Applications of Reformulations in Mathematical Programming

Alberto Costa

LIX, École Polytechnique, Palaiseau, France

September 18th, 2012

Ph.D. Thesis defense

F 4 3 F 4

Outline

伺 ト イヨト イヨト

э

Outline

2 Exact reformulations - Clustering in general and bipartite graphs

3 Narrowings - Circle packing in a square

Alberto Costa Applications of Reformulations in Mathematical Programming

Outline

- Exact reformulations Clustering in general and bipartite graphs
- 3 Narrowings Circle packing in a square
- 4 Relaxations Convex relaxations for multilinear terms

・ 同 ト ・ ヨ ト ・ ヨ ト

- 3 Narrowings Circle packing in a square
- 4 Relaxations Convex relaxations for multilinear terms

5 Conclusions

伺下 イヨト イヨト

Where are we?

1 Introduction

- Exact reformulations Clustering in general and bipartite graphs
- 3 Narrowings Circle packing in a square
- 4 Relaxations Convex relaxations for multilinear terms

5 Conclusions

Motivations

 Mathematical Programming: describe (by means of a Mathematical Programming formulation) and solve optimization problems;

/□ ▶ < 글 ▶ < 글

- Mathematical Programming: describe (by means of a Mathematical Programming formulation) and solve optimization problems;
- given a problem, different formulations can be proposed: reformulations;

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivations

- Mathematical Programming: describe (by means of a Mathematical Programming formulation) and solve optimization problems;
- given a problem, different formulations can be proposed: reformulations;
- Objective: starting from the original formulation for a problem, propose some reformulations which are somehow "better" (i.e., less time to obtain the optimal solution).

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_P and f_Q be respectively their objective functions. Q can be:

Outline

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_P and f_Q be respectively their objective functions. Q can be:

• exact or opt-reformulation: local (global) optima of *P* correspond to local (global) optima of *Q*;

Outline

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_P and f_Q be respectively their objective functions. Q can be:

• exact or opt-reformulation: local (global) optima of *P* correspond to local (global) optima of *Q*;

Outline

• narrowing: each global optimum of Q corresponds to a global optimum of P (Q can have fewer global optimum than P);

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_P and f_Q be respectively their objective functions. Q can be:

• exact or opt-reformulation: local (global) optima of *P* correspond to local (global) optima of *Q*;

Outline

- narrowing: each global optimum of Q corresponds to a global optimum of P (Q can have fewer global optimum than P);
- relaxation: the feasible region of P is a subset of the feasible region of Q, and in case of minimization problem $f_Q(x) \le f_P(x)$ for x in the feasible region of P.

イロト イポト イヨト イヨト

Problems studied

For each kind of reformulation, a problem is studied:

同 ト イ ヨ ト イ ヨ ト

For each kind of reformulation, a problem is studied:

• exact or opt-reformulation: clustering by means of modularity maximization in general and bipartite graphs;

For each kind of reformulation, a problem is studied:

- exact or opt-reformulation: clustering by means of modularity maximization in general and bipartite graphs;
- narrowing: circle packing in a square;

| 4 同 1 4 三 1 4 三 1

For each kind of reformulation, a problem is studied:

- exact or opt-reformulation: clustering by means of modularity maximization in general and bipartite graphs;
- narrowing: circle packing in a square;
- relaxation: convex relaxations for multilinear terms.

Where are we?

- 3 Narrowings Circle packing in a square
- 4 Relaxations Convex relaxations for multilinear terms

5 Conclusions

| 4 同 1 4 三 1 4 三 1

Outline

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Clustering in graphs

Graph G = (V, E)

- V: set of n vertices;
- E: set of m edges connecting pairs of vertices.

Outline Introduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Clustering in graphs

Graph G = (V, E)

- V: set of n vertices;
- E: set of m edges connecting pairs of vertices.

Goal: one seeks clusters which contains more inner edges (vertices in the same cluster) than cut edges (vertices in different clusters).

・ 同 ト ・ ヨ ト ・ ヨ

Outline Introduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Clustering in graphs

Graph G = (V, E)

- V: set of n vertices;
- E: set of m edges connecting pairs of vertices.

Goal: one seeks clusters which contains more inner edges (vertices in the same cluster) than cut edges (vertices in different clusters).

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Find a partition of V into clusters, maximizing the number of inner edges minus the expected number of such edges in a random graph having the same distribution of degrees of G.

イロト イポト イヨト イヨト

Modularity

Modularity [Newman,	Girvan; Phys.	Rev.	E, 2004]	
	$O = \sum_{c}^{N_c} (m_c)$	D_c^2		
	$Q = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \right)$	$\overline{4m^2}$		

- 4 同 🕨 - 4 目 🕨 - 4 目

э

Modularity

Modularity [Newman,	Girvan; Phys.	Rev.	E, 2004]	
	$Q = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \right)$	$\frac{D_c^2}{1}$		
	$\sum_{c=1} \int m$	$4m^{2}$)		

• N_c : number of clusters;

A.

→ 3 → 4 3

Modularity

Modularity [Newman,	Girvan; Phy	s. Rev.	E, 2004]	
	$Q = \sum_{c=1}^{N_c} \left(\frac{m}{m}\right)$	$\frac{c}{a} - \frac{D_c^2}{4m^2}$)	
	c=1			

- N_c : number of clusters;
- *m*: number of edges of the graph;

/□ ▶ < 글 ▶ < 글

Modularity

Modularity [Newman,	Girvan; Phys.	Rev.	E, 2004]
	$Q = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \right)$	$\left(\frac{D_c^2}{4m^2}\right)$	
	$\overline{c=1} \setminus m$	4111-)	

- N_c : number of clusters;
- *m*: number of edges of the graph;
- m_c : number of edges in cluster c;

→ 3 → 4 3

Modularity

Modularity [Newman,	Girvan; F	Phys. F	Rev.	Ε,	2004]
	$Q = \sum_{c=1}^{N_c} \left(\right.$	$\left(\frac{m_c}{m}-\frac{1}{4}\right)$	$\left(\frac{{D_c}^2}{4m^2}\right)$		

- N_c : number of clusters;
- m: number of edges of the graph;
- *m_c*: number of edges in cluster *c*;
- D_c : sum of degrees of vertices in cluster c;

Modularity

Modularity [Newman,	Girvan; Phys.	Rev.	E, 2004]	
	$Q = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \right)$	$-\frac{{D_c}^2}{4m^2}$)	

- N_c : number of clusters;
- m: number of edges of the graph;
- *m_c*: number of edges in cluster *c*;
- D_c: sum of degrees of vertices in cluster c;
- $\frac{m_c}{m}$: fraction of edges in cluster c;

Modularity

Modularity [Newman,	Girvan; Phys.	Rev.	E, 2004]	
	$Q = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \right)$	$-\frac{{D_c}^2}{4m^2}$)	

- *N_c*: number of clusters;
- m: number of edges of the graph;
- *m_c*: number of edges in cluster *c*;
- D_c : sum of degrees of vertices in cluster c;
- $\frac{m_c}{m}$: fraction of edges in cluster c;
- $\frac{D_c^2}{4m^2}$: expected number of edges in cluster c in a graph where vertices have same degrees but edges are placed randomly.

Locally optimal hierarchical divisive heuristic

Outline

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V, E))

• Input: cluster $c = (V_c, E_c)$ of graph G

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V, E))

- Input: cluster $c = (V_c, E_c)$ of graph G
- Output: partition into clusters of c

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V, E))

- Input: cluster $c = (V_c, E_c)$ of graph G
- Output: partition into clusters of c
- if $|V_c| \leq 3$ save c as cluster, and return;

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V, E))

- Input: cluster $c = (V_c, E_c)$ of graph G
- Output: partition into clusters of c
- if $|V_c| \leq 3$ save c as cluster, and return;
- divide c in c₁ and c₂ in an optimal way (maximizing modularity using a 0 - 1 MIQP model for bipartition);

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V, E))

- Input: cluster $c = (V_c, E_c)$ of graph G
- Output: partition into clusters of c
- if $|V_c| \leq 3$ save c as cluster, and return;
- divide c in c₁ and c₂ in an optimal way (maximizing modularity using a 0 - 1 MIQP model for bipartition);
- if $Q(c) > Q(c_1) + Q(c_2)$ save c as cluster, and return;

イロト イポト イヨト イヨト

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V, E))

- Input: cluster $c = (V_c, E_c)$ of graph G
- Output: partition into clusters of c
- if $|V_c| \leq 3$ save c as cluster, and return;
- divide c in c₁ and c₂ in an optimal way (maximizing modularity using a 0 - 1 MIQP model for bipartition);
- if $Q(c) > Q(c_1) + Q(c_2)$ save c as cluster, and return;
- call Divisive (c_1) and Divisive (c_2) ;

イロト イポト イヨト イヨト

0-1 MIQP model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_c = D_1 + D_2$ is known before solving the problem)

$$Q = \left(\frac{m_1 + m_2}{m} - \frac{D_1^2 + D_2^2}{4m^2}\right) = \left(\frac{m_1 + m_2}{m} - \frac{2D_1^2 + D_c^2 - 2D_1D_c}{4m^2}\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

0-1 MIQP model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_c = D_1 + D_2$ is known before solving the problem)

$$Q = \left(\frac{m_1 + m_2}{m} - \frac{D_1^2 + D_2^2}{4m^2}\right) = \left(\frac{m_1 + m_2}{m} - \frac{2D_1^2 + D_c^2 - 2D_1D_c}{4m^2}\right)$$

Variables

X_{i,j,s} = 1 if the edge (v_i, v_j) is inside the cluster s, 0 otherwise (s is either 1 or 2);

- 4 同 2 4 日 2 4 日 2 4

$0-1\ {\rm MIQP}$ model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_c = D_1 + D_2$ is known before solving the problem)

$$Q = \left(\frac{m_1 + m_2}{m} - \frac{D_1^2 + D_2^2}{4m^2}\right) = \left(\frac{m_1 + m_2}{m} - \frac{2D_1^2 + D_c^2 - 2D_1D_c}{4m^2}\right)$$

Variables

- X_{i,j,s} = 1 if the edge (v_i, v_j) is inside the cluster s, 0 otherwise (s is either 1 or 2);
- $Y_i = 1$ if the vertex v_i is inside the cluster 1, 0 otherwise;

イロト イポト イヨト イヨト

$0-1\ {\rm MIQP}$ model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_c = D_1 + D_2$ is known before solving the problem)

$$Q = \left(\frac{m_1 + m_2}{m} - \frac{D_1^2 + D_2^2}{4m^2}\right) = \left(\frac{m_1 + m_2}{m} - \frac{2D_1^2 + D_c^2 - 2D_1D_c}{4m^2}\right)$$

Variables

- X_{i,j,s} = 1 if the edge (v_i, v_j) is inside the cluster s, 0 otherwise (s is either 1 or 2);
- $Y_i = 1$ if the vertex v_i is inside the cluster 1, 0 otherwise;
- k_i is the degree of the vertex v_i .

・ロト ・同ト ・ヨト ・ヨト

troduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

0-1 MIQP model used by the hierarchical divisive heuristic - 2 (*OB* model)

$$\begin{array}{ll} \max & \frac{1}{m} \left(m_1 + m_2 - \frac{1}{2m} \left(D_1^2 + \frac{D_c^2}{2} - D_1 D_c \right) \right) \\ \text{s.t.} & X_{i,j,1} \leq Y_i \quad \forall (v_i, v_j) \in E_c \\ & X_{i,j,2} \leq 1 - Y_i \quad \forall (v_i, v_j) \in E_c \\ & X_{i,j,2} \leq 1 - Y_j \quad \forall (v_i, v_j) \in E_c \\ & m_s = \sum_{(v_i, v_j) \in E_c} X_{i,j,s} \quad \forall s \in \{1, 2\} \\ & D_1 = \sum_{v_i \in V_c} k_i Y_i \\ & Y_i \in \{0, 1\} \quad \forall v_i \in V_c \\ & X_{i,j,s} \geq 0 \quad \forall (v_i, v_j) \in E_c, \forall s \in \{1, 2\} \\ \end{array}$$

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Improving the 0-1 MIQP formulation

• reduction of number of variables and constraints;

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Improving the 0-1 MIQP formulation

- reduction of number of variables and constraints;
- symmetry breaking.

Reduction of number of variables

Consider the variables X of the original model:

$$X_{i,j,s} = \begin{cases} 1, & \text{if edge } (v_i, v_j) \text{ belongs to cluster } s, \\ 0, & \text{otherwise.} \end{cases}$$

Reduction of number of variables

Consider the variables X of the original model:

$$X_{i,j,s} = \begin{cases} 1, & \text{if edge } (v_i, v_j) \text{ belongs to cluster } s, \\ 0, & \text{otherwise.} \end{cases}$$

We do not actually need to know if an edge is in the cluster 1 or 2, but only if it is within a cluster or not:

$$X_{i,j} = \begin{cases} 1, & \text{if } Y_i = Y_j, \\ 0, & \text{otherwise.} \end{cases}$$

Reduction of number of variables

Consider the variables X of the original model:

$$X_{i,j,s} = \begin{cases} 1, & \text{if edge } (v_i, v_j) \text{ belongs to cluster } s, \\ 0, & \text{otherwise.} \end{cases}$$

We do not actually need to know if an edge is in the cluster 1 or 2, but only if it is within a cluster or not:

$$X_{i,j} = \begin{cases} 1, & \text{if } Y_i = Y_j, \\ 0, & \text{otherwise.} \end{cases}$$

Half of the variables X needed.

- - E - - E

New variables

Variables X can then be expressed as

$$X_{i,j} = 2Y_iY_j - Y_i - Y_j + 1, \qquad \forall (v_i, v_j) \in E_c.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

New variables

Variables X can then be expressed as

$$X_{i,j} = 2Y_iY_j - Y_i - Y_j + 1, \qquad \forall (v_i, v_j) \in E_c.$$

Variables S linearize the product of the binary variables Y:

$$S_{i,j} = Y_i Y_j, \qquad \forall (v_i, v_j) \in E_c.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

New variables

Variables X can then be expressed as

$$X_{i,j} = 2Y_iY_j - Y_i - Y_j + 1, \qquad \forall (v_i, v_j) \in E_c.$$

Variables S linearize the product of the binary variables Y:

$$S_{i,j} = Y_i Y_j, \qquad \forall (v_i, v_j) \in E_c.$$

So we obtain

$$X_{i,j} = 2S_{i,j} - Y_i - Y_j + 1, \qquad \forall (v_i, v_j) \in E_c.$$

Fortet linearization

Relationship $S_{i,j} = Y_i Y_j$ (Fortet inequalities):

$$\begin{split} S_{i,j} &\geq 0 & \forall (v_i, v_j) \in E_c \\ S_{i,j} &\geq Y_j + Y_i - 1 & \forall (v_i, v_j) \in E_c \\ S_{i,j} &\leq Y_i & \forall (v_i, v_j) \in E_c \\ S_{i,j} &\leq Y_j & \forall (v_i, v_j) \in E_c. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Fortet linearization

Relationship $S_{i,j} = Y_i Y_j$ (Fortet inequalities):

$$\begin{split} S_{i,j} &\geq 0 \qquad \forall (v_i, v_j) \in E_c \\ S_{i,j} &\geq Y_j + Y_i - 1 \qquad \forall (v_i, v_j) \in E_c \\ S_{i,j} &\leq Y_i \qquad \forall (v_i, v_j) \in E_c \\ S_{i,j} &\leq Y_j \qquad \forall (v_i, v_j) \in E_c. \end{split}$$

Objective function maximizes variables $S \rightarrow half$ of the constraints needed:

$$\begin{split} S_{i,j} &\leq Y_i \qquad \forall (v_i, v_j) \in E_c \\ S_{i,j} &\leq Y_j \qquad \forall (v_i, v_j) \in E_c. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ntroduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms

OB_1 formulation

$$\begin{split} \max & \frac{1}{m} \left(\sum_{(v_i, v_j) \in E_c} \left(2S_{i,j} - Y_i - Y_j \right) + |E_c| - \frac{1}{2m} \left(D_1^2 + \frac{D_c^2}{2} - D_1 D_c \right) \right) \\ \text{s.t.} & S_{i,j} \leq Y_i \qquad \forall (v_i, v_j) \in E_c \\ & S_{i,j} \leq Y_j \qquad \forall (v_i, v_j) \in E_c \\ & D_1 = \sum_{v_i \in V_c} k_i Y_i \\ & Y_i \in \{0, 1\} \qquad \forall v_i \in V_c, \end{split}$$

同 ト イヨ ト イヨ

ntroduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

OB_1 formulation

$$\begin{split} \max & \ \frac{1}{m} \left(\sum_{(v_i, v_j) \in E_c} \left(2S_{i,j} - Y_i - Y_j \right) + |E_c| - \frac{1}{2m} \left(D_1^2 + \frac{D_c^2}{2} - D_1 D_c \right) \right) \\ \text{s.t.} & \ S_{i,j} \leq Y_i \qquad \forall (v_i, v_j) \in E_c \\ & \ S_{i,j} \leq Y_j \qquad \forall (v_i, v_j) \in E_c \\ & \ D_1 = \sum_{v_i \in V_c} k_i Y_i \\ & \ Y_i \in \{0, 1\} \qquad \forall v_i \in V_c, \end{split}$$

where in the objective function we use the fact that

$$\sum_{(v_i, v_j) \in E_C} 1 = |E_c|.$$

伺 ト イヨト イヨト

Symmetry breaking constraint - Fixing a vertex

Outline

If a solution is found, another equivalent solution is obtained by swapping the clusters (i.e., vertices in cluster 1 are placed in cluster 2, and vice-versa). \rightarrow fix a vertex in one of the clusters.

/□ ▶ < 글 ▶ < 글

Symmetry breaking constraint - Fixing a vertex

Outline

If a solution is found, another equivalent solution is obtained by swapping the clusters (i.e., vertices in cluster 1 are placed in cluster 2, and vice-versa). \rightarrow fix a vertex in one of the clusters.

Good choice: fix the vertex with highest degree in one cluster.

$$Y_g = 0, \quad g = \arg \max\{k_i, \forall v_i \in V_c\}.$$

Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2 [IBM; 2010]

- 4 同 2 4 日 2 4 日 2

Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2 [IBM; 2010]

Outline

grap		OB	$OB_1 + SBC$			
	vertices	edges	nodes	CPU time	nodes	CPU time
Karate	34	78	45	0.14	17	0.04
Dolphins	62	159	207	0.59	93	0.16
Les Misérables	77	254	205	1.09	105	0.35
A00 main	83	135	76	0.35	26	0.04
P53 protein	104	226	275	1.10	119	0.26
Political books	105	441	313	3.04	152	0.51
Football	115	613	8853	307.56	3822	44.38
A01 main	249	635	1119	47.83	726	9.72
USAir97	332	2126	16682	4585.04	8665	446.06
Netscience main	379	914	291	3.64	94	0.85
S838	512	819	392	5.26	186	1.18
Power	4941	6594	1459	708.51	891	123.85

Alberto Costa

- 4 同 2 4 日 2 4 日 2

Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,
Newman; Phys. Rev. Lett., 2008]
N_c (
$Q_b = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \frac{R_c B_c}{m^2} \right)$
$\sum_{c=1}^{m} (m - m^2)$

Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht, Newman; Phys. Rev. Lett., 2008] $Q_b = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \frac{R_c B_c}{m^2}\right)$

• R_c : sum of degrees of red vertices in cluster c;

・ 同 ト ・ ヨ ト ・ ヨ ト

Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht, Newman; Phys. Rev. Lett., 2008] $Q_b = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \frac{R_c B_c}{m^2}\right)$

- R_c: sum of degrees of red vertices in cluster c;
- B_c : sum of degrees of blue vertices in cluster c;

- 4 同 2 4 回 2 4 回 2 4

Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht, Newman; Phys. Rev. Lett., 2008] $Q_b = \sum_{c=1}^{N_c} \left(\frac{m_c}{m} - \frac{R_c B_c}{m^2}\right)$

- R_c : sum of degrees of red vertices in cluster c;
- B_c : sum of degrees of blue vertices in cluster c;
- all edges have a red and a blue end vertices.

・ロト ・同ト ・ヨト ・ヨト

Bipartite divisive heuristic

We adapt the divisive heuristic to the bipartite case $\rightarrow P$ model:

$$\begin{split} \max & \frac{1}{m} \left(\sum_{(v_i, v_j) \in E_c} \left(2S_{i,j} - Y_i - Y_j \right) + |E_c| - \frac{1}{m} \left(2R_1B_1 - B_cR_1 - R_cB_1 + R_cB_c \right) \right) \\ \text{s.t.} & S_{i,j} \leq Y_i \quad \forall (v_i, v_j) \in E_c \\ & S_{i,j} \leq Y_j \quad \forall (v_i, v_j) \in E_c \\ & R_1 = \sum_{v_i \in V_{R_c}} k_i Y_i \\ & B_1 = \sum_{v_j \in V_{B_c}} k_j Y_j \\ & Y_g = 1, \quad g = \arg \max\{k_i, \forall v_i \in V_c\} \\ & Y_i \in \{0, 1\} \quad \forall v_i \in V_c, \end{split}$$

 V_{R_c} and V_{B_c} are respectively the sets of red and blue vertices, and $V_c = V_{R_c} \cup V_{B_c}.$

Fortet linearizations

Nonlinear model: R_1B_1 in the objective function.

Image: A Image: A

Fortet linearizations

Nonlinear model: R_1B_1 in the objective function.

One can apply the Fortet linearization for $R_1B_1 \rightarrow P_{1a}$ model.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fortet linearizations

Nonlinear model: R_1B_1 in the objective function.

One can apply the Fortet linearization for $R_1B_1 \rightarrow P_{1a}$ model. A more compact formulation is possible $\rightarrow P_{1b}$

$$\begin{split} \max & \ \frac{1}{m} \sum_{v_i \in V_{R_c}} \sum_{v_j \in V_{B_c}} H_{i,j} \left(2W_{i,j} - Y_i - Y_j + 1 \right) \\ \text{s.t.} & \ W_{i,j} \geq 0 \quad \forall v_i \in V_{R_c}, \forall v_j \in V_{B_c} : H_{i,j} < 0 \\ & \ W_{i,j} \geq Y_i + Y_j - 1 \quad \forall v_i \in V_{R_c}, \forall v_j \in V_{B_c} : H_{i,j} < 0 \\ & \ W_{i,j} \leq Y_i \quad \forall v_i \in V_{R_c}, \forall v_j \in V_{B_c} : H_{i,j} > 0 \\ & \ W_{i,j} \leq Y_j \quad \forall v_i \in V_{R_c}, \forall v_j \in V_{B_c} : H_{i,j} > 0 \\ & \ Y_g = 1, \quad g = \arg \max\{k_i, \forall v_i \in V_{R_c} \cup V_{B_c}\} \\ & \ Y_i \in \{0, 1\} \quad \forall v_i \in V_{R_c} \cup V_{B_c}. \end{split}$$

 $H_{i,j} = T_{i,j} - \frac{k_i k_j}{m}$, and $T_{i,j} = 1$ if there exists the edge (i, j), 0 otherwise.

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms

Conclusions

Binary decomposition

$$\begin{split} R_1 &= \sum_{v_i \in V_{R_c}} k_i Y_i = \sum_{h=0}^{t_R} 2^h a_h \\ B_1 &= \sum_{v_j \in V_{B_c}} k_j Y_j = \sum_{l=0}^{t_B} 2^l b_l \\ R_1 B_1 &= \sum_{h=0}^{t_R} 2^h a_h \sum_{l=0}^{t_B} 2^l b_l = \sum_{h=0}^{t_R} \sum_{l=0}^{t_B} 2^{l+h} a_h b_l \end{split}$$

A.

→ 3 → 4 3

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Binary decomposition

$$R_{1} = \sum_{v_{i} \in V_{R_{c}}} k_{i} Y_{i} = \sum_{h=0}^{t_{R}} 2^{h} a_{h}$$

$$B_{1} = \sum_{v_{j} \in V_{B_{c}}} k_{j} Y_{j} = \sum_{l=0}^{t_{B}} 2^{l} b_{l}$$

$$R_{1}B_{1} = \sum_{h=0}^{t_{R}} 2^{h} a_{h} \sum_{l=0}^{t_{B}} 2^{l} b_{l} = \sum_{h=0}^{t_{R}} \sum_{l=0}^{t_{B}} 2^{l+h} a_{h} b_{l}$$

each product $a_l b_h$ is then linearized using the Fortet inequalities $\rightarrow P_2 \mbox{ model}$

- 4 同 2 4 日 2 4 日 2

Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2 [IBM; 2010]

Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2 [IBM; 2010]

graph			P_{1a}		P_{1b}		P_2		
	red vertices	total vertices	edges	nodes	time	nodes	time	nodes	time
1	18	32	89	437	0.30	72	0.19	670	0.39
2	26	35	147	154	0.19	10	0.09	618	0.43
3	26	35	86	45	0.14	6	0.07	183	0.19
4	18	36	99	2169	1.46	1360	1.24	1854	0.93
5	26	41	98	1963	1.25	276	0.44	647	0.39
6	50	59	225	1123	0.77	27	0.16	2521	2.12
7	62	102	192	1223370	4440.04	407104	3038.06	38910	5.26
8	108	244	358	-	-	-	-	3793	5.81
9	314	674	613	-	-	-	-	71927548	15450.40
10	960	2549	2580	-	-	-	-	91917	38.49

Clustering based on strong and almost-strong conditions

• Not related with modularity maximization;

(4) (E.).

Clustering based on strong and almost-strong conditions

- Not related with modularity maximization;
- Community in the strong sense [Radicchi et al.; PNAS, 2004]: a subset S of vertices where the number of neighbors of each vertex within S is larger than the number of neighbors outside S.

Clustering based on strong and almost-strong conditions

- Not related with modularity maximization;
- Community in the strong sense [Radicchi et al.; PNAS, 2004]: a subset S of vertices where the number of neighbors of each vertex within S is larger than the number of neighbors outside S.
- Strong conditions can be too stringent → we propose the almost-strong conditions: same definition as the strong conditions, except for degree 2 vertices, for which the number of neighbors within S is larger or equal to the number of neighbors outside S;

Clustering based on strong and almost-strong conditions

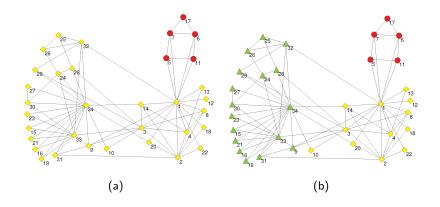
- Not related with modularity maximization;
- Community in the strong sense [Radicchi et al.; PNAS, 2004]: a subset S of vertices where the number of neighbors of each vertex within S is larger than the number of neighbors outside S.
- Strong conditions can be too stringent → we propose the almost-strong conditions: same definition as the strong conditions, except for degree 2 vertices, for which the number of neighbors within S is larger or equal to the number of neighbors outside S;
- We designed an algorithm to find strong and almost-strong communities in graphs, and we compare the results.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Test 1 - Zachary karate club - strong vs almost-strong

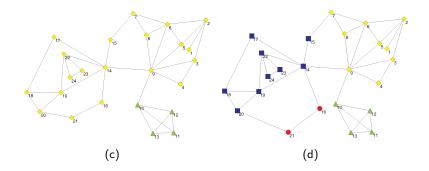


▲ □ ▶ ▲ □ ▶ ▲

Introductior

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Test 2- strike - strong vs almost-strong

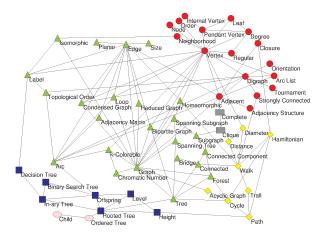


→ < Ξ →</p>

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Test 3 - graph - almost strong (strong: trivial partition)



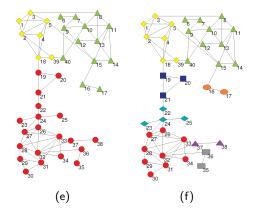
イロト イポト イヨト イヨト

-

troduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Test 4 - dolphins small - strong vs almost-strong



AP ► < 3

Where are we?

Introduction

- Exact reformulations Clustering in general and bipartite graphs
- 3 Narrowings Circle packing in a square
 - 4 Relaxations Convex relaxations for multilinear terms

5 Conclusions

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place $n \in \mathbb{N}$ non-overlapping circles of radius $r \in \mathbb{R}$ in the unit square such that the radius is maximized.

同 ト イヨ ト イヨ

The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place $n \in \mathbb{N}$ non-overlapping circles of radius $r \in \mathbb{R}$ in the unit square such that the radius is maximized.

Non-linear Non-convex formulation

 $\max r$

s.t.
$$(x_i - x_j)^2 + (y_i - y_j)^2 \ge 4r^2 \quad \forall i < j \le n$$

 $x_i, y_i \in [r, 1 - r] \quad \forall i \le n,$

| 4 同 1 4 三 1 4 三 1

The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place $n \in \mathbb{N}$ non-overlapping circles of radius $r \in \mathbb{R}$ in the unit square such that the radius is maximized.

Non-linear Non-convex formulation

 $\begin{array}{ll} \max & r \\ \text{s.t.} & (x_i - x_j)^2 + (y_i - y_j)^2 \geq 4r^2 \quad \forall i < j \leq n \\ & x_i, y_i \in [r, 1 - r] \quad \forall i \leq n, \end{array}$

where (x_i, y_i) represents the coordinates of the center of the *i*-th circle, and $r \ge 0$ is the common radius to maximize.

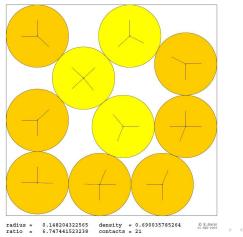
イロト イポト イヨト イヨト 二日

Introduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Example: optimal solution of PECS with 10 circles



10 circles in a square

Alberto Costa Applications of Reformulations in Mathematical Programming

글 > - < 글 >

э

Applications

 cutting problems (cut out as many identical disks as possible from a piece of material);

同 ト イ ヨ ト イ ヨ ト

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);
- container loading (place as many identical objects as possible into a container);

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);
- container loading (place as many identical objects as possible into a container);
- tree exploitation (plant trees in a given region maximizing both the density and the size of trees);

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);
- container loading (place as many identical objects as possible into a container);
- tree exploitation (plant trees in a given region maximizing both the density and the size of trees);
- cheese packing!

Alberto Costa

Applications of Reformulations in Mathematical Programming

Point Packing in a Square (PPS)

Consider the following problem: Place $n \in \mathbb{N}$ points in the unit square such that the minimum pairwise distance d^* is maximal.

・ 同 ト ・ ヨ ト ・ ヨ

Point Packing in a Square (PPS)

Consider the following problem: Place $n \in \mathbb{N}$ points in the unit square such that the minimum pairwise distance d^* is maximal.

Non-linear Non-convex formulation

 $\begin{array}{ll} \max & \alpha \\ \text{s.t.} & (x_i - x_j)^2 + (y_i - y_j)^2 \geq \alpha \quad \forall i < j \leq n \\ & x_i \in [0, 1] \quad \forall i \leq n \\ & y_i \in [0, 1] \quad \forall i \leq n \\ & \alpha \geq 0 \end{array}$

Point Packing in a Square (PPS)

Consider the following problem: Place $n \in \mathbb{N}$ points in the unit square such that the minimum pairwise distance d^* is maximal.

Non-linear Non-convex formulation

max α

s.t.
$$\begin{split} &(x_i - x_j)^2 + (y_i - y_j)^2 \geq \alpha \quad \forall i < j \leq n \\ &x_i \in [0,1] \quad \forall i \leq n \\ &y_i \in [0,1] \quad \forall i \leq n \\ &\alpha \geq 0 \end{split}$$

where (x_i, y_i) represents the coordinates of the *i*-th point and $d^* = \sqrt{\alpha^*}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Relationship between PECS and PPS

A point belongs to an edge in PPS \Leftrightarrow the corresponding center is at distance r from that edge in PECS.

/□ ▶ < 글 ▶ < 글

Relationship between PECS and PPS

A point belongs to an edge in PPS \Leftrightarrow the corresponding center is at distance r from that edge in PECS.

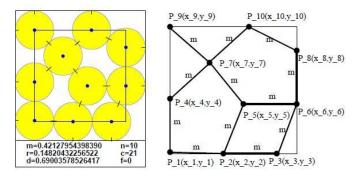


Figure: Relationship between PECS and PPS (figure taken from [Szabó; Contributions to Algebra and Geometry, 2005])

Alberto Costa

Applications of Reformulations in Mathematical Programming

ntroductior

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Narrowing in CPS

Problem

CPS has a lot of symmetric global optima. Branch-and-Bound algorithms do not work very efficiently in this situation, because the BB tree is large.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Introduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Narrowing in CPS

Problem

CPS has a lot of symmetric global optima. Branch-and-Bound algorithms do not work very efficiently in this situation, because the BB tree is large.

Possible solution

Removing some of the global optima, by adjoining some Symmetry Breaking Constraints (SBCs) \rightarrow narrowing reformulation.

- 4 同 ト 4 ヨ ト 4 ヨ ト

BB trees

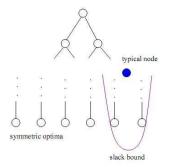


Figure: Original Formulation

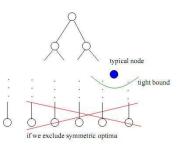


Figure: Narrowing Reformulation

→ □ → → □ →

A ►

Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which can be computed from the mathematical model of the problem) of CPS is isomorphic to $C_2 \times S_n$, where:

伺 ト イヨト イヨト

Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which can be computed from the mathematical model of the problem) of CPS is isomorphic to $C_2 \times S_n$, where:

• C_2 represents the permutation between x and y axes.

- 4 同 2 4 日 2 4 日 2 4

Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which can be computed from the mathematical model of the problem) of CPS is isomorphic to $C_2 \times S_n$, where:

- C_2 represents the permutation between x and y axes.
- S_n represents the permutation of the circle indicies (we can swap some circles, and the solution does not change).

- 4 同 6 4 日 6 4 日 6

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables) [Hansen, C., Liberti; ISC010]:

・ 同 ト ・ ヨ ト ・ ヨ ト

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables) [Hansen, C., Liberti; ISC010]:

• weak constraints: $x_1 \leq x_i, \forall i \in \{2, \ldots, n\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables) [Hansen, C., Liberti; ISC010]:

- weak constraints: $x_1 \leq x_i, \forall i \in \{2, \ldots, n\}$
- strong constraints: $x_i \leq x_{i+1}, \forall i \in \{1, \dots, n-1\}$

(1日) (日) (日)

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables) [Hansen, C., Liberti; ISC010]:

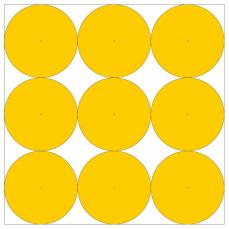
- weak constraints: $x_1 \leq x_i, \forall i \in \{2, \ldots, n\}$
- strong constraints: $x_i \leq x_{i+1}, \forall i \in \{1, \dots, n-1\}$
- *mixed* constraints, introduced in [C., Liberti, Hansen; DAM, 2012], that mix contraints on the x and y variables.

・ 同 ト ・ ヨ ト ・ ヨ ト

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms

Example - n = 9



weak constraints

$$x_1 \le x_2, \, x_1 \le x_3, \dots, x_1 \le x_9$$

www.packomania.com

© E.SPECHT 02-MAR-2010

Alberto Costa

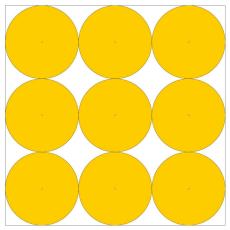
<ロ> <同> <同> < 回> < 回> Applications of Reformulations in Mathematical Programming

э

Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms

Example - n = 9



weak constraints

$$x_1 \le x_2, \, x_1 \le x_3, \dots, x_1 \le x_9$$

strong constraints

$$x_1 \le x_2, \, x_2 \le x_3, \dots, x_8 \le x_9$$

www.packomania.com

© E.SPECHT 02-MAR-2010

Alberto Costa

イロン イロン イヨン イヨン Applications of Reformulations in Mathematical Programming

э

Idea: strong constraints give some conditions only for the x coordinates of the centres of the circles; it would be better to have also some conditions for the y coordinates.

同 ト イ ヨ ト イ ヨ ト

Idea: strong constraints give some conditions only for the x coordinates of the centres of the circles; it would be better to have also some conditions for the y coordinates.

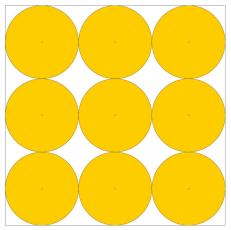
Starting from the *strong* constraints, we replace $x_{iS} \le x_{iS+1}$ with $y_{1+(i-1)S} \le y_{1+iS}, \forall i \in \{1, 2, \dots, \lceil \frac{N}{S} \rceil - 1\}$ (best results with S = 2).

・ 同 ト ・ ラ ト ・ ラ ト

Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms

Strong and mixed SBCs, S = 3



strong constraints

$$\begin{aligned} & x_1 \le x_2, \, x_2 \le x_3, \, \mathbf{x_3} \le \mathbf{x_4}, \\ & x_4 \le x_5, \, x_5 \le x_6, \, \mathbf{x_6} \le \mathbf{x_7}, \\ & x_7 \le x_8, \, x_8 \le x_9 \end{aligned}$$

www.packomania.com

© E.SPECHT 02-MAR-2010

Alberto Costa

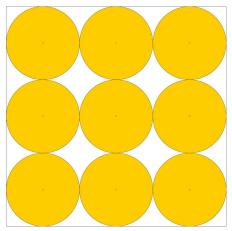
イロン イロン イヨン イヨン Applications of Reformulations in Mathematical Programming

э

Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms

Strong and mixed SBCs, S = 3



strong constraints

$$egin{aligned} x_1 \leq x_2, \, x_2 \leq x_3, \, \mathbf{x_3} \leq \mathbf{x_4}, \ x_4 \leq x_5, \, x_5 \leq x_6, \, \mathbf{x_6} \leq \mathbf{x_7}, \ x_7 \leq x_8, \, x_8 \leq x_9 \end{aligned}$$

mixed constraints

$$egin{array}{ll} x_1 \leq x_2, \, x_2 \leq x_3, \, \mathbf{y_1} \leq \mathbf{y_4}, \ x_4 \leq x_5, \, x_5 \leq x_6, \, \mathbf{y_4} \leq \mathbf{y_7}, \ x_7 \leq x_8, \, x_8 \leq x_9 \end{array}$$

www.packomania.com

© E.SPECHT 02-MAR-2010

Alberto Costa

・ロン ・回 と ・ ヨ と ・ ヨ と … Applications of Reformulations in Mathematical Programming

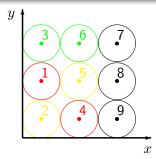
3

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Why mixed SBCs are valid? - Example



A.

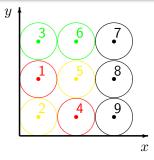
→ 3 → < 3</p>

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Why mixed SBCs are valid? - Example



This solution respects the *strong* constraints, but not the *mixed* constraints.

 $x_1 \le x_2, x_2 \le x_3, \mathbf{y_1} \le \mathbf{y_4},$ $x_4 \le x_5, x_5 \le x_6, \mathbf{y_4} \le \mathbf{y_7},$ $x_7 \le x_8, x_8 \le x_9$

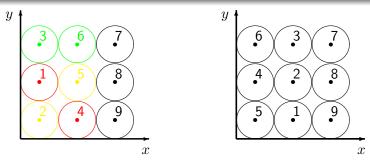
< E

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Why mixed SBCs are valid? - Example



This solution respects the *strong* constraints, but not the *mixed* constraints.

 $x_1 \le x_2, x_2 \le x_3, \mathbf{y_1} \le \mathbf{y_4},$ $x_4 \le x_5, x_5 \le x_6, \mathbf{y_4} \le \mathbf{y_7},$ $x_7 \le x_8, x_8 \le x_9$

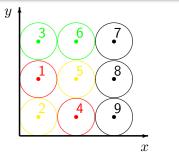
同 ト イ ヨ ト イ ヨ ト

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

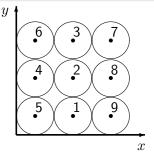
Relaxations - Convex relaxations for multilinear terms Conclusions

Why mixed SBCs are valid? - Example



This solution respects the *strong* constraints, but not the *mixed* constraints.

 $egin{array}{ll} x_1 \leq x_2, \, x_2 \leq x_3, \, {f y_1} \leq {f y_4}, \ x_4 \leq x_5, \, x_5 \leq x_6, \, {f y_4} \leq {f y_7}, \ x_7 \leq x_8, \, x_8 \leq x_9 \end{array}$



Now, after the swapping, the solution respects the *mixed* constraints.

$$x_1 \le x_2, x_2 \le x_3, y_1 \le y_4,$$

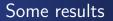
 $x_4 \le x_5, x_5 \le x_6, y_4 \le y_7,$
 $x_7 \le x_8, x_8 \le x_9$

• strong constraints better than weak ones;

□ > < □ > < □</p>

- strong constraints better than weak ones;
- mixed constraints better than strong ones.

/□ ▶ < 글 ▶ < 글



- strong constraints better than weak ones;
- mixed constraints better than strong ones.

Mixed constraints results: COUENNE solver on a 2.4 GHz Intel Xeon CPU with 24 GB RAM running Linux.

\overline{n}	r^*	r_r	r'	\bar{r}	t(r')	sBB nodes
20	0.111382	0.111382	0.111382	0.322063	16.45	441828
25	0.1	0.096852	0.1	0.250133	553.68	125632
30	0.091671	0.091671	0.091671	0.316273	86.24	90230
35	0.084290	0.082786	0.083766	0.351545	1495.31	46162
40	0.079186	0.078913	0.078913	0.2501	19.68	17116
45	0.074727	0.07444	0.07444	0.353325	357.90	12915
50	0.071377	0.070539	0.070539	0.250121	5429.88	2

Statistics: the best known solution r^* , the solution found at the root node r_r , the largest radius r' found by our

method within the time limit, the tightest upper bound \bar{r} on r', the time t(r') at which the solution r' was found and the number of nodes explored within the time limit.

Conjecture about the bounds on the variables

Consider PPS: the linear relaxation computed at the root node does not provide good bounds because of the bounds of the variables x and y.

同 ト イ ヨ ト イ ヨ ト

Conjecture about the bounds on the variables

Consider PPS: the linear relaxation computed at the root node does not provide good bounds because of the bounds of the variables x and y.

The real problem is that all the variables have the same lower and upper bounds (i.e., respectively, 0 and 1).

伺 ト イヨト イヨト

ntroduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Linear relaxation of PPS - 1

Proposition

The optimal solution of the linear relaxation of PPS is always $\alpha^*=2.$

- 4 同 2 4 日 2 4 日 2

Introduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Linear relaxation of PPS - 1

Proposition

The optimal solution of the linear relaxation of PPS is always $\alpha^*=2.$

This means that for all the instances (that is, for all the values of n number of points), the Upper Bound obtained as solution at the root node is always the same, even if the optimal value of α obviously decreases when n increases.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof - 1

Let L_{x_i} , U_{x_i} , L_{y_i} and U_{x_i} be respectively the lower and upper bounds for the variables x_i and y_i . The linear relaxation of PPS is ([Locatelli, Raber; Tech. Rep. 09/99]):

Proof - 1

Let L_{x_i} , U_{x_i} , L_{y_i} and U_{x_i} be respectively the lower and upper bounds for the variables x_i and y_i . The linear relaxation of PPS is ([Locatelli, Raber; Tech. Rep. 09/99]):

Linear relaxation of PPS

 $\begin{array}{ll} \max & \alpha \\ \text{s.t.} & -l(i,j) \geq \alpha \quad \forall i < j \leq n \\ & x_i \in [0,1] \quad \forall i \leq n \\ & y_i \in [0,1] \quad \forall i \leq n \\ & \alpha \geq 0 \end{array}$

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

Proof - 1

Let L_{x_i} , U_{x_i} , L_{y_i} and U_{x_i} be respectively the lower and upper bounds for the variables x_i and y_i . The linear relaxation of PPS is ([Locatelli, Raber; Tech. Rep. 09/99]):

Linear relaxation of PPS

 $\begin{array}{ll} \max & \alpha \\ \text{s.t.} & -l(i,j) \geq \alpha \quad \forall i < j \leq n \\ & x_i \in [0,1] \quad \forall i \leq n \\ & y_i \in [0,1] \quad \forall i \leq n \\ & \alpha \geq 0 \end{array}$

and $l(i, j) = -(L_{x_i} - U_{x_j} + U_{x_i} - L_{x_j})(x_i - x_j) - (L_{y_i} - U_{y_j} + U_{y_i} - L_{y_j})(y_i - y_j) + (L_{x_i} - U_{x_j})(U_{x_i} - L_{x_j}) + (L_{y_i} - U_{y_j})(U_{y_i} - L_{y_j})$ is the linearization of the nonlinear distance constraints.

Proof - 2

Since $L_{x_i} = L_{y_i} = 0$, $\forall i \leq n$ and $U_{x_i} = U_{y_i} = 1$, $\forall i \leq n$, we obtain l(i, j) = -2, $\forall i < j \leq n$.

(日)

3

Proof - 2

Since $L_{x_i} = L_{y_i} = 0$, $\forall i \leq n$ and $U_{x_i} = U_{y_i} = 1$, $\forall i \leq n$, we obtain l(i, j) = -2, $\forall i < j \leq n$. The model can be rewritten as

Linear relaxation of PPS	
max	α
s.t.	$2 \ge \alpha$
	$x_i \in [0,1] \forall i \le n$
	$y_i \in [0,1] \forall i \le n$
	$\alpha \ge 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

-

Proof - 2

Since $L_{x_i} = L_{y_i} = 0$, $\forall i \leq n$ and $U_{x_i} = U_{y_i} = 1$, $\forall i \leq n$, we obtain l(i, j) = -2, $\forall i < j \leq n$. The model can be rewritten as

Linear relaxation of PPS max α s.t. $2 \ge \alpha$ $x_i \in [0,1] \quad \forall i \le n$ $y_i \in [0,1] \quad \forall i \le n$

the optimal solution is obviously $\alpha^* = 2$, and it does not depend on the value of the variables x and y.

 $\alpha > 0$

・ロト ・同ト ・ヨト ・ヨト

Introductio

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Considerations on the bound

同 ト イ ヨ ト イ ヨ ト

Considerations on the bound

• Upper bound $d_{UB} = \sqrt{2}$. Not good: it is the optimal solution when n = 2 (2 points placed in the opposite vertices).

同 ト イ ヨ ト イ ヨ ト

Considerations on the bound

- Upper bound $d_{UB} = \sqrt{2}$. Not good: it is the optimal solution when n = 2 (2 points placed in the opposite vertices).
- This value does not depend on n, x, y: all the coefficients of x and y are 0 in l(x, y).

・ 同 ト ・ ヨ ト ・ ヨ ト

Considerations on the bound

- Upper bound $d_{UB} = \sqrt{2}$. Not good: it is the optimal solution when n = 2 (2 points placed in the opposite vertices).
- This value does not depend on n, x, y: all the coefficients of x and y are 0 in l(x, y).
- In order to improve this bound, we should change the bounds on some variables.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but not easy to prove)

/□ ▶ < 글 ▶ < 글

Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but not easy to prove)

Conjecture

Consider an instance of PPS with n points. Divide the unit square in k^2 equal subsquares, with $k = \arg\min_s \left|\frac{n}{2} - s^2\right|, s \in \left\{\left\lceil\sqrt{\frac{n}{2}}\right\rceil, \left\lfloor\sqrt{\frac{n}{2}}\right\rfloor\right\}$. There is at least one point of the optimal solution in each subsquare.

伺 ト イヨト イヨト

Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but not easy to prove)

Conjecture

Consider an instance of PPS with n points. Divide the unit square in k^2 equal subsquares, with $k = \arg\min_s \left|\frac{n}{2} - s^2\right|, s \in \left\{\left\lceil\sqrt{\frac{n}{2}}\right\rceil, \left\lfloor\sqrt{\frac{n}{2}}\right\rfloor\right\}$. There is at least one point of the optimal solution in each subsquare.

This means that we can modify the bounds for k^2 variables.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Example - n = 9

Consider the example with n = 9. In this case, k = 2. So we can divide the square in 4 subsquares, and in each of them there is a point of the optimal solution.

同 ト イ ヨ ト イ ヨ ト

Example - n = 9

Consider the example with n = 9. In this case, k = 2. So we can divide the square in 4 subsquares, and in each of them there is a point of the optimal solution.

The new bounds becomes:

$$\begin{aligned} x_1 &\in [0, 0.5], \ y_1 \in [0, 0.5] \\ x_2 &\in [0, 0.5], \ y_2 \in [0.5, 1] \\ x_3 &\in [0.5, 1], \ y_3 \in [0, 0.5] \\ x_4 &\in [0.5, 1], \ y_4 \in [0.5, 1] \end{aligned}$$

while the bounds for the other variables remain 0 and 1.

Tests

The tests were performed on one 2.4GHz Intel Xeon CPU of a computer with 24 GB RAM running Linux, using the solver COUENNE [Belotti, Lee, Liberti, Margot; 2009].

		Original formulation		Bounds constraints formulation	
n	d^*	LB	UB	LB	UB
9	0.5	0.000098	1.414213	0.300463	0.707107
10	0.421279	0.000098	1.414213	0.396156	0.707107
11	0.398207	0.000099	1.414213	0.000099	0.707107
12	0.388730	0.000099	1.414213	0.360065	0.707107
13	0.366096	0.000098	1.414213	0.339654	0.502948
14	0.348915	0.000098	1.414213	0.340830	0.502874
15	0.341081	0.000098	1.414213	0.334524	0.502793
16	0.333333	0	1.414213	0.290033	0.502793
17	0.306153	0	1.414213	0.000099	0.502793
18	0.300462	0	1.414213	0.252819	0.502793
19	0.289541	0.000047	1.414213	0.252337	0.502793
20	0.286611	0	1.414213	0.276468	0.502793

- 4 同 2 4 日 2 4 日

Where are we?

Introduction

- Exact reformulations Clustering in general and bipartite graphs
- 3 Narrowings Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms

5 Conclusions

| 4 同 1 4 回 1 4 回 1

Definitions

• Let $S \subseteq \mathbb{R}^n$ be non-empty

3

Definitions

- Let $S \subseteq \mathbb{R}^n$ be non-empty
- \bullet Any convex set containing S is a convex relaxation of S

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions

- Let $S \subseteq \mathbb{R}^n$ be non-empty
- \bullet Any convex set containing S is a convex relaxation of S
- $\bullet~{\rm The~convex~hull}~{\rm conv}(S)$ of S is the intersection of all convex relaxations of S

- 4 同 2 4 日 2 4 日 2 4

Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of variables). In order to obtain its convex relaxation, we compare two methods:

同 ト イ ヨ ト イ ヨ

Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of variables). In order to obtain its convex relaxation, we compare two methods:

• primal relaxation: each multilinear term is replaced by a new variable, and a set of linear constraints (convex envelopes) is adjoined, thus defining the convex hull;

伺下 イヨト イヨト

Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of variables). In order to obtain its convex relaxation, we compare two methods:

- primal relaxation: each multilinear term is replaced by a new variable, and a set of linear constraints (convex envelopes) is adjoined, thus defining the convex hull;
- dual relaxation: the convex hull is represented as the convex combination of its extreme points.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Primal relaxation

• For the general case, convex envelopes for multilinear terms are available explicitly in function of x^L, x^U for k=2,3 and partly k=4

同 ト イ ヨ ト イ ヨ ト

Primal relaxation

- For the general case, convex envelopes for multilinear terms are available explicitly in function of x^L, x^U for k = 2, 3 and partly k = 4
- They consist of sets of constraints to be adjoined to the Mathematical Programming formulation

伺下 イヨト イヨト

Primal relaxation

- For the general case, convex envelopes for multilinear terms are available explicitly in function of x^L, x^U for k = 2, 3 and partly k = 4
- They consist of sets of constraints to be adjoined to the Mathematical Programming formulation
- No further variables are needed

伺下 イヨト イヨト

ntroduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms

Conclusions

Bilinear terms: McCormick's inequalities

• Let $W = \{(w, x_1, x_2) \mid w = x_1 x_2 \land (x_1, x_2) = [x^L, x^U]\}$, then conv(W) is given by:

$$w \geq x_1^L x_2 + x_2^L x_1 - x_1^L x_2^L w \geq x_1^U x_2 + x_2^U x_1 - x_1^U x_2^U w \leq x_1^L x_2 + x_2^U x_1 - x_1^L x_2^U w \leq x_1^U x_2 + x_2^L x_1 - x_1^U x_2^L$$

 Stated [McCormick; MP, 1976], proved [Al-Khayyal, Falk; MOR, 1983]

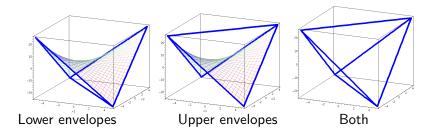
・ロト ・同ト ・ヨト ・ヨト

Introduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

McCormick's envelopes



< E

Special case: Fortet's linearization

If x_1 and x_2 are binary variables, the McCormick's inequalities lead to the Fortet's inequalities [Fortet; RFR0, 1960]:

$$w \geq 0$$

$$w \geq x_2 + x_1 - 1$$

$$w \leq x_1$$

$$w \leq x_2$$

The resulting reformulation is an exact linearization as shown in [Liberti; RAIRO-RO, 2009]

・ 同 ト ・ ヨ ト ・ ヨ ト

Trilinear case

It is not as easy as bilinear convex relaxation:

同 ト イ ヨ ト イ ヨ ト

It is not as easy as bilinear convex relaxation:

• the number of constraints is greater than 4

It is not as easy as bilinear convex relaxation:

- the number of constraints is greater than 4
- there are several cases, depending on sign of bounds of the variables: $x_i^L x_i^U \ge 0$ [Meyer, Floudas; 2003]; mixed case [Meyer, Floudas; JOGO, 2004]

・ 同 ト ・ ヨ ト ・ ヨ ト

It is not as easy as bilinear convex relaxation:

- the number of constraints is greater than 4
- there are several cases, depending on sign of bounds of the variables: $x_i^L x_i^U \ge 0$ [Meyer, Floudas; 2003]; mixed case [Meyer, Floudas; JOGO, 2004]
- there are further conditions to check

・ 同 ト ・ ヨ ト ・ ヨ ト

ntroduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Example (1): $x_1^U, x_2^U, x_3^U \le 0$

Permute variables x_1 , x_2 and x_3 such that:

$$\begin{array}{rcl} x_1^U x_2^L x_3^L + x_1^L x_2^U x_3^U &\leq & x_1^L x_2^U x_3^L + x_1^U x_2^L x_3^U \\ x_1^U x_2^L x_3^L + x_1^L x_2^U x_3^U &\leq & x_1^U x_2^U x_3^L + x_1^L x_2^L x_3^U \end{array}$$

- 4 同 2 4 日 2 4 日 2

Example (1): $x_1^U, x_2^U, x_3^U \le 0$

Permute variables x_1 , x_2 and x_3 such that:

$$\begin{array}{rcl} x_1^U x_2^L x_3^L + x_1^L x_2^U x_3^U &\leq & x_1^L x_2^U x_3^L + x_1^U x_2^L x_3^U \\ x_1^U x_2^L x_3^L + x_1^L x_2^U x_3^U &\leq & x_1^U x_2^U x_3^L + x_1^L x_2^L x_3^U \end{array}$$

Lower envelope:

where
$$c_1 = \frac{x_1^U x_2^U x_3^L - x_1^L x_2^U x_3^U - x_1^U x_2^L x_3^L + x_1^U x_2^L x_3^U}{x_1^U - x_1^L}$$
 and
 $c_2 = \frac{x_1^L x_2^L x_3^U - x_1^U x_2^L x_3^L - x_1^L x_2^U x_3^U + x_1^L x_2^U x_3^L}{x_1^L - x_1^U}$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

troduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms

Conclusions

Example (2): $x_1^U, x_2^U, x_3^U \le 0$

Upper envelope:

$$\begin{array}{rcl} w & \leq & x_2^L x_3^L x_1 + x_1^U x_3^L x_2 + x_1^U x_2^U x_3 - x_1^U x_2^U x_3^L - x_1^U x_2^L x_3^L \\ w & \leq & x_2^U x_3^L x_1 + x_1^L x_3^L x_2 + x_1^U x_2^L x_3 - x_1^L x_2^U x_3^L - x_1^L x_2^U x_3^L \\ w & \leq & x_2^L x_3^L x_1 + x_1^U x_3^U x_2 + x_1^U x_2^L x_3 - x_1^U x_2^L x_3^U - x_1^U x_2^L x_3^L \\ w & \leq & x_2^U x_3^U x_1 + x_1^L x_3^L x_2 + x_1^L x_2^U x_3 - x_1^L x_2^U x_3^U - x_1^L x_2^U x_3^L \\ w & \leq & x_2^L x_3^U x_1 + x_1^L x_3^U x_2 + x_1^L x_2^L x_3 - x_1^L x_2^L x_3^U - x_1^L x_2^L x_3^L \\ w & \leq & x_2^L x_3^U x_1 + x_1^U x_3^U x_2 + x_1^L x_2^L x_3 - x_1^U x_2^L x_3^U - x_1^L x_2^L x_3^U \\ w & \leq & x_2^U x_3^U x_1 + x_1^L x_3^U x_2 + x_1^L x_2^L x_3 - x_1^L x_2^U x_3^U - x_1^L x_2^L x_3^U \\ \end{array}$$

э

The convex envelope is not known explicitly for quadrilinear terms

- Combine bilinear and trilinear envelope [Cafieri, Lee, Liberti; JOGO, 2011]
- Convex envelope for some cases presented in [Balram; M.Sc. Thesis, 2019] (e.g., when x_1^L , x_2^L , x_3^L , $x_4^L \ge 0$, then 44 constraints are generated)

- 4 同 2 4 日 2 4 日 2

Beyond quadrilinear terms

• envelopes for multilinear terms larger than quadrilinear: not known explicitly

□ > < □ > < □</p>

- envelopes for multilinear terms larger than quadrilinear: not known explicitly
- software as PORTA can compute the convex hull of a given set of points in \mathbb{R}^n

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

- envelopes for multilinear terms larger than quadrilinear: not known explicitly
- software as PORTA can compute the convex hull of a given set of points in \mathbb{R}^n
- Balram's thesis reports a similar procedure to compute the convex hull (but less refined)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introductior

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Dual relaxation: preliminaries

• Consider the 2^k point set P:
{
$$(x_1^L, \dots, x_{k-1}^L, x_k^L),$$

 $(x_1^L, \dots, x_{k-1}^L, x_k^U),$
 $(x_1^L, \dots, x_{k-1}^U, x_k^L),$
 $(x_1^L, \dots, x_{k-1}^U, x_k^L),$
 $\dots,$
 $(x_1^U, \dots, x_{k-1}^U, x_k^L),$
 $(x_1^U, \dots, x_{k-1}^U, x_k^L),$
 $(x_1^U, \dots, x_{k-1}^U, x_k^L),$
 $(x_1^U, \dots, x_{k-1}^U, x_k^L),$

(i.e., all combinations of lower/upper bounds) • Let $w(x) = \prod_{i \leq k} x_i$: lift P to (x, w) space, get $P_W \subseteq \mathbb{R}^{k+1}$

$$\forall \bar{x} \in P \quad (\bar{x}, w(\bar{x})) \in P_W$$

・ 同 ト ・ ヨ ト ・ ヨ ト

}

Dual representation of a point set

• Convex hull of $P = \{p_1, \ldots, p_m\} \subseteq \mathbb{R}^n$ is given by $x \in \mathbb{R}^n \mid$:

$$\exists \lambda \in \mathbb{R}^m \left(x = \sum_{i \le m} \lambda_i p_i \land \sum_{i \le m} \lambda_i = 1 \land \forall i \le m \ (\lambda_i \ge 0) \right)$$

- 4 同 2 4 日 2 4 日 2

Dual representation of a point set

• Convex hull of $P = \{p_1, \ldots, p_m\} \subseteq \mathbb{R}^n$ is given by $x \in \mathbb{R}^n \mid$:

$$\exists \lambda \in \mathbb{R}^m \left(x = \sum_{i \le m} \lambda_i p_i \land \sum_{i \le m} \lambda_i = 1 \land \forall i \le m \ (\lambda_i \ge 0) \right)$$

• $\Leftrightarrow x$ is a convex combination of points in P

- 4 同 2 4 日 2 4 日 2 4

Dual representation of a point set

• Convex hull of $P = \{p_1, \ldots, p_m\} \subseteq \mathbb{R}^n$ is given by $x \in \mathbb{R}^n \mid$:

$$\exists \lambda \in \mathbb{R}^m \left(x = \sum_{i \le m} \lambda_i p_i \land \sum_{i \le m} \lambda_i = 1 \land \forall i \le m \ (\lambda_i \ge 0) \right)$$

- $\bullet \, \Leftrightarrow x$ is a convex combination of points in P
- Can express points in P_W in function of x,w,x^L,x^U and of added (dual) variables λ for any k

(4月) (日) (日)

Dual representation of a point set

• Convex hull of $P = \{p_1, \ldots, p_m\} \subseteq \mathbb{R}^n$ is given by $x \in \mathbb{R}^n \mid$:

$$\exists \lambda \in \mathbb{R}^m \left(x = \sum_{i \le m} \lambda_i p_i \land \sum_{i \le m} \lambda_i = 1 \land \forall i \le m \; (\lambda_i \ge 0) \right)$$

- $\bullet \ \Leftrightarrow x \text{ is a convex combination of points in } P$
- Can express points in P_W in function of x,w,x^L,x^U and of added (dual) variables λ for any k
- Automatically get explicit convex envelopes for multilinear terms

・ロッ ・雪 ・ ・ ヨ ・ ・

ntroduction

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms Conclusions

Example: bilinear term

Using a matrix representation, we have:

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} \cdot \begin{bmatrix} x_1^L & x_2^L \\ x_1^L & x_2^U \\ x_1^U & x_2^L \\ x_1^U & x_2^L \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

Clustering in general and bipartite gra

Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Example: bilinear term

Using a matrix representation, we have:

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} \cdot \begin{bmatrix} x_1^L & x_2^L \\ x_1^L & x_2^U \\ x_1^U & x_2^L \\ x_1^U & x_2^L \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} \cdot \begin{bmatrix} x_1^L x_2^L \\ x_1^L x_2^L \\ x_1^U x_2^L \\ x_1^U x_2^U \\ x_1^U x_2^U \end{bmatrix} = w$$

Introduct Iustering in general and bipartite gra

Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms Conclusions

Example: bilinear term

Using a matrix representation, we have:

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} \cdot \begin{bmatrix} x_1^L & x_2^L \\ x_1^L & x_2^U \\ x_1^U & x_2^L \\ x_1^U & x_2^L \\ x_1^U & x_2^U \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} \cdot \begin{bmatrix} x_1^L x_2^L \\ x_1^L x_2^L \\ x_1^U x_2^L \\ x_1^U x_2^U \\ x_1^U x_2^U \end{bmatrix} = w$$

$$\begin{array}{rcl} x_1 & = & \lambda_1 x_1^L + \lambda_2 x_1^L + \lambda_3 x_1^U + \lambda_4 x_1^U \\ x_2 & = & \lambda_1 x_2^L + \lambda_2 x_2^U + \lambda_3 x_2^L + \lambda_4 x_2^U \\ w & = & \lambda_1 x_1^L x_2^L + \lambda_2 x_1^L x_2^U + \lambda_3 x_1^U x_2^L + \lambda_4 x_1^U x_2^U \\ \sum_{i \leq 4} \lambda_i & = & 1 \end{array}$$

Experimental set-up

- Generate random multilinear NLPs P
 - linear, bilinear, trilinear terms
- Generate primal convex LP relaxation R_P
- Generate dual convex LP relaxation Λ_P
- Solve R_P, Λ_P using CPLEX, compare CPU times
- To "get a feel" about how R_P, Λ_P might perform in BB, add integrality constraints on primal variables, get MILP relaxations R'_P, Λ'_P
- Solve R'_P, Λ'_P using CPLEX, compare CPU times

Instance set

- 2520 random instances
- # variables $n \in \{10, 20\}$

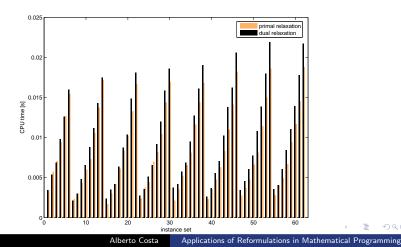
• n = 10:

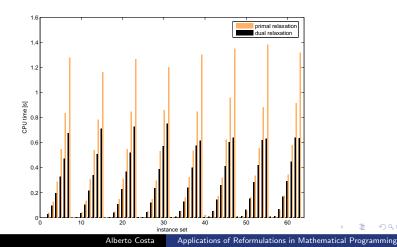
- # bilinear terms $\beta \in \{0, 10, 13, 17, 21, 25, 29, 33\}$
- # trilinear terms $\tau \in \{0, 10, 22, 34, 46, 58, 71, 83\}$

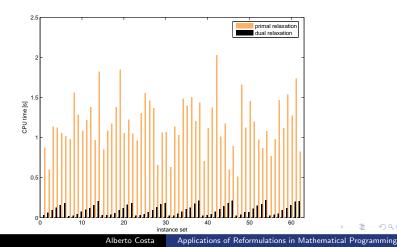
• n = 20:

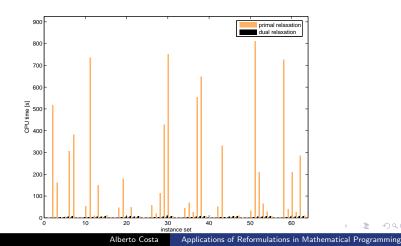
- $\beta \in \{0, 20, 38, 57, 76, 95, 114, 133\}$
- $\tau \in \{0, 20, 144, 268, 393, 517, 642, 766\}$
- 20 instances for each parameter combination yielding multilinear NLPs (and then MINLPs after imposing integrality on some variables)
- \bullet Variable bounds chosen at random, magnitude $\pm 2.0 \times 10^1$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶









Where are we?

Introduction

- Exact reformulations Clustering in general and bipartite graphs
- 3 Narrowings Circle packing in a square
- 4 Relaxations Convex relaxations for multilinear terms

5 Conclusions

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conclusions

Final considerations

• Reformulations can have a high impact in terms of computational times

→ 3 → < 3</p>

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers

→ Ξ → < Ξ</p>

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Future work

• Clustering: implement an exact method for bipartite modularity maximization

- 4 同 2 4 日 2 4 日 2

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Future work

- Clustering: implement an exact method for bipartite modularity maximization
- Circle packing: prove the conjecture about bound constraints

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Future work

- Clustering: implement an exact method for bipartite modularity maximization
- Circle packing: prove the conjecture about bound constraints
- Relaxations for multilinear terms: try to implement the dual approach for some sBB solver.

イロト イポト イヨト イヨト