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Introduction

Modeling dependence between assets is a subject of crucial importance in finance. It has
emerged during the 90’s and in the last decade as a necessary improvement of previous models
in order to develop and value complex financial products or strategies on several underlyings,
whose value is strongly sensitive to the dependence between these underlyings. For instance,
basket options, and their sophistications, such as the so-called mountain range options. More
generally, many options and strategies require hybrid models to be priced. These are models
where two or more class of assets are coupled in order to capture their multivariate behavior
and not only their individual dynamics, such as, for instance, equity and interest rates (hybrid
Hull-white), equity and volatility (stochastic volatility models). Furthermore, as ‘correlation
between assets’ becomes an asset class, just as volatility became an asset class when investors
started to have views on volatility and implemented them through the purchase of derivatives
on volatility such as variance swaps, correlation products such as correlation swaps asks for
accurate dependence modeling. However, as proven by the 2007 financial crisis, standard
models of dependence might be insufficient when the market switch to an extreme regime,
and there is clearly a room for improvement for financial models to better represent the assets

comovements.

The notion of linear correlation is used as an ubiquitous measure of multivariate dependence.
This notion dates back to Francis Galton and Karl Pearson and provides a simple means to
quantify the strength of the dependence between two real random variables. It characterizes
completely the dependence in Gaussian models. This simplicity explains the presence of
correlation in financial models; it stems naturally from the fact that the classic financials
models are based on Gaussian distribution. Such models are Markowitz’ modern portfolio
theory, and the derived Capital Asset Pricing Model, or factors model such as Arbitrage Pricing
Theory. In continuous-time finance, a wide class of models is the class of diffusion models
with Gaussian noise and, once again, the dependence between assets is often modeled by
deterministic correlation parameters or correlation matrices, understating that the dependence
is Gaussian. However, correlation soon finds its limits when the marginal distributions are not
Gaussian and is not a satisfactory tool when one wants to introduce non Gaussian dependence,

see Embrecht [3] for more examples where correlation fails.
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The assumption that financial assets have Gaussian dependence is quite restrictive, especially
when derivatives products are involved, and this assumption might generate unwanted features
and misunderstandings. For all these reasons, the notion of copula sparked a vivid interest in
the financial community in the last decade. This object has been long known to statisticians
and has been used, although unnamed, by Hoeffding and Fréchet in the 40’s and 50’s. It was
well later on used to build financial models of dependence, for instance in credit derivative
modeling. A copula is a function which embeds all the possible information on the dependence
of several random variables. Hence, modeling the dependence between n assets Xi,..., X,
amounts to fix a copula, which in this case is a function of n variables defined on the unit
hypercube [0,1]™. It allows for a clear separation between the information on the marginals,
summarized by the individual cumulative distribution functions, and the specific information

on the dependence.

Let us give some concrete examples of how copulas have been used in finance. In credit deriva-
tives modeling, a critical feature of a model is to adequately represent the arrival of default
times of government bonds, corporate bonds, etc...Li’s method [7], which introduced the use
of Gaussian copulas in financial modeling, consists in choosing the marginal distributions of
each default time, and then choosing a Gaussian copula with some correlation matrix ¥ to
model the dependence between the default times. Thus, although the distributions of the
default times are not Gaussian at all, the dependence between them is the same as the de-
pendence of a Gaussian vector with correlation Y. This works for any copula and allows to
impose any form on dependence; this approach is used in the so-called semi-dynamic copula
modeling (see Schénbucher’s book [11], p. 337 et seq). In equity derivatives pricing, copulas
have been used in the same fashion. The simplest case where they have been used is for a
European option which pays at maturity T a payoff g(S%, e ,Séy), where SiT the value of
underlying ¢ at T'. The price of such an option depends on the multivariate distribution of the
assets at the maturity, which can be split once again into the marginal distributions and the

copula.

These examples give an opportunity to point out two drawbacks of using copulas. Consider
the previous example of default times modeling. Assume that we want to value a complex
credit derivative (such as a Credit Default Obligation), whose value depend on a pool of assets
that can be split into two sets, e.g. corporate bonds on the one hand, and home loans on the
other hand. Assume that the two copulas ruling the dependence among each of these set of
assets is fixed. The dependence structure of the model is completely specified as soon as the
dependence between the two sets is defined. As we have chosen to model dependence with

copulas, it appears natural to define the copula which rules the overall dependence as

Cg(Cl(ul, e ,’LLN),CQ(’Ul, e ,’UM))
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where (] is the copula for the N corporate bonds default times, Cs is the copula for the M
home loans default times and Cj3 is a bivariate copula that handles the dependence between
the two. However, such a formula does not define a copula in general, unless C5 is the
independence copula. This results from an impossibility theorem proved by Genest et al.
[4]. More generally, it is a stylized fact of copula theory that defining a multivariate copula
is difficult. As a result, the copula might not be the tool to be preferred when facing the
problem of aggregating the dependence.

A second drawback of copula functions is their static nature. Indeed, while they are
well suited to the valuation of financial derivatives whose prices depend on the distribution
of the assets at a single time, they are more difficult to use in a dynamic framework. For
instance, a desirable feature of a pricing model is to give the assets a Markovian dynamics.
Combining this Markovian feature and the modeling of the ‘spatial dependence’, i.e. the
cross-sectional dependence between the assets, with copulas is no easy task. There exists an
abundant literature on copulas and time-series (see Patton [9] and references therein), where
the copulas are used in a (discrete) dynamic setting. Furthermore, the time dependence
structure of (possibly continuous) real-valued Markov processes is well understood in terms
of copulas, see Darsow et al. [1] and Ibragimov [5]. However, to the best of our knowledge,
the problem of modeling the dynamic spatial dependence of continuous Markov processes by

copulas has not been thoroughly solved yet.

More generally, copulas are defined from a scaling of the marginals by their cumulative dis-
tribution function. While this is natural for a univariate random variable, as the resulting
variable has a uniform distribution over [0, 1], this does not make sense a priori for a multi-
variate distribution, as well as the notion of quantile. Nevertheless, the problem of scaling one
distribution to another, i.e. finding a deterministic function f,, such that f,,(X) has law
v if X has law g, still remains. Similarly, multivariate dependence problems can be formu-
lated in the same manner as their univariate analogs, such as determining which distribution

maximizes correlation when the marginals distributions are fixed:

sup E(XY)

X~p

Yr~q
If ;4 and v are probability distributions over R this problem amounts to find the copula which
maximizes the correlation between the marginals, but it does still perfectly make sense if

and v are probabilities over R, and the product is replaced by a scalar product:

sup E(X -Y)
X~p
Y ~q

This sort of fired marginals problems in the context of multivariate dependence cannot be
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tackled by the same tools as in the univariate case.

This thesis aims at addressing the two topics sketched above, namely dependence aggregation
and dependence modeling for Markovian diffusions. The two first chapters tackle the issue of
multivariate dependence, i.e. dependence between multivariate marginal distributions. More
precisely, these chapters aim at describing, characterizing and computing extreme multivariate
dependence between random vectors. The third chapter shows how copulas can be used to
model the spatial dependence between two Markovian diffusions, and is a first step to build

genuine continuous-time models of dependence with copulas.

Chapter 1 The first chapter studies the modeling of the dependence between random vectors
with fixed marginals, and in particular the notion of comonotonicity between random vectors.
Recall that two real random variables X and Y are comonotone if and only if they can be
written as an increasing function of a third variable. A simple procedure to obtain a pair of
comonotonic variables (X,Y) with marginal distributions p and v is to consider (X, F, ! o
F,(X)) where F, is the cumulative distribution of u, F,, ! the quantile function of v and X
is a random variable with law p. Thus, a deterministic scaling of one distribution to another
is obtained, and this transform has moreover a particularly simple expression. However this
approach fails if the marginals are not univariate. The complexity of the multivariate case can
be seen from the fact that if 4 is a probability on R, the law of the variable Fu(X), X ~p,is
not the uniform law on the unit hypercube, contrary to the one dimensional case, and there is
no unique notion of multivariate quantile. Nevertheless, optimal transport theory proposes a
scaling of one multidimensional law of probability to another and therefore proposes a possible

definition of multivariate comonoticity.

More precisely, if g and v are two probability distributions over R, consider the set of
probability distributions 7 over R x R such that the distribution of the first N-dimensional
marginal is g and the distribution of the second one is v, i.e. m(A x RY) = pu(A) and
m(RY x A) = v(A) for every Borel set A C RY, and denote II(u, v) this set. Among these

couplings 7, a distribution of special interest is the one solving the variational problem

[l yldn(ey) 1)

rell(p,v)
RNV xRN

This problem has a unique solution and, by definition, this solution minimizes the quadratic
distance between the first N-dimensional marginal and the second one. The study of such
variational problems is the subject of optimal transport theory and has found applications in
many fields, pure mathematics, economics, numerical optimization, medical imaging etc. .. see
the book by C. Villani [12] for an introduction to this theory. According to the Monge-
Kantorovitch duality, the linear problem (1) admits a dual problem which writes (up to addi-
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tive constants):

it [ e@idu@) + [ o @)
RN RN
where ¢*(y) = sup, g~ (7-y —¢(x)) is the Legendre transform of ¢. From this duality, it can
be shown that the optimal coupling in (1) takes the form (under regularity assumptions on
the distributions p and v): 7oy = (Id X V)#u, where Vo is the p-a.e. unique gradient of a
convex function such that Vp#u = v. In other words, the optimal coupling is the law of a pair
(X, V(X)) where X has law u, and, up to an additive function in = and y, ¢ is solution of the
dual problem (2). Considering that V¢ is somehow the multivariate analog of an increasing
function, the optimal coupling exhibits a strong dependence between its marginals, and can
be seen as a generalization of the notion of comonotonicity in the multivariate case. This
coupling can be used in practice to define multivariate and invariant in law risk measures,
such as the maximum correlation: py(X) = supg_y E(X -Y), see Riischendorf [8].
Y~y

Unlike the comonotonic coupling ¥ = F, ! o F,,(X) in the one dimensional case, which is
readily computed, there is in general no analytic formula for the function V. To address the
problem of the computation of Vg, we first treat the case of a discrete target distribution v.
Writing y; the atoms of v and ¢; = v({y;}), the solution of the dual problem is easily seen
to be a piecewise affine function ¢,(x) = max;(x - y; — v;), and the dual problem becomes a

finite-dimensional variational problem

it [ u(e)dua) +-0 3)
veRN

RN
An essential feature of this problem is the convexity and the boundedness of the objective
function. Thus problem (3) can be solved by classic techniques, such as gradient descent

algorithms. A steepest descent algorithm would read
vt =o' — VF(0') (4)

where F(v) is the objective function of (3). Furthermore, this algorithm can be interpreted
as a Walrasian auction algorithm, where a finite set of sellers (located at the points y;) offer
a good with supply ¢;. The steepest descent (4) mimics the behavior of buyers competing
for this good in such a way that the prices adjust so that supply and demand match. An
equivalent interpretation is that the primal problem (1) is the social planner’s objective —
maximizing the total economic surplus — and is equivalent to the dual problem (3) (adjusting

supply and demand), which is one of Walras’ theorem.

The second part of the chapter consists in showing that discretizing the target measure is

a valid approach to approximate an optimal Kantorovitch potential ¢. We give a rigorous

10
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statement of the fact that, provided a sequence of discrete measures with a finite number of
atoms vy converges in law to v, the sequence of optimal potentials ¢ (which solves problem
(3) with target measure vy) converges uniformly on the support of the initial measure i to

an optimal potential .

Eventually, the last part of the chapter aims at comparing various algorithms that solve the
transport problem. More precisely we detail: Bertsekas’ auction algorithm, which solves the
dual problem (3) when both measures are discrete and equally-weighted, thanks to a repeated
auction process; linear programming algorithms that use a slightly different form of the dual

problem, namely:
sup p-pt+i-q
¢, e RN

it >wiy;, Vi, j
where p is assumed discrete with atoms z; € RY and p is the vector of the mass of the atoms of
w; the Tterative Proportional Fitting Procedure which consists in relaxing the primal problem
(1) by the addition of an entropy term and then solving the relaxed problem with an analog of
Von Neumann’s alternative projection algorithm and, finally, quasi-Newton method applied
to problem 3. Choosing the classical Bertsekas algorithm as a benchmark, we tested these
algorithms on three simple test cases, for which the analytic form of the optimal transport
map is known. In these three cases, our experiments show that the combination of the IPFP
algorithm that provide a ‘warm point’, and then the use of a quasi-Newton algorithm beats
the other algorithms. These latter combination has an estimated complexity O(N 5/ 2), while
the numerical speed of convergence is O(1/v/N).

Chapter 2 While the first chapter aimed at computing the quadratic optimal coupling,
also called the maximum correlation coupling, the second chapter aims at providing a simple
and wider notion of extreme dependence between random vectors. The maximum correlation
coupling, which can be seen as a multivariate comonotonicity coupling, is a rather restrictive
model for such dependence, as it only takes component-wise covariances into account. A simple
way to define extremal couplings consists in considering the possibility of cross-dependence,

and, with the same notations as above, studying the following variational problem

sup / v+ My dr(z,y) (5)
mell(p,v)

RN xRN
where M is a given N dimensional square matrix (w.l.o.g. as the case of marginals with
different sizes is similar). The maximum correlation coupling corresponds to M = Id. Then,
according to optimal transport theory (and up to some conditions on the marginal distri-
butions), an optimal coupling solving (5) takes the form MY = Vpp(X), for some convex

function ¢ar. Such a coupling exhibits the same comonotonicity property as the maximum

11
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correlation coupling, up to a linear transform of one of the variables, and is proposed as a
possible definition of multivariate extreme dependence. Such a definition takes into account
the cross-dependence of the components of each marginal law, and admits a geometric charac-
terization. Indeed, the extremality of a coupling (X,Y") can be checked on its cross-covariance

matrix E(XY”). Introduce the covariogram
Fli,v) = {BalXY"), 7 € (1, v)}

which is the set of all cross-covariance matrices corresponding to couplings whose first V-
dimensional marginal has law p and the second one has law v. The first part of this chapter
proposes the following geometric characterization: the extremal couplings, as defined above,
are the couplings (X,Y’) € II(u,v) such that the cross-covariance matrix E(XY”) is located
on the boundary of F(u,v). The covariogram is also useful to study another notion of ex-
tremality. Namely, consider some convex order > on the set F(u,v): then the couplings whose
cross-covariance matrix is maximal with respect to this order should exhibit some strong form
dependence. Actually, with the help of a saddlepoint theorem, one can show that such cou-
plings are also extremal, in the sense that there exists a matrix M belonging to a set of matrix
S, , such that the coupling solves (5). These couplings are called positive extreme couplings
and form a subset of extreme couplings. For instance if = is the (strict) Loewner order on
matrices, defined by M > N iff M — N has a strictly positive symmetric part, then positive
extreme couplings are the one maximizing (5) for some nontrivial matrix M whose symmetric

part is nonnegative.

In a second part of this chapter, an algorithm is proposed to compute these extreme couplings.
Given any coupling & € II(u, v), we would like to find a means of associating 7 to an extreme
dependent coupling. Geometrically speaking, this amounts to consider a matrix inside the
covariogram, and project it on the boundary of the covariogram. Of course, there are several
way to perform such a projection, and we propose one which respects the structure of the
initial problem (5) and allows for explicit computations. As in the first chapter, an entropic
relaxation is used:

Wr(M):= sup E(X'MY)+ TEnt(r) (6)
mell(p,v)

where Ent(m) is the entropy of the coupling , formally —E,(log(7(X,Y"))). This is a per-
turbed version of the original problem, which can be formulated as a projection problem
with respect to the Kullblack-Leibler pseudo-distance. Moreover, if o; is the cross-covariance

matrix of the coupling 7, then the first order condition of the following problem

inf  Wp(M)—o0sz- M (7)
MeMy(R)

reads 07 = E(p a)(XY') where 7(T, M) is a coupling achieving the supremum (6). Therefore,

12
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a means to associate an extremal coupling to 7 is to fix T, e.g. T'= 1, and then find the matrix
M solving (7). M is then the cross-covariance matrix of the coupling ™,y maximizing (6)
with 7= 1. Thus a whole trajectory of nondeterministic couplings T Ny obtains that satisfy
E”l,M (XY') =0z and oy 18 an extremal coupling. Moreover, the projection of oz onto the
boundary of the covariogram is particularly simple to compute, at least when the marginal
distributions are discrete, as the Iterative Proportional Fitting algorithm is then particularly

efficient to solve (6) whilst (7) is a standard convex problem.

The third part of the chapter focuses on applications. First, performing a singular value
decomposition of the matrix M, we exhibit a linear transform of the marginal distributions
of an empirical coupling, which allows interpret the extreme coupling To.nr 88 the maximum
correlation coupling once the marginal distributions are linearly transformed. This linear
transform is helpful in dependence problems where two economies are involved to define new
indices from financial indices that would solve the problem of maximal correlation under the
law of the extreme coupling. Then, we apply this technique to multivariate stress testing: a
Markowitz allocation model is considered, and the impact of the change of the dependence
between two subsets of the investment universe is assessed. Interestingly, it shows that while
the maximum correlation coupling might fail at stressing the portfolio, it is not the case
with the previous method on the considered examples. Moreover, this method provides a
whole trajectory of couplings with increasing dependence. The same type of argument is
applied to derivatives pricing: a Furopean option on several underlyings is considered, and
our dependence stress test is compared to the more classic stress test of covariance matrices,
which typically assumes that the cross-covariance matrix is filled with a single parameter p
and let p tend to £1. This last method has a major disadvantage when the marginals are fixed:
the covariance matrix has two fixed diagonal blocks (the covariance matrices of the marginals),
and the parameter p is constrained to belong to an interval to ensure the nonnegativity of the
covariance matrix. It results that our method has a larger impact on the prices and avoids the
problem of maintaining the stressed covariance matrix in the set of symmetric nonnegative

matrices.

Chapter 3 The third chapter tackles the issue of describing the dependence between stochas-
tic processes with copulas, and shows how copulas can be used in a genuine dynamic frame-
work. The point is to be able to describe the cross-sectional dependence between two Marko-
vian diffusions X;, i = 1, 2, whose dynamics are dX; = p;(t, X})dt + o;(t, X})dW}. The
coupling between these diffusions is materialized by a coupling correlation p(t, X}, X?) be-
tween the Brownian motions W, these latter being defined in such a way that d(X}, X?) =
p(t, X}, X2)dt, ie. p(t, X}, X?) is the instantaneous correlation between the Brownian mo-
tions. Such models are reminiscent of Dupire’s local volatility model [2]|, and can be used

in the same manner, that is to calibrate the correlation function in order to match today’s
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prices of options; this is the approach of the local correlation models introduced by Langnau
[6] and Reghai [10]. The problem here is a bit different as we want to adjust the correlation
function in such a way that the copula C; between X} and X?, which fully describes the
cross-sectional dependence at time ¢, is controlled. In the spirit of the copula approach to
dependence, we describe the dynamics of the copula Cy by first scaling the marginal diffusions
X} by their cumulative distribution functions F}: a pair (U}, U?) of stochastic processes with
stationary uniform distribution obtains, whose bivariate cumulative distribution function is,
by definition, the copula C;. The dynamics of the copula C} is then derived by establishing

the Kolmogorov forward equation of the process (U}, U2). This equation writes

0 Ci(u,v) = %(Uoll(t,u)ﬁfmCt(u,v) + voly(t,v)?93,Cy(u, v))

+ p(t, u, v)voly (t, u)vols (t, v)02, Ci(u,v)

where vol;(t,-) = (f}.oi(t,-))o(F})~1(-) is the volatility of the scaled marginal i and j(¢, u,v) =
p(t, (FH) ™Y (w), (F?)~1(v)) is the scaled correlation function. This equation describes the evo-
lution of Cy, which depends on the marginal distributions and on the coupling correlation p.
This equation offers a means to control the copula of the bivariate diffusion. For a fixed family

{Ct}>0 with smooth and positive densities, define:

0 Cy(u,v) — 3 (voly (t,u)d2,Cy(u, v) + vola(t,v)?02,Cy(u, v))
voly (t, u)voly(t, v)02,Ci(u,v)

p(t,u,v) = (8)
and p(t,x,y) = p(t, F}(z), F?(v)). If p is indeed a correlation function, i.e. if [p(t,u,v)| < 1
for all (u,v) € [0,1]%, a sensible expectation is that the copula family of the bivariate diffusion
with coupling correlation p(¢,z,y) is indeed Cy. The first part of this chapter consists in

establishing the copula PDE as well as this result of ‘coherence’.

In a second part, the emphasis is put on the simplest coupling case, which corresponds to
Brownian motions coupling. The coupling stochastic differential equation for Brownian mo-

tions writes

dB? = p(t, B, BY)dB} + /1 - p(t, B}, BY)2dZ, (9)

where (B!, Z); is a standard bivariate Brownian motion. The problem is to determine whether
a given copula C' is attainable by coupled Brownian motions, in other words, whether there ex-
ists a correlation function p such that the equation (9) makes sense and the resulting bivariate
process (B}, B?) has a copula family Cy satisfying O = C' at some time 7' > 0. Furthermore,
we are primarily interested in the copulas that are stationary, that is the copulas C' such that
there exists coupled Brownian motions (B}, B?) whose copula family C; becomes constant
and equal to C' after some time 7" > 0. It turns out that the property of self-similarity and

invariance under time-inversion of the Brownian motion considerably simplifies the analysis of
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attainability, as a copula that is attainable at some time 7" > 0 is attainable at any time ¢ > 0
(and the same for stationary copulas). In order to show that the set of stationary copulas does
not reduce to the Gaussian copula, a detailed example is provided which shows that non trivial
members of the Farlie-Gumbel-Morgenstern copula family are indeed stationary copulas. This
analysis is followed by a short zoology of copulas, which aims at listing some classic copulas
that are admissible or not as stationary copulas. The coupling correlation function of these

copulas equals

ol (w)2-—a—1(w)2

1 2 —_— 92

) — L€ 92,C +e p 02,C (10)
2 o2.C

q>*1(v)2_q>*1(u)2
2

after some time 7' > 0, according to (8). Empirically, and for the copula we tested, the copulas
seem to divide in two categories, the ones with sup, ,)cjo,1)2 [0(4,v)| < 1 and the ones such
that p(u,v) explodes when (u,v) is close to the boundary of the unit square. These latter
copulas are not stationary copulas, and numerical evidence suggests that classic copulas such
as the Student copula, or many archimedean copulas have this behavior. Furthermore it is
worth noticing that all copulas with bounded correlation are copulas without tail dependence,
like the Gaussian copula, while the copulas for which p(u,v) explodes exhibit tail dependence.

This might prevent them from coupling Brownian motions.

The final part of this chapter is devoted to a financial application of the previous coupling
method. The impact of introducing non Gaussian dependence is assessed on a dynamic strat-
egy, namely a CPPI Long-Short strategy. This strategy involves two assets, the core and the
satellite, and aims at guaranteeing a wealth that is proportional to the buy-and-hold strategy
in the core, while benefiting from a possible rise of the satellite. This is achieved by alter-
natively shorting one asset and being long the other according to the value of the strategy
relative to the value of the guarantee. The diffusion model for the assets is a coupled Black-
Scholes, and we focus on the gap risk, materialized by the probability that the Long-Short
CPPI falls below the buy-and-hold strategy. The impact of copulas is monitored: although
relatively low (compared to the sensitivity of the gap risk with respect to the volatility for
instance), it is real and shows that some models of dependence are more conservative than

others for the strategy under consideration.
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Chapter 1

Numerical approximation of optimal

transport maps

1.1 Introduction

The problem of interest is to compute numerically a solution to the Monge-Kantorovich prob-
lem in L2. Tt consists in finding a law of probability 7 of a pair of random variables (X,Y)

with marginal distributions p and v over R that solves

E:(X -Y)= max Ez(X-Y) (1.1)
FE(u,v)

where II(u, v) is the space of all such joint laws, E; denotes the expected value with respect
to the law 7 and - is the Euclidean scalar product. This problem has received a considerable
attention. Originally formulated by Gaspard Monge in a stronger form in 1781, and under
the above form by Leonid Kantorovich in the forties, it has found many applications in many
fields, both theoretical and practical. Excellent references are the two volumes by Rachev and
Riischendorf [18] as well as the books by Cédric Villani [22] and |24] that show the phenomenal
scope of the optimal transport theory.

The primal problem (1.1) is equivalent to the dual problem

inf /godu+/g0*du (1.2)

pEL! (dp)

where ¢* stands for the Legendre transform of ¢,

©*(y) = sup [z -y — ¢(v)] (1.3)
zeR"™
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Under light assumptions on the marginals p and v, Brenier’s theorem [7] states that there is
a unique solution to the primal problem, and this solution is the law of a couple (X, Vo(X)),
with second marginal is a deterministic function of the first one. Moreover ¢, called a Kan-
torovitch potential , is a solution to the dual problem (1.2) that is convex, and Vg is the
unique pu- a.e gradient of a convex function such that Vp#u = v.

The optimal transport map V¢ is a rather complicated object. It is a solution of the highly

non-linear Monge-Ampére equation

det D*p(2) f,(Vep(x)) = fu(z)
when f and v have densities f, and f, with respect to the Lebesgue measure.

The numerical side of optimal transport has received less attention compared to the numerous
theoretical developments. Notable exceptions include Brenier and Benamou [3] who derive
a saddlepoint formulation of the transport problem and make use of augmented Lagrangian
techniques to propose estimates for the optimal transport map; they present results when the
initial measure is uniform on the torus R™/Z". Loeper and Rapetti [15] solve the Monge-
Ampére equation (with constant right term) D2y = p, where p is a smooth density by using a
linearization of the equation combined with a Newton’s algorithm. Results are provided again
in the case where p is the uniform measure on the torus. Angenent, Haker and Tannenbaum
[1] and Dominitz and al. [9] use the equivalent problem of polar factorization to design a

gradient-descent algorithm.

Another strand of literature that is not directly connected to the determination of the optimal
transport maps deals with optimal transport when the marginals are discrete. When they
have the same number of equally-weighted atoms, this is the assignment problem . This is the
classical matching problem of assigning N people to N objects while maximizing a matching
function ¢ (the scalar product in the case of L? optimal transport). The problem reduces to

finding a permutation of N elements that solves
méix Z Cio‘(i)
7

where the maximization is performed over the set of permutations of {1,..., N}.
This problem has been extensively studied in combinatorial optimization. An important
contribution is the auction algorithm, proposed by Bertsekas [5], that is to our knowledge the

most efficient algorithm for solving the assignment problem.

In a first part, the transport problem with discrete target measure is investigated. A sim-
ple but enlightening economical interpretation is given. The approach proposed is related to

power diagrams and least-square clustering: Aurenhammer et al. [2] detail a gradient-descent
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algorithm for solving the least-square assignment problem. We then provide (under appropri-
ate assumptions on the marginal measures) theoretical pointwise convergence results stating
that the Kantorovich potential in the case of discrete target measure vy converges uniformly
to the Kantorovich potential of the dual problem as soon as vy converges in distribution to
v. Eventually, a gradient-descent algorithm is proposed as well as empirical experiments. We
compare this type of gradient-descent algorithm coupled with a quick warm-point algorithm
to linear programming algorithms as well as to the popular auction algorithm, and show that

it can be an efficient means to solve the transport problem.

1.2 Related literature and contribution

The algorithm presented in the first part of this chapter and compared to other algorithms
in the last part is close to a solution to the least-square assignment problem proposed in
Aurenhammer, Hoffmann and Aranov [2]. This problem can be formulated in the following
way: find a polyhedral partition of the space R by power diagrams with given volume. A
power diagram is a partition of the space into ‘distorted Voronoi cells’ ; that can be written
as

Pi(v) = {a] o = yl? —wi < | — s — wj, j = L., M)

where the M points y; € R"™ are the sites of the diagram and w; € R are the weights. These
are the analogue of the places and the prices of the section 1.3.3. The problem is to find,
for a given vector of ‘capacities’ ¢ (that corresponds to the offer of the sellers, ¢, in 1.3.3),
and a probability distribution p over [0,1]", a vector of weights w such that ¢; = u(P;(v))
for all 4. This is almost exactly the problem of finding the optimal transport map between
w and Zf\i 1 €i0y, as explained in the next section 1.3; this was pointed out by Riischendorf
and Uckelmann [20]. Aurenhammer et al. show that the optimal weights are the maximum
of a concave function, just as the optimal prices of section 1.3.3 are the minimum of a convex
function, and propose to compute these weights by a gradient method, which is the analogue
of the method we use. Gangbo and McCann [11]| conjectured that such an algorithm should
yield a solution. The results given in the section 1.3 are a direct extension of those presented in
Ekeland, Galichon and Henry [10], section 3, who cover the case of a discrete initial distribution

and provide an economic interpretation close to the one exposed in 1.3.3.

The second part of the chapter consists in proving that the optimal transport map between
two continuous measures can be approximated by solving the transport problem when the
target measure v is approached by a sequence vy converging in distribution to v. This result
has been proved in quite a general setting by Villani [23], and we provide here a detailed proof

that fits into the setting of this chapter (optimal transport over the Euclidean space R™).

The third part of this chapter compares several algorithms, and especially the classic auction
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algorithm of D. Bertsekas (see e.g. [5]) taken as the benchmark. The Iterative Proportional
Fitting Procedure (IPFP) is proposed as a means to provide a warm point for the gradient
descent algorithm. A similar entropic relaxation problem is studied, with no apparent con-
nection made with the transport problem, by Yuille and Kosowsky [13]|, who observe (as we
do) the lack of performance of this algorithm when the discretization of the measures involves
a large number of atoms. Finally, let us insist on the fact that we chose to solve the transport
problem with measures on the Euclidean space, while some authors (e.g. Loeper and Rapetti
[15]) solve it on the torus; it seems that, in this case, the convergence of the various algorithms

is way faster than it would have been in the Euclidean setting.

1.3 Optimal transport with a discrete target measure

In what follows, i and v are always supposed to have compact support and do not give mass
to small sets ', so that Brenier theorem mentioned above applies and the optimal transport
map is well defined. The support of u is supposed connected so that Kantorovitch potential
is defined up to a constant. The case of transport problem between p and a discrete measure

of probability with a finite number of atoms is well-known and admits explicit solutions.

1.3.1 Form of the solution

Let vy be a discrete probability over R™, with N atoms, vy = Zf\;l ¢idy,- A mapping 1

pushing p forward to vy satisfies

N
P(X) ~ qu'éyw when X ~ p
i=1
where ~ means equality in distribution.
This implies that on suppp, 1 takes values in the finite set {y;, }1<i<n. Actually, according
to Brenier Theorem, we know that there exists a p-a.e unique gradient of a convex function
which solves the problem: the previous remark indicates that this convex function should be

looked for under the form of a piecewise affine function on suppp. More precisely:
Proposition 1 An optimal conver function ¢ satisfying Vi = vy is piecewise affine, i.e.

the Brenier Map Vo is a piecewise constant function. More explicitly, a solution ¢ is

p(r) = max [z y; = vi] (1.4)

Let v = (v1,...,on)" and V;(v) = {x € suppuli € argmazy[z -y, — vg]}. The v; are such that

u(Vi(v)) = gi, for all i

LA small set is a measurable subset of R™ with Hausdorff dimension at most n — 1.
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Proof: Let ¢, be as in (1.4), its gradient is given by

N
Vapo(2) = D L (@)yi, a-e.
i=1

Thus
N
Voot = > u(Vi)dy,
i=1

thanks to the envelope theorem (here and thereafter the dependence on v in V; is often

dropped). A necessary and sufficient condition on (v;)1<;<n for Vi, to solve the problem is:
w(V;) = q; for all 4. (1.5)

O
However, it is not clear at this point whether such a set of v; actually exits. Theorem 1.4 and
example 1.6 in [11] state that this is indeed the case. Alternatively, the proposition 2 below
proves also the existence of such a solution.

The actual computation of the optimal transport map reduces to finding such a v; the

dual transport problem provides a means to do this.

1.3.2 Dual problem and first order condition

The Kantorovich potential is a solution of the dual problem

inf / p(x)dp + / ©*(y)dvy

pEL(dp)

Thus, ¢, is optimal iff it is a solution of the following minimization problem :

inf / ou(z)dp + / ey (y)dvn ()

ve RN

A straightforward computation yields ¢} (y;) = v;. Thus the dual problem writes

inf [/ oo(x)dp+q- v] (1.6)

veE RN

Formally, V,E(p,(X)) = E(V,pu(X)) = —(u(V1) ... u(Vy))', and the first order condition
reads ¢; = p(V;), j =1,..., N which is precisely the condition (1.5) for ¢, to be a Kantorovich

potential.

A remark that is the cornerstone of the algorithm proposed below is the convexity of the
objective function F(v) := E(p, (X)) +¢ - v.
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Proposition 2 F is a convez function that is bounded below and thus admits a global mini-
mizer in RN . Moreover, F is continuously differentiable on RN and any global minimizer v

satisfies the first order condition

qi = uw(V;(v)), for all i

A proof can be found in appendix 1.7.1.

1.3.3 An economic interpretation

A simple economic interpretation gives some insight into the transport problem. Consider
a spatial distribution p of buyers interested in a single type of good, supplied by sellers
located at positions y;. ¢; models the offer proposed by the i-th seller. Each customer faces
a trade-off between a distance cost and the prices proposed by the sellers. The economic
surplus of assigning the buyer located at = to the i-th seller (the one located at y;) is set
as = - y;. The primal problem maxx., y~vy E(X -Y) consists in the maximization of the
total economic surplus, and is the problem the social planner wants to solve: controlling the
coupling between the distribution of the customers and the distribution of the sellers, so as to
maximize the total surplus. Welfare theorems suggest that this problem should be related to
some price equilibrium (Walrasian equilibrium) that arises from the price competition between
the sellers. Indeed, the first order condition of the dual problem states that u(V;) = ¢; for all
1. Recall that:
Vi=A{zlr-yi —vi > x-y; —vj, Vi}

In other words, the set V; is the set of customers whose net surplus is maximum when they
buy from seller i: this is in some way the basin of attraction of the seller i. Hence, u(V;)
is the proportion of customers buying from the i-th seller. The dual problem amounts to
adjusting the prices v; so that the proportion u(V;) equals ¢;, the offer supplied by the i-th
seller, that is equalizing supply and demand. Thus the dual problem consists in adjusting the
prices so that the equilibrium between supply and demand is attained. Therefore, market
clearing is equivalent to maximizing total surplus. Finally, remark that the gradient-descent
algorithm proposed below implements the Walrasian auction process: sellers that sell their
whole production raise their prices, reducing the size of their basin of attraction, while those
who fail at selling their entire offer lower their prices, increasing their basin of attraction. The

process repeats until the market clears (possibly within an infinite amount of time).

1.4 Approximating the continuous case

The solution to the problem in the continuous case draws upon the previous results by dis-

cretization of the target measure: let vy be any sequence of discrete probability measures
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converging in law to v. For each N, there exists a solution Vn to the optimal transport
problem between p and vy. The problem of interest is to give sufficient conditions that ensure
the convergence of the sequence Vo to Vi and that justify the two steps approach ‘discretize

the target measure and take limits’.

Convergence in measure in L? A first result concerning the convergence of the optimal

transport map is given in [24] Corollary 5.23:
For all e > 0, p{z : [Von(x) — Vp(z)| >} =0

i.e. the convergence in measure of Vo to Ve with respect to p. This result holds under
fairly general assumptions on p and v (compactness is not necessary). However, this result
does not tell anything about the possible pointwise convergence of x or its gradient, but the
existence of a subsequence Vi (X) that converges almost surely to Vipo(X) as j — +o0. A
similar result holds for the optimal transport plans 7, when both initial and target measures

are approximated by sequences of discrete measures as proved in the first volume of [18].

Pointwise convergence A stronger form of convergence can be proved under additional
hypothesis. Pointwise convergence results are less known, see for instance an article by Villani
[23]. The proof proposed below is adapted from this article to our simpler setting. This proof
follows the strategy of finding a uniformly converging subsequence of @x, and proving that
any such subsequence converges to the optimal transport map. The existence of a converging
subsequence relies is ensured by Ascoli’s theorem. In order to invoke this theorem we have to
make sure that the sequence {¢y} in C(supp p) is uniformly bounded. However in our setting

where 1 and v have a compact support, this is an easy lemma, proved in appendix 1.7.1.
Lemma 1 The sequence of vectors {vy} are uniformly bounded, as well as the sequence {on}.

As a consequence of Ascoli theorem (see appendix 2):
Lemma 2 There erists a subsequence {py} which converges in C(supp ).
The convergence is proved under the following hypothesis (H)

1. p and v have compact and convex support.

2. They do not give mass to small sets.

3. w is absolutely continuous with respect to the Lebesgue measure A and %’f > 0 almost

everywhere on the support of p.

As we will see, the limits of the converging subsequences are defined up to constant. To fix

things, every ¢y is supposed w.l.o.g to be zero at a fixed point x( in the support of u.
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Theorem 1 Under (H), ¢y converges uniformly to a convex function whose gradient (defined

almost everywhere) is the optimal transport map.

In the following proof, the value of the functions outside the supports of p or v is not important.
However, they must be defined everywhere (and possibly convex), and this is done by giving
them the value +o00 outside these supports.

Proof: The proof consists in proving first that every converging subsequence has a limit whose
gradient is the optimal transport map. Then, we show that these functions are equal up to
an additive constant, that is zero up to a normalization of . This concludes the proof as
the existence of a subsequence and the uniqueness of the limits of the converging subsequence
entails the convergence of the sequence {pn}.

Let {¢w } a subsequence of {¢y}, and ¢ its limit in C(supp u). Let us prove that the gradient
of ¢ is a solution of the optimal transport, i.e. Vo#u = v.

The restriction of ¢}, to supp v enjoys the same properties as ¢y: they are uniformly bounded
and equi-Lipschitz. Thus Ascoli theorem implies that there exists a subsequence still noted
k' such that both ¢y tends to ¢ and ¢}, tends to a function (continuous and convex) 1,
respectively uniformly over supp g and supp v.

The quantity
/ 22/2 — g (2)dpa(z / WI2/2 — g (y)du(y)

tends to

/ 1222 — pla)du(x) + / ly[2/2 — ()dv(y)

supp p suppv

by dominated convergence. However, the upper expression is W2 (u, v4) the quadratic Wasser-
stein distance between p and vg. According to the continuity of the Wasserstein distance
(Theorem 7.12 in [22]), W3 (p, vgr) — W3 (u,v) and thus

/ 1222 — (@) dpu(z) + / y[2/2 — w(a)dv(y) = WE(i,v) (1.7)

supp p supp v

which means that the couple (|]?/2— o, |y|?/2—1) is optimal in the dual Monge-Kantorovich
problem. However, the solution of the dual problem is not necessarily unique, and we have to
prove that ¢ = ¢* in order to conclude.

It is sufficient to prove that ¢ = ¢* on suppv. As pp (x) + ¢}, (y) > x -y, taking limits yields

o(x) +1(y) > x -y, Yo € suppp, Yy € supprv (1.8)

As ¢ is infinite outside supp p, *(y) = SUP,equpp u[ - ¥ — w(2)] and (1.8) implies that
1 > o* on suppv (1.9)
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If there exists y € Int(suppv) such that ¥(y) > ¢*(y), the continuity of ¥ and ¢* on supp v
implies that there exists a ball B C supp v over which ¢ — ¢* > ¢ > 0. So,

/apdu—i—/wdy > /@d,u—i-/@*du—i-u(B)s
> /sodwr/sfdv (1.10)

inf /god,u—i—/ap dv
wELl(du

sup /@du—i—/wdu—/ud +/|y|
() €L (dp)x L1 (dv)

— f d d
wEirlldu /<P u+/<p .

But we know according to (1.7) that Ms— [ @du+ [ ¢dv is a solution of the Monge-Kantorovich
problem. Hence (1.10) is a contradiction and ¢ < ¢*, on Int(suppr). This holds on

However,

W by continuity. The convexity of suppv implies that W = suppv (ac-
cording to the ‘Accessibility Lemma’, see [6]).

As a consequence, every converging subsequence has a limit whose gradient is the optimal
transport map. This map is unique p a.e and as p is supposed absolutely continuous with
respect to the Lebesgue measure with an almost everywhere positive density, it is unique
almost everywhere on supp p. This is sufficient to ensure that the limits of the converging

subsequence are defined up to a constant. [

So far, we have seen convergence results for the Kantorovitch potential. This implies conver-
gence of the optimal transport maps Vi in the case where the limit Kantorovitch potential ¢
is regular enough, as pointed out by Villani [23]. Without entering into the details of the Caf-
farelli’s regularity theory (see Th. 4.14 [22] or Th. 12.50 [24]), if both supports are convex and
regular enough and that u and v are absolutely continuous with respect to the Lebesgue mea-
sure with smooth and locally bounded from below densities, then the Kantorovitch potential

is regular. If it is C', we have

Lemma 3 (recalled in [23]) Let ¢ be a conver function in C'(R™,R) and py, a sequence of
convex functions converging pointwise to ¢ on R™. Then if C C R"™ is an open convex set on
which ¢ is finite, then Oy converge to dp locally uniformly on the compact subsets of C' in

the sense that

V.S compact subset of C,||d(0¢r(-), V()| +oo, s VT 0
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where d is the Euclidean distance between a set and a point and Op(x) denotes the subdiffer-

ential of p at point x.

In other words, not only does ¢ converge locally uniformly to ¢, but the subdifferential dp

converges uniformly on the compacts of supp p to the optimal transport map.

1.5 Numerical Experiments

We first describe how is chosen the discretization of the target measures. A description of
the algorithms is then provided and examples allows for a comparison of their respective

performances.

1.5.1 Discretization of v

We have not imposed any restriction so far as to the form of the approximating sequence v
except that it must converge in distribution to v, and the above results hold for any such
sequence.

The purpose of optimal quadratic quantization consists in finding a discrete probability vy
with NV atoms that is closer among such measures to a given probability v, with respect to the
quadratic Wasserstein distance . In other words, if Py is the set of discrete measures with N

atoms, then an optimal quadratic N-quantizer vy is a measure that solves

min W3(r,Q) = min  inf E (| X —Y?
QePy 2(1,Q) QEPN mell(Q.v) (l )

It can be shown that such a measure takes the form vy(x) = ZZ]L v(Ci(x))dy, where z =

(z1,...,2n) € (R")V is called an optimal quadratic quantizer , and
Cla;) ={z;|lz —as| < |z —xj], j=1,...,N}

are the Voronoi cells associated to x.
The discretization vy converges indeed to v as implied by the following theorem (whose proof

as well as an extensive exposition of the theory can be found in [21]):

Theorem 2 (Graf-Luschgy) If v has a finite moment of order strictly above 2, then

Chw

2
w (Vv I/N(x))Nr—v)ooNQ/n

for some constant Cy,,, which depends on n and v.

Thus to use such an approximation we need two things: an optimal N-quantizer (x1,...,zN) €
R"™ and the weights of the Voronoi cells v(C(x;)). The advantage of this approximation is can

be computed once and for all for a given v.
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Figure 1.1: Left: optimal quantization of the uniform law on the square [0, 1]2. Right: optimal
quantization of the bivariate normal law. This latter (as well as the optimal quantization grid
of the normal law used in what follows) is taken from G.Pagés and J. Printems website [17].

1.5.2 The algorithms

We make the distinction between two classes of algorithms solving the transport problem. On
the one hand, the algorithms that use the discretization of the original measure p to reduce the
problem to a linear programming problem or that use a very specific form of the discretization
(for instance with equally weighted atoms) such as the auction algorithm. On the other hand,
the minimization problem (3.16) does not impose a discretization of the initial measure. For
instance, when p is an uniform measure on a bounded polytope, it is not necessary to perform
a discretization of pu to obtain a numerical solution. Furthermore, even if discretization of
the target measure is chosen, it can take various forms: equally weighted atoms or not, same

number of atoms as in the discretization of v or not.

Continuous to discrete case

The dual problem formulation (3.16) is a convex optimization problem. As such it is natural

to try a Newton-type algorithm that updates the prices iteratively according to:
Vi+1 = U — tiHi_lvv.F(Ui) (1.11)
where H; is an approximation of the Hessian of F at v;. The gradient of F is given by

p(Vi(v))
VoF(v)=q—| (1.12)

p(Vn (v))
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Descent algorithms The BFGS (Broyd, Fletcher, Goldfarb and Shanno) algorithm pro-
vided by the Optimization Toolbox in MATLAB® R14 (2005) is used. It falls into the broader
category of quasi-Newton methods that aim at using the curvature of the objective function.
It provides is a sequence By of semidefinite positive matrices that hopefully provides a good
approximation of the inverse of the Hessian H,~ L after a few steps and converges to the true
Hessian inverse at the optimum, see [16]. By can be set arbitrarily (it is the identity matrix

in what follows) and a line-search is performed to determine the best step .

Evaluation of the mass p(V;) This is the crucial point, and the most time consuming.
When p is a uniform law, it amounts to compute the volume of V;; if suppu is a polytope, so
is V; and triangulation techniques can be used to compute this volume accurately. However

when the law p differs from the uniform law, a discretization of p is used.

Initial guess Finally, a crucial parameter in descent algorithm is the starting point. An
heuristics consists in remarking that when linearizing the optimal transport (in the case where
v and v are close), the order zero term is |z|?/2. As ¢} (y;) = vj, it is sensible to start from
v; = |y;?/2 = (%)*(yj), although it can be suboptimal in many situations. This choice

amounts to taking the initial Vj(vg) as the Voronoi cells associated to (y;)1<i<n-

Discrete p

In this section, 4 is the discrete distribution ) . p;d,,. We tested three quite distinct solutions.

Linear programming methods The primal problem writes:

N

N
min E pipi + ) qjv;
Vi,j @it >xiy; i—1 =1 I

This is a linear programming problem: the objective is linear, as well as the inequality con-
straints. Two standard algorithms are at our disposal, the common simplex algorithm, and
primal-dual methods, also known as interior point methods. This last algorithm shall have
our preference, as it is known to perform better than the simplex on large-scale problems. It
is closely related to unconstrained linear programming with log-barrier penalization (see [16]).
The set of constraints in this particular problem is huge: if there are N atoms, the number of
constraints is N2. As we will see, this feature ruins the performance of both algorithms when

the number of points increases.
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The auction algorithm This popular algorithm has been proposed by Bertsekas , see for

instance the survey paper [4]. It solves the dual problem :
min )., mé?(N[xl y; — v;] + Z v; (1.13)

This problem is the discrete version of the problem (3.16), in the case where pu and v are both
equally distributed discrete measures: this is the classic assignment problem . In a few words,
the algorithm proceeds as follows. A set of N customers is to be assigned to N objects, in a
one-to-one mapping. Each customer starts unassigned. Then each unassigned customer, say
the i-th one, bids for the object j; that maximizes its net surplus s; = max;(z; - y; — v;), his
‘best object’. His bid is such that he becomes indifferent between this best object and the
second best object j; (the object that maximizes w; = max;;,(x; - y; — v;)): he is willing
to increase the price of j; by the bidding increment s; — w;. Once every unassigned bidder
has made a bid, each object j is assigned to the bidder that has proposed the highest bidding
increment for j. The person, if any, that was assigned to this object becomes unassigned and
the price of object j rises by the highest bid. The process is repeated until everyone becomes
assigned.

This would work fine if there were not prices war: when there is a group of objects that
offers the same net surplus for some customer, the bidding increment may be zero. This can
be the case for several customers that compete for equally desirable objects without raising
their prices. Such cycles are broken by assuming that the bidding increments are replaced by
s; —w; + €, € > 0, imposing a minimum increase of the price of a desired object by €. This
condition ensures that the algorithm ends and that the prices are within Ne to be optimal.
The procedure becomes: for a given ¢, unassign everyone and perform the auction procedure
until everyone is assigned. Then lower € and perform the auction process, starting with the
prices that were found with the previous value of €. Eventually, stop when ¢ falls below some
threshold.

This algorithm is fast, in principle: the time complexity, for a given € is
O(N?log(N.max; ; |z; - y;|/€)), when the surplus matriz (x; - y;)i; is integer. In this case,
the threshold for € is fixed at 1/N, because prices will then be within Ne < 1 optimal, and
then optimal because they are integer. This problem is overcome by a proper scaling: both
x; and y; are multiplied by an integer and then floored. The solution v is then multiplied by
the same integer thus giving an approximate solution of the initial problem.

An important remark is that this algorithm converges very well when the surplus matrix is
sparse, but is less efficient with dense matrices, which is systematically the case in the follow-
ing. The theoretical overall complexity (including the repeated e-scaling) in the worst-case is
O(N?log(N.max; j |x; - y;]))-

The algorithm tested here is the so-called forward auction algorithm (see [4]), with the integer
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scaling described above; € is set at 1 at the beginning, the e-scaling is chosen as the reduction
by one fourth at each iteration, and the terminal condition is e < 1/N.

The idea behind the application of this algorithm is that although is does not exactly solve
the problem we are interested in, its fastness makes it appealing combined to a Monte-Carlo
approach. Namely, instead of using a ‘clever’ discretization of the measures such as determined
by the quantization, they could be discretized as a sum of a large number of equally weighted

atoms and the auction algorithm would perform the assignment on this set of atoms.

Simulated Annealing and the Iterative Proportional Fitting Procedure Simulated
annealing consists in introducing an entropic perturbation in the primal problem, yielding a

relaxed version of the problem :

7w € argmax{Ez(X -Y) + TEnt(7)} (1.14)

mell(p,v)
As i and v are both discrete here, the entropy is defined as — Z” mijlog mi;. T is a temper-
ature parameter, and as T goes to zero, the entropy penalization vanish and the probability

w7 becomes an approximate for the optimal coupling that solves

7 € argmax Ez(X -Y)
rell(p,v)

Let 77% x €Y be a probability density. Then is is straightforward to see that the relaxed
problem (1.14) is equivalent to the problem

werﬂl(iil,u) Dy (r|7$), where Dy (r|n%) = E,r(log (%))
D, is called the Kullback-Leibler divergence . Thus the relaxed problem amounts to ‘project’
(in a broad sense, as Dy, is not a distance) 7% onto the set II(u,v) with respect to the
Kullback-Leibler divergence. It can be shown, and a detailed proof is given in [19], that the
solution 7p has the following log-likelihood: log wp(z,y) = %9 +ar(z) +br(y), a € LY (dp),
be L(dv).

The TPFP algorithm, also known as Deming and Stefan algorithm is the alternative projection
algorithm applied to the previous projection problem. It consists in alternatively projecting
72 on the set II(1) of probabilities on R"™ x R™ whose first N-dimensional marginals are p
and II(v), the set of probabilities whose second N-dimensional marginal are v. This provides
a sequence my,, such that mo, € II(u), mony1 € (v) and m, — 7p € I(p) NII(v) = (u,v),
in total variation. The algorithm consists in alternatively modifying ar and bp so that ms, €
TI(y) o o SR (@) b2 (W) 4 Ton1 € TI(1) o oS @)+ ()
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If we let (p1,...,pn) be the atoms of p and (q1,...,qa ) the atoms of v, the iteration writes:

1 .
el ) = e
> g (wisy et T
ea%-'»l(mi) =

ORI AN

with b3 = a% = 0. Eventually, T.b(y;) approximates v; as T — 0. On this latter fact, we refer
to an article by Kosowski and Yuille [12] that relates the IPFP to Sinkhorn theorem and to
the Iterative Scaling Algorithm. We should emphasize the fact that, contrary to the auction
algorithm, TPFP is meant to work with distributions p and v that do not necessarily have
the same type of atoms (for instance, they are not necessarily equally weighted sums of Dirac

distributions).

1.5.3 Examples

We have tested our algorithm on three examples in dimension 2. These examples are presented
as a proof of concept, in so far as the theoretical optimal transport map is obvious in each

case as they all involve a simple transformation of the marginals.

1. The transport is between two uniform distributions and consists in a translation: y =
U_¢ 22, v = U_997>. The optimal transport map is Vp(z) = = + 41 i.e p(z) =
|z|?/2 + 41z + cst. We use a cube quantizer:

(=2 + 4552 -2+ 483 o

2. Departing from the theoretical framework described above, we investigate the case of
a non compactly supported target measure. g is the uniform law on the unit square
while v is the bivariate normal law. As the initial and target measures are the laws of
independent variables, the optimal transport map is obtained a scaling of the marginals:
Vo(z) = (27 (z1), @' (22)).

3. Dilatation of normal distribution : p = N(0, Id) and v = N(0,21d): V(z) = V2 i.e o(x) =

%|x|2 + cst.
Optimal quantization grids (v;)i=1,.. .y for the normal law N(0,Id) are those provided
by [17].

1.5.4 Results

The following numerical results were computed with Matlab 7.5 running on a Xeon CPU @ 3
Ghz. We detail the results obtained for each example, while putting the emphasis on the first

one.
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Uniform case

Numerical results for the first example are given in appendix 1.7.2. Before entering the details
of each algorithm, we give here the conclusions as to the best performing methods in this case.
Our experiments rule out the linear programming algorithms, that proved very costly. The
IPFP algorithm is fast, even compared to the auction algorithm, but generates a numerical
error that does not vanish on the boundary of the support of u, and therefore is retained as a
warm point provider for the descent algorithms. The auction algorithm is also fast (compared
to the descent algorithm for a fixed number of points of the discretization of v) but yields
higher numerical error than the descent algorithm for comparable computing time. Eventually,
the descent algorithm that uses the quantization of the initial measure suffers the drawback
of providing a numerical error that is not a decreasing function of the number of points of
the quantization grids. This feature is even more pronounced than in the case of the auction
algorithm.

Our conclusion is that the BFGS algorithm coupled with a warm point provided by ITPFP and
an accurate computation of the volume of the cells V; should be chosen, as it is faster than

the auction algorithm.

Exact Descent In the uniform case we use the Multiparametric Toolbox [14] which allows

71)07(051(1%) is computed with this toolbox.
PPH)

We call this method ezact descent as it uses the BFGS algorithm to determine the descent

for polytopes manipulation. In particular, u(V;) =

direction and because the volume of the polytopes V; is computed by triangulation techniques
via the MPT Toolbox and does not rely on a discretization of the initial measure. Table
1.2 sums up the results in the uniform case. It contains the number of points used in the
quantization of U[_j 92, the computation time and the numerical error. This latter is defined

as

ng?gloo‘%e“y<1oo’100 Prum (760" 100

Auction and IPFP Algorithm We use a regular grid? to discretize the uniform law both in
the auction and IPFP algorithm. Table 1.4 shows it is extremely fast compared to the gradient
algorithm for a fixed number of points. However, the exact descent is more efficient, as for
comparable computation times, it yields a better numerical error. The IPFP is even faster
than the auction algorithm (see table 1.5). However, when the number of points increases, the
error does not necessarily decrease: it remains high on the boundary of the domain, and does
not decrease even when the size of both discretizations of p and v increases. This is likely due
to the fact that this algorithm fails at converging when the temperature comes close to zero.

This is why this algorithm is also used as a provider of a warm point for the descent algorithm

“which is a near from the optimal quantizer of the uniform law on the unit square.
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Figure 1.2: Numerical error: it is minimal on V¢ ~!(y;) where {y;}1<;<n is the regular grid
that quantizes the target measure U_j o).

rather than used per se.

Quantization The quantization is used here to replace the evaluation of the expected value
E(y,(X)) and of the cell volume p(V}) by their discretized counterparts ZNlpich(a;i) and
ZZ 1 Pilly,(z;). Table 1.6 shows the results when the initial measure has 10000 atoms while
the number of atoms of the target measure varies. It suggests that this method is able to
achieve an error that is comparable to the exact descent, with a time complexity that has the
same order of magnitude. However, unlike to the exact descent, both the computation time
and the numerical error are not decreasing functions of the number of points, which makes
it difficult to imply the actual time complexity and speed of convergence of this method.
Experiments show that for a fixed number of points, the error can be lessened at the expense
of refining the quantization grid of the initial measure. Yet, our experiments in this case do
not suggest that this method should be preferred to the auction algorithm, and even less to
the exact descent. This points out that when performing a descent method, the accurate

computation of the gradient critically impacts the output of the algorithm.

Linear programming algorithms As said previously, the number of constraints increases
very rapidly: for a grid of size N (i.e. N? points) on the square in R?, there are N* constraints.
Practically, this makes the algorithm totally inefficient as soon as N > 8 in dimension 2.
Experiments show that the simplex algorithm is ruled out, even for a small number of points,

as it is very slow. The interior point method is more efficient, but very slow too. Furthermore
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memory restrictions prevent from setting a number of points above 100 in dimension 2 due to
the increasing number of constraints with N. Nevertheless, this algorithm provides a solution
that has the same quality in terms of error than the one provided by the exact descent, but

its time complexity is worse than the exact descent.

Table 1.1: Interior Point Algorithm, uniform case

Points number | CPU Time | Error
25 1.202 | 0.1602
36 5.806 | 0.1111
49 33.564 | 0.0816
64 285.358 | 0.0624
81 1038.1 | 0.0494

Descents algorithm combined with a warm point As every descent algorithm, the
performance of the implemented BFGS procedure (the exact descent, or the quantization) is
critically impacted by the quality of the starting point. Although some justifications are given
above to choose a specific starting point, there is no insurance as to its ‘optimality’ in the case
where 1 and v are not close. A starting point that works very well, i.e. a “warm point”, is
provided by running the auction algorithm or IPFP prior to run a descent algorithm. Figure
1.3 and table 1.3 show that a warm point speeds up consistently the convergence of the BFGS

procedure (without improving the time-complexity yet, it just scales down the CPU time).

Uniform measure to normal measure

Exact descent can be still used, as the initial measure is uniform on the square, and we focus
on this sole method. This case is not covered by our theoretical framework yet, as the target
measure is not compact. Nevertheless, our experiments suggest that the same conclusions
as for the first example hold. Figure 1.4 provides a comparison of the error achieved for a
fixed number of points N, when the target measure is either optimally quantized or either
approximated by a weighted sum of equally-weighted Dirac masses. The gain offered by
quantization is obvious, as for a time complexity that is roughly comparable the numerical

error is lower when using quantization.

Dilatation of a bivariate normal variable

A third type of example is investigated: it consists in the computation of the transport map
between the standard bivariate normal law and a bivariate normal law with covariance matrix
2.1d, so that both measures are not compactly supported anymore.

This is also the first case where the exact descent algorithm, that computes the volume of the

Vi by triangulation can not be applied, as the initial measure is not the uniform one. The
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Figure 1.3: CPU time in seconds (log-scale) as a function of the number N of points for the exact descent
algorithm applied to example 1. The curve with plus signs corresponds to no warm point; the curve with
circles corresponds to an IPFP warm point (1000 points of discretization)

auction algorithm applied to a random discretization of both laws is compared to the descent
algorithm using a 1000 points optimal quantization for the initial measure, coupled with IPFP
as a warm point. The results are summarized in table 1.8 2. The conclusion remain similar to
those drawn from the previous examples: IPFP is fast but generates error on the boundary
that does not vanish when the discretization grid is refined.

The auction algorithm seems to be of less interest than the descent method, as it fails to
provide an error below 107!, even with distributions that have more than 2000 atoms. Yet,
it must be remarked that although the biggest quantization grid that we used to quantize the
initial measure has 1000 points, this is not sufficient to obtain an uniform error that is below
1072 with the descent algorithm.

A solution to this problem could be to implement an accurate method to compute the mass
(here for the normal measure) of polytopes in order to apply the same technique as in the
uniform case. In view of the result of the previous sections, it seems that non compactness is
not such a big impediment to this method as is the need for an accurate computation of the

objective function and its gradient.

3The definition of the numerical error must be adapted as the support is the whole plane. We use the fact
that the bivariate standard normal law gives to the square So = [—¢1_q/2, ql,a/2]2 a mass at least equal to
1—2a. «ais set a t5% so that Sso ~ [—1.96,1.96]%. The numerical error is then defined as SUPgcs,
@num| where G is a regular grid with 100 x 100 points on the square Sy 59.

Popt —

5%
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Figure 1.4: Example 2. Curve with circles: error as a function of the number of points IV of
the exact descent with quantization of the initial measure. Curve with crosses: error with a
random discretization of the bivariate normal law.

1.5.5 Complexity and order of convergence in the planar case

Figure 1.6 displays the time complexity of the exact descent method for the two first examples.
Experiments suggest that the complexity is O(N 5/2) " at least in the case where the initial
measure is uniform on the unit square. This is to be compared to the algorithm proposed
in [3], that involves O(N log(N)) operation at each iteration (but the number of iterations
required for convergence is unknown). Recall the descent algorithm use a BFGS update, so
that each step involves O(N?) operations; thus the complexity of this algorithm is necessarily
bounded below by O(N?). Figure 1.7 displays the numerical error as a function of the number

of points. Both examples suggest that the convergence has a rate of O(1/v N).

1.5.6 Convergence in higher dimension

In higher dimension, although the principle of the algorithm is still valid, the exact descent can
become costly. Indeed, its complexity is driven by the speed at which Delaunay triangulations
are computed. In dimension 2, these are done at a cost O(N log(N)). As there are N cells,
the gross computational cost of a single evaluation of the function F should be O(N?1log(N)).
In dimension d > 2, algorithms run at the worst complexity O(N (%1*'1)4. Hence, the time

complexity of the exact descent is exponential with respect to the dimension.

“see for instance the DeWall algorithm, a divide and conquer algorithm presented in [8]
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The auction algorithm seems at first sight less sensitive to the dimension. However, as sug-
gested by the rate of convergence of the optimal quantization (c.f. theorem 2), when the
dimension increases, the number of atoms that intervene in the optimal discretization of a
continuous law of probability increases at an exponential rate. Thus, the curse of dimension-

ality is not overcome by any of the algorithms we tested.

1.6 Conclusion

This chapter showed both theoretically and empirically that the approximation of the optimal
transport map can be done by first discretizing the target measure and then performing a
descent algorithm. In particular in dimension 2 when the initial measure is uniform over a
bounded polytope, this algorithm performs well compared to the auction algorithm. This
method also benefits from the freedom left on the form of the discretization: we chose it ‘op-
timal’, in the sense of L? optimal quantization.

The same algorithm works when the dimension increases although the complexity is exponen-
tial with respect to the dimension. When the initial measure is not uniform over a polytope,
it can be discretized. Yet we should emphasize that the performance of the descent algorithm
suffers from such an approximation; this method best works when we have a means to compute

accurately the mass of polytopes with respect to the initial measure.
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Figure 1.5: Second example: the computed Kantorovitch potential with a quantization grid
of the normal law of size 100. The polytopes V; appears on the surface plot.
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Figure 1.6: N is the number of points in the grid. Left: Example 1. Solid line is the curve N®/2_ the dashed
line is the computed complexity. Right: the same for the second example

38



01f

01

0.08[F

Error

006}E
004

0oz

200 400 B0OO 800
M N

pastel-00730335, version 1 - 9 Sep 2012

Figure 1.7: Left: Example 1. Right: Example 2. In both cases, the solid line is the curve 1/\/N and the
dashed line the computed error.
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1.7 Appendix

1.7.1 Proofs of various results
Proof of proposition 2

It consists in verifying the definition of a convex function. Let v and v/ bein RY, and t € [0, 1].
For all z € R"™,

(1= D)pu(@) + tpw (2) = (1 = ) max(z - y; — vi]) + t max(z - y; — vi])
> (1 =t)(x -y —v) +t(x -y — Ug), for all 7
=y — (1~ t)o; + 1)

Thus, for every z, (1 — )@y (x) + toy (r) > max[z - y; — (1 — t)v; + t0))] = P(1—pytter (T)-
The convexity follows by taking the expected value.
The function is bounded below: let v € R" and v = v — v;,1 where 79 € argmin; v; so that v

has nonnegative components and min; v; = 0.

Flo) = F(o) = / oo(@)du() + q'v > yiq - / wdi— By + g5 > —(max|y;)BE(X)]
v \/ J
=0 >0

The less obvious point that remains to prove is actually the smoothness of F and the form
of its gradient, although the formula is easily found formally. We prove the existence and the

continuity of the directional derivatives with respect to the canonical basis ej,j = 1,..., N of

<,0v+te]- (:L‘)fcpv(fl‘)
i

—1vy,(z), by an application of the envelope theorem, see prop 2.3.2 in [6].

<,0v+te]- (:L‘)fcpv(fl‘)
i

the function v — [ ¢, (z)dp(z). First, for a given z, limy exists is equal to

As, for all z, [Py e, (1) — 0y ()| < [t], the fraction is uniformly bounded with

Sov+t6j (73)_9017 (2?)

respect to ¢, and one can invert limit and integral. The same applies to limq n ,

except that it is equal to —17,(1;)(2) and therefore,

I Putte; (z) = pu(2)
im
10 t

dp(z) = —p(Int(V;))

However, as OV; has Lebesgue measure zero, and p is supposed to not charge small sets, this
equals u(V;). Eventually, E(¢,(X)) has partial derivatives with respect to v; for all i, viz.

v — u(V;(v)) which are continuous functions.[]

Proof of lemma 1

First, every v¥ can be chosen nonnegative as (vF)1<x<n, is defined up to a multiple of (1,...,1).
For example one can impose for all k, min;—_ g Uf = 0. For each k and 1 <@ < k, let x;
be in VF (such a point exists as u(VF) = gx > 0). Moreover, let jj such that v;?k = 0. The
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definition of x; 5, being in VZ’“ implies:
k k k
Tik Y — U = Tik - Yj,

which gives
of S @ik (0 = y5) < sup Jal.diam(suppy) < +oo
upp

Proof of lemma 2

We show that {¢y } satisfies the requirements of the Ascoli theorem, namely that it is pointwise
bounded and equicontinuous. It is pointwise bounded, as the sequence is uniformly bounded
on suppu. The equicontinuity results from the fact that this sequence is equi-Lipschitz, i.e.
each ¢ is Lipschitz with a Lipschitz constant that does not depend on k. Indeed, if x, 2’
belong to suppu, and x # z':

or(x) — op(2') = max(z -y — of) — max(a’ -y —of)
3 1

— - yhy — oy — man(a’ o — o
k k k K

< T Yie) ~ Vi) — T Yite) T Vite)

= (z—a') -y <lz—2'| sup [yl

yEsuppr

Similarly, ¢ (x) —@r(2') > —|z—2'| supyequppy [¥], and consequently |op (2) —@p(2)] < [z—2'.
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1.7.2 Numerical Results

Table 1.2: Exact descent, example 1

Point Number | CPU Time (sec) | || - ||+oo Error
25 3.822 0.1600
64 21.512 0.0624
81 34.866 0.0494

100 55.287 0.0400
196 230.428 0.0204
225 316.464 0.0178
256 457.518 0.0156
361 1147 0.0111
400 1579 0.0096
625 6148.9 0.0065

Table 1.3: Exact descent with IPFP warm point, example 1

Point Number | CPU Time (sec) | || - ||+00 Error
25 0.23 1.60E-01

64 1.99 6.24E-02

81 3.29 4.94E-02

100 4.27 4.00E-02

196 15.94 2.04E-02

225 23.15 1.78E-02

256 29.50 1.56E-02

361 80.28 1.11E-02

400 100.91 9.60E-03

625 368.61 6.40E-03

900 1346.20 4.50E-03
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Table 1.4: Auction algorithm, example 1

Point Number | CPU Time | || - |40 Error
25 0.03 1.43E+4-00
100 1.06 5.83E-01
225 5.70 3.79E-01
625 50.64 9.88E-02
900 113.68 5.36E-02
1225 248.32 6.85E-02
1600 467.93 3.23E-02
2025 782.34 3.36E-02
2500 1288.70 4.78E-02
3600 3387.00 1.87E-02
4900 6174.00 1.89E-02
6400 14834.00 1.97E-02

Table 1.5: IPFP algorithm, example 1

Point Number | CPU Time | || - ||4+c0 Error
25 1.60E-02 1.60E-01
81 3.10E-02 4.57E-02

100 3.10E-02 4.68E-02
169 9.68E-01 3.90E-02
196 9.40E-02 3.55E-02
225 1.10E-01 1.78E-02
256 1.25E-01 3.43E-02
289 1.40E-01 2.01E-02
400 1.88E-01 3.35E-02
625 3.28E-01 2.85E-02
900 6.41E-01 3.60E-02
1024 7.50E-01 3.65E-02

Table 1.6: Descent algorithm, 10000 points quantization grid for u, example 1

Point Number | CPU Time | || - ||4+co Error
25 9.38 1.82E-01
36 46.10 1.20E-01

100 28.48 5.68E-02
121 153.97 3.27E-02
196 178.94 2.01E-02
225 151.72 2.64E-02
256 233.61 1.79E-02
361 633.99 1.21E-02
400 108.86 1.48E-02
784 1308.50 5.70E-02
900 729.50 6.70E-03
1024 697.10 9.60E-03
1225 1133.00 1.36E-02
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Table 1.7: Exact descent, example 2

Point Number | CPU Time | || - ||4+c0 Error
25 2.635 9.82E-02
64 8.131 3.72E-02
81 12.474 3.10E-02

100 18.515 2.61E-02
196 58.027 1.52E-02
225 69.814 1.43E-02
256 109.037 1.26E-02
289 132.491 1.31E-02
361 207.583 1.01E-02
400 230.204 9.70E-03
625 712.705 5.70E-03

Table 1.8: Example 3, results

Point Number | CPU Time Error

25 422 | 510E-01

100 12.40 | 1.61E-01

200 27.18 | 6.36E-02

300 125.49 | 9.15E-02

400 114.86 | 8.47E-02

Descent 500 130.06 | 5.88E-02
600 386.67 | 4.15E-02

700 498.63 | 6.44E-02

800 591.36 | 4.52E-02

900 458.02 | 6.70E-02

25 0.02 | 4.13E+00

100 0.19 | 1.15E400

500 4.33 | 6.64E-01

Auction 1000 33.20 | 3.74E-01
2000 153.70 | 2.29E-01

2500 357.03 | 1.24E-01

3000 352.53 | 1.37E-01

5000 840.42 | 2.43E-01

25 < 0.01 | 5.24E-01

100 0.02 | 1.93E-01

300 0.06 | 7.83E-02

IPFP 500 0.17 | 5.09E-02
700 0.27 | 3.46E-02

900 0.36 | 3.02E-02

1000 0.41 | 2.72E-02
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Chapter 2

Extreme dependence for multivariate
data 1

Introduction

Extreme dependence, and the closely related notion of comonotonicity are important concepts
in various fields. It is central in the economics of insurance (following the seminal work of
Borch [3] and Arrow [1], [2]), in economic theory (see [21], [12] and [19]), and in statistics (see
[5], [17], [16], [22]).

Extreme positive dependence between two real random variables (X, Y") is characterized by the
fact that their cumulative distribution function should satisfy Fx y (z,y) = min(Fx (z), Fy (v)),
or equivalently, that their copula C' should be the upper Fréchet copula C(uq, ug) = min(uy, us).
This form of dependence occurs when X and Y are comonotone, i.e. when both X and Y
can be written as nondecreasing functions of a third random variable Z (for instance one may
choose Z = X +Y). As a consequence, comonotone variables maximize covariance over the

set of pairs with fixed marginals:

E(XY) = sup E(XY), (2.1)

X~ X

Y~Y
where X ~ X denotes the equality in distribution between X and X. Similarly, X and Y are
said to have extreme negative dependence when X and —Y have extreme positive dependence.
Their covariance is then minimized instead of maximized, and their copula is now the lower

Fréchet copula C (u,v) = max (u+v — 1,0).

The present chapter aims at proposing an operational theory of extreme dependence in the

multivariate case, namely when X and Y are random vectors. Our contribution is twofold.

!This chapter is a joint work with Alfred Galichon.
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First, we shall introduce a generalization of the notion of extreme dependence to the multi-
variate case, and we investigate how extreme positive dependence generalizes in this setting.
Then we shall apply these ideas in a financial context to stress-testing dependence, i.e. we shall
investigate the sensitivity of a portfolio on the strength of dependence between two random

vectors.

Generalizing extreme dependence. When dealing with the multivariate case, where X and Y
are random vectors in R?, there is no canonical way to generalize this notion of (positive or
negative) extreme dependence and Fréchet copula. One first approach, based on the theory

of Optimal Transport (see eg. [20]) would be to consider the following optimization problem

max E(X -Y) (2.2)

X~X

Y~Y
where - is the scalar product in R?. This program is a multivariate extension of the covariance
maximization problem (2.1) and defines as extreme the distribution of the pair (X,Y") solution
to the above problem However this does not take into account the cross-dependence between

X; and Yj for i # j, and therefore seems quite arbitrary for our purposes.

A more satisfactory generalization is based on the idea that both positive and negative extreme
dependence are obtained by the maximization of a nonzero bilinear form in (X,Y’) over the
set of couplings of X and Y (i.e. joint distributions with fixed marginals). That is, consider
solutions of (2.2) where the scalar product is replaced by any nonzero bilinear form. This
will be our notion of multivariate extreme dependence: random vectors X and Y shall exhibit
extreme dependence if their cross-covariance matrix maximizes the expected value of a nonzero
bilinear form over all the couplings of X and Y. These extreme coupling are proposed as
a generalization of Fréchet (positive and negative) extreme dependence in the multivariate
case. We shall provide a natural geometric characterization of this notion by considering the
covariogram , that is the set of all cross-covariance matrices E(XY”) for all the couplings of X
and Y. Then X and Y have extreme dependence if and only if their cross-covariance matrix

lies on the boundary of the covariogram.

We then turn to generalizing the notion of extreme positive dependence. One natural way to
generalize extreme positive dependence is to look for the couplings (X' , 37) that yield a cross-
covariance matrix Cov(X,Y) = E(XY’) = (E(X;Y}));; which would be maximal elements for
a certain partial (conical) ordering on matrices. As we shall see, it turns out that under this
definition, extreme positive dependence implies extreme dependence, and we can characterize

the geometric locus of extreme positive dependent vectors on the covariogram.

Stress-testing dependence. We give a method to associate any coupling, for example any

empirical coupling, with an extreme coupling, by means of entropic relaxation technique. An
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algorithm is described and results concerning its implementation are given. Applications to
financial data are provided, yielding the definition of indices of maximal correlation as well as

a prospective application to progressive stress-tests of dependence.

The chapter is organized as follows: the first section presents the notion of covariogram and the
definition of couplings with extreme dependence deduced thereof, as well a characterization
of such couplings. The second section defines couplings with positive extreme dependence;
a characterization of these couplings makes the connection with the notion of extreme de-
pendence. The third section defines an index of dependence, the affinity matrix; a method
to associate any coupling with an extreme coupling is described. We conclude with financial
applications, namely stress-testing portfolio allocations and options pricing, as well as the

computation of indices with extreme dependence. All proofs are collected in 2.9.

Notations, definitions. We make the following distinction between the univariate case and the
multivariate case. We refer to the univariate case when considering the dependence between
real valued random variables: this is the subject of the theory of copulas. In most of this
chapter we consider random vectors, and the dependence between two random vectors; in this

case we speak of multivariate dependence.

Let P and @ be two probability laws on R’ and R”, with finite second order moments. Without
restricting the generality we assume that P and @) have null first moments, so that the second
order moments E(X;Y;) are indeed covariances. II(P,Q) is the set of all probability laws
over R x R/ having marginals P and Q. We refer to an element of TI(P,Q) as a coupling,
understating the probabilities P and Q. If M and N belong to My ;(R), their scalar product
is denoted by M - N =Tr (M'N). If (X,Y) ~ m € II(P, @), we denote indifferently oxy or
or the matrix with general term E(X;Y}), which is the covariance between X; and Yj; it is
the cross-covariance matrix between X and Y. Remark that ox y is the upper-right block of
the variance-covariance matrix of the vector Z = (X,Y)’, and that ox,y is not symmetric in

general.

Eventually, let us recall that the subdifferential 0f(x¢) of a convex function on R™ at a point
xq is defined as set of vectors v such that f(z)— f(zo) > v - (z — xz¢) for all z € R™. Here the
dot is the usual scalar product. It reduces to {Vf(x¢)} if f is differentiable at z(, which is

true for almost every xg according to Rademacher theorem.

2.1 Related literature and contribution

As mentioned in the introduction, the extension to the multivariate setting of the correlation
maximization problem (2.1) has been tackled by several authors, especially to define notions

of multivariate comonotonicity. Puccetti and Scarsini [15] list several possible definitions of
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multivariate comonotonicity, among which two of them are directly related to the variatonal
problem (2.2). Namely, c-comonotonicity refers to the couplings that are by solving problem
(2.2): these are the optimal quadratic couplings of Optimal Transport Theory. This variational
approach to multivariate comonotonicity is also the basis of Ekeland, Galichon and Henry [7]
and Galichon and Henry [9]. They propose to extend the univariate notion of comonotonicity
and define the p-comonotonicity by stating that two vectors X and Y are p-comonotone if

there exists a random vector U ~ p such that

E(X-U) =max{E(X-U), U ~ u}
E(Y -U) =max{EY -U), U ~ u}

This notion of comonotonicity has the advantage of being transitive, unlike c-comonotonicity.
Carlier, Dana and Galichon [4] showed that this notion of comonotonicity appeared as ‘more

natural’ than the other ones because it is directly related to Pareto efficiency.

This chapter aims at finding multivariate couplings which exhibit a form of strong dependence,
just as the previously defined comonotonic couplings. The couplings that are defined as
‘extreme’ in what follows, are comonotonic couplings (in the sense of the c-comonotonicity)
up to a linear transform of one marginal (the c-comotonic coupling corresponds to the identity

transform). In other words, an extreme coupling (X,Y") satisfies the variational problem

E(X'MY)= sup E (X'MY) (2.3)
r€ll(P,Q)

This definition of extreme dependence is broad enough to encompass ‘positive dependence’ as
c-comonotonicity as well as ‘negative dependence’ (counter-comonotonicity in the univariate
case). Furthermore, it allows for a geometrical interpretation of extreme dependence: an
extreme coupling has a cross-covariance matrix located on the boundary of the compact and
convex set of all possible cross-covariance matrices, called the covariogram. This set has been
introduced in Galichon and Salanié [10], who point out the importance of its boundary. Taking
advantage of this simple interpretation, we then investigate the couplings m which have cross-
covariance matrix o, that are maximal for some partial orders >, and show that they form
an eagily characterized subset of the extreme dependent couplings. The rest of the chapter
consists in computing the extreme couplings, and, for any given coupling 7 propose a means
to build a continuous sequence of couplings 7w with 7y being extreme, and o, = 0. This is
done by penalizing the problem (2.3) with an entropy term, which allows for fast computations
when the marginals are discrete law of probability, thanks to the Iterative Proportional Fitting
Procedure. This algorithm dates back to Deming and Stephan (1940) [6], and has been used
by Yuille and Kosowosky [11] (although they do not refer explicitly to IPFP, their method is

equivalent to it) to solve the assignment problem, and in Econometrics in [10].
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Figure 2.1: Example of a 2 dimensional section of a covariogram

2.2 Multivariate extreme dependence

In this section we describe our proposed notion of multivariate extreme dependence. Consider

the covariogram, the set of cross-covariance matrix (E(X;Y}));; in My ;(R) for any 7 €

(P, Q):

Definition 1 The covariogram F (P, Q) is defined by:
f(P, Q) = {E c MLJ(R) dw € H(P, Q), Eij = EW(Xi}/}),fO’I" all Z,j} .

As TI(P, Q) is a convex and compact set (a proof of this last property can be found in [20],
pp. 49-50) the covariogram is itself a convex compact subset of My j(R).

Figure 2.1 gives a first example of the 2 dimensional section of a covariogram where only
the diagonal elements of the cross-covariance matrix are represented, when I = J = 2. P
and Q are discrete distributions on R? with equally weighted atoms and we look at the two
first component-wise covariances E(X1Y7), E(X2Y3). The solid curve is the boundary of
the covariogram: every coupling between P and () would have a cross-covariance matrix that
projects within the convex hull of this curve. The independence coupling projects on the point
(0,0). The dots on the z-axis represent respectively the minimal and maximal covariances
between X and Y;. These covariances would be attained in the copula framework by the lower
and upper Fréchet copulas. This motivates our definition of extreme dependence couplings as

couplings whose projection lies on the boundary of the covariogram.
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Definition 2 A coupling (X,Y) ~ © € II(P,Q) has extreme dependence if and only if
(Ex(XiY})),; lies on the boundary of the covariogram F (P, Q).

The cross-covariance matrix between X and Y, ox y, enjoys the property
Tr(M'oxy) =E(X'MY), for all M € M; ;(R) (2.4)

which allows us to reformulate the notion of extreme dependence as follows:

Theorem 3 The following conditions are equivalent:
i) (X,Y) ~7mell(P,Q) have extreme dependence;
ii) there exists M € My j(R)\{0} such that

Tr (M/Uﬂ—) = sup 1Tr (M,Uﬁ—)
FEl(PQ)
or equivalently
E.(X'MY)= sup E:(X'MY); (2.5)
FEI(P,Q)
iii) there exists M € My ;(R)\{0} and a convez function u on R! such that M.Y € du (X)

holds almost surely.

In dimension 1, the interpretation is obvious: two real random variables have extreme depen-
dence iff there exists a scalar m # 0 and a nondecreasing function u such that mY = u(X).
According to the classic terminology, X and Y are said comonotonic if m > 0, and anti-
comonotonic otherwise.

When M = Idin (2.5), the optimal coupling is the optimal transport coupling for the quadratic
cost solving (2.2).

2.3 Positive extreme dependence

The aim of this section is to propose a generalization of the concept of Fréchet copula
of upper dependence to the multivariate case. As already mentioned, copula theory fails
to handle this problem. Indeed, if Cp and Cg are two copulas, the first one of order
I (associated with distribution P) and the second of order J (associated with distribu-
tion @), a natural candidate for being the copula of positive extreme dependence would be
Cr (z,y) = min(Cp(21,...,21),Cq(z1,...,27)). But according to the so-called ‘Impossibility
theorem’ (see [14]) , Cx is a copula function if and only if Cp and Cg are respectively the
upper Fréchet copula of order I and J. We thus depart from the copula approach and aim at
characterizing positive extreme dependence directly through the cross-covariance matrix of X

and Y. Starting from the simple observation that in the univariate case, the positive extreme
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dependence attains maximum covariance between X and Y over all the couplings of P and
@, we shall introduce a conic order on the cross-covariance matrices ox y and define positive
extreme dependent couplings as the couplings whose cross-covariance matrix is a maximal

element for that order.

In what follows one considers convex cones that are used to define conic orders . In order for
our results to hold, they are assumed to have a particular form, namely dual cones of cones
with compact basis (2.8 provides some background on such cones). More precisely, for each
compact convex set C' C My j(R) such that 0 ¢ C (such a set is called a compact basis), a
closed convex cone in My j(R) is defined by setting:

KC)={yeM;jR)|z-y>0,VzeC} (2.6)

Considering cones of this form might seem restrictive, but we provide examples that show that

many classic cones can be defined in such a manner.

K(C') defines a conic order on My ;j(IR). More precisely, a strict conic order is needed and we
set, for A and B two matrices in My ;(R)

A >'K(C) BifA—-B¢ I?”Lt(K(C))

The interior of K(C) is {y € My j(R)|z-y > 0, Vz € C}. Let K = K(C') be such a cone.

Definition 3 A coupling (X,Y') such that ox y is a mazimal element in F (P, Q) with respect

to the strict conic order = is said to have positive extreme dependence with respect to =g .

The following results fully characterize couplings with positive extreme dependence in terms

of maximal correlation couplings.

Theorem 4 The following conditions are equivalent:
i) (X,Y) ~7m eIl (P,Q) have extreme positive dependence with respect to > ;
ii) there exists M € C such that

Tr (M/O'ﬂ-) = ﬁEE%EQ)TT (M/O'ﬁ-)

or equivalently

E.(X'MY)= sup EzX' MY); (2.7)
FeI(P,Q)

iii) there exists M € C and a convex function w such that M.Y € Ou(X) holds almost

surely.

Hence, oxy is maximal if and only if there exists M € C such that X and MY are maximally

correlated for the scalar product. Obviously, this result is a close parallel to Theorem 3 except
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that M is constrained to belong to C'. As a consequence the positive extreme couplings
are a particular case of extreme couplings. Once again the interpretation in dimension 1 is
straightforward: X and Y have positive extreme dependence (w.r.t. the order in R) iff they

are comonotonic.

E(X2Y2) 67

Figure 2.2: Shaded region: location of the couplings dominating the coupling materialized by
the square dot.

To better understand the relation between those two types of couplings, let us go back to the
two dimensional section of the covariogram discussed in the previous section, and take for
K the positive orthant of R? x R?. The shaded region in Figure 2.2 is the set of couplings
dominating the coupling that projects on the square dot, with respect to that order; as a
consequence this coupling can not have positive extreme dependence. This intuitively explains
why maximal elements should be on the boundary of the covariogram, hence that positive
extreme couplings should be extreme couplings. Maximal elements are represented on the
bold line figure 2.3: those are not dominated by an element of the covariogram. Consequently
the couplings exhibiting positive extreme dependence, i.e. the one than can not be dominated,
are located as shown in Figure 2.3. They are on the bold portion of the boundary, in the upper
right corner of the covariogram, and forms only a ’small’ part of the couplings of extreme

dependence.

To demonstrate the applicability of this approach, we now give several examples of partial

orders on covariance matrices.
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Figure 2.3: Maximal couplings on the boundary.

Example 1 (Orthant order) Let M}fJ(R) (resp. M}Fj(R)) denotes the set of real 1 x J
matrices with nonnegative coefficients (resp. positive coefficients). The set C = MIJTJ(]R) N
{22, Mij = 1} is a compact basis set. K(C) is easily seen to be the set MIJTJ(R) and its
interior is MI":}'(R) Eventually A = B iff A — B has only positive coefficients: this is the

(strict) orthant order on matrices.

Example 2 (Loewner order) Let S;" and S denote respectively the set of nonnegative
matrices in Sy, and the set of definite positive matrices in S,. If C = {S € S;F(R)|Tr(S) = 1}
is the set of semi-definite matrices with unit trace, C is a convex compact subset of M, (R)
and K(C) ={M € M, (R)|Tr(M'S) > 0,VS € C} is the set of matrices M whose symmetric

part, MJgM/, is semi-definite positive. The strict order =g ) is then defined as: A = B iff

the symmetric part of A — B is definite positive. This is an extension to M, (R) of the classic

Loewner order on symmetric matrices.

The following trivial example shows that this ordering allows various positive extreme cou-
plings. A first remark is that the maximum correlation coupling is indeed positive extreme,
by setting M = Id in theorem 4. Consider P ~ N(0,I3), the bivariate normal law, and
Q = N(0,1) ® U1, the law of a vector whose first component is normal and the second
one is the uniform law on (0,1), independent from the first component. Let X ~ P and
Y = (X1,U), U ~ U,y independent from (X7, X3), so that ¥ ~ Q. This coupling has not
the maximum correlation even though X; = Y7. However it satisfies (2.7) with A = (}J) and

can be qualified as a maximal coupling.
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Example 3 (Hermitian order) Let

M+ M’ M — M’
Mg = M+ M ’ _
2 2
the symmetric and skew-symmetric part of a matriz M € M,(R). We define the hermitian

transform M € M, (C) of M by setting
M := Mg + iMy, where i> = —1
As iA is hermitian as soon as A is skew-symmelric, M is hermitian. Using the Loewner order

on hermitian matrices we define a (partial) strict order on M, (R) by setting

Ms0% -0

If C = {M € M,(R)|M € S;(C),Tr(M) =1}, then K(C) = {M e M,(R)|M e S;*(C)}.

2.4 An index of dependence

Suppose now we are observing or simulating a coupling 7 € II(P, @), for instance an empirical
coupling. Even if this coupling is supposed to exhibit strong dependence, its cross-covariance
matrix will never be exactly located on the boundary of the covariogram. Our problem is
then to associate an extreme coupling with 7; more precisely, we propose to find a continuous
sequence of non deterministic couplings mr such that m; = 7 and 7 is an extreme coupling.
In other words, we give a means to go smoothly from an empirical coupling to an extreme
one by progressively increasing the strength of the dependence between the marginals. This
is done by introducing an entropic penalization of (2.5), so that its solutions project on inner

points of the covariogram.

2.4.1 Entropic relaxation

We introduce temperature in (2.5) by means of an entropy term ; it becomes

W(M,T) := x| (Ex(X'MY) + TEnt(r)) (2.8)

The entropy of a coupling 7 is defined as

- f log 7T(:C, y)d?T(:C, y), if 7 < dxr ® dy and the integral exists and is finite
Ent(m) =

—oo otherwise

Let 7 denote a solution of (2.8); a proof of its existence can be found in [18] and references

therein.
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Fixing the temperature at 1, our aim in a first place is to find a matrix M such that 7
and w71 have the same location in the covariogram; in other words they have the same
cross-covariance matrix: oz = or,,,. The gradient of W is given by the envelope theorem:
VuW(,T) = 0ry; . This remark implies that M is the solution of the following variational
problem

min  W(M,T)—o0z-M (2.9)
MeM; ;(R)

W(-,T) is a convex function as a supremum of affine functions in M and consequently the
objective function in (2.9) is convex as well: this is a classic unconstrained convex minimization

problem. Figure 2.4 shows the projection of 7y 1 for a large number of randomly generated

E(X2Y2) 5"

% I 3 5 3 r 2 E(X1Y1)

Figure 2.4: Projection of various s

matrices M. The bullet point is the projection of 7. One sees that any inner point of the

covariogram can be attained by a properly chosen 7.

2.4.2 Numerical solution

It can be shown that the optimal 771 in (2.8) obeys a Schrédinger equation (see 2.9.3):
logmari(z,y) =a'My+u(z)+ov(y), ue L' (dP),ve L'(dQ)

In other words, the log-likelihood of 7y 1 is the sum of a quadratic term 2’ My and an additively

separable function in x and y. The solution is found by setting u and v such that 7y ; has
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the marginals P and Q. This is the purpose of the well known (Deming & Stephan 1940, Von
Neumann 1950) Iterative Projection Fitting Algorithm.

Let us recall in a few words the principle of it; we refer the interest reader to [18] for a
more detailed exposition and a complete proof of the convergence. This algorithm consists
in building a sequence m, such that my, has first marginal P and 7,41 has second marginal
Q. It can be interpreted as Von Neuman’s Iterated Projection algorithm with respect to the
Kullback-Leibler distance. Its most remarkable property is the convergence of m, towards a

probability m with correct marginals P and Q. 7, has the following form:
Ton(2,y) o e Mytun(@)ton(®) - while Ton41(2,Y) X e Mutunt1(@)+on(y)

The algorithm proceeds as follow: first choose some starting (ug, vg) defining mg; for instance
vo = —y? and ug = —x?. We then look for some joint distribution 7 whose first marginal is
P, taking the form e*'My+u(z)+w0()  This writes

eul(x) _ P(‘T)
[ e My+vo(y) dy

Then we want to set v, so that my(z,y) = e Mytu(@)+01W) hag second marginal Q and we

get:
ev1(y) — Qy)

- f ea:’My-l—ul(J:) dx

and so on, the recursion at step n writes

eln+1 () — P(x)
[ e’ My+vn (y) dy
evn+1 (y) — Qy)

j‘ezll\lyﬁ»un_',l(z)dm
This algorithm is typically a fized-point algorithm; it finds (u,v) such that

fex’Meru(:v)JrU(y)dy = P(z)
fem/My-FU(w)‘f'U(y)d:C = Q(y)

This builds a series of (uy,,v,) (defined up to a constant) which enjoys a convergence property:
T, — 7, in total variation (again we refer to [18| for more details). An important remark is

that in the case of discrete distributions P and @), the previous formulae become simply:

ntily) = QW
TS Sy
eun+1(y) — %
>, r(@y)en 1)
where 7(z,y) = Eexiiﬁm/ Eventually the convex minimization problem (2.9) can be solved

by any gradient descent type algorithm. The BFGS algorithm is used in the examples below.
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2.4.3 Derivation of the extreme coupling

We recall that our aim is to associate an inner coupling (i.e. a coupling which projects
inside the covariogram) to some extreme coupling which projects onto the boundary of the
covariogram, by finding a trajectory of couplings that goes smoothly from the inner one to

the extremal one.

The previous algorithm yields a particular matrix M and a coupling 7, such that oz = RPN
This coupling was found by setting arbitrarily the temperature at 1; the entropy penalization
was thus effective and this allowed to reach inner points in the covariogram. This temperature
parameter is easily explained. When it goes to +00, the entropy penalization is predominant
in (2.8). Informally, the solution coupling is the one exhibiting the more disorder: this is the
independence coupling. On the contrary, the less is the temperature, the closer (2.8) is to
the non penalized problem. Hence, the lower T', the more m N projects near the boundary.
Hence associating # with an extreme coupling can be done in the following way: once M is
found, a sequence of 7 Ny T, | 0 yields on the covariogram a trajectory of points which tend

to the boundary. Figure 2.5 summarizes this idea: each point on the curve is the projection

Sectors: Health Care and Financials

x
E(X2Y2) 5

e
AT

vy J
P L

R S R NN U SN
NS
4 bt st it e L0

5 L L L | | 1 | | E(XLY1)
. - - 8

x10°

Figure 2.5: A trajectory toward an extreme coupling when the sectors are Health Care and
Financials

of a 7y, T, As T — +o00, we recover the independence coupling whose projection is located
t (0,0). When the temperature decreases, the trajectory passes on & at T'= 1, and gradually
approaches the boundary of the covariogram. Thus, the temperature can be seen as a means

to control the strength of the dependence. This can be used to define formally an index of
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dependence : choosing a norm ||-|| over the set of matrices M j(R) and using the homogeneity
of W, namely W(A)\M, AT) = AW(M,T) for all A € R, we have 7y, | = g y(ar)), ar @nd the
temperature 1/||M|| appears as an indicator of the strength of the dependence between the
marginals of 7. The matrix M can be seen as an affinity matrix : in the limit of T — 0, the
extreme coupling N0 achieves the supremum of E, (X’ M Y). M is thus the linear transform
that makes X the most dependent with MY under Tyt o

2.5 Applications

In the financial applications below, the previous technique is applied to times series of linear
daily returns on sectors of mainstream indices: S&P 500 and DJ Eurostoxx. We consider
Health Care, Financial and Food & Beverage sectors of these indices: P and @ are distributions
on R3. The historical data spans 5 years between September 2004 and September 2009. Table

2.1 gives summary statistics (the three first variables corresponds to S&P sectors, the last third

Table 2.1: Summary Statistics

Mean Returns 1074 (1.03 ~1.13 1.67 1.16 —1.37 3.99 )
Variance 1074, (1.36 7.65 1.16 1.14 4.15 1.12)
1
8'% 0162 1
Correlation matrix 059 0.6 019 1
0.26 0.33 0.25 0.49 1
0.22 0.16 0.22 0.67 0.58 1.00
: . (274 3.05 2.13
Cross-Covariance 1075, <6.04 1.8 5.52>
2.66 4.62 2.56

to Eurostoxx). In particular, the correlations between sectors belonging to different indices
are mild (< 35% in every case). Inside an index, correlation is well higher, but remains below

80%; this motivated our choice for these sectors: the marginal laws are not degenerated.

2.5.1 Numerical Results

P and @ are discrete distributions with equally weighted atoms in R3, each atoms being a
vector of the returns at some date of the three sectors. The atoms are equally weighted as we

consider that the daily returns are i.i.d random variables.
1 X :
P = ~ Z o0px , 7 = vector of the linear returns on the S&P500

The optimal M we find when considering all three sectors or only Construction and Health

Care are:
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# of components 2 3

025 014 0.25 —0.139 —0.37
- 23 —0. ~0.39 0.44 —0.80
optimal M (—0.10 0.40 ) <0.57 —0.15 0.86
error — Lom—ozll ~ 0.1% < 0.2%

llo ]l

The linear returns are expressed in percentage. The error is computed as the percentage of
difference between oz, the cross-covariance target, and oy, ,, the covariance matrix of the
optimal coupling. They should be perfectly equal in theory and this percentage measures the

convergence of the gradient algorithm.

2.5.2 Financial applications

The first application exploits further the affinity matrix M. 1t consists in performing a singular
value decomposition on it, in order to deduce indices of maximal correlation; it is related to

the notion of canonical correlation.

The second one is based on considering the trajectory of couplings T — N as @ continuous
family of scenarios of increasing dependence. They are used to build scenarios of stress-tests
involving multivariate variables that can be useful for risk management. By stress-testing,
we mean increase the index of dependence defined above (that is, lowering the temperature
parameter), thus shifting away continuously from some coupling 7 to the extreme coupling
Tyro- Lhisis to be compared to the method that consists in picking the maximum correlation
cou71:>1ing as the ‘highest dependence scenario’; indeed this coupling might be less in line with
the cross-covariance structure of the empirical coupling 7, yielding unexpected and undesired
results when managing risky portfolios or options on several assets. Typically, we expect
the cross-covariance matrix of Tyro O be located nearer from oz than the projection of the

maximum correlation coupling.

Indices of maximal correlation

Recall that canonical correlation analysis consists, for two random vectors X and Y, in finding
vectors a and b such that (a’X,0'Y") solves max,, corr(a’X,b'Y’). The first canonical corre-
lation, defined as this maximum, is the highest diagonal element of the diagonal matrix that
appears in the singular value decomposition of the matrix 0;1)?20' Xyd;%// 2 (see [13]). Let M
be the affinity matrix of the coupling (X,Y"). The singular value decomposition of this matrix
writes M = USV’, with U and V two orthogonal matrices and S a diagonal matrix with

nonnegative entries. In particular,

E”LO((\/?U’X)’(\/?V’Y)): max EF((\/gU’X)’(\/gV’Y))

mell(P,Q)
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In other words, if (X,Y) = (vV/SU'X,V/SV'Y), then this linear transform of (X,Y) has
maximum covariance (under the law 0). Thus v SU’" and VSV’ are the analogue of the

optimal @ and b in the canonical correlation framework.

This transform is useful to understand the link between the extreme coupling Tt o and the
maximum correlation coupling, the one that corresponds to M = Id in (2.5). Indeed, if P
is the law of v/SU'X with X ~ P, Q is defined likewise from @, and ﬁM,o is the law of
(VSU'X,VSV'Y) where (X,Y) ~ my o, then Bz (X'Y) = max_ 5 ) Ex(X'Y). The
singular value decomposition of the affinity matrix provides linear transform of the marginals
that makes the extreme coupling Tir.0 the maximum correlation coupling after a scaling of
the marginals by these transforms.

As an example, in the case of the 3 components chosen above, this transform writes

_ — 0.42 X7 4+0.95 X2 —0.019 X3
X = — 0.64 X7 —0.27 X2 +0.26 X3
0.11 X1 +0.06 X2 +0.35 X3

<— 0.30 Y1 +0.99 Yo —0.13 Y3>

?

— 0.67 Y1 —0.16 Y2 +0..28 Y3
0.12 Y7 4+0.08 Y2 +0.34 Y3

This result states that X and Y are most correlated to one another under the law of the
extreme coupling. These two vectors are composed of portfolios involving the components of
the original index and can be viewed as new indices: we speak of indices of mazimal correlation.
When the strength of dependence is maximal (T' = 0), they maximize the correlation E(XY)

among all others law of probability with same marginals.

Portfolios stress-testing

In order to underline the necessity of accounting properly for the multivariate dependence,
the problem of one-period allocation is considered. Suppose a universe of allocation consists
in a set of assets; the problem is to study the impact of the change of the dependence between
two subsets of this universe. They shall be denoted X = (X1,...,X,) and Y = (Y1,...,Y.,).
In the examples below, the assets are S&P Sector Indices, and X is composed of Materials,
Construction and Retail indices, while Y is composed of Food and Beverage, Health Care,
Financials and Utilities indices. The corresponding summary statistics are given in table 2.2.
Correlation is higher than in the above examples as the sectors are industrial sectors on a
single index, the S&P500.

Consider an investor solving a classic Markowitz allocation problem, with an investment hori-
zon of one year: MAXY =1 [0+ W — %w’Ew. 1 are the expected yearly returns of the stocks
and ¥ the covariance matrix of the returns. We assume that both p and ¥ are the standard
empirical estimators (in other words, the investor do not make any guess as to the future

behavior of the assets), computed over a period of one-year, the in-sample period. The risk
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Table 2.2: Summary Statistics

Mean Returns 104, (2.89 1.67 1.03 —1.13 1.97 2.01 1.85 )
Variance 1074, (3.59 1.16 1.36 7.65 1.92 0.984 3.25 )
1

072 1
. . 0.71 0.76 1
Correlation matrix 0.69 0.86 0.65 1
0.69 0.85 0.69 0.76 1
0.69 0.67 0.75 0.62 0.66 1
0.70 0.76 0,60 0.72 0,74 0.56_1
. T4 (1AL 153 3.6271.85
Cross-Covariance 10™%. ( 0.921 0.979 1.83 1.05
1.27 1.45 3.73 1.50

aversion parameter A is set at 3. The solution to the Markowitz allocation problem with these
parameters is denoted w. The risk of a portfolio is here identified to its variance, and is known
as soon as the covariance between the assets is specified. When performing the allocation at
time 0, the investor is expecting a risk of w’3w. The stress-test consists in considering that the
market conditions changes after the investment decision: the strength of dependence between

X and Y increases.

The affinity matrix is computed with respect to the in-sample data. The whole trajectory of
couplings toward the boundary obtains, parameterized by the temperature T'. These couplings
7 yield stressed covariance matrices Xp = E., (X — E(X))(Y — E(Y))’). X7 represents a
scenario where the marginals of X and Y are left unchanged, while the realized dependence
between X and Y has increased, compared to the initial covariance matrix 3. In a first place,
the expected risk of the portfolio, w'Xw, is compared to the realized yearly risk w'Xrw. It
gives a first hint as to unexpected risks the investor might face when the dependence varies
and the allocation decision does not forecast this change. The graph 2.6 shows this effect. The
variance obtained at temperature 1 is w'Xw; in the worst case, where the realized covariance
is Xg.1, the investor chooses a portfolio that yields an extra 4% of variance than expected.
When the dependence is properly accounted for, the investor determines the optimal weights
wr according to the covariance Y. The opportunity cost - wp — p - w is the loss in term of
returns that arises when the dependence increases, while the investor sticks to the allocation
w. This cost is more and more significant as the temperature lowers, reaching 6% in this case.
A comparison with the usual extreme multivariate coupling, namely the maximum correlation
coupling is enlightening. First of all, this coupling is not defined when the dimension of X
and Y are different. Consequently an asset is removed from Y and the same computation
as above is performed: a covariance matrix X p that would be the realized covariance if the
assets were in maximum correlation dependence is computed. On this particular example, the
variance w' X gw is 60% lower than the expected variance w'Xw. Other examples can yield to
a significantly higher covariance. This shows that the maximum correlation coupling might
not be always adapted as a means of stress-testing the dependence. A more classical way to

stress the dependence is to suppose that the correlation between X; and Y; is p for all 7 and
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Figure 2.6: Plot of T' — w'37w

J; the correlation matrix between X and Y is filled with p and the resulting cross-covariance
matrix is denoted X,. A first problem of this method is that it is known beforehand that,
depending on the marginals, ¥, might not be an admissible cross-covariance matrix for P
and @; the resulting variance-covariance matrix of the vector (X,Y’) might fail to be semi-
definite positive. This stress-test yields in this case underestimated risks. Indeed, while in our
framework the variance w'Xw is at 1.91, this level of variance is attained only when p is above
95%, while the mean of the empirical cross-correlation is around 60%. Furthermore, even if p
is set at 100% (disregarding the admissibility problem evoked above), the resulting variance

is still lower than the one obtained with the extreme coupling.

It appears that the trajectory T" — mp provides a coherent sequence of covariance matrices
> that models a rise in the dependence between X and Y. This method respects both
marginals and has the advantage of generating admissible matrices where the usual method
of parameterizing correlation matrices by a single parameter could yield incoherent covariance
matrices. Moreover, the maximum correlation coupling fails in this setting to properly account

for increasing risk of dependence, likely because it ignores the cross-correlation effects.

Options pricing

This method of increasing the multivariate dependence can be also applied for rainbow options

(options on several underlyings) pricing. As a case study, consider the underlyings X, ..., X,
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Figure 2.7: Opportunity cost as a function of the temperature

Y1,..., Y. It is assumed that they all follows log-normal diffusions, with parameters

X; J
dYZ . . .
7 pydt+oldB; , d(B',B’), = pldt

The models is fully specified as soon as the correlation matrix between W and B is set.
Consider the option that pays min((max; X% — K)4, (max; YIJ; — K)4); it is the minimum
between the payoffs of two best-of options on the X* on the one hand and the Y7 on the
other hand. It pays when the X% and Y. perform well, but mitigates the gain by selecting
the lowest payoff between (max; X7 — K); and (max; Y% — K)4. The terminal distribution
of the underlyings is discretized; the discrete marginals of vectors X and Y obtains. Their
atoms are respectively denoted x?r and ygp For each specification of a cross-covariance matrix

A between X and Y, a trajectory mp(A) is obtained as well as a series of prices:

Pr(A) = By (min((max Xf — K)., (max ¥ - K).))

= > _min((maxzf — K), (max yp — K))mr(A) (@, y7)
i,j

In the following example, X has 3 components and Y has 4. The riskless rate is constant
and set at zero; pux and py are supposed to have null drift (i.e. we suppose that the above

dynamics is given with respect to the risk-neutral measure), o = (0.15,0.20,0.22)" and
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¥ = (0.13,0.10,0.16,0.18)". The correlation structure is set as follows; for the sake of the
exposition W and B are standard Brownian motions (p* = Id, and p¥ = Id,,) while the

cross-correlation matrix between W and B is randomly generated, and set at

0.490 0.438 0.006 0.149

<0.087 0.126 0.068 0.100)
0.136 0.369 0.447 0.331

The strike is set at 1, i.e. at time 0 the option is at-the-money.

D125 T T T T T T T T T

012 .
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Figure 2.8: Price as a function of the temperature

As seen on graph 2.8, the price increases as the temperature lowers; this is an expected be-
havior, as when the dependence between the assets increases, so does the dependence between
their respective maxima and hence the minimum of these maxima tends to be higher, which
yields a higher price. In this setting, the stress-test increases the price by more than 30%.

This must be compared to the price that is obtained when the cross-correlation matrix is
p .. p

taken of the form ¥, = ( Do ) . As a matter of fact, the stress-test of the cross-correlation
p .. p

fails, as the resulting correlation matrix <§z i’i’) is no longer definite positive when p > ﬁ

which is lower than 30%. And even in the limit p — ﬁ, the price does not reach 0.075, and

is still lower than the non-stressed price.
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2.6 Conclusion

A recurring complaint in Applied Statistics is the “curse of dimensionality” models that
have a simple, computationally tractable form in dimension one become very complex, both
computationally and conceptually in higher dimension. We show here that convex analysis,
along with the theory of Optimal Transport, can lead to efficient solutions to problem of
extreme dependence. Building on a natural geometric definition of extreme dependence, we
have introduced an index of dependence and used the latter to build stress-tests of dependence
between two sets of economic variables. This is particularly relevant in the case of international

finance, where the dependence between many economic variables in two countries is of interest.

Acknowledgments

The authors thank Rama Cont for a question which was the starting point of this chapter and

Guillaume Carlier and Alexander Sokol for helpful conversation.

67



pastel-00730335, version 1 - 9 Sep 2012

Bibliography

(1]

[9]

[10]

[11]

[12]

K. Arrow. Uncertainty and the welfare of medical care. Amer. Econom. Rev., 53:941-973,
1963.

K. Arrow. FEssays in the Theory of Risk-Bearing. North-Holland Publishing Co., Ams-
terdam, 1970.

K. Borch. Equilibrium in a reinsurance market. Econometrica, 30:424-444, 1962.

G. Carlier, R.-A. Dana, and A. Galichon. Pareto efficiency for the concave order and

multivariate comonotonicity. Journal of Economic Theory, 147:207-229, 2012.

G. Dall’Aglio. Sugli estremi dei momenti delle funzioni di ripartizione doppia. Ann. Sc.
Norm. Super. Pisa, 10:35-74, 1956.

W. Deming and F. Stephan. On a least squares adjustment of a sampled frequency
table when the expected marginal totals are known. Annals of Mathematical Statistics,
11:427-444, 1940.

I. Ekeland, A. Galichon, and M. Henry. Comonotonic measures of multivariate risks.
Mathematical Finance, 22:109-132, 2012.

K. Fan. Fixed-point and minimax theorems in locally convex topological linear spaces.
Proceeding of the National Academy of Sciences, 38, 1951.

A. Galichon and M.Henry. Dual theory of choice under multivariate risks. Journal of

Economic Theory, Forthcoming.

A. Galichon and B. Salanié. Matching with trade-offs: Revealed preferences over com-

peting characteristics. Working paper, 2010.

J. J. Kosowsky and A. L. Yuille. The invisible hand algorithm: Solving the assignment
problem with statistical physics. Neural Networks, 7:477-490, 1994.

M. Landsberger and I. Meilijson. Co-monotone allocations, Bickel-Lehmann dispersion
and the Arrow-Pratt measure of risk aversion. Ann. Oper. Res., 52:97-106, 1994.

68



pastel-00730335, version 1 - 9 Sep 2012

[13] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press, 1979.
[14] R. B. Nelsen. An Introduction to Copulas. Springer, 2006.

[15] G. Puccetti and M. Scarsini. Multivariate comonotonicity. Journal of Multivariate Anal-
ysis, 101:291-304, 2010.

[16] S. Rachev. Probability Metrics and the Stability of Stochastic Models. John Wiley & Sons
Ltd., 1991.

[17] L. Riischendorf. Fréchet-bounds and their applications. In Advances in Probability Dis-
tributions with Given Marginals, volume 67 of Math. Appl., pages 151-187. Kluwer Acad.
Publ., 1990.

[18] L. Riischendorf. Convergence of the iterative proportional fitting procedure. The Annals
of Statistics, 23:1160-1174, 1995.

[19] D. Schmeidler. Subjective probability and expected utility without additivity. Econo-
metrica, 57:571-587, 1989.

[20] C. Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.
[21] M. Yaari. The dual theory of choice under risk. Econometrica, 55:95-115, 1987.

[22] V. Zolotarev. Probability metrics. Theory Probab. Appl., 28:278-302, 1983.

69



pastel-00730335, version 1 - 9 Sep 2012

2.7 Appendix

2.8 Facts on conic orders

If K € My (R) is a closed convex cone, a base for K is a convex set C' with 0 ¢ C (the
closure of C') and K is generated by C, i.e. K =R C. Thereafter C is supposed compact.

The dual cone associated to K is
K'={3eM;R)IE-M>0, MeK}
Its interior is also of interest, and is simply
KD :=Int(K") ={¥ e M (R)[X-M >0, M e K\{0}}
Note that in both definitions, one can replace K and K\{0} with C.

A strict partial order is defined on E by setting

Arx BEA-Be K,

If S is a subset of My j(R), a mazimal element of S for this order is A € S such that for all
BeS, A-— B¢ Kj: A can not be ‘strictly dominated’ by any element in S.
These definitions apply of course when M ;(RR) is replaced by any euclidean space.

2.9 Proof of the results

2.9.1 Proof of Theorem 3

Proof: As the covariogram is a closed convex set, a point x € My ;(R) lies on its boundary if
and only if there exists a nonzero M € My _;(R)\{0} such that M -z is maximal as a function
of x. This translates the fact that there exists a supporting hyperplane at . Thus o, is on
the boundary of the covariogram iff there exists M € M7 ;(R)\{0} such that

M-o,= sup M- o5
7ell(P,Q)

(where it is recalled that M - o, = Tr (M'oy)).
Equivalence between (ii) and (iii) follows from a well-known result in Optimal Transport
theory, the Knott-Smith optimality criterion (see [20], Th. 2.12). O
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2.9.2 Proof of Theorem 4

Before we give the proof of the theorem, we state and prove a number of auxiliary results
which are of interest per se.
First, in the case of a generic compact base C, we have a crucial, although technical,

variational characterization of the maximality of o,:
Proposition 3 (Variational characterization of maximality)

or mazimal iff sup  inf (0 —og) - M =0
Fel(P,Q) MEC

In other terms, a coupling is maximal whenever there exists M € C' such that o, maximizes
o7 M.
Proof: [Proof of proposition 3| First, note that for every w € II(P, @), the function

Fi(7M)ET(P,Q) x C s (S5 —5y) - M
exhibits a saddlepoint (7, S):

sl 1ee S0 A0 = JOL M) = Bl Aitiig) /5 A1) 210
This is a consequence of a classical minmax theorem by Fan [8]: a continuous function over
a product of compacts convex sets embedded in normed linear spaces, which is linear in
both arguments exhibits a saddlepoint. Both II(P, Q) and C are compacts and convex. The
compacity is C' is an hypothesis and a well-known fact for II(P,Q), see [20] for instance.
Moreover f is linear in M and 7, and continuous in both arguments. Finally, II(P, Q) can be
embedded in the space of Radon measures over R x R’ endowed with the bounded Lipschitz
norm. We refer to Villani [20] chapter 7. for more details on this: the important thing is that
II(P, Q) is a compact subset (for the norm) within this space.
Back to the proof of the result. If o is maximal, then for all oz one has oz — o, ¢ K%,
which means that for some M € C, (0 —0,) - M <0, hence

sup inf(oz —ox) - M <0
nrQ) ¢
Thanks to the compacity of K, we can apply the minmax formula 2.10 to invert the supremum
and the infimum, and conclude the proof of one implication. On the contrary, if o, is not
maximal then there exists some coupling 7 such that oz — 0, € K}. Thanks again to the
compacity of C, infc(oz — 0r) - M > 0 and the reverse implication is proved. [J
As a consequence, we are now ready to prove theorem 4.

Proof: [Proof of theorem 4| Because of the previous proposition, a coupling 7 such as
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(X, MY) is an optimal transport plan shall satisfy

Er(X -MY)= sup Ex(X-MY)
FEN(P.Q)

AsE (X - MY) = o, - M, we conclude with the proposition 3.0J

2.9.3 Schrédinger equation

An informal justification of the form of the solution to the entropic maximization problem is
as follows. We assume that every coupling in II(P, Q) admits a density with respect to the

Lebesgue measure on RY x RY.

max E (X'MY)+ TEnt(r) = max /x'MyW(x,y) — Tlog m(x,y)dxdy

Tell(P,Q) mell(P,Q)
= max min /(:C’My —Tlogn(x,y))n(x,y)dzxdy
ﬂEMi(R”XR") pE L (dp)
YEL! (dg)

- fose st~ fon - o)

where Mi(RI x R7) is the set of nonnegative Radon measures on R x R/ for which the
entropy is well-defined. Now the assumption on the marginals is relaxed, a sloppy way to get

the result is to say that the solution should satisfy

0 ] , )
o () del (dp) / [/ My — Tlog 7(z, y) — (¢(x) + ()7 (z, y)dady = 0

el (dg)

If we could apply the envelope theorem, we would have the existence of a couple (¢*,14*) such
that

@' My —T(1+logm(x,y)) — ¢" — 9" =0
which yields the expected form for 7.
Here is a rigorous proof in the case where P and () are absolutely continuous with respect

to the Lebesgue measure.

The problem (2.8) is equivalent to solve the following minimization problem:

1 ﬂ-(xvy)
Hr(nf},%)/log <€x/Myx2y|2/f6x/My|x|2y|2 dxdy) W(x,y)dxdy

The quantity inside the min is the Kullback-Leibler distance (or relative entropy) of the distri-
bution p with density proportional to e% My—lzl*~lyl* (the —|x|? — |y|? ensures the integrability)
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with respect to m. Minimizing this distance consists in projecting p onto II(P, Q) with respect
to the Kullback-Leibler distance. This is the purpose of IPFP. Riischendorf [18] applies and

states that the unique solution to this problem is of the form:
() = a(@)b(y)e” Myl

with a and b two positive functions, which is the desired result.[]
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Chapter 3

Coupling Markovian diffusions with

copulas

3.1 Introduction

Copulas are functions that represent the dependence of multivariate laws of probability.
Namely, if X1,...,X,, n > 2, are real random variables on some probability space (Q2, F,P),
their cumulative distribution function (cdf) is defined, for (zy,...,2,) € R", by
F(xy,...,2) = P(Xy < 21,...,X, < x,). The copula approach to dependence consists in
scaling the marginals X; by their respective cdfs Fj; the cdf of the scaled vector is the copula
and is defined, for (uy,...,u,) € [0,1]", by C(u1,...,u,) = P(F1(X1) < ui,..., Fo(Xn) < up).
As F;(X;) follows the uniform law on [0, 1], C'is the cdf of a vector of uniform random variables

on [0,1]. Eventually, the initial cdf can be written
F(Z’l,...,xn):C(Fl(wl),...,Fn(fL'n)) (31)

and the copula C is uniquely determined on Im#Fj x - -- x I'mF,,. This fundamental statement

is Sklar’s theorem (c.f. the classic introductory book on copula by R. Nelsen [15]).

Copulas have been widely used, first in statistics where the notion was developed by Fréchet,
Hoeffding and many others (see Nelsen’s book [15] or Joe’s book [10] and the numerous refer-
ences therein), and then imposed itself as a convenient tool to model multivariate dependence
in many fields. There has been a spectacular inflation of the use of copulas in financial math-
ematics in the last decade. This has been exemplified by the Gaussian copula model for
the valuation of Credit Default Obligation by Li [13], and by numerous articles on valuation
of derivatives on several underlyings, see for instance Cherubini and coauthors [4] and [3].
Since then, some drawbacks of the copula approach to dependence have been highlighted, see

Mikosch [14]. An important criticism of copulas is their static nature, meaning that, whereas
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they are suitable to describe the dependence between random variables, their use is more dis-
putable when dependence modeling is needed at several dates, not to speak of continuous-time
dependence modeling. Therefore, whereas they are useful to valuate financial products whose
price depends only on the distribution of a vector of assets at a single time (such as European
call options on several underlyings), they might not be the adequate tool when the dependence
of the price with respect to the distribution of the assets is more complex. And indeed copulas
have been applied less intensively in derivatives pricing than in risk management, where the

static framework is more natural.

Nevertheless, a significant use of copulas in continuous-time setting was achieved by Dar-
sow et al. [5]. For a real stochastic process (Xi;)ier, they obtained a formulation of the
Chapman-Kolmogorov equation as an equation on the bivariate copulas Cg;, which describes
the dependence of the vector (X, Xy), s < ¢. This is remarkable as it allows for the specifica-
tion of a Markov process by the one dimensional marginals (the law of X; for each ¢ > 0) and
all the bivariate copulas C;. However, these results do not generalize easily to the multivariate
setting and describing both the time-dependence (dependence of X and X; for all s < t) and
the spatial dependence (dependence of (X},..., XJ") for all ) of a multivariate process is a
complex problem which has been addressed by Cherubini et al. [3] in a discrete time setting.
In discrete time, there exists also a substantial literature on dynamic copula models based on

times-series, see e.g. Patton [16] and van den Goorbergh et al. [22].

This chapter takes a different route. It tackles the problem of coupling a pair of Markovian
diffusions X; and Y}, and controlling the space-dependence, namely the copulas of (X3, Y}).
This is done by assuming that the Brownian motions driving the diffusions, B and W, satisfy
d(B,W); = p(t, X, Y:)dt where p(t, X;,Y;) is a correlation which depends on the state of the
marginals diffusions. This type of model can be related to ‘local correlation models’, described
in Langnau [12] and Reghai [18], although in these models the emphasis is put on calibrating
the function p in order to match observed prices of various options on several underlyings,
in the spirit of Dupire’s local volatility model [6]. A partial differential equation, which first
appeared in Galichon’s [7], that describes the evolution of the copula Cx,y, is derived. In
the case where the marginal diffusions are Brownian motions, this PDE allows to find explicit
form of the correlation function in order for the resulting coupled Brownian motions to have a
stationary (and possibly non Gaussian) copula. Moreover, it can be used to prove that several
well-known copulas are unsuitable to couple Brownian motions. Eventually, this technique
is applied to the simulation of a constant proportion portfolio insurance strategy (CPPI).
This example aims at assessing the impact of copulas in the trigger probability of a CPPI in
a coupled Black-Scholes model, where the driving Brownian motions are coupled by various

copulas.
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3.2 Coupling SDE and coupling copula

3.2.1 Correlated Brownian motions

This section recalls how Brownian motions can be coupled with a stochastic correlation func-
tion, and introduce the coupling correlation function, before defining the coupling of marko-

vians diffusions.

Correlating Brownian motions with deterministic correlation The construction is
classical: if p; € [—1,1] is a measurable function on R which is locally square integrable, and

(B, Z) is a two dimensional standard Brownian motion, then

t

t
B = /psstl +/\/1 — p2dZ, (3.2)
0

0

is a Brownian motion (with respect to its natural filtration), and (B!, B?); = fg psds. Indeed,
it is a continuous process, its quadratic variation (B%); = t and it is a continuous local

martingale. Hence it is a Brownian motion. Moreover, (B!, B?); = fg psd(BY)s = fg psds OJ.

Correlated BM with stochastic correlation The previous construction extends to the
case where p; is a progressively measurable process with respect to the (augmented) filtration

generated by (B!, Z), and p; is locally square integrable. Defining

dB? = pidB} + /1 — p?dZ; (3.3)

i.e. B} = fg psdBL + fg V1 —p2dZs, then if equation (3.3) has a strong and non explosive

solution, B? is a Brownian motion, and d(B', B%); = pdt, just as in the deterministic case.

Correlated BM with coupling correlation function Consider a deterministic function
pi(x,y) that is bounded by 1, and measurable. We would like to define a bidimensional Markov
process (B', B?):

d(B*, B®); = p(t, B}, B})dt (3.4)

Accordingly, consider the following equation
dB} = pi(B}, B)dB; + /1 — p} (B, BY)dZ, (3.5)

Assume that this diffusion equation has a strong solution. Then B? is a Brownian motion
and satisfy the equation (3.4). The solution (B!, B?) of this SDE is called a coupled Brownian

motion, and the function (¢,z,y) € Ry x R% — py(z,v) is called the coupling correlation.
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Coupling Markovian diffusions More generally, we want to give a meaning to the coupling

equation

dX, =aX(t, Xy)dt + oX(t, Xy)dW;X
dY; =a¥(t,Y,)dt + ¥ (t,Y,)dWY
dWX WYYy = pi( Xy, YVy)dt

(X071/0) ~ o

where p is bounded by 1 and measurable. This equation corresponds to the coupling of two
Markovian diffusions X; and Y; with the coupling correlation p;(Xy,Y;). This equation is
formulated unambiguously as

dXt = aX (t, Xt)dt + O'X (t, Xt)thX

dY; = a¥ (t,Yy)dt + o (£, Y2) (pe (X, Vo) AW + /1 = pi(Xy, Y1)dZy)

(XO)}/Z)) ~ [0

where Z; is a Brownian motion independent of WX. Provided that the above equation admits

a strong solution (X, Y;) (classical conditions that ensure it are recalled in appendix 17), the

AW} = pi(Xy, Yi) AW + /1 — pf (X4, Yy)dZy

is indeed a Brownian motion, and d(WX, WY); = p,(X;, Y;)dt.

process defined by

3.2.2 A partial differential equation on the copulas

The Kolmorogov forward equation of a diffusion whose law at time ¢ > 0 has density f; is an
evolution equation of f;. The purpose of this section is to show how, after scaling the marginal
diffusions by their cdfs, a Kolmogorov forward equation for the coupling equation (3.6) is
obtained; this equation describes the evolution of the copula C; of the bivariate diffusion.
This ‘copula PDE’ makes a link between the coupling correlation p; and the copula C%, and

is the core of this chapter.

This section provides results of existence and uniqueness relative the Kolmogorov forward
equation of the diffusion (3.6). Although these results might seem classical to the reader
familiar with diffusion theory (as described for instance in the comprehensive book of Stroock
and Varadhan [21] or in the more recent book of Stroock [20]), the scaling of the marginals
must be handled carefully in order to derive the copula PDE rigorously, and this is the scope

of the following results.
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Notations and Hypotheses

Let (X;,Y;) be a strong solution to the coupling equation (3.6). The marginals cdfs F/X, FY
are the cumulative distribution functions of X; and Y;, and, likewise, the marginals densities
(when they exist) are denoted f/X and fY. These are always supposed positive thereafter, and
thus the copula of (X, Y}) is defined unambiguously and is denoted Cj.

The drifts and volatilities X, a¥', ¢, ¥ are functions defined on R, x R that take values
in R and are always assumed measurable and locally bounded (a function f(¢,x) is locally
bounded if for all compact K C Ry X R, supy e |f (¢, @) < +00.)

The set of twice continuously differentiable functions with compact support on (0,1)? is de-
noted C2((0,1)?).

CY*(R x (0,1)?), k integer, is the set of functions u(t,z) that are continuously differentiable
k times in the space variable, continuously differentiable in the time variable, and such that
Owu(t, ) is also continuously differentiable & times in z.

For a measure 4 on (0,1)? and a function ¢ € C2((0,1)?), the bracket (u, ) is defined as
f(m)g o(z)dp(zx). For a locally integrable function f, (f,¢) is defined as (fdz, ¢).

A reminder on the Kolmogorov forward equation

Hypotheses for a Kolmogorov forward equation to hold in a sufficiently general case for our

purpose are:

Proposition 4 Let £, be the infinitesimal generator of a Markovian diffusion X, in RY,
N > 1, and let P; be the law of the diffusion at time t. Assume the drift and the volatility of
Xy are locally bounded. Then the following equation holds: for all ¢ € CE(RN),

¢
(P, 0) = (Po, ) + /<Ess0, Py)ds
0
This can be written informally
P, = L} P,
where L} denote the adjoint operator of Ly.

This is a standard result and is basically an application of Ito’s lemma.

Proof of the copula PDE

The scaling of the marginals does not make sense at time 0 when the initial distribution pg
has a singular component, and it is assumed in the first place that it admits a density with

respect to the Lebesgue measure.
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The two next lemmas prove that the scaled marginals remain diffusion processes, and identify

the infinitesimal generator of the bivariate scaled diffusion.

Lemma 4 Assume that the marginal cdfs are in C1?(R, x R). Assume moreover that o and

¥ are continuously differentiable in the space variable. Then the scaled marginal processes

X, = FX(Xy) and Y, = FY(Y;) are diffusion processes. The infinitesimal generator of X, is

£ = S0 (o NF)  @)2)

The infinitesimal genemtor of (X1,Y;) is Locobed — EtX +E§/ + L£XY where Et)h} 15 the operator
p € C2((0,1)%) = pefi 5 [ 6) Oy, and §(t,u,v) stands for g(t, (Ff*) (), (F)) ' (v)).

Proof: As FX and FY are C'?(R; x R), the [to’s lemma applies to F;X(X;) and F}Y (Y;),
and we derive the diffusion equations for the scaled variables X; = FX(X;) and Y, = FY(Y;):

dX; = [ (X0)dX; + 0 F (Xp)dt + - <ft ) (Xe)d(X, X)s
= ftX(Xt)aX(tht)+atFtX(Xt)+§(ft )(Xt)(UX)Q(taXt)]dtJrff((Xt)UX(tht)thX

where f;X = 0, F; is the pdf of X;. Because the cdfs are strictly increasing, X; = (F;X)~1(X,),

and X, is a diffusion with the following dynamics:

e
—~—

- 1 . -
A% = [fKa¥ () + OFX + 5 () (X (1)) (Rt + f50% (1, ) (K)aw ¥
Let u(t,z) and vol(t,z) be the drift and the volatility in this equation. The density of X't is

constant as it follows the uniform law on [0,1]. Let ¢ € CZ((0,1)?) and ®(z) = [ ¢(s

Then Ito’s lemma yields
- - t - - 1, - ) -
E(B(X,)) = B@(X0) + B [ ¢(Xnls, ) + 5/ (X)vol(s, (s, X.)ds)
0

¢
/gp Jvol(s, X )dWX)
0

This last expected value is zero as the integrand is locally bounded and adapted with respect
to WX, and the integral is a martingale. As the law of X; is the uniform law on (0,1) for all

t, taking the time derivative of this expression yields:

1
for all ¢ € C2((0,1)). As the function vol? is differentiable in the space variable by hypothesis,
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pu(t, x) = $0,v0l%(t,z) for all (t,z) € Ry x (0,1), and the infinitesimal generator of the scaled
diffusion is: )
L p(t ) = 50n(vol(t, 2)*0utp)

O

The point to derive a PDE on the copula C} is then to perform a mere integration by part. In

order to simplify the exposition, it is assumed that the diffusion (X, Y;) has a smooth copula.

Proposition 5 Assume that the copula C; of the coupled diffusion at time t is in
CY2(Ry x (0,1)%). Assume that the hypotheses of lemma 4 hold: the marginal diffusions
have continuously differentiable densities fi* and f}, and the volatilities are continuously dif-
ferentiable in the space variable. Then the copula family Cy satisfies the following weak PDE:
for all t > 0, for all p € C2((0,1)?),

1 —_~—

0. 20) = (5 ((7XoX (1) B2t (7Y (1)) 02,01)
(X (Yo () (Vo (8,))82,C D20

Proof: Let ¢ € C2((0,1)?). The Kolmogorov forward equation states that:

Escaled P o >d

<PXt73~’t’(‘0> Xo Yo’(p + Xs,Ys

o\ﬁ

Equivalently,

<83vcta 90> = <83v00a 90> + <£§caled( ) 82 C >

» Y uv

o .

We then detail the integrations by parts. Let voltX( ) =0; ft (u).

(L7 (¢),

U’U

N)lH

11
//ﬁu UOlt 2040 (1, v))02, Cy (u, v)dudv
00

auctw,l)au(voz{f ()%)2use( ) (1, 1)

/a o, 0)00 (w0l ()20 (-, ) (1, 0)du

l\.')lr—l

l\.')lr—l

11
//(%C’t volt (u)02,0(u, v))dudv
0 0
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As ¢ has a compact support the two first integrals are zero. Another integration by parts in

the last integral yields

11 11
— //(%Ct UOlt (w)02,p(u, v))dudv = //6 v(u, v volt (u)?202, o (u, v)dudv
00 00

1
— /[ﬁuCt(l,U)Uolfz(l,v)zﬁgvap(l,v) - 8uCt(0,v)vong(O,U)Q@gv@(O,v)]dv
0

Once again the boundary terms are zero, and eventually, we have
1 ~
(¥ (o ), 05, Cr) = (5 (voly" )05, C1, 05, )

Thus, for all ¢ € C2((0,1)?),

volX 292,05 + = (vol§)283v05+ﬁsvol§vol§83v03,83vgo>d$

wl»—t

t
(Ct’83v¢> CO’ uv@ +/
0

O

If there is more regularity, then a strong equation obtains:

Proposition 6 Suppose C; € CH*(Ry x ((0,1)2)) and that the marginal densities, the volatil-
ities and the correlation are twice continuously differentiable in the space variables. Assume

that 0,Cy(u,v) goes to zero as either u or v goes to zero. Then, for allt > 0 and (u,v) € (0,1)?,

1, 5 1, 5 ¢
0;C(u,v) :5(1)0[5()263”0,5 + i(volf)Qangt + prvolXvolY 02,Cy (38)

+ @t(u) + wt(?}) + it

where voli® (u) = (f%.07)(t, (FX) ™ (u)) and vol} (v) = (£ .o} )(t.(F}) " (v)). Defining
gi(u,v) as the function on the right hand side of the first line, pi(u) = —lime_0g¢(u,e€),
P(v) = — lime0 g1(€,v) and oy = lime_, g¢(€, €).

Proof: The proof is straightforward. The hypotheses of regularity of the copula and the
coefficients imply that equation (3.7) is equivalent to the strong equation

1 ~
02,0:Cy = 02, (—volX( )202,,C4 (u,v) —|—UOZY( )202,Ct(u,v) —l—ﬁt(u,v)volf((u)voly( )02, Ct>

uv

L : d
for all t > 0, (u,v) € (0,1)%. Let € > 0. For a bivariate function f, denote A;bf = f(b,d) —
fla,d) — f(b,c) + f(a,b). Integrating the previous equation between € < u and € < v:

AL Cr = AL gt (u, v)
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By hypothesis, the Lh.s. goes to 9;Cy(u,v) when € — 0 .

Thereafter, it is always assumed that the function ¢y(u) + 14 (v) + oy is identically zero, and
therefore that for all ¢t > 0, for all (u,v) € (0,1)?,

0,C(u,v) = %((ﬁ(t,u))zaguct(u,v) (7 JY(t,v))Qﬁngt(u,v)>

+ (pef¥ (o X (8, u) £ (v)o (t,))05,Ce(u, v)

(3.9)

In what follows, only this equation is referred to as the ‘copula PDE’ (rather than the weak
equation (3.7)). Nevertheless, here are sufficient conditions for the extra terms in (3.8) to

vanish :

1. For all t+ > 0, the marginal densities f;*, f} and the volatilities 0 (¢,-), 0¥ (¢,-) are
bounded over R.

2. For all t > 0, for all (u,v) € (0,1)2,

ll_f)r(l) GZuCt(u, 6) = ll_f)r(l) 8&(3}(6, U) = ll_f)r(l) 612“)0,5(@6, 6)

m 02,C4(e,v) =0

=1l
e—0
3. For all t > 0, for all (u,v) € (0,1)2,

lim vol?(e)QﬁguCt(e, v) = lim vavolf(efCt(u, €)=0
e—0 e—0

The conditions 1 and 2 are satisfied in the rest of this chapter, when the marginals are Brownian
motions. Our experiments show it is also the case of condition 3, although it is more difficult

to prove rigorously that it holds for a given copula family {C}}.

Finally, let us mention that proposition 6 still holds when the initial distribution pg is singular:

Corollary 1 Suppose that the coupled diffusion has a smooth copula C; € (?1’2(R*+ x (0,1)2),
Assume the cdfs of the marginals are twice continuously differentiable in space for all t > 0
and continuously differentiable in the time variable on R’ , and the same for the volatilities.
Then equation (3.9) holds for all t > 0.

This result is obtained by considering the time-shifted SDE (3.6), see appendix 3.6.1.

Uniqueness

The explicit expression between the coupling correlation and the copula family {C;} suggests
considering the coupling problem from the opposite point of view; namely, if a copula family
{C4} is fixed, that the function p; is defined according to equation (3.9) is bounded by 1 and

yields a solution to the coupling equation (3.6), then it is sensible to suppose that the resulting
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diffusion process (X, Y;) has copula C; at time ¢. Such a result follows from the uniqueness

of solutions to Kolmogorov forward equation. Let (IC) denote the integrability condition:

Je >0 s.t. (u,v) — sup 92,C¢(u,v) € L'((0,1)%)
0<t<e
Proposition 7 Assume the marginal diffusions have densities fX and f) in Cl(Ri x R) for
all t > 0, and that they and their derivatives goes to zero at +00. Let {C;} € CY2(Ry x (0,1)?)
satisfying (IC). Let p(t,u,v) such that the copula PDE (3.9) holds, and p(t,u,v) is bounded
by one in absolute value. Assume that the drift and volatilities a, a¥, X, ¢¥, and the
correlation function py(x,y) = p(t, (FX) " (u), (FY)"1(v)) are jointly continuous over R, x
R?, measurable and bounded. Assume eventually that p is bounded away from +1, uniformly
in time, i.e. infiog 24 ||p(t, 2, y)| — 1| > € for some € > 0. Then if the coupling SDE admits a

solution, its law has a density at all times t > 0 and the copula at time t is indeed Cy.
See appendix 3.6.1 for a detailed proof.

Note that j¢(z,y) = p(t, F* (z), FY (y)) might not make sense at time ¢ = 0 when the marginal
distributions are singular at ¢ = 0, unless p(¢, u,v) is a constant for ¢ < . This is the case for
instance when Cy is the Gaussian copula with constant parameter for t < ¢ (and in this case
the condition (IC) is also satisfied) and that the marginals diffusions are Brownian motions

or geometric Brownian motions.

3.3 The case of coupled Brownian motions

While the previous section detailed the link between the copula of a coupled diffusion and the
coupling correlation, it remains unclear whether a given copula family {C;} yields a function p;
that is indeed a correlation function, that is, at least, a function bounded by 1. This section
is devoted to the coupling problem when the marginals are Brownian motions. A detailed
example shows that it is possible to couple Brownian motions in a ‘stationary’ manner by a
non Gaussian copula. Several examples of copulas that yield admissible coupling correlation
functions as well as counterexamples are mentioned and an heuristic characterization of copulas

that are attainable by coupled Brownian motions is discussed.

3.3.1 The coupling problem when marginals are Brownian motions

When the marginal processes are Brownian motions, the coupling SDE (3.6) becomes :

dB} = pi(®(B} V), ®(BE/V)dB} + \/1 — pP(®(B} V1), ® (B} /V1))dZy

B =0

(3.10)
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where (B}, Z;) is a standard bivariate Brownian motion, ® is the cdf of the standard normal
law and (t,u,v) + p(t,u,v) is in CO(Ry x (0,1)?).

Let Corr be the set of functions p such that
1. peCY'Ry x (0,1)?).
2. SUD(¢,u,0) \p(t,u,v)\ <1

3. pis constant for ¢ small enough, i.e. there exists § > 0 such that p(t,-) = p € [-1,1] for
all ¢ <.

4. pis bounded away from +1: 3¢ > 0, s.t. for all (t,u,v), ||p(t,u,v)] — 1] > €.

q)\(/:;), %) make the coupling

SDE have a unique strong solution (see proposition 17 in appendix 3.6.2). In particular, the
problem of defining the quantiles (F;X)~! and (FY)~! at t = 0 is avoided, thanks to condition

3, which imposes a constant Gaussian copula at small times. Likewise, the set of continuous

The conditions 3 and 4 ensure that the correlation function p(t,

functions p defined on (0,1)? such that |p| < 1 and p is bounded away from 41 is denoted

Corrpy (for Brownian correlation function).

Let Ct = {{Ci}i>0, Cr € CH2(RT x (0,1)?), 82,C1(u,v) > 0, V(u,v) € (0,1)%}, the smooth
copula families with everywhere positive densities. It is convenient to consider the mapping:
F: {Ct} eCt— pc, € CO(R+ X (0, 1)2)

21t0,Cy(u,v) — & <e—¢*1(u)283u0t(u,v) + 6_¢71(”)28§v0t(u,v)>

where p¢, : (u,v) € (0,1)% —

2 T(w)2 4o 1(v)?
e 2

02,Cy(u,v)
(3.11)

F({C:}) is the correlation function that appears in the copula PDE (3.9), when the copula

family is {C;}. Conversely, it is convenient to consider
G : p; € Corr — {C,}, the copula family of the coupled BMs with correlation function p;

Let Cop = G(Corr) be the set of copula families that are the copula family of coupled Brownian
motions with a correlation function in Corr. For p € R, |p| < 1, Corr(p) denotes the set of
pt € Corr such that p; = p for all ¢ small enough: Corr = U,c(_1,1)Corr(p). Finally, let
Cop(p) = F~1(Corr(p)), the set of copulas such that the correlation function is in Corr(p).

A question of crucial importance is to determine the set of copula that can be attained by
coupled Brownian motions, that is to say the copulas C such that there exists a coupled
Brownian motion (i.e. a correlation function) whose copula C7 at some time 7" satisty Cr = C.

More precisely,
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Definition 4 A copula C is attainable at time T' > 0, iff there exists {Cy} € Cop such that
Cr = C. The set of attainable copulas at some time t > T is denoted Ap. A copula C is
said stationary (for the Brownian motion) if it is attainable at some time T > 0 by coupled
Brownian motions (B}, B?), and that C(B,},Bf) = C, for all t > T. The set of stationary
copulas from time T is denoted A%.

A trivial example of a stationary is the Gaussian copula, but it is not the only copula to
have this property, as is proved below. Along with the notion of stationary copulas comes the

notion of stationary (Brownian) correlation function:

Definition 5 For C € C%((0,1)?) a copula with positive density, let the stationary Brownian

correlation function of C' be the function

1 o121 (w)?2 52 C( ) i ol (w)2—a—1(v)?2 52 C( )
e 2 uC(u,v e 2 O (U, v 9
- _ = 1
pc(u,v) 5 2 C(u,v) » V(u,v) € (0,1)
(3.12)

If a copula is stationary, then the correlation function p; of the coupled Brownian motions
which attain the dependence C' is necessarily equal to po for ¢ big enough. In particular, time
does not appear in expression (3.12), and this expression is more convenient to work with than

(3.11). Although it might seem trivial, the case of the Gaussian copula is worth noticing:

Proposition 8 The stationary Brownian correlation function of the Gaussian copula C, is
constant over (0,1)% and equals p. Moreover, if p, € C*(Ry) and is bounded by 1, and that
Cy = C% I peds if t >0 and Cy = C,,, then the correlation function F({Cyi}i>0) s p.

See appendix 3.6.2 for a proof.

As expected, the stationary correlation of a Gaussian copula copula with constant parameter

pis p.
Eventually, a set of particular interest is the intersection of all A, t > 0:

Definition 6 Let Agr = NisoAs: it is the set of copulas that can be attained at arbitrary

small times. Similarly, AOS+ is defined as the set of stationary copulas from any time t > 0.

The point is to prove that these sets are not reduced to the Gaussian copula family.

3.3.2 Results on the attainability of a copula C

The self-similarity property of Brownian motion considerably simplifies the analysis of the set

of attainable copulas.

Lemma 5 Let (By, Wy) a pair of coupled Brownian motions, with coupling correlation p(t,x,y).

Then for every ¢ > 0, the bivariate process (Bf, Wf) = (%‘é , %) 18 a coupled Brownian motion
with correlation function p©(t,x,y) = p(ct,\/cx,\/cy). This correlation is in Corr if p € Corr,

and the copula of (Bf,WF) is the copula of (Bey, Wet).
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Proof: By self-similarity of the Brownian motion, (Bf, W) is a process with Brownian

marginals. Furthermore,

ct
1 1
(B W) = (B.W)a = 3 [ pls. Bo Wo)ds
0
and thus, d(B¢,W¢), = p°(t, Bf, Wf)dt where p°(t,z,y) = p(ct,\/cx,+/cy). Eventually, the
copula of (Bf, W¢) evaluated at (u,v) € [0,1]? is:

P(®(Bf/V1) < u, ®(Wi/V1) < v) = P(®(Bet/Vet) < u, ®(Wer/Vet) < v)

and the r.h.s. is, by definition, the copula of (B, W) evaluated at (u,v). The fact that
p¢ € Corr if p € Corr is obvious.[J

A direct consequence is

Proposition 9 Ay = UssoAs. In other words, if a copula is attainable at some time T > 0,
then it is attainable at any time t > 0. Similarly Ang = Um0 A7

Proof: Assume that C € Ay and let (B, B2) a pair of coupled Brownian motions, such that
CB%,B% = (. Then, for ¢ > 0, lemma 5 ensures that C is attainable a time L. [

c’

In addition to self-similarity, the Brownian motion is stable by time-inversion, meaning that

if B; is a standard BM, then so is the process that starts at 0 at time 0 and is defined tB1 if
t

t > 0. Therefore,

Proposition 10 Let (B, W) be a pair of coupled BMs. Then the copula of (By, W;) :=
(tB;,tW;) is the copula of (B;,W;) fort>0.
t t t t

Proof: For each (u,v) € [0,1]?

C, 1 (w,0) = P(®(By/V) < u, ®(W;/Vt) <
—Pp (@ <\/ZB%> <u,® <\/2W1> < v)

= Cg,,w, (u,v) by definition.
t t

O

This process has Brownian marginals and proposition 10 shows that whenever a copula C €
AOS+, then there exists a pair of Brownian motions (A, By) such that the copula Cy, p, is C
for all ¢ small enough. Note that the previous properties are specific to Brownian motion, and

otherwise the sets Ay+ might well be strictly included in Ay, ¢ >0 .

A crucial point is to show that the set of stationary copulas is not reduced to the Gaussian

family. In order to prove it, we first show that the sets Cop(p) have convexity properties.
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Lemma 6 For all p € (—1,1), Cop(p) is stable by constant miztures: if o € [0,1], {C¢} and
{C,} € Cop(p), then aCy + (1 —a)C; € Cop(p).

The proofs of the rest of this section are gathered in appendix 3.6.2. Note that the correlation
function derived from the copula a;C,+ (1—a;)C is not the convex sum azp+ (1 —oy)pc(u, v),
which complicates the analysis. Using time-dependent mixtures of Gaussian copulas and a

given copula C, it is possible to prove that some copulas are stationary:

Proposition 11 Let C be a copula such that po € Corrppy. Introduce

e w?tem w)?
(& 2

= inf 1— 2 1-— 2
5C(p) (u,v)lél(O,l)Q 27T’Cp(u, U) — C(u, ’U)‘ [( ‘p‘)auvcp(uv U) A ( ’pC(uv ’U)‘)auvc]

s.t. Ct(u,0)#C (u,v)

and assume that 6¢(p) > 2 for some p € (—1,1). Then C € A3,

However, when a copula C has a stationary correlation function pc in Corrgy but does not
satisfy dc(p) < 2, our intuition is that it can be attained, at least asymptotically. It means
that defining the convex sum p;(u,v) = agp + (1 — a¢)pc(u,v) for a convenient function oy,
we expect the resulting coupled Brownian motions to have a copula C; such that Cy — C as
t — oo. This convergence has been observed empirically on simulations of coupled Brownian
motions for various correlation functions p: after a few steps of an Euler scheme, the copula
seems to stop evolving anymore and becomes stationary. Eventually, this intuition is supported
by the fact that such a copula satisfies the equation (£§¢¢?)*92 C = 0 for ¢ big enough, and
it is a stylized fact in the theory of Markov processes that this indicates that C' is a possible

stationary distribution.

3.3.3 A detailed example: the FGM copula

The FGM copula (Farlie-Gumbel-Morgenstern copula) is defined by Cy(u,v) = uv + Quv(l —
u)(1 —wv), for |#| < 1. This copula family contains all copulas with quadratic sections in both
u and v, i.e. all copulas C such that both C(u,-) and C(-,v) are quadratic functions. This
type of copula does not produce strong dependence: as 9pC(u,v) > 0, it is positively ordered
family, and Nelsen [15] p. 78 provides scatterplots from the extremal members C_; and C}
which clearly exhibit a low degree of dependence. Notwithstanding its relevance to model
strong dependence, this family has the advantage of yielding particularly simple formulas that
allow for explicit computations. In particular, the stationary correlation function of the FGM

copula Cjy is

6(‘13‘71(1))2—@71(11)2)/2,0(1 — ’U) _|_ e(éil(u)2_¢71(v)2)/2u(1 — u)
1+6(1—2u)(1 —2v)

po(u,v) = 0. (3.13)

87



pastel-00730335, version 1 - 9 Sep 2012

Proposition 12 For all |0] < %, |pg(u,v)| <1 for all u,v in [0,1].

Proof: : c.f. appendix 3.6.2. A numerical analysis of py suggests the sharp bound |pg(u,v)| <
‘g;' holds for all |#| < 1 and we will use this bound in what follows to prove that the FGM

copula is a stationary copula.

Proposition 13 There exists a non empty range of parameters 0 € [—a, «] , such that the
FGM copula Cy € Ang.

Proof: Apply the proposition 11 with p = 0 and 6 # 0 (which corresponds to the indepen-

dence copula). Then we have:

2 w?4em1(v)?
e 2
inf (1= |pg]).02,Co N 1) >
(u,U)lél(O,l)Q QW(CQ(U,U) _ U’U) (( ’PG‘) uv 0 ) -

16(1 — |0) (1 — 161/2)
27|60

(3.14)

Indeed, |py| < gj and 92,0y = 1+ 0(1 — 2u)(1 —2v) > 1 — 10|, so (1 — pg).02,Co AN 1 >
IA(L—10])(1—10]/2) = (1 —|0])(1 —|0|/2). Eventually Cy(u,v) —uv = |f|uv(l —u)(l —v) <
|0]/16 gives the inequality. A sufficient condition for the proposition 11 to apply is then
W > 2, which is easily seen to be true for all 0 < |0] < a, a =~ 0.49. O

The lower bound (3.14) is not a sharp one and actually, numerical evidence suggests that the

whole FGM copula family is in Ang.

This result has some importance, as it proves that there exists bivariate processes, whose
marginals are Brownian motions, and which are coupled by a non Gaussian copula , from an

arbitrary small time ¢ > 0:

Corollary 2 Ag+ does not reduce to Gaussian copulas and contains members of the FGM

family.

3.3.4 Stationary copulas of some processes with Gaussian marginals

Back to the more general case of coupling Markovian diffusions, consider the problem of
coupling Markovian diffusions that have the same marginals, and that these marginals have
Gaussian 1 dimensional laws, i.e. two diffusions X; and Y; with same drift and volatility, such
that for all t > 0, X; and Y; have the same Gaussian law N (my, 7). Suppose moreover the
volatility of the marginals is a deterministic function of time ¥; > 0. Then (assuming that
the equation (3.9) holds and the density of the copula is everywhere positive) the coupling

correlation reads
e lw? e~ w)? g2 9Cy
2

t = 2. -
p( ,U,’U) m.€ EtQ 851)01‘,

+ pc(u,v)

—0~ ! (u)

because f;* o (F/)~1(u) is proportional to e 2/2, that is, the scaled densities are propor-

tional to the scaled A/(0, 1) density, just as in the case of the Brownian motion. In particular, if
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the copula is stationary, then there exists a 7' > 0 such that for all t > T, p(t,u,v) = pc(u,v),
the stationary Brownian correlation function of the copula C. This applies for instance to

Orstein-Uhlenbeck processes and to Brownian bridges.

3.3.5 A zoology of smooth copulas and their stationary correlations

Here are listed copulas for which we have explicit formulas for the stationary correlation func-
tion. Empirically, the copulas divide into two families: the one with a stationary correlation
bounded by 1, and the one with a stationary correlation that explodes near the boundary of

the unit square.

In addition to the Gaussian copula, numerical evidence suggests the following copulas have

bounded correlation function:

- The FGM and the iterated FGM copulas (namely the Kotz and Johnson’s and Li’s
iterated FGM copulas, that are families of copulas with cubic horizontal and vertical

section, see [15], p 82).
- The Plackett copula Cp, when 6 < 10.

- Among archimedean copulas: the Frank copula, the Gumbel-Barnett (and possibly oth-

ers, for instance ‘copula 4.2.10°, see appendix 3.7).

Some of the corresponding Brownian correlation functions are plotted in figures 3.2 and 3.3 for
the FGM and the Plackett correlation function (all figures are gathered at the end of the ap-
pendices). Note also that for a single copula C' with positive density, such that supjo,1j2 lpc] <1
or supyo1j2 |pc| > 1, then three other copulas h ve the same property:

Proposition 14 The Brownian correlation functions of the copulas Ci(u,v) = u—C(u,1—v),
Cy(u,v) =v—C(1—u,v) and Cs(u,v) = u+v—14+C(1—u,1-v) are pc, (u,v) = —pc(u, 1—v),
pcy (u,0) = —pe(l —u,v), pey(u,v) = pe(l —u,1 —v). Moreover 1 — supy )2 |pc;| has the
same sign as 1 —supp q32 |pcl, i = 1,2, 3.
Proof: It is elementary. For instance,

o Lw)2—a1(u o Lw)2—a 1w

2 2
le P : 02,C(u,1 —v) +e 2 : 02,C(u,1 —v)
por(u,0) = 2 92,C(u,1 —v)

Moreover, because the normal law is symmetric, ®~!(v) = —®~1(1 —v) and the result follows
0.

If C = Cy,y where (U,V) is a pair of uniform variable, then Cy = Cy -y, Co = C1_y,v and
C3 = C1_p,1—v is the survival copula of (U, V).
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On the other hand, many copulas have a stationary correlation with an explosive behavior
near the boundary of the unit square (two of them are depicted in figure 3.4). For such
copulas there does not exist coupled Brownian motions such that the copulas C; are constant
and equal to C on a non trivial time interval. Numerical evidence shows that many usual

archimedean copulas fall in this case; here is a detailed proof for the Clayton copula:

Proposition 15 The stationary Brownian correlation function of the Clayton copula with

parameter 6 > 0 is unbounded on (0,1)2.

Proof: the stationary correlation function is (see appendix 3.7.3), is

1/ e l@?-etw? e 1(w?-e71(v)?
poluv) = (e (A=) e (1))
. . . - l(w)? .
Fix u € (0,1); then lim,_ocorrg(u,v) = 4o00. Indeed, lim, ,oe™ 2 /v = +oo, while
@71(17)2
e 2 (1 —% is bounded on (0, %] This can be seen be writing that, for z < 0,
; d
z2 2 U
e T P(x) = e U /2—zu_ Y%
@) / V2
— 0o
71(1})2
(see the proof of lemma 12). In particular, 0 < ey < % when v < %, which, combined
O o2
with (1 —?) € [0,1] yields e 2 v(1 —v%) is bounded by %. Finally, lim, , o e 2 ®(z) =0
_a—1(y)2

by dominated convergence and thus lim, ,oe™ 2z /v = 4o00. O.

Some elliptical copulas also have this property: the Student copula has an unbounded correla-
tion function, and thus we claim the noticeable result that it s not possible to couple Brownian

motions from a fized time on with a Student copula, see figure 3.4.

The table 3.1 provides explicit formulas for the correlation function of the previously mentioned
copulas (see also appendix 3.7). As the considered copulas are all symmetric, their stationary

a(u,v)+a(v,u)
2

correlations read for some function a(u,v), given in table 3.1. The copula is said

‘Admissible’ whenever its stationary correlation is bounded by 1.

There is an obvious difference between the copulas that are admissible and those that are
not: the copulas with bounded stationary correlation we mentioned does not exhibit tail
dependence, contrary to all the copulas which have unbounded correlation. Tail dependence
measures the strength of the dependence of a copula in the lower-left quadrant and in the

upper-right quadrant of [0,1]%; for instance the coefficient of lower tail coefficient is defined

C(tt)
[

on the tail dependence of the copulas mentioned above. Our experimental results leads us to

as lim;_,q+ . We refer to Nelsen [15] and to Jaworski’s article [9] for precise statements
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16

Copula
Gaussian C*
Student C*"
Clayton Cy
Gumbel Cy

Frank Cy
Gumbel-Barnett Cy
FGM Cy

Plackett Cy

Stationary correlation function (a(u,v))

1 1 a1 (0)2— a1 (u)2
p 4 Lt () ) T <1+

@71(1})27¢71(u)2 .

- 7 = A7) 0
2 a(1=2")

@71(1})27@71(1’()2

—e 2

0t (g )T

v

v (=1

u (= log(v)

where A = (—log(u))? + (—log(v))?
)

—0

659_1(1 _ e@v)(l _ e@(v 1 )
0(1—01log(v) ¥)
1—0—0log(uv)+62 log(u) log(v)
20v(1—v)

T+0(1—-2u)(1-2v)

2(0—1)v(1—v)
1+(60—1)(u+v—2uv)

)71

Table 3.1:

og(u))gf1 Al/e—A(— log(u))’e(9—1—log(u))+€—1
(

Al/046-1

TO BE PUT

Admissible
Yes

Yes

Yes

Yes
Yes (0 < 10)
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infer that stationary copulas are necessarily without tail dependence (although it may not be

a sufficient condition for being a stationary copula).

3.3.6 A heuristic characterization of attainable copulas

The fact that the stationary correlation function pc is not bounded by 1, indicates only that
C is not a stationary copula, but does not prove that it is not attainable. Nevertheless, we
outline here a heuristic characterization of the distributions that are attainable by coupled
Markovian diffusions found by A. Galichon ([8]). The idea is to write a variational problem
consisting in minimizing an objective function which depends on the correlation, and then
formally writing the dual problem; this latter problem has the property to have finite value

iff the copula is attainable at the chosen horizon.

Proposition 16 (Heuristic) Let p and q be two probability distributions over R, and f a
function defined on [—1,1]. Consider the problem

pt, pt S.t.
?Ozpva:q
oupt—5Api—02, (ppr)=

T
inf / / LF (s (2))pu () dt (3.15)
0
0

where LY (z) = Lgj<1f(z) + (+00)1)y>1. Then the primal problem (3.15) admits the following
dual

S = sug /@(T,x)pT(x)dac —/@(O,x)po(:c)d:c (3.16)
©t s.t.
Do+ 5 Dpu+f*(02,1)=0
where f*(y) = supjy <1 (@ -y — f(x)) is the Legendre transform of f over [—1,1].
The PDE which appears in the constraints of the primal problem is the Kolmogorov forward
equation of the coupled Brownian motion with correlation function p, the distribution q is

attainable at time T if and only if S < co.

Thus, theoretically, it should be possible to determine whether a given copula is attainable,
by choosing a convenient function f and solving the problem (3.16) for every possible initial
function ¢g. Eventually, remark that, as explained in section 3.3.2, the time parameter T' > 0

is not a decisive quantity in this problem, an S being finite is independent from its value.

3.4 A Financial example

In this section, a strategy of portfolio insurance is considered in order to assess the impact of
coupling diffusions in practice. Portfolio insurance (and more precisely Constant Proportion
Portfolio Insurance) are a class of dynamic strategies that aim at guaranteeing a protection

at maturity (such as a nominal amount in the case of the classical CPPI) while benefiting of
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the possible rise of a risky asset. These strategies fit well in our framework: they are dynamic
and it is natural to use a continuous model of dependence to model the underlyings rather

than imposing copulas at discrete times during the life of the strategy.

Definition and description of the strategy We opted for a particular type of strategy,
called Long-Short CPPI (described in Amenc et al.[1] and Roncalli’s book [19]), for the impact
of dependence in such a strategy proved to be more obvious than for classical CPPI.

Let T > 0 be a time horizon. Let N be a nominal amount of cash. We assume the investment
universe is composed of two risky assets, S} and S2. The CPPI long-short strategy aims at
guaranteeing a percentage « of the performance of the second asset, called the ‘core’ while
benefiting from a possible rise of the first asset, the ‘satellite’. Let F; = %Sf be the value
at time ¢ of the guarantee that must achieve the strategy. The dynamic CPPI strategy use
leverage to invest in the satellite. It does it in in such a way that the value of the strategy
always remains above Fj, possibly shorting the satellite and being long the core if it happens
that NAV; < F;. The multiplier m is a real number that determines the strength of leverage;
the higher m, the stronger the leverage. The cushion is equal to C; = NAV, — F; and
the cushion % is %@i. The investment level is the proportion invested in the satellite:
IL; = m.Cy/N AV, meaning that the cushion is leveraged to invest in the satellite. It follows
that, when the strategy is continuously rebalanced, the N AV has the dynamics:

dN AV, ds} dS?

+ (1~ IL)
t

Diffusion Model The chosen model is simple: the assets follow a coupled Black-Scholes
model,

a5, = pidt + cidWi, i = 1,2

(3.17)
d<W1, W2>t = pt(th, WtQ)dt

Thus the dynamics of the assets are log-normal, but the bivariate process (S}, S?) is not
Gaussian in general. Moreover, if the assets are assumed to have the same dynamics, and the
drifts are positive, then the copula of (S}, S?) is the same as the copula of (W', W?2), which

further simplifies the analysis.

Results The impact of the dependence structure is seen on the gap probability at maturity.
For such a strategy, the gap risk at maturity is the possibility that the value of the strategy
at T is below Frp. It is the risk that the CPPI does not reach the level of protection and thus
the risk that the CPPI seller suffers a loss. Of course, a gap can not occur if the CPPI is
continuously rebalanced and the assets follow a continuous diffusion : the results obtained in

this section are obtained when the strategy is rebalanced every 3 days, and the maturity is

93



pastel-00730335, version 1 - 9 Sep 2012

one year. The two asset are assumed to be martingales (1’ = 0, i = 1,2) and their volatilities
are the same. In figure 3.4 are given an estimation of the gap probability P(NAVy < Fr),
for several copulas and several stock volatilities. In order to give a meaningful comparison
of the copulas, the Sperman’s rho is used as a measure of the strength of dependence. The
Spearman’s rho of a copula C' is defined as the linear correlation between (U, V) of a pair of
uniform random variable with copula C; it is a measure of concordance (whose definition is
recalled in [15], p. 169), and is suitable to compare the strength of dependence across different

copula families.

4.5 T T T T T T T T
Gauzzian Copula ——
Clayton Copula —+—
Gunbel Copula —*—
4 Frank Copula —5—
\\ Plackett Copula =

Gap probability {in %}

Spearnan”s rho {in ¥}

Figure 3.1: Gap probabilities obtained for different copulas.

Despite the fact that some of the considered copulas have unbounded stationary correlation
pc, we use nevertheless these copulas by forcing po to be bounded using the simplest possible
‘trick’, by considering (u,v) = 1|, uw)<1Pc (U, v) + sgn(pc(u, v)) 1|y, w)>1 (Where sgn(z)
is the sign function, and equals 1 if x > 0, —1 otherwise). Of course, the copula of the

resulting coupled Brownian motions is different from C' '. The copula we consider all model

"However the results obtained in this manner are still labeled by the name original copula C' in figure 3.4
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‘negative’ dependence, as can be seen from their nonpositive Spearman’s rho, and in particular,
for copulas which exhibits positive dependence, such as the Gumbel copula, we use the ‘C1’
transform defined in proposition 14. This type of dependence is the ‘adverse case’ for Long-
Short CPPI as it significantly increases the gap risk.

Figure 3.4 shows the gap probability as a function of the Spearman’s rho for various
copulas, when the volatility of both assets is 30%, that is in a market with high volatility.
The impact of copulas is real, and in particular the gap probability obtained with the Clayton
copula clearly bounds above the one obtained with the other copulas. This can be explained
by the strong dependence generated by (‘C1’ transform of) Clayton copulas when the first
asset drops while the second asset rises. It is noticeable that the Clayton copula is the only
one to be ‘uniformly’ more conservative, i.e. yields higher gap probabilities, than the Gaussian

copula.

3.5 Conclusion

This chapter addressed the problem of constructing bivariate continuous stochastic processes
whose dependence at all times t is a given copula C}, while the marginal processes are fixed
Markovian diffusions. In particular, it tackles directly the problem of constructing Brownian
motions whose cross-sectional dependence is controlled. It shows that while some of the most
classic copulas can be used to model a stationary dependence between Brownian motions, it
is nevertheless not the case for many of them, and we infer empirically that copulas which
exhibit tail dependence might not be able to couple Brownian motions. These coupling models
could be useful in stress testing and risk management of strategies, and we have provided first
results as to the potential impact of dependence modeling with copulas on a long-short CPPI

strategy.

This chapter develops the idea of coupling processes with copulas in a bivariate context only.
The multivariate case (that is when more than two processes are involved) is more complex,
and does not yield formulas as handy as in the bivariate case. While bivariate models allows
for building non trivial multivariate models where the pairwise dependence is controlled (for
instance star like dependence where the dependence between the processes (X1, X;) is imposed
for all j, or serial dependence, for which the dependence between (X;_1,X;) is imposed),
more work would be required to obtain general multivariate coupling models that would be

exploitable in practice.

Finally, while we provided a case-by-case analysis of some copula families, a direction for
further research is to obtain a general characterization of the set of copulas attainable by
coupled Brownian motions, possibly by developing the ideas exposed in paragraph 3.3.6, that
would be of practical interest to determine whether a given copula is an admissible model of

dependence.
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3.6 Appendix

3.6.1 Proofs for section 3.2

Proof of corollary 1 For ¢ > 0, consider the diffusion (3.6) shifted by . The shifted
diffusion (X7,Yy) = (X¢ye, Yiqe) is still a diffusion whose equation is:
(

dX; =a~(t+e X§)dt +oX(t +e¢, Xf)thXﬁ

dYF = a¥ (t+e,YF)dt + oV (t + 2, Y)W, *
(3.18)
A(WXe WYe), = py(XF,YF)dt

(X5, Y5) ~ (Xe,Ye)

By assumption the cdfs of the marginals, Ft)_ig and ﬂﬁa satisfy the hypotheses of proposition
5 (they are regular up to time 0). Thus the copula PDE is valid for the shifted diffusion and
reads, for all ¢ > 0, for all ¢ € C2((0,1)?),

L/ 2 Yy 2
((0:C)t4es D) = <§(< NooX(t+e, )) 92,Crie + (ftliaay(t +é, )) angtJra) (3.19)
+ (pt-l-Eft)—(l—a(')JX (t +e&, ')ft)—/l—e(')o—y(t +¢, '))aivct-f—év 85U<P>

and this is true for all e > 0. O

Proof of proposition 7 The two next lemmas are needed to handle the initial singular

distribution:

Lemma 7 Let F; be the cdf of X;, where Xy is a continuous process such that lim; .o Xy = xg
a.s. Then for all ¢ € (0,1), limy_o F ' (q) = 0.

Proof:  Suppose it is not the case. Then, there exists some ¢ > 0, and a sequence t,
such that lim, ,,t, = 0 and |Ft;1(q) — xz9| > € for all n. Remark that for all z € R,
lim;_,o Fy(z) = 13>4, by dominated convergence. Thus Fy, (xo)njool and thus, for all n big
enough, F; (z9) > ¢. By definition of the quantile function 2, thl(q) < zp. Combined
with \E;l(q) — xzp| > e, it yields thl(q) < z9p —e. As F,, is nondecreasing, and using
Fy, o (Fy, (z))~! > Id, one gets ¢ < F;, (g — €). The r.h.s converges to 0 as n — co and there

is a contradiction. [J

Lemma 8 Let {C} be a copula family in CY2(R, x (0,1)?) and FX and FY be the cdfs
of continuous processes Xy and Yy such that lim; o Xy = zg a.s. and lim;_0Y; = yo a.s.

Suppose FtX and FtY have positive derivatives for all t > 0. Assume the technical condition

*For all ¢ € [0,1], F~'(¢q) = inf{z|F(x) > q}
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(IC): 3 > 0 s.t. (u,v) — supgos<. 02,Ci(u,v) is integrable over (0,1)%. Let py(z,y) =
92,(Co(Fy(z), FY (y))); then limy 0 pr = 6(zg 4,
o(xo,y0) for all p continuous and bounded.

y in distribution, i.e. lim¢ o Ep, (p(X¢,Y)) =

Proof:
E,, (0(Xe, Y1) = E(p((F) " (), (F) ™' (V}))), where (U, V;) ~ 03,C

- / () ), (FY )1 (0))02, Cy(u, v)dudy
(0,12)

According to lemma 7, lim; o o((FX) " (w), (FY) "' (v)) = ¢(x0,y0). Eventually, the technical
condition ensures that the dominated convergence theorem can be applied, yielding the result.
O

Lemma 9 Assume ;X € CY?(R%. x R), a;¥ € C¥'(Ry x R) is bounded, 0¥ € C*?(R4 x R)
and oy, o, are bounded and that f; and f] goes to 0 at —co. Then the cdf FX (x) = ffoo fX(2)d=
satisfies, for allt > 0, for all x € R,

O, =~ (@) ¥ () + 5010 ¥} @)

Proof: The proof consists in writing down the Kolmogorov forward equation for the density

f7 and then summing from —oo to z. The boundary terms vanish by hypothesis.[]

Before proving the proposition 7, let us recall a theorem that ensures the uniqueness in Kol-

mogorov forward equation:
Theorem 5 (Bentata, Cont [2]) Suppose that:
1. The drifts, volatilities and correlation are measurable and bounded.

2. The drifts, volatilities and correlation are continuous in x, uniformly over the compacts
in t3.

3. The covariance matriz is coercwe: VR > 0, Vi, inf|,|<ginf, 'a(t,z)x > 0.

Then for all xq, there exists a unique family pi(xo,dy) of probability measures with po(zg,-) =
2o and for all g € C°(R?),

/ 9(y)9ept(xo, dy) = / Lig(y)pi (o, dy)

3f(t,r) continuous in z, uniformly over the compacts in ¢ means that Vz, VT
inf5>0 Sup,e o, inflar —aj<s | f(t, 2) — f(t,2")| = 0.
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Proof of prop 7: Let P, be the law of probability with copula C} and marginals densities
f7X and fY. We aim at proving that, necessarily, P is the law at time t of the diffusion under
consideration. This is done by proving that P; satisfies the same Kolmogorov forward equation
as the law of the diffusion, and then use theorem 5 to prove the uniqueness of the solutions of
this equation.

For each t > 0, let Fr(t,z,y) be the cdf of P, i.e. Fr(t,z,y) = Ci(FX(z), FY (y)). Fi(z,y)
denotes the vector (F/X(x), F (y)). Then, for all t >0, z, y € R,

O Fr(t,z,y) = 0,Cy o Fy(z,y) + 0,Cy o Fy(x,y) 0 F{* () + 8,Cy 0 Fy(a, ) FY (y)  (3.20)

Now,

0,Cr0 Fi(w,y) = 5(o7 (@) @) PO Ci o B, y) + 50} Y (0)0nCr o Fila,y)
+ o, y)of (@)oy WF (@) (©)05,C 0 Fi(w,y)

according to the PDE. According to lemma 9, the marginal cdfs satisfy, for all ¢ > 0, for all
r € R,

NEN = —aX (2) 5 (z) + %ax(af(tax)ft(x))

and thus
0,Cvo Fila, ) F () = {~ai* ()X () + 30007 (02) ¥ (2)}0uCi o Filar )

Remark that 0, Fr(t,z,y) = fiX (2)0,Cy o Fy(z,y), 02, Fr(t,x,y) = fX(x)202,C; o Fi(x,y) +
(f)0,Cy o Fy(z,y) and 02, Fr(t,z,y) = fX(x)f} (y)02,C o Fi(x,y). Therefore (3.20) reads

OiFr(t,m,y) = pi(x,y)o7 (x)a} ()05, Fr(t, z,y)

b 3 (0 @), Fr(t,z,) — 5 (0 () (55 () 0.Cr o Fi(a,y)
+ 5 0F )P, Frit,z.y) — 5 (o ) (7 (1) 0.Cr o Fila)

(=0 @) + 50u(03(02) X (@) 0 Fila, )

+{=al )Y ) + 5003 (69) F IOCro Filary)

However, expanding 9, (o7 (t, ) f{X (x)), the terms in front of 8,C; o Fy(z,y) reduce to

(- @+ 30: (78 @) ) ¥ @0C o Bt

(@) + 0. (o7 @) ) 0P r(e. )
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Finally,

OiFr(t,x,y) = pi(w,y)oi (x)a; ()07, Fr(t, z,y)
b 20X @) Fr(tw.y) + 3 (0 )20, Frit,z.v)

- (—atX () + 50 (oFf @)2)) O, Fr(t,,y)

+ (a4 30, (o7 07) ) 0y rte.n)

If ¢ € C2(R?2), the expression (0;Fr(t,z,y), 82y<p> yields, thanks to the previous equation and

integration by parts in the sense of distributions:

Ou{fo(,y), ) = (=0u(ai (@) fe(z,y)) — Oy(af (y) fi(x,)), ¢)

02 @) fila ) + 502 (oY () Fulo), )

+ (axy(pt(x’y)O-tX(x)O-z/(y)agyft(x’y))’QO>

This is precisely the Kolmogorov forward equation for the coupled diffusion. To summa-
rize: if Cy satisfy the copula PDE and fi(z,y) is a bivariate probability density defined by
Ouy {C(F{X, FY)} then f; satisfies the Kolmogorov forward equation of the coupled diffusion
equation.

In order to invoke the theorem 5, the degeneracy of f; at time 0 must be handled with care.
This is done by stating that for all ¢ € C2(R?), for all t > ¢,

t
<ft7 f€7 +/f87 s (321)
ai: : N (@) proXal
where L4(¢) = ; NVo+Tr(oo*(t,z,y)Hess(p))) and oo (t,x,w:(,}tgfaz (07 )2 )
ay

Eventually, according to lemma 8, (f, ) — (J(z0,40)>%) @8 t — 0 and the integrand in the
r.h.s of (3.21) is an integrable function on [0,¢]. Indeed, for all s > 0, |Ls(¢)(z,y)| is bounded
on [0, ] x R? by a constant that depends only on ¢ and the bounds on ¢ and its derivatives of

order less than 2. Defining fo = 64 ,4), (fs, L£s(¢)) is integrable over [0,¢] and letting ¢ — 0,

t
<ft) an + fsa
/

This equation has a unique solution according to theorem 5. Thus f; is indeed the law of the

diffusion and, in particular, the copula of the diffusion is CY, for all ¢ > 0. [J
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3.6.2 Proofs for section 3.3

Proof of proposition 8: Consider the second part of the proposition and let p; = % fg Psds.
Notice that t0C; = (pr — pt)0,Cp,. Moreover, according to the formulas given in appendix
3.7.1,

_e lw2ie(v)?
2

9,Cp = g€ 07,Cp

_elw?ie(w)?
2

02,0, = —pe e

This 1mphes F({Ct}tZO)t = Pt L.
Proof of lemma 6: Write Cf = aCy + (1 — a)C;. Then, for all (u,v) € (0,1)?,

pi (u,v) = F({aCy + (1 = a)Ci})s
2mt,Of — Le® W2 Cp e (P92, O]

o= (w)2+o—1(v)2

e 2 02,C

d2.C,

02,0,
= @pC, (u’ U) 92 O + (1 - O‘)pé‘t (u’ U) 92 0o
uv ~'t uv 't

(with obvious notations) and thus:
02,C; 02,Cy

— o)t =
NS e

|t (u, 0)| < lpc, (u, 0)| Vg, (u, 0)]. | @

Moreover, as pi = f(u,v)pc, (u,v) + (1 — f(u,v))pg, (u,v) (where f(u,v) = a.gﬁvgg), and
uv 't

L g = J(u,0) (1~ pe, () + (1= Flu,0))(L — pg, (u,v)
> (,inf (1= po,(u,0))) A ( inf (1= pg (1)) > 0

t,(u,v ,(uw,v

because both p¢, and pg, are bounded away from 1. And likewise, inf; () 1 + pf > 0, which
prove that p® is bounded away of £1. Finally, it is obvious that p®* = p if ¢ is small enough,

and that it is continuous. OJ

In order to prove that a given copula C can be attained, it is useful to know under what
conditions a time-dependent mixture between a copula family in Cop and a constant copula

C remains in Cop.

Lemma 10 Let {C;} in Cop(p) for some p € (—1,1) and C a copula such that pc € Corrpy

102



pastel-00730335, version 1 - 9 Sep 2012

Define t > 0,

oL w2401 ()2
e 2

0 = inf
T ntoar | 2A0G0) - O]
s.t. Ct(u,v)#£C (u,v)

(1= lpe(u, v)))85,Ce A (1 = |pc(u, v)))95,C]

and suppose that 6 > 0 for allt > 0. Let oy be a function that is continuously differentiable on
R, and takes values in [0, 1], which is moreover constant equal to 1 on a non empty interval
[0,¢], such that, for all t >0,

irtlf(5t — t|0ray|) > 0

then the copula family C; = 0y Cy + (1 — a;)C is in Cop(p).
In the case where the copula family {Ci} is constant, equal to the Gaussian copula C, for some

p € (—1,1), the above condition reads sup, t|0roy| < d0¢c(p), where

e w?remtw)?
e 2
1) = inf
W=t ) 2w — Cla o
s.t. Ct(u,0)#C (u,v)

1- ‘p‘)aivcp(u7v) A (1 - ’pC(uvv)‘)aZUC]

Proof Tt is trivial that C; is indeed a copula with everywhere positive density. With obvious

notations:
“ 27rtdt(Ct - C) 62 Ct 82 C
pr= Bl CC) ()22 % () 4+ (1= ), 0) 22E (u,0)
e 2 angt(u,v) uv 't 6uv t

Thus, p; is continuous, and equals p for ¢ small enough.

R 2mt|oy||Cy — C 0% C 92 C
ol < —BlC = Ol lputas, 0) 2252 4 (1 — ), ) 22
e 2 631) Ct (u, U) 8uv Ct 811,1) Ct

A sufficient condition for the r.h.s. to be less than 1 is, for (u,v) s.t. Cy(u,v) # C(u,v)

o1 (u)2+<1>_1(v)2

. e .
tlae| < 27|C; — C| (02, C(u, ) — | pr(u,v)|02,Cr — (1 — ) |pe (u, v)|05,Cy)
et w)?reml(v)?
e 2
= —5mi6, —op @~ I )05, C+ (1= a)(1 = e (w, 0))]95,C)

The expression between parenthesis in the r.h.s. is higher than (1 — |p(u,v)])02,C; A (1 —
lpc(u,v)])02,C hence the sufficient condition.

d¢ > 0 is also a sufficient condition for p; to be bounded away from +1. For instance:

02,C, 02,C 2rtey (Cy — C
pAt—i—l:at;LAt(l—i_pt)—’—(l_at) ;wA (1+pc) + qu<u)72r+:f(1<vl)‘/2 )A
6qut 6qut _f&%vag(u, U)
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So,

. 02,04 02,C 27t|éy||Cy — O
prtlz {ata2 C (1+Pt)}/\ {(1_at)32 C (L+pc) ¢~ e_@ (u)2+<1> L(v)2

uv 't uv 't 6 Ct(u,v)
(3.22)
The r.h.s. is strictly positive iff, on {(u,v) s.t. Cy # C'},
2nt| oy ||Cy — C 62 C 92 C
o= 1(1;1@%‘@)2 | < {O‘ (1+Pt)} {(1 — )= (1+PC)}
eo 2 0%,Ci(u,v) 2,C 02,Cy

l.e.
<I>_1(u)2+<1>_1('u)2

. e
t|0ét| <

- 2 _ 2 .
27|Cy — C| (005, Ce(1 4 p)) A (1 — )05, C(1 + pr))

However, (14 pt) > (1 — |pt|) and a sufficient condition for the r.h.s. of (3.22) to be positive

1s
2 w2 te1(v)?

X e 2 2 2 =
téel < e @R el = o) A (32,01~ |7)

that is, t|éu| < d0;. As infy (6 — t|ay|) > 0, the r.h.s. of (3.22) is not only positive but
inf;(p; + 1) > 0. This is true also for inf;(p; — 1) and thus p; is bounded away from +1.0J

Before proving the proposition 11, we need the following technical lemma;:

Lemma 11 Let 0 < e <n. Consider the function

t—e

= Mo+ se e + (1- Ze )
o) = < —e - e+n — —€ —€ e+n
t t<e 9 t>=" 9 e<t<——

oy 18 continuously differentiable on Ry, equals 1 if t < e, 0 if t > n, is decreasing on [e,1),

and 5
vt >0, a5 < —2
n—e
Proof:
e n—e _t=c n—e
Oy = —= e il ety — = E]l <c
i 2 (n—t)? 25 T g2t ="
_K
Using the easy fact that the function <5~, K > 0, x > 0 reaches its maximum at x = %, and
t—e —€ t —c
the maximum thus equals QKQ, and writing that e »—t =e.e 7=t and e ¢ = e.e Tt’—s, we
have,
|0p0"| < & Lo etn + 2 1,
IS e T g e

And thus |00} < n—” O

e, K e, Ke

Proof of proposition 11: With the same notations as in lemma 11, define o, = oy ",

for some constant K > 1 to be determined later. Consider the copulas Cf = ofC,+(1—af)C.
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We want to show that the corresponding correlation is bounded by 1. And indeed, applying
lemma 11, we know that

2K
t|0pay ™| < 1

Thus, if dc(p) > 2 for some p, there exists a Ky > 1 such that, for all ¢,

t|0r0;™°| < do(p)

By virtue of lemma 10, this implies that {C§} € Cop(p). O

Proof of proposition 12: W.l.o.g. assume 6 > 0 and thus pg > 0. Moreover we need the

Lemma 12 For all u € (0,1), u.(1 —u).e®” /2 <

N[

Proof: proving u.(1 — u).e®™ /2 <

zeR, (1-®(z)P(z)ez < 3.

% for all w € (0,1) is equivalent to prove that for all

0 0
2
e’z ®(x) = ¢%"/2 / e_ug/Q—du = e_“2/2_w—du < /e_“2/2—du it <0
Var

2T

and thus (1 — ®(z))®(z)e> < i when 2 < 0. When z > 0, we have in the same manner:

—+o00 400 —+o00
2 2 279 du 2 du 2,0 du
(1—®(x))ez =" /? /e_“ P = [ e < [ i >0
V2 2T V2

x2
and thus (1 — ®(z))®(z)ez < 3 for all z. O
Back to the proof of the proposition, recall that pg(u,v) = a(u,v) + a(v,u), with

e(é_l(v)Qf(b_l(u)g)/2v(1 — U)

@l 0) = 0 T a1~ 2w)

a(u,v) < 6 for all (u,v) € (0,1)2: this is equivalent to showing that
(@27 W)/ /2), (1 _ ) < 14 6(1 — 2u)(1 — 2v)

The r.h.s. is greater than 1 — 6. Using the lemma 12, the Lh.s. is less than 1/2. Eventually,
1—-0>1/2as0<1/2. So pg(u,v) = a(u,v) +a(v,u) <20 <1. 0

105



pastel-00730335, version 1 - 9 Sep 2012

Proposition 17 Let p(t,u,v) be a Borelian function on Ry x (0,1)?, bounded by 1. Let
F(t2y) = plt D/, Bly/VD) and g(t.z.y) = /T Pa.y). Assume that [ and g

satisfy: for alln € N*, ||(z1,x2)|| < n, ||(y1,y2)|| < n, for almost every t >0, || f(t,z1,y1) —
flt,za,y2)|| < Ki(n)||(x1 —x2,y1 —y2)|| (and the same for g) where Ki(n) is finite and satisfy

T

/Kf(n)dt < +oo, for allT >0
0

In other words, assume f and g are t-almost everywhere locally Lipschitz in the space variable,
and that for all balls, the corresponding time-dependent Lipschitz constant is locally square

integrable. Then the coupling SDE (3.10) has a unique strong solution.

This type of result is classic and dates back to Ito, see Krylov and Rozovskii [11]| theorem 3.1,
pp. 1254-1255 and references therein.

3.7 Formulas

This section gathers the formulas of the second order derivatives that intervene in the copula

PDE for various copula families.

3.7.1 Gaussian copula

Cplu,v) = B, (87 (u), @' (1))

where ®, is the cdf of the bivariate normal distribution with correlation p, namely:

Yy x
1 —— L (u2+v2—2puv)
D, (v,y) = —¢ 20-p9) dudv
ol:9) //2m/1—p2

—00 —0O0

The useful derivatives are:

7

92,0, (u,v) = \/—%’? exp ( - m[@/ﬂ 1) Lu)2 4+ o L(v)2 — 2p(I>*1(u)(I>*1(U)]>

83UCP(U’ U) = a?%ucp(v’ u)

N[

92,0y (u,v) = \/1177 exp < - m(@_l(uy + 071 (v)2 = 2p@  (w) @ (v)) + 5 (P H(uw)? + f1>_1(v)2))

BpCplu,v) = A= (@1 (w)? + 0 ()2 — 2007 ()@ (v)])

1
J1p2 2 P ( e

A proof of the formula for 9,C, can be found in Plackett [17], p. 353. Alternatively, it can be
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directly recovered by applying the copula PDE of two Brownian motions with deterministic

correlation.

3.7.2 Student Copula

The bivariate Student copula with correlation parameter p and degree of freedom v € R, is
defined as
CPY (u,0) =tV (8, (u), £, (v))
where ¢, is the univariate cdf of the Student distribution:
v+1

[ T((v+1)/2) (1+ %)
v = [ S N

— 0o
and t”¥ is the cdf of the bivariate Student distribution with correlation p and dof v:

v+2

Yy 1+ 272sz) 2
tpl/ny //F 7/+2 )( v(1 p2) d

w
E I'(v/2) vry/1 — p?
The derivatives are:
v v u v vl v+2 “1)2\Y
0P (wv) =~ MR <p+ e ’)( ) (L )

(5 (w)? + 1,1 (0)2 = 2t (W)t () + (1 - p?)
3,CP¥ (u,0) = 03,07 (v, u)

92 0P (u,p) = DLW (g gyt v (1 . t;1<u>2> E

1

(1+’f”li)2)yg1

T2((v+1)/2) s v
(67 @+ 1 0 = 20 W)t (0) + (1= 2)) T
0,C(w,v) =5 (1= p) VIR = Py + 1 (W) + 1, (0)7 = 20t (W), ()72, v > 1

Therefore, the stationary Brownian correlation function of the Student copula is

ty (wty ' (v) C1,02 =112 -1 2. v—1 —1/.7\2
v)%— w t t -
COTTP’V(’U,, ’U) 1% + 5 v (64)()24)() (1 v (U) ) 2 <1 v (’U) >

L e 2 (1 t;l(v)2) X (1+ t,Tl(U)2>—”¥1>

v
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3.7.3 Archimedean copulas

The archimedean copulas are a class of copulas that takes the form Cy(u,v) = o= (p(u) +
©(v)) where ¢ is a continuous, strictly decreasing function from [0, 1] to [0,4o00] such that
©(1) = 0, where l=1 is the pseudo-inverse of ¢ defined as pl=1(t) = llogtgw(o)(p*l. © is

called the generator of the copula.

Clayton copula: For 0 > —1, 6 # 0, the generator of the Clayton copula with parameter
0 is £(t~ — 1) and the copula reads Cp(u,v) = (v +v70— 1);1/6. Furthermore, when 6 > 0,

the copula admits a density and

)
92,Co(u,v) = —(0+ (w0 +0? - 1)*1/9*27,1,*9*2(@*9 -1)

8gUCg(u, v) = 83uCg(v, w)

92,Co(u,v) = (0+1)(uf+0v70 - 1)_2_1/6u_9_1v—9—1

og(uw)u—?+log(v)v—?
9Cy(u,v) = Cg(u,’u)( — %log(Cg(u’U)) 4 %1 g(u)u—%+log(v) >

u=94v—0—-1

Gumbel copula:  This copula has generator (—log(t))?, for # > 1, and

7

Co(u,v) = exp (—A%) , where A(u,v) = (—log(u))? + (— log(v))?
02,Cy(u,v) = %Z’U)Al/‘g”(— log(u))?~2[AY — A(—log(u))~(0 — 1 — log(u)) + 6 — 1]

831}06’ (ua /U) = 85ucl9 (’U, u)

92,Cy(u,v) = M(log(u) log(v))?—1A/0-2 {Al/e +6— 1}

uv

Frank copula: for 0 # 0, its generator is — log (67%_1), and

e 0—1
e—0u_ e—0v_
Colw,v) = —Flog ((1+ R0

679u 6791)_ 6791)_679
aguCQ(u,v) :0'(679,1(4,(6797}1(1)(67911,13)2

812)1)09 (u’ U) = a?%uCG (’U, U)

02,Colu,v) = 0.(1 - )
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Gumbel-Barnett copula: for 6 € (0, 1], its generator is log(1 — 6 log(t)), and

p
CG (’U,, ’U) — uve*G log(u) log(v)

92,Co(u,v) = —fPe—01os(u) log(”)(1 — flog(v)) log(v) &

831}06’ (ua /U) = a?%ucﬁ’ (’U, u)

02,Cy(u,v) = e ?losloe) (1 — 9 — glog(uv) + 62 log(u)log(v))

Archimedean copula 4.2.10 in [15], p. 116. In order to support our intuition that
copulas without upper or lower tail dependence are suitable to couple Brownian, we chose one
such archimedean copula, whose generator is log(2t? — 1), # € (0,1]. Then,

(

CH(U’/U) - (1+(17u6)(1*v9))%

2 _ (0u,C)? 1 w?=1(1—0?) 9—1 w?=1(1—0?)
RuColwv) =G5+ (= + i (5 + Vo)

63009 (’U,, ’U) = aZuCG (’Uv U)

— 9uCa,C uf~lyf~1 (1—u?)(1—v?)
OuuColu,v) = 2= = O imaiammy Ol — Ty )

\

3.7.4 FGM copulas

Co(u,v) = uv + Quv(l —u)(1 —v), |#| < 1. Obviously, Cy = II.
92,Co(u,v) = —20v(1 —v)
02,Cq(u,v) = 92,Ch(v,u)

02,Co(u,v) =1+0(1—2u)(1—2v)

3.7.5 Plackett copula

The Plackett copula is Cyp(u,v) = 2(9—171)((1+(9—1)(u+v))—\/(1 + (0 —1)(u+v))? —4uwb(0 — 1)),
0 >0, and C1(u,v) = uv.

82 C@(U ’U) — 29(971)1}(1}71) -
ue ’ (14 (0—1) (u+v))2 —4uvf(6—1))

831}09 (ua /U) = a?%uCG (’U, U)

92,Co(u,v) = 00O (utv—2uw)
((1+(0—-1)(utv))2 —4uvd(6—1)) 2
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Conclusion

This thesis studied two aspects of dependence modeling. The first one is the understanding
and modeling of the multivariate dependence, i.e. the dependence between random vectors.
The second aspect is the dependence between continuous-time stochastic processes, and more
precisely modeling the dependence between continuous stochastic processes with the help of

copulas.

Optimal transport theory provides a means to generalize the notions of quantiles and comono-
tonicity to the multivariate setting. Therefore it has been used to define multivariate risk mea-
sures. We implemented and studied a method that computes an approximation of the optimal
transport map when the initial measure and the target measure are continuous ; This method
was compared to several classical algorithms and proved to behave efficiently. However, sev-
eral questions remain. The convergence speed and complexity of the quasi-Newton algorithm,
respectively O(N®/2) and O(1/v/N) for the transport problem in R?, remain to be proved
theoretically. Moreover, the IPFP produces high numerical errors on the boundary of the
support of the initial measure; it seems that this is not the only algorithm that exhibits this
kind of behavior, and it would be interesting to test the performance of such algorithms on
distributions with periodic support to avoid the difficulties that arises on the boundary of the
support. FEventually, we mentioned others algorithms, and there remains to do a complete

comparison across more existing algorithms.

The second part of the thesis proposed a definition of extreme dependence between fixed mul-
tivariate laws of probability. This definition is based on the notion of covariogram, defined as
the set of all possible cross-covariance matrix between the multivariate marginals. We give
a method that is numerically tractable to compute extreme couplings; this procedure can be
used to define trajectories of couplings that starts at some coupling whose cross-covariance
matches a given cross-covariance matrix and goes to an extreme coupling. This trajectory can
be used to stress the dependence between the multivariate marginals, for instance in problems
of portfolio allocation or in the risk management of options on several underlyings. Further-
more, the parameterization of these trajectories allows to define an index of the strength of
the dependence between the marginals. However, this index is not invariant by transforms

of the marginals and the question remains to determine whether a measure of multivariate
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dependence can actually be derived from this index. Extreme couplings can be also derived
by maximization of cross-covariance matrices with respect to some conic orders. While the
variational characterization of the extreme couplings makes it clear that these couplings are a
particular case of extreme couplings, the relation between the various notions of extreme de-
pendence associated to conic orders deserves to be further investigated, as well as the relevance

of using a given conic order in practical applications.

Finally, the third chapter gives some answers as to the spatial dependence that can be attained
by two univariate Markovian diffusions. More specifically, the coupling of two Brownian mo-
tions by stationary copulas is highlighted (that is Brownian motions with a constant spatial
copula after some time). We provided case-by-case results showing that some copulas were ad-
missible to model such dependence, while others (including Student, Clayton, Gumbel copulas)
were not. However, deriving sufficient and necessary conditions that can be used in practice to
determine which copulas are attainable by coupled Brownian motions (or admissible to model
stationary dependence between Brownian motions) is still an open question. We treated the
bivariate case, providing an integrated form of the Kolmogorov forward PDE that describes
the evolution of the spatial copula of coupled Markovian diffusions. The multivariate case is
more complex to tackle, as on top of necessary boundedness of the correlation coefficients, the
correlation matrix needs also to be nonnegative, which complicate further the characteriza-
tion of multivariate copula that are admissible to couple several diffusions. Note also that we
focused on a particular coupling problem: the marginal diffusions are Markovian. One could
also consider the case where the bivariate diffusion is Markovian but not the marginals (i.e.
the drifts and volatilities depend on the state of both marginals). In this case, the integration
of the Kolmogorov forward equation can not be made as in the case we studied, and the link
between the copula family {C}}; and the correlation function (or correlation matrix) is less
clear.

Finally, a subject of potentially high interest is the application of optimal transport tech-
niques to diffusion equations. For instance a Markov functional model describing a strong
dependence between two multivariate diffusions X; and Y; could be fft = Vi (Xt), where Vi,
is the optimal transport map between the law of X; and the law of Y;. Y, is a multivariate
process with the same one dimensional marginals as Y;, which means that Y, ~ Y, for all t.
Such a model raises the question of the smoothness of the maps V¢, both in space and time,
and of the possibility of sampling trajectories from such models within a sensible amount of

time and with an acceptable accuracy.
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