-021600 467.93 3.23E-022025 782.34 3.36E-022500 1288.70 4.78E-023600 3387.00 1.87E-024900 6174.00 1.89E-026400 14834.00 1.97E-02Table 1.5: IPFP algorithm, example 1Point Number CPU Time || · ||+∞ Error25 1.60E-02 1.60E-0181 3.10E-02 4.57E-02100 3.10E-02 4.68E-02169 9.68E-01 3.90E-02196 9.40E-02 3.55E-02225 1.10E-01 1.78E-02256 1.25E-01 3.43E-02289 1.40E-01 2.01E-02400 1.88E-01 3.35E-02625 3.28E-01 2.85E-02900 6.41E-01 3.60E-021024 7.50E-01 3.65E-02Table 1.6: Des
ent algorithm, 10000 points quantization grid for µ, example 1Point Number CPU Time || · ||+∞ Error25 9.38 1.82E-0136 46.10 1.20E-01100 28.48 5.68E-02121 153.97 3.27E-02196 178.94 2.01E-02225 151.72 2.64E-02256 233.61 1.79E-02361 633.99 1.21E-02400 108.86 1.48E-02784 1308.50 5.70E-02900 729.50 6.70E-031024 697.10 9.60E-031225 1133.00 1.36E-0245
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Table 1.7: Exa
t des
ent, example 2Point Number CPU Time || · ||+∞ Error25 2.635 9.82E-0264 8.131 3.72E-0281 12.474 3.10E-02100 18.515 2.61E-02196 58.027 1.52E-02225 69.814 1.43E-02256 109.037 1.26E-02289 132.491 1.31E-02361 207.583 1.01E-02400 230.204 9.70E-03625 712.705 5.70E-03
Table 1.8: Example 3, resultsPoint Number CPU Time Error

Des
ent
25 4,22 5,10E-01100 12.40 1.61E-01200 27.18 6.36E-02300 125.49 9.15E-02400 114.86 8.47E-02500 130.06 5.88E-02600 386.67 4.15E-02700 498.63 6.44E-02800 591.36 4.52E-02900 458.02 6.70E-02

Au
tion 25 0.02 4.13E+00100 0.19 1.15E+00500 4.33 6.64E-011000 33.20 3.74E-012000 153.70 2.29E-012500 357.03 1.24E-013000 352.53 1.37E-015000 840.42 2.43E-01IPFP 25 < 0.01 5.24E-01100 0.02 1.93E-01300 0.06 7.83E-02500 0.17 5.09E-02700 0.27 3.46E-02900 0.36 3.02E-021000 0.41 2.72E-0246
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Chapter 2Extreme dependen
e for multivariatedata 1
Introdu
tionExtreme dependen
e, and the 
losely related notion of 
omonotoni
ity are important 
on
eptsin various �elds. It is 
entral in the e
onomi
s of insuran
e (following the seminal work ofBor
h [3℄ and Arrow [1℄, [2℄), in e
onomi
 theory (see [21℄, [12℄ and [19℄), and in statisti
s (see[5℄, [17℄, [16℄, [22℄).Extreme positive dependen
e between two real random variables (X,Y ) is 
hara
terized by thefa
t that their 
umulative distribution fun
tion should satisfy FX,Y (x, y) = min(FX(x), FY (y)),or equivalently, that their 
opula C should be the upper Fré
het 
opula C(u1, u2) = min(u1, u2).This form of dependen
e o

urs when X and Y are 
omonotone, i.e. when both X and Y
an be written as nonde
reasing fun
tions of a third random variable Z (for instan
e one may
hoose Z = X + Y ). As a 
onsequen
e, 
omonotone variables maximize 
ovarian
e over theset of pairs with �xed marginals:

E(XY ) = sup
X̃∼X
Ỹ∼Y

E(X̃Ỹ ), (2.1)where X̃ ∼ X denotes the equality in distribution between X̃ and X. Similarly, X and Y aresaid to have extreme negative dependen
e when X and −Y have extreme positive dependen
e.Their 
ovarian
e is then minimized instead of maximized, and their 
opula is now the lowerFré
het 
opula C (u, v) = max (u+ v − 1, 0) .The present 
hapter aims at proposing an operational theory of extreme dependen
e in themultivariate 
ase, namely when X and Y are random ve
tors. Our 
ontribution is twofold.1This 
hapter is a joint work with Alfred Gali
hon.47
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First, we shall introdu
e a generalization of the notion of extreme dependen
e to the multi-variate 
ase, and we investigate how extreme positive dependen
e generalizes in this setting.Then we shall apply these ideas in a �nan
ial 
ontext to stress-testing dependen
e, i.e. we shallinvestigate the sensitivity of a portfolio on the strength of dependen
e between two randomve
tors.Generalizing extreme dependen
e. When dealing with the multivariate 
ase, where X and Yare random ve
tors in Rd, there is no 
anoni
al way to generalize this notion of (positive ornegative) extreme dependen
e and Fré
het 
opula. One �rst approa
h, based on the theoryof Optimal Transport (see eg. [20℄) would be to 
onsider the following optimization problem
max
X̃∼X
Ỹ∼Y

E(X̃ · Ỹ ) (2.2)where · is the s
alar produ
t in Rd. This program is a multivariate extension of the 
ovarian
emaximization problem (2.1) and de�nes as extreme the distribution of the pair (X̃, Ỹ ) solutionto the above problem However this does not take into a

ount the 
ross-dependen
e between
Xi and Yj for i 6= j, and therefore seems quite arbitrary for our purposes.A more satisfa
tory generalization is based on the idea that both positive and negative extremedependen
e are obtained by the maximization of a nonzero bilinear form in (X,Y ) over theset of 
ouplings of X and Y (i.e. joint distributions with �xed marginals). That is, 
onsidersolutions of (2.2) where the s
alar produ
t is repla
ed by any nonzero bilinear form. Thiswill be our notion of multivariate extreme dependen
e: random ve
tors X and Y shall exhibitextreme dependen
e if their 
ross-
ovarian
e matrix maximizes the expe
ted value of a nonzerobilinear form over all the 
ouplings of X and Y . These extreme 
oupling are proposed asa generalization of Fré
het (positive and negative) extreme dependen
e in the multivariate
ase. We shall provide a natural geometri
 
hara
terization of this notion by 
onsidering the
ovariogram , that is the set of all 
ross-
ovarian
e matri
es E(XY ′) for all the 
ouplings of Xand Y . Then X and Y have extreme dependen
e if and only if their 
ross-
ovarian
e matrixlies on the boundary of the 
ovariogram.We then turn to generalizing the notion of extreme positive dependen
e. One natural way togeneralize extreme positive dependen
e is to look for the 
ouplings (X̃, Ỹ ) that yield a 
ross-
ovarian
e matrix Cov(X̃, Ỹ ) = E(X̃Ỹ ′) = (E(X̃iỸj))i,j whi
h would be maximal elements fora 
ertain partial (
oni
al) ordering on matri
es. As we shall see, it turns out that under thisde�nition, extreme positive dependen
e implies extreme dependen
e, and we 
an 
hara
terizethe geometri
 lo
us of extreme positive dependent ve
tors on the 
ovariogram.Stress-testing dependen
e. We give a method to asso
iate any 
oupling, for example anyempiri
al 
oupling, with an extreme 
oupling, by means of entropi
 relaxation te
hnique. An48
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algorithm is des
ribed and results 
on
erning its implementation are given. Appli
ations to�nan
ial data are provided, yielding the de�nition of indi
es of maximal 
orrelation as well asa prospe
tive appli
ation to progressive stress-tests of dependen
e.The 
hapter is organized as follows: the �rst se
tion presents the notion of 
ovariogram and thede�nition of 
ouplings with extreme dependen
e dedu
ed thereof, as well a 
hara
terizationof su
h 
ouplings. The se
ond se
tion de�nes 
ouplings with positive extreme dependen
e;a 
hara
terization of these 
ouplings makes the 
onne
tion with the notion of extreme de-penden
e. The third se
tion de�nes an index of dependen
e, the a�nity matrix; a methodto asso
iate any 
oupling with an extreme 
oupling is des
ribed. We 
on
lude with �nan
ialappli
ations, namely stress-testing portfolio allo
ations and options pri
ing, as well as the
omputation of indi
es with extreme dependen
e. All proofs are 
olle
ted in 2.9.Notations, de�nitions. We make the following distin
tion between the univariate 
ase and themultivariate 
ase. We refer to the univariate 
ase when 
onsidering the dependen
e betweenreal valued random variables: this is the subje
t of the theory of 
opulas. In most of this
hapter we 
onsider random ve
tors, and the dependen
e between two random ve
tors; in this
ase we speak of multivariate dependen
e.Let P and Q be two probability laws on RI and RJ , with �nite se
ond order moments. Withoutrestri
ting the generality we assume that P and Q have null �rst moments, so that the se
ondorder moments E(XiYj) are indeed 
ovarian
es. Π(P,Q) is the set of all probability lawsover RI × RJ having marginals P and Q. We refer to an element of Π(P,Q) as a 
oupling,understating the probabilities P and Q. If M and N belong to MI,J(R), their s
alar produ
tis denoted by M ·N = Tr (M ′N). If (X,Y ) ∼ π ∈ Π(P,Q), we denote indi�erently σX,Y or
σπ the matrix with general term E(XiYj), whi
h is the 
ovarian
e between Xi and Yj ; it isthe 
ross-
ovarian
e matrix between X and Y . Remark that σX,Y is the upper-right blo
k ofthe varian
e-
ovarian
e matrix of the ve
tor Z = (X,Y )′, and that σX,Y is not symmetri
 ingeneral.Eventually, let us re
all that the subdi�erential ∂f(x0) of a 
onvex fun
tion on Rn at a point
x0 is de�ned as set of ve
tors v su
h that f(x)− f(x0) ≥ v · (x− x0) for all x ∈ R

n. Here thedot is the usual s
alar produ
t. It redu
es to {∇f(x0)} if f is di�erentiable at x0, whi
h istrue for almost every x0 a

ording to Radema
her theorem.2.1 Related literature and 
ontributionAs mentioned in the introdu
tion, the extension to the multivariate setting of the 
orrelationmaximization problem (2.1) has been ta
kled by several authors, espe
ially to de�ne notionsof multivariate 
omonotoni
ity. Pu

etti and S
arsini [15℄ list several possible de�nitions of49
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multivariate 
omonotoni
ity, among whi
h two of them are dire
tly related to the variatonalproblem (2.2). Namely, 
-
omonotoni
ity refers to the 
ouplings that are by solving problem(2.2): these are the optimal quadrati
 
ouplings of Optimal Transport Theory. This variationalapproa
h to multivariate 
omonotoni
ity is also the basis of Ekeland, Gali
hon and Henry [7℄and Gali
hon and Henry [9℄. They propose to extend the univariate notion of 
omonotoni
ityand de�ne the µ-
omonotoni
ity by stating that two ve
tors X and Y are µ-
omonotone ifthere exists a random ve
tor U ∼ µ su
h that
E(X · U) = max{E(X · Ũ), Ũ ∼ µ}
E(Y · U) = max{E(Y · Ũ), Ũ ∼ µ}This notion of 
omonotoni
ity has the advantage of being transitive, unlike 
-
omonotoni
ity.Carlier, Dana and Gali
hon [4℄ showed that this notion of 
omonotoni
ity appeared as `morenatural' than the other ones be
ause it is dire
tly related to Pareto e�
ien
y.This 
hapter aims at �nding multivariate 
ouplings whi
h exhibit a form of strong dependen
e,just as the previously de�ned 
omonotoni
 
ouplings. The 
ouplings that are de�ned as`extreme' in what follows, are 
omonotoni
 
ouplings (in the sense of the 
-
omonotoni
ity)up to a linear transform of one marginal (the 
-
omotoni
 
oupling 
orresponds to the identitytransform). In other words, an extreme 
oupling (X,Y ) satis�es the variational problem
E(X ′MY ) = sup

π∈Π(P,Q)
Eπ(X

′MY ) (2.3)This de�nition of extreme dependen
e is broad enough to en
ompass `positive dependen
e' as
-
omonotoni
ity as well as `negative dependen
e' (
ounter-
omonotoni
ity in the univariate
ase). Furthermore, it allows for a geometri
al interpretation of extreme dependen
e: anextreme 
oupling has a 
ross-
ovarian
e matrix lo
ated on the boundary of the 
ompa
t and
onvex set of all possible 
ross-
ovarian
e matri
es, 
alled the 
ovariogram. This set has beenintrodu
ed in Gali
hon and Salanié [10℄, who point out the importan
e of its boundary. Takingadvantage of this simple interpretation, we then investigate the 
ouplings π whi
h have 
ross-
ovarian
e matrix σπ that are maximal for some partial orders ≻, and show that they forman easily 
hara
terized subset of the extreme dependent 
ouplings. The rest of the 
hapter
onsists in 
omputing the extreme 
ouplings, and, for any given 
oupling π̂ propose a meansto build a 
ontinuous sequen
e of 
ouplings πT with π0 being extreme, and σπ1 = σπ̂. This isdone by penalizing the problem (2.3) with an entropy term, whi
h allows for fast 
omputationswhen the marginals are dis
rete law of probability, thanks to the Iterative Proportional FittingPro
edure. This algorithm dates ba
k to Deming and Stephan (1940) [6℄, and has been usedby Yuille and Kosowosky [11℄ (although they do not refer expli
itly to IPFP, their method isequivalent to it) to solve the assignment problem, and in E
onometri
s in [10℄.50
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Figure 2.1: Example of a 2 dimensional se
tion of a 
ovariogram2.2 Multivariate extreme dependen
eIn this se
tion we des
ribe our proposed notion of multivariate extreme dependen
e. Considerthe 
ovariogram, the set of 
ross-
ovarian
e matrix (Eπ(XiYj))i,j in MI,J(R) for any π ∈
Π(P,Q):De�nition 1 The 
ovariogram F (P,Q) is de�ned by:

F (P,Q) = {Σ ∈ MI,J(R) : ∃π ∈ Π(P,Q),Σij = Eπ(XiYj), for all i, j} .As Π(P,Q) is a 
onvex and 
ompa
t set (a proof of this last property 
an be found in [20℄,pp. 49-50) the 
ovariogram is itself a 
onvex 
ompa
t subset of MI,J(R).Figure 2.1 gives a �rst example of the 2 dimensional se
tion of a 
ovariogram where onlythe diagonal elements of the 
ross-
ovarian
e matrix are represented, when I = J = 2. Pand Q are dis
rete distributions on R2 with equally weighted atoms and we look at the two�rst 
omponent-wise 
ovarian
es E(X1Y1), E(X2Y2). The solid 
urve is the boundary ofthe 
ovariogram: every 
oupling between P and Q would have a 
ross-
ovarian
e matrix thatproje
ts within the 
onvex hull of this 
urve. The independen
e 
oupling proje
ts on the point
(0, 0). The dots on the x-axis represent respe
tively the minimal and maximal 
ovarian
esbetween X1 and Y1. These 
ovarian
es would be attained in the 
opula framework by the lowerand upper Fré
het 
opulas. This motivates our de�nition of extreme dependen
e 
ouplings as
ouplings whose proje
tion lies on the boundary of the 
ovariogram.51
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De�nition 2 A 
oupling (X,Y ) ∼ π ∈ Π(P,Q) has extreme dependen
e if and only if
(Eπ(XiYj))ij lies on the boundary of the 
ovariogram F (P,Q).The 
ross-
ovarian
e matrix between X and Y , σX,Y , enjoys the property

Tr
(
M ′σX,Y

)
= E(X ′MY ), for all M ∈ MI,J(R) (2.4)whi
h allows us to reformulate the notion of extreme dependen
e as follows:Theorem 3 The following 
onditions are equivalent:i) (X,Y ) ∼ π ∈ Π(P,Q) have extreme dependen
e;ii) there exists M ∈ MI,J(R)\{0} su
h that

Tr
(
M ′σπ

)
= sup

π̃∈Π(P,Q)
Tr
(
M ′σπ̃

)or equivalently
Eπ(X

′MY ) = sup
π̃∈Π(P,Q)

Eπ̃(X
′MY ); (2.5)iii) there exists M ∈ MI,J(R)\{0} and a 
onvex fun
tion u on RI su
h that M.Y ∈ ∂u (X)holds almost surely.In dimension 1, the interpretation is obvious: two real random variables have extreme depen-den
e i� there exists a s
alar m 6= 0 and a nonde
reasing fun
tion u su
h that mY = u(X).A

ording to the 
lassi
 terminology, X and Y are said 
omonotoni
 if m > 0, and anti-
omonotoni
 otherwise.WhenM = Id in (2.5), the optimal 
oupling is the optimal transport 
oupling for the quadrati

ost solving (2.2).2.3 Positive extreme dependen
eThe aim of this se
tion is to propose a generalization of the 
on
ept of Fré
het 
opulaof upper dependen
e to the multivariate 
ase. As already mentioned, 
opula theory failsto handle this problem. Indeed, if CP and CQ are two 
opulas, the �rst one of order

I (asso
iated with distribution P ) and the se
ond of order J (asso
iated with distribu-tion Q), a natural 
andidate for being the 
opula of positive extreme dependen
e would be
Cπ (x, y) = min(CP (x1, . . . , xI), CQ(x1, ..., xJ )). But a

ording to the so-
alled `Impossibilitytheorem' (see [14℄) , Cπ is a 
opula fun
tion if and only if CP and CQ are respe
tively theupper Fré
het 
opula of order I and J . We thus depart from the 
opula approa
h and aim at
hara
terizing positive extreme dependen
e dire
tly through the 
ross-
ovarian
e matrix of Xand Y . Starting from the simple observation that in the univariate 
ase, the positive extreme52
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dependen
e attains maximum 
ovarian
e between X and Y over all the 
ouplings of P and
Q, we shall introdu
e a 
oni
 order on the 
ross-
ovarian
e matri
es σX,Y and de�ne positiveextreme dependent 
ouplings as the 
ouplings whose 
ross-
ovarian
e matrix is a maximalelement for that order.In what follows one 
onsiders 
onvex 
ones that are used to de�ne 
oni
 orders . In order forour results to hold, they are assumed to have a parti
ular form, namely dual 
ones of 
oneswith 
ompa
t basis (2.8 provides some ba
kground on su
h 
ones). More pre
isely, for ea
h
ompa
t 
onvex set C ⊂ MI,J(R) su
h that 0 /∈ C (su
h a set is 
alled a 
ompa
t basis), a
losed 
onvex 
one in MI,J(R) is de�ned by setting:

K(C) = {y ∈ MI,J(R)|x · y ≥ 0, ∀x ∈ C} (2.6)Considering 
ones of this form might seem restri
tive, but we provide examples that show thatmany 
lassi
 
ones 
an be de�ned in su
h a manner.
K(C) de�nes a 
oni
 order on MI,J(R). More pre
isely, a stri
t 
oni
 order is needed and weset, for A and B two matri
es in MI,J(R)

A ≻K(C) B if A−B ∈ Int(K(C))The interior of K(C) is {y ∈ MI,J(R)|x · y > 0, ∀x ∈ C}. Let K = K(C) be su
h a 
one.De�nition 3 A 
oupling (X,Y ) su
h that σX,Y is a maximal element in F (P,Q) with respe
tto the stri
t 
oni
 order ≻K is said to have positive extreme dependen
e with respe
t to ≻K .The following results fully 
hara
terize 
ouplings with positive extreme dependen
e in termsof maximal 
orrelation 
ouplings.Theorem 4 The following 
onditions are equivalent:i) (X,Y ) ∼ π ∈ Π(P,Q) have extreme positive dependen
e with respe
t to ≻K ;ii) there exists M ∈ C su
h that
Tr
(
M ′σπ

)
= sup

π̃∈Π(P,Q)
Tr
(
M ′σπ̃

)or equivalently
Eπ(X

′MY ) = sup
π̃∈Π(P,Q)

Eπ̃(X
′MY ); (2.7)iii) there exists M ∈ C and a 
onvex fun
tion u su
h that M.Y ∈ ∂u (X) holds almostsurely.Hen
e, σX,Y is maximal if and only if there existsM ∈ C su
h that X andMY are maximally
orrelated for the s
alar produ
t. Obviously, this result is a 
lose parallel to Theorem 3 ex
ept53
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that M is 
onstrained to belong to C. As a 
onsequen
e the positive extreme 
ouplingsare a parti
ular 
ase of extreme 
ouplings. On
e again the interpretation in dimension 1 isstraightforward: X and Y have positive extreme dependen
e (w.r.t. the order in R) i� theyare 
omonotoni
.

Figure 2.2: Shaded region: lo
ation of the 
ouplings dominating the 
oupling materialized bythe square dot.To better understand the relation between those two types of 
ouplings, let us go ba
k to thetwo dimensional se
tion of the 
ovariogram dis
ussed in the previous se
tion, and take for
K the positive orthant of R2 × R2. The shaded region in Figure 2.2 is the set of 
ouplingsdominating the 
oupling that proje
ts on the square dot, with respe
t to that order; as a
onsequen
e this 
oupling 
an not have positive extreme dependen
e. This intuitively explainswhy maximal elements should be on the boundary of the 
ovariogram, hen
e that positiveextreme 
ouplings should be extreme 
ouplings. Maximal elements are represented on thebold line �gure 2.3: those are not dominated by an element of the 
ovariogram. Consequentlythe 
ouplings exhibiting positive extreme dependen
e, i.e. the one than 
an not be dominated,are lo
ated as shown in Figure 2.3. They are on the bold portion of the boundary, in the upperright 
orner of the 
ovariogram, and forms only a 'small' part of the 
ouplings of extremedependen
e.To demonstrate the appli
ability of this approa
h, we now give several examples of partialorders on 
ovarian
e matri
es. 54
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Figure 2.3: Maximal 
ouplings on the boundary.Example 1 (Orthant order) Let M+
I,J(R) (resp. M++

I,J (R)) denotes the set of real I × Jmatri
es with nonnegative 
oe�
ients (resp. positive 
oe�
ients). The set C = M+
I,J(R) ∩

{∑i,jMi,j = 1} is a 
ompa
t basis set. K(C) is easily seen to be the set M+
I,J(R) and itsinterior is M++

I,J (R). Eventually A ≻ B i� A − B has only positive 
oe�
ients: this is the(stri
t) orthant order on matri
es.Example 2 (Loewner order) Let S+
n and S++

n denote respe
tively the set of nonnegativematri
es in Sn and the set of de�nite positive matri
es in Sn. If C = {S ∈ S+
n (R)|Tr(S) = 1}is the set of semi-de�nite matri
es with unit tra
e, C is a 
onvex 
ompa
t subset of Mn(R)and K(C) = {M ∈ Mn(R)|Tr(M ′S) ≥ 0,∀S ∈ C} is the set of matri
es M whose symmetri
part, M+M ′

2 , is semi-de�nite positive. The stri
t order ≻K(C) is then de�ned as: A ≻ B i�the symmetri
 part of A−B is de�nite positive. This is an extension to Mn(R) of the 
lassi
Loewner order on symmetri
 matri
es.The following trivial example shows that this ordering allows various positive extreme 
ou-plings. A �rst remark is that the maximum 
orrelation 
oupling is indeed positive extreme,by setting M = Id in theorem 4. Consider P ∼ N (0, I2), the bivariate normal law, and
Q = N (0, 1) ⊗ U(0,1), the law of a ve
tor whose �rst 
omponent is normal and the se
ondone is the uniform law on (0, 1), independent from the �rst 
omponent. Let X ∼ P and
Y = (X1, U)′, U ∼ U(0,1) independent from (X1,X2), so that Y ∼ Q. This 
oupling has notthe maximum 
orrelation even though X1 = Y1. However it satis�es (2.7) with A = ( 1 0

0 0 ) and
an be quali�ed as a maximal 
oupling. 55
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Example 3 (Hermitian order) Let
MS =

M +M ′

2
, MA =

M −M ′

2the symmetri
 and skew-symmetri
 part of a matrix M ∈ Mn(R). We de�ne the hermitiantransform M̃ ∈Mn(C) of M by setting
M̃ :=MS + iMA, where i2 = −1As iA is hermitian as soon as A is skew-symmetri
, M̃ is hermitian. Using the Loewner orderon hermitian matri
es we de�ne a (partial) stri
t order on Mn(R) by setting

M ≻ 0
def
⇔ M̃ ≻ 0If C = {M ∈Mn(R)|M̃ ∈ S+

n (C), T r(M) = 1}, then K(C) = {M ∈Mn(R)|M̃ ∈ S+
n (C)}.2.4 An index of dependen
eSuppose now we are observing or simulating a 
oupling π̂ ∈ Π(P,Q), for instan
e an empiri
al
oupling. Even if this 
oupling is supposed to exhibit strong dependen
e, its 
ross-
ovarian
ematrix will never be exa
tly lo
ated on the boundary of the 
ovariogram. Our problem isthen to asso
iate an extreme 
oupling with π̂; more pre
isely, we propose to �nd a 
ontinuoussequen
e of non deterministi
 
ouplings πT su
h that π1 = π̂ and π0 is an extreme 
oupling.In other words, we give a means to go smoothly from an empiri
al 
oupling to an extremeone by progressively in
reasing the strength of the dependen
e between the marginals. Thisis done by introdu
ing an entropi
 penalization of (2.5), so that its solutions proje
t on innerpoints of the 
ovariogram.2.4.1 Entropi
 relaxationWe introdu
e temperature in (2.5) by means of an entropy term ; it be
omes

W (M,T ) := max
π∈Π(P,Q)

(
Eπ(X

′MY ) + TEnt(π)
) (2.8)The entropy of a 
oupling π is de�ned as

Ent(π) =

{
−
∫
log π(x, y)dπ(x, y), if π ≪ dx⊗ dy and the integral exists and is �nite

−∞ otherwiseLet πM,T denote a solution of (2.8); a proof of its existen
e 
an be found in [18℄ and referen
estherein. 56
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Fixing the temperature at 1, our aim in a �rst pla
e is to �nd a matrix M su
h that π̂and πM,1 have the same lo
ation in the 
ovariogram; in other words they have the same
ross-
ovarian
e matrix: σπ̂ = σπM,1
. The gradient of W is given by the envelope theorem:

∇MW (·, T ) = σπM,T
. This remark implies that M is the solution of the following variationalproblem

min
M∈MI,J (R)

W (M,T )− σπ̂ ·M (2.9)
W (·, T ) is a 
onvex fun
tion as a supremum of a�ne fun
tions in M and 
onsequently theobje
tive fun
tion in (2.9) is 
onvex as well: this is a 
lassi
 un
onstrained 
onvex minimizationproblem. Figure 2.4 shows the proje
tion of πM,1 for a large number of randomly generated

Figure 2.4: Proje
tion of various πMmatri
es M . The bullet point is the proje
tion of π̂. One sees that any inner point of the
ovariogram 
an be attained by a properly 
hosen πM .2.4.2 Numeri
al solutionIt 
an be shown that the optimal πM,1 in (2.8) obeys a S
hrödinger equation (see 2.9.3):
log πM,1(x, y) = x′My + u(x) + v(y), u ∈ L1(dP ), v ∈ L1(dQ)In other words, the log-likelihood of πM,1 is the sum of a quadrati
 term x′My and an additivelyseparable fun
tion in x and y. The solution is found by setting u and v su
h that πM,1 has57

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



the marginals P and Q. This is the purpose of the well known (Deming & Stephan 1940, VonNeumann 1950) Iterative Proje
tion Fitting Algorithm.Let us re
all in a few words the prin
iple of it; we refer the interest reader to [18℄ for amore detailed exposition and a 
omplete proof of the 
onvergen
e. This algorithm 
onsistsin building a sequen
e πn su
h that π2n has �rst marginal P and π2n+1 has se
ond marginal
Q. It 
an be interpreted as Von Neuman's Iterated Proje
tion algorithm with respe
t to theKullba
k-Leibler distan
e. Its most remarkable property is the 
onvergen
e of πn towards aprobability π with 
orre
t marginals P and Q. πn has the following form:

π2n(x, y) ∝ ex
′My+un(x)+vn(y) while π2n+1(x, y) ∝ ex

′My+un+1(x)+vn(y)The algorithm pro
eeds as follow: �rst 
hoose some starting (u0, v0) de�ning π0; for instan
e
v0 = −y2 and u0 = −x2. We then look for some joint distribution π1 whose �rst marginal is
P , taking the form ex

′My+u1(x)+v0(y). This writes
eu1(x) =

P (x)∫
ex′My+v0(y)dyThen we want to set v1 so that π2(x, y) = ex
′My+u1(x)+v1(y) has se
ond marginal Q and weget:

ev1(y) =
Q(y)∫

ex′My+u1(x)dxand so on, the re
ursion at step n writes




eun+1(x) = P (x)∫
ex

′My+vn(y)dy

evn+1(y) = Q(y)
∫
ex

′My+un+1(x)dxThis algorithm is typi
ally a �xed-point algorithm; it �nds (u, v) su
h that
{ ∫

ex
′My+u(x)+v(y)dy = P (x)∫

ex
′My+u(x)+v(y)dx = Q(y)This builds a series of (un, vn) (de�ned up to a 
onstant) whi
h enjoys a 
onvergen
e property:

πn → π, in total variation (again we refer to [18℄ for more details). An important remark isthat in the 
ase of dis
rete distributions P and Q, the previous formulae be
ome simply:




evn+1(y) = Q(y)∑
x r(x,y)e

un(x)

eun+1(y) = P (x)
∑

y r(x,y)e
vn+1(y)where r(x, y) = ex

′My
∑

x,y e
x′My

. Eventually the 
onvex minimization problem (2.9) 
an be solvedby any gradient des
ent type algorithm. The BFGS algorithm is used in the examples below.58
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2.4.3 Derivation of the extreme 
ouplingWe re
all that our aim is to asso
iate an inner 
oupling (i.e. a 
oupling whi
h proje
tsinside the 
ovariogram) to some extreme 
oupling whi
h proje
ts onto the boundary of the
ovariogram, by �nding a traje
tory of 
ouplings that goes smoothly from the inner one tothe extremal one.The previous algorithm yields a parti
ular matrix M̂ and a 
oupling πM̂ su
h that σπ̂ = σπ
M̂,1

.This 
oupling was found by setting arbitrarily the temperature at 1; the entropy penalizationwas thus e�e
tive and this allowed to rea
h inner points in the 
ovariogram. This temperatureparameter is easily explained. When it goes to +∞, the entropy penalization is predominantin (2.8). Informally, the solution 
oupling is the one exhibiting the more disorder : this is theindependen
e 
oupling. On the 
ontrary, the less is the temperature, the 
loser (2.8) is tothe non penalized problem. Hen
e, the lower T , the more πM̂,T proje
ts near the boundary.Hen
e asso
iating π̂ with an extreme 
oupling 
an be done in the following way: on
e M̂ isfound, a sequen
e of πM̂,Tn
, Tn ↓ 0 yields on the 
ovariogram a traje
tory of points whi
h tendto the boundary. Figure 2.5 summarizes this idea: ea
h point on the 
urve is the proje
tion

Figure 2.5: A traje
tory toward an extreme 
oupling when the se
tors are Health Care andFinan
ialsof a πM̂,Tn
. As T → +∞, we re
over the independen
e 
oupling whose proje
tion is lo
atedat (0,0). When the temperature de
reases, the traje
tory passes on π̂ at T = 1, and graduallyapproa
hes the boundary of the 
ovariogram. Thus, the temperature 
an be seen as a meansto 
ontrol the strength of the dependen
e. This 
an be used to de�ne formally an index of59
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dependen
e : 
hoosing a norm ||·|| over the set of matri
esMI,J(R) and using the homogeneityof W , namely W (λM,λT ) = λW (M,T ) for all λ ∈ R, we have πM̂,1 = πM̂/||M̂ ||,||M̂|| and thetemperature 1/||M̂ || appears as an indi
ator of the strength of the dependen
e between themarginals of π̂. The matrix M̂ 
an be seen as an a�nity matrix : in the limit of T → 0, theextreme 
oupling πM̂,0 a
hieves the supremum of Eπ(X
′M̂Y ). M̂ is thus the linear transformthat makes X the most dependent with M̂Y under πM̂,0.2.5 Appli
ationsIn the �nan
ial appli
ations below, the previous te
hnique is applied to times series of lineardaily returns on se
tors of mainstream indi
es: S&P 500 and DJ Eurostoxx. We 
onsiderHealth Care, Finan
ial and Food & Beverage se
tors of these indi
es: P andQ are distributionson R3. The histori
al data spans 5 years between September 2004 and September 2009. Table2.1 gives summary statisti
s (the three �rst variables 
orresponds to S&P se
tors, the last thirdTable 2.1: Summary Statisti
sMean Returns 10−4 ( 1.03 −1.13 1.67 1.16 −1.37 3.99 )Varian
e 10−4. ( 1.36 7.65 1.16 1.14 4.15 1.12 )Correlation matrix 


1

0.66 1
0.76 0.62 1
0.22 0.10 0.19 1
0.26 0.33 0.25 0.49 1
0.22 0.16 0.22 0.67 0.58 1.00


Cross-Covarian
e 10−5.

(
2.74 3.05 2.13
6.04 1.8 5.52
2.66 4.62 2.56

)to Eurostoxx). In parti
ular, the 
orrelations between se
tors belonging to di�erent indi
esare mild (< 35% in every 
ase). Inside an index, 
orrelation is well higher, but remains below80%; this motivated our 
hoi
e for these se
tors: the marginal laws are not degenerated.2.5.1 Numeri
al Results
P and Q are dis
rete distributions with equally weighted atoms in R3, ea
h atoms being ave
tor of the returns at some date of the three se
tors. The atoms are equally weighted as we
onsider that the daily returns are i.i.d random variables.

P =
1

N

N∑

t=1

δrXt , rXt = ve
tor of the linear returns on the S&P500The optimal M̂ we �nd when 
onsidering all three se
tors or only Constru
tion and HealthCare are: 60
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# of 
omponents 2 3optimal M (
0.23 −0.14
−0.10 0.40

) (
0.25 −0.139 −0.37
−0.39 0.44 −0.80
−0.57 −0.15 0.86

)error = ||σM−σπ̂||
||σπ̂|| ≈ 0.1% < 0.2%The linear returns are expressed in per
entage. The error is 
omputed as the per
entage ofdi�eren
e between σπ̂, the 
ross-
ovarian
e target, and σπM,1

, the 
ovarian
e matrix of theoptimal 
oupling. They should be perfe
tly equal in theory and this per
entage measures the
onvergen
e of the gradient algorithm.2.5.2 Finan
ial appli
ationsThe �rst appli
ation exploits further the a�nity matrix M̂ . It 
onsists in performing a singularvalue de
omposition on it, in order to dedu
e indi
es of maximal 
orrelation; it is related tothe notion of 
anoni
al 
orrelation.The se
ond one is based on 
onsidering the traje
tory of 
ouplings T 7→ πM̂,T as a 
ontinuousfamily of s
enarios of in
reasing dependen
e. They are used to build s
enarios of stress-testsinvolving multivariate variables that 
an be useful for risk management. By stress-testing,we mean in
rease the index of dependen
e de�ned above (that is, lowering the temperatureparameter), thus shifting away 
ontinuously from some 
oupling π̂ to the extreme 
oupling
πM̂,0. This is to be 
ompared to the method that 
onsists in pi
king the maximum 
orrelation
oupling as the `highest dependen
e s
enario'; indeed this 
oupling might be less in line withthe 
ross-
ovarian
e stru
ture of the empiri
al 
oupling π̂, yielding unexpe
ted and undesiredresults when managing risky portfolios or options on several assets. Typi
ally, we expe
tthe 
ross-
ovarian
e matrix of πM̂,0 to be lo
ated nearer from σπ̂ than the proje
tion of themaximum 
orrelation 
oupling.Indi
es of maximal 
orrelationRe
all that 
anoni
al 
orrelation analysis 
onsists, for two random ve
tors X and Y , in �ndingve
tors a and b su
h that (a′X, b′Y ) solves maxa,b corr(a

′X, b′Y ). The �rst 
anoni
al 
orre-lation, de�ned as this maximum, is the highest diagonal element of the diagonal matrix thatappears in the singular value de
omposition of the matrix σ−1/2
XX σXY σ

−1/2
Y Y (see [13℄). Let M̂be the a�nity matrix of the 
oupling (X,Y ). The singular value de
omposition of this matrixwrites M̂ = USV ′, with U and V two orthogonal matri
es and S a diagonal matrix withnonnegative entries. In parti
ular,

Eπ
M̂,0

(
(
√
SU ′X)′(

√
SV ′Y )

)
= max

π∈Π(P,Q)
Eπ

(
(
√
SU ′X)′(

√
SV ′Y )

)

61
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In other words, if (X̃, Ỹ ) = (
√
SU ′X,

√
SV ′Y ), then this linear transform of (X,Y ) hasmaximum 
ovarian
e (under the law πM̂,0). Thus √

SU ′ and √
SV ′ are the analogue of theoptimal a and b in the 
anoni
al 
orrelation framework.This transform is useful to understand the link between the extreme 
oupling πM̂,0 and themaximum 
orrelation 
oupling, the one that 
orresponds to M = Id in (2.5). Indeed, if P̃is the law of √SU ′X with X ∼ P , Q̃ is de�ned likewise from Q, and π̃M̂,0 is the law of

(
√
SU ′X,

√
SV ′Y ) where (X,Y ) ∼ πM̂,0, then Eπ̃

M̂,0
(X ′Y ) = maxπ∈Π(P̃ ,Q̃)Eπ(X

′Y ). Thesingular value de
omposition of the a�nity matrix provides linear transform of the marginalsthat makes the extreme 
oupling πM̂,0 the maximum 
orrelation 
oupling after a s
aling ofthe marginals by these transforms.As an example, in the 
ase of the 3 
omponents 
hosen above, this transform writes
X̃ =

(− 0.42 X1 +0.95 X2 −0.019 X3
− 0.64 X1 −0.27 X2 +0.26 X3

0.11 X1 +0.06 X2 +0.35 X3

)

Ỹ =

(− 0.30 Y1 +0.99 Y2 −0.13 Y3
− 0.67 Y1 −0.16 Y2 +0..28 Y3

0.12 Y1 +0.08 Y2 +0.34 Y3

)This result states that X̃ and Ỹ are most 
orrelated to one another under the law of theextreme 
oupling. These two ve
tors are 
omposed of portfolios involving the 
omponents ofthe original index and 
an be viewed as new indi
es: we speak of indi
es of maximal 
orrelation.When the strength of dependen
e is maximal (T = 0), they maximize the 
orrelation E(X̃Ỹ )among all others law of probability with same marginals.Portfolios stress-testingIn order to underline the ne
essity of a

ounting properly for the multivariate dependen
e,the problem of one-period allo
ation is 
onsidered. Suppose a universe of allo
ation 
onsistsin a set of assets; the problem is to study the impa
t of the 
hange of the dependen
e betweentwo subsets of this universe. They shall be denoted X = (X1, . . . ,Xn) and Y = (Y1, . . . , Ym).In the examples below, the assets are S&P Se
tor Indi
es, and X is 
omposed of Materials,Constru
tion and Retail indi
es, while Y is 
omposed of Food and Beverage, Health Care,Finan
ials and Utilities indi
es. The 
orresponding summary statisti
s are given in table 2.2.Correlation is higher than in the above examples as the se
tors are industrial se
tors on asingle index, the S&P500.Consider an investor solving a 
lassi
 Markowitz allo
ation problem, with an investment hori-zon of one year: max∑
i wi=1 µ · w − λ

2w
′Σw. µ are the expe
ted yearly returns of the sto
ksand Σ the 
ovarian
e matrix of the returns. We assume that both µ and Σ are the standardempiri
al estimators (in other words, the investor do not make any guess as to the futurebehavior of the assets), 
omputed over a period of one-year, the in-sample period. The risk62
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Table 2.2: Summary Statisti
sMean Returns 10−4. ( 2.89 1.67 1.03 −1.13 1.97 2.01 1.85 )Varian
e 10−4. ( 3.59 1.16 1.36 7.65 1.92 0.984 3.25 )Correlation matrix 


1
0.72 1
0.71 0.76 1
0.69 0.86 0.65 1
0.69 0.85 0.69 0.76 1
0.69 0.67 0.75 0.62 0.66 1
0.70 0.76 0.60 0.72 0.74 0.56 1


Cross-Covarian
e 10−4.

(
1.41 1.53 3.62 1.85
0.921 0.979 1.83 1.05
1.27 1.45 3.73 1.50

)aversion parameter λ is set at 3. The solution to the Markowitz allo
ation problem with theseparameters is denoted w. The risk of a portfolio is here identi�ed to its varian
e, and is knownas soon as the 
ovarian
e between the assets is spe
i�ed. When performing the allo
ation attime 0, the investor is expe
ting a risk of w′Σw. The stress-test 
onsists in 
onsidering that themarket 
onditions 
hanges after the investment de
ision: the strength of dependen
e between
X and Y in
reases.The a�nity matrix is 
omputed with respe
t to the in-sample data. The whole traje
tory of
ouplings toward the boundary obtains, parameterized by the temperature T . These 
ouplings
πT yield stressed 
ovarian
e matri
es ΣT = EπT ((X − E(X))(Y − E(Y ))′). ΣT represents as
enario where the marginals of X and Y are left un
hanged, while the realized dependen
ebetween X and Y has in
reased, 
ompared to the initial 
ovarian
e matrix Σ. In a �rst pla
e,the expe
ted risk of the portfolio, w′Σw, is 
ompared to the realized yearly risk w′ΣTw. Itgives a �rst hint as to unexpe
ted risks the investor might fa
e when the dependen
e variesand the allo
ation de
ision does not fore
ast this 
hange. The graph 2.6 shows this e�e
t. Thevarian
e obtained at temperature 1 is w′Σw; in the worst 
ase, where the realized 
ovarian
eis Σ0.1, the investor 
hooses a portfolio that yields an extra 4% of varian
e than expe
ted.When the dependen
e is properly a

ounted for, the investor determines the optimal weights
wT a

ording to the 
ovarian
e ΣT . The opportunity 
ost µ ·wT − µ ·w is the loss in term ofreturns that arises when the dependen
e in
reases, while the investor sti
ks to the allo
ation
w. This 
ost is more and more signi�
ant as the temperature lowers, rea
hing 6% in this 
ase.A 
omparison with the usual extreme multivariate 
oupling, namely the maximum 
orrelation
oupling is enlightening. First of all, this 
oupling is not de�ned when the dimension of Xand Y are di�erent. Consequently an asset is removed from Y and the same 
omputationas above is performed: a 
ovarian
e matrix ΣB that would be the realized 
ovarian
e if theassets were in maximum 
orrelation dependen
e is 
omputed. On this parti
ular example, thevarian
e w′ΣBw is 60% lower than the expe
ted varian
e w′Σw. Other examples 
an yield toa signi�
antly higher 
ovarian
e. This shows that the maximum 
orrelation 
oupling mightnot be always adapted as a means of stress-testing the dependen
e. A more 
lassi
al way tostress the dependen
e is to suppose that the 
orrelation between Xi and Yj is ρ for all i and63
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Figure 2.6: Plot of T 7→ w′ΣTw

j; the 
orrelation matrix between X and Y is �lled with ρ and the resulting 
ross-
ovarian
ematrix is denoted Σρ. A �rst problem of this method is that it is known beforehand that,depending on the marginals, Σρ might not be an admissible 
ross-
ovarian
e matrix for Pand Q; the resulting varian
e-
ovarian
e matrix of the ve
tor (X,Y ) might fail to be semi-de�nite positive. This stress-test yields in this 
ase underestimated risks. Indeed, while in ourframework the varian
e w′Σw is at 1.91, this level of varian
e is attained only when ρ is above95%, while the mean of the empiri
al 
ross-
orrelation is around 60%. Furthermore, even if ρis set at 100% (disregarding the admissibility problem evoked above), the resulting varian
eis still lower than the one obtained with the extreme 
oupling.It appears that the traje
tory T 7→ πT provides a 
oherent sequen
e of 
ovarian
e matri
es
ΣT that models a rise in the dependen
e between X and Y . This method respe
ts bothmarginals and has the advantage of generating admissible matri
es where the usual methodof parameterizing 
orrelation matri
es by a single parameter 
ould yield in
oherent 
ovarian
ematri
es. Moreover, the maximum 
orrelation 
oupling fails in this setting to properly a

ountfor in
reasing risk of dependen
e, likely be
ause it ignores the 
ross-
orrelation e�e
ts.Options pri
ingThis method of in
reasing the multivariate dependen
e 
an be also applied for rainbow options(options on several underlyings) pri
ing. As a 
ase study, 
onsider the underlyings X1, . . . ,Xn,64
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Figure 2.7: Opportunity 
ost as a fun
tion of the temperature
Y1, . . . , Ym. It is assumed that they all follows log-normal di�usions, with parameters





dXi
t

Xi
t

= µXi dt+ σXi dW
i
t , d〈W i,W j〉t = ρXij dt

dY i
t

Y i
t

= µYi dt+ σYi dB
i
t , d〈Bi, Bj〉t = ρYijdtThe models is fully spe
i�ed as soon as the 
orrelation matrix between W and B is set.Consider the option that pays min((maxiX
i
T − K)+, (maxj Y

j
T − K)+); it is the minimumbetween the payo�s of two best-of options on the Xi on the one hand and the Y j on theother hand. It pays when the Xi

T and Y i
T perform well, but mitigates the gain by sele
tingthe lowest payo� between (maxiX

i
T −K)+ and (maxj Y

j
T −K)+. The terminal distributionof the underlyings is dis
retized; the dis
rete marginals of ve
tors X and Y obtains. Theiratoms are respe
tively denoted xiT and yjT . For ea
h spe
i�
ation of a 
ross-
ovarian
e matrix

A between X and Y , a traje
tory πT (A) is obtained as well as a series of pri
es:
PT (A) = EπT (A)

(
min((max

i
Xi
T −K)+, (max

j
Y j
T −K)+)

)

=
∑

i,j

min((max
i
xiT −K)+, (max

j
yjT −K)+)πT (A)(x

i
T , y

j
T )In the following example, X has 3 
omponents and Y has 4. The riskless rate is 
onstantand set at zero; µX and µY are supposed to have null drift (i.e. we suppose that the abovedynami
s is given with respe
t to the risk-neutral measure), σX = (0.15, 0.20, 0.22)′ and65
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σY = (0.13, 0.10, 0.16, 0.18)′ . The 
orrelation stru
ture is set as follows; for the sake of theexposition W and B are standard Brownian motions (ρX = Idn and ρY = Idm) while the
ross-
orrelation matrix between W and B is randomly generated, and set at
(

0.087 0.126 0.068 0.100
0.490 0.438 0.006 0.149
0.136 0.369 0.447 0.331

)The strike is set at 1, i.e. at time 0 the option is at-the-money.

Figure 2.8: Pri
e as a fun
tion of the temperatureAs seen on graph 2.8, the pri
e in
reases as the temperature lowers; this is an expe
ted be-havior, as when the dependen
e between the assets in
reases, so does the dependen
e betweentheir respe
tive maxima and hen
e the minimum of these maxima tends to be higher, whi
hyields a higher pri
e. In this setting, the stress-test in
reases the pri
e by more than 30%.This must be 
ompared to the pri
e that is obtained when the 
ross-
orrelation matrix istaken of the form Σρ =

(
ρ ... ρ... ...
ρ ... ρ

). As a matter of fa
t, the stress-test of the 
ross-
orrelationfails, as the resulting 
orrelation matrix ( Id Σρ

Σρ Id

) is no longer de�nite positive when ρ > 1
2
√
3whi
h is lower than 30%. And even in the limit ρ→ 1

2
√
3
, the pri
e does not rea
h 0.075, andis still lower than the non-stressed pri
e. 66
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2.6 Con
lusionA re
urring 
omplaint in Applied Statisti
s is the �
urse of dimensionality�: models thathave a simple, 
omputationally tra
table form in dimension one be
ome very 
omplex, both
omputationally and 
on
eptually in higher dimension. We show here that 
onvex analysis,along with the theory of Optimal Transport, 
an lead to e�
ient solutions to problem ofextreme dependen
e. Building on a natural geometri
 de�nition of extreme dependen
e, wehave introdu
ed an index of dependen
e and used the latter to build stress-tests of dependen
ebetween two sets of e
onomi
 variables. This is parti
ularly relevant in the 
ase of international�nan
e, where the dependen
e between many e
onomi
 variables in two 
ountries is of interest.A
knowledgmentsThe authors thank Rama Cont for a question whi
h was the starting point of this 
hapter andGuillaume Carlier and Alexander Sokol for helpful 
onversation.
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2.7 Appendix2.8 Fa
ts on 
oni
 ordersIf K ⊂ MI,J(R) is a 
losed 
onvex 
one, a base for K is a 
onvex set C with 0 /∈ C̄ (the
losure of C) and K is generated by C, i.e. K = R+C. Thereafter C is supposed 
ompa
t.The dual 
one asso
iated to K is
K∗ = {Σ ∈ MI,J(R)|Σ ·M ≥ 0, M ∈ K}Its interior is also of interest, and is simply

K∗
+ := Int(K∗) = {Σ ∈ MI,J(R)|Σ ·M > 0, M ∈ K\{0}}Note that in both de�nitions, one 
an repla
e K and K\{0} with C.A stri
t partial order is de�ned on E by setting

A ≻K B
def
⇔A−B ∈ K∗

+If S is a subset of MI,J(R), a maximal element of S for this order is A ∈ S su
h that for all
B ∈ S, A−B /∈ K∗

+: A 
an not be `stri
tly dominated' by any element in S.These de�nitions apply of 
ourse when MI,J(R) is repla
ed by any eu
lidean spa
e.2.9 Proof of the results2.9.1 Proof of Theorem 3Proof: As the 
ovariogram is a 
losed 
onvex set, a point x ∈ MI,J(R) lies on its boundary ifand only if there exists a nonzero M ∈ MI,J(R)\{0} su
h that M ·x is maximal as a fun
tionof x. This translates the fa
t that there exists a supporting hyperplane at x. Thus σπ is onthe boundary of the 
ovariogram i� there exists M ∈ MI,J(R)\{0} su
h that
M · σπ = sup

π̃∈Π(P,Q)
M · σπ̃(where it is re
alled that M · σπ = Tr (M ′σπ)).Equivalen
e between (ii) and (iii) follows from a well-known result in Optimal Transporttheory, the Knott-Smith optimality 
riterion (see [20℄, Th. 2.12). �
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2.9.2 Proof of Theorem 4Before we give the proof of the theorem, we state and prove a number of auxiliary resultswhi
h are of interest per se.First, in the 
ase of a generi
 
ompa
t base C, we have a 
ru
ial, although te
hni
al,variational 
hara
terization of the maximality of σπ:Proposition 3 (Variational 
hara
terization of maximality)
σπ maximal i� sup

π̃∈Π(P,Q)
inf
M∈C

(σπ̃ − σπ) ·M = 0In other terms, a 
oupling is maximal whenever there existsM ∈ C su
h that σπ maximizes
σπ̃ ·M .Proof: [Proof of proposition 3℄ First, note that for every π ∈ Π(P,Q), the fun
tion

f : (π̃,M) ∈ Π(P,Q)× C 7→ (Σπ̃ − Σπ) ·Mexhibits a saddlepoint (π̄, S̄):
max

π̃∈Π(P,Q)
min
M∈C

f(π̃,M) = f(π̄, M̄) = min
M∈C

max
π̃∈Π(P,Q)

f(π̃,M) (2.10)This is a 
onsequen
e of a 
lassi
al minmax theorem by Fan [8℄: a 
ontinuous fun
tion overa produ
t of 
ompa
ts 
onvex sets embedded in normed linear spa
es, whi
h is linear inboth arguments exhibits a saddlepoint. Both Π(P,Q) and C are 
ompa
ts and 
onvex. The
ompa
ity is C is an hypothesis and a well-known fa
t for Π(P,Q), see [20℄ for instan
e.Moreover f is linear in M and π̃, and 
ontinuous in both arguments. Finally, Π(P,Q) 
an beembedded in the spa
e of Radon measures over RI ×RJ endowed with the bounded Lips
hitznorm. We refer to Villani [20℄ 
hapter 7. for more details on this: the important thing is that
Π(P,Q) is a 
ompa
t subset (for the norm) within this spa
e.Ba
k to the proof of the result. If σπ is maximal, then for all σπ̃ one has σπ̃ − σπ /∈ K∗

+,whi
h means that for some M ∈ C, (σπ̃ − σπ) ·M ≤ 0, hen
e
sup

Π(P,Q)
inf
C
(σπ̃ − σπ) ·M ≤ 0Thanks to the 
ompa
ity ofK, we 
an apply the minmax formula 2.10 to invert the supremumand the in�mum, and 
on
lude the proof of one impli
ation. On the 
ontrary, if σπ is notmaximal then there exists some 
oupling π̃ su
h that σπ̃ − σπ ∈ K∗

+. Thanks again to the
ompa
ity of C, infC(σπ̃ − σπ) ·M > 0 and the reverse impli
ation is proved. �As a 
onsequen
e, we are now ready to prove theorem 4.Proof: [Proof of theorem 4℄ Be
ause of the previous proposition, a 
oupling π su
h as71
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(X,MY ) is an optimal transport plan shall satisfy
Eπ(X ·MY ) = sup

π̃∈Π(P,Q)
Eπ̃(X ·MY )As Eπ(X ·MY ) = σπ ·M , we 
on
lude with the proposition 3.�2.9.3 S
hrödinger equationAn informal justi�
ation of the form of the solution to the entropi
 maximization problem isas follows. We assume that every 
oupling in Π(P,Q) admits a density with respe
t to theLebesgue measure on RI × RJ .

max
π∈Π(P,Q)

Eπ(X
′MY ) + TEnt(π) = max

π∈Π(P,Q)

∫
x′Myπ(x, y)− T log π(x, y)dxdy

= max
π∈ME

+(Rn×Rn)

{
min

φ∈L1(dp)
ψ∈L1(dq)

∫
(x′My − T log π(x, y))π(x, y)dxdy

−
[ ∫

(φ(x) + ψ(y))dπ(x, y) −
∫
φdp−

∫
ψdq

]}
⊛where ME

+(R
I × RJ) is the set of nonnegative Radon measures on RI × RJ for whi
h theentropy is well-de�ned. Now the assumption on the marginals is relaxed, a sloppy way to getthe result is to say that the solution should satisfy
∂

∂π(x, y)
min

φ∈L1(dp)
ψ∈L1(dq)

∫
[x′My − T log π(x, y)− (φ(x) + ψ(y))]π(x, y)dxdy = 0If we 
ould apply the envelope theorem, we would have the existen
e of a 
ouple (φ∗, ψ∗) su
hthat

x′My − T (1 + log π(x, y))− φ∗ − ψ∗ = 0whi
h yields the expe
ted form for π.Here is a rigorous proof in the 
ase where P and Q are absolutely 
ontinuous with respe
tto the Lebesgue measure.The problem (2.8) is equivalent to solve the following minimization problem:
min

Π(P,Q)

∫
log

(
π(x, y)

ex′My−|x|2−|y|2/
∫
ex′My−|x|2−|y|2 dxdy

)
π(x, y)dxdyThe quantity inside the min is the Kullba
k-Leibler distan
e (or relative entropy) of the distri-bution µ with density proportional to ex′My−|x|2−|y|2 (the −|x|2−|y|2 ensures the integrability)72
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with respe
t to π. Minimizing this distan
e 
onsists in proje
ting µ onto Π(P,Q) with respe
tto the Kullba
k-Leibler distan
e. This is the purpose of IPFP. Rüs
hendorf [18℄ applies andstates that the unique solution to this problem is of the form:
π∗(x, y) = a(x)b(y)ex

′My−|x|2−|y|2with a and b two positive fun
tions, whi
h is the desired result.�
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Chapter 3Coupling Markovian di�usions with
opulas
3.1 Introdu
tionCopulas are fun
tions that represent the dependen
e of multivariate laws of probability.Namely, if X1, . . . ,Xn, n ≥ 2, are real random variables on some probability spa
e (Ω,F ,P),their 
umulative distribution fun
tion (
df) is de�ned, for (x1, . . . , xn) ∈ R

n, by
F (x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn). The 
opula approa
h to dependen
e 
onsists ins
aling the marginals Xi by their respe
tive 
dfs Fi; the 
df of the s
aled ve
tor is the 
opulaand is de�ned, for (u1, . . . , un) ∈ [0, 1]n, by C(u1, . . . , un) = P(F1(X1) ≤ u1, . . . , Fn(Xn) ≤ un).As Fi(Xi) follows the uniform law on [0, 1], C is the 
df of a ve
tor of uniform random variableson [0, 1]. Eventually, the initial 
df 
an be written

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (3.1)and the 
opula C is uniquely determined on ImF1×· · ·× ImFn. This fundamental statementis Sklar's theorem (
.f. the 
lassi
 introdu
tory book on 
opula by R. Nelsen [15℄).Copulas have been widely used, �rst in statisti
s where the notion was developed by Fré
het,Hoe�ding and many others (see Nelsen's book [15℄ or Joe's book [10℄ and the numerous refer-en
es therein), and then imposed itself as a 
onvenient tool to model multivariate dependen
ein many �elds. There has been a spe
ta
ular in�ation of the use of 
opulas in �nan
ial math-emati
s in the last de
ade. This has been exempli�ed by the Gaussian 
opula model forthe valuation of Credit Default Obligation by Li [13℄, and by numerous arti
les on valuationof derivatives on several underlyings, see for instan
e Cherubini and 
oauthors [4℄ and [3℄.Sin
e then, some drawba
ks of the 
opula approa
h to dependen
e have been highlighted, seeMikos
h [14℄. An important 
riti
ism of 
opulas is their stati
 nature, meaning that, whereas74
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they are suitable to des
ribe the dependen
e between random variables, their use is more dis-putable when dependen
e modeling is needed at several dates, not to speak of 
ontinuous-timedependen
e modeling. Therefore, whereas they are useful to valuate �nan
ial produ
ts whosepri
e depends only on the distribution of a ve
tor of assets at a single time (su
h as European
all options on several underlyings), they might not be the adequate tool when the dependen
eof the pri
e with respe
t to the distribution of the assets is more 
omplex. And indeed 
opulashave been applied less intensively in derivatives pri
ing than in risk management, where thestati
 framework is more natural.Nevertheless, a signi�
ant use of 
opulas in 
ontinuous-time setting was a
hieved by Dar-sow et al. [5℄. For a real sto
hasti
 pro
ess (Xt)t∈T , they obtained a formulation of theChapman-Kolmogorov equation as an equation on the bivariate 
opulas Cst, whi
h des
ribesthe dependen
e of the ve
tor (Xs,Xt), s ≤ t. This is remarkable as it allows for the spe
i�
a-tion of a Markov pro
ess by the one dimensional marginals (the law of Xt for ea
h t ≥ 0) andall the bivariate 
opulas Cst. However, these results do not generalize easily to the multivariatesetting and des
ribing both the time-dependen
e (dependen
e of Xs and Xt for all s ≤ t) andthe spatial dependen
e (dependen
e of (X1
t , . . . ,X

n
t ) for all t) of a multivariate pro
ess is a
omplex problem whi
h has been addressed by Cherubini et al. [3℄ in a dis
rete time setting.In dis
rete time, there exists also a substantial literature on dynami
 
opula models based ontimes-series, see e.g. Patton [16℄ and van den Goorbergh et al. [22℄.This 
hapter takes a di�erent route. It ta
kles the problem of 
oupling a pair of Markoviandi�usions Xt and Yt, and 
ontrolling the spa
e-dependen
e, namely the 
opulas of (Xt, Yt).This is done by assuming that the Brownian motions driving the di�usions, B and W , satisfy

d〈B,W 〉t = ρ(t,Xt, Yt)dt where ρ(t,Xt, Yt) is a 
orrelation whi
h depends on the state of themarginals di�usions. This type of model 
an be related to `lo
al 
orrelation models', des
ribedin Langnau [12℄ and Reghai [18℄, although in these models the emphasis is put on 
alibratingthe fun
tion ρ in order to mat
h observed pri
es of various options on several underlyings,in the spirit of Dupire's lo
al volatility model [6℄. A partial di�erential equation, whi
h �rstappeared in Gali
hon's [7℄, that des
ribes the evolution of the 
opula CXt,Yt is derived. Inthe 
ase where the marginal di�usions are Brownian motions, this PDE allows to �nd expli
itform of the 
orrelation fun
tion in order for the resulting 
oupled Brownian motions to have astationary (and possibly non Gaussian) 
opula. Moreover, it 
an be used to prove that severalwell-known 
opulas are unsuitable to 
ouple Brownian motions. Eventually, this te
hniqueis applied to the simulation of a 
onstant proportion portfolio insuran
e strategy (CPPI).This example aims at assessing the impa
t of 
opulas in the trigger probability of a CPPI ina 
oupled Bla
k-S
holes model, where the driving Brownian motions are 
oupled by various
opulas. 75
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3.2 Coupling SDE and 
oupling 
opula3.2.1 Correlated Brownian motionsThis se
tion re
alls how Brownian motions 
an be 
oupled with a sto
hasti
 
orrelation fun
-tion, and introdu
e the 
oupling 
orrelation fun
tion, before de�ning the 
oupling of marko-vians di�usions.Correlating Brownian motions with deterministi
 
orrelation The 
onstru
tion is
lassi
al: if ρt ∈ [−1, 1] is a measurable fun
tion on R+ whi
h is lo
ally square integrable, and
(B1, Z) is a two dimensional standard Brownian motion, then

B2
t =

t∫

0

ρsdB
1
s +

t∫

0

√
1− ρ2sdZs (3.2)is a Brownian motion (with respe
t to its natural �ltration), and 〈B1, B2〉t =

∫ t
0 ρsds. Indeed,it is a 
ontinuous pro
ess, its quadrati
 variation 〈B2〉t = t and it is a 
ontinuous lo
almartingale. Hen
e it is a Brownian motion. Moreover, 〈B1, B2〉t =

∫ t
0 ρsd〈B1〉s =

∫ t
0 ρsds �.Correlated BM with sto
hasti
 
orrelation The previous 
onstru
tion extends to the
ase where ρt is a progressively measurable pro
ess with respe
t to the (augmented) �ltrationgenerated by (B1, Z), and ρt is lo
ally square integrable. De�ning

dB2
t = ρtdB

1
t +

√
1− ρ2tdZt (3.3)i.e. B2

t =
∫ t
0 ρsdB

1
s +

∫ t
0

√
1− ρ2sdZs, then if equation (3.3) has a strong and non explosivesolution, B2 is a Brownian motion, and d〈B1, B2〉t = ρtdt, just as in the deterministi
 
ase.Correlated BM with 
oupling 
orrelation fun
tion Consider a deterministi
 fun
tion

ρt(x, y) that is bounded by 1, and measurable. We would like to de�ne a bidimensional Markovpro
ess (B1, B2):
d〈B1, B2〉t = ρ(t, B1

t , B
2
t )dt (3.4)A

ordingly, 
onsider the following equation

dB2
t = ρt(B

1
t , B

2
t )dB

1
t +

√
1− ρ2t (B

1
t , B

2
t )dZt (3.5)Assume that this di�usion equation has a strong solution. Then B2 is a Brownian motionand satisfy the equation (3.4). The solution (B1, B2) of this SDE is 
alled a 
oupled Brownianmotion, and the fun
tion (t, x, y) ∈ R+ ×R2 7→ ρt(x, y) is 
alled the 
oupling 
orrelation.76
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Coupling Markovian di�usions More generally, we want to give a meaning to the 
ouplingequation 



dXt = aX(t,Xt)dt+ σX(t,Xt)dW
X
t

dYt = aY (t, Yt)dt+ σY (t, Yt)dW
Y
t

d〈WX ,W Y 〉t = ρt(Xt, Yt)dt

(X0, Y0) ∼ µ0

(3.6)
where ρ is bounded by 1 and measurable. This equation 
orresponds to the 
oupling of twoMarkovian di�usions Xt and Yt with the 
oupling 
orrelation ρt(Xt, Yt). This equation isformulated unambiguously as





dXt = aX(t,Xt)dt+ σX(t,Xt)dW
X
t

dYt = aY (t, Yt)dt+ σY (t, Yt)(ρt(Xt, Yt)dW
X
t +

√
1− ρ2t (Xt, Yt)dZt)

(X0, Y0) ∼ µ0where Zt is a Brownian motion independent ofWX . Provided that the above equation admitsa strong solution (Xt, Yt) (
lassi
al 
onditions that ensure it are re
alled in appendix 17), thepro
ess de�ned by
dW Y

t = ρt(Xt, Yt)dW
X
t +

√
1− ρ2t (Xt, Yt)dZtis indeed a Brownian motion, and d〈WX ,W Y 〉t = ρt(Xt, Yt)dt.3.2.2 A partial di�erential equation on the 
opulasThe Kolmorogov forward equation of a di�usion whose law at time t > 0 has density ft is anevolution equation of ft. The purpose of this se
tion is to show how, after s
aling the marginaldi�usions by their 
dfs, a Kolmogorov forward equation for the 
oupling equation (3.6) isobtained; this equation des
ribes the evolution of the 
opula Ct of the bivariate di�usion.This `
opula PDE' makes a link between the 
oupling 
orrelation ρt and the 
opula Ct, andis the 
ore of this 
hapter.This se
tion provides results of existen
e and uniqueness relative the Kolmogorov forwardequation of the di�usion (3.6). Although these results might seem 
lassi
al to the readerfamiliar with di�usion theory (as des
ribed for instan
e in the 
omprehensive book of Stroo
kand Varadhan [21℄ or in the more re
ent book of Stroo
k [20℄), the s
aling of the marginalsmust be handled 
arefully in order to derive the 
opula PDE rigorously, and this is the s
opeof the following results. 77
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Notations and HypothesesLet (Xt, Yt) be a strong solution to the 
oupling equation (3.6). The marginals 
dfs FXt , F Ytare the 
umulative distribution fun
tions of Xt and Yt, and, likewise, the marginals densities(when they exist) are denoted fXt and fYt . These are always supposed positive thereafter, andthus the 
opula of (Xt, Yt) is de�ned unambiguously and is denoted Ct.The drifts and volatilities aX , aY , σX , σY are fun
tions de�ned on R+ ×R that take valuesin R and are always assumed measurable and lo
ally bounded (a fun
tion f(t, x) is lo
allybounded if for all 
ompa
t K ⊂ R+ ×R, sup(t,x)∈K |f(t, x)| < +∞.)The set of twi
e 
ontinuously di�erentiable fun
tions with 
ompa
t support on (0, 1)2 is de-noted C2
c ((0, 1)

2).
C1,k(R× (0, 1)2), k integer, is the set of fun
tions u(t, x) that are 
ontinuously di�erentiable
k times in the spa
e variable, 
ontinuously di�erentiable in the time variable, and su
h that
∂tu(t, x) is also 
ontinuously di�erentiable k times in x.For a measure µ on (0, 1)2 and a fun
tion ϕ ∈ C2

c ((0, 1)
2), the bra
ket 〈µ,ϕ〉 is de�ned as∫

(0,1)2 ϕ(x)dµ(x). For a lo
ally integrable fun
tion f , 〈f, ϕ〉 is de�ned as 〈fdx, ϕ〉.A reminder on the Kolmogorov forward equationHypotheses for a Kolmogorov forward equation to hold in a su�
iently general 
ase for ourpurpose are:Proposition 4 Let Lt be the in�nitesimal generator of a Markovian di�usion Xt in RN ,
N ≥ 1, and let Pt be the law of the di�usion at time t. Assume the drift and the volatility of
Xt are lo
ally bounded. Then the following equation holds: for all ϕ ∈ C2

c (RN ),
〈Pt, ϕ〉 = 〈P0, ϕ〉+

t∫

0

〈Lsϕ,Ps〉dsThis 
an be written informally
∂tPt = L∗

tPtwhere L∗
t denote the adjoint operator of Lt.This is a standard result and is basi
ally an appli
ation of It	o's lemma.Proof of the 
opula PDEThe s
aling of the marginals does not make sense at time 0 when the initial distribution µ0has a singular 
omponent, and it is assumed in the �rst pla
e that it admits a density withrespe
t to the Lebesgue measure. 78
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The two next lemmas prove that the s
aled marginals remain di�usion pro
esses, and identifythe in�nitesimal generator of the bivariate s
aled di�usion.Lemma 4 Assume that the marginal 
dfs are in C1,2(R+×R). Assume moreover that σX and
σY are 
ontinuously di�erentiable in the spa
e variable. Then the s
aled marginal pro
esses
X̃t = FXt (Xt) and Ỹt = F Yt (Yt) are di�usion pro
esses. The in�nitesimal generator of X̃t is

LX̃t =
1

2
∂x
(
(fXt σ

X
t )((FXt )−1(x))∂x

)The in�nitesimal generator of (X̃t, Ỹt) is Lscaled = LX̃t +LỸt +LXYt where LX̃Ỹt is the operator
ϕ ∈ C2

c ((0, 1)
2) 7→ ρ̃tf̃

X
t σ̃

X
t f̃

Y
t σ̃

Y
t ∂

2
uvϕ, and g̃(t, u, v) stands for g(t, (FXt )−1(u), (F Yt )−1(v)).Proof: As FXt and F Yt are C1,2(R+ ×R), the It	o's lemma applies to FXt (Xt) and F Yt (Yt),and we derive the di�usion equations for the s
aled variables X̃t = FXt (Xt) and Ỹt = F Yt (Yt):

dX̃t = fXt (Xt)dXt + ∂tF
X
t (Xt)dt+

1

2
(fXt )′(Xt)d〈X,X〉t

=
[
fXt (Xt)a

X(t,Xt) + ∂tF
X
t (Xt) +

1

2
(fXt )′(Xt)(σ

X)2(t,Xt)
]
dt+ fXt (Xt)σ

X(t,Xt)dW
X
twhere fXt = ∂xF

X
t is the pdf ofXt. Be
ause the 
dfs are stri
tly in
reasing, Xt = (FXt )−1(X̃t),and X̃t is a di�usion with the following dynami
s:

dX̃t =
˜[

fXt a
X(t, ·) + ∂tF

X
t +

1

2
(fXt )′(σX(t, ·))2

]
(X̃t)dt+

˜fXt σ
X(t, ·)(X̃t)dW

X
tLet µ(t, x) and vol(t, x) be the drift and the volatility in this equation. The density of X̃t is
onstant as it follows the uniform law on [0, 1]. Let ϕ ∈ C2

c ((0, 1)
2) and Φ(x) =

∫ x
0 ϕ(s)ds.Then It	o's lemma yields

E(Φ(X̃t)) = E(Φ(X̃0)) +E

( t∫

0

ϕ(X̃s)µ(s, X̃s) +
1

2
ϕ′(X̃s)vol

2(s, µ(s, X̃s))ds
)

+E

( t∫

0

ϕ(X̃s)vol(s, X̃s)dW
X
s

)This last expe
ted value is zero as the integrand is lo
ally bounded and adapted with respe
tto WX , and the integral is a martingale. As the law of X̃t is the uniform law on (0, 1) for all
t, taking the time derivative of this expression yields:

0 = 〈µ(t, ·), ϕ(x)〉 + 1

2
〈vol2(t, ·), ∂xϕ(x)〉for all ϕ ∈ C2

c ((0, 1)). As the fun
tion vol2 is di�erentiable in the spa
e variable by hypothesis,79
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µ(t, x) = 1
2∂xvol

2(t, x) for all (t, x) ∈ R+× (0, 1), and the in�nitesimal generator of the s
aleddi�usion is:
LX̃t ϕ(t, x) =

1

2
∂x(vol(t, x)

2∂xϕ)

�The point to derive a PDE on the 
opula Ct is then to perform a mere integration by part. Inorder to simplify the exposition, it is assumed that the di�usion (Xt, Yt) has a smooth 
opula.Proposition 5 Assume that the 
opula Ct of the 
oupled di�usion at time t is in
C1,2(R+ × (0, 1)2). Assume that the hypotheses of lemma 4 hold: the marginal di�usionshave 
ontinuously di�erentiable densities fXt and fYt , and the volatilities are 
ontinuously dif-ferentiable in the spa
e variable. Then the 
opula family Ct satis�es the following weak PDE:for all t > 0, for all ϕ ∈ C2

c ((0, 1)
2),

〈∂tCt, ∂2uvϕ〉 =
〈1
2

((
f̃Xt σ

X(t, ·)
)2
∂2uuCt +

(
f̃Yt σ

Y (t, ·)
)2
∂2vvCt

)

+ ˜(ρtf
X
t (·)σX (t, ·)fYt (·)σY (t, ·))∂2uvCt, ∂2uvϕ

〉 (3.7)Proof: Let ϕ ∈ C2
c ((0, 1)

2). The Kolmogorov forward equation states that:
〈PX̃t,Ỹt

, ϕ〉 = 〈PX̃0,Ỹ0
, ϕ〉+

t∫

0

〈Lscaleds (ϕ),PX̃s ,Ỹs
〉dsEquivalently,

〈∂2uvCt, ϕ〉 = 〈∂2uvC0, ϕ〉 +
t∫

0

〈Lscaleds (ϕ), ∂2uvCs〉dsWe then detail the integrations by parts. Let volX̃t (u) = σ̃Xt f
X
t (u).

〈LX̃t (ϕ), ∂2uvCt〉 =
1

2

1∫

0

1∫

0

∂u(vol
X̃
t (u)2∂uϕ(u, v))∂

2
uvCt(u, v)dudv

=
1

2

1∫

0

∂uCt(u, 1)∂u(vol
X̃
t (·)2)∂uϕ(·, ·))(u, 1)du

− 1

2

1∫

0

∂uCt(u, 0)∂u(vol
X̃
t (·)2∂uϕ(·, ·))(u, 0)du

− 1

2

1∫

0

1∫

0

∂uCt(u, v)∂u(vol
X̃
t (u)∂2uvϕ(u, v))dudv80
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As ϕ has a 
ompa
t support the two �rst integrals are zero. Another integration by parts inthe last integral yields
−

1∫

0

1∫

0

∂uCt(u, v)∂u(vol
X̃
t (u)∂2uvϕ(u, v))dudv =

1∫

0

1∫

0

∂2uuCt(u, v)vol
X̃
t (u)2∂2uvϕ(u, v)dudv

−
1∫

0

[∂uCt(1, v)vol
X̃
t (1, v)2∂2uvϕ(1, v) − ∂uCt(0, v)vol

X̃
t (0, v)2∂2uvϕ(0, v)]dvOn
e again the boundary terms are zero, and eventually, we have

〈LX̃t (ϕ), ∂2uvCt〉 = 〈1
2
(volX̃t )2∂2uuCt, ∂

2
uvϕ〉Thus, for all ϕ ∈ C2

c ((0, 1)
2),

〈Ct, ∂2uvϕ〉 = 〈C0, ∂
2
uvϕ〉+

t∫

0

〈1
2
(volX̃s )2∂2uuCs +

1

2
(volỸs )

2∂2vvCs + ρ̃svol
X̃
s vol

Ỹ
s ∂

2
uvCs, ∂

2
uvϕ〉ds

�If there is more regularity, then a strong equation obtains:Proposition 6 Suppose Ct ∈ C1,4(R+× ((0, 1)2)) and that the marginal densities, the volatil-ities and the 
orrelation are twi
e 
ontinuously di�erentiable in the spa
e variables. Assumethat ∂tCt(u, v) goes to zero as either u or v goes to zero. Then, for all t > 0 and (u, v) ∈ (0, 1)2,
∂tCt(u, v) =

1

2
(volX̃t )2∂2uuCt +

1

2
(volỸt )

2∂2vvCt + ρ̃tvol
X̃
t vol

Ỹ
t ∂

2
uvCt

+ ϕt(u) + ψt(v) + αt

(3.8)where volX̃t (u) = (fXt .σ
X
t )(t, (FXt )−1(u)) and volỸt (v) = (fYt .σ

Y
t )(t, (F

Y
t )−1(v)). De�ning

gt(u, v) as the fun
tion on the right hand side of the �rst line, ϕt(u) = − limǫ→0 gt(u, ǫ),
ψt(v) = − limǫ→0 gt(ǫ, v) and αt = limǫ→0 gt(ǫ, ǫ).Proof: The proof is straightforward. The hypotheses of regularity of the 
opula and the
oe�
ients imply that equation (3.7) is equivalent to the strong equation

∂2uv∂tCt = ∂2uv

(
1

2
volX̃t (u)2∂2uuCt(u, v) + volỸt (v)2∂2vvCt(u, v) + ρ̃t(u, v)vol

X̃

t (u)volỸt (v)∂
2

uvCt

)for all t > 0, (u, v) ∈ (0, 1)2. Let ǫ > 0. For a bivariate fun
tion f , denote ∆c,d
a,bf := f(b, d) −

f(a, d)− f(b, c) + f(a, b). Integrating the previous equation between ǫ < u and ǫ < v:
∆ǫ,v
ǫ,u∂tCt = ∆ǫ,v

ǫ,ugt(u, v)81
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By hypothesis, the l.h.s. goes to ∂tCt(u, v) when ǫ→ 0 �.Thereafter, it is always assumed that the fun
tion ϕt(u) + ψt(v) + αt is identi
ally zero, andtherefore that for all t > 0, for all (u, v) ∈ (0, 1)2,
∂tCt(u, v) =

1

2

((
f̃Xt σ

X(t, u)
)2
∂2uuCt(u, v) +

(
f̃Yt σ

Y (t, v)
)2
∂2vvCt(u, v)

)

+ ˜(ρtfXt (u)σX (t, u)fYt (v)σY (t, v))∂2uvCt(u, v)

(3.9)In what follows, only this equation is referred to as the `
opula PDE' (rather than the weakequation (3.7)). Nevertheless, here are su�
ient 
onditions for the extra terms in (3.8) tovanish :1. For all t > 0, the marginal densities fXt , fYt and the volatilities σX(t, ·), σY (t, ·) arebounded over R.2. For all t > 0, for all (u, v) ∈ (0, 1)2,
lim
ǫ→0

∂2uuCt(u, ǫ) = lim
ǫ→0

∂2vvCt(ǫ, v) = lim
ǫ→0

∂2uvCt(u, ǫ) = lim
ǫ→0

∂2uvCt(ǫ, v) = 03. For all t > 0, for all (u, v) ∈ (0, 1)2,
lim
ǫ→0

volX̃t (ǫ)2∂2uuCt(ǫ, v) = lim
ǫ→0

∂2vvvol
Ỹ
t (ǫ)

2Ct(u, ǫ) = 0The 
onditions 1 and 2 are satis�ed in the rest of this 
hapter, when the marginals are Brownianmotions. Our experiments show it is also the 
ase of 
ondition 3, although it is more di�
ultto prove rigorously that it holds for a given 
opula family {Ct}.Finally, let us mention that proposition 6 still holds when the initial distribution µ0 is singular:Corollary 1 Suppose that the 
oupled di�usion has a smooth 
opula Ct ∈ C1,2(R∗
+ × (0, 1)2),Assume the 
dfs of the marginals are twi
e 
ontinuously di�erentiable in spa
e for all t > 0and 
ontinuously di�erentiable in the time variable on R∗

+, and the same for the volatilities.Then equation (3.9) holds for all t > 0.This result is obtained by 
onsidering the time-shifted SDE (3.6), see appendix 3.6.1.UniquenessThe expli
it expression between the 
oupling 
orrelation and the 
opula family {Ct} suggests
onsidering the 
oupling problem from the opposite point of view; namely, if a 
opula family
{Ct} is �xed, that the fun
tion ρt is de�ned a

ording to equation (3.9) is bounded by 1 andyields a solution to the 
oupling equation (3.6), then it is sensible to suppose that the resulting82
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di�usion pro
ess (Xt, Yt) has 
opula Ct at time t. Su
h a result follows from the uniquenessof solutions to Kolmogorov forward equation. Let (IC) denote the integrability 
ondition:
∃ ε > 0 s.t. (u, v) 7→ sup

0<t≤ε
∂2uvCt(u, v) ∈ L1((0, 1)2)Proposition 7 Assume the marginal di�usions have densities fXt and fYt in C1(R∗

+×R) forall t > 0, and that they and their derivatives goes to zero at ±∞. Let {Ct} ∈ C1,2(R+×(0, 1)2)satisfying (IC). Let ρ(t, u, v) su
h that the 
opula PDE (3.9) holds, and ρ(t, u, v) is boundedby one in absolute value. Assume that the drift and volatilities aX , aY , σX , σY , and the
orrelation fun
tion ρ̃t(x, y) = ρ(t, (FXt )−1(u), (F Yt )−1(v)) are jointly 
ontinuous over R+ ×R2, measurable and bounded. Assume eventually that ρ is bounded away from ±1, uniformlyin time, i.e. inft>0, x y ||ρ(t, x, y)| − 1| ≥ ε for some ε > 0. Then if the 
oupling SDE admits asolution, its law has a density at all times t > 0 and the 
opula at time t is indeed Ct.See appendix 3.6.1 for a detailed proof.Note that ρ̃t(x, y) = ρ(t, FXt (x), F Yt (y)) might not make sense at time t = 0 when the marginaldistributions are singular at t = 0, unless ρ(t, u, v) is a 
onstant for t < ε. This is the 
ase forinstan
e when Ct is the Gaussian 
opula with 
onstant parameter for t < ε (and in this 
asethe 
ondition (IC) is also satis�ed) and that the marginals di�usions are Brownian motionsor geometri
 Brownian motions.3.3 The 
ase of 
oupled Brownian motionsWhile the previous se
tion detailed the link between the 
opula of a 
oupled di�usion and the
oupling 
orrelation, it remains un
lear whether a given 
opula family {Ct} yields a fun
tion ρtthat is indeed a 
orrelation fun
tion, that is, at least, a fun
tion bounded by 1. This se
tionis devoted to the 
oupling problem when the marginals are Brownian motions. A detailedexample shows that it is possible to 
ouple Brownian motions in a `stationary' manner by anon Gaussian 
opula. Several examples of 
opulas that yield admissible 
oupling 
orrelationfun
tions as well as 
ounterexamples are mentioned and an heuristi
 
hara
terization of 
opulasthat are attainable by 
oupled Brownian motions is dis
ussed.3.3.1 The 
oupling problem when marginals are Brownian motionsWhen the marginal pro
esses are Brownian motions, the 
oupling SDE (3.6) be
omes :




dB2
t = ρt(Φ(B

1
t /
√
t),Φ(B2

t /
√
t))dB1

t +
√

1− ρ2t (Φ(B
1
t /
√
t),Φ(B2

t /
√
t))dZt

B2
0 = 0

(3.10)83
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where (B1
t , Zt) is a standard bivariate Brownian motion, Φ is the 
df of the standard normallaw and (t, u, v) 7→ ρ(t, u, v) is in C0(R+ × (0, 1)2).Let Corr be the set of fun
tions ρ su
h that1. ρ ∈ C0(R+ × (0, 1)2).2. sup(t,u,v) |ρ(t, u, v)| ≤ 1.3. ρ is 
onstant for t small enough, i.e. there exists δ > 0 su
h that ρ(t, ·) = ρ ∈ [−1, 1] forall t ≤ δ.4. ρ is bounded away from ±1: ∃ ε > 0, s.t. for all (t, u, v), ||ρ(t, u, v)| − 1| > ε.The 
onditions 3 and 4 ensure that the 
orrelation fun
tion ρ(t, Φ(x)√

t
, Φ(y)√

t

) make the 
ouplingSDE have a unique strong solution (see proposition 17 in appendix 3.6.2). In parti
ular, theproblem of de�ning the quantiles (FXt )−1 and (F Yt )−1 at t = 0 is avoided, thanks to 
ondition3, whi
h imposes a 
onstant Gaussian 
opula at small times. Likewise, the set of 
ontinuousfun
tions ρ de�ned on (0, 1)2 su
h that |ρ| ≤ 1 and ρ is bounded away from ±1 is denotedCorrBM (for Brownian 
orrelation fun
tion).Let C+ = {{Ct}t≥0, Ct ∈ C1,2(R+ × (0, 1)2), ∂2uvCt(u, v) > 0, ∀(u, v) ∈ (0, 1)2}, the smooth
opula families with everywhere positive densities. It is 
onvenient to 
onsider the mapping:
F : {Ct} ∈ C+ 7→ ρCt ∈ C0(R+ × (0, 1)2)where ρCt : (u, v) ∈ (0, 1)2 7→

2πt∂tCt(u, v)− 1
2

(
e−Φ−1(u)2∂2uuCt(u, v) + e−Φ−1(v)2∂2vvCt(u, v)

)

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvCt(u, v) (3.11)
F ({Ct}) is the 
orrelation fun
tion that appears in the 
opula PDE (3.9), when the 
opulafamily is {Ct}. Conversely, it is 
onvenient to 
onsider
G : ρt ∈ Corr 7→ {Ct}, the 
opula family of the 
oupled BMs with 
orrelation fun
tion ρtLet Cop = G(Corr) be the set of 
opula families that are the 
opula family of 
oupled Brownianmotions with a 
orrelation fun
tion in Corr. For ρ ∈ R, |ρ| ≤ 1, Corr(ρ) denotes the set of

ρt ∈ Corr su
h that ρt = ρ for all t small enough: Corr = ∪ρ∈(−1,1)Corr(ρ). Finally, letCop(ρ) = F−1(Corr(ρ)), the set of 
opulas su
h that the 
orrelation fun
tion is in Corr(ρ).A question of 
ru
ial importan
e is to determine the set of 
opula that 
an be attained by
oupled Brownian motions, that is to say the 
opulas C su
h that there exists a 
oupledBrownian motion (i.e. a 
orrelation fun
tion) whose 
opula CT at some time T satisfy CT = C.More pre
isely, 84
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De�nition 4 A 
opula C is attainable at time T ≥ 0, i� there exists {Ct} ∈ Cop su
h that
CT = C. The set of attainable 
opulas at some time t ≥ T is denoted AT . A 
opula C issaid stationary (for the Brownian motion) if it is attainable at some time T ≥ 0 by 
oupledBrownian motions (B1

t , B
2
t ), and that C(B1

t ,B
2
t )

≡ C, for all t ≥ T . The set of stationary
opulas from time T is denoted AST .A trivial example of a stationary is the Gaussian 
opula, but it is not the only 
opula tohave this property, as is proved below. Along with the notion of stationary 
opulas 
omes thenotion of stationary (Brownian) 
orrelation fun
tion:De�nition 5 For C ∈ C2((0, 1)2) a 
opula with positive density, let the stationary Brownian
orrelation fun
tion of C be the fun
tion
ρC(u, v) = −1

2

e
Φ−1(v)2−Φ−1(u)2

2 ∂2uuC(u, v) + e
Φ−1(u)2−Φ−1(v)2

2 ∂2vvC(u, v)

∂2uvC(u, v)
, ∀(u, v) ∈ (0, 1)2(3.12)If a 
opula is stationary, then the 
orrelation fun
tion ρt of the 
oupled Brownian motionswhi
h attain the dependen
e C is ne
essarily equal to ρC for t big enough. In parti
ular, timedoes not appear in expression (3.12), and this expression is more 
onvenient to work with than(3.11). Although it might seem trivial, the 
ase of the Gaussian 
opula is worth noti
ing:Proposition 8 The stationary Brownian 
orrelation fun
tion of the Gaussian 
opula Cρ is
onstant over (0, 1)2 and equals ρ. Moreover, if ρt ∈ C1(R+) and is bounded by 1, and that

Ct := C 1
t

∫ t
0
ρsds

if t > 0 and C0 = Cρ0 , then the 
orrelation fun
tion F ({Ct}t≥0) is ρt.See appendix 3.6.2 for a proof.As expe
ted, the stationary 
orrelation of a Gaussian 
opula 
opula with 
onstant parameter
ρ is ρ.Eventually, a set of parti
ular interest is the interse
tion of all At, t > 0:De�nition 6 Let A0+ = ∩t>0At: it is the set of 
opulas that 
an be attained at arbitrarysmall times. Similarly, AS0+ is de�ned as the set of stationary 
opulas from any time t > 0.The point is to prove that these sets are not redu
ed to the Gaussian 
opula family.3.3.2 Results on the attainability of a 
opula CThe self-similarity property of Brownian motion 
onsiderably simpli�es the analysis of the setof attainable 
opulas.Lemma 5 Let (Bt,Wt) a pair of 
oupled Brownian motions, with 
oupling 
orrelation ρ(t, x, y).Then for every c > 0, the bivariate pro
ess (Bc

t ,W
c
t ) = (Bct√

c
, Wct√

c
) is a 
oupled Brownian motionwith 
orrelation fun
tion ρc(t, x, y) = ρ(ct,

√
cx,

√
cy). This 
orrelation is in Corr if ρ ∈ Corr,and the 
opula of (Bc

t ,W
c
t ) is the 
opula of (Bct,Wct).85
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Proof: By self-similarity of the Brownian motion, (Bc
t ,W

c
t ) is a pro
ess with Brownianmarginals. Furthermore,

〈Bc,W c〉t =
1

c
〈B,W 〉ct =

1

c

ct∫

0

ρ(s,Bs,Ws)dsand thus, d〈Bc,W c〉t = ρc(t, Bc
t ,W

c
t )dt where ρc(t, x, y) = ρ(ct,

√
cx,

√
cy). Eventually, the
opula of (Bc

t ,W
c
t ) evaluated at (u, v) ∈ [0, 1]2 is:

P(Φ(Bc
t /
√
t) ≤ u,Φ(W c

t /
√
t) ≤ v) = P(Φ(Bct/

√
ct) ≤ u,Φ(Wct/

√
ct) ≤ v)and the r.h.s. is, by de�nition, the 
opula of (Bct,Wct) evaluated at (u, v). The fa
t that

ρc ∈ Corr if ρ ∈ Corr is obvious.�A dire
t 
onsequen
e isProposition 9 A0+ = ∪t>0At. In other words, if a 
opula is attainable at some time T > 0,then it is attainable at any time t > 0. Similarly AS0+ = ∪t>0A
S
t .Proof: Assume that C ∈ AT and let (B1, B2) a pair of 
oupled Brownian motions, su
h that

CB1
T ,B

2
T
= C. Then, for c > 0, lemma 5 ensures that C is attainable a time T

c . �In addition to self-similarity, the Brownian motion is stable by time-inversion, meaning thatif Bt is a standard BM, then so is the pro
ess that starts at 0 at time 0 and is de�ned tB 1
t
if

t > 0. Therefore,Proposition 10 Let (B,W ) be a pair of 
oupled BMs. Then the 
opula of (B̃t, W̃t) :=(
tB 1

t
, tW 1

t

) is the 
opula of (B 1
t
,W 1

t

) for t > 0.Proof: For ea
h (u, v) ∈ [0, 1]2

CB̃t,W̃t
(u, v) = P(Φ(B̃t/

√
t) ≤ u,Φ(W̃t/

√
t) ≤ v)

= P

(
Φ
(√

tB 1
t

)
≤ u,Φ

(√
tW 1

t

)
≤ v
)

= CB 1
t
,W 1

t

(u, v) by de�nition.
�This pro
ess has Brownian marginals and proposition 10 shows that whenever a 
opula C ∈
AS0+ , then there exists a pair of Brownian motions (At, Bt) su
h that the 
opula CAt,Bt is Cfor all t small enough. Note that the previous properties are spe
i�
 to Brownian motion, andotherwise the sets A0+ might well be stri
tly in
luded in At, t > 0 .A 
ru
ial point is to show that the set of stationary 
opulas is not redu
ed to the Gaussianfamily. In order to prove it, we �rst show that the sets Cop(ρ) have 
onvexity properties.86
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Lemma 6 For all ρ ∈ (−1, 1), Cop(ρ) is stable by 
onstant mixtures: if α ∈ [0, 1], {Ct} and
{C̃t} ∈ Cop(ρ), then αCt + (1− α)C̃t ∈ Cop(ρ).The proofs of the rest of this se
tion are gathered in appendix 3.6.2. Note that the 
orrelationfun
tion derived from the 
opula αtCρ+(1−αt)C is not the 
onvex sum αtρ+(1−αt)ρC(u, v),whi
h 
ompli
ates the analysis. Using time-dependent mixtures of Gaussian 
opulas and agiven 
opula C, it is possible to prove that some 
opulas are stationary:Proposition 11 Let C be a 
opula su
h that ρC ∈ CorrBM. Introdu
e
δC(ρ) = inf

(u,v)∈(0,1)2
s.t. Ct(u,v)6=C(u,v)





e
Φ−1(u)2+Φ−1(v)2

2

2π|Cρ(u, v)− C(u, v)| [(1− |ρ|)∂2uvCρ(u, v) ∧ (1− |ρC(u, v)|)∂2uvC]



 .and assume that δC(ρ) > 2 for some ρ ∈ (−1, 1). Then C ∈ AS0+ .However, when a 
opula C has a stationary 
orrelation fun
tion ρC in CorrBM but does notsatisfy δC(ρ) ≤ 2, our intuition is that it 
an be attained, at least asymptoti
ally. It meansthat de�ning the 
onvex sum ρt(u, v) = αtρ + (1 − αt)ρC(u, v) for a 
onvenient fun
tion αt,we expe
t the resulting 
oupled Brownian motions to have a 
opula Ct su
h that Ct → C as

t → ∞. This 
onvergen
e has been observed empiri
ally on simulations of 
oupled Brownianmotions for various 
orrelation fun
tions ρ: after a few steps of an Euler s
heme, the 
opulaseems to stop evolving anymore and be
omes stationary. Eventually, this intuition is supportedby the fa
t that su
h a 
opula satis�es the equation (Lscaledt )∗∂2uvC = 0 for t big enough, andit is a stylized fa
t in the theory of Markov pro
esses that this indi
ates that C is a possiblestationary distribution.3.3.3 A detailed example: the FGM 
opulaThe FGM 
opula (Farlie-Gumbel-Morgenstern 
opula) is de�ned by Cθ(u, v) = uv + θuv(1−
u)(1− v), for |θ| ≤ 1. This 
opula family 
ontains all 
opulas with quadrati
 se
tions in both
u and v, i.e. all 
opulas C su
h that both C(u, ·) and C(·, v) are quadrati
 fun
tions. Thistype of 
opula does not produ
e strong dependen
e: as ∂θC(u, v) ≥ 0, it is positively orderedfamily, and Nelsen [15℄ p. 78 provides s
atterplots from the extremal members C−1 and C1whi
h 
learly exhibit a low degree of dependen
e. Notwithstanding its relevan
e to modelstrong dependen
e, this family has the advantage of yielding parti
ularly simple formulas thatallow for expli
it 
omputations. In parti
ular, the stationary 
orrelation fun
tion of the FGM
opula Cθ is

ρθ(u, v) = θ.
e(Φ

−1(v)2−Φ−1(u)2)/2v(1− v) + e(Φ
−1(u)2−Φ−1(v)2)/2u(1− u)

1 + θ(1− 2u)(1 − 2v)
(3.13)87

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Proposition 12 For all |θ| ≤ 1
2 , |ρθ(u, v)| ≤ 1 for all u, v in [0, 1].Proof: : 
.f. appendix 3.6.2. A numeri
al analysis of ρθ suggests the sharp bound |ρθ(u, v)| ≤

|θ|
2 holds for all |θ| ≤ 1 and we will use this bound in what follows to prove that the FGM
opula is a stationary 
opula.Proposition 13 There exists a non empty range of parameters θ ∈ [−α,α] , su
h that theFGM 
opula Cθ ∈ AS0+ .Proof: Apply the proposition 11 with ρ = 0 and θ 6= 0 (whi
h 
orresponds to the indepen-den
e 
opula). Then we have:

inf
(u,v)∈(0,1)2

e
Φ−1(u)2+Φ−1(v)2

2

2π(Cθ(u, v)− uv)
.
(
(1− |ρθ|).∂2uvCθ ∧ 1

)
≥ 16(1 − |θ|)(1− |θ|/2)

2π|θ| (3.14)Indeed, |ρθ| ≤ |θ|
2 and ∂2uvCθ = 1 + θ(1 − 2u)(1 − 2v) ≥ 1 − |θ|, so (1 − ρθ).∂

2
uvCθ ∧ 1 ≥

1∧ (1− |θ|)(1− |θ|/2) = (1− |θ|)(1− |θ|/2). Eventually Cθ(u, v)− uv = |θ|uv(1−u)(1− v) ≤
|θ|/16 gives the inequality. A su�
ient 
ondition for the proposition 11 to apply is then
16(1−|θ|)(1−|θ|/2)

2π|θ| > 2, whi
h is easily seen to be true for all 0 ≤ |θ| ≤ α, α ≈ 0.49. �The lower bound (3.14) is not a sharp one and a
tually, numeri
al eviden
e suggests that thewhole FGM 
opula family is in AS0+ .This result has some importan
e, as it proves that there exists bivariate pro
esses, whosemarginals are Brownian motions, and whi
h are 
oupled by a non Gaussian 
opula , from anarbitrary small time t > 0:Corollary 2 AS0+ does not redu
e to Gaussian 
opulas and 
ontains members of the FGMfamily.3.3.4 Stationary 
opulas of some pro
esses with Gaussian marginalsBa
k to the more general 
ase of 
oupling Markovian di�usions, 
onsider the problem of
oupling Markovian di�usions that have the same marginals, and that these marginals haveGaussian 1 dimensional laws, i.e. two di�usions Xt and Yt with same drift and volatility, su
hthat for all t > 0, Xt and Yt have the same Gaussian law N (mt, σ
2
t ). Suppose moreover thevolatility of the marginals is a deterministi
 fun
tion of time Σt > 0. Then (assuming thatthe equation (3.9) holds and the density of the 
opula is everywhere positive) the 
oupling
orrelation reads

ρ(t, u, v) = 2π.e
Φ−1(u)2+Φ−1(v)2

2
σ2t
Σ2
t

∂tCt
∂2uvCt

+ ρC(u, v)be
ause fXt ◦(FXt )−1(u) is proportional to e−Φ−1(u)2/2, that is, the s
aled densities are propor-tional to the s
aled N (0, 1) density, just as in the 
ase of the Brownian motion. In parti
ular, if88
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the 
opula is stationary, then there exists a T > 0 su
h that for all t ≥ T , ρ(t, u, v) = ρC(u, v),the stationary Brownian 
orrelation fun
tion of the 
opula C. This applies for instan
e toOrstein-Uhlenbe
k pro
esses and to Brownian bridges.3.3.5 A zoology of smooth 
opulas and their stationary 
orrelationsHere are listed 
opulas for whi
h we have expli
it formulas for the stationary 
orrelation fun
-tion. Empiri
ally, the 
opulas divide into two families: the one with a stationary 
orrelationbounded by 1, and the one with a stationary 
orrelation that explodes near the boundary ofthe unit square.In addition to the Gaussian 
opula, numeri
al eviden
e suggests the following 
opulas havebounded 
orrelation fun
tion:- The FGM and the iterated FGM 
opulas (namely the Kotz and Johnson's and Li'siterated FGM 
opulas, that are families of 
opulas with 
ubi
 horizontal and verti
alse
tion, see [15℄, p 82).- The Pla
kett 
opula Cθ, when θ ≤ 10.- Among ar
himedean 
opulas: the Frank 
opula, the Gumbel-Barnett (and possibly oth-ers, for instan
e `
opula 4.2.10', see appendix 3.7).Some of the 
orresponding Brownian 
orrelation fun
tions are plotted in �gures 3.2 and 3.3 forthe FGM and the Pla
kett 
orrelation fun
tion (all �gures are gathered at the end of the ap-pendi
es). Note also that for a single 
opula C with positive density, su
h that sup[0,1]2 |ρC | ≤ 1or sup[0,1]2 |ρC | > 1, then three other 
opulas h ve the same property:Proposition 14 The Brownian 
orrelation fun
tions of the 
opulas C1(u, v) = u−C(u, 1−v),
C2(u, v) = v−C(1−u, v) and C3(u, v) = u+v−1+C(1−u, 1−v) are ρC1(u, v) = −ρC(u, 1−v),
ρC2(u, v) = −ρC(1 − u, v), ρC3(u, v) = ρC(1 − u, 1 − v). Moreover 1 − sup[0,1]2 |ρCi | has thesame sign as 1− sup[0,1]2 |ρC |, i = 1, 2, 3.Proof: It is elementary. For instan
e,

ρC1(u, v) =
1

2

e
Φ−1(v)2−Φ−1(u)2

2 ∂2uuC(u, 1− v) + e
Φ−1(u)2−Φ−1(v)2

2 ∂2vvC(u, 1− v)

∂2uvC(u, 1− v)Moreover, be
ause the normal law is symmetri
, Φ−1(v) = −Φ−1(1− v) and the result follows
�.If C = CU,V where (U, V ) is a pair of uniform variable, then C1 = CU,1−V , C2 = C1−U,V and
C3 = C1−U,1−V is the survival 
opula of (U, V ).89
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On the other hand, many 
opulas have a stationary 
orrelation with an explosive behaviornear the boundary of the unit square (two of them are depi
ted in �gure 3.4). For su
h
opulas there does not exist 
oupled Brownian motions su
h that the 
opulas Ct are 
onstantand equal to C on a non trivial time interval. Numeri
al eviden
e shows that many usualar
himedean 
opulas fall in this 
ase; here is a detailed proof for the Clayton 
opula:Proposition 15 The stationary Brownian 
orrelation fun
tion of the Clayton 
opula withparameter θ > 0 is unbounded on (0, 1)2.Proof: the stationary 
orrelation fun
tion is (see appendix 3.7.3), is
ρθ(u, v) =

1

2

(
e

Φ−1(v)2−Φ−1(u)2

2
v

u
(1− vθ) + e

Φ−1(u)2−Φ−1(v)2

2
u

v
(1− uθ)

)Fix u ∈ (0, 1); then limv→0 corrθ(u, v) = +∞. Indeed, limv→0 e
−Φ−1(v)2

2 /v = +∞, while
e

Φ−1(v)2

2 v(1− vθ) is bounded on (0, 12 ]. This 
an be seen be writing that, for x < 0,
e

x2

2 Φ(x) =

0∫

−∞

e−u
2/2−xu du√

2π(see the proof of lemma 12). In parti
ular, 0 ≤ e
Φ−1(v)2

2 v ≤ 1
2 when v < 1

2 , whi
h, 
ombinedwith (1− vθ) ∈ [0, 1] yields eΦ−1(v)2

2 v(1− vθ) is bounded by 1
2 . Finally, limx→−∞ e

x2

2 Φ(x) = 0by dominated 
onvergen
e and thus limv→0 e
−Φ−1(v)2

2 /v = +∞. �.Some ellipti
al 
opulas also have this property: the Student 
opula has an unbounded 
orrela-tion fun
tion, and thus we 
laim the noti
eable result that it is not possible to 
ouple Brownianmotions from a �xed time on with a Student 
opula, see �gure 3.4.The table 3.1 provides expli
it formulas for the 
orrelation fun
tion of the previously mentioned
opulas (see also appendix 3.7). As the 
onsidered 
opulas are all symmetri
, their stationary
orrelations read a(u,v)+a(v,u)
2 for some fun
tion a(u, v), given in table 3.1. The 
opula is said`Admissible' whenever its stationary 
orrelation is bounded by 1.There is an obvious di�eren
e between the 
opulas that are admissible and those that arenot: the 
opulas with bounded stationary 
orrelation we mentioned does not exhibit taildependen
e, 
ontrary to all the 
opulas whi
h have unbounded 
orrelation. Tail dependen
emeasures the strength of the dependen
e of a 
opula in the lower-left quadrant and in theupper-right quadrant of [0, 1]2; for instan
e the 
oe�
ient of lower tail 
oe�
ient is de�nedas limt→0+

C(t,t)
t . We refer to Nelsen [15℄ and to Jaworski's arti
le [9℄ for pre
ise statementson the tail dependen
e of the 
opulas mentioned above. Our experimental results leads us to90
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Copula Stationary 
orrelation fun
tion (a(u, v)) AdmissibleGaussian Cρ ρ YesStudent Cρ,ν (
ρ+ t−1

ν (u)t−1
ν (v)
ν

)
e

Φ−1(v)2−Φ−1(u)2

2

(
1 + t−1

ν (u)2

ν

) ν−1
2
(
1 + t−1

ν (v)2

ν

)− ν+1
2 NoClayton Cθ e

Φ−1(v)2−Φ−1(u)2

2
v
u(1− vθ) NoGumbel Cθ −eΦ−1(v)2−Φ−1(u)2

2
v
u
(− log(u))θ−1

(− log(v))θ−1
A1/θ−A(− log(u))−θ(θ−1−log(u))+θ−1

A1/θ+θ−1
Nowhere A = (− log(u))θ + (− log(v))θFrank Cθ e−θ

e−θ−1
(1− eθv)(1 − eθ(v−1)) YesGumbel-Barnett Cθ θ(1−θ log(v) v

u
)

1−θ−θ log(uv)+θ2 log(u) log(v)
YesFGM Cθ

2θv(1−v)
1+θ(1−2u)(1−2v) YesPla
kett Cθ 2(θ−1)v(1−v)
1+(θ−1)(u+v−2uv) Yes (θ < 10)Table 3.1: TO BE PUT
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infer that stationary 
opulas are ne
essarily without tail dependen
e (although it may not bea su�
ient 
ondition for being a stationary 
opula).3.3.6 A heuristi
 
hara
terization of attainable 
opulasThe fa
t that the stationary 
orrelation fun
tion ρC is not bounded by 1, indi
ates only that
C is not a stationary 
opula, but does not prove that it is not attainable. Nevertheless, weoutline here a heuristi
 
hara
terization of the distributions that are attainable by 
oupledMarkovian di�usions found by A. Gali
hon ([8℄). The idea is to write a variational problem
onsisting in minimizing an obje
tive fun
tion whi
h depends on the 
orrelation, and thenformally writing the dual problem; this latter problem has the property to have �nite valuei� the 
opula is attainable at the 
hosen horizon.Proposition 16 (Heuristi
) Let p and q be two probability distributions over R, and f afun
tion de�ned on [−1, 1]. Consider the problem

inf
pt, ρt s.t.
p0=p, pT=q

∂tpt− 1
2
△pt−∂2xy(ρpt)=0

∫ T∫

0

Lf (ρt(x))pt(x)dtdx (3.15)where Lf (x) = 1|x|≤1f(x)+(+∞)1|x|>1. Then the primal problem (3.15) admits the followingdual
S := sup

ϕt s.t.
∂tϕt+

1
2
△ϕt+f∗(∂2xyϕt)=0

∫
ϕ(T, x)pT (x)dx −

∫
ϕ(0, x)p0(x)dx (3.16)where f∗(y) = sup|x|≤1(x · y − f(x)) is the Legendre transform of f over [−1, 1].The PDE whi
h appears in the 
onstraints of the primal problem is the Kolmogorov forwardequation of the 
oupled Brownian motion with 
orrelation fun
tion ρ, the distribution q isattainable at time T if and only if S <∞.Thus, theoreti
ally, it should be possible to determine whether a given 
opula is attainable,by 
hoosing a 
onvenient fun
tion f and solving the problem (3.16) for every possible initialfun
tion ϕ0. Eventually, remark that, as explained in se
tion 3.3.2, the time parameter T > 0is not a de
isive quantity in this problem, an S being �nite is independent from its value.3.4 A Finan
ial exampleIn this se
tion, a strategy of portfolio insuran
e is 
onsidered in order to assess the impa
t of
oupling di�usions in pra
ti
e. Portfolio insuran
e (and more pre
isely Constant ProportionPortfolio Insuran
e) are a 
lass of dynami
 strategies that aim at guaranteeing a prote
tionat maturity (su
h as a nominal amount in the 
ase of the 
lassi
al CPPI) while bene�ting of92
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the possible rise of a risky asset. These strategies �t well in our framework: they are dynami
and it is natural to use a 
ontinuous model of dependen
e to model the underlyings ratherthan imposing 
opulas at dis
rete times during the life of the strategy.De�nition and des
ription of the strategy We opted for a parti
ular type of strategy,
alled Long-Short CPPI (des
ribed in Amen
 et al.[1℄ and Ron
alli's book [19℄), for the impa
tof dependen
e in su
h a strategy proved to be more obvious than for 
lassi
al CPPI.Let T > 0 be a time horizon. Let N be a nominal amount of 
ash. We assume the investmentuniverse is 
omposed of two risky assets, S1
t and S2

t . The CPPI long-short strategy aims atguaranteeing a per
entage α of the performan
e of the se
ond asset, 
alled the `
ore' whilebene�ting from a possible rise of the �rst asset, the `satellite'. Let Ft = αN
S2
0
S2
t be the valueat time t of the guarantee that must a
hieve the strategy. The dynami
 CPPI strategy useleverage to invest in the satellite. It does it in in su
h a way that the value of the strategyalways remains above Ft, possibly shorting the satellite and being long the 
ore if it happensthat NAVt < Ft. The multiplier m is a real number that determines the strength of leverage;the higher m, the stronger the leverage. The 
ushion is equal to Ct = NAVt − Ft andthe 
ushion % is NAVt−Ft

NAVt
. The investment level is the proportion invested in the satellite:

ILt = m.Ct/NAVt meaning that the 
ushion is leveraged to invest in the satellite. It followsthat, when the strategy is 
ontinuously rebalan
ed, the NAV has the dynami
s:
dNAVt
NAVt

= ILt
dS1

t

S1
t

+ (1− ILt)
dS2

t

S2
tDi�usion Model The 
hosen model is simple: the assets follow a 
oupled Bla
k-S
holesmodel, 




dSi
t

St
= µitdt+ σitdW

i
t , i = 1, 2

d〈W 1,W 2〉t = ρt(W
1
t ,W

2
t )dt

(3.17)Thus the dynami
s of the assets are log-normal, but the bivariate pro
ess (S1
t , S

2
t ) is notGaussian in general. Moreover, if the assets are assumed to have the same dynami
s, and thedrifts are positive, then the 
opula of (S1

t , S
2
t ) is the same as the 
opula of (W 1

t ,W
2
t ), whi
hfurther simpli�es the analysis.Results The impa
t of the dependen
e stru
ture is seen on the gap probability at maturity.For su
h a strategy, the gap risk at maturity is the possibility that the value of the strategyat T is below FT . It is the risk that the CPPI does not rea
h the level of prote
tion and thusthe risk that the CPPI seller su�ers a loss. Of 
ourse, a gap 
an not o

ur if the CPPI is
ontinuously rebalan
ed and the assets follow a 
ontinuous di�usion : the results obtained inthis se
tion are obtained when the strategy is rebalan
ed every 3 days, and the maturity is93
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one year. The two asset are assumed to be martingales (µi = 0, i = 1, 2) and their volatilitiesare the same. In �gure 3.4 are given an estimation of the gap probability P(NAVT < FT ),for several 
opulas and several sto
k volatilities. In order to give a meaningful 
omparisonof the 
opulas, the Sperman's rho is used as a measure of the strength of dependen
e. TheSpearman's rho of a 
opula C is de�ned as the linear 
orrelation between (U, V ) of a pair ofuniform random variable with 
opula C; it is a measure of 
on
ordan
e (whose de�nition isre
alled in [15℄, p. 169), and is suitable to 
ompare the strength of dependen
e a
ross di�erent
opula families.

Figure 3.1: Gap probabilities obtained for di�erent 
opulas.Despite the fa
t that some of the 
onsidered 
opulas have unbounded stationary 
orrelation
ρC , we use nevertheless these 
opulas by for
ing ρC to be bounded using the simplest possible`tri
k', by 
onsidering (u, v) 7→ 1|ρC(u,v)|≤1ρC(u, v) + sgn(ρC(u, v))1|ρC (u,v)|>1 (where sgn(x)is the sign fun
tion, and equals 1 if x ≥ 0, −1 otherwise). Of 
ourse, the 
opula of theresulting 
oupled Brownian motions is di�erent from C 1. The 
opula we 
onsider all model1However the results obtained in this manner are still labeled by the name original 
opula C in �gure 3.494
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`negative' dependen
e, as 
an be seen from their nonpositive Spearman's rho, and in parti
ular,for 
opulas whi
h exhibits positive dependen
e, su
h as the Gumbel 
opula, we use the `C1'transform de�ned in proposition 14. This type of dependen
e is the `adverse 
ase' for Long-Short CPPI as it signi�
antly in
reases the gap risk.Figure 3.4 shows the gap probability as a fun
tion of the Spearman's rho for various
opulas, when the volatility of both assets is 30%, that is in a market with high volatility.The impa
t of 
opulas is real, and in parti
ular the gap probability obtained with the Clayton
opula 
learly bounds above the one obtained with the other 
opulas. This 
an be explainedby the strong dependen
e generated by (`C1' transform of) Clayton 
opulas when the �rstasset drops while the se
ond asset rises. It is noti
eable that the Clayton 
opula is the onlyone to be `uniformly' more 
onservative, i.e. yields higher gap probabilities, than the Gaussian
opula.3.5 Con
lusionThis 
hapter addressed the problem of 
onstru
ting bivariate 
ontinuous sto
hasti
 pro
esseswhose dependen
e at all times t is a given 
opula Ct, while the marginal pro
esses are �xedMarkovian di�usions. In parti
ular, it ta
kles dire
tly the problem of 
onstru
ting Brownianmotions whose 
ross-se
tional dependen
e is 
ontrolled. It shows that while some of the most
lassi
 
opulas 
an be used to model a stationary dependen
e between Brownian motions, itis nevertheless not the 
ase for many of them, and we infer empiri
ally that 
opulas whi
hexhibit tail dependen
e might not be able to 
ouple Brownian motions. These 
oupling models
ould be useful in stress testing and risk management of strategies, and we have provided �rstresults as to the potential impa
t of dependen
e modeling with 
opulas on a long-short CPPIstrategy.This 
hapter develops the idea of 
oupling pro
esses with 
opulas in a bivariate 
ontext only.The multivariate 
ase (that is when more than two pro
esses are involved) is more 
omplex,and does not yield formulas as handy as in the bivariate 
ase. While bivariate models allowsfor building non trivial multivariate models where the pairwise dependen
e is 
ontrolled (forinstan
e star like dependen
e where the dependen
e between the pro
esses (X1,Xj) is imposedfor all j, or serial dependen
e, for whi
h the dependen
e between (Xj−1,Xj) is imposed),more work would be required to obtain general multivariate 
oupling models that would beexploitable in pra
ti
e.Finally, while we provided a 
ase-by-
ase analysis of some 
opula families, a dire
tion forfurther resear
h is to obtain a general 
hara
terization of the set of 
opulas attainable by
oupled Brownian motions, possibly by developing the ideas exposed in paragraph 3.3.6, thatwould be of pra
ti
al interest to determine whether a given 
opula is an admissible model ofdependen
e. 95
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3.6 Appendix3.6.1 Proofs for se
tion 3.2Proof of 
orollary 1 For ε > 0, 
onsider the di�usion (3.6) shifted by ε. The shifteddi�usion (Xε
t , Y

ε
t ) = (Xt+ε, Yt+ε) is still a di�usion whose equation is:




dXε
t = aX(t+ ε,Xε

t )dt+ σX(t+ ε,Xε
t )dW

X,ε
t

dY ε
t = aY (t+ ε, Y ε

t )dt+ σY (t+ ε, Y ε
t )dW

Y,ε
t

d〈WX,ε,W Y,ε〉t = ρt(X
ε
t , Y

ε
t )dt

(Xε
0 , Y

ε
0 ) ∼ (Xε, Yε)

(3.18)
By assumption the 
dfs of the marginals, FXt+ε and F Yt+ε satisfy the hypotheses of proposition5 (they are regular up to time 0). Thus the 
opula PDE is valid for the shifted di�usion andreads, for all t > 0, for all ϕ ∈ C2

c ((0, 1)
2),

〈(∂tC)t+ε, ∂
2
uvϕ〉 =

〈1
2

((
f̃Xt+εσ

X(t+ ε, ·)
)2
∂2uuCt+ε +

(
f̃Yt+εσ

Y (t+ ε, ·)
)2
∂2vvCt+ε

)

+ ˜(ρt+εfXt+ε(·)σX (t+ ε, ·)fYt+ε(·)σY (t+ ε, ·))∂2uvCt+ε, ∂2uvϕ
〉 (3.19)and this is true for all ε > 0. �Proof of proposition 7 The two next lemmas are needed to handle the initial singulardistribution:Lemma 7 Let Ft be the 
df of Xt, where Xt is a 
ontinuous pro
ess su
h that limt→0Xt = x0a.s. Then for all q ∈ (0, 1), limt→0 F

−1
t (q) = x0.Proof: Suppose it is not the 
ase. Then, there exists some ε > 0, and a sequen
e tnsu
h that limn→∞ tn = 0 and |F−1

tn (q) − x0| > ε for all n. Remark that for all x ∈ R,
limt→0 Ft(x) = 1x≥x0 by dominated 
onvergen
e. Thus Ftn(x0) −→

n→∞1 and thus, for all n bigenough, Ftn(x0) > q. By de�nition of the quantile fun
tion 2, F−1
tn (q) ≤ x0. Combinedwith |F−1

tn (q) − x0| > ε, it yields F−1
tn (q) ≤ x0 − ε. As Ftn is nonde
reasing, and using

Ftn ◦ (Ftn(x))−1 ≥ Id, one gets q ≤ Ftn(x0 − ε). The r.h.s 
onverges to 0 as n→ ∞ and thereis a 
ontradi
tion. �Lemma 8 Let {Ct} be a 
opula family in C1,2(R+ × (0, 1)2) and FXt and F Yt be the 
dfsof 
ontinuous pro
esses Xt and Yt su
h that limt→0Xt = x0 a.s. and limt→0 Yt = y0 a.s.Suppose FXt and F Yt have positive derivatives for all t > 0. Assume the te
hni
al 
ondition2For all q ∈ [0, 1], F−1(q) = inf{x|F (x) > q} 98
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(IC): ∃ ε > 0 s.t. (u, v) 7→ sup0<t≤ε ∂
2
uvCt(u, v) is integrable over (0, 1)2. Let pt(x, y) =

∂2xy(Ct(Ft(x), F
Y
t (y))); then limt→0 pt = δ(x0,y0) in distribution, i.e. limt→0Ept(ϕ(Xt, Yt)) =

ϕ(x0, y0) for all ϕ 
ontinuous and bounded.Proof:
Ept(ϕ(Xt, Yt)) = E(ϕ((FXt )−1(Ut), (F

Y
t )−1(Vt))), where (Ut, Vt) ∼ ∂2uvCt

=

∫

(0,12)

ϕ((FXt )−1(u), (F Yt )−1(v))∂2uvCt(u, v)dudvA

ording to lemma 7, limt→0 ϕ((F
X
t )−1(u), (F Yt )−1(v)) = ϕ(x0, y0). Eventually, the te
hni
al
ondition ensures that the dominated 
onvergen
e theorem 
an be applied, yielding the result.

�Lemma 9 Assume fXt ∈ C1,2(R∗
+ ×R), aXt ∈ C0,1(R+ ×R) is bounded, σXt ∈ C0,2(R+ ×R)and σt, σ′t are bounded and that ft and f ′t goes to 0 at −∞. Then the 
df FX(x) = ∫ x−∞ fXt (z)dzsatis�es, for all t > 0, for all x ∈ R,

∂tFt = −aXt (x)fXt (x) +
1

2
∂x{σ2t fXt }(x)Proof: The proof 
onsists in writing down the Kolmogorov forward equation for the density

fXt and then summing from −∞ to x. The boundary terms vanish by hypothesis.�Before proving the proposition 7, let us re
all a theorem that ensures the uniqueness in Kol-mogorov forward equation:Theorem 5 (Bentata, Cont [2℄) Suppose that:1. The drifts, volatilities and 
orrelation are measurable and bounded.2. The drifts, volatilities and 
orrelation are 
ontinuous in x, uniformly over the 
ompa
tsin t3.3. The 
ovarian
e matrix is 
oer
ive: ∀R > 0, ∀t, inf |z|≤R infx x
′a(t, z)x > 0.Then for all x0, there exists a unique family pt(x0, dy) of probability measures with p0(x0, ·) =

δx0 and for all g ∈ C∞
c (R2),

∫
g(y)∂tpt(x0, dy) =

∫
Ltg(y)pt(x0, dy)3f(t, x) 
ontinuous in x, uniformly over the 
ompa
ts in t means that ∀x, ∀T

infδ>0 supt∈[0,T ] inf |x′−x|≤δ |f(t, x)− f(t, x′)| = 0. 99
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Proof of prop 7: Let Pt be the law of probability with 
opula Ct and marginals densities
fXt and fYt . We aim at proving that, ne
essarily, Pt is the law at time t of the di�usion under
onsideration. This is done by proving that Pt satis�es the same Kolmogorov forward equationas the law of the di�usion, and then use theorem 5 to prove the uniqueness of the solutions ofthis equation.For ea
h t > 0, let Fr(t, x, y) be the 
df of Pt, i.e. Fr(t, x, y) = Ct(F

X
t (x), F Yt (y)). Ft(x, y)denotes the ve
tor (FXt (x), F Yt (y)). Then, for all t > 0, x, y ∈ R,

∂tFr(t, x, y) = ∂tCt ◦ Ft(x, y) + ∂uCt ◦ Ft(x, y)∂tFXt (x) + ∂vCt ◦ Ft(x, y)∂tF Yt (y) (3.20)Now,
∂tCt ◦ Ft(x, y) =

1

2
(σXt (x)fXt (x))2∂uuCt ◦ Ft(x, y) +

1

2
(σYt (y)f

Y
t (y))2∂vvCt ◦ Ft(x, y)

+ ρt(x, y)σ
X
t (x)σYt (y)f

X
t (x)fYt (y)∂2uvCt ◦ Ft(x, y)a

ording to the PDE. A

ording to lemma 9, the marginal 
dfs satisfy, for all t > 0, for all

x ∈ R,
∂tF

X
t = −aXt (x)fXt (x) +

1

2
∂x(σ

2
t (t, x)ft(x))and thus

∂uCt ◦ Ft(x, y)∂tFXt (x) = {−aXt (x)fXt (x) +
1

2
∂x(σ

2
t (t, x)f

X
t (x))}∂uCt ◦ Ft(x, y)Remark that ∂xFr(t, x, y) = fXt (x)∂uCt ◦ Ft(x, y), ∂2xxFr(t, x, y) = fXt (x)2∂2uuCt ◦ Ft(x, y) +

(fXt )′∂uCt ◦ Ft(x, y) and ∂2xxFr(t, x, y) = fXt (x)fYt (y)∂2uvCt ◦ Ft(x, y). Therefore (3.20) reads
∂tFr(t, x, y) = ρt(x, y)σ

X
t (x)σYt (y)∂

2
xyFr(t, x, y)

+
1

2
(σXt (x))2∂2xxFr(t, x, y)−

1

2
(σXt (x))2(fXt (x))′∂uCt ◦ Ft(x, y)

+
1

2
(σYt (y))

2∂2yyFr(t, x, y)−
1

2
(σXt (y))2(fYt (y))′∂vCt ◦ Ft(x, y)

+ {−aXt (x)fXt (x) +
1

2
∂x(σ

2
t (t, x)f

X
t (x))}∂uCt ◦ Ft(x, y)

+ {−aYt (y)fYt (y) +
1

2
∂y(σ

2
t (t, y)f

Y
t (y))}∂vCt ◦ Ft(x, y)However, expanding ∂x(σ2t (t, x)fXt (x)), the terms in front of ∂uCt ◦ Ft(x, y) redu
e to

(
−aXt (x) +

1

2
∂x

(
σXt (x)2

))
fXt (x)∂uCt ◦ Ft(x, y)

=

(
−aXt (x) +

1

2
∂x

(
σXt (x)2

))
∂xFr(t, x, y)100
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Finally,
∂tFr(t, x, y) = ρt(x, y)σ

X
t (x)σYt (y)∂

2
xyFr(t, x, y)

+
1

2
(σXt (x))2∂2xxFr(t, x, y) +

1

2
(σYt (y))

2∂2yyFr(t, x, y)

+

(
−aXt (x) +

1

2
∂x

(
σXt (x)2

))
∂xFr(t, x, y)

+

(
−aYt (y) +

1

2
∂y

(
σYt (y)

2
))

∂yFr(t, x, y)If ϕ ∈ C2
c (R

2), the expression 〈∂tFr(t, x, y), ∂2xyϕ〉 yields, thanks to the previous equation andintegration by parts in the sense of distributions:
∂t〈ft(x, y), ϕ〉 = 〈−∂x(aXt (x)ft(x, y))− ∂y(a

Y
t (y)ft(x, y)), ϕ〉

+ 〈1
2
∂2xx(σ

X
t (x)2ft(x, y)) +

1

2
∂2yy(σ

Y
t (y)

2ft(x, y)), ϕ〉

+ 〈∂2xy(ρt(x, y)σXt (x)σYt (y)∂
2
xyft(x, y)), ϕ〉This is pre
isely the Kolmogorov forward equation for the 
oupled di�usion. To summa-rize: if Ct satisfy the 
opula PDE and ft(x, y) is a bivariate probability density de�ned by

∂xy{Ct(FXt , F Yt )} then ft satis�es the Kolmogorov forward equation of the 
oupled di�usionequation.In order to invoke the theorem 5, the degenera
y of ft at time 0 must be handled with 
are.This is done by stating that for all ϕ ∈ C2
c (R2), for all t > ε,

〈ft, ϕ〉 = 〈fε, ϕ〉 +
t∫

ε

〈fs,Ls(ϕ)〉ds (3.21)where Ls(ϕ) =  aXt

aYt


·∇ϕ+Tr(σσ∗(t, x, y)Hess(ϕ))) and σσ∗(t, x, y) = ( (σXt )2 ρtσXt σ

Y
t

ρtσXt σ
Y
t (σYt )2

).Eventually, a

ording to lemma 8, 〈ft, ϕ〉 → 〈δ(x0,y0), ϕ〉 as t → 0 and the integrand in ther.h.s of (3.21) is an integrable fun
tion on [0, t]. Indeed, for all s > 0, |Ls(ϕ)(x, y)| is boundedon [0, t]×R2 by a 
onstant that depends only on t and the bounds on ϕ and its derivatives oforder less than 2. De�ning f0 = δ(x0,y0), 〈fs,Ls(ϕ)〉 is integrable over [0, t] and letting ε→ 0,
〈ft, ϕ〉 = 〈f0, ϕ〉 +

t∫

0

〈fs,Ls(ϕ)〉dsThis equation has a unique solution a

ording to theorem 5. Thus ft is indeed the law of thedi�usion and, in parti
ular, the 
opula of the di�usion is Ct, for all t > 0. �101
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3.6.2 Proofs for se
tion 3.3Proof of proposition 8: Consider the se
ond part of the proposition and let ρ̃t = 1
t

∫ t
0 ρsds.Noti
e that t∂Ct = (ρt − ρ̃t)∂ρCρ̃t . Moreover, a

ording to the formulas given in appendix3.7.1,

∂ρCρ = 1
2πe

−Φ−1(u)2+Φ−1(v)2

2 ∂2uvCρ

∂2uuCρ = −ρ.e−Φ−1(u)2+Φ−1(v)2

2 ∂2uvCρThis implies F ({Ct}t≥0)t = ρt �.Proof of lemma 6: Write Cαt = αCt + (1− α)C̃t. Then, for all (u, v) ∈ (0, 1)2,
ραt (u, v) = F ({αCt + (1− α)C̃t})t

=
2πt∂tC

α
t − 1

2 [e
−Φ−1(u)2∂2uuC

α
t + e−Φ−1(v)2∂2vvC

α
t ]

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvC
α
t

= αρCt(u, v)
∂2uvCt
∂2uvC

α
t

+ (1− α)ρC̃t
(u, v)

∂2uvC̃t
∂2uvC

α
t(with obvious notations) and thus:

|ραt (u, v)| ≤ |ρCt(u, v)| ∨ |ρC̃t
(u, v)|.

[
α
∂2uvCt
∂2uvC

α
t

+ (1− α)
∂2uvC̃t
∂2uvC

α
t

]
= 1Moreover, as ραt = f(u, v)ρCt(u, v) + (1− f(u, v))ρC̃t

(u, v) (where f(u, v) = α. ∂
2
uvCt

∂2uvC
α
t
), and

1− ραt = f(u, v)(1− ρCt(u, v)) + (1− f(u, v))(1 − ρC̃t
(u, v))

≥ ( inf
t,(u,v)

(1− ρCt(u, v))) ∧ ( inf
t,(u,v)

(1− ρC̃t
(u, v))) > 0be
ause both ρCt and ρC̃t

are bounded away from 1. And likewise, inft,(u,v) 1+ ραt > 0, whi
hprove that ρα is bounded away of ±1. Finally, it is obvious that ραt = ρ if t is small enough,and that it is 
ontinuous. �In order to prove that a given 
opula C 
an be attained, it is useful to know under what
onditions a time-dependent mixture between a 
opula family in Cop and a 
onstant 
opula
C remains in Cop.Lemma 10 Let {Ct} in Cop(ρ) for some ρ ∈ (−1, 1) and C a 
opula su
h that ρC ∈ CorrBM
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De�ne t > 0,
δt = inf

(u,v)∈(0,1)2
s.t. Ct(u,v)6=C(u,v)





e
Φ−1(u)2+Φ−1(v)2

2

2π|Ct(u, v)− C(u, v)| [(1 − |ρt(u, v)|)∂2uvCt ∧ (1− |ρC(u, v)|)∂2uvC]



and suppose that δt > 0 for all t > 0. Let αt be a fun
tion that is 
ontinuously di�erentiable onR+ and takes values in [0, 1], whi
h is moreover 
onstant equal to 1 on a non empty interval

[0, ε], su
h that, for all t > 0,
inf
t
(δt − t|∂tαt|) > 0then the 
opula family Ĉt = αtCt + (1− αt)C is in Cop(ρ).In the 
ase where the 
opula family {Ct} is 
onstant, equal to the Gaussian 
opula Cρ for some

ρ ∈ (−1, 1), the above 
ondition reads supt t|∂tαt| < δC(ρ), where
δC(ρ) = inf

(u,v)∈(0,1)2
s.t. Ct(u,v)6=C(u,v)





e
Φ−1(u)2+Φ−1(v)2

2

2π|Cρ(u, v)− C(u, v)| [(1− |ρ|)∂2uvCρ(u, v) ∧ (1− |ρC(u, v)|)∂2uvC]



 .Proof It is trivial that Ĉt is indeed a 
opula with everywhere positive density. With obviousnotations:

ρ̂t =
2πtα̇t(Ct − C)

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)
+ αtρt(u, v)

∂2uvCt

∂2uvĈt
(u, v) + (1− αt)ρC(u, v)

∂2uvC

∂2uvĈt
(u, v)Thus, ρ̂t is 
ontinuous, and equals ρ for t small enough.

|ρ̂t| ≤
2πt|α̇t||Ct − C|

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)
+ αt|ρt(u, v)|

∂2uvCt

∂2uvĈt
+ (1− αt)|ρC(u, v)|

∂2uvC

∂2uvĈtA su�
ient 
ondition for the r.h.s. to be less than 1 is, for (u, v) s.t. Ct(u, v) 6= C(u, v)

t|α̇t| ≤
e

Φ−1(u)2+Φ−1(v)2

2

2π|Ct − C| (∂2uvĈt(u, v) − αt|ρt(u, v)|∂2uvCt − (1− αt)|ρC(u, v)|∂2uvCt)

=
e

Φ−1(u)2+Φ−1(v)2

2

2π|Ct − C| (αt(1− |ρt(u, v)|)∂2uvCt + (1− αt)(1 − |ρC(u, v))|∂2uvC)The expression between parenthesis in the r.h.s. is higher than (1 − |ρt(u, v)|)∂2uvCt ∧ (1 −
|ρC(u, v)|)∂2uvC hen
e the su�
ient 
ondition.
δt > 0 is also a su�
ient 
ondition for ρ̂t to be bounded away from ±1. For instan
e:

ρ̂t + 1 = αt
∂2uvCt

∂2uvĈt
(1 + ρt) + (1− αt)

∂2uvC

∂2uvĈt
(1 + ρC) +

2πtα̇t(Ct − C)

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)103
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So,̂
ρt + 1 ≥

{
αt
∂2uvCt

∂2uvĈt
(1 + ρt)

}
∧
{
(1− αt)

∂2uvC

∂2uvĈt
(1 + ρC)

}
− 2πt|α̇t||Ct − C|
e−

Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)(3.22)The r.h.s. is stri
tly positive i�, on {(u, v) s.t. Ct 6= C},
2πt|α̇t||Ct − C|

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)
<

{
αt
∂2uvCt

∂2uvĈt
(1 + ρt)

}
∧
{
(1− αt)

∂2uvC

∂2uvĈt
(1 + ρC)

}i.e.
t|α̇t| <

e
Φ−1(u)2+Φ−1(v)2

2

2π|Ct −C| (αt∂
2
uvCt(1 + ρt)) ∧ ((1− αt)∂

2
uvC(1 + ρ̃t))However, (1 + ρt) ≥ (1− |ρt|) and a su�
ient 
ondition for the r.h.s. of (3.22) to be positiveis

t|α̇t| <
e

Φ−1(u)2+Φ−1(v)2

2

2π|Ct − C| (∂2uvCt(1− |ρt|)) ∧ (∂2uvC(1− |ρ̃t|))that is, t|α̇t| < δt. As inft(δt − t|α̇t|) > 0, the r.h.s. of (3.22) is not only positive but
inft(ρ̂t + 1) > 0. This is true also for inft(ρ̂t − 1) and thus ρ̂t is bounded away from ±1.�Before proving the proposition 11, we need the following te
hni
al lemma:Lemma 11 Let 0 < ε < η. Consider the fun
tion

αε,ηt = 1t≤ε +
e

2
e
− t−ǫ

η−t1t≥ ε+η
2

+
(
1− e

2
e−

η−t
t−ǫ

)
1ε<t< ε+η

2

αt is 
ontinuously di�erentiable on R+, equals 1 if t ≤ ε, 0 if t ≥ η, is de
reasing on [ε, η],and
∀t ≥ 0, t|∂αε,ηt | ≤ 2η

η − εProof:
∂tα

ε,η
t = −e

2

η − ε

(η − t)2
e−

t−ǫ
η−t1t≥ ε+η

2
− e

2

η − ε

(t− ε)2
e−

η−t
t−ε 1t≤ ε+η

2Using the easy fa
t that the fun
tion e−
K
x

x2
, K > 0, x ≥ 0 rea
hes its maximum at x = K

2 , andthe maximum thus equals 4
e2K2 , and writing that e− t−ε

η−t = e.e
− η−ε

η−t and e− η−t
t−ε = e.e−

η−ε
t−ε , wehave,

|∂tαε,ηt | ≤ 2

(η − ε)
1t≥ ε+η

2
+

2

(η − ε)
1t≤ ε+η

2And thus t|∂tαε,ηt | ≤ 2η
η−ε . �Proof of proposition 11: With the same notations as in lemma 11, de�ne αε,Kt = αε,Kεt ,for some 
onstant K > 1 to be determined later. Consider the 
opulas Cεt = αεtCρ+(1−αεt )C.104
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We want to show that the 
orresponding 
orrelation is bounded by 1. And indeed, applyinglemma 11, we know that
t|∂tαε,Kt | ≤ 2K

K − 1Thus, if δC(ρ) > 2 for some ρ, there exists a K0 > 1 su
h that, for all ε,
t|∂tαε,K0

t | < δC(ρ)By virtue of lemma 10, this implies that {Cεt } ∈ Cop(ρ). �Proof of proposition 12: W.l.o.g. assume θ ≥ 0 and thus ρθ ≥ 0. Moreover we need theLemma 12 For all u ∈ (0, 1), u.(1− u).eΦ
−1(u)2/2 ≤ 1

2 .Proof: proving u.(1 − u).eΦ
−1(u)2/2 ≤ 1

2 for all u ∈ (0, 1) is equivalent to prove that for all
x ∈ R, (1− Φ(x))Φ(x)e

x2

2 ≤ 1
2 .

e
x2

2 Φ(x) = ex
2/2

x∫

−∞

e−u
2/2 du√

2π
=

0∫

−∞

e−u
2/2−xu du√

2π
≤

0∫

−∞

e−u
2/2 du√

2π
, if x ≤ 0

=
1

2and thus (1− Φ(x))Φ(x)e
x2

2 ≤ 1
2 when x ≤ 0. When x > 0, we have in the same manner:

(1− Φ(x))e
x2

2 = ex
2/2

+∞∫

x

e−u
2/2 du√

2π
=

+∞∫

0

e−u
2/2−xu du√

2π
≤

+∞∫

0

e−u
2/2 du√

2π
, if x ≥ 0

=
1

2and thus (1− Φ(x))Φ(x)e
x2

2 ≤ 1
2 for all x. �Ba
k to the proof of the proposition, re
all that ρθ(u, v) = a(u, v) + a(v, u), with

a(u, v) = θ.
e(Φ

−1(v)2−Φ−1(u)2)/2v(1− v)

1 + θ(1− 2u)(1 − 2v)

a(u, v) ≤ θ for all (u, v) ∈ (0, 1)2: this is equivalent to showing that
e(Φ

−1(v)2−Φ−1(u)2)/2v(1− v) ≤ 1 + θ(1− 2u)(1 − 2v)The r.h.s. is greater than 1− θ. Using the lemma 12, the l.h.s. is less than 1/2. Eventually,
1− θ ≥ 1/2 as θ ≤ 1/2. So ρθ(u, v) = a(u, v) + a(v, u) ≤ 2θ ≤ 1. �105
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Proposition 17 Let ρ(t, u, v) be a Borelian fun
tion on R+ × (0, 1)2, bounded by 1. Let
f(t, x, y) = ρ(t,Φ(x/

√
t),Φ(y/

√
t)) and g(t, x, y) =

√
1− f2(t, x, y). Assume that f and gsatisfy: for all n ∈ N

∗, ||(x1, x2)|| ≤ n, ||(y1, y2)|| ≤ n, for almost every t ≥ 0, ||f(t, x1, y1)−
f(t, x2, y2)|| ≤ Kt(n)||(x1−x2, y1−y2)|| (and the same for g) where Kt(n) is �nite and satisfy

T∫

0

K2
t (n)dt < +∞, for all T > 0In other words, assume f and g are t-almost everywhere lo
ally Lips
hitz in the spa
e variable,and that for all balls, the 
orresponding time-dependent Lips
hitz 
onstant is lo
ally squareintegrable. Then the 
oupling SDE (3.10) has a unique strong solution.This type of result is 
lassi
 and dates ba
k to It	o, see Krylov and Rozovskii [11℄ theorem 3.1,pp. 1254-1255 and referen
es therein.3.7 FormulasThis se
tion gathers the formulas of the se
ond order derivatives that intervene in the 
opulaPDE for various 
opula families.3.7.1 Gaussian 
opula

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)where Φρ is the 
df of the bivariate normal distribution with 
orrelation ρ, namely:
Φρ(x, y) =

y∫

−∞

x∫

−∞

1

2π
√

1− ρ2
e
− 1

2(1−ρ2)
(u2+v2−2ρuv)

dudvThe useful derivatives are:




∂2uuCρ(u, v) =
−ρ√
1−ρ2

exp
(
− 1

2(1−ρ2) [(2ρ
2 − 1)Φ−1(u)2 +Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)]

)

∂2vvCρ(u, v) = ∂2uuCρ(v, u)

∂2uvCρ(u, v) =
1√
1−ρ2

exp
(
− 1

2(1−ρ2)
(
Φ−1(u)2 +Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)

)
+ 1

2

(
Φ−1(u)2 +Φ−1(v)2

))

∂ρCρ(u, v) =
1√
1−ρ2

1
2π exp

(
− 1

2(1−ρ2) [Φ
−1(u)2 +Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)]

)A proof of the formula for ∂ρCρ 
an be found in Pla
kett [17℄, p. 353. Alternatively, it 
an be106

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



dire
tly re
overed by applying the 
opula PDE of two Brownian motions with deterministi

orrelation.3.7.2 Student CopulaThe bivariate Student 
opula with 
orrelation parameter ρ and degree of freedom ν ∈ R
∗
+, isde�ned as

Cρ,ν(u, v) = tρ,ν(t−1
ν (u), t−1

ν (v))where tν is the univariate 
df of the Student distribution:
tν(x) =

x∫

−∞

Γ(((ν + 1)/2)

Γ(ν/2)

(1 + w2

ν )−
ν+1
2

√
νπ

dwand tρ,ν is the 
df of the bivariate Student distribution with 
orrelation ρ and dof ν:
tρ,ν(x, y) =

x∫

−∞

y∫

−∞

Γ(((ν + 2)/2)

Γ(ν/2)

(
1 + w2+z2−2ρ.w.z

ν(1−ρ2)

)− ν+2
2

νπ
√
1− ρ2

dwThe derivatives are:




∂2uuC
ρ,ν(u, v) = −Γ((ν+2)/2)Γ(ν/2)

Γ2((ν+1)/2)

(
ρ+ t−1

ν (u)t−1
ν (v)
ν

)
(1− ρ2)

ν+1
2 ν

ν+2
2

(
1 + t−1

ν (u)2

ν

)ν

.(t−1
ν (u)2 + t−1

ν (v)2 − 2ρt−1
ν (u)t−1

ν (v) + ν(1− ρ2))−
ν+2
2

∂2vvC
ρ,ν(u, v) = ∂2uuC

ρ,ν(v, u)

∂2uvC
ρ,ν(u, v) = Γ((ν+2)/2)Γ(ν/2)

Γ2((ν+1)/2)
(1− ρ2)

ν+1
2 ν

ν+2
2

(
1 + t−1

ν (u)2

ν

) ν+1
2
(
1 + t−1

ν (v)2

ν

) ν+1
2

.
(
t−1
ν (u)2 + t−1

ν (v)2 − 2ρt−1
ν (u)t−1

ν (v) + ν(1− ρ2)
)− ν+2

2

∂ρC(u, v) = 1
2π (1− ρ2)(ν−1)/2ν(ν+1)/2((1 − ρ2)ν + t−1

ν (u)2 + t−1
ν (v)2 − 2ρt−1

ν (u)t−1
ν (v))−ν/2, ν > 1Therefore, the stationary Brownian 
orrelation fun
tion of the Student 
opula is

corrρ,ν(u, v) =
ρ+ t−1

ν (u)t−1
ν (v)
ν

2

(
e

Φ−1(v)2−Φ−1(u)2

2

(
1 +

t−1
ν (u)2

ν

) ν−1
2
(
1 +

t−1
ν (v)2

ν

)− ν+1
2

+ e
Φ−1(u)2−Φ−1(v)2

2

(
1 +

t−1
ν (v)2

ν

) ν−1
2
(
1 +

t−1
ν (u)2

ν

)− ν+1
2

) (3.23)
107
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3.7.3 Ar
himedean 
opulasThe ar
himedean 
opulas are a 
lass of 
opulas that takes the form Cϕ(u, v) = ϕ[−1](ϕ(u) +

ϕ(v)) where ϕ is a 
ontinuous, stri
tly de
reasing fun
tion from [0, 1] to [0,+∞] su
h that
ϕ(1) = 0, where ϕ[−1] is the pseudo-inverse of ϕ de�ned as ϕ[−1](t) = 10≤t≤ϕ(0)ϕ

−1. ϕ is
alled the generator of the 
opula.Clayton 
opula: For θ ≥ −1, θ 6= 0, the generator of the Clayton 
opula with parameter
θ is 1

θ (t
−θ−1) and the 
opula reads Cθ(u, v) = (u−θ+v−θ−1)

−1/θ
+ . Furthermore, when θ > 0,the 
opula admits a density and





∂2uuCθ(u, v) = −(θ + 1)(u−θ + v−θ − 1)−1/θ−2u−θ−2(v−θ − 1)

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = (θ + 1)(u−θ + v−θ − 1)−2−1/θu−θ−1v−θ−1

∂θCθ(u, v) = Cθ(u, v)
(
− 1

θ log(Cθ(u, v)) +
1
θ
log(u)u−θ+log(v)v−θ

u−θ+v−θ−1

)Gumbel 
opula: This 
opula has generator (− log(t))θ, for θ ≥ 1, and




Cθ(u, v) = exp
(
−A 1

θ

)
, where A(u, v) = (− log(u))θ + (− log(v))θ

∂2uuCθ(u, v) = Cθ(u,v)
u2

A1/θ−2(− log(u))2θ−2
[
A1/θ −A(− log(u))−θ(θ − 1− log(u)) + θ − 1

]

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = Cθ(u,v)
uv (log(u) log(v))θ−1A1/θ−2

[
A1/θ + θ − 1

]Frank 
opula: for θ 6= 0, its generator is − log
(
e−θt−1
e−θ−1

), and




Cθ(u, v) = −1
θ log

(
(1 + (e−θu−1)(e−θv−1)

e−θ−1

)

∂2uuCθ(u, v) = θ. e−θu(e−θv−1)(e−θv−e−θ)
(e−θ−1+(e−θu−1)(e−θv−1))2

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = θ.(1− e−θ) e−θue−θv

(e−θ−1+(e−θu−1)(e−θv−1))2
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Gumbel-Barnett 
opula: for θ ∈ (0, 1], its generator is log(1− θ log(t)), and




Cθ(u, v) = uve−θ log(u) log(v)

∂2uuCθ(u, v) = −θe−θ log(u) log(v)(1− θ log(v)) log(v) vu

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = e−θ log(u) log(v)(1− θ − θ log(uv) + θ2 log(u) log(v))Ar
himedean 
opula 4.2.10 in [15℄, p. 116. In order to support our intuition that
opulas without upper or lower tail dependen
e are suitable to 
ouple Brownian, we 
hose onesu
h ar
himedean 
opula, whose generator is log(2tθ − 1), θ ∈ (0, 1]. Then,




Cθ(u, v) = uv

(1+(1−uθ)(1−vθ))
1
θ

∂2uuCθ(u, v) = (∂uC)2

C + C
(
− 1
u2

+ uθ−1(1−vθ)
1+(1−uθ)(1−vθ){

θ−1
u + θ uθ−1(1−vθ)

1+(1−uθ)(1−vθ)}
)

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = ∂uC∂vC
C − θ uθ−1vθ−1

1+(1−uθ)(1−vθ)C{1− (1−uθ)(1−vθ)
1+(1−uθ)(1−vθ)}3.7.4 FGM 
opulas

Cθ(u, v) = uv + θuv(1− u)(1− v), |θ| ≤ 1. Obviously, C0 = Π.




∂2uuCθ(u, v) = −2θv(1− v)

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = 1 + θ(1− 2u)(1 − 2v)3.7.5 Pla
kett 
opulaThe Pla
kett 
opula is Cθ(u, v) = 1
2(θ−1)((1+(θ−1)(u+v))−

√
(1 + (θ − 1)(u + v))2 − 4uvθ(θ − 1)),

θ > 0, and C1(u, v) = uv.




∂2uuCθ(u, v) = 2θ(θ−1)v(v−1)

((1+(θ−1)(u+v))2−4uvθ(θ−1))
3
2

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = θ(1+(θ−1)(u+v−2uv))

((1+(θ−1)(u+v))2−4uvθ(θ−1))
3
2
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Figure 3.2: FGM Copula stationary 
orrelation. Above: θ = −1. Below: θ = 1.
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Figure 3.3: Pla
kett Copula stationary 
orrelation. Above: θ = 2. Below: θ = 10.
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Figure 3.4: Explosive behavior of some 
opulas stationary 
orrelations. Above: Studentstationary 
orrelation fun
tion, ρ = 0.5, ν = 0.4. Below: Clayton 
orrelation fun
tion, θ = 2.
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Con
lusionThis thesis studied two aspe
ts of dependen
e modeling. The �rst one is the understandingand modeling of the multivariate dependen
e, i.e. the dependen
e between random ve
tors.The se
ond aspe
t is the dependen
e between 
ontinuous-time sto
hasti
 pro
esses, and morepre
isely modeling the dependen
e between 
ontinuous sto
hasti
 pro
esses with the help of
opulas.Optimal transport theory provides a means to generalize the notions of quantiles and 
omono-toni
ity to the multivariate setting.Therefore it has been used to de�ne multivariate risk mea-sures. We implemented and studied a method that 
omputes an approximation of the optimaltransport map when the initial measure and the target measure are 
ontinuous ; This methodwas 
ompared to several 
lassi
al algorithms and proved to behave e�
iently. However, sev-eral questions remain. The 
onvergen
e speed and 
omplexity of the quasi-Newton algorithm,respe
tively O(N5/2) and O(1/
√
N) for the transport problem in R

2, remain to be provedtheoreti
ally. Moreover, the IPFP produ
es high numeri
al errors on the boundary of thesupport of the initial measure; it seems that this is not the only algorithm that exhibits thiskind of behavior, and it would be interesting to test the performan
e of su
h algorithms ondistributions with periodi
 support to avoid the di�
ulties that arises on the boundary of thesupport. Eventually, we mentioned others algorithms, and there remains to do a 
omplete
omparison a
ross more existing algorithms.The se
ond part of the thesis proposed a de�nition of extreme dependen
e between �xed mul-tivariate laws of probability. This de�nition is based on the notion of 
ovariogram, de�ned asthe set of all possible 
ross-
ovarian
e matrix between the multivariate marginals. We givea method that is numeri
ally tra
table to 
ompute extreme 
ouplings; this pro
edure 
an beused to de�ne traje
tories of 
ouplings that starts at some 
oupling whose 
ross-
ovarian
emat
hes a given 
ross-
ovarian
e matrix and goes to an extreme 
oupling. This traje
tory 
anbe used to stress the dependen
e between the multivariate marginals, for instan
e in problemsof portfolio allo
ation or in the risk management of options on several underlyings. Further-more, the parameterization of these traje
tories allows to de�ne an index of the strength ofthe dependen
e between the marginals. However, this index is not invariant by transformsof the marginals and the question remains to determine whether a measure of multivariate113
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dependen
e 
an a
tually be derived from this index. Extreme 
ouplings 
an be also derivedby maximization of 
ross-
ovarian
e matri
es with respe
t to some 
oni
 orders. While thevariational 
hara
terization of the extreme 
ouplings makes it 
lear that these 
ouplings are aparti
ular 
ase of extreme 
ouplings, the relation between the various notions of extreme de-penden
e asso
iated to 
oni
 orders deserves to be further investigated, as well as the relevan
eof using a given 
oni
 order in pra
ti
al appli
ations.Finally, the third 
hapter gives some answers as to the spatial dependen
e that 
an be attainedby two univariate Markovian di�usions. More spe
i�
ally, the 
oupling of two Brownian mo-tions by stationary 
opulas is highlighted (that is Brownian motions with a 
onstant spatial
opula after some time). We provided 
ase-by-
ase results showing that some 
opulas were ad-missible to model su
h dependen
e, while others (in
luding Student, Clayton, Gumbel 
opulas)were not. However, deriving su�
ient and ne
essary 
onditions that 
an be used in pra
ti
e todetermine whi
h 
opulas are attainable by 
oupled Brownian motions (or admissible to modelstationary dependen
e between Brownian motions) is still an open question. We treated thebivariate 
ase, providing an integrated form of the Kolmogorov forward PDE that des
ribesthe evolution of the spatial 
opula of 
oupled Markovian di�usions. The multivariate 
ase ismore 
omplex to ta
kle, as on top of ne
essary boundedness of the 
orrelation 
oe�
ients, the
orrelation matrix needs also to be nonnegative, whi
h 
ompli
ate further the 
hara
teriza-tion of multivariate 
opula that are admissible to 
ouple several di�usions. Note also that wefo
used on a parti
ular 
oupling problem: the marginal di�usions are Markovian. One 
ouldalso 
onsider the 
ase where the bivariate di�usion is Markovian but not the marginals (i.e.the drifts and volatilities depend on the state of both marginals). In this 
ase, the integrationof the Kolmogorov forward equation 
an not be made as in the 
ase we studied, and the linkbetween the 
opula family {Ct}t and the 
orrelation fun
tion (or 
orrelation matrix) is less
lear.Finally, a subje
t of potentially high interest is the appli
ation of optimal transport te
h-niques to di�usion equations. For instan
e a Markov fun
tional model des
ribing a strongdependen
e between two multivariate di�usions Xt and Yt 
ould be Ỹt = ∇ϕt(Xt), where ∇ϕtis the optimal transport map between the law of Xt and the law of Yt. Ŷt is a multivariatepro
ess with the same one dimensional marginals as Yt, whi
h means that Ỹt ∼ Yt for all t.Su
h a model raises the question of the smoothness of the maps ∇ϕt both in spa
e and time,and of the possibility of sampling traje
tories from su
h models within a sensible amount oftime and with an a

eptable a

ura
y.
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