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Summary

This thesis is dedicated to the study of cosmology induced by superstring theory at finite temper-
ature. The thermal string scenario has the aim of establishing a unified framework for describing
cosmological evolution, with gravity quantized, and matter contents derived from first principles.
The cosmological solutions of string theory are determined by the low energy effective action.
The latter only accommodates static solutions at tree level, while nontrivial cosmological evo-
lution is obtained when corrections from thermal and quantum effects are taken into account.
We restrict our attention to the weak coupling regime. In such cases the thermal and quantum
effects back-react on the initially flat static spacetime background through an effective potential
computed up to one loop level, which is a Colemann-Weinberg effective potential. It turns out
that this setup describes a universe filled with an ideal string gas in quasi-static evolution, and
the Colemann-Weinberg effective potential is just the Helmholtz free energy density of the string

gas.

The resulting cosmological evolution can be divided into three stages characterized by the
scale of temperature. They are namely: 1) the Hagedorn era where the temperature is of order
string scale, and the free energy density diverges due to the exponential growth of degeneracies
with mass level; 2) the standard cosmology era where the temperature goes below the electroweak
phase transition scale, and the nucleosynthesis takes place giving birth to the matter contents of
the current universe; 3) the intermediate era which is between the above two, where the spacetime
metric evolves in the pattern of a radiation-dominated universe (radiation-like), moduli can be

stabilized, and the hierarchy for supersymmetry breaking scale is generated.

The issue of moduli stabilization in the intermediate era is intensively studied. At certain
points in the moduli space, extra massless states emerge, and the Helmholtz free energy density,
or the effective potential, develops local minima. The latter provide moduli attractors. The depth
of the local minima is time dependent, which induces scalar masses reducing with cosmological
evolution. This makes the coherent scalar oscillations dilute before nucleosynthesis, and the cos-
mological moduli problem is avoided. Specific models are studied, where attention is given to

moduli stabilization by non-perturbative effects.



We first studied cosmology induced by a maximally supersymmetric heterotic string gas. The
free energy density reaches local minima where perturbative string states of nonzero winding and
momentum numbers become massless, giving rise to non-Abelian gauge symmetry enhancement.
This can stabilize all heterotic moduli but the dilaton, i.e. the internal metric, the internal B-field
and Wilson lines, among which the internal metric components are attracted to the string scale.
Through the type I/heterotic string S-duality this mechanism can be mapped to the type I side.
In particular it is found that the dual type I moduli are stabilized by either non perturbative
BPS D-string states or by perturbative open string states, where the internal geometric moduli
are stabilized at the scale /A1, with A; the type I string coupling in ten dimensions. Enhanced
gauge symmetries at moduli attractors on the heterotic side are also sent to the type I dual side.
Although these enhancements of type I gauge symmetry are non-perturbative effects, they should

be treated on equal footing with the gauge group induced by perturbative states.

The second case is the cosmology induced by a gas of type II string compactified on Calabi-Yau
three-folds. Moduli attractors are found to be at the loci where some 2-spheres or 3-spheres in
the Calabi-Yau space shrink to zero size leading the Calabi-Yau space to a singular configuration.
These can be either conifold loci or some non Abelian gauge symmetry loci. In type IIA description,
in the case of shrinking 2-spheres, the extra massless states arise from BPS D2-branes wrapping
these 2-cycles. In case of shrinking 3-spheres, the extra massless states are not yet identified, but
their existence can be inferred from the change in moduli space dimension, and further confirmed
by analyzing the low energy effective action. This mechanism can lift the whole Kéhler moduli
space, while in the complex structure moduli space, the flat directions lifted are those associated to
the shrinking 3-spheres that can be blown up into 2-spheres. The universal hypermultiplet moduli,
which contains the dilaton, cannot be lifted by this mechanism. An explicit example is analyzed
where all Kéhler moduli are stabilized at the intersection of a conifold locus and a non-Abelian
locus. By virtue of the type II/heterotic string duality, the moduli in the dual heterotic string
are stabilized, where remarkably, the axio-dilaton modulus is stabilized at order 1 in the unit of

string length.
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Chapter 1

Introduction

1.1 Unification and superstring theory

A prevailing conviction about the high energy physics is the unification of the four fundamental
interactions. This is not only for aesthetic reason but also for addressing fundamental problems
of theoretical physics such as the determination of standard model parameters, the generation
of baryon-antibaryon asymmetry. Supersymmetry provides a theoretical framework which favors
the unification. Even though supersymmetry is not yet directly confirmed by experiments, it is
possible however, by tuning the supersymmetry breaking scale, to give rise to the grand unification
theory (GUT) [1]. That is, the renormalization group flows are such that the coupling constants of
the electroweak interaction and the strong interaction converge to the same value at high energy

scale.

If we admit that the GUT scenario is an intermediate step towards the “theory of everything”,
a theory unifying all the four interactions, then a natural way to bring gravity into play is to
make the global supersymmetries local. This is because invariance under local supersymmetry
transformation implies invariance under diffeomorphism transformation, and the latter is essential
symmetry of general relativity. In the gauging of the global supersymmetry, spin-3/2 fields appear
as the “gauge fermion” coupled to the supercurrent, making it necessary to further introduce spin-2
graviton to close the supersymmetry algebra. This leads to the supergravity theory. However the
theory is plagued by non-renormalizability, when we quantize the graviton as metric fluctuations

around a fixed background.

It is then realized that string theory can provide way out to the difficulty of supergravity.
On one hand, superstring theories accommodate supergravity as the low energy effective theory.

The quantization of superstring yields supersymmetric spectrum of spacetime states. The ground



level, which is of mass zero, contains a spin-2 mode, recognized as the graviton. Therefore the
supergravity action becomes the Wilsonian effective action of superstring where all massive modes
are integrated out. On the other hand, the spatial dimension of strings, which delocalizes the
range of their interaction, introduces a natural UV cut-off. Therefore supergravity appears non-
renormalizabile just because it is the low energy effective theory of some underlying UV finite
theory.

However this picture of unification is not without price to pay. Most obviously, superstring
spectrum generously offers much too more spacetime fields than what the standard model needs,
so that the connection to the real world is not clear. Also the spacetime has to contain extra
dimensions in order for the quantized string theory to respect the symmetries that exist on the
classical level. Then upon compactification down to 4D spacetime, we face with highly degenerate
vacua, parameterized by a considerable amount of moduli, which are massless scalar fields. These
are the main problems that have to be coped with in the phenomenological application of string
theory. To make string theory phenomenologically viable is the deep-seated motivation in many
of the research works on string theory, for instance compactification, model building, moduli
stabilization, etc. Despite these difficulties among others, string theory is the most promising

candidate quantum theory of unification leading to a sensible account of phenomenology.

1.2 Cosmology induced by string theory

As is the case for any high energy theory in physics, in order to make contact with the observable
universe, it is important that string theory pass the trial of cosmological application. The widely
adopted cosmological scenario is that of the standard Big-Bang cosmology or the ACDM model.
It supposes that the universe starts off from a singular and extremely high energy event, namely
the Big-Bang. Very soon after, it experiences a short inflationary period, which accounts for the
flatness, isotropy and homogeneity that we observe today. After the reheating pending the infla-
tion, the universe goes through a series of symmetry breakings as it cools, including the separation
of strong interaction, supersymmetry breaking and the electroweak symmetry breaking, where the
last event happens when temperature drops to about O(100)GeV scale. At this moment Higgs
potential is destabilized, triggering the electroweak phase transition, giving mass to fundamental
particles and the four fundamental interactions appear as what we observe today. As the universe
continue cooling, it becomes radiation-dominated, and meanwhile matter starts to form through
the process of nucleosynthesis, and gradually matter dominates the universe. The theoretical mat-
ter content in today’s universe is obtained by fitting the model with empirically supposed matter

contents, each characterized by the state equation P =w p, into observation results of supernovae



or galaxies. This yields the proportions that each type of matter takes up: baryonic matter ~ 3%,
dark matter ~ 27%, and dark energy ~ 70%.

Although the standard cosmological model has largely promoted our understanding of current
observation results of the universe, it has the drawback of being a too phenominological approach.
Its matter contents are put by hand, where indeed some underlying theory is desired so that these
cosmic fluids can be derived from first principle. Also the application of standard model has the
difficulty from the hierarchy problem at high energy scale, where the Higgs mass is attracted to an
extremely large value. Then if we resolve the hierarchy problem using supersymmetric standard
model scenario, the problem is transplanted into the hierarchy of supersymmetry breaking scale.
Furthermore since gravity is not quantized, the model does not propose solution to the Big-Bang
singularity. Last but not least, phase transitions between different cosmological eras are imposed
rather than natural.

Therefore in view of the fact that string theory unifies all interactions and matter contents
in a quantum theory framework, we are tempted to formulate cosmology using string theory. It
should be stressed that by doing so, we are not just putting strings into the ACDM universe to see
how they evolve, as what we do with standard model. Rather, we are requesting the string theory
to generate the whole cosmology as solution to its equations of motion derived from the effective
supergravity theory. However we already meet with the difficulty that for most of the cases only
static AdS or flat backgrounds can be obtained at tree level as the vacuum configuration, which

is already known in supergravity.

Thus effects beyond tree level must be considered. Actually in the works prior to those to be
discussed in this thesis [2-7|, the thermal and quantum effects are inspected for weakly coupled
strings at one loop level. It is found that in certain cases the resulting corrections are under control
at full string scale. These corrections induce non trivial cosmological evolution through its back
reaction on the tree level solution. We will refer to this approach the “thermal string scenario”
in this thesis. The logic of setting up this scenario is as follows. The universe is described at
tree level by no-scale type supergravity [8], which is characterized by vanishing scalar potential
minima, as well as the spontaneous breaking of supersymmetry at the scale given by the no-scale
modulus. This is to account for the observation result that the universe is almost flat and has a tiny
cosmological constant. As the supersymmetry is spontaneously broken by thermal effect among
other possible mechanisms, a non trivial vacuum-vacuum amplitude is generated at one-loop level.
The latter corrects the tree level no-scale supergravity action as the one-loop Colemann-Weinberg
effective potential, and since the string coupling is set to be weak, higher order corrections can
be neglected. Provided that the one-loop amplitude at finite temperature is just the logarithmic

of the canonical partition function of ideal gas, the corrected action describes in effect a universe



filled with a string gas at finite temperature. From the one-loop part of the action one can derive
the energy density p and the pressure P of the string gas which sources cosmological evolution,
and these string theory quantities do not have UV ambiguity as in field theories. The solution
describes a universe evolving in the pattern of a radiation-dominated universe: a(t) o T'(t)~!
and H(t)? < a(t)~P, where T is the temperature, a the scale factor in the flat Robertson-Walker
metric (flat because of no-scale), H the Hubble parameter and ¢ the cosmological time. What
is remarkable is that the solution of nontrivial cosmological evolution is induced by the thermal

string gas and is purely a quantum effect.

For constructing realistic models supersymmetry should be spontaneously broken at zero tem-
perature. Interesting phenomenology has been unraveled for the cases where supersymmetry
breaking implemented by Scherk-Schwarz reduction in an internal circle [3-6]. The associated
supersymmetry breaking scale, which are of order the inverse radius, is found to be evolving pro-
portionally with temperature Mgygy(t) o< T'(t), and ratio between the two is attracted to a fixed
value of order 1. The hierarchy Mggsy << Mpianck is thus dynamically generated. It should be
stated that the backward extrapolation of these solutions is limited by the appearance of Hagedorn
instability at ultra high temperature which is about of the string scale! M =+/1/a’. There, the
one-loop correction diverges at a critical temperature called the Hagedorn temperature, where the
thermal string scenario breaks down. One difficulty appears in that we cannot know what the
initial conditions are at the beginning of the phase where temperature falls below the Hagedorn
temperature and one-loop correction become calculable. However remarkably the radiation-like
solutions described above are insensitive to the initial conditions. That is, the evolution will be

dynamically attracted to the radiation-like solution whatever the initial conditions.

Another appealing thing that we expect from the string cosmology is establishing a unified
description of all the cosmological eras from the very beginning to the standard matter dominated
era. We have just mentioned briefly the backward extrapolation of cosmological solutions, which
stops at the moment where temperature is of about the string scale. Likely, the forward extrapo-
lation should also be limited, since with the dropping of the temperature and the supersymmetry
breaking scale, we will end up with a supersymmetric vacuum. Indeed at the moment when tem-
perature lowers to about the electroweak scale A, it is expected that certain infrared effects,
which was screened at hight energy scale, become relevant, and the resulting radiative corrections
lead to the stabilization of Mgggy at about TeV scale. The analysis of this effect in supergravity

context has been carried out in Refs [9, 10].

Therefore we can divide the thermal-quantum induced cosmological evolution in three eras: the

Hagedorn era for T' ~ M, the standard cosmology era for T' > A, and finally the cosmological era

Lo’ =12 is the Regge slope, [, is the string length.



which accommodates the radiation-like solutions we have just described, satisfying My > T > Aqy,
referred to as the intermediate era. While the intermediate era has been intensively studied, the
other two eras are less well understood. For the Hagedorn era, some works have been done
where the Hagedorn singularity is resolved in type II string by implementing “gravito-magnetic
fluxes” [11-14]. It has been shown that such resolution of Hagedorn singularity can lead to the
resolution of the Big-Bang singularity, where we obtain a bouncing universe [12,13] or an emerging

universe [14].

1.3 Moduli stabilization

As the end of Sec.1.1 complains, compactification of string theory leads to highly degenerate
vacua, characterized by parameters spanning the moduli space. These parameters, or moduli, are
given by the vacuum expectation values (VEV’s) of massless scalar fields in the tree level effective
field theory, which we refer to as moduli fields. These massless scalar fields are undesirable for
phenomenological application because if they existed in nature, they would mediate new types
of interaction so that we would have more than four fundamental interactions. Moreover since
moduli are free parameters that the couplings and the mass spectrum depend on, the model loses
predicability. Therefore if we believe in string theory as the fundamental theory of nature, then
any sensible phenomenological application must manage to let moduli be settled to some fixed
value and become massive scalar fields. In other words, the model must be able to generate some

nontrivial scalar potential beyond tree level that lifts the flat directions.

Actually the thermal string scenario provides such mechanism. It was shown in [15] that a
gas of string modes, which carry both winding and momenta, generate a free energy that enables
stabilization of radii moduli. The thermal string scenario provides a quantum version of this
effect, which is effectuated through the quantum one-loop correction [16]. More accurately, the
Helmholtz free energy density derived from the one-loop amplitude interferes in the effective action
as a scalar potential and lifts flat directions. It reaches local minima whenever there are states
in the spectrum, whose mass depend on moduli, becoming massless. Therefore these points in
the moduli space are just the moduli attractors. In the results in [5,6] the moduli are attracted
to points with enhanced gauge symmetry. The effective potential develops local minima due to
the extra perturbative states which become massless to supply the non Cartan components of the
enhanced gauge group. In fact the link between local extrema of one-loop amplitude and enhanced
gauge symmetry has been explored in [17], where it is shown that the correlation of the two is

true to all loop levels.

Moduli stabilization by non-perturbative effects is considered in [18,19], which will be given

b}



much attention in the thesis. In [18] the non-perturbative effects examined are induced by D1-
branes in the type I string, where the calculation is done indirectly through the dual heterotic
string. For simplicity, models considered therein are maximally supersymmetric, while general-
ization to non-supersymmetric vacua is obvious. On the heterotic side it is found that all moduli,
except the dilaton, can be stabilized at some gauge symmetry enhancement points, where F-string
states are responsible for the gauge symmetry enhancement. Using string-string S-duality, this
mechanism can be mapped to the dual type I side to stabilize type I moduli. In particular, given
that the heterotic F-string states are mapped to type I D-string states, the moduli stabilization
on the dual type I side is a non-perturbative effect, accompanied with non-perturbative gauge

symmetry enhancement.

In [19] we look into the D2(D3)-brane effects in type IIA(B) strings compactified on Calabi-Yau
three-folds. The moduli attractors are expected to be located at certain loci of topology change
of the Calabi-Yau space. This is motivated by the analysis in [20] which reveals that singulari-
ties appear in the low energy supergravity action when the Calabi-Yau space undergoes conifold
transition. This is interpreted as arising from light D-brane states, which become massless at the
transition point, wrongly integrated out from the Wilsonian effective action. The singularities
are repaired as we “integrate in” these D-brane states, and it turns out that these light states are
weakly coupled to the Abelian gauge group. As the CFT computation of one-loop amplitude is
not available in generic Calabi-Yau compactifications, the one-loop correction can be computed
perturbatively (in the sense of gauge coupling not string coupling) from this repaired effective
action by field theory method. We then rely on this one-loop correction to indicate moduli at-
tractors. Similar mechanism exists when the Calabi-Yau space undergoes the extremal transition
where the singular configuration contains a curve of Ay_; type singularity. The same procedure
as for the conifold case still applies here, except that the light non-perturbative spectrum is more
complicated. They form an SU(N) gauge group with matter transforming in the adjoint repre-
sentation. In both cases we observe that Kéhler moduli and complex structure moduli moduli are

attracted to values corresponding to the singular configuration of the internal Calabi-Yau space.

A major difficulty in moduli stabilization is that cosmology imposes severe conditions on the
scalar masses. Basically as the universe expands, small initial fluctuation of background scalar
fields in the potential well can dominate the energy of the universe at late time. For example
in 4D, the oscillations store an energy density scaling as T2 with T temperature of radiation,
which eventually dominates over the radiation energy which scales as T-* [21]. This domination
continues until the corresponding scalar particles decay. Severe problem arises because not only
the productions of the decay can alter the primordial abundances of light nuclei produced by

nucleosynthesis, but also the huge amount of entropy production during the decay can wash out



the baryon number asymmetry. This problem is termed as the cosmological moduli problem,
which was initially identified in the framework of supersymmetric standard models [22-24]. One
plausible solution to these is to require the scalar masses be of O(10)TeV order, for example in
the KKLT scenario [25]. It is pointed out in [23]| that once this is satisfied, the decay of these
scalar particles reheats the universe to a temperature of order 1MeV, high enough to restart the
nucleosynthesis. Then it is found in [24] that the baryon number asymmetry can also be saved by
the O(10)TeV order scalar mass if the baryogenesis is due to the Affleck-Dine mechanism [26].

The thermal string cosmology addresses the cosmological problem differently. This is already
explored in [5,6] where it is shown that the induced scalar mass is proportional to T%‘l, which
decreases in time rather than being constant. Given that the oscillation in the potential well has
the frequency proportional to the square-root of the induced mass, the decrease of mass slows
down the background oscillation and hence the expansion of the universe dilutes the oscillation
energy faster than for constant induced mass. By consequence, one finds that the energy stored
in the background scalar oscillation never dominates so that the cosmological problem does not

appear.

1.4 Organization of the thesis

The first three chapters following the introduction provide preliminary string theoretical elements
that our work is based on. In Chapter 2 we go rapidly through the perturbative approaches of
string theory quantization and will especially be concerned about the description of the spectrum,
where lightcone gauge will be used. The aim is to get a quick access to the computation of
one-loop vacuum-to-vacuum amplitudes. Chapter 3 collects the conceptual and technical aspects
in compactification that will later be useful in giving rise to moduli stabilization mechanism in
thermal string cosmology. These include worldsheet instanton, gauge symmetry enhancement,
supersymmetry breaking by orbifold, and Calabi-Yau compactification. Chapter 4 goes one step
further into the non-perturbative realm, and gives account for the non-perturbative mechanisms
that have been explored in our works. The discussion will be restricted on the non-perturbative
D-sting effects in type I string which can be revealed by the S-duality between type I and heterotic,
as well as those in Calabi-Yau 3-fold compactification of type II strings when the Calabi-Yau space

undergoes extremal transition.

The next two chapters are dedicated to building up the thermal string cosmology scenario,
which summarize the foundational elements in the related works [2-7,18,19|. They give account

to the two essential aspects concerned: string gas thermodynamics and its implementation in



cosmology. Chapter 5 deals with ideal string gas without considering cosmological context. Com-
putation of the partition function Z = Tre ## is described in detail, where we establish the first

quantization computation of the partition function through analogy with field theory

Zun -] )] = Zu-en[ )

so that computing the thermal partition function attributes to computing thermal one-loop am-
plitude. Explicit computation is performed on specific string models. Then the investigation of
general properties of the thermal one-loop amplitudes leads to the discussion of Hagedorn singu-
larity. In Chapter 6 we set up the formalism describing cosmology. The aim is to introduce the
assertion that the thermal quantum effects of the ideal string gas back reacts on the background
spacetime metric and fields through a stringy version of Coleman-Weinberg effective potential.

This is again inspired by the field theory analogue of 1PI effective action:

_ Qtree 1-loop _ Qtree
Fﬁeld—Sﬁeld+Sﬁeld + ... — Fstr—Sstr —@ + ...

Then a simple application is shown, where the cosmological solution is found in maximally su-
persymmetric heterotic string. Based on the solution, meanwhile supplemented with the results
from previous works especially on non-supersymmetric tree level vacua, we illustrate the common
and basic features of the cosmological evolution in the thermal string scenario. The problem of

moduli stabilization is discussed, in order to motivate the work in the following up two chapters.

In Chapter 7 and Chapter 8 we present the work done in Refs [18,19], where we focus our
attention on the moduli stabilization in the intermediate era by non-perturbative effects. The
non-perturbative effects concerned are those mentioned in chapter 4. The D1-brane states in type
I string is investigated in chapter 7 while the D2(3)-brane effects in Calabi-Yau compactification of
type ITA(B) string are considered in chapter 8. We have already explained the idea in the middle
part of Sec.1.3

We will give conclusion and perspectives in the final chapter.



Chapter 2

Perturbative string spectrum

This chapter gives a sketch of important elements in perturbative string theories which we will
need. We go quickly through the perturbative quantization of all types of string theories, where
we care most about the resulting spectra and their description in terms of partition functions. The
latter leads to the computation of one-loop vacuum-vacuum amplitudes, which will play crucial
role later in the study of cosmology. Although non-perturbative effects will also be investigated as
very important issue, the computation involved therein will still utilize the perturbative technique

in this chapter.

2.1 Quantization of free string theories in general

Naively the string theory can be viewed as a generalization of the point particle vision of the
microscopic world. It postulates that the fundamental component of matter are extended objects
of one spatial dimension, which has internal structure rather than point-like objects. In Fig.2.1
this generalization is shown schematically. In the passage from the point particle action to the
bosonic string action, we emphasize the enlargement of local symmetry group due to the internal
structure of strings. Handling properly these symmetries in the quantization of string theories
leads to nontrivial constraints on the structure of spacetime and on the spectrum that string

vibrations generate.

String theories in a curved spacetime background is in general a nonlinear sigma model, of
which a full quantum description is not possible except for some special cases. Here for sake of
exact quantization, we consider a Minkowskian background, which can be further compactified on

some toroidal compact space.
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Figure 2.1: From scalar particle to bosonic string. Here u labels spacetime dimension, o 3 label the worldsheet
dimensions; 7 is the propertime of the world line and the worldsheet, and o the spatial coordinate of the worldsheet;
h., = —€? is the world line metric and h,s the worldsheet metric; x#(7) and X*(7,0) are respectively the target
space coordinates of the particle and of the string; T" = ﬁ is the string tension; ¢ is the infinitesimal generator of
world line diffeomorpism and £* the worldsheet counterpart; A is the infinitesimal generator of Weyl rescaling.

Quantization schemes

To quantize string theories in a Minkowskian target space, one usually go through three different
schemes: old covariant quantization, lightcone gauge quantization and BRST quantization. Each
has its own domain of competence. In case of non-interacting strings where all these quantization
schemes can be applied, they lead to equivalent physical Hilbert spaces related by isomorphisms.
All string theory quantization in this chapter will be using lightcone quantization. Here we briefly
comment these methods in order to justify our choice, as well as to motivate the CFT approach

of string theory quantization.
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Old covariant quantization

It is based on canonical quantization scheme, and is intended for giving the physical spectra
of free string theories. One starts by imposing conformal (superconformal) gauge condition to
bosonic string (superstring) theory, which fixes the worldsheet metric up to a Weyl rescaling.
The action thus appears as a free CFT (SCFT), but is supplemented with first-class constraints.
The latter are associated to the reparameterization (and local supersymmetry) freedoms of string
coordinates. One then quantizes this CFT (SCFT) canonically, and in addition imposes the
classical constraints at quantum level to squeeze out gauge redundancies. Weyl symmetry is
violated at quantum level due to the presence of a nonzero central charge. However this conformal
anomaly is irrelevant, since quantizing the theory against two different worldsheet metrics subject
to conformal (superconformal) gauge condition leads to the same Hilbert space. Generically the
quantum description suffers from negative-norm states in the Hilbert space, which are called
ghosts. By requiring the absence of ghost states, one finds precise constraints on the spacetime

dimension and the mass spectrum.

Lightcone quantization

It is also based on canonical quantization and deals only with the free string theories. By impos-
ing the lightcone gauge condition, all reparametrization and local supersymmetry freedoms are
completely fixed at classical level. One is thus left with a free 2-dimensional CFT or SCFT con-
taining only transverse string coordinates. Radial quantization yields directly the exact physical
Hilbert space, where all physical states span a representation space of the Virasoro algebra. Weyl
invariance is not preserved at quantum level since there is a nonzero central charge. However just
as in the old covariant quantization, this conformal anomaly is not harmful in itself, while the
harm is reincarnated in the Lorentz algebra anomaly in spacetime. Demanding the cancelation
of this anomaly, one gets the same constraints on the spacetime dimension and the same mass
spectrum as in the former case. In the case where we care only about the free string spectrum,
lighcone quantization is the most straightforward and economic way to achieve the goal, as will

be the case for our computation of one-loop vacuum amplitudes.

BRST quantization

The BRST quantization invokes path integral method and is designed to rigorously compute string
amplitudes to any level in loop expansion. For free string theories, the gauge fixing procedure

leads to a 2-dimensional CFT or SCFT containing all the bosonic string coordinates and ghosts,
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as well as all the fermionic string coordinates with superghosts in case of superstring theory. The
action then loses all gauge freedom of worldsheet reparameterization and local supersymmetry but
still preserves Weyl rescaling invariance, and in addition it acquires BRST invariance. These two
local symmetries are generically not preserved at quantum level. By cancelation of the associated
anomalies, the spacetime dimension number and the mass spectrum are constrained in the same
way as the former two cases. One can further work out the Hilbert space, where physical states

are indicated by its BRST cohomology classes.

Free CFT on complex plane

The canonical quantization of free string theory attributes to the quantization of the underlying
free CF'T’s on a complex plane, whose field contents vary in function of the type of strings and
the method of quantization. Let the complex coordinate be z, and the free CFT be invariant
under the conformal transforms z - f(z) and z — f(Z) with f any holomorphic function. The
associated conserved charges are T'(z) and T'(z), whose operator product expansions (OPE) tell
the central charges (¢, ¢) of the CFT:

2,2 Lo T(w) 4
(z—w)* (z_w)QT() z—wawT() e (2.1)

T(2)T(w) =

and the same expression for T'(z), which implies ¢. We will need to know that each holomorphic
or anti-holomorphic free scalar contributes one unit of central charge and each free chiral fermion
contributes one half. The mode expansions of T'(z) and T'(%) yield Virasoro operators {L;} and
{Ly}: T(2) =X 2% 2L, and T(2) = ¥ z7%2L;, which satisfy anomalous Virasoro algebra

[Lons L] = (1 = 1) Loy + 1—‘;(m3 - (2.2)

and the same thing for {L;} with central charge ¢. There exists the vacuum state |0) which is

annihilated by Ljs_; and Ljs_;. Primary fields ¢(z,%) are those which transform according to

T(2)é(w, m) = (z——hw)2 B @) + —— O, ) + ..
~ ) 3 ) 1 ) (2.3)
T(2)p(w,w) = m o(w,w) + po” Owd(w, W) + ...,

where h and h are real constants, called the conformal weights of ¢. Ground physical states are

generated by primary states as

|h,h) = limo 1 9(z,2) :0), (2.4)

2,2
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which is of conformal weight (h,h), with Lo|h, h) = h|h,h) and Lg|h,h) = h|h,h). The physical
spectrum can be generated by acting the negative modes L_j and L_; (k > 0) on the ground state
|h, h), subject to certain physical constraints, for example the level-matching condition Ly = L for
closed strings, the GSO conditions, invariance under orbifold projections or orientifold projections,
etc. All descendent physical states based on the ground state |h, k) span a representation (not
necessarily irreducible) space of the Virasoro algebra, of highest weight (h,h). At this point we
can introduce the characteristic function of a Virasoro algebra representation, called conformal
character. When holomorphic sector and the anti-holomorphic sector can have independent highest
weights and descendent states, as is the case for closed strings, the conformal character based on
ground state (h, h) is

Xoun (1:7) = Tr, L qhomaighomai = g"sigh 5 Y Dy gV )" Dy gV, (2.5)
N N

where ¢ = €™ and 7 is a complex parameter, which is defined on the upper complex plane to

guarantee the convergence of the series; the trace Tr (o Tuns through all the descendent states

h
based on the ground state |k, h), and Dy (Dy) is the ciegeneracy of the N-th (N-th) oscillator
level in the holomorphic (anti-holomorphic) sector. For the state L_p,, ... Ly, Ly, ... Ly, |k R),
its oscillator levels are N =mq +---+my and N =ny +---+n;. Here we include the central charge
shift —c/24 and -¢/24, in order to switch from the complex plane back to the initial worldsheet
of free string theories. Often we need to consider the holomorphic and anti-holomorphic sectors

separately, and we can define their conformal characters respectively as
X, (1) =q"5 Y. DngV; X, (7)=q"7% ), Dyq". (2:6)
N

When modeling free open string theories, the CFT is defined on the upper half complex plane and
the holomorphic sector is identified with the anti-holomorphic sector: T'(z) = T(2) < Ly, = Lyy,.
In such case a generic state is L_y, ... L_,,|h) (n1,...,n; > 0) and the corresponding conformal

character is
X, (7,7) :TrthO’i =gl = ZDNqN, (2.7)
N

where g = e2™Im7 The trace goes through all descendent oscillator states based on |h). Therefore
Eq.(2.5) is the characteristic function of spectrum on the cylinder and Eq.(2.7) is the characteristic
function of spectrum on the strip. They are closely related to string one-loop vacuum amplitudes,

as is to be explained next.
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One-loop vacuum amplitude

The computation of one-loop vacuum amplitudes in string theories can be summarized as
Zi= [ dp(r,7) oA (7). (2.8)
DF

where 7 denotes collectively the parameters characterizing the geometric configuration of the
worldsheet concerned, referred to as the Teichmiiler parameter, which in our case can be identified
with the 7 appearing in the conformal character Eqs (2.5) and (2.7); <4 (7,7) is the one-loop
vacuum amplitude computed against a specific geometric configuration 7; and Dy is the minimum
parametric space of 7 containing all distinct configurations. Finally all the specific amplitudes
o/, (T, T) are integrated up with measure du(7,7), to give the total amplitude Z;. The amplitude
@ (1,7) is model-dependent, which requires knowledge of the physical modes circulating in the
loop. Since we are dealing with non-interacting strings, all the three quantization schemes can work
out @ (7,7). The other two elements du(7,7) and D do not care about the physical modes on
the worldsheet, but care only about the worldsheet topology. Therefore only BRST quantization
is qualified for finding them out, and hence qualified for computing Eq.(2.8) rigorously from A
to Z. However, we will encounter only four types of topology at one-loop level, namely the torus,
the Klein bottle, the annulus and the Mé&bios strip, whose du(7,7) and Dp are already known.
Thus we will simply take and use these results, and focus our attention on the computation of
2/ (1,7). The latter can be most conveniently achieved with lightcone gauge quantization. Thus
@/ (1,7) is just the conformal character of the lightcone Hilbert space, summed up over all possible
highest weighs (integrate over continuous highest weighs). For closed and open strings, we have

respectively,

closed: @ (1,7) = ih . sign(h, h) x X (T:7)

(2.9)
open : 2 (1,7T) = jh sign(h) x x, (7,7).

The subtlety in the summation is that appropriate sign should be attributed to different characters,
here denoted by sign(...), in order to implement physical conditions, for example GSO projection,
modular invariance. It can be seen from Eqs (2.5) and (2.7) that < (7,7) can be expanded as
a sum of powers of ¢ and ¢. In case of closed string amplitude, the expansion containing both
q = e?™ and ¢ = e~?™7 physical spectrum can be read off from the level-matched part (¢ and ¢
have the same power) of this expansion, with the powers of ¢g giving the squared masses, and
the associated coefficient the degeneracy of this mass level. It should be mentioned that the level-
matching condition is not derived from the underlying CF'T, but is inherited from the worldsheet

diffeomorphism invariance of the full string theory action. However the modes which do not satisfy
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level-matching condition contribute to the closed string one-loop amplitude even though they are
not in the free string spectrum. On the other hand for open strings, the expansion of @ (7, 7) is
uniquely in terms of ¢ = e72™™7 and the physical spectrum is read off from this expansion in the
way that the power of ¢ imply the masses squared, the coefficient is the degeneracy of this mass
level. Finally we recall without proving that in the frame work of lightcone gauge the integral

measures in Eq.(2.8) are

dmd
2(;/:)]3 L 7—71_227—2 , with 7=7+i7p (torus), (2.10)
v P 2Ty (Klein bottle),
D o T2 . _ 1
W A 7_—22 with 7= 51T2 (annulus), (211>

5 +3im  (Mobius strip).

In the torus case, the integration domain F is defined by |7| > 1 and -1 < 7 < 1, which is the
fundamental domain of SL(2,Z). Indeed the integral measure 752drdr, is invariant under the
transform 7 - 22 with (2 b) € SL(2,7Z).

cT+d?

2.2 Bosonic string

The bosonic string lives in 26 dimensional flat background spacetime. The classical Polyakov
action, which describes 26 scalar fields {X*(7,0)} (1 =0,...,25) on the worldsheet, and which
displays all symmetries, is already shown in Fig.2.1. The notation of worldsheet time 7 is in clash
with the Teichmiiler parameter in Eq.(2.8), but since we will never use the two together, there
will be no risk of confusion. Imposing lightcone gauge condition which eliminates X° and X1,
performing worldsheet Wick rotation 7 = —i7g and defining the complex coordinate z = e™®~i7,
we reduce the initial gauge system to a 2D CFT on the z-plane with 24 transverse free scalar
fields {X?%(z,2z)} = {X* X'}. Here we suppose that the theory is compactified on 7% and let
1 =2,...,D -1 label non compact spacetime of dimension D =26 -d, and I = D,...,25 label

compact ones. The action is
e. _ T 2 iavi
S = 3 /d 20X'0X", (2.12)

where 9 = 9/0z and 0 = /0%, and by d?z we mean dRez dImz. The string tension T is related to

the string length [, and to the Regge slope o/ by T = ﬁ = # The energy-momentum tensor is
TX(2) = ! XX, TX(2)= ! 0X'0X" 2.13
(Z)—‘Z—Q 5 (Z)——Z—Q (2.13)
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with central charge (¢X,¢x) = (24,24), and we let the associated Virasoro operators be {L;X} and
{LX}. The quantization of this system follows the standard scheme for free CFT quantization.
The following contents adopts the language in [27| and will be very concise on mathematical
aspects of CFT.

Closed bosonic string

The string coordinates satisfy periodic boundary conditions X*(e?™z) = X?(z), whose mode ex-

pansion is
X'(z,2)= X (2) + X%(E) with (2.14)

1 [2 1 ad , 1 [2 1 ad

Xi= -y Xp= =2k
2 Z \/_m&OnZn’ e 2 Z \/_mconZn’
1 12 1al 1 l2 I 1al

X] s ls I I ’s .
235L U pL \/_,;)nz"’ R=5TR™ i pR \/_n;)nz”

The zero modes are of interest since they contain physical information that the underlying CFT
does not imply. Note that for compact directions the holomorphic and anti-holomorphic com-
ponents have independent center-of-mass positions and momenta, {z 2%} and {pf,pL}. Tt is
because the closed strings can wrap around compact directions. All the center-of-mass position

and momentum components have non-trivial commutation relations:

(2", k] =6, [x] p,p] gl =16"", 0 for other commutators. (2.15)

The CFT vacuum state |0) is annihilated by all positive a-oscillators, and it can be shown that it
is SL, invariant, i.e. annihilated by Lo .; and Lg.;. A generic physical ground state is obtained

by acting on the vacuum the primary field

cls (Z Z) ezk ‘Xz, z)eszXi(z)HpR (2):’ (216)

where the superscript “cls” stands for “closed”, and &’ and p! , here are not operators but take
concrete values. The OPEs of Vj, (2, 2) with TX(2) and TX (%) tell that the conformal weight is

2 2
hX = ZZ (K*+p7), B = %S(k? +D%) (2.17)

so is the conformal weight of the corresponding ground states. The center-of-mass momentum
in non compact directions k* can be of any value, while k=~ adjusts itself to ensure k*k~ — k'k?
onshell. However the values of p! , are constrained by the compact space, which contain Kaluza-

Klein (KK) and winding numbers in the compact directions, as well as the moduli arising from
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compactification. A generic physical state | X ) can be the ground state or oscillator excitation

based on it:

[ Xas) = (0sc.) O35,(0,0)]0) = |(0sc.) s pr, prs b ). (2.18)

where “osc.” denotes collectively negative-level oscillators. These states, with specific k and py, g,
fit into a representation of the complex Virasoro algebra constituted by {L;¥ ,Ei( }, of highest
weight (hX,hX) as shown in (2.17). Especially acting zero modes of the Virasoro operators on

them gives
12 B 12 B
L | Xas) = [Z (k*+p?) +N]|de>, L X as) = [Z (K2 +p%) +N]|de), (2.19)

with N and N non-negative integers denoting left and right oscillator levels. We recall the result
from CF'T that the tower of oscillator excitations of a single holomorphic worldsheet boson is
characterized by the partition function g /n(7), where the expansion coefficient of the N-th
power of g = €2™7 is the degeneracy of the oscillator level N. In the same way we have the anti-
holomorphic partition function qi /1(7). Thus using Eq.(2.19), one finds the conformal character
of the spectrum Eq.(2.18) to be

X

. : 2
XE(7,7) = Trqho-amglom 5 = g3 (Bevk) g (%) gy ()24 (7) 24, (2.20)

where the trace runs through all the oscillator excitations. Referring to the first line in Eq.(2.9)

the total one-loop amplitude in vacuum is therefore

Vb d?T qiPLGiPR
Zz—f [dk f _ 2.21
e e 2, ) e - R E TG ER

2 pL.PR

The expansion of the integrand yields the lowest order (¢¢)~! with negative power, showing that
the ground state is a tachyon. Also one can show that all states on the same mass level form a ten-
sorial representation of the little group. Therefore the spectrum Eq.(2.18) contains no spacetime

fermions. These drawbacks decide that the bosonic string cannot lead to sensible phenomenology.

Open bosonic string

The worldsheet scalar fields satisfy the Neumann boundary conditions 0,X i‘o_: or=0; and we have
the mode expansions
VSRR S TR S TS S T ST
X'(z,2) =51 ilZk' Inzz + (osc.), X =5 - ilp"Inzz + (osc.) (2.22)
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where the nonzero oscillator parts are the same to Eq.(2.14) but with all left-moving and right-
moving oscillators identified: o' = @.. Especially the center-of-mass momenta and positions in
compact directions are no longer split into left-moving and right-moving parts, since open strings
cannot wrap around compact directions, and hence in the internal momenta p’ there is no winding
number. Also the center-of-mass momenta are defined differently from the case of closed string,
to maintain the correct commutation relation with center-of-mass positions. The CFT vacuum is
still denoted by |0), and a generic physical ground state is generated by the primary field

(’)zi(z, z) — ik XN (2,2) pip' X! (2.2) ) (2.23)

where k' can take any value and p! are constrained by the geometry of compact directions. It has
conformal weight

B o= 12 (k2 +p?). (2.24)

A generic physical state | X,p) is either a ground state generated by Eq.(2.23) or is a descendent

state with oscillator excitations, which is

| Xop) = (0s¢.) O (0,0) [0) ® i) = |(0sc.); p; ks ij), (2.25)

P

satisfying
L | Xop) = [2 (K* + p*) + N | Xop), (2.26)

where N denotes collectively oscillator excitations; |ij) is the sector carrying Chan-Paton factors
i and 7, which is a non-dynamical sector introduced in order to implement non-Abelian gauge
symmetry in spacetime. These states supply a representation of a Virasoro algebra of highest
weight A" as in Eq.(2.24). The one-loop amplitude is

2
Vp / © dry q%pQ
0

[ = —— - ,  where =42, 2.27
2(2m)P 7_21+§ > 1(2imp)% 1 (227)

This integral has UV divergence at the limit 7, — 0. Although the pathology can be cured by
including closed string and implementing the orientifold projection, the theory still suffers from
the problems of tachyonic ground state and lack of spacetime fermion. Therefore bosonic strings

cannot be a phenomenologically viable theory and we move on to superstring theories.
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2.3 Closed N = (1,1); superstring and type II strings

The N = (1,1)2 has 10 dimensional target space. Its classical action is the supersymmetrized

version of the Polyakov action for bosonic strings
T _
S = -5 f d*ov/~h {h‘w@aX“@gXu + 20 p® 0a1),, + (worldsheet gravitino)}, (2.28)

where {p®} are Dirac matrices in 2 dimensions. It is in effect a 2-dimensional supergravity with a
non-dynamical supergravity multiplet, 10 scalar fields {X#(7,0)} and 10 2-component Majorana
spinors {Y#(7,0)}. By lightcone gauge fixation, followed by a Wick rotation 7 = —itg and a
coordinate change z = e™~% the original theory is brought down to an N = (1,1); SCFT on the
z-plane. It contains 8 free scalar fields { X"} and their superpartners which are free Majorana-
Weyl spinors {¢7,9'} (i =2,...,9), with 1) and v of opposite chirality. It is a free SCFT of central
charge (c¢xwv,¢x#) = (12,12) where each holomorphic boson contribute one unit and fermion half

unit. The action is:

T I T
Sle = 3 / dQZlOX’OXZ + z'(z/ﬂ@w’ + W@W)l, (2.29)

from which we derive the conserved charges of conformal transforms
TXU(2) =~ OXTOXT+ Li oyt TX0(2) = —~ DXTOXT + ~ 7 O 2.30
(2) = 2 +l—2¢ Y*, (z) = 2 +l—2"¢ (L4 (2.30)
Here as for the bosonic string, we suppose the theory be compactified on a torus T¢, where
d=10-D and D the spacetime dimension. The convention for the indices are i =2,..., D -1 and
I=D,...,9. The quantization is straightforward: the bosonic part and the fermionic part can be

quantized as independent CF'T’s. The bosonic part has already been described in the last section,

and the fermionic part is summarized as follows.

Spectrum of worldsheet fermions

Unlike the bosonic sector, the fermionic sector gives rise to Virasoro algebra representations of

fixed highest weights. Recall from Ref. [27] that each free chiral worldsheet fermion can generate

the representation [0] +2[{-] + [5], where the numbers in the brackets are the highest weights of

irreducible components. The representation [0] + [3] is generated when the chiral fermion takes

anti-periodic boundary condition, referred to as Neveu-Schwarz (NS) boundary condition. This

leads to integer mode expansion of worldsheet fermions 7(z) = ¥, 2" 2¢% (r € Z — 1), and the
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conformal character of the resulting spectrum is!

v ([0]+[31) =1/ - (2:31)

The representation [1z] is generated when the chiral fermion takes periodic boundary condition,
referred to as Ramond (R) boundary condition. This results in half-integer mode expansion
of worldsheet fermions ¢7(z) = ¥, 2" 24 (r € Z), where the the zero modes Yy are crucial
to the emergence of spacetime fermions. Each [%] representation in the holomorphic sector is
characterized by conformal character

(lE) =\ /2. (2.32)

2n

For sake of global existence of worldsheet supercurrent, fermions of same chirality should take
the same boundary condition. The left-moving and the right-moving fermions can be quantized
independently. The spectrum of the 8 left-moving fermions is summarized as follows, where
according to the choice boundary condition, the Hilbert space is split into the NS sector and the

R sector.

NS sector

The NS sector is the ([O] + [%])8 representation of the Virasoro algebra, which contains the CFT
vacuum and all the oscillator excitations with half-integer oscillators. The spectrum has conformal

character
4
_%

<. (2.33)

8
xv([0]+[3])
The spectrum (2.33) does not lead to sensible physical specturm, because it contains a tachyonic

ground state. To fix this problem, we require a truncation of the spectrum by the GSO projection?.

In CFT language, one requires in the NS sector that physical states be those of integer highest

1
2

to requiring an odd number of -oscillator excitations. The conformal character associated to this

weights among the irreducible components in ([0] + [ ])8. In the oscillator language, it amounts

truncated spectrum is therefore

(ot o8

'For the elliptic n- and §-functions, we adopt the conventions and notations in the appendix C of [30] for elliptic

f-functions.
2 Attributed to Gliozzi, Scherk and Olive.
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Here the second term in the parenthesis 67/n? is computed as Xw([O] + [%])8, but all contribution
from representations of half-integer highest weight has the sign reversed. Thus the subtraction of

the two projects out the representations of integer highest weight representations.

R sector

The R sector of the Hilbert space is a (2[%])8 representation of Virasoro algebra. It contains

a 28-fold ground state of conformal weight <, which forms an SO(8) Dirac spinor in spacetime.
The zero modes in the oscillator expansion ¢ act on this ground state as Dirac matrices since
they satisfy the Clifford algebra {t,4]} = 0. The raw R sector spectrum contains four times
the amount of NS sector modes. To achieve spacetime supersymmetry, we need to truncate the
spectrum. First we remove half of the modes by imposing the Majorana condition, making the
ground state a real spinor. We can thus express explicitly the ground state using bosonization
formalism of worldsheet fermions, where this ground state is created out of the CFT vacuum by
spin fields3. Second we introduce the GSO condition for the R sector by requiring that physical R
sector states should be of a definite chirality, and furthermore, two adjacent oscillator excitations
should have opposite chirality. The associated conformal character is?

1 64 64 Sg +,
ITRANE o

Here the first term in the parenthesis 63/n* is nothing but x»(16[%]®), the conformal character
arising from the spectrum based on a Majorana ground state. The second term is obtained, based
on the first term, by reversing the sign of the contribution from one chirality. The subtlety is
that when going from one oscillator excitation to an adjacent one, the sign should be reversed for
opposite chirality. The sign ambiguity in Eq.(2.35) accounts for the fact that one can project out

any of the two chiralities.

Above is the quantization of left-moving fermions. The total conformal character is

61— 04 — 03 + 0}

XU (1) =XE6 (T) = XEeo (7) =

2nt
- ZI: (—1)“+b+ﬂab—9[