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Abstract

The core of this thesis is the study of some mathematical objects or problems of interest in
cryptology. As much as possible, the author tried to emphasize the computational aspects of these
problems. The topics covered here are indeed not only favorable to experimental investigations,
but also to the quasi direct translation of the mathematical concepts involved into concrete
algorithms and implementations.

The first part is devoted to the study of a combinatorial conjecture whose validity entails the
existence of infinite classes of Boolean functions with good cryptographic properties. Although
the conjecture seems quite innocuous, its validity remains an open question. Nonetheless, the
author sincerely hopes that the theoretical and experimental results presented here will give the
reader a good insight into the conjecture.

In the second part, some connections between (hyper-)bent functions — a subclass of Boolean
functions —, exponential sums and point counting on (hyper)elliptic curves are presented. Bent
functions and hyper-bent functions are known to be difficult to classify and to build explicitly.
However, exploring the links between these different worlds makes possible to give beautiful
answers to theoretical questions and to design efficient algorithms addressing practical problems.

The third and last part investigates the theory of (hyper)elliptic curves in a different direction.
Several constructions in cryptography indeed rely on the use of highly specific classes of such
curves which can not be constructed by classical means. Nevertheless, the so-called “complex
multiplication” method solves some of these problems. Class polynomials are fundamental objects
for that method, but their construction is usually considered only for maximal orders. The modest
contribution of the author is to clarify how a specific flavor of their construction — the complex
analytic method — extends to non-maximal orders.





Résumé

Le cœur de cette thèse est l’étude d’objets ou de problèmes mathématiques intéressants en
cryptologie. Autant que possible, l’auteur a essayé de mettre en avant les aspects calculatoires
de tels problèmes. Les thèmes traités ici sont en effet non seulement propices aux approches
expérimentales, mais aussi à une transposition quasiment immédiate des concepts mathématiques
en implémentations concrètes.

La première partie de cette thèse est dévolue à l’étude d’une conjecture combinatoire dont
la validité assure l’existence de familles infinies de fonctions booléennes dotées de propriétés
cryptographiques intéressantes. Quoique particulièrement innocente au premier abord, la validité
de cette conjecture reste un problème ouvert. Néanmoins, l’auteur espère que les résultats
théoriques et expérimentaux présentés ici permettront au lecteur d’acquérir un tant soit peu de
familiarité avec la conjecture.

Dans la seconde partie de ce manuscrit, des liens entre fonctions (hyper-)courbes — une classe
particulière de fonctions booléennes —, sommes exponentielles et courbes (hyper)elliptiques sont
présentés. Les fonctions (hyper-)courbes sont en effet particulièrement difficiles à classifier et
à construire. L’étude des liens mentionnés ci-dessus permet de résoudre de façon élégante des
problèmes d’ordre tout aussi bien théorique que pratique.

La troisième et dernière partie pousse plus avant l’étude des courbes (hyper)elliptiques d’un
point de vue sensiblement différent. De nombreuses constructions cryptographiques reposent en
effet sur l’utilisation de classes particulières de telles courbes qui ne peuvent être construites en
utilisant des méthodes classiques. Cependant, la méthode CM permet de donner une réponse
positive à ce problème. Les polynômes de classes sont des objets fondamentaux de cette méthode.
Habituellement, leur construction n’est envisagée que pour des ordres maximaux. La modeste
contribution de l’auteur est d’expliciter comment une telle construction — la méthode analytique
complexe — s’étend aux ordres non-maximaux.
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Introduction

Beaucoup d’travail comme pour
un album d’Astérix !

L’ère du Stup
Stupeflip [256]

Sed ut perspiciatis, unde omnis iste natus error sit
uoluptatem accusantium doloremque laudantium,
totam rem aperiam eaque ipsa, quae ab illo inuentore
ueritatis et quasi architecto beatae uitae dicta sunt,
explicabo. Nemo enim ipsam uoluptatem, quia
uoluptas sit, aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos, qui ratione
uoluptatem sequi nesciunt, neque porro quisquam est,
qui dolorem ipsum, quia dolor sit, amet, consectetur,
adipisci uelit, sed quia non numquam eius modi
tempora incidunt, ut labore et dolore magnam aliquam
quaerat uoluptatem. Vt enim ad minima ueniam, quis
nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi
consequatur ? quis autem uel eum iure reprehenderit,
qui in ea uoluptate uelit esse, quam nihil molestiae
consequatur, uel illum, qui dolorem eum fugiat, quo
uoluptas nulla pariatur ?

De finibus bonorum et malorum
Marcus Tullius Cicero [50]
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2 Introduction

1 Mathematics and cryptology

Cryptology is the art of secret and information security. Its most classical aspect is confidentiality:
one wants to share some critical information with a selected number of people without anyone
else being able to gain access to it. Nowadays, there are two typical ways to address this problem:
symmetric cryptography where both legitimate parties share a common secret and use it to
protect their exchanges; and asymmetric cryptography where only one party possesses such a
secret. In the latter case, some public data are associated with the secret and make possible the
secure transmission of information in a unique direction. Such dichotomies are quite common in
cryptology.

For example, it is a more or less customary to divide the world of cryptology into two parts1.
On the one hand, cryptography is the art of designing as robust and secure as possible algorithms,
protocols and systems. On the other hand, cryptanalysis is the art of devising design flaws in
such systems and developing attacks jeopardizing their alleged security. The more powerful and
general the attacks developed by cryptanalysts are, the more difficult it is for cryptographers to
propose suitable constructions. In particular, most cryptographic constructions rely somehow on
the difficulty of mathematical problems, from theoretical and computational points of view, and
the existence of related mathematical objects. Cryptology is therefore an inexhaustible source of
mathematical problems. The motivation of the research presented in this memoir is to study and
build mathematical objects verifying suitable properties to be used in a cryptographic context.

2 Computational experiments and implementation

Cryptology is all but a purely theoretical science. The formal study of cryptographic primitive
is endowed with a mathematical formalism, but the final goal is to design or to attack concrete
systems. Therefore, many problems arising in cryptology have fundamentally computational
aspects.

To actually study these aspects, perform experiments and implement algorithms, the author
had to choose some piece of software. To add another dichotomy to the previous ones, the author
was basically faced with two alternatives: use well-known and robust proprietary software such
as Maple [207] and Magma [23] or take the chance to use a quite recent and less polished open
source software: Sage [250]. Practical and ethical reasons lead the author to choose the Sage
software. The following citation from the Sage documentation describes quite well the philosophy
of the project:

“Sage is free open source math software that supports research and teaching in algebra,
geometry, number theory, cryptography, and related areas. Both the Sage development model
and the technology in Sage itself are distinguished by an extremely strong emphasis on openness,
community, cooperation, and collaboration: we are building the car, not reinventing the wheel.”

Sage indeed provides an easy interface to already existing and mature open source softwares,
as well as to proprietary software. It is conceived as an extension to Python [266], an interpreted
language, but compiled code can also be easily generated using Cython [24]. It is therefore a
particularly well crafted tool for teaching and experiments, not for record breaking implementations
and computations. To this end, a natural choice would be to build a library in a low-level language
such as C [148] which could be later interfaced back into Sage.

1Of course, one could argue it is not. It however seems to be in France.
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3 Outline
The main matter of this thesis consists in three parts. Each part itself is built following the same
scheme:

• a first preliminary chapter providing enough background for the unfamiliar reader to
understand the next one;

• a second chapter presenting more advanced results and the contribution of the author to
the subject.

Part I is devoted to the study of a combinatorial conjecture whose validity entails the existence
of infinite classes of Boolean functions with satisfying cryptographic properties. In Chapter 1,
some background on such Boolean functions is given, especially on those to be used as filtering
functions in stream ciphers. The properties that such functions should meet — balancedness,
algebraic degree, algebraic immunity, resistance to fast algebraic attacks and nonlinearity —
are defined in Section 1.1. Infinite classes of Boolean functions satisfying these criteria are
then described in Section 1.2. Two constructions are of particular interest: those of Tu and
Deng [23] and of Tang, Carlet and Tang [259]. They are indeed the most closely linked with
the combinatorial problem studied in Chapter 2. To tackle the original conjecture of Tu and
Deng [23], later generalized by Tang, Carlet and Tang [259], it is first reformulated in terms of
carries occurring in an addition modulo 2k − 1 in Section 2.1. Such an approach might at first
seem quite down-to-earth, but the difficulty of the problem is precisely that no algebraic structure
can be cast upon it. It is however sufficient for us to prove the specific case needed by the family
of Tang, Carlet and Tang [259] in Section 2.2. The following sections are devoted to the original
conjecture of Tu and Deng [23] whose validity remains an open problem. Nonetheless, by defining
a suitable block splitting pattern in Section 2.4, structure enough is cast upon the problem to
exhibit quite explicit forms for the quantities of interest in Section 2.5. This also provides a
probabilistic interpretation in an asymptotic setting and entails the validity of the conjecture
asymptotically as depicted in Section 2.6. This chapter is concluded by providing theoretical
evidence that a naive inductive approach is not sufficient in Section 2.7 and experimental evidence
that the conjecture is valid in low dimension in Section 2.9.

A more specific class of Boolean functions is studied in Part II: bent and hyper-bent functions.
These are functions achieving maximal non-linearity, a criterion already mentioned above. To
this end, Chapter 3 presents additional objects used in the study of such functions: the Walsh–
Hadamard transform, binary exponential sums and Dickson polynomials in Section 3.1; but also
the basic theory of elliptic and hyperelliptic curves over finite fields of even characteristic with a
special emphasis on point counting on such curves in Section 3.2. In Chapter 4, these tools will
indeed be used to give efficient characterizations of (hyper-)bent functions and design efficient
algorithms to explicitly construct them. It is first recalled how the usual characterizations of
bentness and hyper-bentness involving the Walsh–Hadamard transform are reformulated in terms
of exponential sums in Section 4.1. Furthermore, such results are themselves reformulated in
terms of cardinalities of (hyper)elliptic curves in Section 4.2. This fundamental observation leads
to the design of efficient algorithms to test (hyper-)bentness of a given function and to actually
construct such functions. The concluding sections cover this topic.

Part III, which concludes this memoir, departs from the world of Boolean functions and
concentrates on (hyper)elliptic curves which were already introduced in the preceding part. More
precisely, the theory of complex multiplication for such curves and the explicit computation of
class polynomials using complex analytic methods are studied. The latter polynomials can indeed
be used to build the former curves. Chapter 5 exposes the classical situation for curves of genus
1, i.e. elliptic curves, and serves as an introduction to the more involved following chapter. After



4 Introduction

giving more general background on algebraic curves in Section 5.1, an alternate point of view
is presented in Section 5.2 for the analytic case. Over the complex numbers, elliptic curves can
indeed be described as complex tori. Such considerations lead to the main theorems of complex
multiplication and the definition of the Hilbert class polynomial in Section 5.3. Some applications
of such curves in the context of asymmetric cryptography are given in Section 5.4. The purpose
of Chapter 6 is then to extend the results of Chapter 5 to higher dimension with an emphasis
on the case of non-maximal orders which is usually dismissed for simplicity or concision. The
structure of this chapter is essentially the same as that of the previous one. Section 6.1 provides
superficial background on the algebraic and analytic theories of abelian varieties. The theory of
fractional ideals in orders of number fields is presented in Section 6.2 where it is shown how class
groups and units of non-maximal orders can be explicitly computed. Section 6.3 is devoted to the
general theory of complex multiplication whereas Section 6.4 is restricted to dimension 2 and
gives algorithms to compute class polynomials in that case — the Igusa class polynomials — for
a potentially non-maximal order.
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Chapter 1

Boolean functions in
cryptography

— [. . . ] J’en reviens à notre livre de philosophie,
c’est comme les principes rationnels, ou les lois
scientifiques, la réalité se conforme à cela, à peu
près, mais rappelle-toi le grand mathématicien
Poincaré, il n’est pas sûr que les mathématiques
soient rigoureusement exactes.

Le côté de Guermantes
Marcel Proust [221]
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Boolean functions are a commonly used building block in the design of symmetric cryptosystems,
especially in that of stream ciphers. Obviously, the properties of such functions are critical for the
security requirements of the final system built upon them. If not carefully chosen, the use of a
weak Boolean function can indeed jeopardize the entire system. Therefore, several cryptographic
properties have been defined and studied to ensure immunity of the system to different kinds
of attacks; the ever evolving design of those naturally entails new restrictions on the classes of
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eligible Boolean functions, so that they become narrower and narrower and their constructions,
or even their characterizations, become harder and harder.

In Section 1.1, we give a slightly more formal description of the context in which Boolean
functions are used in cryptography and define the aforementioned properties they should meet.
For the sake of the impatient reader, let us already mention these properties: balancedness, high
algebraic degree, algebraic immunity, resistance to fast algebraic attacks and high nonlinearity.
Some of these notions are naturally incompatible and trade-offs have to be made to meet as
many criteria as possible. The corresponding attacks will also be mentioned, but not thoroughly
described. For a more classical and deeper exposition we refer the reader to Carlet’s one [38]
where the notions depicted here and much more can be found.

The above observations might lead the reader to think that building Boolean functions meeting
all cryptographic criteria is out of reach. Fortunately, this is not the case. Moreover, existence
of classes of such functions is not only theoretical: explicit constructions have been devised.
Section 1.2 is devoted to the description of infinite classes of Boolean functions which meet all, or
at least most, of the current necessary criteria. The first such family was discovered and analyzed
by Carlet and Feng [41] in a family previously introduced by Feng, Liao and Yang [89]. Afterwards,
Tu and Deng [264] proposed to apply the ideas of Carlet and Feng to a very classical construction
of Dillon [70]. Unfortunately, their family failed to meet one essential cryptographic criterion —
immunity to fast algebraic attacks — which makes it more of theoretical than practical interest.
Nonetheless, following their ideas, Tang, Carlet and Tang [259] could construct a slightly different
class of functions filling that last requirement. Both treatments were subsequently unified by
the work of Jin et al. [143]. To conclude, we should state that our interest in those families
does not only reside in the fact that they give a positive and concrete answer to an important
cryptographic problem, but also in the fact that one of their properties — the high algebraic
degree — depends on the validity of a combinatorial conjecture that will be studied deeply in
Chapter 2.

1.1 Cryptographic criteria for Boolean functions
1.1.1 The filter and combiner models
Symmetric cryptosystems are commonly used for encryption and decryption owing to their
efficiency. Classical models for such cryptosystems are stream ciphers: this design is loosely based
on the one-time pad [193, 6.1.1], or Vernam cipher, for which a random bit generator is used to
encrypt the plaintext one bit at a time. Hence, to build a stream cipher, a suitable pseudorandom
keystream generator must be designed. A common construction is to use one or several linear
feedback shift registers [193, 6.2.1] (LFSR) filtered or combined by a Boolean function, that is
a function f : Fn2 → F2 . The Boolean function should provide confusion, to hide the algebraic
nature of the system, and diffusion, so that a minor modification of the input quickly spreads, two
fundamental principles stated by Shannon [236]. Both models are depicted in Figures 1.1 and 1.2.

Such cryptosystems have been the objects of a lot of cryptanalyses and several design criteria
have been proposed concerning the filtering or combining functions; mainly: balancedness, a
high algebraic degree, a high algebraic immunity, resistance to fast algebraic attacks and a high
nonlinearity.

1.1.2 Balancedness and resiliency
The two following definitions provide a basic description of the values a Boolean function takes
and will be used extensively in the first four chapters of this thesis.
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Figure 1.2: The combiner model

Definition 1.1.1 (Support). Let f : Fn2 → F2 be a Boolean function in n variables. The support
of f , denoted by supp(f), is the set of x ∈ Fn2 such that f(x) = 1:

supp(f) = {x ∈ Fn2 | f(x) = 1} .

The support of a Boolean function provides a complete characterization of it. Most families
presented in Section 1.2 will be given in this way.

Definition 1.1.2 (Hamming weight). Let f : Fn2 → F2 be a Boolean function in n variables.
The Hamming weight of f , denoted by wH(f), is the cardinality of its support (or the Hamming
weight of its value vector).

We can now define a first criterion of interest for cryptographic Boolean functions.

Definition 1.1.3 (Balancedness [38, 4.1.3]). A Boolean function f : Fn2 → F2 in n variables is
said to be balanced if it has Hamming weight 2n−1.

Hence, a Boolean function is said to be balanced if it takes as often the values 0 and 1.
Balancedness is needed to avoid statistical dependence between the input and the output of the
stream cipher and to prevent distinguishing attacks [38, 4.1.3].

The notion of balancedness can be generalized as follows.

Definition 1.1.4 (Resiliency [243], [38, 4.1.3]). A Boolean function f : Fn2 → F2 in n variables
is said to be m-resilient if any of its restrictions with at most m-input fixed is balanced.
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A Boolean function used in the combiner model should be resilient in order to resist correlation
attacks [243]. This is not mandatory for functions used in the filter model. In the latter model,
1-resiliency is commonly considered to be sufficient and can be obtained by choosing another
function in the same affine equivalence class [121].

1.1.3 Algebraic degree
A common representation for Boolean functions is through algebraic normal forms, i.e. as
multivariate polynomials in n variables representing the n inputs. The following proposition
states that such a form always exists and can be chosen in a canonical way.
Proposition 1.1.5 (Algebraic normal form [38, 2.1]). Let f : Fn2 → F2 be a Boolean function in n
variables. Then f can be uniquely represented as a multivariate polynomial in F2 [x1, . . . , xn]/(x2

1 +
x1, . . . , x

2
n + xn) called its algebraic normal form:

f(x1, . . . , xn) =
∑

I⊂{1,...,n}

aI
∏
i∈I

xi, aI ∈ F2 .

Associated with this representation is the algebraic degree of a Boolean function.
Definition 1.1.6 (Algebraic degree [38, 4.1.1]). Let f : Fn2 → F2 be a Boolean function in n
variables. The algebraic degree of f , denoted by deg(f), is the degree of its algebraic normal form.

The linear complexity of the pseudorandom generator depends on the algebraic degree of its
filtering or combining function, whence the importance for it to have a high algebraic degree
in order to avoid the Berlekamp–Massey attacks [187], [193, 6.2.3], [38, 4.1.1] and, for the filter
model, the more recent Rønjom–Helleseth attack [226].

It is obviously verified from the definition of the algebraic normal form that the algebraic
degree of a Boolean function in n variables is at most n. Furthermore, it should be noted that an
m-resilient function satisfies the following inequality [243]:

m+ deg(f) ≤ n− 1 ;
this inequality gives a first example of the fact that different cryptographic criteria interact and
are in some ways fundamentally incompatible.

1.1.4 Algebraic immunity
Standard algebraic attacks were introduced in 2003 by Courtois and Meier [59]. In view of these
attacks, the study of the set of annihilators of a Boolean function has become very important
and a Boolean function should have a high algebraic immunity. We define these notions below.
Definition 1.1.7 (Annihilator [190]). Let f be a Boolean function in n variables. A nonzero
Boolean function g is called an annihilator of f if fg = 0.
Definition 1.1.8 (Algebraic immunity [190]). The algebraic immunity of f , denoted by AI(f),
is the minimum value of d such that f or its complement 1 + f admits an annihilator of algebraic
degree d.

The best possible algebraic immunity is dn/2e [59]. A high algebraic immunity is now an
absolutely necessary cryptographic criterion, but it is unfortunately not sufficient anymore.

A more general kind of attacks was indeed introduced by Courtois [58] in 2003 as well: the
fast algebraic attacks. For these attacks, the product of f or its complement 1 + f with another
function g of low degree should not be zero, as for standard algebraic attacks, but of lower degree,
hence generalizing the former attacks and making the notion of algebraic immunity already
insufficient.
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1.1.5 Nonlinearity and bentness

The last cryptographic criterion of interest in this thesis is that of nonlinearity and the related
notion of bentness. Nonlinearity characterizes the distance between a Boolean function and the
set of affine functions and is naturally defined using the Hamming distance.

Definition 1.1.9 (Hamming distance). Let f and g be two Boolean functions in n variables.
The Hamming distance between f and g, denoted by dH(f, g), is defined as

# {x ∈ Fn2 | f(x) 6= g(x)} .

The distance can also be defined as dH(f, g) = wH(f + g) (where addition occurs in F2).

Definition 1.1.10 (Nonlinearity [38, 4.1.2]). Let f : Fn2 → F2 be a Boolean function in n
variables. The nonlinearity of f , denoted by nl(f), is the minimum distance to affine functions
(i.e. those of algebraic degree 0 or 1).

It can be shown that the nonlinearity of a Boolean function in n variables is upper bounded by
2n−1 − 2n/2−1 [38, 4.1.2]. High nonlinearity is important to prevent fast correlation attacks [191]
and best affine approximation attacks [72].

Boolean functions achieving maximal nonlinearity are called bent functions.

Definition 1.1.11 (Bentness [70]). Let f : Fn2 → F2 be a Boolean function in n variables. f is
said to be bent if it satisfies nl(f) = 2n−1 − 2n/2−1.

Obviously, bent functions only exist when n is even. Such functions can not be directly used
in the filter and combiner models; in particular, they are not balanced. They are however a very
important building block for many cryptographic systems and Chapter 3 will be devoted to their
study.

1.2 Families of Boolean functions with good cryptographic
properties

1.2.1 Trade-offs between the different criteria

Building a Boolean function meeting as many criteria as possible is a difficult task. Trade-offs must
usually be made between them. Since the introduction of algebraic immunity, several constructions
of Boolean functions with high algebraic immunity have been suggested, but very few of them
are of optimal algebraic immunity. More importantly, those having other good cryptographic
properties, as balancedness or high nonlinearity for instance, are even rarer. Among those having
optimal algebraic immunity AI(f) = dn/2e, most have a poor nonlinearity [40, 64, 177, 178, 42],
close to the lower bound of Lobanov [184]:

nl(f) ≥ 2n−1 −
(
n

bn2 c

)
.

We now present different good families, i.e. meeting most of the criteria mentioned in Section 1.1
in a satisfactory way.
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1.2.2 The Carlet–Feng family
In 2008, Carlet and Feng [41] studied a family of Boolean functions introduced by Feng, Liao and
Yang [89] and devised the first infinite class of functions which seems able to satisfy all of the
main criteria for being used as a filtering function in a stream cipher.

Definition 1.2.1 (Construction of Carlet and Feng [41, Section 3]). Let n ≥ 2 be a positive
integer and α a primitive element of F2n . Let f be the Boolean function in n variables defined by

supp(f) =
{

0, 1, α, . . . , α2n−1−2
}

.

They proved that these functions are

1. balanced,

2. of optimal algebraic degree n− 1 for a balanced function,

3. of optimal algebraic immunity dn/2e,

4. with good immunity to fast algebraic attacks,

5. and with good nonlinearity

nl(f) ≥ 2n−1 + 2n/2+1

π
ln
(

π

2n − 1

)
− 1 ≈ 2n−1 − 2 ln 2

π
n2n/2 .

Moreover, it was checked for small values of n that the functions had far better nonlinearity than
the proved lower bound.

Afterwards, the same family was reintroduced in a different way by Wang et al. [278, 39] who
proved a better lower bound:

nl(f) ≥ max
(

6b2
n−1

2n c − 2, 2n−1 −
(

ln 2
3 (n− 1) + 3

2

)
2n/2

)
.

Finally, Tang, Carlet and Tang [259] proved in 2011 that the following better lower bound is
again valid:

nl(f) ≥ 2n−1 −
(
n ln 2

2π + 0.74
)

2n/2 − 1 .

1.2.3 The Tu–Deng family
In 2010, Tu and Deng [264] discovered that there may be Boolean functions of optimal algebraic
immunity in a classical class of Partial Spread functions due to Dillon [70] provided that the
following combinatorial conjecture is correct.

Conjecture 1.2.2 (Tu–Deng conjecture). For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 |a+ b = t and wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

Tu and Deng checked the validity of the conjecture for k ≤ 29. They also proved that, if the
conjecture is true, then one can get in even dimension balanced Boolean functions of optimal
algebraic immunity and of high nonlinearity (better than that of the functions proposed in
Subsection 1.2.2).

More explicitly, their idea was to apply the idea of Carlet and Feng to the classical construction
of Dillon as depicted below.
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Definition 1.2.3 (Construction of Dillon [70]). Let n = 2k ≥ 4 be an even integer and g : F2k →
F2 a balanced Boolean function in k variables. Let f : F2k × F2k → F2 be the Boolean function
defined by

f(x, y) = g

(
x

y

)
,

where x/y is understood as xy2n−2, so equal to 0 when y = 0.

These functions form the so-called Partial Spread class PSap [70]. In particular, all functions
in this class are bent [70] and have algebraic degree n/2 = k [222].

Definition 1.2.4 (First construction of Tu and Deng [264]). Let n = 2k ≥ 4 be an even integer,
α a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 a Boolean function in

k variables defined by

supp(g) =
{
αs, αs+1, . . . , αs+2k−1−1

}
= αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) =
{

g
(
x
y

)
if x 6= 0 ,

0 otherwise .

They proved that these functions are

1. bent (because they belong to PSap),

2. of algebraic degree n/2 = k [222],

3. and of optimal algebraic immunity n/2 = k if Conjecture 1.2.2 is verified.

The approach of Tu and Deng to prove the optimal algebraic immunity was to identify annihilators
of the Boolean function with codewords of BCH codes [185, 186, 272]. The role of the conjecture
is then to deduce from the BCH bound [185, 186, 272] that those codewords are equal to zero if
the algebraic degrees of the corresponding annihilators are less than n/2 = k.

These functions can then be modified to give rise to functions with different good cryptographic
properties as follows.

Definition 1.2.5 (Second construction of Tu and Deng [264]). Let n = 2k ≥ 4 be an even integer,
α a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 a Boolean function in

k variables defined by

supp(g) = αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) =


g
(
x
y

)
if xy 6= 0 ,

1 if x = 0 and y ∈ (αA)−1
,

0 otherwise .
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Our definition slightly differs from the original one [264], but, in the end, it is equivalent
because

(αA)−1 =
{
α−1, . . . , α−(2k−1−1), α−2k−1

}
=
{
α2k−1−1, α2k−1

, . . . , α2k−2
}

.

The cryptographic parameters of the function f are as follows:

1. f is balanced;

2. its algebraic degree is optimal for a balanced function, that is equal to n− 1;

3. up to Conjecture 1.2.2, f has optimal algebraic immunity that is, AI(f) = n;

4. its nonlinearity satisfies

nl(f) ≥ 2n−1 − 2n/2−1 − n

2 2n/4 ln 2− 1 .

Afterwards, Tu and Deng [263, 262] modified their original functions to obtain a class of
1-resilient functions with high nonlinearity and high algebraic immunity.

Definition 1.2.6 (Third construction of Tu and Deng [263, 262]). Let n = 2k ≥ 4 be an even
integer, α a primitive element of F2n , A =

{
α, α2, . . . , α2k−1−1

}
, 0 ≤ s ≤ 2k − 2 an integer and

B = {0, 1} ∪A−1. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

supp(f) =
⋃

{(x, y) | x/y ∈ αsA} ,
{(x, y) | y = α−sy, x ∈ B} ,
{(x, 0) | x ∈ F2k \B} ,
{(0, y) | y ∈ F2k \ α−sB} .

They proved that f satisfies the following properties:

1. f is 1-resilient;

2. f is of optimal algebraic degree deg(f) = n− 2;

3. up to Conjecture 1.2.2, f has algebraic immunity AI(f) ≥ n/2− 1;

4. f has nonlinearity
nl(f) ≥ 2n−1 − 2n/2−1 − 3

2n2n/4 ln 2− 7 .

It is in fact proved that f has optimal algebraic immunity depending only on Conjecture 1.2.2
when n/2 is odd and on an additional assumption when n/2 is even [262].

Finally, Tang et al. [260] applied a degree optimized version of an iterative construction
of balanced Boolean functions with very high nonlinearity by Dobbertin [73] to the functions
constructed by Tu and Deng [264, 263] and obtained functions with better nonlinearity. For
n = 2k = 2tm ≥ 4, m odd, their first family is

1. balanced,

2. of optimal algebraic degree n− 1,
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3. of optimal algebraic immunity n/2 if Conjecture 1.2.2 is verified,

4. of nonlinearity at least

2n−1 −
t−1∑
i=0

2n/(2
i+1)−1 − 2(m−1)/2 ;

and their second family is

1. 1-resilient,

2. of optimal algebraic degree n− 2,

3. of algebraic immunity at least n/2− 1 if Conjecture 1.2.2 is verified,

4. of nonlinearity at least{
2n−1 − 2n/2−1 − 3

(∑t−1
i=1 2n/(2i+1)−1 − 2(m−1)/2

)
if m = 1 ,

2n−1 − 2n/2−1 − 3
∑t−1
i=1 2n/(2i+1)−1 − 2(m+1)/2 − 6 if m ≥ 2 .

Unfortunately, Carlet [36] observed that the functions introduced by Tu and Deng are weak
against fast algebraic attacks and unsuccessfully tried to repair their weakness. It was subsequently
shown by Wang and Johansson [277] that this family can not be easily repaired.

Nonetheless, more recent developments have shown that the construction of Tu and Deng
and the associated conjecture are not of purely æsthetic interest, but are interesting tools in a
cryptographic context.

1.2.4 The Tang–Carlet–Tang family
In 2011, inspired by the previous work of Tu and Deng [264], Tang, Carlet and Tang [259]
constructed an infinite family of Boolean functions with many good cryptographic properties.
The main idea of their construction is to change the division in the construction of Tu and Deng
by a multiplication. The associated combinatorial conjecture is then modified as follows.

Conjecture 1.2.7 (Tang–Carlet–Tang conjecture). For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | a− b = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

They verified it experimentally for k ≤ 29, as well as the following generalized property for
k ≤ 15 where u ∈ Z/(2k − 1)Z is such that gcd(u, 2k − 1) = 1 and ε = ±1.

Conjecture 1.2.8 (Tang–Carlet–Tang conjecture). Let k ≥ 2 be an integer, t ∈
(
Z/(2k − 1)Z

)∗,
u ∈ Z/(2k − 1)Z such that gcd(u, 2k − 1) = 1 and ε ∈ {−1, 1}. Then

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ εb = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

This generalized conjecture includes the original conjecture proposed by Tu and Deng (Con-
jecture 1.2.2) for u = 1 and ε = +1.

The construction of their functions is as follows.
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Definition 1.2.9 (Construction of Tang, Carlet and Tang [259]). Let n = 2k ≥ 4 be an even
integer, α a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 the Boolean

function in k variables defined by

supp(g) = αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) = g (xy) .

They proved that such a function f is

1. of algebraic degree n− 2,

2. of optimal algebraic immunity n/2 if Conjecture 1.2.7 is true,

3. of good immunity against fast algebraic attacks,

4. of nonlinearity at least

2n−1 −
(

ln 2
2π n+ 0.42

)
2n/2 − 1 .

The proof of the optimality of the algebraic immunity is similar to the proof of Tu and Deng [264].
These functions can then be modified using the same procedure as Tang et al. [260] to

obtain balanced functions with high algebraic degree and nonlinearity. They proved that, for
n = 2k = 2tm ≥ 4 and m odd, these modified functions are

1. balanced,

2. of optimal algebraic degree n− 1,

3. of optimal algebraic immunity n/2 if Conjecture 1.2.7 is true,

4. of good immunity against fast algebraic attacks,

5. of nonlinearity at least{
2n−1 −

( ln 2
2π n+ 0.42

)
2n/2 − 2

n/2−1
2 − 1 if t = 1 ,

2n−1 −
( ln 2

2π n+ 0.42
)

2n/2 −
∑t−1
i=1 2n/(2i+1)−1 − 2(m−1)/2 − 1 if t ≥ 2 .

1.2.5 The Jin et al. family
It should finally be mentioned that Jin et al. [143] generalized the construction of Tang, Carlet
and Tang [259] in a way that included back the construction of Tu and Deng [264]. In their paper,
the main idea is to replace y by y2k−1−u in the construction of the function. Hence, the family
of Tu and Deng [264] is included for u = 1, and the family of Tang, Carlet and Tang [259] for
u = 2k − 2. The associated combinatorial conjecture is then modified as follows.

Conjecture 1.2.10 (Jin et al. conjecture). Let k ≥ 2 be an integer, t, u, v ∈
(
Z/(2k − 1)Z

)∗
such that gcd(u, 2k − 1) = gcd(v, 2k − 1) = 1. Then

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .
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This generalized conjecture obviously includes all the previous ones.
The construction of their functions is as follows.

Definition 1.2.11 (Construction of Jin et al. [143]). Let n = 2k ≥ 4 be an even integer, α
a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 Boolean function in k

variables defined by

supp(g) = αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) = g
(
xy2k−1−u

)
.

They proved that such a function f is
1. of algebraic degree between n/2 and n− 2 depending on the value of u,

2. of optimal algebraic immunity n/2 if Conjecture 1.2.10 is true,

3. of nonlinearity at least

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 1 ≈ 2n−1 − ln 2
π
n2n/2 .

The proof of the optimality of the algebraic immunity is once again similar to the previous ones.
It should be noted that resistance to fast algebraic attacks is not studied by Jin et al. [143].

Modifying these functions as before, Jin et al. obtained balanced functions with high algebraic
degree and nonlinearity. They proved that for n = 2k ≥ 4, these modified functions are

1. balanced,

2. of optimal algebraic degree n− 1,

3. of optimal algebraic immunity n/2 if Conjecture 1.2.10 is true,

4. of nonlinearity at least

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 2
π

ln 4(2n/2 − 1)
π

2n/4 − 2 ≈ 2n−1 − ln 2
π
n2n/2 − ln 2

π
n2n/4 .

Jin et al. [142] applied a similar generalization to the 1-resilient Boolean function of Tu and
Deng [262] and obtained a family functions which are

1. 1-resilient,

2. of optimal algebraic degree n− 2,

3. of optimal algebraic immunity n/2 up to Conjecture 1.2.10 and an additional assumption,

4. of nonlinearity at least

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 2n/2−1 − 4
π

ln 4(2n/2 − 1)
π

2n/4 − 3

≈ 2n−1 − ln 2
π

(n+ 1)2n/2 − 2 ln 2
π

n2n/4 .

Finally, for specific values of the parameter u — in particular for the family of Tang, Carlet and
Tang [259] presented in Subsection 1.2.4 —, the conjecture, and so the optimality of the algebraic
degree, can be proved using the results of the next chapter.





Chapter 2

On a conjecture about addition
modulo 2k − 1

Πληθὺν ᾿Ηελίοιο βοῶν, ὦ ξεῖνε, μέτρησον

ϕροντίδ᾿ ἐπιστήσας, εἰ μετέχεις σοϕίης,
πόσση ἄρ᾿ ἐν πεδίοις Σικελῆς ποτ᾿ ἐϐόσκετο νήσου
Θρινακίης τετραχῇ στίϕεα δασσαμένη
χροιὴν ἀλάσσοντα · τὸ μὲν λευκοῖο γάλακτος,

κυανέῳ δ᾿ ἕτερον χρώματι λαμπόμενον,

ἄλλο γε μὲν ξανθόν, τὸ δὲ ποικίλον. [. . . ]

Ταῦτα συνεξευρὼν καὶ ἐνὶ πραπίδεσσιν ἀθροίσας

καὶ πληθέων ἀποδούς, ξεῖνε, τὰ πάντα μέτρα

ἔρχεο κυδιόων νικηϕόρος ἴσθι τε πάντως
κεκριμένος ταύτῃ γ᾿ ὄμπνιος ἐν σοϕίῃ.
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As was underlined in the previous chapter, the good cryptographic properties of the Boolean
functions of the Jin et al. family [142] described in Subsection 1.2.5, and more precisely the
optimality of their algebraic immunity, depend on the validity of a combinatorial conjecture. The
purpose of this chapter, if not to prove that conjecture in its full generality, is at least to give a
good insight into its expected validity not only through a thorough theoretical study, but also
by exposing experimental evidence. Part of the work presented in this chapter is the result of
collaborations with Gérard Cohen, Sihem Mesnager and Hugues Randriam and already appeared
in different forms [96, 94]. Several preprints [97, 95, 53] including additional results are available
as well.

The main approach used in this chapter is that of reformulating the conjecture in terms of
carries occurring in an addition modulo 2k − 1. This formalism and the very basic properties
verified by that quantity are developed in Section 2.1. Although such an approach may at first
seem quite naive to the reader, what makes the study of the conjecture seemingly so difficult is
precisely that a suitable algebraic structure to cast upon the problem has yet to be found, so
that only a purely combinatorial point of view is possible as of today.

Nevertheless, the point of view adopted here provides already enough information to prove in
Section 2.2 that the special case of the conjecture required by the family of Tang, Carlet and
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Tang [259] is true. Thereafter, we concentrate our efforts on the original conjecture of Tu and
Deng [264] which is a natural candidate to extend our study1.

Unfortunately, the situation is already much more involved and its study builds the end of
this chapter up. Even though a complete proof has yet to be given, we manage to prove some
interesting results giving evidence of the validity of the conjecture. A family of integers reaching
the upper bound of the conjecture is first characterized in Section 2.4. A closed-form expression
is then deduced in a constrained and better behaved case in Section 2.5. Finally, the conjecture
is given a probabilistic interpretation and proved in an asymptotic setting in Section 2.6.

To conclude this general introduction, let us mention that we also provide some evidence that
a simple inductive approach is not suitable in Section 2.7 and that the experimental results of
Section 2.9 establish the validity of the Tu–Deng conjecture for up to 40 bits, thus extending the
original results of Tu and Deng [264]. Finally, other applications of carries in the field of Boolean
functions exist and can be found e.g. in the works of Canteaut, Charpin and Dobbertin [35] or
Langevin et al. [161].

2.1 General properties
2.1.1 Notation
Unless stated otherwise, we use the following notation throughout this chapter:

• k ∈ N is the number of bits (or length of binary strings) we are currently working on;

• t ∈ Z/(2k − 1)Z is a fixed modular integer.

We use the following function of natural (or modular) integers (or binary strings).

Definition 2.1.1 (Hamming weight). For t ∈ N, wH(t) is the Hamming (or binary) weight of t,
i.e. the number of 1’s in its binary expansion. For t ∈ Z/(2k − 1)Z, wH(t) is the Hamming (or
binary) weight of the unique representative of t in

{
0, . . . , 2k − 2

}
.

From now on, let us denote by St,v,u,k the set of interest:

St,v,u,k =
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}

,

where k ≥ 2, t ∈
(
Z/(2k − 1)Z

)∗ and u, v ∈ (Z/(2k − 1)Z
)×, i.e. u and v are invertible modulo

2k − 1.
We now recall the different flavors of the conjecture already mentioned in Chapter 1.

Conjecture 1.2.2 (Tu–Deng conjecture). With the above notation,

#St,+1,1,k ≤ 2k−1 .

Conjecture 1.2.7 (Tang–Carlet–Tang conjecture). With the above notation,

#St,−1,1,k ≤ 2k−1 .

Conjecture 1.2.8 (Tang–Carlet–Tang conjecture). With the above notation,

#St,ε,u,k ≤ 2k−1 .

Conjecture 1.2.10 (Jin et al. conjecture). With the above notation,

#St,v,u,k ≤ 2k−1 .

1This was in fact the first proposed flavor of the conjecture, and the first we studied.
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2.1.2 Negation and rotation
In this subsection we study the behavior of the Hamming weight under various basic transforma-
tions: binary not and rotation.

Definition 2.1.2. We define ak as the modular integer whose binary expansion is the binary not
on k bits of the binary expansion of the representative of a in

{
0, . . . , 2k − 2

}
. We denote it by a

when there is no ambiguity about the value of k.

Lemma 2.1.3. Let a ∈
(
Z/(2k − 1)Z

)∗ be a non-zero modular integer, then −a = a and
wH(−a) = k − wH(a).

Proof. Indeed a+ a =
∑k−1
i=0 2i = 2k − 1 = 0.

Lemma 2.1.4. For all i ∈ Z and a ∈ Z/(2k − 1)Z, we have

wH(2ia) = wH(a) .

Proof. We are working in Z/(2k − 1)Z so that 2k = 1 and multiplying a modular integer in
Z/(2k − 1)Z by 2 is just rotating its representation as a binary string on k bits by one bit to the
left, whence the equality of the Hamming weights.

Therefore, we say that, for any i ∈ Z, 2ia and a are equivalent, or that they are in the
same cyclotomic class modulo 2k − 1, and we write a ' 2ia. We now remark that, for a given
a ∈ Z/(2k − 1)Z, b must be equal to v−1(t− ua), whence the following lemma.

Lemma 2.1.5. For k ≥ 2,

#St,v,u,k = #
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(t− ua)) ≤ k − 1

}
.

Using the previous lemmas, we can now show that is enough to study the conjecture for one t,
but also one u and one v, in each cyclotomic class.

Lemma 2.1.6. For k ≥ 2,
#St,v,u,k = #S2t,v,u,k .

Proof. Indeed a 7→ 2a is a permutation of Z/(2k − 1)Z so that

#S2t,v,u,k = #
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(2t− ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | wH(2a) + wH(2v−1(t− ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(t− ua)) ≤ k − 1

}
= #St,v,u,k .

Lemma 2.1.7. For k ≥ 2,
#St,v,u,k = #St,v,2u,k .

Proof. Using the previous lemma,

#St,v,2u,k = #S2t,v,2u,k

= #
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(2t− 2ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(t− ua)) ≤ k − 1

}
= #St,v,u,k .
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Lemma 2.1.8. For k ≥ 2,
#St,v,u,k = #St,2v,u,k .

Proof. Using the previous lemmas,

#St,2v,u,k = #S2t,2v,2u,k

= #
{
a ∈ Z/(2k − 1)Z | wH(a) + wH((2v)−1(2t− 2ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(t− ua)) ≤ k − 1

}
= #St,v,u,k .

We now show a more elaborate relation for different values of u, v and t.

Lemma 2.1.9. For k ≥ 2,

#St,v,u,k = #S(uv)−1t,v−1,u−1,k .

Proof. We use the fact that a 7→ u−1(−va+ t) is a permutation of Z/(2k − 1)Z and deduce

#St,v,u,k = #
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(v−1(t− ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | wH(u−1(−va+ t)) + wH(a) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | wH(v((uv)−1t− u−1a)) + wH(a) ≤ k − 1

}
= #S(uv)−1t,v−1,u−1,k .

To conclude this subsection we state the following observation of Jin et al. [143].

Lemma 2.1.10. For k ≥ 2 and c ∈
(
Z/(2k − 1)Z

)×,
#St,v,u,k = #Sct,cv,cu,k .

Proof. Indeed, we have ua+ vb = t if and only if cua+ cvb = ct when c is invertible, whence a
bijection between the sets St,v,u,k and Sct,cv,cu,k.

Finally, as noted by Jin et al. [143], their generalized conjecture is then equivalent to the
generalized conjecture of Tang, Carlet and Tang [259].

Corollary 2.1.11. Conjecture 1.2.10 is equivalent to Conjecture 1.2.8.

Proof. The fact that Conjecture 1.2.10 implies Conjecture 1.2.8 is obvious setting v = ε. The
converse comes from the above lemma by setting c = v−1:

#St,v,u,k = #Sv−1t,1,v−1u,k .

2.1.3 Carries
We now define the main tool we will use to study the conjectures.

Definition 2.1.12. For a ∈
(
Z/(2k − 1)Z

)∗, we set

r(a, t) = wH(a) + wH(t)− wH(a+ t) ,

i.e. r(a, t) is the number of carries occurring while performing the addition. By convention, we set

r(0, t) = k ,

i.e. 0 behaves like the 1...1︸ ︷︷ ︸
k

binary string. We also remark that r(−t, t) = k.



24 Chapter 2. On a conjecture about addition modulo 2k − 1

2.2 The case ε = −1
2.2.1 Proof of the conjecture of Tang, Carlet and Tang
In this subsection we prove Conjecture 1.2.7 of Tang, Carlet and Tang [259], and so its extension
for u equal to any power of 2, that is Conjecture 1.2.8 of the same authors for u = 2i and ε = −1,
according to Lemma 2.1.7, thus yielding the following theorem which additionally includes the
case t = 0.

Theorem 2.2.1. Let k ≥ 2 be an integer, t ∈ Z/(2k − 1)Z and u = 2i where i is any integer.
Then

#St,−1,u,k ≤ 2k−1 .

Proof. First, we note that for u = 1 and v = −1, Lemma 2.1.10 becomes

#St,−1,1,k = #S−t,−1,1,k .

Second, for the specific cases a = 0 and a = t, we have that

• wH(0) + wH(−t) = wH(−t) ≤ k − 1,

• and wH(t) + wH(0) = wH(t) ≤ k − 1,

so that we always have

{0, t} ⊂
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(−(t− a)) ≤ k − 1

}
.

Finally, for a 6= 0 and a 6= t, we have that

wH(a) + wH(−(t− a)) = k − wH(−a) + k − wH(t− a)
= 2k − (wH(−a) + wH(t− a)) .

Now suppose that t 6= 0. Then, using the fact that a 7→ −a is a permutation of Z/(2k − 1)Z,
we can prove that

#St,−1,1,k = 2 + #
{
a ∈ Z/(2k − 1)Z \ {0, t} | wH(a) + wH(−(t− a)) ≤ k − 1

}
= 2 + #

{
a ∈ Z/(2k − 1)Z \ {0, t} | wH(−a) + wH(t− a) ≥ k + 1

}
= 2 + #

{
a ∈ Z/(2k − 1)Z | wH(−a) + wH(t− a) ≥ k + 1

}
= 2 + #

{
a ∈ Z/(2k − 1)Z | wH(a) + wH(t+ a) ≥ k + 1

}
= 2 + (2k − 1−#

{
a ∈ Z/(2k − 1)Z | wH(a) + wH(t+ a) ≤ k

}
)

≤ 2 + (2k − 1−#
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(t+ a) ≤ k − 1

}
)

≤ 2k + 1−#S−t,−1,1,k

≤ 2k + 1−#St,−1,1,k .

We already mentioned that #St,−1,1,k = #S−t,−1,1,k, hence we get the inequality

2#St,−1,1,k ≤ 2k + 1 .

But we also know that #St,−1,1,k is an integer, which concludes the proof for t 6= 0.
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In the case where t = 0, a similar computation yields a finer result:

#S0,−1,1,k = #
{
a ∈ Z/(2k − 1)Z | 2 wH(a) ≤ k − 1

}
=
b k−1

2 c∑
w=0

#
{
a ∈ Z/(2k − 1)Z | wH(a) = w

}
=
b k−1

2 c∑
w=0

(
k

w

)
,

which is equal to 2k−1−
(

k
(k+1)/2

)
if k is odd, and 2k−1−

(
k

k/2−1
)
−
(
k/2
k

)
/2 if k is even. Therefore

the conjecture can be naturally extended to include the case t = 0.

2.2.2 Computing the exact gap
If we rewrite the above reasoning more carefully, we find that

#St,−1,1,k = 2k−1 + (1−#
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(t+ a) = k

}
)/2 .

It is an interesting problem to find a closed-form expression for the value of2

Mk = min
t∈(Z/(2k−1)Z)∗

Mt,k ,

where

Mt,k = #
{
a ∈ Z/(2k − 1)Z | wH(a) + wH(t+ a) = k

}
.

The value for t = 0 has been computed in the previous subsection and is

M0,k =
b k−1

2 c∑
w=0

(
k

w

)
.

We denote by ∆k the following value

∆k = Mk − 1
2 ,

so that St,−1,1,k = 2k−1 −∆k.
The experimental results of Tang, Carlet and Tang [259] suggest that the following conjecture

is verified.

Conjecture 2.2.2. For k ≥ 3, one has

∆k+1 =
{

2∆k + 1 if k is even,
2∆k + 1− Γ(k−1)/2 if k is odd,

where

Γn = 1 +
n−1∑
w=0

Cw

and Cw =
(2w
w

)
/(w + 1) is the w-th Catalan number.

2We compute the minimum for t non zero as this is the interesting case for the construction of Tang, Carlet
and Tang [259]. Modifying this subsection to include the case t = 0 is trivial.
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The sequence {Γn}n∈N is sequence A155587 in the OEIS [140]. Further experimental investi-
gations conducted with Sage [250] showed that the minimal value Mk seems to be attained for
t = 1 if k is even and t = 3 if k is odd. In this subsection we prove Conjecture 2.2.2 under that
assumption, i.e.

Mk =
{
M1,k if k is even,
M3,k if k is odd.

Recall that r(a, t) = wH(a+ t)− wH(a)− wH(t) can be interpreted as the number of carries
occurring while adding a and t. Then, we can describe Mt,k as

Mt,k = #
{
a ∈

(
Z/(2k − 1)Z

)∗ | wH(a) + wH(t+ a) = k
}

= #
{
a ∈

(
Z/(2k − 1)Z

)∗ | 2 wH(a) + wH(t)− r(a, t) = k
}

= #
{
a ∈

(
Z/(2k − 1)Z

)∗ | r(a, t) = −k + wH(t) + 2 wH(a)
}

.

The next two propositions give explicit formulae for M1,k and M3,k.

Proposition 2.2.3. For k ≥ 2,

M1,k =
b(k+1)/2c∑
w=1

(
2w − 2
w − 1

)
.

Proof. We know thatM1,k = M−1,k, so we enumerate the set of a’s verifying r(a,−1) = 2 wH(a)−1
according to wH(a) or equivalently r(a,−1). The binary expansion of −1 is 1---10.

First, for any number t ∈ Z/(2k − 1)Z, 0 ≤ r(a, t) ≤ k, so we deduce that a must verify
1 ≤ wH(a) ≤ b(k + 1)/2c.

Second, for a given number of carries r, a number a verifying r(a,−1) = r must be of the
following form

−1 = 1---1---10 ,

a = ????1{

r

0---0 .

Such a description is valid even if r(a,−1) = k. So, for a given weight w, a number a verifying
wH(a) = w and r(a,−1) = 2w − 1 must be of the following form

−1 = 1---1---10 ,

a = ????1{ 2w−1

0---0 ,

with the other w − 1 bits equal to 1 anywhere among the 2w − 2 first bits. Hence, there are(2w−2
w−1

)
different a’s of weight w verifying r(a,−1) = 2w − 1.

Finally, summing up on 1 ≤ w ≤ b(k + 1)/2c, we get that M1,k =
∑b(k+1)/2c
w=1

(2w−2
w−1

)
.

Proposition 2.2.4. For k ≥ 3,

M3,k = 1 + 2
bk/2c∑
w=1

(
2w − 2
w − 1

)
.
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Proof. We proceed as in the proof of Proposition 2.2.3. The arguments are only slightly more
technical.

We know that M3,k = M−3,k, so we enumerate the set of a’s verifying r(a,−3) = 2 wH(a)− 2
according to wH(a) or equivalently r(a,−3). The binary expansion of −3 is 1---100.

First, from r(a,−3) = 2 wH(a)− 2, we deduce that 1 ≤ wH(a) ≤ bk/2c+ 1.
Second, for a given number of carries r, there are now different possibilities.
For any t ∈ Z/(2k − 1)Z, there are exactly

∑k−wH(t)−1
w=0

(
k−wH(t)

w

)
different a’s producing no

carries. Indeed, such a’s are characterized by the facts that they have no bits equal to 1 in front
of any bit of t equal to 1 and that they can not have only 1’s in front of the bits of t equal to 0.
For t = −3, the such a’s are exactly 0, 1 and 2 and both 1 and 2 have weight 1.

Then, for a given number of carries 1 ≤ r < 2bk/2c, a number a verifying r(a,−3) = r can
not have its last two bits (in front of the two bits of −3 equal to 0) equal to 1. Otherwise it
would produce k carries. So, it must be of one of the following forms

−3 = 1---1---100 ,

a = ????1{
r

0--0?0 ,

a = ???1{

r−1

0----01 .

Therefore, for a given weight w, a number a verifying wH(a) = w and r(a,−3) = 2w − 2 must be
of one of the following forms

−3 = 1---1---100 ,

a = ????1{ 2w−2

0--0?0 ,

a = ???1{2w−3

0----01 ,

with the other w − 1 bits set to 1 anywhere among the 2w − 2 remaining bits in the first case,
and the other w − 2 bits set to 1 anywhere among the 2w − 4 first bits in the second one. Hence,
there are

(2w−2
w−1

)
+
(2w−4
w−2

)
different a’s of weight w.

Finally, if k is odd and wH(a) = bk/2c+ 1, then r(a, t) = k− 1 and a must be of the following
form

−3 = 1---100 ,

a = ????101 .

There are
(2w−4
w−2

)
different such a’s. And, if k is even and wH(a) = bk/2c+ 1, then r(a, t) = k

and a must be of the following form

−3 = 1---100 ,

a = ?????11 .

There are also
(2w−4
w−2

)
different such a’s.

Therefore, we find that

M3,k = 2 +
bk/2c∑
w=2

(
2w − 2
w − 1

)
+
bk/2c+1∑
w=2

(
2w − 4
w − 2

)

= 1 + 2
bk/2c∑
w=1

(
2w − 2
w − 1

)
.



28 Chapter 2. On a conjecture about addition modulo 2k − 1

We now prove recurrence relations for M1,k and M3,k.

Corollary 2.2.5. If k is even, then

2M1,k + 1 = M3,k+1 .

If k is odd, then
M3,k − Γ(k−1)/2 = (M1,k+1 − 1)/2 .

Proof. The first equality is a simple consequence of the fact bk/2c = b(k + 1)/2c when k is even.
For the second one, we write

M3,k − Γ(k−1)/2 = 1 + 2
bk/2c∑
w=1

(
2w − 2
w − 1

)
− 1−

(k−3)/2∑
w=0

(
2w
w

)
/(w + 1)

= 2
(k−1)/2∑
w=1

(
2w − 2
w − 1

)
−

(k−3)/2∑
w=0

(
2w
w

)
/(w + 1)

= 1 +
(k−3)/2∑
w=1

(2− 1/(w + 1))
(

2w
w

)
,

and

(M1,k+1 − 1)/2 =
bk/2c+1∑
w=2

(
2w − 2
w − 1

)
/2

=
(k−1)/2∑
w=1

(
2w
w

)
/2 ,

so that we can equivalently show that(
k − 1

(k − 1)/2

)
− 2 =

(k−3)/2∑
w=1

(3− 2/(w + 1))
(

2w
w

)
,

which follows from a simple induction. For k = 3, this reduces to 0 = 0 which is indeed true; for
k > 3 odd, we have (

k + 1
(k + 1)/2

)
− 2 = 4k/(k + 1)

(
k − 1

(k − 1)/2

)
− 2

= (4− 1/(k + 1))
(

k − 1
(k − 1)/2

)
− 2 ,

and
(k−1)/2∑
w=1

(3− 2/(w + 1))
(

2w
w

)
=

(k−3)/2∑
w=1

(3− 2/(w + 1))
(

2w
w

)+ (3− 1/(k + 1))
(

k − 1
(k − 1)/2

)
.

To conclude this section, let us note that M1,k ≤ M3,k if k is even and M3,k ≤ M1,k if k is
odd. So, if we assume that these are indeed the minimal values Mk according to the parity of k,
then ∆k is given by

∆k =
{

(M1,k − 1)/2 if k even ,
(M3,k − 1)/2 if k odd ,

and the recursive formulae observed experimentally can be proved.
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2.3 The case ε = +1
We are now interested in the original conjecture proposed by Tu and Deng [264] which can be
reformulated as follows.

Conjecture 1.2.2. For k ≥ 2 and t ∈ Z/(2k − 1)Z, let St,k be the following set3:

St,k =
{
a ∈ Z/(2k − 1)Z | r(a, t) > wH(t)

}
,

and Pt,k the fraction4of modular integers in St,k:

Pt,k = #St,k/2k .

Then
Pt,k ≤

1
2 .

Tu and Deng verified computationally the validity of this assumption for k ≤ 29 in about
fifteen days on a quite recent computer [264]. We also implemented their algorithm and were
able to check the conjecture for k = 39 in about twelve hours and fifteen minutes on a pool of
about four hundred quite recent cores, and k = 40 on a subset of these computers. The algorithm
of Tu and Deng [264, Appendix] as well as our implementation are described in Section 2.9.

This conjecture is not only interesting in a cryptographic context, but also for purely arith-
metical reasons. For a fixed modular integer t ∈ Z/(2k − 1)Z, it is indeed natural to expect the
number of carries occurring when adding a random modular integer a ∈ Z/(2k − 1)Z to t to be
roughly the Hamming weight of t. Following this idea, it is of interest to study the distribution of
the number of carries around this value. Quite unexpectedly, the conjecture seems to indicate a
kind of regularity.

2.3.1 Notation
We now define the sets we are interested in.

Definition 2.3.1. Let k ≥ 2 and t ∈ Z/(2k − 1)Z. Define:

• Ct,k =
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | a+ b = t
}
, the modular integers whose sum is t;

• Ct,k,i = {(a, b) ∈ Ct,k | wH(a) + wH(b) = k + i}, the modular integers whose sum is t and
whose sum of weights is k + i for i ∈ Z;

• St,k, the modular integers whose sum is t and whose sum of weights is strictly less than k,
i.e. St,k =

⊔
i<0 Ct,k,i;

• Tt,k, the modular integers whose sum is t and whose sum of weights is strictly more than k,
i.e. St,k =

⊔
i>0 Ct,k,i;

• Et, the modular integers whose sum is t and whose sum of weights equals k; i.e. Et = Ct,k,0.

The following lemma is obvious.

Lemma 2.3.2. For k ≥ 2 and t ∈ Z/(2k − 1)Z,

Ct,k = St,k t Et t Tt,k .

3 It is easy to see that this formulation is equivalent to the original one. A formal proof will be given in
Corollary 2.3.8.

4 We are fully aware that there are only 2k − 1 elements in Z/(2k − 1)Z, but we will often use the abuse of
terminology we make here and speak of fraction, probability or proportion for Pt,k.
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2.3.2 Mean
For t 6= t′, St,k ∩ St′,k = ∅, so that

S =
2k−2⊔
t=0

St,k

=
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | wH(a) + wH(b) ≤ k − 1
}

,

and summing up according to the value of wH(a) + wH(b), we compute

#S =
k−1∑
i=0

(
2k
i

)
= 22k−1 − 1

2

(
2k
k

)
.

The following proposition shows that the bound of the conjecture is sharp.

Proposition 2.3.3. For k ≥ 2,

Et (#St,k) = 2k−1
(

1− 1√
πk

+ o

(
1√
k

))
.

Proof. Using Stirling’s approximation, we have(
2k
k

)
= 2k!
k!2 ∼

22k
√
πk

,

and we compute

Et (#St,k) = #S
2k − 1

=
22k−1 − 1

2
(2k
k

)
2k − 1

=
22k−1 − 1

2
22k
√
πk

+ o
(

22k
√
k

)
2k − 1

= 22k−1

2k − 1

(
1− 1√

πk
+ o

(
1√
k

))
= 2k−1

(
1 + 1

2k + o

(
1
2k

))(
1− 1√

πk
+ o

(
1√
k

))
= 2k−1

(
1− 1√

πk
+ o

(
1√
k

))
.

2.3.3 Zero
We now deal with the pathological case t = 0.

Proposition 2.3.4. For k ≥ 2,
S0,k = {(0, 0)} .
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Proof. Indeed (a, b) ∈ S0,k if and only if b = −a and wH(a) + wH(−a) = k if and only if a 6= 0 so
that

S0,k = {(0, 0)} .

Corollary 2.3.5. For k ≥ 2,
#S0,k = 1 .

From now on, we will always assume that t 6= 0, unless explicitly stated otherwise.

2.3.4 Parity
The function swap : (a, b) 7→ (b, a) is an involution of Ct,k,i, so that we can prove the following
statement.

Proposition 2.3.6. St,k is odd if and only if 0 ≤ wH(t) ≤ k−1
2 .

Proof. Indeed (b, a) ∈ St,k if and only if (a, b) ∈ St,k and (b, a) 6= (a, b) unless a = b, i.e. a = b =
t/2. Moreover (t/2, t/2) ∈ St,k if and only if 2 wH(t/2) ≤ k − 1, i.e. wH(t) = wH(t/2) ≤ k−1

2 .

2.3.5 Reformulation in terms of carries
The following proposition is fundamental. It brings to light the importance of the number of
carries occurring during the addition.

Proposition 2.3.7. For k ≥ 2, t ∈
(
Z/(2k − 1)Z

)∗ and i ∈ Z,

Ct,k,i = {(a, t− a) | r(−a, t) = wH(t)− i} .

Proof. For (a, b) ∈ Ct,k,i, we have a+ b = t, so that b = t− a. If a 6= 0, using Lemma 2.1.3, our
condition for Ct,k,i becomes

wH(a) + wH(t− a) = k + i⇔ wH(−(−a)) + wH(−a+ t) = k + i

⇔ k − wH(−a) + wH(−a+ t) = k + i

⇔ r(−a, t) = wH(t)− i .

We also have r(−0 = 0, t) = k = wH(t)− (wH(t)− k) so that (0, t) ∈ Ct,k,wH(t)−k.

Corollary 2.3.8. For k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗,
#St,k = # {a | r(a, t) > wH(t)} .

The following lemma allows us to prove some relations between Tt,k and S−t,k.

Lemma 2.3.9. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗. If a 6= 0 and a 6= −t, then

r(a, t) = k − r(−a,−t) .

If a = 0 or a = −t, then
r(a, t) = r(−a,−t) = k .

Proof. If a 6= 0 and a 6= −t, then, going back to the definition of r(a, t), we have

r(a, t) = wH(a) + wH(t)− wH(a+ t)
= k − wH(−a) + k − wH(−t)− k + wH(−a− t)
= k − r(−a,−t) .
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We introduce the following notation to exclude the special pairs (a, b) involving zero.

Definition 2.3.10. For k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗, we define S∗t,k as

S∗t,k = St,k \ {(0, t), (t, 0)} .

We can now relate Tt,k and S−t,k either through negation, or through translation.

Proposition 2.3.11. For k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗,
Tt,k = −S∗−t,k .

Proof. Indeed, if (a, t − a) ∈ Tt,k, then a 6= 0, a 6= t and r(−a, t) < wH(t), so that r(a,−t) >
wH(−t) and (−a,−t+ a) ∈ S∗−t,k.

Conversely if (a,−t− a) ∈ S∗−t,k, then (−a, t+ a) ∈ Tt,k.

Proposition 2.3.12. For k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗,
Tt,k = t+ S∗−t,k .

Proof. If (a,−t− a) ∈ S−t,k and a 6= 0,−t, then

r(−a,−t) = wH(−a) + wH(−t)− wH(−a− t) < wH(−t) = k − wH(t) .

Moreover

r(−t− a, t) = wH(−t− a) + wH(t)− wH(−t− a+ t)
= wH(−t− a) + (k − wH(−t))− wH(−a)
= k − r(−a,−t) ,

so that r(−t− a,−t) > wH(t) and t+ (a,−t− a) ∈ Tt,k.
Conversely, if (a, t− a) ∈ Tt,k, then a 6= 0, t and a− t ∈ S∗−t,k.
We could also have used the swap function and the previous corollary.

These relations then relate St,k and S−t,k.

Corollary 2.3.13. Let k ≥ 2. If 2t 6= −t, then

#St,k + #S−t,k ≤ 2k − 1 .

Otherwise
#St,k + #S−t,k ≤ 2k .

Proof. We already know that St,k t Tt,k ⊂ Ct,k so that #St,k + #S−t,k ≤ 2k + 1. In fact
wH(t+ t) = wH(2t) = wH(t) so that (2t,−t) and (−t, 2t) are in Et, i.e. neither in St,k nor in Tt,k.
Finally

#St,k + #S−t,k ≤
{

2k − 1 if 2t 6= −t ,
#St,k + #S−t,k ≤ 2k if 2t = t .

We can now prove the conjecture in the very specific case where t ' −t.
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Theorem 2.3.14. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗. If t ' −t, then

#St,k ≤ 2k−1 − 1

if 2t 6= −t, and

#St,k ≤ 2k−1

otherwise.

Proof. t ' −t so that #S−t,k = #St,k. If 2t 6= −t, then Corollary 2.3.13 becomes

#St,k ≤ 2k−1 − 1
2 .

But #St,k ∈ N, so that the following inequality holds:

#St,k ≤ 2k−1 − 1 .

If 2t = −t, then only the following one is true:

#St,k ≤ 2k−1 .

2.3.6 A combinatorial proposition of independent interest

The following quantities may be used to study #St,k.

Definition 2.3.15. Let d and n be positive integers and

• Σ(d, n) =
∑n
l=0 2−l

(
l+d
d

)
,

• ∆(d, n) = 2−n
(
n+d+1

d

)
d−n
2d+2 .

They are related through the following combinatorial identity.

Proposition 2.3.16. For any d, n and e positive integers,

Σ(d+ e, n+ e) = 2eΣ(d, n) +
e∑
l=1

2e−l∆(d+ l − 1, n+ l − 1) .
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Proof. For e = 1 and d and n fixed, we compute

Σ(d+ 1, n+ 1) =
n+1∑
l=0

2−l
(
l + d+ 1
d+ 1

)

=
n+1∑
l=0

2−l
((

l + d

d

)
+
(
l + d

d+ 1

))

=
n∑
l=0

2−l
(
l + d

d

)
+ 2−n−1

(
n+ d+ 1

d

)

+ 1
2

(
n+2∑
l=0

2−(l−1)
(

(l − 1) + d+ 1
d+ 1

))

− 1
22−n−1

(
n+ d+ 2
d+ 1

)
= Σ(d, n) + 2−n−1

(
n+ d+ 1

d

)
+ 1

2Σ(d+ 1, n+ 1)− 1
22−n−1

(
n+ d+ 2
d+ 1

)
= Σ(d, n) + 1

2Σ(d+ 1, n+ 1)

+ 2−n−1
(
n+ d+ 1

d

)(
1− n+ d+ 2

2d+ 2

)
= Σ(d, n) + 1

2Σ(d+ 1, n+ 1) + 1
2∆(d, n) .

The result follows by induction.

Corollary 2.3.17. For any d ≥ 0 and e ≥ 0,

Σ(d+ e, n+ e) ≥ 2eΣ(d, n)

if and only if n ≤ d.
Proof. Indeed ∆(d+ i, n+ i) ≥ 0 if and only if n ≤ d.

As a byproduct, we get the following well-known formula [122, formula 5.20].
Corollary 2.3.18. For any d positive,

Σ(d, d) = 2d .

Proof. When n = d, the proposition becomes

Σ(d+ e, d+ e) = 2eΣ(0, 0) = 2e .

When n→∞, the sum converges and we get the following classical result.
Proposition 2.3.19. Let d be a positive integer. Then

Σ(d, ”n =∞”) = 2d+1 .

Proof. It follows from the classical identity

1
(1− z)n+1 =

∞∑
k=0

(
n+ k

n

)
zk .
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2.4 A block splitting pattern
2.4.1 General situation
In this section we often compute Pt,k = #St,k/2k rather than #St,k. Therefore, we use the words
proportion or probability in place of cardinality. Moreover, in this subsection, we often compute
cardinalities considering all the binary strings on k bits, i.e. including 1...1 and 0...0. Recall
that the modular integer 0 is considered to act as the binary string 1...1. Hence, the binary
string 0...0 should be discarded when doing final computation of Pt,k. Such a choice ensures
that the random variables we construct are truly independent.

We split t 6= 0 (once correctly rotated, i.e. we multiply it by a power of 2 so that its binary
expansion on k bits begins with a 1 and ends with a 0) in blocks of the form [1∗0∗] (i.e. as many
1’s as possible followed by as many 0’s as possible) and write it down as follows.

Definition 2.4.1.

t =
α1 {

1---1

β1 {

0---0
t1

...

αi {
1---1

βi {
0---0
ti

...

αd {

1---1

βd {

0---0
td

with d the number of blocks, αi and βi the numbers of 1’s and 0’s of the i-th block ti. We define
B =

∑d
i=1 βi = k − wH(t).

We define corresponding values for a (a modular integer to be added to t) as follows.

Definition 2.4.2.

t =
α1 {

1---1

β1 {

0---0...

αi {

1---1

βi {

0---0...

αd {

1---1

βd {

0---0 ,

a = ?10-0{

γ1

?01-1{

δ1

...?10-0{

γi

?01-1{

δi

...?10-0{

γd

?01-1{

δd

,

i.e. γi is the number of 0’s in front of the end of the 1’s subblock of ti and δi is the number of 1’s
in front of the end of the 0’s subblock of ti.

One should be aware that γi’s and δi’s depend on a and will be considered as variables.
We first “approximate” r(a, t) by

∑d
i=0 αi − γi + δi ignoring the two following facts:

• if a carry goes out of the i − 1-st block (we say that it overflows) and δi = βi, the 1’s
subblock produces αi carries, whatever value γi takes;

• and if no carry goes out of the i − 1-st block (we say that it is inert), the 0’s subblock
produces no carries, whatever value βi takes.

When computing that “approximation” of the number of carries produced by the i-th block, we
do as if a carry always goes out of the i− 1-st block and no carry goes out of the 0’s subblock.
So this is actually the number of carries produced by the i− 1-st block only in that situation.

Then, r(a, t) > wH(t) becomes “approximately”
∑d
i=1 γi <

∑d
i=1 δi and the distributions for

γi and δi, considered as random variables, are given in Table 2.1.
Indeed, for 0 ≤ ci < αi,

P (γi = ci) = 2−ci−1 ,

because we have to set ci bits to 0 and one bit in front of them to 1 leaving the other bits free,
and

P (γi = αi) = 2−αi
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Table 2.1: Distributions of γi and δi

ci = 0 1 . . . ci . . . αi − 1 αi αi + 1 . . .
P (γi = ci) 1/2 1/4 . . . 1/2ci+1 . . . 1/2αi 1/2αi 0 . . .

di = 0 1 . . . di . . . βi − 1 βi βi + 1 . . .
P (δi = di) 1/2 1/4 . . . 1/2di+1 . . . 1/2βi 1/2βi 0 . . .

and not 2−αi−1 because the subblock is already full of 0’s and there is no 1 in front of them.
The computations are similar for P (δi = di) with 0 ≤ di ≤ βi. Moreover, all the γi’s and δi’s

are independent, i.e. P (γ1 = c1, . . . , γd = cn, δ1 = d1, . . . , δd = dd) =
∏d
i=1 P (γi = ci)P (δi = di).

We modify γi and δi to take the first fact into account and only do as if a carry always goes
out of the i− 1-st block:

• if δi 6= βi, we define δ′i = δi and γ′i = γi as before;

• if δi = βi, we define δ′i = δi = βi and γ′i = 0 (i.e. the carry coming from the previous block
goes through the 0’s subblock so the 1’s subblock always produces αi carries).

Then,
∑d
i=0 αi− γ′i + δ′i should be a better “approximation” of r(a, t), but the γ′i’s and δ′i’s are no

longer pairwise independent. Indeed, within the same block, γ′i and δ′i are correlated. However,
each block remains independent of the other ones and the distributions are given in Table 2.2.

Table 2.2: Distributions for γ′i and δ′i

ci = 0 1 . . . ci . . . αi − 1 αi αi + 1 . . .

P (γ′i = ci) 1+1/2βi
2

1−1/2βi
4 . . . 1−1/2βi

2ci+1 . . . 1−1/2βi
2αi

1−1/2βi
2αi 0 . . .

di = 0 1 . . . di . . . βi − 1 βi βi + 1 . . .
P (δ′i = di) 1/2 1/4 . . . 1/2di+1 . . . 1/2βi 1/2βi 0 . . .

Taking the second fact into account is more difficult, and we do it in an iterative way.
We first take care of the a’s such that r(a, t) = k, that is exactly those with only 1’s in front

of the 0’s of t:

• if ∀i, δi = βi, then δ′′i = δi and γ′′i = γ′i = 0.

We now suppose that there exists i0 such that δi0 6= βi0 . We first define γ′′i0 , then δ
′′
i0−1, γ′′i0−1,

. . . , γ′′i0+1 and finally δ′′i0 :

• set γ′′i0 = γi0 , i = i0 − 1;

• do:

– δ′′i = δi if γi+1 6= αi+1, 0 otherwise,
– γ′′i = γi if δ′′i 6= βi, 0 otherwise,
– i = i− 1;

while i 6= i0 − 1.
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The γ′′i ’s and δ′′i ’s are no longer pairwise independent, even between different blocks, but r(a, t) =∑
d αi − γ′′i + δ′′i and the following proposition is true.

Proposition 2.4.3. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗. Then a ∈ St,k if and only if
∑
d γ
′′
i <∑

d δ
′′
i .

Remember that t is considered to be fixed so that the αi’s and the βi’s are considered to be
constants, whereas the other quantities defined in this section depend on a which ranges over all
binary strings on k bits and will be considered as random variables, whence the vocabulary we
use.

2.4.2 Combining variables
In the previous section we defined two variables for each block. However, we are only really
interested in the number of carries, so one should suffice, whence the following definition.

Definition 2.4.4. We define εi = γi + βi − δi, as depicted below:

t =
α1 {

1---1

β1 {
0---0...

αi {
1---1

βi {
0---0...

αd {

1---1

βd {

0---0 ,

a = ?10-0?0{

ε1

1-1...?10-0?0{

εi

1-1...?10-0?0{
εd

1-1 .

Then εi is “approximately” the number of carries that do not occur in the i-th block. As in
the previous subsection, we define ε′i = γ′i + βi − δ′i and ε′′i = γ′′i + βi − δ′′i and Proposition 2.4.3
is reformulated as follows.

Proposition 2.4.5. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗. Then a ∈ St,k if and only if
∑
d ε
′′
i <∑

d βi = B = k − wH(t).

2.4.3 One block: d = 1
If t is made of only one block, we compute closed-form expressions for #Ct,k,i = 2kP (ε′′ = k − i)
for all i where P (ε′′ = k − i) is nothing but the probability that i carries occurs while adding t
and a, or equivalently the probability that k − i carries are lost.

Such a t 6= 0 (or an equivalent one) is written t = 2k − 2k−α (i.e. t = 1...1︸ ︷︷ ︸
α

0...0︸ ︷︷ ︸
β=k−α

) and its

weight is wH(t) = α with α ≥ 1.
In the following proposition, the computations are made without including the binary string

0...0 in contrast with what was done in Subsection 2.4.1 because it does not complicate them
too much.

Proposition 2.4.6. The distribution of ε′′ is as follows:

P (ε′′ = 0) = 2−β ;

for 0 < e < α+ β,

P (ε′′ = e) = 2−|e−β| 1− 4M−m

3 ,

with
m = min(e, α) and M = max(0, e− β) ;

and
P (ε′′ = α+ β) = 2−α − 2−α−β .



38 Chapter 2. On a conjecture about addition modulo 2k − 1

Proof. If δ = β, i.e. if there are only 1’s in front of the 0’s of t, then γ′′ = 0 and we lose no carries
whatever value γ takes, i.e. whatever is in front of the 1’s of t. Moreover, such numbers are the
only ones such that we lose no carries and the block overflows, therefore

P (ε′′ = 0) = P (δ = β) = 2−β .

One must be aware that we included the binary string 1...1, but remember that it accounts for
the modular integer 0.

When δ 6= β and γ = α, we lose all the carries whatever value δ takes, and that is the only
possibility to do so. Therefore

P (ε′′ = α+ β) = P (γ = α, δ 6= β)− 2−α−β = 2−α − 2−α−β .

We subtract 2−α−β because we do not want to count the binary string 0...0.
Finally, when δ 6= β and γ 6= α, the situation is described below:

t =←
α {

1---1

β {

0---0←,

a = ?10-0?0{
ε

1-1 .

A carry comes out of the block and goes back into itself. Then, we lose exactly e = ε′′ = γ+β−δ = ε
carries and 0 < e < α+ β − 1. We have the following constraints:

0 ≤ γ ≤ α− 1 and 0 ≤ δ ≤ β − 1 ,

but δ = β + γ − e so γ must be bounded as follows:

M = max(0, e− β) ≤ γ ≤ m− 1 = min(e, α)− 1 .

Finally, P (ε′′ = e) for 0 < e < α+ β is computed as

P (ε′′ = e) =
m−1∑
γ=M

2−γ−δ−2 =
m−1∑
γ=M

2e−β−2γ−2

= 2e−β−2M−2
m−M−1∑
γ=0

2−2γ = 2−|e−β|−2 1− (1/4)m−M

3/4

= 2−|e−β| 1− 4M−m

3 .

The probabilities that we computed above will be useful in the next sections, so we define
them more formally.

Definition 2.4.7. For 0 ≤ e < α+ β, we define

P (e) =
{

2−β if e = 0
2−|e−β| 1−4M−m

3 if e 6= 0
,

with
m = min(e, α) and M = max(0, e− β) ;

the values of α and β will be clear from the context. Morally, P (e) will be equal to P (ε′′ = e) for
suitable values of e.
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Summing up the above formulae, we get the following theorem.

Theorem 2.4.8. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗ made of one block. Then

Pt,k =
{

2−α−β 1−2−2α

3 if 1 ≤ α ≤ k−1
2 ,

1+2−2β+1

3 if k−1
2 ≤ α ≤ k − 1 .

For α = 1, it reads S1,k = 2k−2 + 1 and for α = k − 1, it reads S−1,k = 2k−1.

Proof. Propositions 2.4.5 and 2.4.6 say that

Pt,k =
β−1∑
e=0

P (e) .

Moreover, for such values of e, β− e is always positive so that |β − e| = β− e and M = 0. Finally,
m = e as long as e ≤ α which is always true if and only if β − 1 ≤ α or equivalently k−1

2 ≤ α.
If 0 < α < k−1

2 , then Pt,k is computed as

Pt,k = 2−β +
α−1∑
e=1

2e−β 1− 4−e

3 +
β−1∑
e=α

2e−β 1− 4−α

3

= 2−β + 2−β

3

α−1∑
e=1

(2e − 2−e) + 2−β(1− 4−α)
3

β−1∑
e=α

2e

= 2−β + 2−β

3
(
(2α − 1) + 2 · (2−α − 1)

)
+ 2−β(1− 4−α)

3 2α(2β−α − 1)

= 2−β + 2α−β − 2−β + 2−α−β+1 − 2−β+1

3 + 1− 2−2α − 2α−β + 2−α−β

3

= 2−β + 1− 3 · 2−β − 3 · 2−α−β − 2−2α

3

= 2−α−β 1− 2−2α

3 .

If k−1
2 ≤ α < k, then the calculation is somewhat easier:

Pt,k = 2−β +
β−1∑
e=1

2e−β 1− 4−e

3

= 2−β + 2−β

3

β−1∑
e=1

(2e − 2−e)

= 2−β + 2−β

3
(
(2β − 1) + 2 · (2−β − 1)

)
= 2−β + 1− 2−β + 2−2β+1 − 2−β+1

3

= 1 + 2−2β+1

3 .
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2.4.4 A helpful constraint: mini(αi) ≥ B − 1

Until the end of this section we add the following constraint on t:

min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − wH(t)− 1 .

That condition tells us that, if a is in St,k, then a carry has to go through each subblock of 1’s,
i.e. γ′′i 6= αi, otherwise too many carries would already be lost in the corresponding single block.
Indeed, if γ′′i = αi, then δ′′i < βi and ε′′i = γ′′i + βi − δ′′i ≥ αi + 1 ≥ B. This obviously implies
that

∑d
i=1 ε

′′
i ≥ B and that a 6∈ St,k. Therefore, if a ∈ St,k, then each block has to overflow. In

such a situation, the blocks are therefore kind of independent.
Recall that the definitions of the quantities γ′i, δ′i, γ′′i and δ′′i in Subsection 2.4.1 trivially

imply that the inequality
∑d
i=1 γ

′
i <

∑d
i=1 δ

′
i always implies the inequality

∑d
i=1 γ

′′
i <

∑d
i=1 δ

′′
i .

Formulated in a different way, it means that the inequality
∑d
i=1 γ

′
i <

∑d
i=1 δ

′
i always implies

that a ∈ St,k. With our additional constraint the converse, which is obviously false in general,
becomes true.

In fact, whether the constraint is verified or not:

• if ∀i δ′′i = βi, then there are only 1’s in front of the 0’s of t, and both definitions coincide:
γ′′i = γ′i = 0 and δ′′i = δ′i = βi — we always get k carries whatever values the γi’s take —;

• if ∀i γ′′i 6= αi, then a carry goes out of each subblock of 1’s, and both definitions also
coincide: γ′′i = γ′i and δ′′i = δ′i.

Finally, if the constraint is verified and we are not in one of the above two situations, then there
are indices i and j such that δ′′i 6= βi and γ′′j = αj , which implies that

∑d
i=1 γ

′′
i ≥ B >

∑d
i=1 δ

′′
i .

Moreover,
∑d
i=1 γ

′
i ≥

∑d
i=1 γ

′′
i and B >

∑d
i=1 δ

′
i, so that

∑d
i=1 γ

′
i ≥

∑d
i=1 δ

′
i.

To summarize, we have just shown that, in our constrained case, there is an equivalence
between a ∈ St,k and

∑d
i=1 γ

′
i <

∑d
i=1 δ

′
i. Hence, we can formulate Pt,k as follows.

Proposition 2.4.9. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗ verifying the constraint

min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − wH(t)− 1 .

Then

Pt,k =
B∑

∆=1

∆−1∑
Γ=0

2−∆−Γ−2d
∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

22#{i|δi=βi}1δ′
i
=βi,γ′i=0 .
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Proof.

Pt,k = P

[∑
d

γ′ <
∑
d

δ′

]

=
B∑

∆=1

∆−1∑
Γ=0

∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

P (γ′, δ′)

=
B∑

∆=1

∆−1∑
Γ=0

∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

∏
d

P (γ′i, δ′i)

=
B∑

∆=1

∆−1∑
Γ=0

∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

∏
d

P (δ′i)P (γ′i | δ′i)

=
B∑

∆=1

∆−1∑
Γ=0

∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

2−∆−d+#{i|δi=βi}
∏
d

P (γ′i | δ′i)

=
B∑

∆=1

∆−1∑
Γ=0

∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

2−∆−Γ−2d+2#{i|δi=βi}1δ′
i
=βi,γ′i=0

=
B∑

∆=1

∆−1∑
Γ=0

2−∆−Γ−2d
∑∑
d
γ′i=Γ

0≤γ′i

∑∑
d
δ′i=∆

0≤δ′i≤βi

22#{i|δi=βi}1δ′
i
=βi,γ′i=0 .

The above discussion also shows that a ∈ St,k is equivalent to
∑
d ε
′
i < k − wH(t). Moreover,

as was already mentioned above, if that inequality is verified, then each block overflows into the
next one. That is exactly the situation that was studied in the previous subsection when t was
made of one block, so that the computations we did there are still valid (only to compute #Ct,k,i
with i < 0 where only a’s in St,k are enumerated, but not with i ≥ 0) and we get the following
proposition.
Proposition 2.4.10. Let k ≥ 2 and t ∈

(
Z/(2k − 1)Z

)∗ verifying
min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − wH(t)− 1 .

Then

Pt,k =
B−1∑
E=0

∑∑
d
ei=E

0≤ei

∏
d

P (ei)

= 2−B3−d
B−1∑
E=0

2−E
∑∑
d
ei=E

0≤ei

∏
d

(
4max(1,min(ei,βi)) − 1

)
.
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Proof. We replace α by αi and β by βi in the expression of Definition 2.4.7 and get for 1 ≤ ei
that

P (ei) = 2−|ei−βi| 1− 4max(0,ei−βi)−ei

3

= 2−βi+ei−2 max(0,ei−βi)+2 max(0,ei−βi)−2ei 4−max(0,ei−βi)+ei − 1
3

= 2−βi−ei 4min(ei,βi) − 1
3 .

Considering the case ei = 0 gives the complete formula.

Using that formula, it is possible to compute the exact value of Pt,k for a given d and a
corresponding set of βi’s. It is also worth noting that the ordering of the βi’s does not matter
because each subblock behaves the same when a is in St,k — more precisely, it overflows — whence
the following definition.

Definition 2.4.11. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗ verifying
min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − wH(t)− 1 .

Then we define fd(β1, . . . , βd) as

fd(β1, . . . , βd) = Pt,k .

The value of Pt,k does not depend on the particular choice of t verifying the constraint; in
particular it depends neither on the values of k and the αi’s, nor on the exact ordering of the
βi’s, so that the function fd is well defined.

It is in fact enough to have mini(αi) ≥ B − 2 to ensure that a carry goes through each block
when a ∈ St,k, but when equality holds the blocks are not independent anymore.

2.4.5 Analytic study: d = 2
In this subsection we study the function fd using analytic means when d = 2.

Proposition 2.4.12. The function f2 is given by

f2(x, y) = 11
27 + 4−x

(
2
9x−

2
27

)
+ 4−y

(
2
9y −

2
27

)
+ 4−x−y

(
20
27 −

2
9(x+ y)

)
.

Proof. Let t ∈
(
Z/(2k − 1)Z

)∗ be any number made of two blocks corresponding to β1 and β2
and such that min(α1, α2) ≥ β1 + β2 − 1. Then

Pt,k = f2(β1, β2) .
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According to Proposition 2.4.10, Pt,k is given by

Pt,k =
B−1∑
E=0

∑
e1+e2=E
0≤e1,e2

P (e1)P (e2)

= 2−β1−β2(Σe1 6=0,e2 6=0

+ Σe1=0,e2 6=0 + Σe1 6=0,e2=0 + Σe1=0,e2=0) ,

where

Σe1 6=0,e2 6=0 =
β1−1∑
e1=0

2e1 − 2−e1

3

β2−1∑
e2=0

2e2 − 2−e2

3 +
β1+β2−1−e1∑

e2=β2

2−e2
4β2 − 1

3


+
β1+β2−1∑
e1=β1

2−e1
4β1 − 1

3

β1+β2−1−e1∑
e2=0

2e2 − 2−e2

3

Σe1=0,e2 6=0 =
β2−1∑
e2=0

2e2 − 2−e2

3 +
β1+β2−1∑
e2=β2

2−e2
4β2 − 1

3

Σe1 6=0,e2=0 =
β1−1∑
e1=0

2e1 − 2−e1

3 +
β1+β2−1∑
e1=β1

2−e1
4β1 − 1

3

Σe1=0,e2=0 = 1 .

An easy but quite lengthy and error-prone calculation, which can be checked with a symbolic
calculus software, leads to the desired expression.

This result can also be seen as a consequence of Proposition 2.5.1 in Section 2.5.

The graph of f2, computed with Sage [250], is given in Figures 2.1 and 2.2.

Proposition 2.4.13. For all x, y ≥ 1 in N,

f2(x, y) ≤ 1
2 .

Proof.

∂f2

∂x
(x, y) = 2

94−x ln 4(4−y − 1)x

+ 2
94−x

(
4−y ln 4

(
y − 10

3

)
− 4−y + 1

3 ln 4 + 1
)

,

so that for y > 0, ∂f2
∂x (x, y) ≥ 0 is equivalent to

x ≤
( 1

3 + 1
2 ln 2 )4y + y − 1

2 ln 2 −
10
3

4y − 1 .

We denote the left hand side of that inequality by h(y). Unfortunately, it happens that h(y) > 1
when y ≥ 1. However, f2(max(1, h(y)), y) ≤ 1

2 for y ≥ 1, so that f2(x, y) ≤ 1
2 for x, y ≥ 1 in R.

We do not prove that here for the sake of simplicity, but only that f2(x, y) ≤ 1
2 for x, y ≥ 1 in N

which is the case we are really interested in.
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Figure 2.1: Graph of f2(x, y) for 0 ≤ x, y ≤ 8

Figure 2.2: Zoom on the graph of f2(x, y) for 1 ≤ x, y ≤ 5
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Let g(x) = 4−x
(
x− 1

3
)
. Then its derivative is

g′(x) =
(

1 + ln 4
3 − ln 4x

)
4−x ,

so that for x ≥ 0, g′(x) ≥ 0⇔ x ≤ 1
2 ln 2 + 1

3 = xmax.
Moreover 1 < xmax ≈ 1.054 < 2 so that

g(x) ≤ max(g(1), g(2)) = g(1) = 1
6 .

Finally, we get that
f2(x, y) ≤ 11

27 + 1
27 + 1

27 + 1
54 = 1

2 .

It should be remarked that f2(x, y)→ 11
27 when x, y →∞ which agrees with the results for

d = 2 of Subsection 2.6.1.
We have just proved the following theorem.

Theorem 2.4.14. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗ verify the following constraints:

• t is made of two blocks, i.e. d = 2;

• the two blocks of 1’s of t are of length at least B − 1, i.e. α1, α2 ≥ B − 1.

Then
#St,k ≤ 2k−1 .

2.4.6 Extremal value: βi = 1
We now add another constraint: the 0’s of t are isolated, that is

∀i, βi = 1 .

The previous cosntraint then becomes

min
i

(αi) ≥ B − 1 = d− 1 .

Theorem 2.4.15. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗ verify the two following constraints:

• ∀i, βi = 1,

• mini(αi) ≥ B − 1 = d− 1.

Then
#St,k = 2k−1 .

Proof. With the additional constraint, for ei = 0, P (ei) is

P (0) = 2−1 ;

and for 0 < ei < B,

P (ei) = 2−|ei−1| 1− 4M−m

3

= 2−ei+1 1− 4ei−1−ei

3
= 2−ei−1 ,
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so that P (ei) = 2−ei−1 for all the values of ei we are interested in.
According to Proposition 2.4.10, Pt,k is now

Pt,k =
d−1∑
E=0

∑∑
d
ei=E

0≤ei

d∏
i=1

2−ei−1

=
d−1∑
E=0

2−E−d
∑∑
d
ei=E

0≤ei

1

= 2−d
d−1∑
E=0

2−E
(
E + d− 1
d− 1

)
= 2d−1

2d

= 1
2 .

In that case we can also see ε′i = γ′i + (1− δ′i) = γi(1− δi) as the number of 0’s at the end of
each block:

t = 1--10...1--10...1--10 ,

a = ?10-0{

ε′1

...?10-0{

ε′i

...?10-0{
ε′d

,

and directly compute P (ε′′i = ei) = P (ε′i = ei) = 2−ei−1 for the values of ei we are interested
in.

As a byproduct, we get an interesting combinatorial equality.

Corollary 2.4.16. Let d ≥ 1. Then

d−1∑
Γ=0

2−Γ
d∑

∆=Γ+1

2∆
(
d

∆

)(
Γ + d−∆− 1
d−∆− 1

)
= 22d−1 .

Proof. Indeed, using Proposition 2.4.9, Pt,k is written

Pt,k =
d∑

∆=1

∆−1∑
Γ=0

2−Γ+∆−2d
∑∑
d
δ′i=∆

δ′i=0,1

∑∑
d
γ′i=Γ

0≤γ′i

1δ′
i
=1,γ′

i
=0

= 2−2d
d−1∑
Γ=0

2−Γ
d∑

∆=Γ+1

2∆
(
d

∆

)(
Γ + d−∆− 1
d−∆− 1

)
.

And using Corollary 2.3.13, we prove the conjecture in the following additional case.

Corollary 2.4.17. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗ verify the two following constraints:

• ∀i, βi = 1,
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• mini(αi) ≥ B − 1 = d− 1.

Then
#S−t,k ≤ 2k−1 .

Proof. According to Corollary 2.3.13, #St,k + #S−t,k ≤ 2k so that #S−t,k ≤ 2k−1.

The theoretical study of the conjecture, together with experimental results obtained with
Sage [250], lead us to conjecture that the converse of Theorem 2.4.15 is also true, i.e. the numbers
of Theorem 2.4.15 are the only ones reaching the bound of Conjecture 1.2.2, which is obviously
stronger than the original conjecture.

Conjecture 2.4.18. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗. Then St,k = 2k−1 if and only if t
verifies the two following constraints:

• ∀i, βi = 1,

• mini(αi) ≥ B − 1 = d− 1.

2.5 A closed-form expression for fd
The main goal of this section is to describe a closed-form expression for fd(β1, . . . , βd) and study
its properties.

After giving some experimental results in Subsection 2.5.1, we will prove that fd has the
following “polynomial” expression.

Proposition 2.5.1. For any d ≥ 1, fd can be written in the following form:

fd(β1, . . . , βd) =
∑

I⊂{1,...,d}

4−
∑

i∈I
βiP#I

d ({βi}i∈I) ,

where Pnd is a symmetric multivariate polynomial in n variables of total degree d − 1 and of
degree d − 1 in each variable if n > 0. If n = 0, then P 0

d = 1
2 (1 − Pd), the value computed in

Corollary 2.6.16.

The proof of this result covers three subsections:

1. in Subsection 2.5.2, we split the expression giving fd as a sum into smaller pieces and
establish a recursion relation in d;

2. in Subsection 2.5.3, we study the expression of the residual term appearing in this relation;

3. in Subsection 2.5.4, we put the pieces back together to conclude.

Once this proposition is shown, we will be allowed to denote by ad,n(i1,...,in) the coefficient of
Pnd (x1, . . . , xn) of multi-degree (i1, . . . , in) normalized by 3d. In Subsection 2.5.5, we give simple
expressions for some specific values of ad,n(i1,...,in) as well as the following general expression.

Proposition 2.5.2. Suppose that i1 ≥ · · · ≥ im 6= 0 > im+1 = 0 = · · · = in = 0 and m > 0. Let
l denote the sum l = i1 + . . .+ in > 0 (i.e. the total degree of the monomial). Then

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m ,



48 Chapter 2. On a conjecture about addition modulo 2k − 1

where
(

l
i1,...,in

)
is a multinomial coefficient and bd,nl,m is defined as

bd,nl,m =
n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|! .

Within the above expression for bd,nl,m, the following notation is used:

• I = {m+ 1, . . . ,m+ i};

• J = {n+ 1, . . . , n+ j};

• S =
∑
j∈I∪J,1≤j≤m kj;

• h = d−m− j− i;

and

Cj =

 Aj + Bj+1
j+1 if j > 0 ,

− 13
6 if j = 0 ,

1 if j = −1 .

Here, Ai is a sum of Eulerian numbers and Bi a Bernoulli number; both are described in
Subsection 2.5.3.

Finally, we prove in Subsection 2.5.6 an additional property predicted experimentally.

Proposition 2.5.3. For 0 < j ≤ i,

ad,n(i,j,...) = i+ 1
j

ad,n(i+1,j−1,...) ;

i.e. the value of bd,nl,m does not depend on m.

2.5.1 Experimental results
For d = 1, by Theorem 2.4.8, we have

f1(β1) = 2
34−β1 + 1

3 .

The case d = 2 has been treated in Subsection 2.4.5 and leads to a similar expression:

f2(β1, β2) = 11
27 + 4−β1

(
2
9β1 −

2
27

)
+ 4−β2

(
2
9β2 −

2
27

)
+ 4−β1−β2

(
20
27 −

2
9(β1 + β2)

)
.

In both these cases, fd has the correct form and has been shown to verify Conjecture 1.2.2.
The tables in Appendix A give the normalized coefficients ad,n(i1,...,in) of the multivariate

polynomials Pnd for the first few d’s. All of these data were computed symbolically using Sage [250],
Pynac [268] and Maxima [267]. As a byproduct of this work, the interface between Sage [250]
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and Maxima [267] was completely rewritten5. The functions used for internal comparison in
Pynac [268] were also completely rewritten6. Graphs of some functions derived from fd are given
in Figures 2.3, 2.4 and 2.5.

Figure 2.3: Graph of fd(βi) for βi = 1, i 6= 1

Figure 2.4: Graph of fd(βi) for βi = 2, i 6= 1

Moreover, looking at the tables in Appendix A, some additional properties seem to be verified.
Here are some examples. The value of ad,d(1,...,1,0) is easy to predict:

ad,d(1,...,1,0) = (−1)d+12 ;

5http://trac.sagemath.org/sage_trac/ticket/7377
6http://trac.sagemath.org/sage_trac/ticket/9880

http://trac.sagemath.org/sage_trac/ticket/7377
http://trac.sagemath.org/sage_trac/ticket/9880
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Figure 2.5: Graph of fd(βi) for βi = 10, i 6= 1

we prove this in Proposition 2.5.19. There is a recursion relation between coefficients with different
d’s:

ad,n+1
(i1,...,in,0) + ad,n(i1,...,in) = 3ad−1,n

(i1,...,in) ;

this is Corollary 2.5.18. There is a relation between coefficients with a given d:

ad,n(i,j,...) = i+ 1
j

ad,n(i+1,j−1,...) ;

this is Proposition 2.5.3.

2.5.2 Splitting the sum into atomic parts
We consider a general d ≥ 1. From Proposition 2.4.10, we have

fd(β1, . . . , βd) =
B−1∑
E=0

∑∑
d
ei=E

0≤ei

∏
d

P (ei) ,

where P (ei) has three different expressions according to the value of ei:

P (ei) =


2−βi if ei = 0 ,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi ,
2βi−2−βi

3 2−ei if βi ≤ ei .

Let us denote for a vector X ∈ {0, 1, 2}d:

• the i-th coordinate by Xi with 1 ≤ i ≤ d;

• jk = # {i | Xi = k} for 0 ≤ k ≤ 2;

• B0,1 =
∑
{i|Xi 6=2} βi;
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• E1 =
∑
{i|Xi=1} ei.

We can now define subsets SdX of the sum in Proposition 2.4.10 where each P (ei) has a specific
behavior given by the value of the i-th coordinate of such a vector X.

SdX =
B−1∑
E=0

∑∑
d
ei=E

ei=0 if Xi=0
0<ei<βi if Xi=1
βi≤ei if Xi=2

n∏
i=1

P (ei)

=
B−1∑
E=0

∑∑
d
ei=E

ei=0 if Xi=0
0<ei<βi if Xi=1
βi≤ei if Xi=2

 ∏
{i|Xi=0}

2−βi
∏

{i|Xi=1}

2−βi
3 (2ei − 2−ei)

∏
{i|Xi=2}

2βi − 2−βi
3 2−ei

 ,

so that

fd(β1, . . . , βd) =
∑

X∈{0,1,2}d

SdX .

Here we drop the dependency on the βi’s for concision. The sum SdX has already some properties
of fd.

The following lemma is a direct consequence of the expression of SdX as a sum.

Lemma 2.5.4. The function SdX is symmetric for the three sets {1 ≤ i ≤ d | Xi = k} where
k ∈ {0, 1, 2}, i.e. it takes the same value when two variables whose indices are in the same set are
exchanged. Moreover, to compute SdY where Y is any permutation of X, one has just to permute
the βi’s accordingly, i.e. SdY (β1, . . . , βd) = SdX(βσ(1),...,σ(d)) if Yσ(i) = Xi.

The previous lemma shows that it is enough to study the X’s such that

X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2) .

The following lemma gives the value of SdX for X = 0 and is also a trivial consequence of the
expression of SdX as a sum.

Lemma 2.5.5. Sd(0,...,0) = 2−
∑d

i=1
βi and Sd(2,...,2) = 0.

And when j2 = 0, SdX has a simple expression.

Proposition 2.5.6. If j2 = 0 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1), then

SdX = 2−
∑j0

i=1
βi

3j1

d∏
i=j0+1

(1 + 2 · 4−βi − 3 · 2−βi) .
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Proof. This is a simple consequence of the fact that we can sum up over each ei independently.

SdX = 2−B

3j1

∑
0<ei<βi
j0+1≤i≤d

d∏
i=j0+1

(2ei − 2−ei) = 2−B

3#j1

d∏
i=j0+1

∑
0<ei<βi

(2ei − 2−ei)

= 2−B

3j1

d∏
i=j0+1

(2βi + 2 · 2−βi − 3)

= 2−
∑j0

i=1
βi

d∏
i=j0+1

1 + 2 · 4−βi − 3 · 2−βi
3 .

The next proposition is the key to our proof. It exhibits a recursion relation between SdX for
different values of d and will reduce the proof of Proposition 2.5.1 to the case where j2 = 0 and
to the study of a residual term denoted by T dX .

Proposition 2.5.7. For j2 ≥ 1 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2), we have

SdX = 21− 4−βd
3 Sd−1

X − 2T dX ,

where

T dX = 4−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ei − 1)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1 .

Proof. Replacing P (ei) by its expression, we get

SdX =
j0∏
i=1

2−βi
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

2−βi
3 (2ei − 2−ei)

∑
βi≤ei,

∑
ei<B−E1

j0+j1+1≤i≤d

d∏
i=j0+j1+1

2βi − 2−βi
3 2−ei

= 2−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(2ei − 2−ei)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d

d∏
i=j0+j1+1

2−ei ,

letting ei = ei − βi for j0 + j1 + 1 ≤ i ≤ d. We now explicitly compute the sum on ed.

SdX = 2−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(2ei − 2−ei)

∑
0≤ei,

∑
ei<B0,1−E1

j0+j1+1≤i≤d−1

d−1∏
i=j0+j1+1

2−ei
(

2
(

1− 2−B0,1+E1+
∑d−1

i=j0+j1+1
ei

))

= 21− 4−βd
3 Sd−1

X − 24−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1

= 21− 4−βd
3 Sd−1

X − 2T dX .
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2.5.3 The residual term T dX

We now study the term T dX for j2 ≥ 1 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2) and show that it has
the following expression.

Proposition 2.5.8. For j2 ≥ 1 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2),

T dX = 1
3j2

d∏
i=j0+j1+1

(1− 4−βi)ΣdX

where

ΣdX = 4−
∑j0

i=1
βi

3j1(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

] ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k
Πd
X ,

Πd
X =

∏
{j0≤j≤j0+j1|kj=0}

1− 4−βj − 3βj4−βj
3

∏
{j0≤j≤j0+j1|kj 6=0}

(
Akj (1− 4−βj )−Θd

X,j4−βj
)
,

and

Θd
X,j = 1

kj + 1β
kj+1
j + 5

6β
kj
j +

kj−1∑
i=1

(
kj
i

)(
Ai + Bi+1

i+ 1

)
βkj−i .

The quantity ΣdX is a sum for I ⊂ {j0 + 1, . . . , j0 + j1} of terms of the form 4−
∑j0

i=1
βi−
∑

i∈I
βi

multiplied by a multivariate polynomial of degree in βi exactly j2 if i ∈ I, j2 − 1 if 1 ≤ i ≤ j0, 0
otherwise, and of total degree j2 + #I − 1.

This subsection is devoted to the proof of that proposition. This is a quite technical part, but
it is also a key step towards the proof of Proposition 2.5.2.

We denote by RdX the sum at the end of T dX :

RdX =
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1 ,

which is simply the number of j2 − 1-tuples of natural integers such that their sum is strictly less
than B0,1 − E1; and by ΣdX the sum on the ei’s for j0 + 1 ≤ i ≤ j0 + j1:

ΣdX = 4−B0,1

3j1

∑
0<ei<βi

j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ei − 1)RdX ,

so that T dX is given by

T dX = 1
3j2

d∏
i=j0+j1+1

(1− 4−βi)ΣdX .
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We first check the proposition for j2 = 1. In that case, RdX = 1 and the sum ΣdX to compute is

ΣdX = 4−B0,1

3j1

∑
0<ei<βi

j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ei − 1) = 4−B0,1

3j1

j0+j1∏
i=j0+1

4βi − 1− 3βi
3

= 4−
∑j0

i=0
βi

3j1

j0+j1∏
i=j0+1

1− 4−βi − 3βi4−βi
3 ,

so T dX becomes

T dX = 1
3(1− 4−βd)4−

∑j0
i=0

βi

3j1

j0+j1∏
i=j0+1

1− 4−βi − 3βi4−βi
3

which is what the proposition states.
Let us now proceed to a general j2 ≥ 1. In what follows Bi is a Bernoulli number [122,

Formula 6.78] (here B1 = 1/2) and
[
i
j

]
is an unsigned Stirling number of the first kind [122,

Section 6.1]. We recall that the sum of the first n k-th powers is given as a polynomial in n by
n∑
i=0

ik = 1
k + 1

k∑
i=0

(
k + 1
i

)
Bin

k+1−i .

Here is a classical combinatorial lemma.

Lemma 2.5.9. For n ≥ 1 and m > 0, the number of n-tuples of natural integers such that their
sum is strictly less than m is given by∑

0≤ij ,1≤j≤n∑n

j=1
ij<m

1 =
(
n+m− 1

n

)

= 1
n!

n∑
l=1

[
n
l

]
ml .

Proof. This is indeed the same quantity as the number of n+ 1-tuples of natural integers such
that their sum is exactly m− 1.

Then, the sum RdX in T dX for j2 ≥ 1, which counts the number of j2 − 1-tuples of natural
integers such that their sum is strictly less than B0,1 − E1, is given by the following expression

RdX = 1
(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

]
(B0,1 − E1)l

= 1
(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

]
∑

k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k j0+j1∏
i=j0+1

(βi − ei)ki .
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And ΣdX becomes

ΣdX = 4−B0,1

3j1

∑
0<ei<βi

j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ej − 1)RdX

= 4−
∑j0

i=1
βi

3j1(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

] ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k
Πd
X ,

where Πd
X is defined as

Πd
X = 4−

∑j0+j1
i=j0+1

βi
j0+j1∏
i=j0+1

βi−1∑
ei=1

(βi − ei)ki(4ei − 1) .

We now study the different sums on ei according to the value of ki. We drop the subscripts
for clarity.

If k = 0, then the sum is simply

β−1∑
e=1

(4e − 1) =
β−1∑
e=0

(4e − 1) = 4β − 1− 3β
3 .

When k ≥ 1, we do the change of summation variable e = β − e, so that the sum becomes

β−1∑
e=1

(β − e)k(4e − 1) = 4β
β−1∑
e=1

(β − e)k(1/4)β−e −
β−1∑
e=1

(β − e)k

= 4β
β−1∑
e=1

ek4−e −
β−1∑
e=1

ek .

The second part of this difference is related to the sum of the first n k-th powers. Here we
sum up to β − 1 so the formula is slightly different:

β−1∑
e=0

ek = 1
k + 1

k∑
i=0

(−1)1i=1

(
k + 1
i

)
Biβ

k+1−i .

For the first part, the sum
∑n
i=1 i

kzi is a multivariate polynomial in n, z and zn of degree
exactly k in n and 1 in zn. More precisely the series

∑∞
i=0 i

kzi is related to the Eulerian numbers〈
k
i

〉
[122, Section 6.2] defined by

〈
0
i

〉
= 1i=0 ,〈

k
i

〉
= (i+ 1)

〈
k − 1
i

〉
+ (k − i)

〈
k − 1
i− 1

〉
for k > 0 ,

and expressed in closed form as [122, Formula 6.38]〈
k
i

〉
=

i∑
j=0

(−1)j
(
k + 1
j

)
(i+ 1− j)k .
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The series is then given by the following classical formula for k ≥ 1 and |z| < 1:

∞∑
i=1

ikzi =

∑k
j=0

〈
k
j

〉
zj+1

(1− z)k+1 .

The formula for the truncated sum is slightly more involved as stated in the next lemma.
Lemma 2.5.10. For k ≥ 1 and |z| 6= 1,

n∑
i=1

ikzi =
∑k
j=0A0(k, j)zj+1

(1− z)k+1 −

(∑k
i=0
(
k
i

) (∑k
j=0Ai(k, j)zj+1

)
ni
)
zn

(1− z)k+1 ,

where Ai(k, j) is defined by the same recursion relation as
〈
k
j

〉
and the initial conditions

Ai(i, j) = Ai(i+ 1, j) = (−1)j
(
i

j

)
.

In particular, A0(k, j) =
〈
k
j

〉
and we have the simple recursion formula for i ≥ 1

Ai(k, j) = Ai−1(k − 1, j)−Ai−1(k − 1, j − 1) .

We are interested in the case where z = 1/4, n = β − 1 and 1 ≤ k ≤ j2 − 1, which is written
as (beware that we are summing up to β − 1 and not β, so the expression is slightly different
from the one above)

β−1∑
e=1

ek4−e =
∑k
j=0A0(k, j)4−j−1

(3/4)k+1 −

(∑k−1
i=0

(
k
i

) (∑k
j=0Ai(k, j)4−j−1

)
βi
)

4−β

(3/4)k+1

−

(∑k
j=0Ak(k, j)4−j

)
βk4−β

(3/4)k+1 .

Moreover, we have the following identity.
Lemma 2.5.11. For 0 ≤ i ≤ k,

3
k∑
j=0

Ai(k, j)4−j = 4
k+1∑
j=0

Ai+1(k + 1, j)4−j .

Proof. Indeed,

4
k+1∑
j=0

Ai+1(k + 1, j)4−j = 4
k+1∑
j=0

(Ai(k, j)−Ai(k, j − 1))4−j

= 4
k∑
j=0

Ai(k, j)4−j − 4
k+1∑
j=1

Ai(k, j − 1)4−j

= 4
k∑
j=0

Ai(k, j)4−j − 4
k∑
j=0

Ai(k, j)4−j−1

= 3
k∑
j=0

Ai(k, j)4−j .
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Whence the following definition.

Definition 2.5.12. For i ≥ 0, let us denote by Ai the quantity

Ai =
∑i
j=0A0(i, j)4−j−1

(3/4)i+1 =

∑i
j=0

〈
i
j

〉
4−j−1

(3/4)i+1 .

The first few values for Ai are given in Table 2.3.

Table 2.3: Values of Ai for 0 ≤ i ≤ 7

i = 0 1 2 3 4 5 6 7
Ai = 1/3 4/9 20/27 44/27 380/81 4108/243 17780/243 269348/729

Then, the following corollary of Lemmas 2.5.10 and 2.5.11 gives a simple expression of the
sum.

Corollary 2.5.13. For k ≥ 1,

β−1∑
e=1

ek4−e = Ak −

(
k−1∑
i=0

(
k

i

)
Ak−iβ

i

)
4−β − 4A0β

k4−β .

So, for k ≥ 1, the sum becomes

β−1∑
e=1

(β − e)k(4e − 1) = Ak4β −
k−1∑
i=0

(
k

i

)
Ak−iβ

i − 4A0β
k − 1

k + 1

k∑
i=0

(−1)1i=1

(
k + 1
i

)
Biβ

k+1−i

= Ak4β −
k∑
i=1

(
k

i

)
Akβ

k−i − 4A0β
k

− 1
k + 1β

k+1 + 1
2β

k −
k∑
i=2

(
k + 1
i

)
Biβ

k+1−i

= Ak(4β − 1)− 1
k + 1β

k+1 − 5
6β

k −
k−1∑
i=1

(
k

i

)(
Ai + Bi+1

i+ 1

)
βk−i .

According to the above discussion about the different sums on ei, Πd
X can be expressed as

Πd
X = 4

−
∑j0+j1

i=j0+1
βi

∏
{j0+1≤j≤j0+j1|kj=0}

4βj − 1− 3βj
3

∏
{j0+1≤j≤j0+j1|kj 6=0}

(
Akj (4

βj − 1)−Θd
X,j

)
=

∏
{j0+1≤j≤j0+j1|kj=0}

1− 4−βj − 3βj4−βj
3

∏
{j0+1≤j≤j0+j1|kj 6=0}

(
Akj (1− 4−βj )−Θd

X,j4−βj
)
.

where

Θd
X,j = 1

kj + 1β
kj+1
j + 5

6β
kj
j +

kj−1∑
i=1

(
kj
i

)(
Ai + Bi+1

i+ 1

)
βkj−i .

Hence, Πd
X , Σd

X and T dX are all as stated in Proposition 2.5.1. The values of the degrees of the
multivariate polynomials follow from the above expressions.
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2.5.4 A polynomial expression
We can now prove a first step towards Proposition 2.5.1. We show that SdX is a product of
exponentials in basis 2 and 4 (but not only 4 yet!) by multivariate polynomials.

Proposition 2.5.14. For j2 > 0 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2),

SdX = 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − ΞdX

)
,

where

ΞdX =
j2−1∑
i=0

2−iΣd−j2+1+i
X

= 4−
∑j0

i=1
βi

3j1

j2−1∑
l=0

(
j2−1∑
i=l

2−i

i!

[
i
l

]) ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k
Πd
X .

ΞdX is a sum for I ⊂ {j0 + 1, . . . , j0 + j1} of terms of the form 4−
∑j0

i=1
βi−
∑

i∈I
βi multiplied by

a multivariate polynomial of degree in βi exactly j2 if i ∈ I, j2 − 1 if 1 ≤ i ≤ j0, 0 otherwise, and
of total degree j2 + #I − 1.

Proof. The proof goes by induction on j2 ≥ 1.
For j2 = 1, this is Proposition 2.5.7.
Suppose now that j2 > 1. From Proposition 2.5.7,

SdX = 21− 4−βd
3 Sd−1

X − 2T dX ;

and by induction hypothesis on j2,

SdX = 21− 4−βd
3

2j2−1

3j2−1

d−1∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − Ξd−1

X

)
− 2T dX

= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − Ξd−1

X

)
− 2T dX .

Using Proposition 2.5.8, we have

T dX = 1
3j2

d∏
i=j0+j1+1

(1− 4−βi)ΣdX ,

so that

SdX = 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − Ξd−1

X − 2−j2+1ΣdX
)

= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − ΞdX

)
,

whence the proposition.
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In fact, as soon as we know that SdX is a sum of exponentials multiplied by multivariate
polynomials, we know which βi’s can appear in the multivariate polynomials. Indeed, as it is
a fraction of fd, we know that SdX is finite and even bounded between 0 and 1 for every tuple
of βi’s. But SdX would explode as βi goes to infinity whereas the other ones are fixed if this βi
appeared in a multivariate polynomial and not in the exponential.

We can now prove the final step towards Proposition 2.5.1. We claim that for I ⊂ {1, . . . , d},
SdI that we define as

SdI =
∑

{X|Xi=2 if i∈I,Xi 6=2 if i6∈I}

SX

already has an appropriate form, whence Proposition 2.5.1 because

fd(β1, . . . , βd) =
∑

I⊂{1,...,d}

SdI .

For I, J ⊂ {1, . . . , d} such that I ∩ J = ∅, we define X(I, J) as the only vector in {0, 1, 2}d
such that

Xi =

 2 if i ∈ I,
1 if i ∈ J,
0 otherwise.

We denote SdX(I,J) simply by SdI,J so that

SdI =
∑
J⊂Ic

SdI,J .

We define in the same way T dI,J and T dI and so on when I 6= ∅.

Proposition 2.5.15. The function SdI is a symmetric function in the βi’s such that i 6∈ I, as
well as in the βi’s such that i ∈ I.

For I = ∅, we have
Sd∅ = 1

3d
∑

J⊂{1,...,d}

2#J4−
∑

j∈J
βj :

and for {d} ⊂ I = {j0 + j1 + 1, . . . , d}, we have

SdI = 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
∅ − ΞdI

)
.

For {d} ⊂ I = {j0 + j1 + 1, . . . , d}, ΞdI is a sum for J ⊂ Ic of terms of the form 4−
∑

j∈J
βj

multiplied by a multivariate polynomial of degree in βj exactly #I if j ∈ J , 0 otherwise, and of
total degree min(d− 1,#I#J).

Proof. This assertion does not depend on the exact value of I, but only on its cardinality #I,
even if the value of SdI does: one has to permute the βi’s to deduce one from another. Hence, we
can assume that I = {j0 + j1 + 1, . . . , d}. The symmetry of SdI in each subset of variables follows
from its definition. The proof goes by induction on j2 = #I.

Suppose first that j2 = 0, i.e. I = ∅. We go by induction on d. For d = 1,

S1
∅ = S1

(0) + S1
(1) = f1(β1) = 2

34−β1 + 1
3 .
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Suppose now that d > 1. Then

Sd∅ =
∑

J⊂{1,...,d}

Sd∅,J =
∑

J⊂{1,...,d−1}

Sd∅,J +
∑

{d}⊂J⊂{1,...,d}

Sd∅,J

= 2−βdSd−1
∅ + 2−βd 2βd + 2 · 2−βd − 3

3 Sd−1
∅

= 2 · 4−βd + 1
3

1
3d−1

∑
J⊂{1,...,d−1}

2#J4−
∑

j∈J
βj

= 1
3d

∑
J⊂{1,...,d}

2#J4−
∑

j∈J
βj

using the induction hypothesis on d which proves the proposition for I = ∅.
Suppose now that I = {j0 + j1 + 1, . . . , d} is not empty. It implies that d > 1 and that

SdI =
∑

J⊂{1,...,j0+j1}

SdI,J

=
∑

J⊂{1,...,j0+j1}

2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
I,J − ΞdI,J

)

= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)

 ∑
J⊂{1,...,j0+j1}

Sd−j2
I,J −

∑
J⊂{1,...,j0+j1}

ΞdI,J


= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
∅ − ΞdI

)
.

Proposition 2.5.1 is a simple corollary to the last proposition and hence is finally proven.

2.5.5 The coefficients ad,n(i1,...,in)

We can now properly define the coefficients appearing in the multivariate polynomials.

Definition 2.5.16. We denote by ad,n(i1,...,in) the coefficient of Pnd (x1, . . . , xn) of multi-degree
(i1, . . . , in) normalized by 3d.

It should be remembered that d is the index of the function fd, n represents the number of βj ’s
appearing in the exponential in front of the polynomial Pnd and the ij ’s the degrees (potentially
0) in each of these βj ’s of a monomial appearing in Pnd . This does not depend on the ordering of
the ij ’s because Pnd is symmetric, so we can suppose that i1 ≥ · · · ≥ in. Moreover, restrictions on
the degrees imply that ad,n(i1,...,in) = 0 as soon as

∑n
j=1 ij ≥ d− 1.

Lemma 2.5.17. For d ≥ 1,

fd+1(β1, . . . , βd, 0) = fd(β1, . . . , βd) .

Proof. This is obvious from the expression of fd(β1, . . . , βd) as a sum.

Hence, we obtain a simple recursion relation on the coefficients of Pnd .
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Corollary 2.5.18. For d ≥ 2 and 0 ≤ n < d,

ad,n+1
(i1,...,in,0) + ad,n(i1,...,in) = 3ad−1,n

(i1,...,in) .

We now give closed-form expressions for the coefficients ad,n(i1,...,in).
Here is a first simple proposition proving an experimental observation.

Proposition 2.5.19. If d ≥ 2, then7 ad,d(1,...,1,0) = (−1)d+12 and ad,d−1
(1,...,1) = (−1)d2.

Proof. From Propositions 2.5.15 and 2.5.14, the monomials of multi-degree (1, . . . , 1, 0) in P d−1
d

and P dd come from Sd{d}, and within it from Sd(1,...,1,2). Moreover

Sd(1,...,1,2) = 2
3(1− 4−βd)

(
Sd−1

(1,...,1) − Ξd(1,...,1,2)

)
,

so it is clear that ad,d(1,...,1,0) = −ad,d−1
(1,...,1). The coefficient ad,d−1

(1,...,1,0) must come from Ξd(1,...,1,2) which
is equal to

Ξd(1,...,1,2) = 1
3d−1 Πd

(1,...,1,2) = 1
3d−1

d−1∏
i=0

1− (1 + 3βi)4−βi
3 ,

and finally
ad,d−1

(1,...,1,0) = −3d 2
3

1
3d−1 (−1)d−1 = (−1)d2 .

More generally, we have the following expression for a monomial of total degree d− 1.

Proposition 2.5.20. Suppose that n ≥ 1 and i1 + . . .+ in = d− 1. Then

ad,n(i1,...,in) = 2 (−1)n+1

i1! . . . in! .

Proof. We can suppose that i1 ≥ · · · ≥ ij1 6= 0 > ij1+1 = 0 = · · · = in. This notation is consistent
because the different constraints on the degrees show that such a monomial can only appear in
SdX when j1 = # {ij | ij 6= 0} and j2 = d− j1, so that this coefficient only comes from

Sd(1,...,1,2,...,2) = 2j2

3j2

d∏
i=j1+1

(1− 4−βi)
(
Sd−j2

(1,...,1) − Ξd(1,...,1,2,...,2)

)
.

Moreover, within Ξd(1,...,1,2,...,2) it can only appear in Σd−i
(1,...,1,2,...,2) when i = 0. Looking at the

expression of Πd
X , we have the following expression

ad,n(i1,...,in) = (−1)n−j1(−2) (−1)j1

(j2 − 1)!

[
j2 − 1

d− 1− j1

](
d− 1− j1

i1 − 1, . . . , ij1 − 1

) j1∏
j=1

1
(ij − 1) + 1

= 2(−1)n+1

(j2 − 1)!

[
j2 − 1
j2 − 1

](
j2 − 1

i1 − 1, . . . , ij1 − 1

) j1∏
j=1

1
(ij − 1) + 1

= 2 (−1)n+1

i1! . . . ij1 ! = 2 (−1)n+1

i1! . . . in! .

7The first equality is also true for d = 1.
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As a corollary, we get a dependence relation.

Corollary 2.5.21. For d ≥ 2, 1 ≤ n ≤ l ≤ d− 1, and
∑n
j=1 ij = l,

d−l∑
j=0

(
d− l
j

)
ad,n+j
i1,...,in,0,...,0 = 0 .

Proof. The proof goes by induction on d− 1− l. For l = d− 1, this is a direct consequence of the
previous proposition. For l < d− 1, one uses the induction hypothesis and Corollary 2.5.18.

Finally, here is the general expression for ad,n(i1,...,in).

Proposition 2.5.2. Suppose that i1 ≥ · · · ≥ im 6= 0 > im+1 = 0 = · · · = in and m > 0. Let us
denote by l the sum l = i1 + . . .+ in > 0 (i.e. the total degree of the monomial). Then

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m ,

with

bd,nl,m =
n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|! .

Within bd,nl,m, the following notation is used:

• I = {m+ 1, . . . ,m+ i};

• J = {n+ 1, . . . , n+ j};

• S =
∑
j∈I∪J,1≤j≤m kj;

• h = d−m− j− i;

and

Cj =

 Aj + Bj+1
j+1 if j > 0 ,

− 13
6 if j = 0 ,

1 if j = −1 .

Proof. If Xj = 2, then the degree of βj in SdX is zero. If Xj = 0, then 4−βj can be factored out
of SdX and βj will appear in every exponential. Therefore, we can consider only X’s which verify
the following constraints to compute ad,n(i1,...,in):

Xj =

 0, 1 if 1 ≤ j ≤ m ,
0, 1, 2 if m+ 1 ≤ j ≤ n ,
1, 2 if n+ 1 ≤ j ≤ d .

From Proposition 2.5.14,

SdX = 2j2

3j2

∏
{j|Xj=2}

(1− 4−βj )
(
Sd−j2
X − ΞdX

)
,
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and the monomials of non-zero degree only come from ΞdX .
Moreover, ΞdX can be written as

ΞdX = 1
3j1

∑
kj≥0,{j|Xj 6=2}

(
j2−1∑
k=0

2−k

k!

[
k∑

{j|Xj 6=2} kj

]) (∑
{j|Xj 6=2} kj

)
!∏

{j|Xj 6=2} kj !

 ∏
{j|Xj=0}

β
kj
j 4−βj

Πd
X .

So, to get a multinomial of multi-degree (i1, . . . , in), different choices can be made for the kj ’s:

• If Xj = 0, then we must take kj = ij . This happens for 1 ≤ j ≤ n.

• If Xj = 1, then we can take any kj ≥ min(ij − 1, 0) and take into account the correct
coefficient in Πd

X . This happens for 1 ≤ j ≤ d.

• If Xj = 2, then there is no choice to make. This happens for m+ 1 ≤ j ≤ d.

In the following sum, we gathered the contributions of all X’s. We denote by I the set of
indices m+ 1 ≤ j ≤ n such that Xj = 0, 1 (the other ones are such that Xj = 2) and by J the
set of indices n+ 1 ≤ j ≤ d such that Xj = 1 (the other ones are such that Xj = 2).

The summation variables kj where j is in I ∪ J or [1,m] are to be understood as the degree
we choose in the above expression of ΞdX . Following the above discussion on the choice of the kj ’s:

• If j ∈ J , then we can choose any positive degree kj and extract the constant coefficient Akj .

• If j ∈ I, then we can choose any positive degree kj and we extract the constant coefficient
Akj as above if kj > 0, and A0 − 3 if kj = 0 (the −3 comes from the choice Xj = 0 which
gives 1 = 3 · 1/3).

• Finally, if 1 ≤ j ≤ m, then we have to choose kj ≥ ij − 1, and the corresponding coefficient
is 1

kj+1 = 1
ij

if kj = ij − 1, 5/6 − 3 = −13/6 if kj = ij (as above the −3 comes from

the choice Xj = 0) and
(
kj
ij

) (
Akj−ij + Bkj−ij+1

kj−ij+1

)
if kj > ij . We denote that coefficient by

Dkj ,ij .

We denote S and h the quantities S =
∑
j∈I∪J,1≤j≤m kj and h = d − m − #J − #I. Then

ad,n(i1,...,in) can be expressed as

ad,n(i1,...,in) = (−1)n+1
∑

I⊂{m+1,...,n}
J⊂{n+1,...,d}

∑
kj≥0,j∈I∪J

kj≥ij−1,1≤j≤m

S!∏
j∈I∪J kj !

∏m
j=1 kj !∑

k≥1

2k

(h− k)!

[
h− k
S

]∏
j∈J

Akj
∏
j∈I

(
Akj − 3kj=0

) m∏
j=1

Dkj ,ij .

Extracting the binomial coefficient of Dkj ,ij , we can factor out the multinomial coefficient
(

l
i1,...,in

)
(remember that l was defined as l =

∑n
j=1 ij):

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

) ∑
I⊂{m+1,...,n}
J⊂{n+1,...,d}

∑
kj≥0,j∈I∪J

kj≥ij−1,1≤j≤m

S!
l!

∑
k≥1

2k

(h− k)!

[
h− k
S

]
∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−ij
|kj − ij |!

,
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where

Cj =

 Aj + Bj+1
j+1 if j > 0

− 13
6 if j = 0

1 if j = −1
.

The exact values of I and J are not important, only their cardinalities are; so defining I =
{m+ 1, . . . ,m+ i} and J = {n+ 1, . . . , n+ j}, we get

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

) n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J

kj≥ij−1,1≤j≤m

S!
l!

∑
k≥1

2k

(h− k)!

[
h− k
S

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−ij
|kj − ij |!

.

We finally make the change of summation variables kj = kj − ij + 1 to obtain the desired
expression:

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

) n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|!

= (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m .

2.5.6 An additional relation
In this subsection we prove the following experimental fact.

Proposition 2.5.3. For n ≥ 2 and 0 < j ≤ i,

ad,n(i,j,...) = i+ 1
j

ad,n(i+1,j−1,...) ;

i.e. the value of bd,nl,m does not depend on m.

Proof. From Proposition 2.5.2,

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m ,

where bd,nl,m only depends on d, n, l and m. Therefore if j > 1, this value does not vary and the
theorem is a simple corollary of Proposition 2.5.2.

If there is some degree equal to zero in (i, j, . . .), i.e. if n > m, then we can use the result of
Corollary 2.5.18:

ad,n(i,j,...,0) + ad,n−1
(i,j,...) = 3ad−1,n−1

(i,j,...) ;

hence we can restrict ourselves to the study of tuples where n = m.
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Finally, the only tuples we must treat are the ones such that i > j = 1 and n = m. We write
the degree i 6= 0 in first position even if it is not the greatest one. Then

ad,n(i,...,1) = (−1)n+1
(

l

i, . . . , 1

)
bd,nl,n ,

ad,n(i+1,...,0) = (−1)n+1
(

l

i+ 1, . . . , 0

)
bd,nl,n−1 ,

so it suffices to show that bd,nl,n = bd,nl,n−1.
We use the same notation as in Proposition 2.5.2 except that S and h denote the quantities

S = l +
∑
j∈I∪J,1≤j≤n−1 kj − n and h = d− n− j. For bd,nl,n , I must be empty:

bd,nl,n =
d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈J,1≤j≤n

(S + kn)!
l!∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]∏
j∈J

Akj
kj !

n∏
j=1

Ckj−1

|kj − 1|!

=
d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈J,1≤j≤n−1

1
l!
∏
j∈J

Akj
kj !

n−1∏
j=1

Ckj−1

|kj − 1|!

∑
kn≥0

(S + kn)!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

] Ckn−1

|kn − 1|! ;

whereas for bd,nl,n−1, I can contain n:

bd,nl,n−1 =
1∑

i=0

(
1
i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤n−1

(S + 1)!
l!∑

k≥1

2k

(h+ 1− k − i)!

[
h+ 1− k − i

S + 1

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

n−1∏
j=1

Ckj−1

|kj − 1|!

=
d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈J,1≤j≤n−1

1
l!
∏
j∈J

Akj
kj !

n−1∏
j=1

Ckj−1

|kj − 1|!(S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
+
∑
kn≥0

(S + kn + 1)!

∑
k≥1

2k

(h− k)!

[
h− k

S + kn + 1

] Akn − 3kn=0

|kn − 1|!

 .

The sums on j and kj for j ∈ J and 1 ≤ j ≤ n − 1 are identical, so it is sufficient to show the
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equality of the remaining terms, or that ∆ defined as

∆ =
∑
kn≥0

(S + kn)!
|kn − 1|!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

]Ckn−1 − (S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
−
∑
kn≥0

(S + kn + 1)!
|kn − 1|!

∑
k≥1

2k

(h− k)!

[
h− k

S + kn + 1

] (Akn − 3kn=0)

is zero. We split out the first two terms of the first sum on kn:

S!

∑
k≥1

2k

(h− k)!

[
h− k
S

]− 13
6 (S + 1)!

∑
k≥1

2k

(h− k)!

[
h− k
S + 1

] ,

and the first one of the second sum on kn:

(S + 1)!

∑
k≥1

2k

(h− k)!

[
h− k
S + 1

](1
3 − 3

)
,

so that ∆ becomes

∆ =
∑
kn≥2

(S + kn)!
|kn − 1|!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

](Akn−1 + Bkn
kn

)

+ S!

∑
k≥1

2k

(h− k)!

[
h− k
S

]+ 1
2(S + 1)!

∑
k≥1

2k

(h− k)!

[
h− k
S + 1

]
− (S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
−
∑
kn≥1

(S + kn + 1)!
|kn − 1|!

∑
k≥1

2k

(h− k)!

[
h− k

S + kn + 1

]Akn .

Making the change of summation variable kn = kn + 1 in the second sum on kn, the terms in
Akn cancel out between the two sums on kn and we get

∆ =
∑
kn≥2

(S + kn)!
kn!

(∑
k≥1

2k
(h− k)!

[
h− k
S + kn

])
Bkn +B0S!

(∑
k≥1

2k
(h− k)!

[
h− k
S

])

+B1(S + 1)!

(∑
k≥1

2k
(h− k)!

[
h− k
S + 1

])
− (S + 1)!

(∑
k≥1

2k
(h+ 1− k)!

[
h+ 1− k
S + 1

])

=
∑
kn≥0

(S + kn)!
kn!

(∑
k≥1

2k
(h− k)!

[
h− k
S + kn

])
Bkn − (S + 1)!

(∑
k≥1

2k
(h+ 1− k)!

[
h+ 1− k
S + 1

])

= S!
∑
k≥1

2k
(h− k)!

(∑
kn≥0

(
S + kn
S

)
Bkn

[
h− k
S + kn

])
− (S + 1)!

(∑
k≥1

2k
(h+ 1− k)!

[
h+ 1− k
S + 1

])

= S!
∑
k≥1

2k
(h− k)!

(∑
kn≥0

(
S + kn
S

)
Bkn

[
h− k
S + kn

]
− S + 1
h+ 1− k

[
h+ 1− k
S + 1

])
.
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The difference in parenthesis is shown to be zero using Lemma 2.5.22, so that ∆ = 0.

Lemma 2.5.22. For n ≥ k ≥ 0,

n−k∑
l=0

(
k + l

k

)
Bl

[
n

k + l

]
= k + 1
n+ 1

[
n+ 1
k + 1

]
.

Proof. Let us fix k ≥ 0. We first recall classical results about exponential generating functions.∑
n≥0

Bn
zn

n! = z

1− e−z ,

∑
n≥0

[
n
k

]
zn

n! = (− log(1− z))k

k! .

We now form the exponential generating function of the coefficients of interest.

∑
n≥0

(
n∑
l=k

(
l

k

)
Bl−k

[
n
l

])
zn

n! =
∑
l≥k

∑
n≥l

(
l

k

)
Bl−k

[
n
l

]
zn

n! =
∑
l≥k

(
l

k

)
Bl−k

∑
n≥l

[
n
l

]
zn

n!

=
∑
l≥k

(
l

k

)
Bl−k

(− log(1− z))l

l!

= (− log(1− z))k

k!
∑
l≥k

Bl−k
(− log(1− z))l−k

(l − k)!

= (− log(1− z))k

k!
∑
l≥0

Bl
(− log(1− z))l

l!

= (− log(1− z))k

k!
− log(1− z)
1− elog(1−z) = k + 1

z

(− log(1− z))k+1

(k + 1)!

= k + 1
z

∑
n≥0

[
n

k + 1

]
zn

n! =
∑
n≥0

k + 1
n+ 1

[
n+ 1
k + 1

]
zn

n! ,

whence the identity of the lemma.

2.6 Asymptotic behavior: βi →∞
2.6.1 The limit fd(∞, . . . ,∞)
We denote the limit of fd when all the βi’s go to infinity by fd(∞, . . . ,∞). The expression of fd
given in Proposition 2.5.1 shows that this value is well defined and is nothing but the constant
term P 0

d in that expression.
In this subsection we give several expressions involving Gaussian hypergeometric series which

are defined as follows.

Definition 2.6.1 (Gaussian hypergeometric series [1, Formula 15.1.1]). The Gaussian hypergeo-
metric series 2F1(a, b; c; z) is

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n! ,
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where c 6∈ −N and (x)n = x(x+ 1)(x+ 2) · · · (x+n− 1) is the Pochhammer symbol and represents
the rising factorial.

It should be first remarked that, as all the βi’s go to infinity, the laws of the γ′i’s and the δ′i’s
converge towards laws of independent geometrically distributed variables with parameter 1/2.
From now on, let G1, . . . , Gd and H1, . . . ,Hd be 2d such independent random variables. Then
Pt,k = P [

∑
γ′ <

∑
δ′] converges towards

P

[
d∑
i=1

Gi <

d∑
i=1

Hi

]
= 1

2

(
1− P

[
d∑
i=1

Gi =
d∑
i=1

Hi

])
.

This quantity is obviously strictly lower than 1/2 for any d > 0 and the above discussion therefore
proves that the conjecture is asymptotically true. We have just proved the following theorem.

Theorem 2.6.2. Let d be a strictly positive integer. There exists a constant Kd such that if

• ∀i, βi ≥ Kd and

• mini αi ≥ B − 1,

then
Pt,k <

1
2 .

We now look for an explicit expression of this limit.

Definition 2.6.3. Let Xd be the random variable

Xd =
d∑
i=1

Gi −
d∑
i=1

Hi ,

and let Pd denote
Pd = P [Xd = 0] .

With this notation,
fd(∞, . . . ,∞) = P 0

d = 1
2(1− Pd) ,

whence the importance of the random variable Xd.
First, it is readily seen that Xd is symmetric, i.e. P [Xd = k] = P [Xd = −k]. So studying

P [Xd = k] for k a positive integer is sufficient.
Second, to get an explicit expression for P [Xd = k], we need the following easy lemma giving

the law of a sum of d independent geometrically distributed variables with parameter 1/2.

Lemma 2.6.4. For j ≥ 0,

P

[
d∑
i=1

Gi = j

]
=
(
d− 1 + j

d− 1

)
1

2j+1 .

It is then possible to express P [Xd = k] as a hypergeometric series.
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Proposition 2.6.5. For d ≥ 1 and k ≥ 0,

P [Xd = k] = 1
4d

1
2k

∞∑
j=0

(
d− 1 + j

d− 1

)(
d− 1 + k + j

d− 1

)
1
4j

= 1
4d

1
2k

(
d− 1 + k

d− 1

)
2F1(d, d+ k; k + 1; 1/4) ,

so that

Pd = P [Xd = 0] = 1
4d
∞∑
j=0

(
d− 1 + j

d− 1

)2 1
4j = 1

4d 2F1(d, d; 1; 1/4) .

In particular 1
3d ≤ Pd ≤

1+3·2d−2

4d . Moreover, P1 = 1/3 and P2 = 5/27.

Proof. To get the expression of P [Xd = k] as a power series, the idea is to split it according to
the value of one of the two sums of d random variables (the value of the other sum is then also
fixed) and to use the above lemma:

P [Xd = k] =
∞∑
j=0

P

[
d∑
i=1

Gi = j

]
P

[
d∑
i=1

Hi = j + k

]

=
∞∑
j=0

P

[
d∑
i=1

Gi = j

]
P

[
d∑
i=1

Hi = j + k

]

= 1
4d

1
2k

∞∑
j=0

(
d− 1 + j

d− 1

)(
d− 1 + k + j

d− 1

)
1
4j .

This power series is easily seen to be equal to

1
4d

1
2k

(
d− 1 + k

d− 1

)
2F1(d, d+ k; k + 1; 1/4) .

Setting k = 0 in the above expressions gives

Pd = P [Xd = 0] = 1
4d
∞∑
j=0

(
d− 1 + j

d− 1

)2 1
4j = 1

4d 2F1(d, d; 1; 1/4) .

This power series can be bounded from below by

1
4d
∞∑
j=0

(
d− 1 + j

d− 1

)
1
4j = 1

4d
1

(1− 1/4)d = 1
3d ,

and from above by

1
4d

1 +
∞∑
j=1

(
d− 1 + j

d− 1

)
2d−2+j

4j

 = 1
4d + 2d−2

4d
∞∑
j=0

(
d− 1 + j

d− 1

)
1
2j −

2d−2

4d

= 1 + 4d−1 − 2d−2

4d = 1 + 3 · 2d−2

4d ,

which gives the desired inequalities.
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Finally, if d = 1, then
(
d−1+j
d−1

)
= 1, so that the sum becomes

P1 = 1
4

1
1− 1/4 = 1

3 ;

and, if d = 2, then
(
d−1+j
d−1

)
= j + 1, so that

P2 = 1
42

∞∑
j=0

(j + 1)2

4j = 1
4

∞∑
j=0

j2

4j

= 1
4

(
2 1

42(
1− 1

4
)3 +

1
4(

1− 1
4
)2
)

= 2
27 + 1

9 = 5
27 .

When the number of blocks d goes as well to infinity, fd(∞, . . . ,∞) converges towards 1/2.
Indeed 1

3d ≤ Pd ≤
1
4d + 3

4
1
2d converges towards 0 as d goes to infinity. As we show below, it does

so monotonically so that fd(∞, . . . ,∞) goes to 1/2 monotonically as well.
A first step towards proving the monotonicity of Pd in d is to study the special case d = 1. In

this case the value P [X1 = k] has indeed a short closed-form expression.

Lemma 2.6.6. For d = 1,
P [X1 = k] = 1

3 · 2|k|
.

Proof. Indeed, for k ≥ 0,

P [X1 = k] = P [G1 = k +H1]

=
∞∑
i=0

P [G1 = i]P [H1 = k + i]

=
∞∑
i=0

1
2i+1

1
2k+i+1 = 1

2k+2

∞∑
i=0

1
4i

= 1
2k+2

4
3 = 1

3
1
2k .

In the general case d ≥ 1, it can also be proven quite directly that the maximal value of
P [Xd = k] is attained for k = 0.

Lemma 2.6.7. For d ≥ 1 and k 6= 0,

P [Xd = k] < P [Xd = 0] .

Proof. Consider the real Hilbert space H = l2(Z,R) of square-summable sequences. It is equipped
with norm preserving translation operators τk defined by (τku)j = uj+k for a sequence u =
(uj)j∈Z ∈ H. Consider now the sequence u(d) ∈ H defined by

u
(d)
j = P

[
d∑
i=1

Gi = j

]
= P

[
d∑
i=1

Hi = j

]

whose exact values are given in Lemma 2.6.4 for j ≥ 0, and u(d)
j = 0 for j < 0.
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Then, as shown at the beginning of the proof of Proposition 2.6.5, we have

P [Xd = k] =
∞∑
j=0

P

[
d∑
i=1

Gi = j

]
P

[
d∑
i=1

Hi = j + k

]
= 〈u(d), τku

(d)〉

where 〈·, ·〉 is the scalar product of H. We now use the Cauchy–Schwarz inequality and the fact
that τk is norm preserving to conclude that

P [Xd = k] = 〈u(d), τku
(d)〉 <

√
〈u(d), u(d)〉〈τku(d), τku(d)〉 = 〈u(d), u(d)〉 = P [Xd = 0] .

(Remark that the Cauchy–Schwarz inequality is strict here because u(d) and τku
(d) are not

proportional when k 6= 0.)

Combining Lemmas 2.6.6 and 2.6.7, we then get the monotonicity of Pd in d.

Proposition 2.6.8. For d ≥ 1,
Pd > Pd+1 .

Proof.

Pd+1 = P [Xd+1 = 0] = P [X1 +Xd = 0]

=
+∞∑

k=−∞
P [X1 = −k]P [Xd = k]

=
+∞∑

k=−∞

1
3 · 2|k|

P [Xd = k]

<

+∞∑
k=−∞

1
3 · 2|k|

P [Xd = 0]

< P [Xd = 0] = Pd .

Corollary 2.6.9. The limit fd(∞, . . . ,∞) converges monotonically towards 1
2 as d goes to

infinity.

Now that P [Xd = k] has been expressed as a Gaussian hypergeometric series, we can use
classical transformations to obtain other closed-form expressions for it. Here is a first example.

Proposition 2.6.10.

P [Xd = k] = 2k

32d+2k

(
d− 1 + k

d− 1

)
2F1(k + 1/2, d+ k; 2k + 1; 8/9) ,

= 3−2d
∞∑
j=k

(
d− 1 + j

j

)(
2j
k + j

)
2j3−2j .

Proof. It follows directly from the quadratic transformation [1, 15.3.27, p. 561]:

2F1(a, b; a− b+ 1; z) = (1 +
√
z)−2a

2F1

(
a, a− b+ 1

2; 2a− 2b+ 1; 4
√
z

(1 +
√
z)2

)
,
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valid for |z| < 1. We obtain the following expression where we shift the summation index j by k:

P [Xd = k] = 2k

32d+2k

∞∑
j=0

(
d− 1 + k + j

d− 1

)(
2k + 2j

j

)
2j3−2j

= 3−2d
∞∑
j=k

(
d− 1 + j

j

)(
2j
k + j

)
2j3−2j .

Here is an elementary proof. We know that

∞∑
j=0

P

[
d∑
i=1

Gi = j

]
eijθ = 1

(2− eiθ)d ,

so, by Parseval’s theorem,

∞∑
j=0

P

[
d∑
i=1

Gi = j

]
P

[
d∑
i=1

Gi = j + k

]
= 1

2π

∫ 2π

0
eikθ

∣∣∣∣ 1
(2− eiθ)d

∣∣∣∣2 dθ
= 1

2π

∫ 2π

0

cos(kθ)
(5− 4 cos θ)d dθ

= 1
2π

∫ 2π

0

cos(kθ)
(9− 8 cos2(θ/2))d dθ .

Moreover
1
9d

1(
1− 8

9 cos2(θ/2)
)d = 3−2d

∞∑
j=0

(
d− 1 + j

j

)
cos2j(θ/2)23j3−2j ,

and

cos2j(θ/2) =
(
eiθ/2 + e−iθ/2

2

)2j

= 2−2j

((
2j
j

)
+

j∑
m=1

(
2j

j +m

)
2 cos(mθ)

)
,

so that
1

2π

∫ 2π

0
cos(kθ) cos2j(θ/2)dθ = 2−2j

(
2j
k + j

)
.

Hence, we have the identity

P [Xd = k] = 3−2d
∞∑
j=k

(
d− 1 + j

j

)(
2j
k + j

)
2j3−2j .

This expression is interesting because it can be used to strengthen Proposition 2.6.7.

Corollary 2.6.11. For d ≥ 1, Xd follows a unimodal distribution centered at 0, i.e. P [Xd = k]
increases for k ≤ 0 and decreases for k ≥ 0.

Proof. Indeed, P [Xd = k] is an even function of k and for fixed j ≥ 0 and k ≥ 0 each summand
of the expression given in the previous proposition decreases as k increases.

Moreover, specializing this expression at k = 0 yields an expression for Pd where d appears
only twice.
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Corollary 2.6.12. For d ≥ 1,

Pd = 3−2d
∞∑
j=0

(
d− 1 + j

j

)(
2j
j

)
2j3−2j .

Finally, we give other closed-form expressions for P [Xd = k] which are of particular interest
for actual computation because they express P [Xd = k] as a finite sum.

Definition 2.6.13. We define for k ∈ Z, the polynomials

hd,k(z) =
∞∑

j=−k

(
d− 1 + k + j

d− 1

)
zj = z−k

(1− z)d ,

gd,k(z) =
∞∑
j=0

(
d− 1 + k + j

d− 1

)
zj = hd,k(z)−

k−1∑
j=0

(
d− 1 + j

d− 1

)
zj−k ,

and
fd,k(x, y) = gd,k(x)gd,0(y) .

Then, for k ≥ 0,

P [Xd = k] = 1
4d

1
2kD(fd,k)(1/4) = 1

4d
1
2kD(hd,0(x)hd,k(y))(1/4) ,

where D is the diagonal of the double power series. A well-known result of Fürstenberg [105]
states that

D(fd,k)(t) = 1
2π

∫ π

−π
fd,k(εeiπθ, tε−1e−iπθ)dθ = 1

2iπ

∫
|z|=ε

fd,k(z, t/z)dz
z

,

where k ≥ 0 and ε is such that fd,k(x, y) is holomorphic for |x| ≤ ε and |y| ≤ tε−1.
For k ≥ 0 and t small enough, fd,k(z,t/z)

z = 1
(z−t)d

(
hd,k+1−d(z)−

∑k−1
j=0

(
d−1+j
d−1

)
zd−1−k+j

)
has only a pole of order d at t near 0, so the residue theorem gives

D(fd,k)(t) = Res
(
fd,k(z, t/z)

z
, t

)
= 1

(d− 1)!

(
(z − t)d fd,k(z, t/z)

z

)(d−1)
(t)

= 1
(d− 1)!

hd,k+1−d(z)−
k−1∑
j=0

(
d− 1 + j

d− 1

)
zd−1−k+j

(d−1)

(t) .

Finally, for k ≥ 0,

P [Xd = k] = 1
4d

1
2k

1
(d− 1)!

hd,k+1−d(z)−
k−1∑
j=0

(
d− 1 + j

d− 1

)
zd−1−k+j

(d−1)

(1/4) .

Proposition 2.6.14. For d ≥ 1, k ≤ d− 1 and i ≥ 0,

h
(i)
d,k+1−d(z) = pd,k,i(z)

(1− z)d+i ,
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where pd,k,i(z) is a polynomial in z of degree d− 1− k given by:

pd,k,i(z) = i!
i∑

j=0

(
d− 1− k

j

)(
k + i

k + j

)
zd−1−k−j .

Proof. For i ≥ 0,

h
(i+1)
d,k+1−d(z) =

(
h

(i)
d,k+1−d

)′
(z) =

(1− z)p′d,k,i−1(z) + (d+ i)pd,k,i−1(z)
(1− z)d+i+1 .

The above equality shows that we can write down

pd,k,i(z) =
d−1−k∑
j=0

ai,jz
j ,

with
ai+1,j = (j + 1)ai,j+1 + (d+ i− j)ai,j .

In particular ai,j = 0 for all 0 ≤ j < d− 1− k − i and j > d− 1− k. We have to show that

ai,d−1−k−j = i!
(
d− 1− k

j

)(
k + i

k + j

)
.

The proof goes by induction on i. For i = 0,

pd,k,0(z) = zd−1−k = a0,d−1−kz
d−1−k .

Suppose now that i ≥ 0. By induction hypothesis,

ai+1,d−1−k−j = (d− k − j)ai,d−k−j + (k + i+ 1 + j)ai,d−1−k−j

= (d− k − j)i!
(
d− 1− k
j − 1

)(
k + i

k + j − 1

)
+ (k + i+ 1 + j)i!

(
d− 1− k

j

)(
k + i

k + j

)
=
(

(d− k − j) j

d− k − j
k + j

k + i+ 1 + (k + i+ 1 + j) i− j + 1
k + i+ 1

)
i!
(
d− 1− k

j

)(
k + i+ 1
k + j

)
= j(k + j) + (k + i+ 1 + j)(i− j + 1)

k + i+ 1 i!
(
d− 1− k

j

)(
k + i+ 1
k + j

)
= (i+ 1)!

(
d− 1− k

j

)(
k + i+ 1
k + j

)
.

The coefficients of pd,k,i are somewhat related to those of the Laguerre polynomials: ai,j =
(−1)j i!j!

(
i
j

)
[1, 13.6.9, p. 509 and 22.2.12, p. 775].

Proposition 2.6.15. For d ≥ 1 and 0 ≤ k ≤ d− 1,

P [Xd = k] = 2k

32d−1

d−1−k∑
j=0

(
d− 1− k

j

)(
d− 1 + k

j + k

)
4j .
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Proof. For d ≥ 1 and 0 ≤ k ≤ d− 1,

(z − t)d fd,k(z, t/z)
z

= zd−1−k

(1− z)d − z
d−1−k

k−1∑
j=0

(
d− 1 + j

d− 1

)
zj

= hd,k+1−d(z)−
k−1∑
j=0

(
d− 1 + j

d− 1

)
zd−1−k+j ,

where the sum on the right is a polynomial of degree less than d− 2, so that its d− 1-st derivative
is 0 and

P [Xd = k] = 1
4d

1
2k

1
(d− 1)!h

(d−1)
d,k+1−d(1/4)

= 1
4d

1
2k

1
(d− 1)!

(d− 1)!
∑d−1−k
j=0

(
d−1−k

j

)(
d−1+k
k+j

)
(1/4)d−1−k−j

(3/4)2d−1

= 2k

32d−1

d−1−k∑
j=0

(
d− 1− k

j

)(
d− 1 + k

k + j

)
4j .

Setting k = 0 in the above expression yields an expression for Pd as a finite sum.

Corollary 2.6.16. For d ≥ 1,

Pd = 1
32d−1

d−1∑
j=0

(
d− 1
j

)2
4j .

Here is another expression for P [Xd = k] for 0 ≤ k ≤ d− 1.

Proposition 2.6.17. For d ≥ 1 and 0 ≤ k ≤ d− 1,

P [Xd = k] = 2k

3d+k

d−1−k∑
j=0

(
d− 1 + k + j

d− 1

)(
d− 1− k

j

)
3−j .

Proof. Using the binomial theorem, we have

h
(i)
d,k+1−d(z) =

i∑
j=0

(
i

j

)
((1− z)−d)(j)(zd−1−k)(i−j)

=
i∑

j=max(0,i−d+1+k)

(
i

j

)
(d− 1 + j)!

(d− 1)!
(d− 1− k)!

(d− 1− k − i+ j)!
zd−1−k−i+j

(1− z)d+j ;

for i = d− 1, it gives,

h
(d−1)
d,k+1−k(z) =

d−1∑
j=k

(
d− 1
j

)
(d− 1 + j)!

(d− 1)!
(d− 1− k)!
(−k + j)!

z−k+j

(1− z)d+j

=
d−1−k∑
j=0

(
d− 1
k + j

)
(d− 1 + k + j)!

(d− 1)!
(d− 1− k)!

j!
zj

(1− z)d+k+j

=
d−1−k∑
j=0

(d− 1)!
(
d− 1 + k + j

d− 1

)(
d− 1− k

j

)
z−j

(1− z)d+k+j ;
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and

P [Xd = k] = 1
4d

1
2k

1
(d− 1)!h

(d−1)
d,d−1+k(1/4)

= 1
4d

1
2k

d−1−k∑
j=0

(
d− 1 + k + j

d− 1

)(
d− 1− k

j

)
(1/4)j

(3/4)d+k+j

= 2k

3d+k

d−1−k∑
j=0

(
d− 1 + k + j

d− 1

)(
d− 1− k

j

)
3−j .

Corollary 2.6.18. For d ≥ 1,

Pd = 1
3d

d−1∑
j=0

(
d− 1 + j

d− 1

)(
d− 1
j

)
3−j .

It can be verified elementary that both these expressions for Pd are actually equal writing
4 = 1 + 3 in the first one, developing the power using the binomial theorem, and using the identity(

2n+ k

n+ k

)
=

n∑
j=0

(
n

j

)(
n+ k

j + k

)
,

which is a special case of the Chu–Vandermonde identity.
We now compute formulae for k > d− 1.

Proposition 2.6.19. For d ≥ 1, k > d− 1 and i ≥ 0,

h
(i)
d,k+1−d(z) = pd,k,i(z)

(1− z)d+i ,

where pd,k,i(z) is a polynomial in z−1 of degree k − d+ 1 + i given by

pd,k,i(z) = i!
i∑

j=0
(−1)j

(
k + i

k + j

)(
k − d+ j

j

)
zd−1−k−j .

Proof. The proof is similar to the one above.

Proposition 2.6.20. For d ≥ 1 and k > d− 1,

P [Xd = k] = 2k

32d−1

d−1∑
j=0

(−1)j
(
d− 1 + k

k + j

)(
k − d+ j

j

)
4j

+ (−1)d 2k

4d
k−d∑
j=0

(
d− 1 + j

d− 1

)(
k − 1− j
d− 1

)
4−j .

Proof. For d ≥ 1 and k > d− 1,

(z − t)d fd,k(z, t/z)
z

= hd,k(z)−
k−1∑
j=0

(
d− 1 + j

d− 1

)
zd−1−k+j ,
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so that

P [Xd = k] = 1
4d

1
2k

1
(d− 1)!

h(d−1)
d,k+1−d(1/4)−

k−d∑
j=0

(
d− 1 + j

d− 1

)
(zd−1−k+j)(d−1)(1/4)


= 1

4d
1
2k

1
(d− 1)!

(
(d− 1)!

∑d−1
j=0(−1)j

(
d−1+k
k+j

)(
k−d+j
j

)
(1/4)d−1−k−j

(3/4)2d−1

−
k−d∑
j=0

(−1)d−1
(
d− 1 + j

d− 1

)
(k − 1− j)!
(k − d− j)! (1/4)−k+j


= 2k

32d−1

d−1∑
j=0

(−1)j
(
d− 1 + k

k + j

)(
k − d+ j

j

)
4j

+ (−1)d 2k

4d
k−d∑
j=0

(
d− 1 + j

d− 1

)(
k − 1− j
d− 1

)
4−j .

To conclude this subsection, let us mention that, using the expression of P [Xd = k] as a
Gaussian hypergeometric series, most of the above expressions can be directly deduced from the
expression of P [Xd = k] using linear transformations.

Proposition 2.6.21. For d ≥ 1 and 0 ≤ k,

P [Xd = k] = 4d−1

2k32d−1

(
d− 1 + k

d− 1

)
2F1(k + 1− d, 1− d; k + 1; 1/4)

=
{

2k
32d−1

∑d−1−k
j=0

(
d−1−k

j

)(
d−1+k
j+k

)
4j if 0 ≤ k ≤ d− 1

4d−1

2k32d−1

∑d−1
j=0(−1)j

(
d−1+k
k+j

)(
k−d+j
k−d

)
4−j if d− 1 < k

;

P [Xd = k] = 2k

3d+k

(
d− 1 + k

d− 1

)
2F1(k + 1− d, k + d; k + 1;−1/3)

=
{

2k
3d+k

∑d−1−k
j=0

(
d−1+k+j
d−1

)(
d−1−k

j

)
3−j if 0 ≤ k ≤ d− 1

2k
3d+k

∑∞
j=0(−1)j

(
d−1+k+j
d−1

)(
k−d+j
k−d

)
3−j if d− 1 < k

;

P [Xd = k] = 1
2k3d

(
d− 1 + k

d− 1

)
2F1(d, 1− d; k + 1;−1/3)

= 1
2k3d

d−1∑
j=0

(
d− 1 + j

d− 1

)(
d− 1 + k

k + j

)
3−j .

Proof. The first expression comes from Euler’s transformation [1, Formula 15.3.3]:

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z) .

The second one from Pfaff’s transformation [1, Formula 15.3.5]:

2F1(a, b; c; z) = (1− z)−b2F1(c− a, b; c; z/(z − 1)) .

The third one from the other Pfaff’s transformation [1, Formula 15.3.4]:

2F1(a, b; c; z) = (1− z)−a2F1(a, c− b; c; z/(z − 1)) .
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We finally deduce different expressions for Pd as a finite sum.

Corollary 2.6.22. For d ≥ 1,

Pd = 1
32d−1 2F1(1− d, 1− d; 1; 4) = 1

32d−1

d−1∑
j=0

(
d− 1
j

)2
4j ,

= 1
3d 2F1(1− d, d; 1;−1/3) = 1

3d
d−1∑
j=0

(
d− 1 + j

d− 1

)(
d− 1
j

)
3−j .

2.6.2 The limit fd(1,∞, . . . ,∞)
In the previous subsection, we studied the behavior of Pt,k = fd(β1, . . . , βd) as all the βi’s go to
infinity. We will now fix a subset of them to 1 and let the other ones go to infinity. As was the
case in the previous subsection, the expression of fd given in Proposition 2.5.1 shows that such
limits are well defined.

Recall the distribution probability for ε′i = γ′i + βi − δ′i given by Proposition 2.4.6.

Proposition 2.4.6. For ei ≥ 0,

P (ε′i = ei) =


2−βi if ei = 0,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi,
2βi−2−βi

3 2−ei if βi ≤ ei.

Therefore, if we set βi = 1 and let αi go to infinity for some i ∈ {1, . . . , d}, Proposition 2.4.10
shows that ε′i has a similar behavior to the one of γ′i and δ′i: its law converges towards the law of a
geometrically distributed variable with parameter 1/2. Then we have a probabilistic interpretation

for the limit limβj→∞,j>i fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

βi+1, . . . , βd) which we denote by fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

∞, . . . ,∞).
As in the previous subsection, let G1, . . . , Gd and H1, . . . ,Hd be 2d independent geometrically

distributed variables with parameter 1/2 and Xk denote the random variable Xk =
∑k
j=1Gj −∑k

j=1Hj . Then

fd(1, . . . , 1︸ ︷︷ ︸
i

,∞, . . . ,∞︸ ︷︷ ︸
d−i

) = lim
βj→∞,j>i

P

[∑
d

γ′ <
∑
d

δ′

]

= lim
βj→∞,j>i

P

[∑
i

ε′ +
∑
d−i

γ′ < i+
∑
d−i

δ′

]

= P

 d∑
j=1

Gj < i+
d−i∑
j=1

Hj


= P

Xd−i +
d∑

j=i+1
Gj < i

 .
The first few values of such expressions, computed using explicit expressions for fd, are given in
Table 2.4.

Using the above probabilistic interpretation, it is possible to express fd(1,∞, . . . ,∞) with
fd(∞, . . . ,∞) = P 0

d = 1/2(1− Pd), and so to compute it with the short closed-form expressions
of the previous subsection.
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Table 2.4: Values of fd(1, . . . , 1,∞, . . . ,∞) for d ≥ 1

i = d d− 1 . . .
d = 1 1/2 1/3
d = 2 1/2 4/9 11/27
d = 3 1/2 101/216 4/9 35/81
d = 4 1/2 619/1296 112/243 328/729 971/2187
d = 5 1/2 15029/31104 10969/23328 112/243 2984/6561 8881/19683
d = 6 1/2 90829/186624 2777/5832 1024/2187 9104/19683 9028/19683 2993/6561

Proposition 2.6.23. For d ≥ 2,

fd(1,∞, . . . ,∞) = 3
2fd(∞, . . . ,∞)− 1

2fd−1(∞, . . . ,∞) .

Proof. We equivalently show that

fd(∞, . . . ,∞) = 1
3fd−1(∞, . . . ,∞) + 2

3fd(1,∞, . . . ,∞) ,

i.e. written in a probabilistic way,

P [0 < Xd] = 1
3P [0 < Xd−1] + 2

3P [Xd−1 < 1−Gd] .

The first step is then to split Xd as Xd = Xd−1 +X1 in the left hand side of that equality.

P [0 < Xd] = P [0 < Xd−1 +X1] =
+∞∑
i=−∞

P [X1 = i]P [−i < Xd−1]

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (P [i < Xd−1] + P [−i < Xd−1])

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (P [i < Xd−1] + P [Xd−1 < i])

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (P [Xd−1 6= i])

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (1− P [Xd−1 = i])

= 1
3P [0 < Xd−1] + 1

3

(
1−

∞∑
i=1

1
2iP [Xd−1 = i]

)
.

Injecting this equality back into the original one, it is then enough to show that

2P [Xd−1 < 1−Gd] = 1−
∞∑
i=1

1
2iP [Xd−1 = i] ,
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which is proved by splitting the left term of the equality according to the value of Gd:

P [Xd−1 < 1−Gd] =
∞∑
i=0

1
2i+1P [Xd−1 < 1− i]

= 1
2P [Xd−1 < 1] + 1

4

∞∑
i=0

1
2iP [Xd−1 < −i]

= 1
2 (1− P [1 ≤ Xd−1]) + 1

4

∞∑
i=0

1
2iP [i < Xd−1]

= 1
2 −

1
2

∞∑
i=1

P [Xd−1 = i] + 1
4

∞∑
i=1

i−1∑
j=0

1
2j

P [Xd−1 = i]

= 1
2 −

1
2

∞∑
i=1

P [Xd−1 = i] + 1
2

∞∑
i=1

(
1− 1

2i

)
P [Xd−1 = i]

= 1
2 −

1
2

∞∑
i=1

1
2iP [Xd−1 = i] .

As a corollary of the above equality and of the monotonicity of Pd, we deduce the following
inequality.

Corollary 2.6.24. For d ≥ 2,

fd(1,∞, . . . ,∞) > fd(∞,∞, . . . ,∞) .

2.7 An inductive approach
In this section we follow a different approach: t ∈ N is a fixed integer and we let k grow. We
want to study the behavior of St,k as k grows, adding 0’s or 1’s to the binary expansion of t on
k bits. Obviously, as long as 2k < t, the binary expansion of t mod 2k − 1 has an inconsistent
behavior. Whence the following definition.

Definition 2.7.1 (Length). Let t be a natural integer. Its binary length is defined to be the
smallest integer k such that t ≤ 2k. We denote it by l(t).

We obviously have l(t) = dlog2(t)e. Then, if k ≥ l(t), the binary expansion of t on k + 1 bits
is that of t on k bits with a 0 prepended, so we will suppose that k and t are such that k ≥ l(t).

Considering the binary string associated with a modular integer a in Z/(2k − 1)Z, we write
down 0a and 1a for the binary string of a on k bits with a 0 or a 1 prepended. We note that
2k − 1 which is equal to 0 in Z/(2k − 1)Z but not in Z/(2k+1 − 1)Z can not be described as 0a or
1a for a ∈ Z/(2k − 1)Z.

2.7.1 Overflow and inertia
Definition 2.7.2. We split Ct,k,i according to the value of the sum a+ t in Z:

• It,k,i =
{
a ∈ Z/(2k − 1)Z | r(a, t) = wH(t)− i, a+ t < 2k − 1 in Z

}
, the inert modular in-

tegers;
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• Ot,k,i =
{
a ∈ Z/(2k − 1)Z | r(a, t) = wH(t)− i, a+ t ≥ 2k − 1 in Z

}
, the overflowing mod-

ular integers.

Remember that r(0, t) = k and that 0 is considered to act as the 1...1 binary string, so that we
have 0 ∈ Ot,k,wH(t)−k.

We define It,k =
⊔
i∈Z It,k,i and Ot,k =

⊔
i∈ZOt,k,i.

Lemma 2.7.3. Let t ∈ N and k ≥ l(t). Then

#Ct,k,i = #It,k,i + #Ot,k,i .

We will now study the behavior of these sets as k grows.

2.7.2 Adding 0’s
We want to let k grow as t is fixed, i.e. add 0’s in front of the binary string associated with t as
soon as k ≥ l(t).

If a ∈ It,k,i, then 0a and 1a are in I0t,k+1,i. Unfortunately, the situation is more complicated
for Ot,k,i:

• if a 6= 0 and a 6= −t is in Ot,k,i, then 1a is in O0t,k+1,i−1, and 0a is in I0t,k+1,j with j ≥ i;

• if a = 0, then a ∈ Ot,k,wH(t)−k, 0a = 0 ∈ O0t,k+1,wH(t)−k−1, and 1a = 2k ∈ I0t,k+1,wH(t);

• If a = −t, then a ∈ Ot,k,wH(t)−k, 0a = 0tk ∈ I0t,k+1,wH(t), and 1a = −t ∈ O0t,k+1,wH(t)−k−1;

Finally, 2k − 1 = 0 1...1︸ ︷︷ ︸
=k

∈ I0t,k+1,j with j ≤ wH(t)− k.

The following lemma summarizes the above discussion.

Lemma 2.7.4. Let t ∈ N and k ≥ l(t). Then

O0t,k+1,i−1 =
{

1Ot,k,i if i < wH(t)− k
1 (Ot,k,i \ {0}) t {0} if i = wH(t)− k ,⊔

j≥i

I0t,k+1,j ⊃
{

0Ot,k,i if i < wH(t)− k
0 (Ot,k,i \ {0}) t

{
2k
}

if i = wH(t)− k ,

I0t,k+1,i ⊃ 0It,k,i t 1It,k,i .

Lemma 2.7.5. Let t ∈ N and k ≥ wH(t) + l(t). If i ≥ 0, then Ot,k,i = ∅.

Proof. Indeed t = 0...0︸ ︷︷ ︸
≥wH(t)

..., so a = ← 1...1︸ ︷︷ ︸
≥wH(t)

←... and r(a, t) > wH(t).

Proposition 2.7.6. Let t ∈ N and k ≥ wH(t) + l(t). Then

#S0t,k+1 = 2#St,k − 1 .

Proof. Since k ≥ wH(t) + l(t), 2k − 1 ∈ I0t,k+1,i with i < 0 (t 6= 0) and Ot,k,i = ∅ for i ≥ 0 so that

I0t,k+1,i =
{

0It,k,i t 1It,k,i for 0 ≤ i < wH(t)
0It,k,i t 1It,k,i t

{
2k, tk

}
for i = wH(t) ,
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and

#E0t,k+1 t T0t,k+1 =
∑
i≥0

#I0t,k+1,i + #O0t,k+1,i

=
∑
i≥0

#I0t,k+1,i

= 2
∑
i≥0

#It,k,i + 2

= 2#Et t Tt,k + 2 .

Then

#S0t,k+1 = 2k+1 − 1−#E0t,k+1 t T0t,k+1

= 2(2k − 1−#Et t Tt,k)− 1
= 2#St,k − 1 .

Unfortunately, that equality is not true for l(t) ≤ k < l(t) + wH(t), and it can even happen
that #S0t,k+1 > 2#St,k. However, experimental results suggest that, as soon as k ≥ l(t) + 2, the
following inequality is true.

Conjecture 2.7.7. Let t ∈ N. For k ≥ l(t) + 2,

#S0t,k+1 ≤ 2#St,k .

2.7.3 Adding 1’s
In light of Theorem 2.4.15, one would also like to increase the size of the 1 subblocks, even “empty”
ones, that is insert 1’s between 0’s. Write down t (or an equivalent one) as:

t = 1---1︸ ︷︷ ︸
α1

0---0...1---10---0 .

In contrast with the previous section, we allow α1 = 0, i.e. t can begin with a 0. However we
want the last 0 subblock to be non-empty. So here d will potentially denote the previous number
of blocks plus one if α1 = 0. For the sake of clarity, d can be defined to be the number of blocks
of 1t.

If a ∈ Ot,k,i, then 1a and 0a are inO1t,k+1,i (except for 10---0 = 2k, but we get 01---1 = 2k−1
instead). If a ∈ It,k,i, then 1a ∈ O1t,k+1,j with j ≤ i and 0a ∈ I1t,k+1,i+1. Hence, it may happen
that 2#St,k > #S1t,k+1. It is not even true that

2B−1−α1#St,k ≤ #S1...1t,k+B−1−α1

where B − 1− α1 1’s have been added in front of t.
As pointed above, it is not true in general that

2#St,k ≤ #S1t,k+1 ,

or equivalently that #It,k,−1 < # {a ∈ It,k,i, i ≥ 0 | 1a ∈ O1t,k+1,j , j < 0}. However, once a block
is big enough, its behavior is known.
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Proposition 2.7.8. Let t ∈ N and k ≥ l(t). If α1 ≥ B − 1, then

#S1t,k+1 = 2#St,k .

Proof. Indeed, if a ∈ It,k, then a 6∈ St,k and neither 1a nor 0a are in S1t,k+1. Then St,k =⊔
i<0Ot,k,i and

S1t,k+1 =
⊔
i<0

O1t,k+1,i

=
(
1(Ot,k,k−wH(t) \ {0}) t 0Ot,k,k−wH(t) t

{
2k − 1

})
t

⊔
wH(t)−k<i<0

1Ot,k,i t 0Ot,k,i ,

whence the equality.

Proposition 2.7.9. Let t ∈ N and k ≥ l(t). If α1 = B − 2, then

#S1t,k+1 = 2#St,k + 2k−2B+2 = 2#St,k + 2wH(t)−α1 .

Proof. If t = 0, then k = 2 and #S1,3 = 3 = 2 · 1 + 1 = 2#S0,2 + 1.
Suppose now that t 6= 0. If a is inert, the situation is as follows:

t =×
B−2 {

1---1×0...×0×,

a = 0---0?...? ,

so at leastB carries are lost (the underlined bits) and a can not be in St,k. Hence, St,k =
⊔
i<0Ot,k,i

and

S1t,k+1 ⊃
(
1(Ot,k,k−wH(t) \ {0}) t 0Ot,k,k−wH(t) t

{
2k − 1

})
t

⊔
wH(t)−k<i<0

1Ot,k,i t 0Ot,k,i ,

so that #S1t,k+1 ≥ 2#St,k.
If a ∈ It,k, then a must have at least a 0 in front of a 1 of t, otherwise a is in fact in Ot,k.

Moreover, if such a 0 is not in front of the first 0 of t, then

t =×
B−2 {

1---1×0...×0...×0×,

a = 0---0?...0...? ,

and we have the following situation for 1t and 1a:

1t =←1

B−2 {

1---1×0...×0...0←,

1a = 10---0?...0...? ,

so that at least B carries are lost. Finally, a ∈ It,k is such that 1a ∈ O1t,k+1,j with j ≤ 0 (in fact
j = −1) if and only if it has only 1’s in front of the 0’s of t except for the first one. There are
exactly 2k−(B−2)−B = 2k−2B+2 such a’s whence the equality of the proposition.

Proposition 2.7.10. Let t ∈ N and k ≥ l(t). Suppose that α1 = B − 3. If d = 1, then

#S1t,k+1 = 2#St,k + 3 .

If d > 1, then

#S1t,k+1 = 2#St,k + (d+ 1 + 4 · 1β1>1 − 2 · 1βd>1)2k−2B+2

= 2#St,k + (d+ 1 + 4 · 1β1>1 − 2 · 1βd>1)2wH(t)−α1−1 .
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Proof. If t = 0, then k = 3, i.e. t = 000 and #S1,4 = 4 = 2 · 1 + 3 = 2#S0,3 + 1.
If d = 1 and t 6= 0, then t = 1---1︸ ︷︷ ︸

α1≥1

0---0︸ ︷︷ ︸
α1+3

, and the formula follows from Theorem 2.4.8.

Suppose now that d > 1. As in the proof of the previous proposition, It,k,i is empty for i < 0
if βd > 1 because at least B − 2 + βd ≥ B carries are lost. If βd = 1, then It,k,−1 is not empty
and consists exactly of the following a’s:

t =×
B−3 {

1---1×0...10×,

a = 0---00...1? ,

with only 1’s in front of the other 0’s of t, so that #It,k,−1 = 2k−(B−3)−B = 2k−2B+3.
We now enumerate the a ∈ It,k such that 1a ∈ S1t,k+1. As before, a must have at least a 0 in

front of a 1 of t and we get 2k−(B−3)−B = 2k−2B+3 different a’s with only 1’s in front of the 0’s
of t except for the first one.

There are also inert a’s with that 0 and another 0 just before a block of 1’s as depicted below:

t =×
B−3 {

1---1×0...1---10...0×,

a = 0---00...?--?10...1 .

For such an a, 1a will lose at least B − 1 carries, so it must have a 1 before the second 0 and
1’s in front of any other 0 of t to be in S1t,k+1. There are 2k−(B−3)−B−1 = 2k−2B+2 such a’s for
each choice of the second 0 and d− 1 such choices, so (d− 1)2k−2B+2 different a’s.

If β1 > 1, it is also possible to put that second 0 in front of the second 0 of t:

t =×
B−3 {

1---100×...0×,

a = 0---000...1 .

For such an a, at least B − 1 carries are lost for a and 1a as well, so that 1a ∈ S1t,k+1 if and only
if there are only 1’s in front of each other 0 of t. There are exactly 2k−(B−3)−B = 2k−2B+3 such
a’s.

If an inert a has a 1 in front of the first 0 of t and β1 = 1, then

t =×
B−3 {

1---101---1×...×0...0×,

a = 0---010---0...0...1 ,

so that at least B − 1 + α2 ≥ B carries are lost for 1a and it can not be in S1t,k+1.
If however β1 > 1 and there is a 0 in front of the second 0 of t, then

t =×
B−3 {

1---100×...0×,

a = 0---010...1 ,

so that at least B− 1 carries are lost for a and 1a as well. Hence, 1a ∈ S1t,k+1 if and only if there
are only 1’s in front of each other 0 of t. There are exactly 2k−(B−3)−B = 2k−2B+3 such a’s.

Adding the above quantities gives the formula of the proposition.
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2.8 Other works
We now compare our results with those of Cusick, Li and Stănică [62], and those of Carlet [37].

2.8.1 Cusick et al.
Cusick, Li and Stănică [62] proved the conjecture in some specific cases:

• wH(t) = 1, 2,

• t = 2k − t′ with wH(t′) ≤ 2 and t′ even,

• t = 2k − t′ with wH(t′) ≤ 4 and t′ odd,

by splitting each case in several subcases and using specific counting arguments for each one. We
now compare their results with ours.

The first case is treated by different theorems:

• wH(t) = 1 if and only if t ' 1, so this case is taken care of by Theorem 2.4.8.

• wH(t) = 2 if and only if t ' 3 which is included in Theorem 2.4.8 or d = 2 and α1 = α2 = 1
which is included in the corollary of Theorem 2.4.15.

The second one reads t = 2k − t′ = 1 + t′ with wH(t′) ≤ 2 and t′ even. If wH(t′) = 0, then
t = 1. If wH(t′) = 1, then t = 2k − 2i is made of one block which is included in Theorem 2.4.8. If
wH(t′) = 2, then our theorems can not be used to conclude.

The last one reads t = 2k − t′ = 1 + t′ with wH(t′) ≤ 4 and t′ odd, i.e. t = 0 or wH(t) ≥ k − 3
(and t = 1 (mod 2) which is not important). If wH(t) = k − 1, then t ' −1. If wH(t) = k − 2,
then t ' −3 which is made of one block and is included in Theorem 2.4.8, or t is made of two
blocks with β1 = β2 = 1 which is included in Theorem 2.4.15. The only subcases not directly
included in our Theorems 2.4.8, 2.4.14 and 2.4.15 when wH(t) = k − 3 are:

• if d = 2:

– 10010, but it is taken care of by the corollary of Theorem 2.4.15,
– 001101 and 110010, which can be directly computed;

• if d = 3:

– 101010, but it is taken care of by Theorem 2.3.14,
– one or two, but not three, αi’s equal to 1, which is not treated by our theorems.

Their approach kind of lacks a general strategy to tackle the conjecture, but points out the
relevance of what we denote by r(a, t), the number of carries.

2.8.2 Carlet
Carlet [37] proved the conjecture in the following cases:

• wH(t) = 0, 1;

• and t = 2i − 2j ;

using affine functions and multisets. Both these results deal with numbers made of one block and
are included in Theorem 2.4.8.
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2.8.3 Towards a complete proof
The numbers for which Pt,k is the nearest to the bound of the conjecture seem to be the ones
which verify the constraint min(αi) ≥ k − wH(t)− 1, and especially the ones which also satisfy
βi = 1 for all i. Moreover, puncturing a 1 out of a binary string seems to make Pt,k smaller most
of the time.

We consequently hope to be able to completely solve the conjecture using one of the following
strategies:

• Show that any number gives a smaller set than an extremal one by induction (i.e. by
puncturing 1’s, even so that different blocks merge).

• Show that the conjecture is true for every number which verifies the constraint min(αi) ≥
k − wH(t) − 1, and then that the other numbers give smaller sets by induction (i.e. by
puncturing 1’s, but without merging different blocks).

2.9 Efficient test of the Tu–Deng conjecture
2.9.1 The Tu–Deng algorithm
In this subsection we present the reformulation of Conjecture 1.2.2 by Tu and Deng [264, Appendix]
using the transfer-matrix method [249, Subsection 4.7]. Their idea is to build the automata
describing the addition bit after bit of two modular integers modulo 2k − 1 for any integer k.
Its states are given by triplets corresponding to the two current bits and the previous carry. In
particular, this automata does not depend on k.

For a fixed t ∈
(
Z/(2k − 1)Z

)∗, let D be the directed graph corresponding to this automata.
Its vertices are the triplets8(a, t, r) ∈ {0, 1}3. There exists an edge from (a, t, r) to (a′, t′, r′) if
and only if t+ 2r′− a− r ∈ {0, 1} and its weight is xr′ where x is a polynomial indeterminate. In
particular, all edges to a given node have the same weight, but this is also true for all the vertices
from a given node.

If (a, b) ∈
(
Z/(2k − 1)Z

)2 verifies a+ b = t, we can define a closed path in D as follows. For
0 ≤ j ≤ k − 1, denote by vj the vertex vj = (aj , tj , rj−1) where rj−1 is 1 if a carry comes from
the j − 1-st bit when adding a and b and 0 otherwise. Then, (a, b) corresponds to the closed path
Γ : v0 → v1 → · · · → vk−1 → v0 of weight wH(Γ) = xr(a,b).

The vertices of D are mapped to the range of integers [0, 7] via the following map: (a, t, r) 7→
4a+ 2t+ r. The directed graph D is depicted in Figure 2.6 where edges from the nodes labeled
0, 2, 6 and 3 have weight 1 and edges from the nodes label-led 1, 5, 7 and 4 have weight x; its
adjacency matrix A is given in Figure 2.7.

Let Vi be the set of vertices (a, t, r) such that t = i ∈ {0, 1}, i.e. V0 = {0, 1, 4, 5} and
V1 = {2, 3, 6, 7}. Denote by Bi,j the submatrices of A made of the entries at the intersection of
the rows and columns respectively specified by Vi and Vj for i, j ∈ {0, 1}. Then, B0,0 = B0,1 and
B1,0 = B1,1 are respectively given by the following (4, 4)-matrices B and C:

B =


1 0 1 0
0 x 0 x
0 x 0 x
0 x 0 x

 , C =


1 0 1 0
1 0 1 0
1 0 1 0
0 x 0 x

 .

8There is a slight inconsistency in our notation here: t and a denote both modular integers and one of their
bits. For simplicity, we allow ourselves to make that abuse of notation.
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2

6

3

5

1

7

Figure 2.6: Directed graph D



1 0 1 0 1 0 1 0
0 x 0 x 0 x 0 x
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
0 x 0 x 0 x 0 x
0 x 0 x 0 x 0 x
1 0 1 0 1 0 1 0
0 x 0 x 0 x 0 x


Figure 2.7: Adjacency matrix A of directed graph D
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Recall that t (or an equivalent one) can be written down as

t =
α1 {

1---1

β1 {

0---0
t1

...

αi {

1---1

βi {

0---0
ti

...

αd {

1---1

βd {
0---0
td

.

Then, each integer coefficient µi of the polynomial

k−1∑
i=0

µix
i = Tr

(
Bβd−1

0,0 B0,1B
αd−1
1,1 B1,0 · · ·Bβ1−1

0,0 B0,1B
α1−1
1,1 B1,0

)
= Tr

(
BβdCαd · · ·Bβ1Cα1

)
represents the number of closed paths in D with length k and weight i, i.e. the number of couples
(a, b) ∈

(
Z/(2k − 1)Z

)2 such that a+ b = t and r(a, b) = i. Hence, we get the equality

#St,k =
k−1−wH(t)∑

i=0
µi .

To check the validity of the conjecture for a given t, it is therefore sufficient to compute the trace
of a product of at most k (4, 4)-matrices.

Moreover, it is a basic result that testing one t in each cyclotomic class is enough. For example,
the smallest one, which is called the cyclotomic leader , can be chosen.

To summarize, the algorithm devised by Tu and Deng to check the validity of their conjecture
is described in Algorithm 2.1.

Algorithm 2.1: Tu–Deng algorithm
Input: A positive integer k ≥ 2
Output: True if the conjecture is verified for k, False otherwise

1 Compute the set T of cyclotomic leaders modulo 2k − 1
2 foreach t in T do
3 Compute the sets {αi} and {βi} for t
4 Compute the polynomial

∑k−1
i=0 µix

i = Tr
(
BβdCαd · · ·Bβ1Cα1

)
5 if

∑k−1−wH(t)
i=0 µi > 2k−1 then

6 return False

7 return True

2.9.2 Necklaces and Lyndon words
The link between cyclotomic equivalence modulo 2k − 1 and rotation of binary strings shows that
the generation of cyclotomic leaders modulo 2k − 1 is nothing but the classical combinatorial
problem of generation of necklaces with k beads of up to two different colors.

Definition 2.9.1 (Necklace, Lyndon word). Let k and n be two strictly positive integers.
A k-ary necklace of length n, also called a necklace of n beads in k colors, is a string of length

n on an alphabet of size k, up to rotation.
An aperiodic necklace is called a Lyndon word.
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The usual representative of a necklace is its smallest element for lexicographic order. We
identify equivalence classes and such elements.

An efficient iterative algorithm for the generation of necklaces has been given in the works of
Fredricksen and Maiorana [100] and Fredricksen and Kessler [99]. A slight variation of it was
proposed independently by Duval [77]. These algorithms have been respectively analyzed by
Ruskey, Savage and Wang [225] and Berstel and Pocchiola [14]. An overview of this problem and
a recursive version of the original algorithm can also be found in the monograph of Ruskey [224,
Subsection 7.2]. Algorithm 2.2 describes a slight variation of the building block of the iterative
version as it can be found in Ruskey’s monograph [224, Algorithm 7.2]. It takes as input any
string and returns the smallest necklace strictly greater than it, together with the largest length
such that a prefix of the necklace is a Lyndon word.

Algorithm 2.2: Iterative generation of necklaces
Input: A string word of length n on the alphabet {0, . . . , k − 1}
Output: The smallest necklace strictly greater than word

1 while True do
2 p = n
3 while word[p] == k-1 do
4 p -= p-1
5 if p == 0 then
6 return (∅, 0)
7 word[p] += 1
8 for i = 1 to n− p do
9 word[i+p] = word[i]

10 if n ≡ 0 (mod p) then
11 return (word, p)

12 return True

2.9.3 Implementation details
We implemented Algorithm 2.1 in C [148] using version 2.2 of the FLINT library [127] for
polynomial and matrix arithmetic and version 1.5.4 of OpenMPI [106] to distribute computations.
Our source code was compiled using version 4.6.1 of GCC [265]. Algorithm 2.2 was used to build
the numbers to test. It is indeed particularly convenient to use that variation of the classical
algorithms to distribute computations among different processes. Moreover, the knowledge of the
largest length such that a prefix of a necklace is a Lyndon word allows to reduce the number of
operations for periodic necklaces: the matrix corresponding to the Lyndon word is computed and
then exponentiated to obtain the matrix corresponding to the necklace. Finally, the matrices
powers Bi and Ci for 1 ≤ i ≤ k − 1 should be precomputed before looping over the necklaces.
Furthermore, an easy induction shows that these matrices can be written as

Bi =


1 Pi(x) 1 Pi(x)
0 2i−1xi 0 2i−1xi

0 2i−1xi 0 2i−1xi

0 2i−1xi 0 2i−1xi

 , Ci =


2i−1 0 2i−1 0
2i−1 0 2i−1 0
2i−1 0 2i−1 0
Qi(x) xi Qi(x) xi

 ,

where Pi(x) =
∑i−2
j=0 2jxj+1 and Qi(x) =

∑i−2
j=0 2i−2−jxj+1.
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Tu and Deng were able to check the original conjecture (Conjecture 1.2.2) for k ≤ 29 in about
fifteen days on a PC with a Pentium4 CPU cadenced at 3.2 GHz and 256 Mb of RAM [264,
Appendix]. Using our implementation, we were able to check the conjecture for k = 39 in about
twelve hours and fifteen minutes on a pool of about four hundred quite recent cores and for k = 40
on a subset of them. More details on the computers used are given in Tables 2.5 and 2.6. Some
timings are given in Table 2.7. The complete source code of our implementation is available at
the following address: http://www.infres.enst.fr/~flori/.

Table 2.5: Computers’ description — Part I

ID CPU Clock rate Cores Number
A Dual-Core AMD Opteron(tm) Processor 1222 3 GHz 2 20
B Intel(R) Core(TM)2 Quad CPU Q9400 2.66 GHz 4 20
C Intel(R) Xeon(R) CPU W3520 2.67 GHz 8 17
D Intel(R) Core(TM)2 Duo CPU E8600 3.33 GHz 2 23
E Intel(R) Core(TM)2 Duo CPU E8500 3.16 GHz 2 33
F Intel(R) Xeon(R) CPU E5540 2.53 GHz 16 1
G Intel(R) Xeon(R) CPU X5690 3.47 GHz 24 1
H Intel(R) Core(TM)2 Quad CPU Q6600 2.40 GHz 4 1

Table 2.6: Computers’ description — Part II

ID Distribution Linux version
A Debian 6.0.2 2.6.32-5-amd64
B Debian 6.0.2 2.6.32-5-amd64
C Debian 6.0.2 2.6.32-5-amd64
D Debian 6.0.2 2.6.32-5-amd64
E Fedora release 15 (Lovelock) 2.6.40.4-5.fc15.x86_64
F Scientific Linux CERN SLC

release 6.1 beta (Carbon)
2.6.32-71.29.1.el6.x86_64

G CentOS Linux release 6.0 (Final) 2.6.32-71.29.1.el6.centos.plus.x86_64
H Debian wheezy/sid 3.0.0-1-amd64

http://www.infres.enst.fr/~flori/
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Table 2.7: Timings for checking the Tu–Deng conjecture

Single core implementation OpenMPI implementation
k ID Time ID Time ID Time ID Time
20 H 12.67 G 6.90 all A-G 0.09 all E-G + H 0.23
21 H 26.56 G 14.46 all A-G 0.15 all E-G + H 0.45
22 H 55.39 G 30.28 all A-G 0.25 all E-G + H 0.82
23 H 114.96 G 63.09 all A-G 0.57 all E-G + H 1.85
24 H 238.46 G 131.17 all A-G 1.19 all E-G + H 3.99
25 H 495.90 G 272.67 all A-G 2.38 all E-G + H 8.59
26 H 1029.27 G 565.70 all A-G 5.16 all E-G + H 13.83
27 H 2130.63 G 1174.62 all A-G 11.07 all E-G + H 29.48
28 H 4402.22 G 2424.61 all A-G 23.83 all E-G + H 56.14
29 H 9064.92 G 5002.24 all A-G 51.13 all E-G + H 119.46
30 H 18645.16 G 10267.57 all A-G 105.37 all E-G + H 240.50
31 H 38453.96 G 21213.71 all A-G 220.15 all E-G + H 511.01
32 H 78641.68 G 43644.63 all A-G 316.33 all E-G + H 1087.67
33 H 160919.01 G 89801.69 all A-G 670.45 all E-G + H 2253.70
34 H 330238.97 G 184389.28 all A-G 1408.06 all E-G + H 4715.58
35 H 671319.77 G 377472.75 all A-G 3257.02 all E-G + H 9904.41
36 H 1340319.02 G all A-G 5842.03 all E-G + H 20105.01
37 H G all A-G 11797.79 all E-G + H 40665.68
38 H G all A-G 23729.21 all E-G + H 81862.20
39 H G all A-G 47553.29 all E-G + H 161199.96
40 H G all A-G all E-G + H 323197.65
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Chapter 3

Bent functions and algebraic
curves

Je n’ai jamais été aſſez loin pour bien ſentir l’application de
l’algebre à la géométrie. Je n’aimois point cette manière
d’opérer ſans voir ce qu’on fait ; & il me ſembloit que réſoudre
un problême de géométrie par les équations, c’étoit jouer un
air en tournant une manivelle. La premiere fois que je trouvai
par le calcul que le quarré d’un binome étoit compoſé du
quarré de chacune de ſes parties & du double produit de l’une
par l’autre, malgré la juſteſſe de ma multiplication, je n’en
voulus rien croire juſqu’à ce que j’euſſe fait la figure. Ce n’étoit
pas que je n’euſſe un grand goût pour l’algebre en n’y
conſidérant que la quantité abſtraite ; mais appliquée à
l’étendue je voulois voir l’opération ſur les lignes, autrement je
n’y comprenois plus rien.

Les Confeſſions
Jean-Jacques Rousseau [223]
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In Chapter 1 we emphasized the fact that a cryptographic Boolean function should verify several
contradictory properties. Constructing satisfying functions is therefore a difficult task, and
trade-offs between the different criteria have to be made. In the present part, our approach will
be slightly different: we solely focus on one criterion — non-linearity — and more precisely on
functions achieving maximum non-linearity: bent functions. Recall that the significance of this
aspect has again been demonstrated by the recent development of linear cryptanalysis initiated
by Matsui [189, 188]. It is therefore especially important when Boolean functions are used as
part of S-boxes in symmetric cryptosystems.

Bent functions were introduced by Rothaus [222] in 1976. They turned out to be rather
complicated combinatorial objects and a concrete description of all bent functions is elusive. The
class of bent functions contains a subclass of functions introduced by Youssef and Gong [285]
in 2001: the so-called hyper-bent functions. In fact, the first definition of hyper-bent functions
was based on a property of the extended Walsh–Hadamard transform of Boolean functions
introduced by Golomb and Gong [118]. Golomb and Gong proposed that S-boxes should not
be approximated by a bijective monomial, providing a new criterion for S-box design. The
classification of (hyper-)bent functions and many related problems remain open. In particular, it
seems difficult to define precisely an infinite class of hyper-bent functions, as indicated by the
number of open problems proposed by Charpin and Gong [46].

The purpose of this chapter is to provide the mathematical background needed in Chapter 4
where actual characterizations of such functions and efficient algorithms to generate them will be
presented. In Section 3.1, an alternative representation of Boolean functions is introduced, namely
the polynomial form, as well as exponential sums and polynomials classically related to it. It is
indeed under that form that (hyper-)bent functions will be characterized in Chapter 4. Section 3.2
covers a completely different and at first sight unrelated topic: (hyper)elliptic curves with an
emphasis on point counting and efficient algorithms addressing this problem. The main point
that we need in Chapter 4 is that it is possible to count points on such curves in a very efficient
manner. This introduction can also serve the reader who is not acquainted with the theory of
algebraic curves and abelian varieties as an introduction to Part III. Therefore, Section 3.2 can
also be seen as the beginning of the transition towards Part III which will definitely depart from
the study of Boolean functions and dive into that of abelian varieties with complex multiplication.

3.1 Bent functions

3.1.1 Boolean functions in polynomial form

Let n be a positive integer. Recall that a Boolean function f in n variables is an F2-valued
function on Fn2 . The field F2n is (non-canonically) isomorphic to the vector space Fn2 , so that a
Boolean function can also be seen as a function f : F2n → F2 . Recall also that the Hamming
weight of f , denoted by wH(f), is the Hamming weight of the image vector of f , that is the
cardinality of its support supp(f) = {x ∈ F2n | f(x) = 1}.

We now define another classical representation of Boolean functions involving the trace function
from F2k to F2r .

Definition 3.1.1 (Field trace). For any positive integer k, and r dividing k, the trace function
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from F2k to F2r is denoted by Trkr . It can be defined as1

Trkr (x) =
k
r−1∑
i=0

x2ir = x+ x2r + x22r
+ · · ·+ x2k−r .

In particular, we denote the absolute trace over F2 of an element x ∈ F2n by Trn1 (x) =
∑n−1
i=0 x

2i .

Proposition 3.1.2 (Polynomial form [38, 2.1]). Every non-zero Boolean function f : F2n → F2
in n variables has a unique trace expansion of the form

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)

+ ε(1 + x2n−1), aj ∈ F2o(j) ,

called its polynomial form, where Γn is the set of integers obtained by choosing one element in
each cyclotomic coset modulo 2n − 1 (including the trivial coset containing 0), o(j) is the size of
the cyclotomic coset containing j, and ε = wH(f) modulo 2.

The most usual choice for the coset elements is the smallest element in each cyclotomic coset,
called the coset leader.

Recall that, given an integer 0 ≤ j ≤ 2n − 1 having the binary expansion j =
∑n−1
i=0 ji2i,

ji ∈ {0, 1}, the Hamming or binary weight of j, denoted by wH(j), is # {0 ≤ i ≤ n− 1 | ji = 1}.
The algebraic degree of f is then equal to the maximum weight of an exponent j for which aj 6= 0
if ε = 0 and to n if ε = 1.

The hard problem we will try to tackle in Chapter 4 is to give efficient characterizations of
bentness using the polynomial form, i.e. necessary and sufficient conditions on the coefficients ar
for the corresponding function to be bent.

3.1.2 Walsh–Hadamard transform
In this subsection we give another characterization of bentness and definitions of stronger
properties.

Definition 3.1.3 (Sign function). Let f be a Boolean function on F2n . Its sign function is the
integer-valued function χ (f) = χf = (−1)f .

Definition 3.1.4 (Walsh–Hadamard transform). Let f be a Boolean function on F2n . The
Walsh–Hadamard transform of f is the discrete Fourier transform of χf , whose value at ω ∈ F2n

is defined as
χ̂f (ω) =

∑
x∈F2n

(−1)f(x)+Trn1 (ωx) .

Recall that bent functions are functions with maximum non-linearity. They only exist for even
number of inputs and can be equivalently defined as follows.

Definition 3.1.5 (Bentness). A Boolean function f : F2n → F2 is said to be bent if χ̂f (ω) = ±2n2 ,
for all ω ∈ F2n .

Hyper-bent functions have even stronger properties than bent functions. More precisely,
hyper-bent functions can be defined as follows.

1This is the usual field trace. For an element x ∈ F2k , it can be defined as the (linear algebra) trace of the
endomorphism of multiplication by x where F2k is seen as a vector space over F2r . Using Galois theory, this can
also be defined as the sum of the conjugates of x in the Galois extension field F2k over F2r .
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Definition 3.1.6 (Hyper-bentness). A Boolean function f : F2n → F2 is said to be hyper-bent
if the function x 7→ f(xi) is bent, for every integer i co-prime to 2n − 1.

Semi-bent functions exist for even or odd number of inputs. We will only be interested in
even number of inputs where they can be defined as follows.

Definition 3.1.7 (Semi-bentness). A Boolean function f : F2n → F2 (n even) is said to be
semi-bent if χ̂f (ω) ∈

{
0,±2n+2

2

}
, for all ω ∈ F2n .

Hence, the Walsh–Hadamard transform provides a basic characterization of (hyper-)bentness.
However, it can definitely not be used in practice to test efficiently bentness of a given function,
especially if all its values are computed naively one at a time as exponential sums. Nevertheless,
it should be noted that all the values of the Walsh–Hadamard transform can be computed at
once using the so-called fast Walsh–Hadamard transform, a kind of Fast Fourier Transform.
The complexity of the fast Walsh–Hadamard transform is O(2nn2) bit operations and O(2nn)
memory [8].

3.1.3 Binary exponential sums
The first satisfactory characterizations we will describe in Chapter 4 involve Kloosterman sums.
The classical binary Kloosterman sums on F2n are defined as follows.

Definition 3.1.8 (Kloosterman sums). The binary Kloosterman sums on F2n are

Kn(a) = 1 +
∑
x∈F∗2n

(−1)Trn1 (ax+ 1
x ), a ∈ F2n .

It is an elementary fact that Kn(a) = Kn(a2):

Kn(a) = 1 +
∑
x∈F∗2n

(−1)Trn1 (ax+ 1
x ) = 1 +

∑
x∈F∗2n

(−1)Trn1 (a2x2+ 1
x2 )

= 1 +
∑
x∈F∗2n

(−1)Trn1 (a2x+ 1
x ) = Kn(a2) .

Some characterizations will also involve the cubic sums which are defined as follows.

Definition 3.1.9 (Cubic sums). The cubic sums on F2n are

Cn(a, b) =
∑
x∈F2n

(−1)Trn1 (ax3+bx), a, b ∈ F2n .

In particular, such exponential sums can be seen as the Walsh–Hadamard transforms of simple
functions:

• The function a 7→ Kn(a) is the Walsh–Hadamard transform of the inverse function (we
define 1/0 = 0 or 1/x as x2n−2 for all x ∈ F2n).

• The function b 7→ Cn(a, b) is the Walsh–Hadamard transform of the cube function times a
defined as x 7→ ax3.

All the values of those sums can then be computed at once using a fast Walsh–Hadamard
transform. However, such an approach does not answer the problem of computing efficiently one,
and only one, such exponential sum.
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3.1.4 Dickson polynomials
Finally, the last classical objects we will need are the so-called Dickson polynomials.

Definition 3.1.10 (Binary Dickson polynomials [179]). The family of binary Dickson polynomials
(of the first kind) Dr(X) ∈ F2 [X] of degree r is defined by

Dr(X) =
b r2 c∑
i=0

r

r − i

(
r − i
i

)
Xr−2i, r ≥ 2 .

Moreover, the family of Dickson polynomials Dr(X) can also be defined by the recurrence relation

Di+2(X) = XDi+1(X) +Di(X) ,

with initial values
D0(X) = 0, D1(X) = X .

We refer the reader to the monograph of Lidl, Mullen and Turnwald [179] for many useful
properties and applications of Dickson polynomials. Here is the list of the first six binary Dickson
polynomials:

D0(X) = 0, D1(X) = X, D2(X) = X2 ,

D3(X) = X +X3, D4(X) = X4, D5(X) = X +X3 +X5 .

3.2 Algebraic curves
3.2.1 Elliptic curves over perfect fields
Classical treatment of the theory of elliptic curves can be found for example in the textbooks
of Silverman [246], Husemöller [138], Cassels [44], Washington [279] or Knapp [152]. A more
cryptographic oriented point of view, and especially special treatment for even characteristic, can
be found for example in the works of Koblitz [154, 155] or in several more recent textbooks [82,
18, 56, 107]

Let K be a perfect field2. An elliptic curve can be defined abstractly as follows.

Definition 3.2.1 (Elliptic curve). An elliptic curve E is a smooth projective algebraic curve3 of
genus4 one with a rational point.

In more down-to-earth terms, such a curve can be described by a Weierstraß equation [244,
Section III.1]

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

giving its affine part. There is an additional point at infinity OE which can be seen as the only
non-affine solution to the homogenized Weierstraß equation. With such an equation is associated

2A field is said to be perfect if every algebraic extension is separable, i.e. if every irreducible polynomial splits
as a product of distinct linear factors over an algebraic closure. In particular, fields of characteristic zero and finite
fields are perfect.

3Rigor would lead us to define now what a smooth projective algebraic curve is. Unfortunately, it would take us
too far afield to define formally all these notions in a satisfactory way. Therefore, for the conciseness of exposition
and because it is enough to think of such an object as “what a curve should be”, we will not formally define them
here. Anyhow, a concrete description of such an object is given below and more details about algebraic curves and
elliptic curves will be given in Chapter 5.

4The remark of Footnote 3 applies here as well.
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a quantity called its discriminant5In fact, a Weierstraß equation describes the affine part of a
smooth, or non-singular, projective curve — which is then an elliptic curve — if and only if its
discriminant is non-zero [244, Proposition III.1.4]. The affine parts of such curves defined over
the real numbers, with discriminants zero and non-zero, are depicted in Figures 3.1, 3.2, 3.3, 3.4,
and 3.5.

Figure 3.1: The elliptic curve E : y2 = x3 + 1, ∆ = −432

Over an algebraically closed field, elliptic curves are classified up to isomorphism by the
j-invariant, which can be defined as a rational function of the coefficients of the curve6 [244,
Proposition III.1.4]. Furthermore, for any j0 in K, the algebraic closure of K, there is a curve
defined over K(j0) with j-invariant j0 [244, Proposition III.1.4].

For a given extension L of K, a point is said to be rational if its coordinates lie in L (and
not in a larger extension). There is a composition law, usually additively denoted, on the set of
rational points giving it a group structure [244, Section III.2]. It can be explicitly described by
the so-called “chord-and-tangent” law and is depicted in Figure 3.6. The point at infinity OE is
the neutral element for the addition law. Multiplication by an integer n on E, that we denote by
[n], can then be naturally defined.

The following result shows that any rational map between curves is the composition of a
translation and a homomorphism.

Definition 3.2.2 (Isogeny). Let E1 and E2 be two elliptic curves defined over K and φ a
morphism between them. We say that φ is an isogeny if φ(OE1) = OE2 .

5The expression of the discriminant using the coefficients a1, a3, a2, a4 and a6 is quite complicated and we will
not give it here. A simpler expression exists in characteristic different from 2 and 3 and is given in Definition 5.2.1.

6The expression of the j-invariant using the coefficients a1, a3, a2, a4 and a6 is also quite complicated and
will not be given here. A simpler expression exists as well in characteristic different from 2 and 3 and is given in
Definition 5.2.2.
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Figure 3.2: The singular curve E : y2 = x3,
∆ = 0

Figure 3.3: The singular curve E : y2 =
x3 − 3x+ 2, ∆ = 0

Figure 3.4: The elliptic curve E : y2 =
x3 − 2x, ∆ = 512

Figure 3.5: The elliptic curve E : y2 =
x3 − 2x+ 2, ∆ = −1216
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Figure 3.6: Addition law on the elliptic curve E : y2 = x3 + 1
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Proposition 3.2.3 ([244, Theorem III.4.8]). Let E1 and E2 be two elliptic curves defined over
K and φ a map between them. If φ is an isogeny, then φ is a homomorphism.

We denote by EndK(E) the ring of rational endomorphisms (i.e. homomorphisms or equiva-
lently isogenies from E to itself) and by End(E) = EndK(E) the ring of endomorphisms of E
over the algebraic closure K of K. It is possible to define the degree [244, Section II.2] and the
trace [244, Proposition III.8.6] of such maps. Before stating the theorem giving the structure of
EndK(E), we need different definitions.
Definition 3.2.4 (Order [244, Section III.9]). Let K be a Q-algebra finitely generated over Q.
An order O in K is a subring of K which is finitely generated and such that7 O ⊗Z Q = K.

In a number field K of degree [K : Q] = n, an order O is a subring which is also a lattice, i.e.
a Z-module of rank n8.
Definition 3.2.5 (Definite quaternion algebra [244, Section III.9]). A definite quaternion algebra
K over Q is an algebra of the form

K = Q + Qα+ Qβ + Qαβ ,

whose multiplication satisfies

α2, β2 ∈ Q, α2, β2 < 0, αβ = −βα .

Theorem 3.2.6 ([244, Corollary III.9.4]). The endomorphism ring of an elliptic curve E over
K is one of the three following objects:

1. the ring of natural integers Z;

2. an order in an imaginary quadratic number field9;

3. a maximal order in a definite quaternion algebra.
Moreover, if char(K) = 0, then only the first two are possible.

In particular, End(E) is torsion-free. If End(E) is strictly larger than Z, then the curve is
said to have complex multiplication10.

The group of rational points of E over an extension L of K (i.e. points with coordinates in L)
is denoted by E(L). For an integer n, we denote by E[n] the n-torsion subgroup of the points of
E over K, i.e.

E[n] =
{
P ∈ E(K) | [n]P = OE

}
.

The subgroup of rational points of n-torsion is denoted by E[n](K) = E[n]∩E(K). The following
classical result gives the structure of the groups of torsion points.
Proposition 3.2.7 ([244, Corollary III.6.4]). Let n be a positive integer and p the characteristic
of K. Then:
• If p 6= 0 and p - n, then E[n] ' Z/nZ× Z/nZ.

• One of the following is true: E[pe] ' {0} for all e ≥ 1 or E[pe] ' Z/peZ for all e ≥ 1.
It can also be shown that a point of E is of n-torsion if and only if its coordinates are roots of

a bivariate polynomial called the n-division polynomial of E [18, Section III.4]. In fact, one can
even choose a univariate polynomial in the x-coordinate and we denote that polynomial by fn.

7The operator ⊗Z denotes a tensor product of Z-modules.
8More details about such orders will be given in Chapters 5 and6.
9An imaginary quadratic number field is a number field of degree 2 whose complex embeddings are complex,

i.e. their images are not included in the real numbers R.
10This definition is only valid in dimension 1. For general abelian varieties, the “right” definition is given in

Chapter 6.
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3.2.2 Elliptic curves over finite fields
We now focus on elliptic curves defined over finite fields. Let m be a positive integer, Fq the
finite field of characteristic p with q = pm elements and Fq its algebraic closure.

The group of rational points of E over an extension Fqk of Fq (i.e. points with coordinates in
Fqk) is denoted by E(Fqk); the number of points of this group by #E(Fqk). When the context is
clear, we denote #E(Fq ) simply by #E.

Definition 3.2.8 (Frobenius endomorphism). Let E be an elliptic curve defined over the finite
field Fq of characteristic p. Then the q-th power map is an endomorphism of E called the q-th
Frobenius endomorphism of the curve.

It is a classical result that #E = q+ 1− t where t is the trace of the Frobenius endomorphism
of E over Fq and the following theorem has been shown by Hasse.

Theorem 3.2.9 ([244, Theorem V.2.3.1]). Let t be the trace of the Frobenius endomorphism of
an elliptic curve defined over Fq , then

|t| ≤ 2√q .

Here we will be interested in ordinary elliptic curves which can be defined as follows.

Definition 3.2.10 (Ordinary elliptic curve [244, Theorem V.3.1]). Let E be an elliptic curve
defined over Fq of characteristic p and t the trace of the Frobenius endomorphism of E. We say
that E is ordinary if it verifies one of the following equivalent properties:

• p - t;

• E[p] ' Z/pZ;

• End(E) is an order in an imaginary quadratic extension of Q.

If E is not ordinary, we say it is supersingular .
Finally, using classical results of Deuring [68] and Waterhouse [280], the number of ordinary

elliptic curves (up to isomorphism) with a given trace t of the Frobenius endomorphism (or
equivalently a number of points q + 1 − t), verifying |t| ≤ 2√q and p - t, can be computed as
follows11. The conditions on t indeed imply that End(E) must be an order O in K = Q[α] and
contains the order Z[α] of discriminant ∆ where α = t+

√
∆

2 and ∆ = t2− 4q. We denote by H(∆)
the Kronecker class number [232, 61]

H(∆) =
∑

Z[α]⊂O⊂K

h(O) ,

where the sum is taken over all the orders O in K containing Z[α] and h(O) is the classical class
number.

Proposition 3.2.11 ([232, 144, 61]). Let t be an integer such that |t| ≤ 2√q and p - t. The
number N(t) of elliptic curves over Fq with q + 1− t rational points is given by

N(t) = H(∆) ,

where ∆ = t2 − 4q.
11See Chapter 5 for details.
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It should be noted that H(∆) can be computed from the value of the classical class number
of (the maximal order of) K using the following proposition.

Theorem 3.2.12 ([160, 61, 144, 54]). Let O be the order of conductor f in K12, an imaginary
quadratic extension of Q, OK the maximal order of K and ∆K the discriminant of (the maximal
order of) K. Then

h(O) = fh(OK)
[O∗K : O∗]

∏
p|f

(
1−

(
∆K

p

)
1
p

)
,

where
(
·
p

)
is the Kronecker symbol.

Denoting the conductor of Z[α] by f , H(∆) can then be written as

H(∆) = h(OK)
∑
d|f

d

[O∗K : O∗]
∏
p|d

(
1−

(
∆K

p

)
1
p

)
.

We now give specific results to even characteristic. First, E is supersingular if and only if its
j-invariant is 0. Second, if E is ordinary, then its Weierstraß equation can be chosen to be of the
form

E : y2 + xy = x3 + bx2 + a ,

where a ∈ F∗q and b ∈ Fq , its j-invariant is then 1/a; moreover, its first division polynomials are
given by [154, 18]

f1(x) = 1, f2(x) = x, f3(x) = x4 + x3 + a, f4(x) = x6 + ax2 .

The quadratic twist of E is an elliptic curve with the same j-invariant as E, so isomorphic over
the algebraic closure Fq of Fq , but not over Fq (in fact it becomes so over Fq2). It is unique up
to rational isomorphism and we denote it by Ẽ. It is given by the Weierstraß equation

Ẽ : y2 + xy = x3 + b̃x2 + a ,

where b̃ is any element of Fq such that Trm1
(
b̃
)

= 1 − Trm1 (b) [82]. The trace of its Frobenius
endomorphism is given by the opposite of the trace of the Frobenius endomorphism of E, so that
their number of rational points are closely related [82, 18]:

#E + #Ẽ = 2q + 2 .

3.2.3 Hyperelliptic curves
The theory of hyperelliptic curves, with a cryptographic point of view, can be found for example in
the classical treatments of Menezes and different coauthors [141, 194] or more recent textbooks [110,
56, 107]. We can define a hyperelliptic curve rather generally and abstractly as follows.

Definition 3.2.13 (Hyperelliptic curve). A hyperelliptic curve H is a smooth projective algebraic
curve which is a degree 2 covering13of the projective line.

12The study of orders in imaginary quadratic field is conducted in Subsection 5.2.2. The definition of the
conductor is given there in Proposition 5.2.17. For the impatient reader, it is sufficient to know that the order O
of conductor f can be explicitly described as O = Z + fOK where OK is the ring of integers of K.

13The remark of Footnote 3 applies here as well.
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The genus of a hyperelliptic curve will be denoted by g. The above definition includes the
elliptic curves, i.e. curves of genus 1, but it is sometimes understood that a hyperelliptic curve
should be of genus g ≥ 2, hence not an elliptic curve.

A description of the different normal forms for hyperelliptic curves in even characteristic can
be found in the work of Enge [83]. For cryptographic applications, the curves are often chosen to
be imaginary hyperelliptic curves. This is also the kind of curves we will encounter in Chapter 4.
An imaginary hyperelliptic curve of genus g can be described by an affine part given by the
following equation14:

H : y2 + h(x)y = f(x) ,

where h(x) is of degree less than or equal to g and f(x) is monic of degree 2g + 1. In particular,
its smooth projective model has only one point at infinity. Such a curve of genus 2 is depicted in
Figure 3.7.

Figure 3.7: The hyperelliptic curve H : y2 = (x+ 2)(x+ 1)x(x− 2)(x− 5/2) of genus 2

We finally define an interesting subclass of hyperelliptic curves.

Definition 3.2.14 (Artin–Schreier curve). An Artin–Schreier curve is an imaginary hyperelliptic
curve of genus g whose affine part is given by an equation of the form

H : y2 + xky = f(x) ,

where 0 ≤ k ≤ g and f(x) is monic of degree 2g + 1.

3.2.4 Point counting
The main fact about elliptic and hyperelliptic curves defined over a finite field Fqm that we will
use in Chapter 4 is the existence of algorithms to compute their cardinalities in polynomial time
and space in m. Moreover, those algorithms are quite efficient in small characteristic.

14Beware that the projective curve corresponding to the homogenization of the following equation will have a
singularity at infinity as soon as g ≥ 2. The hyperelliptic curve is therefore the desingularization of that curve. It is
a fact that it also has one and only one point at infinity, and that its affine part is described by the same equation.
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Let us begin our survey of such algorithms with the simplest case: elliptic curves. This is
indeed the best mastered situation and there are several different algorithms to compute the
cardinalities of such curves.

The most famous one is without any doubt the so-called SEA algorithm. It is named after
Schoof [231] who developed in 1985 the first deterministic polynomial time algorithm for point
counting, and Elkies and Atkin who subsequently proposed practical improvements [233, 81]. The
overall idea of such l-adic algorithms is to compute the trace of the Frobenius endomorphism
modulo small primes different from the characteristic of the field, and to gather this information
back using the Chinese Remainder Theorem. Overviews of these algorithms, and in particular
of additional practical improvements, are given in the theses of Müller [214] and Lercier [171].
These l-adic algorithms were subsequently extended to higher genera by Pila [220] and made
practical, at least in genus 2, by Gaudry, Harley and Schost [111, 113].

In small characteristic, and especially in even characteristic that will be our principal interest
in Chapter 4, more efficient algorithms have been developed. The first breakthrough is due
to Satoh [228] who proposed in 1999 to compute the trace of the Frobenius endomorphism
on a canonical lift of the curve over the p-adics for p ≥ 5. This is the so-called canonical
lift method. This method was extended to characteristic 2 and 3, and improved, by different
authors [98, 247, 276, 200, 229, 150, 109, 172]. The main result we need relies on the AGM
method described by Mestre [200] and has been given by Lercier and Lubicz [172] and further
improved by Harley [126].

Theorem 3.2.15 ([126]). Let E be an elliptic curve defined over F2m . There exists an algorithm
to compute the cardinality of E in O(m2(logm)2 log logm) time and O(m2) space.

Mestre [201] extended the AGM method to higher genera and a quasi-quadratic algorithm
was described by Lercier and Lubicz [173].

Theorem 3.2.16. Let H be a hyperelliptic curve of genus g defined over F2m . There exists an
algorithm to compute the cardinality of H in

O(24g+o(1)g3m2+o(1))

bit operations and O(23g+o(1)m2) memory.

It should be remarked that the complexity of this algorithm is exponential in the genus of the
curve.

There also exist other efficient algorithms in small and medium characteristic computing the
trace of the Frobenius endomorphism:

1. on Dwork cohomology groups [78] in the approach of Lauder and Wan [165, 163, 164];

2. on Monsky–Washnitzer cohomology groups [211, 208, 210, 209] in the approach initiated by
Kedlaya [146, 147] and extended to even characteristic by Denef and Vercauteren [66, 67];

3. using deformation theory [79], for example in the work of Lauder [162] and Hubrechts [137,
136].

A complete description of many of the existing p-adic algorithms can be found in the theses of
Vercauteren [275] and Hubrechts [135], or in different articles [274, 174]. Such algorithms have
the advantage to extend naturally to higher genera in any characteristic.

We now state more precisely a result of Denef and Vercauteren [66, 67, 275] about hyperelliptic
curves defined over a finite field of even characteristic.
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Theorem 3.2.17 ([275, Theorem 4.4.1]). Let H be an imaginary hyperelliptic curve of genus g
defined over F2m . There exists an algorithm to compute the cardinality of H in

O(g3m3(g2 + log2m log logm) log gm log log gm)

bit operations and O(g4m3) memory.

A slightly stronger result applies for Artin–Schreier curves.

Theorem 3.2.18 ([275, Theorem 4.3.1]). Let H be an Artin–Schreier curve of genus g defined
over F2m . There exists an algorithm to compute the cardinality of H in

O(g3m3(g2 + log2m log logm) log gm log log gm)

bit operations and O(g3m3) memory.

In particular, the complexities of these algorithms are polynomial in the genus of the curve.



Chapter 4

Efficient characterizations for
bentness

No constaba el nombre del heresiarca, pero sí la
noticia de su doctrina, formulada en palabras casi
idénticas a las repetidas por él, aunque — tal vez
— literariamente inferiores. Él había recordado:
Copulation and mirrors are abominable. El texto
de la Enciclopedia decía: «Para uno de esos
gnósticos, el visible universo era una ilusión o
(más precisamente) un sofisma. Los espejos y la
paternidad son abominables (mirrors and
fatherhood are abominable) porque lo multiplican
y lo divulgan».

Ficciones
Jorge Luis Borges [22]
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As was already stated in the introduction to Chapter 3, characterizing (hyper-)bent functions is
a difficult problem. Section 4.1 presents such characterizations for Boolean functions given in
polynomial form: first for monomial functions by means of binary Kloosterman sums as originally
introduced by Dillon [70] and later extended by various authors; second for functions with multiple
trace terms using Dickson polynomials as presented by Charpin and Gong [46] and Mesnager [196].
Such results make a preliminary step towards efficient generation of (hyper-)bent functions: the
computation of the full Walsh–Hadamard transform is typically replaced with that of only one or
a finite number of exponential sums. However, computing such a sum in a naive manner still
needs exponential time in the size of the finite field of definition.

Section 4.2 gives an elegant and efficient solution to this problem by using the classical
connection between Kloosterman sums, or more generally specific exponential sums, and the
number of points on (hyper)elliptic curves. These ideas go back to the works of Lachaud and
Wolfmann [156] and Katz and Livné [144] in the late eighties, but the most of them was not made
until quite recently and works such as those of Lisoněk [180, 182, 181]. In particular, it is shown
in Section 4.2 how such results extend to the criteria proposed by Mesnager.

To actually generate an (hyper-)bent function in the monomial families, or equivalently to
find binary Kloosterman sums with specific values, other criteria should be taken into account:
being able to compute efficiently a Kloosterman sum is not sufficient. For example, divisibility
properties of Kloosterman sums play an important role and some classical results about them are
recalled in Section 4.3. As was pointed out by Lisoněk and Moisio [180, 183] among others, the
connection between Kloosterman sums and elliptic curves provides once more simple and elegant
proofs of such results.

To conclude this chapter we describe in Section 4.4 several algorithms which have been
proposed to efficiently find zeros of Kloosterman sums, and so to generate (hyper-)bent functions,
and are based on the above observations. We then show how they extend to the search for
the value 4. As a byproduct of our implementation of such an algorithm, we present some
experimental results on a difficult mathematical case previously studied by Mesnager about a
characterization of hyper-bent functions using Kloosterman sums with value 4 in Section 4.5.

Part of the results presented in this chapter are joint work with Gérard Cohen and Sihem
Mesnager [92, 93, 91].

4.1 Hyper-bentness characterizations
4.1.1 Monomial functions
A first explicit construction of monomial bent functions involving zeros of Kloosterman sums was
given by Dillon [70] in 1974: those are the classical monomial functions with the Dillon exponent.
We call it the Dillon criterion. That construction was further studied by several authors:

• Lachaud and Wolfmann [157] who actually proved that the family defined by Dillon is never
empty;

• Leander [167] which refined the results of Dillon using a different point of view;

• Charpin and Gong [46] who extended the family of Dillon, implying in particular that the
original functions were actually hyper-bent;

• and Mesnager [198] who characterized semi-bent functions with two or three trace terms1

using a similar criterion;
1Hence, such functions are not monomials, but binomials or trinomials. However, the number of trace terms for

these functions is fixed in a given family and is low, so we include them under the hood of monomials.
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to cite only a few of them.
Hence, it has been shown that the zeros of binary Kloosterman sums lead to several families

of bent, hyper-bent and semi-bent functions. We summarize the known results in Table 4.1 with
the following conventions:

• A class of functions is given in terms of a ∈ F∗2m , b ∈ F∗4 , c ∈ F2n \ F2m and r co-prime to
2m + 1; remember that a ∈ F∗2m , but that the corresponding Boolean functions have n = 2m
inputs.

• Unless stated otherwise, the given conditions on a are necessary and sufficient for the
Boolean functions to verify the given property.

Table 4.1: Families of hyper-bent and semi-bent functions for Km(a) = 0

Class of functions Property Conditions References
Trn1
(
axr(2m−1)

)
hyper-bent Km(a) = 0 [70, 157, 167, 46]

Trn1
(
axr(2m−1)

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

semi-bent Km(a) = 0 [198]

Trn1
(
axr(2m−1)

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Trn1
(
x(2m−1) 1

4 +1
)
;

Trnm (c) = 1, m odd

semi-bent Km(a) = 0 [198]

Trn1
(
axr(2m−1)

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Trn1
(
x(2m−1)3+1

)
;

Trnm (c) = 1

semi-bent Km(a) = 0 [198]

Trn1
(
axr(2m−1)

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Trn1
(
x(2m−1) 1

6 +1
)
;

Trnm (c) = 1, m even

semi-bent Km(a) = 0 [198]

Trn1
(
axr(2m−1)

)
+ Trn1

(
αx2m+1

)
+ Trn1

(∑2ν−1−1
i=1 x(2m−1) i

2ν +1
)
;

gcd(ν,m) = 1, α ∈ F2n , Trnm (α) = 1

semi-bent Km(a) = 0 [198]

Quite surprisingly, all the aforementioned characterizations involve zeros of Kloosterman sums
and it is only in 2009 that Mesnager [195] has shown that another value of such sums — the value
4 — also gives rise to bent, hyper-bent and semi-bent functions. We will call this criterion the first
Mesnager criterion. Afterwards, other families2 of (hyper-)bent functions and semi-bent functions
were as well described by Mesnager [197, 198]. The known results about (hyper-)bent functions
are summarized in Table 4.2, those about semi-bent functions in Table 4.3. The conventions are
the same as for Table 4.1.

Such characterizations are obviously much more pleasant than the original definition involving
the Walsh–Hadamard transform. This is also a first step towards an efficient way to explicitly
build (hyper-)bent functions.

4.1.2 Functions with multiple trace terms
In fact, Charpin and Gong devised in the same article [46] a quite more general characterization
of hyper-bentness for a large class of Boolean functions with multiple trace terms. In particular,

2The remark of Footnote 1 applies here as well
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Table 4.2: Families of (hyper-)bent functions for Km(a) = 4

Class of functions Property Conditions References

Trn1
(
aζix3(2m−1)

)
+ Tr2

1

(
βjx

2n−1
3

)
;

m odd and m 6≡ 3 (mod 6), β is a primitive
element of F4 , ζ is a generator of the cyclic
group U of (2m + 1)-th roots of unity, (i, j) ∈
{0, 1, 2}2

hyper-bent Km(a) = 4 and
Trm1

(
a1/3

)
= 0

[195]

Trn1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
;

m odd
hyper-bent Km(a) = 4 [197]

Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
;

m even
bent Km(a) = 4

(necessary
condition)

[197]

Table 4.3: Families of semi-bent functions for Km(a) = 4

Class of functions Property Conditions References

Trn1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn1

(
cx(2m−1) 1

2 +1
)
;

m odd
semi-bent Km(a) = 4 [198]

Trn1
(
ax3(2m−1)

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Tr2
1

(
bx

2n−1
3

)
;

m odd and m 6≡ 3 (mod 6)

semi-bent Km(a) = 4 [198]

Trn1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Trn1
(
x(2m−1) 1

4 +1
)
;

m odd

semi-bent Km(a) = 4 [198]

Trn1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Trn1
(
x3(2m−1)+1

)
;

Trnm (c) = 1, m odd

semi-bent Km(a) = 4 [198]

Trn1
(
axr(2m−1)

)
+ Trn1

(
αx2m+1

)
+ Trn1

(∑2ν−1−1
i=1 x(2m−1) i

2ν +1
)

+ Tr2
1

(
bx

2n−1
3

)
;

gcd(ν,m) = 1, α ∈ F2n , Trnm (α) = 1, m odd

semi-bent Km(a) = 4 [198]
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that family includes the well-known monomial functions with the Dillon exponent as a special
case. The characterization involves exponential sums and Dickson polynomials and is given below.

Theorem 4.1.1 (Charpin–Gong criterion [46]). Let n = 2m be an even integer. Let S be a set
of representatives of the cyclotomic classes modulo 2m + 1 whose cosets have full size n. Let fa
be the function defined on F2n by fa(x) =

∑
r∈R Trn1

(
arx

r(2m−1)), where R ⊆ S and ar ∈ F∗2m .
Let ga be the Boolean function defined on F2m by ga(x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is

the Dickson polynomial of degree r. Then fa is hyper-bent if and only if∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(x)

)
= 2m − 2 wH(ga)− 1 .

Finally, Mesnager [196] gave a similar characterization of hyper-bentness3 for another large
class of hyper-bent functions with multiple trace terms which do not belong to the family
considered by Charpin and Gong [46]. We call it the second Mesnager criterion to avoid confusion
with the first Mesnager criterion for binomial functions.

Theorem 4.1.2 (Second Mesnager criterion [196]). Let n = 2m be an even integer with m odd
and S be a set of representatives of the cyclotomic classes modulo 2m + 1 whose cosets have full
size n. Let b ∈ F∗4 . Let fa,b be the function defined on F2n by

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
, (4.1)

where R ⊆ S and all the coefficients ar are in F∗2m . Let ga be the related function defined on F2m

by ga(x) =
∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r. Then:

1. fa,b is hyper-bent if and only if fa,b is bent.

2. If b is a primitive element of F4 , then the three following assertions are equivalent:

(a) fa,b is hyper-bent;

(b)
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(D3(x))) = −2;

(c)
∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(D3(x))

)
= 2m − 2 wH(ga ◦D3) + 3.

3. fa,1 is hyper-bent if and only if

2
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(D3(x)))− 3
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(x)) = 2 .

Once more, these criteria reduce the test of hyper-bentness from the computation of the full
Walsh–Hadamard transform to that of a finite number of exponential sums.

3There was a typo in the theorem given in the original article [196] where the last term in the right hand side
of Condition 2c reads 4 instead of 3. This is an unfortunate consequence of the fact that the summation set used
in the statement of that condition within the theorem is F∗2m whereas it is F2m within the proof of the theorem.
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4.2 Reformulation in terms of cardinalities of curves
4.2.1 Kloosterman sums and elliptic curves
The idea to connect Kloosterman sums and elliptic curves goes back to the works of Lachaud and
Wolfmann [156], and Katz and Livné [144]. We recall a simple proof of their main result in a
simpler and less general formulation here. Indeed, its generalizations which will be covered in the
next subsection can be proved in a very similar manner.

Theorem 4.2.1 ([156, 144]). Let m ≥ 3 be any positive integer, a ∈ F∗2m and Ea the projective
elliptic curve defined over F2m whose affine part is given by the equation

Ea : y2 + xy = x3 + a .

Then
#Ea = 2m +Km(a) .

Proof. Indeed
Km(a) = 1 +

∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
,

and ∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
=
∑
x∈F∗2m

(
1− 2 Trm1

(
x−1 + ax

))
= 2m − 1− 2#

{
x ∈ F∗2m | Trm1

(
x−1 + ax

)
= 1
}

= −2m + 1 + 2#
{
x ∈ F∗2m | Trm1

(
x−1 + ax

)
= 0
}
.

Using the additive version of Hilbert’s Theorem 90, we get∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + t = x−1 + ax
}
,

and applying the substitution t = t/x we get∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , (t/x)2 + (t/x) = x−1 + ax

}
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + xt = x+ ax3} .

We recognize the number of points of Ea minus the only point with x-coordinate x = 0 and the
only point at infinity. ∑

x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
= −2m + 1 + #Ea − 2

= −2m − 1 + #Ea .

Hence, the necessary and sufficient condition for hyper-bentness of the monomial functions
with the Dillon exponent given in Table 4.2 can be reformulated as follows.

Proposition 4.2.2 (Reformulation of the Dillon criterion). The notation is as in Theorem 4.2.1.
Moreover, let r be an integer such that gcd(r, 2m + 1) = 1 and fa be the Boolean function with n
inputs defined as fa(x) = Trn1

(
axr(2

m−1)). Then fa is hyper-bent if and only if

#Ea = 2m .
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The class of binomial functions described by Mesnager [197] can naturally be given such a
treatment.

Proposition 4.2.3 (Reformulation of the first Mesnager criterion). The notation is as in
Theorem 4.2.1. Suppose furthermore that m is odd and let r be an integer such that gcd(r, 2m+1) =
1, b ∈ F∗4 and fa,b be the Boolean function fa,b(x) = Trn1

(
axr(2

m−1))+ Tr2
1

(
bx

2n−1
3

)
. Then fa,b

is hyper-bent4 if and only if
#Ea = 2m + 4 .

The theory of elliptic curves is rich and quite well understood. It was subsequently used in
different papers to efficiently find specific values of Kloosterman sums [180, 3], and so to build
hyper-bent functions5. In particular, Theorem 3.2.15 shows that computing their cardinalities
takes polynomial time and space in m and so is testing the hyper-bentness of such a Boolean
function. This is much better than computing naively the exponential sums which would require
an exponential number of operations.

4.2.2 Exponential sums and hyperelliptic curves
The characterizations of hyper-bentness given by Charpin and Gong (Theorem 4.1.1) and Mesnager
(Theorem 4.1.2) can also be naturally reformulated in terms of cardinalities of hyperelliptic curves.

Lisoněk [182, 181] indeed generalized very recently this reformulation to the Charpin–Gong
criterion for hyper-bentness of Boolean functions with multiple trace terms. His idea is that both
sides of the equality can be reformulated in terms of cardinalities of hyperelliptic curves as in
Theorem 4.2.1. We give detailed proofs because we will use similar results to reformulate the
Mesnager condition.

Proposition 4.2.4. Let f : F2m → F2m be a function such that f(0) = 0, g = Trm1 (f) be its
composition with the absolute trace and Gf be the (affine) curve defined over F2m by

Gf : y2 + y = f(x) .

Then ∑
x∈F∗2m

χ (g(x)) = −2m − 1 + #Gf .

Proof. The proof is similar as that of Theorem 4.2.1 and is summarized by the following equalities:∑
x∈F∗2m

χ (g(x)) =
∑
x∈F∗2m

(1− 2g(x))

= 2m − 1− 2# {x ∈ F∗2m | g(x) = 1}
= 2m − 1− 2# {x ∈ F2m | g(x) = 1}
= 2m − 1− 2 (2m −# {x ∈ F2m | g(x) = 0})
= −2m − 1 + 2#

{
x ∈ F2m | ∃t ∈ F2m , t

2 + t = f(x)
}

= −2m − 1 + #Gf .

4In the original paper of Mesnager [197], it is first shown that the theorem is valid to characterize the bentness
of fa,b and then that fa,b is bent if and only if it is hyper-bent.

5More details are given in Sections 4.3 and 4.4
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Proposition 4.2.5. Let f : F2m → F2m be a function, g = Trm1 (f) be its composition with the
absolute trace and Hf be the (affine) curve defined over F2m by

Hf : y2 + xy = x+ x2f(x) ,

Then ∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ g(x)

)
= −2m + #Hf .

Proof. The proof is similar as that of Theorem 4.2.1 and is summarized by the following equalities:∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ g(x)

)
=
∑
x∈F∗2m

(1− 2(Trm1
(
x−1)+ g(x)))

= 2m − 1− 2#
{
x ∈ F∗2m | Trm1

(
x−1)+ g(x) = 1

}
= −2m + 1 + 2#

{
x ∈ F∗2m | Trm1

(
x−1)+ g(x) = 0

}
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + t = x−1 + f(x)
}

= −2m + 1
+ 2#

{
x ∈ F∗2m | ∃t ∈ F2m , (t/x)2 + (t/x) = x−1 + f(x)

}
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + xt = x+ x2f(x)
}

= −2m + 1 + #Hf −# {P ∈ Hf | x = 0}
= −2m + #Hf .

We can now easily deduce the reformulation of the Charpin–Gong criterion given by Lisoněk.

Theorem 4.2.6 (Reformulation of the Charpin–Gong criterion [182, 181]). The notation is as
in Theorem 4.1.1. Moreover, let Ha and Ga be the (affine) curves defined over F2m by

Ga : y2 + y =
∑
r∈R

arDr(x) ,

Ha : y2 + xy = x+ x2
∑
r∈R

arDr(x) .

Then fa is hyper-bent if and only if

#Ha −#Ga = −1 .

Proof. According to Proposition 4.2.5, the left hand side of the Charpin–Gong criterion satisfies∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(x)

)
= −2m + #Ha ;

and, according to Proposition 4.2.4, the right hand side of the Charpin–Gong criterion satisfies∑
x∈F∗2m

χ (ga(x)) = −2m − 1 + #Ga .

Let us now fix a subset of indices E ⊆ R and denote by rmax the maximal index. We can
suppose rmax to be odd and will do so for two reasons:
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1. it ensures that the smooth projective models of the curves Ha and Ga are imaginary
hyperelliptic curves and such curves are way easier to manipulate than real hyperelliptic
curves;

2. for efficiency reasons rmax should be as small as possible, so the natural choice for the the
indices in a cyclotomic coset will be the coset leaders which are odd integers.

In fact, the curves Ha and Ga are even Artin–Schreier curves. As was the case for elliptic
curves, Theorem 3.2.18 states that there exist efficient algorithms to compute the cardinalities of
such curves. Thus, Lisoněk obtained an efficient test for hyper-bentness of Boolean functions
in the class described by Charpin and Gong. The polynomial defining Ha (respectively Ga) is
indeed of degree rmax + 2 (respectively rmax), so the curve is of genus (rmax + 1)/2 (respectively
(rmax − 1)/2). The complexity for testing a Boolean function in this family is then dominated by
the computation of the cardinality of a curve of genus (rmax + 1)/2, which is polynomial in m for
a fixed rmax (and so fixed genera for the curves Ha and Ga).

We now show that a similar reformulation can be applied to the different versions of the
second criterion of Mesnager for Boolean functions with multiple trace terms.

Theorem 4.2.7 (Reformulation of the second Mesnager criterion). The notation is as in Theo-
rem 4.1.2. Moreover, let Ha and Ga be the (affine) curves defined over F2m by

Ga : y2 + y =
∑
r∈R

arDr(x) ,

Ha : y2 + xy = x+ x2
∑
r∈R

arDr(x) ;

and let H3
a and G3

a be the (affine) curves defined over F2m by

G3
a : y2 + y =

∑
r∈R

arDr(D3(x)) ,

H3
a : y2 + xy = x+ x2

∑
r∈R

arDr(D3(x)) .

If b is a primitive element of F4 , then fa,b is hyper-bent if and only if

#H3
a −#G3

a = 3 .

If b = 1, then fa,1 is hyper-bent if and only if

(
#G3

a −#H3
a

)
− 3

2 (#Ga −#Ha) = 3
2 .

Proof. If b is a primitive element of F4 , according to Proposition 4.2.5 the left hand side of
Condition 2c in Theorem 4.1.2 satisfies∑

x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(D3(x))

)
= −2m + #H3

a ,

and according to Proposition 4.2.4 the right hand side of Condition 2c in Theorem 4.1.2 satisfies

2m − 2 wH(ga ◦D3) + 3 = −2m + 3 + #G3
a ,
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so that the criterion is equivalent to

#H3
a −#G3

a = 3 .

We could also have used Condition 2b and that its left hand side satisfies

∑
x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) = 1
2

 ∑
x∈F∗2m

χ (ga ◦D3(x))−
∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga ◦D3(x)

)
= 1

2
((
−2m − 1 + #G3

a

)
−
(
−2m + #H3

a

))
= 1

2
(
#G3

a −#H3
a − 1

)
;

and decuce the same reformulation.
If b = 1, using the previous calculations, the first term in Condition 3 of Theorem 4.1.2 satisfies

2
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) = #G3
a −#H3

a − 1 ;

and the second term satisfies

3
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(x)) = 3
2 (#Ga −#Ha − 1) ;

whence the reformulation.

Here all the curves are also Artin–Schreier curves. So, for a fixed subset of indices R, we also
get a test in polynomial time and space in m. However, the complexity of the point counting
algorithms also depends on the genera of the curves, and so on the degrees of the polynomials
defining them. Denoting by rmax the maximal index as above, the genus of H3

a (respectively
G3
a) is (3rmax + 1)/2 (respectively (3rmax − 1)/2), so approximately three times that of Ha

(respectively Ga). Therefore, the associated test will be much slower than for Boolean functions
of the family of Charpin and Gong for a given subset R: we have to compute the cardinalities of
two curves of genera (3rmax + 1)/2 and (3rmax − 1)/2 if b is primitive, or four curves of genera
(3rmax + 1)/2, (3rmax − 1)/2, (rmax + 1)/2 and (rmax − 1)/2 if b = 1, instead of two curves of
genera (rmax + 1)/2 and (rmax − 1)/2. Hence, we propose another reformulation of the Mesnager
criterion involving slightly less computations.

Theorem 4.2.8 (Reformulation of the second Mesnager criterion). The notation is as in Theo-
rem 4.2.7. If b is a primitive element of F4 , then fa,b is hyper-bent if and only if

#G3
a −

1
2 (#Ga + #Ha) = −3

2 .

If b = 1, then fa,1 is hyper-bent if and only if

2#G3
a −

5
2#Ga + 1

2#Ha = 3
2 .

Proof. We use the fact that m is odd, so that the function x 7→ D3(x) = x3 + x is a permutation
of the set

{
x ∈ F∗2m | Trm1

(
x−1) = 0

}
(see the papers of Berlekamp, Rumsey and Solomon [13,

Theorem 2] and Charpin, Helleseth and Zinoviev [47] for the case of D3, or more generally the
article of Dillon and Dobbertin [71]), and similar arguments as previously.
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If b is a primitive element of F4 , then the left hand side in Condition 2b of Theorem 4.1.2
satisfies∑
x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) =
∑
x∈F∗2m

χ (ga ◦D3(x))−
∑

x∈F∗2m ,Trm1 (x−1)=0

χ (ga ◦D3(x))

=
∑
x∈F∗2m

χ (ga ◦D3(x))−
∑

x∈F∗2m ,Trm1 (x−1)=0

χ (ga(x))

=
∑
x∈F∗2m

χ (ga ◦D3(x))

− 1
2

 ∑
x∈F∗2m

χ (ga(x)) +
∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(x)

)
=
(
−2m − 1 + #G3

a

)
− 1

2 ((−2m − 1 + #Ga) + (−2m + #Ha))

= −1
2 + #G3

a −
1
2 (#Ga + #Ha) .

If b = 1, then the first term in Condition 3 of Theorem 4.1.2 satisfies

2
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) = −1 + 2#G3
a − (#Ga + #Ha) .

Here we discarded the computation of the cardinality of the curve of genus (3rmax + 1)/2 and
we have to compute the cardinalities of three curves of genera (3rmax − 1)/2, (rmax + 1)/2 and
(rmax − 1)/2.

4.3 Divisibility of binary Kloosterman sums
4.3.1 Classical results
Because of their cryptographic interest, divisibility properties of Kloosterman sums have been
studied in several recent papers. A nice overview of such results can be found in the Ph.D. thesis
of Moloney [206]. Here we cite a few of them which we will explicitly use in search algorithms for
binary Kloosterman sums with specific values, especially the values 0 and 4.

The following proposition is directly obtained from the classical result of Lachaud and
Wolfmann [157].

Proposition 4.3.1 ([157]). Let m ≥ 3 be a positive integer. The set {Km(a), a ∈ F2m} is the
set of all the multiples of 4 in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1].

This result states in particular that binary Kloosterman sums are always divisible by 4.
Afterwards, several papers studied divisibility properties of binary Kloosterman sums by multiples
of 4 and other integers.

The following result was first proved by Helleseth and Zinoviev [129] and classifies the values
of Km(a) modulo 8 according to the value of the absolute trace of a.

Proposition 4.3.2 ([129]). Let m ≥ 3 be any positive integer and a ∈ F2m . Then Km(a) ≡ 0
(mod 8) if and only if Trm1 (a) = 0.

In the same article, they gave the following sufficient conditions to get certain values of Km(a)
modulo 3.



120 Chapter 4. Efficient characterizations for bentness

Proposition 4.3.3 ([129]). Let m ≥ 3 be any positive integer and a ∈ F∗2m . Suppose that there
exists t ∈ F∗2m such that a = t4 + t3.

• If m is odd, then Km(a) ≡ 1 (mod 3).

• If m is even, then Km(a) ≡ 0 (mod 3) if Trm1 (t) = 0 and Km(a) ≡ −1 (mod 3) if
Trm1 (t) = 1.

Furthermore, Charpin, Helleseth and Zinoviev [48] gave additional results about values of
Km(a) modulo 3.

Proposition 4.3.4 ([48]). Let m ≥ 3 be any positive integer and a ∈ F∗2m . Then we have:

• If m is odd, then Km(a) ≡ 1 (mod 3) if and only if Trm1
(
a1/3) = 0. This is equivalent to

a = b
(1+b)4 for some b ∈ F∗2m .

• If m is even, then Km(a) ≡ 1 (mod 3) if and only if a = b3 for some b such that Trm2 (b) 6= 0.

Further divisibility results exist and could be used to further refine the tests proposed in
this chapter. For example, results up to 64 can be found in a paper of Göloğlu, McGuire and
Moloney [124], and results up to 256 in an even more recent paper of Göloğlu, Lisoněk, McGuire
and Moloney [123].

Most of these results about divisibility were first proved studying the link between exponential
sums and coset weight distribution [129, 48]. However some of them can be proved in a completely
different manner as we show in the next subsection.

4.3.2 Using torsion of elliptic curves
Theorem 4.2.1 giving the value of Km(a) as the cardinality of an elliptic curve can indeed be used
to deduce divisibility properties of Kloosterman sums from the rich theory of elliptic curves. We
recall that the quadratic twist of the ordinary elliptic curve Ea that we denote by Ẽa is given by
the Weierstraß equation

Ẽa : y2 + xy = x3 + bx2 + a ,

where b ∈ F2m has absolute trace 1; it has cardinality:

#Ẽa = 2m + 2−Km(a) .

First of all, we recall a proof of the divisibility by 4 stated in Proposition 4.3.1 as it can
be found for example in the preprint of Ahmadi and Granger [3]. For m ≥ 3, Km(a) ≡ #Ea
(mod 4), so Km(a) ≡ 0 (mod 4) if and only if #Ea ≡ 0 (mod 4). This is equivalent to Ea having
a non-trivial rational point of 4-torsion. This can also be formulated as both the equation of Ea
and its 4-division polynomial f4(x) = x6 + ax2 having a rational solution. It is easily seen that
P = (a1/4, a1/2) is always a non-trivial solution to this problem.

Lisoněk [180] used similar techniques to give a different proof of Proposition 4.3.2. Indeed, for
m ≥ 3, Km(a) is divisible by 8 if and only if Ea has a non-trivial rational point of 8-torsion. This
is easily shown to be equivalent to Trm1

(
a1/4) = Trm1 (a) = 0.

Finally, it is possible to prove directly that the condition given in Proposition 4.3.3 is not
only sufficient, but also necessary, using torsion of elliptic curves6. We use this property in
Subsection 4.4.3.

6 We were recently made aware that such a result was also proved in a different way also involving elliptic
curves by Garashuck and Lisoněk [108] in the case where m is odd.
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Proposition 4.3.5. Let a ∈ F∗2m .

• If m is odd, then Km(a) ≡ 1 (mod 3) if and only if there exists t ∈ F2m such that a = t4 +t3.

• If m is even, then:

– Km(a) ≡ 0 (mod 3) if and only if there exists t ∈ F2m such that a = t4 + t3 and
Trm1 (t) = 0;

– Km(a) ≡ −1 (mod 3) if and only if there exists t ∈ F2m such that a = t4 + t3 and
Trm1 (t) = 1.

Proof. According to Proposition 4.3.3 we only have to show that, if a verifies the given congruence,
it can be written as a = t4 + t3.

• We begin with the case m odd, so that 2m ≡ −1 (mod 3). Then Km(a) ≡ 1 (mod 3) if and
only if #Ea ≡ 0 (mod 3), i.e. if Ea has a non-trivial rational point of 3-torsion. It implies
that the 3-division polynomial of Ea given by f3(x) = x4 + x3 + a has a rational solution,
so that there exists t ∈ F2m such that a = t4 + t3.

• Suppose now that m is even, so that 2m ≡ 1 (mod 3).

– If Km(a) ≡ −1 (mod 3), then #Ea ≡ 0 (mod 3), and as in the previous case we can
find t ∈ F2m such that a = t4 + t3.

– If Km(a) ≡ 0 (mod 3), then #Ea ≡ 1 (mod 3), but #Ẽa ≡ 0 (mod 3). The 3-division
polynomial of Ẽa is also given by f3(x) = x4 + x3 + a, so that there exists t ∈ F2m

such that a = t4 + t3.

4.4 Finding specific values of binary Kloosterman sums
4.4.1 Generic strategy
In this subsection we present the most generic method to find specific values of binary Kloosterman
sums. To this end, one picks random elements of F2m and computes the corresponding values until
a correct one is found. Before performing any complicated computations, divisibility conditions as
those stated in the previous section can be used to restrict the pool of elements to those satisfying
certain conditions (but without missing any element giving the value searched for) or to filter out
elements which will give inadequate values.

Then, the most naive method to check the value of a binary Kloosterman sum is to compute
it as a sum. However, one test would need O(2mm log2m log logm) bit operations and this is
obviously highly inefficient. Theorem 4.2.1 tells that this costly computation can be replaced by
the computation of the cardinality of an elliptic curve over a finite field of even characteristic.
Using p-adic methods à la Satoh [228], also known as canonical lift methods, this can be done
quite efficiently in O(m2 log2m log logm) bit operations and O(m2) memory [126, 275, 274, 174].
Working with elliptic curves also has the advantage that one can check that the current curve is
a good candidate before computing its cardinality as follows: one picks a random point on the
curve and multiplies it by the targeted order; if it does not give the point at infinity, the curve
does not have the targeted cardinality.

Finally, it should be noted that, if ones looks for all the elements giving a specific value,
a different strategy can be adopted as noted in the paper of Ahmadi and Granger [3]. Recall
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that a binary Kloosterman sum can be seen as the Walsh–Hadamard transform of the Boolean
function Trm1 (1/x). Therefore, we can construct the Boolean function corresponding to the
function Trm1 (1/x) and then use a fast Walsh–Hadamard transform to compute the values
of all binary Kloosterman sums. Building the Boolean function costs one multiplication per
element, so O(2mm logm log logm) bit operations and O(2m) memory. The complexity of the
fast Walsh–Hadamard transform is O(2mm2) bit operations and O(2mm) memory [8].

4.4.2 Zeros of binary Kloosterman sums
When looking for zeros of binary Kloosterman sums, which is of high cryptographic interest as
Table 4.2 emphasizes, one benefits from even more properties of elliptic curves over finite fields.
Indeed, when Km(a) = 0, we get that #Ea = 2m. Hence all rational points of Ea are of order
some power of 2.

In fact, we know even more. As Ea is defined over a field of even characteristic, its complete
2e-torsion (where e is any strictly positive integer) is of rank 1, whereas the complete le-torsion, for
a prime l different from 2, is of rank 2, as stated in Proposition 3.2.7. Therefore the rational Sylow
2-subgroup is cyclic, isomorphic to Z/2eZ for some positive integer e. In the case whereKm(a) = 0,
we even get that the whole group of rational points is isomorphic to Z/2mZ. Furthermore, basic
group theory tells that Ea will then have 2m−1 points of order 2m.

Finally, it should be noted that, if 2m | #Ea, then #Ea must be equal to 2m. This is a simple
consequence of Hasse theorem (Theorem 3.2.9) giving bounds on the number of rational points of
an elliptic curve over a finite field.

These facts have first been used by Lisoněk [180] to develop a probabilistic method to test
whether a given a gives a binary Kloosterman zero or not: one takes a random point on Ea and
tests whether its order is 2m or not. This test involves at most m duplications on the curve,
hence is quite efficient. Moreover, as soon as #Ea = 2m, half of its points are generators, so that
testing one point on a correct curve gives a probability of success of 1/2. This led Lisoněk to find
zeros of binary Kloosterman sums for m up to 64 in a matter of days.

Afterwards, Ahmadi and Granger [3] proposed a deterministic algorithm to test whether an
element a ∈ F2m gives a binary Kloosterman zero or not. From the above discussion, it is indeed
enough to compute the size of the Sylow 2-subgroup of Ea to answer that question. This can be
efficiently implemented by point halving, starting from a non-trivial point of 4-torsion (remember
that such a point always exists on Ea). The complexity of each iteration of their algorithm is
dominated by two multiplications in F2m . So testing a curve with a Sylow 2-subgroup of size
2e is of complexity O(e ·m logm log logm). Furthermore, they showed that the average size of
the Sylow 2-subgroup of the curves of the form Ea is 23 when m goes to infinity, so that their
algorithm has an asymptotic average bit complexity of O(m logm log logm).

4.4.3 Implementation for the value 4
As shown in Table 4.2, we have a necessary and sufficient condition to build bent functions from
the value 4 of binary Kloosterman sums when m is odd and a necessary only condition when m
is even. Unfortunately, the situation is more complicated than in the case of binary Kloosterman
zeros.

We are indeed looking for an element a ∈ F2m such that Km(a) = 4. The cardinality of Ea
should then be #Ea = 2m +Km(a) = 4(2m−2 + 1) which does not ensure to have a completely
fixed group structure as was the case when #Ea = 2m. Moreover, in general, the number 2m−2 +1
does not verify many divisibility properties leading to an efficient test for the value 4. The
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cardinality of the twist Ẽa is given by #Ẽa = 2m + 2 −Km(a) = 2(2m−1 − 1) which does not
provide more useful information.

What we can however deduce from these equalities is that, if Km(a) = 4, then:

• Km(a) ≡ 4 (mod 8), so that Trm1 (a) = 1;

• Km(a) ≡ 1 (mod 3), so that:

– if m is odd, then a can be written as t4 + t3;

– if m is even, then a can be written as t3 with Trm2 (t) 6= 0.

We can use both these conditions to filter out a to be tested as described in Algorithm 4.1 (for m
odd).

Algorithm 4.1: Finding the value 4 of binary Kloosterman sums for m odd
Input: A positive odd integer m ≥ 3
Output: An element a ∈ F2m such that Km(a) = 4

1 a←R F2m

2 a← a3(a+ 1)
3 if Trm1 (a) = 0 then
4 Go to step 4.1
5 P ←R Ea
6 if [2m + 4]P 6= 0 then
7 Go to step 4.1
8 if #Ea 6= 2m + 4 then
9 Go to step 4.1

10 return a

We implemented this algorithm in Sage [250]. It was necessary to implement a relatively
efficient version of point counting in even characteristic, none of them being available. The first
implemented algorithm was an extension to even characteristic of Satoh’s original algorithm by
Fouquet, Gaudry and Harley [98]. The complexity of this algorithm is O(m3+ε) bit operations
(or O(m5) with naive multiplication) and O(m3) memory, but it is quite simple and there was
already an existing implementation in GP/Pari by Yeoh [284] to use as a starting point. The
computations in Z2m , the unique unramified extension of degree m of the 2-adic integers Z2, were
done through the direct library interface to Pari [218] provided in Sage. We also implemented
Harley’s algorithm [126] as described in Vercauteren’s thesis [275] using similar implementation
details. Our implementations have both been contributed back to Sage78. As a byproduct of our
work we corrected and optimized the current implementation of Boolean functions in Sage9. The
code for manipulating binary Kloosterman sums has also been made available on the author’s
homepage10.

As a result of our experiments, we found that the following value of a for m = 55 gives a value
4 of binary Kloosterman sum. The finite field F255 is represented as F2 [x]/(x55 + x11 + x10 + x9 +

7http://trac.sagemath.org/sage_trac/ticket/11448
8http://trac.sagemath.org/sage_trac/ticket/11548
9http://trac.sagemath.org/sage_trac/ticket/11450

10http://perso.telecom-paristech.fr/~flori/kloo/

http://trac.sagemath.org/sage_trac/ticket/11448
http://trac.sagemath.org/sage_trac/ticket/11548
http://trac.sagemath.org/sage_trac/ticket/11450
http://perso.telecom-paristech.fr/~flori/kloo/
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x7 + x4 + 1); a is then given as

a = x53 + x52 + x51 + x50 + x47 + x43 + x41 + x38 + x37 + x35

+ x33 + x32 + x30 + x29 + x28 + x27 + x26 + x25 + x24

+ x22 + x20 + x19 + x17 + x16 + x15 + x13 + x12 + x5 .

4.5 Experimental results for m even
When m is even, Mesnager [197] has shown that the situation seems to be more complicated
theoretically than in the case where m is odd, and that the study of the bentness of the Boolean
functions given in Table 4.2 cannot be done as in the odd case. As shown in Table 4.2, we only
have a necessary condition to build bent functions from the value 4 of binary Kloosterman sum
when m is even. To get a better understanding of the situation we conducted some experimental
investigations to check whether the Boolean functions constructed with the formula of Table 4.2
were bent or not for all the a’s in F2m giving a Kloosterman sum with value 4.

The functions of Mesnager [197] are defined for a ∈ F∗2m and b ∈ F∗4 as the Boolean functions
fa,b with n = 2m inputs given by

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
. (4.2)

We now show that it is enough to study the bentness of a subset of these functions to get results
about all of them.

First of all, the next proposition proves that the study of the bentness of fa,b can be reduced
to the case where b = 1.

Proposition 4.5.1. Let n = 2m with m ≥ 3 even. Let a ∈ F∗2m and b ∈ F∗4 . Let fa,b be the
function defined on F2n by Equation (4.2). Then fa,b is bent if and only if fa,1 is bent.

Proof. Since m is even, we have the inclusion of fields F∗4 ⊂ F∗2m . In particular, for every b ∈ F∗4 ,
there exists α ∈ F∗2m such that α 2n−1

3 = b. For x ∈ F2n , we have

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
= Trn1

(
aα2m−1x2m−1

)
+ Tr2

1

(
α

2n−1
3 x

2n−1
3

)
= Trn1

(
a(αx)2m−1)

)
+ Tr2

1

(
(αx)

2n−1
3

)
= fa,1(αx) .

Hence, for every ω ∈ F∗2n , we have

χ̂fa,b(ω) =
∑
x∈F2n

(−1)fa,b(x)+Trn1 (ωx)

=
∑
x∈F2n

(−1)fa,1(αx)+Trn1 (ωx)

= χ̂fa,1(ωα−1) .

Second, we know that Km(a) = Km(a2), so the a’s in F2m giving binary Kloosterman sums
with value 4 come in cyclotomic classes. Fortunately, it is enough to check one a per class. Indeed,
fa,b is bent if and only if fa2,b2 is, as proved in the following proposition.
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Proposition 4.5.2. Let n = 2m with m ≥ 3. Let a ∈ F∗2m and b ∈ F∗4 . Let fa,b be the function
defined on F2n by Equation (4.2). Then fa,b is bent if and only if fa2,b2 is bent.

Proof.

χ̂fa,b(ω) =
∑
x∈F2n

(−1)fa,b(x)+Trn1 (ωx)

=
∑
x∈F2n

(−1)
Trn1 (ax2m−1)+Tr2

1

(
bx

2n−1
3

)
+Trn1 (ωx)

=
∑
x∈F2n

(−1)
Trn1
(
a2x22m−1

)
+Tr2

1

(
b2x2 2n−1

3

)
+Trn1 (ω2x2)

=
∑
x∈F2n

(−1)
Trn1 (a2x2m−1)+Tr2

1

(
b2x

2n−1
3

)
+Trn1 (ω2x)

=
∑
x∈F2n

(−1)fa2,b2 (x)+Trn1 (ω2x)

= χ̂fa2,b2 (ω2) .

In the specific case b = 1 that we are interested in, it gives that fa,1 is bent if and only if fa2,1
is, which proves that checking one element of each cyclotomic class is enough.

Finally, as mentioned in Section 4.4, finding all the a’s in F2m giving a specific value is
a different problem from finding one such a ∈ F2m . One can compute the Walsh–Hadamard
transform of the trace of the inverse function using a fast Walsh–Hadamard transform. As long
as the basis of F2m considered as a vector space over F2 is correctly chosen so that the trace
corresponds to the scalar product, the implementation is straightforward.

The algorithm that we implemented is described in Algorithm 4.2.

Algorithm 4.2: Testing bentness for m even
Input: An even integer m ≥ 3
Output: A list of couples made of one representative for each cyclotomic class of elements

a ∈ F2m such that Km(a) = 4 together with 1 if the corresponding Boolean
functions fa,b are bent, 0 otherwise

1 Build the Boolean function f : x ∈ F2n 7→ Trn1 (1/x) ∈ F2
2 Compute the Walsh–Hadamard transform of f
3 Build a list A made of one a ∈ F2m for each cyclotomic class such that Km(a) = 4
4 Initialize an empty list R
5 foreach a ∈ A do
6 Build the Boolean function fa,1
7 Compute the Walsh–Hadamard transform of fa,1
8 if fa,1 is bent then
9 Append (a, 1) to R

10 else
11 Append (a, 0) to R

12 return R
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The implementation11 was made using Sage [250] and Cython [24], performing direct calls to
Givaro [74], NTL [241] and gf2x [26] libraries for efficient manipulation of finite field elements
and construction of Boolean functions.

In Table 4.4 we give the results of the computations we conducted along with different pieces
of information about them. One should remark that all the Boolean functions which could
be tested are bent. Evidence that our computations were correct is given by the fact that

Table 4.4: Test of bentness for m even

m Nb. of cyclotomic classes Time All bent?
4 1 <1s yes
6 1 <1s yes
8 2 <1s yes
10 3 4s yes
12 6 130s yes
14 8 3000s yes
16 14 82000s yes
18 20 - -
20 76 - -
22 87 - -
24 128 - -
26 210 - -
28 810 - -
30 923 - -
32 2646 - -

the number of cyclotomic classes we found is so. This can be checked using the formula of
Proposition 3.2.11. We are looking for elliptic curves with trace t of the Frobenius endomorphism
equal to t = 1 − Km(a) = −3. Hence, the number of cycloctomic classes is H(∆)/m where
H(∆) is the Kronecker class number and ∆ = 9 − 4 · 2m. Moreover, for the values we tested,
except m = 12, 30, 32, this discriminant is fundamental, so that the order Z[α] is maximal and
H(∆) = h(∆) the classical class number, a quantity even easier to compute.

Unfortunately, we were not able to check bentness of functions for m > 16 due to lack of
memory. Constructing the Boolean functions in n = 2m variables is the most time consuming
part of the test, but the real bottleneck is the amount of memory needed to compute their
Walsh–Hadamard transforms. One must indeed perform these computations using integers of
size at least 2m + 1 bits, so, with our implementation, integers of 64 bits as soon as m ≥ 16.
The amount of memory needed is then 64 · 22m · 2−30 = 22m−24 GB. For m = 16 this represents
already 32GB of memory; for m = 18 it would be 512GB of memory. Therefore, we give in
Table 4.5 the fourteen values of a found for m = 16, the highest value that we could test. In this
table the finite field F216 is represented as F2 [x]/(x16 + x5 + x3 + x2 + 1). The corresponding
Boolean functions in n = 32 variables are all bent as we already pointed out.

11See Footnote 10.
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Table 4.5: The fourteen cyclotomic classes such that K16(a) = 4 as elements of F2 [x]/(x16 + x5 +
x3 + x2 + 1)

x14 + x11 + x8 + x6 + x3 + x
x15 + x13 + x10 + x8 + x7 + x6 + x5 + x4 + x3 + 1
x14 + x13 + x12 + x10 + x8 + x2 + x
x14 + x12 + x11 + x9 + x6 + x
x15 + x11 + x9 + x7 + x6 + x3 + x2 + 1
x13 + x6 + x4 + x2 + x+ 1
x12 + x11 + x10 + x9 + x5 + x3 + x2 + x
x15 + x11 + x7 + x6 + x5 + x4 + x3 + x2

x15 + x13 + x9 + x8 + x5 + x4 + x3 + x
x15 + x11 + x10 + x3

x13 + x10 + x9 + x7 + x6 + x5 + x3 + x2 + x
x13 + x10 + x9 + x7 + x6 + x5 + x4 + x3 + x2 + x
x15 + x13 + x10 + x9 + x8 + x7 + x5 + x
x15 + x11 + x10 + x3 + x+ 1
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Chapter 5

Complex multiplication and
elliptic curves

“What does it mean that those trees and mountains out there are not
magic but real?” I’d yell, pointing outdoors.
“What?” they’d say.
“It means that those trees and mountains out there are not magic but real.”
“Yeah?”
Then I’d say, “What does it mean that those trees and mountains aren’t
real at all, just magic?”
“Oh come on.”
“It means that those trees and mountains aren’t real at all, just magic.”
“Well which is it, goddammit!”
“What does it mean that you ask, well which is it goddammit?” I yelled.
“Well what?”
“It means that you ask well which is it goddammit.”

The Dharma Bums
Jack Kerouac [149]
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In Part II (hyper)elliptic curves were introduced through the connections between their numbers
of points and values of different exponential sums over finite fields. A particular emphasis was put
on the structure of their groups of rational points and on the efficiency of point counting on such
curves, thus leading to the design of efficient tests for (hyper-)bentness and efficient algorithms to
generate (hyper-)bent functions. It was also brought to light that elliptic curves with complex
multiplication were an important theoretical tool; the number of such curves with a given number
of points was used to count the number of exponential sums with a given value.

It is a fact that (hyper)elliptic curves with complex multiplication enjoy a number of very
pleasant properties, not only for the application mentioned above, but also for several applications
in asymmetric cryptography. Therefore, we will now depart from the world of Boolean functions
to solely concentrate our efforts on the explicit construction of such curves and the computation
of class polynomials.

The theory of elliptic curves with complex multiplication is quite well understood nowadays.
This chapter, which builds essentially upon a course taught at Télécom ParisTech, aims at giving
an overview of this theory and the construction of class polynomials for general orders through
the complex analytic method, and so at introducing the unfamiliar reader to the more general
and involved theory of abelian varieties with complex multiplication which will be treated in
Chapter 6. For the most of this chapter we will omit the proofs of the very classical results we
introduce, but provide references to classical textbooks where they can be found. If one reference
had to be chosen, we would refer the reader to the classical textbooks1 of Silverman [244, 245]
which were more than a source of inspiration for the material presented here.

Section 5.1 gives further background on the algebraic theory of elliptic curves, whereas
Section 5.2 develops a completely different point of view: over the complex numbers, elliptic
curves can indeed be described as complex tori. Such a description is especially useful in Section 5.3
when studying the endomorphism rings and the isomorphism classes of complex elliptic curves
with complex multiplication by a given order. Moreover, this approach will not only lead to the
powerful main theorem of complex multiplication, but also to the explicit construction of class
polynomials and elliptic curves with complex multiplication. To conclude this chapter, some
applications of elliptic curves — and particularly of elliptic curves with complex multiplication —
in asymmetric cryptography are presented in Section 5.4.

5.1 Further background on elliptic curves
In this section we give further background on algebraic curves and elliptic curves. Unless stated
otherwise, all curves we consider are projective.

5.1.1 Morphisms between algebraic curves
It is a basic property of projective varieties, or more generally of complete varieties, that the
image of a morphism is closed. For morphisms between projective curves, this fact gives the

1We could not resist choosing two books.



5.1. Further background on elliptic curves 133

following fundamental result.

Theorem 5.1.1 ([244, Theorem II.2.3], [128, Proposition II.6.8]). Let K be a perfect field. Let
φ : C1 → C2 be a morphism between algebraic curves defined over K. Then φ is constant or
surjective (over K).

Basic properties of morphisms between algebraic curves are defined using the canonically
associated maps on the corresponding function fields.

Definition 5.1.2 (Function field). Let K be a perfect field and C algebraic curve defined on K.
We denote by K(C) the function field of C.

Definition 5.1.3. Let K be a perfect field. Let φ : C1 → C2 be a non-constant morphism
between algebraic curves defined over K. Different homomorphisms between the function fields of
the curves can be defined from a morphism between the curves:

• φ∗ : K(C2)→ K(C1), g 7→ g ◦ φ,

• φ∗ = (φ∗)−1 ◦NK(C1)/φ∗K(C2).

First, these maps can be used to completely characterize a morphism.

Theorem 5.1.4 ([244, Theorem II.2.4], [128, Corollary I.6.12, Proposition II.6.8]). Let K be a
perfect field. Let C1 and C2 be two curves defined over K.

1. Let φ : C1 → C2 be a non-constant morphism. Then K(C1) is a finite extension of
φ∗K(C2).

2. Let i : K(C2) → K(C1) be an injection leaving K fixed. Then there exists a unique
non-constant morphism φ : C1 → C2 such that i = φ∗.

3. Let K ′ ⊂ K(C1) be a subfield of finite index containing K. Then there exists a smooth curve
C ′, unique up to K-isomorphism, and a morphism φ : C1 → C ′ such that K ′ = φ∗K(C ′).

Second, two very important quantities are defined using the function fields.

Definition 5.1.5 (Degree). Let K be a perfect field. Let φ : C1 → C2 be a morphism between
two algebraic curves defined over K.

If φ is constant, thenwe define its degree deg(φ) = 0.
Otherwise, φ is surjective and its degree is defined as

deg(φ) = [K(C1) : φ∗K(C2)],

i.e. the dimension of the φ∗K(C2)-vector space K(C1).
The morphism φ is said to be separable, inseparable or purely inseparable, if the extension of

function fields is; the separable and inseparable degrees degs(φ) and degi(φ) are defined accordingly.

Definition 5.1.6 (Ramification index). Let K be a perfect field. Let φ : C1 → C2 be a non-
constant morphism between smooth curves defined over K. Let P ∈ C1. The ramification index
of φ at P is defined as

eφ(P ) = ordP (φ∗tφ(P ))
where tφ(P ) ∈ K(C2) is a uniformizer at φ(P ) (i.e. ordφ(P )(tφ(P )) = 1).

An application of these quantities is the study of the number of preimages of a point. For
example, the degree is equal to the sum of ramification indices at the preimages of any point, and
the separable degree is equal to the number of preimages of a point except for a finite number of
them [244, Proposition 2.6].
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5.1.2 Divisors of algebraic curves
The group of divisors of a curve is the free abelian group generated by its geometric points. It is
a powerful tool to study the curve itself.

Definition 5.1.7 (Divisor [244, Section II.3], [128, Section II.6]). Let K be a perfect field and C
an algebraic curve defined over K. A divisor D of C is a formal finite sum of geometric points of
C with integer coefficients:

D =
∑

P∈C(K)

nP (P ) ,

where only a finite number of coefficients nP ∈ Z are non-zero. The support of a divisor is the
set of points with non-zero coefficients:

supp(D) =
{
P ∈ C(K) | nP 6= 0

}
.

The degree of a divisor is the sum of its coefficients:

deg(D) =
∑

P∈C(K)

nP .

The Galois group of K naturally acts on divisors and we say that a divisor is rational over K
if it is invariant by this action.

Definition 5.1.8 (Group of divisors). Let K be a perfect field and C an algebraic curve defined
over K. The group of divisors on C is denoted by Div(C). The subgroup of divisors of degree 0
is denoted by Div0(C).

If f ∈ K(C)∗ is a non-zero function on C, then one can associate a divisor with it.

Definition 5.1.9 (Divisor of a function). Let K be a perfect field and C an algebraic curve
defined over K. Let f ∈ K(C)∗ be a non-zero function on C. The divisor of f , denoted by div(f),
is defined as

div(f) =
∑

P∈C(K)

ordP (f)(P ) ,

where ordP (f) is the order of f at P .

These divisors form the set of principal divisors, which is easily seen to be a subgroup of
Div(C).

Definition 5.1.10 (Principal divisors). Let K be a perfect field and C an algebraic curve defined
over K. The group of divisors of the form div(f) for f ∈ K(C)∗ is called the group of principal
divisors and denoted by

Prin(C) =
{

div(f) ∈ Div(C) | f ∈ K(C)∗
}
.

We can then define an equivalence relation using them.

Definition 5.1.11 (Linear equivalence). Let K be a perfect field and C an algebraic curve
defined over K. Let D and D′ be two divisors on C. They are said to be linearly equivalent if
D −D′ ∈ Prin(C). This is an equivalence relation that we denote by

D ∼ D′ .
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And so we can define the quotient of the group of divisors by the subgroup of principal divisors:
the Picard group.

Definition 5.1.12 (Picard group). The quotient of Div(C) by Prin(C), denoted by Pic(C), is
called the divisor class group, or the Picard group, of C.

For a principal divisor, the degree is always zero.

Proposition 5.1.13 ([244, Proposition II.3.1], [128, Corollary II.6.10]). Let K be a perfect field
and C a smooth curve defined over K. Let f ∈ K(C)∗ be a non-zero function on C. Then

1. div(f) = 0 if and only if f ∈ K;

2. deg(div(f)) = 0.

Hence, for a smooth curve, the group of principal divisors is in fact a subgroup of the group
of divisors of degree zero. Therefore, we can also define the quotient of the zero degree part of
the groups of divisors by the subgroup of principal divisors.

Definition 5.1.14. Let K be a perfect field and C a smooth curve defined over K. We denote
by Pic0(C) the quotient of Div0(C) by Prin(C).

It is a general fact that this quotient group can be given the structure of an algebraic variety:
the Jacobian variety. In the case of elliptic curve, its description as a variety is surprisingly
simple.

Proposition 5.1.15 ([244, Proposition III.3.4], [128, Example II.6.10.2]). Let K be a perfect
field and E an elliptic curve defined over K. Then the following map is an isomorphism:

E(K)→ Pic0(E) ,

P 7→ [(P )− (OE)] .

And the following corollary is very useful.

Corollary 5.1.16 ([244, Corollary III.3.5]). Let K be a perfect field and E an elliptic curve
defined over K. Let D =

∑
P∈E(K) nP (P ), nP ∈ Z almost all zero, be a divisor on E. Then D

is principal if and only if

1. degD = 0,

2.
∑
P∈K(E)[nP ]P = OE.

To conclude this subsection, we should define a few more tools relating morphisms and divisors
which are useful to define pairings on elliptic curves.

A function can be evaluated at a divisor if their support are disjoint as follows.

Definition 5.1.17 (Evaluation of a function at a divisor). Let K be a perfect field and C
an algebraic curve defined on K. If f ∈ K(C) and D =

∑
P∈C(K) nP (P ) with supp(D) ∩

supp(div(f)) = ∅, then we define the value of f at D as

f(D) =
∏

P∈C(K)

f(P )nP .

This operation is well-behaved with regard to the group law on divisors.



136 Chapter 5. Complex multiplication and elliptic curves

Definition 5.1.18. Let K be a perfect field. Let φ : C1 → C2 be a non-constant morphism
between algebraic curves defined over K. Different homomorphisms between the divisors of the
curves can be defined from a morphism between them:

• φ∗ : Div(C2)→ Div(C1), Q 7→
∑
P∈φ−1(Q) eφ(P )P ,

• φ∗ : Div(C1)→ Div(C2), P 7→
∑
P φ(P ).

Proposition 5.1.19 ([244, Proposition II.3.6]). Let K be a perfect field. Let φ : C1 → C2 be a
non-constant morphism between algebraic curves defined over K. Then

• φ∗(div(f)) = div(φ∗(f)),

• φ∗(div(f)) = div(φ∗(f)),

• f(φ∗(D)) = φ∗(f)(D),

• f(φ∗(D)) = φ∗(f)(D).

Proposition 5.1.20 (Weil’s reciprocity [244, Exercise 2.11], [19, Theorem IX.3]). Let K be a
perfect field and C an algebraic curve defined over K. Let f, g ∈ K(C)∗ be two functions with
disjoint supports. Then

f(div(g)) = g(div(f)) .

5.1.3 Pairings
There exist important bilinear applications, both for theoretical questions and practical applica-
tions, which can be defined on elliptic curves: pairings.

Definition 5.1.21 (Pairing). Let A be a ring and M , N and L A-modules. A pairing is an
A-bilinear map from M ×N into L (or equivalently an A-linear from M ⊗A N into L).

We first define the Tate pairing. Let K be a perfect field and E an elliptic curve defined
over K. Let m ≥ 2 be an integer co-prime to the characteristic of K. Let P ∈ E(K)[m] and
Q ∈ E(K)/mE(K). There exists a function f ∈ K(E) such that

div(f) = m(P )−m(OE) .

We now choose a representative of Q in E(K) and a divisor D ∼ (Q)− (OE) with support disjoint
from that of div(f) so that we can compute f(D).

Definition 5.1.22 (Tate pairing). Let K be a perfect field and E an elliptic curve defined
over K. Let m ≥ 2 be an integer co-prime to the characteristic of K. Let P ∈ E(K)[m] and
Q ∈ E(K)/mE(K). The Tate pairing is defined as above:

〈P,Q〉m = f(D) ∈ K∗/(K∗)m .

It can be shown that this map is well defined (up to m-th powers) and does not depend on
the different choices we have to make [19, Lemma IX.4], [19, Lemma IX.5].

Theorem 5.1.23 ([19, Theorem IX.7]). Let K be a perfect field and E an elliptic curve defined
over K. Let m ≥ 2 be an integer co-prime to the characteristic of K. Let P, P1, P2, Q,Q1, Q2 ∈
E(K) and σ ∈ Gal(K/K). The Tate pairing satisfies the following properties:

1. Bilinearity: 〈P1 + P2, Q〉m = 〈P1, Q〉m〈P2, Q〉m and 〈P,Q1 +Q2〉m = 〈P,Q1〉m〈P,Q2〉m.
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2. Non-degeneracy: if K is finite and contains the m-th roots of unity, then the Tate pairing
is non-degenerate.

3. Galois invariance: 〈σP, σQ〉m = σ〈P,Q〉m.

The bilinearity is a consequence of Weil’s reciprocity. A proof of the non-degeneracy is given
in [104]. A more elementary and specific one has been devised by Heß [130].

We now define the Weil pairing. With the same notation as before, let P ∈ E[m] be an
m-torsion point. There exists a function f ∈ K(E) such that:

div(f) = m(P )−m(OE) .

Multiplication by m is a surjective map on E(K), so we can choose P ′ such that [m]P ′ = P .
There exists a function g ∈ K(E) such that

div(g) = [m]∗((P )− (OE)) =
∑

R∈E[m]

(P ′ +R)− (R) ,

because [m2]P ′ = OE . Furthermore

div(g ◦ τQ) = div(τ∗Qg) = τ∗Q div(g) = div(g) ,

so that (g ◦ τQ/g) ∈ K. Finally

div(f ◦ [m]) = div([m]∗f) = [m]∗ div(f) = m div(g) = div(gm)

and so f ◦ [m] = gm up to a non-zero multiplicative constant. If Q ∈ E[m] and S ∈ E(K), then
g((S +Q))m = f([m](S +Q)) = f([m](S)) = g((S))m, so g(S+Q)

g(S) is an m-th root of unity.

Definition 5.1.24 (Weil pairing). Let K be a perfect field and E an elliptic curve defined over K.
Let m ≥ 2 be an integer co-prime to the characteristic of K. Let P,Q ∈ E(K)[m] be m-torsion
points. We define the Weil pairing as above:

em(P,Q) = g(S +Q)
g(S) .

Theorem 5.1.25 ([19, Theorem IX.10], [244, Proposition III.8.1]). Let K be a perfect field and
E an elliptic curve defined over K. Let m ≥ 2 be an integer co-prime to the characteristic of K.
Let P, P1, P2, Q,Q1, Q2 ∈ E(K)[m] and σ ∈ Gal(K/K). The Weil pairing satisfies the following
properties:

1. Bilinearity:

em(P1 + P2, Q) = em(P1, Q)em(P2, Q) ,

and em(P,Q1 +Q2) = em(P,Q1)em(P,Q2) .

2. Alternance: em(P,Q) = em(Q,P )−1.

3. Non-degeneracy: if E(K) contains E[m], then em(P,Q) 6= 1.

4. Galois invariance: em(σP, σQ) = σem(P,Q).

The Weil pairing and the Tate pairing are closely related. In fact, the following proposition is
often used to define the Weil pairing.
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Proposition 5.1.26 ([244, Remark III.8.5]). Let K be a perfect field and E an elliptic curve
defined over K. Let m ≥ 2 be an integer co-prime to the characteristic of K. Let P,Q ∈ E(K)[m].

em(P,Q) = 〈P,Q〉m/〈Q,P 〉m ,

up to an m-th power.

Such a definition has the benefit to be more computational. The Tate pairing can indeed be
efficiently computed in polynomial time using Miller’s algorithm [203] that we now describe.

With the same notation as before, let P ∈ E(K)[m] and Q ∈ E(K). If we denote by fi a
function (unique up to a multiplicative constant) such that div(fi) = i(P )− ([i]P )− (i− 1)(OE),
then we need to compute fm. According to the following proposition we can do it explicitly using
a standard binary exponentiation.

Proposition 5.1.27 ([19, Lemma IX.17]). Let l and v be the lines going through {[i]P, [j]P}
and {[i+ j]P,OE}. Then fi+j = fifj l/v.

The corresponding algorithm is given in Algorithm 5.1.

Algorithm 5.1: Miller’s algorithm
Input: P ∈ E(K)[m] and Q ∈ E(K)
Output: 〈P,Q〉m

1 S ∈R E(K)
2 Q′ ← Q+ S
3 T ← P
4 f ← 1
5 i← blogmc − 1
6 while i ≥ 0 do
7 Compute l and v to double T
8 T ← [2]T
9 f ← f2l(Q′)v(S)/l(S)v(Q′)

10 if bi = 1 then
11 Compute l and v to add T and P
12 T ← T + P
13 f ← fl(Q′)v(S)/l(S)v(Q′)
14 i← i− 1
15 return f

5.1.4 Reduction of elliptic curves
Let K be a local field with uniformizer π and residue field k. Let E be an elliptic curve defined
over K. There exist Weierstraß equations for E with integral coefficients and so it is possible
to define the reduction Ẽ modulo π of E from such equations. The resulting curve is obviously
potentially singular. In fact, it is if and only if the discriminant of the chosen Weierstraß equation
is divisible by π. Moreover, there exists a “best” Weierstraß equation to use for reduction: it is
called the minimal Weierstraß equation.

Proposition 5.1.28 ([244, Proposition VII.1.3]). Let K be a local field with uniformizer π. Let
E be an elliptic curve defined over K. Then E has a minimal Weierstraß equation, i.e. an
equation with integral coefficients such that the valuation at π of its discriminant is minimal.
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Definition 5.1.29 ([244, Section VII.5]). Let K be a local field. Let E an elliptic curve defined
over K and Ẽ be the reduction of a minimal Weierstraß equation. We say that E has

1. good reduction if Ẽ is smooth,

2. bad reduction if Ẽ is singular.

We say that E has potential good reduction if it has good reduction over an extension of K.

Reduction can also be defined for points P ∈ E(K) in the same way. The next proposition
shows that the corresponding map is injective for m-torsion points where m is co-prime to the
characteristic of the residue field.

Proposition 5.1.30 ([244, Proposition VII.3.1]). Let K be a local field with uniformizer π. Let
m ≥ 1 be an integer co-prime to the characteristic of K. Let E be an elliptic curve defined over
K with good reduction. Let Ẽ be a non-singular reduction of E. Then the reduction map

E(K)[m]→ Ẽ(k)[m]

is injective.

Similarly, reduction can be defined for isogenies. Using the Weil pairing and the Isogeny
theorem [244, Theorem III.7.7], which is valid over finite fields and number fields, it can be shown
that reduction from a number field preserves degrees of isogenies.

Proposition 5.1.31 ([245, Proposition II.4.4]). Let L be number field and p a prime ideal of L.
Let E1 and E2 be two elliptic curves with good reduction at p and Ẽ1 and Ẽ2 their reductions at
p. Then the reduction map

Hom(E1, E2)→ Hom(Ẽ1, Ẽ2)

preserves degrees and is injective.

As far as endomorphisms are concerned, we have much more precise information.

Theorem 5.1.32 ([68], [160, Theorem 13.4.12]). Let L be a number field and O an order in K an
imaginary quadratic number field. Let E be an elliptic curve defined over L with endomorphism
ring End(E) ' O. Let p be a prime of L over the rational prime p. Suppose that E has good
reduction Ẽ at p.

Then Ẽ is supersingular if and only if p is inert or ramifies in K.
Otherwise, write down the conductor f of O as f = prf0 where gcd(p, f0) = 1. Then

End(Ẽ) ' Z + f0OK , the order of conductor f0 in K. In particular, if p splits and p - f , then
the reduction map End(E)→ End(Ẽ) is an isomorphism.

5.2 Elliptic curves over the complex numbers
In this section we present the basic theory of elliptic curves over the complex numbers, as well
as its links with the theory of complex tori, lattices and binary quadratic forms. All curves are
supposed to be defined over the complex numbers.
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5.2.1 Complex tori
Over the complex numbers, a general Weierstraß equation can be simplified to yield an equivalent
equation of the form2

E : y2 = x3 + ax+ b .

Two important invariants have then simple definitions.

Definition 5.2.1 (Discriminant). Let E be a curve given by the Weierstraß equation

E : y2 = x3 + ax+ b .

The discriminant of the Weierstraß equation is given by

∆ = −16(4a3 + 27b2) .

E is non-singular, and so is an elliptic curve, if and only if ∆ 6= 0.

Definition 5.2.2 (j-invariant). Let E be an elliptic curve given by the Weierstraß equation

E : y2 = x3 + ax+ b .

The j-invariant of E is given by

j = −1728(4a)3

∆ .

Two elliptic curves are isomorphic if and only if they have the same j-invariant.

We are now going to give another description of elliptic curves over the complex numbers.

Definition 5.2.3 (Lattice). A lattice Λ in C is a Z-module of rank 2 such that Λ⊗Z R = C.
We denote by L be the set of lattices in C.

Definition 5.2.4 (Multiplier ring). Let Λ be a lattice. The multiplier ring of Λ, denoted by R(Λ),
is the set {α ∈ C | αΛ ⊆ Λ}.

The quotient of C by a lattice is called a complex torus.

Definition 5.2.5 (Complex torus). Let Λ be a lattice in C. We say that C/Λ is a complex torus.

Such a complex torus is depicted in Figure 5.1. It is a basic fact that two complex tori are
isomorphic if and only if the corresponding lattices are homothetic.

We now relate lattices in C with the Poincaré upper halfplane through bases of a special form.
Let Λ be a lattice in C and (ω1, ω2) a basis of Λ such that τ = ω1

ω2
satisfies =(τ) > 0. Then Λ is

equivalent up to homothety to
Λτ = Zτ + Z .

The value of τ depends on the initial choice of the basis, but it is easy to describe the equivalence
classes of such numbers.

Definition 5.2.6 (Poincaré upper halfplane). We denote by H the Poincaré upper halfplane, i.e.
the set H = {x ∈ C | =(x) > 0}.

2This is true as soon as the characteristic is different from 2 and 3.
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Figure 5.1: A complex torus of dimension 1

Definition 5.2.7 (Modular group). We denote by SL2(Z) the special linear group over Z, i.e.

SL2(Z) =
{(

a b
c d

)
∈ Mat2(Z) | det(Z) = 1

}
.

We denote by Γ(1) the modular group

Γ(1) = SL2(Z)/ {±1} .

An action of the modular group on points of the Poincaré upper halfplane is defined as follows.

A matrix γ =
(
a b
c d

)
∈ Γ(1) acts on τ ∈ H as

γτ = aτ + b

cτ + d
.

Proposition 5.2.8 ([245, Lemma I.1.2]). The following map is a bijection

Γ(1)\H→ L/C∗ ,
τ 7→ Λτ .

In fact, a representative of each coset in Γ(1)\H can be chosen in the so-called fundamental
domain.

Proposition 5.2.9 ([245, Lemma I.1.5]). Let F denote the fundamental domain

F = {τ ∈ H | |τ | ≥ 1 and |<(τ)| ≤ 1/2} .

Then for every τ ∈ H, there exists γ ∈ Γ(1) such that γτ ∈ F .
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Using theWeierstraß ℘-function, it is easily seen that a complex torus is analytically isomorphic
to an elliptic curve.

Definition 5.2.10 (Weierstraß ℘-function [244, Section VI.3]). Let Λ be a lattice in C. The
Weierstraß ℘-function (relative to Λ) is defined by

℘ (z; Λ) = 1
z2 +

∑
ω∈Λ, ω 6=0

(
1

(z − ω)2 −
1
ω2

)
.

Definition 5.2.11 (Eisenstein series [244, Section VI.3]). Let Λ be a lattice in C and k > 1 be a
positive integer. The Eisenstein series of weight 2k (for Λ) is defined by

G2k (Λ) =
∑

ω∈Λ,ω 6=0

1
ω2k .

Proposition 5.2.12 ([244, Proposition VI.3.6]). Let Λ be a lattice in C and denote by g2 and g3
the quantities

g2(Λ) = 60G4(Λ) ,

g3(Λ) = 140G6(Λ) .

Then g3
2 − 27g2

3 6= 0 and the curve defined by

E : y2 = 4x3 − g2x− g3

is an elliptic curve. Moreover the map

C/Λ→ E(C) ,

z 7→ [℘(z) : ℘′(z) : 1] ,

is a complex analytic isomorphism of complex Lie groups.

The discriminant and the j-invariant of the curve corresponding to τ ∈ H can then be defined
as complex analytic functions:

∆(τ) = g3
2(τ)− 27g3(τ)2 ,

j(τ) = 1728g2(τ)3

∆(τ) .

The converse of this statement is harder to prove and is called the uniformization theorem for
elliptic curves over C. It involves studying the j-invariant as a modular function.

Theorem 5.2.13 (Uniformization [245, Corollary I.4.3]). Let a and b be complex numbers such
that 4a3 + 27b2 6= 0. Then there exists a lattice Λ in C such that g2(Λ) = −4a and g3(Λ) = −4b.
Hence, the map

C/Λ→ E : y2 = x3 + ax+ b ,

z 7→ [℘(z,Λ) : 1
2℘
′(z,Λ) : 1] ,

is a complex analytic isomorphism.
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Finally, we have an equivalence of categories between complex tori and elliptic curves over the
complex numbers.
Theorem 5.2.14 ([244, Theorem VI.4.1]). The following maps are bijections:

1.

{α ∈ C | αΛ1 ⊂ Λ2} → {φ : C/Λ1 → C/Λ2 | φ(0) = 0} ,

α 7→ φα ,

defined by passing to the quotient;

2.

{φ : E1 → E2 | φ(OE1) = OE2} → {φ : C/Λ1 → C/Λ2 | φ(0) = 0} ,

the natural inclusion associating an holomorphic map with an isogeny.
These results are summarized in the following theorem.

Theorem 5.2.15 ([244, Theorem VI.5.3]). The following categories are equivalent:
1. elliptic curves over C up to isomorphism and isogenies;

2. elliptic curves over C up to isomorphism and complex analytic maps sending 0 onto 0;

3. lattices in C up to homothety and multiplication by a complex number.

5.2.2 Orders in imaginary quadratic fields
Let K be an imaginary quadratic field. Recall that an order is a subring of K which is also a
lattice, i.e. a Z-module of rank 2 in this case. Moreover, all orders are subrings of the ring of
integers of K, the integral closure of Z in K.
Proposition 5.2.16. Let K be an imaginary quadratic field and OK its ring of integers. Then
OK is the maximal order of K. This is the only order of K which is integrally closed. Furthermore,
OK is a Dedekind ring.
Proposition 5.2.17 (Conductor [160, Theorem 8.1.3], [61, Lemma 7.2]). Let K be an imaginary
quadratic field, OK its ring of integers and O an order. Then there exists an integer f ∈ N∗ such
that O = Z + fOK .

Conversely, every integer f ∈ N∗ gives a unique order.
Proposition 5.2.18. Let K be an imaginary quadratic field, OK its ring of integers and O an
order. Then O is noetherian and of Krull dimension 1, i.e. all non-zero prime ideals are maximal.
Definition 5.2.19 (Fractional ideal). Let K be an imaginary quadratic field and O an order
in K. A fractional ideal a is a non-zero O-submodule of K such that there exist α ∈ K∗ with
αa ⊂ O. The set of fractional ideals is denoted by Frac(O).

In particular, the zero ideal is not a fractional ideal, but every non-zero ideal is. As O is
noetherian, its ideals are finitely generated and its fractional ideals are as well.

If Λ is a lattice in K, then its multiplier ring R(Λ) is an order in K, and so Λ is a fractional
ideal for some order. Conversely, a fractional ideal is a lattice in K. In fact, the fractional ideals
of O are exactly the lattices in K whose multiplier rings are orders containing O. Addition,
intersection and multiplication are defined on fractional ideals as they are on usual integral ideals,
and they give well defined composition laws. Moreover, we can define the ideal quotient, also
called ideal colon.
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Definition 5.2.20 (Ideal quotient). Let K be an imaginary quadratic field and O an order in
K. Let a and b be two fractional ideals. The ideal quotient, or ideal colon, of a and b, denoted by
(a : b), is defined as

(a : b) = {α ∈ K | αb ⊂ a} .

It is also a fractional ideal.

We remark that R(a) = (a : a).

Definition 5.2.21 (Proper ideal). Let K be an imaginary quadratic field and O an order in K.
A fractional ideal is said to be proper if its multiplier ring is exactly O. The set of proper ideals
is denoted by Prop(O).

The ring of integers OK is the maximal order of K, hence all its fractional ideals are proper.

Definition 5.2.22 (Invertible ideal). Let K be an imaginary quadratic field and O an order in
K. A fractional ideal a is said to be invertible if there exists a fractional ideal b such that ab = O.
Moreover, let us define a−1 as

a−1 = {α ∈ K | αa ⊂ O} = (O : a) .

If a is invertible, then its inverse is a−1. The set of invertible ideals is denoted by Inv(O).

Equivalently, a fractional ideal is invertible if and only if it is projective (as a module).
An invertible ideal a must verify R(a) = O, i.e. it must be proper, and its inverse3 a−1 must

verify the same equality R(a−1) = O, i.e. it must also be proper. Furthermore, Frac(O) is a
semigroup, Prop(O) is a semigroup and Inv(O) is a group.

It is a specific feature to imaginary quadratic fields that proper ideals are always invertible.

Proposition 5.2.23 ([160, Corollary of Theorem 8.1.2], [61, Proposition 7.4]). Let K be an
imaginary quadratic field and O an order in K. If a fractional ideal is proper, then it is invertible.

Definition 5.2.24 (Principal ideal). Let K be an imaginary quadratic field and O an order in
K. A fractional ideal is said to be principal if there exists α ∈ K∗ such that a = αO. The set of
principal ideals is denoted by PF(O).

The principal ideals are trivially invertible and so PF(O) is a subgroup of Inv(O).

Definition 5.2.25 (Class groups). Let K be an imaginary quadratic field and O an order in K.
The Picard group or class group of O is defined as

Pic(O) = Inv(O)/PF(O) ,

and its cardinality, the class number, by h(O).
The proper class semigroup of O is defined as

Clprop(O) = Prop(O)/PF(O) ,

and its cardinality, the proper class number, by Hprop(O).
The class semigroup of O is defined as

Cl(O) = Frac(O)/PF(O) ,

and its cardinality, the Kronecker class number, by H(O).
3We use the term inverse even though a could be non-invertible.
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As every fractional ideal of O is proper and so invertible for its multiplier ring, we get the
following proposition.

Proposition 5.2.26. Let K be an imaginary quadratic field and O an order in K.

H(O) =
∑

O⊂O′⊂K
h(O′) .

Furthermore, for the maximal order, the fractional ideals are automatically proper, whence
the following proposition.

Proposition 5.2.27. Let K be an imaginary quadratic field and OK its ring of integers. Then
Pic(OK) = Cl(OK) and h(OK) = H(OK).

Finally, the Picard group of an order can be described as a subgroup of the full class group of
K. First, we can restrict ourselves to the classes of ideals co-prime to the conductor.

Proposition 5.2.28 ([160, Theorem 8.1.4], [61, Lemma 7.18]). Let K be an imaginary quadratic
field and O the order of conductor f in K. Let a be a non-zero integral ideal of O co-prime to f .
Then a is proper.

We denote by Frac(O, f) (respectively PF(O, f)) the subgroups of Frac(O) generated by integral
ideals (respectively principal integral ideals) co-prime to f .

Proposition 5.2.29 ([160, Theorem 8.1.5], [61, Proposition 7.19]). Let K be an imaginary
quadratic field and O the order of conductor f in K. Then

Pic(O) ' Frac(O, f)/PF(O, f) .

These ideals can then be pulled back to the maximal order of K.

Proposition 5.2.30 ([160, Theorem 8.1.6], [61, Proposition 7.22]). Let K be an imaginary
quadratic field and O the order of conductor f in K. Then

Pic(O) ' Frac(OK , f)/PFZ(OK , f) ,

where PFZ(OK , f) is the subgroup of Frac(OK) generated by principal ideals a of OK such that
there exist α ∈ OK and a ∈ Z with a = αOK , α ≡ a (mod fOK) and gcd(a, f) = 1.

We can deduce from the last proposition the classical expression of the class number of O in
terms of the class number of K.

Theorem 3.2.12 ([160, Theorem 8.1.7], [61, Theorem 7.24]). Let K be an imaginary quadratic
field, OK its ring of integers and O the order of conductor f in K. Denote by ∆ the discriminant
of K. Then

h(O) = fh(OK)
[O∗K : O∗]

∏
p|f

(
1−

(
∆
p

)
1
p

)
,

where
(
·
p

)
is the Kronecker symbol.
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5.2.3 Binary quadratic forms
The theory of fractional ideals of orders in quadratic number fields is closely linked to that of
binary quadratic forms. The latter one is especially convenient for computations.

Definition 5.2.31 (Binary quadratic form). A binary quadratic form is an element of Z[X,Y ]
of the form

f = aX2 + bXY + cY 2 .

Its discriminant is ∆ = b2 − 4ac.

Definition 5.2.32 (Primitive form). A binary quadratic form f = aX2 + bXY + cY 2 is said to
be primitive if gcd(a, b, c) = 1.

Definition 5.2.33 (Definite form). A binary quadratic form is said to be positive (respectively
negative) definite if ∆ < 0 and a > 0 (respectively a < 0).

We denote by B(∆) the set of positive definite forms of discriminant ∆, and by b(∆) the
subset of primitive forms.

Definition 5.2.34 (Reduced form). A primitive positive definite form f = aX2 + bXY + cY 2 is
said to be reduced if |b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.

It is possible to define an action of SL2(Z) on binary quadratic forms, just as for points of the
Poincaré upper halfplane

Definition 5.2.35. Let σ =
(
p q
r s

)
∈ SL2(Z) and f = aX2 + bXY + cY 2 a binary quadratic

form. We define σf as

σf = a(pX + qY )2 + b(pX + qY )(rX + sY ) + c(rX + sY )2 .

Two binary quadratic forms f and g are said to be (properly) equivalent if there exists σ ∈ SL2(Z)
such that σf = g.

Moreover, this action respects the discriminant of the form, its positiveness and the value of
gcd(a, b, c). We also have canonical representatives for each class.

Theorem 5.2.36 ([61, Theorem 2.8], [32, Theorem 5.7.7]). Every primitive positive definite form
is equivalent to a unique reduced from.

We can now define the equivalents of class groups for binary quadratic forms.

Definition 5.2.37. Let ∆ be a negative integer such that ∆ ≡ 0, 1 (mod 4). The form class
group is defined as

Pic(∆) = b(∆)/ SL2(Z) ,

and we denote its cardinality, the class number, by h(∆). The form class semigroup is defined as

Cl(∆)∗ = B(∆)/ SL2(Z) ,

and we denote its cardinality, the Kronecker class number, by H(∆).

The associated values are then connected by a similar equality.

Proposition 5.2.38 ([232]). Let ∆ be a negative integer such that ∆ ≡ 0, 1 (mod 4) and
d a positive integer such that d2|∆ and ∆/d2 ≡ 0, 1 (mod 4). Then there is a one-to-one
correspondence between the sets {f ∈ B(∆) | gcd(a, b, c) = d} / SL2(Z) and b(∆/d2)/ SL2(Z).
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Corollary 5.2.39. Let ∆ be a negative integer such that ∆ ≡ 0, 1 (mod 4). Then

H(∆) =
∑

d∈N, d2|∆, ∆/d2≡0,1 (mod 4)

h(∆/d2) .

Finally, there is a well defined map between the two different kinds of class groups.

Theorem 5.2.40 ([61, Theorem 7.7], [32, Proposition 8.4.5]). Let K be an imaginary quadratic
field and O an order in K. Let ∆ be the discriminant of O. The following map

b(∆)→ Prop(O) ,

f = aX2 + bXY + cY 2 7→ Za+ Z(−b+
√

∆)/2 ,

is well defined and induces an isomorphism of Pic(∆) onto Pic(O).

Corollary 5.2.41. Let K be an imaginary quadratic field and O an order in K. Let ∆ be the
discriminant of O. Then

h(O) = h(∆) .

5.3 Elliptic curves with complex multiplication
In this section we describe the equivalence classes up to isomorphism of complex elliptic curves
with complex multiplication by a given order in an imaginary quadratic field. We then define the
Hilbert class polynomial and state the main theorem of complex multiplication.

5.3.1 Complex multiplication
Let E be an elliptic curve defined over C and τ ∈ H an element of the Poincaré upper halfplane
such that E(C) ' C/Λτ . Then End(E) ' End(Λτ ) and we deduce the following result on the
structure of End(E).

Proposition 5.3.1 ([244, Theorem VI.5.5]). Let E be an elliptic curve defined over C and τ ∈ H
such that E(C) ' C/Λτ . Then:

1. if τ is quadratic, then End(E) is an order in Q(τ);

2. otherwise End(E) = Z.

A lattice arising from a quadratic number τ is depicted in Figure 5.2.
We are interested in the first case, and more precisely in classifying curves (up to isomorphism)

having complex multiplication by a given order O in an imaginary quadratic field K (with a fixed
embedding into C).

Definition 5.3.2. Let O be an order in K an imaginary quadratic field. We denote by Ell(O)
the set of elliptic curves defined over C such that End(E) ' O.

From the results of Subsection 5.2.1, this set can also be described as the set of lattices in
C with multiplier ring O. For any such lattice there exists α ∈ C such that αΛ ⊂ K and so we
can choose Λ to be a fractional ideal of O. Every such elliptic curve then comes from a proper
fractional ideal of O, i.e. we have a well defined map Ell(O)→ Pic(O) which is easily seen to be
injective and surjective. We can even explicitly give an action of Prop(O) on Ell(O) as follows.



148 Chapter 5. Complex multiplication and elliptic curves

3
τ

3τ

Figure 5.2: The lattice corresponding to τ = 1+i
√

2
3

Definition 5.3.3. Let K be an imaginary quadratic field and O an order in K. Let E ∈ Ell(O)
and Λ a lattice in C such that E ' EΛ. Let a be a proper fractional ideal of O. We define a∗E by

a ∗ E = Ea−1Λ .

The following proposition summarizes the above discussion.

Proposition 5.3.4 ([245, Proposition II.1.2]). Let K be an imaginary quadratic field and O
an order in K. Then there is a simply transitive action of Pic(O) on Ell(O). In particular,
#Ell(O) = h(O).

5.3.2 Hilbert class polynomial
Let σ ∈ Aut(C) be an automorphism of C and E an elliptic curve defined over C. We can
define Eσ by letting σ act on the coefficients of a Weierstraß equation for E. In particular, the
j-invariants of the two conjugated curves then verify j(Eσ) = j(E)σ.

But σ also induces an isomorphism End(Eσ) ' End(E). So, if K is an imaginary quadratic
field (considered as a subfield of C), O an order in K and E an elliptic curve defined over C with
End(E) ' O, then End(Eσ) ' O.

Definition 5.3.5 (Hilbert class polynomial). Let K be an imaginary quadratic field and O an
order in K. The Hilbert class polynomial HO(X) of O is defined as

HO(X) =
∏

E∈Ell(O)

(X − j(E)) .

There is only a finite number of elliptic curves defined over C with a given order as endo-
morphism ring, so HO is well defined. The above discussion shows that HO(X) has rational
coefficients. In fact, it can be shown that the j-invariant of a complex elliptic curve with complex
multiplication is an algebraic integer and thus that HO(X) has integral coefficients.
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Theorem 5.3.6 ([245, Theorem II.6.1], [160, Theorem 5.2.4]). Let E be an elliptic curve defined
over the complex numbers with complex multiplication. Then j(E) is an algebraic integer.

There exist three different proofs of this theorem [245, Section II.6]:

1. a complex analytic one, considering j as a modular function;

2. an l-adic one, showing that E must have good reduction at all primes;

3. a p-adic one, showing that E can not have bad reduction at a prime.

Moreover, we remark that j(E)σ only takes a finite number of different values, or more
precisely that [Q(j(E)) : Q] ≤ h(O).

5.3.3 The main theorem of complex multiplication
According to Proposition 5.2.30, Pic(O) is isomorphic to

Pic(O) ' Frac(OK , f)/PFZ(OK , f) .

But PF1(OK , f) ⊂ PFZ(OK , f) ⊂ Frac(OK , f) where PF1(OK , f) is the subgroup of Frac(OK , f)
generated by principal ideals of the form αOK where α ∈ OK is such that α ≡ 1 (mod fOK).
This exactly means that PFZ(OK , f) is a congruence subgroup4 and Pic(O) is a generalized ideal
class group5. By the Existence theorem [216, Theorem VI.6.1], [145, Theorem 2.2], there exists
an abelian extension of K, called the ring class field of O, such that

Gal(HO/K) ' Pic(O) .

Definition 5.3.7 (Ring class field). Let K be an imaginary quadratic field and O an order in K.
The ring class field of O, denoted by HO, is defined to be the abelian extension of K such that

Gal(HO/K) ' Pic(O) .

The algebraic action of Gal(HO/K) on Ell(O) can be explicitly described in terms of the
analytic action of Pic(O). The key to this description is the Kronecker congruence relation.

Proposition 5.3.8 (Kronecker congruence relation [145, Theorem 5.9], [245, Proposition II.4.2],
[160, Theorem 10.1.1]). Let K be an imaginary quadratic field and O the order of conductor f in
K. Let a1, a2, . . . , ah be representatives of the ideal classes in Pic(O). Let L be an extension
of K containing j(a1), j(a2), . . . , j(ah). Let p be a rational prime co-prime to f , splitting as
pO = pp′, which is not one of the finitely many primes of bad reduction of E1, E2, . . . , Eh. Then,
for any proper fractional ideal a ∈ Prop(O),

j(a)p ≡ j(p−1a) (mod P) ,

where P is any prime ideal of L above pOK .

Proof. There is a canonical analytic map coming from the inclusion a ⊂ p−1a and Theorem 5.2.14
states that there exists an isogeny λ such that the following diagram commutes:

4This is a notion from class field theory that we will not further describe here.
5The same remark as in Footnote 4 applies here.
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C C

C/a C/p−1a

E(C) p ∗ E(C)

id

can.

λ

There exists an ideal b co-prime to p such that pb = (α) is principal. We can then extend our
diagram to

C C C C

C/a C/p−1a C/ba C/a

E(C) p ∗ E(C) b ∗ p ∗ E(C) = (α) ∗ E(C) E(C)

id α id

can. α can.

λ µ ν

for some isogeny µ : p ∗ E 7→ b ∗ p ∗ E and an isomorphism ν : (α) ∗ E 7→ E. It follows that the
reduction of the composite of these maps is inseparable (this can be seen on differentials — which
we will not present here — because α̃ = 0). But the degree of µ ◦ ν is N(b) which is co-prime to p
and so the reduction of λ, which is of degree N(p) = p, must be purely inseparable. So p̃ ∗ E is
isomorphic to Ẽp and j(p̃ ∗ E) = j(Ẽ)p.

As a corollary, we remark that we can now lift the Frobenius homomorphism from characteristic
p to characteristic zero provided that p splits in K and does not divide the conductor of O.

Proposition 5.3.9 ([245, Proposition II.5.3], [160, Lemma 10.1.1]). Let K be an imaginary
quadratic field and O an order in K. Let a be a proper ideal of O and E an elliptic curve defined
over L = K(j(E)) such that there exists an analytic representation

θ : C/a→ E(C) .

For all but a finite number of primes p of degree 1 in K, if σ is the Frobenius homomorphism of
p in L, then we can find an analytic representation

θ′ : C/p−1a→ Eσ(C)

and an isogeny λ such that the following diagram commutes:

C/a C/p−1a

E(C) Eσ(C)

θ θ′

can.

λ
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and such that the reduction of λ modulo any prime of L extending p is the p-th Frobenius
homomorphism composed with an automorphism of Ẽσ:

λ̃ = πp ◦ ε .

If p is prime to the conductor of O, then that automorphism can be chosen to be the identity.

Proof. Following the proof of Proposition 5.3.8, there exists an isogeny in characteristic zero
whose reduction is the composite of the p-th Frobenius homomorphism with an automorphism of
Ẽσ. If p is prime to the conductor of O, then using Theorem 5.1.32, that automorphism (or rather
its inverse) can be lifted back to characteristic zero, changing only the analytic representation in
the commutative diagram.

The Kronecker congruence relation can then be extended to every ideals.

Theorem 5.3.10 ([145, Theorem 3.16], [245, Theorem II.4.3], [160, Theorem 10.3.5]). Let K
be an imaginary quadratic field and O an order in K. Let σ ∈ Aut(C/K) and b a proper ideal
whose Artin symbol on the ring class field is σ. Let a be a proper ideal. Then

j(a)σ = j(b−1a) .

Proof. We describe the approach of Kedlaya [145, Proposition 4.18]. Let L be an extension large
enough to contain HO and all the j(Ei). The Chebotarev density theorem ensures the existence
of infinitely many primes p ∈ O whose Artin symbol on L is σ and for which Proposition 5.3.8
applies:

j(a)σ ≡ j(a)p ≡ j(p−1a) (mod P) ,

where P is any prime ideal of L above pOK . All these primes have the same Artin symbol for
HO. Therefore, by Artin reciprocity, they must lie in the same ideal class, so that j(p−1a) is
constant. Then, the Kronecker congruence relation can be lifted back to L to obtain the desired
equality.

Corollary 5.3.11 ([145, Corollary 3.17], [61, Theorem 11.1], [245, Theorem II.4.3], [160, The-
orem 10.3.5]). Let K be an imaginary quadratic field and O an order in K. Let E be an
elliptic curve with complex multiplication by O. Then K(j(E)) is the ring class field of O and
[K(j(E)) : K] = [Q(j(E)) : Q] = h(O).

Proof. As [K(j(E)) : K] ≤ h(O), it is sufficient to prove that HO ⊂ K(j(E)).
Following Kedlaya [145, Corollary 3.17] and Cox [61, Theorem 11.1], and according to Cox [61,

Proposition 8.20], it is sufficient to show that the unramified rational primes under a prime of
degree 1 of K(j(E)) are included in those that splits completely in HO, except for a finite number
of them.

But, except for a finite number of them, if Q is a prime of degree 1 in K(j(E)), then
j(pa)p ≡ j(pa) (mod Q), and by the Kronecker congruence relation j(pa)p ≡ j(a) (mod Q). If
we moreover exclude the finite number of primes which divide the discriminant of the j-invariant
of the curves with complex multiplication by O, then it implies that j(pa) = j(a) and, so, that
p is principal. Hence, it has a trivial Artin symbol and splits completely in H. Therefore,
H ⊂ K(j(E)), whence the equality.

The main theorem of complex multiplication then gives an explicit analytic description of the
algebraic action of the Galois group on torsion points6.

6The next theorem gives the idèlic formulation of the main theorem of complex multiplication. Multiplication
of fractional ideals by idèles will be defined in Subsection 6.2.3.
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Theorem 5.3.12 (Main theorem of complex multiplication [245, Theorem II.8.2], [160, Theo-
rem 10.2.3]). Let K be an imaginary quadratic field and O an order in K. Let E be an elliptic
curve defined over C with complex multiplication by O. Let σ ∈ Aut(C) be an automorphism of
C and s ∈ A∗K an idèle of K such that (s,K)Kab = σ. Fix a proper ideal a of O and a complex
analytic isomorphism

θ : C/a→ E(C) .

Then there exists a unique complex analytic isomorphism

θ′ : C/s−1a→ Eσ(C)

such that the following diagram commutes:

K/a K/s−1a

E(C) Eσ(C)

θ θ′

s−1

σ

5.3.4 Computing the Hilbert class polynomial
To conclude this section, we give the outline of the computation of the Hilbert class polynomial
using the so-called complex analytic method in Algorithm 5.2.

Algorithm 5.2: Computation of the Hilbert class polynomial
Input: A negative discriminant ∆ ≡ 0, 1 (mod 4)
Output: The Hilbert class polynomial H∆(X) of the order of discriminant ∆

1 Compute a basis of the order O of discriminant ∆
2 Compute the class group Pic(O) of O
3 foreach a ∈ Pic(O) do
4 Compute j(a) with enough precision
5 Construct H(X) ∈ Z[X] from the complex approximations of its roots
6 return H(X)

Computation of the class group in Line 2 can be done working with binary quadratic forms.
Computation of the j-invariant in Line 4 is made considering it as a modular function and

using its q-expansion [245, Proposition I.7.4], [160, Section 4.2].
The complex analytic method goes back to the work of Atkin and Morain [9]. A precise

description and analysis of a sophisticated version of Algorithm 5.2 can be found in the work of
Enge [85]. It is shown that, under the heuristic assumption that the correctness of the algorithm
does not depend on rounding errors, the Hilbert class polynomial can be computed in O(h2+ε)
operations for any ε > 0 [85, Corollary 1.3], which is asymptotically optimal.

Finally, it should be noted that other methods have been proposed to compute the Hilbert
class polynomial:

• a p-adic method, avoiding numerical instability issues and also asymptotically optimal,
first described in the work of Couveignes and Hencocq [60] and analyzed in a paper of
Bröker [28];
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• methods using the Chinese Remainder Theorem to lift reductions at small primes of the
Hilbert class polynomial back to the integers, and methods using an explicit version of the
Chinese Remainder Theorem to compute modular reduction of the Hilbert class polynomial
at a large prime without computing it over the integers, first presented in the works of Chao
et al. [45] and Agashe et al. [2].

These methods were subsequently improved, for example in the works of Belding et al. [12] and
Sutherland [258, 257].

5.3.5 Shimura’s reciprocity law and class invariants
Finally, it should be noted that Shimura described a reciprocity law describing the Galois action
on modular functions of higher level, i.e. modular functions invariant by congruence subgroups of
SL2(Z). The exact statement of Shimura’s reciprocity law in the elliptic case can be found in
Lang’s textbook [160].

This reciprocity law can then be used to study other class invariants, i.e. values of modular
functions generating the ring class field. These class invariants potentially give rise to minimal
polynomials with smaller coefficients than the Hilbert class polynomial. It has been shown that
the ratio between the heights of the coefficient is at best constant and is bounded as follows.

Proposition 5.3.13 ([31, Theorem 4.1]). The reduction factor for a modular function f satisfies

r(f) ≤ 32768/325 ≈ 100.82 ;

if Selberg’s eigenvalue conjecture [227] holds, then

r(f) ≤ 96 .

This gain could seem useless, but is very important in practice.
The study of class invariants goes back to Weber [281]. They are classically constructed using

quotients of the Dedekind η function. Such an approach is described in the works of Gee [114, 115]
and Gee and Stevenhagen [116] with a view towards construction of class fields, and of Bröker [27]
and Bröker and Stevenhagen [31] with a view towards construction of elliptic curves. More recent
developments are due to Schertz [230], Enge and Schertz [87], and Enge and Morain [86]. The
double η quotients found in [87] give the best currently known gain of 72, which is close to
optimal.

An alternative approach, based on theta functions rather than the Dedekind η functions, can
be found in the work of Leprévost, Pohst and Uzunkol [170] and Uzunkol’s doctoral thesis [269].

To conclude, let us mention that, when computing minimal polynomials of a class invariant,
the situation is more involved than with the j-invariant and the representatives of the class
group must be normalized to compute the conjugates of the invariant. This can be done with
N -systems [230].

5.4 Elliptic curves in cryptography
5.4.1 Curves with a given number of points
In this subsection we outline the different methods to obtain curves with a given number of
points over a finite field. Such constructions are naturally useful to generate curves for integer
factorization [169] or to build public key cryptosystems based on the difficulty of the discrete
logarithm problem [69, 153, 202].
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The main approaches to generate elliptic curves for cryptography are as follows [18, Chap-
ter VI], [56, Section 23.4.2.a]:

• Generate a random curve defined over a small base field, compute the roots of its Frobenius
endomorphism characteristic equation and deduce its number of points over any extension
field — such curves are called subfield curves.

• Generate a random curve defined over the target base field and compute its number of
points using generic methods, l-adic methods, or p-adic methods, as appropriate.

• Choose an endomorphism ring, look for a suitable base field, compute the corresponding
curve using reduction of a class polynomial — these curves are called CM curves.

We give a more precise description of the last method [56, Algorithm 18.5], [84, Algorithme 1.15],
which is obviously of special interest in this chapter, in Algorithm 5.3. It is called the CM method.

Algorithm 5.3: The CM method
Input: A discriminant ∆, the corresponding class polynomial H∆, and a desired bitsize
Output: A prime power q and an elliptic curve satisfying the desired properties

1 repeat
2 repeat
3 Choose a random q = pm of the desired bitsize
4 until There exist integers t and u such that 4q = t2 − u2∆
5 until n = q + 1± t verifies the desired properties
6 Compute a root of the reduction modulo q of the class polynomial H∆
7 Build the corresponding curve E
8 return (q, E)

In Line 3, the finite field size q = pm is chosen such that:

1. p splits completely as pOQ(
√

∆) = pp′ in Q(
√

∆);

2. p does not divide the conductor of O∆;

3. p is of order dividing m.

The test in Line 4 is solved using Cornacchia’s algorithm [56, Algorithm 18.4], [18, Algo-
rithm VIII.1] which is described in Algorithm 5.4.

In Line 6, it is often supposed that the class polynomial is precomputed, and so the complexity
of its computation is not included in that of the CM method. Usually different class polynomials
such as those using double η quotients [87], mentioned in Subsection 5.3.5, are used instead of
the Hilbert class polynomial.

In Line 7, the j-invariant of the curves should first be reconstructed from the root of the
reduced class polynomial. This is typically done using modular polynomials which are supposed to
be precomputed as well and whose computation is at least as difficult as that of class polynomials.
Afterwards, there exist at least two non-isomorphic curves over Fq with the same j-invariant, so
the right one should be chosen.

Finally, it should be noted that the curves which can be generated in practice using the CM
method will have complex multiplication by an order of relatively small discriminant, which
makes them somehow “special” and could lead to specific attacks against the discrete logarithm
problem.
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Algorithm 5.4: Cornacchia’s algorithm
Input: Co-prime positive integers d and n
Output: Positive integers x and y such that x2 + y2d = n if they exist

1 Compute a solution n/2 < r0 < n to r2
0 ≡ −d (mod n)

2 Write n = qr0 + r1 using the Euclidean algorithm
3 Set k = 1
4 while rk ≥

√
n do

5 Write rk = qrk+1 + rk+2 using the Euclidean algorithm
6 k = k + 1

7 s =
√

n−r2
k

d

8 if s ∈ Z then
9 return (rk, s)

10 return ∅

5.4.2 The MOV/Frey–Rück attack
Pairings can be used to transport the discrete logarithm problem from the group of rational
points of an elliptic curve into the multiplicative subgroup of a finite field [18, Section V.2], [19,
Section IX.9]. There exist subexponential algorithms to compute the discrete logarithm in finite
fields. Hence, if the size of the base field does not grow too much, it is much more efficient to
solve the discrete logarithm in the target finite field rather than in the original group of points
of the elliptic curve. This attack was first proposed by Menezes, Okamoto and Vanstone [192],
using the Weil pairing, and by Frey and Rück [104], using the Tate pairing. It is described in
Algorithm 5.5. If E is an elliptic curve defined over Fq of characteristic p and P ∈ E(Fq) is of
prime order l 6= p, Q a multiple of P , we want to compute λ ∈ Z such that Q = [λ]P .

Algorithm 5.5: The MOV/Frey–Rück Attack
Input: P,Q ∈ E(Fq) such that P is of prime order l 6= p and Q is a multiple of P
Output: λ ∈ Z such that Q = [λ]P

1 Compute k such that l|qk − 1
2 Compute S ∈ E(Fqk) such that e(P, S) 6= 1
3 ζ1 ← e(P, S)
4 ζ2 ← e(Q,S)
5 Compute λ such that ζ2 = ζλ1 in Fqk
6 return λ

The following proposition shows that the Tate pairing is already faster to compute than the
Weil pairing.

Proposition 5.4.1 ([10], [19, Theorem IX.12]). Suppose that l|#E(Fq) is prime, l 6= p and
l 6 |q − 1. Then E[l] ⊂ E(Fqk) if and only if l|qk − 1.

To compute a Weil pairing, not only must two Tate pairings be computed, but the base field
K(E[m]) is also larger than K(µl). In practice, more efficient pairing such as the eta or the ate
pairings [131] are used.

It should be remarked that the discrete logarithm can be transported in a potentially strict
subfield Fpordl(p) of Fqk [133]. The integer ordl(p) is the smallest integer such that F∗

pordl(p)



156 Chapter 5. Complex multiplication and elliptic curves

contains the l-th roots of unity, i.e. the smallest integer such that l|pordl(p) − 1, or equivalently
the multiplicative order of p in (Z/lZ)∗. Then k = ordl(p)/ gcd(ordl(p), n) if q = pn. Therefore,
it is ordl(p) rather than k which should be considered for the difficulty of the discrete logarithm.
For cryptographic applications however, the base field is often chosen to be prime so that both
these values are equal.

Finally, it should be noted that supersingular curves can not be used for classical public key
cryptography.

Proposition 5.4.2 ([192]). Let E be a supersingular curve. Then its embedding degree k verifies
k ≤ 6.

This is not a concern for ordinary curves. Indeed, for a random curve the embedding degree
is relatively large, typically of the size of l.

Proposition 5.4.3 ([10]). Let (p,E) be a random couple made of a prime number p ∈ [M/2,M ]
and of an elliptic curve defined over Fp with a prime number of points l. Then the probability
that l|pk − 1 for k ≤ (log p)2 is smaller than

c(logM)9(log logM)2/M

where c is an effectively computable positive constant.

5.4.3 Identity-based cryptography
The idea of identity-based cryptography, proposed by Shamir [235], is to use any binary string
(e.g. an email address) as a public key.

A trusted third party, the Public Key Generator, publishes a master public key from which
all public keys are derived using only public data, and keeps a master secret key to compute
the secret keys corresponding to the public data. This scheme allows to encrypt messages, or
check digital signatures, without prior distribution of public keys as in the classical public key
cryptography model. However, the users must highly trust the Public Key Generator, because it
can compute any private key, which is not the case in the classical infrastructure. Nonetheless,
different variants exist where this pitfall is avoided.

The first instantiation of such an encrypting scheme appeared only many years later: in 2001
in the works of Cocks [52], using quadratic residues, and of Boneh and Franklin [20, 21], using
the Weil pairing.

Elliptic curves used in such schemes should not only be resistant to attacks against the discrete
logarithm, but also have a small enough embedding degree so that the pairing is efficiently
computable. Hence, supersingular curves are natural candidates, but their embedding degrees
being always really small may not be sufficient and discards them for several applications. Testing
random curves will definitely not yield suitable curves. Using the CM method it is however
possible to find ordinary curves which not only have a prime, or nearly prime, number of points,
but also have a controlled embedding degree. More precisely, for a given discriminant ∆, we
want to find a couple (t, q) where q is a prime power, t2 − 4q = ∆ and q + 1− t has large prime
divisor l which divides qk − 1 for a suitable k, but not qi − 1 for i < l. This last condition can be
rephrased as l dividing Φk(q) where Φk is the k-th cyclotomic polynomial. To summarize the
above discussion, the following conditions are needed:

1. t2 − 4q = ∆ where q is a prime power;

2. l | q + 1− t where l is a large prime;
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3. l | Φk(q) where Φk is the k-th cyclotomic polynomial.

Different methods and families of curves verifying such conditions have been proposed. Overviews
of these constructions can be found in the survey of Freeman, Scott and Teske [101], the Master’s
thesis of Bisson [17], or the Ph.D. thesis of Naehrig [215].
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The theory of elliptic curves with complex multiplication was developed in the previous chapter.
The explicit computation of class polynomials, together with some applications in asymmetric
cryptography, were especially highlighted. The purpose of this chapter is to expose the natural
generalization of these constructions to higher dimensions: the theory of abelian varieties with
complex multiplication and the construction of the corresponding class polynomials. This chapter
was first thought to be the very core of this thesis, but — and the reader should obviously have
already remarked if he was patient enough to go through the previous chapters of this thesis
— its preparation followed a quite different way. Most of the contribution of the author here
is bibliographical — except for the description of the non-maximal order case. Nevertheless, a
Sage [250] implementation is planned as well1, and this chapter should be thought as an invitation
to future works.

In Section 6.1 we quickly review the general theory of abelian varieties from an algebraic
point of view, drawing inspiration from the more than classical textbook of Mumford [213], but
also from the freely available course notes of Milne [204]. Contrary to the approach which was
undertaken in Chapter 5, in this section, and more generally throughout this chapter, the analytic
approach over the complex numbers is blended with the algebraic one, and we enlighten as
much as possible the connections between both approaches, much inspired by the textbook of
Debarre [65]. For the analytic approach the reader is also referred to the textbook of Birkenhake
and Lange [16].

Section 6.2 deals with the theory of fractional ideals in general orders of number fields, a
natural continuation to the exposition of Subsection 5.2.2. The situation in higher dimension is
far less well understood for non-maximal orders than for maximal orders2. Here we stress out how
the explicit computation of Picard groups for non-maximal orders can be performed efficiently
following the work of Klüners and Pauli [151].

The general theory of complex multiplication is presented in Section 6.3. The content of
this section is mainly restricted to characteristic zero which is the main topic of that theory.
Nevertheless, some digressions are to be made and we will wander in positive characteristic. The
main reference for this section are the textbook of Shimura3 [238] who originally developed the
whole theory, the textbook of Lang [159], and the course notes of Milne4 [205]. If the reader is
more inclined to a schematic approach, we refer him to the seminar notes of Conrad [57] which
we will basically not treat here.

Section 6.4 follows the works of Spallek [248], van Wamelen [273], Weng [283] and Streng [252]
to describe the construction of classical class polynomials in dimension 2 — the Igusa class
polynomials. We show in particular how such a construction can be naturally extended to non-
maximal orders. Even though this description of the non-maximal order case is the sole innovation
of the author in this part, it is also the theoretical basis of a future Sage [250] implementation.

1A draft and quite dysfunctional implementation is available at http://www.infres.enst.fr/~flori/cm/. It
implements arithmetic for fractional ideals of non-maximal orders, basic computation of Igusa class polynomials,
but mainly lacks a full computation of the class group of a non-maximal orders although some bricks are provided.

2For example, Waterhouse declared in 1969 [280]: “This theorem is a good example of the way in which facts
about maximal orders can be transformed into facts about varieties, and shows why the absence of theory for
non-maximal orders makes the general case much more complicated.” In the meantime, the interest for such a
theory seems to have always been fluctuating and the situation is not much better nowadays.

3The reader can also refer to the previous textbook published under the names of Shimura and Taniyama [239].
The content of the first sixteen chapters is exactly the same. Chapter 17 of the first textbook, entitled “The case
of non-principal orders” and which does not appear in the second one, might seem important enough with regard
to the work presented in the present chapter to have been elected the reference of choice. However, most of its
content is essentially treated, although in a different way, in the additional chapters of that second textbook.
Therefore, we prefer to refer the reader to that more recent and complete textbook.

4As noted by Milne on his webpage, these are actually not course notes, and come in quite unpolished form.

http://www.infres.enst.fr/~flori/cm/
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6.1 Abelian varieties
6.1.1 Definition and first properties
Definition 6.1.1 (Abelian variety). An abelian variety is a connected and complete algebraic
group variety.

For example, elliptic curves are abelian varieties of dimension 1. We usually denote by g the
dimension of an abelian variety.

The rigidity lemma [204, Proposition I.1.1], [132, Lemma A.7.1.1] implies that every morphism
between abelian varieties is the composite of a homomorphism and a translation and that the
group law on an abelian variety is commutative.

Proposition 6.1.2 (Commutativity [213, II.4], [204, Corollary I.1.4], [132, Corollary A.7.1.3]).
Let A be an abelian variety. Then its group law is commutative.

It is a consequence of the more difficult theorem of the cube [213, II.6], [204, Theorem I.5.1],
[132, Corollary A.7.2.2] that every abelian variety is projective.

Theorem 6.1.3 (Projectivity [213, II.6], [204, Theorem I.6.4], [132, Corollary A.7.2.1]). Let A
be an abelian variety. Then A is projective.

Hence, we could have just defined abelian varieties as projective varieties with a commutative
group law. Nonetheless, this is not the historical approach.

As was the case for elliptic curves, complex abelian varieties are also isomorphic to complex
tori. Indeed, over the complex numbers, an abelian variety A is a compact connected complex Lie
group and is equipped with the so-called exponential map exp from the tangent space V ' C2g

at the zero element to itself [168, 15.4]:

exp : V → A .

A fundamental fact is that this map is surjective and its kernel is a lattice Λ in V .

Theorem 6.1.4 ([213, I.1], [204, Proposition I.2.1]). Let A be a complex abelian variety and V
the tangent space at 0. Then the exponential map is a surjective homomorphism of complex Lie
groups with kernel Λ a lattice in V .

Hence
A ' V/Λ

is a complex torus.

As soon as g > 1, the converse of this theorem is however not true anymore. All complex tori
are indeed not projective anymore [65, Exercice III.3], [242].

6.1.2 Theta functions and Riemann forms
To characterize the complex tori which are projective, and so are actually complex abelian varieties
a powerful tool is theta functions.

Definition 6.1.5 (Theta function [213, I.3], [65, Définition 1.1]). Let V be a vector space and Λ
a lattice in V . A theta function θ associated with Λ is a non-zero function such that there exist
linear forms aλ and constants bλ for every λ ∈ Λ verifying

θ(z + λ) = e2iπ(aλ(z)+bλ)θ(z)

for every z ∈ V . The theta function is said to be of type (aλ, bλ)λ∈Λ.
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A theta function of the form z 7→ eQ(z) where Q is a polynomial of degree at most two is said
to be trivial and two theta functions are said to be equivalent if their quotient is a trivial theta
function.

The application

Λ× V → C
(λ, z) 7→ aλ(z)

can be uniquely extended to an application a : V × V → R which is R-linear in the first variable
and C-linear in the second one. The R-bilinear alternating form

ω(x, y) = a(x, y)− a(y, x)

is called the Riemann form associated with θ.
Proposition 6.1.6 ([65, Propositions IV.1.3, IV.1.5]). With the above notation, the Riemann
form ω is real valued, integer valued on Λ and satisfies

ω(ix, iy) = ω(x, y)

for all x and y in V . Moreover ω(x, ix) ≥ 0 for all x ∈ V ; we say that ω is positive.
If ω(x, ix) > 0 for all x ∈ V different from O, then we say that ω is positive definite or

non-degenerate.
A Hermitian form, or symmetric sesquilinear form, H is associated with the Riemann form ω:

H(x, y) = ω(x, iy) + iω(x, y) .

It is C-antilinear in the first variable and C-linear in the second one5. Then ω is nothing but
ω = =(H) and there is a one-to-one correspondence between this two kinds of forms.

It is easily seen that any theta function can be normalized, i.e. multiplied by a trivial theta
function, to satisfy

θ(z + λ) = α(λ)eπH(λ,z)+π
2H(λ,λ)θ(z)

where α : Λ→ C1 = {z ∈ C | |z| = 1} is a semicharacter:

α(λ1 + λ2) = α(λ1)α(λ2)(−1)ω(λ1,λ2) ,

called the multiplicator, or canonical factor of automorphy, of θ. The theta function θ is said to
be of type (H,α).

It can be shown that any complex embedding of a complex torus

u : V/Λ→ Pn

can be described by n+ 1 theta functions of the same type u = (θ0, . . . , θn). Hence there exists a
Riemann form on Λ whose kernel must be trivial, i.e. the form is positive definite, or equivalently
non-degenerate.

A theta function θ on the complex torus X = V/Λ, or the associated hermitian form H and
multiplicator α, can be used to construct a line bundle L(H,α) as the quotient of V × C by the
action of Λ given by

λ · (z, t) = (z + λ, α(λ)eπH(λ,z)+π
2H(λ,λ)t) .

The Appel–Humbert theorem states that the converse is true: every line bundle can be constructed
in this way.

5This is the convention of Debarre [65, III.1.1]. Mumford [213, I.2], Lang [159, 1], Birkenhake and Lange [16,
Lemma 2.1.7], and Hindry and Silverman [132, A.5] swap x and y, i.e. set ω(ix, x) positive and H(x, y) =
ω(ix, y) + iω(x, y). Shimura [238, I.3.1] sets ω(x, ix) positive and 2iH(x, y) = ω(x, iy) + iω(x, y) which is skew-
hermitian. Milne [205, I.2.3] sets ω(x, ix) positive and H(x, y) = ω(x, iy)− iω(x, y).



6.1. Abelian varieties 163

Theorem 6.1.7 (Appel–Humbert theorem [213, I.2], [65, Théorème V.5.10]). Every line bundle
on a complex torus is isomorphic to a line bundle L(H,α) where H and α are uniquely determined.

A theorem of Lefschetz [213, I.3], [65, Théorème VI.3.5] then shows that the existence of a
Riemann form on a complex torus is not only a necessary condition to be projective, but also a
sufficient one.

Theorem 6.1.8 ([204, Theorem I.2.8]). A complex torus is projective if and only if it admits a
non-degenerate Riemann form.

We now would like to give a simple description of polarizable complex tori up to isomorphism.
In dimension 1, this was achieved by choosing a pleasant basis of the lattice Λ and an associated
element τ in the Poincaré upper halfplane. In higher dimension a similar treatment is achieved
using the Siegel upper half-space of genus g.

Definition 6.1.9 (Siegel upper half-space). The Siegel upper half-space Hg of genus g is the set
of g × g symmetric matrices with imaginary part positive definite:

Hg =
{

Ω ∈ Matg | tΩ = Ω, =(Ω) > 0
}
.

The existence of a Riemann form on the lattice Λ is then conveniently translated into the
so-called Riemann conditions on V and Λ.

Theorem 6.1.10 (Riemann conditions [65, Théorème VI.1.3]). Let X = V/Λ be a complex torus
of dimension g. There exists a Riemann form ω on X if and only if there exist a basis {e1, . . . , eg}
of V , strictly positive integers d1, . . . , dg verifying d1| . . . |dg and a matrix Ω ∈ Hg, called the
period matrix, such that Λ is written with regards to the basis {e1, . . . , eg}

Λ = ΩZg ⊕∆Zg

where ∆ is the diagonal matrix with coefficients d1, . . . , dg.

In the basis given by the above decomposition, called a Frobenius or symplectic basis, the
matrix of ω is given by (

0 ∆
−∆ 0

)
.

The squareroot of the determinant of ω, called its pfaffian and denoted by pf(ω), is then

pf(ω) = d1 · · · dg .

6.1.3 Isogenies
Definition 6.1.11 (Isogeny [213, II.6 Application 3], [204, I.7]). A homomorphism φ : A→ B
between abelian varieties is called an isogeny if it is surjective and has a finite kernel.

Two abelian varieties are said to be isogenous if there exists an isogeny between them. This
can be shown to be an equivalence relation.

Definition 6.1.12 (Simple abelian variety). Let A be an abelian variety. A is said to be simple6

if there exists no abelian variety B verifying

{0} ( B ( A .

6Waterhouse use the term elementary [280] which is used elsewhere to denote isotypic abelian varieties [270,
Definition 12.4].
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Poincaré reducibility theorem [213, Theorem IV.19.1], [205, Theorem I.2.12], [65, Théo-
rème VI.8.1] shows that any abelian variety can be decomposed into a product of simple abelian
varieties.

Proposition 6.1.13 ([213, Corollary IV.19.1], [65, VI.8.2]). Let A be an abelian variety. Then
there exist abelian varieties A1, . . . , An non isogenous to each other and positive integers r1, . . . , rn
such that

A ∼ Ar1
1 ×Arnn .

The abelian varieties A1, . . . , An are unique up to isogeny and the integers r1, . . . , rn are unique.

6.1.4 Picard variety and polarizations
Let A be an abelian variety. Let Div(A) denote the group of divisors of A, Diva(A) the subgroup
of those algebraically equivalent to zero and Divl(A) the subgroup of those linearly equivalent to
zero. The Picard group of A is Pic(A) = Div(A)/Divl(A). The subgroup of equivalence classes
of divisors algebraically equivalent to zero is denoted by Pic0(A) = Diva(A)/Divl(A).

The theorem of the square [213, Corollary II.6.4], [65, Théorème VI.3.3] implies that a group
homomorphism between an abelian variety and its Picard group can be constructed from any line
bundle.

Theorem 6.1.14 ([213, Corollary II.6.4], [65, Théorème VI.4.2]). Let A be an abelian variety
and L a line bundle. Then the map ψL defined as

A→ Pic0(A)
x 7→

[
τ∗xL⊗ L−1]

is a group homomorphism. It only depends on the algebraic equivalence class of L. If L is ample,
then the kernel K(L) of ψL is finite.

The group Pic0(A) can then be given the structure of an abelian variety7.

Theorem 6.1.15 (Picard variety [159, Section 3.4]). Let A be an abelian variety. There exists
an abelian variety Â called the Picard variety8 and a group isomorphism

Â ' Pic0(A) .

The Picard variety is also called the dual abelian variety of A. Indeed, there is a canonical
isomorphism

A ' ̂̂A .

Moreover, if u is a homomorphism between two abelian varieties A and B, then there exists a dual
homomorphism, or transpose, û : B̂ → Â which verifies ̂̂u = u, û+ v = û+ v̂ for u, v ∈ Hom(A,B)
and v̂u = ûv̂ if u ∈ Hom(A,B) and v ∈ Hom(B,C). If u is an isogeny, then û is an isogeny of
the same degree. On divisors, this is described by taking inverse image, i.e. by u∗. In particular,
A and Â have isomorphic endomorphism rings.

7This is done by quotienting A by the kernel of ψL where L is an ample line bundle. The fact that the quotient
is an abelian variety is definitely non-trivial.

8In fact, the Picard variety is defined together with a divisor on A× Â, but we will not use this fact here.
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A homomorphism ψL with L ample as above is then an isogeny between A and Â and is called
a polarization of the abelian variety9. If ψL is of degree one, it is called a principal polarization.
A morphism λ of polarized abelian varieties between (A,ψ) and (B,ψ′) is a morphism of abelian
varieties such that10

λ∗(ψ′) (= λ̂ψ′λ) = ψ .

Over the complex numbers, an analytic description of the dual complex torus X̂ can be given
for any complex torus X.

Proposition 6.1.16 ([213, II.9], [65, Proposition V.5.9], [16, Proposition 2.4.1]). Let X =
V/Λ be a complex torus. Let V ∗ = HomC(V,C) be the set of C-antilinear forms and Λ̂ ={
l ∈ V ∗ | =(l) ⊂ Z

}
. Then the map

V
∗
/Λ̂→ Pic0(X) ,

l 7→ L(0, e2iπ=l(·)) ,

is an isomorphism. Moreover, Pic0(X) is isomorphic to the group of characters Λ∗1 = Hom(Λ,C1).

The real vector space V ∗ is canonically isomorphic to HomR(V,R) using a similar correspon-
dence as for the forms ω and H: if l ∈ V ∗, then we define k = =l; if k ∈ V ∗R = HomR(V,R), then
we define l(z) = −k(iz) + ik(z) [65, Proposition 5.9], [16, 2.4]. Finally, V ∗R is isomorphic to Λ∗1,
both being defined by their values on a basis of Λ.

If u : X → Y is a homomorphism of complex tori, then its dual is analytically represented by
û : l 7→ l ◦ u.

Furthermore, every line bundle L is of the form L(H,α) and it can be shown that the
polarization ψL associated with L only depends on H, or equivalently on the Riemann form
ω = =(H) associated with H. Therefore, on a complex abelian variety the polarization can be
defined as the choice of a Riemann form.

The following proposition implies the theorem of the square over the complex numbers and
describes the homomorphism from X into Pic0(X) associated with a Riemann form.

Proposition 6.1.17 ([213, II.9], [65, Lemme 3.2]). Let X be a complex torus, L(H,α) a line
bundle on X and x ∈ X. Then

τ∗xL(H,α) ' L(H,αe2iπ=H(·,x̃)) .

More precisely, the homomorphism φL corresponding to ω is given analytically by

X = V/Λ→ X̂ = V
∗
/Λ̂ ,

x 7→ H(·, x̃) ,

9This is neither the more general definition of Milne [204, I.11] where it is only required that φ can be described
as above over an extension of the base field, nor that of Shimura [238, 4.1] or Lang [159, 3.4] which only consider
them up to the existence of positive integers m and m′ such that mL and m′L′ are algebraically equivalent, i.e. if
the associated Riemann forms are proportional. In the latter case, there exists a so-called basic polar divisor Y
in the polarization C such that any divisor X in the polarization is algebraically equivalent to a multiple of Y :
X ≡ mY .

10This is once again more restrictive than the definitions of Shimura [238, 4.1] and Lang [159, 3.4] which only set
λ∗(C′) ⊂ C. Lang [159, 3.5] says that the polarizations correspond to each other for the above definition. However,
for automorphisms of polarized abelian varieties, both definitions coincide.
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where x̃ is any element of V over x and H(·, x̃) is indeed a C-antilinear map [65, VI.4.3], [213,
II.9], [16, Lemma 2.4.5]. The kernel of φL is K(L) = Λ(L)/Λ where

Λ(L) = {x ∈ V | ω(Λ, x) ⊂ Z} .

If L is non degenerate, then the matrix of ω in a symplectic basis is(
0 ∆
−∆ 0

)
,

and
#K(L) = deg(ψL) = pf(ω)2 = (d1 · · · dg)2 .

To conclude this section let us mention that, as was pointed out by Weil [282], the correct
generalization of elliptic curves to higher dimensions are polarized abelian varieties. They have
indeed finite automorphism groups and are well suited for moduli problems.

Theorem 6.1.18 ([213, Theorem IV.21.5], [204, Proposition I.14.4]). Let A be an abelian variety
and ψ a polarization. Then the automorphism group of (A,ψ) is finite.

Over the complex numbers, isomorphism classes of polarized abelian variety of a given type
can be classified using the fact that an element Ω ∈ Hg can be associated with every polarized
abelian variety of a given type.

Definition 6.1.19 (Symplectic group). Let J be the 2g × 2g matrix

J =
(

0 Ig
−Ig 0

)
.

The symplectic group SP2g(Q) is the set of 2g × 2g matrices M such that MJ tM = J :

SP2g(Q) =
{
M ∈ GL2g(Q) |MJ tM = J

}
.

As was the case in dimension 1, there is an action of the symplectic group SP2g(Q) on Hg

given for M =
(
a b
c d

)
∈ SP2g(Q) and Ω ∈ Hg by [65, Proposition VII.1.1]

M · Ω = (aΩ + b)(cΩ + d)−1 .

Proposition 6.1.20 ([65, VII.1], [16, Proposition 8.1.3]). Let A and B be two complex polarized
abelian varieties of type ∆. Then A and B are isomorphic if and only if there exists M ∈ G∆
such that M ·A = B where G∆ is the following subgroup of SP2g(Q):

G∆ =
{(

a b
c d

)
∈ SP2g(Q) | a, b∆−1,∆c,∆d∆−1 ∈ Matg(Z)

}
.

In particular the moduli space of complex polarized abelian varieties of a given type is of
dimension g(g+1)

2 .
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6.1.5 Homomorphisms and the Rosati involution
If A is a simple abelian variety, then every non zero endomorphism is surjective so that it is an
isogeny and is invertible in End0(A) = End(A) ⊗Z Q, the endomorphism algebra of A. Thus,
End0(A) is a division algebra when A is simple.

Moreover, if A and B are isogenous simple abelian varieties, then End0(A) ' End0(B).
Finally, if A is not simple, using the decomposition of an abelian variety A into a product of

simple abelian varieties An1
1 ×· · ·×Anrr not isogenous to each other, we get [213, Corollary IV.19.2],

[65, Théorème VI.10.1]

End0A ' Matn1

(
End0(A1)

)
× · · · ×Matnr

(
End0(Ar)

)
.

Over the complex numbers, if A and B are two abelian varieties, they can be described as
complex tori A ' V/Λ and B ' V ′/Λ′. Moreover, as a consequence of the GAGA principle [234],
or more precisely of a theorem of Chow [49], every complex analytic map between two complex
abelian varieties is in fact given by rational maps and so is a morphism of abelian varieties. So it
is enough to study homomorphisms between complex tori.

Furthermore, a homomorphism φ between two complex tori X = V/Λ and X ′ = V ′Λ′ can be
lifted to a map φ̃ between the complex vector spaces V and V ′ which sends Λ into Λ′ so that the
following diagram is commutative:

V V ′

V/Λ V ′/Λ′

φ̃

φ

Therefore, we get different representations of Hom(X,X ′) [159, 1.1], [16, 1.2]:

• a complex or analytic representation ρa : Hom(X,X ′)→ HomC(V, V ′), φ 7→ φ̃,

• and a rational representation ρr : Hom(X,X ′)→ HomZ(Λ,Λ′).

Moreover, for the endomorphism algebra End0(X) = End(X)⊗Z Q of a complex torus X, the
rational representation ρr ⊗Z 1 : End0(X)⊗Z C→ EndC(Λ⊗Z C) is equivalent to the sum of the
complex representation and its complex conjugate [16, Proposition 1.2.3]:

ρr ⊗Z 1 ' ρa ⊕ ρa .

In positive characteristic p > 0, the l-adic Tate module for any l co-prime to p, which is a free
Zl-module of rank 2g, plays the same role as Λ for the complex numbers [213, IV.19], [280].

It can be shown that the Z-module of homomorphisms between two abelian varieties, and in
particular the endomorphism ring of an abelian variety, is always a free Z-module of finite rank.

Theorem 6.1.21 ([213, Corollary IV.19.1], [204, Theorem I.10.15]). Let A and B be two abelian
varieties. Then Hom(A,B) is a free Z-module of rank ≤ 4 dim(A) dim(B).

Over the complex numbers, if A ' V/Λ is simple, then Λ⊗Z Q is a vector space over End0(A)
so that the rank of End(A) is in fact at most 2g [213, IV.19].
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Definition 6.1.22 (Rosati involution [213, IV.20], [204, I.14], [65, Définition VI.10.2]). Let (A,ψ)
be a polarized abelian variety. The Rosati involution † is defined as

u† = ψ−1ûψ ,

for u ∈ End0(A).

The Rosati involution satisfies u†† = u, (u+ v)† = u† + v† and (uv)† = v†u†. So this is indeed
an anti-involution of the Q-algebra End0(A).

Theorem 6.1.23 (Positivity [213, Theorem IV.21.1], [204, Theorem I.14.3]). Let (A,ψ) be a
polarized abelian variety. Then the map (u, v) 7→ Tr(u†v) is a rational positive definite quadratic
form on End0(A).

As was the case in dimension 1, the existence of the Rosati involution can be used to classify
all the possible structures of the endomorphism algebra End0(A) for A simple. Most of the
classification was conducted by Albert [5, 4, 7, 6] and can be found e.g. in [213, Application IV.21.I]
or [270, 12.27].

Over the complex numbers, the Rosati involution can be explicitly described in terms of the
Riemann form associated with the polarization.

Theorem 6.1.24 ([159, Theorem 3.4.3]). Let (A,ψ) be a polarized abelian variety defined over
the complex numbers and ω the Riemann form associated with ψ via the analytic parametrization
θ : V/Λ→̃A. Then the transpose with respect to ω corresponds via θ to the Rosati involution
associated with ψ.

6.2 Class groups and units
In this section we generalize the discussion of Subsection 5.2.2 to class groups of orders in number
fields of any degree.

6.2.1 Description
Let K be a number field of degree n over Q. We denote by OK the ring of integers of K. Recall
that OK is maximal, i.e. any order O of K is a subring of OK ; in fact, it is the integral closure of
any order O of K. We denote the integral closure, or normalization, using a tilde.

Theorem 6.2.1 ([251, Theorem 3.20]). Let K be a number field, OK its ring of integers and O
an order. Then

Õ = OK .

To avoid double subscripts, we indifferently use the notation OK and Õ. As in the quadratic
case, the maximal order OK is a Dedekind ring and general orders are noetherian and of Krull
dimension 1.

The definitions of fractional, proper and invertible ideals are the same as in Subsection 5.2.2.
Note that it is not true anymore that a proper ideal is always invertible. In fact, counterexamples
arise as soon as n ≥ 3 [63, 1.4]. However, every fractional ideal becomes invertible for some order
when raised to the power n− 1 [63, Theorem C].

Necessary conditions for a fractional ideal a of O to be invertible are still that it is proper, i.e.
its multiplier ring R(a) = (a : a) is exactly O and that its inverse a−1 = (R(a) : a) is also proper.
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The set of fractional ideals of O is stable under addition, multiplication, quotient and
intersection, but the set of proper ideals is not. Nonetheless, we can define an action of invertible
ideals on proper ideals by multiplication. For a, b ∈ Prop(O), a ∗ b is defined as

a ∗ b = a−1b .

The four basic operations on fractional ideals: addition, multiplication, quotient and intersec-
tion, are compatible with localization at a maximal ideal. Moreover, an ideal is invertible if and
only if it is locally invertible, or equivalently locally principal, at each maximal ideal.

Proposition 6.2.2 ([216, Satz I.12.4], [251, Theorem 2.7], [63, Corollary 2.1.7]). Let K be a
number field, OK its ring of integers and O an order. Let a be a fractional ideal of O. Then a is
invertible if and only if ap is a principal fractional ideal of Op for every maximal ideal p of O.

Definition 6.2.3 (Singular ideal). Let K be a number field, OK its ring of integers and O an
order. A maximal ideal p of O is said to be singular if it is non invertible. Otherwise it is said to
be regular.

Equivalently, a maximal ideal is singular if the local ring Op is not a discrete valuation
ring [251, Theorem 2.17].

Definition 6.2.4 (Conductor [216, I.12], [25, 9.1]). Let K be a number field, OK its ring of
integers and O an order. The conductor of O, denoted by f(O), is the largest ideal of OK contained
in O.

The conductor can also be described as

f(O) = {x ∈ K | xOK ⊂ O} = (O : OK) .

The maximal ideals dividing f are exactly the singular maximal ideals of O [216, Satz I.12.10],
[251, Exercise 4.25]. Moreover, if p is regular, then pOK is a maximal ideal. Finally, every
fractional ideal co-prime to the conductor can be uniquely written as a product of maximal ideals
co-prime to the conductor.

If m = [OK : O] is the index of O in OK , then mOK ⊂ f(O). Furthermore, the rational
primes p ∈ Q dividing m are exactly those above which O is singular. Contrary to the case of
quadratic fields, orders are not classified anymore by their indices in OK .

Finally, for an order O, we define as in Subsection 5.2.2 the Picard or class group Pic(O) of
classes of invertible ideals, the proper class semigroup Prop(O) of classes of proper ideals, and
the class semigroup of classes of fractional ideals modulo principal ideals. As in the quadratic
case, the set of fractional ideals co-prime to the conductor modulo principal fractional ideals is
isomorphic to the Picard group [217].

We also have the following fundamental exact sequence relating the Picard group of an order
with that of the maximal order.

Proposition 6.2.5 ([216, Satz I.12.9], [25, Proposition 9.9]). Let K be a number field, OK its
ring of integers and O an order of conductor f. The following canonical exact sequence is exact:

1→ O∗ → Õ∗ →
⊕
p|f

Õ∗p/O∗p → Pic(O)→ Pic(Õ)→ 1 ,

where p ranges over the prime ideals of O dividing the conductor f.
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Proposition 6.2.6 (Normalization kernel [216, Satz I.12.11], [25, Proposition 9.14]). Let K be a
number field, OK its ring of integers and O an order. The normalization kernel SO is the kernel
of the map

Frac(O)→ Frac(OK) ,

a 7→ aOK .

The group of its invertible elements S∗O is isomorphic to

S∗O '
⊕
p

Õ∗p/O∗p '
⊕
f⊂p

(Õp/fÕp)∗/(Op/fOp)∗ ' (Õ/f)∗/(O/f)∗ ,

where f = f(O) is the conductor of O.

As a consequence, a formula for # Pic(O) in function of # Pic(Õ) can be deduced.

Theorem 6.2.7 ([216, Satz 12.12]). Let K be a number field, OK its ring of integers and O an
order. Let f be the conductor of O. Then

# Pic(O) = # Pic(Õ)
[Õ∗ : O∗]

#(Õ/f)∗

#(O/f)∗ .

Bounds on the size of the class semigroup can be found in Brakenhoff’s Ph.D. thesis [25,
Chapter 9].

6.2.2 Computation of the Picard and unit groups
Algorithms for computations with finite abelian groups are described in Cohen’s textbooks [54,
Chapter 2] and [55, Chapter 1, Section 4.1]. Factorization of fractional ideals of maximal orders
is described in [55, Subsection 2.3.5]. The computation of Picard groups and unit groups of
maximal orders is a classical problem and algorithms to compute them are described in the same
textbooks [54, Section 6.5]. It is worth noting that most of these algorithms are implemented in
Pari [218].

However, except for the case of quadratic fields, the computation of Picard groups was not
efficiently addressed until the recent work of Klüners and Pauli [151] that we describe in this
subsection.

Using the right part of the exact sequence of Proposition 6.2.5:

Õ∗ →
⊕
p

Õ∗p/O∗p → Pic(O)→ Pic(Õ)→ 1 ,

one can indeed compute Pic(O) if
⊕

p Õ∗p/O∗p is known. The explicit description of the different
maps is easy, and the computations of Õ∗ and Pic(Õ) are assumed to be well-known.

Using the group isomorphism of Proposition 6.2.6, the direct sum can be described as⊕
p

Õ∗p/O∗p '
⊕
f⊂p

(Õp/fÕp)∗/(Op/fOp)∗ ,

so it is enough to compute the quotient (Õp/fÕp)∗/(Op/fOp)∗ for each maximal ideal p containing
f. The computation of the conductor is just the computation of an ideal quotient and is described
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in [151, Section 6]. The computation of the set P of maximal ideals of O containing the conductor
is done by factoring f = fÕ in Õ:

fÕ = qn1
1 · · · qnrr ,

and then computing intersections of the qi with O:

P = {qi ∩ O}1≤i≤r .

The first quotient to compute is nothing but

(Õp/fÕp)∗ '
∏
q|pÕ

(Õq/fÕq)∗ '
∏
q|pÕ

(Õq/q
nqÕq)∗ .

It is not necessary to compute completely the second quotient. Indeed if pOp ⊃ fOp ⊃ pmOp, com-
puting generators of (Op/p

mOp)∗ is enough to deduce the structure of (Õp/fÕp)∗/(Op/fOp)∗ [151,
Section 8]. The integer m is easily deduced from the factorization of fÕ and pÕ [151, Lemma 7.4].

It now remains to explain the computation of (Op/p
mOp)∗ for any order O, for a maximal

ideal p and a positive integer m. The first step is to get back to the global ring O with the
following classical result.

Lemma 6.2.8 ([151, Theorem 4.1.i]). Let K be a number field and O an order. Let p be a
maximal ideal and a a p-primary ideal. Then

O/a ' Op/aOp .

Afterwards, the structure of the unit group in the residue ring is given by the following lemma.

Lemma 6.2.9 ([151, Lemma 4.3]). Let K be a number field and O an order. Let p be a maximal
ideal. Then

(O/pm)∗ ' (O/p)∗ × (1 + p)/(1 + pm) .

The computation of a generator of the finite field O/p is classical. It can then be lifted back
to O/pm using Hensel’s lemma. The computation of (1 + p)/(1 + pm) is done using a binary
decomposition and the following lemma.

Lemma 6.2.10 ([151, Lemma 4.4]). Let K be a number field and O an order. Let a and b be
two ideals of O such that a ⊃ b ⊃ a2. Then the map ψ : (1 + a)/(1 + b)→ a/b, [1 + γ] 7→ [γ] is
a group isomorphism.

To summarize the above discussion, we finally recall the complete algorithm of Klüners and
Pauli [151, Algorithm 8.1] in Algorithm 6.1.

The unit group is computed in a similar way using the fact that it is the kernel of the left
part of the exact sequence

1→ O∗ → Õ∗ →
⊕
p

Õ∗p/O∗p .

It is then realized as the kernel of the map Õ∗ →
⊕

p Õ∗p/O∗p.

6.2.3 Multiplication of fractional ideals by finite idèles
The main theorems of complex multiplication are expressed using the action of finite idèles on
lattices which we describe in this subsection.

The finite adèles and idèles are defined as follows.
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Algorithm 6.1: Computation of the Picard group of a non-maximal order
Input: An order O in a number field K
Output: Generators and relations for Pic(O)

1 Compute the conductor f of O
2 Factorize fÕ = qn1

1 · · · qnrr
3 Compute P = {p1, . . . , pu} = {qi ∩ O}1≤i≤r
4 foreach p in P do
5 foreach q dividing pÕ do
6 Compute generators and relations for (Õq/q

nqÕq)∗

7 Compute generators and relations for (Õp/fÕp)∗
8 Compute m such that fOp ⊃ pmOp

9 Compute generators for (Op/p
mOp)∗

10 Compute generators and relations for (Õp/fÕp)∗/(Op/fOp)∗

11 Compute generators and relations for
⊕

p Õ∗p/O∗p
12 Compute generators and relations for Pic(Õ)
13 Compute generators and relations for Õ∗
14 Compute generators and relations for Pic(O)
15 return Generators and relations for Pic(O)

Definition 6.2.11 (Finite adèles and idèles). Let K be a number field. A finite adèle s is an
element of the restricted product AK,f =

∏′
PKP over the completions of K at the maximal ideals

P. A finite idèle is an invertible finite adèle.

It can be shown that AK,f ' K ⊗Q AQ,f ' K ⊗Z Ẑ where Ẑ is the ring of integral adèles
Ẑ =

∏
p Zp = lim←−Z/nZ.

Furthermore, if O is an order in K, then the completion Op of O is embedded in
∏

P|pOK OKP
.

We denote by Kp the product Kp =
∏

P|pOK KP. If s ∈ AK,f is a finite idèle, we define its p-part
as sp =

∏
P|pOK sP.

Now let a of be a fractional ideal of O. If we denote by a(p) the localization of a at p, then we
have an isomorphism [160, 8.2]

K/a(p) ' Kp/ap .

Moreover, a fundamental fact is that there is a canonical isomorphism

K/a '
⊕
p

Kp/ap

where Kp/ap is naturally identified with the p-primary part of K/a.
Now for any finite idèle s ∈ A×K,f and proper ideal a of the order O in K, it can be shown that

there exists a unique proper ideal denoted by sa such that (sa)p = spap for every maximal ideal p
of O [57, Lemma 6.1], [159, 3.6] and multiplication by s yields an isomorphism s : K/a→ K/sa.

If the order O is the maximal order OK of K, then multiplication by s is nothing but
multiplication by the ideal [s]OK associated with s, i.e.

[s]OK =
∏
p

pordp s .
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If the order O is non-maximal, then we can also associate to s the fractional ideal [s]O such that
([s]O)p = spOp. Then [s]O is locally principal, and so is an invertible ideal of O. If s ≡ 1 mod f
where f is the conductor of O, then we have [s]O = [s]OK ∩ O.

6.3 Complex multiplication
6.3.1 CM field
Definition 6.3.1 (CM field). A CM field is a totally imaginary extension of a totally real number
field.

Definition 6.3.2 (CM algebra). A CM algebra is a finite product of CM fields.

An order in a CM algebra is nothing but a product of orders in the associated CM fields.
When we speak of ideals in such an order, we mean lattices-ideals, i.e. ideals which are also
lattices, unless explicitly stated otherwise.

If E is a CM algebra, then complex conjugation induces a positive involution on E which
does not depend on the complex embedding. We denote both the complex conjugation and this
involution by ·. Then, for any complex embedding φ, we have the identity φ = φ(·). Moreover, the
complex embeddings of E come in pairs of complex conjugates whence the following definition.

Definition 6.3.3 (CM type). Let E be a CM algebra. A CM type Φ on E is a subset of
Hom(E,C) such that

Hom(E,C) = Φ t Φ .

We say that two CM types Φ and Φ′ are equivalent if there exists an automorphism σ ∈ Aut(E)
such that

Φσ = Φ′ .

If E′ is a CM subalgebra of E and Φ is a CM type on E, then it induces a CM type Φ′ on E′.
We then say a CM type is primitive, or simple, if E is a CM field and there exists no such CM
subfield and induced type.

Proposition 6.3.4 ([205, Proposition I.1.9], [159, Lemma 1.2.2]). For every CM pair (F,Φ)
where F is a CM field, there exists a unique primitive pair (K,Ψ) which extends to (F,Φ).

Moreover, K is the fixed field of

H = {σ ∈ Gal(L/Q) | ΦLσ = ΦL}

where L is the Galois closure of F and ΦL is extended from Φ.

A quartic CM field is either non-Galois, normal with cyclic Galois group — in which cases
all CM types are primitive with respectively two and one equivalence classes of types — or
normal with Galois group isomorphic to C2×C2 — in which case all types are non-primitive [252,
Lemma I.3.4]. Hence we will speak of primitive, or non-primitive, quartic CM field.

6.3.2 Reflex field
Definition 6.3.5 (Reflex field [205, Proposition I.1.16]). Let E be a CM algebra and Φ a CM
type. The reflex field Er of (E,Φ) is the fixed field of

H =
{
σ ∈ Gal(Q/Q) | σΦ = Φ

}
.
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Equivalently, Er is generated by the elements of the form∑
φ∈Φ

φ(a), a ∈ E .

The reflex field is a CM field and is left invariant by extension of CM algebra and type;
moreover, if (E,Φ) =

∏n
i=1(Ei,Φi), then Er = Er1 · · ·Ern [205, Proposition I.1.18].

If F is a CM field and Φ a CM type, then Φ can be extended to the Galois closure L of F .
Denote by (K,Ψ) the primitive CM subpair of (L,Φ−1). Then K = Er and Ψ is called the reflex
CM type of Φ [204, Example I.1.19], [159, Theorem 1.5.1].

Definition 6.3.6 (Type trace [159, 1.5]). Let (E,Φ) be a CM pair and Er its reflex field. The
type trace TrΦ is defined as

E → Er ,

x 7→
∑
φ∈Φ

φ(x) .

Definition 6.3.7 (Type norm [159, 1.5], [205, I.1.5]). Let (E,Φ) be a CM pair and Er its reflex
field. The type norm NΦ is defined as

E → Er ,

x 7→
∏
φ∈Φ

φ(x) .

The type norm naturally extends to fractional ideals and induces a map between class groups.

6.3.3 CM abelian varieties
Definition 6.3.8 (CM abelian variety [205, I.3]). Let A be an abelian variety of dimension g. We
say that A is an abelian variety with complex multiplication or is a CM abelian variety11 if there
exists a commutative semisimple Q-algebra E of dimension 2g and an embedding i : E → End0(A).

The CM abelian variety A, or the pair (A, i), is also said to have complex multiplication by
E or R = i−1(End0(A)) an order in E. If (A, i) has complex multiplication by R, then we say
that it is defined over k, or that (A, i) has complex multiplication over k, if A is and if every
homomorphism i(R) is. If R is the maximal order of E, then we say that A is principal.

Using the decomposition of A into a product of simple abelian varieties it can be shown that
an abelian variety has complex multiplication if and only if each simple factor has. Moreover,
the endomorphism algebra of a simple abelian variety is a division algebra, so it has complex
multiplication if and only if it contains a field of degree 2g.

Tate has shown that every abelian variety defined over a finite field has complex multiplica-
tion [261].

Not only over the complex numbers, but over any field, the maximal commutative algebra
can be chosen to be a CM algebra [286].

Over the complex numbers, a CM abelian variety is then characterized as follows.

Proposition 6.3.9 ([205, Proposition I.3.6]). Let A be a complex abelian variety of dimension g:

• If A is simple, then it has complex multiplication if and only if its endomorphism algebra is
a CM field K.

11One also says that the abelian variety has sufficiently many complex multiplication or is of CM type.
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• If A is isotypic, i.e. A ∼ Bs where B is a simple abelian variety, then it has complex
multiplication12if and only if End0(A) contains a CM field F of degree 2g.

• A has complex multiplication if and only if End0(A) contains a CM subalgebra.

In fact, if A is a complex CM abelian variety and End0(A) contains a CM field F of degree
2g, then A ∼ Bs is isotypic. Moreover, the commutant of F in End0(A) is F [159, Theorem 3.1]
and the center of End0(A) is End0(B) = K [159, Theorem 1.3.3]. Finally, the center of EndQ(A)
can also be described as (F r)r [159, Theorem 1.5.3].

We have a more precise result about the commutant of R in End(A) valid in any characteristic.

Proposition 6.3.10 ([205, Corollary II.7.4]). Let A be an abelian variety with complex multipli-
cation by R. Then the commutant of R in End(A) is R.

Working over the tangent space at zero of a complex CM abelian variety A, it can be shown
that the embedding i induces a rational representation and can in fact be given by a CM type
Φ, i.e. i(a) acts as Φ(a) [205, I.3.11], [159, 1.3]. We say that (A, i) is of type (E,Φ) or (R,Φ).
Furthermore, if σ ∈ Aut(C), then (Aσ, iσ) is of type (R, σΦ).

If A is an isotypic complex CM abelian variety, then there exists a CM field F of degree 2g
and an embedding i : F → End0(A) which can be described by a CM type Φ and we also say
that (A, i) is of type (F,Φ), or (O,Φ) where O is an the order in F such that O = i(F )∩End(A).
If σ ∈ Aut(F ), then (A, i ◦ σ) is of type (O,Φσ).

Proposition 6.3.11 ([205, Proposition I.3.13], [159, Theorem 1.3.5]). Let (A, i) be a complex
CM abelian variety of type (E,Φ). Then A is simple if and only if E is a CM field and the type
Φ is primitive.

Moreover, if (A, i) is a simple complex CM abelian variety of type (O,Φ) where O is an order
in the CM field K, then i is an isomorphism:

i(K) = End0(A) ,

and
i(O) = End(A) .

Finally, as was the case in dimension 1, complex CM abelian varieties can be described by
lattices in their CM algebra.

Theorem 6.3.12 ([205, I.3.11], [159, Theorem 1.4.1]). Let E be a CM algebra of degree 2g
and R an order in E. Let (A, i) be a complex abelian variety with complex multiplication by R.
Then there exists a lattice a in E which is a proper ideal of R, a CM type Φ and an analytic
isomorphism θ such that

V/Φ(a) θ' A

where V = C2g.

We say that the pair (A, i) is of type (E,Φ, a) or (R,Φ, a) with respect to θ.
It can also be shown that the converse of Theorem 6.3.12 is true: every complex torus of the

form V/Φ(a) admits a polarization and so is an abelian variety.

Proposition 6.3.13 ([205, Example I.2.9], [159, Theorem 1.4.4]). Let E be a CM algebra, Φ a
CM type, and a a lattice in E. Then the complex torus V/Φ(a) is polarizable.

12This is the more restrictive definition of Mumford [213, IV.22] and Lang [159, 1.2].
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We now restrict to the case where (A, i) is a simple complex CM abelian variety of type
(O,Φ, a). Then, it should be noted that the ideal a can be non invertible. However, if we let
σ ∈ Aut(C) act on A, then we get a commutative diagram on the torsion points:

K/a Ator

K/b Aσtor

φ σ

θ ◦ Φ

θ′ ◦ σΦ

where b is another proper ideal of O. But the left isomorphism commutes with the action of O
and so must be described by multiplication by an idèle13 [159, 7.3]. Hence, there exists an idèle s
such that b = sa. This can also be described as multiplication by an invertible ideal of O and
implies that b is in the same orbit as a. Another point of view is to look at the multiplication
locally at each maximal ideal: if a is locally principal, then so is sa. In particular, if a is invertible,
then so is b.

Finally, complex CM abelian varieties have models over any algebraically closed subfield of
C [205, Corollary II.7.10].

Proposition 6.3.14 ([205, Proposition II.7.11], [159, Theorem 3.1.1]). Let (A, i) be a complex
CM abelian variety of type (E,Φ) and suppose that A is defined over k. If (A, i) is defined over
k, then Er ⊂ k. Moreover, if A is simple, then the converse is true.

6.3.4 Homomorphisms
If (A, i) and (B, j) are two abelian varieties with complex multiplication by E, then a homomor-
phism λ between them is understood to be a usual homomorphism commuting with the action of
i(E), i.e. λ ◦ i(α) = i(α) ◦ j for all α ∈ E.

If (A, i) and (B, j) are two isotypic abelian varieties of the same type (F,Φ) where F is a
CM field of degree 2g, then every homomorphism commuting with the action of F induces an
endomorphism of Φ(F ) and so an F -endomorphism of F . Hence, it is given by multiplication by
an element γ ∈ F [159, Theorem I.4.2].

Theorem 6.3.15 ([159, Theorem I.4.2]). Let F be a CM field of degree 2g and Φ a CM type. Let
(A, i) and (B, j) be two abelian varieties of type (F,Φ, a) and (F,Φ, b). Then Hom((A, i), (B, j))
is represented by (b : a).

In particular, if A and B are defined over the complex numbers and simple, then every
homomorphism comes from (b : a) and A and B are isomorphic in the usual sense if and only if a
and b are in the same ideal class14.

6.3.5 Dual abelian variety
Definition 6.3.16 (Trace dual). Let a be a R lattice in E. We denote by a∗ the trace dual, or
complementary lattice, of a:

a∗ = {x ∈ E | Tr(xa) ⊂ Z} .

13This is also a consequence of the main theorem of complex multiplication over the rationals stated in
Section 6.3.7.

14A similar result can be shown for a-transform of principal abelian varieties defined over any field [159,
Proposition 3.2.5].
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We have the obvious inclusion
a−1R∗ ⊂ a∗

where R∗ is the trace dual or codifferent of R. It is a proper ideal of R, but in general it is not
invertible. It is invertible if and only if every proper ideal is [125, Theorem 5.2]. If R is the
maximal order OK of a number field K, then O∗K = d−1

K/Q is the usual absolute codifferent of K;
moreover, the above inclusion becomes an equality [238, IV.14.3]:

a∗ = a−1d−1
K/Q .

Every R-linear form k on V considered as a real vector space can be described as [238, I.3.3]

k : w 7→ 〈z, w〉 = 〈z, w〉C + 〈z, w〉C =
g∑
i=1

(ziwi + ziwi)

for some z ∈ V . If (A, i) is a complex CM abelian variety of type (E,Φ, a) and k ∈ Λ̂, then z
must be equal to Φ(ξ) for ξ ∈ E and hence k corresponds to Tr(ξ·) on E [238, II.6.3]. Thus,
Λ̂ corresponds to a∗ and the dual abelian variety Â is analytically described by V/Φ(a∗) using
the above identification between V and V ∗R . Moreover, for α ∈ E, the dual endomorphism
î(α) : l 7→ l ◦ i(α) is given by i(α) on V . Hence, if we define î(α) = i(α), then (Â, î) is of type
(E,Φ, a∗).

Finally, if λ is a homomorphism from (A, i) of type (E,Φ, a) to (B, j) of type (E,Φ, b)
described by α ∈ E such that αa ⊂ b, then the dual homomorphism λ̂ from (B̂, ĵ) to (Â, î) is
described by α.

6.3.6 Polarizations
Until the end of this subsection, all CM abelian varieties are defined over the complex numbers.
Let (A, i) be a CM abelian variety of type (E,Φ). If ψ is a polarization on A, then we say that it
is compatible with i if the Rosati involution associated with ψ leaves i(E) stable. In particular, if
A is simple, then any polarization is compatible with i.

Furthermore, if ψ is a compatible polarization on (A, i) and σ ∈ Aut(C), then ψσ is a
compatible polarization of the same degree on (Aσ, iσ). In particular, if (A, i) is principally
polarized, then so is (Aσ, iσ). From now on, we write p.p.a.v. for “principally polarized CM
abelian variety defined over the complex numbers”.

Theorem 6.3.17 ([205, Example I.2.9], [159, Theorem I.4.5]). Let (A, i, ψ) be a polarized complex
CM abelian variety of type (E,Φ, a) with respect to some analytic parametrization θ. Then there
exists an invertible element ξ ∈ E× verifying ξ = −ξ and =(φ(ξ)) > 0 for all φ ∈ Φ such that the
Riemann form ω associated with ψ can be described on Φ(E) as

ω(Φ(x),Φ(y)) = Tr(ξxy)

and extended by R-linearity to V :

ω(z, w) =
g∑
i=1

(φiξ)(ziwi − ziwi) = 〈Φ(ξ)z, w〉 .

With the above notation, the polarized complex CM abelian variety (A, i, ψ) is said to be of
type (E,Φ, a, ξ) with respect to θ.
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Conversely, every such element ξ ∈ E× defines a form with rational values on Λ which have
bounded denominators, so a rational multiple of it is a Riemann form. We call such a form a
rational Riemann form.

From the results of Subsection 6.3.5, we see that the polarization induced by ξ between
Cg/Φ(a) and Cg/Φ(a∗) is analytically described by multiplication by ξ. In particular, we have
ξa ⊂ a∗, i.e. ξ ∈ (a∗ : a). Its kernel is included in Φ(E) and given by K(ξ) = Λ(ξ)/a where

Λ(ξ) = {x ∈ V | Tr(ξxa) ⊂ Z} .

Hence Λ(ξ) = ξ−1a∗ and K(ξ) = (ξ−1a∗)/a. The degree of the polarization is therefore #K(ξ) =
[ξ−1a∗ : a]. This is summarized in the following proposition.

Proposition 6.3.18 ([30, 4.3], [273, Theorem 3]). Let (A, i, ψ) be a polarized complex CM abelian
variety of type (E,Φ, a, ξ). Then

ξ ∈ (a∗ : a) .

The degree of the polarization is [a∗ : ξa]. In particular, the polarization is principal if and only if
the following equality holds:

ξa = a∗ .

If A is simple and principal, then the last equality reads

ξaadK/Q = OK .

A homomorphism from (A, i, ψ) of type (E,Φ, a, ξ) to (B, j, ψ′) of type (E,Φ, b, ζ) is described
by an element α ∈ E such that αa ⊂ b. If ω1 and ω2 are the Riemann forms corresponding to the
polarizations, then ω2(z, w) = α∗ω1(z, w) = ω1(Φ(α)z,Φ(α)w), so that we have ξ = ααζ [159,
3.5], [238, Proposition IV.14.3].

In particular, two triples (A, i, ψ) of type (E,Φ, a, ξ) and (B, j, ψ′) of type (E,Φ, b, ζ) are
isomorphic if and only if there exists α ∈ E× such that b = αa and ξ = ααζ. Moreover, it is
readily seen that [a∗ : ξa] = [b∗ : ζb] so that such an isomorphism preserves the degree of the
polarization. To summarize, we get the following classification up to isomorphism.

Proposition 6.3.19 (Classification of polarized CM abelian varieties over the complex numbers
up to isomorphism [205, I.3.4], [237, 5.5.B]). The triples (A, i, ψ) of type (E,Φ) are classified up
to isomorphism by the quadruples (E,Φ, a, ξ) up to a change by an element α ∈ E× as above.

If the abelian varieties are simple, then every homomorphism necessarily commutes with the
action of i(E) and we can drop the dependency on i.

This classification can be made more precise if we fix the couple (A, i) and the analytic
parametrization θ, and so the type (E,Φ, a). First, if ξ and ζ define two polarizations on (A, i)
of type (E,Φ, a), then ξζ−1 is left invariant by complex conjugation and so is a totally positive
invertible element α0 of E0, the subalgebra of E fixed by its involution [238, Proposition IV.14.2].
Conversely, if α0 is a totally positive invertible element of E0 and ξ defines a compatible
polarization on (A, i), so does some positive multiple of α−1

0 ξ. Second, if α ∈ E× defines an
automorphism of (A, i), then a = αa and α must be a unit in R, i.e. α ∈ R×. If moreover α
defines an isomorphism between polarized abelian varieties, then αα is a totally positive unit of
E0. This leads to the following proposition.

Proposition 6.3.20 ([238, Proposition IV.14.5]). Let U0 be the group of totally positive units
of E0, and U1 the subgroup of units of the form αα for α ∈ R×. Suppose that there exists a



6.3. Complex multiplication 179

polarized complex CM abelian variety (A, i, ψ) of type (E,Φ, a). Then there are exactly [U0 : U1]
isomorphism classes15 of polarized complex CM abelian varieties of the same type.

The above discussion also implies that, if α defines an automorphism of (A, i, ψ) for some
compatible polarization ψ, then αα = 1 and consequently that α is a root of unity [238, IV.14.2].

Finally, Streng gave the following criterion for complex CM abelian varieties with complex
multiplication by the same CM field but different types.

Proposition 6.3.21 ([252, Lemma I.5.6]). Let (A, i) and (B, j) be two complex abelian varieties
of types (K,Φ) and (K,Ψ). If Φ is primitive and Φ and Ψ are not equivalent, then A and B are
not isogenous.

6.3.7 The main theorems of complex multiplication
As was the case in dimension 1, the main theorems of complex multiplication describe the action
of automorphisms of C analytically. The proofs of the theorems, although they are more involved
and technical, are quite similar. We sketch the main steps of the proofs in this subsection.

The classical proofs involve the theory of a-multiplications and a-transforms defined below.

Definition 6.3.22 (a-multiplication [205, Definition II.7.17], [159, 3.2], [238, II.7]). Let (A, i) be
an abelian variety with complex multiplication by an order R. Let a be an ideal in R. A surjective
homomorphism λ : A→ Aa is an a-multiplication if every homomorphism α : A→ A for α ∈ a
factors through λ and it is universal for that property. An abelian variety B such that there exists
an a-multiplication λ : A→ B is called an a-transform16.

For example, if (A, i) is a complex CM abelian variety of type (R,Φ, a) and b is an ideal in
R, then the quotient map Cg/Φ(a)→ Cg/Φ(b−1a) is a b-multiplication [205, Example II.7.18.b].
Conversely, if (A, i) and (B, j) are isogenous, then there exists an a-multiplication between
them [205, Proposition II.7.29], [159, Proposition 3.2.6].

In any characteristic, it can be shown that an a-multiplication exists for every ideal a17 [238,
Proposition II.7], [205, Proposition II.7.20], [159, 3.2].

The classical proofs of the main theorems of complex multiplication first prove them in the
principal case and are then extended to a general abelian variety using commutative diagrams.
Indeed, the theory of maximal orders is far better understood than that of non-maximal ones.
The situation for non-maximal orders is more subtle and similar direct proofs seem more arduous
to obtain.

The Shimura–Taniyama formula, or congruence relation, then express a lift of the Frobenius
endomorphism in characteristic zero as an a-multiplication.

Theorem 6.3.23 ([205, Corollary II.8.7], [159, Theorem 3.3.4], [238, Theorem III.13.1]). Let
(A, i) be an abelian variety defined over a number field k with complex multiplication by the
maximal order R of the CM algebra E. Let P be a prime of k where A has good reduction
and such that p = P ∩ Z is unramified in E and let p = P ∩ OEr . Let σ ∈ Gal(l/Er) be the
Frobenius endomorphism of P in l, a Galois extension of Q containing k. Then there exists an
a-multiplication λ : (A, i) → (Aσ, iσ) such that λ̃ is the q-th power Frobenius endomorphism
where q = [OEr : p] and a = NΦr (p).

15Here an isomorphism between (A, i, ψ) and (A, i, ψ′) is understood as an isomorphism in the sense of
Shimura [238, 4.1] or Lang [159, 3.4]: it is an isomorphism of abelian varieties such that the polarizations
ψ and λ∗ψ′ are proportional. In particular, degree is not preserved.

16Waterhouse defines the related notion of kernel ideals [280, 3.2].
17In fact, Aa can even be directly defined as the quotient of A by the finite group scheme ker(a) =

⋂
α∈a ker(α).
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For a polarized principal CM abelian variety (A, i, ψ) of type (E,Φ, a, ξ) defined over the com-
plex numbers, it is then relatively easy to show that (Aσ, iσ, ψσ) is of type (E,Φ,NΦr (p)−1,N(p)ξ)
and that the following diagram is commutative:

Cg/Φ(a) A

Cg/Φ(NΦr (p)−1a) Aσ

can. λ

θ ◦ Φ

θ′ ◦ Φ

Using the same method as in dimension 1 one then shows the main theorem over the reflex
field. This first version of the main theorems of complex multiplication deals with the action of the
absolute Galois group of the reflex field on complex abelian varieties with complex multiplication.

Theorem 6.3.24 (Over the reflex field [238, Theorems IV.18.6 and IV.18.8], [159, Theorem 3.6.1],
[205, Theorem II.9.17], [57, Theorem 6.3]). Let (A, i, ψ) be a polarized complex CM abelian variety
of type (E,Φ, a, ξ) with respect to θ. Let σ ∈ Aut(C/Er) and s be an idèle of Er such that
σ = (s, Er)Erab . Then there exists a unique uniformization θ′ such that (Aσ, iσ, ψσ) is of type
(E,Φ,NΦr (s−1)a,NQ(s)ξ) with respect to θ′ and the following diagram commutes:

K/a Ator

K/NΦr (s−1)a Aσtor

NΦr (s−1) σ

θ ◦ Φ

θ′ ◦ Φ

The previous theorem can then be extended to arbitrary types of conjugations for a CM field
K. It is much more involved and uses the cyclotomic character χcyc : AutC → Ẑ× = A×Q,f and a
map fΦ : Aut(C)→ A×K,f/K× verifying fΦ(σ)fΦ(σ) = χcyc(σ)K× extending the map induced by
the reflex norm NΦ : Aut(C/Kr)→ A×K,f/K× and called the type transfer [159, 7], [205, II.10].

Theorem 6.3.25 (Over the rationals [159, Theorem 7.3.1], [205, Theorem II.10.1]). Let (A, i, ψ)
be a polarized complex CM abelian variety of type (K,Φ, a, ξ) with respect to θ. Let σ ∈ Aut(C)
and s ∈ fΦ(σ) ⊂ A×K,f . Then there exists a unique uniformization θ′ such that (Aσ, iσ, ψσ) is of
type (K,σΦ, sa, χ(σ)

ss ) with respect to θ′ and the following diagram commutes:

K/a Ator

K/sa Aσtor

s σ

θ ◦ Φ

θ′ ◦ σΦ

6.4 Class polynomials for genus 2
In this section we extend the construction of the Hilbert class polynomial to curves of genus 2.
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6.4.1 Jacobian variety
Definition 6.4.1 (Jacobian variety). Let C be an algebraic curve18 of genus g defined over k;
There exists an abelian variety of dimension g called the Jacobian variety19 of C and denoted by
Jac(C) such that Jac(C)(l) ' Pic0

l (C) for every extension l of k such that C(l) 6= ∅.

The Jacobian variety is equipped with a canonical principal polarization.
Over the complex numbers, the Jacobian variety can be defined analytically as [204, III.2]

Jac(C) = H0(C,Ω1)∗/H1(C,Z)

where H1(C,Z) is embedded into H0(C,Ω1)∗ through the map γ 7→
∫
γ
·.

If P ∈ C(l), then there is a well defined map

C(l)→ Jac(C)(l)
Q 7→ [Q− P ]

and the Riemann–Roch theorem implies that the g-fold product of C is a cover of Jac(C)20.
A theorem of Torelli states that classifying curves is equivalent to classifying their Jacobian

varieties.

Theorem 6.4.2 (Torelli’s theorem [204, Theorem III.12.1]). Let C and C ′ be two algebraic curves
of genus g. Then C and C ′ are isomorphic if and only if their Jacobian varieties, together with
their canonical polarizations, are.

We say that a curve has complex multiplication by a CM algebra E or an order R within it if
its Jacobian variety has.

Finally, it should be noted that over the complex numbers:

• in dimension 2, every simple p.p.a.v. is the Jacobian variety of a curve which is necessarily
hyperelliptic;

• in dimension 3, every simple p.p.a.v. is the Jacobian of a curve, but it is not necessarily a
hyperelliptic curve anymore;

• in dimension greater than or equal to 4, consideration of dimension shows that there exist
simple p.p.a.v. which are not Jacobian varieties.

Classifying the simple p.p.a.v. which arise as Jacobian varieties is an unsolved question known as
the Schottky problem. However, it is possible to characterize period matrices of hyperelliptic
curves among those of p.p.a.v., but for a general number field there will not be any such matrices
in the set of isomorphism classes of complex abelian varieties with complex multiplication by
K [56, 18.3.1].

6.4.2 Igusa invariants
The moduli space of hyperelliptic curves of genus 2 is of dimension 3, so three invariants are
needed to classify them up to isomorphism. Igusa defined such invariants which are valid in any
characteristic [139], based on invariants defined by Clebsch [51]. In a field k of characteristic
different from 2, every hyperelliptic curve of genus 2 can be given by an equation of the form

18Here a curve is a projective geometrically irreducible smooth scheme of dimension 1 over a perfect field.
19This is obviously a simplified definition which will be more than enough for our purposes.
20This can in fact be used to actually construct the Jacobian variety [204, III.7].
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y2 = f(x) where f(x) is a separable polynomial of degree 6. If we denote its root by α1, . . . , α6,
then the homogeneous Igusa invariants can be defined using the compact notation of Streng [252,
II.2.1] as

I2 = a2
6
∑
15

(12)2(34)2(56)2 ,

I4 = a4
6
∑
10

(12)2(23)2(31)2(45)2(56)2(64)2 ,

I6 = a6
6
∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2 ,

I10 = a10
6
∏
i<j

(αi − αj)2 .

Different sets of absolute Igusa invariants can be defined from them. Streng chose the following
ones for efficiency reasons:

i1 = I4I
′
6

I10
, i2 = I2I

2
4

I10
, i3 = I5

4
I2
10

,

where I ′6 = 1
2 (I2I4 − 3I6). These triples classify the hyperelliptic curves up to isomorphism over k

and, if the characteristic is not 3 and (i1, i2, i3) is a triple where i3 6= 0, then there exists a curve
whose invariants is that triple. The curve corresponding to such a triple can be reconstructed
using an algorithm of Mestre [199].

Over the complex numbers these invariants can be computed from theta constants, or theta
null values, which are the values of Riemann theta functions on the corresponding Jacobian
variety. A Riemann theta function is nothing but a theta function for the lattice Λτ = τZg ⊕ Zg
with a different normalization from the one we considered in Subsection 6.1.2.

Definition 6.4.3 (Riemann theta function [65, Exemple IV.1.2.3]). Let a and b be two real

column matrices with g rows. The Riemann theta function θ
[
a
b

]
(·, τ) is defined by

θ

[
a
b

]
(z, τ) =

∑
m∈Zg

eiπ[t(m+a)τ(m+a)+2t(m+a)(z+b)] .

A theta constant with characteristic c ∈ {0, 1/2}2g is just θ[c](τ) = θ[c](0, τ). The Igusa
invariants can then be computed using these values [252, II.7.1].

A similar treatment was performed by Shioda [240] for hyperelliptic curves of genus 3 using
nine invariants. The reconstruction of the curve corresponding to a tuple of invariants was recently
described by Lercier and Ritzenthaler [176, 175].

6.4.3 Igusa class polynomials
We are now ready to describe an algorithm to compute Igusa class polynomials for a general order
O in a primitive CM field, that is polynomials H1(X), H2(X) and H3(X) whose roots are the
Igusa invariants i1, i2 and i3 of hyperelliptic curves of genus 2 with CM by O. These polynomials
can then be used to extend the CM method to genus 2 and build hyperelliptic curves suitable
for cryptographic use. The reader is refered to the Ph.D. theses of Spallek [248], Weng [283]
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and Streng [252] for details; and to the paper of Freeman, Stevenhagen and Streng [102] for the
ordinary case, and that of Hitt O’Connor et al. [134] for the p-rank one case.

We have seen that the CM order is preserved by the Galois action, so the corresponding
Igusa class polynomials computed over all isomorphism classes of complex abelian varieties with
complex multiplication by a given order will have rational coefficients. Moreover, invertible ideals
are sent onto invertible ideals, so that we can restrict ourselves to such ideals, even though the
following algorithms can be naturally extended to orbits of non-invertible proper ideals, and get
factors of the Igusa class polynomials.

The first algorithm we propose is thus a straightforward generalization of the construction
of the Hilbert class polynomial in dimension 1: one first enumerates all isomorphism classes of
p.p.a.v. for a given order O and given by an invertible ideal and then computes the corresponding
invariants analytically with sufficient precision. The Igusa class polynomials, which have rational
coefficients, can then be recognized from their approximations. Precise description and analysis
of such an algorithm have been done by Streng in his Ph.D. thesis [252] in the case of maximal
orders and readily extend to the case of non-maximal orders. The enumeration of isomorphism
classes is described in Algorithm 6.2 which corresponds to the algorithm proposed by Streng in
the case of maximal orders [252, Algorithm II.3.1]. Its correctness is a consequence of the results
presented in Section 6.3. A high-level description of the algorithm is given in Algorithm 6.3

Algorithm 6.2: Computation of representatives of the isomorphism classes of p.p.a.v. with
CM by an order O in a primitive CM quartic field and given by invertible ideals
Input: A primitive quartic CM field K and an order O
Output: A triple (Φ, a, ξ) for each isomorphism class of p.p.a.v. with CM by O

1 Compute a complete set T of representatives of the CM types Φ on K
2 Compute a complete set U of representatives of O∗K0

/NK/K0(O∗)
3 Compute a complete set I of representatives of the Picard group of O
4 Initialize an empty list L = []
5 foreach Ideal a ∈ I do
6 if a∗a−1 is principal and generated by an element ξ ∈ K such that ξ2 ∈ K0 and ξ is

totally negative then
7 Append (a, ξ) to A

8 Initialize an empty list M = []
9 foreach Pair (a, ξ) ∈ L and unit u ∈ U do

10 Append (Φ, a, uξ) to M where Φ is the unique CM type Φ such that =(φuξ) > 0
11 return The triples (Φ, a, uξ) ∈M such that Φ ∈ T

which is nothing but an extension of the algorithm of Streng [252, Algorithm II.11.1].
A second version of this algorithm using the explicit description of the main theorem of

complex multiplication over the reflex field was developed by Streng [252, Chapter III]. The idea
is that, if σ ∈ Aut(C/Kr), then it does not modify the type Φ and acts as multiplication by the
reflex norm NΦr(s−1) of the corresponding idèle s. This action can be explicitly described as
multiplication by NΦr(a−1) where a is an ideal of OKr . Therefore, it is enough to find a triple
(Φ, a, ξ) and then to compute the action of Pic(OKr ) on it to build irreducible components of the
Igusa class polynomials over Kr corresponding to a single orbit under Aut(C/Kr). In fact, it can
be shown that any Kr

0 -conjugate of an Igusa invariant is also a Kr-conjugate [252, Corollary I.9.3].
Therefore, these irreducible components of the Igusa class polynomials have coefficients in Kr

0 .
One should then recognize the coefficients in Kr

0 .
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Algorithm 6.3: Computation of the Igusa class polynomials of a non-maximal order
Input: An order O in a CM quartic number field K
Output: The Igusa class polynomials H1(X), H2(X) and H3(X) corresponding to the

Picard group of O
1 Compute a set M of representatives of the isomorphism classes of p.p.a.v. with CM by O
given by invertible ideals

2 foreach Triple (Φ, a, ξ) ∈M do
3 Compute a symplectic basis of a with respect to the polarization defined by ξ
4 Reduce the corresponding period matrix Ω into a fundamental domain
5 Evaluate the Igusa invariants i1, i2 and i3 with sufficient precision through analytic

evaluation of theta constants on Ω
6 Reconstruct the polynomials H1(X), H2(X) and H3(X) with rational coefficients from
their respective roots

7 return H1(X), H2(X), H3(X)

This method can as well be extended to the case of non-maximal orders. Indeed, we know that
σ ∈ Aut(C/Kr) also acts as multiplication by the idèle NΦr (s−1) for general orders. To describe
that action explicitly as multiplication by an invertible ideal, it is sufficient that NΦr(s−1) ≡ 1
mod f, which can always be achieved up to multiplication by a principal idèle. Equivalently, the
action of an ideal a of OKr is given by multiplication NΦr(a−1) ∩ O provided that NΦr(a−1) is
co-prime to f. This can also always be achieved up to multiplication by a principal ideal.

6.4.4 Going further
The previous description of the algorithms is very scarce and many details are omitted. The missing
steps for the principal case can be found in the Ph.D. thesis of Streng [252] and extend naturally
to the non-principal case. We now list a few of them as well as some practical optimizations.

A first concrete complication in comparison with the genus 1 case is that Igusa class polynomials
are no more integral, but only rational. Moreover, computing bounds on the value of the
denominator is a hard problem. It was recently achieved by Goren and Lauter [119, 120] even
thogh their result is not very sharp.

Furthermore, once the isomorphisms classes and the corresponding period matrices have
been computed, they should be reduced, i.e. moved to a fundamental domain, to obtain faster
convergence as is done for genus 1 [252, II.5].

Then, the theta constants should be computed using Borchardt sequences as proposed by
Dupont [75]. This led to some record computations made by Dupont, Enge and Thomé [76].

The complex analytic method is not the only one which extends from genus 1. Eisenträger
and Lauter developed a CRT method [80], implemented by Freeman [103] and later improved by
Bröker, Gruenewald and Lauter [29] and Lauter and Robert [166]. As far as the p-adic methods
are concerned, Gaudry et al. [112] developed a 2-adic one and Carls, Kohel and Lubicz [43] a
3-adic one.

To conclude, it should be mentioned that it is possible to define smaller class invariants than
the Igusa invariants as was already the case in dimension 1. Such an approach, based on the
higher-dimensional Shimura reciprocity, is being conducted by Streng [254, 255, 253]. Related
ideas can also be found in the Ph.D. thesis of Uzunkol [269].
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Appendix A

Coefficients of fd

In another dream, I had a chlorophyll habit. Me
and about five other chlorophyll addicts are
waiting to score on the landing of a cheap
Mexican hotel. We turn green and no one can
kick a chlorophyll habit. One shot and you’re
hung for life. We are turning into plants.

Junky
William S. Burroughs [33]

In this section, we give the normalized coefficients ad,n(i1,...,in) of the multivariate polynomials Pnd
for the first few d’s. In the following tables, 4ˆn means an exponential where the exponent is
the opposite of the sum of n different βi’s. The total degree of the correpsonding multivariate
polynomial is exactly d− 1, except for n = 0. The n-tuples then indicate the multi-exponent of
the monomials and are followed by the corresponding coefficients. The omitted coefficients are
obtained from the previous ones by permuting the βi’s. These coefficients were obtained using
Sage [250], Pynac [268] and Maxima [267].

Table A.1: Coefficients for d = 1, normalized by (1/3) = (1/31)

4ˆ 1 4ˆ 0
(0, ) 2 () 1

Table A.2: Coefficients for d = 2, normalized by (1/9) = (1/32)

4ˆ 2 4ˆ 1 4ˆ 0
(1, 0) −2 (1, ) 2
(0, 0) 20/3 (0, ) −2/3 () 11/3



Table A.3: Coefficients for d = 3, normalized by (1/27) = (1/33)

4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(2, 0, 0) 1 (2, 0) −1 (2, ) 1
(1, 1, 0) 2 (1, 1) −2
(1, 0, 0) −11 (1, 0) 5 (1, ) 1
(0, 0, 0) 64/3 (0, 0) −4/3 (0, ) −2/3 () 35/3

Table A.4: Coefficients for d = 4, normalized by (1/81) = (1/34)

4ˆ 4 4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(3, 0, 0, 0) −1/3 (3, 0, 0) 1/3 (3, 0) −1/3 (3, ) 1/3
(2, 1, 0, 0) −1 (2, 1, 0) 1 (2, 1) −1
(1, 1, 1, 0) −2 (1, 1, 1) 2
(2, 0, 0, 0) 23/3 (2, 0, 0) −14/3 (2, 0) 5/3 (2, ) 4/3
(1, 1, 0, 0) 46/3 (1, 1, 0) −28/3 (1, 1) 10/3
(1, 0, 0, 0) −416/9 (1, 0, 0) 119/9 (1, 0) 16/9 (1, ) 11/9
(0, 0, 0, 0) 1808/27 (0, 0, 0) −80/27 (0, 0) −28/27 (0, ) −26/27 () 971/27

Table A.5: Coefficients for d = 5, normalized by (1/243) = (1/35)

4ˆ 5 4ˆ 4 4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(4, 0, 0, 0, 0) 1/12 (4, 0, 0, 0) −1/12 (4, 0, 0) 1/12 (4, 0) −1/12 (4, ) 1/12
(3, 1, 0, 0, 0) 1/3 (3, 1, 0, 0) −1/3 (3, 1, 0) 1/3 (3, 1) −1/3
(2, 2, 0, 0, 0) 1/2 (2, 2, 0, 0) −1/2 (2, 2, 0) 1/2 (2, 2) −1/2
(2, 1, 1, 0, 0) 1 (2, 1, 1, 0) −1 (2, 1, 1) 1
(1, 1, 1, 1, 0) 2 (1, 1, 1, 1) −2
(3, 0, 0, 0, 0) −59/18 (3, 0, 0, 0) 41/18 (3, 0, 0) −23/18 (3, 0) 5/18 (3, ) 13/18
(2, 1, 0, 0, 0) −59/6 (2, 1, 0, 0) 41/6 (2, 1, 0) −23/6 (2, 1) 5/6
(1, 1, 1, 0, 0) −59/3 (1, 1, 1, 0) 41/3 (1, 1, 1) −23/3
(2, 0, 0, 0, 0) 161/4 (2, 0, 0, 0) −69/4 (2, 0, 0) 13/4 (2, 0) 7/4 (2, ) 9/4
(1, 1, 0, 0, 0) 161/2 (1, 1, 0, 0) −69/2 (1, 1, 0) 13/2 (1, 1) 7/2
(1, 0, 0, 0, 0) −9421/54 (1, 0, 0, 0) 1933/54 (1, 0, 0) 209/54 (1, 0) 79/54 (1, ) 119/54
(0, 0, 0, 0, 0) 16832/81 (0, 0, 0, 0) −560/81 (0, 0, 0) −160/81 (0, 0) −92/81 (0, ) −142/81 () 8881/81



189

Ta
bl
e
A
.6
:
C
oe
ffi
ci
en
ts

fo
r
d

=
6,

no
rm

al
iz
ed

by
(1
/7

29
)=

(1
/3

6 )

4ˆ
6

4ˆ
5

4ˆ
4

4ˆ
3

4ˆ
2

4ˆ
1

4ˆ
0

(5
,0
,0
,0
,0
,0

)
−

1/
60

(5
,0
,0
,0
,0

)
1/

60
(5
,0
,0
,0

)
−

1/
60

(5
,0
,0

)
1/

60
(5
,0

)
−

1/
60

(5
,)

1/
60

(4
,1
,0
,0
,0
,0

)
−

1/
12

(4
,1
,0
,0
,0

)
1/

12
(4
,1
,0
,0

)
−

1/
12

(4
,1
,0

)
1/

12
(4
,1

)
−

1/
12

(3
,2
,0
,0
,0
,0

)
−

1/
6

(3
,2
,0
,0
,0

)
1/

6
(3
,2
,0
,0

)
−

1/
6

(3
,2
,0

)
1/

6
(3
,2

)
−

1/
6

(3
,1
,1
,0
,0
,0

)
−

1/
3

(3
,1
,1
,0
,0

)
1/

3
(3
,1
,1
,0

)
−

1/
3

(3
,1
,1

)
1/

3
(2
,2
,1
,0
,0
,0

)
−

1/
2

(2
,2
,1
,0
,0

)
1/

2
(2
,2
,1
,0

)
−

1/
2

(2
,2
,1

)
1/

2
(2
,1
,1
,1
,0
,0

)
−

1
(2
,1
,1
,1
,0

)
1

(2
,1
,1
,1

)
−

1
(1
,1
,1
,1
,1
,0

)
−

2
(1
,1
,1
,1
,1

)
2

(4
,0
,0
,0
,0
,0

)
1

(4
,0
,0
,0
,0

)
−

3/
4

(4
,0
,0
,0

)
1/

2
(4
,0
,0

)
−

1/
4

(4
,0

)
0

(4
,)

1/
4

(3
,1
,0
,0
,0
,0

)
4

(3
,1
,0
,0
,0

)
−

3
(3
,1
,0
,0

)
2

(3
,1
,0

)
−

1
(3
,1

)
0

(2
,2
,0
,0
,0
,0

)
6

(2
,2
,0
,0
,0

)
−

9/
2

(2
,2
,0
,0

)
3

(2
,2
,0

)
−

3/
2

(2
,2

)
0

(2
,1
,1
,0
,0
,0

)
12

(2
,1
,1
,0
,0

)
−

9
(2
,1
,1
,0

)
6

(2
,1
,1

)
−

3
(1
,1
,1
,1
,0
,0

)
24

(1
,1
,1
,1
,0

)
−

18
(1
,1
,1
,1

)
12

(3
,0
,0
,0
,0
,0

)
−

74
5/

36
(3
,0
,0
,0
,0

)
39

1/
36

(3
,0
,0
,0

)
−

14
5/

36
(3
,0
,0

)
7/

36
(3
,0

)
23
/
36

(3
,)

55
/
36

(2
,1
,0
,0
,0
,0

)
−

74
5/

12
(2
,1
,0
,0
,0

)
39

1/
12

(2
,1
,0
,0

)
−

14
5/

12
(2
,1
,0

)
7/

12
(2
,1

)
23
/
12

(1
,1
,1
,0
,0
,0

)
−

74
5/

6
(1
,1
,1
,0
,0

)
39

1/
6

(1
,1
,1
,0

)
−

14
5/

6
(1
,1
,1

)
7/

6
(2
,0
,0
,0
,0
,0

)
48

40
/
27

(2
,0
,0
,0
,0

)
−

63
19
/
10

8
(2
,0
,0
,0

)
36

5/
54

(2
,0
,0

)
32

3/
10

8
(2
,0

)
61
/
27

(2
,)

48
5/

10
8

(1
,1
,0
,0
,0
,0

)
96

80
/
27

(1
,1
,0
,0
,0

)
−

63
19
/
54

(1
,1
,0
,0

)
36

5/
27

(1
,1
,0

)
32

3/
54

(1
,1

)
12

2/
27

(1
,0
,0
,0
,0
,0

)
−

83
90

9/
13

5
(1
,0
,0
,0
,0

)
26

50
3/

27
0

(1
,0
,0
,0

)
12

46
/
13

5
(1
,0
,0

)
64

3/
27

0
(1
,0

)
27

1/
13

5
(1
,)

12
43
/
27

0
(0
,0
,0
,0
,0
,0

)
64

0
(0
,0
,0
,0
,0

)
−

44
8/

27
(0
,0
,0
,0

)
−

11
2/

27
(0
,0
,0

)
−

16
/
9

(0
,0

)
−

44
/
27

(0
,)

−
98
/
27

()
29

93
/
9

Ta
bl
e
A
.7
:
C
oe
ffi
ci
en
ts

fo
r
d

=
7,

no
rm

al
iz
ed

by
(1
/
21

87
)=

(1
/3

7 )

4ˆ
7

4ˆ
6

4ˆ
5

4ˆ
4

4ˆ
3

4ˆ
2

4ˆ
1

4ˆ
0

(6
,0
,0
,0
,0
,0
,0

)
1/

36
0

(6
,0
,0
,0
,0
,0

)
−

1/
36

0
(6
,0
,0
,0
,0

)
1/

36
0

(6
,0
,0
,0

)
−

1/
36

0
(6
,0
,0

)
1/

36
0

(6
,0

)
−

1/
36

0
(6
,)

1/
36

0
(5
,1
,0
,0
,0
,0
,0

)
1/

60
(5
,1
,0
,0
,0
,0

)
−

1/
60

(5
,1
,0
,0
,0

)
1/

60
(5
,1
,0
,0

)
−

1/
60

(5
,1
,0

)
1/

60
(5
,1

)
−

1/
60

(4
,2
,0
,0
,0
,0
,0

)
1/

24
(4
,2
,0
,0
,0
,0

)
−

1/
24

(4
,2
,0
,0
,0

)
1/

24
(4
,2
,0
,0

)
−

1/
24

(4
,2
,0

)
1/

24
(4
,2

)
−

1/
24

(3
,3
,0
,0
,0
,0
,0

)
1/

18
(3
,3
,0
,0
,0
,0

)
−

1/
18

(3
,3
,0
,0
,0

)
1/

18
(3
,3
,0
,0

)
−

1/
18

(3
,3
,0

)
1/

18
(3
,3

)
−

1/
18

(3
,2
,1
,0
,0
,0
,0

)
1/

6
(3
,2
,1
,0
,0
,0

)
−

1/
6

(3
,2
,1
,0
,0

)
1/

6
(3
,2
,1
,0

)
−

1/
6

(3
,2
,1

)
1/

6
(2
,2
,2
,0
,0
,0
,0

)
1/

4
(2
,2
,2
,0
,0
,0

)
−

1/
4

(2
,2
,2
,0
,0

)
1/

4
(2
,2
,2
,0

)
−

1/
4

(2
,2
,2

)
1/

4
(2
,2
,1
,1
,0
,0
,0

)
1/

2
(2
,2
,1
,1
,0
,0

)
−

1/
2

(2
,2
,1
,1
,0

)
1/

2
(2
,2
,1
,1

)
−

1/
2

(2
,1
,1
,1
,1
,0
,0

)
1

(2
,1
,1
,1
,1
,0

)
−

1
(2
,1
,1
,1
,1

)
1

(1
,1
,1
,1
,1
,1
,0

)
2

(1
,1
,1
,1
,1
,1

)
−

2
(5
,0
,0
,0
,0
,0
,0

)
−

17
/
72

(5
,0
,0
,0
,0
,0

)
67
/
36

0
(5
,0
,0
,0
,0

)
−

49
/
36

0
(5
,0
,0
,0

)
31
/
36

0
(5
,0
,0

)
−

13
/
36

0
(5
,0

)
−

1/
72

(5
,)

23
/
36

0
(4
,1
,0
,0
,0
,0
,0

)
−

85
/
72

(4
,1
,0
,0
,0
,0

)
67
/
72

(4
,1
,0
,0
,0

)
−

49
/
72

(4
,1
,0
,0

)
31
/
72

(4
,1
,0

)
−

13
/
72

(4
,1

)
−

5/
72

(3
,2
,0
,0
,0
,0
,0

)
−

85
/
36

(3
,2
,0
,0
,0
,0

)
67
/
36

(3
,2
,0
,0
,0

)
−

49
/
36

(3
,2
,0
,0

)
31
/
36

(3
,2
,0

)
−

13
/
36

(3
,2

)
−

5/
36

(3
,1
,1
,0
,0
,0
,0

)
−

85
/
18

(3
,1
,1
,0
,0
,0

)
67
/
18

(3
,1
,1
,0
,0

)
−

49
/
18

(3
,1
,1
,0

)
31
/
18

(3
,1
,1

)
−

13
/
18

(2
,2
,1
,0
,0
,0
,0

)
−

85
/
12

(2
,2
,1
,0
,0
,0

)
67
/
12

(2
,2
,1
,0
,0

)
−

49
/
12

(2
,2
,1
,0

)
31
/
12

(2
,2
,1

)
−

13
/
12

(2
,1
,1
,1
,0
,0
,0

)
−

85
/
6

(2
,1
,1
,1
,0
,0

)
67
/
6

(2
,1
,1
,1
,0

)
−

49
/
6

(2
,1
,1
,1

)
31
/
6

(1
,1
,1
,1
,1
,0
,0

)
−

85
/
3

(1
,1
,1
,1
,1
,0

)
67
/
3

(1
,1
,1
,1
,1

)
−

49
/
3

(4
,0
,0
,0
,0
,0
,0

)
15

95
/
21

6
(4
,0
,0
,0
,0
,0

)
−

94
7/

21
6

(4
,0
,0
,0
,0

)
46

1/
21

6
(4
,0
,0
,0

)
−

13
7/

21
6

(4
,0
,0

)
−

25
/
21

6
(4
,0

)
25
/
21

6
(4
,)

13
7/

21
6

(3
,1
,0
,0
,0
,0
,0

)
15

95
/
54

(3
,1
,0
,0
,0
,0

)
−

94
7/

54
(3
,1
,0
,0
,0

)
46

1/
54

(3
,1
,0
,0

)
−

13
7/

54
(3
,1
,0

)
−

25
/
54

(3
,1

)
25
/
54

(2
,2
,0
,0
,0
,0
,0

)
15

95
/
36

(2
,2
,0
,0
,0
,0

)
−

94
7/

36
(2
,2
,0
,0
,0

)
46

1/
36

(2
,2
,0
,0

)
−

13
7/

36
(2
,2
,0

)
−

25
/
36

(2
,2

)
25
/
36

(2
,1
,1
,0
,0
,0
,0

)
15

95
/
18

(2
,1
,1
,0
,0
,0

)
−

94
7/

18
(2
,1
,1
,0
,0

)
46

1/
18

(2
,1
,1
,0

)
−

13
7/

18
(2
,1
,1

)
−

25
/
18

(1
,1
,1
,1
,0
,0
,0

)
15

95
/
9

(1
,1
,1
,1
,0
,0

)
−

94
7/

9
(1
,1
,1
,1
,0

)
46

1/
9

(1
,1
,1
,1

)
−

13
7/

9
(3
,0
,0
,0
,0
,0
,0

)
−

23
02

1/
21

6
(3
,0
,0
,0
,0
,0

)
96

11
/
21

6
(3
,0
,0
,0
,0

)
−

25
73
/
21

6
(3
,0
,0
,0

)
−

37
/
21

6
(3
,0
,0

)
16

3/
21

6
(3
,0

)
25

1/
21

6
(3
,)

73
9/

21
6

(2
,1
,0
,0
,0
,0
,0

)
−

23
02

1/
72

(2
,1
,0
,0
,0
,0

)
96

11
/
72

(2
,1
,0
,0
,0

)
−

25
73
/
72

(2
,1
,0
,0

)
−

37
/
72

(2
,1
,0

)
16

3/
72

(2
,1

)
25

1/
72

(1
,1
,1
,0
,0
,0
,0

)
−

23
02

1/
36

(1
,1
,1
,0
,0
,0

)
96

11
/
36

(1
,1
,1
,0
,0

)
−

25
73
/
36

(1
,1
,1
,0

)
−

37
/
36

(1
,1
,1

)
16

3/
36

(2
,0
,0
,0
,0
,0
,0

)
13

09
97
/
18

0
(2
,0
,0
,0
,0
,0

)
−

11
39

9/
60

(2
,0
,0
,0
,0

)
13

01
/
90

(2
,0
,0
,0

)
26

2/
45

(2
,0
,0

)
63
/
20

(2
,0

)
65

3/
18

0
(2
,)

44
3/

45
(1
,1
,0
,0
,0
,0
,0

)
13

09
97
/
90

(1
,1
,0
,0
,0
,0

)
−

11
39

9/
30

(1
,1
,0
,0
,0

)
13

01
/
45

(1
,1
,0
,0

)
52

4/
45

(1
,1
,0

)
63
/
10

(1
,1

)
65

3/
90

(1
,0
,0
,0
,0
,0
,0

)
−

17
30

17
/
81

(1
,0
,0
,0
,0
,0

)
10

99
04
/
40

5
(1
,0
,0
,0
,0

)
18

71
9/

81
0

(1
,0
,0
,0

)
37

09
/
81

0
(1
,0
,0

)
10

39
/
40

5
(1
,0

)
28

0/
81

(1
,)

83
87
/
81

0
(0
,0
,0
,0
,0
,0
,0

)
47

64
16
/
24

3
(0
,0
,0
,0
,0
,0

)
−

98
56
/
24

3
(0
,0
,0
,0
,0

)
−

22
40
/
24

3
(0
,0
,0
,0

)
−

78
4/

24
3

(0
,0
,0

)
−

51
2/

24
3

(0
,0

)
−

67
6/

24
3

(0
,)

−
19

70
/
24

3
()

24
44

03
/
24

3



190 Appendix A. Coefficients of fd

Table
A
.8:

C
oeffi

cients
for

d
=

8,norm
alized

by
(1
/6561)=

(1/3
8)

4
ˆ

8
4

ˆ
7

4
ˆ

6
4

ˆ
5

4
ˆ

4
4

ˆ
3

4
ˆ

2
4

ˆ
1

4
ˆ

0
(7
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
−

1
/

2520
(7
,

0
,

0
,

0
,

0
,

0
,

0)
1
/

2520
(7
,

0
,

0
,

0
,

0
,

0)
−

1
/

2520
(7
,

0
,

0
,

0
,

0)
1
/

2520
(7
,

0
,

0
,

0)
−

1
/

2520
(7
,

0
,

0)
1
/

2520
(7
,

0)
−

1
/

2520
(7
,

)
1
/

2520
(6
,

1
,

0
,

0
,

0
,

0
,

0
,

0)
−

1
/

360
(6
,

1
,

0
,

0
,

0
,

0
,

0)
1
/

360
(6
,

1
,

0
,

0
,

0
,

0)
−

1
/

360
(6
,

1
,

0
,

0
,

0)
1
/

360
(6
,

1
,

0
,

0)
−

1
/

360
(6
,

1
,

0)
1
/

360
(6
,

1)
−

1
/

360
(5
,

2
,

0
,

0
,

0
,

0
,

0
,

0)
−

1
/

120
(5
,

2
,

0
,

0
,

0
,

0
,

0)
1
/

120
(5
,

2
,

0
,

0
,

0
,

0)
−

1
/

120
(5
,

2
,

0
,

0
,

0)
1
/

120
(5
,

2
,

0
,

0)
−

1
/

120
(5
,

2
,

0)
1
/

120
(5
,

2)
−

1
/

120
(4
,

3
,

0
,

0
,

0
,

0
,

0
,

0)
−

1
/

72
(4
,

3
,

0
,

0
,

0
,

0
,

0)
1
/

72
(4
,

3
,

0
,

0
,

0
,

0)
−

1
/

72
(4
,

3
,

0
,

0
,

0)
1
/

72
(4
,

3
,

0
,

0)
−

1
/

72
(4
,

3
,

0)
1
/

72
(4
,

3)
−

1
/

72
(4
,

2
,

1
,

0
,

0
,

0
,

0
,

0)
−

1
/

24
(4
,

2
,

1
,

0
,

0
,

0
,

0)
1
/

24
(4
,

2
,

1
,

0
,

0
,

0)
−

1
/

24
(4
,

2
,

1
,

0
,

0)
1
/

24
(4
,

2
,

1
,

0)
−

1
/

24
(4
,

2
,

1)
1
/

24
(3
,

3
,

1
,

0
,

0
,

0
,

0
,

0)
−

1
/

18
(3
,

3
,

1
,

0
,

0
,

0
,

0)
1
/

18
(3
,

3
,

1
,

0
,

0
,

0)
−

1
/

18
(3
,

3
,

1
,

0
,

0)
1
/

18
(3
,

3
,

1
,

0)
−

1
/

18
(3
,

3
,

1)
1
/

18
(3
,

2
,

2
,

0
,

0
,

0
,

0
,

0)
−

1
/

12
(3
,

2
,

2
,

0
,

0
,

0
,

0)
1
/

12
(3
,

2
,

2
,

0
,

0
,

0)
−

1
/

12
(3
,

2
,

2
,

0
,

0)
1
/

12
(3
,

2
,

2
,

0)
−

1
/

12
(3
,

2
,

2)
1
/

12
(3
,

2
,

1
,

1
,

0
,

0
,

0
,

0)
−

1
/

6
(3
,

2
,

1
,

1
,

0
,

0
,

0)
1
/

6
(3
,

2
,

1
,

1
,

0
,

0)
−

1
/

6
(3
,

2
,

1
,

1
,

0)
1
/

6
(3
,

2
,

1
,

1)
−

1
/

6
(2
,

2
,

2
,

1
,

0
,

0
,

0
,

0)
−

1
/

4
(2
,

2
,

2
,

1
,

0
,

0
,

0)
1
/

4
(2
,

2
,

2
,

1
,

0
,

0)
−

1
/

4
(2
,

2
,

2
,

1
,

0)
1
/

4
(2
,

2
,

2
,

1)
−

1
/

4
(2
,

2
,

1
,

1
,

1
,

0
,

0
,

0)
−

1
/

2
(2
,

2
,

1
,

1
,

1
,

0
,

0)
1
/

2
(2
,

2
,

1
,

1
,

1
,

0)
−

1
/

2
(2
,

2
,

1
,

1
,

1)
1
/

2
(2
,

1
,

1
,

1
,

1
,

1
,

0
,

0)
−

1
(2
,

1
,

1
,

1
,

1
,

1
,

0)
1

(2
,

1
,

1
,

1
,

1
,

1)
−

1
(1
,

1
,

1
,

1
,

1
,

1
,

1
,

0)
−

2
(1
,

1
,

1
,

1
,

1
,

1
,

1)
2

(6
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
49
/

1080
(6
,

0
,

0
,

0
,

0
,

0
,

0)
−

1
/

27
(6
,

0
,

0
,

0
,

0
,

0)
31
/

1080
(6
,

0
,

0
,

0
,

0)
−

11
/

540
(6
,

0
,

0
,

0)
13
/

1080
(6
,

0
,

0)
−

1
/

270
(6
,

0)
−

1
/

216
(6
,

)
7
/

540
(5
,

1
,

0
,

0
,

0
,

0
,

0
,

0)
49
/

180
(5
,

1
,

0
,

0
,

0
,

0
,

0)
−

2
/

9
(5
,

1
,

0
,

0
,

0
,

0)
31
/

180
(5
,

1
,

0
,

0
,

0)
−

11
/

90
(5
,

1
,

0
,

0)
13
/

180
(5
,

1
,

0)
−

1
/

45
(5
,

1)
−

1
/

36
(4
,

2
,

0
,

0
,

0
,

0
,

0
,

0)
49
/

72
(4
,

2
,

0
,

0
,

0
,

0
,

0)
−

5
/

9
(4
,

2
,

0
,

0
,

0
,

0)
31
/

72
(4
,

2
,

0
,

0
,

0)
−

11
/

36
(4
,

2
,

0
,

0)
13
/

72
(4
,

2
,

0)
−

1
/

18
(4
,

2)
−

5
/

72
(4
,

1
,

1
,

0
,

0
,

0
,

0
,

0)
49
/

36
(4
,

1
,

1
,

0
,

0
,

0
,

0)
−

10
/

9
(4
,

1
,

1
,

0
,

0
,

0)
31
/

36
(4
,

1
,

1
,

0
,

0)
−

11
/

18
(4
,

1
,

1
,

0)
13
/

36
(4
,

1
,

1)
−

1
/

9
(3
,

3)
−

5
/

54
(3
,

3
,

0
,

0
,

0
,

0
,

0
,

0)
49
/

54
(3
,

3
,

0
,

0
,

0
,

0
,

0)
−

20
/

27
(3
,

3
,

0
,

0
,

0
,

0)
31
/

54
(3
,

3
,

0
,

0
,

0)
−

11
/

27
(3
,

3
,

0
,

0)
13
/

54
(3
,

3
,

0)
−

2
/

27
(3
,

2
,

1
,

0
,

0
,

0
,

0
,

0)
49
/

18
(3
,

2
,

1
,

0
,

0
,

0
,

0)
−

20
/

9
(3
,

2
,

1
,

0
,

0
,

0)
31
/

18
(3
,

2
,

1
,

0
,

0)
−

11
/

9
(3
,

2
,

1
,

0)
13
/

18
(3
,

2
,

1)
−

2
/

9
(3
,

1
,

1
,

1
,

0
,

0
,

0
,

0)
49
/

9
(3
,

1
,

1
,

1
,

0
,

0
,

0)
−

40
/

9
(3
,

1
,

1
,

1
,

0
,

0)
31
/

9
(3
,

1
,

1
,

1
,

0)
−

22
/

9
(3
,

1
,

1
,

1)
13
/

9
(2
,

2
,

2)
−

1
/

3
(2
,

2
,

2
,

0
,

0
,

0
,

0
,

0)
49
/

12
(2
,

2
,

2
,

0
,

0
,

0
,

0)
−

10
/

3
(2
,

2
,

2
,

0
,

0
,

0)
31
/

12
(2
,

2
,

2
,

0
,

0)
−

11
/

6
(2
,

2
,

2
,

0)
13
/

12
(2
,

2
,

1
,

1
,

0
,

0
,

0
,

0)
49
/

6
(2
,

2
,

1
,

1
,

0
,

0
,

0)
−

20
/

3
(2
,

2
,

1
,

1
,

0
,

0)
31
/

6
(2
,

2
,

1
,

1
,

0)
−

11
/

3
(2
,

2
,

1
,

1)
13
/

6
(2
,

1
,

1
,

1
,

1
,

0
,

0
,

0)
49
/

3
(2
,

1
,

1
,

1
,

1
,

0
,

0)
−

40
/

3
(2
,

1
,

1
,

1
,

1
,

0)
31
/

3
(2
,

1
,

1
,

1
,

1)
−

22
/

3
(1
,

1
,

1
,

1
,

1
,

1
,

0
,

0)
98
/

3
(1
,

1
,

1
,

1
,

1
,

1
,

0)
−

80
/

3
(1
,

1
,

1
,

1
,

1
,

1)
62
/

3
(5
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
−

719
/

360
(5
,

0
,

0
,

0
,

0
,

0
,

0)
58
/

45
(5
,

0
,

0
,

0
,

0
,

0)
−

263
/

360
(5
,

0
,

0
,

0
,

0)
29
/

90
(5
,

0
,

0
,

0)
−

23
/

360
(5
,

0
,

0)
−

2
/

45
(5
,

0)
1
/

360
(5
,

)
17
/

90
(4
,

1
,

0
,

0
,

0
,

0
,

0
,

0)
−

719
/

72
(4
,

1
,

0
,

0
,

0
,

0
,

0)
58
/

9
(4
,

1
,

0
,

0
,

0
,

0)
−

263
/

72
(4
,

1
,

0
,

0
,

0)
29
/

18
(4
,

1
,

0
,

0)
−

23
/

72
(4
,

1
,

0)
−

2
/

9
(4
,

1)
1
/

72
(3
,

2
,

0
,

0
,

0
,

0
,

0
,

0)
−

719
/

36
(3
,

2
,

0
,

0
,

0
,

0
,

0)
116

/
9

(3
,

2
,

0
,

0
,

0
,

0)
−

263
/

36
(3
,

2
,

0
,

0
,

0)
29
/

9
(3
,

2
,

0
,

0)
−

23
/

36
(3
,

2
,

0)
−

4
/

9
(3
,

2)
1
/

36
(3
,

1
,

1
,

0
,

0
,

0
,

0
,

0)
−

719
/

18
(3
,

1
,

1
,

0
,

0
,

0
,

0)
232

/
9

(3
,

1
,

1
,

0
,

0
,

0)
−

263
/

18
(3
,

1
,

1
,

0
,

0)
58
/

9
(3
,

1
,

1
,

0)
−

23
/

18
(3
,

1
,

1)
−

8
/

9
(2
,

2
,

1
,

0
,

0
,

0
,

0
,

0)
−

719
/

12
(2
,

2
,

1
,

0
,

0
,

0
,

0)
116

/
3

(2
,

2
,

1
,

0
,

0
,

0)
−

263
/

12
(2
,

2
,

1
,

0
,

0)
29
/

3
(2
,

2
,

1
,

0)
−

23
/

12
(2
,

2
,

1)
−

4
/

3
(2
,

1
,

1
,

1
,

0
,

0
,

0
,

0)
−

719
/

6
(2
,

1
,

1
,

1
,

0
,

0
,

0)
232

/
3

(2
,

1
,

1
,

1
,

0
,

0)
−

263
/

6
(2
,

1
,

1
,

1
,

0)
58
/

3
(2
,

1
,

1
,

1)
−

23
/

6
(1
,

1
,

1
,

1
,

1
,

0
,

0
,

0)
−

719
/

3
(1
,

1
,

1
,

1
,

1
,

0
,

0)
464

/
3

(1
,

1
,

1
,

1
,

1
,

0)
−

263
/

3
(1
,

1
,

1
,

1
,

1)
116

/
3

(4
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
3113

/
72

(4
,

0
,

0
,

0
,

0
,

0
,

0)
−

253
/

12
(4
,

0
,

0
,

0
,

0
,

0)
571

/
72

(4
,

0
,

0
,

0
,

0)
−

55
/

36
(4
,

0
,

0
,

0)
−

3
/

8
(4
,

0
,

0)
1
/

36
(4
,

0)
23
/

72
(4
,

)
19
/

12
(3
,

1
,

0
,

0
,

0
,

0
,

0
,

0)
3113

/
18

(3
,

1
,

0
,

0
,

0
,

0
,

0)
−

253
/

3
(3
,

1
,

0
,

0
,

0
,

0)
571

/
18

(3
,

1
,

0
,

0
,

0)
−

55
/

9
(3
,

1
,

0
,

0)
−

3
/

2
(3
,

1
,

0)
1
/

9
(3
,

1)
23
/

18
(2
,

2
,

0
,

0
,

0
,

0
,

0
,

0)
3113

/
12

(2
,

2
,

0
,

0
,

0
,

0
,

0)
−

253
/

2
(2
,

2
,

0
,

0
,

0
,

0)
571

/
12

(2
,

2
,

0
,

0
,

0)
−

55
/

6
(2
,

2
,

0
,

0)
−

9
/

4
(2
,

2
,

0)
1
/

6
(2
,

2)
23
/

12
(2
,

1
,

1
,

0
,

0
,

0
,

0
,

0)
3113

/
6

(2
,

1
,

1
,

0
,

0
,

0
,

0)
−

253
(2
,

1
,

1
,

0
,

0
,

0)
571

/
6

(2
,

1
,

1
,

0
,

0)
−

55
/

3
(2
,

1
,

1
,

0)
−

9
/

2
(2
,

1
,

1)
1
/

3
(1
,

1
,

1
,

1
,

0
,

0
,

0
,

0)
3113

/
3

(1
,

1
,

1
,

1
,

0
,

0
,

0)
−

506
(1
,

1
,

1
,

1
,

0
,

0)
571

/
3

(1
,

1
,

1
,

1
,

0)
−

110
/

3
(1
,

1
,

1
,

1)
−

9
(3
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
−

789649
/

1620
(3
,

0
,

0
,

0
,

0
,

0
,

0)
543353

/
3240

(3
,

0
,

0
,

0
,

0
,

0)
−

55429
/

1620
(3
,

0
,

0
,

0
,

0)
−

4927
/

3240
(3
,

0
,

0
,

0)
1631

/
1620

(3
,

0
,

0)
4073

/
3240

(3
,

0)
3611

/
1620

(3
,

)
26033

/
3240

(2
,

1
,

0
,

0
,

0
,

0
,

0
,

0)
−

789649
/

540
(2
,

1
,

0
,

0
,

0
,

0
,

0)
543353

/
1080

(2
,

1
,

0
,

0
,

0
,

0)
−

55429
/

540
(2
,

1
,

0
,

0
,

0)
−

4927
/

1080
(2
,

1
,

0
,

0)
1631

/
540

(2
,

1
,

0)
4073

/
1080

(2
,

1)
3611

/
540

(1
,

1
,

1
,

0
,

0
,

0
,

0
,

0)
−

789649
/

270
(1
,

1
,

1
,

0
,

0
,

0
,

0)
543353

/
540

(1
,

1
,

1
,

0
,

0
,

0)
−

55429
/

270
(1
,

1
,

1
,

0
,

0)
−

4927
/

540
(1
,

1
,

1
,

0)
1631

/
270

(1
,

1
,

1)
4073

/
540

(2
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
375892

/
135

(2
,

0
,

0
,

0
,

0
,

0
,

0)
−

64919
/

108
(2
,

0
,

0
,

0
,

0
,

0)
8411

/
270

(2
,

0
,

0
,

0
,

0)
1649

/
135

(2
,

0
,

0
,

0)
709

/
135

(2
,

0
,

0)
2267

/
540

(2
,

0)
361

/
54

(2
,

)
6169

/
270

(1
,

1
,

0
,

0
,

0
,

0
,

0
,

0)
751784

/
135

(1
,

1
,

0
,

0
,

0
,

0
,

0)
−

64919
/

54
(1
,

1
,

0
,

0
,

0
,

0)
8411

/
135

(1
,

1
,

0
,

0
,

0)
3298

/
135

(1
,

1
,

0
,

0)
1418

/
135

(1
,

1
,

0)
2267

/
270

(1
,

1)
361

/
27

(1
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
−

60917648
/

8505
(1
,

0
,

0
,

0
,

0
,

0
,

0)
6417293

/
8505

(1
,

0
,

0
,

0
,

0
,

0)
506659

/
8505

(1
,

0
,

0
,

0
,

0)
165979

/
17010

(1
,

0
,

0
,

0)
33844

/
8505

(1
,

0
,

0)
31613

/
8505

(1
,

0)
56587

/
8505

(1
,

)
415207

/
17010

(0
,

0
,

0
,

0
,

0
,

0
,

0
,

0)
4360960

/
729

(0
,

0
,

0
,

0
,

0
,

0
,

0)
−

73216
/

729
(0
,

0
,

0
,

0
,

0
,

0)
−

15488
/

729
(0
,

0
,

0
,

0
,

0)
−

4672
/

729
(0
,

0
,

0
,

0)
−

2384
/

729
(0
,

0
,

0)
−

2224
/

729
(0
,

0)
−

3860
/

729
(0
,

)
−

13870
/

729
()

2213497
/

729



Bibliography

[1] Milton Abramowitz and Irene Anne Stegun. Handbook of mathematical functions with
formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards
Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government
Printing Office, Washington, D.C., 1964. (Cited on pages 67, 71, 74, and 77.)

[2] Amod Agashe, Kristin Estella Lauter, and Ramarathnam Venkatesan. Constructing elliptic
curves with a known number of points over a prime field. In High primes and misdemeanours:
lectures in honour of the 60th birthday of Hugh Cowie Williams, volume 41 of Fields Inst.
Commun., pages 1–17. Amer. Math. Soc., Providence, RI, 2004. (Cited on page 153.)

[3] Omran Ahmadi and Robert Granger. An efficient deterministic test for Kloosterman sum
zeros. CoRR, abs/1104.3882, 2011. (Cited on pages 115, 120, 121, and 122.)

[4] Abraham Adrian Albert. On the construction of Riemann matrices. I. Ann. of Math. (2),
35(1):1–28, 1934. (Cited on page 168.)

[5] Abraham Adrian Albert. A solution of the principal problem in the theory of Riemann
matrices. Ann. of Math. (2), 35(3):500–515, 1934. (Cited on page 168.)

[6] Abraham Adrian Albert. Involutorial simple algebras and real Riemann matrices. Ann. of
Math. (2), 36(4):886–964, 1935. (Cited on page 168.)

[7] Abraham Adrian Albert. On the construction of Riemann matrices. II. Ann. of Math. (2),
36(2):376–394, 1935. (Cited on page 168.)

[8] Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code. Springer, 2010. (Cited
on pages 98, 122, and 232.)

[9] Arthur Oliver Lonsdale Atkin and François Morain. Elliptic curves and primality proving.
Math. Comp., 61(203):29–68, 1993. (Cited on page 152.)

[10] Ramachandran Balasubramanian and Neal Koblitz. The improbability that an elliptic curve
has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm.
J. Cryptology, 11(2):141–145, 1998. (Cited on pages 155 and 156.)

[11] Samuel Beckett. En attendant Godot : pièce en deux actes. Charles Massin et Cie, Editions,
1952. (Cited on pages xi and 218.)

[12] Juliana Belding, Reinier Martijn Bröker, Andreas Enge, and Kristin Estella Lauter. Com-
puting Hilbert class polynomials. In van der Poorten and Stein [271], pages 282–295. (Cited
on page 153.)



192 Bibliography

[13] Elwyn Ralph Berlekamp, Victor Henry Rumsey, and Hannah Greenebaum Solomon. On
the solution of algebraic equations over finite fields. Information and Control, 10:553–564,
1967. (Cited on page 118.)

[14] Jean Berstel and Michel Pocchiola. Average cost of Duval’s algorithm for generating Lyndon
words. Theor. Comput. Sci., 132(2):415–425, 1994. (Cited on page 89.)

[15] Eli Biham, editor. Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8,
2003, Proceedings, volume 2656 of Lecture Notes in Computer Science. Springer, 2003.
(Cited on pages 195 and 202.)

[16] Christina Birkenhake and Herbert Lange. Complex abelian varieties, volume 302 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, second edition, 2004. (Cited on pages 160, 162, 165, 166,
and 167.)

[17] Gaëtan Bisson. On the generation of pairing-friendly elliptic curves. Master’s thesis,
Université Paris-Sud 11, 2007. http://www.normalesup.org/~bisson/res/memm2.pdf.
(Cited on page 157.)

[18] Ian Fraser Blake, Gadiel Seroussi, and Nigel Paul Smart. Elliptic curves in cryptography,
volume 265 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 2000. Reprint of the 1999 original. (Cited on pages 99, 103, 105, 154,
and 155.)

[19] Ian Fraser Blake, Gadiel Seroussi, and Nigel Paul Smart, editors. Advances in elliptic curve
cryptography, volume 317 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2005. (Cited on pages 136, 137, 138, and 155.)

[20] Dan Boneh and Matthew Keith Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
213–229. Springer, 2001. (Cited on page 156.)

[21] Dan Boneh and Matthew Keith Franklin. Identity-based encryption from the Weil pairing.
SIAM J. Comput., 32(3):586–615, 2003. (Cited on page 156.)

[22] Jorge Luis Borges. Ficciones. Works. Emecé Editores, 1973. (Cited on page 109.)

[23] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993). (Cited on pages 2 and 3.)

[24] Robert Bradshaw, Craig Citro, and Dag Sverre Seljebotn. Cython: the best of both worlds.
CiSE 2011 Special Python Issue, page 25, 2010. (Cited on pages 2 and 126.)

[25] Johannes Franciscus Brakenhoff. Counting problems for number rings. PhD thesis, Univer-
siteit Leiden, 2009. (Cited on pages 169 and 170.)

[26] Richard Peirce Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann. Faster
multiplication in GF(2)[x]. In van der Poorten and Stein [271], pages 153–166. (Cited on
page 126.)

[27] Reinier Martijn Bröker. Constructing elliptic curves of prescribed order. PhD thesis,
Universiteit Leiden, 2006. (Cited on page 153.)

http://www.normalesup.org/~bisson/res/memm2.pdf


Bibliography 193

[28] Reinier Martijn Bröker. A p-adic algorithm to compute the Hilbert class polynomial. Math.
Comput., 77(264):2417–2435, 2008. (Cited on page 152.)

[29] Reinier Martijn Bröker, David Gruenewald, and Kristin Estella Lauter. Explicit CM-theory
in dimension 2. 0910.1848, October 2009. (Cited on page 184.)

[30] Reinier Martijn Bröker, Kristin Estella Lauter, and Marco Streng. Abelian surfaces
admitting an (l, l)-endomorphism. 1106.1884, June 2011. (Cited on pages 178 and 240.)

[31] Reinier Martijn Bröker and Peter Stevenhagen. Elliptic curves with a given number of
points. In Duncan Alan Buell, editor, ANTS, volume 3076 of Lecture Notes in Computer
Science, pages 117–131. Springer, 2004. (Cited on page 153.)

[32] Johannes Buchmann and Ulrich Vollmer. Binary quadratic forms, volume 20 of Algorithms
and Computation in Mathematics. Springer, Berlin, 2007. An algorithmic approach. (Cited
on pages 146 and 147.)

[33] William Seward Burroughs and Oliver C. G. Harris. Junky: the definitive text of "Junk".
Penguin Books, 2003. (Cited on page 187.)

[34] Christian Cachin and Jan Camenisch, editors. Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science. Springer, 2004. (Cited on pages 198 and 203.)

[35] Anne Canteaut, Pascale Charpin, and Hans Dobbertin. Weight divisibility of cyclic codes,
highly nonlinear functions on F2m , and crosscorrelation of maximum-length sequences.
SIAM J. Discrete Math., 13(1):105–138 (electronic), 2000. (Cited on page 21.)

[36] Claude Carlet. On a weakness of the Tu-Deng function and its repair. Cryptology ePrint
Archive, Report 2009/606, 2009. http://eprint.iacr.org/. (Cited on page 15.)

[37] Claude Carlet. Private communication, 2009. (Cited on page 85.)

[38] Claude Carlet. Boolean functions for cryptography and error correcting codes. In Yves
Crama and Peter Ladislaw Hammer, editors, Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pages 257–397. Cambridge University Press, June 2010.
(Cited on pages 8, 9, 10, 11, 97, and 219.)

[39] Claude Carlet. Comments on "Constructions of cryptographically significant Boolean func-
tions using primitive polynomials". Information Theory, IEEE Transactions on, 57(7):4852
–4853, july 2011. (Cited on page 12.)

[40] Claude Carlet, Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Al-
gebraic immunity for cryptographically significant Boolean functions: Analysis and con-
struction. IEEE Transactions on Information Theory, 52(7):3105–3121, 2006. (Cited on
page 11.)

[41] Claude Carlet and Keqin Feng. An infinite class of balanced functions with optimal algebraic
immunity, good immunity to fast algebraic attacks and good nonlinearity. In Josef Pieprzyk,
editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer Science, pages 425–440.
Springer, 2008. (Cited on pages 8, 12, 220, and 221.)

http://eprint.iacr.org/


194 Bibliography

[42] Claude Carlet, Xiangyong Zeng, Chunlei Li, and Lei Hu. Further properties of several
classes of Boolean functions with optimum algebraic immunity. Des. Codes Cryptography,
52(3):303–338, 2009. (Cited on page 11.)

[43] Robert Carls, David Russell Kohel, and David Lubicz. Higher-dimensional 3-adic CM
construction. J. Algebra, 319(3):971–1006, 2008. (Cited on page 184.)

[44] John William Scott Cassels. Lectures on elliptic curves, volume 24 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 1991. (Cited on page 99.)

[45] Jinhui Chao, Osamu Nakamura, Kohji Sobataka, and Shigeo Tsujii. Construction of secure
elliptic cryptosystems using CM tests and liftings. In Kazuo Ohta and Dingyi Pei, editors,
ASIACRYPT, volume 1514 of Lecture Notes in Computer Science, pages 95–109. Springer,
1998. (Cited on page 153.)

[46] Pascale Charpin and Guang Gong. Hyperbent functions, Kloosterman sums, and Dickson
polynomials. IEEE Transactions on Information Theory, 54(9):4230–4238, 2008. (Cited on
pages 96, 110, 111, 113, and 232.)

[47] Pascale Charpin, Tor Helleseth, and Victor Zinoviev. Divisibility properties of Kloosterman
sums over finite fields of characteristic two. In Information Theory, 2008. ISIT 2008. IEEE
International Symposium on, pages 2608 –2612, july 2008. (Cited on pages 118 and 234.)

[48] Pascale Charpin, Tor Helleseth, and Victor Zinoviev. Divisibility properties of classical
binary Kloosterman sums. Discrete Mathematics, 309(12):3975–3984, 2009. (Cited on
page 120.)

[49] Wei-Liang Chow. On compact complex analytic varieties. Amer. J. Math., 71:893–914,
1949. (Cited on page 167.)

[50] Marcus Tullius Cicero, Jules Martha, and Carlos Lévy. Des termes extrêmes des biens et
des maux: Livres I-II. Collection des universités de France. Série latine. Les Belles Lettres,
1990. (Cited on page 1.)

[51] Alfred Clebsch. Zur Theorie der binären algebraischen Formen. Math. Ann., 3(2):265–267,
1870. (Cited on page 181.)

[52] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
Bahram Honary, editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science,
pages 360–363. Springer, 2001. (Cited on page 156.)

[53] Gérard Denis Cohen and Jean-Pierre Flori. On a generalized combinatorial conjecture
involving addition mod 2k − 1. Cryptology ePrint Archive, Report 2011/400, 2011.
http://eprint.iacr.org/. (Cited on page 20.)

[54] Henri Cohen. A course in computational algebraic number theory, volume 138 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 1993. (Cited on pages 105 and 170.)

[55] Henri Cohen. Advanced topics in computational number theory, volume 193 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2000. (Cited on page 170.)

[56] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen,
and Frederik Vercauteren, editors. Handbook of elliptic and hyperelliptic curve cryptography.
Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca
Raton, FL, 2006. (Cited on pages 99, 105, 154, and 181.)

http://eprint.iacr.org/


Bibliography 195

[57] Brian Conrad. Main theorem of complex multiplication. Talk given at the CM Seminar
of the VIGRE number theory working group, notes available at http://math.stanford.
edu/~conrad/vigregroup/vigre04/mainthm.pdf, 2004. (Cited on pages 160, 172, 180,
and 241.)

[58] Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 176–194.
Springer, 2003. (Cited on pages 10 and 220.)

[59] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback.
In Biham [15], pages 345–359. (Cited on pages 10 and 220.)

[60] Jean-Marc Couveignes and Thierry Henocq. Action of modular correspondences around
CM points. In Fieker and Kohel [90], pages 234–243. (Cited on page 152.)

[61] David Archibald Cox. Primes of the form x2 +ny2. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1989. Fermat, class field theory and complex multiplication.
(Cited on pages 104, 105, 143, 144, 145, 146, 147, and 151.)

[62] Thomas William Cusick, Yuan Li, and Pantelimon Stănică. On a combinatorial conjecture.
Integers, 11(2):185–203, May 2011. (Cited on page 85.)

[63] Everett Clarence Dade, Olga Taussky, and Hans Julius Zassenhaus. On the theory of orders,
in paricular on the semigroup of ideal classes and genera of an order in an algebraic number
field. Math. Ann., 148:31–64, 1962. (Cited on pages 168 and 169.)

[64] Deepak Kumar Dalai, Subhamoy Maitra, and Sumanta Sarkar. Basic theory in construction
of Boolean functions with maximum possible annihilator immunity. Des. Codes Cryptography,
40(1):41–58, 2006. (Cited on page 11.)

[65] Olivier Debarre. Tores et variétés abéliennes complexes, volume 6 of Cours Spécialisés
[Specialized Courses]. Société Mathématique de France, Paris, 1999. (Cited on pages 160,
161, 162, 163, 164, 165, 166, 167, 168, 182, and 238.)

[66] Jan Denef and Frederik Vercauteren. An extension of Kedlaya’s algorithm to Artin-Schreier
curves in characteristic 2. In Fieker and Kohel [90], pages 308–323. (Cited on page 107.)

[67] Jan Denef and Frederik Vercauteren. An extension of Kedlaya’s algorithm to hyperelliptic
curves in characteristic 2. J. Cryptology, 19(1):1–25, 2006. (Cited on page 107.)

[68] Max Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh.
Math. Sem. Hansischen Univ., 14:197–272, 1941. (Cited on pages 104 and 139.)

[69] Whitfield Diffie and Martin Edward Hellman. New directions in cryptography. IEEE Trans.
Information Theory, IT-22(6):644–654, 1976. (Cited on page 153.)

[70] John Francis Dillon. Elementary Hadamard Difference Sets. ProQuest LLC, Ann Arbor,
MI, 1974. Thesis (Ph.D.)–University of Maryland, College Park. (Cited on pages 8, 11, 12,
13, 110, 111, and 230.)

[71] John Francis Dillon and Hans Dobbertin. New cyclic difference sets with Singer parameters.
Finite Fields and Their Applications, 10(3):342–389, 2004. (Cited on page 118.)

http://math.stanford.edu/~conrad/vigregroup/vigre04/mainthm.pdf
http://math.stanford.edu/~conrad/vigregroup/vigre04/mainthm.pdf


196 Bibliography

[72] Cunsheng Ding, Guozhen Xiao, and Weijuan Shan. The Stability Theory of Stream Ciphers,
volume 561 of Lecture Notes in Computer Science. Springer, 1991. (Cited on pages 11
and 220.)

[73] Hans Dobbertin. Construction of bent functions and balanced Boolean functions with high
nonlinearity. In Bart Preneel, editor, FSE, volume 1008 of Lecture Notes in Computer
Science, pages 61–74. Springer, 1994. (Cited on page 14.)

[74] Jean-Guillaume Dumas, Thierry Gautier, Pascal Giorgi, Jean-Louis Roch, and Gilles Villard.
Givaro-3.2.13rc1: C++ library for arithmetic and algebraic computations, September 2008.
http://ljk.imag.fr/CASYS/LOGICIELS/givaro/. (Cited on page 126.)

[75] Régis Dupont. Moyenne arithmético-géométrique, suites de Borchardt et applications. PhD
thesis, École Polytechnique, 2006. (Cited on page 184.)

[76] Régis Dupont, Andreas Enge, and Emmanuel Thomé. Computation of Igusa class polyno-
mials with the complex analytic method. Talk given at GeoCrypt 2011, slides available at
http://iml.univ-mrs.fr/ati/GeoCrypt2011, June 2011. (Cited on page 184.)

[77] Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des mots
de Lyndon de longueur bornée. Theor. Comput. Sci., 60:255–283, 1988. (Cited on page 89.)

[78] Bernard Dwork. On the rationality of the zeta function of an algebraic variety. Amer. J.
Math., 82:631–648, 1960. (Cited on page 107.)

[79] Bernard Dwork. A deformation theory for the zeta function of a hypersurface. In Proc.
Internat. Congr. Mathematicians (Stockholm, 1962), pages 247–259. Inst. Mittag-Leffler,
Djursholm, 1963. (Cited on page 107.)

[80] Kirsten Eisenträger and Kristin Estella Lauter. A CRT algorithm for constructing genus 2
curves over finite fields. math/0405305, May 2004. (Cited on page 184.)

[81] Noam David Elkies. Elliptic and modular curves over finite fields and related computational
issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of
AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence, RI, 1998. (Cited
on page 107.)

[82] Andreas Enge. Elliptic Curves and Their Applications to Cryptography: An Introduction.
Springer, 1st edition, August 1999. (Cited on pages 99 and 105.)

[83] Andreas Enge. How to distinguish hyperelliptic curves in even characteristic. In Public-key
cryptography and computational number theory (Warsaw, 2000), pages 49–58. de Gruyter,
Berlin, 2001. (Cited on page 106.)

[84] Andreas Enge. Courbes Algébriques et Cryptologie. Hdr, Université Paris-Diderot - Paris
VII, December 2007. (Cited on page 154.)

[85] Andreas Enge. The complexity of class polynomial computation via floating point approxi-
mations. Math. Comput., 78(266):1089–1107, 2009. (Cited on page 152.)

[86] Andreas Enge and François Morain. Generalised Weber functions. I. 0905.3250, May 2009.
(Cited on page 153.)

http://ljk.imag.fr/CASYS/LOGICIELS/givaro/
http://iml.univ-mrs.fr/ati/GeoCrypt2011


Bibliography 197

[87] Andreas Enge and Reinhard Schertz. Constructing elliptic curves over finite fields using
double eta-quotients. J. Théor. Nombres Bordeaux, 16(3):555–568, 2004. (Cited on pages 153
and 154.)

[88] Michel Fabrikant. Guide des montagnes corses. Guides et cartes Didier et Richard. Didier
et Richard, 1982. (Cited on page xi.)

[89] Keqin Feng, Qunying Liao, and Jing Yang. Maximal values of generalized algebraic immunity.
Des. Codes Cryptography, 50(2):243–252, 2009. (Cited on pages 8, 12, and 221.)

[90] Claus Fieker and David Russell Kohel, editors. Algorithmic Number Theory, 5th Interna-
tional Symposium, ANTS-V, Sydney, Australia, July 7-12, 2002, Proceedings, volume 2369
of Lecture Notes in Computer Science. Springer, 2002. (Cited on pages 195 and 201.)

[91] Jean-Pierre Flori and Sihem Mesnager. An efficient characterization of a family of hyperbent
functions with multiple trace terms. Cryptology ePrint Archive, Report 2011/373, 2011.
http://eprint.iacr.org/. (Cited on page 110.)

[92] Jean-Pierre Flori, Sihem Mesnager, and Gérard Denis Cohen. Binary Kloosterman sums
with value 4. In Liqun Chen, editor, IMA Int. Conf., volume 7089 of Lecture Notes in
Computer Science, pages 61–78. Springer, 2011. (Cited on page 110.)

[93] Jean-Pierre Flori, Sihem Mesnager, and Gérard Denis Cohen. The value 4 of binary
Kloosterman sums. Cryptology ePrint Archive, Report 2011/364, 2011. http://eprint.
iacr.org/. (Cited on page 110.)

[94] Jean-Pierre Flori and Hugues Randriam. On the number of carries occurring in an addition
mod 2k − 1. To appear in Integers journal, 2011. http://www.integers-ejcnt.org/.
(Cited on page 20.)

[95] Jean-Pierre Flori and Hugues Randriam. On the number of carries occurring in an addition
mod 2k−1. Cryptology ePrint Archive, Report 2011/245, 2011. http://eprint.iacr.org/.
(Cited on page 20.)

[96] Jean-Pierre Flori, Hugues Randriam, Gérard Denis Cohen, and Sihem Mesnager. On a
conjecture about binary strings distribution. In Claude Carlet and Alexander Pott, editors,
SETA, volume 6338 of Lecture Notes in Computer Science, pages 346–358. Springer, 2010.
(Cited on page 20.)

[97] Jean-Pierre Flori, Hugues Randriam, Gérard Denis Cohen, and Sihem Mesnager. On a
conjecture about binary strings distribution. Cryptology ePrint Archive, Report 2010/170,
2010. http://eprint.iacr.org/. (Cited on page 20.)

[98] Mireille Fouquet, Pierrick Gaudry, and Robert Harley. An extension of Satoh’s algorithm
and its implementation. J. Ramanujan Math. Soc., 15(4):281–318, 2000. (Cited on pages 107
and 123.)

[99] Harold Fredricksen and Irving J. Kessler. An algorithm for generating necklaces of beads in
two colors. Discrete Mathematics, 61(2-3):181–188, 1986. (Cited on page 89.)

[100] Harold Fredricksen and James Maiorana. Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Math., 23(3):207–210, 1978. (Cited on page 89.)

[101] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. J. Cryptology, 23(2):224–280, 2010. (Cited on page 157.)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.integers-ejcnt.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


198 Bibliography

[102] David Freeman, Peter Stevenhagen, and Marco Streng. Abelian varieties with prescribed
embedding degree. In van der Poorten and Stein [271], pages 60–73. (Cited on page 183.)

[103] David Mandell Freeman. Constructing Abelian Varieties for Pairing-Based Cryptography.
PhD thesis, University of California, Berkeley, 2008. (Cited on page 184.)

[104] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874, 1994. (Cited
on pages 137 and 155.)

[105] Harry Furstenberg. Algebraic functions over finite fields. J. Algebra, 7:271–277, 1967. (Cited
on page 73.)

[106] Edgar Gabriel, Graham Edward Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey Michael Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph Henri Castain, David J. Daniel, Richard Lewis Graham, and Timothy S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI implementation.
In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary, September 2004. (Cited on pages 89 and 227.)

[107] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, 2011. http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.
html. (Cited on pages 99 and 105.)

[108] Kseniya Garaschuk and Petr Lisoněk. On binary Kloosterman sums divisible by 3. Des.
Codes Cryptography, 49(1-3):347–357, 2008. (Cited on page 120.)

[109] Pierrick Gaudry. A comparison and a combination of SST and AGM algorithms for counting
points of elliptic curves in characteristic 2. In Yuliang Zheng, editor, ASIACRYPT, volume
2501 of Lecture Notes in Computer Science, pages 311–327. Springer, 2002. (Cited on
page 107.)

[110] Pierrick Gaudry. Hyperelliptic curves and the HCDLP. In Advances in elliptic curve
cryptography, volume 317 of London Math. Soc. Lecture Note Ser., pages 133–150. Cambridge
Univ. Press, Cambridge, 2005. (Cited on page 105.)

[111] Pierrick Gaudry and Robert Harley. Counting points on hyperelliptic curves over finite
fields. In Wieb Bosma, editor, ANTS, volume 1838 of Lecture Notes in Computer Science,
pages 313–332. Springer, 2000. (Cited on page 107.)

[112] Pierrick Gaudry, Thomas Houtmann, David Russell Kohel, Christophe Ritzenthaler, and
Annegret Weng. The 2-adic CM method for genus 2 curves with application to cryptography.
In Lai and Chen [158], pages 114–129. (Cited on page 184.)

[113] Pierrick Gaudry and Éric Schost. Construction of secure random curves of genus 2 over
prime fields. In Cachin and Camenisch [34], pages 239–256. (Cited on page 107.)

[114] Alice Chia Ping Gee. Class invariants by Shimura’s reciprocity law. J. Théor. Nombres
Bordeaux, 11(1):45–72, 1999. Les XXèmes Journées Arithmétiques (Limoges, 1997). (Cited
on page 153.)

[115] Alice Chia Ping Gee. Class fields by Shimura reciprocity. PhD thesis, Universiteit Leiden,
2001. (Cited on page 153.)

http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html


Bibliography 199

[116] Alice Chia Ping Gee and Peter Stevenhagen. Generating class fields using Shimura reciprocity.
In Joe Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages
441–453. Springer, 1998. (Cited on page 153.)

[117] Johann Wolfgang von Goethe. Faust. Eine Tragödie von Goethe. J. G. Cotta, 1808. (Cited
on page 217.)

[118] Guang Gong and Solomon Wolf Golomb. Transform domain analysis of DES. IEEE
Transactions on Information Theory, 45(6):2065–2073, 1999. (Cited on page 96.)

[119] Eyal Zvi Goren and Kristin Estella Lauter. Class invariants for quartic CM fields. Ann.
Inst. Fourier (Grenoble), 57(2):457–480, 2007. (Cited on page 184.)

[120] Eyal Zvi Goren and Kristin Estella Lauter. Genus 2 curves with complex multiplication.
International Mathematics Research Notices, 2011. (Cited on page 184.)

[121] Aline Gouget and Hervé Sibert. Revisiting correlation-immunity in filter generators. In
Carlisle Michael Adams, Ali Miri, and Michael James Wiener, editors, Selected Areas in
Cryptography, volume 4876 of Lecture Notes in Computer Science, pages 378–395. Springer,
2007. (Cited on page 10.)

[122] Ronald Lewis Graham, Donald Ervin Knuth, and Oren Patashnik. Concrete mathematics.
Addison-Wesley Publishing Company, Reading, MA, second edition, 1994. A foundation for
computer science. (Cited on pages 34, 54, and 55.)

[123] Faruk Göloğlu, Petr Lisoněk, Gary McGuire, and Richard Moloney. Binary Kloosterman
sums modulo 256 and coefficients of the characteristic polynomial. Information Theory,
IEEE Transactions on, PP(99):1, 2012. (Cited on page 120.)

[124] Faruk Göloğlu, Gary McGuire, and Richard Moloney. Binary Kloosterman sums using
Stickelberger’s theorem and the Gross-Koblitz formula. Acta Arith., 148(3):269–279, 2011.
(Cited on page 120.)

[125] Franz Halter-Koch. Ideal semigroups of Noetherian domains and Ponizovski decompositions.
J. Pure Appl. Algebra, 209(3):763–770, 2007. (Cited on page 177.)

[126] Robert Harley. Asymptotically optimal p-adic point-counting. Email to NMBRTHRY
list, December 2002. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0212&L=
nmbrthry&T=0&P=1343. (Cited on pages 107, 121, 123, and 230.)

[127] William Hart, Sebastian Pancratz, Andy Novocin, Fredrik Johansson, and David Harvey.
FLINT: Fast Library for Number Theory – Version 2.2, june 2011. www.flintlib.org.
(Cited on pages 89 and 227.)

[128] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts
in Mathematics, No. 52. (Cited on pages 133, 134, and 135.)

[129] Tor Helleseth and Victor Zinoviev. On Z4 linear Goethals codes and Kloosterman sums.
Des. Codes Cryptography, 17(1-3):269–288, 1999. (Cited on pages 119, 120, and 231.)

[130] Florian Heß. A note on the Tate pairing of curves over finite fields. Arch. Math. (Basel),
82(1):28–32, 2004. (Cited on page 137.)

[131] Florian Heß, Nigel Paul Smart, and Frederik Vercauteren. The eta pairing revisited. IEEE
Transactions on Information Theory, 52(10):4595–4602, 2006. (Cited on page 155.)

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0212&L=nmbrthry&T=0&P=1343
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0212&L=nmbrthry&T=0&P=1343
www.flintlib.org


200 Bibliography

[132] Marc Hindry and Joseph Hillel Silverman. Diophantine geometry, volume 201 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2000. An introduction. (Cited on
pages 161 and 162.)

[133] Laura Hitt. On the minimal embedding field. In Tsuyoshi Takagi, Tatsuaki Okamoto,
Eiji Okamoto, and Takeshi Okamoto, editors, Pairing, volume 4575 of Lecture Notes in
Computer Science, pages 294–301. Springer, 2007. (Cited on page 155.)

[134] Laura Hitt O’Connor, Gary McGuire, Michael Naehrig, and Marco Streng. A CM construc-
tion for curves of genus 2 with p-rank 1. J. Number Theory, 131(5):920–935, 2011. (Cited
on page 183.)

[135] Hendrik Hubrechts. Computing zeta functions of curves over finite fields. PhD thesis,
Katholieke Universiteit Leuven, 2003. (Cited on page 107.)

[136] Hendrik Hubrechts. Point counting in families of hyperelliptic curves in characteristic 2.
LMS J. Comput. Math., 10:207–234, 2007. (Cited on page 107.)

[137] Hendrik Hubrechts. Point counting in families of hyperelliptic curves. Foundations of
Computational Mathematics, 8(1):137–169, 2008. (Cited on page 107.)

[138] Dale Husemöller. Elliptic curves, volume 111 of Graduate Texts in Mathematics. Springer-
Verlag, New York, second edition, 2004. With appendices by Otto Forster, Ruth Lawrence
and Stefan Theisen. (Cited on page 99.)

[139] Jun-ichi Igusa. Arithmetic variety of moduli for genus two. Ann. of Math. (2), 72:612–649,
1960. (Cited on pages 159 and 181.)

[140] The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.
org. (Cited on page 26.)

[141] Michael Jacobson, Jr., Alfred John Menezes, and Andreas Stein. Hyperelliptic curves and
cryptography. In High primes and misdemeanours: lectures in honour of the 60th birthday
of Hugh Cowie Williams, volume 41 of Fields Inst. Commun., pages 255–282. Amer. Math.
Soc., Providence, RI, 2004. (Cited on page 105.)

[142] Qingfang Jin, Zhuojun Liu, and Baofeng Wu. 1-resilient Boolean function with optimal
algebraic immunity. Cryptology ePrint Archive, Report 2011/549, 2011. http://eprint.
iacr.org/. (Cited on pages 17 and 20.)

[143] Qingfang Jin, Zhuojun Liu, Baofeng Wu, and Xiaoming Zhang. A general conjecture
similar to T-D conjecture and its applications in constructing Boolean functions with
optimal algebraic immunity. Cryptology ePrint Archive, Report 2011/515, 2011. http:
//eprint.iacr.org/. (Cited on pages 8, 16, 17, 23, 221, and 222.)

[144] Nicholas Katz and Ron Livné. Sommes de Kloosterman et courbes elliptiques universelles
en caractéristiques 2 et 3. C. R. Acad. Sci. Paris Sér. I Math., 309(11):723–726, 1989.
(Cited on pages 104, 105, 110, 114, and 230.)

[145] Kiran Sridhara Kedlaya. Complex multiplication and explicit class field theory, April 1996.
(Cited on pages 149, 151, and 237.)

[146] Kiran Sridhara Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer
cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001. (Cited on page 107.)

http://oeis.org
http://oeis.org
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Bibliography 201

[147] Kiran Sridhara Kedlaya. Errata for: “Counting points on hyperelliptic curves using Monsky-
Washnitzer cohomology” [J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338; mr1877805].
J. Ramanujan Math. Soc., 18(4):417–418, 2003. Dedicated to Professor Karaikurichi
Srinivasan Padmanabhan. (Cited on page 107.)

[148] Brian Wilson Kernighan and Dennis MacAlistair Ritchie. C Programming Language.
Prentice Hall, 2 edition, April 1988. (Cited on pages 2, 89, and 227.)

[149] Jean-Louis Kerouac. The Dharma Bums. Penguin classics. Penguin Books, 2000. (Cited on
page 131.)

[150] Hae Young Kim, Jung Youl Park, Jung Hee Cheon, Je Hong Park, Jae Heon Kim, and
Sang Geun Hahn. Fast elliptic curve point counting using Gaussian normal basis. In Fieker
and Kohel [90], pages 292–307. (Cited on page 107.)

[151] Jürgen Klüners and Sebastian Pauli. Computing residue class rings and Picard groups of
orders. J. Algebra, 292(1):47–64, 2005. (Cited on pages 160, 170, and 171.)

[152] Anthony William Knapp. Elliptic curves, volume 40 of Mathematical Notes. Princeton
University Press, Princeton, NJ, 1992. (Cited on page 99.)

[153] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987. (Cited
on page 153.)

[154] Neal Koblitz. Constructing elliptic curve cryptosystems in characteristic 2. In Alfred John
Menezes and Scott Alexander Vanstone, editors, CRYPTO, volume 537 of Lecture Notes in
Computer Science, pages 156–167. Springer, 1990. (Cited on pages 99 and 105.)

[155] Neal Koblitz. Algebraic aspects of cryptography, volume 3 of Algorithms and Computation
in Mathematics. Springer-Verlag, Berlin, 1998. With an appendix by Alfred John Menezes,
Yi-Hong Wu and Robert Joseph Zuccherato. (Cited on page 99.)

[156] Gilles Lachaud and Jacques Wolfmann. Sommes de Kloosterman, courbes elliptiques et
codes cycliques en caractéristique 2. C. R. Acad. Sci. Paris Sér. I Math., 305(20):881–883,
1987. (Cited on pages 110, 114, and 230.)

[157] Gilles Lachaud and Jacques Wolfmann. The weights of the orthogonals of the extended
quadratic binary Goppa codes. IEEE Transactions on Information Theory, 36(3):686Ð692,
1990. (Cited on pages 110, 111, and 119.)

[158] Xuejia Lai and Kefei Chen, editors. Advances in Cryptology - ASIACRYPT 2006, 12th
International Conference on the Theory and Application of Cryptology and Information
Security, Shanghai, China, December 3-7, 2006, Proceedings, volume 4284 of Lecture Notes
in Computer Science. Springer, 2006. (Cited on pages 198 and 203.)

[159] Serge Lang. Complex multiplication, volume 255 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New
York, 1983. (Cited on pages 160, 162, 164, 165, 167, 168, 172, 173, 174, 175, 176, 177, 178,
179, 180, 240, and 241.)

[160] Serge Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics. Springer-
Verlag, New York, second edition, 1987. With an appendix by J. Tate. (Cited on pages 105,
139, 143, 144, 145, 149, 150, 151, 152, 153, 172, and 237.)



202 Bibliography

[161] Philippe Langevin, Nils-Gregor Leander, Gary Mcguire, and Eugen Zalinescu. Analysis
of Kasami-Welch functions in odd dimension using Stickelberger’s theorem. Journal of
Combinatorics and Number Theory, 2(1):55 – 72, 2011. (Cited on page 21.)

[162] Alan George Beattie Lauder. Deformation theory and the computation of zeta functions.
Proc. London Math. Soc. (3), 88(3):565–602, 2004. (Cited on page 107.)

[163] Alan George Beattie Lauder and Daqing Wan. Computing zeta functions of Artin-Schreier
curves over finite fields. LMS J. Comput. Math., 5:34–55, 2002. (Cited on page 107.)

[164] Alan George Beattie Lauder and Daqing Wan. Computing zeta functions of Artin-Schreier
curves over finite fields II. J. Complexity, 20(2-3):331–349, 2004. (Cited on page 107.)

[165] Alan George Beattie Lauder and Daqing Wan. Counting points on varieties over finite fields
of small characteristic. In Algorithmic number theory: lattices, number fields, curves and
cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 579–612. Cambridge Univ.
Press, Cambridge, 2008. (Cited on page 107.)

[166] Kristin Estella Lauter and Damien Robert. About the CRT method to compute class
polynomials in dimension 2. Talk given at the "Journées Codage et Cryptographie 2011",
slides available at http://www2.lirmm.fr/c2/programme.html, April 2011. (Cited on
page 184.)

[167] Nils-Gregor Leander. Monomial bent functions. IEEE Transactions on Information Theory,
52(2):738–743, 2006. (Cited on pages 110 and 111.)

[168] John Marshall Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2003. (Cited on page 161.)

[169] Hendrik Willem Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math. (2),
126(3):649–673, 1987. (Cited on page 153.)

[170] Franck Leprévost, Michael Pohst, and Osmanbey Uzunkol. On the computation of class
polynomials with "thetanullwerte" and its applications to the unit group computation, 2009.
To appear in Experimental Mathematics. (Cited on page 153.)

[171] Reynald Lercier. Algorithmique des courbes elliptiques dans les corps finis. PhD thesis,
École Polytechnique, June 1997. (Cited on page 107.)

[172] Reynald Lercier and David Lubicz. Counting points on elliptic curves over finite fields
of small characteristic in quasi quadratic time. In Biham [15], pages 360–373. (Cited on
page 107.)

[173] Reynald Lercier and David Lubicz. A quasi quadratic time algorithm for hyperelliptic curve
point counting. Ramanujan J., 12(3):399–423, 2006. (Cited on page 107.)

[174] Reynald Lercier, David Lubicz, and Frederik Vercauteren. Point counting on elliptic and
hyperelliptic curves. In Handbook of elliptic and hyperelliptic curve cryptography, Discrete
Math. Appl. (Boca Raton), pages 407–453. Chapman & Hall/CRC, Boca Raton, FL, 2006.
(Cited on pages 107 and 121.)

[175] Reynald Lercier and Christophe Ritzenthaler. Hyperelliptic curves and their invariants:
geometric, arithmetic and algorithmic aspects. arXiv:1111.4152, November 2011. (Cited on
page 182.)

http://www2.lirmm.fr/c2/programme.html


Bibliography 203

[176] Reynald Lercier and Christophe Ritzenthaler. Reconstruction of genus 3 hyperellitpic
curve. Talk given at GeoCrypt 2011, slides available at http://iml.univ-mrs.fr/ati/
GeoCrypt2011/, June 2011. (Cited on page 182.)

[177] Na Li and Wen-Feng Qi. Construction and analysis of Boolean functions of 2t+ 1 variables
with maximum algebraic immunity. In Lai and Chen [158], pages 84–98. (Cited on page 11.)

[178] Na Li, Longjiang Qu, Wen-Feng Qi, GuoZhu Feng, Chao Li, and DuanQiang Xie. On the
construction of Boolean functions with optimal algebraic immunity. IEEE Transactions on
Information Theory, 54(3):1330–1334, 2008. (Cited on page 11.)

[179] Rudolf Lidl, Gary Lee Mullen, and Gerhard Turnwald. Dickson polynomials, volume 65 of
Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific &
Technical, Harlow, 1993. (Cited on pages 99 and 228.)

[180] Petr Lisoněk. On the connection between Kloosterman sums and elliptic curves. In
Solomon Wolf Golomb, Matthew Geoffrey Parker, Alexander Pott, and Arne Winterhof,
editors, SETA, volume 5203 of Lecture Notes in Computer Science, pages 182–187. Springer,
2008. (Cited on pages 110, 115, 120, 122, and 231.)

[181] Petr Lisoněk. An efficient characterization of a family of hyperbent functions. IEEE
Transactions on Information Theory, 57(9):6010–6014, 2011. (Cited on pages 110, 115, 116,
and 233.)

[182] Petr Lisoněk. Hyperbent functions and hyperelliptic curves. Talk given at Arithmetic,
Geometry, Cryptography and Coding Theory (AGCT-13), slides available at http://iml.
univ-mrs.fr/~ritzenth/AGCT/talks/lisonek.pdf, March 2011. (Cited on pages 110,
115, 116, and 233.)

[183] Petr Lisoněk and Marko J. Moisio. On zeros of Kloosterman sums. Des. Codes Cryptography,
59(1-3):223–230, 2011. (Cited on page 110.)

[184] Mikhail Sergeevich Lobanov. Exact relations between nonlinearity and algebraic immunity.
Diskretn. Anal. Issled. Oper., 15(6):34–47, 95, 2008. (Cited on page 11.)

[185] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes. I. North-Holland Publishing Co., Amsterdam, 1977. North-Holland
Mathematical Library, Vol. 16. (Cited on page 13.)

[186] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes. II. North-Holland Publishing Co., Amsterdam, 1977. North-Holland
Mathematical Library, Vol. 16. (Cited on page 13.)

[187] James Lee Massey. Shift-register synthesis and BCH decoding. Information Theory, IEEE
Transactions on, 15(1):122 – 127, jan 1969. (Cited on pages 10 and 219.)

[188] Mitsuru Matsui. Linear cryptoanalysis method for DES cipher. In EUROCRYPT, pages
386–397, 1993. (Cited on page 96.)

[189] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext attack of
FEAL cipher. In EUROCRYPT, pages 81–91, 1992. (Cited on page 96.)

[190] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decomposition of
Boolean functions. In Cachin and Camenisch [34], pages 474–491. (Cited on page 10.)

http://iml.univ-mrs.fr/ati/GeoCrypt2011/
http://iml.univ-mrs.fr/ati/GeoCrypt2011/
http://iml.univ-mrs.fr/~ritzenth/AGCT/talks/lisonek.pdf
http://iml.univ-mrs.fr/~ritzenth/AGCT/talks/lisonek.pdf


204 Bibliography

[191] Willi Meier and Othmar Staffelbach. Fast correlation attacks on stream ciphers (extended
abstract). In EUROCRYPT, pages 301–314, 1988. (Cited on pages 11 and 220.)

[192] Alfred John Menezes, Tatsuaki Okamoto, and Scott Alexander Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory,
39(5):1639–1646, 1993. (Cited on pages 155 and 156.)

[193] Alfred John Menezes, Paul C. van Oorschot, and Scott Alexander Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. (Cited on pages 8, 10, and 219.)

[194] Alfred John Menezes, Yi-Hong Wu, and Robert Joseph Zuccherato. An elementary intro-
duction to hyperelliptic curves. In Algebraic aspects of cryptography, volume 3 of Algorithms
and Computation in Mathematics. Springer-Verlag, Berlin, 1998. (Cited on page 105.)

[195] Sihem Mesnager. A new family of hyper-bent Boolean functions in polynomial form. In
Matthew Geoffrey Parker, editor, IMA Int. Conf., volume 5921 of Lecture Notes in Computer
Science, pages 402–417. Springer, 2009. (Cited on pages 111, 112, and 231.)

[196] Sihem Mesnager. Hyper-bent Boolean functions with multiple trace terms. In Mo-
hammed Anwar Hasan and Tor Helleseth, editors, WAIFI, volume 6087 of Lecture Notes in
Computer Science, pages 97–113. Springer, 2010. (Cited on pages 110, 113, and 232.)

[197] Sihem Mesnager. A new class of bent and hyper-bent Boolean functions in polynomial
forms. Des. Codes Cryptography, 59(1-3):265–279, 2011. (Cited on pages 111, 112, 115,
and 124.)

[198] Sihem Mesnager. Semibent functions from Dillon and Niho exponents, Kloosterman sums,
and Dickson polynomials. Information Theory, IEEE Transactions on, 57(11):7443 –7458,
nov. 2011. (Cited on pages 110, 111, and 112.)

[199] Jean-François Mestre. Construction de courbes de genre 2 à partir de leurs modules. In
Effective methods in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math.,
pages 313–334. Birkhäuser Boston, Boston, MA, 1991. (Cited on page 182.)

[200] Jean-François Mestre. Lettre addressée à Gaudry et Harley, December 2000. http:
//www.math.jussieu.fr/~mestre. (Cited on page 107.)

[201] Jean-François Mestre. Applications de l’AGM au calcul du nombre de points d’une courbe
de genre 1 ou 2 sur F2n , March 2002. Talk given to the Séminaire de Cryptographie de
l’Université de Rennes, slides available at http:/www.maths.univ-rennes1.fr/crypto/
2001-02/Mestre2203.html. (Cited on page 107.)

[202] Victor Saul Miller. Use of elliptic curves in cryptography. In Hugh Cowie Williams, editor,
CRYPTO, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.
(Cited on page 153.)

[203] Victor Saul Miller. Short programs for functions on curves. Unpublished manuscript, 1986.
(Cited on page 138.)

[204] James Stuart Milne. Abelian varieties. http://www.jsmilne.org/math/. (Cited on
pages 160, 161, 163, 165, 166, 167, 168, 174, 181, and 238.)

[205] James Stuart Milne. Complex multiplication. http://www.jsmilne.org/math/. (Cited
on pages 160, 162, 164, 173, 174, 175, 176, 177, 178, 179, 180, 239, 240, and 241.)

http://www.math.jussieu.fr/~mestre
http://www.math.jussieu.fr/~mestre
http:/www.maths.univ-rennes1.fr/crypto/2001-02/Mestre2203.html
http:/www.maths.univ-rennes1.fr/crypto/2001-02/Mestre2203.html
http://www.jsmilne.org/math/
http://www.jsmilne.org/math/


Bibliography 205

[206] Richard Moloney. Divisibility Properties of Kloosterman Sums and Division Polynomials
for Edward Curves. PhD thesis, University College Dublin, may 2011. (Cited on page 119.)

[207] Michael Burnett Monagan, Keith Oliver Geddes, K. Michael Heal, George Labahn, Stefan M.
Vorkoetter, James McCarron, and Paul DeMarco. Maple 10 Programming Guide. Maplesoft,
Waterloo ON, Canada, 2005. (Cited on page 2.)

[208] Paul Monsky. Formal cohomology. II. The cohomology sequence of a pair. Ann. of Math.
(2), 88:218–238, 1968. (Cited on page 107.)

[209] Paul Monsky. p-adic analysis and zeta functions, volume 4 of Lectures in Mathematics,
Department of Mathematics, Kyoto University. Kinokuniya Book-Store Co. Ltd., Tokyo,
1970. (Cited on page 107.)

[210] Paul Monsky. Formal cohomology. III. Fixed point theorems. Ann. of Math. (2), 93:315–343,
1971. (Cited on page 107.)

[211] Paul Monsky and Gerard Washnitzer. Formal cohomology. I. Ann. of Math. (2), 88:181–217,
1968. (Cited on page 107.)

[212] Charles Mugler. Œuvres : Des corps flottants. Stomachion. Le méthode. Le livre des lemmes.
Le problème des bœufs. Œuvres. Les Belles lettres, 2002. (Cited on page 19.)

[213] David Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in
Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay,
1970. (Cited on pages 160, 161, 162, 163, 164, 165, 166, 167, 168, and 175.)

[214] Volker Müller. Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven über
endlischen Körpern der Charakteristik größer drei. PhD thesis, Üniversität des Saarlandes,
1995. (Cited on page 107.)

[215] Michael Naehrig. Constructive and Computational Aspects of Cryptographic Pairings. PhD
thesis, Eindhoven University of Technology, 2009. (Cited on page 157.)

[216] Jürgen Neukirch. Algebraische Zahlentheorie. In Ein Jahrhundert Mathematik 1890–1990,
volume 6 of Dokumente Gesch. Math., pages 587–628. Vieweg, Braunschweig, 1990. (Cited
on pages 149, 169, 170, and 237.)

[217] Brian Osserman. Orders and their class groups. http://www.math.ucdavis.edu/
~osserman/seminar/orders.ps. (Cited on page 169.)

[218] The PARI Group, Bordeaux. PARI/GP, version 2.4.3, October 2010. available from
http://pari.math.u-bordeaux.fr/. (Cited on pages 123 and 170.)

[219] Birgit Pfitzmann, editor. Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Science. Springer,
2001. (Cited on page 209.)

[220] Jonathan S. Pila. Frobenius maps of Abelian varieties and finding roots of unity in finite
fields. ProQuest LLC, Ann Arbor, MI, 1988. Thesis (Ph.D.)–Stanford University. (Cited
on page 107.)

[221] Marcel Proust and Thierry Laget. Le côté de Guermantes. À la recherche du temps perdu.
Gallimard, 1994. (Cited on page 7.)

http://www.math.ucdavis.edu/~osserman/seminar/orders.ps
http://www.math.ucdavis.edu/~osserman/seminar/orders.ps
http://pari.math.u-bordeaux.fr/


206 Bibliography

[222] Oscar Seymour Rothaus. On "bent" functions. J. Comb. Theory, Ser. A, 20(3):300–305,
1976. (Cited on pages 13 and 96.)

[223] Jean-Jacques Rousseau. Les confessions. Les confessions. s.n., 1782. (Cited on page 95.)

[224] Frank Ruskey. Combinatorial Generation. Unpublished manuscript, 2003. Working Version
(1j-CSC 425/520). (Cited on page 89.)

[225] Frank Ruskey, Carla Diane Savage, and Terry Min Yih Wang. Generating necklaces. J.
Algorithms, 13(3):414–430, 1992. (Cited on page 89.)

[226] Sondre Rønjom and Tor Helleseth. A new attack on the filter generator. IEEE Transactions
on Information Theory, 53(5):1752–1758, 2007. (Cited on pages 10 and 219.)

[227] Peter Sarnak. Selberg’s eigenvalue conjecture. Notices Amer. Math. Soc., 42(11):1272–1277,
1995. (Cited on page 153.)

[228] Takakazu Satoh. The canonical lift of an ordinary elliptic curve over a finite field and
its point counting. J. Ramanujan Math. Soc., 15(4):247–270, 2000. (Cited on pages 107
and 121.)

[229] Takakazu Satoh, Berit Skjernaa, and Yuichiro Taguchi. Fast computation of canonical lifts
of elliptic curves and its application to point counting. Finite Fields Appl., 9(1):89–101,
2003. (Cited on page 107.)

[230] Reinhard Schertz. Weber’s class invariants revisited. J. Théor. Nombres Bordeaux, 14(1):325–
343, 2002. (Cited on page 153.)

[231] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Math. Comp., 44(170):483–494, 1985. (Cited on page 107.)

[232] René Schoof. Nonsingular plane cubic curves over finite fields. J. Comb. Theory, Ser. A,
46(2):183–211, 1987. (Cited on pages 104 and 146.)

[233] René Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux, 7(1):219–254, 1995. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993).
(Cited on page 107.)

[234] Jean-Pierre Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier,
Grenoble, 6:1–42, 1955–1956. (Cited on page 167.)

[235] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984. (Cited on page 156.)

[236] Claude Elwood Shannon. Communication theory of secrecy systems. Bell System Tech. J.,
28:656–715, 1949. (Cited on page 8.)

[237] Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of
Publications of the Mathematical Society of Japan. Princeton University Press, Princeton,
NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1. (Cited on pages 178
and 240.)

[238] Goro Shimura. Abelian varieties with complex multiplication and modular functions, vol-
ume 46 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1998.
(Cited on pages 160, 162, 165, 177, 178, 179, 180, and 241.)



Bibliography 207

[239] Goro Shimura and Yutaka Taniyama. Complex multiplication of abelian varieties and its
applications to number theory, volume 6 of Publications of the Mathematical Society of
Japan. The Mathematical Society of Japan, Tokyo, 1961. (Cited on page 160.)

[240] Tetsuji Shioda. On the graded ring of invariants of binary octavics. Amer. J. Math.,
89:1022–1046, 1967. (Cited on page 182.)

[241] Victor Shoup. NTL 5.4.2: A library for doing number theory, March 2008. www.shoup.
net/ntl. (Cited on page 126.)

[242] Carl Ludwig Siegel. Analytic functions of several complex variables. Lectures delivered at
the Institute for Advanced Study, 1948–1949, With notes by Paul Trevier Bateman, Reprint
of the 1950 edition. Kendrick Press, Heber City, UT, 2008. (Cited on page 161.)

[243] Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions for crypto-
graphic applications. IEEE Transactions on Information Theory, 30(5):776–, 1984. (Cited
on pages 9 and 10.)

[244] Joseph Hillel Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original.
(Cited on pages 99, 100, 103, 104, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 147, 228,
and 230.)

[245] Joseph Hillel Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. (Cited on pages 132,
139, 141, 142, 148, 149, 150, 151, 152, 235, and 237.)

[246] Joseph Hillel Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in
Mathematics. Springer, Dordrecht, second edition, 2009. (Cited on page 99.)

[247] Berit Skjernaa. Satoh’s algorithm in characteristic 2. Math. Comput., 72(241):477–487,
2003. (Cited on page 107.)

[248] Anne-Monika Spallek. Kurven von Geschlecht 2 und ihre Anwendung in Public-Key-
Kryptosystemen. PhD thesis, Universität Gesamthochschule Essen, 1994. (Cited on pages 160
and 182.)

[249] Richard Peter Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword
by Gian-Carlo Rota, Corrected reprint of the 1986 original. (Cited on page 86.)

[250] William Arthur Stein et al. Sage Mathematics Software (Version 4.7). The Sage Development
Team, 2011. http://www.sagemath.org. (Cited on pages 2, 26, 43, 47, 48, 123, 126, 160,
187, 219, and 231.)

[251] Peter Stevenhagen. Number rings. http://websites.math.leidenuniv.nl/algebra/ant.
pdf. (Cited on pages 168 and 169.)

[252] Marco Streng. Complex multiplication of abelian surfaces. PhD thesis, Universiteit Leiden,
2010. (Cited on pages 160, 173, 179, 182, 183, 184, and 241.)

[253] Marco Streng. An explicit version of Shimura’s reciprocity law for Siegel modular functions.
arXiv:1201.0020, December 2011. (Cited on page 184.)

www.shoup.net/ntl
www.shoup.net/ntl
http://www.sagemath.org
http://websites.math.leidenuniv.nl/algebra/ant.pdf
http://websites.math.leidenuniv.nl/algebra/ant.pdf


208 Bibliography

[254] Marco Streng. Smaller class invariants for constructing curves of genus 2. Talk given at
GeoCrypt 2011, slides available at http://iml.univ-mrs.fr/ati/GeoCrypt2011, June
2011. (Cited on page 184.)

[255] Marco Streng. Smaller class invariants for constructing curves of genus 2. Talk given at
ECC 2011, slides available at http://ecc2011.loria.fr/program.html, September 2011.
(Cited on page 184.)

[256] Stupeflip. Stupeflip, January 2003. (Cited on page 1.)

[257] Andrew Victor Sutherland. Accelerating the CM method. 1009.1082, September 2010.
(Cited on page 153.)

[258] Andrew Victor Sutherland. Computing Hilbert class polynomials with the Chinese remainder
theorem. Math. Comput., 80(273):501–538, 2011. (Cited on page 153.)

[259] Deng Tang, Claude Carlet, and Xiaohu Tang. Highly nonlinear Boolean functions with
optimal algebraic immunity and good behavior against fast algebraic attacks. Cryptology
ePrint Archive, Report 2011/366, 2011. http://eprint.iacr.org/. (Cited on pages 3, 8,
12, 15, 16, 17, 21, 23, 24, 25, 221, and 222.)

[260] Xiaohu Tang, Deng Tang, Xiangyong Zeng, and Lei Hu. Balanced Boolean functions with
(almost) optimal algebraic immunity and very high nonlinearity. Cryptology ePrint Archive,
Report 2010/443, 2010. http://eprint.iacr.org/. (Cited on pages 14 and 16.)

[261] John Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134–144,
1966. (Cited on page 174.)

[262] Ziran Tu and Yingpu Deng. Boolean functions with all main cryptographic properties.
Cryptology ePrint Archive, Report 2010/518, 2010. http://eprint.iacr.org/. (Cited on
pages 14 and 17.)

[263] Ziran Tu and Yingpu Deng. A class of 1-resilient function with high nonlinearity and algebraic
immunity. Cryptology ePrint Archive, Report 2010/179, 2010. http://eprint.iacr.org/.
(Cited on page 14.)

[264] Ziran Tu and Yingpu Deng. A conjecture about binary strings and its applications on
constructing Boolean functions with optimal algebraic immunity. Des. Codes Cryptography,
60(1):1–14, 2011. (Cited on pages 8, 12, 13, 14, 15, 16, 21, 29, 86, 90, 221, and 222.)

[265] http://gcc.gnu.org. GCC, the GNU Compiler Collection – Version 4.6.1, 2011. http:
//gcc.gnu.org. (Cited on page 89.)

[266] http://python.org. Python Programming Language – Version 2.6, 2011. http://python.
org. (Cited on page 2.)

[267] Maxima.sourceforge.net. Maxima, a Computer Algebra System (Version 5.23.2), 2011.
http://maxima.sourceforge.net. (Cited on pages 48, 49, and 187.)

[268] Pynac.sagemath.net. Pynac, symbolic computation with Python objects (Version 0.2.2),
2011. http://pynac.sagemath.org. (Cited on pages 48, 49, and 187.)

[269] Osmanbey Uzunkol. Über die Konstruktion algebraischer Kurven mittels komplexer Multip-
likation. PhD thesis, Technischen Universität Berlin, 2010. (Cited on pages 153 and 184.)

http://iml.univ-mrs.fr/ati/GeoCrypt2011
http://ecc2011.loria.fr/program.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://python.org
http://python.org
http://python.org
Maxima.sourceforge.net
http://maxima.sourceforge.net
Pynac.sagemath.net
http://pynac.sagemath.org


Bibliography 209

[270] Gerard van der Geer and Ben Moonen. Abelian Varieties. None, 2011. http://staff.
science.uva.nl/~bmoonen/boek/BookAV.html. (Cited on pages 163 and 168.)

[271] Alfred Jacobus van der Poorten and Andreas Stein, editors. Algorithmic Number Theory,
8th International Symposium, ANTS-VIII, Banff, Canada, May 17-22, 2008, Proceedings,
volume 5011 of Lecture Notes in Computer Science. Springer, 2008. (Cited on pages 191,
192, and 198.)

[272] Jacobus Hendrikus van Lint. Introduction to coding theory, volume 86 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, third edition, 1999. (Cited on page 13.)

[273] Paul Bastiaan van Wamelen. Examples of genus two CM curves defined over the rationals.
Math. Comput., 68(225):307–320, 1999. (Cited on pages 160, 178, and 240.)

[274] Frederik Vercauteren. Advances in point counting. In Advances in elliptic curve cryptography,
volume 317 of London Math. Soc. Lecture Note Ser., pages 103–132. Cambridge Univ. Press,
Cambridge, 2005. (Cited on pages 107 and 121.)

[275] Frederik Vercauteren. Computing zeta functions of curves over finite fields. PhD thesis,
Katholieke Universiteit Leuven, 2007. (Cited on pages 107, 108, 121, 123, and 230.)

[276] Frederik Vercauteren, Bart Preneel, and Joos Vandewalle. A memory efficient version of
Satoh’s algorithm. In Pfitzmann [219], pages 1–13. (Cited on page 107.)

[277] Qichun Wang and Thomas Johansson. A note on fast algebraic attacks and higher order
nonlinearities. In Xuejia Lai, Moti Yung, and Dongdai Lin, editors, Information Security
and Cryptology, volume 6584 of Lecture Notes in Computer Science, pages 404–414. Springer
Berlin / Heidelberg, 2011. 10.1007/978-3-642-21518-6-28. (Cited on page 15.)

[278] Qichun Wang, Jie Peng, Haibin Kan, and Xiangyang Xue. Constructions of cryptograph-
ically significant Boolean functions using primitive polynomials. IEEE Transactions on
Information Theory, 56(6):3048–3053, 2010. (Cited on page 12.)

[279] Lawrence Clinton Washington. Elliptic curves. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2008. Number
theory and cryptography. (Cited on page 99.)

[280] William Charles Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm.
Sup. (4), 2:521–560, 1969. (Cited on pages 104, 160, 163, 167, and 179.)

[281] Heinrich Weber. Lehrbuch der Algebra. Chelsea Pub Co, 3rd reprint edition, July 1979.
(Cited on page 153.)

[282] André Weil. On the theory of complex multiplication. In Proceedings of the international
symposium on algebraic number theory, Tokyo & Nikko, 1955, pages 9–22, Tokyo, 1956.
Science Council of Japan. (Cited on page 166.)

[283] Annegret Weng. Konstruktion kryptographisch geeigneter Kurven mit komplexer Multiplika-
tion. PhD thesis, Universität GH Essen, 2001. (Cited on pages 160 and 182.)

[284] Kim-Ee Yeoh. GP/Pari implementation of point counting in characteristic 2. http:
//pages.cs.wisc.edu/~yeoh/nt/satoh-fgh.gp. (Cited on page 123.)

[285] Amr Mohamed Youssef and Guang Gong. Hyper-bent functions. In Pfitzmann [219], pages
406–419. (Cited on page 96.)

http://staff.science.uva.nl/~bmoonen/boek/BookAV.html
http://staff.science.uva.nl/~bmoonen/boek/BookAV.html
http://pages.cs.wisc.edu/~yeoh/nt/satoh-fgh.gp
http://pages.cs.wisc.edu/~yeoh/nt/satoh-fgh.gp


210 Bibliography

[286] Chia-Fu Yu. The isomorphism classes of abelian varieties of CM-type. J. Pure Appl. Algebra,
187(1-3):305–319, 2004. (Cited on page 174.)



Index

A
Abelian variety . . . . . . . . . . . . . 161

Divisor . . . . . . . . . . . . . . . 164
Dual variety . . . . . . . . . . . . 164
Endomorphism algebra . . . . . . 167
Endomorphism ring . . . . . . . . 167
Isotypic . . . . . . . . . . . . . . . 175
Picard group . . . . . . . . . . . . 164
Picard variety . . . . see Dual variety
Polarization . . . . . . . . . . . . 165
Simple . . . . . . . . . . . . . . . 163
Tate module . . . . . . . . . . . . 167
with complex multiplication . see CM

abelian variety
Adèle . . . . . . . . . . . . . . . . . . 171
Algebraic curve

Affine . . . . . . . . . . . . . . 99, 106
Divisor . . . . . . . . . . . . . . . 134
Elliptic . . . . . . . see Elliptic curve
Function field . . . . . . . . . . . 133
Genus . . . . . . . . . . . . . 99, 106
Hyperelliptic . see Hyperelliptic curve
Jacobian variety . . . . . . . . 135, 181
Non-singular . . . . . . . . see Smooth
Picard group . . . . . . . . . . . . 135
Projective . . . . . . . . 99, 105, 106
Singular . . . . . . . . . . . . . . 139
Smooth . . . . . . . . . . 99, 105, 139
with complex multiplication . . . 181

Algebraic variety
Abelian . . . . . . see Abelian variety
Complete . . . . . . . . . . . . . . 132
Projective . . . . . . . . . . . . . 132

Artin–Schreier curve . . . . . 106, 117, 118
Asymmetric cryptosystem

Discrete logarithm problem . 153, 155
Identity-based cryptography . . . 156

B
Bent function . . . . . . . . . . . 11, 96, 97
Bernoulli number . . . . . . . . . . . 48, 54
Binary quadratic form . . . . . . . . . 146

Definite . . . . . . . . . . . . . . . 146
Discriminant . . . . . . . . . . . . 146
Primitive . . . . . . . . . . . . . . 146
Reduced . . . . . . . . . . . . . . 146

Boolean function . . . . . . . . . . . . . . 8
Algebraic normal form . . . . . . . 10
Annihilator . . . . . . . . . . . . . 10
Fast algebraic attack . . . . . . . . 10
Hamming distance . . . . . . . . . 11
Hamming weight . . . . . . . . 9, 96
Polynomial form . . . . . . . . . . . 97
Sign function . . . . . . . . . . . . 97
Support . . . . . . . . . . . . . 9, 96
Trace representation . see Polynomial

form
Walsh–Hadamard transform . . . . 97

Borchardt sequence . . . . . . . . . . . 184

C
Catalan number . . . . . . . . . . . . . 25
Charpin–Gong criterion . . . . . . . . 113

using hyperelliptic curves . . . . . 116
Chebotarev density theorem . . . . . . 151
Chinese Remainder Theorem . . . 107, 153
Chu–Vandermonde identity . . . . . . . 76
Class field theory

Artin reciprocity . . . . . . . . . 151
Artin symbol . . . . . . . . . . . 151
Congruence subgroup . . . . . . . 149
Generalized ideal class group . . . 149
Ring class field . . . . . . . . . . 149

Class group . . . . . . . . . . . . . . . 144
Class group . . . . 144, 149, 169, 170
Class semigroup . . . . . . . . 144, 169



212 Index

Form class group . . . . . . . . . 146
Form class semigroup . . . . . . . 146
Picard group . . . . . see Class group
Proper class semigroup . . . . 144, 169

Class number
Class number . . . 104, 126, 144, 146
Kronecker class number . 104, 126, 144,

146
Proper class number . . . . . . . 144

Class polynomial . . . . . . . . . . 153, 154
Hilbert class polynomial . . . . . 148
Igusa class polynomial . . . . 182, 184

CM abelian variety . . . . . . . . . 174, 175
a-multiplication . . . . . . . . . . 179
a-transform . . . . . . . . . . . . 179
Classification up to isomorphism . 178
Dual . . . . . . . . . . . . . . . . 177
Polarization . . . . . . . . . . . . 177
Principal . . . . . . . . . . . . 174, 179
Simple . . . . . . . . . . . . . . . 175
Type . . . . . . . . . . . . . . . . 175

CM algebra . . . . . . . . . . . . . . . 173
CM field . . . . . . . . . . . . . . . . . 173
CM method . . . . . . . . . . . . . 154, 156
CM type . . . . . . . . . . . . . . . . 173

Equivalence . . . . . . . . . . . . 173
Primitive . . . . . . . . . . . . 173, 175
Simple . . . . . . . . . . see Primitive
Type norm . . . . . . . . . . . . . 174
Type trace . . . . . . . . . . . . . 174
Type transfer . . . . . . . . . . . 180

Complementary lattice . . . see Trace dual
Complex Lie group . . . . . . . . . 142, 161

Exponential map . . . . . . . . . 161
Complex torus . . . . . . . . 140, 161, 175

Dual torus . . . . . . . . . . . . . 165
Eisenstein series . . . . . . . . . . 142
Riemann conditions . . . . . . . . 163
Weierstraß ℘-function . . . . . . . 142

Computation of the Hilbert class polynomial
Complex analytic method . . . . 152
CRT method . . . . . . . . . . . . 153
p-adic method . . . . . . . . . . . 152

Computation of the Igusa class polynomials
Complex analytic method . . . . 184
CRT method . . . . . . . . . . . . 184
p-adic method . . . . . . . . . . . 184

Cryptographic property of Boolean functions
8

Algebraic degree . . . . . . . . . 10, 97
Algebraic immunity . . . . . . . . . 10
Balancedness . . . . . . . . . . . . . . 9
Bentness . . . . . . see Bent function
Hyper-bentnesssee Hyper-bent function
Nonlinearity . . . . . . . . . . . . . 11
Resiliency . . . . . . . . . . . . 9, 10
Semi-bentness see Semi-bent function

Cyclotomic character . . . . . . . . . . 180
Cyclotomic class . . . . . . . . . . . 22, 88

Coset leader . . see Cyclotomic leader
Cyclotomic leader . . . . . 88, 97, 117
Equivalence . . . . . . . . . . . . . 22

Cyclotomic coset . . . see Cyclotomic class
Cyclotomic polynomial . . . . . . . . . 156

D
Dedekind η function . . . . . . . . . . 153
Dedekind ring . . . . . . . . . . . . 143, 168
Dickson polynomial . . . . . . . . 99, 113
Dillon criterion . . . . . . . . . . . . . 110

using elliptic curves . . . . . . . . 114
Discriminant . . . . . . . . . . . . . . 156

of a binary quadratic form . . . . 146
of a number field . . . . . . . . . 145
of a Weierstraß equation . . . 100, 140
of an order . . . . . . . . . . . 104, 105

Divisibility of Kloosterman sums
Classical approach . . . . . . . . . 119
using elliptic curves . . . . . . . . 120

Divisor . . . . . . . . . . . . . . . . . 134
Algebraic equivalence . . . . . . . 164
Ample . . . . . . . . . . . . . . . 165
Degree . . . . . . . . . . . . . . . 134
Group of . . . . . . . . . . . . . . 134
Linear equivalence . . . . . . . 134, 164
of a function . . . . . . . . . . . . 134
Principal . . . . . . . . . . . . . . 134
Support . . . . . . . . . . . . . . 134

Double η quotient . . . . . . . . . . . 153

E
Elliptic curve . . . . . . . . . . 99, 114, 161

Addition law . . . . . . . . . . . . 100
Bad reduction . . . . . . . . . 139, 149
Canonical lift . . . . . . . . . . . 107
Chord-and-tangent lawsee Addition law
CM curve . . . . . . . . . . . . . 154
Discriminant . . . . . . . . . . 100, 140



Index 213

Division polynomial . . . . . . 103, 105
Endomorphism ring . . . . . . . . 103
Frobenius endomorphism see Frobenius

endomorphism
Good reduction . . . . . . . . 139, 149
Isogeny . . . . . . . . . . . . . . . 100
j-invariant . . . . . . . see j-invariant
Jacobian variety . . . . . . . . . . 135
Ordinary . . . . . . . . . . . . 104, 105
Pairing . . . . . . . . . . . . . . . 135
Point at infinity . . . . . . . . . . . 99
Quadratic twist . . . . . . . . 105, 120
Rational point . . . . . . . . . . . 100
SEA algorithm . . . . . . . . . . . 107
Subfield curve . . . . . . . . . . . 154
Supersingular . . . . . . 104, 105, 156
Torsion subgroup . . . . . . . 103, 122
Weierstraß equation . . . 99, 105, 120
with complex multiplication . 103, 147

Endomorphism ring
Analytic representation . see Complex

representation
as an ideal quotient . . . . . . . . 176
Classification . . . . . . . . . 103, 168
Complex representation . . . . . . 167
of a CM abelian variety . . . . 174, 176
of an elliptic curve . . . . . . . . 103
Rational representation . . . . . . 167
Rosati involution . . . . . . . . . 168

Eulerian number . . . . . . . . . . . 48, 55
Exponential sum . . . . . . . . . . . . 113

Cubic sum . . . . . . . . . . . . . . 98
Kloosterman sum . . . . . . . . . . 98
using hyperelliptic curves . . . 115, 116

F
Family of Boolean functions

Carlet and Feng . . . . . . . . . . . 12
Dillon . . . . . . . . . . . . . . . . . 13
Jin et al. . . . . . . . . . . . . . . . 17
Tang, Carlet and Tang . . . . . . . 16
Tu and Deng I . . . . . . . . . . . . 13
Tu and Deng II . . . . . . . . . . . 13
Tu and Deng III . . . . . . . . . . . 14

Field trace . . . . . . . . . . . . . . . . 96
Finite field . . . . . . . . . . . . . . . 104

of even characteristic . . 99, 105, 106
Fractional ideal . . . . . . . . . . . 143, 168

Colon . . . . . . . . . . . see Quotient

Inverse . . . . . . . . . . . . . 144, 168
Invertible . . . . . . . . . . . . 144, 168
Principal . . . . . . . . . . . . . . 144
Projective . . . . . . . . . . . . . 144
Proper . . . . . . . . . . . . . 144, 168
Quotient . . . . . . . . . . . . . . 144
Singular . . . . . . . . . . . . . . 169

Frobenius endomorphism . . . . . 104, 154
Lift to characteristic zero . . . 150, 179
Trace . . . . . . . . 104, 105, 107, 126

G
GAGA principle . . . . . . . . . . . . 167
Gaussian hypergeometric series . . . 67, 69

Euler’s transformation . . . . . . . 77
Linear transformations . . . . . . . 77
Pfaff’s transformation . . . . . . . . 77
Quadratic transformation . . . . . . 71

Geometrically distributed variable . 68, 78

H
Hamming weight

of a Boolean function . . . . . . 9, 96
of an integer . . . . . . . . . . . . . 21

Hermitian form . . . . . . . . . . . . . 162
Hyper-bent function . . . . . . . . . 96, 98

Charpin–Gong criterion . . . . . . 113
Dillon criterion . . . . . . . . . . 110
Mesnager criterion I . . . . . . . . 111
Mesnager criterion II . . . . . . . 113

Hyperelliptic curve . . . . . . . . . 105, 115
Artin–Schreier curve . . . . . . . 106
Imaginary . . . . . . . . . . . . . 106
Moduli space . . . . . . . . . . . 181
Point at infinity . . . . . . . . . . 106

I
Idèle . . . . . . . . . . . . . . . . . . . 171
Igusa invariants . . . . . . . . . . . . . 182
Isogeny

Degree . . . . . . . . . . . . . . . 103
Dual . . . . . . . . . . . . . . . . 164
of abelian varieties . . . . . . . . 163
of elliptic curves . . . . . . . . . . 100
Trace . . . . . . . . . . . . . . 103, 104

J
j-invariant . . . . . . . . 100, 105, 140, 154

Integrality . . . . . . . . . . . . . 149
q-expansion . . . . . . . . . . . . 152



214 Index

K
Kloosterman sum . . . . . . . . . . 98, 114

Divisibility . . . . . see Divisibility of
Kloosterman sums

Generic search algorithm . . . . . 121
using elliptic curves . . . . . . . . 114
Value 0 . . . . . . . . . . . . . . . 122
Value 4 . . . . . . . . . . . . . 122, 124

Kronecker congruence relation . . 149, 179
Kronecker symbol . . . . . . . . . 105, 145

L
Laguerre polynomial . . . . . . . . . . . 74
Lattice . . . . . . . . . . . . . . . . 103, 175

Frobenius basis . see Symplectic basis
in the complex numbers . . . . . 140
Multiplier ring . . . . . . . . . 140, 143
Period matrix . . . . . . . . . . . 163
Symplectic basis . . . . . . . . . . 163

Local field . . . . . . . . . . . . . . . . 138
Lyndon word . . . . . . . . . . . . . . . 88

M
Main theorem of complex multiplication

for elliptic curves . . . . . . . . . 152
over the rationals . . . . . . . . . 180
over the reflex field . . . . . . . . 180

Mesnager criterion I . . . . . . . . . . 111
using elliptic curves . . . . . . . . 115

Mesnager criterion II . . . . . . . . . . 113
using hyperelliptic curves . . . 117, 118

Modular function . . . . . . . 142, 149, 153
Modular group . . . . . . . . . . . . . 141
Modular integer

Binary not . . . . . . . . . . . . . . 22
Block splitting pattern . . . . . 35, 37
Carries . . . . . . . . . . . . . . . . 23
Hamming weight . . . . . . . . . . 21
Length . . . . . . . . . . . . . . . . 80

Modular polynomial . . . . . . . . . . 154
Morphism

Degree . . . . . . . . . . . . . . . 133
Inseparable . . . . . . . . . . . . . 133
Ramification index . . . . . . . . 133
Separable . . . . . . . . . . . . . 133

Multinomial coefficient . . . . . . . . . . 48

N
N -systems . . . . . . . . . . . . . . . . 153
Necklace . . . . . . . . . . . . . . . . . . 88

Aperiodic necklace . see Lyndon word
Iterative generation . . . . . . . . . 89

Normalization kernel . . . . . . . . . . 170
Number field . . . . . . . . . . . . . . 103

Imaginary quadratic . . . . . . . 103
Ring of integers . . . . . . . . . . 143

O
Order . . . . . . . . . . . . . . . . . . 103

Codifferent . . . . . . . see Trace dual
Conductor . . . . . 105, 143, 169, 173
Discriminant . . . . . . . . . . . . 105
in an imaginary quadratic field105, 143
Integral closure . . . . . . . . . . 168
Maximal . . . . . . . . . . . . . . 160
Normalization . . see Integral closure

P
Pairing . . . . . . . . . . . . . . . 136, 155

Ate pairing . . . . . . . . . . . . . 155
Eta pairing . . . . . . . . . . . . . 155
Tate pairing . . . . . . . . . . . . 136
Weil pairing . . . . . . . . . . 137, 156

Perfect field . . . . . . . . . . . . . . . . 99
Pochhammer symbol . . . . . . . . . . . 68
Poincaré upper halfplane . . . . . . . 140

Fundamental domain . . . . . . . 141
Point counting

l-adic algorithms . . . . . . . . . 107
SEA algorithm . . . . . . . . . 107

p-adic algorithms . . . . . . . . . 107
Canonical lift methods . . . 107, 121
Cohomological methods . . . . 107
Deformation theory methods . 107

Proved cases of the Tu–Deng conjecture
Asymptotic case . . . . . . . . . . . 68
Cyclotomic case . . . . . . . . . . . 33
Extremal case . . . . . . . . . . 45, 46
One block case . . . . . . . . . . . . 39
Tang–Carlet–Tang conjecture . . . 24
Two blocks case . . . . . . . . . . . 45
Zero case . . . . . . . . . . . . . . . 30

Q
Quaternion algebra . . . . . . . . . . . 103

R
Reflex field . . . . . . . . . . . . . . . 173
Riemann form . . . . . 162, 163, 165, 168

Pfaffian . . . . . . . . . . . . . . . 163
Rising factorial . . . . . . . . . . . . . . 68



Index 215

S
Semi-bent function . . . . . . . . . . . . 98
Semicharacter . . . . . . . . . . . . . . 162
Shimura reciprocity law . . . . . . 153, 184
Shimura–Taniyama formula . . . . . . 179
Siegel upper half-space . . . . . . . . . 163
Stirling number . . . . . . . . . . . . . . 54
Stream cipher . . . . . . . . . . . . . . . . 7

Combiner model . . . . . . . . . . . . 9
Filter model . . . . . . . . . . . . . . 9

Symmetric cryptosystem . . . . . . . . . . 7
One-time pad . . . . . . . . . . . . . 8
S-box . . . . . . . . . . . . . . . . . 96
Stream cipher . . . see Stream cipher

Symplectic group . . . . . . . . . . . . 166

T
Tensor product . . . . . . . . . . . . . 103
Theta function . . . . . . . . . . . 153, 161

Associated Riemann form . . . . 162
Equivalence . . . . . . . . . . . . 162
Factor of automorphy see Multiplicator
Multiplicator . . . . . . . . . . . . 162
Riemann theta function . . . . . . 182

Theta constant . . . . . . . . 182, 184
Theta null value . . see Theta constant

Trace dual . . . . . . . . . . . . . . . . 176
Transfer-matrix method . . . . . . . . . 86
Tu–Deng conjecture . . . . . . . 12, 21, 29

Block splitting pattern . . . . . 35, 37
Closed-form expression . . . . . . . 47
Constrained case . . . . . . . . . . 40
Extremal conjecture . . . . . . . . . 47
Jin et al. generalization . . . 16, 21, 23
Reformulation using carries . . . . 31
Tang–Carlet–Tang conjecture . 15, 21
Tang–Carlet–Tang generalization15, 21,

23
Tu–Deng algorithm . . . . . . . . . 88

U
Unit group . . . . . . . . . . . . . . . 171

W
Walsh–Hadamard transform . . . . . . . 97

Fast Walsh–Hadamard transform . 98,
122, 125





Résumé long

FauĆ.

Werd’ iĚ beruhigt je miĚ auf ein Faulbett legen,

So sey eŊ gleiĚ um miĚ gethan!

KannĆ du miĚ sĚmeiĚelnd je bel§gen,

Da iĚ mir selbĆ gefallen mag,

KannĆ du miĚ mit Genu betr§gen;

DaŊ sey f§r miĚ der leŃte Tag!

Die Wette biet’ iĚ!

MephiĆopheleŊ.

Top!

FauĆ.

Und SĚlag auf SĚlag!

Werd’ iĚ zum AugenbliĘe sagen:

Verweile doĚ! du biĆ so sĚŽn!

Dann magĆ du miĚ in FeĄeln sĚlagen,

Dann will iĚ gern zu Grunde gehn!

Dann mag die TodtengloĘe sĚallen,

Dann biĆ du deineŊ DienĆeŊ frey,

Die Uhr mag Ćehn, der Zeiger fallen,

EŊ sey die Zeit f§r miĚ vorbey!

MephiĆopheleŊ.

Bedenk’ eŊ wohl, wir werden’Ŋ niĚt vergeĄen.

FauĆ

Johann Wolfgang von Goethe [117]
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Estragon. — Alors, adieu.
Pozzo. — Adieu.
Vladimir. — Adieu.
Estragon. — Adieu.

Silence. Personne ne bouge.
Vladimir. — Adieu.
Pozzo. — Adieu.
Estragon. — Adieu.

Silence.
Pozzo. — Et merci.
Vladimir. — Merci à vous.
Pozzo. — De rien.
Estragon. — Mais si.
Pozzo. — Mais non.
Vladimir. — Mais si.
Estragon. — Mais non.

Silence.
Pozzo. — Je n’arrive pas. . . (il hésite) . . . à

partir.
Estragon. — C’est la vie.

En attendant Godot
Samuel Beckett [11]
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La cryptologie est l’art du secret et de la protection de l’information. Une de ses applications
classiques est l’échange d’informations confidentielles entre deux entités. Pour ce faire, deux
solutions quelque peu différentes sont possibles : la cryptographie symétrique où les deux entités
partagent un même secret et la cryptographie asymétrique où un dissymétrie existe.

Un autre dichotomie est habituelle en cryptologie : les cryptographes conçoivent les systèmes ;
les cryptanalystes cherchent à les attaquer. Plus les attaques des seconds sont efficaces, plus
le travail des premiers est difficile. La plupart des cryptosystèmes, tout comme les attaques
les ébranlant, reposent sur les propriétés mathématiques des objets mis en jeu, et ce, que le
système soit symétrique ou asymétrique. Il est donc nécessaire de bien comprendre ces objets
et leurs propriétés aussi bien en théorie qu’en pratique. En effet, une étude purement abstraite
ne saurait être suffisante pour s’assurer de la robustesse d’un système. Démontrer l’existence
d’objets intéressants, mais ne pas savoir les construire n’apportera pas grand chose non plus ;
inversement, savoir construire des objets en petites dimensions, mais ne pas savoir démontrer leur
existence en général, est tout aussi peu satisfaisant.
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Une fois de plus, deux approches sont possibles pour implémenter les objets étudiés : utiliser
des logiciels puissants, mais propriétaires, ou se tourner vers le monde du logiciel libre où les
solutions sont parfois moins abouties, mais présentent souvent d’autres avantages. C’est cette
seconde approche qui a été choisie avec l’utilisation et la contribution au logiciel libre Sage [250].

Dans la Section 1, nous nous intéressons à une conjecture combinatoire dont la validité assure
l’existence de fonctions booléennes avec de bonnes propriétés cryptographiques. La première
sous-section présente les différentes propriétés attendues d’une fonction booléenne pour un usage
cryptographique, ainsi que certaines familles infinies de fonctions les satisfaisant, à condition que la
conjecture mentionnée ci-dessus soit vérifiée ; la seconde sous-section donne un certain nombre de
résultats concernant cette conjecture, en particulier sa validité dans divers cas. Dans la Section 2,
nous concentrons notre attention sur une propriété des fonctions booléennes : la non-linéarité.
Et plus particulièrement sur les fonctions courbes et hyper-courbes, c’est-à-dire les fonctions
booléennes qui atteignent la non-linéarité maximum. Pour ce faire, un certain nombre d’objets
mathématiques sont présentés dans la première sous-section. C’est en particulier le cas des courbes
elliptiques et hyperelliptiques qui seront utilisées dans la sous-section suivante. Nous montrerons en
effet dans cette seconde sous-section, comment l’utilisation de ces courbes permet de caractériser,
mais aussi de construire efficacement, des fonctions courbes. Dans la Section 3, nous étudions les
courbes elliptiques et hyperelliptiques d’un point de vue différent : nous cherchons à construire
des polynômes de classes à partir de courbes à multiplication complexe. La première sous-section
présente le cas classique des courbes elliptiques et du polynôme de classes de Hilbert ; la seconde
sous-section les extensions de cette méthode aux courbes hyperelliptiques et en particulier aux
courbes de genre deux et aux polynômes d’Igusa dans le cas d’ordre non-maximaux.

1 Des fonctions booléennes et d’une conjecture combina-
toire

Dans cette première section, nous nous intéressons à l’utilisation des fonctions booléennes en
cryptographie symétrique et plus particulièrement à une conjecture d’ordre combinatoire assurant
l’existence de fonctions intéressantes d’un point de vue cryptographique.

1.1 Fonctions booléennes en cryptographie
Une fonction booléenne est une fonction du F2-espace vectoriel Fn2 de dimension n vers le
corps F2 à deux éléments. Les fonctions booléennes sont une brique fondamentale des systèmes
cryptographiques symétriques. Elles sont par exemple utilisées pour construire des boîtes–S dans
les systèmes de chiffrement par blocs et pour filtrer, ou combiner, des registres à décalage à
rétroaction linéaire (LFSR) dans les systèmes de chiffrement à flot. C’est cette dernière utilisation
qui nous intéresse ici et qui est schématisée dans les Figures 1 et 2

Afin d’assurer la sécurité du système cryptographique reposant sur une telle construction, les
fonctions booléennes utilisées doivent vérifier un certain nombre de propriétés. Ainsi, elles doivent
être :

• équilibrées, i.e. prendre aussi souvent les valeurs 0 et 1, afin d’éviter l’apparition de dépen-
dances statistiques entre les entrées et les sorties du système et la possibilité de concevoir
un distingueur ;

• avoir un haut degré algébrique, qui est le multi-degré de la forme polynomiale multivariée
de la fonction, afin de résister aux attaques à la Berlekamp–Massey [187], [193, 6.2.3], [38,
4.1.1] et à la Rønjom–Helleseth [226] ;
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Figure 2 – Combinaison de LFSR

• avoir une haute immunité algébrique, c’est-à-dire qu’il n’existe pas de fonction booléenne
de petit degré de support disjoint, afin de résister aux attaques algébriques [59] ;

• résister aux attaques algébriques rapides [58], c’est-à-dire qu’il n’existe pas de fonction
booléenne de petit degré telle que le produit avec la fonction concernée donne une nouvelle
fonction de petit degré ;

• être hautement non-linéaire, i.e. éloignée des fonctions affines, afin de résister aux attaques
par corrélation rapide [191] et aux attaques par approximation linéaire [72].

Des propriétés plus fines peuvent être demandées. Par exemple que la fonction soit m-résiliente,
c’est-à-dire que toute restriction de la fonction où m entrées ont été fixées doit rester équilibrée.
Cette propriété permet de résister aux attaques par corrélation et n’est pas requise dans le modèle
filtré.

Construire des fonctions satisfaisant ces critères, voire prouver leur existence est une tâche
ardue. De plus, ces critères sont dans un sens incompatibles. Ainsi, le degré algébrique d’une
fonction m-résiliente vérifie

m+ deg(f) ≤ n− 1 .

Ou encore, une fonction courbe, i.e. possédant une non-linéarité maximum, n’est jamais équilibrée.
Bien souvent, l’apparition d’un nouveau type d’attaque, et l’introduction d’un critère de résistance
associé, rendent caduques toutes les familles de fonctions connues. Par exemple, parmi les fonctions
connues avant l’apparition des attaques algébriques, celles qui possédaient une immunité algébrique
optimale avaient toutes une piètre non-linéarité. C’est seulement en 2008 que Carlet et Feng [41]
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mirent à jour une famille de fonctions booléennes et ses bonnes propriétés cryptographiques au
sein de familles de fonctions booléennes précédemment étudiées par Feng, Liao et Yang [89].

Définition 1.1 (Construction de Carlet et Feng [41, Section 3]). Soient n ≥ 2 un entier positif
et α un élément primitif de F2n . La fonction booléenne f en n variables est définie par

supp(f) =
{

0, 1, α, . . . , α2n−1−2
}

.

Carlet et Feng ont montré que ces fonctions sont

1. équilibrées,

2. de degré algébrique optimal n− 1 pour une fonction équilibrée,

3. d’immunité algébrique optimale dn/2e,

4. assez résistantes aux attaques algébriques rapides,

5. et munies d’une bonne non-linéarité

nl(f) ≥ 2n−1 + 2n/2+1

π
ln
(

π

2n − 1

)
− 1 ≈ 2n−1 − 2 ln 2

π
n2n/2 .

Cette famille fut en suite modifiée par Tu et Deng [264], puis étendue par divers auteurs dont
Tang, Carlet et Tang [259], et finalement Jin et al., pour donner la famille suivante.

Définition 1.2 (Construction de Jin et al. [143]). Soient n = 2k ≥ 4 un entier pair, α un
élément primitif de F2n , A =

{
1, α, . . . , α2k−1−1

}
et g : F2k → F2 un fonction booléenne en k

variables définie par

supp(g) = αsA ,

pour tout 0 ≤ s ≤ 2k − 2, et u ∈
(
Z/(2k − 1)Z

)×. La fonction booléenne f : F2k × F2k → F2 en
n variables est définie par

f(x, y) = g
(
xy2k−1−u

)
.

Jin et al. ont prouvé que ces fonctions sont

1. de degré algébrique compris entre n/2 et n− 2 selon la valeur de u,

2. d’immunité algébrique optimale n/2 à condition qu’une conjecture soit vérifiée,

3. d’une non-linéarité supérieure à

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 1 ≈ 2n−1 − ln 2
π
n2n/2 .

La preuve de l’optimalité de l’immunité algébrique dépend de la validité d’une conjecture
combinatoire qui est l’objet de la sous-section suivante.
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1.2 D’une conjecture sur l’addition modulo 2k − 1
La version la plus générale de cette conjecture est la suivante.

Conjecture 1.3 (Conjecture de Jin et al. [143]). Soient k ≥ 2 un entier, t, u, v ∈
(
Z/(2k − 1)Z

)∗
tels que gcd(u, 2k − 1) = gcd(v, 2k − 1) = 1. Alors

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

Elle recouvre la conjecture originale de Tu et Deng pour u = v = 1 et celle de Tang, Carlet
et Tang pour u = −v = 1. Ce dernier cas est particulièrement intéressant car Tang, Carlet et
Tang [259] ont prouvé que les fonctions booléennes correspondantes sont résistantes aux attaques
algébriques rapides, ce qui n’est pas le cas de celles de Tu et Deng [264].

Cette conjecture s’exprime naturellement à l’aide du nombre de retenues qui se produisent lors
d’une addition modulo 2k − 1. Si a et t sont deux entiers modulo 2k − 1, le nombre de retenues
r(a, t) qui se produisent lors de leur addition peut être défini comme suit.

Définition 1.4. Pour a ∈ Z/(2k − 1)Z, a 6= 0, posons

r(a, t) = wH(a) + wH(t)− wH(a+ t) ,

i.e. r(a, t) est le nombre de retenues qui se produisent lors de l’addition modulaire. Par convention,
posons

r(0, t) = k ,

i.e. 0 se comporte comme la chaîne de caractères 1...1︸ ︷︷ ︸
k

. Remarquons aussi que r(−t, t) = k.

Malheureusement, une telle quantité est difficile à appréhender et une structure algébrique
agréable permettant d’attaquer le problème reste à trouver. Des considérations d’ordre combina-
toire, ainsi que probabiliste dans certains cas, permettent toutefois d’apporter un certain nombre
de réponses au problème initial. Ainsi, quelques propriétés sont faciles à déduire de la définition.
Par exemple,

• #St,v,u,k = #S2t,v,u,k, i.e. le cardinal de St,v,u,k ne dépend que de la classe cyclotomique
de t modulo 2k − 1 ;

• les entiers u et v peuvent être échangé, i.e. #St,v,u,k = #St,u,v,k ;

• si c est inversible, alors #St,v,u,k = #Sct,cv,cu,k ;

• la relation suivante est vérifiée

#St,v,u,k = #S(uv)−1t,v−1,u−1,k .

Ces considérations permettent de prouver la validité de la conjecture de Tang, Carlet et Tang.

Théorème 1.5. Soient k ≥ 2 un entier, t ∈
(
Z/(2k − 1)Z

)∗ et u = 2i pour un entier i quelconque.
Alors

#St,−1,u,k ≤ 2k−1 .

Ainsi, les bonnes propriétés des fonctions booléennes correspondantes ne sont plus conjecturales.
Intéressons nous maintenant à la conjecture originale de Tu et Deng. La conjecture s’énonce

de la façon suivante en termes de retenues.
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Conjecture 1.6. Soient k ≥ 2 un entier, t ∈
(
Z/(2k − 1)Z

)∗, St,k l’ensemble

St,k =
{
a ∈ Z/(2k − 1)Z | r(a, t) > wH(t)

}
,

et Pt,k le nombre
Pt,k = #St,k/2k .

Alors
Pt,k ≤

1
2 .

Les considérations précédentes ne permettent malheureusement plus de conclure aussi facile-
ment. Un approche similaire indique en effet simplement que

St,k + S−t,k ≤ 2k

en général. Elles permettent cependant de conclure dans quelques cas dégénérés ; par exemple si
t = 0, ou si t et −t sont dans la même classe cyclotomique.

Pour continuer notre étude, décomposons t, qui sera maintenant considéré comme fixe, de la
façon suivante.

Définition 1.7.

t =
α1 {

1---1

β1 {
0---0
t1

...

αi {
1---1

βi {

0---0
ti

...

αd {

1---1

βd {

0---0
td

avec d le nombre de blocs, αi et βi les nombres de 1 et de 0 dans le i-ième bloc et B =
∑d
i=1 βi =

k − wH(t).

Pour un entier modulaire a, nous définissons les quantités correspondantes de la façon suivante.

Définition 1.8.

t =
α1 {

1---1

β1 {

0---0...

αi {

1---1

βi {

0---0...

αd {

1---1

βd {

0---0 ,

a = ?10-0{

γ1

?01-1{

δ1

...?10-0{

γi

?01-1{

δi

...?10-0{

γd

?01-1{

δd

,

La première étape est alors de traiter le cas où t est composé d’un unique bloc. Dans cette
situation, il est encore possible d’expliciter le nombre de retenues produites lors de l’addition d’un
entier modulaire a.

Proposition 1.9. La proportion P (e) d’entiers a tels que k − r(a, t) = e est

P (e) =


2−β pour e = 0 ,

2−|e−β| 1−4M−m
3 pour 0 < e < α+ β ,

2−α − 2−α−β pour e = α+ β ,

où
m = min(e, α) et M = max(0, e− β) .

Cette proposition permet de conclure dans le cas où d = 1 et exprime #St,k de façon explicite.

Théorème 1.10. Soient k ≥ 2 et t ∈
(
Z/(2k − 1)Z

)∗ fait d’un unique bloc. Alors

Pt,k =
{

2−α−β 1−2−2α

3 si 1 ≤ α ≤ k−1
2 ,

1+2−2β+1

3 si k−1
2 ≤ α ≤ k − 1 .
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Afin d’utiliser les résultats ci-dessus pour des nombres t composés de plusieurs blocs il est
nécessaire de poser l’hypothèse

min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − wH(t)− 1 .

Ceci assure que tous les blocs de t se comportent de la même façon quand un entier a ∈ St,k est
ajouté : ils débordent, i.e. une retenue se propage toujours d’un bloc à l’autre. De plus, la valeur
exacte de #St,k ne dépend plus de l’ordre des blocs, ni de la valeur des αi, d’où la définition
suivante.

Définition 1.11. Soient k ≥ 2 et t ∈
(
Z/(2k − 1)Z

)∗ tels que

min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − wH(t)− 1 .

La fonction fd(β1, . . . , βd) est définie par

fd(β1, . . . , βd) = Pt,k .

Il est également possible d’exprimer #St,k en utilisant les valeurs de P (e) ci-dessus.

Proposition 1.12. La fonction fd s’exprime comme

fd(β1, . . . , βd) =
B−1∑
E=0

∑∑
d
ei=E

0≤ei

∏
d

P (ei)

= 2−B3−d
B−1∑
E=0

2−E
∑∑
d
ei=E

0≤ei

∏
d

(
4max(1,min(ei,βi)) − 1

)
.

Cette expression permet de construire un famille d’entiers qui atteignent la borne de la
conjecture.

Théorème 1.13. Pour k ≥ 2, on a

fd(1, . . . , 1) = 1
2 .

Une étude analytique permet de conclure dans le cas où t est composé de deux blocs.

Théorème 1.14. Soient k ≥ 2 et t ∈
(
Z/(2k − 1)Z

)∗ tels que d = 2 et α1, α2 ≥ B − 1. Alors

#St,k ≤ 2k−1 .

La fonction f2 s’exprime en effet explicitement de la façon suivante.

Proposition 1.15. La fonction f2 est donnée par

f2(x, y) = 11
27 + 4−x

(
2
9x−

2
27

)
+ 4−y

(
2
9y −

2
27

)
+ 4−x−y

(
20
27 −

2
9(x+ y)

)
.
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Figure 3 – Graphe de f2(x, y) pour 0 ≤ x, y ≤ 8

Figure 4 – Graphe de f2(x, y) pour 1 ≤ x, y ≤ 5
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Son graphe est représenté dans les Figures 3 et 4.
Une telle approche peut se généraliser à un nombre de blocs supérieur. Une étude plus poussée

de l’expression de fd sous forme de somme donnée plus haut permet d’obtenir la forme close
suivante.

Proposition 1.16. Pour tout d ≥ 1, fd peut s’écrire

fd(β1, . . . , βd) =
∑

I⊂{1,...,d}

4−
∑

i∈I
βiP#I

d ({βi}i∈I) ,

où Pnd est un polynôme multivarié symétrique en n variables de degré total d− 1 et de degré d− 1
en chaque variable pour n > 0 et 0 pour n = 0.

Les coefficients ad,n(i1,...,in) des polynômes multivariés sont donnés par la formule suivante.

Proposition 1.17. Supposons que i1 ≥ . . . ≥ im 6= 0 > im+1 = 0 = . . . = in = 0 et que m > 0.
Notons l la somme l = i1 + . . .+ in > 0 (i.e. le degré total du monôme). Alors

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m ,

où
(

l
i1,...,in

)
est un coefficient multinomial et bd,nl,m est défini par

bd,nl,m =
n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|! .

Dans cette expression de bd,nl,m, les notations sont :

• I = {m+ 1, . . . ,m+ i} ;

• J = {n+ 1, . . . , n+ j} ;

• S =
∑
j∈I∪J,1≤j≤m kj ;

• h = d−m− j− i ;

et

Cj =

 Aj + Bj+1
j+1 si j > 0 ,

− 13
6 si j = 0 ,

1 si j = −1 ,

où Ai est une somme de nombres eulériens et Bi est un nombre de Bernoulli.

Enfin, il est possible d’exprimer la limite de fd quand les βi tendent vers l’infini à l’aide de
séries hypergéométriques.

Proposition 1.18. Pour d ≥ 1 et k ≥ 0, notons Pd = 1− 2fd(∞, . . . ,∞). Alors

Pd = 1
4d
∞∑
j=0

(
d− 1 + j

d− 1

)2 1
4j = 1

4d 2F1(d, d; 1; 1/4) .

En particulier, 1
3d ≤ Pd ≤

1+3·2d−2

4d . Qui plus est, P1 = 1/3 et P2 = 5/27.
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De simples considérations d’ordre probabiliste permettent alors de prouver la validité de la
conjecture de Tu et Deng dans un cadre asymptotique.

Théorème 1.19. Soit d ≥ 1 un entier. Il existe une constante Kd telle que, si ∀i, βi ≥ Kd, on
a alors

fd(β1, . . . , βd) <
1
2 .

Pour conclure cette section, notons qu’une approche inductive naïve semble difficile à mettre
en place ; de nombreuses données expérimentales soutiennent cette affirmation. Enfin, d’un point
de vue calculatoire, nous avons étendu les résultats de Tu et Deng, qui avaient vérifié la validité
de leur conjecture pour k ≤ 29, jusqu’à k = 40. Notre implémentation en C [148] s’appuie
sur la version 2.2 de la bibliothèque FLINT [127] pour l’arithmétique et la version 1.5.4 de la
bibliothèque OpenMPI [106] pour distribuer les calculs.

2 Fonctions courbes et comptage de points sur les courbes
algébriques

Dans cette section nous nous concentrons sur une propriété bien précise des fonctions booléennes :
la non-linéarité ; et plus particulièrement aux fonctions qui atteignent la non-linéarité maximum.
Ce sont les fonctions courbes et nous les étudierons au travers de leur forme polynomiale. De
plus, nous nous efforcerons de décrire des algorithmes efficaces permettant de générer de telles
fonctions. Ces algorithmes font intervenir de façon quelque peu inattendue des objets rencontrés
habituellement en cryptographie asymétrique : les courbes elliptiques et hyperelliptiques.

2.1 Fonctions courbes et courbes algébriques
Rappelons que le corps fini F2n à 2n éléments est (non-canoniquement) isomorphe au F2 -espace
vectoriel Fn2 de dimension n. Toute fonction booléenne peut donc s’écrire de façon unique sous
forme d’une somme de traces de monômes :

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)

+ ε(1 + x2n−1), aj ∈ F2o(j) ,

où Γn est un ensemble de représentants des classes cyclotomiques modulo 2n − 1 (incluant la
classe triviale de 0), o(j) est la taille du coset cyclotomique contenant j, et ε = wH(f) modulo 2.

C’est ce qu’on appelle la forme polynomiale. Un problème difficile consiste alors à donner
des conditions nécessaires et suffisantes sur les coefficients aj pour que la fonction booléenne
correspondante soit courbe.

Afin d’attaquer ce problème, une première étape consiste à exprimer le caractère courbe à
l’aide de la transformée de Walsh–Hadamard.

Définition 2.1. Soit f une fonction booléenne définie sur F2n . La transformée de Walsh–
Hadamard de f est la transformée de Fourier discrète de χf = (−1)f . Pour ω ∈ F2n , elle
est explicitement donnée par

χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx) .

Une fonction est courbe si et seulement si sa transformée de Walsh–Hadamard ne prend que
les valeurs ±2n/2. Si de plus toute fonction de la forme f(xk) avec k premier avec 2n − 1 est
encore courbe, la fonction est dite hyper-courbe.
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La caractérisation ci-dessus n’est pas satisfaisante : elle implique un nombre exponentiel de
sommes exponentielles. Avant de pouvoir décrire de meilleures caractérisations dans la sous-section
suivante, définissons différents objets mathématiques classiques.

Les premiers sont les sommes de Kloosterman binaires. Ce sont les valeurs de la transformée
de Walsh–Hadamard de la fonction inverse.

Définition 2.2 (Somme de Kloosterman). La somme de Kloosterman associée à a ∈ F2n est

Kn(a) = 1 +
∑
x∈F∗2n

(−1)Trn1 (ax+ 1
x ) .

Les seconds les polynômes de Dickson binaires.

Définition 2.3 (Polynôme de Dickson [179]). Le polynôme de Dickson de degré r sur F2 [X] est

Dr(X) =
b r2 c∑
i=0

r

r − i

(
r − i
i

)
Xr−2i, r ≥ 2 .

Enfin, nous aurons besoin d’un certain nombre de résultats sur les courbes algébriques. Une
courbe elliptique E est une courbe algébrique lisse de genre 1 donnée par une équation de
Weierstraß [244, Section III.1]

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

Deux telles courbes sont tracées dans les Figures 5 et 6. Une propriété fondamentale est que les

Figure 5 – La courbe elliptique E :
y2 = x3 − 2x

Figure 6 – La courbe elliptique E :
y2 = x3 − 2x+ 2

points rationnels d’une courbe elliptique forment un groupe. La loi d’addition est illustrée dans la
Figure 7.

Si une courbe elliptique est définie sur un corps fini Fq , il est toujours possible de parler de
son nombre de points rationnels. Calculer efficacement ce nombre de points est un problème
mathématique difficile. Cette quantité s’exprime en fonction de la trace t de l’endomorphisme de
Frobenius :

#E = q + 1− t .
Un théorème classique borne cette trace.
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Figure 7 – Loi d’addition sur la courbe elliptique E : y2 = x3 + 1
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Théorème 2.4 (Théorème d’Hasse–Weil [244, Theorem V.2.3.1]). Soit t la trace de l’endomor-
phisme de Frobenius d’une courbe elliptique sur Fq . Alors

|t| ≤ 2√q .

En ce qui concerne les courbes elliptiques définies sur un corps de caractéristique paire, il a été
montré qu’il est possible de calculer la valeur de t en temps quasi-quadratique, ce qui est optimal.

Théorème 2.5 ([126]). Soit E une courbe elliptique définie sur F2m . Il existe un algorithme
calculant la trace du Frobenius avec une complexité temporelle en O(m2(logm)2 log logm) et
spatiale en O(m2).

Les courbes hyperelliptiques sont une généralisation des courbes elliptiques. Celles qui nous
intéresseront sont plus précisément des courbes hyperelliptiques imaginaires, et même des courbes
d’Artin–Schreier. Une telle courbe H de genre g est définie par une équation de la forme

H : y2 + xky = f(x) ,

où 0 ≤ k ≤ g et f(x) est unitaire de degré 2g + 1.

Théorème 2.6 ([275, Theorem 4.3.1]). Soit H une courbe d’Artin–Schreier de genre g sur F2m .
Il existe un algorithme calculant le nombre de points de H avec une complexité temporelle en

O(g3m3(g2 + log2m log logm) log gm log log gm)

et spatiale en O(g3m3).

2.2 Caractérisations efficaces de fonctions courbes
Le problème qui nous intéresse à présent est le suivant : donner des conditions nécessaires et suffi-
santes sur les coefficients de la forme polynomiale pour que la fonction booléenne correspondante
soit courbe.

Une première réponse à cette question a été apportée par Dillon [70] qui a prouvé que les
fonctions monomiales avec l’exposant de Dillon

fa(x) = Trn1
(
axr(2

m−1)
)

définies sur F2n et où r est premier avec 2m − 1 sont courbes si et seulement si la somme de
Kloosterman Km(a) associée à a est nulle. Il a ensuite été démontré que ces fonctions sont en
fait hyper-courbes. Dillon conjectura qu’il existait toujours des coefficients a ∈ F2m tels que
Km(a) = 0. Ce résultat a été démontré par Lachaud et Wolfmann [156] qui reformulèrent ce
problème en termes de courbes elliptiques. Les sommes de Kloosterman peuvent en effet être
exprimées à l’aide du nombre de points sur une courbe elliptique.

Théorème 2.7 ([156, 144]). Soient m ≥ 3 un entier positif, a ∈ F∗2m et Ea la courbe elliptique
projective définie sur F2m par l’équation

Ea : y2 + xy = x3 + a .

Alors
#Ea = 2m +Km(a) .
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Cette reformulation implique non seulement que les sommes de Kloosterman sont toujours
divisibles par 4, mais bien plus encore. Cependant, ce n’est qu’au début des années 2000 que ce
résultat fut exploité plus avant. Par exemple, Lisoněk [180] l’utilisa pour fournir une démons-
tration alternative et particulièrement élégante de la caractérisation des valeurs des sommes de
Kloosterman modulo 8.

Proposition 2.8 ([129]). Soient m ≥ 3 un entier positif et a ∈ F2m . Alors Km(a) ≡ 0 (mod 8)
si et seulement si Trm1 (a) = 0.

Cette correspondance lui permit également de générer des zéros de Kloosterman pour m
jusqu’à 64 en seulement quelques jours. Si la somme de Kloosterman Km(a) est nulle, la courbe
elliptique Ea a en effet exactement 2m points. Ceci implique en particulier que son groupe de
points rationnels est cyclique, isomorphe à

Ea(F2m) ' Z/2mZ .

Cette identité permet entre autres de tester les zéros de Kloosterman encore plus efficacement
qu’en comptant les points de Ea.

Plus récemment, Mesnager [195] a montré que la valeur 4 des sommes de Kloosterman
caractérise les fonctions courbes de la forme

fa,b(x) = Trn1
(
axr(2

m−1)
)

+ Tr4
1

(
bx(2n−1)/3

)
quand m est impair. L’approche précédente s’étend partiellement à cette valeur. Par exemple, il
est possible de montrer la réciproque d’un résultat de Helleseth et Zinoviev [129] concernant la
valeur des sommes de Kloosterman modulo 3.

Proposition 2.9. Soit a ∈ F∗2m .

• Si m est impair, alors Km(a) ≡ 1 (mod 3) si et seulement s’il existe t ∈ F2m tel que
a = t4 + t3.

• Si m est pair, alors

– Km(a) ≡ 0 (mod 3) si et seulement s’il existe t ∈ F2m tel que a = t4 + t3 and
Trm1 (t) = 0 ;

– Km(a) ≡ −1 (mod 3) si et seulement s’il existe t ∈ F2m tel que a = t4 + t3 and
Trm1 (t) = 1.

Malheureusement, la situation n’est pas aussi idéale que pour les zéros de Kloosterman. En
particulier, le cardinal d’une courbe elliptique Ea correspondant à une somme de Kloosterman
Km(a) = 4 est

#Ea = 2m + 4

et cet entier ne jouit pas des mêmes propriétés de divisibilité qu’avant. Toutefois, les considérations
précédentes permettent de générer efficacement des éléments a tels que Km(a) = 4 et notre
implémentation pour le logiciel Sage [250] nous a permis de trouver de tels éléments pour m
jusqu’à 55.

Dans le cas où m est pair, le critère de Mesnager est nécessaire, mais il n’a pas été démontré
qu’il est suffisant. En utilisant les outils développés précédemment, nous avons étudié le caractère
courbe des fonctions booléennes de la famille de Mesnager pour tous les a ∈ F2m tels que
Km(a) = 4 pour des petites valeurs de m. Il est bon de noter que trouver tous les éléments
a ∈ F2m correspondant à une certaine somme de Kloosterman est un problème différent du



232 Résumé long

précédent. Dans cette situation, mieux vaut en effet calculer toutes les sommes de Kloosterman
sur F2m à l’aide d’une transformée de Walsh–Hadamard rapide [8] de la fonction inverse. La
vérification du caractère courbe d’un fonction associée à un tel élément se fait ensuite par un
nouveau calcul de transformée de Walsh–Hadamard rapide. Le résultat de nos expérimentations
est que tous les éléments a ∈ F2m tels que Km(a) = 4 pour 4 ≤ m ≤ 16 sont associés à des
fonctions courbes. Ces résultats sont résumés dans la Table 1.

Table 1 – Test du caractère courbe pour m pair

m Nb. de classes cyclotomiques Temps Toutes courbes ?
4 1 <1s oui
6 1 <1s oui
8 2 <1s oui
10 3 4s oui
12 6 130s oui
14 8 3000s oui
16 14 82000s oui
18 20 - -
20 76 - -
22 87 - -
24 128 - -
26 210 - -
28 810 - -
30 923 - -
32 2646 - -

La caractérisation de Dillon a également été étendue par Charpin et Gong [46] à des fonctions
booléennes avec plusieurs termes de trace.

Théorème 2.10 (Critère de Charpin et Gong [46]). Soit n = 2m. Soit S un ensemble de
représentants des classes cyclotomiques modulo 2m + 1 de taille maximale n. Soit fa la fonction
booléenne définie sur F2n par

fa(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)
,

où R ⊆ S et ar ∈ F2m . Soit ga la fonction booléenne définie sur F2m par

ga(x) =
∑
r∈R

Trm1 (arDr(x)) ,

où Dr(x) est le polynôme de Dickson de degré r. Alors fa est hyper-courbe si et seulement si∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(x)

)
= 2m − 2 wH(ga)− 1 .

Mesnager [196] a ensuite décrit un critère similaire pour des fonctions booléennes avec plusieurs
termes de trace et un terme de trace additionnel sur F4 .

Théorème 2.11 (Critère de Mesnager [196]). Soient n = 2m avec m impair et S un ensemble
de représentants des classes cyclotomiques modulo 2m + 1 de taille maximale n. Soit b ∈ F∗4 . Soit
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fa,b la fonction définie sur F2n par

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
,

où R ⊆ S et ar ∈ F2m . Soit ga la fonction booléenne définie sur F2m par

ga(x) =
∑
r∈R

Trm1 (arDr(x)) ,

où Dr(x) est le polynôme de Dickson de degré r. Alors :

1. Si b est un élément primitif de F4 , alors les trois conditions suivantes sont équivalentes :

(a) fa,b est hyper-courbe ,

(b)
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(D3(x))) = −2 ,

(c)
∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(D3(x))

)
= 2m − 2 wH(ga ◦D3) + 3 ;

2. fa,1 est hyper-courbe si et seulement si

2
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(D3(x)))− 3
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(x)) = 2 .

Lisoněk [182, 181] a ensuite montré comment étendre la reformulation des sommes de Kloos-
terman en termes de courbes elliptiques pour exprimer le critère de Charpin et Gong à l’aide du
nombre de points sur des courbes hyperelliptiques et a obtenu le critère suivant.

Théorème 2.12 (Reformulation du critère de Charpin et Gong [182, 181]). Soient Ha et Ga les
courbes affines définies sur F2m par

Ga : y2 + y =
∑
r∈R

arDr(x) ,

Ha : y2 + xy = x+ x2
∑
r∈R

arDr(x) .

Alors fa est hyper-courbe si et seulement si

#Ha −#Ga = −1 .

L’intérêt d’une telle reformulation est double. D’un point de vue théorique, elle relie des pro-
blèmes concernant les sommes exponentielles et les fonctions courbes à des problèmes concernant
le nombre de points de courbes hyperelliptiques. D’un point de vue pratique, elle permet de tester
le caractère courbe d’une fonction en temps polynomial.

Cependant, un étude fine du résultat de Lachaud et Wolfmann montre qu’il est possible de
faire beaucoup mieux. Sommes exponentielles et cardinaux de courbes d’Artin–Schreier sont en
effet reliés de la façon suivante.
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Proposition 2.13. Soient f : F2m → F2m une fonction telle que f(0) = 0, g la fonction
booléenne g = Trm1 (f) et Gf et Hf les courbes affines définies sur F2m par

Gf : y2 + y = f(x) ,

Hf : y2 + xy = x+ x2f(x) .

Alors ∑
x∈F∗2m

χ (g(x)) = −2m − 1 + #Gf ,

∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ g(x)

)
= −2m + #Hf .

Il est donc possible d’étendre l’approche précédente au critère de Mesnager.

Théorème 2.14 (Reformulation du second critère de Mesnager). Soient Ha et Ga les courbes
affines définies sur F2m par

Ga : y2 + y =
∑
r∈R

arDr(x) ,

Ha : y2 + xy = x+ x2
∑
r∈R

arDr(x) ;

et H3
a et G3

a les courbes affines définies sur F2m par

G3
a : y2 + y =

∑
r∈R

arDr(D3(x)) ,

H3
a : y2 + xy = x+ x2

∑
r∈R

arDr(D3(x)) .

Si b est un élément primitif de F4 , alors fa,b est hyper-courbe si et seulement si

#H3
a −#G3

a = 3 .

Si b = 1, alors fa,1 est hyper-courbe si et seulement si(
#G3

a −#H3
a

)
− 3

2 (#Ga −#Ha) = 3
2 .

Enfin, en utilisant le fait [47] que la fonction x 7→ D3(x) induit une permutation de

{x ∈ F2m | Trm1 (1/x) = 0} ,

il est possible d’obtenir une reformulation plus efficace.

Théorème 2.15 (Reformulation du second critère de Mesnager). Si b est un élément primitif de
F4 , alors fa,b est hyper-courbe si et seulement si

#G3
a −

1
2 (#Ga + #Ha) = −3

2 .

Si b = 1, alors fa,1 est hyper-courbe si et seulement si

2#G3
a −

5
2#Ga + 1

2#Ha = 3
2 .

Le genre des courbes utilisées est en effet moindre, conduisant donc à des tests plus efficaces.
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3 Multiplication complexe et polynômes de classes
Dans cette dernière section nous approfondissons un aspect quelque peu différent des courbes
elliptiques et des variétés abéliennes — une autre généralisation en dimensions supérieures de ces
dernières — : la multiplication complexe et la construction de polynômes de classes. De telles
constructions ont cette fois-ci des applications en cryptographie asymétrique.

3.1 Multiplication complexe et courbes elliptiques
Dans la section précédente nous avons considéré les courbes elliptiques sur des corps finis. Dans
celle-ci nous considérons principalement les objets sur le corps des nombres complexes.

Sur le corps des nombres complexes C, une courbe elliptique peut toujours être décrite par
une équation de Weierstraß de la forme

E : y2 = x3 + ax+ b .

Dans cette situation, le j-invariant d’une courbe elliptique, qui les classifie à isomorphisme près
sur un corps algébriquement clos, a une expression particulièrement simple :

j = −1728(4a)3

∆ ,

où ∆ 6= 0 est le discriminant de la courbe

∆ = −16(4a3 + 27b2)

et caractérise sa non-singularité.
Sur le corps des nombres complexes C, il existe une autre description d’une courbe elliptique

en tant que tore complexe, c’est-à-dire comme le plan complexe quotienté par un réseau. Un tel
objet est représenté dans la Figure 8. Le théorème d’uniformisation assure que la réciproque de
cette affirmation est également vraie.

Théorème 3.1 (Uniformisation [245, Corollary I.4.3]). Soient a et b deux nombres complexes
tels que 4a3 + 27b2 6= 0. Alors il existe un réseau Λ dans C tel que l’application

C/Λ→ E : y2 = x3 + ax+ b ,

z 7→ [℘(z,Λ) : 1
2℘
′(z,Λ) : 1] ,

où ℘ est la fonction ℘ de Weierstraß, est un isomorphisme analytique complexe.

Le choix d’une base du réseau Λ conduit à une seconde bijection avec l’ensemble des éléments
τ du domaine fondamental du demi-plan de Poincaré H. Ce résultat peut aussi être raffiné pour
montrer que la catégorie des courbes elliptiques complexes à isomorphisme près et celle des
réseaux à homothétie près sont équivalentes.

Les courbes qui nous intéressent maintenant sont les courbes à multiplication complexe, i.e.
les courbes elliptiques qui ont strictement plus d’endomorphismes que les multiplications par
un entier qui proviennent de la loi de groupe sur la courbe elliptique et que nous avons déjà
évoquées dans la section précédente. Sur un corps fini, toute courbe a multiplication complexe.
L’endomorphisme de Frobenius ne correspond en effet à aucun endomorphisme de multiplication.
Sur le corps des nombres complexes, la situation est inverse et une courbe générique n’a pas
d’endomorphismes supplémentaires. Le nom de multiplication complexe provient de l’identification
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Figure 8 – Un tore complexe de dimension 1

3
τ

3τ

Figure 9 – Le réseau correspondant à τ = 1+i
√

2
3
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des endomorphismes de la courbe avec ceux du réseau : une multiplication complexe est la
multiplication par un nombre complexe non réel qui envoie le réseau dans lui-même. Un tel
endomorphisme existe si et seulement si le nombre τ du demi-plan de Poincaré correspondant au
réseau est quadratique. Un exemple de ce type de réseaux est donné dans la Figure 9

Si τ est quadratique et appartient au corps quadratique imaginaire K, alors l’anneau des
endomorphismes de la courbe correspondante E = Eτ est un ordre O dans K, i.e. un réseau
qui est aussi un sous-anneau de l’anneau des entiers OK de K. Notons Ell(O) l’ensemble des
courbes elliptiques complexes à multiplication complexe par O. À homothétie près, Λτ est un
O-idéal. Plus précisément, O est le plus grand ordre pour lequel cette propriété est vraie. Un
idéal fractionnaire vérifiant cette propriété est dit propre. Pour un corps quadratique, être propre
est équivalent à être inversible. En utilisant la structure de O-idéal de Λτ une action de Prop(O)
sur Ell(O) peut être définie de la façon suivante : pour a un idéal fractionnaire propre de O,
définissons a ∗ Λτ comme l’idéal

a ∗ Λτ = a−1Λτ .

Modulo l’action triviale des idéaux fractionnaires principaux, cette action est propre et transitive.

Proposition 3.2 ([245, Proposition II.1.2]). Soient K un corps quadratique imaginaire et O un
ordre dans K. Alors l’action du groupe de Picard Pic(O) sur Ell(O) est simple et transitive. En
particulier, #Ell(O) = h(O) le nombre de classes de O.

Définissons maintenant le polynôme de classes de Hilbert.

Définition 3.3 (Polynôme de classes de Hilbert). Soient K un corps quadratique imaginaire et
O un ordre dans K. Le polynôme de classes de Hilbert HO(X) de O est

HO(X) =
∏

E∈Ell(O)

(X − j(E)) .

Il est possible de définir une autre action sur Ell(O). Si σ ∈ Aut(C) est un automorphisme de
C, la courbe Eσ associée à E par l’action de σ a également multiplication complexe par O et
appartient donc a Ell(O). Les considérations précédentes montrent que l’ensemble {j(τ)σ}σ∈Aut(C)
est fini et que HO(X) est à coefficients rationnels. Il est en réalité possible de montrer que j(E) est
un entier algébrique quand E a multiplication complexe [245, Theorem II.6.1], [160, Theorem 5.2.4]
et que HO(X) est donc à coefficients entiers.

Il est possible de relier les deux actions décrites ci-dessus. Le groupe Pic(O) est un groupe de
classes d’idéaux généralisé. Par le théorème d’existence [216, Theorem VI.6.1], [145, Theorem 2.2],
il existe une extension abélienne de K, appelée corps de classes d’anneaux de O, telle que

Gal(HO/K) ' Pic(O) .

Théorème 3.4 ([145, Theorem 3.16], [245, Theorem II.4.3], [160, Theorem 10.3.5]). Soient K un
corps quadratique imaginaire et O un ordre dans K. Soient σ ∈ Aut(C/K) et b un idéal propre
de O dont le symbole d’Artin sur le corps de classes d’anneaux est σ. Soit a un idéal propre de O.
Alors

j(a)σ = j(b ∗ a) .

En particulier, K(j(E)) est le corps de classes d’anneaux de O et [K(j(E)) : K] = [Q(j(E)) :
Q] = h(O). Enfin, le théorème principal de la multiplication complexe se déduit assez aisément
du théorème précédent et décrit l’action de σ sur les points de torsion de E.

La construction du polynôme de classes de Hilbert est décrite dans l’Algorithme 1. La
connaissance du polynôme de Hilbert d’un ordre permet de construire, par réduction, des courbes
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Algorithme 1 – Calcul du polynôme de classes de Hilbert
Données: Un discriminant négatif ∆ ≡ 0, 1 (mod 4)
Résultat: Le polynôme de classes de Hilbert H∆(X) de l’ordre de discriminant ∆

1 Calculer une base de l’ordre O de discriminant ∆
2 Calculer le groupe de classes Pic(O) de O
3 pour chaque a ∈ Pic(O) faire
4 Calculer j(a) avec suffisamment de précision
5 Construire H(X) ∈ Z[X] à partir des approximations complexes de ses racines
6 retourner H(X)

elliptiques sur un corps fini qui ne pourraient être obtenues par recherche aléatoire. Sous certaines
contraintes, l’anneau des endomorphismes de la courbe ne change pas et son Frobenius est donc
connu, tout comme son nombre de points. De plus, cette connaissance préalable peut également
permettre de s’assurer que le degré de plongement de la courbe réduite sera petit, chose impossible
en tirant des courbes au hasard. De telles courbes sont particulièrement utiles dans le cadre de la
cryptographie fondée sur l’identité.

3.2 Multiplication complexe en genre supérieur
Passons maintenant au cas de la dimension supérieure. Dans la section précédente nous avons
généralisé les courbes elliptiques, qui sont des courbes de genre 1, par les courbes hyperelliptiques. Il
est possible d’adopter un point de vue plus général en considérant la structure de groupe algébrique
projectif de dimension 1 des courbes elliptiques. L’extension naturelle est alors de considérer les
groupes algébriques projectifs de dimension supérieure : ce sont les variétés abéliennes. Le lien
entre ces deux approches peut se faire à l’aide de la jacobienne d’une courbe qui est une variété
abélienne dont le groupe des points est isomorphe au sous-groupe de degré zéro du groupe de
Picard de la courbe.

Sur le corps des nombres complexes C, une variété abélienne A de dimension g est à nouveau
isomorphe à un tore complexe X = V/Λ où V est un C-espace vectoriel de dimension g et Λ
est un réseau dans V . Cependant, la réciproque n’est plus vraie dès que g ≥ 2 : il existe des
tores complexes qui ne sont pas des variétés abéliennes. Une condition nécessaire et suffisante
pour qu’un tore complexe soit une variété abélienne est l’existence d’une forme de Riemann
non-dégénérée pour le réseau Λ.

Théorème 3.5 ([204, Theorem I.2.8]). Un tore complexe X = V/Λ est projectif si et seulement
s’il admet une forme de Riemann non-dégénérée, i.e. une forme R-bilinéaire alternée réelle ω(x, y)
à valeurs entières sur Λ telle que

ω(ix, iy) = ω(x, y)

pour tous x et y dans V et telle que ω(x, ix) > 0 pour tout x ∈ V non-nul.

L’existence d’une forme de Riemann permet en effet de construire suffisamment de fonctions
thêta pour plonger le tore dans un espace projectif. Les conditions de Riemann donnent un critère
simple pour l’existence d’une telle forme.

Théorème 3.6 (Conditions de Riemann [65, Théorème VI.1.3]). Soit X = V/Λ un tore complexe
de dimension g. Il existe une forme de Riemann ω sur X si et seulement s’il existe un base
{e1, . . . , eg} de V , des entiers strictement positifs d1, . . . , dg vérifiant d1| . . . |dg et une matrice
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Ω ∈ Hg, appelée matrice des périodes, telle que Λ s’écrit vis-à-vis de la base {e1, . . . , eg}

Λ = ΩZg ⊕∆Zg

où ∆ est la matrice diagonale de coefficients d1, . . . , dg.

La racine carrée du déterminant de ω est appelé pfaffien et vaut

pf(ω) = d1 · · · dg .

La donnée d’une forme de Riemann sur le corps des nombres complexes C est équivalente
à la donnée d’une polarisation. De notre point de vue, la généralisation correcte des courbes
elliptiques est une variété abélienne polarisée. Le choix d’une polarisation assure en effet que le
groupe des automorphismes d’une variété abélienne est fini. La polarisation est dite principale si
le pfaffien de la forme de Riemann est égal à 1. L’existence d’une polarisation principale équivaut
à l’existence d’un isomorphisme entre la variété abélienne et sa duale. La jacobienne d’une courbe
est canoniquement munie d’une polarisation principale.

Une variété abélienne A de dimension g est dite avoir multiplication complexe si son algèbre
des endomorphismes contient un corps CM, i.e. une extension quadratique totalement imaginaire
d’une extension totalement réelle de Q, de degré 2g. Si l’injection correspondante est notée
i : K → End0(A), alors le couple (A, i) est appelé variété abélienne CM. L’image inverse de
l’anneau des endomorphismes de A dans K est un ordre O = i−1(End(A)). Si cet ordre est
maximal, i.e. s’il est égal à l’anneau des entiers OK de K, alors la variété abélienne est dite
principale. Si A est isotypique et définie sur un corps fini, alors elle a toujours multiplication
complexe. Si A est définie sur le corps des nombres complexes, l’injection i peut être décrite sur
l’espace tangent à A en 0 par le choix de g plongements distincts de K dans C non deux à deux
conjugués par la conjugaison complexe. Un tel ensemble Φ est appelé type CM. Il vérifie

Hom(K,C) = Φ t Φ .

Le type CM est dit primitif s’il ne provient pas de l’extension d’un type CM d’un sous-corps
CM strict de K. Une variété abélienne CM est simple si et seulement si le type CM associé est
primitif. Le choix d’un type CM permet également de définir le corps réflexe de K.

Définition 3.7 (Corps réflexe [205, Proposition I.1.16]). Soient K un corps CM et Φ un type
CM. Le corps réflexe Kr de la paire CM (K,Φ) est le corps fixé par le groupe

H =
{
σ ∈ Gal(Q/Q) | σΦ = Φ

}
.

De façon équivalente, Kr est engendré par l’ensemble des éléments de la forme∑
φ∈Φ

φ(a), a ∈ K .

Il est possible de munir Kr d’un type CM Φr associé à Φ et appelé type réflexe. La norme
réflexe NΦr est alors définie de la façon suivante

Kr → K ,

x 7→
∏
φ∈Φr

φ(x) .

Si (A, i) est une variété abélienne complexe CM de type (O,Φ), alors elle peut être décrite
par un réseau de K et même par un O-idéal propre.
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Théorème 3.8 ([205, I.3.11], [159, Theorem 1.4.1]). Soient K un corps CM de degré 2g et O un
ordre de K. Soit (A, i) un variété abélienne complexe à multiplication complexe par O. Il existe
un idéal fractionnaire propre a de O, un type CM Φ et un isomorphisme analytique complexe θ
tels que

V/Φ(a) θ' A .

La variété abélienne CM (A, i) est dite de type (O,Φ, a) vis-à-vis de θ. Tous les tores complexes
de ce type sont polarisables et leurs polarisations s’expriment toutes de la façon suivante.

Théorème 3.9 ([205, Example I.2.9], [159, Theorem I.4.5]). Soit (A, i, ψ) une variété abélienne
complexe CM polarisée de type (O,Φ, a) vis-à-vis d’une paramétrisation analytique θ. Il existe un
élément inversible ξ ∈ K∗ vérifiant ξ = −ξ et =(φ(ξ)) > 0 pour tout φ ∈ Φ tel que la forme de
Riemann ω associée à ψ peut-être décrite sur Φ(K) par

ω(Φ(x),Φ(y)) = Tr(ξxy) .

La variété abélienne complexe CM polarisée (A, i, ψ) est dite de type (O,Φ, a, ξ) vis-à-vis de
θ. Inversement, tout élément inversible ξ ∈ K∗ définit une forme de Riemann rationnelle, d’où la
proposition suivante.

Proposition 3.10 ([30, 4.3], [273, Theorem 3]). Soit (A, i, ψ) une variété abélienne complexe
CM polarisée de type (O,Φ, a, ξ). Alors

ξ ∈ (a∗ : a) .

Le degré de la polarisation est [a∗ : ξa]. En particulier, la polarisation est principale si et seulement
si

ξa = a∗ ,

où a∗ est le dual de a pour la forme trace :

a∗ = {x ∈ E | Tr(xa) ⊂ Z} .

Si A est simple et principale, alors la condition sur ξ devient

ξaadK/Q = OK .

Supposons maintenant que A et B sont deux variétés abéliennes complexes CM simples du
même type (K,Φ) et décrites par deux réseaux a et b. L’ensemble des isogénies Hom(A,B) entre
A et B est alors décrit par l’idéal quotient

(b : a) = {α ∈ K | αa ⊂ b} .

Pour les variétés abéliennes complexes CM simples polarisées, la classification à isomorphisme
près est décrite ci-dessous.

Proposition 3.11 (Classification des variétés abéliennes complexes CM simples polarisées à
isomorphisme près [205, I.3.4], [237, 5.5.B]). Les triplets (A, i, ψ) de type (O,Φ) sont classifiés à
isomorphisme près par les quadruplets (O,Φ, a, ξ) à un changement de la forme

ξ 7→ ξ

αα
,

a 7→ αa ,

où α ∈ K∗, près.
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Le théorème principal de la multiplication complexe décrit ensuite l’action du groupe de Galois
absolu du corps réflexe sur un triplet (A, i, ψ).

Théorème 3.12 (Théorème principal de la multiplication complexe sur le corps réflexe [238,
Theorems IV.18.6 and IV.18.8], [159, Theorem 3.6.1], [205, Theorem II.9.17], [57, Theorem 6.3]).
Soit (A, i, ψ) une variété abélienne complexe CM polarisée de type (O,Φ, a, ξ) vis-à-vis d’une
paramétrisation analytique θ. Soient σ ∈ Aut(C/Kr) et s une idèle de Kr telle que σ =
(s,Kr)Krab . Il existe une unique paramétrisation analytique θ′ telle que (Aσ, iσ, ψσ) est de type
(K,Φ,NΦr (s−1)a,NQ(s)ξ) vis-à-vis de θ′ et telle que le diagramme suivant est commutatif :

K/a Ator

K/NΦr (s−1)a Aσtor

NΦr (s−1) σ

θ ◦ Φ

θ′ ◦ Φ

Nous pouvons associer à l’idèle s un O-idéal fractionnaire inversible [s]O afin de décrire l’action
de s et donc de σ. Cette action peut être étendue à Aut(C), mais il n’est alors plus possible de la
décrire de façon suffisamment explicite en termes d’idéaux.

Nous pouvons maintenant étendre la construction de polynômes de classes aux courbes
hyperelliptiques de genre 2 en suivant les travaux de Streng [252]. Les courbes hyperelliptiques
de genre 2 sont classifiées à isomorphisme près par trois invariants appelés invariants d’Igusa.
Sur le corps des nombres complexes, toute surface abélienne simple principalement polarisée est
isomorphe à la jacobienne d’une courbe et toute courbe de genre 2 est hyperelliptique. De plus, le
théorème de Torelli assure que deux courbes sont isomorphes si et seulement leurs jacobiennes,
munies de leurs polarisations principales canoniques, le sont. Les surfaces abéliennes simples
principalement polarisées peuvent donc être classifiées par les invariants d’Igusa des courbes
associées. Ces invariants peuvent se calculer directement à partir de la matrice des périodes d’une
surface abélienne en utilisant les fonctions thêta. Il est donc possible d’étendre l’approche de la
sous-section précédente de différentes façons pour construire les polynômes de classes d’Igusa par
approximation complexe :

• calculer les invariants de l’orbite d’un idéal de O sous l’action du groupe de Galois du corps
réflexe en utilisant le groupe de classes de son anneau des entiers, le théorème principal de
la multiplication complexe et la norme réflexe — dans ce cas le polynôme est à coefficients
dans le sous-corps fixé par la conjugaison complexe du corps réflexe — ;

• calculer les invariants pour l’orbite d’un idéal de O sous l’action du groupe de Picard de O,
i.e. du groupe des idéaux fractionnaires inversibles de O ;

• calculer les invariants pour l’ensemble du semi-groupe de classes de O, i.e. toutes les classes
d’idéaux propres de O.

Enfin, une méthode de Mestre permet de retrouver l’équation d’une courbe hyperelliptique de
genre 2 à partir de ses invariants d’Igusa. Les polynômes de classes d’Igusa peuvent donc être
utilisés pour construire des courbes hyperelliptiques de genre 2 intéressantes d’un point de vue
cryptographique.
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