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Summary

Search engines play a key role in the World Wide Web. They gather information on the web
pages and for each query of a web surfer they give a sorted list of relevant web pages. Internet
search engines use a variety of algorithms to sort web pages based on their text content or on
the hyperlink structure of the web. Here, we focus on algorithms that use the latter hyperlink
structure, called link-based algorithms, among them PageRank, HITS, SALSA and HOTS.
The basic notion for all these algorithms is the web graph, which is a digraph with a node for
each web page and an arc between nodes i and j if there is a hyperlink from page i to page j.

The original problem considered in the present work, carried out as part of a collaboration
between INRIA and Orange Labs, is the optimization of the ranking of the pages of a given
web site. It consists in finding an optimal outlink strategy maximizing a scalar function of a
given ranking subject to design constraints. PageRank, HITS and SALSA are Perron vector
rankings, which means that they correspond to the principal eigenvector of a (elementwise)
nonnegative matrix. When optimizing the ranking, we thus optimize a scalar utility func-
tion of the Perron eigenvector over a set of nonnegative irreducible matrices. The matrix is
constructed from the web graph, so controlling the hyperlinks corresponds to controlling the
matrix itself.

We first study general PageRank optimization problems with a “total income” utility
function and design constraints. This case is of particular interest since the value of the
PageRank is an acknowledged economic issue. We reduced the PageRank optimization prob-
lem to Markov decision problems such that the action sets are implicitly defined as the vertices
of polytopes that have a polynomial time separation oracle. We show that such Markov de-
cision problems are solvable in polynomial time and we provide a scalable algorithm for the
effective resolution of the PageRank optimization problem on large dataset.

Then, we study the general problem of optimizing a scalar utility function of the Perron
eigenvector over a set of nonnegative irreducible matrices. This covers all Perron vector
rankings, including HITS and SALSA. We show that the matrix of partial derivatives of the
objective has a low rank and can be computed by an algorithm with the same convergence
properties as the power algorithm used to compute the ranking and so the value of the
objective. We give an optimization algorithm that couples power and gradient iterations and
prove its convergence to a stationary point of the optimization problem. Considering HOTS
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as a nonlinear Perron vector, we show that the HOTS algorithm converges with a linear rate
of convergence, that the objective of the HOTS optimization problem has a low rank and
that the coupled power and gradient algorithm applies.

Finally, we extend the domain of application of the Perron eigenvalue and eigenvector
optimization methods to the optimization of chemotherapy under the McKendrick model of
population dynamics. We consider here that the cells behave differently at an hour of the day
or another. We want to take advantage of this feature to minimize the growth rate of cancer
cell population while we maintain the growth rate of healthy cell population over a given
toxicity threshold. The objective and the constraint can be written as the Floquet eigenvalues
of age-structured PDE models with periodic coefficients, and they are approximated by Perron
eigenvalues in the discretized problem. We search for locally optimal drug infusion strategies
by a method of multipliers, where the unconstrained minimizations are performed using the
coupled power and gradient algorithm that we have developed in the context of web ranking
optimization.



Résumé

Les moteurs de recherche jouent un rôle essentiel sur le Web. Ils rassemblent des informations
sur les pages web et pour chaque requête d’un internaute, ils donnent une liste ordonnée de
pages pertinentes. Ils utilisent divers algorithmes pour classer les pages en fonction de leur
contenu textuel ou de la structure d’hyperlien du Web. Ici, nous nous concentrons sur les
algorithmes qui utilisent cette structure d’hyperliens, comme le PageRank, HITS, SALSA et
HOTS. La notion fondamentale pour tous ces algorithmes est le graphe du web. C’est le
graphe orienté qui a un nœud pour chaque page web et un arc entre les nœuds i et j si il y a
un hyperlien entre les pages i et j.

Le problème original considéré dans cette thèse, réalisée dans le cadre d’une collabora-
tion entre INRIA et Orange Labs, est l’optimisation du référencement des pages d’un site
web donné. Il consiste à trouver une stratégie optimale de liens qui maximise une fonction
scalaire d’un classement donné sous des contraintes de design. Le PageRank, HITS et SALSA
classent les pages par un vecteur de Perron, c’est-à-dire qu’ils correspondent au vecteur pro-
pre principal d’une matrice à coefficients positifs. Quand on optimise le référencement, on
optimise donc une fonction scalaire du vecteur propre de Perron sur un ensemble de matrices
positives irréductibles. La matrice est construite à partir du graphe du web, donc commander
les hyperliens revient à commander la matrice elle-même.

Nous étudions d’abord un problème général d’optimisation du PageRank avec une fonction
d’utilité correspondant au revenu total du site et des contraintes de design. Ce cas est d’un
intérêt particulier car pour de nombreux sites la valeur du PageRank est corrélée au chiffre
d’affaires. Nous avons réduit le problème d’optimisation du PageRank à des problèmes de
décision markoviens dont les ensembles d’action sont définis implicitement comme étant les
points extrêmes de polytopes qui ont un oracle de séparation polynomial. Nous montrons que
de tels problèmes de décision markoviens sont solubles en temps polynomial et nous donnons
un algorithme qui passe à l’échelle pour la résolution effective du problème d’optimisation du
PageRank sur de grandes bases de données.

Ensuite, nous étudions le problème général de l’optimisation d’une fonction scalaire du
vecteur propre de Perron sur un ensemble de matrices positives irréductibles. Cela couvre
tous les classements par vecteur de Perron, HITS et SALSA compris. Nous montrons que
la matrice des dérivées partielles de la fonction objectif a un petit rang et peut être calculée
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par un algorithme qui a les mêmes propriétés de convergence que la méthode de la puissance
utilisée pour calculer le classement. Nous donnons un algorithme d’optimisation qui couple
les itérations puissance et gradient et nous prouvons sa convergence vers un point station-
naire du problème d’optimisation. En considérant HOTS comme un vecteur de Perron non
linéaire, nous montrons que l’algorithme HOTS converge géométriquement et nous résolvons
l’optimisation locale de HOTS.

Finalement, nous étendons le domaine d’application des méthodes d’optimisation du
vecteur propre et de la valeur propre de Perron à l’optimisation de la chimiothérapie, sous
l’hypothèse que les cellules se comportent différemment suivant l’heure de la journée. Nous
voulons profiter de cette caractéristique pour minimiser le taux de croissance des cellules
cancéreuses tout en maintenant le taux de croissance des cellules saines au dessus d’un seuil
de toxicité donné. L’objectif et la contrainte peuvent s’écrire comme les valeurs propres de
Floquet de modèles d’EDP structurés en âge avec des coefficients périodiques, qui sont ap-
prochés par des valeurs propres de Perron dans le problème discrétisé. Nous cherchons des
stratégies d’injection de médicament localement optimales par une méthode des multiplica-
teurs où les minimisations sans contrainte sont faites en utilisant l’algorithme couplant les
itérations puissance et gradient développé dans le cadre de l’optimisation du référencement.



Contents

1 Introduction 13

1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Web ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2 Age-structured population dynamics . . . . . . . . . . . . . . . . . . . 15

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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CHAPTER 1

Introduction

1.1 Context of the thesis∗

1.1.1 Web ranking

Web search engines like Google, Yahoo! Search, Bing, Baidu (China) or Voila (France) are
unavoidable for any search of information on the World Wide Web. Search engines date back
from the 90’s when the web began to grow too much for the information to be recovered by
browsing only [Nin08].

A search engine is mainly composed of an index of crawled pages and a relevance algorithm
that selects and sorts the pages to list to the user. The index is built with the data gathered
from computer programs called automatic indexers, crawlers, spiders or bots, that read web
pages, select the valuable information and go to another web page by following a hyperlink
(or any other crawling rule). A characteristic of web search is the huge size of the index
tables [BYRN99]. Google for instance reports to have crawled more than 1 trillion unique
urls [AH08]1. Then, an inverted index is constructed, listing all the web pages associated to
each keyword.

∗

This work was performed as part of a collaboration between INRIA, CMAP, Ecole Polytechnique (Maxplus
team) and Orange Labs (Mustapha Bouhtou). The author was supported by Orange Labs through the research
contract CRE 3795 with INRIA.

1On May 19th, 2012, for a search for the keyword “a”, www.google.com reported to have about
25,270,000,000 results, which is an estimate of the number of pages with unique content.
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Relevance algorithms consider various features of the pages associated to a query in order
to print them in a sorted list to the user. Traditional relevance algorithms are based on the
boolean and statistical models [MRS08]. In the boolean model, a query is seen as a boolean
formula. For instance for the query “optimization AND eigenvector”, the algorithm will
return all the pages that are at the same time in the rows of the inverted index corresponding
to the keyword “optimization” and to the keyword “eigenvector”. It is a simple algorithm
that selects a subset of the pages but it does not rank the results any further. A possibility
is to use statistical information, for instance in the form of term frequencies or the position
of the term within the page, to determine the relevance of each document with respect to the
query. The vector space model [SM83] is a statistical model that represents the documents
and queries as vectors in a multidimensional space, whose dimensions are the terms used
to build an index to represent the documents. One then defines the similarity between a
document and a query as the cosine of the angle between the vectors representing them. The
results are then ranked according to the similarity between the pages and the query.

Early search engines worked with these traditional relevance algorithms. But everybody
can write and publish on the web, which implies that many documents are of poor quality,
although they may be relevant from a statistical point of view [BYRN99]. Fortunately, the
web is organized by the hyperlinks between pages. A hyperlink can be interpreted as a citation
of the pointed web page by the pointing page. A popular measure of relevance for a page, that
can be combined with classical considerations on the keywords, is the number of hyperlinks
that point to that page. In this thesis, we study mathematical problems associated to such
link-based ranking algorithms.

Indeed, hyperlink counting quickly became obsolete because web spammers created thou-
sands of artificial pages pointing to the page they wanted to promote [GGM05b]. In 1998, two
more sophisticated link-based ranking algorithms were developed: Brin and Page’s PageRank
and Kleinberg’s HITS. The PageRank [BP98] is the core of the search engine Google. This in-
novation has led Google to be the leader in the search engine market and nowadays PageRank
is still the reference for link-based web ranking algorithms. It relies on the notion of web graph,
which is a digraph with a node for each web page and an arc between pages i and j if there
is a hyperlink from page i to page j. The PageRank is defined as the invariant measure of
a walk made by a random surfer on the web graph. When reading a given page, the surfer
either selects a link from the current page (with a uniform probability), and moves to the page
pointed by that link, or interrupts his current search, and then moves to an arbitrary page,
which is selected according to given “zapping” probabilities. The rank of a page is defined as
its frequency of visit by the random surfer. It is interpreted as the “popularity” of the page.

The HITS algorithm [Kle99] is composed of two steps and the output depends on the
query of the user. Given a query, it first selects a seed of pages that are relevant to the
query according to their text content. This seed is then extended with pages linking to them,
pages to which they link and all the hyperlinks between the pages selected. We thus obtain
a subgraph of the web graph focused on the query. Then, the second step assigns each page
two scores: a hub score v and an authority score u such that good hubs should point to
good authorities and good authorities should be pointed to by good hubs. Introducing the
adjacency matrix A of the focused graph, this can be written as v = ρAu and u = ρAT v with
ρ ∈ R+, which means that the vector of hub scores is the Perron eigenvector of the matrix
ATA and that the vector of authority scores is the Perron eigenvector of AAT .

Both algorithms rank web pages according to the value of the coordinate of the Perron
vector of a given nonnegative matrix. Indeed, by the Perron-Frobenius theorem [BP94], we
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know that the spectral radius of a nonnegative matrix is an eigenvalue (called the Perron
root) and that there exists an associated eigenvector with nonnegative coordinates. Other
link-based ranking algorithms have been developed like SALSA (Lempel and Moran [LM00]),
HOTS (Tomlin [Tom03]) or Sinkhorning (Smith [Smi05] and Knight [Kni08] independently).
Even if some of them correspond to nonlinear operators, they still rank web pages according
to an “eigenvector” of a nonlinear map. The non-linear Perron-Frobenius theory, that deals
with monotone and homogeneous maps, is a unifying framework for all those rankings.

1.1.2 Age-structured population dynamics

Tissue proliferation relies on the cell division cycle: one cell becomes two after a sequence
of molecular events that are physiologically controlled at each step of the cycle at so-called
checkpoints, in particular at transitions between phases of the cycle [Mor06]. Tissue prolif-
eration is the main physiological process occurring in development and later in maintaining
the permanence of the organism in adults, at that late stage mainly in fast renewing tissues
such as bone marrow, gut and skin.

Proliferation is normally controlled in such a way that tissue homeostasis is preserved. By
tissue homeostasis we mean permanence in the mean of tissue in volume, mass and function
to ensure satisfaction of the needs of the whole organism. In cancer tissues, this physiolog-
ical control, which also relies on the so-called checkpoints in the division cycle of individual
replicating cells, is disrupted, leading to an overproduction of cells that eventually results in
the development of tumours.

Anticancer drugs all attack the cell division cycle, either by slowing it down (possibly
until quiescence, i.e., non proliferation, cells remaining alive), or by blocking it at checkpoints,
which in the absence of cell material repair eventually leads to cell death.

Various mathematical models [Lai64, Mur90, Web92, PA95, BCL06, LS07a] have been pro-
posed to describe the action of anticancer drugs in order to optimise it, that is to minimise
the number of cancer cells or a related quantity, as the growth rate of the cancer cell popu-
lation. The constraints at stake, met everyday in the clinic of cancers, are related mainly to
resistance to treatment in cancer cell populations and to unwanted toxicity in healthy tissues.

The representation of the dynamics of the division cycle in proliferating cell by physiologi-
cally structured partial differential equations (PDEs), which dates back to McKendric [McK26],
is a natural frame to model proliferation in cell populations, healthy or cancerous. Consid-
ering time-periodic parameters, the growth rate of the cell population is modelled by the
Floquet eigenvalue of the system of PDEs. In the associated discretized problem, the Floquet
eigenvalue is approximated by the Perron eigenvalue of a nonnegative matrix [MMP05]. The
Perron vector gives the asymptotic age-distribution of the cells in the discretized problem.

Nonnegative matrices can also be used directly, without a discretization step to model
population dynamics. The matrix is then called the Leslie matrix of the biological or ecological
system [Cas06]. The Perron eigenvalue is here also interpreted as the growth rate of the
population. Hence, although the application is quite different from web ranking, we can
see that the main mathematical tool is the same: Perron eigenvalues and Perron vectors of
nonnegative matrices.
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1.2 Motivation

The web is nowadays a huge marketplace where digital visibility is a question of life or death for
many companies. They have massively recourse to advertising in order to attract web surfers
to their web site and to fidelize them. Web search engines play a key role in the construction
of digital visibility. They sell sponsored links that are printed when an associated query is
formulated, but also being well ranked in so-called natural results is an important issue. The
importance of optimizing the PageRank, specially for e-business purposes, has even led to the
development of a number of companies offering Search Engine Optimization services [CLF09].

The original motivation of this thesis work, carried out as part of a cooperation between
INRIA and Orange Labs, is the optimization of the ranking of the pages of a given web site.
In practice, the border between a clever website construction and keyword selection and link
spamming is tight: a page is considered to be a spam page if it is built more for search engines
than for web surfers. We thus pay a particular attention to design constraints that should
guarantee that the web site keeps its initial purpose even after the optimization procedure. We
shall restrict to link-based rankings and we will not consider keyword selection procedures.
We assume that the webmaster controls a given set of hyperlinks and that she wants to
get the best rank possible while respecting the design constraints she has fixed. The web
ranking optimization problem we consider consists in finding an optimal hyperlink strategy
maximizing a scalar function of a given ranking subject to design constraints. PageRank,
HITS and SALSA are Perron vector rankings, which means that they correspond to the
Perron vector of an elementwise nonnegative matrix. The PageRank optimization problem
has been studied in several works [AL06, MV06, dKNvD08, IT09, CJB10] but other web
ranking optimization problems have been comparatively less studied.

When optimizing the ranking, we thus optimize a scalar utility function of the Perron
eigenvector over a set of nonnegative irreducible matrices. The matrix is constructed from
the web graph, so controlling the hyperlinks corresponds to controlling the matrix itself.

Perron eigenvalue and eigenvector optimization does not restrict to web ranking opti-
mization. For instance, Perron eigenvalue optimization has been considered for the signal to
interference ratio balancing problem [BS07, TFL11]. In the context of biological and ecolog-
ical systems, the modelization of the growth rate of a population by the Perron eigenvalue
of a nonnegative matrix is a natural framework for its optimization [Men76]. McNamara
and Forshlung [MF96] and Logofet [Log08] assume that living beings tend to maximize the
growth rate of their species. Hence they deduce behavioral laws or identify hidden param-
eters. De Lara and Doyen [DLL08] study sustainable management of natural resources via
optimal control and Leslie matrices.

For cancer chemotherapeutics, age-structured PDE models have been extensively studied
in the last 25 years [Web90, AK93, KKA06, HWAW07]. Then, one searches for drug infusion
schedules that minimize the growth rate of cancer cell population while maintaining the
growth rate of the healthy cell population over a given toxicity threshold [BCL06].

One way to optimize pharmacological treatments in cancer, taking into account the cell
division cycle on which tissue proliferation relies, is to take advantage of the control that
circadian clocks are known to exert on it. Such treatments are termed chronotherapies of
cancer [L0́2]. The circadian clocks exert a rhythmic regulating control with a period of ap-
proximately 24 hours (hence their name: circa diem = about one day) on hormonal, metabolic,
behavioral and proliferative processes [RW02, SSC02]. It has been observed in clinical set-
tings that patients with cancer, whose circadian rhythms (rest/activity, blood cortisol) were
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damped or ablated, showed clinically more fatigue and had poorer life prognosis [KYS+01].

In modern oncology, much before molecular circadian clocks were known, it has been
experimentally observed that for anticancer drugs, the time of delivery in the 24 h span
matters. This has led teams of oncologists to use in the clinic of cancers drug delivery schedules
with sinusoidal shape implemented in programmable pumps, with 24 h period and peak
delivery times that were determined for each drug as the best possible from trials and errors
on laboratory animals and subsequently transferred to the clinic [L0́2, L0́6, L0́8, LACG08,
LOD+10, LS07b, MWB+00].

Altinok et al. developed a cellular automaton for the cell cycle [ALG07a] and showed
that an increased variability in the answer to the circadian clock results in less synchronized
divisions in the cell population and an increased growth rate. The authors then show that
chemotherapy infusions that take into account this desynchronization of cancer cells are more
efficient. In [BCF+11b], we studied the synchronization of cells in age-structured PDE models
and it consequences on cancer chemotherapeutics. When modelling the healthy and cancer cell
populations by age-structured PDE models, we are facing a Floquet eigenvalue optimization
problem with 24h-periodic parameters and controls, respectively modelling the circadian clock
and the drug infusions. The Floquet eigenvalue optimization problem is then approximated
by a Perron eigenvalue optimization problem thanks to a discretization step.

The question of the optimization of the eigenvalues has been particularly studied in
the case of symmetric matrices, for applications in shape optimization [DK92], compos-
ite materials [CL96], optimal design of experiments [Puk06] and many other fields. As
the largest eigenvalue defines a convex function of the coefficients of a symmetric matrix,
these problems lead most of the time to convex programming, or even semi-definite program-
ming [CDW75, Ove91, SF95, LO96].

The applications that we deal with in this thesis (web ranking, population dynamics)
lead to another type of problems, namely the optimization of the Perron value or the Perron
vector of a nonnegative, but not necessarily symmetric, matrix depending on parameters.
This leads most of the time to non-convex problems, although some convexity properties
are sometimes present in an indirect form [Kin61] or in particular cases: Markov decision
processes, stochastic matrices [AHH+09], independently controlled rows [BN10, NP11].

1.3 Contribution

We first present previous results for PageRank optimization and some link-based web rank-
ing algorithms. We show that most of the link-based ranking algorithms considered in the
literature belong to the class of nonlinear Perron vector rankings. This theory gives unified
conditions for the rankings to be well-defined, that is existence, uniqueness and positivity of
the scores. Thanks to nonlinear Perron-Frobenius theory, we recover the convergence of the
power method for these ranking methods and we prove the convergence of several versions of
Tomlin’s HOTS algorithm (Chapter 6).

In Chapter 3, we prove a general result of independent interest concerning Markov decision
processes with implicitly defined action sets. We introduce the notion of well-described Markov
decision processes, in which, although there may be an exponential number of actions, there
is a polynomial time strong separation oracle for the actions polytope (whereas the classical
complexity results assume that the actions are explicitly enumerated [PT87]). We prove,
as an application of the theory of Khachiyan’s ellipsoid method, that the ergodic control
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problem for well-described Markov decision process is polynomial time solvable, even in the
multi-chain framework. We also generalize the polynomial time solvability result to Markov
decision processes with finite state space and convex action spaces. We give a convex program,
the solution of which gives the expected average cost and a bias vector of the problem.

Then, in Chapter 4, we study a continuous and a discrete version of the PageRank opti-
mization problem. We show that the continuous PageRank optimization problem with design
constraints defined by the equations of facets of the polytope of admissible transition proba-
bilities of websurfers reduces to an infinite horizon expected average cost problem on a well
described Markov Decision Process. Then we show that the discrete PageRank optimization
problem, in which in each page, there are obligatory links, facultative links and forbidden
links and the transitions are uniform on the hyperlinks present on the page, is equivalent
to a relaxed continuous PageRank optimization problem with a concise representation of the
action sets. Hence, both problems are solvable in polynomial time. We provide a very efficient
algorithm to solve the optimization problem: indeed, we show that optimizing the PageRank
is not essentially more difficult than computing it. We study the shape of an optimized web
site and we show that there exists a quantity called the mean reward before teleportation
which gives a total order of preference in pointing to a page or another. We also extend the
ergodic control formulation to problems with constraints coupling the behaviors of several
pages. We report numerical results on the web site of one of my co-authors as well as on
a fragment of the web (4.105 pages from the universities of New Zealand).

In Chapter 5, we give a new link spam detection and PageRank demotion algorithm called
MaxRank. Like TrustRank [GGMP04] and AntiTrustRank [KR06], it starts with a seed of
hand-picked trusted and spam pages. We define the MaxRank of a page as the frequency of
visit of this page by a random surfer minimizing an average cost per time unit. On a given
page, the random surfer selects a set of hyperlinks and clicks with uniform probability on any
of these hyperlinks. The cost function penalizes spam pages and hyperlink removals. The
goal is to determine a hyperlink deletion policy that minimizes this score. The MaxRank
is interpreted as a modified PageRank vector, used to sort web pages instead of the usual
PageRank vector. We show that the bias vector of the associated ergodic control problem,
which is unique up to an additive constant, is a measure of the “spamicity” of each page, used
to detect spam pages. We give a scalable algorithm for MaxRank computation that allowed
us to perform numerical experiments on the WEBSPAM-UK2007 dataset [web07]. We show
that our algorithm outperforms both TrustRank and AntiTrustRank for spam and nonspam
page detection.

Then, we study general Perron value and Perron vector optimization problems, in order
to apply it to the other web page rankings. Markov decision process techniques do not apply
any more but under natural assumptions, the theory of differentiable optimization [BGLS06,
Ber95, NW99] applies. As for PageRank optimization, the size of the web graph requires
scalable algorithms. We thus concentrate on first order methods, more efficient than second
order methods for large problems, and we give a fast algorithm for the computation of the
gradient.

We begin this study of web ranking algorithms different from PageRank with proving the
convergence of Tomlin’s HOTS algorithm [Tom03] at a linear rate of convergence in Chapter 6.
The HOTS vector is the vector of the exponentials of the dual variables of an optimal flow
problem. The flow represents an optimal distribution of web surfers on the web graph in
the sense of entropy maximization. The dual variable, one by page, is interpreted as the
“temperature” of the page. We first study a simplified version of the algorithm, which is a
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fixed point scaling algorithm designed to solve the matrix balancing problem for nonnegative
irreducible matrices. The proof of convergence is general (nonlinear Perron-Frobenius theory)
and applies to a family of deformations of HOTS. Then, we address the effective HOTS
algorithm which is the version designed by Tomlin for the ranking of web pages. The model
is a network entropy maximization problem which generalizes matrix balancing. We show
that, under mild assumptions, the HOTS algorithm converges at a linear rate of convergence.
The proof relies on a uniqueness property of the fixed point and on the existence of a Lyapunov
function. We also show that the coordinate descent algorithm [SZ90, LT92] can be used to
find the ideal and effective HOTS vectors and we compare HOTS and coordinate descent
algorithms on fragments of the web graph. Finally, we give an algorithm to compute the
HOTS vector when bounds on the flow of websurfers are known and a normalized HOTS
algorithm with better convergence properties.

In Chapter 7, we study the problem of optimizing the Perron eigenvector of a controlled
matrix and apply it web ranking optimization. Our first main result is the development of
a scalable algorithm for the local optimization of a scalar function of the Perron eigenvector
over a set of nonnegative irreducible matrices. Indeed, we show that the global Perron vector
optimization over a convex set of nonnegative matrices is NP-hard, so we focus on the search-
ing of local optima. We give a power-type algorithm for the computation of the matrix of
the partial derivatives of the objective, based on the fact that it is a rank 1 matrix. It shows
that computing the partial derivatives of the objective has the same computational cost as
computing the Perron vector by the power method, which is the usual method when dealing
with the large and sparse matrices built from the web graph. Then we give an optimization
algorithm that couples power and gradient iterations. Each step of the optimization algo-
rithm involves a suitable number of power iterations and a descent step. By considering this
algorithm to be an approximate projected gradient algorithm [Pol97, PP02], we prove that
the algorithm converges to a stationary point. Compared with the case when the number
of power iterations is not adapted dynamically, we got a speedup between 3 and 20 in our
numerical experiments together with a more precise convergence result.

Then we apply Perron vector optimization to the optimization of scalar functions of HITS
authority or HOTS score. We derive optimization algorithms and, thanks to the low rank of
the matrix of partial derivatives, we show that the optimal linkage strategies of both problems
satisfy a threshold property. This property was already proved for PageRank optimization
in [dKNvD08]. As in [IT09, CJB10, FABG13], we partition the set of potential links (i, j)
into three subsets, consisting respectively of the set of obligatory links, the set of prohibited
links and the set of facultative links. When choosing a subset of the facultative links, we
get a graph from which we get any of the three ranking vectors. We are then looking for
the subset of facultative links that maximizes a given utility function. We also study the
associated relaxed problems, where we accept weighted adjacency matrices. This assumes
that the webmaster can influence the importance of the hyperlinks of the pages she controls,
for instance by choosing the size of the font, the color or the position of the link within the
page. In fact, we shall solve the relaxed problems and then give conditions or heuristics to
get an admissible strategy for the discrete problems.

Perron eigenvalues and eigenvectors are useful in a wider framework than web ranking.
In the last chapter of this thesis, we present and analyse a mathematical model for the opti-
mization of cancer drug treatments in cycling cell population models with age structure. We
consider a drug, 5-FluoroUracil (5-FU), that prevents cells from starting mitosis. The prolifer-
ating healthy and cancer cell populations are represented by the same age-structured model of
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the McKendrick type, with different physiological controls for the two cases. Each dynamics is
given by physiologically structured PDEs where the dynamic variables are the number of cells
of each age in each phase of the proliferation cycle: first growth phase (G1), DNA synthesis
followed by second growth phase (S-G2) and mitosis (M), and the only structure variable is
age in the phase. The parameters of the model are the death rates and transitions from a
phase to the next in the cell cycle. In this work, we assume that proliferation is physiologically
controlled by a circadian clock, which implies that the coefficients of the model are not only
age and phase-dependent but also 24-h periodic functions. Our fundamental hypothesis is
that healthy and cancer cells proliferate following the same model, but that cancer cells are
characterized by a looser response to the circadian control, which gives them a proliferation
advantage. We show how recent fluorescence-based image modelling techniques performed at
the single cell level in proliferating cell populations allow one to identify some key parameters
of the population dynamics. Then, we consider time-dependent 5-FU infusions that disrupt
the transition from phase G2 to M. We study the problem of minimizing the growth rate of
the cancer cell population, modeled by the Floquet eigenvalue of the population dynamics,
with the constraint that the growth rate of the healthy cell population remains over a given
toxicity threshold. The goal is to find (periodic) chemotherapy schedules that are viable in
the long term and effective in the fight against cancer. When we discretize the problem, the
Floquet eigenvalues are approached by the Perron eigenvalues of sparse nonnegative matrices.
We developed a multiplier’s method for the local optimization of the growth rates, that takes
advantage of a low rank property of the gradient of the Perron eigenvalue. The eigenvalue
optimization algorithm is based on the algorithm developed in Chapter 7. We calculated
the gradient of the objective function at stake. We implemented the multiplier’s method to
solve the problem, where the internal unconstrained optimization problems are solved by the
coupling of power and gradient iterations.

1.4 Organization

In Chapter 2, we present previous results for PageRank optimization and some link-based
web ranking algorithms considered in the literature.

In Chapter 3, we give new results on effective resolution of well-described Markov Decision
Processes problems with a possibly exponential number of actions, or convex action spaces.
Theorem 3.1 has been published in [FABG13].

In Chapter 4, we show that the PageRank optimization problem can be solved in poly-
nomial time by reducing it to an infinite horizon expected average cost problem on a well
described Markov Decision Process. We give an very efficient algorithm to solve the optimiza-
tion problem: we show that optimizing the PageRank is not essentially more difficult than
computing it. Then we also deal with constraints that couple the behavior of several pages.
This chapter follows the lines of [FABG13].

In Chapter 5, we base on our results on PageRank optimization to develop a new ranking
algorithm, called MaxRank, designed to fight spam pages.

In Chapter 6, we study the convergence properties of Tomlin’s HOTS algorithm. Those
results are under review in [Fer12a].

In Chapter 7, we study the Perron value and Perron vector optimization problems. We
give a scalable algorithm for the local minimization of a scalar function of the Perron vec-
tor that uses a low rank property of the matrix of partial derivatives of the criterion and
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couples gradient and power iterations. We prove convergence by considering it as an approx-
imate gradient method. We then apply these result to Kleinberg’s HITS and Tomlin’s HOTS
optimization. Those results are under review in [Fer12b].

In Chapter 8, we present another application of Perron value optimization to cancer
chemotherapeutics. This work has been published in [BCF+11a, BCF+11b, BCF12].
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Introduction (en français)

1.5 Contexte de la thèse∗

1.5.1 Référencement web

Les moteurs de recherches comme Google, Yahoo! Search, Bing, Baidu (Chine) ou Voila
(France) sont incontournables pour toute recherche d’information sur le web. L’origine des
moteurs de recherches se situe dans les années 1990 où le web commença à devenir trop gros
pour que l’information ne soit trouvé uniquement en naviguant sur la toile [Nin08].

Un moteur de recherche est composé principalement d’un index de pages et d’un algo-
rithme de classement qui sélectionne les pages pertinentes et les classe dans une liste retournée
à l’utilisateur. L’index est construit à partir des données rassemblées par des programmes
informatiques appelés robots d’indexation ou crawlers, qui lisent une page web, sélectionnent
les informations importantes et se dirigent vers une autre page en suivant un hyperlien (ou
n’importe quelle règle de parcours). Une caractéristique de la recherche sur le web est la
grande taille des index [BYRN99]. Par exemple, Google rapporte avoir indexé plus de mille
milliards d’urls uniques [AH08]1. Ensuite, un index inversé est créé. Il liste toutes les pages
associée à chaque mot clé.

Les algorithmes de classement considèrent plusieurs caractéristiques des pages associées à
une requête avant de les afficher à l’utilisateur dans une liste ordonnée. Les algorithmes de
classement traditionnels s’appuient sur le modèle booléen et le modèle statistique [MRS08].
Dans le modèle booléen, une requête est vue comme une formule booléenne. Par exemple,
pour la requête “optimisation ET vecteur propre”, l’algorithme va retourner toutes les pages
qui sont à la fois dans les lignes de l’index inversé correspondant au mot clé “optimisation”
et au mot clé “vecteur propre”. C’est un algorithme simple qui sélectionne un sous ensemble
des pages mais il ne classe pas les résultats obtenus. Une possibilité est alors d’utiliser des

∗

Ce travail s’inscrit dans le cadre d’une collaboration entre INRIA, CMAP École Polytechnique (équipe-
projet Maxplus) et Orange Labs (Mustapha Bouhtou). Son auteur a été soutenu par Orange Labs via le
contrat de recherche CRE 3795 avec INRIA.

1Le 19 mai 2012, pour une recherche avec comme mot clé “a”, www.google.com disait avoir environ
25,270,000,000 résultats, ce qui donne une estimation du nombre de pages avec un contenu unique.
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statistiques, comme par exemple la,fréquence de chaque terme et sa position dans la page,
pour déterminer la pertinence de chaque document par rapport à la requête. Le modèle
vectorien [SM83] est un modèle statistique qui représente les documents et les requêtes comme
des vecteurs dans un espace multidimensionnel dont les dimensions sont les termes utilisés
pour construire l’index qui représente les documents. Ensuite, on définit la similarité entre un
document et une requête comme étant le cosinus de l’angle entre les vecteurs les représentant.
Les résultats sont ensuite ordonnés en fonction de la similarité entre les pages et la requête.

Au début, les moteurs de recherche fonctionnaient avec ces algorithmes de classement
traditionnels. Mais tout le monde peut écrire et publier sur le web, ce qui implique que
beaucoup de documents sont de mauvaise qualité, bien qu’ils puissent être pertinents d’un
point de vue statistique [BYRN99]. Heureusement, le web est organisé par les hyperliens
entre les pages. Un hyperlien peut être interprété comme une citation de la page pointée par
la page qui pointe. Une mesure répandue de la pertinence d’une page, qui peut être combinée
avec les considérations classiques sur les mots clés, est le nombre d’hyperliens qui pointent
vers cette page. Dans cette thèse, nous étudions des problèmes mathématiques associés à ces
algorithmes de classement se basant sur les hyperliens.

En fait, le décompte des hyperliens devint rapidement obsolète parce que des spammeurs
du web créèrent des milliers de pages artificielles pointant vers la page qu’ils voulaient pro-
mouvoir [GGM05b]. En 1998, deux algorithmes plus sophistiqués furent développés : le
PageRank par Brin et Page et HITS par Kleinberg. Le PageRank [BP98] est le cœur du
moteur de recherche Google. Cette innovation a permis à Google de devenir leader sur le
marché du moteur de recherche et maintenant le PageRank est toujours la référence pour
les algorithmes de classement se basant sur les hyperliens. Il repose sur la notion de graphe
du web, qui est un graphe orienté avec un nœud pour chaque page web et un arc entre les
pages i et j si il y a un hyperlien de la page i à la page j. Le PageRank est défini comme la
mesure invariante d’une marche faite par un surfeur aléatoire sur le graphe du web. Quand
il lit une page donnée, le surfeur peut soit sélectionner un lien sur la page courante (avec
une probabilité uniforme) et va sur la page pointée par ce lien, soit interrompre sa recherche
et aller à une page arbitraire qui est déterminée en fonction de probabilités de “zapping”
données. Le score d’une page est défini comme la fréquence de visite du surfeur aléatoire sur
cette page. Il est interprété comme la popularité de la page.

L’algorithme HITS [Kle99] comprend deux étapes et le résultat dépend de la requête de
l’utilisateur. Etant donnée une requête, il sélectionne d’abord un ensemble de pages qui sont
pertinentes vis à vis de la requête et leur contenu textuel. Cet ensemble de pages est ensuite
étendu avec les pages qui pointent vers elles, les pages vers lesquelles elles pointent et tous les
hyperliens entre les pages sélectionnées. On obtient alors un sous-graphe du graphe du web
centré sur la requête. Ensuite, la deuxième étape assigne à chaque page un score : un score
de hub v et un score d’autorité u tels que les bons hubs pointent vers de bonnes autorités et
les bonnes autorités sont pointées par de bons hubs. En introduisant la matrice d’adjacence
A du graphe centré sur la requête, ceci peut être écrit v = ρAu et u = ρAT v avec ρ ∈ R+,
ce qui signifie que le vecteur des scores de hub est le vecteur propre de Perron de la matrice
ATA et que le vecteur des scores d’autorité est le vecteur propre de Perron de AAT .

Les deux algorithmes classent les pages en fonction de la valeur de la coordonnée du vecteur
de Perron d’une matrice positive. En fait par le théorème de Perron-Frobenius [BP94], nous
savons que le rayon spectral d’une matrice positive terme à terme est une valeur propre
(appelée valeur de Perron) et qu’il existe un vecteur propre associé avec des coordonnées pos-
itives. D’autres algorithmes de classement utilisant les hyperliens ont été développés comme
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SALSA (Lempel et Moran [LM00]), HOTS (Tomlin [Tom03]) ou Sinkhorning (Smith [Smi05]
et Knight [Kni08] indépendamment). Même si certains correspondent à des opérateurs non
linéaires, ils classent toujours les pages en fonction du “vecteur propre” d’une application non
linéaire. La théorie de Perron-Frobenius non linéaire, qui traite des applications monotones
et homogènes, est un cadre unificateur pour toutes ces méthodes.

1.5.2 Dynamiques de populations structurées en âge

La prolifération des tissus cellulaires repose sur le cycle de division cellulaire : une cellule se
dédouble après une séquence d’évènements moléculaires qui sont contrôlés physiologiquement
à chaque étape du cycle au niveau de checkpoints, en particulier au niveau des transitions entre
les phases du cycle [Mor06]. La prolifération des tissus est le principal processus physiologique
qui se produit dans le développement de l’organisme et plus tard dans son maintien. Chez les
adultes, la prolifération a lieu principalement dans les tissus à renouvellement rapide comme
la moelle osseuse, les intestins et la peau.

La prolifération est normalement contrôlée de telle manière que l’homéostasie des tissus
est préservée. Nous définissons l’homéostasie comme la permanence en moyenne du volume,
de la masse et des fonctions des tissus de manière à assurer la satisfaction des besoins de
l’organisme. Dans les tissus cancéreux, ce contrôle physiologique, qui repose aussi sur les
checkpoints du cycle de division cellulaire de chaque cellule reproductrice, est perturbé, ce
qui amène à une surproduction de cellules et finalement développement de tumeurs.

Les médicaments anticancer attaquent tous le cycle de division cellulaire, soit en le ralen-
tissant (parfois jusqu’à la quiescence, c’est-à-dire l’arrêt de la prolifération, les cellules restant
vivantes), soit en bloquant le cycle à des checkpoints ce qui, en l’absence de réparation du
matériel cellulaire, mène à la mort cellulaire.

Différents modèles mathématiques [Lai64, Mur90, Web92, PA95, BCL06, LS07a] ont pro-
posé de décrire l’action des médicaments anticancer pour l’optimiser, c’est-à-dire pour min-
imiser le nombre de cellules cancéreuses ou une quantité reliée comme le taux de croissance de
la population de cellules cancéreuses. Les contraintes en jeu, rencontrées tous les jours dans
le traitement des cancers, sont principalement en lien avec la résistance des populations de
cellules cancéreuses au traitement et avec la toxicité indésirable du traitement pour les tissus
sains.

La représentation de la dynamique du cycle de division des cellules proliférantes par des
équations aux dérivées partielles (EDP) structurées en âge, qui remonte à McKendrick [McK26],
est un cadre naturel pour modéliser la prolifération dans les populations de cellules saines
ou tumorales. Si on considère des paramètres périodiques par rapport au temps, le taux de
croissance de la population de cellules est modélisé par la valeur propre de Floquet du système
d’EDP. Dans le problème discrétisé associé, la valeur propre de Floquet est approchée par la
valeur propre de Perron d’une matrice positive terme à terme [MMP05]. Le vecteur de Perron
donne la distribution asymptotique des âges des cellules dans le problème discrétisé.

Les matrices positives peuvent aussi être utilisées directement, sans une étape de discrétisa-
tion pour modéliser des dynamiques de population. La matrice est alors appelée la matrice
de Leslie du système biologique ou écologique [Cas06]. La valeur propre de Perron est ici
aussi interprétée comme le taux de croissance de la population. Ainsi, bien que l’application
soit différente du référencement de pages web, nous pouvons voir que l’outil mathématique de
base est le même : les valeurs propres et les vecteurs propres de Perron des matrices positives.
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1.6 Motivation

Le web est aujourd’hui un gigantesque marché où la visibilité numérique est une question de
vie ou de mort pour de nombreuses entreprises. Elles ont massivement recours à la publicité
de manière à attirer les internautes vers leur site web et à les fidéliser. Les moteurs de
recherche jouent un rôle capital dans la construction de la visibilité numérique. Ils vendent
des liens publicitaires qui sont affichés quand une requête associée est formulée, mais le fait
d’être bien placé dans les résultats dits naturels est une question importante. L’importance
de l’optimisation du PageRank, en particulier pour le commerce électronique, a même conduit
au développement d’un certain nombre d’entreprises qui proposent des services d’optimisation
du référencement [CLF09].

La motivation originelle de cette thèse, effectuée dans le cadre d’une collaboration entre
INRIA et Orange Labs, est l’optimisation du référencement des pages d’un site web donné.
En pratique, la frontière entre site intelligemment construit avec des mots clés choisis et du
référencement abusif est étroite : une page est considérée comme du spam si elle est faite
plus pour les moteurs de recherche que pour les internautes. Nous regarderons donc avec une
attention particulière les contraintes de design qui devraient garantir que le site web garde son
but initial même après la procédure d’optimisation. Nous nous restreindrons au classements
basés sur les hyperliens et nous ne considérons pas les procédures de sélection des mots clés.
Nous supposons que le webmaster commande un ensemble d’hyperliens donné et qu’il veut
obtenir la meilleure position possible en respectant les contraintes de design qu’il s’est fixées.
Le problème d’optimisation du référencement que nous considérons consiste à trouver une
stratégie optimale d’hyperliens qui maximise une fonction scalaire d’un classement donné
sous des contraintes de design. Le PageRank, HITS et SALSA sont des classements par le
vecteur de Perron, ils correspondent donc au vecteur de Perron d’une matrice positive terme
à terme. Le problème d’optimisation du PageRank a été étudié dans plusieurs travaux [AL06,
MV06, dKNvD08, IT09, CJB10] mais les autres problèmes d’optimisation du référencement
ont été comparativement moins étudiés.

Quand on optimise le référencement des pages web, on optimise donc une fonction d’utilité
scalaire du vecteur propre de Perron sur un ensemble de matrices positives irréductibles. La
matrice est construite à partir du graphe du web donc commander les hyperliens revient à
commander la matrice elle-même.

L’optimisation de la valeur propre et du vecteur propre de Perron ne se limite pas à
l’optimisation du référencement. Par exemple, l’optimisation de la valeur de Perron a été
considérée pour le problème de l’équilibrage du ratio signal sur interférence [BS07, TFL11].
Dans le contexte des systèmes biologiques et écologiques, la modélisation du taux de croissance
d’une population par la valeur de Perron d’une matrice positive est un cadre naturel pour son
optimisation [Men76]. McNamara et Forshlung [MF96] et Logofet [Log08] font l’hypothèse
que les êtres vivants ont tendance à maximiser le taux de croissance de leur espèce. Ils en
déduisent ainsi des lois de comportement ou ils identifient des paramètres cachés. De Lara et
Doyen [DLL08] étudient la gestion durable des ressources naturelles en utilisant la théorie de
la commande optimale et des matrices de Leslie

Pour la chimiothérapie du cancer, les modèles d’EDP structurés en âge ont été largement
étudiés dans les dernières 25 années [Web90, AK93, KKA06, HWAW07]. On cherche alors des
programmes d’injection de médicament qui minimisent le taux de croissance de la population
de cellules cancéreuses tout en maintenant le taux de croissance de la population de cellules
saines au dessus d’un seuil de toxicité donné [BCL06].
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Une manière d’optimiser les traitements pharmacologiques du cancer qui prend en compte
le cycle de division cellulaire sur lequel repose la prolifération des tissus est de tirer profit
du contrôle exercé sur lui par les horloges circadiennes. De tels traitements sont appelés des
chronothérapies du cancer [L0́2]. Les horloges circadiennes exercent un contrôle régulateur
rythmé avec une période d’environ 24 heures (d’où leur nom : circa diem = environ un jour)
sur les processus hormonaux, métaboliques, comportementaux et prolifératifs [RW02, SSC02].
Il a été observé en clinique que les patients atteints du cancer dont les rythmes circadiens
(repos/activité, cortisol sanguin) étaient aplatis ou enlevés montraient cliniquement plus de
fatigue et avaient des pronostics de vie plus faibles [KYS+01].

Dans l’oncologie moderne, bien avant que les horloges circadiennes moléculaires ne soient
connues, il a été observé expérimentalement que pour les médicaments anticancer, l’heure de
délivrance au cours de la journée a une importance. Ceci a conduit les équipes d’oncologistes
à utiliser dans le traitement des cancers des programmes d’injection de médicament avec des
formes sinusöıdales, implémentés dans des pompes programmables avec des périodes de 24
h et des pics de distribution qui ont été déterminés au mieux pour chaque médicament par
tâtonnements sur des animaux de laboratoire et transférés ensuite en clinique [L0́2, L0́6, L0́8,
LACG08, LOD+10, LS07b, MWB+00].

Altinok et al. ont développé un automate cellulaire pour le cycle cellulaire [ALG07a]
et montré qu’une variabilité accrue dans la réponse à l’horloge circadienne induit des di-
visions moins synchronisées dans la population de cellules et un taux de croissance accru.
Les auteurs ont ensuite montré que les injections de chimiothérapie qui prennent en compte
cette désynchronisation des cellules cancéreuses sont plus efficaces. Dans [BCF+11b], nous
avons étudié la synchronisation des cellules dans in modèle d’EDP structurées en âge et ses
conséquences sur la chimiothérapeutique du cancer. Quand on modélise les populations de
cellules saines et cancéreuses par des EDP structurées en âge, nous sommes confrontés un
problème d’optimisation de la valeur propre de Floquet d’un système avec des paramètres et
une commande périodiques de période 24 h, qui représentent respectivement l’horloge circa-
dienne et les injections de médicament. Le problème d’optimisation de la valeur propre de
Floquet en ensuite approché par un problème d’optimisation de la valeur propre de Perron
grâce à une étape de discrétisation.

La question de l’optimisation des valeurs propres a été particulièrement étudiée dans
le cas des matrices symétriques, pour des applications en optimisation de forme [DK92],
matériaux composites [CL96], plans d’expérience optimaux [Puk06] et de nombreux autres
domaines. Comme la plus grande valeur propre définit une fonction convexe des coefficients
d’une matrice symétrique, ces problèmes se réduisent la plupart du temps à de l’optimisation
convexe ou même de l’optimisation semi-définie positive. [CDW75, Ove91, SF95, LO96].

Les application que nous traitons dans cette thèse (référencement web, dynamique de
populations) conduisent à un autre type de problèmes : l’optimisation de la valeur de Perron
ou du vecteur de Perron d’une matrice positive terme à terme, mais pas nécessairement
symétrique, qui dépend de paramètres. Cela donne la plupart du temps des problèmes non
convexes, bien que quelques propriétés de convexité soient parfois présentes dans une forme
indirecte [Kin61] ou dans des cas particuliers : processus de décision markoviens, matrices
stochastiques [AHH+09], lignes commandées indépendamment [BN10, NP11].
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1.7 Contribution

Nous présentons d’abord les résultats antérieurs sur l’optimisation du PageRank et quelques
algorithmes de classement de pages utilisant la structure d’hyperliens du web. Nous montrons
que la plupart des algorithmes considéré dans la littérature appartiennent à la classe des
classements par vecteur de Perron non linéaire. Cette théorie donne des conditions unifiées
pour déterminer si les classements sont bien définis, c’est-à-dire que les scores existent, sont
uniques et positifs. Grâce à la théorie de Perron-Frobenius non linéaire, nous retrouvons la
convergence de la méthode de la puissance pour ces méthodes de classement et nous prouvons
la convergence de plusieurs versions de l’algorithme HOTS de Tomlin (chapitre 6).

Dans le chapitre 3, nous prouvons un résultat général d’intérêt indépendant au sujet des
processus de décision markoviens avec des ensembles d’action implicites. Nous introduisons
la notion de processus de décision markoviens bien décrits, pour lesquels, bien qu’il puisse y
avoir un nombre exponentiel d’actions, il y a un oracle polynomial de séparation forte pour
le polytope des actions (alors que les résultats de complexité classiques supposent que les
actions sont énumérées explicitement [PT87]). Nous prouvons, comme une application de
la théorie de l’ellipsöıde de Khachiyan, que le problème de commande ergodique pour les
processus de décision markoviens bien décrits est résoluble en temps polynomial, même dans
le cas multichâıne. Nous généralisons aussi ce résultat de résolution en temps polynomial
au processus de décision markoviens avec un ensemble d’états fini et des ensembles d’actions
convexes. Nous donnons un problème d’optimisation dont la solution donne le coût moyen
espéré et un vecteur de biais du problème de décision markovien.

Ensuite, dans le chapitre 4, nous étudions une version continue et une version discrète du
problème d’optimisation du PageRank. Nous montrons que le problème continu d’optimisation
du PageRank avec des contraintes de design définies par les équations des facettes du poly-
tope des probabilités de transition admissibles du surfeur aléatoire se réduit à un problème de
coût moyen espéré en horizon infini sur un processus de décision markovien bien décrit. Nous
montrons ensuite que le problème discret d’optimisation du PageRank, dans lequel à chaque
page il y a des liens obligatoires, des liens facultatifs et des liens interdits et les transition
sont uniformes sur les hyperliens présents sur la page est équivalent à un problème relâché
continu d’optimisation du PageRank avec une description concise des ensembles d’actions.
Ainsi, les deux problèmes sont résolubles en temps polynomial. Nous donnons un algorithme
très efficace pour résoudre le problème d’optimisation du PageRank : en effet, nous montrons
qu’optimiser le PageRank n’est pas fondamentalement plus difficile que le calculer. Nous
étudions la forme d’un site web optimisé et nous montrons qu’il existe une quantité appelée
revenu moyen avant téléportation qui donne un ordre total de préférence sur le fait de pointer
vers une page ou une autre. Nous étendons aussi la formulation par la commande ergodique
aux problèmes avec des contraintes qui couplent le comportement de plusieurs pages. Nous
communiquons des résultats numériques sur le site web d’un de mes co-auteurs et sur un
fragment du web de 4.105 pages du site web des universités de Nouvelle-Zélande.

Dans le chapitre 5, nous donnons un nouvel algorithme de détection du spam de liens
et de rétrogradation du PageRank appelé MaxRank. Comme le TrustRank [GGMP04] et
l’AntiTrustRank [KR06], il commence avec un ensemble de pages sélectionnés à la main et
étiquetées honnêtes ou spam. Nous définissons le MaxRank d’une page comme la fréquence
de visite de cette page par un surfeur aléatoire qui minimise un coût moyen par unité de
temps. Sur une page donnée, le surfeur aléatoire choisit un ensemble d’hyperliens et clique
avec une probabilité uniforme sur un de ces hyperliens. La fonction coût pénalise les pages
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de spam et les suppressions d’hyperliens. Le but est de déterminer un politique de suppres-
sion d’hyperliens qui minimise ce score. Le MaxRank est interprété comme un vecteur de
PageRank modifié, utilisé pour classer les pages à la place du vecteur de PageRank habituel.
Nous montrons que le vecteur de biais du problème de commande ergodique associé, qui est
unique à une constante additive près, est une mesure de la “spamicité” de chaque page, utilisée
pour détecter les pages de spam. Nous donnons un algorithme qui passe à l’échelle pour le
calcul du MaxRank qui nous permet d’effectuer des expériences numériques sur la base de
données WEBSPAM-UK2007 [web07]. Nous montrons que notre algorithme fait mieux que
TrustRank et AntiTrustRank pour la détection des pages de spam et des pages honnêtes.

Ensuite, nous étudions les problèmes généraux d’optimisation de la valeur et du vecteur
de Perron, dans le but de l’appliquer à d’autres classements de pages web. Les processus de
décision markoviens ne s’appliquent plus mais sous des hypothèses naturelles, la théorie de
l’optimisation différentiable [BGLS06, Ber95, NW99] s’applique. Comme pour l’optimisation
du PageRank, la taille du graphe du web nécessite des algorithmes qui passent à l’échelle.
Nous nous concentrons donc sur les méthodes du premier ordre, plus efficaces que les méthodes
du second ordre pour les grands problèmes, et nous donnons un algorithme rapide pour le
calcul du gradient.

Nous commençons cette étude des algorithmes de classement différents du PageRank
par la preuve que l’algorithme HOTS de Tomlin [Tom03] converge géométriquement dans
le chapitre 6. Le vecteur de HOTS est le vecteur des exponentielles des variables duales
d’un problème de flot optimal. Le flot représente une distribution optimale d’internautes
sur le graphe du web au sens de la maximisation de l’entropie. La variable duale, une par
page, est interprétée comme la “température” de la page. Nous étudions d’abord une ver-
sion simplifiée de l’algorithme, qui est un algorithme de mise à l’échelle conçu pour pour
résoudre le problème d’équilibrage de matrice (matrix balancing) pour les matrices positives
irréductibles. La preuve de convergence est générale (théorie de Perron-Frobenius non linéaire)
et s’applique à une famille de déformations de HOTS. Ensuite, nous abordons l’algorithme
effectif de HOTS qui est la version conçue par Tomlin pour le classement des pages web. Le
modèle est un problème de maximisation d’entropie dans un réseau qui généralise l’équilibrage
de matrice. Nous montrons que sous des hypothèses modérées, l’algorithme HOTS con-
verge géométriquement. La preuve s’appuie sur une propriété d’unicité du point fixe et sur
l’existence d’une fonction de Lyapunov. Nous montrons aussi que la méthode de relaxation
(descente le long des coordonnées) [SZ90, LT92] peut être utilisé pour trouver les vecteurs de
HOTS idéal et effectif et nous comparons HOTS et la méthode de relaxation sur des frag-
ments du graphe du web. Finalement, nous donnons un algorithme pour calculer le vecteur
de HOTS quand des bornes sur le flot d’internautes sont connues et un algorithme de HOTS
normalisé avec de meilleures propriétés de convergence.

Dans le chapitre 7, nous étudions le problème de l’optimisation du vecteur propre de
Perron d’une matrice commandée et nous l’appliquons à l’optimisation du référencement.
Notre premier résultat principal est le développement d’un algorithme qui passe à l’échelle
pour l’optimisation locale d’une fonction scalaire du vecteur propre de Perron sur un ensemble
de matrices positives irréductibles. En effet, nous montrons que le problème de l’optimisation
globale du vecteur de Perron sur un ensemble de matrices positives est NP-difficile, ce qui fait
que nous nous concentrons sur la recherche d’optimums locaux. Nous donnons un algorithme
de type puissance pour le calcul de la matrice des dérivées partielles de la fonction objectif,
en nous appuyant sur le fait que c’est une matrice de rang 1. Cela montre que calculer les
dérivées partielles de l’objectif a le même coût en calcul que calculer le vecteur propre de



30 Chapter 1. Introduction

Perron par la méthode de la puissance, qui est la méthode habituelle quand on considère les
matrices grandes et creuses construites à partir du graphe du web. Ensuite, nous donnons
un algorithme d’optimisation qui couple les itération puissance et gradient. Chaque étape de
l’algorithme fait appel à un nombre adéquat d’itérations puissance et à un pas de descente. En
considérant cet algorithme comme un algorithme de gradient projeté approché [Pol97, PP02],
nous prouvons qu’il converge vers un point stationnaire. Comparé avec le cas où le nombre
d’itérations puissance n’est pas adapté dynamiquement, nous avons obtenu une accélération
entre 3 et 20 fois dans nos expériences numériques tout en ayant des résultats de convergence
plus précis.

Ensuite, nous appliquons l’optimisation du vecteur de Perron à l’optimisation de fonc-
tions scalaires des scores d’autorité de HITS et de HOTS. Nous dérivons des algorithmes
d’optimisation et, grâce à la propriété de petit rang de la matrice des dérivées partielles, nous
montrons que les stratégies optimales d’hyperliens des deux problèmes vérifient une propriété
de seuil. Cette propriété était déjà prouvée pour l’optimisation du PageRank dans [dKNvD08].
Comme dans [IT09, CJB10, FABG13], nous partitionnons l’ensemble des liens potentiels (i, j)
en trois sous-ensembles : les ensembles des liens obligatoires, facultatifs et interdits. Quand
on choisit un sous-ensemble des liens facultatifs, on obtient un graphe duquel on peut obtenir
les trois vecteurs de classement. Nous cherchons alors le sous-ensemble de liens facultatifs qui
maximise une fonction d’utilité donnée. Nous étudions aussi les problèmes relâchés associés
où nous acceptons les matrices d’adjacence à poids. Cela suppose que le webmaster peut in-
fluer sur l’importance respective des liens qu’il commande, par exemple en modifiant la taille
de la police, la couleur ou la position de l’hyperlien dans la page. En fait, nous résoudrons les
problèmes relâchés et nous donnerons ensuite des conditions ou des heuristiques pour obtenir
une stratégie admissible pour les problèmes discrets.

Les valeurs propres et les vecteurs propres de Perron sont utiles dans un cadre plus
large que le référencement web. Dans le dernier chapitre de cette thèse, nous présentons et
nous analysons un modèle mathématique pour l’optimisation des traitements médicamenteux
du cancer dans des modèles de populations de cellules proliférantes avec une structure par
âges. Nous considérons un médicament, le 5-FluoroUracil (5-FU), qui empêche les cellules
de commencer la mitose. Les populations de cellules proliférantes saine et cancéreuse sont
représentées par le même modèle structuré en âge du type McKendrick, mais avec des contrôles
physiologiques différents dans les deux cas. Chaque dynamique est donnée par des EDP phys-
iologiquement structurées où les variables dynamiques sont les nombres de cellules de chaque
âge dans chaque phase : première phase de croissance (G1), synthèse de l’ADN suivie par
une deuxième phase de croissance (S-G2) et mitose (M). L’unique variable de structure est
l’âge dans la phase. Les paramètres du modèle sont les taux de mort et les taux de tran-
sition d’une phase à la suivante dans le cycle cellulaire. Dans ce travail, nous supposons
que la prolifération est contrôlée physiologiquement par une horloge circadienne, ce qui im-
plique que les coefficients du modèle dépendent non seulement de l’âge et de la phase mais
que ce sont des fonctions 24h-périodiques. Notre hypothèse fondamentale est que les cellules
saines et cancéreuses prolifèrent en suivant le même modèle mais que les cellules cancéreuses
sont caractérisées par une réponse plus relâchée au contrôle circadien, ce qui leur donne un
avantage prolifératif. Nous montrons comment des techniques d’imagerie récentes utilisant
la fluorescence et mise en route au niveau individuel des cellules dans des populations de
cellules proliférantes nous a permis d’identifier des paramètres clés de la dynamique de popu-
lation. Ensuite, nous considérons des injections de 5-FU dépendant du temps qui perturbent
la transition de la phase G2 à la phase M. Nous étudions le problème de la minimisation
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du taux de croissance de la population de cellules cancéreuses, modélisée par la valeur pro-
pre de Floquet de la dynamique de population, avec la contrainte que le taux de croissance
de la population de cellules saines reste au dessus d’un seuil de toxicité donné. Le but est
de trouver des programmes de chimiothérapie périodiques qui sont viables sur le long terme
et efficaces dans la lutte contre le cancer. Quand nous discrétisons le problème, les valeurs
propres de Floquet sont approchées par les valeurs propres de Perron de matrices positives
creuses. Nous avons mis en place une méthode des multiplicateurs pour l’optimisation locale
des taux de croissance, qui profite d’une propriété de petit rang du gradient de la valeur
propre de Perron. L’algorithme d’optimisation de la valeur propre s’appuie sur l’algorithme
développé dans le chapitre 7. Nous avons calculé le gradient de la fonction objectif en jeu.
Nous avons implémenté la méthode des multiplicateurs pour résoudre le problème, où les
problèmes d’optimisation non contraints internes sont résolus par l’algorithme couplant les
itérations puissance et gradient.

1.8 Organisation

Dans le chapitre 2, nous présentons les résultats antérieurs pour l’optimisation du PageRank
et quelques algorithmes de classement de pages utilisant la structure d’hyperliens du web.

Dans le chapitre 3, nous donnons des résultats nouveaux sur la résolution effective des
problèmes de décision markoviens bien décrits avec un nombre d’actions qui peut être expo-
nentiel ou des espaces d’actions convexes. Le théorème 3.1 a été publié dans [FABG13].

Dans le chapitre 4, nous montrons que le problème d’optimisation du PageRank peut être
résolu en temps polynomial en le réduisant à un problème de coût moyen espéré en horizon
infini sur un processus de décision markovien bien décrit. Nous donnons un algorithme très
efficace pour résoudre le problème d’optimisation : nous montrons qu’optimiser le PageRank
n’est pas fondamentalement plus difficile que le calculer. Ensuite, nous traitons des problèmes
avec des contraintes qui couplent le comportement de plusieurs pages. Ce chapitre suit les
lignes de [FABG13].

Dans le chapitre 5, nous nous appuyons sur nos résultats sur l’optimisation du PageRank
pour développer un nouvel algorithme de classement appelé MaxRank fait pour combattre le
spam de liens.

Dans le chapitre 6, nous étudions la convergence de l’algorithme HOTS de Tomlin. Ces
résultats ont été soumis dans [Fer12a].

Dans le chapitre 7, nous étudions les problèmes d’optimisation de la valeur propre et du
vecteur propre de Perron. Nous donnons un algorithme efficace pour le calcul de la matrice
des dérivées partielles du critère, qui utilise la propriété de petit rang de cette matrice. Nous
donnons un algorithme qui passe à l’échelle qui couple les itérations gradient et puissance et
donne un minimum local du problème d’optimisation du vecteur de Perron. Nous prouvons
la convergence en le considérant comme une méthode de gradient approché. Nous appliquons
ensuite ces résultats à l’optimisation de HITS de Kleinberg et HOTS de Tomlin. Ces résultats
ont été soumis dans [Fer12b].

Dans le chapitre 8, nous présentons une autre application de l’optimisation de la valeur
propre de Perron à la chimiothérapie. Ce travail a été publié dans [BCF+11a, BCF+11b,
BCF12].
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CHAPTER 2

Web ranking and (nonlinear) Perron
Frobenius theory

2.1 Google’s PageRank

One of the main ranking methods relies on the PageRank introduced by Brin and Page [BP98].
It is defined as the invariant measure of a walk made by a random surfer on the web graph.
When reading a given page, the surfer either selects a link from the current page (with
a uniform probability), and moves to the page pointed by that link, or interrupts his current
search, and then moves to an arbitrary page, which is selected according to given “zapping”
probabilities. The rank of a page is defined as its frequency of visit by the random surfer. It
is interpreted as the “popularity” of the page.

The PageRank has motivated a number of works, dealing in particular with computational
issues. Classically, the PageRank vector is computed by the power algorithm [BP98]. There
has been a considerable work on designing new, more efficient approaches for its computa-
tion [Ber05, LM06]: Gauss-Seidel method [ANTT02], aggregation/disaggregation [LM06] or
distributed randomized algorithms [NP09, IT10, ITB12]. Other active fields are the develop-
ment of new ranking algorithms [BRR05] or the study of the web graph [BL04].

We recall here the basic elements of the Google PageRank computation. We call web
graph the directed graph with a node per web page and an arc from page i to page j if page i
contains a hyperlink to page j. We identify the set of pages to [n] := {1, . . . , n}.

Let Ni denote the number of hyperlinks contained in page i. Assume first that Ni ≥ 1 for
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all i ∈ [n], meaning that every page has at least one outlink. Then, we construct the n × n
stochastic matrix S, which is such that

Si,j =

{

N−1
i if page j is pointed to from page i

0 otherwise
(2.1)

This is the transition matrix of a Markov chain modeling the behavior of a surfer choosing
a link at random, uniformly among the ones included in the current page and moving to the
page pointed by this link. The matrix S only depends of the web graph.

We also fix a row vector z ∈ Rn
+, the zapping or teleportation vector, which must be

stochastic (so,
∑

j∈[n] zj = 1), together with a damping factor α ∈ [0, 1] and define the new
stochastic matrix

P = αS + (1− α)ez (2.2)

where e is the (column) vector in Rn with all entries equal to 1.
Consider now a Markov chain (Xt)t≥0 with transition matrix P , so that for all i, j ∈ [n],

P(Xt+1 = j|Xt = i) = Pi,j . Then, Xt represents the position of a websurfer at time t: when
at page i, the websurfer continues his current exploration of the web with probability α and
moves to the next page by following the links included in page i, as above, or with probability
1− α, stops his current exploration and then teleports to page j with probability zj .

When some page i has no outlink, Ni = 0, and so the entries of the ith row of the matrix
S cannot be defined according to (2.1). Then, we set Si,j := zj . In other words, when visiting
a page without any outlink, the websurfer interrupts its current exploration and teleports to
page j again with probability zj . It is also possible to define another probability vector Z
(different from z) for the teleportation from these “dangling nodes”.

The PageRank π is defined as the invariant measure of the Markov chain (Xt)t≥0 repre-
senting the behavior of the websurfer. This invariant measure is unique if α < 1, or if P is
irreducible.

Typically, one takes α = 0.85, meaning that at each step, a websurfer interrupts his current
search with probability 0.15 ≃ 1/7. The advantages of the introduction of the damping
factor and of the teleportation vector are well known. First, it guarantees that the power
algorithm converges to the PageRank with a geometric rate α independent of the size (and
other characteristics) of the web graph. In addition, the teleportation vector may be used to
“tune” the PageRank if necessary. By default, z = eT /n is the uniform stochastic vector. We
will assume in the sequel that α < 1 and zj > 0 for all j ∈ [n], so that P is irreducible.

The graph on Figure 2.1 represents a fragment of the web graph. We obtained the graph
by performing a crawl of our laboratory with 1500 pages. We set the teleportation vector
in such a way that the 5 surrounding institutional pages are dominant. The teleportation
probabilities to these pages were taken to be proportional to the PageRank (we used the
Google Toolbar, which gives a rough indication of the PageRank, on a logarithmic scale).
After running the PageRank algorithm on this graph, we found that within the controlled
site, the main page of this author has the biggest PageRank (consistently with the results
provided by Google search).

2.2 PageRank optimization in the literature

The PageRank optimization problem has been studied in several works: [AL06, MV06,
dKNvD08, IT09, CJB10]. In this section, we review quickly the different results presented in
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Figure 2.1: The web site of one of my co-authors (colored) and the surrounding sites (white).
This 1500-page fragment of the web is aggregated for presentation, using the technique de-
scribed in [LM06]. The sizes of the circles follow the log of their PageRank.

these works.
Avrachenkov and Litvak analyzed in [AL06] the case of a single controlled page. They

introduced mi,j , the average time needed to reach j starting from i when the random walk
follows the original hyperlink matrix S , i.e., α = 1. We refer to the mi,j ’s as mean first
passage times. Using the fact that mi,i > 1 verifies πi = 1/mi,i, they showed the following:

Proposition 2.1 ([AL06]). The optimal linking strategy for a Web page is to have only one
outgoing link pointing to a Web page with a shortest mean first passage time back to the
original page.

In [MV06], Mathieu and Viennot established several bounds indicating to what extent the
rank of the pages of a multi-page website can be changed, and derived an optimal referencing
strategy in a special unconstrained case:

Proposition 2.2 ([MV06]). If the webmaster can fix arbitrarily the hyperlinks in a web site,
then, it is optimal to delete every link pointing outside the web site.

To avoid such degenerate strategies, De Kerchove, Ninove and Van Dooren [dKNvD08]
studied the problem of maximizing the sum of the PageRank coordinates in a web site,
provided that from each page, there is at least one path consisting of hyperlinks and leading
to an external page. They gave a necessary structural condition satisfied by an optimal
outlink strategy. Let ([n], E) be the web graph and let I be a subset of [n] representing
a web site. They denote by eI the vector such that eI(i) = 1 if i ∈ I and eI(i) = 0
otherwise. They define E(I) = {(i, j) ∈ E | i ∈ I, j ∈ I}, the set of internal links, and

http://amadeus.inria.fr/gaubert/PAPERS/TU-0190
http://www.siam.org/meetings/ct09
http://amadeus.inria.fr/gaubert/programme/index.html
http://amadeus.inria.fr/gaubert/HOWARD2.html
http://amadeus.inria.fr/gaubert/papers.html
http://www.inria.fr
http://www.lsv.ens-cachan.fr/Seminaires/anciens?l=fr&sem=200811041100
http://dx.doi.org/10.1145/1190095.1190110
http://amadeus.inria.fr/gaubert
http://www.cmap.polytechnique.fr
http://users.dsic.upv.es/~sas2008/accepted_papers.html
http://www.cmap.polytechnique.fr/spip.php?rubrique103
http://www-rocq.inria.fr/metalau/cohen
http://www-rocq.inria.fr/metalau/quadrat
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Eout(I) = {(i, j) ∈ E | i ∈ I, j 6∈ I}, the set of outgoing links. They introduced the mean
number of visits before zapping defined by v = (1 − αS)−1eI . Recall that S is the original
transition matrix (without damping factor).

Proposition 2.3 (Theorem 12 in [dKNvD08]). Let E \ (E(I)∪Eout(I)) be given. Let E(I) and
Eout(I) be such that π · eI is maximal under the assumption that from each page of I, there is
at least one path consisting of hyperlinks and leading to an external page. Then there exists a
permutation of the indices such that I = {1, 2, ..., nI},

v1 > . . . > vnI
> vnI+1 ≥ . . . ≥ vn ,

and E(I) and Eout(I) have the following structure:

E(I) = {(i, j) ∈ I × I | j ≤ i or j = i+ 1} ,
Eout(I) = {(nI , nI + 1)} .

In [Nin08], Ninove developed a heuristic based on these theoretical results, which was
experimentally shown to be efficient.

In [IT09], Ishii and Tempo investigated the sensitivity of the PageRank to fragile (i.e. er-
roneous or imperfectly known) web data, including fragile links (servers not responding, links
to deleted pages, etc.). Instead of focusing on a given website, they proposed more general
strategies, where controlled hyperlinks can be any hyperlink, not necessarily the outlinks of
a website. They gave bounds on the possible variation of PageRank and introduced an ap-
proximate PageRank optimization problem, which they showed to be equivalent to a linear
program. They considered the interval matrix P = [P , P̄ ] such that for all selection of fragile
links, the resulting transition matrix P ∈ P. Then defining Pc = 1

2(P+P̄ ) and ∆ = 1
2(P−P̄ ),

they introduced the polytope

Z =
{

z ∈ Rn−1 | − (Pc + ∆− I)Ez ≤ (Pc + ∆− I)g,

(Pc −∆− I)Ez ≤ −(Pc −∆− I)g,
∑

i∈[n]
zi ≤ 1, z ≥ 0

}

where E =

[

I
−1T

]

⊆ Rn×(n−1) and g = [0, . . . 0, 1]T ∈ Rn. They then showed that for

each choice of fragile links, the vector [π1, π2, . . . , πn−1]
T is a vector of Z. For l ∈ [n − 1],

maximizing (resp. minimizing) zl on Z thus gives an upper bound (resp. lower bound) on the
maximal (resp. minimal) possible value for πl.

In [CJB10], (see also [CJB09] for more details), Csáji, Jungers and Blondel thought of
fragile links as the links that a webmaster controls and studied the PageRank optimization
problem in this framework. As the PageRank is the inverse of the mean first return passage
time, they reformulated the maximization (resp. minimization) of the PageRank of Page i
as the minimization (resp. maximization) of the mean first return passage time to Page i.
Thus, they obtain a stochastic shortest path problem. However, the number of actions at
a given page is 2m where m is the number of fragile links on this page. In order to have a
polynomial-time algorithm for the optimization of the PageRank of a page, they gave a new
problem with an augmented state space. The idea of [CJB10] is that if the control takes
place on hyperlinks instead of transition probabilities, there are only two possible actions
by facultative link: active or not. They thus proposed the graph augmentation described
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in Figure 2.2. If the page i has only facultative hyperlinks, it may have no hyperlink. The
state augmentation described before is then not valid any more because having no hyperlinks
stops the Markov chain propagation instead of forcing teleportation, as it should be according
to the PageRank model. In order to cope with this problem, they proposed an alternative
graph augmentation (Figure 2.3). They showed that the original and the graph augmented
stochastic shortest path problems are equivalent. Then they showed that the graph augmented
stochastic shortest path problems has a polynomial number of states and actions and thus
that it is solvable in polynomial time (see Section 3.1 below).
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Figure 2.2: The graph transformation of [CJB10]. Left: original Markov chain. Dotted lines
represent fragile links while solid links are not fragile. An action consists in choosing a subset
of the fragile edges. Right: state augmented Markov chain. The original states of the web
graph are represented by squares. One dummy state i′ (circle) is added to dispatch websurfers
that have not teleported and then all the decisions for the link strategy will take place on the
states representing controlled links (diamonds). An action consists in choosing one of the two
edges on each state representing a controlled link.
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Figure 2.3: Fragile node case. Left: original Markov chain, an action consists in choosing a
subset of the facultative links. Right: state augmented Markov chain. An action consists in
choosing one of the edges from node i′.

2.3 Other web ranking algorithms

The PageRank is the most widely used link-based web ranking algorithm. However other
algorithms have been developed. For instance, some rankings are determined more generally
by the Perron eigenvector (i.e. the principal eigenvector) of a nonnegative, but not necessarily
stochastic, matrix. The Perron-Frobenius theorem (see [BP94] for instance) states that any
nonnegative matrix A has a nonnegative principal eigenvalue called the Perron root and
associated nonnegative principal eigenvectors. If, in addition, A is irreducible, then the Perron
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root is simple and the (unique up to a multiplicative constant) nonnegative eigenvector, called
the Perron vector, has only positive entries. This property makes it a good candidate to sort
web pages. The ranking algorithms considered differ in the way of constructing from the
web graph a nonnegative irreducible matrix from which we determine the Perron vector.
Then, the greater is the Perron vector’s coordinate corresponding to a web page, the higher
this web page is in the ranking. In [Kee93], such a ranking is proposed for football teams.
The paper [Saa87] uses the Perron vector to rank teachers from pairwise comparisons. See
also [Vig09b] for a survey on the subject. When it comes to web page ranking, the PageRank
is the Perron eigenvector of the transition matrix described above but the HITS and SALSA
algorithms also rank pages according to a Perron vector. This class of ranking algorithms
motivated our study of Perron vector optimization problems, where we want to optimize a
scalar function of the Perron eigenvector over a set of nonnegative irreducible matrices.

The HITS algorithm [Kle99] developed by Kleinberg is not purely a link-based algorithm.
It is composed of two steps and the output depends on the query of the user. Given a query,
we first select a seed of pages that are relevant to the query according to their text content.
This seed is then extended with pages linking to them, pages to which they link and all the
hyperlinks between the pages selected. We thus obtain a subgraph of the web graph focused on
the query. Then, the second step assigns each page two scores: a hub score v and an authority
score u such that good hubs should point to good authorities and good authorities should be
pointed to by good hubs. Introducing the adjacency matrix A of the focused graph, this can
be written as v = ρAu and u = ρAT v with ρ ∈ R+, which means that the vector of hub scores
is the Perron eigenvector of the matrix ATA and that the vector of authority scores is the
Perron eigenvector of AAT . The construction of HITS’s focused subgraph is a combination
of text content relevancy with the query and of hyperlink considerations. Maximizing the
probability of appearance of a web page on this subgraph is thus a composite problem out
of the range of this thesis. We shall however study the optimization of HITS authority, for a
given focused subgraph.

There exist several variants of HITS. First of all, as the matrix ATA is not necessarily
irreducible, one can add a small positive number to this matrix [LM05a] in order to force
irreducibility. Then the HITS vector is uniquely defined and positive. Another possibility is
to consider the matrix exponential of the adjacency matrix and rank web pages according to
the Perron vector of exp(A)T exp(A). This Exponentiated HITS [MRS+01] also guarantees
the uniqueness of the Perron vector. Another variant of HITS is the Center rank presented
in [BGH+04]. The goal of the Center rank is to define a score in the middle between hub
and authority scores. In practice, the Center rank is given by the Perron eigenvector of the
matrix ATA+AAT .

The SALSA algorithm [LM00] shares the same first step as HITS. Then we normalize
the rows of AT and A to get matrices ATc and Ar. The SALSA authority score is defined as
the invariant measure of the stochastic matrix ATc Ar. In fact, with natural assumptions, this
measure is proportional to the indegree of the web page. The authors show that the interest
of the ranking algorithm lies in the combination of the two steps and not in one or the other
alone. Thus from a hyperlink point of view, optimizing the rank in SALSA simply consists in
maximizing the number of hyperlinks pointing to the target page. We shall not study SALSA
optimization any further.

PageRank, HITS and SALSA share a mutual reinforcement property [DHH+02]: good
hubs are pages that link to good authorities and good authorities are linked to by good hubs.
For PageRank, the hub and authority scores are the same and interpreted as the popularity of
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the page. The relation between the hub and authority scores is given by a possibly normalized
adjacency matrix. By mixing the features of those algorithms, it is possible to define new
rankings, like Auth-Rank, Hub-Rank or Sym-Rank [DHH+02].

We also studied the optimization of Tomlin’s HOTS scores [Tom03]. In this case, the
ranking is the vector of dual variables of an optimal flow problem. The flow represents an
optimal distribution of web surfers on the web graph in the sense of entropy minimization. The
dual variable, one by page, is interpreted as the “temperature” of the page, the hotter a page
the better. The HOTS problem is indeed a modification of the matrix balancing problem,
studied among others in [Har71, EHRS85, SZ90, Sch90], in order to address disconnected
web graphs. Given a n× n nonnegative matrix A, the matrix balancing problem consists in
finding a matrix X of the form X = D−1AD with D diagonal definite positive and such that
∑

kXi,k =
∑

j Xj,i for all i. Tomlin showed that the HOTS vector is solution of a nonlinear
fixed point equation. It may be thus seen as a nonlinear eigenvector. Indeed, we show that
most of the arguments available in the case of Perron vector optimization can be adapted to
HOTS optimization.

The Sinkhorn ranking [Smi05, Kni08] is based on the equivalence scaling problem. Given
an m × n nonnegative matrix A, we search for a matrix X of the form X = DLADR with
DL and DR diagonal definite positive and such that X is bistochastic. The Sinkhorn-
Knopp [KS67] algorithm is a famous algorithm designed for the resolution of the scaling
problem. It can be written as

DL
i,i ←

1
∑

j∈[m]Ai,jD
R
j,j

, ∀i ∈ [m]

DR
j,j ←

1
∑

i∈[n]D
L
i,iAi,j

, ∀j ∈ [n]

Smith [Smi05] proposed to rank web pages according to DR
i,i/D

L
i,i. This ranking satisfies the

following reversal symmetry: the Sinkhorn ranking for AT is the inverse of the Sinkhorn rank-
ing for A. Knight [Kni08] proposed an alternative interpretation. He remarks that scaling the
adjacency matrix so that it is doubly stochastic is equivalent to scaling it so that its station-
ary distribution is uniform. Indeed, DLADR is stochastic, so it has a stationary distribution,
which can be then interpreted as in the PageRank model as a web surfer distribution. Then
if Page i has a small DR

i,i value, this means that it tends to emit traffic, while if Page i has

a small DL
i,i value, this means that it tends to draw traffic. He thus considers 1/DR

i,i as the

hub score of Page i and 1/DL
i,i as the authority score of Page i. This ranking has also been

proposed in [GLM09] starting from an offense-defense model.
Akian, Gaubert and Ninove [AGN06] gave a self-validating web ranking called T-PageRank.

Then the random surfer does not click on the hyperlinks on the current page with a uniform
probability but he tends to follow more links that lead to pages with a higher score. A tem-
perature parameter controls the confidence web surfers put on the web ranking, the higher
the temperature, the less confident web surfers are. The authors show that for sufficiently
big temperatures, the T-PageRank is uniquely defined and can be computed by an iterative
fixed point iterative scheme. They also show that if web surfers are too confident in the web
ranking, then the T-PageRank is not unique and the limit of the fixed point scheme actually
depends on the initial condition.

In [DL07], Delvenne and Libert gave thermodynamical arguments to rank web pages
according to the elementwise product of the left and right Perron eigenvectors of the adjacency
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matrix, or of an irreducible modification of the adjacency matrix.

2.4 Nonlinear Perron-Frobenius theory

The common point between most of these ranking algorithms is the so-called (nonlinear)
Perron-Frobenius theory. This theory deals with monotone and homogeneous maps. It has a
multiplicative and an additive formulation

Definition 2.1. A map T : Rn
+ → Rn

+ is monotone if for all vectors p, q such that p ≤ q,
T (p) ≤ T (q). A map T : Rn

+ → Rn
+ is homogeneous if for all vector p and for all nonnegative

real λ, T (λp) = λT (p).

Definition 2.2. A map T : Rn → Rn is additively homogeneous if for all vector p and for all
real λ, T (λ+ p) = λ+ T (p).

We can transform a multiplicative monotone, homogeneous map T× into a monotone,
additively homogeneous map T+ and vice versa by the following operation called the “loga-
rithmic glasses”:

T+(p) = log(T×(exp(p)))

where log and exp act elementwise.
The following results show that monotone and nonexpansive maps are indeed nonexpan-

sive. Hence, they are well suited for iterative algorithms.

Proposition 2.4 ([CT80]). An additively homogeneous map is nonexpansive for the sup-norm
if and only if it is monotone.

For a more general result, we shall need Hilbert’s projective metric.

Definition 2.3. For x, y two vectors of Rn, Hilbert’s projective metric between x and y is
defined as

d(x, y) = log( max
i,j∈[n]

xiyj
yixj

)

Proposition 2.5 ([Bus73]). Any monotone and homogeneous map is nonexpansive in Hilbert’s
metric.

Definition 2.4. For a map T : Rn → Rn or T : Rn
+ → Rn

+, we call the graph of T and we
denote it G(T ), the directed graph with nodes 1, . . . , n and an arc from i to j if and only if
limt→+∞ T (tei) = +∞ where ei is the ith basis vector.

The following results give conditions for the existence and uniqueness of the “eigenvector”
of a monotone, (additively or multiplicatively) homogeneous map.

Theorem 2.1 (Theorem 2 in [GG04b]). Let T be a monotone, additively homogeneous map.
If G(T ) is strongly connected, then there exists u ∈ Rn and λ ∈ R such that T (u) = λ + u.
We say that u is an additive eigenvector of f .

The ranking p then is defined as a (nonlinear) Perron eigenvector

T (p) = µp

where the operator T : Rn
+ → Rn

+ is monotone and homogeneous. For instance, T can be the
linear operator corresponding to an entrywise nonnegative matrix.
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Theorem 2.2 (Corollary 2.5 in [Nus88], Theorem 2.3 in [FGH11], Theorem 6.8 in [AGN12]).
Let T : Rn

+ → Rn
+ be a continuously differentiable map which is monotone and homogeneous

and has an eigenvector p with only positive entries. If ∇T (p) is irreducible, then there is at
most one eigenvector in (R+ \ {0})n up to a multiplicative factor. If ∇T (p) is primitive, then
all the orbits defined by

pk+1 =
T (pk)

‖T (pk)‖

for a given norm ‖·‖ converge to p
‖p‖ linearly at a rate equal to |λ2|

ρ , the ratio of the second
and largest eigenvalues of ∇T .

We can also write this theorem in additive form.

Theorem 2.3 (Corollary 2.5 in [Nus88], Theorem 2.3 in [FGH11], Theorem 6.8 in [AGN12]).
Let T : Rn → Rn be a continuously differentiable map which is monotone and additively
homogeneous and has an additive eigenvector p ∈ Rn. If ∇T (p) is irreducible, then the
eigenvector is unique up to an additive factor. If ∇T (p) is primitive, then all the orbits
defined by

pk+1 = T (pk)− ψ(T (pk))

for a given additively homogeneous function ψ : Rn → R converge to p − ψ(p) linearly at a
rate equal to |λ2(∇T (p))| = max{|λ|;λ ∈ spectrum(∇T (p)), λ 6= 1}.

These theorems have been stated with more general assumptions, among others semi-
differentiability [AGN12] and infinite state space [Nus88]. However, for the sake of simplicity,
we present them here in this simpler form.

These results give a general framework to prove that the rankings are well defined, i.e.
that the score is positive and unique, and that the power algorithm used to compute them
indeed converges to the expected ranking.

While PageRank optimization has been studied by several authors, the optimization of
the scores obtained by the other web ranking algorithms is less well documented. This is the
object of Chapter 7 below.
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CHAPTER 3

Markov Decision Processes with
implicit action spaces

Let us consider a web page such that a webmaster controls some of the hyperlinks. Then,
an action consists in choosing a subset of the set of facultative hyperlinks. Unfortunately,
there is then an exponential number of actions. Csáji, Jungers and Blondel [CJB10] have
solved this problem by considering a graph rewriting that gives an equivalent problem with a
polynomial number of states and actions. We propose in this section an alternative approach
that does not involve a graph rewriting.

We assume that in each state, the action space can be described as a set that contains
the extreme points of a polytope with a polynomial-time separation oracle. Then, the action
sets are implicitly described and this description is concise in a computational sense. We call
a Markov decision process with such a description of the action set and linear rewards and
transitions a well-described Markov decision process. We prove that the infinite horizon aver-
age cost problem for well-described Markov decision processes is solvable in polynomial time
(Theorem 3.1). This approach has the advantage that it does not involve any modification
of the Markov decision process. Hence the proofs are simplified and the properties of the
Markov decision process remain. For instance for the PageRank optimization problem, we
shall see in Chapter 4 that we keep the uniform contraction factor available when computing
the PageRank while we loose it with the graph rewriting approach.

In Section 3.1, we recall the main complexity results for finite Markov decision processes.
In Section 3.2, we give the definition of a well-described Markov decision process and Theo-
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rem 3.1. We also generalize the polynomial time solvability result to Markov decision processes
with finite state space and convex action spaces in Section 3.3. We give in Theorem 3.2 a
convex program, the solution of which gives the expected average cost (equal to the cycle
time of the daily operator) and a bias vector of the problem.

3.1 Finite Markov Decision Processes

A finite Markov decision process is a 4-uple (I, (Ai)i∈I , p, r) where I is a finite set called the
state space; for all i ∈ I, Ai is the finite set of admissible actions in state i; the function
p : I × ∪i∈I({i} × Ai)→ R+ is the transition law, so that p(j|i, a) is the probability to go to
state j from state i when action a ∈ Ai is selected; and r : ∪i∈I({i} × Ai)→ R is the reward
function, so that r(i, a) is the instantaneous reward when action a is selected in state i.

Let Xt ∈ I denote the state of the system at the discrete time t ≥ 0. A deterministic
control strategy ν is a sequence of actions (νt)t≥0 such that for all t ≥ 0, νt is a function of
the history ht = (X0, ν0, . . . , Xt−1, νt−1, Xt) and νt ∈ AXt . Of course, P(Xt+1 = j|Xt, νt) =
p(j|Xt, νt),∀j ∈ [n],∀t ≥ 0. More generally, we may consider randomized strategies ν where
νt is a probability measure on AXt . A strategy ν is stationary (feedback) if there exists a
function ν̄ such that for all t ≥ 0, νt(ht) = ν̄(Xt).

We may consider several optimization problems based on the framework of Markov deci-
sion processes. We consider an initial distribution µ representing the law of X0.

Given an integer T , the finite horizon Markov decision problem consists in maximizing

E(

T−1
∑

t=0

r(Xt, νt)) (3.1)

The total cost infinite horizon Markov decision problem consists in maximizing

lim inf
T→+∞

E(

T−1
∑

t=0

r(Xt, νt)) (3.2)

Given α ∈ (0, 1), the discounted infinite horizon Markov decision problem consists in maxi-
mizing

lim
T→+∞

E(
T−1
∑

t=0

αtr(Xt, νt)) (3.3)

The average cost infinite horizon Markov decision problem, also called ergodic control problem,
consists in maximizing

lim inf
T→+∞

1

T
E(

T−1
∑

t=0

r(Xt, νt)) (3.4)

In all four cases, the maximum is taken over the set of randomized control strategies ν. In
fact, for the total cost, discounted and average cost problems, the supremum attained by
randomized (or even deterministic) stationary feedback strategies (Theorem 9.1.8 in [Put94]
for instance).

A Markov decision process is unichain if the transition matrix corresponding to every
stationary policy has a single recurrent class. Otherwise it is multichain. When the problem
is unichain, the value of the average cost problem does not depend on the initial distribution
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whereas when it is not, one may consider a vector (gi)i∈I where gi represents the value of
the problem (3.4) when starting from state i. The total cost infinite horizon problem might
not have a finite value but it does have a finite value if the mean expected reward in each
recurrent class is 0.

We now state a classical complexity result for Markov decision problems

Proposition 3.1 (Theorem 1 in [PT87]). The finite horizon, discounted and average cost
Markov Decision Process problems are P-complete, and hence polynomial time solvable.

For the finite horizon problem, the dynamic programming algorithm finds the value of the
problem and optimal strategies in a time proportional to nT . For the discounted problem,
the value iterations algorithm [Tse90] and the policy iterations algorithm [Put94] finish in
polynomial time. Strongly polynomial time algorithms also exist for the discounted prob-
lem [Ye05, Ye11]. For the average cost problem, one may consider a linear programming
reformulation of the Markov decision problem (see Theorem 9.3.8 in [Put94] for instance) in
order to prove its polynomial time solvability. It is also a simple corollary of the polynomial
time solvability of the average cost problem that the total cost infinite horizon problem is
solvable in polynomial time.

The policy iterations algorithm has received much attention these years following [Fea10],
that gave an exponential lower bound for the policy iterations on the average cost Markov
decision problem. This result has motivated the paper [HDJ11] that raises the question
whether policy iterations for PageRank optimization is a polynomial time algorithm or not.

3.2 Polynomial time solvability of well-described Markov decision

problems

We prove in this section, corresponding to Section IV-A in [FABG13], a general result of
independent interest concerning Markov decision processes with implicitly defined action sets.
We introduce the notion of well-described Markov decision processes, in which, although there
may be an exponential number of actions, there is a polynomial time strong separation oracle
for the actions polytope.

In fact, classical complexity results, like Theorem 1 in [PT87], assume that the actions are
explicitly enumerated [PT87]. As polynomial time means, as usual, polynomial in the input
length (number of bits of the input) and the input includes the description of the actions
sets, this result only leads to an exponential bound in the PageRank optimization case, where
there is an exponential number of actions.

We prove in Theorem 3.1 below that the polynomial time solvability of ergodic control
problems subsists when the action sets are implicitly defined, even in the multi-chain frame-
work. This is based on the combinatorial developments of the theory of Khachiyan’s ellipsoid
method, by Groetschel, Lovász and Schrijver [GLS88]. We refer the reader to the latter
monograph for more background on the notions of strong separation oracles and well de-
scribed polyhedra. We note that maximization or separation oracles have been previously
considered in dynamic programming for different purposes (dealing with unknown parame-
ters [GLD00, XM10], or approximating large scale problems [KHG06]).

Definition 3.1 (Def. 6.2.2 of [GLS88]). We say that a polyhedron B has facet-complexity at
most φ if there exists a system of inequalities with rational coefficients that has solution set B
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and such that the encoding length of each inequality of the system (the sum of the number
of bits of the rational numbers appearing as coefficients in this inequality) is at most φ.

A well-described polyhedron is a triple (B;n, φ) where B ⊆ Rn is a polyhedron with facet-
complexity at most φ. The encoding length of B is by definition n+ φ.

Definition 3.2 (Problem (2.1.4) of [GLS88]). A strong separation oracle for a set K is
an algorithm that solves the following problem: given a vector y, decide whether y ∈ K or
not and if not, find a hyperplane that separates y from K; i.e., find a vector c such that
cT y > max{cTx, x ∈ K}.

Inspired by Definition 3.1, we introduce the following notion.

Definition 3.3. A finite Markov decision process (I, (Ai)i∈I , p, r) is well-described if for every
state i ∈ I, we have Ai ⊂ RLi for some Li ∈ N, if there exists φ ∈ N such that the convex hull
of every action set Ai is a well-described polyhedron (Bi;Li, φ) with a polynomial time strong
separation oracle, and if the rewards and transition probabilities satisfy r(i, a) =

∑

l∈[Li]
alR

l
i

and p(j|i, a) =
∑

l∈[Li]
alQ

l
i,j , ∀i, j ∈ I, ∀a ∈ Ai, where Rli and Qli,j are given rational numbers,

for i, j ∈ I and l ∈ [Li].
The encoding length of a well-described Markov decision process is by definition the sum

of the encoding lengths of the rational numbers Qli,j and Rli and of the well-described poly-
hedra Bi.

The situation in which the action spaces are given as usual in extension (by listing the
actions) corresponds to the case in which Ai is the set of extreme points of a simplex ΣLi

. The
interest of Definition 3.3 is that it applies to more general situations in which the actions are
not listed, but given implicitly by a computer program deciding whether a given element of
RLi is an admissible action in state i (the separation oracle). An example of such a separation
oracle stems from the description of the convex hull of the set of admissible transition prob-
abilities for the PageRank optimization problem (Theorem 4.1 in Chapter 4 below): here, a
potential (randomized) action is an element of Rn, and to check whether it is admissible, it
suffices to check whether one of the inequalities in (4.11) is not satisfied.

Theorem 3.1. The average cost infinite horizon problem for a well-described (multichain)
Markov decision process can be solved in a time polynomial in the input length.

Proof. We shall use the notations of Definition 3.3. Consider the polyhedron G consisting of
the couples of vectors (v, g) ∈ RI × RI satisfying the constraints

gi ≥
∑

j∈I

∑

l∈[Li]

alQ
l
i,jgj , ∀i ∈ I, a ∈ Ai

vi + gi ≥
∑

l∈[Li]

alR
l
i +
∑

j∈I

∑

l∈[Li]

alQ
l
i,jvj , ∀i ∈ I, a ∈ Ai .

(3.5)

Theorem 9.3.8 in [Put94] implies that the average cost problem reduces to minimizing the
linear form (v, g) 7→ ∑

j∈I gj over G. Every optimal solution (v, g) of this linear program is
such that gj is the optimal mean payment per time unit starting from state j. We recover
optimal strategies of the ergodic problem through dual optimal solution of the linear program.

By Theorem 6.4.9 in [GLS88], we know that a linear program over a well-described polyhe-
dron with a polynomial time strong separation oracle is polynomial time solvable. Moreover,
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Theorem 6.5.14 in [GLS88] asserts that we can find a dual optimal solution in polynomial
time.

Let us construct such an oracle for G. Given a point (g, v) ∈ Qn×Qn, compute for all i ∈ I:
maxa∈co(Ai)

∑

l∈[Li]
al(
∑

j∈I Q
l
i,jgj)−gi and maxa∈co(Ai)

∑

l∈[Li]
al(R

l
i+
∑

j∈I Q
l
i,jvj)−vi−gi.

Those problems are linear problems such that, by hypothesis, we have a polynomial time
strong separation oracle for each of the well-described polyhedral admissible sets Bi = co(Ai).
Thus they are polynomial time solvable. If the 2n linear programs return a nonpositive
value, then this means that (g, v) is an admissible point of (3.5). Otherwise, the solution
a of any of those linear programs that have a negative value yields a strict inequality gi <
∑

j∈I
∑

l∈[Li]
alQ

l
i,jgj or vi + gi <

∑

l∈[Li]
alR

l
i +

∑

j∈I
∑

l∈[Li]
alQ

l
i,jvj . In both cases, the

corresponding inequality determines a separating hyperplane.
To conclude the proof, it remains to check that the facet complexity of the polyhedron

G is polynomially bounded in the encoding lengths of the polyhedra Bi and the rationals Rli
and Qli,j . Since the al’s appear linearly in the constraints (3.5), these constraints hold for all
a ∈ Ai if and only if they hold for all a ∈ Bi or equivalently, for all extreme points of Bi. The
result follows from Lemma 6.2.4 in [GLS88], which states that the encoding length of any
extreme point of a well-described polyhedron is polynomially bounded in the encoding of the
polyhedron.

Remark 3.1. This argument also shows that the discounted problem is polynomial time solv-
able.

3.3 Convex Markov decision processes

In this section, we give a generalization of the polynomial-time solvability result of the previous
section to the infinite horizon expected average cost problem where the daily operator is a
given convex, monotone and additively homogeneous function. In Section 3.2 we considered
Markov decision processes with finite state space, polyhedral action spaces and linear rewards.
Now, we shall accept any action space and rewards. We just need the state space to be finite
and the daily operator to be effectively computable. For instance, if the action spaces are
convex sets and the rewards are convex functions, then an ǫ-approximation of the daily
operator is computable in polynomial time (Theorem 5.3.1 in [BTN01]).

We give in Theorem 3.2 a convex program, the solution of which gives the expected average
cost, equal to the cycle time of the daily operator, and a bias vector of the problem. The
proof relies on the existence of the cycle time of any monotone homogeneous and convex
map [GG04a, Vig09a] and on inequalities of convexity.

Lemma 3.1. Let f be an additively homogeneous convex function with Fenchel transform f∗.
Let vα be the unique vector such that vα = f(αvα), Vα(x) := supπ(1−α)

∑+∞
m=0−αmExπ[f

∗
xm(qm)]

and Vn(x) := supπ
1
n

∑n−1
l=0 −Exπ[f

∗
xl(q

l)] where the supremum is taken on the set the admissible

measures π such that Pxπ(q
m ∈ dom(f∗xm

)) = 1. Then Vα = (1− α)vα and Vn(x) = 1
nf

n(x).

Proof. This derives from the interpretation of a monotone, additively homogeneous convex
function as the daily operator of a Markov decision process with finite state space and convex
action spaces [AG03]:

fi(x) = sup
qi∈dom(f∗i )

〈qi, x〉 − f∗i (qi) , ∀i ∈ [n]
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The following development is a simple generalization of Proposition 4 and Corollary 5 in
Lehrer and Sorin’s Tauberian theorem for dynamic programming article [LS92].

Lemma 3.2. For any monotone, additively homogeneous convex function f , we have that
∀ǫ > 0,∀N, ∃α0,∀α ≥ α0,∀x ∈ S,∃n ≥ N with Vn(x) ≥ Vα(x)− ǫ.

Proof. For all n ∈ N ∪ {∞} and for all (am)m bounded from above, we have

(1− α)

n
∑

m=0

αmam = (1− α)2
n−1
∑

m=0

αm(m+ 1)(

m
∑

l=0

al
l + 1

) + (1− α)αn(n+ 1)(

n
∑

l=0

al
n+ 1

) (3.6)

Let M = supn,x Vn(x). M is finite because lim supn Vn = χ(f) the cycle time of f [GG04a].
Given ǫ > 0 and N , let α0 be such that ∀α ≤ α0,

(1− α)2
N−1
∑

m=0

αm(m+ 1)M ≤ ǫ/2 .

Given an ǫ/2-optimal strategy π for Vα, we apply (3.6) with am = −Exπ[f
∗
xm(qm)] and n = +∞:

Vα(x)− ǫ/2 ≤ ǫ/2 + (1− α)2
+∞
∑

m=N

αm(m+ 1)(

m
∑

l=0

al
l + 1

) ,

and as (
∑m

l=0
al

l+1) ≤ Vm(x), for all m, we get that a convex combination of (Vm(x))m≥N is
greater that Vα(x)− ǫ. This implies that at least one is greater (we denote it n), which yields
the result.

Corollary 3.1. For any monotone, additively homogeneous convex function f ,

lim sup
n→+∞

1

n
fn(x) ≥ lim sup

α→1
(1− α)vα

Proof. Simple consequence of Lemma 3.2.

Let us denote f̂ the recession function of f defined by f̂(x) = limλ→∞ 1
λf(λx) and χ(f)

the cycle time of f defined by χ(f) = limn→∞ Vn(x) = limn→∞ 1
nf

n(x).

Proposition 3.2 ([GG04a], Corollary 5.5.2 in [Vig09a]). For any convex, monotone, addi-
tively homogeneous function f : Rn → Rn, the cycle time of f exists and f̂(χ(f)) = χ(f).

Theorem 3.2. For any convex, monotone, additively homogeneous function f : Rn → Rn

and for any β ∈ Rn such that β > 0, the optimal value of the convex optimization problem

inf
g∈Rn,v∈Rn

β · g

g ≥ f̂(g)

g + v ≥ f(v)

is equal to β · χ(f) and g = χ(f) = limn→∞ 1
nf

n(x) at every optimum.



3.3. Convex Markov decision processes 49

Proof. Let us denote C the convex set defined by the inequalities g ≥ f̂(g) and g + v ≥
f(v). First of all, for all convex monotone additively homogeneous function f , χ(f) exists
(Proposition 3.2).

We first prove that
∀(g, v) ∈ C, g ≥ χ(f) (3.7)

For all k ∈ N and w ∈ Rn

kg + f(w) ≥ f̂(kg) + f(w) = lim
λ→∞

1

λ
f(λkg) + f(w) = lim

λ→∞
1

λ
f(λkg) +

λ− 1

λ
f(w)

≥ lim
λ→∞

f(kg +
λ− 1

λ
w) = f(kg + w)

Hence,

f(v) ≤ g + v

f2(v) ≤ f(g + v) ≤ g + f(v) ≤ 2g + v

f3(v) ≤ f(2g + v) ≤ 2g + f(v) ≤ 3g + v

and by induction, we get that for all n, fn(v) ≤ ng + v, which implies that g ≥ χ(f).
Now fix ǫ > 0. Its is easy to see that f̂(χ(f) + ǫ) = χ(f) + ǫ. We shall now just find

v ∈ Rn such that
v + χ(f) + ǫ ≥ f(v) .

For α ∈ [0, 1), let vα be the unique solution of the discounted problem f(αvα) = vα. By
Corollary 3.1,

χ(f) = lim sup
1

n
fn(x) ≥ lim sup(1− α)vα

We have

vα = f(αvα) = f(vα − (1− α)vα) ≥ f(vα)−Q(1− α)vα

for all Q ∈ ∂f(vα) (∂f is the subdifferential of f defined as the Cartesian product of ∂fi
for i ∈ [n] [AG03]). As lim sup(1 − α)vα ≤ χ(f), there exists α0 such that for all α ≥ α0,
(1− α)vα ≤ χ(f) + ǫ. Now we have

f̂i(vα) = sup
pi∈domf∗i

〈pi, vα〉 ≥ 〈qi, vα〉

for all qi ∈ ∂fi(vα), since for all x, ∂fi(x) = {qi ∈ domf∗i |〈qi, x〉 − f∗i (qi) = f(x)} ⊆ domf∗i .
By multiplicative homogeneity and monotonicity of f̂ we get

χ(f) + ǫ = f̂(χ(f) + ǫ) ≥ f̂((1− α)vα) ≥ (1− α)Qvα ≥ f(vα)− vα

where Q can be any element of ∂f(vα).
This inequality means that (χ(f) + ǫ, vα) ∈ C. As we can choose any arbitrary ǫ, for all

i ∈ [n], inf{gi, (g, v) ∈ C} ≤ χi(f)). The reverse inequality was given by (3.7), so the result
holds.
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CHAPTER 4

Ergodic control and Polyhedral
approaches to PageRank optimization

4.1 Introduction

The PageRank introduced by Brin and Page [BP98] is defined as the invariant measure of
a walk made by a random surfer on the web graph. When reading a given page, the surfer
either selects a link from the current page (with a uniform probability), and moves to the page
pointed by that link, or interrupts his current search, and then moves to an arbitrary page,
which is selected according to given “zapping” probabilities. The rank of a page is defined as
its frequency of visit by the random surfer.

The interest of the PageRank algorithm is to give each page of the web a measure of its
popularity. It is a link-based measure, meaning that it only takes into account the hyperlinks
between web pages, and not their content. It is combined in practice with content-dependent
measures, taking into account the relevance of the text of the page to the query of the user,
in order to determine the order in which the answer pages will be shown by the search engine.
This leads to a family of search methods the details of which may vary (and are often not
publicly known). However, a general feature of these methods is that among the pages with
a comparable relevance to a query, the ones with the highest PageRank will appear first.

The importance of optimizing the PageRank, specially for e-business purposes, has led to
the development of a number of companies offering Search Engine Optimization services. We
refer in particular the reader to [CLF09] for a discussion of the PageRank optimization meth-
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ods which are used in practice. Understanding PageRank optimization is also useful to fight
malicious behaviors like link spamming, which intend to increase artificially the PageRank of
a web page [GGM05a], [BYCL05].

The optimization of PageRank has been studied by several authors (see Section 2.2 for
more details). Avrachenkov and Litvak analyzed in [AL06] the case of a single controlled
page and determined an optimal strategy. In [MV06], Mathieu and Viennot established
several bounds indicating to what extent the rank of the pages of a (multi-page) website can
be changed, and derived an optimal referencing strategy in a special unconstrained case: if the
webmaster can fix arbitrarily the hyperlinks in a web site, then, it is optimal to delete every
link pointing outside the web site. To avoid such degenerate strategies, De Kerchove, Ninove
and Van Dooren [dKNvD08] studied the problem of maximizing the sum of the PageRank
coordinates in a web site, provided that from each page, there is at least one path consisting
of hyperlinks and leading to an external page. They gave a necessary structural condition
satisfied by an optimal outlink strategy. In [Nin08], Ninove developed a heuristic based on
these theoretical results, which was experimentally shown to be efficient. In [IT09], Ishii and
Tempo investigated the sensitivity of the PageRank to fragile (i.e. erroneous or imperfectly
known) web data, including fragile links (servers not responding, links to deleted pages, etc.).
They gave bounds on the possible variation of PageRank and introduced an approximate
PageRank optimization problem, which they showed to be equivalent to a linear program.
In [CJB10], (see also [CJB09] for more details), Csáji, Jungers and Blondel thought of fragile
links as controlled links and gave an algorithm to optimize in polynomial time the PageRank
of a single page.

Most of this chapter corresponds to [FABG13]. We study here a more general PageRank
optimization problem, in which a webmaster, controlling a set of pages (her web site), wishes to
maximize a utility function depending on the PageRank or, more generally, on the associated
occupation measure (frequencies of visit of every link, the latter are more informative). For
instance, the webmaster might wish to maximize the number of clicks per time unit of a certain
hyperlink bringing an income, or the rank of the most visible page of her site, or the sum of
the ranks of the pages of this site, etc. We consider specifically two versions of the PageRank
optimization problem.

We first study a continuous version of the problem in which the set of actions of the
webmaster is the set of admissible transition probabilities of websurfers. This means that
the webmaster, by choosing the importance of the hyperlinks of the pages she controls (size
of font, color, position of the link within the page), determines a continuum of possible
transition probabilities. Although this model has been already proposed by Nemirovsky and
Avrachenkov [NA08], its optimization does not seem to have been considered previously. This
continuous version includes rather realistic constraints: for instance, the webmaster may start
from a “template” or “skeleton” (given by designers), and be allowed to modify this skeleton
only to a limited extent. Moreover, we shall allow coupling constraints between different pages
(for instance, the rank of one page may be required to be greater than the rank of another
page, constraints involving the sum of the PageRanks of a subset of pages are also allowed,
etc.).

Following [IT09, CJB10], we also study a discrete version of the problem, in which in
each page, there are obligatory links, facultative links and forbidden links. Then, the decision
consists in selecting the subset of facultative links which are actually included in the page.

We show that when there are no coupling constraints between different pages and when
the utility function is linear, the continuous and discrete problems both can be solved in
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polynomial time by reduction to a linear program (our first main result, Theorem 4.3). When
specialized to the discrete problem, this extends Theorem 1 of [CJB10], which only applies
to the case in which the utility function represents the PageRank of a single page. The
proof of Theorem 4.3 relies on the observation that the polytope generated by the transition
probability measures that are uniform on some subsets of pages has a concise representation
with a polynomial number of facets (Theorem 4.1). Then, Theorem 4.3 follows as a direct
corollary of our works on Markov decision processes with implicitly defined action spaces
(Theorem 3.1).

Proposition 4.7 yields a fixed point scheme with a contraction rate independent of the
number of pages. Indeed, the contraction rate depends only on the “damping factor” (prob-
ability that the user interrupts his current search). Therefore, this problem can be solved
efficiently for very large instances by Markov decision techniques. Our results show that op-
timizing the PageRank is not much more difficult than computing it, provided there are no
coupling constraints: indeed, Proposition 4.9 shows that by comparison, the execution time
is only increased by a logn factor, where n is the number of pages. Note that the Markov
decision process which we construct here is quite different from the one of [CJB10], the lat-
ter is a stochastic shortest path problem, whose construction is based on a graph rewriting
technique, in which intermediate (dummy) nodes are added to the graph. Such nodes are not
subject to damping and therefore, the power iteration looses its uniform contraction. In our
approach, we use a more general ergodic control model, which allows us to consider a general
linear utility function, and avoids adding such extra nodes. Experiments also show that the
present approach leads to a faster algorithm (Section 4.7.2).

We also study the continuous problem with general (linear) coupling constraints, and
show that the latter can also be solved in polynomial time by reduction to a constrained
ergodic control problem. Proposition 4.15 yields an algorithm to solve the PageRank op-
timization problem with coupling constraints, which scales well if the number of coupling
constraints remains small. The resolution uses Lagrangian relaxation and convex program-
ming techniques like the bundle method. There is little hope to solve efficiently, in general,
the discrete problem with general coupling constraints since Csáji, Jungers and Blondel have
proved in [CJB10] that the discrete PageRank optimization problem with mutual exclusion
constraints is NP-complete. Nevertheless, we develop a heuristic for the discrete PageRank
optimization problem with linear coupling constraints, based on the optimal solution of a
relaxed continuous problem (Section 4.7.3). On test instances, approximate optimality cer-
tificates show that the solution found by the heuristic is at most at 0.4% of the optimum.

Using the concept of mean reward before teleportation, we identify in Theorem 4.4 (our
second main result) assumptions under which there exists a “master” page to which all con-
trolled pages should point. The theorem gives an ordering of the pages such that in loose
terms, the optimal strategy is at each page to point to the allowed pages with highest or-
der. The structure of the obtained optimal website is somehow reminiscent of Theorem 12
in [dKNvD08], but in [dKNvD08], there is only one constraint: the result is thus different.

When the problem has coupling constraints, the mean reward before teleportation still
gives information on optimal strategies (Theorem 4.5).

We report numerical results on the web site of one of my co-authors [FABG13] (including
an aggregation of surrounding pages) as well as on a fragment of the web (4.105 pages from
the universities of New Zealand).

We finally note that an early Markov Decision Model for PageRank optimization was
introduced by Bouhtou and Gaubert in 2007, in the course of the supervision of the student
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project of Vlasceanu and Winkler [WV07].
The chapter is organized as follows. In Section 4.2, we introduce the general PageRank

optimization problem. In Section 4.3.2, we show how the PageRank optimization problems
reduce to ergodic control and we give a concise description of the polytope of uniform tran-
sition probabilities. In Section 4.4, we show that the continuous and discrete PageRank
optimization problems with local constraints are solvable in polynomial time (Theorem 4.3).
Section 4.4.2 describes an efficient fixed point scheme for the resolution of the PageRank
optimization problem with local constraints. In Section 4.5, we give the “master page” The-
orem (Theorem 4.4). We deal with coupling constraints in Section 4.6. We give experimental
results on real data in Section 4.7.

4.2 PageRank optimization problems

4.2.1 Optimization of PageRank

The problem we are interested in is the optimization of PageRank. We study two versions of
this problem. In the continuous PageRank Optimization problem, the webmaster can choose
the importance of the hyperlinks of the pages she controls and thus she has a continuum
of admissible transition probabilities (determined for instance by selecting the color of a
hyperlink, the size of a font, or the position of a hyperlink in a page). This continuous
model is specially useful in e-business applications, in which the income depends on the
effective frequency of visit of pages by the users, rather than on its approximation provided
by Google’s PageRank. The Continuous PageRank Optimization Problem is given by:

max
π,P
{U(π, P ) ; π = πP, π ∈ Σn, P ∈ P} (4.1)

Here, Σn := {x ∈ Rn | xi ≥ 0,∀i ∈ [n];
∑

i∈[n] xi = 1} is the simplex of dimension n, U is
a utility function and P is a set representing the set of all admissible transition probability
matrices. We denote by Pi,· the ith row of a matrix P . We shall distinguish local constraints,
which can be expressed as Pi,· ∈ Pi, where Pi ⊂ Σn, is a given subset, and global constraints,
which couple several vectors Pi,·. Thus, local constraints only involve the outlinks from
a single page, whereas global constraints involve the outlinks from different pages. Then,
P ⊆ ∏i∈[n] Pi with equality when there are only local constraints. We shall consider the
situation in which each Pi is a polytope (or more generally an effective convex set) with for
all i, following (2.2),

Pi = αSi + (1− α)z , Si ⊂ Σn . (4.2)

If we restrict our attention to Google’s PageRank (with uniform transition probabilities),
we arrive at the following combinatorial optimization problem. For each page i, as in [IT09]
and [CJB10], we partition the set of potential links (i, j) into three subsets, consisting respec-
tively of obligatory links Oi, prohibited links Ii and the set of facultative links Fi. Then, for
each page i, we must select the subset Ji of the set of facultative links Fi which are effectively
included in this page. Once this choice is made for every page, we get a new webgraph, and
define the transition matrix S = S(J1, . . . , Jn) as in(2.1). The matrix after teleportation is
also defined as above by P (J1, . . . , Jn) := αS(J1, . . . , Jn) + (1 − α)ez. Then, the Discrete
PageRank Optimization Problem is given by:

max
π,P
{U(π, P ) ; π = πP, π ∈ Σn, P = P (J1, . . . , Jn), Ji ⊆ Fi, i ∈ [n]} (4.3)
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Remark 4.1. Problem (4.3) is a combinatorial optimization problem: if there are pi facultative
links in page i, the decision variable, (J1, . . . , Jn), takes 2p values, where p = p1 + · · ·+ pn.

We shall be specially interested in the modeling of an income proportional to the frequency
of clicks on some hyperlinks. Let ri,j be a reward per click for each hyperlink (i, j). The latter
utility can be represented by the following linear utility function, which gives the total income:

U(π, P ) =
∑

i∈[n]

πi
∑

j∈[n]

Pi,jri,j . (4.4)

Unless stated otherwise, we will consider the total income linear utility in the sequel.

Remark 4.2. The problem of maximizing the total PageRank of a web site (sum of the
PageRanks of its pages) is obtained as a special case of (4.4). Indeed, if this web site consists
of the subset of pages I ⊆ [n], one can set ri,j = χI(i),∀i, j ∈ [n], where χI is the characteristic
function of I (with value 1 if i ∈ I and 0 otherwise). Then

U(π, P ) =
∑

i

πi
∑

j

Pi,jri,j =
∑

i∈I
πi .

Remark 4.3. Note that the general form of the utility function assumes that we receive the
same instantaneous reward ri,j when the surfer follows the hyperlink (i, j) and when the surfer
stops the current exploration at page i to teleport to page j. There is no loss of generality in
assuming that it is so: assume that the surfer produces a reward of r′i,j when he follows the
hyperlink (i, j) and 0 when he teleports to page j.

Using the fact that
∑

j∈[n] r
′
i,jzj =

∑

j∈[n]

∑

l∈[n] r
′
i,lzlPi,j and P = αS + (1 − α)ez, we

show that α
∑

i,j∈[n] r
′
i,jπiSi,j =

∑

i,j∈[n](r
′
i,j − (1− α)

∑

l∈[n] r
′
i,lzl)πiPi,j . We then only need

to set ri,j = r′i,j − (1− α)
∑

l∈[n] r
′
i,lzl.

We shall restrict our attention to situations in which π is uniquely defined for each admis-
sible transition matrix P ∈ P (recall that this is the case in particular when α < 1). Then
the utility U is a function of P only.

Alternatively, it will be convenient to think of the utility as a function of the occupa-
tion measure ρ = (ρi,j)i,j∈[n]. The latter is the stationary distribution of the Markov chain
(xt−1, xt). Thus, ρi,j gives the frequency of the move from page i to page j. The occupation
measure ρ is a probability measure and it satisfies the flow relation, so that

ρi,j ≥ 0, ∀i, j ∈ [n] ,
∑

i,j∈[n]

ρi,j = 1 ,
∑

k∈[n]

ρk,i =
∑

j∈[n]

ρi,j , ∀i ∈ [n] . (4.5)

The occupation measure may also be thought of as a matrix. Hence, we shall say that ρ is
irreducible when the corresponding matrix is irreducible.

The occupation measure ρ can be obtained from the invariant measure π and the stochastic
matrix P by ρi,j = πiPi,j ,∀i, j ∈ [n] and, conversely, the invariant measure π can be recovered
from ρ by πi =

∑

j∈[n] ρi,j ,∀i ∈ [n].

The map f which determines the stochastic matrix P from the occupation measure is
given by:

P = f(ρ), Pi,j =
ρi,j

∑

k ρi,k
, ∀i, j ∈ [n] . (4.6)
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Proposition 4.1. The function f defined by (4.6) sets up a birational transformation between
the set of irreducible occupation measures (irreducible matrices satisfying (4.5)) and the set
of irreducible stochastic matrices. In particular, the Jacobian of f is invertible at any point
of the set of irreducible occupation measures.

Proof. As π is uniquely defined, its entries are a rational function of the entries of P (for
instance, when P is irreducible, an explicit rational expression is given by Tutte’s Matrix Tree
Theorem [Tut01]). The invertibility of the Jacobian follows from the birational character of
f .

This bijective correspondence will allow us to consider the occupation measure, rather
than the stochastic matrix P , as the decision variable. Note that the utility function can be
written as a linear function in terms of the occupation measure: U(π, P ) =

∑

i,j∈[n] ρi,jri,j .

4.2.2 Design constraints of the webmaster

We now model the possible modifications made by the webmaster, who may be subject to
constraints imposed by the designer of the web site (the optimization of the PageRank should
respect the primary goal of the web site, which is in general to offer some content). We thus
describe the set P of admissible transition probabilities of (4.1).

Proposition 4.2. Assume that P =
∏

i∈[n] Pi, that for all i ∈ [n], Pi is a closed convex set
and that every matrix P ∈ P is irreducible. Then, the set R of occupation measures arising
from the elements of P is also a closed convex set. Moreover, if every Pi is a polytope, then
so is R.

Proof. For all i ∈ [n], Pi is a closed convex set and so it is the intersection of a possibly infinite

family of hyperplanes (H
(l)
i )l∈L. Every element P of

∏

i∈[n] Pi must satisfy the following

inequalities, one for each H
(l)
i :

∑

j∈[n]

a
(l)
i,jPi,j ≤ b

(l)
i , ∀i ∈ [n],∀l ∈ L (4.7)

Formulating these equalities in terms of the occupation measure ρ thanks to Pi,j =
ρi,j

P

j′ ρi,j′

and Proposition 4.1, and rewriting Inequalities (4.7) in the form

∑

j∈[n]

a
(l)
i,jρi,j ≤ b

(l)
i

∑

k∈[n]

ρi,k, ∀i ∈ [n],∀l ∈ L (4.8)

we see that ρ satisfies a family of constraints of the form (4.8), together with the inequal-
ities (4.5). Thus, R is defined as the intersection of half-spaces and so, it is closed and
convex.

The same argument shows that if for all i ∈ [n], Pi is a polytope, so is R.

We next list some concrete examples of such inequalities.
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Skeleton constraints Imagine that a designer gave a skeleton or template for page i. The
latter may include a collection of mandatory sites to be pointed by page i. We shall abstract
the skeleton by representing it by a fixed probability vector q ∈ Σn, giving the transition
probabilities if no further hyperlinks are added. Assume now that the webmaster is allowed
to modify the page for optimization purposes, as long as the hyperlinks she adds do not
overtake the initial content of the web site. This can be modeled by requiring that no hyperlink
included in the skeleton looses a proportion of its weight greater than µ. Such constraints
can be written as Pi,j ≥ α(1− µ)qj + (1− α)zj , ∀j ∈ [n].

Linear coupling constraints Constraints like the presence of specific outlinks somewhere on
the pages of the website are non-local. Such constraints cannot be written simply in terms of
the stochastic matrix P (because adding conditional probabilities relative to different pages
makes little sense) but they can be written linearly in terms of the occupation measure ρ,
∑

i,j∈[n] ai,jρi,j ≤ b, where the coefficients ai,j and b are given.

These constraints include for instance coupling conditional probability constraints, which
can be written as:

∑

i∈I,j∈J ρi,j ≥ b
∑

i∈I,k∈[n] ρi,k. This means that the probability for the
random surfer to move to set J , given that he is now in set I, should not be smaller than b.

We may also need effective frequency constraints: the webmaster (ruling a set of pages
I) may sign a contract with another website (ruling a set of pages J), promising to redirect
to this site an effective proportion of the web traffic. Such constraints may be written as
∑

i∈I,j∈J ρi,j ≥ b. However, we warn the reader that such a bold contract may lead to
an unfeasible problem, unless b is properly chosen.

Combinatorial constraints In the discrete problem, one may wish to set combinatorial con-
straints like demanding the existence of a path between two pages or sets of pages [dKNvD08],
setting mutual exclusion between two hyperlinks [CJB10] or limiting the number of hyper-
links [CJB10]. Such constraints may lead to harder combinatorial problems, the solution
of which is however made easier by the polynomial-time solvability of a relaxed continuous
problem (Section 4.7.3).

4.3 Reduction of the PageRank Optimization Problem with local
constraints to Ergodic Control

We next show that the continuous and discrete versions of the PageRank optimization reduce
to ergodic control problems in which the action sets are defined as extreme points of concisely
described polyhedra. We shall see in Section 4.4 that such problems remain tractable even if
the size of the action sets may be exponential.

4.3.1 Reduction of the Continuous PageRank Optimization Problem to Ergodic
Control

For a polytope P, we shall denote by extr(P) the set of extreme points of P.

Proposition 4.3. Assume that there are only local constraints, i.e. P =
∏

i∈[n] Pi, that for all
i ∈ [n], Pi is a polytope of the form (4.2) and that the utility function is an income proportional
to the frequency of clicks (4.4). Then the continuous PageRank Optimization problem (4.1) is
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equivalent to the unichain ergodic control problem with finite state [n], finite action set extr(Pi)
in every state i, transition probabilities p(j|i, a) = aj and rewards r(i, a) =

∑

j∈[n] ri,jaj.

Proof. As α < 1, a ∈ Pi implies ak > 0 for all k. Thus the problem defined in the proposition
is unichain. Randomized stationary strategies are of the form νt = ν̄(Xt) for some function
ν̄ sending i ∈ [n] to some element of Pi = co(extr(Pi)). To such a strategy is associated
a transition matrix P of the websurfer, obtained by taking Pi,· = ν̄(i) and vice versa. Thus, the
admissible transition matrices of the websurfer are admissible stationary feedback strategies.

Moreover, the ergodic theorem for Markov chains shows that when such a strategy is
applied,

lim
T→∞

1

T
E(

T−1
∑

t=0

r(Xt, νt)) = lim
T→∞

1

T
E(

T−1
∑

t=0

∑

j∈[n]

rXt,j ν̄j(Xt)) =
∑

i,j∈[n]

πiPi,jri,j

and so, the objective function of the ergodic control problem is precisely the total income.

Proposition 4.4. Under the hypotheses of Proposition 4.3, the dynamic programming equa-
tion

wi + ψ = max
ν∈Pi

ν(ri,· + w) , ∀i ∈ [n] (4.9)

has a solution w ∈ Rn and ψ ∈ R. The constant ψ is unique and is the value of continuous
PageRank Optimization problem (4.1). An optimal strategy is obtained by selecting for each
state i a maximizing ν ∈ Pi in (4.9). The function w is often called the bias or the potential.

Proof. Theorem 8.4.3 in [Put94] applied to the unichain ergodic control problem of Propo-
sition 4.3 implies the result of the proposition but with Pi replaced by extr(Pi). But as the
expression which is maximized is affine, using Pi or extr(Pi) yields the same solution.

4.3.2 The polytope of uniform transition measures

In this section, we show that the Discrete PageRank Optimization problem (4.3) is equivalent
to a relaxed (continuous) PageRank Optimization problem (4.1) (Theorem 4.2). For this
we show that the polytope of uniform transition measures, the vertices of which represent
the action space of the Discrete PageRank Optimization problem (4.3), admits a concise
representation (Theorem 4.1).

We consider a given page i and we study the set of admissible transition probabilities
from page i. With uniform transitions, this is a discrete set that we denote Di. For clarity
of the explanation, we will write xj instead of Si,j and write the proofs in the case α = 1. In
order to get back to α < 1, we use the relation Pi,j = αSi,j +(1−α)zj (see Remark 4.5 at the
end of this section). Indeed, even if the polytope of admissible transition probabilities is well
defined for any α ≤ 1, the PageRank optimization problem requires α < 1 to be well defined,
so that we will indeed use Remark 4.5.

We partition the set of links from page i as the set of obligatory links Oi, the set of
prohibited links Ii and the set of facultative links Fi. Then, depending on the presence of
obligatory links,

Di = {q ∈ Σn | Oi ⊆ supp(q) ⊆ Oi ∪ Fi, q uniform probability measure on its support}
(4.10)
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or if Oi = ∅, it is possible to have no link at all and then to teleport with probability vector Z
(usually Z is equal to the teleportation vector z but it may be different):

Di = {q ∈ Σn | supp(q) ⊆ Fi, q uniform probability measure on its support} ∪ {Z}.

We study the polytope co(Di), the convex hull of the discrete set Di. Although it is
defined as the convex hull of an exponential number of points, we show that it has a concise
representation.

Theorem 4.1. If page i has at least one obligatory link, then the convex hull of the admis-
sible discrete transition probabilities from page i, co(Di), is the projective transformation of
a hypercube of dimension |Fi| and, for any choice of j0 ∈ Oi, it coincides with the polytope
defined by the following set of inequalities:

∀j ∈ Ii , xj = 0 ∀j ∈ Fi , xj ≤ xj0 (4.11a)

∀j ∈ Oi \ {j0} , xj = xj0 ∀j ∈ Fi , xj ≥ 0 (4.11b)
∑

j∈[n]

xj = 1 (4.11c)

Proof. Let Si be the polytope defined by Inequalities (4.11).

(Di ⊆ Si): Let q a probability vector in Di: q is a uniform probability measure on its
support and Oi ⊆ supp(q) ⊆ Oi ∪ Fi. As for all j in Fi, qj ≤ 1

|supp(q)| = qj0 , q verifies the
equalities.

(extr(Si) ⊆ Di): Let us consider an extreme point x of Si. Inequalities (4.11b) and (4.11a)
cannot be saturated together at a given coordinate j ∈ Fi because, if it were the case, then
we would have xj0 = 0 and thus x = 0, which contradicts

∑

j∈[n] xj = 1.

We have 1+|Ii|+|Oi|−1 independent equalities so the polytope is of dimension |Fi|. To be
an extreme point, x must thus saturate |Fi| inequalities. At every j in Fi, Inequalities (4.11b)
and (4.11a) cannot be saturated simultaneously (see the previous paragraph), so the only way
to saturate |Fi| inequalities is to saturate one of (4.11b) or (4.11a) at every j in Fi. Finally, x
can only take two distinct values, which are 0 and xj0 = 1

|supp(x)| : it is a uniform probability
on it support.

We then show that Si is the projective transformation ([Zie01], Section 2.6 for more
background) of the hypercube H defined by the following set of inequalities:

{∀j ∈ Ii, Xj = 0 ; ∀j ∈ Oi, Xj = 1 ; ∀j ∈ Fi, 0 ≤ Xj ≤ 1} .

As Oi 6= ∅, H is embedded in the affine hyperplane {X ∈ Rn|Xj0 = 1}. We can then construct
the homogenization of H, homog(H), which is the pointed cone with base H (see [Zie01] for
more details). Finally Si is the cross-section of homog(H) with {x ∈ Rn|∑j∈[n] xj = 1}.

The result of the theorem implies in particular that co(Di) is combinatorially equivalent
to a hypercube, i.e. that their face lattices are isomorphic [Zie01].

The next result concerns the case in which a page may have no outlink: it is necessary to
consider this special case because then the websurfer teleports with probability Zi to page i.
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Figure 4.1: Projection of the polytope of uniform transition measures with one obligatory
link (|Oi| = 1) and three facultative links (|Fi| = 3).

Proposition 4.5. If page i has no obligatory link and if there exists k ∈ Ii such that Zk > 0,
then co(Di) is a simplex of dimension |Fi| defined by the following set of inequalities:

∑

j∈[n]

xj = 1 , xk ≥ 0 (4.12a)

∀j ∈ Ii \ {k} , xj =
Zj
Zk
xk , ∀j ∈ Fi , xj ≥

Zj
Zk
xk (4.12b)

Proof. Let Si be the polytope defined by Inequalities (4.11).
(Di ⊆ Si): Let q be an admissible discrete transition probability. Either q is a uniform

probability measure on its support with supp(q) ⊆ Fi or q = Z. It is clear that Z satisfies
all the inequalities. If q 6= Z, then ∀j ∈ Ii, qj = 0 (especially qk = 0) and the equalities are
straightforward to verify.

(extr(Si) ⊆ Di): Now let x be an extreme point of the polytope defined by Inequali-
ties (4.12). We have 1 + |Ii| − 1 independent equalities, so the polytope is of dimension |Fi|.
In order to be an extreme point, x must then saturate |Fi| inequalities. There are |Fi| + 1
inequalities and by symmetry, we only need to consider two cases.

If Inequality (4.12a) is not saturated, all others have to be saturated. Then we have

xj =
Zj

Zk
xk, ∀j ∈ [n]. As x sums to 1, x = Z.

If Inequality (4.12a) is saturated, then xk = 0 and there exists j ∈ Fi such that for all
l ∈ Fi \ {j} Inequality (4.12b) is saturated. As xk = 0, this gives ∀l ∈ Fi \ {j}, xl = 0 and
xj = 1.

Finally, x is Z or x is an admissible discrete transition probability with |supp(x)| = 1.

Proposition 4.6. If page i has no obligatory link and if for all k ∈ Ii, Zk = 0, then co(Di)
is the usual simplex of dimension |Fi| − 1 with xj = 0, ∀j ∈ Ii.

Proof. The extreme points of this simplex are clearly admissible discrete transition probabil-
ities and the polytope contains every admissible discrete transition probabilities.

Remark 4.4. When there is no obligatory link, most of the admissible discrete transition
probabilities are not extreme points of the polytope.

Remark 4.5. If we want to work with Pi, the polytope of transition probabilities with damping
factor α, we only need to use the relation Pi = αSi + (1− α)z to get the actual inequalities.
Hence, Theorem 4.1 applies also when α < 1. For instance, xj = xj0 remains but xj ≥ 0
becomes xj ≥ (1− α)zj .
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Theorem 4.2. The discrete PageRank Optimization problem (4.3) is equivalent to a contin-
uous PageRank Optimization problem (4.1) in which the action set Pi is defined as in (4.2)
by Pi = αSi + (1− α)z, (0 < α < 1) and Si is one of the polytopes described in Theorem 4.1
or Proposition 4.5 or 4.6, depending on the presence of obligatory links.

Proof. Arguing as in the proof of Proposition 4.3, we get that the discrete PageRank Opti-
mization problem (4.3) is equivalent to an ergodic control problem with state space [n], in
which the action set in state i is the discrete set αDi+(1−α)z with Di defined in (4.10), and
the rewards and transition probabilities are as in Proposition 4.3. The optimal solutions of the
discrete PageRank Optimization problem coincide with the optimal stationary deterministic
strategies. The analog of Equation (4.9) is now

wi + ψ = max
ν∈αco(Di)+(1−α)z

ν(ri,· + w) (4.13)

where co(Di) is the convex hull of the set Di, i.e the polytope described in either Theorem 4.1
or Proposition 4.5 or 4.6. The polytope co(Di) gives the transition laws in state i correspond-
ing to randomized strategies in the former problem. Hence, the control problems in which
the actions sets are Ai = αDi + (1−α)z or co(Ai) = αco(Di) + (1−α)z have the same value.
Moreover, an optimal strategy of the problem with the latter set of actions can be found by
solving (4.13) and selecting a maximizing action ν in (4.13). Such an action may always be
chosen in the set of extreme points of co(Ai) and these extreme points belong to Ai (beware
however that some points of Ai may be not extreme).

4.4 Solving the PageRank Optimization Problem with local con-

straints

4.4.1 Polynomial time solvability of the PageRank Optimization Problem with
local constraints

We have reduced the discrete and continuous PageRank Optimization problems to ergodic
control problems in which the action sets are implicitly defined as the sets of extreme points
of polytopes. Theorem 1 in [PT87] states that the ergodic control problem is solvable in
polynomial time. However, in this result, the action sets are defined explicitly, whereas
polynomial means, as usual, polynomial in the input length (number of bits of the input).
Since the input includes the description of the actions sets, the input length is always larger
than the sum of the cardinalities of the action sets. Hence, this result only leads to an
exponential bound in our case (Remark 4.1).

However, by Theorem 3.1 in Chapter 3, we know that if we have a concise description of
the action spaces, we can solve the average cost infinite horizon problem in polynomial time.
Hence, as a consequence of Theorem 4.2, we get

Theorem 4.3. If there are only local constraints, if the utility function is a rational total
income utility (4.4) and if the teleportation vector and damping factor are rational, then the
discrete problem (4.3) can be solved in polynomial time and the continuous problem (4.1) with
well-described action sets (Definition 3.1) can also be solved in polynomial time.
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Proof. Thanks to Theorem 4.2, solving the continuous PageRank Optimization problem also
solves the discrete PageRank Optimization problem. In addition, the coefficients appearing
in the description of the facets of the polytopes of uniform transition measures are either 1, zj
or α and there are at most two terms by inequality (cf Section 4.3.2). This implies that these
polytopes are well-described with an encoding length polynomial in the length of the input.
Note also that we can find in polynomial time a vertex optimal solution of a linear program
as soon as its feasible set is a well-described polytope as it is the case here (Lemma 6.5.1
in [GLS88]).

By Proposition 4.3, the ergodic control problem associated to a continuous PageRank
Optimization problem with well-described action sets satisfies the conditions of Theorem 3.1
with I = [n], Li = [n], Qli,j = δjl and Rli = ri,l for i, j ∈ [n], l ∈ Li. Thus it is polynomial time
solvable.

Remark 4.6. In the previous theorem, the PageRank must be defined for any choice of fac-
ultative links. So we will assume that α < 1. Nevertheless, even if α = 1, we can still define
the Markov Decision Process with finite state [n], finite action set extr(Si) in every state i,
transition probabilities p(j|i, a) = aj and rewards r(i, a) =

∑

j∈[n] ri,jaj . This may be a
multi-chain process, so that it may not have a unique invariant measure, but the solution of
the infinite horizon average cost problem can be found in polynomial time by Theorem 3.1.

Theorem 3.1 and thus Theorem 4.3 is mostly of theoretical interest, since its proof is based
on the ellipsoid algorithm, which is slow. We however give in Section 4.4.2 a fast scalable
algorithm for the present problem.

Example 4.1. Consider again the graph from Figure 2.1, and let us optimize the sum of the
PageRank scores of the pages of the site (colored). Assume that there are only local skeleton
constraints (see Section 4.2.2): each page can change up to 20 % of the initial transition
probabilities. The result is represented in Figure 4.2.

Example 4.2. We now consider a discrete PageRank optimization problem starting from the
same graph. We set obligatory links to be the initial links and we represent them on the
adjacency matrix in Figure 4.3 by squares. Facultative links are all other possible links from
controlled pages.

4.4.2 Optimizing the PageRank via Value iteration

The PageRank optimization is likely not to be applied to the world wide web, but rather to
a fragment of it, consisting of a web site (or of a collection of web sites of a community) and
of related sites (see Section 4.5.1). However, even in such simplified instances, the number of
design variables may be large, typically between thousands and millions. Hence, it is desirable
to have scalable algorithms. We next describe two methods, showing that the optimization
problem is computationally easy when there are no coupling constraints: then, optimizing
the PageRank is essentially not more expensive than computing the PageRank.

Proposition 4.7. Let T be the dynamic programming operator Rn → Rn defined by

Ti(w) = max
ν∈Si

αν(ri,· + w) + (1− α)z · ri,· , ∀i ∈ [n] , (4.14)

where Si ⊆ Σn is closed. The map T is α-contracting and its unique fixed point w is such
that (w, (1 − α)zw) is solution of the ergodic dynamic programming equation (4.9), with for
all i, Pi = αSi + (1− α)z.
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Figure 4.2: Web graph of Figure 2.1 optimized under local skeleton constraints. The optimal
strategy consists in linking as much as possible to page ”c” (actually, the page of a lecture),
up to saturating the skeleton constraint. This page gains then a PageRank comparable to
the one of the main page. The sum of the PageRank scores has been increased by 22.6%.

Figure 4.3: The web graph optimized under discrete uniform transitions constraints. In this
case, the optimized graph has almost all internal links (links from a controlled page to another
controlled page), so, for more readability, we display its adjacency matrix. The hyperlinks
correspond to blue dots, obligatory links correspond to squares. The pages are ordered by
decreasing average reward before teleportation (Section 4.5). The optimal strategy consists
in adding a lot of internal links excluding certain pages, as will be explained by the master
Page theorem below (Theorem 4.4).
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Proof. The set Si is a set of probability measures so λ ∈ R ⇒ T (w + λ) = T (w) + αλ and
v ≥ w ⇒ T (v) ≥ T (w). Thus T is α-contracting. Let w be its fixed point. For all i ∈ [n],

wi = max
ν∈Si

αν(ri,· + w) + (1− α)z(ri,· + w)− (1− α)zw = max
ν′∈Pi

ν ′(ri,· + w)− (1− α)zw

We get Equation (4.9) with constant (1− α)zw.

Remark 4.7. T is the dynamic programming operator of a total reward discounted problem
with discount rate α and rewards r′i,j = ri,j + 1−α

α

∑

l∈[n] zlri,l for transition from i to j (cf.
Remark 4.3).

Remark 4.8. The fixed point found is just the mean reward before teleportation at the opti-
mum (see Definition 4.1, Section 4.5) .

We can then solve the dynamic programming equation (4.9) and so the PageRank Op-
timization Problem (4.1) or (4.3) with local constraints by value iteration (Algorithm 4.1).
This algorithm consists in the fixed point iterations for the operator T . It converges to the
fixed point w of T and (w, (1− α)zw) is solution of the ergodic dynamic programming equa-
tion (4.9). The optimal linkage strategy is recovered by selecting the maximizing ν at each
page. Thanks to the damping factor α, the iteration can be seen to be α-contracting. Thus
the algorithm converges in a number of steps independent of the dimension of the web graph.

Algorithm 4.1 Computing the bias vector by value iteration

1: Start with an initial bias w0, choose a tolerance parameter ǫ, set w1 = T (w0) and k = 0.
2: while ‖wk − wk+1‖ > ǫ do: wk+1 = T (wk) (Eqn. (4.14)) and k ← k + 1
3: return w = wk, ψ = (1− α)zwk

For the evaluation of the dynamic programming operator, one can use a linear program
using to the description of the actions by facets. It is however usually possible to develop
algorithms much faster than linear programming. We describe here a greedy algorithm for
the discrete PageRank Optimization problem. The algorithm is straightforward if the set of
obligatory links Oi is empty (Propositions 4.5 and 4.6), so we only describe it in the other
case. In Algorithm 4.2, J represents the set of facultative hyperlinks activated. We initialize
it with the empty set and we augment it with the best hyperlink until it is not valuable any
more to add a hyperlink.

Algorithm 4.2 Evaluation of the dynamic programming operator in the discrete problem

1: Initialization: J ← ∅ and k ← 1
2: Sort (wl + ri,l)l∈Fi

in decreasing order and let τ : {1, . . . , |Fi|} → Fi be the sort function
so that wτ(1) + ri,τ(1) ≥ · · · ≥ wτ(|Fi|) + ri,τ(|Fi|).

3: while 1
|J |+|Oi|

∑

l∈J∪Oi
(wl + ri,l) < wτ(k) + ri,τ(k) and k ≤ |Fi| do

4: J ← J ∪ {τ(k)} and k ← k + 1
5: end while
6: Ti(w) = α 1

|J |+|Oi|
∑

l∈J∪Oi
(wl + ri,l) + (1− α)

∑

l∈[n] zlri,l

Proposition 4.8. When the constraints of the Discrete PageRank Optimization problem (4.3)
are defined by obligatory, facultative and forbidden links, the greedy algorithm (Algorithm 4.2)
started at page i returns Ti(w) as defined in Proposition 4.7.
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Proof. The local constraints are obviously respected by construction. At the end of the loop,
we have the best choice of facultative outlinks from page i with exactly |J | outlinks. But as

1
|J |+|Oi|

∑

l∈J∪Oi
(wl+ri,l) ≥ wj+ri,j ⇔ 1

|J |+|Oi|
∑

l∈J∪Oi
(wl+ri,l) ≥ 1

|J |+|Oi|+1

∑

l∈J∪Oi∪{j}(wl+
ri,l), the sorting implies that we have the best choice of outlinks.

Remark 4.9. In order to handle upper and lower limits ui and li on the number of links
on Page i, we just need to replace k ≤ |Fi| in Line 3 of Algorithm 4.2 by the condition
li ≤ k + |Oi| ≤ min(ui, |Oi|+ |Fi|).
Proposition 4.9. An ǫ-approximation of the Discrete PageRank Optimization Problem (4.3)
with only local constraints can be done in time

O
( log(ǫ)

log(α)

∑

i∈[n]

|Oi|+ |Fi| log(|Fi|)
)

Proof. The value of the PageRank optimization problem is (1 − α)zw where w = T (w).
Thus it is bounded by (1− α)‖z‖1‖w‖∞ = (1− α)‖w‖∞. The greedy algorithm described in
the preceding paragraph evaluates the ith coordinate of the dynamic programming operator
T in a time bounded by O(|Oi| + |Fi| log(|Fi|)) (by performing a matrix-vector product
and a sort). Thus it evaluates the dynamic programming operator in a time bounded by

O
(

∑

i∈[n]|Oi|+ |Fi| log(|Fi|)
)

.

Now, if we normalize the rewards and if we begin the value iteration with w0 = 0, the
initial error is less than 1 in sup-norm. The fixed point iteration reduces this error by at least
α, so we have to find k ∈ N such that αk ≤ ǫ. With k ≥ log(ǫ)

log(α) , the result holds.

This should be compared to the complexity of PageRank computation by the power

method [Ber05], which is O
(

log(ǫ)
log(α)

∑

i∈[n]|Oi|+ |Fi|
)

.

4.4.3 A generalization of the algorithm of Csáji et al. for total income utility
functions

We next describe an alternative method, which is based on an extension of an approach of
Csáji, Jungers and Blondel in [CJB10]. The latter allows one to optimize the PageRank of a
single page, by reduction to an ergodic Markov decision problem, after an augmentation of
the state space. We will show that when the utility function of the PageRank to be optimized
is linear, we can still solve it, and that value iterations is a possible algorithm.

The idea of [CJB10] is that if the control takes place on hyperlinks instead of transition
probabilities, there are only two possible actions by facultative link: active or not.

We have the digraph G = ([n],
∏

i∈[n]Oi) and a set of controlled links
∏

i∈[n]Fi. Following
[CJB10], we make an augmentation of the state space of the Markov chain. There are two
cases for the state augmentation, depending on the presence of an obligatory hyperlink or
not: see Figures 2.2 and 2.3 in Chapter 2.

We then add a cemetery state τ where websurfers go when they teleport. This is an
analogy with the classical total reward point of view of discounted control problems. Remark
that for every strategy, the associated Markov chain has one unique final class, the state t,
where rewards are zero.

We denote V1 for the set of states from the original model (squares on the figures), and
V for the set of all states in the augmented Markov chain. We set nonzero instantaneous
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rewards only for the links that lead to a state in V1. We build a big matrix R such that for
all j ∈ V1, Ri′,j = r′i,j if i′ ∈ V1 is the image of i ∈ V1 and Rk,j = r′i,j if node k represents
the controlled hyperlink from page i to page j, where r′ is defined as in Remark 4.7 by
r′i,j = ri,j + 1−α

α

∑

l∈[n] zlri,l.

Proposition 4.10. The discrete PageRank Optimization problem (4.3) where the utility func-
tion is an income proportional to the frequency of clicks on the hyperlinks (4.4) is equivalent
to the total reward control problem for the controlled process (Yt)t≥0:

max
ν

lim inf
T→+∞

E(

T−1
∑

t=0

RYt,Yt+1) (4.15)

where
P(Yt+1 = j|Yt = i, νt = a) = Q(i, j, a),∀i, j ∈ V,∀a ∈ Ai,∀t ≥ 0 ,

P(Y0 = j) = (1− α)zj ,∀j ∈ V1 ; P(Y0 = τ) = α ; P(Y0 = j) = 0,∀j 6∈ V1 ∪ {τ} ,
Q(i, j, a) is the transition probability given by the state augmented model with action a chosen
in the action set Ai and ν is a history dependent strategy.

Proof. Section 3.3 in [CJB10] gives the proof that the transition probabilities between original
states are not altered by the state augmentation. For every strategy, the associated Markov
chain has one unique final class, where where rewards are null: the total reward problem is
then well defined. The rewards that we have defined are null except when we reach a state
in V1 and then they are equal in the two models.

The augmented state problem (4.15) admits optimal stationary strategies and it can be
solved by the following dynamic programming equation (see [Put94] Theorem 10.4.3 for in-
stance):

wi = max
ν∈Ai

∑

j∈V
Q(i, j, ν)wj +

∑

j∈V
Q(i, j, ν)Ri,j ,∀i ∈ V and wt = 0

that has a unique solution w. We have simplified the second equation because here we only
have one final class and the reward is 0 in it.

Because of the equivalence in transition probabilities and instantaneous rewards between
initial and augmented state models, w1, the restriction of w to V1 is solution of T (w1) = w1,
where T is defined in Proposition 4.7 and Remark 4.7. The conclusion follows easily by
Proposition 4.7.

The dynamic programming equation associated to Problem 4.15 has a number of states
and actions in the order of n +

∑

i∈[n]Fi. Evaluating its dynamic programming operator
is even faster than with the algorithm of Proposition 4.9 because there is no need to sort.
However, the value iteration derived from the augmented state model described here may
need more iterations to converge because the discount factor does not act on all states: see
Section 4.7.2 for a comparison on an example. We suggest it is better to solve this equation
with policy iteration. See [Put94] for details of the algorithm in the total cost case and
[HDJ11] for complexity issues of policy iterations on the graph augmented Markov decision
process.

We have extended the results of [CJB10] for uniform transition probabilities to total
income utility. Nevertheless, it may not be easy to extend it to the constrained case because
Theorem 5.1 in [CJB10] shows that, if we accept mutual exclusion constraints, then the
problem becomes NP-complete.
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4.5 General shape of an optimized web site

We now use the previous model to identify the features of optimal link strategies. In particular,
we shall identify circumstances under which there is always one “master” page, to which all
other pages should link.

As in the work of De Kerchove, Ninove and Van Dooren [dKNvD08], we shall use the
mean reward before teleportation to study the optimal outlink strategies.

Definition 4.1. Given a stochastic matrix P , the mean reward before teleportation is given
by v(P ) := (In − αS)−1r̄, where r̄i =

∑

j Pi,jri,j .

Recall that S is the original matrix (without damping factor).

Proposition 4.11. Suppose the instantaneous reward ri,j only depends on the current page i
(ri,j = r′i). Denote v(P ) be the mean reward before teleportation (Definition 4.1). Then P is
an optimal link strategy of the continuous PageRank Optimization problem (4.1) if and only
if

∀i ∈ [n], Pi,· ∈ arg max
ν∈Pi

νv(P )

Proof. We have Pv(P ) = v(P )−r′+π(P )r′. Thus, using νe = 1, the condition of the proposi-
tion is equivalent to ∀i ∈ [n], vi(P )+π(P )r′ = maxν∈Pi

ν(v(P )+r′ie). By Proposition 4.4, this
means that v(P ) is the bias of Equation (4.9) and that P is an optimal outlink strategy.

Remark 4.10. Proposition 4.11 shows that if P is any optimal outlink strategy, at every page i,
the transition probability Pi,· must maximize the same linear function.

Remark 4.11. If two pages have the same constraint sets, then they have the same optimal
outlinks, independently of their PageRank. This is no more the case with coupling constraints.

For the discrete PageRank Optimization problem, we have a more precise result:

Theorem 4.4 (Master Page). Consider the Discrete PageRank Optimization problem (4.3)
with constraints defined by given sets of obligatory, facultative and forbidden links. Suppose
the instantaneous reward ri,j only depends on the current page i (ri,j = r′i). Let P be a
transition matrix, v = (In − αS)−1r is the mean reward before teleportation. Then P is an
optimal link strategy if and only if for every controlled page i all the facultative links (i, j)
such that vj >

vi−ri
α are activated and all the facultative links (i, j) such that vj <

vi−ri
α are

deactivated. Any combination of facultative links such that vj =
vi−r′i
α can be activated.

In particular, every controlled page should point to the page with the highest mean reward
before teleportation, as soon as it is allowed to. We call it the “master page”.

Proof. Let P be an optimal strategy. By Remark 4.8, we know that the mean reward before
teleportation at the optimum is a fixed point of the dynamic programming operator. In par-
ticular, it is invariant by the application of the greedy algorithm (Algorithm 4.2). Moreover,
by Proposition 4.7, the mean reward before teleportation at the optimum is unique.

Thus, any optimal strategy must let the mean reward before teleportation invariant by
the greedy algorithm. When there is no obligatory link from page i, either a link (i, j) is
selected and vi = αvj + r′i or no link is selected and vi =

∑

k∈[n] zkvk + r′i > αvj + r′i for all
facultative link (i, j). When there is at least one obligatory link, from Line 3 of the greedy
algorithm, we know that, denoting J the set of activated links, all the links (i, j) verifying
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Figure 4.4: Maximization of the sum of the PageRank values of the colored pages. Top:
obligatory links; self links are forbidden; all other links from controlled pages are facultative.
Bottom: bold arcs represent an optimal linking strategy. Page 4 points to all other controlled
pages and Page 1, the master page, is pointed to by all other controlled pages. No facultative
link towards an external page is selected.

1
|J |+|Oi|

∑

l∈J∪Oi
vl + r′i < vj + r′i, must be activated. This can be rewritten as vj >

vi−r′i
α

because vi = α 1
|J |+|Oi|

∑

l∈J∪Oi
vl + r′i.

Finally, activating any combination of the facultative links such that vj =
vi−r′i
α gives the

same mean reward before teleportation.
Conversely, let P be an outlink strategy such that the mean reward before teleportation

v verifies the hypotheses of the theorem. The equality v = αSv + r′ can be rewritten as

(|Ji| + |Oi|)vi−r′i
α =

∑

l∈Ji∪Oi
vl for all i ∈ [n]. Launching the greedy algorithm on v shows

that Ji is the best combination of outlinks with exactly |Ji| outlinks and that adding or
removing a link from it does not improve the value. Thus v is a fixed point of the dynamic
programming operator and P is an optimal strategy.

The theorem is illustrated in Example 2 (Section 4.4) and Figure 4.4.

Example 4.3. The following simple counter examples show respectively that the conditions
that instantaneous rewards only depend on the current page and that there are only local
constraints are useful in the preceding theorem.

Take a two pages web graph without any design constraint. Set α = 0.85, z = (0.5, 0.5)

and the reward per click r =

[

1 10
2 2

]

. Then v = (39.7, 35.8), Page 2 should link to Page 1

but Page 1 should link to Page 2 because 39.7 + 1 ≤ 35.8 + 10.
Take the same graph as in preceding example. Set r′ = (0, 1) and the coupling constraint

that π1 ≥ π2. Then every optimal strategy leads to π1 = π2 = 0.5. This means that there is
no ”master” page because both pages must be linked to in order to reach πi = 0.5.

Remark 4.12. If every controlled page is allowed to point to every page, as in Figures 4.2
and 4.3, there is a master page to which every page should point. Actually, knowing that the
optimal solutions are degenerate might be of interest to detect link spamming (or avoid being
classified as a link spammer). The result of Proposition 4.11 and Theorem 4.4 can be related
to [GGM05a], where the authors show various optimal strategies for link farms: patterns with
every page linking to one single master page also appear in their study. We also remark that
in [BYCL05], the authors show that making collusions is a good way to improve PageRank.
We give here the page with which one should make a collusion.

Remark 4.13. If there exists a page with maximal reward in which all the hyperlinks can be
changed, then this page is the master page. It will have a single hyperlink, pointing to the
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second highest page in terms of mean reward before teleportation.

4.5.1 Sensitivity of optimal solutions to incomplete crawling

Major search engines have spent lots of efforts on crawling the web to discover web pages
and the hyperlinks between them. They can thus compute accurately the PageRank. A
search engine optimization team may not have such a database available. If one can program
a crawler to get a portion of the web graph or download some datasets of reasonable size for
free ([web] for instance), these are still incomplete crawlings when compared to the search
engine’s.

We study here the consequence of considering a portion of the web graph instead of the
whole web graph on the strategies computed. In general, one can have no guarantee on the
value of the problem because the PageRank could be a lot underestimated if many pages with
high PageRank pointing to a given page are not in the truncated crawl. However, as the op-
timal strategies mainly depend on the mean reward before teleportation v (cf Theorem 4.4),
we only need to study the mean reward before teleportation. In this section, we give a bound
on the error done with respect to the mean reward before teleportation when considering a
truncated crawl instead of Google’s crawl. We denote by S̃, P̃ and ṽ the quantities corre-
sponding to S, P and v in the truncated graph. We define the transition matrix S̃ such that
an uncrawled page j is considered to have no link.

For this paragraph, we shall consider the non compensated PageRank. It consists in
setting Snc(j, ·) = 0 for every page j without any link instead of S(j, ·) = z and define the
non compensated PageRank as πnc = (1 − α)(I − αSnc)−1. Theorem 10 in [Mat04] shows
that the non compensated PageRank is proportional to classical PageRank.

Lemma 4.1. Let vnc be the mean reward before teleportation for the non compensated Page-
Rank, and v the one as in Definition 4.1. Then

‖v − vnc‖∞ ≤
α

1− αzv.

Proof. Let l ∈ R such that li = 1 if page i has no outlink and 0 otherwise. Thus, Snc = S− lz.
We recall that v = (In − αS)−1r̄ =

∑

k≥0 α
kSkr̄ where r̄i =

∑

j Pi,jri,j . Applying Shermann-

Morrisson Formula [Bar51] to (I − αS + αlz)−1, we have:

vnc = (I − α(S − lz))−1r̄ = (I − αS)−1r̄ − α(I − αS)−1l
z(I − αS)−1r̄

1 + αz(I − αS)−1l
= v − (zv)w

where w = α
1+αz(I−αS)−1l

(I − αS)−1l.

Moreover, as l ≥ 0 and ‖l‖∞ ≤ 1, ‖w‖∞ ≤ α
1−α . Finally, ‖v − vnc‖∞ ≤ α

1−αzv.

If only a small portion of the web pages has nonzero instantaneous rewards, then the
quantity (1 − α)zv = πr̄ is the value of the objective and one can have an estimation of its
size thanks to the Google toolbar. The mean value of PageRank entries is 1

n , with n very
large, so usually, the absolute value of a given page’s PageRank is small compared to unity.
In the other hand, the value of the mean reward before teleportation at a controlled page is
expected to be of the order of ‖r‖∞. Thus the bound given by Lemma 4.1 is rather precise
for an “average” website.

We can now prove the following proposition that gives the maximal error done when
considering a graph different from Google’s when optimizing the PageRank.
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Proposition 4.12. Let I be the set of pages of interest, that is the pages containing or being
pointed to by a facultative link. We denote by R the length of a shortest path from a page in
I to an uncrawled page. Then, for all i in I,

|vi − ṽi| ≤ 2
αR+1

1− α‖r̄‖∞ +
α

1− α(zv + zṽ)

Proof. Using, Lemma 4.1, using Snc and S̃nc instead of S and S̃ just adds the second summand
of the left-hand side.

We have ∀i ∈ I,∀k ≤ R, (S̃nc)k(i, ·) = (Snc)k(i, ·), thus

|vnci − ṽnci | = |
∑

k≥0

αkei((S
nc)k − (S̃nc)k)r̄| = |

∑

k≥R+1

αkei((S
nc)k − (S̃nc)k)r̄|

≤ αR+1‖ei‖1 max
k

(‖(Snc)k − (S̃nc)k‖∞)
1

1− α‖r̄‖∞ = 2
αR+1

1− α‖r̄‖∞ .

We have used the property that the infinite norm of a stochastic matrix is 1.

This bound is rather large but it is very unlikely to be tight in practice: to reach it, one
roughly needs that every page at distance R+1 from i is uncrawled and points to page i only.
If this situation occurs, this means that there are many pages pointing to our website and
that we do not know it. The bound nevertheless shows that the precision of the computation
does not depend on the number of pages crawled but on the distance between a controlled
page and an uncrawled page.

4.6 PageRank Optimization with coupling constraints

4.6.1 Reduction of the problem with coupling constraints to constrained Markov
decision processes

Up to now, we have studied discrete or continuous PageRank Optimization problems but
only with local constraints. We consider in this section the following PageRank Optimization
problem (4.1) with ergodic (linear in the occupation measure) coupling constraints:

max
π,P

∑

i,j

πiPi,jri,j st:

πP = π , π ∈ Σn , Pi,· ∈ Pi,∀i ∈ [n] (4.16)

∑

i,j

πiPi,jd
k
i,j ≤ V k,∀k ∈ K

Examples of ergodic coupling constraints are given in Section 4.2.2.

When coupling constraints are present, the previous standard ergodic control model is no
longer valid, but we can use instead the theory of constrained Markov decision processes. We
refer the reader to [Alt99] for more background. In addition to the instantaneous reward r,
which is used to define the ergodic functional which is maximized, we now consider a finite
family of cost functions (dk)k∈K , together with real constants (V k)k∈K , which will be used to
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define the ergodic constraints. The ergodic constrained Markov decision problem consists in
finding an admissible control strategy (νt)t≥0, νt ∈ AXt ,∀t ∈≥ 0, maximizing:

lim inf
T→+∞

1

T
E(

T−1
∑

t=0

r(Xt, νt)) (4.17)

under the |K| ergodic constraints

lim sup
T→+∞

1

T
E(

T−1
∑

t=0

dk(Xt, νt)) ≤ V k, ∀k ∈ K

where the controlled process (Xt)t≥0 is such that

P(Xt+1 = j|Xt, νt) = p(j|Xt, νt) .

Theorem 4.1 in [Alt99] shows that one can restrict to stationary Markovian strategies
and Theorem 4.3 in the same book gives an equivalent formulation of the ergodic con-
strained Markov decision problem (4.17) as a linear program. When Ai = extr(Pi), r(i, a) =
∑

j∈[n] ri,jaj , d
k(i, a) =

∑

j∈[n] d
k
i,jaj and p(j|i, a) = aj (see Proposition 4.3), it is easy to see

that this linear program is equivalent to:

max
ρ

{

∑

i,j∈[n]

ρi,jri,j st: ρ ∈ R and
∑

i,j∈[n]

ρi,jd
k
i,j ≤ V k, ∀k ∈ K

}

(4.18)

where R is the image of
∏

i∈[n] Pi by the correspondence of Proposition 4.1. The set R is
a polyhedron, as soon as every Pi is a polyhedron (Proposition 4.2).

Following the correspondence discussed in Proposition 4.1, we can see that the linear
Problem (4.18) is just the reformulation of Problem (4.16) in terms of occupation measures
when we consider total income utility (4.4).

The last result of this section gives a generalization to nonlinear utility functions:

Proposition 4.13. Assume that the utility function U can be written as U(P ) = W (ρ) where
W is concave, that the local constraints are convex in P and that the coupling constraints
are ergodic. Then, the PageRank Optimization problem (4.16) is equivalent to a concave
programming problem in the occupation measure ρ, from which ǫ-solutions can be found in
polynomial time.

Proof. From Proposition 4.2, we know that the set of locally admissible occupation measures is
convex. Adding ergodic (linear in the occupation measure) constraints preserves this convexity
property. So the whole optimization problem is concave. Finally, Theorem 5.3.1 in [BTN01]
states that ǫ-solutions can be found in polynomial time.

In particular, the (global) optimality of a given occupation measure can be checked by
the first order optimality conditions which are standard in convex analysis.

Remark 4.14. Proposition 4.13 applies in particular if W is a relative entropy utility function,
ie. W (ρ) = −∑i,j∈[n] ρij log(ρij/µij), where parameters µij > 0 (the reference measure) are
given.

If we choose to minimize the entropy function on the whole web graph, we recover the
TrafficRank algorithm [Tom03]. When we control only some of the hyperlinks whereas the
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weights of the others are fixed, the solution of the optimization problem gives the webmaster
the weights that she should set to her hyperlinks in order to have an entropic distribution of
websurfers on her website, interpreted as a fair distribution of websurfers.

In the next section, we extend the first order optimality conditions to the formulation in
probability transitions, in order to get a characterization of the optimal linking strategies in
the constrained PageRank Optimization problem.

4.6.2 Optimality condition

The following shows that the mean reward before teleportation (Definition 4.1) determines
the derivative of the utility function. Recall that the tangent cone TX(x) of the set X at
point x is the closure of the set of vectors q such that x+ tq ∈ X for t small enough.

Proposition 4.14. The derivative of the utility function (4.4) is such that for all Q ∈ TP(P ),

〈DU(P ), Q〉 =
∑

i,j

(vj(P ) + ri,j)πi(P )Qi,j

where v(P ) is the mean reward before teleportation, π(P ) is the invariant measure of P and
〈·, ·〉 is the standard (Frobenius) scalar product on n× n matrices.

Proof. We have U(P ) =
∑

i,j πi(P )Pi,jri,j = πr̄ and π = πP = π(αS+(1−α)ez). As πe = 1,

we have an explicit expression for π as function of P : π(P ) = (1−α)z(In−P +(1−α)ez)−1.
The result follows from derivation of π(P )r̄. We need to derive a product, to derive an
inverse (

〈

D(A 7→ A−1), H
〉

= −A−1HA−1) and the expression of the mean reward before
teleportation v(P ) = (In − P + (1− α)ez)−1r̄.

The next theorem, which involves the mean reward before teleportation, shows that al-
though the continuous constrained PageRank optimization problem is non-convex, the first-
order necessary optimality condition is also sufficient.

Theorem 4.5 (Optimality Condition). Suppose that the sets Pi defining local constraints are
all closed convex sets, that the coupling constraints are given by the ergodic costs functions dk,
k ∈ K and that the utility function is total income utility. Denote Pd be the admissible set and
v(P ) the mean reward before teleportation (Definition 4.1). We introduce the set of saturated
constraints Ksat = {k ∈ K|∑i,j d

k
i,jπiPi,j = V k} and we denote Dk

i,j = πid
k
i,j + πdk(I −

αS)−1eiPi,j. Then the tangent cone of Pd at P is TPd(P ) =
{

Q ∈ ∏i∈[n] TPi
(Pi,·) | ∀k ∈

Ksat , 〈Dk, Q〉 ≤ 0
}

and P ∗ ∈ Pd is the optimum of the continuous PageRank Optimization

problem (4.1) with ergodic coupling constraints if and only if:

∀Q ∈ TPd(P ∗) ,
∑

i,j∈[n]

πi(vj(P
∗) + ri,j)Qi,j ≤ 0

Proof. Let us consider the birational change of variables of Proposition 4.1. As all the occu-
pation measures considered are irreducible, its Jacobian is invertible at any admissible point.
Thus, we can use the results of Section 6.C in [RW97]. Denote P =

∏

i∈[n] Pi, with tangent

cone TP(P ) =
∏

i∈[n] TPi
(Pi,·), and R = f−1(P). We have TRd(ρ) =

{

σ ∈ TR(ρ) | ∀k ∈
Ksat , 〈dk, σ〉 ≤ 0

}

and TPd(P ) =
{

Q ∈ Rn×n | ∇f−1Q ∈ TRd(f−1(P ))
}

.
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∇f−1Q ∈ TRd(f−1(P )) first means that ∇f−1Q ∈ TR(f−1(P )) which can also be written
as ∇f∇f−1Q = Q ∈ TP(P ). The second condition is ∀k ∈ Ksat, 〈dk,∇f−1Q〉 ≤ 0. As
(f−1(P ))i,j = ρi,j = πiPi,j , we have (∇f−1Q)i,j =

∑

k,lQk,l(Pk,l
∂πk

Pi,j
+ πkδikδjl). Thanks to

the expression the derivative of the utility function and of ∂πk

Pi,j
= πiej(I−αS)−1ek both given

in Proposition 4.14, we get the expression stated in the theorem.

By Proposition 4.13, the PageRank optimization problem is a concave programming prob-
lem in ρ and so, the first order (Euler) optimality condition guarantees the global optimality
of a given measure. Thus, every stationary point for the continuous PageRank Optimization
problem is a global maximum when written in transition probabilities also.

4.6.3 A Lagrangian relaxation scheme to handle coupling constraints between
pages

The PageRank Optimization Problem with ”ergodic” coupling constraints (4.16) may be
solved by off the shelve simplex or interior points solvers. However, such general purpose
solvers may be too slow, or too memory consuming, to solve the largest web instances.

The following proposition yields an algorithm that decouples the computation effort due
to complexity of the graph and due to coupling constraints.

Proposition 4.15. The PageRank Optimization problem with K ”ergodic” coupling con-
straints (4.16) can be solved by a Lagrangian relaxation scheme, in which the dual function
and one of its subgradient

θ(λ) = max
ρ∈R
〈r, ρ〉 −

∑

k∈K
λk(
〈

dk, ρ
〉

− V k)

∂θ

∂λk
(λ) =

〈

dk, ρ∗(λ)
〉

− V k

are evaluated by dynamic programming and ρ∗(λ) is a maximizer of the expression defining
θ(λ).

Proof. This is a simple application of Lagrange multipliers theory, see [Lem01] Theorem 21
and Remark 33 for instance. Here we relax the coupling constraints in the problem written
with occupation measures (4.18). We solve the dual problem, namely we minimize the dual
function θ on RK

+ . The value of this dual problem is the same as the value of the constrained
primal problem and we can get a solution of the primal problem since there is no duality
gap.

We have implemented a bundle high level algorithm, in which the dual function is evalu-
ated at each step by running a value iteration algorithm, for a problem with modified reward.
By comparison with the unconstrained case, the execution time is essentially multiplied by
the number of iterations of the bundle algorithm.

4.6.4 A heuristic to solve the discrete problem with coupling constraints

In this section, we give an upper bound for the discrete PageRank optimization problem with
coupling constraints and a heuristic for the PageRank optimization problem with mutual
exclusion constraints.
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Instead of solving these difficult problems, we consider the continuous problem with the
polytopes of uniform transition measures as local admissible sets, i.e. we relax the discrete
pattern. Thus by the Lagrangian scheme of Proposition 4.15, we get an upper bound on the
optimal objective and we have a lower bound for any admissible discrete transition matrix
(see Section 4.7.3).

When it comes to the PageRank optimization problem with mutual exclusion constraints,
we have to deal with combinatorial constraints. However, the problem can be written as
a mixed linear program:

max
ρ,x

∑

i,j

ri,jρi,j

ρi,j − ρi,j ≤Mi,jxi,j , for all constrained link (i, j)

xi1,j1 + xi2,j2 ≤ 1, for all exclusion constraint between (i1, j1) and (i2, j2)

ρ ∈ R x ∈ {0, 1}K

(4.19)

where R is the set of occupation measures satisfying the local constraints, ρ
i,j

= (1 −
α)zj

∑

l ρi,l is the value of the occupation measure where there is no link, Mi,j is an up-
per bound on ρi,j − ρi,j given for instance by a PageRank optimization problem with local

constraints and xi,j is a binary variable that forces the absence of the link from page i to page
j when set to 1.

We consider the continuous problem with the polytopes of uniform transition measures as
local admissible sets and x ∈ [0, 1]K , i.e. we relax the discrete pattern. Thus we get an upper
bound on the optimal objective. To compute it, we remark that at fixed x, the problem is
a PageRank optimization problem with linear coupling constraints and thus is tractable by
Proposition 4.15. The remaining function of x is a nondifferentiable concave function with as
many variables as pages with a mutual exclusion constraint. Hence it is tractable by convex
programming techniques.

The heuristic to get feasible points is based on the following observation: when x is binary,
then the coupling constraints in (4.19) either reduce to forbidden links constraints (xi,j = 0)
or are useless (xi,j = 1). This means that there are no more coupling constraints and finding
a discrete solution is easy. In order to get a discrete point from the fractional solution given
by the convex program, we select the biggest coordinate of x, we set it to 1 and we set the
coordinates with which it has an exclusion constraint to 0. We then start back the process
with the next fractional coordinate until we have a binary vector. The result is not optimal
but provides a lower bound that can be compared with the upper bound.

It may also be possible to design a branch and bound algorithm to solve the problem
exactly thanks to the bounds found.

Remark 4.15. If there are local exclusion constraints, an alternative formulation is to set
directly the constraint Si,j + Si,k ≤ Si,j0 where j0 is an obligatory link. Such constraints lead
to a polytope where all extreme points are uniform transition probabilities as soon as the
graph defined such that there is an arc between the hyperlinks in competition is bipartite.

4.7 Experimental results

We have tried our algorithms on a 2006 crawl on eight New Zealand Universities available
at [Pro06]. There are 413,639 nodes and 2,668,244 links in the graph. The controlled set we
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have chosen is the set of pages containing ”maori” in their url. There are 1292 of them. We
launched the experiments in a sequential manner on a personal computer with Intel Xeon
CPU at 2.98 Ghz and wrote the code in Scilab language.

4.7.1 Continuous problem with local constraints only

Assume that the webmasters controlling the pages containing ”maori” in their url cooperate
and agree to change at most 20% of the links’ weight to improve the PageRank, being un-
derstood that self-links are forbidden (skeleton constraint, see Section 4.2.2). The algorithm
launched on the optimization of the sum of the PageRanks of the controlled pages (calculated
with respect to the crawled graph only, not by the world wide graph considered by Google)
ran 27 seconds.

The optimal strategy returned is that every controlled page except itself should link with
20% weight to the page maori-oteha.massey.ac.nz/te waka.htm. That page should link to the
page maori-oteha.massey.ac.nz/tewaka/about.htm. The sum of PageRank values goes from
0.0057 to 0.0085.

Hence, by uniting, this team of webmasters would improve the sum of their PageRank
scores by 49%. Remark that all the pages point to the same page (except itself because
self-links are forbidden). The two best pages to point to are in fact part of a “dead end” of
the web graph containing only pages with maximal reward. A random surfer can only escape
from this area of the graph by teleporting, which makes the mean reward before teleportation
maximal.

4.7.2 Discrete problem

On the same data set, we have considered the discrete optimization problem. The set of
obligatory links is the initial set of links. We have then selected 2,319,174 facultative links
on the set of controlled pages of preceding section.

Execution time took 81 seconds with the polyhedral approach of Section 4.4.2 (60 itera-
tions). We compared our algorithm with the adaptation of the graph augmentation approach
of [CJB10] to total utility presented in Section 4.4.3: this algorithm took 460 seconds (350
iterations) for the same precision. The optimal strategy is to add no link that goes out of
the website but get the internal link structure a lot denser. From 12,288 internal links, the
optimal strategy is to add 962,873 internal links. Finally, 98.2% of the links are internal links
and there is a mean number of links per page of 770. The sum of PageRank values jumps
from 0.0057 to 0.0148.

Here, as the weights of the links cannot be changed, the webmaster can hardly force
websurfers to go to dead ends. But she can add so many links that websurfers get lost in the
labyrinth of her site and do not find the outlinks, even if they were obligatory.

4.7.3 Coupling linear constraints

As we have seen in the preceding experiments, optimizing the PageRank with too much
freedom may lead to an awkward and unpleasant website. So we would like to solve the
discrete optimization problem of the preceding section with additional design constraints. We
require that each visitor coming on one of the pages of the team has a probability to leave the
set of pages of the team on next step of 40% (coupling conditional probability constraint, see
Section 4.2.2). This guarantees that websurfers will not be led to dead ends. We also require
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that the sum of PageRank values of the home pages of the 10 universities considered remains
at least equal to their initial value after the optimization (effective frequency constraint).
Finally, we limit the number of links added by page to 20 (local constraint discussed in
Remark 4.9).

In the case of constrained Markov decision processes, optimal strategies are usually ran-
domized strategies. This means that the theory cannot directly deal with discrete action
sets. Instead, we consider the continuous problem with the polytopes of uniform transition
measures as local admissible sets, i.e. we relax the discrete pattern. Thus by the Lagrangian
scheme of Proposition 4.15, we get an upper bound on the optimal objective and we have
a lower bound for any admissible discrete transition matrix.

The initial value is 0.0057 and the Lagrangian relaxation scheme gives an upper bound
of 0.00742. Computation took 500 s (8 high level iterations). During the course of the La-
grangian relaxation scheme, all intermediate solutions are discrete and three of them satisfied
the coupling constraints. The best of them corresponds to a sum of PageRanks of 0.00739
(improvement: 30%). Thus the duality gap is at most 0.4%. In general, the intermediate
discrete solutions need not satisfy the coupling constraints and getting an admissible discrete
solution may be difficult.

The discrete transition matrix found suggests to add 15,324 internal links but also 2,851
external links. Thanks to the limit on the number of links added, fewer hyperlinks are added
than in Section 4.7.2. Moreover, thanks to the coupling constraints, external links are added
too, which improves the quality of the website.

Conclusion

We have presented in this chapter a general framework to study the optimization of PageRank.
Our results apply to a continuous problem where the webmaster can choose the weights of
the hyperlinks on her pages and to the discrete problem in which a binary decision must
be taken to decide whether a link is present. We have shown that the Discrete PageRank
Optimization problem without coupling constraints can be solved by reduction to a con-
cisely described relaxed continuous problem. We also showed that the continuous PageRank
optimization problem is polynomial time solvable, even with coupling constraints.

We gave scalable algorithms which rely on an ergodic control model and on dynamic pro-
gramming techniques. The first one, which applies to problems with local design constraints,
is a fixed point scheme whose convergence rate shows that optimizing PageRank is not much
more complicated than computing it. The second algorithm, which handles coupling con-
straints, is still efficient when the number of coupling constraints remains small.

We have seen that the mean reward before teleportation gives a total order of preference
in pointing to a page or another. This implies that pages high in this order concentrate many
inlinks from controlled pages. This is a rather degenerate strategy when we keep in mind that
a web site should convey information. Nevertheless, the model allows one to address more
complex problems, for instance with coupling constraints, in order to get less trivial optimal
linking strategies.

This work may be useful to understand link spamming, to price Internet advertisements
or, by changing the objective function, to design web sites with other goals like fairness or
usefulness.



CHAPTER 5

PageRank optimization applied to
spam detection

5.1 Introduction

From the early days of search engines, some webmasters have tried to get their web pages
overranked thanks to malicious manipulations. For instance, adding many keywords on a
page is a classical way to make search engines consider a page relevant to many queries.
With the advent of link-based algorithms, spammers have developed new strategies, called
link-spamming [GGM05b], that intend to give some target page a high score. For instance,
Gyöngyi and Garcia-Molina [GGM05a] showed various linking strategies that improve the
PageRank score of a page. They justified the presence of link farms with patterns with every
page linking to one single page. Baeza-Yates, Castillo and López [BYCL05] also showed that
making collusions is a good way to improve PageRank.

In order to fight such malicious manipulations that deteriorate search engines’ results
and deceive web surfers, various techniques have been developed. We refer to [CD10] for
a detailed survey of this subject. Each spam detection algorithm is focused on a particular
aspect of spam pages. Content analysis (see [NNMF06] for instance) is the main tool to detect
deceiving keywords. Some simple heuristics [AAD08] may be enough to detect the most coarse
link-spam techniques, but more evolved graph algorithms like clique detection [STKA07],
SpamRank [BCSU05] or Truncated PageRank [BL06] have also been developed to fight link-
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spamming. As web spammers adapt themselves to detection algorithms, machine learning
techniques [GS07] try to discover actual predominant spam strategies and to adapt to its
evolutions. Another direction of research concerns the propagation of trust through the web
graph with the TrustRank algorithm [GGMP04] and its variants or the propagation of distrust
through a reversed web graph with the AntiTrustRank algorithm [KR06].

In this chapter, we develop a new link spam detection and PageRank demotion algorithm
called MaxRank. Like in [GGMP04, KR06], we start with a seed of hand-picked trusted and
spam pages. We define the MaxRank of a page as the frequency of visit of this page by a
random surfer minimizing an average cost per time unit. On a given page, the random surfer
selects a set of hyperlinks and clicks with uniform probability on any of these hyperlinks.
The cost function penalizes spam pages and hyperlink removals. The goal is to determine
an optimal hyperlink deletion policy. The features of MaxRank are based on PageRank
optimization [AL06, MV06, dKNvD08, IT09, CJB10] and more particularly on the results of
Chapter 4. Those works have shown that the problem of optimizing the PageRank of a set of
pages by controlling some hyperlinks can be solved by Markov Decision process algorithms.
There, the optimization of PageRank was thought from a webmaster’s point of view whereas
here, we take the search engine’s point of view. We show that the Markov Decision Process
defining MaxRank is solvable in polynomial time (Proposition 5.2), because the polytopes
of occupation measures admit efficient (polynomial time) separation oracles. The invariant
measure of the Markov Decision Process, the MaxRank vector, is interpreted as a modified
PageRank vector, used to sort web pages instead of the usual PageRank vector. The solution
of the ergodic dynamic programming equation, called the bias vector, is unique up to an
additive constant. We show that it can be interpreted as a measure of the “spamicity” of
each page, used to detect spam pages.

We give a scalable algorithm for MaxRank computation that allowed us to perform numer-
ical experiments on the WEBSPAM-UK2007 dataset [web07]. We show that our algorithm
outperforms both TrustRank and AntiTrustRank for spam and nonspam page detection. As
an example, on the WEBSPAM-UK2007 dataset, for a recall of 0.8 in the spam detection
problem, MaxRank has a precision of 0.87 while TrustRank has a precision of 0.30 and An-
tiTrustRank a precision of 0.13.

5.2 The MaxRank algorithm

In this section, we define the MaxRank algorithm. It is based on our earlier works on
PageRank optimization. In Chapter 4, we considered the problem of optimizing the PageRank
of a given website from a webmaster’s point of view, that is with some controlled hyperlinks
and design constraints. Here, we take the search engine’s point of view. Hence, for every
hyperlink of the web, we can choose to take it into account or not: our goal is to forget spam
links while letting trusted links active in the determination of the ranking.

As in TrustRank [GGMP04] and AntiTrustRank [KR06], we start with a seed of trusted
pages and known spam pages. The basic idea is to minimize the sum of PageRank scores
of spam pages and maximize the sum of PageRank scores of nonspam pages, by allowing
us to remove some hyperlinks when computing the PageRank. However, if we do so, the
optimal strategy simply consists in isolating already known spam pages from trusted pages:
there is then no hope to detect other spam and nonspam pages. Thus, we add a penalty
when a hyperlink is removed, so that “spamicity” can still propagate through (removed or
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not removed) hyperlinks. Finally, we also control the teleportation vector in order to penalize
further pages that we suspect to be spam pages.

We model this by a controlled random walk on the web graph, in which the hyperlinks
can be removed. Each time the random surfer goes to a spam page, he gets a positive cost,
each time he goes to a trusted page, he gets a negative cost. When the status of the page is
unknown, no cost incurs. In addition to this a priori cost, he gets a penalty for each hyperlink
removed. Like for PageRank, the random surfer teleports with probability α at every time
step; however, in this framework, he chooses the set of pages to which he wants to teleport.

Let Fx be the set of pages pointed by x in the original graph and Dx be the degree of x.
An action consists in determining J ⊆ Fx, the set of hyperlinks that remain, and I ⊆ [n], the
set of pages to which the surfer may teleport. We shall restrict I to have a cardinality equal
to N ≤ n. Then, following (2.2), the probability of transition from page x to page y is

p(y|x, I, J) = ανy(I, J) + (1− α)zy(I)

where the teleportation vector and the hyperlink click probability distribution are given by

zy(I) =

{

|I|−1 if y ∈ I
0 otherwise

νy(I, J) =











zy(I) if |J | = ∅
|J |−1 if y ∈ J
0 otherwise

The cost at page x is given by

c(x, I, J) = c′x + γ
Dx − |J |
Dx

.

c′x is the a priori cost of page x. This a priori cost should be positive for known spam pages
and negative for trusted pages. Dx is the degree of x in the web graph and γ > 0 is a penalty
factor. The penalty γDx−|J |

Dx
is proportional to the number of pages removed.

We study the following ergodic control problem:

inf
(It)t≥0,(Jt)t≥0

lim sup
T→+∞

1

T
E(

T−1
∑

t=0

c(Xt, It, Jt)) , (5.1)

where an admissible control consists in selecting, at each time step t, a subset of pages
It ⊆ [n] with |It| = N to which teleportation is permitted, and a subset Jt ⊆ FXt of the set
of hyperlinks in the currently visited page Xt.

The following proposition gives an alternative formulation of Problem (5.1) that we will
then show to be well-described.

Proposition 5.1. Fix N ∈ N and let

Z = {z ∈ Rn|
∑

i∈[n]

zi = 1, 0 ≤ zi ≤
1

N
} .
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Let Fx be the set of pages pointed by x in the original graph and Dx be the degree of x. Let
Px be the polyhedron defined as the set of vectors (σ, ν) ∈ RDx+1 × Rn such that there exists
w ∈ R(Dx+1)×n verifying

Dx
∑

d=0

σd = 1 (5.2a)

σd ≥ 0 , ∀d ∈ {0, . . . , Dx} (5.2b)

νj =

Dx
∑

d=0

wdj , ∀j ∈ [n] (5.2c)

∑

j∈[n]

wdj = σd , ∀d ∈ {0, . . . , Dx} (5.2d)

0 ≤ w0
j ≤

σ0

Nz
, ∀j ∈ [n] (5.2e)

wdj = 0 , ∀j 6∈ Fx,∀d ∈ {1, . . . , Dx} (5.2f)

0 ≤ wdj ≤
σd

d
, ∀j ∈ Fx,∀d ∈ {1, . . . , Dx} (5.2g)

Then Problem 5.1 is equivalent to the following ergodic control problem

inf
σ,ν,z

lim sup
T→+∞

1

T
E(

T−1
∑

t=0

c̃(Xt, σt, νt, zt)) , (5.3)

where the cost is defined as

c̃(x, σ, ν, z) = c′x + γ
Dx −

∑Dx

d=0 dσ
d

Dx

and the transitions are
p̃(y|x, σ, ν, z) = ανy + (1− α)zy .

The admissible controls verify for all t, (σt, νt) ∈ extr(PXt) (the set of extreme point of the
polytope) and zt ∈ extr(Z).

Indeed, to each action (σ, ν, z) of Problem (5.3) corresponds a unique action I, J of Prob-
lem (5.1) and vice versa. Moreover, the respective transitions and costs are equal.

Proof. Fix a page x in [n]. The extreme points of Z are the vectors of Rn with N coordinates
equal to 1

N and the other ones equal to 0. Hence z(I) ∈ extr(Z) and for each extreme point
z′ of Z there exists I ∈ [n] such that |I| = N and z′ = z(I). We shall also describe the set of
extreme points of Px.

From the theory of disjunctive linear programming [Bal98], we can see that the polytope
K = {ν | (σ, ν) ∈ Px} is the convex hull of the union of Dx + 1 polytopes that we will denote
Kd, d ∈ {0, 1 . . . Dx}. If d = 0, then K0 = Z. If d > 0, Kd = {ν ∈ Rn | ∑j∈[n] νj = 1, 0 ≤
νj ≤ 1

d ,∀j ∈ Fx, νj = 0,∀j 6∈ Fx}.
Let (σ, ν) be an extreme point of Px. By Corollary 2.1.2-ii) in [Bal98], there exists d∗ such

that σd
∗

= 1 and ν is an extreme point of K. As σd
∗

= 1 and σd = 0 for d 6= d∗, we conclude
that ν is also an extreme point of Kd∗ = Px ∩ {σ|σd∗ = 1}. If d∗ = 0, ν ∈ extr(Z) and if
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d∗ > 0, the extreme points of Kd∗ correspond exactly to the vectors with d∗ coordinates in
Fx equal to 1

d∗ and the other ones equal to 0. Hence there exists I ⊆ [n] and J ⊆ Fx such
that |I| = N , |J | = d∗ and ν = ν(I, J).

Conversely, fix I and J and let σ(J) be such that σd(J) = 1 if and only if d = |J |. Then
(σ(J), ν(I, J)) is an extreme point of Px by Corollary 2.1.2-i) in [Bal98].

Finally the costs are the same since |J | =∑Dx

d=0 dσ
d.

Proposition 5.2. If α, γ and c′i, i ∈ [n] are rational numbers, then the ergodic control
problem (5.3) is the average cost infinite horizon problem for a well described Markov decision
process and it is polynomial time solvable.

Proof. Clearly, the process described is a Markov decision process. As the polytopes Pi,
i ∈ [n] and Z are described by a polynomial number of inequalities with at most n+ 1 terms
in each, they are well described. Indeed, the separation oracle consisting simply in testing
each inequality terminates in polynomial time. The cost and transitions are linear functions
on those polytopes with rational coefficients since α and c′i, i ∈ [n] are rational numbers. Thus
the Markov decision process is well described. By Theorem 3 in [FABG13], Problem (5.3) is
thus solvable in polynomial time.

Proposition 5.3. The dynamic programming equation

vi + λ = min
(σ,ν)∈Pi,z∈Z

c′i + γ
Di −

∑Di

d=0 dσ
d

Di
+
∑

j∈[n]

(ανj + (1− α)zj)vj , ∀i ∈ [n] (5.4)

has a solution v ∈ Rn and λ ∈ R. The constant λ is unique and is the value of problem (5.1).
An optimal strategy is obtained by selecting for each state i, (σ, ν) ∈ Pi and z ∈ Z maximizing
Equation (5.4). The function v is called the bias.

Proof. Theorem 8.4.3 in [Put94] applied to the unichain ergodic control problem (5.3) implies
the result of the proposition but with Pi replaced by extr(Pi). But as the expression which is
maximized is affine, using Pi or extr(Pi) yields the same solution. Proposition 5.1 gives the
equivalence between (5.1) and (5.3)

Proposition 5.4. Let T be the dynamic programming operator Rn → Rn defined by

Ti(v) = min
(σ,ν)∈Pi

c′i + γ
Di −

∑Di

d=0 dσ
d

Di
+ α

∑

j∈[n]

νjvj , ∀i ∈ [n].

The map T is α-contracting in the sup norm and its fixed point v, which is unique, is such
that (v, (1− α) minz∈Z z · v) is solution of the ergodic dynamic programming equation (5.4).

Proof. The set {ν st: (σ, ν) ∈ Pi} is a set of probability measures so λ ∈ R ⇒ T (v + λ) =
T (v) + αλ and v ≥ w ⇒ T (v) ≥ T (w). This implies that T is α-contracting. Let v be its
fixed point. For all i ∈ [n],

vi + (1− α) min
z∈Z

z · v = min
(σ,ν)∈Pi,z∈Z

c′i + γ
Di −

∑Di

d=0 dσ
d

Di
+
∑

j∈[n]

ανjvj + (1− α)zjvj

We get equation (5.4) with constant (1− α) minz∈Z z · v.
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Remark 5.1. The dynamic programming operator T is a monotone and additively sub-
homogeneous map. Hence, v can be seen as its eigenvector corresponding to the eigenvalue 0.
The invariant measure is here a kind of “left eigenvector” for this nonlinear map. Hence we
see that the MaxRank algorithm also belongs to the class of Perron rankings (see Section 2.3).

We can then solve the dynamic programming equation (5.4) and so the ergodic control
problem (5.1) by value iteration (outer loop of Algorithm 5.1).

The algorithm starts with an initial potential function v, scans repeatedly the pages and
updates vi when i is the current page according to vi ← Ti(v) until convergence is reached.
Then (v, (1 − α) minz∈Z zv) is solution of the ergodic dynamic programming equation (5.4)
and an optimal linkage strategy is recovered by selecting the maximizing (σ, ν) at each page.
An optimal teleportation vector is recovered by selecting a maximizing z in minz∈Z zv.

Thanks to the damping factor α, the iteration can be seen to be α-contracting if the pages
are scanned in a cyclic order. Thus the algorithm converges in a number of steps independent
of the dimension of the web graph.

For the evaluation of the dynamic programming operator T at a page i (inner for-loop
of Algorithm 5.1), we remark that for a fixed 0 − 1 valued σ, that is for a fixed number
of removed hyperlinks, the operator Ti maximizes a linear function on a hypercube, which
reduces essentially to a sort. Any extreme point (σ, ν) of Pi necessarily verifies that σ is 0−1
valued. Thus we just need to choose the best value of σ among the Di + 1 possibilities.

Algorithm 5.1 MaxRank algorithm

1: Initialization: v ∈ Rn

2: while ‖v − T (v)‖∞ ≥ ǫ do
3: Sort (vl)l∈[n] in increasing order and let φ : [n] → [n] be the sort function so that

vφ(1) ≤ · · · ≤ vφ(n).

4: λ← 1−α
N

∑N
j=1 vφ(j)

5: for i from 1 to n do
6: w0

i ← c′i + γ + α
1−αλ

7: Sort (vj)j∈Fi
in increasing order and let ψ : Fi → {1, . . . , |Fi|} be the function such

that vψ(1) ≤ · · · ≤ vψ(|Fi|).
8: for d from 1 to Di do
9: wdi ← c′i + γDi−d

Di
+ α

d

∑d
j=1 vψ(j)

10: end for
11: Ti(v) = mind∈{0,1,...,Di}w

d
i

12: end for
13: v ← T (v)
14: end while

This very efficient algorithm is highly scalable: we used it for our experimental results on
a large size dataset (Section 5.3).

The following proposition shows that if γ is too big, then the optimal link removal strategy
is trivial. It also gives an interpretation of the bias vector in terms of number of visits of
spam pages.

Proposition 5.5. If γ > 2α
1−α‖c‖∞, then no link should be removed. Moreover if in addition,

c′i = 1 when i is a spam page and 0 otherwise, then the ith coordinate of the fixed point of
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operator T in Proposition 5.4 (the bias vector) is equal to the expected mean number of spam
pages visited before teleportation when starting a walk from page i.

Proof. Proposition 5.4 gives a normalization of the bias vector such that it cannot take any
value greater than ‖c‖∞

1−α , as it is the case for PageRank optimization [dKNvD08, FABG13].

Now fix i ∈ [n]. Let ν0 = ν(Fi) and ν = ν(I, J) for J ⊂ Fi. If J = ∅, then

α|νv − ν0v| ≤ α|νv|+ α|ν0v| ≤ 2α

1− α‖c‖∞
Di − |∅|
Di

.

If J 6= ∅, then

α|νv − ν0v| ≤ α|( 1

|J | −
1

Di
)
∑

j∈J
vj |+ α| 1

Di

∑

j∈Fi

vj |

≤ Di − |J |
|J |Di

α‖c‖∞
1− α +

Di − |J |
Di

α‖c‖∞
1− α ≤ γ

Di − |J |
Di

.

This proves that choosing J = Fi is always the best strategy when γ > 2α
1−α‖c‖∞.

When no link is removed and c′ is defined as in the proposition, we are in the framework
of [dKNvD08], where it is shown that the ith coordinate of the fixed points of the operator
T is equal to the expected mean number of visits before teleportation when starting a walk
from page i.

5.3 Spam detection and PageRank demotion

We performed numerical experiments on the WEBSPAM-UK2007 dataset [web07]. This is
a crawl of the .uk websites with n = 105,896,555 pages performed in 2007, associated with
lists of hosts classified as spam, nonspam and borderline. There is a training dataset for the
setting of the algorithm and a test dataset to test the performance of the algorithm.

We took γ = 4, α = 0.85, N = 0.89n, c′i = 1 if i is a spam page of the training dataset,
c′i = −0.2 if i is a nonspam page of the training dataset and c′i = 0 otherwise. Then we
obtained the MaxRank score and the associated bias vector. We also computed TrustRank
and AntiTrustRank with the training dataset as the seed sets. We used the Webgraph frame-
work [BV04], so that we could manage the computation on a personal computer with four
Intel Xeon CPUs at 2.98 GHz and 8 GB RAM. We coded the algorithm in a parallel fashion
thanks to the OpenMP library. Computation took around 6 minutes for each evaluation of
the dynamic programming operator of Proposition 5.4 and 6 hours for 60 such iterations (pre-
cision on the objective α60 ≤ 6.10−5). By comparison, PageRank computation with the same
precision required 1.3 hour on the same computer, which is of the same order of magnitude.

Figure 5.1 gives the values taken by the bias vector. Figure 5.2 compares the precision
and recall of PageRank, TrustRank, AntiTrustRank and MaxRank bias for spam or non
spam detection. Precision and recall are the usual measures of the quality of an information
retrieval algorithm [BYRN99]. Precision is the probability that a randomly selected retrieved
document is relevant. Recall is the probability that a randomly selected relevant document
is retrieved in a search. These values were obtained using the training and the test sets.
Figure 5.3 compares TrustRank and MaxRank scores for PageRank demotion. It shows that
MaxRank is a good candidate for a spam-resistant version of PageRank.
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Figure 5.1: Recognizing spam with the bias vector. Top: the values of the bias for all pages.
Bottom: zoom on bias values near 0. Pages are sorted by growing bias value. Spam pages
of the training set have a large positive bias value, non spam pages of the training set have
a negative bias value. Pages in between describe a “continuum” of values and the separation
between pages considered spam or not is arbitrarily set.
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Figure 5.2: Top: Precision as a function of recall for spam detection. Bottom: Precision as a
function of recall for detection of non spam pages. We present the result for four algorithms:
PageRank (dotted line below), TrustRank (dashed line), AntiTrustRank (dash-dotted line)
and MaxRank bias (solid line). Given a vector of scores, the various pairs of precision-
recall values are obtained for various thresholds defining the discrimination between pages
considered spam and non spam. TrustRank and AntiTrustRank have a precision of 1 on their
seed set, which represent around 70% of the total test set. But out of their training set, their
precision decreases quickly. MaxRank, on the other hand, remains precise even out of its
training set.
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Figure 5.3: Top: PageRank demotion by TrustRank. We show the ratio of TrustRank over
PageRank. Pages are sorted by growing promotion. The demotion is very coarse, since there
are many pages with a very small TrustRank score, when compared to their PageRank score.
Bottom: PageRank demotion by MaxRank. The demotion is finer, most of the pages have a
nearly unchanged score, up to a multiplicative constant.



CHAPTER 6

Convergence of Tomlin’s HOTS
algorithm

6.1 Introduction

In this chapter, we focus on an algorithm proposed by Tomlin in [Tom03] for the ranking of
web pages, called HOTS. It may also be used for other purposes like the ranking of sport
teams [Gov08]. Like PageRank [BP98], HITS [Kle99] and SALSA [LM00], HOTS uses the
hyperlink structure of the web (see also [LM05b, LM06] for surveys on link-based ranking
algorithms). This structure is summarized in the web graph, which is the digraph with a
node for each web page and an arc between pages i and j if there is a hyperlink from page i
to page j.

The HOTS vector, used to rank web pages, is the vector of the exponentials of the dual
variables of an optimal flow problem. The flow represents an optimal distribution of web
surfers on the web graph in the sense of entropy maximization. The dual variable, one by
page, is interpreted as the “temperature” of the page, the hotter a page the better. In the case
of the PageRank, the flow of websurfers is determined by the uniform transition probability
of following one hyperlink in the current page. This transition rule is in fact arbitrary. The
HOTS model assumes that the web surfers choose the hyperlink to follow by maximizing
the entropy of the flow. Hence, the HOTS problem is a continuous PageRank optimization
problem where the weights of all the hyperlinks of the web are controlled and the objective
function is the entropy of the occupation measure (The occupation measure as defined in
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Chapter 4 corresponds exactly to the flow of web surfers). Tomlin showed that the dual
vector of the entropy optimization problem, the HOTS vector, is solution of a nonlinear fixed
point equation. He then proposed a scaling algorithm to compute the HOTS vector, based
on this fixed point equation.

This algorithm solves the matrix balancing problem studied among others in [Har71,
EHRS85, SZ90, Sch90]. Given a n× n nonnegative matrix A, the matrix balancing problem
consists in finding a matrix X of the form X = D−1AD with D diagonal definite positive
and such that

∑

kXi,k =
∑

j Xj,i for all i. We shall compare Tomlin’s HOTS algorithm
with Schneider and Zenios’s coordinate descent DSS algorithm [SZ90]. The main difference
between these algorithms is that in coordinate descent, the scaling is done node by node in
the network (i.e. in a Gauss-Seidel fashion) whereas in Tomlin’s HOTS algorithm, the scaling
is done all the nodes at the same time, in a Jacobi fashion.

A problem close to the matrix balancing problem is the equivalence scaling problem,
where given an m × n nonnegative matrix A, we search for a matrix X of the form X =
D1AD2 with D1 and D2 diagonal definite positive and such that X is bistochastic. The
Sinkhorn-Knopp [KS67] algorithm is a famous algorithm designed for the resolution of the
scaling problem. We may see HOTS algorithm as the analog of Sinkhorn-Knopp algorithm
for the matrix balancing problem: both algorithms correspond to fixed point iterations on the
diagonal scalings. Moreover, Smith [Smi05] and Knight [Kni08] proposed to rank web pages
according to the inverse of the corresponding entry in the diagonal scaling.

However, whereas Sinkhorn-Knopp algorithm [KS67] and the coordinate descent algo-
rithm [LT92] have been proved to converge, it does not seem that a theoretical result on
the convergence of Tomlin’s HOTS algorithm has been stated in previous works, although
experimentations [Tom03] suggest that it is the case. Indeed, Knight [Kni08, Sec. 5] rose the
fact that Tomlin did not state any convergence result for HOTS algorithm. Another algo-
rithm for the matrix balancing problem is given in [JPS00], based on the equivalence between
the matrix balancing problem and the problem of minimizing the dominant eigenvalue of an
essentially nonnegative matrix under trace-preserving diagonal perturbations [JSOvdD94].

In this chapter, we prove the convergence of Tomlin’s HOTS algorithm. We first study a
simplified version of the algorithm that we call the ideal HOTS algorithm. It is a fixed point
scaling algorithm that solves the matrix balancing problem for nonnegative irreducible ma-
trices. We prove its convergence thanks to nonlinear Perron-Frobenius theory (Theorem 6.2).
The proof methods are general and apply to a family of deformations of HOTS. Then, we
address the effective HOTS algorithm, for the general case, which is the version designed by
Tomlin for the ranking of web pages. Indeed the web graph is not strongly connected, which
implies that the balanced matrix does not necessarily exist. The model is a nonlinear network
entropy maximization problem which generalizes matrix balancing. We show in Theorem 6.5
that under mild assumptions the HOTS algorithm converges with a linear rate of convergence.
The proof relies on the properties of the ideal HOTS algorithm: uniqueness of the fixed point
up to an additive constant and decrease of a Lyapunov function at every step (Theorem 6.3).

We also show that Schneider and Zenios’s coordinate descent algorithm can be adapted to
find the ideal and effective HOTS vectors. We compare the HOTS algorithm and coordinate
descent on fragments of the web graph in Section 6.5. We considered small, medium and
large size problems. In all cases the respective computational costs of both algorithms were
similar. As the performances of the HOTS algorithm depends on the primitivity of the
adjacency matrix considered and coordinate descent does not, coordinate descent can be
thought to have a wider range of applications. However, the actual implementation of the
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HOTS algorithm is attractive for web scale problems: whereas coordinate descent DSS uses at
each iteration (corresponding to a given web page) information from incoming and outgoing
hyperlinks, the HOTS algorithm reduces to elementwise operations and left and right matrix
vector products. Hence, an iteration of the HOTS algorithm can be performed without neither
computing nor storing the transpose of the adjacency matrix.

We give an exact coordinate descent algorithm for the truncated scaling problem defined
in [Sch89] and we extend its use to the problem of computing the HOTS vector when some
bounds on the web surfers flow are known. Experimental results show that exact coordinate
descent is an efficient algorithm for web scale problems and that it is faster than the inexact
coordinate descent algorithm presented in [Sch90]. Finally, we remarked that the convergence
rate of the effective HOTS algorithm seems to deteriorate when the size of the graph con-
sidered increases. In order to overcome this feature, we propose a normalized version of the
HOTS algorithm where we maximize a relative entropy of the flow of web surfers instead of
the classical entropy. A byproduct is that the associated ranking favors pages with no outlink
less than Tomlin’s HOTS.

The chapter is organized as follows. In Section 6.2, we prove the convergence of the ideal
HOTS algorithm and we give a Lyapunov function for this algorithms. In Section 6.3, we give
the convergence rate of the effective HOTS algorithm. In Section 6.4, we study the HOTS
problem with bounds on the flow of web surfers. In Section 6.5, we compare various candidate
algorithms to compute the HOTS vector and in Section 6.6, we give the normalized HOTS
algorithm.

6.2 The ideal HOTS algorithm

The web graph is a graph constructed from the hyperlink structure of the web. Each web
page is represented by a node and there is an arc between nodes i and j if and only if page i
points to page j. We shall denote by A the adjacency matrix of the web graph.

There are two versions of the HOTS algorithm: an ideal version for strongly connected
graphs, i.e. for irreducible adjacency matrices, and an effective version for general graphs that
we will study in Section 6.3. The HOTS algorithm for irreducible matrices is designed for
the resolution of the following nonlinear network flow problem. The optimization variable ρi,j
represents the traffic of websurfers on the hyperlink from page i to page j.

max
ρ≥0
−
∑

i,j∈[n]

ρi,j(log(
ρi,j
Ai,j

)− 1)

∑

j∈[n]

ρi,j =
∑

j∈[n]

ρj,i , ∀i ∈ [n] (pi)

∑

i,j∈[n]

ρij = 1 (µ)

The dual problem consists in minimizing the function θ on Rn × R where

θ(p, µ) :=
∑

i,j∈[n]

Aije
pi−pj+µ − µ .

We use the convention that 0 log(0) = 0 and that x log(x/0) = 0 if x = 0, x log(x/0) = +∞
otherwise.
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If (p, µ) is a minimizer of θ, then the value of exp(pi) is interpreted as the temperature of
page i, the hotter the better. We call it the HOTS (Hyperlinked Object Temperature Scale)
score.

The ideal HOTS algorithm (Algorithm 6.1) reduces to the fixed point iterations for the
function f defined by

f(x) =
1

2
(log(AT ex)− log(Ae−x)) . (6.1)

Denoting yi = epi , we can write it in multiplicative form to spare computing the exponentials
and logarithms.

Algorithm 6.1 Ideal HOTS algorithm [Tom03]

Start with an initial point y0 ∈ Rn, y0 > 0. Given yk, compute yk+1 such that

yk+1
i =

(
∑

j∈[n]Aj,iy
k
j

∑

l∈[n]Ai,l(y
k
l )

−1

) 1
2

.

Algorithm 6.2 Coordinate descent DSS [SZ90]

Start with an initial point y0 ∈ Rn, y0 > 0. Given yk, select a coordinate i ∈ [n] and compute
yk+1 such that

yk+1
i =

(
∑

j∈[n]Aj,iy
k
j

∑

l∈[n]Ai,l(y
k
l )

−1

) 1
2

yk+1
j =ykj , ∀j 6= i

We shall compare the HOTS algorithm with Schneider and Zenios’s coordinate descent
DSS algorithm (Algorithm 6.2). This is indeed a coordinate descent algorithm since for every
k, we have, denoting pi = log(yi),

pk+1
i = arg min

x∈R

θ(pk1, . . . , p
k
i−1, x, p

k
i+1, . . . , p

k
n) .

Coordinate descent algorithms (Algorithm 6.3) are designed to solve

min
x∈X

φ(x) (6.2)

where X is a possibly unbounded box of Rn and φ has the form φ(x) = ψ(Ex) + 〈b, x〉, ψ is
a proper closed convex function, E is an m× n matrix having no zero row and b is a vector
of Rn.

Proposition 6.1 ([LT92]). Assume that the set of optimal solutions X ∗ of (6.2) is nonempty,
that the domain of ψ is open, that ψ is twice continuously differentiable on its domain and
that ∇2ψ(Ex) is positive definite for all x ∈ X ∗. Let (xk)k be a sequence generated by the
coordinate descent algorithm (Algorithm 6.3), using the cyclic rule (more general rules are
also possible). Then (xk)k converges at least linearly to an element of X ∗.
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Algorithm 6.3 Coordinate descent

Start with an initial point x0 ∈ Rn. Given xk, select a coordinate i ∈ [n] and compute xk+1

such that

xk+1
i = arg min

li≤y≤ui

φ(xk1, . . . , x
k
i−1, y, x

k
i+1, . . . , x

k
n)

xk+1
j =xkj , ∀j 6= i

We now study the fixed point operator f defined in (6.1).

Proposition 6.2 ([Tom03]). A vector p ∈ Rn is a fixed point of f defined in (6.1) if and
only if the couple (p, µ) with µ = − log(

∑

i,j∈[n]Aije
pi−pj ) is a minimizer of the dual function.

Moreover, in this case, denoting D = diag(exp(p)), eµDAD−1 is a maximizer of the network
flow problem.

Proof. As θ is convex and differentiable, a couple (p, µ) is a minimizer if and only if it cancels
the gradient. ∂θ

∂µ(p, µ) =
∑

i,j∈[n]Aije
pi−pjeµ − 1, so we have the expression of the optimal µ

as a function of p. To conclude, we remark that

∂θ

∂pk
(p, µ) =



−
∑

i∈[n]

Ai,ke
pi−pk +

∑

j∈[n]

Ak,je
pk−pj



 eµ = 0

is equivalent to f(p) = p. To get back to the primal problem, we remark that the primal cost
of eµDAD−1 is equal to the dual cost of (p, µ) and that it is an admissible circulation.

Proposition 6.3. The map f defined in (6.1) is monotone, additively homogeneous (Defini-
tion 2.2).

Proof. For all real λ and for all vectors p, q such that p ≤ q, f(λ+p) = λ+f(p) (log(eλ) = λ)
and f(p) ≤ f(q) (log and exp are increasing functions).

The following result gives the conditions for the existence and uniqueness of the ideal
HOTS vector.

Theorem 6.1 ([EHRS85]). There exists v ∈ Rn such that f(v) = v and
∑

i∈[n] vi = 0 if and
only if A has a diagonal similarity scaling if and only if A is completely reducible.

If in addition A is irreducible, then this vector is unique.

Corollary 6.1. If A is completely reducible, coordinate descent DSS (Algorithm 6.2) con-
verges linearly to a vector v such that diag(v)Adiag(v)−1 is scaled.

To prove the convergence of the ideal HOTS algorithm (Algorithm 6.1), we use the non-
linear Perron-Frobenius theory, the main theorems of which are stated in Section 2.4.

Theorem 6.2. Let f be the map defined in (6.1). If A is irreducible and A+AT is primitive,
then there exists a vector v and such that f(v) = v and for all x ∈ Rn,

lim sup
k→∞

‖fk+1(x)− v‖1/k ≤ |λ2(P )| = max{|λ|;λ ∈ spectrum(P ), λ 6= 1}

where P = 1
2

(

diag(AT ev)−1ATdiag(ev) + diag(Ae−v)−1Adiag(e−v)
)

. In particular, the ideal
HOTS algorithm (Algorithm 6.1) converges linearly at rate |λ2(P )|.
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Proof. The iterates of the fixed point iteration defined by p0 = x and pk+1 = f(pk) verify
pk = log(yk) where yk is the kth iterate of the ideal HOTS algorithm (Algorithm 6.1) started
with y0 = exp(x). Hence, by continuous differentiability of the exponential, the rate of
convergence of both versions of the algorithm is the same. By Theorem 6.1, as A is irreducible,
f has a fixed point v and diag(exp(v)) is solution of the matrix balancing problem associated
to A. Now easy calculations show that ∇f = P . As P has the same pattern as A+AT , P is
primitive if and only if A+AT is. The result follows from Theorem 2.3.

This theorem shows that the HOTS vector for the irreducible case is well defined if A is
irreducible and that if A + AT is primitive, then the ideal HOTS algorithm (6.1) converges
linearly to the HOTS vector.

Remark 6.1. The ideal HOTS algorithm (Algorithm 6.1) requires a primitivity assumption
in order to converge that coordinate descent DSS (Algorithm 6.2) does not require. On the
other hand, the convergence rate of coordinate descent DSS is not explicitly given while
Theorem 6.2 gives the convergence rate of ideal HOTS.

Remark 6.2. Changing the diagonal of A does not change the optimal scaling, so we can choose
a nonzero diagonal for A in the preceding theorem. This is useful when A is irreducible but
not primitive.

The fixed point equation defining the ideal HOTS vector is

yi =

(

∑

j Aj,iyj
∑

k Ai,ky
−1
k

) 1
2

.

Indeed, the page i has a good HOTS score if it is linked to by pages with a good HOTS score
and if it does not link to pages with a bad HOTS score.

We thus introduce the following set of fixed point ranking algorithms.

Algorithm 6.4 Deformed HOTS algorithm

Let α, β ≥ 0 such that α+ β = 1 and let g : Rn
+ → Rn

+ defined for all i by

gi(x) =
(
∑

j Aj,ixj)
α

(
∑

k Ai,kx
−1
k )β

.

Given an initial point d0 ∈ Rn and a norm ‖·‖, the deformed HOTS algorithm is defined by

dk+1 =
g(dk)

‖g(dk)‖

Proposition 6.4. Let α, β ≥ 0 such that α + β = 1. If A is irreducible and αA + βAT is
primitive, then the deformed HOTS algorithm (Algorithm 6.4) converges linearly to a positive
vector.

Proof. Let h = log ◦g ◦ exp. As in the proof of Theorem 6.5, the rate of convergence for
the fixed point iterations with g or h is the same. The map h is monotone and additively
homogeneous. For α > 0, its graph is equal to A. Hence, for α > 0, h has an eigenvector by
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Theorem 2.1. For α = 0, as A is irreducible, by the Perron-Frobenius theorem [BP94], A has
an eigenvector x. Then log(x−1) is an eigenvector of h. Now

∇h(v) = αdiag(AT ev)−1ATdiag(ev) + βdiag(Ae−v)−1Adiag(e−v)

so we have the convergence as soon as αA+ βAT is primitive by Theorem2.3.

Remark 6.3. For α = 1
2 , we have the fixed point diagonal similarity scaling, for α = 1, we

have the ranking by the Perron vector [Kee93] and for α = 0, we have an “anti-Perron” score,
where good pages are those that do not link to pages with a bad score.

The following result gives a global contraction factor in the case when A is positive.

Proposition 6.5. If k(A) is the contraction factor of A in Hilbert metric (k(A) < 1 if A is

positive), then f is k(AT )+k(A)
2 -contracting in Hilbert metric.

Proof. Let x and y be two positive vectors such that ηy ≤ x ≤ νy elementwise. Then
η′AT y ≤ ATx ≤ ν ′AT y with log(ν ′/η′) ≤ k(AT ) log(ν/η). We also have that η′′Ay−1 ≤
Ax−1 ≤ ν ′′Ay−1 with log((η′′)−1/(ν ′′)−1) ≤ k(A) log(ν/η). Hence,

d(g(x), g(y)) = log((
ν ′′ν ′

η′′η′
)1/2) ≤ k(AT ) + k(A)

2
log(

ν

η
) .

A key technical ingredient of the convergence of the effective HOTS algorithm described
in the next section will be Theorem 6.3 below showing that each iteration p ← f(p) of the
ideal HOTS algorithm does not increase the dual objective function.

Theorem 6.3 (Lyapunov function). θ(f(p)) ≤ θ(p)

Proof. Let us denote ψ(p, q) =
∑

i,j e
piAije

−qj .

ψ(p, 2f(p)− p) =
∑

i,j

epiAij

(

(Ae−p)j
(AT ep)j

)

epj =
∑

j

(Ae−p)jepj

= θ(p) = ψ(2f(p)− p, p)

Now, as ψ is convex,

θ(f(p)) = ψ(
1

2
(2f(p)− p, p) +

1

2
(p, 2f(p)− p)) ≤ θ(p) .

6.3 The effective HOTS algorithm

Theorem 6.1 gives conditions for the existence and uniqueness of the HOTS vector in the ideal
case. In practice the irreducibility condition does not hold for the web graph. The classical
solution for this problem is to add a small positive value to the adjacency matrix [BP98, LM06]
in order to get a positive matrix. Tomlin proposed an alternative approach based on the
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network flow model. We consider the following nonlinear network flow problem with network
given by

A′ =

[

A 1
1T 0

]

where 1 denotes the vector with all entries equal to 1.

max
ρ≥0

−
∑

i,j∈[n+1]

ρi,j(log(
ρi,j
A′
i,j

)− 1)

∑

j∈[n+1]

ρi,j =
∑

j∈[n+1]

ρj,i , ∀i ∈ [n+ 1] (pi)

∑

i,j∈[n+1]

ρij = 1 (µ)

∑

j∈[n]

ρn+1,j = 1− α (a)

1− α =
∑

i∈[n]

ρi,n+1 (b)

We use the conventions that 0 log(0) = 0 and that x log(x/0) = 0 if and only if x = 0. In this
new model, we add an artificial node connected to all the other nodes and such that the flow
through this node is prescribed to be 1− α.

The algorithm is designed for the minimization of the dual function θ where

θ(p, µ, a, b) =
∑

i,j∈[n]

Aije
pi−pj+µ +

∑

i∈[n]

e−b−pn+1+pi+µ

+
∑

j∈[n]

ea+pn+1−pj+µ − (1− α)a− µ+ (1− α)b . (6.3)

We first give the following counter-example, showing that the problem may be ill posed.

Counter-Example 6.1. The dual function θ may be unbounded.

Proof. Take

A =





0 1 0
0 0 1
0 0 0



 .

We have

θ̃(p) = min
µ,a,b

θ(p, µ, a, b) = C(α) + (1− α) log(
∑

i∈[n]

epi)+

(1− α) log(
∑

i∈[n]

e−pi) + (2α− 1) log(ep1−p2 + ep2−p3)

where C(α) ∈ R. For all k ∈ R,

θ̃(−k, 0, k, 0) = C(α) + 2(1− α) log(1 + ek + e−k) + (2α− 1) log(e−k + e−k)

= C(α) + 2(1− α)k − (2α− 1)k + 2(1− α) log(1 + e−k + e−2k) + (2α− 1) log(2)

For α > 3
4 , θ is unbounded.
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This example is indeed rather degenerate: the HOTS algorithm can only diverge because
it searches the minimum of an unbounded function. Said otherwise, it tries to solve a network
flow problem without any admissible flow. We shall give conditions under which there exists
a HOTS vector and show that the HOTS algorithm converges to the HOTS vector when these
conditions hold.

Remark 6.4. A natural idea to establish the convergence of a fixed point algorithm is to show
that it is a contraction in Hilbert metric. In the case of the effective HOTS algorithm, even
when the matrix A is positive, the fixed point algorithm may not be a contraction (take a
perturbation of Counter-example 6.1).

Lemma 6.1 ([Tom03]). For any p ∈ Rn+1, the minimum of θ(p, µ, a, b) with respect to µ, a
and b is unique and given by

µ = log(
2α− 1

∑

i,j∈[n]Ai,je
pi−pj

) ,

a = log(
1− α
2α− 1

∑

i,j∈[n]Ai,je
pi−pj

∑

j∈[n] e
pn+1−pj

) ,

b = − log(
1− α
2α− 1

∑

i,j∈[n]Ai,je
pi−pj

∑

i∈[n] e
pi−pn+1

) .

Proof. The function θ(p, ·, ·, ·) is convex and differentiable so the optimality condition is just
that the gradient is zero. One can easily see that the only triple that cancels the gradient is
the one given in the lemma.

We denote λ = (µ, a, b) and λ(p) the solution of the minimization of θ(p, λ) with respect
to λ. For λ ∈ R3, we denote

fλi (p) =
1

2
(log(

∑

j∈[n]

Aj,ie
pj + epn+1+a)− log(

∑

k∈[n]

Ai,ke
−pk + e−pn+1−b)) . (6.4)

We also define gλ = exp ◦fλ ◦ log:

gλi (y) =

(
∑

j∈[n]Aj,iyj + eayn+1
∑

k∈[n]Ai,k(yk)
−1 + e−b(yn+1)−1

) 1
2

.

Algorithm 6.5 Effective HOTS algorithm

Given an initial point y0 ∈ Rn, the effective HOTS algorithm is defined by

yk+1 = gλ(log(yk))(yk)

Proposition 6.6. Let us denote θ̃(p) = minpn+1,µ,a,b θ((p, pn+1), µ, a, b) and for all l ∈ [n],

dl =
epl(
∑

j∈[n] e
−pj )(

∑

i,j∈[n]Aije
pi−pj )

(2α− 1)(
∑

i∈[n]Aile
pi)(
∑

j∈[n] e
−pj ) + (1− α)

∑

i,j∈[n]Aije
pi−pj

> 0 . (6.5)
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Then

θ̃(p) = C(α) + φ(−p) + φ(p) + (2α− 1) log(
∑

i,j∈[n]

Ai,je
pi−pj )

where C(α) = 1−2(1−α) log(1−α)− (2α−1) log(2α−1) and φ(p) = (1−α) log(
∑

i∈[n] e
pi).

Moreover, for all l ∈ [n], we have

f
λ(p)
l (p) = pl −

1

2
log(1 + dl

∂θ̃

∂pl
(p)) .

Proof. From the expressions of an+1, bn+1 and µ at the optimum, respectively given by
ean+1 = 1−α

P

j∈[n] e
−pj

e−µ, e−bn+1 = 1−α
P

i∈[n] e
pi
e−µ and eµ = 2α−1

P

i,j∈[n] Aije
pi−pj

, we can write θ̃ as a

function of p only:

θ̃(p) = min
an+1,bn+1,µ

θ(p, µ, an+1, bn+1) = C(α) + φ(−p) + φ(p) + (2α− 1) log(
∑

i,j∈[n]

Ai,je
pi−pj )

where C(α) and φ are given in the proposition. Its gradient is given by

∂θ̃

∂pl
(p) = −(1−α)

e−pl

∑

j e
−pj

+(1−α)
epl

∑

i e
pi
− (2α−1)

∑

iAile
pi−pl

∑

i,j Aije
pi−pj

+(2α−1)

∑

j Alje
pl−pj

∑

i,j Aije
pi−pj

This equality can be also written as

e2pl

(

(2α− 1)

∑

j Alje
−pj

∑

i,j Aije
pi−pj

+
1− α
∑

i e
pi

)

= (2α− 1)

∑

iAile
pi

∑

i,j Aije
pi−pj

+
1− α
∑

j e
−pj

+ epl
∂θ̃

∂pl
(p)

which yields for all p in Rn,

pl =
1

2
log

(

∑

i

Aile
pi +

∑

i,j Aije
pi−pj

2α− 1
(

1− α
∑

j e
−pj

+ epl
∂θ̃

∂pl
(p))

)

− 1

2
log((

∑

j

Alje
−pj ) +

1− α
2α− 1

∑

i,j Aije
pi−pj

∑

i e
pi

) .

Now,

f
λ(p)
l (p) =

1

2
log(

∑

i

Aile
pi+

1− α
2α− 1

∑

i,j Aije
pi−pj

∑

j e
pj

)−1

2
log(

∑

j

Alje
−pj+

1− α
2α− 1

∑

i,j Aije
pi−pj

∑

i e
pi

) .

Using the formula log(A) = log(A+B)− log(1 +B/A), we may also write it as

f
λ(p)
l (p) = pl −

1

2
log(1 + dl

∂θ̃

∂pl
(p)) .

We can see that the equation fλ(p)(p) = p is equivalent to ∂θ̃
∂pl

(p) = 0 but also that

successively applying the function
(

p 7→ fλ(p)(p)
)

corresponds to a descent algorithm.

The next proposition gives information on the spectrum of the Hessian of the function θ.
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Proposition 6.7. The Hessian of the function θ̃ : p 7→ θ̃(p) = minpn+1,µ,a,b θ((p, pn+1), µ, a, b)
is symmetric semi-definite with spectral norm smaller that 4. Its nullspace has dimension 1
exactly for all p and a basis of this nullspace is given by the vector e, with all entries equal
to 1.

Proof. As θ is convex, its Hessian matrix is clearly symmetric semi-definite.
Now, let φ : x 7→ log(

∑

i e
xi) be the log-sum-exp function.

We have yT∇2φ(x)y =
P

i y
2
i e

xi
P

k e
xk
− (

P

i yie
xi )2

(
P

k e
xk )2

. This expression is strictly positive for any non

constant y, because a constant y is the only equality case of the Cauchy Schwartz inequality
∑

i yie
xi/2exi/2 ≤ (

∑

i e
xk)1/2(

∑

i y
2
i e
xi)1/2. As the function θ is the sum of φ (the third term

of (6.6)) and of convex functions, it inherits the strict convexity property on spaces without
constants. This development even shows that the kernel of ∇2θ(p) is of dimension at most 1
for all p. Finally, as θ is invariant by addition of a constant, the vector e is clearly part of the
nullspace of its Hessian.

For the norm of the Hessian matrix, we introduce the linear function Z : Rn → Rn×n such
that (Zp)i,j = pi − pj and φ̃ : z 7→ log(

∑

k∈[n]×[n]Ake
zk). Then θ(p) = C(α) + (1− α)φ(p) +

(1− α)φ(−p) + (2α− 1)φ̃(Zp).

0 ≤ yT∇2φ(x)y =
P

i y
2
i e

xi
P

k e
xk
− (

P

i yie
xi )2

(
P

k e
xk )2

≤
P

i y
2
i e

xi
P

k e
xk
≤ ‖y‖2∞ ≤ ‖y‖22. Thus ‖∇2φ‖2 ≤ 1.

By similar calculations, one gets yTZT∇2φ̃(x)Zy ≤ ‖Zy‖2∞. As ‖Zy‖∞ = maxi,j |yi − yj | ≤
2‖y‖∞ ≤ 2‖y‖2, we have that ‖∇2θ‖2 ≤ (1−α)+(1−α)+(2α−1)×4 = 6α−2 < 4. Finally,
for symmetric matrices, the spectral norm and the operator 2-norm are equal.

Lemma 6.2. Let d ∈ Rn such that for all i, di > 0. The reduced function θ̃ defined by
θ̃(p) = minpn+1,µ,a,b θ((p, pn+1), µ, a, b) is strictly convex on H = {x ∈ Rn | ∑i∈[n] dixi = 0}.
In particular, there exists at most one HOTS vector up to an additive constant.

Proof. Like in the proof of Proposition 6.7, as H does not contain the constant vectors, θ̃ is
strictly convex on H. We conclude that the minimum of θ̃ on H is unique if it exists. We can
then extend this result to the whole space since θ(η + p) = θ(p) for all real number η.

Lemma 6.3. Let d and θ̃ be as in Lemma 6.2. The function θ̃ is coercive on the hyperplane
{x ∈ Rn+1 | ∑i∈[n+1] dixi = 0} if and only if there exists a primal solution with the same

pattern as A′.

Proof. If the function θ is coercive, there exists a dual solution and thus there also exists a
primal solution with the same pattern as A′.

If there exists a primal solution with the same pattern as A′, the constraint qualification
conditions are satisfied [Sch89], and there exists a dual solution. By Lemma 6.2, θ̃ is strictly
convex on the hyperplane {x ∈ Rn+1 | ∑i∈[n+1] dixi = 0}. Thus it is necessarily coercive on
this hyperplane.

Lemma 6.4. If A 6= 0, then for any fixed λ, the iterative algorithm consisting in successive
applications of fλ, defined in (6.4), converges to a minimizer of the function (p 7→ θ(p, λ)).
Moreover, this minimizer is unique up to an additive constant.

Proof. The map fλ corresponds to the ideal HOTS fixed point operator (6.1) for the matrix

[

A ea1
eb1T 0

]
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where 1 denotes the vector with all entries equal to 1. As this matrix is primitive as soon as
A 6= 0, Theorem 6.2 and Proposition 6.2 apply.

Theorem 6.4. Let F defined by F (p) = fλ(p)(p) as in (6.4). Let p∗ be the logarithm of a
HOTS vector defined by p∗ = F (p∗). The matrix ∇F (p∗) has all its eigenvalues in the real
interval (−1, 1] and the eigenvalue 1 is simple.

Proof. Let us denote γ = 1−α
2α−1 , ea = γ

P

i,j∈[n] Aije
pi−pj

P

j e
−pj

, e−b = γ
P

i,j∈[n] Aije
pi−pj

P

i e
pi

. Then for all

k ∈ [n],

Fk(p) =
1

2
log(

∑

i∈[n]

Aike
pi + ea)− 1

2
log(

∑

j∈[n]

Akje
−pj + e−b)

Fn+1(p) =
1

2
log(

∑

i∈[n]

epi)− 1

2
log(

∑

j∈[n]

e−pj ) .

As no coordinate of F (p) depends on pn+1, we may consider the reduced function that we
shall still denote F and such that to p ∈ Rn associates F (p, 0). The eigenvalues of the original
function are 0 and the eigenvalues of the reduced function.

First, by Proposition 6.6, we have

F (p) = p− 1

2
log(1 + diag(d)

∂θ̃

∂p
)

where θ̃(p) = minpn+1,µ,a,b θ((p, pn+1), µ, a, b) and dl = 1
2α−1

epl (
P

i,j∈[n] Aije
pi−pj )

P

i∈[n] Aile
pi+ea > 0. Differ-

entiating this equality, we deduce that ∇F = In − 1
2diag(d)∇2θ̃. Let λ be an eigenvalue of

∇F . This means that there exist a vector x such that

λx = ∇Fx = x− 1

2
diag(d)∇2θ̃x

∇2θ̃x = 2(1− λ)diag(d−1)x

This is a generalized eigenvalue problem with ∇2θ̃ symmetric semi-definite positive by convex-
ity of θ̃ and diag(d−1) diagonal definite positive. Hence 2(1− λ) is necessarily a nonnegative
real number and λ is real and smaller than 1. Also, if λ = 1, this means that x is the vector
with all its entries equal to 1 (by Proposition 6.7) and thus λ is simple.

We shall now show that all the eigenvalues of ∇F (p∗) are strictly greater than −1. Dif-
ferentiating the expression of a, we get

∂ea

∂pl
(p) = γ

(

−
∑

i∈[n]Aile
pi−pl

∑

j∈[n] e
−pj

+

∑

j∈[n]Alje
pl−pj

∑

j∈[n] e
−pj

+

∑

i,j∈[n]Aije
pi−pj

(
∑

j∈[n] e
−pj )2

e−pl

)

But as p∗ is a fixed point of F , it satisfies the equality

∑

i∈[n]

Aile
p∗i −p∗l + ea

∗−p∗
l =

∑

j∈[n]

Alje
p∗

l
−p∗j + e−b

∗+p∗
l
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which can be rewritten as

∑

j∈[n]

Alje
p∗

l
−p∗j −

∑

i∈[n]

Aile
p∗i −p∗l = γ

∑

i,j∈[n]

Aije
p∗i −p∗j

(

e−p
∗
l

∑

j∈[n] e
−p∗j
− ep

∗
l

∑

i∈[n] e
p∗i

)

.

Hence

∂ea

∂pl
(p∗) = γ

∑

i,j∈[n]

Aije
p∗i −p∗j

(

γ
e−p

∗
l

(
∑

j e
−p∗j )2

− γ ep
∗
l

∑

i e
p∗i
∑

j e
−p∗j

+
e−p

∗
l

(
∑

j e
−p∗j )2

)

Let us introduce d′ such that

d′−1
k =

∑

i∈[n]

Aike
p∗i −p∗k + ea

∗−p∗
k =

∑

j∈[n]

Akje
p∗

k
−p∗j + e−b

∗+p∗
k . (6.6)

Doing the same for e−b as for ea and differentiating F , we get

∂Fk
∂pl

(p∗) =
1

2
d′kAl,ke

p∗
l
−p∗

k +
1

2
d′kAk,le

p∗
k
−p∗

l +
1

2
γ
∑

i,j∈[n]

Aije
p∗i −p∗j d′k×

(

(1 + γ)
e−p

∗
l
−p∗

k

(
∑

j e
−p∗j )2

− γ ep
∗
l
−p∗

k

∑

i e
p∗i
∑

j e
−p∗j
− γ ep

∗
k
−p∗

l

∑

i e
p∗i
∑

j e
−p∗j

+ (1 + γ)
ep

∗
l
+p∗

k

(
∑

i e
p∗i )2

)

.

We can now decompose ∂F
∂p as

∂F

∂p
= D′S +D′R

where D′ = diag(d′), S is a symmetric matrix with nonnegative entries

Sk,l =
1

2
Ak,le

pl−pk +
1

2
Al,ke

pk−pl +
1

2
γ
∑

i,j

Aije
pi−pj

(

e−pl−pk

(
∑

j e
−pj )2

+
epl+pk

(
∑

i e
pi)2

)

and R is the following symmetric rank 1 matrix

Rk,l =
1

2
γ2
∑

i,j

Aije
pi−pj

(

e−pk

∑

j e
−pj
− epk

∑

i e
pi

)(

e−pl

∑

j e
−pj
− epl

∑

i e
pi

)

The nonnegative matrix D′S verifies that for all k,
∑

l d
′
kSk,l = 1, thus by the Perron-

Frobenius theorem [BP94], we have exhibited a Perron vector and the spectral radius of the
matrix is 1. Moreover, D′S is positive, so every other of its eigenvalues has a modulus strictly
smaller than 1.

The matrix D′R is a rank 1 matrix and its only nonzero eigenvalue is positive. Indeed it
is equal to 1

2γ
2
∑

i,j Aije
pi−pj

∑

k(
e−pk

P

j e
−pj
− epk

P

i e
pi

)2d′k.

Let λ be an eigenvalue of ∂F
∂p = D′S + D′R. It then also an eigenvalue of the similar

matrix (D′)1/2S(D′)1/2 + (D′)1/2R(D′)1/2, which is symmetric. Hence,

λ ≥ min
x∈Rn:‖x‖2=1

xT (D′)1/2S(D′)1/2x+ xT (D′)1/2R(D′)1/2x
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As the spectral radius of D′S is 1, the same is true for (D′)1/2S(D′)1/2 and for all vector x,
xT (D′)1/2S(D′)1/2x > −‖x‖22. As D′R has only nonnegative eigenvalues, (D′)1/2R(D′)1/2 is
semi-definite positive and xT (D′)1/2R(D′)1/2x ≥ 0 for all x. As a conclusion,

λ ≥ min
x∈Rn:‖x‖2=1

xT (D′)1/2S(D′)1/2x+ xT (D′)1/2R(D′)1/2x > −1

Theorem 6.5. Let F (p) = fλ(p)(p) as in (6.4). If there exists a primal feasible point with
the same pattern as A′, then the effective HOTS algorithm (Algorithm 6.5) converges to a
HOTS vector ep

∗
(unique up to a multiplicative constant) linearly at a rate |λ2(∇F (p∗))| =

max{|λ|;λ ∈ spectrum(∇F (p∗)), λ 6= 1},

Proof. Let F̃ be the map defined by F̃ (p) = F (p)− 1
1T d′−1

∑

i∈[n+1](d
′
i)
−1Fi(p), with d′i defined

in (6.6) in the proof of Theorem 6.4 for i ∈ [n] and (d′n+1)
−1 = 0. For all k, let pk be the

kth iterate of the HOTS algorithm, i.e. pk+1 = F (pk), and let λk = λ(pk). We also define
qk by q0 = p0 and qk+1 = F̃ (qk). By Theorem 6.3 and by definition of λk+1, we have
θ(pk, λk) ≥ θ(pk+1, λk) ≥ θ(pk+1, λk+1). As qk − pk is proportional to the vector with all
entries equal to 1, λ(pk) = λ(qk) = λk and θ(qk, λ) = θ(pk, λ) for all k and λ. Hence

θ(qk, λk) ≥ θ(qk+1, λk) ≥ θ(qk+1, λk+1) . (6.7)

Now, for all k, qk ∈ H = {x ∈ Rn+1 | ∑i∈[n+1](d
′
i)
−1xi = 0}. As by Lemma 6.3, θ̃ is coercive

on H, θ is bounded from below and (θ(qk, λk))k converges to, say, θ̄. Moreover, the sequence
(qk)k must be bounded. By continuity of the function λ(·), (λk)k is also bounded. Hence,
they have limit points.

Let q̄ be a limit point of (qk)k and λ̄ = λ(q̄). For all ǫ > 0 and K > 0, there exists k ≥ K
and k′ ≥ k + 1 such that ‖qk − q̄‖ ≤ ǫ, ‖qk′ − q̄‖ ≤ ǫ. By (6.7),

θ(qk, λk) ≥ θ(qk+1, λk) ≥ θ(qk+1, λ(qk+1)) ≥ θ(qk′ , λk′)

where qk+1 = F̃ (qk). When ǫ tends to 0 and K tends to infinity, we get with ¯̄q = F̃ (q̄),

θ(q̄, λ̄) ≥ θ(¯̄q, λ̄) ≥ θ(¯̄q, λ(¯̄q)) ≥ θ(q̄, λ̄) .

In particular, θ(¯̄q, λ̄) = θ(¯̄q, λ(¯̄q)). This implies by Lemma 6.1 that λ̄ ∈ arg minλ θ(¯̄q, λ) and
thus λ̄ = λ(¯̄q) by uniqueness of the minimizer.

Similarly, ¯̄q is also a limit point of (qk)k and we may consider the sequence (uk)k such
that uk = (F̃ )k(q̄) = (f λ̄)k(q̄) − 1

1T d′−1

∑

i∈[n+1] d
′
i
−1((f λ̄)k(q̄))i. Iterating the argument of

the preceding paragraph, for any k, λ(uk) = λ̄ and uk is a limit point of (qk)k. Now, by
Lemma 6.4, the sequence (uk) converges to q∗ ∈ arg minq θ(q, λ̄). As we also have λ(q∗) = λ̄,
we conclude that (q∗, λ̄) is a minimizer of θ and that there exists a limit point of (qk, λk)k
that minimizes θ. Now, as (θ(qk, λk))k is decreasing, all the limit points of (qk) minimize θ.
The uniqueness of the minimizer of θ on H (Lemma 6.2) gives the convergence of the effective
HOTS algorithm to the HOTS vector in the projective space, that is the convergence of the
sequence (qk)k.

We shall now prove that the sequence (pk)k≥0 indeed converges. Let us denote by
ρ = max{|λ|;λ ∈ spectrum(∇F (q∗)), λ 6= 1}. By Theorem 6.4, we know ρ < 1. De-
noting (λi, ui, vi)i∈[n+1], the eigenvalues and eigenvectors of ∇F (q∗) =

∑n+1
i=1 λiuiv

T
i , we
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have ∇F̃ (q∗) =
∑n+1

i=2 λiuiv
T
i + 1(d′−1)T

1T d′−1 − 1
1T d′−1 (d′−1)T 1(d′−1)T

1T d′−1 =
∑n+1

i=2 λiuiv
T
i . Hence

by [Ost55], for all ǫ′ > 0, there exists a norm ‖·‖ such that for all x ∈ Rn+1, ‖∇F̃ (q∗)x‖ =
‖∑n

i=2 λiuiv
T
i x‖ ≤ (ρ+ ǫ′)‖x‖.

Thus for x ∈ Rn+1 sufficiently close to q∗,

‖F̃ (x)− q∗‖ = ‖F̃ (x)− F̃ (q∗)‖ ≤ (1 + ǫ′/2)‖∇F (q∗)(x− q∗)‖ ≤ (ρ+ ǫ′)‖x− q∗‖ .

We deduce that (qk) converges linearly at rate ρ to q∗. Now for all k, we have

pk = qk +
k−1
∑

l=0

1

1Td′−1

∑

i∈[n+1]

d′i
−1
Fi(ql)

= qk +

k−1
∑

l=0

1

1Td′−1

∑

i∈[n+1]

d′i
−1
Fi(ql)− Fi(q∗) = qk +

k−1
∑

l=0

ηl ,

where |ηl| = O(‖F (ql) − F (q∗)‖) = O(‖ql − q∗‖) = O(ρl). Hence
∑k−1

l=0 ηl is summable and
converges linearly at rate ρ. Finally, (pk) converges linearly at rate ρ. Like in the proof of
Theorem 6.5 we deduce the convergence of the sequence (exp(pk)) linearly at rate ρ to a
HOTS vector.

Remark 6.5. If instead of considering the following nonlinear network flow problem where the
network is given by

A′ =

[

A 1
1T 0

]

we take

A′′ =

[

A 1
1T 1

]

then there always exists a primal feasible point with the same pattern as A′′ and the modified
HOTS algorithm always converges (even for A = 0). All the proofs carry over, with only a
minor change in the expression of λ(p).

The last result shows that coordinate descent is an alternative algorithm for the compu-
tation of the effective HOTS vector.

Proposition 6.8. If there exists a primal feasible point with the same pattern as A′, the
coordinate descent algorithm applied to the unrestricted minimization of the dual function
θ defined in (6.3) and choosing coordinates in a cyclic order converges linearly to a HOTS
vector.

Proof. If there exists a primal feasible point with the same pattern as A′, then the set of
minimizers of θ is nonempty by Lemmas 6.2 and 6.3. The function θ has the required form
with ψ(x) =

∑

i,j Ai,j exp(xi,j). The Hessian of ψ is clearly definite positive for all x. Thus
the hypotheses of Proposition 6.1 are verified and the result follows.
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6.4 An exact coordinate descent for the truncated scaling problem

Truncated scaling problems were introduced by Schneider in [Sch89, Sch90] in order to gen-
eralize both matrix balancing and row-column equivalence scaling. Given an n× n matrix A
and bounds L and U such that Li,j ≤ Ui,j , the truncated scaling problem consists in finding
a matrix X of the form X = T(D−1AD) with D diagonal definite positive, T the truncation
operator Ti,j(X) = max(min(Ui,j , Xi,j), Li,j) and such that

∑

kXi,k =
∑

j Xj,i for all i. This
problem is equivalent to the following optimization problem

max
ρ≥0

−
∑

i,j∈[n]

ρi,j(log(
ρi,j
Ai,j

)− 1)

∑

j∈[n]

ρi,j =
∑

j∈[n]

ρj,i , ∀i ∈ [n] (pi)

Li,j ≤ ρi,j ≤ Ui,j , ∀i, j ∈ [n] (ηi,j , ζi,j)

If the bounds satisfy Li,j = 0 and Ui,j = +∞ for all i, j, then we have a matrix balancing
problem. The reduction of row-column equivalence scaling to truncated scaling lies in a graph
transformation described by Schneider in [Sch89], Lemma 1.

The dual function can take two forms. In [Sch89], Schneider proposes to relax the equality
constraints and to let the bound constraints in the objective function. One gets a dual function
of the form

Ψ(p) =
∑

i,j∈[n]

ψ∗
i,j(pi − pj) (6.8)

where each ψ∗
i,j : R → R is convex. Then one can perform an inexact coordinate descent

where at each step the minimization along the coordinate is not necessarily exact.
Here, we shall study the choice of relaxing all the constraints. This approach has been

proposed in [ZC91] for another generalization of the row-column equivalence scaling problem
(but this generalization does not include truncated scaling). Then, we get the following dual
function:

θ(p, η, ζ) =
∑

i,j∈[n]

φ∗i,j(pi − pj + ηi,j − ζi,j)−
∑

i,j∈[n]

Li,jηi,j +
∑

i,j∈[n]

Ui,jζi,j , (6.9)

where φ∗i,j(t) = Ai,je
t. We shall minimize θ with unrestricted p and nonnegative η and ζ. As

in [CZ91, ZC91], we shall show in Proposition 6.9 that exact expressions of the minimizers
along one single coordinate exist.

Proposition 6.9. Given p ∈ Rn, the minimizers of minη≥0,ζ≥0 θ(p, η, ζ) are given for all i
and j by

exp(ηi,j) = max(
Li,j

Ai,jepi−pj
, 1)

exp(−ζi,j) = min(
Ui,j

Ai,jepi−pj
, 1)

Proof. The proofs for η and ζ are symmetric, so we only do the one for η.

∂θ

∂ηi,j
= Ai,je

pi−pj+ηi,j−ζi,j − Li,j
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Two cases may occur: either ∂θ
∂ηi,j

= 0 and ηi,j ≥ 0 or ηi,j = 0 and ∂θ
∂ηi,j

≥ 0. Hence, either

exp(ηi,j) =
Li,j

Ai,je
pi−pj−ζi,j

and exp(ηi,j) ≥ 1 or we have exp(ηi,j) = 1 and 1 ≥ Li,j

Ai,je
pi−pj−ζi,j

≥
Li,j

Ai,je
pi−pj

. We thus have the result if ηi,j and ζi,j are not positive together.

Now suppose that ηi,j > 0 and ζi,j > 0. In this case, we have exp(ηi,j) =
Li,j

Ai,je
pi−pj−ζi,j

and

exp(−ζi,j) =
Ui,j

Ai,je
pi−pj+ηi,j

. This implies that Ui,j = Li,j . Thus the two bound constraints are

in fact an equality constraint and we shall consider the unconstrained multiplier ξi,j = ηi,j−ζi,j
instead of the two former multipliers. Then ξi,j verifies exp(ξi,j) =

Li,j

Ai,je
pi−pj

. It is unique and

can be redecomposed into ζi,j and ηi,j as in the proposition.

This proposition shows that we do not need to store the values of ηi,j and ζi,j . Indeed,
for fixed p and λ, if (η, ζ) = arg minη′≥0,ζ′≥0 θ(p, λ, η

′, ζ ′), then if we denote by mid(x, a, b) =
max(min(x, a), b)

Ai,ke
pi−ηi,k+ζi,k = mid(Ai,ke

pi , Ui,ke
pk , Li,ke

pk)

Ak,je
−pj−ηk,j+ζk,j = mid(Ak,je

−pj , Uk,je
−pk , Lk,je

−pk) .

This gives an expression of coordinate descent with no storage of ηk+1 nor ζk+1.

Algorithm 6.6 Exact coordinate descent for Truncated scaling

Given an initial vector p0, calculate iteratively pk by selecting a coordinate l following a cyclic
rule and computing: pk+1

l′ = pkl′ for all l′ 6= l and

pk+1
l =

1

2
log





∑

i∈[n]

mid(Ai,le
pk

i , Ui,le
pk

l , Li,le
pk

l )





− 1

2
log





∑

j∈[n]

mid(Al,je
−pk

j , Ul,je
−pk

l , Ll,je
−pk

l )





Proposition 6.10. If A has a truncated scaling, then Algorithm 6.6 converges linearly to a
solution of the truncated scaling problem.

Proof. By Proposition 6.9, we can see that Algorithm 6.6 is a coordinate descent algorithm
(Algorithm 6.3) applied to the minimization of the dual function θ defined in (6.9) such that
for every l, the coordinate selection order is

ηl,1, . . . , ηl,n, ζl,1, . . . , ζl,n, pl

As in Proposition 6.8, we then just verify the hypotheses of Proposition 6.1.

Remark 6.6. Due to the truncation, it is not clear how to determine the primitivity of the
gradient of the fixed point operator of a HOTS-like algorithm for the truncated scaling prob-
lem.
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Tomlin proposed in [Tom03] to search for a flow of websurfers ρ that maximizes the entropy
for the effective HOTS problem (Section 6.3) with additional bound constraints of the type

Ui,j ≤ ρi,j ≤ Li,j . (6.10)

These bound constraints model the fact that one may have information on the actual flow of
websurfers through some hyperlink, even if the flow on every hyperlink is out of reach.

We propose the following coordinate descent algorithm (Algorithm 6.7) that couples the
algorithms presented in Proposition 6.8 and Algorithm 6.6. The proof of convergence is just
the concatenation of the arguments of Propositions 6.8 and 6.10.

Algorithm 6.7 Coordinate descent for the HOTS problem with bounds

Start with an initial point y0 ∈ Rn, y0 > 0. Given yk, select a coordinate i ∈ [n + 1] and
compute yk+1 such that yk+1

j = ykj , ∀j 6= l and

yk+1
l =

(
∑

i∈[n] mid(Ai,ly
k
i , Ui,ly

k, Li,ly
k
l ) + ea

k
ykn+1

∑

j∈[n] mid(Al,j(y
k
j )

−1, Ul,j(y
k
l )

−1, Ll,j(y
k
l )

−1) + e−bk(ykn+1)
−1

)

1
2

If i < n+ 1, then set (µk+1, ak+1, bk+1) = (µk, ak, bk), otherwise

µk+1 = log(
2α− 1

∑

j,j′∈[n] mid(Aj,j′
yk

j

yk
j′

, Uj,j′ , Lj,j′)
) ,

ak+1 = log(
1− α

∑

j∈[n]

yk
n+1

yk
j

eµk+1
) ,

bk+1 = − log(
1− α

∑

j′∈[n]

yk
j′

yk
n+1

eµk+1

) .

6.5 Comparison with alternative algorithms

We give in Table 6.1 a comparison of four algorithms for the matrix balancing problem:
interior-reflective Newton method (Matlab fminunc function), coordinate descent, DomEig
and ideal HOTS. We considered a small matrix, a medium size matrix and two large matrices.

The matrix A =

[

ǫ 1
2 0

]

, with ǫ = 10−3, is a nearly imprimitive matrix. The CMAP matrix is

the adjacency matrix of a fragment of the web graph of size 1, 500. The crawl consists of the
www.cmap.polytechnique.fr website and surrounding pages. The NZ Uni matrix comes from
a crawl of New Zealand Universities websites, available at [Pro06]. It has 413,639 pages. The
uk2002 matrix comes from a crawl of the .uk name domain with 18,520,486 pages, gathered
by UbiCrawler [BCSV04]. For the matrix balancing problem, we added to the entries of the
adjacency matrices arising from fragments of the web graph a small positive constant equal
to 1/n (to guarantee irreducibility of the matrix). We launched our numerical experiments
on a personal computer with 4 Intel Xeon CPUs at 2.98 GHz and 8 GB RAM.
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A =

[

ǫ 1
2 0

]

CMAP
1,500 p.

NZ Uni
413,639 p.

uk2002
18,520,486 p.

|λ2(P )| (Thm. 6.2) 0.9993 0.8739 0.9774 0.998

Matlab’s fminunc 0.015 s 948 s out of mem. -

DomEig [JPS00] 1.87 s 34.4 s > 600 s -

Coordinate desc. (Alg. 6.2) 0.006 s 0.03 s 6.06 s 2,391 s

Ideal HOTS (Alg. 6.1) 2.0 s 0.02 s 7.52 s 1,868 s

Table 6.1: Execution times for 4 algorithms to solve the matrix balancing problem. General
purpose algorithms like Newton methods (fminunc) are outperformed by coordinate descent
and ideal HOTS for this problem. DomEig [JPS00] does not seem to be very efficient for
these sparse problems. On the other hand, coordinate descent and ideal HOTS have similar
performances. We remark however that coordinate descent has a better behavior for imprim-
itive matrices but that we have the expression of the rate of convergence of ideal HOTS, that
we do not have for coordinate descent.

Convex optimization solvers, coding algorithms like quasi-Newton, are heavy machineries
that can reach quadratic convergence and can handle general problems. They however need
complex algorithms: one should not program them by scratch but use robust public codes.
Parallel computation is not so trivial and tuning the parameters may be difficult. Second
order methods also need to compute the Hessian matrix, which may be a large dense matrix.

The DomEig algorithm [JPS00] consists of 2 loops. The inner loop is the power method,
it has a linear speed of convergence equal to the spectral gap of the matrix considered. Most
of the computational cost lies in the power iterations, since the outer loop is simple. This
algorithm is specially designed for matrix balancing and accepts no extension. It does not
seem to be very efficient for sparse problem, when compared to HOTS and coordinate descent.
Moreover, the precision required for the determination of the principal eigenvalue has a strong
impact on the performance of the algorithm.

Schneider’s coordinate descent DSS algorithm for the matrix balancing problem is a very
efficient and scalable algorithm. It remains efficient for non primitive matrices.

The ideal HOTS algorithm has a linear speed of convergence equal to the spectral gap of P .
On our experiments, it performs well for medium and large size problems but lacks efficiency
for imprimitive matrices. For the fragments of the web graph, it converged in a bit more
iterations than coordinate descent but each iteration is a bit simpler. So the execution times
are about the same. Its advantage compared to coordinate descent is that its implementation
only needs left and right matrix-vector products and element-wise operations (division and
square root). Hence, it does not require to compute and store the transpose of the adjacency
matrix, which can be useful for web scale applications.

In Table 6.2, we compare coordinate descent and the effective HOTS algorithm for the
effective HOTS problem. Both algorithms scale well and have comparable computational
costs. However, we remark that the rate of convergence seems to deteriorate when the size of
the problem increases. It might be necessary to choose smaller values for α for large graphs
in order to compensate this phenomenon. In the next section, we propose an alternative
solution consisting in normalizing the adjacency matrix prior to computing the HOTS score,
and hence minimizing a relative entropy instead of the entropy function.

In Table 6.3, we give the execution times for the HOTS problem with bounds (6.10).
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A =

[

ǫ 1
2 0

]

CMAP NZ Uni uk2002

|λ2(∇F )| (Prop. 6.5) 0.8846 0.946 0.995 0.9994

Coordinate descent (Prop. 6.8) 0.0061 s 0.0613 s 35.7 s 3,809 s

Effective HOTS (Alg. 6.5) 0.0217 s 0.0589 s 36.5 s 3,017 s

PageRank [BP98] 0.0216 s 0.0195 s 2.9 s 270 s

Table 6.2: Comparison of coordinate descent and HOTS for the effective HOTS problem with
α = 0.9. Both algorithms seem to perform equally. In particular, unlike PageRank, the
convergence rate deteriorates with the size of the fragment of the web graph considered.

A =

[

ǫ 1
2 0

]

CMAP NZ Uni

Inexact coor. descent (Eq. (6.8) and [Sch90]) 0.019 s 4.28 s > 2000 s

Exact coor. descent (Alg. 6.7) 0.005 s 0.23 s 100 s

Table 6.3: Execution times for two algorithms to solve the effective HOTS problem where
some arcs have prescribed bounds on their flow [Tom03] (these bounds are determined at
random). Exact coordinate descent (Algorithm 6.7) is faster than inexact coordinate descent.
Indeed we do not need any line search for Algorithm 6.7. By comparison with Table 6.2, we
can see that the computational expense is multiplied by less than 4 with the bound constraints.

6.6 A normalized HOTS algorithm for a better convergence rate

The previous study has shown two drawbacks of Tomlin’s HOTS algorithm. First of all, its
convergence rate seems to deteriorate when the size of the problem increases. The second
problem concerns manipulations of the HOTS score: when one single page is considered, a
very good strategy is to point to no page, and thus make this page a dangling node in the web
graph. This comes from the relation of HOTS with the anti-Perron ranking (Remark 6.3).
Indeed, the anti-Perron ranking penalizes bad quality links but also adding any outlink, even
a good quality one, diminishes the score of the page where it has been added.

We now propose a modification of the HOTS algorithm that tackles those two issues. In
order to stop penalizing the presence of hyperlinks on a page, we normalize the adjacency
matrix, and thus state the entropy optimization problem as a relative entropy optimization
problem. Then the Perron ranking reduces to PageRank and the normalized anti-Perron
ranking does not penalize the number of links any more.

We also need to address the problem of dangling nodes, in which the normalization of
the corresponding row of the adjacency matrix is not defined, and the reducibility of the
adjacency matrix. A possibility is to keep on inspiring from the PageRank and consider
the Google matrix instead of the normalized adjacency matrix. With this choice, dangling
pages are considered to point to every page, which implies that they have a low rank in the
normalized HOTS score, when compared to the rank given by PageRank. Instead, we suggest
to set Tomlin’s effective network model to solve the reducibility problem and add another
fictitious node that point to every page and is pointed to by every dangling page.

We end up with the following network flow problem where the (n + 2) × (n + 2) matrix
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M is defined by:

Mi,j =

{

Ai,j
P

k Ai,k
if i, j ≤ n,∑k Ai,k ≥ 1

0 if i, j ≤ n,∑k Ai,k = 0

M =





M[n],[n] f 1

1T 0 1
1T 1 0





and f is the 0-1 vector such that fi = 1 if and only if i is a dangling node.

max
ρ≥0

−
∑

i,j∈[n+2]

ρi,j(log(
ρi,j
Mi,j

)− 1) (6.11)

∑

j∈[n+2]

ρi,j =
∑

j∈[n+2]

ρj,i , ∀i ∈ [n+ 2] (pi)

∑

i,j∈[n+2]

ρij = 1 (µ)

∑

j∈[n]

ρn+2,j = 1− α (a)

1− α =
∑

i∈[n]

ρi,n+2 (b)

We call this optimization problem the normalized HOTS problem. The normalized HOTS
algorithm is defined in the same way as the effective HOTS algorithm but with M instead of
A′. As in Lemma 6.1, we define

µ′ = log(
2α− 1

∑

i,j∈[n]Mi,jepi−pj
) ,

a′ = log(
1− α
2α− 1

∑

i,j∈[n]Mi,je
pi−pj

∑

j∈[n] e
pn+1−pj

) ,

b′ = − log(
1− α
2α− 1

∑

i,j∈[n]Mi,je
pi−pj

∑

i∈[n] e
pi−pn+1

)

and λ′(p) = (µ′, a′, b′). For λ′ ∈ R3, we denote

g′λ
′

i (y) =

(
∑

j∈[n]Mj,iyj + ea
′
yn+1

∑

k∈[n]Mi,k(yk)−1 + e−b′(yn+1)−1

)
1
2

.

Algorithm 6.8 Normalized HOTS algorithm

Given an initial point y0 ∈ Rn, the effective HOTS algorithm is defined by

yk+1 = g′λ
′(log(yk))

(yk)
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CMAP NZ Uni uk2002

|λ2(∇F )| (classical HOTS) 0.946 0.995 0.9994

|λ2(∇F )| (normalized HOTS) 0.906 0.988 0.96

Execution times for Normalized HOTS 0.055 s 46.24 s 752 s

Table 6.4: Performances of the normalized HOTS algorithm presented in Section 6.6. The
correlation between the deterioration of the convergence rate of the algorithm, given by the
second eigenvalue of the matrix ∇F , and the size of the data set does not hold any more.
Moreover, on all the tests we performed, the convergence rate remained under 0.99.

Proposition 6.11. If there exists a primal feasible point to (6.11) with the same pattern
as A′, then the normalized HOTS algorithm converges with a linear rate of convergence.

Proof. In the proof of Theorem 6.5 we did not use the fact that the adjacency matrix A is
a 0-1 matrix, only that its elements are nonnegative. Hence, the convergence proof of the
effective HOTS algorithm directly applies to the normalized HOTS algorithm.

We shall see in Table 6.4 that the convergence properties of this algorithm seem to be
better that those of the classical HOTS algorithm. Nevertheless, these experimental results
are still to be validated by other theoretical and numerical studies.



CHAPTER 7

Optimization of the Perron eigenvalue
and eigenvector

7.1 Introduction

Motivation The main problem of this chapter is the optimization of the ranking of a given
web site. It consists in finding an optimal outlink strategy maximizing a given ranking subject
to design constraints and for a given ranking algorithm.

One of the main ranking methods relies on the PageRank introduced by Brin and Page
[BP98]. We studied the PageRank optimization problem in Chapter 4. In the present chapter,
that follows [Fer12b], we consider the more general situation in which the ranking is deter-
mined by the Perron eigenvector of a nonnegative, but not necessarily stochastic, matrix.
The Perron-Frobenius theorem (see [BP94] for instance) states that any nonnegative matrix
A has a nonnegative principal eigenvalue called the Perron root and nonnegative principal
eigenvectors. If, in addition, A is irreducible, then the Perron root is simple and the (unique
up to a multiplicative constant) nonnegative eigenvector, called the Perron vector, has only
positive entries. This property makes it a good candidate to sort web pages. The ranking
algorithms considered differ in the way of constructing from the web graph a nonnegative ir-
reducible matrix from which we determine the Perron vector. Then, the greater is the Perron
vector’s coordinate corresponding to a web page, the higher this web page is in the ranking.
In [Kee93], such a ranking is proposed for football teams. The paper [Saa87] uses the Perron
vector to rank teachers from pairwise comparisons. See also [Vig09b] for a survey on the
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subject. When it comes to web page ranking, the PageRank is the Perron eigenvector of the
transition matrix described above but the HITS algorithm also rank pages according to a
Perron vector. More examples of Perron vector rankings or nonlinear Perron vector rankings
for the web, like the Sinkhorn ranking, are given in Chapter 2.

The HITS algorithm [Kle99] is not purely a link-based algorithm. It is composed of two
steps and the output depends on the query of the user. Given a query, we first select a seed
of pages that are relevant to the query according to their text content. This seed is then
extended with pages linking to them, pages to which they link and all the hyperlinks between
the pages selected. We thus obtain a subgraph of the web graph focused on the query. Then,
the second step assigns each page two scores: a hub score v and an authority score u such
that good hubs should point to good authorities and good authorities should be pointed to
by good hubs. Introducing the adjacency matrix A of the focused graph, this can be written
as v = ρAu and u = ρAT v with ρ ∈ R+, which means that the vector of hub scores is the
Perron eigenvector of the matrix ATA and that the vector of authority scores is the Perron
eigenvector of AAT . The construction of HITS’s focused subgraph is a combination of text
content relevancy with the query and of hyperlink considerations. Maximizing the probability
of appearance of a web page on this subgraph is thus a composite problem out of the range
of this work. We shall however study the optimization of HITS authority, for a given focused
subgraph.

We shall also study the optimization of Tomlin’s HOTS scores [Tom03]. In this case, the
ranking is the vector of dual variables of an optimal flow problem. The flow represents an
optimal distribution of web surfers on the web graph in the sense of entropy minimization. The
dual variable, one by page, is interpreted as the “temperature” of the page, the hotter a page
the better. Tomlin showed that this vector is solution of a nonlinear fixed point equation:
it may be seen as a nonlinear eigenvector but the fixed point operator is not necessarily
monotone. However, we show that most of the arguments available in the case of Perron
vector optimization can be adapted to HOTS optimization.

Contribution In this chapter, we study the problem of optimizing the Perron eigenvector of
a controlled matrix and apply it to HITS and HOTS optimization. Our first main result
is the development of a scalable algorithm for the local optimization of a scalar function of
the Perron eigenvector over a set of nonnegative irreducible matrices. Indeed, the global
Perron vector optimization over a convex set of nonnegative matrices is NP-hard, so we
focus on the searching of local optima. We give in Theorem 7.1 a power-type algorithm
for the computation of the matrix of the partial derivatives of the objective, based on the
fact that it is a rank 1 matrix. This theorem shows that computing the partial derivatives
of the objective has the same order of complexity as computing the Perron vector by the
power method, which is the usual method when dealing with the large and sparse matrices
built from the web graph. Then we give an optimization algorithm that couples power and
gradient iterations (Algorithms 7.2 and 7.3). Each step of the optimization algorithm involves
a suitable number of power iterations and a descent step. By considering this algorithm to
be an approximate projected gradient algorithm [Pol97, PP02], we prove that the algorithm
converges to a stationary point (Theorem 7.2). Compared with the case when the number
of power iterations is not adapted dynamically, we got a speedup between 3 and 20 in our
numerical experiments (Section 7.8) together with a more precise convergence result.

Our second main result is the application of Perron vector optimization to the optimiza-
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tion of scalar functions of HITS authority or other scores like Tomlin’s HOTS. We derive
optimization algorithms and, thanks to the low rank of the matrix of partial derivatives,
we show that the optimal linkage strategies of both problems satisfy a threshold property
(Propositions 7.11 and 7.14). This property was already proved for PageRank optimiza-
tion in [dKNvD08, FABG13] (see Propositions 2.3 and 4.11 and Theorems 4.4 and 4.5). As
in [IT09, CJB10, FABG13] we partition the set of potential links (i, j) into three subsets,
consisting respectively of the set of obligatory links, the set of prohibited links and the set of
facultative links. When choosing a subset of the facultative links, we get a graph from which
we get any of the three ranking vectors. We are then looking for the subset of facultative
links that maximizes a given utility function. We also study the associated relaxed problems,
where we accept weighted adjacency matrices. This assumes that the webmaster can influence
the importance of the hyperlinks of the pages she controls, for instance by choosing the size
of the font, the color or the position of the link within the page. In fact, we shall solve the
relaxed problems and then give conditions or heuristics to get an admissible strategy for the
discrete problems.

Related works As explained in the first part of the introduction, this work extends the study
of PageRank optimization developed in [AL06, MV06, dKNvD08, IT09, CJB10, FABG13] to
HITS authority [Kle99] and HOTS [Tom03] optimization.

We based our study of Perron eigenvector optimization on two other domains: eigenvalue
optimization and eigenvector sensitivity. There is a vast literature on eigenvalue and eigenvec-
tor sensitivity with many domains of application (see the survey [HA89] for instance). These
works cope with perturbations of a given system. They consider general square matrices and
any eigenvalue or eigenvector. They give the directional derivatives of the eigenvalue and
eigenvector of a matrix with respect to a given perturbation of this matrix [Nel76, MS88].
Perron eigenvalue and eigenvector sensitivity was developed in [DN84, DN85].

This led to the development of eigenvalue optimization. In [CDW75, Ove91, SF95] the
authors show that the minimization of a convex function of the eigenvalues of symmetric
matrices subject to linear constraints is a convex problem and can be solved with semi-definite
programming. Eigenvalue optimization of nonsymmetric matrices is a more difficult problem.
In general, the eigenvalue is a nonconvex nonlipschitz function of the entries of the matrix. The
last section of [LO96] proposes a method to reduce the nonsymmetric case to the symmetric
case by adding (many) additional variables. Another approach is developed in [OW88]: the
authors derive descent directions and optimality conditions from the perturbation theory and
uses so-called dual matrices.

The optimization of the Perron eigenvalue, which is equal to the spectral radius, over a set
of nonnegative matrices, has recently motivated several papers. In [HNT99], Han et al. study
the maximization of the spectral radius of a nonnegative matrix subject to fixed Frobenius
norm perturbations and they show that the optimal perturbation has a rank 1. Axtell et
al. [AHH+09] study the maximization or minimization of the Perron eigenvalue over a set
of matrices of the form M = SA where A is a fixed nonnegative matrix and S is a doubly
stochastic matrix. They show that in both cases the optimum is attained at a permutation
matrix. In [BS07], Boche and Schubert give an algorithm for the minimization of the Perron
eigenvalue over a set of matrices with independently controlled columns. Nesterov and Pro-
tasov [NP11] generalized this result to the minimization and maximization problems. They
based their approach on a convex relaxation of the Perron eigenvalue optimization problem
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that they showed to be exact for product families of nonnegative operators (a generalization
of matrices with independently controlled columns). Their theorem also applies to the joint
spectral radius, a quantity linked to the maximal spectral radius and that is also difficult to
compute in general [TB97, BN05].

In the context of population dynamics, the problem of the maximization of the growth rate
of a population can be modeled by the maximization of the Perron value of a given family
of matrices. This technique is used in [Log08] to identify the parameters of a population
dynamic model, in [BCF+11a] for chemotherapy optimization purposes. An approach based
on branching Markov decision processes is presented in [RW82]. Perron value optimization
also appears in other contexts like in the minimization of the interferences in a network [BS07].

Apart from the stochastic case which can be solved by Markov decision techniques, like
for PageRank, the search for a matrix with optimal eigenvectors does not seem to have been
much considered in the literature. Indeed, the problem is not well defined since when an
eigenvalue is not simple, the associated eigenspace may have dimension greater than 1.

Organization The chapter is organized as follows. In Section 7.2, we introduce Perron eigen-
vector and eigenvalue optimization problems and show that these problems are NP-hard
problems on convex sets of matrices. We also point out some problems solvable in polynomial
time. In Section 7.3, we give in Theorem 7.1 a method for the efficient computation of the
derivative of the objective function. Then in Section 7.4, we give the coupled power and
gradient iterations and its convergence proof. In Section 7.5, we show how HITS authority
optimization problems and HOTS optimization problems reduce to Perron vector optimiza-
tion. In Section 7.6, we extend these results to the optimization of a scalar function of the
eigenvector of a monotone homogeneous map and in Section 7.7, we apply it to the opti-
mization of HOTS. Finally, we report numerical results on a fragment of the web graph in
Section 7.8.

7.2 Perron vector and Perron value optimization problems

Let M ∈ Rn×n be a (elementwise) nonnegative matrix. We say thatM is irreducible if it is not
similar to a block upper triangular matrix with two blocks via a permutation. Equivalently,
define the directed graph with n nodes and an edge between node i and j if and only if
Mi,j > 0: M is irreducible if and only if this graph is strongly connected.

We denote by ρ(M) the principal eigenvalue of the irreducible nonnegative matrix M ,
called the Perron root. By Perron-Frobenius theorem (see [BP94] for instance), we know that
ρ(M) > 0 and that this eigenvalue is simple. Given a normalization N , we denote by u(M)
the corresponding normalized eigenvector, called the Perron vector. The normalization is
necessary since the Perron vector is only defined up to positive multiplicative constant. The
normalization function N should be homogeneous and we require u(M) to verify N(u(M)) =
1. The Perron-Frobenius theorem asserts that u(M) > 0 elementwise. The Perron eigenvalue
optimization problem on the setM can be written as:

min
M∈M

f(ρ(M)) (7.1)

The Perron vector optimization problem can be written as:

min
M∈M

f(u(M)) (7.2)
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We assume that f is a real valued continuously differentiable function;M is a set of irreducible
nonnegative matrices such that M = h(C) with h continuously differentiable and C a closed
convex set. These hypotheses allow us to use algorithms such as projected gradient for the
searching of stationary points.

We next observe that the minimization of the Perron root and the optimization of a scalar
function of the Perron vector are NP-hard problems and that only exceptional special cases
appear to be polynomial time solvable by current methods. Consequently, we shall focus on
the local resolution of these problems, with an emphasis on large sparse problems like the
ones encountered for web applications. We consider the two following problems:

PERRONROOT MIN: given a rational linear function A : Rn×n → Rm and a vector b
in Qm, find a matrix M that minimizes ρ(M) on the polyhedral set {M ∈ Rn×n | A(M) ≤
b , M ≥ 0}.

PERRONVECTOR OPT: given a rational linear function A : Rn×n → Rm, a vector b in
Qm, a rational function f : Rn → R and a rational normalization function N , find a matrix
M that minimizes f(u(M)) on the polyhedral set {M ∈ Rn×n | A(M) ≤ b , M ≥ 0}, where
u(M) verifies N(u(M)) = 1.

In general, determining whether all matrices in an interval family are stable is a NP-hard
problem [BT00]. The corresponding problem for nonnegative matrices is to determine whether
the maximal Perron root is smaller than a given number. Indeed, as the Perron root is a mono-
tone function of the entries of the matrix (see Proposition 7.6 below), this problem is trivial
on interval matrix families. However, we shall prove NP-hardness of PERRONROOT MIN
and PERRONVECTOR OPT by reduction of linear multiplicative programming problem to
each of these problems. The linear multiplicative problem is:

LMP: given a n ×m rational matrix A and a vector b in Qm, find a vector x ∈ Rn that
minimizes x1x2 on the polyhedral set {x ∈ Rn | Ax ≤ b , x1, x2 ≥ 0}.

A theorem of Matsui [Mat96] states that LMP is NP-hard. We shall need a slightly
stronger result about a weak version of LMP:

Weak-LMP: given ǫ > 0, a n ×m rational matrix A and a vector b in Qm, find a vector
x ∈ Q such that x1x2 ≤ y1y2 + ǫ for all y ∈ Q, where Q = {x ∈ Rn | Ax ≤ b , x1, x2 ≥ 0}.

Lemma 7.1. Weak-LMP is a NP-hard problem.

Proof. A small modification of the proof of Matsui [Mat96] gives the result. If we replace
g(x0, y0) ≤ 0 by g(x0, y0) ≤ −2 in Corollary 2.3 we remark that the rest of the proof still
holds since n4p4n + p2 − 4p4n+1 ≤ −2 for all n ≥ 1 and p = nn

4
. Then, with the notations

of [Mat96], we have proved that the optimal value of P1(M) is less than or equal to 4p8n− 2
if and only if Mx = 1 has a 0 − 1 valued solution and it is greater than or equal to 4p8n if
and only if Mx = 1 does not have a 0 − 1 valued solution. We just need to choose ǫ < 2 in
problem P1(M) to finish the proof of the lemma.

Proposition 7.1. PERRONROOT MIN and PERRONVECTOR OPT are NP-hard prob-
lems.

Proof. We define the matrix M by the matrix with lower diagonal equal to x and 1 on the
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top left corner:

M =

















0 0 . . . 0 1
x1 0 0 0

0 x2 0
...

...
. . .

. . .
...

0 . . . 0 xn 0

















. (7.3)

We set the admissible set X for the vector x as X = {x ∈ Rm|Ax ≥ b, x ≥ 0} with a rational
p×m matrix A and a rational vector b of length p.

For the eigenvector problem, we set the normalization u1 = 1 and we take f(u) = un. We
have un = ρ, so the complexity is the same for eigenvalue and eigenvector optimization is this
context.

Now minimizing ρ(M) is equivalent to minimizing x1x2 . . . xn because the n-th root is
an nondecreasing function on R+. We thus just need to reduce in polynomial time the ǫ-
solvability of weak-LMP to the minimization of x1x2 . . . xn on X.

As x 7→ log(x1x2 . . . xn) is a concave function, either the problem is unbounded or there
exists an optimal solution that is an extreme point of the polyhedral admissible set (The-
orem 3.4.7 in [BS06]). Hence, using Lemma 6.2.5 in [GLS88] we see that we can define a
bounded problem equivalent to the unbounded problem and with coefficients that have a
polynomial encoding length: in the following, we assume that the admissible set is bounded.

Given a rational number ǫ > 0, a rational p × m matrix A′ and a rational vector b′ of
length p, let X ′ := {x ∈ Rm|A′x ≥ b′, x1 ≥ 0, x2 ≥ 0} be a bounded polyhedron. Denoting
v2 := minx∈X′ x1x2, we are looking for x′ ∈ X ′ such that |y1y2 − v2| ≤ ǫ.

Compute C := mini∈[n] minx∈X′ xi and C̄ := maxi∈[n] maxx∈X′ xi (linear programs). We
first set m0 = C̄ − C + 1 so that m0 > 0 and m0 > −C and tm0 ∈ Rn defined by tm0

i = 0 if
i ∈ {1, 2} and tm0

i = m if i ≥ 3. Let

X0 := {x ∈ Rm|A′x ≥ b′ −A′tm0 , x ≥ 0} .

We have v2 = minx∈X′ x1x2 = minx∈X0 x1x2. Let v0 := minx∈X x1x2 . . . xn. For all x ∈ X0,
we have

x1x2(m0 + C)n−2 ≤ x1x2 . . . xn ≤ x1x2(m0 + C̄)n−2 ,

so that v2(m0 + C)n−2 ≤ v0 ≤ v2(m0 + C̄)n−2.
We now set

m := max{−C + 2n−3 C̄

ǫ

v0
(m0 + C)n−2

, C̄ − 2C, 1}

and we define tm and X in the same way as tm0 and X0. Remark that m an encoding length
polynomial in the length of the entries. Let vn := minx∈X x1x2 . . . xn. For all x ∈ X, we have
v2(m+ C)n−2 ≤ vn ≤ v2(m+ C̄)n−2 and x′ = x− tm is a point of X ′ with x′1x

′
2 = x1x2.

As v2(m0 + C)n−2 ≤ v0, m ≥ −C + 2n−3 C̄
ǫ v2. As m ≥ C̄ − 2C, m+C

m+C̄
≥ 1

2 , so that
(m+C)n−2

(m+C̄)n−3 ≥ 1
2n−3 (m+ C) and (m+C)n−2

(m+C̄)n−3 ≥ C̄
ǫ v2.

Denote M := (m+C)n−2 and ∆ := (m+C̄)n−2−(m+C)n−2: Mv2 ≤ vn ≤ (M+∆)v2 We
have ∆ :=

∑n−3
k=0

(

n−2
k

)

mkC̄n−2−k−∑n−3
k=0

(

n−2
k

)

mkCn−2−k ≤ C̄(m+C̄)n−3. Hence, M ≥ ∆
ǫ v2.

As ∆ ≥ 0, M + ∆ ≥ ∆
ǫ v2. We obtain

ǫ ≥ ∆Mv2
M(M + ∆)

= (
1

M
− 1

M + ∆
)Mv2 ≥ v2 −

vn
M + ∆

.
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Finally
vn

(m0 + C̄)n−2
≤ v2 ≤

vn
(m0 + C̄)n−2

+ ǫ .

which proves that weak-LMP reduces to the minimization of x1x2 . . . xn on X.

An alternative reduction is given in [Vla12]. There, the author proves that minimizing the
Perron eigenvalue over a convex set defined by its extreme points is NP-hard. The reduction
is complementary to ours since in Proposition 7.1, we define the convex set by the equations
of its facets. Note that both reductions do not extend to Perron vector maximization.

The general Perron eigenvalue optimization problem is NP-hard but we however point out
some cases for which it is tractable. The following proposition is well known:

Proposition 7.2 ([Kin61]). The eigenvalue ρ(M) is a log-convex function of the log of the
entries of the nonnegative matrix M .

This means that log ◦ρ ◦ exp is a convex function, where exp is the componentwise ex-
ponential, namely if 0 ≤ α ≤ 1 and A and B are two nonnegative n × n matrices then for
Ci,j = Aαi,jB

1−α
i,j , ρ(C) ≤ ρ(A)αρ(B)1−α.

Corollary 7.1. The optimization problem

min
M∈exp(C)

ρ(M)

with C convex is equivalent to the convex problem

min
L∈C

log ◦ρ ◦ exp(L) .

The difference between this proposition and the previous one is that here M = h(C) =
exp(C) whereas previously we had h affine. This makes a big difference since an ǫ-solution of
a convex program can be found in polynomial time [BTN01].

Remark 7.1. The largest singular value (which is a norm) is a convex function of the entries
of the matrix. For a symmetric matrix, the singular values are the absolute values of the
eigenvalues. Thus minimizing the largest eigenvalue on a convex set of nonnegative symmetric
matrices is a convex problem.

In order to solve the signal to interference ratio balancing problem, Boche and Schu-
ber [BS07] give an algorithm for the global minimization of the Perron root when the rows of
the controlled matrix are independently controlled, ie when the admissible set is of the form
Z1 × . . .×Zn and zk ∈ Zk is the kth row of the matrix.

Proposition 7.3 ([BS07]). Let Z = Z1 × . . .×Zn and Γ be a fixed positive diagonal matrix.
If the kth row of the matrix V (z) only depends on zk ∈ Zk, V (z) is irreducible for all z ∈ Z
and if V (z) is continuous on Z (Z can be discrete), then there exists a monotone algorithm
that minimizes ρ(ΓV (z)) over Z, in the sense that ρ(ΓV (zn+1)) ≤ ρ(ΓV (zn)) for all n ≥ 0
and limn ρ(ΓV (zn)) = minz∈Z ρ(ΓV (z)).

Nesterov and Protasov generalized this result using the following relaxations of the mini-
mal and maximal eigenvalue.
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Proposition 7.4 ([NP11]). LetM be a set of nonnegative matrices with a common invariant
cone K (one often chooses K = Rn), let e ∈ intK and e∗ ∈ intK∗ be two vectors. Denote
∆ = {x ∈ K | 〈e∗, x〉 = 1}, ∆∗ = {s ∈ K∗ | 〈s, e〉 = 1} and

λ∗(M) = inf
λ∈R,x∈intK

{λ | λx−Ax ∈ K,∀A ∈M}

λ∗(M) = sup
λ∈R,x∈K

{λ | Ax− λx ∈ K,∀A ∈M} .

We have the relation

λ∗(M) ≤ min
A∈M

ρ(A) ≤ max
A∈M

ρ(A) ≤ λ∗(M)

Let

ψ∗(x, λ) = max
s∈∆∗

max
A∈M

〈s,Ax− λx〉 , ξ∗(λ) = inf
v∈∆

ψ∗(v, λ)

ψ∗(x, λ) = max
s∈∆∗

max
A∈M

〈s, λx−Ax〉 , ξ∗(λ) = inf
v∈∆

ψ∗(v, λ)

The functions ψ∗ and ψ∗ are convex (computable if co(M) is an effective convex set for
instance) and λ∗(M) and λ∗(M) are the zeros of the monotone functions ξ∗ and ξ∗.

Finally, suppose thatM is a product family, that isM = {A = BF | Fej ∈ Fj , j ∈ [n]} for
B a fixed matrix and Fj ⊂ K∗, j ∈ [n]. Then the relaxation is exact: λ∗(M) = minA∈M ρ(A)
and maxA∈M ρ(A) = λ∗(M)

This proposition also applies to the joint spectral radius σ∗(M), a quantity linked to
the maximal spectral radius and that is also difficult to compute in general [BN05], because
maxA∈M ρ(A) ≤ σ∗(M) ≤ λ∗(M).

The next proposition shows that if the rows are independently controlled, one can also
solve the maximum and minimum Perron eigenvalue problems thanks to nonlinear Perron-
Frobenius theory (Section 2.4).

Proposition 7.5. Let Z = Z1 × . . . × Zn be a set of nonnegative matrices. Let T be the
operator defined for all x ≥ 0 and for all i ∈ [n] by

Ti(x) = max
z∈Zi

z · x .

The map T is monotone, homogeneous and semi-differentiable and if there exists λ and x > 0
such that T (x) = λx, then λ = maxZ∈Z ρ(Z).

Moreover, if Z is a compact set of primitive matrices, then the eigenvector x of T is
unique and the power algorithm converges to x with a linear rate of convergence.

Similar results hold for T ′ defined by T ′
i (x) = minz∈Zi

z · x.

Proof. As for all i ∈ [n] and for all z ∈ Zi, the map (x 7→ z · x) is monotone, homogeneous
and semi-differentiable, the same holds for Ti because these properties are preserved by the
maximum (Theorem 3.8 in [AGN12]) and hence for T .

Now suppose that there exist λ and x > 0 such that T (x) = λx. Then for all i, there
exists y ∈ Zi such that y · x = λxi and for all z ∈ Zi, y · x ≥ z · x. We can write it as there
exists Y ∈ Z such that for all Z ∈ Z, Y x = λx and Zx ≤ λx. We deduce using [Col42] that
for all Z ∈ Z, ρ(Z) ≤ λ = ρ(Y ).
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If Z is a compact set of primitive matrices, then there exists α < 1 such that every matrix
in Z has a spectral gap smaller that α. By Proposition 8.1 in [AGN11] and Theorem 6.8
in [AGN12] we deduce that T has a unique fixed point and that the power algorithm converges
linearly at rate at least α.

When the power algorithm does not apply, one may write T in additive form as for all
i ∈ [n] and for all X ∈ Rn,

ti(X) = max
z∈Zi

log
(

∑

j∈[n]

zje
Xj

)

= max
z∈Zi

max
p∈Σ
−
∑

j

pj log
(pj
zj

)

+ p ·X ,

with Σ being the usual simplex (the second equality says that the relative entropy is the
Fenchel transform of the log-sum-exp function). This additive formulation shows that t is the
daily operator of a 0-sum game with 1 player for maximization and 2 players for minimization,
and compact action spaces. Hence, it may be possible to use policy iteration on it [AD12].

We also note that other bounds on the spectral radius have been developped in the context
of 0-1 matrices (adjacency matrices of graphs), like in [Fri88].

The bounds on the optimal Perron eigenvalue optimization problems are complementary
with the local optimization approach developed in this chapter, which would yield an upper
bound on the optimal value of this problem. However, for the Perron value optimization
problems that we will study in Chapter 8, the controls do not naturally decompose line by
line. Hence, the bound that we find is not tight. The following example shows that the bound
can be arbitrarily bad.

TakeM be the set of matrices of the form (7.3) with x ∈ {y ∈ Rn | y ≥ 0,
∑

i∈[n] yi = 1}.
Then λ∗(M) = 1 and maxA∈M = n−

n−1
n ∼ 1

n . We remark that this example is tight with
respect to Theorem 1 in [BN10].

Remark 7.2. As developed in Chapter 4, general PageRank optimization problems can be
formulated as follows. Let M be the transition matrix of PageRank and ρ the associated
occupation measure. When M is irreducible, they are linked by Mij =

ρij
P

k ρik
= hij(ρ), which

yields our function h. We also have u(h(ρ))i =
∑

k ρik and ρij = u(M)iMij .
If the set C, which defines the design constraints of the webmaster, is a convex set of

occupation measures, if h is as defined above and if f is a convex function, then

min
ρ∈C

f(u(h(ρ)))

is a convex problem. Thus ǫ-solutions of PageRank optimization problems can be found in
polynomial-time.

To our knowledge, Perron vector optimization problems without a stochasticity assump-
tion have scarcely be considered in the literature.

7.3 A power-type algorithm for the evaluation of the derivative of

a function of the principal eigenvector

We now turn to the main topic of this chapter. We give in Theorem 7.1 a power-type algorithm
for the evaluation of the partial derivatives of the principal eigenvector of a matrix with a
simple principal eigenvalue.
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We consider a matrix M with a simple eigenvalue λ and associated left and right eigen-
vectors u and v. We shall normalize v by the assumption

∑

i∈[n] viui = 1. The derivatives of
the eigenvalue of a matrix are well known and easy to compute:

Proposition 7.6 ([Kat66] Section II.2.2). Denoting v and u the left and right eigenvectors
of a matrix M associated to a simple eigenvalue λ, normalized such that

∑

i∈[n] viui = 1, the
derivative of λ can be written as:

∂λ

∂Mij
= viuj .

In this section, we give a scalable algorithm to compute the partial derivatives of the
function f ◦u, that to an irreducible nonnegative matrix M associates the utility of its Perron
vector. In other words we compute gij =

∑

k
∂f
∂uk

∂uk

∂Mij
. This algorithm is a sparse iterative

scheme and it is the core of the optimization algorithms that we will then use for the large
problems encountered in the optimization of web ranking.

We first recall some results on the derivatives of eigenprojectors (see [Kat66] for more
background). Throughout the end of the chapter, we shall consider column vectors and row
vectors will be written as the transpose of a column vector. Let P be the eigenprojector of
M for the eigenvalue λ. One can easily check that as λ is a simple eigenvalue, the spectral
projector is P = uvT as soon as vTu = 1. We have the relation

∂P

∂Mij
= −SEijP − PEijS

where Eij is the n× n matrix with all entries zero except the ijth which is equal to one and
S = (M − λI)# is the Drazin pseudo-inverse of M − λI. This matrix S also satisfies the
equalities

S(M − λI) = (M − λI)S = I − P and SP = PS = 0 . (7.4)

When it comes to eigenvectors, we have to set a normalization for each of them. Let N
be the normalization function for the right eigenvector. We assume that it is differentiable at
u and that N(αu) = αN(u) for all nonnegative scalars α, which implies ∂N

∂u (u) · u = N(u).
We normalize v by the natural normalization

∑

i uivi = 1.

Proposition 7.7 ([MS88]). Let M be a matrix with a simple eigenvalue λ and associated
eigenvector u normalized by N(u) = 1. We denote S = (M − λI)#. Then the partial
derivatives of the eigenvector are given by:

∂u

∂Mij
(M) = −Seiuj + (∇N(u)TSeiuj)u

where ei is the vector with ith entry equal to 1.

To simplify notations, we denote ∇f for ∇f(u) and ∇N for ∇N(u).

Corollary 7.2. Let M be a matrix with a simple eigenvalue λ and associated eigenvector u
normalized by N(u) = 1. The partial derivatives of the function M 7→ (f ◦ u)(M) at M are
gij = wiuj, where the auxiliary vector w is given by:

wT = (−∇fT + (∇f · u)∇NT )S = (−∇fT + (∇f · u)∇NT )(M − λI)#
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Proof. By Proposition 7.7, we deduce that

gij =
∑

k

∂f

∂uk
(u(M))

∂uk
∂Mij

(M) = −
∑

k

∂f

∂uk
Skiuj +

∑

k

∂f

∂uk
uk
∑

l

∂N

∂ul
Sliuj

which is the developed form the result.

This simple corollary already improves the computation speed. Using Proposition 7.7 di-
rectly, one needs to compute ∂P

∂Mij
in every direction, which means the computation of a Drazin

inverse and 2n2 matrix-vector products involving M for the computation of
(

∂u
∂Mij

)

i,j∈[n]
.

With Corollary 7.2 we only need one matrix-vector product for the same result. The last
difficulty is the computation of the Drazin inverse S. In fact, we do not need to compute the
whole matrix but only to compute STx for a given x. The next two propositions show how
one can do it.

Proposition 7.8. Let M be a matrix with a simple eigenvalue λ and associated eigenvector u
normalized by N(u) = 1. The auxiliary vector w of Corollary 7.2 is solution of the following
invertible system

[wT , wn+1]

[

M − λI −u
∇NT 0

]

= [−∇fT , 0] . (7.5)

where wn+1 ∈ R.

Proof. A nullspace argument similar to this of [Nel76] shows that

[

M − λI −u
∇NT 0

]

is invertible

as soon as λ is simple and ∇NTu = 1. Then the solution w of the system (7.5) verifies the
equations wT (M −λI) +wn+1∇NT = −∇fT and wTu = 0. Multiplying the first equality by
u yields wn+1∇NTu = −∇fTu and multiplying it by S yields wT (I−uvT ) = −wn+1∇NTS−
∇fTS. Putting all together, we get wT = (−∇fT + (∇fTu)∇NT )S.

The next proposition provides an iterative scheme to compute the evaluation of the aux-
iliary vector w when we consider the principal eigenvalue.

Definition 7.1. We say that a sequence (xk)k≥0 converges to a point x with a linear conver-
gence rate α if lim supk→∞‖xk − x‖1/k ≤ α.

Proposition 7.9. Let M be a matrix with only one eigenvalue of maximal modulus denoted
by ρ = |λ1| > |λ2|. With the same notations as in Corollary 7.2, we denote M̃ = 1

ρM and

zT = 1
ρ(−∇fT +(∇f ·u)∇NT ), and we fix a real row vector w0. Then the fixed point scheme

defined by

∀k ∈ N, wTk+1 = (−zT + wTk M̃)(I − P )

with P = uvT , converges to wT = (−∇fT + (∇f · u)∇NT )(M − ρI)# with a linear rate of

convergence |λ2|
ρ .

Proof. We have wTk =
∑k−1

l=0 −zT (M̃(I − P ))l + wT0 (M̃(I − P ))k. By assumption, all the
eigenvalues of M̃ different from 1 have a modulus smaller than 1. Thus, using the fact
that P is the eigenprojector associated to 1, we get ρ(M̃(I − P )) = |λ2|

ρ < 1. By [Ost55],

(‖M̃(I − P )‖k)1/k → ρ(M̃(I − P )), so the algorithm converges to a limit w and for all ǫ > 0,
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‖wk − w‖ = O(( |λ2|+ǫ
ρ )k). This implies a linear convergence rate equal to |λ2|

ρ . The limit w

satisfies wT = (−zT +wT M̃)(I −P ), so wTP = 0 and as M̃P = P , wT M̃ −wT = zT (I −P ).
We thus get the equality wT (M̃ − I) = zT . Multiplying both sides by (M̃ − I)#, we get:

wT (M̃ − I)(M̃ − I)# = wT − wTP = wT = zT (M̃ − I)# .

The last equalities and the relation (β−1M)# = βM# show by Proposition 7.2 that g = wuT

is the matrix of partial derivatives of the Perron vector multiplied by ∇f .

This iterative scheme uses only matrix-vector products and thus may be very efficient for
a sparse matrix. In fact, it has the same linear convergence rate as the power method for the
computation of the Perron eigenvalue and eigenvector. This means that the computation of
the derivative of the eigenvector has a computational cost of the same order as the computation
by the power method of the eigenvector itself. We next show that the eigenvector and its
derivative can be computed in a single algorithm.

Theorem 7.1. If M is a matrix with only one simple eigenvalue of maximal modulus ρ =
|λ1| > |λ2|, then the derivative g of the function f ◦ u at M , such that gij =

∑

k
∂f
∂uk

∂uk

∂Mij
is

the limit of the sequence (w̃lu
T
l )l≥0 given by the following iterative scheme:

ul+1 =
Mul

N(Mul)

vTl+1 =
vTl M

vTl Mul+1

w̃Tl+1 =
1

ρl
(∇fTl − (∇fl · ul)∇NT

l + w̃Tl M)(I − ul+1v
T
l+1)

where ρl = N(Mul), ∇fl = ∇f(ul) and ∇Nl = ∇N(ul). Moreover, the sequences (ul), (vl)

and (w̃l) converge linearly with rate |λ2|
ρ .

Of course, the first and second sequences are the power method to the right and to the
left. The third sequence is a modification the scheme of Proposition 7.9 with currently known
values only. We shall denote one iteration of the scheme of the theorem as

(uk+1, vk+1, w̃k+1) = POWERDERIVATIVEM(uk, vk, w̃k) .

Proof. The equalities giving ul+1 and vl+1 are simply the usual power method, so by [PPJ73],

they convergence linearly with rate |λ2|
ρ to u and v, the right and left principal eigenvectors

of M , such that P = uvT is the eigenprojector associated to ρ(M). Let

zTl :=
1

ρl
(−∇fTl + (∇fl · ul)∇NT

l ) :

lim zl = z by continuity of ∇f , N and ∇N at u. We also have

w̃Tl = (−zTl +
1

ρl
w̃Tl M)(I − ul+1v

T
l+1) .

We first show that w̃l is bounded. As in the proof of Proposition 7.9, ρ(M̃(I − P )) =
|λ2|
ρ < 1. Thus, by Lemma 5.6.10 in [HJ90], there exists a norm ‖·‖M and α < 1 such that
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M̃(I − P ) is α-contractant. Let S be the unit sphere: ∀x ∈ S, ‖M̃(I − P )x‖M ≤ α‖x‖M . By
continuity of the norm, ∀ǫ > 0,∃L,∀l ≥ L,∀x ∈ S, ‖ 1

ρl
M(I − ul+1v

T
l+1)x‖M ≤ (α + ǫ)‖x‖M .

As 1
ρl
M(I−ul+1v

T
l+1) is linear, we have the result on the whole Rn space. Thus w̃l is bounded.

Let us denote M̃ = 1
ρM and

z̃Tl := zTl (I − ul+1v
T
l+1) +

1

ρl
w̃Tl M(uvT − ul+1v

T
l+1) +

ρ− ρl
ρρl

w̃Tl M(I − uvT ) ,

so that w̃Tl+1 = −z̃Tl + w̃Tl M̃(I − uvT ). We have:

w̃Tl = w̃T0 (M̃(I − P ))l −
l−1
∑

k=0

z̃Tl−1−k(M̃(I − P ))k

= w̃T0 (M̃(I − P ))l −
l−1
∑

k=0

zT (M̃(I − P ))k −
l−1
∑

k=0

(z̃Tl−1−k − zT )(M̃(I − P ))k

By Proposition 7.9, the sum of the first and second summand correspond to wl and
converge linearly to wT when l tends to infinity with convergence rate |λ2|

ρ . Corollary 7.2 states

that g = limwlu
T
l . For the last one, we remark that ∀ǫ > 0, ‖(M̃(I − P ))k‖ = O( |λ2+ǫ|

ρ )k. In
order to get the convergence rate of the sequence, we estimate ‖z̃l − z‖ = ‖z̃l − zl + zl − z‖.

‖z̃l − z‖ ≤ ‖(zTl ul+1)v
T
l+1‖+ ‖ 1

ρl
w̃Tl M(uvT − ul+1v

T
l+1)‖+ ‖ρ− ρl

ρρl
w̃Tl ‖+ ‖zl − z‖

The second and third summands are clearly O(( |λ2+ǫ|
ρ )l). For the first summand as∇NT

l ul = 1
we have

|zTl ul+1| = |
1

ρl
(−∇fTl ul+1(∇fTl ul)(∇NT

l ul+1))|

≤ 1

ρl
(sup
l≥0
‖∇fTl ‖+ sup

l≥0
‖∇NT

l ‖)‖ul+1 − ul‖ .

As (ul)l≥0 is bounded and f and N are C1, the constant is finite and |zTl ul+1|‖vl+1‖ =

O(( |λ2+ǫ|
ρ )l). With similar arguments, we also show that ‖zl − z‖ = O(( |λ2+ǫ|

ρ )l)

Finally, we remark that for all k, (z̃Tl−1−k − zT )(M̃(I − P ))k = O(( |λ2+ǫ|
ρ )l−1). Thus

l−1
∑

k=0

(z̃Tl−1−k − zT )(M̃(I − P ))k = O

(

l
( |λ2 + ǫ|

ρ

)l−1
)

= O

(

( |λ2|+ ǫ′

ρ

)l
)

,

for all ǫ′ > ǫ. The result follows.

Remark 7.3. One iteration of the algorithm presented in Theorem 7.1 is composed of 3 mul-
tiplications by the matrix M (assumed sparse with filling rate γ(M)), 1 gradient evaluation
of the utility (cost c(f)), 1 evaluation of the normalization function and of its gradient (cost
c(N)), 3 scalar products, 2 vector sums and 3 scalar-vector multiplications. Hence, the
complexity is 3γ(M)n2 + 8n + c(f) + c(N). The leading term is the sparse matrix-vector
multiplication. This is the same order of complexity as for the power method, which is
γ(M)n2 + n + c(N). Moreover, as the rate of convergence of both algorithms is equal, the
number of iterations is comparable.
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Remark 7.4. All this applies easily to a nonnegative irreducible matrix M . Let ρ be its
principal eigenvalue: it is simple thanks to irreducibility. The spectral gap assumption ρ > |λ2|
is guaranteed by an additional aperiodicity assumption. Let v and u be the left and right
eigenvectors of M for the eigenvalue ρ. We normalize u by N(u) = 1 where N verifies
∂N
∂u (u) ≥ 0 and N(λu) = λN(u) (which implies ∂N

∂u (u) · u = N(u)) and v by
∑

i uivi = 1.

As u > 0, any normalization such that p = ∂N
∂u (u) ≥ 0 is satisfactory: for instance, we could

choose N(u) = ‖u‖1 =
∑

i ui, N(u) = ‖u‖2 or N(u) = u1.

Remark 7.5. Theorem 7.1 gives the possibility of performing a gradient algorithm for Perron
vector optimization. Fix a precision ǫ > 0 and apply recursively the power-type iterations
POWERDERIVATIVEM until ‖ul−ul+1‖+‖w̃l−w̃l+1‖ ≤ ǫ. Then we use w̃lul as the descent
direction of the algorithm. The gradient algorithm will stop at a nearly stationary point, the
smaller ǫ the better. In order to accelerate the algorithm, we can initialize the recurrence
with former values of ul, vl and w̃l.

7.4 Coupling gradient and power iterations

We have given in Theorem 7.1 an algorithm that gives the derivative of the objective function
with the same order of complexity as the computation of the value of the function by the
power method. As the problem is a differentiable optimization problem, we can perform any
classical optimization algorithm: see [BGLS06, Ber95, NW99] for references.

When we consider relaxations of the HITS authority optimization problem, that we will
define in Sections 7.5 (or another Perron ranking), the constraints on the adjacency matrices
are very easy to deal with, so a projected gradient algorithm as described in [Ber76] will
be efficient. If the problem has not a too big size, it is also possible to set a second order
algorithm. However, matrices arising from web applications are large: as the Hessian matrix
is a full n2 × n2 matrix, it is then difficult to work with.

In usual algorithms, the value of the objective function must be evaluated at any step
of the algorithm. As stressed in [Ove91], there are various possibilities for the computation
of the eigenvalue and eigenvectors. Here, we consider sparse nonnegative matrices with a
simple principal eigenvalue: the power method applies and, unlike direct methods or inverse
iterations, it only needs matrix-vector products, which is valuable with a large sparse matrix.
Nevertheless for large matrices, repeated principal eigenvector and eigenvalue determinations
can be costly. Hence, we give a first order descent algorithm designed to find stationary
points of Perron eigenvector optimization problems, that uses approximations of the value
of the objective and of its gradient instead of the precise values. Then we can interrupt the
computation of the eigenvector and eigenvalue when necessary and avoid useless computa-
tions. Moreover, as the objective is evaluated as the limit of a sequence, its exact value is not
available in the present context.

The algorithm consists of a coupling of the power iterations and of the gradient algorithm
with Armijo line search along the projected arc [Ber76]. We recall this latter gradient al-
gorithm in Algorithm 7.1. We shall, instead of comparing the exact values of the function,
compare approximations of these values, the level of approximation being monitored during
the course of the algorithm.

If we had an easy access to the exact value of u(M) for all M ∈ h(C), we could use the
gradient algorithm with Armijo line search along the projected arc with J = f ◦ u ◦ h to find
a stationary point of Problem (7.2). But here, we compute the Perron eigenvector and its
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Algorithm 7.1 Gradient algorithm with Armijo line search along the projected arc [Ber76]

Let a differentiable function J , a convex admissible set C and an initial point x0 ∈ C and
parameters σ ∈ (0, 1), α0 > 0 and β ∈ (0, 1). The algorithm is an iterative algorithm defined
for all k ∈ N by

xk+1 = PC(xk − αk∇J(xk))

and αk = βmkα0 where mk is the first nonnegative integer m such that

J
(

PC(xk − βmα0∇J(xk))
)

− J(xk) ≤ −σ
‖xk − PC(xk − βmα0∇J(xk))‖22

βmα0
.

derivatives by an iterative scheme (Theorem 7.1). So we only have converging approximations
of the value of the objective and of its gradient and we cannot use directly the classical
gradient algorithm (the approximate gradient may not be a descent direction). The theory of
consistent approximation, developed in [Pol97] proposes algorithms and convergence results
for such problems. If the main applications of consistent approximations are optimal control
and optimal control of partial derivative equations, it is also useful for problems in finite
dimension where the objective is difficult to compute [PP02].

A consistent approximation of a given optimization problem is a sequence of computation-
ally tractable problems that converge to the initial problem in the sense that the stationary
points of the approximate problems converge to stationary points of the original problem.
The theory provides master algorithms that construct a consistent approximation, initialize
a nonlinear programming algorithm on this approximation and terminate its operation when
a precision (or discretization) improvement test is satisfied.

We consider the Perron vector optimization problem defined in (7.2)

min
x∈C

J(x) = min
x∈C

f ◦ u ◦ h(x) .

For x ∈ C, n ∈ N and for arbitrary fixed vectors u0, v0 and w̃0, we shall approximate with order
∆(n) the Perron vectors of h(x), namely u and v and the auxiliary vector w of Corollary 7.2
by

(ukn
, vkn

, w̃kn
) := (POWERDERIVATIVEh(x))

kn(u0, v0, w̃0) , (7.6)

where kn is the first nonnegative integer k such that

‖(uk+1, vk+1, w̃k+1)− (uk, vk, w̃k)‖ ≤ ∆(n) . (7.7)

The map POWERDERIVATIVE is defined in Theorem 7.1. Then the degree n approxi-
mation of the objective function J and of its gradient ∇J are given by

Jn(x) = f(ukn
) , gn(x) =

∑

i,j∈[n]

w̃kn
(i)∇hi,j(x)ukn

(j) . (7.8)

An alternative approach, proposed in [PP02], is to approximate (u, v, w) by the nth iterate
(un, vn, w̃n) := (POWERDERIVATIVEh(x))

n(u0, v0, w̃0). We did not choose this approach
since it does not take into account efficiently hot started power iterations.

The usual Armijo line search requires the exact value of the gradient in order to terminate
in a finite number of iterations. Here, as we have only approximations of this gradient, the
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classical Armijo rule may fail. Hence we define the step with an interrupted Armijo line search
in Algorithm 7.2. The main difference with the usual Armijo line search is that, depending
on the current precision parameter n, we define a maximum number of step decreases M̄n. If
this number of decreases in not sufficient to satisfy Armijo conditions, then we declare that
the line search has failed and we force the master algorithm to increase the precision.

Algorithm 7.2 Interrupted Armijo line search along the projected arc

Let (M̄n)n≥0 be a sequence diverging to +∞, σ ∈ (0, 1), α0 > 0, β ∈ (0, 1) and γ > 0. Given
n ∈ N, Jn and gn are defined in (7.8). For x ∈ C, the algorithm returns An(x) defined as
follows. If for all nonnegative integer m smaller than M̄n,

Jn
(

PC(x− βmα0gn(x))
)

− Jn(x) > −σ
‖x− PC(x− βmα0gn(x))‖22

βmα0

then we say that the line search has failed and we set An(x) = ∅. Otherwise, let mn be the
first nonnegative integer m such that

Jn
(

PC(x− βmα0gn(x))
)

− Jn(x) ≤ −σ
‖x− PC(x− βmα0gn(x))‖22

βmα0

and define the next iterate An(x) to be An(x) = PC(x− βmnα0gn(x)).

Then we shall use the Interrupted Armijo line search along the projected arc An in the
following Master Algorithm Model (Algorithm 7.3), where the set of precisions for which the
Interrupted Armijo line search does not fail is denoted by the set N .

Algorithm 7.3 Master Algorithm Model 3.3.17 in [Pol97]

Let ω ∈ (0, 1), σ′ ∈ (0, 1), n−1 ∈ N and x0 ∈ C, N = {n | An(x) 6= ∅ , ∀x ∈ C} and (∆(n))n≥0

be a sequence converging to 0.
For i ∈ N, compute iteratively the smallest ni ∈ N and xi+1 such that ni ≥ ni−1,

xi+1 ∈ Ani
(xi) and

Jni
(xi+1)− Jni

(xi) ≤ −σ′∆(ni)
ω .

In order to prove the convergence of the Master Algorithm Model (algorithm 7.3) when
used with the Interrupted Armijo line search (Algorithm 7.2), we need the following lemma.

Lemma 7.2. For all x∗ ∈ C which is not stationary, there exists ρ∗ > 0, δ∗ > 0 and n∗ ∈ N

such that for all n ≥ n∗, and for all x ∈ B(x∗, ρ∗) ∩ C, An(x) 6= ∅ and

Jn((PC(x− αngn(x)))− Jn(x) ≤ −δ∗

where αn is the step length returned by the Interrupted Armijo line search An(x) (Algo-
rithm 7.2).

Proof. Let x ∈ C. Suppose that there exists an infinitely growing sequence (φn)n≥0 such that
Aφn

(x) = ∅ for all n. Then for all m ≤ M̄φn
,

Jφn

(

PC(x− βmα0gφn
(x))

)

− Jφn
(x) > −σ〈gφn

(x), x− PC(x− βmα0gφn
(x))〉
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When n→ +∞, M̄φn
→ +∞, Jφn

(x)→ J(x) and gφn
(x)→ ∇f(x) (Theorem 7.1), so we get

that for all m ∈ N, J
(

PC(xk − βmα0∇J(xk))
)

− J(xk) ≥ −σ ‖xk−PC(xk−βmα0∇J(xk))‖2
2

βmα0 , which

is impossible by [Ber76].

So suppose n ∈ N is sufficiently large so that An(x) 6= ∅. Let αn the step length determined
by Algorithm 7.2 and let α be the step length determined by Algorithm 7.1 at x. We have:

Jn (PC(x− αngn(x)))− Jn(x) ≤ −σ
‖x− PC(x− αngn(x))‖22

αn

and if αn 6= α0,

Jn
(

PC(x− β−1αngn(x))
)

− Jn(x) > −σ
‖x− PC(x− β−1αngn(x))‖22

β−1αn
.

(αn)n≥0 is a bounded sequence so it has a subsequence (αφn
)n≥0 converging to, say, ᾱ. As

(αn)n≥0 can only take discrete values, this means that αφn
= ᾱ for all n sufficiently big.

When n tend to infinity, by Theorem 7.1, we get

J (PC(x− ᾱ∇f(x)))− J(x) ≤ −σ‖x− PC(x− ᾱ∇f(x))‖22
ᾱ

and if ᾱ 6= α0,

J
(

PC(x− β−1ᾱ∇f(x))
)

− J(x) ≥ −σ‖x− PC(x− β−1ᾱ∇f(x))‖22
β−1ᾱ

.

Then, if α is the step length returned by Armijo rule (Algorithm 7.1), then α ≥ ᾱ, because
α is the first number of the sequence that verifies the first inequality. Similarly, consider the
version of Armijo rule with a strict inequality instead of the non strict inequality. Then if
αstrict is the step length returned by this algorithm, we have αstrict ≤ ᾱ.

Moreover, like in [PP02] one can easily see that ∀x∗ ∈ C not stationary, ∃ρ∗ > 0, ∃δ∗ > 0,
such that ∀x ∈ B(x∗, ρ∗) ∩ C,

J((PC(x− αstrict∇f(x)))− J(x) ≤ −δ∗

where δ∗ = σ
‖x∗−PC(x∗−αstrict∇f(x∗))‖2

2
αstrict

− ‖∇J(x∗)‖ρ∗. By Lemma 3 in [GB82], αstrict ≤ ᾱ

implies that
‖x∗−PC(x∗−αstrict∇f(x∗))‖2

2
αstrict

≥ ‖x−PC(x−ᾱ∇f(x))‖2
2

ᾱ . As this is true for all adherent
point of (αn)n≥0, ∀x∗ ∈ C not stationary, ∃ρ∗ > 0, ∃δ∗ > 0 and ∃n∗ ∈ N, such that ∀n ≥ n∗,
∀x ∈ B(x∗, ρ∗) ∩ C,

Jn((PC(x− αngn(x)))− Jn(x) ≤ −σ
‖x− PC(x− αstrict∇f(x))‖22

αstrict
+ δ∗/4 ≤ −δ∗/2 ,

for n∗ sufficiently large and ρ∗ sufficiently small.

In [PP02], the property of the lemma was proved for exact minimization in the line search.
We proved it for Algorithm 7.2.

We shall also need the following result
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Proposition 7.10 (Theorem 25 in [May94]). Let M ∈ Mn,n(R), λ̃ ∈ R, x̃ ∈ Rn, C ∈
Mn+1,n+1(R) and p ∈ Rn such that pT x̃ = 1. Denote

B =

[

A− λ̃In −x̃
pT 0

]

, η =

∥

∥

∥

∥

C

[

Ax̃− λ̃x̃
0

]∥

∥

∥

∥

∞
,

σ = ‖In+1−CB‖ and τ = ‖C‖∞. If σ < 1 and ∆ = (1− σ)2− 4ητ ≥ 0, then β = 2η

1−σ+
√

∆
is

nonnegative and there exists a unique eigenpair (x∗, λ∗) of M such that pTx∗ = 1, |λ∗−λ̃| ≤ β
and ‖x∗ − x̃‖∞ ≤ β.

Theorem 7.2. Let (xi)i≥0 be a sequence constructed by the Master Algorithm Model (Algo-
rithm 7.3) for the resolution of the Perron vector optimization problem (7.2) such that An(x) is
the Interrupted Armijo line search along the projected arc (Algorithm 7.2) and ∆(n) = (∆0)

n

for ∆0 ∈ (0, 1). Then every accumulation point of (xi)i≥0 is a stationary point of (7.2).

Proof. The proof of the theorem is based on Theorem 3.3.19 in [Pol97]. This theorem shows
that if continuity assumptions hold (they trivially hold in our case), if for all bounded subset
S of C there exist K > 0 such that for all x ∈ C

|J(x)− Jn(x)| ≤ K∆(n) ,

and if for all x∗ ∈ C which is not stationary, there exists ρ∗ > 0, δ∗ > 0 and n∗ ∈ N such that
for all n ≥ n∗, for all x ∈ B(x∗, ρ∗) ∩ C and for all y ∈ An(x),

Jn(y)− Jn(x) ≤ −δ∗ ,

then every accumulation point of a sequence (xi)i≥0 generated by the Master Algorithm Model
(algorithm 7.3) is a stationary point of the problem of minimizing J(x).

We first remark that for x ∈ C, u = u(h(x)) and Jn defined in (7.8), as f is continuously
differentiable, we have |J(x)− Jn(x)| ≤ ‖∇f(u)‖ ‖u− ukn

‖.
We shall now show that for all matrix M , there exists K > 0 such that ‖u − un‖ ≤

K‖un+1 − un‖. Remark that Theorem 16 in [May94] gives the result with K > N(un)
ρ−|λ2| when

M is symmetric. When M is not necessarily symmetric, we use Proposition 7.10 with x̃ = u,
λ̃ = ρ and C is the inverse of B. Let ǫ > 0, by continuity of the inverse, for n sufficiently
large, if we define Bn to be the matrix of Proposition 7.10 with x̃ = un and λ̃ = N(Mun), we
still have σ := ‖In+1 − CBn‖ < ǫ. We also have:

η :=

∥

∥

∥

∥

C

[

Mx̃− λ̃x̃
0

]∥

∥

∥

∥

∞
≤ ‖C‖∞‖Mun −N(Mun)un‖∞

≤ ‖C‖∞N(Mun)‖un+1 − un‖ .
The conclusion of Proposition 7.10 tells us that if ∆ := (1− σ)2 − 4ητ ≥ 0, then

‖u− un‖ ≤ β :=
2η

1− σ +
√

∆
≤ 2η

1− σ ≤ 3η ≤ 3‖C‖∞N(Mun)‖un+1 − un‖ .

Now, as the inversion is a continuous operation, for all compact subset S of C, there existsK >
0 such that for all M = h(x) ∈ h(C) and for all n sufficiently big, ‖u− un‖ ≤ K‖un+1 − un‖.

By definition of kn (7.7), we get

|J(x)− Jn(x)| ≤ ‖∇f(u)‖‖u− ukn
‖ ≤ K‖ukn+1 − ukn

‖ ≤ K∆(n) .

By Lemma 7.2, the other hypothesis of Theorem 3.3.19 in [Pol97] is verified and the
conclusion holds: every accumulation point of (xi)i≥0 is a stationary point of (7.2).
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7.5 Application to HITS optimization

In the last two sections, we have developed scalable algorithms for the computation of the
derivative of a scalar function of the Perron vector of a matrix and for the searching of
stationary points of Perron vector optimization problems (7.2). We now apply these results
to two web ranking optimization problems, namely HITS authority optimization and HOTS
optimization.

HITS algorithm for ranking web pages has been described by Kleinberg in [Kle99]. The
algorithm has two phases: first, given a query, it produces a subgraph G of the whole web
graph such that in contains relevant pages, pages linked to relevant pages and the hyperlinks
between them. The second phase consists in computing a principal eigenvector called author-
ity vector and to sort the pages with respect to their corresponding entry in the eigenvector.
If we denote by A the adjacency matrix of the directed graph G, then the authority vector is
the principal eigenvector of ATA.

It may however happen that ATA is reducible and then the authority vector is not uniquely
defined. Following [LM06], we remedy this by defining the HITS authority score to be the
principal eigenvector of ATA+ ξeeT , for a given small positive real ξ. We then normalize the
HITS vector with the 2-norm as proposed be Kleinberg [Kle99].

Given a subgraph associated to a query, we study in this section the optimization of the
authority of a set of pages. We partition the set of potential links (i, j) into three subsets,
consisting respectively of the set of obligatory links O, the set of prohibited links I and the
set of facultative links F . Some authors consider that links between pages of a website, called
intra-links, should not be considered in the computation of HITS. This results in considering
these links as prohibited because this is as if they did not exist.

Then, we must select the subset J of the set of facultative links F which are effectively
included in this page. Once this choice is made for every page, we get a new webgraph,
and define the adjacency matrix A = A(J). We make the simplifying assumption that the
construction of the focused graph G is independent of the set of facultative links chosen.

Given a utility function f , the HITS authority optimization problem is:

max
J⊆F ,u∈Rn,λ∈R

{f(u) ; (A(J)TA(J) + ξeeT )u = λu , ‖u‖2 = 1 , u ≥ 0} (7.9)

The set of admissible adjacency matrices is a combinatorial set with a number of matrices
exponential in the number of facultative links. Thus we shall consider instead a relaxed
version of the HITS authority optimization problem which consists in accepting weighted
adjacency matrices. It can be written as

max
A∈Rn×n,u∈Rn,ρ∈R

f(u)

(ATA+ ξeeT )u = ρu , ‖u‖2 = 1 , u ≥ 0

Ai,j = 1 , ∀(i, j) ∈ O
Ai,j = 0 , ∀(i, j) ∈ I

0 ≤ Ai,j ≤ 1 , ∀(i, j) ∈ F

(7.10)

The relaxed HITS authority optimization problem (7.10) is a Perron vector optimization

problem (7.2) with h(A) = ATA + ξeeT and the normalization N(u) =
√

∑

i u
2
i = 1. Hence

∇N(u(M)) = u(M). Remark that ‖u‖ = ‖v‖ = 1. Now ∂h
∂A(A).H = HTA + ATH so the
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derivative of the criterion with respect to the weighted adjacency matrix is (Aw)uT +(Au)wT

with w = (∇fT − (∇f · u)∇NT )(ATA+ ξeeT − ρI)#.
Thanks to ξ > 0, the matrix is irreducible and aperiodic. Thus, it has only one eigenvalue

of maximal modulus and we can apply Theorem 7.2.
The next proposition shows that, as is the case for PageRank optimization [dKNvD08,

FABG13], optimal strategies have a rather simple structure.

Proposition 7.11 (Threshold property). Let A be a locally maximal linking strategy of the
relaxed HITS authority optimization problem (7.10) with associated authority vector u and

derivative at optimum (Aw)uT + (Au)wT . For all controlled page i denote bi = −(Aw)i

(Au)i
if it

has at least one outlink. Then all facultative hyperlinks (i, j) such that
wj

uj
> bi get a weight

of 1 and all facultative hyperlinks (i, j) such that
wj

uj
< bi get a weight of 0.

In particular, if two pages with different bi’s have the same sets of facultative outlinks,
then their set of activated outlinks are included one in the other.

Proof. As the problem only has box constraints, a nonzero value of the derivative at the
maximum determines whether the upper bound is saturated (gi,j > 0) or the lower bound is
saturated (gi,j < 0). If the derivative is zero, the weight of the link can take any value.

We have gi,j = (Aw)iuj + (Au)iwj with uj > 0 and (Au)i ≥ 0. If Page i has at least
one outlink, then (Au)i > 0 and we simply divide by (Au)iuj to get the result thanks to the
first part of the proof. If two pages i1 and i2 have the same sets of facultative outlinks and
if bi1 < bi2 , then

wj

uj
≥ bi2 implies

wj

uj
> bi1 : all the pages pointed by i2 are also pointed by

i1.

Remark 7.6. If a page i has no outlink, then (Aw)i = (Au)i = 0 and gi,j = 0 for all j ∈ [n],
so we cannot conclude with the argument of the proof.

Remark 7.7. This proposition shows that
wj

uj
gives a total order of preference in pointing to

a page or another.

Then we give on Figures 7.1 and 7.2 a simple HITS authority optimization problem and
two local solutions. They show the following properties for this problem.

Example 7.1. The relaxed HITS authority optimization problem is in general not quasi-convex
nor quasi-concave.

Proof. Any strict local maximum of a quasi-convex problem is necessarily an extreme of the
admissible polyhedral set (this is a simple extension of Theorem 3.5.3 in [BS06]). The example
on Figure 7.1 shows that this is not the case here.

A quasi-concave problem can have only one strict local maximum (although it may have
many local maxima). The examples on Figures 7.1 and 7.2 show two distinct strict local
maxima for a HITS authority optimization problem.

Heuristic 7.1. These examples also show that the relaxed HITS authority optimization prob-
lem (7.10) does not give binary solutions that would be then solutions of the initial HITS
authority optimization problem (7.9). Hence we propose the following heuristic to get “good”
binary solutions. From a stationary point of the relaxed problem, define the function φ :
[0, 1]→ R such that φ(x) is the value of the objective function when we select in (7.9) all the
links with weight greater than x in the stationary point of (7.10). We only need to compute it
at a finite number of points since φ is piecewise constant. We then select the best threshold.
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Figure 7.1: Strict local maximum for relaxed HITS authority optimization on a small web
graph of 21 pages with 3 controlled pages (colored) representing the website I. Obligatory
links are the thin arcs, facultative links are all the other outlinks from the controlled pages
except self links. The locally optimal solution for the maximization of f(u) =

∑

i∈I u
2
i is to

select the bold arcs with weight 1 and the dotted arc with weight 0.18. Selected internal links
are dark blue, selected external links are light red. We checked numerically the second order
optimality conditions [Ber95]. The initial sum of HITS authority scores was 0.056. The best
strategy we found gives a score of 0.357 (the maximum possible is 1). This large increase lets
the controlled pages rank 1st, 4th and 9th over 21 in terms of HITS authority instead of 4th,
9th and 19th initially.
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Figure 7.2: Another strict local maximum for the same HITS authority optimization problem
as in Figure 7.1.

For instance, with the stationary point of Figure 7.1, this heuristic suggests not to select the
weighted link.

7.6 Optimization of the eigenvector of a nonlinear Perron-Frobenius
operator

Some web ranking algorithms, like sinkhorning [Smi05, Kni08] or the ideal HOTS algo-
rithm [Tom03] are defined as the eigenvector of a nonlinear Perron-Frobenius operator. In
this section, we show that the main properties of linear Perron vector optimization, i.e. the
low rank of the matrix of partial derivatives and the sparse calculus, can be adapted to the
nonlinear case.

We recall the following simple result:

Lemma 7.3. Let T be a monotone homogeneous map. Let u and λ be such that T (u) = λu.
Then the matrix ∂T

∂u (u) is nonnegative, its Perron eigenvalue is λ and u is one of its Perron
eigenvector.

Proof. As for all t > 0, u+ tej ≥ u and T is monotone,

∂Ti
∂uj

(u) = lim
t→0,t>0

Ti(u+ tej)− Ti(u)
t

≥ 0 .

For x ∈ R, we differentiate T (xu) = xλu with respect to x to get:

∂T

∂u
(xu)u = λu .
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When we evaluate this equality at x = 1, we deduce that (λ, u) is an eigenpair of ∂T
∂u (u). As

λ and u are nonnegative, this means that λ is the Perron eigenvalue of the matrix.

Definition 7.2. We shall say that a family (T (·, x))x is a differentiable family of Perron-
Frobenius operators if ((u, x) 7→ T (u, x)) is continuously differentiable, if for all x, the function
(u 7→ T (u, x)) is monotone, homogeneous and if ∂T

∂u (u, x) is primitive at a given eigenvector
u of T (·, x). This last assumption implies that T (·, x) has a unique eigenvector that we shall
denote u(x).

The nonlinear Perron-Frobenius eigenvector optimization problem can be written as

min
x∈C

f(u(x)) (7.11)

We assume that f : Rn → R is a real valued continuously differentiable function and that
C a closed convex set of parameters such that the map ((u, x) 7→ T (u, x)) is continuously
differentiable on Rn × C.

Proposition 7.12. Let (T (·, x′))x′ be a differentiable family of Perron-Frobenius operators.
Given a parameter x, let λ and u be the eigenvalue and eigenvector of T (·, x) such that u is
normalized by N(u) = 1. We denote S = (∂T∂u (u, x) − λI)#. Then the partial derivatives of
the eigenvector are given by:

∂u

∂xk
(x) = −S ∂T

∂xk
(u, x) + (∇N(u)TS

∂T

∂xk
(u, x))u

Proof. We differentiate the equality T (u, x) = λu with respect to xk

∂T

∂u

∂u

∂xk
+
∂T

∂xk
=

∂λ

∂xk
u+ λ

∂u

∂xk

Let v be the normalized left Perron vector of ∂T∂u such that S(∂T∂u −λI) = (I−uvT ). We have,
using the fact that Su = 0,

(I − uvT )
∂u

∂xk
= −S ∂T

∂xk
(7.12)

As ∇NT ∂u
∂xk

= 0 and ∇NTu = 1, we get

−vT ∂u

∂xk
= −∇NTS

∂T

∂xk

We reinject this last equality in (7.12) to get

∂u

∂xk
= −S ∂T

∂xk
+ (∇NTS

∂T

∂xk
)u

To simplify notations, we denote ∇f for ∇f(u), ∇N for ∇N(u) and ∂T
∂x for ∂T

∂x (u(x), x).

Corollary 7.3. With the notations of Proposition 7.12, the partial derivatives of the function
x 7→ (f ◦ u)(x) at x are given by gk =

∑

i∈[n]wi
∂Ti

∂xk
, where the auxiliary vector w is given by:

wT = (−∇fT + (∇f · u)∇NT )S = (−∇fT + (∇f · u)pT )(
∂T

∂u
− λI)#
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Proof. Similar to the proof of Corollary 7.2.

Since ∂T
∂u is a primitive matrix, the auxiliary vector can be computed with the iterative

scheme of Proposition 7.9. However, without any additional information on the structure
of ∂T

∂x , we cannot simplify the result further. If x is a matrix of size n, we may thus get a
large matrix of partial derivatives. We shall then prove that this matrix has a small rank to
make the algorithm scalable. This is the case for sinkhorning or the ideal HOTS algorithm
for instance.

In the next section, we adapt these results to the optimization of the HOTS score. Then,
∂T
∂x is a matrix of rank at most 3 and thus Proposition 7.3 gives an efficient formula. In fact,
the effective HOTS operator is not monotone but the main results useful for the optimization
of the ranking still hold.

7.7 Optimization of the HOTS score of a website’s pages

In this section, we study the optimization of the HOTS score of a website’s pages. Then the
fixed point operator is not monotone but we show that the matrix of partial derivatives has
rank at most 3 and that the Master Algorithm model can be used for this problem. We think
that this supports Tomlin’s remark that ”malicious manipulation of the dual values of a large
scale nonlinear network optimization model [. . . ] would be an interesting topic“.

As for HITS authority in Section 7.5, we consider sets of obligatory links, prohibited links
and facultative links. From now on, the adjacency matrix A may change, so we define θ̃
and F as functions of p and A. For all A, the HOTS vector is uniquely defined up to an
additive constant for α < 1, so we shall set a normalization, like for instance

∑

i pi = 0 or
log(

∑

i exp(pi)) = 0. Thus, given a normalization function N , we can define the function

p : A 7→ p(A). For all A, i, j, the normalization function N may verify ∂N
∂p (p(A)) ∂p

∂Ai,j
(A) = 0

and N(p+ λ) = N(p) + λ for all λ ∈ R, so that ∂N
∂p (p)e = 1.

The HOTS authority optimization problem is:

max
J⊆F ,p∈Rn,λ∈R

{f(p) ; u(A(J), p) = p , N(p) = 0 , } (7.13)

We shall mainly study instead the relaxed HOTS optimization problem which can be written
as:

max
A∈Rn×n,p∈Rn

f(u)

u(A, p) = p , N(p) = 0

Ai,j = 1 , ∀(i, j) ∈ O
Ai,j = 0 , ∀(i, j) ∈ I

0 ≤ Ai,j ≤ 1 , ∀(i, j) ∈ F

(7.14)

where f : Rn → R is the objective function. We will assume that f is differentiable with
gradient ∇f .

It is easy to see that F (A, ·) is additively homogeneous of degree 1, so the solution p of
the equation F (A, p) = p may be seen as a nonlinear additive eigenvector of F (A, ·). In this
section, we give the derivative of the HOTS vector with respect to the adjacency matrix.
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Proposition 7.13. The derivative of f ◦ p is given by gi,j =
∑

l wl
∂Fl

∂Ai,j
where

w = (−∇fT + (∇fT e)∇NT )(∇F − I)# .

Moreover, the matrix (gi,j)i,j has rank at most 3.

Proof. Let us differentiate with respect to Ai,j the equation pl(A) = Fl(A, p(A)). We get

∂pl
∂Ai,j

=
∑

l∈[n]

∂F

∂pl

∂pl
∂Ai,j

+
∂Fl
∂Ai,j

By Theorem 6.4, ∇F = I − 1
2d∇2θ̃, the spectral radius is 1 and 1 is the only eigenvalue of

∇F with modulus 1.

Multiplying by (∇F − I)# and using the fact that the right and left principal eigenvector
of ∇F are e and the vector v such that vi = 1/di,i for all i ∈ [n], we obtain

(I − evT

vT e
)
∂p

∂Ai,j
= −(∇F − I)# ∂F

∂Ai,j
(7.15)

Multiplying by∇NT gives−∇NT e
vT e

vT ∂p
∂Ai,j

= −∇NT (∇F−I)# ∂F
∂Ai,j

. We then use∇NT e =

1, we reinject in (7.15) and we multiply by ∇fT to get the result ∇fT ∂p
∂Ai,j

= (−∇fT +

(∇fT e)∇NT )(∇F − I)# ∂F
∂Ai,j

.

Finally, the equality ∂Fl

∂Ai,j
= −1

2dl
∂2θ

∂pl∂Ai,j
with

∂2θ

∂pl∂Ai,j
=

2α− 1
∑

i′,j′ Ai′,j′e
pi′−pj′

(−epiδlje
−pj + δlie

pie−pj +Ble
pie−pj )

where Bl =
P

i′ Ai′,le
p
i′
−pl−P

j′ Al,j′e
pl−p

j′

P

i′,j′ Ai′,j′e
p
i′
−p

j′
, shows that the matrix (gi,j)i,j has rank at most 3

since we can write it as the sum of three rank one matrices.

This proposition is the analog of Corollary 7.2, the latter being for Perron vector optimiza-
tion problems. It both cases, the derivative has a low rank and one can compute it thanks
to a Drazin inverse. Moreover, thanks to Theorem 6.4, one can apply Proposition 7.9 to ∇F .
Indeed, ∇F has all its eigenvalues within (−1, 1], 1 is a single eigenvalue with evT /(vT e)
(vi = 1/di,i) being the associated eigenprojector. So, for HOTS optimization problems as
well as for Perron vector optimization problems, the derivative is easy to compute as soon as
the second eigenvalue of ∇F is not too big.

For HOTS optimization also, we have a threshold property.

Proposition 7.14 (Threshold property). Let A be a stationary point for the relaxed HOTS
optimization problem (7.14) with associated HOTS vector p and let w be defined as in Propo-

sition 7.13 and d as in Proposition 6.6. Let B =
P

k,l Ak,le
pk−pldlwl−

P

k,l dkwkAk,le
pk−pl

P

k,l Ak,le
pk−pl

. Then

for all facultative link (i, j), djwj > diwi + B implies that Ai,j = 1 and djwj < diwi + B
implies that Ai,j = 0.
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Proof. The development of ∂Fl

∂Ai,j
= −1

2dl
∂2θ

∂pl∂Ai,j
in the end of the proof of Proposition 7.13,

shows that the derivative of the objective is given by gi,j = −1
2

2α−1
P

k,l Ak,le
pk−pl

epi−pj (−wjdj +

widi +B).

The result follows from the fact that the problem has only box constraints. Indeed, a
nonzero value of the derivative at the maximum determines whether the upper bound is
saturated (gi,j > 0) or the lower bound is saturated (gi,j < 0). If the derivative is zero, then
the weight of the link can take any value.

Remark 7.8. This proposition shows that (widi)i∈[n] gives a total order of preference in point-
ing to a page or another.

Proposition 7.15. If θ̃ is bounded from below, then there exists K > 0 such that for all n,
‖p− pn‖ ≤ K‖pn+1 − pn‖.

Proof. By Proposition 6.7, the Hessian of θ̃ restricted to H = {y ∈ Rn | ∑i∈[n] yi = 0} is
symmetric definite positive at any point. We thus denote

m = min
x|θ̃(x)≤θ̃(p0)

λmin(∇2θ̃|H)

m is positive because θ̃ is infinitely differentiable and K = {x ∈ H|θ̃(x) ≤ θ̃(p0)} is compact.
By Theorem 6.3, pn ∈ K and pn+1 ∈ K and as K is convex (because θ̃ is convex), [pn, pn+1] ∈
K. By comparing θ̃ and the quadratic function φ(q) = θ̃(pn)+∇θ̃(pn)(pn− q)+ 1

2‖pn− q‖2m,

we deduce that ‖pn − p‖ ≤ 2
m‖∇θ̃(pn)‖.

From the equalities obtained in Proposition 6.6 (and by a similar way as Proposition 6.6 for
the one with d′), pn+1 = pn+

1
2 log(1−d′∇θ̃(pn)) = pn− 1

2 log(1+d∇θ̃(pn)), and log(1+x)2 ≥ x2

for x ≤ 0, we get

‖pn+1 − pn‖2 =
1

4

∑

i|∇iθ̃(pn)≤0

log(1 + di∇iθ̃(pn))2 +
1

4

∑

i|∇iθ̃(pn)≥0

log(1− d′i∇iθ̃(pn))2

≥ 1

4

∑

i|∇iθ̃(pn)≤0

d2
i∇iθ̃(pn)2 +

1

4

∑

i|∇iθ̃(pn)≥0

(d′i)
2∇iθ̃(pn)2

≥ 1

4
(min
i∈[n]

min(d′i, di))‖∇iθ̃(pn)‖2 ≥ (m′)2‖∇θ̃(pn)‖2

Here also (m′)2 > 0 because d and d′ are continuous and K is compact. Combining both
inequalities, we get the result with K = 2

mm′ .

Corollary 7.4. Let (xi)i≥0 be a sequence constructed by the Master Algorithm Model (Algo-
rithm 7.3) for the resolution of the relaxed HOTS optimization problem (7.14) such that
An(x) is the Interrupted Armijo line search along the projected arc (Algorithm 7.2) and
∆(n) = (∆0)

n for ∆0 ∈ (0, 1). Then every accumulation point of (xi)i≥0 is a stationary
point of (7.14).

Proof. The proof follows the arguments of the proof of Theorem 7.2 but uses Proposition 7.15
instead of Proposition 7.10.
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Figure 7.3: Strict local maximum for HOTS optimization on the small web graph of Figure 7.1.
The locally optimal solution for the problem of maximizing f(u) =

∑

i∈I exp(pi) presented
here is to select the bold arcs with weight 1. If one replaces the arc from 20 to 17 by the arc
from 17 to 20 one gets another strict local optimal solution but with a smaller value (0.166
instead of 0.169). This shows that the problem is not quasi-concave.

Example 7.2. We take the same web site as in Figures 7.1 and 7.2 with the same admissible
actions. We choose the objective function f(p) =

∑

i∈I exp(pi) and the normalization N(u) =
log(

∑

i∈I exp(pi)) = 0. The initial value of the objective is 0.142 and we present a local
solution with value 0.169 on Figure 7.3.

7.8 Numerical results

By performing a crawl of our laboratory website and its surrounding pages with 1,500 pages,
we obtained a fragment of the web graph. We have selected 49 pages representing a website I.
We set ri = 1 if i ∈ I and ri = 0 otherwise. The set of obligatory links were the initial links
already present at time of the crawl, the facultative links are all other links from controlled
pages except self-links.

We launched our numerical experiments on a personal computer with Intel Xeon CPU at
2.98 GHz and 8 GB RAM. We wrote the code in Matlab language.

7.8.1 HITS authority optimization

As in Section 7.5, we maximize the sum of HITS authority scores on the web site, that is we
maximize f(u) =

∑

i∈I riu
2
i under the normalization N(u) = (

∑

i∈[n] riu
2
i )

1/2 = 1.

We use the coupled power and gradient iterations described in Section 7.4. We show the
progress of the objective on Figure 7.4 and we compare coupled power and gradient iterations
with classical gradient in Table 7.1.
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Figure 7.4: Optimization of the sum of HITS authority scores. The figure shows that the
objective is increasing during the course of the algorithm. The sum of authority values jumps
from 2.1e-6 to 0.19. Of note, the sum of authority values for a clique (all internal links
activated) is 4.8e-6. The algorithm thus gives with a small computational effort a much
better solution than what is commonly considered a good strategy [LM00]. However, despite
this big progress at the beginning, convergence is slow. This is a typical situation with first
order methods and nonconvex optimization.

Matrix assemblies Power iterations Time

Gradient (Equation (7.5)) 545 - 304 s

Gradient (Remark 7.5) 324 56,239 67 s

Coupled iterations (Th. 7.2) 589 14,289 15 s

Table 7.1: Comparison of gradient algorithm with the evaluation of the gradient done by
direct resolution of Equation (7.5) by Matlab “mrdivide” function, gradient algorithm with
hot started power iterations described in Remark 7.5 (precision 10−9) and coupled gradient
and power iterations. The goal was to reach the value 0.22 on our laboratory dataset (the
best value we found was 0.2285). For this problem, coupling the power and gradient iterations
makes a speedup of more than four.

The best strategy of links found corresponds to a sum of HITS authority scores of 0.2285
whereas the initial situation gave a score of 3.5e-6. This shows that HITS authority can be
heavily manipulated because 49 “unknown” pages among 1,500 can get 23 % of the whole
available HITS values only by changing their hyperlinks in a smart way.

The strategy has lots of binary values: only 4569 values different from 1 among 11,516
nonnegative controlled values. Moreover, the heuristic described in Section 7.5 gives a 0-1
matrix with a value at 0.07% from the weighted local optimum found. It consists in adding
all possible links between controlled pages (internal links) and some external links. Following
Proposition 7.11, as the controlled pages share many facultative outlinks, we can identify
growing sequences in the sets of activated outlinks.

7.8.2 HOTS optimization

We consider the same website as for the numerical experiments for HITS authority. We take as
objective function f(p) =

∑

i∈I exp(pi) and as normalization N(u) = log(
∑

i∈[n] exp(pi)) = 0.

Here, a stationary point is reached after 55 gradient iterations and 8.2 s. The initial value
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Figure 7.5: Strict local optimal solution of the HOTS optimization problem. We present the
adjacency matrix restricted to the set of controlled pages. There are no facultative external
links added. We sorted pages by their (widi)i∈[n] value. The rounded black dots are the
obligatory links and the blue dots are the activated facultative links. We can see that the
higher the widi, the bigger the number of controlled pages pointing to that page and the
smaller the number of pages that page points to (Proposition 7.14). It is worth noting that
this local solution of the relaxed problem has only binary weights.

of the objective was 0.0198 and the final value returned by the optimization algorithm was
0.0567. The increase (186 %) is less drastic than for HITS but it is still large. The rank of
the best page among the pages of the set I goes from 544th to 4th.

We give a local optimal adjacency matrix on Figure 7.5.

7.8.3 Scalability of the algorithms

We launched our algorithms on two test sets and we give the execution times on Table 7.2.
Our laboratory’s website is described at the beginning of this section. The crawl of New
Zealand Universities websites is available at [Pro06]. We selected the 1,696 pages containing
the keyword “maori” in their url and 1,807 possible destination pages for the facultative
hyperlinks, which yields 3,048,798 facultative hyperlinks. In both cases, we maximize the
sum of the scores of the controlled pages.

We remark that for a problem more that 300 times greater, the computational cost does
not increase that much. Indeed, the spectral gap is similar and the cost by matrix-vector
product is growing only linearly thanks to the sparsity of the matrix.

7.9 Conclusion

In this chapter, we have given a scalable algorithm for the local optimization of the Perron
value or a scalar function of the Perron vector of a nonnegative matrix. We have then used it
to locally solve the HITS authority optimization problem and the HOTS score optimization
problem.

A natural question in front of the number of existing ranking algorithms is which one is the
best. First of all, the ranking should be well defined on all instances and easily computable.
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HITS (CMAP) HOTS (CMAP) HITS (NZU) HOTS (NZU)

Gradient (Eq. (7.5)) 1.01 s/it 0.82 s/it out of memory out of memory

Gradient (Rem. 7.5) 0.23 s/it 0.12 s/it 20 s/it 62 s/it

Coupled iter. (Th. 7.2) 0.038 s/it 0.04 s/it 1.0 s/it 2.9 s/it

Table 7.2: Mean execution times by gradient iterations for HITS authority and HOTS op-
timization for 2 fragments of the web graph: our laboratory web site and surrounding web
pages (CMAP dataset, 1,500 pages) and New Zealand Universities websites (NZU dataset,
413,639 pages). The execution time with a direct resolution of Equation (7.5) by Matlab
“mrdivide” function becomes very memory consuming when the size of the problem grows.
It is still acceptable with matrices of size 1,500 but fails for larger matrices. The other two
algorithms scale well. The execution time mainly depends on the spectral gap of the matrix,
which is similar in the four cases and on the cost by matrix-vector product, which is growing
only linearly thanks to the sparsity of the matrix. The number of gradient iterations is in
general not dependent on the size of the problem: in our experiments for HITS authority op-
timization, there were even less gradient iterations with the larger dataset. When the coupled
iterations is available, it gives a speedup between 3 and 20.

The classical HOTS algorithm fails for this requirement as show the experiments in Section 6.5.
Then, the usual method is to define a set of web pages and to rank the pages of this test
set by a jury of human experts. One compares the answer of the ranking algorithm with the
man-made ranking of web pages. This test has the advantage of being compatible with any
ranking algorithm and of comparing the final results. But it is an expensive test and it does
not take into account the dynamical nature of the web. In particular, it does not guarantee
that the chosen algorithm will be resistant to malicious behaviors.

For this, two approaches have been used. First, the design of the ranking algorithm should
use a kind of mutual reinforcement property [Kle99, BP98], so that an isolated page cannot
gain a large score. Second, one should test some web site patterns and see whether the
answer is disproportionate. For instance, the HITS authority and hub scores are known to be
exaggeratedly high on pages that are in a clique [LM00]: this is the tightly knit community
effect.

The optimization procedure given in this chapter may be used as a refinement of this
second approach, by testing the locally optimal web site patterns for each ranking algorithm.
For instance, we have shown in Section 7.8 that the HITS authority score can still be increased
a lot by adding well chosen outlinks from a clique-shaped web site. Together with the com-
parison of the vulnerability of the rankings to web spamming, one shall analyse the locally
optimal strategies found in order to forecast what kind of strategies will be used by spam-
mers. For instance, optimizing the PageRank (Chapter 4) or the HOTS score (Section 7.8)
leads to web sites with the smallest possible number of outlinks and many inlinks while when
optimizing the HITS authority score, one should also add some outlinks.



CHAPTER 8

Optimization of cancer drug
treatments through age-structured

population dynamics

8.1 Introduction

Up to now, we have been interested in optimization problems arising in the context of web
ranking. We have thus studied the Perron vector optimization problem and a nonlinear
variant of the PageRank optimization problem. In this chapter, we present and analyse a
mathematical model for the optimization of cancer drug treatments in cycling cell population
models with age structure. Although the application seems quite different from what we have
seen in the rest of the thesis, it turns out that the models use the same fundamental tool: the
growth rate of each cell population is modeled by the Perron eigenvalue of an elementwise
nonnegative and sparse matrix.

Tissue proliferation in living organisms always relies on the cell division cycle: one cell
becomes two after a sequence of molecular events that is physiologically controlled at each step
of the cycle at so-called checkpoints [LBK+07, Mor06]. This process occurs in all renewing
tissues, healthy or cancerous, but in cancerous tissues part of these control mechanisms are
inefficient, resulting in uncontrolled tissue growth which may be given as a definition of cancer.

At the initial local stages of cancer (i.e., still without more invasive processes involving
tumour neoangiogenesis, digestion of the extracellular matrix and metastases), deficiencies in
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the control of cell cycle checkpoints, e.g., involving mutated protein p53, are the main factors
responsible for this disrupted control of tissue growth.

The representation of the dynamics of the division cycle in proliferating cell by physio-
logically structured partial differential equations (PDEs), which dates back to McKendrick
[McK26], is a natural frame to model proliferation in cell populations, healthy or cancerous.
Furthermore, the inclusion in such models of targets for its physiological and pharmacological
control allows one to develop mathematical methods of their analysis and control [Cla08].

Optimization of cancer therapeutics, from a clinical point of view, consists of maximizing
some therapeutic index of a treatment, measuring (with various definitions) a ratio between
its therapeutic outcome in terms of tumour regression and its inevitable toxic side effects on
healthy tissues. It thus measures the relevance of the chosen trade-off between therapeutic
efficacy and unwanted toxicity. Such an index is hence maximum when there is no toxicity
and the tumour is eradicated (a most unlikely situation) and minimum when toxicity is so
high that the treatment must be stopped. Giving a mathematical sense to this trade-off is
the object of therapeutic optimization by mathematical methods [AGLG11, ALG07b, ALG09,
BCL06, Cla07, Cla09, Cla11].

Optimizing anticancer treatments may plainly consist of defining the drug delivery time
schedule (or, rather, its output on p53 or CDK inhibitor concentration at the target cell
population level) that will kill as many cancer cells as possible, and then adapt it by trials
and errors to clinical tolerability constraints. But since we know that drugs act on proliferating
healthy cells (in fast renewing tissues, such as gut epithelium or bone marrow) by the same
mechanisms as in cancer drugs, and that these unwanted side-effects on healthy cells are
actual clinical issues that limit the use of these drugs, it is legitimate to consider the drug
delivery optimization problem as a problem of optimization under constraints, the solution
of which is a trade-off between the objective function (decreasing the cancer cell population)
and the constraint (maintaining the healthy cell population over a tolerable level).

Placing ourselves within the modelling frame of a generic drug acting in parallel on a
healthy tissue and on a tumour, both represented by cell population dynamic systems of
equations, it has already been shown that it was possible, using a simplified set of ordinary
differential equations (ODEs) with a physiological circadian clock control on the pharmacody-
namics of a one-drug external control, to obtain optimized drug delivery schedules, solutions
to an optimization problem under constraints [BCL06, Cla07]. These schedules are optimal in
the sense that, constraining the healthy cell population to remain over an absolute tolerability
threshold (absolute, but adaptable to what could be the patient’s state of health), the tumour
cell kill is maximized by a delivery drug flow that takes into account the effects of circadian
clocks on both cell populations.

The assumption used there was that there was a best time to kill tumour cells, which
was at the same time the best to preserve healthy cells from toxicity. Although it has found
some experimental support explored in [BCL06, Cla07], this assumption may be forsaken to
comply with the more likely conjecture of a clear obedience of healthy proliferating cells to
circadian clock synchronizing messages, and a looser obedience to, or total ignorance of, the
same messages in tumour cells. It is this assumption that we will now put forward, as it has
also been used by others in different modelling settings [AGLG11, ALG07b, ALG09].

In this chapter, we present and analyse a mathematical model for the optimization of
cancer drug treatments in cycling cell population models with age structure. We consider a
drug, 5-FluoroUracil (5-FU), that prevents cells from starting mitosis.

The proliferating healthy and cancer cell populations are represented by the same age-
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structured model of the McKendrick type, with different physiological controls for the two
cases. Each dynamics is given by physiologically structured PDEs where the dynamic variables
are the number of cells of each age in each phase of the proliferation cycle: first growth phase
(G1), DNA synthesis followed by second growth phase (S/G2) and mitosis (M), and the only
structure variable is age in the phase. The parameters of the model are the death rates and
transitions from a phase to the next in the cell cycle.

In this work, we assume that proliferation is physiologically controlled by a circadian
clock [L0́2, L0́6, L0́8, LACG08, LOD+10, LS07b], which implies that the coefficients of the
model are not only age and phase-dependent but also 24h-periodic functions. Our fundamen-
tal hypothesis is that healthy and cancer cells proliferate following the same model, but that
cancer cells are characterized by a looser response to the circadian control, which gives them
a proliferation advantage [AGLG11, ALG07b, ALG09].

We show how recent fluorescence-based image modelling techniques performed at the
single cell level in proliferating cell populations allow one to identify some key parameters
of the population dynamics, giving the transition rates from a phase to the next one when
there is no circadian control. Then, we inferred the transition rates with circadian control by
assuming that the actual transition rate is the product of the rate without circadian control
and of a 24h-periodic physiological control.

Then, we consider time-dependent 5-FU infusions that disrupt the transition from phase
G2 to M . We study the problem of minimizing the growth rate of the cancer cell population,
modeled by the Floquet eigenvalue of the population dynamics, with the constraint that the
growth rate of the healthy cell population remains over a given toxicity threshold. The goal
is to find (periodic) chemotherapy schedules that are viable in the long term and effective in
the fight against cancer.

When we discretize the problem, the Floquet eigenvalues are approached by the Perron
eigenvalues of sparse nonnegative matrices. We developed a multiplier’s method for the local
optimization of the growth rates, that takes advantage of a low rank property of the gradient
of the Perron eigenvalue. The eigenvalue optimization algorithm is based on the algorithm
developed in Chapter 7. We calculated the gradient of the objective function at stake and
adapted the coupling of power and gradient iterations to the multiplier’s method. This chapter
relies on the work presented in [BCF+11a, BCF+11b, BCF12].

8.2 Drugs used in cancer treatments and their targets

8.2.1 Fate of drugs in the organism: molecular pharmacokinetics-pharmaco-
dynamics

Anticancer drugs are delivered into the general circulation, either directly by intravenous
infusion, or indirectly by oral route, intestinal absorption and enterohepatic circulation (i.e.,
entry in the general blood circulation from the intestine via the portal vein towards the
liver, and possibly back from the liver to the intestine via bile ducts). Their fate, from
introduction in the circulation until presence of an active metabolite in the neighborhood
of their intracellular targets, can be represented by pharmacokinetic (PK) compartmental
ordinary differential equations (ODEs) for their concentrations. It is also theoretically possible
to represent this fate by spatial partial differential equations (PDEs) with boundary conditions
instead of exchange rules between compartments when data on spatial diffusion of the drugs
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and some geometry of their distribution domain is known - but this is seldom the case.

Then, in the cell medium, either an individual cell, or a mean intracellular medium in a
population of cells, pharmacodynamic (PD) differential equations must be used to relate local
drug concentrations with molecular effects on their targets. At this level of description, it is
a priori more relevant to describe by physiologically structured than by spatially structured
models the population of cells under pharmacological attack, since anticancer drugs act mainly
by blocking the cell division cycle, which does not give rise to a spatially structured cell
population (apart from the very early stages of avascular spheroid tumour growth, little
geometry is relevant to describe a tumour seen under the microscope).

8.2.2 Cytotoxics and cytostatics

Driving cells to their death may be obtained either by damaging the genome, or more indi-
rectly by impairing essential mechanisms of the cell division cycle, such as enzymes thymidy-
late synthase (an enzyme that plays an essential role in DNA synthesis and is one of the main
targets of cytotoxic drug 5-FU) or topoisomerase I (another essential enzyme of DNA synthe-
sis, target of cytotoxic drug irinotecan). The resulting damaged cell, unable to proceed until
division into two viable cells, is normally blocked at one or the other checkpoint, mainly G1/S
or G2/M (recall that the cell division cycle is classically divided into 4 successive phases, G1,
S for DNA synthesis, G2, and M for mitosis).

Then, unless it may be repaired by specific enzymes - that are often overexpressed in
cancer cells -, these impaired cells, blocked at a checkpoint, are subsequently sent to ‘clean
death’ by the physiological mechanism of apoptosis (also possibly impaired in cancer, resulting
in abnormal cells bypassing these checkpoints). As mentioned above, we define here this class
of drugs, that have for their ultimate mission to kill cancer cells - even if their primary action
is not to directly damage the genome, but rather to damage cell cycle enzymes - as cytotoxics.

For our numerical experiments, we chose to consider 5-FluoroUracil (5FU) infusions. This
anticancer drug has an S phase specificity, acting via DNA damage and involving a preserved
p53 protein control (having nevertheless in mind that p53 is mutated in many cancers [KB04,
VLL00]). When 5-FU is infused in the body of the patient, some cells will have damaged
DNA and will be blocked at the checkpoint between phases G2 and M . We assume that
DNA repair mechanisms exist and thus that when the drug infusions stop, the cells can go
on proliferating.

We reserve the term cytostatic to those non cell-killing drugs that merely slow down
proliferation, usually by maintaining cells in G1 with possible exit to G0, that is by definition
the quiescent phase, i.e., the subpopulation of cells that are not committed in the cell division
cycle. Indeed, before the restriction point inside G1, cells may stop their progression in the
cell cycle and go back to quiescence in G0. This last category comprises all drugs that act
as antagonists of growth factors, which may be monoclonal antibodies or tyrosine kinase
inhibitors.

8.2.3 Representation of drug targets

It is appropriate to consider anticancer drugs, cytotoxic or cytostatic, and their targets,
through their effects on the cell cycle in cell populations. This of course assumes that a
model of the cell cycle in a proliferating cell population is given.



8.3. Age-structured linear models for tissue proliferation and its control 143

In a review article [KS06], Kimmel and Świerniak considered two possibilities to represent
in a mathematical model the action of cytotoxic drugs on their targets in a proliferating
cell population: either by a possible direct effect on cell death, enhancing it, presumably by
launching or accelerating the apoptotic cascade in one or more phases of the cell cycle, or
by a blockade of one or more transitions between two phases, arresting the cycle at some
checkpoint, most often with the involvement of protein p53, and only secondarily launching
cell death.

This is indeed a general alternative in the representation of the effects of cytotoxics. If no
cell cycle phase structure has been put in the population dynamic model used to represent the
evolution of the cell populations at stake, i.e., when no account is taken of cell cycle phases
in these populations, then only the first possibility exists: modulation of a death term.

As regards cytostatics (which by definition are not supposed to kill cells, at least not
directly), the representation of their action in physiological models with age structure for
the cell cycle should be somewhat different. It can be done either by a slowdown of the
progression speed in the G1 phase (or in the proliferating phase in a one-phase model) or by
an action on the exchanges between non proliferating (G0) and proliferating phases when a
G0 phase is represented in the model.

It is also possible to combine cytostatic and cytotoxic effects in the same model. In
[HWAW07], for instance, the authors use an age-structured model with a 1-phase prolifera-
tive subpopulation exchanging cells with a nonproliferative cell compartment to combine a
slowdown effect on proliferation for the cytostatic effect with an increase in the cell death term
for the cytotoxic effect - of the same drug, lapatinib, a tyrosine kinase inhibitor, in their case,
the variation between these effects depending on the dose. Acting on two different targets
in a cell cycle model by two different drugs, a cytotoxic and a cytostatic one, in the same
cell population is thus possible, and such models are thus amenable to study and optimise
combination therapies, such as cetuximab+irinotecan advocated in [CHS+04].

8.3 Age-structured linear models for tissue proliferation and its

control

8.3.1 Linear and nonlinear models

Physiologically structured cell population dynamics models have been extensively studied
in the last 25 years, see e.g. [Ari95, AK93, AS97, MD86, BCF12]. We consider here a
typically age-structured cell cycle model, since our aim was to represent the action of cytotoxic
anticancer drugs, which always act onto the cell division cycle in a proliferating cell population.
The model chosen, of the McKendrick type [McK26], is linear. This may be considered as
a harsh simplification to describe biological reality, which involves nonlinear feedbacks to
represent actual growth conditions such as population size limitation due to space scarcity.
Nonetheless, having in mind that linear models in biology are just linearizations of more
complex models (for instance considering the fact a first course of chemotherapy will most
often kill enough cells to make room for a non space-limited cell population to thrive in the
beginning) we think that it is worth studying population growth and its asymptotic behavior
in linear conditions and thus analyse it using its growth (or Malthus) exponent. This first
eigenvalue of the linear system may be considered as governing the asymptotic behavior, at
each point where it has been linearized, of a more complex nonlinear system, as described in



144Chapter 8. Optimization of cancer drug treatments through age-structured population dynamics

[BBCP08, BBCRB08].

8.3.2 Age-structured models for tissue proliferation and its control

We know that circadian clocks ([L0́2, L0́6, L0́8, LACG08, LOD+10, LS07b], Section 1.2)
normally control cell proliferation, by gating at checkpoints between cell cycle phases (i.e.,
by letting cells pass to the next phase only conditionally). We also know that circadian clock
disruption has been reported to be a possible cause of lack of physiologically control on tissue
proliferation in cancer [LOD+10], a fact that we will represent in our model to distinguish
between cancer and healthy cell populations.

The representation of the dynamics of the division cycle in proliferating cell proliferations
by physiologically structured partial differential equations (PDEs) is thus a natural frame to
model proliferation in cell populations, healthy or cancerous. The inclusion in such prolif-
eration models of targets for its control, physiological (circadian) and pharmacological (by
drugs supposed to act directly on checkpoints), allows to develop mathematical methods of
their analysis and therapeutic control [BCF+11a, BCF+11b, Cla08], in particular for cancer
chronotherapeutics, i.e., when the drug control is made 24h-periodic to take advantage of
favorable circadian times.

We consider here an age-structured cell cycle model, in which the cell division cycle is
divided into I phases (classically 4: G1, S,G2 and M), and the variables are the densities
ni(t, x) of cells having age x at time t in phase i. Equations read



















∂ni(t,x)
∂t + ∂ni(t,x)

∂x + di(t, x)ni(t, x) +Ki→i+1(t, x)ni(t, x) = 0,

ni+1(t, 0) =
∫∞
0 Ki→i+1(t, x)ni(t, x)dx,

n1(t, 0) = 2
∫∞
0 KI→1(t, x)nI(t, x)dx.

(8.1)

Together with an initial condition (ni(t = 0, .))1≤i≤I . This model was first introduced in
[CLMP03]. The case I = 1 has received particular attention [CGL09, CGL11]. In this model,
in each phase, the cells are ageing with constant speed 1 (transport term), they may die (with
rate di) or go to next phase (with rate Ki→i+1) in which they start with age 0. We write it
in its highest generality. If we want to represent the effect of circadian rhythms, we usually
consider time-periodic coefficients, the period being of course 24h.

Note that we will not consider here a resting phase (G0), with exchanges with the G1

phase. It is certainly possible to do it in a biologically more realistic setting, since even in
fast renewing tissues, all cells are not in in a proliferative state [BT70, VVB03], and also
since it has been done already [BBCP08, BBCRB08, BPMM03], even in a completely linear
setting [GGTW11] (i.e., without nonlinear feedback). Nevertheless, since the observations
on the basis of which we performed the identification of our model parameters (see below
Section 8.5.1) report recordings on proliferating cells only, we have limited our theoretical
frame here to the classical G1, S,G2 and M phases.

8.3.3 Basic facts about age-structured linear models

One of the most important facts about linear models is its trend to exponential growth.
Solutions to (8.1) satisfy (if the coefficients are time-periodic, or stationary) ni(t, x) ∼
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C0Ni(t, x)e
λt, where Ni are defined by (for T−periodic coefficients)































∂Ni(t,x)
∂t + ∂Ni(t,x)

∂x +
(

λ+ di(t, x) +Ki→i+1(t, x)
)

Ni(t, x) = 0,

Ni+1(t, 0) =
∫∞
0 Ki→i+1(t, x)Ni(t, x)dx,

N1(t, 0) = 2
∫∞
0 KI→1(t, x)NI(t, x)dx,

Ni > 0, Ni(t+ T, .) = Ni(t, .),
∑

i

∫ T
0

∫∞
0 Ni(t, x)dxdt = 1.

(8.2)

The study of the growth exponent λ, first eigenvalue of the system, thus governs the long-time
behavior of the population (since the Ni are bounded) and is therefore of crucial importance.
For further reading about the asymptotic behavior of (8.1), the reader may consult [Per07]
(chapter 3) for an overview of the subject.

In the 1-phase case (I = 1), i.e., if only the total cell cycle duration is taken into consid-
eration, extended studies of the first and second eigenvalues (there is only one positive eigen-
values, but others exist, that are complex) of the system have been performed in [CMTU01],
following [MD86], with proposed experimental methods using flow cytometry to identify these
eigenvalues. In the present study, we will not consider other eigenvalues than the first one,
but we are fully aware of the fact that considering the second eigenvalue (its real and imag-
inary parts) may be of importance if one wants to precisely describe in particular transient
phenomena that appear when control changes occur at cell cycle phase transitions.

We focus now on the case of stationary phase transition coefficients (Ki→i+1(t, x) =
Ki→i+1(x)) and we do not consider death rates (di = 0). Note that if one considers con-
stant nonzero death rates, the problem does not change, only the eigenvalue λ is then in fact
λ+d, as one can see in the equations of system (8.2). As shown in [CLMP03], the first eigen-
value λ is then solution of the following equation, which in population dynamics is referred
to, in the 1-phase case (I = 1) with no death term, as Euler-Lotka’s equation

1

2
=

I
∏

i=1

∫ +∞

0
Ki→i+1(x)e

−
R x

0 Ki→i+1(ξ)dξe−λx dx. (8.3)

Integrating the first equation of System (8.1) along its characteristics [Per07], we can in the
stationary case with no death rate derive the formula

ni(t+ x, x) = ni(t, 0)e−
R x

0 Ki→i+1(ξ)dξ.

This can be interpreted in the following way: the probability for a cell which entered phase i
at time t to stay for at least an age duration x in phase i is given by

P (τi ≥ x) = e−
R x

0 Ki→i+1(ξ)dξ.

The time τi spent in phase i is thus a random variable on R+, with probability density function
fi given by

dPτi(x) = fi(x)dx = Ki→i+1(x).e
−

R x

0 Ki→i+1(ξ)dξdx,

or equivalently:

Ki→i+1(x) =
fi(x)

1−
∫ x
0 fi(ξ)dξ

(8.4)
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8.3.4 Discretization scheme

In this section, we come back to the general case where Ki→i+1 depends on age and time
and the death rate is nonzero. In order to simulate the evolution of the cancer and healthy
cell populations, we propose a discretization scheme. For numerical convenience, we had to
suppose that the cells can not grow beyond a maximal age. Indeed, numerically assessing
this assumption, we came to the conclusion that it had little influence on the value of λ > 0
provided that this maximal age was large enough, so that, we arbitrarily took a maximal age
of 10 days for each one of the phases. This age limit can be interpreted as the time from
which DNA damages are no longer repaired and the cells are sent to apoptosis.

We base our discretization scheme on the one presented in [CGL09]. We denote by ∆t
and ∆x respectively the time and age steps, i.e. t = k∆t and x = j∆x where k = 0 . . . ⌊Ttot

∆t ⌋
and j = 0 . . . ⌊Xtot

∆x ⌋, ⌊z⌋ representing the integer part of the real number z, and Ttot and Xtot

being respectively the total time of the simulation and the maximal time a cell can spend in
one phase of the cell cycle. For k ∈ N, j ∈ N and for i = 1, . . . , I, we consider the following
quantities:

nk,ji = ni(k∆t, j∆x)

Kk,j
i→i+1 = Ki→i+1(k∆t, j∆x)

dk,ji = di(k∆t, j∆x)

We use a first order finite difference scheme on the I-phase mathematical model. Assuming
∆t = ∆x (CFL=1), we have:

nk+1,j
i =

nk,j−1
i

1 + ∆t(Kk+1,j
i→i+1 + dk+1,j

i )
i = 1...I, k = 0...kmax−1, j = 1...jmax

n0,j
i = n0

i (j∆x) i = 1...I, j = 0...jmax

nk+1,0
1 = 2

jmax
∑

j=0

∆tKk+1,j+1
I→1

1 + ∆t(Kk+1,j+1
I→1 + dk+1,j+1

I )
nk,jI k = 0...kmax−1

nk+1,0
i =

jmax
∑

j=0

∆tKk+1,j+1
i−1→i

1 + ∆t(Kk+1,j+1
i−1→i + dk+1,j+1

i−1 )
nk,ji−1 i = 2...I, k = 0...kmax−1

where kmax = ⌊Ttot

∆t ⌋, jmax = ⌊Xtot

∆x ⌋, n0
i denoted the initial density of cells in each of the two

phases.
Unlike the scheme presented in [CGL09], this scheme ensures mass conservation of cells

through the phase transitions for any discretization step. Indeed, for i ≤ I − 1, we have the
relation

∑

j≥0

nk,ji = nk+1,0
i+1 +

∑

j>0

nk+1,j
i +

∑

j≥0

∆t dk+1,j+1
i

1 + ∆t(Kk+1,j+1
i→i+1 + dk+1,j+1

i )
nk,ji +

nk,jmax

i

1 + ∆t(Kk+1,jmax+1
i→i+1 + dk+1,jmax+1

i )
,

which means that cells at time k either go to next phase or get older or die or go beyond the
age limit and are thus “killed.” This property gives a better coherence with biological reality.
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8.3.5 Numerical determination of the growth exponent

If transition rates do not depend on time, which is the case when there is no circadian
control, the first eigenvalue λ of the system (8.2) is given as the only positive solution to
Equation (8.3). In the general case, transition rates depend on time. Insofar as we are
interested in the effect of circadian rhythms on cell cycle progression, we restrict this study to
time-periodic transition rates, the period being equal to T = 24 hours. Over a time period,
let nk = (nk,01 , nk,11 , . . . , nk,jmax

1 , nk,02 , . . . , nk,jmax

2 ) be a vector in R2(jmax+1). As in the case of
the 1-phase model presented in [CGL09], we can write nk+1 = Mkn

k where

Mk =















A1k 0 . . . 0 BIk
B1k A2k 0 . . . 0
0 B2k A3k 0 0
... . . .

. . .
. . . 0

0 . . . . . . B(I − 1)k AIk















The blocks Aik and Bik are (jmax + 1)× (jmax + 1) matrices defined by:

Aik =





















0 · · · · · · 0 0

1

1+∆t(Kk+1,1
i→i+1+dk+1,1

i )

...
...

0
. . .

...
...

...
. . . 0 0

0 · · · 0 1

1+∆t(Kk+1,jmax
i→i+1 +dk+1,jmax

i )
0





















i = 1...I

Bik =















∆tKk+1,1
i→i+1

1+∆t(Kk+1,1
i→i+1+dk+1,1

i )
· · · ∆tKk+1,jmax+1

i→i+1

1+∆t(Kk+1,jmax+1
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
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This matrix Mk depends only on k and is T-periodic. Moreover, if we define the ma-
trix M = MNT

MNT−1 . . .M2M1 where NT = T/∆t, we have nNT = Mn0. The following
proposition is simple adaptation of its analogue in [CGL09].

Proposition 8.1. If for all phases i and for all t ∈ [0;Ttot], there exists x0 ∈ [0;Xtot] such
that Ki→i+1(x, t) > 0 for all x ≥ x0, then M = MNT

MNT−1 . . .M2M1 is a nonnegative and
irreducible matrix.

By the Perron-Frobenius theorem (see [BP94] for instance), this proposition means that
M has a simple and positive principal eigenvalue ρ associated with nonnegative left and right
eigenvectors unique up to a given normalization. We calculated this eigenvalue ρ by means
of the power algorithm [GL89]. The Floquet eigenvalue, or growth exponent, λ can then be

approximated by
1

T
log(ρ) [CGL09].
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8.4 The control and its missions: representing the action of drugs

In the previous section, we have described a dynamic model for cell populations. This model
can thus be seen as a controlled dynamic system with drug effects as their control func-
tions. Various examples of such drug effects have been given in Section 8.2. Introducing
pharmacokinetics (i.e., evolution of concentrations) for the drugs chosen produces additional
equations to the cell population dynamic model, and their pharmacodynamics (i.e., actual
drug actions) modify this cell dynamics according to the target and to the effect of the drugs.
Then, optimization of cancer treatments can be represented as an optimal control problem
on this controlled dynamic system. In this section, we first discuss how the drug infusions are
taken into account in the model, then we give examples of objective functions and constraints
considered in the literature on the treatment of cancers.

8.4.1 The control functions

In the population dynamics presented in Section 8.3, the dynamic variables are the number
of cells of each age in each phase of the proliferation cycle: first growth phase (G1), DNA
synthesis followed by second growth phase (S/G2) and mitosis (M). They are functions
depending on the age in the phase (the structure variable). We chose to merge phases S and
G2 because the identification procedure that we will present in Section 8.5 only differentiates
the phase G1 from the others. We then assumed that the mitosis had a fixed duration.

The control represents the action of the 5-FU infusions on the death rates and transitions
from a phase to the next in the cell cycle. We assume that these infusion have no direct
impact on the death rate but that they disrupt the natural transition rate from phase S/G2

to phase M , K0
2→3(t, x) in the following way

K2→3(t, x) = K0
2→3(t, x)(1− g2(t)) . (8.5)

g2(t) is the effect at the cell level of the drug infusion at time t on the transition rate from
phase S/G2 to phase M . No drug corresponds to g2(t) = 0 (g1(t) = g3(t) = 0 since the other
transitions are not affected by 5-FU infusions), a transition-blocking infusion corresponds to
g2(t) = 1. As K0

2→3(t, x) is 24h-periodic, if g2(t) is also 24h-periodic, then K2→3(t, x) is also
24h-periodic and we can define the Floquet eigenvalue of the dynamics following (8.2). We
thus describe long-range drug treatment in a stationary state by controlling growth exponents,
i.e., first eigenvalues of both cell population systems, healthy and cancer, simultaneously.
It may be possible to consider drug infusion schedules with longer periods but numerical
experiments suggest that optimal drug infusion patterns are 1-day periodic, so we restrict to
1-day periodic drug infusion strategies.

Alternatively, instead of a control function, one may consider simpler predefined infusion
schemes with only a small number of control parameters. Such infusion schemes may represent
either a simple model for an early study or a consequence of technical constraints such as
the fact that oral drugs can only be administered at fixed hours (at meal time for instance).
Examples of such parameters are the period of a periodic scheme [Pan97, Web90] or the phase
difference between a circadian clock and the time of drug infusion initiation [ALG09].

8.4.2 Objective functions: measuring the output

An optimization problem consists in maximizing or minimizing a given real-valued objective
function, that models the objective we want to reach.
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The main purpose of a cancer treatment is to minimise the number of cancer cells. When
the model takes into account the number of cancer cells directly [ALG09, BCL06, dLMS09,
FP00, KS06, LMS11, PPdS95, VOA10], the objective function is simply the value of the
coordinate of the state variable corresponding to the number of cancer cells at a time T , T
being either fixed or controlled.

The optimization problem can also be formalized as the minimization of the asymptotic
growth rate of the cancer cell population [PA95, Web90]. Hence, the number of cancer cells
will increase more slowly, or even eventually decrease. We will present this approach in a
linear frame (hence controlling eigenvalues) in Section 8.4.4.

8.4.3 Constraints, technological and biological, static or dynamic

8.4.3.a Toxicity constraints A critical issue in cancer treatment is due to the fact that
drugs usually exert their effects not only on cancer cells but also on healthy cells. A simple
way to minimise the number of cancer cells is to deliver a huge quantity of drug to the
patient, who is however then certainly exposed at high lethal risk. In order to avoid such
“toxic solutions”, one may set constraints in the optimization problem, which thus becomes
an optimization problem under constraints.

Putting an upper bound on the drug instantaneous flow [FP00] and/or on the total drug
dose is a simple way to prevent too high a toxicity for a given treatment. A bound on total
dose may also represent a budget limit for expensive drugs [LMS11].

However, fixed bounds on drug doses are not dynamic, i.e., they do not take into account
specificities of the patient’s metabolism and response to the treatment, other than by adapting
daily doses to fixed coarse parameters such as body surface or weight (as is most often the
case in the clinic so far). In order to get closer to actual toxicity limits, and hoping for a
better result, it is possible to consider instead a lower bound on the number of healthy cells,
as in [BCL06]. In the same way, using a Malthusian growth model, where growth exponents
are the targets of control, such a constraint becomes a lower bound on the asymptotic growth
rate of the healthy cell population [Web90].

In the same way, a drug used in a treatment must reach a minimal concentration at
the level of its target (which blood levels reflect only very indirectly) to produce therapeutic
effects. Classically, clinical pharmacologists are accustomed to appreciating such efficacy levels
by lower threshold blood levels, that are themselves estimated as functions of pharmacokinetic
parameters such as first and second half-life times and distribution volume of the drug, with
confidence interval estimates for a general population of patients. As in the case of toxicity, a
more dynamic view is possible, by considering drug levels that decrease the number of cancer
cells, that is, which yield a negative growth rate in the cancer cell population.

This leads to the definition of admissible sets for drug infusion flows, the union of {0} and
of a therapeutic range containing the infusion levels that are at the same time efficient and
not too toxic (such a constraint is considered in [VOA10]). Those admissible sets are rather
difficult to take into account, however, as they lead to complex combinatorial problems.

An approach that is consequently often chosen (see [LMS11] for instance) is to forget this
constraint in the model and to a posteriori check that the optimal drug infusion schedules
found are high enough to be efficient when they are nonzero.

That may be an elementary reason why so called bang-bang controls (i.e., all-or-none)
are of major interest in chemotherapy optimization: they are defined as controls such that at
each time, either the drug infusion flow is the smallest possible (i.e., 0), or it is the highest
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possible. Even though it is now easy to use in the clinic (and also in ambulatory conditions)
programmable pumps that may deliver drug flows according to any predefined schedule with
long-lasting autonomy, solutions to optimization problems often turn out to be bang-bang
(tap open-tap closed).

But solutions to optimization problems in cancer chemotherapy are not always bang-bang,
when considerations other than on simple parallel growth of the two populations are taken
into account, and this includes competition, when the two populations are in contact, e.g. in
the bone marrow normal haematopoietic and leukaemic cells, or when both populations are
submitted to a common - but differently exerted - physiological control, such as by circadian
clocks [BCL06].

Another interesting approach, relying on two models, one of them including the cell di-
vision cycle [PA95], and putting the optimal control problem with toxicity constraints, is
developed in [DDP08]. The optimal control problem is solved by using the industrial software
gPROMS R©.

8.4.3.b Drug resistance Whereas therapeutic efficacy and limitation of toxic adverse effects
are the first concern when dealing with chemotherapy, the frequent development of drug
resistances in the target cancer cell populations is certainly the second bigger issue in the
clinic. The development of such resistances may come from overexpression in individual
cells of defense mechanisms as an exaggeration of physiological phenomena, such as are ABC
transporters (the P-gp, or P-glycoprotein, being its most known representant), but they
may also result, at least as likely, in proliferative populations encompassing mitoses, from
mutations yielding more fit, i.e., resistant in the presence of drug, subpopulations.

A classical solution to this problem is to forbid too low drug concentrations, that are
supposed to create environmental conditions favorable to the development of more fit drug
resistant cell populations without killing them, as is also the case, for instance, in antibio-
therapy with bacteria. Nevertheless, other, more recent, arguments to support an opposite
view, have been put forth: assuming that there exists a resistant cell population at the be-
ginning of the treatment, or that it may emerge during the treatment, then delivering high
drug doses often produces the effect to kill all sensitive cells, giving a comparative fitness
advantage to resistant cells, that subsequently become very hard to eradicate. Thus a para-
doxical solution has been proposed, at least in slowly developing cancers: killing just enough
cancer cells to limit tumour growth, but letting enough of these drug sensitive cancer cells to
oppose by competition for space the thriving of resistant cells, that are supposed to be less
fit, but just the same, usually slowly, will invade all the tumour territory if no opponents are
present [Gat09, GSGF02]. Indeed, such free space left for resistant tumour cells to thrive,
when high drug doses have been administered with the naive hope to eradicate all cancer
cells, may result in the rise of tumours that escape all known therapeutics, a nightmare for
physicians which is unfortunately too often a clinical reality. Hence the proposed strategy to
avoid high doses, that are able to kill all sensitive cells, and to only contain tumour growth
by keeping alive a minimal population of drug-sensitive tumour cells.

Both those constraints, toxicity and resistance, can be considered as part of the objective
function by setting the objective to be a balance between two objectives. For instance, Kimmel
and Swierniak in [KS06] proposed to minimise a linear combination of the number of cancer
cells and of the total drug dose. This yields an unconstrained optimization problem, that
has a simpler resolution, while still taking into account the diverging goals of minimizing the
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number of cancer cells and keeping the number of healthy cells high enough.

But whereas cancer and healthy cells are two quite distinct populations, with growth
models that may easily be distinguished and experimentally identified by their parameters,
it is more difficult to take into account the evolutionary lability (i.e., the genomic instability)
and heterogeneity of cancer cell populations with respect to mutation-selection towards drug
resistance, .according to evolution mechanisms that are not completely elicited. Note that
acquired (as opposed to intrinsic, i.e., genetically constitutive) drug resistance may result
as well from individual cell adaptation (enhancement of physiological mechanisms) as from
genetic mutations, both under the pressure of a drug-enriched environment, as discussed in
[CLP11]. In this respect, acquired resistance may be reversible, if no mutation has initiated
the mechanism, or irreversible, and it is likely irreversible in the case of intrinsic resistance.

Ideally, the optimal solution of a therapeutic control problem should take into account
both the drug resistance (using evolutionary cell population dynamics) and the toxicity con-
straints, but these constraints have usually been treated separately so far. Whereas the
difficult problem of drug resistance control is certainly one of our concerns in a cell Darwinian
perspective, in the sequel we shall present only results for the (easier) toxicity control problem.

8.4.4 An eigenvalue optimization problem with constraints

In a cancer chemotherapy focus, we propose to minimize the growth rate of the cancer cell
population while maintaining the growth rate of the healthy cell population above a thresh-
old Λ. Infusion here may be thought of as referring to the drug 5-FluoroUracil (5FU) that
acts via DNA damage, thus directly blocking G2/M transition, as explained in (8.5).

We consider two cell populations with their respective dynamics. We modeled both of
them with an age-structured cell population model (8.1) but with different parameters. In
fact, we assume that the transition and death rates are the same when there is no circadian
control but that cancer cells have a looser answer to the physiological circadian control. We
will give the precise value of these parameters in Section 8.5 below. We assumed that the
drug has the same effect on both populations, which couples their behaviors through the drug
infusions.

Then we model the growth rate of both populations by the Floquet eigenvalue of the
corresponding model (λC for cancer cells and λH for healthy cells). We obtain the following
Floquet eigenvalue optimization problem with constraints:

min
g(·)

λC(g)

λH(g) ≥ Λ (8.6)

g 24h-periodic

8.5 Identification of model parameters: the target model and drug
effects

For the pharmacokinetic and pharmacodynamic models, we simply assume that the drug
infusions immediately alter the transition rates with an affine dependency such that with
the maximal infusion level, the transition rate is minimal. We nevertheless propose a precise
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identification of parameters of the population dynamics model, the most important of which
are the transition rates. The identification procedure relies on Eq. (8.4), that gives a relation
between the transition rate Ki→i+1 and the probability law of the duration of phase i.

8.5.1 FUCCI

From a biological point of view, the cell cycle is classically considered as composed of 4 phases
named G1 (gap 1), S (DNA synthesis), G2 (gap 2) and M (mitosis). One challenge of our
modelling study was to determine the expression of the parameters di and Ki→i+1 mentioned
in the model (8.1) for each phase of the cell cycle (i = 1 . . . 4). We concentrated our efforts
on Ki→i+1, assuming that di = 0 for all i = 1 . . . 4. Note that if one assumes a constant
death rate d for all phases, then it is included (negatively) in the growth exponent λ, which
in fact may be thought of as the minimal added artificial death rate that stabilizes the cell
population, as results from equations (8.2).

To get an expression for these transition rates, we used (8.4) to reduce the identification
problem to the determination of the distribution of the duration of the phases of the cell
cycle within a cell population. Other authors [STH+08] have used comparable modelling
to investigate the cell cycle in cell populations, but the novelty of our contribution in this
section is that we have used recent image data on individual cells that enabled us to assess
the variability of cell cycle phase durations in populations of cells.

FUCCI is the acronym of fluorescent ubiquitination-based cell cycle indicator. This is
a recently developed technique that allows tracking progression within the cell cycle of an
individual cell with a high degree of contrast [SSKM+08, SSOH+08]. The FUCCI method
consists in developing two fluorescent probes indicating whether a tracked cell is in the G1

phase or in one of the phases S, G2 or M of the cell cycle. The authors fused red- and
green-emitting fluorescent proteins to proteins called Cdt1 and Geminin. Cdt1 and Geminin
oscillate reciprocally: Cdt1 level is highest in the G1 phase and falls down when the cell
enters the S phase, whereas Geminin level is highest in the S, G2 and M phases and falls
when the cell enters the G1 phase. Let us mention that Cdt1 and Geminin are degraded due
to the process of ubiquitination, which is what is referred to (“U”) in the name of the reporter
method. Consequently, the nucleus of a FUCCI cell fluoresces in red when this cell is in the
phase G1, and in green when it is in S, G2 or M phases.

This method allows to measure the time a tracked cell spends in the G1 phase and the
remaining part S/G2/M of the cell cycle. By tracking each cell in a population (note that cell
tracking is not a completely trivial imagery problem because in liquid media cells move) we
can get the distributions of the duration of these phases within the population, and so we can
deduce the probability density functions of the random variables representing the duration of
these phases (see below Subsection 8.5.3 for details).

8.5.2 Analysis of the experimental data

We used for the parameter identification procedure FUCCI data transmitted to us within the
C5Sys EU project by G. van der Horst’s team, Erasmus University Medical Center, Rotter-
dam, The Netherlands. The cell lines were obtained by S. Saito at Erasmus University by
recloning cell cycle phase markers (in the proper color combination, see further) and generat-
ing/analyzing NIH 3T3 cells (mouse embryonic fibroblasts) proliferating in a liquid medium.
The data processed in the identification procedure thus consisted of time series of intensities
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recording the red and green fluorescences emitted by individual NIH 3T3 cells proliferating
within an in vitro homogeneous population. These cells had not been preliminarily synchro-
nized, which means that they were initially at different stages of the cell cycle. The intensities
had been recorded every fifteen minutes, over approximately 38 hours. A graph representing
such a time series is presented on Figure 8.1.

Figure 8.1: Example of a time series of the intensity of red (deep gray) and green (light gray)
fluorescences obtained by using the FUCCI method on a NIH 3T3 cell within a population
in liquid medium.

We considered in the mass of data (about 2000 tracked cells) that were available to us
only those (about 50) with at least the duration of a complete cell cycle, and measured the
duration of the G1 and S/G2/M phases within this cell cycle (note here that since all the cells
that were kept for parameter identification were alive from the beginning of the experiment
until its end, the assumption of a zero death rate in the model is in full accordance with
these particular experimental conditions). The end of a cell cycle is characterised by a fast
disappearance of the green fluorescence, so that it was not difficult to measure the duration
of the cell cycle on our data. During the transition from G1 to S, red and green fluorescences
overlap, so that it is not so easy to determine the duration of phase G1. In agreement with
our biologist partners, we decided to define the end of phase G1 as the time at which red
fluorescence was maximum before decreasing. The duration of phase S/G2/M was obtained
by subtracting the duration of phase G1 from the duration of the cell cycle. This method is
summarized on Figure 8.2.

8.5.3 Expression of the transition rates without circadian control

With these processed data, we obtained 55 figures on individual cells for the duration of the
cell cycle, divided in G1 and S/G2/M phases. The mean value of the duration of the cell
cycle was about 17.1 h (s.d.: 4.5 h), the one of G1 was about 7.2 h (s.d.: 2.7 h), and thus the
one of S/G2/M was about 9.8 h (s.d.: 3.0 h).

We rounded each duration to the nearest hour. The distributions of the durations of G1

and of S/G2/M within the population were fitted to experimental data by using Gamma
laws. The corresponding curves are presented on Figure 8.3. We tested several models to fit
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Figure 8.2: Graphic method used to determine the duration of the cell cycle and the one of
G1 phase. The duration of phase S/G2/M was deduced by subtracting the duration of phase
G1 from the duration of the cell cycle.

experimental data. We excluded laws that had support not strictly contained in R+, such
as normal laws; similarly, we excluded laws that assumed a maximum age in phase, which
is impossible to define naturally and furthermore results in difficulties when identifying their
parameters. We chose Gamma laws because they allowed a good (phenomenological) fit to
our experimental data while keeping a reasonable number of parameters to be estimated.

Moreover, there is a clear physiological basis to this choice of the Gamma distribution:
recall that, if the parameter α is an integer, it is the law, often used to represent probabilities
of waiting times of the sum of α i.i.d. random variables representing waiting times (here
within G1 or S/G2/M of times between triggerings of crucial switches in a cascade of protein
expressions leading to a phase transition, e.g., G1/S), each one of them following an exponen-
tial law with the same parameter β. Such an explanation, or parts of it, has been proposed
in this context or others dealing with gene or protein expression by many authors, let us only
mention [CKM+09, MA97, SS08]. Note that here the Gamma distribution is not used, as
in [BPMM03] and references therein, to represent the distribution of maturation times for
cells performing a fixed number of divisions, but the distribution of times spent in a phase
of the cell division cycle, supposed to be constituted of a cascade of (unidentified, hidden
physiological) switches, as mentioned above, hence its as phenomenological as physiological
justification in our case.

For all x ≥ 0, we thus used the following probability density functions, where Γ is the
Gamma function:

ϕi(x) =
1

Γ(αi)
(x− γi)αi−1βαi

i e
−βi(x−γi)1[γi;+∞[(x) i = 1, 2, where

α1 = 8.28, β1 = 1.052h−1, γ1 = 0h, α2 = 3.42, β2 = 1.47h−1, γ2 = 7.75h and 1[γi;+∞[ is
the indicator function of interval [γi; +∞[. These parameters led to a mean duration and a
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standard deviation on R+ respectively of 7.9h and 2.7h for the G1 phase and of 10.1h and
1.3h for the S/G2/M phase. These figures are very close to the ones related to the raw
experimental data mentioned above. The main difference resides in the S/G2/M data and
is due to the fact that we have identified a high position parameter ( γ2 = 7.75h) for the
Gamma distribution in S/G2/M , which may be interpreted as an “incompressible” minimum
duration for the S/G2/M part of the cell division cycle in our observed cell population, hence,
en passant, an indirect measure of this cell physiological parameter, which is the minimum
age a cell has to spend in S/G2/M before being able to process further and divide. Similarly,
the figure 8.28 for α1, compared to 3.42 for α2 may be interpreted - a speculation- as due to
the presence of many more biological switches (and resulting stopping times) in G1 than in
S/G2/M .

Note that the FUCCI technology only enables us to distinguish between cells in G1 and
S/G2/M , without distinction between S, G2 and M . However, the method used to identify
phase transitions relies in fact on the probability distribution of durations of phases. Since
the duration of the phase M is known to be most of the time very short, with almost zero
variability within cell populations, it would be legitimate to considered it as fixed, as 1 hour,
say, and that the recorded variability of S/G2/M is in fact the variability of S/G2. Thus, we
shall consider that we were dealing in this identification process with a transition function
from S/G2 to M instead of the one from S/G2/M to G1. Under these assumptions, we will
apply our optimization problem to an age-structured model accounting for 3 phases of the
cell cycle, G1, S/G2 and M . Then we can see that we have, thanks to FUCCI reporters,
accessed the main two checkpoints, G1/S and G2/M .

Moreover, we have seen that the joint phase S/G2/M has an incompressible minimum
duration γ2. This allows us to give a constant time of γ3 = 1h for the M phase, that we
deduce from γ2. This constant time can be modeled by a transition rate from phase M to
phase G1 equal to 0 up to γ3 and equal to a large positive value afterwards.

Figure 8.3: Gamma laws (solid line) (multiplied by a coefficient equal to the total number
of data, i.e. 55) that fit experimental data (dots) for the distribution of the duration of G1

(left) and of S/G2/M (right).

Let us also mention that in a close, but different context (linear age- structured population,
one proliferation phase and presence of a death term), others have proposed an inverse problem
method to identify, without any assumption on a probabilistic model for the cell cycle time,
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the birth and death functions [GOP02].
Let us now come back to the 3-phase mathematical model (I = 3 in model (8.1)).
As the experimental data were performed in vitro in a liquid medium, with no intercellular

communication, and as cells had not been synchronized prior to the experiment, we can
consider that there was no time-dependent control whatsoever on the growth process at the
cell population level. We thus assumed that the transition rates from G1 to S/G2 (K1→2),
from S/G2 to M (K2→3) and from M to G1 (K3→1) did not depend on time, but only on the
age of cells in the two phases. From the expression of the cumulative distribution function
mentioned in Section 8.3:

∫ x

0
ϕi(ξ)dξ = 1− e−

R x

0 Ki→i+1(ξ)dξ i = 1, 2,

we deduce:

Ki→i+1(x) =
ϕi(x)

1−
∫ x
0 ϕi(ξ)dξ

i = 1, 2 (8.7)

where ϕi represents the experimentally determined probability density function of the random
variable representing the age duration in phase i.

The graphs of the transition rates we obtained from formula (8.7) and experimental data
are presented on Figure 8.4.

Figure 8.4: Transition rates from G1 to S/G2 (left) and from S/G2 to M (right). These rates
are functions of age of cells in the phases only.

8.5.4 Model simulations

As we are interested in the role of circadian rhythms on cell cycle progression, we consider
transition rates of the form : Ki→i+1(x, t) = κi(x).ψi(t) (i = 1, 2, 3), where κi corresponds to
the transition rates we identified in Subsection 8.5.3, and ψi represents a 24h-periodic control
exerted by circadian rhythms on cell cycle progression at phase transitions.

8.5.4.a Internal validation To make sure that our numerical results were in agreement with
the biological data that we used to build our model (“internal validation”), we performed
simulations in the case of no time control, that is Ki→i+1(x, t) = κi(x) (i = 1, 2, 3), where the
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κi(x) were given by the expression in (8.7) for i = 1, 2 and κ3(x) equal 0 for x ≤ γ3 and a
large positive value (we took 1000) for x ≥ γ3 (κi(x) = Ki→i+1(x)). Figure 8.5 presents the
time evolution of the percentage of cells in phases G1 and the sum of cells in phases S/G2 and
M over the duration of one cell cycle resulting from numerical and biological experiments
(biological data were preliminarily synchronized “by hand”, i.e., by deciding that all cells
were at age zero at the beginning of simulations). We had to reduce this comparison to the
duration of one cell cycle because we had not enough biological data to represent the whole
population. We can nevertheless notice that modeled numerical data were very close to raw
biological data. We are thus entitled to conclude that the model and the method we have
used to represent the proliferation phenomenon and fit our experimental data may have led
us close to biological likelihood.

Figure 8.5: Time evolution of the percentages of cells in G1 (red or deep gray) and the sum
of cells in S/G2 and M (green or light gray) phases from biological data (dashed line) and
from numerical simulations (solid line). Our model results in a good approximation of the
biological data.

8.5.4.b Numerical simulations In the case of no time control (ψi ≡ 1, i = 1, 2, 3), we
studied the time evolution of the percentages of cells in G1, S/G2 and M phases of the cell
cycle and the evolution of the total density of cells. These results are presented on Figure 8.6.
We can notice that oscillations are damped and that the percentages rapidly reach a steady
state. This phenomenon, which has long been known in cell population dynamics [Ari95,
AK93, AS97, CMTU01, MD86] as asynchronous growth, is the result of desynchronization of
cells through the cell cycle: although the cells were taken initially all in phase G1 with age
0, the variability in the duration of phases G1 and S/G2 that we described above induces
some variability in the position of cells through their cycling. In our experimental case, as
mentioned above, the exponential growth exponent λ computed by using Lotka’s equation
(8.3) was equal to 0.039h−1.

Then, we introduced a circadian control modeled by functions ψi (i = 1, 2, 3) in the
transition rates. For each phase, G1 and S/G2 and M we took continuous piecewise 24h-
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Figure 8.6: Time evolution of the percentages of cells G1 (left, red or deep gray), S/G2 (left,
green or light gray) and M (left, dotted blue) phases and of the total density of cells (right)
evolving free of any time control. Oscillations are damped due to cell desynchronization.
Population growth tends to be exponential with a rate equal to 0.039h−1.

periodic cosine functions, represented on Figure 8.7, defined on [0;24] by:

ψ1(t) = cos2(2π(t− 16)/12)1[13;19](t) + ε, ψ2(t) = cos2(2π(t− 3)/12)1[0;6](t) + ε, ψ3(t) = 1

(8.8)

where ε = 10−10 ensures ψi > 0 (which may be shown sufficient to imply irreducibility of
matrix M and thus applicability of the Perron-Frobenius theorem).

These phenomenological cosine-like functions standing here for physiological circadian
control on cell cycle phase transitions in fact represent the local impact of the central cir-
cadian clock control onto the cell division cycle. This impact may be thought of either as
retransmitted by a direct action of glucocorticoids - known to be synthesized on a circadian
basis by the corticosurrenal gland [BK01] - directly on the G1/S transition via stimulation of
p27 and inhibition of cMyc [AOB+04, BCM+98], or as retransmitted by another relay involv-
ing local circadian clocks and control by Bmal1 of the complex Cyclin B-Cdk1 that controls
the G2/M transition [MYM+03]. In the absence of an actual experimental identification of
the main gating variables (Cyclin E-Cdk2 on G1/S and Cyclin B-Cdk1 on G2/M) and the
circadian control on them, we have chosen to represent them by such truncated cosines.

The 12h delay between the definition of ψ1 and ψ2 is suggested by biological observa-
tions, that teach us that circadian controls are exerted on the main checkpoints G1/S and
G2/M and that proteins p21 and Wee1, known circadian controls on these checkpoints, are
expressed in antiphase [GCRG+08]. Furthermore, and completely independently of such
physiological knowledge, we remarked by varying the phase delay that this value of 12 hours
maximized the population growth exponent λ. We thus obtained periodic transition rates
Ki→i+1(x, t) = ψi(t).κi(x) of mixed origin, estimated by cosines (ψi(t)) and experimentally
determined (κi(x)).

In this case, we observed that oscillations of the percentages of cells in G1, in S/G2 and
in M were no more damped (see Figure 8.8). In fact, because of circadian entrainment, cells
were more synchronized in the cell cycle and consequently divided approximately all together.
Moreover, the exponential growth rate was about 0.024h−1, which means that the population
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Figure 8.7: Graphic definition of the 24h-periodic functions ψ1 (left) and ψ2 (right) modelling
circadian control on the cell cycle. ψ1 controls G1 to S transition, and ψ2 controls G2 to M
transition.

dynamics was slower than the one without time control we investigated above. Thus, in this
case, circadian rhythms allowed cells to be more synchronized and to divide slower.

Figure 8.8: Time evolution of the percentages of cells in phases G1 (left, red or deep gray),
S/G2 (left, green or light gray) and M (left, dotted blue) and of the total density of cells
(right) submitted to circadian control. Oscillations are not damped any more. Population
growth tends to be exponential with a rate equal to 0.024h−1.

These first numerical simulations tend to be in agreement with the biological hypothesis
according to which populations of cells that can escape circadian control, such as cancer
cell population could do, proliferate faster than populations of cells submitted to circadian
entrainment.

As shown in [CGL09, CGL11, CGP07, CMP06, CMP07], there cannot be a general theo-
retical result for periodic control on cell cycle transitions, comparing proliferation in controlled
and uncontrolled situations. Nevertheless, it could be that the particular form of the periodic
control investigated here, i.e., the product of an age-dependent component which may be
qualified as hazard rate κi(x) of a Gamma distribution for phase duration, and of a periodic
time-dependent component ψi(t) with optimized phase shift between the two transition con-
trol functions ψ1 and ψ2, does result in slowing down the cell cycle speed. This remains to



160Chapter 8. Optimization of cancer drug treatments through age-structured population dynamics

be both experimentally and theoretically investigated.

8.5.4.c Modelling cancer cells We consider two cell populations called cancer cells and
healthy cells. We make them differ only by the circadian time controls ψi between cell cycle
phases i and i+ 1, and we assume that there is no interaction between the two populations,
healthy and cancer. We took for this circadian control a continuous truncated piecewise cosine
function (i.e., cos2 times an indicator function) for each phase.

For healthy cells, we took the functions described in Section 8.5.4, that is, we located the
circadian control around 3 a.m. for the transition from S/G2 to M (Figure 8.10) and around
4 p.m. for the transition from G1 to S/G2. We assumed that cancer cell populations still
obey circadian control at these main checkpoints but, like in [ALG07b], we modeled their
behavior by a looser answer to the signal (Figure 8.9):

ψC1 (t) =
5

8
cos2(2π(t− 16)/12)1[13;16](t) +

5

8
cos2(2π(t− 16)/3)1[16;24[∪[0;4](t) + ε,

ψC2 (t) =
5

8
cos2(2π(t− 3)/12)1[0;3](t) +

5

8
cos2(2π(t− 3)/3)1[3;15](t) + ε,

ψC3 (t) = 1

Then the cancer cells can go from phase G1 to phase S/G2 between 1 p.m. and 4 a.m. (15
hours) while healthy cells can do it between 1 p.m. and 7 p.m. (6 hours) We assumed that
the counterpart of this looser answer to the signal is a lower maximal value for ψCi than for

ψi defined in (8.8). We set this maximal value such that
∫ T
0 ψCi (t)dt =

∫ T
0 ψi(t)dt. Thanks to

this looser answer to the circadian control, cancer cells get a proliferating advantage against
healthy cells (Figure 8.12 below): the growth rate of healthy cells is 0.024h−1 whereas the
growth rate of cancer cells is 0.026h−1.

Figure 8.9: Graphic definition of the 24h-periodic functions ψC1 (left) and ψC2 (right) modelling
the looser circadian control on the cell cycle of cancer cells. ψC1 controls G1 to S transition,
and ψC2 controls G2 to M transition.

8.6 A numerical optimization problem with toxicity constraints

In the previous sections we have described the effect of drugs in chemotherapy, an age-
structured cell population dynamic model that can take into account phase-specific drugs
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like 5-FU, the objectives and constraints considered in chemotherapy optimization problems
that have been previously published. Those three topics can be seen as components of an
optimization model. In order to get quantitative results, we identified the parameters of the
model we had chosen in Section 8.5. Then, one has to choose an optimization procedure to
solve the optimization problem considered.

When choosing an optimization procedure, one first needs to identify what are the opti-
mization variables. For chemotherapy optimization, there are two main situations: either the
optimization variables are some parameters of a predefined infusion scheme [Web90, PA95,
ALG09] or they are the infusion scheme itself, represented by a time-dependent control func-
tion g(t) as in our case (Section 8.4.1).

When the information provided by Pontryagin’s maximum principle is enough to know
the optimal control, as in [dLMS09, FP00, KS06, LMS11], it gives the control. The shooting
method was also used in [LMS11] for chemotherapy optimization. Ledzewicz et al. considered
two drugs that act on a Gompertzian model [Lai64].

Another alternative is to use a direct method. Direct methods consist of a total discretiza-
tion of the control problem and then of solving the finite dimensional optimization problem
obtained. The discretization of an optimal control problem results in an optimization problem
with a large number of variables. The theory of differentiable optimization is the classical
tool for such problems [Ber95, BGLS06, NW99]. This approach has been chosen in [PPdS95]
with a gradient algorithm and in [BCL06] with a Uzawa algorithm. This is the approach we
choose in this section.

In order to find global optima that can not be found in general by differentiable optimiza-
tion, some authors use stochastic algorithms to solve the discretized problem, like for instance
simulated annealing [AHL06] and CMA-ES [VOA10].

8.6.1 Optimization of the Floquet eigenvalue

In this work, we want to solve the problem of minimizing the asymptotic growth rate of the
cancer cell population while keeping the asymptotic growth rate of the healthy cell population
over a prescribed threshold. We modeled the cell population dynamics by a McKendrick model
physiologically controlled by a circadian clock, considering a phase-dependent drug acting on
transitions (8.1). We obtained the optimization problem (8.6) and we identified the main
parameters.

For the numerical resolution of this problem, we firstly discretize the problem (8.1) with
the discretization scheme presented in Section 8.3.4. Then, we get the problem of optimizing
the first eigenvalue with control in a set of matrices. That is, we study the optimization of the
growth rate in the discretized model. We chose a discretization step of 6 minutes because it
may be considered as a lower limit to the half-life time of 5-FU in the plasma [BDP+00, DH89,
PLK+93], which is most likely even lower than the half-time of its downstream molecular
effects at the cell level, our concern here. The oldest ages represented in the discretization
scheme are 10 days for each phase except for mitosis (phase M) where we chose 2h.

Unlike in [CGL09, CGL11], we will refer to the Perron eigenvalue when we consider non-
negative square matrices and to the Floquet eigenvalue when we study the growth exponent of
a time-periodic controlled population. Indeed, if we denote by ρ the Perron eigenvalue of the
matrix M defined by the discretization scheme in Section 8.3.5, which means that Mu = ρu
and ρ has maximal modulus, then the Floquet eigenvalue, λ can then be approximated by
1
T log(ρ).
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By the Perron-Frobenius theorem [BP94], we know that if M is nonnegative and irre-
ducible, its principal eigenvalue ρ(M) is positive and is a simple eigenvalue. Moreover, as
mentioned above, the principal eigenvector is unique up to a normalization and can be chosen
such that u(M) ≥ 0. In our setting (irreducibility of the matrix and the Perron-Frobenius
theorem), one can naturally define a function ρ from the set of nonnegative and irreducible
real matrices in Rn into R+, that to a matrix associates its principal eigenvalue.

General eigenvalue optimization of non symmetric matrices is a difficult (non convex,
non differentiable) problem: see [LO96] and [OW88] for two algorithms dealing with this
problem. However, for positive matrices, as the principal eigenvalue is simple, this implies
that ρ is differentiable. Indeed, by Proposition 7.6 [Kat66], denoting v and u the left and
right eigenvectors of a matrix M associated to a simple eigenvalue ρ, the derivative of ρ at
M can be written as:

∂ρ

∂Mij
= viuj

Thus, as the objective function is differentiable, the theory of differentiable optimization
applies.

As stressed by Overton in [Ove91], there are various possibilities for the computation
of the eigenvalue and eigenvectors. Here, we consider sparse nonnegative matrices with a
simple principal eigenvalue: the power method applies and, unlike direct methods or inverse
iterations, it only needs matrix-vector products, which is valuable with a large sparse matrix.

The Perron (or Floquet) eigenvalue optimization problem with explicit constraints can be
written as:

min
M∈h(C)

f(ρ(M)) (8.9)

We assume that f is a real-valued twice continuously differentiable function; C a compact
convex set and we denote PC the orthogonal projection on C; h is a twice continuously
differentiable function such that M = h(C) is a set of nonnegative irreducible matrices. We
have shown in Proposition 7.1 that this problem is NP-hard in general.

We may also need implicit constraints on the eigenvalues. The Perron (or Floquet) eigen-
value optimization problem with K = |I|+ |J | implicit constraints can be written as:

min
x∈C

f0(ρ(h0(x)))

fk(ρ(hk(x))) = 0 , k ∈ I
fk(ρ(hk(x))) ≤ 0 , k ∈ J

(8.10)

To solve this non convex problem, we use the method of multipliers [Ber82], which solves
a sequence of non constrained optimization problems (8.9) whose solutions converges to the
solution of the constrained problem (8.10). Let Fk(x) = fk(ρ(hk(x))). Given c > 0, we call
augmented Lagrangian of the Problem (8.10) the function Lc defined by

Lc(x, µ) = F0(x) +
∑

j∈I

(

µjFj(x) +
c

2
Fj(x)

2
)

+
1

2c

K
∑

j∈J

(

max(0, µj + cFj(x))
2 − µ2

j

)



8.6. A numerical optimization problem with toxicity constraints 163

The method of multipliers consists in the following scheme, starting with µ0:

xk = arg min
x
Lck(x, µk)

µk+1
j = µkj + ckFj(x

k), j ∈ I
µk+1
j = max(0, µkj + ckFj(x

k)), j ∈ J
(8.11)

where the minimization is understood to be local in a ball within which x is the unique
local minimum of Problem (8.10). Under classical assumptions (see [Ber82] for instance),
the method of multipliers converges to a stationary point of the constrained optimization
Problem (8.10).

For the resolution of the non constrained problems (8.9), we used the coupled power and
gradient iterations algorithm developed in Section 7.4. It was designed for Perron vector
optimization but by replacing the auxiliary vector w by the left eigenvector v in all the
expressions, we can easily adapt the coupled power and gradient iterations to the Perron
value optimization problem. This comes from the similarity of the expressions of the gradient
for the two problems stated respectively in Propositions 7.6 and 7.7.

In our setting, at each time, the control gi(t) is the effect at the cell level of the drug
infusion at time t on the transition rate from phase i to phase i + 1. No drug corresponds
to gi(t) = 0, a transition-blocking infusion corresponds to gi(t) = 1. If the modeled drug is
5-FU, it acts on phase S (and thus on the aggregated phase S/G2) on the DNA, resulting in
damaged DNA and subsequent blocking control at the G2/M transition only; we then have
g1(t) = g3(t) = 0 for all t, and g2 only is controlled. The discretized control x will be the array
of the infusion time step by time step and drug by drug. As we search for 24h-periodic controls
with one drug, we only need to define x on one day, i.e. x ∈ RNT , where NT = T/∆t is the
number of time steps. The requirement that 0 ≤ g2(t) ≤ 1 corresponds to x ∈ C = [0, 1]NT .

The various functions hk, one by type of cell considered (healthy or cancer, bone cell or in-
testine cell...), represent the dependence of the model upon drug infusion. Given a discretized
infusion strategy x we build the matrices hk(x), that are the nonnegative matrices modeling
the discretized dynamics of each cell population under the drug infusion x. Transitions from
one phase to the other are described by the transition rates Ki→i+1(t, x). As we take them
with the form Ki→i+1(t, x) = κi(x)ψi(t)(1 − gi(t)) where κi(x) is the transition rate of the
cell without circadian control identified in Section 8.5.1, ψi(t) is the natural circadian control
and gi(t) is the effect of the drug on the transition from phase i to phase i + 1, we have

Kk,j
i→i+1 = κjiψ

k
i (1− xk) The Perron value of hk(x) is denoted by ρ(hk(x)).

The objective will be the minimization of the growth rate (for cancer cells) f0(r) =
1
T log(r). For the constraints, we will consider a lower bound Λ (toxicity threshold) for the
growth rate of healthy cells by f1(r) = − 1

T log(r) + Λ.

8.6.2 Determination of the gradient of the objective function

In this section, we give an analytical expression of the gradient of the objective, that can be
computed efficiently provided the left and right Perron vectors of the matrix M defining the
discretized dynamics (Section 8.3.5) are given.

From Proposition 7.6, we know that for all i, j ≤ I(jmax + 1),

∂ρ

∂Mi,j
= uivj .
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As M is defined by

M = MNT . . .M2M1 ,

we introduce U t the number of cells of each age at timestep t starting from U0 = u and V t

the discretized adjoint vector:

U t = M t−1 . . .M1u

V t = vMNTMNT−1 . . .M t+1 .

Then, we have
∂ρ

∂M t
i,j

= U tiV
t
j

From the formulas in Section 8.3.5, if we denote Xk = {i | (k−1)(jmax+1) < i ≤ k(jmax+1)}
and Xk(1) = (k − 1)(jmax + 1) + 1, we have

M t
i,j =

{

βti if i = j + 1,

γtj if i = Xk+1(1)

with the convention that I + 1 = 1. We have βti = Akti−Xk(1)+2,i−Xk(1)+1 for k = 1...I and

i ∈ Xk, i 6= k(jmax + 1) and γtj = Bkt1,j−Xk(1)+1 for k = 1...I and j ∈ Xk. The block matrices

Akt and Bkt are defined in Section 8.3.5. Indeed, βti only depends on Kt+1,i
k→k+1 and dt+1,i

k for
i ∈ Xk. Then,

∂ρ

∂βti
= U tiV

t
i−1

∂ρ

∂γtj
= U tXk+1(1)V

t
j , j ∈ Xk .

By the chain rule, we obtain

∂ρ

∂Kt+1,j
k→k+1

=
∂ρ

∂γtj

∂γtj

∂Kt+1,j
k→k+1

+
∂ρ

∂βtj

∂βtj

∂Kt+1,j
k→k+1

∂ρ

∂Kt,j
k→k+1

= U t−1
Xk+1(1)V

t−1
j

∂γt−1
j

∂Kt,j
k→k+1

+ U t−1
j V t−1

j−1

∂βt−1
j

∂Kt,j
k→k+1

.

We can follow further the chain rule if Kt,j
k itself is indirectly controlled by drug infusions

gtd.

∂ρ

∂gtd
=

I
∑

k=1

∑

j∈Xk

NT
∑

τ=1

∂ρ

∂γτ−1
j

∂γτ−1
j

∂Kτ,j
k

∂Kτ,j
k

∂gtd
+

I
∑

k=1

∑

i∈Xk

NT
∑

τ=1

∂ρ

∂βτ−1
i

∂βτ−1
i

∂Kτ,i
k

∂Kτ,i
k

∂gtd

∂ρ

∂gtd
=

I
∑

k=1

∑

j∈Xk

NT
∑

τ=1

U τ−1
Xk+1(1)V

τ−1
j

∂γτ−1
j

∂Kτ,j
k

∂Kτ,j
k

∂gtd
+

I
∑

k=1

∑

i∈Xk

NT
∑

τ=1

U τ−1
i V τ−1

i−1

∂βτ−1
i

∂Kτ,i
k

∂Kτ,i
k

∂gtd

We assumed here that Kτ,j
k only depends on uτ , so that the sum on τ is trivial. However,

taking into account the PK-PD of the drug in a less trivial way would lead to Kτ,j
k depending

on the whole drug infusion strategy.
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Figure 8.10: Drug and circadian controls, healthy cell population case. Cosine-like functions
modelling the drug and circadian controls for transition from G1 to S/G2 (dash-dotted line)
and for transition from S/G2 to M in healthy cells. The “natural” (drug-free) control for
S/G2 to M transition corresponds to the solid line, the drug-induced one to the dashed line.

Figure 8.11: Drug and circadian controls, cancer cell population case. Cosine-like functions
modelling the drug and circadian controls for transition from G1 to S/G2 (dash-dotted line)
and for transition from S/G2 to M in cancer cells. The “natural” (drug-free) control for S/G2

to M transition corresponds to the solid line, the drug-induced one to the dashed line.
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8.6.3 Simulations

We considered two cell populations called cancer cells and healthy cells. In these simulations,
we made them differ only by the circadian time controls ψi between cell cycle phases i and
i + 1, and we assumed that there was no interaction between the two populations, healthy
and cancer.

We took for this circadian control a continuous truncated piecewise cosine function (i.e.,
cos2 times an indicator function) for each phase, as described in Section 8.5.4, that is, we
located the circadian control around 3 a.m. for the transition from S/G2 to M (Figure 8.10)
and around 4 p.m. for the transition from G1 to S/G2. We assumed that cancer cell popula-
tions still obey circadian control at these main checkpoints but, like in [ALG07b], we modeled
their behavior by a looser answer to the signal (Figure 8.9). We assumed that the drug has the
same effect on both populations, which couples their behaviors through the drug infusions.

Figure 8.12: Evolution of the population of cancer (blue, above) and healthy (green, beneath)
cells without drug infusion during 12 days. We can see that the populations have different
exponential growth rates (λcancer = 0.026 and λhealthy = 0.024). Cancer cells proliferate
faster than healthy cells.

Figure 8.13: Evolution of the population of cancer (blue, beneath) and healthy (green, above)
cells with the drug infusion, starting at time 0, given by the algorithm. Healthy cells keep
multiplying (λhealthy = 0.022) while the cancer cell population is weakened (λcancer = 0.019).
Contrarily to the case without drug, cancer cells proliferate slower than healthy cells.
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Figure 8.14: Locally optimal drug infusion strategy (function g2, see text for details) found
by the optimization algorithm.

Without drug infusion, the growth rate of cancer cells (0.026h−1) is assumed to be larger
that the one of healthy cells (0.024h−1). This gives an evolution of the respective populations,
cancer cells becoming more and more present: see Figure 8.12. After convergence of the
method of multipliers, we get the locally optimal strategy, shown on Figure 8.14, defining on
[0; 24] the 24h-periodic function g2 (recall that g1 = 0 and g3 = 0).

We can see the action of the locally optimal drug infusion strategy, provided by the
optimization algorithm, on transition rates illustrated on Figures 8.10 and 8.11. This strategy
restricts transition time durations from S/G2 to M to three hours (between 1 am and 4 am)
for both cell populations, whereas under the drug-free circadian control, transitions would be
possible during 6 hours (between midnight and 6 am) for healthy cells and during 15 hours
(between midnight and 3 pm) for cancer cells. Thus the physical meaning of this locally
optimal infusion strategy is to forbid transitions from S/G2 to M when cancer cells are under
target while healthy cells are not (or very little), thus harming mostly cancer cells. Depending
on the toxicity threshold Λ chosen, more aggressive drug infusions are possible.

By following the infusion strategy numerically determined by the optimization algorithm,
we obtained that the growth rate of healthy cells was above the chosen toxicity threshold and
that the growth rate of cancer cells was strongly weakened. This gave us a description of the
evolution of the respective populations, which is illustrated on Figure 8.13.

We finally simulated the transition from the stationary state without drug to the stationary
state with periodic drug infusion (Figure 8.15). After a transition of around 10 days, the
treatment performs as expected (λcancer = 0.019 and λhealthy = 0.022). We have thus pulled
by this optimal infusion strategy the whole cell population from a state favorable to cancer
cells to a state favorable to healthy cells.

8.7 Discussion and future prospects for this work

The problem of circadian control on the cell division cycle in cell populations and its possible
applications in clinical oncology is a question of biological and clinical origin that has already
been studied from a theoretical point of view in the mathematical setting of age-structured
physiological cell population dynamics [CGL09, CGL11, CGP07, CLMP03, CMP06, CMP07].
Yet many unsolved questions remain, which may be due, in particular, to the scarcity of data
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Figure 8.15: Daily mean growth rates for cancer (solid line) and healthy cells (dashed line)
when starting drug infusions at time 0. After a 10-day transitional phase, the biological
system stabilizes towards the expected asymptotic growth rate.

on parameters at the individual cell level in proliferating cell populations.

Taking advantage of quantitative measurements obtained by performing recent image
analysis techniques of the cell division cycle in individual cells inside a population of non
communicating proliferating cells of the same healthy lineage, we have focused in this work
on studying age synchronization of cells with respect to cell cycle phases. Although these cells
are far from an in-vivo situation, they give us precious indications on the age distribution
within the cell division cycle in a homogeneous cell population without control exerted on its
proliferation, neither by circadian clock messages, nor by applied drugs.

The drug-free experimental proliferation dynamics of this cell population is well approxi-
mated by Gamma distributions for cycle phase durations, for which we have shown that the
growth exponent λ, first eigenvalue of the system, is increasing with the variabilities of these
durations.

We assumed a multiplicative expression for both temporal controls, physiological (cir-
cadian) and pharmacological, onto cell cycle phase age-dependent transition kernels in the
McKendrick model of cell proliferation with 3 phases. Our results on long-time drug-free cell
population dynamics behavior, as shown on Figures 8.6 and 8.8, are consistent with the the-
oretical and experimental results presented in [CMTU01], that report classical asynchronous
cell growth [Ari95, AK93, AS97, CMTU01, MD86, Per07], with theoretical works that report
entrainment of the phase population densities by periodic control [Cla08], and comparable
with the results presented in another modelling context in [AGLG11, ALG07b].

We have also been able to propose a new therapeutic optimization scheme under a toxicity
constraint, controlling growth exponents in both cancer and healthy cell populations. We
resolved this optimization problem by using the method of multipliers, which yielded a locally
optimal drug infusion strategy.

We can see clear similarities between this infusion strategy and others found in the litera-
ture on cancer chronotherapeutic optimization, although a great variety of models may be con-
sidered (see [BCF12] for a comparison of these models). Indeed, in [ALG07b, BCL06] as well
as in our case, the suggested infusion schedules set a maximal drug infusion flow when cancer
cells get hurt by the drug while healthy cells do not. The modelling settings are however differ-
ent with respect to the drug effect considered (on death rates in [ALG07b, BCL06, BCBLH10]
or on proliferation rates, in the present study) and with respect to the model of cell population
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dynamics chosen. In [BCL06], the solutions (drug delivery flows) to the optimization problem
are much smoother than in the present study. This may be attributed to the fact that here,
we represented control by blockade of proliferation (on cell cycle phase transition rates and
the resulting growth coefficients), which is closer to a ‘tap open - tap closed’ problem than
an action on death rates. Whereas most therapeutic control representations so far have been
put on death rates (but note that both targets are considered in [KS06], and comparatively
studied in [CGL11, CMP06, Lep09]), we know that anticancer drugs act mostly on prolifer-
ation, either by damaging the DNA, which results in subsequent cell cycle checkpoint (G1/S
or G2/M) blockade via ATM and p53 in the case of cytotoxics, or by slowing down the G1

phase in the case of cytostatics (growth factor inhibitors). Drugs that act directly on death
rates, e.g., by primarily enhancing the apoptotic cascade may exist (or will exist some day),
but are not of common use in the clinic. Hence our choice of the drug target, transition rates,
which looks more realistic to us than death rates.

Of note, the authors of [BCBLH10], also using an age-structured population dynamic
model, but with delays, based their optimization procedure on the remark that the set of 24h-
periodic strategies contains both best and worst strategies, depending on the deemphasizing
between the position of the maximal effect of the circadian clock and of the drug infusion.
Taking advantage of this remark, they aim at avoiding possible traps (i.e., ‘pessimized infusion
strategies’) when one has no precise idea about the optimal circadian time, thinking that it
is advisable to propose a robust optimization approach by using a different period for the
drug infusion scheme. Thus, they proposed drug infusion schedules that are not 24h-periodic,
making their drug effects less dependent upon this dephasing (otherwise said, ‘shooting more
safely in the dark’), which is a quite interesting point of view. In our case, since our approach
is based on experimental data supposed to give us insight onto the target and on actual
possibilities to reach it safely, we did not consider such a robust optimization approach.

Our optimization method relies on the assumption of differences between healthy and
cancer cell population model parameters, namely drug-free time-dependent circadian control
functions ψi on phase transitions. The clinical feasibility status of the proposed optimal drug
infusion strategy is of course still questionable. Indeed, the ψi functions are thus far purely
phenomenological (cosine-like functions) and, further, the local (tissue) drug effect proposed
as control variable does not take into account tissue pharmacokinetics-pharmacodynamics
(PK-PD) of any drug. Last but not least, in view of clinical applications, a whole-body
physiologically based PK-PD model is still lacking. Nevertheless, by using this combination of
physiologically based modelling of proliferation, mathematical analysis methods, cell imaging
and statistical parameter identification techniques, and original optimization algorithms using
eigenvalue control of growth processes, we propose the first steps of a rationale for therapeutic
optimization in oncology at the molecular level in cell populations, healthy and tumour. We
intend to complete these first steps in the future, as sketched in [Cla07, Cla09, Cla11], to get
closer to the clinic.

Various measurements needed to identify parameters of our model control functions were
still out of reach by the biological experiments performed in this pioneering study, and this is
the reason why we used only a phenomenological representation (by plain cosines) of circadian
control, but more measurements are expected to come from further experiments performed
by biologists on samples of cell populations, healthy or cancerous, with or without circadian
control.

In particular, in forthcoming recordings of FUCCI data on healthy and cancer cells, we
will pay attention to parallel experimental measurements of the growth exponents (that are
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inverses of doubling times multiplied by a factor ln 2) in the proliferating cell populations
at stake. We will thus identify experimentally the growth coefficient λ on cell population
samples, in which we will simultaneously identify the parameters of our model from cell cycle
phase duration distributions by FUCCI recordings, obtaining a theoretical growth exponent
by solving the Euler-Lotka equation. This will allow us to validate (or falsify) the model. But
thus far, such simultaneous measurements have not been made available to us.

In the immediate future, we intend to combine the McKendrick cell population model
with a PK-PD model for 5-FU and Ironotecan, as the one presented in [LOD+10]. Hence,
the optimization model would become by far more realistic since it would give an actual
estimation of optimal drug flux instead of optimal drug effects. Moreover, the PK-PD model
may give rise to phenomena that are not accessible with the present model.



CHAPTER 9

Conclusion

Throughout this thesis, we encountered the different steps of the resolution of an optimiza-
tion problem. We proposed new models: the continuous PageRank optimization problem,
a Markov decision process for spam detection, deformed HOTS algorithms for the ranking
of web pages and a chemotherapy optimization model based on an age-structured cell pop-
ulation dynamics. Then, we developed algorithms for their resolution. We studied Markov
decision processes with implicitly defined action spaces and provided efficient algorithms for
the PageRank optimization problem. For the Perron eigenvalue and eigenvector optimization
problems we gave an algorithm coupling power and gradient iterations, basing on the low rank
of the matrix of the partial derivatives of the objective function and on the Master algorithm
model of Polak. Each algorithm is associated with the corresponding proof of convergence.
We implemented the algorithms in Scilab, Matlab or C language and we gave experimental
results on small size, middle size and large size problems that demonstrate the scalability of
the algorithms. We finally analyzed the optimal strategies found. In particular, we proved
that there generally exists a threshold property for web ranking optimization problems.

An open question is related to the hardness of the global minimization of the Perron eigen-
value on polytopes. Actually, the polynomial time algorithms for Perron value optimization
require that the controls are independent line by line. This gives a very raw relaxation in the
Perron eigenvalue optimization problem that we studied here in the context of chemothera-
peutics because the controls apply here on the subdiagonal of the matrix. What is more in
our model, there is an implicit constraint that should be relaxed too. Does there exist poly-
nomial time computable lower bounds with a better guarantee of quality? One could also
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search for lower or upper bounds for each of the nonconvex Perron eigenvector or eigenvalue
optimization problems considered here, each one being specific.

In this thesis, we have encountered several web ranking algorithms and we have studied
how a webmaster could improve her ranking by manipulating the hyperlinks she controls.
A natural question that arises is which algorithm a search engine should use. The answer will
perhaps never be answered once and for all because the quality of a ranking is a subjective
issue. However a web ranking algorithm should be scalable because of the size of the web,
being linked to by more pages should increase the rank and the ranking should have some
stability properties against perturbations and some resistance against web spamming. The
Perron eigenvector optimization algorithm that we developed may help determining what
kind of strategies will be chosen by spammers and more generally if well behaved webmasters
will be penalized or not.



APPENDIX A

An upper bound on the spectral gap
of nonnegative matrices

In this appendix, we give an independent result on estimations of the spectral gap of a
nonnegative matrix. The motivation for this study is that the size of the spectral gap gives
the speed of convergence of the power method. As we have seen for Tomlin’s HOTS algorithm
in Chapter 6, a larger spectral gap is an argument in favor of an algorithm against an algorithm
with a characteristic matrix that has a smaller spectral gap. We propose here a bound on the
spectral gap based on matrix reversiblization and previous bound determined for symmetric
matrices. Unfortunately, this bound may give no information, even for primitive matrices.

A.1 Reversiblization for nonnegative matrices

In [Fil91], Fill gives a technique that considers a reversible Markov chain associated to a non-
reversible Markov chain such that they have the same stationary distribution. This technique,
called reversiblization can be derived in additive and multiplicative reversiblization and we
propose an extension to nonnegative (not necessarily stochastic) matrices.

We consider an irreducible nonnegative matrix M with left and right Perron vectors v
and u and Perron root ρ. We investigate bounds on |λ| for any other eigenvalue λ of A.

We define the reversed matrix M̃ by

M̃ = D−1MTD



174 Chapter A. An upper bound on the spectral gap of nonnegative matrices

where D is the diagonal matrix such that Di,i = vi

ui
. Note that M̃ has the same spectrum as

M and the same Perron vectors.
The multiplicative reversiblization of M is defined by

S(M) = D1/2(MM̃)D−1/2 = D1/2MD−1MTD1/2.

S(M) is nonnegative, semi-definite, its Perron root is ρ2 and one of its (left or right) Perron
vector is w = D1/2u such that wi =

√
uivi. Note that even if M is irreducible, S(M) may

be reducible. This situation is not very problematic because a symmetric reducible matrix is
easily tractable.

The additive reversiblization of M is defined by

A(M) =
1

2
D1/2(M + M̃)D−1/2 =

1

2
(D1/2MD−1/2 +D−1/2MTD1/2).

A(M) is nonnegative and symmetric. Its Perron root and Perron vector are ρ and w = D1/2u.
It keeps the irreducibility property of M .

A.2 Evaluating the spectral gap of a nonnegative matrix

In [FG94], Friedland and Gurvits give a bound for the real part of the nonprincipal eigenvalues
of a nonnegative matrix. It uses additive reversiblization and the result is the following:

ρ(M)−ℜ(λ(M)) ≥ 1

2
(ρ(M)− max

1≤i≤n
mii)ǫ(M,u, v)2

where

ǫ(M,u, v) = inf
∅6=U⊂{1,...,n},card(U)≤⌊n

2
⌋

∑

i∈U,j∈{1,...,n}\U mijviuj +mjivjui
∑

i∈U 2(ρ(M)−mii)viui

It uses the fact that ℜ(λ(M)) ≤ λ2(A(M)), the second eigenvalue of the symmetric matrix
A(M) and a bound for symmetric matrices [Fri92].

We propose a similar bound for the modulus of the eigenvalue instead of the real part.
We get it thanks to multiplicative reversiblization.

Proposition A.1. The spectral gap of a nonnegative matrix M is bounded by its multiplicative
reversiblization’s:

|λ2(M)|2 ≤ σ2(S(M))

Proof. Let ρ2 and w be the Perron eigenvalue and eigenvector of S(M). Let σ2 be its second
eigenvalue (also singular value). Let λ2, v2 be a nonprincipal left eigenpair ofM . We normalize
v2 such that ‖D−1/2v2‖2 = 1. As wTD−1/2v2 = uT v2 = 0, we have:

σ2 = max
x∈Cn,‖x‖2=1,wT x=0

x∗S(M)x ≥ (D−1/2v2)
∗S(M)(D−1/2v2)

= v∗2D
−1/2D1/2MD−1MTD1/2D−1/2v2 = (λ̄2v

∗
2D

−1/2)(D−1/2λ2v2) = |λ2|2

We can now use any bound on σ2(S(M)) to get a bound on |λ2(M)|.
Remark A.1. In case S(M) is reducible, then one can show that σ2 = ρ2. This means that
the bound is then useless.
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scheduled regimen for anti-cancer drug infusion. Mathematical Modelling and
Numerical Analysis, 39:1069–1086, 2006.

[BCM+98] N. Baghdassarian, R. Catallo, M. A. Mahly, P. Ffrench, F. Chizat, P. A. Bryon,
and M. Ffrench. Glucocorticoids induce G1 as well as S-phase lengthening in nor-
mal human stimulated lymphocytes: differential effects on cell cycle regulatory
proteins. Exp. Cell Res., 240:263–273, 1998.
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tive evolution and resistance to therapy. Submitted, 2011.



Bibliography 181

[CMP06] Jean Clairambault, Philippe Michel, and Benôıt Perthame. Circadian rhythm
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tors, Computational Combinatorial Optimization, pages 115–160. Springer Ver-
lag, Heidelberg, 2001.

[Lep09] Thomas Lepoutre. Analyse et modélisation de phénomènes de croissance et
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[LS07b] Francis Lévi and Ueli Schibler. Circadian rhythms: Mechanisms and therapeutic
implications. Ann. Rev. Pharmacol. Toxicol., 47:493–528, 2007.

[LT92] Zhi Quan Luo and Paul Tseng. On the convergence of the coordinate descent
method for convex differentiable minimization. Journal of Optimization Theory
and Applications, 72(1):7–35, 1992.

[MA97] Harley H McAdams and Adam Arkin. Stochastic mechanisms in gene expression.
Proc. Natl. Acad. Sci. USA, 31:814–819, 1997.

[Mat96] Tomomi Matsui. NP-hardness of linear multiplicative programming and related
problems. Journal of Global Optimization, 9:113–119, 1996.

[Mat04] Fabien Mathieu. Graphes du Web, Mesures d’importance à la PageRank. PhD
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