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Contents

Acknowlegdements ix

Abstract xi

I Generalities 1

1 Considered systems 3

1.1 Uniformly Hyperbolic dynamical systems . . . . . . . . . . . . . . . . . . 4

1.2 Gibbs measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Young towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fluctuation of observables 11

2.1 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Large deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Definitions & generalities . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Concentration inequalities for dynamical systems . . . . . . . . . . 15

2.4 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Auto-covariance function . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Empirical measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Kernel density estimator for one-dimensional maps . . . . . . . . . 20

2.4.4 Correlation dimension . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Concentration Inequalities for Gibbs measures . . . . . . . . . . . . . . . . 22

II Chaotic Dynamical Systems plus Noise 27

3 Modeling dynamical systems with noise 29

3.1 Dynamical noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Random noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Random maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Abstract setting: Skew-maps . . . . . . . . . . . . . . . . . . . . . 31

iii



iv CONTENTS

3.2 Observational noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Fluctuation bounds for chaos plus noise 35
4.1 Concentration inequalities for Chaos plus noise . . . . . . . . . . . . . . . 35
4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Auto-covariance function for Chaos plus noise . . . . . . . . . . . . 38
4.2.3 Empirical measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Kernel density estimator for one-dimensional maps plus noise . . . 41
4.2.5 Correlation dimension . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Signal Recovery from Chaos plus Noise 45
5.1 Noise reduction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Local projective maps . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Schreiber-Lalley method . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Lalley’s Algorithm for Recovery of a Signal . . . . . . . . . . . . . . . . . 48
5.2.1 The smoothing algorithm . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Consistency of Lalley’s algorithm . . . . . . . . . . . . . . . . . . . 49
5.2.3 Proofs of lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Convergence rate of Lalley’s Algorithm . . . . . . . . . . . . . . . . . . . . 57

6 Numerical simulations 61
6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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este tiempo, sobre todo durante la redacción de esta tésis ya que con su compañia hizo
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Abstract

This thesis is divided into three parts. In the first part we briefly describe the class
of dynamical systems considered. We also give some known results on the study of
fluctuations of observables in dynamical systems such as the central limit theorem, large
deviations and concentration inequalities.

In the second part we study dynamical systems perturbed by observational noise. We
prove that if a dynamical system satisfies a concentration inequality then the system with
observational noise also satisfies a concentration inequality. We apply these inequalities
to obtain fluctuation bounds for the auto-covariance function, the empirical measure,
the kernel density estimator and the correlation dimension. Next, we study the work of
S. Lalley on the problem of signal recovery. Given a time series of a chaotic dynamical
system with observational noise, one can effectively eliminate the noise in average by
using Lalley’s algorithm. A chapter of this thesis is devoted to the proof of consistency
of that algorithm. We end up the second part with a numerical quest for the best
parameters of Lalley’s algorithm.

The third part is devoted to entropy estimation in one-dimensional Gibbs measures.
We study the fluctuations of two entropy estimators. The first one is based on the empir-
ical frequencies of observation of typical blocks. The second is based on the time a typical
orbit takes to hit an independent typical block. We apply concentration inequalities to
obtain bounds on the fluctuation of these estimators.
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Résumé

Cette thèse est divisée en trois parties. Dans la prèmiere partie nous décrivons les
systèmes dynamiques que l’on considère tout au long de la thèse. Nous donnons aussi
des résultats connus sur les fluctuations d’observables dans les systèmes dynamiques tels
comme la théorème central limite, les grands déviations et les inégalités de concentration.

La deuxième partie de cette thèse est consacrée aux systèmes dynamiques perturbés
par un bruit observationnel. Nous démontrons que si un système dynamique satisfait une
inégalité de concentration alors le système perturbé satisfait lui aussi une inégalité de
concentration adéquate. Ensuite nous appliquons ces inégalités pour obtenir des bornes
sur la taille des fluctuations d’observables bruitées. Nous considérons comme observables
la fonction d’auto-corrélation, la mesure empirique, l’estimateur à noyau de la densité de
la mesure invariante et la dimension de corrélation. Nous étudions ensuite les travaux
de S. Lalley sur le problème de débruitage d’une série temporelle. Etant donné une
série temporelle générée par un système dynamique chaotique bruité, il est effectivement
possible d’éliminer le bruit en moyenne en utilissant l’algorithme de Lalley. Un chapitre
de cette thèse est consacré à la preuve de ce théorème. Nous finissons la deuxième partie
avec une quête numérique pour les meilleurs paramètres de l’algorithme de Lalley.

Dans la troisième partie, nous étudions le problème de l’estimation de l’entropie pour
des mesures de Gibbs unidimensionnelles. Nous étudions les propriétés de deux estima-
teurs de l’entropie. Le premier est basé sur les fréquences des blocs typiques observés.
Le second est basé sur les temps d’apparition de blocs typiques. Nous appliquons des
inégalités de concentrations pour obtenir un contrôle sur les fluctuations de ces estima-
teurs.

xiii





Part I

Generalities
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Chapter 1

Considered systems

A dynamical system is defined by a set of ‘states’ called phase space that evolves in
time. In this thesis we will consider as phase space a compact metric space X (usually
X ⊂ Rd). The passage of time is modeled by the successive iteration of a self map
T : X → X. Given an initial condition x0 ∈ X, its orbit is the sequence x0, x1 =
Tx0, x2 = Tx1 = T 2x0, . . ., where, as usual, T k denotes the k-fold composition of T with
itself.

We are interested in the probabilistic properties of dynamical systems. The proba-
bility space is (X,B, µ), where B is the Borel sigma-algebra. The probability measures
of interest are those preserved under the transformation T . Their existence is assured
by Kryloff-Bogoliuboff’s theorem (see for instance [71]), defining a measure-preserving
dynamical system (X,T, µ). The invariant measure µ is said to be ergodic with respect
to T if for every measurable subset A satisfying T−1(A) = A then either µ(A) = 0 or
µ(A) = 1. In the study of probabilistic properties of dynamical systems, an important
issue is the description of the ‘time averages’ of functions f : X → R called observables.
A fundamental result is the Birkhoff’s ergodic theorem.

Theorem 1.0.1 (Birkhoff’s ergodic theorem). Let (X,T, µ) be a measure-preserving
dynamical system. For any f ∈ L1(µ), the limit

lim
n→∞

1

n

n−1∑
k=0

f(T kx) = f̃(x)

exists µ-almost everywhere and in L1(µ). Furthermore if µ is ergodic, then for any
f ∈ L1(µ), ∫

f̃dµ =

∫
fdµ and f̃ ◦ T = f̃ µ-a.e.

An idea that will be used repeatedly in this thesis is that one may interpret the orbits
(x, Tx, . . .) as realizations of the stationary stochastic process defined by Xn(x) = Tnx.
The finite-dimensional marginals of this process are the measures µn given by

dµn(x0, . . . , xn−1) = dµ(x0)

n−1∏
i=1

δxi=Txi−1 . (1.1)

3



4 CHAPTER 1. CONSIDERED SYSTEMS

Therefore, the stochasticity comes only from the initial condition. In view of this inter-
pretation it is useful to write the previous theorem for an integrable stationary ergodic
process (Xn), that is, 1

n

∑n−1
i=0 Xi → E[X0] almost surely.

Next, the measure µ is said to be mixing with respect to T if for all measurable sets
A,B,

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

When the system (X,T, µ) is sufficiently mixing, one may expect that the iterate T kx
is more or less independent of x if k is large enough. In turn, the process (Xn = Tn(·))
may behave like an independent process.

From the practical point of view one is interested in properties that can be ‘observed’,
they are those that hold on positive Lebesgue measure sets. Invariant measures having
densities are an example of this ‘physically relevant’ measures. Very often we will refer to
the Hénon map as well as the Lozi map, these are examples of systems with a strange (or
chaotic) attractor Λ which has zero Lebesgue measure. For maps having an attractor,
all their invariant measures must be supported on Λ. Here is where the idea of Sinai-
Ruelle-Bowen (SRB) measures comes into play, they are invariant measures compatible
with Lebesgue when Lebesgue measure is not preserved. We refer to [75] for a survey
on SRB measures, and [41] for an account on the development of the theory of chaotic
attractors and their invariant measures.

1.1 Uniformly Hyperbolic dynamical systems

For later convenience we introduce the concept of hyperbolic dynamical systems. A
straightforward way to model the sensitive dependence on initial conditions is by using
the uniformly expanding property. Consider a differentiable map T on a compact metric
space X. Let C > 0 and λ > 1 be constants, such that for all x ∈ X and v in the tangent
space at x and for all n ∈ N

‖DTn(x)v‖ ≥ Cλn‖v‖.

Uniformly hyperbolic maps have the property that at each point x the tangent space is a
direct sum of two subspaces Eux and Esx, one of them is expanded: ‖DTn(x)v‖ ≥ Cλn‖v‖
for every v ∈ Eux and is called unstable, while the other is contracted: ‖DTn(x)v‖ ≤
Cλ−n‖v‖ for every v ∈ Esx.

Example 1.1.1. A famous example mapping [0, 1)2 into it self, is the cat map. It is
given by

T (x, y) = (2x+ y (mod 1), x+ y (mod 1)).

This map is area preserving.
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Example 1.1.2. Consider Smale’s solenoid map, TS : R3 → R3 which maps the torus
into itself:

TS (φ, u, v) = (2φ mod 2π, βu+ α cos(φ), βv + α sin(φ)) ,

where 0 < β < 1/2 and β < α < 1/2.

Example 1.1.3. Take [0, 1] as state space. Fix a sequence 0 = a0 < a1 < · · · <
ak = 1, and consider for each interval (aj , aj+1) (0 ≤ j ≤ k − 1) a monotone map
Tj : (aj , aj+1) → [0, 1]. The map T on [0, 1] is given by T (x) = Tj(x) if x ∈ (aj , aj+1).
It is well known that when the map T is uniformly expanding, it admits an absolutely
continuous invariant measure µ. It is unique under some mixing assumptions.

1.2 Gibbs measures

A special case of uniformly hyperbolic systems are the Axiom A diffeomorphisms. For
these systems it is possible to construct a Markov partition and use symbolic dynamics.
Gibbs measures play a major role in the ergodic theory of Axiom A diffeomorphisms. In
this section we briefly describe Gibbs measures for later convenience. For the complete
details we remit the reader to [12].

We consider the set Ω = AN of infinite sequences x of symbols from the finite set A:
x = x0, x1, . . . where xj ∈ A. We denote by σ the shift map on Ω: (σx)i = xi+1, for all
i = 0, 1, . . .. The space (Ω, σ) is called the full-shift.
We equip Ω with the usual distance: fix θ ∈ (0, 1) and for x 6= y, let dθ(x, y) = θN where
N is the largest nonnegative integer with xi = yi for every 0 ≤ i < N . (By convention,
if x = y then N =∞ and θ∞ = 0, while if x0 6= y0 then N = 0.) With this distance, Ω
is a compact metric space.
For a given string ak−1

0 = a0, . . . , ak−1 (ai ∈ A), the set [ak−1
0 ] = {x ∈ Ω : xi = ai, i =

1, . . . , k − 1} is the cylinder of length k based on a0, . . . , ak−1.
For a continuous function f : Ω→ R and m ≥ 0 we define

varm(f) := sup{|f(x)− f(y)| : xi = yi, i = 0, . . . ,m}·

It is easy to see that |f(x)−f(y)| ≤ Cdθ(x, y) if and only if varm(f) ≤ Cθm, m = 0, 1, . . ..
Let

Fθ =
{
f : f continuous, varm(f) ≤ Cθm, m = 0, 1, . . . , for some C > 0

}
.

This is the space of Lipschitz functions with respect to the distance dθ. For f ∈ Fθ let

|f |θ = sup
{

varm(f)
θm : m ≥ 0

}
. We notice that |f |θ is merely the least Lipschitz constant

of f . Together with ‖f‖∞ = sup{|f(x)| : x ∈ Ω}, this defines a norm on Fθ by
‖f‖θ = ‖f‖∞ + |f |θ.

Theorem 1.2.1 ([12]). Consider the full-shift (Ω, σ) and let φ ∈ Fθ. There exists
a unique σ-invariant probability measure µφ on Ω for which one can find constants
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C = C(φ) > 1 and P = P (φ) such that

C−1 ≤
µφ{y : yi = xi, ∀i ∈ [0,m)}

exp
(
−Pm+

∑m−1
k=0 φ(σkx)

) ≤ C.
for every x ∈ Ω and m ≥ 1. This measure is called the Gibbs measure of φ.

The constant P is the topological pressure of φ. There are various equivalent defini-
tions of P . For instance,

P = lim
n→∞

1

n
log

∑
a0,...,an−1

e
∑n−1
k=0 φ(σkx∗)

where, for each block (a0, . . . , an−1) ∈ An, an arbitrary choice of x∗ ∈ Ω has been made
such that x∗ ∈ [an−1

0 ]. We can always assume that P = 0 by considering the potential
φ− P which yields the same Gibbs measure.

Next, for every continuous function φ in the full-shift, define the transfer operator
Lφ on the continuous functions, by

(Lφf)(x) =
∑

y∈σ−1x

eφ(y)f(y).

The Ruelle’s Perron-Frobenius theorem ([12]) states that, for φ ∈ Fθ there are λ > 0, a
continuous function h with h > 0 and ν for wich Lφh = λh, L ∗ν = λν,

∫
hdν = 1 and

lim
n→∞

∥∥∥λ−nL ng − h
∫
gdν

∥∥∥ = 0

for all continuous function g on the full-shift.
The Gibbs measure µφ satisfies the variational principle, namely

sup

{
h(η) +

∫
φdη : η shift-invariant

}
= h(µφ) +

∫
φdµφ = P = 0.

More precisely, µφ is the unique shift-invariant measure reaching this supremum. In
particular we have

h(µφ) = −
∫
φdµφ. (1.2)

1.3 Young towers

We are interested in a particular but large class of non-uniformly hyperbolic dynamical
systems. Non-uniformity can be understood as follows. As before, we have at each
x ∈ X the splitting of the tangent space TxM into Eux and Esx. For almost every point
x ∈ X there exists constants λ1(x), λ2 > 1 and C(x) > 0 such that, for all n ∈ N

‖DTn(x) · v‖ ≥ C(x)λ1(x)n‖v‖ for every v ∈ Eux and

‖DT−n(x) · v‖ ≤ C(x)λ2(x)−n‖v‖ for every v ∈ Esx.
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This means that, wherever the system presents expansiveness, the rate of expansiveness
depends on the point. Even in the case when the set of points of ‘no expansion’ is of
measure zero, one may in general loose the existence of the spectral gap.

In [73, 74], L.-S. Young developed a general scheme to study the probabilistic prop-
erties of a class of ‘predominantly hyperbolic’ dynamical systems. We briefly describe
the construction of the towers.

Consider a map T : X → X. The tower structure is constructed over a Y ⊂ X called
‘base’, having Leb(Y ) > 0, and in which T is uniformly hyperbolic. For each y ∈ Y let
us define its return time into Y ,

R(y) := inf{n ≥ 1 : Tny ∈ Y }.

The function R : Y → Z+ gives us the degree of non-uniformity, and it is everywhere
well defined because of Poincaré’s recurrence theorem. Define the map TY on the part
of Y where R is finite,

TY (y) := TR(y)(y).

From (Y, TR) one constructs an extension (Y, F ) which is called a Young tower. One can
visualize a tower by writing that Y =

⋃∞
k=0 Yk where Yk can be identified with the set

{x ∈ Y : R(x) > k}, that is, the k-th floor of the tower. In particular Y0 is identified
with Y . The dynamics is as follows: for each point x ∈ Y0 moves up the tower at each
iteration of F until it reaches the top level after which it returns to the base. Moreover,
F has a Markov partition {Y0,j}, if we let Rj := R|Y0,j , the set YRj−1,j is the top level
of the tower above Y0,j . We assume for the sake of simplicity that gcd{Rj} = 1. Let
Lebu denote the Lebesgue measure on the unstable direction.

Definition 1.3.1. A non-uniformly hyperbolic dynamical system (X,T ) is modeled by
a Young tower, with exponential tails if there exists θ > 0 such that

Lebu({y ∈ Y : R(y) > n}) = O(e−θn),

or with polynomial tails if there exists a real α > 0 such that

Lebu({y ∈ Y : R(y) > n}) = O(n−α).

Some probabilistic properties of T are captured by the tails properties of R. The
result of Young is the following

Theorem 1.3.1 ([73, 74]). If a non-uniformly hyperbolic dynamical system is modeled
by a Young tower with summable return time, i.e., if∫

Y
R dLebu =

∞∑
n=1

Lebu({y ∈ Y : R(y) > n}) <∞,

then the system admits a SRB measure.

We include some examples of systems that can be modeled by Young towers.
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Figure 1.1: Simulation of the Lozi attractor for the parameters a=1.7 and b=0.5.

Example 1.3.1. The Lozi map TL : R2 → R2 is given by

TL(u, v) = (1− a|u|+ v, bu) , (u, v) ∈ R2.

For a = 1.7 and b = 0.5 one observes numerically an strange attractor. In [26] the au-
thors constructed a SRB measure µ for this map. This map is included in the exponential
case of Young’s framework [73].

Example 1.3.2. Another example of a system modeled by Young towers with exponential
tails is the Hénon map TH : R2 → R2. It is defined by

TH(u, v) =
(
1− au2 + v, bu

)
, (u, v) ∈ R2.

Where 0 < a < 2 and b > 0 are some real parameters. It is known that there exists a set
of parameters (a, b) of positive Lebesgue measure for which the map TH has a topologically
transitive attractor Λ, furthermore there exists a set ∆ ⊂ R2 with Leb(∆) > 0 such that
for all (a, b) ∈ ∆ the map TH admits a unique SRB measure supported on Λ ([8]).

Figure 1.2: Simulation of the Hénon map for parameters a = 1.4, and b =0.3.
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Example 1.3.3. The Manneville-Pomeau map, is an example of non-uniformly hyper-
bolic dynamical system with polynomial tails. It is an expansive map in the interval
except in zero where the slope is equal to 1 (i.e. zero is a neutral fixed point). Consider
X = [0, 1], the map is defined as follows,

Tα(x) =

{
x+ 2αx1+α if x ∈ [0, 1/2)

2x− 1 if x ∈ [1/2, 1),

where α ∈ (0, 1) is a parameter. The greater the parameter, the larger the time takes to
move away from the fixed point. Observe when α = 0, the map is Tα=0(x) = 2x (mod 1),
which is uniformly expanding. It is well known that there exists an absolutely continuous
invariant measure dµ(x) = h(x)dx and h(x) ∼ x−α when x→ 0.





Chapter 2

Fluctuations of observables in
dynamical systems

Once we know that our dynamical system (X,T ) admits a SRB measure µ, we may ask
for its probabilistic properties. Given an observable f : X → R, let us consider the
random variable (Xk = f ◦ T k) on the probabilistic space (X,µ). Consider the ergodic
sum Snf(x) = f(x) + f(Tx) + · · · + f(Tn−1x) which is the partial sum of the process
(Xn;n ≥ 0). Several probabilistic properties concern us, first of all, we are interested in
determining the typical size of the fluctuations of 1

nSnf(x) about
∫
fdµ. If the order of

typical size of Snf −n
∫
fdµ is O (

√
n), then the observable f is said to satisfy a central

limit theorem with respect to the measure µ (or equivalently, with respect to the system
(X,T, µ)). Secondly, we are interested in estimating the probability of deviation of the
ergodic average of f from

∫
fdµ up to some prescribed value t. More precisely, we would

like to know the speed of convergence to zero of the following probability

µ

{
x :

∣∣∣∣ 1nSnf(x)−
∫
fdµ

∣∣∣∣ > t

}
,

for all t > 0 and for a large class of continuous observables f . In the probabilistic
terminology this is stated as the convergence in probability of the ergodic averages
towards its limit. If we expect that sufficiently chaotic dynamical systems behave as
i.i.d. process, then that speed of convergence might be exponential. One also could have
a convergence to some non-Gaussian distribution by scaling with some function different
from

√
n.

From the point of view of applications it is important to determine the deviation
probability of estimators of some quantities describing properties of the dynamical sys-
tem. These quantities have the characteristic that they can be estimated using a single
orbit. Generally the corresponding estimators are more complicated than ergodic sums.
We consider general observables K : Xn → R. Evaluating K along an orbit up to the
n− 1 time step, one may ask if it is possible to find a positive function b(n, t) < 1 such

11
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that

µ

{
x ∈ X :

∣∣∣∣K(x, . . . , Tn−1x)−
∫
K(y, . . . , Tn−1y)dµ(y)

∣∣∣∣ > t

}
≤ b(n, t),

for all n, t > 0, with b(n, t) depending on K. If b(n, t) decreases rapidly with t and n,
it means that K(x, Tx, . . . , Tn−1x) concentrates around its expected value. As we shall
see later on, one can achieve sufficiently fast decreasing functions b(n, t), provided the
function K is Lipschitz in each variable. This is the subject of concentration inequalities.

2.1 Central limit theorem

Given a dynamical system (X,T, µ) and a square integrable observable f : X → R, let
us introduce the auto-covariance of the process (f ◦ T k) by

Covf (k) :=

∫
f · f ◦ T kdµ−

(∫
fdµ

)2

,

for every k ∈ N0. More generally, the covariance of the observables f and g is given by

Covf,g(k) :=

∫
f · g ◦ T kdµ−

∫
fdµ

∫
gdµ,

for every k ∈ N0.

Definition 2.1.1. Let f : X → R be an observable in L2(µ). We say that f satisfies a
central limit theorem with respect to (T, µ) if there exists σf ≥ 0 such that

lim
n→∞

µ
{
x :

Snf(x)− n
∫
fdµ√

n
≤ t
}

=
1

σf
√

2π

∫ t

−∞
e−s

2/2σ2
fds

for all t ∈ R.

When σf = 0 we understand the right-hand side as the Heaviside function.
In the case of dynamical systems, due to the correlations the variance is defined as

follows

σ2
f = lim

n→∞

1

n

∫ (
Snf − n

∫
fdµ

)2
dµ, (2.1)

provided the limit exists. Using the invariance of the measure µ under T , we can write

1

n

∫ (
Snf − n

∫
fdµ

)2
dµ = Covf (0) + 2

n−1∑
k=1

n− k
n

Covf (k).

If
∑∞

j=1|Covf (j)| < ∞, then limn→∞
∑n−1

k=1
n−k
n Covf (k) =

∑∞
k=1 Covf (k), which gives

us

σ2
f = Covf (0) + 2

∞∑
k=1

Covf (k).

Concerning to the systems modeled by Young towers with exponential tails, the result
on the central limit theorem is the following.
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Theorem 2.1.1 (Central limit theorem, [73]). Let (X,T, µ) be a dynamical system
modeled by a Young tower, where µ is its SRB measure. Let f : X → R be a Hölder
continuous observable. If

∫
R2dLebu <∞, then f satisfies the central limit theorem with

respect to µ.

2.2 Large deviations

Given a bounded i.i.d. process (Xn), it is known that P{|n−1(X0+· · ·+Xn−1)−E(X0)| >
δ} decays exponentially with n (this result is called Cramér’s theorem, [30]). More
precisely one can prove that

lim
n→∞

1

n
logP

{∣∣∣∣X0 + · · ·+Xn−1

n
− E(X0)

∣∣∣∣ > δ

}
= −I(δ),

where I is the called rate function, which usually is strictly convex and it vanishes only
at zero. It turns out that this rate function I is the Legendre transform of the cumulant
generating function θ 7→ logE(eθX0). For a dynamical system (X,T, µ) and an observable
f , the purpose is to prove that there exists a rate function If : R→ [0,∞) such that

lim
ε→0

lim
n→∞

1

n
logµ

{
x ∈ X :

1

n
Snf(x) ∈ [a− ε, a+ ε]

}
= −If (a).

The standard route is to try to prove that the cumulant generating function

Ψf (z) = lim
n→∞

1

n
log

∫
ezSnfdµ

exists and is smooth for z ∈ R in an interval containing the origin.
The results for systems modeled by Young towers with exponential tails are the

following.

Theorem 2.2.1 (Cumulant generating functions, [62]). Let (X,T, µ) be a dynamical
system modeled by a Young tower where µ is its SRB measure. Assume that Lebu{R >
n} = O(e−an) for some a > 0. Let f : X → R be a Hölder continuous observable such
that

∫
fdµ = 0. Then there exist positive numbers η = η(f) and ζ = ζ(f) such that Ψf

exists and is analytic in the strip

{z ∈ C : |Re(z)| < η, |Im(z)| < ζ}.

In particular, Ψ′f (0) =
∫
fdµ = 0 and Ψ′′f (0) = σ2

f , which is the variance (2.1). More-

over, Ψf (z) is strictly convex for real z provided σ2
f > 0.

Theorem 2.2.2 (Large deviations, [62]). Under the same assumptions as in the previous
theorem, let If be the Legendre transform of Ψf , i.e. If (t) = supz∈(−η,η){tz − Ψf (z)}.
Then for any interval [a, b] ⊂ [Ψ′f (−η),Ψ′f (η)],

lim
n→∞

1

n
logµ

{
x ∈ X :

1

n
Snf(x) ∈ [a, b]

}
= − inf

t∈[a,b]
If (t).

Remark 2.2.1. For Gibbs measure on AZ, one has a complete description of large
deviations (see e.g. [16]).
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2.3 Concentration Inequalities

2.3.1 Definitions & generalities

The aim is to quantify the probability of deviation of a general function K of n random
variables X0, . . . , Xn−1 about its expected value. Roughly speaking, the only two general
requisites to be satisfied in order to have concentration inequalities are weak dependence
between the random variables and the ‘smoothness’ of the observable K, more accurately,
it is enough for K. The right notion of smoothness turns out to be a Lipschitz condition.

Let (X, d) be a metric space. A real-valued function of n variables K : Xn → R is
said to be separately Lipschitz if the quantity

Lipj(K) := sup
x0,...,xn−1

sup
xj 6=x′j

|K(x0, . . . , xj , . . . , xn−1)−K(x0, . . . , x
′
j , . . . , xn−1)|

d(xj , x′j)

is finite for all j = 0, . . . , n− 1.

Now, we give two definitions. The first one describes what we mean for a stochastic
process to satisfy an exponential concentration inequality. The second definition is about
weaker inequalities.

Definition 2.3.1 (Exponential concentration inequality). Consider a stochastic process
{Z0, Z1, . . . , } taking values on X. This process is said to satisfy an exponential con-
centration inequality if there exists a constant C such that, for any separately Lipschitz
function of n variables K(x0, . . . , xn−1), one has

E
[
eK(Z0,...,Zn−1)−E[K(Z0,...,Zn−1)]

]
≤ eC

∑n−1
j=0 Lipj(K)2 . (2.2)

Definition 2.3.2 (Polynomial concentration inequality). Consider a stochastic process
{Z0, Z1, . . . , } taking values on X. We say that this process satisfies a polynomial con-
centration inequality with moment q ≥ 2 if there exists a constant Cq such that, for any
separately Lipschitz function of n variables K(x0, . . . , xn−1), one has

E [|K(Z0, . . . , Zn−1)− E[K(Z0, . . . , Zn−1)]|q] ≤ Cq

n−1∑
j=0

Lipj(K)2

q/2

. (2.3)

A special case of the last inequality is the variance inequality, when q = 2:

Var(K(Z0, . . . , Zn−1)) ≤ C2

n−1∑
j=0

Lipj(K)2. (2.4)

One can obtain a general consequence of the previous concentration inequalities
which gives us upper bounds for the deviation probabilities of K(Z0, . . . , Zn−1) from its
expected value.
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Corollary 2.3.1. If the stationary process {Z0, Z1, . . .} satisfies the exponential concen-
tration inequality (2.2) then for all t > 0 and for all n ≥ 1 we have,

P {|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))| > t} ≤ 2e

−t2

4C
∑n−1
j=0

Lipj(K)2 . (2.5)

If the process satisfies the polynomial concentration inequality (2.3) for some q ≥ 2,
then we have for all t > 0 and for all n ≥ 1,

P {|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))| > t} ≤ Cq
tq

( n−1∑
j=0

Lipj(K)2
)q/2

. (2.6)

Proof. First observe that inequalities (2.2) and (2.3) are homogeneous. Let λ be a real
parameter λ > 0. Using Markov’s inequality we obtain from (2.2), for all t > 0

P{K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1)) > t}

≤ e−λtE
(
eλ(K(Z0,...,Zn−1))−E(K(Z0,...,Zn−1))

)
≤ e−λteCλ

2
∑n−1
j=0 Lipj(K)2 .

The last inequality is minimized when λ = t/
(

2C
∑n−1

j=0 Lipj(K)2
)

, giving us

P{K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1)) > t} ≤ e
−t2

4C
∑n−1
j=0

Lipj(K)2 .

Applying this inequality to −K and using an union bound one obtains (2.5). Analo-
gously, applying Markov’s inequality to (2.3) one gets (2.6) immediately.

It is important to stress that the inequalities above are valid for every n.

2.3.2 Concentration inequalities for dynamical systems

Since chaotic dynamical systems may be seen as stochastic processes, one might expect
the concentration inequalities defined in the previous section, also hold in the context
of dynamical systems. This is indeed true. For instance, in [27] it was established an
exponential concentration inequality for piecewise expanding maps on the interval. In
[18], a polynomial concentration inequality was achieved for a system with indifferent
fixed point. Here we include the main results in [21], namely, dynamical systems modeled
by Young towers satisfy concentration inequalities, we will state this result formally. For
a complete panorama we remit the reader to [17] .

As we already mention, dynamical systems modeled by Young towers satisfy concen-
tration inequalities, they are either exponential or polynomial depending on the decay
rate of their tails. The results are the following.
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Theorem 2.3.1 (Exponential concentration inequality [21]). Consider (X,T, µ), a dy-
namical system modeled by a Young tower with exponential tails. Then it satisfies an
exponential concentration inequality: there exists a constant C > 0 which only depends
on T , such that for any integer n ≥ 1 and for any separately Lipschitz function K of n
variables we have∫

eK(x,...,Tn−1x)−
∫
K(y,...,Tn−1y)dµ(y)dµ(x) ≤ eC

∑n−1
j=0 Lipj(K)2 . (2.7)

The systems of the examples 1.1.3, 1.3.1 and 1.3.2 in Chapter 1 are included in that
framework.

Theorem 2.3.2 (Polynomial concentration inequality [21]). Consider (X,T, µ), a dy-
namical system modeled by a Young tower. Assume that, for some q ≥ 2,

∫
RqdLebu <

∞. Then it satisfies a polynomial concentration inequality with moment 2q − 2, i.e.,
there exists a constant Cq > 0 such that for any integer n ≥ 1 and for any separately
Lipschitz function K of n variables we have

∫ ∣∣∣K(x, . . . , Tn−1x)−
∫
K(y, . . . , Tn−1y)dµ(y)

∣∣∣2q−2
dµ(x) ≤ Cq

( n−1∑
j=0

Lipj(K)2
)q−1

.

(2.8)
The constant Cq depends only on q and on T

The prototypical example of system with polynomial tails is the Maneville-Pomeau
map 1.3.3, this map satisfies this polynomial concentration inequality of order q < 2

α −2
when α ∈ (0, 1/2) (see also [21]).

As for stochastic processes, an immediate consequence are the corresponding devia-
tion inequalities.

Corollary 2.3.2 ([21]). Under the same hypothesis as in theorem 2.3.1, for all t > 0
and any n ∈ N

µ

(∣∣∣K(x, . . . , Tn−1x)−
∫
K(y, . . . , Tn−1y)dµ(y)

∣∣∣ > t

)
≤ 2e

− t2

4C
∑n−1
j=0

Lipj(K)2 . (2.9)

Under the hypothesis of theorem 2.3.2, for all t > 0 and any n ∈ N,

µ

(∣∣∣K(x, . . . , Tn−1x)−
∫
K(y, . . . , Tn−1y)dµ(y)

∣∣∣ > t

)
≤ Cq
t2q−2

( n−1∑
j=0

Lipj(K)2
)q−1

.

(2.10)

Before we move to the next section let us make a remark. Consider the function
K0(x0, . . . , xn−1) = f(x0) + · · ·+ f(xn−1) where f is a Lipschitz observable. We clearly
have Lipi(K0) = Lip(f) for all i = 0, . . . , n−1. When evaluated along the orbit segment
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x, . . . , Tn−1x we get the ergodic sum Snf(x). Supposing we can apply inequality (2.9),
one gets for all t > 0

µ

(∣∣∣Snf − n ∫ fdµ
∣∣∣ > t

)
≤ e

−t2
4CnLip(f)2 ,

rescaling t by n, one can rewrite the expression above, having

µ

(∣∣∣ 1
n
Snf −

∫
fdµ

∣∣∣ > t

)
≤ 2e

−nt2
4CLip(f)2 ,

for all t > 0. This inequality gives the same order in n as the large deviations description,
although one looses accuracy we obtain estimates valid for any n. If we scale t by

√
n

we obtain

µ

(∣∣∣ 1√
n

(
Snf −

∫
fdµ

)∣∣∣ > t

)
≤ 2e

−t2
4CLip(f)2 ,

for all t > 0. This gives the same order in t as the central limit theorem. In this
sense the result given by concentration inequalities are compatible with both, central
limit theorem and large deviations but with the advantage that are applicable to general
functions not only ergodic sums.

2.4 Some applications

In this section we apply concentration inequalities in the context of dynamical sys-
tems. We obtain deviation probabilities of some empirical estimators. The quantities
we consider are the auto-convariance function, the empirical measure, the kernel density
estimator and the correlation dimension. All of them have been studied previously in
[19] and [21].

2.4.1 Auto-covariance function

Consider the dynamical system (X,T, µ) and a square integrable observable f : X → R.
Assume that f is such that

∫
fdµ = 0. We remind that the auto-covariance function of

f is given by

Cov(k) := Covf (k) =

∫
f(x)f(T kx)dµ(x). (2.11)

In practice, one has a finite number of iterates of some µ-typical initial condition x,
thus, what we may obtain from data is the empirical estimator of the auto-covariance
function:

Ĉovn(k) :=
1

n

n−1∑
i=0

f(T ix)f(T i+kx).

From Birkhoff’s ergodic theorem it follows that Cov(k) = limn→∞ Ĉovn(k) almost surely.

Observe that the expected value of the estimator Ĉovn(k) is exactly Cov(k), because of
the invariance of µ and the assumption that

∫
fdµ = 0.



18 CHAPTER 2. FLUCTUATION OF OBSERVABLES

The following result gives us a priori theoretical bounds to the fluctuations of the
estimator Ĉovn around Cov for every n.

Theorem 2.4.1 ([21]). Let (X,T, µ) be a dynamical system modeled by a Young tower
with exponential tails, then there exists a constant C > 0 such that for all t > 0 and any
n, k ∈ N we have that

µ
(∣∣∣Ĉovn(k)− Cov(k)

∣∣∣ > t
)
≤ 2 exp

(
−C t2n2

n+ k

)
.

If the system (X,T, µ) is a dynamical system modeled by a Young tower with Lq-tails,
for some q ≥ 2, then there exists a constant Cq such that, for all t > 0 and any integer
n, k ∈ N we have

µ
(∣∣∣Ĉovn(k)− Cov(k)

∣∣∣ > t
)
≤ Cq
t2q−2

(
n+ k

n2

)q−1

.

Proof. Choose the following observable of n+ k variables,

K(z0, . . . , zn+k−1) :=
1

n

n−1∑
i=0

f(zi)f(zi+k).

In order to estimate the Lipschitz constant of K, consider 0 ≤ l ≤ n + k − 1 and
change the value zl to z′l. Observe that the difference between K(z0, . . . , zl, . . . , zn+k−1)
and K(z0, . . . , z

′
l, . . . , zn+k−1) is less than or equal to 1

n |f(zl−k)f(zl) + f(zl)f(zl+k) −
f(zl−k)f(z′l)− f(z′l)f(zl+k)|, and so for every index l, we obtain

Lipl(K) ≤ sup
z0,...,zn+k−1

sup
zl 6=z′l

1

n

|[f(zl)− f(z′l)][f(zl−k) + f(zl+k)]|
d(zl, z

′
l)

≤ 2

n
Lip(f)‖f‖∞.

The exponential inequality follows immediately by applying inequality (2.9). Using
analogously the inequality (2.10) for the polynomial case gives us the deviation prob-
ability of the auto-covariance function for dynamical systems with non-uniform Young
towers as desired.

2.4.2 Empirical measure

Given a µ-typical x ∈ X, define the empirical measure of the sequence x, . . . , Tn−1x as

En(x) :=
1

n

n−1∑
i=0

δT ix, (2.12)

where δy denotes the Dirac measure sitting at y. From Birkhoff’s ergodic theorem it
follows that the sequence of random measures {En} converges weakly to the T -invariant
measure µ, almost surely. We want to quantify the speed of this convergence. For that
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purpose, we choose the Kantorovich distance on the set of probability measures of X,
which is defined by

κ(µ, ν) := sup
g∈L

∫
gdµ−

∫
gdν,

where µ and ν are two probability measures on X and L denotes the space of all real-
valued Lipschitz functions on X with Lipschitz constant at most one.

We shall use the shorthand notation

Kn(x) := κ(En(x), µ).

We have the following general bounds.

Theorem 2.4.2 ([21]). If the system (X,T, µ) is modeled by a Young tower with expo-
nential tails, with SRB measure µ, then there exists a constant C > 0 such that, for any
n ∈ N and for any t > 0,

µ

(∣∣∣Kn(x)−
∫
Kn(y)dµ(y)

∣∣∣ > t√
n

)
≤ 2 exp−Ct

2
.

Furthermore, if the system (X,T, µ) is modeled by a Young tower with Lq-tails, for some
q ≥ 2, then there exists a constant Cq > 0 such that, for all n ∈ N and all t > 0,

µ

(∣∣∣Kn(x)−
∫
Kn(y)dµ(y)

∣∣∣ > t√
n

)
≤ Cq
t2q−2

.

This result follows directly applying inequalities (2.7) and (2.8) to the following
function of n variables

K(x0, . . . , xn−1) = sup

{
1

n

n−1∑
i=0

g(xi)−
∫
gdµ

}
,

where g ∈ L. It is easy to see that the Lipschitz constants of K are bounded by
1/n. Finding an upper bound to

∫
Kndµ would provide an estimate on the deviation

probability for Kn itself. Up to now, we can find a general good estimate only in
dimension one.

Corollary 2.4.1 ([21]). If the system (X,T, µ) is an one-dimensional dynamical system
modeled by a Young tower with exponential tails, then there exist some constants B,C >
0 such that, for any n ∈ N and for any t > 0,

µ

(
Kn(x) >

t√
n

+
B

n1/4

)
≤ e−Ct2 .

If the system (X,T, µ) is modeled by a Young tower with Lq-tails, for some q ≥ 2, then
there exist some constant B,Cq > 0 such that, for any n ∈ N and for any t > 0,

µ

(
Kn(x) >

t√
n

+
B

n1/4

)
≤ Cq
t2q−2

.
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This corollary follows at once from the next lemma.

Lemma 2.4.1 ([19]). Let (X,T, µ) be an one-dimensional dynamical system. If there
exists a constant c > 0 such that for every Lipschitz function f : X → R, the auto-
covariance function Covf (k) satisfies that

∑∞
k=1|Covf (k)| ≤ c‖f‖2Lip, then there exists a

constant B such that ∫
Kn(x)dµ(x) ≤ B

n1/4
.

The proof of the preceding lemma is found in [19, Section 5]. It relies in the fact that
in dimension one, it is possible to rewrite the Kantorovich distance using distribution
functions. Then by an adequate Lipschitz approximation of the distribution function,
the bound follows from the summability condition on the auto-covariance function.

2.4.3 Kernel density estimator for one-dimensional maps

In this section we consider the system (X,T, µ) to take values on a bounded subset
of R. We assume the measure µ to be absolutely continuous with density h. For a
given trajectory of a randomly chosen initial condition x (according to µ), the empirical
density estimator is defined by,

ĥn(x, Tx, . . . , Tn−1x; s) :=
1

nαn

n−1∑
j=0

ψ

(
s− T jx
αn

)
,

where αn → 0 and nαn → ∞ as n diverges. The kernel ψ is a bounded, non-negative
Lipschitz function with bounded support and it satisfies

∫
ψ(s)ds = 1. We assume the

following hypothesis.

Hypothesis 2.4.1. The probability density h satisfies∫
|h(s)− h(s− σ)|ds ≤ C ′|σ|β

for some C ′ > 0 and β > 0 and for every σ ∈ R.

This assumption is indeed valid for maps on the interval satisfying the axioms of
Young towers (see Appendix C. in [19]). For convenience, we present the following
result on the L1 convergence of the density estimator.

Theorem 2.4.3. Let ψ be a kernel defined as above. If the system (X,T, µ) satisfies
the exponential concentration inequality (2.2) and the hypothesis 2.4.1, then there exists

a constant Cψ > 0 such that for any integer n ≥ 1 and every t > Cψ

(
αβn + 1√

nα2
n

)
, we

have

µ

({∫ ∣∣∣ĥn(x0, . . . , T
n−1x; s)− h(s)

∣∣∣ds > t

})
≤ e−

t2nα2n
4DLip(ψ)2 .
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Under the same conditions above, if the system satisfies the polynomial concentration in-

equality (2.3) for some q ≥ 2, then for any integer n ≥ 1 and every t > Cψ

(
αβn + 1√

nα2
n

)
,

we obtain,

µ

({∫ ∣∣∣ĥn(x0, . . . , T
n−1x; s)− h(s)

∣∣∣ds > t

})
≤ D

tq

(
Lip(ψ)√
nαn

)q
.

For the proof of this statement see [21] or Theorem 6.1 in [19].

2.4.4 Correlation dimension

The correlation dimension dc = dc(µ) of the measure µ is defined by

dc = lim
r↘0

log
∫
µ(Br(x))dµ(x)

log r
,

whenever the limit exists. We denote by Corr(r) the spatial correlation integral which
is defined by

Corr(r) =

∫
µ(Br(x))dµ(x).

In [36] the authors defined a method to empirically determine the correlation dimension.
As empirical estimator of Corr(r) they use the function

Kn,r(x0, . . . , xn−1) :=
1

n2

∑
i 6=j

H(r − d(xi, xj)),

where H is the Heaviside function. For large n they look at the power law behavior in
r of Kn,r(x, . . . , T

n−1x). It has been rigorously proved (see [61] and [67]) that

Corr(r) = lim
n→∞

Kn,r(x, . . . , T
n−1x),

µ-almost surely at the continuity points of Corr(r). Observe that we are not allowed to
immediately apply concentration inequalities since Heaviside function is not Lipschitz.
The usual trick is the following: Consider any real-valued Lipschitz function ψ and define

Kψ
n,r(x0, . . . , xn−1) :=

1

n2

∑
i 6=j

ψ

(
1− d(xi, xj)

r

)
.

Theorem 2.4.4 ([19]). For any real-valued Lipschitz ψ, there exists a constant C > 0
such that for any r > 0 and any integer n, we have

Var(Kψ
n,r) ≤

C

r2n
.

The proof is an straightforward application of the variance inequality (2.4). For a
more detailed discussion of this application see [28, Section 9.6].
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2.5 Concentration Inequalities for Gibbs measures

For the sake of completeness we include the proof of the exponential concentration
inequality for Gibbs measures on the full-shift. We adopt the definitions of section 1.2.

Theorem 2.5.1 ([21]). The system (Ω, σ, µφ) satisfies an exponential concentration in-
equality.

Proof. Let us consider a separately Lipschitz function of n variables, K : Ωn → R. In
order to lighten notations, we write xi meaning a x(i) ∈ Ω, and so, K(x0, . . . , xn−1)
instead of K

(
x(0), . . . , x(n−1)

)
.

One may interpret K as a function on ΩN depending only on the first n coordinates
and having Lipj(K) = 0 for all j ≥ n. The space ΩN is endowed with the measure µ∞
limit of the measure µN (given by (1.1)) when N →∞.

Consider {Fp} to be a decreasing sequence of the σ-algebras of the events depending
only on the coordinate (xj)j≥p.

The trick is to write K as a sum of martingale differences with respect to Fp. Let
Kp := E(K | Fp) and Dp := Kp −Kp+1. Note that the function Dp is Fp-measurable
and E(Dp | Fp+1) = 0. Observe also that K − E(K) =

∑
p≥0Dp.

Using the Hoeffding inequality (see [50]) one obtain for any integer P ≥ 1

E
(
e
∑P−1
p=0 Dp

)
≤ e

∑P−1
p=0 sup|Dp|2 .

The rest of the proof consists in getting a good bound on Dp, let us assume for the
moment the following lemma.

Lemma 2.5.1. There exist constants C > 0 and ρ < 1 such that, for any p, one has

|Dp| ≤ C
p∑
j=0

ρp−jLipj(K). (2.13)

Next, using the Cauchy-Schwarz inequality we have

( p∑
j=0

ρp−jLipj(K)
)2
≤
( p∑
j=0

ρp−jLipj(K)2
)( p∑

j=0

ρp−j
)
≤ 1− ρp

1− ρ

p∑
j=0

Lipj(K)2.

We apply this bound to the right hand side of the inequality (2.13). Then summing
over p one has

∑P−1
p=0 sup|Dp|2 ≤ C ′

∑
j Lipj(K)2. Using the Hoeffding inequality at a

fixed P and then letting P tend to infinity, one obtain

E
(
e
∑
p≥0Dp

)
≤ eC

′∑
j Lipj(K)2 ,

which is the desired inequality.

We continue with the proof of lemma 2.5.1.
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Proof of lemma 2.5.1. The transfer operator L associated to the potential φ ∈ Fθ is
given by

L u(x) =
∑
σy=x

eφ(y)u(x).

Thus, L ku(x) =
∑

σky=x e
Skφ(y)u(y). On the set of preimages of x one may identify L

as a Markov operator, whose transition probabilities are given by eφ(y). Then one has

Kp(xp, xp+1, . . .) =E(K | Fp)(xp, xp+1, . . .) = E(K(X0, . . . , Xp−1, xp, . . .) | Xp = xp)

=
∑

σpy=xp

eSpφ(y)K(y, . . . , σp−1y, xp, . . .).

To prove that Dp is bounded one make use of the following lemma,

Lemma 2.5.2. One has∣∣∣∣Kp(xp, . . . )−
∫
K(y, . . . , σp−1y, xp, . . .)dµφ(y)

∣∣∣∣ ≤ C p−1∑
j=0

Lipj(K)ρp−1−j ,

where C > 0 and ρ < 1 depend only on (Ω, σ)

Notice that, in particular one obtain thatK(xp, xp+1, . . .)−Kp(x
′
p, xp+1 . . .) is bounded

from above by C
∑p

j=0 Lipj(K)ρp−j . Taking the average over the preimages x′p of xp+1

one obtain the same bound for Dp(xp, xp+1, . . .) and that proves the lemma 2.5.1.

Proof of lemma 2.5.2. Let us fix a point x∗ ∈ Ω, one writes Kp in the following telescopic
way using the transfer operator,

Kp(xp, . . .) =

p∑
j=0

∑
σp(y)=x

eSpφ(y)
[
K(y, . . . , σjy, x∗, . . . , x∗, xp, . . .)

−K(y, . . . , σj−1y, x∗, . . . , x∗, xp)
]

+K(x∗, . . . , x∗, xp, . . .)

=

p−1∑
j=0

L p−jfj(xp) +K(x∗, . . . , x∗, xp, . . .),

where

fj(z) =
∑
σjy=z

eSjφ(y)
[
K(y, . . . , σjy, x∗, . . . , x∗, xp, . . .)

−K(y, . . . , σj−1y, x∗, . . . , x∗, xp, . . .)
]

=
∑
σjy=z

eSjφ(y)H(y, . . . , σjy).

Since the transfer operator acts on functions of one variable we will eliminate the
variables x0, . . . , xp−1 one after another.
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First notice that the function H is bounded by Lipj(K), then |fj | ≤ Lipj(K) since∑
σjy=z e

Sjφ(y) = 1. To estimate the Lipschitz norm of fj , write

fj(z)− fj(z′) =
∑
σjy=z

(
eSjφ(y) − eSjφ(y′)

)
H(y, . . . , σjy)

+
∑
σjy=z

eSjφ(y′)
[
H(y, . . . , σjy)−H(y′, . . . , σjy′)

]
,

where z and z′ are two points in the partition element and their respective preimages
y and y′ are paired according to the cylinder of length j they belong to. A distortion
control gives |eSjφ(y) − eSj(y′)| ≤ CeSjφ(y)dθ(z, z

′), for some constant C > 0, hence the
first sum is bounded by CLipj(K)dθ(z, z

′). For the second sum, using successively the
triangle inequality, one has

|H(y, . . . , σjy)−H(y′, . . . , σjy′)| ≤ 2

j∑
i=0

Lipi(K)dθ(σ
iy, σiy′) ≤

j∑
i=0

Lipi(K)βj−idθ(z, z
′).

Summing over the different preimages, one obtain that the Lipschitz norm of fj is

bounded by C
∑j

i=0 Lipi(K)βj−i.
Since the operator L possess a spectral gap on Fθ. i.e. there exist constants C > 0

and ρ < 1 such that ‖L kf −
∫
fdµ‖Fθ

≤ Cρk‖f‖Fθ
. Using the previous inequality one

obtains

‖L p−jfj −
∫
fjdµ‖Fθ

≤ Cρp−j
j∑
i=0

Lipi(K)βj−i.

This bound implies a bound for the supremum. Assumig ρ ≥ β and putting together
the previous bounds, one has

∣∣∣Kp(xp, . . .)−
p−1∑
j=0

∫
fjdµ−K(x∗, . . . , x∗, xp, . . .)

∣∣∣
≤ C

p−1∑
j=0

ρp−j
j∑
i=0

Lipi(K)ρj−i ≤ C
p−1∑
j=0

Lipj(K)ρp−j(p− j)

≤ C ′
p−1∑
j=0

Lipj(K)(ρ′)p−j ,

for any ρ′ ∈ (ρ, 1). Computing the sum of the integrals of fj one gets only the term∫
K(y, . . . , σp−1y, xp . . .)dµ(y) giving us the desired expression.

As a final remark of this chapter, one might ask if it is possible to estimate the
potential φ associated to the measure µφ provided a single sequence x0 · · ·xn−1. This
is indeed possible and it was proved by V. Maume-Deschamps in [57]. The approach
in that paper is to use empirical probabilities as estimators of conditional probabilities.
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In the case of Gibbs measures that result can be used to derive an estimation of the
potential. Given a sequence xn−1

0 the empirical frequency of the word ak−1
0 for k ≤ n is

defined by

Ek(ak−1
0 ;xn−1

0 ) :=
1

n
#
{

0 ≤ j ≤ n : x̃j+k−1
j = ak−1

0

}
,

where x̃ := xn−1
0 xn−1

0 · · · is the periodic point with period n made from xn−1
0 . The result

of interest is the following.

Theorem 2.5.2 ([57]). Let µφ be a Gibbs measure and let the sequence xn−1
0 be produced

by µφ. For some ε ∈ (0, 1) there exits L > 0 such that for all t > 0,

µφ

(∣∣∣∣∣ Ek,n(ak−1
0 ;xn−1

0 )

Ek−1,n(ak−1
1 ;xn−1

1 )
− eφ(x)

∣∣∣∣∣ > t

)
≤ 4e−Lt

2n1−ε
+ 2e−Ln

1−ε
,

for every x ∈ [ak−1
0 ].

We remit the reader to [57] for the proof and more details.





Part II

Chaotic Dynamical Systems plus
Noise
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Chapter 3

Modeling dynamical systems with
noise

Suppose we are given only the form of the model of a certain dynamical system, but
the parameters of the model have to be determined from empirical observations. This
is actually a problem of statistical inference called parameter estimation (we remit the
reader to [58] for a review). At this point, another problem arises, ‘empirical observa-
tions’ are normally given by experimental data in the form of time series, and in practice
all experimental data are corrupted by noise. Therefore it is important to include noise
in realistic mathematical models.

In the literature one may find two main sorts of noise models. On one hand, the
dynamical noise in which the sequence of ‘states’ are intrinsically corrupted by noise
and thus the noise term evolves within the dynamics. And on the other hand, the so
called observational noise (also called measurement noise), in which the perturbation is
supposed to be generated by the observation process (measurement).

3.1 Dynamical noise

Let us first give an intuitive description of what dynamical noise is. Consider our discrete
dynamical system (X,T, µ) and an initial condition x0 ∈ X. For every i ≥ 0, let

xi+1 = Txi + ei,

where (ei)i≥0 is a stationary sequence of random variables given with common probability
distribution P . To observe how the noise folds into the dynamics, take the next iteration
xi+2 = T (xi+1) + ei+1 = T (xi + ei) + ei+1.

One can model rigorously the random perturbations of a transformation T using
Markov chains. This is usually done in two approaches. On one hand, one considers
transitions of the image T (x) of some point x, according to a probability distribution.
On the other hand, by letting T to depend on some parameter ω, which is chosen
randomly at each iteration. The two approaches are called random noise and random

29
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maps respectively and they will be roughly described below. For complete details we
refer the interested reader to [5, 9, 45, 54] for instance.

3.1.1 Random noise

Given the map T and a family {P ( · | x) : x ∈ X} of probability measures on X, such
that the support of P ( · | x) is a subset of X containing T (x). Define the random
orbits as the sequences (xi)i≥1 where each xi+1 is a random variable with probability
distribution P ( · | xi). This defines a Markov chain with state space X and transition
probabilities {P ( · | x)}x∈X .

Example 3.1.1 (Random jumps). Given T : X → X and ε > 0, define

Pε(A | x) :=
Leb(A ∩B(T (x), ε))

Leb(B(T (x), ε))
,

where Leb is the Lebesgue measure on X and B(y, r) is the ball centered in y with radius
r. Then Pε( · | x) is the normalized volume restricted to the ε–neigborhood of T (x),
defining a family of transition probabilities allowing the points to “jump” from T (x) to
any other point in the ball according to the uniform distribution.

&%
'$

&%
'$r rr rr r

T
T T

T (xi−1) T (xi)

xi

xi+1

B(T (xi−1), ε) B(T (xi), ε)

... ...

3.1.2 Random maps

In this context let the map T0 be the original dynamical system. One may chose maps
T1, T2, . . . , Ti independently but close to T0 and randomly according to a probability
distribution ν in the space of maps T (X) whose support is close to T0 in the same
topology. Consider the random orbits of the initial point x0 be defined by

xi := Ti ◦ · · · ◦ T1(x0),

for every i ≥ 1 and any x0 ∈ X.

Example 3.1.2 (random β–transformations). For a real number β ∈ (1,∞), the β–
transformation Tβ : [0, 1]→ [0, 1] is defined by x 7→ βx mod 1. Fix a β0, and consider βi
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to be a random variable chosen according to a stationary stochastic process (in particular
i.i.d.). Then the iteration is given by

xi+1 := Tβixi = Tβi ◦ · · · ◦ Tβ0x0.

r rr Tβi−1

Tβi
xi−1

xi

xi+1
... ...

In [13] J. Buzzi, proved that random Lasota-Yorke maps admits absolutely continuous
SRB measures. For instance the β-transformations just described satisfy his conditions.

3.1.3 Abstract setting: Skew-maps

Both approaches, random noise and random maps can be placed into the abstract setting
of random dynamical systems and skew-products. Let (Ω,B,P, θ) be a given probabilistic
space, which will be the model for the noise. Consider a measurable space (X,F) and
let T be the time set, usually Z+ or Z. A random dynamical system on X over Ω is a
map

ϕ : T× Ω×X → X,

such that the triplet (n, ω, x) is mapped into ϕ(n, ω)x satisfaying

ϕ(0, ω) = IdX for all ω ∈ Ω,

and the cocycle property,

ϕ(n+m,ω) = ϕ(n, θmω) ◦ φ(m,ω),

for all n,m ∈ T and for every ω ∈ Ω, and such that for all n ∈ T the map ϕ(n, ·) :
Ω × X → X is measurable. Corresponding to the random dynamical system ϕ, it is
introduced the skew-product S : Ω×X → Ω×X mapping (ω, x) into (θω, ϕ(ω)x). One
can see S as a bundle map, as represented in the figure below.

r r
r rA

A
A
A
A
AK

�
�
�
�
�
��

ω θω
(Ω,B,P, θ)

x ϕ(ω)x
ϕ(ω)

X X

The further properties and complete details are out of the purpose of this thesis and
we refer the reader to [5, 45, 44, 9].
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3.2 Observational noise

Consider the discrete dynamical system (X,T, µ). The noise process is modeled as
bounded random variables ξn defined on a probability space (Ω,B, P ) and assuming
values in X. Without loss of generality, we can assume that the random variables ξn are
centered, i.e. have expectation equal to 0.
In most cases, the noise is small and it is convenient to represent it by the random
variables εξi where ε > 0 is the amplitude of the noise and ξi is of order one.

We introduce the following definition.

Definition 3.2.1 (Observed system). For every i ∈ N ∪ {0} (or i ∈ Z if the map T is
invertible), we say that the sequence of points {yi} given by

yi := T ix+ εξi,

is a trajectory of the dynamical system (X,T, µ) perturbed by the observational noise
(ξn) with amplitude ε > 0. Hereafter we refer to it simply as the observed system.

A natural assumption on the noise is the following.

Standing assumption on noise:

1. (ξn) is independent of X0 and ‖ξn‖ ≤ 1;

2. The random variables ξi are independent.

Example 3.2.1. Consider the Lozi map TL : R2 → R2 which is given by

TL(u, v) = (1− a|u|+ v, bu) , (u, v) ∈ R2.

For a = 1.7 and b = 0.5 one observes numerically a strange attractor. Consider the
uniform distribution on B1(0), the ball centered at zero with radius one, which is taken
as the state space of the random variables ξi. Let us denote by x the vector (u, v). For
ε > 0, the observed system is given by yi = T iLx+ εξi.

Example 3.2.2. Consider the Hénon map TH : R2 → R2 defined as

TH(u, v) =
(
1− au2 + v, bu

)
, (u, v) ∈ R2.

Where 0 < a < 2 and b > 0 are some real parameters. The state space of the random
variables is B1(0) and consider the uniform distribution as in the previous example. The
observed system is given by yi = T iHx + εξi provided the initial condition x = (u, v) in
the basin of attraction of the Hénon map.

Example 3.2.3. For the Manneville-Pomeau map defined as in example 1.3.3, the ob-
served sequence is defined by yi = T iα(x) + εξi. The random variables ξi are uniformly
distributed in X. One identifies the [0, 1] with the unit circle to avoid leaks.
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Figure 3.1: Left. A simulation of the Lozi map for the parameters a=1.7 and b=0.5.
Right. A simulation of the observed Lozi map with observational noise whose magnitude
is bounded by ε = 0.06.

Figure 3.2: Top. A simulation of the Hénon map for the classical parameters a=1.4 and
b=0.3. Bottom. A simulation of the Hénon map with observational noise with ε = 0.04.

As a final remark, we point out that from the observations one is not able to distin-
guish between dynamical and observational noise. An interesting study has been done
in the physical context in [70]. We do not address this problem here but it would be an
interesting problem to study mathematically.





Chapter 4

Fluctuation bounds for chaos plus
noise

In this chapter we give and prove concentration inequalities for systems perturbed by ob-
servational noise (observed systems). We also apply these inequalities to obtain bounds
on fluctuation of some estimators. The results here presented can be found in [53].

Suppose that we are given with a finite ‘sample’ y0, . . . , yn−1. The sample is gen-
erated by a dynamical system perturbed by an observational noise. Consider a general
observable K(y0, . . . , yn−1). We are interested in estimating the fluctuations of K and
its convergence properties as n grows. It is important to quantifying the effect of the
noise in that estimates.

Our main tool to provide such an estimates are concentration inequalities.

4.1 Concentration inequalities for Chaos plus noise

After fixing some notations and conventions, we give and prove the result of this section.

We recall that P is the common distribution of the random variables ξi. The expected
value with respect to a measure ν is denoted by Eν . Recall the expression (1.1) for the
measure µn. Hence in particular

Eµn(K) =

∫
· · ·
∫
K(x0, . . . , xn−1)dµn(x0, . . . , xn−1)

=

∫
K(x, . . . , Tn−1x)dµ(x).

Next, we denote by µn⊗Pn the product of the measures µn and Pn, where Pn stands
for P ⊗ · · · ⊗ P (n times). The expected value of K(y0, . . . , yn−1) is denoted by

Eµn⊗Pn(K) :=

∫
K(x+ εξ0, . . . , T

n−1x+ εξn−1)dµ(x)dP (ξ0) · · · dP (ξn−1).

35
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Theorem 4.1.1. If the original system (X,T, µ) satisfies the exponential inequality
(2.2), then the observed system satisfies an exponential concentration inequality. For
any n ≥ 1, it is given by

Eµn⊗Pn
(
eK(y0,...,yn−1)−Eµn⊗Pn (K(y0,...,yn−1))

)
≤ eD(1+ε2)

∑n−1
j=0 Lipj(K)2 , (4.1)

Furthermore, if the system (X,T, µ) satisfies the polynomial concentration inequality
(2.3) with integer moment q ≥ 2, then the observed system satisfies a polynomial con-
centration inequality with the same moment. For any n ≥ 1, it is given by

Eµn⊗Pn (|K(y0, . . . , yn−1)− Eµn⊗Pn(K(y0, . . . , yn−1))|q) ≤ Dq(1 + ε)q
( n−1∑
j=0

Lipj(K)2
)q/2

.

(4.2)

Observe that one recovers the corresponding concentration inequalities for the orig-
inal dynamical system when ε vanishes.

Remark 4.1.1. Our proof works provided the noise process satisfies a concentration in-
equality. Indeed a bounded i.i.d process satisfies the exponential concentration inequality
(2.2) (see e.g. [50]). It also satisfies (2.3) for all q ≥ 2, see e.g. [10] for more de-
tails. Although we do not need independence, it is reasonable to model the observational
perturbations in this manner. Nevertheless, one can slightly modify the proof to get the
result valid for correlated perturbations.

Proof of theorem 4.1.1. First let us fix the noise {ξj} and let ξ := (ξ0, ξ1, . . . , ξn−1).
Introduce the auxiliary observable

K̃ξ(x0, . . . , xn−1) := K(x0 + εξ0, . . . , xn−1 + εξn−1).

Since the noise is fixed, it is easy to see that Lipj(K̃ξ) = Lipj(K) for all j.

Notice that K̃ξ(x, . . . , T
n−1x) = K(x+εξ0, . . . , T

n−1x+εξn−1) = K(y0, . . . , yn−1). Next
we define the observable F (ξ0, . . . , ξn−1) of n variables on the noise, as follows,

F (ξ0, . . . , ξn−1) := Eµn(K̃ξ(x, . . . , T
n−1x)).

Observe that, Lipj(F ) ≤ εLipj(K).
Now we prove inequality (4.1). Observe that is equivalent to prove the inequality for

Eµn⊗Pn
(
eK̃ξ(x,...,T

n−1x)−Eµn⊗Pn (K̃ξ(x,...,T
n−1x))

)
.

Adding and subtracting Eµn(K̃ξ(x, . . . , T
n−1x)) and using the independence between the

noise and the dynamical system, we obtain that the expression above is equal to

EPn
(
eF (ξ0,...,ξn−1)−EPn (F (ξ0,...,ξn−1))Eµn

(
eK̃ξ(x,...,T

n−1x)−Eµn (K̃ξ(x,...,T
n−1x))

))
.
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Since in particular, i.i.d. bounded processes satisfy the exponential concentration in-
equality (see Remark 4.1.1 above), we may apply (2.2) first to the dynamical system
and then to the noise, yielding

EPn
(
eF (ξ0,...,ξn−1)−EPn (F (ξ0,...,ξn−1))Eµn

(
eK̃ξ(x,...,T

n−1x)−Eµn (K̃ξ(x,...,T
n−1x))

))
≤ eC

∑n−1
j=0 Lipj(K̃ξ)

2

eC
′∑n−1

j=0 Lipj(F )2 ≤ eD(1+ε2)
∑n−1
j=0 Lipj(K)2 ,

where D := max{C,C ′}.
Next, we prove inequality (4.2) similarly. We use the binomial expansion after the
triangle inequality with Eµn(K̃ξ(x, . . . , T

n−1x)). Using the independence between the
noise and the dynamics, we get

Eµn⊗Pn(|K(y0, . . . , yn−1)− Eµn⊗Pn(K(y0, . . . , yn−1))|q)

≤
q∑
p=0

( q
p

)
Eµn(|K̃ξ(x, . . . , T

n−1x)− Eµn(K̃ξ(x, . . . , T
n−1x))|p)×

EPn
(
|F (ξ0, . . . , ξn−1)− EPn(F (ξ0, . . . , ξn−1))|q−p

)
.

(4.3)

We proceed carefully using the polynomial concentration inequality. The terms corre-
sponding to p = 1 and p = q − 1 have to be treated separately. For the rest we obtain
the bound

q∑
p=0

p 6=1,q−1

(
q

p

)
Cp

( n−1∑
j=0

Lipj(K)2
)p/2

× C ′q−p
(
ε2

n−1∑
j=0

Lipj(K)2
) q−p

2
.

For the case p = 1, we apply Cauchy-Schwarz inequality and (2.3) for q = 2 to get

Eµn
(
|K̃ξ(x, . . . , T

n−1x)− Eµn(K̃ξ(x, . . . , T
n−1x))|

)
≤
√
C2

( n−1∑
j=0

Lipj(K)2
)1/2

.

If q = 2, we proceed in the same way for the second factor in the right hand side of
(4.3). The case p = q−1 is treated similarly. Finally, putting this together and choosing
adequately the constant Dq we obtain the desired bound.

Next we obtain an estimate of deviation probability of the observable K from its
expected value.

Corollary 4.1.1. If the system (X,T, µ) satisfies the exponential concentration inequal-
ity, then for the observed system {yi}, for every t > 0 and for any n ≥ 1 we have,

µn⊗Pn
(
|K(y0, . . . , yn−1)− Eµn⊗Pn(K)| ≥ t

)
≤ 2 exp

(
−t2

4D(1 + ε2)
∑n−1

j=0 Lipj(K)2

)
.

(4.4)
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If the system (X,T, µ) satisfies the polynomial concentration inequality with moment
q ≥ 2, then the observed system satisfies for every t > 0 and for any n ≥ 1,

µn⊗Pn
(
|K(y0, . . . , yn−1)− Eµn⊗Pn(K)| > t

)
≤ Dq

tq
(1 + ε)q

n−1∑
j=0

Lipj(K)2

q/2

. (4.5)

The proof is completely analogous to that of corollary 2.3.1, but using the concen-
tration inequalities for perturbed systems instead of those of the original ones.

4.2 Applications

4.2.1 Dynamical systems

Concentration inequalities are available for the class of non-uniformly hyperbolic dynam-
ical systems modeled by Young towers ([21]). Actually, systems with exponential tails
satisfy an exponential concentration inequality and if the tails are polynomial then the
system satisfies a polynomial concentration inequality. The examples given in section
2 are included in that class of dynamical systems. We refer the interested reader to
[73] and [75] for more details on systems modeled by Young towers. Here we consider
dynamical systems satisfying either the exponential or the polynomial concentration in-
equality. We apply our result of concentration in the setting of observed systems to
empirical estimators of the auto-covariance function, the empirical measure, the kernel
density estimator and the correlation dimension.

4.2.2 Auto-covariance function for Chaos plus noise

Consider the dynamical system (X,T, µ), a square integrable observable f : X → R.
Assume that f is such that

∫
fdµ = 0 and the perturbed itinerary y0, . . . , yn−1. Define

the perturbed empirical estimator of the auto-covariance function (2.11), as follows

C̃ovn(k) :=
1

n

n−1∑
i=0

f(yi)f(yi+k). (4.6)

We are interested in quantifying the influence of noise on the correlation. We give a
bound on the probability of the deviation of the perturbed empirical estimator from the
covariance function.

Theorem 4.2.1. Let C̃ovn(k) be given by (4.6). If the dynamical system (X,T, µ)
satisfies the exponential inequality (2.2) then for all t > 0 and for any integer n ≥ 1 we
have

µn⊗Pn
(∣∣∣C̃ovn(k)− Cov(k)

∣∣∣ > t+ 2afε
)
≤ 2 exp

(
−t2

64Da2
f (1 + ε2)

(
n2

n+ k

))

+2 exp

(
−t2

16Ca2
f

(
n2

n+ k

))
,
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where af = Lip(f)‖f‖∞, C and D are the constants appearing in (2.2) and (4.1) respec-
tively. If the system satisfies the polynomial inequality with moment q ≥ 2, then for all
t > 0 and any integer n ≥ 1 we have

µn⊗Pn
(∣∣∣C̃ovn(k)− Cov(k)

∣∣∣ > t+ 2afε
)
≤ (2qDq(1 + ε)q + Cq)

(
2af
t

)q (n+ k

n2

)q/2
,

where Cq and Dq are the constants appearing in (2.3) and (4.2) respectively.

Proof. To prove this assertion we will use an estimate of

µn⊗Pn
(∣∣∣C̃ovn(k)− Ĉovn(k)

∣∣∣ > t+ Eµn⊗Pn
(∣∣∣C̃ovn(k)− Ĉovn(k)

∣∣∣)) .
First let us write xi := T ix, and observe that by adding and subtracting f(xi +

εξi)f(xi+k), the quantity |C̃ovn(k)− Ĉovn(k)| is less than or equal to

1

n

n−1∑
i=0

|f(xi + εξi)[f(xi+k + εξi+k)− f(xi+k)] + [f(xi + εξi)− f(xi)]f(xi+k)| ,

which leads us to the following estimate,

Eµn⊗Pn
(∣∣∣C̃ovn(k)− Ĉovn(k)

∣∣∣) ≤ 2εLip(f)‖f‖∞. (4.7)

For a given realization of the noise {ei}, consider the following observable of n + k
variables

K(z0, . . . , zn+k−1) :=
1

n

n−1∑
i=0

(f(zi + εei)f(zi+k + εei+k)− f(zi)f(zi+k)) .

For every 0 ≤ l ≤ n− 1, one can easily obtain that

Lipl(K) ≤ 4

n
Lip(f)‖f‖∞.

In the exponential case, from the inequality (4.4) and the bound (4.7) on the expected
value of K, we obtain that

µn⊗Pn
(∣∣∣C̃ovn(k)− Ĉovn(k)

∣∣∣ > t+ 2εaf

)
≤ 2 exp

(
−t2

64Da2
f (1 + ε2)

(
n2

n+ k

))
.

Using proposition 2.4.1, a union bound and an adequate rescaling, we get the result. In
order to prove the polynomial inequality, proceed similarly applying (4.5).
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4.2.3 Empirical measure

Consider the observed itinerary y0, . . . , yn−1 and define the observed empirical measure
by

Ẽn :=
1

n

n−1∑
i=0

δyi .

Observe that this measure is well defined on X. Again Birkhoff’s ergodic theorem implies
that almost surely

lim
n→∞

1

n

n−1∑
i=0

g(yi) =

∫ ∫
g(x+ ξ)dµ(x)dP (ξ),

for every continuous function g. More precisely, this convergence holds for a set of µ-
measure one of initial conditions for the dynamical system (X,T ) and a set of measure
one of noise realizations (ξi) with respect to the product measure PN.

We want to estimate the speed of convergence of the observed empirical measure.
As in the case without noise, we study the convergence rate of the empirical measure
by the fluctuations of the Kantorovich distance of the empirical measure and µ around
its expected value. In this case, we consider the Kantorovich distance of the observed
empirical measure to the measure µ. The statement is the following.

Proposition 4.2.1. If the system (X,T, µ) satisfies the exponential concentration in-
equality (2.2), then for all t > 0 and any integer n ≥ 1,

µn⊗Pn
(
κ(Ẽn, µ) > t+ Eµn⊗Pn

(
κ(Ẽn, µ)

))
≤ e−

t2n
4D(1+ε2) .

If the system satisfies the polynomial concentration inequality (2.3) with moment q ≥ 2,
then for all t > 0 and any integer n ≥ 1,

µn⊗Pn
(
κ(Ẽn, µ) > t+ Eµn⊗Pn

(
κ(Ẽn, µ)

))
≤ Dq(1 + ε)q

tq
1

nq/2
.

Using the following separately Lipschitz function of n variables,

K(z0, . . . , zn−1) := sup
g∈L

[
1

n

n−1∑
i=0

g(zi)−
∫
gdµ

]
.

It is easy to check that Lipj(K) ≤ 1
n , for every j = 0, . . . , n− 1. The proposition follows

from the concentration inequalities (4.4) and (4.5).
As a consequence of the proposition 4.2.1 and the lemma 2.4.1, we obtain the follow-

ing result.

Theorem 4.2.2. Assume that the system (X,T, µ) satisfies the assumptions of lemma
2.4.1. Let Ẽn be the observed empirical measure. If the system satisfies the exponential
inequality (2.2) then there exists a B > 0 for all t > 0 and for all n ≥ 1 we have that

µn⊗Pn
(
κ(Ẽn, µ) >

t+B

n1/4
+ ε

)
≤ e−

t2
√
n

4D(1+ε2) .
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If the system satisfies the polynomial inequality (2.3) with moment q ≥ 2, then for all
t > 0 and for all n ≥ 1 we obtain

µn⊗Pn
(
κ(Ẽn, µ) >

t+B

n1/4
+ ε

)
≤ Dq(1 + ε)q

tq
1

nq/4
.

Proof. Clearly Eµn⊗Pn(κ(Ẽn, µ)) ≤ Eµn⊗Pn(κ(Ẽn, E)) + Eµn⊗Pn(κ(E , µ)). A straightfor-
ward estimation yields

Eµn⊗Pn(κ(Ẽn, E)) ≤
∫

sup
g∈L

[
1

n

n−1∑
i=0

Lip(g)ε‖ξi‖

]
dµn⊗Pn ≤ ε.

We obviously have Eµn⊗Pn (κ(E , µ)) = Eµn (κ(E , µ)). Using the exponential estimate of
proposition 4.2.1 and lemma 2.4.1 we obtain, for any t > 0,

µn⊗Pn
(
κ(Ẽn, µ) ≥ t+ ε+

B

n1/4

)
≤ exp

(
−t2n

4D(1 + ε2)

)
.

Rescaling adequately we get the result. For the polynomial case, one uses the polynomial
estimate of proposition 4.2.1.

4.2.4 Kernel density estimator for one-dimensional maps plus noise

In section 2.4.3 we considered the system (X,T, µ) taking values on a bounded subset
of R, here, in order to avoid ‘leaking’ problems, we assume X = S1.

Given the observed trajectory {yj}, let us define the perturbed empirical density
estimator by

h̃n(y0, . . . , yn−1; s) :=
1

nαn

n−1∑
j=0

ψ

(
s− yj
αn

)
.

where αn → 0 and nαn → ∞ as n diverges. Again, the function ψ is a kernel, which
means that it is a bounded, non-negative Lipschitz function with bounded support sat-
isfying

∫
ψ(s)ds = 1.

The result in the case of observed systems is the following.

Theorem 4.2.3. If (X,T, µ) satisfies the hypothesis 2.4.1 and the exponential concentra-

tion inequality, then there exists a constant Cψ > 0 such that, for all t > Cψ

(
αβn + 1√

nα2
n

)
and for any integer n ≥ 1,

µn⊗Pn
(∫ ∣∣∣h̃n(y0, . . . , yn−1; s)− h(s)

∣∣∣ds > t+ Lip(ψ)
ε

α2
n

)
≤ exp

(
− nα4

nt
2

R(1 + ε2)

)
,

where R := 4DLip(ψ)2.
If the system satisfies the hypothesis 2.4.1 and the polynomial concentration inequality,

then for all t > Cψ

(
αβn + 1√

nα2
n

)
and for any integer n ≥ 1, we have

µn⊗Pn
(∫ ∣∣∣h̃n(y0, . . . , yn−1; s)− h(s)

∣∣∣ds > t+ Lip(ψ)
ε

α2
n

)
≤ Dq

(
(1 + ε)Lip(ψ)

t
√
nα2

n

)q
.
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The parameter β is the same constant appearing as in the hypothesis 2.4.1.

Proof. Consider the following observable of n variables,

K(z0, . . . , zn−1) :=

∫ ∣∣∣ 1

nαn

n−1∑
j=0

ψ

(
s− zj
αn

)
− h(s)

∣∣∣ds.
It is straightforward to obtain that Lipl(K) ≤ Lip(ψ)

nα2
n

, for every l = 0, . . . , n − 1. Next,

we need to give an upper bound for the expected value of the observable K, first

Eµn⊗Pn(K) ≤
∫ (∫ ∣∣∣ 1

nαn

n−1∑
j=0

[
ψ
(s− yj

αn

)
− ψ

(
s− xj
αn

)] ∣∣∣ds)dµn⊗Pn

+

∫ (∫ ∣∣∣ 1

nαn

n−1∑
j=0

ψ
(s− xj

αn

)
− h(s)

∣∣∣ds)dµn.

Subsequently we proceed on each part. For the first one we get∫ (∫ ∣∣∣ 1

nαn

n−1∑
j=0

[
ψ
(s− yj

αn

)
− ψ

(s− xj
αn

)] ∣∣∣ds)dµn⊗Pn
≤
∫ ( 1

nαn

n−1∑
j=0

Lip(ψ)ε

αn

)
dµn⊗Pn ≤ Lip(ψ)

ε

α2
n

.

For the second part, there exist some constant Cψ such that∫ (∫ ∣∣∣ 1

nαn

n−1∑
j=0

ψ
(s− xj

αn

)
− h(s)

∣∣∣ds)dµn ≤ Cψ
(
αβn +

1√
nα2

n

)
.

The proof of this statement is found in [19, Section 6]. We finish the proof applying
(4.4) and (4.5), respectively.

4.2.5 Correlation dimension

Recall the definition of the correlation dimension and the spatial correlation integral
given in section 2.4.4.

In the case of observed systems, let us consider the observed sequence y0, . . . , yn−1,
and define the estimator of Corr(r) for observed systems, as follows

K̃n,r(y0, . . . , yn−1) :=
1

n2

∑
i 6=j

H(r − d(yi, yj)).

Once again, since K̃n,r(y0, . . . , yn−1) is not a Lipschitz function we cannot apply
directly concentration inequalities. Then we apply the usual trick replacing H by a
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Lipschitz continuous function φ and then define the new estimator

K̃φ
n,r(y0, . . . , yn−1) :=

1

n2

∑
i 6=j

φ

(
1− d(yi, yj)

r

)
. (4.8)

The result of this section is the following estimate on the variance of the estimator
K̃φ
n,r.

Theorem 4.2.4. Let φ be a Lipschitz continuous function. Consider the observed tra-
jectory y0, . . . , yn−1 and the function K̃φ

n,r(y0, . . . , yn−1) given by (4.8). If the system
(X,T, µ) satisfies the polynomial concentration inequality with q = 2, then for any inte-
ger n ≥ 1,

Var(K̃φ
n,r) ≤ D2Lip(φ)2(1 + ε)2 1

r2n
,

where Var(Y ) := E(Y 2)− E(Y )2 is the variance of Y .

The proof follows the lines of section 4 in [19], and by applying the inequality (4.2)

with q = 2 and noticing that Lipl(K̃
φ
n,r) ≤ Lip(φ)

rn for every l = 0, . . . , n− 1.





Chapter 5

Signal Recovery from Chaos plus
Noise

5.1 Noise reduction methods

In the context of time series analysis, an important problem is that of signal recovery
(also called signal separation or noise reduction). Its importance relies in the fact that
in practice every data signal is contaminated by some ‘other unwanted sources’ that we
simply call noise. The problem of signal recovery can be stated as follows: we observe
some signal which contains a noise component, but we want it as clean as possible. Is
it possible to recover the signal of interest? and in the affirmative case, then how? The
answer of the first question depends on the nature of the noise and the source of the
signal of interest. And, for the ‘how’, many methods have been proposed. There is a
large amount of bibliography on this problem, see for instance [2, 43, 66], and references
therein.

The classical approach to separate the noise from the wanted signal is using frequency
filters. That method is effectively applicable when the wanted signal has some kind of
periodicity ([2]). In real experiments many times the signal of study is produced by
some nonlinear source, making those filters not very efficient. In the nineties a great
effort was done by physicists in order define better methods to recover a noised signal,
making them applicable to nonlinear phenomena. We will briefly mention some of these
methods.

To delimit the problem, first one has to fix:

a) The nature of the systems we observe.

b) The nature of the perturbing noise.

For the moment, assume that the observed signal is a discrete signal coming from a
chaotic dynamics, since the methods we will describe in this section do not directly take
advantage of the dynamics, chaoticity is the only required property. Later on we will
make a more precise statement on the nature of the dynamics to be considered, in order

45
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to get some rigorous result on the consistency of the method. In order to fix the nature of
the noise, recall the two types of noise defined in chapter 3. Given that dynamical noise
interacts within the dynamics, it is more complicated to deal with. Moreover for standard
computer simulation (no rigorous computations) of chaotic dynamical systems perturbed
with a small amount of dynamical noise very often diverges in a few iterations (in the
order of 103 iterations). Thus we restrict to the observational model of noise described in
section 3.2. The existing implemented methods have been tested for Gaussian as well as
identically distributed and bounded noise. In both cases numerical simulations exhibits
effective cleansing of data (see for instance [35, 64, 65]).

Let us be more precise. Let x0, x1, . . . , xn be the first n iterates of the initial condition
x0 under the chaotic map T (i.e. xi = T ix0 for i ≥ 0). Assume for the sake of definiteness
that T is invertible. Commonly the state space is Rd. For instance, the Hénon map (
which is a map in R2, see example 1.3.2) is taken as the common example in most of
the references cited in this chapter. Next, instead of the sequence x0, x1, . . . , xn one
‘observes’ to the sequence y0, y1, . . . , yn, given by the relation

yi := xi + ei.

Here ei denotes the noise component which is independent of xi and is distributed ac-
cording to some probability distribution P . We further make some precise assumptions
on the noise according to the method in turn. For example, most of the existing noise
reduction methods were tested on systems with Gaussian noise, and with identically
distributed and bounded noise, but only in the latter case rigorous results on the con-
vergence of the algorithm are available.

With respect to the information used while implemented, existing methods may be
classified in three different types:

1. The dynamics is known ([38, 31]).

2. A clean signal of the dynamical system is known and is used as reference to clean
up the noisy signals provided they are produced by the same dynamical system
([55]).

3. Blind methods. There is no a priori knowledge of the dynamical system nor even a
single clean signal is known. The methods in this case require further assumptions
on the systems and on the noise. Their efficiency depends not only on the method
but also on the system and on the noise. ([15, 63, 65, 35, 48]).

Obviously the methods in the third case are the most interesting ones, since in ‘real’
situations one does not know a priori the dynamics in a explicit way neither even a
single clean orbit is provided. In the following we only consider blind methods.

5.1.1 Local projective maps

In this class of methods the geometry of the signal is taken into account (and is the
most important part) to reduce the noise. They use the fact that noise spreads out
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the observations in all directions, in opposition to the map, that follows some precise
direction. The idea of Cawley-Hsu [15] and Sauer [63], is that noise can be reduced by
projecting the observations onto the subspace spanned by a suitable collection of singular
vectors at each point on the ‘perturbed attractor’. The subspace is defined by taking
a local piece of the ‘perturbed attractor’. A variation of this idea was implemented by
Schreiber and Grassberger in [65] and Grassberger and his group, in [35]. They impose
some constraints using also the time ordering of the time series. A complete survey of
the methods can be found in [46] and for a numerical comparative study check [35].
The Hénon map is the common example treated by all these methods, but is not the
only example, for instance, the Ikeda map1, the Lorentz attractor and experimental data
showing fractal behavior are also considered. Although the numerical results seem to be
quite impressive, the consistency properties remain largely unknown for those methods
and thus there is a lack of rigorous results.

5.1.2 Schreiber-Lalley method

In reference [64], Schreiber defined a simple algorithm for noise reduction. Independently,
the same idea was used later by Lalley in [47]. That is why we call this method the
‘Schreiber-Lalley method’. This algorithm is the only one that exploits directly the
assumption on the chaoticity of the map and is not only based in the geometry of
the data as the previously mentioned methods. There are several advantages of this
algorithm with respect to the previous ones, the simplicity, the ease of implementation,
no knowledge of the map or a clean signal is needed and on the top of that, up to now,
is the only one for which rigorous results are available for its consistency.

The idea in [64] is the following: Each iteration yi is replaced by the average value
of this coordinate over points in a suitably chosen neighborhood. To define such a
neighborhood, first fix positive integers, k and l and take the vector wi = (yi−k, . . . , yi+l).
Further, choose a radius δ for the neighborhoods. For each value yi find the set Ai(δ) of
all neighbors yj for which

sup{|yj−k − yi−k|, . . . , |yj+l − yi+l|} < δ,

that is, all segments of the trajectory which are close during a time from k iterations in
the past to l iterations in the future. Next, replace the coordinate yi by its mean value
in Ai(δ),

x̂i :=
1

|Ai(δ)|
∑

j∈Ai(δ)

yj .

This method produces another time series which reduces magnitude of the noise compo-
nent. This is done without using artificial assumptions on the geometry of the attractor
but using the fact that points which remain close in time should be close enough in the
state space, given the chaotic nature of the map.

1The Ikeda map is a 2-dimensional map whose iterates are defined by xn−1 = 1 + u(xn cos tn −
yn sin tn), yn+1 = u(xn sin tn + yn cos tn), and tn = 0.4− 6

1+x2n+y2n
, where u ∈ (0, 1) is a parameter. For

some values of u the Ikeda map has a chaotic attractor.
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There are some minor differences between Schreiber and Lalley’s implementations.
Lalley fixes the radius of the neighborhoods up to 3 times the magnitude of the noise
(which is assumed to be bounded and uniformly distributed). And the integers k and l are
both made equal to some function of n the size of the sampled signal. The substantial
difference is that Lalley is restricted to bounded i.i.d. noise, because he proved the
consistency of the algorithm in that case. Furthermore, he proved that if we consider
unbounded noise (even Gaussian), then it is impossible to consistently recover a clean
signal. We need to recall the notion of homoclinic pair of points. A pair of points x, x′

is said to be a homoclinic pair if they satisfy
∑∞

n=−∞‖Tnx − Tnx′‖ < ∞. Next, the
negative result is stated as follows.

Theorem 5.1.1 ([47, 48, 49]). If the density of the noise is Gaussian and the dynamical
system admits strongly homoclinic pairs of points, then there is no sequence of functions
ψn(y−n, y−n+1, . . . , yn) such that for all orbits xn = Tnx,

lim
n→∞

P(|ψn(y−n, . . . , yn)− x| > t) = 0

for any t > 0.

Actually, this result is proved for a more general class of densities with unbounded
support which includes the Gaussian case.

With this result, Lalley gives a clear distinction between the results achieved by
heuristic implementations, such as those obtained by the ‘german school’, and the rig-
orous results.

In the following section we describe in a more precise manner the algorithm defined
by Lalley and we give the results on its consistency.

5.2 Lalley’s Algorithm for Recovery of a Signal

In the present section we assume the time series y0, . . . , yn−1 (n ≥ 1) to be an observed
system ( see definition 3.2.1), given by

yi = xi + εξi, (5.1)

where xi = T ix is the orbit of x, given a chaotic dynamical system T with an attractor
Λ and ξi is an observational noise satisfying to be independent and independent if x0.
We assume the noise absolute magnitude is bounded by the constant ε.

5.2.1 The smoothing algorithm

The algorithm takes as an input a time series y0, y1, . . . , yn−1 given by (5.1). It defines
for every i an estimator x̂i of the true iterate of the dynamics xi. So, the algorithm gives
as output another time series {x̂i} called recovered system (or cleaned signal). The idea
is to define the estimators by an average of a well chosen set points taken from the noisy
time series {yi}. The main steps of Lalley’s algorithm are the following.
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yi

yj
3ε

Figure 5.1: Schematic time series, the 3ε neighborhood of yi is taken and all the yj inside
are pictured in red.

1. For each element yi, look for all other points yj in the time series that are close to
yi up to a distance equals to 3ε (see figure 5.1 below).

2. Define an integer τ ≥ 1. We further make assumptions on this number depending
on the length of the sample.

3. For every i = τ, . . . , n− τ , define the following set of indices

An(i, τ) := {j : |yj+r − yi+r| ≤ 3ε for |r| ≤ τ} .

Essentially this is the set of indices whose respective iterate yj remains ‘close’ to
yi during τ iterations from the past and to the future (see figure 5.2).

4. Finally, define the estimator x̂i for every i = τ, . . . , n− τ , as follows

x̂i :=
1

|An(i, τ)|
∑

j∈An(i,τ)

yj , (5.2)

for the rest of the indices, define x̂i := yi.

5.2.2 Consistency of Lalley’s algorithm

The consistency of the algorithm described above has been proved for Axiom A systems
in [47], and for a more general class of dynamical systems in [48] and [49], assuming some
degree of expansiveness. In those articles the authors proved consistency for almost every
realization of i.i.d. noise independent of the map. Here we include the most general result
available, for which we need to introduce the following definitions and a proposition.
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yj

yi+1

yi+τyi-1

yi-τ

yj+1

y j+τyj-1yj-τ

Figure 5.2: The itinerary of yi and yj are depicted. In this case yj remains close to yi in
time, thus is contained in the set An(i, τ).

Definition 5.2.1. A map T : X → X is said to be expansive if there exists ∆ > 0 such
that for every pair of points x, x′ ∈ X with x 6= x′,

sup
n∈Z
|Tnx− Tnx′| > ∆.

The constant ∆ is called a separation threshold for T .

Definition 5.2.2. The horizon of separation H(α) of the map T with separation thresh-
old ∆, is a function HT (α) : (0,∞)→ N0 that for all α > 0 is defined by

HT (α) := sup{s(x, x′) : |x− x′| ≥ α},

where s(x, x′) := min{|s| : |T s(x) − T s(x′)| > ∆}, is the minimal time of separation.
Furthermore, T has a finite horizon of separation is for all α > 0 is satisfies that HT (α) <
+∞.

Proposition 5.2.1. If the map T has a finite horizon of separation then the inverse
function H−1(n) tends monotonically to zero when n diverges.

Proof. The monotonicity of H−1 follows from that of the function H itself. If H−1(n) ≥
α0 > 0 for all n, then for some α < α0 we have that H(α) > H(α0), and given that
H(α0) ≥ H(H−1(n)) = n for all n, then we have that H(α) =∞.

The result on the consistency of the algorithm is the following.
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Theorem 5.2.1 ([49]). Let T be a expansive map with separation threshold ∆ > 0 and
finite horizon of separation. Assume ε ≤ ∆/5. If τ →∞ and τ/ log n→ 0, then

1

n− 2τ

n−τ∑
i=τ

|x̂i,n − xi| → 0 when n→∞

with probability one for every initial condition x in the basin of attraction of the map.

The idea is to use the assumption that the noise is observational, and so, the observed
system is yj = xj + εξj . Write

x̂i =
1

|An(i, τ)|
∑

j∈An(i,τ)

yj =
1

|An(i, τ)|
∑

j∈An(i,τ)

xj +
1

|An(i, τ)|
∑

j∈An(i,τ)

εξj , (5.3)

then it is sufficient to have for every i that the cardinality of An(i, τ) is large enough, and
use the assumption of the ‘chaoticity’ of the system which assures that if j ∈ An(i, τ)
then |xi − xj | is small. This is done by means of the proposition 5.2.1. Next, one uses
a type of large numbers law to prove that 1

|An(i,τ)|
∑

j∈An(i,τ) εξj is small, when n→∞.

Observe that this is not immediate because An(i, τ) is a stochastic set depending on the
random variables ξj . The trick is to rearrange the indices in a proper way such that the
summing set is independent of the ξ’s.

Proof of theorem 5.2.1. Let us write the difference |x̂i − xi| using the definition of the
estimates.

|x̂i − xi| =
∣∣∣xi − 1

|An(i, τ)|
∑

j∈An(i,τ)

yj

∣∣∣
≤ 1

|An(i, τ)|
∑

j∈An(i,τ)

|xi − xj |+
1

|An(i, τ)|

∣∣∣ ∑
j∈An(i,τ)

εξj

∣∣∣. (5.4)

Note that the first term in the right hand side of the inequality above controls the bias
of the estimator and the second term controls the stochastic variation.

Next we proceed by proving that both terms in the above inequality goes to zero.
For the first term we make use of the following lemma.

Lemma 5.2.1. Let τ ≤ n be such that τ = τ(n)→∞ as n→∞, then

1

|An(i, τ)|
∑

j∈An(i,τ)

|xi − xj | → 0 when n→∞.

In order to proof the convergence to zero of the second term in (5.4) it will be useful
to introduce some additional notation.

For every m ≥ 1 and 1 ≤ τ ≤ n
2 define the set

In(m, τ) = {i : |An(i, τ)| ≥ m and τ ≤ i ≤ n− τ}.

This set collects those indices whose respective set An has at least m elements. In other
words, if k ∈ I then the estimate x̂k is defined by an average of at least m entries yj .
Once introduced the set In we use the following small lemma.
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Lemma 5.2.2. For every fixed β ∈ (1
2 , 1), one has that

1

n− 2τ

n−τ∑
i=τ

1

|An(i, τ)|

∣∣∣ ∑
j∈An(i,τ)

εξj

∣∣∣ ≤ max
j∈In(nβ ,τ)

1

|An(i, τ)|

∣∣∣ ∑
j∈An(i,τ)

εξj

∣∣∣+
∆

5(n− 2τ)

n−τ∑
i=τ

1
{
|An(i, τ)| ≤nβ

}
.

Observe that the previous lemma only rewrites the second summand in (5.4) and
splits it into two parts. In order to prove the theorem it suffices to show that both terms
above vanishes as n goes to infinity. This is indeed true and it is given by the following
two lemmata. First, for the case of the set of indices whose cardinality is ‘large’ we have
a precise upper bound.

Lemma 5.2.3. Consider a real number t > 0, if tm ≥ 2∆
5 (2τ + 1), then

P
{

max
i∈In(m,τ)

|Vn(i, τ)| > t

}
≤ 2n exp

(
−t2m2

2n
(

∆
5

)2
(2τ + 1)2

)
,

where |Vn(i, τ)| = 1
|An(i,τ)|

∣∣∣∑j∈An(i,τ) εξj

∣∣∣.
And for those sets of indices with ‘small’ cardinality we use the following lemma.

Lemma 5.2.4. If τ(n) = o(log n) then for every γ > 0, one has

1

n

n−1∑
j=0

1
{
|An(i, τ)| ≤ n1−γ}→ 0 when n→∞.

We continue by taking m = nβ in the bound given in lemma 5.2.3, yielding

P
{

max
i∈In(nβ ,τ)

|Vn(i, τ)| > t

}
≤ 2n exp

(
−t2nη

2
(

∆
5

)2
(2τ + 1)2

)
,

with η = 2β − 1. If ξ > 0 then we apply Borel-Cantelli lemma assuring that

max
i∈In(nβ ,τ)

|Vn(i, τ)| → 0

with probability one, as n → ∞. This is satisfied whenever β > 1/2, and that finishes
the proof of the theorem.
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5.2.3 Proofs of lemmas

Here we collect the proofs of the previous lemmas.

Proof of lemma 5.2.1. Since ε ≤ ∆
5 by hypothesis then An(i, τ) ⊂ {j : |yj+r − yi+r| ≤

3∆
5 for |r| ≤ τ}. By definition we have that j ∈ An(i, τ) implies that |yj+r − yi+r| ≤ 3∆

5
for every |r| ≤ τ , and so

|xj+r − xi+r| ≤ |yj+r − yi+r|+ |εξi+r − εξj+r| ≤
3∆

5
+

2∆

5
= ∆,

which means that the time of separation of the pair xi, xj is at least equal to τ (i.e.
s(xi, xj) ≥ τ). In particular,

sup{s(x, x′) : |x− x′| ≥ |xi − xj |} ≥ τ,

that is, H(|xi − xj |) ≥ τ , then H−1(τ) ≥ |xi − xj | for every j ∈ |An(i, τ)|. This allows
us to write

1

|An(i, τ)|
∑

j∈An(i,τ)

|xi − xj | ≤
1

|An(i, τ)|
∑

j∈An(i,τ)

H−1(τ) = H−1(τ).

Finally, we use the proposition 5.2.1 and that finishes the proof.

Proof of lemma 5.2.2. For n and τ fixed, we can rearrange the indices into two sets:
those indices i for which |An(i, τ)| > nβ (that is i ∈ In(nβ, τ)) and those that belong to
the complement. Thus we have∑

j∈An(i,τ)

εξj =
∑

j∈An(i,τ)

εξj

(
1
{
|An(i, τ)| > nβ

}
+ 1

{
|An(i, τ)| ≤ nβ

})
.

Consider first the contribution of the noise from those indices in In(nβ, τ).

1

|An(i, τ)|

∣∣∣ ∑
j∈An(i,τ)

εξj

∣∣∣1{|An(i, τ)| > nβ
}
≤ max

i∈In(nβ ,τ)

1

|An(i, τ)|

∣∣∣ ∑
j∈An(i,τ)

εξj

∣∣∣.
For the case of those indices belonging to the complement of In we have the following
trivial bound, using only that ε ≤ ∆

5 and ‖ξj‖ ≤ 1, for all j.

1

|An(i, τ)|

∣∣∣ ∑
j∈An(i,τ)

εξj

∣∣∣1{|An(i, τ)| ≤ nβ
}
≤ ∆

5
· 1{|An(i, τ)| ≤ nβ}.

Taking the average over all the indices τ ≤ i ≤ n−τ , gives us the desired expression.
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Proof of lemma 5.2.4. The lemma only makes use of the compactness of Λ. There exist
a finite set S ⊂ Λ such that

max
u∈Λ

min
v∈S
|u− v| ≤ ∆

10
.

That defines a
(

∆
10

)
-net. Let S2τ+1 be the set of all sequences s = (s−τ , . . . , sτ ), where

si ∈ S, for every i. For every x ∈ Λ there exists a sequence s ∈ S2τ+1 that codifies the
2τ + 1 steps of the itinerary of x, by satisfying

max
|i|≤τ
|T i(x)− si| ≤

∆

10
.

For every s ∈ S2τ+1, define the set

Jn(s) =

{
j : 0 ≤ j ≤ n and max

|i|≤τ
|T i+j(x)− si| ≤

∆

10

}
.

In words, Jn(s) contains all the indices that have the same code s. Observe that every
j = τ, . . . , n− τ , is contained in at least one set Jn(s). Moreover, if j1, j2 ∈ Jn(s), then

max
|i|≤τ
|xj1+i − xj2+i| ≤

∆

5
and max

|i|≤τ
|yj1+i − yj2+i| ≤

3∆

5
.

Therefore j1 ∈ An(j2, τ) and j2 ∈ An(j1, τ). Taking j ∈ Jn(s), for every j′ ∈ Jn(s)
we have that j′ ∈ An(j, τ), it follows that if j ∈ Jn(s) then |Jn(s)| ≤ |An(j, τ)|. Fix
0 < γ < 1, then

n−1∑
j=0

1
{
|An(j, τ)| ≤ n1−γ} ≤ n−1∑

j=0

∑
s

1
{
|An(j, τ)| ≤ n1−γ} · 1 {j ∈ Jn(s)} .

Since |An(j, τ)| ≤ n1−γ and j ∈ Jn(s) then |Jn(s)| ≤ n1−γ , and so,

n−1∑
j=0

1
{
|An(j, τ)| ≤ n1−γ} ≤ n−1∑

j=0

∑
s

1
{
|Jn(s)| ≤ n1−γ} · 1 {j ∈ Jn(s)}

≤
∑
s

|Jn(s)| · 1
{
|Jn(s)| ≤ n1−γ}

≤n1−γ |S2τ+1|.

Choose τ(n) = γ
4

logn
log|S| to obtain |S2τ+1| = |S|nγ/2 = o(nγ/2). Then,

n−1∑
j=0

1
{
|An(j, τ)| ≤ n1−γ} ≤ |S|n1−γ/2 = o(n).

Therefore 1
n

∑n−1
j=0 1

{
|An(j, τ)| ≤ n1−γ}→ 0, when n→∞, and this concludes.
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Proof of lemma 5.2.3. For convenience we introduce some new notation. Define Un(i, τ) :=∑
j∈An(i,τ) εξj . Observe that Un is a sum of random variables over the sets An which

are not independent from ξj . In view of the dependence of An on the ξ’s, McDiarmid’s
theorem can not be applied directly. The idea is to modify the sets and arrange them
in the proper way in order to may use the McDiarmid’s theorem (see e.g. [50]).

We make use of the following sub-lemma.

Lemma 5.2.5. If H(∆/5) ≤ τ < n/2, for i ∈ [τ, n− τ ], then

Un(i, τ) =
n−τ∑
j=τ

εξj1

{
|xj − xi| ≤

∆

5

} ∏
1≤|s|≤τ

1

{
|yi+s − yj+s| ≤

3∆

5

}
. (5.5)

Proof. By definition of the set An(i, τ), one can write

Un(i, τ) =
∑

j∈An(i,τ)

εξj =
n−τ∑
j=τ

εξj
∏
|s|≤τ

1

{
|yj+s − yi+s| ≤

3∆

5

}
.

On one hand, if |xi − xj | ≤ ∆/5 then it is clear that |yj − yi| ≤ 3∆/5, and therefore

∏
|s|≤τ

1

{
|yj+s − yi+s| ≤

3∆

5

}
= 1

{
|xi − xj | ≤

∆

5

} ∏
1≤|s|≤τ

1

{
|yj+s − yi+s| ≤

3∆

5

}
.

On the other hand, if |xi−xj | > ∆
5 and suppose that

∏
1≤|s|≤τ

1

{
|yj+s − yi+s| ≤

3∆

5

}
= 1,

then |xi+s − xj+s| ≤ ∆ for |s| ≤ τ , which implies that s(xi, xj) ≥ τ .
That is H(|xi − xj |) ≥ τ , which is a contradiction, since H(|xi − xj |) < H(∆

5 ) ≤ τ by
hypothesis. This establishes the equality above.

Using the equation (5.5), we define the following quantity, which does not take into
account those indices j that make An(i, τ) depend on ξj . Let us define

Ũ =

i−τ−1∑
j=τ

+
n−τ∑

j=i+τ+1

 εξj · 1
{
|xi − xj | ≤

∆

5

} ∏
1≤|s|≤τ

1

{
|yi+s − yj+s| ≤

3∆

5

}
,

that is, Ũ excludes the indices j = i− τ, . . . , i+ τ . When i ≤ 2τ the first sum is equal to
zero and when i ≥ n− 2τ , then the second sum is equal to zero. Then |Un(i, τ)− Ũ | ≤
(2τ+1)∆

5 , and as ξj is independent of the other products in the j-th summand, E(Ũ) = 0.

Suppose for the moment that the values ξj−τ , . . . , ξi+τ are fixed. This implies that

yi−τ , . . . , yi+τ are fixed as well. Now Ũ is a function of n− 4τ − 1 independent random
variables Ξ := {ξj : j = τ, . . . , i− τ − 1, i+ τ + 1, . . . , n− τ}. Identify Ũ = f(Ξ), clearly

Lipj(Ũ) ≤ (2τ + 1)∆
5 . Note that E(Ũ | ξi+τi−τ ) = E(Ũ) = 0.
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Now we are able to use the McDiarmid’s inequality ([50]), obtaining for every t > 0,

P
{
|Ũ | > t | ξi+τi−τ

}
≤ 2 exp

(
−2t2

n
(

∆
5

)2
(2τ + 1)2

)
.

By definition of conditional probability and using the independence of the ξ’s, one has

P{|Ũ | > t} =

∫
P{|Ũ | > t | ξi+τi−τ }dP(ξi+τi−τ ) ≤ 2 exp

(
−2t2

n
(

∆
5

)2
(2τ + 1)2

)
. (5.6)

From the fact that |Un(i, τ)− Ũ | ≤ (2τ + 1)∆
5 , we obtain that

P {|Un(i, τ)| > t} ≤ P
{∣∣Ũ ∣∣ > t− (2τ + 1)

∆

5

}
.

Let t′ = t− (2τ + 1)∆
5 and use (5.6), then

P {|Un(i, τ)| > t} ≤ P
{
|Ũ | > t′

}
≤2 exp

(
−2
(
t− (2τ + 1)∆

5

)2
n
(

∆
5

)2
(2τ + 1)2

)

≤2 exp

(
−2t2

n
(

∆
5

)2
(2τ + 1)2

+
4t

n∆
5 (2τ + 1)

)
,

in particular, for t ≥ 8∆
15 (2τ + 1), clearly

P {|Un(i, τ)| > t} ≤ 2 exp

(
−t2

2n
(

∆
5

)2
(2τ + 1)2

)
. (5.7)

Recalling the definition of In(m, τ), if i ∈ In(m, τ) then |An(i, τ)| ≥ m, and so we have

P
{

max
i∈In(m,τ)

|Vn(i, τ)| > t

}
≤ P

{
max

i∈In(m,τ)
|Un(i, τ)| > tm

}
.

Using classical bounds we obtain,

P
{

max
i∈In(m,τ)

|Un(i, τ)| > tm

}
≤

∑
i∈In(m,τ)

P {|Un(i, τ)| > tm}

≤n · max
i∈In(m,τ)

P {|Un(i, τ)| > tm} .

Finally, for tm > 8∆
15 (2τ + 1) applying (5.7) yields

P
{

max
i∈In(m,τ)

|Vn(i, τ)| > t

}
≤ 2n exp

(
−t2m2

2n
(

∆
5

)2
(2τ + 1)2

)
,

which finishes the proof of the lemma 5.2.3.
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5.3 Convergence rate of Lalley’s Algorithm for Axiom A
diffeomorphisms

The rate of convergence of Lalley’s algorithm for denoising time series can be explicitly
given at least for the case of systems whose expanding rate is uniform. In this section
we give the proof of J. Stover ([69]) for the rate of convergence of the consistent signal
recovered by Lalley’s algorithm in the special case of Axiom A diffeomorphisms.

The result for the rate of convergence is the following.

Theorem 5.3.1 ([69]). Let the time series {xi} be generated by an Axiom A diffeomor-
fism, and x̂i be the estimator (5.2) defined by Lalley’s algorithm, if τ = τ(n) = o(log n)
then for any α ∈ (0, 1

2),

P
{

max
τ≤i≤n−τ

|x̂i − xi| >
1

nα
i.o.

}
= 0.

The abbreviation i.o. stands for ‘infinitely often’.

Remark 5.3.1. The proof shows that P
{

max
τ≤i≤n−τ

|x̂i−xi| > n−α
}

is bounded by stretched

exponential in n for n large enough.

The proof of this theorem is based in the following three lemmas. The first one
uses the uniform hyperbolicity of the system, roughly said, two close point will separate
exponentially in time.

Lemma 5.3.1. For Axiom A systems, given xi = T ix there exists a constant C > 0
such that if j ∈ An(i, τ), then

|xi − xj | ≤ e−Cτ .

The second one is an argument of compactness, is just the same as in lemma 5.2.4 (its
proof was already given in the previous section).

Lemma 5.3.2. For every β > 0, all sufficiently large n and all integers i = τ, . . . , n− τ ,

P
{
|An(i, τ)| ≤ n1−4β

}
≤ e−nβ .

The third lemma gives a control on the deviation probability of the stochastic
terms averaged over the set of indices An(i, τ). Let us recall the notation Vn(i, τ) :=

1
|An(i,τ)|

∑
j∈An(i,τ) εξj , which is the second summand in (5.3).

Lemma 5.3.3. For any α ∈ (0, 1
2), for i = τ, . . . , n− τ + 1 and β sufficiently small, one

has

P
{

max
τ≤i≤n−τ+1

|Vn(i, τ)| > 1

nα

}
≤ 2n(2τ + 1) exp

(
− n1−2β−2α

2(2τ + 1)2ε2

)
+ nε(2τ + 1)e−n

β/4

The proof of this lemma is similar to that of lemma 5.2.3, with a little difference.
We will give it after the proof of the theorem.
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Proof of Theorem 5.3.1. The proof is in essence as that of theorem 5.2.1. We start
with the inequality (5.4), as in the case of the proof of theorem 5.2.1. For the case of
Axiom A systems we use the uniform hyperbolicity of the map given by the lemma 5.3.1.
Combining with lemma 5.3.2 one can get that for any xi ∈ Λ and j ∈ An(i, τ), one has

P
{

max
τ≤i≤n−τ+1

1

|Ai|

∣∣∣ ∑
j∈Ai

xi − xj
∣∣∣ > 1

n1−4β
i.o.

}
= 0.

Next, using lemma 5.3.3, for all α ∈ (0, 1
2) we have that the probability

P
{

max
τ≤i≤n−τ+1

|Vn(i, τ)| > 1

nα

}
is absolutely summable, thus applying Borel-Cantelli lemma the proof is finished.

Proof of lemma 5.3.3. The proof of this lemma consists in finding independent sets (of
indices) and to separate those with large cardinality from those with small cardinality.
Let us write Ai instead of An(i, τ) since n and therefore τ are kept fix until the end of
the proof.

Next, for each i define A∗i as the set of indices j such that |i − j| ≤ 2τ . Note that
|A∗i | ≤ 4τ + 1 = o(log n), so when |Ai| > n1−β, for some β < 1, then the indices in A∗i
do not affect the average 1

|Ai|
∑

j∈Ai εξj .

For every i and each j = 1, . . . , 2τ + 1 define Aji as the set of indices l such that l ∼= j
(mod 2τ + 1), that is l /∈ A∗i . The sets A∗i , A

1
i , . . . , A

2τ+1
i are pairwise disjoint and

Ai = A∗i ∪

2τ+1⋃
j=1

Aji

 .

The event {l ∈ Aji} is uniquely determine by yi+r and yl+r for |r| ≤ τ . The set Aji define

a collection of independent vectors ξl if l ∈ Aji . The event {l ∈ Aji} is neither affected

by the value of ξl, since if |yl+r − yi+r| < 3ε where l ∈ Aji , then |yl− yi| < 3ε no matters
the value of ξl and ξi given that the magnitude of the noise is ε.

For each i, we construct a partition of the sets Aji in I and J , where I contains all

the indices ∗ and j such that |Aji | < n1−β and J contains the rest. If l ∈ Aji , then Aji
and ξl are independent one each other, as we saw, then we may use the following lemma.

Lemma 5.3.4 (Hoeffding’s inequality [11]). Let Sn = ζ1 + . . .+ζn be the sum of n inde-
pendent bounded random variables such that ζi falls in the interval [ai, bi] with probability
one. Then for any t > 0 we have

P{Sn − E(Sn) ≥ t} < exp

(
− 2t2∑n

i=1(bi − ai)2

)
.
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Applying this lemma to ζi = εξi, and taking t = n1−α

2τ+1 , for α > 0, for any j ∈ J we
obtain

P
{∣∣∣ ∑

j∈Aji

εξj

∣∣∣ > n1−α

2τ + 1

∣∣∣ ∣∣Aji ∣∣ > n1−β
}
≤ 2 exp

(
− n1−2α+β

2(2τ + 1)2ε2

)
. (5.8)

Next, when |Ai|1−α > n1−β and∣∣∣∣∣∣
∑
l∈A∗i

εξl +
∑
l∈A1

i

εξl + · · ·+
∑

l∈A2τ+1
i

εξl

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
l∈Ai

εξl

∣∣∣∣∣∣ > |Ai|1−α
both hold true, then there exists some j ∈ J such that |

∑
l∈Aji

εξl| > n1−β−α

2τ+1 . We have

as well,{∣∣∣∑
l∈Ai

εξl

∣∣∣ > |Ai|1−α} ⊂ {|Ai| ≤ n1−β} ∪
{ ⋃
j∈J

{∣∣∣ ∑
l∈Aji

εξl

∣∣∣ > n1−β−α

2τ + 1

}}
.

Since |J | ≤ 2τ + 1, using the union bound and (5.8), for j ∈ J

P
{∣∣∣∑

l∈Ai

εξl

∣∣∣ > |Ai|1−α ∣∣∣ |Ai| > n1−β
}
≤ (2τ + 1) max

j∈J
P
{∣∣∣ ∑

l∈Aji

εξl

∣∣∣ > n1−β−α

2τ + 1

}

≤ 2(2τ + 1) exp

(
− n1−2β−2α

2(2τ + 1)2ε2

)
.

Using lemma 5.3.2 for those j ∈ I, for which the contribution is small, we get,

P
{
|Vn(i, τ)| > 1

nα

}
≤ 2(2τ + 1) exp

(
− n1−2β−2α

2(2τ + 1)2ε2

)
+ ε(2τ + 1)e−n

β/4
.

Observe that the right hand side of the previous inequality goes exponentially fast to
zero if α ∈ (0, 1

2) and for β sufficiently small. Using once more, the union bound, we
obtain the desired result.





Chapter 6

Numerical simulations

In chapter 5 we described Lalley’s algorithm for signal recovery, and we also showed
that it indeed eliminates the noise. The obvious next step is to implement it. In [48]
the author gives no further details on the simulations, that is why, in this chapter we
present some results on the implementation of Lalley’s “Denoising algorithm” for chaotic
dynamical systems. This is an ongoing work in collaboration with Marc Monticelli,
who is developing an interactive version of the algorithm for the package for numerical
simulations xDim.

6.1 Implementation

Recall we are given a time series of the form yi = xi + εξi. Where the xi’s are produced
by a chaotic dynamical system. We assume that computational rounding do not affect
considerably the dynamics (that is, we assume that the noise is purely observational).
We simulate the noise by considering the function unifrnd from the package statistics
in Matlab. The noise is bounded by one, and so the amplitude of the noise is given by
ε. We remind also that the estimator of the true orbit is denoted by x̂i and is defined
by

x̂i :=
1

|Ai(δ, τ)|
∑

j∈Ai(δ,τ)

yj ,

where

Ai(δ, τ) := {j : |yj+r − yi+r| ≤ δ for |r| ≤ τ} .

The algorithm depends on two parameters. The first one is the length of the window
τ which is the time two close points remain close up to a distance δ (as in figure 5.2).
The second is δ, the radius of the ball considered as neighborhood (see Fig. 5.1). We
remark that in the proof, δ = 3ε and so δ ≤ 3∆

5 (since ε ≤ ∆
5 ), where ∆ is the separation

threshold of the map. Since a priori we do not know the map, one cannot give precisely
the value of ∆. In this study we vary δ in a very coarse manner, from ε to 6ε.

Next, in order to quantify the efficiency of the algorithm we consider three quantities.
The first one is the mean distance between the estimated orbit and the original one. We
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refer to it as the mean remaining error, and it is given by

e1 :=
1

n

n−1∑
i=0

d(x̂i, xi),

where d is the euclidean distance and n is the length of the series. The second one is
considered in [43, section 10.3.4, page 187], is given as follows

e2 :=

√√√√ 1

n

n−1∑
i=0

d(x̂i, xi)2.

And the third one is the ratio between the total squared error before and after the
implementation of the algorithm, it is given by

r :=

√∑
i d(yi, xi)2∑
i d(x̂i, xi)2

.

This quantity is a signal-to-noise ratio and it is expected to increase as the performance
of the algorithm improves. This ratio is used in [64] and [35], for instance1.

Remark 6.1.1. Although the algorithm does not rely on the previous knowledge of the
clean orbit or the precise form of the dynamics, all these quantifiers do make use the
true orbit.

We implemented the algorithm in the straightforward way, that is, a O(n2)-step
algorithm, which is caused by the neighbor search. One can run this algorithm for a
series of length 5000 in a few seconds, in a 2GHz processor.

We present results for the noise reduction on the Hénon and Lozi maps with the
‘classical’ parameters as in examples 1.3.1 and 1.3.2.

6.2 Results for the Hénon map

To start our numerical investigation for the optimal parameters δ and τ for the denoising
algorithm applied on the Hénon map, we chose δ = 3ε. We consider 10,000 iterations of
the observed Hénon map. We remind that τ is not completely free, since the algorithm
works rigorously for τ ≤ log(n). In this case we can test τ for all integers between 1
to 9 (since blog(10, 000)c = 9). In figure 6.1 we show for three different amplitudes of
noise, the remaining error e1 and e2 after the application of the algorithm for all possible
values of τ .

Next, let us chose ε = 0.05. We check the algorithm for every possible value of τ and
some values of δ. One observes that for small τ (say τ = 1, 2) the smoothing is made
over sets Ai(δ, τ) containing too many points and so defining a bad estimator. This is

1There it is denoted by r0.



6.2. RESULTS FOR THE HÉNON MAP 63

Figure 6.1: For 10,000 iterations, and δ = 3ε. Left. We plot the error e1 for each τ , we
used continuous lines for clarity. The blue line are the result for ε = 0.03, the green one
shows the results for ε = 0.05 and the red one for ε = 0.07. Right. We plot the mean
squared error versus τ , with the same color convention for the amplitude of the noise.

caused because for small τ ’s one does not take advantage of the chaotic nature of the
dynamics. In figure 6.2 we plot a ‘curve’ for each τ from 3 to 9, showing the mean
remaining error e1 after the implementation of the algorithm at six values of δ. We vary
δ as kε for k = 1, . . . , 6, this is of course a very corse search. An natural improvement
of the results displayed in figure 6.2 would be varying in a finer manner δ as a function
of ε in the interval [2ε, 4ε] for example, where our plot shows the local minimum.

e1

δ

Figure 6.2: This plot shows the remaining error e1 after the application of the denoising
algorithm. The x-axis shows the value of δ as a multiple of ε. We took 10,000 iterations
with a noise whose amplitude is bounded by ε = 0.05. The optimal δ is bigger as τ
increases. The best results are obtained for τ = 3, 4 with δ ∈ [2ε, 3ε].
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Similar qualitative results are valid for ε = 0.03 and ε = 0.07. In figure 6.3, we show
the remaining error e1 after the application of the algorithm with 10,000 iterations, we
only show for τ = 3, 4 and varying δ as before. For 10,000 iterations the best results
are obtained with τ = 3 and δ ∈ [2ε, 3ε]. We expect that, as the number of iterations
increases the optimal τ should also increase, since we expect to have more close points.

e1

δ

Figure 6.3: The remaining error e1 with the best values of τ for 10,000 iterations and as
a function of δ.

Following the proof of the consistency of the algorithm, one must perceive the fall of
the remaining error as we increase the number of iterations. This is actually shown in
figure 6.4, where we plot both, e1 and e2 versus the number of iterations, we apply the
algorithm with parameters δ = 3ε and τ = 4 for a series with 1,000, 5,000, 10,000, 50,000
and 100,000 iterations respectively. Another evidence of the good performance of the
denoising algorithm is that the distribution of the distances d(x̂i, xi) should change from
the uniform distribution towards a delta centered at zero, in the perfect case. Obviously
one does not expect to get a delta but a Poissonian distribution. We show in figure 6.5
that this is indeed the case by plotting histograms for the distribution of d(x̂i, xi). It
would be interesting to carry out further analysis in statistics.

The main purpose is to recover the attractor from the given perturbed object. In
figure 6.6, we show an example of the attractor perturbed with observational noise and
the recovered signal after the application of the algorithm using 100,000 iterations2 with
parameters δ = 3ε and τ = 4.

Finally we collect the information in Table I, we show the resulting three quantities
e1, e2 and r for the algorithm applied to the Hénon map.

2We plot only 10,000 points, from iteration 45,000 to 54,999, since images are quite heavy with 100,000
iterations.
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Figure 6.4: The remaining error decreases as the iterations considered for the smoothing
increases. Left: We plot e1 versus the number of iterations. Right: Shows e2 versus the
number of iterations. Both plots are result of the denoising algorithm with parameters
δ = 3ε and τ = 4.

Figure 6.5: Histograms of the distance d(x̂i, xi). We apply the denoising algorithm with
δ = 3ε and τ = 4.
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Figure 6.6: A. Hénon attractor with observational noise with amplitude bounded by
ε = 0.03. B. The recovered attractor after the application of the denoising algorithm
with 100,000 iterations. C. Hénon attractor with observational noise with amplitude
bounded by ε = 0.07. D. The recovered attractor after the application of the denoising
algorithm 100,000 iterations.

Table I. Hénon map, δ = 3ε, τ = 4

Iterations Noise Amplitude e1 e2 r

ε = 0.03 0.012207 0.014540 1.1740
1000 ε = 0.05 0.017689 0.021278 1.3371

ε = 0.07 0.023026 0.028501 1.3976

ε = 0.03 0.0084413 0.010391 1.6580
5000 ε = 0.05 0.012242 0.015692 1.8297

ε = 0.07 0.015979 0.021296 1.8876

ε = 0.03 0.0066832 0.0083862 2.0554
10000 ε = 0.05 0.010178 0.013430 2.1391

ε = 0.07 0.013842 0.019174 2.0976

ε = 0.03 0.0046040 0.0063687 2.7140
50000 ε = 0.05 0.0078003 0.011547 2.4948

ε = 0.07 0.011587 0.017627 2.2881

ε = 0.03 0.0041491 0.0060286 2.8743
100000 ε = 0.05 0.0074330 0.011409 2.5314

ε = 0.07 0.011378 0.017650 2.2908
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6.3 Results for Lozi map

We proceed with a similar numerical analysis for the Lozi map. We search for the best
parameters δ and τ using 10,000 iterations if the observed Lozi map with a noise whose
amplitude is bounded by 0.05. This is shown in figure 6.7. Similar results are valid for
different values of ε for instance 0.03 and 0.07 as considered before. For τ = 1 and 2, the
algorithm introduces more error while doing the smoothing and for τ = 8 and 9 almost
no correction is made.

e1

δ

Figure 6.7: The remaining error e1 after the application of the denoising algorithm using
10,000 iterations. In the x-axis are the values of δ as an integer multiple of ε. In this
plot, the amplitude of the noise is bounded by 0.05. The best results are obtained for
τ = 3 and δ ∈ [2ε, 3ε].

Since for 10,000 iterations the best parameters are τ = 3 and δ ∈ [2ε, 3ε], we fix
ourselves to this parameters, although (as for Hénon map one expects to obtain better
results using 100,000 with bigger τ ’s). In figure 6.8 we plot the remaining errors e1 and
e2 after the application of the algorithm. We show the histograms of the distribution
of the distance d(x̂i, xi) using the algorithm with 1000, 5000, 10000, 50000 and 100,000
iterations, see figure 6.9. Observe that the results are little worse that for the Hénon
map, we think this is caused by the error included by the same algorithm for points
close to the non-differentiable point of Lozi map, and also probably because Lozi map is
‘less expansive’ than Hénon map, property which enhances the good performance of the
algorithm.

In figure 6.10 we show two simulations of the observed Lozi map with noise whose
magnitude is bounded by 0.03 and 0.07 respectively, and their corresponding recon-
structed ‘attractor’ after the application of the algorithm3. Finally, we collect the results

3We used a series with 100,000 iterations but we only plot 10,000 points, from iteration 45,000 to
54,999, since pictures are quite heavy otherwise.
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Figure 6.8: Denoising algorithm applied with parameters δ = 3ε and τ = 3. Left: We
plot e1 versus the number of iterations. Right: The plot shows e2 versus the number of
iterations.

for the three quantities e1, e2 and r for the algorithm with parameters δ = 3ε and τ = 3
applied to the Lozi map.

Figure 6.9: Histograms of the distance d(x̂i, xi). The denoising algorithm applied with
parameters δ = 3ε and τ = 3, in all cases. The last histogram shows d(yi, xi).
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Figure 6.10: A. Observed Lozi attractor with ε = 0.03. B. The recovered attractor
after the application of the denoising algorithm with 100,000 iterations. C. Observed
Lozi attractor with ε = 0.07. D. The recovered attractor after the application of the
denoising algorithm 100,000 iterations.

Table II. Lozi map, δ = 3ε, τ = 3

Iterations Noise Amplitude e1 e2 r

ε = 0.03 0.013430 0.015948 1.0899
1000 ε = 0.05 0.020072 0.024051 1.2045

ε = 0.07 0.026461 0.032221 1.2587

ε = 0.03 0.0093033 0.011372 1.5452
5000 ε = 0.05 0.014456 0.018264 1.6035

ε = 0.07 0.020272 0.026082 1.5720

ε = 0.03 0.0079149 0.0098613 1.7754
10000 ε = 0.05 0.012642 0.016474 1.7713

ε = 0.07 0.018401 0.024278 1.6827

ε = 0.03 0.0059072 0.0079032 2.1985
50000 ε = 0.05 0.010651 0.014578 1.9865

ε = 0.07 0.016623 0.022559 1.7971

ε = 0.03 0.0055369 0.0075546 2.2918
100000 ε = 0.05 0.010326 0.014335 2.0130

ε = 0.07 0.016475 0.022564 1.7904
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6.4 Simulations on xDim

The present version of xDim4 contains an interactive version of the denoising algorithm.
We show here an example of simulation on the Hénon map. In this framework one can
interactively change the amplitude of the noise, see figure 6.11, and the parameters of
the denoising algorithm τ and δ, giving the results of the recovered signal in real time.
We show an example in figure 6.12. This implementation is still under development.

Figure 6.11: A window of xDim showing a simulation of the Hénon attractor and the
observed Hénon attractor. The amplitude of the noise can be modified using an slide
bar.

4xDim is a Macintosh based application for numerical simulations of dynamical systems.
It is under development carried out by Marc Monticelli. For further information see,
http://math.unice.fr/∼monticel/Marc Monticelli/Activites.html



Figure 6.12: The recovered attractor. One can adjust τ and δ using slide bars and see
interactively the resulting image. As shown, one can also zoom the image.

Figure 6.13: Parameter’s slide bars for δ, τ and the maximum amplitude of the noise.
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Chapter 7

Study of fluctuations for entropy
estimation

7.1 Introduction

Assume that we have a sequence x0, x1, . . . of outcomes of an unknown discrete ergodic
process ν. A natural and extensively studied problem is that of consistently estimating
the entropy h(ν). One may find several quantities that converge to the entropy. Thus we
may use them as entropy estimators, either theoretically or empirically. Some of those
quantities are, for instance, the empirical entropies, return times, hitting and waiting
times.

Once the convergence is established for a given entropy estimator, the following nat-
ural question arises: How fast does the estimate converge to the true entropy? This
question opens the study for the fluctuations of the entropy estimates. In the present
chapter we focus on the fluctuations of entropy estimates. We present the respective
results for two of the main approaches: The so called ‘plug-in’ estimator (empirical
entropy), as well as conditional empirical entropy, and the hitting time entropy estima-
tor. We discuss two type of results which constitute the classical scheme to study the
fluctuations, the central limit theorem and large deviations principle.

We begin by fixing some notations and recalling some definitions. Let A be a finite set
which is called alphabet, with cardinality |A| ≥ 2. Recall that AN0 denotes the set of all
infinite sequences x = {xi}i∈N0 of elements of the alphabet A. Let us denote the sample
x0, x1, . . . , xn−1 by xn−1

0 . In the same way, we write an−1
0 for the word a0a1 · · · an−1.

Recall that the symbol [aji ] stands for the cylinder set [aji ] := {x ∈ AN0 : xji = aji}.
For every k ≥ 1 the k-block Shannon entropy of ν is defined as

Hk(ν) := −
∑
ak−1
0

ν([ak−1
0 ]) log ν([ak−1

0 ]).

If we denote by νk the k-marginal of ν, then νk defines a probability measure on Ak
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given by νk(a
k−1
0 ) = ν([ak−1

0 ]), so we may write

Hk(ν) = Hk(νk) := −
∑
ak−1
0

νk(a
k−1
0 ) log νk(a

k−1
0 ).

The k-block Shannon entropy gives us the average amount of information of the measure
contained in a word of length k.

Let νk(ak−1 | ak−2
0 ) be the conditional probability νk(a

k−1
0 )/

∑
b νk(a

k−2
0 b). Then, for

every k ≥ 2 the k-block conditional entropy, is defined as follows,

hk(ν) := −
∑
ak−1
0

ν([ak−1
0 ]) log

ν([ak−1
0 ])

ν(ak−2
0 )

= hk(νk) := −
∑
ak−1
0

νk(a
k−1
0 ) log νk(ak−1 | ak−2

0 ).

It is know that the following relation holds (see for instance [68]),

hk(ν) = Hk(ν)−Hk−1(ν), k ≥ 1, (7.1)

where by convention we set H0(ν) := 0. If ν is a stationary measure, then

lim
k→∞

hk(ν) = lim
k→∞

Hk(ν)

k
= h(ν),

where h(ν) is the (Shannon-Kolmogorov-Sinai) entropy of ν.

Standing assumption: From now on, φ is a Hölder continuous potential and µφ is
its unique Gibbs measure.

7.2 Empirical entropies

The most natural procedure to estimate the entropy of a probability measure ν is to
take the empirical distribution of the k-blocks as a estimate of the measure νk and then
calculate the Shannon entropy of that estimate. Let us formalize this last statement.
Denote the empirical frequency of the word ak−1

0 in the sample x0, x1, . . . , xn−1 by

Ek(ak−1
0 ;xn−1

0 ) :=
1

n
#
{

0 ≤ j ≤ n : x̃j+k−1
j = ak−1

0

}
,

where x̃ := xn−1
0 xn−1

0 · · · is the periodic point with period n made from xn−1
0 . This trick

makes Ek(· ;xn−1
0 ) a locally shift-invariant probability measure on Ak.

For any ergodic measure ν, there is a set of ν-measure one of x’s such that for every
k ≥ 1

lim
n→∞

Ek(ak−1
0 ;xn−1

0 ) = ν([ak−1
0 ]).

The k-block empirical entropy is defined as

Ĥk(x
n−1
0 ) := Hk(Ek(· ;xn−1

0 )).
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From Birkhoff’s ergodic theorem one has that Ĥk(x
n−1
0 )/k converges to Hk(ν)/k, for

ν-almost every x. Which in turn, converges to h as k → ∞. That is, one has that the
following double limit

lim
k→∞

lim
n→∞

Ĥk(x
n−1
0 )

k
= h(ν).

A natural question is: Can we take both limits at once by an adequate definition of k(n)?
This is indeed possible as shown by D.Ornstein and B.Weiss in [59] (see also theorem
II.3.5 in [68]). Here we include it.

Theorem 7.2.1 ([59]). If ν is an ergodic measure of entropy h(ν) > 0, if k(n) → ∞
and k(n) ≤ 1

h(ν) log n, then

lim
n→∞

Ĥk(n)(x
n−1
0 )

k(n)
= h(ν) for ν − almost-every x.

In particular, if k(n) ∼ log|A| n then the convergence above holds for any ergodic measure
ν with alphabet A, while if k(n) ∼ log log n, then it holds for any finite-alphabet ergodic
process.

Note that since h(ν) ≤ log|A| we can always take k(n) ≤ 1
log|A| log n.

Analogously, based on conditional entropy, one can define an empirical estimator of
the k-block conditional entropy, as follows,

ĥk(x
n
0 ) := hk(Ek(· ;xn−1

0 )).

Theorem 7.2.2. Let ν be an ergodic measure of positive entropy h(ν), if k(n) → ∞
and k(n) ≤ 1−ε

h(ν) log n, for any ε ∈ (0, 1), then

lim
n→∞

ĥk(n)(x
n−1
0 ) = h(ν), for ν − almost every x.

In particular, we can take k(n) ≤ 1−ε
log|A| log n.

The proof is based on the theorem 7.2.1 and general properties of the entropy.

Proof. Let (k(n)) be a sequence of positive integers such that k(n)→∞ as n→∞ and

k(n) ≤ (1− ε) 1

h
log n, ε ∈ (0, 1) .

In order to lighten the notation, we will drop the dependence in the sample since it
is fixed. By h we denote de entropy of ν. We also omit systematically the integer part
symbol.

By the relation (7.1) and the theorem 7.2.1, we have

lim
n→∞

1
1
h log n

Ĥ 1
h

logn = lim
n→∞

1
1
h log n

1
h

logn−1∑
i=0

ĥi = h, ν − almost surely.
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Also using 7.1, one may write that(
1− k(n)

1
h

logn

)
1
h log n− k(n)

1
h

logn−1∑
i=k(n)

ĥi =
1

1
h log n

1
h

logn−1∑
i=0

ĥi −

(
k(n)

1
h log n

)
1

k(n)

k(n)−1∑
i=0

ĥi

=
1

1
h log n

Ĥ 1
h

logn −

(
k(n)

1
h log n

)
1

k(n)
Ĥk(n).

Using theorem 7.2.1 one get ν-almost surely that for any δ > 0 there exists an integer
n0 such that for all n > n0(

1− k(n)
1
h

logn

)
1
h log n− k(n)

1
h

logn−1∑
i=k(n)

ĥi = h

(
1− k(n)

1
h log n

)
± δ

(
1 +

k(n)
1
h log n

)
.

Hence,

1
1
h log n− k(n)

1
h

logn−1∑
i=k(n)

ĥi = h± δ
1 + k(n)

1
h

logn

1− k(n)
1
h

logn

.

Using the hypothesis on k(n), we obtain that,

1
1
h log n− k(n)

1
h

logn−1∑
i=k(n)

ĥi = h+
2δ

ε
,

since ε > 0 is fixed, and δ > 0 is arbitrary,

lim
n→∞

1
1
h log n− k(n)

1
h

logn−1∑
i=k(n)

ĥi = h ν-almost surely.

Finally, notice that

1
1
h log n− k(n) + 1

1
h

logn−1∑
i=k(n)

ĥi ≤ ĥk(n) ≤
1

k(n)

k(n)−1∑
i=0

ĥi,

by the monotonicity of the conditional entropy.

7.2.1 Central limit theorem for empirical entropies

Here we present the central limit theorem result for the conditional empirical entropy
for the case of Gibbs measures.
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Theorem 7.2.3 ([33]). For any sequence (k(n))n∈N of positive integers such that k(n) <
logn

2 log |A| and k(n) > (1+ε)
2

logn
log θ−1 , for some 0 < ε < 1. If σ2

φ > 0, then for every t > 0,

lim
n→∞

µφ

{√n
σφ

(
ĥk(n) − h(µφ)

)
≤ t
}

=
1√
2π

∫ t

−∞
exp(−s2/2)ds.

Proof. Let ∆̂k be defined as follows,

∆̂k(x
n−1
0 ) := −

∑
ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
Ek(ak−1

0 ;xn−1
0 )

Ek−1(ak−2
0 ;xn−1

0 )
+

∑
ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
µφ([ak−1

0 ])

µφ([ak−1
1 ])

.

We make use of the following decomposition of the conditional empirical entropy.

Lemma 7.2.1. We have

ĥk(n)(x
n−1
0 ) =

1

n

n−1∑
j=0

(−φ(σjx)) + ∆̂k(n)(x
n−1
0 ) +O(θk(n)). (7.2)

Furthermore ∣∣E(∆̂k(n)

)∣∣ ≤ M |A|k(n)

n
, (7.3)

where M > 0.

Let us for the moment assume the previous lemma, we will give its proof further (its
proof can be deduced from the proof of Theorem 2.1 in [33]). Using the decomposition
of ĥk given above, we write

√
n
(
ĥk − h(µφ)

)
=

1√
n

n−1∑
j=0

−φ(σjx)− nh(µφ)

+
√
n∆̂k +

√
nO(θk).

It is known that Hölder continuous functions ψ satisfy the central limit theorem with
variance σψ > 0 with respect to the Gibbs measure µφ(see for instance [60]). We have
for all t > 0,

lim
n→∞

µφ

 1√
n

( n−1∑
j=0

−φ(σjx)− nh(µφ)
)
≤ t

 =
1

σφ
√

2π

∫ t

−∞
e−s

2/2σ2
φds.

Now, it is enough to show that
√
n∆̂k and

√
nO(θk) converge to zero in probability.

Using the Markov inequality, the bound on the expectation of ∆̂k given by (7.3), if

k(n) = logn
2 log |A| we obtain that

√
nE(∆̂k(n)) ≤ n−1/2M |A|log|A| n

1/2

= M . Finally for the

last term, it converges to zero as a sequence of real numbers if k(n) > (1+ε)
2

logn
log θ−1 for

every 0 < ε < 1.
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Proof of Lemma 7.2.1. We start with the following identity:

ĥk(x
n−1
0 ) = −

∑
ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
Ek(ak−1

0 ;xn−1
0 )

Ek−1(ak−2
0 ;xn−1

0 )

= −
∑

ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
µφ([ak−1

0 ])

µφ([ak−1
1 ])

+ ∆̂k(x
n−1
0 ), (7.4)

where

∆̂k(x
n−1
0 ) := −

∑
ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
Ek(ak−1

0 ;xn−1
0 )

Ek−1(ak−2
0 ;xn−1

0 )
+

∑
ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
µφ([ak−1

0 ])

µφ([ak−1
1 ])

=

−
∑

ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
Ek(ak−1

0 ;xn−1
0 )

µφ([ak−1
0 ])

+ (7.5)

∑
ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
Ek−1(ak−2

0 ;xn−1
0 )

µφ([ak−1
1 ])

=

−Hk(Ek(· ;xn−1
0 ) | µφ) +Hk−1(Ek−1(· ;xn−1

0 ) | µφ), (7.6)

where

Hk(η | µφ) =
∑

ak−1
0 ∈Ak

η([ak−1
0 ]) log

η([ak−1
0 ])

µφ([ak−1
0 ])

is the k-block relative entropy of η with respect to µφ. The second term in (7.5) is equal to
Hk−1(Ek−1(· ;xn−1

0 ) | µφ) because of the following two facts. First,
∑

a0∈A Ek(a
k−1
0 ;xn−1

0 ) =

Ek−1(ak−1
1 ;xn−1

0 ). This is because Ek(· ;xn−1
0 ) is a locally shift-invariant probability mea-

sure on Ak. Second,
∑

ak−1∈A Ek(a
k−1
0 ;xn−1

0 ) = Ek−1(ak−2
0 ;xn−1

0 ), because the family

(Ek(· ;xn−1
0 ))k=1,2,... is consistent.

The quantity |∆̂k(x
n−1
0 )| is bounded above by (M |A|k)/n according to [33, formula

(4.16)], where M > 0 is a constant.
Now we deal with the first term in (7.4). We first introduce the function

φk(y) := log
µφ([yk−1

0 ])

µφ([yk−1
1 ])

which is a locally constant function on cylinders of length k. It is easy to verify that
‖φ− φk‖∞ ≤ |φ|θθk (see e.g. [60, Prop. 3.2 p. 37]). We get that

−
∑

ak−1
0 ∈Ak

Ek(ak−1
0 ;xn−1

0 ) log
µφ([ak−1

0 ])

µφ([ak−1
1 ])

=
1

n

n−1∑
j=0

(−φ(σjx)) +O(θk).
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The proof of the lemma is complete.

Next, the following result concerns to the k-block empirical entropy.

Theorem 7.2.4 ([33]). Let (q(n))n∈N be a sequence of real positive numbers. For every
sequence (k(n))n∈N of positive integers such that k(n) → ∞ as n → ∞ and such that
k(n) < (1− ε) logn

log |A| , for some 0 < ε < 1, the following statements hold:

a) If lim
n→∞

q(n)

k(n)
= 0, then for every t > 0

lim
n→∞

µφ

{
q(n)

( 1

k(n)
Ĥk(n) − h(µφ)

)
> t
}

= 0.

b) If lim
n→∞

q(n)

k(n)
= α, for some 0 < α <∞, then

lim
n→∞

µφ

{
q(n)

( 1

k(n)
Ĥk(n) − h(µφ)

)
> α

∞∑
k=0

(hk − h(µφ))
}

= 0.

c) If lim
n→∞

q(n)

k(n)
= +∞, then for any r ∈ R

lim
n→∞

µφ

{
q(n)

(
1

k(n)
Ĥk(n) − h(µφ)

)
< r

}
= 0.

This means that no scaling produce asymptotic normality, except for the i.i.d case
with the common scaling

√
n, which was proved in [42].

The two results above were proved in [33] in the setting of g-measures1. As we
already shown, one may adapt their proofs for the case of Gibbs measures. In fact it
is know that g-measures can be interpreted as a one-dimensional Gibbs measure if the
variations go to 0 exponentially fast ([32]).

7.2.2 Large deviations

Besides the central limit theorem, one might ask if the conditional entropy estimator
satisfy a large deviations principle. Indeed, in the present section we include the results
obtained by J.-R. Chazottes and D. Gabrielli in [20] related to that question. In that
article the authors provide a result for g-measures. Here we state that result for Gibbs
measures with Hölder continuous potentials.

1g-measures or chains of infinite order are stationary process in which at each step the probability
governing the choice of a new symbol depends on the entire past in a continuous way.
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Theorem 7.2.5 ([20],[16]). Let µφ be a Gibbs measure with Hölder continuous potential
φ which is not the measure of maximal entropy. Assume that k(n)→∞ as n→∞ and
satisfies

k(n) ≤ 1− ε
log |A|

log n, for some 0 < ε < 1.

Then the k(n)-block conditional empirical entropy ĥk(n)(x
n−1
0 ) satisfies the following large

deviations principle:
for every closed set C ⊂ R

lim sup
n→∞

1

n
logµφ{xn−1

0 : ĥk(n)(x
n−1
0 ) ∈ C} ≤ − inf{I(u) : u ∈ C},

for every open set O ∈ R

lim inf
n→∞

1

n
logµφ{xn−1

0 : ĥk(n)(x
n−1
0 ) ∈ O} ≥ − inf{I(u) : u ∈ O},

where the function I is defined by

I(u) =

{
inf{h(ν|µφ) : ν ∈Mσ(Ω), h(ν) = u} u ∈ [0, log |A|]
+∞ otherwise,

where Mσ(Ω) is the set of shift-invariant probability measures on the full-shift.

The same large deviations principle holds if we replace ĥk(n)(x
n−1
0 ) by

Ĥk(n)(x
n−1
0 )

k(n) .

In fact, one knows that the function I(u) is strictly convex on the interval [h∞, log(|A|)],
where h∞ := limβ→∞ h(µβφ). Since I(u) is convex, one knows that it is the Legendre

transform of the cumulant generating function of ĥk(n) and Ĥk(n)/k(n). We recall that

H(q) = lim
n→∞

1

n
log

∫
enqĥk(n)(x

n−1
0 )dµφ(x)

= lim
n→∞

1

n
log

∫
enq(Ĥk(n)(x

n−1
0 )/k(n))dµφ(x),

is the cumulant generating function of both ĥk(n) and Ĥk(n)/k(n). The calculation of
the Legendre transform of I(u) is given by the following proposition.

Proposition 7.2.1 ([16]). Let µφ be a Gibbs measure with Hölder continuous potential
φ which is not the measure of maximal entropy. The Legendre transform of the function
I is given by

H(q) =

(q + 1)P
(

φ
q+1

)
for q ≥ −1

sup
{∫

φdν : ν ∈Mσ(Ω)
}

for q ≤ −1.

These results on large deviations with the previous ones about the C.L.T., give a
picture of the fluctuations for the empirical entropy estimates.
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7.3 Hitting times

There exists a connection between hitting times and entropy for some classes of ergodic
process. First let us introduce the corresponding definitions. The (first) hitting time of
x to a cylinder [an−1

0 ] is defined as follows

τ[an−1
0 ](x) := inf{j ≥ 1 : xj+n−1

j = an−1
0 }.

Given x, y ∈ Ω, the waiting time is

Wn(x, y) := τ[xn−1
0 ](y) = inf{j ≥ 1 : yj+n−1

j = xn−1
0 }.

This quantity is just the first time one sees the n first symbols of x appearing in y.
In the case of irreducible Markov chains, Wyner and Ziv in [72] have shown that the
quantity 1

n logWn(x, y) converges to h in probability. Here we include the same result of
convergence in the case of Gibbs measures, as before φ is a Hölder continuous potential
and µφ its unique associated Gibbs measure.

Theorem 7.3.1 ([24]). Let Wn be defined as above, and µφ be the unique Gibbs measure
associated to φ. Then

lim
n→∞

1

n
logWn(x, y) = h(µφ) µφ ⊗ µφ-almost surely.

Where ⊗ denotes the direct product measure. The meaning of this result is that if we
pick up a pair x, y at random and independent of one another, then the time needed for

orbit of y to hit the cylinder [xn−1
0 ] is typically of order exp(nh(µφ)). This result is valid

under the more general assumption that the process is weak Bernoulli. For full details
on the properties of this quantities see [68]. The proof that Gibbs measure are weak
Bernoulli process can be found in [12].

7.3.1 Central limit theorem for hitting times

As a matter of fact a central limit theorem holds for Hölder continuous observables with
respect to Gibbs measure associated to Hölder continuous potentials (see [60]). Let us
recall the definition (2.1) of the variance,

σ2
φ := lim

n→∞

1

n

∫ (
Snφ− n

∫
φdµφ

)2
dµφ.

If σ2
φ > 0 and

∫
φdµφ = 0, then for every t ∈ R

lim
n→∞

µφ

{
−Snφ− nh(µφ)

σφ
√
n

< t

}
=

1√
2π

∫ t

−∞
exp(−ξ2/2)dξ.

This fact is used to show that logWn(x, y) satisfies a central limit theorem around
the entropy adequately rescaled.
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Theorem 7.3.2 ([24]). Assume that µφ is a Gibbs measure with Hölder continuous
potential which is not the measure of maximal entropy. Then

lim
n→∞

µφ ⊗ µφ
{

logWn − nh(µφ)

σ
√
n

< t

}
=

1√
2π

∫ t

−∞
exp(−ξ2/2)dξ.

Moreover

σ2 = lim
n→∞

1

n

∫
(logWn − h(µφ))2dµφ ⊗ µφ.

7.3.2 Large deviations

Now we give the large deviations description for the hitting times. Here we include the
results in [24]. One wants to calculate the following function for all q ∈ R as

W(q) := lim
n→∞

1

n
log

∫
W q
n(x, y)dµφ ⊗ µφ(x, y),

provided the limit exists.

Before giving the result, fix the notation bn ∼ cn which means that max{bn/cn, cn/bn}
is bounded from above by a constant.

Theorem 7.3.3 ([24]). Assume that µφ is a Gibbs measure with Hölder continuous
potential φ. Then∫

W q
n(x, y)dµφ ⊗ µφ(x, y) ∼

∑
an−1
0

µφ([an−1
0 ])1−q, for q > −1

and ∫
W q
n(x, y)dµφ ⊗ µφ(x, y) ∼

∑
an−1
0

µφ([an−1
0 ])2, for q < −1.

Furthermore, as a consequence

W(q) =

{
P ((1− q)φ), for q ≥ −1,

P (2φ), for q ≤ 1.

Note that q 7→ W(q) is continuous but not differentiable at q = −1. Indeed the right
derivative at −1 of W is equal to −

∫
φdµ2φ > 0.

Hence one has the following large deviations result.

Theorem 7.3.4 ([24]). Assume that µφ is a Gibbs measure with Hölder continuous
potential which is not the measure of maximal entropy. Then for u ≥ 0 we have

lim
n→∞

1

n
logµ⊗ µ

{
1

n
logWn > h(µ) + u

}
= inf

q>−1
{−(h(µ)− u)q +W(q)},
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and for u ∈ (0, u0), where u0 := |limq↓−1W ′(q)− h(µ)|,

lim
n→∞

1

n
logµ⊗ µ

{
1

n
logWn < h(µ)− u

}
= inf

q<−1
{−(h(µ)− u)q +W(q)}.

Note that u0 > h(µ) and since W ′(0) = h(µ), then the previous result study the
large fluctuations of log Wn

n above and below h(µ).





Chapter 8

Concentration bounds for entropy
estimation

The present chapter is devoted to the study of fluctuations of the ‘plug-in’ and the
hitting time entropy estimators in the spirit of concentration inequalities. As we already
explained in previous chapters, concentration inequalities enable us to complete the
qualitative picture of the fluctuations of Lipschitz observables, because they are valid
for every n, where n is the length of the given sample. In particular in this chapter we
apply concentration inequalities to the problem of entropy estimation, specifically to the
empirical entropy and the hitting time estimators. Except form [4] (in the i.i.d. case),
this is the first time that concentration inequalities are used to prove fluctuation bounds
for entropy estimators. The results we present in this chapter can be found in [22].

Throughout this chapter φ ∈ Fθ and µφ is its unique Gibbs measure. Recall that
Gibbs measures satisfy the exponential concentration inequality (2.7), and as a con-
sequence one obtains a deviation probability and a bound for the variance of K (see
chapter 2).

For later convenience we write the following particular case of the deviation proba-
bility applied to ergodic sums of a Lipschitz function f : Ω→ R. We have that

µφ

{
x :

1

n

(
f(x) + · · ·+ f(σn−1x)

)
−
∫
fdµφ ≥ t

}
≤ e−Bnt2 (8.1)

for every t > 0 and for every n ≥ 1, where B := (4D|f |2θ)−1.

8.1 ‘Plug-in’ estimator

The convergence properties of the ‘plug-in’ estimator of the entropy has been studied
before in [4] in the case of a i.i.d. process, although they consider a countable alphabet.
There the authors use the Azuma’s inequality as their main tool. Despite of the restric-
tion of a finite alphabet our result generalizes that of [4] in the sense that our process is
Gibbsian.

87
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Theorem 8.1.1. Let D be the constant appearing in the exponential concentration in-
equality (2.7). For every α ∈ (0, 1), t > 0 and n ≥ 2 one has

µφ

{∣∣∣∣∣Ĥk(n)

k(n)
−
∫
Ĥk(n)

k(n)
dµφ

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− n1−αt2

16D(log n)2

)
provided that k(n) ≤ α

2 log |A| log n.

Moreover for every n ≥ 2∫ (
Ĥk(n)

k(n)
−
∫
Ĥk(n)

k(n)
dµφ

)2

dµφ ≤ 8D
(log n)2

n1−α ·

Proof. Given any integer k ≥ 1, consider the function K̃ : An → R defined by

K̃(s0, . . . , sn−1) = Ĥk(s
n−1
0 ).

Since our function K̃ is defined on An instead of Ωn, Lipj(K) has to be replaced by

δj(K̃), the oscillation at the j-th coordinate, where

δj(K̃) = sup
a0,...,an−1

sup
aj 6=bj

(8.2)∣∣K̃(a0, . . . , aj−1, aj , aj+1, . . . , an−1)− K̃(a0, . . . , aj−1, bj , aj+1, . . . , an−1)
∣∣.

We estimate the δj(K̃)’s. We claim that

δj(K̃) ≤ 2k|A|k log n

n
, ∀j = 0, . . . , n− 1.

Indeed, given any string ak−1
0 , the change of one symbol in sn−1

0 can decrease E(ak−1
0 ; sn−1

0 )
by at most k/n. It is possible that another string gets its frequency increased, and this
can be at most by k/n. This is the worst case. We then use the fact that for any pair
of positive integers l and k such that l + k ≤ n, one has∣∣∣∣( ln

)
log

(
l

n

)
−
(
l + k

n

)
log

(
l + k

n

)∣∣∣∣ ≤ k

n
log n.

The claim follows by summing up this bound for all strings, which gives the factor |A|k.
Finally, taking k(n) ≤ α

2 log|A| log n, with α ∈ (0, 1), and using the consequences of (2.7)
on the deviation probability and the variance, we get the desired bounds.

8.2 Conditional empirical entropy

It is natural to seek for a concentration bound for the empirical entropy not about its
expectation, but about h(µφ), the entropy of the Gibbs measure. To have good control
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on this expectation, it turns out that a better estimator is the conditional empirical
entropy. To define it, we need to recall a few definitions and facts.

For a shift-invariant measure ν and k ≥ 2, let

hk(ν) = Hk(ν)−Hk−1(ν) = −
∑
ak−1
0

ν([ak−1
0 ]) log

ν([ak−1
0 ])

ν([ak−2
0 ])

·

It is well-known that limk→∞ hk(ν) = h(ν) (see for instance [68]).
The k-block conditional empirical entropy is

ĥk(x
n−1
0 ) = hk(Ek(·;xn−1

0 )).

When ν is ergodic, one can prove (see Theorem 7.2.2) that, if k(n) → ∞ and k(n) ≤
(1−ε)
log |A| log n, for any ε ∈ (0, 1), then

lim
n→∞

ĥk(n)(x
n−1
0 ) = h(ν), for ν − almost every x.

We have the following result.

Theorem 8.2.1. Assume that θ < |A|−1. There exist strictly positive constants c, γ,Γ, ξ
such that for every t > 0 and for every n large enough

µφ

{∣∣∣ĥk(n) − h(µφ)
∣∣∣ ≥ t+

c

nγ

}
≤ 2 exp

(
− Γnξt2

(log n)4

)
provided that k(n) < logn

2 log |A| .

Remark 8.2.1. From the proof we have γ = 1/
(
1 + log |A|

log(θ−1)

)
, ξ = 1 − 2/

(
1 + log(θ−1)

log |A|
)

and Γ = (log |A|)2/16D.

Proof. Let us denote the expectation by E.
By definition ĥk = Ĥk − Ĥk−1. If we let K̃ ′(s0, . . . , sn−1) = ĥk(s

n−1
0 ), we estimate

δj(K̃
′) by 2δj(K̃).

We now estimate the expectation of ĥk(n). We use lemma 7.2.1.
Now substract h(µφ) and take the expectation on both sides of (7.2), to get, using

(1.2),
E
(
ĥk(n)

)
− h(µφ) = E

(
∆̂k(n)

)
+O(θk(n)).

We now take k(n) = q log n/ log |A|, where 0 < q < 1 has to be determined. Choosing

q = 1/
(
1 + log θ−1

log |A|
)

we easily get that

|E
(
ĥk(n)

)
− h(µφ)| ≤ c

nγ
, (8.3)

where c > 0 is some constant and γ = 1/
(
1 + log |A|

log(θ−1)

)
.

To end the proof, we apply the deviation probability and use (8.3). For the exponent
ξ in the statement of the theorem be strictly positive, one must have q < 1/2, which is
equivalent to the requirement that θ < |A|−1.
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8.3 Hitting time estimator

Given x, y ∈ Ω, let

Wn(x, y) = inf{j ≥ 1 : yj+n−1
j = xn−1

0 }.

Under suitable mixing conditions on the shift-invariant measure ν, we have that,

lim
n→∞

1

n
logWn(x, y) = h(ν), for ν ⊗ ν − almost every (x, y),

where the symbol ⊗ denotes the direct product. In particular, as we already saw in
theorem 7.3.1, when ν is a Gibbs measure, then the result above holds true [24]. We
have the following concentration bounds for the hitting-time estimator.

Theorem 8.3.1. There exist constants C1, C2 > 0 and t0 > 0 such that, for every n ≥ 1
and every t > t0,

(µφ ⊗ µφ)

{
(x, y) :

1

n
logWn(x, y) > h(µφ) + t

}
≤ C1e

−C2nt2 (8.4)

and

(µφ ⊗ µφ)

{
(x, y) :

1

n
logWn(x, y) < h(µφ)− t

}
≤ C1e

−C2nt. (8.5)

Let us notice that the upper tail estimate behaves differently than the lower tail
estimate as a function of t. This asymmetric behavior also shows up in the large deviation
asymptotics [24].

Let us sketch the strategy to prove Theorem 8.3.1. We cannot apply directly our
concentration inequality to the random variable Wn for the following basic reason. Given
x and y, the first time that one sees the first n symbols of x in y is Wn(x, y) and
assume it is finite. If we make y′ by changing one symbol in y, we have a priori no
control on Wn(x, y) which can be arbitrarily larger than Wn(x, y) and even infinite. Of
course, this situation is not typical, but we are forced to use the worst case to apply our
concentration inequality. Roughly, we proceed as follows. We obviously have logWn =
log(Wnµφ([Xn−1

0 ])) − logµφ([Xn−1
0 ]). On the one hand, we use a sharp approximation

of the law of the random variables Wnµφ([Xn−1
0 ]) by an exponential law proved in [1].

On the other hand, by the Gibbs property, logµφ([xn−1
0 ]) ≈ φ(x) + · · ·+ φ(σn−1x) and

we can the inequality (8.1) with f = φ.
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Proof. We first prove (8.4). We obviously have

(µφ ⊗ µφ)

{
(x, y) :

1

n
logWn(x, y) > h(µφ) + t

}
= (µφ ⊗ µφ)

{
(x, y) :

1

n
logWn(x, y) +

1

n
logµφ([xn−1

0 ])− 1

n
logµφ([xn−1

0 ])− h(µφ) > t

}
≤ (µφ ⊗ µφ)

{
(x, y) :

1

n
log
[
Wn(x, y)µφ([xn−1

0 ])
]
>
t

2

}
+ µφ

{
x : − 1

n
logµφ([xn−1

0 ])− h(µφ) >
t

2

}
=: T1 + T2.

We first derive an upper bound for T2.
We use the Gibbs property, inequality (8.1) applied to f = −φ and (1.2) to get

T2 ≤ µφ
{
− 1

n

(
φ+ · · ·+ φ ◦ σn−1

)
− h(µφ) >

t

2
− 1

n
logC

}
≤ e−Bnt2

for every t larger than 2 logC.
We now derive an upper bound for T1. To this end we apply the following result which
we state as a lemma. It is an immediate consequence of Theorem 1 in [1].

Lemma 8.3.1 ([1]). Let

τ[an−1
0 ](y) := inf

{
j ≥ 1 : yj+n−1

j = an−1
0

}
·

There exist strictly positive constants C, c, λ1, λ2, with λ1 < λ2, such that for every
n ∈ N, every string an−1

0 , there exists λ(an−1
0 ) ∈ [λ1, λ2] such that∣∣∣∣∣µφ

{
y : τ[an−1

0 ](y) >
u

λ(an−1
0 )µφ([an−1

0 ])

}
− e−u

∣∣∣∣∣ ≤ Ce−cu
for every u > 0.

By definition and using the previous lemma we get

T1 =
∑
an−1
0

µφ([an−1
0 ]) µφ

{
y : τ[an−1

0 ](y)µφ([an−1
0 ]) > ent/2

}
≤ C ′ e−c′ent/2

for some c′, C ′ > 0.
Since the bound for T1 is (much) smaller than the bound for T2, we can bound T1 + T2

by a constant times e−Bnt
2
. This yields (8.4).
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We now turn to the proof of (8.5). We have

(µφ ⊗ µφ)

{
(x, y) :

1

n
logWn(x, y) < h(µφ)− t

}
= (µφ ⊗ µφ)

{
(x, y) : − 1

n
logWn(x, y)− 1

n
logµφ([xn−1

0 ]) +
1

n
logµφ([xn−1

0 ]) + h(µφ) > t

}
≤ (µφ ⊗ µφ)

{
(x, y) : − 1

n
log
[
Wn(x, y)µφ([xn−1

0 ])
]
>
t

2

}
+ µφ

{
x :

1

n
logµφ([xn−1

0 ]) + h(µφ) >
t

2

}
= T ′1 + T ′2.

Proceeding as for T2 (applying inequality (8.1) with f = φ) we obtain the upper bound

T ′2 ≤ µφ
{

1

n

(
φ+ · · ·+ φ ◦ σn−1

)
−
∫
φdµφ >

t

2
− 1

n
logC

}
≤ e−Bnt2

for some C” > 0 and for every t > 2 logC.
To bound T ′1 we use the following lemma (Lemma 9 in [1]).

Lemma 8.3.2 ([1]). For any v > 0 and for any an−1
0 such that vµ([an−1

0 ]) ≤ 1/2, one
has

λ1 ≤ −
logµ

{
τ[an−1

0 ] > v
}

vµ([an−1
0 ])

≤ λ2,

where λ1, λ2 are the constants appearing in Lemma 8.3.1.

The previous lemma implies that

µ
{
τ[an−1

0 ]µ([an−1
0 ]) < v

}
≤ 1− e−vλ2 ≤ λ2v

provided that vµ([an−1
0 ]) ≤ 1/2. Taking v = e−nt/2 it follows that

T ′1 =
∑
an−1
0

µφ([an−1
0 ]) µφ

{
y : τ[an−1

0 ](y)µφ([an−1
0 ]) < e−nt/2

}
≤ λ2 e

−nt/2.

This inequality holds if e−nt/2µ([an−1
0 ]) ≤ 1/2, which is the case for any n ≥ 1 if t ≥

2 log 2.
Inequality (8.5) follows from the bound we get for T ′1 + T ′2. But the bound for T ′1 is
bigger than the one for T ′2, whence the result.
The proof of the theorem is complete.



Chapter 9

Perspectives & future work

In this chapter, we point out some open problems we intend to work on.

9.1 Deviation probability on the Alves-Viana map

The Alves-Viana map T : S1 × I → S1 × I is given by

TAV (ω, x) := (16ω, a0 + ε sin(2πω)− x2),

where a0 ∈ (1, 2), ε is small enough and I is a compact subinterval of (−2, 2) such that
T maps S1 × I into its interior.

S. Gouëzel proved ([34]) that in the Alves-Viana map the speed of decay of the
correlations of Hölder functions is O

(
e−c
√
n
)
, which implies the central limit theorem.

He used the strategy of building Young towers and some combinatorial techniques in the
construction of the partition that allow to obtain better estimates that those obtainable
by directly applying the result of [74].

In [3] the authors obtained a deviation probability for ergodic sums of Hölder func-
tions in the Alves-Viana map. That is, for every φ Hölder continuous there exists
τ = τ(φ) > 0 and for all t > 0 exists C = C(φ, t) > 0 such that

µ

(∣∣∣∣∣ 1n
n−1∑
i=0

φ ◦ T iAV −
∫
φdµ

∣∣∣∣∣ > t

)
≤ Ce−τn1/5

.

The exponent 1/5 comes from a relation involving the corresponding exponent of decay
of correlations, which is e−c

√
n as proved by Gouëzel.

One expect that is possible to obtain deviation probabilities in the Alves-Viana map
of separately Lipschitz observables using the techniques developed in [21].

We present the following conjecture.

Conjecture 1. Consider the Alves-Viana map, and let µ be its absolutely continuous
invariant measure, then there exist constants M and c (depending only on the map) such
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that for any Lipschitz function K of n variables and for all t > 0

µ

(∣∣∣K(x, Tx, . . . , Tn−1x)−
∫
Kdµ

∣∣∣ > t

)
≤M exp

(
− ctη

/( n−1∑
i=0

Lipi(K)2
)η/2)

,

for some η ∈ (0, 2/5).

We conjecture η ∈ (0, 2/5), to be consistent with the result in [3].
This would be a result giving a stretched exponential inequality and it would con-

tribute to ‘complete’ the global picture of concentration inequalities in non-uniformly
dynamical systems, since there are results for exponential concentration, as well as poly-
nomial.

9.2 Concentration inequalities for random dynamical sys-
tems

Consider for instance the case of additive dynamical noise we barely described in section
3.1. Take X ⊂ Rd and let (ξn) be a sequence of X-valued random variables modeling
the noise. The observed system is given by

xi+1 = T (xi) + εξi,

where ε > 0 is the magnitude of the noise and is assumed to be small. As we saw in
example 3.1.1 the process {xn} is a Markov chain. Assume µε to be an invariant measure
for the chain. Next, assuming the original system has a SRB measure µ, then one expect
that it is the zero-noise limit of µε. Indeed this was established for Axiom A systems
and certain non-uniformly hyperbolic systems (see [7, 29] and [75] for a survey).

We believe that it concentration inequalities hold for random dynamical systems
which are stochastically stable. In the case they actually do, this would bring quanti-
tative information on, for instance, the distance between the empirical measure of the
process {xn} and the SRB measure µ as a function of n and ε.

9.3 Convergence rate of Lalley’s denoising algorithm for
non-uniformly hyperbolic maps

In section 5.3 we presented a result on the convergence rate of Lalley’s algorithm for Ax-
iom A diffeomorfisms. Actually, in his Ph.D. thesis, J. Stover ([69]) worked in simulations
of that algorithm. He tested it for the Smale’s solenoid and the Hénon map. Nonetheless
there is no proof on the convergence rate for non-uniformly hyperbolic systems.

This is an open problem that in principle it reduces (very roughly speaking) to exhibit
a sequence of positive numbers βn such that the average

1

|Ai|
∑
j∈Ai

|xi − xj | ≤ βn,
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where βn converges to zero as n → ∞. The rest of the bounds used to prove the
consistency of the algorithm are explicit. We think that in the case of non-uniformly
hyperbolic dynamical systems modeled by Young towers with exponential tails it is
possible to show a polynomial rate of convergence.

9.4 More entropy estimators

We already shown some results on concentration bounds for entropy estimators in Gibbs
measures. Besides the ‘plug-in’ estimator and hitting-times there exist several quantities
that converge to the entropy.

A natural extension of our work would be finding concentration bounds for other
estimators, we point out three of them.

9.4.1 Hochman’s Estimator

Given a µφ-typical sequence x0x1 · · ·xn−1, the frequency of recurrence of the first k-block,
is given by

Fk,n(k) :=
1

n(k)
#
{

2 ≤ j ≤ n(k) : xk−1
0 = xj+k−1

j

}
.

By Birkhoff’s ergodic theorem this quantity converges to µφ(xk0). The Hochman’s esti-
mator1 is defined by

Fk,n(k) := −1

k
logFk,n(k).

Using the Ornstein-Weiss and the Shannon-McMillan-Breiman’s theorems, for an
ergodic stationary process, if n(k) is such that e−hkn(k)→∞ (as k →∞) then

lim
k→∞

Fk,n(k) = h,

almost surely.
Just as for the previous estimators, we would like to know how it fluctuates.

9.4.2 Non-Sequential Recursive Pair Substitution

Let us barely describe the so-called non-sequential recursive pair substitution method
(NSRPS). Assume that we are given with an infinite sequence x0x1 · · · produced by a
stationary source, where each xi belongs to a finite alphabet A. The method substitutes
all the non-overlapping apparitions of the pair of maximal frequency with a new symbol.
This produces a new sequence with a new alphabet. The method is applied recursively.

Rigorous results were given in [6], it states that ergodic processes becomes Markovian
in the limit. There the entropy can be calculated. We remit the reader to [6] for precise
statements and proofs. In [14], the NSRPS method was numerically tested and compared
with the empirical estimator and return times for several chaotic maps.

1We decided to name it Hochman’s estimator, since it was defined by M. Hochman in [40] on a very
general setting, and it also can be found in a simplified way in [39].
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There are many open questions about this method, one of them is giving an estimate
on its fluctuations.

9.4.3 Return times

We include in the list of problems as future work an open problem concerning the return
times that was pointed out in [24].

Let x0x1 · · · be a sequence produce by a stationary and ergodic source.The initial
block of n symbols is denoted by xn−1

0 . The first recurrence time of the initial k-block is

Rk = min
{
j ≥ 1 : xn−1

0 = xj+n−1
j

}
.

An almost sure version of the Wyner-Ziv theorem ([72]) was proved by D. Ornstein and
B. Weiss, it states that

lim
n→∞

1

n
logRn = h, µ-almost surely.

Later, in [25] the authors studied the fluctuations of the return times for Gibbs
measures with Hölder potentials. They established a central limit theorem for logRn
and the following large deviations result: There is a number u0 > 0 such that for any
u ∈ [0, u0) we have

lim
n→∞

1

n
logµφ

(
1

n
logRn > h+ u

)
= −I(h+ u),

and

lim
n→∞

1

n
logµφ

(
1

n
logRn < h− u

)
= −I(h− u),

where I is the Legendre transform of the function F (q) = lim
n→∞

1

n
log

∑
an−1
0

(µφ[an−1
0 ])q+1.

Going further, one is interested in the following function of q ∈ R (provided the limit
exists),

R(q) := lim
n→∞

1

n
log

∫
Rqn(x)dµ(x).

In [24] the authors obtained that for a Gibbs measure µφ which is not of maximal
entropy, one has for all u ≥ 0 that

lim
n→∞

1

n
logµφ

(
1

n
logRn > h(µ) + u

)
= inf

q≥0
{−(h(µ) + u)q +R(q)}.

The open problem is to calculate limn→∞
1
n log

∫
Rqndµφ for all q ∈ R ([24]). One expects

to have the same large deviations as for logWn. In section 7.3.2, we already mentioned
the corresponding result for the waiting times ([24]). Thus the conjecture for the return
times is that

lim
n→∞

1

n
log

∫
Rqndµφ =

{
P ((1− q)φ) if q > −1

P (2φ) if q ≤ −1.

This conjecture is supported by the numerical study in [37].
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9.4.4 Estimation of entropy production

A way to quantify the entropy production or measuring the irreversibility of a pro-
cess from a single trajectory was defined in [51]. Assume the process {Xn : n ∈ Z}
to be Gibbsian. The space is AZ, where A is a finite alphabet. Consider a Hölder
continuous potential φ : AZ → R. Given a block xn1 , its time-reverse its denoted by
x1
n = xnxn−1 · · ·x1. From the time-reversion one may define the corresponding reversed

potential φR and its Gibbs measure µφR . The entropy production of the process up to
time n is defined as

Ṡn(x) := log
µφ[xn1 ]

µφ[x1
n]

= log
µφ[xn1 ]

µφR [xn1 ]
.

It is known that

lim
n→∞

Ṡn(x)

n
= h(µφ | µφR) =: MEP µφ − almost surely,

where h(µφ | µφR) is the relative entropy of the measure µφ with respect to µφR and it is
defined as the mean entropy production. In [23] it is proved the convergence, the central
limit theorem and a large deviation principle for two estimators of the mean entropy
production. These estimators are based in the hitting times studied in chapters 7 and 8.

The two estimators of the MEP are

ṠHn (x) := log
τ[x1n](x)

τ[xn1 ](x)
and ṠWn (x, y) := log

τ[x1n](y)

τ[xn1 ](y)
,

where τ[xn1 ](x) := inf{j ≥ 1 : σjx ∈ [xn1 ]}. What one obtains is that if the process is
not reversible τ[x1n] � τ[xn1 ] typically and hence the estimators are typically positive. For
this estimators one has the almost-sure convergence.

lim
n→∞

ṠHn
n

= MEP µφ–almost surely and

lim
n→∞

ṠWn
n

= MEP µφ × µφ–almost surely.

As we already said these estimators satisfy a central limit theorem and a large deviation
principle. We are interested in providing concentration bounds for the estimators of the
MEP.

9.5 Concentration inequality for Gibbs measures with non
Hölder potentials

In section 2.5 we presented the proof for the exponential concentration inequality for
Gibbs measures associated to a Hölder continuous potential φ. In that setting one has
also the central limit theorem and a large deviation principle.
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We are interested in the natural extension for non-Hölder potentials. In particular
those satisfying

∑∞
n=0 nvarnφ < ∞. For this class of potentials, in her thesis ([56]), V.

Maume-Deschamps established the central limit theorem for Lipschitz functions with
respect to the metric given by

d0(x, y) := sup
x,y∈[an−1

0 ]

sup
k∈N

sup
ak−1
0

∣∣∣∣∣
k−1∑
i=0

φ ◦ σi(ak−1
0 x)− φ ◦ σi(ak−1

0 y)

∣∣∣∣∣ .
On the other hand, in the case of potentials satisfying

∑∞
n=0 varnφ < ∞ one has a

large deviation principle (see for instance [52]). As we have seen by the end of section
2.3.2 that the concentration inequalities are compatible with the central limit theorem
and large deviations so, one might expect that Gibbs measures with this class of poten-
tials enjoy also concentration inequalities. If so, this would give an example of system
satisfying an exponential concentration inequality without spectral gap for the transfer
operator.
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