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Structure du paysage agricole et risque épidémique, une approche
démo-génétique

L’intensification de Dagriculture a amélioré de facon considérable la production
alimentaire ces derniéres cinquante années mais elle s’est accompagnée d’un impact
croissant sur I'environnement. En particulier, la modernisation de ’agriculture a impliqué
une simplification de la structure des paysages agricoles rendant nos agro-écosystémes plus
sensibles au risque épidémique. L’utilisation de la diversité génétique des cultures est une
solution prometteuse pour réduire le risque d’occurrence et de propagation des maladies
des cultures. Elle nécessite cependant une gestion collective des espaces agricoles. En
conséquence, 'échelle d’étude ne doit plus se focaliser sur la parcelle mais sur le paysage.
Dans cette thése, nous nous interessons aux processus se déroulant a 1’échelle du paysage
et au role de la diversité des plantes cultivées pour le controle des épidémies. Nous avons
identifié trois questions: comment les populations pathogénes se propagent-elles dans un
paysage d’hotes hétérogéne 7 Comment les différents génotypes composant la population
pathogéne entrent-ils en compétition au sein d’une population hote diversifiée 7 et, a plus
long terme, comment les populations pathogénes évoluent-elles en réponse a la structure
des populations hotes 7 Chacune de ces questions a été approfondie grace a I'analyse de
données obtenues en condition de production mais aussi par des approches théoriques. Nous
avons montré que la composition et la structure spatiale des populations hotes influence
fortement la population pathogéne. Cependant, les recommandations que peut fournir ce

travail pour gérer la diversité génétique dépendent de I'objectif visé.

Evolution | Epidémiologie du paysage | Hétérogénéité spatiale | Spécialisation
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Landscape structure and epidemic risk, a demo-genetic approach

Agriculture intensification has improved food production impressively in the past 50
years but this came with an increasing impact on the environment. In particular, modern
agriculture has led to the simplification of the environmental structure over vast areas. As a
consequence, agro-ecosystems are particularly susceptible to epidemics. The increase of crop
genetic diversity is a promising way for reducing the risk of occurrence and development of
diseases in crops but the technical and organisational conditions required to manage the
genetic resources at this scale have not been established yet. This will require shifting the
scale of crop protection investigations from the field to the agricultural landscape. In this
PhD thesis we focus on landscape-scale processes and on the potential role of functional
diversity in cultivated landscapes to better control plant diseases. We identified three
questions: how does a pathogen population spread over a heterogeneous host landscape?
How do pathogen genotypes compete in a diversified host population? And, in a longer
term, how do pathogen populations evolve in response to host landscape structure? Each
of these questions is investigated through the analysis of real data and the development of
theoretical approaches. We demonstrate that the composition and the spatial structure of
the host landscape greatly influence the pathogen population dynamics and evolution. The
recommendations that this work may provide in order to practically manage the genetic
resources will depend on the desired aim and will request further collaborative work with

the professional operators.

Evolution | Landscape epidemiology | Spatial heterogeneity | Specialisation
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Eléments de contexte

L’intensification de Dagriculture a amélioré de facon considérable la production
alimentaire au cours de ces derniéres cinquantes années (Food and Agriculture
Organization, 2009). Cependant, ce gain de productivité s’est accompagné d’un impact
croissant sur 'environnement (Vitousek et al., 1997; Tilman et al., 2002). En particulier,
la modernisation de I'agriculture a impliqué une simplification de la structure des paysages
agricoles sur de grands espaces en remplacant la diversité naturelle par un faible nombre de
plantes cultivées et d’animaux domestiques (Altieri, 1999). Cette trop forte homogénéité
a rendu nos agro-écosystémes particuliérement sensibles au risque épidémique (Pautasso
et al., 2005; Stukenbrock and McDonald, 2008; Meehan et al., 2011). Pour contrecarrer cette
sensibilité, I’approche dominante, et la plus simple, est I'utilisation de produit phytosanitaires
et elle vise essentiellement les échelles de la parcelle et du cycle cultural (des rotations courtes
sont aussi pratiquées). Cependant, la trop forte dépendance de nos agro-écosystémes a
'utilisation de pesticides est aujourd’hui remise en question par la société (Grenelle, 2008)
mais aussi par une partie de la filiére agricole. En effet, elle impose de fortes contraintes sur
les biocénoses des espaces cultivés, des espaces adjacents et des ressources naturelles. De
plus, le recours aux biocides pour le controle des parasites implique un cotit non négligeable
pour les agriculteurs. A titre d’exemple, I'utilisation des fongicides sur blé représente environ
70 € par hectare ce qui, au total, peut représenter une dépense de 300 millions d’euros par
an a l'échelle de la France (Arvalis). Enfin, cette volonté de changer d’approche pour la
protection des cultures se refléte dans une réglementation de plus en plus stricte.

Les approches alternatives qui permettraient la transition vers une agriculture
écologiquement intensive, sans pour autant augmenter de fagon critique les risques de perte
de récolte liés a la pression parasitaire, doivent mobiliser des leviers agronomiques efficaces
(Tilman, 1999; Meynard et al.;, 2002). Parmi ceux-ci, I'utilisation de la diversité génétique
inter- mais aussi intra-spécifique semble une solution prometteuse pour réduire le risque
d’occurrence et de propagation des maladies des cultures. Cependant, le remplacement d’une
solution pesticide par une solution génétique nécessite encore plus une gestion collective de
cette ressource. En effet, de nombreux exemples de contournements de résistances variétales

dus a leur popularité existent (Wolfe and Schwarzbach, 1978; Samborski, 1985; Bayles



Eléments de contexte

et al., 2000). Comme toute ressource finie, les résistances variétales sont sujettes a la
tragédie des communs (Hardin, 1968): I'utilisation non raisonnée de la ressource ameéne a sa
disparition. Il est donc nécessaire de définir au niveau technique mais aussi organisationnel
de nouvelles stratégies de gestion de notre systéme agricole. L’utilisation collective de la
ressource génétique nécessite des changements drastiques a la fois des itinéraires culturaux
et de 'organisation de la filiére dans son ensemble (Butault et al., 2010). Il existe bien str des
exemples d’études visant a produire des conseils aux agriculteurs de fagon globale (Gladders
et al., 2006), mais elles restent de 'ordre de conseils généraux : les études épidémiologiques
doivent changer d’échelle pour se placer a celle du paysage afin d’introduire cet élément de
facon explicite dans les modéles pour améliorer notre compréhension des épidémies ainsi que
leur prédiction (Ostfeld et al., 2005).

[’étude des interactions entre les structures paysagéres et les processus écologiques reléve
de Pécologie du paysage (Turner, 2005). L’idée de coupler ces approches avec I'étude de
dynamiques épidémiques date des années 1930 et a pris le nom d’épidémiologie du paysage
(Ostfeld et al., 2005). Les approches d’épidémiologie du paysage ont été relativement bien
développées en épidémiologie humaine, animale ou encore pour la gestion des parasites
en agriculture (Langlois et al., 2001; Allan et al., 2003; Bianchi et al., 2006; Tildesley
et al., 2010). En pathologie végétale, si l'idée de définir des stratégies de gestion des
variétés a I’échelle de paysages agricoles est dans l'air depuis la fin des années 1970 (Zadoks
and Kampmeijer, 1977; Mundt and Brophy, 1988), le potentiel de I'épidémiologie du
paysage pour en explorer de nouvelles voies est encore trop peu exploité par les pathologistes
(Plantegenest et al., 2007). Dans ce travail de thése nous nous intéressons justement aux
processus ayant cours a l'échelle du paysage dans l'idée de ré-introduire de la diversité

fonctionelle au sein de nos cultures pour mieux controler les maladies des plantes.

Dans son acception la plus large, la diversité décrit le nombre d’entités (une entité
pouvant aller du génotype a l'écosystéme), leur abondance et leur distribution (Haccou
et al., 2005). Pour comprendre le lien entre la diversité et une propriété particuliére d’un
écosystéme, la diversité doit étre considérée du point de vue du trait fonctionnel par rapport
a la propriété étudiée. Ainsi, la diversité fonctionnelle en épidémiologie aura trait a la
diversité des hotes jouant un role différent vis-a-vis d'un pathogéne ou d’une souche de
pathogéne. Pautasso et al. (2005) ont classé les écosystémes en fonction de leur diversité et
de leur sensibilité aux maladies. Ils ont identifié quatre cas: (i) les monocultures chanceuses
(écosystémes peu diversifiés et peu sensibles), (ii) les écosystémes sensibles et peu diversifiés,
(iii) les écosystéme sensibles et diversifiés et (iv) les écosystémes gouvernés par I'hypothése
d’assurance (écosystémes diversifiés et peu sensibles). Dans ce travail nous soutiendrons
la thése selon laquelle les sytémes agricoles doivent effectuer la transition de (ii) vers (iv).
L’hypothése d’assurance lie le fonctionnement d’un écosystéme a sa diversité fonctionnelle

(Yachi and Loreau, 1999). Cette hypothése avance le fait que la diversité fonctionnelle



assure 'intégrité d’un écosystéme contre les variations temporelles ou spatiales d’une variable
biotique ou abiotique de lenvironnement (Loreau et al., 2001, 2003a). Appliquer cette
hypothése a la pathologie végétale revient a observer que toutes les plantes sont sensibles a
au moins un pathogéne, mais que toutes les plantes ne sont pas sensibles a tous les pathogénes
(Pautasso et al., 2005) : une population hote diversifiée assure mieux son intégrité face au
développement des maladies.

Quels mécanismes procurent une assurance aux populations hotes diversifiées 7 Au cours
de ce travail de thése, nous avons identifié trois mécanismes majeurs. Premiérement, 'effet
de dilution : I'augmentation d’hotes sub-optimaux pour le pathogéne dans la population hote
dilue I'effet de I’hote principal en augmentant la proportion de propagules du pathogéne qui
seront retenues par des hotes incompétents. Deuxiémement, la compétition entre plusieurs
souches d’un pathogéne adaptées de fagon différentielle a 'hote peut diminuer la prévalence
de la maladie au sein de la population hote. Troisiémement, la structure de la population hote
influence I'évolution de la population pathogéne vers des souches plus ou moins agressives
et spécialisées. Dans le premier chapitre de ce document nous présentons plus en détail les
bases théoriques de ces mécanismes. Nous expliquons aussi comment les différents chapitres

(de 2 & 6) peuvent étre vus au travers de ce filtre.

Ce travail de thése s’appuie a la fois sur I'analyse de données récoltées en condition
de production et sur des approches théoriques afin d’étudier les différents mécanismes sous-
jacents a la définition de stratégies de gestion durable du risque épidémique dans nos paysages
agricoles. Dans le chapitre 2, nous analysons trois jeux de données récoltés a I’échelle de la
France dans le but d’étudier le lien entre la composition du paysage en blé et sa sensibilité a
la rouille brune. Dans ce chapitre nous démontrons le lien entre la composition du paysage
en blé, la structure des populations de rouille et les niveaux de maladie observés au champ.
L’étude de processus écologiques complexes a de grandes échelles de temps et d’espace rend
la collecte de données difficile et les modéles de simulation peuvent alors jouer un role
important autant dans la formalisation et l'inférence théorique que dans la prédiction ou
la structuration d’échantillonnages futurs (Peck, 2004, 2008). TLes chapitres 3, 4 et 5 sont
tous trois basés sur un modéle de simulation de la dynamique épidémique a I’échelle d’un
paysage agricole. Le premier de ces chapitres décrit un cadre de modélisation commun liant
une description détaillée du paysage a des modéles de type métapopulation. Dans les deux
autres chapitres nous étudions respectivement 'influence de la structure du paysage sur la
dynamique épidémique et sur la dynamique de la composition génétique de la population
pathogéne. Enfin, le chapitre 6 se base sur un modéle de dynamique adaptative pour étudier

I’évolution a long terme d’une population dans un milieu spatialement hétérogéne.
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Chapter 1. Host diversity and epidemic risk

1.1 Introduction

Agriculture intensification has improved food production impressively in the past 50
years (Food and Agriculture Organization, 2009) but it came with an increasing impact
on the environment (Vitousek et al., 1997; Tilman et al., 2002). In particular, modern
agriculture has implied the simplification of the environment structure over vast areas,
‘replacing nature’s diversity with a small number of cultivated plants and domesticated
animals’ (Altieri, 1999). As a consequence, agro-ecosystems are particularly susceptible
to the epidemic risk (Pautasso et al., 2005; Stukenbrock and McDonald, 2008; Meehan
et al., 2011). The dominant approach for pest control, which is also the simplest, focuses
on the use of chemical treatments. However, the reliance on pesticides is challenged both by
society (Grenelle, 2008) and part of the agricultural sector. Indeed, such an approach
imposes strong pressure on biotic communities of cultivated areas, adjacent spaces and
natural resources. In addition, it implies important costs for farmers. As an example,
almost €70 per wheat hectare are spent for fungicides in France, which represents €300
millions per year (Arvalis). This course change echoes an increasing hardening of the crop
protection legislative framework (see figure 1.1 for an illustration of the European legislative
framework for crop protection).

Alternative approaches must be developed in order to support the transition towards an
ecologically intensive agriculture, without significantly increasing the risk of pest pressure.
Such approaches must mobilise a combination of effective agronomic levers (Tilman, 1999;
Meynard et al., 2002). Among these, the increase of crop genetic diversity is a promising
way for reducing the risk of occurrence and development of diseases in crops. Diversification
strategies have already been studied at the within field and crop cycle scales. However, the
replacement of a pesticide by a genetic solution requires to manage the genetic resources
carefully and collectively. Indeed, many examples show a resistance breakdown when
resistances are widely used (Wolfe and Schwarzbach, 1978; Samborski, 1985; Bayles
et al., 2000): like any finite resource, variety resistances are subject to the ‘tragedy of
the commons’ (Hardin, 1968), a non-rational use of the resource leads to its extinction. It
is therefore necessary to draw new technical and organisational conditions to sustainably
manage this resource in a productive system because its use at the territory scale requires
significant changes both in farming systems and in the organisation of the involved actors
(Butault et al., 2010). Previous studies have attempted to produce technical advice for
farmers that includes rotations in time and space of different resistance genes, pyramiding
strategies or the use of multilines or mixtures of cultivars (for example Gladders et al., 2006).
Nevertheless existing advice remains too global. Explicit landscape approaches should be
better incorporated in epidemiological studies in order to improve our understanding and
prediction of disease risk (Ostfeld et al., 2005).
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Figure 1.1: The crop protection regulation framework has recently evolved with the adoption by
the European Parliament in 2009 of four correlated texts. Regulation 1107/2009 sets the principles
of pesticide registration across Europe and replaces Directive 91/414/EC which was in force since
1993. In addition to the principles of the risk assessment of each molecule and formulation, which
already existed, the new regulation sets the basis of a common evaluation within European member
states and encourages the substitution of the most dangerous molecules. Directive 2009/128/EC
concerns the sustainable use of pesticides across Europe. It concerns several aspects of the European
agriculture in the aim of reducing the risks of pesticide use : definition of national plans for risk
reduction (in France : Ecophyto 2018), improvement of the efficacy of the application machinery,
training of farmers and retailers, information of the general public, development of alternatives to
chemicals. Directive 2009/127 on application machinery modifies directive 2006/42 which already
existed, and was written in order to harmonise the machinery requirements among the European
Member States. This measure contributes to obtain the same application conditions in every
country, and is consistent with the idea of super-national risk assessment as required by regulation
1107/2009 on pesticide authorisation. Regulation 1185/2009 completes the new pesticide framework
by forcing each Member State to produce consistent, harmonized and quantified data on pesticide
sales and utilisations every year. This kind of data is essential to assess the European pesticide
policies and build relevant indicators.

In addition to these four main texts, several other European laws have an impact on pesticide use.
First of all, the Water Framework Directive 2000/60/EC which requires the Member States to obtain
a good chemical and biological state for all the surface water and groundwater bodies by 2015. This
directive includes a list of chemicals whose emissions in water have to be reduced, and some of
these chemicals are pesticides. The Common Agricultural Policy, which is to evolve in 2013, has a
strong impact on pesticide use, by fixing the criteria of allocation grant to European farmers. Other
texts concerning wildlife protection (Birds and Habitats Directive), or environment protection (Soil
Directive project) have an indirect but not negligible impact on pesticide use. Finally, pesticides and
pesticide containers are considered as dangerous waste and are therefore concerned by the legislation
on waste. National additional requirements exist and differ from a Member State to another.



Chapter 1. Host diversity and epidemic risk

The study of interactions between spatial patterns of a landscape and ecological processes
is at the heart of landscape ecology (Turner, 2005). Association of landscape ecology and
epidemiology dates back from the thirties and was logically named landscape epidemiology
(Ostfeld et al., 2005). The landscape epidemiology approach is relatively well developed
for human and animal epidemiology as well as for pest control in agriculture (Langlois
et al., 2001; Allan et al., 2003; Bianchi et al., 2006; Tildesley et al., 2010). In plant
pathology, the idea of designing variety management strategies at the scale of cultivated
landscapes has been around for a long time (Zadoks and Kampmeijer, 1977; Mundt and
Brophy, 1988) but the potential of landscape epidemiology for exploring new strategies
of host resistance management still remains largely underexploited by plant pathologists
(Plantegenest et al., 2007). In this PhD thesis we focus on landscape-scale processes and

on the potential role of functional diversity in crops to better control plant-diseases.

In its broader definition, diversity refers to the number of entities (from genotypes to
ecosystems), their abundance and distribution (Haccou et al., 2005). In order to understand
the link between diversity and a particular ecosystem property we must consider diversity
with respect to the functional traits susceptible to influence that ecosystem property. Thus,
functional diversity will refer in our case to hosts that act differently with respect to a
pathogen or to a particular pathogen strain. Pautasso et al. (2005) classified ecosystems
according to their susceptibility and diversity (figure 1.2). It identified four cases: (i) ‘lucky
monoculture’ (low diversity and low susceptibility), (ii) susceptibility without diversity, (iii)
susceptibility with diversity, and (iv) ecosystems governed by the insurance hypothesis (high
diversity and low susceptibility). In this PhD thesis we argue that agro-ecosystems must
evolve from (ii) to (iv). The insurance hypothesis links ecosystem functioning and species
diversity (Yachi and Loreau, 1999). It suggests that functional diversity insures ecosystem
functioning against temporal and/or spatial fluctuations of a biotic or abiotic variable in the
environment (Loreau et al., 2001, 2003a). Applying this hypothesis to plant disease results
in observing that ‘most plants are susceptible to more than one pathogen, but not all plants
are susceptible to all pathogens’ (Pautasso et al., 2005): a diversified host population better

insures its integrity against disease development.

What are the mechanisms that could provide an insurance account for functional diversity
of host populations? In this work we identified three main mechanisms. First, the dilution
effect insures that the increase of non-efficient hosts will dilute the effect of principal host.
Indeed, non-efficient hosts increase the proportion of pathogen propagules coming from
incompetent hosts. Second, competition between differentially adapted pathogen strains
could decrease infection prevalence in the host population. Third, host population structure
influences pathogen evolution towards more effective specialised strains. In the following of
this chapter we will describe in more details these three mechanisms from a theoretical point

of view. We will also underline how the different chapters (from 2 to 6) can be classified

10



1.1. Introduction

susceptibility without susceptibility despite
diversity (crops) diversity
(infroduced pathogens)

Increasing susceptibility
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Lucky monocultures ? (natural communities)

Increasing diversity

Figure 1.2: Classification of ecosystems according to their susceptibility and diversity. From
Pautasso et al. (2005)

according to these mechanisms.

This PhD thesis relies on both the analysis of real data and on theoretical approaches in
order to investigate several mechanisms underlying the design of sustainable strategies for
disease control in agricultural landscapes. We first begin (chapter 2) by analysing three large
scale datasets in order to track a potential relationship between the varietal wheat landscape
and their susceptibility to leaf rust. Chapter 2 demonstrates the relationship between wheat
landscape composition, leaf rust population genetic structure and observed disease level
scored in field conditions. The study of complex ecological processes at large scales of
time and space makes data collection difficult. That is why theoretical approaches such as
simulation or mathematical models can play an important role for theoretical formalisation
and inference as well as in the structuring of future sampling (Peck, 2004, 2008). Chapters 3,
4 and 5 are all based on a simulation model for pathogen population dynamics on an
agricultural landscape. Chapter 3 describes a general modelling framework that links a
detailed characterisation of the landscape to classical metapopulation models. In chapters
4 and 5, we study respectively the role of landscape structure on the pathogen population
dynamics and on the genetic composition of the pathogen population. Finally, in chapter 6
we used an adaptive dynamics approach in order to study the long term evolution of pathogen

populations in spatially heterogeneous environments.
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Chapter 1. Host diversity and epidemic risk

1.2 Dilution effect

The increase in species richness can reduce disease risk through a lot of mechanisms
(Mundt, 2002; Keesing et al., 2006). However, the term dilution effect will be use
restrictively in this work and apply only to ‘situations in which a pathogen can be acquired
by a variety of hosts but is transmitted efficiently by only one or a few’ (Keesing et al., 2006,
box 2). Lively (2010) proposed a simple example in order to explain how the dilution effect
acts in a heterogeneous host population. Consider a host population composed of several
genotypes. Suppose that each strain of the pathogen population can develop on one host
genotype only, i.e. interaction between host and pathogen is governed by the ‘gene-for-gene’
model (Flor, 1971). Without considering spatial structure, the spread of infection requires
that (Lively, 2010):

iN > ———,
g 1—e?

where g; is the frequency of host genotype i, N is the total number of individuals in the
host population and A is the mean number of matching spores that contact each host. This
simple relationship shows that increasing diversity (i.e. decreasing g;) without increasing
host density (N) may reduce the disease risk by increasing the number of alternative hosts
which are incompetent reservoirs. As species or genotypes are added to the host community,
these alternative hosts dilute infections by increasing the proportion of pathogen propagules
that infect incompetent hosts (Ostfeld and Keesing, 2000). The expected result is a lower

infection prevalence in the host population.

However this basic framework lacks two important aspects. First, it does not take into
account quantitative interactions between plant and pathogen (Pariaud et al., 2009a), which
are of increasing importance due to their better sustainability (McDonald, 2010). In such a
case, in addition to the binary response of the gene-for-gene model, a continuous response has
to be considered to describe the host-pathogen interaction. The components of the variety
mixture then appear more or less conducive to the disease and the results could be changed.
Second, the non spatial context is very limiting. In fact, when dispersal is limited, host types
exchange parasite propagules according to their spatial organisation. Empirical evidence of
such an effect is abundant in the phytopathological literature, in particular dealing with

variety mixtures, but focus on the intra-field scale (for a review see Mundt, 2002).

In this PhD thesis, the dilution effect was studied by using a spatially explicit model
for pathogen population dynamics in an agricultural landscape. We investigated how the
landscape composition and the spatial deployment of varieties affect the disease spread. We
considered several conductivities for the alternative host and several abilities of the pathogen
to disperse. The modelling framework is described in chapter 3. Chapter 3 also provides

an analysis of thresholds for pathogen invasion in heterogeneous landscapes. The epidemic
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1.3. Competition and coexistence between pathogen strains

spread in a heterogeneous host population is studied more thoroughly in chapter 4.

1.3 Competition and coexistence between pathogen
strains

In agricultural pathosystems, pathogen strains adapt differentially to host varieties
regarding quantitative traits (rewied by Pariaud et al., 2009a). As a consequence, the
composition of the pathogen population that lives on a given host determines the amount
of disease that will be observed. The landscape varietal composition shapes the genetic
structure of pathogen populations encountered on a particular host variety, which explains
the relationship between the composition of the host population and its susceptibility to
disease. How pathogen strains compete and coexist in an heterogeneous host population is
therefore of prime interest for disease control.

In community ecology, the causes of species diversity maintenance is a crucial question.
This has led to the current debate between niche theory and neutral perspectives
(Whitfield, 2002; Gewin, 2006). While the first assumes partitioning of resource use,
the second is based on stochastic processes only. More recently Clark et al. (2007) propose
a third explanation in order to resolve the biodiversity paradox. It is based on the roles of
deterministic biological process vs stochastic approximations in dynamic population models.
We briefly review these theories before explaining how we address the question of pathogen
strains coexistence in this work. The aim is not to be exhaustive but to provide some
theoretical basis on the mechanisms that enhance coexistence between species.

1.3.1 Ecological niche

Hutchinson (1957) defined the fundamental niche as ‘a n-dimensional hypervolume |...],
every point in which corresponds to a state of the environment which could permit the species
[...] to exist indefinitely’. From this definition, Pulliam (2000) identified three contexts that
diverge from this idealised point of view (Figure 1.3). Firstly, competition with a better
competitor could reduce the fundamental niche to the realised niche (Figure 1.3 B). This
is due to the fact that when several species are present in a given environment, they are
not only affected by the environment but they also change it and interact directly with one
another. Secondly and thirdly, adding dispersal to the niche concept changes crucially the
relationship between fundamental niche and species distribution: source-sink dynamics will
extend the area of occurrence (Figure 1.3 C) whereas dispersal limitation and frequent local

extinctions may reduce the species occurrence inside of its fundamental niche area (Figure 1.3
D).
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Chapter 1. Host diversity and epidemic risk

C. Source-Sink Dynamics D. Dispersal Limitation

Figure 1 Four views of the relationship between niche and species distribution. In each diagram, the solid oval refers to the fundamental
niche or the combination of environmental factors (e and ¢,) for which the species has a finite rate of increase (A) greater than or equal to
1.0. The “pluses” indicate the presence of the species in a patch of habitat characterized by particular values of ¢ and e, and the “zeroes”
similarly indicate the absence of the species in a patch of habitat. According to the Grinnellian niche concept (A), a species occurs
everywhere that conditions are suitable and nowhere else. Hutchinson’s realized niche concept (B) postulates that a species will be absent
for those portions of the niche space that are utilized by a dominant competitor. According to source-sink theory (C), a species may
commonly occur in sink habitat where A is less than 1.0. Metapopulation dynamics and dispetsal limitation (D) posit that species are
frequently absent from suitable habitat because of frequent local extinctions and the time required to recolonize suitable patches.

Figure 1.3: Four views of the relationship between niche and species distribution. From
Pulliam (2000)
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1.3. Competition and coexistence between pathogen strains

The basic principles of coexistence between species exploiting the same resource are
classically exposed using the Lokta-Volterra model. In terms of absolute competition
coefficients, the two-species Lotka-Volterra competition equations can be written as follows
(Chesson, 2000):

1 dN; . . o
- rl-(l — N, — aiij>, ie{1,2), i€ {1,2) and j £ (1.1)

N; dt

where r; is the per capita growth rates and N; is the abundance of species i. «;; and «;;

are, respectively, absolute intraspecific and interspecific competition coefficients. Assuming
equation (1.1), species 1 and 2 coexist if they cannot competitively exclude one another, i.e.
if aiy; > a9y and a9y > 9. That means that species coexist if they limit themselves more
than they limit the other species (Chesson, 2000; Adler et al., 2007).

Usually, coexistence among species is characterised by the ‘long-term low-density growth
rate’, 7;, which measures the capacity of species 7 to recover from low density. Coexistence
between several species requires that each species is able to increase from low density, i.e.
that 7, > 0. Immersing the basic Lokta-Volterra model (equation (1.1)) into the niche
framework can be done by incorporating a measure of resource-use overlap among species as
proposed by Chesson (1990). In such a model and under particular assumptions, coexistence

in multi-species communities depends on two additive terms (Chesson, 2000):

- bi(l—p)D

n—1
Parameters are the number of species in the system (n), the measures of fitness of individual
species (k;), the average fitness of the competitors of species i (k), the rates at which the
per capita growth rates decline as resources decline in abundance (b;), the niche overlap
(p) and a positive constant (D). The first term in equation (1.2) compares the fitness of
species 7 to the mean fitness of the community: it is positive for the best competitors and
negative for the poorest competitors. The second term renders the niche differentiation.
If there is no niche partitioning, i.e. overlap is total (p = 1), then it is equal to 0. It is
called by Chesson (2000) a ‘stabilising’ term since it buffer differences in fitness. In fact, this
second term is always positive and thus it can counterbalance negative fitness differences.
Without this second term, the best competitor would exclude all the other species. As a
consequence, stable coexistence is an interplay between ‘equalising mechanisms’, which tend
to limit the differences between fitness, and ‘stabilising mechanisms’ that make intraspecific
effects more negative than interspecific effects (Adler et al., 2007, figure 2 and box 1). Tt
is important to note that in the niche framework, there is no stable coexistence possible
without the stabilising term. In other words, stable coexistence, even if mean fitness are
very close, requires niche differences, which means that ‘species must differ in terms of how
they respond to and/or affect the environment, including resources, they share with other
species’ (Clark, 2009, box 1).
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How does spatial structure of the resource act on the equalising and stabilising terms?
This question is obviously dependent on the ability of the organism to disperse in the
environment. Both in isolated or well mixed communities the resource spatial structure
has no effect on the results presented before. On the contrary, at intermediate dispersal
rates, local species diversity is enhanced. An intermediate dispersal rate may prevent local
competitive exclusion by the local dominant species while being low enough to prevent
exclusion by the global dominant one (Loreau et al., 2003a). Several classifications of
coexistence mechanisms are possible (Melbourne et al., 2007). Chesson (2000) identified
four such mechanisms in spatial environments: fluctuation-independent mechanisms, spatial
relative non-linearity, spatial storage effect and spatial covariance of local population growth
with local population density (Chesson, 2000; Gravel et al., 2011).

Fluctuation-independent mechanisms group all mechanisms that are not due to variation
of the resource (e.g., mean fitness differences or classic niche partitioning). Spatial relative
non-linearity measures how far from a linear response the response of a species to resource
variation is. The more variable the environment, the more disadvantaged the species with
high non-linearity response is. Thus, if the species with the highest non-linearity is also
the species that, in average, have the best fitness, non-linearity will tend to decrease the
importance of differences between fitness (Gravel et al.; 2011). That is why this mechanism
could be split into an equalising term - that reflects the relative fitness taking into account
of the environment fluctuations in space - and a possible stabilising term due to the non-
linearity amplitude between species. The spatial storage effect is a stabilising mechanism. In
this case, a species takes more advantage of spatial locations where its fitness is better than
the other species than spatial locations where the environment is unfavourable for it. Fitness-
density covariance is a purely spatial mechanism. As an example, competitors produce more
propagules in favourable conditions and, due to a limited dispersal, propagules are locally
retained. As a consequence competitors suffer proportionately stronger competition under
favourable environments, which leads to more negative intraspecific effects than interspecific
effects (Gravel et al., 2011).

1.3.2 Neutral theory

On the contrary to niche theory, the neutral theory of biodiversity (Hubbell, 2001;
Bell, 2001) assumed that species are ecologically equivalent (Nee, 2005; Kopp, 2010),
that is, ‘all individuals had identical demographic characteristics, regardless of the species
they belong to’ (Bell, 2001). It then predicts species abundance as a dynamic equilibrium
involving speciation, dispersal and extinction (Hubbell, 2003). In such a context, abundances
of all species fluctuate at random because only demographic stochasticity operates. This

is called ‘ecological drift’ by Hubbell (2003) and is analogous to the well known ‘genetic
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1.3. Competition and coexistence between pathogen strains

drift’ (Nee, 2005). A historical review that links the Hubbell’s neutral theory to the concept
of neutrality in population genetics (Kimura, 1968) is proposed by Chave (2004) (see also
Nee, 2005; Gewin, 2006).

The basic neutral model refers to the island biogeography model whereby a local
community is linked via dispersal to an external pool. It involves only five parameters:
the immigration probability, the birth and death probabilities, the number of individuals in
the community and the total number of species in the external pool (Bell, 2001). Neutral
theory leads to the definition of a biodiversity number which controls several characteristics
of biodiversity patterns (Hubbell, 2003) and speciation (de Aguiar et al., 2009; Kopp, 2010).

Even if niche differentiation is not questioned, Leibold and McPeek (2006) propose three
reasons for considering neutral perspectives. The first is that neutral models could be
seen as a null hypothesis. Second, neutral theory has proved to produce realistic patterns
of biodiversity particularly in highly diversified communities and for rare species (Volkov
et al., 2003; Chave, 2004; Halley and Iwasa, 2011). Hence, invoking the parsimony
principle neutral models could be retained because they involve less parameters. Finally,
neutral models may enlarge the niche view to complex dynamics of equivalent species in
interaction with the rest of the community.

1.3.3 Between zero and complete uncertainty, a ‘Laplacian’ vision
of the biodiversity paradox

According to Clark et al. (2007), the biodiversity paradox comes with the fact that stable
coexistence in models demands precise conditions on resource use (see the niche section) that
are difficult to identify in the real world. The neutral theory of biodiversity is an alternative
view that needs no functional differentiation between species to explain biodiversity patterns.
The link between niche and neutral theories was made in several ways. Adler et al. (2007) put
the neutral theory within the Chesson (2000) framework (see also the niche section), which
leads to see niche and neutral theory as the extrema of a continuum. Niche constitutes the
case when differences between fitness are high and coexistence is performed due to strong
stabilising mechanisms whereas neutrality refers ‘to weak stabilisation operating on species
of similar fitness’. The idea of a continuum is also described by Gewin (2006). Chave (2004)
mentioned that both theories are complementary. In fact niche theory focuses on small
numbers of species with relative simple interactions while neutral theory focuses on highly

diversified communities when the role of stochasticity is unavoidable.

Clark et al. (2007) link both theories via a continuum but ‘the continuum in models is
one of knowledge, not cause. The two types of models in the debate are special cases, low-

dimensional trade-offs and neutrality representing zero uncertainty and complete uncertainty,
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respectively’. This view is discussed by Clark (2009). He argues that stochasticity is
misinterpreted, which leads to consider stochasticity as ‘an actual force’. Gravel et al. (2011,

box 1) summarise Clark’s view well. Consider the following population growth model

e f(covariates, parameters) + error, (1.3)

where the first term is deterministic and accounts for our knowledge on the processes that
act on the population dynamics. In Clark (2009), the second term (error) represents only
our uncertainty due to modelling. While the basic niche view assumed that all processes
are known (i.e. their is no error term), the neutral theory assumed that there is the error
term only. With this mixed approach, patterns of diversity are explained always by niche
differences among species but, due to their high dimensionality, these differences are difficult
to identify (Clark et al., 2010; Ricklefs, 2011).

This conceptual framework seems particularly interesting and makes niche differences
a central mechanism for explaining coexistence between species. Moreover, it recalls the
extreme high-dimensionality of natural systems. Nevertheless, I see some ambiguities in the
Clark (2009) article. In fact, pushing his reasoning to the extreme could lead to another
debate on the existence of stochasticity in Nature. Fisher’s works (Fisher Box, 1978) show
that the second term in equation (1.3) might be split into two terms: a modelling error and
an incompressible ‘natural’ error. However, Clark (2009) does not allow for the latter. In

fact he wrote

‘First, there is no evidence for stochasticity in nature at observable scales. Stochasticity
is an attribute of models. When an individual gives birth or dies ‘at random’, that event

results from real processes.’
And latter,

‘The fact that there might be a practical limit to how much we know does not mean that

there exists some residual inherent stochasticity.’

With these sentences it seems that Clark does not consider stochasticity as a possible force in
the real world, which reminds the deterministic vision of Laplace. Potentially, it might lead to
a misunderstanding of community dynamics especially for rare species in which demographic

stochasticity could be extremely influential.

1.3.4 Retained approaches

The study of coexistence of several pathogen strains and the role of the spatial

organisation of varieties on this coexistence were studied in this PhD thesis using two
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approaches. First, the relative roles of environment composition and pathogen strain fitness
on the competition of several pathogen strains was studied in the specific example of wheat
leaf rust. This work was based on a 10-year survey of wheat leaf rust populations at the
scale of France. We constructed a hierarchical model in a Bayesian framework in order to
infer the relationship between the wheat varietal landscape composition, the composition of
leaf rust populations and observed symptoms on the main varieties. This work in presented
in chapter 2.

Based on these results we explored further how habitat spatial structure may influence
the coexistence between pathogen strains, using the simulation framework presented in
chapter 3. We studied the composition of a pathogen population that spreads on an
agricultural landscape composed of two varieties. Three pathogen strains were defined:
two symmetric specialists and one generalist for which the landscape is homogeneous. In
chapter 5, we investigated in which condition a new strain may establish a population into a
resident population and, in which conditions coexistence between strains is stable. According
to the theoretical framework depicted before, the model assumed low dimensional niche
differences and stochasticity in the population dynamics. We concentrated our study on

spatial mechanisms that promote coexistence.

1.4 Long term evolution of pathogens

Strong natural selection exerted by anthropogenic disturbances accelerates evolutionary
changes in pathogens (Palumbi, 2001). Integration of evolutionary principles into
epidemiological models was thus unavoidable in order to better understand the rapid
evolution of pathogens in response to changes in their host ecology (Galvani, 2003). Among
global changes that affect pathogen evolution, the increase in connectivity between hosts
is particularly influential (Boots and Sasaki, 2000). It is assumed that, together with the
increase of host homogeneity (Galvani, 2003), the high conductivity of agro-ecosystems
has led to the selection of highly specialised and virulent! pathogens (Stukenbrock and
MecDonald, 2008).

Usually, description of host population dynamics is based on a set of ordinary differential
equations that describes the three states of the host population as healthy, infected, and
recovered. From this model, non-spatial studies on virulence evolution compute the basic
reproductive number (Hethcote, 2000), Ry, that determines the ability of the pathogen to
invade the host population. The evolutionarily stable pathogen strain is defined by the set
of parameters that maximise R,. Pathogen-host models generally involve two parameters

'In classical epidemiological studies, virulence is defined as the induced mortality of hosts due to pathogen
infection.
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that describe the ability of the pathogen population to grow: pathogen’s transmission rate
and induced host mortality (virulence). Simple non-spatial models predict that, without
explicit trade-off between transmission and virulence, pathogen evolves to become avirulent

and have infinitely fast transmission (but see Alizon and van Baalen, 2005).

An alternative method to Ry maximisation is adaptive dynamics (Geritz et al., 1998).
Due to several limits of Ry maximisation, spatial studies use an adaptive dynamics approach
(Messinger and Ostling, 2009). Adaptive dynamics was introduced by Hofbauer and
Sigmund (1990) and Nowak and Sigmund (1990). Tt aims to study the evolutionary outputs
of a resident population that is exposed to repeated invasion by mutants. It is based on two
fundamental ideas: the population remains monomorphic - because demographic equilibrium
is reached before a new mutant arrives - and initial growth rate (invasion fitness) of the
mutant determine the output of the competition between mutant and resident. More recently,
Day and Proulx (2004) proposed to use techniques from theoretical population genetics in
order to study the evolution of virulence. This method has several advantages with respect
to adaptive dynamics, in particular the epidemiological dynamics equilibrium assumption
can be relaxed (Day and Gandon, 2007).

In this PhD work, we used an adaptive dynamics approach in order to study the evolution
of specialisation in spatially heterogeneous landscapes (chapter 6). The role of habitat spatial
structure was addressed with different perspectives in spatially explicit adaptive dynamics
model. Some studies suppose that the habitat changes gradually with space for its altitude
or temperature (Doebeli and Dieckmann, 2003; Champagnat and Méléard, 2007) and others
introduce explicit patches in the environment either in a continuous environment (Débarre
and Gandon, 2010) or in a metapopulation framework (Meszéna et al., 1997; Parvinen
and Egas, 2004). In chapter 6, we develop a metapopulation model in order to investigate
how the landscape structure influences the dynamics of adaptation using both analytical and

simulation studies.

1.5 Use of functional diversity in agriculture

The diversity for resistance genes has mainly been considered at two different scales so far:
plants and fields. At the scale of the plant, pyramiding strategies consist in combining several
resistance genes in the same variety. It is then supposed that the gene combination is more
difficult for the pathogen to overcome than an isolated resistance gene (but see Mundt, 1990).
Quantitative resistance is also sometimes considered as a resistance diversification strategy
since it relies on combinations of QTLs. Pyramiding major resistance genes or combining

QTLs for quantitative resistance require a major effort in plant breeding.

At the scale of the field, two approaches exist: multilines and cultivar mixtures. The idea
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of the multiline dates back from the end of the fifties. Here, on the contrary to pyramiding,
resistance genes are distributed in different lineages that are grown as a mixture on the
same plot. The interest is to obtain a composite variety with homogeneous individuals
for agronomic characters but diversified for disease resistance factors. This principle has
been applied in practise but in a limited way (Finckh et al., 2000). Indeed, selection and

maintenance over time of multiline cultivars represent a considerable effort.

Cultivar mixtures, as for multilines, are based on the idea of increasing functional
diversity for resistance to diseases. The principle is simply to grow in a mixture several
cultivars with different resistance genes. However, these cultivars must be compatible
regarding their agronomic behaviour and complementary according to their resistance to
disease (which implies a good knowledge of the pathogen population). Cultivar mixtures
generally present excellent yield stability with respect to their components grown alone, due
to compensation effects between the different cultivars in the case of biotic or abiotic stress
(Finckh et al., 2000). The efficiency of cultivar mixtures with respect to disease control
depends on several epidemiological parameters (Mundt, 2002). In particular, it is expected
to decline for higher autoinfection / alloinfection ratio, which is determined by both pathogen

and host physical and epidemiological characteristics.

In this PhD thesis, we consider the scale of agricultural landscapes. It was observed
empirically that the varieties used over large areas tend to become highly susceptible and,
conversely, that highly susceptible varieties could become more resistant when their frequency
in the landscape decreases. Inspired by such observations we dissect the mechanisms involved
in the diversity / susceptibility relationship at the regional scale with the aim of designing
sustainable strategies for disease control in agricultural landscapes.
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Chapter 2

Influence of cultivated landscape
composition on variety resistance: an
assessment based on the wheat leaf rust
epidemics

This chapter is based on an article published in New Phytologist by Julien
Papaix, Henriette Goyeau, Philippe Du Cheyron, Hervé Monod and Christian
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Foreword to chapter 2

Any modelling study have to rely with some observed reality. Our work begins with
observations on the wheat leaf rust pathosystem (Puccinia triticina/ Triticum aestivum).
The variety Soissons was highly popular in the 90’s and cover up to 40% of the wheat
surfaces at the scale of France. Due to its increasing susceptibility (as well as other factors)
Soissons became less and less popular and only represented 3% of wheat acreage in 2008.
These last years, technical institutes and agricultural cooperative have noted that Soissons
was in pass to appear resistant to leaf rust in field conditions, up to be envisaged it in
rotations for organic agriculture.

Based on this observation, we investigated further the dynamics of leaf rust at the scale
of France on the mainly grown wheat varieties. For this purpose, we jointly analysed three
large data-sets describing the wheat leaf rust pathosystem: (i) the frequencies of the most
frequently grown varieties in France; (ii) a ten-year population survey of P. triticina on each
of these varieties; and (iii) the assessment of the resistance level of these varieties in multi-
local trials during the same period of time. In order to link and analyse these data-sets, we

developed a hierarchical model within a Bayesian framework.

We show that among all compatible pathotypes, some were preferentially associated with
a variety, that the frequency of a pathotype on a variety was affected by the landscape varietal
composition, and that the observed resistance level of a variety was linked to the frequency
of the most aggressive pathotypes among all compatible pathotypes. As a consequence, the
landscape varietal composition was found to influence the resistance level (as measured in
the field) of the most frequently grown wheat varieties by altering the structure of pathogen
populations. In addition we illustrated that the quantitative aspects of the host-pathogen
relationship have to be considered in addition to the major resistance/virulence factors in
landscape epidemiology approaches.
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2.1 Introduction

In modern agriculture, structure simplification and genetic uniformity of cultivated
landscapes facilitate the spread of epidemics and the genetic evolution of pathogens towards
a higher virulence (Oerke and Dehne, 2004; Stukenbrock and McDonald, 2008; Margosian
et al., 2009). Nevertheless, both experimental and theoretical approaches support the
idea that increasing functional diversity based on resistance factors would make agricultural
systems less susceptible to diseases (Altieri, 1999; Zhu et al., 2000; Mundt, 2002; Bianchi
et al., 2006; Garrett et al., 2009). More generally, a relationship between functional diversity
and susceptibility to diseases had been demonstrated in ecological systems (Pautasso
et al., 2005; Keesing et al., 2006) and this relationship can be considered at different
spatial scales, one of them being the landscape (Gilligan, 2008). Studies in animal and
human epidemiology (Keeling, 1999; Tildesley et al., 2010) have shown that landscape
structure and connectivity may greatly influence pathogen invasion rates: the simplification
of agricultural landscape structure and composition, along with the decline of non-crop
habitat, has led to a decrease in natural pest control (Bianchi et al., 2006).

In plant pathology, the idea of designing variety management strategies at the scale of
cultivated landscapes has been around for a long time (Zadoks and Kampmeijer, 1977)
and was tested more than 20 years ago by Mundt and Brophy (1988) with a simulation
model. More recently, several authors have explored the potential of large-scale approaches to
optimise the deployment of host resistance. With an approach based on the metapopulation
theory (Hanski, 1998), Parnell et al. (2006) suggest that the spread of pathogen strains
that are resistant to fungicides would be more effectively controlled with a landscape-
scale approach; Margosian et al. (2009) assessed the connectivity, with regard to pathogen
transmission, of the four main crops in the USA; Skelsey et al. (2009) developed a spatio-
temporal model of the potato late blight pathosystem that will make it possible to evaluate
spatial deployment of host resistance in large growing areas. Nevertheless, the potential
of landscape epidemiology for exploring new strategies of host resistance management still
remains largely underexploited by plant pathologists (Plantegenest et al., 2007). A likely
reason for this is the difficulty to obtain and analyse experimental data at a large geographic

scale. A main objective of this study is therefore to contribute to filling this gap.

The development of simulation models to design variety deployment strategies in
agricultural landscapes requires the identification of the effects that take place at large scales
on host and pathogen populations. Most available datasets on pathogen population structure
and host resistance are based on qualitative host-pathogen interactions, as described by the
gene-for-gene model (Flor, 1971). It is well known that interactions between major resistance
genes and avirulence genes shape pathogen population structure at large scales in cropping
systems (Wolfe and Schwarzbach, 1978; Hovmogller et al., 1993; Rouxel et al., 2003; Goyeau
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et al., 2006; Barrés et al., 2008) and that, reciprocally, invasions of new virulent strains
render ineffective the corresponding resistance genes in the crops. Nevertheless, although the
qualitative host-pathogen interactions are necessary to describe pathogen populations and
to explain the observed resistance level of host varieties, they are not sufficient. Quantitative
interactions determined by pathogen aggressiveness (see Pariaud et al., 2009a, for a review)
and host quantitative resistance (Brun et al., 2010; Marcel et al., 2008) can play a major
role as well in shaping pathogen populations (Thrall and Burdon, 2003; Miller et al., 1998;
Pariaud et al., 2009b). In such a case, in addition to the binary response of the gene-for-gene

model, a continuous response has to be considered to describe the host-pathogen interaction.

In this paper, we test the hypothesis that landscape composition (in terms of host variety
frequencies) has an impact on the changes in the observed resistance level of the main varieties
grown by the farmers, at the French national scale. For this, we consider both qualitative
and quantitative information on the interactions between the pathogen and its host. Data
analysis focuses on a wheat ( Triticum aestivum) foliar disease, leaf rust, caused by Puccinia
triticina, a basidiomycete fungus (Bolton et al., 2008). This pathosystem has been studied
in depth. As a result, we had access to three datasets to carry out our analysis, related to:
(i) the frequencies of the most frequently grown varieties in France; (ii) a ten-year population
survey of P. triticina on each of these varieties; and (iii) the assessment of the resistance
level of these varieties in multi-local trials during the same period of time. In order to link

and analyse these datasets, we developed a hierarchical model within a Bayesian framework.

2.2 Material and methods

2.2.1 Data description

2.2.1.1 Wheat varieties

The French institute, FranceAgriMer, publishes annual statistics on the most frequently
sown wheat varieties in France (ONIGC, 2008). This dataset records the frequency, with
respect to the total French wheat acreage, of the ten most frequently sown varieties each
year. From 1999 to 2008, 30 varieties were recorded, representing between 53.8% and 76%
of the wheat acreage each year.

The INRA Grignon laboratory routinely identifies the major resistance genes present
in the cultivated varieties. Based on this information (Goyeau et al., 2006), the recorded
varieties were classified into five main groups. The first group contained the varieties bearing
the resistance gene Lr13, and the second group the varieties with Lrl4a. Groups 3, 4 and
5 contained varieties with the following combinations of resistance genes: Lr10 + Lr13,
Lr13 + Lr37 and Lr10 + Lr13 4+ Lr37, respectively. Since the frequency of the first group
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Table 2.1: Frequencies of the studied wheat varieties from 1999 to 2008 in France.

Variety Year

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Apache NA NA 0.08 017 024 023 023 014 0.11 0.11

Caphorn 0 NA NA NA 003 0.08 0.08 013 0.13 0.12
Charger 0.04 0.089 0.11 0.10 0.08 0.07 006 0.05 NA NA
Isengrain 0.084 0.114 0.14 0.14 0.09 0.06 0.07 0.04 0.034 0.03
Orvantis 0 NA NA 0.04 0.06 0.06 0.06 0.04 0.032 0.032
Soissons 0.153 0.108 0.11 0.09 0.07 0.05 0.05 0.04 0.038 0.03
Trémie 0.113 0.076 0.06 0.04 0.03 002 NA NA NA NA

Total frequency 0.39 0.387 0.50 0.58 0.60 0.57 0.55 0.44 0.344 0.322

was low and declining over the considered period, we limited our study to the last four

groups.

Among these groups, we focused on the most representative varieties (in terms of
frequency). Seven of them were chosen from groups 2, 3, 4 and 5: Isengrain and Soissons
(group 2), Charger and Trémie (group 3), Apache (group 4) and Caphorn and Orvantis
(group 5). These varieties represented between 32.2% and 60% of the French wheat acreage,
depending on the year (table 2.1). The other varieties, present at low frequencies, are
considered together in the model as a background host population. Because only the first
ten varieties are recorded each year in the wheat survey, the frequency of those varieties in
the cultivated landscape was not always known over the whole period. Apache was recorded
from 2001 to 2008, Caphorn from 2003 to 2008, Charger from 1999 to 2006, Isengrain from
1999 to 2008, Orvantis from 2002 to 2008, Soissons from 1999 to 2008, and Trémie from
1999 to 2004.

2.2.1.2 Puccinia triticina population

Isolates of Puccinia triticina are collected each year from a network of unsprayed nurseries
in 64 different locations throughout the country. A pustule is sampled at each site for each
variety and the isolate is increased for pathotype determination. A detailed description of
the French leaf rust survey is given in Goyeau et al. (2006). A pathotype, or phenotype for
qualitative virulence (Gilmour, 1973), is attributed to each isolate collected. The pathotype
indicates whether or not the isolate is able to overcome the major resistance genes.

A total of 2521 isolates were sampled on 124 varieties over the period considered (1999
2008). The varieties Soissons, Isengrain, Charger and Apache were sampled from 1999 to
2008, Trémie from 1999 to 2007, Orvantis from 2001 to 2008, and Caphorn from 2003 to
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Table 2.2: Number of collected isolates on each variety. Data from the French leaf rust
survey.

Variety Year

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Apache 3 4 19 31 41 35 51 47 71 43
Caphorn NA NA NA NA 13 23 44 45 64 41
Charger 2 9 1 18 27 17 26 26 24 8

Isengrain 48 o0 61 52 43 30 23 13 22 10
Orvantis NA NA 18 24 32 23 46 39 48 16
Soissons 53 58 63 47 45 30 46 37 44 31
Trémie 32 36 55 20 11 22 26 25 10 NA
Sample length 166 187 234 229 224 194 306 306 417 238

Table 2.3: Number of collected isolates for each pathotype. Data from the French leaf rust
survey.

Year
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
006zxx 0 0 0 3 4 22 50 37 69 23
016206 10 6 12 28 41 18 10 8 0 0
073100 36 76 98 67 51 31 28 31 15 9
077317 6 4 12 14 40 20 24 12 6 0
106314 0 0 0 0 2 14 38 87 109 104

Pathotype

2008 (table 2.2). Over the whole period, 196 different pathotypes were identified, among
which only a few had a high frequency (figure 2.1, table 2.3). We focused on the most
frequent pathotypes, referred to as 006zzx, 016206, 073100, 077317 and 106314 (see Goyeau
et al., 2006). The first pathotype (006zxx) aggregates three individual pathotypes (006106,
006504 and 006506) with very close phenotypic expressions and identical micro-satellite
profiles. The low-frequency pathotypes are not ignored by the model but are grouped
together and considered as a background pathogen population.

2.2.1.3 Disease scoring

The French technical institute, Arvalis Institut du Végétal, carries out annual trials to
evaluate the resistance level of the main wheat varieties under field conditions, in order
to produce technical advice for farmers. Trials are distributed over 40 different locations
throughout the wheat-growing areas in France. They consist of complete blocks containing
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Figure 2.1: Ordered frequencies and corresponding number of isolates of the pathotypes
identified in the Puccinia triticina survey over the considered period (1999-2008). The
pathotypes that were specifically considered in this work are indicated.
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2% 12m? plots (ten rows) sown with several varieties. The sowing date is chosen as an average
of the optimal sowing dates of all the varieties. Sowing density and nitrogen fertilisation are
determined according to local practises, based on soil type, expected yield, etc. The plots
are not sprayed with pesticides. The variety resistance level is directly evaluated from the
disease scoring as observed resistance level = 1 — disease score, where the disease score is
the proportion of diseased leaf surface. In this paper, ‘observed resistance’ is defined as the
resistance level of a variety as it is scored in the field (the term ‘field resistance’ is sometimes
used in the literature) and represents the variety resistance as it is perceived by farmers and
advisors. This ‘observed resistance’ is the result of environmental conditions, the genetic

resistance factors of the varieties and the genetic composition of the pathogen population.

Scoring of the leaf rust symptoms is performed once a year in May or June. The Apache
variety was scored from 1999 to 2008, Caphorn from 2001 to 2008, Charger from 1999 to
2007, Isengrain from 1999 to 2005, Orvantis from 2000 to 2008, Soissons from 1999 to 2008,
and Trémie from 1999 to 2004 (figure 2.2).

Disease scoring yields both qualitative information (presence/absence of disease, usually
referred to as ‘incidence’ in the phytopathological literature) and quantitative information
(level of observed disease, usually referred to as ‘severity’— figure 2.2). Absence of disease
results either from the absence of the pathogen itself or, more likely in the case of leaf
rust, from incompatibility of the pathotypes that were present at the scoring time with the
considered variety. As classically observed, disease incidence on a variety was significantly
linked to the proportion of virulent pathotypes in the pathogen population (figure 2.2). In
order to account for such effects, qualitative virulence is introduced in the statistical model
but, as stated before, we focus on the quantitative aspects of the host-pathogen relationship

when exploring the datasets.

2.2.2 Statistical modelling

We constructed a statistical model in order to jointly analyse the three large-scale
datasets describing the wheat leaf rust pathosystem. The model aims to look for the
existing correlations between the wheat variety frequencies and the P. triticina population
composition, in the one hand, and between the P. triticina population composition and
the observed disease severity on the main wheat varieties, on the other hand. The need
for a convenient and flexible framework to combine information from several parallel data
sources led us to develop a state-space model (SSM). In a SSM, the datasets are first
described by observation variables that constitute the observation process layer (figure 2.3).
The observation variables are then linked to each other via unobserved hidden variables,
classically referred to as ‘latent variables’ that constitute the system process layer. The

model thus consisted of two sets of equations. The state equations described the statistical
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Figure 2.2: Evolution across all observation sites of the Arvalis survey of leaf rust incidence
(open circles) and disease scores (closed circles), along with the frequency of pathotypes (open
squares) that are virulent for varieties Apache (a), Caphorn (b), Charger (c), Isengrain (d),
Orvantis (e), Soissons (f), and Trémie (g). The relationship between disease scores and time
was tested by a GLM with beta distributed errors. The slope was significantly greater than
0 for Orvantis and smaller than 0 for Soissons, with a 0.001 threshold.
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links between the latent variables. The observation equations linked the latent variables and
the observation variables. Parameters appear both in the system and observation process

layers.

With regard to the biological system, the model was broken down into two sub-
models (figure 2.3). The population composition sub-model was centred on the P. triticina
population composition and on its dependence on wheat variety frequencies. The disease
severity sub-model was dedicated to the influence of P. triticina population composition on
the observed leaf rust severity for each wheat variety.

We first present the main characteristics and assumptions of the model. We then describe
the population composition sub-model and the disease severity sub-model, how they are
connected and how the parameters can be interpreted in biological terms. Finally, we define
the criteria that were used to interpret the results. Additional technical information is given
in the appendix 1 of supporting information and table 2.4 provides a summary of terms and

parameters definitions.

2.2.2.1 Model characteristics and assumptions

The host landscape was considered as a set of V' = 7 varieties with year-dependent
frequencies and a background landscape with low but unknown variety frequencies. The
pathogen population was composed of P = 5+ 1 pathotypes: the five individual pathotypes
presented in the data description section, plus a generic pathotype that included all the
other pathotypes (figure 2.1). The pathotype distribution was assumed to be homogeneous
at the scale of the country (Goyeau et al., 2006). No explicit dependence from one year to
the next one was included (7.e. there is no time dependence in the model). Since data were
collected at the end of the epidemic season, the effect of the current year on the pathogen
population structure was assumed to be predominant over the potential effect of previous
years. Even though the analysis was done at the French national scale, we considered r =7
climatic regions: southeast, southwest, centre-south, centre, northeast, north and northwest
of France, in order to account for the influence of climatic conditions on disease development

in the disease severity sub-model.

2.2.2.2 Population composition sub-model

In the leaf rust survey, year t, N,, pustules were sampled on variety v and each one
was classified as one of the P pathotypes defined above. Let Y, ; = (Yyt1,- -, Yvep) be the
categorical random variable whose elements y,,, denote the numbers of leaf rust pustules
sampled on variety v, year ¢, and assigned to pathotype p. Let m,;, denote the proportions

of pathotype p on variety v, year t. Assuming that the probability for pathotype p to be
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Table 2.4: Definitions of the main terms and parameters used in this study.

Terms Symbols  Description /biological interpretation

Pathotype P Phenotype for qualitative virulence.

Disease score X Proportion of diseased leaf surface.

Observed resistance level — 1 — disease score (results from genetic resistance
factors of the varieties, genetic composition of
the pathogen population and the environmental
conditions).

Incidence - Presence/absence  of  disease  (qualitative
information resulting from the disease scores).

Severity — Level of observed disease (quantitative information
resulting from the disease scores).

Aggressiveness — Quantitative component of pathogenicity.

Virulence ) Capacity of a pathotype to overcome a major
resistance gene.

Basic affinity « Indication of a pathotype aggressiveness on a
variety at the landscape scale.

— 15} Response of the pathogen to changes in the
landscape composition.

— a’ Susceptibility of a variety confronted to the global
leaf rust population.

— at Year effect.

— a? Climatic region effect.

— b Effect of the proportion of a pathotype on the
observed disease on a variety.

— Ch For a given variety, minimal value of the posterior
probability that a particular parameter for a
pathotype is greater than the same parameter for
another pathotype.

— Cs For a given pathotype, minimal value of the

posterior probability that a particular parameter
for a variety is greater than the same parameter
for another variety.
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Figure 2.3: Graphical representation of the state-space model (p: pathotype; v: variety; ¢:
year; r: climatic region; e: trial in Arvalis survey). The system process is composed of the
latent variables (solid circles), Z,:, and S,;,, depending on unknown parameters (dashed
circles) and covariables (solid squares) via stochastic links (solid arrows). From these latent
variables, the unobserved variables of interest (solid circles), II,; (the vector of pathotype
proportions on variety v year ¢) and /i, ¢, (the mean proportion of diseased leaf area of variety
v, year t in region r), are deduced via a deterministic link (dashed arrows). The observed data
(solid square) are the visible part of the system process. In the population composition sub-
model, Y, ; classify the leaf rust pustules sampled on variety v, year ¢, for the p pathotypes.
In the disease severity sub-model, X, ;,. denote the disease score attributed to variety v
on trial e, year ¢ and region r in the Arvalis survey. The parameter o, (dashed circle)
represents the within trial variability. The other parameters are: ¢, (variety frequencies),
dypp (variety-pathotype compatibility), a,, (basic affinity), 3,, (sensitivity to changes in
variety frequencies), a? (variety effect), a; (year effect), a? (region effect) and b, , (sensitivity
to changes in pathotype frequencies).
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sampled only depends on its proportion, Y, ; has a multinomial distribution with parameters
Ny and Il = (my 1, -+ , My p). This led to the observation equation that describes the

P. triticina population composition:

Yy 4| Ny, Iy ~ Multinomial (N, IL,,,) .

In the state part of this sub-model (figure 2.3), the proportions m,,, were associated to
a latent variable Z,;,, that represents the relative population size of pathotype p on variety
v year t. Note that Z,;, is not the actual size of the pathotype population but a scale
variable instead. 7,;, and Z,, were linked through the state equations (see the appendix 1

of supporting information for more details):

1%
E[Zv,t,p] - Zv,t,p = Oyp + Z 5i,pﬁi,p¢i,t (av,pa 611,;)) > 07 (213)
i=1
Zv,t,p‘Zv,t,p ~ Gamma (Zv,t,pv 1) > (21b)
Zv,t,p

Tode = Zyga+ -+ Zysp (2:1¢)
In equation (2.1a), a,,, represents a basic affinity between pathotype p and variety v, and the
second term accounts for the effect of the landscape composition, variable ¢, ; denoting the
frequency of variety v during year ¢, and parameter (3, , denoting the sensitivity of pathotype
p to the frequency of variety v. Prior information on the gene-for-gene relationship was
integrated through the binary parameter ¢, , defined by:

1 if p and v are compatible,
61) [

)

0 otherwise.

Note that in equation (2.1a), there can be a non-zero basic affinity even if the variety and the
pathotype are incompatible (6,, = 0). This is to take the situation in which an incompatible
pathotype is nonetheless able to produce a few pustules on a resistant variety into account,

as sometimes occurs in field epidemics (Samborski, 1985).

In this statistical model, the links that were established between each component are
descriptive and the associated coefficients should not be directly assimilated to biological
parameters of the plant-pathogen relationship. Interpretation of equation (2.1a) can however
be made as follows. The basic affinity «,, of pathotype p for variety v is the part of E[Z]
that is not accounted for by the frequencies in the landscape of the seven varieties considered
in the analysis. A high «,, value means that pathotype p was always well represented on
variety v during the period studied, regardless of the landscape composition. Therefore, for a
compatible pathotype, this parameter provides an indication on the pathotype aggressiveness

on a variety, based on the size of its population on that variety and relative to the other
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pathotypes. Parameter f3,, quantifies the response of the pathogen to changes in the
landscape composition. A simple analogy can be made here with a linear regression, with «

being analogous to the intercept and S to the slope.

2.2.2.3 Disease severity sub-model

Let X, .. denote the disease score attributed in the Arvalis survey to variety v on trial
e, year t and in region r. Its expectation i, ;, was assumed to reflect the mean rust severity
on variety v that year in that region. The score X, ;, . varied in the [0, 1] interval but the
actual range of notation differed between trials. Consequently the scores were assumed to
follow a Beta distribution with mean value, 1, ,, and scale parameter o, depending on the

trial. This led to the observation equation that describes the disease scoring dataset:
Xv7t7T7€’/'I/v7t7T7 Ue ~ Beta (,Uv,t,r; Ue) ‘

The expected disease scores i, , were associated to two latent variables S,;, and S, .

through the state equations (see the appendix 1 of supporting information for more details):

P—1
E[Syir] = Sptr = ad +af + a2 + Z Ouiboimors  (ay,ap,al,byy) >0, (2.2a)
j=1
Sv,t,r|5v,t,r ~ Gamma (gv,t,ra 1) ) (22b)

Sv,t,r

_— 2.2¢c
Sv,t,r + S’{)’ty'/‘ ( )

Hotr =

Since disease scores are defined in the scoring procedure as the observed proportion of
diseased leaf area, f,¢, = E[X,,.] can be identified to the mean proportion of leaf area
that was diseased for variety v during year ¢ in region r. In equations (2.2), S, ;, represents
the diseased leaf area of a variety v, year ¢, in region 7 and S ;. denotes the healthy leaf
area. As for Z, S and S’ should not be considered as actual areas but as scale variables

Y a' and a? represent the variety, year and region

0

instead. In equation (2.2a), parameters a
main effects, respectively, and define a basal disease pressure. In particular, a” can be seen
as the basic susceptibility of a variety, confronted to the global leaf rust population over
the entire period considered. The last term of the equation accounts for the effect of the
pathogen population composition, where d still denotes 0-1 qualitative virulence. Here again,
b would be analogous to a slope, quantifying the link between the proportion of a particular
pathotype and the observed disease on a variety, whereas a” + a' + a? could be assimilated
to an intercept. The summation in equation (2.2a) is performed over the (P — 1) individual
pathotypes considered earlier. The index P identifies the generic pathotype that groups all
the other pathotypes that were present during the period. By construction, their joint effect

is included into the basal disease pressure.
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2.2.2.4 Index and criterion definitions

In the model defined above, the interactions between pathotypes and varieties are
quantified through the parameters 6, ,, with 6 in {c, 3, b}. In order to synthesise the resulting
information, two sets of criteria varying in [0, 1] were defined:

C1 (0;v,p) = min{Prob (6, , > 0,,)},
p
Cy (0;v, p) = min{Prob (0,, > 0,,)}.

Where Prob (e) denotes posterior probabilities. In the first case (Cy (6;v,p)), the variety v is
fixed and 6, , values are compared among pathotypes. In the second case (C5 (6;v,p)), the
pathotype p is fixed and 0, , values are compared among varieties. With these definitions,
large C1 (0;v,p) values identify the pathotypes that are most strongly linked to variety v
with respect to parameter ), whereas, in a symmetrical way, large C5 (0; v, p) values identify
the varieties to which pathotype p is the most strongly linked with respect to parameter 6.

In order to understand how the pathogen population responds to host frequencies in the
cultivated landscape, it is worthwhile to compare the effect of the basic affinity and the effect
of the landscape composition, as defined in equation (2.1a). The relative weights of both

types of effects were defined by

Qy ¢ D
W (a;v,t,p) = T )
av,p + Zizl 6i,p5i,p¢i,t
and
W (Bicv.tp) = i
Ay p + Zizl 5i,p5i,p¢i,t

2.2.3 Bayesian implementation

Inference on the parameters was performed by Bayesian statistical methods, resulting in a
joint posterior distribution (Gelman et al., 2004). This posterior distribution was computed
via a Markov Chain Monte Carlo (MCMC) method using Jags software (Plummer, 2010).

2.2.3.1 Prior densities

Only the 0 parameters were considered to be known a priori. For all the other parameters
no a priori information was assumed to be available and non-informative prior densities were
used: a, (3, a’, a', a® and b were defined as being uniformly distributed on [0, 10000] and the
trial variances o were defined as being uniformly distributed on [0, 1]. Tt was systematically
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verified that the upper bound of the uniform prior was large enough to have no influence on

the posterior densities.

For identification reasons, we fixed Z,; p = 1, ¥(v,t) and Sy.ir =5, V(v,t,7). This choice
was made after checking the data-fitting and performing sensitivity analyses. In particular, it
was verified that variation around the chosen values had little impact on the criteria defined

above.

2.2.3.2 MCMC convergence and mixing

Three MCMC-chains of 125,000 iterations were computed. Convergence was assessed
using the Gelman and Rubin statistic (R) which compares the within to the between
variability of chains started at different and dispersed initial values (Gelman et al., 2004).
Burn-in was set to 25,000 and thinning every 100 iterations resulted in acceptable mixing

and convergence (R < 1.1, for all the parameters).

2.2.3.3 Data fitting

To assess the fit of the model to the data, we used an approach known as posterior
predictive checking, which is a Bayesian counterpart of the classical tests for goodness-
of-fit (Gelman et al., 2004). The idea is to generate replicated data from the posterior
distribution of the parameters. If the model fits the data well, then the replicated data
should be similar to the observed data. For both pathotype proportion and disease score the
posterior distributions of the replicated data showed an adequate fit of the model (figure 2.4).

2.3 Results

2.3.1 Overview

In a first step, the model is used to explore the relationship between the host and the
pathogen populations. Two aspects are considered: the basic affinity between pathotypes
and varieties, described by parameters «, and the response of the pathogen to changes in
the landscape composition, described by parameters . Posterior densities of parameters «
and 3 are given in figures 2.5 and 2.6 but more synthetic information is provided by criteria
C1 (6;v,p) and Cy (0;v,p), with § = « or 3, which will be used to discuss how the pathogen
population responds to changes in the host population (tables 2.5 and 2.6).

In a second step, we will attempt to link the observed resistance in the field to the
composition of the pathogen population. Criterion Cy (b;v,p) (table 2.5) is used to describe
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Figure 2.4: Posterior densities of replicated data (grey bars), generated from the posterior
distribution of the parameters, and observed data (open circles). Example of the mean
disease score on variety Apache (a) and the proportion of pathotype 016206 (b). Grey
bars are median centred quantile intervals, from the darkest to the lightest: [0.45,0.55],
[0.35,0.65], [0.15,0.85] and [0, 1]). The model does not incorporate time-dependency between
years.
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Table 2.5: Values of the C criterion for each parameter and each pathotype-variety pair.
This criterion compares the parameter values among pathotypes for a given variety. Large
C1 (0;v,p) (with 6 in {«, 8, b}) values identify the pathotypes that are most strongly linked
to variety v according to parameter 6.

Apache Caphorn Charger Isengrain
« 15} b Q 15} b Q 15} b « 6 b
006xzz 0.40 0.21 0.36 0.19 0.29 0.32 0.23 0.16 0.53 0.00 0.11 -
016206 0.45 0.38 0.55 0.15 0.00 0.28 0.64 0.57 0.47 0.00 -
073100 0.55 - - 0.09 - - 024 - - 1.00 0.73 -
077317 0.37 0.62 0.45 0.06 0.00 0.68 0.36 0.43 0.45 0.00 0.27 -
106314 0.25 0.13 0.31 0.81 0.71 0.10 0.28 0.12 0.38 0.00 0.09 -
Orvantis Soissons Tréemie
« 16 b Q 15} b « 15} b
006zxx 0.78 0.26 0.20 0.00 0.14 0.04 0.03 0.18 -
016206 0.22 0.40 0.07 0.00 - - 0.51 059 -
073100 0.10 - - 1.00 0.70 0.95 0.49 -
077317 0.15 0.60 0.16 0.00 0.30 0.05 0.08 041 -
106314 0.08 0.16 0.80 0.00 0.11 0.00 0.03 0.16 -

a: basic affinity for a pathotype to a variety; (: sensitivity of pathotypes to changes in variety
frequencies; b: sensitivity of disease severity on a variety to the pathotype proportions.

how the disease level observed on a variety can be linked to the pathogen population

composition. Posterior densities of the parameters are given in figure 2.8.

2.3.2 Variety frequencies and pathogen population composition

2.3.2.1 Basic affinity («)

The C; criterion (table 2.5) indicates the dominance of a pathotype on a variety.
Pathotypes 106314 and 006xxz were dominant on the two most recent varieties, Caphorn
and Orvantis (released in 2000), respectively (Ci(«, Caphorn,106314) = 0.81 and
C1 (o, Orvantis, 006xxz) = 0.78). These two pathotypes are also the most recent ones
in the French P. triticina population (no isolate of these pathotypes were found before
2003 and 2002, respectively). Pathotype 073100 was clearly dominant on varieties Isengrain
and Soissons. Two pathotypes, 016206 and 073100, were dominant on Trémie. Pathotype
016206 was moderately dominant on Charger. No pathotype was found to be specifically
dominant on Apache. Note that the Trémie-073100 association was unexpected here
since, according to its qualitative virulence pattern, this interaction should be incompatible
(Goyeau et al., 2006). Nevertheless, infection of Trémie with that pathotype often produces
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Table 2.6: Values of the (5 criterion for parameter o and [ for each pathotype-variety pair.
This criterion compares the parameter values among pathotypes for a given variety. Large
Cs (6;v,p) (with 6 in {«, B}) values identify the pathotypes that are most strongly linked to
variety v according to parameter 6.

006xxx 016206 073100 077317 106314

Q 15} Q 15} « 15} « 1G] Q@ 15}
Apache  0.17 0.00 0.19 0.19 0.00 - 0.44 0.20 0.06 0.00
Caphorn  0.35 0.95 0.29 0.14 0.00 - 0.37 0.15 0.94 1.00
Charger  0.09 0.00 0.25 0.35 0.00 - 0.40 0.20 0.06 0.00

Isengrain  0.05 0.00 0.11 - 0.62 0.52 0.56 0.11 0.03 0.00
Orvantis  0.65 0.05 0.23 0.64 0.00 - 0.44 0.21 0.03 0.00
Soissons  0.04 0.00 0.01 - 0.38 0.48 0.44 0.13 0.02 0.00

Trémie  0.05 0.00 0.71 0.36 0.00 - 0.33 0.21 0.02 0.00

«: basic affinity for a pathotype to a variety; [: sensitivity of pathotypes to changes in
variety frequencies.

a few viable pustules. Since the frequency of 073100 in the pathogen population was high,
and the disease levels (total number of pustules) on Trémie were low, it was logical to detect
a link between Trémie and 073100.

Criterion Cy (table 2.6) makes it possible to determine the preference of a pathotype for
one or several of the seven varieties considered. Pathotype 006zxzx was found preferentially
on Orvantis but was also present on Apache and Caphorn. These three varieties are those
that share the Lr37 resistance gene. On the contrary, pathotype 106314 was only related
to Caphorn (Cs («, Caphorn,106314) = 0.94). Pathotype 073100 was highly abundant on
Soissons and Isengrain and was never related to the other varieties (Cy = 0). Pathotype
016206 was related to Trémie and was infrequently found on Isengrain and Soissons. Finally,

pathotype 077317 was identified as a generalist, with no preference for any of the varieties.

2.3.2.2 Response of pathogen to changes in landscape composition (/)

Changes in the frequencies of Isengrain and Soissons in the cultivated landscape strongly
affected the proportion of pathotype 073100 in the pathogen population (table 2.5). Changes
in the frequencies of Apache, Charger, Orvantis and Trémie mainly affected 016206 and
077317 (table 2.5 and figure 2.6) but 016206 was more especially affected by Orvantis
(table 2.6). As for a, pathotype 077317 was not specifically sensitive to any of these varieties
(table 2.6). Changes in the frequency of Caphorn mainly affected pathotypes 006zxx and
106314 (table 2.5 and figure 2.6) and, among the considered varieties, Caphorn was the most
influential variety on both pathotypes (table 2.6). Data analysis also suggested that changes
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Figure 2.5: Posterior densities of parameter «. The median (open circle) and the 95%
credibility interval (horizontal solid line) are indicated for each pathotype-variety pair.
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in Orvantis influenced pathotype 006xzz (figure 2.6). Note that, although pathotype 006zxx
presented a strong affinity « for Orvantis, it did not appear very sensitive to changes in the
proportion of Orvantis in the host population (table 2.6, parameter [3). A simple reason for
that is that Orvantis’s frequency did not vary much between 2002 and 2008 (table 2.1).

2.3.2.3 Relative effect of basic affinity and changes in variety frequencies (1)

Figure 2.7 shows the respective weights of the basic affinity W («;v,t,p) and of the
changes in the variety frequencies W (5, 4; v, ¢, p) on the population size of a pathotype on a
variety, as estimated by Z (equation (2.1)). Overall, figure 2.7 suggests that the frequency
of a pathotype on a variety is the highest when the landscape composition is the most

favourable, i.e. when W (a;v,t,p) is minimal.

The presence of 073100 on Soissons was mainly explained by its very high affinity for
this variety (figure 2.7a). On the contrary, the frequency of 106314 on the same variety
was mainly related to the frequency of Caphorn in the landscape (figure 2.7¢). The case of
077317 is more complex: changes in the landscape composition influenced this pathotype
through a combination of varieties that varied over time: mainly 7Trémie and Soissons in the

beginning of the period, then Charger and finally Apache and Orvantis (figure 2.7b).

In the right column of figure 2.7, we examine the situation of pathotype 106314. The
frequency of this pathotype on Caphorn was explained by both its affinity («) and the
increasing frequency of Caphorn in the landscape, with weights of comparable magnitude
(figure 2.7e). This suggests an amplification effect, with the increase in Caphorn in the
landscape (table 2.1) resulting in a higher frequency of 106314 on this variety. On Soissons
and Apache (figure 2.7¢ and d), 106314 increased from 0% in 2003 to 35% and 39%,
respectively, in 2008 and this increase was accounted for by the frequency of Caphorn in
the landscape. On Orvantis, pathotype 106314 also increased in frequency, probably for the
same reasons, but it only reached 13% of the pathogen population sampled on this variety at
the end of the period (figure 2.7f). This might be due to a competition with 006xzz, which
had a high affinity for Orvantis with respect to the other pathotypes (table 2.5).

2.3.3 Disease dynamics

2.3.3.1 Effect of pathogen population composition on observed resistance ()

For Isengrain and Trémie, very large credibility intervals were obtained for parameter b
(figure 2.8), probably because pathotypes 006xzz and 106314 were observed for only one or
two years on these varieties, which made the data difficult to exploit. On the other varieties,
three different kinds of responses were obtained. For Apache, Caphorn and Charger, the
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Figure 2.7: Observed proportion of pathotype p on variety v (closed circles) along with
associated model-based indices (bars), for selected (p,v) pairs. Pathotypes 073100 (a),
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disease scoring yielded constant values (figure 2.2) and it seems difficult to link the observed
resistance levels to a specific pathotype. Nevertheless, the disease scores on Apache could
be related to the proportions of pathotypes 077317 and 016206 and the disease scores on
Caphorn could be related to 077317 (table 2.5 and figure 2.8). It is interesting to note
that the b value for the pair Caphorn-106314 was very low, even though the frequency of
106314 was strongly linked to Caphorn (tables 2.5 and 2.6). This suggests that Caphorn,
when grown extensively, influenced the pathotype frequencies in the pathogen population
without being affected by severe epidemics itself. The second kind of response is that of
Orvantis, for which the observed resistance level was decreasing (so that the disease scores
kept increasing - figure 2.2). This was correlated to the increase in 106314 in the pathogen
population (C (b; Orvantis, 106314) = 0.80). The last response type is that of Soissons,
on which the observed resistance increased (and disease scores decreased - figure 2.2). This
could be linked to the decrease in the frequency of 073100 in the pathogen population
(Cy (b; Soissons, 73100) = 0.95).

2.3.3.2 Variety, year and region effects

The variety effect, a®

, can be used as a criterion to rank the varieties according to
their susceptibility to leaf rust, taking both qualitative and quantitative pathogenicity into
account. As expected, Isengrain and Soissons had the highest a® values and Caphorn the
lowest (figure 2.9a). The year effect, a' (figure 2.9b), accounted for the P. triticina population
breakdown in 2003 and subsequent changes in the following years (Goyeau et al., 2006).
The region effect, o (figure 2.9¢), was consistent with the known behavior of the pathogen,

notably that northern and southeastern France are not favourable to wheat leaf rust.

2.4 Discussion

2.4.1 Overview

In this article, we developed a statistical model in order to jointly analyse three large-
scale datasets describing the wheat leaf rust pathosystem. Many published papers establish
a relationship between the frequency of resistance genes in the host population and the
evolution of the pathogen population structure in terms of pathotypes, based on qualitative
virulence factors (e.g. Hovmgller et al., 1993; Goyeau et al., 2006; Kolmer, 2002). The
originality of the present approach was to account for the quantitative aspects of the host-
pathogen relationship and to relate host and pathogen genotype frequencies to observed
disease severity values. The analysis demonstrated that the landscape varietal composition

influences the observed resistance level of the most frequently grown wheat varieties by
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altering the structure of the pathogen population. Another conclusion of the study is that
quantitative effects (linked either to host quantitative resistance or pathogen aggressiveness)
played a major role in shaping the leaf rust population structure in France over the past ten

years.

2.4.2 Results interpretation

The analysis of the link between the pathogen population composition (in terms
of pathotypes) and the landscape varietal composition revealed preferential associations
between varieties and pathotypes that were not accounted for by the known compatibility
relationships based on avirulence-resistance interactions. The strength of these associations
is quantified in the model by parameter «,,, (see equation (2.1a)), which can be interpreted
as an indication of the aggressiveness level of a pathotype on a variety. Two compatible
(virulent) pathotypes may have very different «,, values on a variety, as in the case
of 073100 (seissons. 73100 = 2.2, ICy5% = [1.2,3.5]) and 106314 (aspissonsi06314 = 0.057,
ICy5% = [0.0023,0.30]) on Soissons. This means that, although 106314 is fully compatible
with Soissons according to the gene-for-gene relationship, it exhibits a low aggressiveness
on Soissons in the field, whereas 073100 appears as a very aggressive pathotype on that
variety. More generally, criterion C indicates that 073100 was largely dominant over all
other compatible pathotypes on Soissons and on Isengrain and, reciprocally, criterion Cy
indicates that 073100 was mainly found on these two varieties. This pathotype thus appears
as an aggressive specialist. On the opposite, according to the same criteria, pathotype 077317

was characterised as a generalist, with no preference for any of the considered varieties.

It then appears that quantitative effects that can be linked to the host quantitative
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resistance and the pathogen aggressiveness level had a major effect on the leaf rust population
structure in France between 1999 and 2008. Such interactions should be taken into account
for designing varietal allocation strategies but they are generally not documented. In a
recent study, Skelsey et al. (2009) measured aggressiveness traits (Pariaud et al., 2009b)
of two Phytophthora infestans isolates on five potato varieties in order to parametrise a
spatiotemporal model of potato late blight epidemics. This approach made it possible to
obtain specific values for different quantitative parameters underlying the host-pathogen
relationship but was restricted, for practical reasons, to a set of isolates and varieties that
was not necessarily representative of the field populations. Our approach can be seen as
complementary since it did not provide specific values of aggressiveness traits but globally
identified the associations between pathotypes and varieties at the landscape scale. Note
however that P. triticina has a clonal population structure (Goyeau et al., 2007), which
makes easier the establishment of associations between pathotypes and host genotypes.

Even though the basic affinity (in terms of our model) between a pathotype and a variety
strongly influenced the pathogen population structure, its effect was modulated by that of the
other varieties present in the landscape. Indeed, the analysis of the link between the pathogen
population composition and the varietal frequencies in the cultivated landscape showed that
a variety, by increasing the population size of a pathotype, may significantly influence the
composition of the pathogen population on other varieties. This effect is quantified in the
model by parameter § (see equation (2.1a)). For example, the variety Caphorn is expected
to have a strong influence on the presence of pathotype 106314 on the other varieties. This
can be seen in figure 2.7, where the presence of 106314 on Soissons, Apache and Orvantis is
mainly accounted for by the frequency of Caphorn in the landscape. The population size of
a pathotype on a variety thus resulted from its aggressiveness level on that variety as well
as from inoculum produced by other varieties, and the model was able to characterise both

effects.

Another major conclusion of our analysis is that the observed resistance level of a variety
could be linked to the composition of the pathogen population, which itself depended on
the landscape composition (as seen above). The link between the expected disease severity
on a variety and the pathotype frequencies is quantified in the model by parameter b (see
equation (2.2a)). It is usual to observe a resistance breakdown when a major resistance gene
is overcome by a new pathotype. In the case of quantitative resistance, a gradual decline is
expected when the frequency of aggressive individuals increases in the pathogen population.
A comparison of both situations can be found in Mundt (2002).

Some varieties maintained a fairly constant observed level of resistance over the period
considered (figure 2.2). For example, the fact that no pathotype presented a marked affinity

for Apache or was linked to its observed resistance level is consistent with a high level of
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quantitative resistance in this variety. The situation was different for Orvantis. This variety
was released in 2000 and it exhibited a decreasing level of observed resistance until the end of
the period studied (figure 2.2). This decrease could be attributed to pathotype 106314 and,
to a lesser extent, 006xxz and 077317. Both 106314 and 006xxx were sensitive to changes in
Caphorn’s frequency and it seems that the influence of Caphorn on the pathogen population
(see figure 2.7¢, d and f) contributed to the decline in Orvantis’ resistance.

Resistance breakdowns are frequent in crops, but it is less common to observe an increase
in the observed resistance level of a variety. This is, however, what happened here for
Soissons. The disease scores obtained on Soissons were strongly linked to the frequency of
073100 in the pathogen population (see parameter b in table 2.5) and, therefore, the relative
decline in 073100 accounts for the increase in Soissons’ observed resistance level. After 2002,
073100 was partly replaced by 077317 and 106314, both of which produce susceptible-type
lesions on Soissons (Goyeau et al., 2006) but appear to be much less aggressive than 073100
in the field (table 2.5) and, as a result, probably do not cause severe epidemics on that
variety. The increase in the frequency of 077317 and 106314 on Soissons can be attributed
to the influence of other varieties (figure 2.7b and c¢). The decrease of 073100 on Soissons
followed the decline in Soissons’ frequency after the mid-90s and was due to the fact that
this pathotype was not compatible with other varieties, except Isengrain. In recent years,
Soissons has been gradually rated as more and more resistant by extension services. We were
able to establish here that this increased resistance did not result from a global decrease of the

virulent population but was linked to the frequency of a single highly aggressive pathotype.

2.4.3 Limits

In order to build and estimate the model, it was assumed that the pathotype frequencies
were independent between years and that the geographical distribution of the pathotypes
was homogeneous at the scale of the country. Given that we worked at the country scale
and with data collected at the end of the epidemic season, it is reasonable to assume that
the effect of the current year on the pathogen population structure was predominant over
the potential effect of previous years. A preliminary exploration of the datasets supported
this hypothesis. The assumption of a homogeneous pathotype distribution at the scale of
the country was consistent with the population structures described for leaf rust (Goyeau
et al., 2006, 2007), and the fact that rust spores are dispersed over large distances (Park
et al., 2000). We also assumed that the five main pathotypes considered in the study were
pre-existing and homogeneously distributed at the country scale. Theoretical models predict
that local structures in the host population could be crucial in the invasion dynamics of
pathogens (Keeling, 1999; Park et al., 2001; Débarre et al., 2009). A possible improvement
of the analysis would be to test whether weakening the assumption of complete mixing of
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the population at the national level would alter the results.

Another limit of the study was due to boundary effects in the datasets. We worked on
a sequence of ten consecutive years, which was long enough to capture major changes in
the host and pathogen populations. Nevertheless, the beginning of the period may have
been influenced by what happened before 1999. Moreover, the model cannot estimate
the parameters for varieties that were introduced too late towards the end of the period
since this estimation requires a certain amount of information. In particular, a decrease
in the landscape representativeness occurred in 2007 and 2008 due to the rise of a new
variety, Sankara, which represented 8 to 9% of the wheat landscape those last two years.
This variety bears the same resistance genes as Caphorn and Orvantis. 1t is susceptible to
pathotype 106314 and high disease score values were recorded on Sankara in the field severity
assessments. It is therefore likely that this variety played a role in the multiplication of
pathotype 106314, and it is possible that the large influence on 106314 attributed to Caphorn
was partly overestimated if the effect of Sankara was confused with that of Caphorn. Based
on the existing dataset, the specific effect of Sankara cannot yet be properly assessed by the
model because the introduction of this variety in the system is too recent.

2.4.4 Conclusion

The approach developed here provided documented situations and information that can
be used with landscape epidemiology models for designing variety management strategies.
It also made it possible to identify major effects that have to be taken into account in
the simulation of large-scale epidemics. Based on parameters a and [, interaction groups
can be defined that account for both qualitative (gene-for-gene) and quantitative host-
pathogen interactions in a landscape: pathotype 073100 was clearly related to Isengrain
and Soissons; 006xxx was influenced by Caphorn and Orvantis and 106314 by Caphorn;
016206 was influenced by Trémie with a moderate influence of Charger; 077317 appeared as
a generalist and was not linked to a specific variety. This pattern can be linked to ecological
specialisation (Devictor et al., 2010). In that field of research, species specialisation indices
are commonly calculated at the landscape scale, e.g., to understand the impact of human
activities on the structure of natural communities (Clavero and Brotons, 2010). The present
study suggests that such specialisation indices could be relevant in plant epidemiology to
identify pathotype preferences in a heterogeneous host population and to better understand
and predict pathogen population dynamics over the years in cultivated landscapes.
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Foreword to part 2

As shown in chapter 2, landscape composition has a great influence on the genetic
structure of wheat leaf rust populations as they can be observed in the fields. In order to build
the model and estimate its parameters, it was assumed that the geographical distribution of
the pathotypes and the wheat varieties were homogeneous at the scale of the country. This is
quite a reasonable approximation for wheat leaf rust, because it has a large dispersal range.
However, when dispersal is limited, spatial structures of the host population are crucial for
the spread of epidemics and they determine the strength of competition between pathogen
strains. In this second part, we focus on the role of host spatial structures on the demo-
genetic dynamics of the pathogen population. For that purpose, we developed and analysed

a simulation model of epidemics spread in agricultural landscapes.

In chapter 3, we present the modelling framework, which is situated at the interface
between landscape ecology and metapopulation modelling. It is based on three components:
the representation of agricultural landscapes, the computation of dispersal rates from an
individual dispersal function and the life cycle of the organism under investigation. It is
also based on the constant search for complementarity between analytic and simulation-
based approaches. A study on epidemics thresholds illustrates this continuum between

mathematics and simulations.

Chapter 4 addresses the relationship between spatial structure of host populations and
epidemics spread over the landscape. We consider here that the pathogen population
has no genetic structure, 7.e. the pathogen population is composed by one strain only.
The landscape is composed of two varieties whose deployment is controlled through their

proportions and spatial aggregation.

Chapter 5 addresses the relationship between spatial structure of host populations and the
pathogen population composition. In this chapter the pathogen population is composed by
three strains that live in a two-host landscape. Two of the pathogen strains are considered as
specialists, 7.e. they have a better fitness on one of the hosts. The third strain is a generalist

that perceives the landscape as homogeneous.






Chapter 3

Integrated modelling of population
dynamics in an agricultural landscape

This chapter is based on an article project by Julien Papaix, Katarzyna
Adamczyk, Annie Bouvier, Suzanne Touzeau, Kién Kiéu, Christian Lannou and
Hervé Monod
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3.1. Introduction

3.1 Introduction

As advocated by Tilman (1999), consideration of the principles governing ecosystems will
provide precious insights to face the challenge of agriculture to improve productivity and
sustainability while decreasing its environmental impact. It will require shifting the scale
of crop protection investigations and strategies from the field to the agricultural landscape
(Plantegenest et al., 2007). Thus the concepts of landscape ecology, which focuses on
interactions between spatial patterns and ecological processes (Burel and Baudry, 2004;
Turner, 2005), will be essential to build a new paradigm for agriculture with consequences

on crop protection strategies.

Modelling processes that occur at the landscape scale is gaining more and more attention
from theoretical ecologists as well as agricultural managers. With (2002) studies how spatial
pattern, such as habitat fragmentation or resource distribution, affects the various stages
of the invasion process at the landscape scale. Loreau et al. (2003b) propose the meta-
ecosystem concept as a theoretical framework to study the dynamics and functioning of
ecosystems from local to global scales. In the agricultural context, several models were
developed in order to study the risk of gene escape from genetically modified crops (for
example Colbach et al., 2001a,b; Angevin et al., 2008) and to better control plant diseases
through variety management at the landscape scale (see for example the SIPPOM model for
phoma stem canker of Lo-Pelzer et al. (2010)).

Among these models, three approaches for spatial ecology can be identified
(Hanski, 1998). First, theoretical ecologists usually describe space as a simple continuum
or as a discrete lattice, or even as a 1D-environment. On the opposite, landscape ecologists
consider a very high level of details of the landscape physical structure. While the first
approach lacks applicability for managers, the second one lacks a sound theoretical basis
(Seppelt et al., 2009). The third approach is the metapopulation one (Levins, 1969) and
Hanski (1998) introduced it as an intermediate between the first two.

In a model based on a metapopulation structure, the landscape is considered as a
set of habitat patches, linked by dispersal and immersed in an unsuitable environment
with respect to the organism under investigation. A strong theoretical background has
been developed in such a context about population persistence and species coexistence
(Tuljapurkar and Caswell, 1997; Caswell, 2001). However, classical approaches based
on a given metapopulation structure may prove too schematic to cape with agricultural
landscapes. Indeed, landscape structure needs to be addressed more explicitly. Moreover,
one should be able to vary its main features in order to better study their influence on the
agro-ecological processes. The landscape must thus be seen as another model entity, made
of a patron around which variability can be added.
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Chapter 3. Integrated modelling of population dynamics in an agricultural landscape

In this article we propose a modelling framework in order to fill the gap between landscape
ecology and metapopulation modelling that takes advantage of theoretical results developed
in the metapopulation context while considering much more realistic landscapes. In the
following, we first expose how we represent an agricultural landscape. Then, we explain
how to model dispersal in order to couple such landscapes with classical matrix models for
population dynamics. Finally we propose a case study in order to show how theoretical
analysis and simulation approaches can be matched in a coherent way.

3.2 Modelling framework

3.2.1 Environmental heterogeneity of the agricultural landscape

Following (Turner and Gardner, 1991; Forman, 1995), landscape is defined here as
a ‘spatially and/or temporally heterogeneous area’ at any scale relevant to the ecological
process or organism under investigation. Note that on the contrary to Gustafson (1998) we
make a difference between spatial heterogeneity and temporal heterogeneity by identifying
three cases (figure 3.1): heterogeneity can be either purely spatial or purely temporal or

spatio-temporal.

This section deals with purely spatial heterogeneity. We first define heterogeneity and
how it is quantified. Then, we describe a landscape simulator which involves two steps
(Le Ber et al., 2009): the simulation of the physical landscape structure (i.e. the field
pattern) and of the qualitative landscape structure (i.e. spatial repartition of varieties).

3.2.1.1 Quantification of spatial heterogeneity

Ecologists distinguish the environmental (or abiotic) heterogeneity from the biotic
heterogeneity (Melbourne et al., 2007). Environmental heterogeneity deals with variation in
the physical environment, whereas biotic heterogeneity deals with variation in the occurrence
and abundance of organisms. We focus on environmental heterogeneity, including that due

to the host varieties.

Li and Reynolds (1994, 1995) based their definition of spatial heterogeneity on two
components: the factor of interest and its variability in space. The factor of interest could
be either continuous (like temperature) or discrete or categorical (like habitat types). The
same authors and then Gustafson (1998) proposed to quantify heterogeneity through non-
spatial components (composition of the environment) and spatial components (configuration
of the environment). For a categorical factor, the non-spatial component includes the

categories present and their quantities. Indices such as the number of categories, their
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Figure 3.1: Purely spatial heterogeneity (top line) deals with landscapes that do not present
temporal variations in crops. In landscape where heterogeneity is purely temporal (middle
line), crops change each year but a given year only one crop is cultivated. Finally, several
crops could be cultivated a given year and the landscape composition and structure could
change every year what leads to spatio-temporal heterogeneous landscapes.
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proportions, dominance and differentiation levels provide a quantification of this component
(O’Neill, 1988; Riitters et al., 1995). The spatial component relates to how categories
are dispatched in space. Several indices were developed in order to quantify the category
connectivity based on the geometry of aggregates or their aggregation level, taking or not
into account the differentiation level between categories (O'Neill, 1988; Riitters et al., 1995;
He et al., 2000; Ahlqvist and Shortridge, 2010).

These indices are called Landscape Pattern Indices (LPI) or landscape pattern metrics in
landscape ecology. Much bibliography has been dedicated to devising new LPIs and to avoid
some pitfalls (Tischendorf, 2001; Li and Wu, 2004), due to the high correlation between
LPI (Gustafson and Parker, 1992; Fortin et al., 2003) and the fact that they quantify a
complex combination of several heterogeneity components (Li and Reynolds, 1994; Peng
et al., 2010).

In an agricultural landscape, a major source of heterogeneity is varietal diversity and
this is a categorical factor. In addition, varieties are dispatched among a discrete number of
fields that have well-defined geometrical shapes. The framework we present just below relies
on appropriate algorithms and on relevant metrics to control the results when generating
agricultural landscapes. A first series of metrics characterises the field pattern. They include
non-spatial indices (number of fields, average area, area variance, shape indices) and possibly
spatial indices related to area or shape aggregation for example. A second series of metrics
relates to variety allocation and includes again non-spatial components (number of categories,
proportions) and spatial components such as the level of aggregation between fields with the

same variety.

3.2.1.2 Field pattern simulation

This section is essentially based on a unpublished work realised by Katarzyna Adamczyk
and Kién Kiéu from INRA-MIAJ laboratory.

A field pattern may be seen as a polygonal meshing of a plane (Okabe et al., 1992).
Several methods are currently used such as Voronoi tessellation or repetition of a particular
polygon. In the first case, space is partitioned using a set of points, or seeds. For each seed,
a polygon is defined as the part of space closer to that seed than to any other seed. In
the second case, one or several polygons are repeated in order to make a partition of space.
Le Ber et al. (2006) and Adamczyk et al. (2007) compared these approaches in the idea to
generate field patterns. The Voronoi tessellation method produces convex polygons with a
high number of vertices whereas the second method produces highly regular paving. Thus,
neither method was relevant for modelling agricultural landscapes.

In a polygonal tessellation, vertices are defined as the meeting points of two or more
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(a) (b) ©

Figure 3.2: V, Y and T vertices. (a): V vertex (i.e. degree 2 vertex). (b) and (c): two
kinds of degree 3 vertices, Y vertex (b) and T vertex (c)

segments. The degree of a vertex is its number of incident segments and it is equal to 2 or
more. A degree 2 vertex is named a V vertex (figure 3.2). A degree 3 vertex could be either in
Y orin T (figure 3.2). A T vertex has two of its incident segments aligned and, among all the
existing tessellations, they seem to be the most relevant for modelling field patterns. Arak
and Surgailis (1989) and Arak et al. (1993) proposed a T-tessellation model that defined a
probability distribution on the T-tessellations space by using an energy function. The limit
of the Arak’s model is that it produces highly irregular tessellations.

Based on Arak’s model, a T-tessellation algorithm was constructed by inserting in the
energy function terms that make it possible to control key LPIs of the field pattern. A
Metropolis-Hasting algorithm was used in order to explore the T-tessellation space using
three geometrical operations to generate a new tessellation (figure 3.3). The split operation
consists in splitting one polygon into two polygons. The merge operation consists in
suppressing a non-blocking segment. Finally, during the flip operation a blocking segment
is extended and one of the aligned segments is suppressed.

In practise, field pattern was controlled through three LPIs: the number of fields, the
field area variability and the square like form of fields. The first two LPIs are biologically
important because they control the frequency of fields with very extreme (small or high)
area. Between two different agricultural landscapes, field size could vary greatly but, within
the same agricultural landscape fields are generally close to rectangular and homogeneous
according to their area. The three LLPIs described above allow to quantify how much the
simulated landscape is far from this situation. In order to generate field patterns with
contrasted LPIs, three terms were added to the energy function: the number of segments, the
sum of square polygons areas and the sum of the acute angles. Figure 3.4 shows landscapes

for which one or several indices are controlled. Moreover, the stochasticity of the algorithm
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\ >

Figure 3.3: Elementary operations of the T-tessellation algorithm. From the left to the right:
split, merge and flip. Black solid lines: unmodified segments. Black dashed lines: removed
segments. Red solid lines: added segments.

Figure 3.4: Simulated field patterns with controlled LPIs. From the left to the right: the
number of fields is controlled, number of fields and variability are controlled, the three LPIs
(number of fields, area variability and square-like form) are controlled.

makes it possible to produce several field patterns having the same LPIs (figure 3.5).

3.2.1.3 Variety allocation

The landscape qualitative structure was described by two non-spatial indices, the total
number of varieties and their respective acreage proportions, and one spatial index, the

aggregation level of varieties.

The aggregation level of variety k, Al, is defined as the mean proportion, over the
landscape, of neighbour fields that share the same variety:
Zi,v(i):k Vik
Zi,v(i):k N; ’
where v(i) is the variety present on field i, vy is the number of fields that share variety k
in the neighbourhood of field ¢ and NV, is the total number of fields in the neighbourhood of

Al =
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NN

[

/’L‘_

L

Figure 3.5: Examples of field patterns having the same LPIs. Four field patterns of around
50 fields are presented. They were simulated by four independents MCMC chains starting
with four distinct initial values.

field 7. This aggregation index is highly correlated with variety proportions. In the case of
regular tessellation, the aggregation index of He et al. (2000), AI}, can be used for limiting
the correlation between aggregation and proportion.

The allocation of varieties to fields was performed by constrained optimisation using a
simulated annealing algorithm (Kirkpatrick et al., 1983). The energy function incorporated
a first term that controls variety proportions and a second one that controls variety
aggregations. Some examples of variety allocations are given in figure 3.6. Note that it
also exists advanced software that simulates crop allocation over years (see Castellazzi et al.
(2010) for an example on the LandSFACTS software).

3.2.2 Ecological heterogeneity and dispersal

3.2.2.1 Management scale and dispersal range

Fields are the management units but the population dynamics and dispersal may occur
at a smaller scale. As an example Soubeyrand et al. (2007) studied the spread of yellow
rust of wheat (Puccinia striiformis on Triticum aestivum) and estimated that spores were
deposited up to 150m from their source. In the following the term ‘field” still denotes the
management unit. In addition, we define the patch as a finer geographical unit homogeneous
both with respect to dispersal and to habitat type. The patch scale can be considered as
quite realistic or it can be considered as a discrete approximation to continuous space. The

important point is that the population is assumed to be perfectly mixed within each patch.

Patches can be generated by using 2D-meshing methods among which two are exposed
here. The first one is the Delaunay tessellation (Persson and Strang, 2004). The Delaunay
tessellation consists in paving each field with triangles whose circumscribed circle does not
contain any vertex of another triangle. The second method consists in defining a regular

tessellation whose elementary polygon area is adapted to the dispersal function and to define
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Figure 3.6: Examples of simulated landscape structures with two varieties (light (70%) and
dark (30%) grey) dispatched among 150 fields (around). The top line shows an increasing
variety aggregation level from left to right but the field pattern remains unchanged. The
bottom line shows three field patterns with the same level of variety aggregation.
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Figure 3.7: Real field patterns drawn together with patches. In the left panel patches are
determined using the Delaunay methods whereas in the right panel intersection with a regular
tessellation is used.

patches as the intersection between each field and each elementary polygon. Both methods
are illustrated in figure 3.7. The Delaunay tessellation becomes problematic for non-convex
fields due to the difficulty to fill the field in its entirety (figure 3.8). Nevertheless, it gives
patches that have roughly the same size, which is not the case with the second method
(figure 3.8). Besides, the Delaunay tessellation is longer to compute than the intersection

with a regular tessellation.

\ L

Figure 3.8: The left panel shows Delaunay tessellation on a non-convex field, the right panel
shows the same field intercepted with a regular tessellation. Blue dashed line: field, black
solid line, patches.
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3.2.2.2 Individual dispersal function

Dispersal is the spatio-temporal component of the spread process. Most spatially explicit
models for population dynamics consider migration as a reaction-diffusion model (Débarre
et al., 2009; Sapoukhina et al., 2010). Another more realistic way for modelling dispersal
at the landscape scale is the use of an individual dispersal function (IDF). An IDF is defined
as the probability density of the deposit position, (z,y), of a propagule emitted from a
punctual source in (0,0). In the case of air-borne dispersal, IDFs are classified in three
categories. Empirical models are made of a parametric probability density function based
on the observed data. QQuasi-mechanistic models take into account the major atmospheric
mechanisms.  Mechanistic models describe the physical movement of a particle in the

atmosphere with parameters that have a physical meaning.

In this work, we use empirical models because they involve less parameters and take less
time to compute. Several empirical functions are classically used (Tufto et al., 1997). They
differ by the weight that they give to far dispersal events. This is an important characteristic
to take into account because the form of the distribution tail determines the population
spread (Neubert and Caswell, 2000; Mundt et al., 2009). In fact, Neubert and Caswell
(2000) have found that when dispersal contains both long- and short-distance components,
it is the long-distance component that governs the invasion speed, even when long-distance
dispersal is rare. In addition, such empirical models may also involve anisotropies in distance
or density (Soubeyrand et al., 2007).

3.2.2.3 Dispersal rates computation

Let g(z,2') denote the individual dispersal function between spatial points z and z’. The
dispersal rates between patches is obtained by integration according to the formula

mij:/A/Bg(Hz—z’H)dz’dz. (3.1)

The integration is performed between pairs of points that belong to the area A and B of
patches i and j, respectively. Note that when using equation (3.1), the implicit assumption
is that the population mixes perfectly in each patch. By computing m;; over all pairs of
patches, we obtain now a dispersal matrix that could be used in classical matrix population
models.

The dispersal rates m;; in equation (3.1) were computed using the CaliFloPP algorithm
(Bouvier et al., 2009). This algorithm computes the integral of a point-wise dispersal
function between any pair of source and target polygons. Bouvier et al. (2009) showed that
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Figure 3.9: Dispersal function (left panel) and dispersal rates (right panel). The following
dispersal function was used: g(|| z — 2 [|) = 2% exp <§1—7; || z— 2| ), where || z— 2 || is the
0
euclidean distance between points z and 2/, where mg is the dispersal range (mg = 150m).

Dispersal rates from the patch situated in (0,0) were computed from the equation (3.1) using
the CaliFloPP algorithm.

the computation of particle fluxes between any pair of polygons can be done by computing
the integral of the individual dispersal function on the intersection between polygon ¢ and the
translation of polygon j by a displacement vector, u, for all @. The CaliFloPP algorithm uses
first algorithmic geometry tools in order to decompose, triangulate and intercept polygons
then numerical integration tools in order to compute the particle flux. Figure 3.9 displays
both the individual dispersal function g(.) and the dispersal rates m;.

When using integration with CaliFloPP, patch size has an influence on the spread speed
computed at the landscape scale, because the assumption of patch homogeneity implies an
additional dispersal within the patch, which is an artifact. This technical issue was not
studied in detail during the PhD, but it was checked that the patch size was sufficiently
small to avoid strong biases. As an illustration, figure 3.10 shows the effect of patch size on
the epidemic spread given an exponential dispersal function of range 150m. It shows that,
given this dispersal function, the influence of patch size is small provided the polygons of
the regular tessellations are smaller than 200m x 200m.

3.2.3 Sensitivity analysis at the landscape scale

In this PhD, modelling is not an end in itself, but a means to acquire better understanding
of complex spatio-temporal processes. To reach this objective, modelling must be completed
by sensitivity analyses, in order to explore how the model output behaves when parameters

or input variables of interest vary (Ginot et al., 2006).

Local sensitivity analysis (or elasticity analysis) is based on the computation of the model

derivatives with respect to model inputs of interest (Caswell, 2001). However, this derivative-

69



Chapter 3. Integrated modelling of population dynamics in an agricultural landscape

1.0
>

0.2

relative distance to initial inoculum
04 06 .
Il
\&

—o— grid step =2000m —— grid step = 130m
—A— grid step = 1000m —%— grid step = 100m
—+— grid step =400m —&— grid step = 80m
—>— grid step = 200m

0.0
1
-

T T T T
0 20 40 60 80 100

time

Figure 3.10: The evolution over time of the maximal distance from the inoculum to the
epidemic front plotted for several values of the regular tessellation step. Epidemics were
simulated using the model describe in section 3.3.2. Each points results from the median
computed over 20 simulations.

based approach is unwarranted when the inputs vary in large intervals or in discrete sets,
especially when the model is highly non-linear. Consequently, sensitivity analysis in this
thesis is based on the global approach advocated by Saltelli et al. (2000, 2008). In addition,
it is adapted to include the landscape itself among the factors of interest.

3.2.3.1 Global sensitivity analysis

In global sensitivity analysis, the influence of several input factors is studied
simultaneously. Here an input factor designates any model parameter or input variable
whose influence on the model output is of interest. Each input factor is given on a discrete
or continuous domain of variation, called the uncertainty domain. Several methods are then
available to quantify the influence of the factors (Monod et al., 2006; Iooss, 2011).

The variance-based methods are based on a decomposition of the model output variance
presented in Sobol (1993) or Saltelli (2000). When the input factors vary independently in
their uncertainty domains, the Sobol” decomposition leads to a unique decomposition of the

output variance:
Ve=Vi+...+ Vo +Vig+. . +Vian+...... + Vi, (3.2)

where Vj is the global variance, V; is the first order effect (or main effect) of input factor 1,

Vi ; is the interaction of order one between factors ¢ and j, and the rest of the decomposition
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consists of higher order interactions. When the model is stochastic, an additional term must
be added to the decomposition to reflect the average output variance when the input factors

are fixed.

The Sobol’ sensitivity indices are calculated as the ratios between the variance terms and
the global variance. For example, SI; = V;/Vi denotes the first order sensitivity index of
factor ¢ and SI; ; = V; ;/ Vi denotes the interaction sensitivity index between factors i and j.
Note that the sensitivity indices belong to the (0, 1) interval, that they sum to one, and that
a high index indicates a high influence on the model output. The total sensitivity index of
factor ¢ is defined as the sum of all first order and interaction sensitivity indices that involve

factor 4. It also belongs to (0,1) and gives a global measure of the influence of factor i.

3.2.3.2 Computations

In practise, the sensitivity indices cannot be calculated exactly and they must be
estimated after running simulations. This requires to perform a computer experiment by (i)
defining the input factors and their uncertainty domains, (ii) choosing the most appropriate
method and the number N of simulations to run, (iii) drawing a sample of size N in the
input domain according to the chosen method, (iv) running the N simulations according to
the sampling output, (v) calculating the estimated sensitivity indices according to the chosen
method.

The sensitivity analyses in the sequel of this PhD include between two and four input
factors with either discrete or continuous uncertainty domains. They are usually based on a

replicated complete factorial design. Details are given below and inside the chapters.

3.2.3.3 Landscape as a complex input factor

Landscape is characterised by its physical structure (the field pattern, here) and its
qualitative structure (the varieties and their allocation). This is a complex input factor
for sensitivity analyses and so it requires specific attention. Problems and possible
solutions associated with complex input factors are discussed by looss and Ribatet (2009).
Agricultural landscape structure and composition are integrated explicitly in the sensitivity
analyses performed in Viaud et al. (2008), Lavigne et al. (2008) and Colbach et al.
(2009). However these studies cope with deterministic models and with factorial designs
that involve a small number of levels per factor. In this PhD, we apply the method
to stochastic models, as in Lurette et al. (2009). In addition, we allow for a refined
exploration of the effects of continuous landscape features, by using more levels per factor
and applying the metamodelling technique based on polynomial chaos expansion of model
output (Sudret, 2008).
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In section 3.2.1, landscapes were described by landscape pattern indices (LPIs) such as
the number of fields or the aggregation level of the varieties. LPIs did not define a unique
landscape, as stressed by Li and Wu (2004). But they allowed to decompose the landscape
description into a part that can be measured and controlled through quantitative variables,
and a part that can be considered as residual variability when the quantitative variables
are given. Two main questions then arise when we study the influence of landscape on an
ecological process. First, how much is the process influenced by the LPIs of interest? Second,
how robust are the sensitivity analysis results to landscape residual variability? To answer
such questions, we include the LPIs of interest among the input factors of the sensitivity

analyses and we perform replications.

More precisely, the LPIs of interest are considered as input factors that can be controlled
at the sampling stage of the sensitivity analysis (figure 3.11). For example, the method
presented in section 3.2.1 allows to control the number of fields and some of their shape
characteristics when generating the field pattern. It is also possible to control the area
occupied by different varieties and the degree of aggregation when allocating varieties to
fields. Consequently, we consider each landscape as a random realisation around a ‘patron’
determined by specific values of the LPIs of interest. The sensitivity analyses then integrate

the landscape as follows:

1. (main sampling design) the LPIs of interest are fully integrated among the input factors

when constructing the sampling design and analysing the results;

2. (landscape replications) for each combination of the LPIs in the sampling design,
several distinct landscapes are generated;

3. (model replications) for each element of the sampling design and each landscape

replication, several simulations are performed.

This hierarchical structure of the simulations allows to calculate the sensitivity indices
associated with all input factors, including the LPIs. It also allows to assess the output
variability that can be attributed to landscape residual variability (through landscape
replications) and to other sources of model stochasticity (through model replications). The
key idea is to decompose the landscape description into a part that can be measured and
controlled through quantitative variables, and a part that is considered as residual variability
when the quantitative variables are fixed.

72



3.3.  Spatial thresholds for invasion

Variance
m ition
Landscapes decompositio
nnnnnnnnnnnn _ﬂ ‘
Descriptorsofthe = Smer @ e [l o
physical structure - .
o= —y—‘
v—[ i
Dest_:rip'Fors of the e .
qualitative structure -
~— 1]
°‘ Tp
Parameters of life Population dynamics
P y Outputs
cycle or other... model

Figure 3.11: Schematic representation of a sensitivity analysis with a landscape as an input
factor. Landscape descriptors allow to define a variety of landscapes which are used as an
input of the model. The sensitivity of model outputs to landscape descriptors and other
parameters could then be done through variance decomposition.

3.3 Spatial thresholds for invasion and simulations of
epidemics in agricultural landscapes

In this section, we used the approach developed before and we provide a study that aimed
to compare epidemics simulations to thresholds for pathogen invasion at the landscape scale.
Classically, the basic reproductive number, Ry, is used in order to predict the occurrence
of epidemics (Gilligan and van den Bosch, 2008). Ry gives the number of potential new
infections during the average duration of the infectious period of a single infected host. For

the epidemics to occur, the basic reproductive number must be greater than 1.

We developed here a population dynamics model for a pathogen foliar fungus on an
agricultural landscape. We used both a deterministic version and a stochastic simulation
model. The first one made it possible to define thresholds for invasion at the landscape scale
that took or not into account the initial location of inoculum. We show here how spatial
structure of landscape heterogeneity influence the epidemics spread and compare analytical

to simulation based results.

3.3.1 Landscapes

Let us consider a 2000 x 2000m? agricultural landscape composed of around 150 fields.

Two wheat varieties are cultivated in equal proportions (50% of the total acreage for
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Figure 3.12: Two varieties are dispatched in equal proportions but with an increasing
aggregation level from the left to the right (mixed, mosaic and grouped).

each variety) but with three different allocation strategies: mixed, mosaic and grouped
(figure 3.12). In the first allocation strategy, AI = 30% of field neighbours share the same
variety. The aggregation index AT is equal to 70% for the mosaic strategy and to 90% for the
grouped one. In this example, two fields are considered as neighbours if the shorter distance
between edges is lesser than 50m. Five field patterns were generated and for each of them two
realisations were simulated for each allocation strategy. Thus, for each allocation strategy,
ten different landscape structures were generated. Fields were subdivided into patches by

intercepting field patterns with a regular grid of 100 x 100m? squares.

3.3.2 Model

The model is a stochastic and discrete time HLIR model (Madden et al., 2008) with static
infection sites and spores as a propagule state. It describes the evolution of the infection
sites in each of the following states: healthy sites (H), contaminated sites (S’), latent lesions
(L), infectious lesions (7) and removed sites (R). The carrying capacity of patch i, Kj, is
fixed and proportional to the area of patch i. We consider a pathogen population composed
by one strain only and only the infection efficiency was considered variety-dependent.

Let v(7) be the host type of patch . In this patch, a healthy site on patch 7 is contaminated
by a spore with probability m <w> (see supporting information, appendix 2). Spores that
do not succeed to contaminate an infection site are removed. A contaminated site becomes
infected with probability e,;, the infection efficiency. When infected, the site remains latent
during 7 days before producing spores. After T" days of sporulation, the site is removed. An

infectious site produces r spores per day. Spores remain in patch ¢ with probability m; and
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disperse to patch j with probability m,;. The complete description of the model is given in

supporting information (appendix 2). Table 3.1 gives the transitions between each state.

The function 7(.) can take different forms that reflect heterogeneity among sites. When
Hi(tfl) o Hi(tfl)
K; - 7K,
an individual plant, however, not all sites are equally accessible since the plant cover is

, all the sites have the same probability to be contaminated. On

heterogeneous. Here we considered that the last infection sites are more difficult to reach.
In order to render this effect, we used the following sigmoid function for =(.):

exp ( - m:“) — exp(—k)

m(z)=1- 1 — exp(—k)

)
where parameters k > 0 and o > 0 determined the sigmoid form. This allows to simulate
smoother and probably more realistic epidemic dynamics.

The deterministic version of the model describe above is displayed by figure 3.13 and is

synthesised by the following system of equations:

(T = —ewy T romy -
To= en myremy L=t
(3.3)
% - %'Lj_ilf'[j?
\ % - :lr'lj-

Table 3.1: Transitions of the stochastic model on a given patch 1.

Description Notation Transition

Spore cloud Si(t) r Zjvzl Li(t — 1)my;
Contaminated sites Si(t) min (Bin (H;(t — 1), m(t)), Si(¢))
New latent lesions Hi(t —1) — Li,(t) Bin (S/(t), eus))

New infectious lesions  L;(t —1) — [;(t) Bin(L;(t—1),1 — e_%>

New removed sites I(t—1) = Ry(t) Bin (Lt —1),1— e—%)

3.3.3 Invasion thresholds

From the model defined by the system of equations 3.3, two invasion thresholds can be
defined. The first invasion threshold, R(()l), is based on the next generation matrix (van den
Driessche and Watmough, 2002; Fulford et al., 2002). The next generation matrix gives
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Figure 3.13: Graphical representation of the population dynamics model. H;: number of
healthy sites in patch ¢, L;: number of latent sites in patch 4, I;;: number of infectious sites
in patch ¢, R;: number of removed sites in patch ¢, S;: number of spores in patch ¢, S:
number of contaminated sites in patch 7. 7: latency period, T': infectious period, r: spore
production per lesion per day, m: dispersal rates, 7(.): contamination function, e: infection
efficiency.

the number of infection sites in each state and for each patch at time t from the same
quantities at time ¢ — 1. Rél) is thus given by the dominant eigenvalue of the matrix whose
elements in line ¢ and column j are T're,;ym;; (see supporting information, appendix 3). In
the general case, there is no explicit formulation of R(()l) but it can be computed numerically.
Rél) supposed that epidemics start with an infinitesimal infectious lesion dispatched among
all patches.

The second invasion threshold, R(()Q), takes into account the spatial location of the
inoculum. RéQ) was defined using an heuristic proposed by Park et al. (2001): a single
infectious lesion in patch ¢ gives birth to rT'e,ym;; potential new infectious lesions in the

same patch ¢ and to rT'e,jym;; potential new infectious lesions in the patch j. Thus, a single
P

infectious lesion give potentially birth to a total of R((]2) = rTZev(j)mij new infectious
j=1
lesions.

3.3.4 Simulations context

Epidemics were simulated over 1000 time steps using the stochastic version of the model
(Table 3.1). The number of spores produced by a single lesion during one day was set to
r = 2. Lesions were supposed to remain latent during 7 = 5 days before producing spores
during 7" = 10 days. On variety Vj, the infection efficiency was fixed to ey, = 0.04 that
corresponds to a non spatial basic reproductive number equal to 2 x 10 x 0.04 = 0.8. On
variety V5, the infection efficiency varied from ey, = 0.02 to ey, = 0.2, giving a non spatial

reproductive number varying from 0.4 to 4. Epidemics were initialised by 1 infectious lesion
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in one V) patch chosen at random. Model stochasticity was taken into account by simulating
two epidemics with two different starting points on each of the 10 landscape structures of

one allocation strategy.

The following isotropic and exponential individual dispersal function was used:

2m 2
ol ==+ ) = 25 exp (22 )12 1)

0
where ||z — Z/|| is the distance between z and 2z, and my is a range parameter. Dispersal
rates among patches were computed using CaliFloPP (see section 3.2.2.3). We consider a
short (mp = 150m) and long (mg = 1500m)dispersal range.

3.3.5 Results

3.3.5.1 Comparison of invasion thresholds

Figure 3.14 compares predictions by the two invasion thresholds. First, a clear difference
appear between R((]l) and R((]Q) particularly when dispersal is limited. This difference is visible
not only in the values of R(()l) and R(()2) but also in their predictions of pathogen invasion. For
example, R(()Z) decreases when aggregating varieties and it predicts less and less epidemics
whereas R(()l) increases and its predictions remain unchanged. This was due to the fact that we
inoculate a V; field for which the non spatial basic reproductive number was lesser that one.
So, by grouping varieties the epidemics are less probable because the pathogen encounter
more often the host for which it is non efficient. Finally, R(()Q) was found highly variable
between simulations which is consistent with a determinant role of local spatial structures in
the epidemics viability. Differences between R(()l) and RE)Z) decrease when increasing dispersal
range. They are roughly equal and predict epidemics in the same way for mixed strategies.
This could be explain by the fact that a mixed strategy along with a long dispersal range
context corresponds to the more non-spatial case. Thus, the initial position of inoculum

does not import.

3.3.5.2 Comparison between invasion thresholds and simulated epidemics

Figure 3.14 allows to compare invasion thresholds to simulated epidemics. When dispersal
range was low, local structures played a leading role and simulated epidemics were globally

)

consistent with R(()Q) predictions. On the contrary, R(()1 was far from simulations results due
to the fact that it does not consider the initial position of inoculum. This is particularly the
case when grouped strategies were used. When dispersal range was large, R(()2) predicted
simulation results correctly for grouped strategies but not in the case of mixed ones.
Moreover, while R(()l) and the observed probability of an epidemics to occur increased by

aggregating varieties, R((]2) decreased by aggregating varieties.
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Figure 3.14: Each panel draws R(()l) (black closed circles) and R(()z) (red closed circles) values
along with their respective predictions (black and red dashed lines, respectively) of pathogen

invasion and the pathogen invasion observed on simulated epidemics (open circles) against
150m), bottom line: large dispersal range

ey,. Top line: short dispersal range (mg
(mo = 1500m). Left column: mixed variety allocation strategy, middle column: mosaic

variety allocation strategy, right column: mosaic variety allocation strategy. For each ey,

value, 10 landscape structures X 2 inoculum locations were available.
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3.3.5.3 Conclusions on the results

Classically, invasion thresholds are computed using the next generation matrix. This
method takes into account the spatial organisation of hosts but not the spatial structure of
the pathogen population. The rarity hypothesis from which such invasion criteria are based
is difficult to characterise in the context of spatially structured populations: few individuals
could be dispatched in several patches or in one patch only. Using the heuristic of Park et al.
(2001) (but see Massol et al., 2009) we show here that initial spatial location of inoculum
is crucial for predicting pathogen invasion at the landscape scale. The effect of local spatial

structures is decreased by increasing pathogen dispersal.

We also compared prediction by invasion thresholds with simulated epidemics. The
basic reproductive number that takes into account the spatial location of the inoculum
(R(()2)) was more consistent with the simulation study, which reinforces the importance of
taking into account of spatial structures in the pathogen population. Moreover, both criteria
predicted more epidemics than we observed on simulations with the stochastic model. That
is consistent with the fact that stochasticity at the early stage of population growth is an

important force to take into account.

In this study, only one pathogen strain was present. Results presented here suggests
that spatial structure could be of prime importance when several strains are in competition.
In particular for studies on mutant invasion when abundance between pathogen strains is
strongly unbalanced. In fact, in such a context stochasticity could play a leading role due to
the possibility of foundation effects (see chapter 5).

3.4 Discussion

We have presented an integrated modelling framework at the interface between
metapopulation-based models and landscape ecology approaches (figure 3.15). This is an
integrated framework because it makes a coherent link between field scale and a finer scale
associated with ecological processes. What does interface mean here? Considering more
complex landscape structures makes numerical investigation and simulation based methods
unavoidable. However, it is necessary to ensure coherence with analytical solutions when
they are available. The first step of the model consisted in defining the environment and
the habitat distribution. The agricultural context has naturally led to consider space as
both continuous and structured by 2D-objects, fields. Then, we used a particular algorithm,
CaliFloPP (Bouvier et al., 2009), in order to compute patch-to-patch dispersal rates from
an individual dispersal function (IDF). Considering an IDF allows to model migration in a

much more realistic way. Finally, from these dispersal rates, any kind of metapopulation

79



Chapter 3. Integrated modelling of population dynamics in an agricultural landscape

model can be immersed into a realistic landscape.

The CaliFloPP algorithm performs the integration of an individual dispersal function
between any pair of polygons. Respectively to raster approaches it insures non biased
dispersal rates for three reasons. First, raster methods suppose that dispersal occurs from
barycentre to barycentre. However, due to the high non-linearity for short distances of the
IDF, dispersal rates can be biased. Second, by integrating the IDF, the geometrical form
of polygons is taken into account, which is not the case otherwise. Third, if fields are not
contiguous but separated by a gap or a road, this is automatically taken into account.

Field patterns are obtained by using a T-tessellation algorithm that controls the polygon
number, their form and their area variability. This approach was chosen in order to obtain
field patterns sharing common characteristics but all different from each other. As we
explained, such landscape replicates are of prime interest for testing the robustness of results
or to study the variability of a model output between a set of landscapes. However, some
structures in the landscape can not be generated. With the development of geographical tools
another approach would be to search in landscape data-bases landscapes that correspond to
the desired LPI.

In plant pathology, the scale at which control strategy is defined has proved crucial for
its effectiveness (e.g. Gilligan et al., 2007). More generally, the effect of spatial scale is
an important issue in landscape ecology (Ricklefs, 1987). The metacommunity concept
(Leibold et al., 2004) appears interesting in order to operate the transition into a regional
scale model. A metacommunity is defined as a set of local community that are linked by
dispersal. In this context, the transition to larger scales would be done by considering a
set of landscapes interconnected via dispersal. This hierarchical concept could appear useful
to identify the role of spatial heterogeneity at different scales on pathogen invasion at the
regional scale (Melbourne et al., 2007).

The issue of data-based inference must also be considered. The modelling framework
exposed here could help to find the most influential features in the landscape on the
population dynamics and spread in order to guide further statistical investigation or set
up experiments (Fortin et al., 2003). In addition, the increasing development of statistical
inference when likelihood is not available (Beaumont, 2010; Hartig et al., 2011) offers an

interesting framework for parameter estimation at the landscape scale.
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Figure 3.15: Modelling framework.
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Chapter 4

Population spread at the landscape
scale: How could spatial heterogeneity
decrease disease severity?

This chapter is based on a article project by Julien Papaix, Suzanne Touzeau,
Hervé Monod and Christian Lannou
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4.1. Introduction

4.1 Introduction

The strong genetic uniformity of agricultural systems, whatever the scale considered,
facilitates the spread of diseases. The threat to agricultural production posed by plant
pathogens is such that intensive production relies on massive pesticide inputs. Plant breeding
has been a considerable success in terms of yield improvement but has not been able to
durably reduce the disease risk, mainly because pathogen have easily adapted to the resistant
varieties. Considerable efforts are made in two directions: producing genotypes with a more
durable resistance to pathogens and developing intelligent strategies, mainly based on the
idea of functional diversity, for using these varieties.

It is now well established that increasing host diversity reduces the rate of disease
transmission, and this defines the term ‘functional diversity’ in the context of plant pathology.
This relationship between host diversity and disease transmission is mainly accounted for by
‘dilution effects’ (Keesing et al., 2006) even though other mechanisms are involved that can
be of importance in crops (Chin and Wolfe, 1984; Lannou et al., 2005). Dilution effects
are based on the fact that, in a diversified host community or population, even though all
individuals are susceptible to one or several pathogen genotypes, each host individual is
resistant to a fraction of the pathogen population. Moreover, a host genotype represents a
habitat to which the different compatible pathogen genotypes are more or less well adapted.
Thus, increasing genetic diversity (for resistance characters) in a host population results in
reductions in the pathogen transmission rate that can considerably impact the final epidemic
severity (Burdon and Chilvers, 1982; Mundt, 2002). In natural ecosystems, dilution effects
participate to the notion of ‘insurance hypothesis’ that links diversity and resistance to
fluctuations of biotic or abiotic variables in the environment (Mitchell et al., 2002; Pautasso
et al., 2005).

In plant pathology, the idea of disease management based on mixtures of susceptible
and resistant hosts has led to numerous studies and applications (Lannou et al., 1994;
Garrett and Mundt, 1999; Zhu et al., 2000; Mundt, 2002). The effectiveness of such a
control strategy has been demonstrated for foliar diseases (Browning and Frey, 1969), first
without considerations of the host and pathogen spatial distribution. Then, in a series of
experimental and simulation studies, Chris Mundt and coll. showed how the host genotypes
spatial arrangement and the pathogen distribution largely account for the effectiveness of the
mixture strategy (Mundt and Leonard, 1985, 1986; Mundt et al., 1986) and he introduced
the notion of genotype unit area (GUA, contiguous area occupied by a single host genotype).
More recently, Sapoukhina et al. (2010) showed with a spatially explicit model that, when
long dispersal events occur, host mixture hamper disease spread only when susceptible units
are separated by a minimal distance whereas for short-distance dispersal of the pathogen,

random mixtures are the most efficient. But in a practical situation, the mixture layout
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results more of a compromise between theoretical consideration and farming practises (Zhu
et al., 2000).

In the context of variety mixtures, the notion of functional diversity only applies at
the field scale. It is however strongly suggested that host diversification at a larger scale
could be of great interest for reducing epidemic severity in agricultural systems (Mundt and
Brophy, 1988; Zhu et al., 2000). Few experimental data are available at such scales (but
see Papaix et al., 2011), which probably explains the low interest of plant pathologists for
landscape epidemiology approaches so far (Plantegenest et al., 2007). At the scale of a
large production area, the host unit is the field (whether it is sown with a single genotype or
a mixture) and the expected dilution effects rely on the landscape connectivity, relative to
the pathogen dispersal. In general, habitat connectivity is crucial for the spread of spatially
structured populations (Sondgerath and Schréder, 2002; Condeso and Meentemeyer, 2007).
At the landscape scale, the connectivity degree measures whether the landscape structure
facilitates or impedes movements among habitat patches (Taylo et al., 1993). It depends
on four components: (1) the proportion and (2) the aggregation level of habitat types, (3)
the ability of the organism to develop on each habitat and (4) to disperse among them
(With et al., 1997). Several models in the ecological literature study the effect of habitat
connectivity on the spread of an organism at the landscape scale and conclude that habitat
structure interacts strongly with the dispersal ability of the organism (Hale et al., 2001;
With, 2002). In agricultural landscapes, most of the space is devoted to a few host
species or varieties, which makes the connectivity of pathogen habitats very high (Margosian
et al., 2009). In this context, a general objective of landscape epidemiology is to evaluate
whether this connectivity can be reduced with a significant impact on epidemic severity.

Landscape epidemiology approaches are still scarce in the phytopathological literature.
Parnell et al. (2009), for Asiatic Citrus Canker, and Skelsey et al. (2010), for potato late
blight, are two recent examples. Parnell et al. (2006) study the spread of fungicide resistant
pathogen strains and show that its ability to invade depends on an interaction between the
proportion of suitable habitat in the landscape and the intra-field reproductive capacity of
the pathogen. Nevertheless, they do not consider explicitly the pathogen dispersal capacities
and the spatial distribution of sprayed fields. Skelsey et al. (2010) shows that clustering
potato cultivation in some parts of a region enhanced the spread within such a cluster while
it delayed spread from one cluster. However they do not specifically consider the effect of

differences in the resistance levels of the varieties on the epidemic spread.

In this article, we study how the four above cited components of habitat connectivity
determine the spreading capacity of a pathogen population at the landscape scale. To this
aim, we developed a spatially explicit model representing the population dynamics of an

air-borne foliar disease in an agricultural landscape by coupling tessellation methods (Okabe
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et al., 1992) and classical matrix population models (Caswell, 2001). We first present
the modelling approach and the analyses performed on the model. Then the results of the
simulation study are shown and discussed.

4.2 Materials and methods

4.2.1 Population dynamics model

We describe here an air-borne plant parasite spreading model on a spatially explicit
agricultural landscape. The landscape is considered as a set of fields represented by polygons,
each containing a susceptible or a resistant variety. Field patterns are obtained with
tessellation methods. Varieties of the host plant are allocated to the field with a control of
the variety proportions and aggregation levels. In order to describe the pathogen dispersal at
a realistic scale, the fields are subdivided into smaller units named ‘intra-field patches’ and
the pathogen disperses among patches, whether intra-field or between-fields. The pathogen
population dynamics is simulated with a matrix population model structured by the patches.

The dispersal rates among patches are computed from an individual dispersal function.

4.2.1.1 Host environment

The host environment is a 2000 x 2000m? region composed of about 150 fields. The
field sizes and shapes are defined with a tessellation method that consisted in meshing the
square region while controlling both the number of polygons and their geometrical form (see
chapter 3). The tessellation algorithm is based on Markov Chain Monte-Carlo (MCMC)
methods. Thanks to the stochasticity of the algorithm, several field patterns with the same

spatial characteristics (number of polygons and their form) can be generated (figure 4.1).

Since pathogens usually disperse at a smaller scale than the whole field, at the temporal
scale considered, each field is divided into patches by intercepting a regular grid of 100x 100m?
squares with the whole simulated area. The patch is then the spatial unit of the system and
the pathogen population is supposed to be perfectly mixed at the patch level. The pathogen

disperses among the patches and this simulates both intra- and between-field dispersal.

Each field contains either a susceptible (SV') or a resistant (RV') variety (all patches of
the same field contain the same variety). The spatial arrangement of SV and RV among
fields is described by their proportions and their aggregation level, at the landscape scale.
The variety proportions are calculated from their respective total acreage in the landscape.
For each field of the landscape, the proportion of neighbour fields (i.e. fields distant from less

than 50m) containing the same variety is computed and the average value of this variable
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Figure 4.1: Example of landscapes with different variety allocations: a, 30% of RV and
mixed strategy; b and d, 30% of RV and grouped strategies; ¢, 30% of RV and mosaic
strategy. Panels a and b have the same field pattern, differing from ¢ and from d.

defines the aggregation level of the varieties. SV and RV are dispatched among fields using
a simulated annealing algorithm (Kirkpatrick et al., 1983). It is a stochastic algorithm that
performs constrained optimisation and makes it possible to generate pseudo-random variety
allocation replicates while controlling their proportion and aggregation level (figure 4.1).
Finally, the landscape structure is defined by the field pattern (number of fields and their
form), the variety proportions and the variety aggregation level.

4.2.1.2 Within-patch local dynamics

The model of local pathogen dynamics is a stochastic and discrete time HLIR model
(Madden et al., 2008) in which spores are the propagule state. Since we assumed that the
local pathogen population is perfectly mixed at the patch level, each patch is considered as
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a set of infection sites with no spatial structure. The carrying capacity (i.e. the number of
infection sites) of patch i, K;, is fixed and proportional to the area of the patch. The model
describes the evolution of the number of infection sites in each of the following states: healthy
sites (H), contaminated sites (,S’), latent lesions (L), infectious lesions (/) and removed sites

(R). Figure 4.2 shows a graphical representation of the model.

Let v(i) be the host type (variety) encountered on patch i. In this patch, a contaminated
site becomes infected with a probability e, (infection efficiency). When infected, the site
remains latent during 7, days (latent period) before producing new spores. After T,
days of sporulation (infectious period), the site is removed. An infectious lesion produces
7o) spores per day. The spores remain in their patch of origin ¢ with a probability my;
(autoinfection) or disperse on another patch (alloinfection) j with a probability m;;. In

patch i, a spore is deposited on a healthy site (and the site becomes contaminated) with the
H;(t —

K;
patch. Spores that do not succeed in infecting a site are removed. The complete description of

1
probability 7r< )>, an increasing function of the proportion of healthy sites in the
the model is given in supporting information (appendix 2) and table 4.1 gives the transitions

between each state.

The function 7(.) can take different forms that reflect a certain heterogeneity among
H;(t—1) H;(t—1)
sites. When 7r< ) =
K; K;
to be contaminated. On an individual plant, however, not all sites are equally accessible to

, all the sites in a patch have the same probability

the spores because the host plant has a certain physical structure. Here we consider that
the last available infection sites are more difficult to reach by using the following sigmoid
function for 7 (.):
exp ( - HSL’U) — exp(—k)

1 —exp(—k)

m(x)=1-—

Parameters x > 0 and o > 0 determine the sigmoid form. This allows simulating smoother
and probably more realistic epidemic dynamics.

Based on its local life cycle, the pathogen ability to develop on each variety can be
described by its basic reproductive number, Ry. According to Madden et al. (2008) the
basic reproductive number on SV (respectively RV) is R(()SV) = egyrsy sy (respectively
RéRV) = eryrrvTry). Reciprocally, the resistance level of a variety is characterised by the

pathogen Ry on that variety.

4.2.1.3 Dispersal modelling

Soubeyrand et al. (2007) estimated the intra-field dispersal of yellow rust (a wheat

disease caused by the fungal pathogen Puccinia striiformis) using an exponential individual
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Figure 4.2: Graphical representation of the population dynamics model. H;:
healthy sites in patch ¢, L;: number of latent sites in patch 4, I;;: number of infectious sites
in patch ¢, R;: number of removed sites in patch ¢, S;: number of spores in patch ¢, S:
number of contaminated sites in patch 7. 7: latency period, T': infectious period, r: spore
production per lesion per day, m: dispersal rates, 7(.): contamination function, e: infection

2 rem 1 (1=1)
! i

J#i

efficiency.
Table 4.1: Transitions of the stochastic model.
Description Notation Transition
Spore cloud Si(t) Ele rli(t — 1)
Site contamination Si(t) min (Bin (H;(t — 1), mi(t)), Si(t))
Infection of healthy sites H;(t — 1) — L;,(t) Bin (Si(?), eu(s))
New infectious lesions Li(t—1) — Bin (L;(t —1),1 — e‘i)

New removed lesions

i(t)
)

I

Bin (I,(t — 1),1 - e*f)
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dispersal function that considers two kinds of anisotropy, in density and distance. Here we
use a simplified version of this function, assuming that spore dispersal is isotropic. More
specifically, the proportion of spores emitted from a given source point z and arriving at a

given reception point 2’ is given by the individual dispersal function:

2m 2T
=2 )=—=Sexp|— |lz-721].
olll == /1) = 25 exp (22 1= 1)

where ||z — Z/|| is the distance between z and z’, and my is a range parameter. For a more
realistic description of the spore dispersal, the amount of spores dispersed from patch 7 to

patch j can be calculated as:

mij:/ / g(|| z = 2" ||) d7' d=. (4.1)
A Ja;

The integration is performed between all pairs of points that belong to the areas A; and
A; of patches i and j, respectively. This was done with the CaliFloPP algorithm (Bouvier
et al., 2009), which computes the integral of a pointwise dispersal function between any pair
of source and target polygons (here the patches).

4.2.2 Model analysis

4.2.2.1 Numerical experimentation

Five field patterns were constructed (see chapter 3). On each of them, five proportions
of the susceptible variety and three levels of variety aggregation were simulated. For each
variety allocation, 7.e. proportion X aggregation combination, two replicates were realised,
leading to a total of 5 field patterns x 5 variety proportions x 3 aggregation levels x 2
variety allocation replicates = 150 landscape structures. The RV proportions used were 10,
30, 50, 70 and 90%. The first aggregation level corresponded to a mixed strategy, the third
to a grouped strategy and the second was an intermediate case which will be named mosaic
strategy (figure 4.1).

R(()SV) was considered constant and fixed to 2 while R(()RV) varied from 0 to 1.8 by 0.2 in
order to account for several host resistance levels. All the life-cycle parameters potentially
depend on both the host and the pathogen genotype. Here the pathogen population was
composed of a single pathogen genotype whose infection efficiency only depended on the

) values, parameters r and T" were fixed to 2 spores

variety. Hence, to obtain the above RéRV
per day and 10 days, respectively, for both varieties. The latency time, 7, was fixed to 5

days for both variety. The parameters x and o of function 7(.) were both set to 6.

The epidemics started from 100 infectious lesions located on a patch within a susceptible

field chosen at random. Two replicate simulations, with two different initial inoculum
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locations, were made for each landscape structure (150) X infection efficiency (10)
combination. Moreover, for each of these combinations, a short range (mo = 150m) and
a long range (mo = 1500m) dispersal ability were used. Epidemics were simulated over 2000
time steps. This led to a total of 6000 simulations: 2 replicates x 150 landscape structures

x 10 infection efficiencies (i.e. resistance levels of RV') x 2 dispersal ranges.

4.2.2.2 Outputs

First, the global dynamics of the epidemic was measured by computing the integrated
relative green surface over the epidemic season (GS, van den Bosch and Gilligan (2003)) for
the whole landscape (GS;,), SV (GSgy) and RV (GSgy). The integrated relative green

surface was defined as the sum over the epidemic season and over all patches of a given

variety of the ratio between the number of healthy sites in a patch and its carrying capacity.

(RV)
0

Note that in the case of complete resistance, i.e. R =0, only GSsy was calculated.

From GSgy, we defined v as the gain, in term of integrated green surface, provided by
the introduction of RV

GSsy = GS,ep(1+7), 0<y< G Smaz — GS’“ef,
GSref

Where GS,.f is the integrated green surface of reference and is defined as the integrated
green surface when only the susceptible variety was present in the landscape, averaged over
10 epidemic simulations. It was equal to 793 and 725 when dispersal range was 150m and
1500m, respectively. G.S,,.. is the maximal integrated green surface, i.e. the integrated
green surface without disease (G.S,4. = 2000).

For each simulated epidemic and at each time step, the maximal distance between the
initial inoculum position and the current position of the most distant infectious lesions (for
all directions) was also computed in order to evaluate the spatial spread of the pathogen
(figure 4.3). At each time, this distance was expressed relatively to the maximal distance
reached at the end of the epidemic in order to limit the influence of the initial inoculum

location.

Finally, the consequences of the changes in R((]RV) on GSgry were analysed for each
combination of variety proportions and aggregation levels. For that, GSgy, was plotted
against R(()RV) and the curves were fitted to the following logistic function, defined by three

parameters:
GSmax - Gszn

GSRV - Gszzm - .
1+exp ( - a(RE)RV) — b))

(4.2)

In equation (4.2), GSyq. still denotes the maximal integrated green surface (G.S,,q. = 2000);
G'S,in 18 GSRy obtained when RéRV) = 1.8; a is the rate of GSgy decrease due to the increase
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Figure 4.3: Spatial expansion of the epidemic at time ¢ = 300 after inoculation. Landscape
structures used are those of figure 4.1a and b for panel a and b, respectively. Diseased sites
(L + I + R) are represented in a grey scale according to their density. Intra-field patches
are not apparent. The red dot marks the inoculated patch and the red arrow the maximal
distance in all directions to the current position of infectious lesions.

of RéRV); bis the R((]RV) value that corresponds to GSgry = 50% of G.S,,4.. Parameters G'S,,;,,
a and b were estimated using least squares.

4.2.2.3 Sensitivity analysis

We studied the sensitivity of G S, GSsy and GSgy to R(()RV), to the RV proportion
and to the aggregation level of the varieties by computing global sensitivity indices (Saltelli
et al., 2008). Global sensitivity indices were defined using the Sobol’s decomposition of the
model variance (Sobol, 1993). Global sensitivity index for parameter p; (S1,,) represents

the part of the model variance explained by ps:

‘/pl + ZPQ ‘/p1p2 + Zp2p3 ‘/P1P2P3
V

ST, =

where V,, is the variance due to parameter p; alone, V},,, is the variance due to p; in
interaction with parameter py and V), ,,p,, is the variance due to p; in interaction with p,
and p3. Variances explained by each parameter were estimated using a third order chaos

polynomial and a classical linear regression (Sudret, 2008).
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4.3 Results

4.3.1 Effect of RV introduction

The relative gain in green surface (7y) due to the introduction of RV in the landscape
varied from 0 to 1.40 when the dispersal range was low and from 0 to 1.75 when the dispersal
range was large, depending on the RV proportion, on the RV resistance level and on the
variety aggregation level (figure 4.4). When mgy = 1500m, v sometimes reaches its maximal
value (7 = 1.75), which means that the epidemic stopped and the pathogen went extinct at
the first time.

As expected, the resistant variety protected the susceptible variety but also itself
(figure 4.5): when the resistant variety proportion was greater in the landscape, the disease
severity was lower on the susceptible and the resistant varieties, and thus their integrated
green surface was greater. Reducing the aggregation level of the varieties resulted in a
decrease of the disease severity on SV (figure 4.5, mixed strategy wvs. grouped strategy).
When varieties were mixed, however, the resistant variety received more spores because of
its spatial proximity with the susceptible variety and this resulted in an increase of the
disease severity on RV (figure 4.5). The interplay between the disease reduction on SV and
of disease increase on RV for lower aggregation levels led, in certain cases, to the fact that

grouped strategies were more efficient than mixed strategies.

Similar results were obtained with a large dispersal range. In that case, the integrated
green surface tended to be smaller but the effect of the proportion of RV on the disease
severity on SV was greater. When the RV proportion was high, the integrated green surface
remained always high when mixed strategies were used (figure 4.5b). This was due to the
fact that the spores dispersed from their source field had a high probability to encounter
unfavourable conditions on a resistant field (see also figure 4.6d). When the dispersal range
was low (mg = 150m), autoinfection at the field level was equal to 54% while it dropped at
7% for my = 1500m.

4.3.2 Spatial expansion of the epidemic

Figure 4.6 shows the distance between the initial inoculum location and the epidemic front
over time. For a limited dispersal range and when RV resistance level and RV proportion
were high, the epidemic expanded faster for grouped strategies (figure 4.6a and b). When the
varieties were grouped, the initial progression rate did not vary much with the RV resistance
level while it changed for the mosaic strategy and, to a higher extent, for the mixture strategy
(figure 4.6a, b and c¢). This indicates that the mixture strategy allowed slowing down the
spatial progression of the disease on the landscape.
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eRry = 0 eRry = 0.03 eRry = 0.07

Figure 4.4: Gain in term of integrated green surface, provided by the introduction of RV (7).
Top line: my = 150m, bottom line: mgy = 1500m. Left column: egy = 0, meddle column:
ery = 0.03 and right column: ery = 0.07. x-axis: variety aggregation level, 1=mixed,
2=mosaic, 3=grouped; y-axis, RV proportion in percent; z-axis: 7.
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grouped strategy for variety allocation, +: mixed strategy for variety allocation.
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Figure 4.6: Spatial expansion of the pathogen population as a function of time. Top line:
fo = 150m, bottom line: pg = 1500m. Left column: RS = 0 and 70% of RV, middle
column: RS™) = 0.06 and 70% of RV, right column: RS™) = 0.06 and 30% of RV. Solid
line: mixed strategy for variety allocation, dashed line: mosaic strategy for variety allocation
and dotted line: grouped strategy for variety allocation.

With a higher dispersal range, the pathogen spread more easily over the landscape and no
difference in the spatial progression rate between variety allocation strategies was observed
at the beginning of epidemics (figure 4.6d, e and f). In addition, the pathogen went extinct
for mixed strategies in some cases (figure 4.6d).

4.3.3 Sensitivity of integrated green surface to landscape structure

In this section we analyse the sensitivity of the integrated green surfaces to the landscape
structure variables, globally (table 4.2) or for each R(()RV) separately (figure 4.7).

4.3.3.1 Global sensitivity analysis

When the resistant variety was completely resistant (R((]RV) = 0) and the dispersal range

was low, the variety aggregation explained 28.2% of the integrated green surface variability,
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Table 4.2: Sensitivity indices of GSy, GSry and GSgy to RV proportion, variety
aggregation level and RV resistance level.

dispersal GSior GSgry GSsvy GSsvy
range.  R™ >0 R™ >0 R™ >0 R™ =0
RV proportion 150 m 41.1 3.0 32.0 45.4
1500 m 41.0 7.9 42.0 64.0
Aggregation 150 m 0.2 1.4 18.1 28.2
level 1500 m 1.0 0.5 11.6 23.6
RV resistance 150 m 54.9 90.9 26.2 -
level 1500 m 93.9 88.1 38.1 -
Residuals 150 m 3.8 4.5 23.8 26.4
1500 m 4.0 3.9 8.4 12.4

and the proportion of RV more than 45%. For a high dispersal range, the effects of the RV
proportion were enhanced while these of the variety aggregation decreased (table 4.2).

In the case of quantitative resistance (R(()RV) > 0), the resistance level of RV was the most
influential parameter on G Sy, (table 4.2) but the RV proportion also showed a major effect.
On the contrary, the variety aggregation level was not influential. Changing the dispersal

range gave roughly the same results.

The sensitivity analysis of the integrated green surface on each variety (GSgy and GSgy)
exhibited very different results according to the variety considered. The disease severity on
the resistant variety was essentially explained by its own resistance level while the effects
of the three parameters were more balanced on the susceptible variety. The RV proportion
and resistance level were the most influential parameters on GSgy variance, but the variety
aggregation level also had a noticeable effect. When the dispersal range was high, the effect
of RV proportion and RV resistance level increased whereas the effect of variety aggregation
decreased. The fact that GSgy was sensitive to the variety aggregation level but not G.S;,
is consistent with the fact that SV and RV behaved in an opposite way when the variety
aggregation level changed (see section 4.3.1).

The high level of the residual variance on GSgy denoted the interaction between local
spatial structures (local aggregates of a variety and shape of these aggregates) and the
position of initial inoculum. The residual variance decreased when dispersal range increased

(table 4.2), which is consistent with an effect of local spatial structures.
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4.3.3.2 Sensitivity analysis for each R(()RV) separately

In order to investigate in more details the effect of landscape structure, we computed the

sensitivity indices of GSgy and GSgy for each value of R(()RV)

separately (figure 4.7). When
was lower than 1, the proportion of resistant variety and the varieties aggregation
level explained 56% and 42%, respectively, of the G\Sgy variability, in average. When R(()RV)
was greater than 1, the part of the GSgy variability explained by the variety aggregation
level dropped to 4% and the residual variability reached 80% of the variance. At the same
time, the effect of the variety proportion first increased and then decreased to 14%. These
observations are in accordance with the classical threshold effect of the basic reproductive
number, which was obtained here at the landscape scale for RV. When R((]RV) was greater
than 1, RV became a source of spore production, which limited the dilution effects (see the

discussion section for more details).

In the case of SV, a progressive decrease of the effect of the RV proportion was observed
when R(()RV) increased. When RE)RV) was lower than 1, the RV proportion had the highest
effect on GGSgy variability but when R(()RV) was greater than 1 variety aggregation became
more influential. As for the global analysis above, the proportion of residual variance

remained high.

When the dispersal range was high, the threshold effect disappeared and, for both
varieties, the RV proportion accounted for most of the variance in GSsy, and GSgy. But the
variety aggregation level still explained 20% of the variance of GSgy for high RV resistance
levels.

This analysis must be modulated with regards to the total GS variance. For RV, the
total variance of GSgy reached a maximum just before R((]RV) = 1. After this threshold the
landscape structure little impacted GSgy. For SV, the total variance continuously decreased
when R(()RV) increased and it became very low when R(()RV) exceeded one. This mean that for
R(()RV) > 1, the landscape structure did not reduce much the epidemics on the susceptible

variety.

4.3.4 Effect of resistance level

Figure 4.8 shows the integrated green surface of the resistant variety (GSgy) as a
function of R((]RV). The curves in figure 4.8 can be characterised by three parameters (see
equation (4.2)): GSpin, @, and b. Their values are shown in figure 4.9 for each combination
of the RV proportions and variety aggregation levels.

Variations of GSpin, (figure 4.9a and d) were very small for all landscape structures.
This means that when R(()RV) was high (i.e. the resistance of RV was low), RV was equally

98



4.3. Results

100%

90%

80%

70%

c
9
=
5 60%
a
9
o
Q. 50%
@
o
c
© 40%
c
o
>
30%
20%
10%
0
100%
90%
80%
70%
o
.8
S
5 60%
a
<]
Q. 50%
@
o
c
@ 40%
c
@
>
30%
20%
10%
0

(a)

— 300000

— 250000

— 200000

~ 150000

— 100000

~ 50000

— 300000

~ 250000

— 200000

— 150000

— 100000

— 50000

o R(()RV) 12 16
(c)
o"/”/‘()<k—<—>70\\\\\\
/“‘%\
1Ay
., ——
T
R((]RV) 16

variance

variance

100%

90%

80%

70%

c
9
=
5 60%
a
9
o
Q. 50%
@
o
c
© 40%
c
o
>
30%
20%
10%
0
100%
90%
80%
70%
o
.8
S
5 60%
a
<]
Q. 50%
@
o
c
@ 40%
c
o
>
30%
20%
10%
0

(b)

— — 300000
o RV proportion —— variance proportion
- | & aggregation level total variance
i f
residuals L 250000
t 200000
B +
///// Q
+ 2
- - 150000 @
o— I
o0 + >
. — A
A— a
/+ 74 ~_
o + A - 100000
N + A
2= + > \A
\\A\\ o
i \A \o
S~ F 50000
o o]
4 T e Lo
T T T T
0.4 0.8 RvV) 12 1.6
Ry
Bl - 300000
h o—°%—__
/0/ ° 1 250000
\\ 0o—0°
1o o ‘L/////
TTox I 200000
®
o
c
- - 150000 @
=
®©
>
\ t 100000
N AN\\*A
- a zx—”"” v
— 50000
A
4+ — N +
\\\ \
.. +/4;\A
+ +—%
B [ Lo
T T T T
0.4 0.8 (Rv) 12 1.6

Figure 4.7: Sensitivity indices for each R((]RV) separately. For each RV resistance value, the
proportion of variance accounted for by the proportion of RV, the aggregation level and the
residuals are shown. Left column, GSgy; right column, GSyy; top line, py = 150m; bottom

line, po = 1500m.
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Figure 4.8: Fitted values (solid lines) and observation of GSgy (+) as a function of RE)RV).

Black: mixed strategy for variety allocation, red: mosaic strategy for variety allocation and
green: grouped strategy for variety allocation. a, 30% of RV and my = 150m; b, 30% of RV
and mg = 1500m.

diseased over the epidemic season, whatever the deployment strategy chosen.

The shape of the decline of GSgy between low and high value of R(()RV) depend on
the variety aggregation level and the dispersal range (figure 4.8). Analysis of parameter
a (figure 4.9b) shows that decreasing the aggregation level made the transition of GSgy
from high to low values (when RéRV) increased) more progressive. When the varieties were
grouped, a sharp decrease in the integrated green surface (high values of a) occurred when
R(()RV) increased. On the contrary, for mixed and mosaic strategies, the transition from high
to low G\Sgy was more progressive. When mixed or mosaic strategies were used, increasing
the proportion of resistant variety accelerated the rate of GSgy decrease for increasing R(()RV).
Increasing the dispersal range made the transition of GSgy between high to low values more
progressive in all cases and reduced the differences between variety deployment strategies
(figure 4.9¢ and b).

The R(()RV) value that corresponds to GSgry = 50% of GS,,4. (parameter b) is around
RE)RV) ~ 1, depending on variety proportions and aggregation level as well as on the dispersal
range. When the proportion as well as the aggregation level of the resistant variety increased,
b increased (figure 4.9¢ and f). In addition b values were higher for large dispersal range
(figure 4.9f). This means that, when RV received lower spores, the GSgy decrease occurred

for higher R(()RV) values, i.e. for lower resistance level of RV .
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aggregation (mixed, mosaic and grouped) is increasing from the darkest to the lightest grey.
Top line: g = 150m, bottom line: py = 1500m.
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4.4 Discussion

How does habitat connectivity influence the spread of a population? We addressed this
question in the context of agricultural landscapes to evaluate the benefits of functional
diversity for epidemic control. In this context, the host varieties were considered as habitats
for the pathogen. The four components describing habitat connectivity were then the varietal
composition of the landscape, the spatial aggregation of the varieties, the ability for the
pathogen to develop on each variety (variety resistance level), and the dispersal ability of
the pathogen. These four components had a strong impact on the epidemic development at

the landscape scale and they show strong interactions.

The first conclusion of the study is that the introduction of a resistant variety in the
landscape has an effect in reducing the epidemic development on the susceptible variety.
This effect depended on the variety proportions and their spatial arrangement. The greatest
effect on GSgy was however that of the RV proportion, especially when dispersal range was
high. This is not surprising and means that dilution effects at the landscape scale strongly
depends on the level of resistance that are available. In addition, the resistance level of RV is

) > 1, RV becomes a source of spores and its effects on SV decrease

also crucial: when R(()RV
drastically.

We considered the case of a complete resistance (R(()RV) = 0) as well as a quantitative

resistance (R(()RV) > (). In this latter case, the resistant variety was itself affected by the
pathogen. Not surprisingly, the resistance level of RV was the most influential parameter
for determining its level of disease. Spatial arrangement of RV plays opposite roles with
respect to the susceptible variety. While mixed strategy decreases landscape connectivity
and protects SV, it exposes RV to a greater amount of spores. As a consequence, RV
was more diseased in mixed rather than grouped variety allocation strategies. The balance
between the gain on SV and the loss on RV can make grouped strategies for variety allocation

more resistant to disease.

A threshold effect was found on the integrated green surface of the resistant variety and
was related to the local basic reproductive number R(()RV). This can be explained by a source-
sink dynamics. When RSRV) is lower than 1 local population growth rates are positive on
SV (the source), negative on RV (the sink) and the spore dispersal generates a source-sink
dynamics. A simple model for a single-species source-sink system is exposed by (Holt, 1993).
It assumes a saturated source patch in which juveniles are forced to emigrate to a sink patch
where, in the absence of this immigration, the population would decline. Holt showed that
the size of the sink population is directly proportional to the immigration from the source,
scaled by the growth rate of the population in the sink patch. In our context, when the
RV proportion is fixed, immigration from source (SV) to sink (RV') can be enhanced by
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increasing the average spatial proximity (going from grouped to mixed landscapes) between
RV and SV or by increasing the spore dispersal range. Our results are thus in line with
this simple prediction since in mixed landscapes RV exhibited a higher level of disease, as
well as when dispersal range was large. In addition, RV exhibited a higher level of disease
when R(()Rv) increased up to 1 (increase of the local growth rate). The difference of behaviour
between mixed and grouped landscapes when the spore dispersal range was short could be
explained by the fact that immigration from SV to RV was too low in grouped landscapes
for maintaining a viable population on RV. Then, the pathogen could develop on RV only
when R(()RV) was greater than 1. In mixed landscapes, immigration from SV to RV allowed
the pathogen to maintain on RV, which explains that a progressive decrease in GSgy, was

observed instead of a threshold effect.

The data analysis presented in chapter 2 suggests that such source-sink dynamics operate
in the field. Trémie is a wheat variety with a high level of resistance to leaf rust. It was found
related to a particular leaf rust genotype (pathotype 073100) even though it is resistant to
073100. Infection of Trémie with that pathotype in controlled conditions however produces
a few viable pustules. Since the frequency of 073100 in the global pathogen population was
high, due to its increase by variety Soissons, it can be assumed that the inoculum provided by
Soissons accounted for the presence of 073100 on Trémie. Pathotype 073100 did not develop
epidemics on Trémie because of a very low R value but was constantly reintroduced on that
variety as external inoculum. This illustrates with a real situation the theoretical results

presented here.

When resistant varieties are introduced in agrosystems, they usually show a decreasing
resistance level over time, due to rapid adaptation of pathogens (Johnson, 1961; Stukenbrock
and McDonald, 2008). One important issue related to the re-introduction of functional
diversity in agriculture is that of the preservation of the efficiency of new resistant varieties.
In this work we supposed that the resistance level was constant during the epidemics, i.e.
that the pathogen population could not adapt to the resistant variety by increasing its basic
reproductive number. However, some of the results could be seen from an evolutionary point
of view. Figure 4.8 shows the integrated green surface of the resistant variety according to
its resistance level. Suppose that the adaptation to the pathogen population results in an
erosion of the resistance level of RV (and thus an increase in RéRV)). This erosion could take
the form of a brutal breakdown in aggregated landscapes or be more progressive in mixed
landscapes, having a lower impact on the final yield and leaving more time to the farmer to
adjust.

In this work the pathogen population was composed by a single genotype. However,
epidemics on agricultural landscape are usually caused by more diversified pathogen
populations. A recent study (Papaix et al. (2011) and chapter 2) based on a large database
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analysis coupling pathogen frequency data and disease observation data, showed that the
genetic structure of the pathogen population present on a particular variety is partly due
to the reciprocal influence of the different varieties composing the landscape. Moreover, the
observed disease on a variety was linked to the landscape composition, through the pathogen
population structure. A perspective would be to consider a structured pathogen population
with more genotypes and study how the landscape structure shapes this pathogen population
and determines the distribution of the pathogen genotypes on each variety.
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Chapter 5

Mutant establishment and coexistence
between pathogen genotypes in a
heterogeneous host landscape

This chapter is based on an article project by Julien Papaix, Suzanne Touzeau,
Hervé Monod and Christian Lannou
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5.1. Introduction

5.1 Introduction

Selection for quantitative traits influences pathogen evolution in agricultural systems and
can result in differential adaptation to host varieties (Pariaud et al., 2009a). In a large scale
study on wheat leaf rust Papaix et al. (2011) demonstrated that such differential adaptation
of pathogen genotypes to host varieties was largely accounted for by the relationship between
the composition of the host population and its susceptibility to disease. It also revealed
that the pathogen population included genotypes (pathotypes) that could be defined as
specialists and others with a larger host panel, that could be qualified of generalists. The
landscape varietal composition influences the observed resistance level on the most frequently
grown wheat varieties by altering the structure of the pathogen population. Which pathogen
genotypes will develop on which variety? This is a crucial question in plant epidemiology
for understanding the link between the host population structure and its susceptibility
to disease. In the present work, we develop a theoretical approach to investigate the
conditions of emergence and establishment of a mutant pathogen with generalist features
in an agricultural landscape, then we determine the conditions of co-existence between
specialists and generalists pathotypes.

In all communities, the first condition for stable coexistence is success in establishment of
a population (With, 2002). Establishment success in homogeneously mixed host-pathogen
systems is determined by the pathogen basic reproductive number. When two pathogens are
competing for a single host, the pathogen with the highest basic reproductive number will
invade the resident population. However, when dispersal is limited, the pathogen population
will typically progress in a susceptible host population as a travelling wavefront (Mundt
et al., 2009). In such conditions, a mutant genotype will be overwhelmed if it appears in the
already diseased region and it will become more likely established if it arises closer to the
wavefront (Wei and Krone, 2005). This effect is known as the ‘surfing effect’ in population
genetics (Excoffier and Ray, 2008). The effects of landscape structure on the establishment
of a mutant have been rarely investigated in the literature. To our knowledge, the most
advanced work is that of Burton and Travis (2008). These authors constructed a model for
simulating the expansion range of haploid individual in a rectangular lattice. Heterogeneity
was introduced by separating the left and the right side of the lattice either by an unsuitable
block or by considering that the two areas of suitable habitat were connected by a narrow
corridor. They found that landscape structure, together with the spatial location of mutant
introduction, have a considerable influence on the mutant survival probability and on the
population dynamics of the mutants. In particular the landscape structure could favour
deleterious mutations that would normally disappear.

When all types (species or genotypes) are well established in the community, the question

of stable coexistence can be addressed. A classical mechanism for coexistence is niche
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partitioning (Chesson, 2000). This requires that types differ in their use of resources but not
necessarily that these resources fluctuate in space (homogeneous environment). Environment
heterogeneity makes however easier a stable coexistence because it promotes mechanisms that
are not possible in homogeneous environments (Melbourne et al., 2007). Chesson (2000)
identified three mechanisms that depend on the variation of resources in space: storage
effect, relative non-linearity and fitness-density covariance. More recently, Débarre and
Lenormand (2011) added another mechanism: ‘habitat boundary polymorphism’. This new
mechanism requires both habitat heterogeneity and distance-limited dispersal, which creates
maladaptation at habitat edges and favour the maintenance of more generalist genotypes.
Débarre and Lenormand (2011) found that this mechanism acts in very different environment:
continuous or stepping stone one-dimensional structures as well as circular or flower-shaped
two-dimensional structures. However, their framework is not readily applicable to the specific
situation of agricultural landscapes.

We propose here to study the conditions for establishment and stable coexistence of
pathogen genotypes in agricultural landscapes with a simulation model. The model is
stochastic and the life-cycle is based on an air-borne plant-pathogen foliar fungus. The
landscape is represented as a set of fields on which two varieties are cultivated with a
controlled proportion and spatial organisation. We consider also several dispersal abilities
and several specialisation costs for the pathogen. We consider two case-studies: first, the
pathogen population is composed of two specialised genotypes that can mutate towards a
generalist genotype. The host population size is fixed and we examine the conditions for
establishment of a generalist population during an epidemic. Second, the three genotypes
are considered to pre-exist in the pathogen population, there is no new mutation, and the
host is able to grow. We then study the equilibrium of the pathogen population composition.

5.2 Materials and methods

5.2.1 The model

5.2.1.1 The landscape

We used the framework described in chapter 3 in order to generate 2000 x 2000 km?

agricultural landscapes composed of around 150 fields. Two varieties, Vi and V5 were deployed
with controlled spatial arrangements defined by their proportions and aggregation level.
Remind that this framework requires two different scales: the management scale (fields) and
the dispersal scale (intra-field patches) at which the pathogen population is assumed to be

perfectly mixed.
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5.2.1.2 Population dynamics model

Based on the asexual life cycle of Puccinia triticina (supporting information, appendix 2),
we developed an HLIR model with spores as a propagule state (Madden et al., 2008). The
environment is composed of N patches and the pathogen population of P = 3 genotypes,
Py, P, and P5. P, and P, are both specialists of varieties 1V, and V5, respectively. P; is a
generalist for which the landscape is homogeneous. Each patch was considered as a set of
infection sites with no spatial positions. The model describes the dynamics of the number of
infection sites in each of the following states: healthy sites ( H), latent lesions (L), infectious

lesions (I) and removed sites (R). For host patch j we have:

e host dynamics

P N

dH; 4,
d_tj = - <€vav(j) ST Y TR M ¢ Ii(Pp)) +oH;(1 - ?]-)’ (5.1)
p=1 ’

i=1

e dynamics of genotype P;

dL;(P3) a — 1
—a = emal) Ty My (TP3,v(z‘) Li(P3) + ) Trpu) 1 L;(Pp)> R L;(Ps),
=1 p:l 3,V
dl;(Ps) 1 Li(Py) 1 1(Py)
- CLA(P3) — (P,
dt ThwG) Py)
W) L
\ dt TPS#’(J') ’ ’
(5.2)
e dynamics of genotypes P,, for p=1,2
( N
dL;(P,) 1
g T Rl T ;TPp,v(i) mig(L—p) - Li(F) — E— Li(Fy),
dl;(P,) 1 1
— L.P) — TP (5.3)
dt TPpyv(j) J( p) TPpﬂ)(]’) ]( p)>
dR;(P,) _ o I.(P,)
\ dt Tppvv(j) e

where v(j) indicates the variety cultivated in patch j, ep, ;) is the infection efficiency of

genotype P, on variety v(j), 7m; is the probability for a spore to be deposited on a free
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infection site in patch j, 7p, ;) is the per day number of spores produced by an infectious
lesion of genotype P, on variety v(j), m;; is the proportion of spores released from patch ¢
that are deposited in patch j, 7p ;) and Tp, ,(;) are the latent period and infectious period
of genotype P, latent lesion on variety v(j), respectively. We assumed that Ps can appear by
mutation from the other genotypes present in the pathogen population at a mutation rate
. The host population grows at rate 6. The carrying capacity for the host in patch j, C; ,
is proportional to the area of patch j.

In order to take into account demographic stochasticity, which could be very important in
the establishment phase of a population, we developed a stochastic version of the model. The
dynamics of infection sites in each state (healthy, latent, infectious and removed) and for each
patch is described by the following sequence of events. First, the composition of the spore
cloud arriving in patch j is determined. Then the sites to be contaminated are determined
and dispatched among genotypes. Finally, new latent, infectious and removed lesions are

calculated. Each of these steps is described in details in supporting information (appendix 2).

5.2.2 Numerical experiments

5.2.2.1 Landscapes and dispersal

Landscapes of around 150 fields were simulated. Using the framework of chapter 3 we
generated 5 field patterns. Two situation were studied: with balanced (50% of both varieties)
and unbalanced (30% of V; and 70% of V5) variety proportions. For each situation, three
variety deployment strategies with an increasing aggregation level were considered: mixed,
mosaic and grouped.

The landscape is defined as the field pattern (physical structure) along with the varieties
(qualitative structure). For each field pattern x variety proportions x variety aggregation
levels, two landscape replicates were generated by changing variety allocation in space. In
addition, for each of these replicates, two independent epidemic simulations were performed.
Thus, for each variety proportion X variety aggregation level combination, 5 field patterns

x 2 landscape replicates x 2 epidemic replicates — 20 epidemics were simulated.

Based on Soubeyrand et al. (2007), the individual dispersal function was assumed to
decrease exponentially with distance. More precisely, the proportion of spores emitted from

a source point z and arriving at a reception point 2z’ was given by the individual dispersal

2 2
ol 2= |I) =~ exp (E ||z—z'||>.

0

function:

where ||z — Z/|| is the distance between z and z/, and my is a range parameter. Dispersal

rates among patches were computed according to the method described in chapter 3.
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Since the effect of host spatial structure can be counterbalanced by the dispersal capacity
of the pathogen (see chapter 4), we studied epidemics for both short range (mg = 150m) and
long range (mg = 1500m) dispersal conditions.

5.2.2.2 Life-cycle parameters

Pathogen genotypes were described by their non-spatial basic reproductive number,
Réj”’v” = ep,vi"p, v Ip,v,, on each variety (v = 1,2; p = 1,2,3; see Figure 5.1). The
genotype P3; was considered as a generalist since it had the same fitness on each variety, i.e.,
R§3’V1 = R§3’V2. On the contrary, P, and P, were both specialist genotypes on variety V}

. . . Py, Vi P,V PV P,V
and V5, respectively, in a symmetric way: R,""' = Ry>"? and Ry = Ry* .

All life-cycle parameters could potentially depend on both the variety and the pathogen
genotype. Here we fixed 7, T" and r respectively to 5 days, 10 days and 2 spores per days for
both varieties and the three genotypes. The different values of Ry were obtained by varying
the infection efficiency. Infection efficiency of the generalist genotype, P; was fixed to 0.1,
leading to R{*"" = R{®"? = 2. For the specialist genotypes, ep, v, and ep,y, were fixed to
0.11, leading to Ri™" = RY»"* = 2.2 and ep, y, and ep,y, varied in {0.05,0.07,0.08,0.09},
which resulted in R(I)Dl’v2 and R(I;"”Vl varying in {1,1.4,1.6,1.8}.

In the following, for each specialist, the variety with the highest Ry will be referred to
as the susceptible variety whereas the other one will be referred to as the resistant variety.
With regards to P;, Vj is the susceptible variety and V5 is the resistant variety, and it is the
opposite for P,. With regards to Ps, both V; and V5 are susceptible (see figure 5.1).

5.2.3 Case studies

Invasion process of a resident population by a new genotype can be split into three phases:
mutant introduction by long dispersal events or by mutation, establishment and spread of
mutant population, and takeover or coexistence with the resident genotype(s). We study in
this chapter the establishment phase (section 5.3) and the conditions in which genotypes are

able to coexist in the landscape (section 5.4).

In a first step (section 5.3), the generalist genotype P; was continually introduced by
mutation of specialist genotypes P, and P, (at rate p = 107°). Because foundation effects
could be of prime importance in the establishment phase, we assumed no growth of the host
(0 = 0) and we started the epidemic with 20 infectious lesions (10 of P, and 10 of P) on a
randomly chosen V; patch, and 20 infectious lesions (10 of P; and 10 of P) on a randomly
chosen V5 patch.
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RO A
22 1 P N
2+ /2 e
Cost
1+ })2 v
Variety V, Variety V,

Figure 5.1: Basic reproductive number of each pathogen genotype on each variety. P, and
P, are specialists on variety V; and V5, respectively. Pj is a generalist genotype. V; is
susceptible to P; and Ps; V5 is susceptible to P, and Ps.

In a second step (section 5.4), we assumed that all genotypes pre-existed and we studied
the coexistence between genotypes, We set the mutation rate to 0, and we studied the
equilibrium of the pathogen population composition in a growing host population (6 = 0.1).
Epidemics started with 30 + 30 + 30 infectious lesions of genotypes P;, P, and P; in all
patches.

5.3 Establishment of mutant population

The ability of the mutant P to establish a population was evaluated (i) by computing its
relative abundance (population size) at the scale of the landscape and (ii) by establishing its
spatial distribution among fields, in order to check whether it was diffuse across the landscape
or whether localised populations emerged. In this latter case, we investigated in more details
how host spatial structures allowed local emergence of the mutant. Relative abundance of

Pj at the field-scale was computed by averaging its relative abundance in intra-field patches.

5.3.1 Global population size

Figure 5.2 shows the relative population size of the mutant genotype P; at the landscape
scale. It appears clearly that it was very difficult for the mutant to establish a population as
soon as the basic reproductive number of the specialists on the resistant host was greater than

1. Tt also appears that the global relative abundance of Pj3 varied greatly among landscapes.

112



5.3.  FEstablishment of mutant population

In all cases, it was more difficult for the mutant to establish a population in grouped
strategies. Mixed strategies were the most favourable environments for the mutant to get
established when the variety proportions were unbalanced, whereas it was the mosaics when
the variety proportions were balanced. Increasing the dispersal range made the establishment

of P5 easier for mixed and mosaic strategies.

When the dispersal range was large, V; proportion — 70% and R(];Q’Vl = 1 (figure 5.2¢),
P, was not able to establish a population for mixed and mosaic strategies, which left more

room for Pj.

5.3.2 Intra field population size

Intra-field relative abundance of Py was computed only for RS> = RI*"

=1, i.e. when
P3 was able to establish a population. Figure 5.3 displays the distribution of the intra-field

abundance of P; and shows contrasted situations.

When the spore dispersal range is large (figure 5.3g to 1), the population distribution
tails are short, which indicates a diffuse population across the landscape: Pj is present in all
or most fields but in very low proportions. This is consistent with the fact that long range
dispersal mixed populations and did not lead to spatial structuring. Note that figure 5.3i
and | confirm that, for the grouped strategy of variety allocation and long spore dispersal

range, the mutant never established a population (¢f figure 5.2¢ and d).

On the contrary, for the low dispersal range, several distribution patterns can be observed,
depending on the variety allocation strategy (figure 5.3a to f). Mixed strategies exhibited
shorter distribution tails than mosaic and grouped strategies, which indicates that mixed

strategies resulted in more diffuse P3 populations (Figure 5.4).

The spatial patterns of P; abundance differed in the mosaic strategy, for which 58%
(figure 5.3b) to 52% (figure 5.3e) of the fields contained a P3 population, and in the grouped
strategy, for which only 20% of the fields contained a P; population. For the grouped strategy,
most of fields were mutant free and the emergence of localised P3; populations resulted from

particular landscape structures (see section 5.3.3).

5.3.3 Local emergence of mutant populations

The high variability among simulations (figure 5.2) reflects a strong interaction between
the landscape structure and the localisation in space of initial inoculum. Below we develop

two examples.

Figure 5.5 illustrates the interaction between landscape spatial structure and initial

inoculum position. In the first landscape (figure 5.5a and b), both initial inoculum sources
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Figure 5.2: Relative abundances of genotype P; at the landscape scale plotted against
the basic reproductive number of specialists on the resistant host and for different variety
allocation strategies: a and b, short dispersal range (mg = 150m); ¢ and d, large dispersal
range (my = 1500m); a and ¢, unbalanced variety proportions (30%—70%); b and d, balanced
variety proportions (50% — 50%). Grey bars indicate the median over the 20 simulations
and the black solid line the [2.5%,97.5%)] quantile interval. From the darkest to the lightest
grey: mixed, mosaic and grouped variety allocation strategies.
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Figure 5.3: Histograms of intra-field relative abundance of P5 for 3080 fields corresponding
the combinations of variety proportions x variety aggregation levels (around 150 fields x 5
field patterns x 2 variety allocation replicates x 2 epidemic replicates = 3080 fields). Left
column, mixed strategy; middle column, mosaic strategy and right column, grouped strategy.
a,b,c, unbalanced variety proportions (30% — 70%) and short dispersal range (my = 150m);
d,e,f, balanced variety proportions (50% — 50%) and short dispersal range (mo = 150m);
g,h.i, unbalanced variety proportions (30% — 70%) and large dispersal range (mo = 1500m);
j.k,1, balanced variety proportions (50% — 50%) and large dispersal range (mo = 1500m).
The red solid line indicates the upper bound of the histogram. Other parameters: R§1’V2 =
Rgz’vl = 1. For technical reasons, the y-axis is truncated but the highest y value is indicated
on each graph when necessary.

115



Chapter 5. Mutant establishment and coexistence between pathogen genotypes

tot = 2.5% — max = 16.9%

2000
2000

500
500

1
1

1000
1000

500
500

T T T
1000 1500 2000 2000

o
o
3
IS

" tot = 2.5% — max = 54.3%

2000
2000

1500
1500

1000
1000

500
500

T T T
1000 1500 2000

o
o
3
S

Figure 5.4: Relative abundance of genotype Ps at the field scale landscapes with mixed (top
line) vs mosaic (bottom line) variety allocation strategy. The left column shows the landscape
structure. Light grey: V; (70%), dark grey: V5 (30%), red point: initial position of inoculum.
The right column shows the frequency of P;. Grey scale: frequency of P3 from 0 (white) to
0.55 (black), tot: relative abundance value at the landscape scale, max: maximum of the
intra-field relative abundance values. Other parameters: mo = 150m, Rj""? = Ri>" = 1.
This is an example of a simulation.
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are relatively central and the two variety aggregates do not present any particular structure.
In such a pattern, both specialist pathogens rapidly spread on their respective susceptible
varieties and P; could not establish a population. On the contrary, in the second landscape
(figure 5.5¢ and d), the position of initial inoculum relative to the geometric form of the V5
aggregate resulted in constraints for the spread of P;, which allowed P; to locally establish

a population.

Figure 5.6 illustrates the same kind of interaction with a completely different landscape
structure, corresponding to the mixed strategy. When both P, and P, epidemics started
from positions that are relatively close in space, both specialists spread concomitantly over
the landscape and did not leave room for the development of a P; population. In that case,
P3 was present in the global population (2.1%) but locally at low frequency (11.7% at most).
When the initial position of one of the specialists was central in the landscape whereas the
other specialist started its own epidemic from a peripheral position, this produced a spatio-
temporal lag in the spread of P, and P», giving the generalist the opportunity to develop a
population on several fields of the landscape.

More generally, it was shown (figure 5.2b) that the mosaic strategy was more favourable
for P; when V; and V5, were at the same proportion in the landscape. Indeed, in
such landscape structures, natural barriers and particular geometric forms increased the

probability of successful foundation effects for the mutant.

5.4 Coexistence among pathogen genotypes

In this section, we suppose that the three genotypes P;, P, and Pj are initially present in
the pathogen population and we study how the landscape structure influences the coexistence
between those genotypes. All patches were inoculated with the same quantity of each
pathogen genotype and the host was continuously growing. In a first step, we computed the
equilibrium of infectious lesions at the landscape scale. Then we computed the frequency of
each genotype (infectious lesions) at the field scale by averaging the values of the intra-field

patches. This allowed to establish distribution maps of the genotypes at the landscape scale.

5.4.1 Stable coexistence

Figure 5.7 shows the output of the competition between P;, P, and P5 at the landscape
scale. For the balanced variety proportions, we observed three situations: the generalist
alone, coexistence between the specialists and the generalist and both specialists without
the generalist. For unbalanced variety proportions (70% of V3), two other situations were
observed: the specialist of V5 together with the generalist and the specialist of V5 alone.
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Figure 5.5: Relative abundance of genotype P; at the field scale in two landscapes with a
grouped variety allocation strategy. The left column shows the landscape structure. Light
grey: Vi (70%), dark grey: V5 (30%), red point: initial position of inoculum. The right
column shows the frequency of P3. Grey scale: frequency of Ps from 0 (white) to 0.70
(black), tot: relative abundance value at the landscape scale; max: maximum of the intra-
field relative abundance values. Other parameters: mg = 150m, Ry = RY»"" = 1. This
is an example of a simulation.
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_tot=2.1% - max = 11.7%

Figure 5.6: Relative abundance of genotype P at the field scale in two landscapes with mixed
variety allocation strategy. The left column shows the landscape structure. Light grey: 1}
(70%), dark grey: V5 (30%); red point: initial position of inoculum. The right column
shows the frequency of P3. Grey scale: frequency of P; from 0 (white) to 0.70 (black), tot:
relative abundance value at the landscape scale, max: maximum of the intra-field relative
abundance values. Other parameters: mg = 150m, R51’V2 = ROPQ’V1 = 1. This is an example
of a simulation.
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Figure 5.7: Conditions for coexistence between pathogen genotypes P;, P, and P;. Top
line, large dispersal range (my = 1500m); bottom line, short dispersal range (mo = 150m);

left column, unbalanced variety proportions (30% — 70%); right column, balanced variety

proportions (50% — 50%). y-axes, variety allocation strategies; x-axes, Rg""> = Ri>".

Overall, the generalist genotype was favoured by mixing varieties, by decreasing the ability
of specialists to reproduce on the resistant host and by increasing the pathogen dispersal

range.

When the pathogen dispersal range was large, the specialists excluded the generalist for
high variety aggregation levels or when their reproduction rate on the resistant host was high.
When the dispersal range was low, changes in variety proportion did not change greatly the
competition output, excepted for the mixed strategy. For equal variety proportions, the
specialists presented a symmetrical behaviour and co-existed or not with the generalist. For
unbalanced variety proportions, one of the specialists could be excluded.
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5.4.2 Spatial distribution at population equilibrium

Figure 5.8 illustrates the spatial patterns of pathogen genotype distributions at
population equilibrium, for three variety allocation strategies. For the mixed strategy
(figure 5.8, left column), P; did not persist, P, was present (with only a few exceptions)
in all V5 fields but was more abundant in local aggregates of V5, and the generalist Pj
developed in all fields. For the mosaic strategy, (figure 5.8, central column), P, was now
able to persist in V| aggregates, P, became more abundant, and P3; was concentrated in the
most heterogeneous zones, showing an apparent spatial structure. Finally, for the grouped
strategy (figure 5.8, right column), both specialists were highly abundant in the aggregate of
their respective susceptible host and totally absent in the other fields, whereas the generalist

genotype was restricted to the borders of the variety aggregates.

These examples can be generalised: figure 5.9 shows that the specialist abundance is
highly related to the number of neighbour fields with an identical variety. On the contrary,
the generalist tended to be more abundant in heterogeneous zones. This relationship was

stronger for more aggregated variety distributions.

The spatial distribution of the pathogen population was however greatly influenced by
its ability to disperse. Figure 5.10 presents the case of a grouped strategy with a fairly high
multiplication rate of P; and P, on their resistant resistant variety (R""? = Ri»" = 1.8).
Here, the generalist did not persist. For the low dispersal range, each specialist was more or
less limited to its susceptible variety (figure 5.10d and f). By increasing the dispersal range,

P; and P, became more mixed (Figure 5.10a and c).

Figure 5.11 compares mixed and grouped strategies when the pathogen dispersal range is
large and variety proportions are the same for V; and V5. Here, the three genotypes coexisted.
When the varieties were mixed, there was no spatial structure in the pathogen population.
When the varieties were grouped, the specialists were restricted to their respective susceptible
host and the generalist was evenly distributed over the whole landscape. This last situation
can be explained by a habitat boundary polymorphism (Débarre and Lenormand, 2011),
the high dispersal ability leading to a generalised distribution of P;. On the contrary, the
first situation is closer to a non-spatial landscape structure (due to the high dispersal range
and the low aggregation level of varieties). As a consequence, basic reproductive number of
genotypes can be averaged at the landscape scale. We obtained a mean basic reproductive
number identical for all the three genotypes (Ry = 2). We thus have three equivalent
genotypes evolving in a quasi-neutral model.
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Figure 5.8: Coexistence of two specialists and a generalist pathogen in landscapes with three
variety allocation strategies: mixed (left column), mosaic (central column) and grouped
(right column). Top line: landscape structures (dark grey: Vi, 30%; light grey: Va, 70%).
Relative abundance of each pathogen genotype at the population equilibrium: d,ef: P,
(specialist of V7); g,h,i: P; (generalist) ; j,k,1 : P, (specialist of V5). The grey scale indicates
the genotype frequency, from 0 (white) to 0.35 (black). Other parameters are: Rj""? =
R =1 and mg = 150m. This is an example of a simulation.
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Figure 5.9: The frequencies of infectious lesions in each of the 3080 fields (around 150 fields
x 5 field patterns x 2 variety allocation replicates x 2 epidemic replicates — 3080 fields)
at population equilibrium plotted against the proportion of neighbour fields that share the
same variety. The three genotypes are P (a, b, ¢), P3 (d, e, f) and P, (g, h, i). The relative
abundance of the different genotypes is in black for V; fields and in red for V5 fields. Left
column: mixed variety allocation strategy, middle column: mosaic variety allocation strategy,
right column: grouped variety allocation strategy. Other parameters: V; proportion — 30%,

V, proportion = 70%, R{VY? = R{*Y =1, mg = 150m.
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Figure 5.10: The frequencies of infectious lesions in each of the 3080 fields at population
equilibrium plotted against the proportion of neighbour fields that share the same variety.
The three genotypes are P; (a and d), P3 (b and e) and P (¢ and f). The relative abundance
of the different genotypes is in black for V; fields and in red for V5 fields. Top line: large
dispersal range (mo = 1500m), bottom line: short dispersal range (mo = 150m). Other
parameters: V; proportion — 30%, V5 proportion — 70%, Réjl’vg = R(F))Q’Vl =1, mg = 150m.
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Figure 5.11: Spatial structure of the pathogen population when dispersal range is large
(mo = 1500m). Left column shows the landscape structures. Dark grey: Vi (50%), light
grey: V5 (50%). The other columns show the frequency of each pathogen genotype at the
equilibrium. The grey scale indicates the frequency from 0 (white) to 0.35 (black). Top line:
R = R[»" = 1.8 and mixed strategy, bottom line: RJ""> = R*"* = 1.4 and grouped
strategy. This is an example of a simulation.

5.5 Discussion

During both the population establishment phase and the coexistence at population
equilibrium, landscape structure had a strong effect on the mutant population. Highly
fragmented landscapes were found favourable to the generalist genotype. When the variety
aggregation level was high (mosaic and grouped landscapes), the generalist genotype had
more difficulties establishing a population but the geometry and size of the variety aggregates
interacted with the initial position of inoculums to produce local populations. Such effect
could give opportunities for the generalist to locally build a population. Another output of

the study was that coexistence between the three genotypes occurred rather easily.

During the establishment phase, two kinds of spatial structures were obtained for the
mutant population. Highly fragmented landscapes led to diffuse P3; populations, whereas
higher aggregation levels of the varieties led to the establishment of local populations.
This can be of practical interest for disease management since localised populations
can be controlled more easily by crop rotations or local fungicide applications, while

diffuse populations seem more difficult to handle. However, the establishment of strong
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local populations of the generalist genotype make it less susceptible to demographic or
environmental stochasticity. The high variability of the size of the mutant population was
also discussed by Burton and Travis (2008). They found substantial variation in the fate
of mutations depending on where they arise in space during the population expansion, in
particular when corridor structures were present in the landscape. Corridor structures tended
to slow down the resident population and so allowed the mutant population to get locally
established through foundation effects. Our model also produced similar effects. On the
contrary to Burton and Travis (2008), we considered a resident population composed by
two genotypes each one specialised on one variety. In addition to the interaction between
landscape structure and initial position of inoculums, there was also a strong effect of the

relative position of initial inoculum of each genotype.

Hallatschek and Nelson (2009) developed and analysed a model that described the
population dynamics and the genetic segregation on expanding microbial colonies. They
proposed several relationship between the observed genetic patterns and the selective
advantage / disadvantage of mutations. As an example, they showed that beneficial
mutations give rise to sectors with an opening angle that depends on the selective advantage
of the mutants. However, they did not consider heterogeneous environments. In our case, we
were able to provide some relationship between landscape structure and observed pathogen
genetic patterns. Nevertheless, the description of the structure of the pathogen genetic
pattern and the shape of the variety aggregates needs to go further in order to extract as
much information as possible on which landscape structure (in interaction with the initial

position of inoculum) gives rise to which spatial pattern of the mutant population.

After the establishment phase (at the population equilibrium), the coexistence among
pathogen genotypes was highly stable between landscape structures, as long as the
variety proportions and aggregation level and the spore dispersal range did not vary. In
accordance with Débarre and Lenormand (2011), we found that habitats boundaries provide
opportunities for the generalist genotype to persist in the landscape. In our study, however,
the ‘habitat boundary polymorphism’ acted within a more flexible framework, including
complex landscape structures, an explicit life-cycle and stochasticity in the pathogen life

events.

Papaix et al. (2011) (chapter 2) describes situations of pathogen genotype coexistence
and the consequences on observed disease level in the field. In chapter 2, we investigated the
dynamics of leaf rust at the scale of France on the mainly grown wheat varieties. In particular,
we were able to compare the effect of the local fitness (basic affinity in chapter 2) and the
effect of the landscape composition on the proportion of a pathogen genotype sampled on
a given wheat variety. We showed that a variety, by increasing the population size of a

pathotype may significantly influence the composition of the pathogen population on other
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varieties. A striking example is that of variety Soissons and its specialist pathotype (073100).
In the 1990’s, Soissons was highly popular and covered up to 40% of the wheat acreage in
France. Tt selected a highly specialised and damageable pathotype (073100), which is in
good accordance with the prediction of our model in the case of aggregated landscapes
(section 5.4.1). At the beginning of the wheat leaf rust survey, the pathogen population
sampled on Soissons was composed up to 60% of 073100. It is likely that the decrease of
Soissons frequency resulted in a more fragmented distribution of that variety. Here again,
the observed changes in the pathogen population meet the model predictions: the pathogen
population on Soissons was progressively invaded by maladapted pathotypes originating
from other varieties (remind that 073100 was not able to infect the recent varieties). The

relative decline in 073100 accounted for the increase in Soissons’ observed resistance level.

Habitat boundaries are highly diversified zones. In agro-ecosystems, particular
boundaries are those between production and natural components of agricultural landscapes.
It is recognised that the agro-ecological interface significantly influences disease dynamics and
evolution of plant pathogen (Burdon and Thrall, 2008). Agro-ecosystems provide a range
of situations including both agricultural crops and wild reservoirs. Our study highlights the
importance of borders as a diversity reservoir contributes to answering the question of the

effect of the agro-ecological interface on evolutionary changes in plant pathogens.
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Foreword to part 3

In the part before, and especially in chapter 5, we have shown that the landscape structure
has a key role for determining which strains win the competition and thus which strains
compose the pathogen population. However, we have considered fixed phenotypes for the

pathogen strains and the considered time scale was comparable to the pathogen life-span.

At alonger time scale, evolution of pathogen populations results from a succession of new
strains apparition (called mutant strains), which will compete with the resident pathogen
population. In an idealized world, the evolution process take more time than the demographic
one. As a consequence, mutant strains appear once the pathogen population composition has
reached its equilibrium. In such conditions, the pathogen population evolves gradually up to
a generalist strain, which phenotype depends of the landscape composition. This generalist
strain can be stable. In this case mutant strains are always eliminated after the competition
period and the pathogen population remains monomorphic. But, the generalist strain may

also be unstable: the population splits then in various specialised populations.

In this part, we opt for such a framework in order to study the evolution of pathogen
specialisation in heterogeneous environments. We generalise the soft selection model
of Levene (1953) to any number of patches interconnected with any set of pairwise
dispersal values. @ We then analyse this model via both analytical and simulation

approaches.
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Evolution of specialisation in spatial
metapopulations
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6.1. Introduction

6.1 Introduction

Plant diseases have been a threat for crop production since the origin of agriculture
(Stukenbrock and McDonald, 2008; Zadoks, 1982). From field to landscape, agro-ecosystems
offer more conducive environments for the emergence and spread of pathogens, compared to
natural ecosystems. In a crop field, plants are grown at a high density with identical or very
similar genotypes grouped in the same place. Practises such as fertilisation and irrigation
provide stable and favourable conditions for many diseases. At a larger scale, the shift from a
complex and diversified natural environment to much more simplified and genetically uniform
agrosystems over vast areas (Robinson and Sutherland, 2002) has made easier the adaptation
of plant pathogens to their hosts (Johnson, 1981). The progresses in crop management
in modern agriculture have ensured sufficient yields but present the major drawback to
facilitate the occurrence and spread of highly specialised, and thus highly damaging, plant
pathogens. In a period when European agriculture is attempting to massively reduce the
use of chemical pesticides, the development of control strategies that hamper the evolution
towards more specialised pathogens is a major challenge in crop protection. After a short
review of pathogen specialisation in agricultural systems we present our approach, which

took a more theoretical point of view.

In agricultural systems, anthropogenic disturbances have accelerated adaptive phenotypic
changes (Palumbi, 2001; Hendry et al., 2008) leading to the emergence of new pathogen
species (e.g.Stukenbrock et al., 2007; Gibbs et al., 2008) or to the differentiation and
subsequent specialisation of pathogen sub-populations (e.g. Munkacsi et al., 2008; Gladieux
et al., 2010). A well documented example is that of the rice-infecting lineage of Magnaporthe
oryzae, a fungal pathogen causing devastating epidemics in crops. M. oryzae emerged
between 5000 and 7000 years BP following a host shift from Setaria millet to rice (Couch
et al., 2005). More recently (in 1989), a host shift of the same pathogen from rice to wheat is
assumed to have caused the emergence of wheat blast in Brazil. Such major events have been
described for several crop pathogens (for a review, see Stukenbrock and McDonald, 2008)
and are probably unavoidable.

Although more discrete, pathogen specialisation to cultivated varieties is much more
common and causes the most popular varieties to become increasingly susceptible to different
diseases. Johnson (1961) used the term ‘Man-guided’ to describe how wheat selection for
resistance during the 20th century, as well as growing practises, have shaped the Puccinia
populations, a group of pathogens causing the ‘rust’ disease on wheat. Breeding for resistance
in cultivated plants has largely relied on the exploitation of the ‘gene-for-gene’ system
(Flor, 1971). According to this system, avirulence genes, in the pathogen, are matched by
resistance genes, in the host. These qualitative resistance genes confer immunity to the plant,

which explains their popularity in breeding programs. However they are easily overcome by
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the pathogen after mutation or deletion of the avirulence gene and, in the recent past,
the release of resistant varieties has usually led to the adaptation of pathogen populations
through the accumulation of qualitative pathogenicity factors. A very demonstrative example
can be found by comparing the French populations of Melampsora larici-populina, a pathogen

causing poplar rust, on wild and cultivated host populations (Gérard et al., 2006).

The shape of pathogen populations driven by the ‘gene-for-gene’ system has been largely
documented in agricultural systems (Wolfe and Schwarzbach, 1978; Hovingller et al., 1993;
Rouxel et al.;, 2003; Goyeau et al., 2006; Barrés et al., 2008) but is not sufficient for
explaining the high specialisation level that is observed in crop pathogens. A recent study
(Papaix et al., 2011) based on a large database analysis coupling pathogen frequency
data and disease observation data showed that pathogen specialisation in crops is largely
accounted for by quantitative pathogenicity. This data exploration, together with a fitness
study (Pariaud et al., 2009a), revealed in particular that a Puccinia triticina lineage was
responsible of major epidemics on the widely grown wheat variety Soissons. When the
frequency of that variety decreased, the pathogen lineage decreased as well and the observed
disease levels became progressively lower. Yet, most of the leaf rust lineages present in France
at the same period were still able to infect Soissons (i.e. were compatible according to the
‘gene-for-gene’ system). But these maladapted lineages only developed mild epidemics on
that variety. This example illustrates well the fact that widely grown varieties may select
specialised pathogen lineages and suggests that deployment strategies could be designed to
prevent or limit the development of these lineages.

As underlined by Thrall et al. (2010), the application of evolutionary principles could
provide relevant tools to maintain agriculture productivity while reducing environmental
impacts. Such an application is illustrated by Hendry et al. (2011) as follow. The mismatch
between the current phenotype and an optimal phenotype gives the adaptation level of a
population to a given environment. A population with high adaptation level will exhibit
high abundance while a large mismatch will limit population sizes. Thus, for pest control in
agriculture, we wish to enlarge this mismatch, or keep it as large as possible, in order to limit
pathogen adaptation to crop varieties. In a heterogeneous environment, migration counter-
balances local adaptation leading to a decrease in the mean fitness of local populations
(Lenormand, 2002). By altering the structure of agricultural landscapes, selection could be
manipulated in order to influence pathogen adaptation. The role of spatial heterogeneity
within agricultural landscapes on adaptation and specialisation of pathogen is thus of
practical interest. These questions have been the subject of numerous theoretical studies
in evolutionary biology. However, as we will show, existing theoretical approaches lack in
the consideration of spatial perspectives. They must be extended to a framework with more
flexible assumptions on the environment structure in order to match with the agricultural

problematic. In this work we adopted the adaptive dynamics framework which is a powerful
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approach for the study of ecological adaptation (Maynard Smith and Price, 1973; Geritz
et al., 1998; Geritz and Gyllenberg, 2005; Waxman and Gavrilets, 2005). In the following
of this introduction we briefly review spatial models for for the dynamics of adaptation in

heterogeneous environment then present our work.

Spatial structures in the environment have been introduced with different perspectives in
adaptive dynamics models. Some studies suppose that the habitat changes gradually with
space, for example, for altitude or temperature (Doebeli and Dieckmann, 2003; Champagnat
and Méléard, 2007). Doebeli and Dieckmann (2003) showed that the gradient strength,
together with the moving distance of individuals, strongly influences the evolutionary
outputs. A different approach, more suitable to agricultural systems, is to introduce explicit
patches in the environment. Débarre and Gandon (2010) developed a soft selection model
for a population evolving in a one-dimensional space divided into two different habitats.
They showed that habitat differentiation and proportion determine the evolution into two
specialists or a single generalist. To go beyond unidimensional environments, other authors
have considered metapopulation structures (Hanski, 1998), in which a network of local
populations were interconnected by dispersal. However, these studies are most of the time
based on a spatially implicit description of the environment (Meszéna et al., 1997; Parvinen
and Egas, 2004). Recently, Hanski et al. (2011) proposed an eco-evolutionary dynamics
model for a spatially explicit metapopulation inhabiting a finite network of patches, and
they studied the scale at which the population was adapted. Depending on gene flow and
demo-genetic parameters they found that adaptation may be local, at the network scale or
may lead to a mosaic specialisation. They did not, however, specifically address the question

of the effect of habitat spatial structures on adaptation.

How do pathogens adapt to a heterogeneous environment? And how does landscape
structure determine host specificity of pathogens? In this work, we propose to address these
questions from a theoretical point of view based on adaptive dynamics. A spatially explicit
metapopulation model is developed to investigate how selection, dispersal range, habitat
proportion and habitat spatial structure interplay to influence the evolution of specialisation
at the local and landscape scales. In the proposed model, the landscape is decomposed into
a network of patches and individuals are described by one phenotypic trait that controls
their fitness in each habitat. Both analytical and simulation studies are used in order to
determine the evolutionarily stable phenotypes, the evolutionary speed and the evolution
of the phenotypic variance. In section 2, the model is describe and an invasion analysis is
performed to obtain general analytical results. Then, the role of landscape structure on the
stability of the singular strategy is investigated by considering two types network structure.
In section 3, the main analytical results are detailed assuming a hierarchical highly symmetric
network structure. In section 4, they are applied numerically to spatially explicit lattice. In

section 5, a simulation experiment is performed to study the dynamics of specialisation when
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the population splits into two specialised phenotypes. Finally in the discussion section, we
discuss the practical consequences of our findings for the design of sustainable strategies for

disease control in agricultural landscapes.

6.2 Theoretical framework

This paper is based on a discrete-time deterministic population dynamics model for a
metapopulation composed of several phenotypes that develop on a finite number of patches.
We consider dispersion as a passive process only, i.e. there is no habitat choice. This model
generalises the soft selection model of Levene (1953) to any number of patches interconnected

with any set of pairwise dispersal values.

After presenting the model, we carry out an invasion analysis on this generic model
(section 6.2.2). Conditions are given for a new mutant to grow and replace the resident
phenotype assuming that the metapopulation is monomorphic. These results extend classical

ones in adaptive dynamics to any metapopulation structure.

6.2.1 Model

6.2.1.1 Spatial heterogeneity

Consider a metapopulation that develops in a spatially heterogeneous environment
consisting of a network of P patches. Two kinds of spatial heterogeneity, physical and

biological, are involved in our model.

The physical heterogeneity acts on each individual on the same way, whatever its
phenotype. Two components account for the physical heterogeneity, the carrying capacity of
each patch and dispersal. Each patch j carries a finite and constant number K of individuals.
We define the relative carrying capacity of patch j as Fj = K;/Kr, where K1 = Zle K;
denotes the total carrying capacity of the environment. Dispersal is heterogeneous so that
a propagule dispersed from a patch is deposited in another patch according to a specified
dispersal distribution that is not necessarily uniform. The dispersal rate from patch j’ to j
is denoted by m;;. The number of propagules received by patch j is quantified by the input

connection of patch j:

P
m+j: E mj/jKj/.
5'=1

In other words, the more propagules patch j receives, the more connected it is. This model is

more general than most models in the literature since no assumption is needed on dispersal
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rates. As a consequence, our model deals with any metapopulation structure with any set of
pairwise dispersal values. In particular, dispersal rates can be computed from an individual
dispersal function, which gives a unified framework to handle classical metapopulation as

well as spatially explicit models.

Besides, several habitats are present in the environment and represent the biological
nature of spatial heterogeneity. The environment is composed of H different habitats (or
niches) with one habitat per patch. The habitat of patch j is denoted by h(j). Each habitat
k is in proportion m, = th(j):k Fj in the environment.

6.2.1.2 Description of individuals

Individuals are assumed to be haploid and are classified with respect to their phenotype.
They reproduce asexually with non-overlapping generations and the progeny of an individual
generally have the same phenotype than that parent. Phenotype i is characterised by the
value, or strategy, x; of a continuous trait x. The population size of phenotype 7 in patch j

at time ¢ is denoted by n;;(t). As the total population size is constant, it satisfies

Ity P

Z Z ni;(t) = Kr,

i=1 j=1
where () is the number of phenotypes present in the metapopulation at time ¢.

Given its trait value z; and the habitat encountered in patch j the survival probability
of phenotype i in patch j is proportional to fy;)(;). In this paper, the function fi(.) is
assumed to be Gaussian with habitat-specific values of the optimal trait 3, and equal spread
o around the optimal trait (Geritz et al., 1998), so that

—(z — &)2'

fr(x) =exp 52

Differences between optimal traits [, for the different habitats generate a trade-off, that
depends on o, between survival functions on the habitats: adaptation to a particular habitat
causes maladaptation on the others. In particular, consider two habitats 1 and 2 with
opposite values of the optimal trait. Then the survival functions of strategy = are fi(z) =
exp <_($_25)2> and fo(x) = exp <_($+6)2> with 0 = 1 = —f. The associated trade-off

20 202

function, u(-), between survival functions in habitats 1 and 2 is defined by fa(x) = u(fl(a:)>
As shown in Débarre and Gandon (2010), it satisfies

u(y) = exp [—2(%— —%hlg) ] (6.1)
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The differentiation between the two habitats is quantified by §/0. When §/o < 1, the trade-
off is weak. When 6/ > 1, the trade-off is strong. When 6 /0 is close to one, the trade-off
is very sensitive to the phenotype value z (see Débarre and Gandon, 2010, Fig.1c).

6.2.1.3 Metapopulation dynamics

The demography of the metapopulation is modelled using deterministic discrete-time
equations. The model is based on the life cycle of individuals that involves the following
sequence of events: reproduction, dispersal, selection and regulation. Reproduction rates
are assumed to be constant among habitats and phenotypes, so we only present in detail the
dispersal, selection and regulation phases.

During dispersal, a proportion m;/; of propagules produced in patch j’ is deposited on
patch 7. So the number of individuals of phenotype ¢ that is deposited on patch j is equal
to

P
> mgmi ().
=1

In each patch, new individuals are subject to a selection process with a survival
probability of phenotype 4 in patch j proportional to fi;)(z;). This frequency-independent
selection is followed by a non-selective competition for space. Thus, in patch j, a fraction

(5o mys iy () fa (@)
i ( (Zf/:l My Mg (t)> f h(j)(fﬂi')>

of space is allocated to strategy x;.

After the selection phase, local regulation for space makes the population size of

phenotype ¢ on patch j at time t 4 1, equal to

( iy M Mg (75)) fri (i)

i ( (Zf/:l My Tt (t)) fh(ﬁ(%”)) | 62)

nii(t+1) = K;

6.2.2 Results on the evolution of a monomorphic metapopulation

To study the long-term phenotypic evolution of the population analytically, we consider a
simplified and standard framework in which the metapopulation is monomorphic and evolves
through episodic mutations of small amplitude (Geritz et al., 1998). Applying the theory of
invasion analysis (Geritz et al., 1998) to the setting presented in section 6.2.1.3, we derive
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evolutionnary time
evolutionnary time
evolutionnary time

-5 -4 -3 -2 -4 0 1 2 3 4 5 -5 -4 -3 - -1 0 1 2 3 4 5 -5 -4 -3 2 ~1 0 1 - 3 4 5

Phenotype Phenotype Phenotype

Figure 6.1: Examples of evolutionary trajectories simulated from equation (6.2), see
section 6.5. From the left to the right the branching criterion (equation (6.9)) is equal
to 0.6, 1.07 and 7.5. When it is lesser than one, the generalist strategy is stable (first panel).
Otherwise, the population splits into two populations of specialists (middle and right panels).
Dashed line: theoretical singular strategy (x*), solid lines: habitat optima (3, and (5). Other
parameters are: left panel: §/0 = 0.8, ms; = 75%, 7 = 0.32, Al = 0.1; middle panel: 6/0 =
1.1,mg, = 75%, m = 0.32, AT = 0.1; right panel: /0 = 1.1,m, = 15%, 7 = 0.16, AT = 0.7.

the ‘evolutionarily singular strategy’ (z*) and we characterise its stability. If the singular
strategy is stable, the population remains monomorphic. Otherwise there is a branching
point and the population becomes polymorphic, 7.e. the environment selects for specialist

phenotypes. Figure 6.1 gives some examples of evolutionary trajectories in both cases.

As we will show, a lot of results in the literature can be viewed as particular cases in
our framework. The potential of such a framework is then demonstrated in two particular

metapopulation structures in sections 6.3 and 6.4.

6.2.2.1 Short-term dynamics

The resident population is assumed to be monomorphic with trait value x;. At a given
time 1, an individual produces a mutant with trait value x,. At a time 5 shortly after t;
(to > t1, ty — t; small), the mutant is rare enough to consider that the resident population
remains monomorphic (ng;(t) << nq;(t) for all patches j and for t; <t < t,). Under this
approximation and according to equation (6.2), the number of mutants in patch j at time

t 4+ 1 is equal to

< iy M nag (ﬂ) Jni) (@2)

(t+1) =
R (S P

/
Let N;(t) = (nil(t), e ,n,-p(t)> denote the vector of the population sizes n;;(t) of phenotype
t on patches 7 =1,---, P. The vector of mutant population sizes on each patch satisfy the
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matrix equation Ny(t + 1) = A(z1,x2) No(t), where A(xy,z9) is the P x P matrix which

element in row j and column j" is equal to

[A( )]jj/ _ My K; fh(j)(xQ). (6.3)

Provided that A(zy,x2) is an irreducible and primitive matrix, the growth of phenotype x
in the period after ¢; is approximately given by

Ng(t) = (/\(1) ({L‘l, Ig))t_tl 7“(1) (1'1, IL‘Q) l(l)(l’l, l’g)lNg(tl), (64)

where A\ (1, 15) is the dominant eigenvalue of A(xy,x5), and [V (21, 25) and r® (2, x5)
are its associated left and right eigenvectors, respectively (Caswell, 2001, chapter 4). Note
that A(xq, ) is irreducible if and only if there is a dispersal path from each patch to every
other patch, i.e. there are no disconnected subsets of patches or traps in the landscape, with

respect to dispersal (Caswell, 2001, chapter 4).

6.2.2.2 Medium-term evolution

The mutant’s fate is determined by its invasion fitness function s(xy,.) defined by
s(z1, 22) = In(AV (21, 25)) (Durinx et al., 2008, see also equation (6.4)). If s(zy, z5) < 0, the
mutant becomes extinct shortly after t;. If s(x;,25) > 0, then the mutant either becomes
extinct shortly after ¢; by genetic drift, or it increases in frequency in the population. Because
our model dynamics are deterministic, only the latter alternative occurs.

Mutation steps are assumed to be small. Thus the mutant and resident phenotypes have
close trait values x1 and xz5. In this case, a stable dimorphism of x; and x5 is not possible
(Champagnat et al., 2006). A mutant with positive invasion fitness will eventually replace
the resident and will generate a new monomorphic resident population with trait value x,.
It is assumed that mutations occur sufficiently infrequently so that the population becomes

monomorphic before a new mutant appears.

6.2.2.3 Singular strategy

At a longer time scale, the resident population evolves gradually through a succession
of mutant invasions towards a phenotype with trait value x* called the ‘singular strategy’
(figure 6.1). As mutation steps are small, the first order approximation of the invasion fitness
s(xy,x9) is

Os(x1, )

s (xg — xq). (6.5)

s(x1, o) & s(xy, 1) +

T2=T]
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0s(x1, xa)

5 defines the local fitness gradient (Geritz et al., 1998). Its sign determine the
T2

To=x1
0s(x1, x2)
8352

direction of selection: if > 0, then only mutants with x5 > x; can invade,

To=x1
.. 08(x1,x2)
whereas if ———=%
al’z

To=x1

the population evolves until it reaches, the trait value x* for which the local fitness gradient

Os(x*, x2) . - : .

B = 0. We show in the supporting information (appendix 4) that
) To=1*

a monomorphic population has a unique singular strategy which trait value z* is equal to

< 0, then this is only possible for mutants with x5 < 2. Thus,

is zero, i.e.

P K, 1M (2%, 2%)] .
=D = ]L (1) (g L* Bni)- (6.6)
j=1 Zj’:l K]/ [l (I' , L )]]/

Note that in our case, the singular strategy is always reachable by gradual evolution
(convergence stability, see the appendix 4 of supporting information).

When dispersal rates are symmetric, i.e. mjj , = mj,;, the jth component of the
eigenvector M (z*, 2*) is equal to the input connection of patch j, m, ;. It follows that the

singular strategy is then equal to

] H P
T = = Z( Z ij+j>6k.

>y Kymag i Jh()=k

In other words, the singular strategy is a weighted average of the habitat phenotypic optima
Bk, which weights are an increasing function of the relative carrying capacities and input
connections of the patches in the habitat. The singular strategy corresponds to a generalist
phenotype since it represents a balanced strategy with respect to the habitat frequencies in

the environment.

If all the patches have the same carrying capacity and the same input connection, the

singular strategy is equal to

P H
L 1
r = F Zﬂh(j) = Zﬂ'kﬁk (67)
Jj=1 k=1

In this case, the weights are equal to the habitat proportions and the spatial allocation
of the different habitats has no impact on the singular strategy (see also Débarre and
Gandon, 2010, Equation 17)).
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6.2.2.4 Branching criterion

The second order approximation of the invasion fitness s(xy, z3) is

1

9s(x1, 22) .5(:@—:1:1)2. (6.8)

81'2

0?s(x1, o)

.(1‘2—.1'1)+ 837%

s(xq, o) ~ s(xy, 1) +

To=I1 T2=T1

82 *7
The stability of z* is determined by the third term of Equation (6.8). If % > 0,
)
To=x*
82 *’ )
then x* is a branching point. On the contrary, if % < 0, then z* is an
)
ro=x*

‘evolutionarily stable strategy’ (ESS, figure 6.1).

In supporting information (appendix 4) we show that the singular strategy z* is

evolutionarily stable if and only if

- . O (2%, %)) (o, 2*)109) (2% )’ . o
0, Y A (Idp 2y TG e ) A0 (e, 2) < 1(6.9)

In this equation, Idp is the identity matrix of order P, A(x) is the diagonal matrix whose

a0
g

diagonal elements are given by [A(z)].. = and prime denotes transposition. The

Jj
eigenvalues of A(z*,2*) in decreasing order are denoted by \Y)(z*,2*), for j = 1,---, P;
the corresponding left and right normalised eigenvectors are denoted by l(j)(x*,a:*) and
r0)(z*,2*). By ‘normalised eigenvectors’, we mean that [V)(z*,2*) r0)(2* 2*) = 1,
19 (z*, %) rU) (2%, 2*) = 0 for j # j'.

Equation (6.9) is too complex to be interpreted directly. However it opens the way to a
better understanding of how environment heterogeneity and structure influence the stability
of the singular strategy in specific cases. This will be illustrated in the next sections with
hierarchical and spatially explicit metapopulations. In the following, the branching criterion
will be defined as the quantity on the left-hand side of equation (6.9). It depends on the
patch structure and on the habitat phenotypic optima.

6.2.2.5 Evolutionary speed

The model representing the population dynamics is described by equation (6.2). To
obtain the first results on the singular strategy and its stability we have considered that
the population remained monomorphic. In order to study the evolutionary speed up to the
singular strategy two other assumptions must be made. First, a mechanism of mutant

apparition must be provided as well as a description of the mutant trait value. This
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mechanism is assumed to be stochastic and to alter the phenotype trait with a small
variance. Second, when rare, the mutant population is assumed to be subject to demographic

stochasticity.

The evolutionary speed of the phenotype trait z in a monomorphic population
is approximately given by the canonical equation of adaptive dynamics (Champagnat
et al., 2006; Dieckmann and Law, 1996). This equation is based on asymptotics with
three nested time scales. We intuitively describe the principles here and give the technical

details in supporting information (appendix 4).

At the finest time scale, time is discrete and the dynamics model of section (6.2.2.1)
applies to each new generation. At medium time scale, the number of generations per
time unit tends to infinity. Time appears as continuous but phenotype trait evolution still
appears as discrete with a series of monomorphic resident metapopulations each identified
by its unique phenotype. Each mutation is assumed to alter the phenotype trait with a small
variance 72(x) and to occur according to a continuous-time Poisson process with rate 6(z).
In addition, the stochasticity that affects the demography of the mutant when it is still rare
is taken into account through a parameter 72 that quantifies the variability of the offspring
distribution of an individual (see supporting information, appendix 4). At large time scale,
a large number of small mutations occur at each time unit, so that the phenotype trait
evolution appears as a continuous and derivable process. The evolution speed i is defined
as the derivative of the resident phenotype trait x with respect to time at this larger scale.

In our case, the canonical equation of adaptive dynamics can be written as (see the

appendix 4 of supporting information for details)

T=—-——"-"(x—12%). (6.10)

70 t>. (6.11)

5272
Thus the time taken by the trait = to reach a given percentage of x(0) — z*, i.e. the distance

between a given starting point (2(0)) and the singular strategy (z*), is equal to:

2,2

(= -Tn (S5 =0). (6.12)

In equation (6.12), o2 (the variance of the survival function), v* (the variance of the mutation
distribution) and € (the mutation probability) do not depend on the landscape. On the
contrary the variability of the offspring distribution of an individual, 72, depends on the

spatial structure of the environment since it involves the eigenvectors of the A matrix describe
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in equation (6.3). However, when all patches have the same carrying capacity and dispersal
rates are symmetric, with basic assumptions on the demographic stochasticity, 72 does not
depend of the landscape structure (see supporting information, appendix 4). In this case the
evolutionary speed up to the singular strategy only depends of the distance up to z* but not

of the spatial repartition of habitats.

In the following two sections we applied these general results in two particular cases:
section 6.3 consider a spatially implicit metapopulation with a hierarchical structure and
section 6.4 consider a spatially explicit lattice with dispersal rates computed from an
individual dispersal function.

6.3 Hierarchical metapopulations

6.3.1 Assumptions on the environment

Consider a hierarchical network composed by p; groups of p, patches with the same
size, so that P = pipy (figure 6.2). The questions of interest are how this group structure
may change evolutionary outcomes and whether mixing habitats within groups may limit
specialisation. Thanks to this framework, we will show how classical results could be found
again and extended in order to study the role of spatial structures in the environment.
In particular we will show that the branching criterion splits into a non-spatial term that
depends on the fitness function and on the global proportion of habitats and a spatial term
that reflects habitat allocation to groups.

Let the three dispersal rates mg, m; and ms be defined in the following way: mq is the
proportion of propagules issued from a patch that are deposited in a patch of another group,
mgo + my is the proportion of propagules that are deposited in another patch of the same
group, mg+ my + ms is the proportion of propagules that remain in its patch of origin. This

parametrisation leads to the dispersal matrix
M = mo Jp’p + my Idpl X Jp27p2 + Mo Idp,

where Jp p is the P x P matrix of 1 and Id,, ® J,, ,, denotes the block-diagonal matrix with
diagonal matrices J,, ,,. More generally, ® denotes the tensor product between matrices.
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P, patches
I

o mytm T~

o [ O O O

Figure 6.2: The hierarchical metapopulation structure. P = p; X ps patches are dispatched
among p; groups of py patches. mg: dispersal rate between patches that belongs to different
groups, mo+my: dispersal rate between patches that belongs to the same group, mo+mi+ms:
intra-patch dispersal rate.
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6.3.2 Conditions for evolutionarily stable strategy

When dispersal is homogeneous (mg # 0 and m; = my = 0), the condition for

evolutionarily stability in equation (6.9) becomes:

H *
Zwk(x;—f’“)? <1 (6.13)
k=1

(see the appendix 4 of supporting information for more details). This result for non-spatial
environments has already been established by Geritz et al. (1998, Appendix 2). If there are
two habitats in proportions 7 and 1 — 7 with 8; = ¢ and 5 = —4, equation (6.13) becomes:

o2
402

This simple relation shows that specialisation is facilitated when the trade-off is strong

T(l—m) < (6.14)

(0/c is large). Moreover, because of the homogeneous dispersal, only the composition ()
of the environment is involved. Equation (6.14) also shows that both habitats must exist
in sufficient proportions for specialists to emerge. Otherwise, evolution leads to a single
generalist poorly adapted to the habitat with the lowest proportion (equation (6.7)).

The first hierarchical level consists in distinguishing dispersal between patches from
dispersal within patches (mg # 0, mg # 0 and m; = 0). In this case dispersal is hindered so
that a propagule is more likely to stay in its patch of origin than to move to another patch
(mg # 0) but there is no group structure (m; = 0), the condition for evolutionary stability

in equation (6.9) becomes:

14295 @ = 5)°
(1+2¢) 2: L
k=

(see the appendix 4 of supporting information for more details), where
ma
f—

1 - m2 p1p2'm0 . . . . . . . .
Adding heterogeneity in dispersal makes specialisation easier by multiplying the left-hand

side of equation (6.13) by (1 + 2¢).

The coefficient ¢ provides a measure of the patch isolation.

A second hierarchical level can be added by distinguishing dispersal between groups from
dispersal within groups and within patches (mg # 0, m; # 0 and my # 0). In this case, the

condition for evolutionary stability in equation (6.9) becomes:

1+2§ Zﬂ' +2VZZUW il _Bk (ZL’ _Bkl) , (615)

k=1 k'=1

(see the appendix 4 of supporting information for more details) where
m mo
5:

1—my  pamy + pipamo’
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1
m 1

L and v = — Z(ﬂ'kg — ) (Mg — T ), With my, the frequency of habitat
P2y Ve

k in group g. As before, the parameter £ provides a measure of the patch isolation, while
mq

pimo
presence of a group structure adds the second term of the left-hand side of equation (6.15)

v=(1+¢)

the quantity that appears in the definition of v measures the group isolation. The

to the branching condition. This term is always positive, so that the presence of a group
structure makes specialisation easier. This effect is greater for stronger isolation of groups

T and of €.
P11y

The quantity v in equation (6.15) can be interpreted as the covariance between the

and patches since v is an increasing function of

within-group frequencies of habitats k and k’. Thus, this term reflects the effect of the
allocation of habitats to patches. When all the groups share the same habitat proportions,
it is equal to zero. On the contrary when groups are not balanced with respect to habitat |vy|
increases until each group contains one habitat only. In addition, the weight of the second
term in equation (6.15) increases with |vg|, i.e., the effect of the group structure is greater
when allocation of habitats to groups is more unbalanced. Finally, habitat allocation and
proportion interact strongly since the range of variation of |vg| decreases when a habitat is
increasingly present in the environment. This means that when the proportion of a particular

habitat increases in the environment, the effect of the habitat allocation decreases.

6.3.2.1 Optimality of habitat and mixture strategies

Consider a situation when the within-group habitat frequencies m, can be controlled
and when all the other variables are fixed, that is m, Bk, o, mg, m; and my are fixed.
Then the first term of the left-hand side of equation (6.15) is fixed and the left-hand side
of equation (6.15) is minimal when its second term is zero. This occurs when 7 = ... =
Tk, = T for k= 1,..., H, since the covariances vy are then equal to zero. Thus allocating
habitats to patches so that all the groups have the same habitat composition is optimal to
limit specialisation among all the allocations, for fixed global frequencies 7. We show here

that mixture strategies are optimal for damping pathogen adaptation.

6.4 Lattice networks

In this section, we still study the conditions for branching of a monomorphic
metapopulation for which equation (6.9) applies. However, we now consider a spatial rather
than a hierarchical structure for the network in order to relax the strong symmetry properties
that were imposed on the environment in section 6.3. Space is now explicit and dispersal

rates are computed from an individual dispersal function. As a consequence, we will rely
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on numerical computation to study the conditions for branching. Based on the numerical
results, a global sensitivity analysis (Ginot et al., 2006; Saltelli et al., 2008) is performed
to quantify the influence of the landscape pattern on the branching criterion defined in
section 6.2.2.4.

6.4.1 Methods

6.4.1.1 Environment

We considered an arbitrary square area £ partitioned into a regular lattice of size 30 x 30,
resulting in P = 900 contiguous square patches. The landscape pattern was determined by
the allocation of two habitats (H = 2) in proportion 1 — 7 and 7 to the 900 patches.
Without loss of generality, we only considered patterns that satisfied 1 — 7 > 7© > 0. To
avoid border effects, £ was considered as a torus in the calculations of dispersal rates and
habitat aggregation (see below).

Two landscape pattern indices (LPI) were defined in order to characterise the different
possible patterns: (i) the proportion of habitat 2 (7) and (ii) an aggregation index of habitat
2, Al (He et al., 2000), varying between 0, when two habitat 2 patches are never neighbours
in the landscape, and 1, when habitat 2 is as patchy as possible (figure 6.3, first line).

6.4.1.2 Dispersal

The dispersal was assumed to be isotropic and to decrease exponentially with distance.
More precisely, the proportion of propagules dispersed from a given source point z and

arriving at a given reception point 2z’ was given by the individual dispersal function

27 27
_ — o
olllz= 1) = 2 exp (2 2= 1),

S S
where || z — 2" || is the distance between z and 2/, and my is a range parameter (Soubeyrand

et al., 2009, Appendix C). The between-patch dispersal proportions were deduced by
integration according to the formula

mgji :/A/ (|| z = 2"|]) dz' dz. (6.16)

When using equation (6.16), the integration is performed between pairs of points that belong
to the area A and A’ of patches j and j’, respectively. The implicit assumption is that the
population mixes perfectly in each patch. The dispersal rates m;; in equation (6.16) were
computed using the CaliFloPP algorithm (Bouvier et al.;, 2009) on the 900 patches. This
algorithm computes the integral of a point-wise dispersal function between any pair of source

and target polygons.
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st

Figure 6.3: Repartition by simulated annealing of habitats in the lattice environment.
Habitat 1 (white) and habitat 2 (grey) represent 1 — 7 = 75% and m = 25%, respectively.
In the top row aggregation index (AI) is increasing: left panel, AT = 0.1; middle panel,
Al = 0.5; right panel: AI = 0.8. The bottom row displays three pseudo-random allocations
with AI =0.8.
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6.4.1.3 Experimental design

Three input factors were taken into account in the sensitivity analysis: (i) the LPI 7;
(i1) the LPI AI; (iii) the habitat differentiation /0. In addition, the dispersal range was
investigated by considering three different cases: m, equal to 15%, 37.5% and 75% of the

environment length.

The 7 index varied at ten levels in the range (0;0.5) and the AI index by 0.1 in the
range (0.1;0.8). Landscape patterns were randomly generated for 75 combinations of 7 and
AT with up to 30 replicates per combination (see below and figure 6.3). The remaining five
combinations were impossible to generate by our algorithm. The habitat differentiation ¢/c

was varied in the range (0.4;2).

A simulated annealing algorithm (Kirkpatrick et al., 1983) was used to generate
landscapes with controlled values of the LPI 7 and Al according to the experimental design
described before. Under these constraints, pseudo-random landscape patterns were generated
by dispatching both habitats 1 and 2 among the 900 patches (figure 6.3, last line).

6.4.1.4 Sensitivity analysis

In order to quantify the influence of the input factors (7, Al and 6/0), global sensitivity
analysis was applied to the branching criterion defined in equation (6.9) and denoted by here
Y. Calculation of the sensitivity indices was based on the Sobol’ decomposition (Sobol, 1993)
as described e.g. in Saltelli et al. (2000). According to this decomposition and assuming
that the input factors vary independently, the variance of Y reads:

V=Vi+Var+ Vsjo + Vear + Vasio + Vars/o + Vaars/o

where V. (respectively Vi and V) is the variance associated with the main effect of factor
7 (respectively Al and §/c), Vi a1 (respectively V; 5/, and Vars/,) is the additional variance
due to the interaction between factor m and Al (respectively between factor 7 and §/o and
between factor Al and §/0), Vi ALs/o 18 the variance due to the interaction between the three
factors, m, AT and §/o.

The sensitivity indices for factor v, v € {m, Al,d/c}, are defined by:

e main effect indices: SI{V = v,
1 1 1 1 Vow
e interaction indices: SIE}Q) = _Zwﬁ‘; ’
e triple interaction index: SI® = W’

total indices: TSI, = SI{V 4 SI® + ST,
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They vary between 0 (no effect) and 1 (maximum effect).

In practise, the sensitivity indices cannot be calculated exactly and they must be
estimated after running simulations. To estimate the indices, we applied the metamodelling
technique proposed by Sudret (2008). First a polynomial-chaos metamodel of order five was
fitted to the simulation results by linear regression. Then the estimated sensitivity indices

were calculated using ad hoc formulae based on the estimated parameters of the metamodel.

6.4.2 Numerical experiment outputs

Figure 6.9 maps the stability of the singular strategy (i.e. the generalist strategy)
depending on proportion (7) and aggregation (AI) of habitat 2 in several cases of habitat
differentiation and dispersal range. Remind that 0 < 7 < 0.5 since we only consider cases
where 1 — 7 > 7 > 0.

The variability of the branching criterion was much larger when my = 15% (V' = 495)
than when mg = 75% (V = 4.5). However, in both cases, branching occurred for some
combination of the factors. As expected, an increase in proportion and aggregation of habitat
2 made branching easier (figure 6.9). When the dispersal range (m;) decreased, as when
habitat differentiation (/0) increased, branching occurred for lower habitat 2 proportions
and levels of aggregation. When the trade-off was weak (0/0 < 1) and the dispersal range
was large, the singular strategy was stable except for high levels of aggregation and large
proportions of habitat 2. On the contrary, when the trade-off was strong (/0 > 1) or the
dispersal range was low, specialists were selected at high level of aggregation (respectively
proportion) of habitat 2, whatever the proportion (respectively aggregation) of habitat 2
(figure 6.9).

The sensitivity analysis of the branching criterion (figure 6.5) identified habitat
differentiation (J/0) as the most influential factor, especially when the dispersal range was
large (TSL; = 0.62 when m, = 75% and TSIs = 0.37 when m, = 15%). The influence of
environment composition was also strong when the dispersal range was large, as quantified by
the sensitivity indices of 7 (TSI, = 0.29 when m, = 75% and TSI, = 0.22 when m, = 15%).
On the contrary, spatial structures had the strongest effect when the dispersal range was
small (TSIx; = 0.41 when my = 15% and TSI; = 0.09 when mg, = 75%).

An important part of the variance of the branching criterion was explained by interactions
between factors, especially when the dispersal range was low (figure 6.5). When the
dispersal range was large, interactions between the proportion of habitat 2 and differentiation
among habitats were strong. When the dispersal range was low, interactions between the
differentiation among habitats and the aggregation of habitat 2 were strong. The strength
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Figure 6.4: Stability of the generalist strategy against habitat 2 proportion and aggregation
level. The generalist strategy is stable when the branching criterion (equation (6.9)) is lower
than 1 (dark grey) and unstable when it is greater than 1 (light grey). In the top row the
trade-off is weak (6/0 = 0.84), in the bottom row the trade-off is strong (d/o = 1.16). From
left column to right column dispersal range is decreasing: left column, m, = 75%; middle
column, m, = 37.5%; right column, m, = 15%

of the third order interactions, when dispersal range was low, indicated complex interactions

between the three factors.

6.5 What occurs after branching? A simulation study of
specialist evolution

The main assumption in order obtain analytical results was the monomorphic population
framework. As a consequence, it was not possible to study the evolution of specialists
when the generalist strategy was not stable. In this section, we relaxed the monomorphic
assumption and we studied the effects of spatial heterogeneity on the specialist strategies.

In particular we investigated their degree of specialisation, the speed at which they evolved
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Figure 6.5: Sensitivity analysis performed on the branching criterion (equation (6.9)). The
3 factors analysed are: §/o, the habitat differentiation; AI, the habitat 2 aggregation level
and 7 the habitat 2 proportion. From top to bottom dispersal range decrease: a, m, = 75%,
b, ms = 37.5% and ¢, ms; = 15%. The first part of bars (blue) correspond to main indices
(effect of the factor alone, SI{V) and full bars correspond to total indices (TSI,). Pink,
interaction with Al; purple, interaction with m; light blue, interaction with ¢/o; yellow,
triple interaction.
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and their spatial distribution.

We developed here a simulation model based on equation (6.2) representing the evolution
of a metapopulation that developed on a lattice environment. The environment framework is
that of section 6.4. We considered three case studies. The first allowed to check the agreement
between theoretical predictions (section 6.2.2) and simulation results on the singular strategy
and on the branching conditions. The second dealt with a large dispersal range and the third
with low dispersal range. In these last cases, the other parameters (7 and 6/0) were fixed
to values that favoured specialisation when habitat aggregation varied.

6.5.1 Methods

6.5.1.1 Case studies

In each case study there were two habitats. The dispersal range m,, the habitat
differentiation 0/0 and the proportion of habitat 2 (7) were fixed, while the aggregation
index (AI) varied by 0.1 in the range (0.1;0.8).

In the first case study, the parameters were fixed at m, = 75%, § /o = 0.9 and 7 = 0.32.
Parameters were chosen in order to observe both stable and unstable conditions for the

generalist when habitat aggregation varied.

In the last two case studies, the parameters mg, 6/0 and 7 were chosen in order to
observe a branching situation whatever the aggregation index. In the first one (situation A),
the parameters were fixed at ms; = 75%, 6/c = 1.1 and m = 0.32. In this case the large
dispersal range limited the influence of the spatial structure and the branching criterion had
a low variability when the aggregation index varied. In the second one (situation B), the
parameters were fixed at my = 15%, /0 = 1.1 and © = 0.16. This set of parameters allowed
to cover a broad range of branching criterion values when Al varied (figure 6.6).

For each case study and each AI value, 15 replicates were conducted each one on 15

different landscape patterns chosen at random as described in sections 6.4.1.1 and 6.4.1.3.

6.5.1.2 Model implementation

The assumptions on the environment and on the dispersal function were the same as in
section 6.4. The patch carrying capacity was set to K; = 100 for all patches. The continuous
trait x varied between —5 and 5 and this range was discretised into 101 phenotypes. The
simulations started with a monomorphic population with trait value x = —5. At each time
step, mutants were generated from an existing phenotype provided its local population size
was over a threshold equal to 1. New mutants were generated according to a Gaussian
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Figure 6.6: Branching criterion value against aggregation levels of habitat 2 (AI). Red,
situation A (ms = 75%, §/0 = 1.1 and 7™ = 0.32); black, situation B (m, = 15%, 6/0 = 1.1
and 7 = 0.16).

perturbation centred on the pre-existing trait value and with variance v? equal to 0.01.
There was no genetic drift. The multitype metapopulation dynamics followed equation (6.2)

and was simulated over 2000 time steps.

6.5.1.3 Post-simulation computations

Before branching, we estimated the singular strategy (2*) and the time taken to reach
it (Tyrancn) on the simulations. After branching, the metapopulation was considered as a
mixture of the two populations of specialists. Simulations were then compared through
three measures: (i) the trait value of specialists, (7i) the time taken to reach them (Tggs)
and (ii1) the within population phenotypic variance. In addition, the level of adaptation of

local populations was computed at the end of the evolution, in each patch.

More technically, at each time step the metapopulation composition was summarised by
the means and standard deviation of a two-component Gaussian mixture that was fitted by
the EM algorithm (Meng and Rubin, 1993) implemented in the function normalmizEM of
the R package miztools (Young et al., 2010, Version 0.4.4.). The time to reach the singular
strategy (Tpranch) Was defined as the first time step where the EM algorithm identified two
distinct populations. The estimated singular strategy (#*) was then defined as the mean
metapopulation phenotype at t = Tj,.qnen — 1. Trait values of specialists were estimated
by the means of the two-component Gaussian mixture at the end of evolution. The time

to reach the specialists (Trss) was defined as the first time step when the means of the
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two-component Gaussian mixture were contained in the 5% interval around the trait value

of the specialist strategies.

Finally, in patch j, the mean phenotype was calculated as a weighted average of the
existing phenotypes, the weights being the proportions of each phenotype in the local
population:

I
(1) = > i Tinij (1)
J K] '
Then we defined the level of local adaptation as the mismatch between the mean phenotype

of patch j (z;(t)) and the optimal phenotype in patch j (84¢)): |7;(t) — Bue)l-

6.5.2 Simulation results

6.5.2.1 Comparing theoretical predictions and simulation results

Despite the monomorphic assumption, simulation results were highly consistent with
analytical predictions. When the branching criterion was greater than 1, a branching point
was observed in 90.2% of the simulations (figure 6.7). Reciprocally, no branching was
observed when the branching criterion was lower than 1. Moreover, the estimated singular
strategy 2* was in line with the theoretical singular strategy z*: * values were close to x*
and 7* was independent of the aggregation of habitat 2 (figure 6.7).

Figure 6.8 shows the time to reach the singular strategy. According to section 6.2.2.5, the
time to reach the singular strategy could potentially dependent on the aggregation index.
This was not the case for the situation A. However, in the situation B with stronger spatial
effects (due to a lower dispersal range), the singular strategy was reached faster when habitats
were grouped. This tendency was significant but differences in the median of T}, between
isolated habitats and grouped habitats varied between 39 and 49 only (figure 6.8).

6.5.2.2 Effect of habitat aggregation on specialist strategies

Habitat aggregation level highly affected the specialist populations. First, figure 6.9 shows
that specialists were more adapted to the habitats when the habitats were more grouped
(AT is higher). Second, the within-population variability was smaller when habitats were
aggregated (figure 6.10). This means that, when habitats were more grouped, the specialist
populations had a mean phenotype more adapted and were more homogeneous. Third,
when habitat were more grouped specialist populations evolved more rapidly to their stable
strategies (figure 6.11). Thus, specialists evolved faster and became more adapted when

habitats were more grouped.
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Figure 6.7: Comparison between analytical and simulation results. a, the estimated singular
strategy 2* (+) plotted along with the theoretical singular strategy z* (dashed line) against
the aggregation level of habitat 2 (AI). b, the branching criterion value (open circle and
left Y-axis) plotted along with the predicted (black solid line and right Y-axis) and observed
on simulations (red solid line and right Y-axis) proportions of branching points, against the
aggregation level of habitat 2. Other parameters are: m, = 75%, 6 /o = 0.9 and © = 0.32.
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Figure 6.8: The time to reach the singular strategy (Tprancn) plotted against the aggregation
level of habitat 2 (Al) in the case of situation A (a) and of situation B (b). The relationship
between Tp.qnen and Al was tested by a GLM with Poisson distributed errors. The solid
line indicates that the slope was significantly greater than 0 with a 0.001 threshold. Other
parameters are: a, my = 75%, 6/c = 1.1 and # = 0.32; b, m, = 15%, 6/0c = 1.1 and
m = 0.16.
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Figure 6.9: Specialists trait value at the equilibrium (ESS) plotted against the aggregation
level of habitat 2 (AI) in the case of situation A (a) and of situation B (b). The relationship
between ESS values and Al was tested by classical linear regression. Red lines indicates that
the slope was significantly greater than 0 with a 0.001 threshold. Other parameters are: a,
ms = 75%, /0 = 1.1 and m = 0.32; b, mgs = 15%, /0 = 1.1 and 7 = 0.16.

Specialist populations obtained in situation A appeared globally less adapted, more
variable and with a slower evolutionary speed than those obtained in situation B. This was
due to the fact that the branching criterion was always higher in situation B with respect
to situation A (figure 6.6). However, while the range of variation of the branching criterion
was greater in situation B, effects of habitat aggregation level were larger in the situation A.
This means that the value of the branching criterion was crucial especially when it was near
the branching threshold of 1.

The monitoring of the within population phenotypic variance revealed a first
diversification phase during which the phenotypic variance increased then a selection phase
during which the phenotypic variance decreased until it was stable (figure 6.10). The

maximum phenotypic variance coincided with the branching point.

Figure 6.12 shows the pattern of adaptation across the environment in a particular
example. Populations living at the centre of habitat aggregates showed a high local
adaptation level whereas populations inhabiting isolated patches or edge patches were poorly
adapted. These differences in local adaptation were not explained by the persistence of a
generalist in the edges but rather by the coexistence of the two specialists in the same patch
(not shown) due to the migration-selection balance (Mouquet and Loreau, 2003). This was

observed in all the simulations.
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Figure 6.10: Evolution of the within populations phenotypic variance for AT = 0.1 (solid
line) and for AT = 0.7 (dashed line). Other parameters are: situation A (a), m, = 75%,
d/o = 1.1 and 7 = 0.32; situation B (b), ms = 15%, 6/c = 1.1 and 7 = 0.16.
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Figure 6.11: The time to reach the ESSs (Tgss) plotted against the aggregation level of
habitat 2 (Al) in the case of situation A (a) and of situation B (b). The relationship between
Trss and Al was tested by a GLM with Poisson distributed errors. The solid line indicates
that the slope was significantly greater than 0 with a 0.001 threshold. Other parameters are:
a, mg = 75%, 0/c = 1.1 and m = 0.32; b, ms; = 15%, 0/0 = 1.1 and 7 = 0.16.
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Figure 6.12: An example of the level of local adaptation: the more adapted the local
population, the lightest the grey. Patches marked with 1 (respectively 2) shared the habitat
1 (respectively the habitat 2). In this case, specialisation was predicted by the analytical
branching criterion. Parameters are mgs = 15%, d = 1.1, 7 = 0.16 and Al = 0.7 (situation
B). This is an example of a simulation.

6.6 Discussion

With regard to agricultural consequences of pathogen specialisation, we identified two
questions related to applied evolutionary biology: how do pathogens adapt to a heterogeneous
environment? And how does landscape structure determine host specificity of pathogens?
In this article, we addressed these questions from a theoretical point of view. We studied
the consequences of spatial heterogeneity on the dynamics of adaptation of a population
that lives on a finite network of habitat patches interconnected via passive dispersal. By an
adaptive dynamics approach, we developed a model that described the phenotypic changes
occurring in a metapopulation under soft selection. Our model provided a more general
framework than most models in the literature since no assumption was needed on dispersal
rates: classical as well as spatially explicit metapopulation models can be handled. By
analysing the model through analytical as well as simulation methods, we were able to
generalise classical results: whatever dispersal rates, (i) we defined the singular strategy,
(ii) we characterised its stability and (iii) we provided the evolutionary speed. We also (iv)
studied the effects of spatial heterogeneity on the specialist strategies.
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The singular strategy corresponds to a generalist phenotype since it represents a balanced
strategy with respect to the habitat frequencies and connectivity. When dispersal rates are
symmetric and patches have the same input connection, the singular strategy is a function of
habitat proportion and optima only: it is independent of the spatial distribution of habitats
in the environment. This classical result can be also found in Geritz et al. (1998) or Débarre
and Gandon (2010). However, it represents only a particular case since, in equation (6.6),
spatial configuration can influence the singular strategy: small and/or isolated patches have
a smaller weights on the generalist phenotype. Although this had been pointed out in the
case of the dynamics and persistence of a metapopulation by Ovaskainen and Kanski (2003)
and discussed by Hanski et al. (2011) with evolutionary perspectives, the role of individual

habitat patches was not yet demonstrated with an adaptive dynamics approach.

The stability of the singular strategy determines if the population remains monomorphic
with a generalist phenotype or if it splits into two specialised populations. It is characterised
by the value of the branching criterion. The first models that investigated the respective
roles of environment heterogeneity and dispersal rate on the stability of the singular
strategy involved two patches with different habitats and linked by migration (e.g. Meszéna
et al., 1997). In this case, limiting migration between patches helped specialisation. In
spatial environments with given habitat proportions, migration between both habitats can
be reduced by hindering dispersal or by aggregating patches that share the same habitat. As
expected, the model developed here predicts that both effects are crucial in determining if the
metapopulation remains monomorphic or if it splits into two specialists. As it was underlined
by Débarre and Gandon (2010), spatial and two-patch models give qualitatively the same
results. However, we were able here to identify in several dispersal contexts the respective
roles of habitat differentiation, habitat frequencies and spatial distribution. Considering a
metapopulation that develops in a hierarchical network of habitat patches, we showed that
the branching criterion splits into a non-spatial term that depends on the fitness function
and on the global proportion of habitats and a spatial term that reflects habitat allocation
to groups. We also provided a sensitivity analysis on the branching criterion of a spatially
explicit metapopulation inhabiting a lattice network. In this case, we showed that for short
dispersal range the spatial distribution of habitats is the most influential factor on branching.
However, its effects decrease when dispersal range increases and for long dispersal ranges,

habitat proportions and habitat differentiation are the most influential factors.

The evolutionary speed of a monomorphic population is approximately given by the
canonical equation of adaptive dynamics. In our case, provided some assumptions on
both demographic stochasticity and dispersal rates, we found that the time taken by the
population to reach its generalist phenotype is independent of the spatial organisation of
habitats. However, using a simulation approach, we found that this is not the case when

dispersal range was short, due to the stronger effects of the habitat spatial structure. More
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efforts must be done in order to characterise the role of demographic stochasticity and habitat

spatial structure in the evolutionary speed of a monomorphic population.

What happens after branching is scarcely treated in the literature. Meszéna et al. (1997)
demonstrated that adaptation of coexisting phenotypes to habitats is stronger for higher
patch differences or inverse migration rates. Geritz et al. (1998) obtained similar results with
three habitats and random migration. Thanks to a simulation approach, we have showed
that the spatial arrangement of habitats impacts both the mean phenotype of specialist
populations and their phenotypic variance: coexisting phenotypes were found more adapted
in grouped habitats. In addition, a clear effect of habitat aggregation on specialisation speed
was also observed in all the simulations: specialists evolved faster when habitats are more

grouped. As a consequence, specialists adapt faster and better when habitats are grouped.

Coexistence among specialist and generalist genotypes in heterogeneous landscapes was
investigated in chapter 5 using a demographic approach. We used the term ‘demographic’
because life-cycle was described explicitly and because genotypes were pre-defined. Both
approaches lead to comparable conclusions: grouped allocation strategies as well as short
dispersal range favour specialist genotypes whereas mixed allocation strategies and large
dispersal range favour generalist genotypes. However, one important conclusion differs
between the two approaches: according to chapter 5 three genotypes can coexist in a two-
habitat landscape. This was never the case in the present study. We underline here an
important difference between gradual evolution of a population and competition between
pre-existing genotypes. In the first case, the population evolves first towards a generalist
genotype, which can be stable (the population remains monomorphic) or not. It then
splits into two coexisting specialists. When genotypes pre-exist and cannot evolve through
mutation, we only observe the output of a competition. How much is it stable to mutations?

This remains an open question.

The adaptive dynamics framework could appear as a little far from the applied question of
the effect of agricultural landscape spatial heterogeneity on adaptation and specialisation of
pathogens. However, some of our results can be of practical interest for designing sustainable
strategies for disease control in agricultural landscapes. Our results suggest that highly
homogeneous landscapes select for highly specialised pathogens but also that these pathogens
are selected more rapidly. Cultivar mixtures, at the field or the landscape scale, appear then
as unavoidable in order to increase varietal resistance durability for three reasons: (i) they
hamper pathogen specialisation and, in the case when specialists are unavoidable, (ii) they
slow down specialist evolution and (iii) limit their adaptation level. The particular case
of the hierarchical metapopulation can be interesting from the agricultural point of view.
The environment may be a field where a mixture of varieties is grown and where subplots

(patches) receive different varieties. Alternatively, the environment may be an agrosystem
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where patches are fields and groups are local production basins. We show here that mixture
strategies are optimal for damping pathogen adaptation. More generally, landscapes that
increase the durability of resistant varieties could be designed by defining a criterion and
optimising this criterion. The branching criterion we used was derived from an invasion study
and characterises the stability of the singular strategy. Our simulations showed, however,
that this criterion seems to be a good predictor of the global evolutionary trajectory: the
higher the branching criterion value, the more favourable the landscape for specialisation.
It would be interesting to design and test variety allocation strategies in more realistic

agricultural landscapes using this criterion along with optimisation methods.

Adaptive dynamics allows studying the long-term evolution of a population. This
framework can be used to model the evolution of pathogen with short life cycles such as
bacteri or fungi over one or several years. In our study, we assumed that the landscape
structure did not change over time. However, crop rotations in time impact the evolution
of pathogen populations (van den Berg et al., 2010) and could be a good control strategy
for disease (Xu, 2011). An improvement of our study would be to study how this temporal
heterogeneity modifies the results (see the appendix 5 of supporting information).
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Chapter 7. General discussion

7.1 Introduction

The transition towards an ecologically intensive agriculture needs to mobilise an
association of effective agronomic levers. Among these, crop genetic diversity is a promising
way. More than any finite resource, variety resistances are subject to ‘the tragedy of the
commons’ (Hardin, 1968) and thus require the design of collective strategies for their durable
management. This PhD work aims at shifting from local to landscape scales in order to
improve our understanding and prediction of disease risk and to provide an eco-evolutionary

support for new organisational strategies.

Three ecological mechanisms that link host genetic diversity and susceptibility of host
populations to disease were identified: dilution effect, competition among pathogen strains
and long term evolution of pathogen populations. These mechanisms were investigated in
agricultural landscapes using both statistical tools for the analysis of real data and theoretical
approaches, including simulation models and mathematical analysis. The aim of this section
is not to discuss particular results again but rather to give insight into the complementarity

of approaches and to provide some ideas to go further.

7.2 Draw me a resistant landscape

The relationship between host diversity and disease susceptibility raises three questions:
how does a pathogen population spread over a heterogeneous host landscape?” How do
pathogen genotypes compete in a diversified host population? And, at a longer term, how do
pathogen populations evolve in response to host population structure? In a consistent way, all
studies in the previous chapters showed that the composition and the spatial structure of the
host population influence greatly the pathogen population. However, the recommendations

that this work could provide will depend on the desired aim.

Suppose that a new variety with a new quantitative resistance is now available. How
should it be introduced in the varietal landscape? The first objective could be to protect
this variety against disease. At short time scale the better strategy would be to cultivate
this variety over large and non fragmented areas. In this way we minimise the exchange of
pathogen propagules among varieties and preserve the integrity of the new one. However,
at longer time scales, this is the best way to favour the emergence of highly specialised and
damageable pathogen strains. In such a context we could expect a brutal breakdown of the
variety resistance. The second objective could be to protect the other varieties with the
new one. In this case mixed strategies are the more adapted ones because they decrease
landscape connectivity. This strategy cannot be the most productive one at short time scale
because the new resistant variety receives more pathogen propagules and will exhibit more
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disease. Nevertheless, in such a context, pathogen populations will evolve more slowly and
towards less aggressive strains: to protect old varieties in the short term implies to protect

the new one in a longer term.

Consider now the varieties that are available in a given year. The question is how to
deploy these varieties in order to have a resistant landscape. The leaf rust study showed that
pathogen populations are composed by a collection of strains with a variable specialisation
degree, from highly specialised strains (that could be highly damageable) to generalist ones.
A dominant variety, both at the global scale or at the local scale, will enhance its own
specialist, leading to a decrease in its resistance level and greater disease severity. On the
contrary, mixed strategies will favour generalist strains and will intensify competition among
specialists. As a consequence, non frequent varieties, both globally and locally, will be less
exposed to specialist pathogens and this will preserve their integrity. In purely spatial terms,
variety diversity must then be enhanced both at local and global scale in order to avoid the
dominance of a particular variety and to promote competition among pathogen strains. The
temporal scale must not be forgotten. Temporal succession of varieties could lead to the
same results. Varying spatial and temporal composition of the varietal landscape offers new
dimensions: highly popular and susceptible varieties could become ‘resistant’ when they

decrease in frequency, as in the case of variety Soissons (see chapter 2).

7.3 Modelling approaches in agro-ecological studies

Modelling approaches in agro-ecological studies may aim at investigating mechanisms
from a basic point of view or at providing predictive models for managers. This PhD
thesis dealt with the first objective. We based our work on three complementary modelling
approaches: statistics, simulations and mathematics. One vision of the relationship between
each of them could be a continuum in the description of observations. Mathematics analysis
requires drastic hypotheses in order to put the problem in a tractable form. Simulation-
based methods allow to relax some hypotheses but still consider an idealised world. Finally,
statistical analyses are directly confronted to real data-sets. Exchanges between these
approaches are useful in both ways. As an example, simulation approaches can give
information on the robustness of some necessary hypothesis. Moreover, with the increase of
likelihood-free inference methods, the border between simulation and statistical models is

less and less clear-cut.

Another important point that I would like to discuss is the role of data. Any modelling
approach must be based, more or less, on observed phenomena. All types of data should
be considered: from precise experimental design in highly controlled situations to large

temporal and spatial scale datasets that could come from diversified sources. Even if they
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are not obtained in controlled conditions, many large scale data-sets allow to confront
ecological theories to the real world. There are a lot of ‘dormant’ data-sets, such as in
naturalistic associations, agricultural technical institutes, state agencies and others that

would be interesting to see better exploited.

7.4 Perspectives

An important point in the approach of this PhD work is that we studied quantitative
traits for pathogenicity rather than qualitative characters. However, we only considered
discrete phenotypes and ignored variance (but see the simulation study of chapter 6). A
further step would require to focus on the population variability in pathogenicity both in
theoretical models and in statistical analyses, where the split into homogeneous pathotypes
is sometimes contestable. In this vein, we always assumed clonal reproduction: adding sexual

recombination will give more insights to our findings.

Another point that will be exciting is to widen our work to natural systems and to
investigate further how spatial structure of the host and pathogen populations interact with
co-evolving patterns between host resistance and pathogen infectivity. In the agricultural
part this echoes with variety rotations. Here we essentially worked on spatial heterogeneity
(but see chapter 2 and the appendix 5 of supporting information) but adding a temporal
dimension would be of prime interest in order to design management strategies of variety

resistances.

Finally, some agricultural cooperatives and technical institutes are working on pesticide
reduction by reasoning the varietal choice. 1 think that this represents a great opportunity
to acquire data-sets at the regional scale in order to confront models such as presented in
this work to the real world.

7.5 Conclusion

I would like to conclude this work by underlying that collective changes must be operated
in our agricultural systems. In fact, the opposition between natural and agricultural
environments is not tenable anymore: we must reintegrate our agricultural systems into the
natural environment. Such a change requires a collective management of agricultural spaces.
As a consequence, the practical design of new management strategies must be done together
with social and economical perspectives. Analysis and modelling of farmer’s decisions with
respect to land uses is an important field of research. These studies aim at assessing the

impact of public policy on agricultural activity, or at determining the optimal location of
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cropping systems based on both economic and environmental criteria. However, coupling
agronomic models with decision models has been so far underexploited and is usually limited
to the farm scale. The scale of interest must now be widened and landscape epidemiology

approaches must integrate the operators and their potentially different strategies.
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Appendix 1

Technical information related to the bayesian hierarchical model
for wheat leaf rust epidemics

This appendix gives technical details related to model construction. We first explain how the
population composition sub-model was constructed and we then detail the disease severity

sub-model.

In order to make MCMC convergence easier, we defined a conjugated model for

the population composition sub-model. Thus, because Y,; = (yv,m,--- ,ym’p) has a

multinomial distribution with parameters NV, ; and IL,; = <7Tv7t71, <o Tytp ), We supposed
that II,; had a Dirichlet distribution. A way to simulate a Dirichlet distribution was

to generate P variables Z,;, as Z,, ~ Gamma(Zvvmp,l). Tvt,p Was then defined as

Zv,t,p

<F ,
Zi:l Zv,t,p _
population but as a scale variable instead. Since E[Z, ;] = Z,;,, it was possible to link the

Note that Z should not be considered as the actual size of the pathotype

Tutp 10 Wheat variety frequencies assuming that the expectation of 7, is influenced by the

landscape composition through the regression equation
v
E[Zv,tvp] = Zytp = Qyp+ Z i p Bip Dit-
i=1

Based on the modelling framework of the population composition sub-model, we
constructed a coherent model for the disease severity sub-model. Let X,;,. be the

disease score attributed to variety v year ¢t on trial e in region r in the Arvalis survey,

vt ot Oe ™~ Beta(uvytﬁr,ae) The Beta distribution is parameterised by its mean
value p,,, and scale parameter o.. As for m,;,, we introduced two scale variables S, ,
and S, ;. that represent the diseased leaf area and the healthy leaf area of a variety v,
respectively, during year ¢ in the climatic region r. Since disease scores are defined in the
scoring procedure as the observed proportion of diseased leaf area, p,;, = E[X, ;| can be

identified with the mean proportion of leaf area that was diseased for variety v during year
v,t,r

S’U,t,’l" + Sl’),t,?"
that S,;, ~ Gamma (S’v,tm, 1). Since different pathotypes may produce different levels of

t in region r. Thus, fi,;, = . To keep the model globally coherent, we assumed

disease severity on a given variety, the expectation of S, ;, depends on the composition of

the pathogen population through the regression equation

pP-1
Q 0 1 2
E[Sv,t,r] = Sv,t,r = a, -+ a, + a, + g 51;,]' bv,j Tt,j -
i=1



For identifiability reasons, S’ , . was fixed a priori.

v,t,r
We provide below the JAGS script to fit the model to the three datasets on wheat leaf

rust.

model

{

### a priori ###
for (v in 1:V)

{
a0[v] ~ dunif(0,10000)
b1[v] ~ dunif(0,10000)
b2[v] ~ dunif(0,10000)
b3[v] ~ dunif(0,10000)
b4[v] ~ dunif(0,10000)
b5[v] ~ dunif(0,10000)
for (p in 1:(P-1))
{
alphalv,p] ~ dunif(0,10000)
}
}

for (t in 1:T)

all[t]l = dunif(0,10000)

for (r in 1:R)

a2[r] ~ dunif(0,10000)

for (p in 1:(P-1))

betal[p] “dunif (0,10000)
beta2[p] “dunif (0,10000)
beta3[p] “dunif (0,10000)
beta4[p] “dunif (0,10000)



betab [p] “dunif (0,10000)
beta6 [p] “dunif (0,10000)
beta7 [p] “dunif (0,10000)

for (e in 1:E)

sigle]l ~ dunif(0,1)

### meta model ###

# Sbar model
for (v in 1:V)

Sbar([v,t,r] <- aO[v]+ all[t] + a2[r]

{
for (t in prem[v]:der[v])
{
for (r in 1:R)
{
+
+
+
+
+
}
}
}

# Zbar model
for (v in 1:V)
{

for (t in prem[v]:der[v])

{
Z[v,t,P] <- 1
for (p in 1:(P-1))
{

b1[v]*Prop[v,t,1]*DELTA1[v]
b2 [v]*Propl[v,t,2]*DELTA2[v]
b3 [v]*Propl[v,t,3]*DELTA3[v]
b4 [v]*Prop[v,t,4]*DELTA4 [v]
b5 [v] *Prop[v,t,5]*DELTAS5 [v]

Zbar[v,t,p] <- alphalv,p]



betal[p]*phil[1,t]*deltal(p]
beta2[p]l*phi[2,t]*delta2[p]
beta3[pl*phil[3,tI*delta3[p]
beta4 [p]l*phi[4,t]*delta4[p]
betab[p]l*phil5,tI*deltab[p]
beta6 [p]l*phil[6,t]*deltab[p]
beta7 [p]*phi[7,t]*delta7 [p]

+ o+ o+ o+ o+ o+ o+

# mu and pi computation
for (v in 1:V)

{
for (t in prem[v]:der[v])
{
for (r in 1:R)
{
S[v,t,r] ~ dgamma(Sbar[v,t,r],1)
mulv,t,r] <- S[v,t,r]/(S[v,t,r]+5)
}
for (p in 1:P)
{
Z[v,t,p] = dgamma(Zbar([v,t,pl,1)
pilv,t,pl <- Z[v,t,pl/sum(Z[v,t,])
}
}
}

### likelihood ###

# composition of leaf rust population
for (v in 1:V)
{
for (t in prem[v]:der[v])
{
Y[v,t,1:P] ~ dmulti(pilv,t,],N[v,t])
Yreplv,t,1:P] ~ dmulti(pilv,t,],N[v,t]) #prediction



}
# Yrep vectorisation
for (i in 1:NYrep)
{
vecYrep[i] <- Yrepl[varieteY[i],anneeY[i],pathoY[i]]
}

# beta parametrization
for (v in 1:V)

{
for (t in prem[v]:der[v])
{
for (r in 1:R)
{
for (e in 1:E)
{
pllv,t,r,e]l <- ((1-(siglel*siglel))*(1-mulv,t,r]))/(siglel*siglel)
p2[lv,t,r,e] <- ((1-(siglelxsiglel))*mulv,t,r])/(siglel*sigle])
}
}
}
}

# disease scores
for(i in 1:NX)
{
X[i] ~ dbeta(pl[varietel[il],annee[i],region[il,essailil],
p2[variete[i] ,annee[i],region[i],essailill)
Xrep[i] ~ dbeta(pl[varietel[i],anneeli],region[il,essailil],

p2[variete[i],anneeli],region[i],essailill) #prediction



Appendix 2

Technical information related to the stochastic simulation model
of a plant pathogen foliar fungus dynamaics on an agricultural
landscape

The model is based on the biology of a plant pathogen foliar fungus like wheat leaf rust
(Puccinia triticina on Triticum aestivum). Puccinia triticina is an air-borne basidiomycete
fungus strictly biotrophe (Bolton et al., 2008). Wheat leaf rust epidemics result from the
seccession of asexual life cycles (Figure 1 and Pariaud, 2008). Once deposited on the host
and germinated, spores that have penetrated in the leaf give latent lesions and develop

structures for host explotation resources. Then the lesions produce spores and die.

Figure 3. Schéma du cycle de multiplication asexuée de Puccinia trticina et composantes
d'agressivité mesurées dans nos expériences (en gras)

Taille des lésions ~..dehdte ... oudu parasite
Cycle infectieux Apparition i s Durée de vie des lésions
sur Ihote progressive des Bprstion. s
lesions Sporulation par lésion

Photo 1. Spores germées et non germees de Photo 2: Lésions de Puccinia triticina (loupe
Puceinia triticina (microscope optigue x640) binoculaire, x40)

Figure 1: Puccinia triticina life cycle. From Pariaud (2008)



A host individual could be seen as a set of infection sites in each of which just one lesion
could develop. Thus, in the following we do not consider host individuals but total infection
sites present in a patch. (Pariaud, 2008) showed also that the total number of emitted spores
per surface unit of sporulating tissue just exhibited a small linear decrease when sporulating
lesions density increases. So, we do not consider active competition between lesions. We
describe below each step of the stochastic model in its more general version.

1. Computation of the spore cloud composition arriving in patch j:

Sjm(t) = Z MUZtZ (’I“U(i)’pliyp(t — 1), my1,y - ,mimD -
i=1

J

2. Determination of contaminated sites:

(a) infection sites accessibility in patch j:

m5(t) = f (%‘”) e (1 ——) ve e [0.1].

1 —e*

Where ¢ is the threshold parameter and x and o are two form parameters (k > 0
and o > 0). Figure 2 gives some examples for f(.).

(b) Accessible infection sites:
Hi(t) ~ Bin (H;(t — 1), m;(t)).

(c) Repartition of accessible infection sites among pathogen strains:

HY/(f) ~ Multi (ij(t), [ij 15(”%) T ,ij,Péf) (t)D .

(d) Regulation by disponible spores:
S (t) = min (HY (1), S;(1)) -
3. Infected infection sites:

(Hj(t = 1) = Ljp(t)) ~ Bin (,(t), o) -

Latent and sporulating lesions are determined as follow::

1
(Ljp(t —1) = L;,(t)) ~ Bin (Lj,p(t —1),1—¢ w),p) 7



S S
(Ljp(t = 1) = R;,(1)) ~ Bin (Ij,p(t —1),1-¢ Tvm,p) ,

o
-

0.4 0.6 0.8

0.2

0.0

Figure 2: 7 function for several parameters x and o. Solid line: k = 6, 0 = 6; dashed line:
k =10, o = 1; dotted line: kK = 1, 0 = 10; dash-dot line: k =1, o0 = 1.



Appendix 3

Computation of the basic reproductive number

The deterministic version of the model described in chapter 3 is synthesised for patch i

(1 =1,...,N) by the following system of equations:

( dH;
dt

dL;
dt

dl;

dt

dR;
\ dt

N
—Cu(i) " Wit D T My 1,

N 1
Co(i) * T Zj:ﬂ“ smy - L — - Ly,

3=

1
T

Li— -1,

T

. Ii7

where v(i) denotes the variety present in patch i, e, is the infection efficiency of the pathogen

on variety wu, m; is the probability for a spore to encounter a free infection site in patch i,

r is the number of spores produced per day by a sporulating lesion, mj; is the proportion

of spores emitted by patch j that land in patch ¢, 7 is the latency duration and T is the

duration of the infectious period.

With the next-generation matrix method (van den Driessche and Watmough, 2002), we

only need to consider the dynamics of the infected states, to compute the basic reproductive

number, R.

(dLy
dt

dLn
dt

dn
dt

dln
\ dt

€y

€y

1

|—

Considering all patches, it follows from equation (1):

N 1
W Ty 7 mg s L= 2 L

() TN g T myy - Iy = £ - Ly,

T

L —k1.

Ly — 2% Iy.



The dynamics of the infected states can be decomposed into new infections and transfers

between compartments:

[L]=&‘+°O,
I

where
N —lL1
ev(l)”ﬂ’z m;l; T
= :
1
N _;LN
F= ev(N)ﬁNrZ my I, | and 0 = . .
- —L-=1
0 T T
1 1
0 ;LN _?IN

The next generation matrix K is then given by K = —FV !, where F is the Jacobian
matrix of new infections and V' is the Jacobian matrix of transfers between compartments,
evaluated at the disease-free equilibrium (DFE). The basic reproductive number is defined
as the spectral radius, 7.e. the greatest eigenvalue in magnitude, Ry = p( — FV‘I). It
Ry > 1, then the DFE is unstable whereas, if Ry < 1, the DFE is locally stable.

In our case, the DFE is, for all ¢, L7 = I} = 0 and H} = K;, where K, is the carrying
capacity of patch i. In addition, we assume that at the DFE, m; = 1. We have thus:

/oL, - - /8L, /el - - - /oI, /oL, - - /8L, /el - - - /oI,
]71 / \ ]71 / 1 0 I
O re,;m; 0 s O

N _/ AN o



The next generation matrix is then equal to:

- N

Ire,,m; |Tre, m,

K=—FV'=

0 0
o /

The eigenvalues of K are 0, with multiplicity N, and the eigenvalue of the N x N
submatrix A = <T'r’ev(i)mﬂ>. Ry is thus equal to the dominant eigenvalue of A. It is

computed numerically according to the landscape structure.



Appendix 4

Supporting information relative the chapter 6: Evolution of
specialization in spatially heterogeneous environments

In these appendix, it is assumed that the matrix A(xy, z5) is primitive (or positive regular)
that is there exists an integer k such that A¥(zy,,) has all entries strictly positive for
any z; and any x5 in the neighbourhood of z;. Then A(xq,z2) has a dominant eigenvalue
A1(z1, o) that is positive, striclty greater in magnitude than the other eigenvalues and simple
(Caswell, 2001, chapter 4). ri(zy,x2) and [;(z1,x2) denote the right and left eigenvectors
of the matrix A(xy,z,) associated with the dominant eigenvalue. For simplicity all the
eigenvalues and the eigenvectors of A(z1,z5) are assumed to be real in this appendix.

Evolutionary outcomes
Singular strategy

We consider a mutant with trait x, in a monomorphic population with trait z;. The
fitness gradient D(xq,z3) is equal to (Caswell, 2001, Chapter 9, eqn. 9.10):

Dy, 1) — OIn(A(z1, x2)) _ 1 .8)\1(:161,3:2) _ 1 fﬂ%ﬂﬁ%ﬁrz)ﬁ(%h@)
b Oy >\1(1U1,1’2) Oy )\1(1’17552) 53(3317552)7“1(551,962) ’

j’jkj I (22)
Hetj iy (z1)?

[314(331,372)] _ By T (@2) 22— Bug)
73’

where prime denotes transposition. Since [A(z1,72)],; =

dy g oy (1) o?

So,
Iy (21, xg)%;;mm(xl, xo) = 5 (w1, 22) Awo) A1, x2)r1 (21, 22)

where A(xz) denotes the diagonal matrix whose diagonal elements are [A(x2)]};
—m;—i’l(j). Because 11(z1,x9) is the right eigenvector of the matrix A(xq,x9) associated
with the dominant eigenvalue A;(x1,z5) it follows that, li(ml,xg)%f”rl(xl,xg) =
(21, x2) A(x2) A1 (21, x2)71 (21, 22) and

Dy, 23) = l’l(:vl,xg)A(xg)rl(zl,azg).

Ui (z1, m2)r1 (21, 22)

[A(z1, 22)];5 = % so its dominant eigen value is 1. Since [ri(21,21)]; = K; the fitness

gradient taken at o = xq, D(x1, 1) is equal to

l x’l- R:El—ﬁhm _ *
D(xbﬂ?l):_z e 1)] = S )

> iz, m)]; K o2
Y

T =

K [ (37171'1)] Bh]) ll l‘l,xl)] |
Z [ll(xhl’l)] ZZ K [ll($1,x1)] h(j)-



A strategy is singular iff the fitness gradient D(x1,z) is zero. Thus z* is the singular
strategy.

Stability of the singular strategy

From Equation 3, dD(z1,z;)/dx = —1/0? < 0, thus the singular strategy z* is always
convergence stable (Geritz et al., 1998).

In order to know if the strategy a* is evolutionary stable, we calculate
0?s(x*, 12) /073 | sy=ar. We have:

0?s(z*, x9) PP In(\ (2%, x2))
03 o = 03 o
1 82)\1(33*,372) 1 8)\1(1'*,:162) 2
[)\1(3:*,:62) 03 B Ap (2%, 19)? 0xs ) } +

1 82)\1($*,$2) %

N [)\1(35*,1'2) o Dl ,.232)2:| -

. (92A1(ac*,x2)

S

since A\j(z*,2*) =1 and D(z*,2*) = 0. Using that:

O (2%, x2) li@ﬁ@)%ﬁh(ﬁ*wz)

0T N U (zx, x9)r (2%, 29)

we have:

* ri(x*, x
(9.27% 81‘2 ; 2) 8.732 1( ) 2)

1 ol (z*, 2) OA(x*, x2) )
lll(x*axQ)r1<fU*,.T2) ax2 @xz 7"1(1‘ 71:2)

1
0?s(z*, o) o [az;(x—*,m)m(z_*,m) /(2 OA(x*, )
x*— 1 —_—

+ U (2%, ) 32148(2#;%2) (@ a) 4 L (2, xQ)aA(;:;; 23) Ory gxz m)]
i, >1< ) [ali(g;;m aAg;; o)

+ 1 (2%, x2)82%(+;x2)7’1 (2%, 2)

() x2)aA(£; 73) Oy (822 xz)] .

I/ % OA(x*,x2)
as [y (2%, x0) =5, -

ri(z*, xo) is zero at z*.

First term computation The first eigenvalue of A(z*, x9) is A\ (x*, z2). Let Ag(x*, 22)
be the k™" eigenvalue of A(x*, z5) (k > 2) and [,(z*, 75) and 74 (2*, 25) be respectively, the left



and right eigenvectors associated with A\g(z*,z5). It is assumed that the eigenvectors have
been scaled so that [} (2%, xe)ry(2*, x2) = 1, I} (2%, xo)ri (2%, 22) = 0 for k # k. According to
Caswell (2001, chapter 9, eqn. 9.132),

Mll($*,$2),rk($*ax2)>

Ol (z*, x2) Z < O

0T A (2%, ) — Ap(x*, 22)

(2™, z29)
k,k#1
(2%, o) (A(x0) A", 22)) Iy (2, 29

-y ( ) (A(z2)A( )l )

A (2%, 29) — Ag(x*, 2)

lk(ﬂﬂ*,i@)

k,k#1

_ Z rr(a*, xo) Al (", o) A (x9)l; (2%, x2)
A (x*, 22) — Ap(x*, 2)

(2, xq)
k,k#1

_ Z Ak (2%, 2o (2, 20) A(22) 1y (2%, 22)
Py (2%, 22) — Ap(2*, 9)

A'(x9) = A(xs) because A is diagonal.

(2™, xq)

Thus,

Ol (2%, x9) OA(x*, )
61‘2 8172

™ (I*, $2)

* * i * /
= (Zk,k;ﬂ Aule” Zolri(@” maf Aloalale ’m)lk(x*7$2)> A($2)A($*7$2)7‘1($*7$2)

A (z*,x2) — A (2% ,22)
*xo)ry (¥ ,x2) Az T*x !
= N0 0) (g MR S (1 1) ) Ao (a7, 22)

= A (2%, o) (Zk,k7é1 )‘k(m*ﬂm)lk(ﬁf*:m)'lﬁ($*7$2)A($2)7’k($*,r2)) A(zo)r(z*, 25)

Ar(z* @) =g (z*,22)

= )\1 (ZL‘*’ xz)lll (1}*’ Z'Q)A(,Z'Q) <Zk7k7ﬁl Ak(z*ny)Tk(.r*7x2)lk(z*7a}2)’) A([L’Q)Tl (:L‘*’ [L'Q).

A (z*,x2)— Mg (2% ,22)

Second term computation Let diag(%) be the diagonal matrix whose diagonal

elements are [diag(%)}jj = L. Since %*2’”) = A(xzy)A(z*, x9), we have:

D?A(x*, 29) dA(z5)

= A(x*, x9) + A(@)M

821'2 d[EQ 81:2
o1 .
— | Atew? - diogl )] A 22
So that,
/ * 8214 *’ * / * - 1 * *
li(z 7552)8(2+x2)7’1(37 ) s ke [A(l’z)z - dzag(;)] A(z”, m2)r (2", 22)
2

= (2 )l (2 3) {A(@)? - dmg(%)} (2, 7).



Third term computation As for the first term, according to Caswell (2001,
chapter 9, eqn. 9.131),

M7"1 (x*, $2), lk(x*, $2)>

(97”1(1*71‘2) _ Z < Ox2

Oy A (2%, ) — Ap(x*, 29)

Le(x*, 29) A(xe) A(x*, 29)r1 (2%, 22)
A (7%, 22) — A (7%, 72)

A (2%, o)l (%, 22) A1y (2%, 22)
A (7%, 29) — A (7%, 22)

Tk(ﬂf/‘*, xz)
kk#1

Tk($*7 172)

M i

rr(x*, x2).
k k£l

Thus,

OA(x*, ) Ory(*, 22)
81’2 81‘2

lll (x*7 .’132)

A1 (z* xz)lk(az xg)’A(Iz)rl(x :cz)

= M@ m) (2%, 22) A(w2) D oy AlT™, a:g)rk(x ,xz)lk(fl (5*2139;,27(“;(*1;52)

— N () (0%, 22) Al3) (L o B2 A\ (25)r (7, )

Finally we have,

0?s(z*, x9)

03 o

* * A (% x2)rg (2% 22l (2% 2 *
= l'l(a:*,x*)lrl(:n*,:c*)[Al(x 7x2)l/1(x ,112'2) ( ) (Zk k#1 k()\l ;? ;2() )\;()l‘lifxg) 2)' ) A(ZL’Q)Tl(l’ ,ZL’Q)
FA (2%, 2ol (2%, 22) [A(2)? — diag(Z5)] i (2*, z2)
* * g (2% x2)rg (2% x2) g (2% 2 *
_'_)\1(1' 7(L'2)l/1(]) ,ZEQ) ( ) (Zk k#1 i 2 ( ;2 ;2() )\;()xli(x2) 2)' ) A(x2>7’1(‘7: ,ZEQ)] |a:*
1

= 1 (zx,x*)ry (x*,a%) X

[ 2) () (250 oy 2l il oy fdp ) Ao (a7, 32)] Lo =,

since A\;(z*,z*) = 1. A in this appendix is equal to %A in the main text.
Canonical equation

We consider the evolution of the quantitative trait x when the population is monomorphic
before = reaches x*. The probability that a new individual is mutant is uy6(z). Population
size N is assumed to be large and mutations are assumed to be rare with Nuy — 0 when



N — oo (Champagnat et al., 2006). The timescale is changed to a continuous one in which
one unit is equal to 1/(Nuy) generations. In this new timescale, mutations occur according

to a continuous-time Poisson process with rate 6(z).

Mutational steps are assumed to be small so that the trait of a mutant is denoted by
T9 = x + €z where ¢ is small. The quantity z is assumed to be distributed according to
the mutation distribution M (z, z) that is assumed to be symmetrical with respect to 0 and
hence centered. The timescale is changed a second time so that one unit in the new timescale

2

is equal to €7 units in the previous timescale. Then the trait of the resident follows the

equation (Champagnat et al., 2006; Durinx et al., 2008):

where p,(z2) is the mutant’s survival probability, # = dz/dt and 7*(z) = [ 22M(x, z)dz is
the variance of the mutation distribution. The mutant can survive only if s,(x2) > 0. When
s(x, ) > 0, the extinction of the mutant population mainly occurs at the begining of the
population growth when the population is still small. The demography of this population is
modelled with a slightly supercritical multi-type branching process with a reproduction mean
matrix equal to A(x, z5) (Champagnat et al., 2006; Durinx et al., 2008; Haccou et al., 2005,

section 5.6). Then the mutant’s survival probability is found to be approximately equal to:

pe(12) = 2In(A,(12)) /7%

In this equation the parameter 72 is equal to:

2= Z[rl,(x)]iVar[Z[lx(x)]jfij]>

i J
where ;; is the random number of descendants in patch j of a resident in patch 7 and it

is assumed that the eigenvectors have been scaled so that I(z)r,(z) = >, [r.(2)]; = 1. It

follows that the canonical equation is equal to:

= =7 (2)0(z)(x — %)/ (o*T7).

Only 72

can depend on the landscape structure through ;. A simple way in order to
introduce stochasticity in the mutant demography consists in supposing, from equation (6.3)

of the main text, that:

m,.
S~ B(i, )
5] J m—|—jKT

In this case, the spatial repartition of habitat does not affect &;; because the fitness functions

are not involved.
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Figure 3: The hierarchical metapopulation structure. p; X py patches are dispatched among
p1 groups of py patches. myg is the dispersal rate between patches that belongs to different
groups. mg + my is the dispersal rate between patches that belongs to the same group.
mo + my + my is the intra-patch dispersal rate. Intra patch dispersal is greater than intra-
group dispersal which is itself greater than inter-group dispersal.

Hierarchical metapopulation
Let us consider a metapopulation composed of p; groups of ps patches (Figure 3).
Three dispersal rates, mg, m; and my, are defined as:

e mg + my + my is the probability that a propagule remains in its patch of origin,

e mg + m, is the probability that a propagule lands in another given patch of the same

group,

e my is the probability that a propagule lands in a given patch of another group.

Since all the patches have the same relative size l_(j and dispersal is symmetric, A(z,x) = M.
M is the dispersal matrix and is equal to:

M = mo Jp7p+m1 ]dp1 X Jp2’p2 —i—mgIdP,

where Jp p is the P x P matrix of 1 and Idp, ® J,, p, denotes the block-diagonal matrix with
diagonal matrices .Jp, ,,. More generally, ® denotes the tensor product between matrices.



As A(z, ) is symmetric it can be decomposed as A(z,z) = .0 Ni(x, z)ri (@, z)r(x, z)

h

where \;(z,z) and r;(z,z) denote the i eigenvalue and the " scaled eigenvector
) g g

respectively. Thus, following this decomposition we have
A(r,x) = (ma2 + pamy + p1pamo) Sy + (Mg + pamy) Sz + maSs,

where 5) = p%‘]m ® piQJpza S2 = (Ip, — /p%Jm) ® piszza Sy = 1Ip, @ (Ip, — /p%‘]pg): Iy, and Iy, are
the indentity matrices of size p, and p;, J,, and J,, are the square matrices of ones of size

p1 and po. Note that A\ (z, x) = mg + pamy +pipame = 1, 1 (x, ) = 1,,,, //P1p2 where 1, ,,
is the vector of ones of length p;py. The second-order derivative of fitness can be written as:

0?s(x*, z)
013 -

* A (2% 221 (2% 22 g (%, 22) *
= [lll(x  02) A(2) <2 D kAl k(xl(;*);g()—xj()xﬁfm) = +Ip1p2> A(z)ri (2%, 29) | | — 25
= [ (2%, 22) A(w2) (202 + 2655 + Ly, ) Alxa)ri (2%, 22)] [0 — 5,

Mo + Pom m
2 T P2l g €= 2 . Moreover,
D1p2mMyg P2m1 + p1p2mo

where p =

1
\/P1P2

where X is the pips X H matrix with elements equal to 0 or 1 (where H is the total number
of different habitats),

A(z)r1 (2%, 22) = (I} (27, 22) A(32)) = XO(2),

Xy
X
X = . )
Xpl
where X is the design matrix of habitats in group g. ©(z2) is the vector of length H equal
to
@(332) _ 0

Let us define the vector R = 251:1 R, of the total number of patches bearing each habitat

R, is vector of the number of patches bearing each habitat in group g). Moreover, we
g g

define the vector of the mean number of patches bearing each habitat as R = %R. We have

P
p=E&+ v, where v = m e +1) > 0. It follows that:
DP1mg P21 + p1p2mig
0?s(x*, z)

013 o



= 5 (@) [(€+ V) XX + X' S3X] O(x2) [or +6O (22) X' T, XO(2) / (p112)

p1p2

= 2 @,<I2) [éX’(SQ + Sg)X + VX,SQX] @(I‘Q) |z* +@/(5L’2>B@($2)/(p1p2) |x* —

pip2 o

1
, — =
T o2

where B is the diagonal matrix with diagonal elements given by R. As
Sot S5 = (Ly——J) @~y 41, @ (I, — —1,,)
2 3 P1 1 p1 Do D2 P1 D2 Do D2
1 1 1 1
= I, ® p_2Jp2 - p_l‘]pl ® p_2J;D2 +1p, @ Ly, — I, ® p_2‘]p2
1

Ly, — —J,
Pz T P

and ©'(z*) X" J,,, XO(2*) = 0 we have:

0?s(x*, x9) |
- - a4 *
13 ‘

= o >£X<m—pllpﬂm>x+v0] O(w2) o +0/(22) BO(w2) /(p1ps) |or — 2
- L0 (@2) [(1+28) B +20C) O(w2) | —

p1p2

where C'= X'S,X = 3" (R, — R)(R, — R)'. Tt follows that z* is an ESS if:

T p2

(1 + 2¢) Zﬂk x* —ﬁk +2VZZUW x* — B)(z* _6k> 1,

02
k=1 k'=1

where v = Zz;l(ﬂ'kg — 7)) (g — T )/p1 and 7y, is the frequency of habitat & in group

g. When dispersal is homogeneous (my = my = 0), the condition for evolutionary stability

becomes:

H * 2
S Ay
k=1 g

When dispersal is hindered so that a propagule is more likely to stay in its patch than to move

to another patch (my # 0) and when there is no group structure (m; = 0), the condition for

evolutionary stability becomes:

H *
(1 +2§)Z7Tk(m;—fk)2 <1
k=1



Appendix 5

Hétérogénéités temporelle et spatio-temporelle dans un modéle de
dynamique adaptative

This work was realized by Florian Claeys (ENS Ulm) during an internship suppervising by

Julien Papaix, Hervé Monod and Olivier David.
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Résumé

Les pratiques modernes de ’agriculture et notamment la céréaliculture intensive, ont permis d’augmenter
considérablement la production de nourriture pour une population humaine en forte croissance. Cependant,
ces agroécosystémes sont des zones & fort risque épidémique : leur grande homogénéité favorise la sélection
de pathogénes spécialisés et agressifs. Une stratégie pour éviter cette spécialisation est de réintroduire de
I’hétérogénéité dans ces milieux. Ainsi, en modifiant les structures spatio-temporelles de I’environnement, il
est possible de manipuler les pressions de sélection et d’influencer I'adaptation des pathogeénes.

La dynamique adaptative est une théorie reposant sur un puissant ensemble de techniques d’étude de 1’évo-
lution phénotypique et en particulier des spécialisations. Elle réutilise notamment le concept de fréquence-
dépendance de la théorie des jeux, associé aux notions de valeur sélective et de mutation, pour mettre
en évidence des stratégies évolutives optimales. Certaines de ces derniéres, dites stratégies de convergence
stable, peuvent conduire & un branchement évolutif & partir duquel une population initialement monomorphe
devient dimorphique ou & une stratégie évolutivement stable, qui une fois établie, empéche tout mutant de
se fixer. Les caractéristiques environnementales vont fortement influencer le niveau d’adaptation et le com-
portement évolutif des populations.

Dans une perspective de modélisation a 1’échelle du paysage agricole, un modéle de dynamique de méta-
population couplé a& un modéle de dynamique du paysage a été développé permettant d’étudier 'influence
de différents parameétres de I’hétérogénéité sur la dynamique de I'adaptation. Indépendamment de 1’hété-
rogénéité spatiale, I’hétérogénéité temporelle peut, elle-aussi, influencer 'adaptation des pathogénes. Ainsi,
sur un paysage agricole monovariétal, des changements variétaux saisonniers rapprochés dans le temps per-
mettent de favoriser les stratégies généralistes aux stratégies spécialistes et de limiter la valeur sélective des
pathogénes spécialisés. Pour aborder I'hétérogénéité spatio-temporelle, la dynamique de paysage a consisté
en la variation saisonniére des proportions de deux variétés sur un paysage agricole parcellaire. La compa-
raison des observations de ces simulations aux résultats théoriques déduits de I'influence de I’hétérogénéité
spatiale montre un ont été réalisées, ou les proportions de deux variétés sur un paysage agricole varient a
chaque saison. La comparaison des observations aux résultats théoriques issus de I’étude de I’hétérogénéité
spatiale montre que 'ajout de la dimension temporelle peut favoriser une évolution vers le dimorphisme,
pour des paysages avec des habitats trés différenciés et trés agrégés dans le temps et/ou dans I’espace, ou au
contraire, favoriser une évolution vers le monomorphisme pour des habitats peu différenciés et/ou soumis a
des changements spatio-temporels fréquents.

Mots-clés Dynamique adaptative, hétérogénéité, spécialisation, pathogénes, branchement évolutif



1 Introduction

Face a l'accroissement démographique de la population mondiale et & augmentation des besoins en nour-
riture de I’élevage, les productions agricoles devront considérablement étre augmentées pour assurer la sécurité
alimentaire de 2050. L’extension des zones cultivées ou le recours accru aux pesticides et aux engrais ne sauraient
constituer des réponses pertinentes a ce défi, car c’est une agriculture durable qui doit étre promue alliant les
hauts rendements aux faibles impacts environnementaux. Un des éléments primordiaux de cette « révolution
doublement verte » (Griffon 2006) est Pamélioration de la gestion des épidémies végétales.

Les pratiques de lutte contre les épidémies végétales ne sont encore que faiblement efficaces. L’efficacité est dé-
finie comme le pourcentage de pertes de production agricole évitées et est calculée a partir des pertes actuelles
observées et des pertes potentielles estimées (Oerke et al. 1994). Selon Oerke et Dehne (2004), en matiére de
lutte contre les pathogénes bactériens et fongiques, I'efficacité atteindrait 33,8 % et tombe a 12,9 % contre les
virus. Les raisons de ce manque d’efficacité sont a chercher dans la nature méme des agroécosystémes modernes
(Stukenbrock et McDonald 2008). Face a I'hétérogénéité, la complexité et la diversité des écosystémes natu-
rels, les agroécosystémes modernes sont des systémes simplifiés & I'extréme, cumulant de nombreux facteurs de
risque épidémique : la généralisation de vastes étendues de monocultures génétiquement homogenes (Robinson
et Sutherland 2002) a facilité adaptation des pathogénes a leurs hotes (Stukenbrock et McDonald 2008). Par
exemple, depuis la moitié du XX¢siécle, la diffusion successive de nouvelles variétés de blés, chacune possédant
un nouveau géne de résistance a entrainé une pression de sélection graduelle ayant pour principale conséquence
une évolution « guidée par la main de 'homme » des populations de rouille noire du blé (Puccinia germinis), o
de nouvelles populations virulentes apparaissaient en réponse a l'introduction de nouveaux génes de résistances
(Johnson 1961).

L’homme, a travers la modification de I’environnement, influence 1’évolution des pathogénes. Le controle des
épidémies végétales doit donc inclure la gestion de 1’évolution des pathogénes. Comme dans toute intégration
de principes évolutifs dans un domaine appliqué, le concept-clé est celui de décalage entre le phénotype actuel
des organismes et le phénotype optimal (Hendry et al. 2011). Si ce décalage est faible, les populations sont bien
adaptées a leur environnement et en conséquence posséderont des abondances élevées. Inversement, un décalage
fort signifie une mauvaise adaptation, et peut entrainer un déclin des populations. En épidémiologie végétale,
Iobjectif est d’accroitre le plus possible ce décalage, et de diminuer le niveau d’adaptation des pathogénes, ou
de ralentir les spécialisations (Papaix et al. 2011b).

Une des stratégies développées dans cet objectif est d’introduire de 'hétérogénéité écologique dans les exploi-
tations agricoles. En effet 'hétérogénéité, en générant une diversité des habitats variétaux va jouer sur des
compromis écologiques liés a 1'utilisation des ressources : une capacité accrue a exploiter un habitat entraine
une moindre capacité d’en exloiter un autre (Kassen 2002, Gravel et al. 2011). L’objectif de cette étude est
d’aborder les questions de recherche portant sur 'influence de I’hétérogénéité temporelle sur la dynamique évo-
lutive des pathogénes et plus précisément, 'influence de la fréquence des changements variétaux saisonniers sur
la spécialisation des pathogénes. L’influence de I'hétérogénéité spatio-temporelle sera abordée dans le cas de
changements saisonniers de la proportion de chaque variété. Les résultats présentés proviennent de ’analyse
d’un modéle de dynamique adaptative, une théorie permettant d’étudier I’évolution de traits continus soumis a
une sélection fréquence-dépendance sous des scénarios écologiques donnés.

Aprés quelques éléments de définition sur la notion d’hétérogénéité écologique, quelques principes fondamen-
taux de la théorie de la dynamique adaptative seront expliqués. La description du modéle employé s’attachera
a détailler I'articulation entre dynamique du paysage et dynamique de populations. Les résultats concernant
I'influence des hétérogénéités temporelle et spatio-temporelle sur la spécialisation seront présentés, puis discutés.



2  Quelques éléments du cadre scientifique d’étude

2.1 L’hétérogénéité, aspects spatiauxs et temporels

Le mot «hétérogénéité » provient de deux radicaux grec, etepog « autre, différence » et yévog « origine »
et est employé dans le langage courant pour désigner ce qui est de différentes natures ou pour qualifier une
distribution répartie inégalement ou un mélange dans lequel on peut distinguer au moins deux constituants a
I'ceil nu (Académie Frangaise 1932-1935).

Que ce soit « la constitution de plusieurs éléments différents les uns des autres » (Art 1995), « le fait d’avoir
une structure ou une composition non uniforme » (Lincoln et al. 1998) ou encore, « la complexité résultant de
I'interaction entre la distribution spatiale des contraintes environnementales et les réponses différentielles des
organismes a ces contraintes » (Milne 1991), la plupart des définitions de I'hétérogénéité en écologie insistent sur
les discontinuités spatiales et temporelles sans vraiment répondre & la question de la nature de 'hétérogénéité.
La ou Kolasa et al. (1991) distingue une douzaine de composantes de I’hétérogénéité, certains ont opté pour
une définition opérationnelle.

L’hétérogénéité désignerait ainsi la complexité ou la variabilité d’une propriété du systéme étudié dans le temps
et/ou dans l'espace (Li et Reynolds 1994; 1995), selon que l'on se référe a des descripteurs qualitatifs et
catégoriques (complexité) ou quantitatifs et numériques (variabilité). Cette définition opérationnelle permet de
distinguer une hétérogénéité structurelle d’une hétérogénéité fonctionnelle, selon que ’on tienne compte ou non
des effets de la complexité et de la variabilité des structures sur les fonctions écologiques. Autre avantage de cette
définition, elle permet d’asseoir une base conceptuelle & une hétérogénéité que 'on déclinerait en hétérogénéités
spatiale, temporelle et spatio-temporelle (1).

La notion d’hétérogénéité est fortement temps 1 temps 2 temps 3
dépendante de 1’échelle d’étude & commen-
cer par le grain, défini comme la résolution
la plus fine des données et 'envergure, dé-  Hétérogenéite
finie comme la durée totale ou 'aire maxi- SPPalt,'::e
male de définition de la propriété étudiée.
Le grain et I’envergure sont les premiers fac-
teurs affectant 'hétérogénéité. Il existe deux  pggrogenits
approches pour quantifier ’hétérogénéiteé : temporelle
la premiére, directe, passe par la mesure de pure
la complexité (composition et configuration)
et de la variabilité (tendance, corrélation,
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de l'espace de plus en plus explicite.

De la méme maniére que pour I’hétérogé-

néité spatciale, l’hétér(?généité temporelle peut proypp 1 - Hétérogénéités spatiale, temporelle et spatio-
étre décrite sous plusieurs aspects : ’échelle temporelle d’un paysage agricole

considérée (& associer a la longévité des ha-

bitats), le contraste, la fréquence de changement, 'agrégation temporelle et la prédictabilité au cours du temps
(Stuefer 1996). L’espace et le temps peuvent étre substitués l'un a l'autre dans de nombreuses situations éco-
logiques : la coexistence des espéces en fonction de la séparation des ressources (Giller 1984), les stratégies de
recherche de nourriture, les successions écologiques (Pickett et Likens 1989). Un paysage peut étre discrétisé
dans le temps de maniére semblable a la discrétisation spatiale en parcelles ou patchs (Turner et al. 2001). Les
interactions entre « parcelles temporelles » deviennent des décalages temporels ou des héritages, avec des effets
fronticéres ou des effets barriéres (Strayer et al. 2003). Une différence fondamentale subsiste tout de méme :
I’espace permet des interactions directionnelles de type « aller » et « retour », ce qui est impossible dans le
temps Wiens (2000).

L’échelle, du grain et de I’envergure de la variabilité temporelle déterminent grandement ’hétérogénéité tempo-
relle : une hétérogénéité a petite échelle ne pourra générer que des réponses phénotypiques rapides essentiellement
physiologiques (plasticité physiologique de Hutchings et de Kroon (1994)), tandis que que les phénomeénes évo-
lutifs résulteront de variations temporelles a grande échelle. Des considérations théoriques et des simulations



mathématiques ont montré que ’hétérogénéité temporelle pouvait contraindre fortement les réponses adapta-
tives des organismes (Oborny 1994) : la nature adaptative de la réponse de croissance a un habitat donné
dépend largement de la prédictabilité temporelle, définie & partir de 'entropie de Shannon en théorie de l'infor-
mation (Juhasz-Nagy et Podani 1983). Pour des ressources pulsatiles, ces réponses peuvent étre des stratégies
d’ « attente les bras croisés » , par exemple) (Hutchings et de Kroon 1994).

2.2 Dynamique adaptative, éléments fondamentaux et singularités évolutives

Les différentes composantes spatiales et temporelles de 'hétérogénéité, en contraignant les réponses adap-
tatives des organismes offrent autant de moyens de controler 'adaptation des pathogénes en jouant sur les
structures spatiales et temporelles des paysages agricoles. La manipulation de I’hétérogénéité entre dans le
cadre plus large de l'intégration dans les agrosystémes de principes écologiques et évolutifs régissant les éco-
systémes naturels, élément stratégique pour relever les défis de lagriculture de demain (Tilman 1999, Thrall
et al. 2011). La dynamique adaptative permet d’étudier le devenir évolutif d’une population et, en complémen-
tarité des nouvelles techniques de séquengages a haut-débit, permettant d’analyser rapidement la composition
génétique des communautés de pathogeénes (Garrett et al. 2006), s’inscrit dans une approche intégrative, « éco-
évo-génomique », de la gestion des structures spatio-temporelles du paysage agricole.

Fondamentaux de la dynamique adaptative La dynamique adaptative est un ensemble de techniques
introduit par Hofbauer et Sigmund (1990) et Nowak et Sigmund (1990) pour comprendre les conséquences
évolutives des variations phénotypiques introduites par de légéres mutations dans une population dite rési-
dente. Cette approche, liant a la dynamique de populations une dynamique évolutive, s’appuie sur le concept
de fréquence-dépendance, issu de la théorie des jeux. La sélection correspond donc au modéle de « sélection
douce » (Levene 1953, Wallace 1975).

La dynamique adaptative repose sur deux idées fondamentales (Brannstrom et Festenberg 2006). Selon la pre-
miére, la population résidente, monomorphe, est supposée étre dans un équilibre dynamique lorsque les mutants
apparaissent. Selon la seconde, le devenir des mutants, soit 'invasion et le remplacement de la population rési-
dente, soit le non-maintien et la disparition, peut étre déduit du taux de croissance initiale, appelée exposant
d’invasion (Diekmann 2003).

Dans la plupart des modéles de dynamique adaptative, et cette étude ne fait pas exception, la valeur sélective
des individus, définie comme le taux de croissance a long-terme d’un phénotype dans un environnement donné
(Metz et al. 1992), est caractérisée par un seul trait phénotypique continu. La valeur sélective s, (x) de la
population résidente, supposée monomorphe de phénotype x, est nulle pour tout x : la population résidente est
supposée en équilibre dynamique (Geritz et al. 1998).

Dans cette population résidente, des mutants vont apparaitre. Du fait de sa rareté, le mutant ne va pas influer
immeédiatement sur le phénotype de la population résidente, de sorte que la valeur sélective s, (y) d’'un mutant
de phénotype y ne va dépendre que de y et de z. Le signe de s, (y) indique la capacité du mutant & envahir ou
non la population résidente. La fréquence-dépendance de la valeur sélective implique que le paysage d’aptitude,
correspondant & ’ensemble des phénotypes possibles, a leurs degrés de similitudes et a leur valeur sélective

respective, est un paysage mouvant, changeant a4 chaque invasion.

Le gradient de sélection 9s:(y) détermine les phénotypes mutants pouvant envahir la stratégie singuliére
oy y=z
x : si le gradient est positif (respectivement négatif), des mutants avec une valeur de trait supérieure a x

(respectivement inférieure & x) pourront remplacer la population résidente.

Singularités évolutives Une stratégie singuliére correspond a la valeur phénotypique z* pour laquelle le gra-
dient de sélection est nul, signifiant pour un mutant que le paysage d’aptitude est localement plat (Brannstrom
et Festenberg 2006). La stabilité de convergence et la stabilité évolutive des stratégies singuliéres déterminent
le devenir évolutif des populations (Geritz et al. 1998). Les stratégies évolutivement stables (ESS) sont des
stratégies singuliéres telles que, si elles sont adoptées par la plupart des individus d’une population, aucune
stratégie mutante ne pourra étre envahissante (Smith et Price 1973). Les ESS correspondent & des piéges évo-
lutifs, ot aucun changement évolutif n’est possible sans changement de ’environnement. Mathématiquement,
une ESS vérifie :
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Une singularité évolutive stable par convergence (CSS) se comporte comme un attracteur (Christiansen 1991) :
toute population, quelque soit son phénotype, va évoluer vers cette singularité. Mathématiquement, une CSS
vérifie :
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Certaines singularités peuvent étre stables par convergence et évolutivement instables. Localement, la sélection
est disruptive et peut correspondre a un point de branchement évolutif (EBP), ot une population monomorphe
devient dimorphique. Si s,«(m) et s,,(2*) sont tous les deux positifs, la population va pouvoir se diviser en
deux sous-populations et le dimorphisme sera stabilisé. Mathématiquement cette condition peut s’écrire :
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3 Description du modéle employé

Le modéle employé est basé sur le modeéle de Papaix et al. (2011a), dont il reprend les éléments d’hétérogénéité
spatiale. Il s’agit d’un modéle de dynamique adaptive modélisant 1’évolution d’un trait phénotypique d’une
métapopulation répartie sur un paysage composé d’un nombre fini de parcelles monovariétales. Dans ce modéle,
la dispersion est considérée comme un processus passif : il n’y a pas de choix de I’habitat par les pathogénes.

3.1 Meétapopulation, paysage et phénotypes

La population modélisée est supposée étre constituée d’individus haploides se reproduisant de maniére
asexuée et sans chevauchement des générations. La valeur sélective de ces individus est caractérisée par un trait
phénotypique, de valeur z comprise entre —5 et 5. Cette gamme phénotypique est subdivisée en I intervalles,
correspondant a autant de phénotypes.

Cette métapopulation occupe un espace subdivisé en P parcelles, correspondant & des unités élémentaires
spatiales. Pour éviter les effets de bords, cet espace est un tore. Chaque unité est caractérisée par la présence
d’un seul type d’habitat pouvant varier dans le temps, correspondant a une variété et assimilé & une niche
écologique, et par sa capacité de charge K jc[1,p], constante dans le temps.

Le modele calcule les effectifs de chaque phénotype des populations de chaque parcelle et a chaque pas de temps
jusqu’a un temps final T. On note n(4, j,t) la taille de la population de phénotype i occupant la parcelle j au
temps t et h(j,t) habitat de la parcelle j au temps t.

La taille totale de la population est constante :

I P P
vte {1,THY Y n(igt) = ZKj

i=1 j=1

On définit la taille relative de la parcelle j par K7 = PKj
> K
i=1

3.2 Dynamique de paysage
3.2.1 Habitats et paysage spatio-temporel

L’ensemble des habitats h(j,t) je[1,Pte[1,7] constitue un paysage spatio-temporel caractéris¢ en chaque ins-
tant par les proportions moyennes et ’agrégation des habitat. L’agrégation de 'habitat h varie entre 0, lorsqu’il
n’y a aucune paire de parcelles voisines avec ce méme habitat h, et 1, lorsque le nombre de paires de parcelles
voisines recevant ’habitat h est maximal, compte tenu des proportions entre habitats (He et al. 2000).

Soit H le nombre d’habitats différents possibles. A chaque pas de temps, le paysage spatial peut étre caractérisé
par le nombre d’habitats, la proportion et ’agrégation de chaque habitat.

La présente étude ne porte que sur des paysages a deux types d’habitats, d’indices 1 et 2. Le paysage spatio-
temporel, noté Pgr, est caractérisé par m(t) € [0, 1], la proportion de parcelles avec I'habitat 1 au temps ¢ et
a(t) € [0,1] Pagrégation de 'habitat minoritaire au temps ¢.



3.2.2 Création de paysages spatiaux paramétrés

Les dimensions spatiales des paysages spatio-temporels sont au nombre de deux et forment une aire modélisée
par un treillis régulier de 900 parcelles carrées et contigués (Papaix et al. 2011a). Pour éviter les effets de bords
dans le calcul des taux de dispersion et d’agrégation des habitats, cette aire est considérée comme étant la
surface d’'un tore (Griffith 1983). En répartissant les habitats 1 et 2 sur les 900 parcelles, et en controlant leur
proportion et leur agrégation a I'aide d’un algorithme de recuit simulé (Kirkpatrick et al. 1983), une banque
de paysages spatiaux a pu étre constituée.

3.2.3 Stratégie d’étude de la dimension temporelle des paysages

La dimension temporelle est discrétisée en saisons. Une saison correspond a un intervalle de temps pendant
lequel les composantes spatiales du paysage restent inchangées. Au sein d’une simulation, il y a S saisons de
durée constante égale a tg = % L’ensemble des paysages spatio-temporels peut s’écrire Prr(7(s), a(s),d,ts)
ou s € [1,5] est la s—iéme saison, 7(s) la proportion moyenne, a(s) 'agrégation de 'habitat 1 pendant la saison
s et d la différenciation des habitats (section §3.3.3).

Dans le cas de I’hétérogénéité temporelle pure, le paysage est spatialement homogéne : & un temps donné, toutes
les parcelles possédent le méme habitat de sorte que le paysage est assimilé & une seule parcelle. Chaque saison
voit le basculement d’un habitat & 'autre. On a donc

Vs € [1,5],a(s) =1
Vs e [1,8],m(s) =1

L’ensemble des paysages temporels, considéré comme un sous-ensemble de P, est alors noté Pr(d, ts) avec d,
la différenciation des habitats et ¢4 la durée des saisons.

3.3 Cycle de vie

Le cycle de vie est constitué de quatre étapes : aprés une premiére phase de reproduction avec mutation,
s’ensuit une phase de dispersion, puis une phase de sélection avant une phase de régulation.

3.3.1 Reproduction avec mutation

Pour chaque sous-population, le taux de reproduction est supposé constant quelque soit le phénotype ou les
caractéristiques de la parcelle occupée. Pour une population d’un phénotype donné sur une parcelle donnée, un
mutant apparait dés que Ueffectif de cette population franchit un certain seuil. En notant .., € [1, I] la valeur
de trait de la population d’on provient le mutant, x,,, m € [1,I] la valeur du trait du mutant provient de la
catégorisation du trait phénotypique z/,. / € R suit une loi normale de moyenne z, et de variance 0,1 :

zl, ~ N(z;0,1)

3.3.2 Dispersion

Durant la phase de dispersion, chaque parcelle recoit une certaine proportion des propagules produites par
les autres parcelles. En notant m;:; la proportion de propagules produites par la parcelle j* et arrivant dans la
parcelle j, et p(i, j,t) la quantité de propagules de phénotypes x; arrivant sur la parcelle j au temps ¢, on a :

Vi e [1, P],Vi € [1,1],Vt € [1,T], p(i,j,t) Zm” n(i,j',t).

La dispersion est supposée isotropique et décroissante exponentlellement avec la distance. Par ailleurs, on
suppose que la population se mélange parfaitement dans chaque parcelle. On peut alors écrire :

mm*/ / 76 P< 2|Z] Zj|)dzj"dzj
Ay .Az my

avec Ay et Ay 'ensemble des points des parcelles j’ et j respetivement, |z;, — z;| la distance entre les points z;/
de la parcelle j’ et z; de la parcelle j et m; est la distance de dispersion moyenne. Notre étude se limite au cas
ot my = 15% de la longueur du coté du treillis.

L’ensemble des m,; a été calculé en utilisant 1’algorithme Califlopp (Bouvier et al. 2009), lequel permet de
calculer entre un polygone source et un polygone cible des intégrales de fonctions de dispersion point & point.



3.3.3 Sélection

A chaque pas de temps, les individus de chacune des parcelles sont sélectionnés selon leur phénotype et
le type d’habitat présent, mais indépendamment des effectifs. Le taux de survie des individus de phénotype i
occupant 'habitat h(j,t) de la parcelle j au temps ¢ est égal a f(x;, h(j,t)) ot f est définie par :

Fla,h) = exp <_<xﬂ>>
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avec, (5, la valeur de trait optimale de 'habitat h et o? la variance de trait autour de cette valeur optimale
(Geritz et al. 1998). Des différences de valeur optimale entre les habitats générent un compromis écologique entre

les survies sur chaque habitat, d’autant plus fort que les habitats sont différenciés : I'adaptation a un habitat

entraine obligatoirement une mal-adaptation aux autres habitats. Dans le cas de deux habitats d’indices 1 et 2
(z—8)2 (x46)?
aux valeurs optimales opposées § = 1 = — 2, les taux de survie sont f(x,1) =e 22 et f(x,2) =e 252

Le compromis écologique entre les taux de survie est la fonction C(y),y € [0, 1] vérifiant :

v, f(z,2) = C(f(x,1))
D’aprés Débarre et Gandon (2010), u(y) peut s’écrire :

La force du compromis est déterminée par la différenciation des habitats d = g. Pour d < 1, le compromis est
faible; pour d > 1, le compromis est fort. Dans le cas limite d = 1, le compromis est trés sensible aux valeurs
de trait x.
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FIGURE 2 — Taux de survie et compromis. Pour chaque habitat h, la valeur sélective suit une gaussienne centrée
sur sa valeur sélective optimale (,, définissant ainsi un compromis écologique entre les survies sur chaque
habitat. Dans le cas de deux habitats avec 6 = 31 = —[3s, la différenciation des habitats permet de moduler la
force du compromis écologique des survies (Débarre et Gandon 2010).

3.3.4 Reégulation

Afin de respecter la condition d’une taille totale de population constante au cours du temps, une phase de
régulation est appliquée aux différentes sous-populations.

p(k/’, ja t)f(ka h(]v t))
I
;P(LJ} t)f(.’l?i7 h(.]a t))

V{k,j,t} € [1,I] x [1, P] x [1,T — 1], n(i,j,t+1) = K; x




3.4 Critére de branchement

Supposons qu’au temps t,, un individu mutant de phénotype z,, apparaisse dans une population résidente
de phénotype z,.. Peu de temps aprés son apparition, au temps ¢, cette population continue d’étre supposée
monomorphique. Le nombre de mutants de la parcelle j au temps ¢t + 1, n(m, j,t + 1) est égal a :

Elmj I b))

n(m,j,t+1) = K; T
£ty 100
j:

En notant N;(t) le vecteur d’élément générique correspondant a la taille de population du phénotype ¢ sur la
parcelle j, la taille de population mutante vérifie ’égalité matricielle (Caswell 2001) :

Ny (t+1) = Ay, T ) N (t)
ot A(z1,x2) € Mp p(R) est la matrice d’élément générique :

my i K; o f (w2, h(j))
P hj
.,Zl i Ky f(z1,h(5))
o

[A(z1, $2)]j,j’ =

En reprenant les notations introduites précédemment dans la présentation de la théorie de la dynamique adap-
tative, la stratégie singuliére z* est une stratégie évolutive stable si et seulement si :

N0 (%) > d(l) (z*,x*) - tg\) (z* a*) 4
t (1) [k k) . * . ’ ? . * L (F) (px p*
g (%) - A(x*) - [ Idp + 2 E )\(1 ) =20 (@, ) Az™) - rV) (%, 2) < 1.

Dans cette équation, Idp est la matrice identité d’ordre P, A(z*) est la matrice diagonale d’élément générique
[A(x)]; = —% Les valeurs propres de A (z*,2*) sont notés, dans 'ordre croissant \9) (z*, 2*),j € [1, P].
Les vecteurs propres normalisés gauche et droite correspondant a ces valeurs propres sont notés g/ (z*,2%),j5 €

[1, P] et dY9) (z* 2*),j € [1, P], respectivement. Par « vecteur normalisé », on entend que :
GO (2%, %) O (2,0t =1 et Vi £, Y9 (ot a) 1) (2%, ) =0

La partie gauche de cette inéquation correspond & un critére de branchement. Celui-ci dépend de la structure
parcellaire et des phénotypes optimaux des habitats : au-dela de 1, ce critére indique que les paramétres spatiaux
permettent un branchement évolutif; en-deca, la stratégie singuliére est une ESS.

La comparaisons des prédictions théoriques déduites de ce critére de branchement aux résultats provenant des
résultats de simulation portant sur ’hétérogénéité spatiale montrent une trés bonne concordance : plus de 90 %
des simulations montrent un branchement évolutif lorsque le critére de branchement est supérieur a 1 (Papaix
et al. 2011a).



4 Reésultats

4.1 Hétérogénéité temporelle

Le jeu de simulations contient 400 simulations et explore les deux paramétres utilisés pour la définition des
paysages temporels. La durée des saisons tg varie entre 25 et 500 pas de temps. Enfin, 02 = 1 de sorte que
d = ¢ : la différenciation des habitats est assimilée a la valeur absolue des stratégies optimales. La différenciation
des habitats varie entre 0,2 et 2.
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FIGURE 3 — Deux stratégies évolutives : & gauche, une stratégie spécialiste (6 = 1.5, ts = 300) ; & droite une
stratégie généraliste (0 = 0.5, ts = 50). Avec, en ordonnée la valeur de trait phénotypique, en abscisse, le temps
évolutif et en bleu, la valeur de trait optimale § au cours du temps.

4.1.1 Comportements évolutifs observés

La valeur de trait moyenne de la population varie entre § et — en fonction des changements saisonniers
d’habitats : le trait de la population évolue vers § (respectivement —d) lorsque le paysage contient I'habitat 1
(respectivement 2). On obtient ainsi des oscillations, de période égale a la durée des saisons.

Deux comportements évolutifs peuvent étre distingués (figure 3) : dans le premier cas, les oscillations se main-
tiennent tout au long de la simulation, ce qui correspond a une population qui se spécialise & chaque saison ; dans
le second cas, les oscillations s’amortissent jusqu’a s’éteindre, ce qui est la marque d’une population adoptant
une stratégie généraliste.

L’étude de I'influence de ’hétérogénéité temporelle sur ces deux stratégies passe par ’analyse des phénotypes
présents en fin de simulation. Plus exactement, on s’intéresse & la valeur absolue moyenne du phénotype de
la population. La symétrie des traits optimaux des habitats implique qu'une population adoptant la stratégie
spécialiste verra, saison aprés saison, son phénotype moyen évoluer vers des valeurs opposées (0 pendant les
saisons ou I'habitat est occupé par la variété 1 et —¢ pour les saisons ot 'habitat est occupé par la variété 2). La
valeur absolue varie entre 0 et ¢ : une population adoptant une stratégie généraliste verra son phénotype moyen
converger vers 0, tandis qu’une population adoptant une stratégie spécialiste optimale verra son phénotype
moyen converger vers 9.

Prendre la valeur absolue moyenne du phénotype en fin de simulation est un outil commode pour apprécier
le niveau de spécialisation de cette population, indépendamment du signe du trait optimal et tout en restant
sensible aux stratégies généralistes.



4.1.2 Etude du phénotype final g -
On appellera « phénotype final » la valeur - i
absolue moyenne du phénotype vers laquelle \
tend la population en fin de saison, que 1'on o |
notera ¢ . Celui-ci ne peut excéder la valeur C
de la stratégie optimale : ¢y = 0 correspond - 7
a la stratégie généraliste, ¢y = ¢ correspond g 8 7
a la stratégie optimale. 2
La représentation graphique bidimension- o &
nelle du phénotype final en fonction de la g o |
différenciation des habitats et de la durée des 3 &
saisons, montre que 1’évolution vers une spé- " 7
cialisation ou au contraire I’émergence d’un it
généraliste dépend fortement de ces para- .
métres (figure 4.1.1). 8
La figure 4.1.1 montre une distinction entre .
les deux stratégies évolutives généraliste et [
spécialiste en fonction des paramétres § et =
ts. Globalement, la stratégie généraliste est Q& -

d’autant plus favorisée que la durée des sai-
sons est courte et que la différenciation des
habitats est faible. Inversement, plus la dif- Différenciation des habitats
férenciation des habitats est élevée et plus la
durée des saisons est longue, plus le spécia-
lisme est fort avec des niveaux d’adaptation
élevés.

0.1 0.3 0.5 0.7 0.9 11 13 15 7 1.9

FI1GURE 4 — Représentation graphique du phénotype final en
fonction de la durée des saisons (en ordonnée) et de la diffé-
renciation des habitats (en abscisse). La valeur du phénotype
final est proportionnelle & 'intensité de la couleur grise, avec
en blanc la stratégie généraliste.

4.1.3 Influence de la différenciation des habitats sur le phénotype final
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FIGURE 5 — ¢ ¢ en fonction de ¢ pour trois durées de saison fixées : de gauche a droite, t, = 25, t, = 125,¢, = 250.
En bleu, figurent les coefficients de corrélation, corrélation dont la p—value est inférieure & 0.001 pour chaque
cas.



Pour chaque valeur de t; supérieure ou égale a 25 pas de
temps, il existe une corrélation positive entre la différenciation
des habitats et le phénotype final (figure 5). Ces corrélations
sont significatives, d’apres les résultats de tests de coefficient
de corrélation linéaire de Pearson, avec un risque de premiére
erreur inférieure & 0,01. Pour les valeurs de ¢4 inférieures a
25, le phénotype final correspond, dans tous les cas, & un gé-
néraliste : pour des durées de saisons courtes, ou, autrement
dit, des fréquences élevées de changements variétaux, la spé-
cialisation est impossible.

La relation de proportionnalité entre ¢ et  dépend de la
durée des saisons tg : lorsque la durée des saisons est élevée,
le coefficient de proportionnalité I's tend vers 1 (figures 5 et
4.1.3). ‘ ‘
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lim F5 =1
te—T
T—o0 ts

La fréquence des changements variétaux est un aspect de ’'hé- FIGURE 6 — I's en fonction de t;. Pour des
térogénéité temporelle qui va limiter la spécialisation des po- saisons de durée supérieure a 200, la différen-
pulations. Au dela d’une certaine durée de saisons, le phéno- ciation des habitats détermine complétement
type final atteint la stratégie optimale. le phénotype final.

4.1.4 Influence de la durée des saisons sur le phénotype final
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FIGURE 7 - ¢y = f(ts) pour trois valeurs de différenciation des habitats : de gauche & droite, § = 0,3, = 1,0 = 2.
En bleu, figurent les courbes de corrélation selon un modéle logistique de Verhulst. La p—value, indiquée pour

chaque cas, provient d’un test de corrélation linéaire effectué entre In ((z}if — 1) et ts.

Pour § < 0,3, les habitats ne sont pas suffisamment différenciés pour permettre des spécialisations : le
phénotype final est nul, indiquant une évolution vers un généralisme. Pour § > 0,3, on peut observer une
spécialisation. Cette spécialisation atteint la stratégie optimale (¢ = J) pour des durées de saisons suffisamment
longue, ce qui justifie 'emploi pour 'interprétation de la corrélation entre la durée des saisons et le phénotype
final du modele logistique de Verhulst suivant, avec p > 0, 7 > 0 et [Je1]| < 1 :

0
¢7(0,ts) = ——— = ta

T 14 e (T
ou 7 correspond & la durée de saison nécessaire pour que le phénotype final atteigne la moitié du phénotype
optimal ; p est un parameétre de croissance permettant de rendre compte de la rapidité a laquelle 'influence de
0 sur ¢ va s’effectuer et ||e1|| est lié a erreur du modéle statistique. On vérifie aisément que cette équation
vérifie la condition de proportionnalité entre ¢ et §, & valeur de ¢s fixée, observée précédemment : pour des

10



durées de saisons longues, le phénotype final correspond au phénotype optimal.
Une transformation logarithmique permet de linéariser cette relation :

1)

In{——-1)=p-7T—p-ts+e
of

avec |lea]] < 1, Verreur statistique. Un test de corrélation linéaire de Pearson, effectué sur la forme linéaire du

modéle de Verhulst employé, confirme la validité du modéle pour chaque cas.

Le modéle logistique dépend de la différenciation des habitats (figure 7). Si le paramétre p variant entre 0,015

et 0,08, pour une valeur moyenne de 0,039, semble peu dépendant de ¢, il n’en va pas de méme pour 7.
La relation entre 7 et § n’est pas monotone et on observe

une inversion de tendance pour § ~ 1 (figure 4.1.4). Pour
6 < 1, plus ¢ est faible, plus 7 est grand signifiant que
sous des habitats faiblement différenciés, le phénotype
final est trés sensible aux fréquences des changements
d’habitat. Une certaine durée de saisons, d’autant plus
élevée que ¢ est faible, est nécessaire pour que ¢ at-
teigne la stratégie optimale. Autrement dit, plus les ha-
bitats sont différenciés, plus les populations peuvent at-
teindre un haut niveau d’adaptation dans un paysage
temporel hétérogene.

Cette tendance n’est pas immuable et pour d > 1, la
relation entre 7 et d devient positive. Une explication
possible est que plus § est élevé, plus la distance phé-
notypique a parcourir & chaque fin de saison entre les
deux valeurs optimales est grande : 26. La vitesse évolu- :
tive peut dépendre de la différenciation des habitats et T T T T
de leurs valeurs optimales, de sorte que I’évolution peut
aller « plus vite et plus loin » : une population peut
mettre moins de temps & parcourir une plus grande dis- 5

tance phénotypique (Papaix et al. 2011a). Ici, ce n’est

pas le cas : pour des valeurs élevées de §, le temps né- FIGURE 8 — 7 en fonction de 0. Les courbes en
cessaire a passer d'une stratégie optimale & la stratégie bleu sont des courbes d’interprétation provient de
optimale opposée est d’autant plus important que la dis- 'ajustement d’une fonction du type 7 = a e~ +
tance entre ces deux stratégies est grande, offrant ainsi ¢- 7 -+ 9, par la méthode des moindres carrés.

une sensibilité accrue a 'hétérogénéité temporelle.
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4.2 Hétérogénéité spatio-temporelle

En reprenant la notation introduite dans la description du modéle proposé ot Prr(7(s), a(s),d,ts) désigne
I’ensemble des paysages spatio-temporels, notre étude de I'hétérogénéité spatio-temporelle s’est limitée aux
paysages vérifiant :

Vs € [1, 5], a(s) =«

[ m si. s=1 (mod 2)
Vs € [1, 5], W(S)—{ o si s=0 (mod 2)

T = T2

Autrement dit, la dynamique de paysage consiste en une alternance saisonniére de deux proportions d’habitat
1, & agrégation et différenciation d’habitats fixées. Comme précédemment, la différenciation des habitats est
assimilée a la valeur absolue des stratégies optimales : 02 = 1.
Le jeu de simulations contient 540 simulations et explore les différents paramétres de la maniére suivante :

— les valeurs possibles d’agrégation de I’habitat minoritaire sont 0,2; 0,4 et 0,7;

— les valeurs possibles de la différenciation des habitats sont 0,8; 1 et 1,2, illustrant ainsi les trois types de

compromis écologiques
— les durées des saisons peuvent étre de 20, 50, 100 ou 200
— les proportions en habitat 1 peuvent étre 0,04; 0,25; 0,49; 0,75 et 0, 96.
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4.2.1 Trois comportements évolutifs
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FIGURE 9 — Trois comportements évolutifs : & gauche, un monomorphisme a toutes les saisons (6 = 0,8; t, = 20;
a=0,2;m =0,96; 7o = 0,75); au milieu, alternance entre des saisons de monomorphisme et des saisons de
dimorphismes (§ = 0,8; ts = 100; o = 0,7; m = 0,49; m = 0,04); & droite, un dimorphisme a toutes les
saisons (0 = 1,2;t, =50; a =0,2; m = 0,49; m = 0,25). Avec, en ordonnée la valeur de trait phénotypique,
en abscisse, le temps évolutif.

Trois comportements évolutifs peuvent étre distingués (figure 9). Dans le premier cas, la population reste

monomorphe et on observe les deux stratégies mises en évidence précédemment : le phénotype moyen de la
population suit des oscillations de période égale a la durée des saisons et évolue soit vers une stratégie généraliste,
soit vers une stratégie spécialiste. Dans le second cas, on observe l'alternance saisonniére entre une population
monomorphe et une population dimorphique. Dans le troisiéme cas, la population est dimorphique a toutes les
saisons (exceptée la premiére saison).
Ces deux derniers comportements évolutifs permettent de mettre en évidence des branchements évolutifs, rendus
possibles par la présence des deux habitats & toutes les saisons. Ces branchements évolutifs conduisent a la
formation de deux sous-populations développant deux stratégies de spécialisation. Les caractéristiques spatiales
de 'environnement semblent déterminer la stabilité du dimorphisme engendré. Par ailleurs, le monomorphisme
est généralement associé a 'adoption d’une stratégie généraliste tandis que le dimorphisme correspond plutot
A populations bien spécialisées sur I'un ou ’autre des habitats. L’alternance entre les deux est bien souvent un
cas intermédiaire avec des populations moins spécialisées pendant les saisons de dimorphisme.

4.2.2 Comparaison des comportements observés aux résultats théoriques

La figure 10 montre le comportement évolutif pour chaque simulation (graphiques de gauche) et le compor-
tement théorique déduit des critéres de branchement spatiaux appliqués a chaque saison (graphiques de droite).
La caractérisation des différents comportements évolutifs s’appuie sur une analyse des phénotypes dominants
de la population pour chaque pas de temps de la seconde moitié du temps de simulation. Un phénotype do-
minant correspond au phénotype moyen d’un groupe de classes phénotypiques successives et dont les effectifs
représentent plus de 2 % de la population totale. Selon le nombre de phénotypes dominants ainsi caractérisés,
1 ou 2, la population est considérée monomorphique ou dimorphique.

L’hétérogénéité spatio-temporelle est un objet d’étude beaucoup plus complexe que ’hétérogénéité temporelle,
et ce, notamment en raison de la multiplicité des dimensions. Le nombre de simulations n’est pas suffisant
pour mettre en évidence, de maniére aussi précise que précédemment, les influences des différents paramétres
sur le comportement évolutif des populations mais certains effets semblent cependant, pouvoir étre avancés. La
comparaison des observations des simulations aux résultats théoriques de ’hétérogénéité spatiale montrent des
différences dues a la dimension temporelle de 'hétérogénéité spatio-temporelle.

La différenciation des habitats semble étre le principal facteur influencant le comportement évolutif : plus la
différenciation est élevée, plus le dimorphisme est favorisé. L’effet de la durée des saisons est moins net, mais
il semble que plus les durées de saison sont courtes, plus le monomorphisme est favorisé. Ces observations sont
tout a fait cohérentes avec les résultats issus de I’étude de I'hétérogénéité temporelle.
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F1GURE 10 — Comportements évolutifs théoriques (& droite) et observés (a gauche). De haut a bas, a(s) =0,2;
a(s) =0,4 et a(s) =0,7. Avec 1 en abscisse, Ty en ordonnée, ts en seconde abscisse et § en seconde ordonnée.
En bleu foncé, les populations sont monomorphes & toutes les saisons; en bleu clair, les populations sont
dimorphiques a toutes les saisons ; en bleu moyen, les populations alternent entre des saisons de monomorphisme
et des saisons de dimorphisme.
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Par rapport aux résultats théoriques issus du critére spatial de branchement, 'effet de la différenciation des
habitats semble amplifié en hétérogénéité spatio-temporelle. Par exemple, les simulations du type (o =10,4;
m = 0,04; 7 = 0,75) montrent un effet trés net de ce parameétre, en comparaison aux résultats déduits du
critére spatial de branchement qui prédisent une alternance entre monomorphisme et dimorphisme quel que soit
la valeur de la différenciation.

Concernant les paramétres spatiaux, plus 'agrégation des habitats est élevée plus le dimorphisme semble favorisé.
Ces résultats sont cohérents avec ceux provenant de I’étude de I'hétérogénéité spatiale (Papaix et al. 2011a) :
plus les habitats sont agrégés, plus les spécialistes ont un niveau d’adaptation élevé, et les populations dimor-
phiques étant généralement des populations spécialisées, cet effet n’est pas surprenant. L’effet de la proportion
des habitats semble moins déterminant que l'agrégation, excepté pour les proportions extrémes qui favorisent
nettement le monomorphisme. Enfin, plus 'amplitude des changements de proportion d’habitats est importante,
plus le monomorphisme est favorisé.

Globalement, les résultats d’hétérogénéité spatio-temporelle concordent avec ceux de 1’hétérogénéité tempo-
relle : des changements fréquents de paysage favorisent des populations monomorphes et généralistes, 1a ot des
habitats bien agrégés dans 'espace et dans le temps, favorisent des populations dimorphiques de spécialistes.
Qui plus est, les simulations dont les variations de proportions d’habitats impliquent des valeurs extrémes, 0, 04
ou 0,96, semblent plus sensibles a I’hétérogénéité spatio-temporelle. De méme, les simulations dont les change-
ments saisonniers sont trés rapprochés (¢, = 20) montrent une plus grande sensibilité aux parameétres spatiaux.
Inversement, sous de fortes agrégations, que 'on peut considérer comme une moindre hétérogénéité spatiale, et
des valeurs moyennes de proportions d’habitats, la différenciation et la durée des saisons n’ont plus d’effet. I1 y
aurait donc des phénoménes d’amplification des effets de 'hétérogénéité : plus les populations sont soumises &
une forte hétérogénéité sous certains aspects, plus elles seront sensibles a d’autres aspects de 'hétérogénéité.

5 Discussion

L’hétérogénéité temporelle, tout comme ’hétérogénéité spatiale, peut influencer 'adaption des pathogénes.
Un modéle de dynamique adaptative, décrivant les changements phénotypique au cours du temps d’une popu-
lation de pathogénes soumis & des changements périodiques d’habitat, permet de montrer que la spécialisation
d’une population peut dépendre fortement des caractéristiques paysagéres temporelle qui lui sont imposées. En
cela, les résultats présentés confirment et illustrent sur un aspect temporel la supériorité qu’ont les stratégies
généralistes dans l'exploitation de I’hétérogénéité écologique (Loreau et al. 2001, Gravel et al. 2011).

En particulier, la durée des saisons, correspondant au temps de présence d’un type d’habitat dans I’environ-
nement et que l'on peut assimiler a une sorte d’« agrégation temporelle », est un paramétre déterminant pour
I’évolution de pathogénes. Plus la durée des saisons est courte, plus le niveau d’adaptation des pathogénes
sera bas, jusqu’a pouvoir favoriser ’adoption d’une stratégie généraliste. Le niveau d’adaptation est défini par
rapport a la stratégie optimale, déterminée par la différenciation des habitats. Les influences de ces deux para-
métres, durée des saisons et différenciation des habitats, sont croisées et complexes : la sensibilité a la durée des
saisons (ou a la fréquence des changements saisonniers) est d’autant plus forte que la différenciation des habitats
est faible. Ce n’est plus vrai pour des habitats trés différenciés, ou la distance phénotypique & parcourir entre
deux optima de spécialisation devient suffisamment importante pour que le temps nécessaire a la parcourir soit
allongé, et en conséquence, entrainer une sensibilité accrue aux perturbations des changements saisonniers.
Ces résultats illustrent l'influence complexe que peut jouer un aspect de I’hétérogénéité temporelle sur un
compromis écologique, ici la spécialisation entre deux habitats. D’autres compromis écologiques peuvent étre
influencés de la sorte. A titre d’exemple, I'absence périodique de I'hote peut entrainer chez 1’héte une augmen-
tation du taux de transmission, selon un compromis entre transmission et virulence, ou sa diminution, selon un
compromis entre transmission et survie saisonniére (van den Berg et al. 2010). L’influence de I’hétérogénéité
temporelle sur des compromis décisifs dans ’adoption de stratégies écologiques par les pathogénes, et de leur
devenir évolutif, est un argument fort pour intégrer de maniére explicite les aspects temporels dans les études
sur les liens entre hétérogénéité environnementale et évolution des pathogénes.

Les résultats provenant de 1’étude de I’hétérogénéité spatio-temporelle montrent en effet qu’il peut exister des
phénomeénes d’amplification entre différents aspects : l'effet de la fréquence des changements saisonniers, ou de
la différenciation des habitats est d’autant plus fort qu’il s’accompagne d’une faible agrégation et de saisons
avec des proportions d’habitat extrémes. Inversement, les effets de certains aspects de I’hétérogénéité peuvent
étre contrariés par des facteurs d’homogénéité : I'agrégation des habitats peut inhiber complétement 'effet de
la différenciation des habitats, par exemple.
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L’idée d’appliquer une hétérogénéité spatio-temporelle & un espace agricole pour mieux réguler les épidémies vé-
gétales et plus freiner 'apparition de spécialisations, par rapport a la seule hétérogénéité spatiale ou temporelle,
est illustrée par la rotation de mélanges de culture. Cette pratique agricole est un outil majeur du maintien
des stratégies agricoles modernes conciliant productivité agricole, réduction des maladies et préservation de
lenvironnement (Oddino et al. 2008, Li et al. 2009). Elle repose sur I’emploi d’un mélange de cultures, pour
forcer les pathogénes a survivre dans un environnement d’héte spatialement hétérogéne, et une rotation dans
le temps de ces cultures, pour forcer les pathogénes a survivre dans un environnement d’hote temporellement
hétérogene (Xu 2011).

Mais au-dela des ces principes généraux, la compréhension des effets des aspects spatiaux, temporels et spatio-
temporels de I’hétérogénéité sur 1’écologie et 1’évolution des pathogénes nécessite un effort de recherche im-
portant, passant par I’amélioration des modéles actuellement développés et l'exploration de leurs hypothéses.
Le modéle ici étudié est un modeéle de dynamique adaptative dont les limites sont liées a la simplification des
caractéristiques des populations et des paysages spatio-temporels. L’étude de I'influence de 'hétérogénéité s’est
basée sur la caractérisation de phénotypes dominant. Les résultats ici montrés s’appuient sur la caractérisation
de phénotypes dominants. Cette caractérisation ne doit pas faire oublier qu’en réalité I’ensemble des classes
phénotypiques entre les deux stratégies optimales est représenté, mais dans des effectifs trés faibles. Ce poly-
morphisme marginal peut provenir de la présence des deux habitats & chaque saison qui permet de maintenir de
faibles effectifs spécialisés sur un habitat parfois trés minoritaire au cours d’une saison, ou simplement provenir
d’effets de retard, liés aux paramétres démographiques. Ce polymorphisme & bas niveau permet d’expliquer I’ab-
sence de branchements évolutifs ultérieurs dans les simulations dont le comportement évolutif est une alternance
entre dimorphisme et monomorphisme : les effectifs, certes trés faibles, sont cependant suffisants pour entrai-
ner immeédiatement une nouvelle spécialisation (figure 9, graphique du milieu). L’étude de ce polymorphisme a
bas niveau, ’élargissement des hypothéses d’haploidie, d’asexualité, de générations non chevauchantes, I’étude
de I'adaptation sur plusieurs traits sont autant de perspectives pour développer les aspects populationnels du
modéle. De maniére semblable, 'intégration d’autres aspects de I’hétérogénéité et I’augmentation du nombre
d’habitats sont les premiers développements envisageables des aspects environnementaux du modéle proposeé.
L’objectif dans lequel s’inscrit ce projet est I’élaboration d’un modéle intégrant I’ensemble des aspects de 1'hé-
térogénéité spatio-temporelle. Un tel modéle constituerait un outil & méme de pouvoir étudier I’ensemble des
interactions et des effets des différentes composantes de I'hétérogénéité écologique, préalable indispensable a
I’élaboration de stratégies agricoles de gestion de la spécialisation des pathogénes.

6 Conclusion

Dans un contexte ou la législation européenne cherche a contréler I’emploi des produits phytosanitaires afin
de Pagriculture communautaire (Parlement européen 2009), la manipulation des structures spatio-temporelles
des paysages semble une voie prometteuse pour la gestion de 1’évolution des pathogénes et du risque épidé-
mique en milieu agricole. Le modéle proposé s’appuie sur la théorie de la dynamique adaptative pour montrer
Iinfluence de la fréquence des changements de cultures sur la spécialisation des pathogénes. Cet aspect de
I’hétérogénéité peut contraindre fortement le niveau d’adaptation des pathogénes sur des habitats pourtant mo-
novariétaux a un temps donné, et potentiellement réduire d’autant leur agressivité. Au niveau de I’hétérogénéité
spatio-temporelle, le devenir évolutif d’une population est influencée a la fois par des aspects temporels et des
aspects spatiaux, avec des phénomeénes d’amplification ou d’inhibition. L’étude du réle évolutif de 'hétérogé-
néité s’inscrit dans le courant de la biologie évolutive appliquée, et défend une meilleure intégration des principes
évolutifs et écologiques dans les techniques modernes agricoles. A I’heure ou les impacts environnementaux de
I’agriculture et sa vulnérabilité face aux épidémies végétales constituent des critéres de plus en plus valorisés a
coté des traditionnelles maximisations de la production et du rendement, I'un des principaux enseignements de
ce courant est de rapprocher le fonctionnement des systémes cultivés a celui des écosystémes. La réintroduction
de 'hétérogénéité écologique dans les agrosystémes constitue donc une priorité en politique agricole, a laquelle
doit contribuer la recherche agronomique.
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Premiers développements des aspects analytiques

L’établissement d’une trame analytique rigoureuse & méme d’expliquer ’ensemble des observations est une

tache trés ardue. Cependant, dans le cas extréme d’un changement saisonnier a chaque pas de temps évolutif,
il peut facilement étre montré que la stratégie généraliste est une stratégie évolutive stable (ESS). Par ailleurs,
dans le cas de changements saisonniers impliquant des durées de saison suffisamment longues, une application
de I’équation canonique de la dynamique adaptative permet de rendre compte des oscillations du phénotype de
la population telles qu’observées dans le graphique gauche de la figure 3.
Les simulations ou le phénotype subit des oscillations amorties (par exemple, graphique droite de la figure 3)
correspondent a des cas intermédiaires. Cet amortissement est sans doute lié a la cinétique de la dynamique de
la distribution phénotypique de la population. Le polymorphisme des populations soumises a ces oscillations
amorties n’est plus compatible avec 'hypothése de monomorphisme et en cela réside 'origine de leur difficulté
analytique.

Caractérisation des stratégies singuliéres

Soit une population résidente = dans laquelle apparait un mutant y. Dans un environnement constant dans
le temps, le devenir de ce mutant est déterminé par son coefficient d’invasion s;-h)(y) avec h I'habitat présent
lors de 'apparition du mutant. Ce coefficient est le rapport des taux de survie du mutant et de la population

résidente :

 w=Bp)?

(h) f(y7 h) € 207
Sz (y) = = (o—p)2
Flah) — e

Cas de saisons longues Au cours d’une saison, le paysage est invariant dans le temps. Dans le cas de saisons
longues, ce paysage permet I’évolution d’une population vers la stratégie optimale.

1

log s (y) = 5,0 ((y = Br)? = (x = Bn)?)
log s (4) = —5 5 (y — )y + 2 — 26)

Le gradient de sélection est égal a :

— 25" (y) Br—y <

= - exp

T (h)

sy )y 2~ 26))

Tg;)(ﬁh) = 0 donc z* = f3), est une stratégie singuliére.

Le calcul des dérivées secondes du coefficient d’invasion permettent de déterminer la convergence et la stabilité
des stratégies singulicres (Geritz et al. 1998, Brannstrom et Festenberg 2006). Le calul de la dérivée seconde
du coefficient d’invasion par rapport a z2 donne :

2Py o [a: — B o (
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Le calcul de la dérivée seconde du coefficient d’invasion par rapport & 2 donne :

s (y) 0 [Bu—y
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En la singularité singularité, nous avons :

925 (y)

Ox?

9% (y)

0x?

r=y=x*

= — et 7828;}1) (y) = _i
o2 Oy? o2
r=y=x*
| W)
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Donc 2* = f3), est une stratégie évolutive convergente (CSS).
Par ailleurs,

w — _i < 0
0y? o2 '
r=y=x*

Donc z* = [, est une stratégie évolutive stable (ESS).

Cas des saisons trés courtes Dans un environnement marqué par des changements saisonniers d’habitat,
le devenir du mutant est déterminé par le produit de ses coefficients d’invasion propores & chaque habitat. Dans
le cas extréme d’un changement saisonnier & chaque cycle, on peut écrire :

() =sM(y) - sP(y)

¢(z,y) est indépendant de 0 :

log <, (y) = f% (y+0)* = (@ +06)*+ (y—0)* — (x— 0)?)
log 52 (3) = — 5. ((y — )&+ y+26) + (y — 2)(z +y — 20))
log <, (y) = m:_zyQ

Le gradient de sélection est égal a :

To(0) =0 donc 2* = 0 est une stratégie singuliére.
Le calcul de la dérivée seconde par rapport & 22 donne :
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Le calcul de la dérivée seconde par rapport a y? donne :
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En la singularité singularité, nous avons :

9% (y) 2, Pel) _ 2
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Donc z* = 0 est une stratégie évolutive convergente (CSS).
Par ailleurs,

% (y)
Oy

== <0.
o2

T=y=x*

Donc z* = 0 est une stratégie évolutive stable (ESS).

Equation canonique de la dynamique adaptative

La vitesse évolutive du trait phénotypique x dans une population monomorphe peut étre décrite par ’équa-
tion canonique de la dynamique adaptative (Champagnat et al. 2006, Dieckmann et Law 1996) :

2

i = 2O o, o, (1)
Dans cette équation, p,(y) est la probabilité de survie du mutant de phénotype y dans une population résidente
x. L’échelle de temps est modifiée de sorte que les mutations apparaissent selon un processus de Poisson & temps
continu de taux #(x). Chaque mutation modifie le trait phénotypique selon une variance v2(z).
D’aprés Papaix et al. (2011a), la stochasticité affectant la démographie des individus mutants rares peut étre
prise en compte par un paramétre v? qui quantifie la variabiltié de la distibution des descendants d’un individu,
de sorte que I’équation canonique peut étre réécrite sous la forme :

(2)f(a)

o212

(x —a*)

Avec 02 la variance des courbes de survie. Si v2(x) et 6(x) ne dépendent pas de x, cas dans lequel nous nous
placons, les solutions de cette équation vérifient :

<t><t>) ~ exp < 70 t) (2)

xo(t) — x*(t o?v?

avec z*(t) la stratégie optimale au temps ¢ et x(¢) la valeur du phénotype de la population au début de la
saison correspondant au temps t.

La figure 11 représente I'estimation de ;’2232 pour chaque simulation. Pour des différenciations d’habitat supé-
rieures a 0,5, ce paramétre semble constant et indépendant de § et de t;. Pour des différenciations d’habitat
inférieures a 0,5, ce paramétre est plus faible (AJOUTER GRAPHIQUE « INFLUENCE DE § SUR 7T »). Cet écart
peut s’expliquer par un éloignement du comportement des populations simulées par rapport a 1’équation de la
dynamique adaptative. En effet, les changements de saison entrainent chez des populations soumis & des habitats
faiblement différenciés une modification plus sigmoide qu’exponentielle du phénotype.

2
. . 0
Dans la suite des calculs, nous considérerons % = 072112

constant et indépendant de § et t.

Al

z(t) = (=1)°0 + (zo(t) — (=1)°0) e~

avec s € [1, 5] la saison correspondant au temps t.

En notant z(d, ts) le phénotype a la fin de la saison s d’une population soumise a des saisons de durée ¢, et a
des habitats de différenciation ¢ et xo(d,ts) la valeur initiale du phénotype de cette population, on a la relation
de récurrence suivante :

ts

Vs € [1,8],25(0,t5) = (=1)*0 + (w5-1(0,t5) — (=1)*) e” 7 (3)
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FIGURE 11 — Représentation de la valeur estimée de %279 en fonction de la différenciation des habitats et de la
durée des saisons. Pour une simulation donnée, la valeur représentée correspond a la moyenne des estimations
réalisées par la méthode des moindres carrés a chaque changement saisonnier. Ont été exclues les simulations
pour lesquelles le phénotype final était nul.

Par définition, la valeur absolue de cette suite tend vers le phénotype final :
Sll)rgo |25 (8, t5)| = ¢5(6,ts)
Une expression analytique de ¢y en fonction de J et ¢, peut étre déduite de I'équation 3 en supposant que

LTsg—1 = —Tg

ts

s = (—1)%0 4 (x5_1 — (—1)%0) e =

s = (=1)%0+ (—zs — (=1)°d) e~

ts

1—e +
Ts = %(—1)85
14+e =

ls

S

D’ot une expression du phénotype final :
¢ = dtanh fe (4)
= 1. —_—
! 27

Le graphique de gauche de la figure 12 est une représentation de ¢¢(d,ts) en fonction de ¢ et t,, déduit de ces
considérations analytiques. On peut observer une remarquable concordance entre les résultats analytiques et les
observations de simulations.
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FIGURE 12 — Comparaison du phénotype final provenant de la résolution de ’équation 4 (a gauche) au phénotype
final observé dans les simulations (a droite).
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Landscape
structure and

Agricultural context

epidemic risk
Julien Papaix
» Agro-ecosystems are susceptible to the epidemic
risk.
» Alternative approaches, such as the use of genetic
diversity, should be developed.
» Broader spatial scales should be considered and
collective strategies should be designed.
Agro-ecosystems should evolve from low to high
diversity (insurance hypothesis).
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awwemd | =COlOgical questions
epidemic risk
Julien Papaix
» How does a population spread over an
heterogeneous landscape ?
» How do genotypes (or species) compete in spatially
heterogeneous environments ?
» How does the spatial repartition of habitats influence
the long term evolution of populations ?
Requires the interplay between three disciplines:
- epidemiology,
- landscape ecology,
- evolutionary biology.
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The wheat leaf rust
pathosystem
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Leaf rust (from Bolton 2008)
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Generalisation
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200

073100 proportion mainly
explained by its affinity for
Soissons.

077317 proportion explained
both by its affinity for Soissons
and the other varieties.

106314 proportion mainly
explained by the presence of
Caphorn in the landscape.
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Questions of interest

INRA - ABIES

The landscape varietal composition influences the
observed resistance level of the most grown wheat
varieties by shaping P, triticina populations.

» Quantification of plant-pathogen interactions,
» spatial scale and conditions of production,
» towards predictive models for agricultural advice.

Landscape structure and epidemic risk
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Julien Papaix
1. Dispersal was homogeneous and no explicit
disease dynamics was investigated
= How does the epidemic spread over the
Questions of interest . . . .
landscape when dispersal is limited?
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Questions of interest

INRA - ABIES

Questions of interest

1. Dispersal was homogeneous and no explicit
disease dynamics was investigated
= How does the epidemic spread over the
landscape when dispersal is limited?

2. Composition of P. triticina population depended
on affinity and landscape composition

= Which are the respective roles of local fitness

and migration in the competition between pathogen
genotypes?
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Questions of interest

1. Dispersal was homogeneous and no explicit
disease dynamics was investigated
= How does the epidemic spread over the
landscape when dispersal is limited?

2. Composition of P. triticina population depended
on affinity and landscape composition
= Which are the respective roles of local fitness
and migration in the competition between pathogen
genotypes?

3. Host spectrum was found highly variable (from
highly specialized genotypes to generalist ones)
= Which conditions favour the pathogen
specialisation?
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Host diversity and
epidemic risk
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Modelling approaches

Modelling approaches

» Simulation of pathogen population spread on an

agricultural landscape:

1. spread of pathogen population,

2. competition among pathogen genotypes.

» Adaptive dynamics in a metapopulation context:

3. evolution of pathogen population.
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Landscape
structure and
epidemic risk
Julien Papaix
Epidemics simulation
Spread of pathogen
population
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Spread of pathogen
population

Epidemics simulation

What is an epidemic ?

» The environment (host landscape)
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PEETEE What is an epidemic ?
Julien Papaix
» The environment (host landscape)
» Spatio-temporal spread of a pathogen population:
Infection —> reproduction —> dispersal
Spread of pathogen
population
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» The environment (host landscape)
» Spatio-temporal spread of a pathogen population:
Infection —> reproduction —> dispersal
( J
Spread of pathogen Y
population
Local dynamics,
Life-cycle
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What is an epidemic ?
Julien Papaix
» The environment (host landscape)
» Spatio-temporal spread of a pathogen population:
Infection —> reproduction —> dispersal
( ) | J
Spread of pathogen Y
population
Local dynamics, Spatio-temporal
Life-cycle component
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 21/48




shzi?jéagﬁﬂ Epidemics simulation
epidemic ris

Julien Papaix » The environment as a stochastic variable:

Introduction

Agricultural context

Ecological questions

Spatial heterogeneity .
Contents Same field

: pattern with
Observations on : . X
wheat leaf rust A patron . an increasing

aggregation
level

The wheat leaf rust
pathosystem

The Soissons-073100 case

Generalisation

Questions of interest

Host diversity and
epidemic risk
Modelling approaches

Spread of pathogen
population

Competition among
pathogen genotypes

Long term evolution of
pathogen population

General

discussion
Agro-ecological conclusions
Methodological conclusions

Perspectives

APANGe

]

)
I
I

i

INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 22/48

shzﬂ?j‘;azﬁﬁ Epidemics simulation
epidemic ris

Julien Papaix » The environment as a stochastic variable:

Introduction

Agricultural context

Ecological questions

Spatial heterogeneity f |d
Same fie

pattern with
an increasing
aggregation
level

Contents

Observations on A patron =

wheat leaf rust

The wheat leaf rust
pathosystem

The Soissons-073100 case

Generalisation

Questions of interest

Host diversity and
epidemic risk +
Modelling approaches
Spread of pathogen
population
Competition among
pathogen genotypes

Same
aggregation
level with
different field

Long term evolution of
pathogen population

General Varlablllty

discussion
patterns and
Agro-ecological conclusions a ro u n d .
varlety
Methodological conclusions )
Perspectives allocatlons
= = = E E 9HAC

INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 22/48




Landscape
structure and
epidemic risk

Julien Papaix

Epidemics simulation

» Spatio-temporal spread of a pathogen population:

Infection —— reproduction +—— dispersal
( J ( J
| |
Local dynamics, Spatio-temporal
Life-cycle component
1 1
z T
Spread of pathogen H . L ] | T R
population 1 1 1 1
‘ Cuii) | r-m;
7T
S, <—[ S «— Zr-mﬂ-l/
l l i
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 23/48
Land : : : :
sweweans | =pldemics simulation
epidemic risk
Julien Papaix » Spatio-temporal spread of a pathogen population:
Infection —> reproduction +—> dispersal
( J ( J
| !
Local dynamics, Spatio-temporal
Life-cycle component
L T
e | ] | |
| e | N
| | |
LN [Nl
- RN [t
VN I
gg;i?;ig;pamogen ‘ L — / il M( X X/ ) —
= 7 ] Y
i == 2T 2T
i /
[Eiids — exp(— [[x = x'[))
S L= Ho Ko
L1
\ ] | =
\ ! =
\ T | n
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 24 /48




Landscape
structure and
epidemic risk

Julien Papaix

Introduction
Agricultural context
Ecological questions
Spatial heterogeneity
Contents

Observations on
wheat leaf rust

The wheat leaf rust
pathosystem

The Soissons-073100 case
Generalisation
Questions of interest

Host diversity and
epidemic risk
Modelling approaches

Spread of pathogen
population

Competition among
pathogen genotypes

Long term evolution of
pathogen population

General

discussion
Agro-ecological conclusions
Methodological conclusions

1. Spread of pathogen population over a
heterogeneous agricultural landscape

Introduction
Agricultural context
Ecological questions
Spatial heterogeneity
Contents

Observations on
wheat leaf rust

The wheat leaf rust
pathosystem

The Soissons-073100 case
Generalisation
Questions of interest

Host diversity and
epidemic risk
Modelling approaches

Spread of pathogen
population

Competition among
pathogen genotypes

Long term evolution of
pathogen population

General
discussion

1000 1500 2000

500

» One pathogen genotype.

» Two varieties: a susceptible and a partially resistant.

Mixed

Grouped

Perspectives
F = = E DA
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 25/48
Landscape H
structure and Spread Of pathogen pOpU|at|0n
epidemic risk . .
Effect of variety aggregation level
Julien Papaix

1000 1500 2000
1 1

500
1

Agro-ecological conclusions 0 500 1000 1500 2000 500 1000 1500 2000
Methodological conclusions
Perspectives . i
Papaix et al., in prep.
P = = = DAl
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 26/48




Landscape
structure and
epidemic risk

Julien Papaix

Spread of pathogen population

Effect of variety aggregation level

Susceptible variety

Resistant variety

o | o
- \ — Mixed -
“ --- Grouped
S 31 53
S S
a a
o © «
Q o Q o
® ®
® &
5 < =
n ° n °
C c
@ @
Spread of pathogen o o o o
population O o [OK=]
o | =
e T T T T T e T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000
Time Time
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 27 /48
Landscape I
awreand | OPread of pathogen population
epidemic risk . .
Effect of variety aggregation level
Julien Papaix
Total landscape
ShN
c
S &
=
o
Q
Qo
Q o |
4 .
8 —— Mixed
€t <« --- Grouped
3o
c
Spread of pathogen ()]
population e o~
O o]
Q|
e T T T T
500 1000 1500 2000
Time
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 28/48




Landscape
structure and
epidemic risk

Julien Papaix

Introduction
Agricultural context
Ecological questions
Spatial heterogeneity

Contents

Observations on
wheat leaf rust

The wheat leaf rust
pathosystem

The Soissons-073100 case
Generalisation

Questions of interest

Host diversity and
epidemic risk
Modelling approaches

Spread of pathogen
population

Competition among
pathogen genotypes

Long term evolution of
pathogen population

General

discussion
Agro-ecological conclusions
Methodological conclusions

Perspectives

2. Competition among pathogen genotypes in a
heterogeneous agricultural landscape

= = = = = DA
INRA - ABIES Landscape structure and epidemic risk 2011 sept 26 29/48
Landscape '
sweeend . COMpetition among pathogen genotypes
epidemic risk
Landscapes
Julien Papaix P

Introduction
Agricultural context
Ecological questions
Spatial heterogeneity

Contents

Observations on
wheat leaf rust

The wheat leaf rust
pathosystem

The Soissons-073100 case
Generalisation

Questions of interest

Host diversity and
epidemic risk
Modelling approaches

Spread of pathogen
population

Competition among
pathogen genotypes

Long term evolution of
pathogen population

General

discussion
Agro-ecological conclusions
Methodological conclusions

Perspectives

INRA - ABIES

» Two varieties: V4 (30%) and V5 (70%).

» Three aggregation levels:

Mixed strategy Mosaic strategy  Grouped strategy

g4

DA
30/48

0

)
I
il

i

Landscape structure and epidemic risk 2011 sept 26




Landscape
structure and
epidemic risk

Julien Papaix

Competition among
pathogen genotypes

INRA - ABIES

Competition among pathogen genotypes
Pathogen genotypes
Three pathogen genotypes:

» Vj specialist (P4),

» V5, specialist (P»),

» generalist (P3).
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3. Evolution of specialisation in a spatially
heterogeneous environment
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Whatis it ?
Julien Papaix
A theoretical approach for studying phenotypic
changes of an evolving population.
Main hypotheses:
» clonal reproduction,
» non-overlapping generations,
» phenotype characterized by a 1D continuous trait,
» mutants are rare and evolution is gradual,
» demographic equilibrium reached before the
introduction of a new mutant.
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Effect of host spatial structure on pathogen ecology
and evolution for controlling epidemics in agricultural
systems
» Data analysis (Bayesian inference)
» Simulation models (numerical experiment and
sensitivity analysis)
» Analytical approaches
= role of data vs theoretical approaches,
= complex ecological modelling.
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» Quantitative and/or qualitative validation of
theoretical models via large scale experiments.

» Towards agricultural advice:

- temporal dimension (internship F. Claeys 2011),
socio-economical models, collective strategies,
interactions between practices and parasites,
efficiency of diversification strategies,

sexual recombination,...

» Towards natural systems: plant-pathogen
coevolution.

Perspectives
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Thanks to everyone who contributed to this PhD !

Thank you for your attention !
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Non, non, anuéit voli fugir I'ostal !

Voli lo fial de fum que s’estira suls camps
Quand lo lauraire aluca un fuoc d’erbassas.
O fial de fum, véni ligar un raive,

Un raive que m’escapa

-coma tu, fial de fum-

Per fugir cap a las estelas.

Loisa Paulin, Fum (Sorgas, 1940)









RESUME

L’intensification de I'agriculture a amélioré de fagon considérable la production alimentaire ces derniéres
cinquante années mais elle s’est accompagnée d’'un impact croissant sur ’environnement. En particulier, la
modernisation de ’agriculture a impliqué une simplification de la structure des paysages agricoles rendant
nos agro-écosystémes plus sensibles au risque épidémique. L’utilisation de la diversité génétique des cultures
est une solution prometteuse pour réduire le risque d’occurrence et de propagation des maladies des cultures.
Elle nécessite cependant une gestion collective des espaces agricoles. En conséquence, ’échelle d’étude ne doit
plus se focaliser sur la parcelle mais sur le paysage. Dans cette thése, nous nous interessons aux processus se
déroulant & I’échelle du paysage et au role de la diversité des plantes cultivées pour le controle des épidémies.
Nous avons identifié trois questions: comment les populations pathogénes se propagent-elles dans un paysage
d’hotes hétérogene ? Comment les différents génotypes composant la population pathogéne entrent-ils en
compétition au sein d’une population hote diversifiée 7 et, a plus long terme, comment les populations
pathogénes évoluent-elles en réponse a la structure des populations hotes 7 Chacune de ces questions a été
approfondie grace & I'analyse de données obtenues en condition de production mais aussi par des approches
théoriques. Nous avons montré que la composition et la structure spatiale des populations hotes influence
fortement la population pathogéne. Cependant, les recommandations que peut fournir ce travail pour gérer
la diversité génétique dépendent de I'objectif visé.
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ABSTRACT

Agriculture intensification has improved food production impressively in the past 50 years but this came
with an increasing impact on the environment. In particular, modern agriculture has led to the simplification
of the environmental structure over vast areas. As a consequence, agro-ecosystems are particularly susceptible
to epidemics. The increase of crop genetic diversity is a promising way for reducing the risk of occurrence
and development of diseases in crops but the technical and organisational conditions required to manage
the genetic resources at this scale have not been established yet. This will require shifting the scale of
crop protection investigations from the field to the agricultural landscape. In this PhD thesis we focus
on landscape-scale processes and on the potential role of functional diversity in cultivated landscapes to
better control plant diseases. We identified three questions: how does a pathogen population spread over a
heterogeneous host landscape? How do pathogen genotypes compete in a diversified host population? And,
in a longer term, how do pathogen populations evolve in response to host landscape structure? Each of these
questions is investigated through the analysis of real data and the development of theoretical approaches.
We demonstrate that the composition and the spatial structure of the host landscape greatly influence the
pathogen population dynamics and evolution. The recommendations that this work may provide in order to
practically manage the genetic resources will depend on the desired aim and will request further collaborative
work with the professional operators.
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