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IntrodutionModeling dependene between assets is a subjet of ruial importane in �nane. It hasemerged during the 90's and in the last deade as a neessary improvement of previous modelsin order to develop and value omplex �nanial produts or strategies on several underlyings,whose value is strongly sensitive to the dependene between these underlyings. For instane,basket options, and their sophistiations, suh as the so-alled mountain range options. Moregenerally, many options and strategies require hybrid models to be pried. These are modelswhere two or more lass of assets are oupled in order to apture their multivariate behaviorand not only their individual dynamis, suh as, for instane, equity and interest rates (hybridHull-white), equity and volatility (stohasti volatility models). Furthermore, as `orrelationbetween assets' beomes an asset lass, just as volatility beame an asset lass when investorsstarted to have views on volatility and implemented them through the purhase of derivativeson volatility suh as variane swaps, orrelation produts suh as orrelation swaps asks foraurate dependene modeling. However, as proven by the 2007 �nanial risis, standardmodels of dependene might be insu�ient when the market swith to an extreme regime,and there is learly a room for improvement for �nanial models to better represent the assetsomovements.The notion of linear orrelation is used as an ubiquitous measure of multivariate dependene.This notion dates bak to Franis Galton and Karl Pearson and provides a simple means toquantify the strength of the dependene between two real random variables. It haraterizesompletely the dependene in Gaussian models. This simpliity explains the presene oforrelation in �nanial models; it stems naturally from the fat that the lassi �nanialsmodels are based on Gaussian distribution. Suh models are Markowitz' modern portfoliotheory, and the derived Capital Asset Priing Model, or fators model suh as Arbitrage PriingTheory. In ontinuous-time �nane, a wide lass of models is the lass of di�usion modelswith Gaussian noise and, one again, the dependene between assets is often modeled bydeterministi orrelation parameters or orrelation matries, understating that the dependeneis Gaussian. However, orrelation soon �nds its limits when the marginal distributions are notGaussian and is not a satisfatory tool when one wants to introdue non Gaussian dependene,see Embreht [3℄ for more examples where orrelation fails.6
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The assumption that �nanial assets have Gaussian dependene is quite restritive, espeiallywhen derivatives produts are involved, and this assumption might generate unwanted featuresand misunderstandings. For all these reasons, the notion of opula sparked a vivid interest inthe �nanial ommunity in the last deade. This objet has been long known to statistiiansand has been used, although unnamed, by Hoe�ding and Fréhet in the 40's and 50's. It waswell later on used to build �nanial models of dependene, for instane in redit derivativemodeling. A opula is a funtion whih embeds all the possible information on the dependeneof several random variables. Hene, modeling the dependene between n assets X1, . . . ,Xnamounts to �x a opula, whih in this ase is a funtion of n variables de�ned on the unithyperube [0, 1]n. It allows for a lear separation between the information on the marginals,summarized by the individual umulative distribution funtions, and the spei� informationon the dependene.Let us give some onrete examples of how opulas have been used in �nane. In redit deriva-tives modeling, a ritial feature of a model is to adequately represent the arrival of defaulttimes of government bonds, orporate bonds, et. . . Li's method [7℄, whih introdued the useof Gaussian opulas in �nanial modeling, onsists in hoosing the marginal distributions ofeah default time, and then hoosing a Gaussian opula with some orrelation matrix Σ tomodel the dependene between the default times. Thus, although the distributions of thedefault times are not Gaussian at all, the dependene between them is the same as the de-pendene of a Gaussian vetor with orrelation Σ. This works for any opula and allows toimpose any form on dependene; this approah is used in the so-alled semi-dynami opulamodeling (see Shönbuher's book [11℄, p. 337 et seq). In equity derivatives priing, opulashave been used in the same fashion. The simplest ase where they have been used is for aEuropean option whih pays at maturity T a payo� g(S1
T , · · · , SNT ), where SiT the value ofunderlying i at T . The prie of suh an option depends on the multivariate distribution of theassets at the maturity, whih an be split one again into the marginal distributions and theopula.These examples give an opportunity to point out two drawbaks of using opulas. Considerthe previous example of default times modeling. Assume that we want to value a omplexredit derivative (suh as a Credit Default Obligation), whose value depend on a pool of assetsthat an be split into two sets, e.g. orporate bonds on the one hand, and home loans on theother hand. Assume that the two opulas ruling the dependene among eah of these set ofassets is �xed. The dependene struture of the model is ompletely spei�ed as soon as thedependene between the two sets is de�ned. As we have hosen to model dependene withopulas, it appears natural to de�ne the opula whih rules the overall dependene as

C3(C1(u1, . . . , uN ), C2(v1, . . . , vM ))7
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where C1 is the opula for the N orporate bonds default times, C2 is the opula for the Mhome loans default times and C3 is a bivariate opula that handles the dependene betweenthe two. However, suh a formula does not de�ne a opula in general, unless C3 is theindependene opula. This results from an impossibility theorem proved by Genest et al.[4℄. More generally, it is a stylized fat of opula theory that de�ning a multivariate opulais di�ult. As a result, the opula might not be the tool to be preferred when faing theproblem of aggregating the dependene.A seond drawbak of opula funtions is their stati nature. Indeed, while they arewell suited to the valuation of �nanial derivatives whose pries depend on the distributionof the assets at a single time, they are more di�ult to use in a dynami framework. Forinstane, a desirable feature of a priing model is to give the assets a Markovian dynamis.Combining this Markovian feature and the modeling of the `spatial dependene', i.e. theross-setional dependene between the assets, with opulas is no easy task. There exists anabundant literature on opulas and time-series (see Patton [9℄ and referenes therein), wherethe opulas are used in a (disrete) dynami setting. Furthermore, the time dependenestruture of (possibly ontinuous) real-valued Markov proesses is well understood in termsof opulas, see Darsow et al. [1℄ and Ibragimov [5℄. However, to the best of our knowledge,the problem of modeling the dynami spatial dependene of ontinuous Markov proesses byopulas has not been thoroughly solved yet.More generally, opulas are de�ned from a saling of the marginals by their umulative dis-tribution funtion. While this is natural for a univariate random variable, as the resultingvariable has a uniform distribution over [0, 1], this does not make sense a priori for a multi-variate distribution, as well as the notion of quantile. Nevertheless, the problem of saling onedistribution to another, i.e. �nding a deterministi funtion fµ,ν suh that fµ,ν(X) has law
ν if X has law µ, still remains. Similarly, multivariate dependene problems an be formu-lated in the same manner as their univariate analogs, suh as determining whih distributionmaximizes orrelation when the marginals distributions are �xed:

sup
X∼p
Y∼q

E(XY )If µ and ν are probability distributions over R this problem amounts to �nd the opula whihmaximizes the orrelation between the marginals, but it does still perfetly make sense if µand ν are probabilities over RN , and the produt is replaed by a salar produt:
sup
X∼p
Y∼q

E(X · Y )This sort of �xed marginals problems in the ontext of multivariate dependene annot be8
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takled by the same tools as in the univariate ase.This thesis aims at addressing the two topis skethed above, namely dependene aggregationand dependene modeling for Markovian di�usions. The two �rst hapters takle the issue ofmultivariate dependene, i.e. dependene between multivariate marginal distributions. Morepreisely, these hapters aim at desribing, haraterizing and omputing extreme multivariatedependene between random vetors. The third hapter shows how opulas an be used tomodel the spatial dependene between two Markovian di�usions, and is a �rst step to buildgenuine ontinuous-time models of dependene with opulas.Chapter 1 The �rst hapter studies the modeling of the dependene between random vetorswith �xed marginals, and in partiular the notion of omonotoniity between random vetors.Reall that two real random variables X and Y are omonotone if and only if they an bewritten as an inreasing funtion of a third variable. A simple proedure to obtain a pair ofomonotoni variables (X,Y ) with marginal distributions µ and ν is to onsider (X,F−1
ν ◦

Fµ(X)) where Fµ is the umulative distribution of µ, F−1
ν the quantile funtion of ν and Xis a random variable with law µ. Thus, a deterministi saling of one distribution to anotheris obtained, and this transform has moreover a partiularly simple expression. However thisapproah fails if the marginals are not univariate. The omplexity of the multivariate ase anbe seen from the fat that if µ is a probability on RN , the law of the variable Fµ(X), X ∼ µ, isnot the uniform law on the unit hyperube, ontrary to the one dimensional ase, and there isno unique notion of multivariate quantile. Nevertheless, optimal transport theory proposes asaling of one multidimensional law of probability to another and therefore proposes a possiblede�nition of multivariate omonotiity.More preisely, if µ and ν are two probability distributions over RN , onsider the set ofprobability distributions π over RN×RN suh that the distribution of the �rst N -dimensionalmarginal is µ and the distribution of the seond one is ν, i.e. π(A × RN ) = µ(A) and

π(RN × A) = ν(A) for every Borel set A ⊂ RN , and denote Π(µ, ν) this set. Among theseouplings π, a distribution of speial interest is the one solving the variational problem
inf

π∈Π(µ,ν)

∫RN×RN

|x− y|2dπ(x, y) (1)This problem has a unique solution and, by de�nition, this solution minimizes the quadratidistane between the �rst N -dimensional marginal and the seond one. The study of suhvariational problems is the subjet of optimal transport theory and has found appliations inmany �elds, pure mathematis, eonomis, numerial optimization, medial imaging et. . . seethe book by C. Villani [12℄ for an introdution to this theory. Aording to the Monge-Kantorovith duality, the linear problem (1) admits a dual problem whih writes (up to addi-9
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tive onstants):
inf

ϕ∈L1(µ)

∫RN

ϕ(x)dµ(x) +

∫RN

ϕ∗(y)dν(y) (2)where ϕ∗(y) = supx∈RN (x ·y−ϕ(x)) is the Legendre transform of ϕ. From this duality, it anbe shown that the optimal oupling in (1) takes the form (under regularity assumptions onthe distributions µ and ν): πopt = (Id×∇ϕ)#µ, where ∇ϕ is the µ-a.e. unique gradient of aonvex funtion suh that ∇ϕ#µ = ν. In other words, the optimal oupling is the law of a pair
(X,∇ϕ(X)) where X has law µ, and, up to an additive funtion in x and y, ϕ is solution of thedual problem (2). Considering that ∇ϕ is somehow the multivariate analog of an inreasingfuntion, the optimal oupling exhibits a strong dependene between its marginals, and anbe seen as a generalization of the notion of omonotoniity in the multivariate ase. Thisoupling an be used in pratie to de�ne multivariate and invariant in law risk measures,suh as the maximum orrelation: ρY (X) = supX̃∼X

Y∼Y
E(X̃ · Ỹ ), see Rüshendorf [8℄.Unlike the omonotoni oupling Y = F−1

ν ◦ Fµ(X) in the one dimensional ase, whih isreadily omputed, there is in general no analyti formula for the funtion ∇ϕ. To address theproblem of the omputation of ∇ϕ, we �rst treat the ase of a disrete target distribution ν.Writing yi the atoms of ν and qi = ν({yi}), the solution of the dual problem is easily seento be a pieewise a�ne funtion ϕv(x) = maxi(x · yi − vi), and the dual problem beomes a�nite-dimensional variational problem
inf
v∈RN

∫RN

ϕv(x)dµ(x) + q · v (3)An essential feature of this problem is the onvexity and the boundedness of the objetivefuntion. Thus problem (3) an be solved by lassi tehniques, suh as gradient desentalgorithms. A steepest desent algorithm would read
vi+1 = vi −∇F(vi) (4)where F(v) is the objetive funtion of (3). Furthermore, this algorithm an be interpretedas a Walrasian aution algorithm, where a �nite set of sellers (loated at the points yj) o�era good with supply qj . The steepest desent (4) mimis the behavior of buyers ompetingfor this good in suh a way that the pries adjust so that supply and demand math. Anequivalent interpretation is that the primal problem (1) is the soial planner's objetive �maximizing the total eonomi surplus � and is equivalent to the dual problem (3) (adjustingsupply and demand), whih is one of Walras' theorem.The seond part of the hapter onsists in showing that disretizing the target measure isa valid approah to approximate an optimal Kantorovith potential ϕ. We give a rigorous10
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statement of the fat that, provided a sequene of disrete measures with a �nite number ofatoms νN onverges in law to ν, the sequene of optimal potentials ϕN (whih solves problem(3) with target measure νN ) onverges uniformly on the support of the initial measure µ toan optimal potential ϕ.Eventually, the last part of the hapter aims at omparing various algorithms that solve thetransport problem. More preisely we detail: Bertsekas' aution algorithm, whih solves thedual problem (3) when both measures are disrete and equally-weighted, thanks to a repeatedaution proess; linear programming algorithms that use a slightly di�erent form of the dualproblem, namely:
sup

ϕ, ψ∈ RN

ϕi+ψj≥xi·yj ,∀i, j

ϕ · p+ ψ · qwhere µ is assumed disrete with atoms xi ∈ RN and p is the vetor of the mass of the atoms of
µ; the Iterative Proportional Fitting Proedure whih onsists in relaxing the primal problem(1) by the addition of an entropy term and then solving the relaxed problem with an analog ofVon Neumann's alternative projetion algorithm and, �nally, quasi-Newton method appliedto problem 3. Choosing the lassial Bertsekas algorithm as a benhmark, we tested thesealgorithms on three simple test ases, for whih the analyti form of the optimal transportmap is known. In these three ases, our experiments show that the ombination of the IPFPalgorithm that provide a `warm point', and then the use of a quasi-Newton algorithm beatsthe other algorithms. These latter ombination has an estimated omplexity O(N5/2), whilethe numerial speed of onvergene is O(1/

√
N).Chapter 2 While the �rst hapter aimed at omputing the quadrati optimal oupling,also alled the maximum orrelation oupling, the seond hapter aims at providing a simpleand wider notion of extreme dependene between random vetors. The maximum orrelationoupling, whih an be seen as a multivariate omonotoniity oupling, is a rather restritivemodel for suh dependene, as it only takes omponent-wise ovarianes into aount. A simpleway to de�ne extremal ouplings onsists in onsidering the possibility of ross-dependene,and, with the same notations as above, studying the following variational problem

sup
π∈Π(µ,ν)

∫RN×RN

x ·My dπ(x, y) (5)where M is a given N dimensional square matrix (w.l.o.g. as the ase of marginals withdi�erent sizes is similar). The maximum orrelation oupling orresponds to M = Id. Then,aording to optimal transport theory (and up to some onditions on the marginal distri-butions), an optimal oupling solving (5) takes the form MY = ∇ϕM (X), for some onvexfuntion ϕM . Suh a oupling exhibits the same omonotoniity property as the maximum11
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orrelation oupling, up to a linear transform of one of the variables, and is proposed as apossible de�nition of multivariate extreme dependene. Suh a de�nition takes into aountthe ross-dependene of the omponents of eah marginal law, and admits a geometri hara-terization. Indeed, the extremality of a oupling (X,Y ) an be heked on its ross-ovarianematrix E(XY ′). Introdue the ovariogram
F(µ, ν) = {Eπ(XY

′), π ∈ Π(µ, ν)}whih is the set of all ross-ovariane matries orresponding to ouplings whose �rst N -dimensional marginal has law µ and the seond one has law ν. The �rst part of this hapterproposes the following geometri haraterization: the extremal ouplings, as de�ned above,are the ouplings (X,Y ) ∈ Π(µ, ν) suh that the ross-ovariane matrix E(XY ′) is loatedon the boundary of F(µ, ν). The ovariogram is also useful to study another notion of ex-tremality. Namely, onsider some onvex order ≻ on the set F(µ, ν): then the ouplings whoseross-ovariane matrix is maximal with respet to this order should exhibit some strong formdependene. Atually, with the help of a saddlepoint theorem, one an show that suh ou-plings are also extremal, in the sense that there exists a matrixM belonging to a set of matrix
S≻, suh that the oupling solves (5). These ouplings are alled positive extreme ouplingsand form a subset of extreme ouplings. For instane if ≻ is the (strit) Loewner order onmatries, de�ned by M ≻ N i� M − N has a stritly positive symmetri part, then positiveextreme ouplings are the one maximizing (5) for some nontrivial matrix M whose symmetripart is nonnegative.In a seond part of this hapter, an algorithm is proposed to ompute these extreme ouplings.Given any oupling π̂ ∈ Π(µ, ν), we would like to �nd a means of assoiating π̂ to an extremedependent oupling. Geometrially speaking, this amounts to onsider a matrix inside theovariogram, and projet it on the boundary of the ovariogram. Of ourse, there are severalway to perform suh a projetion, and we propose one whih respets the struture of theinitial problem (5) and allows for expliit omputations. As in the �rst hapter, an entropirelaxation is used:

WT (M) := sup
π∈Π(µ,ν)

Eπ(X
′MY ) + TEnt(π) (6)where Ent(π) is the entropy of the oupling π, formally −Eπ(log(π(X,Y ))). This is a per-turbed version of the original problem, whih an be formulated as a projetion problemwith respet to the Kullblak-Leibler pseudo-distane. Moreover, if σπ̂ is the ross-ovarianematrix of the oupling π̂, then the �rst order ondition of the following problem

inf
M∈MN (R)

WT (M)− σπ̂ ·M (7)reads σπ̂ = Eπ(T,M)(XY
′) where π(T,M) is a oupling ahieving the supremum (6). Therefore,12
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a means to assoiate an extremal oupling to π̂ is to �x T , e.g. T = 1, and then �nd the matrix
M̂ solving (7). M̂ is then the ross-ovariane matrix of the oupling π1,M̂ maximizing (6)with T = 1. Thus a whole trajetory of nondeterministi ouplings πT,M̂ obtains that satisfy
Eπ1,M̂

(XY ′) = σπ̂ and π0,M̂ is an extremal oupling. Moreover, the projetion of σπ̂ onto theboundary of the ovariogram is partiularly simple to ompute, at least when the marginaldistributions are disrete, as the Iterative Proportional Fitting algorithm is then partiularlye�ient to solve (6) whilst (7) is a standard onvex problem.The third part of the hapter fouses on appliations. First, performing a singular valuedeomposition of the matrix M̂ , we exhibit a linear transform of the marginal distributionsof an empirial oupling, whih allows interpret the extreme oupling π0,M̂ as the maximumorrelation oupling one the marginal distributions are linearly transformed. This lineartransform is helpful in dependene problems where two eonomies are involved to de�ne newindies from �nanial indies that would solve the problem of maximal orrelation under thelaw of the extreme oupling. Then, we apply this tehnique to multivariate stress testing: aMarkowitz alloation model is onsidered, and the impat of the hange of the dependenebetween two subsets of the investment universe is assessed. Interestingly, it shows that whilethe maximum orrelation oupling might fail at stressing the portfolio, it is not the asewith the previous method on the onsidered examples. Moreover, this method provides awhole trajetory of ouplings with inreasing dependene. The same type of argument isapplied to derivatives priing: a European option on several underlyings is onsidered, andour dependene stress test is ompared to the more lassi stress test of ovariane matries,whih typially assumes that the ross-ovariane matrix is �lled with a single parameter ρand let ρ tend to ±1. This last method has a major disadvantage when the marginals are �xed:the ovariane matrix has two �xed diagonal bloks (the ovariane matries of the marginals),and the parameter ρ is onstrained to belong to an interval to ensure the nonnegativity of theovariane matrix. It results that our method has a larger impat on the pries and avoids theproblem of maintaining the stressed ovariane matrix in the set of symmetri nonnegativematries.Chapter 3 The third hapter takles the issue of desribing the dependene between stohas-ti proesses with opulas, and shows how opulas an be used in a genuine dynami frame-work. The point is to be able to desribe the ross-setional dependene between two Marko-vian di�usions Xi, i = 1, 2, whose dynamis are dXi
t = µi(t,X

i
t)dt + σi(t,X

i
t)dW

i
t . Theoupling between these di�usions is materialized by a oupling orrelation ρ(t,X1

t ,X
2
t ) be-tween the Brownian motions W i, these latter being de�ned in suh a way that d〈X1

t ,X
2
t 〉 =

ρ(t,X1
t ,X

2
t )dt, i.e. ρ(t,X1

t ,X
2
t ) is the instantaneous orrelation between the Brownian mo-tions. Suh models are reminisent of Dupire's loal volatility model [2℄, and an be usedin the same manner, that is to alibrate the orrelation funtion in order to math today's13
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pries of options; this is the approah of the loal orrelation models introdued by Langnau[6℄ and Reghai [10℄. The problem here is a bit di�erent as we want to adjust the orrelationfuntion in suh a way that the opula Ct between X1
t and X2

t , whih fully desribes theross-setional dependene at time t, is ontrolled. In the spirit of the opula approah todependene, we desribe the dynamis of the opula Ct by �rst saling the marginal di�usions
Xi
t by their umulative distribution funtions F it : a pair (U1

t , U
2
t ) of stohasti proesses withstationary uniform distribution obtains, whose bivariate umulative distribution funtion is,by de�nition, the opula Ct. The dynamis of the opula Ct is then derived by establishingthe Kolmogorov forward equation of the proess (U1

t , U
2
t ). This equation writes

∂tCt(u, v) =
1

2

(
vol1(t, u)∂

2
uuCt(u, v) + vol2(t, v)

2∂2vvCt(u, v)
)

+ ρ̃(t, u, v)vol1(t, u)vol2(t, v)∂
2
uvCt(u, v)where voli(t, ·) = (f it .σi(t, ·))◦(F it )−1(·) is the volatility of the saled marginal i and ρ̃(t, u, v) =

ρ(t, (F 1
t )

−1(u), (F 2
t )

−1(v)) is the saled orrelation funtion. This equation desribes the evo-lution of Ct, whih depends on the marginal distributions and on the oupling orrelation ρ.This equation o�ers a means to ontrol the opula of the bivariate di�usion. For a �xed family
{Ct}t≥0 with smooth and positive densities, de�ne:

ρ̃(t, u, v) =
∂tCt(u, v)− 1

2

(
vol1(t, u)∂

2
uuCt(u, v) + vol2(t, v)

2∂2vvCt(u, v)
)

vol1(t, u)vol2(t, v)∂2uvCt(u, v)
(8)and ρ(t, x, y) = ρ̃(t, F 1

t (x), F
2
t (v)). If ρ is indeed a orrelation funtion, i.e. if |ρ̃(t, u, v)| ≤ 1for all (u, v) ∈ [0, 1]2, a sensible expetation is that the opula family of the bivariate di�usionwith oupling orrelation ρ(t, x, y) is indeed Ct. The �rst part of this hapter onsists inestablishing the opula PDE as well as this result of `oherene'.In a seond part, the emphasis is put on the simplest oupling ase, whih orresponds toBrownian motions oupling. The oupling stohasti di�erential equation for Brownian mo-tions writes

dB2
t = ρ(t, B1

t , B
2
t )dB

1
t +

√
1− ρ(t, B1

t , B
2
t )

2dZt (9)where (B1, Z)t is a standard bivariate Brownian motion. The problem is to determine whethera given opula C is attainable by oupled Brownian motions, in other words, whether there ex-ists a orrelation funtion ρ suh that the equation (9) makes sense and the resulting bivariateproess (B1
t , B

2
t ) has a opula family Ct satisfying CT = C at some time T > 0. Furthermore,we are primarily interested in the opulas that are stationary, that is the opulas C suh thatthere exists oupled Brownian motions (B1

t , B
2
t ) whose opula family Ct beomes onstantand equal to C after some time T > 0. It turns out that the property of self-similarity andinvariane under time-inversion of the Brownian motion onsiderably simpli�es the analysis of14

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



attainability, as a opula that is attainable at some time T > 0 is attainable at any time t > 0(and the same for stationary opulas). In order to show that the set of stationary opulas doesnot redue to the Gaussian opula, a detailed example is provided whih shows that non trivialmembers of the Farlie-Gumbel-Morgenstern opula family are indeed stationary opulas. Thisanalysis is followed by a short zoology of opulas, whih aims at listing some lassi opulasthat are admissible or not as stationary opulas. The oupling orrelation funtion of theseopulas equals
ρ(u, v) = −1

2

e
Φ−1(v)2−Φ−1(u)2

2 ∂2uuC + e
Φ−1(u)2−Φ−1(v)2

2 ∂2vvC

∂2uvC
(10)after some time T > 0, aording to (8). Empirially, and for the opula we tested, the opulasseem to divide in two ategories, the ones with sup(u,v)∈[0,1]2 |ρ(u, v)| ≤ 1 and the ones suhthat ρ(u, v) explodes when (u, v) is lose to the boundary of the unit square. These latteropulas are not stationary opulas, and numerial evidene suggests that lassi opulas suhas the Student opula, or many arhimedean opulas have this behavior. Furthermore it isworth notiing that all opulas with bounded orrelation are opulas without tail dependene,like the Gaussian opula, while the opulas for whih ρ(u, v) explodes exhibit tail dependene.This might prevent them from oupling Brownian motions.The �nal part of this hapter is devoted to a �nanial appliation of the previous ouplingmethod. The impat of introduing non Gaussian dependene is assessed on a dynami strat-egy, namely a CPPI Long-Short strategy. This strategy involves two assets, the ore and thesatellite, and aims at guaranteeing a wealth that is proportional to the buy-and-hold strategyin the ore, while bene�ting from a possible rise of the satellite. This is ahieved by alter-natively shorting one asset and being long the other aording to the value of the strategyrelative to the value of the guarantee. The di�usion model for the assets is a oupled Blak-Sholes, and we fous on the gap risk, materialized by the probability that the Long-ShortCPPI falls below the buy-and-hold strategy. The impat of opulas is monitored: althoughrelatively low (ompared to the sensitivity of the gap risk with respet to the volatility forinstane), it is real and shows that some models of dependene are more onservative thanothers for the strategy under onsideration.

15
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Chapter 1Numerial approximation of optimaltransport maps
1.1 IntrodutionThe problem of interest is to ompute numerially a solution to the Monge-Kantorovih prob-lem in L2. It onsists in �nding a law of probability π of a pair of random variables (X,Y )with marginal distributions µ and ν over Rn that solves

Eπ(X · Y ) = max
π̃∈Π(µ,ν)

Eπ̃(X · Y ) (1.1)where Π(µ, ν) is the spae of all suh joint laws, Eπ denotes the expeted value with respetto the law π and · is the Eulidean salar produt. This problem has reeived a onsiderableattention. Originally formulated by Gaspard Monge in a stronger form in 1781, and underthe above form by Leonid Kantorovih in the forties, it has found many appliations in many�elds, both theoretial and pratial. Exellent referenes are the two volumes by Rahev andRüshendorf [18℄ as well as the books by Cédri Villani [22℄ and [24℄ that show the phenomenalsope of the optimal transport theory.The primal problem (1.1) is equivalent to the dual problem
inf

ϕ∈L1(dµ)

∫
ϕdµ +

∫
ϕ∗dν (1.2)where ϕ∗ stands for the Legendre transform of ϕ,

ϕ∗(y) = sup
x∈Rn

[x · y − ϕ(x)] (1.3)
17

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Under light assumptions on the marginals µ and ν, Brenier's theorem [7℄ states that there isa unique solution to the primal problem, and this solution is the law of a ouple (X,∇ϕ(X)),with seond marginal is a deterministi funtion of the �rst one. Moreover ϕ, alled a Kan-torovith potential , is a solution to the dual problem (1.2) that is onvex, and ∇ϕ is theunique µ- a.e gradient of a onvex funtion suh that ∇ϕ#µ = ν.The optimal transport map ∇ϕ is a rather ompliated objet. It is a solution of the highlynon-linear Monge-Ampère equation
detD2ϕ(x)fν(∇ϕ(x)) = fµ(x)when µ and ν have densities fµ and fν with respet to the Lebesgue measure.The numerial side of optimal transport has reeived less attention ompared to the numeroustheoretial developments. Notable exeptions inlude Brenier and Benamou [3℄ who derivea saddlepoint formulation of the transport problem and make use of augmented Lagrangiantehniques to propose estimates for the optimal transport map; they present results when theinitial measure is uniform on the torus R

n/Zn. Loeper and Rapetti [15℄ solve the Monge-Ampère equation (with onstant right term) D2ψ = ρ, where ρ is a smooth density by using alinearization of the equation ombined with a Newton's algorithm. Results are provided againin the ase where ρ is the uniform measure on the torus. Angenent, Haker and Tannenbaum[1℄ and Dominitz and al. [9℄ use the equivalent problem of polar fatorization to design agradient-desent algorithm.Another strand of literature that is not diretly onneted to the determination of the optimaltransport maps deals with optimal transport when the marginals are disrete. When theyhave the same number of equally-weighted atoms, this is the assignment problem . This is thelassial mathing problem of assigning N people to N objets while maximizing a mathingfuntion c (the salar produt in the ase of L2 optimal transport). The problem redues to�nding a permutation of N elements that solves
max
σ

∑

i

ciσ(i)where the maximization is performed over the set of permutations of {1, . . . , N}.This problem has been extensively studied in ombinatorial optimization. An importantontribution is the aution algorithm, proposed by Bertsekas [5℄, that is to our knowledge themost e�ient algorithm for solving the assignment problem.In a �rst part, the transport problem with disrete target measure is investigated. A sim-ple but enlightening eonomial interpretation is given. The approah proposed is related topower diagrams and least-square lustering: Aurenhammer et al. [2℄ detail a gradient-desent18
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algorithm for solving the least-square assignment problem. We then provide (under appropri-ate assumptions on the marginal measures) theoretial pointwise onvergene results statingthat the Kantorovih potential in the ase of disrete target measure νN onverges uniformlyto the Kantorovih potential of the dual problem as soon as νN onverges in distribution to
ν. Eventually, a gradient-desent algorithm is proposed as well as empirial experiments. Weompare this type of gradient-desent algorithm oupled with a quik warm-point algorithmto linear programming algorithms as well as to the popular aution algorithm, and show thatit an be an e�ient means to solve the transport problem.1.2 Related literature and ontributionThe algorithm presented in the �rst part of this hapter and ompared to other algorithmsin the last part is lose to a solution to the least-square assignment problem proposed inAurenhammer, Ho�mann and Aranov [2℄. This problem an be formulated in the followingway: �nd a polyhedral partition of the spae Rn by power diagrams with given volume. Apower diagram is a partition of the spae into `distorted Voronoï ells' , that an be writtenas

Pi(v) = {x| |x− yi|2 − wi ≤ |x− yj|2 − wj , j = 1, . . . ,M}where the M points yi ∈ Rn are the sites of the diagram and wi ∈ R are the weights. Theseare the analogue of the plaes and the pries of the setion 1.3.3. The problem is to �nd,for a given vetor of `apaities' c (that orresponds to the o�er of the sellers, q, in 1.3.3),and a probability distribution µ over [0, 1]n, a vetor of weights w suh that ci = µ(Pi(v))for all i. This is almost exatly the problem of �nding the optimal transport map between
µ and ∑M

i=1 ciδyi as explained in the next setion 1.3; this was pointed out by Rüshendorfand Ukelmann [20℄. Aurenhammer et al. show that the optimal weights are the maximumof a onave funtion, just as the optimal pries of setion 1.3.3 are the minimum of a onvexfuntion, and propose to ompute these weights by a gradient method, whih is the analogueof the method we use. Gangbo and MCann [11℄ onjetured that suh an algorithm shouldyield a solution. The results given in the setion 1.3 are a diret extension of those presented inEkeland, Galihon and Henry [10℄, setion 3, who over the ase of a disrete initial distributionand provide an eonomi interpretation lose to the one exposed in 1.3.3.The seond part of the hapter onsists in proving that the optimal transport map betweentwo ontinuous measures an be approximated by solving the transport problem when thetarget measure ν is approahed by a sequene νN onverging in distribution to ν. This resulthas been proved in quite a general setting by Villani [23℄, and we provide here a detailed proofthat �ts into the setting of this hapter (optimal transport over the Eulidean spae R
n).The third part of this hapter ompares several algorithms, and espeially the lassi aution19
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algorithm of D. Bertsekas (see e.g. [5℄) taken as the benhmark. The Iterative ProportionalFitting Proedure (IPFP) is proposed as a means to provide a warm point for the gradientdesent algorithm. A similar entropi relaxation problem is studied, with no apparent on-netion made with the transport problem, by Yuille and Kosowsky [13℄, who observe (as wedo) the lak of performane of this algorithm when the disretization of the measures involvesa large number of atoms. Finally, let us insist on the fat that we hose to solve the transportproblem with measures on the Eulidean spae, while some authors (e.g. Loeper and Rapetti[15℄) solve it on the torus; it seems that, in this ase, the onvergene of the various algorithmsis way faster than it would have been in the Eulidean setting.1.3 Optimal transport with a disrete target measureIn what follows, µ and ν are always supposed to have ompat support and do not give massto small sets 1, so that Brenier theorem mentioned above applies and the optimal transportmap is well de�ned. The support of µ is supposed onneted so that Kantorovith potentialis de�ned up to a onstant. The ase of transport problem between µ and a disrete measureof probability with a �nite number of atoms is well-known and admits expliit solutions.1.3.1 Form of the solutionLet νN be a disrete probability over R
n, with N atoms, νN =

∑N
i=1 qiδyi . A mapping ψpushing µ forward to νN satis�es

ψ(X) ∼
N∑

i=1

qiδyi , when X ∼ µwhere ∼ means equality in distribution.This implies that on suppµ, ψ takes values in the �nite set {yi, }1≤i≤N . Atually, aordingto Brenier Theorem, we know that there exists a µ-a.e unique gradient of a onvex funtionwhih solves the problem: the previous remark indiates that this onvex funtion should belooked for under the form of a pieewise a�ne funtion on suppµ. More preisely:Proposition 1 An optimal onvex funtion ϕ satisfying ∇ϕ#µ = νN is pieewise a�ne, i.e.the Brenier Map ∇ϕ is a pieewise onstant funtion. More expliitly, a solution ϕ is
ϕ(x) = max

i=1,...,N
[x · yi − vi] (1.4)Let v = (v1, . . . , vN )

′ and Vi(v) = {x ∈ suppµ|i ∈ argmaxk[x · yk − vk]}. The vi are suh that
µ(Vi(v)) = qi, for all i1A small set is a measurable subset of Rn with Hausdor� dimension at most n− 1.20

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Proof: Let ϕv be as in (1.4), its gradient is given by
∇xϕv(x) =

N∑

i=1

1Vi(x)yi, a.e.Thus
∇xϕv#µ =

N∑

i=1

µ(Vi)δyithanks to the envelope theorem (here and thereafter the dependene on v in Vi is oftendropped). A neessary and su�ient ondition on (vi)1≤i≤N for ∇ϕv to solve the problem is:
µ(Vi) = qi for all i. (1.5)

�However, it is not lear at this point whether suh a set of vi atually exits. Theorem 1.4 andexample 1.6 in [11℄ state that this is indeed the ase. Alternatively, the proposition 2 belowproves also the existene of suh a solution.The atual omputation of the optimal transport map redues to �nding suh a v; thedual transport problem provides a means to do this.1.3.2 Dual problem and �rst order onditionThe Kantorovih potential is a solution of the dual problem
inf

ϕ∈L1(dµ)

∫
ϕ(x)dµ +

∫
ϕ∗(y)dνNThus, ϕv is optimal i� it is a solution of the following minimization problem :

inf
v∈RN

∫
ϕv(x)dµ +

∫
ϕ∗
v(y)dνN (y)A straightforward omputation yields ϕ∗

v(yj) = vj . Thus the dual problem writes
inf

v∈RN

[∫
ϕv(x)dµ + q · v

] (1.6)Formally, ∇vE(ϕv(X)) = E(∇vϕv(X)) = −(µ(V1) . . . µ(VN ))
′, and the �rst order onditionreads qj = µ(Vj), j = 1, . . . , N whih is preisely the ondition (1.5) for ϕv to be a Kantorovihpotential.A remark that is the ornerstone of the algorithm proposed below is the onvexity of theobjetive funtion F(v) := E(ϕv(X)) + q · v. 21

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Proposition 2 F is a onvex funtion that is bounded below and thus admits a global mini-mizer in R
N . Moreover, F is ontinuously di�erentiable on R

N and any global minimizer vsatis�es the �rst order ondition
qi = µ(Vi(v)), for all iA proof an be found in appendix 1.7.1.1.3.3 An eonomi interpretationA simple eonomi interpretation gives some insight into the transport problem. Considera spatial distribution µ of buyers interested in a single type of good, supplied by sellersloated at positions yi. qi models the o�er proposed by the i-th seller. Eah ustomer faesa trade-o� between a distane ost and the pries proposed by the sellers. The eonomisurplus of assigning the buyer loated at x to the i-th seller (the one loated at yi) is setas x · yi. The primal problem maxX∼µ,Y∼νN E(X · Y ) onsists in the maximization of thetotal eonomi surplus, and is the problem the soial planner wants to solve: ontrolling theoupling between the distribution of the ustomers and the distribution of the sellers, so as tomaximize the total surplus. Welfare theorems suggest that this problem should be related tosome prie equilibrium (Walrasian equilibrium) that arises from the prie ompetition betweenthe sellers. Indeed, the �rst order ondition of the dual problem states that µ(Vi) = qi for all

i. Reall that:
Vi = {x|x · yi − vi ≥ x · yj − vj , ∀j}In other words, the set Vi is the set of ustomers whose net surplus is maximum when theybuy from seller i: this is in some way the basin of attration of the seller i. Hene, µ(Vi)is the proportion of ustomers buying from the i-th seller. The dual problem amounts toadjusting the pries vi so that the proportion µ(Vi) equals qi, the o�er supplied by the i-thseller, that is equalizing supply and demand. Thus the dual problem onsists in adjusting thepries so that the equilibrium between supply and demand is attained. Therefore, marketlearing is equivalent to maximizing total surplus. Finally, remark that the gradient-desentalgorithm proposed below implements the Walrasian aution proess: sellers that sell theirwhole prodution raise their pries, reduing the size of their basin of attration, while thosewho fail at selling their entire o�er lower their pries, inreasing their basin of attration. Theproess repeats until the market lears (possibly within an in�nite amount of time).1.4 Approximating the ontinuous aseThe solution to the problem in the ontinuous ase draws upon the previous results by dis-retization of the target measure: let νN be any sequene of disrete probability measures22
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onverging in law to ν. For eah N , there exists a solution ∇ϕN to the optimal transportproblem between µ and νN . The problem of interest is to give su�ient onditions that ensurethe onvergene of the sequene ∇ϕN to ∇ϕ and that justify the two steps approah `disretizethe target measure and take limits'.Convergene in measure in L2 A �rst result onerning the onvergene of the optimaltransport map is given in [24℄ Corollary 5.23:For all ε > 0, µ{x : |∇ϕN (x)−∇ϕ(x)| > ε} → 0i.e. the onvergene in measure of ∇ϕN to ∇ϕ with respet to µ. This result holds underfairly general assumptions on µ and ν (ompatness is not neessary). However, this resultdoes not tell anything about the possible pointwise onvergene of ϕN or its gradient, but theexistene of a subsequene ∇ϕNj (X) that onverges almost surely to ∇ϕ(X) as j → +∞. Asimilar result holds for the optimal transport plans πn when both initial and target measuresare approximated by sequenes of disrete measures as proved in the �rst volume of [18℄.Pointwise onvergene A stronger form of onvergene an be proved under additionalhypothesis. Pointwise onvergene results are less known, see for instane an artile by Villani[23℄. The proof proposed below is adapted from this artile to our simpler setting. This prooffollows the strategy of �nding a uniformly onverging subsequene of ϕN , and proving thatany suh subsequene onverges to the optimal transport map. The existene of a onvergingsubsequene relies is ensured by Asoli's theorem. In order to invoke this theorem we have tomake sure that the sequene {ϕk} in C(suppµ) is uniformly bounded. However in our settingwhere µ and ν have a ompat support, this is an easy lemma, proved in appendix 1.7.1.Lemma 1 The sequene of vetors {vN} are uniformly bounded, as well as the sequene {ϕN}.As a onsequene of Asoli theorem (see appendix 2):Lemma 2 There exists a subsequene {ϕk′} whih onverges in C(suppµ).The onvergene is proved under the following hypothesis (H)1. µ and ν have ompat and onvex support.2. They do not give mass to small sets.3. µ is absolutely ontinuous with respet to the Lebesgue measure λ and dµ
dλ > 0 almosteverywhere on the support of µ.As we will see, the limits of the onverging subsequenes are de�ned up to onstant. To �xthings, every ϕk is supposed w.l.o.g to be zero at a �xed point x0 in the support of µ.23
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Theorem 1 Under (H), ϕk onverges uniformly to a onvex funtion whose gradient (de�nedalmost everywhere) is the optimal transport map.In the following proof, the value of the funtions outside the supports of µ or ν is not important.However, they must be de�ned everywhere (and possibly onvex), and this is done by givingthem the value +∞ outside these supports.Proof: The proof onsists in proving �rst that every onverging subsequene has a limit whosegradient is the optimal transport map. Then, we show that these funtions are equal up toan additive onstant, that is zero up to a normalization of ϕN . This onludes the proof asthe existene of a subsequene and the uniqueness of the limits of the onverging subsequeneentails the onvergene of the sequene {ϕN}.Let {ϕk′} a subsequene of {ϕk}, and ϕ its limit in C(suppµ). Let us prove that the gradientof ϕ is a solution of the optimal transport, i.e. ∇ϕ#µ = ν.The restrition of ϕ∗
k to supp ν enjoys the same properties as ϕk: they are uniformly boundedand equi-Lipshitz. Thus Asoli theorem implies that there exists a subsequene still noted

k′ suh that both ϕk′ tends to ϕ and ϕ∗
k′ tends to a funtion (ontinuous and onvex) ψ,respetively uniformly over suppµ and supp ν.The quantity ∫

|x|2/2− ϕk′(x)dµ(x) +

∫
|y|2/2− ϕ∗

k′(y)dν(y)tends to ∫suppµ |x|2/2 − ϕ(x)dµ(x) +

∫supp ν |y|2/2− ψ(x)dν(y)by dominated onvergene. However, the upper expression isW2
2 (µ, νk′) the quadrati Wasser-stein distane between µ and νk′ . Aording to the ontinuity of the Wasserstein distane(Theorem 7.12 in [22℄), W2

2 (µ, νk′) → W2
2 (µ, ν) and thus

∫suppµ |x|2/2− ϕ(x)dµ(x) +

∫supp ν |y|2/2− ψ(x)dν(y) = W2
2 (µ, ν) (1.7)whih means that the ouple (|x|2/2−ϕ, |y|2/2−ψ) is optimal in the dual Monge-Kantorovihproblem. However, the solution of the dual problem is not neessarily unique, and we have toprove that ψ = ϕ∗ in order to onlude.It is su�ient to prove that ψ = ϕ∗ on supp ν. As ϕk′(x) +ϕ∗

k′(y) ≥ x · y, taking limits yields
ϕ(x) + ψ(y) ≥ x · y, ∀x ∈ suppµ, ∀y ∈ supp ν (1.8)As ϕ is in�nite outside suppµ, ϕ∗(y) = supx∈suppµ[x · y − ϕ(x)] and (1.8) implies that

ψ ≥ ϕ∗ on supp ν (1.9)24
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If there exists y ∈ Int(supp ν) suh that ψ(y) > ϕ∗(y), the ontinuity of ψ and ϕ∗ on supp νimplies that there exists a ball B ⊂ supp ν over whih ψ − ϕ∗ ≥ ε > 0. So,
∫
ϕdµ +

∫
ψdν ≥

∫
ϕdµ +

∫
ϕ∗dν + ν(B)ε

>

∫
ϕdµ +

∫
ϕ∗dν

≥ inf
ϕ∈L1(dµ)

∫
ϕdµ +

∫
ϕ∗dν

(1.10)
However,

sup
(ϕ,ψ)∈L1(dµ)×L1(dν)

∫
ϕdµ +

∫
ψdν =

∫ |x|
2
dµ+

∫ |y|
2
dν

︸ ︷︷ ︸
=M2

− inf
ϕ∈L1(dµ)

∫
ϕdµ+

∫
ϕ∗dνBut we know aording to (1.7) thatM2−

∫
ϕdµ+

∫
ψdν is a solution of the Monge-Kantorovihproblem. Hene (1.10) is a ontradition and ψ ≤ ϕ∗, on Int(supp ν). This holds on

Int(supp ν) by ontinuity. The onvexity of supp ν implies that Int(supp ν) = supp ν (a-ording to the `Aessibility Lemma', see [6℄).As a onsequene, every onverging subsequene has a limit whose gradient is the optimaltransport map. This map is unique µ a.e and as µ is supposed absolutely ontinuous withrespet to the Lebesgue measure with an almost everywhere positive density, it is uniquealmost everywhere on suppµ. This is su�ient to ensure that the limits of the onvergingsubsequene are de�ned up to a onstant. �So far, we have seen onvergene results for the Kantorovith potential. This implies onver-gene of the optimal transport maps ∇ϕN in the ase where the limit Kantorovith potential ϕis regular enough, as pointed out by Villani [23℄. Without entering into the details of the Caf-farelli's regularity theory (see Th. 4.14 [22℄ or Th. 12.50 [24℄), if both supports are onvex andregular enough and that µ and ν are absolutely ontinuous with respet to the Lebesgue mea-sure with smooth and loally bounded from below densities, then the Kantorovith potentialis regular. If it is C1, we haveLemma 3 (realled in [23℄) Let ϕ be a onvex funtion in C1(Rn,R) and ϕk a sequene ofonvex funtions onverging pointwise to ϕ on R
n. Then if C ⊂ R

n is an open onvex set onwhih ϕ is �nite, then ∂ϕk onverge to ∂ϕ loally uniformly on the ompat subsets of C inthe sense that
∀S ompat subset of C, ||d(∂ϕk(·),∇ϕ(·))||+∞, S −→

k→+∞
025
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where d is the Eulidean distane between a set and a point and ∂ϕ(x) denotes the subdi�er-ential of ϕ at point x.In other words, not only does ϕN onverge loally uniformly to ϕ, but the subdi�erential ∂ϕNonverges uniformly on the ompats of suppµ to the optimal transport map.1.5 Numerial ExperimentsWe �rst desribe how is hosen the disretization of the target measures. A desription ofthe algorithms is then provided and examples allows for a omparison of their respetiveperformanes.1.5.1 Disretization of νWe have not imposed any restrition so far as to the form of the approximating sequene νkexept that it must onverge in distribution to ν, and the above results hold for any suhsequene.The purpose of optimal quadrati quantization onsists in �nding a disrete probability νNwith N atoms that is loser among suh measures to a given probability ν, with respet to thequadrati Wasserstein distane . In other words, if PN is the set of disrete measures with Natoms, then an optimal quadrati N-quantizer νN is a measure that solves
min
Q∈PN

W2
2 (ν,Q) = min

Q∈PN

inf
π∈Π(Q,ν)

Eπ(|X − Y |2)It an be shown that suh a measure takes the form νN (x) =
∑N

i=1 ν(Ci(x))δxi where x =

(x1, . . . , xN ) ∈ (Rn)N is alled an optimal quadrati quantizer , and
C(xi) = {x; |x− xi| ≤ |x− xj |, j = 1, . . . , N}are the Voronoï ells assoiated to x.The disretization νN onverges indeed to ν as implied by the following theorem (whose proofas well as an extensive exposition of the theory an be found in [21℄):Theorem 2 (Graf-Lushgy) If ν has a �nite moment of order stritly above 2, then

W2(ν, νN (x)) ∼
N→∞

Cn,ν

N2/nfor some onstant Cn,ν whih depends on n and ν.Thus to use suh an approximation we need two things: an optimal N-quantizer (x1, . . . , xN ) ∈
R
n and the weights of the Voronoï ells ν(C(xi)). The advantage of this approximation is anbe omputed one and for all for a given ν. 26
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Figure 1.1: Left: optimal quantization of the uniform law on the square [0, 1]2. Right: optimalquantization of the bivariate normal law. This latter (as well as the optimal quantization gridof the normal law used in what follows) is taken from G.Pagés and J. Printems website [17℄.1.5.2 The algorithmsWe make the distintion between two lasses of algorithms solving the transport problem. Onthe one hand, the algorithms that use the disretization of the original measure µ to redue theproblem to a linear programming problem or that use a very spei� form of the disretization(for instane with equally weighted atoms) suh as the aution algorithm. On the other hand,the minimization problem (3.16) does not impose a disretization of the initial measure. Forinstane, when µ is an uniform measure on a bounded polytope, it is not neessary to performa disretization of µ to obtain a numerial solution. Furthermore, even if disretization ofthe target measure is hosen, it an take various forms: equally weighted atoms or not, samenumber of atoms as in the disretization of ν or not.Continuous to disrete aseThe dual problem formulation (3.16) is a onvex optimization problem. As suh it is naturalto try a Newton-type algorithm that updates the pries iteratively aording to:
vi+1 = vi − tiH

−1
i ∇vF(vi) (1.11)where Hi is an approximation of the Hessian of F at vi. The gradient of F is given by

∇vF(v) = q −




µ(V1(v))...
µ(VN (v))


 (1.12)

27
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Desent algorithms The BFGS (Broyd, Flether, Goldfarb and Shanno) algorithm pro-vided by the Optimization Toolbox in MATLABr R14 (2005) is used. It falls into the broaderategory of quasi-Newton methods that aim at using the urvature of the objetive funtion.It provides is a sequene Bk of semide�nite positive matries that hopefully provides a goodapproximation of the inverse of the Hessian H−1
k after a few steps and onverges to the trueHessian inverse at the optimum, see [16℄. B0 an be set arbitrarily (it is the identity matrixin what follows) and a line-searh is performed to determine the best step αk.Evaluation of the mass µ(Vi) This is the ruial point, and the most time onsuming.When µ is a uniform law, it amounts to ompute the volume of Vi; if suppµ is a polytope, sois Vi and triangulation tehniques an be used to ompute this volume aurately. Howeverwhen the law µ di�ers from the uniform law, a disretization of µ is used.Initial guess Finally, a ruial parameter in desent algorithm is the starting point. Anheuristis onsists in remarking that when linearizing the optimal transport (in the ase where

µ and ν are lose), the order zero term is |x|2/2. As ϕ∗
v(yj) = vj , it is sensible to start from

vj = |yj|2/2 =
( |·|2

2

)∗
(yj), although it an be suboptimal in many situations. This hoieamounts to taking the initial Vi(v0) as the Voronoi ells assoiated to (yi)1≤i≤N .Disrete µIn this setion, µ is the disrete distribution∑i piδxi . We tested three quite distint solutions.Linear programming methods The primal problem writes:

min
∀ i,j ϕi+ψj≥xi·yj

N∑

i=1

piϕi +

N∑

j=1

qjψjThis is a linear programming problem: the objetive is linear, as well as the inequality on-straints. Two standard algorithms are at our disposal, the ommon simplex algorithm, andprimal-dual methods, also known as interior point methods. This last algorithm shall haveour preferene, as it is known to perform better than the simplex on large-sale problems. Itis losely related to unonstrained linear programming with log-barrier penalization (see [16℄).The set of onstraints in this partiular problem is huge: if there are N atoms, the number ofonstraints is N2. As we will see, this feature ruins the performane of both algorithms whenthe number of points inreases.
28
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The aution algorithm This popular algorithm has been proposed by Bertsekas , see forinstane the survey paper [4℄. It solves the dual problem :
min
v∈RN





N∑

i=1

max
j=1,..., N

[xi · yj − vj] +

N∑

j=1

vj



 (1.13)This problem is the disrete version of the problem (3.16), in the ase where µ and ν are bothequally distributed disrete measures: this is the lassi assignment problem . In a few words,the algorithm proeeds as follows. A set of N ustomers is to be assigned to N objets, in aone-to-one mapping. Eah ustomer starts unassigned. Then eah unassigned ustomer, saythe i-th one, bids for the objet ji that maximizes its net surplus si = maxj(xi · yj − vj), his`best objet'. His bid is suh that he beomes indi�erent between this best objet and theseond best objet j′i (the objet that maximizes wi = maxj 6=ji(xi · yj − vj)): he is willingto inrease the prie of ji by the bidding inrement si − wi. One every unassigned bidderhas made a bid, eah objet j is assigned to the bidder that has proposed the highest biddinginrement for j. The person, if any, that was assigned to this objet beomes unassigned andthe prie of objet j rises by the highest bid. The proess is repeated until everyone beomesassigned.This would work �ne if there were not pries war: when there is a group of objets thato�ers the same net surplus for some ustomer, the bidding inrement may be zero. This anbe the ase for several ustomers that ompete for equally desirable objets without raisingtheir pries. Suh yles are broken by assuming that the bidding inrements are replaed by

si − wi + ǫ, ǫ > 0, imposing a minimum inrease of the prie of a desired objet by ǫ. Thisondition ensures that the algorithm ends and that the pries are within Nǫ to be optimal.The proedure beomes: for a given ǫ, unassign everyone and perform the aution proedureuntil everyone is assigned. Then lower ǫ and perform the aution proess, starting with thepries that were found with the previous value of ǫ. Eventually, stop when ǫ falls below somethreshold.This algorithm is fast, in priniple: the time omplexity, for a given ǫ is
O(N2log(N.maxi,j |xi · yj|/ε)), when the surplus matrix (xi · yj)i,j is integer. In this ase,the threshold for ǫ is �xed at 1/N , beause pries will then be within Nǫ < 1 optimal, andthen optimal beause they are integer. This problem is overome by a proper saling: both
xi and yj are multiplied by an integer and then �oored. The solution v is then multiplied bythe same integer thus giving an approximate solution of the initial problem.An important remark is that this algorithm onverges very well when the surplus matrix issparse, but is less e�ient with dense matries, whih is systematially the ase in the follow-ing. The theoretial overall omplexity (inluding the repeated ǫ-saling) in the worst-ase is
O(N3 log(N.maxi,j |xi · yj|)).The algorithm tested here is the so-alled forward aution algorithm (see [4℄), with the integer29
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saling desribed above; ǫ is set at 1 at the beginning, the ǫ-saling is hosen as the redutionby one fourth at eah iteration, and the terminal ondition is ǫ ≤ 1/N .The idea behind the appliation of this algorithm is that although is does not exatly solvethe problem we are interested in, its fastness makes it appealing ombined to a Monte-Carloapproah. Namely, instead of using a `lever' disretization of the measures suh as determinedby the quantization, they ould be disretized as a sum of a large number of equally weightedatoms and the aution algorithm would perform the assignment on this set of atoms.Simulated Annealing and the Iterative Proportional Fitting Proedure Simulatedannealing onsists in introduing an entropi perturbation in the primal problem, yielding arelaxed version of the problem :
πT ∈ argmax

π̃∈Π(µ,ν)
{Eπ̃(X · Y ) + TEnt(π̃)} (1.14)As µ and ν are both disrete here, the entropy is de�ned as −∑i,j πij log πij . T is a temper-ature parameter, and as T goes to zero, the entropy penalization vanish and the probability

πT beomes an approximate for the optimal oupling that solves
π ∈ argmax

π̃∈Π(µ,ν)
Eπ̃(X · Y )Let π0T ∝ ex·y be a probability density. Then is is straightforward to see that the relaxedproblem (1.14) is equivalent to the problem

min
π∈Π(µ,ν)

DKL(π|π0T ), where DKL(π|π0T ) = Eπ

(
log
( π(X,Y )

π0T (X,Y )

))

DKL is alled the Kullbak-Leibler divergene . Thus the relaxed problem amounts to `projet'(in a broad sense, as DKL is not a distane) π0T onto the set Π(µ, ν) with respet to theKullbak-Leibler divergene. It an be shown, and a detailed proof is given in [19℄, that thesolution πT has the following log-likelihood: log πT (x, y) =
x′y
T + aT (x) + bT (y), a ∈ L1(dµ),

b ∈ L1(dν).The IPFP algorithm, also known as Deming and Stefan algorithm is the alternative projetionalgorithm applied to the previous projetion problem. It onsists in alternatively projeting
π0T on the set Π(µ) of probabilities on R

n × R
n whose �rst N-dimensional marginals are µand Π(ν), the set of probabilities whose seond N-dimensional marginal are ν. This providesa sequene πn, suh that π2n ∈ Π(µ), π2n+1 ∈ Π(ν) and πn → πT ∈ Π(µ) ∩ Π(ν) = Π(µ, ν),in total variation. The algorithm onsists in alternatively modifying aT and bT so that π2n ∈

Π(µ) ∝ e
x′y
T

+anT (x)+bnT (y) and π2n+1 ∈ Π(ν) ∝ e
x′y
T

+an+1
T (x)+bnT (y)

30
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If we let (p1, . . . , pN )′ be the atoms of µ and (q1, . . . , qM )′ the atoms of ν, the iteration writes:




eb
n+1
T (yj) =

qj
∑

i π
0
T (xi,yj)e

an
T
(xi)

ea
n+1
T (xi) = pi

∑
j π

0
T (xi,yj)e

b
n+1
T

(yj)with b0T = a0T ≡ 0. Eventually, T.b(yj) approximates vj as T → 0. On this latter fat, we referto an artile by Kosowski and Yuille [12℄ that relates the IPFP to Sinkhorn theorem and tothe Iterative Saling Algorithm. We should emphasize the fat that, ontrary to the autionalgorithm, IPFP is meant to work with distributions µ and ν that do not neessarily havethe same type of atoms (for instane, they are not neessarily equally weighted sums of Diradistributions).1.5.3 ExamplesWe have tested our algorithm on three examples in dimension 2. These examples are presentedas a proof of onept, in so far as the theoretial optimal transport map is obvious in eahase as they all involve a simple transformation of the marginals.1. The transport is between two uniform distributions and onsists in a translation: µ =

U[−6,−2]2 , ν = U[−2,2]2 . The optimal transport map is ∇ϕ(x) = x + 41 i.e ϕ(x) =

|x|2/2 + 41′x+ cst. We use a ube quantizer:
(−2 + 4 (2i−1)

2N ,−2 + 4 (2j−1)
2N )1≤i,j≤N .2. Departing from the theoretial framework desribed above, we investigate the ase ofa non ompatly supported target measure. µ is the uniform law on the unit squarewhile ν is the bivariate normal law. As the initial and target measures are the laws ofindependent variables, the optimal transport map is obtained a saling of the marginals:

∇ϕ(x) = (Φ−1(x1),Φ
−1(x2)).3. Dilatation of normal distribution : µ = N (0, Id) and ν = N (0, 2Id): ∇ϕ(x) = √

2x i.e ϕ(x) =
1√
2
|x|2 + cst.Optimal quantization grids (yi)i=1,...,N for the normal law N (0, Id) are those providedby [17℄.1.5.4 ResultsThe following numerial results were omputed with Matlab 7.5 running on a Xeon CPU � 3Ghz. We detail the results obtained for eah example, while putting the emphasis on the �rstone.

31
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Uniform aseNumerial results for the �rst example are given in appendix 1.7.2. Before entering the detailsof eah algorithm, we give here the onlusions as to the best performing methods in this ase.Our experiments rule out the linear programming algorithms, that proved very ostly. TheIPFP algorithm is fast, even ompared to the aution algorithm, but generates a numerialerror that does not vanish on the boundary of the support of µ, and therefore is retained as awarm point provider for the desent algorithms. The aution algorithm is also fast (omparedto the desent algorithm for a �xed number of points of the disretization of ν) but yieldshigher numerial error than the desent algorithm for omparable omputing time. Eventually,the desent algorithm that uses the quantization of the initial measure su�ers the drawbakof providing a numerial error that is not a dereasing funtion of the number of points ofthe quantization grids. This feature is even more pronouned than in the ase of the autionalgorithm.Our onlusion is that the BFGS algorithm oupled with a warm point provided by IPFP andan aurate omputation of the volume of the ells Vi should be hosen, as it is faster thanthe aution algorithm.Exat Desent In the uniform ase we use the Multiparametri Toolbox [14℄ whih allowsfor polytopes manipulation. In partiular, µ(Vi) = vol(Vi)
vol(suppµ) is omputed with this toolbox.We all this method exat desent as it uses the BFGS algorithm to determine the desentdiretion and beause the volume of the polytopes Vi is omputed by triangulation tehniquesvia the MPT Toolbox and does not rely on a disretization of the initial measure. Table1.2 sums up the results in the uniform ase. It ontains the number of points used in thequantization of U[−2,2]2 , the omputation time and the numerial error. This latter is de�nedas

sup
0≤i, j≤100

∣∣∣ϕtheory( i

100
,
j

100

)
− ϕnum( i

100
,
j

100

)∣∣∣Aution and IPFP Algorithm We use a regular grid2 to disretize the uniform law both inthe aution and IPFP algorithm. Table 1.4 shows it is extremely fast ompared to the gradientalgorithm for a �xed number of points. However, the exat desent is more e�ient, as foromparable omputation times, it yields a better numerial error. The IPFP is even fasterthan the aution algorithm (see table 1.5). However, when the number of points inreases, theerror does not neessarily derease: it remains high on the boundary of the domain, and doesnot derease even when the size of both disretizations of µ and ν inreases. This is likely dueto the fat that this algorithm fails at onverging when the temperature omes lose to zero.This is why this algorithm is also used as a provider of a warm point for the desent algorithm2whih is a near from the optimal quantizer of the uniform law on the unit square.32
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Figure 1.2: Numerial error: it is minimal on ∇ϕ−1(yi) where {yi}1≤i≤N is the regular gridthat quantizes the target measure U[−2,2]2 .rather than used per se.Quantization The quantization is used here to replae the evaluation of the expeted value
E(ϕv(X)) and of the ell volume µ(Vj) by their disretized ounterparts ∑N

i=1 piϕv(xi) and∑N
i=1 pi1Vj (xi). Table 1.6 shows the results when the initial measure has 10000 atoms whilethe number of atoms of the target measure varies. It suggests that this method is able toahieve an error that is omparable to the exat desent, with a time omplexity that has thesame order of magnitude. However, unlike to the exat desent, both the omputation timeand the numerial error are not dereasing funtions of the number of points, whih makesit di�ult to imply the atual time omplexity and speed of onvergene of this method.Experiments show that for a �xed number of points, the error an be lessened at the expenseof re�ning the quantization grid of the initial measure. Yet, our experiments in this ase donot suggest that this method should be preferred to the aution algorithm, and even less tothe exat desent. This points out that when performing a desent method, the aurateomputation of the gradient ritially impats the output of the algorithm.Linear programming algorithms As said previously, the number of onstraints inreasesvery rapidly: for a grid of size N (i.e. N2 points) on the square inR

2, there are N4 onstraints.Pratially, this makes the algorithm totally ine�ient as soon as N ≥ 8 in dimension 2.Experiments show that the simplex algorithm is ruled out, even for a small number of points,as it is very slow. The interior point method is more e�ient, but very slow too. Furthermore33
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memory restritions prevent from setting a number of points above 100 in dimension 2 due tothe inreasing number of onstraints with N . Nevertheless, this algorithm provides a solutionthat has the same quality in terms of error than the one provided by the exat desent, butits time omplexity is worse than the exat desent.Table 1.1: Interior Point Algorithm, uniform asePoints number CPU Time Error25 1.202 0.160236 5.806 0.111149 33.564 0.081664 285.358 0.062481 1038.1 0.0494Desents algorithm ombined with a warm point As every desent algorithm, theperformane of the implemented BFGS proedure (the exat desent, or the quantization) isritially impated by the quality of the starting point. Although some justi�ations are givenabove to hoose a spei� starting point, there is no insurane as to its `optimality' in the asewhere µ and ν are not lose. A starting point that works very well, i.e. a �warm point�, isprovided by running the aution algorithm or IPFP prior to run a desent algorithm. Figure1.3 and table 1.3 show that a warm point speeds up onsistently the onvergene of the BFGSproedure (without improving the time-omplexity yet, it just sales down the CPU time).Uniform measure to normal measureExat desent an be still used, as the initial measure is uniform on the square, and we fouson this sole method. This ase is not overed by our theoretial framework yet, as the targetmeasure is not ompat. Nevertheless, our experiments suggest that the same onlusionsas for the �rst example hold. Figure 1.4 provides a omparison of the error ahieved for a�xed number of points N , when the target measure is either optimally quantized or eitherapproximated by a weighted sum of equally-weighted Dira masses. The gain o�ered byquantization is obvious, as for a time omplexity that is roughly omparable the numerialerror is lower when using quantization.Dilatation of a bivariate normal variableA third type of example is investigated: it onsists in the omputation of the transport mapbetween the standard bivariate normal law and a bivariate normal law with ovariane matrix
2.Id, so that both measures are not ompatly supported anymore.This is also the �rst ase where the exat desent algorithm, that omputes the volume of the
Vi by triangulation an not be applied, as the initial measure is not the uniform one. The34
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Figure 1.3: CPU time in seonds (log-sale) as a funtion of the number N of points for the exat desentalgorithm applied to example 1. The urve with plus signs orresponds to no warm point; the urve withirles orresponds to an IPFP warm point (1000 points of disretization)aution algorithm applied to a random disretization of both laws is ompared to the desentalgorithm using a 1000 points optimal quantization for the initial measure, oupled with IPFPas a warm point. The results are summarized in table 1.8 3. The onlusion remain similar tothose drawn from the previous examples: IPFP is fast but generates error on the boundarythat does not vanish when the disretization grid is re�ned.The aution algorithm seems to be of less interest than the desent method, as it fails toprovide an error below 10−1, even with distributions that have more than 2000 atoms. Yet,it must be remarked that although the biggest quantization grid that we used to quantize theinitial measure has 1000 points, this is not su�ient to obtain an uniform error that is below
10−2 with the desent algorithm.A solution to this problem ould be to implement an aurate method to ompute the mass(here for the normal measure) of polytopes in order to apply the same tehnique as in theuniform ase. In view of the result of the previous setions, it seems that non ompatness isnot suh a big impediment to this method as is the need for an aurate omputation of theobjetive funtion and its gradient.3The de�nition of the numerial error must be adapted as the support is the whole plane. We use the fatthat the bivariate standard normal law gives to the square Sα = [−q1−α/2, q1−α/2]

2 a mass at least equal to
1− 2α. α is set a t5% so that S5% ≈ [−1.96, 1.96]2. The numerial error is then de�ned as supG⊂S2.5%

|ϕopt −
ϕnum| where G is a regular grid with 100× 100 points on the square S2.5%.35
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Figure 1.4: Example 2. Curve with irles: error as a funtion of the number of points N ofthe exat desent with quantization of the initial measure. Curve with rosses: error with arandom disretization of the bivariate normal law.1.5.5 Complexity and order of onvergene in the planar aseFigure 1.6 displays the time omplexity of the exat desent method for the two �rst examples.Experiments suggest that the omplexity is O(N5/2), at least in the ase where the initialmeasure is uniform on the unit square. This is to be ompared to the algorithm proposedin [3℄, that involves O(N log(N)) operation at eah iteration (but the number of iterationsrequired for onvergene is unknown). Reall the desent algorithm use a BFGS update, sothat eah step involves O(N2) operations; thus the omplexity of this algorithm is neessarilybounded below by O(N2). Figure 1.7 displays the numerial error as a funtion of the numberof points. Both examples suggest that the onvergene has a rate of O(1/
√
N).1.5.6 Convergene in higher dimensionIn higher dimension, although the priniple of the algorithm is still valid, the exat desent anbeome ostly. Indeed, its omplexity is driven by the speed at whih Delaunay triangulationsare omputed. In dimension 2, these are done at a ost O(N log(N)). As there are N ells,the gross omputational ost of a single evaluation of the funtion F should be O(N2 log(N)).In dimension d > 2, algorithms run at the worst omplexity O(N ⌈ d

2
⌉+1)4. Hene, the timeomplexity of the exat desent is exponential with respet to the dimension.4see for instane the DeWall algorithm, a divide and onquer algorithm presented in [8℄36
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The aution algorithm seems at �rst sight less sensitive to the dimension. However, as sug-gested by the rate of onvergene of the optimal quantization (.f. theorem 2), when thedimension inreases, the number of atoms that intervene in the optimal disretization of aontinuous law of probability inreases at an exponential rate. Thus, the urse of dimension-ality is not overome by any of the algorithms we tested.1.6 ConlusionThis hapter showed both theoretially and empirially that the approximation of the optimaltransport map an be done by �rst disretizing the target measure and then performing adesent algorithm. In partiular in dimension 2 when the initial measure is uniform over abounded polytope, this algorithm performs well ompared to the aution algorithm. Thismethod also bene�ts from the freedom left on the form of the disretization: we hose it `op-timal', in the sense of L2 optimal quantization.The same algorithm works when the dimension inreases although the omplexity is exponen-tial with respet to the dimension. When the initial measure is not uniform over a polytope,it an be disretized. Yet we should emphasize that the performane of the desent algorithmsu�ers from suh an approximation; this method best works when we have a means to omputeaurately the mass of polytopes with respet to the initial measure.

37
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Figure 1.5: Seond example: the omputed Kantorovith potential with a quantization gridof the normal law of size 100. The polytopes Vi appears on the surfae plot.

Figure 1.6: N is the number of points in the grid. Left: Example 1. Solid line is the urve N5/2, the dashedline is the omputed omplexity. Right: the same for the seond example
38
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Figure 1.7: Left: Example 1. Right: Example 2. In both ases, the solid line is the urve 1/
√
N and thedashed line the omputed error.

39

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Bibliography[1℄ S. Angenent, S. Haker, and A. Tannenbaum. Minimizing �ows for the Monge-Kantorovihproblem. SIAM J. Math. Analysis, 35:61�97, 2003.[2℄ F. Aurenhammer, F. Ho�mann, and B. Aranov. Minkowski-type theorems and leastsquare lustering. Algorithmia, 20:61�76, 1998.[3℄ J.-D. Benamou and Y. Brenier. A numerial method for the optimal time-ontinuousmass transport problem and related problems. Contemp. Math., 226:1�11, 1999.[4℄ D. Bertsekas. Aution algorithms for network �ow problems:a tutorial introdution. Com-put. Optim. Appl., 1, 1992.[5℄ D. Bertsekas. Aution algorithm. Enylopedia of Optimization, 2001.[6℄ J. Borwein and A. Lewis. Convex Analysis And Nonlinear Optimization, Theory andExamples. Ouvrages de Mathématiques de la SMC. Springer, 2000.[7℄ Y. Brenier. Déomposition polaire et réarrangement monotone des hamps de veteurs.C. R. Aad. Si. Paris Sér. I Math., 305(19):805�808, 1987.[8℄ P. Cignoni, C. Montani, and R. Sopigno. Dewall: A fast divide & onquer Delaunaytriangulation algorithm in ed. Computer Aided Design, 30(5):333�341, 1997.[9℄ A. Dominitz, S. Angenent, and A. Tannenbaum. On the omputation of optimal transportmaps using gradient �ows and multiresolution analysis. In V. D. B. et al., editor, ReentAdvanes in Learning and Control, volume 371 of LNCIS, pages 65�78. Springer-VerlagBerlin Heidelberg, 2008.[10℄ I. Ekeland, A. Galihon, and M. Henry. Comonotoni measures of multivariate risks.Mathematial Finane, 22:109�132, 2012.[11℄ W. Gangbo and R. MCann. The geometry of optimal transportation. Ata Math.,177:113�161, 1996.[12℄ J. Kosowski and A. Yuille. The invisible hand algorithm: Solving the assignment problemwith statistial physis. Neural Networks, 7(3):477�490, 1994.40

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



[13℄ J. J. Kosowsky and A. L. Yuille. The invisible hand algorithm: Solving the assignmentproblem with statistial physis. Neural Networks, 7:477�490, 1994.[14℄ M. Kvasnia, P. Grieder, and M. Baoti¢. Multi-Parametri Toolbox (MPT), 2004.[15℄ G. Loeper and F. Rapetti. Numerial solution of the Monge-Ampère equation by anewton's algorithm. C. R. Aad. Si. Paris, I 339, 2004.[16℄ J. Noedal and S. Wright. Numerial Optimization, 2nd edition. Springer Series inOperations Researh and Finanial Engineering. Springer-Verlag, 2006.[17℄ G. Pagès and J. Printems. http://www.quantize.maths-�.om.[18℄ S. Rahev and L. Rüshendorf. Mass Transportation Problems. Vol I and II. Probabilityand Appliations. Springer, 1998.[19℄ L. Rüshendorf. Convergene of the iterative proportional �tting proedure. The Annalsof Statistis, 23:1160�1174, 1995.[20℄ L. Rüshendorf and L. Ukelmann. Numerial and analytial results for the transportationproblem of Monge-Kantorovih. Metrika, 51:245�258, 2000.[21℄ S.Graf and H.Lushgy. Foundations of Quantization for Probability Distributions, volume1730 of Leture Notes in Mathematis. Springer-Verlag, 2000.[22℄ C. Villani. Topis in Optimal Transportation. Graduate Studies in Mathematis. Ameri-an Mathematial Soiety, 2003.[23℄ C. Villani. Stability of a 4-th order urvature ondition arising in optimal transporttheory. J. Funt. Anal., 255(9):2683�2708, 2008.[24℄ C. Villani. Optimal Transport, Old and New, volume 338 of Grundlehren der mathema-tishen Wissenshaften. Springer-Verlag, 2009.

41

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



1.7 Appendix1.7.1 Proofs of various resultsProof of proposition 2It onsists in verifying the de�nition of a onvex funtion. Let v and v′ be inR
N , and t ∈ [0, 1].For all x ∈ R

n,
(1− t)ϕv(x) + tϕv′(x) = (1− t)max

i
[x · yi − vi]) + tmax

i
[x · yi − v′i])

≥ (1− t)(x · yi − vi) + t(x · yi − v′i), for all i
= x · yi − ((1− t)vi + tv′i)Thus, for every x, (1 − t)ϕv(x) + tϕv′(x) ≥ maxi[x · yi − ((1 − t)vi + tv′i)] = ϕ(1−t)v+tv′ (x).The onvexity follows by taking the expeted value.The funtion is bounded below: let v ∈ R

n and ṽ = v − vi01 where i0 ∈ argmini vi so that ṽhas nonnegative omponents and mini ṽi = 0.
F(v) = F(ṽ) =

∫
ϕv(x)dµ(x) + q′v ≥ yi0 ·

∫
xdµ− ṽi0︸︷︷︸

=0

+ q′ṽ︸︷︷︸
≥0

≥ −(max
j

|yj|)|E(X)|The less obvious point that remains to prove is atually the smoothness of F and the formof its gradient, although the formula is easily found formally. We prove the existene and theontinuity of the diretional derivatives with respet to the anonial basis ej, j = 1, . . . , N ofthe funtion v 7→
∫
ϕv(x)dµ(x). First, for a given x, limt↓0

ϕv+tej
(x)−ϕv(x)

t exists is equal to
−1Vi(x), by an appliation of the envelope theorem, see prop 2.3.2 in [6℄.As, for all x, |ϕv+tej (x)− ϕv(x)| ≤ |t|, the fration ϕv+tej

(x)−ϕv(x)

t is uniformly bounded withrespet to t, and one an invert limit and integral. The same applies to limt↑0
ϕv+tej (x)−ϕv(x)

t ,exept that it is equal to −1Int(Vj)(x) and therefore,
lim
t↑0

∫
ϕv+tej (x)− ϕv(x)

t
dµ(x) = −µ(Int(Vi))However, as ∂Vi has Lebesgue measure zero, and µ is supposed to not harge small sets, thisequals µ(Vi). Eventually, E(ϕv(X)) has partial derivatives with respet to vi for all i, viz.

v 7→ µ(Vi(v)) whih are ontinuous funtions.�Proof of lemma 1First, every vki an be hosen nonnegative as (vki )1≤k≤Nk
is de�ned up to a multiple of (1, . . . , 1).For example one an impose for all k, mini=1...k v

k
i = 0. For eah k and 1 ≤ i ≤ k, let xi,kbe in V k

i (suh a point exists as µ(V k
i ) = qk > 0). Moreover, let jk suh that vkjk = 0. The42
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de�nition of xi,k being in V k
i implies:

xi,k · yki − vki ≥ xi,k · ykjkwhih gives
vki ≤ xi,k · (yki − ykjk) ≤ supsuppµ |x|.diam(suppν) < +∞Proof of lemma 2We show that {ϕk} satis�es the requirements of the Asoli theorem, namely that it is pointwisebounded and equiontinuous. It is pointwise bounded, as the sequene is uniformly boundedon suppµ. The equiontinuity results from the fat that this sequene is equi-Lipshitz, i.e.eah ϕ is Lipshitz with a Lipshitz onstant that does not depend on k. Indeed, if x, x′belong to suppµ, and x 6= x′:
ϕk(x)− ϕk(x

′) = max
i

(x · yki − vki )−max
i

(x′ · yki − vki )

= x · yki(x) − vki(x) −max
i

(x′ · yki − vki )

≤ x · yki(x) − vki(x) − x′ · yki(x) + vki(x)

= (x− x′) · yki(x) ≤ |x− x′| sup
y∈suppν |y|Similarly, ϕk(x)−ϕk(x′) ≥ −|x−x′| supy∈suppν |y|, and onsequently |ϕk(x)−ϕk(x′)| ≤ |x−x′|.
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1.7.2 Numerial ResultsTable 1.2: Exat desent, example 1Point Number CPU Time (se) || · ||+∞ Error25 3.822 0.160064 21.512 0.062481 34.866 0.0494100 55.287 0.0400196 230.428 0.0204225 316.464 0.0178256 457.518 0.0156361 1147 0.0111400 1579 0.0096625 6148.9 0.0065Table 1.3: Exat desent with IPFP warm point, example 1Point Number CPU Time (se) || · ||+∞ Error25 0.23 1.60E-0164 1.99 6.24E-0281 3.29 4.94E-02100 4.27 4.00E-02196 15.94 2.04E-02225 23.15 1.78E-02256 29.50 1.56E-02361 80.28 1.11E-02400 100.91 9.60E-03625 368.61 6.40E-03900 1346.20 4.50E-03
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Table 1.4: Aution algorithm, example 1Point Number CPU Time || · ||+∞ Error25 0.03 1.43E+00100 1.06 5.83E-01225 5.70 3.79E-01625 50.64 9.88E-02900 113.68 5.36E-021225 248.32 6.85E-021600 467.93 3.23E-022025 782.34 3.36E-022500 1288.70 4.78E-023600 3387.00 1.87E-024900 6174.00 1.89E-026400 14834.00 1.97E-02Table 1.5: IPFP algorithm, example 1Point Number CPU Time || · ||+∞ Error25 1.60E-02 1.60E-0181 3.10E-02 4.57E-02100 3.10E-02 4.68E-02169 9.68E-01 3.90E-02196 9.40E-02 3.55E-02225 1.10E-01 1.78E-02256 1.25E-01 3.43E-02289 1.40E-01 2.01E-02400 1.88E-01 3.35E-02625 3.28E-01 2.85E-02900 6.41E-01 3.60E-021024 7.50E-01 3.65E-02Table 1.6: Desent algorithm, 10000 points quantization grid for µ, example 1Point Number CPU Time || · ||+∞ Error25 9.38 1.82E-0136 46.10 1.20E-01100 28.48 5.68E-02121 153.97 3.27E-02196 178.94 2.01E-02225 151.72 2.64E-02256 233.61 1.79E-02361 633.99 1.21E-02400 108.86 1.48E-02784 1308.50 5.70E-02900 729.50 6.70E-031024 697.10 9.60E-031225 1133.00 1.36E-0245

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Table 1.7: Exat desent, example 2Point Number CPU Time || · ||+∞ Error25 2.635 9.82E-0264 8.131 3.72E-0281 12.474 3.10E-02100 18.515 2.61E-02196 58.027 1.52E-02225 69.814 1.43E-02256 109.037 1.26E-02289 132.491 1.31E-02361 207.583 1.01E-02400 230.204 9.70E-03625 712.705 5.70E-03
Table 1.8: Example 3, resultsPoint Number CPU Time Error

Desent
25 4,22 5,10E-01100 12.40 1.61E-01200 27.18 6.36E-02300 125.49 9.15E-02400 114.86 8.47E-02500 130.06 5.88E-02600 386.67 4.15E-02700 498.63 6.44E-02800 591.36 4.52E-02900 458.02 6.70E-02

Aution 25 0.02 4.13E+00100 0.19 1.15E+00500 4.33 6.64E-011000 33.20 3.74E-012000 153.70 2.29E-012500 357.03 1.24E-013000 352.53 1.37E-015000 840.42 2.43E-01IPFP 25 < 0.01 5.24E-01100 0.02 1.93E-01300 0.06 7.83E-02500 0.17 5.09E-02700 0.27 3.46E-02900 0.36 3.02E-021000 0.41 2.72E-0246
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Chapter 2Extreme dependene for multivariatedata 1
IntrodutionExtreme dependene, and the losely related notion of omonotoniity are important oneptsin various �elds. It is entral in the eonomis of insurane (following the seminal work ofBorh [3℄ and Arrow [1℄, [2℄), in eonomi theory (see [21℄, [12℄ and [19℄), and in statistis (see[5℄, [17℄, [16℄, [22℄).Extreme positive dependene between two real random variables (X,Y ) is haraterized by thefat that their umulative distribution funtion should satisfy FX,Y (x, y) = min(FX(x), FY (y)),or equivalently, that their opula C should be the upper Fréhet opula C(u1, u2) = min(u1, u2).This form of dependene ours when X and Y are omonotone, i.e. when both X and Yan be written as nondereasing funtions of a third random variable Z (for instane one mayhoose Z = X + Y ). As a onsequene, omonotone variables maximize ovariane over theset of pairs with �xed marginals:

E(XY ) = sup
X̃∼X
Ỹ∼Y

E(X̃Ỹ ), (2.1)where X̃ ∼ X denotes the equality in distribution between X̃ and X. Similarly, X and Y aresaid to have extreme negative dependene when X and −Y have extreme positive dependene.Their ovariane is then minimized instead of maximized, and their opula is now the lowerFréhet opula C (u, v) = max (u+ v − 1, 0) .The present hapter aims at proposing an operational theory of extreme dependene in themultivariate ase, namely when X and Y are random vetors. Our ontribution is twofold.1This hapter is a joint work with Alfred Galihon.47
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First, we shall introdue a generalization of the notion of extreme dependene to the multi-variate ase, and we investigate how extreme positive dependene generalizes in this setting.Then we shall apply these ideas in a �nanial ontext to stress-testing dependene, i.e. we shallinvestigate the sensitivity of a portfolio on the strength of dependene between two randomvetors.Generalizing extreme dependene. When dealing with the multivariate ase, where X and Yare random vetors in Rd, there is no anonial way to generalize this notion of (positive ornegative) extreme dependene and Fréhet opula. One �rst approah, based on the theoryof Optimal Transport (see eg. [20℄) would be to onsider the following optimization problem
max
X̃∼X
Ỹ∼Y

E(X̃ · Ỹ ) (2.2)where · is the salar produt in Rd. This program is a multivariate extension of the ovarianemaximization problem (2.1) and de�nes as extreme the distribution of the pair (X̃, Ỹ ) solutionto the above problem However this does not take into aount the ross-dependene between
Xi and Yj for i 6= j, and therefore seems quite arbitrary for our purposes.A more satisfatory generalization is based on the idea that both positive and negative extremedependene are obtained by the maximization of a nonzero bilinear form in (X,Y ) over theset of ouplings of X and Y (i.e. joint distributions with �xed marginals). That is, onsidersolutions of (2.2) where the salar produt is replaed by any nonzero bilinear form. Thiswill be our notion of multivariate extreme dependene: random vetors X and Y shall exhibitextreme dependene if their ross-ovariane matrix maximizes the expeted value of a nonzerobilinear form over all the ouplings of X and Y . These extreme oupling are proposed asa generalization of Fréhet (positive and negative) extreme dependene in the multivariatease. We shall provide a natural geometri haraterization of this notion by onsidering theovariogram , that is the set of all ross-ovariane matries E(XY ′) for all the ouplings of Xand Y . Then X and Y have extreme dependene if and only if their ross-ovariane matrixlies on the boundary of the ovariogram.We then turn to generalizing the notion of extreme positive dependene. One natural way togeneralize extreme positive dependene is to look for the ouplings (X̃, Ỹ ) that yield a ross-ovariane matrix Cov(X̃, Ỹ ) = E(X̃Ỹ ′) = (E(X̃iỸj))i,j whih would be maximal elements fora ertain partial (onial) ordering on matries. As we shall see, it turns out that under thisde�nition, extreme positive dependene implies extreme dependene, and we an haraterizethe geometri lous of extreme positive dependent vetors on the ovariogram.Stress-testing dependene. We give a method to assoiate any oupling, for example anyempirial oupling, with an extreme oupling, by means of entropi relaxation tehnique. An48
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algorithm is desribed and results onerning its implementation are given. Appliations to�nanial data are provided, yielding the de�nition of indies of maximal orrelation as well asa prospetive appliation to progressive stress-tests of dependene.The hapter is organized as follows: the �rst setion presents the notion of ovariogram and thede�nition of ouplings with extreme dependene dedued thereof, as well a haraterizationof suh ouplings. The seond setion de�nes ouplings with positive extreme dependene;a haraterization of these ouplings makes the onnetion with the notion of extreme de-pendene. The third setion de�nes an index of dependene, the a�nity matrix; a methodto assoiate any oupling with an extreme oupling is desribed. We onlude with �nanialappliations, namely stress-testing portfolio alloations and options priing, as well as theomputation of indies with extreme dependene. All proofs are olleted in 2.9.Notations, de�nitions. We make the following distintion between the univariate ase and themultivariate ase. We refer to the univariate ase when onsidering the dependene betweenreal valued random variables: this is the subjet of the theory of opulas. In most of thishapter we onsider random vetors, and the dependene between two random vetors; in thisase we speak of multivariate dependene.Let P and Q be two probability laws on RI and RJ , with �nite seond order moments. Withoutrestriting the generality we assume that P and Q have null �rst moments, so that the seondorder moments E(XiYj) are indeed ovarianes. Π(P,Q) is the set of all probability lawsover RI × RJ having marginals P and Q. We refer to an element of Π(P,Q) as a oupling,understating the probabilities P and Q. If M and N belong to MI,J(R), their salar produtis denoted by M ·N = Tr (M ′N). If (X,Y ) ∼ π ∈ Π(P,Q), we denote indi�erently σX,Y or
σπ the matrix with general term E(XiYj), whih is the ovariane between Xi and Yj ; it isthe ross-ovariane matrix between X and Y . Remark that σX,Y is the upper-right blok ofthe variane-ovariane matrix of the vetor Z = (X,Y )′, and that σX,Y is not symmetri ingeneral.Eventually, let us reall that the subdi�erential ∂f(x0) of a onvex funtion on Rn at a point
x0 is de�ned as set of vetors v suh that f(x)− f(x0) ≥ v · (x− x0) for all x ∈ R

n. Here thedot is the usual salar produt. It redues to {∇f(x0)} if f is di�erentiable at x0, whih istrue for almost every x0 aording to Rademaher theorem.2.1 Related literature and ontributionAs mentioned in the introdution, the extension to the multivariate setting of the orrelationmaximization problem (2.1) has been takled by several authors, espeially to de�ne notionsof multivariate omonotoniity. Puetti and Sarsini [15℄ list several possible de�nitions of49
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multivariate omonotoniity, among whih two of them are diretly related to the variatonalproblem (2.2). Namely, -omonotoniity refers to the ouplings that are by solving problem(2.2): these are the optimal quadrati ouplings of Optimal Transport Theory. This variationalapproah to multivariate omonotoniity is also the basis of Ekeland, Galihon and Henry [7℄and Galihon and Henry [9℄. They propose to extend the univariate notion of omonotoniityand de�ne the µ-omonotoniity by stating that two vetors X and Y are µ-omonotone ifthere exists a random vetor U ∼ µ suh that
E(X · U) = max{E(X · Ũ), Ũ ∼ µ}
E(Y · U) = max{E(Y · Ũ), Ũ ∼ µ}This notion of omonotoniity has the advantage of being transitive, unlike -omonotoniity.Carlier, Dana and Galihon [4℄ showed that this notion of omonotoniity appeared as `morenatural' than the other ones beause it is diretly related to Pareto e�ieny.This hapter aims at �nding multivariate ouplings whih exhibit a form of strong dependene,just as the previously de�ned omonotoni ouplings. The ouplings that are de�ned as`extreme' in what follows, are omonotoni ouplings (in the sense of the -omonotoniity)up to a linear transform of one marginal (the -omotoni oupling orresponds to the identitytransform). In other words, an extreme oupling (X,Y ) satis�es the variational problem
E(X ′MY ) = sup

π∈Π(P,Q)
Eπ(X

′MY ) (2.3)This de�nition of extreme dependene is broad enough to enompass `positive dependene' as-omonotoniity as well as `negative dependene' (ounter-omonotoniity in the univariatease). Furthermore, it allows for a geometrial interpretation of extreme dependene: anextreme oupling has a ross-ovariane matrix loated on the boundary of the ompat andonvex set of all possible ross-ovariane matries, alled the ovariogram. This set has beenintrodued in Galihon and Salanié [10℄, who point out the importane of its boundary. Takingadvantage of this simple interpretation, we then investigate the ouplings π whih have ross-ovariane matrix σπ that are maximal for some partial orders ≻, and show that they forman easily haraterized subset of the extreme dependent ouplings. The rest of the hapteronsists in omputing the extreme ouplings, and, for any given oupling π̂ propose a meansto build a ontinuous sequene of ouplings πT with π0 being extreme, and σπ1 = σπ̂. This isdone by penalizing the problem (2.3) with an entropy term, whih allows for fast omputationswhen the marginals are disrete law of probability, thanks to the Iterative Proportional FittingProedure. This algorithm dates bak to Deming and Stephan (1940) [6℄, and has been usedby Yuille and Kosowosky [11℄ (although they do not refer expliitly to IPFP, their method isequivalent to it) to solve the assignment problem, and in Eonometris in [10℄.50
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Figure 2.1: Example of a 2 dimensional setion of a ovariogram2.2 Multivariate extreme dependeneIn this setion we desribe our proposed notion of multivariate extreme dependene. Considerthe ovariogram, the set of ross-ovariane matrix (Eπ(XiYj))i,j in MI,J(R) for any π ∈
Π(P,Q):De�nition 1 The ovariogram F (P,Q) is de�ned by:

F (P,Q) = {Σ ∈ MI,J(R) : ∃π ∈ Π(P,Q),Σij = Eπ(XiYj), for all i, j} .As Π(P,Q) is a onvex and ompat set (a proof of this last property an be found in [20℄,pp. 49-50) the ovariogram is itself a onvex ompat subset of MI,J(R).Figure 2.1 gives a �rst example of the 2 dimensional setion of a ovariogram where onlythe diagonal elements of the ross-ovariane matrix are represented, when I = J = 2. Pand Q are disrete distributions on R2 with equally weighted atoms and we look at the two�rst omponent-wise ovarianes E(X1Y1), E(X2Y2). The solid urve is the boundary ofthe ovariogram: every oupling between P and Q would have a ross-ovariane matrix thatprojets within the onvex hull of this urve. The independene oupling projets on the point
(0, 0). The dots on the x-axis represent respetively the minimal and maximal ovarianesbetween X1 and Y1. These ovarianes would be attained in the opula framework by the lowerand upper Fréhet opulas. This motivates our de�nition of extreme dependene ouplings asouplings whose projetion lies on the boundary of the ovariogram.51
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De�nition 2 A oupling (X,Y ) ∼ π ∈ Π(P,Q) has extreme dependene if and only if
(Eπ(XiYj))ij lies on the boundary of the ovariogram F (P,Q).The ross-ovariane matrix between X and Y , σX,Y , enjoys the property

Tr
(
M ′σX,Y

)
= E(X ′MY ), for all M ∈ MI,J(R) (2.4)whih allows us to reformulate the notion of extreme dependene as follows:Theorem 3 The following onditions are equivalent:i) (X,Y ) ∼ π ∈ Π(P,Q) have extreme dependene;ii) there exists M ∈ MI,J(R)\{0} suh that

Tr
(
M ′σπ

)
= sup

π̃∈Π(P,Q)
Tr
(
M ′σπ̃

)or equivalently
Eπ(X

′MY ) = sup
π̃∈Π(P,Q)

Eπ̃(X
′MY ); (2.5)iii) there exists M ∈ MI,J(R)\{0} and a onvex funtion u on RI suh that M.Y ∈ ∂u (X)holds almost surely.In dimension 1, the interpretation is obvious: two real random variables have extreme depen-dene i� there exists a salar m 6= 0 and a nondereasing funtion u suh that mY = u(X).Aording to the lassi terminology, X and Y are said omonotoni if m > 0, and anti-omonotoni otherwise.WhenM = Id in (2.5), the optimal oupling is the optimal transport oupling for the quadratiost solving (2.2).2.3 Positive extreme dependeneThe aim of this setion is to propose a generalization of the onept of Fréhet opulaof upper dependene to the multivariate ase. As already mentioned, opula theory failsto handle this problem. Indeed, if CP and CQ are two opulas, the �rst one of order

I (assoiated with distribution P ) and the seond of order J (assoiated with distribu-tion Q), a natural andidate for being the opula of positive extreme dependene would be
Cπ (x, y) = min(CP (x1, . . . , xI), CQ(x1, ..., xJ )). But aording to the so-alled `Impossibilitytheorem' (see [14℄) , Cπ is a opula funtion if and only if CP and CQ are respetively theupper Fréhet opula of order I and J . We thus depart from the opula approah and aim atharaterizing positive extreme dependene diretly through the ross-ovariane matrix of Xand Y . Starting from the simple observation that in the univariate ase, the positive extreme52

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



dependene attains maximum ovariane between X and Y over all the ouplings of P and
Q, we shall introdue a oni order on the ross-ovariane matries σX,Y and de�ne positiveextreme dependent ouplings as the ouplings whose ross-ovariane matrix is a maximalelement for that order.In what follows one onsiders onvex ones that are used to de�ne oni orders . In order forour results to hold, they are assumed to have a partiular form, namely dual ones of oneswith ompat basis (2.8 provides some bakground on suh ones). More preisely, for eahompat onvex set C ⊂ MI,J(R) suh that 0 /∈ C (suh a set is alled a ompat basis), alosed onvex one in MI,J(R) is de�ned by setting:

K(C) = {y ∈ MI,J(R)|x · y ≥ 0, ∀x ∈ C} (2.6)Considering ones of this form might seem restritive, but we provide examples that show thatmany lassi ones an be de�ned in suh a manner.
K(C) de�nes a oni order on MI,J(R). More preisely, a strit oni order is needed and weset, for A and B two matries in MI,J(R)

A ≻K(C) B if A−B ∈ Int(K(C))The interior of K(C) is {y ∈ MI,J(R)|x · y > 0, ∀x ∈ C}. Let K = K(C) be suh a one.De�nition 3 A oupling (X,Y ) suh that σX,Y is a maximal element in F (P,Q) with respetto the strit oni order ≻K is said to have positive extreme dependene with respet to ≻K .The following results fully haraterize ouplings with positive extreme dependene in termsof maximal orrelation ouplings.Theorem 4 The following onditions are equivalent:i) (X,Y ) ∼ π ∈ Π(P,Q) have extreme positive dependene with respet to ≻K ;ii) there exists M ∈ C suh that
Tr
(
M ′σπ

)
= sup

π̃∈Π(P,Q)
Tr
(
M ′σπ̃

)or equivalently
Eπ(X

′MY ) = sup
π̃∈Π(P,Q)

Eπ̃(X
′MY ); (2.7)iii) there exists M ∈ C and a onvex funtion u suh that M.Y ∈ ∂u (X) holds almostsurely.Hene, σX,Y is maximal if and only if there existsM ∈ C suh that X andMY are maximallyorrelated for the salar produt. Obviously, this result is a lose parallel to Theorem 3 exept53
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that M is onstrained to belong to C. As a onsequene the positive extreme ouplingsare a partiular ase of extreme ouplings. One again the interpretation in dimension 1 isstraightforward: X and Y have positive extreme dependene (w.r.t. the order in R) i� theyare omonotoni.

Figure 2.2: Shaded region: loation of the ouplings dominating the oupling materialized bythe square dot.To better understand the relation between those two types of ouplings, let us go bak to thetwo dimensional setion of the ovariogram disussed in the previous setion, and take for
K the positive orthant of R2 × R2. The shaded region in Figure 2.2 is the set of ouplingsdominating the oupling that projets on the square dot, with respet to that order; as aonsequene this oupling an not have positive extreme dependene. This intuitively explainswhy maximal elements should be on the boundary of the ovariogram, hene that positiveextreme ouplings should be extreme ouplings. Maximal elements are represented on thebold line �gure 2.3: those are not dominated by an element of the ovariogram. Consequentlythe ouplings exhibiting positive extreme dependene, i.e. the one than an not be dominated,are loated as shown in Figure 2.3. They are on the bold portion of the boundary, in the upperright orner of the ovariogram, and forms only a 'small' part of the ouplings of extremedependene.To demonstrate the appliability of this approah, we now give several examples of partialorders on ovariane matries. 54
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Figure 2.3: Maximal ouplings on the boundary.Example 1 (Orthant order) Let M+
I,J(R) (resp. M++

I,J (R)) denotes the set of real I × Jmatries with nonnegative oe�ients (resp. positive oe�ients). The set C = M+
I,J(R) ∩

{∑i,jMi,j = 1} is a ompat basis set. K(C) is easily seen to be the set M+
I,J(R) and itsinterior is M++

I,J (R). Eventually A ≻ B i� A − B has only positive oe�ients: this is the(strit) orthant order on matries.Example 2 (Loewner order) Let S+
n and S++

n denote respetively the set of nonnegativematries in Sn and the set of de�nite positive matries in Sn. If C = {S ∈ S+
n (R)|Tr(S) = 1}is the set of semi-de�nite matries with unit trae, C is a onvex ompat subset of Mn(R)and K(C) = {M ∈ Mn(R)|Tr(M ′S) ≥ 0,∀S ∈ C} is the set of matries M whose symmetripart, M+M ′

2 , is semi-de�nite positive. The strit order ≻K(C) is then de�ned as: A ≻ B i�the symmetri part of A−B is de�nite positive. This is an extension to Mn(R) of the lassiLoewner order on symmetri matries.The following trivial example shows that this ordering allows various positive extreme ou-plings. A �rst remark is that the maximum orrelation oupling is indeed positive extreme,by setting M = Id in theorem 4. Consider P ∼ N (0, I2), the bivariate normal law, and
Q = N (0, 1) ⊗ U(0,1), the law of a vetor whose �rst omponent is normal and the seondone is the uniform law on (0, 1), independent from the �rst omponent. Let X ∼ P and
Y = (X1, U)′, U ∼ U(0,1) independent from (X1,X2), so that Y ∼ Q. This oupling has notthe maximum orrelation even though X1 = Y1. However it satis�es (2.7) with A = ( 1 0

0 0 ) andan be quali�ed as a maximal oupling. 55
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Example 3 (Hermitian order) Let
MS =

M +M ′

2
, MA =

M −M ′

2the symmetri and skew-symmetri part of a matrix M ∈ Mn(R). We de�ne the hermitiantransform M̃ ∈Mn(C) of M by setting
M̃ :=MS + iMA, where i2 = −1As iA is hermitian as soon as A is skew-symmetri, M̃ is hermitian. Using the Loewner orderon hermitian matries we de�ne a (partial) strit order on Mn(R) by setting

M ≻ 0
def
⇔ M̃ ≻ 0If C = {M ∈Mn(R)|M̃ ∈ S+

n (C), T r(M) = 1}, then K(C) = {M ∈Mn(R)|M̃ ∈ S+
n (C)}.2.4 An index of dependeneSuppose now we are observing or simulating a oupling π̂ ∈ Π(P,Q), for instane an empirialoupling. Even if this oupling is supposed to exhibit strong dependene, its ross-ovarianematrix will never be exatly loated on the boundary of the ovariogram. Our problem isthen to assoiate an extreme oupling with π̂; more preisely, we propose to �nd a ontinuoussequene of non deterministi ouplings πT suh that π1 = π̂ and π0 is an extreme oupling.In other words, we give a means to go smoothly from an empirial oupling to an extremeone by progressively inreasing the strength of the dependene between the marginals. Thisis done by introduing an entropi penalization of (2.5), so that its solutions projet on innerpoints of the ovariogram.2.4.1 Entropi relaxationWe introdue temperature in (2.5) by means of an entropy term ; it beomes

W (M,T ) := max
π∈Π(P,Q)

(
Eπ(X

′MY ) + TEnt(π)
) (2.8)The entropy of a oupling π is de�ned as

Ent(π) =

{
−
∫
log π(x, y)dπ(x, y), if π ≪ dx⊗ dy and the integral exists and is �nite

−∞ otherwiseLet πM,T denote a solution of (2.8); a proof of its existene an be found in [18℄ and referenestherein. 56
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Fixing the temperature at 1, our aim in a �rst plae is to �nd a matrix M suh that π̂and πM,1 have the same loation in the ovariogram; in other words they have the sameross-ovariane matrix: σπ̂ = σπM,1
. The gradient of W is given by the envelope theorem:

∇MW (·, T ) = σπM,T
. This remark implies that M is the solution of the following variationalproblem

min
M∈MI,J (R)

W (M,T )− σπ̂ ·M (2.9)
W (·, T ) is a onvex funtion as a supremum of a�ne funtions in M and onsequently theobjetive funtion in (2.9) is onvex as well: this is a lassi unonstrained onvex minimizationproblem. Figure 2.4 shows the projetion of πM,1 for a large number of randomly generated

Figure 2.4: Projetion of various πMmatries M . The bullet point is the projetion of π̂. One sees that any inner point of theovariogram an be attained by a properly hosen πM .2.4.2 Numerial solutionIt an be shown that the optimal πM,1 in (2.8) obeys a Shrödinger equation (see 2.9.3):
log πM,1(x, y) = x′My + u(x) + v(y), u ∈ L1(dP ), v ∈ L1(dQ)In other words, the log-likelihood of πM,1 is the sum of a quadrati term x′My and an additivelyseparable funtion in x and y. The solution is found by setting u and v suh that πM,1 has57
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the marginals P and Q. This is the purpose of the well known (Deming & Stephan 1940, VonNeumann 1950) Iterative Projetion Fitting Algorithm.Let us reall in a few words the priniple of it; we refer the interest reader to [18℄ for amore detailed exposition and a omplete proof of the onvergene. This algorithm onsistsin building a sequene πn suh that π2n has �rst marginal P and π2n+1 has seond marginal
Q. It an be interpreted as Von Neuman's Iterated Projetion algorithm with respet to theKullbak-Leibler distane. Its most remarkable property is the onvergene of πn towards aprobability π with orret marginals P and Q. πn has the following form:

π2n(x, y) ∝ ex
′My+un(x)+vn(y) while π2n+1(x, y) ∝ ex

′My+un+1(x)+vn(y)The algorithm proeeds as follow: �rst hoose some starting (u0, v0) de�ning π0; for instane
v0 = −y2 and u0 = −x2. We then look for some joint distribution π1 whose �rst marginal is
P , taking the form ex

′My+u1(x)+v0(y). This writes
eu1(x) =

P (x)∫
ex′My+v0(y)dyThen we want to set v1 so that π2(x, y) = ex
′My+u1(x)+v1(y) has seond marginal Q and weget:

ev1(y) =
Q(y)∫

ex′My+u1(x)dxand so on, the reursion at step n writes




eun+1(x) = P (x)∫
ex

′My+vn(y)dy

evn+1(y) = Q(y)
∫
ex

′My+un+1(x)dxThis algorithm is typially a �xed-point algorithm; it �nds (u, v) suh that
{ ∫

ex
′My+u(x)+v(y)dy = P (x)∫

ex
′My+u(x)+v(y)dx = Q(y)This builds a series of (un, vn) (de�ned up to a onstant) whih enjoys a onvergene property:

πn → π, in total variation (again we refer to [18℄ for more details). An important remark isthat in the ase of disrete distributions P and Q, the previous formulae beome simply:




evn+1(y) = Q(y)∑
x r(x,y)e

un(x)

eun+1(y) = P (x)
∑

y r(x,y)e
vn+1(y)where r(x, y) = ex

′My
∑

x,y e
x′My

. Eventually the onvex minimization problem (2.9) an be solvedby any gradient desent type algorithm. The BFGS algorithm is used in the examples below.58
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2.4.3 Derivation of the extreme ouplingWe reall that our aim is to assoiate an inner oupling (i.e. a oupling whih projetsinside the ovariogram) to some extreme oupling whih projets onto the boundary of theovariogram, by �nding a trajetory of ouplings that goes smoothly from the inner one tothe extremal one.The previous algorithm yields a partiular matrix M̂ and a oupling πM̂ suh that σπ̂ = σπ
M̂,1

.This oupling was found by setting arbitrarily the temperature at 1; the entropy penalizationwas thus e�etive and this allowed to reah inner points in the ovariogram. This temperatureparameter is easily explained. When it goes to +∞, the entropy penalization is predominantin (2.8). Informally, the solution oupling is the one exhibiting the more disorder : this is theindependene oupling. On the ontrary, the less is the temperature, the loser (2.8) is tothe non penalized problem. Hene, the lower T , the more πM̂,T projets near the boundary.Hene assoiating π̂ with an extreme oupling an be done in the following way: one M̂ isfound, a sequene of πM̂,Tn
, Tn ↓ 0 yields on the ovariogram a trajetory of points whih tendto the boundary. Figure 2.5 summarizes this idea: eah point on the urve is the projetion

Figure 2.5: A trajetory toward an extreme oupling when the setors are Health Care andFinanialsof a πM̂,Tn
. As T → +∞, we reover the independene oupling whose projetion is loatedat (0,0). When the temperature dereases, the trajetory passes on π̂ at T = 1, and graduallyapproahes the boundary of the ovariogram. Thus, the temperature an be seen as a meansto ontrol the strength of the dependene. This an be used to de�ne formally an index of59
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dependene : hoosing a norm ||·|| over the set of matriesMI,J(R) and using the homogeneityof W , namely W (λM,λT ) = λW (M,T ) for all λ ∈ R, we have πM̂,1 = πM̂/||M̂ ||,||M̂|| and thetemperature 1/||M̂ || appears as an indiator of the strength of the dependene between themarginals of π̂. The matrix M̂ an be seen as an a�nity matrix : in the limit of T → 0, theextreme oupling πM̂,0 ahieves the supremum of Eπ(X
′M̂Y ). M̂ is thus the linear transformthat makes X the most dependent with M̂Y under πM̂,0.2.5 AppliationsIn the �nanial appliations below, the previous tehnique is applied to times series of lineardaily returns on setors of mainstream indies: S&P 500 and DJ Eurostoxx. We onsiderHealth Care, Finanial and Food & Beverage setors of these indies: P andQ are distributionson R3. The historial data spans 5 years between September 2004 and September 2009. Table2.1 gives summary statistis (the three �rst variables orresponds to S&P setors, the last thirdTable 2.1: Summary StatistisMean Returns 10−4 ( 1.03 −1.13 1.67 1.16 −1.37 3.99 )Variane 10−4. ( 1.36 7.65 1.16 1.14 4.15 1.12 )Correlation matrix 


1

0.66 1
0.76 0.62 1
0.22 0.10 0.19 1
0.26 0.33 0.25 0.49 1
0.22 0.16 0.22 0.67 0.58 1.00


Cross-Covariane 10−5.

(
2.74 3.05 2.13
6.04 1.8 5.52
2.66 4.62 2.56

)to Eurostoxx). In partiular, the orrelations between setors belonging to di�erent indiesare mild (< 35% in every ase). Inside an index, orrelation is well higher, but remains below80%; this motivated our hoie for these setors: the marginal laws are not degenerated.2.5.1 Numerial Results
P and Q are disrete distributions with equally weighted atoms in R3, eah atoms being avetor of the returns at some date of the three setors. The atoms are equally weighted as weonsider that the daily returns are i.i.d random variables.

P =
1

N

N∑

t=1

δrXt , rXt = vetor of the linear returns on the S&P500The optimal M̂ we �nd when onsidering all three setors or only Constrution and HealthCare are: 60
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# of omponents 2 3optimal M (
0.23 −0.14
−0.10 0.40

) (
0.25 −0.139 −0.37
−0.39 0.44 −0.80
−0.57 −0.15 0.86

)error = ||σM−σπ̂||
||σπ̂|| ≈ 0.1% < 0.2%The linear returns are expressed in perentage. The error is omputed as the perentage ofdi�erene between σπ̂, the ross-ovariane target, and σπM,1

, the ovariane matrix of theoptimal oupling. They should be perfetly equal in theory and this perentage measures theonvergene of the gradient algorithm.2.5.2 Finanial appliationsThe �rst appliation exploits further the a�nity matrix M̂ . It onsists in performing a singularvalue deomposition on it, in order to dedue indies of maximal orrelation; it is related tothe notion of anonial orrelation.The seond one is based on onsidering the trajetory of ouplings T 7→ πM̂,T as a ontinuousfamily of senarios of inreasing dependene. They are used to build senarios of stress-testsinvolving multivariate variables that an be useful for risk management. By stress-testing,we mean inrease the index of dependene de�ned above (that is, lowering the temperatureparameter), thus shifting away ontinuously from some oupling π̂ to the extreme oupling
πM̂,0. This is to be ompared to the method that onsists in piking the maximum orrelationoupling as the `highest dependene senario'; indeed this oupling might be less in line withthe ross-ovariane struture of the empirial oupling π̂, yielding unexpeted and undesiredresults when managing risky portfolios or options on several assets. Typially, we expetthe ross-ovariane matrix of πM̂,0 to be loated nearer from σπ̂ than the projetion of themaximum orrelation oupling.Indies of maximal orrelationReall that anonial orrelation analysis onsists, for two random vetors X and Y , in �ndingvetors a and b suh that (a′X, b′Y ) solves maxa,b corr(a

′X, b′Y ). The �rst anonial orre-lation, de�ned as this maximum, is the highest diagonal element of the diagonal matrix thatappears in the singular value deomposition of the matrix σ−1/2
XX σXY σ

−1/2
Y Y (see [13℄). Let M̂be the a�nity matrix of the oupling (X,Y ). The singular value deomposition of this matrixwrites M̂ = USV ′, with U and V two orthogonal matries and S a diagonal matrix withnonnegative entries. In partiular,

Eπ
M̂,0

(
(
√
SU ′X)′(

√
SV ′Y )

)
= max

π∈Π(P,Q)
Eπ

(
(
√
SU ′X)′(

√
SV ′Y )

)

61
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In other words, if (X̃, Ỹ ) = (
√
SU ′X,

√
SV ′Y ), then this linear transform of (X,Y ) hasmaximum ovariane (under the law πM̂,0). Thus √

SU ′ and √
SV ′ are the analogue of theoptimal a and b in the anonial orrelation framework.This transform is useful to understand the link between the extreme oupling πM̂,0 and themaximum orrelation oupling, the one that orresponds to M = Id in (2.5). Indeed, if P̃is the law of √SU ′X with X ∼ P , Q̃ is de�ned likewise from Q, and π̃M̂,0 is the law of

(
√
SU ′X,

√
SV ′Y ) where (X,Y ) ∼ πM̂,0, then Eπ̃

M̂,0
(X ′Y ) = maxπ∈Π(P̃ ,Q̃)Eπ(X

′Y ). Thesingular value deomposition of the a�nity matrix provides linear transform of the marginalsthat makes the extreme oupling πM̂,0 the maximum orrelation oupling after a saling ofthe marginals by these transforms.As an example, in the ase of the 3 omponents hosen above, this transform writes
X̃ =

(− 0.42 X1 +0.95 X2 −0.019 X3
− 0.64 X1 −0.27 X2 +0.26 X3

0.11 X1 +0.06 X2 +0.35 X3

)

Ỹ =

(− 0.30 Y1 +0.99 Y2 −0.13 Y3
− 0.67 Y1 −0.16 Y2 +0..28 Y3

0.12 Y1 +0.08 Y2 +0.34 Y3

)This result states that X̃ and Ỹ are most orrelated to one another under the law of theextreme oupling. These two vetors are omposed of portfolios involving the omponents ofthe original index and an be viewed as new indies: we speak of indies of maximal orrelation.When the strength of dependene is maximal (T = 0), they maximize the orrelation E(X̃Ỹ )among all others law of probability with same marginals.Portfolios stress-testingIn order to underline the neessity of aounting properly for the multivariate dependene,the problem of one-period alloation is onsidered. Suppose a universe of alloation onsistsin a set of assets; the problem is to study the impat of the hange of the dependene betweentwo subsets of this universe. They shall be denoted X = (X1, . . . ,Xn) and Y = (Y1, . . . , Ym).In the examples below, the assets are S&P Setor Indies, and X is omposed of Materials,Constrution and Retail indies, while Y is omposed of Food and Beverage, Health Care,Finanials and Utilities indies. The orresponding summary statistis are given in table 2.2.Correlation is higher than in the above examples as the setors are industrial setors on asingle index, the S&P500.Consider an investor solving a lassi Markowitz alloation problem, with an investment hori-zon of one year: max∑
i wi=1 µ · w − λ

2w
′Σw. µ are the expeted yearly returns of the stoksand Σ the ovariane matrix of the returns. We assume that both µ and Σ are the standardempirial estimators (in other words, the investor do not make any guess as to the futurebehavior of the assets), omputed over a period of one-year, the in-sample period. The risk62
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Table 2.2: Summary StatistisMean Returns 10−4. ( 2.89 1.67 1.03 −1.13 1.97 2.01 1.85 )Variane 10−4. ( 3.59 1.16 1.36 7.65 1.92 0.984 3.25 )Correlation matrix 


1
0.72 1
0.71 0.76 1
0.69 0.86 0.65 1
0.69 0.85 0.69 0.76 1
0.69 0.67 0.75 0.62 0.66 1
0.70 0.76 0.60 0.72 0.74 0.56 1


Cross-Covariane 10−4.

(
1.41 1.53 3.62 1.85
0.921 0.979 1.83 1.05
1.27 1.45 3.73 1.50

)aversion parameter λ is set at 3. The solution to the Markowitz alloation problem with theseparameters is denoted w. The risk of a portfolio is here identi�ed to its variane, and is knownas soon as the ovariane between the assets is spei�ed. When performing the alloation attime 0, the investor is expeting a risk of w′Σw. The stress-test onsists in onsidering that themarket onditions hanges after the investment deision: the strength of dependene between
X and Y inreases.The a�nity matrix is omputed with respet to the in-sample data. The whole trajetory ofouplings toward the boundary obtains, parameterized by the temperature T . These ouplings
πT yield stressed ovariane matries ΣT = EπT ((X − E(X))(Y − E(Y ))′). ΣT represents asenario where the marginals of X and Y are left unhanged, while the realized dependenebetween X and Y has inreased, ompared to the initial ovariane matrix Σ. In a �rst plae,the expeted risk of the portfolio, w′Σw, is ompared to the realized yearly risk w′ΣTw. Itgives a �rst hint as to unexpeted risks the investor might fae when the dependene variesand the alloation deision does not foreast this hange. The graph 2.6 shows this e�et. Thevariane obtained at temperature 1 is w′Σw; in the worst ase, where the realized ovarianeis Σ0.1, the investor hooses a portfolio that yields an extra 4% of variane than expeted.When the dependene is properly aounted for, the investor determines the optimal weights
wT aording to the ovariane ΣT . The opportunity ost µ ·wT − µ ·w is the loss in term ofreturns that arises when the dependene inreases, while the investor stiks to the alloation
w. This ost is more and more signi�ant as the temperature lowers, reahing 6% in this ase.A omparison with the usual extreme multivariate oupling, namely the maximum orrelationoupling is enlightening. First of all, this oupling is not de�ned when the dimension of Xand Y are di�erent. Consequently an asset is removed from Y and the same omputationas above is performed: a ovariane matrix ΣB that would be the realized ovariane if theassets were in maximum orrelation dependene is omputed. On this partiular example, thevariane w′ΣBw is 60% lower than the expeted variane w′Σw. Other examples an yield toa signi�antly higher ovariane. This shows that the maximum orrelation oupling mightnot be always adapted as a means of stress-testing the dependene. A more lassial way tostress the dependene is to suppose that the orrelation between Xi and Yj is ρ for all i and63
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Figure 2.6: Plot of T 7→ w′ΣTw

j; the orrelation matrix between X and Y is �lled with ρ and the resulting ross-ovarianematrix is denoted Σρ. A �rst problem of this method is that it is known beforehand that,depending on the marginals, Σρ might not be an admissible ross-ovariane matrix for Pand Q; the resulting variane-ovariane matrix of the vetor (X,Y ) might fail to be semi-de�nite positive. This stress-test yields in this ase underestimated risks. Indeed, while in ourframework the variane w′Σw is at 1.91, this level of variane is attained only when ρ is above95%, while the mean of the empirial ross-orrelation is around 60%. Furthermore, even if ρis set at 100% (disregarding the admissibility problem evoked above), the resulting varianeis still lower than the one obtained with the extreme oupling.It appears that the trajetory T 7→ πT provides a oherent sequene of ovariane matries
ΣT that models a rise in the dependene between X and Y . This method respets bothmarginals and has the advantage of generating admissible matries where the usual methodof parameterizing orrelation matries by a single parameter ould yield inoherent ovarianematries. Moreover, the maximum orrelation oupling fails in this setting to properly aountfor inreasing risk of dependene, likely beause it ignores the ross-orrelation e�ets.Options priingThis method of inreasing the multivariate dependene an be also applied for rainbow options(options on several underlyings) priing. As a ase study, onsider the underlyings X1, . . . ,Xn,64
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Figure 2.7: Opportunity ost as a funtion of the temperature
Y1, . . . , Ym. It is assumed that they all follows log-normal di�usions, with parameters





dXi
t

Xi
t

= µXi dt+ σXi dW
i
t , d〈W i,W j〉t = ρXij dt

dY i
t

Y i
t

= µYi dt+ σYi dB
i
t , d〈Bi, Bj〉t = ρYijdtThe models is fully spei�ed as soon as the orrelation matrix between W and B is set.Consider the option that pays min((maxiX
i
T − K)+, (maxj Y

j
T − K)+); it is the minimumbetween the payo�s of two best-of options on the Xi on the one hand and the Y j on theother hand. It pays when the Xi

T and Y i
T perform well, but mitigates the gain by seletingthe lowest payo� between (maxiX

i
T −K)+ and (maxj Y

j
T −K)+. The terminal distributionof the underlyings is disretized; the disrete marginals of vetors X and Y obtains. Theiratoms are respetively denoted xiT and yjT . For eah spei�ation of a ross-ovariane matrix

A between X and Y , a trajetory πT (A) is obtained as well as a series of pries:
PT (A) = EπT (A)

(
min((max

i
Xi
T −K)+, (max

j
Y j
T −K)+)

)

=
∑

i,j

min((max
i
xiT −K)+, (max

j
yjT −K)+)πT (A)(x

i
T , y

j
T )In the following example, X has 3 omponents and Y has 4. The riskless rate is onstantand set at zero; µX and µY are supposed to have null drift (i.e. we suppose that the abovedynamis is given with respet to the risk-neutral measure), σX = (0.15, 0.20, 0.22)′ and65
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σY = (0.13, 0.10, 0.16, 0.18)′ . The orrelation struture is set as follows; for the sake of theexposition W and B are standard Brownian motions (ρX = Idn and ρY = Idm) while theross-orrelation matrix between W and B is randomly generated, and set at
(

0.087 0.126 0.068 0.100
0.490 0.438 0.006 0.149
0.136 0.369 0.447 0.331

)The strike is set at 1, i.e. at time 0 the option is at-the-money.

Figure 2.8: Prie as a funtion of the temperatureAs seen on graph 2.8, the prie inreases as the temperature lowers; this is an expeted be-havior, as when the dependene between the assets inreases, so does the dependene betweentheir respetive maxima and hene the minimum of these maxima tends to be higher, whihyields a higher prie. In this setting, the stress-test inreases the prie by more than 30%.This must be ompared to the prie that is obtained when the ross-orrelation matrix istaken of the form Σρ =

(
ρ ... ρ... ...
ρ ... ρ

). As a matter of fat, the stress-test of the ross-orrelationfails, as the resulting orrelation matrix ( Id Σρ

Σρ Id

) is no longer de�nite positive when ρ > 1
2
√
3whih is lower than 30%. And even in the limit ρ→ 1

2
√
3
, the prie does not reah 0.075, andis still lower than the non-stressed prie. 66
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2.6 ConlusionA reurring omplaint in Applied Statistis is the �urse of dimensionality�: models thathave a simple, omputationally tratable form in dimension one beome very omplex, bothomputationally and oneptually in higher dimension. We show here that onvex analysis,along with the theory of Optimal Transport, an lead to e�ient solutions to problem ofextreme dependene. Building on a natural geometri de�nition of extreme dependene, wehave introdued an index of dependene and used the latter to build stress-tests of dependenebetween two sets of eonomi variables. This is partiularly relevant in the ase of international�nane, where the dependene between many eonomi variables in two ountries is of interest.AknowledgmentsThe authors thank Rama Cont for a question whih was the starting point of this hapter andGuillaume Carlier and Alexander Sokol for helpful onversation.
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2.7 Appendix2.8 Fats on oni ordersIf K ⊂ MI,J(R) is a losed onvex one, a base for K is a onvex set C with 0 /∈ C̄ (thelosure of C) and K is generated by C, i.e. K = R+C. Thereafter C is supposed ompat.The dual one assoiated to K is
K∗ = {Σ ∈ MI,J(R)|Σ ·M ≥ 0, M ∈ K}Its interior is also of interest, and is simply

K∗
+ := Int(K∗) = {Σ ∈ MI,J(R)|Σ ·M > 0, M ∈ K\{0}}Note that in both de�nitions, one an replae K and K\{0} with C.A strit partial order is de�ned on E by setting

A ≻K B
def
⇔A−B ∈ K∗

+If S is a subset of MI,J(R), a maximal element of S for this order is A ∈ S suh that for all
B ∈ S, A−B /∈ K∗

+: A an not be `stritly dominated' by any element in S.These de�nitions apply of ourse when MI,J(R) is replaed by any eulidean spae.2.9 Proof of the results2.9.1 Proof of Theorem 3Proof: As the ovariogram is a losed onvex set, a point x ∈ MI,J(R) lies on its boundary ifand only if there exists a nonzero M ∈ MI,J(R)\{0} suh that M ·x is maximal as a funtionof x. This translates the fat that there exists a supporting hyperplane at x. Thus σπ is onthe boundary of the ovariogram i� there exists M ∈ MI,J(R)\{0} suh that
M · σπ = sup

π̃∈Π(P,Q)
M · σπ̃(where it is realled that M · σπ = Tr (M ′σπ)).Equivalene between (ii) and (iii) follows from a well-known result in Optimal Transporttheory, the Knott-Smith optimality riterion (see [20℄, Th. 2.12). �
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2.9.2 Proof of Theorem 4Before we give the proof of the theorem, we state and prove a number of auxiliary resultswhih are of interest per se.First, in the ase of a generi ompat base C, we have a ruial, although tehnial,variational haraterization of the maximality of σπ:Proposition 3 (Variational haraterization of maximality)
σπ maximal i� sup

π̃∈Π(P,Q)
inf
M∈C

(σπ̃ − σπ) ·M = 0In other terms, a oupling is maximal whenever there existsM ∈ C suh that σπ maximizes
σπ̃ ·M .Proof: [Proof of proposition 3℄ First, note that for every π ∈ Π(P,Q), the funtion

f : (π̃,M) ∈ Π(P,Q)× C 7→ (Σπ̃ − Σπ) ·Mexhibits a saddlepoint (π̄, S̄):
max

π̃∈Π(P,Q)
min
M∈C

f(π̃,M) = f(π̄, M̄) = min
M∈C

max
π̃∈Π(P,Q)

f(π̃,M) (2.10)This is a onsequene of a lassial minmax theorem by Fan [8℄: a ontinuous funtion overa produt of ompats onvex sets embedded in normed linear spaes, whih is linear inboth arguments exhibits a saddlepoint. Both Π(P,Q) and C are ompats and onvex. Theompaity is C is an hypothesis and a well-known fat for Π(P,Q), see [20℄ for instane.Moreover f is linear in M and π̃, and ontinuous in both arguments. Finally, Π(P,Q) an beembedded in the spae of Radon measures over RI ×RJ endowed with the bounded Lipshitznorm. We refer to Villani [20℄ hapter 7. for more details on this: the important thing is that
Π(P,Q) is a ompat subset (for the norm) within this spae.Bak to the proof of the result. If σπ is maximal, then for all σπ̃ one has σπ̃ − σπ /∈ K∗

+,whih means that for some M ∈ C, (σπ̃ − σπ) ·M ≤ 0, hene
sup

Π(P,Q)
inf
C
(σπ̃ − σπ) ·M ≤ 0Thanks to the ompaity ofK, we an apply the minmax formula 2.10 to invert the supremumand the in�mum, and onlude the proof of one impliation. On the ontrary, if σπ is notmaximal then there exists some oupling π̃ suh that σπ̃ − σπ ∈ K∗

+. Thanks again to theompaity of C, infC(σπ̃ − σπ) ·M > 0 and the reverse impliation is proved. �As a onsequene, we are now ready to prove theorem 4.Proof: [Proof of theorem 4℄ Beause of the previous proposition, a oupling π suh as71
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(X,MY ) is an optimal transport plan shall satisfy
Eπ(X ·MY ) = sup

π̃∈Π(P,Q)
Eπ̃(X ·MY )As Eπ(X ·MY ) = σπ ·M , we onlude with the proposition 3.�2.9.3 Shrödinger equationAn informal justi�ation of the form of the solution to the entropi maximization problem isas follows. We assume that every oupling in Π(P,Q) admits a density with respet to theLebesgue measure on RI × RJ .

max
π∈Π(P,Q)

Eπ(X
′MY ) + TEnt(π) = max

π∈Π(P,Q)

∫
x′Myπ(x, y)− T log π(x, y)dxdy

= max
π∈ME

+(Rn×Rn)

{
min

φ∈L1(dp)
ψ∈L1(dq)

∫
(x′My − T log π(x, y))π(x, y)dxdy

−
[ ∫

(φ(x) + ψ(y))dπ(x, y) −
∫
φdp−

∫
ψdq

]}
⊛where ME

+(R
I × RJ) is the set of nonnegative Radon measures on RI × RJ for whih theentropy is well-de�ned. Now the assumption on the marginals is relaxed, a sloppy way to getthe result is to say that the solution should satisfy
∂

∂π(x, y)
min

φ∈L1(dp)
ψ∈L1(dq)

∫
[x′My − T log π(x, y)− (φ(x) + ψ(y))]π(x, y)dxdy = 0If we ould apply the envelope theorem, we would have the existene of a ouple (φ∗, ψ∗) suhthat

x′My − T (1 + log π(x, y))− φ∗ − ψ∗ = 0whih yields the expeted form for π.Here is a rigorous proof in the ase where P and Q are absolutely ontinuous with respetto the Lebesgue measure.The problem (2.8) is equivalent to solve the following minimization problem:
min

Π(P,Q)

∫
log

(
π(x, y)

ex′My−|x|2−|y|2/
∫
ex′My−|x|2−|y|2 dxdy

)
π(x, y)dxdyThe quantity inside the min is the Kullbak-Leibler distane (or relative entropy) of the distri-bution µ with density proportional to ex′My−|x|2−|y|2 (the −|x|2−|y|2 ensures the integrability)72
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with respet to π. Minimizing this distane onsists in projeting µ onto Π(P,Q) with respetto the Kullbak-Leibler distane. This is the purpose of IPFP. Rüshendorf [18℄ applies andstates that the unique solution to this problem is of the form:
π∗(x, y) = a(x)b(y)ex

′My−|x|2−|y|2with a and b two positive funtions, whih is the desired result.�

73
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Chapter 3Coupling Markovian di�usions withopulas
3.1 IntrodutionCopulas are funtions that represent the dependene of multivariate laws of probability.Namely, if X1, . . . ,Xn, n ≥ 2, are real random variables on some probability spae (Ω,F ,P),their umulative distribution funtion (df) is de�ned, for (x1, . . . , xn) ∈ R

n, by
F (x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn). The opula approah to dependene onsists insaling the marginals Xi by their respetive dfs Fi; the df of the saled vetor is the opulaand is de�ned, for (u1, . . . , un) ∈ [0, 1]n, by C(u1, . . . , un) = P(F1(X1) ≤ u1, . . . , Fn(Xn) ≤ un).As Fi(Xi) follows the uniform law on [0, 1], C is the df of a vetor of uniform random variableson [0, 1]. Eventually, the initial df an be written

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (3.1)and the opula C is uniquely determined on ImF1×· · ·× ImFn. This fundamental statementis Sklar's theorem (.f. the lassi introdutory book on opula by R. Nelsen [15℄).Copulas have been widely used, �rst in statistis where the notion was developed by Fréhet,Hoe�ding and many others (see Nelsen's book [15℄ or Joe's book [10℄ and the numerous refer-enes therein), and then imposed itself as a onvenient tool to model multivariate dependenein many �elds. There has been a spetaular in�ation of the use of opulas in �nanial math-ematis in the last deade. This has been exempli�ed by the Gaussian opula model forthe valuation of Credit Default Obligation by Li [13℄, and by numerous artiles on valuationof derivatives on several underlyings, see for instane Cherubini and oauthors [4℄ and [3℄.Sine then, some drawbaks of the opula approah to dependene have been highlighted, seeMikosh [14℄. An important ritiism of opulas is their stati nature, meaning that, whereas74
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they are suitable to desribe the dependene between random variables, their use is more dis-putable when dependene modeling is needed at several dates, not to speak of ontinuous-timedependene modeling. Therefore, whereas they are useful to valuate �nanial produts whoseprie depends only on the distribution of a vetor of assets at a single time (suh as Europeanall options on several underlyings), they might not be the adequate tool when the dependeneof the prie with respet to the distribution of the assets is more omplex. And indeed opulashave been applied less intensively in derivatives priing than in risk management, where thestati framework is more natural.Nevertheless, a signi�ant use of opulas in ontinuous-time setting was ahieved by Dar-sow et al. [5℄. For a real stohasti proess (Xt)t∈T , they obtained a formulation of theChapman-Kolmogorov equation as an equation on the bivariate opulas Cst, whih desribesthe dependene of the vetor (Xs,Xt), s ≤ t. This is remarkable as it allows for the spei�a-tion of a Markov proess by the one dimensional marginals (the law of Xt for eah t ≥ 0) andall the bivariate opulas Cst. However, these results do not generalize easily to the multivariatesetting and desribing both the time-dependene (dependene of Xs and Xt for all s ≤ t) andthe spatial dependene (dependene of (X1
t , . . . ,X

n
t ) for all t) of a multivariate proess is aomplex problem whih has been addressed by Cherubini et al. [3℄ in a disrete time setting.In disrete time, there exists also a substantial literature on dynami opula models based ontimes-series, see e.g. Patton [16℄ and van den Goorbergh et al. [22℄.This hapter takes a di�erent route. It takles the problem of oupling a pair of Markoviandi�usions Xt and Yt, and ontrolling the spae-dependene, namely the opulas of (Xt, Yt).This is done by assuming that the Brownian motions driving the di�usions, B and W , satisfy

d〈B,W 〉t = ρ(t,Xt, Yt)dt where ρ(t,Xt, Yt) is a orrelation whih depends on the state of themarginals di�usions. This type of model an be related to `loal orrelation models', desribedin Langnau [12℄ and Reghai [18℄, although in these models the emphasis is put on alibratingthe funtion ρ in order to math observed pries of various options on several underlyings,in the spirit of Dupire's loal volatility model [6℄. A partial di�erential equation, whih �rstappeared in Galihon's [7℄, that desribes the evolution of the opula CXt,Yt is derived. Inthe ase where the marginal di�usions are Brownian motions, this PDE allows to �nd expliitform of the orrelation funtion in order for the resulting oupled Brownian motions to have astationary (and possibly non Gaussian) opula. Moreover, it an be used to prove that severalwell-known opulas are unsuitable to ouple Brownian motions. Eventually, this tehniqueis applied to the simulation of a onstant proportion portfolio insurane strategy (CPPI).This example aims at assessing the impat of opulas in the trigger probability of a CPPI ina oupled Blak-Sholes model, where the driving Brownian motions are oupled by variousopulas. 75
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3.2 Coupling SDE and oupling opula3.2.1 Correlated Brownian motionsThis setion realls how Brownian motions an be oupled with a stohasti orrelation fun-tion, and introdue the oupling orrelation funtion, before de�ning the oupling of marko-vians di�usions.Correlating Brownian motions with deterministi orrelation The onstrution islassial: if ρt ∈ [−1, 1] is a measurable funtion on R+ whih is loally square integrable, and
(B1, Z) is a two dimensional standard Brownian motion, then

B2
t =

t∫

0

ρsdB
1
s +

t∫

0

√
1− ρ2sdZs (3.2)is a Brownian motion (with respet to its natural �ltration), and 〈B1, B2〉t =

∫ t
0 ρsds. Indeed,it is a ontinuous proess, its quadrati variation 〈B2〉t = t and it is a ontinuous loalmartingale. Hene it is a Brownian motion. Moreover, 〈B1, B2〉t =

∫ t
0 ρsd〈B1〉s =

∫ t
0 ρsds �.Correlated BM with stohasti orrelation The previous onstrution extends to thease where ρt is a progressively measurable proess with respet to the (augmented) �ltrationgenerated by (B1, Z), and ρt is loally square integrable. De�ning

dB2
t = ρtdB

1
t +

√
1− ρ2tdZt (3.3)i.e. B2

t =
∫ t
0 ρsdB

1
s +

∫ t
0

√
1− ρ2sdZs, then if equation (3.3) has a strong and non explosivesolution, B2 is a Brownian motion, and d〈B1, B2〉t = ρtdt, just as in the deterministi ase.Correlated BM with oupling orrelation funtion Consider a deterministi funtion

ρt(x, y) that is bounded by 1, and measurable. We would like to de�ne a bidimensional Markovproess (B1, B2):
d〈B1, B2〉t = ρ(t, B1

t , B
2
t )dt (3.4)Aordingly, onsider the following equation

dB2
t = ρt(B

1
t , B

2
t )dB

1
t +

√
1− ρ2t (B

1
t , B

2
t )dZt (3.5)Assume that this di�usion equation has a strong solution. Then B2 is a Brownian motionand satisfy the equation (3.4). The solution (B1, B2) of this SDE is alled a oupled Brownianmotion, and the funtion (t, x, y) ∈ R+ ×R2 7→ ρt(x, y) is alled the oupling orrelation.76

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Coupling Markovian di�usions More generally, we want to give a meaning to the ouplingequation 



dXt = aX(t,Xt)dt+ σX(t,Xt)dW
X
t

dYt = aY (t, Yt)dt+ σY (t, Yt)dW
Y
t

d〈WX ,W Y 〉t = ρt(Xt, Yt)dt

(X0, Y0) ∼ µ0

(3.6)
where ρ is bounded by 1 and measurable. This equation orresponds to the oupling of twoMarkovian di�usions Xt and Yt with the oupling orrelation ρt(Xt, Yt). This equation isformulated unambiguously as





dXt = aX(t,Xt)dt+ σX(t,Xt)dW
X
t

dYt = aY (t, Yt)dt+ σY (t, Yt)(ρt(Xt, Yt)dW
X
t +

√
1− ρ2t (Xt, Yt)dZt)

(X0, Y0) ∼ µ0where Zt is a Brownian motion independent ofWX . Provided that the above equation admitsa strong solution (Xt, Yt) (lassial onditions that ensure it are realled in appendix 17), theproess de�ned by
dW Y

t = ρt(Xt, Yt)dW
X
t +

√
1− ρ2t (Xt, Yt)dZtis indeed a Brownian motion, and d〈WX ,W Y 〉t = ρt(Xt, Yt)dt.3.2.2 A partial di�erential equation on the opulasThe Kolmorogov forward equation of a di�usion whose law at time t > 0 has density ft is anevolution equation of ft. The purpose of this setion is to show how, after saling the marginaldi�usions by their dfs, a Kolmogorov forward equation for the oupling equation (3.6) isobtained; this equation desribes the evolution of the opula Ct of the bivariate di�usion.This `opula PDE' makes a link between the oupling orrelation ρt and the opula Ct, andis the ore of this hapter.This setion provides results of existene and uniqueness relative the Kolmogorov forwardequation of the di�usion (3.6). Although these results might seem lassial to the readerfamiliar with di�usion theory (as desribed for instane in the omprehensive book of Strookand Varadhan [21℄ or in the more reent book of Strook [20℄), the saling of the marginalsmust be handled arefully in order to derive the opula PDE rigorously, and this is the sopeof the following results. 77
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Notations and HypothesesLet (Xt, Yt) be a strong solution to the oupling equation (3.6). The marginals dfs FXt , F Ytare the umulative distribution funtions of Xt and Yt, and, likewise, the marginals densities(when they exist) are denoted fXt and fYt . These are always supposed positive thereafter, andthus the opula of (Xt, Yt) is de�ned unambiguously and is denoted Ct.The drifts and volatilities aX , aY , σX , σY are funtions de�ned on R+ ×R that take valuesin R and are always assumed measurable and loally bounded (a funtion f(t, x) is loallybounded if for all ompat K ⊂ R+ ×R, sup(t,x)∈K |f(t, x)| < +∞.)The set of twie ontinuously di�erentiable funtions with ompat support on (0, 1)2 is de-noted C2
c ((0, 1)

2).
C1,k(R× (0, 1)2), k integer, is the set of funtions u(t, x) that are ontinuously di�erentiable
k times in the spae variable, ontinuously di�erentiable in the time variable, and suh that
∂tu(t, x) is also ontinuously di�erentiable k times in x.For a measure µ on (0, 1)2 and a funtion ϕ ∈ C2

c ((0, 1)
2), the braket 〈µ,ϕ〉 is de�ned as∫

(0,1)2 ϕ(x)dµ(x). For a loally integrable funtion f , 〈f, ϕ〉 is de�ned as 〈fdx, ϕ〉.A reminder on the Kolmogorov forward equationHypotheses for a Kolmogorov forward equation to hold in a su�iently general ase for ourpurpose are:Proposition 4 Let Lt be the in�nitesimal generator of a Markovian di�usion Xt in RN ,
N ≥ 1, and let Pt be the law of the di�usion at time t. Assume the drift and the volatility of
Xt are loally bounded. Then the following equation holds: for all ϕ ∈ C2

c (RN ),
〈Pt, ϕ〉 = 〈P0, ϕ〉+

t∫

0

〈Lsϕ,Ps〉dsThis an be written informally
∂tPt = L∗

tPtwhere L∗
t denote the adjoint operator of Lt.This is a standard result and is basially an appliation of It	o's lemma.Proof of the opula PDEThe saling of the marginals does not make sense at time 0 when the initial distribution µ0has a singular omponent, and it is assumed in the �rst plae that it admits a density withrespet to the Lebesgue measure. 78
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The two next lemmas prove that the saled marginals remain di�usion proesses, and identifythe in�nitesimal generator of the bivariate saled di�usion.Lemma 4 Assume that the marginal dfs are in C1,2(R+×R). Assume moreover that σX and
σY are ontinuously di�erentiable in the spae variable. Then the saled marginal proesses
X̃t = FXt (Xt) and Ỹt = F Yt (Yt) are di�usion proesses. The in�nitesimal generator of X̃t is

LX̃t =
1

2
∂x
(
(fXt σ

X
t )((FXt )−1(x))∂x

)The in�nitesimal generator of (X̃t, Ỹt) is Lscaled = LX̃t +LỸt +LXYt where LX̃Ỹt is the operator
ϕ ∈ C2

c ((0, 1)
2) 7→ ρ̃tf̃

X
t σ̃

X
t f̃

Y
t σ̃

Y
t ∂

2
uvϕ, and g̃(t, u, v) stands for g(t, (FXt )−1(u), (F Yt )−1(v)).Proof: As FXt and F Yt are C1,2(R+ ×R), the It	o's lemma applies to FXt (Xt) and F Yt (Yt),and we derive the di�usion equations for the saled variables X̃t = FXt (Xt) and Ỹt = F Yt (Yt):

dX̃t = fXt (Xt)dXt + ∂tF
X
t (Xt)dt+

1

2
(fXt )′(Xt)d〈X,X〉t

=
[
fXt (Xt)a

X(t,Xt) + ∂tF
X
t (Xt) +

1

2
(fXt )′(Xt)(σ

X)2(t,Xt)
]
dt+ fXt (Xt)σ

X(t,Xt)dW
X
twhere fXt = ∂xF

X
t is the pdf ofXt. Beause the dfs are stritly inreasing, Xt = (FXt )−1(X̃t),and X̃t is a di�usion with the following dynamis:

dX̃t =
˜[

fXt a
X(t, ·) + ∂tF

X
t +

1

2
(fXt )′(σX(t, ·))2

]
(X̃t)dt+

˜fXt σ
X(t, ·)(X̃t)dW

X
tLet µ(t, x) and vol(t, x) be the drift and the volatility in this equation. The density of X̃t isonstant as it follows the uniform law on [0, 1]. Let ϕ ∈ C2

c ((0, 1)
2) and Φ(x) =

∫ x
0 ϕ(s)ds.Then It	o's lemma yields

E(Φ(X̃t)) = E(Φ(X̃0)) +E

( t∫

0

ϕ(X̃s)µ(s, X̃s) +
1

2
ϕ′(X̃s)vol

2(s, µ(s, X̃s))ds
)

+E

( t∫

0

ϕ(X̃s)vol(s, X̃s)dW
X
s

)This last expeted value is zero as the integrand is loally bounded and adapted with respetto WX , and the integral is a martingale. As the law of X̃t is the uniform law on (0, 1) for all
t, taking the time derivative of this expression yields:

0 = 〈µ(t, ·), ϕ(x)〉 + 1

2
〈vol2(t, ·), ∂xϕ(x)〉for all ϕ ∈ C2

c ((0, 1)). As the funtion vol2 is di�erentiable in the spae variable by hypothesis,79
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µ(t, x) = 1
2∂xvol

2(t, x) for all (t, x) ∈ R+× (0, 1), and the in�nitesimal generator of the saleddi�usion is:
LX̃t ϕ(t, x) =

1

2
∂x(vol(t, x)

2∂xϕ)

�The point to derive a PDE on the opula Ct is then to perform a mere integration by part. Inorder to simplify the exposition, it is assumed that the di�usion (Xt, Yt) has a smooth opula.Proposition 5 Assume that the opula Ct of the oupled di�usion at time t is in
C1,2(R+ × (0, 1)2). Assume that the hypotheses of lemma 4 hold: the marginal di�usionshave ontinuously di�erentiable densities fXt and fYt , and the volatilities are ontinuously dif-ferentiable in the spae variable. Then the opula family Ct satis�es the following weak PDE:for all t > 0, for all ϕ ∈ C2

c ((0, 1)
2),

〈∂tCt, ∂2uvϕ〉 =
〈1
2

((
f̃Xt σ

X(t, ·)
)2
∂2uuCt +

(
f̃Yt σ

Y (t, ·)
)2
∂2vvCt

)

+ ˜(ρtf
X
t (·)σX (t, ·)fYt (·)σY (t, ·))∂2uvCt, ∂2uvϕ

〉 (3.7)Proof: Let ϕ ∈ C2
c ((0, 1)

2). The Kolmogorov forward equation states that:
〈PX̃t,Ỹt

, ϕ〉 = 〈PX̃0,Ỹ0
, ϕ〉+

t∫

0

〈Lscaleds (ϕ),PX̃s ,Ỹs
〉dsEquivalently,

〈∂2uvCt, ϕ〉 = 〈∂2uvC0, ϕ〉 +
t∫

0

〈Lscaleds (ϕ), ∂2uvCs〉dsWe then detail the integrations by parts. Let volX̃t (u) = σ̃Xt f
X
t (u).

〈LX̃t (ϕ), ∂2uvCt〉 =
1

2

1∫

0

1∫

0

∂u(vol
X̃
t (u)2∂uϕ(u, v))∂

2
uvCt(u, v)dudv

=
1

2

1∫

0

∂uCt(u, 1)∂u(vol
X̃
t (·)2)∂uϕ(·, ·))(u, 1)du

− 1

2

1∫

0

∂uCt(u, 0)∂u(vol
X̃
t (·)2∂uϕ(·, ·))(u, 0)du

− 1

2

1∫

0

1∫

0

∂uCt(u, v)∂u(vol
X̃
t (u)∂2uvϕ(u, v))dudv80
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As ϕ has a ompat support the two �rst integrals are zero. Another integration by parts inthe last integral yields
−

1∫

0

1∫

0

∂uCt(u, v)∂u(vol
X̃
t (u)∂2uvϕ(u, v))dudv =

1∫

0

1∫

0

∂2uuCt(u, v)vol
X̃
t (u)2∂2uvϕ(u, v)dudv

−
1∫

0

[∂uCt(1, v)vol
X̃
t (1, v)2∂2uvϕ(1, v) − ∂uCt(0, v)vol

X̃
t (0, v)2∂2uvϕ(0, v)]dvOne again the boundary terms are zero, and eventually, we have

〈LX̃t (ϕ), ∂2uvCt〉 = 〈1
2
(volX̃t )2∂2uuCt, ∂

2
uvϕ〉Thus, for all ϕ ∈ C2

c ((0, 1)
2),

〈Ct, ∂2uvϕ〉 = 〈C0, ∂
2
uvϕ〉+

t∫

0

〈1
2
(volX̃s )2∂2uuCs +

1

2
(volỸs )

2∂2vvCs + ρ̃svol
X̃
s vol

Ỹ
s ∂

2
uvCs, ∂

2
uvϕ〉ds

�If there is more regularity, then a strong equation obtains:Proposition 6 Suppose Ct ∈ C1,4(R+× ((0, 1)2)) and that the marginal densities, the volatil-ities and the orrelation are twie ontinuously di�erentiable in the spae variables. Assumethat ∂tCt(u, v) goes to zero as either u or v goes to zero. Then, for all t > 0 and (u, v) ∈ (0, 1)2,
∂tCt(u, v) =

1

2
(volX̃t )2∂2uuCt +

1

2
(volỸt )

2∂2vvCt + ρ̃tvol
X̃
t vol

Ỹ
t ∂

2
uvCt

+ ϕt(u) + ψt(v) + αt

(3.8)where volX̃t (u) = (fXt .σ
X
t )(t, (FXt )−1(u)) and volỸt (v) = (fYt .σ

Y
t )(t, (F

Y
t )−1(v)). De�ning

gt(u, v) as the funtion on the right hand side of the �rst line, ϕt(u) = − limǫ→0 gt(u, ǫ),
ψt(v) = − limǫ→0 gt(ǫ, v) and αt = limǫ→0 gt(ǫ, ǫ).Proof: The proof is straightforward. The hypotheses of regularity of the opula and theoe�ients imply that equation (3.7) is equivalent to the strong equation

∂2uv∂tCt = ∂2uv

(
1

2
volX̃t (u)2∂2uuCt(u, v) + volỸt (v)2∂2vvCt(u, v) + ρ̃t(u, v)vol

X̃

t (u)volỸt (v)∂
2

uvCt

)for all t > 0, (u, v) ∈ (0, 1)2. Let ǫ > 0. For a bivariate funtion f , denote ∆c,d
a,bf := f(b, d) −

f(a, d)− f(b, c) + f(a, b). Integrating the previous equation between ǫ < u and ǫ < v:
∆ǫ,v
ǫ,u∂tCt = ∆ǫ,v

ǫ,ugt(u, v)81
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By hypothesis, the l.h.s. goes to ∂tCt(u, v) when ǫ→ 0 �.Thereafter, it is always assumed that the funtion ϕt(u) + ψt(v) + αt is identially zero, andtherefore that for all t > 0, for all (u, v) ∈ (0, 1)2,
∂tCt(u, v) =

1

2

((
f̃Xt σ

X(t, u)
)2
∂2uuCt(u, v) +

(
f̃Yt σ

Y (t, v)
)2
∂2vvCt(u, v)

)

+ ˜(ρtfXt (u)σX (t, u)fYt (v)σY (t, v))∂2uvCt(u, v)

(3.9)In what follows, only this equation is referred to as the `opula PDE' (rather than the weakequation (3.7)). Nevertheless, here are su�ient onditions for the extra terms in (3.8) tovanish :1. For all t > 0, the marginal densities fXt , fYt and the volatilities σX(t, ·), σY (t, ·) arebounded over R.2. For all t > 0, for all (u, v) ∈ (0, 1)2,
lim
ǫ→0

∂2uuCt(u, ǫ) = lim
ǫ→0

∂2vvCt(ǫ, v) = lim
ǫ→0

∂2uvCt(u, ǫ) = lim
ǫ→0

∂2uvCt(ǫ, v) = 03. For all t > 0, for all (u, v) ∈ (0, 1)2,
lim
ǫ→0

volX̃t (ǫ)2∂2uuCt(ǫ, v) = lim
ǫ→0

∂2vvvol
Ỹ
t (ǫ)

2Ct(u, ǫ) = 0The onditions 1 and 2 are satis�ed in the rest of this hapter, when the marginals are Brownianmotions. Our experiments show it is also the ase of ondition 3, although it is more di�ultto prove rigorously that it holds for a given opula family {Ct}.Finally, let us mention that proposition 6 still holds when the initial distribution µ0 is singular:Corollary 1 Suppose that the oupled di�usion has a smooth opula Ct ∈ C1,2(R∗
+ × (0, 1)2),Assume the dfs of the marginals are twie ontinuously di�erentiable in spae for all t > 0and ontinuously di�erentiable in the time variable on R∗

+, and the same for the volatilities.Then equation (3.9) holds for all t > 0.This result is obtained by onsidering the time-shifted SDE (3.6), see appendix 3.6.1.UniquenessThe expliit expression between the oupling orrelation and the opula family {Ct} suggestsonsidering the oupling problem from the opposite point of view; namely, if a opula family
{Ct} is �xed, that the funtion ρt is de�ned aording to equation (3.9) is bounded by 1 andyields a solution to the oupling equation (3.6), then it is sensible to suppose that the resulting82
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di�usion proess (Xt, Yt) has opula Ct at time t. Suh a result follows from the uniquenessof solutions to Kolmogorov forward equation. Let (IC) denote the integrability ondition:
∃ ε > 0 s.t. (u, v) 7→ sup

0<t≤ε
∂2uvCt(u, v) ∈ L1((0, 1)2)Proposition 7 Assume the marginal di�usions have densities fXt and fYt in C1(R∗

+×R) forall t > 0, and that they and their derivatives goes to zero at ±∞. Let {Ct} ∈ C1,2(R+×(0, 1)2)satisfying (IC). Let ρ(t, u, v) suh that the opula PDE (3.9) holds, and ρ(t, u, v) is boundedby one in absolute value. Assume that the drift and volatilities aX , aY , σX , σY , and theorrelation funtion ρ̃t(x, y) = ρ(t, (FXt )−1(u), (F Yt )−1(v)) are jointly ontinuous over R+ ×R2, measurable and bounded. Assume eventually that ρ is bounded away from ±1, uniformlyin time, i.e. inft>0, x y ||ρ(t, x, y)| − 1| ≥ ε for some ε > 0. Then if the oupling SDE admits asolution, its law has a density at all times t > 0 and the opula at time t is indeed Ct.See appendix 3.6.1 for a detailed proof.Note that ρ̃t(x, y) = ρ(t, FXt (x), F Yt (y)) might not make sense at time t = 0 when the marginaldistributions are singular at t = 0, unless ρ(t, u, v) is a onstant for t < ε. This is the ase forinstane when Ct is the Gaussian opula with onstant parameter for t < ε (and in this asethe ondition (IC) is also satis�ed) and that the marginals di�usions are Brownian motionsor geometri Brownian motions.3.3 The ase of oupled Brownian motionsWhile the previous setion detailed the link between the opula of a oupled di�usion and theoupling orrelation, it remains unlear whether a given opula family {Ct} yields a funtion ρtthat is indeed a orrelation funtion, that is, at least, a funtion bounded by 1. This setionis devoted to the oupling problem when the marginals are Brownian motions. A detailedexample shows that it is possible to ouple Brownian motions in a `stationary' manner by anon Gaussian opula. Several examples of opulas that yield admissible oupling orrelationfuntions as well as ounterexamples are mentioned and an heuristi haraterization of opulasthat are attainable by oupled Brownian motions is disussed.3.3.1 The oupling problem when marginals are Brownian motionsWhen the marginal proesses are Brownian motions, the oupling SDE (3.6) beomes :




dB2
t = ρt(Φ(B

1
t /
√
t),Φ(B2

t /
√
t))dB1

t +
√

1− ρ2t (Φ(B
1
t /
√
t),Φ(B2

t /
√
t))dZt

B2
0 = 0

(3.10)83
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where (B1
t , Zt) is a standard bivariate Brownian motion, Φ is the df of the standard normallaw and (t, u, v) 7→ ρ(t, u, v) is in C0(R+ × (0, 1)2).Let Corr be the set of funtions ρ suh that1. ρ ∈ C0(R+ × (0, 1)2).2. sup(t,u,v) |ρ(t, u, v)| ≤ 1.3. ρ is onstant for t small enough, i.e. there exists δ > 0 suh that ρ(t, ·) = ρ ∈ [−1, 1] forall t ≤ δ.4. ρ is bounded away from ±1: ∃ ε > 0, s.t. for all (t, u, v), ||ρ(t, u, v)| − 1| > ε.The onditions 3 and 4 ensure that the orrelation funtion ρ(t, Φ(x)√

t
, Φ(y)√

t

) make the ouplingSDE have a unique strong solution (see proposition 17 in appendix 3.6.2). In partiular, theproblem of de�ning the quantiles (FXt )−1 and (F Yt )−1 at t = 0 is avoided, thanks to ondition3, whih imposes a onstant Gaussian opula at small times. Likewise, the set of ontinuousfuntions ρ de�ned on (0, 1)2 suh that |ρ| ≤ 1 and ρ is bounded away from ±1 is denotedCorrBM (for Brownian orrelation funtion).Let C+ = {{Ct}t≥0, Ct ∈ C1,2(R+ × (0, 1)2), ∂2uvCt(u, v) > 0, ∀(u, v) ∈ (0, 1)2}, the smoothopula families with everywhere positive densities. It is onvenient to onsider the mapping:
F : {Ct} ∈ C+ 7→ ρCt ∈ C0(R+ × (0, 1)2)where ρCt : (u, v) ∈ (0, 1)2 7→

2πt∂tCt(u, v)− 1
2

(
e−Φ−1(u)2∂2uuCt(u, v) + e−Φ−1(v)2∂2vvCt(u, v)

)

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvCt(u, v) (3.11)
F ({Ct}) is the orrelation funtion that appears in the opula PDE (3.9), when the opulafamily is {Ct}. Conversely, it is onvenient to onsider
G : ρt ∈ Corr 7→ {Ct}, the opula family of the oupled BMs with orrelation funtion ρtLet Cop = G(Corr) be the set of opula families that are the opula family of oupled Brownianmotions with a orrelation funtion in Corr. For ρ ∈ R, |ρ| ≤ 1, Corr(ρ) denotes the set of

ρt ∈ Corr suh that ρt = ρ for all t small enough: Corr = ∪ρ∈(−1,1)Corr(ρ). Finally, letCop(ρ) = F−1(Corr(ρ)), the set of opulas suh that the orrelation funtion is in Corr(ρ).A question of ruial importane is to determine the set of opula that an be attained byoupled Brownian motions, that is to say the opulas C suh that there exists a oupledBrownian motion (i.e. a orrelation funtion) whose opula CT at some time T satisfy CT = C.More preisely, 84
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De�nition 4 A opula C is attainable at time T ≥ 0, i� there exists {Ct} ∈ Cop suh that
CT = C. The set of attainable opulas at some time t ≥ T is denoted AT . A opula C issaid stationary (for the Brownian motion) if it is attainable at some time T ≥ 0 by oupledBrownian motions (B1

t , B
2
t ), and that C(B1

t ,B
2
t )

≡ C, for all t ≥ T . The set of stationaryopulas from time T is denoted AST .A trivial example of a stationary is the Gaussian opula, but it is not the only opula tohave this property, as is proved below. Along with the notion of stationary opulas omes thenotion of stationary (Brownian) orrelation funtion:De�nition 5 For C ∈ C2((0, 1)2) a opula with positive density, let the stationary Brownianorrelation funtion of C be the funtion
ρC(u, v) = −1

2

e
Φ−1(v)2−Φ−1(u)2

2 ∂2uuC(u, v) + e
Φ−1(u)2−Φ−1(v)2

2 ∂2vvC(u, v)

∂2uvC(u, v)
, ∀(u, v) ∈ (0, 1)2(3.12)If a opula is stationary, then the orrelation funtion ρt of the oupled Brownian motionswhih attain the dependene C is neessarily equal to ρC for t big enough. In partiular, timedoes not appear in expression (3.12), and this expression is more onvenient to work with than(3.11). Although it might seem trivial, the ase of the Gaussian opula is worth notiing:Proposition 8 The stationary Brownian orrelation funtion of the Gaussian opula Cρ isonstant over (0, 1)2 and equals ρ. Moreover, if ρt ∈ C1(R+) and is bounded by 1, and that

Ct := C 1
t

∫ t
0
ρsds

if t > 0 and C0 = Cρ0 , then the orrelation funtion F ({Ct}t≥0) is ρt.See appendix 3.6.2 for a proof.As expeted, the stationary orrelation of a Gaussian opula opula with onstant parameter
ρ is ρ.Eventually, a set of partiular interest is the intersetion of all At, t > 0:De�nition 6 Let A0+ = ∩t>0At: it is the set of opulas that an be attained at arbitrarysmall times. Similarly, AS0+ is de�ned as the set of stationary opulas from any time t > 0.The point is to prove that these sets are not redued to the Gaussian opula family.3.3.2 Results on the attainability of a opula CThe self-similarity property of Brownian motion onsiderably simpli�es the analysis of the setof attainable opulas.Lemma 5 Let (Bt,Wt) a pair of oupled Brownian motions, with oupling orrelation ρ(t, x, y).Then for every c > 0, the bivariate proess (Bc

t ,W
c
t ) = (Bct√

c
, Wct√

c
) is a oupled Brownian motionwith orrelation funtion ρc(t, x, y) = ρ(ct,

√
cx,

√
cy). This orrelation is in Corr if ρ ∈ Corr,and the opula of (Bc

t ,W
c
t ) is the opula of (Bct,Wct).85
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Proof: By self-similarity of the Brownian motion, (Bc
t ,W

c
t ) is a proess with Brownianmarginals. Furthermore,

〈Bc,W c〉t =
1

c
〈B,W 〉ct =

1

c

ct∫

0

ρ(s,Bs,Ws)dsand thus, d〈Bc,W c〉t = ρc(t, Bc
t ,W

c
t )dt where ρc(t, x, y) = ρ(ct,

√
cx,

√
cy). Eventually, theopula of (Bc

t ,W
c
t ) evaluated at (u, v) ∈ [0, 1]2 is:

P(Φ(Bc
t /
√
t) ≤ u,Φ(W c

t /
√
t) ≤ v) = P(Φ(Bct/

√
ct) ≤ u,Φ(Wct/

√
ct) ≤ v)and the r.h.s. is, by de�nition, the opula of (Bct,Wct) evaluated at (u, v). The fat that

ρc ∈ Corr if ρ ∈ Corr is obvious.�A diret onsequene isProposition 9 A0+ = ∪t>0At. In other words, if a opula is attainable at some time T > 0,then it is attainable at any time t > 0. Similarly AS0+ = ∪t>0A
S
t .Proof: Assume that C ∈ AT and let (B1, B2) a pair of oupled Brownian motions, suh that

CB1
T ,B

2
T
= C. Then, for c > 0, lemma 5 ensures that C is attainable a time T

c . �In addition to self-similarity, the Brownian motion is stable by time-inversion, meaning thatif Bt is a standard BM, then so is the proess that starts at 0 at time 0 and is de�ned tB 1
t
if

t > 0. Therefore,Proposition 10 Let (B,W ) be a pair of oupled BMs. Then the opula of (B̃t, W̃t) :=(
tB 1

t
, tW 1

t

) is the opula of (B 1
t
,W 1

t

) for t > 0.Proof: For eah (u, v) ∈ [0, 1]2

CB̃t,W̃t
(u, v) = P(Φ(B̃t/

√
t) ≤ u,Φ(W̃t/

√
t) ≤ v)

= P

(
Φ
(√

tB 1
t

)
≤ u,Φ

(√
tW 1

t

)
≤ v
)

= CB 1
t
,W 1

t

(u, v) by de�nition.
�This proess has Brownian marginals and proposition 10 shows that whenever a opula C ∈
AS0+ , then there exists a pair of Brownian motions (At, Bt) suh that the opula CAt,Bt is Cfor all t small enough. Note that the previous properties are spei� to Brownian motion, andotherwise the sets A0+ might well be stritly inluded in At, t > 0 .A ruial point is to show that the set of stationary opulas is not redued to the Gaussianfamily. In order to prove it, we �rst show that the sets Cop(ρ) have onvexity properties.86
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Lemma 6 For all ρ ∈ (−1, 1), Cop(ρ) is stable by onstant mixtures: if α ∈ [0, 1], {Ct} and
{C̃t} ∈ Cop(ρ), then αCt + (1− α)C̃t ∈ Cop(ρ).The proofs of the rest of this setion are gathered in appendix 3.6.2. Note that the orrelationfuntion derived from the opula αtCρ+(1−αt)C is not the onvex sum αtρ+(1−αt)ρC(u, v),whih ompliates the analysis. Using time-dependent mixtures of Gaussian opulas and agiven opula C, it is possible to prove that some opulas are stationary:Proposition 11 Let C be a opula suh that ρC ∈ CorrBM. Introdue
δC(ρ) = inf

(u,v)∈(0,1)2
s.t. Ct(u,v)6=C(u,v)





e
Φ−1(u)2+Φ−1(v)2

2

2π|Cρ(u, v)− C(u, v)| [(1− |ρ|)∂2uvCρ(u, v) ∧ (1− |ρC(u, v)|)∂2uvC]



 .and assume that δC(ρ) > 2 for some ρ ∈ (−1, 1). Then C ∈ AS0+ .However, when a opula C has a stationary orrelation funtion ρC in CorrBM but does notsatisfy δC(ρ) ≤ 2, our intuition is that it an be attained, at least asymptotially. It meansthat de�ning the onvex sum ρt(u, v) = αtρ + (1 − αt)ρC(u, v) for a onvenient funtion αt,we expet the resulting oupled Brownian motions to have a opula Ct suh that Ct → C as

t → ∞. This onvergene has been observed empirially on simulations of oupled Brownianmotions for various orrelation funtions ρ: after a few steps of an Euler sheme, the opulaseems to stop evolving anymore and beomes stationary. Eventually, this intuition is supportedby the fat that suh a opula satis�es the equation (Lscaledt )∗∂2uvC = 0 for t big enough, andit is a stylized fat in the theory of Markov proesses that this indiates that C is a possiblestationary distribution.3.3.3 A detailed example: the FGM opulaThe FGM opula (Farlie-Gumbel-Morgenstern opula) is de�ned by Cθ(u, v) = uv + θuv(1−
u)(1− v), for |θ| ≤ 1. This opula family ontains all opulas with quadrati setions in both
u and v, i.e. all opulas C suh that both C(u, ·) and C(·, v) are quadrati funtions. Thistype of opula does not produe strong dependene: as ∂θC(u, v) ≥ 0, it is positively orderedfamily, and Nelsen [15℄ p. 78 provides satterplots from the extremal members C−1 and C1whih learly exhibit a low degree of dependene. Notwithstanding its relevane to modelstrong dependene, this family has the advantage of yielding partiularly simple formulas thatallow for expliit omputations. In partiular, the stationary orrelation funtion of the FGMopula Cθ is

ρθ(u, v) = θ.
e(Φ

−1(v)2−Φ−1(u)2)/2v(1− v) + e(Φ
−1(u)2−Φ−1(v)2)/2u(1− u)

1 + θ(1− 2u)(1 − 2v)
(3.13)87

pa
st

el
-0

07
30

33
5,

 v
er

si
on

 1
 - 

9 
Se

p 
20

12



Proposition 12 For all |θ| ≤ 1
2 , |ρθ(u, v)| ≤ 1 for all u, v in [0, 1].Proof: : .f. appendix 3.6.2. A numerial analysis of ρθ suggests the sharp bound |ρθ(u, v)| ≤

|θ|
2 holds for all |θ| ≤ 1 and we will use this bound in what follows to prove that the FGMopula is a stationary opula.Proposition 13 There exists a non empty range of parameters θ ∈ [−α,α] , suh that theFGM opula Cθ ∈ AS0+ .Proof: Apply the proposition 11 with ρ = 0 and θ 6= 0 (whih orresponds to the indepen-dene opula). Then we have:

inf
(u,v)∈(0,1)2

e
Φ−1(u)2+Φ−1(v)2

2

2π(Cθ(u, v)− uv)
.
(
(1− |ρθ|).∂2uvCθ ∧ 1

)
≥ 16(1 − |θ|)(1− |θ|/2)

2π|θ| (3.14)Indeed, |ρθ| ≤ |θ|
2 and ∂2uvCθ = 1 + θ(1 − 2u)(1 − 2v) ≥ 1 − |θ|, so (1 − ρθ).∂

2
uvCθ ∧ 1 ≥

1∧ (1− |θ|)(1− |θ|/2) = (1− |θ|)(1− |θ|/2). Eventually Cθ(u, v)− uv = |θ|uv(1−u)(1− v) ≤
|θ|/16 gives the inequality. A su�ient ondition for the proposition 11 to apply is then
16(1−|θ|)(1−|θ|/2)

2π|θ| > 2, whih is easily seen to be true for all 0 ≤ |θ| ≤ α, α ≈ 0.49. �The lower bound (3.14) is not a sharp one and atually, numerial evidene suggests that thewhole FGM opula family is in AS0+ .This result has some importane, as it proves that there exists bivariate proesses, whosemarginals are Brownian motions, and whih are oupled by a non Gaussian opula , from anarbitrary small time t > 0:Corollary 2 AS0+ does not redue to Gaussian opulas and ontains members of the FGMfamily.3.3.4 Stationary opulas of some proesses with Gaussian marginalsBak to the more general ase of oupling Markovian di�usions, onsider the problem ofoupling Markovian di�usions that have the same marginals, and that these marginals haveGaussian 1 dimensional laws, i.e. two di�usions Xt and Yt with same drift and volatility, suhthat for all t > 0, Xt and Yt have the same Gaussian law N (mt, σ
2
t ). Suppose moreover thevolatility of the marginals is a deterministi funtion of time Σt > 0. Then (assuming thatthe equation (3.9) holds and the density of the opula is everywhere positive) the ouplingorrelation reads

ρ(t, u, v) = 2π.e
Φ−1(u)2+Φ−1(v)2

2
σ2t
Σ2
t

∂tCt
∂2uvCt

+ ρC(u, v)beause fXt ◦(FXt )−1(u) is proportional to e−Φ−1(u)2/2, that is, the saled densities are propor-tional to the saled N (0, 1) density, just as in the ase of the Brownian motion. In partiular, if88
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the opula is stationary, then there exists a T > 0 suh that for all t ≥ T , ρ(t, u, v) = ρC(u, v),the stationary Brownian orrelation funtion of the opula C. This applies for instane toOrstein-Uhlenbek proesses and to Brownian bridges.3.3.5 A zoology of smooth opulas and their stationary orrelationsHere are listed opulas for whih we have expliit formulas for the stationary orrelation fun-tion. Empirially, the opulas divide into two families: the one with a stationary orrelationbounded by 1, and the one with a stationary orrelation that explodes near the boundary ofthe unit square.In addition to the Gaussian opula, numerial evidene suggests the following opulas havebounded orrelation funtion:- The FGM and the iterated FGM opulas (namely the Kotz and Johnson's and Li'siterated FGM opulas, that are families of opulas with ubi horizontal and vertialsetion, see [15℄, p 82).- The Plakett opula Cθ, when θ ≤ 10.- Among arhimedean opulas: the Frank opula, the Gumbel-Barnett (and possibly oth-ers, for instane `opula 4.2.10', see appendix 3.7).Some of the orresponding Brownian orrelation funtions are plotted in �gures 3.2 and 3.3 forthe FGM and the Plakett orrelation funtion (all �gures are gathered at the end of the ap-pendies). Note also that for a single opula C with positive density, suh that sup[0,1]2 |ρC | ≤ 1or sup[0,1]2 |ρC | > 1, then three other opulas h ve the same property:Proposition 14 The Brownian orrelation funtions of the opulas C1(u, v) = u−C(u, 1−v),
C2(u, v) = v−C(1−u, v) and C3(u, v) = u+v−1+C(1−u, 1−v) are ρC1(u, v) = −ρC(u, 1−v),
ρC2(u, v) = −ρC(1 − u, v), ρC3(u, v) = ρC(1 − u, 1 − v). Moreover 1 − sup[0,1]2 |ρCi | has thesame sign as 1− sup[0,1]2 |ρC |, i = 1, 2, 3.Proof: It is elementary. For instane,

ρC1(u, v) =
1

2

e
Φ−1(v)2−Φ−1(u)2

2 ∂2uuC(u, 1− v) + e
Φ−1(u)2−Φ−1(v)2

2 ∂2vvC(u, 1− v)

∂2uvC(u, 1− v)Moreover, beause the normal law is symmetri, Φ−1(v) = −Φ−1(1− v) and the result follows
�.If C = CU,V where (U, V ) is a pair of uniform variable, then C1 = CU,1−V , C2 = C1−U,V and
C3 = C1−U,1−V is the survival opula of (U, V ).89
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On the other hand, many opulas have a stationary orrelation with an explosive behaviornear the boundary of the unit square (two of them are depited in �gure 3.4). For suhopulas there does not exist oupled Brownian motions suh that the opulas Ct are onstantand equal to C on a non trivial time interval. Numerial evidene shows that many usualarhimedean opulas fall in this ase; here is a detailed proof for the Clayton opula:Proposition 15 The stationary Brownian orrelation funtion of the Clayton opula withparameter θ > 0 is unbounded on (0, 1)2.Proof: the stationary orrelation funtion is (see appendix 3.7.3), is
ρθ(u, v) =

1

2

(
e

Φ−1(v)2−Φ−1(u)2

2
v

u
(1− vθ) + e

Φ−1(u)2−Φ−1(v)2

2
u

v
(1− uθ)

)Fix u ∈ (0, 1); then limv→0 corrθ(u, v) = +∞. Indeed, limv→0 e
−Φ−1(v)2

2 /v = +∞, while
e

Φ−1(v)2

2 v(1− vθ) is bounded on (0, 12 ]. This an be seen be writing that, for x < 0,
e

x2

2 Φ(x) =

0∫

−∞

e−u
2/2−xu du√

2π(see the proof of lemma 12). In partiular, 0 ≤ e
Φ−1(v)2

2 v ≤ 1
2 when v < 1

2 , whih, ombinedwith (1− vθ) ∈ [0, 1] yields eΦ−1(v)2

2 v(1− vθ) is bounded by 1
2 . Finally, limx→−∞ e

x2

2 Φ(x) = 0by dominated onvergene and thus limv→0 e
−Φ−1(v)2

2 /v = +∞. �.Some elliptial opulas also have this property: the Student opula has an unbounded orrela-tion funtion, and thus we laim the notieable result that it is not possible to ouple Brownianmotions from a �xed time on with a Student opula, see �gure 3.4.The table 3.1 provides expliit formulas for the orrelation funtion of the previously mentionedopulas (see also appendix 3.7). As the onsidered opulas are all symmetri, their stationaryorrelations read a(u,v)+a(v,u)
2 for some funtion a(u, v), given in table 3.1. The opula is said`Admissible' whenever its stationary orrelation is bounded by 1.There is an obvious di�erene between the opulas that are admissible and those that arenot: the opulas with bounded stationary orrelation we mentioned does not exhibit taildependene, ontrary to all the opulas whih have unbounded orrelation. Tail dependenemeasures the strength of the dependene of a opula in the lower-left quadrant and in theupper-right quadrant of [0, 1]2; for instane the oe�ient of lower tail oe�ient is de�nedas limt→0+

C(t,t)
t . We refer to Nelsen [15℄ and to Jaworski's artile [9℄ for preise statementson the tail dependene of the opulas mentioned above. Our experimental results leads us to90
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Copula Stationary orrelation funtion (a(u, v)) AdmissibleGaussian Cρ ρ YesStudent Cρ,ν (
ρ+ t−1

ν (u)t−1
ν (v)
ν

)
e

Φ−1(v)2−Φ−1(u)2

2

(
1 + t−1

ν (u)2

ν

) ν−1
2
(
1 + t−1

ν (v)2

ν

)− ν+1
2 NoClayton Cθ e

Φ−1(v)2−Φ−1(u)2

2
v
u(1− vθ) NoGumbel Cθ −eΦ−1(v)2−Φ−1(u)2

2
v
u
(− log(u))θ−1

(− log(v))θ−1
A1/θ−A(− log(u))−θ(θ−1−log(u))+θ−1

A1/θ+θ−1
Nowhere A = (− log(u))θ + (− log(v))θFrank Cθ e−θ

e−θ−1
(1− eθv)(1 − eθ(v−1)) YesGumbel-Barnett Cθ θ(1−θ log(v) v

u
)

1−θ−θ log(uv)+θ2 log(u) log(v)
YesFGM Cθ

2θv(1−v)
1+θ(1−2u)(1−2v) YesPlakett Cθ 2(θ−1)v(1−v)
1+(θ−1)(u+v−2uv) Yes (θ < 10)Table 3.1: TO BE PUT

91
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infer that stationary opulas are neessarily without tail dependene (although it may not bea su�ient ondition for being a stationary opula).3.3.6 A heuristi haraterization of attainable opulasThe fat that the stationary orrelation funtion ρC is not bounded by 1, indiates only that
C is not a stationary opula, but does not prove that it is not attainable. Nevertheless, weoutline here a heuristi haraterization of the distributions that are attainable by oupledMarkovian di�usions found by A. Galihon ([8℄). The idea is to write a variational problemonsisting in minimizing an objetive funtion whih depends on the orrelation, and thenformally writing the dual problem; this latter problem has the property to have �nite valuei� the opula is attainable at the hosen horizon.Proposition 16 (Heuristi) Let p and q be two probability distributions over R, and f afuntion de�ned on [−1, 1]. Consider the problem

inf
pt, ρt s.t.
p0=p, pT=q

∂tpt− 1
2
△pt−∂2xy(ρpt)=0

∫ T∫

0

Lf (ρt(x))pt(x)dtdx (3.15)where Lf (x) = 1|x|≤1f(x)+(+∞)1|x|>1. Then the primal problem (3.15) admits the followingdual
S := sup

ϕt s.t.
∂tϕt+

1
2
△ϕt+f∗(∂2xyϕt)=0

∫
ϕ(T, x)pT (x)dx −

∫
ϕ(0, x)p0(x)dx (3.16)where f∗(y) = sup|x|≤1(x · y − f(x)) is the Legendre transform of f over [−1, 1].The PDE whih appears in the onstraints of the primal problem is the Kolmogorov forwardequation of the oupled Brownian motion with orrelation funtion ρ, the distribution q isattainable at time T if and only if S <∞.Thus, theoretially, it should be possible to determine whether a given opula is attainable,by hoosing a onvenient funtion f and solving the problem (3.16) for every possible initialfuntion ϕ0. Eventually, remark that, as explained in setion 3.3.2, the time parameter T > 0is not a deisive quantity in this problem, an S being �nite is independent from its value.3.4 A Finanial exampleIn this setion, a strategy of portfolio insurane is onsidered in order to assess the impat ofoupling di�usions in pratie. Portfolio insurane (and more preisely Constant ProportionPortfolio Insurane) are a lass of dynami strategies that aim at guaranteeing a protetionat maturity (suh as a nominal amount in the ase of the lassial CPPI) while bene�ting of92
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the possible rise of a risky asset. These strategies �t well in our framework: they are dynamiand it is natural to use a ontinuous model of dependene to model the underlyings ratherthan imposing opulas at disrete times during the life of the strategy.De�nition and desription of the strategy We opted for a partiular type of strategy,alled Long-Short CPPI (desribed in Amen et al.[1℄ and Ronalli's book [19℄), for the impatof dependene in suh a strategy proved to be more obvious than for lassial CPPI.Let T > 0 be a time horizon. Let N be a nominal amount of ash. We assume the investmentuniverse is omposed of two risky assets, S1
t and S2

t . The CPPI long-short strategy aims atguaranteeing a perentage α of the performane of the seond asset, alled the `ore' whilebene�ting from a possible rise of the �rst asset, the `satellite'. Let Ft = αN
S2
0
S2
t be the valueat time t of the guarantee that must ahieve the strategy. The dynami CPPI strategy useleverage to invest in the satellite. It does it in in suh a way that the value of the strategyalways remains above Ft, possibly shorting the satellite and being long the ore if it happensthat NAVt < Ft. The multiplier m is a real number that determines the strength of leverage;the higher m, the stronger the leverage. The ushion is equal to Ct = NAVt − Ft andthe ushion % is NAVt−Ft

NAVt
. The investment level is the proportion invested in the satellite:

ILt = m.Ct/NAVt meaning that the ushion is leveraged to invest in the satellite. It followsthat, when the strategy is ontinuously rebalaned, the NAV has the dynamis:
dNAVt
NAVt

= ILt
dS1

t

S1
t

+ (1− ILt)
dS2

t

S2
tDi�usion Model The hosen model is simple: the assets follow a oupled Blak-Sholesmodel, 




dSi
t

St
= µitdt+ σitdW

i
t , i = 1, 2

d〈W 1,W 2〉t = ρt(W
1
t ,W

2
t )dt

(3.17)Thus the dynamis of the assets are log-normal, but the bivariate proess (S1
t , S

2
t ) is notGaussian in general. Moreover, if the assets are assumed to have the same dynamis, and thedrifts are positive, then the opula of (S1

t , S
2
t ) is the same as the opula of (W 1

t ,W
2
t ), whihfurther simpli�es the analysis.Results The impat of the dependene struture is seen on the gap probability at maturity.For suh a strategy, the gap risk at maturity is the possibility that the value of the strategyat T is below FT . It is the risk that the CPPI does not reah the level of protetion and thusthe risk that the CPPI seller su�ers a loss. Of ourse, a gap an not our if the CPPI isontinuously rebalaned and the assets follow a ontinuous di�usion : the results obtained inthis setion are obtained when the strategy is rebalaned every 3 days, and the maturity is93
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one year. The two asset are assumed to be martingales (µi = 0, i = 1, 2) and their volatilitiesare the same. In �gure 3.4 are given an estimation of the gap probability P(NAVT < FT ),for several opulas and several stok volatilities. In order to give a meaningful omparisonof the opulas, the Sperman's rho is used as a measure of the strength of dependene. TheSpearman's rho of a opula C is de�ned as the linear orrelation between (U, V ) of a pair ofuniform random variable with opula C; it is a measure of onordane (whose de�nition isrealled in [15℄, p. 169), and is suitable to ompare the strength of dependene aross di�erentopula families.

Figure 3.1: Gap probabilities obtained for di�erent opulas.Despite the fat that some of the onsidered opulas have unbounded stationary orrelation
ρC , we use nevertheless these opulas by foring ρC to be bounded using the simplest possible`trik', by onsidering (u, v) 7→ 1|ρC(u,v)|≤1ρC(u, v) + sgn(ρC(u, v))1|ρC (u,v)|>1 (where sgn(x)is the sign funtion, and equals 1 if x ≥ 0, −1 otherwise). Of ourse, the opula of theresulting oupled Brownian motions is di�erent from C 1. The opula we onsider all model1However the results obtained in this manner are still labeled by the name original opula C in �gure 3.494
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`negative' dependene, as an be seen from their nonpositive Spearman's rho, and in partiular,for opulas whih exhibits positive dependene, suh as the Gumbel opula, we use the `C1'transform de�ned in proposition 14. This type of dependene is the `adverse ase' for Long-Short CPPI as it signi�antly inreases the gap risk.Figure 3.4 shows the gap probability as a funtion of the Spearman's rho for variousopulas, when the volatility of both assets is 30%, that is in a market with high volatility.The impat of opulas is real, and in partiular the gap probability obtained with the Claytonopula learly bounds above the one obtained with the other opulas. This an be explainedby the strong dependene generated by (`C1' transform of) Clayton opulas when the �rstasset drops while the seond asset rises. It is notieable that the Clayton opula is the onlyone to be `uniformly' more onservative, i.e. yields higher gap probabilities, than the Gaussianopula.3.5 ConlusionThis hapter addressed the problem of onstruting bivariate ontinuous stohasti proesseswhose dependene at all times t is a given opula Ct, while the marginal proesses are �xedMarkovian di�usions. In partiular, it takles diretly the problem of onstruting Brownianmotions whose ross-setional dependene is ontrolled. It shows that while some of the mostlassi opulas an be used to model a stationary dependene between Brownian motions, itis nevertheless not the ase for many of them, and we infer empirially that opulas whihexhibit tail dependene might not be able to ouple Brownian motions. These oupling modelsould be useful in stress testing and risk management of strategies, and we have provided �rstresults as to the potential impat of dependene modeling with opulas on a long-short CPPIstrategy.This hapter develops the idea of oupling proesses with opulas in a bivariate ontext only.The multivariate ase (that is when more than two proesses are involved) is more omplex,and does not yield formulas as handy as in the bivariate ase. While bivariate models allowsfor building non trivial multivariate models where the pairwise dependene is ontrolled (forinstane star like dependene where the dependene between the proesses (X1,Xj) is imposedfor all j, or serial dependene, for whih the dependene between (Xj−1,Xj) is imposed),more work would be required to obtain general multivariate oupling models that would beexploitable in pratie.Finally, while we provided a ase-by-ase analysis of some opula families, a diretion forfurther researh is to obtain a general haraterization of the set of opulas attainable byoupled Brownian motions, possibly by developing the ideas exposed in paragraph 3.3.6, thatwould be of pratial interest to determine whether a given opula is an admissible model ofdependene. 95
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3.6 Appendix3.6.1 Proofs for setion 3.2Proof of orollary 1 For ε > 0, onsider the di�usion (3.6) shifted by ε. The shifteddi�usion (Xε
t , Y

ε
t ) = (Xt+ε, Yt+ε) is still a di�usion whose equation is:




dXε
t = aX(t+ ε,Xε

t )dt+ σX(t+ ε,Xε
t )dW

X,ε
t

dY ε
t = aY (t+ ε, Y ε

t )dt+ σY (t+ ε, Y ε
t )dW

Y,ε
t

d〈WX,ε,W Y,ε〉t = ρt(X
ε
t , Y

ε
t )dt

(Xε
0 , Y

ε
0 ) ∼ (Xε, Yε)

(3.18)
By assumption the dfs of the marginals, FXt+ε and F Yt+ε satisfy the hypotheses of proposition5 (they are regular up to time 0). Thus the opula PDE is valid for the shifted di�usion andreads, for all t > 0, for all ϕ ∈ C2

c ((0, 1)
2),

〈(∂tC)t+ε, ∂
2
uvϕ〉 =

〈1
2

((
f̃Xt+εσ

X(t+ ε, ·)
)2
∂2uuCt+ε +

(
f̃Yt+εσ

Y (t+ ε, ·)
)2
∂2vvCt+ε

)

+ ˜(ρt+εfXt+ε(·)σX (t+ ε, ·)fYt+ε(·)σY (t+ ε, ·))∂2uvCt+ε, ∂2uvϕ
〉 (3.19)and this is true for all ε > 0. �Proof of proposition 7 The two next lemmas are needed to handle the initial singulardistribution:Lemma 7 Let Ft be the df of Xt, where Xt is a ontinuous proess suh that limt→0Xt = x0a.s. Then for all q ∈ (0, 1), limt→0 F

−1
t (q) = x0.Proof: Suppose it is not the ase. Then, there exists some ε > 0, and a sequene tnsuh that limn→∞ tn = 0 and |F−1

tn (q) − x0| > ε for all n. Remark that for all x ∈ R,
limt→0 Ft(x) = 1x≥x0 by dominated onvergene. Thus Ftn(x0) −→

n→∞1 and thus, for all n bigenough, Ftn(x0) > q. By de�nition of the quantile funtion 2, F−1
tn (q) ≤ x0. Combinedwith |F−1

tn (q) − x0| > ε, it yields F−1
tn (q) ≤ x0 − ε. As Ftn is nondereasing, and using

Ftn ◦ (Ftn(x))−1 ≥ Id, one gets q ≤ Ftn(x0 − ε). The r.h.s onverges to 0 as n→ ∞ and thereis a ontradition. �Lemma 8 Let {Ct} be a opula family in C1,2(R+ × (0, 1)2) and FXt and F Yt be the dfsof ontinuous proesses Xt and Yt suh that limt→0Xt = x0 a.s. and limt→0 Yt = y0 a.s.Suppose FXt and F Yt have positive derivatives for all t > 0. Assume the tehnial ondition2For all q ∈ [0, 1], F−1(q) = inf{x|F (x) > q} 98
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(IC): ∃ ε > 0 s.t. (u, v) 7→ sup0<t≤ε ∂
2
uvCt(u, v) is integrable over (0, 1)2. Let pt(x, y) =

∂2xy(Ct(Ft(x), F
Y
t (y))); then limt→0 pt = δ(x0,y0) in distribution, i.e. limt→0Ept(ϕ(Xt, Yt)) =

ϕ(x0, y0) for all ϕ ontinuous and bounded.Proof:
Ept(ϕ(Xt, Yt)) = E(ϕ((FXt )−1(Ut), (F

Y
t )−1(Vt))), where (Ut, Vt) ∼ ∂2uvCt

=

∫

(0,12)

ϕ((FXt )−1(u), (F Yt )−1(v))∂2uvCt(u, v)dudvAording to lemma 7, limt→0 ϕ((F
X
t )−1(u), (F Yt )−1(v)) = ϕ(x0, y0). Eventually, the tehnialondition ensures that the dominated onvergene theorem an be applied, yielding the result.

�Lemma 9 Assume fXt ∈ C1,2(R∗
+ ×R), aXt ∈ C0,1(R+ ×R) is bounded, σXt ∈ C0,2(R+ ×R)and σt, σ′t are bounded and that ft and f ′t goes to 0 at −∞. Then the df FX(x) = ∫ x−∞ fXt (z)dzsatis�es, for all t > 0, for all x ∈ R,

∂tFt = −aXt (x)fXt (x) +
1

2
∂x{σ2t fXt }(x)Proof: The proof onsists in writing down the Kolmogorov forward equation for the density

fXt and then summing from −∞ to x. The boundary terms vanish by hypothesis.�Before proving the proposition 7, let us reall a theorem that ensures the uniqueness in Kol-mogorov forward equation:Theorem 5 (Bentata, Cont [2℄) Suppose that:1. The drifts, volatilities and orrelation are measurable and bounded.2. The drifts, volatilities and orrelation are ontinuous in x, uniformly over the ompatsin t3.3. The ovariane matrix is oerive: ∀R > 0, ∀t, inf |z|≤R infx x
′a(t, z)x > 0.Then for all x0, there exists a unique family pt(x0, dy) of probability measures with p0(x0, ·) =

δx0 and for all g ∈ C∞
c (R2),

∫
g(y)∂tpt(x0, dy) =

∫
Ltg(y)pt(x0, dy)3f(t, x) ontinuous in x, uniformly over the ompats in t means that ∀x, ∀T

infδ>0 supt∈[0,T ] inf |x′−x|≤δ |f(t, x)− f(t, x′)| = 0. 99
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Proof of prop 7: Let Pt be the law of probability with opula Ct and marginals densities
fXt and fYt . We aim at proving that, neessarily, Pt is the law at time t of the di�usion underonsideration. This is done by proving that Pt satis�es the same Kolmogorov forward equationas the law of the di�usion, and then use theorem 5 to prove the uniqueness of the solutions ofthis equation.For eah t > 0, let Fr(t, x, y) be the df of Pt, i.e. Fr(t, x, y) = Ct(F

X
t (x), F Yt (y)). Ft(x, y)denotes the vetor (FXt (x), F Yt (y)). Then, for all t > 0, x, y ∈ R,

∂tFr(t, x, y) = ∂tCt ◦ Ft(x, y) + ∂uCt ◦ Ft(x, y)∂tFXt (x) + ∂vCt ◦ Ft(x, y)∂tF Yt (y) (3.20)Now,
∂tCt ◦ Ft(x, y) =

1

2
(σXt (x)fXt (x))2∂uuCt ◦ Ft(x, y) +

1

2
(σYt (y)f

Y
t (y))2∂vvCt ◦ Ft(x, y)

+ ρt(x, y)σ
X
t (x)σYt (y)f

X
t (x)fYt (y)∂2uvCt ◦ Ft(x, y)aording to the PDE. Aording to lemma 9, the marginal dfs satisfy, for all t > 0, for all

x ∈ R,
∂tF

X
t = −aXt (x)fXt (x) +

1

2
∂x(σ

2
t (t, x)ft(x))and thus

∂uCt ◦ Ft(x, y)∂tFXt (x) = {−aXt (x)fXt (x) +
1

2
∂x(σ

2
t (t, x)f

X
t (x))}∂uCt ◦ Ft(x, y)Remark that ∂xFr(t, x, y) = fXt (x)∂uCt ◦ Ft(x, y), ∂2xxFr(t, x, y) = fXt (x)2∂2uuCt ◦ Ft(x, y) +

(fXt )′∂uCt ◦ Ft(x, y) and ∂2xxFr(t, x, y) = fXt (x)fYt (y)∂2uvCt ◦ Ft(x, y). Therefore (3.20) reads
∂tFr(t, x, y) = ρt(x, y)σ

X
t (x)σYt (y)∂

2
xyFr(t, x, y)

+
1

2
(σXt (x))2∂2xxFr(t, x, y)−

1

2
(σXt (x))2(fXt (x))′∂uCt ◦ Ft(x, y)

+
1

2
(σYt (y))

2∂2yyFr(t, x, y)−
1

2
(σXt (y))2(fYt (y))′∂vCt ◦ Ft(x, y)

+ {−aXt (x)fXt (x) +
1

2
∂x(σ

2
t (t, x)f

X
t (x))}∂uCt ◦ Ft(x, y)

+ {−aYt (y)fYt (y) +
1

2
∂y(σ

2
t (t, y)f

Y
t (y))}∂vCt ◦ Ft(x, y)However, expanding ∂x(σ2t (t, x)fXt (x)), the terms in front of ∂uCt ◦ Ft(x, y) redue to

(
−aXt (x) +

1

2
∂x

(
σXt (x)2

))
fXt (x)∂uCt ◦ Ft(x, y)

=

(
−aXt (x) +

1

2
∂x

(
σXt (x)2

))
∂xFr(t, x, y)100
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Finally,
∂tFr(t, x, y) = ρt(x, y)σ

X
t (x)σYt (y)∂

2
xyFr(t, x, y)

+
1

2
(σXt (x))2∂2xxFr(t, x, y) +

1

2
(σYt (y))

2∂2yyFr(t, x, y)

+

(
−aXt (x) +

1

2
∂x

(
σXt (x)2

))
∂xFr(t, x, y)

+

(
−aYt (y) +

1

2
∂y

(
σYt (y)

2
))

∂yFr(t, x, y)If ϕ ∈ C2
c (R

2), the expression 〈∂tFr(t, x, y), ∂2xyϕ〉 yields, thanks to the previous equation andintegration by parts in the sense of distributions:
∂t〈ft(x, y), ϕ〉 = 〈−∂x(aXt (x)ft(x, y))− ∂y(a

Y
t (y)ft(x, y)), ϕ〉

+ 〈1
2
∂2xx(σ

X
t (x)2ft(x, y)) +

1

2
∂2yy(σ

Y
t (y)

2ft(x, y)), ϕ〉

+ 〈∂2xy(ρt(x, y)σXt (x)σYt (y)∂
2
xyft(x, y)), ϕ〉This is preisely the Kolmogorov forward equation for the oupled di�usion. To summa-rize: if Ct satisfy the opula PDE and ft(x, y) is a bivariate probability density de�ned by

∂xy{Ct(FXt , F Yt )} then ft satis�es the Kolmogorov forward equation of the oupled di�usionequation.In order to invoke the theorem 5, the degeneray of ft at time 0 must be handled with are.This is done by stating that for all ϕ ∈ C2
c (R2), for all t > ε,

〈ft, ϕ〉 = 〈fε, ϕ〉 +
t∫

ε

〈fs,Ls(ϕ)〉ds (3.21)where Ls(ϕ) =  aXt

aYt


·∇ϕ+Tr(σσ∗(t, x, y)Hess(ϕ))) and σσ∗(t, x, y) = ( (σXt )2 ρtσXt σ

Y
t

ρtσXt σ
Y
t (σYt )2

).Eventually, aording to lemma 8, 〈ft, ϕ〉 → 〈δ(x0,y0), ϕ〉 as t → 0 and the integrand in ther.h.s of (3.21) is an integrable funtion on [0, t]. Indeed, for all s > 0, |Ls(ϕ)(x, y)| is boundedon [0, t]×R2 by a onstant that depends only on t and the bounds on ϕ and its derivatives oforder less than 2. De�ning f0 = δ(x0,y0), 〈fs,Ls(ϕ)〉 is integrable over [0, t] and letting ε→ 0,
〈ft, ϕ〉 = 〈f0, ϕ〉 +

t∫

0

〈fs,Ls(ϕ)〉dsThis equation has a unique solution aording to theorem 5. Thus ft is indeed the law of thedi�usion and, in partiular, the opula of the di�usion is Ct, for all t > 0. �101
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3.6.2 Proofs for setion 3.3Proof of proposition 8: Consider the seond part of the proposition and let ρ̃t = 1
t

∫ t
0 ρsds.Notie that t∂Ct = (ρt − ρ̃t)∂ρCρ̃t . Moreover, aording to the formulas given in appendix3.7.1,

∂ρCρ = 1
2πe

−Φ−1(u)2+Φ−1(v)2

2 ∂2uvCρ

∂2uuCρ = −ρ.e−Φ−1(u)2+Φ−1(v)2

2 ∂2uvCρThis implies F ({Ct}t≥0)t = ρt �.Proof of lemma 6: Write Cαt = αCt + (1− α)C̃t. Then, for all (u, v) ∈ (0, 1)2,
ραt (u, v) = F ({αCt + (1− α)C̃t})t

=
2πt∂tC

α
t − 1

2 [e
−Φ−1(u)2∂2uuC

α
t + e−Φ−1(v)2∂2vvC

α
t ]

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvC
α
t

= αρCt(u, v)
∂2uvCt
∂2uvC

α
t

+ (1− α)ρC̃t
(u, v)

∂2uvC̃t
∂2uvC

α
t(with obvious notations) and thus:

|ραt (u, v)| ≤ |ρCt(u, v)| ∨ |ρC̃t
(u, v)|.

[
α
∂2uvCt
∂2uvC

α
t

+ (1− α)
∂2uvC̃t
∂2uvC

α
t

]
= 1Moreover, as ραt = f(u, v)ρCt(u, v) + (1− f(u, v))ρC̃t

(u, v) (where f(u, v) = α. ∂
2
uvCt

∂2uvC
α
t
), and

1− ραt = f(u, v)(1− ρCt(u, v)) + (1− f(u, v))(1 − ρC̃t
(u, v))

≥ ( inf
t,(u,v)

(1− ρCt(u, v))) ∧ ( inf
t,(u,v)

(1− ρC̃t
(u, v))) > 0beause both ρCt and ρC̃t

are bounded away from 1. And likewise, inft,(u,v) 1+ ραt > 0, whihprove that ρα is bounded away of ±1. Finally, it is obvious that ραt = ρ if t is small enough,and that it is ontinuous. �In order to prove that a given opula C an be attained, it is useful to know under whatonditions a time-dependent mixture between a opula family in Cop and a onstant opula
C remains in Cop.Lemma 10 Let {Ct} in Cop(ρ) for some ρ ∈ (−1, 1) and C a opula suh that ρC ∈ CorrBM
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De�ne t > 0,
δt = inf

(u,v)∈(0,1)2
s.t. Ct(u,v)6=C(u,v)





e
Φ−1(u)2+Φ−1(v)2

2

2π|Ct(u, v)− C(u, v)| [(1 − |ρt(u, v)|)∂2uvCt ∧ (1− |ρC(u, v)|)∂2uvC]



and suppose that δt > 0 for all t > 0. Let αt be a funtion that is ontinuously di�erentiable onR+ and takes values in [0, 1], whih is moreover onstant equal to 1 on a non empty interval

[0, ε], suh that, for all t > 0,
inf
t
(δt − t|∂tαt|) > 0then the opula family Ĉt = αtCt + (1− αt)C is in Cop(ρ).In the ase where the opula family {Ct} is onstant, equal to the Gaussian opula Cρ for some

ρ ∈ (−1, 1), the above ondition reads supt t|∂tαt| < δC(ρ), where
δC(ρ) = inf

(u,v)∈(0,1)2
s.t. Ct(u,v)6=C(u,v)





e
Φ−1(u)2+Φ−1(v)2

2

2π|Cρ(u, v)− C(u, v)| [(1− |ρ|)∂2uvCρ(u, v) ∧ (1− |ρC(u, v)|)∂2uvC]



 .Proof It is trivial that Ĉt is indeed a opula with everywhere positive density. With obviousnotations:

ρ̂t =
2πtα̇t(Ct − C)

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)
+ αtρt(u, v)

∂2uvCt

∂2uvĈt
(u, v) + (1− αt)ρC(u, v)

∂2uvC

∂2uvĈt
(u, v)Thus, ρ̂t is ontinuous, and equals ρ for t small enough.

|ρ̂t| ≤
2πt|α̇t||Ct − C|

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)
+ αt|ρt(u, v)|

∂2uvCt

∂2uvĈt
+ (1− αt)|ρC(u, v)|

∂2uvC

∂2uvĈtA su�ient ondition for the r.h.s. to be less than 1 is, for (u, v) s.t. Ct(u, v) 6= C(u, v)

t|α̇t| ≤
e

Φ−1(u)2+Φ−1(v)2

2

2π|Ct − C| (∂2uvĈt(u, v) − αt|ρt(u, v)|∂2uvCt − (1− αt)|ρC(u, v)|∂2uvCt)

=
e

Φ−1(u)2+Φ−1(v)2

2

2π|Ct − C| (αt(1− |ρt(u, v)|)∂2uvCt + (1− αt)(1 − |ρC(u, v))|∂2uvC)The expression between parenthesis in the r.h.s. is higher than (1 − |ρt(u, v)|)∂2uvCt ∧ (1 −
|ρC(u, v)|)∂2uvC hene the su�ient ondition.
δt > 0 is also a su�ient ondition for ρ̂t to be bounded away from ±1. For instane:

ρ̂t + 1 = αt
∂2uvCt

∂2uvĈt
(1 + ρt) + (1− αt)

∂2uvC

∂2uvĈt
(1 + ρC) +

2πtα̇t(Ct − C)

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)103
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So,̂
ρt + 1 ≥

{
αt
∂2uvCt

∂2uvĈt
(1 + ρt)

}
∧
{
(1− αt)

∂2uvC

∂2uvĈt
(1 + ρC)

}
− 2πt|α̇t||Ct − C|
e−

Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)(3.22)The r.h.s. is stritly positive i�, on {(u, v) s.t. Ct 6= C},
2πt|α̇t||Ct − C|

e−
Φ−1(u)2+Φ−1(v)2

2 ∂2uvĈt(u, v)
<

{
αt
∂2uvCt

∂2uvĈt
(1 + ρt)

}
∧
{
(1− αt)

∂2uvC

∂2uvĈt
(1 + ρC)

}i.e.
t|α̇t| <

e
Φ−1(u)2+Φ−1(v)2

2

2π|Ct −C| (αt∂
2
uvCt(1 + ρt)) ∧ ((1− αt)∂

2
uvC(1 + ρ̃t))However, (1 + ρt) ≥ (1− |ρt|) and a su�ient ondition for the r.h.s. of (3.22) to be positiveis

t|α̇t| <
e

Φ−1(u)2+Φ−1(v)2

2

2π|Ct − C| (∂2uvCt(1− |ρt|)) ∧ (∂2uvC(1− |ρ̃t|))that is, t|α̇t| < δt. As inft(δt − t|α̇t|) > 0, the r.h.s. of (3.22) is not only positive but
inft(ρ̂t + 1) > 0. This is true also for inft(ρ̂t − 1) and thus ρ̂t is bounded away from ±1.�Before proving the proposition 11, we need the following tehnial lemma:Lemma 11 Let 0 < ε < η. Consider the funtion

αε,ηt = 1t≤ε +
e

2
e
− t−ǫ

η−t1t≥ ε+η
2

+
(
1− e

2
e−

η−t
t−ǫ

)
1ε<t< ε+η

2

αt is ontinuously di�erentiable on R+, equals 1 if t ≤ ε, 0 if t ≥ η, is dereasing on [ε, η],and
∀t ≥ 0, t|∂αε,ηt | ≤ 2η

η − εProof:
∂tα

ε,η
t = −e

2

η − ε

(η − t)2
e−

t−ǫ
η−t1t≥ ε+η

2
− e

2

η − ε

(t− ε)2
e−

η−t
t−ε 1t≤ ε+η

2Using the easy fat that the funtion e−
K
x

x2
, K > 0, x ≥ 0 reahes its maximum at x = K

2 , andthe maximum thus equals 4
e2K2 , and writing that e− t−ε

η−t = e.e
− η−ε

η−t and e− η−t
t−ε = e.e−

η−ε
t−ε , wehave,

|∂tαε,ηt | ≤ 2

(η − ε)
1t≥ ε+η

2
+

2

(η − ε)
1t≤ ε+η

2And thus t|∂tαε,ηt | ≤ 2η
η−ε . �Proof of proposition 11: With the same notations as in lemma 11, de�ne αε,Kt = αε,Kεt ,for some onstant K > 1 to be determined later. Consider the opulas Cεt = αεtCρ+(1−αεt )C.104
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We want to show that the orresponding orrelation is bounded by 1. And indeed, applyinglemma 11, we know that
t|∂tαε,Kt | ≤ 2K

K − 1Thus, if δC(ρ) > 2 for some ρ, there exists a K0 > 1 suh that, for all ε,
t|∂tαε,K0

t | < δC(ρ)By virtue of lemma 10, this implies that {Cεt } ∈ Cop(ρ). �Proof of proposition 12: W.l.o.g. assume θ ≥ 0 and thus ρθ ≥ 0. Moreover we need theLemma 12 For all u ∈ (0, 1), u.(1− u).eΦ
−1(u)2/2 ≤ 1

2 .Proof: proving u.(1 − u).eΦ
−1(u)2/2 ≤ 1

2 for all u ∈ (0, 1) is equivalent to prove that for all
x ∈ R, (1− Φ(x))Φ(x)e

x2

2 ≤ 1
2 .

e
x2

2 Φ(x) = ex
2/2

x∫

−∞

e−u
2/2 du√

2π
=

0∫

−∞

e−u
2/2−xu du√

2π
≤

0∫

−∞

e−u
2/2 du√

2π
, if x ≤ 0

=
1

2and thus (1− Φ(x))Φ(x)e
x2

2 ≤ 1
2 when x ≤ 0. When x > 0, we have in the same manner:

(1− Φ(x))e
x2

2 = ex
2/2

+∞∫

x

e−u
2/2 du√

2π
=

+∞∫

0

e−u
2/2−xu du√

2π
≤

+∞∫

0

e−u
2/2 du√

2π
, if x ≥ 0

=
1

2and thus (1− Φ(x))Φ(x)e
x2

2 ≤ 1
2 for all x. �Bak to the proof of the proposition, reall that ρθ(u, v) = a(u, v) + a(v, u), with

a(u, v) = θ.
e(Φ

−1(v)2−Φ−1(u)2)/2v(1− v)

1 + θ(1− 2u)(1 − 2v)

a(u, v) ≤ θ for all (u, v) ∈ (0, 1)2: this is equivalent to showing that
e(Φ

−1(v)2−Φ−1(u)2)/2v(1− v) ≤ 1 + θ(1− 2u)(1 − 2v)The r.h.s. is greater than 1− θ. Using the lemma 12, the l.h.s. is less than 1/2. Eventually,
1− θ ≥ 1/2 as θ ≤ 1/2. So ρθ(u, v) = a(u, v) + a(v, u) ≤ 2θ ≤ 1. �105
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Proposition 17 Let ρ(t, u, v) be a Borelian funtion on R+ × (0, 1)2, bounded by 1. Let
f(t, x, y) = ρ(t,Φ(x/

√
t),Φ(y/

√
t)) and g(t, x, y) =

√
1− f2(t, x, y). Assume that f and gsatisfy: for all n ∈ N

∗, ||(x1, x2)|| ≤ n, ||(y1, y2)|| ≤ n, for almost every t ≥ 0, ||f(t, x1, y1)−
f(t, x2, y2)|| ≤ Kt(n)||(x1−x2, y1−y2)|| (and the same for g) where Kt(n) is �nite and satisfy

T∫

0

K2
t (n)dt < +∞, for all T > 0In other words, assume f and g are t-almost everywhere loally Lipshitz in the spae variable,and that for all balls, the orresponding time-dependent Lipshitz onstant is loally squareintegrable. Then the oupling SDE (3.10) has a unique strong solution.This type of result is lassi and dates bak to It	o, see Krylov and Rozovskii [11℄ theorem 3.1,pp. 1254-1255 and referenes therein.3.7 FormulasThis setion gathers the formulas of the seond order derivatives that intervene in the opulaPDE for various opula families.3.7.1 Gaussian opula

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)where Φρ is the df of the bivariate normal distribution with orrelation ρ, namely:
Φρ(x, y) =

y∫

−∞

x∫

−∞

1

2π
√

1− ρ2
e
− 1

2(1−ρ2)
(u2+v2−2ρuv)

dudvThe useful derivatives are:




∂2uuCρ(u, v) =
−ρ√
1−ρ2

exp
(
− 1

2(1−ρ2) [(2ρ
2 − 1)Φ−1(u)2 +Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)]

)

∂2vvCρ(u, v) = ∂2uuCρ(v, u)

∂2uvCρ(u, v) =
1√
1−ρ2

exp
(
− 1

2(1−ρ2)
(
Φ−1(u)2 +Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)

)
+ 1

2

(
Φ−1(u)2 +Φ−1(v)2

))

∂ρCρ(u, v) =
1√
1−ρ2

1
2π exp

(
− 1

2(1−ρ2) [Φ
−1(u)2 +Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)]

)A proof of the formula for ∂ρCρ an be found in Plakett [17℄, p. 353. Alternatively, it an be106
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diretly reovered by applying the opula PDE of two Brownian motions with deterministiorrelation.3.7.2 Student CopulaThe bivariate Student opula with orrelation parameter ρ and degree of freedom ν ∈ R
∗
+, isde�ned as

Cρ,ν(u, v) = tρ,ν(t−1
ν (u), t−1

ν (v))where tν is the univariate df of the Student distribution:
tν(x) =

x∫

−∞

Γ(((ν + 1)/2)

Γ(ν/2)

(1 + w2

ν )−
ν+1
2

√
νπ

dwand tρ,ν is the df of the bivariate Student distribution with orrelation ρ and dof ν:
tρ,ν(x, y) =

x∫

−∞

y∫

−∞

Γ(((ν + 2)/2)

Γ(ν/2)

(
1 + w2+z2−2ρ.w.z

ν(1−ρ2)

)− ν+2
2

νπ
√
1− ρ2

dwThe derivatives are:




∂2uuC
ρ,ν(u, v) = −Γ((ν+2)/2)Γ(ν/2)

Γ2((ν+1)/2)

(
ρ+ t−1

ν (u)t−1
ν (v)
ν

)
(1− ρ2)

ν+1
2 ν

ν+2
2

(
1 + t−1

ν (u)2

ν

)ν

.(t−1
ν (u)2 + t−1

ν (v)2 − 2ρt−1
ν (u)t−1

ν (v) + ν(1− ρ2))−
ν+2
2

∂2vvC
ρ,ν(u, v) = ∂2uuC

ρ,ν(v, u)

∂2uvC
ρ,ν(u, v) = Γ((ν+2)/2)Γ(ν/2)

Γ2((ν+1)/2)
(1− ρ2)

ν+1
2 ν

ν+2
2

(
1 + t−1

ν (u)2

ν

) ν+1
2
(
1 + t−1

ν (v)2

ν

) ν+1
2

.
(
t−1
ν (u)2 + t−1

ν (v)2 − 2ρt−1
ν (u)t−1

ν (v) + ν(1− ρ2)
)− ν+2

2

∂ρC(u, v) = 1
2π (1− ρ2)(ν−1)/2ν(ν+1)/2((1 − ρ2)ν + t−1

ν (u)2 + t−1
ν (v)2 − 2ρt−1

ν (u)t−1
ν (v))−ν/2, ν > 1Therefore, the stationary Brownian orrelation funtion of the Student opula is

corrρ,ν(u, v) =
ρ+ t−1

ν (u)t−1
ν (v)
ν

2

(
e

Φ−1(v)2−Φ−1(u)2

2

(
1 +

t−1
ν (u)2

ν

) ν−1
2
(
1 +

t−1
ν (v)2

ν

)− ν+1
2

+ e
Φ−1(u)2−Φ−1(v)2

2

(
1 +

t−1
ν (v)2

ν

) ν−1
2
(
1 +

t−1
ν (u)2

ν

)− ν+1
2

) (3.23)
107
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3.7.3 Arhimedean opulasThe arhimedean opulas are a lass of opulas that takes the form Cϕ(u, v) = ϕ[−1](ϕ(u) +

ϕ(v)) where ϕ is a ontinuous, stritly dereasing funtion from [0, 1] to [0,+∞] suh that
ϕ(1) = 0, where ϕ[−1] is the pseudo-inverse of ϕ de�ned as ϕ[−1](t) = 10≤t≤ϕ(0)ϕ

−1. ϕ isalled the generator of the opula.Clayton opula: For θ ≥ −1, θ 6= 0, the generator of the Clayton opula with parameter
θ is 1

θ (t
−θ−1) and the opula reads Cθ(u, v) = (u−θ+v−θ−1)

−1/θ
+ . Furthermore, when θ > 0,the opula admits a density and





∂2uuCθ(u, v) = −(θ + 1)(u−θ + v−θ − 1)−1/θ−2u−θ−2(v−θ − 1)

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = (θ + 1)(u−θ + v−θ − 1)−2−1/θu−θ−1v−θ−1

∂θCθ(u, v) = Cθ(u, v)
(
− 1

θ log(Cθ(u, v)) +
1
θ
log(u)u−θ+log(v)v−θ

u−θ+v−θ−1

)Gumbel opula: This opula has generator (− log(t))θ, for θ ≥ 1, and




Cθ(u, v) = exp
(
−A 1

θ

)
, where A(u, v) = (− log(u))θ + (− log(v))θ

∂2uuCθ(u, v) = Cθ(u,v)
u2

A1/θ−2(− log(u))2θ−2
[
A1/θ −A(− log(u))−θ(θ − 1− log(u)) + θ − 1

]

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = Cθ(u,v)
uv (log(u) log(v))θ−1A1/θ−2

[
A1/θ + θ − 1

]Frank opula: for θ 6= 0, its generator is − log
(
e−θt−1
e−θ−1

), and




Cθ(u, v) = −1
θ log

(
(1 + (e−θu−1)(e−θv−1)

e−θ−1

)

∂2uuCθ(u, v) = θ. e−θu(e−θv−1)(e−θv−e−θ)
(e−θ−1+(e−θu−1)(e−θv−1))2

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = θ.(1− e−θ) e−θue−θv

(e−θ−1+(e−θu−1)(e−θv−1))2

108
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Gumbel-Barnett opula: for θ ∈ (0, 1], its generator is log(1− θ log(t)), and




Cθ(u, v) = uve−θ log(u) log(v)

∂2uuCθ(u, v) = −θe−θ log(u) log(v)(1− θ log(v)) log(v) vu

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = e−θ log(u) log(v)(1− θ − θ log(uv) + θ2 log(u) log(v))Arhimedean opula 4.2.10 in [15℄, p. 116. In order to support our intuition thatopulas without upper or lower tail dependene are suitable to ouple Brownian, we hose onesuh arhimedean opula, whose generator is log(2tθ − 1), θ ∈ (0, 1]. Then,




Cθ(u, v) = uv

(1+(1−uθ)(1−vθ))
1
θ

∂2uuCθ(u, v) = (∂uC)2

C + C
(
− 1
u2

+ uθ−1(1−vθ)
1+(1−uθ)(1−vθ){

θ−1
u + θ uθ−1(1−vθ)

1+(1−uθ)(1−vθ)}
)

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = ∂uC∂vC
C − θ uθ−1vθ−1

1+(1−uθ)(1−vθ)C{1− (1−uθ)(1−vθ)
1+(1−uθ)(1−vθ)}3.7.4 FGM opulas

Cθ(u, v) = uv + θuv(1− u)(1− v), |θ| ≤ 1. Obviously, C0 = Π.




∂2uuCθ(u, v) = −2θv(1− v)

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = 1 + θ(1− 2u)(1 − 2v)3.7.5 Plakett opulaThe Plakett opula is Cθ(u, v) = 1
2(θ−1)((1+(θ−1)(u+v))−

√
(1 + (θ − 1)(u + v))2 − 4uvθ(θ − 1)),

θ > 0, and C1(u, v) = uv.




∂2uuCθ(u, v) = 2θ(θ−1)v(v−1)

((1+(θ−1)(u+v))2−4uvθ(θ−1))
3
2

∂2vvCθ(u, v) = ∂2uuCθ(v, u)

∂2uvCθ(u, v) = θ(1+(θ−1)(u+v−2uv))

((1+(θ−1)(u+v))2−4uvθ(θ−1))
3
2
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Figure 3.2: FGM Copula stationary orrelation. Above: θ = −1. Below: θ = 1.
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Figure 3.3: Plakett Copula stationary orrelation. Above: θ = 2. Below: θ = 10.
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Figure 3.4: Explosive behavior of some opulas stationary orrelations. Above: Studentstationary orrelation funtion, ρ = 0.5, ν = 0.4. Below: Clayton orrelation funtion, θ = 2.
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ConlusionThis thesis studied two aspets of dependene modeling. The �rst one is the understandingand modeling of the multivariate dependene, i.e. the dependene between random vetors.The seond aspet is the dependene between ontinuous-time stohasti proesses, and morepreisely modeling the dependene between ontinuous stohasti proesses with the help ofopulas.Optimal transport theory provides a means to generalize the notions of quantiles and omono-toniity to the multivariate setting.Therefore it has been used to de�ne multivariate risk mea-sures. We implemented and studied a method that omputes an approximation of the optimaltransport map when the initial measure and the target measure are ontinuous ; This methodwas ompared to several lassial algorithms and proved to behave e�iently. However, sev-eral questions remain. The onvergene speed and omplexity of the quasi-Newton algorithm,respetively O(N5/2) and O(1/
√
N) for the transport problem in R

2, remain to be provedtheoretially. Moreover, the IPFP produes high numerial errors on the boundary of thesupport of the initial measure; it seems that this is not the only algorithm that exhibits thiskind of behavior, and it would be interesting to test the performane of suh algorithms ondistributions with periodi support to avoid the di�ulties that arises on the boundary of thesupport. Eventually, we mentioned others algorithms, and there remains to do a ompleteomparison aross more existing algorithms.The seond part of the thesis proposed a de�nition of extreme dependene between �xed mul-tivariate laws of probability. This de�nition is based on the notion of ovariogram, de�ned asthe set of all possible ross-ovariane matrix between the multivariate marginals. We givea method that is numerially tratable to ompute extreme ouplings; this proedure an beused to de�ne trajetories of ouplings that starts at some oupling whose ross-ovarianemathes a given ross-ovariane matrix and goes to an extreme oupling. This trajetory anbe used to stress the dependene between the multivariate marginals, for instane in problemsof portfolio alloation or in the risk management of options on several underlyings. Further-more, the parameterization of these trajetories allows to de�ne an index of the strength ofthe dependene between the marginals. However, this index is not invariant by transformsof the marginals and the question remains to determine whether a measure of multivariate113
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dependene an atually be derived from this index. Extreme ouplings an be also derivedby maximization of ross-ovariane matries with respet to some oni orders. While thevariational haraterization of the extreme ouplings makes it lear that these ouplings are apartiular ase of extreme ouplings, the relation between the various notions of extreme de-pendene assoiated to oni orders deserves to be further investigated, as well as the relevaneof using a given oni order in pratial appliations.Finally, the third hapter gives some answers as to the spatial dependene that an be attainedby two univariate Markovian di�usions. More spei�ally, the oupling of two Brownian mo-tions by stationary opulas is highlighted (that is Brownian motions with a onstant spatialopula after some time). We provided ase-by-ase results showing that some opulas were ad-missible to model suh dependene, while others (inluding Student, Clayton, Gumbel opulas)were not. However, deriving su�ient and neessary onditions that an be used in pratie todetermine whih opulas are attainable by oupled Brownian motions (or admissible to modelstationary dependene between Brownian motions) is still an open question. We treated thebivariate ase, providing an integrated form of the Kolmogorov forward PDE that desribesthe evolution of the spatial opula of oupled Markovian di�usions. The multivariate ase ismore omplex to takle, as on top of neessary boundedness of the orrelation oe�ients, theorrelation matrix needs also to be nonnegative, whih ompliate further the harateriza-tion of multivariate opula that are admissible to ouple several di�usions. Note also that wefoused on a partiular oupling problem: the marginal di�usions are Markovian. One ouldalso onsider the ase where the bivariate di�usion is Markovian but not the marginals (i.e.the drifts and volatilities depend on the state of both marginals). In this ase, the integrationof the Kolmogorov forward equation an not be made as in the ase we studied, and the linkbetween the opula family {Ct}t and the orrelation funtion (or orrelation matrix) is lesslear.Finally, a subjet of potentially high interest is the appliation of optimal transport teh-niques to di�usion equations. For instane a Markov funtional model desribing a strongdependene between two multivariate di�usions Xt and Yt ould be Ỹt = ∇ϕt(Xt), where ∇ϕtis the optimal transport map between the law of Xt and the law of Yt. Ŷt is a multivariateproess with the same one dimensional marginals as Yt, whih means that Ỹt ∼ Yt for all t.Suh a model raises the question of the smoothness of the maps ∇ϕt both in spae and time,and of the possibility of sampling trajetories from suh models within a sensible amount oftime and with an aeptable auray.
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µ-omonotoniity, 50-omonotoniity, 50Coni order, 53Hermitian, 56Loewner, 55Orthant, 54CopulaCopula PDE, 77Arhimedean opulas, 89, 108Attainable, 85, 92Copula PDE, 82De�nition, 74Farlie-Gumbel-Morgenstern, 87, 109Gaussian, 106Impossibility theorem, 52Plakett, 89, 109Sklar's theorem, 74stationary, 85Student, 107CorrelationCoupling orrelation, 76Stationary orrelation funtion, 85CouplingCoupled Brownian motions, 76Coupling SDE, 77, 83Covariogram, 48, 51CPPI, 93Cross-ovariane matrix, 49Dual problem, 17, 21, 22, 29Entropy, 30Entropi penalization, 56Kullbak-Leibler divergene, 30Extreme dependene, 52

Extreme positive dependene, 47Fréhet opula, 47Index of dependene, 60Indies of maximal orrelation, 62Iterative Proportional Fitting Proedure (IPFP),30Kantorovith potential, 18, 21Kolmogorov forward equation, 78Linear Programming, 28Monge-Ampère equation, 18Optimal quantization, 26Quantizer, 26Optimal transport map, 18Positive extreme dependene, 53Power diagram, 18, 19Primal problem, 17, 22, 28Entropi relaxation, 30Quasi-Newton algorithm, 27BFGS method, 28Spearman's rho, 94Subdi�erential, 49Voronoï ell, 19, 26Wassertein distane, 24, 26
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