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Abstract

In this thesis, we present a new implementation of the constrained Random Phase Approximation (cRPA)
in a density functional code within the linearized augmented plane wave (LAPW) framework. The aim is
to calculate – from first principles – the effective Coulomb interaction matrix for correlated solids, open-
ing the way to a truly ab initio description within many-body calculations. In particular, we calculate
the Hubbard parameter, U , and Hund’s exchange, J , as well as their energy dependence arising from dy-
namical screening effects. As in the Wilson renormalization group, we stress that the effective Coulomb
interactions crucially relie on the choice of the correlated subspace for which an effective low-energy
Hamiltonian is constructed, although results for physical observables have to be the same at the end. A
specific scheme for cRPA, based on a projection approach onto the low-energy subspace, is also intro-
duced in order to deal with electronic structures where the target correlated orbitals are strongly entangled
with the itinerant ones.

Applications are shown for i) iron-based pnictides, LaOFeAs and BaFe2As2, and chalcogenides, FeSe
(Chapter 6) [Vaugier et al. (2012a)], ii) 3d transition metals to benchmark the projection scheme (Chap-
ter 6) and iii) 3d and 4d transition metal perovskites, SrMO3 (M = V, Cr, Mn, Nb, Mo, Tc) and layered
perovskites, Sr2MO4 (M = Mo, Tc, Ru, Rh) (Chapter 7) [Vaugier et al. (2012b)]. The cRPA values for
the interaction Hamiltonian are combined with the dynamical mean-field theory (LDA+cRPA+DMFT)
for the description of the spin-orbitally ordered Mott insulator Sr2IrO4 (in collaboration with [Mar-
tins et al. (2011)]), and the rare-earth fluorosulfide pigment, CeSF (in collaboration with [Tomczak
et al. (2012)]).

Résumé

Cette thèse propose une nouvelle implémentation de “l’approximation de la phase aléatoire avec polari-

sation contrainte” (constrained random phase approximation, cRPA). Notre implémentation repose sur la
théorie de la fonctionnelle de la densité, développée dans une base d’ondes planes augmentées (linearized
augmented plane wave, LAPW). Cette méthode, appliquée à des matériaux fortement corrélés, permet de
calculer de facon réaliste la matrice d’interaction coulombienne effective, qui pourra être traitée par la suite
au moyen de l’approche à N-corps souhaitée. En particulier, les valeurs de l’interaction de Hubbard, U , et
de l’échange de Hund, J , sont déterminées de manière ab initio, ainsi que leur dépendance en fréquence
qui résulte des effets dynamiques de l’écrantage. Comme dans la théorie du groupe de renormalisation
de Wilson, l’interaction coulombienne effective dépend du choix du sous-espace corrélé pour lequel est
construit un Hamiltonien effectif de basse énergie, alors que les valeurs des observables physiques n’en
dépendent pas. Afin de généraliser la cRPA aux matériaux dont la structure électronique exhibe des or-
bitales corrélées et itinérantes intriquées, une méthode basée sur la projection sur le sous-espace corrélé
est également introduite.

Différentes classes de matériaux sont envisagées comme applications : i) pnictides à base de fer,
LaOFeAs et BaFe2As2, et chalcogénides, FeSe (Chapitre 6) [Vaugier et al. (2012a)], ii) métaux de tran-
sition 3d afin de valider notre méthode de projection (Chapitre 6), iii) oxydes de métaux de transition
pérovskites, SrMO3 (M = V, Cr, Mn, Nb, Mo, Tc), et pérovskites en couches, Sr2MO4 (M = Mo, Tc, Ru,
Rh) (Chapitre 7) [Vaugier et al. (2012b)]. L’Hamiltonien d’interaction cRPA est également couplé à la
théorie du champ moyen dynamique (LDA+cRPA+DMFT) afin de décrire l’isolant de Mott induit par le
couplage spin-orbite, Sr2IrO4 (en collaboration avec [Martins et al. (2011)]), et le pigment à base de terre
rare, CeSF (en collaboration avec [Tomczak et al. (2012)]).





�





Introduction

Naively, the calculation of the Coulomb repulsion between two charges may seem like a simple
textbook problem. However, calculating this repulsion for two electrons in a solid is far from
being trivial. The electronic polarizability screens the Coulomb potential, leading to a renor-
malized repulsion strength. The main objective of this thesis is to calculate these renormalized
interactions from first principles, that is, without any adjustable parameters. More specifically,
we determine the Coulomb interaction matrix for correlated solids in a basis of localized or-
bitals. These matrices can – under certain conditions – be parametrized by a small number of
parameters, Hubbard U and Hund’s coupling J , which can then be employed within a lattice
Hamiltonian description to model the material of interest.

Electronic screening is a key concept that notably differenciates the behavior of electrons
in solids from the one of electrons in isolated atoms. The dielectric function, characterizing
the response of a solid to an external perturbation, encodes the different screening processes.
They have direct observable consequences in spectroscopic properties such as optical probes or
electron energy loss spectroscopy.

In photoemission spectroscopy, a perturbation is caused by the removal or addition of an
electron from or into the solid. Adding an electron into a localized orbital on a given atom per-
turbs the systems and induces a rearrangement of the electronic cloud resulting in a net depletion
of electrons around the atom. This process is formally equivalent to the creation of a “screening
hole” reducing the effective Coulomb potential. It is dynamical and so must be the effective
interaction between the electrons. This is easily seen in two limiting cases: electrons do not
respond to a high-frequency oscillating electric field whose frequency exceeds any electronic
energy scale, whereas screening is very efficient at low energies, i.e. for excitations that live
on large time scales. On intermediate energy scales, different processes, such as particle-hole
transitions or collective excitations contribute to the screening. Particularly interesting are col-
lective oscillations, resonant with the perturbation, called plasmons. In the electron gas, such
oscillations involve the whole electronic system, while in the solid more exotic plasmon modes
can result from the oscillations of a fraction of electrons associated for example with a given set
of valence states.

The theoretical description of screening in materials and the calculation of the resulting
screened quantities are the topic of the present thesis. To this effect, we use the constrained
Random Phase Approximation (cRPA) (which we have implemented in a density functional code
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within the full-potential augmented plane wave ((L)APW+lo) electronic structure framework).
Since considering screening in an exact way is of paramount difficulty within solids, the problem
is simplified such as to neglect the interaction of the created particles and holes. In diagrammatic
language, this amounts to a restriction to diagrams involving only single particle-hole bubbles –
the random phase approximation (RPA).

These concepts are used for the construction of effective Hamiltonians with a reduced num-
ber of degrees of freedom; the effective Hamiltonian is supposed to reproduce the low-energy
properties of the material of interest. The identification of screening processes within a given
low-energy subspace allows for the calculation of partially screened interactions that are inter-
preted as the bare interactions within the low-energy subspace. This scheme can thus be used to
construct a downfolded lattice Hamiltonian within this subspace.

Correctly accounting for the Coulomb interaction is particularly important in situations where
the Coulomb repulsion dominates the behavior of the system. This is typically the case in 3d tran-
sition metal compounds or rare earth or actinide compounds, which display a panoply of phe-
nomena beyond a simple one-particle picture. Besides being of high technological importance,
this class of compounds presents a particular challenge to theory. Effects indeed range from
simple renormalisations of quasi-particle band structures in the sense of Landau to the strong
coupling case where Coulomb correlations lead to a blocking of electronic motion. These latter
materials, Mott insulators, which would be metallic in a band picture, are driven into the insulat-
ing state due to large values of the Coulomb repulsion. The failures of the one-body picture can
thus be used to define this specific class of materials said to be “strongly correlated”.

The description of electronic excitations in correlated materials therefore requires a theoret-
ical treatment that goes beyond the one-particle picture. In particular, the simple approxima-
tion that consists in considering the Kohn-Sham eigenvalues of density functional theory (DFT)
within the local density approximation (LDA) or generalized gradient approximations (GGA) as
excitation energies, is quite generally too poor an approximation. Methods beyond the band pic-
ture, such as many-body perturbation theory or the so-called “LDA++” schemes that supplement
DFT-LDA with explicit many-body interaction terms are designed to cure these deficiencies.

Dynamical mean-field theory (DMFT), for example, allows for the description of spectral
properties around the Mott metal-insulator transition in the Hubbard model. Its realistic exten-
sion, the combination with density functional theory LDA+DMFT, has been successfully em-
ployed for the description of physical observables, such as photoemission, optics, or transport.
Importantly, the predictive power of the combined LDA+DMFT scheme stands or falls with the
possibility of reliably assessing the strength of the Coulomb interactions. The ab initio calcu-
lation of Hubbard U and Hund’s J , which is at the heart of the present thesis, is thus a crucial
ingredient for any realistic theory of correlated electron systems.

This thesis is divided into three parts. The first part is dedicated to an introduction to popular
first principles approaches. In particular, we present the basics of the DFT-LDA and Hedin’s
framework for many-body perturbation theory (Chapter 2). We then describe the LDA+DMFT
scheme, and insist that its combination with cRPA in principle makes this method fully ab initio

(Chapter 3).
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In the second part of the thesis, we first review the various definitions of U found in the
literature (Chapter 4). Once we have introduced conceptually the cRPA method, we turn to the
technical developments of the implementation within the (L)APW+lo framework (Chapter 5).
We discuss the parametrization of the Coulomb interaction matrices in terms of Slater integrals,
as well as aspects related to the energy dependence of electronic screening. Finally, we discuss
the combined LDA+cRPA+DMFT scheme, that consists in using the calculated interaction pa-
rameters within LDA+DMFT calculations. In Chapter 5, we introduce a projection approach for
calculating Hubbard and Hund interactions in the case of entangled bands.

The third part of the thesis is devoted to applications of this machinery to interesting corre-
lated materials, such as transition metal oxides. Chapter 6 is devoted to benchmarks on SrVO3

as well as on and iron-based pnictides (LaOFeAs, FeSe, BaFe2As2, BaRu2As2). The projection
method is tested on the 3d transition metal series.

In Chapter 7 we discuss the series of 3d and 4d perovskite compounds SrMO3 (M = V,
Cr, Mn, Nb, Mo, Tc) and Sr2MO4 (M = Mo, Tc, Ru, Rh), with particular emphasis on the de-
pendence of the parameters on the choice of the low-energy model. Furthermore, trends for the
Hubbard U and Hund’s exchange J are identified for 3d and 4d transition metal oxides. We show
that the interplay of the screening and of the localization of the basis that spans the correlated
subspace, can induce strong deviations from the expected atomic trends.
Two LDA+cRPA+DMFT studies in which we have contributed with the cRPA calculations, are
finally introduced in Chapter 8. The first one elucidates the differences between the layered per-
ovskite paramagnetic metal Sr2RhO4 and the isostructural and isoelectronic but Mott insulating
Sr2IrO4, in collaboration with C. Martins et al. [Martins et al. (2011)]. The second deals with
the rare-earth fluorosulfide CeSF compounds in collaboration with J. Tomczak, L. Pourovskii et

al. [Tomczak et al. (2012)]. The color of these promising pigments can indeed be interpreted
now from fully first principles LDA+DMFT calculations.
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Chapter 1

Introduction to Correlated Materials

1.1 Concepts

A solid is ideally defined as an ordered state of matter, made of nuclei and surrounding electrons.
The positions of the nuclei are repeated periodically in space. The knowledge of those inside
the primitive unit cell are enough for specifying the crystal. A first approximation, known as the
Born-Oppenheimer approximation, consists then in dissociating the dynamics of the electrons
from the one of the nuclei : it can be seen as an adiabatic approximation, justified by the several
orders of magnitude difference between the electronic and the nuclei masses. In some cases, it
may be important to relax this approximation, in order to study the dynamic lattice deviations but
this will not be addressed in this work, where we always consider that the Born-Oppenheimer
approximation is well-founded. Similarly, we will not deal with any other sources of disorder or
surface effects, which would affect the periodicity of the lattice.

Within these approximations, we may write the general Hamiltonian formulation (using
Hartree units) for a solid with Ne electrons, as used in first principles approaches (see Chap-
ter 2) :

H =
Ne
∑

i=1

[

− ∇2
i

2
+ v(ri)

]

+
1

2

Ne
∑

ij

1

|ri − rj|
. (1.1)

v(r) is a static periodic potential that is created by the nuclei and felt by the electrons. The
second term is the general formulation of the Coulomb interactions between electrons, which
generates the many-body effects. Depending on the materials, these effects can have dramatic
consequences on the properties of matter, like (non-exhaustive list) : structure, phase transitions,
conductivity, optics, magnetism, phonons, etc.

The simplest model we can think of at the beginning, would consist in merely neglecting
all interactions between electrons. Then electrons would only feel the one-body potential that is
created by the nuclei. In the so called tight-binding approach, the nuclei generate a local atomic
potential that captures most of the electrons, or core electrons, whereas the others, or semicore
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and valence electrons, are able to tunnel from one atomic site to another. These electrons are in
particular responsible for the chemical bonding that ensures the cohesion in a solid. Even if it
appears very crude, this approach tends to be surprisingly successful in some cases. In particular,
it creates the picture of bands in solids, which is a very fundamental concept illustrated below.

In the following, Bloch’s theorem is introduced as well as band picture which are concepts

at the heart of solid state theory.

Bloch’s theorem : Bloch’s theorem relies only on the periodicity of the lattice and is thus
considered as a very foundation of solid-state physics. It states that the translation operator and
the Hamiltonian of the system share a common set of eigenstates. It follows that eigenfunctions
ψk(r) of the solid can be written as

ψk(r) = eik·ruk(r) with uk(r +R) = uk(r) ∀R ∈ Bravais,

where k is a reciprocal lattice vector inside the first Brillouin Zone (BZ).

Band picture : In the limit of a large crystal, the spacing of the k points tends to zero and
k can be considered as a continuous variable. For each k, there is a discrete set of eigenvalues
ǫkν that can be labeled by an index ν that defines the band index. A portrait of the spectrum in
a solid can be established at this level, involving a set of bands, ψσ

kν(r), of given energies, and
regions called gaps where there are no eigenstates for any k. The spin-degree of freedom σ has
to be added in the definition of the Bloch states, since the filling of the bands will depend on the
spin of the electrons. This comes from the Pauli exclusion principle, which states that each band
can accommodate no more than two electrons with opposite spin per cell.

Wannier functions

We benefit from the introduction of Bloch states, in order to introduce the concept of Wannier
states, which will play a key-role when focusing on the many-body effects in the latter. Intro-
duced by Wannier [Wannier(1937)], in order to get functions centered on the atomic positions
of each unit cell of the crystal, the Wannier functions φσ

RL are the Fourier transformation of the
Bloch states ψσ

kνL
:

φσ
RL(r) =

1√
N

∑

k

e−ik·Rψσ
kνL

(r), (1.2)

where N is the number of k vectors in BZ, R a translation vector of the Bravais lattice, L is
a combined index for the orbital character (n, l,m, α) of atom α, νL the band index with L
character and σ the spin degree of freedom. Wannier functions are not uniquely defined, since
any orthogonal linear combination of Wannier functions is again a Wannier function. By calling
Uk
µν a given unitary transformation matrix from Bloch to Wannier states, this leads to the more

general definition :

φσ
RL(r) =

1√
N

∑

k

e−ik·R
∑

νL

Uk
LνL

ψσ
kνL

(r). (1.3)
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This degree of freedom explains the variety of Wannier bases which we are able to build in
electronic structure calculations. We come back to this point in Chapter 3.

1.2 Weakly correlated materials

Weakly correlated materials exhibiting broad energy bands are prototypical systems where the
independent-electron picture is a good approximation. The interaction effects can indeed be
formulated as a “dressing” of the electrons (or holes), leading to the concept of quasiparticles in
terms of Landau theory. Within this theory, the quasiparticles are independent entities but with
renormalized properties and finite lifetime. For weakly or moderate correlated systems, Landau
theory gives a good description of the coherent excitation spectrum, defining the concepts of a
Fermi liquid. It is indeed remarkable that the photoemission experiments on such materials gives
results that coincide so well with the characteristics predicted for a Fermi liquid.

Weak correlations also allow for perturbative developments around the noninteracting case.
Hartree and Hartree-Fock theories give in general not so bad estimations of insulating gaps for
atoms or molecules but usually fail when calculating quasiparticle energies in solids. The GW
approximation- as a generalization of the Hartree-Fock approximation (see Chapter 2)- has the
merit of leading to more reasonable values. It has been applied with success to a large class of
materials, e.g. semi-conductors and simple metals [Aryasetiawan and Gunnarsson(1998)].

Nevertheless, the incoherent features of the electronic spectra - like the atomic-like Hubbard
satellites - are intrinsically beyond Landau theory of Fermi liquids and any band picture. Strong
correlations in given systems even cause the breakdown of the concept of quasiparticles [Imada
et al. (1998)]. This explains why such materials require a point of view that differs from the
one-particle picture.

1.3 Strongly correlated materials

According to the independent-electron approximation, there is no ambiguity for a material to
be metallic or insulating. Filling the bands with an odd number of electrons would always
lead to metallicity since the conduction band is partly occupied. However nature behaves dif-
ferently. Insulating states have been observed for many compounds that were predicted to be
metallic because of their odd number of electrons. Such insulating state - whose origin is differ-
ent from the band insulating one - is called a Mott insulator (for a review, see in particular [Imada
et al. (1998)]).

The Mott insulating state originates from strong electronic correlations and is thus beyond
any one-electron descriptions, which oversimplify the interactions. Two processes actually com-
pete for the electronic dynamics within such materials. One emerges from the kinetic energy
which makes the valence electrons itinerant along the solid and thus spending a short time



6 Introduction to Correlated Materials

near each atom. Such electrons are well described within a wave-like picture. The compet-
ing phenomenon is due to the electronic Coulomb repulsion which increases the time spent by
valence electrons around the atoms and, if it is large enough, even prevents one electron from
occupying an already occupied atomic site. It thus tends to freeze the electronic displacements
and is better described within a particle-like picture. A pedagogical discussion can be found
in [Georges(2004)].
Since the bandwidth gives an estimate of the kinetic energy, narrow bands around the Fermi level
correspond to less itinerant states which are therefore subject to strong correlation effects. It is the
intermediate situation where electrons struggle between localization and itineracy. Very schemat-
ically, beyond a certain critical ratio of interaction over bandwidth, the Coulomb repulsion may
triumph over the itineracy of the charge carriers and localize them around their atomic sites,
leading to a Mott insulating state. But even for a ratio that is smaller than the critical one, thus
in favor of a metal, electronic behavior is expected to be strongly affected by correlation effects.
It is indeed important to mention here that scenarios only based on such ratio can oversimplify
the reality, as materials can be “strongly correlated” even if the intra-orbital Coulomb repulsion
is much smaller than the bandwidth (e.g. due to Hund’s coupling, see [Werner et al. (2008), de’
Medici et al. (2011)] and applications for pnictide families [Haule and Kotliar(2009), Aichhorn
et al. (2010)]). The “strongly correlated” character may also rely on the observables investigated,
since two-particle quantities, e.g. magnetic moments in pnictides [Hansmann et al. (2010),Toschi
et al. (2012)], can be more affected by correlations than single-particle ones.

Materials for which any band theory fails are called strongly correlated. This means that
they can display modified metallic properties or even enter a metal-insulator Mott transition with
pressure, temperature or doping. Looking at the Mendeleiev classification (Fig. 1.1), they usually
contain valence electrons within d or f -shells, since d or f -atomic orbitals are less extended than
the s and p-ones. This naturally makes the d and f -electrons “fighting” between itineracy and
localization. For example :

• transition metals : particularly 3d elements from titanium (Ti) to nickel (Ni).

• transition metal oxides : d1 systems such as LaTiO3 or YTiO3 are Mott insulators according
to the photoemission experiments, whereas they would be metallic in band theory. Oxides
like VO2 or V2O3 display a rich phase-diagram with metal-insulator transitions.

• transition metal chalcogenides : 1T-TaS2 is an example of a compound exhibiting metal-
insulator transition that is driven by an instability of the electron-lattice coupling.

• rare earth (4f ) and actinide (5f ) compounds.

• in some cases such as the organic compounds, also the p-shells can be affected.

It thus appears fundamental to build a model that is capable of catching all these fea-
tures. This is the great merit of the Hubbard-Kanamori-Gutzwiller model [Hubbard(1963),
Kanamori(1963), Gutzwiller(1963)] - we will refer to it as the Hubbard model in the follow-
ing - which, in a sense, contains both, wave-like and particle-like physics. Originally, this model
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only dealt with single orbital cases, but it has been extended to the case of multi-orbital problems
as shown below (see for example [Auerbach(1994)] for a pedagogical introduction).

Figure 1.1: Periodic classification of elements.
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1.3.1 The Hubbard model

Rewriting the Hamiltonian (Eq. 1.1), but using a field-theory formulation of the solid, it follows :

H =
∑

σ

∫

drΨ†
σ(r)

[

− ∇2

2
+ V ion(r)

]

Ψσ(r)

+
1

2

∑

σ,σ′

∫

drdr′Ψ†
σ(r)Ψ

†
σ′(r

′)V ee(r, r′)Ψσ′(r′)Ψσ(r), (1.4)

where Ψσ(r),Ψ
†
σ(r) are the field operators that respectively annihilate and create an electron

with spin σ at r. V ion(r) corresponds to the one-body potential generated by the nuclei and
V ee(r, r′) = 1

|r−r′| is the two-body Coulomb potential. The interacting part (second term) is
restricted to a scattering event between two electrons.

It is convenient to absorb the static mean-field potential veff[ρ] into the one-particle part of
the Hamiltonian. As a mean-field approach, this effective potential is a functional of the charge
density ρ(r) and has to be determined self-consistently. This is the essence of density func-
tional theory, in which the effective potential vKS[ρ] is defined as the Hartree plus the exchange-
correlation potential (see Chapter 2 for an introduction to density functional theory). It results
for the renormalized interaction potential Ṽ ee [Auerbach(1994)] :

Ṽ ee(r, r′) = V ee(r, r′)− 1

Ne

[veff[ρ](r) + veff[ρ](r′)]. (1.5)

The Hamiltonian can then be separated into a one-particle part H0 :

H0 =
∑

σ

∫

drΨ†
σ(r)

[

− ∇2

2
+ V ion(r) + veff[ρ](r)

]

Ψσ(r), (1.6)

and an interacting part Hint :

Hint =
1

2

∑

σ,σ′

∫

drdr′Ψ†
σ(r)Ψ

†
σ′(r

′)Ṽ ee(r, r′)Ψσ′(r′)Ψσ(r). (1.7)

Expanding the field operators into the Wannier basis {χR
Lσ(r)} previously introduced (where

L = (n, l,m, α) is an index for the orbital character (n, l,m) of the atom α in the unit cell) :

Ψσ(r) =
∑

R,L

χR
Lσ(r)c

σ
RL, (1.8)

where cσRL, c
σ†
RL are respectively the annihilation and creation operators of the Wannier states, we

can write the Hamiltonian in this Wannier basis as follows :

H0 =
∑

RR′,LL′,σ

tRR′,σ
LL′ c†RLσcR′L′σ (1.9)

Hint =
1

2

∑

R1R2R3R4

∑

L1L2L3L4

∑

σσ′

UR1R2R3R4,σσ′

L1L2L3L4
c†R1L1σ

cR3L3σc
†
R4L4σ′cR2L2σ′ . (1.10)
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The real space hopping amplitudes are defined as

tRR′,σ
LL′ =

∫

dr[χR
Lσ(r)]

∗
[∇2

2
+ V ion(r) + veff[ρ](r)

]

χR
Lσ(r), (1.11)

and the well-known Hubbard parameters as

UR1R2R3R4,σσ′

L1L2L3L4
=

∫

drdr′[χR1
L1σ

(r)]∗[χR2

L2σ′(r
′)]∗Ṽ ee(r, r′)χR4

L4σ′(r
′)χR3

L3σ
(r). (1.12)

The calculation of UR1R2R3R4,σσ′

L1L2L3L4
is at the heart of this work. In the following, the spin indices

(σ, σ′) for UR1R2R3R4,σσ′

L1L2L3L4
will be omitted, because only spin unpolarized calculations will be

carried out throughout this thesis.

Such formulation is the most general one, but much simpler Hamiltonians are considered in
general. In the case of the Hubbard model, the real space hopping amplitudes are restricted
to nearest and next-nearest-neighbor hopping terms and only the local intra-atomic part of
the interacting Hamiltonian is treated. If, furthermore, one only keeps density-density inter-
action terms, the Hubbard model (easily generalized from the original single-orbital Hubbard-
Kanamori-Gutzwiller model) reads as :

H0 =
∑

〈ij〉,σ

∑

LL′

tij,σLL′c
σ†
iLc

σ
jL′ (1.13)

Hint =
∑

i

∑

LL′,σσ′

Uσσ′

LL′nσ
iLn

σ′

iL′ (1.14)

Uσσ′

LL′ ≡ U0000,σσ′

LL′LL′ , (1.15)

where i, j run over all atomic sites and nσ
iL = cσ†iLc

σ
iL. Uσσ′

LL′ are defined as the reduced interaction
matrices. Common many-body methods (e.g. LDA+DMFT, see Chapter 3) explicitly deal with
such local interacting Hamiltonian, whereas the long-range Coulomb interactions are assumed
to be reasonably taken into account by the band structure approaches to H0. The interaction
Hamiltonian can also be extended to non-density-density terms as given in Chapter 5 (Eqs. 5.83
and 5.84).

In a nutshell, the picture of the interaction processes within the Hubbard model is the fol-
lowing : electrons with opposite spins on the same orbital are sanctioned by U = Uσσ̄

LL (local
intra-orbital interaction), whereas the inter-orbital interaction, Uσσ′

L 6=L′ , is lowered by Hund’s ex-
change and implicitly spin-dependent because of the Pauli principle (see Chapter 4 and Chapter
5 for further developments, in particular Fig. 5.2). The interacting part of the Hubbard Hamilto-
nian is diagonalized in a particle-like localized Wannier basis whereas the kinetic part requires a
wave-like basis. This proves the ability of the Hubbard model to deal with the electronic hesita-

tion between itineracy and localization.

Before concluding this part, we would like to add a remark about the renormalized Coulomb
potential Ṽ ee(r, r′) introduced in Eq. 1.5. The matrix elements of Ṽ ee(r, r′) expanded into
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a localized basis of the lattice, lead to the Hubbard parameters as shown in Eq. 1.12. In this
scheme, the static screening effects of the high-energy excitations have been integrated out. In
a sense, this will have similarities with the constrained-Random Phase Approximation (cRPA)
method in Chapter 4. The screening is a key quantity to investigate. Without any screening, the
typical order of magnitude of the Coulomb interaction would be around 20 eV, thus several times
bigger than any typical kinetic energy. Nature in this case would not be able to generate metallic
phases!
We illustrate this point in the next paragraph employing the homogeneous interacting electron
gas in the Random Phase Approximation (RPA) - such system is a general starting point for
modeling solids.

1.3.2 Homogeneous interacting electron gas

The idea that solids can be reasonably approximated by an homogeneous electron gas, is at the
heart of numerous developments in the field of condensed matter, in particular in the density
functional theory of Kohn and Sham [Kohn and Sham(1965)]. The homogeneous interacting
electron gas is thus an excellent starting point for the introduction of concepts that are developed
throughout this work, especially for the screening polarization in the Random Phase Approxima-
tion (for a textbook, see [Bruus and Flensberg(2003)]).

The simplest model for the interacting electron gas is the jellium model. In the limit of high
electronic density, it is possible to perform a perturbation expansion of the ground state energy
around the non-interacting solution, but the divergent behavior of the second order implies to
consider an infinite order of perturbation. Green’s functions formalism provides a very pow-
erful machinery for studying the problem. A self-energy quantity is introduced that links the
bare Green’s functions to the interacting ones via a Dyson equation. Using Feynman’s rules,
a diagrammatic expansion of the self-energy involving bare propagators G0(k, iωn) and bare
Coulomb interaction lines v(q), can be constructed. For each given order, the diagrams with the
highest divergence numbers are the most relevant.

Random Phase Approximation (RPA)

The Random Phase Approximation (RPA) consists in approximating the self-energy by an infi-
nite sum of diagrams of all orders, but only the most divergent one for each order is kept [Bruus
and Flensberg(2003)]. In other words, all the interactions that are felt by the electrons, aver-
age out because of their “random phases”, except the Hartree term (Eq. 2.3). This leads to the
effective potential which is given below. As shown in Fig. 1.3, the sum is factorized by the
pair-bubble that corresponds to the polarization P 0(q, iνn) at finite temperature (iνn(iωn) are
bosonic (fermionic) Matsubara frequencies) :

P 0(q, iνn) =
[

G0G0
]

(q, iνn) =
2

β

∑

iωn

∫

dk
1

iωn + iνn − ξk+q

1

iωn − ξk
, (1.16)
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where G0(k, iωn) =
1

iωn−ξk
is the bare Green’s function of momentum k with the energy ξk with

respect to the Fermi level and we note that the spin summation leads to a factor 2.

At this level, it is rather intuitive to introduce a renormalized interaction line W RPA(q, iνn)
that connects the self-energy ΣRPA to the bare Green’s functions. Such reformulation of the
interaction is at the basis of Hedin’s equations introduced in Chapter 2. Using a Dyson-like
equation approach (Fig. 1.4), it follows :

W RPA(q, iνn) =
v(q)

1− v(q)P 0(q, iν)
=

4π

q2 − 4πP 0(q, iνn)
. (1.17)

In the static, long-wavelength limit q → 0, it is interesting to observe that the screened interaction
W RPA has a Yukawa form with the so called Thomas-Fermi screening wavenumber ks :

W RPA(q → 0, 0) → 4π

q2 + k2s
, k2s ≡ −4πP 0(0, 0), (1.18)

which leads to the screened potential in the real-space :

W RPA(r, r′) =
e−ks|r−r′|

|r − r′| . (1.19)

Figure 1.2: Schematic view of the electronic rearrangement when adding an extra negative charge, as simulated
in the linear response theory. The local depletion of the surrounding negative charges induces an effective “hole
screening” which lowers the effective electron-electron interaction.

Interpretation of the RPA polarization

The polarization is defined as a response function of the charge density upon a change in the total
field applied. It is easier to visualize it at the static limit in the real-space (see Fig. 1.2).
The introduction of an extra charge, e.g. an additional electron, locally induces a potential that
generates a depletion of the surrounding negative charges which is compensated by an increase of
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Figure 1.3: Diagrammatic interpretation of the RPA approximation. The sum in the self-energy is factorized by
the pair-bubble corresponding to the RPA polarization P 0(q, iνn) where νn are bosonic Matsubara frequencies. The
self-energy in RPA then reads as the bare Green’s functions times the fully screened interaction WRPA. This gives a
kind of introduction to the GW method described in Chapter 2.

positive charges. The effective repulsion between this trial charge and the other negative charges
is lowered due to the screening induced by the (opposite sign) positive charges.
This picture then needs to be extended to the dynamical case, where charges in solids can form
excited electron-hole pairs. The hole left by the excitation of an electron induces a hole-screening
among the electrons. This effect tends to disappear when the frequency is so high that charge
fluctuations become frozen. It follows that the polarization goes to zero at high frequency and
the repulsion goes to its unscreened value.

For the homogeneous electron gas, the RPA polarization from Eq. 1.16 is obtained by tradi-
tional frequency summations [Mahan(1990)] :

P 0(q, iνn) = 2

∫

dk
f(ξk+q − f(ξk))

ξk+q − ξk − iνn
, (1.20)

where f(ξ) is the Fermi-Dirac distribution. In the static, long-wavelength limit q → 0 and at low
temperature, it follows :

P 0(q → 0, 0) → −ρ(ǫF ) for kBT ≪ ǫF . (1.21)
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Figure 1.4: Diagrammatic interpretation of the Dyson-like relation that connects the fully screened interaction
W in RPA to the bare interaction v via the RPA polarization. Further details can be found in [Bruus and Flens-
berg(2003)].

ρ(ǫF ) is the electronic density at the Fermi level. Injecting it to Eq. 1.18

W RPA(q → 0, 0) → 1

ρ(ǫF )
. (1.22)

A static long-range screening is thus induced by a finite number of carriers at the Fermi level.
Extrapolating to solids, the long-range interaction in metals is quickly screened by electron-hole
transitions around the Fermi level, with a range of the order of the inverse of the Thomas-Fermi
screening wavenumber. This is not the case for insulators where the effective interaction is
longer-range.
We mention that an approach based on the evaluation of a screened Yukawa-type Coulomb inter-
action with Hartree-Fock wavefunctions in solids was introduced by [Norman(1995),Brooks(2001)].
By selecting the Thomas-Fermi wavevector of the Yukawa potential, left as an adjustable param-
eter, in order to fit the photoemission spectra for NiO, a good agreement can be obtained with
experiments.



14 Introduction to Correlated Materials



Chapter 2

First Principles Approaches for Materials

A great motivation for first principles approaches is to calculate the properties of a system with-

out introducing any bias. Such approaches indeed solve the Hamiltonian of Eq. 1.1 within

the Born-Oppenheimer approximation only. Several schemes can be found in both quantum

chemistry and condensed matter physics. We start with the description of density functional

theory (DFT) - a very popular and powerful framework. We then give a short description of

wavefunction-based approaches like Hartree-Fock, which give reasonable results for molecules

but miss the screening effects in solids. The problem of screening is explicitly addressed in the

GW approximation to Hedin’s equations, described at the end of the chapter.

2.1 Ground Zero : Density Functional Theory (DFT) picture

A first density functional theory of quantum systems has been proposed in 1927 by Thomas
and Fermi. Both derived an energy functional for electrons in an external potential, but making
crude approximations for the electronic interactions. Their approach thus appeared unadapted
for the description of electrons in matter. The great merit of the work of Hohenberg and Kohn
in 1964 was to formulate density functional theory as an exact theory of many-body systems via
two theorems given below [Hohenberg and Kohn(1964)]. The demonstrations of these theorems
can be found in the textbook of [Martin(2004)]. Later, an alternative and also more general
formulation was proposed by [Levy(1982)] and [Lieb(1983)], which makes the formalism for
deriving energy functionals more intuitive. In 1965, Kohn and Sham introduced an ansatz -
leading to the set of Kohn-Sham equations - which allowed for approximate functionals for real
systems [Kohn and Sham(1965)]. More details about DFT and applications can be found in the
reviews [Jones and Gunnarsson(1989), Kohn(1999)].
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2.1.1 The Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem asserts that

• it exists a one-to-one mapping between any external potential vext(r) and the ground state
density ρ0(r).

• all properties of any interacting system are exactly determined through the knowledge of
the ground state density ρ0(r).

• a universal functional for the energy E[ρ] in terms of the density ρ can be defined, for
any external potential. The ground state energy E0 = E[ρ0] of any interacting system is
then obtained by a Rayleigh-Ritz variational principle, such that : ∀ρ, E0 ≤ E[ρ] and the
density ρ0 is the exact ground state density.

These theorems lead to the following statement : for ground state properties, the many-body
problem can be exactly cast into a one-particle effective potential.

However, it is far from being the end of the story. The Hohenberg-Kohn theorems only
prove that such one-particle potential exists, without indicating how to calculate it. This is
the major bottleneck of DFT. In practice, one needs to formulate approximations in order to
estimate this potential. Various approximations have been formulated and are reviewed, e.g.
in [Capelle(2006)].

We conclude with the following energy functional, as it is usually introduced within DFT [Mar-
tin(2004)] :

E[ρ] = F [ρ] +

∫

d3rvext(r)ρ(r), (2.1)

where F [ρ] is a universal functional that includes the kinetic energy of the interacting system as
well as the potential energy of the interacting electrons. In particular, it contains the Hartree term
EHartree of the interactions, which is a static mean-field approximation where an electron feels the
potential vHartree induced by all the other electrons (in Hartree units) :

EHartree[ρ] =
1

2

∫

d3rd3r′ρ(r)ρ(r
′)

|r − r′| (2.2)

vHartree(r) =

∫

d3r′ ρ(r
′)

|r − r′| . (2.3)

2.1.2 The Kohn-Sham equations

In 1965, an important step for first principles approaches was reached with the development of
the Kohn-Sham equations [Kohn and Sham(1965)]. This development has also enjoyed a great
popularity. Kohn and Sham, indeed, proposed a scheme for replacing the many-body problem
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by an equivalent non-interacting one. Their idea is based on the mapping of the interacting
electronic system into an effective model of independent particles, subject to an external Kohn-
Sham potential vKS, but with the same ground-state density as the original system. Such ansatz,
in a nutshell, involves independent particles but with an interacting density. This approach brings
back into play a set of Schrödinger-like equations, but employing now the one-body potential vKS.

Assuming the existence of such fictitious non-interacting system with the same density ρ as
the original interacting one, the energy functional from Eq. 2.1 can be written as follows :

E[ρ] = Tni[ρ] +

∫

d3rvext(r)ρ(r) + EHartree[ρ] + Exc[ρ], (2.4)

where Tni[ρ] is the independent-particle kinetic energy and EHartree is the self-interaction energy
with density ρ (Eq. 2.2). All many-body effects comprising exchange and correlation events, are
grouped into the exchange-correlation energy Exc[ρ]. Comparing Eq. 2.1 from Hohenberg-Kohn
functional with Eq. 2.4, the following relation for Exc[ρ] can be extracted :

Exc[ρ] = F [ρ]− Tni[ρ]− EHartree[ρ]. (2.5)

Due to the stationary of the total energy functional E[ρ] with respect to the density, the
Kohn-Sham potential vKS can be introduced as

vKS[ρ](r) = vext(r) + vHartree(r) + vxc[ρ](r), (2.6)

where vHartree =
∫

d3r′ ρ(r′)
|r−r′| is the Hartree potential (Eq. 2.3) and vxc[ρ] is the exchange-correlation

potential defined as follows :

vxc[ρ](r) =
δExc[ρ]

δρ(r)
. (2.7)

The many-body problem is therefore simplified to the following independent Schrödinger-
like equations - or Kohn-Sham equations :

[

− ~
2

2m
∇2 + vKS[ρ](r)

]

ψnk(r) = ǫnkψnk(r), (2.8)

where ψnk(r) are the Kohn-Sham eigenfunctions of the one-particle fictitious system and ǫnk,
the Kohn-Sham eigenstates. It is important to insist on the fact that no approximations were
introduced so far by describing the interacting system within such an effective model. If an
expression for vxc[ρ] or Exc[ρ] was explicitly known, this mapping would even be exact. Ap-
proximations are however required for the exchange-correlation functionals and are described in
the next paragraph.
Once a choice for calculating vxc has been done, the set of Kohn-Sham equations (Eq. 2.8) has to
be solved self-consistently, since the Kohn-Sham potential is a functional of the density (Eq. 2.6).
The self-consistency condition reads as :

ρ(r) =
∑

ǫnk≤ǫF

|ψnk(r)|2. (2.9)
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We conclude this part with a remark on the physical meaning of the Kohn-Sham eigenstates.
The only thing that the original interacting system and the fictitious non-interacting model have
in common is the ground-state density. It implies that the Kohn-Sham eigenfunctions are only
auxiliary quantities and are not supposed to describe the excitations of the system. Their spectra
have therefore no reason to have any physical meaning. Furthermore, approaches identifying
these wavefunctions to the “true” states of the interacting system, are in principle not well-
founded. However, such approaches give surprisingly good results compared to experiments.
This justifies their popularity.

2.1.3 The Local Density Approximation (LDA)

As explained previously, approximations to the exchange-correlation functional Exc[ρ] are nec-
essary, in order to solve the Kohn-Sham equations. Several procedures have been developed, but
none of them are fully satisfactory. The task is especially hard, when electronic correlations are
strong.

In this thesis, we will always use the approximation called local density approximation
(LDA), which may be one of the most popular approximations to the exchange-correlation func-
tional. Even if it is not a well controlled approximation - and this will have consequences on the
double-counting problem (see Chapter 3) when going beyond DFT-LDA - it is the easiest one.
Other approximations to the exchange-correlation functional are reviewed in [Capelle(2006)].

The local density approximation (LDA) consists in making the following assumption

ELDA
xc [ρ] =

∫

d3rρ(r)ǫLDA
xc (ρ(r)), (2.10)

where ǫLDA
xc (ρ) is the exchange-correlation energy density of an homogeneous electron gas with

density ρ. It means that the exchange-correlation energy with density ρ(r) is locally approx-
imated to the exchange-correlation energy of the homogeneous electron gas, whose density is
uniform and equal to ρ(r). The consequence is that ǫLDA

xc becomes a function of ρ(r) and is not
a functional anymore, even if it does not have an analytical expression. Using Quantum Monte
Carlo algorithms, Ceperley and Adler have calculated the exchange-correlation energy of the
homogeneous electron gas with different densities. This leads to interpolation formulas for any
density [Ceperley and Alder(1980)]. Such formulas are very practical to use and justify the pop-
ularity of the LDA approximation. In quantum chemistry, efforts have also been addressed to
design material-adapted functionals, in order to get DFT results that are closer to experiments,
but theoretical justifications are missing and we will not use any of these functionals in this work.

We finally mention the extension of DFT-LDA to spin-polarized calculations in order to
include non-homogeneous spin densities. This is called DFT-LSDA. Hohenberg-Kohn theorems
and Kohn-Sham equations are easily supplemented with a spin index. It is more subtle for the
local approximation of the exchange-correlation functional. The exchange energy ELDA

x [ρ] is
straightforwardly given by

ELDA
x [ρ↑(r), ρ↓(r)] =

1

2
(ELDA

x [2ρ↑(r)] + ELDA
x [2ρ↓(r)]), (2.11)
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but there is no such formal expression for the correlation part. The correlation part, in prac-
tice, can be directly constructed from the spin-densities or defined in a similar manner than the
exchange energy but without well-founded justification.

2.1.4 Basis sets : Linearized Augmented Plane Waves (L)APW+lo

Density functional theory has been implemented in numerous bases, differing from each other
by their cost at the numerical level and by their accuracy. Localized functions emerging from
the tight-binding approaches, are extensively used in quantum chemistry and give an intuitive
description of the electronic structure and bonding, but the orbitals must be chosen for each
given system in order to be effective. There is therefore a loss of generality that goes against the
ab initio engineering. Pseudopotential approaches, by replacing the strong Coulomb potential of
the nucleus by an effective ionic potential applied to the valence electrons, are very promising
but are still not as much accurate as the augmented approaches, which rely on the partition of
the space into muffin-tin spheres (MTS) centered on the nuclei and interstitial regions. Such
augmented methods have been originally introduced by Slater [Slater(1953)], who proposed an
augmentation of the interstitial regions by plane-waves (IPW). They gave birth to the two popular
basis sets which are commonly used in first principles calculations :

• the muffin-tin orbital basis in its linear version, linear muffin-tin orbitals (LMTO) [Ander-
sen(1975)] and its Nth-order version (NMTO) [Andersen and Saha-Dasgupta(2000)].

• the augmented plane waves (APW) and their descendants. Such approaches are reviewed
in [Singh(1994)].

The main advantage of APW bases resides in the plane wave representation between the atoms
for the smooth varying part of the wavefunctions, and in radial functions times spherical har-
monics inside the muffin-tin spheres for the rapidly varying part close to the nuclei. In contrast,
the great disadvantage is that the basis functions are energy-dependent and thus the equations
for matching the functions at sphere boundaries are non-linear. This drawback is avoided when
using the linearized augmented plane wave (LAPW) framework, which consists in building aug-
mentation functions as linear combinations of a radial function and its energy derivative at a
chosen fixed energy [Singh(1994)].

It exists other improvements (see below and Appendix A for details) that are currently used
in modern electronic structure codes like WIEN2K [Blaha et al. (2001)]. These methods are
usually said all electron : although the core and valence electrons are not treated in the same
way, their density are both calculated self-consistently along the DFT cycles and they are both
used for evaluating the Hartree and the exchange-correlation potentials.

The division of the unit cell in muffin-tin spheres (MTS) Sα
MT , where α denotes an atom

of the unit cell, and interstitial regions (IPW) between the spheres (Fig. 2.1), generates a dual
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Figure 2.1: Schematic representation of the (L)APW+lo space partition. The space is divided into the muffin-tin
spheres Sα

MT around each atom α, whereas the interstitial regions between the spheres are filled with plane waves.

representation for the potential vKS(r) :

vKS(r) =

{ ∑

G eiG·r vG if r ∈ IPW
∑Lmax

L=0

∑L
M=−L VLMYLM(r) if r ∈ Sα

MT .

G are reciprocal vectors of the lattice and YLM refer to spherical harmonics. In contrast to the
pseudopotential approaches, there is no approximation to the potential here, hence leading to the
full potential qualification of the method.

The eigenfunctionsψσ
kν(r) of the Kohn-Sham Hamiltonian are then expanded into the (L)APW+lo

bases as follows. We add that the (L)APW basis functions can be supplemented by a set of local
orbitals (indexed by lo and LO letters, see below). More details are given in Appendix A.

ψσ
kν(r) =

1√
Ω

NPW
∑

G

cνσG (k)ei(k+G)·r if r ∈ IPW

=

NPW
∑

G

cνσG (k)
∑

lm

Aα,k+G

lm uα,σl (r, Eα
1l)Ylm(θ, φ) if r ∈ Sα

MT

+

Nlo
∑

nlo=1

cν,σlo [Aα,lo
lm uα,σl (r, Eα

1l) + Bα,lo
lm u̇α,σl (r, Eα

1l)]Ylm(θ, φ)

+

NLO
∑

nLO=1

cν,σLO [A
α,LO
lm uα,σl (r, Eα

1l) + Cα,LO
lm uα,σl (r, Eα

2l)]Ylm(θ, φ). (2.12)

The expressions for the coefficients Alm, Blm, Clm can be found in Appendix A. (ν, σ) refer
to the band and spin indices, respectively. Ω is the volume of the unit cell and G are reciprocal
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vectors of the lattice. NPW is the total number of plane waves for representing interstitial regions,
whereas Nlo(NLO) is the number of local (Local) orbitals (Orbitals). (Eα

1l, E
α
2l) are linearization

energies that depend on the atom α and the orbital index l. The matching at the sphere boundaries
for the (L)APW+lo basis functions is done with a linear combination of radial functions at a ref-
erence energy Eα

1l. Such procedure is not convenient for semicore states. A method employing
Local Orbitals (LO) with two linearization energies (Eα

1l, E
α
2l) and only for these semicore states,

was introduced by [Singh(1991)] and leads to a better accuracy.
In 2000, APW methods have been revisited by [Sjöstedt et al. (2000)] : the introduction of a
set of local orbitals (lo) involving radial functions and their energy derivative, allows for a better
flexibility of the APW bases.
Generally, in full-potential augmented plane-wave frameworks (e.g. in WIEN2K code), the
LAPW, APW+lo and LO types of orbitals can be used simultaneously.

2.1.5 Merits and failures of DFT-LDA

The popularity of DFT-LDA approaches resides in the results obtained for a wide class of materi-
als that are surprisingly good with respect to experiments. In particular, the lattice parameters of
simple crystals can be obtained with high accuracies (errors of the order of 2− 3%) [Imada and
Miyake(2010)]. Another example is the determination of the ionization energy in molecules and
the cohesive energy in solids with errors of the order of 10 − 20%. Another great advantage of
such approaches is their high computational feasibility, which makes possible to consider more
and more complex systems with growing computer power.

However, the energy functional, which is formulated from the Hohenberg-Kohn theorems,
is only valid for the ground-state. No information is thus directly given for the excitations - ex-
cept for the highest occupied state that has to correspond with the ionization energy - whereas
experiments, like photoemission, transport or optics, are used as probes of the excitation spectra.
Even if it is tempting to identify the Kohn-Sham energies with the true excitations of the sys-
tem, it is not well-founded theoretically. However, many DFT-based approaches usually make
such correspondence. Nevertheless, the Kohn-Sham eigenvalues and eigenfunctions can be used
as auxiliary quantities for constructing physically meaningful quantities, as in the fixed-node
diffusion Monte Carlo and many-body perturbations calculations [Foulkes et al. (2001)].

The main bottleneck of DFT remains the approximations that have to be made for evaluat-
ing the exchange-correlation energy. In the case of strongly correlated materials, like transition
metals and their oxides or rare-earth compounds, DFT-LDA spectra (or any other general approx-
imation than LDA) do not qualitatively agree with experiments. For these systems including, for
instance, open d or f -shells, electrons may struggle between itineracy and localization, whereas
DFT-LDA spectra generally exhibit a metallic electronic structure because of the partial filling of
the Kohn-Sham bands. DFT-LDA spectra are in particular unable to simulate the Mott insulating
spectra of materials like V2O3 [Imada et al. (1998)] or Sr2IrO4 (see Chapter 8) : the electronic
correlations in these systems require a treatment that goes beyond the local density approxima-
tion of the exchange-correlation functional.
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Some of the other LDA drawbacks can be attributed to the presence of a spurious self-interaction
term in the local approximation to the exchange. It would require a proper cancellation whereas
it is roughly approximated [Martin(2004)]. This motivated methods e.g. called self-interaction
correction (SIC) which are reviewed in [Svane and Gunnarsson(1990)].

2.2 Wavefunction-based approaches

Hartree and Hartree-Fock theories are two wavefunction-based approaches, that are often used
in quantum chemistry calculations for atoms and short molecules. They usually give reasonable
results, especially the post-Hartree-Fock methods [Martin(2004)]. However, their huge compu-
tational cost is a shortcoming when dealing with solids, in contrast to DFT. The point here is not
to present in details the technical developments of these approaches. We only plan to give their
essence for two reasons : they historically are at the basis of the treatment of the many-body
problems and they introduce some concepts like the exchange-correlation energy, which play an
important role in DFT. They both employ an effective potential that incorporates a part of the
real interactions.

Hartree approximation

Hartree proposed the easiest trial many-body wavefunction which corresponds to the product of
the single-particle wave functions ψi(r). According to the variational principle, the many-body
problem is then reduced to a set of independent Scrödinger-like equations heffi :

heffi =
[

− ∇2

2
+ vHartree(r) + vSIC

i (r)
]

(2.13)

vSIC
i (r) = −

∫

dr′ |ψi(r
′)|2

|r − r′| , (2.14)

where vHartree(r) refer to the Hartree potential (Eq. 2.3) and we have incorporated the self-
interaction correction vSIC

i , in order to cancel the unphysical part of the Hartree potential. In-
deed, a major drawback of the Hartree approximation comes from the fact that it does not in-
clude the Pauli exclusion principle when building the many-body wavefunction. Therefore, the
average distance between electrons are usually underestimated leading to an overestimation of
the ground-state energy.

Hartree-Fock approximation (HFA)

The easiest way of fulfilling the Pauli principle when starting from the single-particle wavefunc-
tions, is to build their anti-symmetrized product or Slater determinant, denoted Φ. This leads to
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the following expectation value of the Hamiltonian, with an explicit reference to the spin degree
of freedom :

〈Φ|H|Φ〉 =
Ne
∑

i=1

∑

σ

drψσ∗
i (r)[−∇2

2
]ψσ

i (r)

+
1

2

Ne
∑

i,j

∑

σi,σj

∫

drdr′ψσi∗
i (r)ψ

σj∗
j (r′)

1

|r − r′|ψ
σi

i (r)ψ
σj

j (r′)

−1

2

Ne
∑

i,j

∑

σ

∫

drdr′ψσ∗
i (r)ψσ∗

j (r′)
1

|r − r′|ψ
σ
j (r)ψ

σ
i (r

′). (2.15)

The second term is the direct interaction, whereas the last one is the exchange interaction. Since
the case i = j is included in the exchange interaction, it nicely cancels the self-interaction
coming from the direct term. We remark that keeping only the direct interaction and its correction
from the exchange term would lead to the same results as in the Hartree approximation. By
means of the variational principle, an effective one-body potential (orbital and spin-dependent)
is obtained :

vi,σeff = vHartree(r) + vi,σxc (r)

vi,σxc (r) = −
Ne
∑

j=1

∫

dr′ψσ∗
j (r′)ψσ

i (r
′)

1

|r − r′|
ψσ
j (r)

ψσ
i (r)

. (2.16)

In the Hartree-Fock approximation (HFA), the only considered correlation comes from the Pauli
principle and leads to the exchange potential vxc which lowers the energy interaction for parallel
spin electrons (Eq. 2.16) and does not affect the interaction between opposite spin electrons. Such
effect is known as the exchange-hole interaction, resulting from the impossibility for same spin
electrons to occupy the same state. Formally, this is equivalent to a screening involving holes.
It is hence remarkable that actually even non-interacting independent parallel spin electrons are
subject to electronic screening. However, such screening is missed for electrons of opposite
spins.

Approaches beyond HFA propose to estimate a correlation energy able to lower the energy
computed in Hartree-Fock according to a theorem attributed to MacDonald [Martin(2004)]. Cor-
relation energy is a quantity that is more difficult to calculate than the exchange energy, which is
analytically known in cases like the homogeneous electron gas (for a discussion about exchange-
correlation energy, see LDA approximation in section 2.1.3).

For atoms, HFA usually works quite well [Aryasetiawan(2000)]. However, it is more prob-
lematic for solids : the gaps of insulating solids are severely overestimated because of the poor
treatment of the screening. For metals, HFA even predicts a vanishing density of states at the
Fermi energy. The problem of screening is addressed in a more rigorous way in Hedin’s equa-
tions and in the GW approximation which can be considered as a generalization of HFA but with
a screened Coulomb interaction.
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2.3 Hedin’s equations and GW approximation

2.3.1 Hedin’s equations

Using a Green’s function formalism, Hedin derived a closed set of equations that would provide
an exact solution to the many-body problem [Hedin(1965)]. The many-body effects are con-
tained in the self-energy operator which is non-local and energy dependent and is deduced from
screened interacting scatterings. The derivation of Hedin’s equations - using Green’s functions
or the Schwinger functional formalism - can be found in [Aryasetiawan and Gunnarsson(1998)].
We will content ourselves with the general expressions of the equations. In the following, all
space-time dependencies are written in terms of the combined index 1 = (r1, t1).

G(1, 2) = G0(1, 2) +

∫

d(34)G0(1, 3)Σ(3, 4)G(4, 2) (2.17)

Λ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫

d(4567)
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Λ(6, 7, 3) (2.18)

P (1, 2) = −i
∫

d(34)G(1, 3)Λ(3, 4, 2)G(4, 1+) (2.19)

W (1, 2) = v(1, 2) +

∫

d(34)v(1, 3)P (3, 4)W (4, 2) (2.20)

Σ(1, 2) = i

∫

d(34)G(1, 3+)W (1, 4)Λ(3, 2, 4). (2.21)

G0 represents the bare Green’s function whereas G is the interacting one. P is the polarization
defined as the variation of the charge density ρ with respect to the total potential applied V =
V Hartree + V ext :

P (1, 2) =
δρ(1)

δV (2)
. (2.22)

The polarization is seen as a scattering between electron propagators via the vertex function Λ :

Λ(1, 2, 3) = δ(1− 2)δ(2− 3) +

∫

d(4567)
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Λ(6, 7, 3). (2.23)

W is the Coulomb interaction screened by the polarization. It relies on the inverse dielectric
function ǫ−1(1, 2) = δV (1)

δV ext and the bare Coulomb operator as follows :

W (1, 2) =

∫

d3 ǫ−1(1, 3)v(3− 2). (2.24)

The self-energy Σ is finally deduced from the time-product of G,W and Λ.

Even if the above coupled equations are exact, they are practically useless under such form,
because we do not know how to solve them brutally. It is not clear neither whether we should
use an iterative procedure. Appropriate approximations are thus highly desirable.
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2.3.2 The GW Approximation

The GW approximation (GWA) is the simplest approximation that can be used for solving
Hedin’s equations [Hedin(1965)]. It consists in starting from the bare Green’s functions to com-
pute the polarization as done in RPA and then consider the interactions at a mean-field level.
Only one cycle is usually performed. It follows that :

G(1, 2) = G0(1, 2) (2.25)

Λ(1, 2, 3) = δ(1, 2)δ(1, 3) (2.26)

P (1, 2) = −iG(1, 2)G(2, 1+) (2.27)

W (1, 2) = v(1, 2) +

∫

d(3, 4)v(1, 3)P (3, 4)W (4, 2) (2.28)

Σ(1, 2) = iG(1, 2)W (2, 1+). (2.29)

The last equation leading to the self-energy is the one that gives the name to the method. It is
given by a Hartree-Fock-like expression, with the major difference that the screened interaction
W is involved instead of the bare interaction. GWA may thus be regarded as a generalization of
HFA, but with a dynamically screened shorter-range Coulomb interaction. This is a clear im-
provement in terms of diagrammatic expansion, since the longer-range behavior of the Coulomb
potential would dramatically affect the convergence.

There is however no rigorous proof of the well-founding of such scheme and it is usually used
because of its ability to yield reasonable results with respect to experiments. LDA Kohn-Sham
Green’s functions are often considered as initial guesses for G0 and then a “quasiparticle” cor-
rection to the LDA exchange-correlation potential is estimated from the calculated self-energy.
It follows a correction to the spectra, which appears to be surprisingly good for a wide range of
systems like simple metals and weakly correlated semiconductors and insulators [Aryasetiawan
and Gunnarsson(1998), Aryasetiawan(2000)]. The description of strongly correlated systems is
however not accessible by this method.

It exists several proposals that explore ways beyond GWA. We think in particular of a quasi-
particle self-consistent scheme by [van Schilfgaarde et al. (2006)]. Some efforts have also been
addressed in order to couple the merits of GWA with those of the dynamical mean-field the-
ory [Biermann et al. (2003), Sun and Kotliar(2002)].
Recently, the GW method has been implemented in a linearized augmented plane wave frame-
work ((L)APW+lo) [Jiang et al. (2012)] and has been coupled to LDA+U in order to open a
gap for magnetic phases [Gomez-Abal et al. (2008), Jiang et al. (2009)]. The combination with
LDA+U (for an introduction to LDA+U, see Chapter 3) can be seen as an approximation to the
GW+DMFT combination which is still some way into the future. In this procedure, the authors
first employ the LDA+U solution as the starting point and then apply GWA in order to calculate
the quasiparticle corrections. This scheme was able to reproduce, for instance, the trends of the
optical gaps along the lanthanide sesquioxide series [Jiang et al. (2009)].
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Chapter 3

Dynamical Mean Field Theory (DMFT)

within DFT-LDA

First principles approaches based on density functional theory turn out to be very efficient for ma-
terials without significant electronic correlations. However, these approaches contain too dras-
tic approximations to describe adequately strongly correlated systems. Indeed, the many-body
system within these frameworks is mapped into a non-interacting homogeneous electron gas,
exposed to an effective external potential, or exchange-correlation potential in DFT-LDA.

Several improvements over DFT-LDA have been proposed in order to take into account the
strong electronic correlations in a more rigorous way. In particular, there are several attempts
to treat the self-interaction problem better. A self-interaction correction (SIC) method [Svane
and Gunnarsson(1990)] reproduces quite well the localized nature of d/f electrons. However
the one-electron part does not agree with spectroscopy measurements. Hartree-Fock theories,
by explicitly containing a self-interaction cancellation, should be more adapted but they miss
the screening that strongly renormalizes the bare Coulomb repulsion [Aryasetiawan(2000)]. The
question of screening is then more rigorously addressed in the GW approximation which can be
considered as a generalization of Hartree-Fock with a frequency and orbital-dependent screened
interaction [Aryasetiawan and Gunnarsson(1998)]. Even if such a method appears quite success-
ful for simple metals and semi-conductors, it still fails for the description of strongly correlated
systems, because of the oversimplification of the vertex in Hedin’s equations (see Chapter 2
for a description of Hedin’s equations and GW approximation). Furthermore, the calculation
of the screened interaction is based on response functions that usually rely on LDA wavefunc-
tions. This point can be improved by a self-energy calculated in a self-consistent procedure [van
Schilfgaarde et al. (2006)]. However, these methods still fail for Mott-insulating systems.

The LDA+U method, on the other hand, allowed for major advances, especially to describe
the Mott insulating phase [Anisimov et al. (1997a)]. In this method, a functional is introduced
which treats the interactions among localized d/f electrons at the Hartree-Fock level, whereas
itinerant s/p are described by a one-electron LDA potential. The interaction U becomes an
adjustable parameter that is commonly set by hand in order to reproduce experimental data like
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the gap of the Mott insulator. A limitation of the LDA+U framework is that it starts from an
artificial magnetic structure in order to reproduce a Mott insulator.

Concerning many-body physics and correlated electrons from the model side, the Hubbard
model benefited a lot from the major improvements that have been put forward by the dynamical
mean-field theory (DMFT) [Georges et al. (1996)]. The combination of the DFT-LDA treatment
of the itinerant states with the DMFT solution of the Hubbard model for the localized ones - as
a generalization of LDA+U- turned out to be very successful for strongly correlated materials.
Starting from a paramagnetic DFT-LDA calculation, LDA+DMFT approaches are able to catch
the correct electronic nature of a correlated compound and make quantitative predictions about
their properties, in reasonable agreement with experiments [Lichtenstein and Katsnelson(1998),
Biermann(2006)]. Nevertheless, the adaptability of the Hubbard parameters still appears as a
subtle issue. The first principles determination of the Hubbard parameters as done in this work,
therefore makes LDA+DMFT a truly first principles approach, as well as other semi-ab initio

approaches based on lattice Hamiltonians. Approaches that go beyond the DMFT approximation,
such as the GW+DMFT combination which unifies the accurate local DMFT treatment of the
self-energy with the non-local one by GW (see [Biermann et al. (2003), Sun and Kotliar(2002)]
for detailed reviews), will not be described below.

We start with a brief overview of the dynamical mean-field theory and its application for

solving the half-filled one-band Hubbard model. In particular, Fermi liquid and Mott insulating

regimes are reviewed for the Bethe lattice in infinite dimensions. We then turn to the LDA+DMFT

method and its implementation within the (L)APW+lo framework - thus fully consistent with the

framework used for the first principles determination of the Hubbard parameters.

3.1 DMFT : introduction and application to the Mott transi-

tion

3.1.1 From the lattice to the quantum impurity model

Generalization of the Weiss mean-field

A mean-field approach for lattice models conceptually consists in replacing the complicated
lattice problem by a single-site effective one. All the non-local interactions from the lattice are
cast into an external bath - or Weiss mean-field - that is felt by each single site. The Weiss
mean-field is introduced in a way that it reproduces accurately the expectation value of a given
local observable of the lattice model. A mean-field approximation is then invoked in order to
determine the Weiss field self-consistently.

It is enlightening to refer to the original approach that has been introduced by Pierre Weiss
for classical interacting spins (Ising model) : the Weiss field in this context is set in order to
reproduce the thermal average of the magnetization. The classical mean-field approximation
then consists in identifying this field with the thermal average of the local field that is applied
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to each spin. In classical models, such mean-field approximation even becomes exact above a
critical dimension. In the extreme case of an infinite connectivity, treating the neighbors of a
given spin as an external bath actually appears quite intuitive.
The dynamical mean-field theory (DMFT) can be seen as a generalization of such ideas, but
applied to the quantum case [Georges et al. (1996),Georges(2004),Kotliar and Vollhardt(2004)].

A first step towards the elaboration of DMFT was accomplished by Metzner and Voll-
hardt [Metzner and Vollhardt(1989)], who showed that an infinite-dimension limit can be de-
fined for lattice fermion models, under the condition that the model parameters are appropriately
scaled with the dimension. In the case of the single-band Hubbard model, only the hopping
parameters have to be scaled by t = t∗/

√
2d, where t∗ is fixed, whereas the local Coulomb

repulsion U is unchanged. In this limit, the self-energy becomes completely local, thus indepen-
dent of momenta [Müller-Hartmann(1989)]. The final and important step that leads to the DMFT
framework, was introduced by Georges and Kotliar [Georges and Kotliar(1992)], when mapping
the lattice problem into a self-consistent quantum impurity problem. In the DMFT framework,
the solid is replaced by an atom that is dynamically coupled to a bath of free electrons. As
in the classical mean-field approximation, an approximation- namely the dynamical mean-field
approximation- has to be introduced in order to determine this bath self-consistently.

DMFT framework

The DMFT construction (for extensive reviews see [Georges et al. (1996), Kotliar et al. (2006),
Bulla(2006), Georges(2004)]) can be explained on the basis of the single-band Hubbard model
(Eqs. 1.13 and 1.15). With simplified notations and writing explicitly the single-electron atomic
level ǫ0 − µ, the lattice Hamiltonian reads as :

H = −
∑

〈ij〉,σ
tijc

†σ
i c

σ
j + U

∑

i

ni↑ni↓ + (ǫ0 − µ)
∑

i,σ

niσ. (3.1)

The key quantity of DMFT is the local on-site Green’s function of the lattice :

Gσ(τ − τ ′) ≡ −〈Tcσi (τ)c†σi (τ ′)〉, (3.2)

where the index i is omitted because of the translation invariance of the lattice.

In the classical mean-field theory of the Ising model, this quantity plays the role of the local
magnetization, which is described by the coupling of a spin on site i with an effective Weiss
field. In complete analogy, we introduce the local Green’s function for a single atom coupled to
an effective bath. This corresponds to the single-impurity Anderson model [Anderson(1961)],
where an interacting impurity is coupled to a set of non-interacting fermions via the hybridization
function ∆. The effective impurity action Seff is the appropriate quantity for taking into account
the retardation effects of the electrons hopping between the single site and the bath :

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ

′) + U

∫ β

0

dτn↑(τ)n↓(τ), (3.3)
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where c†σ, cσ are the Grassmann variables associated with the impurity creation and annihilation
operators and nσ = c†σcσ is the corresponding occupation. G0 plays the role of a bare propagator
for a fermion created on the impurity at time τ and destroyed at time τ ′.

The Matsubara spectral representation of this propagator is given by :

G−1
0 (iωn) = iωn + µ− ǫ0 −∆(iωn). (3.4)

This is interpreted as the quantum generalization of the Weiss effective field in the classical case,
but with the difference that it is a dynamical mean-field, i.e. depending on the energy. It therefore
takes into account the local quantum fluctuations of the impurity state due to the coupling with
the reservoirs of charges.

Applying such dynamical mean-field approximation within DMFT consists in identifying the
impurity self-energy Σimp- that is related to the impurity bare G0 and interacting G propagators :
1

Σimp(iωn) = G−1
0 (iωn)−G−1(iωn), (3.5)

with the lattice self-energy Σ(k, iωn) defined as follows :

Σ(k, iωn) = iωn + µ− ǫ0 − ǫk −G−1(k, iωn), (3.6)

where ǫk is the Fourier transformation of the hopping integrals tij .

As the impurity self-energy is a local quantity, the DMFT approximation means the follow-
ing. First, all the non-local components of the lattice self-energy are neglected, and second the
local component is approximated by Σimp,

Σ(k, iωn) = Σimp(iωn). (3.7)

The self-consistency condition, by construction, requires that the local lattice Green’s function
G(iωn) =

∑

kG(k, iωn) coincides with the Green’s function of the impurity and thus reads as :

G(iωn) =
∑

k

[

iωn + µ− ǫ0 − ǫk +G−1(iωn)− G−1
0 (iωn)

]−1

. (3.8)

The DMFT scheme is illustrated in Fig 3.1. The Anderson model for the impurity (Eq. 3.5)
has to be solved in this scheme and is the main technical part. Many powerful approaches have
been elaborated so far, in particular in the context of Kondo physics (see [Hewson(1993)] as
textbook and below for examples of impurity solvers). Since DMFT is a non-perturbative con-
struction 2, it is valid in the whole parameter space of the lattice model.

Analogously to classical mean-field theories, DMFT is exact in the infinite dimension limit.
It is usually considered as a good approximation for finite-dimensional systems, even if it ne-
glects the non-local fluctuations. A variety of cluster DMFT that go beyond the local approxima-
tion, have been developed [Kotliar et al. (2001),Biroli and Kotliar(2002),Parcollet et al. (2004)].

1For a reason that is intrinsic to the mean-field theory and that becomes more clear when deriving the DMFT
self-consistency relation, we keep the same notation for both the impurity and the local lattice Green’s functions.

2see for example the derivation of the DMFT equations within the cavity method [Georges et al. (1996), Kotliar
et al. (2006)]
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Figure 3.1: The DMFT iterative loop (from [Georges(2004)]). Starting from an initial guess for G0, the impurity
Anderson model is solved with a given solver and leads to the impurity self-energy Σimp (top arrow). The DMFT
approximation then consists in identifying Σimp with the lattice self-energy such that the local lattice Green’s func-
tion reads as Eq. 3.8. This leads to an updated Weiss function G−1

0 = G−1 +Σimp (bottom arrow) which is injected
again into the impurity solver.

Limits in which DMFT becomes exact

In addition to the infinite dimension limit, DMFT equations yield the exact solution in two simple
limits.

• In the non-interacting limit U = 0, the self-energy vanishes and this makes the DMFT
approximation trivially exact. Solving the effective action (Eq. 3.3) leads to G(iωn) =
G0(iωn). The self-consistency condition 3.8 exactly reproduces the local non-interacting
Green’s function.

• In the atomic limit tij = 0, the Hubbard model consists in a collection of independent
atoms. By definition, the lattice self-energy has only on-site components. It follows that
the DMFT approximation is exact.

DMFT approximation is thus exact in the two limits of non-interacting bands and of isolated
atoms. One may expect that it is still a reasonable approximation in the intermediate regime.

We conclude with the remark that a clue of the popularity of DMFT resides in its ability to
catch features of multiple energy scales. This point will be illustrated below within the DMFT
solution of the single-band Hubbard model for a Bethe lattice.

Quantum impurity solvers

It is not the point here to describe all the quantum impurity solvers that are employed for solving
the impurity Anderson model.
Several solvers are well reviewed in [Hewson(1993)] in the context of the Kondo problem, and
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also in [Georges et al. (1996)] in the context of DMFT. Approximate schemes like iterated per-
turbation theory (IPT) [Georges and Kotliar(1992)] or non-crossing-approximation (NCA) [Pr-
uschke et al. (1995)] are usually replaced by efficient numerical procedures, like the Wilson nu-
merical renormalization group (NRG) [Bulla et al. (2008)], adaptive exact diagonalization meth-
ods [Georges et al. (1996)] or quantum Monte Carlo (QMC) schemes [Georges and Krauth(1992),
Rozenberg et al. (1992)] based on the Hirsh-Fye algorithm [Hirsch(1983),Hirsch and Fye(1986)].
Recently, continuous time quantum Monte Carlo (CTQMC) algorithms have demonstrated to be
particularly efficient and accurate [Rubtsov et al. (2005),Werner et al. (2006),Gull(2008)]. They
in particular solve the Anderson model at much lower temperatures and stronger interactions than
Hirsh-Fye QMC. Furthermore, they are free of systematic errors related to the time discretiza-
tion. All the LDA+DMFT calculations carried out in this work will employ the hybridization
expansion CTQMC method as quantum impurity solver.

3.1.2 The Mott transition in the half-filled one-band Hubbard model

DMFT allowed for an important progress in the understanding of the Mott transition from a
metallic to an insulating state. This transition cannot be understood within independent-particle
theories. The ability of DMFT to describe accurately both the low-energy part of the spectra
(quasiparticles) and the high-energy one (Hubbard satellites) for a given ratio of Coulomb re-
pulsion and kinetic energy, justifies its wide success. For reviews on the Mott transition, see
for example [Georges et al. (1996), Kotliar and Vollhardt(2004), Imada et al. (1998), Rozenberg
et al. (1994), Aligia et al. (1995)].

Figure 3.2: Phase diagram of the one-band half-filled Hubbard model within DMFT, representing a material un-
dergoing a Mott metal-insulator transition (from [Kotliar and Vollhardt(2004)]). Temperature (y-axis) and strength
of the Coulomb repulsion over the bandwidth D (x-axis) are plotted.

We present below, as an illustration, the DMFT calculation for the half-filled single-band
Hubbard model (Eq. 3.1) for the d = ∞ Bethe lattice (Fig. 3.3). The phase diagram of this
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model is represented in Fig 3.2. As already pointed out, the competition between itineracy and
localization of electrons in such models is set by the ratio U/D (at the x-axis of the phase dia-
gram), where U denotes a generic Coulomb repulsion and D the bandwidth of the model. The
y-axis of this phase diagram is the temperature expressed in the units of the bandwidth. Thermal
excitations break up the quantum coherence of the quasiparticles and, hence, induce an incoher-
ent “bad-metal” or “bad-insulator” state.

In the absence of correlations (thus U/D = 0), the Hubbard Hamiltonian simplifies to the
one-body hopping term that is diagonal in the momentum space. The system is described by a
non-interacting Green’s function and the self-energy is zero. It follows that the spectral function
at given momentum, A(k, ω), is a Dirac δ-function,

A(k, ω) = − 1

π
Im[G(k, ω)] = δ(ω − ǫk), (3.9)

and the total local spectral function coincides with the Bethe density of states.

Turning on correlations, the spectral function has a Lorentzian profile :

A(k, ω) = − 1

π

[

ImΣ(ω)

(ω + µ−H0(k)− Re[Σ(ω)])2 + Im[Σ(ω)]2

]

. (3.10)

In the Fermi liquid regime, the real part of the self-energy leads to a shift of the non-interacting
excitations, whereas the imaginary part is responsible for the broadening of the quasiparticle
excitations. It is far away from being the end of the story, since the self-energy strongly depends
on the frequency and in the case of the Mott insulator, it will lead to a notable transfer of spectral
weights.
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Figure 3.3: Spectral density (in red) for the Bethe lattice within DMFT. The quantum impurity problem is solved
with the continuous time Monte-Carlo algorithm (CTQMC) in its strong coupling regime at β = 100 eV−1. A
stochastic maximum entropy method has been employed for the analytical continuation on the real axis. The non-
interacting density of states (DOS) is shown for comparison. (left) U = 2.5 eV induces a correlated metal with
quasiparticle excitations around the Fermi level as well as atomic-like excitations around U/2. The pinning at the
Fermi level is missed by the maximum entropy method. (right) U = 4 eV leads to a Mott insulator with a gap ≈ U .
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Fermi liquid regime

At low temperature and moderate interaction strength, the system exhibits an intermediate regime
which is still metallic but affected by correlations. It corresponds to a Fermi liquid regime which
is interpreted in terms of quasiparticle excitations with finite lifetime at low-energies, and atomic-
like excitations or Hubbard bands at higher energies. These Hubbard bands correspond to the
adding and removal of an electron, respectively (see left panel of Fig 3.3 for the corresponding
spectral density). These quasiparticles have an enhanced effective mass m/m∗ = Z where Z is
defined as the quasiparticle renormalization factor which also corresponds to the spectral weight
renormalization :

Z =

(

1− ∂ReΣ
∂ω

∣

∣

∣

∣

ω=0

)−1

. (3.11)

Z is equal to 1 for a non-interacting system whereas Z < 1 for a correlated one. As observed
in Fig. 3.3, Z < 1 induces in particular a reduced bandwidth, Z · D ∼ 2ǫ∗F , which gives an
estimation of the coherence scale.
The complementary weight 1 − Z is transferred from the low-energy part of the spectrum to
the incoherent Hubbard satellites that are reminiscent from the atomic limit of the Hubbard
model. Since the correlations do not modify the Fermi surface, the spectral density A(ω = 0)
is also pinned to its non-interacting value, i.e. the density of states at the Fermi level [Müller-
Hartmann(1989)]. The self-energy around the Fermi level displays Fermi liquid characteris-
tics [Pines and Nozière(1965)] : its real part is linear with respect to the frequency whereas its
imaginary part shows an ω2 behavior. For higher frequencies, it considerably deviates from this
low-energy behavior and then match the atomic limit behavior, Σ(ω → ∞) ∼ U2

4ω
at large fre-

quency. The real part goes to the constant Hartree term which is zero at half-filling. With a
temperature above the coherent energy scale, thermal fluctuations induce a scattering rate, even
at the Fermi level. This invalidates the quasiparticle interpretation. The phase called “bad metal”
is reached at this point.

Mott insulator

Above a critical value for the ratio U/D, it is energetically favorable for the electrons to localize
around atomic sites, mimicking the atomic limit situation. This corresponds to the Mott insulator
with a gap around U , since excitations are now only atomic-like.

Furthermore, there is no more spectral weight at the Fermi level. Since the real part of
the self-energy must be zero by antisymmetry at half-filling, the elimination of the spectral
weight must come from a divergence in the imaginary part of the self-energy [Brinkman and
Rice(1970)].

The absence of fluctuations, on the other hand, lead to unscreened local moments following
a Curie-like law, and these moments can even order antiferromagnetically at very low tempera-
tures, driven by the super-exchange mechanism.
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An increase of the temperature then induces a thermal filling of the insulating gap and
a “less” divergent imaginary self-energy. The system enters the phase called “bad insulator”
(Fig. 3.2).

In realistic multi-band systems, the problem is much more complex but also richer in terms of
possible phenomena. The crystal field splitting is enhanced by correlations [Poteryaev et al. (2008)]
and charge transfers between orbitals may be allowed by self-energies leading to modifications
of the Fermi surface. Other parameters enter the characterization of the Mott insulating state : we
think for example of the Zaanen-Sawatzky-Allen classification established for transition-metal
oxides [Zaanen et al. (1985), Imada et al. (1998)]. Such classification relies on the comparison
between the charge transfer energy ∆ between the ligand and metal orbitals and U , in order
to differenciate a charge-transfer insulator (gap around ∆) from a Mott insulator (gap around
U ). However, Hund’s coupling is missing in this classification although it is expected to play a
significant role [de’ Medici et al. (2011)].

We turn to realistic extensions of DMFT in order to deal with the electronic structure calcu-

lations of strongly correlated materials. One of the most popular extensions is the LDA+DMFT

approximation, that couples DMFT to DFT-LDA.

We first summarize the motivations of such approach and its historical background and we detail

its formalism, in particular within the (L)APW+lo framework.

3.2 LDA+DMFT

3.2.1 General introduction : from LDA+U to LDA+DMFT

The LDA+DMFT approximation [Anisimov et al. (1997b), Lichtenstein and Katsnelson(1998)]
can be motivated from two main perspectives. The first arises from the LDA+U approximation
as a natural improvement, whereas the second can be viewed as a way to upgrade the DMFT ap-
proach from model Hamiltonians to realistic systems. We only mention below the first point, as it
is enlightening for the following. Historically, the elaborations of LDA+U functionals are indeed
closely related to the first principles determinations of interaction parameters within constrained-
LDA (cLDA), as detailed at the end of Chapter 4.

The LDA+U approach was introduced as an extension to the local spin density approxima-
tion (LSDA) (see Chapter 2) by [Anisimov et al. (1991), Lichtenstein et al. (1995), Anisimov
et al. (1997a)]. The motivation was to focus on the ordered phases of the Mott insulating states,
since they were poorly described within DFT-LSDA.

The idea of LDA+U consists in constructing a generalized functional of the density that
explicitly takes into account, as in Hartree-Fock approximation, the Coulomb repulsion on a
chosen set of correlated orbitals. Correlated orbitals are identified with the projection of the
Bloch states onto a set of atomic local orbitals of the linear muffin-tin orbital (LMTO) basis. A
correction EU [{nσ}] to the LSDA functional can be obtained [Anisimov et al. (1997a)], where
nσ is the occupation of the correlated orbitals.
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Since correlations are already treated at the DFT-LSDA level, it is necessary to subtract
from the LSDA functional, the correlation terms that would be counted twice. This leads to the
well-known double-counting functional Edc[{nσ}]. It then follows that :

ELDA+U [ρσ(r), {nσ}] = ELSDA[ρσ(r)] + EU [{nσ}]− Edc[{nσ}]. (3.12)

The orbital-dependent interaction matrix that is involved in EU [{nσ}] is usually expressed in
terms of Slater integrals (see Appendix B) - e.g. (F0, F2, F4) for d orbitals [Anisimov et al. (1997a)].
Efforts have been addressed to calculate them from first principles. This leads to the constrained-
LDA (cLDA) methods (see Chapter 4), which are naturally combined with LDA+U. There are
even methods that explicitly start from a LDA+U reformulation [Pickett et al. (1998),Cococcioni
and de Gironcoli(2005)].

The double counting problem is a subtle issue and various forms of double counting function-
als were proposed. One of the most popular choices is the following [Anisimov et al. (1997a)] :

Edc[{nσ}] =
U

2
N(N − 1)− J

2
[N↑(N↑ − 1) +N↓(N↓ − 1)], (3.13)

where Nσ ≡ Tr[nσ
mm′ ] and N = N↑ + N↓. U and J are respectively the Coulomb on-site and

exchange parameters that are related to the Slater integrals by U = F0 and J = (F2 + F4)/14 for
d shells (see Appendix B).

Major advances have been achieved by LDA+U for the description of magnetically-ordered
Mott insulators, since the spectra with Hubbard bands separated by U , are correctly reproduced.
However, LDA+U approaches do not treat Hubbard atomic-like excitations and quasiparticle ex-
citations on an equal footing. More dramatically, in the absence of broken orbital symmetry,
they do not improve the DFT-LDA results. The LDA+U approaches have actually similar draw-
backs than the static Hartree-Fock approximation on which they rely. LDA+U can also be seen
as a static approximation to LDA+DMFT [Anisimov et al. (1997b), Lichtenstein and Katsnel-
son(1998)].

In its basic version, LDA+DMFT consists in tackling the one-particle part of the electronic
Hamiltonian within DFT-LDA whereas a chosen set of correlated orbitals is treated by DMFT.
The starting point is thus rather similar than in LDA+U, in the difference that the many-body
problem is considered beyond the Hartree-Fock approximation. An illuminating functional-
based presentation of DFT-LDA, GW, DMFT, LDA+U, LDA+DMFT and the conceptual similar-
ities of these theories can be found in [Kotliar et al. (2006)]. DMFT appears as an approximation
to the more general spectral density functional theory (SDFT), at the same level as LDA to DFT.
In SDFT, a local reference system is introduced and the true local Green’s functions are correctly
reproduced thanks to a self-consistent bath Green’s function. Although it is an exact represen-
tation, one needs to apply approximations like DMFT in practical schemes. SDFT-DMFT then
allows for the calculation of one-particle observables, whereas DFT-LDA yields ground-state
properties.

LDA+DMFT thus appears as a reasonable approximation to an exact functional of both
density and local Green’s function. The self-consistency in this scheme has to be performed via
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a double iteration loop, one over the DMFT cycle and another one over the total charge density
which affects the one-electron LDA Hamiltonian.

In the following, we give a short overview of the LDA+DMFT approximation and we present

a recent implementation within the (L)APW+lo framework. Further details about LDA+DMFT

can be found in the reviews [Kotliar et al. (2006), Georges(2004), Biermann(2006), Lechermann

et al. (2006), Aichhorn et al. (2009)].

3.2.2 Overview of the method

We review below the main steps of the LDA+DMFT approximation. The starting point is a con-
verged DFT-LDA calculation which gives a set of Kohn-Sham eigenstates {|ψσ

kν〉} with energies
ǫkν for spanning the Hilbert space.

Projection onto the correlated subspace : Projected Wannier functions

In a similar manner than in LDA+U, one has to first identify the correlated orbitals in a localized
or Wannier basis set, in order to tackle them within DMFT (instead of Hartree-Fock in LDA+U).
We call {|φασ

km〉} such basis. The expression in real space can be obtained within the Fourier
transformation defined in Chapter 1 (Eq. 1.2). The index m is an orbital index and α denotes an
atom in the unit cell. The construction consists in a projection onto the correlated subspace C
which is defined by the localized orbitals labeled by m and centered on the atom α :

Πk
α,σ =

∑

m∈C
|φασ

km〉〈φασ
km|. (3.14)

Historically, the Wannier basis was directly identified with the LMTO basis [Andersen(1975)]
like in the LDA+U method, since the LMTO basis orbitals are atom-centered and can (approxi-
matively) be associated with a particular angular momentum. Several approaches for construct-
ing Wannier functions from local orbitals have then been proposed. Through a Nth-order version
of muffin-tin orbitals (NMTO) [Andersen and Saha-Dasgupta(2000)], Wannier functions have
been designed by using a projection procedure and successfully applied within LDA+DMFT to
the Mott transition in orthorhombic 3d1 perovskites.
Another important improvement came from the maximally localized Wannier function frame-
work by [Marzari and Vanderbilt(1997), Souza et al. (2001)]. Referring to the definition of the
Wannier functions as introduced in Chapter 1 (Eq. 1.3), Marzari and co-workers derived a con-
dition of maximum localization in order to determine the transformation Uk

µν . This condition is
based on the minimization of the quadratic spreads of the probability distributions for the Wan-
nier functions. This scheme was first coupled to LDA+DMFT by [Lechermann et al. (2006)].

In this thesis, we prefer the alternative projection procedure as it was implemented by [Anisi-
mov et al. (2005)] and applied to LDA+DMFT within the (L)APW+lo framework by [Aichhorn
et al. (2009)]. It was shown that the projected functions are Wannier functions (and close to max-
imally localized Wannier functions) when dealing with correlated bands that do not energetically
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overlap with the rest of the band structure [Lechermann et al. (2006)]. In the case of entangled
correlated and itinerant states, the projected orbitals are not rigorously Wannier and it is only

empirically believed that they are equivalent to MLWF.

The Wannier projection procedure roughly consists in considering atomic orbitals {|χασ
m 〉}

that are promoted to Wannier functions by a truncated expansion over Bloch states and then
orthonormalized. In all the following, m refers to an orbital index of the correlated subspace and
α denotes the corresponding atom in the unit cell. By expanding the atomic orbitals |χασ

m 〉 over
the full Bloch basis set {ψσ

kν}, it follows that

|χασ
km〉 =

∑

all ν

〈ψσ
kν |χασ

m 〉|ψσ
kν〉. (3.15)

An energy window W for selecting the Bloch states that are physically relevant for generating
the correlated subspace, is then defined and the summation in Eq. 3.15 is restricted to the Bloch
states inside this energy window W. The number of included bands - identified with their band
indices or with their energy - depends in general on k (and σ). The set of orbitals that is produced
after the truncation is called {|χ̃ασ

km〉} and is not orthonormal :

|χ̃ασ
km〉 =

∑

ν∈W
〈ψσ

kν |χασ
m 〉|ψσ

kν〉. (3.16)

The second step of the procedure then consists in orthonormalizing this set of orbitals with a
standard numerical routine in order to produce a Wannier basis {|φασ

km〉}. The computational task
is not very high, since only a subset of Bloch states is involved in the construction of {χ̃ασ

km}
orbitals.

We finally define “Wannier” projectors Pα,σ
mν (k) that connect the Bloch basis to the Wannier

basis :

Pα,σ
m,ν(k) ≡ 〈φασ

km|ψσ
kν〉. (3.17)

We will refer to these projectors throughout this work. As they will play an important role later,
we add the following expressions :

|φkL〉 =
∑

ν∈W
P ∗
Lν(k)|ψkν〉, (3.18)

and also the Fourier transformation from the reciprocal to the direct space (see Chapter 1,
Eq.1.2) :

|φRL〉 =
1√
N

∑

k

e−ik·R|φkL〉, (3.19)

where we have condensed the indices (m,α) into L. As we will always consider paramagnetic
DFT-LDA calculations, the spin degree of freedom will be omitted from the notations. It is easy
to introduce it back for further applications.
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DMFT self-consistent loop

For the sake of clarity, we mention that we have to consider as many impurity models as inequiv-

alent correlated atoms α per unit cell. We remind the reader that the compact index L replaces

(m,α) for a shorter notation. The spin index is still omitted, since paramagnetic DFT-LDA

calculations are considered.

The Anderson effective impurity model for the correlated subspace C is defined by its bare
propagator [G0]LL′ and by the local Hubbard interactions considered as known for the moment.
It is one of the objective of this work to investigate in details their determination.
Considering the Kohn-Sham wavefunctions as initial guesses for G0, it follows that :

G0(iωn) = Πk
α

[

δνν′

iωn + µ− ǫkν

]

Πk
α. (3.20)

The solution of the impurity model leads to the impurity Green’s function Gimp(iωn) as well as
to the impurity self-energy Σimp(iωn) satisfying the Dyson equation :

[Σimp(iωn)]mm′ = [G0(iωn)]
−1
mm′ − [Gimp(iωn)]

−1
mm′ . (3.21)

According to the DMFT approximation (Eq. 3.8) which relates the effective impurity model
to the lattice, the lattice self-energy Σ(k, iωn) for the correlated states is approximated by the
impurity self-energy. As in LDA+U, it is also necessary, at this step, to deal with a double-
counting correction Σdc discussed later :

Σνν′(k, iωn) =
∑

α,mm′

[Pα
mν(k)]

∗∆Σimp
mm′(iωn)P

α
m′ν′(k), (3.22)

where ∆Σimp
mm′(iωn) = Σimp(iωn)−Σdc(iωn). The projectors Pα

mν(k) from Eq. 3.17 are employed
for treating only the correlated states within DMFT. The lattice self-energy enters the lattice
Green’s function through the Dyson equation and hence :

[G(k, iωn)]
−1
νν′ = (iωn + µ− ǫkν)δνν′ − Σνν′(k, iωn). (3.23)

The local Green’s function is then obtained by projecting the lattice Green’s function onto the set
of correlated orbitals m of the correlated atom α and by summing over the full Brillouin zone :

Gloc
mm′(iωn) =

∑

k

∑

νν′∈W
Pα
mν(k)Gνν′(k, iωn)[P

α
m′ν′(k)]

∗. (3.24)

By definition, the DMFT self-consistency imposes that the lattice local Green’s function coin-
cides with the impurity one :

Gloc(iωn) = Gimp(iωn). (3.25)

This implies an upfolding of the Weiss field G0 via the Dyson equation :

G−1
0 (iωn) = Σimp(iωn) +G−1

loc (iωn). (3.26)

It leads to a new impurity model. This cycle is repeated until convergence is reached.
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Double-counting correction

In a similar manner than in LDA+U, one has to correct for the correlations that have already
been taken into account in DFT-LDA (or any other exchange-correlation approximation) in order
to avoid accounting these effects twice. Since DFT itself is not an orbital-resolved theory and
LDA is not a well-controlled approximation, such double-counting correction appears to be quite
tricky. Several approaches have been proposed (for a review see [Karolak et al. (2010)]). We
introduce below three of these approaches :

• fully localized limit already introduced in Eq. 3.13 in the context of LDA+U [Anisimov
et al. (1993), Anisimov et al. (1997a)]

[Σσ
dc]mm′ =

[

U (N − 1

2
)− J(Nσ − 1

2
)

]

δmm′ , (3.27)

where N = N↑ +N↓. In the case of paramagnetic calculations, N↑ = N↓ = N
2

.

• around mean-field also originates from LDA+U [Anisimov et al. (1991)] :

[Σσ
dc]mm′ =

[

U (N − nσ)− J(Nσ − nσ)

]

δmm′ , (3.28)

where nσ is the electron density per spin and orbital, i.e. 0.5 for a half-filled system.

• Held’s correction that is especially adapted for t2g correlated orbitals [Held(2007)] and
hence for t2g lattice Hamiltonians (see Chapter 5, Eq. 5.86) :

[Σσ
dc]mm′ = (U − 2J)(N − 1

2
)δmm′ (3.29)

In all these corrections, U and J are parameters that need to be defined properly (see Chapter 5).

Update of the total charge density

Once the convergence of the DMFT loop is reached, the charge density is deduced from the
Fourier transformation of the lattice Green’s function [Mahan(1990)] :

ρ(r) =
1

β

∑

n

〈r|G(iωn)|r〉eiωn·0+ (3.30)

and the chemical potential is set in order to fulfill the total electron number. A new Kohn-Sham
potential is generated from this upfolded density and the whole cycle is performed again until
the convergences of the density ρ, the chemical potential and all DMFT quantities, are reached.

In practice, there exists rather few implementations of the whole LDA+DMFT loop including
the charge self-consistency because of the numerical difficulties : we mention the implementation
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within the LMTO framework by [Savrasov et al. (2001),Savrasov and Kotliar(2004),Pourovskii
et al. (2007)], within Korringa-Kohn-Rostoker (RKK) method by [Minár et al. (2005)] and re-
cently within the (L)APW+lo framework by [Haule et al. (2010), Aichhorn et al. (2011)]. A
lighter “one-shot”’ approach is usually adopted. This approach is validated by the good results
with respect to photoemission experiments. It consists in starting from a converged DFT-LDA
calculation and stopping once the convergence of the DMFT loop is reached.

3.2.3 Achievements and limitations within the (L)APW+lo framework

Since the pioneering works by [Anisimov et al. (1997b), Lichtenstein and Katsnelson(1998)],
many materials have been investigated with “one-shot” LDA+DMFT calculations, with a suc-
cessful comparison to experiments, in particular photoemission spectroscopies (PES) and angle-
resolved photoemission spectroscopies (ARPES). Applications for classes of materials are re-
viewed for example in [Kotliar et al. (2006), Biermann(2006)].
Recently, the LDA+DMFT combination was implemented by [Aichhorn et al. (2009)] within the
(L)APW+lo framework provided by the electronic structure code WIEN2K [Blaha et al. (2001)].
The full-potential (L)APW+lo framework provides a high level of accuracy for representing
the Hilbert space. The implementation, for instance, has been successfully applied to the fam-
ily of iron-based superconductors like LaOFeAs [Aichhorn et al. (2009)] and FeSe [Aichhorn
et al. (2010)], and also to the layered perovskite Sr2RuO4 [Mravlje et al. (2011)].

However, rather intrinsic limitations are still on the table, in particular the arbitrariness in the
choice of the correlated orbitals, the interaction parameters and the double-counting correction.
We will not elaborate much on the double-counting problem but we shall mention that its evalu-
ation usually requires the knowledge of the Hubbard parameters U and J .
One application of this work (see Chapter 8) is to combine within LDA+DMFT in the (L)APW+lo
framework (or any other lattice Hamiltonian solvers in the future), a systematic procedure to
construct low-energy Hamiltonians and the corresponding interaction parameters from first prin-
ciples. The chosen procedure is the constrained-Random Phase Approximation (cRPA) method
which was invented by [Aryasetiawan et al. (2004)]. We insist on the fact that our implementation
of cRPA is fully consistent with the LDA+DMFT implementation by [Aichhorn et al. (2009)].
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Part II

Hubbard U Calculation : Constrained

Random Phase Approximation (cRPA)





Chapter 4

What is U in Solids ?

As a first observation, one may note that the problem of electronic interactions highly differs
from an isolated atom to atoms in solids. The major difference comes from the possibility of
non-local and long-range screening within solids, which strongly lowers the effective Coulomb
repulsion between electrons (for a schematic view, see Fig. 1.2). How strong the screening is and
how to take it into account in models, are fundamental questions for condensed matter theories.

Early attempts arise from the introduction of the well-known Hubbard parameter U in the
single-orbital Hubbard-Kanamori-Gutzwiller model [Hubbard(1963),Kanamori(1963),Gutzwiller(1963)].
U is an effective Coulomb interaction usually turned by hand in such model. Due to screening in
solids, it is set to an order of magnitude less than the bare atomic interaction. This U parameter
corresponds to the Coulomb energy cost for placing two electrons at the same atomic site, or
equivalently to the affinity and ionization energy difference (Fig. 4.1) when respectively adding
and removing one electron on a given shell, as summarized by the following equation

U = E(dn+1) + E(dn−1)− 2E(dn). (4.1)

E(dn) is the total energy of a system for which n electrons fill a given d shell on a given atom.
With the multi-orbital generalization of the original single-orbital Hubbard model - and other
extensions, necessary for taking into account the charge, orbital and/or spin degrees of freedom
(see Chapter 1) - the Hubbard U changed its shape from a simple local intra-orbital parameter to
a more general on- and inter-site, intra- and inter-orbital interaction parameter.

�
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Figure 4.1: Schematic representation of the affinity and ionization when respectively adding and removing one
electron on a given shell of an atom (from H. Jiang’s talk).
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An important step in the determination of U was achieved with the pioneering work of
Sawatzky and co-workers which consisted in fitting the spectra from X-ray photoemission, ab-
sorption and Auger experiments by a set of Slater integrals (see Appendix B for an introduction
to Slater integrals) in a configuration-interaction model [Antonides et al. (1977), Sawatzky and
Allen(1984), van der Marel(1985)]. By cluster-configuration calculations and comparison with
experiments, they were able to extract detailed information about the local electronic structure.
An example is given in Fig. 4.2 for copper monoxide (CuO) showing a combination of photoe-
mission (PES) and inverse photoemission (BIS) spectra. An estimation of U is deduced from the
multiplet structure of Cu d states.

The method of Sawatzky and co-workers thus affords an experimental determination of the
Hubbard U in relation to a configuration-interaction model. Furthermore, in such approach, the
monopole part of the Coulomb interaction represented by the Slater integral F0, is shown to be
strongly dependent on the screening in solids, whereas the parameters describing the multiplet
splitting of the ground and excited states (Fk, k > 0) are in good agreement with Hartree-Fock
calculations for free ions [Antonides et al. (1977), van der Marel(1985)]. A limitation of this
approach is the knowledge of the initial and final states of the system. The dimension of the
configuration-interaction basis is hence limited by the computational capacities.

Figure 4.2: Electronic structure data of CuO extracted from the photoemission (PES) and inverse photoemission
(BIS) spectra (upper part). The resonance photoemission spectrum is shown in the lower part in order to enhance
the d9 → d8 final states. (from [Hüfner(1994)])
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Many-body solvers, on the other hand, have been developed for solving Hubbard models
dealing with correlated degrees of freedom close to the Fermi level (see for example [Georges
et al. (1996), Sorella(2001), Tahara and Imada(2008)]). Such models are usually constructed
on the basis of physical intuition and the Hubbard interaction U as well as Hund’s coupling J
are left as adjustable parameters. A severe shortcoming is that without a judicious choice of
these interaction parameters, the low-energy model may yield confusing results and even miss
important physical features. Such considerations have motivated the development of systematic
- or ab initio - ways of constructing low-energy effective Hamiltonians involving parameters that
are calculated from first principles. The constrained-Random Phase Approximation (cRPA) is
one of these methods.

Another important motivation concerns the precise evaluation of the dynamical electronic
screening and its treatment by the many-body solver. Since screening is a dynamical event, the
effective Coulomb repulsion due to the retarded character of the interaction, is expected to be
strongly dependent on the frequency. In particular, the Hubbard parameters should yield the
unscreened bare Coulomb values in the infinite frequency limit, which is an order of magnitude
larger than the static screened value. The treatment of dynamical Hubbard interactions implies a
serious challenge for the actual many-body solvers.

We start with a conceptual description of the constrained-Random Phase Approximation

(cRPA), which we have implemented in the electronic structure code WIEN2K [Blaha et al. (2001)].

cRPA provides a consistent way for modeling the Coulomb interactions.

At the beginning, we include the cRPA method in the more general framework of downfolding.

Then we describe the essence of the approach, the achievements and the limitations. We leave

for Chapter 5 the technicalities of the implementation in WIEN2K and the improvements.

We conclude the chapter with a short presentation of the alternative approaches to determine the

Hubbard U in materials. Although they are not ab initio, we first present the cluster-configuration

calculations that rely on photoemission experiments. We then give a description of the density

functional-based methods (cLDA and linear response formalism).

4.1 The constrained Random Phase Approximation (cRPA) :

Concepts

4.1.1 The concept of downfolding

The aim of the following sections is to explain how to build low-energy effective Hamiltonians
without any adjustable parameters and include this procedure in the larger context of first prin-
ciples calculations, between the electronic structure and the many-body solver operations. This
point of view gives a general introduction to the downfolding procedure.
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Figure 4.3: Downfolding of the effective interactions for two given low-energy Hamiltonians, called dp (on the
top right) and t2g-t2g (on the bottom right) (see also Fig. 4.6), based on the density of states of SrVO3. The total
density (on the left) is shown in black, whereas the partial densities for t2g , eg and O-p are shown in red, blue
and turquoise, respectively (Fig. 4.4). The grey areas (on the right) correspond to the higher-energy states that are
not included in the downfolded low-energy model. The purple arrows indicate the contributions of the excluded
higher-energy states to the total polarization. These effects have to be integrated out to yield effective interactions
within the low-energy model, which thus increase with the number of excluded screening channels. The effective
interactions are thus scale-dependent as in Wilson renormalization group’s philosophy.

Effective low-energy Hamiltonians from first principles : general framework

The main purpose of downfolding is to build an effective Hamiltonian that only accounts for
the degrees of freedom near the Fermi level that should be relevant for the physical properties.
Therefore, the degrees of freedom at higher energies have to be integrated out in such a way that
only a small number of target bands survive.
In the case of strongly correlated materials, such target bands can be listed : they are usually d
orbitals in transition metal oxides (TMO) and f orbitals in rare-earth compounds.

Following the ideas of the Wilson renormalization group, the price to pay for such operation
is the renormalization of the interaction energies on these target bands (Fig. 4.3). The renormal-
ized interaction leads to an effective repulsion which is symbolized by U in the single-orbital
Hubbard model. The renormalization is caused by the interaction between low and high-energy
electrons : the polarization of the high-energy electrons - typically from s and p states - creates a
screening that reduces by about an order of magnitude the bare repulsion v on these target bands
close to the Fermi level. Such effect is well highlighted in the Dyson-like equation that connects
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the fully screened interaction W to the bare interaction v via the polarization response function
(see Hedin’s equations in Chapter 2, Eq. 2.20). For a more specific presentation of downfolding
in electronic structure, see [Aryasetiawan et al. (2009)].

The choice of the low-energy model is obviously not unique. Looking at the early 3d-TMO,
one may wonder whether only t2g degrees of freedom should be retained instead of the whole d
manifold (for the band structure of early TMO, see Chapter 7, Fig. 7.2). Two different “down-
folded” Hamiltonians clearly will not lead to the same Hubbard interactions U or J , since the
low-energy part will differ and the high-energy part will be integrated out differently. However,
both models should yield the same results for physical observables at the end, under the condition
that both models are appropriate for catching the physical properties. This leads to the following
statement and we will insist on this throughout this thesis : in order to be meaningful, values for

the Coulomb interactions have to be accompanied by a precise definition of the model they are

referring to.

4.1.2 The partially screened interaction W r alias U

In the following, we focus on the cRPA procedure. As we will see, cRPA employs the Kohn-Sham

states coming from an electronic structure calculation and yields effective Coulomb parameters

for an Hamiltonian that needs to be defined. These parameters can enter low-energy solvers (like

DMFT, diagrammatic Monte-Carlo, etc). In a sense, cRPA makes LDA+DMFT or LDA+U first

principles approaches (Fig. 4.7).

The idea of cRPA as introduced by [Aryasetiawan et al. (2004)] resides in the interpretation
of a partially screened interaction as the effective Coulomb U , via a systematic ab initio proce-
dure for constructing low-energy effective Hamiltonians (see Fig. 4.5).
cRPA relies on the calculation of the polarization and the dielectric function at the RPA level, as
done in the GW approximation to Hedin’s equations (see Chapter 2 for a presentation of these
equations). The starting point is the one for downfolding : one needs to choose first a set of
adequate degrees of freedom around the Fermi level. This set defines a correlated subspace of
the full Hilbert space and is called C.

In the following, we introduce in our notations the indices “d” in order to specify the con-
tribution of the chosen degrees of freedom or to refer to any quantity that is calculated within C
subspace.

Projection onto the correlated subspace C

In this section, we assume that the chosen correlated orbitals do not energetically overlap with
the itinerant ones, as observed for example in the band structure of SrVO3 (Fig. 4.4). In SrVO3,
the d bands could be chosen as target bands for cRPA whereas the oxygen p would be part of the
itinerant states. The more general case of bands with correlated character that are entangled with
ones with itinerant character, requires more care and is considered later in this chapter.
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Figure 4.4: (left panel) DFT-LDA band structure of SrVO3. The three degenerate t2g bands are highlighted in
red, the eg in blue and the oxygen p in turquoise. (right panel) Brillouin zone meshes considered.

The bare Green’s functions G0
d are constructed within the correlated subspace C as follows :

G0
d(r, r

′;ω) =
∑

k

{ occ
∑

d

ψdk(r)ψ
∗
dk(r

′)

ω − ǫdk − iη
+

unocc
∑

d

ψdk(r)ψ
∗
dk(r

′)

ω − ǫdk + iη

}

, (4.2)

where ǫdk are the energies of the Bloch states ψdk spanning C. For the simplicity of the notations,
we omit the spin degree of freedom.

The starting point of the cRPA method then consists in extending the conceptual division of
the Hilbert space to the total polarization P (Fig. 4.5) :

P = P d + P r, (4.3)

where P d corresponds to the polarization restricted to the transitions from d to d states, whereas
P r = P − P d takes into account all other transitions. In other words, the contributions of the d
electrons have been projected out in the polarization P r. At the RPA level, one can calculate the
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Figure 4.5: Illustration of the cRPA method for a prototypical band structure of a correlated material. We assume
that as in the band structure of SrVO3 in the right part of the graph, the chosen localized states (in red) do not overlap
within the other states (eg and p in turquoise). In the left part of the graph, P d (in red) is the polarization that only
involves the transitions from and to the chosen localized states (t2g for example here), whereas P r = P − P d (in
turquoise) is the polarization that is left. P r leads to the partially screened interaction W r which can be interpreted
as the bare interaction but within the low-energy subspace C that is the Hubbard interaction U (see derivations in the
text).

spectral representation of P d as generated by the Green’s functions G0
d :

P d(r, r′;ω) ≡
∫

dω′G0
d(r, r

′;ω − ω′)G0
d(r

′, r;ω′) (4.4)

=
occ
∑

k,d

unocc
∑

k′,d′

ψ∗
dk(r)ψd′k′(r)ψ∗

d′k′(r′)ψdk(r
′)

×
{ 1

ω − ǫd′k′ + ǫdk + iη
− 1

ω + ǫd′k′ − ǫdk − iη

}

. (4.5)

Such derivation at the RPA level can be found in many textbooks, e.g. [Mahan(1990)]. For the
diagrammatic interpretation of the RPA polarization, see the last section of Chapter 1, where
RPA has been developed for the homogeneous electron gas.

Practically, one computes the total polarization P as well as the C-restricted- or constrained-
polarization P d. The polarization P r is then deduced from Eq. 4.3.

Identity relations that lead to an interpretation of W r as U

Following [Aryasetiawan et al. (2004)], the expression in Eq. 4.3 which defines P r, can be
further used in the Dyson-like equation (see Hedin’s equations in Chapter 2, Eq. 2.20) to obtain
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the partially screened interaction W r :

W = [1− vP ]−1v = [1− vP d − vP r]−1v

=
v/[1− vP r]

1−
[

v/[1− P rv]
]

P d

= [1−W rP d]−1W r. (4.6)

We have defined the key quantity W r as it follows from Hedin’s equations with shorthand nota-
tion (r τ ) represented by a number [Aryasetiawan and Gunnarsson(1998)] :

W r(1, 2) ≡
∫

d3 ǫ−1
r (1, 3)v(3, 2), (4.7)

where ǫr is the constrained dielectric function

ǫr(1, 2) = δ(1− 2)−
∫

d3P r(1, 3)v(3, 2). (4.8)

Omitting the indices, this leads to :

W r =
v

1− P rv
, (4.9)

which is interpreted as the partially screened interaction where all the screening channels except

the (d to d) ones, screen the bare Coulomb interaction v.

According to the last expression in Eq. 4.6, W r is further screened by the polarization P d

to give back the fully screened interaction W . The recovering of W suggests that W r can be
interpreted as the bare interaction but within the low-energy subspace C – or U in the Hubbard
model. In other words, the cRPA method consists in setting that 〈. . . |W r| . . . 〉 = U (see Chapter
5 for further technical details).

We add that it is called constrained RPA since the transitions in the RPA polarization leading
to U are constrained to all transitions except the transitions from the chosen target bands to the
chosen target bands.

In addition, relation 4.9 gives a frequency-dependent U coming from the energy dependence
of the polarization P r. This leads to a physical effect arising from response theory : since elec-
trons do not respond to the high-frequency variations of an external electric field, any electronic
polarization like P or P r has to vanish at high frequency. In this limit, the particle-hole excita-
tions are ineffective for screening the bare Coulomb potential, whereas they are close to the static
limit.

Eq. 4.9 is valid in any basis, as it involves operators. For practical reasons, the interactions
are expanded into a localized basis {φRL(r)} (we remind the reader that L = (n, l,m, α) and R

refers to the unit cell index, see Chapter 3 for further details) :

UR1R2R3R4
L1L2L3L4

(ω) ≡ 〈φR1L1φR2L2 |W r(ω)|φR3L3φR4L4〉 (4.10)

=

∫

drdr′φ∗
R1L1

(r)φR3L3(r)W
r(r, r′;ω)φ∗

R2L2
(r′)φR4L4(r

′). (4.11)

The Fourier transformation leads to the retarded interaction matrix elements UR1R2R3R4
L1L2L3L4

(τ −τ ′).
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(a)

(b)

Figure 4.6: Illustration of low-energy Hamiltonians constructed for SrVO3 (taken as an example). (a) t2g-t2g
Hamiltonian : the t2g Wannier functions are constructed out of t2g Kohn-Sham bands within an energy window
Wt2g . In cRPA, the transitions from and to the t2g states included in Wt2g have to be removed from the total
polarization to get the constrained polarization P r. A Ct2g -restricted lattice Hamiltonian is then obtained. (b) d-dp
Hamiltonian : the dp Wannier functions are constructed out of dp Kohn-Sham bands within an energy window Wdp.
The oxygen-like p states are included because of the hybridization with the eg states. In cRPA, the transitions from
and to the d states included in Wdp have to be removed from the total polarization to get the constrained polarization
P r. A Cdp-restricted lattice Hamiltonian is obtained, where both d and p degrees of freedom are present but only
the double occupation on d costs U .
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Notations for the low-energy Hamiltonians : t2g-t2g and d-dp

We illustrate the cRPA procedure on the benchmark system SrVO3 in order to discuss our no-
tations employed throughout the thesis. Further details on SrVO3 are given in Chapter 6 and
Chapter 7. We adopted the same notations for low-energy downfolded models as [Miyake
et al. (2008)].
In our cRPA implementation, the Bloch states ψνk(r) are always approximated by the Kohn-
Sham eigenstates resulting from a paramagnetic DFT-LDA calculation (for a discussion of such
approximation, see the section 4.1.3). The energies ǫνk correspond to the Kohn-Sham eigenval-
ues.

From a chemical point a view, vanadium (V) has 4+ oxidation state in SrVO3 whose the
nominal valence is d1 because of the respective electronegativities of the elements. Since SrVO3

is a cubic perovskite, the crystal field splits the d orbitals into a set of non-bonding t2g-like bands,
which are filled by one electron, and eg forming bonding and anti-bonding bands with oxygen p
orbitals (see Fig. 4.4).

In a quite intuitive way, one can choose the t2g bands as the low-energy degrees of freedom
for the cRPA downfolding procedure. The correlated subspace, Ct2g , that only includes the t2g
degrees of freedom (see Fig. 4.6, part (a)), needs to be generated.
To this effect, a set of projected Wannier functions with t2g character is constructed out of Kohn-
Sham bands within the energy window Wt2g . The energy window Wt2g is chosen such as only
t2g bands are included, following the procedure indicated in Chapter 3. In that case, the subspace
so generated within Wt2g equals the correlated subspace Ct2g . The so constructed Wannier basis
will be employed for representating W r.

The constrained polarization P r (Eq. 4.5) has then to be calculated. The transitions from
and to the t2g bands within Wt2g have to be removed from the total polarization to get P r. A
method based on the Kohn-Sham indices or on an energy window can be employed for labeling
the transitions that have to be eliminated.

We finally get the interaction parameters that correspond to a Ct2g -restricted lattice Hamilto-
nian, where the t2g orbitals are subject to strong correlations via the Coulomb interactions. We
call this model, the t2g-t2g model (Fig. 4.6).

Alternatively, the correlated subspace Cdp that keeps also the eg degrees of freedom in addi-
tion to the t2g ones (see Fig. 4.6, part (b)), could be chosen.
Because of the hybridization effects between eg and oxygen p orbitals, an extended dp energy
window Wdp that includes the whole d as well as the p manifold, has to be considered for con-
structing localized d orbitals.

Although both d and p states are kept for the downfolding of the interaction Hamiltonian
within Cdp, only the double occupation on d has to cost an energy corresponding to the Hubbard
interaction for the model we have in mind. We thus need to calculate the constrained polarization
P r corresponding to the total polarization in which the transitions from and to the d bands within
Wdp have to be cut off.
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We finally get the interaction parameters that correspond to a Cdp-restricted lattice Hamilto-
nian, where only the d orbitals are subject to strong correlations via the Coulomb interactions.
We call this hybrid model, the d-dp model (Fig. 4.6).

4.1.3 Achievements and limitations

History and implementations of cRPA

Since the pioneering work by [Springer and Aryasetiawan(1998)], theoreticians have attempted
to compute screened interactions based on density response functions in order to construct Hub-
bard models. Springer and Aryasetiawan promoted the head of the linear muffin-tin orbital basis
(LMTO) in the atomic sphere approximation (ASA) to Wannier-like functions but did not rec-
ognize the importance of constraining transitions in the total polarization. This was the merit of
Kotani who mentioned that the d-d polarization should be projected out of the total polarization
in order to avoid double counting in the calculation of self-energies [Kotani(2000)]. A systematic
procedure corresponding to the formulation of cRPA was finally established by [Aryasetiawan
et al. (2004)].

Since 2004, the cRPA method has been implemented within the head of LMTO-ASA frame-
work [Aryasetiawan et al. (2004), Solovyev and Imada(2005)] and within the maximally local-
ized Wannier function (MLWF) framework using the full-potential (FP) LMTO basis [Miyake
and Aryasetiawan(2008)] and the (L)APW+lo basis [Şaşıoğlu et al. (2011)].
The Coulomb interactions in the pnictide families have been widely investigated with cRPA in
the MLWF framework [Miyake et al. (2010)]. The 3d, 4d and 5d transition metals have also re-
ceived much attention in cRPA employing the head of LMTO-ASA [Aryasetiawan et al. (2006)]
or MLWF [Miyake et al. (2009), Şaşıoğlu et al. (2011)] as local orbitals.

cRPA has been coupled to LDA+DMFT in several works. Such combination (Tab. 4.1)
was able to reproduce experimental features for correlated metals, such as iron-based pnic-
tides, LaOFeAs [Aichhorn et al. (2009)] and FeSe [Aichhorn et al. (2010)], transition metal
oxide SrVO3 [Aichhorn et al. (2009),Lechermann et al. (2006)] and layered perovskite Sr2RuO4

[Mravlje et al. (2011)]. In the case of SrVO3, it was shown that the energy-dependent Hubbard
interactions from cRPA coupled to an extended DMFT approach lead to experimental agree-
ment [Casula et al. (2012a)]. However, the approach of these authors was not fully consistent :
cRPA calculations were carried out within MLWF whereas LDA+DMFT used projected local-
ized functions. It was shown by [Lechermann et al. (2006)] that the projected localized functions
constructed with the projection procedure (see Chapter 3) are Wannier functions if the corre-
lated bands are not entangled with itinerant ones. In the case of entangled systems, the projected
functions can be considered as localized functions but not rigorously Wannier-like. We show
in Chapter 8 that the combination of cRPA with LDA+DMFT also successfully describes the
spin-orbitally ordered paramagnetic Mott insulator, Sr2IrO4 [Martins et al. (2011)].

Interestingly, the pressure dependence of the Coulomb interactions is accessible within cRPA
as done in the MLWF framework [Tomczak et al. (2009)]. The cRPA method was also combined
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t2g-t2g d-dp
SrVO3 U = 4.0a,b, 5.5c(3.2) eV Umm = 6.0a,b(4.0) eV

J = 0.65a,b, 1.00c(0.46) eV Jm = 0.65a,b(0.57) eV
Sr2RuO4 U = 2.3d(2.6) eV

J = 0.40d(0.25) eV
Sr2RhO4 U = 1.7 eVe

J = 0.23 eVe

LaOFeAs U = 2.7a(2.4) eV
J = 0.80a(0.73) eV

FeSe U = 4.0f (3.9) eV
J = 0.90f (0.9) eV

SrMnO3 U = 3.5g(1.8) eV U = 2.8 eV
J = 0.60g(0.39) eV J = 0.89 eV

Sr2IrO4 U = 2.1 eVe

J = 0.23 eVe

a [Aichhorn et al. (2009)], b [Lechermann et al. (2006)], c [Sekiyama et al. (2004)]
d [Mravlje et al. (2011)],e [Martins et al. (2011)], f [Aichhorn et al. (2010)]
g [Mravlje et al. (2012)]

Table 4.1: Hubbard parameter and Hund’s exchange employed in LDA+DMFT calculations to reproduce experi-
mental features such as quasiparticule renormalizations for correlated metals. (U ,J ) refer to the Hubbard-Kanamori
interactions (Figs. 5.1 and 5.2), whereas (U, J) correspond to F0, (F2+F4)/14, respectively (Eqs. 5.67 and 5.68), and
(Umm, Jmm) are the interactions between the t2g orbitals within the d-dp Hamiltonian (Fig. 5.1). In red parentheses,
we show our values from cRPA (see Chapter 6 and 7). For SrVO3, considering the energy-dependent Hubbard inter-
actions from cRPA within an extended DMFT scheme lead to experimental agreement [Casula et al. (2012a),Casula
et al. (2012b)]. The case of Mott insulators is illustrated for SrMnO3 (see Chapter 7) and Sr2IrO4 (see Chapter 8)
materials. We mention that the antiferromagnetic phase of SrMnO3 was described within GGA+U using U = 2.7
eV and J = 1.0 eV [Hee Lee and Rabe(2010)].

with LDA+U leading to a truly first principles approach by [Karlsson et al. (2010)], and applied
to NiO and to gadolinium (Gd) element (for a further discussion, see below).

The main advantages provided by cRPA with respect to the alternative first principles meth-
ods (such as constrained-LDA, see below) and despite the numerical cost, are summarized be-
low :

• the four-index interaction matrix elements UR1R2R3R4
L1L2L3L4

are simultaneously obtained : on-
and off-site, intra and inter-orbital and exchange components of the effective Coulomb
interaction.

• cRPA is a Wilson-like renormalization method in which one can choose the low-energy de-
grees of freedom for downfolding the corresponding low-energy interaction Hamiltonian.

• cRPA gives the energy dependence of the effective Coulomb interaction. The issue of a
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dynamical Hubbard U(ω) in solvers like LDA+DMFT is currently receiving much atten-
tion [Casula et al. (2012a), Werner et al. (2012), Casula et al. (2012b)].

Beyond cRPA as a perspective

It is a well-known statement that the random phase approximation (RPA) is not appropriate to
describe correlated systems subject to strong Coulomb interactions. In the cRPA method, only
the itinerant states are treated at the level of RPA when calculating the constrained polarization
and for these states, such approximation is usually well founded. The correlated states that were
chosen for downfolding, on the other hand, will be treated in a second time by a given many-body
solver.

Approximations to the polarization beyond RPA are always desirable even for itinerant
states. This question has already received much attention in the context of self-consistent GW
schemes to solve Hedin’s equations [van Schilfgaarde et al. (2006)]. To our knowledge, there
is only one attempt by [Kutepov et al. (2010)] to combine with cRPA the interaction W from
a self-consistent GW calculation. However, it is usually believed that the polarization obtained
from these self-consistent approaches, is underestimated and may be even worse than the RPA
one. Underestimations of the polarization induce overestimated values for U . Kutepov and co-
workers, indeed, get larger values for the pnictide BaFe2As2 than the ones from standard cRPA
which are given in Chapter 6 or in the literature [Miyake et al. (2010)].

One could improve the standard cRPA method by a self-consistent cRPA illustrated in Fig. 4.7
which can be seen as an approximation to the GW+DMFT method [Biermann et al. (2003)]. It
would consist in combining cRPA with any many-body solver of a lattice Hamiltonian and then
performing an update of the polarization. In Fig. 4.7, we consider for example the combination
with DMFT. In chapter 8, a “one-shot” LDA+DMFT approach based on the cRPA interaction
Hamiltonian, is applied to layered oxides and to rare-earth compounds. A combination with
other solvers like diagrammatic Monte-Carlo [Kozik et al. (2011)] is currently in development.
At the first iteration of this self-consistent loop, cRPA would provide electron-electron interac-
tion parameters for the lattice Hamiltonian solver chosen. Within the updated polarization and
the updated charge density, one would obtain an updated screening polarization. New interaction
parameters would then be produced by cRPA and given to the many-body solver until conver-
gence is reached.

One would add that, at first glance, it seems puzzling to employ the DFT-LDA spectrum for
approximating the screening of a strongly correlated material which could be a Mott insulator.
For such materials in particular, the electronic structure is subject to a strong rearrangement
because of the strength of the correlations. This rearrangement is especially dramatic for the
correlated bands but these bands are usually the target bands which are chosen for downfolding
in cRPA. The transitions from and to these bands are hence removed from the total polarization.
It would be still interesting to evaluate the effective Coulomb interactions for a Mott insulator
like SrMnO3 (see Chapter 7) within a scheme combining cRPA with a many-body solver and an
updated polarization arising from the Hubbard bands in the spirit of Fig. 4.7.
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Figure 4.7: Schematic self-consistent procedure in order to describe strongly correlated systems. A so con-
structed LDA+DMFT on top of cRPA interaction Hamiltonian, in its one-shot version, is employed in Chapter 8
for interpreting the spectral properties of layered oxides and rare-earth compounds. This scheme can be seen as an
approximation to GW+DMFT [Biermann et al. (2003), Sun and Kotliar(2002)]. Updating the polarization P after
the many-body solver treatment, would allow for going beyond the RPA approximation and better accounting for
the screening in strongly correlated materials.
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Recently, a truly first principles calculation of the Hubbard U based on LDA+U was ad-
dressed by [Karlsson et al. (2010)]. In this work, the authors calculated U with cRPA and then
employed LDA+U to get a new set of Kohn-Sham wavefunctions. Remarkably, a convergence is
reached in such scheme, which was tested on NiO and gadolinium (Gd). In Gd, a difference of
about 5 eV for U after the first and the last loop is reported. At convergence, the 4f exchange
splitting is increased compared to the one from LDA but is too large by about 1 − 2 eV com-
pared to experiments. Furthermore, the spectrum of the dynamical Hubbard U(ω) is much more
“flat” at convergence than after the first loop, as if the high-frequency tail of U(ω) was taken
into account to renormalize the static interaction. For NiO, the value of the charge-transfer gap
(around 2.5 eV) is improved compared to LDA but is still much smaller than the experimental
one (around 4 eV). The remaining discrepancies could be due to LDA+U.
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Figure 4.8: Schematic cRPA method (left part of the graph) for a material exhibiting a set of correlated bands (in
red) that are entangled with itinerant ones (in turquoise). As an example, we show on the right part of the graph the
paramagnetic DFT-LDA band structure of nickel where the d bands are entangled with the sp ones.

Entangled correlated bands

When introducing the polarization P d in Eq. 4.5, we made the assumption that the correlated
target bands do not energetically overlap with the itinerant ones. In this case, there was no
ambiguity to specify the transitions which have to be removed from the total polarization : meth-
ods using band indices or an energy window coincide. Such a situation appeared in SrVO3 for
example.

However this is far from being the end of the story. In many cases, correlated states are
entangled with itinerant ones (Fig. 4.8). The paramagnetic DFT-LDA band structure of nickel
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(Ni) is such a caricature : the 3d states around the Fermi level are mixed with a 4sp-like band
that lies on a larger energy scale. It becomes then extremely inappropriate to exclude only the
transitions from and to the d states with band indices or an energy window.

Let us for example consider a prototypical Kohn-Sham band that crosses the Fermi level. We
suppose that this band has a mixed orbital character with 60% d and 40% sp. Removing from the
total polarization all the transitions from and to this band because it has a significant d-character,
would not be well founded, since we would also eliminate a part of the sp-screening channels
which should not be eliminated. The situation can be even trickier when the bands are so entan-
gled that it is not possible any more to identify a proper set of bands with correlated character.
In cerium (Ce) element for instance, the d states are notably entangled with the f states, and
therefore asking whether a low-energy “f” model is reliable, is highly relevant.
It follows that using band indices or energy windows for such systems would severely approxi-
mate P r and thus the effective electron-electron interactions.

An improvement of the standard cRPA approach devoted to entangled systems is a challeng-
ing problem that already received attention. In [Miyake et al. (2009)], the authors introduced a
disentanglement scheme that generates an isolated set of d bands from the diagonalization of the
Hamiltonian expanded into the MLWF basis. For 3d transition metals [Miyake et al. (2009)] and
for some iron-based superconductors [Miyake et al. (2010)], the combination with LDA+DMFT
was able to catch experimental features. However, in some other cases such as Cerium, the
method may lead to unphysical values of the Coulomb interactions because of the artificial sys-
tem that is constructed by the diagonalization [T. Miyake (private communications)].
Recently, an other method was discussed [Şaşıoğlu et al. (2011)]. In this method, the polarization
P d for the correlated subspace is defined as the density correlation function :

P d(r, t; r′, t′) ≡ −i〈Ψ0|T [nd(r, t)nd(r
′, t′)]|Ψ0〉,

with the Kohn-Sham determinant Ψ0, the time-ordering operator T and the Heisenberg density
operator n(r, t) = nd(r, t) + nr(r, t) (decomposed according to the d subspace and the rest).
In Chapter 5, we present another method to calculate the polarization P d which is defined as the
projection of the total polarization to the correlated subspace C = {d}. We call this method, the
projection method.

Dynamical Hubbard U(ω)

It is well known that the high-frequency tail of U(ω) should impact the low-energy part of the
spectrum. In particular, since the infinite frequency limit corresponds to the unscreened (bare)
interaction v, the system is expected to be more correlated. Between the static and the infinite fre-
quency limits, the spectrum of U(ω) (see Fig. 4.9 for SrVO3 and other examples in Chapter 6 and
7) is made of plasmonic excitations, which correspond to specific screening processes [Aryaseti-
awan et al. (2006)]. Such dynamical effects are most of the time neglected but sometimes taken
into account only via a renormalization of the static value of U in the Hubbard model.
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Figure 4.9: Real-part of the dynamical Hubbard interaction U(ω) for the t2g-t2g Hamiltonian in SrVO3. U(ω)
varies from around 3.5 eV in the static limit to the unscreened (bare) interaction V ≈ 16.5 eV. It exhibits a strong
plasmon pole around 15 eV that notably screens the Coulomb repulsion.

The main difficulty that prevents us from directly using the dynamical U(ω) is the lack of
reliable quantum impurity solvers : because of the order of magnitude of difference between the
static and the bare interaction, traditional weak coupling expansion methods cannot be employed.
Furthermore, the many poles structure of U(ω) prohibits a simple extension of the Hubbard-
Holstein model. A Green’s function ansatz in an extended DMFT scheme has been recently
introduced in order to handle with the dynamical interaction effects [Casula et al. (2012a),Werner
et al. (2012),Casula et al. (2012b)]. These effects appear to be quite significant in the low-energy
properties.

Consequently, a first principles determination of U(ω) is an important piece of informa-
tion. Further investigations on the combination of such dynamical Hubbard interaction with
LDA+DMFT are currently in development.

4.2 Alternative approaches

In the following, we give a short description of other methods employed for calculating effective

electron-electron interactions.

We start with the configuration-interaction method which is not ab initio but affords a deter-

mination of Coulomb interactions in agreement with spectroscopy experiments. Other density-

functional theory-based methods than cRPA are then reviewed (cLDA and linear response for-

malism).
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4.2.1 Configuration-interaction cluster calculations from spectroscopy

Configuration-interaction cluster-model approaches are powerful methods to fit the data from
spectroscopy experiments, e.g. 2p X-ray absorption spectra (XAS), photoemission spectra (PES,
BIS), Auger spectra, etc. For an interpretation of the charge-transfer gap in NiO with such
cluster-theory, see for example [Sawatzky and Allen(1984)].

Spectroscopy experiments can give detailed information on the local electronic structure : in
the case of 3d transition metals, the allowed dipole excitations in XAS experiments from 2p-core
to 3d atomic shell can be selected and hence probe the 3d states. For an exhaustive presentation
of cluster-theory coupled to XAS, see [Haverkort(2005)].
However, configuration-interaction theories can not be classified as ab initio methods since they
rely on cluster models involving a set of adjustable parameters. In Fig. 4.10, we show for a
typical cluster model, the three main parameters that need to be adjusted in agreement with the
experimental spectra, namely the charge-transfer energy ∆, the on-site Coulomb energy U and
the transfer-integral tpd.

Figure 4.10: Schematic representation of a cluster model for a perovskite structure, involving the charge-transfer
energy ∆, the on-site Coulomb energy U = F0 and the transfer-integral tpd as parameters that need to be adjusted
within spectroscopy experiments (from A. Fujimori’s talk).

In contrast to density functional-based approaches, the initial and final states are treated on a
equal footing in configuration-interaction methods, simulating the spectroscopy experiment. An
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Hamiltonian for both the initial and the final states have to be built and diagonalized by Lanczos-
type routines [Sugano et al. (1970)]. The electron-electron repulsion Hamiltonian is usually
parametrized by a set of Slater integrals {Fk} (see Appendix B). A tight-binding approach is
employed for describing the electronic hopping inside the cluster. It is important to construct an
appropriate many-particles basis for both the initial and final states. This means that a sufficient
number of electronic configurations has to be taken into account. The dimension of these bases
may therefore drastically increase.

According to Auger spectroscopies on transition metals [Antonides et al. (1977), van der
Marel(1985)], only the monopole part of the repulsion corresponding to the Slater integral F0 is
notably affected by the screening of the surrounding charges. On the other hand, the multiplet
splittings in the spectra can be described by Slater integrals Fk, k > 0 as determined by Hartree-
Fock calculations in atomic systems. These effects are attributed to the different shapes of the
local electronic cloud which are not easily screened by the charges located externally.

In configuration-interaction cluster calculations, U = F0 is hence extracted as a fitting pa-
rameter from the spectroscopy experiments. Other Slater integrals are deduced from atomic
Hartree-Fock calculations with same number of electrons. Applications for 3d transition metals
and their oxides can be found in [Bocquet et al. (1992),Bocquet et al. (1996),Saitoh et al. (1995),
Mizokawa and Fujimori(1996)].

4.2.2 constrained LDA (cLDA)

The constrained-LDA (cLDA) method is based on the density functional theory (DFT) that is
extended to arbitrary constraints [Dederichs et al. (1984)]. In cLDA, it is the local d or f charge
occupation in a single cell which is constrained in order to mimic the definition of U from Eq. 4.1
(see also Fig. 4.1). The original idea is hence to isolate a given shell such that it is not hybridized
with others and then constrain its electronic occupation (see [McMahan et al. (1988), Hybertsen
et al. (1989),Gunnarsson et al. (1989),Gunnarsson(1990),Anisimov and Gunnarsson(1991)] for
pioneering works).

The method practically consists in considering a supercell around an atom which can be
seen as an impurity (Fig. 4.11) and then perform a self-consistent total energy calculation E(nd)
with a constrained nd occupancy on the d shell for example. The cLDA approaches are usually
implemented within the linear muffin-tin orbital (LMTO) framework assuming that the LMTO
basis functions are able to describe both the Hilbert space in DFT as well as the Hubbard model.
The hopping terms connecting a d or f orbital with all other orbitals can be identified within
LMTO and hence set to zero [Anisimov and Gunnarsson(1991)]. The method was extended
to (L)APW+lo framework by putting the d or f shell into the core in order to remove the hy-
bridization for this shell [Madsen and Novák(2005)]. Such methods are sometimes denoted
“hard”-cLDA.

The Hubbard parameter U cLDA can be related to the second derivative of the total energy
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Figure 4.11: Illustration of the “hard”-cLDA method (from F. Aryasetiawan’s talk).

E(nd↑, nd↓) with respect to the number of localized d electrons (Eq. 4.1) :

U cLDA =
∂2E(nd↑, nd↓)

∂n2
d

=
∂Cd

∂nd

, (4.12)

and equivalently to the change in the d level with respect to the number of localized d electrons.
Cd corresponds to the center of the d band [Aryasetiawan et al. (2006),Gunnarsson et al. (1989)].
Within the method of Anisimov and co-workers, one deduces in a supercell calculation that
[Anisimov et al. (1991), Anisimov and Gunnarsson(1991)] :
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and
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(4.14)

where ǫdσ are the d eigenvalues at the impurity atom calculated at given occupancies with respect
to the Fermi energy, which also needs to be adjusted with these occupancies. n is the total number
of d electrons.

Such cLDA method has been widely coupled to LDA+U [Anisimov et al. (1997a)] and also
(to a lesser extent) to LDA+DMFT [Anisimov et al. (2009a)].

Recently, cLDA was also formulated in terms of maximally localized Wannier functions
(MLWF) and applied to the 3d transition metal series [Nakamura et al. (2006)]. This scheme is
sometimes denoted “soft”-cLDA.
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However, the question whether screening is correctly taken into account is a major problem
in the cLDA approaches. The calculations of the electron-electron interactions from [Anisimov
and Gunnarsson(1991),Anisimov et al. (1991),Solovyev et al. (1994)] are for example suspected
of being overestimated by [Pickett et al. (1998)], who indicates that screening may be underes-
timated. It is usually known that only the screening from the charges inside the atomic sphere
is treated with good accuracy [Aryasetiawan et al. (2006)]. The systems filling this condition
should be reasonably described by “hard”-cLDA methods whereas it may be more problem-
atic for other systems, where only half of the screening charge is included in the Wigner-Seitz
cell [Anisimov and Gunnarsson(1991)]. A notable dependence on the muffin-tin sphere radius
has also been reported in an early work on La2CuO4 [McMahan et al. (1988)].

Comparison between cLDA and cRPA

The comparison between cRPA and cLDA is usually rather subtle. The discrepancies reported
in the literature (see for example SrVO3 in Chapter 6) may be understood in terms of screening
channels. The values from “hard”-cLDA are usually bigger than the ones from cRPA but the
methods are not straightforwardly comparable since screening is not considered in an equivalent
way. According to a study on 3d transition metals [Nakamura et al. (2006)], there might be a
better agreement between “soft”-cLDA and cRPA (see Chapter 6).

By construction of cLDA, the hopping terms between a given shell and the rest are turned to
zero. As proposed by [Aryasetiawan et al. (2006)], a fair comparison may consist in removing
from the total polarization in cRPA all the transitions involving this shell. For SrVO3 for exam-
ple, the values within the dp model for which the transitions from oxygen-p to d are removed in
addition to the dd transitions, agree with the ones from cLDA (Tab. 6.1).

4.2.3 Linear response formalism

The cLDA approaches benefited from the reformulation of the LDA+U functionals within a
local orbital basis instead of LMTO [Pickett et al. (1998)]. Using a generalized constrained
density functional, Pickett and co-workers evaluated the change in energy when constraining
a set of local orbital densities in the linear combination of atomic orbital (LCAO) basis. The
minimization of such functional involves Lagrange potential shifts applied to these local orbitals
and their variations with the changes in the charge lead to an interaction matrix U in the linear
response formalism. Their results for the diagonal interaction Udd for transition metal monoxides
are about 40 − 65% smaller than the ones by [Anisimov et al. (1991)]. They also mention a
significant dependence on the choice of the local orbitals. For example, they indicate that Udd in
FeO shifts from 4.6 to 7.8 eV when the atomic d orbitals of Fe2+ are chosen instead of the ones
of the neutral element.

Cococcioni and co-workers have extended the formalism of [Pickett et al. (1998)] to get an
interpretation of the Hubbard U that relies on the energy correction of the DFT-LDA functional
in the LDA+U framework (Fig. 4.12) [Cococcioni and de Gironcoli(2005)]. In a nutshell, such
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Figure 4.12: Total energy vs. the number of electrons in a generic atomic system in contact with a reservoir
(From [Cococcioni and de Gironcoli(2005)]). U is seen as the correction that has to be applied to the LDA energy
functional in order to eliminate the unphysical curvature of the LDA energy profile compared to the straight-line
segments in the exact calculation.

U would be zero if the exchange-correlation functional within DFT was exact. They introduce
a set of projection operators in a plane wave pseudopotential basis. This allows them to select
the degrees of freedom I (with the occupation number nIσ

m ) on which the Hubbard U will ap-
ply. Starting from the LDA+U framework by [Lichtenstein et al. (1995)], the energy correction
EU [{nIσ

mm′}] reads as :

EU [{nIσ
mm′}] =

U

2

∑

Iσ

∑

i

Tr[nIσ(1− nIσ)], (4.15)

and hence this correction does not affect fully occupied or empty states. Since the total energy
of an open atomic system with fractional occupation En can be seen as En = (1 − ω)EN +
ωEN+1, where ω is the statistical weight of the state with N + 1 electrons, the exact profile
of the total energy with the number of electrons is made of segments joining the states with
integer occupations. An unphysical curvature between these states is produced by DFT-LDA (or
any other exchange-correlation approximation) but can be eliminated by an appropriate energy
correction.

It follows that the Hubbard U should correct for this curvature. Such curvature was already
known from DFT community and is usually associated to the fractional electron self-interaction
error induced by any exchange-correlation approximation [Perdew et al. (1982)].
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Such analysis leads to the following procedure introduced by Cococcioni and de Gironcoli.
As in cLDA, they start with a supercell approach in the constrained DFT framework :

E[{qI}] = min
n(r),αI

{

E[n(r)] +
∑

I

αI(nI − qI)]

}

, (4.16)

where the occupation numbers nI for the atomic site I are constrained to the occupations qI by
the Lagrange multipliers αI . Via a Legendre transformation, αI can be seen as the strength of a
single particle potential that is applied to the localized orbitals I . They deduce :

U =
∂αKS

I

∂qI
− ∂αI

∂qI
= (χ−1

0 − χ−1)II , (4.17)

where χIJ = ∂nI

∂αJ
is the interacting density response function within the variation of qI . The non-

interacting one χ0
IJ is introduced in order to subtract the curvature arising from the noninteracting

band structure.

The procedure practically consists in adding small positive and negative potential shifts to
each localized site J and compute the variation of the occupation number nI for the site I in the
supercell. Their results for iron and cerium elements as well as for some transition metal monox-
ides are in reasonable agreement with the ones from the literature. Recently, this method was
extended to the calculation of inter-site interactions [Campo Jr and Cococcioni(2010)] but Hund’s
exchange is still missing. Another important issue is the derivation of an orbital-dependent Hub-
bard U . Since the formalism relies significantly on LDA+U functionals, one may worry about
the choice of double counting functionals.

4.3 Conclusions

Several ways of treating the electron-electron interactions have been introduced in this chapter
and consequently several definitions of the parameter U have been given. This may lead to
confusion. Our opinion is that this confusion can be enlightened by the following statement :
U itself is not a physical observable, but U and the considered model, become well-defined.
Therefore, addressing values of U without mentioning the employed model, does not have any
meaning. We illustrate this point with various examples in Chapter 6 and Chapter 7.

In configuration-interaction cluster models, Coulomb interactions are determined as fitting
parameters of experimental spectra. On the other hand, in constrained density functional-based
approaches like cLDA, the low-energy model that is constructed is not transparent. This explains
the subtlety of the comparison between cLDA and cRPA. The discrepancies may be solved by
a better knowledge of the screening channels that are involved. Furthermore, the extensions of
constrained DFT like the linear response formalism crucially relies on the formulation of LDA+U
functionals, since U is used as a correction to DFT-LDA.

In the cRPA method, a systematic Wilson-like procedure to downfold low-energy Hamil-
tonians is introduced. It relies on the calculation of response functions and leads to the matrix
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elements of the effective Coulomb interaction in a localized basis. Furthermore, it gives the
spectrum of the dynamical interaction whose combination with many-body solvers is currently
receiving high attention.

In this thesis, we have focused our attention on the cRPA method, which we have imple-

mented in the density functional theory electronic structure code WIEN2K [Blaha et al. (2001)]

within the (L)APW+lo framework (see Chapter 2 for an introduction to (L)APW+lo bases). A

more technical presentation of cRPA is given in Chapter 5.



Chapter 5

cRPA in Linearized Augmented

Plane-Waves ((L)APW+lo): Technical

Advances

This chapter is devoted to the implementation of the cRPA method in the (L)APW+lo framework

of the electronic structure code WIEN2K [Blaha et al. (2001)]. In order to make the text as

clear as possible, the main results are first reviewed. More details about the technicalities of the

procedure can be found in Section 5.1.5.

In this work, we benefited from the GW implementation in (L)APW+lo by [Jiang et al. (2012),

Gomez-Abal et al. (2008), Jiang et al. (2009)]. The projected Wannier-like functions which we

employ for representating Coulomb interactions, were introduced in Chapter 3 : we have fol-

lowed the implementation in WIEN2K by [Aichhorn et al. (2009)]. A parametrization for the

Coulomb interaction matrix that is based on the Slater integrals, was also developed. Such

method makes rather practical the further combination with lattice Hamiltonian solvers like

LDA+DMFT.

We finish the chapter with two last points : first, an improvement of the standard cRPA approach

dedicated to materials exhibiting bands with correlated character that are entangled with itiner-

ant ones. Our approach relies on the projection of the polarization into the correlated subspace

and is hence denoted d-projection. Second, we derive an interaction parameter that would be

adapted to an impurity-like model mapping the lattice like in the DMFT transformation. This

can be seen as an effort to the GW+DMFT combination.

5.1 General formalism

We start below with a presentation of the formulas for the Hubbard interaction matrix U , the
(fully) screened interaction matrix W and the bare interaction matrix v within the (L)APW+lo
framework. Demonstrations and technicalities can be found in Section 5.1.5.
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5.1.1 Product mixed basis in (L)APW+lo

In the (L)APW+lo framework, the real space is divided into muffin-tin sphere (MTS) regions
and interstitial regions filled with plane waves (IPW) (see Fig. 2.1 for an illustration). As already
described in Chapter 2, such approach combines the advantages of the plane waves expansion
for the itinerant states with those of the atomic sphere decomposition around the nuclei for the
localized ones. A natural question is then how to represent the two-particle bare, fully and par-
tially screened interaction operators, respectively v, W and W r within this framework . This
is done by the construction of an optimized product mixed basis that relies on the space parti-
tion between the MTS and IPW regions [Aryasetiawan and Gunnarsson(1998), Kotani and van
Schilfgaarde(2002)].

The Kohn-Sham eigenstates can be written as linear combinations of the (L)APW+lo basis
functions (Eq. 2.12). Such mixed expansion involves spherical harmonics in the MTS regions
and plane waves in the IPW regions.
Let us first consider the MTS part. Spherical harmonics involve a radial and an orthoradial
part. The product of spherical harmonics can still be expanded into spherical harmonics using
Clebsch-Gordan coefficients. We can therefore define the product basis functions {γαNLM(r)}
in the MTS regions as :

γαNLM(r) = vαNL(r)Y
α
LM(θ, φ), (5.1)

where (N,L,M) indices correspond to quantum orbital numbers and α to the atomic index.
Y α
LM(θ, φ) are spherical harmonics that are centered on the atom α in MTS. An optimal set of ra-

dial functions vαNL(r) is obtained by diagonalizing the overlap matrices of the (L)APW+lo radial
functions. More details can be found in the work related to the GW implementation within the
(L)APW+lo framework by [Jiang et al. (2012),Li(2008)]. So defined, the functions {γαNLM(r)}
constitute an orthonormal basis set. The translational symmetry of the lattice is then imposed by
taking the Bloch summation which leads to the basis functions {γqαNLM(r)} for the MTS re-
gions :

γqαNLM(r) =
1√
N

∑

R

eiq·RγαNLM(r). (5.2)

In the IPW regions on the other hand, one knows that the product of plane waves is still a plane
wave. We call {P̃ q

G(r)} such an orthonormalized set of interstitial plane waves.
The orthonormal product mixed basis finally reads as

{χq
i (r)} ≡

{

γqαNLM(r), P̃ q
G(r)

}

. (5.3)

At this step, it may be convenient to discuss about the plane waves expansion of the bare
Coulomb operator v, since this will actually improve the product mixed basis set {χq

i (r)} as
introduced above.
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A plane wave basis set, such as {χ̃q
G(r) =

ei(q+G)·r√
Ω

}, is not suitable for realistic calculations,
as a huge number of plane waves would be required. However, it has a major advantage, which
is the diagonal representation of v :

vGG′(q) =
4π

|q +G|2 δGG′ . (5.4)

The divergence at q = 0 is hence concentrated at the Γ point : G = G′ = 0. In the q → 0 limit,
we may formulate the previous Eq. 5.4 as follows :

vGG′(q → 0) =
4π

q2
δG0δG′0 + ṽGδGG′(1− δG0) (5.5)

ṽG ≡ 4π

|G|2 , (5.6)

where ṽ represents the regular part of v(q → 0).

When v is expanded into another basis than plane waves, the problem induced by the q → 0
limit is not well-defined, since the divergence is not concentrated to a single point anymore.
Furthermore, the representation of v is not diagonal neither.

Our scheme then consists in using as a basis, the eigenvectors of v but expanded into the
original product mixed basis from Eq. 5.3. Let us call {χq

µ(r)} such basis, while we reserve the
(i, j) notations for the original mixed basis {χq

i (r)} (Eq. 5.3).

One can relate the plane waves expansion to the original mixed basis via the transformation
matrices W i

G ≡ 〈χ0
i |χ̃0

G〉 :

vij(q → 0) = 〈χ0
i |v|χ0

j〉
=

∑

GG′

W i
GvGG′(q → 0)[Wj

G′ ]
∗

=
vsij
q2

+ ṽij, (5.7)

where vsij ≡ 4πW i
0[Wj

0 ]
∗ and ṽij ≡

∑

G W i
GṽG[Wj

G]
∗.

By diagonalizing the regular part of the Coulomb interaction ṽ at q → 0 (which equals v for
all q 6= 0), the eigenvectors {χq

µ(r)} read as

χq
µ(r) =

∑

i

T q
µiχ

q
i (r), (5.8)

and generate a product mixed basis that is equivalent to the plane wave basis and almost as
accurate as the original product mixed basis [Jiang et al. (2012)]. Rigorously, we note that the
singular part vsµν = 〈χ0

µ|vs|χ0
ν〉 is not diagonal but as a reasonable approximation, one assumes

that it is the case (see also Appendix C) :

vsµν = 4πδµ0δν0. (5.9)
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In conclusion, {χq
µ(r)} is the product mixed basis used for expanding within our implemen-

tation any two-particle operator, e.g. the polarization, the dielectric function and the interactions.
In particular, the bare interaction v is diagonal in this basis.
In the following, we replace the indices (µ, ν) by the indices (i, j). These indices thus run over
the size of the complete product mixed basis.

5.1.2 Hubbard U

The key ideas of the cRPA method rely on the identity relations 4.6 and 4.9, which lead to
interpret the partially screened interaction matrixW r as the Hubbard interaction matrix U within
a given correlated subspace, C. Referring to Eq. 4.11 that involves the matrix elements of W r

in the projected Wannier basis {|φRLφR′L′〉} (where {|φRL〉} spans C subspace), we get the
following expression for the matrix elements of U within the (L)APW+lo framework :

UR1R2R3R4
L1L2L3L4

(ω) = 〈φR1L1φR2L2 |W r|φR3L3φR4L4〉

=
1

N
∑

q

eiq·(R3−R2)
∑

ij

[M i
L1R1,L3R3

(q)]∗v
1
2
i (q)[ε

r(q, ω)]−1
ij v

1
2
j (q)M

j
L4R4,L2R2

(q),

(5.10)

where we remind the reader that L = (n, l,m, α) corresponds to (n, l,m) orbital quantum num-
bers of a correlated state in C, for an atom α in the unit cell. R is the unit cell index. The sum
(of size N ) over q is performed over the first Brillouin zone. εr is the partial symmetrized di-
electric function that includes the screening effects reducing the bare Coulomb repulsion v into
W r ≡ U . A proper definition of εr is given below (Eq. 5.33). Both v and εr are expanded into
the (L)APW+lo product mixed basis {χq

i (r)} introduced earlier (Eq. 5.8).

M i
LR,L′R′(q) are auxiliary quantities that correspond to the overlaps between the product

mixed basis functions χq
i (r) and the Kohn-Sham wavefunctions ψkn(r) via the Wannier-like

projectors PLn(k) onto the correlated subspace (which we have already introduced in Chapter 3,
Eq. 3.17) :

M i
LR,L′R′(q) =

1

N
∑

k

e−ik·(R−R′)
∑

n,n′∈W
[PLn(k)]

∗
(∫

Ω

drψkn(r)[χ
q
i (r)ψk−q,n′ ]∗

)

PL′n′(k − q)

=
1

N
∑

k

e−ik·(R−R′)
∑

n,n′∈W
[PLn(k)]

∗M i
nn′(k, q)PL′n′(k − q) (5.11)

M i
nn′(k, q) =

∫

Ω

drψkn(r)[χ
q
i (r)ψk−q,n′ ]∗ (5.12)

The sum over the Kohn-Sham states (n, n′) is restricted to the energy window W by construction
of the Wannier functions : the projectors PLn(k) are indeed set to zero if n /∈ W.

The relation 5.10 is rather general. The matrix elements are frequency-dependent because of
the frequency-dependence of the polarization (see Chapter 4). For further applications, one gives
below the expressions for the on-site and off-site interactions.
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On-site interactions

The local on-site interaction at an atomic site α inside a given unit cell reads as :

U on-site
L1L2L3L4

(ω) =
1

N
∑

q

∑

ij

[M i
L1,L3

(q)]∗v
1
2
i (q)[ε

r(q, ω)]−1
ij v

1
2
j (q)M

j
L4,L2

(q), (5.13)

where we omit the index R to make the notations shorter. An example of such on-site interaction
is given by the intra-orbital interaction, which corresponds to the energy cost for the double
electronic occupation of an orbital m.

Off-site interactions

We restrict the off-site Coulomb repulsion between electrons to the neighboring unit cells defined
by R1 = R3 = R and R2 = R4 = 0. The expression 5.10 leads to :

U off-site,R
L1L2L3L4

(ω) =
1

N
∑

q

eiq·R
∑

ij

[M i
L1R,L3R

(q)]∗v
1
2
i (q)[ε

r(q, ω)]−1
ij v

1
2
j (q)M

j
L40,L20

(q).

(5.14)

The phase factor includes the relative distance R between the unit cells. Such parameters would
be necessary for an extended model which deals with the nearest-neighbor and next-nearest-
neighbor interactions for example.

5.1.3 Fully screened W and unscreened (bare) v

WR1R2R3R4
L1L2L3L4

(ω) : general expression

The matrix elements of W in the Wannier basis {|φLRφL′R′〉} are defined in a similar manner
than for W r. The difference is that the whole screening of the bare repulsion has to be taken into
account. The total symmetrized dielectric function, ε, has therefore to be employed.

It follows that WR1R2R3R4
L1L2L3L4

(ω) = 〈φL1R1φL2R2 |W |φL3R3φL4R4〉 :

WR1R2R3R4
L1L2L3L4

(ω) =
1

N
∑

q

eiq·(R3−R2)
∑

ij

[M i
L1R1,L3R3

(q)]∗v
1
2
i (q)ε

−1
ij (q, ω)v

1
2
j (q)M

j
L4R4,L2R2

(q).

(5.15)

vR1R2R3R4
L1L2L3L4

: general expression

For the unscreened (bare) Coulomb v, there is no screening at all. The dielectric function has to
be replaced by the identity. v is therefore not frequency-dependent as W r and W . The matrix
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elements vR1R2R3R4
L1L2L3L4

= 〈φL1R1φL2R2 |v|φL3R3φL4R4〉 read as :

vR1R2R3R4
L1L2L3L4

=
1

N
∑

q

eiq·(R3−R2)
∑

ij

[M i
L1R1,L3R3

(q)]∗v
1
2
i (q)v

1
2
j (q)M

j

4R4,L2R2
(q).

(5.16)

M i
LR,L′R′(q) quantities were defined in Eq. 5.11.

5.1.4 What about metallic transitions?

Metallic systems are characterized by the existence of a Drude singularity when the frequency
tends to zero. Such Drude peak is observed in all metallic response functions, like electrical
conductivity, optics or dielectric function. Practically, one gets a Drude peak when q → 0 and
ω → 0 : the metallic transitions then fully screen the long-range part of the Coulomb repulsion.

This point is enlightened below with the total dielectric function ε expanded into the product
mixed basis. 1

One first notes that the product mixed basis (labeled by (i, j) indices) does not have a straight-
forward physical interpretation, in contrast to the plane wave basis. We have to admit for the
moment the following decomposition into the product mixed basis of the symmetrized dielectric
function in the q → 0 limit (see Eq. 5.40 and Appendix C for details) :

εij(q → 0, ω) =









εH(ω) = εG=0,G′=0(ω) εW1
0j (ω)

εW2
i0 (ω) εBi 6=0,j 6=0(ω)









Only the i = j = 0 component has a clear interpretation as it equals the dielectric function
εG=0,G′=0 in the plane wave basis with infinite wavelength corresponding to the long-range
screening. Using a standard block-wise inversion, we can compute the inverse of the dielectric
function, as it is required by the Dyson-like equation (Eq. 2.20 in Hedin’s equations or Fig. 1.4) :

ε−1
ij (q → 0, ω) =









[εH − εW1 · ε−1
B · εW2 ]

−1 ≡ headinv −headinv · εW1 · ε−1
B

−ε−1
B · εW2 · headinv ε−1

B + ε−1
B · εW2 · headinv · εW1 · ε−1

B









For a metallic system and in the static limit ω → 0, we can show that εH → ∞ because of some
intra-band transitions (Eq. 5.41). This makes the scalar ε−1

00 (0, 0) going to zero. It thus simplifies
the inverse dielectric function as follows :

ε−1
ij (q → 0, ω → 0) ∼









0 0

0 ε−1
B









(5.17)

1It would be absolutely equivalent for the partial dielectric function εr that leads to U .
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From this expression, we deduce that the static long-range part of the bare Coulomb repulsion
vi=0,j=0 is canceled out by the metallic screening contained in ε−1

00 ≈ 0. Only a short-range repul-
sion can then subsist for metallic systems. We had rather similar conclusions when we calculated
the Yukawa-like screened interaction W RPA for an homogeneous electron gas (Eq. 1.18).

In the following section, we add technical details about the derivation of UR1R2R3R4
L1L2L3L4

(ω)
within the (L)APW+lo framework.

5.1.5 Technical details

The total polarization P and the restricted polarizations P d, P r

As already mentioned, a product basis is well-adapted for expanding the polarization P and in-
teractions v,W and W r = U . This is usually done in GW implementations [Aryasetiawan and
Gunnarsson(1998)]. Defining Φnk,n′k′(r) = ψnk(r)ψ

∗
n′k′(r) as a product of Bloch wavefunc-

tions, the total polarization reads as :

P (r, r′;ω) =
occ
∑

n

unocc
∑

n′

∑

k,k′

Φnk,n′k′(r)Φ∗
nkn′k′(r′)

( 1

ω − ωnk,n′k′ + iη
− 1

ω + ωnk,n′k′ − iη

)

.

(5.18)

The product function Φnk,n′k′(r) is still a Bloch function, but with the wavevector k − k′ :

Φnk,n′k′(r +R) = ψkn(r +R)ψ∗
k′n′(r +R)

= ei(k−k′)·Rψkn(r)ψ
∗
k′n′(r)

= ei(k−k′)·RΦnk,n′k′(r), (5.19)

and thus all quantities like the polarization can be expanded into an appropriate product mixed
basis (like {χq

i (r)} introduced in Eq. 5.8) as follows :

P (r, r′;ω) =
1

N
∑

q

∑

ij

[χq
i (r)]

∗Pij(q, ω)χ
q
j (r

′), (5.20)

where the sum over the vectors q is performed over the first Brillouin zone. The polarization
matrix elements in the product basis, Pij , read as :

Pij(q, ω) =
1

N
∑

k

occ
∑

n

unocc
∑

n′

M i
nn′(k, q)Fnn′k(q, ω)[M

j
nn′(k, q)]

∗, (5.21)

where we have introduced the overlap between the Bloch wavefunctions (or Kohn-Sham eigen-
states in practice) and the product mixed basis functions, M i

nn′(k, q):

M i
nn′(k, q) =

∫

Ω

drψkn(r)[χ
q
i (r)ψk−q,n′(r)]∗, (5.22)
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and the following quantities :

ωnk,n′k−q = ǫn′k−q − ǫnk (5.23)

Fnn′k(q, ω) =
1

ω − ωnk,n′k−q + iη
− 1

ω + ωnk,n′k−q − iη
. (5.24)

As a remark, we note that when using the Matsubara frequencies, the occupied to unoccupied
transitions in Fnn′k(q, iν) simplify as follows :

Fnn′k(q, iν) =
−2ωnk,n′k−q

ν2 + ω2
nk,n′k−q

. (5.25)

Assuming for the moment that the correlated subspace C is unambiguously defined since
the correlated bands do not energetically overlap with the itinerant ones, we can define the d-
restricted polarization P d (Eq. 4.5) expanded into the product mixed basis :

P d
ij(q, ω) =

1

N
∑

k

occ
∑

d

unocc
∑

d′

M i
dd′(k, q)Fdd′k(q, ω)[M

j
dd′(k, q)]

∗, (5.26)

and hence for the constrained polarization P r :

P r
ij(q, ω) = Pij(q, ω)− P d

ij(q, ω). (5.27)

The total and restricted dielectric functions ε and εr

The total dielectric function ǫ is defined in the reciprocal space by :

ǫ(q, ω) = 1− v(q)P (q, ω). (5.28)

When performing calculations in GW or in cRPA, it is more convenient to make use of a sym-
metrized dielectric function ε that has the same eigenvalues as ǫ but simplifies the q → 0
limit [Jiang et al. (2012)] :

ε(q, ω) ≡ v−
1
2 (q)ǫ(q, ω)v

1
2 (q). (5.29)

In the following, εwill be referred as the dielectric function in order to make the notations shorter.
v in the product mixed basis is diagonal by construction of this basis. It implies for the total ε :

εij(q, ω) = δij − v
1
2
i (q)Pij(q, ω)v

1
2
j (q)

= δij −
1

N
∑

k

occ
∑

n

unocc
∑

n′

v
1
2
i (q)M

i
nn′(k, q)Fnn′k(q, ω)[v

1
2
j (q)M

j
nn′(k, q)]

∗.

(5.30)
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In an equivalent way, one can define the function κd ≡ −v 1
2P dv

1
2 that relies on the d-

restricted polarization :

κdij(q, ω) = −v
1
2
i (q)P

d
ij(q, ω)v

1
2
j (q). (5.31)

The constrained dielectric function εr reads as

εrij(q, ω) = εij(q, ω)− κdij(q, ω) (5.32)

= δij − v
1
2
i (q)P

r
ij(q, ω)v

1
2
j (q). (5.33)

The screened interactions W and W r

From the Dyson-like equation for the screened interaction (Eq. 2.20 in Hedin’s equations and
Eq. 2.28 in the GW method), it follows for W,W r in the product mixed basis :

Wij(q, ω) = v
1
2
i (q)ε

−1
ij (q, ω)v

1
2
j (q) (5.34)

W r
ij(q, ω) = v

1
2
i (q)[ε

r(q, ω)]−1
ij v

1
2
j (q). (5.35)

In the cRPA method, the Hubbard interactions are interpreted as the matrix elements of W r

expanded into a localized basis (see Chapter 4). Atomic projected functions can be promoted
to Wannier functions as recently implemented in WIEN2K by [Aichhorn et al. (2009)] in the
context of LDA+DMFT. We therefore need the projectors PLn(k) (Eq. 3.17) that connect the
Kohn-Sham eigenstates ψkn(r) within a given energy window W, to the Wannier orbitals φRL(r)
spanning the correlated subspace, C. In passing, we point out here the consistency of our imple-
mentation : everything from the Wannier implementation to the cRPA implementation relies on
the same electronic structure code. In addition, this also makes truly consistent the combination
of cRPA with LDA+DMFT (see Chapter 8 for applications).

We remind the reader our definitionUR1R2R3R4
L1L2L3L4

= 〈φR1L1φR2L2 |W r|φR3L3φR4L4〉 (Eq. 5.10).
The Wannier functions can be Fourier transformed (Eq. 1.2). We then get :

UR1R2R3R4
L1L2L3L4

(ω) =
1

N 2

∑

k1k2k3k4

ei(k1·R1+k2·R2−k3·R3−k4·R4)〈φk1L1φk2L2 |W r|φk3L3φk4L4〉.

(5.36)

At this step, the projectors PLn(k) can be introduced. They lead to the matrix elements of W r in
a product Kohn-Sham representation |ψknψk′n′〉 :

UR1R2R3R4
L1L2L3L4

(ω) =
1

N 2

∑

k1k2k3k4

ei(k1·R1+k2·R2−k3·R3−k4·R4)

×
∑

n1n2n3n4

PL1n1(k1)[PL3n3(k3)]
∗〈ψk1n1ψk2n2 |W r|ψk3n3ψk4n4〉[PL4n4(k4)]

∗PL2n2(k2),

(5.37)
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where the sum over (n1, n2, n3, n4) indices is restricted, by construction, to the Kohn-Sham states
that are included in W at a given k point. The product Kohn-Sham representation of W r can be
expanded into the product mixed basis via the overlap quantities M i

nn′(k, q) (Eq. 5.22) :

〈ψk1n1ψk2n2 |W r|ψk3n3ψk4n4〉 =
1

N
∑

q

∑

ij

[M i
n1n3

(k1, q)]
∗W r

ij(q, ω)M
j
n4n2

(k4, q)δk3,k1−qδk2,k4−q.

(5.38)

When inserting Eq. 5.38 into Eq. 5.37, it follows for the Hubbard interactions :

UR1R2R3R4
L1L2L3L4

(ω) =
1

N
∑

q

eiq·(R3−R2)
∑

ij

W r
ij(q, ω)

× 1

N
∑

k1

eik1·(R1−R3)
(

∑

n1n3

PL1n1(k1)[M
i
n1n3

(k1, q)PL3n3(k1 − q)]∗
)

× 1

N
∑

k2

e−ik2·(R4−R2)
(

∑

n2n4

[PL4n4(k2)]
∗PL2n2(k2 − q)M j

n4n2
(k2, q)

)

=
1

N
∑

q

eiq·(R3−R2)
∑

ij

[M i
L1R1,L3R3

(q)]∗W r
ij(q, ω)M

j
L4R4,L2R2

(q).

(5.39)

The reader will recognize the relations 5.10 and 5.11 which were given at the beginning of
this chapter.

The dielectric functions in the limit q → 0

A q → 0 singularity arises from v but can be ingeniously regularized in the total and constrained
symmetrized dielectric functions [Gomez-Abal et al. (2008), Jiang et al. (2009), Li(2008)]. We
proceed by expanding at q = 0 the dielectric functions first into a plane wave basis and then by
transforming back into the product mixed basis {χ0

i (r)}. More details are given in appendix C.

In the plane wave basis, the total symmetrized dielectric function can be divided into three
terms around the singularity of vGG′(q → 0): 2

εG=0,G′=0(q → 0, ω) head

εG 6=0,G′=0(q → 0, ω) wings

εG 6=0,G′ 6=0(q → 0, ω) body

Singularities are concentrated in the so called head and wings parts. An approach based on
the k · p perturbation theory, where p refers to the momentum matrix, is appropriate for treating

2This would be absolutely equivalent for the partial dielectric function εr.
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the divergences of εGG′(q → 0) [Ambrosch-Draxl and Sofo(2004)]. The divergence may have
physical meaning on the other hand, as the metallic Drude peak can appear when ω → 0 due
intra-band transitions of the head part at zero energy.

Transforming the dielectric function from the plane wave basis into the product mixed basis
leads to (see Appendix C) :

εij(q → 0, ω) = εHij (ω) + εWij (ω) + εBij(ω), (5.40)

where (δ̃ij ≡ 1− δij)

εHij (ω) = δi0δj0

{

1− 4π

ΩN lim
q→0

∑

k

(

∑

n

−δ(ǫnk − ǫF )

ω2
|pnnk · q|2 (5.41)

+
∑

n 6=n′

Fnn′k(0, ω)|
pnn′k · q
ǫnk − ǫn′k

|2
)

}

(5.42)

εW1
ij (ω) = −δ̃i0δj0

√

4π

Ω

1

N lim
q→0

∑

k

∑

n 6=n′

Fnn′k(0, ω)
pnn′k · q
ǫnk − ǫn′k

ṽ
1
2
i M

i
nn′(k, 0) (5.43)

εW2
ij (ω) = −δi0δ̃j0

√

4π

Ω

1

N lim
q→0

∑

k

∑

n 6=n′

Fnn′k(0, ω)
pnn′k · q
ǫnk − ǫn′k

[ṽ
1
2
j M

j
nn′(k, 0)]

∗ (5.44)

εBij(ω) = δ̃i0δ̃j0

(

δij −
1

N
∑

k

∑

n 6=n′

Fnn′k(0, ω)ṽ
1
2
i M

i
nn′(k, 0)[ṽ

1
2
j M

j
nn′(k, 0)]

∗
)

. (5.45)

We remind the reader that pnn′k ≡ 〈ψnk|p|ψn′k〉 are the momentum matrix elements, whereas ṽi
are the eigenvalues of the regular Coulomb interaction defined in Eqs. 5.6 and 5.7.

The intra-band transitions in Eq. 5.41 lead to the Drude peak for metallic systems. The
weight of this Drude peak increases with the density of states at the Fermi level. In a sense, one
can see an analogy with the metallic screening in the homogeneous electron gas which makes
the screened Coulomb interaction proportional to the inverse of the density of states at the Fermi
level (see Chapter 1, Eq. 1.22).

The Γ point treatment in the Brillouin-Zone summation

According to Eq. 5.10, one needs to sum over the vectors q of the first Brillouin zone. This
sum is integrable but the q → 0 limit again requires a careful treatment due to the behavior of
v(q → 0). According to Eqs. 5.7 and 5.9 within the product mixed basis :

v
1
2
ij(q → 0) =











√
4π
|q| + ṽ

1
2
0 0

0 ṽ
1
2
i 6=0










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In Appendix D, one can show that it follows for W r :

W r
ij(q → 0, ω) =

1

|q|2W
rs2
ij (ω) +

1

|q|W
rs1
ij (ω) + W̃ r

ij(ω), (5.46)

where (δ̃ij ≡ 1− δij)

W rs2
ij (ω) = 4π[εr(0, ω)]−1

00 δi0δj0 (5.47)

W rs1
ij (ω) =

√
4π

{

δi0[ε
r(0, ω)]−1

0j ṽ
1
2
j δ̃j0 + δ̃i0[ε

r(0, ω)]−1
i0 ṽ

1
2
i δj0

}

(5.48)

W̃ r
ij(ω) = ṽ

1
2
i [ε

r(0, ω)]−1
ij ṽ

1
2
j . (5.49)

The expressions of εrij(q = 0, ω) have been given earlier when replacing ε by εr in Eq. 5.40.

Once we have injected Eq. 5.46 into Eq. 5.39, the following expression for the Hubbard
interactions is deduced, where λ ≡ (L,R) :

UR1R2R3R4
L1L2L3L4

(ω) = ŨR1R2R3R4
L1L2L3L4

(ω) + Cs2U
s2
λ1λ2λ3λ4

(ω) + Cs1U
s1
λ1λ2λ3λ4

(ω), (5.50)

and

ŨR1R2R3R4
L1L2L3L4

(ω) =
1

N
∑

q

eiq·(R3−R2)
∑

ij

[M i
L1R1,L3R3

(q)]∗ṽ
1
2
i (q)[ε

r(q, ω)]−1
ij ṽ

1
2
j (q)M

j
L4R4,L2R2

(q)

(5.51)

U s2
λ1λ2λ3λ4

(ω) =
4π

Ω
[εr(0, ω)]−1

00 δλ1λ3δλ4λ2 (5.52)

U s1
λ1λ2λ3λ4

(ω) =

√

4π

Ω

∑

i 6=0

{

[εr(0, ω)]−1
0i M

i
L4R4,L2R2

(0)ṽ
1
2
i δλ1λ3 + [εr(0, ω)]−1

i0 [M
i
L1R1,L3R3

(0)]∗ṽ
1
2
i δλ4λ2

}

.

(5.53)

The coefficients Cs2, Cs1 come from traditional Brillouin-zone integrations of singular functions
and are given in Appendix D.
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In the following, we make use of a simplified notation Um1m2m3m4 for the Hubbard interac-

tions, where m replaces (m,α,R).

5.2 Coulomb interactions for low-energy Hamiltonians

The four-index interaction matrix Um1m2m3m4 (Eq. 5.10) is the most general representation of the
screened Coulomb interaction into a localized basis set : all density-density as well as non-
density-density, intra as well as inter-orbital interactions are included. However, for further
combination with a many-body solver, one needs to parametrize this matrix with a reasonable
number of parameters. These parameters are then employed for reconstructing the interacting
lattice Hamiltonian which has to be solved. For example, the t2g-restricted Hubbard model is
usually written in terms of only three Hubbard-Kanamori parameters, U ,U ′ and J and only two
of them are independent in a perfect cubic symmetry because of the relation U ′ = U − 2J (see
below and Appendix B for more details). These parameters have to be extracted from the ma-
trix U cubic

m1m2m3m4
, as explained below. Another approach has to be considered for d-dp Hubbard

Hamiltonians.
We develop an accurate parametrization of U (S)

m1m2m3m4 that relies on an optimal set of calculated
Slater integrals for d-dp Hamiltonians. Hubbard U and Hund’s exchange J are introduced as
function of these integrals (see also Appendix B for more details). Hubbard-Kanamori param-
eters for the parametrization of t2g-t2g Hamiltonians are introduced in a second time. Applica-
tions for oxides [Vaugier et al. (2012b)] and iron-based pnictides and chalcogenides [Vaugier
et al. (2012a)] are treated in Chapter 6.

5.2.1 Slater integrals parametrization

Introduction

It is well-known that the Coulomb potential vat(r, r′) = 1
|r−r′| for an atom can be expanded in

terms of Legendre polynomials (see as textbooks [Slater(1960),Sugano et al. (1970)]). It follows
that :

vat(r, r′) =
∞
∑

k=0

4π

2k + 1

rk<
rk+1
>

k
∑

q=−k

Ykq(θ, φ)Y
∗
kq(θ

′, φ′), (5.54)

where r<(r>) is the lesser (greater) of (|r|, |r′|) and Ylm(θ, φ) are spherical harmonics. Slater
showed that the matrix elements of vat in the spherical harmonic basis {φm(r) = Rnl(r)Ylm(θ, φ)}
can be decomposed into an angular part with well-established numbers- namely the Racah-
Wigner numbers- and a radial part which he expressed in terms of Slater integrals [Slater(1960),
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Sugano et al. (1970)] :

vat
m1m2m3m4

≡ 〈φm1φm2 |
1

|r − r′| |φm3φm4〉 (5.55)

=
2l
∑

k=0

αk(m1,m2,m3,m4)Fk
at, (5.56)

where the indices m correspond to the angular quantum numbers. {Fk
at} are the atomic Slater

integrals which are defined as follows :

Fk
at =

∫ ∞

0

r2dr

∫ ∞

0

r′2dr′
rk<
rk+1
>

R2
nl(r)R

2
nl(r

′) (5.57)

and αk are the Racah-Wigner numbers :

αk(m1,m2,m3,m4) =
4π

2k + 1

k
∑

q=−k

〈Ylm1 |YkqYlm3〉〈Ylm2Ykq|Ylm4〉, (5.58)

where 〈Yl1m1 |Yl2m2Yl3m3〉 corresponds to a Gaunt coefficient (see Appendix B for a more detailed
introduction).

In the expansion of Eq. 5.56, one can show that only a finite number of Slater integrals are
required, because the sphericity of the atom makes non-vanishing only a small subset of Racah-
Wigner coefficients [Sugano et al. (1970)]. This number equals l + 1, where l is the orbital
quantum number : for d-shells, we therefore need only three Slater integrals (F0

at, F
2
at, F

4
at) and

only four (F0
at, F

2
at, F

4
at, F

6
at) for f -shells.

The Slater integral F0
at corresponds to the monopole part of the Coulomb interaction : it is

thus a quantity that notably varies with atomic shells. The Slater integrals with k > 0 on the
other hand, correspond to the multipole parts of the interaction. As a consequence, their ratio
are weakly dependent on the atomic shells. An approximate value is usually known for the ratio
F4

at/F2
at in d-shells, as well as for the ratio F6

at/F2
at in f -shells. With hydrogen-like wavefunctions,

one gets approximately for these ratios [Anisimov et al. (1997a), Haverkort(2005)] :

F4
at/F2

at ≈ 0.625 (3d shells) (5.59)

F4
at/F2

at ≈ 0.67, F6
at/F2

at ≈ 0.49 (4f shells) (5.60)

The values slightly depend on the principal quantum number n and on the oxidation state of the
atom considered. An exhaustive list of atomic Slater integrals is given in [Haverkort(2005)].

Extension to solids

An extension of the Slater integrals to the effective screened Coulomb potential in solids is
presented below. Screening, and Wannier orbitals instead of atomic wavefunctions, are major
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differences between solids and atoms. However, one can still define a set of Slater integrals {Fk}
for parametrizing the screened interaction matrix Um1m2m3m4 . The Slater integrals can then be
employed as input parameters for many-body solvers in order to construct the interacting part of
the lattice Hamiltonian in the appropriate symmetry of the crystal field.

A method based on a spherical average of U (S)
m1m2m3m4 and on the atomic ratios (Eqs. 5.59

and 5.60), has been commonly employed in the past, e.g. [Anisimov et al. (1997a)]. A disadvan-
tage of such method is that it employs only two independent parameters and relies on an atomic
ratio whose validity is not well-controlled.

In the following, we develop another approach that consists in calculating an optimal set

of Slater integrals from the interaction matrix U (spheric)
m1m2m3m4

within the Wannier local orbitals,
{|φm,−2≤m≤2〉} which are said “spheric”. Indeed, such basis of the correlated subspace C con-
tains all the dmanifold. This explains why U (spheric)

m1m2m3m4
are denoted “spheric”. The demonstration

is given in Appendix B.

The main approximation of our approach consists in assuming that the relation 5.56 can be
extended to solids with an angular part that is still expressed in terms of Racah-Wigner numbers
(hence set by spherical harmonics combinations), but a radial part that is proper to solids and
deduced from U (spheric)

m1m2m3m4
:

U (spheric)
m1m2m3m4

=
2l
∑

k=0

αk(m1,m2,m3,m4)Fk. (5.61)

In Appendix B, we demonstrate that relation 5.61 can be inverted and the optimal set of
Slater integrals {Fk} is obtained as follows :

Fk(ω) = Cl,k
∑

m1,m2,m3,m4

(−1)m1+m4U (spheric)
m1m2m3m4

(ω)

(

l k l
−m1 m1 −m3 m3

)(

l k l
−m2 m2 −m4 m4

)

,

(5.62)

where the parentheses correspond to the Wigner 3j-symbols and the coefficients Cl,k are defined
as follows :

Cl,k =
2k + 1

(2l + 1)2
(

l k l
0 0 0

)2 . (5.63)

The frequency dependence of the Slater integrals arises from the frequency dependence of the
interaction matrix elements induced by the dynamical screening (see Chapter 4). When us-
ing the Matsubara frequencies (iν), U (spheric)

m1m2m3m4
(iν) as well as Fk(iν) are real numbers. (see

also [Kutepov et al. (2010)] for an analogous expression of {Fk}).

The Slater integrals Fk(ω) can then be employed for building the Slater average interaction
matrix Ū

(S)
m1m2m3m4(ω) in the symmetry S of the crystal and ligand field (also the one that is
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appropriate for the many-body solver) :

Ū (S)
m1m2m3m4

(ω) =
∑

m′

1m
′

2m
′

3m
′

4

Sm1m′

1
Sm2m′

2

{ 2l
∑

k=0

αk(m
′
1,m

′
2,m

′
3,m

′
4)F

k(ω)

}

S−1
m′

3m3
S−1
m′

4m4
.

(5.64)

Selecting S as the identity transformation leads to an evaluation of the efficiency of the parametriza-
tion since we can compare the reconstructed interaction matrix elements with the original ones.
This will be discussed for SrVO3 in Chapter 6. Since the Racah-Wigner numbers vanish for
given spherical harmonics combinations, we are not able to reconstruct the entire interaction ma-
trix. The non-vanishing interaction matrix elements to which we have access, are the reduced
interactions such as Ū (S)

mm′mm′ and Ū (S)
mm′m′m.

Hubbard U and Hund’s coupling J

The Hubbard U parameter is defined as the following average over all possible pairs (m,m′)
[Anisimov et al. (1993), Anisimov et al. (1997a)] :

U ≡ 1

(2l + 1)2

∑

mm′

2l
∑

k=0

αk(m,m
′,m,m′)Fk. (5.65)

On the other hand, it follows for Hund’s exchange J [Anisimov et al. (1993)] :

J ≡ 1

2l(2l + 1)

∑

m 6=m′

∑

k

αk(m,m
′,m′,m)Fk. (5.66)

In Appendix B, we show that both U and J can be deduced from the Slater integrals {Fk} as
follows :

U = F0 (5.67)

J =
F2 + F4

14
for d shells (5.68)

=
286F2 + 195F4 + 250F6

6435
for f shells (5.69)

Interactions between t2g orbitals within the d-dp Hamiltonian from the Slater parametriza-

tion

Within Eq. 5.64 (where S corresponds to the transformation from a spherical to a cubic orbital
basis), one can deduce from the Slater integrals {Fk} , a set of Hubbard interaction matrix ele-
ments with cubic symmetry for the t2g and eg subspaces and between t2g and eg. We will restrict
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Figure 5.1: Schematic view for parametrizing the four-index Hubbard interaction matrix. (top panel) Direct
calculation : Hubbard-Kanamori parameters within the t2g-t2g Hamiltonian, see Eqs. 5.75, 5.76 and 5.77. d-dp
Hamiltonian, see Eqs 5.78 and 5.79. (bottom panel, left) Slater parametrization with the Slater integrals calculated
with Eq. 5.62. Interactions between t2g orbitals are deduced from Eqs. 5.70 and 5.71. (bottom, right) Spherical
parametrization (see Eqs. 5.73 and 5.74). In this method, one needs to set the ratio F4/F2 to the empirical atomic
value around 0.63 for 3d shells.
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ourselves to the interactions between the t2g orbitals for further comparison within the t2g-t2g
Hamiltonian. In the case of cubic symmetry, they are defined as follows (see also Appendix B) :

Ūmm = F0 +
4

49
F2 +

4

49
F4 (5.70)

Ūmm′ = F0 − 2

49
F2 − 4

441
F4 (5.71)

J̄m =
1

2
(Ūmm − Ūmm′) =

3

49
F2 +

20

441
F4 (5.72)

Interactions between eg orbitals or between t2g and eg orbitals can also be deduced from the
Slater integrals (see Appendix B and [Sugano et al. (1970)]).

Interactions between t2g orbitals within the d-dpHamiltonian from a spherical parametriza-

tion

In the usual determination of the Slater integrals one finds in the literature [Anisimov et al. (1997a),
Aichhorn et al. (2009)], one needs to refer to an empirical value of the ratio F4/F2 in order to
deduce the complete set of Slater integrals. Starting with the spherical average of Um1m2m3m4 in
order to deduce the Hubbard U and Hund’s exchange J , we get :

U =
1

(2l + 1)2

∑

mm′

U
(S)
mm′mm′ ≡ F0 (5.73)

J =
1

2l(2l + 1)

∑

mm′,m 6=m′

U
(S)
mm′m′m ≡ (F2 + F4)/14, (5.74)

This leads to F0 and (F2 + F4)/14 but one condition is still missing to get the whole set {Fk}.
The ratio F4/F2 is usually set to the atomic value around 0.63 for 3d shells.
Once we have (F0, F2, F4), we are able to deduce values for the interactions between the t2g
orbitals via Eqs. 5.70, 5.71 and 5.72.

5.2.2 Hubbard-Kanamori parametrization

The Coulomb interaction matrix within the t2g-t2g Hamiltonian – hence with cubic symmetry –
is fitted with Hubbard-Kanamori parameters instead of Slater integrals. The Hubbard-Kanamori
parameters are defined as follows :

U =
1

N

N=3
∑

m=1

U (cubic)
mmmm (5.75)

J =
1

N(N − 1)

N=3
∑

m 6=m′

U (cubic)
mm′m′m (5.76)

U ′ =
1

N(N − 1)

N=3
∑

m 6=m′

U (cubic)
mm′mm′ (5.77)
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With cubic symmetry, one easily verifies that U ′ = U − 2J .

In Fig. 5.1, we have summarized the three methods that lead to effective interactions between
t2g orbitals, but with different choices of the one-body Hamiltonian. The comparison with the
direct calculation for the d-dp Hamiltonian gives an estimation of the efficiency of the Slater and
spherical parametrization methods (see Chapter 6 for application on SrVO3).

Figure 5.2: Hubbard-Kanamori interactions between t2g orbitals with cubic symmetry.

5.2.3 Many-body interactions : application to the t2g-t2g and d-dp models

The reduced interaction matrices Uσσ′

mm′ and Jmm′ with given symmetry S are defined as follows:

Uσσ̄
mm′ ≡ U

(S)
mm′mm′ = 〈φ0mφ0m′ |W r(0)|φ0mφ0m′〉 (5.78)

Jmm′ ≡ U
(S)
mm′m′m = 〈φ0mφ0m′ |W r(0)|φ0m′φ0m〉 (5.79)

Uσσ
mm′ ≡ U

(S)
mm′mm′ − Jmm′ . (5.80)

The interacting part of the multi-orbital Hubbard model (Eq. 1.10) reads

Hint = Hdens-dens +Hndens-dens, (5.81)

where the density-density (Hdens-dens) and the non-density-density (Hndens-dens) terms for the cor-
related subspace C are defined as

Hdens-dens =
1

2

∑

mm′∈C,σ
Uσσ
mm′nmσnm′σ +

1

2

∑

mm′∈C
Uσσ̄
mm′(nm↑nm′↓ + nm↓nm′↑) (5.82)

Hndens-dens = −1

2

∑

mm′∈C
Jmm′(c†m↑cm↓c

†
m′↓cm′↑ + h.c.) spin flip (5.83)

−1

2

∑

mm′∈C
Jmm′(c†m↑c

†
m↓cm′↑cm′↓ + h.c.) pair hopping. (5.84)

We discuss below the t2g-t2g and d-dp models introduced in Chapter 4.
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t2g-t2g Hamiltonian

In the t2g-t2g model, extended t2g Wannier functions are constructed and eg orbitals are not
included in the low-energy Hamiltonian. We therefore can not calculate the set of Slater integrals
within relation 5.62, since the spherical relations shown in Appendix B do not hold in this case.
The Hubbard-Kanamori parameters U ,J ,U ′ (Eqs. 5.75, 5.76 and 5.77) have to be evaluated
directly from the interaction matrix U (cubic)

m1m2m3m4
with cubic symmetry. With these parameters, we

can build the interacting Hubbard model for the t2g correlated subspace :

H
t2g
int =

∑

m∈C
U nm↑nm↓ +

∑

m>m′∈C,σ
(U − 2J )nmσnm′σ̄ + (U − 3J )nmσnm′σ (5.85)

−J c†mσcmσ̄c
†
m′σ̄cm′σ − J c†mσc

†
mσ̄cm′σcm′σ̄ (5.86)

The exchange interaction J lowers the repulsion between electrons on two different orbitals.
The inter-orbital interaction is hence implicitly spin-dependent : the Pauli exclusion principle
induces a reduced repulsion between electrons with same spin.

d-dp Hamiltonian

The hybrid d-dp model is a direct application of the Slater integrals parametrization. Within
the spherical-like Wannier functions representation, the Slater integrals (F0, F2, F4) are deduced
from Eq. 5.62. They are then employed as input parameters for the many-body solver in order to
construct the interacting Hubbard Hamiltonian in the appropriate symmetry (Eq. 5.64).

5.3 The projection approach for entangled correlated bands

Until now, we have not explained how to compute the polarization P d (Eq. 4.5), which is the

total polarization but restricted to the correlated subspace C. This is the aim of this section.

It may happen for some systems that the correlated target (e.g. d/f ) states around the Fermi
level do not energetically overlap with the other more itinerant ones. Cubic perovskite SrVO3

(Fig. 4.4) displays such electronic structure : an energy window Wt2g that only includes t2g-like
bands clearly emerges from eg and p states. We already mentioned that a low-energy t2g-t2g
model is appropriate for SrVO3 (see Chapter 4). In this case, as the correlated subspace, Ct2g ,
equals the one generated with Wt2g , the projection transformation (introduced in Chapter 3,
see Eq. 3.14) is a unitary transformation : for all k’s in the Brillouin zone, the Kohn-Sham
eigenstates within Wt2g and the t2g Wannier orbitals are in one to one correspondance. The
restricted polarization P d can be directly calculated in that case from Eq. 4.5 : band indices or an
energy window can refer without ambiguity to the “correlated” Kohn-Sham states within Wt2g ,
in order to exclude from the total polarization only the transitions from occupied to empty t2g.
Such approach is denoted the mask approach (see also Fig. 4.5).
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A majority of systems, however, are rather far away from this situation and prevent us from
using the mask approach. For example, fcc nickel (Ni) (Fig. 6.8 and see also Fig. 4.8) displays
a set of correlated d bands that are entangled with itinerant sp states. The d correlated subspace
in this case, differs from the one constructed within any energy window. Referring only to the
d states for constraining the polarization in RPA is hence not possible anymore within the mask
approach. Nor is it clear how close to Wannier functions the localized orbitals built by the
projection procedure (Eq. 3.14) are in that case. We will thus refer to these orbitals as localized
orbitals instead of Wannier functions.
It becomes clear that such systems- said “entangled”- require a special care in order to apply the
cRPA scheme. In Chapter 4, we already quoted two methods : one consists in a disentanglement
of the correlated states [Miyake et al. (2009)] whereas the other is based on the evaluation of
a density correlation function [Şaşıoğlu et al. (2011)]. Below, we propose to start from the
polarization P d that is obtained by the projection of the total polarization into the correlated

subspace. Applications on 3d transition metals are given in Chapter 6.

5.3.1 The d-projected polarization P d : definition

We remind the reader the definition 3.14 of the projector Πk
d that projects a Kohn-Sham eigenstate

|ψkn〉 within an energy window W onto a localized state |φd
km〉. Here, the index α for a correlated

atom is replaced by d index as follows :

Πk
d =

∑

m∈C
|φd

km〉〈φd
km|. (5.87)

When applying this operation to the total Green’s function G(r, r′;ω), it gives a definition of the
Green’s function Gd that is restricted to the correlated subspace C :

G0
d(r, r

′;ω) =
∑

k

∑

n∈W

〈r|Πk
dψnk〉〈ψnkΠ

k
d |r′〉

ω − ǫnk − iη sign(ǫF − ǫnk)
. (5.88)

The sum over the Kohn-Sham eigenstates labeled by n is limited to the energy window W by
construction of the projectors. Within the definition P d ≡ G0

dG
0
d (Eq. 4.4), it follows that :

P d(r, r′;ω) =
occ
∑

k, n∈W

unocc
∑

k′, n′∈W

〈r|Πk′

d ψn′k′〉〈ψnkΠ
k
d |r〉〈r′|Πk

dψnk〉〈ψn′k′Π
k′

d |r′〉

×
{ 1

ω − ǫn′k′ + ǫnk + iη
− 1

ω + ǫn′k′ − ǫnk − iη

}

. (5.89)

The correlated-restricted polarization thus involves the same Kohn-Sham energies ǫnk as the total
polarization. The projection only affects the Kohn-Sham wavefunctions by projecting them onto
the localized subspace. Another interpretation of the formula 5.89 can be established within the
introduction of the modified Kohn-Sham functions |ψ̃kn〉

|ψ̃kn〉 ≡
∑

L∈C
PLn(k)|φkL〉, (5.90)
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where PLn(k) are the projectors onto the correlated subspace C (Eq. 3.17) with L = (n, l,m, α).
Replacing the Kohn-Sham functions in the total polarization (Eq. 5.18) by these modified ψ̃kn(r)
leads to the polarization P d that is equivalent to the d-projected polarization established above
(Eq. 5.89)

P d(r, r′;ω) =
occ
∑

k, n∈W

unocc
∑

k′, n′∈W

ψ̃n′k′(r)ψ̃∗
nk(r)ψ̃nk(r

′)ψ̃∗
n′k′(r

′)

×
{ 1

ω − ǫn′k′ + ǫnk + iη
− 1

ω + ǫn′k′ − ǫnk − iη

}

(5.91)

The interpretation with modified Kohn-Sham functions will be useful when considering the q →
0 limit in our cRPA implementation. We may relate them to the original Kohn-Sham states by :

|ψ̃kn〉 =
∑

L∈C

∑

n′∈W
PLn(k)[PLn′(k)]∗|ψkn′〉. (5.92)

Bijective Wannier transformation

The Kohn-Sham states with correlated character lying on the energy window W are now sup-
posed to be separated from the rest of the band structure. We thus consider here that they do
not energetically overlap with itinerant states anymore. The projection procedure in this case is
bijective and thus invertible. It is then straightforward to establish that :

∑

L∈C
PLn(k)[PLn′(k)]∗ = δnn′ . (5.93)

Referring to Eq. 5.92, we identify ψ̃kn(r) with the original Kohn-Sham functions ψkn(r). This
leads back to Eq. 4.5 (see Chapter 4) :

P d(r, r′;ω) =
occ
∑

k, n∈W

unocc
∑

k′, n′∈W

ψn′k′(r)ψ∗
nk(r)ψnk(r

′)ψ∗
n′k′(r′)

×
{ 1

ω − ǫn′k′ + ǫnk + iη
− 1

ω + ǫn′k′ − ǫnk − iη

}

. (5.94)

5.3.2 Formalism within (L)APW+lo

As mentioned in the introduction of this chapter, one needs to expand the polarization into the
product mixed basis {χq

i (r)}. Using Eq. 5.20 but starting from Eq. 5.89, we get for P d
ij(q, ω) :

P d
ij(q, ω) =

1

N
∑

k

occ
∑

n∈W

unocc
∑

n′∈W
M̃ i

nn′(k, q)Fnn′k(q, ω)[M̃
j
nn′(k, q)]

∗, (5.95)
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where we have introduced the quantity M̃ i
nn′(k, q) which is similar to the overlap between the

Kohn-Sham eigenstates and the product mixed basis, M i
nn′(k, q) (Eq. 5.22), but is now specific

for the correlated subspace :

M̃ i
nn′(k, q) ≡

∫

Ω

dr ψ̃kn(r)[χ
q
i (r)ψ̃k−q,n′(r)]∗ (5.96)

=
∑

L1L3∈C
PL1n(k)

[

∑

n1n3∈W
[PL1n1(k)]

∗M i
n1n3

(k, q)PL3n3(k − q)

]

[PL3n′(k − q)]∗.

(5.97)

It is then straightforward to compute the polarization P r
ij = Pij − P d

ij and the corresponding
dielectric function εrij = εij − κdij , following the cRPA scheme. We remind the reader that κdij is
defined as (Eq. 5.31) :

κdij(q, ω) ≡ −v
1
2
i (q)P

d
ij(q, ω)v

1
2
j (q). (5.98)

Long wavelength q → 0 limit

As already mentioned in Section 5.1.5 dedicated to the technicalities, one needs to be careful with
the q → 0 limit in the dielectric functions ǫ, ǫr and in the function κd. In a similar manner, head,
wings and body parts in the plane wave basis within k · p perturbation theory are identified. The
dielectric function is then transformed from the plane wave basis into the product mixed basis.

An important difference appears when considering the momentum matrix elements in the
calculation of κdij(q → 0, ω) : following the interpretation of P d that involves the modified
Kohn-Sham functions ψ̃kn(r), we can build the modified momentum matrix elements p̃nn′k as
follows :

p̃nn′k ≡ 〈ψ̃kn|p|ψ̃kn′〉 (5.99)

=
∑

L1L3

[PL1n(k)]
∗
[

∑

n1n3

PL1n1(k)〈ψkn1 |p|ψkn3〉[PL3n3(k)]
∗
]

PL3n′(k). (5.100)

Such expressions can be injected into the head and wings for κd, following Eqs. 5.41, 5.42
and 5.45. We get a set of equations that looks very similar to the one for the total dielectric
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function, but with p̃nn′k instead of pnn′k and M̃ i
nn′(k, q) instead of M i

nn′(k, q) (δ̃ij ≡ 1− δij) :

κd,Hij (ω) = −δi0δj0
4π

ΩN lim
q→0

∑

k

(

∑

n∈W

−δ(ǫnk − ǫF )

ω2
|p̃nnk · q|2 (5.101)

+
∑

n 6=n′∈W
Fnn′k(0, ω)|

p̃nn′k · q
ǫnk − ǫn′k

|2
)

(5.102)

κd,W1

i,j (ω) = −δ̃i0δj0
√

4π

Ω

1

N lim
q→0

∑

k

∑

n 6=n′∈W
Fnn′k(0, ω)

p̃nn′k · q
ǫnk − ǫn′k

ṽ
1
2
i M̃

i
nn′(k, 0) (5.103)

κd,W2

i,j (ω) = −δi0δ̃j0
√

4π

Ω

1

N lim
q→0

∑

k

∑

n 6=n′∈W
Fnn′k(0, ω)

p̃nn′k · q
ǫnk − ǫn′k

[ṽ
1
2
j M̃

j
nn′(k, 0)]

∗

κd,Bij (ω) = −δ̃i0δ̃j0
1

N
∑

k

∑

n 6=n′∈W
Fnn′k(0, ω)ṽ

1
2
i M̃

i
nn′(k, 0)[ṽ

1
2
j M̃

j
nn′(k, 0)]

∗. (5.104)

We focus in the next paragraph on the impact of the first term (Eq. 5.101) for metallic systems.

5.3.3 Metallic systems

We already mentioned at the beginning of this chapter that metallic systems are characterized by
intra-orbital transitions at zero frequency that lead to a Drude singular peak in the response func-
tions. Such transitions have been identified in the head part of the dielectric function (Eq. 5.41).
The system considered now exhibits a band structure where the bands at the Fermi level have
both a correlated (e.g. d) and an itinerant (e.g. sp) character. Within the cRPA method, we have
to exclude from the polarization only the transitions between the correlated states.

Because of the strong hybridization between d and sp states, excluding only d-d transitions
will not necessarily eliminate the metallicity. Indeed, the system can still have intra-band sp-
sp or sp-d transitions at zero frequency, since the band has a mixed sp-d character. This again
points out the inadequacy of band indices for constraining the RPA polarization within entangled
systems.

A Drude peak in the partial dielectric function εr can be obtained but with a weight that
has to be reduced with respect to the one we would obtain in the total dielectric function. The
subtraction of the head part of ε (Eq. 5.41) with the head part of κd (Eq. 5.101) leads to the head
of εr and hence :

εr,Hij (ω) = δi0δj0

{

1 + εr,Drude(ω) + εr,inter(ω)

}

, (5.105)
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where

εr,Drude(ω) = − 4π

ΩN lim
q→0

∑

k

∑

n∈W

−δ(ǫnk − ǫF )

ω2

[

|pnnk · q|2 − |p̃nnk · q|2
]

(5.106)

εr,inter(ω) = − 4π

ΩN lim
q→0

∑

k

(

∑

n 6=n′∈W
Fnn′k(0, ω)

[

| pnn′k · q
ǫnk − ǫn′k

|2 − | p̃nn′k · q
ǫnk − ǫn′k

|2
]

+
∑

n 6=n′ /∈W
Fnn′k(0, ω)|

pnn′k · q
ǫnk − ǫn′k

|2
)

. (5.107)

We can identify in Eq. 5.106 the reduced Drude peak that makes the system still metallic, al-
though the contributions from the d-d transitions have been removed.

5.4 From a lattice to an impurity interaction

5.4.1 General idea

Within the cRPA method, Hubbard interactions and Hund’s couplings for lattice Hamiltonians
were constructed from first principles. We have indicated how to parametrize the four-index
interaction matrix U (spheric)

m1m2m3m4 with an optimal set of Slater integrals, which are practical to com-
bine with a many-body solver. The DMFT scheme is one possible choice and its LDA+DMFT
combination a popular and efficient method for strongly correlated materials.

As explained in Chapter 3, DMFT relies on the mapping of the lattice model into a single
interacting impurity model that is coupled to a non-interacting fermionic bath. One may ask
whether the effective local Coulomb interaction employed in DMFT differs from the interac-
tions calculated previously for a lattice Hamiltonian. This question has connections with the
GW+DMFT combination. Once we are able to identify the local polarization from the GW part,
we could replace it by the DMFT local polarization [Biermann et al. (2003)].

For the moment, we get back to the foundations of the cRPA method consisting in inter-
preting the partially screened interaction matrix W r expanded into a localized basis set, as the
Hubbard interaction U (lattice) for a lattice Hamiltonian. Such interpretation is based on the identity
relations (Eqs. 4.6 and 4.9) between W and W r. The transitions between the target correlated
states only, generate a screening that reduces W r to W . W r is the interaction remaining once all
the degrees of freedom except the target ones have been integrated out.

The constrained polarization P r = P − P d is then employed for screening the bare inter-
action, leading to the effective lattice interaction U (lattice) : only the transitions from and to the

target correlated states have to be removed from the total polarization. In the perspective of
constructing an effective local impurity-like interaction U imp that does not depend on the lat-
tice anymore, we would have to employ a constrained polarization P r

imp, where only the local

transitions from and to the target correlated states have to be removed.
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One can define the polarization P r
imp as follows :

P r
imp ≡ P − P d

loc, (5.108)

where P d
loc only includes the local part of the polarization P d :

P d = P d
loc + P d

nloc. (5.109)

We then get the local impurity-like interaction U imp :

U imp =
v

1− P r
impv

= [ǫrimp]
−1v. (5.110)

We find enlightening to show below how U (imp) connects to U (lattice) = [1− vP r]−1v :

U lattice =
v

1− [P − P d
loc − P d

nloc]v
=
v/(1− [P − P d

loc]v)

1 + P d
nloc

v
1−[P−P d

loc]v

U imp =
U lattice

1− P d
nlocU

lattice
. (5.111)

The non-local polarization of the target correlated states hence generates a screening of U lattice

that leads to U imp.
In the following, we focus on the calculation of the local polarization P d

loc for the correlated
subspace C.

5.4.2 Local polarization for the correlated subspace

One first expands the bare Green’s functions into the localized basis set {|φRL〉} :

G0(r, r′;ω) =
∑

R,R′

∑

LL′

〈r|φRL〉GRR′

LL′ (ω)〈φR′L′ |r′〉, (5.112)

where as previously, L = (n, l,m, α), and the localized representation of the Green’s functions
GRR′

LL′ is defined as follows :

GRR′

LL′ (ω) =
∑

k

∑

n

〈φRL|ψkn〉〈ψkn|φR′L′〉
ω + µ− ǫnk − iη sign(ǫF − ǫnk)

(5.113)

=
∑

k

∑

n∈W

eik·(R−R′)PLn(k)[PL′n(k)]
∗

ω + µ− ǫnk − iη sign(ǫF − ǫnk)
. (5.114)

We have used in particular the Fourier transformation defined in Eq. 1.3 (see Chapter 1). The
local non-interacting Green’s function in the real-space representation then reads as :

Gloc(r, r′;ω) =
∑

LL′

〈r|φ0L〉G00

LL′(ω)〈φ0L′ |r′〉. (5.115)
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An analogous expression but in the interacting case can be found in the LDA+DMFT framework
(see Chapter 3, Eq. 3.24).

We propose, as a definition, the following expression for the local polarization :

P loc(r, r′;ω) ≡
∫

dω′Gloc(r, r′;ω − ω′)Gloc(r′, r;ω′) (5.116)

=
∑

L1L3

∑

L2L4

φ0L1(r)φ
∗
0L3

(r′)

[ ∫

dω′G00

L1L3
(ω − ω′)G00

L2L4
(ω′)

]

φ0L2(r
′)φ∗

0L4
(r)

=
∑

L1L3

∑

L2L4

φ0L1(r)φ
∗
0L3

(r′)PL1L2L3L4(ω)φ0L2(r
′)φ∗

0L4
(r),

(5.117)

where the auxiliary quantity PL1L2L3L4 reads as :

PL1L2L3L4(ω) ≡
∑

k, n∈W

∑

k′,n′∈W

PL1n(k)[PL3n(k)]
∗PL2n′(k′)[PL4n′(k′)]∗

×
{

1

ω − ǫn′k′ + ǫnk + iη
− 1

ω + ǫn′k′ − ǫnk − iη

}

. (5.118)

5.4.3 Formalism within (L)APW+lo

Local polarization

In the (L)APW+lo framework, one can expand the local polarization P loc into the product mixed
basis {χq

i (r)} as follows :

P loc
ij (q, ω) =

1

N 2

∑

L1L3∈C

∑

L2L4∈C
〈χq

i φ0L3 |φ0L1〉PL1L2L3L4(ω)〈φ0L4 |φ0L2χ
q
j 〉. (5.119)

In order to benefit from the properties of the product basis, we find more appropriate to transform
the localized basis |φ0L〉 into the Kohn-Sham basis |ψkn〉 :

P loc
ij (q, ω) =

1

N 2

∑

L1L3,L2L4∈C

∑

k1k3,k2k4

〈χq
i φk3L3 |φk1L1〉PL1L2L3L4(ω)〈φk4L4 |φk2L2χ

q
j 〉

=
1

N 2

∑

L1L3,L2L4∈C

∑

k1k3,k2k4

∑

n1n3,n2n4∈W
[PL1n1(k1)]

∗PL3n3(k3)[PL2n2(k2)]
∗PL4n4(k4)

×〈χq
i ψk3n3 |ψk1n1〉PL1L2L3L4(ω)〈ψk4L4 |ψk2L2χ

q
j 〉. (5.120)

One can then employ the following property of the product basis :

〈χq
i ψk3n3 |ψk1n1〉 =

∫

Ω

drψk1n1(r)[ψk3n3(r)χ
q
i (r)]

∗ =M i
n1n3

(k1, q)δk3,k1−q.
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The expression for the local polarization is then simplified as follows :

P loc
ij (q, ω) =

∑

L1L3∈C

∑

L2L4∈C
M i

L10,L30
(q)PL1L2L3L4(ω)[M

j
L40,L20

(q)]∗, (5.121)

where we remind the reader that quantities MLR,L′R′ (Eq. 5.11) were defined as (setting R =
R′ = 0) :

M i
L10,L30

(q) =
1√
N

∑

k

∑

n1n3∈W
[PL1n1(k)]

∗M i
n1n3

(k, q)PL3n3(k − q). (5.122)

Impurity dielectric function

Following the ideas of the cRPA method as detailed in Eqs. 5.108 and 5.110, we can construct
the restricted polarization that should be appropriate for an impurity model :

[P r
imp(q, ω)]ij = Pij(q, ω)− P loc

ij (q, ω). (5.123)

It is equivalent to think of an auxiliary quantity κloc as introduced earlier for the d-projection
procedure. In the product mixed basis, it follows for κloc :

κloc
ij (q, ω) = −v

1
2
i (q)P

loc
ij (q, ω)v

1
2
j (q), (5.124)

and for the partial symmetrized dielectric function of the impurity model :

[εrimp(q, ω)]ij = εij(q, ω)− κloc
ij (q, ω). (5.125)

U impurity

Applying Eq. 5.10 but with the partial dielectric function εrimp, we deduce the interaction matrix
elements of the impurity model mapping the lattice :

U imp
L1L2L3L4

(ω) =
1

N
∑

q

∑

ij

[M i
L10,L30

(q)]∗v
1
2
i (q)[ε

r
imp(q, ω)]

−1
ij v

1
2
j (q)M

j
L40,L20

(q).

(5.126)

We have finished with the presentation of the cRPA method implemented within the (L)APW+lo

framework. In the next part, we focus on applications to strongly correlated materials, like 3d
and 4d transition metal oxides (see Chapter 6 and Chapter 7) and iron-based pnictides (see

Chapter 6). The d-projection method is benchmarked on the 3d transition metal series (see

Chapter 6). A combination of cRPA with LDA+DMFT is shown in Chapter 8 for the layered

perovskites Sr2IrO4 and Sr2RhO4, and for the lanthanide CeSF compounds.
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5.5 Calculated quantities: summary of notations

To summarize our notations :

• U
(S)
m1m2m3m4 are the matrix elements of the interaction matrix in the localized basis set

{|φm〉} with S symmetry of the crystal field.

• Uσσ̄
mm′ ≡ 〈φmφm′ |W r(0)|φmφm′〉, Jmm′ ≡ 〈φmφm′ |W r(0)|φm′φm〉 and Uσσ

mm′ = Uσσ̄
mm′ −

Jmm′ are the reduced interaction matrices that are directly calculated with S symmetry.

• Within the d-dp Hamiltonian, the average interaction matrix elements between t2g orbitals
that are directly calculated with cubic symmetry are denoted Umm, Umm′ and Jm for the
on-site intra-t2g, inter-t2g and exchange interaction, respectively. Analogous quantities, but
for the bare situation, vmm, J

bare
m , and for the fully screened situation, Wmm, J

screened
m , can

be introduced.

• U and J are the Hubbard parameter and Hund’s coupling, respectively. By definition,
U = F0 and J = (F2 + F4)/14 (for d shells) in our notations.

• Employing Eqs. 5.70, 5.71 and 5.72, Slater-average on-site, Ūmm, and exchange, J̄m,
interactions between t2g orbitals within the d-dp Hamiltonian, can be extracted – and anal-
ogously for the bare, v̄mm, J̄

bare
m and the fully screened W̄mm, J̄

screened
m cases. They corre-

spond to a part only – the t2g one – of the d-dp low-energy Hamiltonian and therefore,
should not be taken for parametrizing this Hamiltonian.

• (U ,U ′,J ) are the Hubbard-Kanamori interactions between t2g orbitals within the t2g=t2g
Hamiltonian (Fig. 5.2). They are the appropriate parameters for mapping the low-energy
Hamiltonian downfolded into the t2g subspace. Analogous parameters but within bare

repulsions, V ,Jbare, or within fully screened repulsions, W ,Jscreened, are also introduced.
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Applications





Chapter 6

cRPA Calculations on Benchmarks

We start this chapter with the cubic perovskite oxide SrVO3. It is indeed a well-known benchmark

for first principles calculations. Here, only the Hubbard parameters are reported. We compare

in particular our cRPA calculations with the values of U found in the literature. The electronic

properties of this material are more extensively considered in Chapter 7.

Some iron-based pnictide and chalcogenide compounds (LaOFeAs, FeSe, BaFe2As2 and BaRu2As2)

are then investigated. The cRPA values within projected Wannier-like functions are in agreement

with the ones within the maximally localized Wannier function (MLWF) framework.

Finally, we test the projection method (see Chapter 5) on the 3d transition metal series. Indeed,

in these materials, the target correlated d bands are entangled with the itinerant sp ones. The

standard cRPA approach employing band indices or energy window for constraining the polar-

ization, is hence not appropriate in these cases.

6.1 SrVO3

6.1.1 Hubbard U from the literature

The DFT-LDA band structure of SrVO3 (Fig. 6.1) exhibits a set of t2g bands that do not ener-
getically overlap with the other bands. Hubbard models keeping only the t2g degrees of free-
dom instead of the whole d set, are hence reasonable models. In the literature, a quantitative
agreement between LDA+DMFT calculations and photoemission spectra was already reported
(see Chapter 7 for details and Tab. 4.1). In particular, Sekiyama and co-workers considered a
t2g Hubbard model which they solved within DMFT [Sekiyama et al. (2004)]. For this model,
they employed the constrained-LDA (cLDA) method from [Gunnarsson(1990)] to deduce the
Hubbard-Kanamori interaction parameters adapted to a t2g-restricted Hubbard model (Fig. 5.2).
They got : U = 5.5 eV and J = 1 eV. With these values, they were able to reproduce the pho-
toemission spectrum.
Many estimates of the Hubbard interactions can be found in the literature which we enumerate
below (Tab. 6.1).
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Figure 6.1: (left panel) DFT-LDA band structure of SrVO3. The three bands (in red) around the Fermi level
form the set of degenerate t2g bands. The two bands above (in blue) are composed of the eg orbitals which make
bonding-anti-bonding states with the six oxygen p-orbitals (in turquoise) below. (right panel) Brillouin zone meshes
considered.

cLDA calculations

In principle, it is not straightforward to deduce the interaction parameters needed in a t2g model
from cLDA approaches. As mentioned in Chapter 4, the “hard”-cLDA approach consists in
considering an impurity atom inside a supercell and then suppressing all hopping terms from and
to the d orbitals of this impurity. Within this framework, it is not possible to perform a similar
operation for a restricted number of orbitals like t2g’s. Consequently, the low-energy model that
is constructed in “hard”-cLDA, is not transparent. In passing, we note that it would be interesting
to employ the “soft”-cLDA method (see Chapter 4) but to the best of our knowledge, there are
not published results for SrVO3.

Using the head of the linear muffin-tin orbitals (LMTO) in the atomic sphere approximation
(ASA) as local orbitals, Aryasetiawan and co-workers give for the effective Coulomb interac-
tion, U cLDA = 9.5 eV [Aryasetiawan et al. (2006)]. Another implementation in LMTO-ASA
by [Solovyev(2006)] reports U cLDA = 10.1 eV and J cLDA = 1 eV. Employing the atomic or-
bitals within a linearized augmented plane wave framework ((L)APW+lo), U cLDA = 7.3 eV and
J cLDA = 1 eV [H. Jiang (private communications)]. The discrepancies between LMTO-ASA and
the atomic orbitals in (L)APW+lo may originate from the higher localization of the head of the
LMTO-ASA wavefunctions.
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cRPA cLDA
t2g-t2g d-dp dp
U = 3.2,J = 0.46 eV Umm = 4.0, Jm = 0.57 eV U = 9.9, J = 0.88 eV Umm = 5.5, Jm = 1.0 eVc

U = 3.5 eVa U = 9.5 eVa U = 9.5 eVa

U = 3.0,J = 0.43 eVb U = 10.1, J = 1.0 eVd

a [Aryasetiawan et al. (2006)] b [Miyake and Aryasetiawan(2008)] c [Sekiyama et al. (2004)]
d [Solovyev(2006)]

Table 6.1: Comparison of the Hubbard interactions obtained for SrVO3 within cRPA and cLDA. (U ,J ) refer
to the Hubbard-Kanamori interactions between t2g orbitals (Fig. 5.2), whereas U = F0 and J = (F2 + F4)/14
and (Umm, Jm) refer to the interactions between t2g orbitals within the d-dp subspace (Fig. 5.1). The results
within cRPA are almost the same within different implementations and frameworks. The cRPA values within the dp
Hamiltonian (for which all transitions between p and d orbitals were removed) agree with the ones from cLDA (for
which all hopping terms between d shells and the rest were suppressed).

cRPA calculations

As mentioned in Chapter 4, the cRPA method is a systematic procedure for downfolding a low-
energy Hamiltonian. One has therefore the flexibility of selecting the number of degrees of
freedom included in the low-energy model.

Using the head of the t2g LMTO-ASA wavefunctions as local orbitals, Aryasetiawan and
co-workers obtained U = 3.5 eV for the on-site intra-orbital interaction in the t2g-restricted
model [Aryasetiawan et al. (2006)].
On the other hand, using the head of the d LMTO-ASA wavefunctions but removing the dp→dp
transitions from the total polarization, they got around U ≈ 9.5 eV. The values are bigger in the
latter since the screening has been notably reduced by the elimination of the transitions from p
to d. Within our notation 1, the model so constructed is denoted the “dp” model.

Aryasetiawan and co-workers observed that the cRPA values within the dp model are rather
close to the cLDA ones. They mention that further excluding transitions from the occupied t2g
to all non-eg empty states, do not change the value around 9.5 eV. They hence suggest a way
to compare cRPA with “hard”-cLDA. By construction of cLDA, the hopping terms between the
d shell and the rest have to be turned to zero. A fair comparison would consist in removing
from the total RPA polarization all the transitions that involve the d shell. One must say that
such comparison is still an open issue, because of the discrepancies in the results of different
implementations of cLDA (see Tab. 6.1).

The cRPA method was also implemented within the maximally localized Wannier func-
tion (MLWF) framework by [Miyake and Aryasetiawan(2008)]. Miyake and Aryasetiawan got
U = 3 eV and J = 0.43 eV in the model they denoted t2g-t2g. The MLWF are expected to be
less localized than the head of the LMTO-ASA. This explains that the values within MLWF are
smaller than within LMTO-ASA. They also introduced a method that consists in maximizing the

1In this work, we have adapted our notations to the ones of Miyake and co-workers [Miyake et al. (2008)].
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on-site interaction or in other words, in minimizing the off-site interactions. They gave U = 3.4
eV within this approach.

6.1.2 The “t2g-t2g Hamiltonian”

Localized basis

According to the band structure of SrVO3 (Fig. 6.1), one can construct a model that includes
the t2g degrees of freedom only. This motivates the choice of the t2g-t2g model (see Chapter
4 for the definition of the model, Fig. 4.6). The energy window W = [−1.8, 1.8] eV is used
for constructing the t2g Wannier orbitals out of the t2g Kohn-Sham states. This window mostly
includes t2g bands. One or both of the eg bands are also included at given k points since the
energy window is not k-dependent. This should not be problematic since eg’s are orthogonal
to t2g’s and hence should not overlap with them after the orthonormalization procedure. The
correlated subspace so obtained is a t2g subspace.

One should mention here that usually, such projected Wannier functions are known as ex-
tended Wannier functions [Lechermann et al. (2006)]. The extension of these functions is due to
the “leakage” on the oxygen atomic sites induced by hybridization effects. Since the pd charge
transfer energy is larger in SrVO3 than in SrMnO3 (see Chapter 4), the Wannier orbitals within
the t2g-t2g model are more localized in SrVO3.

On-site interactions

In Fig. 6.2, one shows the cRPA results on the imaginary frequency axis employing a 4x4x4 k-
mesh for the Brillouin zone integration. Such mesh is enough to yield converged values. Indeed,
a deviation of about 5% is reported with a 2x2x2 k-mesh.

From the calculation of the Hubbard interaction matrixU (cubic)
m1m2m3m4

with cubic symmetry (see
Chapter 5, Fig. 5.1), one can deduce values for the Hubbard-Kanamori parameters U , U ′ and J
(Eqs. 5.75, 5.76 and 5.77). Employing Kohn-Sham indices, the transitions from the occupied to
the empty t2g bands are excluded from the total polarization in order to calculate the Hubbard
interaction matrix U . On the other hand, all transitions are taken into account to calculate the
fully screened interaction matrix W .

We get for the Hubbard-Kanamori parameters : U = 3.2 eV, U ′ = 2.3 eV and J =
0.46 eV. These values are extracted from the static limit of the averaged U (cubic)

mmmm(iν → 0),
U (cubic)
mm′mm′,m 6=m′(iν → 0) and U (cubic)

mm′m′m,m 6=m′(iν → 0). These results are in agreement with the
ones reported in the literature [Aryasetiawan et al. (2006),Miyake and Aryasetiawan(2008)]. We
also verify that U ′ ≈ U − 2J = 2.38 eV as expected with cubic symmetry.

As discussed earlier in Chapter 4, Coulomb interactions in solids strongly depends on the
screening. The screening is a dynamical quantity which can be extremely efficient at low fre-
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Figure 6.2: Coulomb interaction parameters calculated on the imaginary frequency axis for the t2g-t2g model in
SrVO3. U (in red) corresponds to the Hubbard-Kanamori interaction between t2g orbitals, whereas W (in green)
denotes the fully screened interaction and V (in black) the unscreened (bare) one.

quency but has to vanish in the infinite frequency limit when the electronic reactivity becomes
“frozen”. Consequently, Coulomb interactions have to be frequency-dependent.

This is evident in Fig. 6.2 which shows the effective Coulomb interaction U(iν) on the
imaginary frequency axis. In the static limit, the screening induced by the creation of electron-
hole pairs, strongly reduces the bare Coulomb repulsion from V = 16.4 eV to W = 0.9 eV. A
partial screening without t2g-t2g transitions is also rather effective since it leads to U = 3.2 eV.

U(iν) and W(iν) then merge around 5 eV to yield the same asymptotic behavior toward V .
The deviation between U(iν) and W(iν) is attributed to the t2g-t2g transitions in a range of the
order of the t2g bandwidth.

On the other hand, Hund’s exchange J is weakly dependent on the screening since it varies
from 0.46 eV to Jbare = 0.57 eV.This weak dependence is usually interpreted with the fact that
the shapes of the electronic clouds are not significantly affected by the multipole part of the
interactions [Antonides et al. (1977), Sawatzky and Allen(1984), van der Marel(1985)].

As illustrated in Fig. 6.3, the frequency-dependent Hubbard interaction exhibits more pro-
nounced structures on the real-axis. One finds a clear pole around 15 eV in the real-part of U(ω)
in both the t2g-t2g and d-dp models. Such structure can be attributed to a plasmonic excitation
corresponding to collective oscillations of electrons (see Chapter 4).

In the homogeneous electron gas, the plasmon frequency ωp can be related to the electronic
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Figure 6.3: Real-part of the dynamical Hubbard interaction U(ω) for the t2g-t2g Hamiltonian, and Umm(ω) for
the d-dp and dp Hamiltonians. Only the t2g-t2g transitions and the d-d transitions have been excluded from the total
polarization in the t2g-t2g and d-dp Hamiltonians, respectively. In the dp Hamiltonian, the p-d transitions have been
also eliminated from the screening. In the static limit, U t2g−t2g ≈ Ud−dp

mm but is almost three times smaller than
Udp
mm. This shows the importance of the pd transitions in the total screening. Other transitions of higher energies lead

to a reduction by a factor 2 of the bare Coulomb repulsion within the dp model. The pole around 15 eV is interpreted
in terms of a plasmonic excitation which is induced by the p-d transitions since the divergence disappears in the dp
model.

density N/Ω involved in the oscillation :

ωp =

√

Ne2

Ωmǫ0
=

√

4πN

Ω
(Hartree), (6.1)

where we made use in the last expression of the atomic units (e = m = ~ = 1).
The density 1/7.263 (a.u.) fits relatively well with ωp ≈ 5 eV (in SrVO3 a = 7.26 Bohr, see
Chapter 7, Tab. 7.1), corresponding to an oscillation of one electron from the d shell. A small
structure emerges around 5 eV in U(ω) but a better resolution is desirable.

On the other hand, considering N = 19 in formula 6.1, which corresponds to one electron
from the d shell and 18 electrons from the filled oxygen p’s, lead to ωp ≈ 22 eV. This does not
perfectly fit with the feature around 15 eV of U(ω) but it is not so bad neither since a formula
that is valid for an homogeneous electron gas was employed.

The comparison between the effective dynamical intra-t2g interactions within the t2g-t2g and
dp models supports another way of interpreting the plasmon around 15 eV. In the dp model, the
transitions from the occupied oxygen p to the empty d states are cut off. The corresponding
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(eV) U000 U100 U110 V000 V100 V110

SrVO3 3.3 0.66 0.45 16.4 3.9 2.9

Table 6.2: Nearest-neighbor U100(V100) and next-nearest-neighbor U110(V110) screened (bare) interaction for
SrVO3 in the t2g-t2g model.

dynamical interactions do not exhibit any plasmon pole around 15 eV (or around 5 eV) and is
even rather flat in comparison to t2g-t2g. This points out that d-p transitions are at the origin of
the plasmonic excitations.

One should add that equivalent results were reported in the literature [Aryasetiawan et al. (2006),
Miyake and Aryasetiawan(2008)]. Furthermore, a dynamical interaction involving plasmons at
5 eV and 15 eV was recently employed by [Casula et al. (2012a)] for analyzing the effects of the
dynamical screening in the low-energy spectrum of SrVO3 within an extended DMFT approach.

Off-site interactions

The off-site interactions (see Chapter 5, Eq. 5.14) are given in Tab 6.2 for the t2g-t2g model.
The bare Coulomb interaction V100 between the nearest-neighbor unit cells R′ −R = a~i (a is
the lattice parameter, see Tab. 7.1), is about 1/4 of the on-site one, V000. The screening leads to
a shorter range effective interaction. Indeed, the nearest-neighbor interaction U100 is about 1/6
of the on-site interaction.
This is in agreement with the results reported in the literature in which the local states are defined
in the MLWF framework [Miyake and Aryasetiawan(2008)].

6.1.3 The “d-dp Hamiltonian”

Localized basis

Within the d-dp model, one makes use of an extended energy window W = [−7.5, 5.5] eV that
contains the oxygen-like p bands and the vanadium-like d bands. The hybridization between
eg and p orbitals justifies to consider also the p Kohn-Sham bands in W to construct a set of
localized functions with d character.

The “leakage” on the oxygen sites- mentioned earlier within the t2g-t2g model- is reduced by
orthonormalization within the d-dp model. The orbitals so obtained are thus more atomic-like.

Furthermore, in the hybrid d-dp model, one has to exclude from the RPA polarization the
transitions from the occupied d to the empty d states. This is done with the Kohn-Sham indices
labeling t2g and eg bands (Fig. 6.1).
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(eV) F0 F2 F4 F4/F2 J F0
bare F2

bare F4
bare F4/F2|bare Jbare

SrVO3 3.0 6.2 4.9 0.786 0.79 18.6 8.4 5.3 0.629 0.98

Table 6.3: Slater integrals for the d-dp model in SrVO3. On the right part of the table, the Slater integrals
correspond to the bare (unscreened) interaction v = F0

bare and the bare exchange interaction Jbare = (F2
bare+F4

bare)/14,
whereas on the left they correspond to the Hubbard interaction U = F0 and Hund’s exchange J = (F2 + F4)/14.
These results are respectively deduced from the infinite frequency and static limit of the Hubbard interaction matrix
Um1m2m3m4

(ω) calculated in the spherical symmetry.

Slater integrals

According to Eqs. 5.62 and 5.64, the Hubbard interaction matrix within the d-dp model can be
parametrized by a set of Slater integrals {Fk}. These parameters are deduced from the Hubbard
interaction matrix calculated with a localized basis set said “spherical” (see Chapter 5).

The Slater integrals for the screened (static) and the unscreened (bare) cases are given in
Tab. 6.3. As discussed in Chapter 5, we can deduce the Hubbard interaction U = F0 = 3.0 eV
and Hund’s exchange J = (F2 + F4)/14 = 0.79 eV. U is smaller than the value obtained for
the Hubbard-Kanamori parameter U = 3.3 eV within the t2g-t2g model but these two quantities
do not have the same meaning. Constructing the corresponding interactions but within the d-dp
model (see Tab. 6.1 and Chapter 7, Tab. 7.3), leads to Ūmm = 3.9 eV. A larger value is expected
within d-dp than within t2g-t2g because of the increased orbital localization of the Wannier or-
bitals within the former (see Chapter 7 for further discussions). This effect is also evidenced
with the values of the bare interactions. The bare parameter reads as v = F0

bare = 18.6 eV and
Hund’s exchange Jbare = (F2

bare + F4
bare)/14 = 0.98 eV. The corresponding interaction between

t2g orbitals is v̄mm = 19.7 eV (Tab. 7.3), which is notably larger than the value obtained within
the t2g-t2g model.

One again observes, on the other hand, that U = F0 strongly lowers with the screening,
whereas the exchange interactions- or J- do not change much. The static ratio F4/F2 = 0.786
significantly deviates from the atomic value (around 0.625) but recovers the atomic value in the
infinite frequency limit. The static deviation could be due to anisotropic effects of the screening
but requires further investigations. In the next section, we show similar deviations in the cases of
iron-based pnictides. The deviation is even larger for these compounds. We attribute this effect
to the atomic orbital extension and to the dimensionality.

Accuracy of the Slater parametrization

It is possible to evaluate whether the Slater integrals parametrization is accurate. The parametriza-
tion consists in mapping the four-index interaction matrix U (spheric)

m1m2m3m4
onto a set of only three

numbers. In Chapter 5 (Fig. 5.1), we indicated a method to evaluate this efficiency : it consists in
comparing the interactions between t2g orbitals within the d-dp Hamiltonian, (Ūmm, J̄m, Ūmm′),
which are deduced from the Slater integrals (from Eq. 5.70 to Eq. 5.72), with the directly calcu-
lated ones with cubic symmetry, (Umm, Jm, Umm′).
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(eV) Umm Jm vmm Jbare
m

directly calculated 4.0 0.57 19.9 0.71
Ūmm J̄m v̄mm J̄bare

m

Slater parametrization 3.9 0.60 19.7 0.75
Spherical parametrization 3.9 0.43 19.7 0.54

Table 6.4: Hubbard interactions between the t2g orbitals within the d-dp Hamiltonian for SrVO3 : they can be
directly calculated with cubic symmetry (first line) or deduced from the Slater integrals (Eqs. 5.70, 5.71 and 5.72)
or from the spherical parametrization (assuming in particular that F4/F2 = 0.625) (third line). The three methods
are summarized in Fig. 5.1.

The results are given in Tab. 6.4. All the interaction parameters are correctly reproduced
within the Slater integrals which we have calculated (second line of Tab. 6.4). The results of
the “spherical parametrization” (Fig. 5.1) are shown for comparison. Using the atomic value for
the ratio F4/F2 (see Chapter 5, Eqs. 5.73 and 5.74), is not appropriate to deduce the exchange
interaction J̄m between the t2g orbitals, since this approach underestimates this interaction. This
is not only due to the choice of the atomic ratio : also J̄bare

m is underestimated by around 0.2 eV.
This can be attributed to the spherical average.
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6.2 Iron-based pnictides

The recent discovery of unconventional superconductivity with a Tc up to 55 K in the iron-
based pnictides, LaOFeAs [Kamihara et al. (2008), Ren et al. (2008), Chen et al. (2008a), Wen
et al. (2008),Chen et al. (2008b)] and BaFe2As2 [Rotter et al. (2008),Sefat et al. (2008),Sharma
et al. (2010)], and iron-based chalcogenides, α-FeSe [Yeh et al. (2008),Hsu et al. (2008)], has in-
duced a lot of theoretical and experimental work (see Fig. 6.4 for the crystal structure). The point
of the following section is not to describe the amazing properties of such materials but rather to
present the cRPA calculations and compare them with the ones obtained within MLWF [Miyake
et al. (2010), Nakamura et al. (2008), Miyake et al. (2008)].

A first principles determination of the Hubbard interaction and Hund’s exchange is highly
desirable for these compounds in order to light on the strength of the correlations (see for in-
stance [Qazilbash et al. (2009), Ishida et al. (2009), Yin et al. (2011)]). For example, LaOFeAs
was described either as a strongly correlated system rather close to the Mott transition by [Haule
et al. (2008), Haule and Kotliar(2009), Yin et al. (2011)], as well as a weakly or moderate cor-
related system by [Anisimov et al. (2009b)]. Using LDA+DMFT combined with interaction
parameters calculated by cRPA within MLWF, Aichhorn and co-workers have well reproduced
the photoemission spectra of LaOFeAs [Aichhorn et al. (2009)]. Their findings supported the
picture of a moderate correlated metal.

Figure 6.4: Crystal structures of LaOFeAs (“1111”), BaFe2As2 (“122”) pnictides and FeSe (“11”) chalcogenide.

In the following, we compute the Hubbard interaction U = F0 and Hund’s exchange J =
(F2 + F4)/14 for the d-dp model in LaOFeAs, FeSe, BaFe2As2 and BaRu2As2. We use as
technical parameters 4x4x2 and 4x4x3 k meshes for the integration over the Brillouin zone for
LaOFeAs and FeSe, respectively. For BaFe2As2 and BaRu2As2, we use a 4x4x4 k mesh.
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Figure 6.5: (left) DFT-LDA band structure of LaOFeAs in the paramagnetic phase. The iron-d states are high-
lighted in red, the oxygen-p in purple and the arsenic-p in green. A fatband projection on the iron-d atomic orbital
(red circles) has been performed in order to show the hybridization between the iron orbitals and the oxygen and
arsenic ones. (right) Same but for FeSe. The selenium-p states are in purple.

6.2.1 LaOFeAs

Band structure

The DFT-LDA band structure of LaOFeAs is shown in Fig. 6.5. Lattice parameters, a = 4.03
Åand c = 8.74 Åare used in agreement with [Miyake et al. (2010)].
The band structure exhibits a set of ten Fe d-like bands around the Fermi level with a bandwidth
of the order of D = 4.5 eV. These bands are surrounded by the p states from the oxygen and
the arsenic atoms. An atomic fatband projection on the iron-d orbitals indicates that there is a
substantial hybridization between d and p states. It is hence reasonable to use an extended energy
window W = [−5.5, 2.5] eV for constructing a set of d-like localized orbitals.
The Slater integrals are then calculated from the Hubbard interaction matrix (Eq. 5.62) within
such d-d-p model.
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(eV) U J F2 F4 F 4/F 2 U J v Jbare F 4/F 2|bare

LaOFeAs 2.4 0.7 5.84 4.42 0.733 2.7a,b 0.8a,b 18.9 0.9 0.614
FeSe 3.9 0.9 7.10 5.13 0.723 4.0a,c 0.9a,c 20.3 1.0 0.621
BaFe2As2 2.5 0.8 6.14 4.62 0.752 2.7a,d 19.3 0.9 0.615
BaRu2As2 2.3 0.5 4.07 3.32 0.817 12.7 0.7 0.645

a [Miyake et al. (2010)] b [Aichhorn et al. (2009)] c [Aichhorn et al. (2010)]
d [Werner et al. (2012)]

Table 6.5: Hubbard U = F0 and Hund’s exchange J = (F2 + F4)/14 for the d-dp model in pnictides. Our results
are in agreement with the ones obtained within the maximally localized Wannier function framework and used in
LDA+DMFT. Bare (unscreened) interaction v = F0|bare and bare Hund’s exchange Jbare = (F2

bare + F4
bare)/14 are

also shown. The ratio F4/F2 exhibits a significant deviation from the atomic value around 0.625, in contrast to the
unscreened ratio F4/F2|bare.

Slater parametrization

The Slater integrals and the correspinding values for the Hubbard U = F0 and Hund’s exchange
J = (F2 + F4)/14, are given in Tab. 6.5. They are in agreement with the parameters obtained
within an equivalent d-dp model by a “spherical” parametrization (Fig. 5.1) but within MLWF.

Within the Slater parametrization, one observes that the static ratio F4/F2 = 0.733 is deviated
from the atomic value, in contrast to the bare ratio. Employing the “spherical” parametrization
(for the method, see Fig. 5.1) which relies on the atomic ratio to map the Hubbard interaction
matrix calculated with cubic symmetry, leads to another set of Slater integrals,
U spheric = F0

spheric = 2.7 eV, J spheric = (F2
spheric + F4

spheric)/14 = 0.53 eV (F4/F2|spheric = 0.625 as
imposed). We note that in contrast to the Hubbard U , Hund’s exchange is notably underestimated
by this method, compared to the Slater parametrization introduced in Chapter 5 (Eq. 5.62).

Since the crystal field symmetry is not cubic in LaOFeAs, the Hubbard-Kanamori relations
can not be employed for evaluating the accuracy of the Slater parametrization, as done for SrVO3.
We can still compare the reduced interaction matrices Uσσ′

mm′ (see Chapter 5, Eqs. 5.78, 5.80
and 5.79) which are deduced from a direct calculation of U (cubic)

m1m2m3m4
with cubic symmetry and

the ones which are deduced from the Slater symmetrized interaction matrix with cubic symmetry
(Eq. 5.64). We remind the reader the notations :

Uσσ̄
mm′ ≡ U (cubic)

mm′mm′ = 〈φ0mφ0m′ |W r(0)|φ0mφ0m′〉 (6.2)

Jmm′ ≡ U (cubic)
mm′m′m = 〈φ0mφ0m′ |W r(0)|φ0m′φ0m〉 (6.3)

Uσσ
mm′ ≡ U (cubic)

mm′mm′ − Jmm′ . (6.4)
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The reduced interaction matrices (in eV) from the direct calculation read as :

Uσσ
mm′ |cRPA =













0 1.38 1.42 2.01 2.01
1.38 0 2.24 1.53 1.53
1.42 2.24 0 1.60 1.60
2.01 1.53 1.60 0 1.55
2.01 1.53 1.60 1.55 0













Uσσ̄
mm′ |cRPA =













3.45 2.10 2.00 2.44 2.44
2.10 3.54 2.59 2.18 2.18
2.00 2.59 3.09 2.07 2.07
2.44 2.18 2.07 3.15 2.07
2.44 2.18 2.07 2.07 3.15













,

where the order of the orbital in these matrices is dz2 , dx2−y2 , dxy, dxz, dyz.

Employing the Slater integrals from Tab. 6.5, one constructs the Slater symmetrized interac-
tion matrix with cubic symmetry :

Ūσσ
mm′ |Slater =













0 1.35 1.35 1.98 1.98
1.35 0 2.18 1.56 1.56
1.35 2.18 0 1.56 1.56
1.98 1.56 1.56 0 1.56
1.98 1.56 1.56 1.56 0













Ūσσ̄
mm′ |Slater =













3.24 1.98 1.98 2.40 2.40
1.98 3.24 2.53 2.12 2.12
1.98 2.53 3.24 2.12 2.12
2.40 2.12 2.12 3.24 2.12
2.40 2.12 2.12 2.12 3.24













.

As we can see, there is no major discrepancy between the reduced interaction matrices.
The largest absolute deviation is on the diagonal of Uσσ̄

mm′ and yields ∆U = 0.3 eV. The maxi-
mum is reached on dx2−y2 and dz2 orbitals. A similar deviation (around 0.35 eV) was reported
by [Aichhorn et al. (2009)] with a spherical parametrization within MLWF. The repulsions on
(dx2−y2 , dz2) orbitals are stronger than on the other orbitals due to the As ligand field effects. This
is in agreement with the lower spreads of the (dx2−y2 , dz2) maximally localized Wannier func-
tions as calculated within the d-dp model by [Vildosola et al. (2008)]. For further investigations,
see [Vaugier et al. (2012a)].

Employing the spherical parametrization with our data increases the deviation to 0.54 eV.

Ūσσ
mm′ |Spheric =













0 1.59 1.59 2.14 2.14
1.59 0 2.32 1.78 1.78
1.59 2.32 0 1.78 1.78
2.14 1.78 1.78 0 1.78
2.14 1.78 1.78 1.78 0













Ūσσ̄
mm′ |Spheric =













3.00 2.06 2.06 2.43 2.43
2.06 3.00 2.55 2.18 2.18
2.06 2.55 3.00 2.18 2.18
2.43 2.18 2.18 3.00 2.18
2.43 2.18 2.18 2.18 3.00













.

Dynamical interactions Umm(ω) can also be calculated on the real-frequency axis (Fig. 6.6).
Umm(ω) is defined here as the diagonal average of the real-part of the interaction matrix elements
U (cubic)
mmmm(ω) calculated with cubic symmetry.

In contrast with SrVO3, Umm(ω) exhibits multiple plasmon poles that we can not reasonably fit
with any plasmon frequency of an homogeneous electron gas (Eq. 6.1). In the future, it will be
interesting to combine such dynamical Hubbard interaction with a many-body solver like DMFT,
as introduced by [Casula et al. (2012a), Werner et al. (2012)] for SrVO3 and BaFe2As2.

In LaOFeAs (as well as in FeSe or in fcc Fe, see Fig. 6.13), the screening vanishes above
energies of the order of 25 − 30 eV and the bare Coulomb interaction is recovered above. The
interpretation of this common “cut-off” in the screening is not clear yet.
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Figure 6.6: Real-part of the dynamical Hubbard interaction Umm(ω) (black points) for the d-dp model, obtained
by averaging over the diagonal interaction matrix elements U (cubic)

mmmm calculated with cubic symmetry. The bare
interaction is shown in red dashed line. (top panel) LaOFeAs (middle panel) FeSe. (bottom panel) BaFe2As2. The
spectra exhibits multiple plasmon poles in contrast to SrVO3.
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6.2.2 FeSe

The paramagnetic DFT-LDA band structure of FeSe is shown in Fig. 6.5 (a = 3.77 Å,c = 5.52
Å). The bandwidth of the iron d is about D ≈ 4.5 eV and hence similar to LaOFeAs. This gives
an estimation of the kinetic energy. On the other hand, there are fewer p bands that are close to
the Fermi level in FeSe than in LaOFeAs. These bands are involved in the screening of the bare
Coulomb repulsion on d orbitals. One therefore expects lower screening effects in FeSe.

The results for the Hubbard U and Hund’s coupling J are given in Tab. 6.5. The energy win-
dow W = [−6.5, 2.4] eV is employed for constructing d Wannier orbitals within the d-dp model.
The numbers are in agreement with the ones obtained within MLWF [Miyake et al. (2010),Aich-
horn et al. (2010)].

The reduced interaction matrices (in eV) with cubic symmetry read as :

Uσσ
mm′ |cRPA =













0 2.67 2.70 3.46 3.46
2.67 0 3.67 2.92 2.92
2.70 3.67 0 2.89 2.89
3.46 2.92 2.89 0 2.90
3.46 2.92 2.89 2.90 0













Uσσ̄
mm′ |cRPA =













5.04 3.46 3.43 3.96 3.96
3.46 4.95 4.07 3.58 3.58
3.43 4.07 4.81 3.55 3.55
3.96 3.58 3.55 4.88 3.54
3.96 3.58 3.55 3.54 4.88













.

It follows for the Slater symmetrized reduced interaction matrices :

Ūσσ
mm′ |Slater =













0 2.63 2.63 3.41 3.41
2.63 0 3.67 2.89 2.89
2.63 3.67 0 2.89 2.89
3.41 2.89 2.89 0 2.89
3.41 2.89 2.89 2.89 0













Ūσσ̄
mm′ |Slater =













4.90 3.39 3.39 3.91 3.91
3.39 4.90 4.08 3.56 3.56
3.39 4.08 4.90 3.56 3.56
3.91 3.56 3.56 4.90 3.56
3.91 3.56 3.56 3.56 4.90













.

The deviation from the directly calculated values is about ∆U = 0.14 eV and much better than
in LaOFeAs. FeSe is even the one for which the Slater parametrization is the best among the
pnictides considered in this work. This is due to the more atomic-like character of the Fe d
local orbitals in FeSe. The bare ratio F4/F2|bare is also the closest to the empirical atomic value
(Tab. 6.5).

The interaction values are notably bigger in FeSe than in LaOFeAs. As shown by [Aich-
horn et al. (2010)] within a LDA+DMFT calculation with U = 4.0 eV and J = 0.9 eV and
in agreement with photoemission experiments [Yoshida et al. (2009), Tamai et al. (2010)], FeSe
displays a one-particle spectral function that is significantly affected by correlations. Aichhorn
and co-workers identified a lower Hubbard band shifted with the strength of U and they demon-
strated that the inclusion of the full rotationally-invariant Hund’s coupling (spin-flip and pair
hopping terms in the Hubbard Hamiltonian, see Eqs. 5.83 and 5.84) is crucial for describing the
low-energy properties.
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6.2.3 BaFe2As2 and BaRu2As2

We finally show the cRPA calculations within the d-dp model for BaFe2As2 (a = 3.96 Å,c =
13.01 Å) and BaRu2As2 (a = 4.15 Å,c = 12.25 Å). See Fig. 6.4 for an illustration of the crystal
structures. Ruthenium (Ru) d-like states have a larger bandwidth DBaRu2As2 ≈ 6 eV than iron d,
DBaFe2As2 ≈ 4 eV. This is attributed to the higher extension of the ruthenium atomic 4d orbitals
which hence hybridize stronger with arsenic p’s.

Figure 6.7: DFT-LDA band structure of BaFe2As2 (left) and BaRu2As2 (right) in the paramagnetic phase. Iron
(ruthenium) d orbitals are in red and arsenic (As) p in purple. An atomic fatband projection on the iron (ruthenium)
d atomic orbitals (red circles) is also shown.

We get U = 2.5 eV and J = 0.8 eV (Tab. 6.5) for BaFe2As2 within the d-dp model with
the energy window W = [−6.5, 2.7] eV. The value for the Hubbard U coincides with the one
obtained in MLWF [Werner et al. (2012)]. In comparison, for BaRu2As2, U = 2.3 eV and
J = 0.5 eV (W = [−6.5, 2.7] eV).

The static Hubbard values are almost the same for BaFe2As2 and BaRu2As2 but Hund’s ex-
change is notably smaller in the ruthenium-based compound. The effect of Hund’s coupling in
pnictides must be crucial but is still unclear [Sawatzky et al. (2009), Haule and Kotliar(2009),
Aichhorn et al. (2010)]. Together with the much larger kinetic energy, this supports the idea
that the ruthenium-based pnictides should be less “correlated” than the iron-based ones and cor-
rectly described within a wave-like picture such as DFT-LDA. This agrees with the recent angle-
resolved photoemission experiments by [Brouet et al. (2010)] on BaFe2As2 and Ba(Fe0.65Ru0.35)2As2.
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On the other hand, the bare (unscreened) interaction values agree with the previous state-
ment that the localized ruthenium d orbitals within the d-dp model are more extended than the
iron d. This is reasonable if one remembers the atomic d orbital contraction from the bottom to
the top of the periodic classification using the Slater rules (see Chapter 7, Tab. 7.4 for example).
In Chapter 7, we show that for transition metal oxides, the exchange interaction terms, J , are
weakly dependent on screening effects but decrease significantly with an increasing orbital ex-
tension. In contrast, the intra-orbital interactions U are sensitive to both effects. If one applies
such statement to the pnictides, this may explain the smaller Hund’s coupling in BaRu2As2 than
in BaFe2As2.

Interestingly, the static ratio F4/F2 = 0.817 in BaRu2As2 which is notably deviated from
the atomic value. As the atomic value is recovered when the screening disappears (hence for
the bare interaction), such effect could be due to an anisotropy in the screening but requires
further investigations [Vaugier et al. (2012a)]. Such anisotropy would increase from BaFe2As2
to BaRu2As2 while the extension of the Wannier orbitals becomes larger. This also suggests that
the “spherical parametrization” based on F4/F2 = 0.625 would not be well justified for these
compounds.

To estimate the accuracy of the Slater parametrization, the same method than in LaOFeAs
is employed. The reduced interaction matrices (in eV) from the direct calculation with cubic
symmetry for BaFe2As2 read as :

Uσσ
mm′ |cRPA =













0 1.49 1.46 2.10 2.11
1.49 0 2.34 1.65 1.66
1.46 2.34 0 1.60 1.61
2.10 1.65 1.60 0 1.69
2.11 1.65 1.61 1.69 0













Uσσ̄
mm′ |cRPA =













3.66 2.19 2.13 2.55 2.56
2.19 3.60 2.71 2.24 2.25
2.13 2.71 3.31 2.17 2.18
2.55 2.24 2.17 3.26 2.14
2.56 2.25 2.18 2.14 3.29













,

where the order of the orbital in these matrices is dz2 , dx2−y2 , dxy, dxz, dyz.

Employing the Slater integrals from Tab. 6.5, one constructs the Slater symmetrized interac-
tion matrices with cubic symmetry :

Ūσσ
mm′ |Slater =













0 1.40 1.40 2.06 2.06
1.40 0 2.28 1.62 1.62
1.40 2.28 0 1.62 1.62
2.06 1.62 1.62 0 1.62
2.06 1.62 1.62 1.62 0













Ūσσ̄
mm′ |Slater =













3.38 2.06 2.06 2.50 2.50
2.06 3.38 2.64 2.20 2.20
2.06 2.64 3.38 2.20 2.20
2.50 2.20 2.20 3.38 2.20
2.50 2.20 2.20 2.20 3.38













.

The Slater symmetrization leads to a deviation ∆U = 0.28 eV on the diagonal elements
of Uσσ̄

mm′ and around 0.1 eV on the other off-diagonal elements. The maximum is reached on
dz2 orbital pointing towards the interlayer Ba planes. It is bigger than in the other pnictide
compounds.

Employing the spherical parametrization of the Hubbard interaction matrix calculated with
cubic symmetry, one gets U spheric = 2.8 eV and J spheric = 0.55 eV. Hund’s exchange parameter is
smaller than the one obtained with the Slater parametrization (Tab. 6.5).
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For comparison [Vaugier et al. (2012a)], in BaRu2As2, the deviation within the Slater sym-
metrization yields ∆U = 0.39 eV and within the spherical parametrization, one gets U spheric =
2.5 eV, J spheric = 0.38 eV and a larger deviation.

The dynamical interactions for BaFe2As2 within the d-dp model are shown in Fig. 6.6.
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6.3 3d transition metals within the projection approach

The projection approach is discussed below for the 3d transition metal (TM) series. The fcc
lattice structures are employed for all TM. The lattice parameters used are given in Tab. 6.7.
The only adjustable parameter in the method is the energy window W to construct d localized
functions. 2 One relies on the DFT-LDA density of states (Fig. 6.9) in order to set W. The
dependence on the choice of W is shown for paramagnetic nickel.

Here, we focus on the paramagnetic phases of 3d TM. Following the notations in cRPA
(see Chapter 4), the so constructed low-energy Hamiltonian is denoted “d-spd” model. Our
results (Tab. 6.7 and Fig. 6.11, Fig. 6.12) agree with the ones obtained within MLWF [Miyake
et al. (2009), Şaşıoğlu et al. (2011)], where the authors employed different schemes for treating
the entangled bands.

6.3.1 Band structures

As mentioned at the end of Chapter 4, the DFT-LDA band structures exhibiting entangled d and
sp bands are serious challenges for the standard cRPA methods. In 3d paramagnetic TM, the
3d orbitals are gradually filled from scandium (Sc) (4s23d1) to copper (Cu) (4s13d10) but the
d bands are mixed with a dispersive 4s-like band. We give as an example the band structure
of nickel (Fig. 6.8) with the atomic “fatband” projection on d orbitals within the energy range
[−10, 10] eV (in red circles). The 4s-like band can be identified with the bottom parabola of the
band around −10 eV which keeps going up above the Fermi level until much higher energies,
together with the 4p-like band. A set of partially filled d-like bands is obtained around the Fermi
level on the other hand which can not be labeled with k-independent Kohn-Sham indices because
of the mixing with sp bands.

The total and the partial d, s and p density of states (DOS) are shown for the 3d paramagnetic
TM series in Fig. 6.9. The d character is commonly found in the energy range [−10, 7] eV. This
approximately corresponds to the choices made for W (Tab. 6.7). The results at the end do
not depend much on W, as long as the energy window is large enough to construct d localized
orbitals within the projection procedure.

One also observes in Fig. 6.9 that the d-like bandwidth,D, decreases from the early to the late
TM. This is in agreement with the orbital contraction in atoms within the Slater rules [Cowan(1981)] :
the radial distribution of the d atomic wavefunctions decreases with the atomic number in the pe-
riodic classification. As a consequence, the electronic hopping between the metallic sites is
lowered through the series and the d bandwidth is reduced.

2Because of the entanglement of d and sp bands, we do not speak about Wannier functions anymore (see Chapter
5, section 5.3).
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Figure 6.8: DFT-LDA band structure of paramagnetic fcc-Ni with d fatband (in red circles) projection. The set
of 3d-like bands (in red) lie around the Fermi level but is entangled with largely dispersive 4s and 4p-like bands
(turquoise).

6.3.2 3d series

In contrast to the notations introduced in Chapter 5, Umm refers here to the diagonal average of

the Hubbard interaction within the full d manifold (and analogously for Wmm, vmm).

We first discuss the cRPA values within the d-spd model for the whole TM series. As tech-
nical parameters, a 10x10x10 k-mesh for the Brillouin zone integration is employed. The con-
vergence with respect to the number of k vectors is tested on Ni (Fig. 6.10). The fully screened
interaction Wmm quickly yields a converged value. For the Hubbard interaction Umm, one needs
to consider an 8x8x8 k-mesh at least . All the values reported in this section were actually
obtained with a 10x10x10 k-mesh.

The interaction parameters are defined by extending relations Eqs. 5.75 and 5.77 to the whole
cubic d manifold : the Hubbard interaction Umm corresponds to the average over the diagonal in-
teraction matrix elements U (cubic)

mmmm computed with cubic symmetry. The bare interaction vmm and
the fully screened interaction Wmm are defined in a similar way. Hund’s exchange Jmm′ corre-
sponds below to the average over the interaction matrix elements U (cubic)

mm′m′m,m 6=m′ and analogously
for Jbare

mm′ and J screened
mm′ but considering respectively the bare interaction matrix v(cubic)

mm′m′m,m 6=m′ and
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Figure 6.9: DFT-LDA density of states (DOS) for fcc 3d transition metals in the paramagnetic phase. The total
DOS is shown in black whereas the d-partial DOS is in red dashed line. 4s and 4p itinerant states are indicated
respectively in turquoise and in blue lines.

the fully screened interaction matrix W (cubic)
mm′m′m,m 6=m′ .

Values from the literature

We consider the fcc structure of nickel in order to benchmark our projection approach. We
get for the Slater integrals, U = 2.5 eV and J = 1.02 eV (F4/F2 = 0.730) within the d-
spd model constructed with the energy window W = [−10, 15]eV (Tab. 6.7). These values
are in reasonable agreement with the ones (U = 3.0 eV, J = 0.9 eV) used by [Lichtenstein
et al. (2001)] for calculating the finite-temperature magnetism of Ni within LDA+DMFT. In
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this work, Lichtenstein and co-workers referred to the Hartree-Fock-Slater atomic calculations3

by [Bandyopadhyay and Sarma(1989)]. For Fe, they employed U = 2.3 eV, J = 0.9 eV, thus a
bit smaller than the ones obtained within the projection method for the d-spd model (Tab. 6.7).

For comparison, within MLWF in the disentangled cRPA, Miyake and co-workers obtained
Umm = 4.05 eV with the energy window W = [−7, 4] eV [Miyake et al. (2009)]. Another
approach by [Şaşıoğlu et al. (2011)] leads to Umm = 3.95 eV and Jmm′ ≈ 0.8 eV but with-
out mentioning any model. In “soft”-cLDA, Nakamura and co-workers got about Umm′ = 6
eV [Nakamura et al. (2006)], whereas in “hard”-cLDA, Aryasetiawan and co-workers reported
about 7 eV [Aryasetiawan et al. (2006)].

1
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mm
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mm
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Figure 6.10: Convergence tests of the Hubbard interaction Umm with respect to the number of k vectors used in
the Brillouin zone integration. We take the fcc structure of nickel as an example and we use W = [−10, 15] eV as
the energy window for the construction of d localized orbitals. The convergence is reached with the 8x8x8 mesh. It
is quicker for the fully screened interaction Wmm.

There is also an experimental way of deducing the Hubbard parameters as mentioned in
Chapter 4. It consists in combining Auger and X-ray photoemission spectroscopy and then em-
ploying a set of Slater integrals for fitting the spectra : in particular, one gets U = F0 as a fitting
parameter. The Slater integrals from the multipole part (F2, F4, . . . ) are taken from atomic calcu-
lations. The comparison between such fitting parameters and the values that are computed from
first principles, is usually not easy. For nickel, some authors give around 5 eV [Yin et al. (1977)],
whereas values around 4 eV [de Boer et al. (1984)] are also reported. Other estimates from x-
ray photoemission data yielded around 2 eV [Hüfner and Wertheim(1973), Herring(1966)]. The

3This calculation relies on the Taylor-series expansion of the total energy up to fourth-order in terms of the
electron occupancy at various levels.
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W (eV) vmm Jbare
mm′ Umm Jmm′ Wmm J screened

mm′

[−10, 3] 24.4 0.83 3.3 0.69 1.22 0.44
[−10, 6.5] 25.2 0.86 3.6 0.72 1.28 0.46
[−10, 15] 27.2 0.96 3.9 0.80 1.39 0.51

Table 6.6: Interaction parameters (in eV) with cubic symmetry and depending on the energy window W employed
for constructing the localized orbitals within the projection procedure (see Chapter 3 and 4).

deviations between these experimental results may come from the experimental data and their
fit.

Dependence on the energy window W

Throughout this work, we insist on the dependence of the interaction values with the model
considered. Within our projection method, the energy window W to construct d localized or-
bitals, is the only adjustable parameter. This parameter is required by any downfolding proce-
dure. When extending the energy window W, one expects that the localization of the orbitals
increases [Lechermann et al. (2006), Aichhorn et al. (2009)]. As a consequence, the Coulomb
repulsion should also get larger. This trend is reproduced by the results shown in Tab. 6.6 for
nickel : the Hubbard interaction yields Umm = 3.3 eV within W = [−10, 3] eV whereas it yields
almost 4 eV within W = [−10, 15] eV.

Bare interaction

The unscreened (bare) on-site Coulomb interaction vmm (Fig. 6.11) monotonically increases with
the d electron number, as well as the bare exchange interaction Jbare

mm′ (Fig. 6.12). This is in agree-
ment with the trends expected from an atomic-like basis according to the Slater rules. We already
mentioned that the d atomic wavefunction contracts when the atomic number increases. This
gives also confidence in the localized character of the bases constructed to expand the interaction
operators.

vmm varies from about 15 eV to almost 30 eV whereas Jbare
mm′ increases from 0.5 eV to 1 eV.

The values are similar to the ones obtained within MLWF by [Şaşıoğlu et al. (2011)].

Screened interactions Umm and Wmm

The trend for the fully screened on-site interaction Wmm (and the corresponding exchange inter-
action J screened

mm′ ) is rather constant through the series. Copper (Cu) is an exception : Wmm (and
J screened
mm′ ) notably increase compared to nickel. This will be interpreted later in terms of screening.

A qualitatively different trend is reported for Umm (Fig. 6.11 right panel and Tab. 6.7). The Hub-
bard interaction Umm does not exhibit a monotonic behavior from the early to the late TM but
increases from scandium (Sc) to iron (Fe) and then decreases.
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Sc Ti V Cr Mn Fe Co Ni

a (Å) 4.641 4.133 3.804 3.662 3.651 3.614 3.535 3.520
W [−6, 6] [−6, 7.6] [−6, 8.7] [−7, 8.7] [−7, 7.7] [−8, 6] [−8, 6.5] [−10, 6.5]
Umm 2.6 3.1 3.2 3.4 3.5 5.0 4.5 3.6
Jmm′ 0.38 0.47 0.53 0.58 0.62 0.68 0.71 0.72
U(= F0) 2.0 2.4 2.3 2.5 2.5 3.9 (2.3) 3.3 2.5 (3.0)
J 0.53 0.66 0.74 0.82 0.87 0.96 (0.9) 0.99 1.02 (0.9)
F4/F2 0.796 0.774 0.765 0.754 0.742 0.716 0.718 0.730

Table 6.7: Lattice parameters used (first row) for the fcc 3d transition metals and energy windows W (in eV)
(second row) to construct d localized orbitals. The values for the diagonal averages with cubic symmetry, Umm and
Jmm′ , and for the Slater integrals U = F0 and J = (F2 + F4)/14 (in eV) obtained with the projection method are
given. For Fe and Ni, the values (blue parentheses) used by [Lichtenstein et al. (2001)] for describing the finite-
temperature magnetism are reported in parentheses. For Cu, it does not make sense to calculate Hubbard interactions
since the d shell is filled. In Cu, one gets for the fully screened interactions, Wmm = 4.2 eV and J screened

mm′ = 0.83
eV using a = 3.610 Åand W = [−8, 10] eV.

Such behavior with a maximum almost in the middle of the series, was already interpreted in
cRPA employing the head of LMTO-ASA’s as local orbitals, and energy windows for computing
the constrained polarization P d [Aryasetiawan et al. (2006)].

In the early TM, the (s to empty d) screening channels are stronger than the (occupied d
to non-d) ones, because of the low occupation of the 3d orbitals. Aryasetiawan and co-workers
did the numerical experiment consisting in keeping only the (4s to empty 3d) transitions in the
polarization. They obtained a partially screened interaction whose behavior was monotonic in
contrast to Umm. This is due, first to the (4s to empty 3d) screening which decreases with the
filling of the d shell, and second to the d orbital contraction with the atomic number as evidenced
by the increase of vmm through the series.

On the other hand, the strength of the (3d to non-3d) screening channels increases with the
d orbital filling from the early to the late TM and it competes with the (4s to empty 3d) channels
and with the increased localization induced by the contraction of the d wavefunctions. In Sc,
the effects of the (3d to non-3d) transitions are weak since the d orbitals only accommodate one
electron but these effects should be maximum in nickel (Ni). These transitions in a sense take
over the screening from the (s to empty d) channels once the d shell is half-filled. This happens
around the middle of the series. Their large contributions explain the lower value of Umm for Ni
despite of the stronger orbital localization. In passing, we mention that the antagonism between
the orbital localization and the screening is investigated for transition metal oxides in Chapter 7.

A monotonic behavior is observed for Wmm (Fig. 6.11 on the left) and J screened
mm′ . The fact that

Wmm does not depend on the number of d electrons (except for Cu) can be interpreted in terms of
the metallic screening that is induced by the intra-orbital d-d transitions. As discussed earlier in
Chapter 5 (Eq. 5.17), such metallic transitions are responsible for the Drude divergence in the di-
electric function and induce a long-range screening leading to effective short-range interactions.
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Figure 6.11: (bottom panel) Hubbard interaction Umm (in red circles) for the d-spd model through the 3d (fcc)
transition metal series. Umm is obtained by averaging over the diagonal interaction matrix elements U (cubic)

mmmm

calculated with cubic symmetry with our projection method. The fully screened interaction Wmm (in green squares)
for the d-spd model of the series is also given for comparison. (top panel) Bare (unscreened) interactions vmm for
the d-spd model.

Since the interaction is short-range,Wmm is independent of the orbital contraction [Aryasetiawan
et al. (2006)].

However, the orbital localization effects become notable again when the 3d shell is filled
as in copper (Cu). In this case, there are no metallic d-d transitions anymore. Consequently,
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Wmm and J screened
mm′ strongly increase in this compound. It would be interesting to perform a GW

calculation in Cu since the values for Wmm seem rather high (for a GW calculation from the
literature, see for example [Marini et al. (2001)]).
Conceptually, we could construct a Hubbard model for Cu, even if we already know that, since
the d shell is filled, the double-counting in LDA+DMFT would cancel out any shift induced by
the Hubbard interaction. For Cu, the Hubbard interactions would correspond to the fully screened
interactions since there are no d-d transitions as the d shell is filled. This explains that we do not
indicate values of Umm or Jmm for Cu since they have to equal Wmm and J screened

mm′ (Fig. 6.11,
Fig. 6.12 and Tab. 6.7), respectively.

Analogous trends but with different flavors of cRPA, were reported by [Miyake et al. (2009),
Şaşıoğlu et al. (2011)]. The problem was also addressed in cLDA. In standard cLDA (or “hard”-
cLDA), the results for 3d TM are about 2 eV larger than in cRPA, especially for the late TM
[Aryasetiawan et al. (2006)]. A monotonic behavior of Umm is reported within cLDA. The
difference with cRPA may come from an artificial cut-off of the hopping terms between the
impurity and the rest of the supercell when constraining the d electron number. The strong
hybridization between d and sp states should be responsible for it.

As a consequence, one may think that transitions from 3d to non-3d orbitals are not properly
taken into account in “hard”-cLDA. The fact that the cLDA results are closer to the cRPA ones,
but for the early TM, supports this hypothesis. Indeed, for early TM, the (3d to non-3d) transi-
tions are negligible because of the low filling of the d shell. It is not the case for the late TM
which also corresponds to larger discrepancies between cLDA and cRPA.

Within the recently improved cLDA method formulated in terms of MLWF (or “soft”-
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(eV) Fe (bcc) Co (fcc) Ni (fcc)
I 0.66(Umm + 6Jmm′)/5 0.75(Umm + 3Jmm′)/5 0.84(Umm + 2Jmm′)/5
this work 1.20 0.99 0.85
From [Şaşıoğlu et al. (2011)] 0.98 1.08 1.04

Table 6.8: Stoner parameters I with the renormalization calculated by [Stollhoff et al. (1990)] as functions of
Umm and Jmm′ for the late 3d TM. Umm and Jmm′ are determined within the projection method of cRPA. In the
case of Fe (bcc), we assume that Umm and Jmm′ can be approximated by the values obtained with the fcc structure.

cLDA), the values agree better with cRPA but the trend still qualitatively differs [Nakamura
et al. (2006)] : an analogous increase of Umm is obtained from scandium (Sc) to vanadium (V),
followed by a plateau-like behavior between chromium (Cr) and iron (Fe), but a strong increase
is obtained at the end of the series.

Hund’s exchange Jmm′

In contrast to Umm, a monotonic behavior is observed for Hund’s exchange (Fig. 6.12) : Jmm′

increases with the atomic number in an equivalent way than Jbare
mm′ . This is in agreement with the

statement that the exchange interactions do not depend on the screening as much as Umm and are
more sensitive to the orbital localization. Similar conclusions will be established for transition
metal oxides in Chapter 7.

Paramagnetic instability

According to the values of Umm (Fig. 6.11), one notes that, even if the effective Coulomb inter-
action is larger in the late TM than in the early TM, it remains smaller than the kinetic energy
approximated by the DFT-LDA bandwidth (Fig. 6.9). Qualitatively, with the Stoner criterion
Iρ(ǫF ) > 1 where I is the Stoner parameter, one can expect that in the late TM, the increase of
the interactions is in favor of a paramagnetic instability leading to an itinerant ferromagnetism.
Employing a formulation of I that was established by [Stollhoff et al. (1990)] with Hartree-Fock
calculations in order to take into account the renormalization due to the correlations (around
60%), one can test the Stoner criterion for Fe (bcc), Co (fcc) and Ni (fcc) with Umm and Jmm′

calculated by cRPA (Tab. 6.8). The values of I are in reasonable agreement with the ones ob-
tained by [Şaşıoğlu et al. (2011)].

6.3.3 Dynamical interactions

The energy-dependence of the Hubbard interaction Umm(ω) and Hund’s exchange Jmm′(ω)
within the d-spd model (W = [−10, 15] eV) is shown in Fig. 6.13. The real-part of Umm(ω) on
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panel) on the real-frequency axis for Ni (fcc) (left) and Fe (fcc) (right). Umm and Jmm′ tend to the unscreened
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mm′ . The interaction matrices were calculated within the projection method in
cRPA.

the real-frequency axis is obtained by averaging over the interaction matrix elements U (cubic)
mmmm(ω)

and similarly for the real-part of Jmm′(ω) but averaging over U (cubic)
mm′m′m,m 6=m′(ω).

The plasmon poles observed inUmm(ω) can not be fitted with the plasmon frequency (Eq. 6.1)
of an homogeneous electron gas. The plasmonic excitations are effective in an energy window
of the order of 30 eV. This seems a common feature for the iron-based materials (see also iron-
based pnictides, Fig. 6.6). The dynamical Hund’s coupling, on the other hand, does not exhibit
such plasmon poles.
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6.4 Conclusions

In order to benchmark our cRPA implementation, we evaluated the Coulomb interactions in
SrVO3 and in the pnictide compounds, LaOFeAs, FeSe, BaFe2As2 and BaRu2As2.

The localized bases employed for spanning the correlated subspace, are constructed by pro-
moting projected atomic orbitals within a given energy window to Wannier-like orbitals (see
Chapter 4). The degree of localization of such bases depends on the bands included in the energy
window.
Our results are in agreement with the ones reported in the literature for similar models, in which
the local states were defined as the head of the LMTO-ASA’s or within the maximally localized
Wannier function framework.

We presented a parametrization of the four-index interaction matrix that relies on the cal-
culation of an optimal set of Slater integrals {Fk} without constraining the ratio F4/F2 to the
atomic value (see Chapter 5 and Appendix B). The so constructed Slater parametrization is more
accurate than the one based on the spherical average of the four-index matrix interaction supple-
mented by the atomic ratio for F4/F2 (see Chapter 5, Fig. 5.1).

In the 3d transition metal series, we applied the projection method introduced in Chapter 5
consisting in projecting the total polarization onto the d correlated subspace in order to calculate
the d-restricted polarization P d.
The results are in reasonable agreement with the ones obtained with other first principles ap-
proaches for calculating P d [Miyake et al. (2009), Şaşıoğlu et al. (2011)] and with values com-
monly employed in LDA+DMFT [Lichtenstein et al. (2001)].

We finally showed the dynamical Hubbard interaction for SrVO3, for the considered pnic-
tides and for 3d transition metals (Ni, Fe) using the projection approach. The on-site interactions
display plasmonic excitations whose interpretation in terms of charge density is still an open
issue. The combination of such plasmonic structures with solvers like LDA+DMFT is currently
receiving high attention and applications are in development.
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Chapter 7

Transition Metal Oxides: Screening vs.

Localization Trends

The cRPA calculations for the cubic crystal structures of transition metal oxides SrMO3 (M =

V, Cr, Mn, Nb, Mo, Tc) and Sr2MO4 (M = Mo, Tc, Ru, Rh) employing the t2g-t2g and d-dp
models, are presented below. The trends for the Hubbard interactions and Hund’s exchanges are

discussed for both families. These results can be found in [Vaugier et al. (2012b)].

7.1 SrMO3 (M = V, Cr, Mn, Nb, Mo, Tc)

Figure 7.1: Schematic structure of a cubic perovskite structure (from [Pavarini et al. (2005)]). The metal element
(in red) is surrounded by an octahedron of oxygen ligands (in blue). Strontium atoms are in yellow. Due to the
electronegativity of the oxygen atoms, the metal has a 4+ oxidation state.

In the following, we consider the perovskite oxides of early 3d and 4d transition metals.
Cubic modified crystal structures are employed. A schematic picture of the cubic perovskite
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a (Å) Wdp Wt2g

SrVO3 3.842 [−7.5, 5.5] [−1.8, 1.8]
SrCrO3 3.820 [−7.5, 4.7] [−1.7, 1.0]
SrMnO3 3.805 [−7.5, 4.2] [−1.7, 1.0]
SrNbO3 3.997 [−3.0, 2.8]
SrMoO3 3.976 [−3.0, 2.0]
SrTcO3 3.950 [−2.6, 1.3]

Table 7.1: Lattice parameters used for cubic perovskites SrMO3 and energy windows W (in eV)
for the d-dp and the t2g-t2g models. d and t2g Wannier-like functions are constructed out of the
Kohn-Sham states included in W. Because of the entanglement of the eg states with Sr-like d
states, the d-dp model is not considered for 4d SrMO3.

structure is given in Fig. 7.1. The lattice parameters used are given in Tab. 7.1. The DFT-LDA
calculations are performed in the paramagnetic phase.

In such materials, the direct hopping between the metallic sites is rather weak. The elec-
tronic hopping between the metallic sites has to occur mainly via the hybridization with the
oxygen atoms that surround the metal. Denoting tpd such hopping amplitude and ∆pd the charge
transfer energy between the oxygen p and metallic d states, the effective d-d hopping integral

can be approximated to teff
dd ≈ t2

pd

∆pd
(in the limit of large charge transfer energies). This gives an

estimation of the expected bandwidth for the d states D ≈ teff
dd : the smaller the d-p hybridiza-

tion, the smaller the d bandwidth and the stronger the localization of the d states. Inversely,
when the charge transfer energy decreases, the bandwidth increases, as well as the kinetic energy
of the d electrons. Charge transfer energy, bandwidth and on-site Coulomb interaction Udd are
the three common key energy-scales that are invoked in the description of the electronic strug-
gling between localization and itineracy in transition metal oxides. This in particular leads to
the Zaanen-Sawatzky-Allen classification for oxides which distinguishes Mott insulators from
charge-transfer insulators and metals [Zaanen et al. (1985)].

7.1.1 Band structures

SrVO3

Cubic perovskite SrVO3 is an undistorted paramagnetic metal which has been well character-
ized by experiments like optics, thermodynamical measurements, transport or angle-resolved and
angle-integrated photoemission spectroscopies (for optical and x-ray absorption spectroscopies,
see e.g. [Mossanek et al. (2009)] and references therein). The bonding with the oxygen atoms
leads to the d1 nominal valence for V 4+. SrVO3 is often compared to CaVO3 which is also metal-
lic but exhibits a GdFeO3-like distortion [Yoshida et al. (2010), Sekiyama et al. (2004), Eguchi
et al. (2006)]. For a review, see [Imada et al. (1998)].
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Photoemission spectra by [Yoshida et al. (2010),Fujimori et al. (1992),Yoshida et al. (2005)]
show a lower Hubbard band with about 1.3 eV binding energy and a quasiparticle peak charac-
terized by the renormalization factor Z ≈ 0.6. An upper Hubbard band was discussed by inverse
photoemission at about 2.5− 3 eV [Morikawa et al. (1995)].

The DFT-LDA band structure of SrVO3 (Fig. 7.2 and also Chapter 4, Fig. 4.6 for details
on the notations) corresponds to a metallic state because of the partial filling of the bands. As
already indicated in Chapter 4, the t2g bands are filled with one electron and clearly emerge
around the Fermi level. They are weakly hybridized with the oxygen p’s since (dxy, dxz, dyz)
orbitals do not point toward the ligands, in contrast to the eg’s. (d3z2−r2 , dx2−y2) orbitals indeed
form bonding and anti-bonding states with the oxygen p’s (see also the partial density of states
Fig. 7.2).

However, the DFT-LDA picture does not quantitatively agree with experiments: the t2g band
is much broader than the experimental quasiparticle peak and DFT-LDA does not reproduce the
two Hubbard satellites that are seen in the photoemission spectra. LDA+U methods also fail and
the GW approximation only reduces the t2g bandwidth by about 30% [Imada and Miyake(2010)].

A major breakthrough in the description of SrVO3 has emerged with the LDA+DMFT com-
bination, which correctly reproduces the incoherent Hubbard peaks as well as the coherent quasi-
particle excitations. Such calculations were carried out within the LMTO-ASA framework as
well as within the (L)APW+lo framework, employing Hubbard interaction parameters calcu-
lated by cLDA [Sekiyama et al. (2004)] or cRPA [Aichhorn et al. (2009)]. A discussion on the
values of these parameters from these different methods is given in Chapter 6 (see Tab. 6.1).

One has to say that the static cRPA values are usually smaller compared to the ones needed in
LDA+DMFT to reproduce the experimental quasiparticle renormalization [Aichhorn et al. (2009),
Lechermann et al. (2006)]. Aichhorn and co-workers employed the Hubbard-Kanamori interac-
tions U = 4 eV, J = 0.65 eV within the t2g-t2g model and onsite intra-orbital interactions
Umm = 6 eV, Jm = 0.65 eV within the hybrid d-dp model (for a discussion on the model no-
tations, see Chapter 4, Fig. 4.6). With these values, both models equivalently describe the elec-
tronic features in agreement with photoemission experiments. This ensures in particular that the
t2g-t2g model is appropriate for SrVO3. Recently, extended DMFT calculations using the dynam-

ical Hubbard interaction U(ω) determined from cRPA (see Chapter 4, Fig. 4.9), demonstrated
that the dynamical screening makes the system more correlated [Casula et al. (2012a), Casula
et al. (2012b)].

As mentioned earlier in Chapter 4 with the introduction of the limitations of the cRPA
method, the accuracy of the Hubbard interactions is related to the one of the screening as de-
scribed within DFT-LDA. The polarizability of the electronic system is due to the formation of
electron-hole pairs in a wide range of energy. The contribution of the oxygen-p states in the
polarization of the t2g-t2g and d-dp models will be investigated in the following. A recent com-
parison with photoemission spectra indicates that the position of the oxygen-p states is actually
not so poorly approximated by DFT-LDA [A. Fujimori, (private communications)]. This gives
additional motivation for cRPA methods.
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Figure 7.2: DFT-LDA eigenstates (top) and partial density of states (bottom) of SrMO3 (M = V, Cr, Mn from
left to right) in the paramagnetic phase. The t2g states are highlighted in red, the eg’s in blue and the oxygen p’s in
turquoise.
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SrCrO3

SrCrO3 compounds have not been studied a lot because of the difficulties of their synthesis.
Early works on single crystals of cubic perovskite structure [Chamberland(1967)] show a metal-
lic behavior with a Pauli paramagnetic law. This is in disagreement with a recent study on poly-
crystals that reports transport, thermal conductivity and magnetic susceptibility exhibiting a non-
magnetic insulating state [Zhou et al. (2006)]. SrCrO3 crystals have been recently reinvestigated
within x-ray diffraction studies [Ortega-San-Martin et al. (2007)]. The common belief found in
the literature – supported by density functional calculations – is that a structural transition from
a non-magnetic orbitally-degenerate cubic to a distorted tetragonal- maybe antiferromagnetic-
structure with orbital ordering could appear below 70 K [Ortega-San-Martin et al. (2007), Lee
and Pickett(2009), Qian et al. (2011)].

LDA+U calculations, with U ranging from 0 eV to 8 eV and J = 1 eV, were carried out
for both the cubic and the tetragonal phases assuming an antiferromagnetic order [Lee and Pick-
ett(2009)]. According to these calculations, only the tetragonal phase exhibits an orbital order-
ing under the condition that U is chosen larger than 4 eV whereas both phases are still metallic.
Following [Qian et al. (2011)], a so large value of U would stabilize an antiferromagnetic con-
figuration in the tetragonal structure but is not the one observed experimentally.

SrMnO3

At room temperature, SrMnO3 is found either in a cubic, or in an hexagonal phase. A struc-
tural transition from the four-layers hexagonal to an orthorhombic phase is described below
350K [Daoud-Aladine et al. (2007)]. The cubic phase can be quenched and stabilized in a
metastable state down to lower temperatures [Takeda and Ohara(1974), Søndenå et al. (2006),
Chmaissem et al. (2001)]. Both hexagonal and cubic phases are deeply insulating with a band gap
that is larger for the hexagonal phase [Søndenå et al. (2006)]. The Néel temperature is reported
around 260K with a G-type antiferromagnetic order emerging below [Takeda and Ohara(1974)].

According to x-ray photoemission and absorption [Saitoh et al. (1995),Bocquet et al. (1996),
Kang et al. (2008)], the spectroscopic properties of SrMnO3 are rather involved. Indeed, the O-p
states are strongly entangled with the lower Hubbard band of t2g character, and the conduction
band has been proposed to be of eg character [Saitoh et al. (1995)]. These facts strongly question
the validity of a pure t2g model for the description of the low-energy spectra. We nevertheless
present both, a t2g and d-dp model, for the sake of comparison with work done in the literature
and assessing trends along the perovskite series.

Very recently, LDA+DMFT calculations reproducing the experimental magnetic moments,
were carried out employing Hubbard-Kanamori interactions U = 3.5 eV, U ′ = 2.3 eV and
J = 0.6 eV within a three-orbital model comprising the t2g states only, as the eg’s were shown
to be inactive for the magnetic moments [Mravlje et al. (2012)]. These parameters were chosen
in order to fit the low energy part of the photoemission spectrum from [Kang et al. (2008)]. The
metal-insulator transition from the paramagnetic metallic phase was observed for interactions
larger than Uc = 1.2 eV for J = 0.6 eV.
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SrNbO3

SrNbO3 is usually found as a non-stoechiometric perovskite oxide [Hannerz et al. (1999)]. With
doping in SrxNbO3 with x > 0.80, a cubic perovskite phase was observed with a poor paramag-
netic metallic behavior at temperatures below 300K [Isawa et al. (1993)].

SrMoO3

SrMoO3 is, in contrast, an excellent paramagnetic metal. It is even the 4d transition metal oxide
that displays the highest electrical conductivity [Nagai et al. (2005)]. With two electrons on the
t2g shell, it is an electronic analogue of SrRuO3 that has two holes on the t2g but also larger
correlation strength [de’ Medici et al. (2011)]. The Van Hove singularity found in the density of
states of SrRuO3 makes this system more correlated [Mravlje et al. (2011)].

SrTcO3

Because of the radioactivity of technetium, this compound has been less studied, and only struc-
tural and magnetic properties are known. A huge Néel temperature of 1023 K – accompanied
by a G-type antiferromagnetic ordering with the magnetic moment 2.1µB below TN – has been
recently discovered [Rodriguez et al. (2011)]. In particular, this high TN is larger than in the 3d
analogue SrMnO3. The large TN in SrTcO3 was first interpreted within density functional calcu-
lations [Rodriguez et al. (2011),Franchini et al. (2011),Middey et al. (2011)], e.g. in terms of the
larger covalency of the Tc-O bonding compared to Mn-O [Rodriguez et al. (2011)]. Recently,
another scenario has been put forward for interpreting the difference of magnitude in TN between
SrTcO3 and SrMnO3, based on the proximity of SrTcO3 to the Mott transition in the presence
of large Hund’s exchange at half-filling [Mravlje et al. (2012)]. These LDA+DMFT calculations
for the t2g subspace were successful in catching the experimental magnetic moments of SrTcO3

with Hubbard-Kanamori interactions, U = 2.3 eV, U ′ = 1.7 eV and J = 0.3 eV [Mravlje
et al. (2012)]. The metal-insulator critical value was estimated, Uc = 2.4 eV for J = 0.3 eV.

In the following, we first consider SrMO3 (M=V, Cr, Mn) compounds and the Hubbard pa-

rameters U and Hund’s exchanges J are deduced from the Slater integrals within the d-dpmodel.

The calculations of the bare interaction parameter v and fully screened one W , as well as the

corresponding exchange interaction parameters, are also shown. One can then calculate the

interactions between the t2g orbitals within the Hubbard-Kanamori relations (see Chapter 5).

We show that the values for the bare (unscreened) interactions increase with the atomic number

in agreement with atomic expectations. The rather constant trend in the series for the partially

screened interactions Umm, and the decrease for Wmm (fully screened interactions), are inter-

preted in terms of the increasing screening from the the Kohn-Sham bands close to the Fermi

level.
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(eV) F0 F2 F4 F4/F2 J F0
bare F2

bare F4
bare F4/F2|bare Jbare

V 3.2 6.6 5.3 0.795 0.85 19.5 9.0 5.8 0.652 1.06
Cr 2.9 6.7 5.2 0.781 0.85 20.1 9.1 5.7 0.628 1.06
Mn 2.8 7.0 5.4 0.774 0.89 21.2 9.6 6.0 0.625 1.11

Table 7.2: (d-dp model) Static (screened) and bare (unscreened) Slater integrals for the d-dp model of SrMO3

(M=V, Cr, Mn). It follows that Hubbard U = F0 and J = (F2 + F4)/14. In the unscreened case, v = F0
bare and

Jbare = (F2
bare + F4

bare)/14. The screened ratio F4/F2 is deviated from the empirical atomic value 0.625. The bare
ratio F4/F2|bare is close to 0.625.

7.1.2 Hubbard parameters within the d-dp Hamiltonian

Localized orbitals

As described earlier in Chapter 6, an extended energy window W is employed for construct-
ing d Wannier localized orbitals. Such energy window includes Kohn-Sham bands with both d
and oxygen p characters. Because of the orthonormalization within W, the downfolded d local
orbitals are atomic-like. The various energy windows W used for SrMO3 (M=V, Cr, Mn) are
indicated in Tab. 7.1.

Hubbard parameters

We have computed the Slater integrals corresponding to the (bare) unscreened and to the (par-
tially) screened interaction cases (Tab. 7.2). It results for the bare interaction parameter that
v = F0|bare and for the Hubbard interaction, U = F0. On the other hand, the bare exchange
interaction reads as Jbare = (F2

bare + F4
bare)/14 and Hund’s exchange J = (F2 + F4)/14. These

quantities are the fitting parameters employed for constructing the matrix interaction with the
symmetry of the crystal field. For example, one can extract the onsite interactions within the t2g
subspace (Eqs. 5.70, 5.71 and 5.72, see Chapter 5 and Appendix B) :

Ūmm(v̄mm) = F0
(bare) +

4

49
F2
(bare) +

4

49
F4
(bare) (7.1)

Ūmm′(v̄mm′) = F0
(bare) −

2

49
F2
(bare) −

4

441
F4
(bare) (7.2)

J̄m(J̄
bare
m ) =

3

49
F2
(bare) +

20

441
F4
(bare). (7.3)

The values for SrMO3 are summarized in Tab. 7.3 and plotted in Fig. 7.3. Analogously but with
the Slater integrals computed within RPA, the fully screened interaction W̄m and the correspond-
ing exchange interaction J̄ screened

m between the t2g orbitals, are deduced.

As introduced in Eqs. 7.1, 7.2 and 7.3, the intra-t2g interactions (Ūmm, Ūmm′ , J̄m) which
are deduced from the Slater integrals, correspond to the Coulomb interactions between the t2g
orbitals with cubic symmetry. Within the d-dp model, they allow for a visualization of the t2g
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(eV) Ūmm Ūmm′ J̄m v̄mm v̄mm′ J̄bare
m W̄mm W̄mm′ J̄ screened

m

V 4.1 2.8 0.65 20.7 19.1 0.81 1.4 0.4 0.50
Cr 3.9 2.6 0.65 21.4 19.7 0.82 1.0 0.1 0.43
Mn 3.8 2.4 0.68 22.5 20.8 0.86 0.9 0.1 0.37

Table 7.3: (d-dp model) Static (screened) (Ūmm, Ūmm′ , J̄m) and bare (unscreened) (v̄mm, v̄mm′ , J̄bare
m ) inter-

actions between t2g orbitals in the d-dp Hamiltonian for SrMO3 (M=(V, Cr, Mn)). Fully screened interactions
(W̄mm, W̄mm′ , J̄ screened

m ) are also given for comparison. Such parameters are deduced from the Slater integrals
(from Eq. 7.1 to Eq. 7.3 ).

subspace of the interaction matrix. The results are given in Tab. 7.3. These parameters reproduce
the same trend as their analogues, the Hubbard U and Hund’s exchange J .

As indicated for SrVO3 in Chapter 6, it is possible to evaluate the accuracy of the Slater
parametrization : the values from Tab. 7.3 can be compared to the ones from a direct calculation
of the interactions with cubic symmetry (following the method shown in Fig. 5.1). For further
details, see Chapter 6. The orbitally-resolved Hubbard interaction matrices are given at the end
of the section. For SrVO3, the direct calculation gives for the intra-t2g interaction Umm = 4.0
eV and Jm = 0.60 eV, hence in reasonable agreement with the values calculated from the Slater
integrals in Tab. 7.3. For the SrMO3 series below, we will hence refer either to Umm, Jm or

Ūmm, J̄m.

Through the 3d series, the interaction parameters v and Jbare clearly increase with the atomic
number in agreement with atomic expectations - and equivalently, v̄mm and J̄bare

m (Fig. 7.3). This
increase is related to the increasing localization of the localized d orbitals within the d-dp low-
energy Hamiltonian from the left to the right of the periodic classification. A similar trend is
reproduced for the hydrogenoid systems within the Slater rules. One can compute the average
radial distribution (in bohr units) 〈r〉4+ = [3n∗2 − l(l + 1)]/2Z∗ for 4+ transition metal atomic
d-wavefunctions 1, where n∗, Z∗ are the effective principal quantum number and the effective
nuclear charge respectively, which are deduced from the Slater rules [Cowan(1981)]. The results
for 3d (and also 4d and 5d for comparison) are given in Tab. 7.4. Since the atomic d radial
distribution decreases from V4+ to Mn4+, the d atomic-like wavefunctions are more and more
localized around the nuclei. This agrees with the trend displayed by the bare interaction v :
the less extended the orbitals, the higher the Coulomb repulsion. This also confirms that the so
constructed localized basis within the d-dp model mimics an atomic-like basis.

One has to comment now about the trends for the Hubbard and fully screened interactions
from SrVO3 to SrMnO3 (Fig. 7.3). Umm and Wmm differentiate from the bare interaction vmm

because of the screening that arises from the electronic polarizability and lowers the Coulomb
repulsion. Wmm decreases with the atomic number as a consequence of the screening which
increases with the atomic number. The evaluation of the ratio Wmm/vmm quantifies the increase
of the screening from V to Mn compounds : the smaller this ratio and the stronger the screening.

1In the perovskites SrMO3 and Sr2MO4, the transition metal M has 4+ oxidation state.
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(bohr) V Cr Mn

〈r〉4+3d 2.10 1.86 1.66
Nb Mo Tc Ru Rh

〈r〉4+4d 3.50 3.10 2.78 2.52 2.30
Ir

〈r〉4+5d 2.76

Table 7.4: Average radial distribution (in bohr units) for 3d orbitals with 4+ oxidation state, calculated with the
Slater rules. Analogous quantities for 4d and 5d (iridium) orbitals are given for comparison. One observes the
contraction of the d atomic wavefunction since 〈r〉4+d decreases from the left to the right and from the bottom to the
top of the periodic classification. This induces an increased electronic localization on the d atomic orbitals from the
left to the right and from the bottom to the top.

One gets 7.1/100 in SrVO3, 4.6/100 in SrCrO3 and 4/100 in SrMnO3.

Screening has therefore an impact into the effective Coulomb interaction but in the opposite

direction than the orbital localization. The latter makes the repulsion stronger whereas the former
makes it lower. The clue for understanding the trends in Fig. 7.3 hence relies on the interpretation
of the screening evolution from SrVO3 to SrMnO3.

At the RPA level, the electronic screening is induced by the creation of single particle-hole
excitations and their strength varies with the inverse of the energy difference between occupied
and empty states. In the cRPA method, the analysis of the DFT-LDA band structure allows for a
characterization of the screening.

The paramagnetic DFT-LDA band structures and the density of states for the perovskite
structures SrMO3 are shown in Fig. 7.2. The charge transfer energy between the oxygen p and
the d states decreases from SrVO3 to SrMnO3: the p states go up toward the t2g’s. Furthermore,
the eg’s come closer to the t2g’s. As a consequence, one expects stronger d-d and p-d polarization
effects in SrMnO3 than in SrVO3.

The d-d and p-d screening channels are pieces of the multiple screening channels that lead
to the reduction of the Coulomb repulsion from the bare interaction (vmm) to the fully screened
one (Wmm). For example, in SrVO3, vmm = 20.7 eV and Wmm = 1.4 eV. As already pointed out
by [Aryasetiawan et al. (2006)], the screening channels effects are not additive, but their contri-
bution to the total polarizability can be estimated by evaluating partially screened interactions.
The Hubbard parameter U = F0 as well as the intra-t2g repulsion Umm are such examples of
partially screened interactions.

In the calculation of Umm, transitions from and to the d states are excluded from the total
polarization by construction of cRPA. The values of Umm are thus bigger than Wmm since the
screening was partly constrained. The evaluation of the quantity Umm/vmm and the compar-
ison with Wmm/vmm, quantify the weight of the d-d transitions in the total polarization. For
example in SrVO3, Umm/vmm equals 19.8/100 whereas Wmm/vmm equals 6.7/100. In SrCrO3,
Umm/vmm = 18.2/100 and Wmm/vmm = 4.6/100, while in SrMnO3, Umm/vmm = 16.9/100
and Wmm/vmm = 4.0/100. According to these values, we conclude that the screening without
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Figure 7.3: Middle panel: On-site Hubbard interaction Ūmm (left) and exchange interaction J̄mm (right) between
t2g orbitals within the d-dp (black curve) low-energy Hamiltonians for 3d SrMO3, compared to the on-site U and J
within t2g-t2g (red curve). In dashed line with open circles, the Hubbard parameter U = F0 and Hund’s exchange
J = (F2 + F4)/14 are shown. Top panel: Same but for the bare interactions between t2g orbitals. Bottom panel:
Same but for the fully screened interactions between t2g orbitals.

the d-d screening channels, increases slower than the total screening 2.

2We remind the reader that the lower Umm/vmm, the stronger the screening.
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The interactionsUmm thus correspond to an intermediate case between vmm andWmm, where
the partial screening counterbalances the effects due to the orbital localization. This makes the
trend for Umm rather “flat” in comparison to Wmm and vmm.

The values of Umm, on the other hand, indicate how strong the contribution of the dd screen-
ing channels is to the total polarizability. These channels are however only partly responsible for
the screening that reduces vmm. The role of the p-d screening channels can be also evaluated.
These channels seem relevant according to the position of the Kohn-Sham p states. By com-
puting the partially screened interaction after the elimination of all transitions within the energy
window W (mainly p-d and d-d transitions), one gets 11 eV in SrVO3, 10.8 eV for SrCrO3 and
10.7 eV for SrMnO3. It is about the half of vmm. The lower-energy screening channels (dd, pd,
...) thus contribute to about the half of the total screening. As empirically expected, the higher-
energies transitions notably participate to the total polarizability leading to the strong reduction
of the bare Coulomb repulsion.

Hund’s exchange J is deduced from the Slater integrals F2 and F4 (Tab. 7.2). J goes from
about 0.8 eV to Jbare ≈ 1.0 eV in SrMO3. The exchange interactions between t2g orbitals, Jm, are
smaller than J (about 0.6− 0.7 eV) and agree with the values usually employed in the Hubbard
models for such oxides.

We also evaluate the fully screened exchange interaction J screened
m when taking into account

the total polarization (Tab. 7.3).J screened
m slightly decreases from V to Mn compounds whereas it

is the opposite for unscreened exchanges Jbare
m . This can be related to the screening. Cutting off

only transitions from and to the d bands leads to Jm which is still increasing with the atomic
number: on the difference to Umm, Jm hence reproduces an atomic-like trend. The dependence
on the screening is much weaker for exchange interactions [Antonides et al. (1977), van der
Marel(1985)]. This justifies that the partially screened exchange interactions Jm vary in a similar
way than Jbare

m .

Orbitally-resolved Hubbard interaction matrices

We give below the reduced interaction matrices (Eqs. 5.78, 5.79 and 5.80) within the d-dpHamil-
tonian (see Tab. 7.1 for the choice of the energy windows used to construct the d Wannier or-
bitals) and calculated with cubic symmetry. In the following, the ordering of the orbitals in these
matrices is dz2 , dx2−y2 , dxy, dxz, dyz. The values are given in eV.

SrVO3

Uσσ̄
mm′ =













4.43 2.88 2.73 3.19 3.19
2.88 4.43 3.35 2.88 2.88
2.73 3.35 3.97 2.75 2.75
3.19 2.88 2.75 3.97 2.75
3.19 2.88 2.75 2.75 3.97













, Uσσ
mm′ =













0 2.10 2.01 2.70 2.70
2.10 0 2.94 2.24 2.24
2.01 2.94 0 2.15 2.15
2.70 2.24 2.15 0 2.15
2.70 2.24 2.15 2.15 0













.
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SrCrO3

Uσσ̄
mm′ =













3.84 2.39 2.40 2.87 2.87
2.39 3.84 3.02 2.56 2.56
2.40 3.02 3.89 2.59 2.59
2.87 2.56 2.59 3.89 2.59
2.87 2.56 2.59 2.59 3.89













, Uσσ
mm′ =













0 1.66 1.67 2.38 2.38
1.66 0 2.61 1.91 1.91
1.67 2.61 0 1.94 1.94
2.38 1.91 1.94 0 1.94
2.38 1.91 1.94 1.94 0













.

SrMnO3

Uσσ̄
mm′ =













3.62 2.17 2.25 2.74 2.74
2.17 3.62 2.90 2.41 2.41
2.25 2.90 3.90 2.52 2.51
2.74 2.41 2.52 3.91 2.52
2.74 2.41 2.51 2.52 3.90













, Uσσ
mm′ =













0 1.44 1.49 2.22 2.22
1.44 0 2.47 1.73 1.73
1.49 2.47 0 1.81 1.81
2.22 1.73 1.81 0 1.81
2.22 1.73 1.81 1.81 0













.

We now switch to the t2g-t2g model which was already introduced for SrVO3 in Chapter 6.

One advantage of such reduced model is the smaller number of correlated orbitals that have to

be solved within a many-body approach. If the model is appropriate, then the physical results

at the end (e.g. spectral densities, transport properties) do not depend on the model considered,

whereas interaction parameters do.

Within the t2g-t2g model, it is not possible to compute the Slater integrals by Eq. 5.62. We calcu-

late the Hubbard-Kanamori fitting parameters U ,J directly from the reduced interaction matri-

ces with cubic symmetry U (cubic)

mm′mm′ and U (cubic)

mm′m′m,m 6=m′ , respectively (from Eq. 5.75 to Eq. 5.77).

Since the so constructed basis is far away from an atomic-like basis and because of the screen-

ing, the results are deviated from the atomic expectations: U significantly decreases with the

atomic number. Values for J are much smaller than the ones within the d-dp model, showing

that Hund’s exchange depends on the orbital extension.

7.1.3 Hubbard parameters within the t2g-t2g Hamiltonian

Localized orbitals

Within the t2g-t2g Hamiltonian, the t2g-projected local orbitals within the energy window Wt2g

(Tab. 7.1) lead to “extended” t2g Wannier orbitals. The charge transfer energy and the hybridiza-
tion between the t2g and the oxygen ligand p bands, are responsible for the finite weight of the
t2g Wannier functions on the oxygen atomic sites. The tail and hence the extension of the so con-
structed local orbitals, increases when the pd charge transfer energy becomes smaller, as happens
for the 3d SrMO3 series.

Looking at the DFT-LDA band structure and the partial density of states (Fig. 7.2), the charge
transfer energy p-t2g decreases from SrVO3 to SrMnO3 as already pointed out in the previous
section. This is not an artifact of DFT-LDA: the evolution of the p-d charge transfer energy in
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(eV) V Cr Mn Nb Mo Tc
U 3.2 2.7 1.8 3.0 3.0 2.9
J 0.44 0.42 0.39 0.29 0.31 0.31
V 16.1 16.4 16.2 10.7 11.6 11.8
Jbare 0.55 0.55 0.53 0.38 0.40 0.39
W 0.9 0.4 0.3 0.9 0.5 0.4
Jscreened 0.30 0.17 0.12 0.24 0.19 0.16
U/V × 100 19.8 16.4 11.1 28 25.8 24.6
W/V × 100 5.6 2.4 1.8 8.4 4.3 3.4

Table 7.5: Hubbard-Kanamori U , bare V and fully screened W interactions and corresponding exchange interac-
tions, J , Jbare and Jscreened between t2g orbitals within the t2g-t2g downfolded Hamiltonian for the early 3d series
SrMO3 (M= V, Cr, Mn) and 4d (M= Nb, Mo, Tc). The inter-orbital interactions U ′ coincide with U − 2J .

perovskite oxides was known for a long time [Torrance et al. (1991), Imada et al. (1998)] and
was evidenced in optics experiments [Lee et al. (2003)].

The t2g local orbitals are hence more extended in SrMnO3 than in SrVO3, in contrast to the
atomic orbitals. It implies that i) the unscreened interaction V within the t2g-t2g model does not
increase with the atomic number as vmm in the previous d-dp model (Fig. 7.3 and Tab. 7.2) and
ii) the values of V are smaller than the values of vmm within d-dp.

Hubbard parameters

The Hubbard-Kanamori values employed in the t2g-restricted Hubbard Hamiltonian (Eq. 5.86)
are given in Tab. 7.5 and shown in Fig. 7.3: compared to the d-dp model 3, the decrease of U is
much more pronounced. U significantly lessens from SrVO3 to SrMnO3.

This is induced by the screening which gets larger with the atomic number. In particular,
the p-t2g and the t2g-eg screening channels contribute more and more to the screening from
SrVO3 to SrMnO3, because the p and eg Kohn-Sham bands come closer and closer to the Fermi
level. Quantitatively, one compares the ratios U/V: it is indeed about twice larger in SrVO3

than in SrMnO3. Considering all screening channels (hence looking at W) does not change our
interpretation : the screening through the 3d series induces a strong reduction of W .

We insist on the fact that the lower-energy screening channels such as d-p or t2g-t2g, are not
enough to fully reduce the bare interaction V to W . In SrVO3, for example, removing the t2g-t2g
transitions makes W/V varying from 5.5/100 to U/V = 20.3/100. The screening channels at
higher energies – or polarizabilities at higher energies – also contribute to the total polarizability.

The exchange interactions within the t2g-t2g Hamiltonian for SrMO3 are given in Tab. 7.5.
In contrast to d-dp, J and Jbare slightly decrease with the number of d electrons. On the other

3We remind the reader that in the d-dp model, all d-d transitions are removed.



144 Transition Metal Oxides: Screening vs. Localization Trends

hand, there is a significant reduction in Jscreened through the series, which can be attributed to the
screening induced by the t2g-t2g transitions.

The exchange interactions thus depend on the extension of the localized orbitals. This de-
pendence is also evidenced by the smaller values obtained within t2g-t2g than within the d-dp
Hamiltonian.

7.1.4 Comparison between 3d and 4d perovskites

Band structures

The DFT-LDA band structures for 4d perovskites are shown in Fig. 7.4. The evolution of the
Kohn-Sham bands from Nb to Tc is globally equivalent to the one for the isoelectronic and
isostructural 3d oxides, but the trends are less pronounced in 4d: the p-d charge transfer energy
decreases slower in the 4d series as well as the crystal field effect that splits t2g and eg. One
therefore expects smaller screening effects in SrTcO3 than in SrMnO3.

Due to the entanglement of the eg’s with the strontium states, it is not appropriate to construct
a d-dpmodel with a cRPA scheme that is based on band indices or energy windows for constrain-
ing the polarization. Only t2g-t2g Hamiltonians are thus considered below for 4d SrMO3.

Localized orbitals

The atomic-like character of the localized orbitals with t2g character is evidenced by the atomic-
like behavior of the bare interaction V in the 4d series (Fig. 7.3) : V becomes larger with the
atomic number, as in 3d oxides but within the d-dp model. The local basis constructed with t2g
degrees of freedom is atomic-like for 4d TMO in contrast to the one for 3d. The difference in 4d
comes from the larger charge transfer energy between t2g and the oxygen ligand p states, leading
to smaller “leakages” on the oxygen sites.

However, the extension of the t2g orbitals in 4d TMO is larger than in 3d since the bare
interactions V are significantly smaller (Tab. 7.5). This makes sense in an atomic-like basis
where the 4d atomic wavefunction extension is much larger than the one for 3d (Tab. 7.4).

In the following, the Hubbard-Kanamori interaction U and Hund’s exchange J are calcu-

lated for a further use in the t2g-restricted Hubbard Hamiltonian (Eq. 5.86). We expect similar

trends for these interactions in 4d within t2g-t2g models than in 3d within d-dp models.

Hubbard parameters

In a similar way than in 3d, one has to study the screening in order to interpret the values of
U (Tab. 7.5). Since the pd charge transfer energy as well as the t2g-eg splitting energy decrease
slower, the p-d and the t2g-eg screening channels are not as effective as in the 3d analogues.
This is quantitatively highlighted by the comparison of the ratios U/V (Tab. 7.5). First, these
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Figure 7.4: DFT-LDA paramagnetic eigenstates (top) and partial density of states (middle) of SrMO3 (M = Nb,
Mo, Tc from left to right). 4d t2g states are highlighted in purple, 4d eg in blue and oxygen 2p in turquoise. For
comparison, the density of states of the 3d isoelectronic and isostructural analogues (bottom) are also shown. It is
clear that the LDA p-d charge transfer energy is bigger in 4d than in 3d perovskites.
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quantities are always bigger in 4d than in 3d and second, the decrease of U/V through the 4d
series is much slower.

Consequently, U in 4d is almost constant with the d electron number (as Umm within the d-dp
model for 3d TMO), whereas U in 3d significantly lessens until becoming smaller in SrMnO3

than in SrTcO3 (Fig. 7.5). This is an effect of the screening which has stronger impact in the 3d
extended local basis than in the 4d atomic-like. The values for the ratios W/V (Tab. 7.5) also
agree with a smaller electronic polarizability in 4d than in 3d TMO since they are larger in 4d
than in 3d.

Figure 7.5: Hubbard-Kanamori interactions U between t2g orbitals within the t2g-t2g model : 3d (in red) and
4d (in purple) perovskites SrMO3. The schematic DFT-LDA density of states are shown in order to highlight the
evolution of the pd charge transfer energy and the t2g-eg splitting energy. Comparing SrMnO3 to SrTcO3, the
screening becomes strong enough in SrMnO3 such that U is smaller than in SrTcO3.

The exchange interactions in 4d TMO behave in a similar way than in 3d (Tab. 7.5) but Jbare,
J and Jscreened decrease slower with the d electron number.

The atomic-like character of the localized basis and the weaker screening effects in 4d
SrMO3 explain the slower decrease of the exchange interactions.
Furthermore, the exchange interactions in 4d TMO are smaller by about 0.1 eV than in 3d. This
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is attributed to the higher extension of the 4d orbitals, which was also responsible for the smaller
bare interactions V .

7.1.5 SrMnO3

Hubbard U = 1.8 eV within the t2g-t2g model seems surprisingly small for cubic SrMnO3 in
particular compared to SrVO3 (U = 3.2 eV) and SrTcO3 (U = 2.9 eV). The proximity of the
d and p states around the Fermi level in SrMnO3 makes difficult the cRPA scheme employing
Kohn-Sham k-independent indices for calculating the constrained polarization P r. This causes
a small uncertainty for determining U . Indeed, employing the same energy window [−1.7, 0.9]
eV than W (Tab. 7.1) for cutting off the t2g-t2g transitions leads to U = 2.3 eV and J = 0.41 eV.
Hund’s exchange, on the other hand, does not really change.

The small magnitude of U was interpreted in the previous section in terms of the screening
(especially the p-d and t2g-eg screening channels) so approximated by the DFT-LDA Kohn-Sham
states. As already discussed, the calculation within the d-dp model leads to larger results :
U = F0 = 2.8 eV and Ūmm = 3.8 eV between the t2g orbitals, but these values are still smaller
than the ones expected in the literature. Indeed, SrMnO3 was described within configuration-
interaction approaches employing F0 ≈ 8 eV and a charge transfer energy around 2 eV in order
to fit the 2p core-level XPS spectra [Bocquet et al. (1992), Saitoh et al. (1995)].

As shown recently in SrVO3 by considering the dynamical screening in the Hubbard model
[Casula et al. (2012a),Werner et al. (2012),Casula et al. (2012b)], one knows that the dynamical
structure of the Hubbard interactions increases the strength of the correlations and hence leads to
a more “correlated” system. The aspect of the Hubbard interaction in SrMnO3 within the d-dp
Hamiltonian (Fig. 7.6) is rather close to the one of SrVO3. Consequently, one expects similar
renormalization effects in SrMnO3 than in SrVO3 from an extended DMFT calculation with
U(ω).

For SrMnO3, one observes a strong plasmon pole around 13 eV and hence at a smaller energy
than in SrVO3 (around 15 eV). This does not fit with the plasmon frequency formula established
for the homogeneous electron gas (Eq. 6.1), since the number of d electrons is larger in SrMnO3

and the volume is smaller (see Tab. 7.1).

On the other hand, it would be interesting to investigate the effects in the screening of the
rearrangement of the electronic structure due to the correlations. An overestimated screening
in DFT-LDA would result into underestimated Coulomb interactions. This could be corrected
for by a self-consistent “LDA+cRPA+DMFT” scheme employing an update of the polarization
as described in Chapter 4 (see Fig. 4.7). A preliminary attempt to deal with a more realistic
screening can be done by evaluating the constrained polarization P r within Green’s functions
shifted by (+) − ∆ for transitions involving (un)occupied Mn-t2g states. This mimicks the
contribution of the t2g states in the constrained polarization that would be calculated within the
Hubbard-I approximation.
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Figure 7.6: Real-part of the dynamical Hubbard interaction Umm(ω) for the d-dp Hamiltonian in SrMnO3 (black).
The bare interaction is shown in red dashed line. The real-part of Umm(ω) within the d-dp Hamiltonian of SrVO3

(green) and the corresponding bare interaction (green dashed line) are shown for comparison. The main plasmon
pole in SrMnO3 is obtained around 13 eV. This is smaller than in SrVO3 whereas the number of d electrons in
SrMnO3 is larger and the volume of the unit cell is smaller.

With ∆ = 2 eV, we obtain U = 3.4 eV and J = 0.45 eV within the t2g-t2g Hamilto-
nian. 4 The values are hence notably increased compared to the ones from standard cRPA. This
promising approach requires further investigations.

However, U as small as it is calculated by standard cRPA within the t2g-t2g Hamiltonian
does not yield wrong physical picture because of the value of Hund’s exchange J = 0.39 eV.
The ratio J /U = 0.22 is rather high. In SrMnO3, the t2g manifold is half-filled. It is known that
in this case, Hund’s coupling promotes a Mott insulating state and tends to increase the Mott gap
(see e.g. [de’ Medici et al. (2011)]).

In the following, we show the LDA+DMFT calculation for the t2g-t2g model with the cRPA

interaction parameters U = 1.8 eV and J = 0.4 eV, in order to demonstrate that the correct

physical picture is obtained. Indeed, with these values, SrMnO3 results into a Mott insulating

state with a gap of about 2.2 eV. In PES experiments, the lower Hubbard band is embedded with

oxygen p states around 2 eV [Kang et al. (2008)].

We then consider the hexagonal crystal structure of SrMnO3 as described by [Daoud-Aladine

et al. (2007)]. It is satisfying that the cRPA results do not depend much on the crystal structure.

4We mention that the eg states have been shifted by 0.5 eV above the Fermi level in this scheme. The metallicity
arising from the eg’s (see Fig. 7.2) is an artefact of LDA.
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Figure 7.7: (top) LDA density of states (in black) and LDA+DMFT spectral density (in red) for the t2g orbitals
in cubic SrMnO3. One employed U = 1.8 eV and J = 0.4 eV as obtained by cRPA within the t2g-t2g Hamil-
tonian. We also calculate (in green) the LDA+DMFT spectral density using same J but U = 5 eV in order to
approximatively fit the lower Hubbard band from PES [Kang et al. (2008)].

LDA+DMFT calculation for the t2g-t2g Hamiltonian

As discussed earlier, a set of local orbitals with t2g character is constructed out of Kohn-Sham
bands within the energy window W = [−1.7, 0.9] eV. The basis is employed for expanding the
interaction Hubbard Hamiltonian (Eq. 5.86). The Hubbard-Kanamori parameters are calculated
within cRPA : U = 1.8 eV, J = 0.4 eV and U ′ = U − 2J = 1 eV. The reduced interaction
matrices with cubic symmetry read as (U − 3J = 0.6 eV) :

Uσσ
mm′ =





0 0.6 0.6
0.6 0 0.6
0.6 0.6 0



Uσσ̄
mm′ =





1.8 1.0 1.0
1.0 1.8 1.0
1.0 1.0 1.8



 .

The non-density-density terms are neglected in the Hubbard Hamiltonian. Only density-
density Hubbard Hamiltonian is then solved by DMFT. The quantum impurity solver chosen is
the CTQMC algorithm as implemented in [Aichhorn et al. (2009)] (see Chapter 3). We employ
β = 40 eV−1 in the “one-shot” version of LDA+DMFT (Fig. 7.7).

Within the t2g-restricted Hubbard Hamiltonian from cRPA, the Mott insulating state is caught
by LDA+DMFT. The gap obtained yields around 2.2 eV. The lower Hubbard band is located
around −1 eV. This is smaller than in PES experiments [Kang et al. (2008)], which report the
lower Hubbard band at about −2 eV. Larger values of U for the same value of J make the lower
Hubbard band going down to lower energies (Fig. 7.7).
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The influences of structural distortions
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Figure 7.8: DFT-LDA band structure of the four-layers hexagonal unit cell of SrMnO3 in the paramagnetic phase.
Lattice parameters a = 5.461A◦, c = 9.093A◦ are taken from [Daoud-Aladine et al. (2007)].

At room temperature, SrMnO3 is more often found in the four-layers hexagonal structure
(P63/mmc) with a = 5.461 Å, c = 9.093 Å [Daoud-Aladine et al. (2007)]. The DFT-LDA
band structure is shown in Fig. 7.8 : similarly than in the cubic structure, DFT-LDA leads to a
metallic phase whereas SrMnO3 is an insulator.

The four-times larger unit cell leads to a backfolding of bands in the first Brillouin zone. A
set of t2g-like bands (Fig. 7.8) can be identified with the twelve bands around the Fermi level and
a set of eg-like bands with the eight ones above. A d-dp model is constructed rather than a t2g
one. This allows for a direct comparison of the Slater integrals (Eq. 5.62) calculated within the
d-dp model built for the cubic crystal structure (Tab. 7.6).

U as well as v are slightly bigger in the hexagonal phase than in the cubic one. This is
an effect of the Wannier orbital localization rather than a screening effect since also the bare
interaction v is enhanced. Hund’s exchange J does not change much between the two crystal
structures.
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(eV) F0 F2 F4 F4/F2 J F0
bare F2

bare F4
bare F4/F2|bare Jbare

cubic 2.8 7.0 5.4 0.774 0.9 21.2 9.6 6.0 0.625 1.1
hexagonal 3.1 7.2 5.6 0.777 0.9 21.9 9.9 6.2 0.621 1.1

Table 7.6: Screened and bare Slater integrals for the d-dp model in cubic and hexagonal SrMnO3. Values of F0

are slightly larger in the hexagonal crystal structure whereas Hund’s couplings J = (F2 + F4)/14 are identical.

7.2 Sr2MO4 (M = Mo, Tc, Ru, Rh)

7.2.1 Band structures

The layered perovskite oxides Sr2MO4, where M4+ is a 3d transition metal, have been exten-
sively studied because of their fascinating properties, e.g. cuprates exhibit high-Tc superconduc-
tivity, manganites and nickelates display spin, charge and orbital stripes (for a review, see [Imada
et al. (1998)]). Many of these properties are believed to arise from the quasi-two-dimensionality
of the electronic states close to the Fermi level and induced by the presence of inter-layer planes.
These planes behave as charge reservoirs (Fig. 7.9) and their number, until a certain limit, even
seems to induce a higher critical temperature for superconductivity in cuprates.

The series of 4d transition metal layered perovskite oxides, on the other hand, have not re-
ceived as much attention as 3d, although they are also intriguing materials. For example, they can
display unconventional superconductivity as it was discovered in Sr2RuO4 (Tc ≤ 2K) [Macken-
zie and Maeno(2003)]. The lattice parameters used in the electronic structure calculations for the
paramagnetic phase are given in Table 7.7.

Sr2MoO4

This compound exhibits a metallic behavior over a wide range of temperature between 80 mK
and 300 K, with a resistivity increasing between 2 and 10 mΩ.cm [Ikeda et al. (2000)]. It is
usually investigated under the possibility that it could exhibit analogous electronic properties
than Sr2RuO4, although a superconducting state has not been reported down to 25 mK.

Sr2TcO4

Due to the radioactivity of technetium elements, only structural properties are known for Sr2TcO4.
An undistorted layered perovskite structure is considered below.

Sr2RuO4

The resistivity of this compound obeys a T2 law below 30 K, evidencing a Fermi liquid be-
havior. A strong anisotropy of the transport properties – due to its layered structure – was re-
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Figure 7.9: Schematic crystal structure of Sr2RuO4 in analogy with the cuprate compound La2−xBaxCuO4

(from [Mackenzie and Maeno(2003)]). The ruthenium atoms are surrounded by octahedra RuO6 of oxygen atoms
as in SrMO3 but planes of strontium atoms are inserted between the planes of octahedra.

ported [Hussey et al. (1998)]. A large mass enhancement and a low coherence scale have been
determined experimentally. Sr2RuO4 also exhibits an unconventional superconductivity below 2
K [Mackenzie and Maeno(2003)].
The three-sheet Fermi surface determined experimentally is reasonably well described by DFT-
LDA calculations, but the enhancement and the anisotropy in the mass are missed. The largest
mass enhancement surprisingly appears for the widest dxy band as determined by quantum os-
cillations experiments [Mackenzie and Maeno(2003)]. Several LDA+DMFT calculations have
been carried out to reproduce the low-energy properties of the photoemission spectra [Mravlje
et al. (2011), Liebsch and Lichtenstein(2000), Anisimov et al. (2002), Pchelkina et al. (2007)].
In [Mravlje et al. (2011)], the authors employed a t2g-t2g-like model : they constructed (dxy, dxz,
dyz) Wannier functions out of Kohn-Sham bands with the energy window W = [−3, 1] eV and
they applied cRPA within MLWF by removing the t2g-t2g transitions from the total polarization.
They got orbitally-resolved Hubbard interaction matrix elements, Udxy = 2.5 eV, Udxz/dyz = 2.2
eV, and used as Hubbard-Kanamori parameters, U = 2.3 eV and J = 0.4 eV in the t2g-like
Hubbard Hamiltonian (Eq. 5.86).

Sr2RhO4

The symmetry is lowered from the K2NiF4 class by 11◦ rotation around the c-axis of the RhO6

octahedra [Huang et al. (1994)]. It is a paramagnetic metal down to 36 mK [Moon et al. (2006)].
Spin-orbit coupling (SOC) was found to be relevant in addition to electronic correlations [Tamai
et al. (2008),Haverkort et al. (2008),Liu et al. (2008)]. LDA+DMFT calculations with SOC have
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a (Å) c (Å) Wdp Wt2g

Sr2MoO4 3.917 12.859 [−10, 8.5] [−2.0, 2.0]
Sr2TcO4 3.902 12.720 [−10, 7.5] [−2.6, 1.3]
Sr2RuO4 3.863 12.724 [−10, 6.9] [−3.0, 1.0]
Sr2RhO4 3.854 12.880 [−10, 6.0] [−3.3, 0.5]

Table 7.7: Lattice parameters used for the layered Sr2MO4 perovskites and energy windows W (in eV) for the
d-dp and t2g-t2g models.

been recently performed for the distorted structure and compared to the isoelectronic but Mott
insulating Sr2IrO4 [Martins et al. (2011)]. In particular, it was shown how the interplay of SOC,
correlations and structural distortions leads to a suppress of the effective orbital degeneracy,
leaving only two orbitals at the Fermi level. In the following, for computational reasons, the
undistorted crystal structure of Sr2RhO4 is considered. The distorted band structure will be
discussed in Chapter 8 in comparison with Sr2IrO4.

The DFT-LDA band structures for the paramagnetic phases are shown in Fig. 7.10. Bands
with (dxy,dxz,dyz) orbital character emerge around the Fermi level, whereas the (d3z2−r2 ,dx2−y2)
orbital character is found above and the oxygen p’s lie below. The band with dxy character leads
to a quasi-two dimensional Fermi surface whereas the degenerate bands with (dxz,dyz) character
give rise to a quasi-one dimensional Fermi surface. In Sr2MoO4 and Sr2TcO4, the eg states are
entangled with the strontium-like d’s but come closer to the t2g’s when the 4d electron number
increases. On the other hand, the pd charge transfer energy decreases with this number, since the
p’s go up toward the Fermi level. This decrease makes larger the screening from the p channels,
in an analogous way to in the early transition metal oxide series.

7.2.2 Hubbard parameters within the d-dp Hamiltonian

Orbital localization

The localized orbitals with d character within the d-dp model are constructed out of Kohn-Sham
bands within an extended energy window W (Tab. 7.7) that includes the d’s as well as the oxygen
p eigenstates.

The Slater integrals are given in Tab. 7.8. The value of the ratio F4/F2|bare is close to the one
calculated for 4d atoms [Haverkort(2005)]. A significant deviation is obtained for the screened
ratio of the Slater integrals, which is even stronger than the one in the 3d SrMO3 series. This
seems natural, given the anisotropy of the structure and the screening which increases with the
orbital extension.

A cubic approximation can be used for deducing a set of interactions between (dxy,dxz,dyz)
local orbitals from the Slater integrals (Eqs. 5.70, 5.71 and 5.72). The values are shown in
Tab. 7.9 and can be compared to the matrix elements calculated directly (Tab. 7.10). The latter are
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Figure 7.10: DFT-LDA paramagnetic band structures for layered perovskite oxides Sr2MO4. (top panel): From
left to right: M = Mo, Tc. (bottom panel): From left to right: M = Ru, Rh.



7.2 Sr2MO4 (M = Mo, Tc, Ru, Rh) 155

0 1 2
-10

-8
-6
-4
-2

0
2
4
6
8

E
n

e
r
g

y
 (

e
V

)

Sr2MoO4

dxydxz-yz

O 2p

dz
2 dx

2
-y

2

EF

012 -10
-8
-6
-4
-2

0
2
4
6
8

E
n

e
r
g

y
 (

e
V

)

Sr2TcO4

0 1 2
DOS (1/eV)

-10
-8
-6
-4
-2

0
2
4
6
8

E
n

e
r
g

y
 (

e
V

)

Sr2RuO4

EF

dz
2 dx

2
-y

2

dxz-yz

dxy

O 2p

012
DOS (1/eV)

-10
-8
-6
-4
-2

0
2
4
6
8

E
n

e
r
g

y
 (

e
V

)

Sr2RhO4

Figure 7.11: DFT-LDA paramagnetic density of states for layered perovskite oxides Sr2MO4. (top panel): From
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(eV) F0 F2 F4 F4/F2 J F0
bare F2

bare F4
bare F4/F2|bare Jbare

Mo 3.26 5.05 4.36 0.862 0.67 14.50 7.19 4.92 0.684 0.86
Tc 3.19 5.30 4.51 0.850 0.70 15.25 7.53 5.07 0.673 0.90
Ru 3.23 5.64 4.73 0.838 0.74 15.97 7.87 5.26 0.669 0.94
Rh 3.44 6.04 4.95 0.820 0.78 16.77 8.24 5.46 0.663 0.98

Table 7.8: (d-dp model) Static (screened) and bare (unscreened) Slater integrals for the d-dp Hamiltonian in 4d
Sr2MO4. It follows that the Hubbard parameter U = F0 and Hund’s exchange J = (F2 + F4)/14. On the other
hand, the bare interaction parameter reads as v = F0

bare and bare exchange as Jbare = (F2
bare+F4

bare)/14. The screened
ratio F4/F2 is strongly deviated from the atomic value but at large frequency F4/F2|bare corresponds to the empirical
value reported for 4d hydrogenoid atoms.

(eV) Ūmm Ūmm′ J̄m v̄mm v̄mm′ J̄bare
m

Mo 4.0 3.0 0.50 15.5 14.1 0.66
Tc 4.0 2.9 0.53 16.3 14.9 0.69
Ru 4.1 2.9 0.56 17.0 15.6 0.72
Rh 4.3 3.1 0.59 17.9 16.4 0.75

Table 7.9: (d-dp model) Screened (Ūmm, Ūmm′ , J̄m) and bare (unscreened) interactions between t2g orbitals
within the d-dp Hamiltonian for Sr2MO4.

anisotropic within the plane of the TM and oxygen octahedra. The Slater parametrization is more
accurate for the late materials, Sr2TcO4 and Sr2RhO4, for which the spherical approximation of
the 4d orbital is better due to the smaller hybridization with the ligands.

The bare on-site and exchange interactions increase with the number of the 4d electrons
(Fig. 7.12), suggesting a rather atomic-like behavior of the 4d Wannier orbitals within the d-dp
Hamiltonian. This agrees with the atomic expectations based on the Slater rules, ie a higher
localization due to the contraction of the atomic 4d wavefunction from the left to the right of the
periodic classification.

Hubbard U and Hund’s exchange J

In the d-dp model, the dd transitions are removed from the screening in order to obtain the
Hubbard interaction matrices (Tabs. 7.8 and 7.9). As the bare interaction, the on-site Hubbard
interaction gets larger with the 4d electron number (Fig. 7.12). This is rationalized by the fact
that the screening only slightly increases from Sr2MoO4 to Sr2RhO4 as indicated by the small
decrease of the ratio Umm/vmm (Tab. 7.10), from 25.8/100 to 24.8/100. The increase of the
screening is thus not able to counterbalance the effects due to the stronger orbital localization.

The Hund’s exchange interaction (Fig. 7.12) also reproduces the atomic trend, increasing
with the atomic number.
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Figure 7.12: Bottom panel: On-site interaction Ūmm (left) and exchange interaction J̄m (right) between t2g
orbitals within the d-dp (black curve) model for Sr2MO4 and on-site interactions U (left) and J (right) but within
t2g-t2g (red curve). In dashed line with open circles, the Hubbard parameter U = F0 and Hund’s exchange J =
(F2 + F4)/14 are shown. Top panel: Same but for the bare interactions between the t2g orbitals.

Interestingly, the screened ratio F4/F2 (Tab. 7.8) is strongly deviated from the atomic value,
whereas the unscreened ratio F4/F2|bare recovers the atomic value. It may be an anisotropic effect
coming from the screening that needs to be more investigated. However, this does not lead to
strong anisotropies in the orbitally-resolved Hubbard interaction matrices U (cubic)

mm′mm′ or Jmm′ =
U (cubic)
mm′m′m,m 6=m′ (see Chapter 5, from Eq. 5.78 to Eq. 5.80). By calculating the interaction matrix

elements directly with cubic symmetry, one has access to the orbitally-resolved interactions (see
the end of the section for the orbitally-resolved Hubbard interaction matrices). Within the d-dp
Hamiltonian, a small anisotropy between Udxy and Udxz/yz is observed but the same anisotropy
is found for the bare interaction. The anisotropy is larger for Sr2MoO4 than for Sr2RhO4 in
agreement with the deviation of F4/F2 which is bigger in Sr2MoO4. On the other hand, the
exchange interaction within the d-dp Hamiltonian does not exhibit any anisotropy.

The deviation from the atomic value of the static ratio F4/F2 is stronger in the 4d layered
perovskite oxides, Sr2MO4, than in the 3d oxides, SrMO3 (Tab. 7.2) and is comparable to the
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one reported for the pnictide compound BaRu2As2 (Tab. 6.5). The deviation was smaller in
BaFe2As2. It seems to be due to the higher extension of the 4d atomic-like orbitals compared to
3d.
The pnictide compounds and the layered perovskites are quasi-two-dimensional systems. The
dimensionality could participate to an anisotropy. The question of the impact of dimensionality
in screening is an interesting question (see for example [van den Brink and Sawatzky(2000)])
and investigations for surfaces are currently in development.

Accuracy of the Slater parametrization

By comparing the interaction matrix elements directly calculated with cubic symmetry (Umm, Jm)
and the Slater average interactions (Ūmm, J̄m) (see Chapter 5, Fig. 5.1) deduced from the Slater
integrals, the accuracy of the Slater integrals parametrization can be probed. Similar method was
already applied for SrVO3 in Chapter 6.

Considering e.g. Sr2MoO4, we get for the t2g on-site interaction Umm = 3.8 eV, in well
agreement with Ūmm = 4.0 eV deduced from the Slater integrals (Tab. 7.8). For the exchange
interaction between the t2g orbitals, Jm = 0.48 eV while J̄m = 0.5 eV.

Orbitally-resolved Hubbard interaction matrices

The reduced interaction matrices within the d-dp Hamiltonian (Tab. 7.7) and calculated with
cubic symmetry, are given below for the layered perovskites. The ordering of the orbitals in
these matrices is dz2 , dx2−y2 , dxy, dxz, dyz. The values are given in eV.

Sr2MoO4

Uσσ̄
mm′ =













4.20 3.04 2.90 3.22 3.22
3.04 4.35 3.43 3.06 3.05
2.90 3.43 3.97 2.93 2.92
3.22 3.06 2.93 3.86 2.89
3.22 3.05 2.92 2.89 3.84













, Uσσ
mm′ =













0 2.48 2.38 2.83 2.83
2.48 0 3.10 2.56 2.55
2.38 3.10 0 2.44 2.44
2.83 2.56 2.44 0 2.41
2.83 2.55 2.44 2.41 0













.

Sr2TcO4

Uσσ̄
mm′ =













4.06 2.88 2.81 3.13 3.13
2.88 4.23 3.38 2.96 2.96
2.81 3.38 4.04 2.90 2.90
3.13 2.96 2.90 3.86 2.84
3.13 2.96 2.90 2.84 3.86













, Uσσ
mm′ =













0 2.29 2.25 2.72 2.72
2.29 0 3.04 2.44 2.44
2.25 3.04 0 2.38 2.38
2.72 2.44 2.38 0 2.33
2.72 2.44 2.38 2.33 0













.
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t2g-t2g d-dp
(eV) U U ′ J U/V Umm Jm Umm/vmm

Mo 2.77 2.15 0.28 24.8 3.8 0.48 25.3
Tc 2.70 2.07 0.28 24.3 3.9 0.52 24.5
Ru 2.56 1.94 0.26 23.2 4.0 0.55 23.9
Rh 1.76 1.18 0.23 16.6 4.4 0.61 24.8

Table 7.10: Hubbard-Kanamori parameters U ,U ′,J for the t2g-t2g model and average interactions between the
t2g orbitals within d-dp in Sr2MO4. The ratios U/V in t2g-t2g and Umm/vmm in d-dp have been multiplied by a
factor 100.

Sr2RuO4

Uσσ̄
mm′ =













4.06 2.83 2.78 3.17 3.18
2.83 4.22 3.37 2.98 2.99
2.78 3.37 4.07 2.94 2.95
3.17 2.98 2.94 4.02 2.93
3.18 2.99 2.95 2.93 4.05













, Uσσ
mm′ =













0 2.22 2.19 2.73 2.74
2.22 0 3.01 2.42 2.44
2.19 3.01 0 2.39 2.39
2.73 2.42 2.39 0 2.38
2.74 2.44 2.39 2.38 0













.

Sr2RhO4

Uσσ̄
mm′ =













4.18 2.93 2.95 3.37 3.38
2.93 4.34 3.55 3.15 3.16
2.95 3.55 4.37 3.18 3.19
3.37 3.15 3.18 4.39 3.20
3.38 3.16 3.19 3.20 4.44













, Uσσ
mm′ =













0 2.29 2.31 2.92 2.94
2.29 0 3.17 2.56 2.58
2.31 3.17 0 2.57 2.58
2.92 2.56 2.57 0 2.59
2.94 2.58 2.58 2.59 0













.

7.2.3 Hubbard parameters within the t2g-t2g Hamiltonian

Alternatively, one can construct the low-energy Hamiltonian that only includes the (dxy,dxz,dyz)
degrees of freedom. The energy windows Wt2g are given in Tab. 7.7.

Since the pd charge transfer energy decreases throughout the series, the tail on the oxygen
atomic sites of the downfolded local orbitals gets larger from Sr2MoO4 to Sr2RhO4. Conse-
quently, the orbital localization decreases with the 4d electron number, in contrast to the atomic
d wavefunctions. The trends for the bare interactions thus deviate from the atomic ones, which
were previously reported for the d-dp model (Fig. 7.12 and Tab. 7.10).

The orbitally-resolved interactions (see [Vaugier et al. (2012b)]) calculated within the t2g-
t2g Hamiltonian are more anisotropic than their analogues within the d-dp Hamiltonian. This is
another signature of the less spherical character of the downfolded orbitals within t2g-t2g. The
largest interactions are interestingly obtained on the dxy local orbital, for both the screened and
bare cases.
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(eV) SrMoO3 Sr2MoO4 SrTcO3 Sr2TcO4

U 3.0 2.7 2.9 2.7
J 0.31 0.28 0.31 0.28
V 11.6 11.0 11.8 11.2
Jbare 0.40 0.37 0.39 0.36

Table 7.11: (t2g-t2g model) Hubbard-Kanamori interactions between t2g orbitals in the t2g-t2g Hamiltonian for
SrMO3 compared to layered Sr2MO4 perovskite.

The on-site t2g interaction U and Hund’s exchange J exhibit trends that are similar to V and
Jbare (Fig. 7.12). The decrease from Sr2MoO4 to Sr2RhO4 is even more pronounced. This is
due to the screening which strongly and non-linearly increases between Sr2RuO4 and Sr2RhO4.
Indeed, the ratio U/V within the t2g-t2g model (Tab. 7.10) is divided by almost a factor two
through the series, whereas the ratio Umm/vmm is slowly decreasing within the d-dp model.

The difference in the screening between the two low-energy Hamiltonians comes from the
transitions between t2g and eg Kohn-Sham eigenstates, which are removed from the total polar-
ization in the d-dp model. These transitions – by causing a notable increase of the screening
between Sr2RuO4 and Sr2RhO4 – are responsible for the smaller effective interactions in the
latter. Within DFT-LDA (Fig. 7.10), the eg’s come closer to the Fermi level in the late Sr2MO4

perovskites. The eg bands are even partially filled in Sr2RhO4 leading to a metallic screening
that contributes to lower the effective interactions. This is an artefact of the undistorted crystal
structure of Sr2RhO4 and is not the case for the realistic distorted structure [Martins et al. (2011)].

Comparison between SrMO3 and Sr2MoO4

One finally observes that the values for the Hubbard-Kanamori interactions U and J within the
t2g-t2g Hamiltonian are very close for Mo and Tc elements in SrMO3 and Sr2MO4 compounds
(Tab. 7.11).

7.3 Conclusions

We investigated the effective Coulomb interactions in SrMO3 (M = V, Cr, Mn, Nb, Mo, Tc) and in
Sr2MO4 (M = Mo, Tc, Ru, Rh) series depending on the low-energy Hamiltonian constructed (t2g-
t2g and d-dp). It illustrates the role of the one-body Hamiltonian in the values of the downfolded
interacting Hamiltonian, as stressed in Chapter 4 (Fig. 4.3).

Furthermore, within Wannier orbitals spanning the t2g correlated subspace within t2g-t2g
Hamiltonians, screening can lead to trends for the Hubbard interaction and Hund’s exchange
that are in contrast to generally spread ideas. Atomic-like behaviors are recovered when using
atomic-like Wannier orbitals within d-dp Hamiltonians.
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The Hubbard on-site interactions notably vary with the screening, in contrast to the exchange
interactions. The on-site and the exchange interactions are sensitive to the extension of the
localized orbitals.
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Chapter 8

Towards a Truly First Principles Approach

In this chapter, we present LDA+cRPA+DMFT studies for two layered perovskites Sr2RhO4 and

Sr2IrO4, and for the rare-earth compound CeSF. We performed the cRPA calculations which

were combined with LDA+DMFT by C. Martins and M. Aichhorn for the layered oxides [Martins

et al. (2011)], and by L. Pourovskii, J. Tomczak et al. for CeSF [Tomczak et al. (2012)].

8.1 Sr2RhO4 vs. Sr2IrO4

In this section, we discuss the interplay of Coulomb interactions with spin-orbit coupling (SOC)
and lattice distortions for Sr2RhO4 and Sr2IrO4 materials in their paramagnetic phases. These
materials are isoelectronic and isostructural analogues. However, they exhibit very different elec-
tronic properties. Despite of an odd number of electrons in the d manifold, Sr2IrO4 displays an
insulating behavior at all temperatures with an optical gap of about 0.26 eV at room temper-
ature [Moon et al. (2009)]. On the other hand, Sr2RhO4 is a paramagnetic metal down to 36
mK [Moon et al. (2006)].

Spin-orbit interactions are expected to be relevant for both compounds but stronger in 5d
Sr2IrO4. Recently, SOC was shown to be necessary for describing the Mott insulating state of
Sr2IrO4 in the canted-antiferromagnetic phase below 240 K [Kim et al. (2008),Kim et al. (2009)].
This phase has, indeed, triggered much experimental (e.g. XAS, ARPES, optics, transport mea-
surements) and theoretical work. The importance of the SOC, in particular, was highlighted as an
effect that has to be taken into account when fitting the XAS spectra by multiplet theories [Kim
et al. (2009)]. Kim and co-workers even speak about a “novel Jeff = 1/2 Mott state” induced by
SOC in Sr2IrO4.

It is at first glance surprising that a 5d system is strongly correlated and even a Mott insulator.
Coulomb interactions are usually believed to be more efficient in the 3d compounds, due to the
more localized character of 3d orbitals.
The question of SOC was also addressed in Sr2RhO4 by [Haverkort et al. (2008),Liu et al. (2008)] :
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DFT-LDA calculations augmented by Coulomb interactions within the LDA+U method, repro-
duce the Fermi surface only if SO interactions are considered. One inadequacy of such method
comes from the assumption of an antiferromagnetic ordering in Sr2RhO4 whereas the material is
known to be non-magnetic.

Figure 8.1: Conventional unit cell of Sr2IrO4 [Klein and Terasaki(2008)]. Iridium atoms (golden spheres) are
surrounded by six oxygen atoms (red). IrO6 octahedra are alternatively rotated clockwise and anticlockwise by
about 11◦. Inter-layer planes are made of strontium atoms (in green). Sr2RhO4 has a similar crystal structure.

We present below the cRPA calculations for Sr2IrO4 and Sr2RhO4 as our contributions in
the collaboration with C. Martins and M. Aichhorn. For computational reasons, we employed
the undistorted DFT-LDA band structure without SOC. The (t2g to one eg) transitions are ex-
cluded from the total polarization in the range of the hybridization gap (see Fig. 8.2) in order to
mimic the effects of the distortions. The Coulomb interactions obtained by cRPA in the t2g-t2g
model are then used in LDA+DMFT as implemented by [Aichhorn et al. (2009)] and extended
by [Martins et al. (in preparation)]. This leads to an entirely first principles scenario for the para-
magnetic insulating state of Sr2IrO4 and for the paramagnetic metallic state of Sr2RhO4 [Martins
et al. (2011)].
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8.1.1 Band structures : interplay of spin-orbit coupling and distortions

Sr2IrO4 is a 5d transition metal oxide with a tetragonal crystal structure (I41/acd space group)
whose symmetry is lowered from the K2NiF4-type (common to Sr2RuO4 and Sr2MoO4, see
chapter 7) [Huang et al. (1994)]. The corner-shared octahedra IrO6 are not well-aligned in the
iridium layers anymore but are alternatively rotated clockwise and anticlockwise around the c-
axis by about 11◦ (Fig. 8.1). The lattice parameters of the resulting superstructure are a =√
2at = 5.497A◦ and c = 2ct = 25.798A◦, where at, ct correspond to the lattice parameters

of the K2NiF4-type unit-cell (see Chapter 7, Tab. 7.7). The superstructure contains now four
formula units.

Sr2IrO4 and Sr2RhO4 are isoelectronic and isostructural materials that both accommodate
five electrons in their respective d manifold. However, their electronic properties are very differ-
ent as mentioned earlier. For an exhaustive review on Sr2IrO4, see [Martins(2010)].
According to the DFT-LDA calculations (Fig. 8.2) in the paramagnetic phases, both compounds
are metallic within the undistorted structure without SOC as well as within the distorted one with
SOC. One therefore needs to go beyond DFT-LDA in order to get the correct insulating spec-
trum in Sr2IrO4 and in order to reproduce better the Fermi surface in Sr2RhO4. This motivates the
LDA+DMFT approach that takes the SOC into account and solves the low-energy Hamiltonian
obtained from cRPA.

Undistorted band structure

Within the undistorted K2NiF4 unit cell without SOC, the DFT-LDA band structures for Sr2IrO4

and Sr2RhO4 appear rather similar (Fig. 8.2). In the tetragonal symmetry, the t2g-like orbitals
(dxy,dxz,dyz) almost equally accommodate five electrons. The d bandwidth is large, around 8.5
eV in Sr2RhO4 and 10 eV in Sr2IrO4. Oxygen p states (in turquoise) are found below and
hybridize with t2g-like states.

As expected in 4d oxides, the bandwidth in Sr2RhO4 is smaller than in 5d as well as the pd
charge transfer energy ∆pd. This is due to the weaker hybridization between Rh-4d and oxygen-p
orbitals induced by the smaller 4d orbital extension.
We already mentioned in Chapter 7 that the charge transfer ∆pd energy increases from the 3d to
4d transition metal oxides (see also [Lee et al. (2003), Imada et al. (1998)]). Here, ∆pd is about
1 eV larger in Sr2IrO4.

With distortions

The structural distortions lead to the four-times larger unit cell as indicated in the introduction
and therefore to four-folded bands. This explains the set of twelve bands found around the Fermi
level.
In both compounds, a dxy-dx2−y2 hybridization gap opens between the t2g (in red) and eg bands
(in blue) : it equals about 0.9 eV in Sr2IrO4 and 0.6 eV in Sr2RhO4. The dxy band is almost filled
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Figure 8.2: DFT-LDA paramagnetic band structure of Sr2IrO4 (left) and Sr2RhO4 (right). (top) The calculation
was done for the undistorted crystal structure without spin-orbit interactions. The t2g bands in the tetragonal sym-
metry (in red) lie on the Fermi level. The eg bands (in blue) are found above and oxygen p (in turquoise) below.
(bottom) The structural distortions and the spin-orbit coupling have been taken into account, leading respectively to
a reduction of the bandwidth and a lift of the degeneracies at the Fermi level. Sr2IrO4 can be mapped into an almost
jeff = 1/2 single-band Hubbard model, whereas it gives a quarter-filled two-band model for Sr2RhO4.
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in the distorted phase. The orbital polarization is thus enhanced with respect to the undistorted
case.

On the other hand, the distortions induce a reduction of the bandwidth. This makes the
system effectively more correlated since the kinetic energy is lowered. This is a well-known
effect for materials like 1T-TaS2 or TaSe2 where a bandwidth-controlled Mott transition can
be monitored by charge-density-wave distortions [Perfetti et al. (2003)]. As a consequence in
Sr2IrO4 and Sr2RhO4, the critical value for the Mott transition is reduced with respect to the
undistorted case [Martins et al. (2011)].

With Spin-Orbit

The introduction of SOC 1 modifies the degeneracy of the bands around the Fermi level (Fig. 8.2).
The large SOC in Sr2IrO4 (ζSO = 0.4 eV) and, to a lesser extent in Sr2RhO4 (ζSO = 0.161 eV),
splits the t2g states into a quartet of states, commonly labeled jeff = 3/2, and a higher lying
doublet jeff = 1/2. Furthermore, each state is twice degenerate in pseudospins (±mj) since
the I41/acd space group includes the spatial inversion [Sugano et al. (1970)]. jeff states can be
related to the cubic t2g states by the following transformations :















|Jeff = 1
2
,mj = ±1

2
〉 = 1√

3

(

|dyz,∓〉 ± i|dxz,∓〉
)

± 1√
3
|dxy,±〉

|Jeff = 3
2
,mj = ±1

2
〉 = 1√

6

(

∓ |dyz,∓〉 − i|dxz,∓〉
)

+
√

2
3
|dxy,±〉

|Jeff = 3
2
,mj = ±3

2
〉 = ∓ 1√

2
|dyz,±〉 − i√

2
|dxz,±〉,

(8.1)

where ± stands for the up (↑) and down (↓) spin of t2g orbitals.

Due to a larger spin-orbit splitting, the four jeff = 3/2 states are almost filled in Sr2IrO4

(n3/2,|1/2| = 1.98 and n3/2,|3/2| = 1.84) and the jeff = 1/2 state slightly exceeds half-filling
(n1/2,|1/2| = 1.16). In Sr2RhO4, the effective splitting between jeff = 1/2 and jeff = 3/2
states is smaller : only the jeff = (3/2, |1/2|) orbital is filled whereas jeff = 1/2 and jeff =
(3/2, |3/2|) have similar filling.

Structural distortions and SOC thus lead to different effective models for Sr2IrO4 and Sr2RhO4 :
almost half-filled single band for the former and quarter-filled two-band for the latter. As well-
known for multi-orbital Hubbard models, this will have consequences on the Mott transition :
the critical interaction for the formation of the Mott insulating state increases with the degener-
acy [Georges et al. (2004)].

Wannier orbitals

Wannier t2g orbitals for a further use in the t2g-t2g model, are constructed out of the Kohn-Sham
bands within a given energy window W (Tab. 7.7). We follow the projection procedure as already

1Spin-Orbit interactions in the electronic structure code WIEN2K are treated with a second variational method
using scalar relativistic orbitals as basis functions.
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U (eV) Sr2RhO4 Sr2IrO4

dxy dxz dyz dxy dxz dyz
dxy 1.81 1.18 1.18 2.23 1.53 1.53
dxz 1.18 1.75 1.19 1.53 2.02 1.49
dyz 1.18 1.19 1.75 1.53 1.49 2.02

Table 8.1: Orbitally-resolved Hubbard interaction matrix for the t2g-t2g model in the undistorted phases of
Sr2RhO4 and Sr2IrO4. Exchange interaction matrix Jmm′ does not exhibit any anisotropy and yields about
J = 0.23 eV in both Sr2RhO4 and Sr2IrO4.

explained in Chapter 3 and Chapter 4. Same energy windows are chosen for the undistorted and
distorted phases2 : W = [−3.6, 0.6] eV and [−3.3, 0.5] eV (with respect to the Fermi level) for
Sr2IrO4 and Sr2RhO4, respectively. The Wannier jeff orbitals are then obtained by applying the
transformation relations (Eq. 8.1).

The four bands that cross the Fermi level in Sr2IrO4 are not purely formed by the jeff = 1/2
orbitals, but there is a slight mixture of the jeff = 1/2 and (jeff = 3/2,mj = |3/2|) characters,
especially at the Γ point (Fig. 8.3). It is similar in Sr2RhO4 but the mixture is stronger. We hence
have to redefine the jeff spin-orbital characters by diagonalizing the density matrix of the local
problem.

8.1.2 cRPA calculations within the t2g-t2g model

Undistorted phase

Considering the t2g-t2g model for Sr2IrO4 and Sr2RhO4 seems reasonable, especially for describ-
ing the distorted phases. Indeed, due to the structural distortions, the eg Kohn-Sham bands are
pushed far away from the Fermi level and SOC does not mix eg with t2g. The eg states are thus
expected to stay empty.

By employing Kohn-Sham indices to exclude the transitions from and to the t2g-like Kohn-
Sham bands from the total polarization, one calculates the reduced orbitally-resolved interaction
matrix U (cubic)

mm′mm′ (denoted Umm′ in the following) and U (cubic)
mm′m′m,m 6=m′ within cRPA in the t2g Wan-

nier basis introduced in the previous section. The results for undistorted Sr2RhO4 and Sr2IrO4

are given in Tab. 8.1. They are in reasonable agreement with the ones from [Arita et al. (2012)] :
in this recent work, the authors constructed a t2g-like Wannier basis within a maximally localized
Wannier function framework and employed the RPA polarization from time-dependent DFT in
their version of cRPA. They got for undistorted Sr2IrO4 : Udxy = 2.35 eV and Udxz/dyz = 2.21
eV, and J = 0.16 eV.

2In [Martins et al. (2011)], we actually chose slightly smaller energy windows for the distorted phase : W =
[−3.0, 0.5] eV in Sr2IrO4 and W = [−2.67, 0.37] eV in Sr2RhO4. Selecting the same energy windows as for the
undistorted phase has negligible consequences on the total charge.
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Figure 8.3: Spin-orbital jeff character of the Wannier orbitals for Sr2IrO4 (left) and Sr2RhO4 (right) in DFT-
LDA, projected on the jeff = 1/2 (top), jeff = 3/2 |mj | = 3/2 (middle) and jeff = 3/2 |mj | = 1/2 (bottom)
spin-orbitals. For the four bands crossing the Fermi level in Sr2IrO4, there is a slight overlap of jeff = 1/2 and
jeff = 3/2 |mj | = 3/2, especially at Γ. The mixture is stronger in Sr2RhO4.
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(eV) U V U/V × 100 J Jbare

Rh 1.7 10.4 16.6 0.23 0.28
Ir 2.1 9.9 21.2 0.23 0.28

Table 8.2: Hubbard-Kanamori interaction U and exchange interaction J for the t2g-t2g model in the undistorted
phases of Sr2RhO4 and Sr2IrO4. The bare on-site V and exchange Jbare interactions are given.

Applying a cubic approximation, the Hubbard interaction matrix can be parametrized by a
set of pseudo Hubbard-Kanamori parameters (U ,U ′,J ), as if the symmetry was perfectly cubic
(Tab. 8.2). U (J ) is the average over the Hubbard interaction matrix elementsU (cubic)

mmmm (U (cubic)
mm′m′m,m 6=m′)

and U ′ is assumed to be equal to U − 2J .

Regarding the bare interaction V , a smaller value is obtained for Sr2IrO4 than for Sr2RhO4

(Tab. 8.2). This is expected from the evolution through the rows of the periodic classification
for the d atomic wavefunction following the Slater rules. The average orbital extension for a
5d atomic wavefunction is, indeed, larger than for 4d (Tab. 7.4). This also agrees with the
interpretations established in Chapter 7, when comparing 3d to 4d transition metal oxides (see
Fig. 7.3 for example).

Interestingly, the trend reported for V is inverted for U (Tab. 8.2). The effective intra-orbital
interactions within the t2g-t2g model are larger in Sr2IrO4 than in Sr2RhO4. This relies on the
screening which competes with the orbital localization effects. As already pointed out (see chap-
ter 7), t2g Wannier orbitals are extended within t2g-t2g models. The smaller the pd charge transfer
energy, the larger the “leakage” on the ligand atomic sites. On the other hand, the screening gets
larger when the pd charge transfer energy decreases. It may even happen that the screening be-
comes strong enough to invert the atomic trend reported for the unscreened interaction V . This
was the case in SrMnO3 and its counterpart SrTcO3 : U in SrMnO3 is smaller than in its 4d
isoelectronic analogue SrTcO3 whereas V is larger (see Tab. 7.5). Things are similar here : we
already mentioned that the pd charge transfer energy is larger by about 1 eV in Sr2IrO4 than in
Sr2RhO4 (Fig. 8.2). Furthermore, the ratio U/V is significantly larger in Sr2IrO4 (Tab. 8.2). It
thus confirms that the static screening has weaker effects in Sr2IrO4 than in Sr2RhO4.

One can finally experience the following, which consists in shifting by 1 eV all the oxygen p
Kohn-Sham bands in Sr2RhO4. The motivation is to mimic the position of the oxygen screening
bands of Sr2IrO4. An increased value for the Hubbard interaction U = 1.9 eV and same Hund’s
exchange J = 0.23 eV, are obtained. The increase agrees with our interpretations.

Mimicking the distorted phase

Due to the computational cost, the undistorted phases without SO are employed for calculating
the Coulomb interactions within cRPA. In a simplified way, one can mimic the distorted phase
by shifting in the undistorted band structure, the eg band that crosses the Fermi level. Indeed, the
structural distortions push this band upward the Fermi level by about 1.45 eV in both Sr2RhO4
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U (eV) Sr2RhO4 Sr2IrO4

dxy dxz dyz dxy dxz dyz
dxy 2.47 1.82 1.82 2.74 2.03 2.03
dxz 1.82 2.38 1.82 2.03 2.52 1.99
dyz 1.82 1.82 2.38 2.03 1.99 2.52

Table 8.3: Orbitally-resolved Hubbard interaction matrix for the t2g-t2g model in Sr2RhO4 and Sr2IrO4. The
distorted phase has been mimicked by shifting the eg band of the undistorted phase by 1.45 eV. This shift corre-
sponds to the hybridization gap dxy-dx2−y2 that is opened by the structural distortions. Exchange interaction matrix
Jmm′,m 6=m′ does not exhibit any anisotropy and still yields about J = 0.23 eV in both Sr2RhO4 and Sr2IrO4.

(eV) U J U ′

Rh 2.4 0.23 1.82
Ir 2.6 0.23 2.01

Table 8.4: Hubbard-Kanamori parameters (U ,U ′ and J ) calculated for the t2g-t2g model in the mimicked dis-
torted phases of Sr2RhO4 and Sr2IrO4. As established earlier for the t2g-t2g model by employing a cubic approxi-
mation, U is the average over the Hubbard interaction matrix elements {U (cubic)

mm } whereas U ′ is the average over the
inter-orbital interactions {U (cubic)

m 6=m′} (Eq. 5.77 and Tab. 8.3). The exchange interaction J is deduced from the average

over the interaction matrix elements U (cubic)
mm′m′m,m 6=m′ . We can reasonably assume that U ′ ≈ U − 2J (= 1.94 eV in

Sr2RhO4 and 2.16 eV in Sr2IrO4 considering U (cubic)
mm′mm′,m 6=m′ ), as if the symmetry was perfectly cubic.

and Sr2IrO4. The t2g bands are also notably rearranged by the interplay of distortions and SOC,
but the polarization due to the t2g-t2g transitions is removed from the screening within the t2g-t2g
model. On the other hand, oxygen-p bands are shifted by about 0.5 eV upward the Fermi level.
This will have consequences for the screening but is not mimicked in our calculations.

The results for the orbitally-resolved interaction matrix Umm′ are given in Tab. 8.3. One
can still reasonably make a cubic approximation in order to parametrize this matrix with a set
of pseudo Hubbard-Kanamori parameters (U ,U ′ and J ) (Tab. 8.4). It results for the exchange
interaction that J = 0.23 eV for both Sr2RhO4 and Sr2IrO4.

The deviation between the diagonal elements {Umm} and their average, U , yields about 5%
in Sr2IrO4. The dispersion is even smaller for the nondiagonal elements {Um 6=m′}. Furthermore,
assuming that U ′ = U − 2J introduces an overestimation of U ′ by about 7%, compared to the
directly estimated value.
All the deviations coming from the cubic parametrization are smaller than 10%. This gives
confidence in the cubic approximation.

We stress out that the Hubbard-Kanamori on-site interactions U are still smaller in Sr2RhO4

than in Sr2IrO4. As explained earlier, this is due to the weaker hybridization effects between
Rh-4d and oxygen-p states which leave the latter about 1 eV higher in energy in the undistorted
and distorted phases of Sr2RhO4 than in Sr2IrO4. The induced screening is hence larger in
Sr2RhO4 than in Sr2IrO4. In the distorted phase, the oxygen-p bands come actually closer to the
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Fermi level by about 0.5 eV in both compounds. This is not taken into account in the mimicked
distorted phase. Consequently, one may expect that the values from Tab. 8.3 and Tab. 8.4, are
slightly overestimated, especially for Sr2RhO4.
Furthermore, one observes that the values of U are larger by about 0.5− 0.7 eV in the mimicked
distorted phase than in the undistorted one. This agrees with the previous interpretations about
the screening strength. Shifting the position of the eg band has lowered the strength of the t2g-eg
screening channel.

Transformation 8.1 could then be used for constructing the interaction Hubbard Hamiltonian
in the jeff spin-orbital basis previously introduced.
Within an alternative parametrization, a set of pseudo Slater integrals (F̃

0
, F̃

2
, F̃

4
) is deduced by

inverting the Hubbard-Kanamori relations (see Chapter5, from Eq. 5.70 to Eq. 5.72). The ratio
r = F̃

4
/F̃

2
= 0.63 is set to the atomic value :

F̃
0

= U − 4(1 + r)441

49(27 + 20r)
J (8.2)

F̃
2

=
441

27 + 20r
J (8.3)

F̃
4

= rF̃
2
. (8.4)

This leads to the effective Hubbard parameter Ũ = F̃
0

and Hund’s exchange J̃ = (F̃
2
+ F̃

4
)/14.

The values for Ũ and J̃ are found stable when increasing the ratio r from 0.63 to 0.9. One then
merely constructs the Hubbard interaction matrix in the jeff spin-orbital basis by employing
Eq. 5.64 (see Chapter 5).

8.1.3 Application : Reduced effective spin-orbital degeneracy and spin-

orbital ordering

The results from the LDA+DMFT scenario on top of cRPA, in collaboration with C. Martins
and M. Aichhorn [Martins et al. (2011)], are summarized below. Moderate Coulomb interac-
tions induce a Mott insulating state in the paramagnetic phase of Sr2IrO4 due to the interplay of
distortions and large spin-orbit coupling (SOC). In Sr2RhO4, smaller SOC and smaller Coulomb
interactions lead to a less dramatic reduction of the spin-orbital fluctuations and results into a
paramagnetic metal in agreement with experiments.

LDA+DMFT calculations - including the spin-orbit interactions - have been performed at
β = 40 eV−1. The strong-coupling CTQMC algorithm was employed for solving the quan-
tum impurity problem in DMFT (see Chapter 3). Only density-density terms for the interacting
Hubbard Hamiltonian were considered.
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Figure 8.4: Momentum-resolved spectral function of the paramagnetic phase of Sr2IrO4 from LDA+DMFT at
T = 300 K. We get a Mott insulating state with a gap which agrees with the optical gap at ambient temperature
(about 0.26 eV). Panel (a) is the total spectral density and panel (b) and (c) show the orbitally-resolved spectral
densities jeff = 3/2 and jeff = 1/2, respectively. Red lines are guides for the eyes. The jeff = 1/2 lower
Hubbard band is found at about −0.5 eV in agreement with the ARPES results from [Kim et al. (2008)].
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Sr2IrO4

The interacting part of the Hubbard Hamiltonian expanded into the Wannier jeff basis is calcu-
lated within cRPA for the mimicked distorted phase. We get Ũ = F̃

0
= 2.2 eV and J̃ = 0.3 eV

using the Slater parametrization introduced in the previous section (from Eq. 8.2 to Eq. 8.4).

In the Wannier spin-orbital jeff basis, the reduced interaction matrices (in eV) read as

U
mjm̄j

jj′ |Slater =





2.24 1.98 1.89
1.98 2.38 2.03
1.89 2.03 2.31



U
mjmj

jj′ |Slater =





0 2.08 2.21
2.08 0 1.93
2.21 1.93 0



 .

The order of the spin-orbitals in these matrices is jeff = 1/2, jeff = 3/2 |mj| = 1/2, jeff =
3/2 |mj| = 3/2. The pseudospin mj can be seen as a spin degree of freedom and m̄j as the
opposite pseudospin. For comparison, Arita and co-workers get a smaller U1/2−1/2

1/2 1/2 = 1.96
eV [Arita et al. (2012)]. This may explain why they do not catch the insulating Mott phase within
LDA+DMFT. Indeed, the critical on-site interaction for such half-filled single-band system is
found between 2.1 and 2.2 eV. Sr2IrO4 therefore lies on the verge of the Mott insulator transition.
The role of the structural distortions and SOC is crucial : the distortions lead to larger on-site
interactions and SOC to an effective single-band model.

Such moderate interactions are hence enough to induce a Mott insulating state in the half-
filled one-orbital Hubbard model. The Mott gap yields the size of the optical gap measured
at room temperature (about 0.26 eV) [Moon et al. (2009)]. Despite the fact that the ARPES
measurements by [Kim et al. (2008)] have been achieved in the antiferromagnetic phase, the
total spectral functions (Fig. 8.4) agree with the experimental energy distribution curves. From
the orbitally-resolved spectral functions, one can locate the lower jeff = 1/2 Hubbard band at
about −0.5 eV, in agreement with ARPES results.

On the other hand, the spin-orbital polarization is enhanced compared to DFT-LDA. The
Wannier orbital jeff = 1/2 is now exactly half-filled and the upper Hubbard band is of jeff =
1/2-type only.
Sr2IrO4 thus exhibits a “spin-orbital” order with neither orbital nor magnetic order.

Sr2RhO4

In Sr2RhO4, U = 1.94 eV and J = 0.23 eV were cjosen for the pseudo Hubbard-Kanamori
interactions. This corresponds to a kind of counterbalanced on-site interaction value between the
undistorted and the mimicked distorted phase calculated within cRPA. Indeed, for computational
reasons, the cRPA calculations were carried out with the undistorted phase but using a shift of
1.45 eV of the eg band at the Fermi level. The position of the oxygen-p bands is not mimicked
although they come closer to the Fermi level in the real distorted band structure (Fig. 8.2). We
know from previous studies (see Chapter 7) that these bands notably contribute to the screening.
Therefore, the results given in Tab. 8.4 must be overestimated, especially in Sr2RhO4, since the p
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Figure 8.5: Momentum-resolved spectral function of Sr2RhO4 (a) from LDA+DMFT at T = 300 K. This corre-
sponds to a paramagnetic metal. Bottom panels display the orbitally-resolved spectral densities jeff = 3/2 |mj | =
1/2 (b), jeff = 3/2 |mj | = 3/2 (c) and jeff = 1/2 (d). Red lines are guides for the eyes.
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bands locate about 1 eV higher in energy than in Sr2IrO4 and the effects of the screening channels
are not linear [Aryasetiawan et al. (2006)].

With U = 1.94 eV and J = 0.23 eV, one gets from the Slater parametrization, Ũ = F̃
0
= 1.6

eV for the Hubbard parameter and J̃ = 0.3 eV for Hund’s exchange (Eqs. 8.2, 8.3 and 8.4). The
reduced Hubbard interaction matrices (in eV) in the spin-orbital Wannier basis then read as

U
mjm̄j

jj′ |Slater =





1.67 1.31 1.27
1.31 1.85 1.45
1.27 1.45 1.71



U
mjmj

jj′ |Slater =





0 1.48 1.66
1.48 0 1.29
1.66 1.29 0



 .

The order of the spin-orbitals is the same than previously : jeff = 1/2, jeff = 3/2 |mj| =
1/2, jeff = 3/2 |mj| = 3/2.

Sr2RhO4 results into a paramagnetic metal with a partial spin-orbital polarization. Indeed,
because of the smaller SOC, the system is mapped onto a quarter-filled two-band Hubbard model
and the Coulomb interactions obtained by cRPA are not strong enough to induce a Mott insulating
state with this degeneracy. The LDA+DMFT calculations (Fig. 8.5) are in agreement with energy
distribution curves obtained by ARPES at 10 K [Baumberger et al. (2006)].

Sr2RhO4 also appears rather close to the Mott insulator transition. The critical interaction
is found around Ũc = 1.8 − 2.0 eV with J̃ = 0.3 eV. This corresponds to Uc = 2.1 eV and
Jc = 0.23 eV. A cRPA calculation for the realistic distorted phase is therefore desirable and
currently in development.

8.1.4 Conclusions

The electronic properties of the isoelectronic and isostructural analogues Sr2IrO4 and Sr2RhO4

were analyzed within the ab initio LDA+DMFT approach on top of the cRPA interaction Hamil-
tonian. Distortions as well as spin-orbit coupling were taken into account and play a crucial role
in the electronic nature of Sr2IrO4 and Sr2RhO4.

A jeff = 1/2 Mott insulating phase is caught in the paramagnetic phase of Sr2IrO4. The
calculated spectrum agrees with angle-resolved photoemission and optical measurements. In
Sr2RhO4, lower effective Coulomb interactions due to screening and lower spin-orbit coupling
lead to a paramagnetic metal whose characteristics at the Fermi level are in reasonable agreement
with angle-resolved photoemission experiments.
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8.2 Cerium Fluorosulfide (CeSF) pigments

This last section is devoted to the cRPA calculations of the Hubbard U and Hund’s exchange J
for the rare-earth compounds CeSF. The first principles description of materials containing lan-
thanide or actinide elements is usually regarded as a very challenging task, due to the presence
of highly localized f states mixed with itinerant ones. The treatment of such localized states
require to go beyond DFT-LDA. Several attempts have been proposed in the literature in order
to reproduce, for example, the non-monotonic evolution of the band gap along the lanthanide
sesquioxide or sesquisulfide series [Golubkov et al. (1995), Prokofiev et al. (1996)]. Such evo-
lution relies on the position of the occupied f states relatively to the p and d surrounding bands.
Recent GW calculations on top of LDA+U [Jiang et al. (2009)] were able to qualitatively re-
produce the experimental trends. Full self-consistent LDA+DMFT calculations based on the
Hubbard-I approximation [Pourovskii et al. (2007)] were also carried out. In both approaches,
the Hubbard U and Hund’s exchange J are treated as adjustable parameters.

The present work is a contribution to the LDA+DMFT calculations performed by L. Pourovskii,
J. Tomczak et al. [Tomczak et al. (2012)]. The optical properties of the promising CeSF pigments
can be characterized using LDA+DMFT as implemented by [Tomczak(2007)]. Understanding
the origin of the optical properties and the color of such materials in relation with their electronic
structure is a major challenge in the perspective of designing new pigments.

8.2.1 A brief review

The investigation of new pigments able to absorb ultra-violet (UV) radiation but without em-
ploying toxic heavy metals (like cadmium or mercury) has received much attention for several
decades [Jansen and Letschert(2000)]. In practice, one wants to make use of UV absorbers in
order to prevent the deterioration of biological tissue or other materials. Compounds made of
rare-earth elements like sesquisulfides Ln2S4 or ALn2S4 (A = Ca, Sr) have demonstrated to be
very promising : they are semi-conductors with a color ranging from red to yellow [Maestro and
Huguenin(1995), Pauwels(2003)]. In the literature, the intense red color in Ce2S3 is attributed to
the 4f -5d intra-atomic transitions and therefore crucially relies on the position of the cerium 4f
bands relatively to the valence 3p and the conduction 5d bands. The question whether lanthanide
fluorosulfides LnSF (Ln = La, Ce, Sm, etc...) are also good pigments, was recently addressed
by [Demourgues et al. (2001b), Macaudière and Demourgues(2002)] : such materials could in-
deed have important applications because of their better chemical and thermal stability, attributed
to the environment induced by the fluorine (F) elements. 3
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Figure 8.6: CeSF crystal structure (P4/nmm). Cerium atoms are in blue whereas sulfur atoms are in yellow and
fluorine atoms in green (from [Pauwels(2003)]).

Crystal structure

Rare-earth fluorosulfides have been characterized by X-ray diffraction [Demourgues et al. (2001a),
Schleid and Grossholz(2001)]. They adopt the PbFCl-type structure with P4/nmm space group
representation (Fig. 8.6). The rare-earth is at the center of a distorted square antiprism with four
F atoms in one base and four S atoms in the other. A fifth Ln-S bond smaller than the other
ones, appears parallel to the c-axis. Lattice parameters a = 3.992A◦, c = 6.947A◦ [Demourgues
et al. (2001a)] will be used for the calculation of the band structure in CeSF.

CeSF : a good pigment

One can characterize the optical properties of a pigment - a specific semi-conductor - by its
absorption edge, its refractive index and its extinction coefficient.

The absorption edge is extracted from the diffuse reflectance spectra and corresponds to
the maximum of the second derivative of the absorption curve. For CeSF, Demourgues and
co-workers give λc = 597 nm. This is enough for explaining the red color of the material

3Due to the high electronegativity of fluorine in the Ln-F bonding, there is by compensation an enhancement of
the Ln-S bonding with respect to sesquisulfides.
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Figure 8.7: Interpretation from XPS of the mechanisms involved in the chromatic evolution along the early
lanthanid fluorosulfide series (from [Pauwels(2003)]). In CeSF, the color is empirically attributed to the intra-atomic
f to d transitions as shown in this figure. However, this does not agree with the positions of the f bands calculated
with LDA+DMFT (see Fig. 8.11). Our interpretation of the color is based on the 3p to 4f transitions.

Figure 8.8: Color vs. wavelength diagram in the visible range.

(see Fig. 8.8 for the color vs. wavelength correspondance) [Demourgues et al. (2001b)]. For
comparison, λc = 443 nm in LaSF and λc = 490 nm in SmSF. Nevertheless, these compounds
are rather yellow, in contrast to the wavelength value (see Fig. 8.8). How sharp is the absorption
spectrum around the absorption edge, determines the purity of the color. In CeSF, there is a steep
absorption edge which justifies the sharp red color of the material.

The chromatic evolution (yellow-red-yellow) through the early lanthanide fluorosulfide se-
ries has to originate from different mechanisms, as reported in Fig. 8.7. The position of the
rare-earth 4f band is mainly responsible for this : since there are no occupied f states in LaSF,
the most probable optical transitions around 2.8 eV arise from the top of the 3p valence band to
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the bottom of the rare-earth 5d conduction band. SmSF, on the other hand, is usually described
as a charge-transfer insulator with an optical transition from 3p to 4f bands.

In CeSF, one expects the partially-filled f bands to be split in Hubbard bands. The p-d gap
is hence reduced. 4 The optical transitions will depend on the position of the occupied and
unoccupied f bands relatively to 3p and 5d bands. In [Goubin et al. (2004), Pauwels(2003)]
(their results are shown in Fig. 8.7), the authors employed X-ray photoelectron spectroscopy
(XPS) and electron energy-loss spectroscopy (EELS) for interpreting the gap around 2 eV in
terms of the intra-atomic transitions from the lower Hubbard 4f bands to 5d bands. This is not
in agreement with the positions of 4f multiplets calculated by LDA+DMFT and employing the
cRPA interaction Hamiltonian (see below, Fig. 8.11).
In passing, we mention that the evolution of the conduction and valence bandwidths also play a
role in the optical properties.

The refractive index n and the extinction coefficient κ are determined experimentally from
the loss function Im(−1/ǫ) that is deduced from EELS spectra. This was done for LaSF and
CeSF compounds [Goubin et al. (2004)]. ǫ corresponds to the dielectric function of the material.
The extinction coefficient κ characterizes the strength of the color due to the light absorption
capacity of the material whereas the refractive index n has an impact on the light scattering
power and thus explains the color opacity. In the visible range, both n and κ decrease from
LaSF to CeSF. This can be interpreted by the weak radial distribution and the low electronic
concentration of 4f states involved in the optical transitions [Goubin et al. (2004)].

From these studies, CeSF compounds appear appropriate for pigment applications whereas
LaSF could be used as UV-blockers under the form of extra-fine particles in order to reduce the
light scattering.

8.2.2 Band structure

As the starting point of cRPA, one first computes the Kohn-Sham band structure for CeSF
(Fig. 8.9). We use as lattice parameters a = 3.992A◦, c = 6.947A◦ following [Demourgues
et al. (2001a)].

As mentioned in the introduction, systems with f electrons are poorly described by DFT-
LDA. First, the band structure of CeSF corresponds to a metal with narrow 4f bands at the
Fermi level, instead of a semi-conductor. Second, the valence band consists in sulfur-like 3p
bands and the conduction band in cerium-like 5d bands but the distance between the 3p and 5d
bands is underestimated by DFT-LDA.

This distance was also underestimated in LaSF : the DFT-LDA spectrum correctly repro-
duces the semi-conductor nature of LaSF but the resulting p-d gap is about 2.0 eV. This is clearly
too small compared to the experimental gap of 2.8 eV [Goubin et al. (2004), Pauwels(2003)]. In
CeSF, the DFT-LDA p-d gap is even smaller than in LaSF whereas it should be comparable. In
Fig. 8.10, we show the GW density of states for the paramagnetic phase of CeSF compared to

4This is very similar to cerium sesquioxides Ce2O3.
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Figure 8.9: (left) DFT-LDA paramagnetic band structure of CeSF. (right) Total density of states (in black) and
partial density of states. Cerium-4f character is highlighted in red, cerium-5d in green, sulfur-3p in blue and
fluorine-2p in orange. The DFT-LDA spectrum corresponds to a metal with narrow f bands at the Fermi level.
Furthermore, the gap between 3p and 5d is underestimated.

DFT-LDA. As explained in Chapter 2, the GW approximation does not open a gap in a strongly
correlated material using Kohn-Sham eigenstates as initial guesses. The pd gap, however, is
partially corrected for by the upward shift of the d bands by about 1 eV. On the other hand, the
sulfur-like p bands do not shift as much. This encourages the scissor-like correction of the pd
gap in the LDA+DMFT calculations shown in Fig. 8.11 and detailed later.

8.2.3 The “f -f Hamiltonian”

Adapting the cRPA method for CeSF pigments, projected 4f Wannier orbitals centered on the
cerium atoms are constructed out of the Kohn-Sham states within the energy window W =
[−1, 0.6] eV. All transitions from and to the f -like bands within W are then excluded from the
total polarization to compute the constrained polarization P r at the RPA level.
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Figure 8.10: GW density of states calculated in the paramagnetic phase of CeSF. DFT-LDA density of states is
shown in dashed lines for comparison.

cRPA results

In Tab. 8.5, we give the cRPA results under the form of four Slater integrals for both the screened
and bare interactions. The Hubbard U interaction reads as U = F0 = 4.8 eV and Hund’s
exchange J(F2, F4, F6) = 0.70 eV, following Eq. 5.69.

As already reported for screened interactions in 4d layered perovskite and in pnictide com-
pounds, one observes a deviation of the Slater integrals ratio F4/F2 and F6/F2 from the atomic
values. The agreement with the atomic values is better for the bare (unscreened) interactions. We
remind the reader (Eq. 5.60) that in the atom, F4/F2 ≈ 0.67 and F4/F2 ≈ 0.49. The deviation
for the screened interactions might come from screening anisotropies (see also Chapter 7 for the
layered perovskites and Chapter 6 for the pnictides).

Comparison with cLDA

Using “hard”-cLDA (see Chapter 4), the Hubbard on-site interaction between f orbitals within
the head of the LMTO-ASA framework as local orbitals, yieldsU = 4.6 eV and Hund’s exchange
J = 0.43 eV. Whereas the on-site interactions from cLDA and cRPA are rather similar, one
observes a significant difference for the exchange interactions.
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(eV) F0 F2 F4 F6 F4/F2 F6/F2 J

CeSF bare 21.9 10.01 6.20 4.59 0.619 0.458 0.81
screened 4.8 7.86 5.85 4.54 0.745 0.578 0.70

Ce2O3 bare 21.5 9.75 6.18 4.59 0.634 0.470 0.80
screened 5.3 7.58 5.84 4.48 0.771 0.591 0.69

Table 8.5: Slater integrals for the f -f model in CeSF and in Ce2O3. The first line (bare) corresponds to the bare
interaction v whereas the second line to the screened Hubbard U interaction.

J from cRPA is actually similar to the value obtained by extrapolation in Dieke’s diagram so
established for lanthanide (Ln) elements [Dieke(1968)]. It also agrees with the values reported
for Ln3+ impurities in LaF3 experimental spectra fitted by (F2, F4, F6) Slater integrals [Carnall
et al. (1989)].

It is usually believed that the multipole part of the Coulomb interaction leading to J is weakly
dependent on the crystal structure. The comparison with isoelectronic cerium (Ce3+) sesquioxide
Ce2O3 confirms this point, since the values for J are very close (Tab. 8.5).

For these reasons, LDA+DMFT calculations were preferently combined with the cRPA val-
ues rather than the cLDA ones. Furthermore, as recently highlighted by [de’ Medici et al. (2011)],
J can play a significant role in the estimation of the Mott gap. This again points out the impor-
tance of calculating effective Coulomb interactions from first principles within a reliable and
consistent way.

Comparison with Ce2O3

Several times, we have compared CeSF to its isoelectronic analogue Ce2O3. Both materials
are indeed quite similar since their physical properties rely on the relative position of the 4f
Hubbard bands relatively to the valence and conduction bands. Cerium sesquioxide compounds
have already received an intense attention and are not the topic of the work here. Only for
comparison with CeSF, we add in Tab. 8.5 the cRPA calculation for Ce2O3 using the f -f model
which is equivalent to the one employed for CeSF.

We stress that the exchange interactions for CeSF (J = 0.70 eV) and Ce2O3 (J = 0.69 eV)
are very close. This confirms the previous statement that J does not depend much on the crystal
structure.

For further comparison, we deduce for Ce2O3 an effective interaction Ueff = U − J = 0.34
Ry, which is in reasonable agreement withUeff = 0.4 Ry employed in GW@LDA+U calculations
by [Jiang et al. (2009)].

In the following, we show the spectra calculated by LDA+DMFT within the LMTO-ASA

framework and using Coulomb interactions on f shells from cRPA [Tomczak et al. (2012)]. The

self-consistency over the charge density was performed in LDA+DMFT but the self-consistency

over the polarization for cRPA was not implemented.
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8.2.4 Application : the ab initio k-resolved spectral function

Figure 8.11: (a) The CeSF crystal structure. The red, yellow and gray balls represent Ce, S and F, respectively.
(b-e) The total (b), partial Ce 4f (c), S 3p (d) and Ce 5d (e) LDA+DMFT k-resolved spectral functions. (f) The
total (black curve) as well as partial Ce 4f (red curve), S 3p(blue curve) and Ce 5d (green curve) integrated spectral
functions (see [Tomczak et al. (2012)] for more details).

The LDA+DMFT scheme used by [Tomczak et al. (2012)] was implemented within the
LMTO-ASA framework. The Hubbard-I approximation was employed as a quantum impurity
solver. The full self- consistency over the charge density was also performed (see Chapter 3).
Spin-orbit coupling has been taken into account through the second variation method.
The local Coulomb interaction parameters U = 4.8 eV and J = 0.70 eV on Ce 4f shell were
determined by cRPA employing the paramagnetic DFT-LDA band structure of CeSF without
spin-orbit coupling for computational reasons (Tab. 8.5).

As mentioned earlier, the local density approximation leads to a rather expected significant
underestimation of the semiconducting gap between S 3p and lanthanide 5d bands in the rare-
earth fluorosulfides. In LaSF, the error yields about 0.8 eV. The LDA+DMFT approach employed
in [Tomczak et al. (2012)], does not contain corrections for this LDA error, which is due to long-
range correlations in the semi-conducting bands. As shown in Fig. 8.10, the GW approximation
in CeSF increases the pd gap by inducing a shift for 5d bands and not for 3p ones. An ad hoc

scissor-like correction term can hence be used for circumventing this LDA error in CeSF : in the
one-electron Hamiltonian, a constant upward shift for 5d states of 2.5 eV is added in order to
correct for the ∼ 0.8 eV band gap underestimation in LaSF.

The LDA+DMFT k-resolved spectrum is shown in Fig. 8.11. The red curve indicates the
multiplet structure of the 4f states.
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According to this calculation, one attributes the 2.8 eV optical gap in CeSF to the inter-atomic 3p-
4f transitions. Further analyzes of the optical properties of CeSF so calculated within LDA+DMFT
and supporting this interpretation are given in [Tomczak et al. (2012)].

8.2.5 Conclusions

The LDA+DMFT approach, where the f -restricted Hubbard Hamiltonian was constructed within
cRPA and solved by DMFT within the Hubbard-I approximation, is able to catch the insulating
state of CeSF compounds. A scissor-like correction in agreement with GW calculations, was
employed for correcting for the LDA underestimate of the p-d gap.

In contrast to previous studies by [Goubin et al. (2004), Pauwels(2003)], the optical gap
around 2 eV leading to the red color of CeSF, is attributed to the inter-atomic 3p-4f transi-
tions. The calculations of the optical properties based on LDA+DMFT are reported in [Tomczak
et al. (2012)].
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Conclusions and outlook

The goal of the present thesis was the determination of Coulomb interactions in correlated solids
from first principles. To achieve this, we have implemented the constrained-random phase ap-
proximation (cRPA) method starting from an Hamiltonian taken from density functional theory,
implemented within the linearized augmented plane wave framework (Fig. 4.5). The method
gives access to the matrix elements of the Hubbard interaction matrix in a localized basis set of
a downfolded lattice Hamiltonian. The strength of the Coulomb interactions is parametrized by
the Hubbard U and Hund’s exchange J , which are crucial for the description of correlated elec-
tron systems within interacting lattice Hamiltonians. Furthermore, the full energy-dependence of
these parameters is calculated, which enables one to consider the effects of dynamical screening.

Several definitions of U exist in the literature, which may lead to confusion. In this thesis,
we stress that values for these parameters must always be reported together with the model it is
used with. U first introduced in the single-orbital Hubbard-Kanamori-Gutzwiller model, as the
Coulomb energy cost for placing two electrons at the same atomic site in a localized orbital,
is also employed as a fitting parameter for experimental spectra. On the other hand, several
schemes have been proposed for the first principles evaluation of U .
We argue that the confusion can be explained by the following statement : U itself is not a
physical observable, whereas U and the model considered, become well defined. Consequently,
addressing values for Coulomb interactions but without the indication of the model, does not
have any meaning.
In spectroscopy experiments, for materials with strongly localized electrons, multiplet structures
may lead to an unambiguous determination of U (see for example the photoemission spectrum of
CuO in Chapter 4, Fig. 4.2). In this case, one could argue that U itself is a physical observable,
which can be measured experimentally. However, this is actually biased by the fact that a natural
localized basis has emerged in this system. A majority of correlated materials, because of e.g.
hybridization effects or spin-orbit coupling, do not display a spectrum that leads to such a natural

choice of a localized basis. Therefore, such a choice (in other words, a model) has to be done
and we get back to the previous statement that only U together with the model considered are
well defined.
Even if values for U differ from one model to another, results for physical observables are the

same at the end, under the condition that the model is appropriate.

We have investigated this point for several materials and we have systematically indicated
the low-energy model constructed.
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To benchmark our approach, SrVO3 perovskite and iron-based pnictides were considered. The
results agree with the ones reported in the literature. A calculation of Slater integrals was also
introduced in order to parametrize efficiently the effective four-index Coulomb matrix without
referring to the Slater integrals atomic ratio F4/F2.

Since both U and J depend on the model considered for a given compound, so do their
trends for a family of these compounds. When employing extended Wannier functions in the 3d
perovskite family SrMO3 (M=V, Cr, Mn), effective Coulomb interactions decrease with the d oc-
cupation number as a consequence of the increasing screening (Fig. 7.3). This is in contrast with
generally spread ideas but can be rationalized by the increasing charge transfer energy with the
oxygen ligands through the series. However, atomic-like behavior is recovered when employing
more localized Wannier functions.
Compared to their isoelectronic and isostructural analogues, 4d transition metal oxides SrMO3

(M=Nb, Mo, Tc) exhibit weaker screening effects within an extended Wannier basis. This sur-
prisingly leads to an effective larger on-site repulsion on 4d shells than on 3d (Fig. 7.5). However,
atomic-like trends are recovered when employing a more atomic-like Wannier basis and the re-
pulsion becomes larger on 3d shells as commonly expected from physical intuition.
Similar conclusions were established for the effective Coulomb interactions in the layered per-
ovskites Sr2MO4 (M=Mo, Tc, Ru, Rh) (Fig. 7.12).

Within this framework, we stressed out that an ab initio Hamiltonian of multi-orbital Hub-
bard type is defined. The Hamiltonian can then be solved by any appropriate many-body method.
In Chapter 8 of this thesis, an ab initio LDA+cRPA+DMFT approach was employed. This
scheme consisted in determining the interaction parameters within the cRPA and combining it
with LDA+DMFT in a fully consistent way.
It was applied to the layered perovskite Sr2IrO4 and Sr2RhO4, which both exhibit significant
spin-orbit coupling and distortions but different electronic properties. This study was done in
collaboration with C. Martins et al. [Martins et al. (2011)] who did the LDA+DMFT calcula-
tions. At room temperature, Sr2IrO4 is a paramagnetic Mott insulator, whereas Sr2RhO4 is a
paramagnetic metal. Such different behavior can be related to the larger spin-orbit coupling and
the weaker static screening in Sr2IrO4, leading to an effective single-band model where the effec-
tive Coulomb interaction is larger than the critical value (Fig. 8.4). On the other hand, Sr2RhO4

is mapped onto a quarter-filled two-band Hubbard model with a smaller effective interaction.
This leaves Sr2RhO4 metallic even if it is on the verge of the metal-insulator transition (Fig. 8.5).
As a last application, we have described the electronic structure of the rare-earth fluorosulfide
CeSF compounds for which we calculated the effective Coulomb interactions. This project
was done in collaboration with L. Pourovskii, J. Tomczak et al. [Tomczak et al. (2012)] who
did the LDA+DMFT calculations within the Hubbard-I approximation. Systems including par-
tially filled f shells are challenging systems for first principles methods. The ab initio spectrum
(Fig. 8.11) indicates that, in contrast to previous beliefs, the inter-atomic 3p-4f transitions are at
the origin of the red color of the pigment.

Several extensions can be addressed into the future. A first logical one is technical. It would
be interesting to carry out calculations on larger systems, displaying distortions for instance. An-
other important technical improvement would be the implementation of the spin-orbit coupling.
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Indeed, the interplays of spin-orbit coupling and electronic Coulomb interactions are relevant in
many materials, as shown in Sr2IrO4 and Sr2RhO4 for example.

A reliable approach for materials including entangled correlated and itinerant states, is also
desirable. A majority of correlated materials indeed exhibit an electronic structure with localized
states overlapping with itinerant ones (Fig. 4.8). This makes the standard cRPA method rather
inappropriate. We have introduced a projection method based on the projection of the polariza-

tion onto the correlated subspace defined by a set of target bands. The calculations performed on
the 3d transition metal series are promising and encourage further investigations. Applications
for materials like cerium, cuprates and iron-based pnictides are currently in development. The
questions regarding which physical models are appropriate, are particularly relevant.

The combination of the energy-dependent HubbardU(ω) with many-body solvers like LDA+DMFT,
also represents a great challenge for the future. Methods in this direction have been recently pro-
posed. The results show that the dynamical structure of U with plasmonic excitations (Fig. 4.9)
has consequences on the spectral properties of SrVO3 [Casula et al. (2012a)] and BaFe2As2
compounds [Werner et al. (2012), Casula et al. (2012b)].

We finish with the project of developing of a truly first principles LDA+DMFT scheme with
an update of the polarization within cRPA (Fig. 4.7). This would allow for a better descrip-
tion of the screening in strongly correlated materials like Mott insulators and can be seen as an
approximation to the GW+DMFT method.

Alternatively to DMFT, a combination with diagrammatic Monte-Carlo approaches [Kozik
et al. (2011)] to go beyond the GW approximation, is currently in development.
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Appendix A

Projected Wannier functions within the

(L)APW+lo framework

A.1 Augmented plane waves

In this thesis, the Kohn-Sham wave functions |ψkν〉 are expanded into augmented plane waves
((L)APW+lo) as implemented in the electronic structure code WIEN2K [Blaha et al. (2001)].
Such a basis set is adapted for the shape of the nuclear potential, which varies smoothly in the
interstitial region between the atoms and is atomic-like near the atomic nuclei. The crystal is
hence divided into non-overlapping muffin-tin spheres (Sα

MT ) centered at the atomic sites α and
interstitial regions (IPW) in between (Fig. 2.1).

The original augmented plane waves (APW) basis set was energy-dependent, since the ra-
dial solutions of the Scrödinger equation expanding a Kohn-Sham eigenstate inside Sα

MT had to
be evaluated at the corresponding eigenenergy. Linearized versions of APW have hence been
introduced, in order to avoid such complication.

Linearized augmented plane waves (LAPW)

In the linearized augmented plane wave (LAPW) method [Andersen(1975), Singh(1994)], the
plane wave is augmented with muffin-tin spheres by a combination of radial solutions, evaluated
at chosen linearization energies E1l, and their energy derivatives. The linearized augmented
plane wave functions φk

G(r) then reads as

φk
G(r) =

{

1√
Ω

ei(k+G)·r if r ∈ IPW
∑

lm[A
α,k+G

lm uα,σl (r, Eα
1l) + Bα,k+G

lm u̇α,σl (r, Eα
1l)]Ylm(θ, φ) if r ∈ Sα

MT ,
(A.1)

where G are reciprocal lattice vectors and Alm, Blm are determined from the requirement for
φk
G(r) to be continuous at the sphere boundaries.
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Local orbitals (LO) for semicore states in LAPW

Local orbitals (LO) can be introduced for semicore states, for which a single set of reference
energies E1l is inappropriate. A second set of reference energies E2l is hence employed. They
are denoted with capital letters (LO) as in the following and are defined only in the muffin-tin
spheres (thus zero in the interstitial regions) :

φLO
lm,α(r) = [Aα,LO

lm uα,σl (r, Eα
1l) + Bα,LO

lm u̇α,σl (r, Eα
1l) + Cα,LO

lm uα,σl (r, Eα
2l)]Ylm(θ, φ),

(A.2)

where Alm, Blm, Clm coefficients are determined by requiring the local orbital and its radial
derivative to be zero at the sphere boundaries.

Compared to the energy-dependent APW, a larger number of LAPW’s in the basis set is
usually required to attain the same accuracy [Singh(1994)]. This gives motivation to another
linearization method called APW+lo, as introduced by [Sjöstedt et al. (2000)].

Augmented plane waves within local orbitals (APW+lo)

The APW+lo basis set is based on the evaluation of the augmented plane waves but at a fixed
energy E1l :

φk
G(r) =

{

1√
Ω

ei(k+G)·r if r ∈ IPW
∑

lmA
α,k+G

lm uα,σl (r, Eα
1l)Ylm(θ, φ) if r ∈ Sα

MT ,
(A.3)

where the coefficient Alm is set as previously in LAPW, in such a way that φk
G(r) are continuous

at the sphere boundaries. The fixed-energy APW’s (Eq. A.3) are supplemented for the physically
important orbitals (with l ≤ 3) by a set of local orbitals (lo) that are defined only in the muffin-tin
spheres (thus zero in the interstitial regions) :

φlo
lm,α(r) = [Aα,lo

lm uα,σl (r, Eα
1l) + Bα,lo

lm u̇α,σl (r, Eα
1l)]Ylm(θ, φ), (A.4)

where Alm, Blm coefficients are chosen in such a way that the local orbital as well as its slope,
are zero at the sphere boundaries [Sjöstedt et al. (2000)].

Local orbitals (LO) for semicore states in APW+lo

In a similar way than in LAPW, one can employ additional local orbitals φLO
lm,α to account for the

semi-core states. The expression is the same than Eq. A.2 but the coefficient Blm is set to zero.
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General expansion of the Kohn-Sham states

Generally, in the full-potential augmented plane-wave method, the LAPW, APW+lo and LO
types of orbitals can be used simultaneously. This leads to the general expansion for the Kohn-
Sham eigenstates ψσ

kν(r), as given in Chapter 2 (Eq. 2.12)

ψσ
kν(r) =

1√
Ω

NPW
∑

G

cνσG (k)ei(k+G)·r if r ∈ IPW (A.5)

=

NPW
∑

G

cνσG (k)
∑

lm

Aα,k+G

lm uα,σl (r, Eα
1l)Ylm(θ, φ) if r ∈ Sα

MT (A.6)

+

Nlo
∑

nlo=1

cν,σlo [Aα,lo
lm uα,σl (r, Eα

1l) + Bα,lo
lm u̇α,σl (r, Eα

1l)]Ylm(θ, φ)

+

NLO
∑

nLO=1

cν,σLO [A
α,LO
lm uα,σl (r, Eα

1l) + Cα,LO
lm uα,σl (r, Eα

2l)]Ylm(θ, φ),

where NPW, nlo, nLO are the total number of plane waves in the interstitial region, the number of
local orbitals (lo) for Eq. A.4 and the number of local orbitals (LO) for semicore states, respec-
tively.

A.2 Wannier functions

Projected Wannier-like functions have been recently implemented in the (L)APW+lo framework
by [Aichhorn et al. (2009)]. It is an important step in the LDA+DMFT implementation. An
exhaustive presentation of such localized basis functions is also given in [Martins(2010)].

Projected Wannier functions

In Chapter 3, we already explained the basics of the projection procedure for the construction
of Wannier functions. We started from a set of local atomic-like orbitals |χασ

km〉 which can be
expanded over the full Bloch basis set (Eq. 3.15).1 After the truncation of this expansion for the
states within a given energy window W, we get a set of orbitals |χ̃ασ

km〉 (Eq. 3.16). We denote as
P̃ασ
mν(k) the matrix elements of the projection operator for this subset :

P̃α,σ
mν (k) = 〈χ̃ασ

km|ψσ
kν〉, ν ∈ W. (A.7)

In general, the transformation above is not-unitary and hence the matrices P̃α,σ are non-square
matrices. The last step of the construction is the orthonormalization of this set of orbitals. The

1For the simplicity of the notations, we identify in the following the Bloch basis set with the Kohn-Sham one.
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resulting orthonormal orbitals |φασ
km〉 are promoted to Wannier functions :

|φασ
km〉 =

∑

α′,m′

Sα,α′

m,m′ |χ̃α′

km′〉, (A.8)

where Sα,α′

m,m′ =
[

O(k, σ)−1/2
]α,α′

m,m′

and Oα,α′

m,m′(k, σ) = 〈χ̃α,σ
km|χ̃α′,σ

km′〉 are the overlap matrix ele-

ments. Introducing the projectors in the formula leads to :

Oα,α′

m,m′(k, σ) =
∑

ν∈W
P̃α,σ
mν (k)[P̃

α′,σ
m′ν (k)]

∗ (A.9)

and for the projectors that we have used throughout this thesis (Eq. 3.17)

Pα,σ
mν (k) =

∑

α′,m′

[

O(k, σ)−1/2
]α,α′

m,m′

P̃α′,σ
m′ν (k). (A.10)

In the (L)APW+lo framework

The solutions of the Schrödinger equation within the muffin-tin spheres, |uα,σl (r, E1l)Ylm(θ, φ)〉,
at the linearization energy E1l, are chosen for representing the “initial” correlated orbitals |χα,σ

m 〉.
Within the relations between the radial solutions and their energy derivatives

〈uα,σl (E1l)Ylm|uα,σl′ (E1l)Yl′m′〉 = δll′δmm′ (A.11)

〈uα,σl (E1l)Ylm|u̇α,σl′ (E1l)Yl′m′〉 = 0 (A.12)

〈uα,σl (E1l)Ylm|uα,σl′ (E2l)Yl′m′〉 = Õα,σ
lm,l′m′ 6= 0 (A.13)

it follows for P̃α,σ
mν

P̃α,σ
mν = 〈uα,σl (E1l)Ylm|ψσ

kν〉 = Aν,α
lm (k, σ) +

NLO
∑

nLO

Cν,α
lm,LO(k, σ). (A.14)

In this expression, Alm coefficients read as

Aν,α
lm (k, σ) =

NPW
∑

G

cν,σG (k)Aα,k+G

lm +

Nlo
∑

nlo

cν,σlo A
α,lo
lm

+

NLO
∑

nLO

cν,σLOA
α,LO
lm (A.15)

and

Cν,α
lm,LO(k, σ) = cν,σLOC

α,LO
lm Õα,σ

lm,l′m′ . (A.16)

We finally orthonormalize the orbitals |χ̃α
km〉 and we deduce the projectors Pα,σ

mν (k) that were
also employed in the cRPA implementation.



Appendix B

Slater integrals

B.1 Slater integrals in a cubic crystal field

If d-electrons in crystals are relatively localized around the nuclei, it is reasonable to assume
that the t2g and eg wavefunctions have pure d-character and are thus linear combination of the
spherical harmonics φdm(r) = Rd(r)Ydm(θ, φ) (Tab. B.1).
Let us call v̄t2gmm the following intra-t2g atomic Coulomb repulsion (thus without any screening

effect) :

v̄t2gmm =

∫

d3r1d
3r2(i/

√
2)(φ∗

d2(r1)− φ∗
d−2(r1))(i/

√
2)(φ∗

d2(r2)− φ∗
d−2(r2))

× 1

r12
(−i/

√
2)(φd2(r1)− φd−2(r1))(−i/

√
2)(φd2(r2)− φd−2(r2)) (B.1)

If we adopt same conventions than in [Sugano et al. (1970)], we can write the above expression
as :

v̄t2gmm =
1

4

[

〈22||22〉+ 〈−2− 2|| − 2− 2〉+ 〈2− 2||2− 2〉

+〈−22|| − 22〉+ 〈2− 2|| − 22〉+ 〈−22||2− 2〉
]

, (B.2)

where

〈m1m2||m′
1m

′
2〉 ≡

∫

d3r1d
3r2φ

∗
dm1

(r1)φ
∗
dm2

(r2)
1

r12
φdm′

1
(r1)φdm′

2
(r2), (B.3)

t2g ζ = dyz = (i/
√
2)(φ1 + φ−1) η = dxz = (−1/

√
2)(φ1 − φ−1) ξ = dxy = (−i/

√
2)(φ2 − φ−2)

eg u = d3z2−r2 = φ0 v = dx2−y2 = (φ2 + φ−2)/
√
2

Table B.1: t2g and eg states as linear combination of the spherical harmonics φdm in a cubic crystal field,
assuming that the d-electrons are well localized around the nuclei [Sugano et al. (1970)].
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which are non-zero if m1 +m2 = m′
1 +m′

2.

Expanding 1/r12 into Legendre polynomials, one can show that [Sugano et al. (1970)]

1/|r1 − r2| =
∞
∑

k=0

4π

2k + 1

rk<
rk+1
>

k
∑

q=−k

Ykq(θ1, φ1)Y
∗
kq(θ2, φ2), (B.4)

and it follows (within d orbitals) :

〈m1m2||m′
1m

′
2〉 = δ(m1 +m2,m

′
1 +m′

2)(−1)m1−m′

1

∑

k

ck(m1,m
′
1)c

k(m2,m
′
2)F

k
bare,

(B.5)

where we have introduced the Slater integrals Fk
bare as follows (see Eq. 5.57)

Fk
bare =

∫ ∞

0

r21dr1

∫ ∞

0

r22dr2
rk<
rk+1
>

R(r1)
2R(r2)

2. (B.6)

r<(r>) is the lesser (greater) of r1 and r2.

On the other hand, ck(m,m′) are well-known numbers that are listed in [Sugano et al. (1970)]
(p.11) due to specific selection rules due to spherical harmonics:

ck(m,m′) =

√

4π

2k + 1

∫

dθ sin θdφY ∗
l,m(θ, φ)Yk,m−m′(θ, φ)Yl′,m′(θ, φ). (B.7)

In particular, we have :

〈22||22〉 = 〈−2− 2|| − 2− 2〉 = 〈2− 2||2− 2〉 = 〈−22|| − 22〉
= F0

bare +
4

49
F2

bare +
1

441
F4

bare (B.8)

〈2− 2|| − 22〉 = 〈−22||2− 2〉 = 70

441
F4

bare (B.9)

〈00||00〉 = F0
bare +

4

49
F2

bare +
4

49
F4

bare (B.10)

〈11||11〉 = 〈−1− 1|| − 1− 1〉 = 〈1− 1||1− 1〉 = 〈−11|| − 11〉
= F0

bare +
1

49
F2

bare +
16

441
F4

bare (B.11)

〈1− 1|| − 11〉 = 〈−11||1− 1〉 = 6

49
F2

bare +
4

10
F4

bare. (B.12)

This leads to the following density-density interaction matrices for the atom in terms of the
Slater integrals 1 2

v̄σσ̄mm′ |Slater =













〈−2− 2|| − 2− 2〉 . . . .
〈−2− 1|| − 2− 1〉 〈−1− 1|| − 1− 1〉 . . .

〈−20|| − 20〉 〈−10|| − 10〉 〈00||00〉 . .
〈−21|| − 21〉 〈−11|| − 11〉 〈0− 1||0− 1〉 〈11||11〉 .
〈−22|| − 22〉 〈−12|| − 12〉 〈02||02〉 〈12||12〉 〈22||22〉













,

1In solids, these matrices would be the bare reduced interaction matrices with spherical symmetry.
2As the matrices are symmetric, only the half is shown.
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J̄bare
mm′ |Slater =













0 . . . .
〈−2− 1|| − 1− 2〉 0 . . .

〈−20||0− 2〉 〈−10||0− 1〉 0 . .
〈−21||1− 2〉 〈−11||1− 1〉 〈0− 1|| − 10〉 0 .
〈−22||2− 2〉 〈−12||2− 1〉 〈02||20〉 〈12||21〉 0













,

v̄σσmm′ |Slater = (1− δmm′)(v̄σσ̄mm′ |Slater − J̄bare
mm′ |Slater)

In Chapter 5, we called Fk
bare such Slater integrals, since the screening has not been taken into

account. In the next section, we show that Slater integrals Fk can also be constructed in a similar
manner but for the screened Coulomb repulsion Um1m2m3m4 .

Atomic interactions between t2g orbitals

Coming back to Eq. B.2, one can derive an expression for the atomic intra-orbital Coulomb
repulsion v̄t2gmm (equivalent to the bare t2g interaction v̄mm, see Eq. 5.70) :

v̄t2gmm = F0
bare +

4

49
F2

bare +
4

49
F4

bare. (B.13)

Following the same method but for other combinations of spherical harmonics, we deduce ex-
pressions for the bare exchange interactions v̄mm′ and J̄bare

m :

v̄
t2g
mm′ = F0

bare −
2

49
F2

bare −
4

441
F4

bare (B.14)

J̄bare
t2g

=
3

49
F2

bare +
20

441
F4

bare (B.15)

One verifies that in the cubic crystal field, v̄t2gmm′ = v̄
t2g
mm − 2J̄bare

t2g
.

Atomic interactions between eg orbitals

In a similar way than previously, one deduces the atomic interactions, but for the eg orbitals :

v̄egmm = v̄t2gmm (B.16)

v̄
eg
mm′ = F0

bare −
4

49
F2

bare +
6

441
F4

bare (B.17)

J̄bare
eg =

4

49
F2

bare +
15

441
F4

bare (B.18)

The relation v̄egmm′ = v̄
eg
mm − 2J̄bare

eg still holds within the eg subspace.
We can also derive the interaction parameters between t2g and eg orbitals (see Tab. B.1 for
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(ζ, η, ξ, u, v) notations) :

v̄mm′(ζu) = v̄mm′(ξu) = v̄mm′(ηu) = F0
bare −

4

49
F2

bare +
6

441
F4

bare (B.19)

v̄mm′(ζv) = v̄mm′(ξv) = v̄mm′(ηv) = F0
bare +

4

49
F2

bare −
34

441
F4

bare (B.20)

J̄bare(ζu) = J̄bare(ξu) = J̄bare(ηu) =
4

49
F2

bare +
15

441
F4

bare (B.21)

J̄bare(ζv) = J̄bare(ξv) = J̄bare(ηv) =
35

441
F4

bare (B.22)

All these interaction terms can be extended to the case where the screening reduces the bare
interaction to an effective screened interaction. In that case, one needs to introduce a set of Slater
integrals Fk (see next section). Equivalent relations then hold, but for the Hubbard interactions
Ūmm, Ūmm′ and J̄m.

Other conventions : Slater-Condon and Racah parameters

Other conventions are sometimes introduced in the literature. Slater-Condon parameters (F(bare)
0 , F(bare)

2 , F(bare)
4 )

are defined as :

F0 = F0 (B.23)

F2 =
1

49
F2 (B.24)

F4 =
1

441
F4. (B.25)

On the other hand, one can also use the Racah parameters (A(bare), B(bare), C (bare)) :

A = F0 − 49

441
F4 (B.26)

B =
1

49
F2 − 5

441
F4 (B.27)

C =
35

441
F4. (B.28)

B.2 How to calculate Slater integrals from Um1m2m3m4 ?

In this paragraph, we indicate how to calculate an optimal set of Slater integrals that are adapted
to the screened Coulomb interaction matrix U spheric

m1m2m3m4
. For the definition of “spheric”, see

Chapter 5. We leave the definition of Hubbard U and Hund’s exchange J for the next section.
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U spheric
m1m2m3m4

(Fk)

We assume that the Coulomb interaction matrix within solids in the spherical symmetry can be
approximated by a finite set of Slater integrals Fk, 0 ≤ k ≤ 2l, where l is the orbital number.
The following relation is obtained by the extension of the definition of Slater integrals from the
atomic to the solid case :

U spheric
m1m2m3m4

=
2l
∑

k=0

αk(m1,m2,m3,m4)Fk, (B.29)

whereas αk are known as the the Racah-Wigner coefficients, which are entirely determined by a
combination of spherical harmonics Ylm(θ, φ)

αk(m1,m2,m3,m4) =
4π

2k + 1

k
∑

q=−k

〈Ylm1 |YkqYlm3〉〈Ylm2Ykq|Ylm4〉. (B.30)

〈Yl1m1 |Yl2m2Yl3m3〉 notation correspond to the Gaunt coefficients.

In the following, we calculate specific Slater integrals within solids but the angular part is
approximated to the atomic one αk(m1,m2,m3,m4).

Notations

We need to introduce notations for Racah-Wigner 3j-symbols

[

l k l
−m1 q m3

]

and Wigner 3j-

symbols

(

l k l
−m1 q m3

)

. They are related by a phase factor

[

l k l
−m1 q m3

]

= (−1)l−k−m1

(

l k l
−m1 q m3

)

. (B.31)

Non-zero values of Wigner 3j-symbols are constrained by the following selection rule :

(

l k l
−m1 q m3

)

6= 0 if −m1 + q +m3 = 0. (B.32)

The Gaunt coefficients can then be expressed in terms of the Racah-Wigner 3j-symbols such as 3

< Ylm1 |YkqYlm3 > = (2l + 1)

√

2k + 1

4π

[

l k l
0 0 0

] [

l k l
−m1 q m3

]

(B.33)

3We remind the reader that Y ∗
kq = (−1)qYk,−q .
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It follows for Eq. B.29 once the Gaunt coefficients have been replaced by the above relation
(Eq. B.33) :

U spheric
m1m2m3m4

= (2l + 1)2
2l
∑

k=0

Fk

[

l k l
0 0 0

]2 k
∑

q=−k

(−1)q
[

l k l
−m1 q m3

] [

l k l
−m2 −q m4

]

(B.34)

= (2l + 1)2
2l
∑

k=0

Fk

(

l k l
0 0 0

)2 k
∑

q=−k

(−1)m1+m2+q

(

l k l
−m1 q m3

)(

l k l
−m2 −q m4

)

(B.35)

Fk(U spheric
m1m2m3m4

)

We first remind the reader the result (Eq. 5.62) we want to demonstrate in this section :

F k(ω) = Cl,k
∑

m1,m2,m3,m4

(−1)m1+m4U spheric
m1m2m3m4

(ω)

(

l k l
−m1 m1 −m3 m3

)(

l k l
−m2 m2 −m4 m4

)

,

(B.36)

where the coefficients Cl,k read as

Cl,k =
2k + 1

(2l + 1)2
(

l k l
0 0 0

)2 . (B.37)

By inverting the Eq. B.35, one can have access to the Slater integrals as function of the Coulomb
matrix elements, which we have calculated in the spherical representation. The role of these
Slater integrals is to parametrize the whole Coulomb matrix. They are employed in a second
time for constructing the Coulomb interaction matrix, but with appropriate symmetry for the
low-energy solver (see Eq. 5.64). Furthermore, since the Coulomb matrix elements depend on
the frequency (see Chapter 4), it follows that the Slater integrals are also frequency-dependent.
In the future, this will be useful for taking into account the dynamical screening in the solution
of the extended Hubbard model.

Demonstration

Let us start from the following auxiliary quantity F aux

F aux =
∑

m1,m2,m3,m4

< Ylm1 |Yk,q13Ylm3 > U spheric
m1m2m3m4

< Ylm2Yk,q24 |Ylm4 > (B.38)

=(2l + 1)2
2k + 1

4π

[

l k l
0 0 0

]2
∑

m1,m2,m3,m4

[

l k l
−m1 q13m3

]

(−1)q24
[

l k l
−m2 −q24m4

]

U spheric
m1m2m3m4

,
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which consists in summing the Coulomb matrix elements in the spherical symmetry with the
Gaunt coefficients which are employed in Eq. B.30.

Referring to the relation between U spheric
m1m2m3m4

and the Slater integrals (Eq. B.29), it follows
for the intermediate quantity I ,

I =
∑

m1,m2,m3,m4

[

l k l
−m1 q13 m3

]

(−1)q24
[

l k l
−m2 −q24 m4

]

U spheric
m1m2m3m4

(B.39)

= (2l + 1)2
∑

m1,m2,m3,m4

(−1)q24
[

l k l
−m1 q13 m3

] [

l k l
−m2 −q24 m4

]

×
∑

k′

Fk′
[

l k′ l
0 0 0

]2 k′
∑

q=−k′

(−1)q
[

l k′ l
−m1 q m3

] [

l k′ l
−m2 −q m4

]

= (2l + 1)2
∑

k′

Fk′
[

l k′ l
0 0 0

]2 k′
∑

q=−k′

(−1)q (B.40)

×
∑

m1,m2,m3,m4

[

l k l
−m1 q13 m3

] [

l k′ l
−m1 q m3

]

(−1)q24
[

l k l
−m2 −q24 m4

] [

l k′ l
−m2 −q m4

]

Orthogonality relations

We replace the Racah-Wigner 3j-symbols by the corresponding Wigner 3j-symbols (Eq. B.31)
and it follows for I :

∑

m1,m3

[

l k l
−m1 q13 m3

] [

l k′ l
−m1 q m3

]

= (−1)k+k′
∑

m1,m3

(

l k l
−m1 q13 m3

)(

l k′ l
−m1 q m3

)

By employing the following orthogonality-like relations [Slater(1960)] :

(2j + 1)
∑

m1,m2

(

j1 j2 j
m1 m2 m

)(

j1 j2 j′

m1 m2 m′

)

= δjj′δmm′

the expression for I simplifies :

∑

m1,m3

[

l k l
−m1 q13 m3

] [

l k′ l
−m1 q m3

]

= (−1)k+k′ 1

2k + 1
δk,k′δq,q13

∑

m2,m4

(−1)q24
[

l k l
−m2 −q24 m4

] [

l k′ l
−m2 −q m4

]

= (−1)q+k+k′ 1

2k + 1
δk,k′δq,q24
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and hence one gets for I :

I =(2l + 1)2
∑

k′

Fk′
[

l k′ l
0 0 0

]2 k′
∑

q=−k′

(−1)q
∑

m1,m2,m3,m4

(−1)q
1

(2k + 1)2
δk,k′δq,q13δq,q24

=(2l + 1)2Fk

[

l k l
0 0 0

]2
1

(2k + 1)2

∑

m1,m2

k
∑

q=−k

δq,m1−m3δm1−m3,m2−m4

=(2l + 1)2Fk

[

l k l
0 0 0

]2
1

(2k + 1)2
(2k + 1), (B.41)

where we used q13 = m1 −m3 and q24 = m2 −m4 from the property of the non-zero Wigner
3j-symbols (Eq. B.32). Only inequivalent combinations of (m1,m2,m3,m4) orbital numbers
for each k have to be retained in this summation. The number of these combinations is set to
(2k + 1).

It follows for the auxiliary quantity F aux :

F aux =
2k + 1

4π
Nl,k Fk, (B.42)

where Nl,k is defined as :

Nl,k =

(2l + 1)4
[

l k l
0 0 0

]4

2k + 1
. (B.43)

Final expression

We finally deduce for the Slater integrals

Fk =
4π

2k + 1

1

Nl,k

F aux (B.44)

=
4π

2k + 1

1

Nl,k

∑

m1,m2,m3,m4

< Ylm1 |Yk,m1−m3Ylm3 > U spheric
m1m2m3m4

< Ylm2Yk,m2−m4 |Ylm4 >,

(B.45)

This relation is analogous to the one given in [Kutepov et al. (2010)].
Employing the Wigner 3j-symbols, we get the expression B.36 given at the beginning :

F k(ω) = Cl,k
∑

m1,m2,m3,m4

(−1)m1+m4U spheric
m1m2m3m4

(ω)

(

l k l
−m1 m1 −m3 m3

)(

l k l
−m2 m2 −m4 m4

)

,

(B.46)

where the coefficients Cl,k read as

Cl,k =
2k + 1

(2l + 1)2
(

l k l
0 0 0

)2 . (B.47)
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How good is the parametrization?

In order to have an idea of how good the parametrization of a four-index matrix is within the
Slater integrals, one can calculate an updated Coulomb interaction matrix but starting from the
Slater integrals :

Ū (Slater)
m1m2m3m4

(ω) =
2l
∑

k=0

αk(m1,m2,m3,m4)Fk(ω). (B.48)

In particular, one can compare the on-site interactions Ūmm and exchange interactions J̄m to the
directly calculated ones (see Fig. 5.1). In Chapter 6, the results are in well agreement for SrVO3.
The parametrization for pnictides is also discussed in Chapter 6.

Some numbers

We remind the reader that the quantities
(

l k l
0 0 0

)

are well defined by :

(

l k l
0 0 0

)

= (−1)g

√

[(2g − 2l)!]2(2g − 2k)!

(2g + 1)!

g!

[(g − l)!]2(g − k)!
if 2l+k = 2g (0 otherwise)

(B.49)
This leads in particular to :

• for k = 0, we get g = l and then
(

l 0 l
0 0 0

)

= (−1)l
√

1

2l + 1
(B.50)

It follows that

Nl,0 = (2l + 1)2 (B.51)

Cl,0 =
1

2l + 1
. (B.52)

• Considering l = 2, k = 2,

Nl=2,k=2 = (2l + 1)3
(

l l l
0 0 0

)4

. (B.53)

Since
(

2 2 2
0 0 0

)

= −
√

8
7!
· 6, one deduces

N2,2 = 53(
8

7!
)264 = 5(

5 · 8 · 6 · 6
7!

)2 = 5(
2

7
)2 ∼ 0.408
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• Considering l = 2, k = 4,

Nl=2,k=4 =
(2l + 1)4

9

(

2 4 2
0 0 0

)4

. (B.54)

Since
(

2 4 2
0 0 0

)

= (4!)2√
9!

1
4
, one deduces

Nl=2,k=4 =
54

9
(
(4!)2

4 ·
√
9!
)4 = (

5 · 4! · 3!
3

)2(
5 · 4! · 3!

9!
)2 = (

5 · 4! · 3!
3

)2(
1

9 · 8 · 7)
2 = (

10

21
)2 ∼ 0.226

B.3 Hubbard U and Hund’s coupling J

Following [Anisimov et al. (1993)], one can define from the Slater integrals the Hubbard U and
Hund’s exchange J for a model that includes all the d (or f ) orbitals. All the following relations
can be adapted to the definition of v and Jbare but starting from (F0

bare, F
2
bare, F

4
bare).

Hubbard U

The Hubbard U parameter is defined as the average over all possible pairs (m,m′) such as :

U ≡ 1

(2l + 1)2

∑

mm′

2l
∑

k=0

αk(m,m
′,m,m′)Fk, (B.55)

where αk are some particular Racah-Wigner coefficients which we have defined in a more general
way in Eq. B.30 :

αk(m,m
′,m,m′) =

4π

2k + 1

k
∑

q=−k

〈Ylm|YkqYlm〉〈Ylm′Ykq|Ylm′〉, (B.56)

and 〈Ylm|YkqYlm〉 are integrals over products of three spherical harmonics Ylm. Replacing the
Gaunt coefficients by the corresponding Racah-Wigner 3j-symbols (Eq. B.33), it follows :

U =
1

(2l + 1)2

∑

k

Fk 4π

2k + 1

∑

mm′

k
∑

q=−k

(−1)q(2l + 1)2
2k + 1

4π

[

l k l
0 0 0

]2 [
l k l

−m q m

] [

l k l
−m′ −q m′

]

=
∑

k

Fk
∑

mm′

k
∑

q=−k

(−1)q
(

l k l
0 0 0

)2

(−1)m
(

l k l
−m q m

)

(−1)m
′

(

l k l
−m′ −q m′

)

=
∑

k

Fk

(

l k l
0 0 0

)2 l
∑

m=−l

(−1)m
(

l k l
−m 0 m

) l
∑

m′=−l

(−1)m
′

(

l k l
−m′ 0 m′

)

. (B.57)
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We employed for the last equation, the condition B.32m−m+q = 0 and hence q = 0. Invoking
the following property of the Wigner 3j-symbols :

l
∑

m=−l

(−1)m
(

l k l
−m 0 m

)

= −
√

2l + 1

2k + 1
δk0, (B.58)

it follows for U :

U =
∑

k

Fk

(

l k l
0 0 0

)2
2l + 1

2k + 1
δk0

= F0 (B.59)

since
(

l 0 l
0 0 0

)2

= 1
2l+1

(Eq. B.50).

Hund’s exchange J

Hund’s exchange J is defined as :

J ≡ 1

2l(2l + 1)

∑

m 6=m′

∑

k

αk(m,m
′,m′,m)Fk (B.60)

=
1

2l(2l + 1)

∑

m 6=m′

∑

k

Fk 4π

2k + 1

k
∑

q=−k

|〈Ylm|YkqYlm′〉|2 (B.61)

=
2l + 1

2l

∑

k

Fk

(

l k l
0 0 0

)2 k
∑

q=−k

∑

m 6=m′

(−1)m+m′

(

l k l
−m q m′

)(

l k l
−m′ −q m

)

(B.62)

According to the condition B.32, it follows that only q = m−m′ terms lead to non-zero Wigner
3j-symbols. F0 only contributes via k = q = 0 but q = 0 6= m−m′ since m 6= m′. Therefore, J
does not depend on F0. For k 6= 0, one can still employ the orthogonality-like relation (Eq. B.41)
and hence :

J =
2l + 1

2l

∑

k 6=0

Fk

(

l k l
0 0 0

)2

(B.63)

It follows for d electrons that :

J =
2l + 1

2l
F2

(

2 2 2
0 0 0

)2

+
2l + 1

2l
F4

(

2 4 2
0 0 0

)2

=
5

4

8 · 36
7!

F2 +
5

4

(4!)4

16 · 9!F
4

=
F2 + F4

14
(B.64)
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And analogously for f electrons, one gets :

J =
2l + 1

2l
F2

(

3 2 3
0 0 0

)2

+
2l + 1

2l
F4

(

3 4 3
0 0 0

)2

+
2l + 1

2l
F6

(

3 6 3
0 0 0

)2

(B.65)

Employing the relation B.49, one can calculate values for
(

3 k 3
0 0 0

)

:

(

3 2 3
0 0 0

)

≈ 0.19518

(

3 4 3
0 0 0

)

≈ −0.16116

(

3 6 3
0 0 0

)

≈ 0.18248

and one verifies that

J =
286F2 + 195F4 + 250F6

6435
. (B.66)



Appendix C

Expansions of the symmetrized dielectric

functions at the Γ point

In this appendix, we indicate how to calculate the symmetrized dielectric function in the product

mixed basis used in our implementation. The method has been used in Chapter 5, at the end

of Section 5.1.5 (Eq. 5.40 and below). For additional details, see also [Jiang et al. (2012),

Li(2008)].

C.1 Plane wave expansion : head, wings, body

The bare Coulomb potential is diagonal in the plane wave basis :

vGG′ = δGG′

4π

|q +G|2 (C.1)

v
1
2

GG′ = δGG′

√
4π

|q +G| (C.2)

The symmetrized dielectric function then reads :

εGG′(q, ω) = δGG′ − 4π

|q +G||q +G′|PGG′(q, ω), (C.3)

where the polarization PGG′ is defined by :

PGG′(q, ω) =
1

N
∑

k

∑

nn′

MG
nn′(k, q)Fnn′k(q, ω)[M

G′

nn′(k, q)]∗. (C.4)

Fnn′k(q, ω) was introduced in Eq. 5.24 and MG
nn′(k, q) reads :

MG
nn′(k, q) =

∫

Ω

1

Ω1/2
e−i(q+G)·rψkn(r)ψ

∗
k−q,n′(r). (C.5)
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MG=0
nn′ (k, q → 0)

Using k ·p perturbation theory and taking into account the Bloch character of the eigenfunctions
ψkn(r) [Ambrosch-Draxl and Sofo(2004)], one can write :

ψkn(r) = eik·rukn(r) (C.6)

uk+q,n(r) = ukn(r)−
∑

n′ 6=n

pn′nk · q
ǫkn′ − ǫkn

ukn(r) (C.7)

ǫk+q,n = ǫkn + pnn′k · q, (C.8)

where the momentum matrix elements pnn′k are defined such as :

pnn′k ≡ 〈ψkn|p|ψkn′〉. (C.9)

It follows for the quantities MG=0
nn′ (k, q → 0) :

MG=0
nn′ (k, q → 0) =

1

Ω1/2

∫

Ω

dr
[

ukn′(r) +
∑

n′′ 6=n′

pn′′n′k · q
ǫkn′′ − ǫkn′

u∗kn′′(r)
]

ukn(r)

=
1

Ω1/2

[

δnn′ + (1− δnn′)
p∗
nn′k · q

ǫkn − ǫkn′

]

. (C.10)

The head : PG=0,G′=0(q → 0, ω)

Inserting Eq. C.10 into Eq. C.4, it follows :

PG=0,G′=0(q → 0, ω) =
1

N
∑

k

∑

nn′

MG=0
nn′ (k, q → 0)Fnn′k(q → 0, ω)[MG′=0

nn′ (k, q → 0)]∗

=
1

NΩ

∑

k

∑

nn′

[

δnn′ + (1− δnn′)
∣

∣

∣

pnn′k · q
ǫkn − ǫkn′

∣

∣

∣

2]

Fnn′k(q → 0, ω)

=
1

NΩ

∑

k

[

∑

n

Fnnk(q → 0, ω) +
∑

n′ 6=n

∣

∣

∣

pnn′k · q
ǫkn − ǫkn′

∣

∣

∣

2

Fnn′k(q → 0, ω)

]

.

(C.11)

Limit of Fnnk(q → 0)

At zero-temperature (∆ ≡ −pnnk · q and f(ǫnk)(1− f(ǫnk)) = 0), it follows that :

Fnnk(q → 0) = f(ǫnk)(1− f(ǫnk)− f ′(ǫnk)∆)
[ 1

ω −∆+ iη
− 1

ω +∆− iη

]

= −θ(ǫF − ǫnk)δ(ǫF − ǫnk)
2∆2

ω2

= −1

2
δ(ǫF − ǫnk)

2∆2

ω2

= −δ(ǫF − ǫnk)
|pnnk · q|2

ω2
(C.12)
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It follows for the polarization PG=0,G′=0(q → 0, ω) :

P00(q → 0, ω) =
1

NΩ

[

∑

n

−δ(ǫf − ǫkn)
|pnnk · q|2

ω2
+

∑

n′ 6=n

Fnn′k(0, ω)
∣

∣

∣

pnn′k · q
ǫkn − ǫkn′

∣

∣

∣

2
]

.

(C.13)

The wings : PG=0,G′ 6=0(q → 0, ω)

Employing the k ·p perturbation method introduced previously, one deduces for the polarization
PG=0,G′ 6=0(q → 0, ω) :

PG=0,G′ 6=0(q → 0, ω) =
1

NΩ1/2

∑

k

∑

n,n′

(

δnn′ + (1− δnn′)
p∗nn′k · q
ǫkn − ǫkn′

)

[MG′

nn′(k, 0)]∗Fnn′k(q → 0, ω)

=
1

NΩ1/2

∑

k

∑

n 6=n′

Fnn′k(0, ω)
p∗nn′k · q
ǫkn − ǫkn′

[MG′

nn′(k, 0)]∗, (C.14)

since the intra-band term (n′ = n) goes to zero as q2 whereas the inter-band one goes to zero as
q.

The body : PG 6=0,G′ 6=0(q → 0, ω)

The expression for the body part is straightforward :

PG 6=0,G′ 6=0(q → 0, ω) =
1

N
∑

k

[

∑

n

MG
nn(k, 0)(−δ(ǫF − ǫnk)

|pnnk · q|2
ω2

)[MG′

nn (k, 0)]
∗

+
∑

n 6=n′

MG
nn(k, 0)Fnn′k(0, ω)[M

G′

nn (k, 0)]
∗
]

. (C.15)

C.2 Mixed basis expansion

In the mixed basis, the divergences at q = 0 are not necessarily located in particular matrix
elements of the bare Coulomb potential and the bare Coulomb potential is not diagonal any
more. It is useful to introduce the transformation matrices W i

G from the plane wave {χq=0
G } to
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the product mixed basis {χq=0
i } :

εij(q → 0, ω) =
∑

G,G′

W i
GεGG′(q → 0, ω)[Wj

G′ ]
∗ (C.16)

v
1/2
ij (q → 0) =

√
4π

∑

G,G′

W i
G[Wj

G′ ]∗

|q +G|

=

√
4π

q
W i

0[Wj
0 ]

∗ +
∑

G 6=0

√
4π

|G| W
i
G[Wj

G′ ]
∗

=

√
4π

q
W i

0[Wj
0 ]

∗ +
∑

G

ṽ
1/2
G W i

G[Wj
G′ ]

∗, (C.17)

where W i
G ≡ 〈χq=0

i |χq=0
G 〉 and ṽG 6=0 = 4π/G2 is the regularized Coulomb matrix (ṽG=0 = 0).

It follows for the symmetrized dielectric function in the product mixed basis (see Chapter 5,
Eq. 5.40) :

εij(q → 0, ω) = W i
0ε0,0(q → 0, ω)[Wj

0 ]
∗

+
∑

G 6=0

[

W i
GεG,0(q → 0, ω)[Wj

0 ]
∗ +W i

0ε0,G(q → 0, ω)[Wj
G]

∗
]

+
∑

G,G′ 6=0

W i
GεG,G′(q → 0, ω)[Wj

G′ ]
∗

≡ εHij (ω) + εW1
ij (ω) + εW2

ij (ω) + εBij(ω). (C.18)

Head

By definition of the head in the plane wave basis, we get :

εHij (ω) = W i
0[1− 4πPH(ω)][Wj

0 ]
∗ (C.19)

Wings

Similarly, one gets for the wings :

εW2
ij (ω) = W i

0(
−4π

Ω1/2
)
1

N
∑

k

∑

n 6=n′

Fnn′k(0, ω)
p∗
nn′k · q

ǫkn − ǫkn′

∑

G 6=0

[MG
nn′(k, 0)]∗

|G| [Wj
G]

∗

= W i
0(−

√

4π

Ω
)
1

N
∑

k

∑

n 6=n′

Fnn′k(0, ω)
p∗
nn′k · q

ǫkn − ǫkn′

∑

G

[

ṽ
1/2
G MG

nn′(k, 0)Wj
G

]∗

(C.20)

and analogously for εW1
ij (ω).
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Body

It follows for the body part :

εBij(ω) =
∑

GG′ 6=0

W i
GεGG′(0, ω)[Wj

G′ ]
∗

=
∑

GG′ 6=0

W i
G

[

δG,G′ − 4π

|G||G′|PGG′(0, ω)
]

[Wj
G′ ]

∗. (C.21)

C.3 Bare Coulomb matrix eigenvectors

As introduced in the first section of Chapter 5, it is practical to employ the eigenvectors of the
bare Coulomb potential constructed from the original mixed basis detailed previously. In the
following, the indices (i, j) will refer to the original mixed basis, whereas (µ, ν) to the mixed
basis composed by the bare Coulomb matrix eigenvectors.

One can expand the bare Coulomb potential into the original mixed basis as follows :

vij(q → 0) = 〈χ0
i |v|χ0

j〉
=

∑

GG′

W i
GvGG′(q → 0)[Wj

G′ ]
∗

=
vsij
q2

+ ṽij, (C.22)

where vsij ≡ 4πW i
0[Wj

0 ]
∗ and ṽij ≡

∑

G W i
GṽG[Wj

G]
∗.

By diagonalizing the regular part of the Coulomb interaction ṽ at q → 0 (which equals v for all
q 6= 0), the eigenvectors {χq

µ(r)} read

χq
µ(r) =

∑

i

T q
µiχ

q
i (r), (C.23)

and generate a product mixed basis that is equivalent to the plane waves basis and almost as
accurate as the original product mixed basis.
Rigorously, the matrix {vsij} is not diagonal in the {χq

µ} basis :

vsµν = 〈χ0
µ|vs|χ0

ν〉 (C.24)

=
∑

ij

〈χ0
µ|χ0

i 〉〈χ0
i |vs|χ0

j〉〈χ0
j |χ0

ν〉

=
∑

ij

[T 0
iµ]

∗vsijT 0
jν , (C.25)

and hence in the {χq
µ} basis, the representation of v reads :

vµν(q → 0) =
vsµν
q2

+ ṽµδµ,ν . (C.26)
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In the implementation, we assume that vs is diagonal in the new mixed basis such as vsµν =
4πδµ0δν0. Since :

vsµν = 4π
∑

ij

[T 0
iµ]

∗W i
0[Wj

0 ]
∗T 0

jν

= 4π
∑

i

[T 0
iµ]

∗W i
0

∑

j

[Wj
0 ]

∗T 0
jν , (C.27)

the approximation implies :
∑

i

[T 0
iµ]

∗W i
0 = 〈χ0

µ|χ0
G=0〉 = δµ0. (C.28)

This is a reasonable constraint. Using the transformation matrices from the original mixed basis
to the new one which contains the eigenvectors of the bare interaction, it follows the following
relations given in Chapter 5 (from Eq. 5.41 to Eq. 5.45) (the indices (i, j) now correspond to the
new product mixed basis previously denoted (µ, ν)) :

εij(q → 0, ω) = εHij (ω) + εWij (ω) + εBij(ω), (C.29)

where (δ̃ij ≡ 1− δij) :

εHij (ω) = δi0δj0

{

1− 4π

ΩN lim
q→0

∑

k

(

∑

n

−δ(ǫnk − ǫF )

ω2
|pnnk · q|2 (C.30)

+
∑

n 6=n′

Fnn′k(0, ω)|
pnn′k · q
ǫnk − ǫn′k

|2
)

}

(C.31)

εW1
ij (ω) = −δ̃i0δj0

√

4π

Ω

1

N lim
q→0

∑

k

∑

n 6=n′

Fnn′k(0, ω)
pnn′k · q
ǫnk − ǫn′k

ṽ
1
2
i M

i
nn′(k, 0) (C.32)

εW2
ij (ω) = −δi0δ̃j0

√

4π

Ω

1

N lim
q→0

∑

k

∑

n 6=n′

Fnn′k(0, ω)
pnn′k · q
ǫnk − ǫn′k

[ṽ
1
2
j M

j
nn′(k, 0)]

∗ (C.33)

εBij(ω) = δ̃i0δ̃j0

(

δij −
1

N
∑

k

∑

n 6=n′

Fnn′k(0, ω)ṽ
1
2
i M

i
nn′(k, 0)[ṽ

1
2
j M

j
nn′(k, 0)]

∗
)

. (C.34)



Appendix D

The Γ point treatment in the

Brillouin-Zone summation

In this appendix, a method for an efficient Brillouin-zone integration is given. It has been used in

Chapter 5, at the end of Section 5.1.5 (Eq. 5.50). For further details, see also [Jiang et al. (2012),

Li(2008)].

We consider the Brillouin-zone integration of a function that diverges at the Γ point (q = 0) :

I =
1

N
∑

q

F(q)

=
Ω

2π3

∫

d3qF(q). (D.1)

In the q → 0 limit, we can divide the function F into a singular part and a regular one called F̃ :

F(q) =
F s2

q2
+

F s1

q
+ F̃(q). (D.2)

The singularity at Γ is integrable but a direct numerical integration will converge very slowly.
Following [Massidda et al. (1993)], we introduce two auxiliary functions :

F1(q) =
∑

G

e−α|q+G|

|q +G| (D.3)

F2(q) =
∑

G

e−α|q+G|2

|q +G|2 , (D.4)

which show similar singularities since :

F1(q → 0) =
1

q
+ F̃1(q) (D.5)

F2(q → 0) =
1

q2
+ F̃2(q). (D.6)
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In this last expression, F̃1,2 are the regularized parts of F1,2, obtained by avoiding G = 0 in the
summation.

We can then write the integration over q as follows :

I =
1

N
∑

q

[F(q)−F s1F1(q)−F s2F2(q)] +
1

N F s1
∑

q

F1(q) +
1

N F s2
∑

q

F2(q)

=
1

N
∑

q

[F(q)−F s1F̃1(q)−F s2F̃2(q)] + F s1Is1 + F s2Is2

=
1

N
∑

q

F̃(q) + F s1
[

Is1 −
1

N
∑

q

F̃1(q)
]

+ F s2
[

Is2 −
1

N
∑

q

F̃2(q)
]

=
1

N
∑

q

F̃(q) + Cs1F s1 + Cs2F s2, (D.7)

where

Is1 ≡ 1

N
∑

q

F1(q) =
Ω

(2π)2α
(D.8)

Is2 ≡ 1

N
∑

q

F2(q) =
Ω

(2π)2
√
πα, (D.9)

and α is a parameter that equals ( Ω
6π2 )

1
3 . It follows for the Cs1,2 coefficients :

Cs1 = Is1 −
1

N
∑

q

F̃1(q) (D.10)

Cs2 = Is2 −
1

N
∑

q

F̃2(q) (D.11)
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