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Summary

This thesis is dedicated to the study of cosmology induced by superstring theory at finite temper-

ature. The thermal string scenario has the aim of establishing a unified framework for describing

cosmological evolution, with gravity quantized, and matter contents derived from first principles.

The cosmological solutions of string theory are determined by the low energy effective action.

The latter only accommodates static solutions at tree level, while nontrivial cosmological evo-

lution is obtained when corrections from thermal and quantum effects are taken into account.

We restrict our attention to the weak coupling regime. In such cases the thermal and quantum

effects back-react on the initially flat static spacetime background through an effective potential

computed up to one loop level, which is a Colemann-Weinberg effective potential. It turns out

that this setup describes a universe filled with an ideal string gas in quasi-static evolution, and

the Colemann-Weinberg effective potential is just the Helmholtz free energy density of the string

gas.

The resulting cosmological evolution can be divided into three stages characterized by the

scale of temperature. They are namely: 1) the Hagedorn era where the temperature is of order

string scale, and the free energy density diverges due to the exponential growth of degeneracies

with mass level; 2) the standard cosmology era where the temperature goes below the electroweak

phase transition scale, and the nucleosynthesis takes place giving birth to the matter contents of

the current universe; 3) the intermediate era which is between the above two, where the spacetime

metric evolves in the pattern of a radiation-dominated universe (radiation-like), moduli can be

stabilized, and the hierarchy for supersymmetry breaking scale is generated.

The issue of moduli stabilization in the intermediate era is intensively studied. At certain

points in the moduli space, extra massless states emerge, and the Helmholtz free energy density,

or the effective potential, develops local minima. The latter provide moduli attractors. The depth

of the local minima is time dependent, which induces scalar masses reducing with cosmological

evolution. This makes the coherent scalar oscillations dilute before nucleosynthesis, and the cos-

mological moduli problem is avoided. Specific models are studied, where attention is given to

moduli stabilization by non-perturbative effects.



We first studied cosmology induced by a maximally supersymmetric heterotic string gas. The

free energy density reaches local minima where perturbative string states of nonzero winding and

momentum numbers become massless, giving rise to non-Abelian gauge symmetry enhancement.

This can stabilize all heterotic moduli but the dilaton, i.e. the internal metric, the internal B-field

and Wilson lines, among which the internal metric components are attracted to the string scale.

Through the type I/heterotic string S-duality this mechanism can be mapped to the type I side.

In particular it is found that the dual type I moduli are stabilized by either non perturbative

BPS D-string states or by perturbative open string states, where the internal geometric moduli

are stabilized at the scale
√
λI, with λI the type I string coupling in ten dimensions. Enhanced

gauge symmetries at moduli attractors on the heterotic side are also sent to the type I dual side.

Although these enhancements of type I gauge symmetry are non-perturbative effects, they should

be treated on equal footing with the gauge group induced by perturbative states.

The second case is the cosmology induced by a gas of type II string compactified on Calabi-Yau

three-folds. Moduli attractors are found to be at the loci where some 2-spheres or 3-spheres in

the Calabi-Yau space shrink to zero size leading the Calabi-Yau space to a singular configuration.

These can be either conifold loci or some non Abelian gauge symmetry loci. In type IIA description,

in the case of shrinking 2-spheres, the extra massless states arise from BPS D2-branes wrapping

these 2-cycles. In case of shrinking 3-spheres, the extra massless states are not yet identified, but

their existence can be inferred from the change in moduli space dimension, and further confirmed

by analyzing the low energy effective action. This mechanism can lift the whole Kähler moduli

space, while in the complex structure moduli space, the flat directions lifted are those associated to

the shrinking 3-spheres that can be blown up into 2-spheres. The universal hypermultiplet moduli,

which contains the dilaton, cannot be lifted by this mechanism. An explicit example is analyzed

where all Kähler moduli are stabilized at the intersection of a conifold locus and a non-Abelian

locus. By virtue of the type II/heterotic string duality, the moduli in the dual heterotic string

are stabilized, where remarkably, the axio-dilaton modulus is stabilized at order 1 in the unit of

string length.
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Chapter 1

Introduction

1.1 Unification and superstring theory

A prevailing conviction about the high energy physics is the unification of the four fundamental

interactions. This is not only for aesthetic reason but also for addressing fundamental problems

of theoretical physics such as the determination of standard model parameters, the generation

of baryon-antibaryon asymmetry. Supersymmetry provides a theoretical framework which favors

the unification. Even though supersymmetry is not yet directly confirmed by experiments, it is

possible however, by tuning the supersymmetry breaking scale, to give rise to the grand unification

theory (GUT) [1]. That is, the renormalization group flows are such that the coupling constants of

the electroweak interaction and the strong interaction converge to the same value at high energy

scale.

If we admit that the GUT scenario is an intermediate step towards the “theory of everything”,

a theory unifying all the four interactions, then a natural way to bring gravity into play is to

make the global supersymmetries local. This is because invariance under local supersymmetry

transformation implies invariance under diffeomorphism transformation, and the latter is essential

symmetry of general relativity. In the gauging of the global supersymmetry, spin-3�2 fields appear

as the “gauge fermion” coupled to the supercurrent, making it necessary to further introduce spin-2

graviton to close the supersymmetry algebra. This leads to the supergravity theory. However the

theory is plagued by non-renormalizability, when we quantize the graviton as metric fluctuations

around a fixed background.

It is then realized that string theory can provide way out to the difficulty of supergravity.

On one hand, superstring theories accommodate supergravity as the low energy effective theory.

The quantization of superstring yields supersymmetric spectrum of spacetime states. The ground
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level, which is of mass zero, contains a spin-2 mode, recognized as the graviton. Therefore the

supergravity action becomes the Wilsonian effective action of superstring where all massive modes

are integrated out. On the other hand, the spatial dimension of strings, which delocalizes the

range of their interaction, introduces a natural UV cut-off. Therefore supergravity appears non-

renormalizabile just because it is the low energy effective theory of some underlying UV finite

theory.

However this picture of unification is not without price to pay. Most obviously, superstring

spectrum generously offers much too more spacetime fields than what the standard model needs,

so that the connection to the real world is not clear. Also the spacetime has to contain extra

dimensions in order for the quantized string theory to respect the symmetries that exist on the

classical level. Then upon compactification down to 4D spacetime, we face with highly degenerate

vacua, parameterized by a considerable amount of moduli, which are massless scalar fields. These

are the main problems that have to be coped with in the phenomenological application of string

theory. To make string theory phenomenologically viable is the deep-seated motivation in many

of the research works on string theory, for instance compactification, model building, moduli

stabilization, etc. Despite these difficulties among others, string theory is the most promising

candidate quantum theory of unification leading to a sensible account of phenomenology.

1.2 Cosmology induced by string theory

As is the case for any high energy theory in physics, in order to make contact with the observable

universe, it is important that string theory pass the trial of cosmological application. The widely

adopted cosmological scenario is that of the standard Big-Bang cosmology or the ΛCDM model.

It supposes that the universe starts off from a singular and extremely high energy event, namely

the Big-Bang. Very soon after, it experiences a short inflationary period, which accounts for the

flatness, isotropy and homogeneity that we observe today. After the reheating pending the infla-

tion, the universe goes through a series of symmetry breakings as it cools, including the separation

of strong interaction, supersymmetry breaking and the electroweak symmetry breaking, where the

last event happens when temperature drops to about O(100)GeV scale. At this moment Higgs

potential is destabilized, triggering the electroweak phase transition, giving mass to fundamental

particles and the four fundamental interactions appear as what we observe today. As the universe

continue cooling, it becomes radiation-dominated, and meanwhile matter starts to form through

the process of nucleosynthesis, and gradually matter dominates the universe. The theoretical mat-

ter content in today’s universe is obtained by fitting the model with empirically supposed matter

contents, each characterized by the state equation P = w⇢, into observation results of supernovae
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or galaxies. This yields the proportions that each type of matter takes up: baryonic matter ∼ 3%,

dark matter ∼ 27%, and dark energy ∼ 70%.

Although the standard cosmological model has largely promoted our understanding of current

observation results of the universe, it has the drawback of being a too phenominological approach.

Its matter contents are put by hand, where indeed some underlying theory is desired so that these

cosmic fluids can be derived from first principle. Also the application of standard model has the

difficulty from the hierarchy problem at high energy scale, where the Higgs mass is attracted to an

extremely large value. Then if we resolve the hierarchy problem using supersymmetric standard

model scenario, the problem is transplanted into the hierarchy of supersymmetry breaking scale.

Furthermore since gravity is not quantized, the model does not propose solution to the Big-Bang

singularity. Last but not least, phase transitions between different cosmological eras are imposed

rather than natural.

Therefore in view of the fact that string theory unifies all interactions and matter contents

in a quantum theory framework, we are tempted to formulate cosmology using string theory. It

should be stressed that by doing so, we are not just putting strings into the ΛCDM universe to see

how they evolve, as what we do with standard model. Rather, we are requesting the string theory

to generate the whole cosmology as solution to its equations of motion derived from the effective

supergravity theory. However we already meet with the difficulty that for most of the cases only

static AdS or flat backgrounds can be obtained at tree level as the vacuum configuration, which

is already known in supergravity.

Thus effects beyond tree level must be considered. Actually in the works prior to those to be

discussed in this thesis [2–7], the thermal and quantum effects are inspected for weakly coupled

strings at one loop level. It is found that in certain cases the resulting corrections are under control

at full string scale. These corrections induce non trivial cosmological evolution through its back

reaction on the tree level solution. We will refer to this approach the “thermal string scenario”

in this thesis. The logic of setting up this scenario is as follows. The universe is described at

tree level by no-scale type supergravity [8], which is characterized by vanishing scalar potential

minima, as well as the spontaneous breaking of supersymmetry at the scale given by the no-scale

modulus. This is to account for the observation result that the universe is almost flat and has a tiny

cosmological constant. As the supersymmetry is spontaneously broken by thermal effect among

other possible mechanisms, a non trivial vacuum-vacuum amplitude is generated at one-loop level.

The latter corrects the tree level no-scale supergravity action as the one-loop Colemann-Weinberg

effective potential, and since the string coupling is set to be weak, higher order corrections can

be neglected. Provided that the one-loop amplitude at finite temperature is just the logarithmic

of the canonical partition function of ideal gas, the corrected action describes in effect a universe
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filled with a string gas at finite temperature. From the one-loop part of the action one can derive

the energy density ⇢ and the pressure P of the string gas which sources cosmological evolution,

and these string theory quantities do not have UV ambiguity as in field theories. The solution

describes a universe evolving in the pattern of a radiation-dominated universe: a(t) ∝ T (t)−1
and H(t)2 ∝ a(t)−D, where T is the temperature, a the scale factor in the flat Robertson-Walker

metric (flat because of no-scale), H the Hubble parameter and t the cosmological time. What

is remarkable is that the solution of nontrivial cosmological evolution is induced by the thermal

string gas and is purely a quantum effect.

For constructing realistic models supersymmetry should be spontaneously broken at zero tem-

perature. Interesting phenomenology has been unraveled for the cases where supersymmetry

breaking implemented by Scherk-Schwarz reduction in an internal circle [3–6]. The associated

supersymmetry breaking scale, which are of order the inverse radius, is found to be evolving pro-

portionally with temperature MSUSY(t)∝ T (t), and ratio between the two is attracted to a fixed

value of order 1. The hierarchy MSUSY � MPlanck is thus dynamically generated. It should be

stated that the backward extrapolation of these solutions is limited by the appearance of Hagedorn

instability at ultra high temperature which is about of the string scale1 Ms = �1�↵′. There, the

one-loop correction diverges at a critical temperature called the Hagedorn temperature, where the

thermal string scenario breaks down. One difficulty appears in that we cannot know what the

initial conditions are at the beginning of the phase where temperature falls below the Hagedorn

temperature and one-loop correction become calculable. However remarkably the radiation-like

solutions described above are insensitive to the initial conditions. That is, the evolution will be

dynamically attracted to the radiation-like solution whatever the initial conditions.

Another appealing thing that we expect from the string cosmology is establishing a unified

description of all the cosmological eras from the very beginning to the standard matter dominated

era. We have just mentioned briefly the backward extrapolation of cosmological solutions, which

stops at the moment where temperature is of about the string scale. Likely, the forward extrapo-

lation should also be limited, since with the dropping of the temperature and the supersymmetry

breaking scale, we will end up with a supersymmetric vacuum. Indeed at the moment when tem-

perature lowers to about the electroweak scale Λew, it is expected that certain infrared effects,

which was screened at hight energy scale, become relevant, and the resulting radiative corrections

lead to the stabilization of MSUSY at about TeV scale. The analysis of this effect in supergravity

context has been carried out in Refs [9, 10].

Therefore we can divide the thermal-quantum induced cosmological evolution in three eras: the

Hagedorn era for T ∼Ms, the standard cosmology era for T > Λew, and finally the cosmological era

1α′ = l2s is the Regge slope, ls is the string length.

4



which accommodates the radiation-like solutions we have just described, satisfying Ms � T � Λew,

referred to as the intermediate era. While the intermediate era has been intensively studied, the

other two eras are less well understood. For the Hagedorn era, some works have been done

where the Hagedorn singularity is resolved in type II string by implementing “gravito-magnetic

fluxes” [11–14]. It has been shown that such resolution of Hagedorn singularity can lead to the

resolution of the Big-Bang singularity, where we obtain a bouncing universe [12,13] or an emerging

universe [14].

1.3 Moduli stabilization

As the end of Sec.1.1 complains, compactification of string theory leads to highly degenerate

vacua, characterized by parameters spanning the moduli space. These parameters, or moduli, are

given by the vacuum expectation values (VEV’s) of massless scalar fields in the tree level effective

field theory, which we refer to as moduli fields. These massless scalar fields are undesirable for

phenomenological application because if they existed in nature, they would mediate new types

of interaction so that we would have more than four fundamental interactions. Moreover since

moduli are free parameters that the couplings and the mass spectrum depend on, the model loses

predicability. Therefore if we believe in string theory as the fundamental theory of nature, then

any sensible phenomenological application must manage to let moduli be settled to some fixed

value and become massive scalar fields. In other words, the model must be able to generate some

nontrivial scalar potential beyond tree level that lifts the flat directions.

Actually the thermal string scenario provides such mechanism. It was shown in [15] that a

gas of string modes, which carry both winding and momenta, generate a free energy that enables

stabilization of radii moduli. The thermal string scenario provides a quantum version of this

effect, which is effectuated through the quantum one-loop correction [16]. More accurately, the

Helmholtz free energy density derived from the one-loop amplitude interferes in the effective action

as a scalar potential and lifts flat directions. It reaches local minima whenever there are states

in the spectrum, whose mass depend on moduli, becoming massless. Therefore these points in

the moduli space are just the moduli attractors. In the results in [5, 6] the moduli are attracted

to points with enhanced gauge symmetry. The effective potential develops local minima due to

the extra perturbative states which become massless to supply the non Cartan components of the

enhanced gauge group. In fact the link between local extrema of one-loop amplitude and enhanced

gauge symmetry has been explored in [17], where it is shown that the correlation of the two is

true to all loop levels.

Moduli stabilization by non-perturbative effects is considered in [18, 19], which will be given
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much attention in the thesis. In [18] the non-perturbative effects examined are induced by D1-

branes in the type I string, where the calculation is done indirectly through the dual heterotic

string. For simplicity, models considered therein are maximally supersymmetric, while general-

ization to non-supersymmetric vacua is obvious. On the heterotic side it is found that all moduli,

except the dilaton, can be stabilized at some gauge symmetry enhancement points, where F-string

states are responsible for the gauge symmetry enhancement. Using string-string S-duality, this

mechanism can be mapped to the dual type I side to stabilize type I moduli. In particular, given

that the heterotic F-string states are mapped to type I D-string states, the moduli stabilization

on the dual type I side is a non-perturbative effect, accompanied with non-perturbative gauge

symmetry enhancement.

In [19] we look into the D2(D3)-brane effects in type IIA(B) strings compactified on Calabi-Yau

three-folds. The moduli attractors are expected to be located at certain loci of topology change

of the Calabi-Yau space. This is motivated by the analysis in [20] which reveals that singulari-

ties appear in the low energy supergravity action when the Calabi-Yau space undergoes conifold

transition. This is interpreted as arising from light D-brane states, which become massless at the

transition point, wrongly integrated out from the Wilsonian effective action. The singularities

are repaired as we “integrate in” these D-brane states, and it turns out that these light states are

weakly coupled to the Abelian gauge group. As the CFT computation of one-loop amplitude is

not available in generic Calabi-Yau compactifications, the one-loop correction can be computed

perturbatively (in the sense of gauge coupling not string coupling) from this repaired effective

action by field theory method. We then rely on this one-loop correction to indicate moduli at-

tractors. Similar mechanism exists when the Calabi-Yau space undergoes the extremal transition

where the singular configuration contains a curve of AN−1 type singularity. The same procedure

as for the conifold case still applies here, except that the light non-perturbative spectrum is more

complicated. They form an SU(N) gauge group with matter transforming in the adjoint repre-

sentation. In both cases we observe that Kähler moduli and complex structure moduli moduli are

attracted to values corresponding to the singular configuration of the internal Calabi-Yau space.

A major difficulty in moduli stabilization is that cosmology imposes severe conditions on the

scalar masses. Basically as the universe expands, small initial fluctuation of background scalar

fields in the potential well can dominate the energy of the universe at late time. For example

in 4D, the oscillations store an energy density scaling as T −3 with T temperature of radiation,

which eventually dominates over the radiation energy which scales as T −4 [21]. This domination

continues until the corresponding scalar particles decay. Severe problem arises because not only

the productions of the decay can alter the primordial abundances of light nuclei produced by

nucleosynthesis, but also the huge amount of entropy production during the decay can wash out

6



the baryon number asymmetry. This problem is termed as the cosmological moduli problem,

which was initially identified in the framework of supersymmetric standard models [22–24]. One

plausible solution to these is to require the scalar masses be of O(10)TeV order, for example in

the KKLT scenario [25]. It is pointed out in [23] that once this is satisfied, the decay of these

scalar particles reheats the universe to a temperature of order 1MeV, high enough to restart the

nucleosynthesis. Then it is found in [24] that the baryon number asymmetry can also be saved by

the O(10)TeV order scalar mass if the baryogenesis is due to the Affleck-Dine mechanism [26].

The thermal string cosmology addresses the cosmological problem differently. This is already

explored in [5, 6] where it is shown that the induced scalar mass is proportional to T
D
2
−1, which

decreases in time rather than being constant. Given that the oscillation in the potential well has

the frequency proportional to the square-root of the induced mass, the decrease of mass slows

down the background oscillation and hence the expansion of the universe dilutes the oscillation

energy faster than for constant induced mass. By consequence, one finds that the energy stored

in the background scalar oscillation never dominates so that the cosmological problem does not

appear.

1.4 Organization of the thesis

The first three chapters following the introduction provide preliminary string theoretical elements

that our work is based on. In Chapter 2 we go rapidly through the perturbative approaches of

string theory quantization and will especially be concerned about the description of the spectrum,

where lightcone gauge will be used. The aim is to get a quick access to the computation of

one-loop vacuum-to-vacuum amplitudes. Chapter 3 collects the conceptual and technical aspects

in compactification that will later be useful in giving rise to moduli stabilization mechanism in

thermal string cosmology. These include worldsheet instanton, gauge symmetry enhancement,

supersymmetry breaking by orbifold, and Calabi-Yau compactification. Chapter 4 goes one step

further into the non-perturbative realm, and gives account for the non-perturbative mechanisms

that have been explored in our works. The discussion will be restricted on the non-perturbative

D-sting effects in type I string which can be revealed by the S-duality between type I and heterotic,

as well as those in Calabi-Yau 3-fold compactification of type II strings when the Calabi-Yau space

undergoes extremal transition.

The next two chapters are dedicated to building up the thermal string cosmology scenario,

which summarize the foundational elements in the related works [2–7, 18, 19]. They give account

to the two essential aspects concerned: string gas thermodynamics and its implementation in

7



cosmology. Chapter 5 deals with ideal string gas without considering cosmological context. Com-

putation of the partition function Z = Tr e−βH is described in detail, where we establish the first

quantization computation of the partition function through analogy with field theory

Zfield = exp � � �→ Zstr = exp � �
so that computing the thermal partition function attributes to computing thermal one-loop am-

plitude. Explicit computation is performed on specific string models. Then the investigation of

general properties of the thermal one-loop amplitudes leads to the discussion of Hagedorn singu-

larity. In Chapter 6 we set up the formalism describing cosmology. The aim is to introduce the

assertion that the thermal quantum effects of the ideal string gas back reacts on the background

spacetime metric and fields through a stringy version of Coleman-Weinberg effective potential.

This is again inspired by the field theory analogue of 1PI effective action:

Γfield = Stree
field + S1-loop

field + . . . �→ Γstr = Stree
str − + . . . .

Then a simple application is shown, where the cosmological solution is found in maximally su-

persymmetric heterotic string. Based on the solution, meanwhile supplemented with the results

from previous works especially on non-supersymmetric tree level vacua, we illustrate the common

and basic features of the cosmological evolution in the thermal string scenario. The problem of

moduli stabilization is discussed, in order to motivate the work in the following up two chapters.

In Chapter 7 and Chapter 8 we present the work done in Refs [18, 19], where we focus our

attention on the moduli stabilization in the intermediate era by non-perturbative effects. The

non-perturbative effects concerned are those mentioned in chapter 4. The D1-brane states in type

I string is investigated in chapter 7 while the D2(3)-brane effects in Calabi-Yau compactification of

type IIA(B) string are considered in chapter 8. We have already explained the idea in the middle

part of Sec.1.3

We will give conclusion and perspectives in the final chapter.
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Chapter 2

Perturbative string spectrum

This chapter gives a sketch of important elements in perturbative string theories which we will

need. We go quickly through the perturbative quantization of all types of string theories, where

we care most about the resulting spectra and their description in terms of partition functions. The

latter leads to the computation of one-loop vacuum-vacuum amplitudes, which will play crucial

role later in the study of cosmology. Although non-perturbative effects will also be investigated as

very important issue, the computation involved therein will still utilize the perturbative technique

in this chapter.

2.1 Quantization of free string theories in general

Naively the string theory can be viewed as a generalization of the point particle vision of the

microscopic world. It postulates that the fundamental component of matter are extended objects

of one spatial dimension, which has internal structure rather than point-like objects. In Fig.2.1

this generalization is shown schematically. In the passage from the point particle action to the

bosonic string action, we emphasize the enlargement of local symmetry group due to the internal

structure of strings. Handling properly these symmetries in the quantization of string theories

leads to nontrivial constraints on the structure of spacetime and on the spectrum that string

vibrations generate.

String theories in a curved spacetime background is in general a nonlinear sigma model, of

which a full quantum description is not possible except for some special cases. Here for sake of

exact quantization, we consider a Minkowskian background, which can be further compactified on

some toroidal compact space.
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point particle (bosonic) string

world line (WL) worldsheet (WS)

WL diffeomorphism invariance

WS diffeomorphism invariance

Weyl rescaling invariance

τ

σ
τ

xµ(τ) Xµ(τ, σ)

h⌧⌧ = −e
2 �h↵β� = ��

h⌧⌧ h⌧σ

hσ⌧ hσσ

�
�

S =
1

2
�

WL

dτ�e−1ẋµẋµ − em2� S = −
T

2
�

WS

dτdσ
√
−hh↵β∂↵X

µ
∂βXµ

δe = d
d⌧
(ξ e)δxµ = ξ ẋµ

δh↵β = ∇↵ξβ +∇βξ↵δXµ = ξ↵∂↵X
µ

δh↵β = Λh↵βδXµ = 0

Figure 2.1: From scalar particle to bosonic string. Here µ labels spacetime dimension, α β label the worldsheet

dimensions; τ is the propertime of the world line and the worldsheet, and σ the spatial coordinate of the worldsheet;

hττ = −e
2 is the world line metric and hαβ the worldsheet metric; xµ(τ) and Xµ(τ, σ) are respectively the target

space coordinates of the particle and of the string; T = 1

2πl2
s

is the string tension; ξ is the infinitesimal generator of

world line diffeomorpism and ξα the worldsheet counterpart; Λ is the infinitesimal generator of Weyl rescaling.

Quantization schemes

To quantize string theories in a Minkowskian target space, one usually go through three different

schemes: old covariant quantization, lightcone gauge quantization and BRST quantization. Each

has its own domain of competence. In case of non-interacting strings where all these quantization

schemes can be applied, they lead to equivalent physical Hilbert spaces related by isomorphisms.

All string theory quantization in this chapter will be using lightcone quantization. Here we briefly

comment these methods in order to justify our choice, as well as to motivate the CFT approach

of string theory quantization.
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Old covariant quantization

It is based on canonical quantization scheme, and is intended for giving the physical spectra

of free string theories. One starts by imposing conformal (superconformal) gauge condition to

bosonic string (superstring) theory, which fixes the worldsheet metric up to a Weyl rescaling.

The action thus appears as a free CFT (SCFT), but is supplemented with first-class constraints.

The latter are associated to the reparameterization (and local supersymmetry) freedoms of string

coordinates. One then quantizes this CFT (SCFT) canonically, and in addition imposes the

classical constraints at quantum level to squeeze out gauge redundancies. Weyl symmetry is

violated at quantum level due to the presence of a nonzero central charge. However this conformal

anomaly is irrelevant, since quantizing the theory against two different worldsheet metrics subject

to conformal (superconformal) gauge condition leads to the same Hilbert space. Generically the

quantum description suffers from negative-norm states in the Hilbert space, which are called

ghosts. By requiring the absence of ghost states, one finds precise constraints on the spacetime

dimension and the mass spectrum.

Lightcone quantization

It is also based on canonical quantization and deals only with the free string theories. By impos-

ing the lightcone gauge condition, all reparametrization and local supersymmetry freedoms are

completely fixed at classical level. One is thus left with a free 2-dimensional CFT or SCFT con-

taining only transverse string coordinates. Radial quantization yields directly the exact physical

Hilbert space, where all physical states span a representation space of the Virasoro algebra. Weyl

invariance is not preserved at quantum level since there is a nonzero central charge. However just

as in the old covariant quantization, this conformal anomaly is not harmful in itself, while the

harm is reincarnated in the Lorentz algebra anomaly in spacetime. Demanding the cancelation

of this anomaly, one gets the same constraints on the spacetime dimension and the same mass

spectrum as in the former case. In the case where we care only about the free string spectrum,

lighcone quantization is the most straightforward and economic way to achieve the goal, as will

be the case for our computation of one-loop vacuum amplitudes.

BRST quantization

The BRST quantization invokes path integral method and is designed to rigorously compute string

amplitudes to any level in loop expansion. For free string theories, the gauge fixing procedure

leads to a 2-dimensional CFT or SCFT containing all the bosonic string coordinates and ghosts,
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as well as all the fermionic string coordinates with superghosts in case of superstring theory. The

action then loses all gauge freedom of worldsheet reparameterization and local supersymmetry but

still preserves Weyl rescaling invariance, and in addition it acquires BRST invariance. These two

local symmetries are generically not preserved at quantum level. By cancelation of the associated

anomalies, the spacetime dimension number and the mass spectrum are constrained in the same

way as the former two cases. One can further work out the Hilbert space, where physical states

are indicated by its BRST cohomology classes.

Free CFT on complex plane

The canonical quantization of free string theory attributes to the quantization of the underlying

free CFT’s on a complex plane, whose field contents vary in function of the type of strings and

the method of quantization. Let the complex coordinate be z, and the free CFT be invariant

under the conformal transforms z → f(z) and z̄ → f̄(z̄) with f any holomorphic function. The

associated conserved charges are T (z) and T̄ (z̄), whose operator product expansions (OPE) tell

the central charges (c, c̄) of the CFT:

T (z)T (w) = c�2
(z −w)4 +

2

(z −w)2T (w) +
1

z −w
@wT (w) + . . . , (2.1)

and the same expression for T̄ (z̄), which implies c̄. We will need to know that each holomorphic

or anti-holomorphic free scalar contributes one unit of central charge and each free chiral fermion

contributes one half. The mode expansions of T (z) and T̄ (z̄) yield Virasoro operators {Lk} and

{L̄k}: T (z) = ∑ z−k−2Lk and T̄ (z̄) = ∑ z̄−k−2L̄k, which satisfy anomalous Virasoro algebra

[Lm, Ln] = (m − n)Lm−n + c

12
(m3
−m)δm+n, (2.2)

and the same thing for {L̄k} with central charge c̄. There exists the vacuum state �0� which is

annihilated by Lk≥−1 and L̄k≥−1. Primary fields φ(z, z̄) are those which transform according to

T (z)φ(w, w̄) = h

(z −w)2 φ(w, w̄) +
1

z −w
@wφ(w, w̄) + . . . ,

T̄ (z)φ(w, w̄) = h̄

(z −w)2 φ(w, w̄) +
1

z −w
@wφ(w, w̄) + . . . ,

(2.3)

where h and h̄ are real constants, called the conformal weights of φ. Ground physical states are

generated by primary states as

�h, h̄� = lim
z,z̄→0

∶ φ(z, z̄) ∶ �0�, (2.4)
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which is of conformal weight (h, h̄), with L0�h, h̄� = h�h, h̄� and L̄0�h, h̄� = h̄�h, h̄�. The physical

spectrum can be generated by acting the negative modes L−k and L̄−k (k > 0) on the ground state�h, h̄�, subject to certain physical constraints, for example the level-matching condition L0 = L̄0 for

closed strings, the GSO conditions, invariance under orbifold projections or orientifold projections,

etc. All descendent physical states based on the ground state �h, h̄� span a representation (not

necessarily irreducible) space of the Virasoro algebra, of highest weight (h, h̄). At this point we

can introduce the characteristic function of a Virasoro algebra representation, called conformal

character. When holomorphic sector and the anti-holomorphic sector can have independent highest

weights and descendent states, as is the case for closed strings, the conformal character based on

ground state (h, h̄) is

χ
(h,h̄)
(⌧, ⌧̄) = Tr

(h,h̄)
qL0−

c
24 q̄ L̄0−

c̄
24 = q h− c

24 q̄ h̄−
c̄
24�

N

DN qN �̄
N

D̄N̄ q̄N̄ , (2.5)

where q = e2⇡i⌧ , and ⌧ is a complex parameter, which is defined on the upper complex plane to

guarantee the convergence of the series; the trace Tr
(h,h̄)

runs through all the descendent states

based on the ground state �h, h̄�, and DN (D̄N̄) is the degeneracy of the N -th (N̄ -th) oscillator

level in the holomorphic (anti-holomorphic) sector. For the state L−m1
. . . L−mkL̄−n1

. . . L̄−nl �h, h̄�,
its oscillator levels are N =m1 + ⋅ ⋅ ⋅ +mk and N̄ = n1 + ⋅ ⋅ ⋅ + nl. Here we include the central charge

shift −c�24 and −c̄�24, in order to switch from the complex plane back to the initial worldsheet

of free string theories. Often we need to consider the holomorphic and anti-holomorphic sectors

separately, and we can define their conformal characters respectively as

χ
h
(⌧) = q h− c

24�
N

DN qN ; χ̄
h̄
(⌧̄) = q̄ h̄− c̄

24 �̄
N

D̄N̄ q̄N̄ . (2.6)

When modeling free open string theories, the CFT is defined on the upper half complex plane and

the holomorphic sector is identified with the anti-holomorphic sector: T (z) ≡ T̄ (z̄)⇔ Lm ≡ L̄m.

In such case a generic state is L−n1
. . . L−nk �h� (n1, . . . , nk > 0) and the corresponding conformal

character is

χ
h
(⌧, ⌧̄) = Tr

h
qL0−

c
24 = q h− c

24�
N

DN qN , (2.7)

where q = e−2⇡Im⌧ . The trace goes through all descendent oscillator states based on �h�. Therefore

Eq.(2.5) is the characteristic function of spectrum on the cylinder and Eq.(2.7) is the characteristic

function of spectrum on the strip. They are closely related to string one-loop vacuum amplitudes,

as is to be explained next.
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One-loop vacuum amplitude

The computation of one-loop vacuum amplitudes in string theories can be summarized as

Z1 = �
D

F

dµ(⌧, ⌧̄)A1(⌧, ⌧̄), (2.8)

where ⌧ denotes collectively the parameters characterizing the geometric configuration of the

worldsheet concerned, referred to as the Teichmüler parameter, which in our case can be identified

with the ⌧ appearing in the conformal character Eqs (2.5) and (2.7); A1(⌧, ⌧̄) is the one-loop

vacuum amplitude computed against a specific geometric configuration ⌧ ; and DF is the minimum

parametric space of ⌧ containing all distinct configurations. Finally all the specific amplitudes

A1(⌧, ⌧̄) are integrated up with measure dµ(⌧, ⌧̄), to give the total amplitude Z1. The amplitude

A1(⌧, ⌧̄) is model-dependent, which requires knowledge of the physical modes circulating in the

loop. Since we are dealing with non-interacting strings, all the three quantization schemes can work

out A1(⌧, ⌧̄). The other two elements dµ(⌧, ⌧̄) and DF do not care about the physical modes on

the worldsheet, but care only about the worldsheet topology. Therefore only BRST quantization

is qualified for finding them out, and hence qualified for computing Eq.(2.8) rigorously from A

to Z. However, we will encounter only four types of topology at one-loop level, namely the torus,

the Klein bottle, the annulus and the Möbios strip, whose dµ(⌧, ⌧̄) and DF are already known.

Thus we will simply take and use these results, and focus our attention on the computation of

A1(⌧, ⌧̄). The latter can be most conveniently achieved with lightcone gauge quantization. Thus

A1(⌧, ⌧̄) is just the conformal character of the lightcone Hilbert space, summed up over all possible

highest weighs (integrate over continuous highest weighs). For closed and open strings, we have

respectively,

closed ∶ A1(⌧, ⌧̄) = �
h,h̄

sign(h, h̄) × χ
(h,h̄)
(⌧, ⌧̄) ,

open ∶ A1(⌧, ⌧̄) = �
h
sign(h) × χ

h
(⌧, ⌧̄) . (2.9)

The subtlety in the summation is that appropriate sign should be attributed to different characters,

here denoted by sign(. . .), in order to implement physical conditions, for example GSO projection,

modular invariance. It can be seen from Eqs (2.5) and (2.7) that A1(⌧, ⌧̄) can be expanded as

a sum of powers of q and q̄. In case of closed string amplitude, the expansion containing both

q = e2⇡i⌧ and q̄ = e−2⇡i⌧̄ , physical spectrum can be read off from the level-matched part (q and q̄

have the same power) of this expansion, with the powers of qq̄ giving the squared masses, and

the associated coefficient the degeneracy of this mass level. It should be mentioned that the level-

matching condition is not derived from the underlying CFT, but is inherited from the worldsheet

diffeomorphism invariance of the full string theory action. However the modes which do not satisfy
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level-matching condition contribute to the closed string one-loop amplitude even though they are

not in the free string spectrum. On the other hand for open strings, the expansion of A1(⌧, ⌧̄) is

uniquely in terms of q = e−2⇡Im⌧ , and the physical spectrum is read off from this expansion in the

way that the power of q imply the masses squared, the coefficient is the degeneracy of this mass

level. Finally we recall without proving that in the frame work of lightcone gauge the integral

measures in Eq.(2.8) are

VD

2(2⇡)D �F
d⌧1d⌧2

⌧ 22
, with ⌧ = ⌧1 + i ⌧2 (torus), (2.10)

VD

2(2⇡)D �
∞

0

d⌧2

⌧ 22
with ⌧ =

�����������
2i⌧2 (Klein bottle),
1
2
i⌧2 (annulus),

1
2
+ 1

2
i⌧2 (Möbius strip).

(2.11)

In the torus case, the integration domain F is defined by �⌧ � > 1 and −1
2
< ⌧1 < 1

2
, which is the

fundamental domain of SL(2,Z). Indeed the integral measure ⌧−22 d⌧1d⌧2 is invariant under the

transform ⌧ → a⌧+b
c⌧+d , with (a b

c d) ∈ SL(2,Z).

2.2 Bosonic string

The bosonic string lives in 26 dimensional flat background spacetime. The classical Polyakov

action, which describes 26 scalar fields {Xµ(⌧, σ)} (µ = 0, . . . ,25) on the worldsheet, and which

displays all symmetries, is already shown in Fig.2.1. The notation of worldsheet time ⌧ is in clash

with the Teichmüler parameter in Eq.(2.8), but since we will never use the two together, there

will be no risk of confusion. Imposing lightcone gauge condition which eliminates X0 and X1,

performing worldsheet Wick rotation ⌧ = −i⌧E and defining the complex coordinate z = e⌧E−iσ,

we reduce the initial gauge system to a 2D CFT on the z-plane with 24 transverse free scalar

fields {X ı̃(z, z̄)} = {X i,XI}. Here we suppose that the theory is compactified on T d, and let

i = 2, . . . ,D − 1 label non compact spacetime of dimension D = 26 − d, and I = D, . . . ,25 label

compact ones. The action is

Sl.c. = T

2
� d2z @X ı̃@̄X ı̃, (2.12)

where @ = @�@z and @̄ = @�@z̄, and by d2z we mean dRez dImz. The string tension T is related to

the string length ls and to the Regge slope ↵′ by T = 1
2⇡↵′
= 1

2⇡l2s
. The energy-momentum tensor is

TX(z) = − 1
l2s
@X ı̃@X ı̃, T̄X(z̄) = − 1

l2s
@̄X ı̃@̄X ı̃ (2.13)

15



with central charge (cX , c̄X) = (24,24), and we let the associated Virasoro operators be {LXk } and

{L̄Xk }. The quantization of this system follows the standard scheme for free CFT quantization.

The following contents adopts the language in [27] and will be very concise on mathematical

aspects of CFT.

Closed bosonic string

The string coordinates satisfy periodic boundary conditions X ı̃(e2⇡iz) = X ı̃(z), whose mode ex-

pansion is

X ı̃(z, z̄) =X ı̃
L(z) +X ı̃

R(z̄), with (2.14)

X i
L= 12xi− i l

2
s

2
ki ln z + i ls√

2
�
n≠0

1

n

↵in
zn

, X i
R= 12xi− i l

2
s

2
ki ln z + i ls√

2
�
n≠0

1

n

↵̄in
z̄n

;

XI
L= 12xIL− i l

2
s

2
pIL ln z + i ls√

2
�
n≠0

1

n

↵In
zn

, XI
R= 12xIR− i l

2
s

2
pIR ln z̄ + i ls√

2
�
n≠0

1

n

↵̄In
z̄n

.

The zero modes are of interest since they contain physical information that the underlying CFT

does not imply. Note that for compact directions the holomorphic and anti-holomorphic com-

ponents have independent center-of-mass positions and momenta, {xIL, xIR} and {pIL, pIR}. It is

because the closed strings can wrap around compact directions. All the center-of-mass position

and momentum components have non-trivial commutation relations:

[xi, kj] = i δij, [xIL,R, pJL,R] = i δIJ , 0 for other commutators. (2.15)

The CFT vacuum state �0� is annihilated by all positive ↵-oscillators, and it can be shown that it

is SL2 invariant, i.e. annihilated by L0,±1 and L̄0,±1. A generic physical ground state is obtained

by acting on the vacuum the primary field

Ocls
k,p(z, z̄) =∶e i kiXi(z,z̄) e i p

I
LX

I
L(z)+i pIRXI

R(z̄) ∶ , (2.16)

where the superscript “cls” stands for “closed”, and ki and pIL,R here are not operators but take

concrete values. The OPEs of Vk,p(z, z̄) with TX(z) and T̄X(z̄) tell that the conformal weight is

hX = l2s
4
�k2 + p2L�, h̄X = l2s

4
�k2 + p2R� , (2.17)

so is the conformal weight of the corresponding ground states. The center-of-mass momentum

in non compact directions ki can be of any value, while k− adjusts itself to ensure k+k− − kiki

onshell. However the values of pIL,R are constrained by the compact space, which contain Kaluza-

Klein (KK) and winding numbers in the compact directions, as well as the moduli arising from
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compactification. A generic physical state �Xcls� can be the ground state or oscillator excitation

based on it:

�Xcls� = (osc.)Ocls
k,p(0,0)�0�=�(osc.) ;pL, pR;k �. (2.18)

where “osc.” denotes collectively negative-level oscillators. These states, with specific k and pL,R,

fit into a representation of the complex Virasoro algebra constituted by {LXk , L̄Xk }, of highest

weight (hX , h̄X) as shown in (2.17). Especially acting zero modes of the Virasoro operators on

them gives

LX0 �Xcls� = � l2s
4
�k2 + p2L� +N��Xcls�, L̄X0 �Xcls� = � l2s

4
�k2 + p2R� + N̄��Xcls�, (2.19)

with N and N̄ non-negative integers denoting left and right oscillator levels. We recall the result

from CFT that the tower of oscillator excitations of a single holomorphic worldsheet boson is

characterized by the partition function q
1

24 �⌘(⌧), where the expansion coefficient of the N -th

power of q = e2⇡i⌧ is the degeneracy of the oscillator level N . In the same way we have the anti-

holomorphic partition function q̄
1

24 �⌘̄(⌧̄). Thus using Eq.(2.19), one finds the conformal character

of the spectrum Eq.(2.18) to be

χXk,p(⌧, ⌧̄) = Tr qL0−
cX

24 q̄ L̄0−
c̄X

24 = q l2s4 �k2+p2L�q̄ l2s4 �k2+p2R� ⌘(⌧)−24⌘̄(⌧̄)−24, (2.20)

where the trace runs through all the oscillator excitations. Referring to the first line in Eq.(2.9)

the total one-loop amplitude in vacuum is therefore

Z = VD

2(2⇡)D �F
d2⌧

⌧ 22
�
pL,pR

� d�k χXk,p(⌧, ⌧̄) = VD

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

�
pL,pR

q
l2s
4
p2L q̄

l2s
4
p2R

⌘(⌧)24 ⌘̄(⌧̄)24 . (2.21)

The expansion of the integrand yields the lowest order (qq̄)−1 with negative power, showing that

the ground state is a tachyon. Also one can show that all states on the same mass level form a ten-

sorial representation of the little group. Therefore the spectrum Eq.(2.18) contains no spacetime

fermions. These drawbacks decide that the bosonic string cannot lead to sensible phenomenology.

Open bosonic string

The worldsheet scalar fields satisfy the Neumann boundary conditions @σX i�
σ=0,⇡ = 0, and we have

the mode expansions

X i(z, z̄)= 1
2
xi− i l2s k

i ln zz̄ + (osc.), XI = 1
2
xI− i l2s p

I ln zz̄ + (osc.) (2.22)
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where the nonzero oscillator parts are the same to Eq.(2.14) but with all left-moving and right-

moving oscillators identified: ↵ı̃∗ = ↵̄ı̃∗. Especially the center-of-mass momenta and positions in

compact directions are no longer split into left-moving and right-moving parts, since open strings

cannot wrap around compact directions, and hence in the internal momenta pI there is no winding

number. Also the center-of-mass momenta are defined differently from the case of closed string,

to maintain the correct commutation relation with center-of-mass positions. The CFT vacuum is

still denoted by �0�, and a generic physical ground state is generated by the primary field

Oop

k,p(z, z̄) =∶e i kiXi(z,z̄) e i p
IXI(z,z̄)

∶ , (2.23)

where ki can take any value and pI are constrained by the geometry of compact directions. It has

conformal weight

h
X = l2s (k2 + p2). (2.24)

A generic physical state �Xop� is either a ground state generated by Eq.(2.23) or is a descendent

state with oscillator excitations, which is

�Xop� = (osc.)Oop

k,p(0,0) �0�⊗ �ij� = �(osc.);p;k; ij�, (2.25)

satisfying

LX0 �Xop� = �l2s (k2 + p2) +N��Xop�, (2.26)

where N denotes collectively oscillator excitations; �ij� is the sector carrying Chan-Paton factors

i and j, which is a non-dynamical sector introduced in order to implement non-Abelian gauge

symmetry in spacetime. These states supply a representation of a Virasoro algebra of highest

weight hX as in Eq.(2.24). The one-loop amplitude is

Z = VD

2(2⇡)D �
∞

0

d⌧2

⌧
1+D

2

2

�
p

q
l2s
2
p2

⌘(2i⌧2)24 , where q = e−4⇡⌧2 . (2.27)

This integral has UV divergence at the limit ⌧2 → 0. Although the pathology can be cured by

including closed string and implementing the orientifold projection, the theory still suffers from

the problems of tachyonic ground state and lack of spacetime fermion. Therefore bosonic strings

cannot be a phenomenologically viable theory and we move on to superstring theories.
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2.3 Closed N = (1, 1)2 superstring and type II strings

The N = (1,1)2 has 10 dimensional target space. Its classical action is the supersymmetrized

version of the Polyakov action for bosonic strings

S = −T
2
� d2σ

√
−h�h↵β@↵Xµ@βXµ + 2i ψ̄µρ↵∂↵ψµ + (worldsheet gravitino)�, (2.28)

where {ρ↵} are Dirac matrices in 2 dimensions. It is in effect a 2-dimensional supergravity with a

non-dynamical supergravity multiplet, 10 scalar fields {Xµ(τ,σ)} and 10 2-component Majorana

spinors {ψµ(τ,σ)}. By lightcone gauge fixation, followed by a Wick rotation τ = −iτE and a

coordinate change z = e⌧E−iσ, the original theory is brought down to an N = (1,1)2 SCFT on the

z-plane. It contains 8 free scalar fields {X ı̃} and their superpartners which are free Majorana-

Weyl spinors {ψ ı̃, ψ̄ ı̃} (i = 2, . . . ,9), with ψ and ψ̄ of opposite chirality. It is a free SCFT of central

charge (cX, , c̄X, ̄) = (12,12) where each holomorphic boson contribute one unit and fermion half

unit. The action is:

S l.c. = T

2
� d2z�∂X ı̃∂̄X ı̃ + i�ψ ı̃∂̄ψ ı̃ + ψ̄ ı̃∂ψ̄ ı̃��, (2.29)

from which we derive the conserved charges of conformal transforms

TX, (z) = − 1
l2s
∂X ı̃∂X ı̃ + 1

l2s
ψ ı̃ ∂ψ ı̃ , T̄X, ̄(z̄) = − 1

l2s
∂̄X ı̃∂̄X ı̃ + 1

l2s
ψ̄ ı̃ ∂̄ψ̄ ı̃ . (2.30)

Here as for the bosonic string, we suppose the theory be compactified on a torus T d, where

d = 10−D and D the spacetime dimension. The convention for the indices are i = 2, . . . ,D−1 and

I =D, . . . ,9. The quantization is straightforward: the bosonic part and the fermionic part can be

quantized as independent CFT’s. The bosonic part has already been described in the last section,

and the fermionic part is summarized as follows.

Spectrum of worldsheet fermions

Unlike the bosonic sector, the fermionic sector gives rise to Virasoro algebra representations of

fixed highest weights. Recall from Ref. [27] that each free chiral worldsheet fermion can generate

the representation [0] + 2[ 1
16
] + [1

2
], where the numbers in the brackets are the highest weights of

irreducible components. The representation [0] + [1
2
] is generated when the chiral fermion takes

anti-periodic boundary condition, referred to as Neveu-Schwarz (NS) boundary condition. This

leads to integer mode expansion of worldsheet fermions ψ ı̃(z) = ∑r z−r− 1

2ψ ı̃r (r ∈ Z − 1
2
), and the
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conformal character of the resulting spectrum is1

χ �[0] + [1
2
]� =
�

✓3

⌘
. (2.31)

The representation [ 1
16
] is generated when the chiral fermion takes periodic boundary condition,

referred to as Ramond (R) boundary condition. This results in half-integer mode expansion

of worldsheet fermions ψ ı̃(z) = ∑r z−r− 1

2ψ ı̃r (r ∈ Z), where the the zero modes ψ ı̃0 are crucial

to the emergence of spacetime fermions. Each [ 1
16
] representation in the holomorphic sector is

characterized by conformal character

χ �[ 1
16
]� =
�

θ2

2η
. (2.32)

For sake of global existence of worldsheet supercurrent, fermions of same chirality should take

the same boundary condition. The left-moving and the right-moving fermions can be quantized

independently. The spectrum of the 8 left-moving fermions is summarized as follows, where

according to the choice boundary condition, the Hilbert space is split into the NS sector and the

R sector.

NS sector

The NS sector is the �[0] + [1
2
]�8 representation of the Virasoro algebra, which contains the CFT

vacuum and all the oscillator excitations with half-integer oscillators. The spectrum has conformal

character

χ �[0] + [1
2
]�8 = θ43

η4
. (2.33)

The spectrum (2.33) does not lead to sensible physical specturm, because it contains a tachyonic

ground state. To fix this problem, we require a truncation of the spectrum by the GSO projection2.

In CFT language, one requires in the NS sector that physical states be those of integer highest

weights among the irreducible components in �[0] + [1
2
]�8. In the oscillator language, it amounts

to requiring an odd number of ψ-oscillator excitations. The conformal character associated to this

truncated spectrum is therefore

χNS

GSO
= 1

2
�θ43
η4
−
θ44
η4
� = V8. (2.34)

1For the elliptic η- and θ-functions, we adopt the conventions and notations in the appendix C of [30] for elliptic

θ-functions.
2Attributed to Gliozzi, Scherk and Olive.
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Here the second term in the parenthesis ✓44�⌘4 is computed as χ �[0] + [1
2
]�8, but all contribution

from representations of half-integer highest weight has the sign reversed. Thus the subtraction of

the two projects out the representations of integer highest weight representations.

R sector

The R sector of the Hilbert space is a �2[ 1
16
]�8 representation of Virasoro algebra. It contains

a 28-fold ground state of conformal weight 8
16

, which forms an SO(8) Dirac spinor in spacetime.

The zero modes in the oscillator expansion ψ ı̃0 act on this ground state as Dirac matrices since

they satisfy the Clifford algebra {ψ ı̃0,ψ|̃0} = δ ı̃|̃. The raw R sector spectrum contains four times

the amount of NS sector modes. To achieve spacetime supersymmetry, we need to truncate the

spectrum. First we remove half of the modes by imposing the Majorana condition, making the

ground state a real spinor. We can thus express explicitly the ground state using bosonization

formalism of worldsheet fermions, where this ground state is created out of the CFT vacuum by

spin fields3. Second we introduce the GSO condition for the R sector by requiring that physical R

sector states should be of a definite chirality, and furthermore, two adjacent oscillator excitations

should have opposite chirality. The associated conformal character is4

χR

GSO
= 1

2
�θ42
η4
± θ41
η4
� = � S8 + ,

C8 − .
(2.35)

Here the first term in the parenthesis θ42�η4 is nothing but χ �16[ 1
16
]8�, the conformal character

arising from the spectrum based on a Majorana ground state. The second term is obtained, based

on the first term, by reversing the sign of the contribution from one chirality. The subtlety is

that when going from one oscillator excitation to an adjacent one, the sign should be reversed for

opposite chirality. The sign ambiguity in Eq.(2.35) accounts for the fact that one can project out

any of the two chiralities.

Above is the quantization of left-moving fermions. The total conformal character is

χ (τ) =χNS

GSO
(τ) − χR

GSO
(τ) = θ43 − θ

4
4 − θ

4
2 ± θ41

2η4

= 1�
a,b=0
(−1)a+b+µab θ[ab ]4

2η4
= � V8 −C8 µ = 0,

V8 − S8 µ = 1. (2.36)

3Refer to, for instance, [28] for explicit construction of spin fields through bosonization of worldsheet fermions. A

concise description can be found in the beginning of chapter 13 of [29]. With bosonization it is then straightforward

to compute the conformal weight of the ground state using the equivalent free bosonic CFT.
4The SO(2n)-characters {On, Vn, Sn, Cn} describe respectively the spectra whose ground states transform in

the scalar, vector and chiral spinor representations of SO(2n). The notations are introduced in [31].
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Here the R sector contribution takes minus sign because it represents fermionic contribution. In

the second line, the index a takes value 0 and 1 for NS and R sector, and for a fixed a the sum

over b effectuates the GSO projection. In the path-integral approach, a and b indicate the spin

structures of the worldsheet fermions. The right-moving worldsheet fermions are quantized in the

same way, and what we should obtain is an exact copy of the above results. It can be considered

as obtained by adding “ ¯̄ ” wherever needed in Eqs (2.32)–(2.36).

Type II strings

Now we are at the point of building up the type II strings by assembling the results for worldsheet

bosons and fermions of the SCFT (2.29). Tensoring up the bosonic and fermonic Hilbert spaces,

we have the whole spectrum divided into four sectors according to the boundary conditions that

the left-moving and the right-moving fermions take. These are NS-NS, R-R, NS-R and R-NS

sectors, where the first two sectors yield spacetime bosons while the NS-R and R-NS sectors yield

spacetime fermions. Now a generic type II state should take one of the following forms:

�Xcls�⊗ � �NS� �R�
 

�⊗ � �NS� ̄�R�
 ̄

� . (2.37)

Here in the braces the upper components are NS sector states and the lower components R sec-

tor states, both satisfying the GSO conditions. Finally, physical states should be those among

Eq.(2.37) satisfying the level matching condition. The sign ambiguity in the R sector GSO pro-

jection leads to two distinct type II string theories: the type IIA (IIB) string arises, when the

left-moving and the right-moving R sectors have the opposite (same) chirality for their ground

states. To obtain the conformal character of type II spectrum, we gather the results for the bosonic

sector Eq.(2.20) and for the sermonic sector Eq.(2.36), and take the product to obtain

χ
II
(⌧, ⌧̄) =χXk,p(⌧, ⌧̄)�χNS

GSO
(⌧) + χR

GSO
(⌧)��χ̄NS

GSO(⌧̄) + χ̄R

GSO(⌧̄)�
=� q l

2
s
4
(k2+p2L)q̄

l2s
4
(k2+p2R)

⌘8⌘̄8
�
X

��
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4
�
 

��̄
a,b̄

(−1)ā+b̄+µ āb̄ ✓̄[āb̄ ]4
2⌘̄4
�
 ̄

, (2.38)

where µ = 0 or 1 correspond to the type IIA or IIB string, and the subscripts X, ψ and ψ̄ are for

indicating the sector that the conformal characters in the brackets come from. Note that different

from the bosonic string we have only eight worldsheet bosons and they give η−8η̄−8. Due to the

fact that a, ā take the value 0 or 1 for NS or R sector, a + ā is spacetime fermion number with

a + ā = 0mod2 for spacetime bosons and a + ā = 1mod2 for spacetime fermions. Referring to Eqs
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(2.8) and (2.9), one can write down the total vacuum one-loop amplitude

ZII = VD

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

�
pL,pR

q
l2s
4
p2L q̄

l2s
4
p2R

⌘8⌘̄8
�
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4
�̄
a,b̄

(−1)ā+b̄+µ āb̄ ✓̄[āb̄ ]4
2⌘̄4

=
�������������������

VD

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

Γ(d,d)

⌘8⌘̄8
�V8 − S8��V̄8 − C̄8�, IIA (µ = 0)

VD

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

Γ(d,d)

⌘8⌘̄8
�V8 − S8��V̄8 − S̄8�. IIB (µ = 1) (2.39)

Here we use the shorthand notation Γ(d,d) for the Narain lattice sum ∑ q
l2s
4
p2L q̄

l2s
4
p2R corresponding

to the T d compactification, where d = 10 −D, and we will always use this notation. The exact

form of the internal radii, when all moduli are set free, is

pIL,R = �m↵ − l
−2
s nβB↵β� e∗↵I ∓ l−2s n↵eI↵ (2.40)

Here we suppose that the basis of the d-dimensional internal lattice is {e I↵} with ↵ = D, . . . ,9

labeling distinct vectors, and {e∗↵I } the dual lattice basis. The internal metric is obtained by

g↵β ∶= e I↵e Iβ . The amplitude (2.39) is modular invariant, thanks to the GSO projection. Expansion

of the integrand shows that the ground state is massless so that the spectrum is tachyon free.

Numerically the above one-loop amplitude vanishes since we have V8 = C8 = S8. This is in fact the

consequence of spacetime supersymmetry, where the contribution from spacetime bosons cancels

exactly that from spacetime fermions. At ground level, the spectrum contains a graviton in

the NS-NS sector and two gravitini in the NS-R and the R-NS sector respectively. In case of

maximal number of supersymmetry, it has 32 supercharges. The low energy effective theory in 10

dimensions is the N10 = 2 Abelian supergravity. However for phenomenological application, one

should implement non Abelian gauge symmetry, and one way to achieve this goal is to construct

the type I string or the heterotic string.

Unoriented closed string

As preliminary knowledge for type I string, we anticipate here the notion of unoriented string. The

worldsheet parity operator Ω, which reverses string orientation, is defined on the classical level

such that Ω ∶ σ → 2⇡ − σ and the worldsheet time ⌧ left invariant. At quantum level, it sends a

left-moving oscillator to its right-moving counterpart: pIL
Ω
←�→ pIR, ↵ı̃n

Ω
←�→ ↵̄ı̃n, ψ ı̃r

Ω
��→ ψ̄ ı̃r

Ω
��→ ±ψ ı̃r

(+�− for NS/R sector) etc, and it acts trivially on the vacuum state. Thus its action on a generic

state reverses the left and right excitations:

Ω �Left,Right;k � = ±�Right,Left;k �, (2.41)

23



where �Left,Right;k � denotes any state in Eq.(2.37), and the sign is “−” when the right moving

fermions are in R sector. The unoriented string is defined as the string theory invariant under

the action of Ω. Its quantum states have identical left and right excitations: �Left,Right;k� with

Left = Right, and can be obtained by projecting out the asymmetric states in the whole spectrum

(2.37) using the projection operator 1
2
(1 +Ω).

2.4 Open N = (1, 1)2 superstring and type I string

The initial classical action describing the open supersting is the same as for the closed superstring

Eq.(2.28), which is reduced by lightcone gauge to the same SCFT action (2.29). However it is

defined only on the upper-half z-plane. While the quantization of bosonic part is as explained in

Sec.2.2, that of the fermionic sector proceeds in the same way as in Sec.2.3, but with right-moving

sectors identified with the left-moving sector so the former do not appear explicitly in the result.

Now it is each chiral fermion pair {ψ ı̃, ψ̄ ı̃} that generates a Virasoro algebra representation [0] +
2[ 1

16
]+[1

2
], with [0]+[1

2
] associated to the boundary conditions ψ�σ=0 = ψ̄�σ=0 and ψ�σ=⇡ = ψ̄�σ=⇡ (NS),

and [ 1
16
] associated to ψ�σ=0 = ψ̄�σ=0 and ψ�σ=⇡ = −ψ̄�σ=⇡ (R). The mode expansions of chiral fermions

is just like in the closed string case, but the holomorphic and the anti-holomorphic oscillators

identified: ψ ı̃r = ψ̄ ı̃r. Again, NS boundary condition gives integer mode expansion, and R boundary

condition gives half-integer mode expansion. All fermions should take the same boundary condition

in order to preserve worldsheet supersymmetry, so the Hilbert space is decomposed into the NS/R

sector giving rise to spacetime bosons and fermions respectively. Putting together the bosonic

sector and the fermionic sector, a generic state in the whole Hilbert space is like

�Xop�⊗ � �NS� �R�
 

� �→ � spacetime bosons

spacetime fermions
� , (2.42)

where �Xop� is an open bosonic string state as given in Eq.(2.25).

Unoriented open string

The worldsheet parity operator Ω acts on the open string coordinates in the pattern Ω ∶ σ → π−σ.

Its action on the oscillators are

Ωαı̃nΩ
−1 = (−1)nαı̃n ; Ωψ ı̃rΩ

−1 = (−1)rψ ı̃r , (2.43)

24



which implies that its action on any physical state introduces a phase (−1)N where N is the total

oscillator level. Also Ω acts non trivially on the ground states, which are

NS ∶ Ω �0; �k; ij� = −i(γΩ)i i′(γ−1Ω )j′j �0; �k; j′i′�,
R ∶ Ω �S↵; �k; ij� = (γΩ)i i′(γ−1Ω )j′j �S↵; �k; j′i′�, (2.44)

where in the first line the “0” is for indicating the NS sector ground state which has no oscillator,

and in the second line S↵ is for indicating the R sector ground state which is a spacetime spinor;

also k is the transverse momentum as in Eq.(2.18). The matrix γΩ is a unitary, acting on the

Chan-Paton factors and satisfying

γTΩ = ζγΩ with ζ = ±1 . (2.45)

These constructions guarantee Ω2 = 1 on the quantum level. The unoriented open string is

supposed to be invariant under Ω and the spectrum can be obtained by acting the projection

operator 1
2
(1 +Ω) on the whole spectrum (2.42).

Type I string

The type I string is a model which consists of closed and open unoriented superstrings of worldsheet

supersymmetry N = (1,1)2. The Hilbert space is constructed as follows:

Closed string sector: containing type IIB states specified in the end of Sec.2.3, subjected in addi-

tion to the worldsheet parity invariance Eq.(2.41).

Open string sector: containing openstring stats as in Eq.(2.42), supplemented in addition with

GSO condition (same as in closed superstrings) and invariance under the action of Ω; for sake

of good UV behavior, the Chan-Paton factors range from 1 to 32 and γΩ in Eq.(2.44) should be

symmetric, which results in the SO(32) gauge group in spacetime.

The type I theory has maximally 16 supercharges and the corresponding low energy effective theory

in 10 dimensions is N10 = 1 supergravity with SO(32) gauge symmetry. The one-loop amplitude

is a sum of closed string amplitude and open string amplitude, but with only unoriented string

states circulating in the loop. To pick out only the unoriented string states, one needs only to

insert the projection operator 1
2
(1+Ω) in the trace when computing conformal characters Eq.(2.5),

i.e. Tr�1
2
(1 +Ω) qL0−c�24q̄L̄0−c̄�24� for closed string and Tr�1

2
(1 +Ω) qL0−c�24� for open string. More

accurately, with the insertion of Ω, the conformal character for closed string is obtained by

Tr qL0−
c
24 q̄L̄0−

c
24 = (qq̄)h− c

24 �
N,N̄

DND̄N̄q
N q̄N̄

�→ TrΩ qL0−
c
24 q̄L̄0−

c̄
24 = ±(qq̄)h− c

24�
M

DM(qq̄)M , (2.46)
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where the + sign is for NS-NS sector, − for RR, and the nonzero contributions must come from

left-right symmetry modes: DM = D̄M , c = c̄ and h = h̄. In this case the Ω-insertion gives rise to

the worldsheet topology of Klein bottle. Then for the open string, the insertion of Ω leads to

Tr qL0−
c
24 = q h− c

24�
N

DNq
N �→ TrΩ qL0−

c
24 = q h− c

24�
N

(−1)NDNq
N , where q = e−⇡⌧2 , (2.47)

which leads to the worldsheet topology of Möbius strip. The result for the closed string sector

turns out to be the sum of a torus amplitude T and a Klein bottle amplitude K, while that for

the open string sector is the sum of an annulus amplitude A and a Möbius strip amplitudeM:

ZI = + + + . (2.48)

T K A M
The torus amplitude T is just half of the type II amplitude Eq.(2.39). The internal momenta is

as Eq.(2.40) but there is no anti-symmetric tensor B↵β, since the corresponding vertex operator

is ruled out by orientifold projection. The Klein bottle amplitude is

K = VD

2(2⇡)D
1

2
� +∞

0

d⌧2

⌧
1+D

2

2

1

⌘8
�
p

qp
2 �
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4

, where q = e−4⇡⌧2 . (2.49)

Here the sum over the internal momenta goes through those satisfying pIL = pIR, i.e. those as

in Eq.(2.40) but with no B↵β and winding numbers. It is worth noticing that the Klein bottle

amplitude is from the closed string sector and contains only contribution from left-right symmetric

states. Therefore it has only contribution from NS-NS states (a = 0) and RR states (a = 1), which

are all spacetime bosons. We note that the NS-NS sector contribution to K is positive while the

RR sector contribution is negative. This assignment of phase guarantees that when switching to

the transverse channel K̃ (putting ⌧2 = 1�2` and re-expressing the integrand in K in terms of i`

using modular transformations), the closed string modes propagating between the two crosscaps

are physical. As a result, the sum of T and K symmetrizes the NS-NS sector but anti-symmetrizes

the RR sector, and spacetime supersymmetry is preserved. The open string amplitudes are

A = VD

2(2⇡)D
N2

2
� +∞

0

d⌧2

⌧
1+D

2

2

1

⌘8
�
p

q p
2 �
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4

, (2.50)

M= VD

2(2⇡)D
⇣ N

2
� +∞

0

d⌧2

⌧
1+D

2

2

1

⌘̂8
�
p

q p
2 �
a,b

(−1)a+b+ab ✓̂[ab ]4
2⌘̂4

, (2.51)

where q = e−⇡⌧2 , and the hat on the functions inM means that terms of odd oscillator level changes

sign following Eq.(2.47), which is first introduced in [32] (c.f. also Eq.(85) in [33]). Here N is

26



Chan-Paton multiplicity (not to be confused with oscillator level), and ⇣ the sign introduced in

Eq.(2.45), which should take the value N = 32 and ⇣ = −1 to make the total amplitude (2.48) UV

finite. Here for simplicity we do not consider Wilson line deformation.

2.5 Heterotic superstring

The heterotic string has 10 left moving bosons with chiral fermion superpartners {Xµ
L, ψ

µ}, and

26 right-moving bosons {Xµ
R, X

Ĩ
R}, where µ = 0, . . .9 and Ĩ = 10, . . . ,25. The spacetime is of

dimension 10 labeled by µ, while the extra right-moving bosons X Ĩ
R are compactified on some 16

dimensional internal space. Imposing the lightcone gauge so that lightcone components (µ = 0,1)
are eliminated, and we are left with an N = (1,0)2 SCFT of central charge (chet , c̄het) = (12,24).
The quantization of spacetime components X ı̃ and ψ ı̃ (̃ı = 2, . . . ,9) proceeds as in Sec.2.3. The 16

internal right-moving bosons {X Ĩ
R} have mode expansions

X Ĩ
R = −i l 2s2 pĨR ln z̄ + i

ls√
2
�
n≠0

1

n

ᾱĨn
z̄n

. (2.52)

Here pĨR (Ĩ = 10, . . . ,25) should be distinguished from pIR (I = D, . . . ,9). In 10 dimensional

spacetime, pĨR lies in an E8 × E8 or Spin(32)�Z2 lattice, while upon toroidal compactification to

lower dimensions, they can be subject to Wilson line deformation. A generic state is given by

{X ı̃
L,X

ı̃
R} { i} {X Ĩ

R}

↓ ↓ ↓
�Xcls�⊗ � �NS� �R�

 

�⊗ �Nint, qR�int . (2.53)

∥
↵
K̃1
−n1

...↵
K̃l
−nl
∶exp[i pĨRX Ĩ

R(0)]∶�0�int
There is one graviton and one gravitino arising from the NS and the R sector respectively. Thus

the maximally supersymmetric effective theory in 10 dimensions is the N10 = 1 supergravity with

SO(32) or E8 ×E8 gauge symmetry. The total conformal character is obtained by assembling all

the building blocks corresponding to each Hilbert space sector in Eq.(2.53):

χ
het
(τ, τ̄) =χXk,p(τ, τ̄)�χNS

GSO
(τ) + χR

GSO
(τ)�

= � q l
2
s
4
(k2+p2L)q̄

l2s
4
(k2+p2R)

η8η̄24
�
X

��
a,b

(−1)a+b+ab θ[ab ]4
2η4
�
 

. (2.54)
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Here by p2R we mean pIRp
I
R + pĨRpĨR. The index a indicates whether the corresponding term is from

the NS sector (a = 0) or the R sector (a = 1). Thus a is the spacetime fermion number (recall

that in type II it is a+ ā). The sum over b implements the GSO projection. The one-loop vacuum

amplitude is

Zh = VD

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

�
pL,pR
qR

q
l2s
4
p2L q̄

l2s
4
p2R

⌘8⌘̄24
�
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4

= VD

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

Γ(d,16+d)

⌘8⌘̄24
�V8 − S8� . (2.55)

It shows that the spacetime supersymmetry is realized in the left-moving sector. The generic form

of the internal momenta is [34]

pIL,R = �m↵ −Q
ĨY Ĩ

↵ − l
−2
s nβB↵β −

1

2
nβY Ĩ

↵Y
Ĩ
β � e∗↵I ∓ l−2s n↵eI↵ ,

pĨR =√2 l−1s �QĨ + n↵Y Ĩ
↵ � , with {QĨ} in Spin(32)�Z2 or E8 ×E8 lattice,

(2.56)

where we have the same moduli fields as in Eq.(2.40) for the type II case, except that we have

Wilson lines {Y Ĩ
↵ } of the gauge group. At a generic point in the moduli space, the gauge group

is U(1)dL × U(1)d+16R , each U(1) factor corresponding to the rotation around an internal circle.

Enhanced gauge symmetry can be obtained when extra massless states emerge supplying non

Cartan generators. We will come back to this point later. In particular when there is no Wilson

line deformation Y Ĩ
↵ = 0, the lattice sum over {pĨR} decouples from the rest: Γ(d,d+16) = Γ(d,d)Γ(0,16),

and the sum runs through the E8 ×E8 or Spin(32)�Z2 lattice, yielding

Γ(0,16) = �
pĨ
R

q̄
1

4
pĨRp

Ĩ
R =
�����������������

1

2
�
δ,γ

✓[δγ]812 �δ′,γ′ ✓[δ
′

γ′]8, E8 ×E8 lattice,

1

2
�
δ,γ

✓[δγ]16, Spin(32)�Z2 lattice.

(2.57)
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Chapter 3

More about compactification

Last chapter was very brief about the compactifications of string theories. In this chapter we come

back to this issue and discuss some more specific aspects encountered in our work. We will go

further beyond toroidal compactification to consider orbifold and Calabi-Yau compactifications.

From now on, we set ls = 1 for simplicity of notation.

3.1 Lattice sum and worldsheet instanton

Upon toroidal compactifications, a lattice sum appears in the one loop amplitude as in Eqs (2.39)

and (2.51), which takes the form

Γ(dL,dR) = �
pL,pR

q
1

4
p2L q̄

1

4
p2R , or Γd = �

p

q
1

2
p2 (3.1)

for closed and open strings respectively. For closed strings (dL, dR) = (10−D,10−D) for N2 = (1,1)
superstrings, and (10 − D,26 − D) for heterotic string. This piece of contribution to the one

loop amplitude comes from worldsheet instanton effect, where the instanton numbers describe

different ways that the worldsheet wraps the noncontractible cycles in the internal compact space.

The simplest example is compactification on a circle, say let the 9-th spacetime dimension be

compactified on a circle of radius R9. Thus we have

p9L,R = m9

R9

∓ n9R9 , where m9, n9 ∈ Z , (3.2)

with the integers m9 and n9 the KK excitation level and the winding number respectively, and the

lattice sum in Eq.(3.1) running through all values of m9 and n9. Using the Poisson resummation
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on m9 we rewrite the lattice sum into an instanton sum

Γ(1,1) = �
m9,n9

q
1

4
�m9

R9
−n9R9�2 q̄ 1

4
�m9

R9
+n9R9�2 = R9√

⌧ 2
�
m̃9,n9

exp�− ⇡R2
9

⌧2
�m̃9 − ⌧n9�2� . (3.3)

The right hand side is an instanton sum because the path integral derivation (c.f. Sec.4.18 of [30])

reveals that each single term in the sum is from the configuration that the worldsheet, which has

the topology of torus, has one of its homological cycle wrapping m̃9 times S1(R9), and the other

homological cycle n9 times. Taking the large volume limit R9 → ∞, we decompactify the 9-th

dimension. All the nonzero instanton modes in Eq.(3.3) are exponentially suppressed, and we are

left with R9√
⌧2

which is just the contribution of a noncompact direction to one-loop amplitude.

For open strings with only D9 branes discussed in the last chapter, which cannot wrap around

S1(R9), the internal momentum contains only Kaluza-Klein modes:

p9 = m9

R9

, where m9 ∈ Z , (3.4)

and the instanton sum goes like Eq.(3.3) but with n9 = 0 :

Γ1 = �
m9

q
1

2

m2
9

R2
9 = R9√

⌧ 2
�̃
m9

exp�− ⇡R2
9

⌧2
m̃2

9� , where e−⇡⌧2 . (3.5)

This is exactly the instanton sum for the point particle case, where m̃9 is the winding number of

the closed worldline around the Euclidean time circle.

Worldsheet instanton sum in more complicated cases, involving more compact dimensions and

containing more moduli fields, can always be obtained by Poisson-ressumming all Kaluza-Klein

excitation numbers in the lattice sum (3.1).

3.2 Enhanced gauge symmetry in toroidal compactification

Toroidally compactified heterotic string can have enhanced gauge symmetry at certain points in

the moduli space. We start out with the mass spectrum, which is obtained by expanding the

integrand in the one-loop amplitude Eq.(2.55) and reading off the powers of qq̄:

M2
het = 1

2
�pIL pIL + pIR pIR + pĨR pĨR� + 2N + 2N̄ − 2, (3.6)

where the internal momenta are as given in Eq.(2.56), N and N̄ are left and right oscillator levels,

and one has also the level-matching condition

pIL p
I
L + 4N = pIR pIR + pĨR pĨR + 4N̄ − 4. (3.7)
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Due to the fact that the ground state in the right-moving sector is tachyonic, certain oscillator

ground states (N = N̄ = 0) of zero transverse momentum with nontrivial KK excitations and

winding numbers can arrange the moduli to have

pIL p
I
L = 0, pIR p

I
R + pĨR pĨR − 4 = 0, (3.8)

so that the spacetime vector modes created by the vertex operators

V i
(p)(z, z̄) = ψi(z) exp�i pIRXI

R(z̄) + i pĨRX Ĩ
R(z̄)� (3.9)

are extra massless physical states in the heterotic string spectrum. There can be many of these

states at one specific choice of moduli value, each state corresponding to different Kaluza-Klein

and winding numbers. Also they come in pairs because when pR satisfies Eq.(3.8) so does −pR.

These states lead to the enhancement of current algebra

i ∂̄XI(z̄)V i
(p)(w, w̄) = pIR

z̄ − w̄
V i
(p)(w, w̄), i ∂̄X Ĩ(z̄)V i

(p)(w, w̄) = pĨR
z̄ − w̄

V i
(p)(w, w̄), (3.10)

with respect to the U(1)-currents carried by i ∂̄XI,Ĩ . Define the vectors �αp ∶= �pIR, pĨR� and we

can consider them as root vectors of some non-Abelian group. Thus the current algebra (3.10)

shows that a larger gauge group arises, and the vector modes corresponding to the operators

iψi(z) ∂̄XI,Ĩ(z̄) and Eq.(3.9) are gauge bosons of this group, because they are massless and

transform in the adjoint representation. In particular the states associated to Eq.(3.9) are the non

Cartan components of the group.

An obvious example is the SU(2) enhanced symmetry when we compactify the heterotic

string on a circle, say, again S1(R9) with vanishing Wilson lines. Therefore the radius R9 is

the only modulus, and the internal momenta are as in Eq.(3.2). In this case when R9 = 1, the

internal momenta with m9 = n9 = ±1 satisfy the condition Eq.(3.8), where the two root vectors are

simply p9R = ±2. Thus the vertex operators i
2
∂̄X9(z̄) and exp�±2 iX Ĩ

R(z̄)� form an SU(2) current

algebra, and we obtain enhanced gauge symmetry SU(2). Larger enhanced gauge symmetry can

be achieved when we carry more internal moduli into play. In fact when the heterotic string is

toroidally compactified down to D dimensions, the moduli can adjust to have SO(52−2D) as the

largest enhanced gauge symmetry. Actually fermionic construction of the heterotic string [35] can

better reveal the possibilities of enhanced gauge symmetry.

For type II strings, since there is no tachyonic states in the spectrum, any massless state

must have p2L = p2R = 0 upon toroidal compactification. In such cases no Kaluza-Klein or wind-

ing modes can become massless to supply the non Cartan components, so that we do not have

gauge symmetry enhancement by any chance from perturbative effects. However certain orbifold
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compactifications can reverse the GSO projection, yielding a tachyonic ground state in type II

superstrings. In such cases gauge symmetry enhancement can actually arise, for example it can

be the case for Scherk-Schwarz reduction which we will discuss shortly, where an example giving

rise to SU(2) enhanced gauge symmetry is shown in [11].

3.3 Supersymmetry breaking by orbifold compactification

Maximally supersymmetric string theories contain too many supersymmetries for phenomeno-

logical application1. Orbifold compactification provides possibilities of breaking supersymmetry,

where one compactifies the string theory on some internal manifold M having a discrete symmetry

group G, and promotes G to gauge symmetry of the system. In this case we say that the theory is

compactified on orbifold M�G. Cases of interest are those where the metric on M is flat so that

the CFT is known and exact quantization is possible. The gauging of the orbifold group G can

break explicitly or spontaneously supersymmetry.

Explicit breaking

By explicit supersymmetry breaking one simply seeks to discard part of the supercharges. More

accurately, one choses the orbifold group such that some of the supercharges are invariant under

its action, so that the other supercharges are eliminated when the orbifold group is promoted to

gauge group. There can be many possibilities to achieve this goal but here we just take a simple

example which suffices to illustrate the idea. We look at orbifold T 4�Z2, where T 4 contains the

directions 6789, and the symmetry group Z2 sends X6,7,8,9 to −X6,7,8,9, and the same thing for

ψ6,7,8,9 and ψ̄6,7,8,9. In this case the generator of Z2 can be written as

g = exp �iπ(J 67 + J 89)�. (3.11)

Here J∗∗ are angular momentum operators in the internal space, which have integer eigenvalues

for spacetime bosons and half-integer eigenvalues for spacetime fermions. Thus J67 + J89 always

has integer eigenvalues. The definition Eq.(3.11) shows that gauging the orbifold symmetry group

amounts to eliminating states with odd eigenvalues of J67 + J89. Therefore the gauging projects

out half of the supercharges, explicitly breaking half of the supersymmery. It is worth noticing

that modular invariance requires the introduction of twisted states in the Hilbert space, but in

1As is explained in the last chapter, we have 16 supercharges in type II strings and 8 in type I and heterotic

strings, too much with respect to 4 supercharges for N4 = 1 or 8 supercharges for N4 = 2 models.
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the current example, the twisted sector has the same amount of supersymmery as the untwisted

sector. One step further, the orbifold T 6�Z2 ×Z2 reduces the amount of supercharge by 1�4.
The explicit partition function description of the spectrum and the computation one-loop

amplitude is standard technical issue and is model-dependent. We are not intended to go through

it in detail but will just take the known results from references.

Spontaneous breaking

Also, orbifold compactification can induce mass gaps between bosonic modes and fermonic modes,

which spontaneously breaks supersymmetry. Still we take just an example to sketch out the idea.

Consider Scherk-Schwarz reduction [36] on a circle S1(2R9)�Z2 where the generator of Z2 is

g
SS
= (−1)Qδ. (3.12)

Here δ is a shift by half of the R9-circle X9 → X9 + ⇡(2R9), and Q is some conserved charge

in spacetime which has different values for bosonic states and fermonic states. A most handy

example is taking Q = a the spacetime fermonic number in heterotic string. To see what happens

in the spectrum when we gauge this symmetry, we write down a generic quantum state before

gauging

� m9

2R9

, 2n9R9 ; a ; . . . � = ei�p9LX9

L+p9RX9

R
��0 , 0 ; a ; . . . �, with p9L,R = m9

2R9

∓ 2n9R9 , (3.13)

the ellipses standing for irrelevant quantum numbers. To make connection to Eq.(2.53): the

quanta m9 and n9 are in the �Xcls� part, and a = 0 corresponds to the NS sector, a = 1 the R

sector. Therefore we have boson-fermion pairs of supersymmetry

� m9

2R9

, 2n9R9 ; 0 ; . . . � SUSY
←����→ � m9

2R9

, 2n9R9 ; 1 ; . . . �. (3.14)

The orbifold action is

g
SS
� m9

2R9

, 2n9R9 ; a ; . . . � = �gSS
ei�p

9

LX
9

L+p9RX9

R
�g−1

SS
� g

SS
�0 , 0 ; a ; . . . �

= ei�p9LX9

L+p9RX9

R
�e2⇡ iR9�p9L+p9R�(−1)a�0 , 0 ; a ; . . . � = (−1)a+m9� m9

2R9

, 2n9R9 ; a ; . . . � . (3.15)

Therefore the states invariant under g
SS

in the bosonic and fermonic sector are respectively

� 2m9

2R9

, 2n9R9 ; 0 ; . . . � and � 2m9 + 1
2R9

, 2n9R9 ; 1 ; . . . � . (3.16)
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Given that the mass formula is M2 ∝ p2L+p2R+. . . where the dots stand for the oscillator excitations,

we see that a mass gap ∆M ∼ R−19 is generated between bosons and fermions, so that that the

relation (3.14) no longer exists. This corresponds to a spontaneous supersymmetry breaking

at scale R−19 , and supersymmetry is restored at decompactification limit R9 → ∞. It should be

mentioned that when gauging the symmetry (3.12), one needs to introduce twisted states following

from the requirement of modular invariance. These are states with reversed GSO projection and

are non supersymmetric neither. At the decompactification limit they become supermassive and

decouple from the rest of the system and the restoration of supersymmetry is restored anyway.

Technically when computing the partition function or the one-loop amplitude for Scherk-Schwarz

reduction, we do not need to consider the untwisted sector and the twisted sector piece by piece.

There is a simple way out. When Scherk-Schwarz reduction is performed on a circle of radius 2R

with orbifold action (3.12), one simply replaces the lattice sum Γ(1,1)(2R) by a weighted instanton

sum as follows

Γ(1,1)(2R) �→ R√
⌧2
�̃
m,n

(−1)Qm̃+Q′n+✏ m̃n exp�− ⇡R2

⌧2
�m̃ − ⌧n�2�, (3.17)

where Q′ is the image of Q under the modular transformation ⌧ → −1�⌧ , and ✏ takes 0 or 1 in

order to respect modular invariance. We will use this in Chpater 5.

3.4 Type II string on Calabi-Yau three-folds

Calabi-Yau (CY) compactifications of string theories are in the same spirit as explicit supersym-

metry breaking upon dimension reduction, where the goal is to preserve a minimum amount of

supercharges. On general grounds, when compactifying 10 dimensional superstring theories down

to 4 dimensional spacetime, the conservation of minimum amount of supercharges requires the

internal 6 dimensional space to have SU(3)-structure. Furthermore, demanding that the vac-

uum background does not break supersymmetry imposes stronger conditions. In case where no

flux is turned on, the internal space must have SU(3)-holonomy. Compactification on CY 3-

folds (CY3’s) are the most studied cases fulfilling these criteria. Although exact quantization can

rarely be achieved for CY3 compactifications, except in some special cases for example at Gepner

points [37], yet with technical devices provided by algebraic geometry, one can acquire rich ex-

plicit knowledge of the resulting low energy effective theory from the topological and geometric

characteristics of the CY3.

Topological information of the CY3’s that string theories care most about is encoded in the

cohomology groups Hp,q (p, q = 0,1,2,3), whose dimensions hp,q are referred to as Hodge numbers.

For a generic nonsingular CY3 the Hodge numbers and the message that they carry are
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• h10 = h01 = 0 : no globally defined covariant 1-form in 6D;

• h03 = h30 = 1 : one unique holomorphic 3-form Ω;

• h00 = h33 = 1 : constant solution to the Laplacian equation;

• h11 = h22 : independent Kähler form deformations;

• h21 = h12 : independent complex structure deformations.

Other Hodge numbers not appearing in the above list can be deduced from the relation hp,q =
h3−p,3−q = hq,p, and hp,0 = h3−p,0. Here the first two lines above are consequences of SU(3)-
structure, and the third line is obvious given that a CY3 has only one connected component. It

is worth some more explanation to the last two lines. We know that any infinitesimal CY3 metric

deformation can be separated into Kähler form deformations, which are in 1-1 correspondence to

independent harmonic (1,1)-forms, and complex structure deformations, in 1-1 correspondence to

harmonic (1,2)-forms. Also there is a theorem stating that for a compact smooth manifold, each

cohomology class contains one unique harmonic representative. Therefore with each harmonic

(1,1) and (1,2)-form representing unambiguously a class in H1,1 and H1,2, there are in all h11

independent Kähler form deformations and h12 independent complex structure deformations. LetMK be the Kähler moduli space spanned by all infinitesimal Kähler form deformations, and in the

same way we have MC the complex structure moduli space. They can be regarded as manifolds

with local coordinates the linear combination coefficients of harmonic (1,1) or (1,2)-forms, where

dimMK = h11 and dimMC = h12. These two spaces are Kähler manifolds in their own right, whose

geometry can be in principle worked out precisely once the CY3 is known.

Upon CY3 reduction of string theories, the resulting effective supergravity is determined at

tree level by the geometric and topological aspects described above. Basically, massless fields in

4D are the expansion coefficients of 10D fields against the harmonic forms on CY3, and harmonic

forms are in 1-1 correspondence to cohomology classes. Therefore the cohomology groups indicate

the types and the numbers of the 4D massless fields, as well as the structure of the effective

supergravity moduli space. On the other hand the cohomology groups also control the structure

of the geometric moduli space. Thus the physical moduli space of the effective supergravity can be

related to some extent to the geometric moduli space of the CY3. Cases of interest are those where

the effective supergravity moduli space is protected by supersymmetry from quantum corrections,

or where its quantum corrections are significantly suppressed. Then part of the geometric moduli

space itself becomes part of the physical moduli space, and is just the exact quantum moduli

space. Thus the related physics is completely dictated by CY3 geometry.
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This is just the case for CY3 reduction of type II strings that we have been working on. The

SU(3)-holonomy on the CY3 preserves in 4D vacuum a quarter of supersymmetries in 10D. Thus

we have at tree level N4 = 2 supergravity with Abelian gauge group as low energy effective theory.

We will not enter into the details of the field reduction (c.f. for example, Sec.9.11 in [30]), but only

highlight the essential aspects. As is stated, the 4D massless fields arise from reducing 10D fields

against all harmonic forms living in the CY3. For both type IIA and IIB strings, the reduction

always yields:

• One gravitational multiplet: from field reduction against the (0,0) (3,0) and (0,3)-
forms;

• One universal hypermultiplet: same reduction as above, containing the 4D dilaton.

In addition, for type IIA string, we have

◇ h11 vector multiplets: from field reduction against (1,1)-forms, whose scalar components

are Kähler moduli of CY3,

◇ h12 hypermultiplets: from field reduction against (1,2) and (2,1)-forms, whose scalar

components are complex structure moduli of CY3,

while for type IIB string, we have instead

◇ h12 vector multiplets: from field reduction against (1,2) and (2,1)-forms, whose scalar

components are complex structure moduli of CY3,

◇ h11 hypermultiplets: from field reduction against (1,1)-forms, whose scalar components

are Kähler moduli of CY3,

The CY3 reduction of type IIA models and type IIB models are conjectured to be equivalent,

mapped into each other by mirror symmetry. That is, type IIA string compactified on a CY3 M

of Hodge numbers h11(M) and h12(M) is the same model as type IIB string compactified on the

mirror CY3 W of Hodge numbers h11(W ) = h12(M) and h12(W ) = h11(M). However, it is by no

means trivial to construct mirror CY3’s and to perform quantitative computations on both sides

to check the validity of the conjecture.

In the rest of the section, we stay on the type IIB side, since the IIB picture displays more

interesting features. Let all complex scalars in the vector multiplets be zI with I = 1, . . . , h12,

spanning the spaceMV; also let all real scalars in hypermultiplets be qΛ with Λ = 1, . . . ,4×(h11+1)
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including the universal hypermultiplet, living in the spaceMH. By virtue of N4 = 2 supergravity,MV is a special Kähler manifold of complex dimension h12 and MH a quaternionic manifold of

quaternionic dimension h11 + 1; they are two factorized components of the whole moduli space:Mtot = MV ×MH. For the vector fields, let them be V A and their field strength be GA = dV A,

with A = 0, . . . , h12 including the graviphoton. Thus the resulting N4 = 2 supergravity action reads

S
IIB�CY3

= 1

2
(4)
�S d4x

√
−g �1

2
R − gIJ̄ @zI@z̄J − hΛΣ @q

Λ@qΣ

+ 1

2
ImN (z, z̄)ABGAGB + 1

2
ReN (z, z̄)ABGA

∗GB + (fermions)�. (3.18)

Here in the sector containing vector multiplets and gravitational multiplet, gIJ̄ = gIJ̄(z) is the

special Kähler metric onMV, and we also have the gauge kinetic matrix NAB = NAB(z, z̄). In the

hypermultiplet sector hΛΣ = hΛΣ(q) the quaternionic metric onMH.

The vector multiplet sector contains more explicit information. The fact that the dilaton lives

in a hypermultiplet excludes all string loop and spacetime instanton corrections from MV. Also

given that the scalars zI are identified with complex structure moduli of the CY3, the moduli

space MV receives no worldsheet instanton correction2, since the latter only depends on Kähler

moduli. This makes the vector moduli space MV exact at tree level and is identified with the

complex structure moduli spaceMC. Thus inheriting fromMC, we have for the physical moduli

spaceMV the Kähler potential

K = − ln�i� Ω ∧ Ω̄� (3.19)

where Ω is the unique holomorphic 3-form on the CY3. Let (AA,BA), A = 0,1, ..., h12 be a

symplectic basis of 3-cycles in the CY manifold, which satisfies

�AA�BB� = −�BB �AA� = δAB, �AA�AB� = �BA�BB� = 0. (3.20)

Without loss of generality, we can call AA electric cycles and BA magnetic cycles. Then we take

the dual cohomology basis (↵A, βA), such that

�AB ↵A = δAB , �BB βA = δAB . (3.21)

We expand the holomorphic 3-form against this basis, where arise the electric periods {XA} and

magnetic periods {FA}
Ω =XA↵A − FA β

A . (3.22)

2In the type IIA picture, the vector moduli space is also free of string loop and spacetime instanton corrections,

but it is corrected by worldsheet instanton effects, since the scalars in vector multiplets are Kähler moduli.
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Here FA should not be confused with the field strength FA appearing in the supergravity action

Eq.(3.18). The periods {XA} can be used locally as projective coordinates on MV, and in the

vicinity where X0 ≠ 0, we can use the following coordinates

tI = XI

X0
for I = 1, . . . , h12, (3.23)

which are called the special coordinates. They can replace zI in the action (3.18) as scalar

components of vector multiplets. The magnetic periods which are functions onMV should depend

on {XA}. It can be shown [38] that locally FA can be obtained by taking the derivative of some

function F(X) with respect to XA:

FA(X) = @

@XA
F(X) = @AF(X), (3.24)

and F is called the prepotential of the special Kähler manifold. Inserting Eq.(3.22) into Eq.(3.19),

we have for the Kähler potential

K = − ln �i�X̄AFA −X
AF̄A��. (3.25)

The gauge kinetic matrix can be computed by

NAB = F̄AB + 2i ImFACXC ImFBDXD

ImFEFXEXF
, (3.26)

where FAB ∶= @A@BF .

The sector of hypermultiplets is less clear. At tree level MH is a direct product of a sector

containing Kähler moduli and a sector containing only the universal hypermultiplet. However it

is further corrected by perturbative and non-perturbative quantum effects, and all that we know

on general grounds is that the correctedMH is a quaternionic manifold.
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Chapter 4

A glimpse to non-perturbative spectra

The end of the last century saw the emergence of various conjectures of string theory dualities

and the cumulation of their supporting evidences. Up to now, all known string theories are

interconnected by duality maps, and this strongly suggests the existence of a more profound

theory, where each string theory arises as its different weak-coupling extremities. Although we

are far from figuring out this underlying theory in all exactitude, the new vision has by all means

greatly deepened our knowledge of string theory. One most important insight is that each string

theory has a whole plentitude of non-perturbative spectrum that perturbative quantization is not

able to reveal. A great amount of work has been devoted to the study of non-perturbative aspect

of string theories. It is not only for need of supporting evidence to the duality conjectures, but also

for exploring the phenomenological consequences that the non-perturbative effects entail. Often

duality maps are used as tools for discovering non-perturbative effects.

The discussion in previous chapters ignores all non-perturbative effects, which we make up for

here in this chapter. Certainly our discussion covers only the non-perturbative effects used in our

work, which is merely a tiny tip of the whole panorama of the non-perturbative realm. The devices

that we use to indicate the existence of non-perturbative effects are the S-dualities between string

theories and also the singularities in the moduli spaces.

The S-duality concerns two weakly coupled theories where one is deep in the strong coupling

regime of the other, with some duality map sending the two theories into each other. Thus the

perturbative spectrum on one side turns out to be the non-perturbative spectrum on the other

side. Among all the duality maps conjectured for string theories, the S-dualities include the

self-duality of type IIB string, the duality connecting T 4-compactification of heterotic string and

K3-compactification of type II string, and also the duality connecting type I string and heterotic

string, both of SO(32) gauge group. We will use the type I/heterotic duality [39] to tell about
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non-perturbative effects in the type I theory from the heterotic theory in Chapter 7.

Singularities in moduli spaces can indicate non-perturbative effects. In particular, here we care

about the logarithmic singularities, which can be the signature of light states that are wrongly

integrated out from the Wilsonian effective action. In order that such prediction is viable, the

moduli space should be exact at quantum level. Generically, quantum corrections can modify the

singularity of the moduli space. Thus extra massless states predicted by the quantum moduli space

singularities are generically different from those predicted by classical moduli space singularities.

A famous field theory example can be found in [40], where the author shows that instanton effects

in N = 1 SQCD can correct the moduli space singularities and the resulting light states. For this

reason, we study type II strings compactified on CY3’s, where the vector multiplet moduli spaceMV develops local singularity when certain sort of extremal transition undergoes in the CY3. As

explained in Sec. 3.4, the vector multiplet moduli space on the type IIB side at tree level is the

exact quantum moduli space. For this reason we can rely on its singularities for prediction of

non-perturbative states.

The two non-perturbative effect indicators mentioned above are not string theory peculiari-

ties, but have already been well explored in field theories. It is worth mentioning Seiberg and

Witten’s work [41], which greatly inspired works on non-perturbative effects in string theories. In

that work both S-duality and moduli space singularity are exploited, leading to the discovery of

non-perturbative states. The model considered is pure N = 2 super Yang-Mills theory which has

asymptotic freedom. Through an S-duality transformation one switch to the magnetic representa-

tion, where the theory becomes weakly coupled at IR. In the IR regime, logarithmic singularities

are uncovered, whose monodromies imply the arising of massless magnetic monopoles or dyonic

states.

4.1 D1-brane states in type I string

The conjecture of the S-duality relating the SO(32) heterotic string and the SO(32) type I string

is motivated by the observation that the low energy effective field theory on the heterotic side

can be mapped to the type I side and vice versa by suitable field redefinition. In 10D in Einstein

frame, the bosonic effective supergravity action from the type I side and the heterotic side are

respectively

SI = � d10x
√
−g �R − 1

2
�∇φI�2 − 1

4
e−

φI
2 F 2
−

1

12
e−φIH2�,

Sh = � d10x
√
−g �R − 1

2
�∇φh�2 − 1

4
e
φh
2 F 2

−
1

12
eφh H2�,

(4.1)
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where gµν is the spacetime metric in the Einstein frame; φI,h is the dilaton on the type I and the

heterotic side; H is the field strength of 2-forms: on the heterotic side, H3 = dB2 with Bµν the

NS-NS anti-symmetric tensor, and on the type I side H3 = dC2 with Cµν the RR 2-form; also we

have F = dA the field strength of SO(32) gauge bosons. We observe that the two actions are sent

into each other by the following map

ghµν = gIµν , φh = −φI, Bµν = Cµν , Ah
µ = AI

µ. (4.2)

We emphasize that the metric here is in Einstein frame. Since the string coupling constant in 10D

is the exponential of the dilaton λh,I = exp �φI,h�, the change in the sign of dilaton in the above

map shows that λh = 1�λI under the duality map so that it is an S-duality.

One pertinent consistency check of this S-duality arises from the identification of Bµν = Cµν [42].

On the heterotic side, the perturbative F-string is electrically coupled to Bµν , while on the type

I side the object electrically coupled to Cµν is the non-perturbative D1-brane. This suggests that

the heterotic F-string is just the D1-brane in the type I picture. In the weak coupling regime of

type I string, one can examine the quantum fluctuations of D1-branes by considering two types of

open strings: those with both ends attached to the D1-brane, and those with one end on D1 and

the other on D9. The D1-D1 string gives rise to 8 bosonic states and 8 chiral fermionic states,

while the D1-D9 string gives rise to 32 chiral fermionic states, whose chirality is opposite to the 8

chiral fermions from the D1-D1 sector. In all, the quantum fluctuations on the D1-brane match

perfectly the field content on the heterotic F-string world sheet in the light cone gauge. This

confirms the identification of the D1-brane in type I string with the F-string in the dual heterotic

string.

Upon toroidal compactifications down to D-dimensional spacetime, the duality map between

moduli fields can be derived from Eq.(4.2). In the most generic case the compactification gives

rise to moduli fields including

● The D-dimensional dilaton φ
(D)
h,I = φ(10)h,I −

1
2
ln V̂

(d)
h,I , with V̂

(d)
h,I the internal space volume in

string frame;

● The internal metric ĝ
h,I
αβ in string frame, so that V̂ (d) =√det ĝ ;

● The internal NS-NS field Bαβ and RR 2-form Cαβ;

● The Wilson lines of the SO(32) group Y Ĩ
(h,I)α , with Ĩ label of Cartan components.
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Here we hat the quantities measured in string frame, and will always adopt this convention when-

ever we need to specify the reference frame. The duality map for these moduli fields is therefore [43]

ĝh↵β = λ−1I ĝI↵β = �V̂ (d)h,I
�−1�4 e−φ(D)I ĝI↵β ,

φ
(D)
h = −D − 6

4
φ
(D)
I −

D − 2

8
ln V̂

(d)
I ,

B↵β = C↵β , Y Ĩ
h↵ = Y Ĩ

I↵ ,

(4.3)

while Eq.(4.2) always holds for the 10D dilaton and for the spacetime fields1. The inverse of

the above map is obtained by exchanging the subscripts h ↔ I. Note that Eq.(4.3) is no longer

S-duality for spacetime dimension D ≤ 6, where the dilaton sign is kept. In 6D, the dilaton is

exchanged with the internal volume while below 6D, weakly coupled type I string is mapped into

weakly coupled heterotic string and strongly coupled to strongly coupled. We stress that D1-

brane states on the type I side are BPS states whose masses are protected by supersymmetry.

Therefore non-perturbative D1-brane spectrum in type I at weak (strong) coupling, obtained at

D < 6 (D > 6) from the weakly coupled heterotic dual, still holds at strong (weak) coupling.

4.2 Extremal transition I: singular nodes

Topology change

We consider type IIA string compactified on CY3 denoted by M , and suppose that mirror symme-

try maps it into type IIB string compactified on the mirror CY3 denoted by W . We consider the

type of extremal transition2 where 2-spheres in M shrink to separated nodes so that M takes a sin-

gular configuration M̌ , and then the nodes are deformed into 3-spheres so that M̌ is desingularized

into M ′. In such cases the singular nodes in M̌ present conical structure of basis S2×S3 [45], which

justifies the name conifold and therefore such extremal transition is called conifold transition. To

be more precise, at conifold transition, let there be R 2-spheres shrinking to zero size in the CY3

M , to arrive at the conifold configuration M̌ containing R singular nodes. We suppose that the

R shrinking 2-spheres span an S-dimensional subspace of the homology group H1,1(M), or stated

in another way, they are subject to R − S constraints from homology relations. When R − S > 0,
1The map for the dilaton had been discussed independently earlier in [44].
2The extremal transition of CY3’s is a sort of topology change relating two distinct CY3’s M and M ′ of different

Hodge numbers through a singular configuration M̌ . In such transition, one obtains M̌ from M through a birational

contraction (2-spheres shrinking), and by deforming singularities in M̌ into 3-spheres one obtains M ′. See [46] and

the Ref.[49] therein.
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we can deform the singular nodes into 3-spheres to obtain a nonsingular CY3 M ′ topologically

different from M , where these R 3-spheres span an R − S dimensional subspace in the H1,2(M ′)
homology group3. Therefore at the conifold transition from M to M ′, the H1,1 homology group

loses an S-dimensional subspace while the H1,2 group earns R − S new independent components,

so that the change in Hodge numbers is

h11(M ′) = h11(M) − S, h12(M ′) = h12(M) +R − S. (4.4)

An intuitive way to understand this Hodge number change is shown in Fig.4.1 which is an illus-

trated example with R = 5 and S = 2.
In the same way we describe this transition on the type IIB side to have W and W ′ connected

by the conifold W̌ , but now we see R 3-spheres subject to R − S homology relations shrinking in

W , to produce W̌ and then the nodes are blown up into R 2-spheres to have W ′, which span an

R − S subspace of H1,1(W ′). Thus the change in Hodge numbers is

h12(W ′) = h12(W ) − S, h11(W ′) = h11(W ) +R − S. (4.5)

Conifold transition can be described very explicitly. We have for example the famous model with

quintic in type IIB picture [45], where W = [4 ��5] and W ′ = �41 �� 4111�.
It should be emphasized that the two sides of the transition do not necessarily exist simulta-

neously. In type IIA picture, when all of the shrinking 2-spheres are homologically independent,

i.e. R = S, the transition stops at M̌ and the branch of M ′ cannot be obtained. In the opposite

direction, when all the R 3-spheres in M ′ arising from deforming singular nodes are homologically

independent, then the R nodes cannot be blown up into 2-spheres to obtain M . The same ob-

servation holds for type IIB models. In our discussion of low energy effective theory, we always

suppose that the branch M or W is available. As far as our current knowledge can reach, we need

to sit in this branch to know how to write down the effective gauge theory. It is because with the

shrinking of 2-spheres in M (3-spheres in W ), states from non-perturbative D-branes (D2 in M

and D3 in W ) wrapping these shrinking spheres become light and should be re-included in the

low energy effective theory.

Non-perturbative black hole states

To bring into light these non-perturbative effects from D-branes, we use the type IIB picture

where the vector multiplet moduli spaceMV exact at tree level, and let the emergence of the light

3It is always possible to choose the complex structure such that the 3-spheres arising from deformation lie in

the H1,2 group.

43



S2

S2

S2

S2

S2

S3

S3

S3

Figure 4.1: An intuitive illustration to understand the Hodge number change Eq.(4.4). It shows the

situation where R = 5 2-spheres, which span a subspace of the H1,1 homology group of dimension S = 2,

shrink to zero size. This gives birth to R − S = 3 new 3-spheres which are obviously homologically

independent, and this leads to the result that h12 should increase by R−S = 3 when deforming the nodes

into 3-spheres.

non-perturbative states be suggested by logarithmic singularities in it. Let the shrinking 2-spheres

be {C â} (â = 1, . . . ,R), and we arrange the complex structure so that these shrinking 2-spheres

can be expanded against the basis of electric cycles C â = nâAAA, where the matrix nâA is of rank

S. Here we use the notation introduced in Eq.(3.20). Thus the vanishing locus of the sphere C â
is nâAX

A = 0, which is of co-dimension 1. We will refer to the intersection of all these R vanishing

loci the conifold locus. By requirement of monodromy [47]

E �→ E + C â�C â�E�, (no sum over a), (4.6)

for any 3-cycle E upon a transportation in the moduli space around the vanishing locus of C â.
This determines the singular piece in the magnetic periods n

FA = 1

2⇡i
�̂
a

nâAn
â
BXB ln �nâCXC� + (reg.), (4.7)

and inserting this into Eq.(3.26) we have that the gauge kinetic matrix has the singular behavior

N̄AB = 1

2⇡i
�̂
a

nâAn
â
B ln �nâCXC� + (reg.). (4.8)

Due to the fact that the gauge coupling constant gc is given by g−2c ∼ −ImNAB, as is displayed

in Eq.(3.18), there appear in the gauge coupling constants the logarithmic singularities as g−2c ∼

− ln�nâCXC �. Here we especially display the minus sign to show that the gauge theory become

weakly coupled when approaching the conifold locus. This predicts the emergence of light states
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since such logarithmic singularity arises exactly when states of mass M ∼ �nâCXC � are integrated

out from the action (3.18). Again we emphasize that this prediction is credible because the moduli

space is exact. In [20] it is postulated that these are R BPS black hole states becoming massless

at the conifold locus, which are described by R hypermultiplets charged under U(1)S. Since

the gauge vectors are obtained from dimensional reduction of RR 4-forms, which are electrically

coupled to D3-branes, the charge black hole states should arise from the D3-branes wrapping the

vanishing 3-spheres.

This postulate is further supported by the analysis of Nambu-Goto action of the D3-brane.

Upon reduction of the Nambu-Goto action on the supersymmetric special Lagrangian cycle rep-

resented by the vanishing 3-sphere C â, one obtains in the 4D spacetime the action describing a

point particle, which is in fact a black hole, of mass Ma ∼ �nâCXC �, and of electric charges nâA .

Therefore we have a BPS black hole state of mass exactly as predicted by moduli space singularity.

To see that the gauge group is U(1)S, we chose the basis such that the matrix naA takes the form

nâi ≠ 0 (i = 1, . . . , S) and nâA>S = 0. Thus the a-th hypermultiplet has charge nâi under the U(1)
associated with the vector multiplet containing X i. In this basis the conifold locus is situated at

X i = 0 (i = 1, . . . , S).

Effective gauge theory

Now by “integrating in” the BPS black hole states in the Wilsonian effective action, we cure the

IR singularities in the effective gauge theory. The conifold transition M → M̌ → M ′ matches

perfectly the Coulomb-Higgs phase transition in this repaired nonsingular effective gauge theory.

Here we illustrate this qualitatively in the field theory limit, while analysis based on supergravity

will be carried out in Chapter 8.

Following from the fact that each of these black holes is charged under U(1)S associated to

the scalars X i with charge nâi , the field theory Lagrangian in the N4 = 1 superspace language is

Lcon = 1

16⇡
Im �� d4✓Φi†exp(V i)Φi + 1

2
� d2✓W i↵W i

↵�
+� d4✓ �H â†exp(2nâi V i)H â + H̃ âexp(−2nâi V i)H̃ â†�
+√2nâi �� d2✓ H̃ âΦiH â + h.c.� , summing over all repeated indices. (4.9)

Here the superfields (Φi, V i), each pair consisting of a chiral superfield and an N4 = 1 vector

super field, constitute the U(1)S N4 = 2 vectormultiplets, while the doublets of chiral superfields

(H â, H̃ â) (â = 1, . . . ,R) constitute the charged black hole hypermultiplets. The complex scalars

X i are contained in Φi, and we denote the scalars in the R charged black hole hypermultiplets by
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H â, which are SU(2)R doublets each containing four real scalars. For simplicity we take diagonal

prepotential: F = 1
2
ΦiΦi, without losing generality on the qualitative level. The the effective scalar

potential derived from the above Lagrangian is

Vcon = 2 �̂
a,i,j

nâi n
â
j X̄

iXj
H

â†
H

â + 1

4
�
i

�Di ⋅ �Di with �Di = �̂
a

nâiH
â†�σH

â, (4.10)

where �σ are Pauli matrices. The flat directions defined by this potential can be separated into the

Coulomb branch and the Higgs branch.

The M side of the conifold transition corresponds to the Coulomb branch of the gauge theory,

where X i obtain nonzero vacuum expectation values (VEV’s), while H â have vanishing VEV’s.

This renders the charged hypermultiplets massive through the first term in the potential (4.10).

On the other hand the vector multiplets containing X i are massless, leaving the gauge group

U(1)S unbroken.

On the other hand, the M ′ side of the conifold transition corresponds to the Higgs branch of

the effective field theory, where the vector multiplet scalars X i have vanishing VEV, while scalars

in the charged hypermultiplets H â acquire nonzero VEV’s. The latter should be subject to the

condition that the D-terms �Di = ∑â nâiH â†�σH â vanish. This imposes 3S constraints on the 4R

real variables contained in H â, leaving us with 4R − 3S flat directions. However all these flat

directions do not represent physically inequivalent vacua since points can lie on the same orbit of

the gauge group U(1)S. Modding out this gauge redundancy further eliminates S flat directions so

we are left with 4(R−S), which can be arranged into R−S massless hypermultiplets. Meanwhile

the rest S charged hypermultiplets become massive through the ∑i �Di ⋅
�Di term in Eq.(4.10). The

vector multiplets associated to U(1)S also obtain mass through the X̄XH †H term and they

absorb the S massive hypermultiplets, forming S long massive vector multiplets. Therefore the

gauge group U(1)S under which the black hole states are charged is completely “Higgsed away”.

Thus going from the Coulomb branch to the Higgs branch, the effective field theory loses

S massless vector multiplets and acquires R − S massless hypermultiplets, matching exactly the

Hodge number change Eqs (4.4) and (4.5).

4.3 Extremal transition II: uniform singular curves

Topology change

Another type of extremal transition that our work concern is the case where the singular config-

uration of CY3 develops a rational curve of ADE-type singularity. This situation arises in the
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cases where the CY3 is defined as algebraic variety embedded in some weighted projective space.

The ambient space already contains orbifold singularities, and the restriction of the singular locus

in the CY3 is some rational curve. The standard toric geometry procedure [48] to resolve these

singularities results in a bunch of P1’s with ADE-type intersection matrix. We call this nonsin-

gular CY3 M . On the other hand, the singularities can be deformed into 3-cycles, giving rise to a

nonsingular CY3, to be denoted by M ′′, of different topology than that obtained from resolution

of singularities. We also let M̌ be the singular configuration connecting M and M ′′. We denote

the mirror manifolds by W , W̌ and W ′′.

The cases that we are interested in are those where the intersection matrix of P1’s in M , arising

from the resolution of ambient space singularities, is of type AN−1. Thus we have N −1 P1’s along

the singular curve, spanning an (N − 1)-dimensional subspace of H1,1(M). Let the rational curve

be of genus g and we denote the curve by Cg. At the singular locus where the P1’s in M shrink

to zero size leading to M̌ , there are (g − 1)(N2 −N) independent non-toric deformations available

allowing that the shrinking 2-spheres be deformed into 3-spheres, giving rise to the nonsingular

CY3 M ′′. Therefore the branch M ′′ of the extremal transition exists only for g ≥ 2, and we have

the Hodge number change

h11(M ′′) = h11(M) − (N − 1), h12(M ′′) = h12(M) + (g − 1)(N2
−N) − (N − 1), (g ≥ 2). (4.11)

Non-perturbative states

We then consider type II strings compactified on such CY3’s, and check the low energy spectrum

that they give at the extremal transition locus. We adopt the type IIA picture, and start out

from the M -side of the transition. We denote the 2-cycles arising from resolving ambient space

singularity by Γi (i = 1, . . . ,N − 1). We arrange these 2-cycles so that Γi and Γi+1 have nonzero

intersection. All connected 2-cycles built out of the Γi’s are of the form Γij = Γi ∪ � ∪ Γj, for

1 ≤ i ≤ j ≤ N −1, and can be wrapped by BPS D2-branes or anti-D2-branes (obtained by reversing

the orientations). The former (latter) are associated to the (N2 −N)�2 positive (negative) roots

of AN−1, while the perturbative spectrum provides the remaining N − 1 massless multiplets in the

Cartan subalgebra. In the large volume limit of the curve Cg, the model leads to an N = 2 theory in

six dimensions describing an SU(N) gauge theory [49]. Thus, one can think of the four dimensional

case as arising from an additional compactification on the curve Cg, which breaks further half of

the supersymmetries. The resulting effective theory is an N = 2 SU(N) gauge theory coupled to

g hypermultiplets in the adjoint representation [46], and among all the g(N2−1) hypermultiplets,

the g(N − 1) Cartan components are perturbative. An analysis of beta function with these field
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contents show that the effective gauge theory is asymptoticly free when g = 0 conformal when

g = 1 and non asymptoticly free when g ≥ 2.

Effective gauge theory

We perform field theory analysis to describe qualitatively the consequence of the extremal tran-

sition M → M̌ → M ′ in the effective gauge theory, while analysis based on supergravity will be

presented in Chapter 8. With the physics that we expect near the transition locus, that g hy-

permultiplets in the adjoint of SU(N), we can write down the Lagrangian in N4 = 1 superspace

language

LnA = 1

16⇡
Im �� d4✓Φa†exp �V c T c

adj�abΦb + 1

2
� d2✓W a↵W a

↵�
+� d4✓ �HaA†exp �2V c T c

adj�abHbA + H̃aAexp � − 2V c T c
adj�abH̃bA�

+ i√2�� d2✓ fabc H̃aAΦbHcA + h.c.� , summing over all repeated indices. (4.12)

Here fabc are the structure constants of SU(N), where a, b, c = 1, . . . ,N2 − 1 are the gauge in-

dices; T a
adj are generating matrices of SU(N) in the adjoint representation whose components

are (T a
adj)bc = −i fabc; (Φa, V a) are the N4 = 2 vector multiplets of the gauge group SU(N); the

hypermultiplets (HaA, H̃aA) carry at once the gauge index and the index A = 1, . . . , g counting

distinct (N2−1)-plets each in the adjoint of SU(N). We denote the complex scalars in Φa by Xa,

and the scalars in the hypermultiplet (HaA, H̃aA) by SU(2)R doublet H aA, each containing four

real scalars haAu (u = 1,2,3,4). Without loss of generality on the qualitative level, we again take

diagonal prepotential: F = ΦaΦa. The effective scalar potential obtained from the Lagrangian

(4.12) is

VnA = [X, X̄]a[X, X̄]a + 2[X,hAu]a[hAu, X̄]a + 1

4
�Da
⋅ �Da with �Da = − i fabcH bA†�σH

cA, (4.13)

where X = XaT a
adj, h

Au = haAuT a
adj . Like in the previous section, the flat directions can separate

into the Coulomb branch and the Higgs branch and we show that they correspond to the type IIA

compactification on M and on M ′′ respectively.

The Coulomb branch is characterized by nonzero VEV’s of Xa and H aA lying only in Cartan

subalgebra of the gauge group. We suppose without loss of generality that the components acquir-

ing nonzero VEV’s are X i and H iA (i = 1, . . . ,N − 1), with {T i
adj} forming the Cartan subalgebra

of SU(N). The VEV’s of X i supply N −1 complex directions in the vector multiplet moduli spaceMV and those of H iA supply g(N −1) quaternionic directions in the hypermultiplet moduli space
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MH. The rest of the N2−N vector multiplets and g(N2−N) hypermultiplets that are non Cartan

obtain mass. This is just the situation arising from the compactification on M , where the massive

non Cartan components are from D2-brane wrapping shrinking 2-spheres. At generic values of X i

and H iA, all the non Cartan vector multiplets become massive, and the gauge group is broken to

U(1)N−1. It is possible to assign VEV’s which give mass only to part of the non Cartan compo-

nents, so that the gauge group is a rank N −1 subgroup of SU(N). Also there is a subtlety about

the massive field content: when we switch on VEV’s only for X i, the N2 −N non Cartan vector

multiplets acquiring mass stay short, while if we switch on VEV’s also for H iA, each of the non

Cartan vector multiplet absorbs a non Cartan hypermultiplet and become long vector multiplets.

Then we examine the Higgs branch, where all SU(N)-vector multiplet scalars have VEV’s

fixed at 0, while all SU(N)-hypermultiplet scalars are allowed to move freely in the flat directions

defined by �Da = 0. This imposes 3(N2 − 1) constraints on the 4g(N2 − 1) real degrees of freedom

included in H aA. Among the (4g − 3)(N2 − 1) real flat directions that rest, not all of them

parameterize physically inequivalent vacua because they accommodate the orbit of gauge group

SU(N). Fixing this gauge freedom wipes out another N2 − 1 real flat directions. Therefore we

have all physically inequivalent vacua parameterized by 4(g−1)(N2−1) real flat directions, which

can be arranged into (g − 1)(N2 − 1) massless hypermultiplets. This counting shows that the

Higgs branch exists only for g ≥ 2. On the other hand, all SU(N)-vector multiplets obtain masses

through the second term in the potential (4.13) and the rest N2−1 charged hypermultiplets obtain

masses through the �Da⋅ �Da term. Further, these massive fields are combined and form N2 −1 long

vector multiplets. Thus the whole gauge group SU(N) is “Higgsed away”.

Therefore when moving into the Higgs branch from the Coulomb branch, we loose the N − 1

massless vector multiplets and the g(N − 1) massless hypermultiplets in a Cartan subalgebra of

SU(N), but meanwhile we gain (g−1)(N2−1) massless hypermultiplets. Thus the Kähler moduli

are reduced by N−1 while the complex structure moduli are increased by (g−1)(N2−1)−g(N−1) =
(g − 1)(N2 −N) − (N − 1), corresponding exactly to the Hodge number change Eq.(4.11). Thus

the compactification on M ′′ gives rise to the Higgs branch of the effective gauge theory.
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Chapter 5

Ideal string gas at finite temperature

For cosmological application of string theory, we need a thermodynamical description of string

gas in a closed system. The goal of this chapter is to clarify this issue. We adopt the canonical

ensemble prescription, where the derivation of all thermodynamical quantities is based on the

partition function

Z = Tr e−βH . (5.1)

Here β = 1�T is the inverse temperature and H is the Hamiltonian of the string gas. Once the

partition function is obtained, the thermodynamics of string gas follows the standard formalism.

We can derive from the partition function the Helmholtz free energy F and its density

F = −T lnZ = −Z
β
, F = F

V
= − Z

βV
, (5.2)

with Z = lnZ and V the space volume. We point out here that the free energy density will play a

key role in cosmological application. Based on F we have the pressure P and the energy density

of the gas, given by

P = −@F
@V
= −V @F

@V
−F , ⇢ = − @

@β
lnZ = T @P

@T
− P. (5.3)

These are just the quantities appearing in the Friedman equations sourcing the cosmological

evolution.

A direct evaluation of the partition function in second quantization formalism should appeal

to string field theory. However here we would rather adopt a first quantization approach of which

the technique is better established. We will show, through point particle analogue, that this first

quantization alternative is feasible at weak coupling regime, which is because lnZ for an ideal gas

is just a one-loop amplitude computed against a Euclidean background.
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5.1 Lesson from point particle

Partition function as one-loop amplitude

We recall the standard result of Z = Tr e−βH , the canonical partition function for an ideal gas of

particle of one degree of freedom:

lnZ = (−)F+1 VD−1(2⇡)D−1 � d�p �1
2
β!p + ln �1 − (−1)F e−β!p��, (5.4)

where VD−1 is the space volume, d�p = dD−1p, !p = ��p2 +M2 with M the particle mass, and F

takes value 0 for bosonic degree of freedom, 1 for fermionic. The explicit computation is presented

in Appendix A.1. The result is easily obtained by path integral against a Euclidean background

with the Euclidean time circle of perimeter β = 2⇡R0, where periodic (anti-periodic) boundary

condition is assigned to the bosonic (fermionic) field. This result has the interpretation of one-loop

vacuum amplitude, which can be seen very explicitly when we expand the logarithmic in power

series of e−β!p :

lnZ = −(−)F VD−1(2⇡)D−1 � d�p β!p

2
+ VD−1(2⇡)D−1

∞�
n=1

(−1)nF+F
n

� d�p e−nβ !p (5.5)

The physical significance of the summation on the right hand side can be better elucidated by

noticing, for the n-th term, that

VD−1(2⇡)D−1
1

n
� d�p e−nβ !p = 1

n
� d�p ��p � ∶e−nβH ∶ ��p � = 1

n
� d�x ��x� ∶e−nβH ∶ ��x �, (5.6)

where ��p � and ��x � are single particle states in the momentum and position representation, ap-

propriately normalized. This is the amplitude that a particle launched at any spatial point,

circulating the Euclidean time circle n-times (n = 1,2, . . . ) before finally returning to the initial

point. The division by n is because in ��x� ∶e−nβH ∶ ��x � the cases that a particle launched in the 1st,

the 2nd,..., until the n-th β-interval of Euclidean time are redundantly counted. The first term

on the right hand side of Eq.(5.5) can be considered, referring to Eq.(A.16), as the n→ 0 limit of

Eq.(5.6), up to a physically irrelevant infinity. Therefore it is from the particle loop which does

not wind around the Euclidean time circle, i.e. the vacuum bubble. Therefore Eq.(5.5) is the total

one-loop amplitude of a single particle in the ideal gas, with the subtlety for the fermionic case

that the winding number n is summed up with interchanging signs, which is the consequence of

spin-statistics.
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First quantization: an alternative approach

With the one-loop amplitude interpretation of the logarithmic of the partition function, we are

now attempted to write down

lnZ = �
β

, (5.7)

where the diagram on the right hand side is understood as obtained by first quantization formalism

with boundary conditions satisfying spin-statistics. Indeed a direct first quantization evaluation

shows that (see detailed computation in appendix A.2)

�
β

= βVD−1

2(2⇡)D
∞�

n=−∞
� ∞

0

d`

`D�2+1 (−1)F (n+1) exp�−
⇡R2

0

`
n2
− ⇡ `M2�. (5.8)

This is nothing but the Schwinger parameter representation of the standard formula (5.4), where

` is just the Schwinger parameter, proportional to the size of the particle loop. Here the result

Eq.(5.8) can be obtained more easily by second quantization path integral, as is shown in Eqs(A.8)

and (A.10). Indeed it is shown in the same appendix that the n-th term in the summation in

Eq.(5.8) is identical to the n-th term in the summation of second quantization result Eq.(5.5).

Therefore the first quantization and second quantization evaluations of lnZ match, confirming

the validity of the schema Eq.(5.7). The significance of this statement is that in case where a

second quantization evaluation of partition function is not possible or not convenient, there can

be a first quantization alternative, where one evaluates the one-loop amplitude against a thermal

background. We will see in the next section that this is just the case for ideal string gas.

However before turning to the string gas, we still have lesson to draw from point particle.

We need to consider an ideal gas consisting of several species of particles. In such case the total

one-loop amplitude should be the sum of the amplitude of each degree of freedom. This is due to

the additivity of lnZ, the consequence of the fact that the whole Hilbert space is a tensor product

of the Hilbert spaces of each degree of freedom. Therefore if we let each degree of freedom in

the ideal gas is labeled by s, with mass spectrum {Ms} and fermionic numbers {Fs}, the total

one-loop amplitude reads

�
β

= βVD−1

2(2⇡)D�s
∞�

n=−∞
� ∞

0

d`

`D�2+1 (−1)Fsn+Fs exp�− ⇡R2
0

`
n2
− ⇡ `M2

s �. (5.9)

This shows that the one-loop amplitude for an ideal particle gas cares only about the spin and the

mass of states in the spectrum. That is, for any ideal gas of point particles, once the spectrum

of the system is known, we can obtain its thermal one-loop amplitude by plugging in the masses

and fermion numbers into the above formula. However we will see in the next section that for an
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ideal string gas, its thermalization follows more subtle steps inspired by the formalism Eq.(5.9).

To handle the subtleties in string theory, we need to go somewhat further in the interpretation of

Eq.(5.9).

A closer look at thermalization

We first rewrite Eq.(5.9) in a form displaying more details:

�
β

= A0 +A1, where (5.10)

A0 = βVD−1

2(2⇡)D �
∞

0

d`

`D�2+1 ��b exp�− ⇡ `M2
b � −�

f

exp�− ⇡ `M2
f ��, (5.11)

A1 = βVD−1

2(2⇡)D�
∞

0

d`

`D�2+1 �n≠0 ��b exp�− ⇡R2
0

`
n2
− ⇡ `M2

b �−(−1)n�
f

exp�− ⇡R2
0

`
n2
− ⇡ `M2

f ��. (5.12)

By distinguishing A1 from A0 we separated the thermal part from the vacuum bubble contribution,

and in each piece we further distinguished the bosonic contribution from the fermonic contribution.

In particular, we let the index s in Eq.(5.9) be split into bosonic indices and fermonic ones:

{s} = {b} ∪ {f}, so that Fb ≡ 0 and Ff ≡ 1. Eq.(5.11) shows that the vacuum bubble contribution

generically has UV (` → 0) divergence unless some cancelation happens between bosons and

fermions, for example in case of supersymmetry, or unless the spectrum contains an infinity of

states, the infinite sum over which regularizes the divergence. This above expression shows that

the thermal one-loop amplitude is obtained by pending a thermal piece A1 to the non thermal

piece A0 where the information needed to construct A1, the masses and the fermion numbers, can

be simply read off from A0. Certainly we also have to take into account the change in spacetime

volume: VD → βVD−1. This method is perfectly designed for free string theory, where we know the

technique to compute the zero temperature one-loop amplitude as is shown in Chapter 2.

Another instructive point of view provided by Eq.(5.9), is based on instanton interpretation of

thermal effect. To see this we compare Eq.(5.9) the zero temperature case. By switching off the

temperature letting β →∞ in Eq.(5.9), the terms with n ≠ 0 are exponentially suppressed, so that

we get

�
T=0
= VD

2(2⇡)D �s �
∞

0

d`

`D�2+1 (−1)Fs exp�− ⇡ `M2
s �, (5.13)

which is just the pure vacuum bubble contribution Eq.(5.11). This conforms to the fact that

a particle feels temperature only when it circulates the Euclidean time circle, while the vacuum

bubbles tell nothing about the temperature. Comparing to the T ≠ 0 case in Eq.(5.9), we find that
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operationally the temperature is turned on by the inserting into Eq.(5.13) a weighted worldline

instanton sum

�
n

(−1)Fs n exp �− ⇡R2
0

`
n2� (5.14)

and at the same time taking into account the change in spacetime volume: VD → βVD−1. This

insertion corresponds to the compactification on the Euclidean time circle, with anti-periodic

boundary condition assigned to fermions. In string theory application, the worldline instanton

sum will be replaced by worldsheet instanton sum.

5.2 Ideal gas of closed superstrings

With all the preliminary analysis done for point particle, we are at the point of addressing the

thermodynamics of ideal string gas. The main focus is the computation of the partition function

Eq.(5.1). The discussion in the last section, which leads to the schema Eq.(5.7), shows that the

computation can be achieved by first quantization formalism. The starting point of technical

computation is to coin up a string version of Eq.(5.7).

In this section we do this for a gas of closed strings and the open string gas will be discussed

in the next section. In fact cases of open strings are relatively easier since open strings behave

more like point particles, while closed strings show more stringy subtleties, in that closed string

can wrap the Euclidean time circle, what point particles and open strings cannot do, and also the

resulting one-loop amplitude has to be invariant under modular group SL(2,Z). To begin with,

we write down the closed string version of Eq.(5.7)

lnZ = �
β
. (5.15)

In the rest of this section we discuss the computation of this one-loop amplitude.

Intuitive thermodynamical argument

To obtain the amplitude �β , a naive idea is taking Eq.(5.9), and plugging in the mass

spectrum of the closed string model. However this approach is not correct beause the result is not

modular invariant, moreover we do not really recover the zero temperature vacuum amplitude at

T → 0 limit, and the result suffers from UV divergence. It means that this prescription fails to give

proper credit to the good UV behavior of string theory. An obvious example is when spacetime
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supersymmetry is spontaneously broken, the vacuum amplitude is nontrivial and finite, but when

applying Eq.(5.9) to this case, we observe UV divergence in n = 0 terms.

We should proceed more delicately to avoid the pathology in the naive recipe. The improved

version is to first take Eq.(5.10), then plug the string mass spectrum only into A1, while let A0

be simply the one-loop vacuum amplitude at T = 0 whose computation is presented especially in

Chapter 2, and finally let the thermal one-loop amplitude be the sum of the two. Thus obviously

the zero temperature limit yields the correct result. However we do not know whether A0 + A1

is modular invariant although A0 is. Indeed it is the case, and we will show this later. Now we

describe the technical steps in more detail. To distinguish from point particle case, we denote the

string theory counterpart of A0 and A1 by Z0 and Z1. Mimicking Eq.(5.10), we write down

�
β
∶= Z(T ) = Z0 +Z1 . (5.16)

For the zero temperature part Z0, we can assume its generic form

Z0 = βVD−1

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

� �
B, B̄

P
BB̄

qB q̄B̄ − �
F, F̄

Q
FF̄

qF q̄F̄ � (5.17)

which is always the case for all closed string models that we have or have not encountered. In

the bracket, the two terms represent the spacetime boson contribution and the spacetime fermion

contribution respectively. The powers {B, B̄} and {F, F̄} run through discrete values that are

model dependent. The multiplicities of any specific power of q and q̄ are {P
BB̄
} and {Q

FF̄
}

for bosonic and fermonic contribution respectively. All multiplicities are positive integers. In

the case where spacetime supersymmetry is unbroken, the permissible values of powers are the

same between the bosonic and the sermonic sector: {B, B̄} = {F, F̄}, and the corresponding

multiplicities are also identical: {P
BB̄
} = {Q

FF̄
}. As a result Eq.(5.17) vanishes. To compute Z1,

we need to read off the mass spectrum from Eq.(5.17) and insert into Eq.(5.12). The physical

states should be level matched: B = B̄ and F = F̄ . Thus the mass spectrum communicated by

Eq.(5.12) is that at the level B (F ), the mass is 2
√
B (2
√
F ), with degeneracy P

BB
(Q

FF
). Thus

inserting these data into Eq.(5.12), we get the thermal piece

Z1 = βVD−1

2(2⇡)D �
∞

0

d⌧2

⌧
1+D

2

2

�
m̃0≠0

��
B

P
BB

e
−
⇡R2

0

⌧2
−⇡⌧2(4B)

− (−1)m̃0�
F

Q
FF

e
−
⇡R2

0

⌧2
−⇡⌧2(4F )� . (5.18)

The steps presented above are more for giving general principles that the thermal one-loop am-

plitudes should respect, than for providing technical algorithm for explicit computation. Indeed,

in practice when dealing with specific models, these steps are not convenient to operate. It is

because the computation of Z1 as in Eq.(5.18) requires a full description of the mass spectrum,

i.e. specifying each mass level and its degeneracy, which is a very complicated thing to achieve.
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In explicit computation we will go through another way round, which is inspired by the dis-

cussion in the end of the last section giving rise to Eqs (5.13) and (5.14). This amounts to first

taking the T = 0 amplitude of the closed string that we want to thermalize, and then, mimicking

the insertion of Eq.(5.14) in the point particle case, inserting a worldsheet instanton sum into the

T = 0 amplitude. The inserted instanton sum should correspond to the compactification on the

Euclidean time on a circle, with a suitable phase weighting the instanton sum in order to respect

spin-statistics. This construction is more stringy than thermodynamical, but in the end we will

show that one recovers precisely, from the stringy results, Eqs (5.17) and (5.18) from intuitive

thermodynamical argument.

Thermalization of ideal heterotic and type II string gas

We consider thermalization of ideal gas of the heterotic string and type II strings. For the heterotic

string, the one-loop amplitude at zero temperature is given by Eq.(2.55). With the compactifi-

cation on the Euclidean time circle, the instanton sum to be inserted is as the right hand side

of Eq.(3.3), with the subscripts 9 replaced by 0. Taking also into account spin-statistics, there

should be a phase insertion in the instanton, and the phase is further constrained by SL(2,Z)
modular invariance of one-loop amplitudes. We give directly the weighted instanton sum, which

turns out to be

�
m̃0,n0

(−1)am̃0+bn0+m̃0n0 exp�− ⇡R2
0

⌧2
�m̃0 − ⌧n0�2� , (5.19)

Note that a and b are the indices summed over in Eq.(2.55), which indicate the spin structures

along the two independent cycles of the worldsheet which is of the topology of torus. Therefore

they are the string theory counterpart of the fermion number Fs in Eq.(5.14). The cycle of

spin structure a is the transversal direction of the string, which wraps n0 times the Euclidean

time circle, while that of spin structure b is in the propagating direction of the string, wraping

m̃0 times. This motivates the expression a m̃0 + bn0 in the phase in Eq.(5.19), in analogy to

Fsn in Eq.(5.14). It is natural that the spin structure indices a and b appear in the phase on

equal footing, since a and b are transformed into each other through the modular transformation

⌧ → −1�⌧ . The additional m̃0n0 term in the phase is included just for sake of modular invariance.

A more rigorous way to obtain the phase Eq.(5.19) is to postulate the phase (−1)am̃0 for n0 = 0,
and then use modular invariance to find out the full expression for all values of n0. This is done

in [50] for the heterotic string, although the result is expressed in a different form. Therefore the
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thermal partition function is

Zh(T ) = βVD−1

2(2⇡)D�F
d2⌧

⌧
1+D

2

2

�
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4
� �
m̃0,n0

(−1)am̃0+bn0+m̃0n0 e
−
⇡R2

0

⌧2
�m̃0−⌧n0�2� Γ(d,16+d)

⌘8⌘̄24
. (5.20)

In type II strings, the spacetime fermion number is a + ā as is clarified below Eq.(2.38). Thus

by the same reasoning as for the heterotic string, the weighted instanton sum to be inserted into

Eq.(2.39) is

�
m̃0,n0

(−1)(a+ā)m̃0+(b+b̄)n0 exp�− ⇡R2
0

⌧2
�m̃0 − ⌧n0�2� , (5.21)

so that the thermal one-loop amplitude is

ZII(T ) = βVD−1

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

�
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4
�̄
a,b̄

(−1)ā+b̄+µ āb̄ ✓̄[āb̄ ]4
2⌘̄4

× � �
m̃0,n0

(−1)(a+ā)m̃0+(b+b̄)n0 e
−
⇡R2

0

⌧2
�m̃0−⌧n0�2� Γ(d,d)

⌘8⌘̄8
. (5.22)

We have two remarks to add. First, the string models considered above can possibly be

compactified on some internal torus before switching on temperature. However actually the scheme

of thermalization can by all means be applied to models compactified on any internal space as

long as the noncompact spacetime is flat, since obviously, the insertions of Eqs (5.19) and (5.21)

do not care about the internal space. The models giving rise to flat spacetime solutions are just

the no-scale type models [8]. Second, by construction the above finite temperature results Eqs

(5.20) and (5.22) are modular invariant. In fact referring to the discussion at the end of Sec.3.3,

we see that switching on temperature amounts exactly to the implementation of a Scherk-Schwarz

reduction S1(2R0)�Z2. Here the orbifold action is as in Eq.(3.12), with δ the order two translation

along the Euclidean time circle of radius 2R0, and Q the spacetime fermion number.

Back to intuition on thermodynamics

We still need to show that the results Eqs (5.20) and (5.22) obtained in a stringy way makes sense

thermodynamically. That is, we verify that they conform to the initially advertised forms Eqs

(5.17) and (5.18). We observe that Eqs (5.20) and (5.22) take the form

Z(T ) = �F d2⌧

⌧
1+D

2

2

�
m̃0,n0

f(m̃0,n0)(⌧, ⌧̄ , . . . ), (5.23)
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where the integrand ∑f(m̃0,n0)(⌧, ⌧̄ , . . . ) is modular invariant. In fact, let ⌧ ′ = (a⌧ + b)�(c⌧ + d)
with M = (a b

c d) ∈ SL(2,Z), then f(m̃0,n0)(⌧ ′, ⌧̄ ′, . . . ) = f(m̃0,n0)M−1(⌧, ⌧̄ , . . . ). In such cases one can

apply the unfolding technique [51] to decompose the instanton sum in the following way

Z(T ) = �F d2⌧

⌧
1+D

2

2

f(0,0)(⌧, ⌧̄ , . . . ) +�
�

d2⌧

⌧
1+D

2

2

�
m̃0≠0

f(m̃0,0)(⌧, ⌧̄ , . . . ), (5.24)

where in the second term the integral domain is the strip −1
2
< ⌧1 < 1

2
and ⌧2 > 0. Clearly the

first term is just the zero temperature vacuum amplitude so that when expanding the integrand

f(0,0)(⌧, ⌧̄ , . . . ) in powers of q and q̄ we find exactly Eq.(5.17):

�F
d2⌧

⌧
1+D

2

2

f(0,0)(⌧, ⌧̄ , . . . ) = βVD−1

2(2⇡)D �F
d2⌧

⌧
1+D

2

2

� �
B, B̄

P
BB̄

qB q̄B̄ − �
F, F̄

Q
FF̄

qF q̄F̄ � (5.25)

In the second term in Eq.(5.24), only the sum over winding number m̃0 is concerned. Therefore the

effect is to insert into the above expression the instanton sum ∑′m̃0
exp �−⇡R2

0

⌧2
m̃2

0�, and assigning

the phase (−1)m̃0 to the fermonic sector

�
�

d2⌧

⌧
1+D

2

2

�
m̃0≠0

f(m̃0,0)(⌧, ⌧̄ , . . . )

= βVD−1

2(2⇡)D ��
d2⌧

⌧
1+D

2

2

�̃
m0

′ � �
B, B̄

P
BB̄

qB q̄B̄ − (−1)m̃0 �
F, F̄

Q
FF̄

qF q̄F̄ � e−⇡R2
0

⌧2
m̃2

0

= βVD−1

2(2⇡)D �
∞

0

d⌧2

⌧
1+D

2

2

�̃
m0

′ ��
B

P
BB
(qq̄)B − (−1)m̃0�

F

Q
FF
(qq̄)F � e−⇡R2

0

⌧2
m̃2

0

= βVD−1

2(2⇡)D �
∞

0

d⌧2

⌧
1+D

2

2

�̃
m0

′ ��
B

P
BB

e
−
⇡R2

0

⌧2
−⇡⌧2(4B)

− (−1)m̃0�
F

Q
FF

e
−
⇡R2

0

⌧2
−⇡⌧2(4F )� . (5.26)

Here when going from the second to the the third line, we have just performed the integration over

⌧1, which imposes the level matching condition. This is possible because the integration domain

is unfolded on the strip. Finally we obtain precisely Eq.(5.18), so that the splitting Eq.(5.24) is

just the splitting between Z0 and Z1.

5.3 Ideal gas of type I string

In Sec.2.4 we have mentioned that the type I string one-loop amplitude at zero temperature

can be decomposed into a sum of four amplitudes with different worldsheet topologies. We can
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implement finite temperature to these four amplitudes separately, and the canonical partition

function is obtained through

lnZ ∶= ZI(T ) = � + + + �
β

, (5.27)

which again is motivated by Eq.(5.7) in the point particle case.

In the closed string sector, we have the torus amplitude and the Klein bottle amplitude. The

former is nothing but the type IIB amplitude, whose thermalization is obtained in the last section:

T (T ) = 1

2
ZII(T ), (5.28)

with ZII(T ) given in Eq.(5.22). To thermalize the Klein bottle amplitude, we recall the remark

made below Eq.(2.49), that only NS-NS sector and RR sector, i.e. spacetime bosons, contribute

to the amplitude. Therefore what we are left to do is just inserting the instanton sum arising from

compactification on S1(R0) with only bosonic statistics, so we have

K(T ) = βVD−1

2(2⇡)D
1

2
� +∞

0

d⌧2

⌧
1+D

2

2

�̃
m0

e
−
⇡R2

0

⌧2
m̃2

0�
a,b

(−1)a+b+ab ✓[ab ]4
2⌘4

Γd

⌘8
. (5.29)

In the open string sector, we observe from the zero temperature one-loop amplitudes (2.50)

and (2.51), that open strings behave just like point particles, so that the point particle scheme

can be simply transplanted to this case. The spacetime fermion number being a in Eqs (2.50) and

(2.51), we insert the instanton sum as Eq.(5.14) with n→ m̃0 and Fs → a. Thus,

A(T ) = βVD−1

2(2⇡)D
N2

2
� +∞

0

d⌧2

⌧
1+D

2

2

�
a,b

� �̃
m0

(−1)am̃0e
−
⇡R2

0

⌧2
m̃2

0� (−1)a+b+ab ✓[ab ]4
2⌘4

Γd

⌘8
, (5.30)

M(T ) = βVD−1

2(2⇡)D
⇣ N

2
� +∞

0

d⌧2

⌧
1+D

2

2

�
a,b

� �̃
m0

(−1)am̃0e
−
⇡R2

0

⌧2
m̃2

0� (−1)a+b+ab ✓̂[ab ]4
2⌘̂4

Γd

⌘̂8
. (5.31)

The results Eqs (5.28)–(5.31) can also be considered as the implementation of Scherk-Schwarz

reduction S1(2R0)�Z2 just as in the closed string case. The total one-loop amplitude at finite

temperature is the sum of Eqs (5.28)–(5.31)

ZI(T ) = T (T ) +K(T ) +A(T ) +M(T ). (5.32)

It is straightforward to see that this result for type I string conforms to the intuition from ther-

modynamics that is, it can be separated into a thermal piece and a non-thermal piece, where

the former is the T = 0 amplitude, and the latter takes the form Eq.(5.18). The case of T (T ) is

already explained by the end of last section in Eq.(5.26). In the rest amplitudes K(T ), A(T ) andM(T ), we identify the non-thermal part which is the m̃0 = 0 part, and for the rest with m̃0 ≠ 0,

we expand them in power series in q, and result takes exactly the form of Eq.(5.18).
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5.4 Hagedorn singularity

A remarkable feature of the thermal one-loop amplitudes computed above is that the sum over

the mass spectrum diverges when temperature goes high enough. It is due to the characteristic of

string mass spectrum, that the degeneracy grows exponentially with mass: degen.(M) ∼ e const.×M .

On the other hand the contribution to the one-loop amplitude from a heavy state of mass M ,

satisfying M � T , is always dressed by a Boltzmann factor e−M�T . When computing the one-loop

amplitude, at each mass level we sum up e const.×M times the exponentially suppressed Boltzmann

factor e−M�T , and then we sum over all mass levels until M →∞. Thus when the temperature is

above a critical value, the number of states e const.×M wins over the Boltzmann factor e−M�T so that

the sum over M diverges. The singularity in the thermal partition sum arising from the above

mechanism is named after Hagedorn, who first unraveled this phenomenon in QCD [52]. The

critical temperature is referred to as Hagedorn temperature, which we will denote by TH = 1�βH.

Hagedorn singularity as UV effect

Here we describe in more detail the qualitative discussion made above, and we first examine the

closed strings. Recall that we have separated the thermal one-loop amplitude Z(T ) into a zero

temperature part Z0 and a thermal part Z1, as in Eq.(5.16). Obviously the divergence comes from

the thermal part. For convenience in the following discussion, we change the notation in Eqs (5.18)

and (5.26), rewriting the degeneracies as PBB → P(Mb) and QFF → Q(Mf) for the bosonic sector

and the fermonic sector respectively where Mb,f are mass of states. This is legitimate because as

is stated above Eq.(5.18), B and F being the powers of qq̄ are related unambiguiously to the mass

by Mb = 2√B and Mf = 2√F . Thus we rewrite Eq.(5.18) with the new notation and perform the

integration over ⌧2 using Eq.(A.53), and this yields

Z1 = βVD−1

2(2⇡)D�
∞

0

d⌧2

⌧
1+D

2

2

�̃
m0

′ ��
Mb

P(Mb) e−⇡R
2
0

⌧2
m̃2

0
−⇡⌧2M

2

b − (−1)m̃0�
Mf

Q(Mf) e−⇡R
2
0

⌧2
m̃2

0
−⇡⌧2M

2

f �
=β1−DVD−1��

Mb

P(Mb)Wb(βMb) +�
Mf

Q(Mf)Wf(βMf)� , where (5.33)

Wb(βMb) = 2 ∞�
m̃0=1
� βMb

2⇡m̃0

�
D
2

KD
2

�m̃0 βMb�,
Wf(βMf) = 2 ∞�

m̃0=1
(−1)m̃0+1� βMf

2⇡m̃0

�
D
2

KD
2

�m̃0 βMf�,
(5.34)
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where Kν( ⋅ ) is the modified Bessel function of the second kind. In fact, We report the asymptotic

behavior of the quantities as mass tends to infinity:

P(M),Q(M) ∼ const. ×M−D e2π(ωL+ωR)M , (M →∞) (5.35)

Wb,f(βM) ∼�βM
2⇡
�D−12

e−βM , (βM →∞), (5.36)

where !L and !R in the first line are positive numbers depending on specific models, and one can

find the derivation of Eq.(5.35) in [53], while the second line is due to Eq.(A.56). This justifies

the qualitative arguments made in the beginning of this section: we see the exponential growth of

the degeneracies in Eq.(5.35) as well as the Boltzmann factor e−M�T in Eq.(5.36). For the models

that we have encountered, we have [53], for heterotic string Eq.(5.20), �!L, !R� = �√2
2
,1�, and for

type II string Eq.(5.22), �!L, !R� = �√2
2
,
√
2
2
�. The asymptotic behaviors (5.35) and (5.36) show

that the Hagedorn temperature is

βH = T −1H = 2⇡�!L + !R) = � (2 +
√
2)⇡ , heterotic ;

2
√
2⇡ , type II .

(5.37)

The sum over mass spectrum in Eq.(5.33) diverges when T > TH.

We present briefly the situation in type I string. Obviously the Hagedorn temperature in the

closed string sector is just as the type II string case. Then in the open string sector, basically

the thermal one-loop amplitude also takes the form Eq.(5.33), and the counterpart of Eq.(5.35)

is P(M),Q(M) ∼ const. ×M−D�2 e2√2πM . Thus Hagedorn singularity in the open string sector

happens at the same temperature as in the closed string sector: βH = 2√2⇡, which turns out to

be the Hagedorn temperature of type I string.

The Hagedorn divergence discussed above arises as a UV effect since the asymptotic behavior

(5.36) results from the ⌧2 → 0 limit of the integral in obtaining Eq.(5.33).

Tachyonic state in the spectrum and phase transition

All precedent sections describe thermal one-loop amplitude with sum of worldsheet instanton aris-

ing from S1(R0). We now switch to the lattice sum representation, following the discussion in

Sec.3.1, which offers more insight into the problem. We only investigate the maximally supersym-

metric heterotic string for simplicity, while the discussion for other string models is just similar.

Performing Poisson resummation to the instanton sum Eq.(5.19), we obtain

�
m̃0,n0

(−1)am̃0+bn0+m̃0n0 e
−
⇡R2

0

⌧2
�m̃0−τn0�2 = √⌧2

R0
�
m0,n0

(−1)bn0q
1

4
�m0−

a+n0
2

R0
−n0R0�

2

q̄
1

4
�m0−

a+n0
2

R0
+n0R0�

2

. (5.38)
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For convenience we introduce a shorthand notation

�
m,n

q
1

4
�m
R
−nR�2 q̄

1

4
�m
R
+nR�2 ∶= Γm,n(R). (5.39)

where the subscripts on the right hand side are not to indicate a particular index, but to indicate

deformations of the lattice sum. Using Eq.(5.38) to rewrite Eq.(5.20), yields an expression in D−1

dimensions

Zh(T ) = VD−1

2(2⇡)D−1�F
d2⌧

⌧
D+1
2

2

�V8 Γm0,2n0
(R0) − S8 Γm0+ 1

2
,2n0
(R0)

+O8 Γm0+ 1

2
,2n0+1(R0) −C8 Γm0,2n0+1(R0)�Γ(d,16+d)

⌘8⌘̄24
. (5.40)

The sector of interest is ⌘−8⌘̄−24O8Γm0+ 1

2
,2n0+1(R0), where we observe that the two ground states,

arising from string winding the Eulidean time circle, are of mass squared

M2
O(R0) = R2

0 + 1

4R2
0

− 3, (5.41)

which is negative for 1 −
√
2
2
< R0 < 1 + √2

2
. Therefore if we gradually raise the temperature

which is initially low, at a critical value corresponding to the radius R0 = 1 + √2
2

, the ground

states become tachyonic. The contribution of one ground state to the thermal one-loop ampli-

tude ∫Fd
2⌧ ⌧

D+1
2

2 e−⇡⌧2M
2

O diverges at the integration limit ⌧2 → ∞. Comparing to Eq.(5.37), this

divergence arising as IR effect is just the Hagedorn singularity described before as UV effect. The

same analysis can be carried out for type II strings, where we can also predict the Hagedorn

temperature by the appearing of tachyonic states in the spectrum.

On general grounds, the appearing of tachyonic states is a symptom of destabilization of the

vacuum, where the initial local minimum of scalar potential becomes a local maximum. Therefore

the Hagedorn singularity, induced by tachyonic states in the thermal spectrum, indicates rather

such an instability than a pathology of the theory. As the temperature raises as high as the Hage-

dorn temperature, the destabilization of thermal scalar potential should trigger a phase transition

carrying the system into a new thermal vacuum [50,54].

Interesting observation in microcanonical language regarding the heterotic Hagedorn temper-

ature has been made in [55]. Considering the temperature β as a complex variable, the ther-

mal one-loop amplitude (5.40) can be continued onto the whole complex plane, where Hagedorn

temperature βH is an isolated singularity besides many others situated in the region Reβ < βH.

Especially, the singularity βH leads to a branch cut on the complex β-plane. The discrepancy

of Zh(T ) on the two sides of he branch cut tells, at high energy regime, the leading term in the

density of states Ω(E) in the microcanonical ensemble description. The result shows that in case
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where there are noncompact directions in spacetime, the microcanonical ensemble temperature

is β = ∂ lnΩ(E)
∂E

= βH + O(E−1), which approaches TH but can never surpass as the energy raises.

Intuitively, if we try to raise temperature by injecting the more and more energy into the sys-

tem, we end up with the temperature TH but no more, because when we approach TH, more and

more injected energy is converted into the internal wiggling of strings. In canonical description

it is always possible to mathematically make T higher than TH, by contouring the singularity in

the complex plane. However in such case the equivalence between the canonical and the micro-

canonical descriptions breaks down and the β on the canonical side is no longer the β on the

microcanonical side. It is because with Ω(E) ∼ eβHE, the saddle point approximation, the key step

in proving the equivalence, is no longer valid when β < βH. This is the indication in microcanonical

description that the system should enter into a new phase as the temperature approaches TH.

5.5 Application to ideal string gas with unbroken spacetime

supersymmetry

In the following up chapters we will often consider the thermodynamics of string gas having

spacetime supersymmetry. Although such cases have little phenomenological interest, our goal

is however being concentrated on the non-perturbative effects and get rid of other factors that

makes the problem complicated. Therefore here we set up the framework for description of such

string gases, and give two examples which will be used later. We will simply use Z to denote the

thermal string one-loop amplitude obtained for any model in the previous sections. Also we let

Z = Z0 +Z1 with Z0 the T = 0 amplitude and Z1 the thermal part just as indicated in Eq.(5.16).

Due to spacetime supersymmetry, Z0 vanishes, while Z1 takes the form Eq.(5.33), and the same

thing is true of open strings (see the end of Sec.5.3), where now P(M) ≡ Q(M) ∶= N (M). Thus

the one-loop amplitude becomes

Z = β1−DV �
s

N (Ms) �Wb(βMs) +Wf(βMs)� = β1−DV �
s

N (Ms)G(βMs) , (5.42)

where we refer to Eq.(5.34) for definitions of the functions Wb,f( ⋅ ). Here we use the index s to

label the mass spectrum and each s represents a boson-fermion pair of degenerate mass. We have

also defined the function

G(x) =Wb(x) +Wf(x) = 2�̃
k0

� x

2⇡�2k̃0 + 1��
D
2

KD
2

�x �2k̃0 + 1�� . (5.43)

Then using Eqs (A.55) and (A.56), we get the following asymptotic behaviors

G(x) = cD − cD−2

4⇡
x2 +O(x4) (x � 0) , G(x) ∼ 2� x

2⇡
�
D−1
2

e−x (x� 1), (5.44)
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where

cD = G(0) = Γ(D
2
)

⇡
D
2

�̃
k0

1�2k̃0 + 1�D . (5.45)

The Helmholtz free energy density becomes

F = −TD�
s

N (Ms)G(βMs) . (5.46)

In cosmological application we consider low temperature regime where the temperature is

much below the string scale. In such case we do not have Hagedorn instability, and the one-loop

amplitude is calculable. Indeed we need not sum up all the mass spectrum in Eq.(5.42), since

given the asymptotic behavior in Eq.(5.44) at x � 1, contribution from states of mass heavier

than the temperature is exponentially suppressed by e−M�T .

We also notice that due to the asymptotic behavior in Eq.(5.44) at x ∼ 0, the function G(x)
reaches its maximum at x = 0. Therefore the free energy density Eq.(5.46) reaches its local

minimum when some states become massless M ≠ 0 → M = 0. This can happen when there

are states whose masses depend moduli fields, which can vanish at certain values of moduli. We

anticipate the important fact that the local minima of F play crucial role in moduli stabilization

since F plays the role of effective potential. Now we examine some specific examples.

Example I: maximally supersymmetric SO(32)-heterotic string gas

We consider a simple example used in [18], where we take the SO(32) heterotic string compactified

on a factorized torus ∏9
↵=D S1(Rh↵) down to D-dimensional flat spacetime, here the subscript h

for heterotic. The temperature is T̂h = 1�β̂h = 1�(2⇡Rh0) which is much lower than the Hagedorn

temperature so that the thermal one-loop amplitude is well defined. We stress once again that the

hatted quantities are string frame quantities, and the internal radii, even though unhatted, are

by default string frame quantities. The one-loop amplitude is computed in the appendix of [18],

which is:

Zh = β̂hV̂h × T̂
D
h

������� s0b0 cD +
9

�
↵=D

2s0b−1G�2⇡Rh0� 1

Rh↵

−Rh↵��
+ �

A≥0, Ā≥−1, �m, �n
A−Ā= �m⋅�n

(A, �m,�n)≠(0,✏�eα,✏�eα),
∀↵,∀✏=−1,0,1

sAbĀG�2⇡Rh0�4A + 9

�
β=D
�mβ

Rhβ

− nβRhβ�2� 12��������,
(5.47)

where the function G( ⋅ ) and cD are as defined in Eqs (5.43) and (5.45). The coefficients {sA}
and {bĀ} arise from the expansion in powers of q and q̄, where A = 0,1,2, . . . and Ā = −1,0,1, . . . .
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They give the degeneracy of the corresponding oscillator level. The integers m↵ and n↵ label

respectively the momentum and winding number along the ↵-th cycle of the internal torus. The

first contribution in Zh is associated to the massless states labeled by (A, �m, �n) = (0,�0,�0). They

arise from the N10 = 1 supergravity and SO(32) super-vector multiplets in ten dimensions. The

second contribution comes from modes whose masses can vanish at particular values of the internal

radii. For each ↵, these states are labeled as (A, �m, �n) = (0, ✏ �e↵, ✏ �e↵), where ✏ = ±1 and �e↵ is the

unit vector in the direction ↵. The last line in (5.47) arises from the states which are never

massless. It becomes substantial when Kaluza-Klein (winding) states become light, in the regime

where some Rh↵’s are large (small) compared to 2⇡Rh0 ( 1
2⇡Rh0

). All other modes, being always

super heavy as compared to the temperature scale, yield exponentially suppressed contributions.

The general behavior of the free energy density F̂h ∶= − Zh

β̂hV̂h
is summarized as follows, and is

represented in Fig.5.1:

●When all radii satisfy �Rh↵−1�Rh↵� < 1�(2⇡Rh0), ↵ =D, ...,9, the heterotic free energy density

derived from (5.47) takes the form :

F̂h = −T̂D
h �s0b0 cD + 9�

i=D
2s0b−1G�2⇡Rh0� 1

Rh↵

−Rh↵�� +O(e−2⇡Rh0)� . (5.48)

Due to the asymptotic behaviors (5.44), the states with quantum numbers (A, �m, �n) = (0, ✏�e↵, ✏�e↵)
induce a local minimum of F̂h at RhD = � = Rh9 = 1. In each internal direction, there are two

states of mass

M̂h↵ = �Rh↵ −R
−1
h↵�. (5.49)

which become massless at the self-dual point Rh↵ = 1. As is mentioned in Sec.3.2, they supply the

non Cartan components and enhance the gauge symmetry U(1) → SU(2) in the corresponding

internal direction. If we vary one of the radii Rhδ while fixing all others at self-dual point Rh↵ = 1
for ↵ ≠ δ, the corresponding graph is as shown in the region I in Fig.5.1.

● In case where Rhδ > 2⇡Rh0, while the rest 9−D remaining ones still sit at the self-dual point,

the behavior of Zh represented by the region III of the figure, the free energy density deduced

from (5.47) becomes

F̂h = −T̂D
h �s0b0 + (9 −D)2s0b−1��cD + �

mδ≠0
G�2⇡Rh0

�mδ �
Rhδ

�� +O(e−2⇡Rh0). (5.50)

We see that in addition to the massless supergravity and SO(32) super-vector multiplets, there

are also contributions coming from their Kaluza-Klein descendants, which are light since Rhδ is

large.
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�s0b0 + (9 −D)2s0b−1�

Figure 5.1: Plot of the free energy density derived from Eq.(5.47) against a given internal radius Rhδ,

with other internal radii set to the self T-dual point 1.

● Similarly, if one radius satisfies Rhδ < 1�(2⇡Rh0), while the others are set at their self-dual

point, corresponding to the region III’ of the figure, we have

F̂h = −T̂D
h �s0b0 + (9 −D)2s0b−1��cD + �

nδ≠0
G�2⇡Rh0�nδ �Rhδ�� +O(e−2⇡Rh0). (5.51)

In this case, substantial contributions arise from the winding modes along S1(Rhδ), which are

light since Rhδ is small enough.

Example II: gas of type II string upon CY3 compactification

The second example concerns the CY3 compactifications of type II strings, where the CY3 is close

to some singular locus described in Sec.4.2 (conifold locus) and Sec.4.3 (non-Abelian locus). Since

the models have N4 = 2 supersymmetry, thus in principle, Eq.(5.42) can be applied in weakly

coupled regime. However in practice the exact thermal one-loop amplitude cannot be worked out

since we generically do not know the whole spectrum. We are only informed of the perturbative

massless states, deduced from the topology of the CY3, as well as the light non-perturbative

states from D-brane wrapping shrinking spheres. Nonetheless the knowledge of these light states

suffices for us to write down the thermal one-loop amplitude at low enough temperature since

contribution from heavier states are exponentially suppressed. For example in type IIA picture,

we have in the perturbative spectrum, 1 gravitational multiplet, h11 vector multiplets and h12 + 1
hypermultiplets, each multiplet containing 4 boson-fermion pairs. Furthermore in the vicinity of

some singular locus, we should have additional non-perturbative light states charged under gauge
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groups. Inserting this mass spectrum into Eq.(5.42), we obtain

ZII�CY3
= βV × T 4

�����������
�4 + 4h11 + 4(h12 + 1)�G(0) + �

light
B-Fpairs

G�βM� +O�e−βMmin�
�����������
, (5.52)

where Mmin is the lower mass bound of heavy states whose masses never vanish in the vicinity of

the singular locus.
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Chapter 6

Thermal superstring cosmology

In this chapter we formulate the thermal string cosmology scenario. The motivating idea on the

technical level is to regard cosmology as solutions issue from the effective supergravity of string

theories, where supersymmetry should be spontaneously broken. Whereas tree level effective

supergravity accommodates only static solution with flat or AdS space background, corrections

from thermal and quantum effects beyond tree level play a crucial role in generating nontrivial

cosmological evolution. We consider string theories in weak coupling regime so that we compute

the thermal/quantum corrections up to one-loop level. We show that the correction is implemented

by adding the Colemann-Weinberg effective potential [56] to the tree level action, while the effective

potential is just the free energy density of the string gas. We will also show simple applications

of the formalism, and with all the results available, we will go as far as we can to illustrate out a

global overview of early history of the universe. During the computation we will especially stress

the aspect of moduli stabilization, which will be the theme of Chapters 7 and 8.

6.1 Setting up the scenario

The theoretical framework of thermal string cosmology is developed in a series of works [2–7,18,19]

and in this section we gather the essential building blocks and give a systematic presentation. As

is stated in the introduction, we consider no-scale type supergravity at tree level whose action in

string frame takes the form

Stree[ĝ, �Φ] = � dDx
�
−ĝ e−2φ

(D) �R̂
2
−
1

2
ĜIJ(�Φ)@ΦI@ΦJ� . (6.1)

We have displayed above only the bosonic action, and the hatted quantities are measured in string

frame. The dilaton φ(D), being one of the moduli, is included in the collective notation �Φ. In
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cosmology, we search for homogeneous and isotropic solutions with no background scalar motion.

Under such condition the equations of motion derived from the action (6.1) yield a trivial static

universe, with the background space R1,D−1 ×Mint, the product of a D-dimensional Minkowskian

spacetime with some internal compact space Mint. It is therefore expected that nontrivial cos-

mological evolution can be generated when corrections induced by the thermal string gas are

taken into account. Given the fact that the sting gas is nothing but the quantum fluctuations

about the background, the goal is actually to consider the back reaction of quantum fluctuations

on the underlying static background. We restrict ourselves to cosmological solutions, so we let

the thermal/quantum induced cosmological evolution be described by the following spatially flat

Robertson-Walker metric

dŝ2 = −N̂2(t)dt2 + â2(t)d�x2, (6.2)

where we keep the lapse function N̂(t) explicit which will be useful when studying thermal back-

ground. The noncompact space is understood as a huge torus TD−1 of volume V̂ = âD−1, which is

for the regularization of volume when doing thermodynamics. The time evolution of the metric

components and all the background fields are supposed to be quasistatic, as perturbation around

the static solution.

1PI effective action in thermal background

We then need to construct the quantum corrected effective action based on the tree level action

(6.1), and to this end, we first refer to a field theory analogue. In field theory the back reaction

of quantum fluctuations on the classical background is described by 1PI effective action. For the

tree level action Stree[φ] describing some field φ at weak coupling, the 1PI effective action Γ[φ0],
of some generic background configuration φ0, is obtained through the path integral

Γ[φ0] = − ln�
1PI
D⌘ exp �− Stree[φ0 + ⌘]�, (6.3)

where we integrate perturbatively over the quantum fluctuations around the background φ0, taking

into account only the 1PI diagrams with no external legs of ⌘. The result is an expansion in terms

of ⌘-loops:

Γ[φ0] = Stree[φ0] + S1-loop[φ0] + . . . , (6.4)

where we omitted contribution from higher orders. The one-loop part is the sum of one-loop

diagrams with all possible dispositions of external legs of φ0, and the same thing should be un-

derstood to all orders in the loop expansion. Due to the φ0-dependence of the ⌘-loop diagram
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amplitudes, the equations of motion derived from the action (6.4) is perturbatively corrected, with

respect to those derived from Stree[φ0], by effects beyond tree level. This makes the solutions of

φ0 that these equations yield incorporate effects from quantum effect back reaction.

In our problem of thermal string cosmology, where we search for nontrivial cosmological evolu-

tion as quantum corrections to the tree level static background, the situation is comparable. The

action dictating the evolution should be a string theory analogue to the field theory 1PI effective

action (6.4), which we write down diagrammatically as

SE[ĝE
, �Φ] = Stree

E [ĝE
, �Φ] + S1-loop

E [ĝ
E
, �Φ] + . . . , (6.5)

S
1-loop
E = − �

�Φ,β̂
− �vertex operator

insertions
� , (6.6)

and a similar expression including other types of worldsheet topology when open strings are

considered. In obtaining Eq.(6.5), the loop amplitudes are supposed to be evaluated against a

thermal background where the Euclidean time is compactified on S1(R0) whose perimeter is the

inverse temperature in string frame β̂ = T̂ −1 = 2⇡R0. The subscripts “E” in Eq.(6.3) actually mean

“Euclidean”. The spacetime metric ĝ
E

appearing in Eq.(6.5) is the Wick-rotated metric of Eq.(6.2):

dŝ2E = β̂2 dt2E + â2(tE)d�x2, (6.7)

where the gauge choice of tE is such that its metric component is β̂2.

In case where the background fields {â, �Φ} are static (as the tree-level solution), the result

for the one-loop part in Eq.(6.5) is merely S
1-loop
E = − ��Φ,β̂, which is the thermal vacuum-to-

vacuum one-loop amplitude lnZ = Z(T̂ ) the central issue in Chapter 5. However here we actually

consider a background {â, �Φ} varying in cosmological time whose motion should be determined by

the whole 1PI effective action Eq.(6.5). In such case it is necessary to consider one-loop diagrams

with vertex operator insertions, which introduce kinetic corrections: S
1-loop
E = − lnZ − ∫δG @Φ@Φ.

Here for simplicity of notation we let δG@Φ@Φ include also the correction to kinetic terms of the

scale factor â. Counting the power in string coupling gs = e�φ(D)�, both lnZ and δG are of order

g0s , small compared to the tree level which is of order g−2s . However in our context of perturbative

approach where the tree level background is static, nontrivial motions of â and �Φ are induced

at least at one-loop order, making @Φ@Φ be of order g2s . By consequence the kinetic correction

δG @Φ@Φ in total is of order g2s , so that it ends up in higher order corrections than lnZ and can

be neglected. Therefore in the one-loop diagram in Eq.(6.5) we need only to consider vacuum-to-

vacuum amplitude, so finally we are allowed to rewrite Eq.(6.5) as

SE[ĝE
, �Φ] = Stree

E [ĝE
, �Φ] − �

�Φ,β̂
= Stree

E [gE
, �Φ] − lnZ(T̂ , �Φ). (6.8)
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Using the definition of Helmholtz free energy density F̂ (string frame) in Eq.(5.2), we have

lnZ(T̂ , �Φ) = Z(T̂ , �Φ) = −β̂V̂ F̂(T̂ , �Φ) = −� dDxE

�
ĝ
E
F̂(T̂ , �Φ) (6.9)

so that Eq.(6.8) becomes

SE[ĝE
, �Φ] =SE,tree[ĝE

, �Φ] −Z(T̂ , �Φ)
=� dDxE

�
ĝ
E

������e
−2φ(D) �R̂

2
−
1

2
ĜIJ @ΦI@ΦJ�

E

+ F̂(T̂ , �Φ)������ . (6.10)

We stress here that F̂ is the free energy density in string frame and that the spacetime indices

in the action are raised or lowered with the string frame metric ĝ
E
. This result shows that the

one-loop correction induces a Coleman-Weinberg effective potential [56].

There are two remarks to make at this point. First about the reference frames, the thermal

one-loop amplitude lnZ being a dimensionless quantity is independent of the choice of Einstein

frame or string frame. However the free energy density does, since it is of mass dimension D. More

accurately let the Einstein frame free energy density be F and the string frame one be F̂ thenF = exp � 2D
D−2φ

(D)� F̂ . Second, although technically finite temperature is implemented through a

Scherk-Schwarz reduction on S1(R0), however in the tree level action no concrete Scherk-Schwarz

reduction is carried out, i.e. no mass gap of order R−10 is induced. In fact the Scherk-Schwarz

reduction on S1(R0) is just a technical device which sets in only in the computation of the one-loop

amplitude.

Back to Minkowskian background

To do cosmology, we rotate back to Lorentzian signature from Eq.(6.7) to Eq.(6.2), and again we

mention that the background is supposed to evolve quasi-statically in the real cosmological time t.

Consequently at each instant the universe is in thermal equilibrium, which allows us to quantize

the underlying string theory with technique in Chapter 2 and to compute the thermal one-loop as

in Chapter 5. The inverse Wick rotation yields from Eq.(6.5) the following action:

S[ĝ, �Φ] = � dDx
�
ĝ �e−2φ(D) �R̂

2
−
1

2
ĜIJ @ΦI@ΦJ� − F̂(T̂ , �Φ)� . (6.11)

Note that the sign of F̂ should be reversed with respect to the Eulcidean action (6.10). The action

in terms of Einstein frame quantities is obtained by rescaling the metric as ĝ = e 4

D−2
φ(D)g.

S[g, �Φ] = � dDx
√
g �R

2
−
1

2
GIJ @ΦI@ΦJ

−F(T, �Φ)� , (6.12)
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where F = e
2D
D−2

φ(D)F̂ is the Einstein frame free energy density, and T = 1�β = e
2

D−2
φ(D)T̂ is the

Einstein frame temperature. We observe that F interfere in the action as an effective potential

for the moduli fields, showing that the vacuum structure is corrected at one-loop level. The

Robertson-Walker metric involved in the above action is actually

ds2 ≡ e 4

D−2dŝ2 ∶= −N2(t)dt2 + a2(t)d�x2, (6.13)

where dŝ2 is as in Eq.(6.2). Among all the gauge choices of the lapse function, we single out the

one which makes N = β, under which the cosmological time is denoted by t̃ = t̃(t):
ds2 = −β2(t̃)dt̃2 + a2(t̃)d�x2, N(t) = β(t̃(t)) × dt̃

dt
. (6.14)

To derive the equations of motion from the action, we refer to Appendix B, where Eqs (B.13)–

(B.16) can be fit into our scenario by setting s = 1 and k = 0. Therefore we are led to the following

equations of motion, where for simplicity they are written out in the gauge N = 1:
1

2
(D − 1)(D − 2)H2

−
1

2
GMN Φ̇

M Φ̇N
− ⇢ = 0, (6.15)

1

2
(D − 2) �2Ḣ + (D − 1)H2� + 1

2
GMN Φ̇

M Φ̇N + P = 0, (6.16)

d

dt
�GMN Φ̇

N� − 1

2
GNP,M Φ̇N Φ̇P + (D − 1)HGMN Φ̇

N +F,M = 0. (6.17)

Referring to Eq.(B.12), we can read off the energy density and the pressure of the string gas

⇢ = �N @F
@N
+F�

N=1
, P = − a

D − 1

@F
@a
−F . (6.18)

Note that these quantities sourcing the cosmological evolution arise at one-loop level. Therefore

the cosmological evolution is a pure thermal/quantum effect. We still need to verify whether

the above ⇢ and P are the really the thermodynamic quantities . Using the second equation

of Eq.(6.14), we have in the first equation N(@F�@N) = β(@F�@β). Also provided that the

(D − 1)-dimensional space volume is V = aD−1, we have @�@a = (D − 1)a−1V × @�@V . With these

observations, recalling that the free energy density is related to the partition function by Eq.(5.2),

then Eq.(6.18) turn out to be

⇢ = −@ lnZ
@β

, P = −@F
@V
= @(T lnZ)

@V
. (6.19)

These are exactly the thermodynamic formulae in the canonical ensemble description Eq.(5.3).

Remarkably they are obtained purely from cosmological dynamics, showing that cosmological

72



dynamics is compatible with thermodynamics. To complete the set of equations of motion we

finally have the continuity equation

⇢̇ + (D − 1)H(⇢ + P ) = Φ̇MF,M . (6.20)

When F does not depend on a, meaning that the Helmholtz free energy is extensive, which is

usually the case, we have F = −P . Thus using Φ̇MP,M = Ṗ − Ṫ @TP , the continuity equation

becomes the conservation of entropy S = β(E + PV ):
0 = d

dt
�aD−1(⇢ + P )

T
� = d

dt
� 1
T
(E + PV )� = Ṡ . (6.21)

6.2 Thermal-quantum induced cosmological evolution in su-

persymmetric models

We present here general features of the thermal-quantum induced cosmological evolution with a

simple application. The approach to be presented is valid only in the cosmological era where the

temperature T satisfies Ms � T � Λew, which is identified as the intermediate era. The upper

bound is imposed to avoid Hagedorn singularity, and the reason for lower bound will be clarified

later in Sec.6.4.

Solving the equations of motion at one loop

To illustrate the cosmological evolution, we take the first example in Sec.5.5 to begin with. We

study the cosmology induced by the maximally supersymmetric heterotic string gas. The low

energy effective action containing the one-loop correction is

Sh = � dDx
√
−g �R

2
−

2

D − 2
@φ
(D)
h @φ

(D)
h −

1

2

9�
↵=D

@ �lnRh↵�@ �lnRh↵� −Fh(T,φ(D)h ,Rh↵)� (6.22)

where Fh is the Einstein frame free energy density related to the string frame counterpart Eq.(5.47)

by Fh = e
2D
D−2

φ
(D)
h F̂h = −e 2D

D−2
φ
(D)
h

Zh

β̂hV̂h
. We have also the Einstein frame temperature T = e

2

D−2 T̂h,

where there is no need to put the subscript “h”. The equations of motion Eqs (6.15)–(6.20) can
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be applied directly, and we have

(D − 1)(D − 2)
2

H2 = 2

D − 2
�φ̇(D)h

�2 + 1

2
�
↵

Φ̇2
h↵ + ⇢h, (6.23)

φ̈(D)h + (D − 1)Hφ̇(D)h + D − 2

4
Fh,φ = 0, (6.24)

Φ̈h↵ + (D − 1)HΦ̇h↵ +Fh,↵ = 0, (6.25)

aD−1

T
(⇢h + Ph) = const. , (6.26)

where Φh↵ ∶= lnRh↵ and the subscripts “ , φ” and “ , ↵” in the last two lines denote respectively the

derivative against the dilaton and against the scalar field Φh↵. The equation containing second

time derivative of a is omitted because it is redundant. We look for solutions at minimum of the

scalar potential, which is motivated by the need of stabilizing the moduli. According to Sec.5.5,

this is located at the self-dual point Rh↵ = 1 or Φh↵ = 0 for all ↵ =D, . . . ,9. The expression of free

energy density, or of the effective potential, is already give by Eq.(5.48), which in Einstein frame

becomes

Fh(T,φ(D)h ,Rh,↵) = −TD �s0b0 cD + 9�
↵=D

2s0b−1G�e 2

D−2
φ
(D)
h

M̂h↵

T
� +O(e−2⇡Rh0)� , (6.27)

where the masses M̂h↵ are measured in string frame and are given by Eq.(5.49). At the minimum

its derivatives with respect to the dilaton and to the internal radii vanish, and thus Eq.(6.24)

yields φ(D)h = const. and Eq.(6.25) is automatically satisfied. Then we use the thermodynamical

relations Eq.(6.19), and find, at local minimum of Fh,

Ph = −Fh = TD��s0b0 + 2s0b−1 (10 −D)� cD +O(e−2⇡Rh0)�, ⇢h = (D − 1)Ph, (6.28)

which is nothing but the Stefan-Boltzman’s law of black body radiation. Plugging these into Eqs

(6.23) and (6.26) we get the particular solution

a∗(t)∝ T∗(t)−1 ∝ t2�D, H2
∗(t)∝ a−D∗ (t). (6.29)

This shows that the metric evolution is of the pattern of a universe dominated by radiation. Indeed

it is a radiation-dominated solution because the total energy of the universe is supplied by the

massless modes in the string gas as is given in Eq.(6.28). We mention this because there is the risk

that small initial background fluctuations can be amplified during cosmological evolution and end

up supplying dominating contribution to the total energy. If this would happen it would upset

moduli stabilization, but in the thermal string scenario this problem does not exist. We will come

to this point shortly in the next subsection.
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Some more comments should be added for the cases when some of the internal radii do not sit

in the potential well. When some of the radii are stationary on the plateau, the region II or II’ in

Fig.5.1, it is obvious that the solution Eq.(6.29) is all the same, since we still have Fh,φ = 0 = Fh,↵.

The case where some of the radii go beyond the region II or II’ and fall off the plateau requires

careful computation. The result can be found in [5,6], which shows that the rolling of the internal

radii down the slope accelerates the drop of the temperature, and thus accelerates the growth of

the plateau to the two sides because the size of the plateau is of order ln(2⇡R0). Finally it turns

out that the plateau catches up the running away radii, which end up stationary in the region II

or II’, and we have once again the cosmological evolution Eq.(6.29). Therefore in any case, we

have the particular solution Eq.(6.29) with each internal radius becomes stationary in the range

1

Rh0

< Rh↵ < Rh0 , where ↵ =D, . . . ,9. (6.30)

The same analysis can be generalized to cases with more internal moduli switched on. We

discuss this issue on a more general basis in order to apply this discussion later to other cases.

Here we do not specify string model, so we will discard all subscripts “h”. We let the moduli space

contain the dilaton φ and other moduli denoted collectively by �Φ. We let the model be described

by Eq.(6.12), but with the dilaton factorized out, that is

S = � dDx
√
−g �R

2
−

2

D − 2
@φ@φ −

1

2
GMN@Φ

M@ΦN
−F� (6.31)

The equations of motion are the same as Eqs (6.15)–(6.20) but with the dilaton equation factorized

out, taking the form Eq.(6.24). At a certain vicinity of �Φ = �Φ∗ in the moduli space, we suppose the

low energy spectrum contains n0 massless boson-fermion pairs and nl light boson-fermion pairs.

The latter are supposed to have string frame mass M̂s(�Φ) (s = 1, . . . , nl) not depending on the

dilaton, and vanish at �Φ = �Φ∗. The free energy density reads

F = −TD �n0cD + nl�
s=1

G�e 2

D−2
φ M̂s(�Φ)

T
� +O�e−Mmin

T̂ �� , (6.32)

where Mmin is the lower mass bound of the massive modes whose masses never vanish in the

vicinity of �Φ∗. Clearly the heterotic model Eq.(6.22) is a special case of this model. At low

enough temperature, the exponentially suppressed terms can be neglected and we may derive

identities for the thermal source terms at �Φ∗, including the equation of state,

F��Φ∗ = −TD(n0 + nl) cD , F,φ��Φ∗ = 0 , F,M ��Φ∗ = 0 , ⇢��Φ∗ = (D − 1)P ��Φ∗ ∝ TD. (6.33)

Solving the equations of motion at this particular point, one obtains the particular solutions

identical to those in the model (6.22) corresponding to radiation eras:

a∗(t)∝ 1

T∗(t) ∝ t2�D , φ(t) ≡ φ∗ , �Φ(t) ≡ �Φ∗ , (6.34)
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where dilaton is a flat direction. This describes the evolution of a radiation-dominated universe.

However we still need to see if this solution is stable given small initial fluctuations.

Fluctuation of the solution and moduli stabilization

We have seen that the effective potential at one loop can lift flat directions, and particular solutions

where moduli fields sit in the potential well are well established. However this does not allow to

conclude that the solution (6.34) is stable and that moduli are stabilized, because the expansion

of the universe can amplify small initial background fluctuations and can eventually alter the

behavior of the cosmological solution. Therefore we analyze the following small time-dependent

deviations

a(t) = a∗(t)�1 + ✏a(t)� , T (t) = T∗(t)�1 + ✏T (t)� ,
φ(t) = φ∗ + ✏φ(t) , ΦM(t) = ΦM

∗ + ✏M(t), (6.35)

which represent homogeneous and isotropic fluctuations. Denoting H∗ = ȧ∗�a∗, the perturbation

of the internal moduli equation (6.17) gives to the leading order the standard equation of scalar

dynamics:

✏̈M + (D − 1)H∗ ✏̇M +ΛMN ✏N = 0 where ΛMN ≡ GML��Φ∗F,LN �(T∗,φ∗,�Φ∗). (6.36)

ΛMN is an effective “time-dependant squared mass matrix” evaluated for the background (6.34).

Since

F,MN ��Φ∗ = TD−2 e
4φ

D−2
cD−2

4⇡

nl�
s=1

@2M̂2
s

@ΦM@ΦN
�
�Φ∗

(6.37)

is semi-definite positive, ΛMN is diagonalizable with non-negative eigenvalues1, which we denote

as 4λ2M
D2t2(D−2)�D

. Here we stress the peculiarity of the thermal string senario, that the scalar mass the

one-loop effective potential generates is actually time dependent. Now we can solve Eq.(6.36). In

the case when some λM ’s vanish, one needs to take into account quadratic terms in Eq.(6.36) (see

the discussion of the dilaton equation below). In particular, this is required when moduli sit on

the plateau of their thermal effective potential (see Fig.5.1). For simplicity, we analyze the most

interesting case, where all internal moduli are “massive”, which means all scalars oscillate in the

bottom of a potential well so that λM > 0. Switching to a diagonal basis of perturbations ✏̃M , one

obtains from (6.36)

✏̃M = t1�D√
t
�CM
+ JD−2

4

(λM t2�D) +CM
− J−D−2

4

(λM t2�D)� , (6.38)

1Since the matrices F −1�2 and F are (semi-)definite positive, F −1�2FF −1�2 = F 1�2
ΛF −1�2 is semi-definite positive.
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where CM
± are integration constants and Jν( ⋅ ) are Bessel functions of the first kind2. Using

the asymptotic behavior of the Bessel function we see that these oscillations have the late time

behavior

✏̃M ∼
1√
t
sin �λM t2�D + phase�. (6.39)

When t is large enough �✏̃M �� 1 is satisfied.

The dilaton perturbation is more involved because the dilaton potential is monotonously in-

creasing, and becomes a flat direction only when all M̂s(Φ) in Eq.(6.32) vanish. We derive from

Eq.(6.24) the dilaton perturbation at leading order

(aD−1∗ ✏̇φ)˙ + aD−1∗

1

2
F,φMN �(T∗,φ∗,�Φ∗)✏M✏N = 0 where F,φMN ��Φ∗ ≡ 4

D − 2
F,MN ��Φ∗ . (6.40)

Since the constants CM
± are a priori of order one, we take into account the quadratic source in

“massive” epsilons. Thus, ✏̇φ can be written as the sum of the general solution to its homogeneous

equation, plus a particular solution to Eq. (6.40). The former is of order 1�aD−1∗ and turns out

to be dominated at late times by the latter. Actually, using (6.38), the quadratic source term

involves products of Bessel functions with arguments λP t2�D and λQ t2�D. Integrating it once, the

dominant contribution to aD−1∗ ✏̇φ is found to arise from “constructive interferences”, i.e. quadratic

terms with λP = λQ. This yields the asymptotic behavior,

✏̇φ ∼ −
Cφ

aD−2∗

�⇒ ✏φ ∝ 1

t1−4�D for D ≥ 5 and ✏φ ∝ ln t for D = 4, (6.41)

where Cφ is a fully determined coefficient quadratic in CM
± ’s and positive. For D ≥ 5, the consis-

tency condition �✏φ� � 1 is automatically fulfilled at late times. On the contrary, the case D = 4
yields formally to a logarithmically decreasing ✏φ and one may worry that the our expansions

breaks down. However, the numerical solution of the full non-linear equations of motion shows

that the perturbative analysis gives the correct late time behavior [18].

To analyze the evolution of the scale factor and temperature fluctuations, we expand the energy

density and pressure around the background (6.34) and find from Friedmann’s equation (6.15) and

the continuity equation (6.21),

(D − 1)(D − 2)H∗ ✏̇a = 1

2
GMN ��Φ∗ ✏̇M ✏̇N +D⇢�(T∗,φ∗,�Φ∗)✏T − D − 3

2
FMN �(T∗,φ∗,�Φ∗)✏M✏N , (6.42)

D(✏a + ✏T )⇢�(T∗,φ∗,�Φ∗) = D − 2

2
FMN �(T∗,φ∗,�Φ∗)✏M✏N . (6.43)

2For D = 6, J−1 should be replaced by the Bessel function of the second kind, Y−1.
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It is then straightforward to solve for ✏a, whose asymptotic behavior is again dictated by the

source terms in “constructive interferences” arising from the products ✏̇M ✏̇N and ✏M✏N in (6.42)

and (6.43). The late time scaling property of ✏a is found to be

✏a ∝ a2∗
t
∝ 1

t1−4�D , (6.44)

which can be used in Eq. (6.43) to find

✏T ∝ 1

t1−4�D (1 + oscillations with constant amplitude). (6.45)

In (6.44) and (6.45), the coefficients of proportionality are again fully expressed in terms of the

CM
± ’s. Direct numerical analysis have been carried out to the unperturbed system of differential

equations in some examples [18], and the results confirm the above solutions. We then verify that

the moduli are stabilized based on these solutions of fluctuations.

For D ≥ 5 all fluctuations have damping amplitude. By consequence, the metric evolution

stays the same as the particular solution (6.34), where scalar fields sitting in the potential well

have damping oscillation, and the dilaton, which is a flat direction, has its fluctuation converging

to zero without oscillation. These fluctuations have the energy density and the effective pressure

⇢m = 1

2
GMN ✏̇

M ✏̇N + 2

D − 2
✏̇2φ ∼

1

t3−
4

D

∼ a2−
3

2
D

∗ , Pm = ⇢m, (6.46)

where the contribution from dilaton fluctuation scales as t
8

D
−4 and is therefore neglected. Mean-

while the total energy density and pressure, consisting of the contribution from the string gas and

the background field fluctuations, are

⇢tot = ⇢m + ⇢rad, Ptot = Pm + Prad, (6.47)

where ⇢m and Pm are those introduced in Eq.(6.46), while ⇢rad and Prad are from string gas and

are just ⇢ and P in Eq.(6.33), where we add subscript “rad” for “radiation” to emphasize that the

massless modes supply substantial contribution. Therefore ⇢rad and Prad have the behavior

⇢rad = (D − 1)Prad ∼ t−D�2 ∼ a−D∗ , (6.48)

Comparison between Eq.(6.46) and Eq.(6.48) shows that with cosmological time, the initial back-

ground fluctuations dilute. In particular ⇢m becomes negligible compared to ⇢rad, Pm negligible

compared to Prad, and Ptot�⇢tot → Prad�⇢rad = D − 1 with t → ∞. Therefore initial background

fluctuations do not upset the particular solution Eq.(6.34). With the universe being driven to a

radiation-dominated evolution, moduli �Φ are stabilized in the potential well �Φ∗.
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For D = 4, moduli �Φ still converge to �Φ∗ while the dilaton value decreases logarithmically with

time. However the running away behavior of the dilaton is not harmful, since it just drives the

model to even weaker coupling regime. This behavior has been confirmed by numerical solution

of the equations of motion. The computation of energy density stored in background fluctuations

gives exactly the same result as in Eq.(6.46), but now the contribution from the dilaton fluctuation

and other moduli that are of the same order. We have, for the background fluctuations and for

the radiation,

⇢m = ✏̇2φ + 1

2
GMN ✏̇

M ✏̇N ∼ a−4∗ , ⇢rad ∝ a−4∗ . (6.49)

Therefore with ⇢rad ∝ ⇢m, background field fluctuations do not dilute with cosmological time,

neither do they dominate the total energy. The universe is not radiation-dominated but the

metric and the temperature still follow the pattern of a radiation-dominated evolution as the

solution Eq.(6.34). It is because the fluctuations to this particular solution, Eqs (6.44) and (6.45),

being of order O(1), results only in a constant rescaling. Therefore as the cosmological moduli

problem does not arise, the background scalar fields are therefore stabilized at �Φ∗. We call this

situation the radiation-like cosmological evolution.

We have one more remark to make about the scalar masses. It is stated in Sec.5.5 that the

effective potential develops local minima where extra massless states appear in the spectrum, but

meanwhile we have shown that it is just at these points that moduli are stabilized and become

massive scalars. Naively one may wonder if we have the risk of finishing up with more massless

scalars when moduli are stabilized. The answer is negative. In fact the effective potential computed

at one loop level cares only about the masses at tree level, and reaches local minima whenever

encountering states whose tree level mass vanish. This does not prevent these states obtain a one

loop level mass when the corresponding moduli are stabilized.

We would also like to mention is the moduli trapping mechanism which attracts the background

scalar to specific values through dynamical process at tree level. The setup is M-theory or type

II string compactified on CY3, where with the tree level supergravity action, either one lets the

background scalar take its initial value away from the local minima of the potential [57] or let it

lie initially in the flat direction with a nonzero initial velocity [58]. In both cases it is shown that

the expectation value of the background scalar is dynamically attracted to some locus associated

to extra massless states. However this is not really address the moduli stabilization problem,

since it does not really give the moduli fields mass which end up frozen in some flat direction,

and moreover if the background scalar is initially stationary in the flat direction, this trapping

mechanism does not function.
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6.3 Non-supersymmetric vacuum

Models considered in the previous section have little phenomenological interest because of the

supersymmetric vacuum at zero temperature. Although supersymmetry is spontaneously broken

by finite temperature, however since the the temperature decreases in cosmological evolution, we

will anyhow end up with restored supersymmetry at late time. Therefore a phenomenological

viable scenario should account for the situation with broken supersymmetry at zero temperature.

This problem is dealt with in the previous works [3–6] and here we just qualitatively illustrate

the essential points. The models considered in those works have N4 = 2 �→ N4 = 0 and N4 =
1 �→ N4 = 0 pattern of zero temperature supersymmetry breaking. These are realized with

orbifold compactification of the E8 ×E8 heterotic string, where supersymmetry is partially broken

to N4 = 2 or N4 = 1 by a non-freely acting orbifold, and then the rest of the supersymmetry is

spontaneously broken by a Scherk-Schwarz reduction on one or more internal circles, where the

charge Q involved in the orbifold action Eq.(3.12) can contain the spacetime fermion number, the

R-symmetric charge and the E8 charge.

For simplicity and without loss of qualitative features, we first look at the cases with only

one internal circle, say S1(R9), implementing zero temperature supersymmetry breaking [4, 6],

the model is characterized by the supersymmetry breaking scale M = eφ

2⇡R9
and the temperature

T = eφ

2⇡R0
(φ is the dilaton in 4D), and other internal radii. Supposing M and T be much lower

than the string scale while other internal radii are at about the string scale, the free energy density

takes the form

F = T 4f�M
T
,{other moduli}� =M4g�M

T
,{other moduli}�, (6.50)

where f and g are some functions. We observe that M appears differently from other moduli which

do not participate in supersymmetry breaking. This leads to the result that while moduli other

than R9 and φ can be attracted to particular values in the same way as in the previous section for

supersymmetric models, the supersymmetry breaking scale acquires runaway behavior M =M(t).
More characteristics of this model can be revealed by defining the variable z = M

T
. Writing down

its equation of motion yields an effective potential for z. According to the choice of charge involved

in the Scherk-Schwarz reduction in the internal direction R9, the effective potential can develop a

minimum at some critical value zc, where z can be stabilized. The equations of motion yield the

following particular solution

T (t)∝M(t)∝ a(t)−1 ∝ e3φ(t) ∝ 1�√t , (φ is the 4D dilaton). (6.51)

Just as the example discussed in the last section, this is a radiation-like solution and is insensitive to

the initial condition. The computation of the thermodynamical quantities of the string gas yields
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⇢th�Pth → 4 as the universe evolves. Here the string gas does not behave like radiation, because

with R9 ∼ R0 the tower of KK modes along R9 has non negligible contribution to the free energy

density. For this reason we use subscript “th” standing for “thermal” instead of using “rad” as in the

last section. When taking into account also the background scalar coherent motion we have the

equation of state (⇢th + ⇢m)�(Pth +Pm) → 3. Here ⇢m is from scalar coherent motion and Pm = ⇢m,

where the leading contribution is from the motion of M(t), and the contribution from other moduli

not participating in the spontaneous breaking of supersymmetry is negligible. Most significantly,

the result Eq.(6.51) implies the generation of the hierarchy M � MP, which is a crucial step

leading to a realistic MSSM-type model. In case where several internal radii are involved in

supersymmetry breaking, there exist solutions where all these scales drop proportionally with

temperature, while the solution still represents a radiation-like universe where the state equations

become

⇢th

Pth

�→ 3 + � # of internal directions

breaking supersymmetry
�, ⇢th + ⇢m

Pth + Pm

�→ 3 , with t→∞ . (6.52)

Clearly the universe cannot evolve in the pattern of Eq.(6.51) forever since when M and T

become very small, we will still recover supersymmetry. As is mentioned in the Introduction this

evolution halts at the electroweak phase transition point where the M is expected to be stabilized

at about TeV scale by infrared effects. At the stabilization of M , the moduli participating in the

spontaneous supersymmetry breaking obtain mass of order M2

MP
and the non participants obtain

mass of order M . Meanwhile for the fermionic superpartners of these scalars the assignment of

mass is reversed: the superpartner of the former acquire masses of order M and the superpartners

of the latter, M2

MP
. At this stage, these induced masses are real constant masses, instead of the

thermal masses which decrease with M(t) in time. Thus the light states are expected to be the

candidate of dark matter.

6.4 Panorama of thermal string cosmology

Based on the previous discussions in this chapter, the cosmological evolution in the thermal string

scenario breaks into three eras. Having established the fact that the radiation-like cosmological

solutions break down at early epoch where it meets with Hagedorn instability, as well as in the

late epoch when temperature is at about Λew, we distinguish the Hagedorn era when T ∼Ms, the

intermediate era when Ms � T � Λew and the standard cosmology era when T < Λew. In the

intermediate era, the picture of attraction to a radiation-like universe, moduli stabilization, and

the runaway behavior is well established, which all the previous discussion in this chapter has
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Figure 6.1: Chronology of the universe in the thermal string scenario, based on all result that we

have obtained to the present day.

been devoted to. However the results in the other two eras stay more or less speculation while

supporting calculation and evidence are cumulating. While some models have been suggested for

resolving the Hagedorn singularity where Hagedorn phase transition can be described dynamically

as the temperature goes high [11–14] leading to a nonsingular bouncing or emerging universe, the

work to clarify the issue of electroweak phase transition and the stabilization of supersymmetry

breaking scale is strongly expected. Assembling all results of intermediate era in Refs [2–7,18,19],

those of Hagedorn era in Refs [11–14], as well as the speculations about the standard cosmology era

based on supergravity results [9, 10], we illustrate out in Fig.6.1 as far as we can the chronology

of the thermal string universe. What needs more specification is the evolution of dilaton φ.

During the intermediate era, once zero temperature supersymmetry broken is included, e3φ evolves

proportionally with the temperature, as is specified in Eq.(6.51). Therefore the dilaton value can

be globally small, which guarantees that the string model is always at weak coupling and the

perturbative approach is always valid.
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Chapter 7

Moduli stabilization in type I string by

D-string states

In this chapter we explore the non-perturbative effects in the type I string which can stabilize

moduli in the framework of thermal string cosmology. For simplicity, and in order to be concen-

trated on the non-perturbative effects, we consider maximally supersymmetric compactifications,

while the results can be generalized to cases containing less supersymmetry. The type I/heterotic

string-string S-duality will be used to uncover the non-perturbative effects in the type I string.

The principle of this S-duality is depicted in Sec.4.1. However here it is a simple but non-trivial

fact that S-duality stays valid at finite temperature. Technically, the thermal backgrounds are

obtained by Scherk-Schwarz reduction with the orbifold action (−1)F δ0, where δ0 is an order-two

shift along the Euclidean time circle and F is the fermion number. Using the “adiabatic argument”

of [59], after such a free action, the two theories remain dual. Since the cosmological evolutions

we study are quasi-static, it is valid to apply at each instant an S-duality transformation on the

heterotic side, in order to derive non-perturbative contributions to the type I free energy and its

resulting backreaction. In the following, we will first show on the heterotic side the possibility

of stabilizing all moduli but the dilaton at points of gauge symmetry enhancement. The latter

is due to the perturbative F-string states. Then applying S-duality maps, we show the stabiliza-

tion of dual type I moduli at points where D-string states become massless and enhance gauge

symmetry. Therefore cosmological evolutions induced by type I strings can lead to non-Abelian

enhanced gauge symmetry by non-perturbative effects, which should be treated at equal footing

as the perturbative gauge groups.
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7.1 Naive perturbative type I cosmology

We have the goal of making connection with the heterotic model that we have investigated in

the previous chapter. Therefore we consider the same background for the type I string with

SO(32) gauge group, where the internal space is the factorized torus ∏9
i=D S1(RI↵). Therefore the

moduli space contains the dilaton φ
(D)
I and the radii RI↵, and we will solve for their dynamics.

We implement the temperature by compactifying the Euclidean time on a circle of perimeter

β̂I = 2⇡RI0 = 1�T̂I.

Working in a perturbative regime, we compute the torus, Klein-bottle, annulus and Möbius

strip vacuum-to-vacuum amplitudes T , K, A and M against the thermal background. A little

work following the guidelines given in Sec.5.3 yields (see appendix in [18]),

T = β̂IV̂I × T̂D
I

�������s
2
0 cD + �

A≥0, Ā≥0, �m, �n
A−Ā= �m⋅�n

(A, �m,�n)≠(0,�0,�0)

sAsĀG�2⇡RI0�4A + 9

�
↵=D
�m↵

RI↵

− n↵RI↵�2� 12��������, (7.1)

where V̂I is the regularized volume of the (D − 1)-dimensional space, G( ⋅ ) and cD are defined in

Eqs (5.43) and (5.45). The integer sA (sĀ) counts the degeneracy at oscillator level A (Ā) on

the left (right)-moving side of the worldsheet, while m↵ (n↵) is the momentum (winding) number

along the ↵-th cycle of the internal torus. The constraint A− Ā = �m ⋅ �n is from the level matching

condition. In (7.1), the first term in the braces is the contribution of the massless modes, with

quantum numbers (A, �m, �n) = (0,�0,�0) and associated to the N10 = 1 supergravity multiplet in ten

dimensions. The Klein-bottle contribution K vanishes. The annulus plus Möbius amplitude takes

the form

A+M = β̂IV̂I × T̂
D
I

�������
N2 −N

2
s0 cD + �

A≥0, �m
(A, �m)≠(0,�0)

N2 − (−1)AN
2

sAG�2⇡RI0�A + 9

�
↵=D
�m↵

RI↵

�2� 12��������, (7.2)

where N = 32 and the first term is associated to the N10 = 1 SO(32) super-vector multiplet in ten

dimensions. The partition function is given by the sum ZI = T + K + A +M. We recall that the

temperature of the system is set to be below the Hagedorn temperature. According to Sec.5.4,

the Hagedorn temperature measured in string frame is T̂IH = (2√2⇡)−1, where the corresponding

Euclidean time circle is of radius RIH =√2.
We can follow the lines in Sec.5.5 to figure out the behavior of the free energy density F̂I =

−ZI�(β̂IV̂I). Without loss of generality, we can set free one of the internal radii RIδ for a given

δ, while fix all the others at about the string scale. The contribution from the latter is thus
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exponentially suppressed, and the free energy density behaves as

F̂I = −T̂D
I

��������s
2
0 + N2 −N

2
s0��cD + �

mδ≠0
G�2⇡RI0

�mδ �
RIδ

�� +O(e−2⇡RI0)�������, 2⇡RI0 < RIδ

F̂I = −T̂D
I

��������s
2
0 + N2 −N

2
s0� cD +O(e−2⇡RI0)�������,

1

2⇡RI0

< RIδ < 2⇡RI0

F̂I = −T̂D
I

�������
N2 −N

2
s0 cD + s20 �cD + �

nj≠0
G�2⇡RI0�nδ �RIδ�� +O(e−2⇡RI0)�������. RIδ < 1

2⇡RI0

(7.3)

Its plot against lnRIδ in Einstein frame is shown in Fig.7.1 by the dashed line. A difference

compared to the type II and heterotic string cases, is that the open string sector is not invariant

under T-duality, RI↵ → 1�RI↵ for any ↵, due to a lack of winding quantum numbers in the open

sector. When RIδ < 1, the theory is actually better understood in the T-dual type I’ picture

obtained by inverting RIδ.

It is straightforward to apply the analysis in Sec.6.2 to solve for the dynamics of the internal

radii, from which we find again the solution Eq.(6.29) for the scale factor and the temperature in

Einstein frame. The dilaton and the internal radii RI↵’s are frozen in the flat directions and the

former sit in the range
1

2⇡RI0

< RI↵ < 2⇡RI0 , ↵ =D, . . . ,9, (7.4)

just as in Eq.(6.30). However a very important difference is that here we have no local minimum

of the free energy density where RIδ, and neither is the case for the other RI↵’s, can be attracted

and stabilized. However, we shall find that this type I picture obtained by purely perturbative

analysis is not accurate, where we are missing important contributions from massless solitons.

7.2 D-string soliton corrected type I cosmology

Cosmology in the dual heterotic model has been investigated in Sec.6.2. Therefore we would like

to find out what is missing in this naive perturbative type I cosmology from its heterotic dual.

The S-duality mapping

The type I/heterotic S-duality on general grounds are discussed in Sec.4.1. The duality maps have

been given in Eqs (4.2) and (4.3), from which we derive the maps for the case being examined
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here with factorized internal torus:

ds2
h(D) = ds2I(D)

Rh↵̄ = RI↵̄√
λI

≡ RI↵̄

e−
1

2
φ
(D)
I

�∏9
β=D 2⇡RIβ�1�4 , ↵̄ = 0 or D, ...,9,

φ
(D)
h = −D − 6

4
φ
(D)
I −

D − 2

8

9

�
↵=D

ln (2⇡RI↵) .
(7.5)

Here the D-dimensional dilatons become φ
(D)
h,I = φ

(10)
h,I −

1
2 ∑9

↵=D ln(2⇡Rh,I↵). The inverse maps

are obtained by exchanging the subscripts h↔ I. Note that the Euclidean radii RI0 and Rh0 are

included in the above relations, implying the identification of the heterotic and type I temperature

in Einstein frame. Also, with the first relation we identify the the Einstein frame scale factor.

Therefore we use T = β−1 for the Einstein frame temperature without specifying the type of string,

and the same thing for a the Einstein frame scale factor.

We let the heterotic string be at weak coupling: eφ
(D)
h � 1. Therefore on the heterotic side the

cosmology is determined at the one loop level, so that the result for the heterotic model in Sec.6.2

is valid. We then examine the dual type I evolution obtained by sending the heterotic result to

the type I side using the maps (7.5). In other words, we forget the perturbative computation on

the type I side and let its cosmology be generated by the image action of Eq.(6.22) under the

S-duality maps (7.5). It is obvious that the tree level action on the two sides are identified under

S-duality. However the free energy density on the heterotic side is mapped to the type I side as

F#
I
�T,φ(D)I ,RI↵� = Fh�T,φ(D)h ,Rh↵�,
= TD

�������s0b0 cD +
9�

↵=D
2s0b−1G�2⇡RI0� 1

RI↵

−
RI↵

λI

��
+ �

A≥0, Ā≥−1, �m, �n
A−Ā= �m⋅�n

(A, �m,�n)≠(0,✏�eα,✏�eα),
∀↵,∀✏=−1,0,1

sAbĀG�2⇡RI0� 4A√
λI

+ 9�
β=D
�mβ

RIβ

− nβ
RIβ

λI

�2� 12��������, (7.6)

where we put the symbol # to stress that it is different from the perturbative case result Eq.(7.3).

We notice that even though the type I string can be either at strong coupling or weak coupling,

the free energy density F#
I always takes the form corresponding to an ideal gas. The reason is

that the heterotic string is sent into type I D-string by type I/heterotic duality map, and in the

current setup, the D-string is always at weak coupling even if the type I string can be strongly

coupled. From type I point of view, since F#
I is induced by the D-string states, thus it takes the

form of the free energy density of a weakly coupled system. Especially it follows from the equality

b0 = s0 + (N2 −N)�2 (see appendix of [18]) that the massless level in F#
I , which is −TDs0b0cD,
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TDs0b0cD

TD(9 −D)2s0b−1cD
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0
−ln2⇡RI0 ln λI
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1
2
lnλI ln2⇡RI0 lnRIδ

Figure 7.1: Thermal effective potential (in Einstein frame) for RIδ, when all other internal radii satisfy

(7.4). The dashed curve takes only into account the perturbative type I states. The solid one is obtained

by heterotic/type I S-duality and receives corrections from light D-string modes.

matches the massless level in perturbative result Eqs (7.1) and (7.2) whatever the type I coupling.

It is because supergravity and SO(32) super-vector multiplets are short, whose mass is protected

in strong coupling extrapolation.

We plot the behavior of F#
I in Eq.(7.6) against one internal modulus while fixing all others

at
√
λI, the self T-dual point on the heterotic side, as what we did to plot Fig.5.1. The result is

shown in Fig.7.1 by the solid line below the dashed line representing the result from perturbative

computation. In fact it is just the image of Fig.5.1 under the maps Eq.(7.5). We will show

that the discrepancy between the solid line and the dashed line is induced by the D-string state

contributions.

D-string effect correction and resulting cosmology

● When all radii are around the heterotic string self T-dual point �RI↵

λI
−

1
RI↵
� < 1

2⇡RI0
, ↵ = D, ...,9,

corresponding to the region near the potential well in Fig.5.1, the type I free energy density derived

from (7.6) takes the form :

F#
I = −TD �s0b0 cD + 9�

↵=D
2s0b−1G�2⇡RI0� 1

RI↵

−
RI↵

λI

�� +O(e−2⇡ RI0�
λI )� . (7.7)

The second term in the braces is of interest: it induces a local minimum at

RID = � = RI9 =�λI. (7.8)
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The states responsible for this local minimum have mass

M̂I↵ = � 1

RI↵

−
RI↵

λI

�, (7.9)

and these are just the S-dual states of the heterotic string states with mass given by Eq.(5.49).

These states have the natural interpretation as D (or anti-D)-strings wrapped once along the

circles S1(RI↵), with one unit of momentum. These states lead to gauge symmetry enhancement

U(1)↵ → SU(2)↵ in type I string, which is a purely non-perturbative effect. Therefore Eq.(7.7)

takes the form of (massless level contribution)+(D-string soliton contribution)+(small).

Provided that we regard Eq.(7.7) as the effective scalar potential, then using the same argument

as in Sec.6.2, we see that Eq.(7.8) is an attractor where these internal radii can be stabilized. Since

the late time value of the string coupling in 10D satisfy λI = λ−1h � 1, the open string cosmology

is well understood in type I picture rather than the T-dual type I’ picture. If we denote by φ
(D)
I∗

the asymptotic value of the type I dilaton in D dimensions , and use the inverse map of Eq.(7.5),

the type I moduli converge to the following values

eφ
(D)
I
(t) �→ eφ

(D)
I∗ ≡ e−

D−6
4
φ
(D)
h∗

(2⇡) (10−D)(D−2)8

, RIi(t) �→ e
2

D−6
φ
(D)
I∗ (2⇡) 10−DD−6 = 1

e
1

2
φ
(D)
h∗ (2⇡) 10−D4 , (7.10)

while the temperature and scale factor asymptotic behaviors are those of a radiation dominated

era, T (t)−1 ∼ a(t) ∼ t2�D, where t is the cosmological time.

Subtleties arise when we vary the spacetime dimension. According to the S-duality map for

the dilaton in Eq.(7.5), we have:

◇ For D > 6, (7.10) shows that the type I cosmology is at strong coupling, where solitons

are generically light. Therefore it is natural to include the effects of states (7.9) in the

low energy effective action. Moreover these D-string soliton contributions and the resulting

gauge symmetry enhancement should persist at non strongly coupled regime since these

states are BPS. Especially at weak coupling λI � 1 (D-string states become heavy), we are

tempted to state that the free energy density should still be given by Eq.(7.7), but with

the function G(β̂M↵) be replaced by some other function G̃(β̂,M↵, . . . ). Moreover once

the soliton states become massless at the internal radius
√
λI, they should give the same

contribution as perturbative massless states, due to the SU(2) gauge symmetry. Therefore

we should have G̃(β̂,M↵, . . . )�M↵=0
= G(0). In the intermediate regime eφ

(D)
I ∼ 1 we cannot

figure out exactly the free energy density because Eq.(7.7) should be corrected in addition

by higher string loops.
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◇ For D < 6, the type I cosmological evolution is at weak coupling. However it is necessary to

take into account the contributions arising from solitons which are light, when we sit in the

neighborhood of the enhanced symmetry points. Additional non-perturbative states may be

induced by D5-branes of the type I theory, or NS5-branes in the heterotic context, can wrap

the internal manifold in analogy with the D-strings we have considered1.

◇ For D = 6, the asymptotic values of the moduli are eφ
(6)
I∗ = 1�(2⇡)2 and RI↵(t) → e−

1

2
φ
(6)
h∗ �(2⇡).

The type I picture is perturbative. Therefore for the same reason as for D < 6 cases, the

solitonic states should be counted.

In summary, for D ≠ 6 on type I side, the internal radii are stabilized while the dilaton φ
(D)
I

freezes somewhere along its flat direction. On the contrary, for D = 6, the dilaton is stabilized, all

complex structures RI↵�RIβ are stabilized at one, while the internal space volume ∏9
↵=D(2⇡RI↵)

freezes along a flat direction. This is because in D = 6 the heterotic/type I duality exchanges

internal volumes and string couplings : ∏9
↵=6(2⇡Rh,I↵) ↔ 1�e2φ(6)I,h .

● When one of the type I internal radii satisfies Rhδ > 2⇡Rh0, while the other 9 −D radii are

stabilized, RI↵ = 1 for ↵ ≠ δ, the free energy density derived from (7.6) becomes

F#
I = −TD�s0b0 + (9 −D)2s0b−1��cD + �

mδ≠0
G�2⇡RI0

�mδ �
RIδ

�� +O(e−2⇡ RI0�
λI ). (7.11)

This result matches that obtained from perturbative computation, the first line of (7.3), up to

an additional contribution (9 −D)2s0b−1 to the overall numerical coefficient. This discrepancy

is given by the extra massless D (or anti-D)-strings responsible for the stabilization of the RI↵’s

at
√
λI. With respect to the pure perturbative analysis the D-string states makes plateau of the

effective potential lower and the slope for RIδ > 2⇡RI0 steeper (see figure 7.1). The cosmological

evolution is however similar to the one discussed in Sec.6.2 in the paragraph above Eq.(6.30). As

their heterotic counterparts [5, 6], RIδ(t) and RI0(t) evolve such that the growth of the plateau

eventually catches up the internal radius rolling down the slope. After that, RIδ freezes along its

plateau.

● When one of the dual heterotic radii satisfies Rhδ < 1
2⇡Rh0

, which translates in type I picture

into RIδ < λI
2⇡RI0

, while the others are stabilized at their self-dual points, Rh↵ = 1 for ↵ ≠ δ, we have

F#
I = −TD�s0b0 + (9 −D)2s0b−1��cD + �

nδ≠0
G�2⇡RI0�nδ �λ−1I RIδ�� +O(e−2⇡ RI0�

λI ). (7.12)

1Note that these states may contribute even for D = 5. This is to be contrasted with 5-brane instantons at zero

temperature, which require an internal space of six dimensions.
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Substantial contributions arise from the modes of string frame mass

M̂Iδ = �nδ �RIδ

λI

, (7.13)

which include to two sets of towers of D-string winding modes along S1(RIδ). The first one

contains “solitonic descendants” of the perturbative massless supergravity and SO(32) super-

vector multiplets. Following the same logic as in the former case, we find that if at some moment

RIδ < λI
2⇡Rh0

, the plateau speeds up its growth in size and prevents RIδ from falling down the slope.

We end up in a regime where λI
2⇡Rh0

< RIδ, after which the internal modulus freezes or is stabilized

at
√
λI.

To finish this section, we would like to add a final remark on the Hagedorn temperature. We

first observe that under the duality map (4.3), the Hagedorn radii do not match. We thus infer

from the perturbative heterotic side a new value of the Hagedorn radius in type I, when λI is large:

RIH = �������
√
2 for λI � 1√

λI
1+
√
2√

2
for λI � 1

⋅ (7.14)

From a cosmological point of view, RIH in the regime λI(t) � 1 is thus a time-dependent scale.

Note that this non-perturbative expression for RIH obtained once D-strings are taken into account

can be relevant even at weak coupling, eφ
(D)
I � 1. This is for instance the case for D ≤ 6, when√

λI and the RIi’s reach the asymptotic value
√
λI0 � 1.

7.3 E1-instanton interpretation

In the previous section we have stated that D-string states can supply substantial contribution

to the type I free energy density, giving rise to moduli attractors. In the Euclidean background

where we compute the thermal one-loop amplitude, the D-string can be regarded as E1-brane.

Especially the states responsible for moduli stabilization arise from E1-brane wrapping at once the

Euclidean time circle and an internal compact direction. Therefore the non-perturbative effect

revealed by type I/heterotic duality can have E1-instanton interpretation. We can clarify this

issue using the technique in the work in [60] where E1-instanton contributions to holomorphic

couplings are analyzed in supersymmetric cases by type I/heterotic duality. We want to infer E1

corrections in type I from dual heterotic worldsheet instantons, and for simplicity, we restrict our

analysis to the case D = 9. This is to be contrasted with the zero temperature case where E1

corrections would only arise for D ≤ 8.
We start on the heterotic side where the model is at finite temperature compactified on S1(R9).

We first work out the one-loop amplitude Zh, expressing the lattice sum associated to the internal
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direction in the form of worksheet instanton just as given in the right hand side of Eq.(3.1).

Thus we have in Zh a double instanton sum, where the second one is as in Eq.(5.19) due to the

finite temperature. In such case we can perform a double unfolding with respect to the internal

space S1(R0)×S1(R9) [18,60], which splits the worldsheet instanton sums into the zero orbit, the

degenerate orbit and the non-degenerate orbit. Accordingly, Zh into the sum of an integration

over the fundamental domaine (which vanishes due to supersymmetry), one over the strip and the

third over the upper half complex plane:

Zh = Zd
h +Znd

h with

Zd
h = β̂hV̂h(2⇡)9 ��

d2⌧

2⌧ 62

Γ(0,16)

⌘8⌘̄24
R9 �

m̃0,m̃9

′
e
−
⇡Rh0

⌧2
m̃2

0 e
−
⇡Rh9

⌧2
m̃2

9�V8 − (−1)m̃0S8� , (7.15)

Znd
h = β̂hV̂h(2⇡)9 �C+

d2⌧

2⌧ 62

Γ(0,16)

⌘8⌘̄24
R9 2 �

m̃0≠0
n9>m̃9≥0

e
−
⇡Rh0

⌧2
m̃2

0 e
−
⇡Rh9

⌧2
�n9⌧+m̃9�2�V8 − (−1)m̃0S8�.

For the unfolding to be valid we should let Rh9 ≥ 1, while the case Rh9 ≤ 1 may be obtained by

T-duality2. Performing the ⌧ -integrations, the degenerate part Zd
h can be brought into the form

Zd
h = β̂hV̂h × T̂

9
h

�������s0b0 c9 + �
A≥0,m9

′
sAbAG�2⇡Rh0�4A + �m9

Rh9

�2� 12�������� , (7.16)

while the non-degenerate contribution Znd
h can be written as,

Znd
h = β̂hV̂h × T̂

9
h 2 �

A≥0, Ā≥−1
n9>m̃9≥0

sAbĀ
e−2i⇡

m̃9

n9
(A−Ā)

n9
G�2⇡Rh0�4A + �A − Ā

n9Rh9

− n9Rh9�2� 12� . (7.17)

Summing over m̃9 in (7.17) enforces the level matching condition A − Ā = n9m9 for some integer

m9, whenever n9 ≠ 0. Therefore Zd
h + Znd

h yields exactly Eq.(5.47), which can be analytically

continued in the range 1 ≤ Rh9 ≤
√
2. However we need to keep the sum over m̃9 to exhibit the

instantonic structure.

In Zd
h there is only contribution from KK modes along the 0 and the 9 directions, and thus it

is not informed of nontrivial instanton configuration. Therefore, it suffices to examine the non-

degenerate part Znd
I to extract the instanton contributions. At low temperature approximation,

the terms with A ≥ 1 are at least of order O(e−4⇡Rh0) and are exponentially suppressed compared

2 In fact the by judging directly from the integrand one should find that the unfolding is valid for Rh0 >
√

3

and Rh9 >
√

2. The first condition is not problematic as we are focussing on the dynamics at low temperature.

Actually we are interested in the stabilization of Rh9 around 1, and hence the second condition could be a problem.

However it can be shown that the final expression (7.17) can be analytically continued all the way to Rh9 = 1.
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to contributions from A = 0 level. We can define the instanton configurations by the following

Kähler and complex structure moduli Υ and Y :

Instanton with n9 > m̃9 ≥ 0 , k̃0 ≥ 0 ∶

���������
Υ = iΥ2 = i(2k̃0 + 1)Rh0 ⋅ n9Rh9

Y = Y1 + iY2 = m̃9

n9
+ i (2k̃0 + 1)Rh0

n9Rh9

, (7.18)

where (2k̃0+1)n9 is the instanton number, which counts the number of times the worldsheet wraps

around the target torus. Introducing further the coefficients ↵n ∈ N defined in the expansion of

the Bessel function in (5.43), K 9

2

(x) =�⇡�(2x)e−x∑4
n=0 ↵n�xn, we rewrite (7.17) as

Znd
h = V̂

(10)
h(2⇡)10 2 �

instantons

s0
e2i⇡Υ

Υ2Y4
2

4�
n=0
� ↵n(2⇡Υ2)n �̄A≥−1 bĀ �1 + Ā

Y2
Υ2

�4−ne2i⇡YĀ�+ c.c. +O(e−4⇡Rh0), (7.19)

where V̂
(10)
h is the ten-dimensional Euclidean volume. Applying the S-duality maps Eq.(4.3), the

complex and Kähler structures Y and Υ are sent to YI and ΥI�λI. Consequently, the exponential

factor of Υ in (7.19) yields the exponential of the Nambu-Goto action for a D-string, and Znd
h is

mapped into a sum of E1-instantons as in [60],

ZE1
I = V̂

(10)
I(2⇡)10 2�

E1 ins-
tantons

s0
e

2i⇡
λI

ΥI

ΥI2Y4
I2

4�
n=0
� ↵n(2⇡ΥI2)n �̄A≥−1bĀ�

1

λI

+ Ā YI2
ΥI2

�4−ne2i⇡YIĀ�+ c.c. +O(e−4⇡ RI0�
λI ). (7.20)

In order to reveal that the D-string contribution responsible for moduli stabilization in Eq.(7.7)

issues from the above E1-instanton sum, we first notice that the dominant contribution for A = 0
arises when Ā = −1 and n9 = 1, while the remaining terms are exponentially suppressed. Then

we recognize that the second term in Eq.(7.7) arises from the configuration with Ā = −1, n9 = 1,
m̃9 = 0 and k̃0 ≥ 0.

The result Eq.(7.20) is obtained in the strong coupling regime of the type I string λI � 1. It

will be interesting to perform a direct computation of E1-instanton correction, which is feasible

at weak coupling regime λI � 1. Recall that in the discussion made below Eq.(7.10) for D > 6,
we speculated the weak coupling extrapolation of Eq.(7.7). We hope that the result of direct

E1-instanton calculation can give further clarification to the speculation.

7.4 Type I moduli stabilization and examples

The analysis of moduli stabilization in Sec.6.2 can by all means be applied in this chapter, and

in fact we can generalize to cases including all moduli arising from toroidal compactification.
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On the heterotic side according to Sec.2.5, the moduli �Φ displayed in Eq.(6.31), apart from the

dilaton φ
(D)
h , include the components of the metric ĝh↵β and antisymmetric tensor B↵β, together

with the Wilson lines Y Ĩ
h↵ (↵,β = D, . . . ,9; Ĩ = 10,11, . . . ,25). Following the lines in Sec.6.2 it

can be show that when the heterotic string is at weak coupling, all these heterotic moduli except

the dilaton can be attracted to values of some enhanced gauge symmetry. The reason is that the

perturbatively computed vacuum-to-vacuum amplitudes in heterotic theory reach local extrema at

enhanced gauge symmetry points [17] whenever the enhancement leaves no U(1) factor. For our

case this can only induce local minima to the effective potential, giving rise to moduli attractors.

This is because the extra massless states responsible for the gauge symmetry enhancement always

contribute negatively to the free energy density, as is seen from Eq.(6.32). Provided that the

gauge symmetry enhancement concerned here on the heterotic side is induced by F-string states,

the resulting moduli stabilization is purely perturbative effect.

Moduli stabilization in the dual type I picture can be implied through the duality maps

Eq.(4.3), where we need to reverse “h” and “I”. The type I moduli involved include the dila-

ton φ
(D)
I , the internal metric ĝI↵β the RR 2-form C↵β, and the Wilson lines Y Ĩ

I↵. Here we make up

for an subtlety that has been ignored in the previous discussions on type I theory. In Sec.7.1 we

have only examined type I moduli in closed string sector and we did not find moduli attractor

through perturbative calculation. However in the open string sector, perturbative states can in-

duce moduli attractors for the Wilson line moduli. Noticing that for generic values of Wilson lines

the gauge group SO(32) is broken down to U(1)16, the attractors for the Wilson lines are located

at points of enhanced gauge symmetry. When the enhanced gauge group has no U(1) factors, all

Wilson line flat directions are lifted. Therefore in type I picture interpretation, the stabilization

of all moduli is a mixture of non-perturbative D-brane effect and perturbative open string effect.

The cases that needs attention is for D = 6 and D = 4. For D = 6 since the duality map exchanges

the dilaton with the internal volume, the type I dilaton is stabilized while the internal volume

is frozen at some value. For D = 4,the logarithmic behavior of the heterotic dilaton Eq.(6.41) is

transferred to the type I dilaton.

Example : Dual heterotic/type I strings on T 2

Here we illustrate the above general analysis with examples for D = 8. The internal space being

T 2, the moduli space of the heterotic string contains the dilaton φ, the Kähler modulus and the

complex structure modulus of the torus T = B89+ i�ĝ88ĝ99 − ĝ
2
89, U = �ĝ89+ i�ĝ88ĝ99 − ĝ

2
89��ĝ88 and

the Wilson lines Y Ĩ
↵ (↵ = 8,9; Ĩ = 10,11, . . . ,25). Here since we work extensively on the heterotic

side, and for simplicity of notation, we omit the label “h” for heterotic moduli. These translates in

the type I side into the closed and open string internal moduli via the duality map T = TI, U = UI,
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Y I
↵ = Y I

I↵, where

TI = C89 + i
�

ĝI88ĝI99 − ĝ
I 2
89

λI

= C89 + ie−φI (ĝI88ĝI99 − ĝI 2
89 )1�4

2⇡
, UI = ĝI89 + i�ĝI88ĝ

I
99 − ĝ

I 2
89

ĝI88
. (7.21)

The only remaining flat direction of the thermal effective potential corresponds to the heterotic

and type I dilatons in eight dimensions, which are related as : φI = −1
2
φ− 3

4
ln �(2⇡)2�ĝ88ĝ99 − ĝ

2
89�.

The heterotic effective action in the Einstein frame is (see for instance appendices D and E

in [30])

S = � d8x
√
−g

�������
������
R
2
−
(@φ)2
3
−
1

4

�
�
�@U�2U2

2

+ �@T + Y Ĩ
[8@Y

Ĩ
9]�2T 2

2

+ �U@Y Ĩ
8 − @Y

Ĩ
9 �2T2 U2
�
�
������
−F�������. (7.22)

If we arrange the thirty-four entries of the moduli vector as �Φ ≡ (T1,T2,U1,U2, Y Ĩ
8 , Y

Ĩ′

9 ), where

indices 1 and 2 refer to real and imaginary parts, the metric components of the general expression

(6.22) are

(FMN) =

����������������

1
2T 2

2

0 0 0 −
Y J̃
9

4T 2

2

Y J̃
′

8

4T 2

2

1
2T 2

2

0 0 0 0

1
2U2

2

0 0 0

1
2U2

2

0 0

sym. �U �2
2T2U2 δ

Ĩ J̃ + Y Ĩ
9
Y J̃
9

8T 2

2

−
U1

2T2U2 δ
Ĩ J̃ ′ −

Y Ĩ
9
Y J̃
′

8

8T 2

2

1
2T2U2 δ

Ĩ′J̃ ′ + Y Ĩ
′

8
Y J̃
′

8

8T 2

2

����������������

. (7.23)

The free energy density F is determined by the mass spectrum as in Eq.(6.32), which is specified

by the left (right)-moving oscillator level A (Ā), the internal momenta and winding numbers m↵,

n↵ (↵ = 8,9), and the root vector QĨ of the right-moving internal lattice ΓSpin(32)�Z2
. The mass

formula is M̂2
s = 2(A + Ā) + 1

2
(p2L + p2R) − 2 as in Eq.(3.6), where the internal momenta are given

by Eq.(2.56). Therefore this gives the explicit mass formula

M̂2

A, �m,�n, �Q(T ,U , Y ) = 1T2U2 �−m8U +m9 + T̃ n8 + �T̃ U − 1

2
W ĨW Ĩ�n9 +W ĨQĨ �2 + 4A, (7.24)

where we have defined W Ĩ
∶= UY Ĩ

8 − Y
Ĩ
9 , T̃ ∶= T + 1

2
Y Ĩ
8W Ĩ (7.25)

and used the level matching condition, A− Ā =m↵n↵ + 1
2
QĨQĨ . At generic points in moduli space,

the gauge group is U(1)2L × U(1)2R × U(1)16R , where U(1)2L × U(1)2R arises from T 2 compactifica-

tion, and U(1)16R is the Cartan subgroup of SO(32)R. We now examine special points in moduli
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space where n0 pairs of bosonic and fermionic superpartners generically massive are accidentally

massless. Since at zero temperature the model is maximally supersymmetric, such points are as-

sociated to enhanced gauge symmetries. In fact, the additional massless modes arise at oscillator

levels A = 0, Ā = −1, so that n0 is proportional to s0r−1 = 23 (see the appendix in [18]) and the

enhancements of the gauge theory arise from the right-moving sector only. In the following two

examples, we will simplify the notations by omitting the subscript “R” in the right-moving gauge

group factors.

Local attractor 1 : U(1)2L × SU(3) × SO(32)
We start with the most obvious attractor where all Wilson lines vanish, Y I

i = 0, leaving the SO(32)
group unbroken. The torus moduli take the values T = U = 1

2
+ i√3

2
, implying an additional SU(3)

gauge factor. The n0 states responsible for the enhancement of U(1)2 ×U(1)16 → SU(3)×SO(32)
are divided into two groups :

● 6 × 23 boson/fermion pairs imply U(1)2 → SU(3). Their quantum numbers are ( �m, �n) =±(1,1; 0,1), ±(0,1;−1,1) or ±(1,0; 1,0), and �Q = 0. In this case, p
8,9
L = 0 = pI≥10R and (p8R, p9R)

realize the root vectors of SU(3)R, which represent a hexagon.

● 480 × 23 boson/fermion pairs to recover U(1)16 → SO(32). They have ( �m, �n) = (�0,�0),�Q = ±(1,±1,0, ...,0), ±(1,0,±1, ...,0) or any other permutation. In this case, p8,9L = 0 = p8,9R , while

(pI≥10R ) realize the root vectors of SO(32).
To find out the scalar mass induced at one-loop level, we need to compute the squared mass

matrix ΛMN defined in Eq. (6.36) through Eq.(6.37). The one-loop scalar masses are given by the

eigenvalues of ΛMN .

The resulting matrix of squared masses is diagonal, with strictly positive eigenvalues [18].

Therefore, all flat directions of the internal moduli space are lifted. Reading off the eigenvalues of

ΛMN , we find the induced one-loop mass squared are

M2
1 = c6

4⇡
23 × 24 e

2φ∗
3 T 6

∗ or M2
2 = c6

4⇡
23 × 240 e

2φ∗
3 T 6

∗ . (7.26)

The first one has degeneracy 4, corresponding to T1, T2, U1, U2, while the second is of degeneracy

32, associated to the Wilson lines Y Ĩ
8 and Y Ĩ

9 . The additional factor of ten for the latter can be

understood from the fact that they are coupled to ten times as many additional states as compared

to the torus moduli.

Local attractor 2 : U(1)2L × SU(2) × SO(34)
The second example we consider is at the moduli values T = U = i�√2, Y Ĩ≥10

8 = 0 and Y 10
9 =

−Y 11
9 = −Y 12

9 = ⋅ ⋅ ⋅ = −Y 25
9 = −1�2. This moduli configuration is much less trivial than the previous
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one, since it is going to give rise to the gauge group SU(2)8 × SO(34)9,...,25, where the subscripts

denote which directions ↵ = 8,9 and Ĩ = 10, ...,25 are associated with the gauge factors. There are

n0 = 546×23 extra massless boson/fermion pairs of states, which can be divided into 2×23 for the

SU(2)8 and 544× 23 for the SO(34)9,...,25 enhancements. Note that the SO(34)9,...,25 factor arises

from an enhancement of the U(1)9 symmetry of the T 2 torus, with the SO(32) symmetry of the

internal lattice. The detailed quantum numbers of the extra states are as follows :

● 2 × 23 boson/fermion pairs give U(1)8 → SU(2)8. They have ( �m, �n) = ±(1,0; 1,0) and �Q = 0.
In this case, p8R = ±√2 while other internal momenta components vanish, realizing the root vectors

of SU(2)8.
For SO(34)9,...,25, the 544 × 23 pairs of bosons and fermions giving U(1)179,...,25 → SO(34)9,...,25

are subdivided into :

● 420 × 23 pairs transform in the adjoint representation of SO(30) and are giving rise to

U(1)1511,...,25 → SO(30)11,...,25. 210 × 23 have ( �m, �n, �Q) = ±(0,1; 0,0; 0,1,1,0, ...,0) or any permuta-

tion of the last 15 entries. The other 210 × 23 have ( �m, �n, �Q) = (0,0; 0,0; 0,1,−1,0, ...,0) or any

permutation of the last 15 entries.

● 60 × 23 pairs transform as (2,30) under SO(2)10 × SO(30)11,...,25, giving the enhanced group

SO(32)10,...,25. 30×23 of them have ( �m, �n, �Q) = ±(0,1; 0,0;−1,1,0, ...,0) or any permutation of the

last 15 entries. The other 30 × 23 have ( �m, �n, �Q) = ±(0,0; 0,0; 1,1,0, ...,0) or any permutation of

the last 15 entries.

● 64 × 23 pairs transform as (2,32) under SO(2)9 × SO(32)10,...25, giving the enhanced gauge

group SO(34)9,...,25. 32× 23 of them have ( �m, �n, �Q) = ±(0,1; 0,−1; 1
2
, ..., 1

2
) and ±(0,1; 0,−1;−1

2
,−1

2
,

1
2
, ..., 1

2
) or any permutation of the last 15 entries. The other 32×23 have ( �m, �n, �Q) = ±(0,2; 0,−1;−3

2
,

1
2
, ..., 1

2
) and ±(0,2; 0,−1;−1

2
, 3
2
, 1
2
, ..., 1

2
) or any permutation of the last 15 entries.

Evaluation and diagonalization of the squared mass matrix in (6.36) reveals two groups of

eigenvalues,

M2
1 = c6

4⇡
23 × 16 e

2φ∗
3 T 6

∗ , M2
2 = c6

4⇡
23 × 256 e

2φ∗
3 T 6

∗ . (7.27)

The first one with degeneracy 2, is associated to T1 − U1 − 1
4
(Y 10

8 − Y
11
8 − � − Y

25
8 ) and T2 − U2,

while the second with degeneracy 34, corresponds to T1+U1, T2+U2 and all 32 Wilson lines. Thus,

we find a second point in moduli space where all internal moduli are stabilized by the thermal

effective potential.
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Discussion

In this chapter, moduli stabilization is realized in maximally supersymmetric models. It is not

hard to extend the analysis to models with supersymmetry broken at zero temperature, by taking

orbifold compactifications on both sides of the type I/heterotic S-duality. We expect that the

model mentioned in Sec.6.3 can be implemented in the context of this chapter. With the presence

of a zero temperature supersymmetry breaking, analysis of moduli stabilization proceeds in the

same way. Especially in 4D, the energy density in the background scalar oscillations becomes

dominated by (instead of being proportional to) the thermal energy. However we will still have a

radiation-like evolution because the motion of the supersymmetry breaking scale has non negligible

contribution to the total energy density of the universe. In addition as the spacetime dimension

is 4 or 5, it is possible that NS5-brane states in the heterotic string or D5-brane states in the type

I string give substantial contribution, and we expect this effect can play a role in the stabilization

of the dilaton. Perhaps this effect can be revealed by type II/heterotic duality in 4D.
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Chapter 8

Moduli stabilization in type II Calabi-Yau

compactifications

In this chapter we consider a class of models of less supersymmetry, which are type II strings

compactified on Calabi-Yau three-folds. We aim to show that at finite temperature the loci corre-

sponding to shrinking 2-spheres or 3-spheres are moduli attractors. This is due to the states from

D2-brane states (in type IIA description) wrapping the shrinking spheres becoming massless at the

singular loci. Since the CFT is generically unknown, we carry out the analysis based completely

on the effective N4 = 2 supergravity action. We will show that it is possible to write down in the

vicinity of such singular loci the tree level supergravity action containing all perturbative states

and light soliton states. Based on the scalar potential, the tree level mass spectrum of soliton

states can be obtained, where the masses turn out to be moduli dependent. In low temperature

regime, this mass spectrum suffices to determine the one-loop correction, whose local minima

indicate the moduli attractors. We show that this mechanism can stabilize all the Kähler moduli

as well as the complex structure moduli related to the shrinking 3-cycles which can be desingu-

larized by blowing up. However the moduli contained in the universal hypermultiplet, which are

not related to CY3 geometry, stay flat directions. An example is analyzed in the end, where the

lifting of the entire Kähler moduli space is realized, with some of the complex structure moduli

also stabilized. Necessary elements of Calabi-Yau compactification are reviewed in Sec.3.4, and

the singular configurations of the Calabi-Yau space to be investigated are reviewed in Sec.4.2 and

Sec.4.3.
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8.1 Stabilization at a conifold locus

We adopt the notation in Sec.4.2. The type IIA string is compactified on a CY3 denoted by

M , of Hodge numbers h11 and h12. Near a conifold locus, let R be respectively the number of

shrinking 2-spheres and S be the number of independent homological 2-cycles that these shrinking

2-spheres represent. The conifold configuration is denoted by M̌ , containing R isolated singular

nodes. When R > S, the R nodes can be deformed into 3-spheres, desingularizing M̌ into M ′,

where these R 3-spheres represent R −S independent homological 3-cycles. The change in Hodge

number is as displayed in Eq.(4.4). When R = S, the branch M ′ does not exist. However we

always suppose that the branch M exist, that is, S > 0.
Abelian gauge theory at conifold transition locus

We sit in the branch M to specify the low energy effective supergravity action near the conifold

locus. The local behavior of the action is constrained by the physics that we expect to arise at

the conifold locus, as well as the N4 = 2 local supersymmetry.

When taking into account only perturbative field contents, the effective supergravity action

should contain h11 massless vector multiplets and h12 + 1 massless hypermultiplets in addition

to the gravitational multiplet. The gauge group is U(1)h11+1, with no charged matter, so the

scalar potential vanishes. Logarithmic singularity develops near the conifold locus because the

initially integrated-out soliton states, from D2-brane wrapping the R vanishing 2-spheres, become

massless. The singularity is repaired by integrating in these D2-brane states, represented by R

hypermultiplets charged under a certain U(1)S component of the whole gauge group. We denote

the space of vector multiplet scalars by M̃V and the space of hypermultiplet scalars by M̃H,

where we put the tildes to stress that they are different from the moduli space introduced in

Sec.3.4. However they are still special Kähler manifold and quaternionic manifold respectively.

The bosonic part of the repaired effective action is

S = � d4x
√
−g �R

2
− gIJ̄ @X

I@X̄J
− hΛΣ∇q

Λ
∇qΣ − V� . (8.1)

Here {XI} (I = 1, . . . , h11) are complex coordinates of M̃V and {qΛ} (Λ = 1, . . . ,4h12 + 4R + 4) are

real coordinates of M̃H. In the kinetic terms of the latter, the covariant derivative ∇ is introduced

because the D2-brane induced hypermultiplets are charged under U(1)S. The metrics gIJ̄ and hΛΣ

are regular in the vicinity of the conifold locus. The gauge coupling induces a scalar potential V .

We can choose the parameterization of {XI} such that X i (i = 1, . . . , S) vanish at the conifold

locus. On the type IIB side, this corresponds to the choice of setting X i as the periods of the S
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3-cycles represented by the R shrinking 3-spheres. Thus we separate these scalar fields into two

groups:

{XI} = {X i,Xp}, (I = 1, . . . , h11; i = 1, . . . , S; p = S + 1, . . . , h11). (8.2)

The soliton states are charged to the gauge group U(1)S associated to X i, and Xp the rest of the

scalars are spectators of conifold transition.

Also using the fact that M̃H contains a 4R-dimensional subspace of U(1)S-isometry, and the

properties of quaternionic manifolds, it can be shown [19] that the real coordinates can be chosen

such that

{qΛ} = {c↵, qλ}, (↵ = 1, . . . ,4R; λ = 4R + 1, . . . ,4h12 + 4R + 4), (8.3)

where {c↵} parameterize the U(1)S-isometric subspace, and at the conifold locus c↵ = 0. Further-

more to the lowest order expansion in c↵, the quaternionic metric has the block associated to the

isometric subspace factorized out, and {c↵} can be arranged into quartets, each representing a

charged hypermultiplet. More precisely, we have

{c↵} = {câu}, (â = 1, . . . ,R; u = 1,2,3,4), (8.4)

where for each quartet of a given â, the four vectors {@�@cã1, @�@cã2, @�@cã3, @�@cã4} transform

among themselves under the three complex structures. The kinetic terms become

hΛΣ∇qΛ∇qΣ = 1

2
∇câu∇câu + h(0)λσ @qλ@qσ + . . . , (8.5)

where the superscript “(0)” means the lowest order in câu-expansion around 0, and the ellipses

are terms of higher order in câu. Let the â-th hypermultiplet have charge Qâ
i under the i-th U(1)

factor of the gauge group U(1)S. Thus the covariant derivative is

∇µcâu = @µcâu −Qâ
i V

i
µ c

âu, (8.6)

where V i
µ is the vector field associated to X i in the same vector multiplet.

With all these approximations we can write down the bosonic effective action more explicitly

near the conifold locus using the N4 = 2 supergravity formalism (c.f. for example [38]). The

resulting action contains a scalar potential due to the gauging:

S = � d4x
√
−g �R

2
− g
(0)
IJ̄

@µX
I@µX̄J

−
1

2
∇cAu∇µcAu − h

(0)
λσ @q

λ@qσ

− eK
(0)
V �2Qâ

iQ
â
j X̄

iXj
C
â†

C
â + 1

4
g(0)i|̄ �Di ⋅

�Dj� + . . .�. (8.7)
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The superscript “(0)” indicates that the quantity is obtained by setting X i = 0 and câu = 0. The

second line is the scalar potential, where KV is the Kähler potential of M̃V, which can depend

on the spectator scalars {Xp}. For simplicity of notation we have introduced the D-term and the

SU(2)R doublets, which are

�Di = �̂
a

Qâ
iC

â†�σC
â ; C

â = �� i�c
â1 + i câ2�
�câ3 + i câ4�∗�� . (8.8)

It is interesting to note that the above action is that of the rigid N = 2 supersymmetric Abelian

gauge theory with charged hypermultiplets and formally coupled to gravity.

Lifting the flat directions at one-loop

The scalar potential in the second line of Eq.(8.7), valid around the conifold locus, admits flat

directions which are parameterized by

X iQâ
iC

â = ��00�� (no sum over â) and �Di = 0, (â = 1, . . . ,R; i = 1, . . . , S). (8.9)

The conifold locus lies on these flat directions, defined by (X i = 0, câu = 0;Xp, q↵ arbitrary). We

can let the scalars X i and câu move away from the locus in different ways in the flat directions

given by (8.9), carrying the effective action into the Coulomb branch or the Higgs branch, and

consequently the internal manifold is desingularized into M or M ′. Here we recall that the Higgs

branch, or the desingularization into M ′ exists only for R > S.

● Coulomb branch

The Coulomb branch of vacua corresponds to arbitrary values for the gauged vector multiplet

scalars and vanishing VEV’s for those in the charged hypermultiplets:

Coulomb branch : ��X i arbitrary, câu = 0�� × ��Xp, q↵� arbitrary�. (8.10)

Following this assignment of VEV’s we have, besides the spectator massless fields, S massless

vector fields and R massive hypermultiplets. Table 8.1 summarizes the superfield content and

associated scalar VEV’s in the Coulomb branch1. The latter are just the D2-brane states. We

1See [61] for a general discussion about field contents following a Higgs mechanism in N = 2 supersymmetric

gauge theories.
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evaluate the Colemann-Weinberg effective action, based on the tree-level action (8.7) against this

background, and obtain

S1-loop = � d4x
√
−g �R

2
− gIJ̄ @µX

I@µX̄J
− h↵β @µq

↵@µqβ −F +��. (8.11)

The method of calculating the one-loop effective potential is given in Sec.5.5 in the second example.

Referring to Eq.(5.52) the result is

F = −T 4 ��4 + 4h11 + 4(h12 + 1)�G(0) + 4�̂
a

G�Mâ

T
� +O�e−Mmin

T ��, (8.12)

We stress again that the computation is valid because the gauge theory is weakly coupled near

the conifold locus. The masses Mâ in Eq.(8.12) of the R light hypermultiplets are given by

M2
â = 4 eK(0)V �Qâ

iX
i�2 +�, (8.13)

which is obtained by expanding the scalar potential about the vacuum (8.10). The dots stand for

higher order terms in vanishing scalar fields. Near the conifold locus all other masses are bounded

from below and heavier than the charged black holes and we denote the lower bound Mmin. All

contributions G(Ms�T ) with Ms ≥Mmin are exponentially suppressed, provided the temperature

is low enough, T <Mmin, as indicated in Eq.(5.52). Eq.(8.13) is consistent with the standard mass

formula of BPS black holes [20,62]. In particular, it acquires a dilaton dressing e−φ once measured

in string frame, as expected for D-brane masses.

The behavior of the G-function (5.44) shows that F reaches local minimum when all masses Mâ

vanish. According to Eq.(8.13), and due to the fact that the matrix Qâ
i is of rank S,2, this happens

only at the conifold locus when X i = 0 for all i = 1, . . . , S. Thus all classically flat directions X i of

the Coulomb branch are lifted, while the spectator scalars Xp and q↵ parameterizing the conifold

locus remain moduli. Then we use Eqs (6.36) and (6.37) to compute the the masses M (1-loop)
i that

the fields X i obtain at the potential minimum. Therefore we consider the squared mass matrix

ΛĪ J̄ = g(0)ĪK @2F
@XK@X̄J

�
Xi=0
= T 2

16
g(0)ĪK 4�̂

a

@2M2
â

@XK@X̄J
�
Xi=0

, (8.14)

which satisfies

ΛĪ |̄ = T 2eK
(0)
g(0)ĪkQâ

kQ
â
j , ΛĪ m̄ = 0. (8.15)

2Otherwise, some of the R vanishing 2-cycles would be linear combinations of the others and would not give

independent degrees of freedom once wrapped with D2-branes.
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Following from the fact that {Qâ
i } is a matrix of rank S, one can show that Λ is diagonalizable

with S strictly positive eigenvalues �M (1-loop)
i �2 and h11 − S vanishing ones. The trace of Λ leads

to

�
i

�M (1-loop)
i �2 = T 2eK

(0)
V g(0)|̄kQâ

kQ
â
j . (8.16)

Thus, the scalars of the U(1)S vector multiplets acquire one-loop masses of order the temperature

scale, while the gauge bosons remain massless and the full Abelian gauge theory U(1)h11+1 is

unbroken.

● Higgs branch

Now we suppose R > S and move to the Higgs branch of the U(1)S gauge theory, and we will

show that the flat directions are lifted by the one-loop thermal effective potential. In this phase,

the doublets C â are such that the D-terms in Eq.(8.9) vanish, while the U(1)S vector multiplet

scalars have trivial VEV’s,

Higgs branch : ��X i = 0,C â such that �Di = 0�� × ��Xp, q↵� arbitrary�. (8.17)

The 3S D-term constraints leave 4R − 3S flat directions among the charged scalars câu’s, along

which the U(1)S gauge group is Higgsed. S of the 4R − 3S directions are U(1)S-gauge orbits

corresponding to physically equivalent vacua. Introducing S gauge fixing conditions, we are thus

left with 4(R−S) flat directions, which can be arranged in R−S massless neutral hypermultiplets.

This shows that R > S must be required for the Higgs branch to exist. Moreover, the S Higgsed

vector multiplets become massive and long by combining with the remaining S hypermultiplets.

The superfield content and VEV’s in the Higgs branch can be found in Table 8.1. Thus, besides the

supergravity multiplet, the massless spectrum includes h11−S vector multiplets and h12+R−S+1
neutral hypermultiplets, corresponding to the type IIA compactification on the smooth CY3 M ′,

with Hodge numbers h′11 and h′12 given in Eq.(4.4).

To describe the one-loop effective action in the Higgs branch, it is convenient to param-

eterize the D-term flat directions with some coordinates ⇠m (m = 1, . . . ,4(R − S)) satisfying

Qâ
i C â†(⇠) �σC â(⇠) = 0 and such that the Jacobian matrix �∂câu

∂ξm
� is of rank 4(R − S). We de-

note by ⇠m0 the origin of the Higgs branch, i.e. the conifold locus. In a neighborhood of the

conifold locus, the one-loop effective action valid in the Higgs branch takes the form,

S1-loop = � d4x
√
−g �R

2
− g
(0)
pq̄ @Xp@X̄q

− h
(0)
mn @⇠

m@⇠n − h
(0)
αβ @qα@qβ −F�, (8.18)
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where we have defined

h
(0)
mn = 1

2

@câu

@⇠m
�
⇠0

@câu

@⇠n
�
⇠0

, (8.19)

and the free energy density F is

F = −T 4 ��4 + 4h′11 + 4(h′12 + 1)�G(0) + 8�
i

G�Mi

T
� +O�e−Mmin

T ��. (8.20)

The factor 8 in the above expression counts the number of boson/fermion pairs in the long vector

multiplets of tree level mass Mi. The O�e−Mmin

T ) term includes all contributions of the modes

whose masses do not vanish in the neighborhood we are considering and thus admit a lower bound

Mmin >Mi. For T <Mmin, these contributions are exponentially suppressed. Therefore F reaches

its minimum when all Mi’s vanish. Obviously this is true only at the conifold locus where ⇠m = ⇠m0
where we have câu = 0. Thus all flat directions ⇠m are lifted.

To obtain the scalar masses that F induces at one loop, we proceed as for the Coulomb branch.

Therefore it seems that we need to find out the mass spectrum {Mi} by expanding the tree-

level scalar potential around the vacuum Eq.(8.17), to obtain an expression similar to Eq.(8.13).

However this is very hard to achieve here since the mass-squared matrix is too complicated to

diagonalize. Fortunately, observing Eq.(6.37) we see that actually only the sum of the mass

squared ∑iM2
i is evoked in the computation of one-loop mass. Thus we only need to simply

compute the trace of the coefficient matrix, instead of computing the eigenvalues. The result

is [19]:

�
i

M2
i = 2eK(0)V g(0)|̄kQâ

kQ
â
j c

âucâu + . . . (8.21)

Referring again to Eqs (6.36) and (6.37), the one-loop squared masses M (1-loop)
m of the fields ⇠m at

their minimum ⇠ = ⇠0 are determined by the matrix

Λ′mn = 1

2
h(0)ml

@2F
@⇠l@⇠n

�
⇠0

= T 2

16

1

2
h(0)ml 8�

i

@2M2
i

@⇠l@⇠n
�
⇠0

= T 2eK
(0)
V g(0)ı̄jQâ

jQ
â
i h
(0)ml @c

âu

@⇠l
�
⇠0

@câu

@⇠n
�
⇠0

, (8.22)

where we have used the fact that câu�⇠0 = 0 to obtain the last equality. The eigenvalues of Λ′ are

the desired squared masses we are looking for. Taking the trace, they satisfy

�
m

�M (1-loop)
m �2 = T 2eK

(0)
V g(0)ı̄jQâ

jQ
â
i h
(0)nl @c

âu

@⇠l
�
⇠0

@câu

@⇠n
�
⇠0

. (8.23)

Thus, the ⇠m’s have acquired a mass of order the temperature scale. Due to the arbitrariness in the

choice of parametrization ⇠m of the D-term flat directions, all charged black hole hypermultiplets

scalars câu have a mass of order T .
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Scalars acquiring VEV’s Superfields

In vector In hyper- Vector multiplets Hypermultiplets
multiplets multiplets Massless

(moduli)
Massive
short

Massive
long

Massless
(moduli) Massive

Coulomb

phase
X i none S 0 0 0 R

Higgs

phase
none

C â mod.

gauge orbits

such that�Di = 0
0 0 S R − S 0

Table 8.1: Superfield contents in the Coulomb and Higgs branches (when R > S) associated to the N = 2

U(1)S gauge theory coupled to R hypermultiplets, which is encountered in the neighborhood of a conifold

locus in M̃V×M̃H. The scalars Xp and qλ of the massless spectator vector multiplets and hypermultiplets

are not represented.

Cosmology and moduli stabilization

The cosmology induced by the effective actions (8.11) and (8.18) can be worked out following

the lines in analyzing the model (6.31), provided that the free energy densities (8.12) and (8.20)

fit into the form of Eq.(6.32). Therefore the resulting cosmology evolution follows the pattern

of Eq.(6.34), which is a radiation-like universe where energy stored in the background scalar

motions is proportional to that stored in radiation. Moduli involved in the conifold transition are

attracted to the conifold locus while the spectator moduli Xp and qλ are frozen at some value in

the flat direction. Therefore cosmological evolution dynamically attracts the CY3 to the singular

configuration M̌ .

8.2 Stabilization at a non-Abelian gauge symmetry locus

We consider moduli stabilization at the extremal transition locus described in Sec.4.3, where the

CY3 becomes singular due to the shrinking of 2-spheres along a rational complex curve instead of

at isolated points. This configuration gives rise to SU(N) gauge symmetry enhancement. Our

aim is to show that the flat directions are lifted at one-loop level, and the internal CY3 is attracted

to the singular configuration.
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Non-Abelian gauge theory at extremal transition locus

Keeping to the setup in Sec.4.3, we let the initial non-singular CY3 be denoted by M and the

singular configuration arising from shrinking 2-spheres be M̌ . We let the shrinking 2-spheres rep-

resent N − 1 homologically independent 2-cycles with intersection matrix of type AN−1. Suppose

the resulting singular curve in M̌ has genus g. Then there are (g − 1)(N2 −N) non-toric defor-

mations for desingularizing M̌ into another manifold M ′′, where the change in Hodge number is

given in Eq.(4.11). The branch of M ′′ exists only when g ≥ 2.

All analysis in the rest of this section is carried out in the cases with g ≥ 2. Actually, when

g = 0, the pure SU(N) gauge theory is asymptotically free and is Abelian in the IR, with gauge

group U(1)N−1. Thus, this situation is expected to be dual to a particular example of the conifold

case we have already studied, for R = S = N − 1. For g = 1, the vector and hypermultiplet in the

adjoint representation combine into an N = 4 SU(N) gauge sector. This case is conformal and

has already been considered in Chapter 7, leading to an attraction of the moduli at the origin of

the Coulomb branch, thus restoring the full non-Abelian symmetry. On the contrary, new physics

is encountered for g ≥ 2, since the SU(N) gauge theory is non-asymptotically free and moreover

admits Coulomb and Higgs branches.

We write down the low energy effective action in M near the singular locus. The N4 = 2

supermultiplets representing perturbative modes include the h11 massless vector multiplets and

the h12+1 massless hypermultiplets. There are also N2−N vector multiplets arising from D2-brane

wrapping shrinking 2-spheres, which combine with N−1 of the perturbative vector multiplet to give

the SU(N) gauge group. Moreover there are g(N2 −N) extra non-perturbative hypermultiplets,

which combine with g(N−1) of the perturbative ones giving rise to g hypermultiplets transforming

in the adjoint of SU(N). We let M̃V and M̃H be the space of vector multiplet scalars and the space

of hypermultiplet scalars. The effective action is just as Eq.(8.1), with XI (I = 1, . . . , h11+N2+N)

complex coordinates of M̃V, and qΛ (Λ = 1, . . . ,4h12 + 4g(N2 −N) + 4) real coordinates on M̃H.

Stree = � d4x
√
−g �R

2
− gIJ̄∇X

I
∇X̄J

− hΛΣ∇q
Λ
∇qΣ − V�, (8.24)

Here all quantities appearing in the action are non-singular at the locus of M̌ , since non-perturbative

D2-brane states are “integrated in”. The covariant derivatives are with respect to the SU(N)
gauge symmetry. We further constrain the action using conditions from the physics that we ex-

pect. The latter require that M̃V contains a (N2 − 1)-dimensional (complex dimension) subspace

of SU(N)-isometry, and M̃H has a g(N2 − 1) dimensional (quaternionic dimension) subspace of

SU(N)-isomety. It can be shown that the coordinates of M̃V can be chosen in the following way

{XI} = {Xa;Xp}, (a = 1, . . . ,N2 − 1; p = N2, . . . , h11 +N2 −N), (8.25)
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Here a is the gauge index of SU(N), transforming in the adjoint; index p is for labeling fields

neutral under SU(N), which we call spectator fields. On the other hand, the quaternionic manifoldM̃H accommodates the following coordinates

{qΛ} = {caAu; qλ} , (8.26)

�A = 1, . . . , g; u = 1,2,3,4; λ = 4g(N2
− 1) + 1, . . . ,4h12 + 4g(N2

− 1) + 4� ,
where we have the same separation of spectator fields, neutral under SU(N) labeled by λ, from

those transforming in the adjoint of SU(N) carrying the gauge index a. Moreover each hypermul-

tiplet transforming in the adjoint of SU(N) is labeled by A, containing 4 real components labeled

by u. The action of the triplet of complex structures only touches the index u. With the above

choice of coordinate system, the singular configuration M̌ arises at the locus Xa = 0 = caAu.
Using the formulae of N4 = 2 supergravity, we can work out more details of the action (8.24).

The strategy is the same as for the conifold case: we expand all quantities in terms of Xa and

caAu the fields vanishing at the singular locus. We find that the kinetic terms become

gIJ̄∇X
I
∇X̄J = l2∇Xa

∇X̄a + g(0)pq̄ @Xp@X̄q + . . . , (8.27)

hΛΣ∇q
Λ
∇qΣ = 1

2
∇caAu∇caAu + h(0)λσ @qλ@qσ + . . . , (8.28)

where only the leading contributions are displayed, and the superscript “(0)” symbolizes the

leading order in the expansion. The SU(N)-isometric subspace has diagonalized metric in the

leading order. It can be realized by proper parameterization that g(0)ab = l2δab for vector multiplets

where l2 depends spectators Xp, and also h
(0)
aAu,bBv = δabδABδuv for hypermultiplets. We can also

obtain the leading contribution to the scalar potential, but we are not intended to show all the

details here, which are just applications of standard supergravity formulae [19]. Finally we arrive

at the following form of effective action, which is valid locally close to the non-Abelian locus:

Stree = � d4x
√
−g �R

2
− l2∇µX

a
∇
µX̄a
− g
(0)
pq̄ @µX

p@µX̄q
−
1

2
∇µc

aAu
∇
µcaAu − h

(0)
λσ @qλ@qσ

− eK
(0)
V �l2[X, X̄]a[X, X̄]a + 2[X, cAu]a[cAu, X̄]a + 1

4l2
�Da
⋅ �Da� +��. (8.29)

We have introduced the D-terms

�Da
∶= − i fabcC bA†�σC

cA, with C
aA = �� i(caA1 + icaA2)

(caA3 + icaA4)∗�� the SU(2)R doublets, (8.30)

where fabc are structure constants of the SU(N) group. Therefore, the Lagrangian density in

Eq.(8.29), up to the “spectator multiplets”, has the form of a minimally coupled rigid N = 2
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supersymmetric SU(N) super Yang-Mills theory coupled to g hypermultiplets in the adjoint

representation, formally coupled to gravity. Moreover no surprisingly, the scalar potential is the

same as in the field theory discussion Eq.(4.13).

The flat directions defined by the potential contains the singular locus corresponding to M̌ .

At a generic vacuum in these flat directions, masses are generated through Higgs mechanism for

the degrees of freedom involved in the SU(N) gauge theory. These masses vanish exactly at the

locus of SU(N)-enhanced symmetry, and can lift the tree-level flat directions at one-loop level.

Actually, in carrying out this computation at one-loop, we will rather need the sum of all these

mass squared than the masses themselves, just as what we computed in Eq.(8.21) in the Higgs

branch of conifold transition. This mass squared sum can be worked out explicitly with the action

(8.29). We omit the detailed computation, which is explained in [19]. The total mass squared

turns out to be

�M2 = 16NeK
(0)
V �(g + 1)XaX̄a + 1

l2
caAucaAu� + . . . , (8.31)

where Xa and caAu are set to be in the flat directions of the scalar potential in (8.29).

Lifting flat directions at finite temperature

At finite temperature in weak coupling regime, the tree level action (8.29) is corrected by Colemann-

Weiberg effective potential. We now compute this the one-loop correction and the result has to

include explicitly the whole set of light degrees of freedom, including the SU(N) gauge sector cou-

pled to g hypermultiplets in the adjoint. Also, since the space of tree level flat directions around

the SU(N) enhanced symmetry locus splits into the Coulomb branch and the Higgs branch, each

giving rise to different light degrees of freedom, the computation should be carried out separately

in these two branches.

● Coulomb branch

The Coulomb phase corresponds to scalar VEV’s such that the matrices XaT a and caAuT a sit in

the Cartan sub-algebra, where T a are generators of SU(N). It is not hard to see that three terms

in the scalar potential in Eq.(8.29) vanish separately. Denoting as T i (i = 1, . . . ,N −1) the Cartan

generators of SU(N) and Tm (m = N, . . . ,N2 −N) the remaining ones, we have

Coulomb branch:��X i arbitrary,Xm = 0, ciAu arbitrary, cmAu = 0��×��Xp, qλ� arbitrary�, (8.32)
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which corresponds to a compactification on the space M . There is a subtlety following different

ways of assigning VEV’s to X i and caAu. When we sit in the the vacuum with X i’s generic but

ciAu = 0, the non-Cartan vector multiplets and hypermultiplets acquire masses. From the former

we obtain N2−N short massive vector multiplets, and from the latter, we have g(N2−N) massive

hypermultiplets. If we assign nonzero VEV also to ciAu, then the N2 −N short massive vector

multiplets absorb N2 −N of the massive hypermultiplets, forming N2 −N long vector multiplets.

The complete superfield content in this case is reported in Table 8.2.

Restricted to the weak string coupling regime, we are now ready to write down the one-loop

thermal effective action. In the Coulomb branch, it amounts to adding the tree level action (8.29)

in some vacuum (8.32) to the one-loop Coleman-Weinberg effective potential F ,

S1-loop=� d4x
√
−g �R

2
−l2@X i@X̄j

−g
(0)
pq̄ @X

p@X̄q
−
1

2
@caAu@caAu−h

(0)
λσ @q

λ@qσ−F�. (8.33)

Following the logic in obtaining Eq.(5.52), F in the present case is

F = −T 4 ��4 + 4h11 + 4(h12 + 1)�G(0) + �̂
s

G�Mŝ

T
� +O�e−Mmin

T ��, (8.34)

where the index ŝ labels all pairs of degenerate boson-fermion states in the massive vector mul-

tiplets and hypermultiplets involved in the SU(N) gauge theory and collected in Table 8.2. In

Eq.(8.34), we take the temperature to be below the lower bound Mmin > 0, in the vicinity of the

SU(N)-symmetry locus, of the remaining masses of the full string spectrum. F is minimized when

all classical masses in the SU(N) gauge sector vanish, ∀ŝ ∶ Mŝ = 0. Using the general formula

(8.31) in the Coulomb branch,

�̂
s

M2
ŝ = 16NeK

(0)
V �(g + 1)X iX̄ i + 1

l2
ciAuciAu� +�, (8.35)

this implies X i = 0, ciAu = 0. Therefore, all moduli involved in the Coulomb phase of the SU(N)
gauge theory are lifted. The kinetic terms of X i and ciAu being diagonal, it is straightforward to

compute the scalar masses induced by F using Eqs (6.36) and (6.37):

�M (1-loop)
i �2 = 1

l2
@2F

@X i@X̄ i
�
Xj=cjAu=0

= T 2

16

1

l2
�
s

@2M2
s

@X i@X̄ i
�
Xj=cjAu=0

= T 2 (g + 1) N
l2
eK
(0)
V , (8.36)

�M (1-loop)
iAu �2 = @2F

@ciAu@ciAu
�
Xj=cjAu=0

= T 2

16
�
s

@2M2
s

@ciAu@ciAu
�
Xj=cjAu=0

= T 2 2
N

l2
eK
(0)
V . (8.37)

Due to the arbitrariness in the choice of Cartan subalgebra at the origin of the Coulomb branch, we

conclude that all vector multiplet and hypermultiplet scalars Xa and caAu, even though classically

massless, have one-loop masses given by Eqs (8.36) and (8.37) respectively.
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Scalars acquiring VEV’s Superfields

In vector In hyper- Vector multiplets Hypermultiplets
multiplets multiplets Massless

(moduli)
Massive
short

Massive
long

Massless
(moduli) Massive

Coulomb
X i none N − 1 N2 −N 0 g(N − 1) g(N2 −N)

phase

X i

or none
ciAu N − 1 0 N2 −N g(N − 1) (g − 1)(N2 −N)

Higgs

phase
none

C aA mod.

gauge orbits

such that�Da = 0
0 0 N2 − 1 (g − 1)(N2 − 1) 0

Table 8.2: Superfield contents in the Coulomb and Higgs branches (when g ≥ 2) associated to the N = 2

SU(N) gauge theory coupled to g hypermultiplets in the adjoint representation, which is encountered in

the neighborhood of a non-Abelian locus in M̃V ×M̃H. The scalars Xp and q↵ of the massless spectator

vector multiplets and hypermultiplets are not represented. At special loci in the Coulomb branch, where

some Xi = Xj and ciAu = cjAu for i ≠ j, some generically massive multiplets are actually massless, and

the SU(N) gauge symmetry is broken to a non-Abelian subgroup of rank N − 1, rather than U(1)N−1.

● Higgs branch

The Higgs branch vacua are defined by the D-term constraints �Da = 0. We have

Higgs branch : ��Xa = 0,C aA such that �Db = 0�� × ��Xp, q↵� arbitrary�. (8.38)

The above conditions fix 3(N2−1) components among the 4g(N2−1) scalars caAu. Among the flat

directions that rest, another N2−1 are SU(N) gauge orbit. Fixing these gauge degrees of freedom

amounts to gauging away N2−1 would-be-Goldstone bosons. Therefore in the end 4(g−1)(N2−1)
flat directions of inequivalent vacua remain. By supersymmetry, the latter can be parameterized

by the scalars of (g − 1)(N2 − 1) neutral hypermultiplets. Thus the Higgs branch exists only for

g ≥ 2, in which case it is realized geometrically by compactifying on M ′′ with Hodge numbers

given in Eq.(4.11). Actually, N2 − 1 of the initial g(N2 − 1) hypermultiplets combine with the

Higgsed vector multiplets into N2 − 1 massive long vector multiplets, as summarized in Table 8.2.

We parameterize the Higgs branch flat directions using a set of coordinates ⇠m �m = 1, . . . ,4(g−
1)(N2 − 1)�. They satisfy fabcC bA†(⇠)σxC cA(⇠) = 0 and the Jacobian matrix �∂caAu

∂ξm
� is of rank

4(g − 1)(N2 − 1). The origin of the Higgs branch is denoted ⇠m0 . In these notations, the one-loop
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effective action of the type IIA string theory compactified on M ′′ at finite temperature is

S1-loop = � d4x
√
−g �R

2
− g
(0)
pq̄ @Xp@X̄q

− h
(0)
mn @⇠

m@⇠n − h
(0)
λσ @qλ@qσ −F�, (8.39)

where the induced metric of the ⇠m’s is

h
(0)
mn = 1

2

@caAu

@⇠m
�
⇠0

@caAu

@⇠n
�
⇠0

. (8.40)

Mimicking once more Eq.(5.52), we write down the free energy density

F = −T 4 ��4 + 4h′′11 + 4(h′′12 + 1)�G(0) + 8�
a

G�Ma

T
� +O�e−Mmin

T ��, (8.41)

where the factor 8 counts the number of boson-fermion pairs of states in the long vector multiplets

of masses Ma (a = 1, . . . ,N2−1). The contributions of all the other massive modes of the spectrum

are exponentially suppressed, when T <Mmin.

Obviously F is minimized locally when all masses Ma vanish. Applying Eq.(8.31), we have the

sum of all the mass squared

8�
a

M2
a = 16Nl2 eK(0)V caAucaAu +�, (8.42)

showing that the vanishing of all Ma is achieved only at the origin of the Higgs branch caAu = 0,
or ⇠m = ⇠m0 . Therefore all classical flat directions ⇠m are lifted. The squared mass matrix of the

⇠m’s induced by F is

Λ′′mn = 1

2
h(0)ml

@2F
@⇠l@⇠n

�
⇠0

= T 2

16

1

2
h(0)ml 8�

a

@2M2
a

@⇠l@⇠n
�
⇠0

= T 2 2
N

l2
eK
(0)
V δmn, (8.43)

where we have used the fact caAu�⇠0 = 0 to reach the last equality. Thus, the ⇠m’s are mass

eigenstates and degenerate. Since the parametrization of the Higgs branch was chosen arbitrarily,

we obtain that all scalars caAu acquire a common mass given by Eq.(8.43). Consistently, this

is the result we already found by approaching the SU(N) non-Abelian locus from the Coulomb

branch, Eq.(8.37).

The cosmology induced by the above effective actions (8.29) and (8.39) is the same as in the

case of conifold transition discussed in the end of Sec.8.1. We end up with a radiation-like universe

evolving in the pattern of Eq.(6.34), with moduli involved in the extremal transition stabilized

and spectator moduli frozen in the flat directions. The internal CY3 is dynamically attracted to

the singular configuration M̌ .
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8.3 Intersections of extremal transition loci

The previous sections have shown that with cosmological evolution, type II strings tend to settle

the vacuum at singular loci of the internal CY3. Therefore when the moduli space allows several

extremal transition loci, naturally the intersection points of these loci are the preferred choices

of vacuum. In this section we illustrate this fact with an example where the internal CY3 can

develop on the same time isolated singular nodes and a rational curve of uniform singularity.

When the type IIA(IIB) is attracted to the vacuum corresponding to this singular configuration

of the internal CY3, we will have the Kähler (complex structure) moduli space is completely lifted,

together with some of the complex structure (Kähler ) moduli. This implies in particular that the

axio-dilaton field of the heterotic dual description is stabilized.

Example: intersection of a conifold locus and a non-Abelian locus

We consider the example in [63, 64] of small Hodge number h11. The type IIA model we analyze

at finite temperature is compactified on a CY manifold M obtained by resolving the orbifold

singularities of a degree 12 hypersurface in P4
(1,1,2,2,6). Denoting the projective coordinates as

x1, . . . , x5, the ambient space presents initially a singularity of type A1 at x1 = x2 = 0. This singular

locus gives rise to a genus 2 singular curve restricted to the degree 12 hypersurface. Blowing up

the ambient space singularity we obtain the non singular Calabi-Yau space M of Hodge numbers

(h11, h12) = (2,128). Obviously, the Kähler moduli space MV admits a non-Abelian locus with

N = 2 and g = 2. Moreover we also observe a conifold locus of M , which can be revealed in the

mirror manifold.

In mirror IIB picture, the model is defined by the vanishing locus of degree 12 polynomials in

P4
(1,1,2,2,6), modded out by a Z2

6 × Z2 group. We denote this mirror CY3 by W . The most general

hypersurface consistent with this action is [46,48,63,64]

P = x12
1 + x12

2 + x6
3 + x6

4 + x2
5 − 12ψ x1x2x3x4x5 − 2φx

6
1x

6
2 , (8.44)

which admits 2 complex structure deformations, ψ and φ. Thus, the mirror Calabi-Yau space W

admits h11 = 2 Kähler moduli. Defining

z1 = − 1

864

φ

ψ6
, z2 = 1

φ2
, (8.45)

some simple algebra yields the degeneracy loci of the hypersurface P = 0 which are defined by

the vanishing of ∆c∆nA, where

∆c ≡ (1 − z1)2 − z21z2 , ∆nA ≡ 1 − z2 . (8.46)
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When ∆c = 0, isolated conical singularities arise, but are all identified by the orbifold action of

Z2
6 × Z2. Thus it is the conifold locus, with R = S = 1. Therefore the conifold does not allow

desingularization by deformation, so the resulting effective gauge theory has no Higgs branch.

The locus ∆nA = 0 is just the non-Abelian locus with g = 2 and N = 2, where the enhanced gauge

group is SU(2) [63,64]. At this singular configuration, (g−1)(N2−N) = 2 non toric deformations

are available, leading to a distinct smooth Calabi-Yau space M ′′. The ambient spaces, degrees of

polynomials and Hodge numbers of the families of CY manifolds on either side of the associated

non-Abelian extremal transition are [46, 48]

P
4
(1,1,2,2,6)[12](2,128) ←→ P

5
(1,1,1,1,1,3)[2,6](1,129). (8.47)

The conifold and non-Abelian loci intersect at two points on the compactified moduli spaceMV [63],

(z1, z2) = (1�2,1) or (∞,1). (8.48)

We are interested in the effective gauge theory near these intersection points. We carry out the

analysis in the branch M , which is the Coulomb branch of both the non-Abelian locus and the

conifold locus. We first identify h11 = 2 perturbative vector multiplets and h12+1 = 129 perturbative

hypermultiplets. The gauge group is U(1)grav ×U(1)con ×U(1)nA, where the first factor is due to

the graviphoton, the second arises from the shrinking 2-cycle at conifold point, and the third is

induced by the shrinking 2-cycle at the SU(2) enhanced symmetry point, supplying the Cartan

component of SU(2). Then in addition to the perturbative field contents, we have one blackhole

hypermultiplet charged under U(1)con., and also all the non Cartan components responsible for

the enhancement of U(1)nA → SU(2), including 2 non-perturbative vector multiplets and 4 non-

perturbative hypermultiplets. We denote the spaces of all these light vector multiplet scalars and

hypermultiplet scalars by M̃V and M̃H respectively.

Going through the same procedure as in the previous two sections, we can establish the low

energy effective action locally about the intersections (8.48). The coordinates of M̃V and M̃H can

be chosen respectively as

{X1; Xa} and {c1u; caAu; qλ}, (8.49)

a = 2,3,4; u = 1,2,3,4; A = 1,2; λ = 4 × 7 + 1, . . . ,4 × 129 + 4 × (1 + 4) .
Here X1 is the scalar partner of the U(1)con gauge boson and Xa is in the adjoint of SU(2).
Similarly, c1u are the components of the black hole hypermultiplet, while caAu are those of the two

hypermultiplets in the adjoint of SU(2). The scalars of the 127 hypermultiplets that are neutral

with respect to U(1)con × SU(2) are denoted qλ. The conifold locus is given by X1 = 0 = c1u, and
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the non-Abelian locus is given by Xa = 0 = caAu. We call the intersection of the tow loci P0. The

local effective action around P0 takes the form

Stree=� d4x
√
−g �R

2
− l21 @X

1@X̄1
− l2∇Xa

∇X̄a
−
1

2
∇c1u∇c1u −

1

2
∇caAu∇caAu − h

(0)
λσ @qλ@qσ

− eK
(0)
V �2 �X1�2 c1uc1u + 1

4l21
(c1uc1u)2�

− eK
(0)
V �l2[X, X̄]a[X, X̄]a + 2[X, cAu]a[cAu, X̄]a + 1

4l2
�Da
⋅ �Da� +��, (8.50)

where we have expanded all the quantities in terms of the vanishing scalar fields and keep only

the leading order. We have l21, l2 the non-vanishing leading-order components of the Kähler

metric on M̃V at P0, and h
(0)
λσ the leading-order metric at P0 of the subspace spanned by neutral

hypermultiplet scalars {qλ} in M̃H. The D-terms �Da are just as defined in Eq.(8.30).

We notice in the action (8.50) that the part concerning the conifold locus and the part con-

cerning the non-Abelian locus are completely decoupled, so the analysis of moduli stabilization

in Sec.8.1 and Sec.8.2 can be applied to the two parts separately. Since the conifold locus does

not lead to a Higgs branch, we examine the Coulomb and the Higgs branch of the SU(2)-singular

locus, corresponding to the internal spaces of M and M ′′.

The one-loop corrections attracts the scalars X1,Xa, c1u and caAu at zero and these scalars

acquire masses of order the temperature scale, while the qλ’s remain flat directions of the thermal

effective potential. Moreover, the full U(1)grav ×U(1)con ×SU(2) gauge theory is restored. In the

Coulomb branch corresponding to compactification on M , we have:

● The h11 = 2 Kähler moduli are stabilized in one of the two minima given in Eq.(8.48). Note

that these two Kähler moduli are some reparameterization of z1 and z2 in Eq.(8.46).

● The scalars of g(N −1) = 2 hypermultiplets are stabilized at the origin of the Coulomb branch

of SU(2) inMH.

● The scalars of the h12 + 1 − g(N − 1) = 127 left-over hypermultiplets remain flat directions inMH.

Similarly, sitting in the Higgs branch, corresponding to compactification on M ′′, we have:

● The h′′11 = 1 complexified Kähler modulus parameterizingM′′
V is stabilized.

● The scalars of (g − 1)(N2 − 1) = 3 hypermultiplets are stabilized at the origin of the Higgs

branch of SU(2) inM′′
H.

● The scalars of the h′′12+1−(g−1)(N2−1) = 127 left-over hypermultiplets remain flat directions

inM′′
H.
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The heterotic dual

At zero temperature the type IIA string compactified on M has a heterotic dual compactified on

K3 × T 2, due to the fact that the family P4
(1,1,2,2,6)[12] are K3-fibrations [65]. The dual heterotic

model is constructed in [66], which contains the axio-dilaton modulus Sh and the modulus Th of

the torus as vector multiplet moduli. The other torus modulus Uh is identified with Th: in fact

Th − Uh is projected out. The heterotic model also has 129 hypermultiplet moduli. The duality

map for the vector multiplet moduli can be more precisely specified in the large complex volume

limit, Sh → +∞, under which one has

z1 = 1728

j(Th) +�, z2 = e−Sh +�, (8.51)

where j is the SL(2,Z)-invariant modular form. Therefore, z2 → 0 and the two roots of the

discriminant locus ∆c in Eq.(8.46) merge into z1 = 1. Actually, the heterotic string develops an

SU(2) enhanced gauge symmetry when Th = i modulo the classical T-duality group SL(2,Z), in

perfect agreement with Eq.(8.51) for z1 = 1. This SU(2)-enhancement should not be confused with

the SU(2) gauge group occurring at the type II non-Abelian locus. Moreover, when Sh is finite,

the conifold locus splits into two branches, as predicted by the exact pure SU(2) N = 2 super-

Yang-Mills theory [41]. Being asymptotically free, the latter reduces in the IR to a U(1) gauge

theory coupled to a single (dyonic) hypermultiplet, realized as U(1)con in the type II setup [67,68].

This duality stay valid when we switch on finite temperature on both theories. This follows

from the adiabatic argument in [59] mentioned in the beginning of Chapter 7. Therefore, the

stabilization of the complex structure moduli z1, z2 of W at one of the two points in Eq.(8.48)

translates immediately into a stabilization of the torus modulus Th and axio-dilaton Sh in the dual

heterotic model at finite temperature. As seen in Eq.(8.51), the obtained value of Sh corresponds

to a strong coupling regime of the heterotic theory.

Discussion

In the specific example we have shown the possibility of lifting the whole Kähler moduli space,

and the stabilization of the axio-dilaton modulus in the dual heterotic string theory. However

this situation is not a luxury arising only in delicately coined-up models, but is general. Let us

stay in the type IIA picture. On general grounds, one can make all (1,1)-type 2-cycles in a CY3

shrink to zero size by sitting at the tip of the Kähler cone. Since shrinking 2-spheres imply extra

massless D2-brane states, locally the locus where all (1,1)-type 2-cylces vanish gives rise to a

maximum number of massless states. Therefore the tip of the Kähler cone can attract all Kähler
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moduli. It follows that the whole vector multiplet moduli space is lifted in the dual heterotic

theory compactified on K3×T 2. Therefore the flat direction of the heterotic dilaton can be lifted

since it lives in a vector multiplet. Mirror symmetry implies that there exists also a locus where

all (1,2)-type 3-cycles in the CY3 shrink to zero size. However this locus attracts only part of the

complex structure moduli with the mechanism considered in this chapter because the latter infers

extra massless states only for the cases where shrinking 3-spheres can be resolved to 2-spheres.

Finally we are left with the moduli in the universal hypermultiplet. They cannot be stabilized

by the mechanism considered in this chapter, since they are not associated to the geometrical

deformations of the CY3. Maybe the stabilization of the hypermultiplet moduli can be inferred

from the dual heterotic side, since the hypermultiplet moduli space is exact for heterotic string

compactified on K3 × T 2.
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Chapter 9

Conclusion

In this thesis, we depicted systematically string theory approach to cosmology at finite tempera-

ture, from the underlying principles, the theoretical setup until the applications. To conclude, we

summarize the essential points below.

The thermal/quantum induced cosmology

After introducing necessary string theory elements, we have set up the thermal string scenario,

which has the goal of describing cosmology in a single unified theoretical framework. The basic

assertion is to let the cosmological evolution be dictated by the effective supergravity of the string

theory. Thus all aspects in cosmological evolution: spacetime metric evolution, matter contents,

interactions are all derived from first principle, and unified in one single quantum description. This

overcomes the drawback of ΛCDM model that matter contents are postulated and that gravity is

not quantized.

The tree level effective supergravity only allows trivial static solutions with flat or AdS back-

ground. It is only after taking into account thermal/quantum corrections beyond tree level that

the universe sets out to evolve nontrivially. Given that the cosmological constant is small, we

choose the no-scale type supergravity at tree level which have vanishing cosmological constant.

We restrict ourselves to weakly coupled regime, and compute the thermal/quantum corrections

perturbatively up to one-loop level. In fact this one-loop correction is just the string partition

function computed against a thermal background, and it induces a Colemann-Weinberg effective

potential pending to the tree-level effective action. It then turns out that the corrected effective

action describes a universe filled with an ideal string gas at finite temperature, and the one-loop

effective potential is nothing but the Helmholtz free energy density. An overview of thermal string
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cosmological evolution is illustrated in the thesis, which we summarize here in the chronological

order.

The thermal one-loop amplitude in string theories meets with Hagedorn singularity at high

temperature, due to the exponential growth with mass level of the number of modes that can be

thermalized. This makes the thermal string scenario be applicable only at the moment when tem-

perature becomes low enough. We call the previous cosmological era the Hagedorn era. Actually

since the Hagedorn singularity is the signal that the string theory is at the point of undergoing

a phase transition, the cosmology does not break down in Hagedorn era but should be described

by another phase of string theory. It is expected that a dynamical description of this Hagedorn

phase transition in cosmology can lead to a solution to the initial Big-Bang singularity. In fact it

is realized in [11] that toroidal type II compactifications in presence of “gravito-magnetic” fluxes

lead to thermal models, free of Hagedorn-like divergences. The induced cosmological evolutions

include bouncing [12, 13] or emerging universes [14], where no initial singularity is encountered,

and the model remains in a perturbative regime.

At the exit of Hagedorn era the cosmological evolutions carry some common features con-

forming to sensible phenomenology. i) The effective potential lifts flat directions, and moduli

can be stabilized at the local minima, obtaining time dependent masses. ii) The spontaneous

supersymmetry breaking scale M drops proportionally with temperature, generating the hierar-

chy M � MPlank. iii) Dilaton can always be controlled at small values so that the perturbative

computation is always valid. iv) The evolution is that of a radiation dominated universe, although

the coherent motion of M store an amount of energy proportional to that of radiation. Therefore

this pattern of evolution is named as “radiation-like”. v) Such radiation-like evolution is insensitive

to the initial conditions at the exit of the Hagedorn era, and is the result of dynamical attraction.

The radiation-like evolution stops at some moment, and it has to since otherwise the super-

symmetry scale would drop to zero, leading to the restoration of supersymmetry. In fact at the

electroweak scale Λew, infrared effects become relevant, which destabilizes the Higgs potential,

triggering the electroweak phase transition, and meanwhile stabilizes the supersymmetry breaking

scale at about Λew. Soon after, matter formation takes place and the universe enters into the era

of standard cosmology. It should be mentioned that when the supersymmetry breaking scale is

stabilized at about Λew, a cosmological constant of order M4 will be generated (c.f. Eq.(6.50)).

Thus the thermal string scenario has not yet able to explain the small cosmological constant.
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Moduli stabilization

Cosmological solutions that are phenomenologically viable should have moduli stabilized. The

last two chapters are concentrated on this aspect. The goal is to figure out local minima of the

effective potential induced by thermal/quantum effects, since it is shown in Chapter 6 that such

minima can stabilize moduli in the intermediate era. This issue has been studied in previous works

where only perturbative effects were investigated. The works presented in this thesis attempt to

identify non-perturbative effects.

We first considered toroidally compactified heterotic and type I superstrings at finite tem-

perature. In the heterotic picture, it is shown that all internal moduli except the dilaton are

dynamically stabilized at points with enhanced gauge symmetry. The latter are due to perturba-

tive F-string states. The subtlety for dilaton is that in D ≥ 5, the dilaton asymptotes to a constant

value, while in D = 4, the dilaton turns out to have a logarithmically decreasing behavior.

Applying the type I/heterotic S-duality maps, we inferred novel contributions to the free

energy of a gas of type I superstrings, which are due to BPS D-string wrapping internal compact

directions. These D-string states become massless at certain points of moduli space, enhance the

gauge group and lift flat directions in the closed string sector. This is in contrast to the result

from naive perturbative computation in the type I string, where perturbative effects can only lead

to moduli stabilization in the open string sector, while in the closed string sector, moduli are

always flat directions, and no perturbative states can induce enhanced gauge symmetry. Thus

cosmological evolution dynamically attract the system to enhanced symmetry points, where the

enhanced gauge symmetries induced by non-perturbative effects should be treated on equal footing

with those induced by perturbative effects.

In particular, the type I moduli stabilization inferred from heterotic side should be discussed

for different dimensions. For D ≥ 7, all type I internal moduli can be stabilized at strong coupling,

and the dilaton is fixed at some value in the flat direction. For D = 6, the S-duality maps the

heterotic string coupling into the type I volume modulus. It turns out that the type I dilaton is

stabilized at the value corresponding to weak coupling regime, while the internal volume modulus

asymptotes to some value in the flat direction. In case D = 5, all type I internal moduli can be

stabilized at weak coupling, while the dilaton is frozen in the flat direction. Finally for D = 4,

the internal moduli can be stabilized while type I dilaton inherits the logarithmic behavior from

the heterotic side, and the dilaton motion drives the system deeper into weak coupling regime. It

should be stressed that the effects of the massless BPS non-perturbative D-strings persist at weak

coupling, as their masses are protected by supersymmetry. However since these D-string states

are in strong coupling regime, their exact contributions to the free energy density is not clear, and
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it is expected that a direct computation of E1-instanton in the weak coupling regime of type I

string can answer to this problem.

In the second work, we address the question of moduli stabilization in the context of type II

superstring theory compactified on CY3’s. Flat directions of the classical potential exist, which

can be organized as a product of special Kähler and quaternionic manifolds, as follows from N4 = 2
local supersymmetry. These moduli spaces admit singular loci, where the internal manifold has

2-cycles or 3-cycles collapse, rendering generically massive supermultiplets massless. We exam-

ined, in type IIA description, the cases where BPS D2-branes wrapping vanishing 2-cycles lead to

hypermultiplets charged under U(1) factors at conifold loci [20], or SU(N) enhanced gauge sym-

metries coupled to g hypermultiplets at some “non-Abelian loci” [46]. We show that in the weak

coupling regime, moduli are attracted at such particular points in the thermal string cosmology.

At tree level we “integrate in” the above non-perturbative light states in the effective su-

pergravity action. This repairs IR divergence in the Wilsonian effective action. The one-loop

Colemann-Weinberg effective potential is computed based on the tree level action using field the-

ory method, and the result depends on the masses of the light non-perturbative states. This

computation is valid when the temperature is low enough. Local potential minima arise precisely

where the light fields become massless.

The scalars that are stabilized are those involved in the gauge theories geometrically engineered

in the vicinities of the loci where the internal CY3 is singular. In type IIA description on general

grounds, all Kähler moduli can be stabilized at the locus corresponding to the tip of the Kähler

cone. It is because all 2-cycles in H11 shrink to zero size at this point and therefore the states from

D2-brane wrapping the shrinking spheres become massless. On the other hand the mechanism

that we study can stabilize the complex structure moduli associated to shrinking 3-cycles that

can be desingularized by blowing up. The universal hypermultiplet cannot be stabilized by this

mechanism since it is not associated the geometrical deformation of the CY3. We have shown

an example of h11 = 2 and h12 = 128, in which the whole Kähler moduli space is lifted near the

intersection of a conifold locus and an SU(2) enhanced symmetry locus. Also some of the complex

structure moduli are stabilized.

Perspective

We are still left with plenty of unsolved problems in the thermal string cosmology. Based on

the work on type II strings in Chapter 8, we would like to extend the analysis to the type II

models compactified on generalized Calabi-Yau spaces [69], including fluxes, branes or orientifold
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projections. We expect that the presence of these extra objects and structures can provide novel

mechanisms for moduli stabilization. Moreover this setup leads to N4 = 1 backgrounds which is

phenomenologically more viable.

We can further consider its extrapolation into the Hagedorn era, implementing the “gravito-

magnetic” fluxes [11] in (generalized) Calabi-Yau compactifications of type II strings and it will

be interesting to see if this can give a theoretical framework able to account for very early cos-

mological time. In addition to addressing the problems of dynamical description of the Hagedorn

phase transition and the resolution of the Big-Bang singularity, another significant aspect in the

Hagedorn era is the possibility of achieving an alternative to the inflationary scenario in the early

universe.

Moreover it is always of great interest to investigate the standard cosmology era, in order

to make connection to the observable universe. For this we need a background with N4 = 1

supersymmetry spontaneously broken at zero temperature, which is necessary to obtain MSSM-

like model containing chiral matter. For exact computation, the fermionic contribution of heterotic

string models [35] can be an efficient tool for constructing such models. We can carry out, in such

context, the analysis in [9,10] to unravel the infrared effects that can stabilize the supersymmetry

breaking scale, and the work is in progress. After stabilizing the supersymmetry breaking scale,

moduli acquire real physical masses which are constant and meanwhile the electroweak phase

transition takes place and the standard matter content starts to form. It is only after this moment

that we can address the problem concerning the standard observable universe such as the problem

of dark matter.
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Appendix A

Computation of canonical partition

function of ideal gas

The goal of this appendix is to show all the technical details that Chapter 5 is based on. In the

first two sections we will compute the partition function Z = Tr e−βH for an ideal gas of point

particles, showing the equivalence of the results expressed in different forms. In the third section

we include mathematical formulae useful in the computation.

A.1 Second quantization computation

The second quantized action describing one particle degree of freedom in the Euclidean space of

dimension D is

S = � dDxφ �−�E +M2�φ, (A.1)

where�E = @2
0 + �∇2, and M is the mass. Note that this action can also describe one fermion degree

of freedom where φ is a real grassmanian variable. The canonical partition function Z = Tr e−βH
can be evaluated by the path integral

lnZB,F = ln �� Dφ e−S[φ]� = ln �Det� −�E +M2��∓1�2 = ∓1
2
Tr ln � −�E +M2�. (A.2)

with the Euclidean time compactified on a circle of radius R0 = β�2⇡, and wave function taking

periodic boundary condition for boson and anti-periodic boundary condition for fermion. Here we

derive the results in the two distinct forms that are used in Chapter 5.

122



Standard formulae of canonical ensemble

Thus for a bosonic degree of freedom

lnZB = − 1

2
Tr ln �−�E +M2� = − VD−1

2(2⇡)D−1�m � d�p ln�m2

R2
0

+ �p2 +M2�
= − VD−1

2(2⇡)D−1�m � d�p ln�m2

R2
0

+ !2
p�

= − VD−1

2(2⇡)D−1 � d�p � ln�
m∈Z

!2
p + ln�

m∈Z
�m2

R2
0

+ !2
p��, (A.3)

where !p = ��p2 +M2. Using Eqs.(A.44) and (A.46) it is not hard to see that ∏m !2
p = 1 and

∏m � m2

R2

0
!2
p
+ 1� = 4 sinh2(⇡R0 !p). Therefore resuming the calculation in Eq.(A.3),

lnZB = − VD−1

2(2⇡)D−1 � d�p ln �4 sinh2 �⇡R0 !p��
= − VD−1(2⇡)D−1 � d�p �1

2
β!p + ln �1 − e−β!p��. (A.4)

For a fermionic degree of freedom, we have

lnZF =1
2
Tr ln � −�E +M2� = VD−1

2(2⇡)D−1�m � d�p ln �(m + 1�2)2
R2

0

+ �p2 +M2�
= VD−1

2(2⇡)D−1 � d�p� ln�
m∈Z

!2
p + ln�

m∈Z
�(m + 1�2)2

R2
0

+ !2
p��. (A.5)

Using the formula (A.49), we have

lnZF = VD−1

2(2⇡)D−1 � d�p ln �4 cosh2 �⇡R0 !p��
= VD−1(2⇡)D−1 � d�p �1

2
β!p + ln �1 + e−β!p��. (A.6)

Schwinger parameter representation

We can obtain an equivalent form of the above results, by using the integral representation of the

logarithmic function Eq.(A.52) in evaluating the path integral Eq.(A.2).

lnZB = − 1

2
Tr ln �−�E +M2� = 1

2
Tr � ∞

0

d`

`
�e−`�−�E+M2�

− e−`�
= VD−1

2(2⇡)D−1�m � d�p� ∞

0

d`

`

������e
−`�m2

R2
0

+�p2+M2�
− e−`
������ , (A.7)
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where ` is the Schwinger parameter, whose physical interpretation is the proper time that a

particle spends to close up a loop trajectory. This will be better clarified in the first quantization

computation in Sec.A.2. The second term in the bracket above, which integrates up to infinity,

is completely irrelevant since it contains no physical information. Therefore it can be discarded

naively. In fact the Riemann-Zeta regularization of the sum over m also yields zero. Then we

integrate over the spatial momentum �p using Eq.(A.51) and Poisson resum over m using Eq.(A.50),

and we get

lnZB = βVD−1

2(4⇡)D�2�m �
∞

0

d`

`1+D�2 exp �− ⇡2R2
0

`
m2
− `M2�

= βVD−1

2(2⇡)D�m �
∞

0

d`

`1+D�2 exp �− ⇡R2
0

`
m2
− ⇡`M2�, (A.8)

where in the second line we have simply recaled the Schwinger parameter, so that the expression

is more adapted to string theory language. The case of one fermion degree of freedom proceeds

similarly, which yields the fermionic counterpart of Eq.(A.7)

lnZF = 1
2
Tr ln �−�E +M2� = −1

2
Tr � ∞

0

d`

`
�e−`(−�E+M2)

− e−`�
= − VD−1

2(2⇡)D−1�m � d�p� ∞

0

d`

`
�e−` � (m+1�2)2R2

0

+�p2+M2�
− e−`�, (A.9)

where the shift on the summing index m+1�2 is due to the anti-periodic boundary condition. Then

we remove the physically irrelevant infinity, and now the Poisson resummation and the integral

over �p gives

lnZF = βVD−1

2(4⇡)D�2�m �
∞

0

d`

`1+D�2 (−1)m+1 exp �−
⇡2R2

0

`
m2
− `M2�

= − βVD−1

2(2⇡)D�m �
∞

0

d`

`1+D�2 (−1)m exp �− ⇡R2
0

`
m2
− ⇡`M2�. (A.10)

Equivalence check

The above two formalisms, Eqs (A.4,A.6) and Eqs (A.8,A.9) are obtained through different ways

and have nothing to do with each other by appearance. Here we show directly that they are the

same thing up to a physically irrelevant infinity. Using Eq.(A.53), we have, for any n ≠ 0,

1

(2⇡)D �
∞

0

d`

`1+D�2 exp�− ⇡R2
0

`
n2
− ⇡ `M2� = 2� M

2⇡nβ
�D2 KD

2

�nβM�, (A.11)
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On the other hand, using Eqs.(A.54) and (A.58), we have

1

(2⇡)D−1 � d�p e−nβ!p = 2βn� M

2⇡nβ
�D2 KD

2

�nβM�. (A.12)

Thus combining the above two equations, we get

β

(2⇡)D �
∞

0

d`

`1+D�2 exp�− ⇡R2
0

`
n2
− ⇡ `M2� = 1

(2⇡)D−1 � dD−1p
e−nβ!p

n
, (A.13)

for n > 0. Summing up the two sides over n, we have

β

2(2⇡)D �m≠0�
∞

0

d`

`1+D�2 exp�− ⇡R2
0

`
m2
− ⇡ `M2�

= 1

(2⇡)D−1 �n>0� d�p e−nβ!p

n
= − 1

(2⇡)D−1 � d�p ln �1 − e−β!p�; (A.14)

β

2(2⇡)D �m≠0�
∞

0

d`

`1+D�2 (−1)m+1 exp�− ⇡R2
0

`
m2
− ⇡ `M2�

= 1

(2⇡)D−1 �n>0� d�p (−1)n+1 e−nβ!p
n
= 1

(2⇡)D−1 � d�p ln �1 + e−β!p�. (A.15)

With the above equalities we are almost allowed to say that Eqs(A.4) and (A.6) are equivalent

to Eqs (A.7) and (A.9), but we still have to sort out the vacuum bubble contribution. Then we

examine the zero modes in Schwinger parameter representation, that is the m = 0 term in Eq.(A.8)

or (A.10). We regard the zero mode as the limit n→ 0 of Eq.(A.13), and therefore

± βVD−1

2(4⇡)D�2 �
∞

0

d`

`1+D�2 exp �− `M2� = ± lim
✏→0

VD−1

2(2⇡)D−1 � d�p e−✏β!p

✏

= ± lim
✏→0

VD−1(2⇡)D−1 � d�p � − 1

2
β!p + 1

✏
+O(✏)�

= ∓ VD−1(2⇡)D−1 � d�p 1
2
β!p + (irrelevant infinity) (A.16)

where the last line is just the vacuum bubble contribution in the standard formalism with a non

physical infinity. This completes the equivalence check

A.2 First quantization computation

In Sec.5.1 we stated that lnZ= , which can be evaluated by first quantization formalism. Here

we perform the explicit calculation. The action describing a relativistic free particle of mass M in
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the Euclidean space is1

S = 1

2
� 1

0
dt
√
g �gtt ẋ2 +M2�, (A.17)

where t is the Euclidean proper time parameterizing the worldline of the particle, and gtt = gtt(t)
the metric of the worldline. The target Euclidean space is taken to be Cartesian of dimension D,

and in the above action, ẋ2 actually means δijẋiẋj. For simplicity in the following contents, we

keep implicit the sum or the product over the Euclidean space dimension. Often one takes gtt = e2
with e > 0, so that we have the very familiar form

S = 1

2
� 1

0
dt�e−1 ẋ2 + em2�. (A.18)

This action is invariant under diffeomorphisms, which is the gauge symmetry of the system: δx = ✏,
δgtt = 2gtt∇t ✏, where ∇t is the covariant derivative with Levi-Civita coefficient Γttt = 1

2
@t ln gtt .

The loop amplitude, in terms of path integral, is

= � DgDx
Vol(Diff) e−S[g,x], (A.19)

where Dx = Dx0 . . .DxD−1 is understood. Since the topology of the particle trajectory is a circle

instead of a segment, the diffeomorphism group contains an isometry subgroup generated by Killing

vectors. This isometry gauge redundancy is clearly missed by the path integral over the metric

∫ Dg, since when performing this path integral, each different value of g⌧⌧ is counted only once.

However one still needs to divide by the volume of the whole diffeomorphism group Vol(Diff) to

remove the gauge redundancy, because the isometry redundancy missed by ∫ Dg is actually picked

up by ∫ Dx. Another subtlety is that all the possible metrics gtt are not on the same gauge orbit.

Distinct gauge orbits are labeled by the Teichmüler parameters which for our case, is the perimeter

of the circle: ` = ∫ 1

0
dt
√
g > 0. By definition, ` is gauge invariant, so that two gauge orbits of

different ` never intersect each other, and also, any arbitrary metric gtt can be transformed into a

constant one equal to its Teichmüler parameter squared: ĝtt = `2, by a diffeomorphism.

Now we perform gauge fixing using Polchinski’s technique. We insert in the path integral

(A.19) a constant functional of gtt:

1 =∆FP(g)� ∞

0
d`� D′⇠ δ�gtt − T⇠ `2�, (A.20)

where T⇠ denotes the diffeomorphism generated by the vector field ⇠(t), `2 is regarded as a constant

metric, and the path integral ∫ D′⇠ excludes the zero mode of ∇t, that is, the Killing vectors. Also

1Throughout this section S always denote the action in first quantization formalism, not to be confused with

the action Eq.(A.1) in second quantization formalism.
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it can be shown that the Faddeev-Popov determinant is gauge invariant: ∆FP(T⌘ g) = ∆FP(g).
This insertion gives

=� DgDx
Vol(Diff)∆FP(g)� ∞

0
d`� D′⇠ δ�gtt − T⇠`2� e−S[g, x].

=� ∞

0
d`� DxD′⇠

2Vol(Diff0)∆FP(T⇠`2) e−S[T⇠`2, x] (A.21)

Passing to the second line, we have only performed the integral ∫ Dg, which is calculable thanks to

the presence of the δ-functional. Also in the second line, Diff0 denotes the connected component

of the diffeomorphism group containing the identity element. The rest of the diffeomorphism

group Diff−Diff0 is also a connected component, which is simply the composition of Diff0 to a

time reversal in the worldline t→1 − t. Thus we have Vol(Diff) = 2Vol(Diff0). A very important

point here is that Vol(Diff0) can depend on the Teichemüler parameter, which we will see very

soon, so that it is put inside the integration over `. From the volume Vol(Diff0) we can further

factorize out the volume generated by isometries: Vol(Diff0) = Vol(Diff�0 )Vol(KV0), where Diff�0
is the subgroup generated by non-Killing vectors whose volume satisfies ∫

D′⇠
Vol(Diff�

0
) = 1, and KV0

is the subgroup of isometries. Therefore in Eq.(A.21), replacing the mute variable x with T⇠x,

and making use of the gauge invariance of the action, the Faddeev-Popov determinent and the

measure Dx, we obtain

=1
2
� ∞

0
d`� D�T⇠x�D′⇠

Vol(Diff�0 )Vol(KV0)∆FP(T⇠`2) e−S[T⇠`2,T⇠x]

=1
2
� ∞

0
d`� D�T⇠x�D′⇠

Vol(Diff�0 )Vol(KV0)∆FP(T⇠`2) e−S[`2, x]
=1
2
� ∞

0
d`� Dx

Vol(KV0)∆FP(`2) e−S[`2, x] (A.22)

Now we proceed to evaluate the Faddeev-Popov determinant ∆FP. Generically the metric variation

based on a reference metric, following a diffeomorphism ⇠ and a variation δ` in the Teichmüler

parameter reads

δgtt = 2 gtt∇t⇠ + �@` gtt� δ` = 2∇t�gtt ⇠� + �@` gtt� δ` . (A.23)

Thus the Faddeev-Popov determinant has the integral representation

∆FP(gtt) =� DbD′c dλ exp�� 1

0
dt
√
g b�2∇tc + �@` gtt�λ��

=� DbD′c �b, @` gtt� exp�2� 1

0
dt
√
g b∇tc�. (A.24)
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In the above expression, λ is a grassmannian variable, while b and c are the anti-ghost and the

ghost fields with tensor structures (2,0) and (0,1) respectively. The path integral over c does not

include the zero mode of ∇t. From the first line to the second line, we have integrated over λ, with�b, @`gtt� the shorthand notation for ∫
1

0
dt
√
g b @`gtt . To compute Eq.(A.24) explicitly, we take the

gauge gtt = `2, so that @`gtt = 2`, ∇tc = @tc, and therefore Eq.(A.24) becomes

∆FP(`2) =� DbD′c �b,2 `� exp�2� 1

0
dt ` b @tc�. (A.25)

Now we choose the orthonormal basis functions with periodical boundary condition

φk(t) = `− 1

2 e2⇡i k t where k = 0,±1,±2, . . . , (A.26)

and expand the ghost fields against this basis:

c(t) = �
k≠0

ck φk(t), b(t) = �
k

bk φk(t), where c−k = c†
k and b−k = b†k . (A.27)

To obtain the integration measures of them, we compute the norms of b and c as if they were

non-grassmannian:

��b��2 =� 1

0
dt
√
g gttgtt b

2 = `4 �
k

�bk�2, (A.28)

��c��2 =� 1

0
dt
√
g gtt c2 = `−2 �

k≠0
�ck�2. (A.29)

This yields the integration measures

Db =�
k

dbk

`2
=�

k

dbk, (A.30)

D′c =�
k≠0

`2dck = `−1�2�
k≠0

dck . (A.31)

Here we have regularized with ∏∞n=1 a = a−1�2. We also compute easily

�b,2 `� =� 1

0
dt2 `3�2b = 2 `3�2 b0, (A.32)

2� 1

0
dt ` b @tc = �

k

4⇡i k b−kck. (A.33)

Thus resuming Eq.(A.25), we get

∆FP(`2) = � DbD′c �b,2 `� exp�2� 1

0
dt ` b @tc�

= 2√`� db0 b0�
k≠0
� dckdb−k exp�4⇡i k b−kck�

= 2√`�
k≠0

4⇡i k = 2√` ∞�
n=1
�16⇡2n2� =√`. (A.34)
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Here we used the regularization ∏∞n=1 ns = (2⇡)s�2. We can perform the same trick to compute the

path integral of Dx in Eq.(A.22). Separating the quantum fluctuation from the classical solutions

x(t) = xcl(t) + δx(t), expanding the quantum fluctuation against the orthonormal basis (A.26):

δx(t) = ∑k δxk φk(t) with δxk = δx∗−k, we compute the norm in terms of the coefficients

��δx��2 = δx2
0 + 2 ∞�

n=1
��δxRe

n �2 + �δxIm
n �2�. (A.35)

The target Euclidean space dimension is summed over implicitly. The integration measure for δx

is

Dδx = dx0

∞

�
n=1

2dxRe
n dxIm

n = 1

2D�2dx0

∞

�
n=1

dxRe
n dxIm

n , (A.36)

where again, the indices denoting the target space dimensions are not explicitly written out. On

the other hand, the point-particle action after gauge fixing becomes

S[`2, x]=S[`2, xcl] + 1

2
� 1

0
dt `−1�δẋ�2 = S[`2, xcl] + ∞�

n=1
�2⇡n

`
�2��δxRe

n �2 + �δxIm
n �2�. (A.37)

Thus we are able to evaluate the path integral

� Dxe−S[`2,x] = �
xcl

e−S[`
2,xcl]� Dδx exp � − 1

2
� dt `−1�δẋ�2�

=�
xcl

e−S[`
2,xcl] 1

2D�2 � dx0

∞

�
n=1
� dxRe

n dxIm
n exp� − �2⇡n

`
�2��δxRe

n �2 + �δxIm
n �2��

=�
xcl

e−S[`
2,xcl] VD� `

2
�D�2 ∞�

n=1
� `2

4⇡ n2
�D = VD(2⇡`)D�2�xcl e

−S[`2,xcl]. (A.38)

Here since the zero mode coefficent δx0 is with respect to the basis 1�√`, its integration gives

the target space volume VD dressed by `D�2. The last element in Eq.(A.22) to evaluate is the

isometry group volume Vol(KV0). In the gauge gtt = `2, the killing vectors are just the vector

with constant component ⇠0 = const. ∈ [0,1), and the isometry group volume is the path integral

Vol(KV0) = ∫ D⇠0. The norm of such Killing vectors is ��⇠0��2 = ∫ 1

0
dt
√
g gtt⇠

2
0 = `3⇠20 , and therefore

the path integral is evaluated as Vol(KV0) = ∫ 1

0
`3�2d⇠0 = `3�2. Plugging this result, the Faddeev-

Popov determinant Eq.(A.34), and the path integral Eq.(A.38) into Eq.(A.22), we obtain the

result for the loop amplitude

= VD

2(2⇡)D�2 �
∞

0

d`

`D�2+1�xcl exp�−S[`2, xcl]�. (A.39)

Finally we switch on finite temperature T , where the Euclidian time is compactified on a circle

of radius R0. The inverse temperature is just the perimeter of the circle β = 2⇡R0. The classical
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solutions are those describing the particle circulating the time circle:

x0
cl(t) = 2⇡mR0 t, xi≥1cl ≡ const., where m = 0,±1,±2, . . . (A.40)

Thus S[`2, xcl] = 2⇡2m2R2

0

`
+ `M2

2
, and the sum over the classical solutions becomes the sum over

m. Thus taking into account the different boundary conditions for boson and fermion, Eq.(A.39)

becomes

= βVD−1

2(2⇡)D�2 �
∞

0

d`

`D�2+1�m (−1)Fm+F exp�−
2⇡2m2R2

0

`
−
`M2

2
�. (A.41)

with F = 0 for boson and F = 1 for fermion. To switch to string theory language, we rescale

`→ 2⇡`, and obtain

= βVD−1

2(2⇡)D �
∞

0

d`

`D�2+1�m (−1)Fm+F exp�−
⇡R2

0

`
m2
− ⇡ `M2�, (A.42)

which contains the correct overall coefficient βVD−1
2(2⇡)D in string theories.

A.3 Mathematical formulae

◇ Riemann-Zeta regularizations:

�
n≥1

na = e−a⇣′(0) = (2⇡)a�2; (A.43)

�
n≥1

a = a⇣(0) = a−1�2. (A.44)

◇ Infinite product representation of (hyper-)trigonometric functions :

�
k∈Z
(k + a) = a�

n≥1
�a2 − n2� = 2i sin (⇡a). (A.45)

�
n≥1
�n2
− a2� = 2a−1 sin (⇡a); �

n≥1
�n2 + a2� = 2a−1 sinh (⇡a). (A.46)

�
k∈Z
�k ± 1

2
+ a� = ±2i cos (⇡a). (A.47)

�
k∈Z
��k + 1

2
�2 − a2� =�

k∈Z
��k + 1

2
+ a��k − 1

2
+ a�� = 4 cos2 (⇡a); (A.48)

�
k∈Z
��k + 1

2
�
2 + a2� = 4 cosh2 (⇡a). (A.49)

130



◇ Poisson resummation and Gaussian integral :

�̃
m

e−⇡m̃
TAm̃+2⇡ibTm̃ = 1√

detA
�
m

e−⇡(m−b)
TA−1(m−b). (A.50)

� ∞

−∞
dx exp�−1

2
xTAx� = det� A

2⇡
�−1�2 . (A.51)

◇ Integral representation of logarithmic function :

lnA = −� ∞

0

d`

`
�e−A` − e−`�. (A.52)

◇ Modified Bessel functions of the second kind :

� ∞

0

d`

`1+ν
exp �−A

`
−B `� = 2 �B

A
� ν

2

Kν�2√AB �, (A.53)

� ∞

0
pndp e−β

�
p2+M2 = 2

n

2√
⇡
Γ�n + 1

2
�M�M

β
�n

2

Kn+2
2

(βM). (A.54)

Kν(x) ∼ 2ν−1Γ(⌫)x−ν − 2ν−3Γ(⌫ − 1)x2−ν + . . . (x ∼ 0) ; (A.55)

Kν(x) ∼ e−x
�

⇡

2x
+ . . . (x ∼∞) . (A.56)

◇ Others :

ln(1 + x) = ∞�
n=1

(−1)n+1
n

xn, ln(1 − x) = − ∞�
n=1

xn

n
. (A.57)

dnx = n⇡
n

2

Γ�n
2
+ 1�xn−1dx . (A.58)

131



Appendix B

Equations of motion in cosmology

We derive the equations of motion of cosmology adapted to string theory language. Consider the

Robertson-Walker metric containing a spatial curvature

ds2 = −N2(t)dt2 + a2(t) � dr2

1 + k r2 + r2dΩ2
D−2�, (B.1)

where dΩ2
D−2 is the metric of SD−2, which can be expressed explicitly as

dΩ2
D−2 = d✓21 + sin2✓2�d✓3 + sin2✓3�d✓24 + . . . ��. (B.2)

From the metric one deduces the Einstein tensor and the scalar curvature:

G00 = −1
2
(D − 1)(D − 2)N−2�H2 +N2a−2k� g00, (B.3)

Gij = −1
2
(D − 2)N−2�2Ḣ − 2N−1Ṅ + (D − 1)H2 + (D − 3)N2a−2k� gij , (B.4)

R = − 2

D − 2G = �D − 1�N−2�2Ḣ +DH2 + (D − 2)N2a−2k − 2N−1ṄH� . (B.5)

We can then write down the action and derive the equations of motion. We split the total action

into the gravitational part Sg and the matter part Sm, where

Sg = � dDx
√−g s R

2
= D − 1

2
� dDx

saD−1

N
� − (D − 2)H2 − 2 ṡ

s
H + (D − 2)N2 k

a2
� , (B.6)

Sm = � dDx
√−g � 1

2N2
FMN Φ̇

M Φ̇N −F� . (B.7)

Here {�Φ} are the background scalars, which are supposed to be homogeneous in the (D − 1)-
dimensional space. In string theory, they are taken to be the moduli field. We also include F the

free energy density induced by the fluid filling the universe which, on general grounds, depends
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on everything else N , a and �Φ. Also, we dress the Ricci curvature R with a function depending

on the background scalars s = s(�Φ). For example when writing down the action in string frame,

we have s = e− 2D

D−2
φ.

The variation of the action S0 and S1 against N and a gives

δSg

δN
= saD−1

N2

(D − 1)(D − 2)
2

�H2 +N2 k

a2
� + (D − 1)aD−1

N2
ṡH, (B.8)

δSg

δa
= (D − 1)(D − 2) s

N
�Ḣ − Ṅ

N
H + 1

2
(D − 1)H2 + (D − 3)N2 k

a2
�aD−2

+ (D − 1)(D − 2)aD−2
N

ṡH + (D − 1)aD−2 d
dt
� ṡ
N
� ; (B.9)

δSm

δN
= − aD−1

2N2
FMN Φ̇

M Φ̇N − aD−1⇢, (B.10)

δSm

δa
= (D − 1)aD−2N� 1

2N2
FMN Φ̇

M Φ̇N + P�, (B.11)

where we defined the energy density and the pressure of the fluid filling the universe

⇢ = N @F
@N
+F , P = − a

D − 1
@F
@a
−F . (B.12)

Here the definition of ⇢ and P follows the standard formula in general relativity, that is, we derive

the energy momentum tensor Tµν corresponding to the fluid, and then read off the energy and the

pressure from T
µ
ν = diag(−⇢,P, . . . , P )µν .

For simplicity we put N = 1. Then the equations of motion from δ
δN

, δ
δa

and δ
δΦM are respectively

1

2
(D − 1)(D − 2)s �H2 + k

a2
� + (D − 1)ṡH − 1

2
FMN Φ̇

M Φ̇N − ⇢ = 0, (B.13)

1

2
(D − 2) s �2Ḣ + (D − 1)H2 + (D − 3) k

a2
� + s̈ + (D − 2)ṡH + 1

2
FMN Φ̇

M Φ̇N + P = 0, (B.14)

d

dt
�FMN Φ̇

N� − 1

2
FNP,M Φ̇N Φ̇P + (D − 1)HFMN Φ̇

N − 1

2
Rs,M +F,M = 0. (B.15)

A direct but tedious computation yields the continuity equation

⇢̇ + (D − 1)H(⇢ + P ) = Φ̇MF,M . (B.16)

This is just T µν
;ν = 0, which explains why the equation is independent of s. The continuity equation

can replace Eq.(B.14) when solving for the cosmological evolution.
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1 Introduction

The SO(32) heterotic and type I strings are dual perturbative descriptions of the same

underlying theory [1–4]. This is easily observed at the level of the low energy effective

actions, which are equivalent after certain field redefinitions. This follows from the fact

that short massless supermultiplets have protected masses and that N10 = 1 supergravity

coupled to ten dimensional super Yang-Mills theory with given gauge group is unique at

the two-derivative level. One interesting facet of the equivalence is that in ten dimensions,

the heterotic and type I string couplings are inverse to one another, and thus one has the

opportunity to uncover strong coupling effects. In dimension D ≥ 7 (D  5), this leads to

a strong-weak (weak-weak) duality, while for D = 6, string couplings and internal volumes

are interchanged [5–8].

In the literature, most of the applications of string dualities have been based on BPS

states and therefore restricted to models where supersymmetry is preserved in static uni-

verses. In general, extending these ideas to non-supersymmetric cases (see [9, 10] for some

examples) and cosmological evolutions is difficult. However, such a project can still be ad-

dressed within the context of no-scale models [11–14]. The latter are defined at the classical

level by backgrounds associated to vanishing minima of a scalar potential, which admit a

flat direction parameterized by the scale of spontaneous supersymmetry breaking. The non-

trivial vacuum energy, which arises at the quantum level, backreacts on the flat and origi-

nally static universe, and induces a quasi-static time evolution in the background fields [15].

To be specific, start with a dual pair of supersymmetric heterotic and type I models. As

follows from the adiabatic argument of [16], one may implement on both sides a spontaneous
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breaking of supersymmetry, thus giving a new dual pair. For example, if the heterotic

theory is in a perturbative regime and the spontaneous breaking at the classical level is

compatible with flat Minkowski space, the cosmological evolution induced at the one-loop

level can be reinterpreted in the dual type I regime. In this paper, we spontaneously break

supersymmetry by considering the models at finite temperature. This can be implemented

at the level of the two dimensional CFT by compactifying the Euclidean time on a circle,

whose boundary conditions depend on the fermion number [17]. In this case, the one-loop

heterotic effective potential discussed above is nothing but the free energy of a perfect gas

of supersymmetric strings. Applying the heterotic/type I duality, we find the existence of

novel contributions to the type I effective potential coming from light D-strings. Despite

being non-perturbative, these corrections have a large impact on the cosmological evolution,

as well as on the low energy spectrum of the theory, even at weak type I string coupling.

A second method to spontaneously break supersymmetry is by introducing “geometric”

fluxes along internal cycles [18–22]. When the R-symmetry charge associated to the flux is

the fermion number, this method is related to the finite temperature case by a double Wick

rotation. In this paper, we only explore the thermal breaking for simplicity and clarity, as

most of our results have a direct generalization to the second case. In realistic situations,

one must include zero temperature spontaneous supersymmetry breaking before switching

on finite temperature. In this case, a general picture arises, where the induced cosmology

can be divided into different stages. In the Hagedorn era, where the temperature T is

close to the string scale Ms, a phase transition between pre- and post-big bang evolutions

takes place. It can be described along the lines of refs. [23, 24] at the level of the two

dimensional CFT and is both free of initial singularity and consistent with perturbation

theory. As the temperature drops, the cosmology induced by the one-loop effective potential

can be trusted until infrared effects become relevant, such as in the cases of radiative

breaking or confining gauge groups. For example, in standard GUT scenarios, this defines

intermediate eras where the temperature evolves in either of the ranges Ms > T > ΛGUT

or ΛGUT > T > MEW, where ΛGUT and MEW are the GUT and electroweak scales [25–30].

These intermediate eras are connected by a phase transition where the dynamics responsible

for the breaking of the GUT group must be taken account. After the electroweak phase

transition, the conventional history of the universe follows with the hadronic, leptonic and

nucleosynthesis eras. . .

One feature of the above Hagedorn and intermediate eras is the possibility to stabilize

internal moduli [26, 31, 32]. This is an important issue since current observations of the

gravitational force place lower limits on scalar masses (see for example [33]). Many ap-

proaches address this question by considering compactification spaces where (geometrical

or non-geometrical) internal fluxes are switched on at the outset, while preserving some

amount of supersymmetry [34–38]. This leads to a partial stabilization since flat directions

always persist in such models, at least at the perturbative level. However, we would like

to stress that once supersymmetry is broken, flat directions are generically lifted in string

theory. This was considered long ago in non-supersymmetric heterotic string backgrounds,

such as the SO(16)⇥SO(16) tachyon free theory toroidally compactified [39, 40]. However,

minimization of the moduli-dependent “cosmological constant” generated by loop correc-
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tions in such models leads to an unacceptably large vacuum energy at the minima, since

supersymmetry is explicitly broken at the string scale. In [41, 42], it was realized that a

gas of string modes, which carry both winding and momenta, generate a free energy that

enables stabilization of radii moduli. Upon introducing a zero temperature spontaneous

breaking of supersymmetry at the string tree level, it was shown in [27–32, 43] that this

effect also has a quantum version, with the thermal gas and free energy replaced by virtual

strings which induce an effective potential.1 An advantage of this type of stabilization

is that during the intermediate eras, the induced masses are not constant. Instead, they

follow the time-evolution of the temperature T (t) and supersymmetry breaking modulus

M(t), which drop proportionally. It is only after the electroweak phase transition that M(t)

is stabilized and that the induced moduli masses become constant. As a result, the energy

of the moduli with time-dependent masses is diluted during the intermediate eras, and the

cosmological moduli problem [47–49]2 is avoided. Moreover, the decrease of M(t) / T (t)

during the intermediate eras gives a dynamical explanation of the hierarchy between the

supersymmetry breaking scale and the string scale, M ⌧ Ms.

This above dynamical moduli stabilization relies on the existence of perturbative states

in the string spectrum, whose masses are determined by the expectation value of the moduli

and vanish at the stabilization points. For instance, in toroidal or orbifold compactifications

of the heterotic string, if the radius Ri of some factorized internal circle is not participating

in the spontaneous breaking of supersymmetry, it can be attracted to the self dual point

Ri = 1 associated to an enhanced SU(2) level one Kac Moody algebra. Another simple

example can be realized in type II superstring, when the internal circle is used to sponta-

neously break the supersymmetries generated by the right-moving sector via the Scherck

Schwarz mechanism. In this case, Ri can be stabilized at the fermionic point Ri = 1/
p

2

corresponding to a Kac Moody level two SU(2) extension [23]. However, since this type II

setup is intrinsically left/right asymmetric, it cannot be extended to orientifold models in

a straightforward way. Thus, the purpose of the present work is to infer how the internal

moduli in type I no-scale models are stabilized by using our knowledge of the dual heterotic

picture. As said before, we consider only thermal effects, as this is sufficient to uncover

the mechanism. More specifically, using heterotic/type I duality at finite temperature, we

infer the existence of non-pertrubative contributions to the thermal free energy of type I

superstrings. These contributions are due to light, or even massless, D-strings which wrap

the internal cycles and participate to the dynamical stabilization of all the internal moduli,

including those in the RR sector and the Wilson lines.

1In refs. [44–46], the effect of the Coleman-Weinberg effective potential is explicitly subtracted in order

to isolate the backreaction on the moduli arising from particle production near extra massless species points.

To be substantial, this mechanism supposes the moduli already have non-trivial motions at tree level. Since

the no-scale models are based on classical static backgrounds, the moduli velocities occur as backreactions

of the one-loop effective potential and particle production is higher order in perturbation theory.
2A simplified statement of this problem is that the energy of scalars with constant masses dilutes slower

than the thermal energy of radiation, and so heavy scalars tend to dominate at late times, which can cause

problems for nucleosynthesis. This may be fixed by requiring the heavy scalars to be unstable so that their

fluctuations eventually decay, thereby reheating space-time. However, the reheating process creates extra

entropy and one can run into problems with baryogensis.
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We derive in section 2 the free energy of a gas of weakly coupled perturbative states

in type I superstring, in the simple case where the internal space is a factorized torus. We

describe the induced cosmological evolution and find the radii moduli are flat directions

of the thermal potential. In section 3, using the dual heterotic model at weak coupling,

we correct this naive analysis by taking into account contributions of non-perturbative

states to the free energy. In particular, D-strings modes are found to be light when the

radii are in a neighborhood of
p

λI, where λI ' 1 is the ten dimensional type I string

coupling. They produce local minima of the thermal potential which are responsible for

the stabilization of the radii at
p

λI. In type I, this dynamical effect occurs at strong (weak)

coupling when D ≥ 7 (D  6). However, since the BPS masses of the light D1-branes are

protected by supersymmetry, our results are also valid at small string coupling for D ≥ 7.

In section 4, we reexamine the form of the corrections to the free energy along the lines

of [50, 51], and interpret the non-perturbative contributions as arising from “thermal E1-

instantons”. What is meant by this is that the Euclidean worldsheets of the D1-branes

wrap the Euclidean time circle. In section 5, we generalize our results: The one-loop

heterotic free energy is computed, with all of the internal moduli taken into account. We

find that at certain points in moduli space, all scalars, except the dilaton, may be stabilized

for D ≥ 4.3 On the dual type I side, the non-perturbative effects induce a stabilization

of the internal NS-NS and RR moduli in the closed string sector, and the Wilson lines

in the open string sector. For the special case of D = 6, the internal volume modulus

remains a flat direction, while the dilaton is stabilized at a small value. In section 6, we

give explicit examples of loci in moduli space where only the flat direction of the dilaton

survives. Section 7 is devoted to our conclusions and perspectives.

2 Naive perturbative type I thermal cosmology

In this section, we derive the cosmology induced by thermal effects in the purely pertur-

bative type I superstring theory toroidally compactified down to D ≥ 3 dimensions. We

shall see in the next section how light solitonic states correct this picture in a drastic

way. In the following, quantities are denoted in the type I context with subscripts I and,

throughout this paper, “hatted” (“un-hatted”) ones are referring to the string (Einstein)

frame. Finite temperature T̂I is implemented by considering an Euclidean time of period

β̂I = 2⇡RI0 = 1/T̂I, and coupling the associated S1(RI0) lattice of zero modes to the

fermion number. We restrict for the moment our study to the case of a factorized internal

space
Q9

i=D S1(RIi) and analyze the dynamics of the radii RIi.

Working in a perturbative regime, there are four contributions to the Euclidean one-

loop partition function needed to express the free energy density, namely the torus, Klein-

bottle, annulus and Möbius strip vacuum-to-vacuum amplitudes T , K, A and M. In units

3Additionally, for D ≥ 5 the dilaton approaches a constant finite value at late times and the cosmological

evolution is radiation dominated. For D = 4, the dilaton decreases logarithmically with cosmological time

and the coherent motion of all moduli is such that the metric evolution is that of a radiation dominated

universe, H2 ∝ 1/a4. However, non-perturbative effects from NS5 or D5-branes in the heterotic or type I

theories should be taken into account in four dimensions and may play a role in stabilizing the dilaton.
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where ↵0 = 1, a little work yields (see the appendix),

T =
β̂IV̂I

β̂D
I

(

s2
0 cD +

X

A≥0, Ā≥0, ~m, ~n
A−Ā=~m·~n

(A,~m,~n) 6=(0,~0,~0)

sAsĀ G

✓

2⇡RI0

h

4A +
9
X

i=D

⇣mi

RIi
− niRIi

⌘2i 1
2

◆

)

, (2.1)

where V̂I is the regularized volume of the (D−1)-dimensional space, cD is Stefan’s constant

for radiation in dimension D and the function G is defined in terms of a modified Bessel

function of the second kind, KD
2
(x):

cD =
Γ
(

D
2

)

⇡
D
2

X

k̃0

1

|2k̃0 + 1|D
, G(x) = 2

X

k̃0

✓

x

2⇡|2k̃0 + 1|

◆D
2

KD
2

(

x |2k̃0 + 1|
)

. (2.2)

The integer sA (sĀ) counts the degeneracy at oscillator level A (Ā) on the left (right)-

moving side of the worldsheet, while mi (ni) labels the momentum (winding) number along

the i-th cycle of the internal torus.4 In (2.1), the first term in the braces is the contribution

of the massless modes, with quantum numbers (A, ~m,~n) = (0,~0,~0) and associated to

the N10 = 1 supergravity multiplet in ten dimensions. The Klein-bottle contribution K
vanishes. The annulus plus Möbius amplitude takes in a similar way the form

A + M =
β̂IV̂I

β̂D
I

(

N2 − N

2
s0 cD +

X

A≥0, ~m

(A,~m) 6=(0,~0)

N2 − (−1)AN

2
sA G

✓

2⇡RI0

h

A +

9
X

i=D

⇣mi

RIi

⌘2i 1
2

◆

)

,

(2.3)

where N = 32 and the first term is associated to the N10 = 1 SO(32) super-vector multiplet

in ten dimensions. The partition function is given by the sum ZI = T + K + A + M. At

high temperatures, it becomes ill-defined. Examining T , one finds that winding modes

along the Euclidean time circle become tachyonic when RI0 < RIH, where RIH =
p

2 is

the Hagedorn radius. This divergence of ZI is not a sickness of the theory, but rather the

signal of a phase transition [52–55]. From now on, we restrict ourselves to temperatures

below T̂IH ⌘ 1/(2⇡RIH).

The free energy density is defined in terms of the partition function as F̂I = −ZI/(β̂IV̂I).

It is expressed in terms of the G-function, whose arguments are the ratios of the spectrum

masses to the temperature. Since

G(x) = cD − cD−2

4⇡
x2 +O(x4) when x ' 0 , G(x) ⇠

⇣ x

2⇡

⌘
D−1

2
e−x when x ' 1, (2.4)

the dominant contribution at low temperature (compared to the string scale) arises from

the first terms of (2.1) and (2.3) and corresponds to the free energy density of thermal

radiation,

F̂I = −
✓

s2
0 +

N2 − N

2
s0

◆

cD T̂D
I + · · · . (2.5)

4Note that the condition A − Ā = ~m · ~n provides the level matching.
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However, if some RIi is large (small) enough, RIi > 2⇡RI0 (RIi < 1/(2⇡RI0)), pure Kaluza-

Klein (winding) modes yield additional terms of the same order. The contributions asso-

ciated to the remaining states are exponentially suppressed.

It is straightforward to apply the techniques introduced in [31, 32] for closed strings

to study the backreaction of the type I free energy on the originally static background.

For arbitrary initial conditions at the exit of the Hagedorn era, one finds that the system

is attracted to a radiation dominated evolution, where all internal radii and the dilaton

are frozen at non-specific values depending on the initial data. Quantitatively, the final

constant values of the RIi’s sit in the range

1

2⇡RI0
< RIi < 2⇡RI0 , i = D, . . . , 9, (2.6)

where RI0 is increasing with time, corresponding to an expanding and cooling universe.

Actually, if at some time t a radius RIj is outside this range, we find RIj(t) and RI0(t) always

evolve so that the condition (2.6) is finally satisfied, after which the evolution of RIj comes

to a halt. This may be seen by examining the force on the modulus µj = ln(2⇡RI0/RIj)

(or ln(2⇡RI0RIj)) [31, 32].

A difference compared to the type II and heterotic string cases, is that the open string

sector is not invariant under T-duality, RIi ! 1/RIi (for any i), due to a lack of winding

quantum numbers in the open sector. For instance, for arbitrary RIj (for a given j), while

the other radii satisfy (2.6), the effective potential for RIj , which is exactly the free energy

density, simplifies to

F̂I =−T̂D
I

(

✓

s2
0 +

N2 − N

2
s0

◆

cD+
X

mj 6=0

G

✓

2⇡RI0
|mj |
RIj

◆]

+O(e−2⇡RI0)

)

, 2⇡RI0 < RIj

F̂I =−T̂D
I

(

✓

s2
0 +

N2 − N

2
s0

◆

cD + O(e−2⇡RI0)

)

,
1

2⇡RI0
< RIj < 2⇡RI0

F̂I =−T̂D
I

(

N2 − N

2
s0 cD + s2

0



cD+
X

nj 6=0

G
⇣

2⇡RI0|nj |RIj

⌘

]

+ O(e−2⇡RI0)

)

, RIj <
1

2⇡RI0

(2.7)

and is shown in figure 1, in Einstein frame. When RIj < 1, the theory is actually better

understood in the T-dual type I’ picture obtained by inverting RIj . More importantly,

there is no local minimum of the free energy density where RIj (as well as the RIi’s) can be

attracted and stabilized. This is contrary to the heterotic case, where enhanced symmetry

points exist and imply a local increase of the number of massless states. However, we shall

find that the above purely perturbative analysis is missing important contributions from

massless solitons.

3 Heterotic/type I cosmological duality

Given that heterotic and type I theories at zero temperature are S-dual in ten dimensions, it

is a simple but non-trivial fact that they remain S-dual at finite temperature. Technically,

the backgrounds used to analyze the thermal ensembles are freely acting orbifolds, obtained
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T Ds0b0cD

T D(9 − D)2s0b
−1cD

−F

0
−ln2πRI0 ln

λI

2⇡RI0
1
2
lnλI ln2πRI0 lnRIj

Figure 1. Thermal effective potential (in Einstein frame) for RIj , when all other internal radii

satisfy (2.6). The dashed curve takes only into account the perturbative type I states. The solid

one is obtained by heterotic/type I S-duality and receives corrections from light D-string modes.

by modding out with (−1)F δ0, where δ0 is an order-two shift along the Euclidean time circle

and F is the fermion number. Using the “adiabatic argument” of [16], after such a free

action, the two theories remain dual. Since the cosmological evolutions we study are quasi-

static, it is valid to apply at each time an S-duality transformation on the heterotic side,

in order to derive non-perturbative contributions to the type I free energy and its resulting

backreaction.

S-dual SO(32) heterotic string. Let us apply this point of view to the type I back-

ground considered in section 2. The dual theory is the SO(32) heterotic string compactified

on
Q9

i=D S1(Rhi), where we use the subscript h to denote heterotic quantities. As in the

type I case, the partition function is only well defined when the temperature T̂h = 1/β̂h =

1/(2⇡Rh0) is below the heterotic Hagedorn temperature, i.e.Rh0 > RhH ⌘ (1+
p

2)/
p

2. As

shown in the appendix, the heterotic partition function can be brought into a form divided

in three parts as follows:

Zh =
β̂hV̂h

β̂D
h

(

s0b0 cD +
9
X

i=D

2s0b−1 G

✓

2⇡Rh0

∣

∣

∣

1

Rhi
− Rhi

∣

∣

∣

◆

+
X

A≥0, Ā≥−1, ~m, ~n
A−Ā=~m·~n

(A,~m,~n) 6=(0,✏~ei,✏~ei),
8i,8✏=−1,0,1

sAbĀ G

✓

2⇡Rh0

h

4A +
9
X

j=D

⇣ mj

Rhj
− njRhj

⌘2i 1
2

◆

)

,
(3.1)

where the degeneracy bĀ of the right-moving bosonic string oscillator modes is defined

from level −1. The first contribution in Zh is associated to the massless states labeled by

(A, ~m,~n) = (0,~0,~0). They arise from the N10 = 1 supergravity and SO(32) super-vector

multiplets in ten dimensions. The second contribution comes from modes whose masses

can vanish at particular values of the internal radii. For each i, these states are labeled
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as (A, ~m,~n) = (0, ✏ ~ei, ✏ ~ei), where ✏ = ±1 and ~ei is the unit vector in the direction i.

They are massless at the self-dual point Rhi = 1, where they enhance the gauge symmetry,

U(1) ! SU(2). The last line in (3.1) arises from the states which are never massless.

It becomes substantial when Kaluza-Klein (winding) states become light, in the regime

where some Rhi’s are large (small) compared to 2⇡Rh0 (1/(2⇡Rh0)). All other modes,

being always super heavy as compared to the temperature scale, yield to exponentially

suppressed contributions (see eq. (2.4)).

Duality map. In ten dimensions, the heterotic/type I S-duality identifies the Einstein

frame metrics and inverts the string couplings, λh = eφ
(10)
h = e−φ

(10)
I = 1/λI [1–4]. In

lower dimension D, these relations translate into a dictionary between the Einstein frame

metrics, the internal radii and dilatons [5–8]:

ds2
h(D) = ds2

I(D)

Rhi = RIip
λI

⌘ RIi
e
− 1

2 φ
(D)
I

(
Q9

j=D 2⇡RIj)
1/4 , i = 0 or D, . . . , 9,

φ
(D)
h = −D−6

4 φ
(D)
I − D−2

8

P9
i=D ln (2⇡RIi) ,

(3.2)

where the D-dimensional dilatons are defined as φ
(D)
h,I = φ

(10)
h,I − 1

2

P9
i=D ln(2⇡Rh,Ii). Note

that the Euclidean radii RI0 and Rh0 are included in the above relations. The inverse maps,

which relate the type I fields in terms of heterotic quantities, are obtained by exchanging

the subscripts h $ I.

We consider non-trivial evolutions for the Einstein frame metric, dilaton and internal

radii moduli. It is easily checked that the tree level heterotic and type I actions match,

under the S-duality transformation (3.2) (i.e.Stree
h = Stree

I ). The one-loop finite temperature

effective potentials were computed using Euclidean backgrounds with laps functions Rh,I0

in the string frames. For the Lorentzian Einstein frame metric,

ds2
(D) = 1

(2⇡)2

h

−β(x0)2dx02
+ a(x0)2

⇣

dx12
+ · · · + dxD−12

⌘i

β = 2⇡Rh,I0 e−
2

D−2
φ

(D)
h,I , aD−1 = V̂h,I e−

2(D−1)
D−2

φ
(D)
h,I ,

(3.3)

the corresponding first order correction to the tree level action Stree
h,I is given by

S1-loop
h,I = −

Z

dDx

q

−g(D) Fh,I where Fh,I = − Zh,I

βaD−1
. (3.4)

Note that we do not distinguish between the heterotic and type I inverse temperature β

and scale factor a in (3.3), as they are measured in Einstein frame and are identified under

the duality map (3.2). To be exactly equivalent, the effective actions should be corrected

to all orders in perturbation theory and include non-perturbative effects as well. In the

following, we will consider the heterotic point of view at weak coupling, eφ
(D)
h ⌧ 1, restrict

our computations at the one-loop order, and deduce the type I behavior in the dual regime.

Dual type I cosmological evolution. To start, we apply the duality map to (3.1)

and note that the first term exactly matches the sum of the first contributions in (2.1)
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and (2.3). This follows from the equality b0 = s0 + (N2 −N)/2 and is due to the fact that

the supergravity and SO(32) super-vector multiplets are short, with protected vanishing

masses. Next, we concentrate on the interpretation and cosmological implications of the

remaining terms in (3.1). In the weakly coupled heterotic string, eφ
(D)
h ⌧ 1, the time

evolution of the universe for arbitrary initial conditions at the exit of the Hagedorn era can

be analyzed along the lines of refs. [31, 32]. We first summarize the results here and then

derive the dual type I cosmological behavior:

• When all radii satisfy |Rhi − 1/Rhi| < 1/(2⇡Rh0), i = D, . . . , 9, the heterotic free

energy density derived from (3.1) takes the form:

Fh = −TD

(

s0b0 cD +
9
X

i=D

2s0b−1 G

✓

2⇡Rh0

∣

∣

∣

1

Rhi
− Rhi

∣

∣

∣

◆

+ O(e−2⇡Rh0)

)

. (3.5)

Thanks to the properties (2.4), the states with quantum numbers (A, ~m,~n) =

(0, ✏~ei, ✏~ei) are responsible for the existence of a local minimum of Fh at RhD =

· · · = Rh9 = 1. The internal radii can be attracted and stabilized at this SU(2)10−D

enhanced symmetry point. Moreover, for D ≥ 5 the string coupling eφ
(D)
h (and thus

λh) freezes to some constant value eφ
(D)
h0 determined by the initial conditions. For

D = 4, the dilaton φ
(4)
h does not converge to a constant but instead decreases loga-

rithmically with cosmological time. We show this in section 5 in a general context

where we take into account all internal moduli. The rest of this section is valid for

D ≥ 5, while for D = 4 one has to keep in mind the late time evolution of φ
(4)
h .

Applying the duality map (3.2), the ratios of the masses of the above winding-

momentum states to the temperature become:

M̂hi

T̂h

⌘ 2⇡Rh0

∣

∣

∣Rhi −
1

Rhi

∣

∣

∣ = 2⇡RI0

∣

∣

∣

RIi

λI
− 1

RIi

∣

∣

∣ ⌘ M̂Ii

T̂Ii

. (3.6)

From the type I point of view, the corresponding BPS states have a natural interpre-

tation as D (or anti-D)-strings wrapped once along the circles S1(RIi), with one unit

of momentum. The heterotic cosmology translates into the type I context as follows.

Whenever the type I radii start out in the dual range |RIi/λI − 1/RIi| < 1/(2⇡RI0),

the light D-string modes can stabilize them at the point

RIi =
p

λI0 , i = D, . . . , 9, (3.7)

where λI0 = 1/λh0 ' 1 is the late time constant value of the string coupling in

ten dimensions. This implies the open string cosmology is well understood in type I,

rather than in the T-dual picture in type I’. At each time, the width of the symmetric

well of the potential for lnRIi is
p

λI/(2⇡RI0) (see figure 1). In total, if we denote by

φ
(D)
I0 the asymptotic value of the type I dilaton in D dimensions and use the inverse

relations (3.2), the moduli are found to converge as follows,

eφ
(D)
I (t)−!eφ

(D)
I0 ⌘ e−

D−6
4

φ
(D)
h0

(2⇡)
(10−D)(D−2)

8

, RIi(t)−! e
2

D−6
φ

(D)
I0 (2⇡)

10−D
D−6 =

1

e
1
2
φ

(D)
h0 (2⇡)

10−D
4

,

(3.8)
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while the temperature and scale factor asymptotic behaviors are those of a radiation

dominated era, T−1(t) ⇠ a(t) ⇠ t2/D, where t is the cosmological time. Some remarks

are in order:

⇧ For D > 6, (3.8) shows that the type I cosmology is at strong coupling. In this

regime, solitons are generically light and the need to include their effects in the

low energy effective action is not surprising.

⇧ For D = 6, the asymptotic values of the moduli are eφ
(6)
I0 = 1/(2⇡)2 and RIi(t) !

e−
1
2
φ

(6)
h0 /(2⇡). The type I picture is perturbative.

⇧ For D < 6, the type I cosmological evolution is at weak coupling. However, we

observe the necessity to take into account the contributions arising from solitons

which are light, when we sit in the neighborhood of the enhanced symmetry

points.

In summary, for D 6= 6 in type I, the internal radii are stabilized while the dilaton

φ
(D)
I freezes somewhere along its flat direction. On the contrary, for D = 6, the

dilaton is stabilized, all complex structures RIi/RIj are also stabilized at one, while

the internal space volume
Q9

i=D(2⇡RIi) freezes along a flat direction. This is not a

surprise, since in D = 6 the heterotic/type I duality exchanges internal volumes and

string couplings:
Q9

i=D(2⇡Rh,Ii) $ 1/e2φ
(6)
I,h .

• If at some epoch one of the heterotic internal radii satisfies Rhj > 2⇡Rh0, while the

9−D remaining ones are stabilized, Rhi = 1 for i 6= j, the free energy density deduced

from (3.1) becomes

Fh =−TD
(

s0b0 + (9 − D)2s0b−1

)



cD +
X

mj 6=0

G

✓

2⇡Rh0
|mj |
Rhj

◆]

+ O(e−2⇡Rh0). (3.9)

We see that in addition to the massless supergravity and SO(32) super-vector multi-

plets, there are also contributions coming from their Kaluza-Klein descendants, which

are light since Rhj is large. Applying the duality rules and comparing to the pertur-

bative type I result in the first line of (2.7), we observe a match up to an additional

contribution (9 − D) 2s0b−1 to the overall numerical coefficient. This discrepancy

arises from the extra massless D (or anti-D)-strings responsible for the stabilization

of the RIi’s at
p

λI. Therefore, the main difference with the pure perturbative anal-

ysis is that the plateau of the effective potential is lowered and that the slope for

RIj > 2⇡RI0 is steeper (see figure 1). The cosmological evolution is however similar

to the one discussed below (2.6). As their heterotic counterparts [31, 32], RIj(t) and

RI0(t) evolve such that the regime where RIj(t) < 2⇡RI0(t) is reached. After that,

RIj freezes along its plateau or is stabilized at
p

λI as explained before.

• In a similar way, if a heterotic radius satisfies Rhj < 1/(2⇡Rh0), while the others are

stabilized at their self-dual points, Rhi = 1 for i 6= j, we have

Fh =−TD
(

s0b0 +(9−D) 2s0b−1

)



cD +
X

nj 6=0

G
⇣

2⇡Rh0|nj |Rhj

⌘

]

+O(e−2⇡Rh0). (3.10)
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In this case, substantial contributions arise from the winding modes along S1(Rhj),

which are light since Rhj is small enough. Their effect is to attract Rhj(t) to values

larger than 1/(2⇡Rh0(t)) [31, 32]. Applying the S-duality rules to translate this

statement in the type I context, we find that if RIj < λI/(2⇡Rh0) at some time, the

evolution of these moduli implies we end in a regime where λI/(2⇡Rh0) < RIj , after

which the internal modulus freezes or is stabilized at
p

λI. Noting that the argument

of the G-function in (3.10) becomes

M̂hj

T̂h

⌘ 2⇡Rh0 |nj |Rhj = 2⇡RI0 |nj |RIj

λI
⌘ M̂Ij

T̂I

, (3.11)

we conclude that the above mechanism is due to two sets of towers of D-string winding

modes along S1(RIj). The first one contains “solitonic descendants” of the pertur-

bative massless supergravity and SO(32) super-vector multiplets. The second set is

associated to the descendants of the D (or anti-D)-strings responsible for the stabiliza-

tion of the (9−D) internal radii RIi at
p

λI. The net result of these non-perturbative

light states is to render the type I free energy explicitly invariant under the “non-

perturbative T-duality” RIj ! λI/RIj (see figure 1).5

Comments. To conclude this section, we would like to make some remarks. We first

observe that under the duality map (3.2), the Hagedorn radii do not match. We thus infer

from the perturbative heterotic side a new value of the Hagedorn radius in type I, when λI

is large:

RIH =

( p
2 for λI ⌧ 1p

λI
1+

p
2p

2
for λI ' 1

· (3.12)

From a cosmological point of view, RIH in the regime λI(t) ' 1 is thus a time-dependent

scale. Note that this non-perturbative expression for RIH obtained once D-strings are taken

into account can be relevant even at weak coupling, eφ
(D)
I ⌧ 1. This is for instance the case

for D  6, when
p

λI and the RIi’s reach the asymptotic value
p

λI0 ' 1.

For D ≥ 7, the stabilization of the internal type I radii at
p

λI0 ' 1 occurs at strong

coupling, eφ
(D)
I ' 1. However, the D-string states responsible for this effect are BPS, so

that their masses are protected by supersymmetry. Thus, these modes remain massless for

arbitrary λI, when RIi =
p

λI. It follows that the type I free energy density can easily be

determined when λI ⌧ 1 and RIi '
p

λI. It is actually given by (3.5), once translated in

terms of dual type I variables. The justification of this statement is based on the following

facts. In this regime, the string coupling is weak, eφ
(D)
I ⌧ 1, and the contribution of the

perturbative part of the spectrum is that of a perfect gas. Moreover, the contribution of

the light solitons is of identical form, since SU(2)’s (gauge) symmetries transform them

into the perturbative modes in the Cartan subalgebras. We conclude that the mechanism

of stabilization of the internal type I radii remains valid at weak coupling eφ
(D)
I ⌧ 1. Since

5Since at late times λI(t) → λI0 and RI0(t) → +∞, the left-boundary of the plateau of the effective

potential of ln RIj ends by being negative. This means that RIj may freeze at some value below one. In

such a case, a T-duality RIj → 1/RIj to a type I’ description is more suitable. In general, a mixed type I /

type I’ theory may be obtained, in order to keep all internal radii larger than one.
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this yields RIi =
p

λI0 ⌧ 1, the model is better described in the T-dual type I’ picture.

However, the dynamics in the intermediate regime eφ
(D)
I ' 1 for D ≥ 7 (or eφ

(D)
I ⌧/ 1 for

D  6) cannot be inferred from these arguments.

Finally, for D  5, additional non-perturbative states may play a role in the cosmo-

logical evolution. In fact, D5-branes of the type I theory (or NS5-branes in the heterotic

context) can wrap the internal manifold in analogy with the D-strings we have considered.6

It would be interesting to study their effects on the dynamics, which may lead eventually

to a stabilization of the dilaton.

4 E1-instanton corrections

We have found that non-perturbative states contribute to the type I free energy density.

In the literature, corrections to the low energy effective action are often considered from

another point of view, namely instantons and their stringy generalizations. For instance,

E1 contributions to holomorphic couplings have been analyzed in supersymmetric cases

by heterotic/type I duality [50, 51]. In the present section, our aim is to reexamine the

type I free energy from the point of view of E1-instantons and single out the configura-

tions responsible for the stabilization of internal radii. In this non-supersymmetric case,

we want to predict the E1 corrections in type I from dual heterotic worldsheet instantons.

For simplicity, we restrict our analysis to the case D = 9, where instantons wrap the Eu-

clidean time circle and the direction 9. This is to be contrasted with the zero temperature

case where E1 corrections would only arise for D  8. We note that by a double Wick

rotation, the results in this section may be interpreted as the zero temperature vacuum

energy contribution of E1-instantons wrapping an internal T 2, with spontaneous super-

symmetry breaking boundary conditions along one of the toroidal directions. In this case,

the temperature scale T is replaced with the supersymmetry breaking scale M .

Our starting point is the heterotic model of section 3. To help exhibit the worldsheet

instanton structure of the one-loop amplitude Zh, we work in the Lagrangian formulation

of the zero modes lattice associated to S1(Rh0) ⇥ S1(Rh9) (see eqs. (A.10) and (A.11)).

We consider Rh9 ≥ 1 and parameterize the zero modes by the matrix M =
⇣n0 m̃0

n9 m̃9

⌘

. The

case Rh9  1 may be obtained by T-duality. We may decompose the lattice sum under

orbits of the SL(2, Z) modular group as follows. For any set of modular covariant functions

fM(⌧, ⌧̄) such that fM(M(⌧), M(⌧̄)) = fMM (⌧, ⌧̄), for all M 2 SL(2, Z), one has
Z

F

d2⌧

⌧2
2

X

M
fM(⌧, ⌧̄) =

Z

F

d2⌧

⌧2
2

f(0 0

0 0

)(⌧, ⌧̄)

+

Z

S+

d2⌧

⌧2
2

X

m̃0,m̃9

0
f(0 m̃0

0 m̃9

)(⌧, ⌧̄) +

Z

C+

d2⌧

⌧2
2

2
X

m̃0 6=0
n9>m̃9≥0

f( 0 m̃0

n9 m̃9

)(⌧, ⌧̄).
(4.1)

This is easily shown by applying eq. (A.6) twice: First to the sum over (n0, m̃0) and then

to the sum over (n9, m̃9). The integral over the upper half plane C+ is obtained for n9 > 0

6Note that these states may contribute even for D = 5. This is to be contrasted with 5-brane instantons

at zero temperature, which require an internal space of six dimensions.

– 12 –



J
H
E
P
0
6
(
2
0
1
1
)
0
6
0

by writing m̃9 = kn9 + l (0  l < n9 − 1) and changing ⌧ ! ⌧ + k. The integral over F
corresponds to the zero orbit (i.e.M = 0), while the integral over S+ corresponds to non-

vanishing degenerate matrices (i.e.with detM = 0). The last integral over C+ is associated

to non-degenerate matrices.

Applying (4.1) to the heterotic partition function Zh, the contribution of the zero orbit

vanishes due to supersymmetry, so that7

Zh = Zd
h + Znd

h

Zd
h =

β̂hV̂h

(2⇡)9

Z

S+

d2⌧

2⌧6
2

Γ(0,16)

⌘8⌘̄24
R9

X

m̃0,m̃9

0
e
−⇡Rh0

⌧2
m̃2

0 e
−⇡Rh9

⌧2
m̃2

9

h

V8 − (−1)m̃0S8

i

(4.2)

Znd
h =

β̂hV̂h

(2⇡)9

Z

C+

d2⌧

2⌧6
2

Γ(0,16)

⌘8⌘̄24
R9 2

X

m̃0 6=0
n9>m̃9≥0

e
−⇡Rh0

⌧2
m̃2

0 e
−⇡Rh9

⌧2
|n9⌧+m̃9|2

h

V8 − (−1)m̃0S8

i

.

Performing the ⌧ -integrations, the degenerate part Zd
h can be brought into the form

Zd
h =

β̂hV̂h

β̂9
h

(

s0b0 c9 +
X

A≥0, m9

0
sAbA G

✓

2⇡Rh0

h

4A +
⇣ m9

Rh9

⌘2i 1
2

◆

)

, (4.3)

while the non-degenerate contribution Znd
h can be written as,

Znd
h =

β̂hV̂h

β̂9
h

2
X

A≥0, Ā≥−1
n9>m̃9≥0

sAbĀ

e−2i⇡
m̃9
n9 (A−Ā)

n9
G

✓

2⇡Rh0

h

4A +
⇣A − Ā

n9Rh9
− n9Rh9

⌘2i 1
2

◆

. (4.4)

Summing over m̃9 in (4.4) enforces the level matching condition A − Ā = n9m9 for some

integer m9, whenever n9 6= 0. The “missing term” for n9 = 0 is actually the contribution

of the degenerate orbits Zd
h . In total, Zd

h +Znd
h yields with no surprise the expression (3.1),

which can be analytically continued in the range 1  Rh9 
p

2. However, to exhibit the

instantonic structure, it is better to leave the sum over m̃9.

In Zd
h , only pure Kaluza-Klein modes along the directions 9 and 0 contribute and

the worldsheet embedding in the target torus is trivial (no instanton number). Therefore,

these states do not play a role in stabilizing the internal circle. In order to extract the

configurations in Znd
h responsible for fixing Rh9 at the self-dual point, we know it is enough

to focus on the dominant contributions in the low temperature expansion. The terms

with A ≥ 1 are exponentially suppressed, O(e−4⇡Rh0), compared to the contribution with

A = 0. The latter arises from BPS configurations and, at this level of approximation, Znd
h

in eq. (4.2) involves a purely antiholomorphic function, B(⌧̄) = Γ(0,16)/⌘̄24, dressed by an

7The use of eq. (4.1) is valid if the argument of the discrete sum to integrate is absolutely convergent.

In the present case, since the right-moving block Γ(0,16)/⌘̄24 and the left-moving O8/⌘8 character involve

diverging powers of e2⇡⌧2 in the limit ⌧2 → +∞, eq. (4.1) can be trusted if Rh0 >
√

3 and Rh9 >
√

2. The

first condition is not problematic as we are focussing on the dynamics at low temperature. Since we are

interested in the stabilization of Rh9 around 1, the second condition could be a problem. However, we see

shortly that the final expression (4.4) can be analytically continued all the way to Rh9 = 1.
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inverse power of ⌧2 and the lattice of zero modes associated to the directions 0 and 9. This

form is similar to the one encountered in the evaluation of holomorphic couplings, when

supersymmetry is unbroken [50, 51].

We can now define instanton configurations, with associated Kähler and complex struc-

ture moduli Υ and Y as,

Instanton with n9 > m̃9 ≥ 0 , k̃0 ≥ 0 :

8

<

:

Υ = iΥ2 = i(2k̃0 + 1)Rh0 · n9Rh9

Y = Y1 + iY2 =
m̃9

n9
+ i

(2k̃0 + 1)Rh0

n9Rh9

, (4.5)

where (2k̃0+1) n9 is the instanton number, which counts the number of times the worldsheet

wraps around the target torus. Using these notations and introducing coefficients ↵n 2 N

in the expansion of the Bessel function8 in (2.2), K 9
2
(x) =

p

⇡/(2x)e−x
P4

n=0 ↵n/xn, we

may write (4.4) as

Znd
h =

V̂
(10)
h

(2⇡)10
2
X

instantons

s0
e2i⇡Υ

Υ2 Y4
2

4
X

n=0

2

4

↵n

(2⇡Υ2)n

X

Ā≥−1

bĀ

✓

1 + Ā
Y2

Υ2

◆4−n

e2i⇡YĀ

3

5

+c.c. + O(e−4⇡Rh0), (4.6)

where V̂
(10)
h is the ten-dimensional Euclidean volume. This result can be given a more

elegant appearance by noting that B(Y) is a modular form of weight 4. Introducing the

modular covariant derivative DX = (@Y + ir
2Y2

)X , where X (Y) is any modular form of

weight r,9 the brackets in (4.6) become 1/(⇡Υ2)
n
Pn

m=0 γnm(iY2)
mDmB(Y), where γnm

are rational numbers.

The above expression of Znd
h contains far too many explicit terms needed to study the

stabilization of Rh9. In (4.4), the dominant contribution for A = 0 arises when Ā = −1 and

n9 = 1, while the remaining terms are exponentially suppressed, O(e−2⇡Rh0). Restricting

to Ā = −1 and the instanton configurations n9 = 1, m̃9 = 0, k̃0 ≥ 0 in Znd
h , we can add

the degenerate contribution Zd
h = (β̂hV̂h/β̂9

h) s0b0 c9 + O(e−2⇡Rh0) to recover the first line

of eq. (3.1) required for the derivation of the stabilization of Rh9.

We now wish to interpret eq. (4.6) from the perspective of the type I superstring.

Under the heterotic/type I dictionary (3.2), the complex and Kähler structures Y and Υ

are mapped into YI and ΥI/λI. Consequently, the exponential factor of Υ in (4.6) yields

the exponential of the Nambu-Goto action for a D-string, and Znd
h translates into a sum

of E1 instantons as in [50, 51],

ZE1
I =

V̂
(10)
I

(2⇡)10
2

X

E1 instantons

s0
e

2i⇡
λI

ΥI

ΥI2 Y4
I2

4
X

n=0

2

4

↵n

(2⇡ΥI2)n

X

Ā≥−1

bĀ

✓

1

λI
+ Ā

YI2

ΥI2

◆4−n

e2i⇡YIĀ

3

5

+c.c. + O(e
−4⇡

RI0p
λI ). (4.7)

8In any odd dimension, the Bessel function admits a power series with a finite number of terms.
9This means that X (Y + 1) = X (Y) and X (−1/Y) = X (Y)/Yr. Moreover, DX is a modular form of

weight r − 2.
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Actually, the configurations of the D-string worldsheets wrapped on S1(RI0)⇥S1(RI9) are

highly dissymmetric at late times in the sense that RI0(t) ! +1 and RI9(t) ⇠
p

λI(t) !p
λI0. However, this does not mean it is artificial to consider such E1-instantons. In-

stead, they open the possibility to derive from a pure type I point of view the free energy

responsible for the stabilization of the internal moduli (or the effective potential at zero

temperature when at least two internal directions are compactified and supersymmetry is

spontaneously broken). Thus, it would be interesting to derive D-brane instanton correc-

tions from first principles, in the case where supersymmetry is spontaneously broken. The

full instantonic structure of (4.4) should also be interpreted from a type I point of view,

even when all contributions with A ≥ 0 and Ā ≥ −1 are kept explicitly.

5 Heterotic and dual type I moduli stabilization

We would like to extend the analysis used in section 3 to include the remaining moduli in

addition to the internal radii. We consider the heterotic string compactified on T 10−D at

a generic point in moduli space and show that when finite temperature is switched on, the

free energy density can stabilize all internal moduli. Our study is based on the effective

action at finite temperature and weak coupling for the massless degrees of freedom, while

all massive states are integrated out. Introducing simplified notations, we are interested

in non-trivial backgrounds for the Einstein frame metric g, the dilaton φ in D dimensions

and all real-valued internal moduli ΦM , which we denote collectively as ~Φ. Concretely, ~Φ

contains the components of the metric ĝij and antisymmetric tensor Bij , together with the

Wilson lines Y I
i (i, j = D, . . . , 9; I = 10, 11, . . . , 25). It is then straightforward to deduce

the dynamics and final expectation values of the type I counterparts of these scalars by

using the duality map

ĝij =
ĝIij

λI
, Bij = Cij , Y I

i = Y I
Ii , (5.1)

where Cij is the RR 2-form. Detailed examples of this analysis will be given in section 6

for D = 8.

The heterotic low energy effective action

S =

Z

dDx
p−g



R

2
− 2

D − 2
@µφ@µφ − 1

2
FMN@µΦM@µΦN −F

]

(5.2)

involves the tree level moduli space metric FMN = FMN (~Φ) and the one-loop free energy

density F = F(T, φ, ~Φ). Since the backreaction of F on the classical background is already

a one-loop effect, there is no need to take into account the quantum corrections to the

kinetic terms. For homogeneous and isotropic evolutions, variation of S with respect to the

time-dependent metric (3.3), dilaton and moduli ΦM yields, in cosmological time defined
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by dt ⌘ β(x0)dx0,

(D − 1)(D − 2)

2
H2 =

2

D − 2
φ̇2 +

1

2
FMN Φ̇M Φ̇N + ⇢, (5.3)

(D − 1)(D − 2)

2
H2 + (D − 2)Ḣ +

2

D − 2
φ̇2 +

1

2
FMN Φ̇M Φ̇N + P = 0, (5.4)

φ̈ + (D − 1)Hφ̇ +
D − 2

4
Fφ = 0, (5.5)

Φ̈M + (D − 1)HΦ̇M + FMN
⇣

FNPQ − 1

2
FPQN

⌘

Φ̇P Φ̇Q + FMNFN = 0. (5.6)

In these equations, H = ȧ/a and the thermal pressure and energy density are found to be

P = −F , ⇢ = T
@P

@T
− P. (5.7)

Additional indices φ and N denote partial derivatives with respect to φ and ΦN , while

FMN ⌘ (F−1)MN . It is convenient to replace eq. (5.4) by the constant entropy constraint.

The latter is found by integrating the energy-momentum tensor conservation law derived

from the above differential system (see [31]),

⇢̇ + (D − 1)H(⇢ + P ) = φ̇Fφ + Φ̇MFM =) aD−1 ⇢ + P

T
= constant entropy. (5.8)

In order to find particular evolutions characterized by static moduli,
(

φ(t), ~Φ(t)
)

⌘
(φ0, ~Φ0), we need to specify F . For any supersymmetric spectrum, the one-loop free energy

density is

F =−e
2D

D−2
φ
Z +1

0

dl

2l

1

(2⇡l)
D
2

X

s

e−
M̂2

s l

2

X

m̃0

e
−β̂2m̃2

0
2l

(

1− (−)m̃0
)

=−TD
X

s

G

✓

e
2

D−2
φM̂s

T

◆

,

(5.9)

where M̂s is the mass of each boson/fermion pair s, and the dilaton dressing in front of

the integral is introduced to switch from string to Einstein frame. This general expression

applied to our case of interest, namely the heterotic string on T 10−D, is explicitly derived

from a one-loop vacuum-to-vacuum amplitude in the appendix. In the notations introduced

there, s0r0 = 28 ⇥ 24 boson/fermion pairs of states are massless everywhere in moduli

space,10 while the other modes have moduli-dependent masses, M̂s(~Φ). Since light states

have the tendency to lower F , effective potential wells can be found at any point ~Φ0

where n0 > 0 pairs of modes generically massive are accidentally massless, M̂u(~Φ0) = 0,

u = 1, . . . , n0. The fact that we have at zero temperature 16 real conserved supercharges

implies that such points are associated to enhancements of the gauge symmetry. Defining

M̂min to be the lightest non-vanishing mass at ~Φ0, the free energy density can be written

in a neighborhood of ~Φ0 as,

F = −TD

(

s0r0 +

n0
X

u=1

G

✓

e
2

D−2
φM̂u(~Φ)

T

◆

+ O
(

e−
M̂min

T̂

)

)

. (5.10)

10They are associated to the supergravity and super-vector multiplets of the SO(32) Cartan generators.

– 16 –



J
H
E
P
0
6
(
2
0
1
1
)
0
6
0

At low enough temperature, the exponentially suppressed terms can be neglected and we

may derive identities for the thermal source terms at ~Φ0, including the equation of state,

F|~Φ0
=−TD(s0r0 + n0) cD , Fφ|~Φ0

=0 , FM |~Φ0
= 0 , ⇢|~Φ0

=(D − 1)P |~Φ0
/ TD. (5.11)

It is then straightforward to check that the evolutions

a0(t) /
1

T0(t)
/ t2/D , φ(t) ⌘ φ0 , ~Φ(t) ⌘ ~Φ0 , (5.12)

corresponding to radiation eras with static moduli are particular solutions of the equations

of motion.

The above trajectories are actually attractors of the dynamics in some circumstances.

To study this, we analyze their stability under small time-dependent deviations,

a = a0(1 + ✏a) , T = T0(1 + ✏T ) , φ = φ0 + ✏φ , ΦM = ΦM
0 + ✏M . (5.13)

We first perturb the internal moduli equation (5.6). Denoting H0 = ȧ0/a0, one obtains at

lowest order,

✏̈M + (D − 1)H0 ✏̇M + ΛM
N ✏N = 0 where ΛM

N ⌘ FML|~Φ0
FLN |(T0,φ0,~Φ0). (5.14)

ΛM
N is an effective “time-dependant squared mass matrix” evaluated for the back-

ground (5.12). Since

FMN |~Φ0
= TD−2 e

4φ
D−2

cD−2

4⇡

n0
X

u=1

@2M̂2
u

@ΦM@ΦN

∣

∣

∣

∣

∣

~Φ0

(5.15)

is semi-definite positive, ΛM
N is diagonalizable with non-negative eigenvalues,11 which we

define as
4λ2

M

D2t2(D−2)/D . In the case when some λM ’s vanish, one needs to take into account

quadratic terms in eq. (5.14) (see the discussion of the dilaton equation below). In par-

ticular, this is required when moduli sit on the plateau of their thermal effective potential

(see figure 1). For simplicity, we proceed by analyzing the most interesting case, where

all internal moduli are “massive”, which means λM > 0. Switching to a diagonal basis of

perturbations ✏̃M , one obtains from (5.14)

✏̃M =
t1/D

p
t

h

CM
+ JD−2

4
(λM t2/D) + CM

− J−D−2
4

(λM t2/D)
i

, (5.16)

where CM
± are integration constants and J±D−2

4
are Bessel functions of the first kind.12

This describes damped oscillations with amplitude of order 1/
p

t, where t is supposed to

be large enough so that |✏̃M | ⌧ 1 is satisfied.

11This follows from the fact that the matrices F−1/2 and F are (semi-)definite positive, so that

F−1/2FF−1/2 = F 1/2ΛF−1/2 is semi-definite positive. Note that in models where the spontaneous breaking

of supersymmetry is generic i.e.not only due to thermal effects, each term in the sum over the boson-fermion

pair u in eq. (5.15) is dressed with a + (or −) sign when the boson (fermion) is lighter than the fermion

(boson). In such cases, F is not semi-definite positive and the extrema of F can be minima, maxima or

saddle points.
12For D = 6, J−1 should be replaced by the Bessel function of the second kind, Y−1.
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Next, we derive from (5.5) the equation for the dilaton perturbation at leading order,

(aD−1
0 ✏̇φ)˙+aD−1

0

1

2
FφMN |(T0,φ0,~Φ0)✏

M ✏N = 0 where FφMN |~Φ0
⌘ 4

D−2
FMN |~Φ0

. (5.17)

Since the constants CM
± are a priori of order one, we take into account the quadratic source

in “massive” epsilons. Thus, ✏̇φ can be written as the sum of the general solution to its

homogeneous equation, plus a particular solution to eq. (5.17). The former is of order

1/aD−1
0 and turns out to be dominated at late times by the latter. Actually, using (5.16),

the quadratic source term involves products of Bessel functions with arguments λP t2/D

and λQ t2/D. Integrating it once, the dominant contribution to aD−1
0 ✏̇φ is found to arise for

“constructive interferences”, i.e.when λP = λQ. This yields the asymptotic behavior,

✏̇φ ⇠ − Cφ

aD−2
0

=) ✏φ / 1

t1−4/D
for D ≥ 5 and ✏φ / ln t for D = 4, (5.18)

where Cφ is a fully determined coefficient quadratic in CM
± ’s and positive. For D ≥ 5, the

consistency condition |✏φ| ⌧ 1 is automatically fulfilled at late times. On the contrary,

the case D = 4 yields formally to a logarithmically decreasing ✏φ and one may worry that

the our expansions breaks down. Therefore, we have solved numerically the full non-linear

differential system (5.3)–(5.6) in this case and found that the perturbative analysis gives

the correct late time behavior, which we summarize at the end of this section.

To analyze the evolution of the scale factor and temperature fluctuations, we expand

the energy density and pressure around the background (5.12) and find from Friedmann’s

equation (5.3) and (5.8),

(D − 1)(D − 2) H0 ✏̇a =
1

2
FMN |~Φ0

✏̇M ✏̇N + D⇢|(T0,φ0,~Φ0)✏T − D − 3

2
FMN |(T0,φ0,~Φ0)✏

M ✏N ,

(5.19)

D(✏a + ✏T ) ⇢|(T0,φ0,~Φ0) =
D − 2

2
FMN |(T0,φ0,~Φ0)✏

M ✏N . (5.20)

It is then straightforward to solve for ✏a, whose asymptotic behavior is again dictated by

the source terms in “constructive interferences” arising from the products ✏̇M ✏̇N and ✏M ✏N

in (5.19) and (5.20). The late time scaling property of ✏a is found to be

✏a / a2
0

t
/ 1

t1−4/D
, (5.21)

which can be used in eq. (5.20) to find

✏T / a2
0

t
(1 + oscillations with constant amplitude). (5.22)

In (5.21) and (5.22), the coefficients of proportionality are again fully expressed in terms

of the CM
± ’s.

We signal that for D ≥ 5, all terms we have neglected in the perturbed equations

of motion are a posteriori found to be dominated by the sources we took into account.
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This guarantees the validity of the asymptotic behaviors we have found for the deviations

defined in (5.13). These results have been confirmed by direct numerical analysis of the

unperturbed system of differential equations in some examples. Since all fluctuations con-

verge to zero, the late time cosmology is radiation dominated. In particular, the dilaton

motion and the damped oscillations of ✏̃M store a negligible amount of energy as compared

to the thermal radiation energy. The internal moduli are dynamically stabilized and their

effective time-dependent masses (measured in Einstein frame) are MΦ̃M / T
D−2

2
0 e

2φ0
D−2 .

For D = 4, the numerical simulations show that the internal moduli converge to ~Φ0,

while the dilaton decreases logarithmically with time. Individually, the energy stored in

the dilaton motion, the total energy (kinetic plus potential) of the damped oscillations of
~Φ, and the thermal radiation energy decay at the same rate. Their late time behavior

satisfies

H2 / φ̇2 /
✓

1

2
FMN Φ̇M Φ̇N + ⇢

◆

/ 1

a4
, (5.23)

so that the metric evolution is identical to that of a radiation dominated universe, a /
p

t.

The above logarithmic behavior of the heterotic dilaton is transferred by heterotic/type

I duality to the type I dilaton for D = 4. Moreover, in any dimension, stabilization of the

internal moduli on the heterotic side implies stabilization of internal moduli on the type I

side, except for the special case of D = 6, where S-duality exchanges the six-dimensional

heterotic coupling with the type I internal volume modulus.

6 Example: dual heterotic/type I strings on T
2

Our aim is to illustrate the analysis of the previous section with examples for D = 8. We

want to find local attractor solutions of the form (5.12) associated to enhanced symmetry

points ~Φ0 of the internal moduli space of the heterotic string on T 2. We shall see that the

one-loop free energy density has enough structure to stabilize T = B89 + i
p

ĝ88ĝ99 − ĝ2
89,

U =
(

ĝ89 + i
p

ĝ88ĝ99 − ĝ2
89

)

/ĝ88 and the Wilson lines Y I
i (i, j = 8, 9; I = 10, 11, . . . , 25).

This translates in the type I side into expectation values of the closed and open string

internal moduli via the duality map T = TI, U = UI, Y I
i = Y I

Ii , where

TI = C89 + i

q

ĝI88ĝI99 − ĝ2
I89

λI
= C89 + ie−φI

(

ĝI88ĝI99 − ĝ2
I89

)1/4

2⇡
,

UI =
ĝI89 + i

q

ĝI88ĝI99 − ĝ2
I89

ĝI88
. (6.1)

The only remaining flat direction of the thermal effective potential corresponds to the

heterotic and type I dilatons in eight dimensions, which are related as: φI = −1
2φ −

3
4 ln

(

(2⇡)2
p

ĝ88ĝ99 − ĝ2
89

)

.
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The heterotic effective action in the Einstein frame is (see for instance appendices D

and E in [56])

S =

Z

d8x
p−g

("

R

2
− (@φ)2

3
− 1

4

 

|@U|2
U2

2

+
|@T + Y I

[8@Y I
9]|2

T 2
2

+
|U@Y I

8 − @Y I
9 |2

T2 U2

!#

−F
)

.

(6.2)

Indeed, if we arrange the thirty-four entries of the moduli vector as ~Φ ⌘
(T1, T2,U1,U2, Y

I
8 , Y I0

9 ), where indices 1 and 2 refer to real and imaginary parts, the metric

components of the general expression (5.2) are

(FMN ) =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1
2T 2

2
0 0 0 − Y J

9

4T 2
2

Y J0

8

4T 2
2

1
2T 2

2
0 0 0 0
1

2U2
2

0 0 0
1

2U2
2

0 0

sym. |U|2
2T2U2

δIJ +
Y I
9 Y J

9

8T 2
2

− U1
2T2U2

δIJ 0 − Y I
9 Y J0

8

8T 2
2

1
2T2U2

δI0J 0
+

Y I0

8 Y J0

8

8T 2
2

1

C

C

C

C

C

C

C

C

C

C

C

C

A

. (6.3)

The free energy density F is determined by the mass spectrum (see eq. (5.9)), which is

specified by the left (right)-moving oscillator number A (Ā), the internal momenta and

winding numbers mi, ni (i = 8, 9), and the root vector QI of the right-moving internal

lattice ΓSpin(32)/Z2
. As reviewed in the appendix, the mass formula M̂2

s = 2(A + Ā) +
1
2

(

~p2
L + ~p2

R

)

involves the left and right-moving momenta along the compact directions,

pI
L,R =

✓

mi−QJY J
i −njBij−

1

2
njY J

i Y J
j

◆

e⇤iI ⌥ nieI
i for i, j, I =8, . . . , 9; J =10, . . . , 25,

pI
R =

p
2
(

QI + niY I
i

)

for I =10, . . . , 25; ~Q 2 ΓSpin(32)/Z, (6.4)

where ĝij = eI
i e

I
j and e⇤iIeI

j = δi
j . More explicitly, one obtains

M̂2
A,~m,~n, ~Q

(T ,U , Y ) =
1

T2U2

∣

∣

∣

∣

−m8U + m9 + T̃ n8 +
⇣

T̃ U − 1

2
WIWI

⌘

n9 + WIQI

∣

∣

∣

∣

2

+ 4A,

(6.5)

where we have defined

WI := UY I
8 − Y I

9 , T̃ := T +
1

2
Y I

8 WI (6.6)

and used the level matching condition, A − Ā = min
i + 1

2QIQI . At generic points in

moduli space, the gauge symmetry is U(1)2L ⇥U(1)2R ⇥U(1)16
R , where U(1)2L ⇥U(1)2R arises

from T 2 compactification, and U(1)16
R is the Cartan subgroup of SO(32)R. We now examine

special points in moduli space where n0 pairs of bosonic and fermionic superpartners gener-

ically massive are accidentally massless. Since at zero temperature the model is maximally

supersymmetric, such points are associated to enhanced gauge symmetries. In fact, the ad-

ditional massless modes arise at oscillator levels A = 0, Ā = −1, so that n0 is proportional
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to s0r−1 = 23 (see the appendix) and the enhancements of the gauge theory arise from the

right-moving sector only. In the following two examples, we will simplify the notations by

omitting the subscript “R” in the right-moving gauge group factors.

Local attractor 1: U(1)2
L
×SU(3)×SO(32). We start with the most obvious attractor

where all Wilson lines vanish, Y I
i = 0, leaving the SO(32) group unbroken. The torus

moduli take the values T = U = 1
2 + i

p
3

2 , implying an additional SU(3) gauge factor. The

n0 states responsible for the enhancement of U(1)2⇥U(1)16 ! SU(3)⇥SO(32) are divided

into two groups:

• 6 ⇥ 23 boson/fermion pairs imply U(1)2 ! SU(3). Their quantum numbers are

(~m,~n) = ±(1, 1; 0, 1), ±(0, 1;−1, 1) or ±(1, 0; 1, 0), and ~Q = 0. In this case, p8,9
L =

0 = pI≥10
R and (p8

R, p9
R) realize the root vectors of SU(3), which represent a hexagon.

The corresponding 6 mass formulas are,

M̂2
0, ~m,~n,~0

=

8

>

<

>

:

1
T2U2

|1 − U + T̃ U − 1
2WIWI |2 for (~m,~n) = ±(1, 1, 0, 1),

1
T2U2

|1 − T̃ + T̃ U − 1
2WIWI |2 for (~m,~n) = ±(0, 1,−1, 1),

1
T2U2

|T̃ − U|2 for (~m,~n) = ±(1, 0, 1, 0).

(6.7)

• 480⇥23 boson/fermion pairs to recover U(1)16 ! SO(32). They have (~m,~n) = (~0,~0),
~Q = ±(1,±1, 0, . . . , 0), ±(1, 0,±1, . . . , 0) or any other permutation. In this case,

p8,9
L = 0 = p8,9

R , while (pI≥10
R ) realize the root vectors of SO(32). The corresponding

480 mass formulas are

M̂2
0,~0,~0, ~Q

=
1

T2U2

∣

∣±(WI ±WJ)
∣

∣

2
, I, J = 10, . . . , 25 , I 6= J. (6.8)

To compute the squared mass matrix defined in eq. (5.14), we first evaluate the

second derivatives (5.15) of the free energy at ~Φ0. The non vanishing components

are proportional to

n0
X

u=1

@2M̂2
u

@T↵@T↵

∣

∣

∣

∣

∣

~Φ0

=

n0
X

u=1

@2M̂2
u

@U↵@U↵

∣

∣

∣

∣

∣

~Φ0

= 16 ⇥ 23, ↵ = 1, 2 (no sum over ↵)

n0
X

u=1

@2M̂2
u

@Y I
i @Y I

i

∣

∣

∣

∣

∣

~Φ0

=−2

n0
X

u=1

@2M̂2
u

@Y I
8 @Y I

9

∣

∣

∣

∣

∣

~Φ0

=160 ⇥ 23, i = 8, 9; (6.9)

I =10, . . . , 25 (no sum over i, I).

The nonzero entries of the metric (6.3) at ~Φ0 are also found to be

FT↵T↵ = FU↵U↵ =
2

3
, ↵ = 1, 2 (no sum over ↵) (6.10)

FY I
i Y I

i
=

2

3
, FY I

8 Y I
9

= −1

3
, i = 8, 9; I = 10, . . . , 25 (no sum over i, I).

The resulting matrix of squared masses is diagonal, with strictly positive eigenval-

ues. Therefore, all flat directions of the internal moduli space are lifted. Once the
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dynamics is attracted to the trajectory (5.12), the “time-dependent moduli squared

masses” are

M2
Φ1

=
c6

4⇡
23 ⇥ 24 e

2φ0
3 T 6

0 or M2
Φ2

=
c6

4⇡
23 ⇥ 240 e

2φ0
3 T 6

0 . (6.11)

The first one corresponds to T1, T2, U1, U2, while the second is associated to the

Wilson lines Y I
8 and Y I

9 . The additional factor of ten for the latter can be understood

from the fact that they are coupled to ten times as many additional states as compared

to the torus moduli.

Local attractor 2: U(1)2
L

× SU(2) × SO(34). The point ~Φ0 we now consider cor-

responds to the values T = U = i/
p

2, Y I≥10
8 = 0 and Y 10

9 = −Y 11
9 = −Y 12

9 = · · · =

−Y 25
9 = −1/2. This moduli configuration is much less trivial than the previous one, since

it is going to give rise to the gauge group SU(2)8 ⇥ SO(34)9,...,25, where the subscripts

denote which directions i = 8, 9 and I = 10, . . . , 25 are associated with the gauge factors.

There are n0 = 546⇥23 extra massless boson/fermion pairs of states, which can be divided

into 2 ⇥ 23 for the SU(2)8 and 544 ⇥ 23 for the SO(34)9,...,25 enhancements. Note that the

SO(34)9,...,25 factor arises from an enhancement of the U(1)9 symmetry of the T 2 torus,

with the SO(32) symmetry of the internal lattice. The detailed quantum numbers of the

extra states are as follows:

• 2 ⇥ 23 boson/fermion pairs give U(1)8 ! SU(2)8. They have (~m,~n) = ±(1, 0; 1, 0)

and ~Q = 0. In this case, pI≥8
L = 0 = pJ≥9

R , while p8
R = ±

p
2 realize the root vectors

of SU(2)8.

For SO(34)9,...,25, the 544 ⇥ 23 pairs of bosons and fermions giving U(1)17
9,...,25 !

SO(34)9,...,25 are subdivided into:

• 420 ⇥ 23 pairs transform in the adjoint representation of SO(30) and are giving rise

to U(1)15
11,...,25 ! SO(30)11,...,25. 210⇥ 23 have (~m,~n, ~Q) = ±(0, 1; 0, 0; 0, 1, 1, 0, . . . , 0)

or any permutation of the last 15 entries. The other 210 ⇥ 23 have (~m,~n, ~Q) =

(0, 0; 0, 0; 0, 1,−1, 0, . . . , 0) or any permutation of the last 15 entries.

• 60⇥23 pairs transform as (2, 30) under SO(2)10⇥SO(30)11,...,25, giving the enhanced

group SO(32)10,...,25. 30 ⇥ 23 of them have (~m,~n, ~Q) = ±(0, 1; 0, 0;−1, 1, 0, . . . , 0)

or any permutation of the last 15 entries. The other 30 ⇥ 23 have (~m,~n, ~Q) =

±(0, 0; 0, 0; 1, 1, 0, . . . , 0) or any permutation of the last 15 entries.

• 64 ⇥ 23 pairs transform as (2, 32) under SO(2)9 ⇥ SO(32)10,...25, giving the enhanced

gauge group SO(34)9,...,25. 32⇥23 of them have (~m,~n, ~Q) = ±(0, 1; 0,−1; 1
2 , . . . , 1

2) and

±(0, 1; 0,−1;−1
2 ,−1

2 , 1
2 , . . . , 1

2) or any permutation of the last 15 entries. The other

32⇥23 have (~m,~n, ~Q) = ±(0, 2; 0,−1;−3
2 , 1

2 , . . . , 1
2) and ±(0, 2; 0,−1;−1

2 , 3
2 , 1

2 , . . . , 1
2)

or any permutation of the last 15 entries.

Proceeding as before, the squared mass matrix in (5.14) can be evaluated. Its diago-

nalization reveals two groups of eigenvalues,

M2
Φ̃1

=
c6

4⇡
23 ⇥ 16 e

2φ0
3 T 6

0 , M2
Φ̃2

=
c6

4⇡
23 ⇥ 256 e

2φ0
3 T 6

0 . (6.12)
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The first one is associated to T1−U1− 1
4(Y 10

8 −Y 11
8 −· · ·−Y 25

8 ) and T2−U2, while the second

corresponds to T1 + U1, T2 + U2 and all 32 Wilson lines. Thus, we find a second point in

moduli space where all internal moduli are stabilized by the thermal effective potential.13

7 Conclusions and perspectives

In this paper, we considered toroidally compactified heterotic and type I superstrings at

finite temperature. Applying the rules of heterotic/type I duality, we inferred novel con-

tributions to the free energy of a gas of type I superstrings. These contributions are due

to BPS D-strings wrapped on internal circles which become massless at special points in

moduli space, enhance the gauge group, and lift flat directions. These conclusions are

based on the S-dual heterotic picture at weak coupling. At finite temperature, the latter is

a no-scale model i.e.a flat background where all supersymmetries are spontaneously broken

at tree level.

We computed the one-loop free energy density on the heterotic side for D ≥ 4 and

found points in moduli space where all internal moduli are dynamically stabilized due to

the cosmological evolution. Additionally, in D ≥ 5, the evolution of the dilaton asymptotes

to a constant value, while in D = 4, the dilaton turns out to have a logarithmically

decreasing behavior.

Using the S-duality, this implies that for D ≥ 7, all type I internal moduli can be

stabilized at strong coupling. In D = 6, the S-duality maps the heterotic coupling into

the type I volume modulus. As a result the only remaining flat direction in type I is the

internal volume modulus, which asymptotes to a constant finite value, while the type I

dilaton is stabilized at weak coupling. For the cases D  5, all type I internal moduli

can be stabilized at weak coupling. Furthermore in D = 4, the type I dilaton inherits

the logarithmic behavior from the heterotic dilaton, while it asymptotes to a constant in

higher dimensions. In all cases, the late time geometric evolution is identical to a radiation

dominated evolution. Furthermore, all solutions are stable under small perturbations and

are thus local attractors of the dynamics.

It is worth stressing that the effects of the massless BPS non-perturbative D-strings

persist at weak coupling, as their masses are protected by supersymmetry. As a result,

the stabilization in type I for D ≥ 7 persists at weak coupling. Furthermore, taking these

modes into account is not optional in phenomenologically motivated uses of the type I

superstring. Actually, this is not the first time massless solitons play an essential role

in weakly coupled theories. For instance, in type IIB compactifications on Calabi-Yau

threefolds, the conifold singularities in the vector multiplets moduli spaces are explained

by massless hypermultiplets realized by D3-branes wrapped on vanishing 3-cycles [57].

Realistic models should include also a spontaneous breaking of N4 = 1 supersymmetry

at a scale M , before finite temperature T is switched on. In this case, the universe is

attracted to a “radiation-like dominated era” [25–32]. This evolution is characterized by

13We have also investigated a third local attractor at the point T = U = i/2, Y I≥10
8 = 0 = Y 10,11

9 ,

Y 12,...,25
9 = 1/2, which corresponds to the gauge enhancement SU(2) × SU(2) × SO(32) and a stabilization

of all internal moduli. Due to its similarity, we do not present its details here.
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coherent motions of e4φ(t) (where φ is the dilaton in four dimensions) and the modulus M(t),

both proportional to T (t) such that Friedmann’s equation is effectively that of a radiation

dominated era, H2 / T 4. The energy stored in the oscillations of the moduli around their

minima is found to be dominated by the thermal energy and so the stabilization of the

scalars is guaranteed. Moreover, infrared effects are expected to put a halt to the run away

behavior of the string coupling and supersymmetry breaking scale. In particular, when

T (t) reaches the electroweak scale MEW, radiative corrections are not screened anymore by

temperature effects and the electroweak breaking is expected to take place [58–63]. This

should be accompanied by the stabilization of M(t) around MEW [64]. Clearly, it is of

utmost importance to implement these effects in our cosmological set up since this would

provide a precise context for addressing questions of dark matter, astroparticle physics

and phenomenology. Additionally for D = 4, as well as D = 5, there is the possibility of

large contributions coming from light NS5-brane states in the heterotic theory or D5-brane

states in the type I theory which have not been taken into account yet. It is possible that

these states can play a role in stabilizing the dilaton. To make progress in this direction,

one may try to exploit heterotic/type II duality in D = 4 which is a strong-weak duality.
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A Thermal partition functions

Type I superstring. To study the canonical ensemble of a perfect gas of maximally

supersymmetric open and closed superstrings, we compactify the type I theory on the

Euclidean background S1(RI0) ⇥ TD−1 ⇥Q9
i=D S1(RIi). Bosons (fermions) are imposed

periodic (antiperiodic) boundary conditions along S1(RI0), where β̂I = 2⇡RI0 is the inverse

temperature. The spatial torus TD−1 is considered in the large volume V̂I limit. Our

aim is to compute the one-loop thermal partition function. The treatment of a generic

Scherk-Schwarz compactification can be found in [65] and the case of present interest is

reviewed in [66].
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In the closed string sector, the torus contribution is half that of type IIB,

T =
β̂IV̂I

(2⇡)D

1

2

Z

F

d2⌧

2⌧
D
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+1

2

1
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q
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⌘4

1
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X
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4
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=
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(2⇡)D

1

2

Z

F

d2⌧

2⌧
D
2

+1

2

1

⌘8⌘̄8

X

~m,~n

q
1
4
~p2

L q̄
1
4
~p2

R

(

X

n0 even, m̃0

e
−⇡R2

I0
⌧2

|n0⌧+m̃0|2
h

(V8V̄8 + S8S̄8) − (−1)m̃0(V8S̄8 + S8V̄8)
i

+
X

n0 odd, m̃0

e
−⇡R2

I0
⌧2

|n0⌧+m̃0|2
h

(O8Ō8 + C8C̄8) − (−1)m̃0(O8C̄8 + C8Ō8)
i

)

,

(A.1)

where q = e2i⇡⌧ and pL,Ri = mi/RIi ⌥ niRIi. The above second expression involves SO(8)

affine characters, where those associated to the vectorial and spinorial representations

satisfy
V8

⌘8
=

S8

⌘8
=
X

A≥0

sA qA. (A.2)

The Klein bottle amplitude K is obtained by keeping all characters of T which are invariant

under left $ right symmetry. Symmetrizing and antisymmetrizing the NS-NS and RR

sectors respectively, K involves the combination V8 −S8 and is thus vanishing. In the open

string sector, the thermal annulus and Möbius strip amplitudes are

A =
β̂IV̂I

(2⇡)D

N2

2

Z +1

0

d⌧2

2⌧
D
2

+1

2

1

⌘8

X

~m

q~p2
X

m̃0

e
−⇡R2

I0
⌧2

m̃2
0

h

V8 − (−1)m̃0S8

i

, (A.3)

M = − β̂IV̂I

(2⇡)D

N

2

Z +1

0

d⌧2

2⌧
D
2

+1

2

1

⌘̂8

X

~m

q~p2
X

m̃0

e
−⇡R2

I0
⌧2

m̃2
0

h

V̂8 − (−1)m̃0Ŝ8

i

, (A.4)

where N = 32, q = e−⇡⌧2 , pi = mi/RIi and the “hatted” characters in eq. (A.4) have the

power expansion

V̂8

⌘̂8
=

Ŝ8

⌘̂8
=
X

A≥0

(−)AsA qA. (A.5)

We proceed by evaluating more explicitly the amplitude T by “unfolding” the funda-

mental domain of integration [67, 68]. In fact, for any set of modular covariant functions

f(n,m̃)(⌧, ⌧̄) such that f(n,m̃)(M(⌧), M(⌧̄)) = f(n,m̃)M (⌧, ⌧̄) for all M 2 SL(2, Z), one has14

Z

F

d2⌧

⌧2
2

X

n,m̃

f(n,m̃)(⌧, ⌧̄) =

Z

F

d2⌧

⌧2
2

f(0,0)(⌧, ⌧̄) +

Z

S+

d2⌧

⌧2
2

X

m̃6=0

f(0,m̃)(⌧, ⌧̄), (A.6)

14Eq. (A.6) is true as long as it is allowed to exchange discrete sum and integration, a fact which is

guaranteed if the integrand is absolutely convergent. This condition is satisfied for T when RI0 > RIH.
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where S+ is the upper half strip: −1/2 < ⌧1 < 1/2, ⌧2 > 0. Applied to eq. (A.1),

supersymmetry implies that the contribution for n0 = m̃0 = 0 vanishes and we are left

with integrals over S+ for n0 = 0, m̃0 6= 0. Defining m̃0 = 2k̃0 + 1 and using (A.2), one

obtains

T =
β̂IV̂I

(2⇡)D

Z

S+

d2⌧

⌧
D
2

+1

2

X

k̃0, ~m, ~n
A≥0, Ā≥0

sAsĀ e2i⇡⌧1(A−Ā−~m·~n) e
−⇡R2

I0
⌧2

(2k̃0+1)2−⇡⌧2
⇥

2(A+Ā)+
P

i

(

m2
i

R2
Ii

+ni2R2
Ii

)⇤

=
β̂IV̂I

(2⇡)D

Z +1

0

d⌧2

⌧
D
2

+1

2

X

k̃0, ~m, ~n
A≥0, Ā≥0
A−Ā=~m·~n

sAsĀe
−⇡R2

I0
⌧2

(2k̃0+1)2−⇡⌧2
⇥

4A+
P

i

(

mi
RIi

−niRIi

)2⇤

, (A.7)

where level matching is implemented by integrating over ⌧1. Using the formula
R1
0 dx e−a/x−bx

x⌫ = 2a
1−⌫
2 b

⌫−1
2 K⌫−1(2

p
ab), where K⌫(x) is the modified Bessel function of

second kind, the integral over ⌧2 yields eqs. (2.1) and (2.2). Similarly, applying the expan-

sions (A.2) and (A.5) in eqs. (A.3) and (A.4), we have

A =
β̂IV̂I

(2⇡)D

N2

2

Z +1

0

d⌧2

⌧
D
2

+1

2

X

k̃0, ~m, A≥0

sA e
−⇡R2

I0
⌧2

(2k̃0+1)2−⇡⌧2
(

P

i

m2
i

R2
Ii

+A
)

, (A.8)

M = − β̂IV̂I

(2⇡)D

N

2

Z +1

0

d⌧2

⌧
D
2

+1

2

X

k̃0, ~m, A≥0

(−)AsA e
−⇡R2

I0
⌧2

(2k̃0+1)2−⇡⌧2
(

P

i

m2
i

R2
Ii

+A
)

, (A.9)

which gives eq. (2.3) after integration over ⌧2.

Dual heterotic string. We proceed by deriving the partition function of the dual het-

erotic theory, which is compactified on S1(Rh0) ⇥ TD−1 ⇥ Q9
i=D S1(Rhi). Bosons and

fermions are again given periodic and antiperiodic boundary conditions along the Eu-

clidean time circle, whose circumference defines the inverse temperature β̂h = 2⇡Rh0. This

yields

Zh =
β̂hV̂h

(2⇡)D

Z

F

d2⌧

2⌧
D
2

+1

2

Γ(0,16)

⌘8⌘̄24

X

~m,~n

q
1
4
~p2

L q̄
1
4
~p2

R

⇥
X

n0,m̃0

e
−⇡R2

h0
⌧2

|n0⌧+m̃0|2 1

2

X

a,b

(−)a+b+ab ✓[ab]

⌘4
(−)m̃0a+n0b+m̃0n0

=
β̂hV̂h

(2⇡)D

Z

F

d2⌧

2⌧
D
2

+1

2

Γ(0,16)

⌘8⌘̄24

X

~m,~n

q
1
4
~p2

L q̄
1
4
~p2

R

(

X

n0 even, m̃0

e
−⇡Rh0

⌧2
|n0⌧+m̃0|2

h

V8 − (−1)m̃0S8

i

+
X

n0 odd, m̃0

e
−⇡Rh0

⌧2
|n0⌧+m̃0|2

h

(−1)m̃0O8 − C8

i

)

, (A.10)

where q = e2i⇡⌧ , while pL,Ri = mi/Rhi ⌥niRhi and the volume V̂h are now measured in the

heterotic theory. Alternatively, the lattice of internal zero modes can be considered in its
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Lagrangian formulation, as needed in section 4 for the direction 9,

X

m9,n9

q
1
4
p2

L9 q̄
1
4
p2

R9 =
Rh9p

⌧2

X

n9,m̃9

e
−⇡R2

h9
⌧2

|n9⌧+m̃9|. (A.11)

To unfold the fundamental domain of integration in (A.10), one can use the identity (A.6)

as in the torus amplitude in type I. Expanding the SO(32) right-moving lattice as

Γ(0,16)

⌘̄24
=
X

Ā≥−1

bĀ q̄Ā, (A.12)

and using eq. (A.2), one obtains

Zh =
β̂hV̂h

(2⇡)D

Z

S+

d2⌧

⌧
D
2

+1

2

X

k̃0, ~m, ~n
A≥0, Ā≥−1

sAbĀ e2i⇡⌧1(A−Ā−~m·~n)e
−⇡R2

h0
⌧2

(2k̃0+1)2−⇡⌧2

h

2(A+Ā)+
P

i

⇣

m2
i

R2
hi

+ni2R2
hi

⌘i

=
β̂hV̂h

(2⇡)D

Z 1

0

d⌧2

⌧
D
2

+1

2

X

k̃0, ~m, ~n
A≥0, Ā≥−1
A−Ā=~m·~n

sAbĀ e
−⇡R2

h0
⌧2

(2k̃0+1)2−⇡⌧2
⇥

4A+
P

i

(

mi
Rhi

−niRhi

)2⇤

, (A.13)

which can be integrated to give eqs. (3.1) and (2.2).

Heterotic string at generic point in moduli space. In sections 5 and 6 for D = 8,

we study in the context of the maximally supersymmetric heterotic string the stabilization

of all internal moduli by the free energy density at weak coupling. In Einstein frame,

the latter is F = −e
2D

D−2
φZh/(β̂hV̂h), where φ is the dilaton in dimension D and Zh is the

vacuum energy in the Euclidean background S1(Rh0)⇥TD−1⇥T 10−D. The internal moduli

are the metric ĝij , the antisymmetric tensor Bij and the Wilson lines Y I
i (i, j = D, . . . , 9;

I = 10, 11, . . . , 25). Proceeding as before, the partition function Zh takes the following

forms,

Zh =
β̂hV̂h

(2⇡)D

Z

F

d2⌧

2⌧
D
2

+1

2

X

~m,~n, ~Q

q
1
4
~p2

L q̄
1
4
~p2

R

⌘8⌘̄24

X

n0,m̃0

e
−⇡R2

h0
⌧2

|n0⌧+m̃0|2 1

2

X

a,b

(−)a+b+ab ✓[ab]

⌘4
(−)m̃0a+n0b+m̃0n0

=
β̂hV̂h

(2⇡)D

Z

S+

d2⌧

2⌧
D
2

+1

2

X

~m,~n, ~Q

q
1
4
~p2

L q̄
1
4
~p2

R

X

k̃

e
−⇡R2

h0
⌧2

(2k̃0+1)2 V8 + S8

⌘8⌘̄24
(A.14)

=
β̂hV̂h

(2⇡)D

Z

S+

d2⌧

⌧
D
2

+1

2

X

k̃0, ~m, ~n, ~Q
A≥0, Ā≥−1

sArĀ e2i⇡⌧1(A−Ā+ 1
4
(~p2

L−~p2
R)) e

−⇡R2
h0

⌧2
(2k̃0+1)2−⇡⌧2[2(A+Ā)+ 1

2
(~p2

L+~p2
R)],

where we introduce the coefficients rĀ of the expansion ⌘̄−24 =
P

Ā≥−1 rĀq̄Ā. The moduli-

dependent internal momenta are specified by ~m, ~n and the root vector QI of the right-

moving lattice ΓSpin(32)/Z2
[69, 70],

pI
L,R =

⇣

mi−QJY J
i −njBij−

1

2
njY J

i Y J
j

⌘

e⇤iI ⌥ nieI
i for i, j, I =D, . . . , 9; J =10, . . . , 25,

pI
R =

p
2
(

QI + niY I
i

)

for I = 10, . . . , 25; ~Q 2 ΓSpin(32)/Z, (A.15)
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where {ei} is a vector basis of T 10−D i.e.ĝij = eI
i e

I
j and e⇤iIeI

j = δi
j . Since these momenta

satisfy 1
2(~p2

L−~p2
R) = −2~m·~n− ~Q· ~Q, the level matching condition implemented by integrating

over ⌧1 in eq. (A.14) is A − Ā = ~m · ~n + 1
2
~Q · ~Q, which yields

Zh =
β̂hV̂h

(2⇡)D

Z 1

0

d⌧2

⌧
D
2

+1

2

X

k̃0, ~m, ~n, ~Q
A≥0, Ā≥−1

A−Ā=~m·~n+ 1

2
~Q·~Q

sArĀ e
−⇡R2

0
⌧2

(2k̃0+1)2−⇡⌧2M̂2
A,~m,~n, ~Q

(ĝ,B,Y )
, (A.16)

where M̂2
A,~m,~n, ~Q

(ĝ, B, Y ) = 2(A + Ā) + 1
2

(

~p2
L + ~p2

R

)

are the masses of the boson/fermion

pairs of superpartners. Integrating over ⌧2, the above expression for Zh leads to the free

energy density (5.9), while for D = 8 the mass spectrum takes the more explicit form (6.5).
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Centre de Physique Théorique, Ecole Polytechnique†

F–91128 Palaiseau cedex, France
lihui.liu@cpht.polytechnique.fr

Based on a talk given at the “The Seventh International Conference Quantum Theory and

Symmetries”, Prague, Czech Republic, on August 7-13, 2011

Abstract
We study moduli stabilization by thermal effects in the cosmological context. The implemen-
tation of finite temperature, which spontaneously breaks supersymmetry, induces an effective
potential at one loop level. At the points where extra massless states appear in the string
spectrum, the potential develops local minima whose depth depends on the temperature.
Moduli attracted to these points acquire dynamical masses which decrease with cosmologi-
cal evolution. This makes the coherent scalar oscillations dilute before nucleosynthesis, and
the cosmological moduli problem is avoided. In particular, we study the effective potential
induced by a maximally supersymmetric heterotic string gas for spacetime dimension D ≥ 4,
and a gas of type II strings compactified on Calabi-Yau three-folds (D = 4). In the former
case, the local minima of the potential arise at enhanced gauge symmetry points, which can
stabilize all moduli but the dilaton. In the latter case, the local minima are reached at the
loci where 2-cycles or 3-cycles in the Calabi-Yau space shrink to zero size, accompanied with
either conifold transitions or non Abelian gauge symmetries. This stabilizes the type II mod-
uli which characterize the deformation of these shrinking cycles. Moduli stabilization in the
dual string models is also investigated by heterotic/type I S-dualities and type II/heterotic
dualities.
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1 Introduction and outline

Moduli stabilization is a long standing issue in the superstring phenomenology. In fact, the
presence of moduli fields in supersymmetric compactifications leads to difficulties: not only
the massless scalars are in contradiction with observations of the gravitational force, but
also, being continuous parameters in the couplings and mass spectrum, they imply a loss
of predictability of the theory. Much attention is thus drawn to the search for mechanisms
which attract the moduli fields to certain preferred values, where scalar masses are generated.

On the other hand, the scalar masses are subjected to constraints from cosmology. Ba-
sically, when the scalar fields oscillate coherently in the potential well, the energy of oscil-
lation dominates the total energy of the universe [1], until the scalar particles decay. The
productions of the decay can alter the primordial abundances of the light nuclei produced
by nucleosynthesis. Also, the huge amount of entropy production during the decay can wash
out the baryon number asymmetry. This is termed as the cosmological moduli problem,
which was initially identified in the framework of supersymmetric standard models [2–4].
One applaudable solution to these is to require the scalar masses be of O(10)TeV order. It
is pointed out in [3] that once this is satisfied, the decay of these scalar particles reheats the
universe to a temperature of order 1MeV, high enough to restart the nucleosynthesis. Then
it is found in [4] that the baryon number asymmetry can also be saved by the O(10)TeV
order scalar mass if the baryogenesis is due to the Affleck-Dine mechanism [5].

Here I present our recent work [6, 7] where the above problems were addressed by inves-
tigating thermal string effects. It was shown in [8] that a gas of string modes, carrying both
winding and momenta, can generate a free energy that enables stabilization of radii moduli.
A quantum version of this effect has been presented in [6,7,9,10], with the thermal gas and
free energy replaced by virtual strings which induce an effective potential. To avoid gener-
ating a large cosmological constant, the cosmology is addressed in the context of no-scale
models [11]. The latter are defined at classical level by backgrounds associated to vanish-
ing minima of the scalar potential, with flat directions parameterized by the spontaneous
supersymmetry breaking scale.

For simplicity, we consider here only temperature breaking of supersymmetry. At the
level of conformal field theory on the worldsheet, the implementation of finite temperature
amounts to a Scherk-Schwarz reduction on the Euclidean time circle of radius R0, with
boundary conditions associated to the spacetime fermion number [12]. The string frame

temperature is T̂ = β̂−1 = 1
/

2⇡R0 and the Einstein frame temperature is T = e
2

D−2
φ(D)

T̂ ,

where φ(D) is the D-dimensional dilaton. The supersymmetry is thus broken spontaneously
at the scale T . We restrict our attention to the intermediate era between the Hagedorn
phase transition [13] and the electroweak phase transition, so that Mstring " T " ΛEW.

To build phenomenologically viable models however, it is necessary to also include zero
temperature spontaneous supersymmetry breaking. Otherwise as the temperature drops
during the cosmological evolution, the supersymmetry broken by temperature will be re-
stored. The case with another Scherk-Schwarz reduction performed in one of the internal
dimensions is intensively studied in Refs. [9], where it is shown that the supersymmetry
breaking scale MSUSY induced in this internal dimension evolves proportionally with T . It
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is expected that by the end of the intermediate era, when T approaches ΛEW, the radia-
tive corrections induced by infrared effects start to destabilize the Higgs potential, freezing
MSUSY at about O(1)TeV order. This gives an account of the hierarchy MSUSY ⌧ MPlank .

The breaking of supersymmetry generates a nontrivial vacuum-vacuum amplitude, which
we compute at one-loop level, supposing that the string theory is at weak coupling. This
amplitude is just the thermal partition function of the string gas computed up to one-loop
level, which we denote by Z. It gives rise to the free energy density by F = − Z

βV
, (V the

space volume in Einstein frame). The back-reaction of F on the spacetime background is
dictated by the one-loop effective action

S =

Z

dDx
p−g

hR

2
− 1

2
FMN@Φ

M@ΦN −F
(

T, ~Φ
)

i

, (1.1)

where ΦM are the moduli, and the metric components FMN are functions of these moduli.
Since F appears in the action as the effective potential, moduli attractors should be its local
minima.

It can be shown that when we only have temperature breaking of supersymmetry, the
free energy density takes the form [6]:

F(T,~Φ) = −
Z 1

0

d`

2`

1

(2⇡`)
D

2

X

s

e−
1
2
Ms(~Φ)2`

X

k02Z
e−

(2k0+1)2

2T2` = −TD
X

s

G
(

Ms(~Φ)/T
)

, (1.2)

whereMs is the tree-level mass of the s-th string state, which can depend on the moduli. The
function G(x) is defined in terms of the modified Bessel function of the second kind (see [6]
for more details). It peaks at x = 0 and is exponentially suppressed at large x. Therefore
only light states give significant contribution to F . By consequence the local minima of F
appear at the vacuum expectation values (VEV’s) of ~Φ where some massive states in the
string spectrum become massless. These states can originate either from the perturbative
spectrum or from non perturbative objects such as D-branes. String-string dualities can help
figure out the non perturbative contribution.

The local minima of F induce time-dependent scalar masses, instead of constant ones.
This ensures that the universe is radiation dominated at the exit of the intermediate era,
which is crucial to the resolution of the cosmological moduli problem. In order to show
this, we take the flat Robinson-Walker metric ds2 = −dt2+a(t)2d~x2 (in the Einstein frame).

Solving the equations of motion about a local minimum of F , say ~Φ0, we obtain the following
time evolution of the scale factor, the temperature, and the total energy density:

a(t) / 1/T (t) / t2/D, ⇢tot / H2 / a−D. (1.3)

The coherent moduli field oscillations obey the equation

✏̈M + (D − 1)H✏̇M + ΛMN✏
N = 0, (1.4)

where we let ~Φ = ~Φ0 + ~✏, and we have the squared-mass matrix ΛMN =
(

FMPFPN

)

~Φ0
, with

FPN := @2F
/

@ΦPΦN , and FMN the inverse of FMN . Using Eq.(1.2) one can show that
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ΛMN / TD−2. Thus with Eq.(1.4) we have the usual scalar dynamics, but with scalar masses
depending on the temperature, hence on time. This results in the late-time scalar oscillation
behavior ✏ ⇠ t−1/2 sin

(

λ t2/D + phase
)

, instead of t1/D−1 sin
(

λ t+ phase
)

for constant mass,
where λ2 is some eigenvalue of the squared-mass matrix. Therefore the energy density stored
in the scalar oscillations behaves asymptotically as

⇢Φ =
1

2
FMN

∣

∣

~Φ0
✏̇M ✏̇N ⇠ t

4
D
−3 / a2−3D/2, (1.5)

while the result for the case of constant scalar mass is ⇢Φ ⇠ a1−D which obviously dominates
over the radiation energy ⇢rad ⇠ a−D for any spacetime dimension. Back to the case of
dynamical mass, where Eq.(1.5) holds, when D ≥ 5, the universe is radiation dominated,
since compared to Eq.(1.3), we have ⇢Φ ⌧ ⇢tot. However D = 4 is a marginal case where
even though the metric evolution appears as that of a radiation dominated universe (⇢tot /
H2 / a−4), the energy of coherent scalar oscillations is not dominated. Instead, it takes up
a constant portion in the total energy (⇢tot / ⇢Φ / a−4). This is due to the over-simplified
supersymmetry breaking mechanism that we adopt here. It is shown in [9] that the D = 4
case is also radiation dominated once an additional source of spontaneous supersymmetry
breaking is introduced in the internal space.

In the following, we investigate the cosmology induced by two specific string models: the
maximally supersymmetric heterotic strings and the Calabi-Yau (CY) compactification of
type II strings.

2 Heterotic cosmology and type I dual

We start with the cosmology induced by weakly coupled SO(32) heterotic strings compacti-
fied on a factorized torus

Q9
i=D S1(Rhi), where the subscript h indicates heterotic quantities.

The model have maximal number of supersymmetry, so that the metric (FMN) in Eq.(1.1)
is exact at tree level. Let the moduli space be coordinatized by the D-dimensional dilaton
φ
(D)
h := φ

(10)
h − 1

2

P9
i=D ln(2⇡Rhi) and all the internal radii Rhi with i = D, . . . , 9. Computing

the thermal one-loop amplitude, we find that when all radii satisfy |Rhi−1/Rhi| < 1/(2⇡Rh0),
i = D, ..., 9, the corresponding free energy density takes the form [6]:

Fh = −TD

(

n0 cD +
9
X

i=D

n1 G

✓

2⇡Rh0

∣

∣

∣

1

Rhi

−Rhi

∣

∣

∣

◆

+O(e−2⇡Rh0)

)

, (2.1)

where the coefficients n0 and n1 are positive, associated to the counting of states. The
first term in the above expression is from massless states. The second term involving the
G-function shows that Fh reaches a local minimum at the self T-dual point Rhi = 1 (i =
D, . . . , 9), due to the states of masses

∣

∣

1
Rhi

−Rhi

∣

∣. These are just the non Cartan components

responsible for the gauge symmetry enhancement U(1) ! SU(2) in each internal circle. In
fact in heterotic strings, the correspondence between the enhancement of gauge symmetry
and the local extrema of the free energy is true to all loop levels [14]. Therefore the internal
radii can all be stabilized at the value 1 where we have SU(2)10−D enhanced symmetry.
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Moreover for D ≥ 5, the string coupling λ
(D)
h = eφ

(D)
h freezes on the flat direction to some

constant value determined by the initial conditions. For D = 4, the dilaton φ
(4)
h does not

converge to a constant but instead decreases logarithmically with the cosmological time.

We switch to the dual type I picture. If we perform naive perturbative computation
ZI = T + K + A + M to obtain the free energy density, we will find no local minimum
of FI, since no perturbative effect can lead to gauge symmetry enhancements in maximally
supersymmetric type I strings. We thus seek to include non perturbative effects which can
be inferred from heterotic strings through string-string S-dualities. In dimension D, the
duality dictionary for Einstein frame quantities is [15]

Rhi =
RIip
λI

⌘ RIi
e−

1
2
φ
(D)
I

⇣

Q9
j=D 2⇡RIj

⌘1/4
, i = 0 or D, ..., 9,

φ
(D)
h = −D − 6

4
φ
(D)
I − D − 2

8

9
X

i=D

ln (2⇡RIi) ,

(2.2)

where λI is the type I string coupling in ten dimensions. When applying this duality map,
the heterotic states that induce the local minimum in Eq.(2.1) are sent to non perturbative

states of masses
∣

∣

∣

1
Rhi

− Rhi

λI

∣

∣

∣
on the type I side. From the type I point of view, they have

the natural interpretation as D (or anti-D)-strings wrapped once along the circles S1(RIi),

with one unit of momentum. Therefore when all radii satisfy
∣

∣

∣

1
RIi

− RIi

λI

∣

∣

∣
< 1

2⇡RI0
, they are

attracted to RIi =
p
λI, where we have the enhanced gauge symmetry SU(2)10−D due to D-

string states. The type I dilaton freezes somewhere along its flat direction just as its heterotic
dual except for D = 6 where it is stabilized while the internal space volume

Q9
i=D(2⇡RIi)

freezes along a flat direction. This is because in D = 6 the duality map Eq.(2.2) exchanges
internal volumes and string couplings. Another subtlety arising from Eq.(2.2) is that, since
the heterotic theory is always in the weak coupling regime, the type I dual is strongly coupled
for D > 6 and weakly coupled for D < 6. However our result is still valid at small coupling
for D > 6 since the D-string states, responsible for the stabilization of RIi, are BPS states
whose masses are protected by supersymmetry.

The D-string state contribution can also have an E1-instanton interpretation, following
the lines of Refs. [16]. For simplicity, we consider the compactification on S1(RI9). This
contrasts the zero temperature case where E1-instantons arise for D  8. Starting from the
heterotic side, we can easily express the thermal partition function as a sum over world-
sheet instantons. When sending this heterotic result to the type I side using the dictionary
(2.2), the corresponding type I partition function contains a sum of E1-instantons, which is
explicitly [6]

ZE1
I =

V̂
(10)
I

(2⇡)10
2
X

E1 instantons

s0
e

2i⇡
λI

ΥI

ΥI2 Y4
I2

4
X

n=0

2

4

↵n
(2⇡ΥI2)n

X

Ā≥−1

bĀ

✓

1

λI

+ Ā
YI2

ΥI2

◆4−n
e2i⇡YIĀ

3

5+ c.c.+O(e
−4⇡

RI0p
λI ),

(2.3)
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with the Kähler and complex structure moduli ΥI and YI of the torus S1(RI0)⇥ S1(RI9)

8

<

:

ΥI = iΥI2 = i(2k̃0 + 1)RI0 · n9RI9

YI = YI1 + iYI2 =
m̃9

n9
+ i

(2k̃0 + 1)RI0

n9RI9

, n9 > m̃9 ≥ 0 , k̃0 ≥ 0. (2.4)

This result suggests it possible to derive from a pure type I point of view the free energy
responsible for the stabilization of the internal moduli.

We can further consider generic toroidal compactifications, where all possible moduli
are switched on. On the heterotic side, these moduli include the dilaton φ

(D)
h , the internal

metric g
(h)
ij , the internal antisymmetric tensor B

(h)
ij , and the Wilson lines Y I

(h)i, where i, j =
D, . . . , 9 and I = 10, . . . , 25. Again, all moduli except the dilaton are attracted to the values
associated to some enhanced gauge symmetry, where Fh is minimized locally. In the dual
type I picture, moduli stabilization is inferred from the heterotic side through the dictionary

φ
(D)
h = −D − 6

4
φ
(D)
I − D − 2

8
ln
p

g(h),

g
(h)
ij =

g
(I)
ij

λI

, B
(h)
ij = Cij, Y I

(h)i = Y I
(I)i.

(2.5)

where Cij is the Ramond-Ramond 2-form. The subtlety is that now the dual type I moduli are
stabilized by either non perturbative D-string states in the closed string sector or perturbative
states in the open string sector. ForD 6= 6, all type I moduli are stabilized except the dilaton,
and for D = 6 however, the dilaton is stabilized while the internal volume freezes on a flat
direction.

As an explicit example, we examine the case of compactification on T 2, where we have
on the heterotic side, the moduli T = B89 + i

p

ĝ88ĝ99 − ĝ289, U =
(

ĝ89 + i
p

ĝ88ĝ99 − ĝ289
)

/ĝ88
and the Wilson lines Y I

i (i, j = 8, 9; I = 10, 11, . . . , 25). The mass formula for perturbative
F-string states is

M̂2
A,~m,~n, ~Q

(T ,U , Y )=
1

T2U2

∣

∣

∣

∣

−m8U+m9+ T̃ n8+
⇣

T̃ U − 1

2
WIWI

⌘

n9+WIQI

∣

∣

∣

∣

2

+4A, (2.6)

where WI := UY I
8 − Y I

9 and T̃ := T + 1
2
Y I
8 WI , ~m, ~n are the internal momenta and winding

numbers, and QI the root vector of the internal lattice ΓO(32)/Z2 . Using the mass formula we
can figure out moduli attractors where there are states becoming massless. The enhanced
gauge group can be determined from the Narrain lattice formed by the right-moving internal
momenta of these states. For example we have the local attractor with SU(3) ⇥ SO(32)

enhanced symmetry, where the moduli are stabilized at Y I
i = 0, T = U = 1

2
+ i

p
3
2
. Another

less trivial example is the attractor with SU(2) ⇥ SO(34) enhanced symmetry, where the
moduli are attracted to T = U = i/

p
2, Y I≥10

8 = 0 and Y 10
9 = −Y 11

9 = −Y 12
9 = · · · = −Y 25

9 =
−1/2. In the dual type I picture the moduli stabilization follows from the dictionary (2.5).
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3 Type II cosmology and heterotic dual

We turn to models with less supersymmetry. We consider cosmology in type II strings
compactified on a Calabi-Yau (CY) three-fold M of Hodge numbers (h11, h12). The moduli
space is a Cartesian product MV ⇥MH . The vector multiplet moduli space MV of complex
dimension h11 is a special Kähler manifold, which is exact at tree level, because the dilaton
lives in a hypermultiplet. The hypermultiplet moduli space MH of real dimension 4(h12+1)
is a quaternionic manifold, which contains the universal hypermultiplet accommodating the
dilaton. Therefore MH is subjected to perturbative and non perturbative corrections. When
M is a K3 fibration, a dual heterotic string theory can exist, compactified on K3 ⇥ T 2.
The string-string duality sends the type II vector multiplet moduli to the heterotic vector
multiplet moduli and the same is true of the hypermultiplet moduli. Thus the stabilization
of heterotic moduli can be inferred from the stabilization of the dual type II moduli.

On the type II side, the moduli space develops singular loci when the internal CY space
undergoes extremal transitions. At these loci, some 2-cycles or 3-cycles in the CY space
shrink to zero size, giving rise to a singular three-fold. This can lead to conifold transitions
or non Abelian gauge symmetries, with extra massless states appearing in the low-energy
spectrum. Nonsingular CY three-folds can be recovered by restoring the shrinking 2-cycles
or 3-cycles to finite size. In the following analysis, we adopt the type IIA description, and
suppose that the desingularization by restoring 2-cycles is always available. Indeed only in
this case can we write down the effective gauge theory, following the analysis in [17, 18].

At the conifold locus, let R 2-cycles in the CY space M , spanning an S-dimensional sub-
space of homology, shrink to separated nodes. Locally, R monopole states become massless,
described by R hypermultiplets charged under S U(1)-vector multiplets [17]. When R > S,
we can deform the shrinking 2-cycles into 3-cycles and obtain a topologically different CY
space M 0. The change in Hodge numbers is

h11(M
0) = h11(M)− S, h12(M

0) = h12(M) +R− S. (3.1)

Near the non Abelian locus, N −1 homologically independent 2-cycles, with the intersection
matrix the Cartan matrix of AN−1, shrink to zero size along a smooth curve C of genus
g. By the arguments in [18], N2 − N vector multiplets and g(N2 − N) hypermultiplets
become massless, giving rise to the gauge symmetry enhancement U(1)N−1 ! SU(N) with
g hypermultiplets transforming in its adjoint representation. When g > 1, we can construct
a topologically different CY space M 00 by deforming all shrinking 2-cycles into 3-cycles. The
change in Hodge numbers is

h11(M
00) = h11(M)− (N − 1), h12(M

00) = h12(M) + (g − 1)(N2 −N)− (N − 1). (3.2)

In both cases, the low energy effective theory about the singular loci containing all light
fields is described by a gauged N4 = 2 supergravity theory. Desingularizing the CY space
by restoring the shrinking 2-cycles (3-cycles) corresponds to sitting in the Coulomb (Higgs)
branch of the gauge theory. Therefore by our setup, the Coulomb branch must exist. The
scalar fields in the light vector multiplets span a special Kähler manifold which contains
MV , and we denote its special coordinates by {XI}, I = 1, . . . , nV . The scalar fields in the
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light hypermultiplets span a quaternionic manifold which contains MH , and we let its real
coordinates be {qΞ}, Ξ = 1, . . . , 4nH . Here nV ≥ h11 and nH ≥ h12 + 1 are respectively
the total number of light vector multiplets and light hypermultiplets. These scalar fields
are divided into two groups: those participating in the extremal transition whose VEV’s
characterize the deformation of the vanishing cycles, and the rest which are spectators to
the extremal transition. We then let gIJ̄ = gIJ̄(X

K) and hΛΣ = hΛΣ(q
Ξ) be the special Kähler

metric and quaternionic metric. Due to the gauging, a scalar potential is generated. The
supergravity action is now regular in the neighborhood of singular loci since the inclusion of
all light states repairs the IR divergences.

Attraction to conifold transition loci

Near the conifold locus, the scalar fields participating in the extremal transition are those in
the vector multiplets of U(1)S, X i (i = 1, . . . , S), and those in the R hypermultiplets charged
under U(1)S, qAu (A = 1, . . . , R; u = 1, 2, 3, 4). The conifold locus can be represented by
X i = 0 = qAu with suitable choice of parametrization. For simplicity we switch off the
spectator scalar fields. In the neighborhood of the conifold locus, by performing power
expansion in X i and qAu and imposing U(1)S-isometry, we obtain the scalar part of the
supergravity action to the lowest order [7]:

S =
1

2
(4)

Z

d4x
p−g

h1

2
R− gi|̄ @X

i@X̄j −rQ
A†rQ

A

− g2c e
KV

X

i,j

⇣

4
X

A
QA
i Q

A
j X̄ iXj

Q
A†

Q
A + gi|̄ ~Di · ~Dj

⌘i

, (3.3)

where QA
i is the charge of the A-th monopole under the i-th U(1), gc the gauge coupling

constant. The Kähler potential KV , the special Kähler metric and the quaternionic metric
in the above action are constant, taking their values at the conifold locus. Also we have
defined the SU(2)R doublet and the D-term:

Q
A =

✓

−qA2 + i qA1

qA3 + i qA4

◆

, ~Di =
X

A
QA
i Q

A†~σQ
A. (3.4)

The action (3.3) describes an N4 = 2 supersymmetric Abelian gauge field theory formally
coupled to gravity. We show that moduli are attracted to the conifold locus whether starting
in the Coulomb branch or the Higgs branch.

• In the Coulomb branch, corresponding to the compactification on M , X i (i = 1, . . . , S)
obtain nonzero VEV’s, while qAu (A = 1, . . . , R; u = 1, 2, 3, 4) have zero VEV. Thus the
VEV’s of X i form S of the h11(M) Kähler moduli, parameterizing the Coulomb branch
vacua together with the moduli fields which are spectators to the conifold transition. The
free energy density is [7]

F = −T 4
h

n0 +
X

s

nsG
⇣Ms

T

⌘i

+O
(

e−
Mmin

T

)

, (3.5)
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where n0 and ns count respectively the massless states and the light monopole states. Also
Mmin is the minimum mass of the states which never become massless in the neighborhood
of the conifold locus. We let the temperature be much lower than this mass, T ⌧ Mmin,
so that the contribution from massive states is exponentially supressed. In the argument of
the G-function, Ms is the tree-level mass of the s-th light monopole state, which has the
behaviorMs ⇠ O(X i). Therefore at the conifold locus where X i = 0, the free energy density
reaches its local minimum. Thus the S Kähler moduli X i are attracted to the conifold locus.

• In the Higgs branch, corresponding to the compactification onM 0, qAu (A = 1, . . . , R; u =

1, 2, 3, 4) have nonzero VEV’s subjected to the constraints ~Di = 0 modulo gauge orbits, so
that they parameterize R − S of the h12(M

0) + 1 quaternionic directions in the complex
structure moduli space. On the other hand, the VEV’s ofX i vanish, and the vector multiplets
containing X i absorb S hypermultiplets to form S long massive vector multiplets. The free
energy density takes the same form of Eq.(3.5), with Ms ⇠ O(qAu). Thus the 4(R − S)
hypermultiplet moduli qAu are attracted to 0, corresponding to the conifold locus in the
Higgs branch.

Attraction to non Abelian loci

Near the non Abelian locus the scalar fields relevant to the extremal transition are those in
the SU(N)-vector multiplet, Xa (a = 1, . . . , N2−1), as well as those in the g hypermuliplets
in the adjoint of SU(N), qaAu (A = 1, . . . , g; u = 1, 2, 3, 4), and we suppose g > 1.1 The
non Abelian loci can be parameterized as Xa = 0 = qaAu. Expanding in powers of Xa and
qaAu, imposing SU(N) isometry, we obtain the bosonic part of the supergravity action to
the lowest order [7]:

S=
1

2(4)

Z

d4x
p−g

h1

2
R− l2rXarX̄a −rQ

a†
ArQ

a
A

− g2c e
KV

{

l2[X, X̄]2 + 4[X̄, qAu]a[qAu, X]a + l−2 ~Da · ~Da
 

i

, (3.6)

where l is a nonzero constant. The SU(2)R doublet Qa
A and the D-term ~Da are defined as

Q
a
A =

✓

−qaA2 + i qaA1

qaA3 + i qaA4

◆

, ~Da =
X

A,b,c
i fabcQbA†~σQ

cA, (3.7)

where fabc are the structure constants of SU(N). The action (3.6) thus describes an N4 = 2
SU(N) super Yang-Mills field theory formally coupled to gravity. We show that moduli can
be attracted to the non Abelian locus from either the Coulomb branch or the Higgs branch.

• In the Coulomb branch, corresponding to the compactification on M , all Cartan compo-
nents X â and qâAu (â = 1, . . . , N − 1; A = 1, . . . , g; u = 1, 2, 3, 4) acquire nonzero VEV’s,

1When g = 0, the pure SU(N) gauge theory has UV freedom, and is Abelian in the IR with the gauge
group U(1)N−1. This situation can be regarded as an example of the conifold case with S = N − 1 and
R = 0. For g = 1, the SU(N)-vector multiplet and the only hypermultiplet in the adjoint representation
combine into an N = 4 gauge sector. This case is conformal and is already dealt with in Sec.2.
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while all the non Cartan components vanish. Therefore X â form N−1 of the h11(M) Kähler
moduli, while qâAu form 4g(N − 1) of the 4h12(M) + 4 complex structure moduli. The
free energy density takes the form of Eq.(3.5) with Ms ⇠ O

(

X â, qâAu
)

. Therefore the non
Abelian locus where X â and qâAu vanish is the local minimum of the free energy density. By
consequence, X â and qâAu are attracted to the non Abelian locus.

• In the Higgs branch, corresponding to the compactification on M 00, qaAu (a = 1, . . . , N2 −
1; A = 1, . . . , g; u = 1, 2, 3, 4) have nonzero VEV’s satisfying the constraint ~Da = 0 modulo
gauge orbits, and they form 4(g− 1)(N2− 1) of the 4h12(M

00)+4 complex structure moduli.
The scalars in the SU(N)-vector multiplet Xa vanish. The SU(N)-vector multiplet absorbs
one hypermultiplet in the adjoint of SU(N) and becomes a long massive vector multiplet.
The free energy density is of the form Eq.(3.5), with Ms ⇠ O

(

qaAu
)

. Thus the (g−1)(N2−1)
complex structure moduli qaAu are attracted to 0, corresponding to the non Abelian locus
in the Higgs branch.

An example: stabilization at intersections of extremal transition loci

We analyze a 2-parameter example with heterotic dual, where the internal CY space is
M 2 P4

(1,1,2,2,6)[12](2, 128). Its mirror is defined by [19]

x12
1 + x12

2 + x6
3 + x6

4 + x2
5 − 12 x1x2x3x4x5 − 2φ x6

1x
6
2 = 0. (3.8)

The complex coefficients φ and  are the two Kähler moduli (from the type IIA point
of view). This model has at once a conifold locus with R = S = 1, and an SU(2)-non
Abelian locus with g = 2. The latter leads to a Higgs branch corresponding to the CY space
M 00 2 P5

(1,1,1,1,1,3)[2, 6](1, 129). These singular loci are defined by the vanishing of [19]

∆ = ∆c ⇥∆s =
(

(1− z1)
2 − 4z21zs

)

⇥
(

1− 4zs
)

, (3.9)

where∆c = 0 defines the conifold locus, and∆s = 0 the non Abelian locus, with z1 = − 1
864

φ
 6 ,

zs =
1

4φ2
a reparametrization of the Kähler moduli. The two singular loci intersect at two

points:
(

z1, zs
)

=
(

1
2
, 1
4

)

and
(

1, 1
4

)

, which are the favored points of moduli stabilization,
since there is a maximal number of massless modes at these points. Thus sitting in the
Coulomb branch, we can lift the whole Kähler moduli space and 2 of the 128+1 quaternionic
flat directions in the complex structure moduli space. Also in the Coulomb branch, the
heterotic dual compactified on K3 ⇥ T 2 exists [20]. Therefore we can infer from the type
II side the stabilization of the dual heterotic moduli. Especially since the whole vector
multiplet moduli space is lifted, the heterotic dilaton, living in a vector multiplet, can be
stabilized.

4 Summary and perspectives

We have studied moduli stabilization by thermal effects in the cosmological context. The
breaking of supersymmetry generates a thermal free energy at one-loop level. The moduli
are attracted to its local minima, where extra massless modes appear in the low energy
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spectrum. These extra massless states can either be perturbative or non perturbative. The
scalar masses induced by such thermal effect are time-dependent, which ensures that the
universe is radiation dominated at the exit of the intermediate era, so that the cosmological
moduli problem does not arise.

Detailed analysis is carried out first to maximally supersymmetric heterotic strings in the
weak coupling regime. It is reported for spacetime dimension D ≥ 4 that all moduli except
the dilaton are stabilized at enhanced gauge symmetry points, where the extra massless
states are perturbative. Additionally for D ≥ 5, the dilaton is frozen somewhere in the flat
direction, while for D = 4, it has a logarithmic behavior. Passing to the dual type I picture
using the S-duality, one finds that for D = 4, 5 (D ≥ 7), all the internal type I moduli can
be stabilized in the weak (strong) coupling regime, with the dilaton frozen somewhere in the
flat direction. However for D = 6, where the S-duality map exchanges the heterotic (type
I) dilaton with the type I (heterotic) internal volume, the internal volume is frozen in the
flat direction and all other moduli including the dilaton are stabilized. The extra massless
states are either non perturbative D-string states or perturbative open string states.

Another model studied is the type II strings compactified on CY three-folds. The moduli
space admits particular loci where 2-cycles or 3-cycles in the internal CY manifold shrink
to zero size, leading to conifold transition or non Abelian gauge symmetry. Extra massless
N4 = 2 supermultiplets arise at these loci, inducing local minima to the one-loop free energy.
The analysis is based on writing out the full effective action without integrating out the
extra light states, so that the action is free of IR divergences. As a result, all type II moduli
characterizing the deformation of the shrinking cycles are stabilized. More generally, the
favored points in the moduli space are the intersection points of several such loci. An explicit
example is given where moduli are stabilized at the intersection of a conifold transition locus
and a non Abelian locus, where the entire Kähler moduli space is lifted. This implies in the
dual heterotic picture that all vector multiplet moduli are stabilized, including the heterotic
dilaton.

More work can be carried out on models with N4 = 1 supersymmetry, for instance, the
type II models compactified on generalized CY spaces [21] including fluxes, branes and/or
orientifold projections. As mentioned in the introduction, realistic models require a zero
temperature spontaneous supersymmetry breaking mechanism, so that the N4 = 1 super-
symmetry remains broken at low temperature. Thus it would be of interest to extend the
orbifold model results in Refs. [9] to the context of generalized CY compactifications. More-
over, toroidal compactifications of type II strings in the presence of “gravito-magnetic” fluxes
lead to thermal models free of Hagedorn-like divergences, and the induced cosmology has no
initial singularity [13]. Therefore we can investigate the implementation of gravito-magnetic
fluxes in the (generalized) CY compactifications, hopefully to obtain a theoretical framework
giving a full account for both primordial and late-time universe.
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Abstract

We consider the type II superstring compactified on Calabi-Yau threefolds, at finite tem-
perature. The latter is implemented at the string level by a free action on the Euclidean
time circle. We show that all Kähler and complex structure moduli involved in the gauge
theories geometrically engineered in the vicinity of singular loci are lifted by the stringy
thermal effective potential. The analysis is based on the effective gauged supergravity at
low energy, without integrating out the non-perturbative BPS states becoming massless at
the singular loci. The universal form of the action in the weak coupling regime and at low
enough temperature is determined in two cases. Namely, the conifold locus, as well as a locus
where the internal space develops a genus-g curve of AN−1 singularities, thus realizing an
SU(N) gauge theory coupled to g hypermultiplets in the adjoint. In general, we argue that
the favored points of stabilization sit at the intersection of several such loci. As a result, the
entire vector multiplet moduli space is expected to be lifted, together with hypermultiplet
moduli. The scalars are dynamically stabilized during the cosmological evolution induced
by the back-reaction of the thermal effective potential on the originally static background.
When the universe expands and the temperature T drops, the scalars converge to minima,
with damped oscillations. Moreover, they store an energy density that scales as T 4, which
never dominates over radiation. The reason for this is that the mass they acquire at one-loop
is of order the temperature scale, which is time-dependent rather than constant. As an ex-
ample, we analyze the type IIA compactification on a hypersurface P4

(1,1,2,2,6)[12], with Hodge
numbers h11 = 2 and h12 = 128. In this case, both Kähler moduli are stabilized at a point,
where the internal space develops a node and an enhanced SU(2) gauge theory coupled to 2
adjoint hypermultiplets. This shows that in the dual thermal heterotic picture on K3⇥ T 2,
the torus modulus and the axio-dilaton are stabilized, though in a strong coupling heterotic
regime.

† Unité mixte du CNRS et de l’Ecole Polytechnique, UMR 7644.
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1 Introduction

The presence of moduli fields in supersymmetric compactifications of string theory leads to

difficulties. Massless scalars are not only in contradiction with observations of the gravita-

tional force (see for example [1]), they also lead to continuous parameters in the couplings

and mass spectrum, implying a loss of predictability of the theory. Moreover, moduli spaces

which are nothing but the flat directions of a scalar potential, often admit particular loci,

where states generically massive become massless. In the literature, several mechanisms indi-

cate these loci correspond to dynamically preferred values of the scalar vacuum expectations

values (VEV’s). In the context of M-theory or type II compactifications on Calabi-Yau (CY)

spaces, it is shown in [2] that if the scalars are given initial conditions away from the min-

ima of the potential, their temporal trajectories are attracted toward the loci of additional

massless states. In [3], the scalar initial conditions are set along the flat directions, but with

non-trivial velocities. The moduli motion induces particle productions, whose back-reaction

implies again an attraction toward the same loci. However, if the scalars are initially along

their flat directions and static, the above mechanisms are ineffective. Moreover, even in

the cases they manage to dynamically select expectation values, the moduli fields remain

massless at the end of the process, and additional massless scalars may even be present at

these particular points.

On the contrary, the existence of flat directions in non-supersymetric theories is much

more sparse [4, 5]. To avoid the presence of a very large cosmological constant, it is natural

to focus on “no-scale models”, which by definition are tree level backgrounds in Minkowski

space, where supersymmetry is spontaneously broken [6]. If at the classical level the scale

of supersymmetry breaking and other scalars are moduli fields, the associated flat directions

are generically lifted at the quantum level, due to the generation of a non-trivial effective

potential. In fact, any supersymmetric string compactification in flat space can lead to

a no-scale model by switching on finite temperature. This can be done at the level of

the conformal field theory on the worldsheet by compactifying the Euclidean time on a

circle and modding out by the Z2 freely acting orbifold (−1)F δ, where F is the fermion

number and δ is an order-two shift along the temporal circle. Physically, this is equivalent

to imposing (−1)F boundary conditions along an Euclidean circle of perimeter equal to the

inverse temperature [7,8]. In this case, the supersymmetry breaking scale is the temperature
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itself, while the effective potential is nothing but the free energy density F .

The question of moduli stabilization in a universe filled with a gas of strings at thermal

equilibrium is considered in [9, 10]. In [11], the case of the heterotic string compactified on

a torus is analyzed at weak coupling. It is shown that at finite temperature, the points

of enhanced gauge symmetry are minima of the free energy density, where all the internal

moduli can be dynamically stabilized. There is no flat direction left (except for the dilaton)

when the gauge group does not contain Abelian factors [4]. In the S-dual picture in type

I, one finds that the light vector multiplets responsible for the enhancement of the gauge

group are either perturbative or D-strings wrapped in the internal torus. In this case,

the internal closed string moduli (Neuveu Schwarz-Neuveu Schwarz (NS-NS) and Ramond-

Ramond (RR)) together with the open string Wilson lines are stabilized [11]. This indicates

that BPS states becoming massless at some point in moduli space should be treated on equal

footing, wether they are perturbative or not.

In the present work, we use this fact to lift flat directions in the case of type II compactifi-

cations on CY threefolds, when finite temperature is switched on. Compared to the heterotic

or type I strings on tori, the number of conserved supercharges present at zero temperature

is half and the moduli space in four dimensions is by far more complicated. It takes the

form of a product MV ⇥MH associated to Abelian vector multiplets and neutral hyper-

multiplets. Physically, these spaces realize the Coulomb and/or Higgs branches of Abelian

and/or non-Abelian gauge theories [12–15]. Due to the fact that the type II dilaton sits in

the universal hypermultiplet, the metric on MH admits corrections in string coupling. On

the contrary, the metric onMV is exact at tree level, but is singular on loci where 2-cycles in

type IIA (3-cycles in type IIB) vanish [16]. This fact is interpreted as the consequence of the

existence of D2-branes (D3-branes) wrapping these cycles. They realize generically massive

BPS states charged under the gauge group associated to the cycles and are integrated out,

at the level of the low energy supergravity description. Therefore, when the cycles vanish

and the BPS states become massless, the sigma-model metric onMV develops a logarithmic

divergence [12].1

In the present work, our aim is to argue that at finite temperature, the moduli adjust so

that a maximum number of 2-cycles and 3-cycles vanish. To show this, we consider the low

1In the case of N = 4, the moduli space describes Coulomb branches only, which are not corrected by the
string coupling and do not present IR divergences, as follows from the vanishing of the gauge beta functions.
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energy description of the models without integrating out the modes which become massless

when the internal CY space is singular. Our approach can be summarized as follows. By

convention, we present it in type IIA compactified on a CYM , rather than in the equivalent

mirror picture in type IIB.

(i) In the vicinity of a singular point inMV , we identify the gauge group and charged matter

arising from wrapped D2-branes on vanishing 2-cycles and include them in the tree level

effective supergravity. The latter is insensitive to the temperature, since the Euclidean

time circle can only be probed by loop corrections. The classical N = 2 supergravity

is based on a product of special Kähler and quaternionic manifolds M̃V ⇥M̃H , whose

metrics are unknown but satisfy constraints. First of all, they do not develop IR

divergences and are thus regular. Second, they admit isometries we have to gauge in

order to reproduce the gauge sector engineered geometrically.

(ii) The gauging introduces a scalar potential we determine explicitly in the neighborhood

under consideration. Its flat directions admit Coulomb and often Higgs branches. Mov-

ing from the Coulomb phase to the Higgs phase corresponds to an extremal transition

from the original internal space M to a topologically distinct CY space M 0, where

vanishing 2-cycles have been deformed into 3-cycles.

(iii) In each branch, it is straightforward to determine from the potential the classical

masses of the heavy states that belong to the gauge plus charged matter system.

These masses depend on the moduli, which parameterize the flat directions associated

to the Coulomb or Higgs phases.

(iv) In the weak coupling regime and at sufficiently low temperature, the above masses are

the only things needed to compute the one-loop correction to the effective supergravity.

The result amounts to adding the one-loop effective potential F to the classical action

evaluated in some tree level vacuum. One finds that all flat directions in the Coulomb

and Higgs branches of the geometrically engineered gauge theory are lifted.

(v) The one-loop action does not admit static solutions anymore. In other words, a cosmo-

logical evolution is induced by the thermal/quantum corrections. While the universe

expands and the temperature drops, the moduli fields are attracted to the minimum
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of F . The latter sits at the origin of the Coulomb and Higgs branches, where all tree

level masses of the gauge plus matter system vanish. However, at one loop, all moduli

masses are of order the temperature, while the gauge bosons remain massless. In fact,

the only cosmological evolution with static moduli corresponds to the compactification

on the singular configuration at the extremal transition between M and M 0.

It should be stressed that since the moduli have “time-dependent masses” proportional

to the temperature, they are never abundantly produced. Moreover, the energy stored in

their oscillations around the minima of F is of order that of thermal radiation [11]. As

a result, the cosmological moduli problem [17] is avoided. However to be realistic, the

mechanism presented here has to be extended to models where N = 1 supergravity is

spontaneously broken at a scale M , and finite temperature T is switched on. This was

done in [18] for orbifold compactifications, where it was found that the energy stored in the

moduli oscillations is dominated by the contribution arising from radiation. In this case,

the oscillations can be neglected and the moduli are stabilized at their minima. Moreover,

when the temperature approaches the electroweak scale Mew and the standard model Higgs

mechanism is expected to take place, the evolution of the moduli masses should come to a

halt. We expect these qualitative facts to remain valid in the more general class of interacting

conformal field theories on the worldsheet.

In Section 2, we present in details the program (i)–(v) in the vicinity of a conifold locus.

The gauge theory in this case is Abelian, with charged hypermultiplets [12]. We show that

the Kähler moduli of M and complex structure moduli of M 0 involved in the extremal

transition M $M 0 are attracted to this locus. A similar analysis is done in Section 3 in the

neighborhood of points in the moduli space, where the internal CY M develops a genus-g

curve of AN−1 singularities (with g ≥ 1) and can be deformed into another CY space M 00

(when g ≥ 2). This system describes an SU(N) gauge theory coupled to g hypermultiplets

in the adjoint representation [13]. In this case, Kähler and complex structure moduli of

M , together with complex structure moduli of M 00, are attracted to the singular locus. In

Section 4, we argue that for any given internal CY space, we expect our approach to apply

to all Kähler moduli and most of the complex structure moduli2. However, the universal

hypermultiplet scalars remain flat directions, at least in the weak coupling regime. To

2To be specific, it is not clear to us if a complex structure controlling the size of vanishing 3-cycles which
cannot be blown up to 2-cycles can be stabilized.
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illustrates our results, we consider the explicit example of a type IIA compactification on

a CY M with Hodge numbers (h11, h12) = (2, 128). The moduli space MV admits two

codimension one loci, where M develops either a node or a genus-2 curve of A1 singularities.

It follows that both Kähler moduli and some complex structure moduli can be stabilized at

the intersection of these two loci. Given the fact that M is a K3-fibration [19], the dual

heterotic description [20] on K3 ⇥ T 2 at finite temperature is known. It follows that the

T 2 modulus Th and axio-dilaton Sh are stabilized in the strong coupling regime. Section 5

summarizes our results and presents our perspectives.

2 Stabilization at a conifold locus

In this Section, we consider the type II superstring compactified on M or M 0, two CY

manifolds related by a conifold transition3. Our aim is to show that when finite temperature

is switched on, the moduli involved in the extremal transition M $ M 0 are lifted and

attracted to the conifold locus, where they can be stabilized. We choose to present our

analysis in type IIA. Due to mirror symmetry, the type IIB picture can be derived by

exchanging the roles of 2-cycles with 3-cycles.

2.1 The geometrically engineered Abelian gauge theory

At zero temperature, the compactification on M yields an N = 2 theory in four dimen-

sions. The massless spectrum contains in the gravitational multiplet the metric gµ⌫ and the

graviphoton A0
µ (from the RR 1-form). When M is nonsingular, with Hodge numbers h11

and h12, there are h11 Kähler deformations and 2h12 complex structure deformations of the

CY metric. Combining these geometrical moduli with the reduction of the NS-NS 2-form

and RR 3-forms leads to the bosonic content of h11 Abelian vector multiplets and h12 neu-

tral hypermultiplets. Finally, the dilaton, the axion and the reduction of the 3-form on the

unique (3, 0) and (0, 3) cycles realize the scalar content of the universal hypermultiplet. In

total, the gauge group is U(1)h11+1. Moreover, due to the fact that N = 2 supersymmetry

forbids couplings between vector multiplets and neutral hypermultiplets, the moduli space

is a Cartesian productMV ⇥MH . The vector multiplet moduli spaceMV of complex di-

3In some particular case, there is no CY M 0 in which the conifold M can be deformed to.
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mension h11 is a special Kähler manifold, which is exact at tree level since the dilaton sits in

a hypermultiplet. On the contrary, the hypermultiplet moduli spaceMH of real dimension

4(h12 + 1) is a quaternionic manifold, which admits perturbative and non-perturbative cor-

rections. Classically, it is a product manifold, where an SU(2, 1)/U(2) factor is associated

to the universal hypermultiplet.

By definition, along a conifold locus of codimension S inMV , S homology classes of 2-

cycles are vanishing, and R ≥ S representative 2-cycles inM are shrinking to isolated points

called nodes [16]. The metric ofMV appears in the low energy effective σ-model description

of the vector multiplets. To account for the fact that this metric is singular along the conifold

locus and cannot be cured by quantum corrections in string coupling, a consistent picture

has been proposed in Ref. [12]. In this work, it is supposed that generically massive states

charged under the U(1)S gauge factors have been integrated out, and become massless along

the conifold locus. Consistently, the σ-model metric develops an IR divergence4. Since the

gauge bosons arise from the RR 3-form, the charged states must be D2-branes5. To be

massless when the homology classes vanish, the D2-branes must be BPS and wrapped on

the shrinking 2-cycles. To reproduce the precise coefficient of the logarithmic divergence,

the charged states must be hypermultiplets. The wrapped D2-branes being point-like from

a four-dimensional point of view, they are extremal black hole hypermultiplets.

Because the local neighborhood of a node looks like a cone whose base is S2 ⇥ S3, the

singular CY M is called a conifold. When R > S, this configuration can be a passage to

another smooth CY M 0 obtained by deforming the shrinking 2-cycles into 3-cycles. This is

the conifold transition, where the Hodge numbers h011 and h012 of M 0 satisfy [16]

h011 = h11 − S , h012 = h12 +R− S . (2.1)

Denoting by M0
V ⇥M0

H the moduli space of M 0, the extremal transition M $ M 0 means

MV and M0
H are connected along the conifold locus. This geometrical picture matches

perfectly the physical interpretation of the system in terms of a U(1)S gauge theory cou-

pled to R hypermultiplets. MV corresponds to the Coulomb branch: The scalars of the

4In gauge theory, this effect arises at one-loop in gauge coupling. Since the type II description of the
N = 2 vector multiplet sector is exact in string coupling, the one-loop and non-perturbative corrections in
gauge coupling are present at string tree level.

5An electric-magnetic duality can always be used to work with purely electric D2-branes, without intro-
ducing magnetic D4-branes.
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Abelian vector multiplets have nontrivial VEV’s, while the charged states arise from mas-

sive non-perturbative D2-branes. M0
H corresponds to the Higgs branch: The Abelian vector

multiplets combine with S charged hypermultiplets to give S massive long vector multiplets6.

The remaining R − S charged hypermultiplets are massless perturbative states, which con-

dense i.e. develop nontrivial VEV’s alongM0
H .

Note that if the IR behavior of a U(1)S gauge theory is able to account for the singularity

of the Kähler metric on MV , this does not mean the theory remains Abelian in the ultra-

violet. Actually, type II compactifications on CY spaces with moduli sitting in the vicinity

of a conifold locus can engineer geometrically N = 2 asymptotically free non-Abelian gauge

theories [21, 22]. In this case, the non-Cartan gauge bosons are massive and our descrip-

tion of the theory in terms of an Abelian gauge group is valid for low enough energies or

temperatures.

2.2 Tree level low energy description in gauged supergravity

To proceed, we determine the low energy description of the type IIA compactification on M

(and eventually M 0 when a conifold transition is allowed), near a conifold configuration. At

tree level in string coupling, the result is insensitive to temperature effects, since genus-zero

worldsheets cannot probe an Euclidean time circle. To be consistent on both sides of the

extremal transition, the N = 2 gauged supergravity we are looking for has to include all

light and possibly massless degrees of freedom in the vicinity of the conifold locus, wether

they are realized perturbatively or non-perturbatively from the string point of view.

It is convenient to start our discussion from the perspective of the type IIA compactifica-

tion on M . The effective action is constructed in two steps. First, we consider the ungauged

N = 2 supergravity coupled to h11 vector multiplets and h12 + 1 + R hypermultiplets. The

scalars of the vector multiplets live on a special Kähler manifold M̃V , while those of the

hypermultiplets span a quaternionic manifold M̃H . Both metrics gIJ̄ and hΛΣ on M̃V and

M̃H are unknown, but satisfy properties we are going to use. In particular, they are reg-

ular even when M is a conifold. By abuse of language, we will refer to the set of points

in M̃V ⇥ M̃H corresponding to compactifications on conifold configurations of M as the

6It is not clear wether these massive multiplets are perturbative or non-perturbative.
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conifold locus. There is a symplectic bundle over M̃V , whose holomorphic section admits

electric and magnetic components we denote by X0, . . . , Xh11 and F0, . . . , Fh11 . The former

can be used as homogeneous coordinates on M̃V . Thus, at a given point P0 2 M̃V ⇥ M̃H

along the conifold locus, at least one of them, say X0, does not vanish and can be set to 1

in a whole neighborhood of P0. The remaining complex components XI (I = 1, . . . , h11) are

then the vector multiplet scalars and special coordinates on M̃V . In the vicinity of P0, we

also denote by qΛ (Λ = 1, . . . , 4(h12 + 1 + R)) a system of real coordinates parameterizing

the hypermultiplet scalar manifold M̃H .

In a second step, the charges of the hypermultiplets are introduced by gauging a U(1)S

isometry group the quaternionic manifold M̃H must satisfy. By convention, we label the

vectors and scalar components of the gauged vector multiplets as Ai
µ and X i (i = 1, . . . , S),

while the remaining Xp’s (p = S+1, . . . , h11) denote the scalars of the ungauged ones. With

these conventions, the tree level gauged supergravity action for the metric and scalars takes

the following form [23],

Stree =

Z

d4x
p−g

⇢R
2
− gIJ̄ @µXI@µX̄J − hΛΣrµqΛrµqΣ − V

}

, (2.2)

where the covariant derivatives involve the non-trivial Killing vectors kΛi ,

rµqΛ = @µq
Λ + Ai

µk
Λ
i , (2.3)

and the scalar potential V is given by

V = 4hΛΣ k
Λ
i k̄

Σ
j e

KX̄ iXj + gIJ̄f i
I f̄

j
J Px

i Px
j − 3 eKX̄ iXj Px

i Px
j . (2.4)

In this expression, K is the Kähler potential associated to the metric gIJ̄ ⌘ @XI@X̄JK,

K = − ln
h

i
⇣

F0 − F̄0 + X̄IFI −XIF̄I

⌘i

, (2.5)

and

f i
I =

⇣

@XI +
1

2
@XIK

⌘

(

e
1
2
KX i

)

, f̄ i
I =

⇣

@X̄I +
1

2
@X̄IK

⌘

(

e
1
2
KX̄ i

)

. (2.6)

Moreover, for each Killing vector, there is an SU(2)-triplet of momentum maps Px
i , which

are functions of qΛ. They are related to the hyper-Kähler 2-forms Kx on M̃H by the relation

2 kΛi K
x
ΛΣ = rSU(2)

Σ Px
i ⌘ @qΣPx

i + ✏xyz!y
ΣPz

i , (2.7)
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where !x is the connection of the SU(2)-bundle. The fact that the Killing vectors kΛ0 and

kΛp vanish identically implies the associated momentum maps are covariantly constant and

thus trivial, Px
0 ⌘ Px

p ⌘ 0, as follows from the theorem recalled in Appendix C.

In a vacuum, the no-scale model has a vanishing potential, V = 0. To identify the conifold

locus on M̃V ⇥M̃H , we use our knowledge of the geometrical realization of the gauge theory.

When M is a conifold, all multiplets in the action (2.2) must be massless. For the qΛ’s to be

massless, we see from the potential (2.4) that hX ii = 0 is required, while for the X i’s to be

massless, the Killing vectors and momentum maps must have zeros, hkΛi i = hPx
i i = 0. Thus,

P0 is fixed under the U(1)S isometries. In the remaining part of this Section, our aim is to

expand the Lagrangian density in the action (2.2) around the point P0.

Vector multiplets sector: We start with the vector multiplet sector and denote the

coordinates of P0 in M̃V as (X i
0 = 0, Xp

0 ). Smoothness of the σ-model Kähler metric in (2.2)

allows us to write7

gIJ̄ = g
(0)

IJ̄
+O(X −X0), (2.8)

where g
(0)

IJ̄
⌘ gIJ̄ |P0

. Moreover, we will also need the finite value K(0) of the Kähler potential

(2.5) at P0,

K(0) = − ln
h

i
⇣

F
(0)
0 − F̄ (0)

0 + X̄p
0F

(0)
p −Xp

0 F̄
(0)
p

⌘i

, (2.9)

in terms of which the f i
I ’s defined in Eq. (2.6) can be expressed as,

f i
I = e

1
2
K(0)

δiI +O(X −X0), f̄ i
I = e

1
2
K(0)

δiI +O(X −X0). (2.10)

Hypermultiplets sector: The Taylor expansion in the hypermultiplet sector is more in-

volved. In Appendix B, we show that on M̃H , there exists a new system of coordinates cAu

(A = 1, . . . , R; u = 1, 2, 3, 4), q↵ (↵ = 4R+ 1, . . . , 4(h12 + 1+R)) such that P0 is located at

(cAu = 0, q↵0 ) and the complex structures Jx, the quaternionic metric and the hyper-Kähler

7O(X −X0) denotes without distinction holomorphic or antiholomorphic first order terms.
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forms at P0 are:

Jx|P0
= −⌘xuv

⇣ @

@cAu
⌦ dcAv

⌘

∣

∣

∣

∣

P0

+
⇣

Jx↵
β
@

@q↵
⌦ dqβ

⌘

∣

∣

∣

∣

P0

,

h|P0
=

1

2

(

dcAudcAu
)∣

∣

P0
+

(

h↵β dq
↵dqβ

)∣

∣

P0
,

Kx|P0
=

1

4
⌘xuv

(

dcAu ^ dcAv
)∣

∣

P0
+

1

2

(

Kx
↵β dq

↵ ^ dqβ
)∣

∣

P0
, (2.11)

where ⌘xuv are ’t Hooft symbols defined in Appendix A. In fact, the (cA1, . . . , cA4)’s are in

the Ath hypermultiplets of charge QA
i under the ith U(1), while the remaining q↵’s are the

real components of the neutral ones8. In order to write the kinetic terms and scalar potential

in the vicinity of P0, we need the expansions of the metric, hyper-Kähler forms and Killing

vectors9,

hAu,Bv =
1

2
δAB δuv +O(q − q0), hAu,↵ = O(q − q0), h↵β = h

(0)
↵β +O(q − q0),

Kx
Au,Bv =

1

2
δAB ⌘

x
uv +O(q − q0), Kx

Au,↵ = O(q − q0), Kx
↵β = K

x(0)
↵β +O(q − q0),

kAu
i = QAu

i tuv c
Au +O((q − q0)2) (no sum over A), k↵i = O((q − q0)2).

(2.12)

The first order terms of the Killing vectors involve tuv, a U(1) generator acting on each

hypermultiplet, and it is a matter of convention to choose tuv ⌘ −⌘̄3uv (see Appendices A

and B). The chargesQA
i are determined by the underlying CY geometry. For this purpose, we

define (↵0, . . . , ↵h11) to be an homology basis of 2-cycles inM , among which ↵i (i = 1, . . . , S)

vanish at the conifold locus. We also denote by γA (A = 1, . . . , R) the R 2-cycles which

shrink to nodes and expand γA = nA
i ↵

i. Then, the computation of the effective action on

the world volume of a D2-brane wrapped on γA shows that QA
i = nA

i [12].

To determine the momentum maps Px
i , we first use the facts that they vanish at P0 and

that the left hand side of Eq. (2.7) is first order to conclude that the Px
i ’s are actually second

order. Next, we write Eq. (2.7) as

@Px
i

@cAu
= QA

i (⌘
xt)uvc

Av +O((q − q0)2) (no sum over A), @Px
i

@q↵
= O((q − q0)2), (2.13)

8To make contact with the notations introduced in Appendix B, we define cAu =
p
2qAu in order for

the charged hypermultiplets to have canonically normalized kinetic terms. Moreover, we keep arbitrary the
basis vector ∂/∂qα in the sub-tangent plane at P0 associated to the neutral hypermultiplets.

9O(q − q0) denotes terms of order cAu or (qα − qα
0
).
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which we integrate to find

Px
i = −1

2
QA

i c
Au(⌘xt)uvc

Av +O((q − q0)3). (2.14)

Effective action: From Eqs (2.10), (2.12) and (2.14), we find that in the potential V in Eq.

(2.4), the two first terms which are positive are of order four in (X −X0) or (q − q0), while
the last one, which is negative and characteristic of supergravity, is of order six and thus

negligible around the point P0. To write the potential V in an explicitly SU(2)R-invariant

form, we introduce the doublets

C
A =

✓

i(cA1 + icA2)
(cA3 + icA4)⇤

◆

(2.15)

and obtain after some straightforward computation

V = eK
(0)
⇣

2QA
i Q

A
j X̄

iXj
C

A†
C

A +
1

4
g(0)i|̄Dx

iD
x
j

⌘

+ · · · where Dx
i ⌘ QA

i C
A†σx

C
A

(2.16)

are SU(2)R-triplets of D-terms, σx are the Pauli matrices and the ellipsis denote order five

contributions in vector or hypermultiplet scalars.

In the end, close to a conifold configuration, the tree level effective action (2.2) associated

to the type IIA superstring theory at finite temperature and compactified on either M or

M 0 takes the final form,

Stree =

Z

d4x
p−g

⇢R
2
− g(0)

IJ̄
@µX

I@µX̄J − 1

2
rµcAurµcAu − h(0)↵β @µq

↵@µqβ

− eK(0)
⇣

2QA
i Q

A
j X̄

iXj
C

A†
C

A +
1

4
g(0)i|̄Dx

iD
x
j

⌘

+ · · ·
}

. (2.17)

It is interesting to note that the above action is that of the rigid N = 2 supersymmetric

Abelian gauge theory with charged hypermultiplets and formally coupled to gravity.

2.3 Lifting the Coulomb branch at one-loop

The tree level scalar potential (2.16) valid around P0 admits flat directions. We recall that

due to the no-scale structure of the theory, these directions are insensitive to the scale of

spontaneous symmetry breaking, here identified with the temperature. However, the picture

is drastically modified once quantum corrections are taken into account. In fact, a moduli and
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temperature dependent correction to the classically vanishing vacuum energy is generated

and, as we are going to see, lifts all classical flat directions associated to the Abelian gauge

theory. In the following, our analysis is restricted to a weak string coupling regime, with

quantum corrections computed at one-loop.

In the neighborhood of the point P0 with coordinates (X i
0 = 0, Xp

0 ; c
Au
0 = 0, q↵0 ) in

M̃V ⇥ M̃H , the set of vacua of the action (2.17) is a Cartesian product between:

• The space parameterized by the “spectator moduli” Xp and q↵, which are only coupled

gravitationally to the gauge theory. These scalars are coordinates along the conifold

locus and reflect the arbitrariness in the choice of P0 on it.

• The space of configurations of the X i’s and cAu’s, which are canceling the semi-definite

positive potential V . It is characterized by the constraints

8A : X iQA
i C

A =

✓

0
0

◆

(no sum over A) and 8x, i : Dx
i = 0, (2.18)

which admits Coulomb and Higgs branches.

The Coulomb branch of vacua corresponds to arbitrary values for the gauged vector multi-

plets scalars and vanishing VEV’s for those in the charged hypermultiplets:

Coulomb branch :
n

(

X i arbitrary, cAu = 0
)

o

⇥
n

(

Xp, q↵
)

arbitrary
o

. (2.19)

To write the one-loop effective action at finite temperature in this branch, we evaluate

the tree level part (2.17) in a background of the above form (2.19) and add the one-loop

Coleman-Weinberg thermal effective potential F ,

S1-loop =

Z

d4x
p−g

⇢R
2
− g(0)

IJ̄
@µX

I@µX̄J − h(0)↵β @µq
↵@µqβ −F + · · ·

}

. (2.20)

The computation of F is done in the Euclidean version of the theory, with time compactified

on a circle of perimeter equal to the inverse temperature. All degrees of freedom are imposed

(−1)F boundary conditions along the temporal circle, where F is the fermion number. For

an arbitrary supersymmetric spectrum, the result is

F = −
Z +1

0

d`

2`

1

(2⇡`)2

X

s

e−
M2

s `

2

X

m̃0

e−
m̃2

0
2`T2

(

1− (−1)m̃0
)

, (2.21)

12



where T is the temperature and Ms is the classical mass of each degenerate pair s of boson

and fermion. In this expression, ` is the proper time along the virtual loop wrapped m̃0

times around the temporal circle and all dimension-full quantities are measured in Einstein

frame. From a thermodynamical point of view, F is the free energy density associated to a

perfect gas of bosons and fermions. In string compactifications where the supersymmetric

spectrum at zero temperature is determined by a fully known conformal field theory, the

expression (2.21) can be derived from a vacuum-to-vacuum string amplitude in Euclidean

time (and suitable (−1)F boundary conditions). As an example, this is the case for the

heterotic string on T 10−D, which leads to a D-dimensional model whose exact spectrum is

known when D ≥ 6 (so that no NS5-brane can wrap the internal torus) [11]. However in

general, contributions of modes realized non-perturbatively from a string perspective cannot

be captured by the CFT on the wordsheet. For instance, in the type I models S-dual to

the above mentioned heterotic cases, the perturbative amplitude has contributions arising

from fundamental open and closed strings and must be supplemented by additional terms

associated to non-perturbative D1-branes running into the virtual loop. The role of BPS

D1-branes wrapped on 1-cycles and becoming massless plays a role in stabilizing the type I

moduli [11] similar to what we are going to find here for wrapped D2-branes.

Returning to our present case of interest, the light masses in the vicinity of P0 along

the Coulomb branch can be found by inspection of the bosonic action (2.17). The massless

level includes the supergravity multiplet, the I = 1, . . . , h11 vector multiplets and the ↵ =

1, . . . , h12 + 1 neutral hypermultiplets. Of course, this is not a surprise, since this is nothing

but the perturbative massless spectrum arising from the type IIA compactification on a

smooth CY manifold M . The light squared masses of the A = 1, . . . , R charged black hole

hypermultiplets realized in the Coulomb phase as BPS D2-branes wrapped on vanishing

2-cycles are given by

M2
A = 4 eK

(0) |QA
i X

i|2 + · · · , (2.22)

where the dots stand for higher order terms in scalar fields. The leading term is consistent

with the standard mass formula of BPS black holes [12, 24]. Close enough to P0, all other

massesMs are bounded from below and heavier than the charged black holes: Ms ≥Mmin >

MA. Table 1 summarizes the superfield content and associated scalar VEV’s in the Coulomb

13



branch10.

Scalars acquiring VEV’s Superfields

In vector In hyper- Vector multiplets Hypermultiplets
multiplets multiplets Massless

(moduli)
Massive
short

Massive
long

Massless
(moduli) Massive

Coulomb
phase

X i none S 0 0 0 R

Higgs
phase

none

C A mod.
gauge orbits
such that
Dx

i = 0

0 0 S R− S 0

Table 1: Superfield contents in the Coulomb and Higgs branches (when R > S) associated to the
N = 2 U(1)S gauge theory coupled to R hypermultiplets, which is encountered in the neighborhood
of a conifold locus in M̃V ⇥M̃H . The scalars Xp and q↵ of the massless spectator vector multiplets
and hypermultiplets are not represented.

Integrating over `, the free energy density (2.21) can be written as

F = −T 4

(

⇣

4 + 4h11 + 4(h12 + 1)
⌘

G(0) + 4
X

A

G
⇣MA

T

⌘

+O
(

e−
Mmin

T

)

)

, (2.23)

where the function G(x) is expressed in terms of a Bessel function of the second kind,

G(x) = 2
X

k2Z

⇣ x

2⇡|2k + 1|
⌘2

K2

(

x|2k + 1|
)

, (2.24)

and G(0) is Stefan’s constant for radiation associated to a pair of massless boson and fermion,

G(0) =
Γ(2)

⇡2

X

k2Z

1

|2k + 1|4 =
⇡2

48
. (2.25)

Moreover, the first factor 4 in Eq. (2.23) corresponds to the 2+2 on shell degrees of freedom

of the graviton and graviphoton, while the other factors 4 count the number of bosonic

degrees of freedom in vector multiplets and hypermultiplets. In fact, for positive x ≥ 0, the

function G(x) is maximum at the origin and decreases exponentially,

G(x) = G(0)− x2

16
+O(x4) when x⌧ 1, G(x) ⇠

⇣ x

2⇡

⌘ 3
2
e−x when x0 1. (2.26)

10See [25] for a general discussion about field contents following a Higgs mechanism in N = 2 supersym-
metric gauge theories.
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As a result, all contributions G(Ms/T ) with Ms ≥ Mmin are exponentially suppressed, pro-

vided the temperature is low enough, T < Mmin, as indicated in Eq. (2.23).

Since the free energy density F depends on the black hole hypermultiplet masses given

in Eq. (2.22), it acts as a non-trivial potential for the scalars X i. The behavior of G(x) at

x = 0 implies F is minimum when all MA’s vanish i.e. 8A, QA
i X

i = 0. Due to the fact that

the matrix QA
i is of rank S,11 this can only happen at the conifold locus, X i = 0. In other

words, all classically flat directions X i of the Coulomb branch are lifted, while the spectator

scalars Xp and q↵ parameterizing the conifold locus remain moduli. To find the one-loop

masses Mi1-loop of the fields X i at their minimum, we consider the squared mass matrix

ΛĪ
J̄ = g(0)ĪK

@2F
@XK@X̄J

∣

∣

∣

∣

Xi=0

=
T 2

16
g(0)ĪK 4

X

A

@2M2
A

@XK@X̄J

∣

∣

∣

∣

∣

Xi=0

, (2.27)

which satisfies

ΛĪ
|̄ = T 2eK

(0)

g(0)ĪkQA
k Q

A
j , ΛĪ

p̄ = 0. (2.28)

Λ is diagonalizable, with S strictly positive eigenvalues M2
i1-loop and h11 − S vanishing ones,

so that the trace leads to

X

i

M2
i1-loop = T 2eK

(0)

g(0)|̄kQA
k Q

A
j . (2.29)

Thus, the scalars of the U(1)S vector multiplets acquire one-loop masses of order the tem-

perature scale, while the gauge bosons remain massless and the full Abelian gauge theory

U(1)h11+1 is unbroken. If the fact that vector multiplet scalars are getting masses is certainly

a good thing, one may wonder if this result is not spoiled by the appearance of additional

massless black hole hypermultiplets precisely at the minimum. In fact, the tree level masses

of the scalars cAu are vanishing at the conifold locus, but are acquiring non-trivial corrections

of order T at the one-loop level, as will be seen in the next Section in the study of the Higgs

branch.

For a homogeneous and isotropic universe, the one-loop energy density and pressure

found by varying the action (2.20) are consistent with thermodynamics [26],

⇢ = F − T @F
@T

, P = −F . (2.30)

11Otherwise, some of the R vanishing 2-cycles would be linear combinations of the others and would not
give independent degrees of freedom once wrapped with D2-branes.
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When T/Mmin is low enough, they satisfy at the conifold locus the state equation for radia-

tion, ⇢ = 3P , as follows from Eq. (2.23). As a result, a particular solution to the equations

of motion for the scale factor a, the temperature T and the scalars is

a(t) / 1

T (t)
/
p
t , X i ⌘ cAu ⌘ 0 , Xp, q↵ constant, (2.31)

where t is the cosmological time. This evolution describes an expanding universe filled with

radiation and static scalars. Consistently, the temperature drops and guarantees T ⌧Mmin

is satisfied at late times. More general solutions consistent with homogeneity and isotropy

exist, as follows from the general analysis of Ref. [11]. They are characterized by damped

oscillations of the fields X i, which converge to their minimum at X i = 0. The energy density

stored in their oscillations and in the motion of the spectator moduli Xp and q↵ scales as

T 4. Thus, they do not dominate over radiation and the cosmological moduli problem [17] is

avoided. This follows from the fact that the masses of the scalarsX i are actually proportional

to the temperature and thus time-dependent [11]. To put a halt to the fall of these masses

and obtain realistic models at low temperatures, one may follow the lines of Ref. [18]. At

zero temperature, interesting models should be characterized by N = 1 supersymmetry

spontaneously broken at a scale M . Once finite temperature is taken into account, one finds

the evolutions of the one-loop masses of the moduli, the temperature and the supersymmetry

breaking scaleM are attracted to a particular trajectory where they are proportional. When

the temperature reaches the electroweak symmetry breaking scale Mew, the moduli masses

and M are expected to be stabilized around Mew, while T keeps on decreasing.

2.4 Lifting the Higgs branch at one-loop

Our aim in this Section is to complete the analysis of the conifold locus by showing that the

Higgs branch of the U(1)S gauge theory is lifted by the one-loop thermal effective potential.

In this branch, the doublets C A are such that the D-terms in Eq. (2.18) vanish, while the

U(1)S vector multiplet scalars have trivial VEV’s,

Higgs branch :
n

(

X i = 0,C A such that Dx
i = 0

)

o

⇥
n

(

Xp, q↵
)

arbitrary
o

. (2.32)

The 3S D-term constraints leave 4R − 3S flat directions among the charged scalars cAu’s,

along which the U(1)S gauge group is Higgsed. S of the 4R− 3S directions are orbits of the
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residual global U(1)S symmetry corresponding to physically equivalent vacua. We therefore

introduce S gauge fixing conditions reflecting the fact that S would-be-Goldstone bosons are

eaten by the massive vector fields. We are left with 4(R − S) flat directions, which can be

arranged in R − S massless neutral hypermultiplets. Clearly, for the Higgs branch to exist,

R > S is required. Moreover, the S Higgsed vector multiplets become massive and long by

combining with the remaining S hypermultiplets. The superfield content and VEV’s in the

Higgs branch can be found in Table 1. Thus, besides the supergravity multiplet, the massless

spectrum includes h11 − S vector multiplets and h12 + R − S + 1 neutral hypermultiplets,

corresponding exactly to the type IIA compactification on the smooth CY manifoldM 0, with

Hodge numbers h011 and h012 given in Eq. (2.1).

To describe the one-loop effective action in the Higgs branch, it is convenient to parame-

terize the D-term flat directions with some coordinates ξm (m = 1, . . . , 4(R− S)) satisfying
QA

i C A†(ξ) σx C A(ξ) = 0 and such that the Jacobian matrix
⇣

@cAu

@⇠m

⌘

is of rank 4(R−S). We

denote by ξm0 the origin of the Higgs branch i.e. the conifold locus. In a neighborhood of

P0, the one-loop effective action valid in the Higgs branch takes the form,

S1-loop =

Z

d4x
p−g

⇢R
2
− g(0)pq̄ ∂Xp∂X̄q − h(0)mn ∂ξ

m∂ξn − h(0)↵β ∂q
↵∂qβ −F

}

, (2.33)

where we have defined

h(0)mn =
1

2

∂cAu

∂ξm

∣

∣

∣

∣

⇠0

∂cAu

∂ξn

∣

∣

∣

∣

⇠0

, (2.34)

and the free energy density F is

F = −T 4

(

⇣

4 + 4h011 + 4(h012 + 1)
⌘

G(0) + 8
X

i

G
⇣Mi

T

⌘

+O
(

e−
Mmin

T

)

)

. (2.35)

The factor 8 in the above expression counts the number of boson/fermion pairs in the long

vector multiplets of tree level massMi. The O
(

e−
Mmin

T ) term includes all contributions of the

modes whose masses cannot vanish in the neighborhood we are considering and thus admit

a lower boundMmin > Mi . For T < Mmin, these contributions are exponentially suppressed.

To proceed, we determine the sum of the squared masses of the long vector multiplets.

This can be derived from the first term of the tree level potential V in Eq. (2.16), when the

hypermultiplet scalars cAu condense along the D-flat directions. At second order in scalar

fields, the matrix of squared masses of the XI ’s is

∆Ī
|̄ = 2eK

(0)

g(0)ĪkQA
k Q

A
j c

AucAu + · · · , ∆Ī
p̄ = · · · , (2.36)
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whose trace gives

X

i

M2
i = 2eK

(0)

g(0)|̄kQA
k Q

A
j c

AucAu + · · · . (2.37)

Alternatively, the second term of V in Eq. (2.16) can be used to compute the sum of the

squared masses in the cAu-sector, when they condense. Consistently, the result in Eq. (2.37)

is recovered.

In the vicinity of P0, the thermal effective potential F is minimal when all masses Mi

vanish. This occurs only at the origin of the Higgs branch, cAu = 0, i.e. along the conifold

locus. Thus, all classically flat directions ξm are lifted, while the neutral components q↵

remain moduli. The one-loop squared massesM2
m1-loop > 0 of the fields ξm at their minimum

ξ = ξ0 are determined by the matrix

Λ0m
n =

1

2
h(0)ml ∂2F

∂ξl∂ξn

∣

∣

∣

∣

⇠0

=
T 2

16

1

2
h(0)ml 8

X

i

∂2M2
i

∂ξl∂ξn

∣

∣

∣

∣

∣

⇠0

= T 2eK
(0)

g(0)ı̄j QA
j Q

A
i h

(0)ml ∂c
Au

∂ξl

∣

∣

∣

∣

⇠0

∂cAu

∂ξn

∣

∣

∣

∣

⇠0

, (2.38)

where we have used the fact that cAu|⇠0 = 0 to obtain the last equality. The eigenvalues of

Λ0 are the desired squared masses we are looking for. Taking the trace, they satisfy

X

m

M2
m1-loop = T 2eK

(0)

g(0)ı̄j QA
j Q

A
i h

(0)nl ∂c
Au

∂ξl

∣

∣

∣

∣

⇠0

∂cAu

∂ξn

∣

∣

∣

∣

⇠0

. (2.39)

Thus, the ξm’s have acquired a mass of order the temperature scale. Due to the arbitrariness

in the choice of parametrization ξm of the D-flat directions, we conclude that all charged

black hole hypermultiplets scalars cAu have a mass of order T . Combining this fact with the

result of Eq. (2.29), we see that at the one-loop level, all scalars involved in the U(1)S gauge

theory coupled to R black hole hypermultiplets are acquiring masses at the conifold locus.

The particular homogeneous and isotropic evolution (2.31) found in the study of the

Coulomb branch can now be seen as a limit case of another set of cosmological solutions,

where the scalars ξm are oscillating with damping, as can be shown along the lines of Ref. [11].

The energy stored in the oscillations and in the motion of the spectator moduli q↵ scales as

T 4 and do not dominate over radiation.
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3 Stabilization at a non-Abelian gauge symmetry locus

In this Section, our aim is to show how the moduli involved in extremal transitions realizing

non-Abelian gauge theories can be stabilized, once finite temperature effects are taken into

account. We specialize on the case of a geometric description of an SU(N) gauge theory

coupled to g ≥ 1 hypermultiplets in the adjoint representation.

3.1 The geometrically engineered non-Abelian gauge theory

Our starting point is the type IIA theory compactified on a CY manifold M , which can

develop a genus-g curve C of AN−1 singularities [13, 14]. Among the h11 homology 2-cycles,

N − 1 are realized by 2-spheres Γi (i = 1, . . . , N − 1) in M , with intersection matrix corre-

sponding to the Dynkin diagram of AN−1, and with volume shrinking to zero when we sit

on a codimension N − 1 locus in the complexified Kähler moduli spaceMV . All connected

2-cycles built out of the Γi’s are of the form Γij = Γi[· · ·[Γj, for 1  i  j  N−1, and can

be wrapped by BPS D2-branes or anti-D2-branes (obtained by reversing the orientations).

The former (latter) are associated to the (N2 − N)/2 positive (negative) roots of AN−1,

while the perturbative spectrum provides the remaining massless multiplets in the Cartan

subalgebra. In the large volume limit of the curve C, the model leads to an N = 2 theory

in six dimensions describing an SU(N) gauge theory [27]. Thus, one can think about the

four dimensional case as arising from an additional compactification on the curve C of genus

g, which breaks further half of the supersymmetries. The result is an N = 2 SU(N) gauge

theory coupled to g hypermultiplets in the adjoint representation [13].

In the following, we restrict our attention to the cases where g ≥ 1. Actually, when g = 0,

the pure SU(N) gauge theory is asymptotically free and, as already mentioned at the end of

Section 2.1, is Abelian in the IR, with gauge group U(1)N−1. Thus, this situation is nothing

but a particular example of the conifold case we have already studied, for R = S = N − 1.

For g = 1, the vector and hypermultiplet in the adjoint representation combine into an

N = 4 SU(N) gauge sector. This case is conformal and has already been considered in

Ref. [11], yielding to an attraction of the moduli at the origin of the Coulomb branches,

thus restoring the full non-Abelian symmetry. On the contrary, new physics is encountered

for g ≥ 2, since the SU(N) gauge theory is non-asymptotically free and moreover admits
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Coulomb and Higgs branches.

The above phases are realized geometrically by compactifying on the original manifold

M or on a distinct CY M 00 related to M by extremal transition, M $M 00. It is instructive

to recover the Hodge numbers h0011 and h0012 of M 00 derived by deforming the vanishing 2-

cycles into finite volume 3-cycles [13] from the gauge theory point of view. On a smooth

CY M , which corresponds to a generic point in the Coulomb branch12, the SU(N) gauge

group is spontaneously broken to U(1)N−1, beside a remaining “spectator” U(1)n factor,

where n = h11 − (N − 1) + 1. The h12 + 1 massless hypermultiplets include the g(N − 1)

perturbative Cartan components of the g adjoint matter representations, together with m

“spectator” hypermultiplets, m = h12−g(N−1)+1. The left-over N2−N non-Cartan vector

and g(N2 −N) matter multiplets are massive. On the other hand, for the compactification

on M 00 to reproduce the spectrum in the Higgs branch, one must have h0011 + 1 = n Abelian

vector multiplets, and h0012+1 = (g−1)(N2−1)+m massless hypermultiplets. The remaining

N2−1 matter multiplets combine with the SU(N) vector multiplets into long massive vector

multiplets. As a result, one obtains [13]

h0011 = h11 − (N − 1) , h0012 = h12 + (g − 1)(N2 − 1)− g(N − 1) . (3.1)

3.2 Tree level low energy description in gauged supergravity

At finite temperature, the one-loop low energy effective action of the type IIA theory com-

pactified on either M or M 00 can be decomposed in two parts. The classical one, which is

independent of T , and the one-loop Coleman-Weinberg thermal effective potential evaluated

in some classical background. In this Section, we focus on the tree level action, which can

be described by an N = 2 gauged supergravity. The latter, to be valid in the neighborhood

of the extremal transition M $ M 00, has to include explicitly the whole set of light degrees

of freedom, including the SU(N) gauge sector coupled to g hypermultiplets in the adjoint.

Due to the relation (3.1), we can organize our discussion in terms of the Hodge numbers

ofM . The ungauged supergravity we start with contains h11+N
2−N vector multiplets and

12When some non-trivial VEV’s in the Cartan subalgebra coincide, SU(N) is broken to a product of
non-Abelian SU groups and U(1) factors, with total rank equal to N − 1. Geometrically, this corresponds
to singular configurations of M , where some (but not all) of the N − 1 2-spheres are vanishing. These
circumstances are encountered in loci in the moduli space that admit the full enhanced SU(N) enhanced
symmetry locus as a submanifold.
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h12+1+g(N2−N) hypermultiplets, in order to take into account the non-Cartan generators,

which arise from solitonic D2-branes when the compactification is on M . The scalar fields

span a product manifold M̃V ⇥ M̃H , with special Kähler and quaternionic metrics gIJ̄ and

hΛΣ. As in the case of the conifold locus, we refer to the set of points in M̃V ⇥M̃H associated

to compactifications developing the curve of AN−1 singularities as the non-Abelian locus. In

the symplectic bundle (X0, XI ;F0, FI) (I = 1, . . . , h11 + N2 − N), the electric components

are homogeneous coordinates of M̃V . Therefore, in the neighborhood of a given point P0 on

the non-Abelian locus, we can set one of the X-entries to 1, say X0, and work with special

coordinates XI . Furthermore, we choose a chart qΛ
(

Λ = 1, . . . , 4(h12 + 1 + g(N2 − N))
)

of real coordinates on the hypermultiplet manifold M̃H , whose properties will be specified

shortly.

By construction, the metrics gIJ̄ and hΛΣ are non-singular and admit a subgroup SU(N)

of isometries we now gauge. We choose the vectors and scalars of the gauged vector multiplets

to be labeled as Aa
µ and Xa (a = 1, . . . , N2− 1) and denote the left-over “spectator” scalars

as Xp (p = N2, . . . , h11+N
2−N). Restricting for simplicity to the metric and scalar degrees

of freedom, the N = 2 tree level gauged supergravity action is

Stree =

Z

d4x
p−g

⇢R
2
− gIJ̄rµXIrµX̄J − hΛΣrµqΛrµqΣ − V

}

, (3.2)

where the covariant derivatives are expressed in terms of the non-trivial Killing vectors kIa

and kΛa acting on M̃V and M̃H ,

rµXI = @µX
I + Aa

µk
I
a , rµX̄I = @µX̄

I + Aa
µk̄

I
a , rµqΛ = @µq

Λ + Aa
µk

Λ
a . (3.3)

The scalar potential V takes the form [23]

V =
(

gIJ̄ k
I
ak̄

J
b + 4hΛΣ k

Λ
a k

Σ
b

)

eKX̄aXb + gIJ̄fa
I f̄

b
J Px

aPx
b − 3 eKX̄aXb Px

aPx
b , (3.4)

where the Kähler potential K is defined as in Eq. (2.5) and

fa
I =

⇣

@XI +
1

2
@XIK

⌘

(

e
1
2
KXa

)

, f̄a
I =

⇣

@X̄I +
1

2
@X̄IK

⌘

(

e
1
2
KX̄a

)

. (3.5)

The triplets of momentum maps appearing in Eq. (3.4) are associated to the non-trivial

Killing vectors acting on the quaternionic manifold M̃H , and are related to the hyper-Kähler

2-forms Kx,

2 kΛaK
x
ΛΣ = rSU(2)

Σ Px
a ⌘ @qΣPx

a + ✏xyz!y
ΣPz

a . (3.6)
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Utilizing Appendix C, the momentum maps Px
0 ⌘ Px

p vanish identically, since the associated

Killing vectors kΛ0 and kΛp are trivial.

The vacua satisfy V = 0, and in particular the non-Abelian locus in M̃V ⇥ M̃H , where

all vector multiplets and hypermultiplets we have introduced are massless. This is the case

for the qΛ’s if hXai = 0, and for the Xa’s if the Killing vectors and momentum maps vanish,

hkΛa i = hPx
a i = 0. Thus, the point P0 and actually the non-Abelian locus on which it sits are

fixed by the isometries. In the following, our aim is to derive the Taylor expansion of the

Lagrangian density of the action (3.2) at P0.

Vector multiplets sector: Let us denote the coordinates of P0 in M̃V as (Xa
0 = 0, Xp

0 )

and begin our discussion with the vector multiplet sector. The infinitesimal isometry action

on the scalars, δXI = ✏akIa, is generated by Killing vectors satisfying the su(N) algebra,

⇥

kIa@XI , kJb @XJ

⇤

= fabc kIc@XI , (3.7)

where fabc are structure constants. Since the Xa’s are in the adjoint representation and the

Killing vectors are vanishing at P0, we conclude that at lowest order,

kba = fabcXc +O((X −X0)
2), kpa = O((X −X0)

2). (3.8)

Utilizing Killing’s equation, the above expressions can be used to constraint the zeroth order

of the Kähler metric,

8I, J̄ , a : gIK̄ DJ̄ k̄
K
a + gKJ̄ DIk

K
a = 0 =) g

(0)

Ib̄

@(fabcX̄c)

@X̄J
+ g

(0)

bJ̄

@(fabcXc)

@XI
= 0, (3.9)

where D is the covariant derivative on the complex manifold M̃V . Taking (I, J̄) = (d, ē)

leads to [g(0), T a] = 0, where (T a)bc = −ifabc are the SU(N) generators. Therefore, g
(0)

ab̄

is proportional to the identity matrix. On the other hand, the choice (I, J̄) = (d, p̄) yields

g
(0)
ep̄ = 0. Altogether, we conclude that there exists a constant l2 > 0 such that

gab̄ = l2δab̄ +O(X −X0), gap̄ = O(X −X0), gpq̄ = g
(0)
pq̄ +O(X −X0). (3.10)

Finally, the Kähler potential at P0 takes the form given in Eq. (2.9), in term of which we

have

fa
I = e

1
2
K(0)

δaI +O(X −X0), f̄a
I = e

1
2
K(0)

δaI +O(X −X0). (3.11)
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Hypermultiplets sector: The matter sector necessitates more technical manipulations.

Again, we start with the Killing vectors, whose action on M̃H must satisfy

⇥

kΛa @qΛ , k
Σ
b @qΣ

⇤

= fabc kΛc @qΛ . (3.12)

Since the geometry of the compactification is telling us that this algebra is realized by 4g

adjoint representations, we know we can single out a coordinate system (qaλ, q↵), where

a = 1, . . . , N2 − 1 and λ = 1, . . . , 4g, and ↵ = 4g(N2 − 1) + 1, . . . , 4(h12 + 1 + g(N2 −N)).

Physically, the 4g adjoint representations are the components of the g hypermultiplets that

are transforming under SU(N), while the remaining q↵’s are singlets of SU(N) and therefore

referred to as the components of the “spectator” hypermultiplets. Denoting the coordinates

of P0 in M̃H as (qaλ0 , q
↵
0 ), where the Killing vectors are vanishing, the latter can be written

at lowest order as

kbλa = fabc(qcλ − qcλ0 ) +O((q − q0)2), k↵a = O((q − q0)2). (3.13)

To write down the form of the quaternionic metric at P0, we make use of Killing’s

equation, where we denote interchangeably the coordinate system as qΛ or (qaλ, q↵),

8Λ,Σ, a : hΛΞDΣk
Ξ
a + hΣΞDΛk

Ξ
a = 0 =) h

(0)
Λ,bλ

@(fabcqcλ)

@qΣ
+ h

(0)
Σ,bλ

@(fabcqcλ)

@qΛ
= 0.

(3.14)

In the above equation, D is now the covariant derivative on M̃H . The choice (Λ,Σ) =

(d⇢, eσ) gives [h(⇢σ), T a] = 0, where we have defined h
(⇢σ)
db ⌘ h

(0)
d⇢,bσ, which is therefore propor-

tional to the identity matrix. Moreover, for (Λ,Σ) = (d⇢, ↵) one obtains h
(0)
↵,e⇢ = 0. In total,

we have at this stage

haλ,b⇢ = δabhλ⇢ +O(q − q0), haλ,↵ = O(q − q0), h↵β = h
(0)
↵β +O(q − q0), (3.15)

where hλ⇢ is a constant metric.

To characterize the hyper-Kähler forms Kx at P0, we use the fact the quaternionic struc-

ture must be preserved by the isometric flow, up to SU(2) transformations. This is formu-

lated by saying that there exist sections W x
a of the SU(2)-bundle over M̃H , such that

LaK
x = ✏xyzKyW z

a , (3.16)

23



where La are the Lie derivatives with respect to the Killing vectors kΛa @qΛ . The W x
a ’s are

called compensators and we first determine their value at P0. To do so, we consider the

relation [23]

La!
x = rSU(2)W x

a ⌘ dW x
a + ✏xyz!yW z

a . (3.17)

Starting from the definition La!
x = d ia!

x + iad!
x, where d!x + 1

2
✏xyz!y ^ !z ⌘ Ωx = λKx

is the SU(2) curvature proportional to the hyper-Kähler forms, and using ia(!
y ^ !z) =

ia!
y !z − !y ia!

z, we obtain from Eq. (3.17)

rSU(2)W x
a = λiaK

x +rSU(2)ia!
x. (3.18)

Combining with Eq. (3.6), we find

rSU(2)

✓

λ

2
Px

a +W x
a − ia!x

◆

= 0 =) λ

2
Px

a +W x
a − ia!x = 0, (3.19)

by virtue of Theorem 3 in Appendix C. Since both Px
a and kΛa @qΛ vanish at P0, we conclude

that W x
a (q0) = 0 as well. We are now in a position to use efficiently Eq. (3.16) we rewrite

in components as,

8Λ,Σ, a : kΞa @qΞK
x
ΛΣ + (@qΛk

Ξ
a )K

x
ΞΣ + (@qΣk

Ξ
a )K

x
ΞΛ = ✏xyzKy

ΣΛW
z
a . (3.20)

At q = q0, this relation with (Λ,Σ) = (bλ, c⇢) gives [Kx(λ⇢), T a] = 0, where we have defined

K
x(λ⇢)
bc ⌘ K

x(0)
bλ,c⇢,which is thus proportional to the identity matrix. With (Λ,Σ) = (bλ, ↵),

one obtains instead K
x(0)
cλ,↵ = 0, so that

Kx
aλ,b⇢ = δabK

x
λ⇢ +O(q − q0), Kx

aλ,↵ = O(q − q0), Kx
↵β = K

x(0)
↵β +O(q − q0), (3.21)

where Kx
λ⇢ is an antisymmetric constant matrix.

The triplet of complex structures are related to the hyper-Kähler forms by the definition

(B.4), so that JxΛ
Σ = −hΛΞKx

ΞΣ. Using Eqs (3.15) and (3.21), we obtain in the vicinity of

P0,

Jxaλ
b⇢ = δabJ

xλ
⇢ +O(q − q0), Jxaλ

↵ = O(q − q0), Jx↵
β = Jx(0)↵

β +O(q − q0),
(3.22)

where Jxλ
⇢ = −hλσKx

σ⇢. Using the fact that the JxΛ
Σ’s are satisfying the quaternionic

algebra (Eq. (B.1) with n = h12 + 1 + g(N2 − N)) everywhere on M̃H and thus at P0,
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we find Jxλ
σ are also triplets of complex structures (Eq. (B.1) with n = g) in each of the

N2−1 sub-tangent planes T0a at P0 spanned by @/@qaλ (at fixed a), endowed with the metric

hλ⇢. Applying Theorem 1 (see Appendix B) in T0a, there exists a new basis eaAu in T0a
and its dual basis θaAu in T ⇤

0a, where A = 1, . . . , g and u = 1, 2, 3, 4, such that Jxλ
⇢, hλ⇢

and Kx
λ⇢ take canonical forms. This local basis defines a new set of coordinates caAu such

that dcaAu
∣

∣

P0
=
p
2 θaAu and caAu

∣

∣

P0
= 0, which greatly simplifies the form of the metric,

hyper-Kähler forms and Killing vectors on M̃H . Using Eqs (3.15), (3.21) and (3.13), we

obtain in the neighborhood of P0,
13

haAu,bBv =
1

2
δabδAB δuv +O(q − q0), haAu,↵ = O(q − q0), h↵β = h

(0)
↵β +O(q − q0),

Kx
aAu,bBv =

1

2
δabδAB η

x
uv +O(q − q0), Kx

aAu,↵ = O(q − q0), Kx
↵β = K

x(0)
↵β +O(q − q0),

kbAu
a = fabc ccAu +O((q − q0)2), k↵a = O((q − q0)2).

(3.23)

Finally, we know the momentum maps Px
a are vanishing at P0. Moreover, since the left

hand side of Eq. (3.6) is first order, the Px
a ’s must be second order. To determine them

explicitly in the neighborhood of P0, we rewrite Eq. (3.6) as

∂Px
a

∂cbBv
= −fabcccBuηxuv +O((q − q0)2),

∂Px
a

∂q↵
= O((q − q0)2), (3.24)

whose solution is

Px
a =

1

2
fabc cbAuccAvηxuv +O((q − q0)3). (3.25)

Effective action: We are now equipped to determine the potential V of Eq. (3.4) in the

vicinity of P0. As follows from Eqs (3.10), (3.8), (3.23), the first three terms in V , which are

positive, are of order four in (X −X0) or (q − q0), while the last one, which is negative, is

of order six and can be ignored. Introducing the SU(2)R-doublets and notations

C
aA =

✓

i(caA1 + icaA2)
(caA3 + icaA4)⇤

◆

, X ⌘ Xa T a, X̄ ⌘ Xa T a, cAu ⌘ caAu T a, (3.26)

the tree level potential can be written as

V = eK
(0)
⇣

l2[X, X̄]a[X, X̄]a + 2[X, cAu]a[cAu, X̄]a +
1

4l2
DaxDax

⌘

+ · · ·
where Dax ⌘ −ifabc

C
bA†σx

C
cA, [X ,Y ]a ⌘ ifabcX bYc, (3.27)

13O(q − q0) denotes terms of order caAu or (qα − qα
0
).
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with the dots standing for order five terms.

Collecting the leading contributions to the kinetic terms, the low energy effective action

(3.2) of the type IIA theory at finite temperature and compactified on M or M 00, close to

their extremal transition, is at tree level and lowest order in scalar fields,

Stree =

Z

d4x
p−g

⇢R
2
− l2rµXarµX̄a − g(0)pq̄ @µX

p@µX̄q − 1

2
rµcaAurµcaAu − h(0)↵β @µq

↵@µqβ

− eK(0)
⇣

l2[X, X̄]a[X, X̄]a + 2[X, cAu]a[cAu, X̄]a +
1

4l2
DaxDax

⌘

+ · · ·
}

.

(3.28)

Therefore, up to the “spectator multiplets”, the Lagrangian density has the form of a min-

imally coupled rigid N = 2 supersymmetric SU(N) gauge theory coupled to g hypermulti-

plets in the adjoint representation, formally coupled to gravity.

3.3 Tree level masses

The tree level potential (3.27) admits flat directions, along which masses for the degrees of

freedom involved in the SU(N) gauge theory are generated. Since they depend on the moduli,

the one-loop free energy we will take into account in the following Sections will behave as

an effective potential, able to lift the flat directions of the vector and hypermultiplet scalars

charged under SU(N). Actually, rather than the masses themselves, this goal requires the

sum of the tree level squared masses of the bosonic degrees of freedom we now determine.

Let us start by characterizing the flat directions of V . In the vicinity of P0, whose

coordinates in M̃V ⇥ M̃H are (Xa
0 = 0, Xp

0 ; c
aAu
0 = 0, q↵0 ), the set of vacua splits into a

Cartesian product between:

• The space parameterized by the “spectator moduli” Xp and q↵, which are coordinates

along the non-Abelian locus.

• The space of configurations of theXa’s and caAu’s, which are canceling the semi-definite

positive potential V . It is defined by the conditions

[X, X̄] = 0, 8A, u : [X, cAu] = 0 and 8a, x : Dax = 0, (3.29)

which admits Coulomb and Higgs branches to be specified later.
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To determine the mass terms, we substitute in the action (3.28)

Xa ! Xa + δXa, caAu ! caAu + δcaAu, (3.30)

where (Xa, caAu) satisfies the constraints (3.29), and focus on the quadratic terms of the

potential. For δXbδX̄c, we obtain from the first two terms of V in Eq. (3.27)

eK
(0)
⇣

2l2[δX, δX̄]a[X, δX̄]a + 2[δX, cAu]a[cAu, δX̄]a
⌘

:= Ebc δX
bδX̄c, (3.31)

while the contributions in δXbδXc and their complex conjugate are irrelevant to compute

the trace of the squared mass operator. Taking into account the normalization of the kinetic

terms of the δXa’s in the action (3.28), we find a contribution to the trace

trM2
∣

∣

δX
=

2

l2
Eaa + · · · = 4NeK

(0)
⇣

XaX̄a +
1

l2
caAucaAu

⌘

+ · · · . (3.32)

The factor 2 counts the real and imaginary parts of δXa, the factor N arises from the relation

tr (T aT b) = Nδab and the ellipsis stand for higher order terms in the scalar fields.

Terms in δcaAuδcbBv arise from the second term in (3.27),

eK
(0)

2[X, δcAu]a[δcAu, X̄]a :=
1

2
LaAu,bBv δc

aAuδcbBv, (3.33)

and the D-terms. To evaluate the latter, it is convenient to rewrite the third term of Eq.

(3.4) around P0 in an alternative form, using Eq. (A.5),

eK
(0) 1

4l2
DaxDax = eK

(0) 1

4l2

⇣

2[cAv, cAu]a[cBu, cBv]a − ✏uvu0v0 [c
Au, cAv]a[cBu

0

, cBv
0

]a
⌘

. (3.34)

Substituting (3.30), the only terms that may contribute to the trace of squared masses are

eK
(0) 1

l2

⇣

[δcAv, cAu]a[δcBu, cBv]a + [δcAv, cAu]a[cBu, δcBv]a
⌘

:=
1

2
PaAu,bBv δc

aAuδcbBv. (3.35)

The kinetic terms of the δcaAu’s being canonical, we obtain

trM2
∣

∣

δc
= (L+ P )aAu,aAu + · · · = 4NeK

(0)
⇣

4gXaX̄a +
3

2l2
caAucaAu

⌘

+ · · · . (3.36)

All terms in δXδcaAu or their complex conjugate do not contribute the trace. This completes

the analysis arising from the scalar fields.

To proceed, we need the contribution associated to the vector bosons. The Yang-Mills

Lagrangian density implicit in Eq. (3.28) can be written as

−1

4
τ
(0)
AB F

A
µ⌫F

Bµ⌫ , (3.37)
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where the index A takes values 0 or I to account for the graviphoton and τ
(0)
AB are the gauge

kinetic functions evaluated at P0 and FA = dAA. When (3.30) is applied and we keep the

lowest order contribution in scalar fields, a mass matrix Qab is generated by the covariant

derivatives and we obtain in flat Minkowski space,

1

2
τ
(0)
AB A

Aµ(ηµ⌫2− ∂µ∂⌫)A
B⌫ − 1

2
Aaµ ηµ⌫QabA

b⌫ . (3.38)

Therefore, the contribution of the vector bosons to the trace of squared masses is

trM2
∣

∣

Aµ = 3 τ (0)baQab + · · · = 6 τ (0)baf cdaf ceb
⇣

l2XdX̄e +
1

2
cdAuceAu

⌘

+ · · · , (3.39)

where the factor 3 counts the number of degrees of freedom in massive spin-one fields. It

is certainly possible to evaluate the inverse metric τ (0)ab from its form dictated by N = 2

supergravity [23]. However, this can be avoided by noticing that trM2|Aµ is known when

g = 1. In this conformal case, there is no Higgs branch and, in the Coulomb phase, all

massive degrees of freedom sit in long vector multiplets (see Table 2). Each of them contains

3 degrees of freedom associated to the vector bosons and 5 from the scalars, which are all

degenerate. Therefore, we have

trM2
∣

∣

g=1

Aµ =
3

5

⇣

trM2
∣

∣

g=1

δX
+ trM2

∣

∣

g=1

δc

⌘

+ · · · = 12NeK
(0)
⇣

XaX̄a +
1

2l2
ca1uca1u

⌘

+ · · · .
(3.40)

Comparing with Eq. (3.39), we find τ (0)baf cdaf cebl2 ⌘ 2NeK
(0)
δde and therefore for arbitrary

g ≥ 1,

trM2
∣

∣

Aµ = 12NeK
(0)
⇣

XaX̄a +
1

2l2
caAucaAu

⌘

+ · · · . (3.41)

Collecting the contributions of the scalar masses Eqs (3.32), (3.36) and spin-one fields Eq.

(3.41), we arrive at the final result for the trace of the squared mass operator in the bosonic

sector of the SU(N) gauge theory coupled to g hypermultiplets in the adjoint representation,

valid in the vicinity of P0,

trM2
∣

∣

gauge
= 16NeK

(0)
⇣

(g + 1)XaX̄a +
1

l2
caAucaAu

⌘

+ · · · . (3.42)

We recall that the above expression applies to any scalar configuration satisfying (3.29), in

which case all tadpoles are vanishing.
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3.4 Lifting the Coulomb branch at one-loop

The space of classical flat directions around P0 splits into several branches. The Coulomb

phase corresponds to scalar VEV’s such that the matrices XaT a and caAuT a sit in the Cartan

sub-algebra. In this case, the two first conditions in Eq. (3.29) are satisfied, while the D-term

condition follows from Eq. (3.34). Denoting as T i (i = 1, . . . , N − 1) the Cartan generators

of SU(N) and T â (â = N, . . . , N2 −N) the remaining ones, we have

Coulomb branch:
n

(

X i arbitrary, X â = 0, ciAu arbitrary, câAu = 0
)

o

⇥
n

(

Xp, q↵
)

arbitrary
o

,

(3.43)

which corresponds to a compactification on the CY space M . As noticed in Footnote 12, M

is a smooth manifold, except when some X i = Xj and ciAu = cjAu for i 6= j, so that SU(N)

is broken to a non-Abelian subgroup of rank N − 1.

In the coulomb phase, when the X i’s are generic but ciAu = 0 (for all A and u), no

mass mixing terms of the form δXaδcbBv or δX̄aδcbBv are generated by the shift (3.30) in

V . Therefore, the N2 −N gauge bosons that are acquiring masses eat half of the degrees of

freedom of the δX â’s and δX̄ â’s, and combine into N2 −N short massive vector multiplets.

Thus, the ratio trM2|Aµ / trM2|δX must equal 3/(2−1) = 3, which is satisfied by Eqs (3.39)

and (3.32). The complete superfield content in this case is reported in Table 2.

Similarly, when X i = 0 (for all i) but the ciAu’s are generic, there are still no mixing

terms between the vector and matter scalars. However, the N2 − N vector boson eat as

many would-be-Goldstone bosons now among the δcâAu, and the massive spectrum contains

N2 − N long vector multiplets. Thus, the ratio trM2|Aµ / trM2|δX must equal 3/2, again

satisfied by Eqs (3.39) and (3.32).

On the contrary, at a generic point in the branch (3.43), the mass mixing terms imply the

mass eigenstates are combinations of vector and hypermultiplet scalars. Therefore, trM2|δX
and trM2|δc cannot be interpreted as sums of squared masses in separated vector and hyper-

multiplet scalar sectors. Only the sum trM2|δX + trM2|δc makes sense, as the contribution

of the full spin-zero sector. Moreover, the would-be-Goldstone bosons are combinations of

the non-Cartan vector and hypermultiplet scalars.

Restricted to the weak string coupling regime, we are now ready to write the one-loop

thermal effective action. In the Coulomb branch, it amounts to adding the tree level action
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Scalars acquiring VEV’s Superfields

In vector In hyper- Vector multiplets Hypermultiplets
multiplets multiplets Massless

(moduli)
Massive
short

Massive
long

Massless
(moduli) Massive

Coulomb
phase

X i none N − 1 N2 −N 0 g(N − 1) g(N2 −N)

X i

or none
ciAu N − 1 0 N2 −N g(N − 1) (g − 1)(N2 −N)

Higgs
phase

none

C aA mod.
gauge orbits
such that
Dax = 0

0 0 N2 − 1 (g − 1)(N2 − 1) 0

Table 2: Superfield contents in the Coulomb and Higgs branches (when g ≥ 2) associated to the
N = 2 SU(N) gauge theory coupled to g hypermultiplets in the adjoint representation, which is
encountered in the neighborhood of a non-Abelian locus in M̃V ⇥ M̃H . The scalars Xp and q↵ of
the massless spectator vector multiplets and hypermultiplets are not represented. At special loci
in the Coulomb branch, where some Xi = Xj and ciAu = cjAu for i 6= j, some generically massive
multiplets are actually massless, and the SU(N) gauge symmetry is broken to a non-Abelian
subgroup of rank N − 1, rather than U(1)N−1.

(3.28) in a vacuum (3.43) to the one-loop Coleman-Weinberg effective potential F ,

S1-loop=

Z

d4x
p−g

⇢R
2
−l2@µX i@µX̄j−g(0)pq̄ @µX

p@µX̄q− 1

2
@µc

aAu@µcaAu−h(0)↵β@µq
↵@µqβ−F

}

.

(3.44)

As seen in Eq. (2.21), F is actually the free energy density, which in the present case is

F = −T 4

(

⇣

4 + 4h11 + 4(h12 + 1)
⌘

G(0) +
X

ŝ

G
⇣Mŝ

T

⌘

+O
(

e−
Mmin

T

)

)

, (3.45)

where the index ŝ labels all pairs of degenerate boson/fermion states in the massive vector

multiplets and hypermultiplets involved in the SU(N) gauge theory and collected in Table

2. In Eq. (3.45), we take the temperature to be below the lower bound Mmin > 0 at P0

of the remaining masses of the full string spectrum. F is minimal when and only when all

classical masses in the SU(N) gauge sector vanish, 8ŝ : Mŝ = 0. Using the general formula

(3.42) in the Coulomb branch,

X

ŝ

M2
ŝ ⌘ trM2

∣

∣

gauge
= 16NeK

(0)
⇣

(g + 1)X iX̄ i +
1

l2
ciAuciAu

⌘

+ · · · , (3.46)

this implies X i = 0, ciAu = 0. Therefore, all moduli involved in the Coulomb phase of the

SU(N) gauge theory are lifted. Their kinetic terms being diagonal, the masses they acquire
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at one-loop are

M2
i1-loop =

1

l2
@2F

@X i@X i

∣

∣

∣

∣

Xj=cjAu=0

=
T 2

16

1

l2

X

s

@2M2
s

@X i@X i

∣

∣

∣

∣

∣

Xj=cjAu=0

= T 2 (g + 1)
N

l2
eK

(0)

,

M2
iAu1-loop =

@2F
@ciAu@ciAu

∣

∣

∣

∣

Xj=cjAu=0

=
T 2

16

X

s

@2M2
s

@ciAu@ciAu

∣

∣

∣

∣

∣

Xj=cjAu=0

= T 2 2
N

l2
eK

(0)

, (3.47)

while the classically massless U(1)N−1 spin-1 fields do not acquire masses. Moreover, due to

the arbitrariness in the choice of Cartan subalgebra at the origin of the Coulomb branch,

we conclude that all vector multiplet and hypermultiplet scalars Xa and caAu, even though

classically massless, have one-loop masses at their point of stabilization,

M2
X1-loop = T 2 (g + 1)

N

l2
eK

(0)

, M2
c1-loop = T 2 2

N

l2
eK

(0)

, (3.48)

where the full SU(N)⇥ U(1)h11−(N−1)+1 gauge symmetry is restored.

In a homogeneous and isotropic universe, the free energy density (3.45) leads along the

SU(N) non-Abelian locus to the state equation for radiation, ⇢ = 3P , when T is low enough.

Consequences of this fact are similar to those encountered in the case of the conifold locus,

below Eq. (2.30). A cosmological evolution for the scale factor and temperature exists, with

static scalars fields,

a(t) / 1

T (t)
/
p
t , Xa ⌘ caAu ⌘ 0 , Xp, q↵ constant, (3.49)

where t is the cosmological time. Since T decreases, the consistency of the approximation

T ⌧Mmin used to neglect exponentially suppressed contributions in the free energy (3.45) is

guaranteed. As in the N = 4 case (g = 1 here) analyzed in Ref. [11], other time-evolutions

compatible with homogeneity and isotropy exist, where the moduli X i and ciAu oscillate

with damping in the Coulomb branch, thus converging to their minimum. The fact that

their masses are of order the temperature scale and decreases as the universe expand implies

the cosmological moduli problem is avoided.

3.5 Lifting the Higgs branch at one-loop

At the origin of the Coulomb branch, the conditions Dax = 0 become non-trivial constraints

on the hypermultiplet scalars, which define the Higgs phase,

Higgs branch :
n

(

Xa = 0,C aA such that Dbx = 0
)

o

⇥
n

(

Xp, q↵
)

arbitrary
o

. (3.50)

31



The above conditions fix 3(N2 − 1) components among the 4g(N2 − 1) scalars caAu. Along

the flat directions, the SU(N) local symmetry is completely Higgsed spontaneously. The

remaining global SU(N) orbits can be used to gauge awayN2−1 would-be-Goldstone bosons,

so that 4(g−1)(N2−1) flat directions of inequivalent vacua remain. By supersymmetry, the

latter can be parameterized by the scalars of (g− 1)(N2− 1) neutral hypermultiplets. Thus,

the above Higgs branch exists only for g ≥ 2, in which case it is realized geometrically by

compactifying on the CY M 00 with Hodge numbers given in Eq. (3.1). Actually, N2 − 1 of

the initial g(N2−1) hypermultiplets combine with the Higgsed vector multiplets into N2−1

massive long vector multiplets, as summarized in Table 2. Therefore trM2|Aµ / trM2|δX =

trM2|δc / trM2|δX = 3/2 must be satisfied, which is consistent with Eqs (3.32), (3.36) and

(3.39) when Xa = 0.

In the case of the Coulomb phase, we introduced an arbitrary choice of Cartan gener-

ators T i among the T a’s. In a similar way, we now define an arbitrary set of coordinates

ξm
(

m = 1, . . . , 4(g − 1)(N2 − 1)
)

along the Higgs phase flat directions. They satisfy

fabc C bA†(ξ)σxC cA(ξ) = 0 and the Jacobian matrix
⇣

@caAu

@⇠m

⌘

is of rank 4(g− 1)(N2− 1). The

origin of the Higgs branch is denoted ξm0 . In these notations, the one-loop effective action of

the type IIA string theory compactified on M 00 at finite temperature is, in the neighborhood

of P0,

S1-loop =

Z

d4x
p−g

⇢R
2
− g(0)pq̄ ∂Xp∂X̄q − h(0)mn ∂ξ

m∂ξn − h(0)↵β ∂q
↵∂qβ −F

}

, (3.51)

where the induced metric of the ξm’s is

h(0)mn =
1

2

∂caAu

∂ξm

∣

∣

∣

∣

⇠0

∂caAu

∂ξn

∣

∣

∣

∣

⇠0

. (3.52)

In the present case, the free energy density F takes the form

F = −T 4

(

⇣

4 + 4h0011 + 4(h0012 + 1)
⌘

G(0) + 8
X

a

G
⇣Ma

T

⌘

+O
(

e−
Mmin

T

)

)

, (3.53)

where the factor 8 counts the number of boson/fermion pairs of states in the long vector

multiplets of masses Ma (a = 1, . . . , N2 − 1). The contributions of all the other massive

modes of the spectrum are exponentially suppressed when T < Mmin.

The minimum of F is reached when the classical masses Ma vanish. Applying Eq. (3.42)
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in the Higgs branch,

8
X

a

M2
a ⌘ trM2

∣

∣

gauge
= 16

N

l2
eK

(0)

caAucaAu + · · · , (3.54)

we see that this selects the origin of the Higgs branch, caAu = 0. Therefore, all classical

flat directions ξm are lifted and admit a unique minimum at ξm0 at the one-loop level. The

squared mass matrix of the ξm’s is

Λ00m
n =

1

2
h(0)ml ∂2F

∂ξl∂ξn

∣

∣

∣

∣

⇠0

=
T 2

16

1

2
h(0)ml 8

X

a

∂2M2
a

∂ξl∂ξn

∣

∣

∣

∣

∣

⇠0

= T 2 2
N

l2
eK

(0)

δmn , (3.55)

where we have used the fact that caAu|⇠0 = 0 to reach the last equality. Thus, the ξm’s are

mass eigenstates and degenerate. Since the parametrization of the Higgs branch was chosen

arbitrarily, we obtain that all scalars caAu acquire a common mass given by Eq. (3.55).

Consistently, this is the result we already found by approaching the SU(N) non-Abelian

locus from the Coulomb branch, Eq. (3.48).

From a cosmological point of view, the expanding universe with static moduli and filled

with radiation of Eq. (3.49) appears as a particular case of a second class of homogeneous

and isotropic time-evolutions. In this class, even if the ξm’s oscillate with damping, the

cosmological moduli problem is avoided [11].

4 Stabilization at intersections of extremal transition

loci

In the previous Sections, we have shown that the thermal effective potential admits local

minima along submanifolds in moduli space, where the internal CY develops singularities.

Therefore, the intersection points of various such loci are expected to define dynamically

preferred configurations of the internal space. In the following, we illustrate this fact on

an example in type IIA (IIB), where the Kähler (complex structure) moduli space is com-

pletely lifted, together with some of the complex structure (Kähler) moduli. This implies

in particular that the axio-dilaton field of the heterotic dual description is stabilized. We

then discuss how this phenomenon is expected to apply in generic CY compactifications to

all vector multiplet and most of the hypermultiplet scalars.
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4.1 Example

Let us consider an example, with small Hodge number h11 [28, 29]. The type IIA model we

analyze at finite temperature is compactified on a CY manifold M obtained by resolving the

singularities of a degree 12 hypersurface in P
4
(1,1,2,2,6). Denoting the projective coordinates as

x1, . . . , x5, the ambient space presents initially a singularity of type A1 at x1 = x2 = 0. Along

this locus, the polynomial of M defines a curve C of genus 2. Blowing up the ambient space

singularity, M becomes a smooth CY manifold, whose Kähler moduli space MV admits a

non-Abelian locus with N = 2 and g = 2. Counting the allowed monomials of the defining

polynomial of M , one finds there are h12 = 128 complex structure moduli.

Equivalently, the model can be analyzed in type IIB compactified on the mirror CY three-

fold W . The latter is defined by the vanishing locus of degree 12 polynomials in P
4
(1,1,2,2,6),

modded out by some particular Z
2
6 ⇥ Z2 group. The most general hypersurface consistent

with this action is [13, 14, 28]

P = x121 + x122 + x63 + x64 + x25 − 12 x1x2x3x4x5 − 2φx61x
6
2 , (4.1)

which admits 2 complex structure deformations,  and φ. Therefore, the manifoldM admits

h11 = 2 Kähler moduli. Defining

z1 = −
1

864

φ

 6
, z2 =

1

φ2
, (4.2)

the locus P = 0 develops singularities when ∆c∆nA vanishes, where

∆c ⌘ (1− z1)2 − z21z2 , ∆nA ⌘ 1− z2 . (4.3)

When ∆c = 0, nodes are occurring, which are identified under Z
2
6 ⇥ Z2. Therefore, MV

admits a conifold locus characterized by R = S = 1.14 When ∆nA = 0, other isolated

singularities occur, yielding again a single singular point on the quotient. Since we know

MV admits a non-Abelian locus, this second point-like singularity must be associated to

the type IIB realization of the SU(2) gauge theory. This is confirmed once the orbifold

singularities implied by the discrete modding are blown up to obtain a smooth manifold

W [28, 29].

14We use the fact that the mirror of the conifold W is a conifold M .
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Since R = S, there is no extremal transition associated to the conifold locus. On the

contrary, when M develops the genus-g curve of A1 singularities, the fact that g > 1 implies

that M can be deformed into a distinct smooth CY M 00. The ambient spaces, degrees

of polynomials and Hodge numbers of the families of CY manifolds on either side of the

associated non-Abelian extremal transition are [13, 14]

P
4
(1,1,2,2,6)[12](2, 128)  ! P

5
(1,1,1,1,1,3)[2, 6](1, 129). (4.4)

Beside the U(1)grav gauge factor associated to the graviphoton, the type IIA compactifica-

tions onM andM 00 realize geometrically the phases of the U(1)con Abelian theory coupled to

a charged hypermultiplet and SU(2) super-Yang-Mills theory coupled to two hypermultiplets

in the adjoint representation,

type IIA on M :
n

Coulomb phase of U(1)con

o

⇥
n

Coulomb phase of SU(2)
o

type IIA on M 00 :
n

Coulomb phase of U(1)con

o

⇥
n

Higgs phase of SU(2)
o

. (4.5)

The conifold and non-Abelian loci intersect at two points on the compactified moduli

spaceMV [28],

(z1, z2) = (1/2, 1) or (1, 1). (4.6)

In either of these configurations, the node and isolated singularity on the hypersurface P = 0

are separated from each other and generate independent massless states. From the type IIA

point of view on the singular space M , the single massless black hole hypermultiplet has

charges Q1 = 1 with respect to U(1)con and Q2 with respect to the U(1) Cartan subgroup

of SU(2). Similarly, the vector multiplet and g = 2 hypermultiplets in the adjoint represen-

tation of SU(2) are neutral with respect to U(1)con. Therefore, we can combine the results

of the previous Sections and consider the extended moduli space M̃V ⇥ M̃H , which takes

into account the scalar fields of the light non-perturbative states arising in the vicinity of

the points (4.6) inMV . Choosing a point P0 located at the intersection of the conifold and

non-Abelian loci in M̃V ⇥ M̃H , the tree level low energy effective action of the type IIA
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string theory compactified on M or M 00 takes near P0 the form,

Stree =

Z

d4x
p−g

⇢R
2
− l21 @µX1@µX̄1 − l2rµXarµX̄a

− 1

2
rµc1urµc1u − 1

2
rµcaAurµcaAu − h(0)↵β @µq

↵@µqβ

− eK(0)
⇣

2 |X1|2 c1uc1u + 1

4l21
(c1uc1u)2

⌘

− eK(0)
⇣

l2[X, X̄]a[X, X̄]a + 2[X, cAu]a[cAu, X̄]a +
1

4l2
DaxDax

⌘

+ · · ·
}

.

(4.7)

Our conventions are as follows: X1 is the scalar partner of the U(1)con gauge boson and

Xa (a = 2, 3, 4) is in the adjoint of SU(2). Similarly, c1u are the components of the black

hole hypermultiplet, while caAu are those of the two hypermultiplets in the adjoint of SU(2).

The scalars of the 127 (see below for the counting) hypermultiplets that are neutral with

respect to U(1)con ⇥ SU(2) are denoted q↵ and the metric in their subspace in M̃H at P0 is

h
(0)
↵β . Similarly, l21, l

2 are the non-vanishing entries of the Kähler metric on M̃V at P0, whose

coordinates are (X1
0 = 0, Xa

0 = 0; c1u0 = 0, caAu
0 = 0, q↵0 ), so that the Kähler potential defined

in Eq. (2.5) reduces to K(0) = − ln[i(F0 − F̄0)].

Taking into account one-loop corrections, the scalarsX1, Xa, c1u and caAu are stabilized at

zero and acquire masses of order the temperature scale, while the q↵’s remain flat directions

of the thermal effective potential. Moreover, the full U(1)grav⇥U(1)con⇥SU(2) gauge theory
is restored. From a geometrical point of view, starting from a type IIA compactification on

M , the quantum/thermal effects on the perturbative moduli imply:

• The h11 = 2 Kähler moduli are stabilized in one of the two minima given in Eq. (4.6).

• The scalars of g(N −1) = 2 hypermultiplets are stabilized at the origin of the Coulomb

branch of SU(2) inMH .

• The scalars of the h12 + 1 − g(N − 1) = 127 left-over hypermultiplets remain flat

directions inMH .

Similarly, starting from a type IIA compactification on M 00, the thermal free energy density

implies:

• The h0011 = 1 complexified Kähler modulus parameterizingM00
V is stabilized.

• The scalars of (g − 1)(N2 − 1) = 3 hypermultiplets are stabilized at the origin of the
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Higgs branch of SU(2) inM00
H .

• The scalars of the h0012+1− (g− 1)(N2− 1) = 127 left-over hypermultiplets remain flat

directions inM00
H .

The heterotic dual: At zero temperature, the type IIA string model compactified on M

admits a heterotic dual description [20]. This follows from the fact that the CY manifolds

in the family P
4
(1,1,2,2,6)[12] are K3-fibrations [19]. The heterotic model is compactified on

K3⇥ T 2, where the 2-torus moduli Th and Uh are identified, Th ⌘ Uh (their difference being

projected out), and the full non-Abelian gauge group is Higgsed. Consistently, the massless

spectrum contains 2 vector multiplets associated to the Th and Sh moduli, where Sh is the

heterotic axio-dilaton, together with 129 neutral hypermultiplets.

Th and Sh are special coordinates that can be identified with those obtained by inverting

the mirror map: z1(t1, t2), z2(t1, t2). To render the identification precise [20], one observes

that in the large complex structure limit of W , t2 ! +1, one finds

z1 =
1728

j(t1)
+ · · · , z2 = e−t2 + · · · , (4.8)

where j is the SL(2,Z)-invariant modular form. Therefore, z2 ! 0 and the two roots of

the discriminant locus ∆c in Eq. (4.3) merge into z1 = 1. These facts match exactly the

behavior of the perturbative heterotic model, under the identification

Th ⌘ t1, Sh ⌘ t2. (4.9)

Actually, the latter develops an SU(2) enhanced gauge symmetry15, when Th = i modulo the

classical T-duality group SL(2,Z), in perfect agreement with Eq. (4.8) for z1 = 1. Moreover,

when t2 is finite, the conifold locus splits into two branches, as predicted by the exact pure

SU(2) N = 2 super-Yang-Mills theory [30]. Being asymptotically free, the latter reduces

in the IR to a U(1) gauge theory coupled to a single (dyonic) hypermultiplet, realized as

U(1)con in the type II setup [21,22].

In their exact versions, the type II and heterotic models are supposed to be equivalent.

Therefore, switching on finite temperature on both theories must lead to a new dual pair

of non-supersymmetric models. This expectation is confirmed by the fact that at the levels

of the worldsheet conformal field theories, finite temperature is introduced by implementing

15To not be confused with the SU(2) gauge group occurring at the type II non-Abelian locus.
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spontaneous breakings of supersymmetry “à la Scherk-Schwarz”, along the Euclidean time

circles. Using an adiabatic argument [31], under a free action, the two theories remain dual.

Therefore, the stabilization of the complex structure moduli z1, z2 of W at one of the two

points in Eq. (4.6) translates immediately into a stabilization of the torus modulus Th and

axio-dilaton Sh in the dual heterotic model at finite temperature. The latter are given by

the inverse mirror map, Th(z1, z2), Sh(z1, z2), where z1 = 1/2 or 1 and z2 = 1. As seen in

Eq. (4.8), the obtained value of Sh corresponds to a strong coupling regime of the heterotic

theory.

Actually, the two local minima of (Th, Sh) are uniquely determined, modulo the orbit

of the exact heterotic duality group. Since the complex structure moduli space of W is

exactly known at tree level in type IIB, the exact heterotic duality group is nothing but

the monodromy group derived around the singular loci of the type IIB complex structure

moduli space MV . As shown in Ref. [22], the latter contains the perturbative heterotic

duality group (including the quantized axionic shift), the monodromies of the exact pure

SU(2) N = 2 super-Yang-Mills theory, as well as a generator associated to the non-Abelian

locus inMV that exchanges roughly Th with Sh [19, 22].

From the heterotic viewpoint, the origin of the SU(2) gauge theory coupled to two

adjoint hypermultiplets at z2 = 1 is intrinsically non-perturbative and may be related to

the existence of the NS5-brane. In fact, translated via S-duality into a type I picture [32],

NS5-branes would be mapped into D5-branes that may play a role analogous to that of D1-

branes already considered in Ref. [11]. There, D1-brane states winding internal 1-cycles were

taken into account in the evaluation of the thermal free energy, whose effect was to stabilize

internal moduli. Adding the contributions of D5-brane states winding internal 5-cycles in the

evaluation of the free energy may lead to a stabilization of the type I dilaton. Alternatively,

the contributions of the solitonic D1-brane states were shown to be equivalently described

in terms of E1-instantons wrapping the Euclidean time circle S1(R0) and internal 1-cycles.

Thus, it would be interesting to see if E5-instantons wrapping S1(R0) and internal 5-cycles

would contribute in such a way to generate a potential for the type I dilaton.

Finally, note that the depth of the minimum of the free energy density depends only on

the number of classically massless states at this point. Therefore, the two minima in Eq.

(4.6) are degenerate. Moreover, both are at finite distance in the compactified moduli space
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MV . Therefore, it may be interesting to find instantonic transitions between them, and

analyze resulting physical consequences.

4.2 Discussion

The qualitative behavior and stabilization issues of the example of compactification we have

analyzed are shared by numerous models based on other families of threefolds, with small

Hodge numbers h11. For instance, cases where h11 = 2 or 3, N = 2 or 3 and g = 2, . . . , 15

can be found in Refs [13, 14].

In fact, in any type II compactification on a CY space, we expect the vector multiplet

moduli spaceMV to be completely lifted once finite temperature is switched on, the latter

point being certainly relevant to describe the cosmological evolution of our universe. Geo-

metrically, this means that all Kähler moduli in type IIA and all complex structure moduli

in type IIB have masses of order the temperature scale. From the IIA point of view (and

similarly in the IIB mirror picture), the mechanism is based on the fact that all homology

classes of 2-cycles can vanish and that D2-branes wrapped on their representatives should al-

ways give rise to non-perturbative BPS states that are massless (at zero temperature), when

the cycles collapse. In this work, this was analyzed in detail at conifold points, as well as at

loci of SU(N) enhanced gauge symmetries coupled to g hypermultiplets in the adjoint rep-

resentations. It would be interesting to extend our approach to other points where 2-cycles

are vanishing, by identifying the geometrically engineered gauge theories and the associated

massless BPS states. For instance, one may analyze the case of non-Abelian gauge theories

coupled to matter in the fundamental representations, which is considered in Ref. [15].

Flat directions in the classical hypermultiplet moduli space MH are also lifted. This

is the case for the directions that realize branches of the above mentioned gauge theories.

In other words, say in type IIA, the 3-cycles that can be resolved into 2-cycles when they

collapse are expected to be associated to quaternionic directions inMH lifted by the thermal

effective potential. For instance, these directions parameterize the Higgs branch arising at

a conifold locus (when R > S), or the Coulomb or Higgs branches of the non-Abelian case

we have analyzed. A question then arises: Can we stabilize this way all complex structure

moduli in type IIA (Kähler moduli in type IIB)? To answer this question, let us consider
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a CY manifold M admitting 2-cycles that cannot be deformed into 3-cycles. Such a case

was understood physically in our study or the conifold locus in type IIA, when R = S and

no Higgs branch exists. By mirror symmetry, there exist 3-cycles in the mirror CY W that

cannot be resolved into 2-cycles. UtilizingW to compactify the type IIA string, the eventual

(gauge) theory realized geometrically in the vicinity of the vanishing locus inMH of these

3-cycles is not know to us. Therefore, we are not able to identify possible massless states

occurring at these points, which would induce a local minimum of the free energy density

and a stabilization of the associated complex structure moduli of W . Clearly, it would be

very interesting to clarify this issue.

The above discussion ofMH concerns the h12 quaternionic directions associated to the

complex structure of the internal space in type IIA. The remaining one, associated to the

unique (3, 0)-homology class, is parameterized by the scalars of the universal hypermultiplet,

which contains the type II dilaton. Since the 3-cycles involved in the discussion of the tree

level masses we considered can be resolved into 2-cycles, the universal hypermultiplet was

always “spectator” and therefore unlifted by the thermal effective potential. This fact is

actually consistent with our restriction to the case of a dilaton field sitting in a weak coupling

regime, throughout the process of moduli stabilization. In fact, in string-frame, the one-loop

correction to the vacuum energy is independent of the dilaton. In the Einstein frame, the

vacuum energy acquires a dilaton dressing, which is however absorbed in the overall T 4

factor (see e.g. Eq. (2.23)), where the temperature measured in this frame is defined as

T =
eφ

2⇡R0

. (4.10)

Therefore, it is only by taking into account higher loop corrections and non-perturbative

effects that the thermal effective potential would source the type II dilaton, though at strong

coupling. It may then be possible to study this regime in the dual heterotic picture, where

the hypermultiplet moduli spaceMH is exactly know, given the fact that Sh sits in a vector

multiplet. Working at heterotic weak coupling, the one-loop free energy evaluated on the

heterotic side may stabilize the hypermultiplet containing the type II dilaton.

In this paper, the attraction to a point P0 in M̃V ⇥M̃H where additional states become

massless at zero temperature is shown, provided the temperature is low enough compared to

Mmin, the lower bound of the non-vanishing masses at P0. Moreover, if at this point the h11

homology classes vanish, it follows that Mmin must be of order O(eφ/
p
↵0). Therefore, the
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massive contributions O(e−Mmin/T ) we neglected in the free energy (see e.g. Eq. (2.23)) are

exponentially suppressed, as soon as the universe exits the Hagedorn era and starts to cool.

At very early times, close to the Hagedorn temperature (T ' eφ/
p
↵0), the width of

the potential F as a function of the moduli is very large. This follows from the fact that

e−Ms/T (see Eq. (2.26)), where Ms is a moduli-dependent mass that vanishes at P0, is not

narrow when T is large. Therefore, even if initially the moduli fields sit at a point P very

far from the local minimum at P0, the well of the potential may contain both P and P0,

so that the system is dynamically attracted to a neighborhood of P0, where the analysis of

the present work starts to apply. Actually, the well of the effective potential may overlap

many CY moduli spaces, such as M,M 0,M 00, . . . connected by extremal transitions, so that

the dynamical mechanism of moduli stabilization may favor CY compactifications with large

Hodge numbers, for the local minima of F to be deep.

5 Summary and perspectives

In this paper, we address the question of moduli stabilization in the context of type II super-

string theory compactified on CY threefolds, once finite temperature is switched on. Even if

the worldsheet conformal field theory is interacting, finite temperature can be implemented

at the string level by a free orbifold action on the Euclidean time circle. This setup leads to

no-scale models [6], i.e. classical theories where supersymmetry is spontaneously broken in

flat Minkowski space. Therefore, flat directions of the classical potential exist, which can be

organized as product of special Kähler and quaternionic manifolds, as follows from N = 2

supersymmetry.

The above moduli spaces admit particular loci, where the internal manifold develops

singularities when 2-cycles or 3-cycles collapse, implying generically massive supermultiplets

to become massless. For instance in type IIA, BPS D2-branes on vanishing 2-cycles lead to

hypermultiplets charged under U(1) factors at conifold loci [12], or SU(N) enhanced gauge

symmetries coupled to g hypermultiplets at some “non-Abelian loci” [13]. We show that

at least in the weak coupling regime, quantum/thermal effects stabilize the moduli at such

particular points. The analysis is based on the one-loop low energy effective action, without

integrating out the above additional light states in the sense of Wilsonian effective action,
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in order to avoid any IR divergence. We first determine the classical part of the action,

which is a supergravity theory, whose gauging induces a potential we use to determine

the moduli-dependent classical masses of the extra light states. At one-loop, the stringy

Coleman-Weinberg effective potential depends on the classical masses and can be shown to

admit local minima precisely where the light fields become massless, when the temperature

is low enough.

The scalars that are stabilized are those belonging to the vector multiplets and hyper-

multiplets involved in the gauge theories geometrically engineered in the vicinities of the loci

where the internal CY is singular. From the perspective of their string realization, they can

either be non-perturbative fields, or perturbative one, in which case they are identified with

flat directions of the initial classical potential. Therefore, the mechanism stabilizes both

Kähler and complex structure moduli. In fact, the points in moduli space that are favored

are situated at the intersection of several loci, each of which being associated to singulari-

ties developed by the internal space. We have argued that in general, say in type IIA, the

entire Kähler moduli space is expected to be lifted, as well as the complex structure moduli

associated to 3-cycles which can be resolved into 2-cycles.

In this setup, the temperature T is actually the no-scale modulus, also lifted by the ther-

mal effective potential. However, instead of being stabilized (!) it acquires a run away behav-

ior, which from a cosmological point of view arises when the flat universe expands. In other

words, the model being non-supersymetric, time-translation is broken and the non-trivial

one-loop contribution to the vacuum energy back-reacts on the classically static universe,

which enters in quasi-static cosmological evolution. Homogenous and isotropic radiation

dominated eras exist, characterized by static moduli sitting at their minima. They are par-

ticular solutions among more general ones where the massive moduli oscillate with damping

around their minima. However, their “masses” happen to be proportional to the tempera-

ture, which is itself time-dependent and decreasing. As analyzed in detail in Ref. [11], the

energy density stored in their oscillations scales as T 4 rather than T 3, as is the case when

scalars have constant masses. As a result, moduli never dominate over radiation and the

cosmological moduli problem [17] does not occur.

At one time or another, switching on finite temperature in a theoretical setup is certainly

relevant to account for certain phases of the cosmological evolution of the universe. We stress
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that in the context of type II compactifications on CY threefolds, the effects described in

this work should not be omitted. In the same process, they lead to stabilizations of moduli

and determine the gauge group of the theory. In particular, the non-Abelian factors arise

precisely at the points of enhanced gauge theory the moduli are attracted to.

However, more work is required to extend our results to compactifications on generalized

CY spaces [33], including fluxes, branes and/or orientifold projections, leading to N = 1

backgrounds at finite temperature. Furthermore, for N = 1 to remain broken when the

temperature is low and recover an MSSM-like model, an additional source of spontaneous

breaking of supersymmetry should be implemented, whose origin may be attributed to in-

ternal fluxes. It would be interesting to extend to this context the results of Refs [18,26,34]

derived in orbifold models. In these works, it is shown that the time trajectories of the scale of

spontaneous supersymmetry breaking M(t) and temperature T (t) are attracted to a partic-

ular solution, where they are proportional to the inverse scale factor, M(t) / T (t) / 1/a(t).

Therefore, as the universe expands and cools, the hierarchy M ⌧ MPlanck is dynamically

generated.

Moreover, in models where the light spectrum is realistic enough, the Higgs mechanism

should take place when the temperature is about the electroweak scale Mew, in order to not

screen radiative corrections. In this case, the evolution of the moduli masses proportional to

T and M should halt at about Mew, the scale where M is stabilized by radiative corrections

[35, 36]. It is only at this stage that questions about dark matter may be addressed in this

setup.

Finally, toroidal type II compactifications in presence of “gravito-magnetic” fluxes lead to

thermal models, free of Hagedorn-like divergences [37]. The induced cosmological evolutions

include bouncing [38] or emerging universes [39], where no initial singularity is encountered,

while remaining in a perturbative regime. Therefore, it would be interesting to see if gravito-

magnetic fluxes can be implemented in (generalized) CY compactifications and possibly

lead to a theoretical framework able to account for both very early and very late times

cosmological eras.
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Appendix A: ’t Hooft symbols

We collect in this Appendix the definitions and useful properties of the ’t Hooft symbols.

They are denoted ⌘xuv and ⌘̄xuv (x = 1, 2, 3; u, v = 1, 2, 3, 4), are antisymmetric in u, v, and

satisfy

⌘xuv = ⌘̄xuv = ✏xuv (u, v = 1, 2, 3) , ⌘xu4 = −⌘̄xu4 = δxu, (A.1)

where ✏123 = 1. The indices u, v are equally up or down, since they are raised or lowered by

Kronecker symbols. In matrix form, the ’t Hooft symbols are written as

⌘1 =

0

B

B

@

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

1

C

C

A

, ⌘2 =

0

B

B

@

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

1

C

C

A

, ⌘3 =

0

B

B

@

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

1

C

C

A

,

⌘̄1 =

0

B

B

@

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

1

C

C

A

, ⌘̄2 =

0

B

B

@

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

1

C

C

A

, ⌘̄3 =

0

B

B

@

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

1

C

C

A

, (A.2)

and fulfill the relations

⌘x⌘y = −δxyI4 − ✏xyz⌘z , ⌘̄x⌘̄y = −δxyI4 − ✏xyz⌘̄z, (A.3)

which imply

tr ⌘x⌘y = tr ⌘̄x⌘̄y = −4δxy. (A.4)

Summing over x, they give

⌘xtu⌘
xv

w = δtvδuw − δtwδvu + ✏tu
v
w , ⌘̄xtu⌘̄

xv
w = δtvδuw − δtwδvu − ✏tuvw , (A.5)

where ✏1234 = 1.
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Appendix B: Canonical basis in hypergeometry

We first recall that the complex structures, metric and hyper-Kähler forms defined on a

vectorial space take simple forms when they are written in a canonical base. We then apply

these properties in the tangent plane at a given point P0 of a quaternionic (or hyper-Kähler)

manifold. Finally, we find the canonical form of the Killing vectors associated to Abelian

isometries that fix P0.

Theorem 1 : Let V be a 4n-dimensional real vector space supplied with a triplet of

complex structures Jx (x = 1, 2, 3), satisfying the quaternionic algebra

JxJy = −δxy I4n + ✏xyzJz. (B.1)

Let V ⇤ be the dual of V . Then, there always exists some basis eAu in V and its dual θAu

in V ⇤, where A = 1, . . . , n and u = 1, 2, 3, 4, such that the complex structures take the

following form, in terms of ’t Hooft symbols:

Jx = −δAB ηxuv eAu ⌦ θBv. (B.2)

Moreover, suppose V is endowed with a metric h, which is Hermitian under the three complex

structures Jx (x = 1, 2, 3),

8v, w 2 V : h(Jxv, Jxw) ⌘ h(v, w), (B.3)

and define the triplet of hyper-Kähler 2-forms Kx by

8v, w 2 V : Kx(v, w) ⌘ h(Jxv, w). (B.4)

Then, the basis {eAu} can always be chosen orthonormal,

h = δAB δuv θ
Au ⌦ θBv, (B.5)

and the hyper-Kähler 2-forms take the canonical form

Kx =
1

2
δAB η

x
uv θ

Au ^ θBv. (B.6)

Proof : Pick up any non-vanishing vector e14 2 V , and define e1x = −Jxe14. It is

straightforward to consider an arbitrary linear combination of these four vectors to show
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that they are linearly independent. Denote V1 = Span(e11, e12, e13, e14) and repeat the

previous steps by taking a non-vanishing e24 2 V \V1. Apply −Jx on it to define e2x,

and hence V2 = Span(e21, e22, e23, e24). After repeating this procedure n times, we obtain

V = V1⊕ · · · ⊕ Vn. It is easy to check that in the basis eAu (A = 1, . . . , n; u = 1, 2, 3, 4), the

Kähler forms Jx take the canonical form (B.2).

Next, defining θAu to be the dual basis of V ⇤, we write the metric on V as

h = hAu,Bv θ
Au ⌦ θBv, (B.7)

and introduce the alternative notation h
(AB)
uv = hAu,Bv. Then, the Hermitian conditions (B.3)

lead to

[ηx, h(AB)] = 0. (B.8)

This implies the real 4⇥ 4 matrix h(AB) can be written as

h(AB) = h(BA)T =

0

B

B

@

a(AB) b(AB) c(AB) d(AB)

−b(AB) a(AB) −d(AB) c(AB)

−c(AB) d(AB) a(AB) −b(AB)

−d(AB) −c(AB) b(AB) a(AB)

1

C

C

A

(B.9)

and satisfies

h(AB)h(BA) = λ(AB) I4 where λ(AB) = (a(AB))2 + (b(AB))2 + (c(AB))2 + (d(AB))2. (B.10)

In particular, h(AA) is diagonal with a(AA) > 0, for the metric h to be definite positive. Thus,

we can always rescale eAu to effectively set h(AA) = I4. Clearly, such a rescaling does not

spoil Eq. (B.2). Now, we introduce a scheme that removes the off-diagonal blocks of the

metric, h(AB) for A 6= B, while keeping the standard form of the complex structures. We

work this out block by block.

Take (A,B) = (1, 2), and exhibit the relevant part of the metric as

h = (θ1T , θ2T )

✓

I4 h(12)

h(21) I4

◆✓

θ1

θ2

◆

+ · · · . (B.11)

It is straightforward to see that under the change of dual basis of V ⇤ and V ,

✓

θ1

θ2

◆

=

✓

I4 −h(12)
04 I4

◆✓

θ01

θ02

◆

, (e1, e2) = (e01, e
0
2)

✓

I4 h(12)

04 I4

◆

, (B.12)
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the metric becomes

h = (θ01T , θ02T )

✓

I4 04
04 (1− λ(12))I4

◆✓

θ01

θ02

◆

+ · · · , (B.13)

while the canonical form of the complex structures (B.2) is conserved, as follows from Eq.

(B.8). Since Eq. (B.13) and the positive-definiteness of h imply λ(12) < 1, it is possible

to rescale the θ02u’s to absorb the factor (1 − λ(12)) in this equation. Again, this operation

conserves the form of the complex structures.

Then, we apply the same procedure to eliminate the block (A,B) = (1, 3). It is easily

seen that this procedure does not reintroduce a non-trivial bloc (1, 2). In general, one can

show by double recursion that for A = 1, . . . , n − 1 and B = A + 1, . . . , n, one can get rid

off the blocks h(AB). At the end of this process, the metric is diagonalized, h = θAuθAu, and

Eq. (B.2) is valid. In this basis, the components of the hyper-Kähler forms are

Kx
Au,Bv = hBv,CwJ

xCw
Au = δAB η

x
uv. (B.14)

Theorem 2 : LetM be a quaternionic (or hyperKähler ) manifold of dimension 4n, and

any given point P0 2 M. Then, there exists some local coordinates qAu (A = 1, . . . , n; u =

1, 2, 3, 4) such that qAu
∣

∣

P0
= 0 and the complex structures Jx, the metric h and the hyper-

Kähler forms Kx at P0 are:

Jx|P0
= −ηxuv

⇣ ∂

∂qAu
⌦ dqAv

⌘

∣

∣

∣

∣

P0

, (B.15)

h|P0
=

(

dqAudqAu
)∣

∣

P0
, (B.16)

Kx|P0
=

1

2
ηxuv

(

dqAu ^ dqAv
)∣

∣

P0
. (B.17)

Proof : Consider a chart {U , qΛ}, where U is an open neighborhood of P0 and qΛ some

coordinate system in U . Let qΛ0 be the coordinates of P0. Applying Theorem 1 to the tangent

plane at any point P 2 U , there exists a vielbein θAu and its dual eAu in U , such that

Jx = −ηxuv eAu ⌦ θAv, h = θAu ⌦ θAu, Kx =
1

2
ηxuv θ

Au ^ θAv. (B.18)

We can write θAu = UAu
Λ dq

Λ and eAu = U−1Λ
Au

∂
∂qΛ

, where the matrix
(

UAu
Λ

)

is invertible

and depends smoothly on P 2 U . The new coordinates in U

qAu := UAu
Λ

∣

∣

P0
(qΛ − qΛ0 ) (B.19)
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satisfy Eqs (B.15)–(B.17) and vanish at P0.

Abelian isometries : In order to describe the charged hypermultiplets sector of an

Abelian gauge theory, we suppose from now on the manifoldM in Theorem 2 admits U(1)S

isometries with fixed point P0. Our aim is to find a canonical form for the Killing vectors at

P0.

We know from the first part of Theorem 1 (see Eqs (B.1) and (B.2)) applied to the

tangent plane at P0 that there is a system of coordinates qAu in the neighborhood U of P0

such that (B.15) is satisfied an qAu
∣

∣

P0
= 0. We are interested in metrics on M admitting

U(1)S isometries, whose Killing vectors have components kAu
i (i = 1, . . . , S) admitting Taylor

expansions of the form

kAu
i = QAu

i tuv q
Au +O(q2). (B.20)

By construction, P0 is fixed under the action of U(1)S. Moreover, the isometries do not mix

the components of different hypermultiplets. In other words, the quadruplet (qA1, qA2, qA3, qA4)

has a well defined charge QA
i under the ith U(1). The U(1) generator tuv in Eq. (B.20) is

determined by the convention to define complex numbers in the affine plane at P0. For in-

stance, the multiplication by the imaginary number i is represented by J3, when we combine

the qAu’s into complex numbers qA1 + iqA2 and qA3 + iqA4. In this case, the infinitesimal

U(1)S transformations

ei✏
iQA

i (qA1 + iqA2) = (qA1 + iqA2) + ✏iQA
i (−qA1 + iqA1) + · · · ,

e−i✏iQA
i (qA3 + iqA4) = (qA3 + iqA4) + ✏iQA

i (q
A4 − iqA3) + · · · , (B.21)

we want to represent with δqAu = ✏ikAu
i imply t = −⌘̄3.

A question then arises. Is the first order form of the Killing vector (B.20) conserved,

when we diagonalize h, while keeping the canonical form of the complex structures Jx at

P0? The answer to this question is yes, due to the fact that the metric h must satisfy Killing

equation

hAu,Cw
@kCwi
@qBv

+ hBv,Cw
@kCwi
@qAu

= 0, (B.22)

which at order zero in qAu means

hAu,Bw|P0
QB

i t
u
v + hBv,Aw|P0

QA
i t

w
u = 0. (B.23)
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To diagonalize the hermitian metric h without spoiling the form of Eq. (B.15), we saw in

the proof of Theorem 1 that we can set the blocks h(AA) = I4 and eliminate successively all

non-diagonal 4⇥4 blocks h(AB) (A 6= B) of the metric by performing a sequence of changes of

basis. These changes of bases for blocks h(AA) are only rescalings of the qAu’s which certainly

conserve the form of the first order expansion of the Killing vectors kCwi @Cw. For the blocks

h(AB) with A < B, they are of the form

✓

qA

qB

◆

=

✓

I4 −h(AB)
∣

∣

P0

04 I4

◆✓

q0A

q0B

◆

,
⇣ @

@qA
,
@

@qB

⌘

=
⇣ @

@q0A
,
@

@q0A

⌘

✓

I4 h(AB)
∣

∣

P0

04 I4

◆

,

(B.24)

which conserve the first order form of kCwi @Cw as well, as can be checked using Eq. (B.23).

To summarize, we have shown that there exists a system of coordinates qAu onM such that

qAu
∣

∣

P0
= 0 and Eqs (B.15)–(B.17) and (B.20) are statisfied.

Appendix C

Theorem 3 : LetM be a quaternionic manifold of dimension 4n and !x the connection

of the associated SU(2) principal bundle. The fiber bundle overM, whose fibers are triplets

of SU(2), does not admit non-trivial local parallel sections. In other words, the equation

rSU(2)Lx ⌘ dLx + ✏xyz!yLz = 0 (C.1)

in an open set U ofM has only the solution Lx = 0.

Proof : We carry out a point-wise proof. For any given point P0 2 U , we consider the

coordinate system qAu of Theorem 2 and write Eq. (C.1) as

8P 2 U :
@Lx

@qAu
+ ✏xyz!y

AuL
z = 0. (C.2)

Taking the partial derivative @/@qBv and antisymmetrizing in (Au,Bv) yields

✏xyzΩy
Au,BvL

z = 0, (C.3)

where Ωx = d!x + 1
2
✏xyz!y ^ !z is the curvature 2-form of the SU(2)-bundle. Since M is

quaternionic, we have Ωx = λKx, where λ is a non-vanishing constant. Given the fact that

Kx|P0
satisfies Eq. (B.17), we obtain ✏xyz⌘yuv L

z|P0
= 0. Multiplying with ⌘xwu and summing
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over x and u, Eq. (A.3) leads to ⌘zwvL
z|P0

= 0. Multiplying with ⌘xvw and summing over

w and v, our desired result Lx|P0
= 0 is obtained using Eq. (A.4).
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