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Introduction

Cells, by definition, are distinct from their environment. All the cells we know are separated
from the outside by at least a lipid bilayer, sometimes supplemented by a cell wall or an
extracellular matrix. Obviously, the chemical and physical properties of the separation
will dictate how the cell will respond to its environment. We will focus on Eukaryotic cells
("ǫυ": true, "καρυoν" : cell), the definition of which is the existence of inner compartments
(as illustrated in figure 1). Eukaryotic cells are usually separated from their environment
by a single lipid bilayer. The inner compartments (called organelles) are themselves are
separated from their outside (the inside of the cell, called cytoplasm) by a lipid membrane.
Just as each cell type has a specific function, each organelle has a very specific in the
physiology of the cell.

The cell, and its compartments, have to exchange molecules with their environment.
First, the sinews of war, energy has to be taken in, commonly by importing reduced
molecules (e.g. sugars) which will yield energy after oxidation. Many other molecules have
of course to be taken in to build the proteins, lipids, sugars, DNA, and all the components
of a living cell. But the cells are dynamical systems that respond to their environment,
and signals from the outside must also be integrated. In particular, chemical signals have
to be either detected by receptors on the cell membrane, or taken into the cell. The other
way round, molecules can be exported by the cell, for instance to communicate with other
cells. The compartments in the cell also have to export their products to various locations
in the cell. Because of the specialization of cells and organelles, each organelle and each
cell type will exchange different molecules with its environment, and this is made possible
by the difference in their interface with their environment, which is the lipid membrane.

We can define the notion of membrane identity : the identity of a membrane is the sum
of its physical and chemical properties that are accessible to its environment. Interestingly,
each organelle in a cell has a distinct identity, and different cells have different identities, i.e.
the compositions of their plasma membrane are different from one another, allowing specific
interactions with the environment. Moreover, molecules are often exchanged between
organelles, and exported from the cell, by the means of membrane-based carriers, vesicles
and tubules, which also have specific identities, allowing them to carry out a target-specific
transport. Those vesicles are transported in the cell along microtubules, a component of
the cytoskeleton spanning the whole cytoplasm. The microtubules are therefore often
called the "highways" of cellular transport. In this thesis, we will rather focus of the role
of membranes in transport, though the study of the microtubular network offers exiting
perspectives.

We will be especially interested in one compartment, the Golgi apparatus (G.A.), at
the center cellular trafficking. Proteins, and many lipids, are synthesized in the Endo-
plasmic Reticulum (E.R.), but are usually not synthesized in their final form, the one
which will enable them to fulfill their function. Most have to be matured, i.e. chemically
transformed (e.g. by modification of the head groups of lipids, and addition or deletion
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1. Nucleolus

2. Nucleus

3. Ribosome

4. Vesicle

5. Rough Endoplasmic
Reticulum

6. Golgi Apparatus

7. Cytoskeleton

8. Smooth Endoplasmic
Reticulum

9. Mitochondria

10. Vacuole

11. Cytoplasm

12. Lysosome

13. Centriole

Figure 1: Diagram of a typical Eukaryote cell, of size ≈ 10µm. The cytoskeleton actually
spans through the whole cells, and vesicles are present throughout the cytoplasm, and
particularly along microtubules, a component of the cytoskeleton.

of glycans in proteins), and sometimes physically transformed (by an accurate folding in
the case of proteins). While folding usually takes place in the E.R., many chemical steps
of maturation take place in the Golgi Apparatus. In mammals, and most upper Eukary-
otes, the Golgi apparatus is a stack of five to seven sub-compartments, flat disc-shaped
vesicles called cisternae, as illustrated in figure 1. Each cisterna has a radius of the order
of 500 nanometers (nm), a thickness of the order of 30nm, and is constantly exchanging
molecules with its neighbors, by direct tubular connections or through vesicular transport.
In striking contrast, the Golgi apparatus of Yeast and some lower Eukaryotes is unstacked,
and is constituted of rather autonomous cisternae disseminated throughout the cell.

The stacked structure of the Golgi apparatus has been shown to be very robust, by
experiments in which the microtubule network is destroyed by nocodazole (a drug which
prevents microtubule polymerization). After disruption of the microtubule network, the
Golgi apparatus is dispersed throughout the cell. Golgi apparati are then formed de novo,
and keep the same structure as the Golgi apparatus in the absence of nocodazole, although
with smaller lateral dimensions. Therefore, the Golgi apparatus can be seen as a self-
organizing organelle, which builds up to its known stacked structure from the flux exported
by the ER. Such self-organization is a beautiful illustration of the complex interplays
between the structural and the dynamical properties in biological systems.

In this thesis, we will first study the entry of pathogens such as viruses or toxins in
cells. We showed how the chemical and physical properties of the cell membrane, i.e. its
identity, can control the entry of molecules or bodies by controlling their adhesion and
aggregation on the membrane. It is a first illustration on the role of membrane identity of
transport.

In the second chapter, we will focus on transport in the Golgi apparatus. We will
see that by an adequate formulation of transport in the Golgi, we can give an accurate
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interpretation of existing experimental data. Once again, we will realize that differences
of identity between the cisternae can drive anterograde or retrograde transport, and allow
the localization of molecules in one cisterna of the Golgi stack.

In the third chapter of this thesis we will consider the maintenance of identity in
organelles. Though organelles are constantly exchanging molecules with the rest of the
cell, they manage to keep their own identity. We will see that we can write general
requirements on the transport processes to enable the heterogeneity of compartments. We
will show that this requirements may have dramatic functional consequences on transport.
There is hence a feedback between transport, which maintain identity, and identity, which
control transport.

Eventually, as another illustration of the consequences of membrane identity, we will
study the building of new compartments in the cell. We will consider one membrane
compartment, which we can see as the precursor of the Golgi apparatus, in which the
membrane lipids undergo a chemical reaction and are transformed into another lipid species
(as occurs in the Golgi apparatus). There can be a competition between the kinetics
of phase separation and the kinetics of the chemical reaction, and we will see how this
competition may control the structure of the compartment. It is an illustration of self-
organization and shows how membrane identity (the lipid composition) can control the
structure of an organelle.





Chapter 1

Lipid receptors mediated pathogenic

invasion.

Introduction

As mentioned in the introduction, the cell membrane acts as an interface between the
cell and its outside. It has however to be selectively permeable, so as to really separate
the cell from the outside and yet to enable the cell to exchange with its environment :
the cell has to intake molecules (whether for its metabolism, or as signals), and also to
export various molecules. While small molecules (water, salts, sugars) can go through the
membrane either using the permeability of the membrane bilayer, or by using channels,
this is not possible for larger bodies (macromolecular aggregates, pathogens such as viruses
for instance). The processes by which large molecules or bodies are engulfed in the cell
are regrouped under the term endocytosis. Endocytosis has been abundantly studied (see
for instance [1, 2]), and occurs by forming large membrane invaginations which eventually
close on themselves. This results in a vesicle, called endosome, entering the cell.

There are various biochemical pathways to the formation of endosomes. They are
usually described like a stepwise process, the prototype of which is the clathrin-mediated
endocytosis, illustrated in figure 1.1 . The steps of this pathway are [3] :

• Receptors on the cell membrane bind to ligands outside the cell

• The receptors cause the local recruiting of clathrin proteins

• Clathrin deforms the membrane into pits of radius of order 100 nm.

• The invaginations are pinched off and enter the cell

This mechanism is energy-dependent as the disassembly of clathrin shells requires the
consumption of ATP [4]. This pathway enables the cell to intake molecules from the
environment, with selectivity and efficiency, as the molecules are recognized by specific
receptors. As many pathways in the cell, it can be highjacked by pathogens such as
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Figure 1.1: Electron microscopy images of clathrin endocytosis. The radius of a clathrin-coated
vesicle is 150nm. Taken from M.M Perry and A.B. Gilbert, 1979 [9].

viruses [5, 6], and even bacteria [7]. More generally, endocytosis is the gateway to the cell
for invasive pathogens [8].

It was shown that this clathrin pathway is not the only infection pathway for cells :
viruses and toxins may also enter the cell by creating membrane invaginations if clathrin is
knocked out [10] . It has been shown that toxins, such as the Shiga toxin (responsible for
dysentery, and found in the tragically famous enterohemorrhagic E. coli), and viruses (such
as SV40 virus, a polyomavirus known to cause tumors) use this clathrin-free pathway. In
fact, they both invade cells after interaction with lipid receptors : GM1 for SV40 [11] and
Gb3 for the Shiga toxin [12].

It was observed [13] that the formation of protein-enriched membrane tubules (of radius
≈ 25nm) throughout the cell (illustrated in fig. 1.2) was highly correlated to cell invasion.
Interestingly, tubule formation and cell infection did not require energy input (by hydrolysis
of ATP molecules). Tubules were actually much more numerous in the absence of ATP
hydrolysis. This lead to the proposal that membrane tubulation results from passive
aggregation of proteins adsorbed on the cell membrane, while active mechanisms played a
role in severing the tubules, which enable them to enter the cell. We therefore assumed that
tubulation was the first step towards pathogen entry, and used the theory of membrane
mechanics to study this tubulation.

The adhesion of viruses on the membrane has been studied theoretically [14, 15, 16],
and numerically [17], though the formation of tubules of small radius was seldom consid-
ered. In those studies, the tension of the membrane was not always considered, and the
presence of lipid receptors in the membrane was not taken into account. Recent experi-
ments [18] showed however that the membrane tension and the presence of lipid receptor
were crucial factors to the formation of tubules and the infection of cells. Therefore,
the precise mechanisms of tubule formation by those pathogens were still unknown. We
focused on the SV40 virus because our collaborators could change various experimental
parameters. For instance they could either work with full grown viral capsids depleted of
DNA, called virus-like particles (VLPs), or with the unit building block of those capsids,
protein pentamers of a much smaller size. They could also tune the physical properties of
the receptors, by changing the length or the saturation of the acyl chain. Moreover, they
could work on living cells to study infection or on giant vesicles of better-defined physical
properties to study the membrane deformations induced by pentamers and VLPs.
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Figure 1.2: Electron microscopy images of (left) adsorbed viruses on the membrane and (right)
tubules formed by viruses in a cell. In both pictures, individual viruses can be seen
(arrowheads). Scale bar : 200 nm.

By comparing experimental results to membrane physics theory, we were able to under-
stand the mechanisms of tubule formation by such pathogens. We showed that the physics
of tubulation is dominated by the competition between the tension of the membrane and
a line energy due to the aggregation of lipid receptors beneath the adsorbed particles.
Therefore, in contrast with clathrin-mediated endocytosis, tubulation does not require the
recruitment of membrane proteins, but can be studied as a temperature-activated process,
using mostly equilibrium thermodynamics tools.
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1.1 Introduction to membrane Physics

To know if VLPs and pentamers may adsorb on the membrane and form tubules, allowing
the invasion of the cell, we need to study the physics of membranes. In this section, we will
describe some of the various energies involved in membrane physics. Let us first consider
the energies associated with the mechanical deformations (bending and stretching) of the
membrane. Then, we will consider the energies associated with the composition of the
membrane.

1.1.1 Membrane Mechanics

The standard tools for studying membrane mechanics were introduced by Helfrich [19].
When deforming a membrane, there are two main contributions in the energies :

• Hκ The bending of the membrane

• Hγ The tension of the membrane

The bending energies reads :

Hκ =

∫

S

[

1

2
κ(C1 + C2 − C0)

2 + κGC1C2

]

d2s (1.1)

In which C1 and C2 are two principal curvatures of the surface, C0 is the spontaneous
curvature of the surface, κ is the bending modulus and κG is the elastic modulus of the
Gaussian curvature. In a uniform membrane, for any change in the membrane shape
conserving the topology of the membrane, the Gaussian contribution in this energy does
not change. Therefore, we will usually consider only the first term of this Hamiltonian.

There is another energetic penalty when deforming a membrane due to the tension γ
of the membrane. It reads :

Hγ =

∫

S
γds (1.2)

This term expresses the energy cost of increasing the membrane surface area. In an infinite
membrane, γ does not depend on the deformation, yielding an energy penalty ∆E = γ∆S
after an increase ∆S of the surface area. In a finite membrane, γ however depends on
the stretching of the membrane. It depends on a combination of molecular and entropic
elasticity [20, 21]. In the following, we will work at constant tension, which is reasonable
if the deformations are much smaller than the membrane area.

Let us consider a lightly deformed membrane : its shape can be represented by a height
h as a function of planar coordinates (x, y) = r. This is called the Monge representation.
In the limit of small deformations (i.e. small values of ∇h), the energy Hκ +Hβ can be
expanded in powers of ∇h and ∆h. The Hamiltonian then writes

Hκ,γ ≈
∫

S

1

2

[

κ(∇2h)2 + γ(∇h)2
]

d2r (1.3)
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S’

R

s

Figure 1.3: Cartoon of a partial bud (greed) on a membrane (red). S′ is the total surface area
of the bud while s is the surface actually occupied by the bud on the membrane and
R is the radius of curvature of the bud.

Using the Euler-Lagrange equation on Hκ,γ let a characteristic length scale λ =
√

κ/γ
appear. Deformations on scales larger than λ will be dominated by the effect of γ, whereas
deformations at smaller scales will yield a penalty dominated by κ. Using values presented
in section 1.6 (κ ∼ 20kBT , γ = 10−6 − 10−3), we find 5nm ≤ λ ≤ 300nm.

1.1.2 Application : the cost of budding

Let us now use those energies to compute how much energy is required to form a bud on
a flat membrane, as illustrated in figure 1.3. Let us consider a partial bud of radius of
curvature R, which occupies a surface s = πr2 on the membrane. Simple geometry shows
that s can be expressed as a function of the surface S′ of the partial bud :

s = S′
(

1− S′

4πR2

)

(1.4)

From then on, it can be shown easily that the total variation in surface area ∆S = S′ − s
is :

∆S =
S′2

4πR2
(1.5)

Using equations 1.1, 1.2, we find that the variation of energy ∆Eloc upon forming a bud
is :

∆Eloc = γ
S′2

4πR2
+

1

2
κS′

(

2

R2
− 1

R0

)2

− κ
s

2R2
0

(1.6)

in which R0 is the spontaneous curvature of the membrane. However, there cannot be a
discrete boundary between the bud and the flat membrane, otherwise the local curvature
would be infinite and the bending energy (Eq. 1.1) would diverge. Therefore, there must
be a region around the bud where the membrane is deformed, as shown in figure 1.4. This
region is called the tail, and also contributes in the energy.

This contribution has been studied theoretically [15, 16, 22], and an analytical expres-
sion can be found in the limit of small deformations, using Monge representation. We
recall the usual Helfrich Hamiltonian in Monge representation (equation 1.3) :

Hκ,γ ≈
∫

Stail

1

2

[

κ(∇2h)2 + γ(∇h)2
]

d2r (1.7)
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S’

R

tail

Figure 1.4: Schematic cutaway of a partial bud (in green) of surface S′ and radius of curvature
1/R on a membrane (red). The angle the bud makes with the membrane plane is
called θ. Because of the bending energy, the bud has to be connected to the rest of
the membrane by a region of finite curvature. Hence, there must exist a tail around
the bud, which will also contribute to the deformation energy. In the case of a well-
formed bud (θ > π/2), this energy includes the cost of a zone of high curvature at
the neck of the bud.

As mentioned in section 1.1.1, the minimization of this energy gives a typical length
λ =

√

κ
γ , of the order of 10− 300nm in typical membranes. We can define a contact angle

θ, illustrated in figure 1.4. In the limit θ ≪ 1, we find :

Etail(S
′) ≈ πκ

√
S′

λ
θ2
K0(

√
S′

λ )

K1(
√
S′

λ )
(1.8)

Where K0 and K1 are modified Bessel functions of the second kind. Of course θ is known
when S′ and R are known : with Ω being the solid angle corresponding to S′, it is easy to
see that cos θ = 1 − Ω/2π, therefore cos θ = 1 − S′

2πR2 , and θ ≈ S′

πR2 . For small domains
S′ << λ, using this expression for θ in equation 1.8, we find :

Etail(S
′) ≈ γ

S′2

4πR2
(1.9)

Which is of the same order as the membrane tension energy of the bud itself (as long as
θ ≪ 1).

For large angles (i.e. well formed buds) the analytical expression for the energy is
much harder to calculate. However, we can find an order of magnitude for the tail energy.
We know that this deformation takes place on a length scale λ, since larger deformations
are prevented by γ and smaller deformations are prevented by κ. Therefore, we expect
a surface of deformation around the bud of order Stail ≈

√
sλ. Because the tail energy

results in the minimization of the bending energy and the surface tension energy, both
terms should contribute equally and the tail energy can be expected to scale as :

Etail ∼ γ
√
sλ =

√
sκγ (1.10)

For still larger angles (i.e. complete buds, as cartooned in figure 1.1.4), the tail energy
will however not tend to zero, there will exist a region of high curvature at the neck of the
bud. As we discussed in this section, deformations on scales smaller than λ are prevented
by κ whereas deformation at larger scales are prevented by γ. Therefore, we can assume
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R’

r

Figure 1.5: Cartoon of the budding (right) of an initially flat circular domain of radius R′ and
surface S′ = 4πR′2 (left). Line tension σ may cause the domain to bud, up to a
complete bud in certain conditions, the neck of which has a radius r much smaller
than R′.

the minimum length of the bud interface to be of the order of λ, and we find :

Etail ∼ γλ2 ∼ κ (1.11)

Therefore, the tail energy when forming a bud scales like the bending energy of the bud
itself.

In biological membranes, membrane buds often have a different lipid composition than
the rest of the membrane. This includes an additional contribution to the bud energy. More
generally, energetic terms due to membrane composition have to be taken into account.

1.1.3 Composition energy and line tension

One can generically expect the existence of gradients of concentration in the membrane
to be penalized energetically [23]. We will describe this contribution in more details in
chapter 4. As of now, let us assume that domains of distinct composition have an energy
proportional to the length L of their interface (in the case of well-defined domains) and
hence the energy penalty to the existence of a domain writes approximately:

Hσ = σL (1.12)

in which L is the contour length of the domain, and σ is called line tension and depends
on the lateral energy between the lipid molecules. Its order of magnitude is typically
σ ∼ 0.1kBT/nm [24]. Since we will be considering the aggregation of receptors beneath a
virus or a protein, we must mention the entropy cost in aggregating isolated lipid molecules.
We will use a perfect gas approximation for the entropy [25], and therefore, the cost to
aggregating N lipid molecules, assuming the overall density φR is unchanged (i.e. there is
a reservoir of lipids), reads :

∆SN = −kN log φR (1.13)

1.1.4 An illustration : line tension induced budding

Let us consider a flat membrane with a domain of distinct chemical composition from the
membrane bulk. The interface energy is proportional to the contour length L of the domain,
and the domain will tend to be circular as this shape minimizes L. If we now allow the
membrane to bend, the line energy is minimal when the domain forms a bud (represented
in figure 1.5), though as we mentioned in section 1.1.2 , this has a cost in bending energy
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and in surface tension energy. For a circular domain of radius R′, the energy gain in
forming a complete spherical bud is of order Eσ ∼ 2πσR′, whereas membrane deformation
penalty is of order Eκ ∼ 8πκ for the membrane bending energy (assuming a spherical
shape for the bud), Eγ ∼ 4πγR′2 for the surface tension energy, and a tail energy Etail at
the neck of the bud. While it is not easy to compute the neck energy, we estimated it to
scale like κ in section 1.1.2 :

Etail ∝ γλ2 ∼ κ (1.14)

This energy does not depend on the domain size, and just adds to the bending energy.
Therefore, this energy has to be taken into account. It could be for instance modeled by
an effective bending modulus κ′ > κ. We can now compare the line tension energy Eσ to
the energy of membrane deformation : E′

κ + Eγ . We find that a complete spherical bud,
assuming R′ ≫ λ, will form if :

4
κ′

σ
< R′ < 2

σ

γ
(1.15)

Using typical values for the parameters (i.e. κ′ ∼ κ ∼ 10kBT , σ ∼ 0.4pN ∼ 0.1kBTnm
−1,

γ ∼ 10−6 − 10−3J.m−2, as indicated in section 1.6) we find that budding may occur if :

400nm < R′ < 2.10−3 − 2µm (1.16)

Since λ ≈ 10− 300nm, the approximation R > λ is verified for typical budding conditions
(Eq. 1.16) and the equation 1.15 will usually be valid. This is however a rough estimate in
the case of a full spherical bud. A more complete and exact phase diagram can be obtained
as shown in [26] and [27], including the possibility for incomplete or non-spherical buds.
The simplified analysis presented here will however be sufficient for most of the work
presented in this thesis, and we will merely use the scaling of equation 1.15.

We can now use the tools from membrane physics to study the adsorption of viruses and
toxins on the membrane of cells or vesicles in order to understand under which conditions
particles can adsorb on membrane, and the mechanisms with which adsorbed particles
may aggregate into tubules.
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Particle

Membrane

Receptors

Figure 1.6: Cartoon of the adsorption (bottom) of a particle (for instance, a VLP) initially in
the bulk (top). Adsorption involves the adhesion of the particles to lipid receptors
(green), that regroup below the particle.

1.2 Adsorption of a particle on a membrane

In this chapter, we are interested in the aggregation of adsorbed particles, either full
grown viruses (or virus-like particles, VLPs, i.e. viral capsids depleted of their genomes),
or pentamers of the proteins constituting the viral capsids. In our case of interest, the
VLPs are spheroid aggregates of 72 pentamers. The radius of each pentamer is about 5
nanometers, and the radius of a VLPs is 25 nm [28].

To understand their aggregation, we first need to understand their adsorption on the
membrane, cartooned in figure 1.6. The pentamers adsorb on the membrane by interacting
with specific lipids, called GM1. Each pentamer recruits up to five GM1, hence generating
a local accumulation of the lipid receptors. Let us call N the number of GM1 molecules
recruited by one particle (pentamer or VLP). Because of the long acyl chains of those
lipids, the membrane is very ordered locally beneath the particles, and an interface forms
with the membrane bulk, yielding a line tension σ. Let us call ǫ the energy gained when
a lipid is recruited (which includes a term of interaction with the particle and a term due
to the interaction with the surrounding membrane environment).

The variation of the compositional free energy upon aggregating N lipids under a
particle is therefore (assuming N to be much smaller than the total number of receptors
in the membrane):

∆Fσ(N) = 2πσr(N)−N (ǫ+ kT log φR) (1.17)

in which r(N) is the radius of the domain interface (depending upon the domain geometry).
Since the interface length 2πr of N aggregated lipids is smaller than the interface length
of N isolated lipids, we have 2πσr(N)−Nǫ < 0. Therefore only the entropy may prevent
the aggregation of the lipids, and lipids will aggregate under a particle if φR > e−ǫ/k

B
T .

Alternatively, we may write the variation of free energy as a function of the adsorbed
surface S′ :

∆Fσ(S
′) = 2πσr(S′)− S′ω (1.18)
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in which ω is the energy per unit surface of adhesion, i.e. (ǫ+kBT log φR) multiplied by the
number of recruited lipids per unit surface. In the case of SV40 adhesion to membranes
with GM1 lipids, ω is typically of the order of 10−3J.m−2 [29].

However, other energies have to be taken into account. The compaction of the lipid
heads beneath the particles [18] can induce a spontaneous curvature in the membrane.
This curvature can cause the bending of the membrane, which will give rise to an energetic
contribution of the surface tension (because there is a local increase of membrane surface
compared to a flat membrane). Moreover, because the membrane shape is continuous,
there must be a contribution in bending energy and surface tension energy around the
adsorbed particle, which we mentioned, the tail energy (see fig 1.4).

Therefore, we must compute the total membrane energy (including membrane me-
chanics and composition) to know whether a particle will adsorb on the membrane. Let us
consider the adhesion of one partially spherical particle of radius R, with a contact surface
area s with the membrane, with an adhesive energy per surface area w. We call 1/R0

the spontaneous curvature of the underlying membrane due to the aggregation of the lipid
receptors below the particle. We regroup all the contributions from the membrane below
the particle in the term Floc. The situation is described in fig. 1.6.

The variation of free energy associated with such an adhesion reads :

∆F 1
ad(S

′, R,R0) = ∆F 1
loc(S

′, R,R0) + E1
tail(S

′, R,R0) (1.19)

We assume the membrane to have no spontaneous curvature outside of the area of
adsorption. On the surface of adsorption s, the membrane has a spontaneous curvature
R0, that may or may not correspond to R. Let us detail F 1

loc, using equation 1.6 and
equation 1.18 :

∆F 1
loc(S

′, R,R0) = 2πrσ − S′

(

ω − 1

2
κ

(

1

R
− 1

R0

)2

− γ
S′

4πR2

)

(1.20)

We may define ω̄ such as :

ω̄ = ω − 1

2
κ

(

1

R
− 1

R0

)2

(1.21)

And therefore :

∆F 1
ad(S

′, R,R0) = 2πrσ − S′ω̄ + γ
S′2

4πR2
+ E1

tail(S
′, R,R0) (1.22)

We now need to know the sign of ∆F 1
adh as a function of S′,R and R0 to know whether

a particle will adsorb. We can see from equation 1.21 that the membrane bending cost
in ω̄ plays no role as long as R ≫

√

κ/ω ∼ 1nm. Since we are considering membrane
curvatures of the order of 50nm, we find ω̄ ∼ ω. We know that r has

√

S′/π for upper
bound, and therefore 2πrσ − S′ω̄ < 0 as long as S′ > (σ/ω)2, i.e. as long as S′ > 1nm2.

Therefore, the term 2πrσ− S′ω̄ always favors adsorption in the case of monomers and
viruses and decreases linearly with the adsorbed surface S′. We mentioned earlier that
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in the limit of small deformations, the tail energy grows like S′2 and is equal to the local
surface tension energy beneath the particle :

E1
tail(S

′, R,R0) = γ
S′2

4πR2
(1.23)

By comparing the linear (proportional to ω̄) and the quadratic term (due to the surface
tension energy beneath the particle, and E1

tail), we find that, in the small deformation
regime there exists a optimal adhesion surface area S∗ that minimizes the total adhesion
energy. Using the small deformations approximation for E1

tail, we find :

S∗ ≈ πR2 ω̄

2γ
(1.24)

The adsorption of a particle is therefore the result of a competition between the effective
adhesion energy per surface ω̄ and the surface tension. Assuming R to be the radius of a
virus, and using the numerical values of the parameters mentioned in appendix, we find
that S∗ is of the order of the size of a virus, or larger. Because the approximations we used
are valid only for small deformations, we may only conclude that pentamers will be fully
adsorbed on the membrane. Though we cannot with certainty conclude that the viruses
will be fully adsorbed (that would be out of the range of validity of our approximations),
we still have a good indication that viruses should be at least partially wrapped by the
membrane. This was confirmed experimentally, as shown in figure 1.2. More precise
modeling [16] shows that as long as ω > ω∗ = 2κ/R2, the wrapping of a virus is controlled
by the ratio 2ω/γ. Using κ ∼ 20kBT and R ≈ 25nm, we find ω∗ < 10−4J.m−2 i.e. ω ≫ ω∗.
Therefore, VLPs will be strongly largely wrapped if ω > γ, i.e. if γ ≤ 10−3J.m−2.

Now we understand under which conditions pentamers and viruses will be well ad-
sorbed, we need to know whether they will form tubules, which we assume to be the first
step towards the infection of the cell.
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Figure 1.7: Schematic of the aggregation of (left) small particles such as capsid proteins pen-
tamers and (right) large particles such as VLPs. The tail energy is concentrated at
the neck of the tube and its apex.

1.3 Formation of aggregates

Using the formalism we previously described, we can study particle aggregation on the
membrane. There are two conditions for observing membrane invagination by aggregation
of monomers: it has to be energetically favorable, and it has to be done in a reasonable
time (i.e. the energy barrier must be small enough). This is why we need to study the
energetics and dynamics of formation of aggregates of such particles on the membrane.

1.3.1 General considerations

As shown in [30], the aggregation of adsorbed particles on a membrane can be described as
a diffusion on a free energy landscape [31]. Let us call ∆F (l) the difference in free energy
between an aggregate of l particles and l isolated particles. Tubulation may be observed
experimentally under two conditions :

• Forming tubules must be energetically favorable (∃ l > 1 , ∆F (l) < 0).

• The time to form such tubules must be within experimental limits

In our case, the free energy difference writes, with φ1 the density of adsorbed particles on
the membrane :

∆F (l) = Etail(l) + Floc(l)− l
[

E1
tail + F 1

loc − kBT log φ1
]

(1.25)

For aggregates, Etail(l > 1) and Floc(l > 1) differ widely from E1
tail and F 1

loc, because the
aggregates are not circular, but may take more complex shapes to minimize their energy.
We will see later how to compute these energies in some simple cases. In general, as
schematized in fig. 1.8, the energy will grow for small l (because of the formation of a
cap) and decrease at large l if tubules are energetically favorable, or keep on increasing
otherwise [30].
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Figure 1.8: Expected behavior of the free energy of membrane tubules formed by aggregation
of adsorbed particles. l0 is the number of particles required to form a tubule that
will grow, and ∆Fc is the corresponding variation in free energy.

Let us now consider the dynamics of aggregation. We call n(l)S the number of aggre-
gates of size l, and j the aggregation current, such as :

∂tn(l) = −∂lj(l) (1.26)

j(l) = −kn1
(

∂ln(l) +
n(l)

kT
∂l∆F (l)

)

(1.27)

Let us call A the surface area of the membrane. 1/k = A/D is a typical diffusion time.
We can write the flux in equation 1.27 in a slightly different way :

j(l) = −k′φ1
(

∂ln(l) +
n(l)

kT
∂l∆F (l)

)

(1.28)

in which k′ = D/S′. We can give a rough estimate of k′. In the case of pentamers,
S′ ≈ 25πnm2. With D ≃ 10−13m2s−1, we come up with k′ ≃ 104s−1.

If the energy ∆F (l) has an energy barrier for a given size l0, as depicted in figure
1.8, the growth of large tubules will be controlled by the rate of crossing of the energy
barrier. As small protein aggregates form stochastically on the membrane, most of them
will evaporate in the membrane bulk, and only a few will reach the nucleation size because
of thermal fluctuations. The rate at which this happens can be computed by calculating
the flux j of nuclei that cross the cap. Because there are few nucleated aggregate passing
the barrier, we can assume quasi-stationarity, i.e. ∂lj = 0 in equation 1.27. The exact
solution depends upon Ecap(l), but for most shapes of the cap energy, we find the same
scaling for j, and thus for τN , the nucleation time :

τN ∝ 1

k′φ1
e

∆Fl0
kT (1.29)

Using φ1 ∼ 10−3, a (rather arbitrary) nucleation condition (τN ≤ 1min) yields ∆Fl ≤
3− 4kBT .

We now have an expression of the energies for isolated adsorbed particles on a mem-
brane. We can study three limit cases.
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• Flat pentamers of capsid proteins.

• Curved pentamers of capsid proteins (illustrated in figure 1.7, left).

• Full VLPs (capsids depleted of DNA), as illustrated in figure 1.7, right.

In each case, we will be interested in the control of tubulation by the surface tension γ
as it can be actively controlled by the cell (for instance by regulating its volume), and can
be controlled (with various degrees of precision) experimentally.

1.3.2 Flat pentamers of capsid proteins

In this section, we assume the adsorbed pentamers to lay flat on the membrane, i.e. the
pentamers are not curved and do not induce spontaneous curvature. This means taking the
limits R→ ∞ and R0 → ∞ in equation 1.21. In this case, pentamers are well adsorbed as
long as there are enough GM1 receptors on the membrane (i.e. if φ1 > exp (πa2ω/kBT )).
Because there is no spontaneous curvature, the tail energy is null and therefore the variation
of free energy in aggregating l pentamers of radius a just depends on the line tension, and
we would be tempted to write it :

∆F (l) = σL − l [2πσa+ kBT log φ1] (1.30)

in which φ1 is the density of adsorbed pentamers on the membrane and L is the contour
length of the domain. For a flat circular domain, L ≃ 2πa

√
l. As l ≥ 1, aggregates will

grow as long as 2πσa− kBT log φ1 > 0. This is actually not exact as we do not know the
precise organization of the membrane below the adsorbed pentamers in an aggregate and
for isolated pentamers. For instance, if the aggregate is not perfectly packed, we can expect
the presence of other lipids to fill the gaps. Therefore the gain in surface tension energy
when aggregating a monomer is slightly lower than the surface tension of one isolated
monomer, and equation 1.30 should be written, with σ′ ≤ σ :

∆F (l) = σL − l
[

2πσ′a+ kBT log φ1
]

(1.31)

We then find that there is a critical value of l, l0 ∼ (σ/σ′)2 above which it is favorable for
flat aggregates to grow. We expect l0 to be of the order of a few units as we do not expect
σ and σ′ to be too different. Therefore, flat pentamers should rapidly form flat aggregates
because of line tension.

However, those domain might not remain flat as the line tension term tends to decrease
the interface length. By comparing the line tension term 2πσR to the bending energy
8πκ, one finds that spontaneous budding will occur for domains of radius R > R∗, R∗ =
4κ/σ ≈ 400nm (section 1.1.4). R∗ is much larger than the radius of tubules observed
experimentally, and there must be an other cause to the formation of tubules of small
radius.

1.3.3 Pentamers of capsid proteins - with spontaneous curvature

Let us consider pentamers adsorbed on a vesicle. If the pentamers have a curvature and
are rigid, the membrane below pentamers will bend to the same curvature to maximize
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the adhesion surface. Moreover, the pentamers are adsorbed on one face of the membrane,
and, because this adsorption recruits GM1 lipids below the pentamers, the membrane is
locally asymmetric. Adsorption compacts lipids head groups below the proteins, which can
cause a spontaneous curvature. To ease the comparison with capsid shells, we will assume
this spontaneous curvature R0 to be equal to the radius of a viral capsid, i.e. R0 ≈ R.

We showed earlier that such particles were fully adsorbed on the membrane, because
their size a ≈ 5nm is much below the limit adsorption size (i.e. πa2 ≤ S∗, see equation
1.24). Moreover, the adhesion energy per surface ω is the same for proteins in a tube and
for isolated proteins. The contribution of the surface tension, however, is not the same.
For isolated proteins, the membrane tension energy E1

γ is approximately equal to the tail
energy of isolated pentamers (given by the limit of 1.8 for s/λ→ 0) :

E1
γ ≈ E1

tail ∝ γ
a4

R2
(1.32)

This is negligible compared to the surface tension energy of the protein in a tube :

Etube
γ (1) = πγa2 (1.33)

The driving force to making tubes is hence not the tail energy of individual pentamers,
which is overwhelmed by the surface tension of pentamers in a tube.

In large enough tube, for which the neck and apex have a fixed shape, the total energy
is proportional to the length of the tube, and hence to the number of particles in the tube,
in addition to a constant term corresponding to the deformation of the membrane at the
neck and the apex of the tube. Therefore, the variation of free energy resulting from the
aggregation of l adsorbed particle in tubular domain of contour length L is :

∆F (l) = σL(l) + Etail(l) + Eapex(l)− l
(

2πσ′a− πγa2 + kBT log φ1
)

(1.34)

in which L(l), Etail(l) (the neck energy) and Eapex(l) tend to constants when l is large. In
this scenario, tubes will be energetically favorable if adding one adsorbed pentamer to the
tube decreases the energy and hence if 2πσ′a− πγa2 + kBT log φ1 > 0.

Therefore, the thermodynamic condition to the formation of tubules by pentamers
(assuming a large excess of pentamers) is

γ < 2
σ′

a
∼ 2

σ

a
(∼ 10−4J.m−2) (1.35)

If this condition is satisfied, there is a critical monomer density φ∗1 allowing tubule forma-
tion :

φ∗1 = e
γπa2−2πσa

k
B

T (1.36)

Let us now consider the dynamic condition, i.e. let us find for which range of parameters
the energy barrier is small enough for tubes to form in a reasonable time. Let us consider
a hemispherical aggregate of pentamers. The bending energy contribution to the apex
energy is zero if R = R0, that which we assumed. The neck energy grows like R

√
κγ as

found in section 1.1.2. The free energy variation for a hemispherical aggregate hence is

∆F (l) = 2πσR+R
√
κγ − l

(

2πσa− 1

2
πγa2 + kBT log φ1

)

(1.37)
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In the intermediate situation between small domains and large tubes, the minimization
of the energy does not actually yield a hemispherical shape, and computing the shape of
the aggregate is not an easy task. However equation 1.37 gives the scaling of this energy.
If l < (R/a)2, we can use the approximation R ∼ a

√
l, and the energy barrier ∆E(l) to

overcome is :

λ

a
< l <

(

R

a

)2

: ∆E(l) ≈ 2πa
√
l (σ +

√
κγ) (1.38)

(1.39)

The cost in surface tension energy when adding a pentamer to an aggregate has an
upper bound γπa2 (the surface tension energy for a pentamer to enter a tube). Therefore
the energy gain µ per aggregated monomer has a lower bound :

µ > 2πaσ′ − πγa2 + kBT log φ1 (1.40)

Let us call l0 the critical nucleation size (as illustrated in figure 1.8), defined by the
number of pentamers that need to be aggregated for the energy barrier to be crossed, i.e.
∆E(l0) = l0µ. Using equations 1.38 and 1.40, we find that the critical nucleation size l0
scales like :

l0 ≈
(

2πa
(

σ +
√
κγ
)

2πaσ′ − πγa2 + kBT log φ1

)2

(1.41)

in which the denominator is non-zero because we assumed that there was an energy maxi-
mum, i.e. µ < 0. The nucleation energy is ∆E(l0) and therefore the nucleation time reads
:

τN ∝ 1

n1
τDe

2πa(σ′+
√
κγ)

√
l0

kT (1.42)

Even if the thermodynamic condition to forming tubes are satisfied, the nucleation
time can be prohibitively long, due to the energy barrier. We showed in section 1.3.1 that
this energy barriers start playing an important role (τN > 1min, say) for ∆E(l0) > 4kBT .
Using σ′ ≈ σ ∼ 0.1kBT.nm

−1, κ ≈ 20kBT and a ≈ 5nm, we find that the nucleation time
will be prohibitively long if γ > 2.10−3kBT.nm

−2 ≈ 10−5J.m−2.

In this section, we showed that even if the formation of tubes by adsorbed pentamers
is thermodynamically favorable (γ < 10−4J.m−2) surface tension might strongly limit the
existence of tubes, except for very low surface tensions (γ < 10−5J.m−2), because of the
kinetics of domain formation. We can now investigate the adhesion and aggregation of
VLP particles.

1.3.4 Aggregation of virus-like particles

VLP might not be fully wrapped by the membrane if, for instance, the surface tension is
too high. The degree of wrapping around the VLP is of order min(1, ω̄/γ), as shown in
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section 1.2. We will consider the situation of high wrapping since it has been observed
experimentally by our collaborators, as shown in fig. 1.2. For well-wrapped VLPs, the
surface tension energy does not change whether the VLP is in a tubule or isolated, whereas
the neck energy of a tubule and the neck energy of an isolated VLP is about the same,
corresponding to Etail. Therefore one could write naively :

∆Fl = Etail(1) + Eσ(1)− lµ (1.43)

µ = (Eσ′(1) + Etail(1) + kBT log n1) (1.44)

The energy gain per monomer is actually smaller than expected from naive arguments
since the wrapping in a tube is imperfect at two poles of one VLP whereas the wrapping
of a single VLP is imperfect at only one pole. Therefore, the tail energy might play a role
in the aggregation, but its role will be reduced by the wrapping energy lost when a capsid
enters a tubules. In contrast, the line tension energy will always favor the formation of
tubules for l > (σ/σ′)2.

We only showed that line tension definitely promotes aggregation. More complex mod-
eling could be done to study the role of the tail energy in the aggregation of VLPs, and
previous results indicate that it does enable tubulation [17, 15]. However, this argument
shows that is favorable to grow tubules of VLP as long as they are well adsorbed, i.e. as
long as γ < ω̄ ≈ 10−3J.m−2.
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1.4 Comparison with experiments

We showed that the aggregation of small toxins or pentamers is promoted by line ten-
sion, but the formation of tubules of small radius (≈ 50nm) requires a bending of the
membrane below the pentamer, i.e. a spontaneous curvature of the pentamers imposed
to the membrane. This spontaneous curvature can be due to the shape of the pen-
tamers or to the asymmetric distribution of lipids in the bilayer, caused by the parti-
cle adsorption on one face of the membrane. Tubules of pentamers cannot form in cells
or vesicles if γ > 2σ/a ≈ 10−4J.m−2 and nucleation is expected to be very slow for
γ > 4µ2/κ ≈ 10−5J.m−2.

In the case of the VLPs, the spherical shape of the capsids necessarily impose a curva-
ture to the membrane. The adhesion of VLPs on the membrane results from a competition
between surface tension γ and the effective adhesion energy ω̄. A large adhesion of VLP
requires γ > ω̄ ≈ 10−3J.m−2. Aggregation of capsids will be driven by line tension and
facilitated by the tail energy of the adsorbed particles. In the case of strong wrapping
(θ ≥ π/2) the tail contribution can amount to a sizable contribution to the overall line
tension of the membrane, and drive aggregation of the adhered VLPs.

Our results can be qualitatively compared to experiments performed by collaborators.
They could change the length of the acyl chains of the viral receptor, GM1, and they showed
that smaller chains did not enable the formation of tubules by capsids or pentamers.
Long acyl chains length are known to promote liquid ordered phase (lo). We can thus
expect the acyl chain length of receptors to have a strong effect on the line tension σ. In
particular, we expect that decreasing this chain length decreases the line tension σ. The
experimental observation that GM1 with shorter acyl chains did not allow such tubulation
therefore suggests that line tension is an important driving force to the formation of protein
aggregates, as predicted by our model. As VLP binding to the membrane is not hindered
by GM1 with shorter acyl chains [13], this effect is indeed a line tension effect.

Our collaborators also showed that GM1 with unsaturated chains did not enable the
tubulation by pentamers. The existence of unsaturations of the acyl chains will decrease
the membrane order (hence decreasing the line tension), and will increase the ability of
acyl chains to interpenetrate, hence decreasing the spontaneous curvature of the membrane
below the particles by the lipid compaction mechanism described in [18]. This observation
therefore confirms the importance of the spontaneous curvature of the membrane below
the adsorbed proteins in the formation of tubules by pentamers, as was predicted by our
model.

Eventually, our collaborators showed that membrane tension may prevent the tubula-
tion of pentamers but does not seem to affect VLP-induced tubulation. This is in agreement
with our theory, which predicts pentamer tubulation to be much more sensitive to surface
tension that tubulation by VLPs.

The full article with experimental results is shown in the appendix of this chapter.
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1.5 Conclusion

In this first chapter, we showed that the heterogeneities in the membrane composition can
trigger membrane deformations and, in our case, enable transport. In the case of viruses,
the cell metabolism is highjacked and after infection, the viruses will use the cell machinery
to duplicate themselves. In addition to creating thousands of capsid proteins and hundreds
of copies of their DNA, the viruses will act in various ways on the gene expression of the
host cell. The properties of host membrane, for instance, may be changed to promote the
release of new viruses. This is an example of feedback of the transported molecules on the
transport properties.

One very interesting case of virus having a feedback of its own transport is the vesicular
stomatitis virus (VSV). This virus enters the cell via the clathrin pathway, and encodes
in its RNA genome the code for a protein, called VSV protein G (or VSVG), which is
integrated in the plasma membrane after being transported and altered in the secretion
pathway of the cell. Once in the plasma membrane, it facilitates the infection of the cell
by other VSV virus. VSVG is now a very widely used tool to study the transport in the
secretion pathway.

In the case of toxins, they are transported after their entrance in the cell to their
destination of action. This transport can use various means. It has been shown that
some toxin use the secretion pathway in a backward fashion, in a process called retrograde
trafficking. In the next chapter, we will study transport in a particular organelle in the
center of the secretion pathway : the Golgi apparatus. We will gain some understanding
of some mechanisms of protein localization in the cell, and we will have precious hints on
the physical basis of anterograde and retrograde transport in the secretion pathway.
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1.6 Typical values of the parameters

To have a better understanding of the approximations, we need an idea of the numerical
values of the different parameters. We took the values from [13], [11], [29] and [28].

Energy scale for
Physical parameter Monomer Capsid

(radius a = 5nm) (radius R = 25nm)

Adhesion energy ω = 10−3J.m−2 πa2ω ≈ 20kBT 4πR2ω ≈ 2000kBT

Bending energy κ = 10− 20kBT 2πκa2/R2 ≈ 5kBT 8πκ ≈ 500kBT

Line tension σ ≈ 0.4pN ≈ 0.1kBT/nm 2πaσ ≈ 3kT 2πRσ ≈ 15kBT

Surface tension γ ≈ 10−6 − 10−3J.m−2 πa2γ ≈ 0.02− 20kBT 4πR2γ ≈ 2− 2000kBT

Deformation
line tension σλ =

√
κγ ≈ 0.1− 2pN 2πa

√
κγ ≈ 2− 11kBT 2πR

√
κγ ≈ 70− 350kBT

Membrane

decay length λ =
√

κ
γ ≈ 10− 300nm a ≈ 0.02− 0.5λ R ≈ 0.1− 3λ

1.7 Article
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GM1 structure determines SV40-induced membrane 
invagination and infection

Helge Ewers1,12,14, Winfried Römer2,3,14, Alicia E. Smith1, Kirsten Bacia4,13, Serge Dmitrieff5, Wengang Chai6, 
Roberta Mancini1, Jürgen Kartenbeck1,7, Valérie Chambon2,3, Ludwig Berland8,9, Ariella Oppenheim10,  
Günter Schwarzmann11, Ten Feizi6, Petra Schwille4, Pierre Sens5, Ari Helenius1,15,16 and Ludger Johannes2,3,15

Incoming simian virus 40 (SV40) particles enter tight-fitting plasma membrane invaginations after binding to the carbohydrate 

moiety of GM1 gangliosides in the host cell plasma membrane through pentameric VP1 capsid proteins. This is followed by 

activation of cellular signalling pathways, endocytic internalization and transport of the virus via the endoplasmic reticulum to the 

nucleus. Here we show that the association of SV40 (as well as isolated pentameric VP1) with GM1 is itself sufficient to induce 

dramatic membrane curvature that leads to the formation of deep invaginations and tubules not only in the plasma membrane of 

cells, but also in giant unilamellar vesicles (GUVs). Unlike native GM1 molecules with long acyl chains, GM1 molecular species 

with short hydrocarbon chains failed to support such invagination, and endocytosis and infection did not occur. To conceptualize 

the experimental data, a physical model was derived based on energetic considerations. Taken together, our analysis indicates 

that SV40, other polyoma viruses and some bacterial toxins (Shiga and cholera) use glycosphingolipids and a common 

pentameric protein scaffold to induce plasma membrane curvature, thus directly promoting their endocytic uptake into cells.

SV40 is a non-enveloped DNA virus of the polyoma family. The capsid is 

45 nm in diameter, and composed of 72 icosahedrally organized VP1 pen-

tamers1 that each bear five binding sites highly specific for GM1 (refs 2, 3), 

its glycolipid receptor for infection4. Incoming SV40 virions attach to sev-

eral GM1 molecules5,6 in the exoplasmic leaflet of the plasma membrane 

and quickly become immobilized by the cortical actin cytoskeleton7,8. 

Cholesterol-dependent entry7 occurs after kinase signalling7,9 via small, 

tight-fitting indentations10, most of which are devoid of caveolin-1 (Cav-1; 

ref. 11). Internalized vesicles are transported via microtubules to the smooth 

endoplasmic reticulum12 where the protein folding and retrotranslocation 

machineries are involved in SV40 export into the cytosol13 for infection.

How the binding of a virion to glycolipids in the exoplasmic leaflet 

leads to cell entry and infection is not clear. Several other multivalent 

glycolipid ligands are also internalized by clathrin-independent endo-

cytosis14–16, suggesting that the reorganization of specific lipids into 

membrane domains17,18 is important for the uptake process19–21. Indeed, 

binding of the pentavalent cholera toxin to GM1 induces the formation 

of membrane domains in vitro22, and multivalent binding is required for 

efficient endocytosis23. By binding to up to 15 Gb3 glycolipid molecules, 

Shiga toxin drives curvature changes of cell and model membranes24. 

Whether multivalent binding and glycolipid structure mediate the proc-

ess of cell infection by colloidal viral particles is not known.

Here, we investigate the role of the hydrocarbon chain structure of 

the GM1 receptor molecule in SV40 endocytosis and infection. Based 

on experimental work with cells and liposomal membranes and on 

theoretical considerations, a physical model for the formation of SV40-

induced membrane invaginations is derived. Our results indicate that the 

tight organization of GM1 molecules with specific hydrocarbon chain 

structures is required for membrane mechanical processes leading to 

endocytosis and infection by SV40.

RESULTS

Dependence of SV40 infection on GM1 hydrocarbon chain 

structure

To test how critical the structure of the GM1 hydrocarbon chain is for cellular 

uptake and infection, we took advantage of a mutant mouse melanoma cell 
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line, GM95, that lacks all glucose-based glycolipids25. We incorporated GM1 

species with differing lipid chain compositions26,27 into these cells. GM1 with 

C18:1/C20:1 sphingosine molecules and C18:0 fatty acids (native, nt-GM1, 

Fig. 1a) was used as a control. After GM95 cell reconstitution with nt-GM1, 

the lipid was evenly distributed in the plasma membrane, as judged by the 

homogeneous appearance of fluorescently labelled cholera toxin B-subunit 

(CTxB–FITC; Supplementary Information, Fig. S1a), another natural GM1 

ligand28. This situation was similar to the one found on cells that naturally 

express GM1 (data not shown). Fluorescence recovery after photobleaching 

(FRAP) demonstrated that the GM1-bound CTxB–FITC was mobile in the 

plane of the membrane (Supplementary Information, Fig. S1a). Moreover, 

confocal microscopy showed that CTxB was efficiently internalized by endo-

cytosis (data not shown). We concluded that nt-GM1 was integrated as a 

functional component of the plasma membrane, as demonstrated previously 

by electron spin resonance27.

Whereas Cy5-labelled SV40 failed to associate with untreated GM95 

cells (Fig. 1b), it bound to nt-GM1-supplemented cells to a similar extent 

as to wild-type murine cells (Fig. 1b). In contrast to untreated cells that 

were totally resistant to infection, up to 76% of the cells supplemented with 

nt-GM1 were infected, as indicated by T-antigen expression. The level of 

infection depended on the amounts of GM1 and SV40 used (Supplementary 

Information, Fig. S1b, c). As in normal host cells, infection was inhibited by 

extraction of cellular cholesterol (mβCD), inhibition of tyrosine kinase activ-

ity (genistein), disruption of microtubulules (nocodazole) and interference 

with the dynamics of the actin cytoskeleton (jasplakinolide and latrunculin 

A; Fig. 1c) 7,29. By supplementing cells with GM1, we could thus reconstitute 

the normal, productive entry pathway of SV40 in GM95 cells.

Next, GM95 cells were supplemented with GM1 species with differing 

tail structures. One was a GM1 molecule with short fatty acid chains 

(C8), and the others (DL, DP and DO) were glycerophospholipids with 

differing saturation levels and lengths of lipid chains to which the GM1 

pentasaccharide was conjugated through the amino group of the phos-

phatidylethanolamine (Fig. 1a; Methods)27,30. By measuring CTxB–Cy5 

binding to GM95 cells, we first determined the amount of each lipid 
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Figure 1 SV40 infection and endocytosis depend on GM1 hydrocarbon 

chain structure. (a) Structures of nt-GM1 and the chemically synthesized 

GM1 species used in this study. The native (nt-GM1) species is shown 

on the left next to C8-GM1, which has an 8-carbon short-chain fatty 

acid. For other species, the GM1 pentasaccharide was attached to the 

amino groups of phosphatidylethanolamine (PE) glycerophospholipid 

species bearing different fatty acid chains: di-lauroyl-PE (DL-GM1), 

di-palmitoyl-PE (DP-GM1), di-oleoyl-PE (DO-GM1) and di-stearoyl-PE 

(DS-GM1). (b) Fluorescence microscopy images of Cy5-labelled SV40 

(SV40–Cy5) incubated with GM1-deficient GM95 cells, GM95 cells that 

were supplemented with nt-GM1, or CV-1 cells naturally expressing GM1. 

(c) SV40 infection in GM95 cells that were supplemented or not with nt-

GM1, as indicated. nt-GM1-supplemented cells were mock treated (–) or 

pre-incubated for 1 h with methyl-β-cyclodextrin (mβCD, 5 mM), genistein 

(0.1 mM), nocodazole (1 μM), latrunculin (0.1 μM) or jasplakinolide 

(0.1 μM). Inhibitors were maintained during the experiment. Infection was 

scored by immunofluorescence detection of nuclear SV40 T-antigen (T-ag) 

expression after Hoechst staining and data were normalized to expression 

in nt-GM1-supplemented GM95 cells. Data are the mean ± s.d. of at least 

three independent experiments, P < 0.01 for all inhibitors compared with 

nt-GM1-supplemented cells (Student’s t-test). (d) SV40 infection in GM95 

cells supplemented with the indicated GM1 species. Infection was scored 

and plotted as in c. Data are the mean ± s.d., P < 0.01 for C8-GM1 and DL-

GM1 compared with nt-GM1 cells (Student’s t-test). (e) Confocal images of 

atto-488-biotin dual-labelled SV40-VLPs after 2 h incubation at 37ºC with 

GM95 cells supplemented with nt-GM1 (left) or C8-GM1 (right). Total atto-

488 fluorescence of SV40-VLPs (top) and specific detection of intracellular 

SV40-VLPs through the biotin label by indirect immunofluorescence 

(bottom). (f) Quantification of intracellular SV40-biotin-VLPs after 

immunofluorescence detection of internalized particles as in e. Fluorescence 

intensity was normalized to that of cells supplemented with nt-GM1. Data 

are the mean ± s.d., P < 0.001 (Student’s t-test). Scale bars, 10 μm.
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species needed to result in a level of binding comparable to that found on 

cells supplemented with nt-GM1 (Supplementary Information, Fig. S1d). 

To make sure that the different lipid species were properly inserted into 

the plasma membrane, lateral CTxB–FITC mobility was confirmed 

under all conditions by FRAP analysis (data not shown).

We then analysed the binding of SV40 to these reconstituted cells using 

virus-like particles (VLPs), which are recombinant capsids composed 

exclusively of VP1 proteins3,31,32. VLPs behave as intact virus with respect 

to receptor binding and endocytosis, but are devoid of viral DNA as well 

as internal capsid proteins. SV40-VLP binding was similar between cells 

reconstituted with the different GM1 species (Supplementary Information, 

Fig. S1e, f). However, only GM1 species with long acyl chains, DP‑ and 

DO-GM1, supported SV40 infection (Fig. 1d). The levels of infection were 

88.9 ± 15.1% and 26.8 ± 7.4%, respectively, compared with nt-GM1supple-

mented cells. In contrast, infection in cells that were supplemented with 

short chain species was close to background levels (Fig. 1d). We concluded 

that a ceramide base structure was not an absolute requirement for glycoli-

pid receptor function, but acyl chain length was critical.

To determine which step in the infectious entry programme required 

a receptor lipid with long acyl chains, GM95 cells were supplemented 

with either nt-GM1 or C8-GM1. The latter was chosen to represent a 

non-permissive receptor species. Confocal microscopy after indirect 

immunofluorescence labelling of internalized particles showed that only 

nt-GM1 supported efficient endocytosis of the virus (Fig. 1e). SV40-VLP 
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Figure 2 SV40 binding induces caveolin-independent membrane 

invagination in cells. (a) Electron micrographs of CV-1 cells that were 

incubated for 7 min with SV40. Note the tight-fitting membrane under 

SV40 particles. (b) Electron micrograph of polyomavirus VLPs after 30 min 

incubation with cells. The VLPs line the lumen of tubular membrane 

invaginations like beads on a string (arrowheads). Scale bars, 200 nm. 

(c–d) Confocal images of fluorescence-labelled SV40-VLPs after 30 min 

incubation with energy-depleted CV-1 cells (c) or Cav-1–/– cells (d). Scale 

bars, 5 μm. (e) Confocal images of fluorescence labelled SV40-VLPs (red) 

and the membrane dye FM 43 FX (green) after 30 min incubation with 

energy-depleted Cav-1–/– cells (top panels). Scale bar, 10 μm. A magnified 

region of the cell is shown in the bottom panels. (f, g) TIRF microscopy 

images of fluorescence-labelled SV40-VLPs a few minutes after binding 

to the bottom surface of untreated (f) or energy-depleted (g) Cav-1–GFP- 

expressing cells. Magnified regions of the cells are shown in the bottom 

panel. Scale bars, 10 μm. 
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internalization in C8-GM1-supplemented cells was reduced to 34.4 ± 1.5% 

when compared with nt-GM1 supplemented cells (Fig. 1f), probably rep-

resenting particles taken up by non-infectious pathways.

Caveolin-independent membrane invagination in cells

A few minutes after binding to CV-1 cells, transmission electron 

microscopy showed SV40 particles in small invaginations that some-

times extended to enclose few virions (Fig. 2a) and in tight-fitting early 

endocytic vesicles lacking sub-membrane, electron-dense material10,12. 

The close contact between virus and the plasma membrane and the 

formation of tight-fitting indentations differentiates SV40 and other 

polyomavirus family members from most other viruses. When high 

VLP doses of mouse polyomavirus, a closely related virus with a similar 

structure33, ganglioside receptor4,26 and endocytic pathway8,34,35, were 

used, even longer tubular structures were observed that extended from 

the plasma membrane and contained a continuous row of particles  

(Fig. 2b, arrowheads). These thin (50–60-nm diameter) tubules could 

thus penetrate the cortical actin meshwork, which has a mesh size of 

200–300 nm (ref. 36).

Electron microscopy images indicated an inward-directed budding 

process, as if the virus particles directly participated in the induction of 

membrane curvature by binding to gangliosides. To test this possibility, we 

blocked active cellular processes, such as coat dynamics and membrane 

traffic, in CV-1 and HeLa cells by using metabolic inhibitors to deplete 

energy. We hypothesized that this treatment would abolish abscission 

of VLP-containing invaginations from the plasma membrane. Starting 

20–30 min after addition to such cells, fluorescently labelled SV40-VLPs 

were found to induce numerous tubular, virus-containing structures of 

variable length that in some cases reached several microns into the cyto-

plasm and contained the majority of SV40 particles (Fig. 2c; Supplementary 

Information, Fig. S2a). These tubules did not form in the absence of virus 

(data not shown), and using the membrane dye FM-1-43 FX, it was found 

that they were connected to the plasma membrane (Fig. 2e). Incubation of 

SV40-VLPs with Cav-1-negative mouse embryonic fibroblasts led to the 

formation of identical tubular structures (Fig. 2d). Furthermore, tubules in 

wild-type cells did not colocalize with endogenous Cav-1 immunostaining 

(Supplementary Information, Fig. S2c) and, even before tubule forma-

tion, SV40-VLPs rarely colocalized with Cav-1–GFP in normal (Fig. 2f) 

or energy-depleted cells (Fig. 2g), as observed by total internal reflection 

fluorescence (TIRF) microscopy. These findings are consistent with previ-

ously published immuno-electron microscopy experiments in which only 

13–20% of viruses on the cell surface were associated with anti-Cav-1 

gold37, and confocal microscopy experiments on Cav-1-expressing cells 

in which only about 1 out of ten viruses associated with Cav-1, and few 

entered together with Cav-1 (ref. 11). We concluded that SV40 induces the 

formation of membrane invaginations without the help of active cellular 

machinery or caveolar coats.

Interference with the actin cytoskeleton, depletion of cholesterol or 

inhibition of tyrosine kinases in non energy-depleted cells also led to 

SV40-VLP-induced tubule formation (Supplementary Information, 

Fig. S2b), suggesting that these factors have a role in the scission process. 

On the other hand, treatment of cells with the dynamin-inhibitor dyna-

sore did not result in tubule formation (Supplementary Information, 

Fig. S2b), indicating that the budding of SV40 binding-induced mem-

brane invaginations is dynamin-independent, which is consistent with 

previous reports11.

SV40 binding-induced membrane invaginations — properties 

of GM1

To test whether SV40 binding to GM1 was sufficient to induce mem-

brane invagination, we incubated fluorescently labelled VLPs with GUVs 

made of a mixture of 1,2-dioleoylphosphatidylcholine (DOPC; 68 mol%; 

spiked with 1 mol% BodipyFl-C5-HPC), cholesterol (30 mol%) and 

nt-GM1 (1 mol%). The VLPs bound to the GUVs, and within a few 

C8-GM1

nt-GM1

MergeDOPCVLP
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DO-GM1
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Figure 3 SV40-induced membrane invagination on model membranes is 

dependent on GM1 hydrocarbon chain structure. (a–f) Confocal sections 

in the equatorial plane of GUVs made from a mixture of 68 mol% DOPC, 

30 mol% cholesterol, 1 mol% BodipyFl-C5-HPC (green) and 1 mol% of nt-

GM1 (a), C8-GM1 (b), DL-GM1 (c), DP-GM1 (d), DO-GM1 (e) or DS-GM1 (f). 

Fluorescence-labelled SV40-VLPs are shown in red. Scale bars, 5 μm. 
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seconds membrane invaginations were formed that contained the VLPs 

(Fig. 3a; Supplementary Information, Movie 1). These invaginations had 

a similar morphology to those observed in cells and their formation did 

not require the presence of cholesterol in the lipid mixture (data not 

shown). Mouse polyomavirus-VLPs also induced tubular invaginations 

on GUVs containing the ganglioside GD1a (Supplementary Information, 

Fig. S3a), the polyomavirus cellular receptor4,26,38.

When the different GM1 species were incorporated into GUVs, 

addition of SV40-VLPs led to efficient binding in all cases. However, 

VLPs failed to induce invaginations in GUVs that contained the two 

short chain species C8 and DL (Fig. 3b, c). In contrast, lipid species with 

longer acyl chains (DP, DO and DS — di-stearoyl-GM1, which could 

not be incorporated into cells at non-toxic concentrations) supported 

the formation of invaginations, independently of their saturation status 

(Fig. 3d–f). These observations demonstrated that the structure of recep-

tor lipid tails was essential for the virus-induced formation of invagina-

tions on GUVs, as observed for endocytosis and infectivity in cells.

SV40 binding-induced membrane invaginations — properties of 

SV40

In virus particles and VLPs, the VP1 molecules provide a surface with 

360 regularly spaced binding sites for the GM1 glycan moiety. To test 

whether the number and colloidal topology of binding sites was criti-

cal for tubule formation, we expressed and purified recombinant VP1 

pentamers that are incapable of assembly into VLP capsids39. When flu-

orescence-labelled and incubated with energy-depleted CV-1 cells, such 

VP1 proteins induced long invaginations (Fig. 4a). CTxB, whose five 

GM1-binding sites are arranged in an identical geometry to that found 

on the SV40 VP1 pentamer2, also induced invaginations (Fig. 4b). In 

contrast, an antibody against cell-bound GM1 failed to induce invagina-

tions, even when crosslinked by a secondary antibody (Fig. 4c).

These results indicated that the spatial organization of the GM1-

binding sites was critical for tubule formation. Crosslinking of GM1 

via antibodies did not allow tubule formation, which required the pen-

tavalent organization of binding sites, as found in VP1 and CTxB mole-

cules. This was confirmed on GUVs containing nt-GM1. VP1 and CTxB 

induced invaginations (Fig. 4d, e), whereas the crosslinked anti-GM1 

antibody did not (Fig. 4f). Interestingly, VP1-induced tubule formation 

was also sensitive to lipid structure in that tubules failed to form on 

GUVs that were made with C8-GM1 (Fig. 4g). This result is similar to 

that observed for infection (Fig. 1d), endocytosis (Fig. 1e, f) and VLP-

induced tubule formation on GUVs (Fig. 3a, b).

Some differences could be observed between isolated VP1 pentam-

ers or CTxB proteins and intact, colloidal viral capsids. The time lag 

between ligand addition to GUVs and the formation of invaginations 

was much longer for isolated pentamers (minutes) than for SV40-VLPs 

(seconds). When we repeated these experiments in nt-GM1 containing 

GUVs that were made from a lipid mixture that generates a more rigid, 

liquid-ordered (l
o
) phase (40.7 mol% brain SM, 13.6 mol% cholesterol, 

40.7 mol% DOPC and 5 mol% GM1), SV40-VLPs were still able to induce 

membrane invaginations (Fig. 5a). However, CTxB failed to form tubules 

under these conditions. Furthermore, SV40-VLPs induced tubules on 

GUVs with a high membrane tension (data not shown), in contrast to 

CTxB (data not shown) and Shiga toxin B-subunit24. We concluded that 

the pre-curved colloidal organization of GM1-binding sites on the virion 

was not necessary for membrane deformation and tubulation, but it made 

the process more efficient, enabling it to overcome high membrane ten-

sion and rigidity.

In a previous study, we found that the pentameric Gb3 glycolipid-bind-

ing Shiga toxin B-subunit (STxB) can induce tubule formation in cells and 

GUVs with kinetics similar to the kinetics of tubule induction by SV40 

pentamer and CTxB24. Like SV40 capsids, STxB required glycosphingoli-

pid receptor species with long acyl-chains for tubule formation. However, 

for STxB-induced membrane tubulation, the Gb3 acyl-chains needed to 

be unsaturated, suggesting a difference in the underlying physical mecha-

nism between the spherical capsids and the pentameric proteins.
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Figure 4 Induction of membrane invaginations by GM1-binding pentamer units. 

(a–c) Confocal microscopy images of energy-depleted CV-1 cells incubated for 

30 min with fluorescence-labelled SV40 VP1 pentamers (a), CTxB (b) or an 

anti-GM1 antibody crosslinked with a fluorescence-labelled secondary antibody 

(c). (d–f), Confocal sections of equatorial planes of GUVs made from a mixture 

of 68 mol% DOPC, 30 mol% cholesterol, 1 mol% BodipyFl-C5-HPC (green) 

and 1 mol% of nt-GM1. GUVs were incubated with fluorescence-labelled (red) 

CTxB (d), SV40 VP1 pentamers (e) or an anti-GM1 antibody crosslinked with 

a fluorescent secondary antibody (f). (g) Confocal section of a GUV made from 

a mixture of 64 mol% DOPC, 30 mol% cholesterol, 1 mol% BodipyFl-C5-HPC 

(green) and 5 mol% C8-GM1. GUVs were incubated with fluorescence labelled 

SV40 pentamers (red). Scale bars, 5 μm.
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A physical model for SV40 binding-induced membrane 

deformation

The formation of membrane tubules by the aggregation of membrane-

bound monomers (which may either be small proteins such as toxins or 

VP1 pentamers, or large spherical capsids, Fig. 6a) can be understood 

from a generic physical model that couples the thermodynamics of phase 

separation to the mechanics of membrane deformation (Supplementary 

Information,Theoretical model). Tubule  nucleation and growth is con-

trolled by the free energy difference, ∆F
N
 = E

neck
 – N(∆e + kTlog ϕ

1
), 

between N species being either aggregated in a tubule or isolated on the 

membrane. Here, E
neck

 is the energy of the toroidal neck connecting the 

tubule to the membrane (Fig. 6b), and ∆e and kTlog ϕ
1
 are the energy 

gain and entropy loss, respectively, when a species joins a growing tubule 

(ϕ
1
 is the surface fraction, concentration × species area, of the isolated 

species on the membrane and kT ~ 2.5 kJ mol–1 is the thermal energy). 

Tubules can form if the energetic gain overcomes the entropic loss, which 

requires a sufficiently high species density on the membrane: ϕ
1 
> e–∆e/kT. 

Tubules nucleate in a typical time controlled by a free energy barrier ∆F
c
 

(Fig. 6b), which is strongly influenced by the cost of membrane defor-

mation in the tubule neck (Supplementary Information, Theoretical 

model). The insensitivity of spherical VLP-induced tubule formation 

to membrane tension and other factors such as the lipid tail saturation, as 

opposed to what is observed for individual proteins, stems directly from 

the properties of the energy difference ∆e, as discussed below.

Because of their intrinsic curvature, large spherical VLPs imprint 

a close to tubular shape onto the membrane to which they adhere. 

Membrane tension can influence the virus-induced membrane defor-

mation and tubulation only to the extent that it prevents the membrane 
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Figure 5 Clustering and domain formation analysis. (a) Confocal sections 

in the equatorial plane of GUVs made from a mixture of 40.7 mol% 

brain-sphingomyelin, 13.6 mol% cholesterol, 40.7 mol% DOPC, 1 mol% 

BodipyFl-C5-HPC (green) and 5 mol% of nt-GM1. Under these conditions, GUV 

membranes are in a homogeneous liquid-ordered state. Fluorescence-labelled 

SV40-VLPs are shown in red. Scale bar, 10 μm. (b–e) Confocal sections in the 

equatorial plane of GUVs made from a mixture of 68 mol% DOPC, 30 mol% 

cholesterol, 1 mol% BodipyFl-C5-HPC (green) and 1 mol% of either nt-GM1 

(b, c) or C8-GM1 (d, e). Fluorescence intensity profiles of the GUV membranes 

are plotted on the right. Peaks indicate areas of relative enrichment of VLP or 

VP1 fluorescence. (f–k) 3D projections of GUVs formed from a lipid mixture of 

33 mol% stearoyl-sphingomyelin, 33 mol% DOPC and 33 mol% cholesterol 

that undergoes phase separation. The lipid analogue DiI (pseudocoloured 

green, middle columns) was incorporated into the lipid mixture at 0.1 mol% 

to specifically label the liquid-disordered (l
d
) phase and the nt-GM1 or 

variant-GM1 species were incorporated at 0.1 mol% to investigate the phase 

preference of bound fluorescence-labelled SV40-VLPs (pseudocoloured red, 

left columns). While in GUVs containing nt-GM1 (f), DP-GM1 (j) and DS-GM1 

(k), bound SV40-VLPs localized to the unlabelled liquid-ordered (l
o
) phase, in 

GUVs containing C8-GM1 (g), DL-GM1 (h) or DO-GM1 (i) bound SV40-VLPs 

localized to the DiI-labelled l
d
 phase as evident from the merged images (right 

columns). Scale bars, 10 μm.
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wrapping around the capsids, which requires tensions in the order of the 

high adhesion energy; about 10kT per GM1 molecule40, or 10–3 J m–2. 

Individual pentameric proteins on the other hand are fully bound to the 

membrane, whether in tubules or not. Membrane tubulation is in this 

case not driven by protein–lipid adhesion, but is the result of protein 

clustering due to the existence of a line tension µ ~ 0.5 pN between lipid-

domains of different composition and ordering41. Individual pentamers 

or toxins should not be able to form tubules if the membrane tension 

is larger than the ratio of the line tension to the particle size (γ ~ µ/a, 

Supplementary Information, Theoretical model), which we estimate to 

be in the order of 10–4 J m–2. Furthermore, the kinetics of tubule nuclea-

tion is largely controlled by the tension-dependent energy of the tubule 

neck, and we expect tubule nucleation to be slow when the line energy 

associated with membrane deformation is larger than the line tension 

of the clustered domain (√κγ > μ
,
 with membrane bending rigidity in 

the order of κ ~ 20kT, Supplementary Information, Theoretical model), 

which we estimate to be about 10–5 J m–2 (or smaller when the membrane 

is in the more rigid l
o
-state and Shiga toxin fails to induce membrane 

invaginations)42.

These considerations explain a number of experimental findings. SV40-

VLPs can induce tubules even on GUVs with a membrane tension in the 

order of 10–3 J m–2, close to the lysis tension of a bilayer. In contrast, indi-

vidual VP1 pentamers and toxins only form tubules in relatively ‘floppy’ 

vesicles with tensions in the order of 10–5 J m–2. Furthermore, these obser-

vations clarify why several minutes are required for tubule nucleation by 

pentamers and CTxB, which is similar to what is observed with the Shiga 

toxin system24, in comparison to seconds with SV40 capsids.

The structure of the receptor tail can influence two important mem-

brane properties: the degree of lipid ordering, related to the line tension 

of glycolipid receptor-enriched membrane domains, and mechanical 

properties, expressed by the bending rigidity and spontaneous curvature. 

Whereas the former property is crucial to the aggregation process of both 

individual proteins (pentamers or toxins) and spherical VLP capsids, the 

latter should only influence the tubulation induced by individual pro-

teins, as adhesion of VLP s onto membranes is by itself sufficient to create 

strong curvature. Our findings show that long acyl chains are required 

for the induction of tubules by both capsids and individual pentamers, 

strongly suggesting that the effect is mediated by line tension. Indeed, 

both SV40-VLPs and VP1 pentamers form lateral aggregates shortly 

after binding to nt-GM1-containing GUVs (Fig. 5b, c), whereas such 

aggregates were not detectable in C8-GM1-containing GUVs (Fig. 5d, e). 

Receptor tail length should also have a strong influence on the nucleation 

of membrane phase separation. In agreement with this prediction, SV40 

was found in l
o
 phase membranes when associated with saturated long 

chain GM1 molecules, and in the l
d
 phase when GUVs were made with 

short chain GM1 species (Fig. 5f). Saturated receptor chains were found 

to prevent membrane invagination by shiga toxin24, but did not modify 

the ability of the capsid to induce tubules. A likely explanation is that tail 

saturation strongly couples to spontaneous negative curvature, possibly 

by amplifying a head group compaction and chain splaying effect. This 

property is crucial for membrane tubulation induced by small proteins24, 

but dispensable in the case of intrinsically curved spherical capsids.

The picture emerging from the arguments summarized above and 

detailed in the Supplementary Information is that although pentamers 

and capsids share a common aspect related to lipid organization and 

line tension for their clustering, the mechanisms that drive membrane 

deformation are different. Capsids imprint membrane curvature through 

adhesion, whereas small proteins must promote the emergence of a spon-

taneously curved membrane organisation.

DISCUSSION

From our study it seems that, unlike other viruses that rely on cell-

driven processes, SV40 initiates its internalization process by inducing 

membrane curvature itself from the extracellular side of the membrane 

through multivalent binding of its VP1 pentamers to cell surface GM1. 

The association with caveolae, which is occasionally observed for SV40 

but is not essential for entry or infection11,37,43,44, probably reflects a 

preferred localization of the virus to membrane environments with 

appropriate curvature radii, and does not seem to have a role in the 

invagination process described here. Indeed, while Cav-1 expression 

does not influence the infection efficiency of SV40, the structure of the 

hydrocarbon chain of GM1 does so significantly (Fig. 1). Hence, what we 

describe here is the infectious pathway of SV40. In cellular and artificial 

membranes, the binding of SV40 to GM1 alone suffices to induce the 

formation of invaginations. The subsequent membrane scission reac-

tion to form an endocytic vesicle depends on signal transduction and 

active cellular fusion factors7,9,29. If this scission reaction does not occur, 
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Figure 6 Physical parameters controlling membrane invagination by SV40. 

(a) Sketch of membrane invaginations and tubules induced by large 

spherical capsids (right) and by the aggregation of small proteins (left) 

after multivalent binding to glycolipid receptors. The lipid receptors are 

specifically enriched in the contact area and thereby create an interface 

between the receptor-enriched membrane (lilac) and the adjacent 

cellular membrane. In the case of the viral particle, it is the shape of the 

membrane-bound surface that drives the formation of an indentation and 

the minimization of neck energy promotes tubule formation. (b) Free energy 

difference between a tubule containing N particles and N independent 

particles. Tubules grow if this energy decreases with N. The energy of 

forming a tubular membrane neck around the tubule provides a barrier (∆Fc) 

that slows tubule nucleation. Tubules form if the driving force overcomes the 

loss of entropy and the forces opposing membrane deformation.
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membrane invagination can proceed to the formation of tubules. The 

capacity of the virus to induce membrane invaginations is shared with 

other polyomaviruses and with some bacterial toxins (Shiga and cholera 

toxins). As they all bear a remarkably similar pentameric organization 

for association with glycan moieties of glycosphingolipids, we suggest 

that they exploit a common mechanism that integrates precise require-

ments in the hydrocarbon chains of the glycolipid receptors and a com-

pact organization of receptor binding sites within the pentameric protein 

scaffolds. These pentamers serve as nanoscale lipid-clustering devices 

for membrane mechanical processes leading to the coat-independent 

formation of endocytic membrane invaginations.  

METHODS

Methods and any associated references are available in the online version 

of the paper at http://www.nature.com/naturecellbiology/.

Note: Supplementary Information is available on the Nature Cell Biology website.
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Chapter 2

Transport in the Golgi apparatus

Introduction

The Golgi apparatus is a fascinating organelle in Eucaryotic cells, by its highly organized
(and self-organizing) structure, by its role of central dispatch station in cellular trafficking,
and because its physiology is still mysterious. As mentioned in the introduction, it is
located between the endoplasmic reticulum, situated at the periphery of the nucleus, and
the outer cell membrane. Molecules synthesized in the E.R. transit to the Golgi apparatus,
where they can be chemically altered, in a process called maturation (for instance, glycans
can be added to lipids and proteins [32]). They are then exported selectively to their
preferred location in the cell [33]. The Golgi apparatus usually has a polarity, with a
cis-side facing the E.R. and the trans-side facing the plasma membrane.

We show a simplified diagram of the Golgi apparatus in figure 2.1. In mammals, and
most upper Eukaryotes, the Golgi is a stack of sub-compartments (called cisternae), flat
disc-shaped vesicles about 1µm wide and 50nm thick. Each cisternae is delimited by lipid
membrane and, in some cases, tubular connections connecting neighboring cisternae have
been observed, and are usually associated with large trafficking events [34]. Interestingly,
the membranes of each cisterna have different chemical and physical properties [35], i.e.
different identities [36]. There are different protein markers in the cis, medial and trans
Golgi, which are embedded in membranes of different composition (the cis Golgi is richer in
ceramids whereas the trans Golgi is enriched in cholesterol and sphingolipids), and different
thickness (the membrane thickness grows from the cis Golgi to the trans-Golgi). Because
of this structure we will call the cis to trans Golgi direction the "main axis" of the Golgi
apparatus. As we mentioned, there is a gradient of chemical composition, and therefore of
physical properties, along this axis.

It has been documented [37] that newly synthesized molecules from the ER are ex-
ported to the cis face of the Golgi apparatus, and, after transiting through the stack, they
are exported at the trans face of the Golgi apparatus, the boundaries of which are not
necessarily well defined. The boundary between the ER and the cis Golgi is a complex
tubulo-vesicular membrane structure called ERGIC (E.R. to Golgi intermediate compart-
ment). On the other hand, material exported from the trans Golgi joins another complex
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Figure 2.1: Cartoon of a Golgi apparatus with six cisternae (showing a cutaway of the first
cisterna). The cis- to trans-Golgi axis will be called Oz, or main axis. The small
spheres represents vesicles budding from cisternae (in greater number than repre-
sented here), and tubules (not shown here) may connect the cisternae. The different
colors represent the different chemical composition.

intermediate compartment, the trans Golgi network (TGN), where the lipids and proteins
are dispatched to the cell. This transport from the E.R. to the cell through the Golgi ap-
paratus is called anterograde transport. A retrograde transport, in the opposite direction,
has also been reported. Retrograde transport is used to recycle proteins to the E.R. [38],
and by some products of endocytosis [39], including pathogens such as the Shiga toxin
[40]. A last class of molecules keep constant average position in the Golgi stack, and are
found preferentially in the cis, medial or trans Golgi. For instance, there are Golgi mat-
uration enzymes responsible for glycosylation of proteins which are mainly distributed in
one region of the Golgi apparatus, and are hence called resident Golgi enzymes [41]. A
striking fact is that the glycosylation enzymes are located from cis to trans in the order
they act on a molecule [42]. Therefore, a newly synthesized molecule from the E.R. has to
be transported through the stack, from cis Golgi to trans Golgi, to be correctly matured.
However, it has been shown that some proteins can actually bypass the Golgi apparatus,
for instance virus proteins [43] or storage proteins in plants [44].

Various experiments have been performed (which we will discuss later), revealing typ-
ical anterograde transit times of 10-20 minutes for proteins to go through the Golgi appa-
ratus. Given the volume of the Golgi apparatus (of the order of ≈ 1µm3), this is much
slower than bulk diffusion in the same volume. Two models (fig. 2.2) have been competing
to explain transport of molecules through the Golgi apparatus [45].

The first model, called vesicular transport, assumes that cisternae have a fixed position
in the stack, and that molecules are carried between neighboring cisternae by transport
vesicles. The involved vesicles are thought to be vesicles coated by specific proteins (for



31

Cis Trans

~50nm

Cis Trans

Figure 2.2: LEFT : Illustration of the vesicular transport model in which proteins and lipids
are loaded a the cis face of the Golgi and are exchanged between fixed cisternae by
vesicles. RIGHT : Cisternal progression model, in which cisternae are generated at
the trans-face, progress through the stack, and are disassembled at the trans face.

instance COPI could be involved in retrograde transport), and to have a size of the order of
50nm. However, this model failed at explaining the transport of large molecular aggregates
such as scales or large collagen fibers. Another model (though not incompatible with
vesicular transport), called cisternal progression (or cisternal maturation), proposed that
individual cisternae advance through the stack, with cisternae being assembled at the cis
face and disassembled at the trans-face, after a tread milling process. During this process,
it is assumed that the identity of each cisternae changes with time, from a typical cis Golgi
identity to a trans Golgi identity.

The later model predicts that molecules entering the Golgi stack at a given time will
exit from the stack after a delay, the time needed for a cisterna in the cis Golgi to progress
to the trans Golgi. Though cisternal progression explains many experimental data, the
predicted delay in export was not observed in recent experiments [46], which seem to
indicate that molecules entering the Golgi apparatus can be exported with little or no lag.

Confronted to these contradicting results, we wanted to know what information the
experimental data actually contained. There are few existing quantitative studies of trans-
port in the Golgi apparatus [47, 46], involving great mathematical complexity [47] or an
excessively large parameter space (36 parameters of microscopic origin in [46]), and those
studies do not enable a quantitative and simple distinction between the two existing mod-
els.

Therefore, we compared experimental results to a basic transport equation, to obtain
model-independent transport coefficients, and then confronted them to predictions from
the various models. We extended this framework to include localization of resident proteins
(which, on average, keeps a constant position in the Golgi stack).

Golgi by the numbers

Some typical values of the Golgi dimensions and transport rates will be mentioned in this
chapter. Let us first have a quick outlook of the numerical values.
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Quantity Value
Radius of a cisterna R 600 nm [48], 450 nm [46, 49]
Mean distance between two cisternae h 30 nm [46], 40 nm [48, 34]
Radius of a connecting tubule a 25 nm [34]
Thickness of the Golgi L 200-300 nm[48, 46, 34]
Transit time τ 15-30 min [48, 46]
VSVG Diffusion coefficient D2 0.14 µm2/s [50, 51]
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2.1 Building a transport equation

2.1.1 Biased diffusion

To build a simple formulation of transport in the Golgi apparatus, let us consider one
transmembrane protein inserted in the membrane of one cisterna (as shown in figure 2.3).
This protein diffuses laterally on the cisterna with a diffusion coefficient D2, typically of
order 0.1µm2.s−1 [50, 51]. During this diffusion, it may find a tube or a spot of vesicle
budding, and thus be carried to a neighbouring cisterna. Therefore, the protein is moving
forward or backward on the z axis as it encounters tubes connected with the next or
previous cisterna respectively (or vesicles merging to the next or previous cisterna).

The movement of this protein, projected on the Oz axis, is therefore akin to diffusion,
possibly biased by a different number of tubes on each face of the cisterna, different tube
properties, or by a preferred direction of vesicular transport. In the following, unless men-
tioned otherwise, we will not distinguish between transport through tubes or by vesicles,
since the effect of both types of transport intermediates on the overall transport may be
described in a single mathematical framework.

Let us assume linear transport kinetics, i.e. let us neglect cooperative effects between
proteins (the cooperative effects in transport being the focus of chapter 3). Let us call
kn the rate of jump, for a protein A, from the n-th cisterna to the cisterna n+1, and k′n
the rate of jump from the cisterna n to the cisterna n-1. Here, the rates kn, k′n include
the time for a protein A to encounter a transport intermediate and the probability to be
effectively transported by the intermediate. They are not restricted to processes involving
protein-coated vesicles, but may include contributions from any fragment that detach from
a cisterna and fuse with a neighboring cisterna, or, as we mentioned, the use of tubular
connections between cisternae. As the transport processes may require energy input (e.g.
from ATP hydrolysis), these rates do not, in general, obey detail balance.

The net flux between the n-th and the (n+1)-th cisterna will be called Jn+ 1
2

(because
it is the net flux through a fictive plane located between n and n + 1), and hence can be
written :

Jn+ 1
2
= knAn − k′n+1An+1 (2.1)

Let us also the consider the possibility for proteins to enter the stack (by an incoming flux
J0
n) or to exit from the stack (for instance by joining a vesicle exiting to the rest of cell),

with a rate rn. The master equation for the concentration A of a given species A therefore
reads :

∂tAn(t) = J0
n + Jn− 1

2
− Jn+ 1

2
− rnAn (2.2)

As we mentioned, the rates kn and k′n result in a (possibly biased) diffusion. We can find
explicit expressions for the transport coefficients as a function of kn and k′n by mapping
this discrete transport to a continuous transport, described by a Fokker-Planck equation.
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Figure 2.3: Schematic of the Golgi apparatus. (a) Sketch of the Golgi apparatus as a stack of
connected cisternae exchanging material. (b) Relevant transport processes, including
cisternal progression, diffusion through connecting membrane tubules and vesicular
transport. (c) Spatiotemporal evolution of an initially narrow protein distribution
(as produced by a pulse-chase experimental procedure). Pure convection produces
a uniform translation of the peak, diffusion broadens the peak, and loss causes an
exponential decrease of the protein content.

2.1.2 Transport rates

Discretizing a continuous equation has been abundantly described as it is a first step to
numerical analysis of many systems (see [52, 53], and discussion in appendix C) . Various
arbitrary choices have to be made during discretization, and, the other way round, choices
must be made to make our transport equation continuous. Starting from rates of exchange
between discrete cisternae, we will make all choices in order to find a continuous equation
that can be written as a Fokker-Planck equation, i.e. :

∂tA = ∂z (D∂zA− vA) (2.3)

Omitting the external fluxes (which we will reintroduce later), the discrete transport
equation reads, with n the index of one cisterna :

∂tAn = −(kn + k′n)An + k′n+1An+1 + k′n−1An−1 (2.4)

We want to compare this equation to a discrete version of the Fokker-Planck equation (Eq.
2.3), in order to map the values of the {k}, {k′} to a velocity and a diffusion coefficient.
The velocity here will not include the progression of cisternae through the stack and only
results from the exchanges between the cisternae. Therefore, we will consider the Fokker-
Planck equation in the reference frame of the cisternae, and we will call ve the velocity
associated to the exchange of material between cisternae.

Let us discretize 2.3. The discrete derivative of A with respect to z can be written as :

∂A

∂z
=
A(z + δz)−A(z − δz)

2δz
(2.5)
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In which δz is the discrete spatial step. This can also be written, with the notation
An = A(n δz) :

∂A

∂z
=

1

δz

∂A

∂n
=

1

δz

An+1 −An−1

2
(2.6)

Since we want to map a discrete Fokker-Planck equation to the transport between cisternae
(Eq. 2.4), we must take δz to be the distance between cisternae. Let use define An+1/2

and write alternatively the derivative of X:

An+1/2 =
An +An+1

2
(2.7)

∂A

∂n

∣

∣

∣

∣

n

= An+ 1
2
−An− 1

2
(2.8)

Let us note that equation 2.8 yields the usual (discrete) formulation for the second deriva-
tive :

∂2A

∂n2

∣

∣

∣

∣

n

= An+1 +An−1 − 2An (2.9)

Discretizing the Fokker-Planck equation, using Eqs. 2.8,2.7,2.6 yields : :

∂tAn =
1

δz2
Dn+ 1

2
(An+1 −An)−

1

δz2
Dn− 1

2
(An −An−1)

−
1

2δz
vn+ 1

2
(An+1 +An) +

1

2δz
vn− 1

2
(An +An−1) (2.10)

Let us note that we did not discretize the time derivative, and hence this is not an explicit
Euler discretization scheme, which we show to be unstable in appendix C). In the following,
we will call ve the effective velocity due to the exchange between cisternae, in order to make
a distinction with the progression speed which we will introduce later. Identifying Eqs.
2.10 and 2.4 yields :

Dn+ 1
2
=
kn + k′n+1

2
δz2 (2.11)

ve
n+ 1

2

= δz
(

kn − k′n+1

)

(2.12)

In order to write D and ve as rates (since they originate from rates of transport), we
normalize all distances by δz, the distance between two adjacent cisternae, and we find :

Dn+ 1
2
=
kn + k′n+1

2
(2.13)

ve
n+ 1

2

= kn − k′n+1 (2.14)

A rate r of exit throughout the Golgi, which may represent recycling to the E.R. or direct
export, can be added and is written the same way in a continuous or a discrete formalism
: ∂tAn = −rAn.

It is capital here to note that a unidirectional transport (∀n , k′n = 0, kn > 0) does
not yield a zero diffusion coefficient : equations 2.13,2.14 show that, in this case, D = 1

2v
e.

More generally, for any transport by vesicles or tubes, the speed has an upper bound given
by the diffusion coefficient :

ve ≤ 2D (2.15)
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Let us define the Peclet number Pe = Lv/D, a dimensionless quantity which quantifies
the importance of convection relative to diffusion, in which L is the size of the system. In
the absence of cisternal progression, the statement of equation 2.15 also writes, in term of
the Peclet number Pe :

Pe <
N − 1

2
(2.16)

In which N is the number of cisternae in a Golgi stack, such as L = (N − 1)δz.

These transport equations, and the conclusions, are valid in the reference frame of the
cisternae. But as we mentioned in the introduction, the cisternae themselves, might be
progressing through the stack, according to the cisternal progression model (fig. 2.2, right).
In the reference frame of the cell, assuming a constant progression speed vp through the
stack, the continuous transport equation now reads :

∂A(z)

∂t
=

∂

∂z

(

D
∂A(z)

∂z
− v.A(z)

)

− r.A(z) + J0(z) (2.17)

With v = vp + ve

Changing the reference frame shows that there is a simple addition of the progression
speed with the speed of biased diffusion. Let us recall that ve ≤ 2D (Eq. 2.15). Therefore
any experimental result indicating v > 2D would show unambiguously that cisternal pro-
gression exists. Because both models can result in a convection-diffusion equation, there
is no other quantitative evidence of cisternal progression from the kinetics of transport
through the Golgi apparatus.

The next step is therefore to analyse experimental data with a Fokker-Planck equation
to find out if there are quantitative evidences for cisternal progression.
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2.2 Solutions of the Fokker Planck equation

Since we can map both models to a general Fokker-Planck equation, it is of high interest
to know how to solve this equation. Let us recall the expression of the time-derivative of
the concentration A :

∂A(z)

∂t
=

∂

∂z

(

D
∂A(z)

∂z
− v.A(z)

)

− r.A(z) (2.18)

This expression is not sufficient to find a unique solution : one has to know the initial
concentration profile A(z, t = 0) and the boundary conditions.

In our case, the boundary conditions are dictated by the microscopic situation : if we
call A1 and AN the concentrations in A in the first and last cisterna respectively, molecules
escape from the Golgi with a flux k′1A1 at the cis face and a flux kNAN at the trans-face.
In the continuous formalism, the fluxes Jout exiting the Golgi because of the rates k′0 and
kN write :

Jout(0) =
k′1
δz
A(0) (2.19)

Jout(L) =
kN
δz
A(L) (2.20)

In which we kept the δz for clarity, but we can recall that we chose to set δz = 1.

In addition to those fluxes, in the case of cisternal progression, molecules in the last
cisterna with exit the stack as the last compartment disassemble (with a speed vp). Finally,
the incoming flux J0 to the Golgi can be put in the boundary conditions if we assume the
incoming flux from the E.R. to only enter at the cis face, yielding a term Jin. Eventually,
the boundary conditions read :

J(0) = −k′1A(0) + Jin (2.21)

J(L) = (kN + vp)A(L) (2.22)

If the initial concentration profile A(z, t = 0) is known, equations 2.18,2.21,2.22 allow
us to find a unique solution A(z, t). However, because of the variety of boundary condi-
tions, solving explicitly those equations may turn out to be very difficult. As shown in the
appendix, usual methods of solutions require at least some degree of numerical computa-
tions, because of the boundary conditions. We therefore chose to numerically solve the
whole Fokker-Planck equation, which can be very straightforward under certain assump-
tions. In the following, we show how stationary solutions can be found analytically, and
how the time-dependent solution can be found numerically.

2.2.1 Stationary solutions

The stationary solution of Eq. 2.18 for the protein distribution in the Golgi under a
constant in-flux Jin, with an exiting flux J(L) = voffA(L) may be found by setting
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∂tA = 0 for all n, leading to :

A(z) = α(z, Jin)
(

eλ+z + βeλ−z
)

(2.23)

λ± =
v

2D
(1±

√

1 +
4rD

v2
) (2.24)

In which α(z, Jin) and β are found by applying the boundary conditions. A particular
example of interest is when r = 0. In such case, we find :

A(z) = Jin

[(

1

voff
−

1

v

)

e
v
D
(z−L) +

1

v

]

(2.25)

This result is illustrated in figure 2.4. We can see that if voff > v, molecules exit faster
at z = L than they are convected and the concentration decreases with z. Otherwise, if
voff < v, molecules exit slower at z = L than they are convected and the concentration
increases with z. This concentration profile has been found from the continuous transport
equation. We can compute the typical length scale at which the concentration changes,
and if this length scale is smaller than the spatial step δz = 1, then the continuous equation
is a poor approximation to the discrete equation.

Equation 2.25 shows that the characteristic length scale is λ = D/v. Recalling that
the size of the system is L = N − 1, we find :

λ =
N − 1

Pe
(2.26)

For the continuous approximation to be valid, we need λ > 1. In the absence of cisternal
progression, we showed that Pe < N−1

2 , and in this case λ > 2. In the presence of cisternal
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progression, we might find larger velocities compared to the diffusion coefficient. In section
2.3, we find Pe < 3 (and hence λ > 2) from experimental data, which confirms that a
continuous equation is a good tool even for a 7-compartments system. We show some
concentration profiles for λ = 1

2 , λ = 1 and λ = 2 in figure 2.4.

2.2.2 Numerical simulations

To describe the experiments, we use a numerical simulation of the Fokker-Planck equation.
In the particular case in which the speed is constant with space, we can use a simple explicit
Euler implementation of the diffusion in the moving frame of the cisternae, in order to have
an accurate simulation (discretization schemes are discussed in appendix C, and practical
algorithms are detailed in [52]).

Let us introduce dz, the unit spatial step, dt, the time step for diffusion, and ∆t, the
time step for convection. During each convection time step, there are Nd diffusion step.
Those parameters are linked by the relations :

v∆t = dz (2.27)
dz2

dt
= mD m≫ 1 (2.28)

Nd =
∆t

dt
Nd ≫ 1 (2.29)

In which m is arbitrary, and the larger m, the better the accuracy.

During each convection step ∆t, the whole system is moved to the right by a distance
dz = v∆t, some material exiting at the right face while new material enters at the left face
with a concentration A0. In the simulations, the concentration is described by an array
A[0 : Lz] containing the concentration in each unit length dz (and therefore Lz = L/dz).

The algorithm can be written as follows :

while t<Tf :
#New convec t ion s t ep
t=t+Dt
#The whole system i s t r a n s l a t e d
A[ 1 : Lz]=A[ 0 : Lz−1]
#New mater ia l en t e r s at z=0
A[0]=A0
#Many s t e p s o f d i f f u s i o n are s imu la ted
for k=1 to N:

#The concen t ra t ion at the edges i s s t o r ed
AL=A[ 1 ]
AR=A[ Lz−1]
#Di f f u s i on i s implemented by a Euler scheme
A[ 1 : Lz−1]=A[ 1 : Lz−1]∗(1−2/n−r ∗dt ) + A[ 0 : Lz−2]/n + A[ 2 : Lz ] / n
#The boundary cond i t i on s are app l i e d
A[0]=A[0]∗(1 −1/n−kL∗dt/dx)+AL/n+Jon∗dt
A[ Lz]=A[ Lz ]∗(1−1/n−kR∗dt/dx)+AR/n
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Using this simulation, we could compute the speed and diffusion coefficient using pre-
viously published experimental data.
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2.3 Results

The Golgi apparatus occupies of volume of the order of 1µm3. Therefore, it may be
seen in optical microscopy, and (as described later in this section) fluorescent assays allow
experimentalists to track the kinetics of exit from the Golgi apparatus in a living cell.
However, those experiments do not yield the spatial distribution of the molecules in the
Golgi apparatus, hence limiting the information available from such assays. Other as-
says were therefore designed to track the localization of molecules in the stack by electron
microscopy. Electron microscopy cannot be performed on living cell and hence the progres-
sion of molecules through the stack can only be reconstituted after successive experiments
on many cells, thus yielding both tedious manipulations and large error bars. There are
therefore few quantitative experimental results available to compare our simulations to,
sometimes with low accuracy, and all on different cell lines and experimental conditions.
Despite these difficulties, we believe that our approach is the only rigorous way to extract
transport properties from experimental data, as we rely on few microscopic hypothesis and
on a limited number of parameters.

In this section, we will not attempt to find a unique value for D and v in all cells,
because of the reasons mentioned above. Rather, we will attempt to find likely values of
the kinetic parameters for each experiment.

2.3.1 Optical microscopy assays

Recent experiments [46] casted doubts on the cisternal maturation model. In those optical
microscopy experiments, various molecules (VSV protein G, a transmembrane protein,
and procollagen, a large soluble protein that tends to form very large aggregates) could
be tagged by fluorescent markers, while the Golgi apparatus was tagged with a different
fluorescent marker. By selectively bleaching the fluorescent markers inside or outside
the Golgi apparatus, they could observe the kinetics of import or export of fluorescent
molecules. The experimental procedure is sketched in figure 2.5.

Fig. 2.5,♯1 : Various molecules were tagged with fluorescent markers, which were
bleached outside the Golgi apparatus at t = 0. As molecules entering the Golgi at t > 0 are
not fluorescent, the fluorescence in the Golgi area decreases as fluorescent molecules leave
the Golgi apparatus. Hence, the average kinetics of exit from the G.A. can be observed
experimentally. They observed that the fluorescence, and hence the concentration of tagged
molecules, decayed exponentially with time. Results are shown in figure 2.6,(c).

Since this experiment does not yield direct information on the kinetics inside the Golgi,
many sets of parameters may be used to fit the data, and this experiment mainly yields
a time scale of 16 minutes. A second experiment was performed to better understand the
transport kinetics.

Fig. 2.5,♯2 : In a second experiment, flurescently labeled VSV protein G was used.
The Golgi apparatus itself was bleached at t = −5min, and at t = 0, the outside of the
Golgi apparatus was bleached. The fluorescent VSVG molecules were thus allowed to enter
only for five minutes, which is less than the mean transport time in the Golgi. Therefore,



42 Transport in the Golgi apparatus

# 1 : Bleach cell \ Golgi

# 2 : Bleach Golgi

Bleach cell \ Golgi

Fluorescence

Measure

5 minutes

Refill

Fluorescence

Measure

Figure 2.5: An illustration of the optical microscopy experiments performed by Patterson et al.
[46]. The black disc represents the nucleus, which is surrounded by the endoplasmic
reticulum (E.R.). The E.R. synthesizes fluorescent proteins. In the first experiment
(♯1), the fluorescence (represented in green) is bleached in the whole cell except the
Golgi apparatus, and the fluorescence in the region corresponding to the Golgi appa-
ratus (scarlet frame) is measured. In the second experiment (♯2), the fluorescence in
the Golgi apparatus is bleached. During five minutes, the fluorescence in the Golgi
increases because of import from the E.R., and hence the cis Golgi is expected to
have more fluorescent molecules than the trans Golgi. The rest of the cell is then
bleached and the fluorescence in the Golgi region is measured.

fluorescence should be limited to the cis Golgi. They observed a similar exponential decay
of the fluorescence as in the first experiment. Whereas a convective model with exit only
at the trans face would predict a delay in export, because molecules have to be convected
from the cis Golgi to the trans Golgi,. No such lag was observed, as shown in figure 2.6,(a).

The numerical analysis of those experiments have to be considered with caution for
two reasons. Firstly, even using the second experiment, a large set of parameters can be
used to fit the data. Secondly, the zone of observation does not necessarily match the
real, microscopic, boundaries of the Golgi apparatus because of the optical resolution of
the microscope. The observation zone could in particular include part of the ERGIC and
TGN, in which transport processes could be very different than in the Golgi stack. To
reduce the set of fitting parameters, we turned to electron microscopy assays.

2.3.2 Electronic microscopy assays

Fig. 2.6, (d) In 1998, a quantitative experiment quantitative assay to determine the
kinetics inside the Golgi apparatus was performed by Bonfanti et al. [48]. They used
electron microscopy to directly observe large aggregates of procollagen, and they could
observe the number of aggregates as the function of the position in the stack (cis or trans)
for different time intervals. They performed the so called "incoming wave" protocol, in
which a temperature shift at t = 0 suppresses the incoming flux from the E.R. to the Golgi
apparatus. While the quantity of procollagen aggregates immediately decrease in the cis-
Golgi, it decreases in the trans-Golgi only after a lag of about 30 minutes. This clearly
shows the existence of a convection. It was considered a proof of cisternal progression by
the authors as procollagen cannot enter small, protein-coated (COP) vesicles thought to
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be responsible for vesicular transport in the Golgi apparatus.

Fig. 2.6, (b) Another experiment was done by Trucco et al. in 2004, in which VSVG
proteins are tagged with gold beads, which are easily seen in electron microscopy. By
using temperature blocks, they create a pulse of VSVG, that they observe as it progresses
through the Golgi stack.

Though those experiments give more information, because they include the spatial
distribution inside the stack, they produce few data with high uncertainty, because each
electron microscopy assay at each time interval has to be done on a different cell.

2.3.3 Numerical solutions

The comparison of numerical simulations with experiments are shown in figure 2.6. We
assumed constant values for the velocity v, the diffusion coefficient D and the exit rate
r throughout the stack, because, as we mentioned, we cannot expect enough accuracy
from the data to fit the experiments with an larger parameter space. Moreover, assuming
spatially constant v, D and r enables us to draw straightforward conclusions.

We mentioned in section 2.2 that the out fluxes at the boundaries of Golgi apparatus
could be written :

J(0) = Jin − k′1A(0) (2.30)

J(L) = (kN + vp)A(L) (2.31)

When solving the Fokker-Planck equation to mimic experimental results, we do not have
the microscopic information on {kn}, {k

′
n} and vp, and therefore we cannot implement such

boundary conditions. We can write the boundary conditions more generically, in the form
:

J(0) = Jin − k−A(0) with k− = k′1 (2.32)

J(L) = (k+ + v)A(L) with k+ = kN + vp − v (2.33)

In which v is the total velocity and k+ is an effective rate of exit that can be negative
(for instance, k+ = −ve if kN = 0, i.e. no exit by vesicular transport) or positive.
We mentioned that we cannot give a direct microscopical interpretation of k+ since we
do not have enough independent information on vp and {kn}, {k

′
n}, but can make a few

comments however. Since we assumed D and v to be constant in the Golgi apparatus, we
know that the rates {kn}, {k

′
n} are constant throughout the Golgi apparatus (except for

k′1 and kN ), and we will call their value kn and k′n respectively. Because of the definition
of v (v = vp + ve) and of ve (ve = kn − k′n+1), equation 2.33 can be re-written as :

kN = kn + (k+ − k′n) (2.34)

Therefore :
kN ≤ kn ⇔ k+ − k′n ≤ 0 (2.35)

In particular,
k+ ≤ 0 ⇒ kN ≤ kn (2.36)
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Figure 2.6: Quantitative analysis of data from different experimental protocols through numer-
ical resolution of Eq.2.17. (a,c) Optical microscopy assays. (a) Exit of a short pulse
of secretion of a tagged small transmembrane protein (VSVG). (c) Exit of a steady-
state distribution (at t = 0) of a large soluble protein aggregate (procollagen) and
a small transmembrane protein (VSVG) [46]. Both experiments exhibit an almost
exponential decay with a typical time of 16 minutes.
(b,d) Electron microscopy assays. (b) Pulse chase experiment using VSVG [54]
clearly shows a combination of translation, broadening and decay of the peaked con-
centration distribution. (d) Evolution of the concentration of a procollagen in the cis
(black) and trans (grey) face of the Golgi upon sudden blockage of ER secretion [48].
Data suggests the presence of diffusion, corresponding to inter-cisternal exchange.
In addition to experimental data, the various curves represent numerical results of
equation 2.3 with relevant sets of parameters. Unless mentioned otherwise, we used
by default k+ = 0 and k− = 0, with J(0) = −k−A(0) and J(L) = (k+ + v)A(L).

Which means that the exit from the trans face of the Golgi by vesicular transport is slower
than vesicular transport all along the stack if k+ < 0. On the other hand k− = k′1 and has
a direct interpretation : there is a retrograde flux from the cis Golgi to the E.R. if k− > 0.
The loss rate r is unspecified and can include retrograde flux to the E.R. and/or a flux to
the cell.

We optimized v, D, k+, k− and r by minimizing the difference between the simulations
and the experimental results, for each set of experimental data. As we can see in figure
2.6 , sometimes several sets of (v,D, k, r) could yield similar results, and we represented
here the most significant sets.
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procollagen VSVG

transport vesicle

Figure 2.7: An illustration of the proposed mechanism of transport of large molecule in the
Golgi : large fractions of cisternae can be translocated and merge with an adjacent
cisterna.

2.3.4 Discussion

The analysis of experimental data by numerical simulations lead us to strong conclusions.

• Most importantly, figures 2.6,(a,b,c,d) show that in all experiments, we find v < 1
2D,

which means that there is no quantitative experimental data showing unambiguously
cisternal progression.

• From figures 2.6,(a,b), we also learn that there is either a retrograde flux of VSVG
to the E.R. at the cis face (if k− > 0), or VSVG exits throughout the stack (r > 0).
Otherwise see that export from the Golgi apparatus exhibits a delay that does not
exist in experiments, even for very high values of diffusion with respect to convection
(D ∼ 3v), much higher than observed in electron microscopy experiments (figure
2.6,(b) shows v ∼ D).

• Surprisingly, even procollagen exhibits a large diffusion coefficient compared to its
velocity (2.6,(c,d)), despite the claim that procollagen cannot enter COP vesicles.

Those results show with certainty that cisternal progression is at best an incomplete
model. Since v < 1

2D, we find Pe < 3, and hence the convective transport, whatever its
nature, never dominates over diffusion. If we accept the claim that procollagen cannot be
transported by COP vesicles, then the only model we can come to is that large fractions
of cisternae, containing large molecular aggregates, can be translocated and merge with
an adjacent cisterna, as illustrated in figure 2.7. This model makes cisternal progression
unnecessary as most known features of transport in the Golgi apparatus can be explained.
However, as the exchange of large fractions of cisternae can be symmetric, the "large
chunks" model is not incompatible with cisternal progression. Such large transporters
have been observed in the E.R. to Golgi transport, as well as in transport from the Golgi
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apparatus to the plasma membrane [55]. However, due to the interconnected structure of
the Golgi stack, such large carriers could be difficult to identity in the Golgi apparatus. A
conceptual model including a very similar mechanism has been proposed recently [56].

Our formulation enabled us to quantitatively analyse experimental results and yield
conclusions on the transport of cargo in the Golgi apparatus. By allowing the rates kn and
k′n to vary spatially, we may now consider the description of more complex transport.
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2.4 Beyond constant rates of transport

In the previous section, we were interested in constant rates of transport v, D, and r,
in order to better understand the anterograde trafficking of newly synthesized molecules
in the Golgi apparatus. As we mentioned in the introduction, there are other types of
trafficking in the Golgi apparatus : some molecules move in a retrograde fashion (from
trans to cis), while some other keep a constant averaged position. Resident Golgi enzymes,
responsible for the maturation of lipids and proteins (for instance by adding glycans)
are one particularly interesting example as they are crucial to the function of the Golgi
apparatus.

It has been shown that these resident Golgi proteins are also transported in and around
the Golgi apparatus [57]. Since they have a preferred localization in the Golgi apparatus,
their transport rates cannot be constant, and have to be non-monotonous. Therefore, in
this section, we will be interested in a Golgi apparatus in which the rates of transport
v and D are not constant along Oz, corresponding to non-constant values of {kn} and
{k′n}. In continuity with the other chapters this thesis, we are very interested in describing
transport processes as a diffusion along an energy landscape, as it yields an intuitive
description of transport in complex systems. Wells in the energy landscape, depending
upon the physical properties of the transported proteins, could be a way to trap molecules
at a given location in the Golgi apparatus, and hence enable the existence of resident Golgi
proteins, characteristic of a given Golgi localization. On the other hand, a molecule on
a monotonous energy landscape will be driven in a constant direction. One shortcoming
of this description is the implicit assumption that detailed balance is satisfied, which is
not guaranteed in transport processes involving energy input. If detailed balance is not
satisfied, more complex descriptions, such as the existence of two distinct protein states
[58] can be envisioned (in the issue at hand the two states of a protein distinguish if the
protein is in a compartment in a carrier).

2.4.1 Diffusion in an energy landscape

In the previous section we assumed the transport rates kn and k′n to be independent of
the cisternal number n. However, transport through the Golgi apparatus is most likely
biased by the fact that, whether they move or not, different cisternae are not chemically
and physically equivalent, so forward and backward transition rates between cisternae need
not be equal (kn 6= k′n), nor uniform through the Golgi (∂nkn 6= 0).

Let us write the energy landscape En, which reflects the interaction between a given
protein and the local environment of the n-th cisterna . We want a thermodynamically
consistent definition of En, so that, at equilibrium, the probability for a molecule to be in
the n-th cisterna is :

P (n) ∝ e−En (2.37)

All energies are defined here with respect to the reference energy available from the
environment to perform the transition (the thermal energy kBT for thermally activated
processes, and of order 20kBT for processes optimally utilizing the energy hydrolysis of
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one ATP molecule).

We assume the proteins to move only to neighboring cisternae (i.e. only the transitions
n → n + 1 and n → n − 1 are allowed), and we assume all moves to be reversible (i.e. if
n→ n+ 1 is allowed, so is n+ 1 → n). Under those assumptions, any stationary solution
satisfies detailed balance, and we can write :

k′n+1 = kne
∂nE
∣

∣

n+1
2 (2.38)

From equations 2.13,2.13, we deduce :

Dn+ 1
2
=

1

2
kn

(

1 + e
∂nE
∣

∣

n+1
2

)

(2.39)

ve
n+ 1

2

= kn

(

1− e
∂nE
∣

∣

n+1
2

)

(2.40)

To go further, we need to assume that the differences in energy between the cisternae
are small. We can then expand in ∂nE. At first order, we find :

Dn+ 1
2
≃ kn

(

1 +
1

2
∂nE

∣

∣

n+ 1
2

)

(2.41)

ve
n+ 1

2

≃ −D∂nE
∣

∣

n+ 1
2

(2.42)

The term kn in D does not come from a difference in energies between cisternae, but can be
related to an energy barrier. By analogy with thermally activated processes, where rates
are exponentials of energy differences, it is useful to define a protein-dependant energy
barrier ∆E. We call ∆E(n + 1

2) the energy barrier to overcome to go from the n-th
cisterna to the (n+ 1)-th cisterna, such as :

kn = k0e
−∆E(n+ 1

2
) (2.43)

In which k0 is a constant rate, and can be seen as the frequency at which a molecule tries
to overcome the energy barrier ∆E. Eventually, we can write in shorthand :

D ≃ k0e
−∆E

(

1 +
1

2
∂nE

)

(2.44)

ve = −D∂nE (2.45)

This expresses the fact that ve and D results from similar processes (transport between
cisternae), but that unlike D, ve is entirely controlled by the gradient of cisternae prop-
erties. Note that, because of our assumptions, the relationship between ve and D is an
analogous to Einstein’s relation, an example of the fluctuation-dissipation theorem [59].

As of now, in this section, we considered transport in the reference frame of cisternae.
The global velocity appearing in the Fokker-Planck equation (Eq.2.17) (and the one mea-
sured experimentally) also includes the constant velocity of cisternal progression. From
equations 2.44,2.45, we can see that cisternal progression can be included in the energy
landscape formalism by adding a linear term nvp/D in the energy.
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Hence, we can describe transport in the reference frame of the laboratory by using
an effective energy Ẽ including a linear term describing progression. We can identify the
reference frame of the laboratory to the reference frame of fictive immobile cisternae, and
the transport equations now read :

∂tAn = ∂n(D∂nA− vA) (2.46)

v = −D∂nẼ (2.47)

Ẽn = En − n
vp
D

(2.48)

It should be noted that the “energy landscape” picture is very general, and not restricted
to, e.g, differences of chemical potential in different cisternae. It can in particular capture
at a phenomenological level the existence of differences in vesicle secretion in different
cisternae or in the two faces of a given cisterna.

2.4.2 Dynamics of resident Golgi proteins

We mentioned that resident Golgi proteins are preferentially located in a given region of the
Golgi apparatus [60]. Even in the presence of convection, the residency of such proteins
may be accounted for by adding to the (linear) convective potential a term promoting
protein localization, the simplest form of which is quadratic: K

2 (n−n0)
2. Such a potential

favors protein localization around the n0-th cisternae, with a stiffness K. This type of
energy profile could in principle describe the transport of proteins moving in a retrograde
or anterograde fashion (n0 < 1 and n0 > N , respectively), as well as Golgi resident proteins
preferentially localized in a particular cisternae (1 < n0 < N). The two former situations
differ little from a purely convective picture, although with non-uniform velocity. The
latter on the other hand yields interesting predictions concerning the residence time of
resident Golgi proteins.

We can use equations 2.41,2.42,2.3 to write the Fokker-Planck equation in the energy
landscape formalism :

∂tA = ∂nj − rA with : j = − (D∂nA− vA) (2.49)

v = −D∂nẼ (2.50)

Even if Ẽ has a minimum, the proteins have a finite probability to reach the Golgi bound-
aries by diffusion, and hence resident proteins have a finite lifetime in the Golgi. For
completeness, we should take into account the possibility of r depending upon n. How-
ever, this cannot be included in the flux j in 2.49, and thus cannot be mapped on the
energy landscape. Therefore, there is no simple general solution of 2.49 if r depends on
the position. In the following, we will assume r to be constant , but we can keep in mind
that a r depending upon n could be an additional way to influence protein transport, and
hence another tool to locate resident Golgi proteins.

Let us compute this lifetime in the case of a strongly confining potential, Ẽn = K
2 (n−

n0)
2, in the absence of global convection. If the outward flux Jout is small enough, the

concentration in the Golgi is quasi static, (i.e. it is close to the stationary solution). In
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the limit Jout → 0, the stationary distribution of proteins is :

A ≃ A0e
−K

2
(n−n0)2 (2.51)

Where A0 is proportional to the total concentration A : A0 ≃ A
√

K
2π . Because the fluxes

are linear in A in equation 2.49, the stationary distribution does not depend on r in the
limit Jout → 0. The exit fluxes from the Golgi apparatus write :

Jout
1 = k′1A1 (2.52)

Jout
N = kNAN (2.53)

We can compute the characteristic exit times τ1 and τn from the cis-most cisterna and
the trans-most cisterna respectively :

τ1 =
A
Jout
1

=
1

k′1

√

2π

K
e

K
2
(1−n0)2 (2.54)

τN =
A
Jout
N

=
1

kN

√

2π

K
e

K
2
(N−n0)2 (2.55)

(2.56)

Because all the fluxes are linear in A, the lifetime τ0 of resident Golgi proteins is :

τ0 =
1

r + 1
τ1

+ 1
τN

(2.57)

Let us now compute the effect of convection on the lifetime of a resident protein. A velocity
v can be modeled as a potential E′

n = −vn/D, and the new energy landscape Ẽ′ = Ẽ+E′

can be written :

Ẽ′
n =

K

2
(n− (n0 + δn))2 + Ẽ′

n0+δn (2.58)

δn =
v

KD
(2.59)

The location of the energy minimum is therefore shifted from n0 by a distance δn in the
direction of the convection, and the fluxes at the boundary are modified accordingly. The
situation is illustrated in figure 2.8. If v corresponds to cisternal progression, the exit rate
at cis face is unchanged. If v is due asymmetric vesicular transport, we will assume the
rates {k′n} to be unchanged (i.e. v comes from an increase of the {kn}). In both scenarios,
it is reasonable to assume the fluxes, in the presence of convection, to be :

J1(Ẽ
′) = −k′1A1 (2.60)

JN (Ẽ′) = (kN + v)AN (2.61)

By replacing n0 by n0 + δn in equation 2.54,2.55, we can now compare the mean exit
times τ ′1 and τ ′N with convection to their equivalent in the absence of convection. We
assume that δn is small compared to N , so that minimum of is energy is not drastically
changed, and n0 + δn is still far enough from the boundaries for the quasi-stationary
approximation to be valid. At first order in δn, we find :

τ ′1
τ1

≃ e−
v
D
(1−n0) (2.62)

τ ′N
τN

≃ kN
kN + v

e−
v
D
(L−n0) (2.63)
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Figure 2.8: Convective flux affect the life-time of Golgi resident proteins. Proteins localized
in particular cisternae by a quadratic energy possibly originating from hydrophobic
mismatch as sketched (see section 2.5.3) between the protein transmembrane domain
and the cisterna membrane (sketch) may be driven out of the Golgi by the convective
flux imposed by cisternae maturation.

The lifetime of resident Golgi proteins is dominated by the smallest lifetime, as shown
in equation 2.57. Let us consider the case in which the exit time is dominated by the
flux at the trans face n = N (because kN ≫ k′1 or because n0 > N/2 and kN ∼ k′1). In
this case the ratio of the exit time with convection τv over the exit time in the absence of
maturation τ0 reads :

τv
τ0

≃
1

1 + v
kN

e−Pe(1−n0
N

) (2.64)

Pe =
Lv

D
(2.65)

This is an interesting result : the ratio of residency times does not depend upon the
stiffness K of the potential well, but depends highly on the Peclet number and the position
of the well. The further from the trans edge a resident protein is, the more its residency
time will be sensitive to convection (because of the shape of the quadratic potential), as
illustrated in figure 2.8.

A (dimensionless) confining potential of order of order Econf (= KN2/2) ∼ 3 increases
the protein residency time by more than an order of magnitude (from twenty minutes to
about four days) compared to pure diffusion, Eq.2.54. Protein localization under convective
flux thus requires a stronger potential than in the absence of convection. Confinement
within a particular cisterna is maintained against the flux if δn < 1, or K > v/D (≃ 1
according to our estimates, Fig.2.6), and confinement within the Golgi is only possible if
δn < N , or K > v

ND (≃ 0.15, giving a total confining energy Econf & 3.5). Furthermore,
Eq.2.64 yields the experimentally testable prediction that, all other things being equal,
resident proteins located in the trans region should have an exponentially lower residency
time than proteins located in the medial and cis regions of the Golgi stack.

We now have a functional formalism to describe transport and localization of proteins
in the Golgi apparatus. To better understand our results, we now have to focus on the
actual microscopic origin of the parameters.
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2.5 Microscopic origin of the parameters

2.5.1 Diffusion coefficient

As we mentioned in the beginning of this chapter, physical transport between cisternae
is thought to involve two possible carriers : vesicles secreted by one cisterna and merging
with the other, and tubules connecting the two cisternae [34] (Fig.2.3). Both could in
principle permit unidirectional and bidirectional transport, and both involve the diffusive
search for a “hot spot" (the entrance of a tubule or a spot of vesicle secretion), possibly
followed by activated processes (vesicle scission and fusion). In Eq.2.43, the diffusive search
is characterized by the reference rate k0, while the activated processes are described as an
effective energy barrier ∆E.

The time τ needed for a molecule to find a hot spot by diffusion in a cisterna of radius
R is related to the microscopic diffusion coefficient D2 of the molecule by 1/k0 ∼ R2/D2.
The effective diffusion coefficient is hence D = h2/2τ , in which h is the distance between
two adjacent cisternae. We show in the appendix that the effective diffusion coefficient
along Oz of a transmembrane protein like VSVG traveling between cisternae of radius R
in a process limited by the diffusive search for one hot spot of size a is approximately :

D ≈
1

2 log
(

R2

a2

)D2
h2

R2
(2.66)

A microscopic diffusion coefficient D2 ∼ 0.15µ2/s was found experimentally for VSVG, [50]
and other transmembrane proteins [51]. Using a typical radius of the cisterna R = 450nm
as measured experimentally [46, 49]), we find :

D ≈ 5min−1 (2.67)

Which is about 10 to 20 times larger than the diffusion coefficient obtained from the
propagating pulse fitting method described above (D ∼ 0.3/min). We identify two possible
causes for this large difference :

i) Transport between cisternae is not limited by diffusion, but by activation barriers
such as vesicle scission and fusion or protein entry into tubules

ii) Transport is indeed limited by diffusion, but with a much smaller effective diffusion
coefficient.

Support for the latter possibility comes from the observation that a large fraction of
membrane proteins (about 95%) does not appear to diffuse laterally [46, 50], possibly
because of its segregation within membrane domains and/or membrane-cytoskeleton in-
teraction. Protein diffusion is only effective in the mobile state, so the effective diffusion
coefficient (for all proteins) should only be about 5% of the microscopic one, leading to an
inter-cisternal transport rate of 0.25 min−1, close to the fitted value for VSVG.

It is however also reasonable to expect that membrane diffusion goes unhindered but
that there exists an energy barrier ∆E for proteins entering the hot spot to be actually
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transported. One can expect the effective diffusion coefficient with a such barrier to be of
order D ∼ k0e

−∆E , and a modest energy barrier of order ∆E = 2 − 3 (in units of kBT
if transport is thermally activated, in units of the activation energy otherwise) would be
sufficient to reconcile the microscopic model with the fitted value of the parameters.

In the next sections, we discuss the possible origins of the energies mentioned in this
chapter.

2.5.2 Energy barriers

The membrane curvature at the edges of cisternae, in the tubules connecting two cisternae,
and at the neck of a budding vesicle (see chapter 1) is fairly high (of order ±1/30 nm−1,
see [34, 54]) and some membrane proteins may find such highly curved environments
unfavorable. As an illustration, it has been shown that lipid membranes with several
components had different compositions in areas of different curvature, both in vivo [61],
in vitro [62, 63], and theoretically [64]. Such an effect is difficult to quantify precisely
and generically a priori, but using our knowledge of the bending energy of the membrane
(equation 1.1), we can find a very rough estimate. The bending energy of a protein of
radius a, of preferred curvature C0 and of bending modulus κp to enter a zone of curvature
C is :

∆E ≃
1

2
κpπa

2(C − C0)
2 (2.68)

Using C − C0 ≈ 1/20nm−1 [34] and a ≈ 3nm [65], one finds ∆E ≈ 1
25κp. The bending

modulus is not well defined at this scale and for one unique protein. However, since the
typical bending modulus of membranes is of the order of 20kBT , it is probably much higher
in a protein, and it is reasonable to think that the energy scale for a protein to enter the
tube is of the order of a few kT .

Since we do not expect diffusion in the membrane plane to be activated (it is rather the
severing of vesicles, and the transport of membranes themselves that consumes energy) this
barrier of a few kBT is sufficient to explain the slow diffusion (on the Oz axis) encountered
in the Golgi apparatus, and the assumption of a diffusion slowed down by energy barriers
is reasonable.

2.5.3 Energy landscape

Let us now consider the whole energy landscape, i.e. the term Ẽ in equations 2.49,2.50.
Since the membrane composition and physical properties change along the Oz axis of
the Golgi stack, one good candidate to provide for a potential energy along Oz is the
insertion energy of a protein, i.e. how much the localization of this protein in one place is
energetically favorable.

It has been shown that the dominant signal which determines the localization of resident
trans-Golgi enzymes is the length transmembrane domain (see [66] for a review), and that
the transmembrane domain does play a role in the localization of some med- and cis-Golgi
proteins [67, 68]. One well-known contribution to the insertion energy of a molecule in a
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membrane is the cost of having molecules with different hydrophobic chain lengths brought
together, called hydrophobic mismatch [69], and illustrated in figure 2.8.

Hydrophobic mismatch between transmembrane proteins and the surrounding mem-
brane has therefore been suggested as a good candidate for protein retention in the Golgi
[70, 71] (see Fig.2.8). The membrane thickness of organelles is known to continuously
increase along the secretory pathway from about 37 Å in the ER to 42 Å at the plasma
membrane [72] and the path followed by a given protein is known to be affected by the
length of its transmembrane domain [73, 74].

We can estimate the energy cost of the hydrophobic mismatch between a protein of
radius a ∼ 3nm and its environment. Let us call β the bilayer stretching modulus (of order
0.2J/m2 [21]), and λm the decay length of the mismatch in the membrane (of order 1nm
[75]), h0 the preferred thickness of the protein and h the thickness of the membrane. The
hydrophobic mismatch energy reads [75] :

Em ≈ πaλmβ

(

h− h0
h0

)2

(2.69)

We can now write this energy as a function of the position n in the stack. For simplicity,
we assume a linear profile of the membrane thickness : h(n) = h(0) + (n − n0)α. As we
mentioned, the membrane thickness increases from about 37 Å to 42 Å and hence α ≈ 1Å.
We can therefore write :

Em(n) =
1

2
K(n− n0)

2 (2.70)

K = 2πλmaβ

(

α

h0

)2

≈
1

2
kBT (2.71)

We find that the stiffness of the potential is of order 1
2kBT , and hence the well energy on

the whole Golgi apparatus is of the order of 10kBT . From the discussion of the previous
section (section 2.4.2 , Eqs.2.55,2.63), we see that hydrophobic mismatch is in principle able
to localize resident proteins in the Golgi apparatus, in a region spanning a few cisternae.
There must be supplementary mechanisms to allow a more precise localization in the Golgi
apparatus, and it was shown that the cytoplasmic domains of resident Golgi enzymes also
played a role in enzyme localization. We can suspect that these domains are responsible
for the interaction with various molecules, which could change the transport properties
of the enzyme and enable more accuracy in its localization. One way achieve a better
localization is to have an exit rate rn which depends upon n.
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Conclusion

In this chapter, we developed a formalism to quantitatively study the experimental data
available on the transport in the Golgi apparatus. Though we could not conclude defini-
tively on the controversy opposing the cisternal progression model to the vesicular trans-
port model, we did come to the conclusion that the existing data does not quantitatively
favor one model, though they do show the existence of some amount of diffusion-like
transport one the main axis, even for large protein complexes, imputable to inter-cisternal
exchange. We agree with recent propositions that this exchange could be due to the fission
and fusion of large fractions of cisternae, possibly in addition to cisternal progression. We
showed that this one-dimensional diffusion normal to the membrane plane could emerge
from a process including the two-dimensional diffusion in the membrane plane to find a
hopping hot spot, the overcoming of an energy cap, and the hopping to an adjacent cis-
terna. Numbers seem coherent with the assumption that this energy cap results from the
crossing of a highly curved membrane region such as a tubule or a vesicle bud.

The diffusion-convection formalism can be extended to a full Fokker-Planck equation
including the transport of molecules along an energy landscape. In particular, the local-
ization of resident enzymes could be explained by a well in the energy landscape, whereas
proteins undergoing retrograde transport seem to encounter an energy monotonously in-
creasing with z. We showed that hydrophobic mismatch is a well-suited candidate for the
localization of resident Golgi enzymes within a few cisternae.

In this work, we only considered linear laws of transport, i.e. we neglected any feedback
of the concentration of one protein on the energy landscape. In the case of hydrophobic
mismatch, this can be shown to be inaccurate at high concentration, since the proteins will
change the local thickness of the hydrophobic layer and make it closer to their own favored
hydrophobic layer thickness : transported molecules will change the membrane identity
and hence, alter the local transport properties. This will be the next level of complexity
we want to tackle : in the next section, we will study the feedbacks between identity and
transport.
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2.6 Appendix A : diffusion coefficient in the Golgi apparatus

In this section, we aim at finding D, the effective diffusion coefficient on the Oz axis. It is
different from D2, the bidimensional diffusion coefficient in the membrane plane, though
they are related.
It has been observed that there exist direct continuities between cisternae, and their surface
is much smaller (≈ 2.10−3µm2 [34]) than the surface of a cisternae (≈ µm2). It is logical
to assume that finding a connection is the rate-limiting step in diffusing on the z axis. Let
us call a and b the two faces of a cisternae. Let τ be the mean first passage time of a
protein located initially on the tube on face i to a the tube on face j, and let us assume the
typical diffusion time in a tube to be small compared to τ . We can now model diffusion
along Oz as a random walk on discrete sites of size h with a constant rate of jumps 1/τ .
In the continuous limit, this model gives :

D =
h2

2τ
(2.72)

To reach the tube on face i when starting from the tube on face j, a protein has to reach
the border of the cisterna (assumed circular) and find the tube on face j. Let us call τ+

and τ− the mean first passage times from a tube to the border and from the border to a
tube respectively. If we assume the faces i and j to be identical, each time a protein reaches
the border, it has a probability 1/2 to switch face. Therefore, the mean first passage time
from one cisterna to another is :

τ = 2(τ− + τ+) (2.73)

To compute these mean first passage times, we can use the backward Chapman-Kolmogorov
differential equation for the probability P (r0, 0|r, s) to be at time t = 0 at position r0 for
the first time, given a position r at time t = s (where s is negative) [76, 77, 78] . This
equation reads :

− ∂sP (r0, 0|r, s) = (2.74)
∫

d2ρ

[

W (ρ|r, s) (P (r0, 0|ρ, s)− P (r0, 0|r, s)) +
1

2
D2∆rP (r0, 0|r, s)

]

In which W (ρ|r, s) is the jump probability density from position r to position ρ at time
s. In this continuous formulation, the only possibility of a jump is when the seeker finds
the target, i.e. when it is in a tube (when calculating τ−) or a border (when calculating
τ+). For a tube at position r0 and of radius a, we assume:

W (ρ|r, s)− = k−θ(a− |r − r0|)δ(ρ− r0) (2.75)

In which θ is the Heaviside step function. This assumption means that the tube is entered
with a rate k− by a protein located at a distance smaller than a from the center of the
tube, whereas a molecule further away cannot enter the tube. In the following, we will
assume that the tube is at the position r0 = 0.

Similarly, for a border of width b located at a radius R :

W (ρ|r, s)+ = k+θ(|r|+ b−R)δ(|ρ| −R) (2.76)

Which means that the border is crossed with a rate k+ by a molecule at a distance b from
the border, whereas a molecule further away cannot cross the border.
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Because of the assumed circularity of the cisternae, the only relevant space variable
will be r, the distance of the protein to the center the cisternae. Let us define the mean
first passage times τ−(r) and τ+(r) using P (r0, 0|r, s) :

τ−(r) = −

∫ 0

−∞
sP (0, 0|r, s)ds (2.77)

τ+(r) = −

∫ 0

−∞
sP (R, 0|r, s)ds (2.78)

By averaging the backward Chapman-Kolmogorov differential equation over all orienta-
tions (to have P (r, 0|r, s) instead of P (r0, 0|r, s)), and by multiplying by s and integrating
over s from −∞ to 0, we find :

− 1 =
1

2
D2∆τ

−(r)− k−τ−(r)θ(a− r) (2.79)

−1 =
1

2
D2∆τ

+(r)− k+τ+(r)θ(r + b−R) (2.80)

The boundary conditions we assume for τ− are τ−(r ≤ a) = 1/k− (absorbing boundary)
and ∂rτ−

∣

∣

R
= 0 (so-called reflective boundary condition, coming from the symmetry of the

two face of a cisterna), and for τ+ we assume τ+(r ≥ R− b) = 1/k+ (absorbing boundary)
and ∂rτ+

∣

∣

0
= 0 (reflective boundary condition, coming from the axisymmetric structure of

cisternae). The absorbing boundary conditions rely on the hypothesis λ± → ∞. Otherwise,
they have to be computed self-consistently.

We can then solve equation 2.79,2.80 using these boundary conditions, and we find :

τ−(r) =
R2

D2
log

r

a
+

1

k−
+
a2 − r2

2D2
(2.81)

τ+(r) =
b2

D2
log

r

R
+

1

k+
+
R2 − r2

2D2
(2.82)

When a protein crosses a tube, its new position is r = a (we assumed the tubes to
be centered), whereas after crossing a boundary, it new position is R − b. Therefore, the
mean first passage time from a tube to another is τ = τ+(a) + τ−(R− b). As mentioned,
the size of a tube and the width of the boundaries are much smaller than R, the radius
of a cisterna, and we can take the limit R ≫ a, R ≫ b. Moreover, in this section we
are interested in computing the diffusion coefficient on Oz resulting from the time needed
to find a tube. The consequences of energy barriers to cross the borders or the tube are
discussed in the section 2.5.2, and do not need to be taken into account here. Therefore,
it is consistent to assume λ+ → +∞ and λ− → +∞. Under those assumptions, we find :

τ ≈ R2

D2
log

R2

a2
(2.83)

D =
h2

2τ
≈ 1

2 log R2

a2

D2
h2

R2
(2.84)

In usual conditions, we have R ≈ 500nm, h ≈ a ≈ 50 nm and k ≈ a2/D2, and
hence D is about eight hundred times smaller than D2. Using these values, we find a
typical transport time of one minute, which is one order of magnitude less than observed
experimentally.
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2.7 Appendix B : analytical approaches to solving the diffusion-

convection equation

In this appendix, we will see a few approaches to solving the convection-diffusion equation
with an example of boundary conditions. The equation reads :

∂tC = −∂xJ (2.85)

J = −D∂x + vC (2.86)

We can take v = 1 (if v 6= 0) because of normalization, but let us keep it for a while for the
sake of clarity and generality. A more interesting normalization is to renormalize distances
by the system size L. Let us choose some relevant boundary conditions, as an example :

J(x = 0) = J0 = vCi (2.87)

∂xC

∣

∣

∣

∣

1

= 0 (2.88)

In which Ci is a constant representing the concentration of the material coming in the
system at x = 0. The second boundary condition is equivalent to setting the output flux
to be vC(1).

2.7.1 Fourier Transform

In this case the concentration is not defined outside the boundaries. If we assume a
concentration Ci at x < 0, then the concentration will not be continuous at x = 0, which
is not convenient. Therefore we have to integrate between the boundaries. We find :

φ(q, t) =

∫ 1

0
C(x, t)eiqxdx (2.89)

∂tφ(q, t) = iq vφ(q, t)− vC(1, t)eiq (2.90)

+vC(0, t)− iq D
(

C(1, t)eiq − C(0, t)
)

− q2Dφ(q, t) (2.91)

Here the presence of C(1, t) and C(0, t) implies an integral equation which has to be solved
numerically.

2.7.2 Laplace Transform

We can think about using Laplace transforms to solve the equation :

C̃(x, s) =

∫ +∞

0
e−stC(x, t)dt (2.92)

0 = ∂2xC̃(x, s)−
v

D
∂xC̃(x, s)−

s

D
C̃(x, s) +

C(x, 0)

D
(2.93)

Let us introduce the eigenvalues λ± to solve this linear differential equation for C̃(x, s) :

λ± =
v

2D
±

1

2

√

v2

D2
+ 4

s

D
(2.94)

C̃(x, s) =
1

s
C(x, 0) + αeλ

+t + βeλ
−t (2.95)
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We will make two assumptions to simplify our problem, in order to decrease the complexity.
Those assumptions are :

(∂xC(x, 0))x=0 = 0 (2.96)

C(0, 0) = 0 (2.97)

With our boundary conditions, we find :

β =
−J0

λ−D − v + λ−

λ+ (v −Dλ+)e
−
√

v2

D2+4 s
D

(2.98)

α = −β
λ−

λ+
e
−
√

v2

D2+4 s
D (2.99)

Unfortunately, we could not inverse this transform analytically.

2.7.3 Green Functions

We know the Green function of the diffusion-convection equation. Let us try to apply it
to our case. Consider the differential equation :

(∂t −D∆x + v∂x)f(x, t) = 0 (2.100)

Φt,x = (∂t −D∆x + v∂x) (2.101)

Let us consider the associated Green function K and operators Ψ :

(∂s −D∆y − v∂y)K(x− y, t− s) = δ(t− s)δ(x− y) (2.102)

Ψ±
x = (D∆x ∓ v∂x) (2.103)

One can write f as :

f(x, t) =

∫ +∞

0
ds

∫

V
f(y, s)δ(x− y)δ(t− s) (2.104)

The product of the deltas can be re-written thanks to equation 2.102 and one finds :

f(x, t) =

∫ +∞

0
ds

∫

V
f(y, s)

(

−∂sK(x− y, t− s)−Ψ−
y K(x− y, s− t)

)

(2.105)

We can expand and simplify these integrals and we find, using our boundary conditions :

f(x, t) =

∫ L

0
dyf(y, 0)K(x− y, t) (2.106)

−2v

∫ t

0
[f(L, s)K(x− L, t− s)− f(0, s)K(x− 0, t− s)] ds (2.107)

−D

∫ t

0

[

f(L, s) (∂yK(x− y, t− s))y=L − f(0, s) (∂yK(x− y, t− s))y=0

]

ds (2.108)

+

∫ t

0
(J0 − vf(0, s))K(x, t− s)ds (2.109)
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Moreover, K is the green function for diffusion-convection and is known :

K(x− y, t− s) =
1

√

4π2D(t− s)
e
− (x−y−v(t−s))2

4D(t−s) (2.110)

We find a pair of coupled integral equations :

gX(t) =

∫ L

0
dyf(y, 0)K(X − y, t) +

∫ t

0
J0K(X, t− s)ds (2.111)

f(L, t) = gL(t)−

∫ t

0

[

2vK(0, t− s) +D (∂yK(y, t− s))y=0

]

f(L, s)ds (2.112)

+

∫ t

0

[

vK(L, t− s) +D (∂yK(y, t− s))y=L

]

f(0, s)ds (2.113)

f(0, t) = g0(t)−

∫ t

0

[

2vK(−L, t− s) +D (∂yK(y, t− s))y=L

]

f(L, s)ds (2.114)

+

∫ t

0

[

vK(0, t− s) +D (∂yK(y, t− s))y=0

]

f(0, s)ds (2.115)

Those coupled differential equations can be solved numerically, but are not trivial analyt-
ically.
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2.8 Appendix C : Discretization of the convection-diffusion

equation

The equivalency between a discrete and a continuous formalism for convection and diffusion
is not necessarily straightforward. For instance, At+1

n = At
n − v(An − vAn−1) is not

equivalent to ∂tA = −v∂xA as will be shown further. Here, the equivalencies between
formalisms are discussed, as well as the consequences of the choice of one formalism against
the others. For simplicity, in the following, we will consider only explicit algorithms, i.e.
relating the concentrations at the (discrete) time t+1 to the concentrations at the time t.

2.8.1 Diffusion

Diffusion can be written, in the continuous formalism :

∂tA = D∇2A (2.116)

The naive Euler discretization reads :

At+1
n = At

n +D∆t
An+1 +At

n−1 − 2An

∆x2
(2.117)

In which ∆x is the space step and ∆t is the time step. To know whether this algorithm
is stable, we can perform a Von Neumann analysis of the discretization presented in Eq.
2.117. The Von Neumann analysis consists in studying the stability of eigenvectors, which
we write :

At
n = ζ(k)teikn∆x (2.118)

The values of At follow a (complex) geometric progression. Any stable solution has no
divergent modes and therefore any algorithm is unstable if there is one k0 such as

‖ζ(k0)‖ > 1 (2.119)

We inject equation 2.118 in equation 2.117, and we find :

ζ(t) = 1 +
2D∆t

∆x2
(cos(k∆x)− 1) (2.120)

Therefore, Euler algorithm for diffusion is stable if :

2D∆t

∆x2
< 1 (2.121)

Let us now consider discretization schemes for convection.

2.8.2 Convection

Convection can be written, in a continuous view :

∂tA = −∇.(vA) (2.122)

If the initial condition reads A(x, t = 0) = f(x) and if v is constant, then the solution
writes A(x, t) = f(x−vt). Therefore, in this formalism, a delta function or a step function
is propagated without broadening.
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Euler algorithms

Let us write the most naive discretization of equation 2.122 :

At+1
n = At

n −∆t
vn+1A

t
n+1 − vn−1A

t
n−1

2∆x
(2.123)

This is called the symmetric Euler algorithm (which we will refer to as Euler 2). To know
whether it is stable, let us inject Eq. 2.118 in Eq. 2.123. This yields :

ζ(k) = 1− i
v∆t

∆x
sin k∆x (2.124)

Here ‖ζ(k)‖ is almost always superior to one, and the naive symmetric Euler integration
is hence unstable and should not be used, as shown in figure 2.9.

We can discretize convection in a slightly different way, using the so-called counter
wind algorithm :

At+1
n = At

n −∆t
vnA

t
n − vn−1A

t
n−1

∆x
(2.125)

In which ∆x is the spatial step and ∆t is the unit time step. We can see that it is
merely an asymmetric Euler discretization. However, we can see in figure 2.9 that is not
equivalent to a "true" (continuous) convection as a step function profile of the concentration
broadens. Furthermore, this implementation in fundamentally asymmetric, and becomes
absurd for v < 0. Despite that, this algorithm is frequently used because discontinuous
initial conditions yield no instability. We can see that this algorithm is stable by performing
a Von Neuman analysis. We find that the asymmetric Euler algorithm is stable provided
v∆t
2∆x < 1, but also provided v > 0. Once again, this condition on v shows that the algorithm
is fundamentally asymmetric and should not be trusted under all conditions.

Other algorithms

A commonly used algorithm was designed by Lax. The trick is to use replace the values
of An in the temporal derivative by the mean of An−1 and An+1 :

At
n =

1

2

(

At
n−1 +At

n+1

)

(2.126)

And the new discretization writes (compare eq 2.125) :

At+1
n =

1

2

(

At
n−1 +At

n+1

)

+ c∆t
At

n−1 +At
n+1

2δx
(2.127)

Injection 2.118 into 2.127 yields :

ζ(k) = cos(k∆x)− i
c∆t

∆x
sin(k∆x) (2.128)

And the stability condition is :
c∆t

∆x
< 1 (2.129)
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Figure 2.9: Comparison of the results of the Euler algorithm, symmetric (2) and asymmetric (1),
the Lax algorithm, and the exact solution. Solutions are shown for ∆x = 10−2 (left)
and ∆x = 10−4 (right). In both cases ∆x = 10v∆t and v = 1. The solution found
with a moving frame algorithm may not be distinguished from the exact solution in
this case.

Which is also called the Courant condition. The issue with the Lax algorithm is that it
actually is a Euler algorithm to which was added a diffusion coefficient. Indeed, it may
straightforwardly be written :

At+1
n = At

n − c∆t
At

n+1 −At
n−1

2∆x
+

1

2

(

At
n+1 +At

n−1 − 2At
n

)

(2.130)

Therefore, the effective diffusion coefficient introduced by Lax is :

DLax =
∆x2

2∆t
(2.131)

This diffusion makes it stable, but computationally heavier : to minimize the effect of
diffusion, one has to minimise ∆x while keeping the Courant condition (eq 2.129) satisfied,
and hence the time step decreases, and the number of computational steps increases like
1/∆x2.

Similarly, the asymmetric Euler ("counter-wind") algorithm has an effective diffusion
coefficient, since the algorithm may also be written :

At+1
n = At

n − c∆t
At

n+1 −At
n−1

2∆x
+
c∆t

2∆x

(

At
n+1 +At

n−1 − 2At
n

)

(2.132)

Therefore, the effective diffusion coefficient is :

DE1 =
1

2
v∆x (2.133)

As demonstrated in section 2.1, we clearly show this diffusion contribution in the model
of transport by vesiculation in the Golgi apparatus, but it is not a desirable effect in a
numerical resolution. Its effect is show in figure 2.9.

Eventually, let us note that one does not have to explicitly implement a constant
convection when working in a moving frame. If so, the localization of the boundaries has
to be changed with time, but the numerical solution can be as good as the solution of
pure diffusion. However, this solution is easy to implement only for constant velocities
throughout the system.
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As a conclusion, fig 2.9 shows a comparison between the results of the different algo-
rithms. It is possible to decrease arbitrarily the contribution of the effective diffusion added
by the Lax or counter-wind algorithms by making ∆x arbitrarily small (and decreasing ∆t
enough to satisfy Courant’s condition). However, if ∆x is fixed (in this chapter, it is the
size of a cisterna in the Golgi apparatus), this is not possible and effective diffusion might
be large.



Chapter 3

Maintenance of identity in cellular

compartments

Introduction

In the previous chapter, we did not consider the influence of transported molecules on
membrane properties, and therefore any feedback was discarded. But any transported
molecules will alter its environment. For instance the addition of transmembrane proteins
in a membrane will change the identity (i.e. characteristic chemical composition) of this
membrane, and thus will change the way this membrane senses its environment and how
the membrane is felt by the environment.

Let us consider the case of SNARE proteins : they are pairs of complementary trans-
membrane proteins that act as specific anchors [79]. For instance, having one kind of
SNARE proteins on a vesicle and the complementary kind on the plasma membrane will
favor the fusion of the vesicle with the plasma membrane. This process is schematized in
figure 3.1. During this fusion, the lipids and transmembrane proteins of the vesicle will
be integrated in the plasma membrane, thus altering its identity by adding new anchors
which will change the ability of the membrane to merge with vesicles. This provides a
feedback between transport and membrane properties.

Figure 3.1: Cartoon of the role of SNARE proteins in cells. SNARE A and SNARE B are com-
plementary and facilitate recognition and fusion of the vesicle with a compartment.

In this chapter, we will be particularly interested in the secretion pathway, and more
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Figure 3.2: LEFT : Cartoon of the physiology of the Golgi apparatus. Molecules enter at the cis
face of the Golgi apparatus, are exchanged between the cis Golgi and the trans Golgi,
and exported from the trans Golgi. In the cis and trans Golgi, they can be chemically
altered in a process called maturation. RIGHT : an illustration of cooperativity.
Because of molecular recognition between the vesicles and the compartments, vesicles
will more likely merge with compartments with similar chemical compositions. XY
and UV are non-interacting pair of snares.

so in the Golgi apparatus. As we mentioned in the previous chapter, the G.A. intakes
immature proteins and lipids and exports them [80], after processing them to their mature
state. Famous examples of this maturation are the ceramids, converted to sphingolipids
in the cis-Golgi, and VSV protein G, the sugars of which are gradually remove during its
transit in the Golgi apparatus. A very simplified illustration of the Golgi physiology is
shown in figure 3.2.

Let us consider the transport between compartments in this secretion pathway. While
they constantly exchange molecules [81], they keep their own identity (namely, their chem-
ical composition) unchanged [60]. In a system where fluxes are linearly related to con-
centration differences (i.e. satisfying Fickian diffusion), stationary concentration gradients
can only be maintained by external fluxes. Fluctuations of the fluxes yield fluctuations of
the local composition, and robust compartment identity (namely the existence of station-
ary concentration heterogeneities) is not to be expected. There must therefore exist some
mechanism preventing the cell to become homogeneous, as would happen if the molecules
were freely diffusing in the cell. The SNARE proteins we mentioned are one way [82] for
the membrane composition to influence transport, because they enable a molecular recog-
nition between the organelles and the vesicles, as illustrated in figure 3.2. There are many
existing pairs of SNAREs, and because they influence transport, they are an essential com-
ponent of organelle identity, and fluorescently tagged SNAREs are used experimentally to
identity organelles and to make a distinction between cis and trans Golgi [83]. We will call
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cooperativity the ability for transporters (for instance vesicles) and recipients (compart-
ments such as the cis and trans region of the Golgi) to recognize each other. Of course,
identity is not limited to SNAREs, and results from a complex interplay of networks of
molecules. For instance, Rab GTPases [36] are important markers of membrane identity,
and, interestingly, they are also involved in transport processes as they can recruit motors
and tethering factors [84].

Recently, there has been an effort [85, 86, 87] to build models of vesicular transport in-
cluding cooperative effects. In those models, the fusion rate of a vesicle with a compartment
is controlled by the SNARE composition of the vesicle with respect to the SNARE compo-
sition of the target compartment. This specific vesicle fusion has been shown to enable the
emergence of different identities in the different compartments (i.e. those compartments
ended with different stationary SNARE compositions), because specificity introduced non-
linearities in the transport. However, this did not give a general understanding of the
analytical requirements on transport for heterogeneous identities to be maintained, and
neither did the existing work address the functional consequences of such non-linear trans-
port. Indeed, as illustrated in figure 3.2, the Golgi apparatus is a dynamical organelle and
we have to study if the requirements on transport to maintain compartment identity are
compatible with biological activity.

In this chapter, we attempted to describe as generally as possible the conditions under
which compartments exchanging material may maintain different identities. We find that
the relation between the transport properties and membrane composition must be non-
linear and have specific features. Based on this approach, we can study the consequences
of the mechanisms of identity maintenance on the transport properties of organelles, and
discuss their influence on the biological function of organelles.

We discuss below both the case of a closed system, and the case of an open system with
incoming and outgoing fluxes. By including chemical transformation of the transported
species, we show that cooperative transport can strongly increase the accuracy of a system
responsible for protein maturation and sorting.
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3.1 Stationary compartment differentiation in a closed sys-

tem

We first consider a single protein species distributed between two compartments constantly
exchanging material, and we later indicate how these results might be extended to a
multicomponent system.

3.1.1 One species system

We assume below that the total mass of the system (and the mass of each compartment) is
maintained constant by an unspecified regulatory mechanism, so that the evolution of the
concentration C1 in compartment 1 can generically be described by the Master equation
[88] :

∂tC1 = I1 − J1→2 + J2→1 (3.1)

with a similar expression for compartment 2 obtained by the transformation 1 ↔ 2.

Here, J1→2(C1, C2) is the mean flux from compartment 1 to compartment 2 (with
concentrations C1 and C2, respectively), and J2→1(C2, C1) is the mean flux from the
second compartment to the first. Compartments will naturally reach different concentra-
tions if they follow different exchange rules. We focus on the more interesting case where
J1→2(C, C̄) = J2→1(C, C̄), i.e. there is no structural difference between the two compart-
ments. The source and sink term I1 in Eq. 3.1 may include both external fluxes in and
out of compartment 1 and chemical transformation within this compartment.

The transport of cargo between organelles may be separated into three distinct steps;
step 1 : cargo packaging inside a membrane-based carrier, such as a small protein-coated
vesicle or a membrane tubule [89], step 2 : the actual transport between secreting and re-
ceiving compartments, often involving molecular motors moving along cytoskeletal filaments[90,
91], and step 3 : fusion of the carrier with the receiving organelle (see [92] for a review).
Each of these steps may permit molecular recognition and sorting ; through specific in-
teraction with coat proteins at the vesicle membrane [89], with molecular motors [93, 94],
or with highly specific fusion proteins such as the SNAREs [82]. For step 1, we call Js
the total flux of material secreted by a compartment, and S the fraction of this flux (a
number between 0 and 1) occupied by the species of interest. We first assume step 2 to be
infinitely fast, and show below that a model with finite transport time can be mapped to
the present model. Therefore any vesicle secreted by compartment 1 immediately merges
(step 3) either with compartment 2, with a probability P1→2, or back with compartment 1
(with probability P1→1 = 1−P1→2). The mean flux from compartment 1 to compartment
2 may thus be written :

J1→2(C1, C2) = Js(C1)S(C1)P1→2(C1, C2) (3.2)

For a closed system with fixed concentration Ctot = C1+C2 (no source and sink term),
the symmetric state : C1 = C2 = Ctot/2 is a trivial stationary solution (∂tC1 = ∂tC2 =
0). Linear stability analysis [88] shows that the symmetric solution is unstable provided
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Figure 3.3: LEFT : Fluxes between compartments in a closed system with linear transport
(such as diffusion), as a function of C1/Ctot, the proportion of molecules in the first
compartment. J1→2 is the flux from the first to the second compartment, J2→1

is the flux from the second to the first compartment, and J̄ is the net flux to the
first compartment. The sign of ∂φJ̄(C1 = 1

2Ctot) shows that any perturbation from
the symmetric state (C1 = 1

2Ctot) will be unstable and the system will go back to
the symmetric state. RIGHT : Fluxes between compartments in a closed system
with our model of cooperative transport (equations 3.2 to 3.4) for Cs = 10−2Ctot

and Cf = 1
2Ctot. The sign of the net flux J̄ shows that any perturbation from the

symmetric state will lead the system to an asymmetric state.

(∂C1J1→2)C1=C2=Ctot/2
< 0, as illustrated in 3.3. The case of particles randomly entering

transport vesicles which are secreted at constant rate and fuse non-specifically with either
compartment corresponds to a linear flux (J1→2 ∝ C1) (akin to passive diffusion) and leads
to identical compartments. Spontaneous compartment differentiation can only occur if the
flux reaching the second compartment decreases with increasing concentration in the first
one, and this requires non-linear transport (i.e. cooperativity).

Let us assume the fluxes to have two rather universal types of non-linearity as a function
of concentration. Firstly, the out-going flux of a given species should saturate at high
species concentrations. This can be due to the limited capacity of transport vesicles, the
limited availability of vesicle-coating proteins, or the formation of aggregates inapt for
transport in a compartment beyond a critical concentration. For simplicity, we choose
to keep the flux of secreted vesicles constant (and write it Js ≡ K0Cs), although direct
interactions between cargoes and coat proteins are known to exist [89]. The packaging
fraction S is assumed to saturate beyond a concentration Cs following a Michaelis-Menten
saturation [95] :

S(C1) =
C1

C1 + Cs
(3.3)

Secondly, vesicle fusion is known to be strongly regulated by specific molecular interac-
tions, including, but not restricted to, interactions between matching pairs of SNAREs[82].
Quantitative models have shown the importance of this step for the generation and main-
tenance of non-identical compartments, using fairly detailed mathematical modeling of
the different pairs of SNAREs [85, 86] and/or extensive numerical simulations [87]. Nu-
merous factors can however influence the delivery of transport vesicles, including specific
interactions between the cargo and molecular motors [94]. Here, we adopt a very generic
treatment of specific fusion, where the fusion probability P1→2 deviates from its nonspe-
cific value because of two-body interactions between constituents of the vesicle and the
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Figure 3.4: (a) Location of the critical region in the parameter space {Cs/Ctot, Cf/Ctot}
where stationary compartment differentiation occurs in a closed system (shaded blue,
Eq.3.5). Increasing the total concentration Ctot moves the system along the red line
(arrow). (b) : Variation of the stationary compositions (black) and flux (red) with
the total concentration, showing the breaking of symmetry for Ctot > C∗

tot (Eq.3.5).

receiving compartment : P1→2 − 1/2 ∼ S(C1)C2. After normalization, the probability
may be written :

P1→2 =
Cf + S(C1)C2

2Cf + S(C1)(C1 + C2)
(3.4)

where Cf is the typical concentration beyond which specific fusion becomes relevant.
Within the description outlined in Eqs.(3.3,3.4), linear transport corresponds to both char-
acteristic concentrations being very large : Cs, Cf ≫ Ctot.

Spontaneous symmetry breaking (enrichment of one compartment at the expense of
the other) occurs when (∂C1J1→2)Ctot/2

< 0. As shown in Fig.3.4a, this always happens at
high enough concentration Ctot > C∗

tot, with

C∗
tot

3 = 4CsCf (Cs + C∗
tot) (3.5)

Beyond this threshold, any small perturbation from the symmetric state brings the com-
partments into a stable asymmetric steady-state. As a consequence, the concentration
of the least concentrated compartment (compartment 2, say) and the flux J1→2 of mate-
rial exchanged between compartments both decrease with increasing concentration when
Ctot > C∗

tot, as shown in Fig.3.4b. At high concentration, the asymptotic solution reads
C2 ∼ 2CfCs/Ctot.

Although the actual location of the critical line defined by Eq.3.5 depends on the
model (Eqs.(3.3,3.4)) for the exchange flux J1→2 (Eq.3.2), its existence does not. This
critical behaviour is very general and stems from the presence of two competing effects :
cooperative fusion promotes protein enrichment (and increases with decreasing Cf ), while
saturation of protein packaging (beyond a composition Cs) limits transport. Including the
presence of different types of coat and fusion proteins does not fundamentally alter this
picture [85].
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3.1.2 Extension to a n-species system

Extending the analysis presented above to a n-component system is rather straightforward.
Let us call Ci

α the concentration of the species i in the compartment α (α = 1, 2). The con-
centration of all species in compartment α can be defined as a vector Cα = [C1

α, C
2
α, ..., C

n
α ],

and satisfies the Master equation :

∂tC
i
α = Iiα − J i

α→β + J i
β→α (3.6)

where J i
α→β is the mean flux of the species i from the compartment α to the compartment

β, and Iiα is a net source and sink term including both the presence of external fluxes of
species i in and out of compartment α, and chemical transformation involving species i in
compartment α.

For a closed system (no source and sink term), the total concentration for the i-th
specie is fixed : Ci

tot = Ci
α + Ci

β . All the equations may thus be written for the fractions
φiα = Ci

α/C
i
tot, satisfying φi1+φ

i
2 = 1. Then φ2 = 1−φ1 becomes implicit and the master

equation is now written only as a function of φ ≡ φ1 :

∂tφ
i = −ji1→2(φ,1− φ) + ji2→1(1− φ,φ) (3.7)

with the normalized fluxes jiα→β = J i
α→β/Ctot. Assuming as before that both compart-

ments follow identical exchange rules, φ1/2 = 1−φ1/2 = [12 ,
1
2 , ...,

1
2 ] is a stationary solution.

The linear stability of the symmetric solution is determined by the Jacobian matrix M :

Mi,k = −2
(

∂φijk1→2

)

φ1/2

(3.8)

The symmetric state is unstable, and spontaneously evolves towards a non- symmetric
state if If M has at least one positive eigenvalue.

In a multi-component system, the fluxes can be written similarly to the main text :

J i
α→β = Jα(Cα)S

i
α(Cα)Pα→β(Cα,Cβ) (3.9)

The functions Jα, Si
α and Pα→β may contain various non-linearities. In particular Pα→β

may involve any combination of pair interactions {Si
α, C

j
β} which can lead to a very rich

behaviour. One could in particular describe in this way the transport of proteins directly
interacting with the secretion (coat proteins) or the fusion (SNAREs) machinery, them-
selves directly involves in transport.

3.1.3 Application : two species and a free energy

To model complex phenomena with two or more species, we may either built the transport
laws from assumption, or derive rates from a free energy. Though the knowledge of such
a free energy is not necessarily within our grasp, we show here an example of such a
derivation. If we know the energy potential as a function of φA and φB, then we can
write a set of exchange rates using detailed balance. These rates might not correspond to
the biological rates as detailed balance need not be satisfied. However, if we assume the
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stationary states to derivate from the free energy, then detailed balance will lead to the
correct stationary states. It is quite intuitive to build an energy landscape that can show
three kind of behaviour : homogenous, phase separation with A and B together, or phase
separation with separate A and B.
One simple form we can take for the free energy of a cisternae is :

f(φA, φB) = α
(

φ2A + βφ2B + γφAφB
)

+ φA log φA + φB log φB (3.10)

In which α and αβ describe the interaction of A with itself and B with itself respectively
: if α < 0, proteins A will tend to regroup in the same cisterna, and otherwise proteins A
will tend to spend in as many cisternae as possible. αγ describes the interaction of A with
B, and a negative value corresponds to an attractive interaction, whereas a positive value
leads to a repulsion, and the tendency for A and B to segregate in different cisternae. The
log terms correspond to the entropy as was mentioned earlier. Examples of similar forms
of the energy may be found in [23, 25], and later in chapter 4.

Here, f is normalized by the activation energy in the system. If f is normalized by
kBT (thermally activated system), α is inversely proportional to the temperature. If there
are only two cisternae, the free energy of the first is f(φA, φB) and the free energy of the
second is f(1−φA, 1−φB), and the state of the whole system can be described merely by
the concentrations of A and B in the first cisternae. We call ftot the total energy of the
system defined by :

ftot(φA, φB) = f(φA, φB) + f(1− φA, 1− φB) (3.11)

It is shown in the appendix that, as long as we do not consider the fluctuations (if we
stay in the mean-field approximation), we can in some case map laws of transport to an
energy landscape. The other way round, we can deduce the fluxes from the energy (once
again, the fluctuations will not be correctly described), if we assume detailed balance to be
satisfied. This is valid if the active ATP-dependent processes activate the events of fission
and fusion but do not change the stationary states of the system.

Let us write the rates of exchange, assuming A and B to be transported separately.
W (φA → φA+ δA, φB) is the rate at which an infinitesimal load δA is received by the first
compartment from the second. Detailed balance imposes :

W (φA → φA + δA, φB)P (φA, φB) =W (φA + δA → φA, φB)P (φA + δA, φB) (3.12)

P (φA, φB) =
1

Z
e−ftot(φA,φB) (3.13)

Assuming δA, the variation of the concentration of a cisterna after fusion or fission of a
vesicle, to be small, we can expand the energy around φA and 1− φA, and we find :

W (φA → φA + δA, φB)

W (φA + δA → φA, φB)
= exp

(

−δA
∂f

∂φA

∣

∣

∣

∣

φA,φB

− δA
∂f

∂φA

∣

∣

∣

∣

1−φA,1−φB

)

(3.14)

This is a general result of detailed balance, and gives the ratio of the rates but not the
rates themselves. Let us then define a transport rate k0, such as :

W (φA → φA + δA, φB) = k0 exp

(

−δA
∂f

∂φA

∣

∣

∣

∣

1−φA,1−φB

)

(3.15)

W (φA + δA→ φA, φB) = k0 exp

(

δA
∂f

∂φA

∣

∣

∣

∣

φA,φB

)

(3.16)
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Figure 3.5: Left : Partial phase diagram for an exchange model with rates given by detailed
balance, with f(φA, φB) = α

(

φ2A + φ2B + γφAφB
)

+ φA log φA + φB log φB as a free
energy per cisterna. Light blue corresponds a stable symmetric solution, red is com-
pletely unstable and light red corresponds to the symmetric state being a saddle
point. Right : density of A and B proteins in both compartments as a function of time
for four points on the phase diagram. a : (α = 0.5, γ = 3), and b : (α = 1.5, γ = 2)
: A and B are mainly in the same compartment. c : (α = 0.5, γ = 0) : A and B are
evenly distributed in the two compartments. d : (α = 1.5, γ = −2) : A accumulates
in the first compartment whereas B is mainly in the second compartment.

And therefore :

W (φA + δA → φA, φB) = k0 (φA exp [+1 + α(2φA + γφB)])
δA (3.17)

W (φA, φB + δB → φB) = k0 (φB exp [+1 + α(2βφB + γφA)])
δB (3.18)

For simplicity, we will later assume β = 1 (i.e. we assume the energy to be symmetric with
A ↔ B), and δA = δB. To go further, we need to recall that δA is small and therefore
∂f/∂φA(φA + δA) ≈ ∂f/∂φA(φA). Finally we renormalize the times by 1/k0δA, and we
can write the fluxes as a function of the rates :

JA
1→2(1− φA, φB) =W (φA → φA − δA, φB) ≈W (φA + δA → φA, φB) (3.19)

JB
1→2(φA, 1− φB) =W (φA, φB → φB − δB) ≈W (φA, φB + δB → φB) (3.20)

As we can see from equation 3.16, δA changes the magnitude of the fluxes but not the
stationary states. Since we are interested in the stationary properties of the system, we
can enter δA into the normalization of the energies as we discuss in the appendix 3.5.1.
There are now two parameters α and γ, that can be negative or positive, and their values
lead to all possible behaviors for the stable solution.

We can now use the result from section 3.1.2 to study the stability of the symmetric
solution. We find that the stationary solution is stable if and only if :

α ≥ −1 (3.21)

γ2 ≤ 4

(

1 + α

α

)2

(3.22)
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The symmetric solution can be stable when the log term dominates (‖α‖ ≤ 1) and will be
stable if α > 0 (A molecules, as well as B molecules, self-repel). Otherwise, A molecules
will tend to accumulate in one compartment, and B molecules will accumulate either with
A (especially if γ > 0) or in the other compartment (especially if γ < 0). The analysis of
the symmetric solution enables us to know whether it is stable (see figure 3.5), but does
not give more information on final steady state than it symmetry.

Therefore, using the linear analysis of the symmetric state does not yield as much
information as minimizing the free energy. If the free energy is known, linear analysis
should therefore be employed only if ftot cannot be minimized. The inverse procedure,
mapping a set of laws of transport to a free energy, seem therefore much more promising.
We give an example of a such procedure in appendix 3.5.1. Unfortunately, writing a
suitable free energy becomes rapidly more complicated and can be non-analytic, especially
for many-species system. Moreover, the normalization of the energy is not straightforward
(as already glimpsed in this section, in which the energies are normalized by δA). The
issues of fluctuations, linked to the normalization of the energy, cannot be addressed in a
mean-field formulation, and in the next section, we deviate from the mean-field formulation.

3.1.4 Influence of a finite vesicle fusion time

If vesicular transport between secreting and receiving compartment (the so-called step 2 in
3.1.1) is not infinitely fast, vesicles will dwell for some time the inter-compartment region,
and will have a non-uniform distribution of concentration, reflecting the concentration of
the emitting compartment at the time of their secretion. While this situation appears much
more complex than the one described in section 3.1, we show below, restricting ourselves
to a one-species system for simplicity, how a model with inter- compartment dwelling of
vesicles can be mapped to the simpler model with immediate fusion of vesicles.

Each vesicle can carry a given amount of proteins, and a vesicle budding from or
merging with a compartment will change the concentration of this compartment. Let us
call Cv the resulting change of concentration in the compartment, which can be seen as the
load carried by a vesicle. Allowing vesicles to dwell between compartments for a finite time
causes the total number of molecules in the compartments to decrease, and hence yields
an effective total concentration Ceff = C1 + C2 lower than the actual total concentration
in the system Ctot :

Ceff = Ctot −

Nv
∑

i=1

Ci
v (3.23)

where Nv is the number of vesicles between compartments, and Ci
v the concentration car-

ried by the i-th vesicle. This sum over all the vesicles is actually a random variable, but its
mean can be computed analytically in certain cases. For instance, in the case of a symmet-
ric system, we expect the mean value of Cv to be computed easily, and therefore we should
be able to compute Ceff in a symmetric system. This will be valid as long as the system is
symmetric, and therefore valid until Ceff = C∗

tot, the critical value at which the symmetry is
broken. Therefore, we have a chance to know where the symmetric/asymmetric transition
occurs.
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If the system is symmetric, all vesicles have the same average concentration C̄v and :

Nv
∑

i=1

Ci
v ≈ NvC̄v (3.24)

Let us assume that each vesicle in the inter-compartment medium has a rate of fusion
Wr towards any of the compartments. The average number of vesicles in the media is
then 2Kv/Wr (where Kv is the rate of individual vesicle secretion). Moreover, the average
vesicle concentration C̄v can be written as the maximal concentration Cmax

v a vesicle may
carry, times the average vesicle saturation fraction S̄ (obtained from Eq.3.3), leading to :

Ceff = Ctot − 2
Kv

Wr
Cmax
v S̄ (3.25)

Finally, the product KvC
max
v is the number of vesicle leaving a compartment per unit

time multiplied by the maximum concentration of each vesicle, and can be identified with
Js ≡ K0Cs. The critical point of a system of total concentration Ctot with vesicles staying a
finite time between the compartments can thus be obtained from the critical point (Eq.3.5)
of a system with infinitely fast fusion, but with an effective total concentration Csym

eff given
by :

Csym
eff = Ctot − 2Cs

K0

Wr
S̄ , S̄ =

Csym
eff

Csym
eff + 2Cs

(3.26)

Namely,

Csym
eff

Ctot
=

1

2
−

1 + wr

wr
φs +

√

2φs +

(

1

2
− φs

1 + wr

wr

)2

(3.27)

With φs = Cs/Ctot, wr = Wr/K0. For a given set (φs, wr), we can therefore know the
localization of the symmetric/asymmetric transition, which takes place for Ceff = C∗

tot.
We might also be interested in knowing the concentration in each compartments in the
asymmetric state.

To do so, one can compute the effective concentration in a fully asymmetric system,
in which one compartment has a concentration Casym

eff and the other has a concentration
close to zero :

Casym
eff = Ctot − Cs

K0

Wr
S′ with S′ =

Casym
eff

Casym
eff + Cs

(3.28)

The difference between Eq.3.27 and Eq.3.28 being that in the latter case, the empty com-
partment is sending out empty vesicles, and only vesicles from the first compartment
contribute to the depletion effect. We find :

Casym
eff (φs, wr) = Csym

eff (
1

2
φs, wr) (3.29)

In the case vesicle fusion occurs with a finite rate, we cannot find the stationary solution
analytically. We performed a numerical simulation of a system with finite vesicle fusion
time and a total concentration Ctot and compared the location of the critical line with the
infinitely fast fusion model, the equations of which we solved numerically. The numerical
simulation consists of two compartments of concentrations C1 and C2 from which vesicles
may bud with a rate Kv. Each vesicle budding from a compartment α has a saturation
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fusion rate Wr = K0, i.e. up to 40% of the molecules are out of the compartments.
The non-zero value of the RMS in the symmetric state is due to fluctuations.

S(Cα). At each time step, each vesicle may merge with a compartment at a rate Wr, and
the compartment is chosen according to the probability P described in the main text. The
algorithm may be written as follows :

#Fusion p r o b a b i l i t y o f a v e s i c l e o f s a t u ra t i on Sv wi th the f i r s t compartment
def Pf1 (Sv ,C1 ,C2)=(Sv∗C1+Cf )/ ( 2∗Cf + Sv∗(C1+C2) )
#Satura t ion o f the v e s i c l e s l e a v i n g from a compartment o f concen t ra t ion C
def S(C) = C / (C+Cs)

#Sves [ i ] : Sa tura t ion o f the i−th v e s i c l e
#Nves : number o f v e s i c l e s

while t<Tmax :
t=t+dt

#Checks i f a v e s i c l e l e a v e s the f i r s t compartment
i f rand (1) < Kv∗dt :

Nves=Nves+1
Sves [ Nves]=S(C1)
C1=C1 − Cv∗Sves [ Nves ]

#Checks i f a v e s i c l e l e a v e s the second compartment
i f rand (1) < Kv∗dt :

Nves=Nves+1
Sves [ Nves]=S(C2)
C2=C2 − Cv∗Sves [ Nves ]

#Checks f o r each v e s i c l e i f i t merges wi th a compartment
for i=1 to Nves :

i f rand (1) < Wr∗dt :
i f rand (1) < Pf1 ( Sves [ i ] , C1 ,C2) :

C1=C1+Cv∗Sves [ i ]
else :

C2=C2+Cv∗Sves [ i ]
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Sves [ i ]=0
r eo rde r ( Sves , Nves )

Comparison with the solution of the infinitely fast fusion model are shown in Fig.3.6.
Not only the location of the critical line, but also the actual values of the concentrations
in each compartment in the asymmetric steady state, where found to agree very well, even
for low vesicle fusion rate (i.e. a large amount of material outside the compartments). This
justifies our infinitely fast transport, mean-field approach, as systems with fluctuations and
with a finite transport time can be mapped to simpler systems, which we have analytical
tools to study.
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3.2 Compartment differentiation in an open system

The relative simplicity of the model presented in Sec.3.1.1, essentially characterized by
two parameters (Cs/Ctot and Cf/Ctot, Fig.3.4.a), allows us to address issues of direct
biological relevance, such as the presence of external fluxes of material, and the possibility
for chemical transformations within the system. Organelles such as the Golgi apparatus
are strongly polarized, with distinct entry and exit faces. We investigate the consequences
of cooperative transport in such open systems, assuming that the species of interest enters
the system through compartment 1, and exits through compartment 2, while exchange
between the two compartments proceeds as described previously. Mathematically, this
amounts to including a source term I1 = Jin and a sink term I2 = −Jout in Eq.3.1 yielding
:

J ≡ J1→2 − J2→1 = Jin − ∂tC1 = ∂tC2 +KoffC2 (3.30)

where a simple linear relationship was assumed for the out-flux : Jout = KoffC2, and where
the exchange fluxes (J1→2) are still given by Eqs.3.2,3.3,3.4. At steady state, all fluxes must
be balanced, including the net flux J between the two compartments : Jin = Jout = J .

3.2.1 Qualitative analysis

The dynamical behaviour of the set of equations Eq.3.30 is discussed in some details in
Sec.3.2.2, but a qualitative understanding of the open system may be inferred from the
results obtained for a closed system. We showed (Fig.3.4b) that the flux J1→2 cannot
exceed a maximum value and decreases upon increasing total concentration beyond a
threshold. In an open system, this behaviour may result in the absence of a steady state : if
the influx into compartment 1 exceeds the maximum net flux from 1 → 2, the concentration
C1 of the entry compartment steadily increases with time, leading to a further decrease of
inter-compartment exchange. In the absence of other compensatory mechanisms, C1 would
diverge and C2 would vanish, leading to a vanishing exit flux. This divergence is probably
not realistic, but it illustrates the consequence of such non-linear transport for an open
system : beyond a critical influx, the system is essentially blocked, filtering transit proteins
at a very low flux. While a such feature has a negative impact on the rate of transport,
it strongly increases the residency time of molecules and may prove advantageous to a
system such as the Golgi apparatus, whose function is to process and chemically modify
proteins.

3.2.2 Phase-space trajectories of an open system

We now discuss possible dynamical behaviours of an open systems satisfying the ki-
netic equation 3.30, where the fluxes between the two compartments are given by Eqs.
3.2,3.3,3.4. Although the exchange rules between the compartments are symmetric, the
existence of external fluxes breaks the symmetry of the system, and different concentra-
tions should be expected in the two compartments even for low incoming flux. The critical
behaviour at high incoming flux, as depicted in Fig.3.4 for a closed system, has nevertheless
a profound impact on the steady states, or the absence thereof.



3.2 Compartment differentiation in an open system 79

0

2

4

6

C
2
/C

s

0 2 4 6 8

C1/Cs

0

2

4

6

C
2
/C

s

0 2 4 6 8

C1/Cs

Figure 3.7: Phase-space trajectories of system with an exit flux Jout = KoffC2 (Koff = 0.005K0),
and an input flux Jin = 0.005K0Cs (left) and Jin = 0.025K0Cs (right). Dash-dotted
lines represent Ċ2 = 0 and dashed lines Ċtot = 0. Red arrows represent initial
condition with convergent trajectories whereas blue arrows are for initial conditions
yielding a divergence of C1.

As discussed above, one expects the flux exchanged between the two compartments to
present a maximum value Jmax (necessarily smaller than the maximum possible flux K0Cs,
see Fig.3.4.b), theoretically leading to a diverging concentration in the first compartment
and a vanishing exchange flux if Jin > Jmax. Depending on initial conditions, a non-
convergent behaviour might actually also appear for values of Jin a priori compatible with
the existence of a steady-state. For instance, if the initial concentration is very high in the
first compartment, the divergent regime may occur for smaller in-flux Jin < Jmax . This
can be understood by considering the phase space trajectories of the system.

The coordinates in phase space are the concentrations (C1, C2), and the steady states (if
any) are given by the intersections of the Ċ2 = 0 and Ċtot = 0 curves. Since Jout = KoffC2,
the line Ċtot = 0 is obviously the line C2 = Jin/Koff , whereas the curve Ċ2 = 0 has to
be computed numerically. If these two lines do not intersect, there is no steady state and
C1 always diverges. If they do intersect, the thus-defined fixed points may be linearly
unstable, or may be surrounded by a basin of attraction, as shown in Fig.3.7.

The phase space representation Fig.3.7 can be used to study the consequences of a
transient change of the input flux (i.e. a pulse or a block of secretion). Let us consider a
system which is in a stable steady state (C1

1 , C
1
2 ) for an input flux J1

in. If the incoming flux
is changed to J2

in at time t1, the phase space trajectories will be changed, and the system
will follow a new trajectory starting from (C1

1 , C
1
2 ). According to this new trajectory, the

system will reach a new position (C2
1 , C

2
2 ) at a time t2. If the flux is then switched back to

its original value J1
in, (C2

1 , C
2
2 ) will not necessarily be in the attractive region of the stable

steady state. Therefore, a transient change of the incoming flux may bring the system out
of a stable steady state. In the case of a strong pulse (J2

in >> J1
in) the system may follow a

divergent trajectory and the concentration C1 will increase strongly with time. Formally,
whatever the (finite) value of (C2

1 , C
2
2 ) after a pulse, the system may reach a stationary

regime if the incoming flux Jin after the pulse is small enough. However, this may take a
very long time. The approximation C1 → ∞ , Jin = 0 shows this time grows like (C2

1 )
2.
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3.3 Consequence of cooperative transport for protein matu-

ration

We now quantify the consequences of the kind of cooperative transport considered here on
protein maturation and sorting. We investigate the situation sketched in Fig.3.8, where a
molecular species A enters the system via compartment 1 and is transformed into a species
B by maturation enzymes, before leaving the system via compartment 2. The processing
accuracy is defined as the total fraction of the input that exits the system as mature (B)
molecules :

Accuracy ≡
1

A0

∫ ∞

0
dtJB

out (3.31)

Where A0 =
∫∞
0 Jindt is the total amount of A molecules to have entered the system

and JB
out is the out-flux of B molecules. The accuracy thus defined reaches unity when

no molecules exit the system without being processed (JA
out = 0). A Michaelis-Menten

maturation kinetics is chosen in order to account for the limited amount of enzymes in the
system. Calling A1 and B1 the concentrations of A and B in the first compartment, and
R(A1) the reaction rate in the first compartment, we have :

∂tB1 = R(A1)A1 = R0Cm
A1

A1 + Cm
(3.32)

with an identical kinetics in compartment 2. Here, R0 is the maximal maturation rate and
Cm is the concentration of A beyond which enzymatic reaction saturates. For simplicity,
we assume that the state (A or B) of a molecule influences neither its transport between
compartments nor its export from the system, so that Eq.3.30 is still valid for the con-
centrations C1,2 = A1,2 + B1,2. Taking the weights of A and B in the fluxes to be their
respective weights in the compartments :

JA =
A1

A1 +B1
J1→2 −

A2

A2 +B2
J2→1 (3.33a)

JB =
B1

A1 +B1
J1→2 −

B2

A2 +B2
J2→1, (3.33b)

The following set of kinetic equations is obtained :

Ȧ1 = Jin −R(A1)A1 − JA (3.34a)

Ḃ1 = R(A1)A1 − JB (3.34b)

Ȧ2 = −R(A2)A2 + JA −KoffA2 (3.34c)

Ḃ2 = R(A2)A2 + JB −KoffB2 (3.34d)

Normalizing rates with the vesiculation rate K0 and concentrations with the concen-
tration Cs at which secretion saturates, Eq.3.34 is controlled by 5 parameters. These are
: r0 = R0/K0 and Cm/Cs, which compare the activity of the maturation enzymes and of
the secretion machinery, Cf/Cs, which defines the threshold for dominant specific fusion
(Eq.3.5), and koff = Koff/K0, which compares exit and exchange rates. The fifth parame-
ter is the normalized amount of material going through the system : A0/Cs. For simplicity,
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Figure 3.8: Sketch of an open system with protein maturation. Particle enter the system through
compartment 1, undergo maturation A → B while in the system, are exchange be-
tween compartment via cooperative transport, and exit the system via compartment
2.

we investigate a situation similar to the so-called pulse-chase procedure[54], where a fixed
amount of material is delivered to the system in a finite amount of time (which we assume
very small), and set A1(t = 0) = A0 and Jin = 0 below.

In order to focus on the role of cooperative transport, we further assume that particle
export is not a rate-limiting step (Koff/K0 → ∞, except for the description of the purely
linear system, in Sec.3.3.1 below), and we analyze the processing accuracy in terms of a
competition between the kinetics of maturation and transport (controlled by 4 parameters).
We can compare three situations : purely linear transport, transport with saturation of
the carriers, and cooperative transport (with saturation of the vesicles).

3.3.1 Processing accuracy for linear transport

In order to quantify the consequences of cooperativity on the processing accuracy of a two-
compartment system, we compute the accuracy of a perfectly linear system by linearizing
Eqs.3.2,3.3,3.4 when A0 ≪ Cm, Cs, Cf , yielding : J1→2 = K0C1/2 and J2→1 = K0C2/2.
Choosing Jout = KoffC2 for simplicity, and the initial conditions C1(t = 0) = C1(0) and
C2(t = 0) = 0, the kinetic evolution of the vector C = {C1(t), C2(t)} is easily obtained :

C(t) = eMlt

(

C1(0)
0

)

, Ml = −K0

2

[

1 1
1 1 + 2koff

]

(3.35)

where koff = Koff
K0

. The matrixMl can be diagonalized, and the matrix exponential becomes
a regular exponential, and the concentration in the second compartment reads :

C2(t) =
C1(0)

2
√

1 + k2off

(

eα+t − eα−t
)

(3.36)

with the eigenvalues :

α± =
K0

2

(

±
√

1 + k2off − (1 + koff)

)

(3.37)

The (normalized) probability density that a particle exits the system from the second
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compartment at time t is Pexit(t) = KoffC2(t)/C1(0) :

Pexit(t) = K0
koff

√

1 + k2off

(

eα+t − eα−t
)

(3.38)

The mean residence time of a particle in the system is thus 〈T 〉 ≡
∫∞
0 dt(tPexit(t)) =

2(1/K0 + 1/Koff).

The accuracy of protein maturation (A → B) and sorting is defined as the fraction
of the total quantity of molecules that entered the system to leave as matured molecules
(Eq.3.31). It may also be written as :

Accuracy =

∫ +∞

0
Pexit(t)P (B, t|A, 0)dt (3.39)

where which P (B, t|A, 0) is the probability for a molecule to be mature (state B) at time
t while starting immature (state A) at t = 0. At the linear level, the maturation kinetics
(Eq.3.32) becomes : ∂tBα = R0Aα, and P (B, t|A, 0) = 1 − e−R0t. The efficiency of the
linear system may then be computed analytically using Eqs.(3.37,3.38,3.39), yielding :

Accuracy|linear =
2r0 (1 + r0 + koff)

koff + 2r0 (1 + r0 + koff)
(3.40)

with r0 = R0/K0. Below, we use the limit koff → ∞ in order to focus on the effect of
cooperative transport and enzyme kinetics on the accuracy of the system. The benchmark
to which more complex transport and maturation processes must be compared is thus the
linear accuracy Accuracy|linear → 2r0/(1 + 2r0). However, since our goal is ultimately to
study the consequences of cooperativity, our model of which includes a saturation of the
carriers, we are rather interested in comparing the cooperative model to a model with
saturation of the carriers but without cooperativity.

3.3.2 Processing accuracy without specific vesicular fusion

Saturation of maturation enzymes and transport intermediates (Cm, Cs < A0 ≪ Cf ,
with A0 the initial particle concentration) has mixed effects on the systems processing
accuracy. Saturation of inter-compartment transport at high concentration (for A0 ≫ Cs)
causes the particle residency time of molecules to grow as A0 (Eq.3.3) while saturation of
enzymatic reaction (for A0 ≫ Cm) causes the mean maturation time increase linearly with
A0 (Eq.3.32), so the net effect on processing accuracy depends on the precise values of the
parameters.

In order to get a feel for the role of the different parameters, we compute the first order
correction to the linear processing kinetics studied in section 3.3.1, in the limit of very fast
exit from the second compartment : koff → ∞. In this case, the accuracy is controlled by
the flux exiting the first compartment, now written Jout = 1

2K0CsS(C1) and Eq.3.34 may
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Figure 3.9: Accuracy (Eq.3.31) as a function of the initial concentration A0, for different sat-
uration ratios Cm/Cs of maturation and transport. At high concentration, specific
vesicle fusion greatly enhance processing accuracy (solid lines, with Cf/Cs = 0.1),
as compared to random fusion (Cf → ∞, dashed lines) (with R0/K0 = 2, and
Koff/K0 = 100).

be rewritten :

C = A+B (3.41a)

Ȧ = −Cs
1

2

A

C + Cs
− r0Cm

A

A+ Cm
(3.41b)

Ḃ = −Cs
1

2

B

C + Cs
+ r0Cm

A

A+ Cm
(3.41c)

where the subscript 1 has been dropped in the concentrations, time has been normalized
by 1/K0, and r0 ≡ R0/K0. Taylor expansion of this set of equation for A0 ≪ min(Cs, Cm)
yields the first order correction to the accuracy of the linear system (Eq.3.40) :

Accuracy =
2r0

1 + 2r0
+
A0

Cs

Cm(1 + 2r0)− Cs(1 + r0)

Cm(1 + r0)(1 + 2r0)2

+O
[

(

A0

Cs

)2
] (3.42)

An increase in processing accuracy is thus observed at high concentration if maturation
saturates for higher initial concentrations than secretion, according to Cm/Cs > (1 +
r0)/(1 + 2r0). This can be seen in Fig.3.9, which shows the variation of the processing
accuracy as a function of the total amount of material to be processed, in the absence of
cooperative fusion (dashed lines).

3.3.3 Processing accuracy and cooperative transport

Cooperative fusion has a profound influence on the processing accuracy of a compart-
mentalized organelle responsible for protein maturation and sorting. When combined
with saturation of the transport, cooperative fusion leads to a robust increase of the ac-
curacy (see Fig.3.9, solid lines), which can be understood as follows : At high concen-
tration (A0 > Cf , Cs), specific interactions promote backward fusion of vesicles secreted
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by the highly concentrated compartment. As the forward fusion probability is very low
(P1→2 ∼ 1/A0, Eq.3.4) the mean residency time increases as A2

0, as compared to the linear
increased observed in the absence of specific fusion (section 3.3.2). On the other hand,
the mean maturation time is still linear in A0, so high concentrations lead to a more pro-
nounced increase of the residency time compared to the maturation time, resulting in an
increased processing accuracy at high concentration, even if the chemical transformation
is performed by a limited amount of maturation enzymes (Cm ≪ Cs).
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3.4 Conclusion and outlook

The predicted high processing accuracy displayed Fig.3.9 essentially stems from the in-
crease of the residency time of molecules transiting through the system. In striking con-
trast with the usual Fick’s law of gradient-driven transport, cooperative transport through
the compartmentalized system described here is strongly impaired by a large concentra-
tion heterogeneity. A strong prediction of our model is that the transport time actually
increases with an increasing incoming flux (above a threshold). Pulse-chase experiments
on the Golgi seem to show this trend, but data are still too scarce for a direct comparison
(see Fig.4.l in [54]). Although an apparent functional drawback, slow transport through
organelles is common. For instance, the typical transport time across the Golgi is of order
of 20 minutes [46], whereas diffusion of a membrane protein over an area equal to that of
the entire Golgi apparatus (of order 10µm2) should be of order one minute (with a diffusion
coefficient D2 ∼ 0.1µm2/s [80]).

In this chapter, we showed that organelles constantly exchanging material via transport
vesicles may spontaneously adopt different biochemical identities, provided : i) the flux of
vesicles secreted by an organelle is bounded, and ii) there exists a sufficient level of specific
vesicle-organelle fusion directed by molecular recognition. In open systems hosting fluxes,
these transport properties give rise to a dynamical switch from a linear to a low throughput
kinetics above a critical influx. For compartmentalized organelles whose function is to
process and export influxes of proteins, such as the Golgi apparatus, this switch allows
the export rate to spontaneously adjust to the amount of material to be processed, a
definitive functional advantage that may avoid the release of unprocessed material even
under high influx. However, in Yeast, and in some lower Eukaryotes, the Golgi apparatus
is not stacked, and the maturation rates are much faster [83] (of the order of one minute,
as we will see in chapter 4). It could be argued that a pluricellular organism does not need
to respond chemically to their environment as fast as unicellular organisms, but requires
more quality control as generating offsprings takes longer.

The disruption of the Golgi apparatus has been observed in many neuro-degenerative
diseases [96, 97], and in apoptosis [98, 99]. This disruption is caused, in some cases, by
the inhibition of Grasp 65 a Golgi stacking factor [49]. Such a disruption is expected to
increase the rate of export, because the whole Golgi will contribute to the export (not
just the trans-face). It could therefore be argued that the incomplete maturation could
cause cell death or disfunction, and Golgi disruption could directly cause apoptosis or
the syndromes of neuro-degenerative diseases. However, the inhibition of Grasp 65, and
Golgi unstacking, is not lethal, and there must therefore exist additional quality control
mechanisms. For instance, the export of molecules likely depends on the state (mature
or immature) of the molecule. There is no concluding evidence, as far as we know, that
increasing the export by Golgi disruption is the cause of neurodegenerative pathologies or
apoptosis [98].
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3.5 Appendix : From transport rates to an energy landscape

3.5.1 Theory

We can wonder under which conditions a set of laws of exchange between compartments,
in a closed system, can be mapped to an energy landscape. Let us assume a system
described by the proportion φ of molecules of interest in the first cisterna. Let jout(φ) be
the outbound flux from a cisternae of concentration φ.

Let us assume the transport between compartments to be mediated by vesicles always
carrying the same amount of cargo, called δφ. When a vesicle leaves the first compartment
and joins the second, the proportion of molecules of interest in the first compartment goes
from φ to φ− δφ, and we can write the flux exiting from the first compartment :

jout(φ) = k(φ)P (φ)δφ (3.43)

where k(φ) is a budding frequency from and P (φ) is the probability of forward fusion (with
the second compartment) of a vesicle leaving the first compartment.

Let us define N = 1/δφ. There are thus N + 1 states available to the system (φ = 0,
φ = δφ, φ = 2δφ, ... , φ = 1). We can therefore describe the state by the number n, such
as φ = nδφ. As done in the main text, we consider the fusion of vesicles to be infinitely
fast, therefore the only transitions allowed are n→ n+1 and n→ n− 1. We call W+

n and
W−

n respectively the rates of these transitions.

We call Pn(t) the probability for the system to be in the state n at time t, and P(t)
the vector (P0(t), P1(t), ..., PN (t)). Let us consider a steady state P. Because Ṗ = 0 at
steady state, we find :

P0W
+
0 = P1W

−
1 (3.44)

And, for n ≥ 1 :
W+

n Pn +W−
n Pn = Pn−1W

+
n−1 + Pn+1W

−
n+1 (3.45)

By iteration, we find that the detailed balance is satisfied by any stationary solution. We
can show that the stationary solution in such a system exists and is unique.

Let us call W the evolution matrix of the system such as :

P(t+ dt) = WP(t) (3.46)

Where dt is a unit time much smaller than the inverses of the rates {W±
n } defined earlier.

The evolution matrix therefore verifies :

W(n, n+ 1) =W+
n dt (3.47)

W(n, n− 1) =W−
n dt (3.48)

W(n, n) = 1− (W+
n +W−

n )dt (3.49)

A stationary probability Q, if any, satisfies Q = WQ. The diagonal and subdiagonal
values of W are strictly positive because of our assumption on dt, whereas all the other
values are zero, and W is a non-negative matrix. Because the subdiagonal values are
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all strictly positive, W is irreducible : there is no non-trivial invariant subspace, i.e. no
non-trivial subset A such as ∀P ∈ A, WP ∈ A.

As W is irreducible and non negative, the Perron-Frobenius theorem for positive ma-
trixes can be applied [100] (it could also be noted that WN+1 is positive hence W is primi-
tive). The Perron-Frobenius theorem states that there is a strictly positive eigenvalue that
is strictly superior to all other eigenvalues, and that there is a positive eigenvector corre-
sponding to that value. Because ||P|| = 1, this eigenvalue is one. Therefore, a stationary
solution exists, that is unique (and satisfies detailed balance, as shown above).

From now on, we will use the variable φ = nδφ instead of n, since it is more in-
tuitive. Let us assume an energy ftot(φ) such as the stationary probability Q(φ) is
Q(φ) = exp(−ftot(φ)). We mentioned that detailed balance is satisfied by any station-
ary distribution and hence

W (φ→ φ+ δφ)

W (φ+ δφ→ φ)
= exp

(

ftot(φ)

ftot(φ+ δφ)

)

(3.50)

We can expend this energy, and we get :

W (φ→ φ+ δφ)

W (φ+ δφ→ φ)
= exp

(

−
(

∂ftot
∂φ

)

φ

δφ

)

(3.51)

If we define an energy f(φ) per cisternae such as ftot(φ) = f(φ) + f(1− φ), we find :

W (φ→ φ+ δφ)

W (φ+ δφ→ φ)
= exp

(

−
(

∂f

∂φ

)

φ

δφ+

(

∂f

∂φ

)

1−φ

δφ

)

(3.52)

We assumed the vesicles to bear a constant quantity of molecules δφ, and therefore
W (φ→ φ+ δφ)δφ = jout(1− φ). We then find :

jout(φ) = kwδφ exp

(

(

∂f

∂φ

)

φ

δφ

)

(3.53)

In which kw is a constant rate. And eventually :

∂f

∂φ
=

1

δφ
log

(

jout(φ)

kwδφ

)

(3.54)

ftot(φ) = f(φ) + f(1− φ) (3.55)

We can see that the constant kwδφ disappears in ftot, which can be expressed as :

ftot(φ) =
1

δφ

∫ φ

0
log [jout(ψ)]dψ +

1

δφ

∫ 1−φ

0
log [jout(ψ)]dψ (3.56)

In this section, we were able to built an effective energy from the transport equations.
To do so, we assumed the transport to be mediated by vesicles able to carry a discrete
amount of cargo, δφ. We also assumed that the evolution of the system was probabilistic.
These assumptions differ from the assumptions generally made in Chapter 2, in which
the vesicles could carry a continuous amount of cargo (from 0 to Cs), and in which we
mainly discussed the mean-field approximation of this system. Let us now discuss whether
the system described in section 3.1.1 can be mapped to an energy landscape as described
above.
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3.5.2 Application

Let us consider the system described in section 3.1.1 of this chapter. We call Ctot = C1+C2

the total concentration in the system and we renormalize all concentrations by Ctot, so that
: φ = C1/Ctot, φs = Cs/Ctot, φf = Cf/Ctot. Let us recall the transport laws in the system
:

∂tφ = jout(1− φ)− jout(φ) (3.57)

jout(φ) = jsS(φ)P1→2(φ) (3.58)

S(φ) =
φ

φ+ φs
(3.59)

P1→2(φ) =
S(φ)(1− φ) + φf
S(φ) + 2φf

(3.60)

We can take js = 1 because the prefactors in jout are removed by the sum in equation 3.55.

Using equation 3.56, we can find an analytical expression for δφftot(φ). We show the
result in figure 3.10 for two sets of parameters :

• φs = 0.5, φf = 0.1 : ftot shows two minima as a function of φ and hence the
symmetric state is not stable. This was predicted in section 3.1.1.

• φs = 0.5, φf = 0.5 : ftot shows one minima at φ = 1
2 and hence the symmetric state

is stable. This was predicted in section 3.1.1.

The critical line φ∗f (φs) can be found by solving ∂φftot
∣

∣

φ= 1
2
= 0 and yields :

φ∗f =
1

4φs(φs + 1)
(3.61)

This is equivalent to the critical line (equation 3.5) found by analysing the symmetric
solution. Finding the stationary solutions is also possible by minimizing the energy with
respect to φ, which comes down to solving jout(φ) = jout(1− φ), and therefore there is no
computational gain in describing the system by an energy landscape.

As of now, we did not comment on the value of δφ and on the temperature (by which the
energy is normalized), and therefore we cannot define temperature-driven phase transitions.
Clearly, δφ is not well defined, because in this system the vesicles carry a variable load
S(φ) ∈ [0, 1]. Since S(φ) changes continuously from 0 to 1, there is no way to define
the smallest unit of cargo exchange between the compartments, and the approximation
is only valid in the limit δφ → 0. Therefore the mapping to an energy landscape yields
the correct shape of the energy but does not yield the scale of the energy. Comparing
the fluctuations in the energy landscape formulation and in a model system (out of the
mean-field approximation, as was studied in section 3.1.4 of this chapter) can give the scale
of the energy.

Though the perspective of mapping a set of transport laws to an energy landscape is
very appealing, in practical, finding f might be difficult analytically. Moreover, this map-
ping becomes hazardous in the case of many species, as writing detailed balance might not
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Figure 3.10: Total energy ftot(φ) (normalized by δφ) as a function of φ for two sets of parameters.
Blue : φs = 0.5, φf = 0.1. The energy shows two wells, which illustrates the stability
of the asymmetric state. Red : φs = 0.5, φf = 0.5. There is only one well at φ = 1

2
as the symmetric system is stable.

be possible if some species are cotransported. Moreover, the definition of the temperature
is unclear, and no computational gain is obtained when finding the stationary solutions of
the system. Therefore, we did not continue in that direction.





Chapter 4

Building differentiated compartments

Introduction

In the previous chapters, we studied various aspects of transport in the cell. In chapter 1,
we saw that the composition of the cell membrane was closely related to biological function,
including the entry of material in the cell. In chapter 2, we saw that a gradient of chemical
composition along an organelle could result in a gradient of energy driving the transport
of molecules. We also noticed that the structure of the organelle could influence transport.
In chapter 3, we realized that there was a feedback between the identity of organelles
and their transport properties, as two compartments could be expected to spontaneously
adopt different identity because of cooperative transport. So far, the interactions between
organelle identity and structure have not been considered. In this chapter, we show how an
organelle can spontaneously divide into sub-compartments of different composition. This
research started as we decided to study the transport in the Golgi apparatus, for which, as
we mentioned, two models are competing. As cartooned in figure 2.2, in the first model,
called vesicular transport, cisternae are assumed to have a fixed position in the stack, and
molecules are exchanged between neighboring cisternae by tubular and vesicular transport.
In the other model, called cisternal progression, individual cisternae advance through the
stack, with cisternae being assembled at the cis face of the Golgi apparatus and dissembled
at the trans face.

A strong argument in favor of cisternal maturation was given by Matsuura-Tokita et al.
[83] and Losev et al. [101] in 2006. In Yeast, in which the Golgi cisternae are disseminated
in the cell (and hence do not form stacks), the identity of each cisterna changes with time
from a typical cis-Golgi identity to a typical trans-Golgi identity. This evolution, which
occurs on a timescale of the order of one minute, was observed by fluorescently labeling
markers typical of cis Golgi or trans Golgi, as illustrated in figure 4.1.

In the previous chapter, we showed that the existing experiments on protein transport
along the stack in the mammalian Golgi apparatus could not demonstrate the validity of
the cisternal progression model. These experiments on Yeast seem therefore to be a much
stronger argument. However, the very different structure of the Golgi apparatus in Yeast
could sap this argument by convincing us that the Yeast Golgi and the mammalian Golgi
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Figure 4.1: LEFT : Electron microscopy of a yeast cell with fluorescently tagged Golgi (scale
bar 5µm). The red marker, mRFP-Sed5, is a SNARE protein typical of the cis
Golgi attached to a red fluorescent molecule, and the green marker, GFP-Sed7, is
an enzyme acting on GTPases, typical of the trans Golgi, attached to GFP, a green
fluorescent protein. CENTER : Electron microscopy of an individual cisterna (of size
≈ 1µm). RIGHT : evolution of the total fluorescence in one cisterna as a function of
time for the red and green markers. Taken from Matsuura-Tokita et al. [83].

are two rather different organelles, though it has been shown that under certain conditions,
the Yeast Golgi apparatus can be stacked. As physicists, we are tempted to think that the
two different Golgi structures, namely individual cisternae maturing independently and
strongly connected cisternae in stacks, could be described in one unified framework. We
must then identify one or several control parameters that could dictate Golgi structure.

Maturation in the Golgi apparatus chemically changes lipids and proteins in a specific
sequence of reactions, and the products of reaction can have different physical properties
than their precursors. It has been shown both in vitro [102], and in vivo [103] that molecules
of different physical properties in a membrane will tend to phase separate and form domains
of different composition. For instance, ceramids are matured into sphingolipids in the cis
Golgi, and ceramids are known to form domains in sphingolipid membranes [104]. We can
therefore expect maturation to cause the formation of domains in the Golgi membrane.
One can actually see the non-uniform distribution of cis and trans Golgi markers in a
yeast cisterna, as illustrated in figure 4.1 (center). In yeast, maturation is very fast (of the
order of 1min, as shown in figure 4.1) as compared to maturation in mammals (typically
≈ 20min), and, provided domains of different lipid composition do form on cisternae, we
can expect smaller domains in Yeast Golgi than in mammal Golgi, as faster maturation
allows less time for domain growth.

In chapter 1, we saw that membrane domains have the tendency to deformed into
curved buds because of line tension, which acts to reduce the length of the interface between
membrane regions of different compositions. In this chapter, we will assume that those
buds are the precursors of new cisternae, as once detached from the membrane, they form
large vesicles of distinct chemical identity. We also showed that domains must reach a
critical size λb for protrusions to form, λb being controlled by the mechanical properties of
the membrane. It is very tempting to assume that fast maturation (e.g. in Yeast) results in
domains smaller than λb, while slow maturation (e.g. in mammals) may allow for domains
to grow beyond the critical size λb, resulting in connected sub-compartments of different
compositions. This hypothesis is illustrated in figure 4.2.
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Figure 4.2: Illustration of our model for the structure of the Golgi apparatus. In mammals,
maturation is slow (∼20 min) and large domains of newly synthesized lipids B can
grow. Line tension causes these large domains to form bud, which pinch off the
membrane and form new cisternae. In Yeast, in which the Golgi apparatus is usually
not stacked, maturation is fast (∼1 min) and the domains of B are too small to form
buds, and no new cisterna appears.

In a first section, we will see how maturation of lipids in the Golgi apparatus can cause
the formation of lipid domains, which in turn can form large buds. We will then see how
the rate of maturation can control the existence of those domains (and hence, following
our hypothesis, control the stacking of the Golgi) as there is a competition between the
kinetics of domain growth and the kinetics of chemical maturation.
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4.1 Thermodynamics of phase separation in a membrane

In this section, we will understand why different lipid species A and B in a membrane
will tend to form domains. Each molecule of A and B in the membrane is assumed to
interact with its nearest neighbors only. We can use an Ising-like formalism to describe
the system, in which two adjacent molecules are either similar (with no cost in energy), or
different (with an energetic penalty J). In the context of lipid membranes, the interaction
energy may come from many sources, including mismatch between the length of lipid
tails (introduced in chapter 2), or the tendency of each lipid to form different phases, as
described in [105]. In the whole chapter, we will assume the system to be isotropic.

The total composition energy of the system hence writes :

Hφ =
1

2

∑

i,j

Jij [si (1− sj) + sj (1− si)] (4.1)

In which s = 0 for a A molecule and s = 1 for a B molecule, and Jij = J if the molecules
i and j are neighbors and Jij = 0 otherwise. We call Vi the set of nearest neighbors to the
site i, and z = card(Vi) the number nearest neighbors a site has. Alternatively, we can
re-write the Hamiltonian as :

H = zJ
∑

i

si −
J

2

∑

i

si
∑

j∈Vi

sj (4.2)

We will see that this model predicts a phase separation (the formation of domains
enriched in A or B) if J is above a threshold.

4.1.1 Mapping to a free energy

Though a great way to run simulations, a discrete model such a this makes the analytical
solving of problems uneasy (Onsager received the Nobel prize for solving the Ising model in
two dimensions, whereas the three dimensional Ising model has not been solved explicitly).
However, it has been shown that this discrete model could be mapped to a continuous free-
energy [23]. To do so, we can introduce φ(xi, t) ∈ [0, 1], the time average of si, in which
xi is the position of the site i. φ is the time average on a timescale τ much larger than
the transition time (0 → 1 or 1 → 0) of a site. We also assume φ to vary smoothly in
space, i.e. on lengthscales larger than a, the distance between two nearest neighbors. In
the following, we call X the time average of the observable X, and we can write :

φ(xi, t) = si (4.3)

We can introduce δi :
δi = si − φ(xi, t) (4.4)

Because si is 0 or 1, the identity φ(xi, t) = s2i can also be written. As a result, we find :

δ2i = φ(xi, t)− φ(xi, t)
2 (4.5)
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We can compute the time-average of the Hamiltonian in equation 4.2 :

H = zJ
∑

i

φ(xi, t)−
J

2

∑

i

(φ(xi, t) + δi)
∑

j∈Vi

(φ(xj , t) + δj) (4.6)

As φ is already an averaged variable, the time average in equation 4.6 only concerns the
δi, δj . By definition, δi = 0, and equation 4.6 can be re-written as :

H = zJ
∑

i

φ(xi, t)−
J

2

∑

i

∑

j∈Vi

φ(xi, t)φ(xj , t)−
J

2

∑

i

∑

j∈Vi

δiδj (4.7)

The term last term describes the correlation in the fluctuations at site i with the fluctua-
tions of neighboring sites. Since we assumed the system to be isotropic, we can expect this
term to be proportional to z, the number of nearest neighbors, times the average correlation
δiδj , in which j is one of the closest neighbors to i. Obviously, ‖δiδj∈Vi‖ ≤ δiδi, as a site can-
not be more correlated with a neighbor than with itself. Recalling δiδi = φ(xi, t)−φ(xi)

2,
we can therefore write :

−
J

2

∑

j∈Vi

δiδj =
zJ

2

∑

i

α
(

φ(xi, t)− φ(xi)
2
)

(4.8)

with α =
δiδj∈Vi

δiδi
and − 1 ≤ α ≤ 1

We can also re-write the second term in equation 4.7. We assumed that φ changes smoothly
in space (i.e. on lengthscales larger than a, the distance between two nearest neighbors),
and we can therefore expand φ(xj , t) around φ(xi, t). The linear term in a will not con-
tribute as the left and right neighbors (respectively top and bottom neighbors) will yield
opposite contributions and hence cancel each other. Therefore, only the constant term
φ(xi, t)

2, the quadratic term in a2 and higher order even terms will remain. Let us call
d the number of dimensions of the system. At second order in a, the second term from
equation 4.7 yields :

−
J

2

∑

i

∑

j∈Vi

φ(xi, t)φ(xj , t) ≈ −
J

2

∑

i

[

zφ(xi, t)
2 +

z

2d
a2φ(xi, t)∆φ(xi)

]

(4.9)

We can now write this contribution as an integral over space rather than a sum, since we
are assuming φ to change on lengthscales larger than a. We take benefit of the integration
to integrate by part the laplacian term and we find :

−
J

2

∑

i

∑

j∈Vi

φ(xi, t)φ(xj , t) ≈ −
J

2a2

∫

S

[

zφ2 −
z

2d
a2‖∇φ‖2

]

d2x (4.10)

We can now write H, from equation 4.7 as a space integral using equations 4.8 and 4.10 :

H =
J

2

∫

S
‖∇φ‖2d2x −

zJ

2a2
(1− α)

∫

S
φ (1− φ) d2x (4.11)

with 0 ≤ 1− α ≤ 2

To write the free energy of the coarse-grained system, we also have to consider the config-
urational entropy of the system [23]. Using the typical Gibbs entropy, we find :

F =

∫

S
d2r

[

V [φ(r)] +
1

2
ζ‖∇φ‖2

]

(4.12)

V [φ] =
1

2a2
Kφ(1− φ) +

kBT

a2
[φ log φ+ (1− φ) log (1− φ)] (4.13)
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F is the free energy of the coarse-grained system. The mapping to the discrete Hamiltonian
of equation 4.1 is assured by setting ζ = z

2dJ and K = zJ(1− α). The continuous model
can be understood as follows :

• φ represents the density local of A

• 1− φ represents the local density of B

• The term in ζ describes the penalty in creating gradients of concentration in the
system.

• The term in K describes the repulsion between A and B.

• The contribution proportional to kBT represents the entropy.

Phase separation in systems with a free energy similar to 4.12, called Landau free
energy, have been intensely studied theoretically (see [106] for a review). Let us consider a
system of typical size L. In Eq.4.12, the term V (φ) is a bulk term and grows like L2 whereas
ζ‖∇φ‖2 is an interface term and grows like L for a fully phase separated system. Therefore,
ζ plays no role in the phase transition in the limit L→ ∞ (i.e. the thermodynamic limit).
In such an infinitely large system, it can be shown [107] that there exists a critical value
Kc such as for K > Kc it is energetically favorable to form one or many domains enriched
in A and one or many domains enriched in B. Because of the entropy, it costs more to
form domains of a species which is rare in the system. Therefore, Kc is a function of φ̄, the
mean value of φ in the system. The line Kc(φ̄) in the phase diagram is called the binodal
line.

However, in the regime in which the heterogeneous system is thermodynamically fa-
vorable, the phase separation will not always be observed. Indeed, if infinitesimal hetero-
geneities due to thermal fluctuations do not spontaneously grow, the homogeneous phase
will be metastable as it will take a long time for large enough domains to nucleate. There-
fore, we will not study the metastable domain of the phase diagram, but the domain in
which at least some infinitesimal fluctuations will grow. This domain is called the spinodal
region. The binodal and spinodal domains are illustrated in figure 4.3.

4.1.2 Spinodal decomposition

We mentioned that in an infinitely large system (thermodynamic limit), the phase tran-
sition is dictated by the bulk term V (φ). Neglecting the interface cost, it will always be
favorable for the system to phase separate if V has a double well structure [107]. Deriving
V (Eq. 4.13) twice with respect to φ shows that there is a transition at :

K∗ =
kBT

φ̄(1− φ̄)
(4.14)

For any K > K∗, V (φ) has a double well structure and the phase separation is thermody-
namically favorable. In the following, we will show that K∗ is the spinodal line, and for



4.1 Thermodynamics of phase separation in a membrane 97

Two phases

One phase

0

2.5

5

7.5

10

K
/k

B
T

0 0.2 0.4 0.6 0.8 1

φ̄

Spinodal (K∗)

Binodal (Kc)

Figure 4.3: Phase diagram of a system described by the free energy 4.12. In the binodal region
(light gray), the homogenous system is metastable whereas in the spinodal region
(light green), infinitesimal fluctuations spontaneously grow to make the system het-
erogeneous. φ̄ is the mean value of φ, the local order parameter, in the system. The

spinodal line is given by K∗ =
k
B
T

φ̄(1−φ̄)
.

K > K∗ at least some infinitesimal perturbation will spontaneously grow. We can also
extend this result to a finite-size domain, by studying the time evolution of fluctuations of
different wavelengths. In the absence of maturation, the order parameter φ is conserved
and its evolution is given by the Cahn-Hilliard equation [108, 109, 110] :

∂tφ = −a2∇.j (4.15)

j = −
1

η
∇µ (4.16)

µ =
δF

δφ
(4.17)

In which 1/η is the mobility, µ is the chemical potential and j is the flux of the order
parameter. δF/δφ is the functional derivative of F with respect to φ. We will usually
assume the dynamics to be slow enough so that 1/η = D/kBT (Einstein’s relation), in
which D is the diffusion coefficient. Using the definition of F in equation 4.12, we find :

∂tφ =
1

η

[

kBT ∇.

(

∇φ

1− φ

)

−
K

2
∆φ2 − a2ζ∆2φ

]

(4.18)

We can have both analytical and numerical insight of the behaviour of this system. Let
us discuss the evolution of a small perturbation of amplitude ǫφ̄ and wavevector q. The
perturbed order parameter profile is φ = φ̄

(

1 + ǫeiqr+iωt
)

, with ǫ ≪ 1, and φ̄ being the
mean value of φ in the system. Inserting this equation in Eq. 4.18, we find :

iω =
1

η
q2

[(

Kφ̄−
kBT

1− φ̄

)

− a2ζq2φ̄

]

(4.19)

iω is the rate of growth of the perturbation, which will be amplified if iω > 0. There is a
critical K∗ below which no instability appears, and above which fluctuations of the order
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parameter may grow, with a fastest growing mode qmax :

K∗ =
kBT

φ̄(1− φ̄)
(4.20)

|q|max =
1

a

√

1

ζ
(K −K∗) (4.21)

The criterion for spontaneous phase separation in an infinite system is thus K > K∗(φ̄).
The line K∗(φ̄) is called the spinodal line and is represented in figure 4.4. As we mentioned,
ζ does not play a role for an infinite system. In a finite system, the effect of ζ can be
retrieved by noting that there is a cutoff for q : |q|min ≈ 2π/L, as modes with a wavelength
larger than the size L of the system cannot exist.

If the growth of a mode q is suppressed by the gradient penalty ζ, than any mode p
such as |p| > |q| will be suppressed as well. Hence, spontaneous growth of fluctuations
will not occur if iω(|q|min) < 0. Therefore, the spinodal line K∗(φ̄) in a finite-size system
is :

K∗ =
kBT

φ̄(1− φ̄)
+ ζ

(

2πa

L

)2

(4.22)

This is true only for large system, as the entropic term is an approximation for L ≫
a. After this introduction to phase separation in a membrane, we can return to the
biological situation of interest in order to understand how maturation can cause such a
phase separation.

4.1.3 Maturation-induced domain growth

In the case of a membrane undergoing chemical maturation A→ B, the mean composition
of the membrane, φ̄, will change continuously from 0 to 1. Therefore, if K > 4kBT +
ζ(2πa/L)2, the system will cross twice the spinodal line, as illustrated in figure 4.4 :

• At first, as there are hardly any B molecules in the membrane, the system does not
phase separate. The spinodal line is reached when there are enough B molecules in
the system (at φ̄ = φa).

• At some point, there are not enough A molecules in the system for the phase sep-
aration to be stable anymore, and domains will evaporate after the spinodal line is
crossed a second time, at φ̄ = φb .

Therefore, the system will have only a finite time (depending on the maturation rate) to
form domains of A or B. Because the time available for the phase-separation is finite,
we might not see a unique domain of size ∼ L. We rather expect to see several smaller
domains. In chapter 1, section 1.1.4, we saw that line tension σ can cause domains to form
buds, if the domain interface energy is larger than the bending energy of the membrane,
of order 8πκ, with κ being the bending modulus of the membrane. We mentioned that
circular domains of radius R will deform into buds if :

4
κ

σ
< R < 2

σ

γ
(4.23)
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Figure 4.4: Phase diagram of a system described by the free energy 4.12. In the case of mat-
uration, φ̄ increases from 0 to 1 continuously and, if K > 4kT , the critical line will
be crossed twice (at φ̄ = φa and φ̄ = φb). In this case,the system will spend a finite
time in the phase-separating (spinodal) region of the diagram.

In which γ is the tension of the membrane. These inequalities reflect that domains will
form buds if they are large enough to overcome the bending modulus, but small enough
not to be kept flat by surface tension. In the case of chemical maturation, the system
will tend to phase separate only during a given time. If we assume that domain growth
is slow compared to budding (which we will show in section 4.2) the real issue is whether
domains large enough to form buds (R > 4κ/σ ≈ 200nm, assuming κ ∼ 10kBT and
σ ∼ 0.2kBTnm

−1) will have enough time to grow, and the upper bound R < σ/2γ will
likely play no role, as long as σ/2γ is larger than 2κ/σ, i.e. if γ < 10−6J.m−2. This is a
very low value of the tension, and while it is possible for biological membranes to decrease
their surface tension by using pumps and transport channels, the observation of complete
buds in model membranes such as giant unilamellar vesicles could be prevented by surface
tension.

Having established the requirements for domain growth and budding, we now need to
study the kinetics of domain growth in order to know if, for biological rates of chemical
maturation, domains large enough to bud (≈ 200nm) will have time to grow.
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4.2 Kinetics of domain growth

In this section, we study the growth of domains in a two-component membrane. We will
first study the kinetics of phase separation in the absence of chemical maturation, and then
we will see how those kinetics can, in certain approximations, be extended to a membrane
with chemical maturation.

4.2.1 Lifschitz-Slyozov-Wagner theory

Lifschitz and Slyozov, and independently Wagner, showed that the dynamics of phase
separation should follow a particular scaling law [109, 110]. Their work was extended and
compared to numerical simulations (see [106] for a review) for a wide variety of models.
We present here a discussion valid for systems in dimension d > 2. The case d = 2 is a
critical case for which the power laws are expected to be only marginally valid [111, 106].
Other possible dynamical models will be mentioned later, for instance including the role of
hydrodynamics. The demonstration presented here is a reproduction of the demonstration
by A.J. Bray in [106].

Let us recall the free energy of the system :

F =

∫

S
ds

[

1

2
ζ (∇φ)2 + V (φ)

]

(4.24)

Let us call V ′(φ) = ∂V/∂φ. Since φ is conserved we can still write :

∂tφ = −∇.j (4.25)

j = −
D

kBT
∇µ (4.26)

µ =
δF

δφ
= −ζ∇2φ+ V ′(φ) (4.27)

In which all lengths are normalized by a (a ∼ 1nm), the size of a molecule A or B,
and all energies by kBT . In addition, all times are normalized by Θ = a2/D (of order
10−6s). Unless specified otherwise, all the quantities in the following will be dimensionless
according to this normalization.

As gradients are penalized by ζ we expect a system in the spinodal region to form
domains of sharp interface. In the following, we will call φ1 the mean value of φ in a
domain and φ0 the average of the order parameter in the bulk (outside the domains).
As the interface are expected to be sharp, we introduce the notion of domain wall, the
interface of a domain with the bulk. The equation for µ (4.27) can be written along the
coordinate z normal to a domain wall :

µ = V ′(φ)− ζ

(

∂φ

∂z

)

t

C − ζ

(

∂2φ

∂2z

)

t

(4.28)

In which C is the curvature of the domain wall. For a spherical domain of radius R in
d > 2 dimensions, C = (d− 1)/R.
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We may multiply this equation by ∂φ/∂z, which is sharply peaked at the interface (as
gradients are penalized by ζ), and integrate it from the center of the domain to infinity.
We get the (general) Gibbs-Thomson boundary condition at the interface :

µ1∆φ = ∆V − Cσ (4.29)

σ =

∫ ∞

0
ζ

(

∂φ

∂z

)2

t

dz (4.30)

In which ∆φ and ∆V are the variation across the interface of the order parameter and of
the potential respectively. µ1 is the value of the chemical potential at the interface, and
σ is the line tension. It does correspond to the phenomenological definition we used for
surface tension, as it is the energy per length of domain wall.

In the following, we will always assume the concentration profiles to be quasi-stationary,
i.e. ∇2µ = 0. Using the boundary condition (Eq. 4.29), we find :

r < R⇒ µ(r) = µ1 =
1

φ0 − φ1

(

V (φ0)− V (φ1)−
σ

R

)

(4.31)

r > R⇒ µ(r) = V ′(φ0) +
(

µ1 − V ′(φ0)
)

(

R

r

)d−2

(4.32)

In which φ1 is the concentration inside a domain, φ0 is the bulk concentration at infinity,
and V ′ = ∂V/∂φ. The growth or evaporation of a domain depends on the balance of the
fluxes entering or exiting the domain. Formally, for a domain of size R :, it reads :

Ṙ =
[j]R+δR

R−δR

φ0 − φ1
=

[

−∂µ
∂z

]R+δR

R−δR

φ0 − φ1
(4.33)

Therefore :

Ṙ =
d− 1

2R(φ0 − φ1)

(

µ1 − V ′(φ0)
)

(4.34)

Replacing µ1 by its value, and setting V (φ1) = 0 as reference, we find :

v(R, t) = Ṙ =
σ(d− 1)

R(φ1 − φ0)2

(

V (φ0) + V (φ0)(φ1 − φ0)

σ
−

1

R

)

(4.35)

Which can be written :

Ṙ =
σ(d− 1)

R(φ1 − φ0)2

(

1

Rc
−

1

R

)

(4.36)

Rc =
σ

V (φ0) + V (φ0)(φ1 − φ0)
(4.37)

We find that domains smaller than Rc, the critical domain size, will evaporate in the
bulk whereas larger domains will grow. For small domains, R2Ṙ ∼ −σt and hence their
evaporation shows a scaling R ∝ −t1/3. To show a similar law for growth, one has to
consider an assembly of domains. If a scaling law is assumed for the distribution of domain,
the only growth law maintaining the scaling is Rc ∝ t1/3. To show this, the steps are to
assume a scaling for n(R, t) :

n(R, t) = f(R/Rc(t)) (4.38)
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The continuity equation then reads :

∂tn+ ∂R [v(R)n(R)] = 0 (4.39)

Injecting 4.35 and 4.38 in 4.39 yields :

R2
cṘc = Aσ (4.40)

And therefore :
Rc ∝ (σt)1/3 (4.41)

Because we assumed a scaling n(R, t) = f(R/Rc(t)), the size of domains is distributed
around Rc, and Rc is a good measure of the mean domain size. This argument shows that
the mean radius of domains < R >≈ Rc in a bulk will grow like t

1
3 if

• The domains are well separated

• The mean size of the domains is much larger than the interface length

• The dynamics is quasi-stationary

It is important to note here that domains larger than Rc grow by evaporation of smaller
domains. We can use this remark to estimate the minimum times at which we can estimate
the scaling to be valid. It costs an energy 2zJ to exchange one molecule in the bulk with one
molecule in a domain. As domain growth as described by Lifschitz, Slyozov and Wagner
is limited by evaporation of small domains, it is limited by the rate exp (−8J/kBT )D/a

2

(assuming z = 4) at which molecules exit a domain. We therefore cannot expect the
scaling before a time exp (8J/kBT ) a

2/D [111].

Equation 4.32 shows that the above demonstration is valid for a system in a dimension
d > 2 only. For d = 2, we may expect this scaling to be marginally valid, with possible log
corrections [111, 106]. We performed numerical simulations to confirm this scaling.

4.2.2 Numerical simulations

To compute the dynamics of such a system, we performed some numerical simulations. At
first, we simulated a continuous system, but since it derives from the discrete system, it is
more advantageous to simulate a discrete system, which reduces computational time by a
few orders of magnitude.

The Metropolis algorithm has widely been use to study the kinetics of phase separation
(see for instance [111, 112, 113]). For large times (i.e. for many Monte Carlo steps per
site) the dynamics are statistically convincing, and the Lifschitz-Slyozov-Wagner scaling
has been observed using the Metropolis algorithm [111, 113]. Other algorithms can be used,
for instance by randomly choosing one rate of transition (among all possible transitions,
with the probability of a transition being proportional to its rate) and incrementing the
time by the inverse of the chosen rate. These algorithms are known as continuous-time
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Monte Carlo [114], and have been used to study spin-exchange models [115]. The famous
Gillespie algorithm [116], widely used in computational biology, is of this class.

We mainly used the Metropolis algorithm, as we will realize later that it allows a very
easy implementation of maturation (and as a Gillespie algorithm yields the same results).
In the next section, we detail the Metropolis algorithm we used, and how to find the
domain size from the results of the simulation.

Algorithm

For numerical convenience, we worked with s = ±1 instead of 0 and 1. As a result, the
Hamiltonian is :

H = −
1

2

∑

m,n

Jmn

2
smsn (4.42)

We used a square lattice with Jmn = J for nearest neighbors and Jmn = 0 otherwise. We
call Lx and Ly the system sizes on the x and y axis respectively, and s[i, j] is the type of
molecule at the position i, j, with i ∈ {1, 2, ..., Lx} and j ∈ {1, 2, ..., Ly}. s is −1 for a A
molecule and 1 for a B molecule. t is the Monte-Carlo time, the number of computation
steps per site. The algorithm reads :

def Eint ( i , j ) = − J s [ i , j ] ( s [ i +1, j ] + s [ i −1, j ] + s [ i , j +1] + s [ i , j −1])/4

for t in 1 to T :
# t −> t+1
for n in 1 to Lx ∗ Ly :

#New s t ep

#Chooses one s i t e a t random
i=random(1 to Lx)
j=random(1 to Ly)
#Chooses one neighbour at random
move=random(1 to 4)
i f move==1 : x=i , y=j+1
else i f move==2 : x=i , y=j−1
else i f move==3 : x=i +1, y=j
else i f move==4 : x=i −1, y=j

#I f the ne ighbours are d i f f e r e n t ,
# we compute the energy o f the exchange
i f S [ i , j ] != S [ x , y ] :

Eold = Eint ( i , j ) + Eint (x , y )
s [ i , j ] = −s [ i , j ]
s [ x , y ] = −s [ x , y ]
Enew = Eint ( i , j ) + Eint (x , y )
DeltaE = Enew − Eold

#Implementation o f the Metropo l i s a l gor i thm
i f DeltaE >0 :

i f random(0 to 1) > exp(−DeltaE ) :
#The change i s r e f u s ed
s [ i , j ] = −s [ i , j ]
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s [ x , y ] = −s [ x , y ]

Size of domains

After implementation of the Metropolis algorithm, we analysed the data. To know the
size of domains, we compute the correlation length of the system. The pair correlation
function can be written [117] :

G(R) =

∫

S
d2rψ(r)ψ(r+R) (4.43)

ψ(r) = φ(r)− φ̄ (4.44)

There are various definitions of the correlation length using the pair correlation func-
tion, including the first zero of G(‖r‖) [111]. In this case, computing the values of G takes
a computational time ∝ S2. Alternatively, the correlation length can found by computing
the first moment of the structure factor S [118], which is defined as the Fourier transform
of the pair correlation function G :

S(q) =

∫

S
d2RG(R)eiq.R (4.45)

Using Eq. 4.43, this can be rewritten :

S(q) =

∫

S
d2Rψ(R)

∫

S
d2rψ(r)eiq.(r+R) (4.46)

And therefore, with ψ̃ the Fourier transform of ψ :

S(q) = ψ̃−qψ̃q (4.47)

Which can be written :
S(q) = ‖ψ̃q‖

2 (4.48)

The computation of S therefore only implies the computation of a Fourier transform, which
takes a time of order S logS. After computing S, the correlation length can be found :

Lc =
1

qc
(4.49)

qc =

∫

d2q‖q‖S(q)
∫

d2qS(q)
(4.50)

The integrals being replaced by sums, this takes a computational time of order S, which
makes using the structure factor the fastest way to find the correlation length. Let us note
that since we computed S, we can do a Fourier transform to get G and alternatively find
Lc by finding the first zero of G. If we compute qc, we can also note that because the
S(0) does not contribute in qc, we can use S(q 6= 0) = ‖φ̃q‖

2. In our simulations, we use
discrete values for the positions, and hence discrete values for the wave vectors.

This correlation length is usually considered a good measure of domain size [118, 115].
However, this is true if φ̄ = 1

2 , since otherwise there are actually two length scales in the
system : the size of the (minority phase) domains, and the distance between domains.
As of now, we are still in search for a good statistical measure yielding domain size for
φ̄ 6= 1/2.
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Figure 4.5: Monte-Carlo simulations of the correlation length Lc (left) and the energy per do-
main E1 (right) as a function of t (in units of a2/D, t → t + 1 corresponds to one
Monte-Carlo step per site on average). The parameters are φ̄ = 1/2, J = 1.25k

B
T ,

Lx = Ly = 150 (values of the parameters are discussed in section 4.2.3). Similar re-
sults were obtained with different system sizes. At late times t > exp (8J/k

B
T )a2/D,

both Lc and E1 follow the t1/3 scaling expected from the Lifschitz-Slyozov-Wagner
theory. Results are averaged over 10 simulations.

Energies

Since we can compute the mean domain size, we also know the approximate number of
domains in the system. We can compute the Hamiltonian H of the system (equation 4.42),
and the energy per domain E1 can be estimated :

E1 ≈ HL2
c

S
(4.51)

In which S/L2
c is approximately the number of domains. Since the energy of a domain is

mainly due to interfacial effects, we expect E1 to grow like Rc, i.e. we expect E1 ∝ t1/3.
The results are shown in figure 4.5. We see that the expected scalings Rc ∝ t

1
3 and

E1 ∝ t
1
3 are indeed found, for t > 105a2/D. This time is in good agreement with the

validity criterion t > τJ = exp (8J/kBT )a
2 : since we used J = 1.25kBT , we did not

expect to see the scaling before t > 2.104a2/D. The values of the parameters are discussed
in section 4.2.3.

One of the assumptions of the Lifschitz-Slyozov-Wagner theory is that σ, the line
tension, is constant. We can compute a simple estimation of line tension by noting that
the energy per domain E1 is the line tension σ times the contour length L of the domains
: E1 = σL. Assuming circular domains, we find :

σ ≈ H Lc

2πS
(4.52)

This method does not yield the exact value of the line tension, which has to be computed
with more advanced tools [119, 120]. One of the shortcomings of this method is the
assumption that the domains are circular. As illustrated in figure 4.6 (right), it is not the
case (except for really long times for which the Rc is of the order of the system size), and
we cannot be confident about the factor 2π in equation 4.52.
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4.2.3 From numerical membranes to biological membranes

In the previous section, we showed how a scaling Rc ∝ t1/3 for the mean radius of domains
could be obtained. We could run Monte-Carlo simulations of domain growth on a flat
membrane, and we realized that the correlation length measured from the static structure
factor S, a good representation of domain size, did exhibit the same scaling (as show in
figure 4.5). We can identify the Monte-Carlo time t to the real time in units of a2/D as
during one Monte-Carlo time t→ t+ 1, each molecule will move a distance a on average.
We are interested in lipids of size a ≈ 1nm and diffusion coefficient D ≈ 1µm2s−1 [121]
moving in a membrane plane during a time 1 − 20 minutes (the maturation time), i.e.
6.107 − 109a2/D. In this regime, Monte-Carlo simulations show the Lifschitz-Slyozov-
Wagner scaling to be verified.

We have to choose the interaction parameter J in the simulations. We chose J =
1.25kBT as this yields a surface tension σ ∼ 0.2kBT/a ≈ 0.8pN (as shown in figure 4.6).
This is the typical order of magnitude of line tension in biological membranes [24]. To have
access to such large timescales, we performed the simulations on smaller lattices (typically
150 ∗ 150a2) than a real cisterna (of order 1µm). Limited simulations on larger systems
also show the same behavior. Using J = 1.25kBT predicts the scaling to be verified for
t ≫ exp (−8J/kBT )D/a

2 ≈ 2.104D/a2. In the simulations, the scaling is verified for
t > 105D/a2, in good agreement with the argument mentioned in section 4.2.1 [111].

An interesting point in biological membranes, is that they will not stay flat like, for in-
stance, a simulation grid. Line tension can cause the formation of full buds for large enough
domains, but can also deform the membrane for smaller domains. The kinetics of domain
growth on non-flat membranes have been studied numerically [122, 123]. In most cases
the phase separation of species with different spontaneous curvature has been studied, and
such difference in spontaneous curvature can cause even small domains to buckle. Despite
this buckling, typical Lifschitz-Slyozov-Wagner kinetics have been observed. Therefore,
we can be confident that this scaling should be observed when buckling is driven by line
tension. However, we still need to inquire how maturation of membrane components will
influence domain growth.
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Figure 4.6: LEFT : Approximation of the surface tension σ as computed from equation 4.52,
as a function of t (in units of a2/D, t → t+ 1 corresponds to one Monte-Carlo step
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circular and exhibit a typical serpentine shape. The correlation length (computed
with equation 4.49) is 14.3 a.

4.3 Kinetics of domain growth with maturation

To address the issue of the structure of the Golgi apparatus, we need to understand the
kinetics of domain growth in membrane in which chemical maturation occurs. Maturation
causes domains to grow not only by evaporation of smaller domains (which is fundamental
in the Lifschitz-Slyozov-Wagner theory), but also by accretion of newly formed B molecules
to existing B domains. Surprisingly, numerical simulations [118], showed that in a phase-
separating system including a reversible chemical reaction A ↔ B of rate k, the mean
size of domains as steady state was proportional to k−1/3 in some regime. In our system
of interest, the chemical reaction is irreversible, and domains can only exist transiently.
We are interested in knowing the maximum possible size (or rather the maximum value of
the energy per domain) these transient domains will reach. We now need to understand
theoretically how the growth laws are modified by maturation, and if we can predict a
scaling for the maximum domain size as a function of the maturation rate.

4.3.1 Theoretical analysis

Let us consider a maturation A→ B at a constant rate r such as ∂tB = krA. In terms of
φ this yields :

∂tφ = +kr(1− φ) (4.53)

Since the maturation time is of order 1/kr, using the Lifschitz-Slyozov-Wagner scaling, a
naive argument yields that the maximum size of domains Rmax

c to grow like k−1/3
r .

However, this argument should not necessarily hold as the scaling in t−1/3 is derived
for a constant φ̄, and when the growth of domains is limited by evaporation of smaller
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domains. In the case of maturation, domains of B form as φ̄ increases, and domains can
grow by incorporating B molecules both newly created by maturation of A molecules in
the bulk, and existing B molecules released by the evaporation of small domains.

Influence of kr on the concentration profile

Let us write the dynamics (equations 4.27 to 4.25), with maturation and, for now, without
renormalizing distances and time. The dynamics with maturation then read :

∂tφ = −a2∇.j + kr(1− φ) (4.54)

j = −D∇µ (4.55)

µ =
δF

δφ
= −ζ∇2φ+ V ′(φ) (4.56)

We would like to compute the order parameter profile in the bulk, around a domain
(analog to equations 4.31,4.32), by assuming once more that ∂tφ = 0, i.e. the concentration
profile near the interface to be stationary. Unfortunately, there is no analytical solution
in most cases. However, we can give some scaling arguments. In section 4.2.1, we showed
that the typical lengthscale for gradients of the order parameter around a domain was R,
the size of the domain. In equation 4.56, we thus expect the first term ζ∇2φ to scale like
ζ/R2. In contrast, we expect V ′(φ) to scale like K/a2, and therefore we will neglect the
term ζ∇2φ in the chemical potential. Equation 4.54 now reads :

∂tφ ≈ −a2D∇
2V ′(φ) + kr(1− φ) (4.57)

We have to make more restrictive approximations in order to find a solution to this equa-
tion. Let us write φ = φ̄+ δφ. We now want to assume δφ≪ φ̄ in order to expand V ′(φ).
Since we want to solve this equation in the bulk (outside the domains), this approximation
is only reasonable if φ0, the value of φ in the bulk, is close to φ̄, i.e. for φ̄ ∼ φa or φ̄ ∼ φb.
In this case we can write :

∂tφ̄ = kr(1− φ̄) (4.58)

∂tδφ ≈ a2DV ′′(φ̄)∇2δφ− krδφ (4.59)

We want to find a growth law in the quasi-stationary regime, i.e. ∂tδφ ≈ 0. The assumption
φ̄ ∼ φa is compatible with quasi-stationarity only if maturation is slow compared to the
other dynamics. In the previous chapter, we saw that quasi-stationarity was valid for
t > exp (8J)a2/D, and therefore, we can write δφ ≪ φ̄ only if kr ≪ exp (−8J)D/a2. In
this case, equation 4.57 can be written :

0 ≈ V ′′(φ̄)∇2δφ−
kr
Da2

δφ (4.60)

A new length scale clearly appears : λr =
√

V ′′(φ̄)Da2

kr
. As long as the sizes of the domains

are well below λr, kr will play no role in the concentration profile. To see that more clearly,
let us note that equation 4.60 can be solved, and yields :

δφ ∝

(

r

λr

)1− d
2

K d
2
−1

(

r

λr

)

(4.61)
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In which Km(r) is the modified Bessel function of the second kind (a solution to ∇2
rX =

X(r) −m/r2 in two dimensions). Because we assumed the laplacian term in 4.56 to be
negligible, we know that µ ∝ δφ + (∂V/∂φ)φ̄. The Gibbs-Thomson boundary condition
(equation 4.29) still applies and we can write for a domain of size R and composition φ1
(compare equations 4.31, 4.32) :

r < R⇒ µ(r) = µ1 =
1

φ̄− φ1

(

V (φ̄)− V (φ1)−
σ

R

)

(4.62)

r > R⇒ µ(r) = V ′(φ̄) +
(

µ1 − V ′(φ̄)
)

( r

R

)1− d
2
K d

2
−1(r/λr)

K d
2
−1(R/λr)

(4.63)

Let us now find a scaling for λr. We can assume that V ′′(φ̄) ∼ K/a2 (see equation 4.13),
and typically K ∼ 1. Using typical values D ≈ 10−12m2.s−1, kr ≈ 1min−1 (in yeast),
one finds : λr > 10µm, which is two orders of magnitude larger than the critical size of
domains to form buds, and λr is even one order of magnitude larger than the size of a
cisterna. Therefore, in the issue at hand, we can expand the Bessel functions for small
values of r/λr. Since Km(x→ 0) → x−m, we find :

r > R⇒ µ(r) ≈ V ′(φ̄) +
(

µ1 − V ′(φ̄)
)

( r

R

)2−d
(4.64)

Eventually, we find the expression of ∂rµ to be very similar to the expression in the absence
of maturation :

∂rµ
∣

∣

R+δR
∝
(

µ1 − V ′(φ̄)
) 1

R
with µ1 =

1

φ̄− φ1

(

V (φ̄)− V (φ1)−
σ

R

)

(4.65)

And in the limit R≪ λr, we find that the gradient of the chemical potential is unchanged
by slow maturation. We also assumed that φ0, the value of φ in the bulk is close to φ̄.
During most of the growth process, this hypothesis does not apply. However, our argument
that the maturation lengthscale

√

D/kr is much larger than the sizes of interest should
hold.

We therefore expect that as long as R≪
√

D/kr and kr ≪ exp (−8J)D/a2, we should
find the same behavior for µ as in the absence of maturation, and therefore we should find
:

R2
cṘc ∝ σ (4.66)

However, σ will depend upon time as φ̄ changes with time.

Influence of a changing line tension

As we mentioned in section 4.1.2, domain will spontaneously grow only if φ̄ is between two
values φa and φb, that correspond to the crossing of the critical line. As was shown earlier
(see equation 4.66), we have :

∂t(R
3
c) ∝ Aσ (4.67)

We expect σ to be strictly positive only for φa < φ̄ < φb. More generally, σ depends on
φ̄ (see equation 4.30), which changes with time because of maturation. We should thus
write :

R3
c(tb) ∝

∫ tb

ta

σ(t)dt (4.68)
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Figure 4.7: Cartoon of the expected mean radii of domains as a function of time for increas-
ing chemical maturation rates k1, k2, k3. For small rates (slow maturation) domain
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For large maturation rates, the maximum domain size is reached for 1

2 < φ̄ < φb.

In which ta and tb are the times at which φ̄ = φa and φ̄ = φb respectively, i.e. the
times at which the phase separation begins, and ends, respectively. Since we are in a
quasi-stationary regime, σ does not depend explicitly on time but depends only on the
thermodynamic parameters of the system. We indeed realized in section 4.2.2 that in the
absence of maturation, σ was constant as long as the Lifschitz-Slyozov-Wagner hypothesis
applied. Here, the only thermodynamic parameter changing with time is φ̄, and equation
4.68 can be rewritten :

R3 ∝

∫ φb

φa

1
˙̄φ
σ(φ̄)dφ̄ (4.69)

Since we assumed ˙̄φ = kr(1− φ̄), we find :

R3 ∝
1

kr

∫ φb

φa

1

1− φ̄
σ(φ̄)dφ̄ (4.70)

The integral is a constant depending only upon the function σ(φ̄) and hence we showed

that R3 ∝ k
− 1

3
r , assuming the standard Lischitz-Slyozov-Wagner hypothesis to be verified,

and the average domain size to be much smaller than
√

D/kr.

4.3.2 Application to domain budding in cisternae

We are interested in knowing if, for a given kr, domains large enough to form buds will
grow. Up to φ̄ = 1/2, B is the minority species and hence we must consider domains
enriched in B in a bulk enriched in A. For φ̄ > 1/2, A is the minority species and we
expect to see domains of A in a bulk of B. Therefore, the previous computation, which
focused on the size of domains of B, will not give the actual sizes of domain in the system
for φ̄ > 1/2 : as φ̄ increases the density of A vanishes and the domains (of A) will get
smaller and smaller, until they all evaporate for φ̄ > φb. Therefore, there will exist a
maximum domain size Rmax

c on the membrane.

Let us consider a very slow maturation compared to domain growth. As φ̄ increases
from φa to 1/2, domains of B grow, and, in the limit of infinitely small maturation, B
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forms a unique domain growing only as new B molecules are formed, until it spans the half
of the membrane area at φ̄ = 1/2. At that time, a domain of A occupies the other half.
As soon as A becomes the minority species, the domain enriched in A shrinks. Therefore,
if domain growth is much faster than the kinetics of maturation, we expect Rmax

c to be
reached at φ̄ ≈ 1

2 . In other limits, the situation is more complex, but we know that domains
will evaporate for φ̄ > φb, and hence we expect Rmax

c to be reached for 1
2 < φ̄ < φb (in

which φb is the value of φ̄ for which the spinodal line is crossed the second time). This is
illustrated in figure 4.7.

Because of this issue, we could not estimate the scaling of Rmax
c except in the limit

Rmax
c ≈ Rc(φ̄ = 1/2). Moreover, in section 4.2.2, we mentioned that the correlation length

is a good measure of domain length for φ̄ = 1/2 only, and Rmax
c cannot be estimated

numerically with the correlation length. Rc(φ̄ = 1/2) can be shown to obey the k−1/3

scaling by changing the integration interval in equation 4.70, yielding :

R3
c

(

φ̄ =
1

2

)

∝
1

kr

∫ 1
2

φa

1

1− φ̄
σ(φ̄)dφ̄ (4.71)

We can verify numerically if this scaling is indeed observed, but we need more tools to
determine if the assumption Rmax

c ≈ Rc(φ̄ = 1/2) is valid.

4.3.3 Numerical simulation

We could compare our predictions to the numerical simulation of a phase-separating mem-
brane with maturation. To simulate such a system, we merely have to implement matu-
ration in the algorithm presented in section 4.2.2.

Let us define Pchem = kra
2/D, the renormalized rate of chemical reaction, which we

expect to be much smaller than 1. At each computation step, we choose a site at random.
If it is occupied by an Amolecule, it has a probability Pchem to be matured to a B molecule.
Therefore, in the algorithm presented previously, we add at each new step :

#New s t ep
i f random(0 to 1) < Pchem :
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#Chooses one s i t e a t random
i=random(1 to Lx)
j=random(1 to Ly)
i f s [ i , j ]==−1:

s { i , j ]=1

In section 4.2.2, we observed a scaling R ∝ t1/3 for t > 105a2/D. We therefore expect
to see a scaling R ∝ k

−1/3
r only for kr < 10−5D/a2. We show here results from numerical

simulations including maturation. As the correlation length is a good measure of the
domain size only for φ̄ = 1

2 , we computed the value of R for φ̄ = 1
2 . The result is shown in

figure 4.8.

As we can see in figure 4.8, we find the predicted scaling Rc ∝ k
−1/3
r for kr < 10−6D/a2.

The scaling appears somehow for larger timescales (smaller kr) than it appears in the ab-
sence of maturation. This can be understood as the scaling requires additional assump-
tions, including small maturation rates.
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4.4 Discussion

After studying the kinetics of phase separation in a two-dimensional membrane with con-
served order parameter, we focused on phase separation kinetics in a membrane in which
one species is generated progressively by a chemical reaction, with a rate kr. We showed
that in both cases we should expect a scaling of the mean domain size, growing like t1/3

(i.e. like k−1/3
r in the case of chemical maturation). To show that this expansion of the

Lifschitz-Slyozov-Wagner theory did apply to our biological system, we ran a Monte-Carlo
simulation where the membrane was represented by a square lattice. Because of com-
putational time constraints, we limited ourselves to small grid sizes (though simulations
on larger grids showed qualitatively the same behavior). In order to mimic lipids in the
Golgi apparatus, we assumed a grid size a ≈ 1nm, a diffusion coefficient D ≈ µm2s−1,
an interaction energy J = 1.25kBT with the nearest neighbors, yielding a line tension of
order 0.2kBT .

Our simulation do exhibit the predicted scaling, though at larger times than in the
absence of maturation, which is likely because of the more restrictive hypothesis required
for the scaling when maturation takes place. We extrapolated our results to have a scaling
of the reaction rate kr required for the formation of large enough domains, which can
form buds (figure 4.9). We know that buds are thermodynamically favorable for line
energies per domain larger than 8πκ, i.e. for domains of size R > 4κ/σ. With our
choice of D, a, σ, we find that the maximal reaction rate allowing domain budding is
kmax
r ∼ 0.5 10−9D/a2 ≈ 1/35 min−1, which is slightly smaller than the typical the order

of magnitude of reaction rates in the mammalian Golgi apparatus. This extrapolation is
illustrated in figure 4.9.

According to this extrapolation, a cisterna in the mammalian Golgi apparatus should
not form complete bud as the reaction rate is slightly too high ; however the order of
magnitude of the estimated maximal reaction rate is quite close to the reaction rate in
mammals. Since we only reasoned on orders of magnitude, this result is quite satisfactory.
We chose σ ≈ 0.8pN at φ̄ = 1/2, which is not the maximal tension (tensions up to 3.3pN
have been measured [24]). As Lifschitz-Slyozov-Wagner theory predicts L ∝ (σt)1/3, and as
Rc = 4κ/σ, slightly higher line tensions could increase significantly the maximum reaction
rate allowing bud formation. Moreover, many factors could actually facilitate budding,



114 Building differentiated compartments

1

10

100

1000

R
c
/
k
B
T

10−5 10−4 10−3 10−2 10−1 100 101

1/kr (min)

k
−1/3
r

R∗ = 4κ/σ
Rc(φ̄ = 1/2)

1

10

100

1000

R
c
/
k
B
T

10−5 10−4 10−3 10−2 10−1 100 101

1/kr (min)

k
−1/3
r

R∗ = 4κ/σ
Rc(φ̄ = 1/2)

1

10

100

1000

R
c
/
k
B
T

10−5 10−4 10−3 10−2 10−1 100 101

1/kr (min)

k
−1/3
r

R∗ = 4κ/σ
Rc(φ̄ = 1/2)

Figure 4.10: Extrapolation of the domain size as a function of the inverse of the maturation
rate kr, for various system sizes. Left : Lx = Ly = 128 a, center : Lx = Ly = 200 a,
right : Lx = Ly = 256 a.
For κ = 10k

B
T , we find 20min < 1/k∗r < 40min. We chose J = 1.25k

B
T , yielding

σ ∼ 0.2k
B
T/a. The size of the simulation box seem to little influence the scaling

behavior and the maximal maturation rate to form buds.

such as the existence of proteins favoring a non-zero spontaneous curvature.

One might be concerned that the spatial and time scales of our simulations are well
below the time and space scales of the actual, biological system. Concerning the time
scale, it is no concern as the smallest kr, the more valid the approximations leading to
the k−1/3

r scaling. To test whether the grid size could affect the scaling and the maximum
reaction rate allowing the formation of buds, k∗r , we performed the simulation on various
grid sizes. In figure 4.10, we show that for grids of size 128 ∗ 128, 200 ∗ 200 and 256 ∗ 256.
k∗r does not seem to be affected by the grid size.

We focused each time on the mean domain size at φ̄ = 1/2, which we called Rc(φ̄ =
1/2). Actually, we are interested in the maximum domain size during the maturation,
Rmax

c , which could take place for φ̄ > 1/2. We therefore need a computational tool to
measure Rc for φ̄ 6= 1/2. Since we are interested in domains of size Rc ≈ 0.2 − 0.4µm in
cisternae of size L ∼ 1µm, we expect the size of domains to be close to the system size,
and because the argument proposed in section 4.3.1, we expect Rmax

c ≈ Rc(φ̄ = 1/2).

In figure 4.11 (right), we show a snapshot of the system for kr = 10−5D/a2, at φ̄ = 1/2.
Interestingly, the domains are much more circular than in the absence of maturation. This
can be explained as when domains start to form, at φ̄ = φa, only a few domains will form
as few B molecules are available. Therefore, domains will tend to be far away from each
other. As φ̄ increase, newly formed B molecules will mostly join existing domains, and
therefore domains will be more distinct than in a system starting from φ̄ = 0. The fact
that domains are circular rather than serpentine is encouraging for our goal of comparing
the domain size to a critical radius for domains to form bud. Moreover, the expression of
σ ≈ E1/2πRc is rather convincing in this case. As we find the same value σ ∼ 0.2kBT/a
(as illustrated in figure 4.11,left) as in the serpentine phase (without maturation), we can
be confident that our approximation for σ is not dependent on the geometry of domains.
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Figure 4.11: LEFT : Approximation of the surface tension σ computed from equation 4.52, as
a function of kr (in units of D/a2). The surface tension is averaged over sixteen
simulations. RIGHT : An illustration of the system at kr = 10−5D/a2). In the
presence of maturation, the domains are much more circular and the serpentine
phase can be seen only partially. The measured correlation length corresponding
to this system is 12.5 a.

Conclusion

In this chapter, we showed that the size of membrane domains in the cisternae of the
Golgi apparatus can be controlled by the maturation rate kr. Theoretical arguments and
simulation indicate that the size of domains grow like k−1/3

r , for small enough values of
kr. Using typical values of the diffusion coefficient, the lipid size, and the line tension,
we find that the typical reaction time has to be of the order of twenty to forty minutes,
which is the typical maturation time in the Golgi apparatus of mammals. On the other
hand, maturation is faster in Yeast, the Golgi apparatus of which do not exhibit a stacked
structure. It is therefore a convincing argument that the structure of the Golgi apparatus
can be controlled by the reaction rate.

However, in the computation of domain growth, we only considered the diffusion of the
individual lipid molecules, hence the Lifschitz-Slyozov-Wagner scaling. It has been shown
that other scalings can be expected [124]. For instance, at large lengthscales, the hydro-
dynamic regime in t1/2 should dominate. To know whether the t1/3 is indeed dominant
in the membrane, we would be highly interested in experimental comparisons. Since it is
possible to fluorescently tag lipids such as ceramids and sphingolipids, we would like to
compare our theory to a model experimental system. It could also be of high interest to
use more advanced numerical methods. For instance molecular dynamics of the continu-
ous Hamiltonian, solved in Fourier space, have been shown a powerful tool to study phase
transitions. Such methods could permit, using the coarse-grained Hamiltonian, the study
of large timescales (many minutes) and lengthscales (a few micrometers).

However, we demonstrated a possible mechanism allowing the internal properties of
an organelle (here, the maturation rate in the Golgi apparatus) to control its structure.
This internal control is the very definition of self-organization, the ability for a structure
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or pattern to be created without external control. The sequel is to integrate this self-
organization ability into a dynamic system including the fluxes from the endoplasmic
reticulum, the exchange between compartments, and the export to the cell.



Conclusion

“ How many miles to Avalon?
None, I say, and all.
The silver towers are fallen. ”

Roger Zelzany, The guns of Avalon

In this thesis, it appeared clearly that membranes are not passive bystanders in cell life.
We realized in chapter 1 that the composition of a membrane can enable it to selectively
allow the entrance of certain molecules or bodies. A membrane rich in GM1 will allow
the formation of tubules by SV40 viruses, and these tubules will be pinched off and offer
viruses a gateway to the cell. Though tubule formation is passive, it is a specific mecha-
nism based on the affinity of SV40 for GM1. The fact that membrane properties influence
transport is a very general phenomenon, and is not restricted to the entry of pathogens.
In chapter 2, we saw how a gradient of chemical or physical properties along an organelle,
the Golgi apparatus, could allow both forward transport, backward transport, and quasi
stationary localization. We showed in that chapter that lateral interactions between mem-
brane components can play a role in transport mechanisms : as the mean composition
changes gradually in the cisternae, the lateral interactions in the membrane also change
along the gradient, and an energy landscape is generated.

Beyond thermodynamics, we may also be interested in the kinetic effects of membrane
identity, which can be mapped to an energy landscape only in some cases, and with some
difficulties of interpretation. The membrane of organelles contains molecular tags to be
recognized by vesicles, including the SNARE proteins, which act as complementary pairs of
anchors, enabling the recognition and fusion of a vesicle with a cellular compartment. As
those tag molecules are both transported and actors in the transport processes, some non-
linear effects appear, yielding to the building and maintenance of intra-cellular gradients.
Interestingly, the non-linearities do not only modify the stationary states of the system but
also its dynamic behavior, e.g. how an organelle involved in the processing of immature
proteins will react to a high influx of molecules to be processed. We could show that
the non-linearities caused by molecular recognition allows the organelle to process any
incoming flux of molecules without exporting a large amount of unprocessed molecules.

The emergence of compartment identity by non-linear transport including molecular
recognition can be seen as a self-organization property, as the compartments do not need
a central authority to be heterogeneous. We wanted to go further in this direction by
studying how a series of differentiated sub-compartments (namely, the cisternae of the
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Golgi apparatus) could emerge from one homogeneous compartment. We show that the
structure of the Golgi apparatus could be controlled by the kinetics of chemical reaction
in the organelle. The actual biological picture is actually more complex, as the transport
properties and the building of the structure of the Golgi apparatus cannot be separated,
and we need to reunite in a single model our three approaches to studying the Golgi
apparatus. For instance, we are highly interested in adding fluxes to the phase separation
model (chapter 4), in order to model the influx from the E.R., the inter-cisternal flux, and
the export to the cell. In fact, we would like integrate in a single model all the "bricks"
presented in chapters 2, 3 and 4.

The first step towards such an integration has already been done chapter 4, as new
cisternae emerge with a different lipid composition than their precursor. This lipid com-
position is an important part of organelle identity, and moreover the localization of trans-
membrane protein depends on lipid composition. Some transmembrane proteins control
the recruiting of Arg-GTPase, which is involved in turn in the building of COP coated
vesicles. Therefore, the system composed of the new cisterna and its precursor will have
an asymmetric composition in transport-related species, and we hope to use the tools from
chapter 3 to study transport in this system. A conceptual model has been developed by
S. Pfeffer [56] including generation of new cisternae, maintenance of cisternal identity and
transport controlled by Rab GTPases, an essential component of membrane identity. We
would now like to achieve such a model in more formal manner.

The disruption of the Golgi apparatus has been observed in many neuro-degenerative
diseases, but location in the causal chain is still unknown. We believe that having a
clearer picture of the interactions between structure, dynamics, and function in the Golgi
apparatus, as we are en route to, is a necessary step in understanding such diseases. It is
clear that much is left to unveil, but combining biology and physics seem a promising way
to understand this organelle.

On the physics side, though the living cell is a fundamentally out of equilibrium system,
we could learn much by using tools from equilibrium thermodynamics, by assuming the
kinetics to be close to equilibrium kinetics. However, as we saw in chapter 3, this is not
always possible. Reuniting close to equilibrium dynamics to far from equilibrium dynamics
cannot be expected to be easy. However, recent works show that equilibrium tools such as
the fluctuation-dissipation theorem can be modified to work in out-of-equilibrium systems,
and we can hope that a complete picture of the Golgi apparatus can be drawn, using close
to equilibrium and out of equilibrium tools in a single framework. The tools and concepts
we used in this thesis are not restricted to the study of cellular organelles, and it could
be of high interest to use them in the study of self-organization, transport, and identity
at the multi-cellular scale. For instance, embryogenesis can be seen as a self-organizing
process in which identity appears by symmetry breaking, identity being both generating,
and induced by, gradients of growths factors in the embryo.
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Abstract

In this theoretical work, we studied the relation between membrane identity, transport
and organelle structure in cells. We first study the entry of pathogens such as viruses or
toxins in cells. We showed how the chemical and physical properties of the cell membrane
can control the entry of molecules or bodies. We then focus on transport in the Golgi
apparatus. We see that by an adequate formulation of transport in the Golgi, we can
give an accurate interpretation of existing experimental data. We show that differences of
identity allow the localization of molecules in one cisterna of the Golgi stack.

Then, we show that we can write general requirements on the transport processes to
enable the heterogeneity of compartments. We show that this requirements may have
dramatic functional consequences on transport. Eventually, we study the building of new
compartments in the cell. We consider one membrane compartment, which we can see as
the precursor of the Golgi apparatus, in which the membrane lipids undergo a chemical
reaction and are transformed into another lipid species (as occurs in the Golgi apparatus).
There can be a competition between the kinetics of phase separation and the kinetics of
the chemical reaction which control the structure of the compartment.

Résumé

Dans ce travail théorique, nous avons étudié les relations entre l’identité d’une membrane
(sa composition chimique et ses propriétés physique), le transport lié à cette membrane, et
la structure adoptée par cette membrane. Nous avons d’abord étudié l’entrée de pathogènes
dans la cellule. Nous avons montré que ce sont les propriétés physiques et la composition
de la membrane qui contrôlent l’entrée des pathogènes dans la cellule en contrôlant leur
adhésion sur la membrane et leur aggrégation.

Nous nous sommes ensuite tournés vers le transport dans l’appareil de Golgi, où nous
montrons qu’une formulation adéquate des processus de transport permet de donner une in-
terprétation précise d’expériences passées. Nous avons montré que des différences d’identité
dans les membranes peuvent causer un transport des molécules dans l’appareil de Golgi.

Nous nous intéressons ensuite à la maintenance de cette identité dans des organelles
qui s’échangent en permanence des molécules. Nous montrons que cet échange doit avoir
des propriétés particulières pour permettre la conservation de l’identité. Ces propriétés
du transport ont un grand rôle sur la physiologie de l’organelle, et nous montrons qu’ils
peuvent augmenter le rendement de l’appareil de Golgi. Enfin, nous montrons que le
changement progressif d’identité dans un organelle peut contrôler la structure même de
cet organelle.
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