Applications of Reformulations in Mathematical Programming

Alberto Costa

LIX, École Polytechnique, Palaiseau, France

September 18th, 2012

Ph.D. Thesis defense

Outline

Outline

(1) Introduction
(2) Exact reformulations-Clustering in general and bipartite graphs

Outline

(1) Introduction
(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

Outline

(1) Introduction
(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms

Outline

(1) Introduction
(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms
(5) Conclusions

Where are we?

(1) Introduction
(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms
(5) Conclusions

Motivations

- Mathematical Programming: describe (by means of a Mathematical Programming formulation) and solve optimization problems;

Motivations

- Mathematical Programming: describe (by means of a Mathematical Programming formulation) and solve optimization problems;
- given a problem, different formulations can be proposed: reformulations;

Motivations

- Mathematical Programming: describe (by means of a Mathematical Programming formulation) and solve optimization problems;
- given a problem, different formulations can be proposed: reformulations;
- Objective: starting from the original formulation for a problem, propose some reformulations which are somehow "better" (i.e., less time to obtain the optimal solution).

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_{P} and f_{Q} be respectively their objective functions. Q can be:

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_{P} and f_{Q} be respectively their objective functions. Q can be:

- exact or opt-reformulation: local (global) optima of P correspond to local (global) optima of Q;

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_{P} and f_{Q} be respectively their objective functions. Q can be:

- exact or opt-reformulation: local (global) optima of P correspond to local (global) optima of Q;
- narrowing: each global optimum of Q corresponds to a global optimum of $P(Q$ can have fewer global optimum than $P)$;

Liberti's Classification of Reformulations

Let P the original problem and Q a reformulation, and f_{P} and f_{Q} be respectively their objective functions. Q can be:

- exact or opt-reformulation: local (global) optima of P correspond to local (global) optima of Q;
- narrowing: each global optimum of Q corresponds to a global optimum of $P(Q$ can have fewer global optimum than $P)$;
- relaxation: the feasible region of P is a subset of the feasible region of Q, and in case of minimization problem $f_{Q}(x) \leq f_{P}(x)$ for x in the feasible region of P.

Problems studied

For each kind of reformulation, a problem is studied:

Problems studied

For each kind of reformulation, a problem is studied:

- exact or opt-reformulation: clustering by means of modularity maximization in general and bipartite graphs;

Problems studied

For each kind of reformulation, a problem is studied:

- exact or opt-reformulation: clustering by means of modularity maximization in general and bipartite graphs;
- narrowing: circle packing in a square;

Problems studied

For each kind of reformulation, a problem is studied:

- exact or opt-reformulation: clustering by means of modularity maximization in general and bipartite graphs;
- narrowing: circle packing in a square;
- relaxation: convex relaxations for multilinear terms.

Where are we?

(1) Introduction

(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms
(5) Conclusions

Clustering in graphs

Graph $G=(V, E)$

- V : set of n vertices;
- E : set of m edges connecting pairs of vertices.

Clustering in graphs

Graph $G=(V, E)$

- V : set of n vertices;
- E : set of m edges connecting pairs of vertices.

Goal: one seeks clusters which contains more inner edges (vertices in the same cluster) than cut edges (vertices in different clusters).

Clustering in graphs

Graph $G=(V, E)$

- V : set of n vertices;
- E : set of m edges connecting pairs of vertices.

Goal: one seeks clusters which contains more inner edges (vertices in the same cluster) than cut edges (vertices in different clusters).
Modularity [Nevman, Girvan; Phys. Rev. E, 2004]
Find a partition of V into clusters, maximizing the number of inner edges minus the expected number of such edges in a random graph having the same distribution of degrees of G.

Exact reformulations - Clustering in general and bipartite graphs

 Narrowings - Circle packing in a squareRelaxations - Convex relaxations for multilinear terms
Conclusions

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

- N_{c} : number of clusters;

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

- N_{c} : number of clusters;
- m : number of edges of the graph;

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

- N_{c} : number of clusters;
- m : number of edges of the graph;
- m_{c} : number of edges in cluster c;

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

- N_{c} : number of clusters;
- m : number of edges of the graph;
- m_{c} : number of edges in cluster c;
- D_{c} : sum of degrees of vertices in cluster c;

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

- N_{c} : number of clusters;
- m : number of edges of the graph;
- m_{c} : number of edges in cluster c;
- D_{c} : sum of degrees of vertices in cluster c;
- $\frac{m_{c}}{m}$: fraction of edges in cluster c;

Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

$$
Q=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{D_{c}^{2}}{4 m^{2}}\right)
$$

- N_{c} : number of clusters;
- m : number of edges of the graph;
- m_{c} : number of edges in cluster c;
- D_{c} : sum of degrees of vertices in cluster c;
- $\frac{m_{c}}{m}$: fraction of edges in cluster c;
- $\frac{D_{c}{ }^{2}}{4 m^{2}}$: expected number of edges in cluster c in a graph where vertices have same degrees but edges are placed randomly.

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,
Hansen, Liberti; Phys. Rev. E, 2011].

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,
Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is $G=(V, E)$)

- Input: cluster $c=\left(V_{c}, E_{c}\right)$ of graph G

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,
Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is $G=(V, E)$)

- Input: cluster $c=\left(V_{c}, E_{c}\right)$ of graph G
- Output: partition into clusters of c

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,
Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is $G=(V, E)$)

- Input: cluster $c=\left(V_{c}, E_{c}\right)$ of graph G
- Output: partition into clusters of c
- if $\left|V_{c}\right| \leq 3$ save c as cluster, and return;

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is $G=(V, E)$)

- Input: cluster $c=\left(V_{c}, E_{c}\right)$ of graph G
- Output: partition into clusters of c
- if $\left|V_{c}\right| \leq 3$ save c as cluster, and return;
- divide c in c_{1} and c_{2} in an optimal way (maximizing modularity using a $0-1$ MIQP model for bipartition);

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is $G=(V, E)$)

- Input: cluster $c=\left(V_{c}, E_{c}\right)$ of graph G
- Output: partition into clusters of c
- if $\left|V_{c}\right| \leq 3$ save c as cluster, and return;
- divide c in c_{1} and c_{2} in an optimal way (maximizing modularity using a $0-1$ MIQP model for bipartition);
- if $Q(c)>Q\left(c_{1}\right)+Q\left(c_{2}\right)$ save c as cluster, and return;

Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri, Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is $G=(V, E)$)

- Input: cluster $c=\left(V_{c}, E_{c}\right)$ of graph G
- Output: partition into clusters of c
- if $\left|V_{c}\right| \leq 3$ save c as cluster, and return;
- divide c in c_{1} and c_{2} in an optimal way (maximizing modularity using a $0-1$ MIQP model for bipartition);
- if $Q(c)>Q\left(c_{1}\right)+Q\left(c_{2}\right)$ save c as cluster, and return;
- call Divisive $\left(c_{1}\right)$ and $\operatorname{Divisive~}\left(c_{2}\right)$;

$0-1$ MIQP model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_{c}=D_{1}+D_{2}$ is known before solving the problem)

$$
Q=\left(\frac{m_{1}+m_{2}}{m}-\frac{D_{1}^{2}+D_{2}^{2}}{4 m^{2}}\right)=\left(\frac{m_{1}+m_{2}}{m}-\frac{2 D_{1}^{2}+D_{c}^{2}-2 D_{1} D_{c}}{4 m^{2}}\right)
$$

$0-1$ MIQP model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_{c}=D_{1}+D_{2}$ is known before solving the problem)
$Q=\left(\frac{m_{1}+m_{2}}{m}-\frac{D_{1}{ }^{2}+D_{2}{ }^{2}}{4 m^{2}}\right)=\left(\frac{m_{1}+m_{2}}{m}-\frac{2{D_{1}}^{2}+D_{c}{ }^{2}-2 D_{1} D_{c}}{4 m^{2}}\right)$

Variables

- $X_{i, j, s}=1$ if the edge $\left(v_{i}, v_{j}\right)$ is inside the cluster $s, 0$ otherwise (s is either 1 or 2);

$0-1$ MIQP model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_{c}=D_{1}+D_{2}$ is known before solving the problem)
$Q=\left(\frac{m_{1}+m_{2}}{m}-\frac{D_{1}{ }^{2}+D_{2}{ }^{2}}{4 m^{2}}\right)=\left(\frac{m_{1}+m_{2}}{m}-\frac{2{D_{1}}^{2}+D_{c}{ }^{2}-2 D_{1} D_{c}}{4 m^{2}}\right)$

Variables

- $X_{i, j, s}=1$ if the edge $\left(v_{i}, v_{j}\right)$ is inside the cluster $s, 0$ otherwise (s is either 1 or 2);
- $Y_{i}=1$ if the vertex v_{i} is inside the cluster 1,0 otherwise;

$0-1$ MIQP model used by the hierarchical divisive heuristic - 1

Objective function (split the cluster c into two clusters; $D_{c}=D_{1}+D_{2}$ is known before solving the problem)
$Q=\left(\frac{m_{1}+m_{2}}{m}-\frac{D_{1}{ }^{2}+D_{2}{ }^{2}}{4 m^{2}}\right)=\left(\frac{m_{1}+m_{2}}{m}-\frac{2{D_{1}}^{2}+D_{c}{ }^{2}-2 D_{1} D_{c}}{4 m^{2}}\right)$

Variables

- $X_{i, j, s}=1$ if the edge $\left(v_{i}, v_{j}\right)$ is inside the cluster $s, 0$ otherwise (s is either 1 or 2);
- $Y_{i}=1$ if the vertex v_{i} is inside the cluster 1,0 otherwise;
- k_{i} is the degree of the vertex v_{i}.

$0-1$ MIQP model used by the hierarchical divisive heuristic - 2 ($O B$ model)

$$
\begin{array}{ll}
\max & \frac{1}{m}\left(m_{1}+m_{2}-\frac{1}{2 m}\left(D_{1}^{2}+\frac{D_{c}^{2}}{2}-D_{1} D_{c}\right)\right) \\
\text { s.t. } & X_{i, j, 1} \leq Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& X_{i, j, 1} \leq Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& X_{i, j, 2} \leq 1-Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& X_{i, j, 2} \leq 1-Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& m_{s}=\sum_{\left(v_{i}, v_{j}\right) \in E_{c}} X_{i, j, s} \quad \forall s \in\{1,2\} \\
& D_{1}=\sum_{v_{i} \in V_{c}} k_{i} Y_{i} \\
& Y_{i} \in\{0,1\} \quad \forall v_{i} \in V_{c} \\
& X_{i, j, s} \geq 0 \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}, \forall s \in\{1,2\} \\
& \text { Alberto Costa } \quad \text { Applications of Reformulations in Math }
\end{array}
$$

Improving the $0-1$ MIQP formulation

- reduction of number of variables and constraints;

Exact reformulations - Clustering in general and bipartite graphs
 Narrowings - Circle packing in a square
 Relaxations - Convex relaxations for multilinear terms
 Conclusions

Improving the $0-1$ MIQP formulation

- reduction of number of variables and constraints;
- symmetry breaking.

Reduction of number of variables

Consider the variables X of the original model:

$$
X_{i, j, s}= \begin{cases}1, & \text { if edge }\left(v_{i}, v_{j}\right) \text { belongs to cluster } s \\ 0, & \text { otherwise }\end{cases}
$$

Reduction of number of variables

Consider the variables X of the original model:

$$
X_{i, j, s}= \begin{cases}1, & \text { if edge }\left(v_{i}, v_{j}\right) \text { belongs to cluster } s \\ 0, & \text { otherwise }\end{cases}
$$

We do not actually need to know if an edge is in the cluster 1 or 2 , but only if it is within a cluster or not:

$$
X_{i, j}= \begin{cases}1, & \text { if } Y_{i}=Y_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Reduction of number of variables

Consider the variables X of the original model:

$$
X_{i, j, s}= \begin{cases}1, & \text { if edge }\left(v_{i}, v_{j}\right) \text { belongs to cluster } s \\ 0, & \text { otherwise }\end{cases}
$$

We do not actually need to know if an edge is in the cluster 1 or 2 , but only if it is within a cluster or not:

$$
X_{i, j}= \begin{cases}1, & \text { if } Y_{i}=Y_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Half of the variables X needed.

New variables

Variables X can then be expressed as

$$
X_{i, j}=2 Y_{i} Y_{j}-Y_{i}-Y_{j}+1, \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}
$$

New variables

Variables X can then be expressed as

$$
X_{i, j}=2 Y_{i} Y_{j}-Y_{i}-Y_{j}+1, \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}
$$

Variables S linearize the product of the binary variables Y :

$$
S_{i, j}=Y_{i} Y_{j}, \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}
$$

New variables

Variables X can then be expressed as

$$
X_{i, j}=2 Y_{i} Y_{j}-Y_{i}-Y_{j}+1, \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}
$$

Variables S linearize the product of the binary variables Y :

$$
S_{i, j}=Y_{i} Y_{j}, \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}
$$

So we obtain

$$
X_{i, j}=2 S_{i, j}-Y_{i}-Y_{j}+1, \quad \forall\left(v_{i}, v_{j}\right) \in E_{c}
$$

Fortet linearization

Relationship $S_{i, j}=Y_{i} Y_{j}$ (Fortet inequalities):

$$
\begin{aligned}
& S_{i, j} \geq 0 \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \geq Y_{j}+Y_{i}-1 \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} .
\end{aligned}
$$

Fortet linearization

Relationship $S_{i, j}=Y_{i} Y_{j}$ (Fortet inequalities):

$$
\begin{aligned}
& S_{i, j} \geq 0 \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \geq Y_{j}+Y_{i}-1 \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} .
\end{aligned}
$$

Objective function maximizes variables $S \rightarrow$ half of the constraints needed:

$$
\begin{array}{ll}
S_{i, j} \leq Y_{i} & \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
S_{i, j} \leq Y_{j} & \forall\left(v_{i}, v_{j}\right) \in E_{c} .
\end{array}
$$

$O B_{1}$ formulation

$$
\begin{array}{ll}
\max & \frac{1}{m}\left(\sum_{\left(v_{i}, v_{j}\right) \in E_{c}}\left(2 S_{i, j}-Y_{i}-Y_{j}\right)+\left|E_{c}\right|-\frac{1}{2 m}\left(D_{1}{ }^{2}+\frac{D_{c}{ }^{2}}{2}-D_{1} D_{c}\right)\right) \\
\text { s.t. } & S_{i, j} \leq Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& D_{1}=\sum_{v_{i} \in V_{c}} k_{i} Y_{i} \\
& Y_{i} \in\{0,1\} \quad \forall v_{i} \in V_{c},
\end{array}
$$

$O B_{1}$ formulation

$$
\begin{array}{ll}
\max & \frac{1}{m}\left(\sum_{\left(v_{i}, v_{j}\right) \in E_{c}}\left(2 S_{i, j}-Y_{i}-Y_{j}\right)+\left|E_{c}\right|-\frac{1}{2 m}\left(D_{1}{ }^{2}+\frac{D_{c}{ }^{2}}{2}-D_{1} D_{c}\right)\right) \\
\text { s.t. } & S_{i, j} \leq Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& D_{1}=\sum_{v_{i} \in V_{c}} k_{i} Y_{i} \\
& Y_{i} \in\{0,1\} \quad \forall v_{i} \in V_{c},
\end{array}
$$

where in the objective function we use the fact that

$$
\sum_{\left(v_{i}, v_{j}\right) \in E_{C}} 1=\left|E_{c}\right|
$$

Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by swapping the clusters (i.e., vertices in cluster 1 are placed in cluster 2 , and vice-versa). \rightarrow fix a vertex in one of the clusters.

Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by swapping the clusters (i.e., vertices in cluster 1 are placed in cluster 2 , and vice-versa). \rightarrow fix a vertex in one of the clusters.

Good choice: fix the vertex with highest degree in one cluster.

$$
Y_{g}=0, \quad g=\arg \max \left\{k_{i}, \forall v_{i} \in V_{c}\right\} .
$$

Numerical results

Tests: 2.8 GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
[IBM; 2010]

Numerical results

Tests: 2.8 GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
[IBM; 2010]

graph			$O B$		$O B_{1}+S B C$	
	vertices	edges	nodes	CPU time	nodes	CPU time
Karate	34	78	45	0.14	$\mathbf{1 7}$	$\mathbf{0 . 0 4}$
Dolphins	62	159	207	0.59	93	$\mathbf{0 . 1 6}$
Les Misérables	77	254	205	1.09	$\mathbf{1 0 5}$	$\mathbf{0 . 3 5}$
A00 main	83	135	76	0.35	$\mathbf{2 6}$	$\mathbf{0 . 0 4}$
P53 protein	104	226	275	1.10	$\mathbf{1 1 9}$	$\mathbf{0 . 2 6}$
Political books	105	441	313	3.04	$\mathbf{1 5 2}$	$\mathbf{0 . 5 1}$
Football	115	613	8853	307.56	3822	44.38
A01 main	249	635	1119	47.83	$\mathbf{7 2 6}$	$\mathbf{9 . 7 2}$
USAir97	332	2126	16682	4585.04	8665	446.06
Netscience main	379	914	291	3.64	$\mathbf{9 4}$	$\mathbf{0 . 8 5}$
S838	512	819	392	5.26	$\mathbf{1 8 6}$	$\mathbf{1 . 1 8}$
Power	4941	6594	1459	708.51	$\mathbf{8 9 1}$	$\mathbf{1 2 3 . 8 5}$

Bipartite graphs

For bipartite graphs the definition of modularity is the following
Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,
Newman; Phys. Rev. Lett., 2008]

$$
Q_{b}=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{R_{c} B_{c}}{m^{2}}\right)
$$

Bipartite graphs

For bipartite graphs the definition of modularity is the following
Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,
Newman; Phys. Rev. Lett., 2008]

$$
Q_{b}=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{R_{c} B_{c}}{m^{2}}\right)
$$

- R_{c} : sum of degrees of red vertices in cluster c;

Bipartite graphs

For bipartite graphs the definition of modularity is the following
Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,
Newman; Phys. Rev. Lett., 2008]

$$
Q_{b}=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{R_{c} B_{c}}{m^{2}}\right)
$$

- R_{c} : sum of degrees of red vertices in cluster c;
- B_{c} : sum of degrees of blue vertices in cluster c;

Bipartite graphs

For bipartite graphs the definition of modularity is the following
Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,
Newman; Phys. Rev. Lett., 2008]

$$
Q_{b}=\sum_{c=1}^{N_{c}}\left(\frac{m_{c}}{m}-\frac{R_{c} B_{c}}{m^{2}}\right)
$$

- R_{c} : sum of degrees of red vertices in cluster c;
- B_{c} : sum of degrees of blue vertices in cluster c;
- all edges have a red and a blue end vertices.

Bipartite divisive heuristic

We adapt the divisive heuristic to the bipartite case $\rightarrow P$ model:

$$
\begin{array}{ll}
\max & \frac{1}{m}\left(\sum_{\left(v_{i}, v_{j}\right) \in E_{c}}\left(2 S_{i, j}-Y_{i}-Y_{j}\right)+\left|E_{c}\right|-\frac{1}{m}\left(2 R_{1} B_{1}-B_{c} R_{1}-R_{c} B_{1}+R_{c} B_{c}\right)\right) \\
\text { s.t. } & S_{i, j} \leq Y_{i} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& S_{i, j} \leq Y_{j} \quad \forall\left(v_{i}, v_{j}\right) \in E_{c} \\
& R_{1}=\sum_{v_{i} \in V_{R_{c}}} k_{i} Y_{i} \\
& B_{1}=\sum_{v_{j} \in V_{B_{c}}} k_{j} Y_{j} \\
& Y_{g}=1, \quad g=\arg \max \left\{k_{i}, \forall v_{i} \in V_{c}\right\} \\
& Y_{i} \in\{0,1\} \quad \forall v_{i} \in V_{c},
\end{array}
$$

$V_{R_{c}}$ and $V_{B_{c}}$ are respectively the sets of red and blue vertices, and $V_{c}=V_{R_{c}} \cup V_{B_{c}}$.

Fortet linearizations

Nonlinear model: $R_{1} B_{1}$ in the objective function.

Fortet linearizations

Nonlinear model: $R_{1} B_{1}$ in the objective function.
One can apply the Fortet linearization for $R_{1} B_{1} \rightarrow P_{1 a}$ model.

Fortet linearizations

Nonlinear model: $R_{1} B_{1}$ in the objective function.
One can apply the Fortet linearization for $R_{1} B_{1} \rightarrow P_{1 a}$ model. A more compact formulation is possible $\rightarrow P_{1 b}$

$$
\begin{array}{ll}
\max & \frac{1}{m} \sum_{v_{i} \in V_{R_{c}}} \sum_{v_{j} \in V_{B_{c}}} H_{i, j}\left(2 W_{i, j}-Y_{i}-Y_{j}+1\right) \\
\text { s.t. } & W_{i, j} \geq 0 \quad \forall v_{i} \in V_{R_{c}}, \forall v_{j} \in V_{B_{c}}: H_{i, j}<0 \\
& W_{i, j} \geq Y_{i}+Y_{j}-1 \quad \forall v_{i} \in V_{R_{c}}, \forall v_{j} \in V_{B_{c}}: H_{i, j}<0 \\
& W_{i, j} \leq Y_{i} \quad \forall v_{i} \in V_{R_{c}}, \forall v_{j} \in V_{B_{c}}: H_{i, j}>0 \\
& W_{i, j} \leq Y_{j} \quad \forall v_{i} \in V_{R_{c}}, \forall v_{j} \in V_{B_{c}}: H_{i, j}>0 \\
& Y_{g}=1, \quad g=\arg \max \left\{k_{i}, \forall v_{i} \in V_{R_{c}} \cup V_{B_{c}}\right\} \\
& Y_{i} \in\{0,1\} \quad \forall v_{i} \in V_{R_{c}} \cup V_{B_{c}} .
\end{array}
$$

$H_{i, j}=T_{i, j}-\frac{k_{i} k_{j}}{m}$, and $T_{i, j}=1$ if there exists the edge $(i, j), 0$ otherwise.

Binary decomposition

$$
\begin{aligned}
& R_{1}=\sum_{v_{i} \in V_{R_{C}}} k_{i} Y_{i}=\sum_{h=0}^{t_{R}} 2^{h} a_{h} \\
& B_{1}=\sum_{v_{j} \in V_{B_{c}}} k_{j} Y_{j}=\sum_{l=0}^{t_{B}} 2^{l} b_{l} \\
& R_{1} B_{1}=\sum_{h=0}^{t_{R}} 2^{h} a_{h} \sum_{l=0}^{t_{B}} 2^{l} b_{l}=\sum_{h=0}^{t_{R}} \sum_{l=0}^{t_{B}} 2^{l+h} a_{h} b_{l}
\end{aligned}
$$

Binary decomposition

$$
\begin{aligned}
& R_{1}=\sum_{v_{i} \in V_{R_{c}}} k_{i} Y_{i}=\sum_{h=0}^{t_{R}} 2^{h} a_{h} \\
& B_{1}=\sum_{v_{j} \in V_{B_{c}}} k_{j} Y_{j}=\sum_{l=0}^{t_{B}} 2^{l} b_{l} \\
& R_{1} B_{1}=\sum_{h=0}^{t_{R}} 2^{h} a_{h} \sum_{l=0}^{t_{B}} 2^{l} b_{l}=\sum_{h=0}^{t_{R}} \sum_{l=0}^{t_{B}} 2^{l+h} a_{h} b_{l}
\end{aligned}
$$

each product $a_{l} b_{h}$ is then linearized using the Fortet inequalities $\rightarrow P_{2}$ model

Numerical results

Tests: 2.8 GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
[IBM; 2010]

Numerical results

Tests: 2.8 GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
[IBM; 2010]

graph				$P_{1 a}$		$P_{1 b}$		P_{2}	
	red vertices	total vertices	edges	nodes	time	nodes	time	nodes	time
1	18	32	89	437	0.30	72	0.19	670	0.39
2	26	35	147	154	0.19	10	0.09	618	0.43
3	26	35	86	45	0.14	6	0.07	183	0.19
4	18	36	99	2169	1.46	1360	1.24	1854	0.93
5	26	41	98	1963	1.25	276	0.44	647	0.39
6	50	59	225	1123	0.77	27	0.16	2521	2.12
7	62	102	192	1223370	4440.04	407104	3038.06	38910	5.26
8	108	244	358	-	-	-		3793	5.81
9	314	674	613	-	-	-		71927548	15450.40
10	960	2549	2580	-	-	-		91917	38.49

Clustering based on strong and almost-strong conditions

- Not related with modularity maximization;

Clustering based on strong and almost-strong conditions

- Not related with modularity maximization;
- Community in the strong sense [Radicchi et al.; PNAS, 2004]: a subset S of vertices where the number of neighbors of each vertex within S is larger than the number of neighbors outside S.

Clustering based on strong and almost-strong conditions

- Not related with modularity maximization;
- Community in the strong sense [Radicchi et al.; PNAS, 2004]: a subset S of vertices where the number of neighbors of each vertex within S is larger than the number of neighbors outside S.
- Strong conditions can be too stringent \rightarrow we propose the almost-strong conditions: same definition as the strong conditions, except for degree 2 vertices, for which the number of neighbors within S is larger or equal to the number of neighbors outside S;

Clustering based on strong and almost-strong conditions

- Not related with modularity maximization;
- Community in the strong sense [Radicchi et al.; PNAS, 2004]: a subset S of vertices where the number of neighbors of each vertex within S is larger than the number of neighbors outside S.
- Strong conditions can be too stringent \rightarrow we propose the almost-strong conditions: same definition as the strong conditions, except for degree 2 vertices, for which the number of neighbors within S is larger or equal to the number of neighbors outside S;
- We designed an algorithm to find strong and almost-strong communities in graphs, and we compare the results.

Test 1 - Zachary karate club - strong vs almost-strong

Test 2- strike - strong vs almost-strong

Exact reformulations - Clustering in general and bipartite graphs Narrowings - Circle packing in a square Relaxations - Convex relaxations for multilinear terms
 Conclusions

Test 3 - graph - almost strong (strong: trivial partition)

Test 4 - dolphins small - strong vs almost-strong

Where are we?

(1) Introduction

(2) Exact reformulations-Clustering in general and bipartite graphs

(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms
(5) Conclusions

The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place $n \in \mathbb{N}$ non-overlapping circles of radius $r \in \mathbb{R}$ in the unit square such that the radius is maximized.

The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place $n \in \mathbb{N}$ non-overlapping circles of radius $r \in \mathbb{R}$ in the unit square such that the radius is maximized.

Non-linear Non-convex formulation

$\max \quad r$

$$
\begin{array}{ll}
\text { s.t. } & \left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq 4 r^{2} \quad \forall i<j \leq n \\
& x_{i}, y_{i} \in[r, 1-r] \quad \forall i \leq n
\end{array}
$$

The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place $n \in \mathbb{N}$ non-overlapping circles of radius $r \in \mathbb{R}$ in the unit square such that the radius is maximized.

Non-linear Non-convex formulation

$\max \quad r$

$$
\begin{array}{ll}
\text { s.t. } & \left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq 4 r^{2} \quad \forall i<j \leq n \\
& x_{i}, y_{i} \in[r, 1-r] \quad \forall i \leq n
\end{array}
$$

where $\left(x_{i}, y_{i}\right)$ represents the coordinates of the center of the i-th circle, and $r \geq 0$ is the common radius to maximize.

Example: optimal solution of PECS with 10 circles

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);
- container loading (place as many identical objects as possible into a container);

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);
- container loading (place as many identical objects as possible into a container);
- tree exploitation (plant trees in a given region maximizing both the density and the size of trees);

Applications

- cutting problems (cut out as many identical disks as possible from a piece of material);
- container loading (place as many identical objects as possible into a container);
- tree exploitation (plant trees in a given region maximizing both the density and the size of trees);
- cheese packing!

Point Packing in a Square (PPS)

Consider the following problem: Place $n \in \mathbb{N}$ points in the unit square such that the minimum pairwise distance d^{*} is maximal.

Point Packing in a Square (PPS)

Consider the following problem: Place $n \in \mathbb{N}$ points in the unit square such that the minimum pairwise distance d^{*} is maximal.

Non-linear Non-convex formulation

$\max \quad \alpha$
s.t. $\quad\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq \alpha \quad \forall i<j \leq n$

$$
x_{i} \in[0,1] \quad \forall i \leq n
$$

$$
y_{i} \in[0,1] \quad \forall i \leq n
$$

$$
\alpha \geq 0
$$

Point Packing in a Square (PPS)

Consider the following problem: Place $n \in \mathbb{N}$ points in the unit square such that the minimum pairwise distance d^{*} is maximal.

Non-linear Non-convex formulation

$\max \quad \alpha$

$$
\begin{array}{ll}
\text { s.t. } & \left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq \alpha \quad \forall i<j \leq n \\
& x_{i} \in[0,1] \quad \forall i \leq n \\
& y_{i} \in[0,1] \quad \forall i \leq n \\
& \alpha \geq 0
\end{array}
$$

where $\left(x_{i}, y_{i}\right)$ represents the coordinates of the i-th point and $d^{*}=\sqrt{\alpha^{*}}$.

Relationship between PECS and PPS

A point belongs to an edge in PPS \Leftrightarrow the corresponding center is at distance r from that edge in PECS.

Relationship between PECS and PPS

A point belongs to an edge in PPS \Leftrightarrow the corresponding center is at distance r from that edge in PECS.

Figure: Relationship between PECS and PPS (figure taken from [Szabó; Contributions to Algebra and Geometry, 2005]).

Narrowing in CPS

Problem
 CPS has a lot of symmetric global optima. Branch-and-Bound algorithms do not work very efficiently in this situation, because the BB tree is large.

Narrowing in CPS

Problem

CPS has a lot of symmetric global optima. Branch-and-Bound algorithms do not work very efficiently in this situation, because the BB tree is large.

Possible solution

Removing some of the global optima, by adjoining some Symmetry Breaking Constraints (SBCs) \rightarrow narrowing reformulation.

BB trees

Figure: Original Formulation

Figure: Narrowing Reformulation

Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which can be computed from the mathematical model of the problem) of CPS is isomorphic to $C_{2} \times S_{n}$, where:

Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which can be computed from the mathematical model of the problem) of CPS is isomorphic to $C_{2} \times S_{n}$, where:

- C_{2} represents the permutation between x and y axes.

Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which can be computed from the mathematical model of the problem) of CPS is isomorphic to $C_{2} \times S_{n}$, where:

- C_{2} represents the permutation between x and y axes.
- S_{n} represents the permutation of the circle indicies (we can swap some circles, and the solution does not change).

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

- weak constraints: $x_{1} \leq x_{i}, \forall i \in\{2, \ldots, n\}$

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

- weak constraints: $x_{1} \leq x_{i}, \forall i \in\{2, \ldots, n\}$
- strong constraints: $x_{i} \leq x_{i+1}, \forall i \in\{1, \ldots, n-1\}$

SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

- weak constraints: $x_{1} \leq x_{i}, \forall i \in\{2, \ldots, n\}$
- strong constraints: $x_{i} \leq x_{i+1}, \forall i \in\{1, \ldots, n-1\}$
- mixed constraints, introduced in [C., Liberti, Hansen; DAM, 2012], that mix contraints on the x and y variables.

Example $-n=9$

weak constraints

$$
x_{1} \leq x_{2}, x_{1} \leq x_{3}, \ldots, x_{1} \leq x_{9}
$$

Example $-n=9$

weak constraints

$$
x_{1} \leq x_{2}, x_{1} \leq x_{3}, \ldots, x_{1} \leq x_{9}
$$

strong constraints

$$
x_{1} \leq x_{2}, x_{2} \leq x_{3}, \ldots, x_{8} \leq x_{9}
$$

Mixed SBCs

Idea: strong constraints give some conditions only for the x coordinates of the centres of the circles; it would be better to have also some conditions for the y coordinates.

Mixed SBCs

Idea: strong constraints give some conditions only for the x coordinates of the centres of the circles; it would be better to have also some conditions for the y coordinates.

Starting from the strong constraints, we replace $x_{i S} \leq x_{i S+1}$ with $y_{1+(i-1) S} \leq y_{1+i S}, \forall i \in\left\{1,2, \ldots,\left\lceil\frac{N}{S}\right\rceil-1\right\}$ (best results with $S=2)$.

Strong and mixed SBCs, $S=3$

strong constraints

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{x}_{\mathbf{3}} \leq \mathbf{x}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{x}_{\mathbf{6}} \leq \mathbf{x}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

Strong and mixed SBCs, $S=3$

strong constraints

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{x}_{\mathbf{3}} \leq \mathbf{x}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{x}_{\mathbf{6}} \leq \mathbf{x}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

mixed constraints

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{y}_{1} \leq \mathbf{y}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{y}_{4} \leq \mathbf{y}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

Why mixed SBCs are valid? - Example

Why mixed SBCs are valid? - Example

This solution respects the strong constraints, but not the mixed constraints.

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{y}_{1} \leq \mathbf{y}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{y}_{4} \leq \mathbf{y}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

Why mixed SBCs are valid? - Example

This solution respects the strong constraints, but not the mixed constraints.

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{y}_{1} \leq \mathbf{y}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{y}_{4} \leq \mathbf{y}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

Why mixed SBCs are valid? - Example

This solution respects the strong constraints, but not the mixed constraints.

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{y}_{1} \leq \mathbf{y}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{y}_{4} \leq \mathbf{y}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

Now, after the swapping, the solution respects the mixed constraints.

$$
\begin{aligned}
& x_{1} \leq x_{2}, x_{2} \leq x_{3}, \mathbf{y}_{1} \leq \mathbf{y}_{4} \\
& x_{4} \leq x_{5}, x_{5} \leq x_{6}, \mathbf{y}_{4} \leq \mathbf{y}_{7} \\
& x_{7} \leq x_{8}, x_{8} \leq x_{9}
\end{aligned}
$$

Some results

- strong constraints better than weak ones;

Some results

- strong constraints better than weak ones;
- mixed constraints better than strong ones.

Some results

- strong constraints better than weak ones;
- mixed constraints better than strong ones.

Mixed constraints results: Couenne solver on a 2.4 GHz Intel Xeon CPU with 24 GB RAM running Linux.

n	r^{*}	r_{r}	r^{\prime}	\bar{r}	$t\left(r^{\prime}\right)$	sBB nodes
20	0.111382	0.111382	0.111382	0.322063	16.45	441828
25	0.1	0.096852	0.1	0.250133	553.68	125632
30	0.091671	0.091671	0.091671	0.316273	86.24	90230
35	0.084290	0.082786	0.083766	0.351545	1495.31	46162
40	0.079186	0.078913	0.078913	0.2501	19.68	17116
45	0.074727	0.07444	0.07444	0.353325	357.90	12915
50	0.071377	0.070539	0.070539	0.250121	5429.88	2

Statistics: the best known solution r^{*}, the solution found at the root node r_{r}, the largest radius r^{\prime} found by our method within the time limit, the tightest upper bound \bar{r} on r^{\prime}, the time $t\left(r^{\prime}\right)$ at which the solution r^{\prime} was found and the number of nodes explored within the time limit.

Conjecture about the bounds on the variables

Consider PPS: the linear relaxation computed at the root node does not provide good bounds because of the bounds of the variables x and y.

Conjecture about the bounds on the variables

Consider PPS: the linear relaxation computed at the root node does not provide good bounds because of the bounds of the variables x and y.

The real problem is that all the variables have the same lower and upper bounds (i.e., respectively, 0 and 1).

Linear relaxation of PPS - 1

Proposition

The optimal solution of the linear relaxation of PPS is always $\alpha^{*}=2$.

Linear relaxation of PPS - 1

Proposition

The optimal solution of the linear relaxation of PPS is always $\alpha^{*}=2$.

This means that for all the instances (that is, for all the values of n number of points), the Upper Bound obtained as solution at the root node is always the same, even if the optimal value of α obviously decreases when n increases.

Proof - 1

Let $L_{x_{i}}, U_{x_{i}}, L_{y_{i}}$ and $U_{x_{i}}$ be respectively the lower and upper bounds for the variables x_{i} and y_{i}. The linear relaxation of PPS is ([Locatelli, Raber; Tech. Rep. 09/99]):

Proof - 1

Let $L_{x_{i}}, U_{x_{i}}, L_{y_{i}}$ and $U_{x_{i}}$ be respectively the lower and upper bounds for the variables x_{i} and y_{i}. The linear relaxation of PPS is ([Locatelli, Raber; Tech. Rep. 09/99]):

Linear relaxation of PPS

$$
\begin{array}{cl}
\max & \alpha \\
\text { s.t. } & -l(i, j) \geq \alpha \quad \forall i<j \leq n \\
& x_{i} \in[0,1] \quad \forall i \leq n \\
& y_{i} \in[0,1] \quad \forall i \leq n \\
& \alpha \geq 0
\end{array}
$$

Proof - 1

Let $L_{x_{i}}, U_{x_{i}}, L_{y_{i}}$ and $U_{x_{i}}$ be respectively the lower and upper bounds for the variables x_{i} and y_{i}. The linear relaxation of PPS is ([Locatelli, Raber; Tech. Rep. 09/99]):

Linear relaxation of PPS

$$
\begin{array}{cl}
\max & \alpha \\
\text { s.t. } & -l(i, j) \geq \alpha \quad \forall i<j \leq n \\
& x_{i} \in[0,1] \quad \forall i \leq n \\
& y_{i} \in[0,1] \quad \forall i \leq n \\
& \alpha \geq 0
\end{array}
$$

and $l(i, j)=-\left(L_{x_{i}}-U_{x_{j}}+U_{x_{i}}-L_{x_{j}}\right)\left(x_{i}-x_{j}\right)-\left(L_{y_{i}}-U_{y_{j}}+U_{y_{i}}-\right.$ $\left.L_{y_{j}}\right)\left(y_{i}-y_{j}\right)+\left(L_{x_{i}}-U_{x_{j}}\right)\left(U_{x_{i}}-L_{x_{j}}\right)+\left(L_{y_{i}}-U_{y_{j}}\right)\left(U_{y_{i}}-L_{y_{j}}\right)$ is the linearization of the nonlinear distance constraints.

Proof - 2

Since $L_{x_{i}}=L_{y_{i}}=0, \forall i \leq n$ and $U_{x_{i}}=U_{y_{i}}=1, \forall i \leq n$, we obtain $l(i, j)=-2, \forall i<j \leq n$.

Proof - 2

Since $L_{x_{i}}=L_{y_{i}}=0, \forall i \leq n$ and $U_{x_{i}}=U_{y_{i}}=1, \forall i \leq n$, we obtain $l(i, j)=-2, \forall i<j \leq n$. The model can be rewritten as

Linear relaxation of PPS

$$
\begin{array}{cll}
\max & \alpha & \\
\text { s.t. } & 2 \geq \alpha & \\
& x_{i} \in[0,1] \quad \forall i \leq n \\
& y_{i} \in[0,1] \quad \forall i \leq n \\
& \alpha \geq 0 &
\end{array}
$$

Proof - 2

Since $L_{x_{i}}=L_{y_{i}}=0, \forall i \leq n$ and $U_{x_{i}}=U_{y_{i}}=1, \forall i \leq n$, we obtain $l(i, j)=-2, \forall i<j \leq n$. The model can be rewritten as

Linear relaxation of PPS

$$
\begin{array}{cll}
\max & \alpha \\
\text { s.t. } & 2 \geq \alpha & \\
& x_{i} \in[0,1] \quad \forall i \leq n \\
& y_{i} \in[0,1] \quad \forall i \leq n \\
& \alpha \geq 0 &
\end{array}
$$

the optimal solution is obviously $\alpha^{*}=2$, and it does not depend on the value of the variables x and y.

Considerations on the bound

Considerations on the bound

- Upper bound $d_{U B}=\sqrt{2}$. Not good: it is the optimal solution when $n=2$ (2 points placed in the opposite vertices).

Considerations on the bound

- Upper bound $d_{U B}=\sqrt{2}$. Not good: it is the optimal solution when $n=2$ (2 points placed in the opposite vertices).
- This value does not depend on n, x, y : all the coefficients of x and y are 0 in $l(x, y)$.

Considerations on the bound

- Upper bound $d_{U B}=\sqrt{2}$. Not good: it is the optimal solution when $n=2$ (2 points placed in the opposite vertices).
- This value does not depend on n, x, y : all the coefficients of x and y are 0 in $l(x, y)$.
- In order to improve this bound, we should change the bounds on some variables.

Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but not easy to prove)

Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but not easy to prove)

Conjecture

Consider an instance of PPS with n points. Divide the unit square in k^{2} equal subsquares, with
$k=\arg \min _{s}\left|\frac{n}{2}-s^{2}\right|, s \in\left\{\left\lceil\sqrt{\frac{n}{2}}\right\rceil,\left\lfloor\sqrt{\frac{n}{2}}\right\rfloor\right\}$. There is at least one point of the optimal solution in each subsquare.

Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but not easy to prove)

Conjecture

Consider an instance of PPS with n points. Divide the unit square in k^{2} equal subsquares, with
$k=\arg \min _{s}\left|\frac{n}{2}-s^{2}\right|, s \in\left\{\left\lceil\sqrt{\frac{n}{2}}\right\rceil,\left\lfloor\sqrt{\frac{n}{2}}\right\rfloor\right\}$. There is at least one point of the optimal solution in each subsquare.

This means that we can modify the bounds for k^{2} variables.

Example - $n=9$

Consider the example with $n=9$. In this case, $k=2$. So we can divide the square in 4 subsquares, and in each of them there is a point of the optimal solution.

Example - $n=9$

Consider the example with $n=9$. In this case, $k=2$. So we can divide the square in 4 subsquares, and in each of them there is a point of the optimal solution.
The new bounds becomes:

$$
\begin{aligned}
& x_{1} \in[0,0.5], y_{1} \in[0,0.5] \\
& x_{2} \in[0,0.5], y_{2} \in[0.5,1] \\
& x_{3} \in[0.5,1], y_{3} \in[0,0.5] \\
& x_{4} \in[0.5,1], y_{4} \in[0.5,1]
\end{aligned}
$$

while the bounds for the other variables remain 0 and 1 .

Tests

The tests were performed on one 2.4 GHz Intel Xeon CPU of a computer with 24 GB RAM running Linux, using the solver Couenne [Belotti, Lee, Liberti, Margot; 2009].

		Original formulation		Bounds constraints formulation	
n	d^{*}	LB	UB	LB	UB
9	0.5	0.000098	1.414213	0.300463	0.707107
10	0.421279	0.000098	1.414213	0.396156	0.707107
11	0.398207	0.000099	1.414213	0.000099	0.707107
12	0.388730	0.000099	1.414213	0.360065	0.707107
13	0.366096	0.000098	1.414213	0.339654	0.502948
14	0.348915	0.000098	1.414213	0.340830	0.502874
15	0.341081	0.000098	1.414213	0.334524	0.502793
16	0.333333	0	1.414213	0.290033	0.502793
17	0.306153	0	1.414213	0.000099	0.502793
18	0.300462	0	1.414213	0.252819	0.502793
19	0.289541	0.000047	1.414213	0.252337	0.502793
20	0.286611	0	1.414213	0.276468	0.502793

Statistics (root node)

- opt. sol. d^{*}
- best sol. LB
- opt. sol. of linear relaxation UB

Where are we?

(1) Introduction

(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms
(5) Conclusions

Definitions

- Let $S \subseteq \mathbb{R}^{n}$ be non-empty

Definitions

- Let $S \subseteq \mathbb{R}^{n}$ be non-empty
- Any convex set containing S is a convex relaxation of S

Definitions

- Let $S \subseteq \mathbb{R}^{n}$ be non-empty
- Any convex set containing S is a convex relaxation of S
- The convex hull $\operatorname{conv}(S)$ of S is the intersection of all convex relaxations of S

Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of variables). In order to obtain its convex relaxation, we compare two methods:

Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of variables). In order to obtain its convex relaxation, we compare two methods:

- primal relaxation: each multilinear term is replaced by a new variable, and a set of linear constraints (convex envelopes) is adjoined, thus defining the convex hull;

Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of variables). In order to obtain its convex relaxation, we compare two methods:

- primal relaxation: each multilinear term is replaced by a new variable, and a set of linear constraints (convex envelopes) is adjoined, thus defining the convex hull;
- dual relaxation: the convex hull is represented as the convex combination of its extreme points.

Primal relaxation

- For the general case, convex envelopes for multilinear terms are available explicitly in function of x^{L}, x^{U} for $k=2,3$ and partly $k=4$

Primal relaxation

- For the general case, convex envelopes for multilinear terms are available explicitly in function of x^{L}, x^{U} for $k=2,3$ and partly $k=4$
- They consist of sets of constraints to be adjoined to the Mathematical Programming formulation

Primal relaxation

- For the general case, convex envelopes for multilinear terms are available explicitly in function of x^{L}, x^{U} for $k=2,3$ and partly $k=4$
- They consist of sets of constraints to be adjoined to the Mathematical Programming formulation
- No further variables are needed

Bilinear terms: McCormick's inequalities

- Let $W=\left\{\left(w, x_{1}, x_{2}\right) \mid w=x_{1} x_{2} \wedge\left(x_{1}, x_{2}\right)=\left[x^{L}, x^{U}\right]\right\}$, then $\operatorname{conv}(W)$ is given by:

$$
\begin{aligned}
w & \geq x_{1}^{L} x_{2}+x_{2}^{L} x_{1}-x_{1}^{L} x_{2}^{L} \\
w & \geq x_{1}^{U} x_{2}+x_{2}^{U} x_{1}-x_{1}^{U} x_{2}^{U} \\
w & \leq x_{1}^{L} x_{2}+x_{2}^{U} x_{1}-x_{1}^{L} x_{2}^{U} \\
w & \leq x_{1}^{U} x_{2}+x_{2}^{L} x_{1}-x_{1}^{U} x_{2}^{L}
\end{aligned}
$$

- Stated [McCormick; MP, 1976], proved [Al-Khayyal, Falk; MOR, 1983]

McCormick's envelopes

Lower envelopes

Upper envelopes

Both

Special case: Fortet's linearization

If x_{1} and x_{2} are binary variables, the McCormick's inequalities lead to the Fortet's inequalities [Fortet; RFRO, 1960]:

$$
\begin{aligned}
w & \geq 0 \\
w & \geq x_{2}+x_{1}-1 \\
w & \leq x_{1} \\
w & \leq x_{2}
\end{aligned}
$$

The resulting reformulation is an exact linearization as shown in [Liberti; RAIRO-RO, 2009]

Trilinear case

It is not as easy as bilinear convex relaxation:

Trilinear case

It is not as easy as bilinear convex relaxation:

- the number of constraints is greater than 4

Trilinear case

It is not as easy as bilinear convex relaxation:

- the number of constraints is greater than 4
- there are several cases, depending on sign of bounds of the variables: $x_{i}^{L} x_{i}^{U} \geq 0$ [Meyer, Floudas; 2003]; mixed case [Meyer, Floudas; JOGO, 2004]

Trilinear case

It is not as easy as bilinear convex relaxation:

- the number of constraints is greater than 4
- there are several cases, depending on sign of bounds of the variables: $x_{i}^{L} x_{i}^{U} \geq 0$ [Meyer, Floudas; 2003]; mixed case [Meyer, Floudas; JOGO, 2004]
- there are further conditions to check

Example (1): $x_{1}^{U}, x_{2}^{U}, x_{3}^{U} \leq 0$

Permute variables x_{1}, x_{2} and x_{3} such that:

$$
\begin{aligned}
& x_{1}^{U} x_{2}^{L} x_{3}^{L}+x_{1}^{L} x_{2}^{U} x_{3}^{U} \leq x_{1}^{L} x_{2}^{U} x_{3}^{L}+x_{1}^{U} x_{2}^{L} x_{3}^{U} \\
& x_{1}^{U} x_{2}^{L} x_{3}^{L}+x_{1}^{L} x_{2}^{U} x_{3}^{U} \leq x_{1}^{U} x_{2}^{U} x_{3}^{L}+x_{1}^{L} x_{2}^{L} x_{3}^{U}
\end{aligned}
$$

Example (1): $x_{1}^{U}, x_{2}^{U}, x_{3}^{U} \leq 0$

Permute variables x_{1}, x_{2} and x_{3} such that:

$$
\begin{aligned}
& x_{1}^{U} x_{2}^{L} x_{3}^{L}+x_{1}^{L} x_{2}^{U} x_{3}^{U} \leq x_{1}^{L} x_{2}^{U} x_{3}^{L}+x_{1}^{U} x_{2}^{L} x_{3}^{U} \\
& x_{1}^{U} x_{2}^{L} x_{3}^{L}+x_{1}^{L} x_{2}^{U} x_{3}^{U} \leq x_{1}^{U} x_{2}^{U} x_{3}^{L}+x_{1}^{L} x_{2}^{L} x_{3}^{U}
\end{aligned}
$$

Lower envelope:

w	$\geq x_{2}^{L} x_{3}^{L} x_{1}+x_{1}^{L} x_{3}^{L} x_{2}+x_{1}^{L} x_{2}^{L} x_{3}-2 x_{1}^{L} x_{2}^{L} x_{3}^{L}$
w	$\geq x_{2}^{U} x_{3}^{U} x_{1}+x_{1}^{U} x_{3}^{U} x_{2}+x_{1}^{U} x_{2}^{U} x_{3}-2 x_{1}^{U} x_{2}^{U} x_{3}^{U}$
w	$\geq x_{2}^{L} x_{3}^{U} x_{1}+x_{1}^{L} x_{3}^{U} x_{2}+x_{1}^{U} x_{2}^{L} x_{3}-x_{1}^{L} x_{2}^{L} x_{3}^{U}-x_{1}^{U} x_{2}^{L} x_{3}^{U}$
w	$\geq x_{2}^{U} x_{3}^{L} x_{1}+x_{1}^{U} x_{3}^{L} x_{2}+x_{1}^{L} x_{2}^{U} x_{3}-x_{1}^{U} x_{2}^{U} x_{3}^{L}-x_{1}^{L} x_{2}^{U} x_{3}^{L}$
w	$\geq c_{1} x_{1}+x_{1}^{U} x_{3}^{L} x_{2}+x_{1}^{U} x_{2}^{L} x_{3}+x_{1}^{L} x_{2}^{U} x_{3}^{U}-c_{1} x_{1}^{L}-x_{1}^{U} x_{2}^{U} x_{3}^{L}-x_{1}^{U} x_{2}^{L} x_{3}^{U}$
w	$\geq c_{2} x_{1}+x_{1}^{L} x_{3}^{U} x_{2}+x_{1}^{L} x_{2}^{U} x_{3}+x_{1}^{U} x_{2}^{L} x_{3}^{L}-c_{2} x_{1}^{U}-x_{1}^{L} x_{2}^{L} x_{3}^{U}-x_{1}^{L} x_{2}^{U} x_{3}^{L}$,

where $c_{1}=\frac{x_{1}^{U} x_{2}^{U} x_{3}^{L}-x_{1}^{L} x_{2}^{U} x_{3}^{U}-x_{1}^{U} x_{2}^{L} x_{3}^{L}+x_{1}^{U} x_{2}^{L} x_{3}^{U}}{x_{1}^{U}-x_{1}^{L}}$ and
$c_{2}=\frac{x_{1}^{L} x_{2}^{L} x_{3}^{U}-x_{1}^{U} x_{2}^{L} x_{3}^{L}-x_{1}^{L} x_{2}^{U} x_{3}^{U}+x_{1}^{L} x_{2}^{U} x_{3}^{L}}{x_{1}^{L}-x_{1}^{U}}$

Example (2): $x_{1}^{U}, x_{2}^{U}, x_{3}^{U} \leq 0$

Upper envelope:

$$
\begin{aligned}
w & \leq x_{2}^{L} x_{3}^{L} x_{1}+x_{1}^{U} x_{3}^{L} x_{2}+x_{1}^{U} x_{2}^{U} x_{3}-x_{1}^{U} x_{2}^{U} x_{3}^{L}-x_{1}^{U} x_{2}^{L} x_{3}^{L} \\
w & \leq x_{2}^{U} x_{3}^{L} x_{1}+x_{1}^{L} x_{3}^{L} x_{2}+x_{1}^{U} x_{2}^{U} x_{3}-x_{1}^{U} x_{2}^{U} x_{3}^{L}-x_{1}^{L} x_{2}^{U} x_{3}^{L} \\
w & \leq x_{2}^{L} x_{3}^{L} x_{1}+x_{1}^{U} x_{3}^{U} x_{2}+x_{1}^{U} x_{2}^{L} x_{3}-x_{1}^{U} x_{2}^{L} x_{3}^{U}-x_{1}^{U} x_{2}^{L} x_{3}^{L} \\
w & \leq x_{2}^{U} x_{3}^{U} x_{1}+x_{1}^{L} x_{3}^{L} x_{2}+x_{1}^{L} x_{2}^{U} x_{3}-x_{1}^{L} x_{2}^{U} x_{3}^{U}-x_{1}^{L} x_{2}^{U} x_{3}^{L} \\
w & \leq x_{2}^{L} x_{3}^{U} x_{1}+x_{1}^{U} x_{3}^{U} x_{2}+x_{1}^{L} x_{2}^{L} x_{3}-x_{1}^{U} x_{2}^{L} x_{3}^{U}-x_{1}^{L} x_{2}^{L} x_{3}^{U} \\
w & \leq x_{2}^{U} x_{3}^{U} x_{1}+x_{1}^{L} x_{3}^{U} x_{2}+x_{1}^{L} x_{2}^{L} x_{3}-x_{1}^{L} x_{2}^{U} x_{3}^{U}-x_{1}^{L} x_{2}^{L} x_{3}^{U} .
\end{aligned}
$$

Quadrilinear terms

The convex envelope is not known explicitly for quadrilinear terms

- Combine bilinear and trilinear envelope [Cafieri, Lee, Liberti; JOGO, 2011]
- Convex envelope for some cases presented in [Balram; M.Sc. Thesis, 2019] (e.g., when $x_{1}^{L}, x_{2}^{L}, x_{3}^{L}, x_{4}^{L} \geq 0$, then 44 constraints are generated)

Beyond quadrilinear terms

- envelopes for multilinear terms larger than quadrilinear: not known explicitly

Beyond quadrilinear terms

- envelopes for multilinear terms larger than quadrilinear: not known explicitly
- software as PORTA can compute the convex hull of a given set of points in \mathbb{R}^{n}

Beyond quadrilinear terms

- envelopes for multilinear terms larger than quadrilinear: not known explicitly
- software as PORTA can compute the convex hull of a given set of points in \mathbb{R}^{n}
- Balram's thesis reports a similar procedure to compute the convex hull (but less refined)

Dual relaxation: preliminaries

- Consider the 2^{k} point set $P_{\{ }$:

$$
\begin{aligned}
& \left(x_{1}^{L}, \ldots, x_{k-1}^{L}, x_{k}^{L}\right) \\
& \left(x_{1}^{L}, \ldots, x_{k-1}^{L}, x_{k}^{U}\right) \\
& \left(x_{1}^{L}, \ldots, x_{k-1}^{U}, x_{k}^{L}\right) \\
& \left(x_{1}^{L}, \ldots, x_{k-1}^{U}, x_{k}^{U}\right) \\
& \left.\cdots, x_{k-1}^{U}, x_{k}^{L}\right) \\
& \left(x_{1}^{U}, \ldots, x_{k-1}^{U}, x_{k}^{U}\right) \\
& \left(x_{1}^{U}, \ldots\right.
\end{aligned}
$$

(i.e., all combinations of lower/upper bounds)

- Let $w(x)=\prod_{i \leq k} x_{i}$: lift P to (x, w) space, get $P_{W} \subseteq \mathbb{R}^{k+1}$

$$
\forall \bar{x} \in P \quad(\bar{x}, w(\bar{x})) \in P_{W}
$$

Dual representation of a point set

- Convex hull of $P=\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}^{n}$ is given by $x \in \mathbb{R}^{n} \mid$:
$\exists \lambda \in \mathbb{R}^{m}\left(x=\sum_{i \leq m} \lambda_{i} p_{i} \wedge \sum_{i \leq m} \lambda_{i}=1 \wedge \forall i \leq m\left(\lambda_{i} \geq 0\right)\right)$

Dual representation of a point set

- Convex hull of $P=\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}^{n}$ is given by $x \in \mathbb{R}^{n} \mid$:

$$
\exists \lambda \in \mathbb{R}^{m}\left(x=\sum_{i \leq m} \lambda_{i} p_{i} \wedge \sum_{i \leq m} \lambda_{i}=1 \wedge \forall i \leq m\left(\lambda_{i} \geq 0\right)\right)
$$

- $\Leftrightarrow x$ is a convex combination of points in P

Dual representation of a point set

- Convex hull of $P=\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}^{n}$ is given by $x \in \mathbb{R}^{n} \mid$:

$$
\exists \lambda \in \mathbb{R}^{m}\left(x=\sum_{i \leq m} \lambda_{i} p_{i} \wedge \sum_{i \leq m} \lambda_{i}=1 \wedge \forall i \leq m\left(\lambda_{i} \geq 0\right)\right)
$$

- $\Leftrightarrow x$ is a convex combination of points in P
- Can express points in P_{W} in function of x, w, x^{L}, x^{U} and of added (dual) variables λ for any k

Dual representation of a point set

- Convex hull of $P=\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}^{n}$ is given by $x \in \mathbb{R}^{n} \mid$:

$$
\exists \lambda \in \mathbb{R}^{m}\left(x=\sum_{i \leq m} \lambda_{i} p_{i} \wedge \sum_{i \leq m} \lambda_{i}=1 \wedge \forall i \leq m\left(\lambda_{i} \geq 0\right)\right)
$$

- $\Leftrightarrow x$ is a convex combination of points in P
- Can express points in P_{W} in function of x, w, x^{L}, x^{U} and of added (dual) variables λ for any k
- Automatically get explicit convex envelopes for multilinear terms

Example: bilinear term

Using a matrix representation, we have:

$$
\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
x_{1}^{L} & x_{2}^{L} \\
x_{1}^{L} & x_{2}^{U} \\
x_{U}^{U} & x_{2}^{L} \\
x_{1}^{U} & x_{2}^{U}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]
$$

Example: bilinear term

Using a matrix representation, we have:

$$
\begin{gathered}
{\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
x_{1}^{L} & x_{2}^{L} \\
x_{1}^{L} & x_{2}^{U} \\
x_{1}^{U} & x_{2}^{L} \\
x_{1}^{U} & x_{2}^{U}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]} \\
\\
{\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}^{L} x_{2}^{L} \\
x_{1}^{L} x_{2}^{U} \\
x_{U}^{U} \\
x_{1}^{L} \\
x_{1}^{U} x_{2}^{U}
\end{array}\right]=w}
\end{gathered}
$$

Example: bilinear term

Using a matrix representation, we have:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
x_{1}^{L} & x_{2}^{L} \\
x_{1}^{L} & x_{2}^{U} \\
x_{1}^{U} & x_{2}^{L} \\
x_{1}^{U} & x_{2}^{U}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}^{L} x_{2}^{L} \\
x_{1}^{L} x_{2}^{U} \\
x_{1}^{U} \\
x_{2}^{L} \\
x_{1}^{U}
\end{array} x_{2}^{U}\right.}
\end{array}\right]=w\right] \text {. }
$$

Experimental set-up

- Generate random multilinear NLPs P
- linear, bilinear, trilinear terms
- Generate primal convex LP relaxation R_{P}
- Generate dual convex LP relaxation Λ_{P}
- Solve R_{P}, Λ_{P} using CPLEX, compare CPU times
- To "get a feel" about how R_{P}, Λ_{P} might perform in $B B$, add integrality constraints on primal variables, get MILP relaxations $R_{P}^{\prime}, \Lambda_{P}^{\prime}$
- Solve $R_{P}^{\prime}, \Lambda_{P}^{\prime}$ using CPLEX, compare CPU times

Instance set

- 2520 random instances
- \# variables $n \in\{10,20\}$
- $n=10$:
- \# bilinear terms $\beta \in\{0,10,13,17,21,25,29,33\}$
- \# trilinear terms $\tau \in\{0,10,22,34,46,58,71,83\}$
- $n=20$:
- $\beta \in\{0,20,38,57,76,95,114,133\}$
- $\tau \in\{0,20,144,268,393,517,642,766\}$
- 20 instances for each parameter combination yielding multilinear NLPs (and then MINLPs after imposing integrality on some variables)
- Variable bounds chosen at random, magnitude $\pm 2.0 \times 10^{1}$

LP relaxation test, $n=10$

CPU time averages over each 20-instance block with given (n, β, τ)

LP relaxation test, $n=20$

CPU time averages over each 20-instance block with given (n, β, τ)

MILP relaxation test, $n=10$

CPU time averages over each 20-instance block with given (n, β, τ)

MILP relaxation test, $n=20$

CPU time averages over each 20-instance block with given (n, β, τ)

[^0]
Exact reformulations - Clustering in general and bipartite graphs

Narrowings - Circle packing in a square
Relaxations - Convex relaxations for multilinear terms
Conclusions

Where are we?

(1) Introduction

(2) Exact reformulations-Clustering in general and bipartite graphs
(3) Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms
(5) Conclusions

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Future work

- Clustering: implement an exact method for bipartite modularity maximization

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Future work

- Clustering: implement an exact method for bipartite modularity maximization
- Circle packing: prove the conjecture about bound constraints

Conclusions

Final considerations

- Reformulations can have a high impact in terms of computational times
- Reformulations can allow to employ different solvers
- Human contribution is important: automatic reformulations are not easy to derive due to the specific features a problem can present.

Future work

- Clustering: implement an exact method for bipartite modularity maximization
- Circle packing: prove the conjecture about bound constraints
- Relaxations for multilinear terms: try to implement the dual approach for some sBB solver.

[^0]: Alberto Costa
 Applications of Reformulations in Mathematical Programming

