
HAL Id: pastel-00759820
https://pastel.hal.science/pastel-00759820

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Algorithms of Guruswami-Sudan List Decoding
over Finite Rings

Guillaume Quintin

To cite this version:
Guillaume Quintin. On the Algorithms of Guruswami-Sudan List Decoding over Finite Rings. Infor-
mation Theory [cs.IT]. Ecole Polytechnique X, 2012. English. �NNT : �. �pastel-00759820�

https://pastel.hal.science/pastel-00759820
https://hal.archives-ouvertes.fr

Thèse
présentée pour obtenir le grade de

Docteur de l’École polytechnique

Spécialité :
Mathématiques – Informatique

par
Guillaume Quintin

Sur l’algorithme de décodage en liste de
Guruswami-Sudan sur les anneaux finis

Soutenue le 22 novembre 2012 devant le jury composé de

Rapporteurs
M. Peter Beelen Technical University of Denmark
M. Damien Stehlé École normale supérieure de Lyon

Directeur de thèse
M. Daniel Augot INRIA Saclay

Codirecteur de thèse
M. Grégoire Lecerf CNRS & École polytechnique

Examinateurs
M. Jean-Claude Belfiore Télécom PariTech
M. Philippe Gaborit Université de Limoges
M. Antoine Joux Université de Versailles
M. Jean-Pierre Tillich INRIA Rocquencourt

3

Remerciements (Acknowledgments)

Je tiens tout d’abord à remercier mes deux directeurs de thèse sans qui ce travail
n’aurait pas été possible. Je remercie Daniel Augot pour la très grande autonomie
qu’il m’a laissée durant ces trois dernières années, sa patience et ses conseils concer-
nant les mathématiques et l’informatique. Grégoire Lecerf a, quant à lui, répondu (et
réponds toujours !) avec précision et patience à mes questions aussi bien mathématiques
qu’informatiques qui sont souvent bêtes.

Je remercie Damien Stehlé et Peter Beelen pour avoir accepté de rapporter cette
thèse. Merci pour m’avoir amené dans un bouchon lyonnais. Je remercie Phillipe Ga-
borit, mon ancien professeur de l’université de Limoges qui m’a beaucoup appris et qui
m’a soutenu au début et pendant ma thèse. Je remercie Jean-Claude Belfiore, Antoine
Joux et Jean-Pierre Tillich pour avoir accepté de faire partie de mon jury de thèse.

Je remercie l’INRIA et la DGA pour le financement de ma thèse ainsi que l’École
polytechnique et le CNRS pour avoir mis à disposition leurs infrastructures. Je remercie
tout le laboratoire d’informatique où j’ai été bien accueilli et où j’ai pu rencontrer des
gens formidables et toujours très sympathiques.

Je remercie l’équipe CRYPTO du LIX qui m’a accueilli et avec qui j’ai pu apprendre
et échanger des mathématiques. Merci à Daniel Augot, François Morain, Ben Smith,
Alain Couvreur, Luca de Feo, Jean-François Biasse, Morgan Barbier, Jérôme Milan,
Tania Richmond, Cécile Gonçalves, Julia Pieltant, Nicolas Delfosse qui ne s’est toujours
pas rendu en chambre 17 et Évelyne Rayssac.

J’ai passé beaucoup de temps, pour ne pas dire “squatté” dans l’équipe de calcul
formel du LIX, l’équipe MAX, où j’ai appris des mathématiques et profité de la bib-
liothèque. Merci donc à Marc Giusti, Joris van der Hoeven, Grégoire Lecerf, Romain
Lebreton, Jérémy Berthomieu, François Ollivier et Antoine Colin.

Je tiens aussi à remercier les gens que j’ai vu occasionnellement comme Alexander
Zeh, Antonia Wachter-Zeh, Matthieu Legeay, Alexandre Gordien et Sofiane Amari.

Je remercie l’équipe sysres du LIX pour leur bonne humeur. James Regis, Matthieu
Guionnet, Elie Mabo et Jean-Marc Notin m’ont permis de mâıtriser, d’installer et de
travailler confortablement sur mon ordinateur “julien” malgré des logiciels datant des
années 70 à peine capables de reconnâıtre une clé USB.

Un grand merci à Jéjé qui m’a appris beaucoup en informatique. Nos maintes dis-
cussions m’ont permis en autre de développer ma librairie, de découvrir beaucoup de
programmes et de diminuer mon très mauvais goût en “esthétique industrielle”.

Je remercie aussi Évelyne Rayssac, Corinne Poulain, Valérie Lecomte, Christelle
Liévin, Sylvie Jabinet, Catherine Bensoussan qui m’ont aidé à faire face aux trop nom-
breux problèmes administratifs avec gentillesse et patience.

4

Je remercie également Albert Cohen avec qui j’ai partagé les TDs de INF422 et
INF583 pendant deux années. Il a toujours répondu avec précision et patience à mes
questions sur le C, la libc, gcc et le noyau Linux.

Un énorme merci à mes cobureaux qui ont dû me supporter pendant trois ans. Je
pense à Van Du TRAN Thuong, Morgan Barbier et Alain Couvreur qui ont toujours
été là pour m’épauler et me conseiller en informatique, géométrie et théorie des codes
correcteurs.

Je remercie aussi tous les membres de l’association non officielle TrolLIX (trolls au
LIX) pour leur bonne humeur et les bons moments passés au Safran devant coca-cola
et muffin au chocolat. Parmi les membres on compte Olivier Schwander (débianneux
emacsien), Jérôme Milan (archeux emacsien), François Poulain (débianneux vimiste),
Morgan Barbier (archeux emacsien), James Régis (centosien vimiste), Matthieu Guion-
net (centosien vimiste) et Jean-Marc Notin (archeux emacsien). Il est bien évident que
les vimistes vaincront.

Enfin je remercie vivement mes proches qui ont su faire preuve de beaucoup de pa-
tience et de compréhension : Amélie, mes parents Patrick et Marie-Claude Quintin, ma
soeur et mon beau frère Amandine et Daniel, ma belle-famille Thierry, Françoise et Guil-
laume, Sylvie et Dominique, et mes amis Frédéric, Adrien, Claude et Florence, Olivier
et Sébastien, Jo et Audrey, Laurie et Greg, Alicia et Willy, Amandine, Clarinnette. Les
trois semaines de vacances à Boujassac m’auront fait un très grand bien.

Merci aussi à tous ceux que je n’ai pas cités dans ces deux pages mais qui se re-
connâıtront et ne m’en voudront pas.

Contents

List of Algorithms 9

List of Figures 11

Organization of the document 13

Introduction 15

I The Classical List Decoding Framework for Finite Rings 39

1 Shortest Vectors in Polynomial Lattices Over Galois Rings and Appli-
cation to List Decoding 45

1.1 Introduction . 45

1.1.1 Related work . 45

1.2 Prerequisites . 46

1.2.1 Complexity model . 46

1.2.2 Discrete valuation rings . 46

1.2.3 Reed-Solomon codes over valuation rings 47

1.3 Computing the shortest vector . 48

1.3.1 Preliminaries . 48

1.3.2 The naive algorithm . 49

1.4 Application to list decoding of Reed-Solomon codes 55

1.4.1 Preliminaries . 55

1.4.2 Application to the Sudan algorithm 56

1.5 Conclusion . 58

2 Polynomial root finding over local rings and application to error cor-
recting codes 59

2.1 Introduction . 59

2.1.1 Application to list decoding . 60

2.1.2 Complexity model . 61

2.1.3 Our contributions . 62

2.1.4 Related works . 62

5

6 CONTENTS

2.2 Algorithm with linear convergence . 63

2.2.1 Local multiplicities . 64

2.2.2 Representation of the set of roots 65

2.2.3 Naive local solver . 65

2.2.4 Cumulative cost of steps 1 . 68

2.2.5 Cumulative cost of steps 2 . 69

2.2.6 Cumulative cost of steps 3 . 69

2.2.7 Cumulative cost of steps 4 . 70

2.2.8 Total cost of Algorithm 9 . 71

2.3 Faster algorithm with splitting . 75

2.3.1 Quasi-homogeneous Hensel lifting 75

2.3.2 Quasi-homogeneous multifactor Hensel lifting 78

2.3.3 Local solver with splitting . 81

2.3.4 Total cost of Algorithm 13 . 82

2.3.5 Implementation and timings . 85

2.3.6 Cost analysis in higher dimension 86

2.4 Application to error correcting codes . 87

2.4.1 Algorithm . 88

2.4.2 Experiments . 88

II A Lifting Framework for List Decoding over some Finite Rings 91

3 On Generalized Reed-Solomon Codes Over Commutative and Non-
commutative Rings 97

3.1 Introduction . 97

3.1.1 Our contributions . 98

3.1.2 Related work . 99

3.2 Prerequisites . 99

3.2.1 Error correcting codes . 102

3.2.2 Galois rings . 103

3.2.3 Complexity model . 104

3.3 Generalized Reed-Solomon codes . 104

3.4 Unique decoding of generalized Reed-Solomon codes 109

3.4.1 Unique decoding over certain valuation rings 109

3.4.2 The Welch-Berlekamp algorithm 114

3.5 List decoding of generalized Reed-Solomon codes 119

3.5.1 List-decoding over certain valuation rings 119

3.5.2 The Guruswami-Sudan algorithm 121

3.5.3 Complexities for list decoding algorithms 124

3.6 Conclusion . 127

CONTENTS 7

4 A Lifting Decoding Scheme and its Application to Interleaved Linear
Codes 129

4.1 Introduction . 129

4.1.1 Our contributions . 129

4.1.2 Related work . 130

4.2 Prerequisites . 130

4.2.1 Complexity model . 130

4.2.2 Error correcting codes . 131

4.2.3 Reed-Solomon codes over rings . 131

4.3 Improved π-adic lifting. 132

4.4 Application to interleaved linear codes. 136

4.5 Conclusion . 139

III Related work on error correcting codes 141

5 On Quasi-Cyclic Codes as a Generalization of Cyclic Codes 145

5.1 Introduction . 145

5.1.1 Context . 145

5.1.2 First definitions . 146

5.2 Properties of quasi-cyclic codes . 147

5.2.1 The one-to-one correspondence . 147

5.2.2 The generator polynomial of an `-quasi-cyclic code 148

5.2.3 A property of generator polynomials 152

5.3 Quasi-BCH . 152

5.3.1 Definition . 153

5.4 Decoding scheme for quasi-BCH codes . 155

5.4.1 The key equation . 155

5.5 Evaluation codes . 158

5.5.1 Definition and parameters . 158

5.5.2 New good codes . 159

5.6 Conclusion . 161

6 An algorithm for list decoding number field codes 163

6.1 Introduction . 163

6.2 Generalities on number fields . 164

6.3 Decoding with Coppersmith’s theorem . 165

6.4 Johnson-type bound for number fields codes 166

6.5 General description of the algorithm . 167

6.6 Existence of the decoding polynomial . 168

6.7 Computation of the decoding polynomial 169

6.8 Good weight settings . 170

6.9 Conclusion . 172

8 CONTENTS

IV Implementation 175

7 Implementation within Mathemagix 179
7.1 Introduction . 179
7.2 Overview of the C++ side of Mathemagix 180

7.2.1 The directory tree of Mathemagix 180
7.2.2 C++ classes and variants . 182

7.3 The mgf2x package . 188
7.4 The finitefieldz package . 189

7.4.1 Prime fields . 189
7.4.2 Extensions of finite fields . 191
7.4.3 Variants available for ffe . 192
7.4.4 Finite fields of characteristic 2 . 194

7.5 The quintix package . 196
7.5.1 Prime Galois rings . 196
7.5.2 Extensions of Galois rings . 196
7.5.3 Galois rings of characteristic 2r . 201
7.5.4 Implementation of univariate root finding over Galois rings 202

8 The decoding Library for List Decoding 207
8.1 Overview of decoding . 207

8.1.1 Introduction and motivation . 207
8.1.2 The implementation . 208
8.1.3 Presentation . 209

8.2 More details on decoding . 209
8.2.1 The directory tree of decoding . 209
8.2.2 The internals of the library . 210
8.2.3 Customization of the library . 214
8.2.4 Rings provided by default with the library 215
8.2.5 Implemented algorithms . 219
8.2.6 Timings . 222

Bibliography 225

List of symbols 237

Index 239

List of Algorithms

1 Overview of the Guruswami-Sudan algorithm. 21
2 Overview of the Guruswami-Sudan algorithm. 42
3 Sudan . 47
4 Guruswami-Sudan . 48
5 X-reduction. 52
6 π-reduction. 53
7 Reduction. 53
8 Interpolation step for the Sudan algorithm 57
9 Naive local solver. 66
10 Quasi-homogeneous Hensel step. 75
11 Quasi-homogeneous Hensel lifting . 77
12 Quasi-homogeneous multifactor Hensel lifting 79
13 Local solver with splitting. 80
14 Root finding for bivariate polynomials. 88
15 Black box unique decoding algorithm . 110
16 Unique decoding over a valuation ring . 110
17 Welch-Berlekamp . 115
18 Black box list decoding algorithm . 119
19 List decoding from valuation i up to valuation r. 119
20 List decoding over a valuation ring. 120
21 Guruswami-Sudan . 122
22 BlackBoxDec . 132
23 Decoding from valuation i up to valuation r. 133
24 Decoding up to precision r. 133
25 Decoding algorithm for C/πrC. 134
26 BlackBoxErasuresDec . 135
27 Basis computation with the block rank . 149
28 Decoding algorithm for quasi-BCH codes 159
29 Decoding algorithm . 167
30 Computation of the decoding polynomial 170

9

List of Figures

1 Fraction of correctible error patterns for a Goppa code of parameters
[256, 200, 15]F2 . 33

2 Fraction of corrigible error patterns for an Extended BCH code with pa-
rameters [256, 100, 46]F2 . 33

3.1 Table for RSGR(3r,2)[8, 4, 5] and a codeword of weight 6. 125
3.2 Table for RSM`(F9)[8, 4, 5] and a codeword of weight 6. 125

4.1 Fraction of corrigible error patterns for a Goppa code of parameters
[256, 200, 15]F2 . 138

4.2 Fraction of corrigible error patterns for an Extended BCH code with pa-
rameters [256, 100, 46]F2 . 138

8.1 Timings over F257 . 222
8.2 Timings over F28 . 223

11

Organization of the document

This PhD thesis is structured in four parts. Each part contains a small self-contained
introduction. It recalls some definitions that will help read the chapters and contains
a small paragraph which briefly describes the contributions contained within the part.
The parts are independent from each other.

The chapters are in fact submitted or accepted papers. They have not been modified
from their original version. They are therefore self-contained and independent from each
other and can be read in any order.

Part I and Part II contain two concurrent approaches for decoding Reed-Solomon
codes over finite rings while Part IV describes the implementation of certain algorithms
presented in the first two parts. Part III contains two chapters presenting results ob-
tained during my PhD thesis which are not directly related to the decoding of Reed-
Solomon codes. The chapters contained in Part III are also self-contained and can be
read in any order and even before the other three parts of this PhD thesis.

13

Introduction

Context

Error correcting codes and their unambiguous decoding

The theory of error correcting codes initiated by the work ofShannon [Sha48] and Ham-
ming [Ham50] deals with the correction of errors during data transmissions over noisy
channels to obtain reliable communications. In this PhD thesis we are interested in al-
gebraic error correcting codes which form a sub-field of the general theory of correcting
codes.

Fix a finite set E also called an alphabet . We denote by |E| its cardinality. An
element of E is also called a symbol of E. Suppose that one wants to send over a noisy
channel (Internet, radio waves) a message constituted of m symbols where m is a positive
integer. First he will cut the message into m/n words of n symbols (an element of En).
The recipient of the message will obtain distorted words. They are also elements of
En but they are not the original words as some symbols could have changed. One way
among other to measure the difference between the received word and the original word
is by mean of a distance on En. Of course one can also send words whose each symbol
belongs to a different alphabet. Hence the words belong to E1 × · · · × En where Ei is
an alphabet for i = 1, . . . , n and, a priori, Ei 6= Ej for i 6= j. In this PhD thesis we will
only consider the Hamming distance.

Definition 1 (Hamming weight and distance). Let E1, . . . , En be (possibly infinite) sets
and

x = (x1, . . . , xn) ∈
n∏
i=1

Ei, y = (y1, . . . , yn) ∈
n∏
i=1

Ei.

The Hamming distance between x and y, denoted by d(x, y) in this manuscript, is

|{i ∈ {1, . . . , n} : xi 6= yi}| .

Suppose that Ei is a monoid with neutral element 0Ei for i = 1, . . . , n. The Hamming
weight of x, denoted by w(x), is

|{i ∈ {1, . . . , n} : xi 6= 0Ei}|

and we have, if Ei is a group, d(x, y) = w(x− y).

15

16 INTRODUCTION

The Hamming distance take only into account the number of symbols which differ
from the original ones. Of course, other distances can be considered. The Lee distance,
for example, like the Hamming distance, measures the number of symbols which differ
from the original ones but also how much they differ. The weighted Hamming distance
is used for example to give more importance to certain symbols than others.

Definition 2. Let E1, . . . , En be (possibly infinite) sets, α = (α1, . . . , αn) ∈ Rn be such
that αi > 0 for all i = 1, . . . , n and

x = (x1, . . . , xn) ∈
n∏
i=1

Ei, y = (y1, . . . , yn) ∈
n∏
i=1

Ei.

The weighted Hamming distance between x and y is defined to be

dα(x, y) :=
n∑
i=1

αiδ(xi, yi)

where δ(x, y) = 0 if x = y and 1 otherwise. Suppose that Ei is a monoid with neutral
element 0Ei for i = 1, . . . , n. The Hamming weight of x is defined to be

wα(x) :=
n∑
i=1

αiδ(xi, 0Ei)

and we have dα(x, y) = wα(x− y). Note that when α = (1, . . . , 1) we get the Hamming
distance, d = dα.

An error correcting code is a subset of words of En or E1 × · · · ×En. In fact we can
represent it as a monomorphism. Informally speaking it is the same as taking k symbols,
with k < n, adding n − k redundancy symbols to obtain a word with n symbols then
sending it over the channel.

Definition 3. We take the notation of Definition 1. Let k < n be two positive integers.
An injection of sets

ϕ : Ei1 × · · · × Eik −→ E1 × · · · × En

where {i1, . . . , ik} ⊂ {1, . . . , n} is called an error correcting code or simply a code of
blocklength n. When the context is clear we will simply call error correcting code the
subset C = ϕ(Ei1 × · · · × Eik) of E1 × · · · × En. We will also call the blocklength of C
its length. The rate of C is defined to be k/n. The minimum (Hamming) distance of C
is defined as

min {d(x, y) : x, y ∈ C and x 6= y} .

The elements of C are called codewords. Let A be any ring with identity. If Ei for all
i = 1, . . . , n is an A-module and ϕ is a morphism of A-module, then C is called a linear
code over A.

17

Notation 4. Taking the notation of Definition 3 we say that C has parameters (n, k, d).
If C is a linear code we denote its parameters by [n, k, d]A.

Given a code C of length n and minimal distance d, it is obvious that two balls of
radius

t =

⌊
d− 1

2

⌋
centered in two different codewords are disjoint. This interesting property allows the
recipient of a word to correct it into a codeword as soon as the received word is within
a ball of radius t centered in a codeword. This simple fact is at the origin of many
decoding algorithms.

Definition 5. Let C be a code such that C ⊂ E1 × · · · × En. An map of sets

ψ : E1 × · · · × En −→ C ∪ {?}

where ? 6∈ C is called a unique decoding function of C. The “?” element means that ψ
is unable to correct a word into a codeword. Note that a unique decoding function that
can correct up to t errors is the following:

uC : E1 × · · · × En −→ C ∪ {?}

x = (x1, . . . , xn) 7−→
{
c if x is within a ball of radius t centered in c,
? otherwise.

The decoding radius of ψ is the greatest positive integer τ such that ψ(x) 6=? whenever
x is within a ball of radius τ centered in a codeword of C. The decoding radius of uC is
at least t. We will also call decoding radius of ψ any integer τ ′ ≤ τ .

Actually given a code, it is difficult to design an algorithm which is able to correct up
to t errors. It is the case, for example, of the Bose, Ray-Chaudhuri and Hocquenghem
(BCH) codes. This family of codes is constructed in such a way that one only knows
a lower bound on their minimal distances and the unique decoding function for such a
code is able, a priori, to correct strictly less than t errors [MS86a, Chapter 9, Research
Problem 9.3, page 277].

An ideal code C, for a practical use, would be a code with a high rate (near 1), a big
minimal distance d as the decoding radius of uC grows with d, and an efficient unique
decoding function whose decoding radius is t. But the first two wishes are incompatible.

Proposition 6 (Singleton bound [MS86a, page 544]). Suppose that E is a finite set with
q := |E| and let C ⊆ En be a code of parameters (n, k, d). Then |C| ≤ qn−k+1.

Fortunately a family of linear codes was discovered in 1960 by Irvin Stoy Reed and
Gustave Solomon in their original paper [RS60]. Any code from this family of parameters
[n, k, d] is such that d = n− k + 1. They are obviously called Reed-Solomon codes.

Definition 7 (Maximum distance separable codes). Any code of minimal distance n−
k + 1 is called a maximum distance separable (MDS) code.

18 INTRODUCTION

We give the definition of Reed-Solomon codes over finite fields as it is the most
common situation in practice [WB99]. They can be defined over any commutative field.

Definition 8 (Classical Reed-Solomon codes). Let k < n be two positive integers and
x = (x1, . . . , xn) ∈ Fnq be such that for all i 6= j, xi 6= xj . The vector subspace generated
by the

(f(x1), . . . , f(xn)) ∈ Fnq , f ∈ Fq[X] and deg f < k

is called a Reed-Solomon code of parameters [n, k]Fq and denoted by RSFq(x, n) or simply
RS(n, k) when there is no confusion. The vector x is called the support of RSFq(x, k).

There exist several efficient decoding algorithms for Reed-Solomon codes than can
correct up to

t =

⌊
d− 1

2

⌋
=

⌊
n− k

2

⌋
errors, for example [Pet60,Jus76,BW86,Gao02]. There is also the Berlekamp-Massey al-
gorithm [Ber68, Section 7.3], [Mas69] and the Euclid-based algorithms [SKHN75], [Bla83,
Chapter 7], [TERH88]. A bigger and important family of linear codes, which include
all Reed-Solomon codes, shares the same properties. They are called generalized Reed-
Solomon codes.

Definition 9 (Classical generalized Reed-Solomon codes). Let k < n be two positive
integers, v = (v1, . . . , vn) be such that vi 6= 0 and x = (x1, . . . , xn) ∈ Fnq be such that for
all i 6= j, xi 6= xj . The vector subspace generated by the

(v1f(x1), . . . , vnf(xn)) ∈ Fnq , f ∈ Fq[X] and deg f < k

is called a generalized Reed-Solomon code of parameters [n, k]Fq and denoted by
GRSFq(x, n) or simply GRS(n, k) when there is no confusion. The vector x is called
the support and the vector v is called the weight of GRSFq(x, k).

This family of codes allows to construct in a way I will describe later the important
family of BCH codes which are themselves a sub family of cyclic codes [MS86a, Chap-
ter 7].

Definition 10 (Cyclic codes). Let C ⊂ En. We say that C is cyclic if

(c1, . . . , cn−1, cn) ∈ C =⇒ (cn, c1, . . . , cn−1) ∈ C.

Theorem 11. Taking the notations of Definition 10, let C be a cyclic linear code over
E = Fq (the finite fields with q elements). Then the Fq-linear map

Fnq −→ Fq[X]/(Xn − 1)

c = (c1, . . . , cn) 7−→ c1 + c2X + · · ·+ cnX
n−1

is an isomorphism. Moreover this isomorphism induces a one-to-one correspondence
between cyclic codes over Fq of length n and ideals of Fq[X]/(Xn − 1).

19

As Fq[X]/(Xn − 1) is a principal ideal ring, every ideal is generated by one element
called the generator of the corresponding cyclic codes.

Definition 12 (BCH codes). A BCH code over Fq is a cyclic code over Fq such that
the set of roots of its generator polynomial contains

{αb, αb+1, . . . , αb+δ−2}

for α ∈ Faq and b, δ positive integers. The positive integer δ is called the designed
minimum distance of C.

If C denotes a BCH code over Fq of length n and designed minimum distance δ,
it can be shown that there exists a finite extension Fqs of Fq and a generalized Reed-
Solomon code G = GRSFqs (n, n − δ + 1) such that C = G ∩ Fnq . Therefore any unique
decoding function for G will induce a unique decoding function for C. Note also that
when n = qs − 1, C is in fact a Reed-Solomon code. A consequence is that any Reed-
Solomon code over Fq of length q − 1 is also a cyclic code. For more details see for
example [MS86a, Chapters 3, 7, 9, 10 and 12].

We finish this subsection with definition of erasures. Let Ei be an alphabet for all
i = 1, . . . , n and let “?” be such that ? 6∈ Ei for all i = 1, . . . , n. We suppose that the
channel used by the sender does not distort words but instead “loses” some symbols.
This is the case for example over Internet when a TCP connection is established. The
packets of a TCP stream are numbered, they are not corrupted but some packets can
be lost. The recipient of the message will then receive a word (x1, x2, ?, x3, ?, ?, x6) ∈ E6

provided that (x1, x2, x3, x4, x5, x6) was sent over the channel.

Definition 13 (Erasures). Let Ei be an alphabet for all i = 1, . . . , n and let “?” be such
that ? 6∈ Ei for all i = 1, . . . , n. Let C ⊂ E1× · · · ×En be a code. We say that a channel
is an erasures channel if for any received word

(x1, . . . , xn) ∈ (E1 ∪ {?})× · · · × (En ∪ {?})

there exists a codeword (c1, . . . , cn) such that for all i = 1, . . . , n, either xi = ci or
xi =?. Informally speaking we call erasure the symbol “?”. We do not give any formal
definition of a channel in this PhD thesis. We refer the reader to [CT06, Chapter 7]. In
this situation we also call unique decoding function any function

ψ : (E1 ∪ {?})× · · · × (En ∪ {?}) −→ C ∪ {?}.

Erasures are easier to handle than classical errors. The recipient knows where they
are, and he knows that received (non erased) symbols have not been distorted by the
channel. Concerning Reed-Solomon codes over a field the decoding algorithm reduces to
univariate polynomial interpolation. If the Reed-Solomon code has parameters [n, k, d]
then it can correct up to n− k erasures.

20 INTRODUCTION

List decoding of error correcting codes

We now focus on the main topic of this PhD thesis, the correction of errors. We can
extend the definition of a decoding function.

Definition 14. Let C be a code such that C ⊂ E1 × · · · × En and let “?” be such that
? 6∈ C, ? 6∈ Ei for all i = 1, . . . , n. A map of sets

ψ : (E1 ∪ {?})× · · · × (En ∪ {?}) −→ P(C) ∪ {?}

where P(C) designates the set of all the subsets of C, is called a list decoding function for
C. The decoding radius of ψ is the greatest positive integer τ such that c ∈ ψ(x) for all
codewords c within the ball of radius τ centered in x. We will also call decoding radius
of ψ any integer τ ′ ≤ τ .

Note the difference with a unique decoding function which focuses on the Hamming
balls centered in the codewords while a list decoding function looks at the ball centered
in the received word (which is, a priori, not a codeword). The idea behind list decoding
is to correct more errors than unique decoding algorithms, typically, to correct more
than half the minimum distance errors. Let C be a code of parameters [n, k, d]. Two
balls centered in two different codewords of radius greater

t =

⌊
d− 1

2

⌋
can intersect and then a list decoding function can give more than one codeword. Fortu-
nately, this is a very rare event [MS86b,RU10], making list decoding usable in practice.
Even in the situation where the list decoding function returns at least two errors, it is
not worse than returning a failure (“?”), the codewords received before and after the
ambiguous word can help pick up the sent codeword. It is the case, for example, when
actual words of a spoken language are transmitted.

List decoding has been considered in the 1950s [Eli57, Woz58]. Existence result
indicating that list decoding can correct many more errors than unique decoding are
known since the 1980s [ZP81, Eli91]. Algorithmic results for algebraic codes motivated
by complexity theory then appeared [GL89,Dum89,ALRS92,Sid94,ALRS98]. Then M.
Sudan proposed a polynomial time algorithm for Reed-Solomon codes than can correct
significantly more errors that half the minimum distance [Sud97a], further improved
by V. Guruswami and M. Sudan [GS98]. For general considerations and applications to
computer science about list decoding I refer the reader to [Gur10] and the many pointers
in it. We review now the so called Guruswami-Sudan algorithm principle. We let C be
a Reed-Solomon code over Fq of parameters [n, k, d = n− k + 1]Fq .

The first step is often called the interpolation step. It consists in finding an alge-
braic curve passing through certain points of A2(Fq) with given multiplicities. Several
algorithms exist [Köt96,OS99,NH00,KV03,Ale05,AZ08] but they have not been imple-
mented or, at least, are not available through a library or a computer algebra system.
The second step, also called the root finding step is a standard, well known, computer

21

Algorithm 1 Overview of the Guruswami-Sudan algorithm.

Input: A received word y ∈ Fnq and a decoding radius τ .
Output: All codewords c ∈ C such that d(c, y) ≤ τ .
1: Find a bivariate polynomial Q(X,Y) ∈ Fq[X,Y] satisfying certain properties.
2: Find all the roots of Q(X,Y) seen as a univariate polynomial of (Fq[X])[Y].

algebra problem. It has been implemented for example in the Mathemagix computer
algebra system [H+02], in Magma [BCP97] and in Maple [Map12]. It has been studied in
the context of list decoding in [RR98,GS00].

To the knowledge of the author there is no available software providing any list
decoding algorithms except the Percy++ library [Gol07b]. However it is not the main
goal of the library and the implementation of the Guruswami-Sudan algorithm is not
optimized and is not directly accessible. Computer algebra systems, like Magma, which
provides coding theory related functions and algorithms, only propose unique decoding
algorithms. In fact, Magma does not allow the construction of Reed-Solomon codes other
than cyclic Reed-Solomon codes.

The decoding radius of the Guruswami-Sudan algorithm is equal to⌈
n−

√
n(k − 1)

⌉
− 1.

This value is often called Johnson bound for Reed-Solomon codes.

Definition 15. Let C ⊂ E1 × · · · × En be a code such that qi := |Ei| < +∞ for all
i = 1, . . . , n and J a positive integer. We say that J is a Johnson bound for C if all balls
of radius J contain at most a number of (nmax(q1, . . . , qn))γ codewords, for a positive
integer γ.

It can be shown [Gur04, Theorem 7.10, page 163] that

J = n−
√
n(n− d) (1)

is a Johnson bound for all error correcting codes of parameters (n, k, d). In this
manuscript we will only consider the Johnson bound given by equation (1) and thus
call it the Johnson bound. Informally speaking, it says that there are not too many
codewords in any ball, in fact, at most a polynomial number of codewords. Therefore we
wish list decoding algorithms whose decoding radius is at most J to run in polynomial
time.

Other Johnson bounds exist. The above Johnson bound does not take into account
the sizes of the alphabets. In [Gur04, Theorem 3.2, page 35] other Johnson bounds are
presented. They depend on the sizes of the Ei and/or on the number of wanted codewords
in a ball of radius J . Johnson bounds for other metrics are known, for example with the
Lee metric [Rot06, page 330 and 331] and [Ber84, Chapter 13]. For more details about
Johnson bounds see [Gur04, Chapter 3 and 7] and the pointers in it.

The decoding radius of the Guruswami-Sudan algorithm can thus reach the Johnson
bound as, for Reed-Solomon codes, we have n−d = k−1. Moreover it runs in polynomial
time in n, log q, k.

22 INTRODUCTION

Algebraic prerequisites

We review in this subsection some basics of algebra and explain what kind of rings are
studied in each chapter.

Much more on algebra can be found, for example, in [Lan02,AM94,Mat80,MRS01].
We assume that the reader is familiar with the notion of group, commutative and non
commutative rings.

Definition 16. Let A be a ring. A left ideal (resp. right ideal of A is a subgroup I ⊆ A
such that AI ⊆ I (resp. IA ⊆ I). If AI = IA, we say that I is a two-sided ideal.

Definition 17. Let A be a ring whose only ideal is (0). We say that A is a field.

Let A be a ring and E be a subset of A. We denote by (E) the ideal of A consisting
of all the finite sums ∑

aixi

where ai ∈ A and xi ∈ E. We call the elements of E generators of I = (E). Note that
if A is finite, then any ideal can be generated by a finite number of elements.

Definition 18. Let A be a commutative ring and I be an ideal of A. We say that I is
a maximal ideal if A/I is a field. We say that I is a prime ideal if A/I is a domain. A
commutative ring containing only one maximal ideal is called a local ring.

Example 19. The ring of integers Z is a domain but is not local. The ring of rationals Q
is a domain and is local. The ring of polynomials Q[X] is also a domain and not local.
The ring of power series Q[[X]] is a domain and local.

In this PhD thesis we will mainly study local rings whose maximal ideal can be
generated by one element.

Definition 20. Let A be a commutative local domain which is not field. If all the
ideals of A can be generated by one element we say that A is a discrete valuation ring
(DVR). Any generator of m is called a uniformizing parameter of A. For any element
x ∈ A and x 6= 0, we denote by v(x) the greatest integer i such that x ∈ mi \ mi+1 and
we set v(0) = +∞. We call the integer v(x) the valuation of x. It is easy to see that
m = {x ∈ A : v(x) ≥ 1}.

We give two important examples of discrete valuation rings for this PhD thesis. They
are constructed as extensions of discrete valuations rings.

Theorem 21 (See [Lan02, Paragraph 4, Chapter 12]). Let A be a discrete valuation ring
with uniformizing parameter π and a polynomial f(X) ∈ A[X] of degree d such that f

mod π ∈ (A/m)[X] is irreducible. Then the ring L = A[X]
(f(X)) is also a discrete valuation

ring such that A ⊆ L with uniformizing parameter π.

23

Example 22. Let Fq be the finite field with q elements and consider A = Fq[[t]]. Then
if f(X) ∈ A[X] has degree d and is irreducible modulo t, we have the following ring
isomorphisms:

Fq[[t]][X]

(f(X))
≈ Fqd [[t]] and

Fq[[t]]/(tr)[X]

(f(X) mod tr)
≈ Fqd [[t]]/(tr).

Also, if p designates a prime, Zp the ring of p-adic integers and f(X) ∈ Zp[X] of

degree d such that f mod p is irreducible. Then, if we denote
Zp[X]
(f(X)) by Zpd we have

the ring isomorphism
Zpd
(pr)

≈ Z/prZ[X]

(f(X) mod pr)
.

Informally speaking, an element of the ring Zpd is a power series in p whose coefficients
are elements of the extension field Fpd = Fp[X]/(f(X) mod p).

We will study in Chapters 1 to 6 error correcting codes over the finite rings

Fq[[t]]/(tr)[X]

(f(X) mod tr)
and

Z/prZ[X]

(f(X) mod pr)
.

They will often be denoted by B while A will designate the discrete valuation ring whose
quotient by a power of its maximal ideal gives B. It would be easier to consider only
the ring B as we study Reed-Solomon codes over B. But the proofs need a “division by
the uniformizing parameter π of B”. This is not possible due to the nilpotency of m.
Therefore we use the classical strategy of “lifting”. Instead of manipulating an element
x ∈ B, we manipulate one of its liftings (a representant of x) in A where division by π
is possible.

Galois rings that will be defined later form a subfamily of the quotients of DVRs.
Throughout this PhD thesis they will be defined either as a quotient of Zpd or as an
extension of degree d of Z/prZ. Both definition coincide by Theorem 21.

In chapter 2 we will consider more general rings even though we present timings only
for discrete valuation rings. The considered rings are local domains but their maximal
ideal is generated by more than one elements. The reader can safely read the chapter
thinking we manipulate DVRs.

In addition, we study Reed-Solomon codes over non commutative rings in Chapter 3.
Again in this case we consider the particular case of non commutative rings which are
similar to discrete valuation rings. All the necessary materials on non commutative rings
is written when necessary in the chapter. The needed results can be found in [MRS01].

Let now A be a ring. As in the commutative case we will consider modules over A.
But one has to be careful for the scalar multiplication. Let a1, . . . , am ∈ An. Then we
have in general

m∑
i=1

Aai 6=
m∑
i=1

aiA

We have to consider left and right modules over A.

24 INTRODUCTION

Definition 23. Let A be a ring. A left (resp. right) A-module M is a commutative
group together with an operation A ×M → M (resp. M × A → M) such that for all
a, b ∈ A and x, y ∈M

• a(x+ y) = ax+ ay (resp. (x+ y)a = xa+ ya),

• (a+ b)x = ax+ bx (resp. x(a+ b) = xa+ xb),

• a(bx) = (ab)x (resp. (xa)b = x(ab)) and

• 1x = x (resp. x1 = x).

We denote by Z(A) the subring of A consisting of the elements which commutes with
all the elements of A

Z(A) := {a ∈ A : ∀b ∈ A ab = ba}.

Note that if the components of a1, . . . , am are in the center of A, then we have
A(a1, . . . , am) = (a1, . . . , am)A.

Complexity model

In order to analyze the performances of our algorithms, we let I(n) be the time needed
to multiply two integers of bit-size at most n in binary representation. It is classical
[CK91, Für07, SS71] that we can take I(n) ∈ O(n log n2log∗ n), where log∗ represents
the iterated logarithm of n. If A is a commutative ring, we let MA(n) be the cost of
multiplying two polynomials of degree at most n with coefficients in A in terms of the
number of arithmetic operations in A. It is well known [GG03, Theorem 8.23, page 240]
that we can take MA(n) ∈ Õ(n). Thus the bit-cost of multiplying two elements of Fpn
is Õ(n log p) where p is a prime number.

Finally, let us recall that the expected cost spent by a randomized algorithm is defined
as the average cost for a given input over all the possible executions.

Motivations and contributions of this PhD thesis

So far, we have only considered Reed-Solomon or generalized Reed-Solomon codes over
fields and particularly finite fields. They can also be constructed over any ring (not
necessarily commutative) with identity. They were studied over Galois rings in [Arm05b].

Proposition 24. Let p be a prime and r, s two positive integers. Let ϕ(X), φ(X) ∈
Z/prZ[X] be two degree-s monic polynomials irreducible modulo p. Then there is a ring
isomorphism

Z/prZ[X]

(ϕ(X))
=

Z/prZ[X]

(φ(X))
.

The proof can be found in [Rag69, Statements I and II, page 207].

Definition 25 (Galois rings). The ring Z/prZ[X]
(ϕ(X)) from the previous proposition is denoted

by GR(pr, s) and called a Galois ring.

25

The name for Galois rings comes from the following fact whose proof can also be
found in [Rag69, Proposition 2, page 213].

Proposition 26. Taking the same notation as the above definition, the ring automor-
phisms of GR(pr, s) form a cyclic group of order s. (It is isomorphic to Gal(Fprs |Fpr).)

The decoding of generalized Reed-Solomon codes over Galois rings have been widely
studied. The unique decoding is treated in [IPE97, Nor99, NSM00, BF01, BF02, Arm02,
Arm05c] while the list decoding is investigated in [Arm04, Arm05b, Arm05a, AdT05].
Generalized Reed-Solomon codes over commutative rings with identity are defined as in
the field case but with extra condition on their support. For any ring A we denote by
A× the group of units of A.

Definition 27. Let A be a commutative ring with identity, k < n be two positive
integers, x = (x1, . . . , xn) ∈ An be such that for all i 6= j, xi− xj ∈ A×. The submodule
generated by the

(f(x1), . . . , f(xn)) ∈ An, f ∈ A[X] and deg f < k

is called a Reed-Solomon code of parameters [n, k]A and denoted by RSA(x, n) or simply
RS(n, k) when there is no confusion. The vector x is called the support of RSA(x, k).

The condition “i 6= j ⇒ xi − xj ∈ A×” has several important consequences for
Reed-Solomon codes over commutative rings with identity:

• The minimal distance of RSA(n, k) is n− k + 1.

• The Welch-Berlekamp algorithm works as is, the proof of the algorithm need not
be changed when the interpolation step is done with linear algebra.

• The Guruswami-Sudan algorithm works as is, the proof of the algorithm need not
be changed when the interpolation step is done with linear algebra.

• Other techniques, that will be presented later, for decoding also work.

However this condition has a serious drawback for finite commutative rings with identity.
Let A be such a ring, then by [AM94, Theorem 8.7, page 90]

A =
r∏
i=1

Ai

where Ai is a finite local commutative ring with identity for i = 1, . . . , r. Thus, if X
designates the elements from A of the support of a Reed-Solomon code then

|X| ≤ min
i∈{1,...,r}

|Ai/mi| .

where mi is the maximal ideal of Ai for i = 1, . . . , n. To fix the ideas, suppose that
A = Z/prZ. Then n ≤ p� pr = |A|.

26 INTRODUCTION

The motivations for studying codes over rings

Before giving the contributions, we explain in this subsection the motivations for the
study of error correcting codes over rings.

The first two parts of this document describe two different approaches to solve the
same problem: decoding Reed-Solomon codes over discrete valuation rings. Chapters 1
and 2 adapt the classical algorithm of Guruswami-Sudan for fields to DVRs while Chap-
ters 3 and 4 present and study the properties of a lifting technique. The main motivation
for the study of both approaches is to compare them from a theoretical point of view
and then compare their implementations.

As stated in the previous section, Reed-Solomon codes over rings have a serious
drawback, their length is small compared to the cardinality of the ring n = o(|A|).
Therefore they are not suitable for applications that requires |A| = O(n).

However they can be used, for example, in the context of private information retrieval
(PIR) [CGKS95]. PIR is a way of fetching an item from a database server without the
server learning which item you are interested in. In [Gol07a] the author mentions the
possibility of using finite commutative rings instead of finite fields for the alphabet of the
underlying Reed-Solomon code. The author studies the special case of the rings Z/pqZ
where p and q are two distinct primes. Reed-Solomon codes over rings can also be used
along with Shamir’s secret sharing [Sha79, MS81] when the size of the secret has to be
large in comparison to number of pieces. In both situations Reed-Solomon codes over
quotients of discrete valuation rings have the advantage to have more efficient algorithms
than their counterparts over finite fields of the same sizes. This is shown in Chapter 3.

Other motivations for the theoretical study of codes over rings are detailed in Chap-
ter 4 and Chapter 5.

In Chapter 4, it is proved that interleaved codes over a finite field can be seen as codes
over a finite ring, namely quotients of truncated power series rings κ[[t]]. Therefore any
decoding algorithm for Reed-Solomon codes over κ[[t]]/(tr) induce a decoding algorithm
for interleaved Reed-Solomon codes over κ.

In Chapter 5 we study quasi-cyclic codes and show that, as for cyclic codes, quasi-
cyclic codes can be viewed as left ideal of a polynomial ring with square matrices co-
efficients. Given a square matrix Γ ∈ M3×3(F4) which is a primitive root of unity, we
construct a Reed-Solomon code whose support is constituted by the powers of Γ. Then
applying a projection we obtain a good code over F4, beating minimal distances with a
fixed length and dimension. This suggest to further investigate Reed-Solomon codes over
the rings of square matrices and, in fact, over an arbitrary (not necessarily commutative)
ring, as it is cheap. A subfamily of quasi-cyclic codes comes from Reed-Solomon over a
square matrix ring. Let A be any commutative ring and consider a primitive m-th root
of unity Γ ∈M`×`(A). It is easy to see that the left submodule spanned by the vectors

(
f(Γ0), f(Γ1), f(Γ2), . . . , f(Γm−1)

)

27

is a cyclic Reed-Solomon code over M`×`(A). Then applying the projection

pr : M`×`(A) −→ A`a11 . . . a1`
...

...
a`1 . . . a``

 7−→ (a11, . . . , a1`)

to each components of the codewords, we obtain a quasi-cyclic code over A of length
m` and block size `. Therefore, the given decoding algorithms of Chapter 3 for non
commutative Reed-Solomon codes induce decoding algorithms for a subfamily of quasi-
cyclic codes. This is a first step towards the decoding of quasi-cyclic codes needed, for
example, in the context of McEliece cryptosystems [BCGO09].

Algebraic geometric codes have been considered over finite rings in [Bar06, WB08,
VW99]. The Guruswami-Sudan decoding techniques have been applied to the latter but
the interpolation and root-finding steps were left aside. As Reed-Solomon codes over
rings form a special case of algebraic geometric codes over rings, Chapters 1 to 4 form a
first step towards the decoding of the latter codes.

Chapter 6 gives the first decoding algorithm reaching the Johnson bound for number
fields codes. Number fields codes are the analogue of Reed-Solomon over Z and OK .
They can be used in the context of parallel computing. Suppose you want to compute
the determinant of a big matrix with coefficients in OK , one can apply the Chinese
remaindering theorem and distribute the computation among several computers. Each
computer will work with a different prime ideal p ⊂ OK on the matrix. When each
computer has finished its computation the result can be built again thanks to the Chinese
remaindering theorem. It can happens that a computer breaks or returns a wrong result.
Therefore, the use of CRT codes can prevent the final result computation from failing.

Part I of the document: The Classical List Decoding Framework for
Finite Rings

Although there have been several papers concerning the unique decoding of generalized
Reed-Solomon codes, and more generally other families of codes over rings, no detailed
complexities is given. The situation is the same for list decoding. Only one interpolation
algorithm is given in [Arm05b] with no complexity. Moreover no root finding algorithm
is given. In Part I we study, give algorithms and their complexities for list decoding over
quotient of discrete valuation rings.

Definition 28. A discrete valuation ring (DVR) is a principal ideal domain which has
one and only one prime ideal m. Any element π ∈ A such that (π) = m is called a
uniformizing parameter of A. We say that a ∈ A has valuation i and denote it by
v(a) = i if a ∈ mi \mi+1. See [Ser62, Chapter 1] for more on DVRs.

First, in Chapter 1 we give an interpolation algorithm for generalized Reed-Solomon
codes over Galois rings and its complexity. It follows the same idea as the interpolation
algorithm of [Ale05].

28 INTRODUCTION

Corollary 29. For a Reed-Solomon code of parameters [n, k]B, one can perform the
interpolation step of the Sudan algorithm with a number of

O

(
n7k2

(n
k

)3
)

arithmetic operations in B and

O

(
rn6k2

(n
k

)3
)

multiplications by π.

• Or a number of

Õ

(
n7k2

(n
k

)3
rs log p

)
bit-operations and

O

(
rn6k2

(n
k

)3
)

multiplications by p when B is the Galois ring GR(pr, s) and

• Or a number of

Õ

(
n7k2

(n
k

)3
r

)
bit-operations and

O

(
rn6k2

(n
k

)3
)

multiplications by t when B is the truncated power series ring Fq[[t]]/(tr).

Then in Chapter 2 we give the first root finding algorithm for the second step of the
Guruswami-Sudan algorithm for generalized Reed-Solomon codes over Galois rings and
its complexity. We first study the structure of the set of roots of univariate polynomials.

Notation 30. Let R be a DVR. For any i ∈ N, the subset of the elements of R of
valuation at least i is written Oi.

Theorem 31. Let R be a DVR with uniformizing parameter π. If F is a polynomial
in O0[x] such that F mod πn 6= 0, then its set of roots in R to precision n can be written
as the disjoint union of at most degF classes of the form a+Oi.

Then we give the first algorithm of root finding for univariate polynomials with
coefficients in a certain finite commutative ring including Galois rings and truncated
power series rings.

29

Theorem 32. Let R be the power series ring Fq[[t]] over the finite field with q = pk

elements. Then, for any polynomial F in R[x] of degree at most d given to precision n,
one can compute a set of at most d disjoint classes representing its set of roots in R to
precision n with a randomized algorithm that performs an expected number of

O

(
(nM(n) + log(dq))M(d) log d+ n

d

p
log(q/p)

)
operations in Fq.

Theorem 33. Let R be an unramified extension of Zp of degree k. Then, for any given
polynomial F in R[x] of degree at most d given to precision n, one can compute a set of at
most d disjoint classes representing its set of roots in R to precision n with a randomized
algorithm that performs an expected number of Õ((n+ k log p)ndk log p) bit-operations.

We then give an algorithm to find the set of roots of bivariate polynomials with
coefficients in a Galois ring.

Theorem 34. Let R be an unramified extension of Zp of degree k and F ∈ R[t][x] be
such that F mod pn 6= 0. We denote by d the degree in x and by dt the degree in t.
Then one can compute the roots of F in R[[t]] to precision l with an expected number of
Õ((n2 + n(dl + dt)k log p)d(dl + dt)k log p) bit-operations.

All the algorithms given in Chapter 2 have been implemented as we will see later in
Part IV.

Part II of the document: A Lifting Framework for List Decoding over
some Finite Rings

In this part we exploit the structure of some finite rings (such as the Galois rings)
to obtain decoding algorithms over rings from decoding algorithms over finite fields.
The first part of Chapter 3 is dedicated to generalized Reed-Solomon codes over non
necessarily commutative rings with identity. We give their definition which is the same
as generalized Reed-Solomon codes over commutative rings with identity with an extra
condition.

Definition 35 (Generalized Reed-Solomon code over non commutative rings). We fix
three positive integers k < n and d = n−k+1, a subset {x1, . . . , xn} of A such that for all
i 6= j xi − xj ∈ A× and xixj = xjxi, x = (x1, . . . , xn) and v = (v1, . . . , vn) ∈ (Z(A)×)n.
The left submodule of An generated by the vectors of the form

(v1f(x1), . . . , vnf(xn)) ∈ An,

with f ∈ A[X]<k is denoted by

GRSA(v, x, k) = GRSA((v1, . . . , vn), (x1, . . . , xn), k)

30 INTRODUCTION

and is called the generalized Reed-Solomon code over A of parameters [v, x, k] or simply
[n, k] if there is no confusion on v and x. The integer n is called the code block length
or simply length of GRSA(v, x, k). The n-tuple v = (v1, . . . , vn) is called the weight of
GRSA(v, x, k). The n-tuple x = (x1, . . . , xn) is called the support of the code. When
there is no confusion on the ring A, the weight and the support, we will simply write
GRS(n, k) for GRSA(v, x, k). The integer k will be called the pseudo-dimension of
GRS(n, k) throughout this document. When v = (1A, . . . , 1A) we call GRSA(v, x, k)
a Reed-Solomon code and denote it by RSA(v, x, k) or simply RS(n, k) if there is no
confusion on the ring A, the weight and the support.

We prove that several properties about generalized Reed-Solomon codes over non
commutative rings remain valid as well as decoding algorithms thanks to the simple
following lemma:

Lemma 36. Let n < m be two positive integers and M ∈Mn×m(A). Then there exists
a nonzero v ∈ Am such that Mv = 0.

Proof. The matrix M induces a group homomorphism of Am → An. Its kernel H is a
subgroup of Am of cardinality at least |A|m−n > 0.

Theorem 37. A generalized Reed-Solomon codes over any ring A with identity of pa-
rameters [n, k]A is a free left submodule of An of dimension k with minimum distance
d = n− k + 1. Moreover the Welch-Berlekamp algorithm can correct up to⌊

d− 1

2

⌋
=

⌊
n− k

2

⌋
errors and, provided that the support of the code is contained in the center of A, the
Guruswami-Sudan algorithm can correct up to⌈

n−
√
n(k − 1)

⌉
− 1.

errors.

We also prove that generalized Reed-Solomon codes over non commutative rings are
no better than their counterparts over commutative rings which themselves are no better
than the counterparts over finite fields in the following sense:

Theorem 38. Given three positive integers k < n ≤ q, let A be a non commutative
ring of cardinality q and a GRS code over A of parameters [n, k, n − k + 1]A. Then
there exists a commutative ring B of cardinality q and a GRS code over B of parameters
[n, k, n− k + 1]B.

The same theorem holds when q is a prime power and if we replace “noncommutative
rings” by “commutative rings” and “commutative rings” by “finite fields”.

In the second part of Chapter 3 we generalize the lifting technique given in [GV98] to
obtain decoding algorithms for generalized Reed-Solomon over non commutative rings
and show several of their properties. Let A be a ring with identity with the following
property:

31

(∗) there exists a regular element p which is not a unit such that p ∈ Z(A) and such
that every element a ∈ A can be uniquely written as

∑∞
i=0 aip

i where, for all i ∈ N,
ai is in a set of representatives of A/(p).

For example A can be

• the power series ring over a field κ, κ[[t]],

• an unramified extension of degree s of the p-adic ring Zp, Zps .

• the matrix ring over κ[[t]], M`(κ[[t]]),

• the matrix ring over Zps , M`(Zps).

We study in more details the case of commutative rings. Suppose that A is commuta-
tive. Let r be a positive integer and B = A/(pr) and let C be a generalized Reed-Solomon
code over B of parameters [n, k]B. The idea behind the algorithms we present in this
part is to take advantage of the decoding algorithms of generalized Reed-Solomon codes
over a finite fields which have been widely studied in [Ber84, BW86, TERH88] for the
unique decoding and in [Köt96,Sud97b,RR98,GS98,Ale05,AZ08] for the list decoding.

Proposition 39. Given a Galois ring A = GR(pr, s) and a RS code over A with param-
eters [n, k, n− k + 1]A, there exists a unique decoding with an asymptotic complexity of
Õ(rnks log p) bit-operations; and a list decoding algorithm with an asymptotic complexity
of Õ(nr+6k5sprs(r−1)) bit-operations which can list decode up to the Johnson bound.

The lifting algorithm has been first proposed in [GV98] then studied in [Byr01,BZ01].
Then in Chapter 4 we show how to improve, using erasures, the decoding radius of the
lifting algorithm from Chapter 3. The idea of using erasures was first proposed by M. A.
Armand in [Arm04] but he did not apply it within the lifting algorithm of M. Greferath
and U. Vellbinger [GV98].

Notation 40. Let B = A/(pr) be such that there exists an integer q satisfying q =
A/pr

A/pr+1 for all r ∈ N, a map τ : N→ N and C be a code over B with parameters [n, k]B.

We let

N(ε, C, w) :=

(
n
ε

)
qrε
(
n− ε
w

)
×

∑
(v0,...,vr−1)∈Vw

[
r−1∏
i=0

(
w − v0 − · · · − vi−1

vi

)
(q − 1)viqv0+···+vi−1

]

where

Vw = {(v0, . . . , vr−1) ∈ Nr : v0 + · · ·+ vr−1 = w and

0 ≤ v0 ≤ τ(ε) and 0 ≤ vi−1 ≤ τ(ε+ v0 + · · ·+ vi−2)

for i = 2, . . . , r − 1} ,

32 INTRODUCTION

and

P (ε, C, w) =

∑w
i=0N(ε, B,w)∑w

i=0

(
n
i

)
(qr − 1)i

Theorem 41. Taking the notation above with A = Zps (an unramified extension of Zp
of degree s), let C be a Reed-Solomon code over B = A/(pr) with parameters [n, k, d =
n − k + 1]B then there exists a unique decoding algorithm which can correct up to w
errors and ε erasures with w ≤ n− ε−k and which does succeed for a fraction of at least
P (ε, B,w) error patterns with an expected number of Õ(rnks log p) bit-operations.

We then show how to apply the improved lifting algorithms to interleaved linear
codes.

Definition 42. We let A be the power series ring over the finite field Fq and B =
Fq[[t]]/(tr). We let C be a linear code over Fq with parameters [n, k, d]Fq and with
generator matrix G. Let r messages m0, . . . ,mr−1 ∈ Fkq and their encodings c0 =
m0G, . . . , cr−1 = mr−1G. For i = 0, . . . , r − 1 and j = 1, . . . , n define cij to be the
j-th coordinate of ci and sj = (c0,j , . . . , cr−1,j).

c0,1 c0,2 . . . c0,n → c0

c1,1 c1,2 . . . c1,n → c1
...

...
...

...
cr−1,1 cr−1,2 . . . cr−1,n → cr−1

↓ ↓ ↓
s1 s2 sn

The vectors transmitted over the channel are not c1, . . . , cr−1 ∈ Fnq but s1, . . . , sn ∈ Frq.
We will make an abuse of notation and call such an encoding scheme a interleaved code
with respect to C and of degree r. In this context a burst error is a set of errors occurring
in only one column si for one index i ∈ {1, . . . , n}.

Interleaved linear codes over finite fields are presented in [VVO89, Chapter 7, Sec-
tion 5] and their decoding is studied in [BKY03, CS03, GGR11]. They have also been
considered over Galois rings in [Arm10].

Theorem 43. Given a linear code C′ over Fq with parameters [n, k, d]Fq and a unique
decoding algorithm BlackBoxErasuresDec from errors and erasures that can correct ε
erasures and τ(ε) errors in dec(C′) arithmetic operations over Fq, there exists a unique
decoding algorithm for interleaved codes with respect to C′ and of degree r from errors
and erasures that can correct ε erasures and τ(ε) errors with at most r dec(C′) arithmetic
operations over Fq. Moreover it can correct at least a fraction of P (ε, B,w) error patterns
of Hamming weight at most w > τ(ε) over B also with at most r dec(C′) arithmetic
operations over Fq.

33

2 3 4 5 6

7 1.0 1.0 1.0 1.0 1.0

8 0.96 0.98 0.99 0.99 0.99
9 0.81 0.94 0.96 0.97 0.98
10 0.49 0.80 0.88 0.91 0.91
11 0.0073 0.53 0.70 0.75 0.78
12 0.00012 0.14 0.38 0.48 0.53

Figure 1: Fraction of correctible error patterns for a Goppa code of parameters
[256, 200, 15]F2 .

3 4 5 6

22 1.00000 1.00000 1.00000 1.00000

23 0.999997 0.999999 0.999999 0.999999
25 0.999844 0.999963 0.999981 0.999987
27 0.998099 0.999469 0.999715 0.999789
28 0.995114 0.998531 0.999185 0.999391
29 0.989079 0.996477 0.997984 0.998470
30 0.978112 0.992458 0.995554 0.996581

Figure 2: Fraction of corrigible error patterns for an Extended BCH code with parame-
ters [256, 100, 46]F2 .

34 INTRODUCTION

In Tables 1 and 2, the first row gives the degrees of interleaving and the first column
shows the number of errors up to which we want to decode. The second row corresponds
to half the minimum distance and, as expected, all of the probabilities are 1.0. We can
see that the fraction of corrigible error patterns increases with the degree of interleaving
and that codes with a high minimal distance are good candidates for interleaving.

We provide some application of our algorithm to linear codes over F2 and show in
some tables at the end of Chapter 4 that the fraction of error patterns that can be
corrected is high.

Related work on error correcting codes

In Part III I present other results obtained during my PhD thesis. They concern quasi
cyclic codes whose definition is given below and number fields codes which are introduced
later in this subsection.

Quasi cyclic codes

Let n = m` be three positive integers.

Definition 44. Let C ⊆ Fnq be a code. We say that C is cyclic if

(c1, . . . , cn−1, cn) ∈ C ⇒ (cn, c1, . . . , cn−1) ∈ C

and we say that C is `-quasi-cyclic if

(c1, . . . , cn) ∈ C ⇒ (cn−`+1, . . . , cn, c1, . . . , cn−`) ∈ C.

It is well known [MS86a, Theorem 1, page 190] that there is a one-to-one correspon-
dence between cyclic codes and ideals of the ring Fq[X]/(Xn − 1). We show that this
correspondence can be extended to quasi cyclic codes.

Theorem 1. There is a one-to-one correspondence between `-quasi-cyclic codes over Fq
of length m` and left ideals of M`(Fq)[X]/(Xm − 1).

We extend also the definition of BCH codes to this context and use them to find new
good codes over F4, codes beating known minimum distances with a fixed length and
dimension, with the help of Markus Grassl.

Definition 45 (Primitive root of unity). Let q be a prime power. A matrix A ∈M`(Fqs)
is called a primitive m-th root of unity if

• Am = I`,

• Ai 6= I` if i < m,

• det(Ai −Aj) 6= 0, whenever i 6= j.

35

New codes over F4

[171, 11, 109]4 [172, 11, 110]4 [173, 11, 110]4 [174, 11, 111]4 [175, 11, 112]4
[176, 11, 113]4 [177, 11, 114]4 [178, 11, 115]4 [179, 11, 115]4 [180, 11, 116]4
[181, 11, 117]4 [182, 11, 118]4 [183, 11, 119]4 [184, 10, 121]4 [184, 11, 120]4
[185, 10, 122]4 [185, 11, 121]4 [186, 10, 123]4 [186, 11, 122]4 [187, 10, 124]4
[187, 11, 123]4 [188, 10, 125]4 [188, 11, 124]4 [189, 10, 126]4 [189, 11, 125]4
[190, 10, 127]4 [190, 11, 126]4 [191, 10, 128]4 [191, 11, 127]4 [192, 11, 128]4
[193, 11, 128]4 [194, 11, 128]4 [195, 11, 128]4 [196, 11, 129]4 [197, 11, 130]4
[198, 11, 130]4 [199, 11, 131]4 [200, 11, 132]4 [201, 10, 133]4 [201, 11, 132]4
[202, 10, 134]4 [202, 11, 132]4 [203, 10, 135]4 [204, 10, 136]4 [204, 11, 133]4
[205, 11, 134]4 [210, 11, 137]4 [213, 11, 139]4 [214, 11, 140]4

Definition 46 (Left quasi-BCH codes). Let A be a primitive m-th root of unity in
M`(Fqs) and δ ≤ m. We define the `-quasi-BCH code of length m`, with respect to A,
with designed minimum distance δ, over Fq by

Q-BCHq(m, `, δ, A) :=(c1, . . . , cm) ∈ (F`q)m :
m−1∑
j=0

Aijcj+1 = 0 for i = 1, . . . , δ − 1

 .

We call the linear map

SA : (F`q)m → (F`qs)m

x = (x1, . . . , xm) 7→
∑m−1

j=0 Ajxj+1

the syndrome map with respect to Q-BCH(m, `, δ, A).

All our new good codes are available at http://www.codetables.de/ [Gra07]. How-
ever the site does not reference correctly our codes. This is due to the huge amount of
work that the maintainer of the site, Markus Grassl, has to do. All the codes are ob-
tained from our [189, 11, 125]F4-code. The site references it as BarbierChabotQuintin.
For example, in the construction section of our [188, 11, 124]F4-code on Grassl’s website,
it is written that is obtained by puncturing the [188, 11, 125]F4-code, which is the well
referenced-one.

Number fields codes

Number fields codes form a subfamily of Chinese remaindering theorem-codes (CRT
codes) which were first studied in [GSS00] then in [Gur04, Chapter 7, page 147–175].

Definition 47. Let A be any commutative ring with identity and I1, . . . , In be coprime
ideals and let E ⊆ A. Then the CRT code denoted by CRT((I1, . . . , In), E) is the set

{(x mod I1, . . . , x mod In) : x ∈ E} .

http://www.codetables.de/

36 INTRODUCTION

When A = Z, I1 = (p1), . . . , In = (pn) where p1, . . . , pn are primes and

E =

{
x ∈ Z : 0 ≤ x <

k∏
i=0

pi

}

with k < n, we obtain a well studied class of codes [Man76,GRS99,Bon00,GSS00,Gur04].
This subfamily of CRT codes is erroneously called “CRT codes” in the literature. We
will call them “CRT codes over Z”. We can extend the construction of CRT codes over
Z to integer rings of number fields.

Definition 48. Let K be a finite extension of Q. The Hermitian norm of an element
x ∈ K is

‖x‖ :=

√√√√[K:Q]∑
i=1

|σi(x)|2

where the σi are the canonical embeddings K → C.

Definition 49. Let K be a finite extension of Q and OK be the integral closure of Z in
K. Let p1, . . . , pn be n integral prime ideals. The CRT code

CRT ((p1, . . . , pn), {x ∈ OK |‖x‖ ≤ B}) .

where B is a fixed integer is called a number field code.

Number fields codes have been studied in only two papers [Len86,Gur03]. Their list
decoding has been quickly considered in [CH11]. The authors used the Coppersmith
[Cop97] theorem to claim that they can list decode number fields codes. Unfortunately
they did not give any algorithm, complexity or comparison of their decoding radius with
the Johnson bound. It turns out that a direct application of their theorem shows that
it does not reach the Johnson bound.

In Chapter 6 we give the first list decoding algorithm for number fields codes that
can decode up to the Johnson bound.

Theorem 50. Let K be a number fields of degree d and OK its integer ring. Let
ε > 0, k < n and prime ideals p1, · · · pn satisfying N (pi) < N (pi+1) and logN (pk+1) ≥
(k logN (pk)+d2), then with the previous notations, there exists a list decoding algorithm
for

CRT

(
(p1, . . . , pn),

{
x ∈ OK : ‖x‖ ≤

n∏
i=1

N (pi)
1/d

})
.

with decoding radius n−
√
k(n+ ε).

37

Part IV of the document: Implementation

In this part I present the implementation in C/C++ of some algorithms presented in
the first two parts of the PhD thesis. First in Chapter 7, I present the C++ computer
algebra system Mathemagix where I have implemented finite fields arithmetic with a
special emphasis for finite fields of characteristic 2 in the finitefiedz package. I also
present the implementation if the arithmetic of Galois rings and the root finding of
univariate and bivariate polynomials over Galois rings and truncated power series rings
in the quintix package. Then in Chapter 8, I present the implementation in C of list
decoding algorithms in an independent library called decoding. This library allows one
to have list decoding algorithms without having to install a big computer algebra system.
To my knowledge there was no open source implementation available for list decoding
generalized Reed-Solomon codes thus it was necessary to have a working implementation.

Part I

The Classical List Decoding
Framework for Finite Rings

39

41

Context

In this part we extend the Guruswami-Sudan algorithm to generalized Reed-Solomon
codes over finite rings with identity and we study its complexity. Let A be a finite ring
with identity, A need not be commutative. We let A× denote the units of A and Z(A)
denote the center of A, all the a ∈ A such that for all b ∈ A, ab = ba. The construction
of generalized Reed-Solomon codes over finite rings is a bit different than generalized
Reed-Solomon codes over fields, in order to obtain maximum distance separable codes
we must add two conditions on their support.

Definition. Let k < n be two positive integers and x = (x1, . . . , xn) ∈ An be such that
for all i 6= j, xi − xj ∈ A× (†) and xixj = xjxi (††). The left submodule generated by
the

(f(x1), . . . , f(xn)) ∈ An, f ∈ A[X] and deg f < k

is called a Reed-Solomon code of parameters [n, k]A and denoted by RSA(x, n) or simply
RS(n, k) when there is no confusion. The vector x is called the support of RSA(x, k).

Thanks to conditions (†) and (††) the Reed-Solomon code of parameters [n, k]A has
minimum distance n−k+1. When A is commutative condition (††) is useless and when
A is a finite field we find the classical definition of Reed-Solomon codes (Definition 8).

Definition. Let k < n be two positive integers, v = (v1, . . . , vn) be such that vi ∈ Z(A)×

for all i and x = (x1, . . . , xn) ∈ An be such that for all i 6= j, xi − xj ∈ A× and
xixj = xjxi. The left submodule generated by the

(v1f(x1), . . . , vnf(xn)) ∈ An, f ∈ A[X] and deg f < k

is called a generalized Reed-Solomon code of parameters [n, k]A and denoted by
GRSA(v, x, n) or simply GRS(n, k) when there is no confusion. The vector x is called
the support while v is called the weight of GRSA(v, x, k).

As for Reed-Solomon codes the minimum distance of GRS(n, k) is n − k + 1. Gen-
eralized Reed-Solomon and Reed-Solomon codes over the ring of matrices over a finite
field are considered for example in [BCQ12]. They have been studied when the base ring
is commutative in [Arm04,Arm05b]. In this PhD thesis we focus on a particular family
of rings called Galois rings.

Proposition. Let p be a prime and r, s two positive integers. Let ϕ(X), φ(X) ∈
Z/prZ[X] be two degree-s monic polynomials irreducible modulo p. Then there is a
ring isomorphism

Z/prZ[X]

(ϕ(X))
=

Z/prZ[X]

(φ(X))
.

The proof can be found in [Rag69, Statements I and II, page 207].

Definition (Galois rings). The ring Z/prZ[X]
(ϕ(X)) from the previous proposition is denoted

by GR(pr, s) and called a Galois ring.

42

The name for Galois rings comes from the following fact whose proof can also be
found in [Rag69, Proposition 2, page 213].

Proposition. Taking the same notation as the above definition, the ring automorphisms
of GR(pr, s) form a cyclic group of order s. (It is isomorphic to Gal(Fprs |Fpr).)

The decoding of generalized Reed-Solomon codes over Galois rings have been widely
studied. The unique decoding is treated in [IPE97, Nor99, NSM00, BF01, BF02, Arm02,
Arm05c] while the list decoding is investigated in [Arm04, Arm05b, Arm05a, AdT05].
Algebraic geometric over local Artinian rings have also been studied [Wal99a, VW99,
WB08] as well as their list decoding [Bar06,WB08].

In fact, when working with finite rings with identity as alphabets for generalized
Reed-Solomon codes, their finiteness implies the following lemma which allows one to
apply the Guruswami-Sudan algorithm over any finite ring as soon as one dispose of
practical linear algebra algorithms over the latter.

Lemma. Let n < m be two positive integers and M ∈ Mn×m(A). Then there exists a
nonzero v ∈ Am such that Mv = 0.

Proof. The matrix M induces a group homomorphism of Am → An. Its kernel H is a
subgroup of Am of cardinality at least |A|m−n > 0.

When A is commutative, the previous lemma can also be proven with linear alge-
bra techniques, see for example [Bro93, Chapter 5 and Corollary 5.9, page 39]. The
Guruswami-Sudan algorithm for generalized Reed-Solomon codes over fields is consti-
tuted of two parts. Thanks to the previous lemma it can be applied as is to generalized
Reed-Solomon codes over finite rings and commutative rings.

Algorithm 2 Overview of the Guruswami-Sudan algorithm.

Input: A received word y ∈ An and a decoding radius τ .
Output: All codewords c ∈ An such that d(c, y) ≤ τ .
1: With linear algebra, find a bivariate polynomial Q(X,Y) ∈ A[X,Y] satisfying certain

properties.
2: Find all the roots of Q(X,Y) seen as a univariate polynomial of (A[X])[Y].

The maximum decoding radius of the Algorithm can be computed in exactly the
same way as in the case of finite fields. It will be shown in this thesis that⌈

n−
√
n(k − 1)

⌉
− 1

is the maximum possible value for the Guruswami-Sudan algorithm, thus reaching the
Johnson bound (Definition 15).

43

Contributions

Although there have been several papers concerning the unique decoding of generalized
Reed-Solomon codes, and more generally other families of codes over rings, no detailed
complexities is given. The situation is the same for list decoding. Only one interpolation
algorithm is given in [Arm05b] with no complexity. Moreover no root finding algorithm
is given. First, in Chapter 1 we give an interpolation algorithm for generalized Reed-
Solomon codes over Galois rings and its complexity. It follows the same idea as the
interpolation algorithm of [Ale05]. Then in Chapter 2 we give the first root finding
algorithm for the second step of the Guruswami-Sudan algorithm for generalized Reed-
Solomon codes over Galois rings and its complexity. We first give the first algorithm for
root finding of polynomials with coefficients in a local finite commutative ring. We then
give an algorithm to find the roots of bivariate polynomials with coefficients in a Galois
ring.

Chapter 1

Shortest Vectors in Polynomial
Lattices Over Galois Rings and
Application to List Decoding

This chapter contains the most recent results I obtained. It has not been submitted. It
concerns the interpolation step of the Guruswami-Sudan algorithm and is included here
for the completeness of this part of the PhD thesis.

1.1 Introduction

In this chapter we adapt the algorithm of [Ale05], which works over finite fields, over
discrete valuation rings. Given a finite field Fq and a lattice Λ in Fq[X]n, the algorithm
in [Ale05] gives in polynomial time the shortest vector of Λ. The “norm” used here is the
degree of the polynomial of greatest degree among all the components of a vector of Λ.
It is interesting to note that the finding of the shortest vector of a lattice in Fq[X]m can
be done in polynomial time whereas, a priori, no polynomial time algorithm is known
to find the shortest vector of a lattice in Zm.

We follow the presentation given in Alekhnovich’s paper [Ale05]. We first recall the
definition and properties of discrete valuation rings. Then we give a naive algorithm
which computes the shortest vector of a lattice Λ ⊂ (A/(πr))n where A is a DVR with
uniformizing parameter π. Finally we apply this algorithm to the Sudan list decoding
algorithm for Reed-Solomon codes over A/(πr).

1.1.1 Related work

Given a lattice in Λ′ ⊂ Rm it is NP-hard [Ajt98] to find a shortest vector. However in
the early 1980s a polynomial time algorithm for finding a short vector in Λ′ was given
in [LLL82]. The situation for polynomial lattices is much simpler. Let Λ ⊂ κ[X]m

be a polynomial lattice over the field κ. One can compute a shortest vector of Λ in

45

46 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

polynomial time [MS03]. In [Ale05] the author applies a shortest vector finding algorithm
to the Guruswami-Sudan problem. Related work of shortest vector in polynomial lattices
includes [GJV03,JV05,SV05,JV06].

1.2 Prerequisites

1.2.1 Complexity model

The “soft-Oh” notation f(n) ∈ Õ(g(n)) means that f(n) ∈ g(n) logO(1)(3 + g(n)). It
is well known [Für07] that the time needed to multiply two integers of bit-size at most
n in binary representation is Õ(n). The cost of multiplying two polynomials of degree
at most n over a ring A is Õ(n) in terms of the number of arithmetic operations in A.
Thus the bit-cost of multiplying two elements of the finite field Fpn is Õ(n log p).

1.2.2 Discrete valuation rings

Definition 51. A discrete valuation ring (DVR) is a principal ideal domain which has
one and only one prime ideal m. Any element π ∈ A such that (π) = m is called a
uniformizing parameter of A. Let a ∈ A be a nonzero element. The greatest integer
i ∈ N such that a ∈ mi \ mi+1 is called the valuation of a and denoted by v(a). We let
v(0) = +∞.

Definition 52. Let Zps be an unramified extension of Zp of degree s. Then Zps is a
DVR with uniformizing parameter p [Ser62, Chapter 1]. Let r be a positive integer.
Then the quotient ring

GR(pr, s) :=
Zps
(pr)

is called a Galois ring.

Proposition 53. Let a, b ∈ GR(pr, s). Then the product ab ∈ GR(pr, s) can be computed
with a number of

O (s log s log log sr log p log(r log p) log log(r log p))

or Õ(rs log p) bit-operations.

Proposition 54. Let Fq[[t]] be the power series ring over Fq. It is a DVR with uni-
formizing parameter t. Let a, b ∈ Fq[[t]]/(tr). Then the product ab ∈ Fq[[t]]/(tr) can be
computed with a number of O(r log r log log r) or Õ(r) arithmetic operations in Fq.

Proof. Proposition 52 and 53 are in [GG03, Chapter 8].

1.2. PREREQUISITES 47

1.2.3 Reed-Solomon codes over valuation rings

Let A be a DVR. Reed-Solomon codes over rings are defined in a slightly different way
than their field counterparts. We let A[X]<k denote the submodule of A[X] consisting
of all the polynomials of degree at most k − 1 of A[X].

Definition 55. Let x1, . . . , xn be elements of A such that xi − xj ∈ A× fir i 6= j
(where A× is the group of units of A). The submodule of An generated by the vectors
(f(x1), . . . , f(xn)) ∈ An where f ∈ A[X]<k is called a Reed-Solomon code over A. The
n-tuple (x1, . . . , xn) is called the support of the RS code.

Proposition 56. Let C be a RS code over A. Then C has parameters [n, k, d = n−k+1]A.

Proposition 57. Let C be a RS code with parameters [n, k, d = n − k + 1]A over a
discrete valuation ring A with uniformizing parameter π. Then C/πrC is a RS code with
parameters [n, k, d]A/(πr) over A/(πr). Moreover of (x1, . . . , xn) is the support of C then
(x1 mod πr, . . . , xn mod πr) is the support of C/πrC.

The decoding of Reed-Solomon codes over Galois rings have been widely studied.
The unique decoding is treated in [IPE97, Nor99, NSM00, BF01, BF02, Arm02, Arm05c]
while the list decoding is investigated in [Arm04,Arm05b,Arm05a,AdT05]. We let C be

a Reed-Solomon code over A of parameters [n, k]A, J =
⌈
n−

√
n(k − 1)

⌉
− 1 and

S = n− (k − 1)rkn

⌈
2n− (k − 1)rkn(rkn + 1)

2(rkn + 1)

⌉
− 2 where rkn =

⌊√
2(n+ 1)

k − 1
+

1

4
− 1

2

⌋
We recall the Sudan and the Guruswami-Sudan algorithms.

Algorithm 3 Sudan

Input: a positive integer τ ≤ S and a received vector y of An with at most τ errors.
Output: all the f ∈ A[X]<k such that d(y, f(x)) ≤ τ .

1: L←
⌈
n−τ−1
k−1

⌉
− 1.

2: Find Q =
∑L

i=0Qi(X)Y i ∈ (A[X])[Y] of degree at most L such that

1. Q(xi, yi) = 0 for all 1 ≤ i ≤ n.

2. degQi ≤ (n− τ)− 1− i(k − 1) for all 0 ≤ i ≤ L.

3: Z ← Roots of Q in A[X]<k such that d(y, f(x)) ≤ τ .
4: return {(f(x1), . . . , f(xn) : f ∈ Z}

Proposition 58. Algorithm 3 and 4 work correctly as expected.

The proof of Proposition 58 follows exactly the same proof as in the finite field case.
See for example [Sud97b] and [GS98]. The only point that differs concerns the existence
of the polynomial Q(X,Y) of step 3. But the following lemma allows us to use the same
property as the one for matrices over commutative fields.

48 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

Algorithm 4 Guruswami-Sudan

Input: a positive integer τ ≤ J and a received vector y of An with at most τ errors.
Output: all the f ∈ A[X]<k such that d(y, f(x)) ≤ τ .

1: s←
⌊

(k−1)n+
√

(k−1)2n2+4((n−τ)2−(k−1)n)

2((n−τ)2−(k−1)n)

⌋
+ 1.

2: L←
⌈
s(n−τ)−1

k−1

⌉
− 1.

3: Find Q =
∑L

i=0Qi(X)Y i ∈ (A[X])[Y] of degree at most L such that

1. Q(xi, yi) = 0 for all 1 ≤ i ≤ n.

2. Q(X + xi, Y + yi) has valuation at least s.

3. degQi ≤ s(n− τ)− 1− i(k − 1) for all 0 ≤ i ≤ L.

4: Z ← Roots of Q in A[X]<k such that d(y, f(x)) ≤ τ .
5: return {(f(x1), . . . , f(xn) : f ∈ Z}

Lemma 59. Let n < m be two positive integers and M ∈Mn×m(A). Then there exists
a nonzero v ∈ Am such that Mv = 0.

Proof. The matrix M induces a group homomorphism of Am → An. Its kernel H is a
subgroup of Am of cardinality at least |A|m−n > 0. It can also be proven with linear
algebra techniques, see for example [Bro93, Chapter 5 and Corollary 5.9, page 39].

Informally speaking, note that the finding of Q (step 2 of Algorithm 3 and step 3
of Algorithm 4) can be seen as finding a vector of univariate polynomials with bounded
degrees in a certain ideal.

1.3 Computing the shortest vector

1.3.1 Preliminaries

Until the end of this chapter, we let A be a DVR with uniformizing parameter π be such
that A/(π) is a finite field and B = A/(πr) for a positive integer r.

In this section we solve the following problem:

Problem 60. Let M ∈Mm×`(B[X]) be a matrixM11(X) . . . M1`(X)
...

...
Mm1(X) . . . Mm`(X)



1.3. COMPUTING THE SHORTEST VECTOR 49

and let f = (f1(X), . . . , f`(X)) ∈ B[X]`. Let

d1 = deg (f1(X)M11(X) + f2(X)M12(X) + · · ·+ f`M1`(X))

d2 = deg (f1(X)M21(X) + f2(X)M22(X) + · · ·+ f`M2`(X))

. . .

dm = deg (f1(X)Mm1(X) + f2(X)Mm2(X) + · · ·+ f`Mm`(X)) .

Our goal is to find f ∈ B[X]` such that max(d1, d2, . . . , d`) has the least possible nonzero
value.

Problem 60 is equivalent to finding the shortest vector of the lattice

Λ =

〈
M11(X)
M21(X)

...
Mm1(X)

 ,


M12(X)
M22(X)

...
Mm2(X)

 , . . . ,


M1`(X)
M2`(X)

...
Mm`(X)


〉
.

where the “norm” of

g = (g1(X), . . . , g`(X)) ∈ B[X]`

is taken to be

max (deg g1(X), . . . ,deg g`(X)) .

In Subsection 1.4.1 we will present how to reduce the interpolation step of the
Guruswami-Sudan algorithm to Problem 60 by a suitable choice of the matrix M .

1.3.2 The naive algorithm

We let M be the B[X]-module (B[X])m for a fixed integer m.

Definition 61. Let b ∈ B. Then there exists a unique unit u ∈ B× and a non negative
integer ν such that b = uπν . The integer ν is called the filtration of b. The filtration of
0 ∈ B is defined to be +∞. For an element ϕ ∈ B[X] we define the filtration of ϕ to be
the least filtration of the nonzero coefficients of ϕ. For an element f = (f1, . . . , fm) ∈M
the filtration of f is defined to be the least filtration of the components of f .

Definition 62. For any element f = (f1(X), . . . , fm(X)) ∈ M , we define its degree
deg f to be max{deg fi : i ∈ {1, . . . ,m}}, its leading index LI(f) to be

max{i : i ∈ {1, . . . ,m} and deg fi = deg f}

and its leading coefficient LC(f) to be fLI(f).

The degree of 0 ∈ M is −∞. If E is any subset of M non reduced to zero, we
call a vector of minimal degree or shortest vector of E any nonzero vector a0 satisfying
∀b ∈ E, b 6= 0,deg b ≥ deg a0.

50 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

Example 63. We let B = Z/4Z, then we have

LI



X2

1
2X2

3X


 = 3

and

LC



X2

1
2X2

3X


 = 2X2.

If we consider the submodule N of B[X]2 generated by the columns of(
X2 2X
1 1

)
then a shortest vector of N is (

0
2

)
= 2 ·

(
2X
1

)
Definition 64. Let a ∈M and s ∈ N be such that πsa 6= 0 and πs+1a = 0. The vector
πsa is denoted by aπ.

Definition 65. Let ` ≤ m and f = (f1, . . . , f`) ∈ M `. We say that f1, . . . , f` are
π-independent if there exists a `× ` minor which is not divisible by π. We define

fπ := ((f1)π, . . . , (f`)π).

Proposition 66. Let ` ≤ m and f = (f1, . . . , f`) ∈M ` be π-independent vectors. Then
〈fπ〉 contains a shortest vector of 〈f〉.

Proof. Let ψ be a shortest vector of 〈f〉 such that πψ = 0. Such a ψ always exists and
we can write

ψ =
∑̀
i=1

aifi

with ai ∈ B[X] for i = 1, . . . , `. We have

∑̀
i=1

πaifi = 0.

Let P (X) ∈ B[X] be a monic polynomial irreducible modulo π of degree greater than
max{(deg ai + deg fi) : i ∈ {1, . . . , `}} + 1. Then we have a homomorphism of B[X]-
module

M −→
(

B[X]
(P (X))

)m
a 7−→ ā.

1.3. COMPUTING THE SHORTEST VECTOR 51

As the components of f are π-independent we have that f̄ = (f̄1, . . . , f̄`) are linearly

independent over the ring B[X]
(P (X)) and we obtain that πāi = 0 which implies that πr−1

divides āi for i = 1, . . . , `. As deg ai + deg fi < degP we also have that πr−1 divides ai
for i = 1, . . . , `.

Definition 67. For any finite set of vectors E ⊆M , we define the degree of E, denoted
by degE, to be

∑
f∈E deg f and the max-degree, denoted by maxdegE to be max{deg f :

f ∈ E}.

Definition 68. Let a ∈ M . We say that a is π-reduced if for any non negative integer
v we have either πva = 0 or, LI(πva) = LI(a) and deg(πva) = deg a. Let E be a finite
set of vectors of M . We say that E is X-reduced if for all a, b ∈ E, a 6= b, we have
LI(a) 6= LI(b). Finally, we say that E is reduced if E is X-reduced and each element of
E is π-reduced.

Example 69. Let B be the ring Z/22Z = Z2/(2
2). The vector (1, X) is 2-reduced while

the vector (1, 2X) is not as we have 2 · (1, 2X) = (2, 0). The set{(
1
X

)
,

(
2X
1

)}
is X-reduced while {(

1
X

)
,

(
1

2X

)}
is not as we have

LI

((
1
X

))
= 2 = LI

((
1

2X

))
.

Lemma 70. Let a ∈M be a nonzero π-reduced vector. Then for all λ ∈ B[X] such that
λa 6= 0 we have LI(λa) = LI(a) and deg(λa) = deg λ+ deg a.

Proof. Let d = deg λ and λdX
d be the leading term of λ. Write a = (a1(X), . . . , am(X))

and let α = aLI(a) 6= 0. For i = 1, . . . ,m we have deg λai ≤ deg λ + deg ai. Write
λd = uπv where u is a unit of B and v is a non negative integer. Then, by hypothesis,
we have deg a = degα = deg πvα = deg λdα hence the leading terms of α and λdα
have the same degree. Therefore deg λα = deg λ + degα = deg λ + deg a. Moreover
for i = 1, . . . ,m we have deg ai ≤ degα, thus deg λai ≤ deg λ + degα = deg λα and
deg λa = deg λα.

Proposition 71. Let ` ≤ m and f = (f1, . . . , f`) be reduced vectors of M . Then f
contains a minimal vector of 〈f〉.

Proof. Suppose that there exists λ1, . . . , λ` ∈ B[X] such that

deg

(∑̀
i=1

λifi

)
< min{deg fi : i ∈ {1, . . . , `}}. (1.1)

52 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

Note that if λifi 6= 0 we have LI(λifi) = LI(λi) and deg(λifi) = deg λi + deg fi by
Lemma 70. Among all the nonzero terms of the sum of (1.1) take the one of maximal
degree and of maximal leading index, say, λi0fi0 . The leading coefficient of λi0fi0 can
only be canceled by a leading coefficient of another term which is impossible because f
is X-reduced, hence a contradiction.

We present an algorithm 5 which, given a set of vectors, compute X-reduced vectors.

Algorithm 5 X-reduction.

Input: f = (f1, . . . , f`) 6= 0 with ` ≤ m.
Output: f ′ = (f ′1, . . . , f

′
`) such that 0 6= 〈fπ〉 ⊆ 〈f ′〉 ⊆ 〈f〉 and f ′ is X-reduced or

deg f ′ < deg f . (It can happen that f ′i = 0 for some i ∈ {1, . . . , `}.)
1: f ′ ← f .
2: while f ′ is not X-reduced or deg f ′ = deg f do
3: Find a 6= b in f ′ such that LI(a) = LI(b) and deg a ≥ deg b.
4: i← LI(a) = LI(b).
5: uaπ

vaXda ← the leading term of ai such that ua is a unit of B.
6: ubπ

vbXdb ← the leading term of bi such that ub is a unit of B.
7: sa ← max(0, vb − va).
8: sb ← max(0, va − vb).
9: a← πsauba− uaπsbXda−dbb.

10: end while
11: return f ′.

Proposition 72. Algorithm 5 works correctly and takes at most O(m2`maxdeg f) arith-
metic operations in B.

Proof. At step 2, if f is X-reduced, then the proposition holds. If f ′ is not X-reduced
then we can always find a, b ∈ f ′, a 6= b, LI(a) = LI(b) and deg a ≥ deg b at step 3. At
each iteration, for i ∈ {1, . . . , `} either

• LI(fi) decreases and deg f = deg f ′ which can happen at most m times, or

• LI(fi) decreases and deg f < deg f ′ in which case the algorithm finishes, or

• LI(fi) does not change or increases and then deg f ′ < deg f in which case the
algorithm finishes.

Therefore the loop of Algorithm 5 from step 2 to 10 executes a maximum of `m iterations.
At each iteration at most one vector of f ′ becomes zero. Suppose that we end up with
only one element in f ′. This means that f ′ is X-reduced and the algorithm finishes with
f ′ 6= 0.

Each execution of step 9 takes at most O(mmaxdeg f) arithmetic operations in B.
Step 9 is executed at most O(m2`maxdeg f) times.

We now present Algorithm 6 which, given a set of vectors, compute their π-reduction.

1.3. COMPUTING THE SHORTEST VECTOR 53

Algorithm 6 π-reduction.

Input: f = (f1, . . . , f`) with ` ≤ m.
Output: f ′ = (f ′1, . . . , f

′
`) such that 0 6= 〈fπ〉 ⊆ 〈f ′〉 ⊆ 〈f〉. and 0 6= f ′i is π-reduced for

i = 1, . . . , `.
1: f ′ ← f .
2: for i = 1→ ` do
3: while fi is not π-reduced do
4: fi ← πfi.
5: end while
6: end for
7: return f ′.

Proposition 73. Algorithm 6 works correctly and requires at most O(rm`maxdeg f)
multiplications by π in B.

Proof. Let f ∈ M be a non π-reduced vector. Let µ be the greatest integer such that
πµf 6= 0. Then πµf is π-reduced. Hence the inner loop (from step 3 to step 5) terminates
and produce a nonzero π-reduced vector. The correctness of the algorithm follows.

The algorithm that computes a reduced set f ′ from a finite set f of vectors of M is a
simple loop that call successively call Algorithm 5 and 6 until we obtain a reduced set.

Algorithm 7 Reduction.

Input: f = (f1, . . . , f`) be π-independent vectors with ` ≤ m.
Output: f ′ = (f ′1, . . . , f

′
`) such that 0 6= 〈fπ〉 ⊆ 〈f ′〉 ⊆ 〈f〉. and f ′ is reduced. (It can

happen that f ′i = 0 for some i ∈ {1, . . . , `}.)
1: f ′ ← f .
2: while f ′ is not reduced do
3: while f ′ is not X-reduced do
4: Call algorithm 5 with input f ′ to obtain f ′1
5: f ′ ← f ′1.
6: end while
7: Call algorithm 6 with input f ′ to obtain f ′1.
8: f ′ ← f ′1.
9: end while

10: return f ′.

Proposition 74. Algorithm 7 works correctly and performs at most
O(m3`2 deg f maxdeg f) arithmetic operations in B and at most
O(rm2`2 deg f maxdeg f) multiplications by π in B.

Proof. Algorithm 5 returns either a reduced set or a set with degree less than deg f ′ by
Proposition 72.

Suppose that for each iteration of the loop from step 2 to 9, we have

54 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

• at step 4, deg f ′1 = deg f ′ and f ′1 is not π-reduced and

• at step 7, deg f ′1 = deg f ′.

This implies for both step 4 and 7 that for each i = 1, . . . , ` such that (f ′1)i 6= 0,
LI((f ′1)i) < LI(f ′i). This can happen at most m` times. Also it can happen at most
deg f times that deg f ′1 < deg f ′. Therefore there is at most O(m`deg f) loop iterations
from step 2 to 9.

Corollary 75. Let f = (f1, . . . , f`) ∈ M ` be π-independent vectors. Then we can
compute a vector of minimal degree of 〈f〉 in at most O(m3`2 deg f maxdeg f) arithmetic
operations in B and at most O(rm2`2 deg f maxdeg f) multiplications by π in B.

Proof. This is a direct consequence of Proposition 66 and 74.

Remark 76. Let f = (f1, . . . , f`) ∈ M ` be π-independent vectors. Theorem 66 suggests
that one could just first compute fπ = ((f1)π, . . . , (f`)π) then apply Algorithm 5 and
find a shortest vector. But this approach does not provide a shortest vector of minimal
filtration as shown by the canonical basis of M `.

1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

 .

The filtration of the shortest vector corresponds to the filtration of the interpolating
polynomial of the Sudan and Guruswami-Sudan algorithms. The number of roots de-
pends on the filtration. Let Q(X,Y) ∈ B[X,Y], then πQ(X,Y) has generally more
roots than Q(X,Y) (see Chapter 2). As the number of roots can be exponential in the
Y -degree of Q it is more desirable to find a short vector with low filtration. We show in
the next two examples that the while loop (step 2 to 9) of Algorithm 7 is necessary in
order to have a short vector with a low filtration.

Example 77. Let p be a prime and consider the basis

f0 =

((
pX4 + pX2 +X + 1

0

)
,

(
X
1

))
∈
(
Z/p2Z[X]

)2
.

Applying Algorithm 5, we get

f1 =

((
pX2 +X + 1
−pX3

)
,

(
X
1

))
which is X-reduced. Then we apply Algorithm 6 to obtain

f2 =

((
pX + p

0

)
,

(
X
1

))
.

1.4. APPLICATION TO LIST DECODING OF REED-SOLOMON CODES 55

Note that f2 is not reduced and can be further X-reduced into

f3 =

((
p
−p

)
,

(
X
1

))
.

Therefore it is necessary to perform several X-reductions and π-reductions in order to
obtain a shortest vector.

Example 78. Let p be a prime and consider the basis

f0 =

((
p2X5 +X4 +X

0

)
,

(
X3

pX2

))
∈
(
Z/p3Z[X]

)2
.

Applying Algorithm 6, we get

f1 =

((
pX4 + pX

0

)
,

(
X3

pX2

))
which is p-reduced. Then we apply Algorithm 5 to obtain

f2 =

((
pX
−p2X3

)
,

(
X3

pX2

))
.

Note that f2 is not reduced and can be further p-reduced into

f3 =

((
p2X

0

)
,

(
X3

pX2

))
.

Therefore it is necessary to perform several p-reductions and X-reductions in order to
obtain a shortest vector.

1.4 Application to list decoding of Reed-Solomon codes

1.4.1 Preliminaries

For any a, b ∈ B the map

B[X,Y] −→ B[X,Y]
Q(X,Y) 7−→ Q(X + a, Y + b)

is a ring isomorphism and allows us to define the multiplicity of Q at (a, b).

Definition 79. Let (a, b) be a point of B2. We say that Q(X,Y) ∈ A[X,Y] has
multiplicity m at (a, b) if Q(X + a, Y + b) ∈ (X,Y)m.

Example 80. The polynomial Q(X,Y) = 5XY ∈ Z/52Z has multiplicity 2 at (0, 0),
(5, 0), (0, 5) and (5, 5) as we have

5XY = 5× (X − 5)× Y = 5×X × (Y − 5) = 5× (X − 5)× (Y − 5).

56 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

The Sudan or Guruswami-Sudan algorithms can be informally summarized as follow.
Given a set of points {(xi, yi)} of A2 and some multiplicities mi > 0 one must find a
curve of bounded degree that passes through the points (xi, yi) with multiplicity at
least mi. To reduce the interpolation step of the Sudan and Guruswami-Sudan list
decoding algorithms we need the following lemma. We recall that the degree of a vector
f = (f1, . . . , fm) ∈ B[X]m is max{deg fi : i = 1, . . . ,m}.

Lemma 81. Let M = (Mij(X)) ∈ Mm×`(B[X]), Λ be the lattice generated by the
columns of M and f = (f1, . . . , f`) ∈ B[X]`. Let k1, . . . , km be positive integers and Γ
be the lattice generated by the columns of the matrix

Xk1M11(X) . . . Xk1M1`(X)
Xk2M21(X) . . . Xk2M2`(X)

...
...

XkmMm1(X) . . . XkmMm`(X)

 .

Let f = (f1, . . . , f`) ∈ B[X]`. Define the (k1, . . . , km)-column degree of f to be
max{deg fi + ki : i = 1, . . . ,m}. Then if f ∈ Γ is a vector of least degree then
f ′ = (X−k1f1, . . . , X

−kmfm) ∈ Λ and is a vector of least (k1, . . . , km)-column degree.

1.4.2 Application to the Sudan algorithm

The application to the Sudan algorithm (Algorithm 3) is very simple. We give generating
elements of the ideal of all the bivariate polynomials satisfying condition 1 of step 2 of
Algorithm 3. The following lemma is the equivalent of [Ale05, Lemma 3.1].

Proposition 82. Let x = (x1, . . . , xn) ∈ Bn such that xi − xj ∈ B×, y1, . . . , yn ∈ B,

Q0(X) =
n∏
i=1

(X − xi) and Q1(X) =
n∑
i=1

yi

n∏
j=1

X − xj
xi − xj

.

Then the ideal I of all the bivariate polynomials Q(X,Y) ∈ B[X,Y] such that Q(xi, yi) =
0 for i = 1, . . . , n is Q0(X)B[X] + (Y −Q1)B[X,Y].

Proof. It is obvious that Q0 and (Y −Q1) are in I. Let Q ∈ I. The Euclidean division
of Q by (Y −Q1) gives

Q(X,Y) = g(X,Y)(Y −Q1(X)) + r(X)

for g(X,Y) ∈ B[X,Y] and r(X) ∈ B[X]. Now we have 0 = Q(xi, yi) = r(xi) for a fixed
i. Thus (X − xi) divides r(X). As xi − xj ∈ B× we have that Q0(X) divides r(X).

Taking the notation of Algorithm 3, let L =
⌈
n−τ−1
k−1

⌉
− 2. We can seek a polynomial

Q(X,Y) satisfying condition 1 of step 2 of Algorithm 3 in the form

Q(X,Y) = Q0(X)h(X) + (Y −Q1(X))

L∑
i=1

gi(X)Y i,

1.4. APPLICATION TO LIST DECODING OF REED-SOLOMON CODES 57

which corresponds to finding a polynomial of minimal (0, (k−1), 2(k−1), . . . , L(k−1))-
column degree in the lattice generated by the columns of

Q0(X) −Q1(X)
1 −Q1(X)

1 −Q1(X)
. .

1

 .

Thanks to Lemma 81, it corresponds to finding a vector of least degree in the lattice
generated by the columns of

Q0(X) −Q1(X)
Xk−1 −Xk−1Q1(X)

X2(k−1) −X2(k−1)Q1(X)
. .

XL(k−1)

 .

Algorithm 8 Interpolation step for the Sudan algorithm

Input: A vector x = (x1, . . . , xn) such that xi−xj ∈ B×, a vector y = (y1, . . . , yn) ∈ Bn

and an integer L.
Output: A bivariate polynomial Q(X,Y) satisfying conditions 1 and 2 of step 2 of

Algorithm 3:

1. Q(xi, yi) = 0 for all 1 ≤ i ≤ n.

2. degQi ≤ (n− τ)− 1− i(k − 1) for all 0 ≤ i ≤ L.

1: Q0(X)←
∏n
i=1(X − xi).

2: Q1(X)←
∑n

i=1 yi
∏n
j=1

X−xj
xi−xj .

3: E ← ∅.

4: M ←


Q0(X) −Q1(X)

Xk−1 −Xk−1Q1(X)

X2(k−1) −X2(k−1)Q1(X)
. .

XL(k−1)

.

5: Call Algorithm 7 with input f = the columns of M and obtain f ′.
6: r = (r0, . . . , rL)← a vector of f ′ of least degree.
7: return

∑L
i=0

ri
Xi(k−1)Y

i.

Proposition 83. Algorithm 8 works correctly as expected with a number of O(n7k2L3)
arithmetic operations over B and a number of O(rn6k2L3) multiplications by π.

• Or a number of Õ(n7k2L3rs log p) bit-operations and O(rn6k2L3) multiplications
by p when B is the Galois ring GR(pr, s) and

58 CHAPTER 1. SHORTEST VECTORS OVER GALOIS RINGS

• Or a number of Õ(n7k2L3r) arithmetic operations over Fq and O(rn6k2L3) mul-
tiplications by t when B is the truncated power series ring Fq[[t]]/(tr).

Proof. This is a direct consequence of Proposition 74, 53 and 54.

Corollary 84. For a Reed-Solomon code of parameters [n, k]B, one can find the poly-
nomial Q(X,Y) satisfying conditions 1 and 2 of step 2 of Algorithm 3 with a number
of

O

(
n7k2

(n
k

)3
)

arithmetic operations in B and

O

(
rn6k2

(n
k

)3
)

multiplications by π.

• Or a number of

Õ

(
n7k2

(n
k

)3
rs log p

)
bit-operations and

O

(
rn6k2

(n
k

)3
)

multiplications by p when B is the Galois ring GR(pr, s) and

• Or a number of

Õ

(
n7k2

(n
k

)3
r

)
bit-operations and

O

(
rn6k2

(n
k

)3
)

multiplications by t when B is the truncated power series ring Fq[[t]]/(tr).

Proof. This is a direct consequence of Proposition 83 and step 1 of Algorithm 3.

1.5 Conclusion

In this chapter we have presented an algorithm to find a vector of minimal degree in a
lattice of polynomials over a quotient of a discrete valuation ring. We have designed and
presented the so-called “naive algorithm” which corresponds to the “basic algorithm” of
Alkhnovich [Ale05]. One has to investigate whether this approach can be done with the
Guruswami-Sudan algorithm and if the “improved algorithm” algorithm of [Ale05] can
be adapted to our situation, thus obtaining a lower complexity than the ones written in
this chapter.

Chapter 2

Polynomial root finding over local
rings and application to error
correcting codes

This chapter constitutes a submitted work. It has been done in collaboration with
Jérémy Berthomieu and Grégoire Lecerf.

Abstract—This article is devoted to algorithms for computing all the roots of a uni-
variate polynomial with coefficients in a complete commutative Noetherian unramified
regular local domain, which are given to a fixed common finite precision. We study the
cost of our algorithms, discuss their practical performances, and apply our results to the
Guruswami and Sudan list decoding algorithm over Galois rings.

2.1 Introduction

Throughout this paper, R denotes a complete commutative Noetherian unramified regular
local domain of finite dimension r, with maximal ideal m. Let p denote the characteristic
of the residue field κ := R/m of R, and let Ri := mi/mi+1, for all i > 0. The fact
that R is unramified means that either p = 0 holds, or that p does not belong to m2.
By [Coh46, Theorem 15] the following alternative holds:

• If R and κ have the same characteristic whatsoever, then R is isomorphic to the
power series ring κ[[t1, . . . , tr]]. In this case, we identify Ri to the subgroup of R
of the homogeneous polynomials in t1, . . . , tr over κ of degree i, so that (Ri)i∈N
defines a graduation on R.

• Otherwise, if R and κ have different characteristics, then R is isomorphic to the
power series ring D[[t1, . . . , tr−1]], where D is a complete discrete valuation ring
with maximal ideal generated by p. Each element of R can be uniquely written as∑

e∈Nr cet
e1
1 · · · t

er−1

r−1 p
er , with the ce in κ. We can still identify Ri to the subset of R

of the homogeneous polynomial expressions in t1, . . . , tr−1 and p of degree i and

59

60 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

with coefficients in κ, but (Ri)i∈N does not define a graduation on R (for example
with R being the ring of the p-adic integers Zp). In this case, we set tr := p.

In both cases, the function ν : R → N ∪ {+∞}, which sends 0 to +∞, and any a 6= 0
to the largest integer i such that a ∈ mi, is a valuation. Any element a of R can be
uniquely represented by the converging sum

∑
i>0[a]i, where [a]i ∈ Ri is the homogeneous

component of valuation i of a. The elements of Ri are called the homogeneous elements
of valuation i of R.

In this paper we are interested in computing all the roots of a polynomial F ∈ R[x]
given to precision n, which means modulo mn. The usual cases are for when R = Zp or
R = K[[t]], for any field K. We will adapt classical techniques, analyze their cost, and
report on practical performances of our C++ implementation using the Mathemagix
libraries [H+02].

2.1.1 Application to list decoding

Univariate polynomial root-finding is a central problem in computer algebra, and a
major application resides in decoding certain error-correcting codes as recalled in these
paragraphs. Let a1, . . . , aλ be λ distinct fixed points in the finite field with q elements,
written Fq. Let us recall that a Reed-Solomon code of length λ and dimension ρ over Fq
is the set

RS(λ, ρ) = {(f(a1), . . . , f(aλ)) : f ∈ Fq[x]<ρ},

where Fq[x]<ρ represents the set of polynomials over Fq of degree at most ρ−1 (we refer
the reader for instance to [Moo05, Chapter 6] for generalities on such codes).

This set RS(λ, ρ) is a vector subspace of Fλq of dimension ρ, and there is a one-to-one
correspondence between polynomials of Fq[x]<ρ and elements of RS(λ, ρ). To encode
a message, the sender constructs the unique polynomial f of Fq[x]<ρ corresponding to
the message, and then transmits the vector y = (f(a1), . . . , f(aλ)) ∈ Fλq . The received
vector may be different from y. If only a few errors occurred during the transmission
of y, obtaining the original message can be done using the usual unambiguous decod-
ing algorithms such as Berlekamp-Welch [BW86], Berlekamp-Massey [Ber84], and the
extended Euclidean algorithms [TERH88]. But, when more errors occur, a different de-
coding approach, called list-decoding , must be used. A list-decoding algorithm outputs
the set Y of all the possible transmitted messages. A postprocess is then responsible for
deciding which element of Y is the actual message. Our present motivation lies in the
list-decoding algorithms.

In [GS98], Guruswami and Sudan designed a polynomial-time list-decoding algo-
rithm. Their method divides into two steps. First it computes a polynomial Q in Fq[x][y]
such that the possible transmitted messages are roots of Q in Fq[x]. In the second step
one needs to determine all such roots of Q. Several techniques have been investigated
to solve both steps of the problem: see for example [Ale05, AZ08, Köt96, KV03] for the
first step and [Joy00, pages 214–228], and [GS00,RR98] for the second step.

The Guruswami and Sudan algorithm has been adapted to other families of
codes such as algebraic-geometric codes over fields [GS98], and alternant codes over

2.1. INTRODUCTION 61

fields [ABC10]. Extensions over certain types of finite rings have further been studied
for Reed-Solomon and alternant codes in [Arm04,Arm05b], and for algebraic-geometric
codes in [Bar06, Wal99a]. In all these cases, the two main steps of the Guruswami and
Sudan algorithm are roughly preserved, but to the best of our knowledge, the second
step has never been studied into deep details from the complexity point of view. In this
paper, we investigate root-finding for polynomials over Galois rings, which are often
used within these error correcting codes, and that are defined as follows:

Definition 85. Let ϕ ∈ Z/pnZ[x] be a monic polynomial of degree k that is irreducible
modulo p. The ring (Z/pnZ[x])/(ϕ(x)) is called the Galois ring , written GR(pn, k), of
order nk and characteristic pn.

It is classical that there exists only one Galois ring of order nk and of character-
istic pn up to an isomorphism (see for example [Rag69, p. 207]). On the other hand,
notice that such a Galois ring can also be defined as GR(pn, k) = R/(pn), where R is
an unramified algebraic extension Zp of degree k. Over such a Galois ring GR(pn, k)
standard techniques cannot be applied to find all the roots of a given polynomial in
GR(pn, k)[t][x]. For instance with n = 2 and F (x) = (x− p)(x− pt), one cannot find a
value a for t that makes the specialization of F with a unit discriminant in the Galois
ring, so that fast classical Newton-Hensel lifting cannot be appealed.

2.1.2 Complexity model

In order to analyze the performances of our algorithms, we denote by M(n) a cost
function for multiplying two univariate polynomials of degree n over an arbitrary com-
mutative ring A with unity, in terms of the number of arithmetic operations in A.
Similarly, we denote by I(n) the time needed to multiply two integers of bit-size at
most n in binary representation. It is classical [CK91, Für07, SS71] that we can take
M(n) ∈ O(n log n log log n) and I(n) ∈ O(n log n2log∗ n), where log∗ represents the iter-
ated logarithm of n. Throughout this paper, we assume that M(n)/n is increasing and
that M(mn) 6 m2M(n) holds for all positive integers m and n. The same assumptions
are also made for I.

When needed, we shall assume that root-finding is computable over the residue
field κ. Let us recall here that there exist effective fields (that are defined as fields
with an effective equality test) for which root-finding is not decidable [FS56, Section 7]
(see also another example in [Gat84, Remark 5.10]). Hopefully in most practical cases,
roots can be computed efficiently, as we shall recall it later over finite fields.

Finally, let us recall that the expected cost spent by a randomized algorithm is defined
as the average cost for a given input over all the possible executions. The ‘‘soft-Oh”
notation f(n) ∈ Õ(g(n)) means that f(n) ∈ g(n) logO(1)(3 + g(n)) (we refer the reader
to [GG03, Chapter 25, Section 7] for details).

62 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

2.1.3 Our contributions

Let K := QuotR represent the total field of fractions of R. Since R is supposed to be
complete, so is K, and we still write ν for the extension of the valuation from R to K.
The subset of the elements of K of valuation at least i is written Oi. If a is an element
of K, and if i is an integer, then we write a + Oi for the set of elements in K whose
expansion coincides to those of a to precision i. We say that such a class a+Oi is a root
of F to precision n if all of its elements annihilate F to precision n. Notice that, for all
integers i and j, we have Oi + Oj = Omin(i,j). Thus for any two elements a and b in K
we can write (a+Oi) + (b+Oj) := (a+ b) +Omin(i,j). By convention, every element a
of K can be seen as the class a + O∞, so that it makes sense to define the sum of an
element of K to a class as follows: a+ (b+Oi) := (a+ b) +Oi.

The set of the roots of F (x) = xn in Qp of nonnegative valuation and to precision n
is made of all the elements of positive valuation, which amounts to pn−1 roots. This
simple example shows that the number of roots can be exponential in terms of the size
of F . However it can be represented by the single class O1. In Section 2.2 we show that
the roots of nonnegative valuation and to precision n of a polynomial F ∈ O0[x] can
be represented by at most d such classes, in the sense that the set of roots equals the
unions of the elements in these classes. As another example, with R = Zp, the roots of
nonnegative valuation and to precision 4 of F (x) = x2(x− 1) are either 1 or an element
of valuation at least 2 in Qp, that is in O2.

Section 2.2 contains a ‘‘naive” algorithm for computing all the roots z of valuation at
least a given nonnegative integer w and to a given precision n of a polynomial F ∈ O0[x].
This algorithm first determines all the possible values for [z]w. Then, from such a
value [z]w, it computes the shifted polynomial F ([z]w + x) and it calls itself recursively
to obtain the roots of valuation at least w + 1. We analyze the complexity of this
technique: in particular we show that all subparts but the shifts behave essentially in
an optimal way. We also provide the reader with detailed complexity results when R is
a univariate power series ring or the p-adic integers ring.

In Section 2.3 we modify the naive algorithm so that it splits the input polynomial
between the recursive calls by Hensel lifting. In fact we extend the classical Hensel
lifting to the quasi-homogeneous setting, and estimate how it decreases the cost of the
previous ‘‘naive” algorithm. We detail complexity bounds when R is a univariate power
series ring or the p-adic integers, but also exhibit a probabilistic fast version in higher
dimension that avoids expression swell.

Section 2.4 is devoted to applying our root finders in the context of list decoding
over Galois rings. We have implemented the algorithms of the present paper when R
has Krull dimension 1 in the open source library quintix of the Mathemagix computer
algebra system [H+02]. We report on timings and discuss their relative performances.

2.1.4 Related works

Besides the aforementioned works in error correcting codes let us briefly discuss the
known materials for computing roots of univariate polynomials over some particular

2.2. ALGORITHM WITH LINEAR CONVERGENCE 63

instances of R as defined from the beginning of the present paper. In both theory and
practice, it is classical to compute the factorization, or all the roots in an algebraic closure
of a given polynomial F ∈ R[x] for particular cases. The easiest case is for when the
degree of F does not drop modulo m and when F is separable modulo m: Hensel lifting
leads efficiently to the unique factorization of F to any requested precision (we refer the
reader for instance to [GG03, Chapter 15]). In general, even if F is separable, its residue
polynomial modulo m may have multiple factors, and one has to make use of the Newton
polygon technique recursively, assuming that the characteristic is sufficiently large. Over
the power series, namely when R = K[[t]], several authors have contributed to this
subject including, for instance: [CC86,CC87,Duv89,Hal01,HM87,PR10,Wal78,Wal99b,
Wal00]. Over the p-adic integers the situation becomes more problematic but some of
the latter techniques can be extended as in [Hal01]. The case for when R is a power
series ring in at least two variables has also been studied in [Iwa05,Kuo89]. In addition,
for univariate power series in small characteristic, we refer the reader to [Ked01]. In fact,
all these techniques do not solve directly our problem over a general coefficient ring R as
considered here, and not even in elementary situations as demonstrated by the following
examples:

Example 86. Let R = Zp, and let F (x) = (x− p)(x+ p). In R the polynomial F admits
two simple roots p and −p, but the set of roots modulo p2 is the ideal (p). This shows
that computing the roots of F in Zp does not lead to the ones modulo p2 directly. In
addition the fact that 0 is a root modulo p2 is contributed by the positive valuation of
the values of both factors of F . This suggests that, in general, a kind of exhaustive
search might be necessary to recover the modular roots from an irreducible factorization
of F in R.

Example 87. Let R = Zp. The polynomial F (x) = x2 admits 0 as a single double root,
but the roots modulo p4 form the ideal (p2). Again this shows that there is no obvious
relationship between the roots in Zp and the ones in Zp/(p4).

These examples illustrate the difficulties for deducing the roots in R/mn from the
ones in R to a sufficiently large precision, or from an irreducible factorization over R.
The ingredients of the present paper are not substantially new: our main contribution
relies in the design of general and well-suited algorithms to the specific root-finding
problem.

2.2 Algorithm with linear convergence

Recall that K := QuotR represents the total field of fractions of R. Since R is supposed
to be complete, so is K, and we still write ν for the extension of the valuation from R
to K. Any element a of K can be uniquely written as the sum

∑
i>ν(a)[a]i, where [a]i is 0

or has valuation i and is the quotient of two homogeneous elements in R. For any i ∈ Z,
we write Ki for the set of the elements a ∈ K such that either a is 0 or a has a single
component of valuation i, which means that a = [a]i. The subset of the elements of K
of valuation at least i is written Oi.

64 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

For any polynomial F (x) =
∑d

l=0 Flx
l ∈ K[x] of degree d, and any w ∈ Z, we

write [F]i,w for the polynomial

[F]i,w :=

d∑
l=0

[Fl]i−wlx
l,

and call it the w-homogeneous component of w-valuation i of F . In addition, the expres-
sion [F]j...j+k,w is used to represent the sum

∑k−1
l=0 [F]j+l,w. Remark that if a ∈ K has

valuation at least w then [F]i,w(a) has valuation at least i. Finally the quantity νw(F),
called the w-valuation of F , stands for the first index i ∈ Z such that [F]i,w is nonzero,
with the convention that νw(0) := +∞.

Example 88. For R = Q[[t]], and for F = x3− (1 + t)x2 + t3, we have that ν−1(F) = −3,
[F]−3,−1 = x3, and that ν0(F) = 0, [F]0,0 = x3 − x2.

2.2.1 Local multiplicities

In this subsection we define the multiplicity of an homogeneous root of a w-homogeneous
polynomial.

Lemma 89. (Quasi-homogeneous Euclidean division). Let H ∈ K[x] be a non-constant
w-homogeneous polynomial of w-valuation i, and let z ∈ Kw. Then there exists a unique
w-homogeneous polynomial Q ∈ K[x] of w-valuation i−w, and a unique element a ∈ Ki,
such that:

H(x) = [(x− z)Q(x) + a]i,w.

Proof. When performing the classical long division of H(x) by x− z the w-homogeneity
is preserved in w-valuation i when discarding the carries.

From the latter lemma, if H is a w-homogeneous polynomial of w-valuation i, then
it makes sense to define the multiplicity m of any z ∈ Kw of H, written mult(z,H), as
the largest integer m such that H rewrites into [(x− z)mQ(x)]i,w, where Q ∈ K[x] is a
w-homogeneous polynomial of w-valuation i−mw.

Lemma 90. If H ∈ K[x] is a nonzero w-homogeneous polynomial of w-valuation i, then
the following inequality holds: ∑

z∈Kw,H(z)∈Oi+1

mult(z,H) 6 degH.

Proof. Let z ∈ Kw be of multiplicity m in H, and let Q ∈ K[x] be as above. If y ∈ Kw

is a distinct root of H to precision i+ 1, then we have that

mv(y − z) + v(Q(y)) > i+ 1.

It follows that v(Q(y)) > i−mw+ 1, hence that y is a root of Q to precision i−mw+ 1.
By a straightforward induction, we deduce that if z1, . . . , zs are the roots of H in Kw

to precision i + 1 then H factors into [(x − z1)m1 · · · (x − zs)msG(x)]i,w, where G is a
w-homogeneous polynomial of w-valuation i − w(m1 + · · · + ms), whence the claimed
inequality.

2.2. ALGORITHM WITH LINEAR CONVERGENCE 65

2.2.2 Representation of the set of roots

In this subsection we deal with the representation of sets of truncated roots.

Lemma 91. Let F be a nonzero polynomial in K[x] of (w − 1)-valuation i, let m :=
mult(0, [F]i,w−1), and let j := νw(F). Then we have i 6 j 6 i + m, and deg[F]j,w 6
j − i 6 m. In addition, deg[F]j,w = m holds if, and only if, j = i+m. In this case the
leading coefficients of [F]i,w−1 and of [F]j,w coincide.

Proof. From the assumptions we can express F as F (x) = xmQ(x) + H(x), where Q ∈
K[x] is a (w− 1)-homogeneous polynomial of (w− 1)-valuation i−m(w− 1), such that
Q(0) 6= 0, and where H ∈ K[x] is a polynomial of (w − 1)-valuation at least i + 1. We
see that F has a term axm with ν(a) = i−m(w− 1) and [a]i−m(w−1) = Q(0). It follows
that the w-valuation j of F is at most i−m(w− 1) +mw = i+m. On the other hand,
since a term of degree k > j − i+ 1 in F has (w − 1)-valuation at least i, it contributes
to w-valuation at least i+ k > j+ 1. Therefore, no monomial of degree at least j− i+ 1
of F contributes to [F]j,w.

If deg[F]j,w = m, then it is clear that j− i = m. Conversely, if j− i = m then [F]j,w
has the term [a]i−m(w−1)x

m, hence has degree m.

Although the next lemma is elementary, it constitutes the cornerstone of the solver
presented in the next subsection.

Lemma 92. Let F be a nonzero polynomial in K[x] of w-valuation j. Then a ∈ K is
a root of valuation at least w of F to precision n if, and only if, [F]j,w([a]w) vanishes
to precision j + 1 and a − [a]w is a root of valuation at least w + 1 of F ([a]w + x) to
precision n.

Proposition 93. If F is a polynomial in O0[x] of w-valuation j 6 n− 1, then its set of
roots in K of valuation at least w > 0 and to precision n can be written as the disjoint
union of at most deg[F]j,w classes of the form a+Oi.

Proof. The proof is done by descending induction on w from n. If w > n then the
statement clearly holds since deg[F]j,w becomes necessarily 0. Let us now assume by
induction that the proposition holds for valuation w + 1 6 n. Let z ∈ Kw be such that
[F]j,w(z) ∈ Oj+1, and let mz := mult(z, [F]j,w). By Lemma 92 the number of classes
of roots of F with z as initial term is the number of classes of roots of F (z + x) with
valuation at least w + 1 to precision n. If jz := νw+1(F (z + x)) > n, then there is only
one such class. Otherwise the induction hypothesis ensures us that the number of classes
is as most deg[F (z + x)]jz ,w+1, which is bounded by mz by Lemma 91. The conclusion
thus follows from Lemma 90.

2.2.3 Naive local solver

We are to describe an algorithm derived from the proof of Proposition 93. For com-
putational purposes, we need to assume that there exists an algorithm which computes
the set of roots in Kw of any w-homogeneous polynomial H(x), together with their
respective multiplicities.

66 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

Algorithm 9 Naive local solver.

Input: A polynomial F ∈ O0[x], w ∈ N, i ∈ N, m ∈ N, c ∈ Ki−(w−1)m, and n ∈ N,
such that i = νw−1(F) 6 n− 1, m = mult(0, [F]i,w−1) > 1, and c is the coefficient of
degree m in [F]i,w−1.

Output: A set of at most m disjoint classes representing the roots of F in K with
valuation at least w and to precision n.

1: a. Search for the first nonzero w-homogeneous component H of F taken modulo xm,
of w-valuation j, with i+ 1 6 j 6 min(i+m− 1, n− 1).

If such a component does not exist then
If i+m 6 n− 1 then set j = i+m and use c to construct H = [F]j,w, otherwise
return {Ow}.

b. If H has degree 0 then return {}.

2: Compute all the roots z1, . . . , zs in Kw of H to precision j + 1, together with their
respective multiplicities m1, . . . ,ms.

3: For each e in 1, . . . , s do
a. Compute Fe := F (ze + x).

b. If me = m then let ce := c. Otherwise set ce to the coefficient of degree me

in [Fe]j,w.

c. Call Algorithm 9 recursively with entries Fe, w+ 1, j, me, ce, and n, in order
to obtain the set Zw+1,z representing the roots of Fe of valuation at least w + 1
to precision n.

3: Return {z + z′|z ∈ Zw, z′ ∈ Zw+1,z}.

2.2. ALGORITHM WITH LINEAR CONVERGENCE 67

Proposition 94. Algorithm 9 works correctly as specified. In addition, the polynomial H
in step 2 of Algorithm 9 equals [F]j,w.

Proof. The algorithm exits at step 1.a with {Ow} whenever νw(F) > n, which is correct.
It exits at step 1.b with the empty set whenever H is a constant, which is also correct
since H = [F]j,w by Lemma 91.

Then the proof is done by descending induction on w. If w > n then the algorithm
necessarily exits at step 1. Let us now assume that the proposition holds for w+ 1 6 n.
By Lemma 91 again we have that H = [F]j,w. In step 3.b, if me = m, then Lemma 91
guarantees that c is actually the coefficient of degree m in [F]j,w, and thus of [Fe]j,w.
Therefore the correctness follows from Lemma 92.

Example 95. Take R = Q[[t]]. The trace of Algorithm 9 with input F (x) = x3 − (1 +
t)x2 + t3, w = 0, i = −3, m = 3, c = 1, and n = 4 is the following:

1. j = 0 and H(x) = x3 − x2.

2. z1 = 0, m1 = 2, z2 = 1, m2 = 1.

3. Algorithm 9 is called recursively with input F (0 + x) = x3 − (1 + t)x2 + t3, w = 1,
i = 0, m = 2, c = −1, and n = 4, and runs as follows:

1. j = 2 and H(x) = −x2.

2. z1 = 0, m1 = 2.

3. Algorithm 9 is called recursively with input F (0 + x) = x3− (1 + t)x2 + t3, w = 2,
i = 2, m = 2, c = −1, and n = 4, and runs as follows:

1. j = 3, H(x) = t3, and the algorithm returns {}.
4. The algorithm returns {}.

Algorithm 9 is then called recursively with input F (1 + x) = x3 + (2 − t)x2 + (1 −
2t)x− t+ t3, w = 1, i = 0, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 1 and H(x) = x− t.
2. z1 = t, m1 = 1.

3. Algorithm 9 is called recursively with input F (1 + t+ x) = x3 + 2(2 + t)x2 + (1 +
2t+ t2)x+ t3, w = 2, i = 1, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 2 and H(x) = x.

2. z1 = 0, m1 = 1.

3. Algorithm 9 is called recursively with input F (1 + t + x) = x3 + 2(1 + t)x2 +
(1 + 2t+ t2)x+ t3, w = 3, i = 2, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 3 and H(x) = x+ t3.

2. z1 = −t3, m1 = 1.

68 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

3. Algorithm 9 is called recursively with input F (1 + t − t3 + x) = x3 + (2 +
2t− 3t3)x2 + (1 + 2t+ t2− 4t3− 4t4 + 3t6)x− 2t4− t5 + 2t6 + 2t7− t9, w = 4,
i = 3, c = 1, and n = 4, and runs as follows:
1) The algorithm returns {O4}.

4. The algorithm returns {−t3 +O4}.
4. The algorithm returns {t− t3 +O4}.

4. The algorithm finally returns {1 + t− t3 +O4}.

2.2.4 Cumulative cost of steps 1

In step 1 of Algorithm 9, we are interested in counting the cumulative number of ex-
tractions of quasi-homogeneous components, and zero tests performed in each graduated
component of K. For this purpose we introduce the following subset Ti,w−1,m of N2:

Ti,w−1,m :=
{

(k, l) ∈ N2|k 6 m− 1andl 6 n− 1and(w − 1)k + l > i+ 1
}
.

For any subset S of N2, we write |S| for its cardinality, and [S]v for S ∩ (N × {v}).
Roughly speaking, the following lemma ensures us that the cumulative cost of steps 1
of Algorithm 9 is essentially optimal, whenever an element a ∈ O0 to precision n is
represented as a vector in K0 × · · · ×Kn−1:

Lemma 96. For all v ∈ {0, . . . , n− 1}, the cumulative number of extractions of homo-
geneous components of valuation v and the cumulative number of zero tests in each Kv

in all steps 1 of Algorithm 9 is at most |[Ti,w−1,m]v| 6 m.

Proof. The proof is done by descending induction on w from n down to 0. If w > n then
step 1.a extracts all the components of valuation l of the constant coefficient of F , for
l > i+ 1. The statement therefore holds in this case since m > 1.

Assume that the lemma holds for w + 1 6 n. We introduce the auxiliary subset of
N2:

S0 :=
{

(k, l) ∈ N2|k 6 m− 1andl 6 n− 1andi+ 1 6 (w − 1)k + landwk + l 6 j
}
.

In step 1 of Algorithm 9 only the components of valuation l of the coefficients of xk

for (k, l) in S0 need to be examined.

Let Me := m1 + · · · + me−1, with the usual convention that M1 := 0. Then, each
recursive call for F (ze + x) in step 3 amounts to at most |[Se]v| component extractions
and zero tests in Kv, where

Se := (Me, 0) + Tj,w,me , for alle ∈ {1, . . . , s}.

Notice that Se ⊆ Ti,w−1,m holds for all e > 0 by using Lemma 91. On the other hand
the Se are pairwise disjoint. Therefore we obtain that

∑s
e=0 |[Se]v| 6 |[Ti,w−1,m]v|, which

concludes the proof.

2.2. ALGORITHM WITH LINEAR CONVERGENCE 69

2.2.5 Cumulative cost of steps 2

The following proposition concerns the sum of the degrees of all the polynomials H
occurring during the execution of Algorithm 9.

Lemma 97. The sum of the degrees of all the polynomials H occurring during the
execution of all steps 2 of Algorithm 9 does not exceed mmax(0, n− w).

Proof. The proof is done by descending induction on w from n down to 0. If w > n then
the statement is true since Algorithm 9 exits at step 1. Let us now assume by induction
that the lemma holds for w+1 6 n. By Lemma 91, each recursive call in step 3 performs
root-finding of polynomials whose degree sum does not exceed me(n − (w + 1)). The
conclusion thus follows thanks to Lemma 90 as follows:

m+
s∑
e=1

(n− (w + 1))me = (n− w)m− (n− (w + 1))

(
m−

s∑
e=1

me

)
6 (n− w)m.

2.2.6 Cumulative cost of steps 3

Let A be any ring. The shift of a polynomial F ∈ A[x] at a point a ∈ A is the
computation of F (a+x). We write SA(d) for a bound on the cost of the shift in degree d
for F ∈ A[x] in terms of the number of arithmetic operations in A. We assume that
SA(d)/d is increasing and that S(md) 6 m2S(d) holds for all positive integers m and d.
For the sake of completeness, we briefly recall a classical complexity bound:

Lemma 98. Let A be a commutative ring with unity, let F ∈ A[x] be a polynomial of
degree d, and let a ∈ A. Then the computation of the shifted polynomial F (a + x) can
be done with O(M(d) log d) operations in A.

Proof. We apply the classical divide-and-conquer paradigm. Without loss of generality
we can assume that d is a power of 2. We rewrite F (x) into F0(x) + xd/2F1(x), with
F0, F1 ∈ A[x] of degree at most d/2, so that we have F (a+x) = F0(a+x)+(a+x)d/2F1(a+
x). First we compute all the successive powers (a+ x)21

, (a+ x)22
, . . . , (a+ x)d/2, which

amounts to O(M(d)) operations in A. Then, the result classically follows from solving the
recurrence SA(d) ∈ 2SA(d/2) +O(M(d/2)), and with using the assumptions on M.

Remark 99. Let us mention that the shifted polynomial can be computed faster in some
situations. For instance, if 2, 3, . . . , d are invertible in A, and if their respective inverses
are given, then one has SA(d) ∈ O(M(d)) by [BP94, Chapter 1, Section 2]. For situations
in positive characteristic where the shift can be done within O(M(d)), we refer the reader
to [BS05, Proposition 5].

Lemma 100. Algorithm 9 performs at most mmax(0, n − w) shifts in O0[x] to preci-
sion n.

70 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

Proof. The proof is done by descending induction on w from n down to 0. If w > n then
no shift is performed, so the lemma is true. Let us assume that the lemma holds for
w + 1 6 n. The combination of Lemmas 90 and 91 tells us that the cumulative number
of the shifts spent by Algorithm 9 in all steps 3 is at most

s+
s∑
e=1

(n− (w + 1))me 6 (n− w)m+ s−
s∑
e=1

me 6 (n− w)m.

For steps 3.b we proceed as for steps 1. We introduce the following subset T ′i,w−1,m

of N2:

T ′i,w−1,m :=
{

(k, l) ∈ N2|1 6 k 6 mandl 6 n− 1and(w − 1)k + l > i+ 1
}
.

The following lemma ensures us that the cumulative cost of steps 3.b of Algorithm 9 is
essentially optimal, whenever an element a ∈ O0 to precision n is represented as a vector
in K0 × · · · ×Kn−1:

Lemma 101. For all v ∈ {0, . . . , n−1}, the cumulative number of extractions of homo-
geneous components of valuation v and the cumulative number of zero tests in each Kv

in all steps 3.b of Algorithm 9 are at most |[T ′i,w−1,m]v| 6 m.

Proof. The proof is done by descending induction on w from n down to 0. If w > n
then the lemma clearly holds since the algorithm exits in step 1. Assume that the lemma
holds for w+1 6 n, and let Me := m1 + · · ·+me, for e ∈ {1, . . . , s}. If e = 1 and m1 = m
then we set S′0 := {}, otherwise we set S′0 := {(Me, j − wme)|e = 1, . . . , s}. In step 3.b,
when e 6= 1 or m1 6= m then we associate the component of valuation j − wme of the
coefficient of xme to the point (Me, j − wme) in S′0.

Then each recursive call for F (ze + x) in step 3.c amounts to |[S′e]v| component
extractions and zero tests in Kv, where S′e := (Me−1, 0) + T ′j,w,me , for all e ∈ {1, . . . , s}.
Finally notice that S′e ⊆ T ′i,w−1,m holds for all e > 0 and that all the S′e are pairwise
disjoint.

2.2.7 Cumulative cost of steps 4

Lemma 102. The cumulative number of additions of an element of Kv to an element
of Kv+1 × · · · ×Kn−1 performed in all steps 4 of Algorithm 9 is 0 for v 6 w − 1 and at
most m for v > w.

Proof. We prove the lemma by descending induction on w from n down to 0. If w > n
then the lemma is true since step 4 is not reached. Let us now assume by induction
that the lemma holds for w + 1 6 n. If j > n or if H is a constant then step 4 is
not executed. Otherwise by induction and Lemmas 90 and 91, all the recursive calls to
Algorithm 9 in step 3 amounts to at most m additions of an element of Kv to an element
of Kv+1 × · · · ×Kn−1 if v > w + 1 and 0 otherwise. Then step 4 performs at most m
additions of an element of Kw to an element of Kw+1× · · · ×Kn−1, which concludes the
proof.

2.2. ALGORITHM WITH LINEAR CONVERGENCE 71

2.2.8 Total cost of Algorithm 9

We assume that κ has either characteristic zero, or admits an algorithm that, for any k ∈
N, detects if a given element is a pkth power or not, and returns its pkth root if it
exists. We call this task an iterated pth root extraction. Let us recall that the separable
decomposition of a primitive univariate non-constant polynomial G with coefficients in
a unique factorization domain A is the decomposition of G into a product G(x) =∏s
i=1Gi(x

qi)µi , where

• the Gi ∈ A[x] are primitive, separable, and have positive degrees,

• the Gi(x
qi) are pairwise coprime,

• qi is a power of p if p > 0, otherwise qi = 1,

• µi is not divisible by p, and the (qi, µi) are pairwise distinct.

The quantity
∑s

i=1 degGi is called the separable degree of G and is denoted by sdegG.
Let us recall that the separable decomposition always exits and is unique up to permu-
tation of the factors and units in A (see for instance [Lec08, Proposition 4]). It coincides
to the squarefree decomposition if A has characteristic 0.

From now on, for algorithmic purposes, any element a of R known to precision n is
supposed to be stored in dense representation, as the vector ([a]0, [a]1, . . . , [a]n−1). Any
nonzero homogeneous element c of valuation ν(c) is stored as a vector (ce)e∈Nr such that

c =
∑

e∈Nr,e1+···+er=ν(c)

cet
e1
1 · · · t

er
r ,

with all the ce in κ. Recall that when R and κ have different characteristic then tr
represents p. For such an element c, we write c[for the expression

c[:=
∑

e∈Nr,e1+···+er=ν(c)

cet
e1
1 · · · t

er−1

r−1 ∈ κ[t1, . . . , tr−1],

obtained by substituting 1 for tr syntactically. If H(x) =
∑d

l=0Hlx
l is a w-homogeneous

polynomial then we further set H[(x) :=
∑d

l=0H
[
l x
l.

Theorem 2. For any polynomial F in R[x] of degree at most d given to precision n,
one can compute a set of at most d disjoint classes representing its set of roots in R to
precision n with:

• computing primitive parts and separable decompositions of polynomials
in κ[t1, . . . , tr−1][x] of degrees at most d in x and total degrees at most n − 1
in t1, . . . , tr−1, and whose degree sum is at most nd,

• computing roots in κ[t1, . . . , tr−1] of at most nd primitive polynomials of degrees 1
and total degrees at most n− 1 in t1, . . . , tr−1,

72 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

• computing roots in κ[t1, . . . , tr−1] of separable polynomials in κ[t1, . . . , tr−1][x] of
degrees at least 2 and at most d, of total degrees at most n− 1 in t1, . . . , tr−1, and
whose degree sum is at most 2(d− 1),

• extracting iterated pth roots of at most O(nd/p) elements in κ[t1, . . . , tr−1],

• O(nd) shifts of polynomials in R[x] of degree at most d and to precision n, and

• an additional number of O(d) extractions of homogeneous components of valua-
tion v, and zero tests in each Rv, for each v ∈ {0, . . . , n− 1}.

Proof. Firstly we claim that running Algorithm 9 with input F ∈ R[x] and finding the
only roots in Rw instead of in Kw in step 2 actually leads to the set of roots in R of
valuation at least w and to precision n. We leave the proof of this claim to the reader.

We enter this variant of Algorithm 9 with input F , w = 0, i = ν−1(F), m =
mult(0, [F]i,−1), n, and the coefficient of degree m of [F]i,−1. Determining the values of i
and m takes no more than O(d) extractions of homogeneous components of valuation v,
and zero tests of elements in each Rv, for v ∈ {0, . . . , n − 1}. The cumulative costs of
steps 1, 3.b and 4 of Algorithm 9 also drop into O(d) such operations by Lemmas 96,
101, and 102 respectively.

Concerning step 2, we are looking for the roots z ∈ Rw to precision j + 1 of H(x).
If H(z) ∈ Oj+1 then H[(z[) = 0 holds in κ[t1, . . . , tr−1][x] and z[is a polynomial of
degree at most w. Conversely, if

y =
∑

e∈Nr−1

yet
e1
1 · · · t

er−1

r−1 ∈ κ[t1, . . . , tr−1]

has total degree at most w and is a root of H[(x), then we define

y\ :=
∑

e∈Nr−1

yet
e1
1 · · · t

er−1

r−1 t
w−e1−···−er−1
r ∈ Rw,

so that H(y\) belongs to Oj+1. Therefore, step 2 can be decomposed into the following
tasks:

i. Compute the primitive part G of H[and the separable decomposition G(x) =∏s
i=1Gi(x

qi)µi seen as in κ[t1, . . . , tr−1][x],

ii. Compute all the roots in κ[t1, . . . , tr−1] of all the latter Gi(x),

iii. Extract the necessary qith roots of the roots of Gi(x) in order to deduce the ones
of Gi(x

qi),

iv. Homogenize all the roots y found in iii with tr, in valuation w, into y\ as previously
described.

The cumulative cost of tasks i and iii follows from Lemma 97. The cumulative cost of
root-finding in ii of polynomials of degree at least 2 follows from Lemma 103 below.
Finally the cumulative cost of the shifts in steps 3.a is given in Lemma 100.

2.2. ALGORITHM WITH LINEAR CONVERGENCE 73

If G1, . . . , Gr are polynomials, then we call the quantity
∑r

e=1(sdegGe − 1) the sum
of the separable degrees minus 1 of G1, . . . , Gr.

Lemma 103. The sum of the separable degrees minus 1 of all the polynomials G(x) of
steps i in the proof of Theorem 2 is at most m− 1.

Proof. The proof is done by descending induction on w. If w > n then the lemma is true
since m > 1 and the algorithm exits in step 1. Let us now assume that the lemma holds
for w + 1 6 n. If the algorithm exits in step 1 then the lemma is correct. Otherwise,
we let m0 represent the separable degree of G(x). Each recursive call to Algorithm 9 in
step 3 performs root-finding of polynomials whose sum of the separable degrees minus 1
does not exceed me − 1. The total sum of the separable degrees minus 1 is at most

m0 − 1 +
s∑
e=1

(me − 1) 6 m0 − 1 +
∑

y∈κ(t1,...,tr−1),G(y)=0

(mult(y,G)− 1)

= m0 − 1 + degG−m0

6 degG− 1.

Finally Lemma 91 provides us with degG− 1 6 m− 1.

Corollary 104. Let K be a field, and let R be the power series ring K[[t]]. Then, for
any polynomial F in R[x] of degree at most d and given to precision n, one can compute
a set of at most d disjoint classes representing its set of roots in R to precision n with:

• computing roots in K of separable polynomials in K[[x]] of degrees at least 2, and
whose degree sum is at most 2(d− 1),

• extracting iterated pth roots of at most O(nd/p) elements in K, and

• an additional number of O(ndM(n)M(d) log d) arithmetic operations in K.

Proof. This is a corollary of Theorem 2. In fact, by [Lec08, Proposition 5], the cumulative
cost of the separable factorizations amounts to O(nM(d) log d) operations in K. Finally,
the cumulative cost of the shifts in steps 3.a is in O(ndM(n)M(d) log d) by Lemma 98.

Corollary 105. Let K be a field of characteristic 0 and let R be the power series
ring K[[t]]. Then, for any polynomial F in R[x] of degree at most d given to preci-
sion n, one can compute a set of at most d disjoint classes representing its set of roots
in R to precision n with:

• computing roots in K of separable polynomials in K[[x]] of degrees at least 2, and
whose degree sum is at most 2(d− 1), and

• an additional number of O(ndM(n)M(d)) arithmetic operations in K.

Proof. This follows from the previous corollary, by means of Remark 99 that removes a
factor of log d in the cost of the shifts.

74 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

Corollary 106. Let R be the power series ring Fq[[t]] over the finite field with q = pk

elements. Then, for any polynomial F in R[x] of degree at most d given to precision n,
one can compute a set of at most d disjoint classes representing its set of roots in R to
precision n with a randomized algorithm that performs an expected number of

O

(
(ndM(n) + log q)M(d) log d+

nd

p
log(q/p)

)
operations in Fq.

Proof. By [GG03, Corollary 14.16] and Corollary 104, the cumulative cost for root-
finding amounts to O(M(d) log d log(dq)) operations in Fq.

Let us now focus on the case when R is an unramified algebraic extension of de-
gree k > 1 of the ring Zp of the p-adic integers. The ring R/mn is in fact the Galois
ring, previously written GR(pn, k), in Definition 85. We consider that we are given a
monic irreducible polynomial ϕ in Zp[z] of degree k. Let α denote the image of z in R

viewed as (Z/pnZ[z])/(ϕ(z)). Then, any a ∈ R can be uniquely written as
∑k−1

i=0 aiα
i

with ai ∈ Z/pnZ. We further assume that each ai is represented by its p-adic expan-
sion

∑n−1
j=0 ai,jp

j , which is stored as the vector (ai,0, . . . , ai,n−1) in (Z/pZ)n, and where
each ai,j is in binary representation. It is classical that the bit-cost for multiplying two
elements in R/mn falls in Õ(nk log p) [GG03, Chapter 9].

Corollary 107. Let R be an unramified extension of Zp of degree k. Then, for any given
polynomial F in R[x] of degree at most d given to precision n, one can compute a set of at
most d disjoint classes representing its set of roots in R to precision n with a randomized
algorithm that performs an expected number of Õ((n2d+max(1, n/p)k log p)dk log p) bit-
operations.

Proof. This is again a corollary of Theorem 2. In fact, by [Lec08, Proposition 5], the cu-
mulative cost of the primitive parts and separable factorizations amounts to Õ(nd) oper-
ations in Fq, where q := pk, which boils down to Õ(ndk log p) bit-operations. By [GG03,
Corollary 14.16], the cumulative cost for root-finding amounts to O(M(d) log d log(dq))
operations in Fq, whence Õ(d(k log p)2) bit-operations. The iterated root extractions

take O
(
nd
p log(q/p)

)
operations in Fq. Finally, the cumulative cost of the shifts in

steps 3.a is in Õ((nd)2k log p) by Lemma 98.

Remark 108. One could decide to store each ai directly in binary representation mod-
ulo pn: this does not change the latter asymptotic complexity estimate because the
change of basis can be computed in softly linear time. In practice this does lightly in-
crease the cost for extracting homogeneous components, but we have shown that these
extractions are negligible compared to other operations. Let us mention here that recent
practical algorithms on p-adic integers can be found in [BHL10].

2.3. FASTER ALGORITHM WITH SPLITTING 75

2.3 Faster algorithm with splitting

In most situations, the bottleneck of Algorithm 9 resides in the shifts applied on poly-
nomials whose degrees never drop throughout the recursive calls. In this section, we
enhance the solver of the previous section by adapting Hensel lifting in order to break
the current polynomials into smaller pieces throughout each recursive call.

2.3.1 Quasi-homogeneous Hensel lifting

For any real number a ∈ R, we write dae for the smallest integer greater or equal to a.
The quasi-homogeneous Hensel lifting algorithm for F ∈ K[x] summarizes as follows:

Algorithm 10 Quasi-homogeneous Hensel step.

Input: Polynomials F , H1, H2, and U in K[x], and integers w > 0, j > 0, and l > 1,
such that:

• H1 is monic of degree d1, and has w-valuation j1 = wd1,

• H2 has degree at most d2 := degF − d1, and w-valuation j2 := j − j1,

• [F]0...j+l,w = [H1H2]0...j+l,w,

• the resultant Res(H1, H2) has valuation d1j2 = d1d2w,

• U has degree at most d1− 1, w-valuation −j2, and UH2 = 1 holds modulo H1

and to w-precision dl/2e.

Output: H∗1 , H∗2 , and U∗ in K[x] such that:

• H∗1 is monic of degree d1 and [H∗1]0...j1+l,w = [H1]0...j1+l,w,

• [F]0...j+2l,w = [H∗1H
∗
2]0...j+2l,w,

• U∗H∗2 = 1 holds modulo H∗1 and to w-precision l.

1: Compute U∗ := (2−H2U)U modulo H1 and to w-precision −j2 + l.
2: Compute ∆F := F −H1H2 to w-precision j + 2l.
3: Compute ∆1 := U∗∆F modulo H1 and w-precision j1 + 2l.
4: Set H∗1 to H1 + ∆1, and deduce H∗2 := F/H∗1 to w-precision j2 + 2l.

Algorithm 10 extends the classical Hensel lifting, which specifically concerns the case
w = j1 = j2 = 0 (we refer the reader for instance to [GG03, Chapter 15, Section 4]).

Proposition 109. Algorithm 10 works correctly as specified. The polynomial H∗1
(resp. H∗2 , U∗) is uniquely determined to w-precision j1 + 2l (resp. j2 + 2l, l) with
the conditions required in the output.

76 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

Proof. It is straightforward to check that U∗H2 = 2UH2− (UH2)2 = 1− (1−UH2)2 = 1
holds modulo H1 and to w-precision l. Let ∆1 denote an unknown polynomial of w-
valuation at least j1 + l, and let ∆2 denote another unknown polynomial of w-valuation
at least j2+l. By expanding the right-hand side of the equation F = (H1+∆1)(H2+∆2),
we obtain that

F −H1H2 = H2∆1 +H1∆2 + ∆1∆2.

Truncating the latter expression to w-precision j + 2l leads to

[F −H1H2]j+l...j+2l,w = [H2∆1 +H1∆2]j+l...j+2l,w.

By multiplying both hand sides of the latter equation by U∗ modulo H1, we deduce that:

[U∗(F −H1H2) modH1]j1+l...j1+2l,w = [∆1 modH1]j1+l...j1+2l,w.

It follows that ∆1 exists and is uniquely determined to w-precision j1 +2l. Therefore H∗1
exists and is uniquely determined as H1 + ∆1. Then H∗2 is necessarily determined
as F/H∗1 truncated to w-precision j2 + 2l.

Example 110. Let R = Zp[[t]], F (x) = x2 − (p2 + t2)x + p2t2 + t5, w = 2, j = 4, l = 1,
H1(x) = x− p2, and H2(x) = x− t2. We have d1 = d2 = 1, j1 = j2 = 2, and j = 4. The
modular inverse U is 1/(p2 − t2). We compute ∆F = t5, then ∆1 = t5/(p2 − t2), and
obtain H∗1 (x) = x− p2 + t5/(p2 − t2), and deduce H∗2 (x) = x− t2 − t5/(p2 − t2).

Before calling several times Algorithm 10 in order to reach any finite w-precision j+ l
from w-precision j, one must compute the modular inverse ofH2 moduloH1, and proceed
as summarized in the next algorithm:

Proposition 111. Algorithm 11 works properly as specified.

Proof. Since Res(H1, H2) has valuation d1j2, the valuation of the inverse of H2 mod-
ulo H1 as computed in step 1 is exactly −j2. The rest of the proof follows from Propo-
sition 109.

Corollary 112. Let F , H1, and H2 in K[x] be such that the following conditions hold:

• H1 is monic of degree d1, and has w-valuation j1 = wd1,

• H2 has degree at most d2 := degF − d1, and w-valuation j2 := j − j1,

• [F]j,w = [H1H2]j,w,

• the resultant Res(H1, H2) has valuation d1j2.

Then there exist unique polynomials H∗1 and H∗2 in K[x] such that:

• H∗1 is monic of degree d1, has w-valuation j1, and [H∗1]j1,w = [H1]j1,w,

• F = H∗1H
∗
2 .

2.3. FASTER ALGORITHM WITH SPLITTING 77

Algorithm 11 Quasi-homogeneous Hensel lifting

Input: Polynomials F , H1, and H2 in K[x], and integers w > 0, j > 0, and n > 1, such
that:

• H1 is monic of degree d1, and has w-valuation j1 = wd1,

• H2 has degree at most d2 := degF − d1, and w-valuation j2 := j − j1,

• [F]j,w = [H1H2]j,w,

• the resultant Res(H1, H2) has valuation d1j2 = d1d2w.

Output: H∗1 , H∗2 in K[x] such that:

• H∗1 is monic of degree d1 and [H∗1]j1,w = [H1]j1,w,

• [F]0...j+n,w = [H∗1H
∗
2]0...j+n,w.

1: Compute the inverse U of H2 modulo H1 in w-valuation −j2.
2: Let l := 1, U∗ := U , H∗1 := H1, and H∗2 := H2.
3: While l < n do

a) Call Algorithm 10 with F , H∗1 , H∗2 and U∗, w, j, and l, and reassign the output
into H∗1 , H∗2 and U∗ respectively.

b) l := min(2l, n).

4: Return H∗1 and H∗2 .

78 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

In addition, if F belongs to R[x] then H∗2 (z)H∗1 also belongs to R[x], for all z ∈ Rw.

Proof. The existence of H∗1 and H∗2 immediately follows from Proposition 111 since K
is complete. As for the last statement, let z ∈ Rw, and let m represents the multiplicity
of z in H∗1 (m = 0 if z is not a root of H∗1), let F̃ (x) := F (x)/(x− z)m and let H̃∗1 (x) :=
H∗1 (x)/(x − z)m. Since R is factorial by [Coh46, Theorem 18], Gauss’s lemma [Lan02,
Chapter IV, Theorem 2.1] ensures us that F̃ (z)H̃∗1/H̃

∗
1 (z) belongs to R[x]. But the latter

expression precisely rewrites into H∗2 (z)H̃∗1 , whence H∗2 (z)H∗1 ∈ R[x].

Algorithm 10 takes O(M(degF)) operations in K. A general cost analysis in terms
of operations in κ is difficult since it involves bounding sizes of numerators and denom-
inators of the elements in K used during the intermediate computations. Concerning
Algorithm 11, one must in addition describe how the modular inverse of H2 modulo H1

is actually obtained. For these reasons, from now on we restrict to considering that the
elements of R are represented as in Section 2.2.8. We focus on the important case of
dimension 1. Higher dimension is studied in Section 2.3.6.

Lemma 113. Assume that R has dimension r = 1, and let F be a polynomial in R[x] of
degree at most d. Then Algorithm 11 can be run so that it performs O(M(d) log d)
operations in κ, and O(M(d)) operations in R/ml, for each value of l in the set
{1, 2, 4, . . . , 2λ|2λ < n} ∪ {n}.

Proof. The simplest way to implement Algorithm 11 in dimension 1 is to compute
F̃ (x) := F (twr x)/tjr, H̃1(x) := H1(twr x)/tj1r , H̃2 := H2(twr x)/tj2r , and Ũ := U(twr x)/t−j2r ,
and call Algorithm 11 with input F̃ , H̃1, H̃2, w = 0, j = 0, and n. Step 1 can thus
be performed by computing an extended g.c.d. between H̃1 and H̃2 modulo tr, which
takes O(M(d) log d) operations in κ by [GG03, Corollary 11.8]. Then each call to Algo-
rithm 10 can be performed with O(M(d)) operations in R to precision l. Of course at
the end we recover H∗1 as H̃∗1 (x/twr)tj1r and H∗2 as H̃∗2 (x/twr)tj2r .

2.3.2 Quasi-homogeneous multifactor Hensel lifting

In this subsection we appeal to the classical divide and conquer paradigm in order to
lift any factorization of F into s factors in an efficient way.

Proposition 114. Algorithm 12 works correctly as specified.

Proof. The proof follows from induction on s via Proposition 111.

Lemma 115. Assume that R has dimension r = 1, and let F be a polynomial in R[x] of
degree d. Then Algorithm 12 can run so that it performs O(M(d) log d log s) operations
in κ, and O(M(d) log s) operations in R/ml, for each value of l in {1, 2, 4, . . . , 2λ|2λ <
n} ∪ {n}.

Proof. The proof follows from induction on s via Lemma 113.

2.3. FASTER ALGORITHM WITH SPLITTING 79

Algorithm 12 Quasi-homogeneous multifactor Hensel lifting

Input: Polynomials F , H1, . . . ,Hs+1 in K[x] and integers w > 0, j > 0, n > 1, such
that:

• for all k ∈ {1, . . . , s}, Hk is monic of degree dk = degHk, has w-valuation jk =
wdk,

• Hs+1 has degree at most ds+1 := degF − d1 − · · · − ds, and has w-
valuation js+1 := j − j1 − · · · − js,

• [F]j,w = [H1 · · ·Hs+1]j,w,

• For all k1 6= k2, the resultant Res(Hk1 , Hk2) has valuation dk1jk2 .

Output: H∗1 , . . . ,H
∗
s+1 in K[x] such that:

• for all k ∈ {1, . . . , s}, H∗k is monic of degree dk and [H∗k]jk,w = [Hk]jk,w,

• [F]0...j+n,w = [H∗1 · · ·H∗s+1]0...j+n,w.

1: If s = 0 then return H∗1 := F .
2: Let h := b(s+ 1)/2c.
3: Compute G1 := H1 · · ·Hh, and G2 := Hh+1 · · ·Hs+1, g1 := j1 + · · · + jh, and g2 :=
jh+1 + · · ·+ js+1.

4: Call Algorithm 11 with input F , G1, G2, w, g1 and n and let G∗1 and G∗2 denote the
output.

5: Call Algorithm 12 recursively with G∗1, H1, . . . ,Hh, w, g1, n, and let H∗1 , . . . ,H
∗
h be

the output.
6: Call Algorithm 12 recursively with G∗2, Hh+1, . . . ,Hs+1, w, g2, n, and let
H∗h+1, . . . ,H

∗
s+1 be the output.

80 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

Algorithm 13 Local solver with splitting.

Input: A polynomial F ∈ O0[x], w ∈ N, i ∈ N, m ∈ N, c ∈ Ki−(w−1)m and n ∈ N,
such that i = νw−1(F) 6 n− 1, m = mult(0, [F]i,w−1) > 1, and c is the coefficient of
degree m in [F]i,w−1.

Output: A set of at most m disjoint classes representing the roots of F in K with
valuation at least w and to precision n.

1: a. Search for the first nonzero w-homogeneous component H of F taken modulo xm,
of w-valuation j, with i+ 1 6 j 6 min(i+m− 1, n− 1).

If such a component does not exist then
If i+m 6 n− 1 then set j = i+m and use c to construct H = [F]j,w, otherwise
return {Ow}.

b. If H has degree 0 then return {}.
2: Compute all the roots z1, . . . , zs in Kw of H to precision j + 1, together with their

respective multiplicities m1, . . . ,ms.
3: a. By means of Algorithm 12, compute the factorization of F into H∗s+1

∏s
e=1H

∗
e ,

where [H∗e]wme,w(x) = [(x− ze)me]wme,w for e ∈ {1, . . . , s}.

b. For each e in 1, . . . , s do
i. If me = m then let ce := c, and Fe := F (ze + x).

Otherwise compute he :=
∏s+1
f=1,f 6=eH

∗
f (ze) and let Fe := heH

∗
e (ze + x),

and ce := [he]j−wme .

ii. Call Algorithm 13 recursively with entries Fe, w+ 1, j, me, ce and n, in order
to obtain the set Zw+1,z representing the roots of Fe of valuation at least w + 1
to precision n.

4: Return {z + z′|z ∈ Zw, z′ ∈ Zw+1,z}.

2.3. FASTER ALGORITHM WITH SPLITTING 81

2.3.3 Local solver with splitting

In order to decrease the cost of the shifts in Algorithm 9, we modify step 3 as follows:

Proposition 116. Algorithm 13 works correctly as specified.

Proof. The algorithm exits at step 1.a with {Ow} whenever νw(F) > n, which is correct.
It exits at step 1.b with the empty set whenever H is a constant, which is also correct
since H = [F]j,w by Lemma 91.

Then the proof is done by descending induction on w. If w > n then the algorithm
necessarily exits at step 1. Let us now assume that the proposition holds for w+ 1 6 n.
By Lemma 91 again we have that H = [F]j,w. In step 3.b, if me = m, then Lemma 91
guarantees that c is actually the coefficient of degree m in [F]j,w, and thus of [Fe]j,w.

Assume that me 6= m. By construction, ν(he) =
∑

f 6=e ν(H∗f (ze + b)) = j −wme, for
all b ∈ Ow+1. Therefore an element b ∈ Ow+1 is a root of F (ze+x) to precision n, if, and
only if, b is a root of Fe to precision n. The correctness thus follows from Lemma 92.

Algorithm 13 behaves in the same way as Algorithm 9 regarding to the nature of
the recursive calls, to the intermediate values taken by w, i, m, c, and to the successive
outputs, as exemplified by running it on the input considered in Example 95:

Example 117. With R = Q[[t]], here is the trace of Algorithm 13 with input F (x) =
x3 − (1 + t)x2 + t3, w = 0, i = −3, m = 3, c = 1, and n = 4:

1. j = 0 and H(x) = x3 − x2.

2. z1 = 0, m1 = 2, z2 = 1, m2 = 1.

3. a. Hensel lifting is called with input F (x), H1(x) := x2, H2(x) := x− 1, H3(x) := 1,
w = 0, j = 0 and n = 4. In return we obtain H∗1 (x) = x2 − t3x − t3 and H∗2 (x) =
x− 1− t+ t3.

b. Algorithm 9 is called recursively with input F1(x) = (−1− t+ t3)H∗1 = (−1− t+
t3)x2 + t3x+ t3, w = 1, i = 0, m = 2, c = −1, and n = 4, and runs as follows:

1. j = 2 and H(x) = −x2.

2. z1 = 0, m1 = 2.

3. Algorithm 9 is called recursively with input F1(0 + x), w = 2, i = 2, m = 2,
c = −1, and n = 4, and runs as follows:

1. j = 3, H(x) = t3, and the algorithm returns {}.
4. The algorithm returns {}.

Algorithm 9 is then called recursively with input F2 = H∗2 (1 +x) = x− t+ t3, w = 1,
i = 0, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 1 and H(x) = x− t.
2. z1 = t, m1 = 1.

82 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

3. Algorithm 9 is called recursively with input F2(t + x) = x + t3, w = 2, i = 1,
m = 1, c = 1, and n = 4, and runs as follows:

1. j = 2 and H(x) = x.

2. z1 = 0, m1 = 1.

3. Algorithm 9 is called recursively with input F2(t + x), w = 3, i = 2, m = 1,
c = 1, and n = 4, and runs as follows:

1. j = 3 and H(x) = x+ t3.

2. z1 = −t3, m1 = 1.

3. Algorithm 9 is called recursively with input F2(t− t3 +x) = x, w = 4, i = 3,
c = 1, and n = 4, and runs as follows:
1) The algorithm returns {O4}.

4. The algorithm returns {−t3 +O4}.
4. The algorithm returns {t− t3 +O4}.

4. The algorithm finally returns {1 + t− t3 +O4}.

2.3.4 Total cost of Algorithm 13

Within the same spirit as for Theorem 2, we summarize the cost of Algorithm 13 as
follows:

Theorem 3. For any polynomial F in R[x] of degree at most d given to precision n,
one can compute a set of at most d disjoint classes representing its set of roots in R to
precision n with:

• computing primitive parts and separable decompositions of polynomials
in κ[t1, . . . , tr−1][x] of degrees at most d in x and total degrees at most n − 1
in t1, . . . , tr−1, and whose degree sum is at most nd,

• computing roots in κ[t1, . . . , tr−1] of at most nd primitive polynomials of degrees 1
and total degrees at most n− 1 in t1, . . . , tr−1,

• computing roots in κ[t1, . . . , tr−1] of separable polynomials in κ[t1, . . . , tr−1][x] of
degrees at least 2 and at most d, of total degrees at most n− 1 in t1, . . . , tr−1, and
whose degree sum is at most 2(d− 1),

• extracting iterated pth roots of at most O(nd/p) elements in κ[t1, . . . , tr−1],

• multifactor Hensel lifting of polynomials in R[x] of degrees at most d, whose degree
sum is at most nd, and to precision n,

• O(nM(d) log2 d) operations in R to precision n,

• shifts of polynomials in R[x] of degrees at most d, whose degree sum is at most nd,
and to precision n, and

2.3. FASTER ALGORITHM WITH SPLITTING 83

• an additional number of O(d) extractions of homogeneous components of valua-
tion v, and zero tests in each Rv, for each v ∈ {0, . . . , n− 1}.

Proof. As in the proof of Theorem 2, we claim that running Algorithm 13 with input F ∈
R[x] and finding the only roots in Rw instead of in Kw in step 2 actually leads to the set
of roots in R of valuation at least w and to precision n. This claim can be easily proved
by induction thanks to Corollary 112 that ensures that all the Fe in step 3 actually
belong to R[x].

We enter this variant of Algorithm 13 with input F , w = 0, i = ν−1(F), m =
mult(0, [F]i,−1), n, and the coefficient of degree m of [F]i,−1. Determining the values of i
and m takes no more than O(d) extractions of homogeneous components of valuation v,
and zero tests of elements in each Rv, for v ∈ {0, . . . , n−1}. The computations performed
in steps 1 and 4 of Algorithms 9 and 13 are very similar: the successive quantities w,
j and n are the same. Therefore the cumulative costs of steps 1 and 4 drops into O(d)
extractions of homogeneous components of valuation v, and zero tests of elements in
each Rv, for v ∈ {0, . . . , n− 1}.

The polynomials H occurring in step 2 of Algorithm 13 are the same of those of
Algorithm 9. The cumulative cost of step 2 is thus the same as in the proof of Theorem 2.

Steps 3.a perform multifactor Hensel lifting of polynomials of degree at most m and
whose degree sum does not exceed mn by Lemma 97. The same analysis holds for the
total cost of the shifts. Finally, the cost for computing all the he in steps 3 follows from
Lemma 118 below.

Lemma 118. Let A be a commutative ring with unity, let F1, . . . , Fs be non-constant
polynomials in A[x] whose sum of degrees is at most d, and let a1, . . . , as be in A. Then
the computation

∏s
f=1,f 6=e Ff (ae) for e ∈ {1, . . . , s} can be done with O(M(d) log2 d)

operations in A.

Proof. In order to perform the computation we appeal to the classical divide-and-conquer
paradigm:

1. Let h := bs/2c. We recursively compute
∏h
f=1,f 6=e Ff (ae) for e ∈ {1, . . . , h} and

then
∏s
f=h+1,f 6=e Ff (ae) for e ∈ {h+ 1, . . . , s}.

2. We compute G1 := F1 · · ·Fh and G2 := Fh+1 · · ·Fs with O(M(d) log s) operations
in A by [GG03, Lemma 10.4].

3. We compute G1(ah+1), . . . , G1(as) and G2(a1), . . . , G2(ah) with O(M(d) log d) opera-
tions in A by [GG03, Theorem 10.6].

4. We compute
∏s
f=1,f 6=e Ff (ae) as G2(ae)

∏h
f=1,f 6=e Ff (ae) if e 6 h, and

as G1(ae)
∏s
f=h+1,f 6=e Ff (ae) otherwise.

The cost function EA(d) of this algorithm thus satisfies EA(d) ∈ EA(degG1) +
EA(degG2) +O(M(d) log d). We deduce that EA(d) ∈ O(M(d) log2 d).

84 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

As for Algorithm 9, we focus on the case of dimension 1. Remark that in dimension 1
the computation of the he in step 3 of Algorithm 13 can be discarded. In fact it suffices
to take he := tj−wmer . The purpose of the he is only to ensure that the Fe actually belong
to R[x] whenever r > 2.

Corollary 119. Let K be a field, and let R be the power series ring K[[t]]. Then, for
any polynomial F in R[x] of degree at most d and given to precision n, one can compute
a set of at most d disjoint classes representing its set of roots in R to precision n with:

• computing roots in K of separable polynomials in K[[x]] of degrees at least 2, and
whose degree sum is at most 2(d− 1),

• extracting iterated pth roots of at most O(nd/p) elements in K, and

• an additional number of O(nM(n)M(d) log d) arithmetic operations in K.

Proof. This is a corollary of Theorem 3. By [Lec08, Proposition 5], the cumulative
cost of the separable factorizations amounts to O(nM(d) log d) operations in K. The
cumulative cost of the shifts in steps 3 is in O(nM(n)M(d) log d) by Lemma 98. Finally,
the cumulative cost of the Hensel liftings in steps 3 is also in O(nM(n)M(d) log d) by
Lemma 113.

Corollary 120. Let K be a field of characteristic 0 and let R be the power series
ring K[[t]]. Then, for any polynomial F in R[x] of degree at most d given to preci-
sion n, one can compute a set of at most d disjoint classes representing its set of roots
in R to precision n with:

• computing roots in K of separable polynomials whose degree sum is at most 2(d−1),
and

• an additional number of O(nM(n)M(d) log d) arithmetic operations in K.

Proof. This follows directly from the previous corollary.

Corollary 121. Let R be the power series ring Fq[[t]] over the finite field with q = pk

elements. Then, for any polynomial F in R[x] of degree at most d given to precision n,
one can compute a set of at most d disjoint classes representing its set of roots in R to
precision n with a randomized algorithm that performs an expected number of

O

(
(nM(n) + log(dq))M(d) log d+ n

d

p
log(q/p)

)
operations in Fq.

Proof. By [GG03, Corollary 14.16] and Corollary 119, the cumulative cost for root-
finding amounts to O(M(d) log d log(dq)) operations in Fq.

2.3. FASTER ALGORITHM WITH SPLITTING 85

Corollary 122. Let R be an unramified extension of Zp of degree k. Then, for any
given polynomial F in R[x] of degree at most d given to precision n, one can compute
a set of at most d disjoint classes representing its set of roots in R to precision n with
a randomized algorithm that performs an expected number of Õ((n + k log p)ndk log p)
bit-operations.

Proof. This is again a corollary of Theorem 3. In fact, by [Lec08, Proposition 5], the cu-
mulative cost of the primitive parts and separable factorizations amounts to Õ(nd) oper-
ations in Fq, where q := pk, which boils down to Õ(ndk log p) bit-operations. By [GG03,
Corollary 14.16], the cumulative cost for root-finding amounts to O(M(d) log d log(dq))
operations in Fq, whence Õ(d(k log p)2) bit-operations. The iterated root extractions

take O
(
nd
p log(q/p)

)
operations in Fq. Finally, the cumulative cost of the shifts and

Hensel liftings in steps 3 is in Õ(n2dk log p).

2.3.5 Implementation and timings

In this subsection we compare the performances of Algorithms 9 and 13 for computing
all the roots of polynomials F in Z/pnZ, where p := 73. The family of polynomials F
we have taken depends on the parameter d for the degree, n for the precision, and s for
the number of roots. In fact F is built as the product of s random monic linear factors
times a random polynomial of degree d− s.

Our implementation uses the C++ library of Mathemagix [H+02]. It is freely avail-
able in the quintix package from the SVN server of Mathemagix at http://gforge.
inria.fr/projects/mmx/. For the present examples, the root finding for Z/pZ[x] uses
a naive exhaustive search, which turns out to be very fast whenever p is sufficiently
small. Product of polynomials in Z/pnZ[x] is performed via the Kronecker substitu-
tion [GG03, Chapter 8, Section 4] which reduces to multiplying large integers with
Gmp [Gra91]. For all the timings we used one core of an Intel(R) Xeon(R) CPU E5520
at 2.27 GHz with 72 Gb of memory, and display timings in milliseconds.

In Tables 2.1 and 2.3 we report on the time spent by Algorithm 9 for various values
of d, n and s. Tables 2.2 and 2.4 concern the same computations but performed by
Algorithm 13. As expected performances of Algorithm 9 behave roughly quadratically
in d, while the ones of Algorithm 13 are roughly linear in d, hence much higher. In
these computations we could observe that most of the time of Algorithm 9 is spent in
the shifts, while most of the time of Algorithm 13 is spent in Hensel lifting.

d 20 40 80 160 320 640 1280

s := bd/2c 4 17 78 380 1623 5802 8527

s :=
⌊√

d
⌋

2 5 17 65 242 878 3290

Table 2.1: Algorithm 9 with R = Z/73nZ, and n = 10.

http://gforge.inria.fr/projects/mmx/
http://gforge.inria.fr/projects/mmx/

86 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

d 20 40 80 160 320 640 1280

s := bd/2c 4 8 18 38 82 178 373

s :=
⌊√

d
⌋

2 3 6 12 24 55 113

Table 2.2: Algorithm 13 with R = Z/73nZ, and n = 10.

d 20 40 80 160 320 640 1280

s := bd/2c 409 2191 12212 68944 358565 2120061 10754404

s :=
⌊√

d
⌋

166 671 2512 10635 42700 175846 657423

Table 2.3: Algorithm 9 with R = Z/73nZ, and n = 100.

2.3.6 Cost analysis in higher dimension

When R has dimension r > 2, the naive algorithm has the advantage to operate directly
in R, while Algorithm 13 needs to perform divisions in K, which has the drawback to
cause an expression swell in the lifting stage. In this subsection we propose a probabilistic
approach to avoid this expression swell.

If a = (a1, . . . , ar−1) is a point in κr−1, then we write τa for the homomorphism
from R into R that sends ti to (ai + ti)tr for all i ∈ {1, . . . , r− 1}. If H(x) =

∑d
l=0Hlx

l

is a polynomial in R[x] then we further set τa(H)(x) :=
∑d

l=0 τa(Hl)x
l. Remark that

the image of an homogeneous element c =
∑

e∈Nr,e1+···+er=ν(c) cet
e1
1 · · · terr in R by τa is

τa(c) =
∑

e∈Nr,e1+···+er=ν(c)

ce(a1 + t1)e1 · · · (ar−1 + tr−1)er−1tν(c)
r .

Therefore c can be recovered from its value τa(c) if the latter is known to precision ν(c)+1
in tr and modulo (t1, . . . , tr−1)ν(c)+1. More generally, if c is any element of R, and if we
are given τa(c) to precision l+1 in tr and modulo (t1, . . . , tr−1)l+1, then we can recover c
modulo (t1, . . . , tr)

ν(c)+1.

Following the discussion on R at the beginning of this article (based on [Coh46,
Theorem 15]), if R is the power series ring κ[[t1, . . . , tr]] then we let

S := Quot(R/(tr))⊗κ[[tr]] R = κ((t1, . . . , tr))[[tr]].

Otherwise, if R = D[[t1, . . . , tr−1]], where D is a complete discrete valuation ring with
maximal ideal generated by p = tr and residue field κ = D/(p), then we let

S := Quot(R/(p))⊗D R = D((t1, . . . , tr−1)).

In both cases, S is a complete commutative Noetherian unramified regular local domain
of dimension 1 with maximal ideal n = (tr). We can therefore apply our algorithms in S
instead of R as follows:

2.4. APPLICATION TO ERROR CORRECTING CODES 87

d 20 40 80 160 320 640 1280

s := bd/2c 229 474 984 2085 4431 9615 21135

s :=
⌊√

d
⌋

95 151 228 390 676 1346 2616

Table 2.4: Algorithm 13 with R = Z/73nZ, and n = 100.

Lemma 123. For any input of Algorithm 11, there exists a nonzero polynomial A
in κ[x1, . . . , xr−1] of degree d1j2 = wd1d2 such that, for any point (a1, . . . , ar−1) ∈ κr−1

satisfying A(a1, . . . , ar−1) 6= 0, Algorithm 11 can run on τa(F), τa(H1), τa(H2) seen as
in S[x], w, j, and n, and returns τa(H

∗
1), τa(H

∗
2).

Proof. From the assumptions, ρ := [Res(H1, H2)]d1j2 is nonzero. On the one hand, from
the specialization property of the resultant, [τa(ρ)]d1j2 equals [Res(τa(H1), τa(H2))]d1j2 .
On the other hand, if

ρ =
∑

e∈Nr,e1+···+er=d1j2

ρet
e1
1 · · · t

er
r ,

then [τa(ρ)]d1j2 =
∑

e∈Nr,e1+···+er=d1j
ρea

e1
1 · · · a

er−1

r−1 t
d1j
r . We thus let

A(x1, . . . , xr−1) :=
∑

e∈Nr,e1+···+er=d1j2

ρex
e1
1 · · ·x

er−1

r−1 .

If A(a1, . . . , ar−1) 6= 0 then τa(F), τa(H1), τa(H2), w, j and n satisfy the requirements
of Algorithm 11.

Lemma 124. For any input of Algorithm 12, there exists a nonzero polyno-
mial A in κ[x1, . . . , xr−1] of degree at most w deg(F)2/2 such that, for any
point (a1, . . . , ar−1) ∈ κr−1 satisfying A(a1, . . . , ar−1) 6= 0, Algorithm 12 can
run on τa(F), τa(H1), . . . , τa(Hs+1), seen as in S[x], w, j, and n, and returns
τa(H

∗
1), . . . , τa(H

∗
s+1).

Proof. Let Ai,j be the polynomial A of Lemma 123 applied to HiHj , Hi, Hj , for i < j.
By the multiplicativity of the resultant it suffices to take A :=

∏
i<j Ai,j . The degree of A

is w
∑

i<j didj , according to the notation of Algorithm 12. The latter sum is bounded

by w deg(F)2/2.

In order to apply Algorithm 13, it suffices to pick up at random a point
(a1, . . . , ar−1) ∈ κr−1, then perform the Hensel lifting to precision n in tr and modulo
(t1, . . . , tr−1)n, compute τa(Fe), and finally recover Fe in R[x] since it actually belongs
to R[x]. In this way, if κ has sufficiently many elements, then Algorithm 13 behaves
efficiently in high dimension with a high probability of success.

2.4 Application to error correcting codes

Let E be an unramified extension of Zp of degree k so that E/(pn) is the Galois ring
GR(pn, k) of Definition 85, and let q := pk.

88 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

2.4.1 Algorithm

Let F be a polynomial in E[t][x] of degree at most d in x and degree at most dt in t. We
are interested in computing all the roots of F in E[t] of degree at most a given integer l,
and modulo pn.

Algorithm 14 Root finding for bivariate polynomials.

Output: A polynomial F ∈ E[t][x] of degree at most d in x and dt in t, and two
nonnegative integers n and l.

Input: A set of at most d disjoint classes representing the roots of F in E[t] of degree
at most l modulo pn.

1: Compute an irreducible polynomial ϕ(t) ∈ Fq[t] of degree e = dl + dt + 1.
2: Call Algorithm 9 or 13 with R := E[t]/(ϕ(t)), and F seen in R[x] of degree at most d,

in order to obtain a set Z of at most d disjoint classes of the roots.
3: Return the elements of Z of degree at most l in t.

Proposition 125. Algorithm 14 works correctly, and takes:

• an expected number of Õ((n2d+ max(1, n/p)ek log p)dek log p) bit-operations when
using the naive solver derived from Algorithm 9, or

• an expected number of Õ((n2 + nek log p)dek log p) bit-operations when using the
naive solver derived from Algorithm 13.

Proof. A polynomial z(t) is a root of F of degree at most l modulo pn if, and only if, it
is a root of F seen in E[t]/(ϕ(t)) modulo pn, since F (z(t)) has degree at most dl + dt.

Step 1 can be done with an expected number of Õ(e2 log q) operations in Fq by [GG03,
Corollary 14.43]. The cost of step 2 then follows from Corollary 107 (resp. from Corol-
lary 122) when using Algorithm 9 (resp. using Algorithm 13).

2.4.2 Experiments

We have implemented finite fields in the C++ package of Mathemagix called finite-
fieldz. Several representations and algorithms are available, including products via
lookup tables for small fields, a wrapper of the Mpfq library [GT06] for specific fields,
and a generic implementation as quotient ring for larger fields. We have also implemented
Galois rings in the aforementioned quintix package, in a way very similar to finite
fields. Root finding can be performed either by an exhaustive search or via Berlekamp
or Cantor-Zassenhaus based algorithms (see for instance [GG03, Chapter 14]).

Algorithm 14 is available in the quintix package. In order to test it, we built
input polynomials from real examples by using Sudan’s interpolation algorithm for Reed-
Solomon codes over Galois rings [Sud97b, Lemma 4]. This interpolation relies merely on
linear algebra over Galois rings as described in [Arm04,Arm05b]. In Tables 2.5 and 2.6
we display the performances of Algorithm 14 for various length of the code. Timings are

2.4. APPLICATION TO ERROR CORRECTING CODES 89

Length of the code 100 200 250

Z/p10Z Z/10310Z Z/21110Z Z/25710Z
d 3 2 2

dt 29 116 83

l 9 49 59

e 57 215 202

Algorithm 9 in step 2 (ms) 785 5492 3509

Algorithm 13 in step 2 (ms) 1068 10298 14978

Table 2.5: Algorithm 14 for Reed-Solomon codes over Z/p10Z.

Length of the code 100 200 250

Z/p100Z Z/103100Z Z/211100Z Z/257100Z
d 3 2 2

dt 29 116 83

l 9 49 59

e 57 215 202

Algorithm 9 in step 2 (ms) 675 11421 6134

Algorithm 13 in step 2 (ms) 2046 9942 10861

Table 2.6: Algorithm 14 for Reed-Solomon codes over Z/p100Z.

measured in milliseconds in the same conditions as in Section 2.3.5, and we compare the
relative performances of Algorithms 9 and 13.

Notice that the timings are somehow similar between precision 10 and 100. This
is mainly because the interpolation step returns a polynomial whose coefficients have
valuations close to the precision. Moreover the degrees in x being very small compared to
the extension degree of the Galois ring used by Algorithm 14 in step 2, both Algorithms 9
and 13 spend a lot of time in the root-finding algorithm over large finite fields.

In the latter examples, we can see that the degree d is rather small in comparison
to dt. Heuristically, this fact could be related to [NH00, Proposition 12 page 9] which
states that the probability of having more than one codeword in a Hamming ball, whose
radius corresponds to the Sudan algorithm decoding radius, is close to zero. The degree d
of F is related to the number c of codewords within the Hamming ball by c 6 d. And,
in practice, we observe that d is close to 1 when c = 1 with probability close to 1.

Of course one can construct received words such that the decoding algorithm has to
return a given number c of codewords. Hence, by the inequality c 6 d, one can force the
degree d to be at least a given positive integer. Such a word can be built as follows. First
denote by (r)i···j the vector (ri, ri+1, . . . , rj) for any vector r with coefficients in Z/pnZ.
Take d codewords c1, . . . , cd such that (c1)1···k−d−1 = (c2)1···k−d−1 = · · · = (cd)1···k−d−1

where k is the rank of the code. Then compute ∆ = b(`−k−d)/dc where ` is the length
of the code. Finally compute the word

ρ = ((c1)1···k−d−1; (c1)k−d···k−d+∆; (c2)k−d+∆+1···k−d+2∆; · · · ; (cd)k−d+(d−1)∆···k−d+d∆),

90 CHAPTER 2. POLYNOMIAL ROOT FINDING OVER LOCAL RINGS

and truncate ρ, if necessary, so that its length equals the length ` of the code. Table 2.7
reports on timings obtained with this construction.

Length of the code 1400 1800 2000

Z/p10Z Z/140910Z Z/181110Z Z/200310Z
d 6 8 10

dt 43 50 45

l 9 9 9

e 98 123 136

Algorithm 9 in step 2 (ms) 19742 58414 145380

Algorithm 13 in step 2 (ms) 23818 70941 140828

Table 2.7: Algorithm 14 for Reed-Solomon codes over Z/p10Z with a forced degree d for
the interpolation polynomial F .

Notice that Algorithm 13 starts to be interesting when the degree d is at least 10 for
codes with a very low rate. In this case the code rate is smaller than 0.5%. Therefore
the naive algorithm turns out to be sufficient for practical applications whenever the
code rate is close to 1.

Acknowledgments

We would like to thank Daniel Augot for his useful comments on this article.

Part II

A Lifting Framework for List
Decoding over some Finite Rings

91

93

Context

In this part we exploit the structure of some finite rings (such as the Galois rings) to
obtain decoding algorithms over rings from decoding algorithms over finite fields. We
first recall the definitions of Galois rings and generalized Reed-Solomon codes over rings.

Proposition. Let p be a prime and r, s two positive integers. Let ϕ(X), φ(X) ∈
Z/prZ[X] be two degree-s monic polynomials irreducible modulo p. Then there is a
ring isomorphism

Z/prZ[X]

(ϕ(X))
=

Z/prZ[X]

(φ(X))
.

The proof can be found in [Rag69, Statements I and II, page 207].

Definition (Galois rings). The ring Z/prZ[X]
(ϕ(X)) from the previous proposition is denoted

by GR(pr, s) and called a Galois ring.

Definition. Let k < n be two positive integers, v = (v1, . . . , vn) be such that vi ∈ Z(A)×

for all i and x = (x1, . . . , xn) ∈ An be such that for all i 6= j, xi 6= xj and xixj = xjxi.
The left submodule generated by the

(v1f(x1), . . . , vnf(xn)) ∈ An, f ∈ A[X] and deg f < k

is called a generalized Reed-Solomon code of parameters [n, k]A and denoted by
GRSA(v, x, n) or simply GRS(n, k) when there is no confusion. The vector x is called
the support while v is called the weight of GRSA(v, x, k).

Let A be a ring with identity with the following property:

(∗) there exists a regular element p which is not a unit such that p ∈ Z(A) and such
that every element a ∈ A can be uniquely written as

∑∞
i=0 aip

i where, for all i ∈ N,
ai is in a set of representatives of A/(p).

For example A can be

• the power series ring over a field κ, κ[[t]],

• an unramified extension of degree s of the p-adic ring Zp, Zps .

• the matrix ring over κ[[t]], M`(κ[[t]]),

• the matrix ring over Zps , M`(Zps).

Let r be a positive integer and B = A/(pr) and let C be a generalized Reed-Solomon
code over B of parameters [n, k]B. The idea behind the algorithms in this part is to take
advantage of the decoding algorithms of generalized Reed-Solomon codes over a finite
fields which have been widely studied in [Ber84,BW86,TERH88] for the unique decoding
and in [Köt96,Sud97b,RR98,GS98,Ale05,AZ08] for the list decoding. The algorithm is
a lifting algorithm that has the advantage to be very simple. We give an example of the
trace of the algorithm.

94

Example 126. Let B = Z/52Z, x = (1, 2, 3, 4) and C = RSB(x, 2). Suppose that y =
(6, 12, 6, 6) is the received word. The first step is to consider y1 = y mod 5 = (1, 2, 1, 1)
seen as a received word. A decoding algorithm for RSF5(x mod 5, 2) gives the nearest
(within distance 1 from y1) codeword c1 = (1, 1, 1, 1) and the corresponding error vector
e1 = (0, 1, 0, 0). Then compute

y ←− “(y − y1 − e1)/5 = [(6, 12, 6, 6)− (1, 1, 1, 1)− (0, 1, 0, 0)]/5”

= (1, 2, 1, 1).

Then, again, we consider y2 = (1, 2, 1, 1) mod 5 = (1, 2, 1, 1) and a unique decoding al-
gorithm for RSF5(x mod 5, 2) gives the codeword c2 = (1, 1, 1, 1) and the corresponding
error vector (0, 1, 0, 0). The reconstruction of the transmitted codeword (within distance
1 of y = (6, 12, 6, 6)) and its corresponding error vector of F4

5 is easy.

c = (1, 1, 1, 1) + 5 · (1, 1, 1, 1) = (6, 6, 6, 6)

e = (0, 1, 0, 0) + 5 · (0, 1, 0, 0) = (0, 6, 0, 0)

The lifting algorithm has been first proposed in [GV98] then studied in [Byr01,BZ01].
I then applied it to interleaved linear codes using erasures to improve its decoding radius.

Definition 127. We let A be the power series ring over the finite field Fq and
B = Fq[[t]]/(tr). We let C be a linear code over Fq with parameters [n, k, d]Fq and
with generator matrix G. Let r messages m0, . . . ,mr−1 ∈ Fkq and their encoding
c0 = m0G, . . . , cr−1 = mr−1G. For i = 0, . . . , r − 1 and j = 1, . . . , n define cij to
be the j-th coordinate of ci and sj = (c0,j , . . . , cr−1,j).

c0,1 c0,2 . . . c0,n → c0

c1,1 c1,2 . . . c1,n → c1
...

...
...

...
cr−1,1 cr−1,2 . . . cr−1,n → cr−1

↓ ↓ ↓
s1 s2 sn

The vectors transmitted over the channel are not c1, . . . , cr−1 ∈ Fnq but s1, . . . , sn ∈ Frq.
We will make an abuse of notation and call such an encoding scheme a interleaved code
with respect to C and of degree r. In this context a burst error is an error occurring in
one whole column si for one index i ∈ {1, . . . , n}.

Interleaved linear codes over finite fields are presented in [VVO89, Chapter 7, Sec-
tion 5] and their decoding is studied in [BKY03, CS03, GGR11]. They have also been
considered over Galois rings in [Arm10]. The improvement of the lifting algorithm is
made with erasures following an idea of M. A. Armand.

95

Contributions

No complexity was given for the lifting algorithm. It was given only for quotient of
discrete valuation rings which are commutative rings, it has not been studied in the
situation of list decoding and it has not been used outside the unique decoding of codes.
First, in Chapter 3 we show that this lifting technique works for any generalized Reed-
Solomon code over any finite ring satisfying (∗) and study its complexity in the situation
of unique and list decoding. Then in Chapter 4, I show how to improve the lifting
algorithm for decoding linear codes over B and I show how to apply it to interleaved
linear codes over a finite fields in which case it permits to correct, with high probability,
more than τ burst errors.

Chapter 3

On Generalized Reed-Solomon
Codes Over Commutative and
Noncommutative Rings

This chapter constitutes a submitted work. It has been done in collaboration with
Morgan Barbier and Christophe Chabot.

Abstract—In this paper we study generalized Reed-Solomon codes (GRS codes) over
commutative, noncommutative rings, show that the classical Welch-Berlekamp and
Guruswami-Sudan decoding algorithms still hold in this context and we investigate their
complexities. Under some hypothesis, the study of noncommutative generalized Reed-
Solomon codes over finite rings leads to the fact that GRS code over commutative rings
have better parameters than their noncommutative counterparts. Also GRS codes over
finite fields have better parameters than their commutative rings counterparts. But we
also show that given a unique decoding algorithm for a GRS code over a finite field,
there exists a unique decoding algorithm for a GRS code over a truncated power series
ring with a better asymptotic complexity. Moreover we generalize a lifting decoding
scheme to obtain new unique and list decoding algorithms designed to work when the
base ring is for example a Galois ring or a truncated power series ring or the ring of
square matrices over the latter ring.

Keywords—Algebra, Algorithm design and analysis, Decoding, Error correction, Reed-
Solomon codes.

3.1 Introduction

Reed-Solomon codes (denoted by RS codes in the rest of this paper) form an important
and well-studied family of codes. They were first proposed in 1960 by Irvin Stoy Reed and
Gustave Solomon in their original paper [RS60]. They have the property to be Maximum
Distance Separable (MDS) codes, thus reaching the Singleton bound. Not only do RS
codes have the best possible parameters, they also can be efficiently decoded. See for

97

98 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

example [Gao02] and [Jus76]. They are widely used in practice such as in compact disc
players, disk drives, satellite communications, and high-speed modems such as ADSL.
See [WB99] for details about applications of RS codes. A breakthrough has been made
by Madhu Sudan in 1997 about the list decoding of RS codes in his paper [Sud97b],
further improved by Venkatesan Guruswami and Madhu Sudan in [GS98]. They showed
that RS codes are list decodable up to the generic Johnson bound in polynomial time.
In [NH00], Rasmus Refslund Nielsen and Tom Høholdt showed that the probability of
having more than one codeword returned by any list decoding algorithm which can
decode up to the generic Johnson bound is very small, making the Guruswami-Sudan
algorithm usable in practice.

In the present article we investigate generalized Reed-Solomon codes (denoted by
GRS codes in the rest of this paper) over rings with unity. The latter need not be
commutative. We show that the main results about GRS codes still hold in this more
general situation.

3.1.1 Our contributions

In an attempt to build new good codes over Z/4Z in a similar way as in [BCQ12] we
noticed that most results about evaluation codes still hold when we replace the ring of
matrices by any noncommutative ring. This generalization is natural to do and permits
the study of GRS codes over rings with unity in great generality.

Moreover it allows us to design unique and list decoding algorithms, prove their
correctness and study their asymptotic complexities in a very general framework. They
are not constraint to have as input a GRS code over a finite field or a Galois ring. They
remain valid when the alphabet is any noncommutative ring such as matrices over a
finite field or a Galois ring.

In this article we reach the conclusion that GRS codes over finite noncommutative
rings are no better than GRS codes over finite commutative rings which are themselves
no better than their finite fields counterparts as far as only the parameters are concerned.

We summarize our results in the following theorems and propositions which will be
proved later in the article.

Theorem 128. Given three positive integers k < n ≤ q, let A be a non commutative
ring of cardinality q and a GRS code over A of parameters [n, k, n − k + 1]A. Then
there exists a commutative ring B of cardinality q and a GRS code over B of parameters
[n, k, n− k + 1]B.

The same theorem holds when q is a prime power and if we replace “noncommutative
rings” by “commutative rings” and “commutative rings” by “finite fields”. The “soft-
Oh” notation f(n) ∈ Õ(n) means that f(n) ∈ g(n) logO(1)(3 + g(n)) (we refer the reader
to [GG03, Chapter 25, Section 7] for details).

Proposition 129. Given a Galois ring A = GR(pr, s) and a RS code over A with
parameters [n, k, n − k + 1]A, there exists a unique decoding with an asymptotic com-
plexity of Õ(rnks log p) bit-operations; and a list decoding algorithm with an asymptotic

3.2. PREREQUISITES 99

complexity of Õ(nr+6k5sprs(r−1)) bit-operations which can list decode up to the Johnson
bound.

In this paper we provide detailed asymptotic complexities of our decoding algorithms
when the alphabet of the RS code is a Galois ring and the ring Fq[[t]]/(tr). We denote
by D the unique decoding algorithm that can be found in [Ber68,Mas69,SKHN75,Jus76,
BW86,Gao02].

Theorem 130. Given a finite field A, a truncated power series ring B such that |A| =
|B|, a RS code CA over A of parameters [n, k, n−k+1]A and a unique decoding algorithm
UDec from the list D for CA. Suppose that there exists a RS code CB over B of parameters
[n, k, n−k+ 1]B. Then there exists a RS code C′B over B of parameters [n, k, n−k+ 1]B
such that CB/pCB = C′B/pC′B and a unique decoding algorithm for C′B with a better
asymptotic complexity than UDec as soon as the complexity of UDec is equal or greater
than Õ(n).

Note that the asymptotic complexity of the known unique decoding algorithms is at
least Õ(n). In addition, we show that the gain is more significant when the arithmetic
of the underlying rings is not done with asymptotically fast algorithms which is the case
for practical applications. In this case we have a similar theorem as Theorem 130 for
Galois rings.

3.1.2 Related work

Our approach for building noncommutative GRS codes is different from the one to build
“skew codes” [BGU07,BSU08,BU09a,BU09b,CLU09]. Skew polynomial rings over finite
fields or Galois rings are used for the construction of codes whose alphabets are finite
fields or Galois rings. Here we consider alphabets which are noncommutative rings and
not necessarily finite fields. GRS codes over a commutative finite ring have been studied
by Marc André Armand in [Arm04, Arm05b]. To our knowledge this paper is the first
to study GRS codes over noncommutative rings.

Unique decoding algorithms for RS codes over finite fields have been studied for
example in [Ber84, BW86, TERH88]. List decoding algorithms for RS codes over finite
fields have been investigated for example in [Ale05, AZ08, GS98, Köt96, KV03, RR98,
Sud97b]. A unique decoding algorithm for RS codes over Galois rings has been proposed
by [Arm05c] while list decoding algorithms have been investigated in [Arm04, Arm05b,
Arm05a,AdT05].

A lifting decoding scheme has been first proposed in [GV98] then in [Byr01,BZ01]. In
this paper we generalize the lifting decoding scheme to obtain unique and list decoding
algorithms for GRS code over noncommutative rings.

3.2 Prerequisites

In this article we let A be a (not necessarily commutative) ring with unity, denoted by
1 or 1A, such that for all a, b ∈ A

100 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

• 1.a = a.1 = a,

• a.b = 1 =⇒ b.a = 1.

If ab = 1, we say that a is invertible or that a is a unit whose inverse is b. In this
paper, we will only consider rings verifying the above conditions and by “ring” we mean
a not necessarily commutative ring unless stated otherwise. We denote by A× the not
necessarily commutative group of units of A. An element a ∈ A is right regular if ab = 0
implies b = 0 for all b ∈ A. Similarly a is left regular if ba = 0 implies b = 0 for all
b ∈ A. If a is both left and right regular we say that a is regular. Note that when A is
finite, A× coincides with the group of regular elements of A. Suppose now that we have
c = ab for three elements of A. Then a is called a left divisor of c and b is called a right
divisor of c.

Definition 131 (Commutative subset). A subset S of A is called a commutative subset
if for each s, t ∈ S we have st = ts.

Definition 132 (Subtractive subset). We borrow the terminology of [NSM00, Defini-
tion 2.2 page 3] and say that a subset S of A is subtractive if for all s, t ∈ S with s 6= t
we have s− t ∈ A×.

Let A[X] be the ring of polynomials over A and, for a positive integer k let A[X]<k
be the bimodule of all polynomials of A[X] of degree at most k − 1. Then A[X] is
commutative if and only if A is. We denote by Z(A) the center of A. We have Z(A[X]) =
Z(A)[X].

Definition 133 (Evaluation map). Let

f =
l∑
0

fiX
i ∈ A[X]

and a ∈ A. We define the evaluation of f at a, denoted by f(a), to be the element

l∑
0

fia
i ∈ A.

In general, the evaluation map f 7→ f(a) is not a ring homomorphism. Note however
that f 7→ f(a) is a ring homomorphism whenever a ∈ Z(A). Let g ∈ A[X] and suppose
that the subset of A constituted by the coefficients of g and a is commutative. Then we
have (fg)(a) = f(a)g(a). We call a a root of f if f(a) = 0.

Let f ∈ A[X] and x = (x1, . . . , xn) ∈ An. For convenience sake the vector
(f(x1), f(x2), . . . , f(xn)) of An will be denoted by f(x). We include in this section
propositions about evaluation and interpolation of polynomials of A[X].

Lemma 134. Let f and g be nonzero polynomials over A such that the leading coefficient
of g is a unit of A. Then there exist unique polynomials ql(X), rl(X) ∈ A[X] such that
f = qlg + rl and deg rl < deg g; and unique polynomials qr(X), rr(X) ∈ A[X] such that
f = gqr + rr and deg rr < deg g.

3.2. PREREQUISITES 101

Remark 135. Taking the same notations as in Lemma 134 note that we have ql = qr and
rl = rr whenever the coefficients of f and of qr or ql form a commutative subset of A. It
is the case in particular when g ∈ Z(A[X]). A direct consequence of Lemma 134 is that
a ∈ A is a root of f if and only if X − a is a right divisor of f . Moreover if a ∈ Z(A)
then a is root of f if and only if X − a is a right and left divisor of f . The following
corollary is the key ingredient of many proofs in this paper.

Corollary 136. Let f be a polynomial over A of degree at most n with at least n + 1
roots contained in a commutative subtractive subset of A. Then f = 0. It is the case in
particular when the considered (n+ 1) roots are in Z(A).

The next corollary of Lemma 134 allows to do Lagrange interpolation as soon as the
points at which interpolation is done are well chosen.

Corollary 137. Let {x1, . . . , xn+1} be a commutative subtractive subset of A and
{y1, . . . , yn+1} be a subset of A. Then there exists a unique polynomial f ∈ A[X] of
degree at most n such that f(xi) = yi, for i = 1, . . . , n+ 1.

Proof. The proof is included to introduce some notations that will be useful later.
The uniqueness is a direct consequence of Corollary 136. Let

Li(X) =
∏
j 6=i

(X − xj).

Note that if h ∈ A[X] and λ, x ∈ A then (λh)(x) = λ(h(x)). Therefore the polynomial

f(X) =

n+1∑
i=1

yiLi(xi)
−1Li(X), (3.1)

verifies f(xi) = yi for i = 1, . . . , n+ 1.

As in the commutative case, we will need to work in a localization of A. However the
operation of localization is slightly more complicated. Let S be a multiplicative subset
of A i.e. S satisfies s, t ∈ S ⇒ st ∈ S. Following [MRS01, Paragraph 1.6, page 43] one
can form the ring of right fractions denoted by AS−1 under certain conditions such as
the right Ore condition.

Definition 138 (Right Ore condition). A subset S of A is said to satisfy the right Ore
condition if for all r ∈ A and s ∈ S there exists r′ ∈ A and s′ ∈ S such that rs′ = sr′.

Following [MRS01, Definition 1.3, page 42], we denote by ass(S) the set {a ∈ A :
as = 0 for some s ∈ S}.

Proposition 139. Let S be a multiplicative subset of A satisfying the right Ore condition
such that the image of S in the quotient ring A/ ass(S) consists of regular elements of
A/ ass(S). Then the ring of right fractions of A with respect to S exists. We will denote
it by AS−1.

Proof. See [MRS01, Theorem 1.12, page 47].

102 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

3.2.1 Error correcting codes

As in the case of linear error correcting codes over a finite field, we define a linear
error correcting code as a submodule of An for a positive integer n. But, as A is not
commutative a priori we have to define left and right linear error correcting codes.

Definition 140 (Left and right linear code). Let n be a positive integer. A left (resp.
right) linear error correcting code is a left (resp. right) submodule C of A such that for
each i ∈ {1, . . . , n} there exists an element of C such that its i’th coordinate is nonzero.

The elements of C are called codewords while the elements of An are called words.
If C is a bi submodule of An then it is called a linear error correcting code, or simply

an error correcting code or a code if there is no confusion on the linearity of C.

As in the finite field case, we can define the Hamming distance and weight.

Definition 141 (Hamming weight and distance). Let u ∈ An. We call the Hamming
weight of u the number of nonzero entries of u and denote this number by w(u). Now
let v ∈ An. The Hamming distance between u and v is the nonnegative integer w(u− v)
and denoted by dH(u, v). If there is no confusion the Hamming distance between u and
v will be simply called the distance between u and v and denoted by d(u, v).

Let C be a subset of An. The minimum Hamming distance of C denoted by dC is
defined as

dC = min
u,v∈C and u6=v

d(u, v).

If there is no confusion the minimum Hamming distance of C is simply called the mini-
mum distance of C. Note that if C is an additive subgroup of An we have

dC = min
u∈C\{0}

w(u).

Definition 142 (Support). Let u = (u1, . . . , un) ∈ An. The set

{i ∈ {1, . . . , n} : ui 6= 0}

is called the support of u and denoted by Supp(u).

Definition 143 (Inner product). Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two
elements of An. The inner product of u and v is defined by

〈u, v〉 =

n∑
i=1

uivi ∈ A.

Let C be a bi submodule of An. We can define the left dual submodule ⊥C of An to be
the left submodule of An defined by

⊥C = {u ∈ An : ∀c ∈ C, 〈u, c〉 = 0} ,

and similarly the right dual submodule C⊥ of An to be the right submodule of An defined
by

C⊥ = {u ∈ An : ∀c ∈ C, 〈c, u〉 = 0} .
A priori there is no reason that ⊥C = C⊥ except under special hypothesis.

3.2. PREREQUISITES 103

Definition 144 (Parity-check matrix). Let C be a code such that ⊥C = C⊥. Suppose
moreover that C⊥ has a base (b1, . . . , bs) where bi is a row matrix for i = 1, . . . , s. Then
the matrix 

b1
b2
...
bs


is called a parity-check matrix of C.

3.2.2 Galois rings

We recall briefly basic results about Galois rings that will be useful throughout the
article. We fix for this subsection a prime number p and two positive integers r and s.

Proposition 145. Let ϕ(X), ψ(X) ∈ (Z/prZ)[X] be monic polynomials of degree s,
irreducible modulo p. Then we have a ring isomorphism:

(Z/prZ)[X]

(ϕ(X))
=

(Z/prZ)[X]

(ψ(X))
.

Proof. See [Rag69, Statements I and II, page 207].

Definition 146 (Galois ring). With the same notation as Proposition 145, the ring

(Z/prZ)[X]

(ϕ(X))

is denoted by GR(pr, s) and called a Galois ring.

Proposition 147. The Galois ring A = GR(pr, s) is a finite local ring whose maximal
ideal is generated by p. Its residue field is Fps. Moreover all the ideals of A are principal
and generated by a power of p.

Proof. The proposition follows from [Rag69, Paragraph 3.5, page 212] and [Ser62, The-
orem 7, page 52].

In order to use Galois rings as a suitable alphabet for our decoding algorithms we
need the following proposition.

Proposition 148. Let Zp be the ring of p-adic integers. We let Zps denote an unramified
extension of Zp of degree s. Then GR(pr, s) and Zps/(pr) are isomorphic as rings.

Proof. The proposition follows from [Rag69, Paragraph 3.5, page 212] and [Ser62, The-
orem 7, page 52].

104 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

3.2.3 Complexity model

In order to analyze the performances of our algorithms, we let I(n) be the time needed
to multiply two integers of bit-size at most n in binary representation. It is classical
([CK91], [Für07], [SS71]) that we can take I(n) ∈ O(n log n2log∗ n), where log∗ represents
the iterated logarithm of n. If A is a commutative ring, we let MA(n) be the cost of
multiplying two polynomials of degree at most n with coefficients in A in terms of the
number of arithmetic operations in A. It is well known ([GG03, Theorem 8.23, page 240])
that we can take MA(n) ∈ Õ(n). Thus the bit-cost of multiplying two elements of Fpn
is Õ(n log p) where p is a prime number.

Finally, let us recall that the expected cost spent by a randomized algorithm is defined
as the average cost for a given input over all the possible executions.

3.3 Generalized Reed-Solomon codes

In this section, we extend the main propositions about GRS codes over a ring. We
study their parameters, duality, key equation, weight distribution and the MacWilliams
identity.

From now on and until the end of this article we fix three positive integers k < n and
d = n− k+ 1, a commutative subtractive subset {x1, . . . , xn} of A, x = (x1, . . . , xn) and
v = (v1, . . . , vn) ∈ (Z(A)×)n.

Definition 149 (Generalized Reed-Solomon code). The left submodule of An generated
by the vectors of the form

(v1f(x1), . . . , vnf(xn)) ∈ An,

with f ∈ A[X]<k is denoted by

GRSA(v, x, k) = GRSA((v1, . . . , vn), (x1, . . . , xn), k)

and is called the generalized Reed-Solomon code over A of parameters [v, x, k] or simply
[n, k] if there is no confusion on v and x. The integer n is called the code block length
or simply length of GRSA(v, x, k). The n-tuple v = (v1, . . . , vn) is called the weight of
GRSA(v, x, k). The n-tuple x = (x1, . . . , xn) is called the support of the code. When
there is no confusion on the ring A, the weight and the support, we will simply write
GRS(n, k) for GRSA(v, x, k). The integer k will be called the pseudo-dimension of
GRS(n, k) throughout this paper. When v = (1A, . . . , 1A) we call GRSA(v, x, k) a Reed-
Solomon code and denote it by RSA(v, x, k) or simply RS(n, k) if there is no confusion
on the ring A, the weight and the support.

Note that if {x1, . . . , xn} ⊆ Z(A) then the left linear code GRSA(v, x, k) defined in
Definition 149 is in fact a code (i.e. a bi submodule of An).

Proposition 150. The left linear code GRS(n, k) is free and has a left basis of car-
dinality k. In particular when A is commutative the pseudo-dimension k of GRS(n, k)
corresponds to its rank.

3.3. GENERALIZED REED-SOLOMON CODES 105

Proof. Let
ev : A[X]<k −→ An

f(X) 7−→ (v1f(x1), . . . , vnf(xn)).

Suppose that ev(f) = 0, then f(xi) = 0 for i = 1, . . . , n. Therefore by Corollary 136 we
must have f = 0 and ev is injective. But A[X]<k is free and has a basis of cardinality k
namely (1, X,X2, . . . , Xk−1) hence the proposition.

Corollary 151. The code GRS(n, k) has minimum distance d = n− k + 1.

Proof. Denote by d′ the minimum distance of GRS(n, k). Let g = (X − x1)(X −
x2) · · · (X − xk−1) be of degree k− 1. As {x1, . . . , xn} is a commutative subset of A, we
have g(xi) = 0 for i = 1, . . . , k − 1 and g(xi) is a product of units of A by hypothesis,
thus g(xi) 6= 0 for i = k, . . . , n. Therefore d′ ≤ n− k + 1.

Suppose now that there exists a polynomial f ∈ A[X]<k such that f(xi) = 0 for at
least k values of i. By Corollary 136 we must have f = 0. Thus d′ ≥ n− k + 1.

Proposition 152. A generator matrix of GRSA(v, x, k) is given by
v1 v2 . . . vn
v1x1 v2x2 . . . vnxn
v1x

2
1 v2x

2
2 . . . vnx

2
n

. .

v1x
k−1
1 v2x

k−1
2 . . . vnx

k−1
n

 .

Proposition 153. Let S be a commutative subtractive subset of A. Then there exists
a commutative ring B such that |B| = |A|, and a subtractive subset T of B such that
|T | = |S|.

Proof. Let m = |A|. We write

m =

r∏
i=1

plii ,

where l1, . . . , lr are positive integers and p1, . . . , pr are prime numbers. We let Z =
Z(A)[S] the commutative subring of A generated by the elements of S over Z(A).

We first prove that pi divides |Z| for i = 1, . . . , r. Suppose that it is not the case, say
p1 does not divide |Z|. Then p1 divides the order of the quotient additive group A/Z.
Then by [Lan02, Lemma 6.1 page 33] there exists a ∈ A \ Z such that p1a ∈ Z. But
p11A = p11Z is invertible in Z and we have a = (p11Z)−1(p11Z)a = (p11Z)−1(p1a) ∈ Z.

Now Z is a finite commutative ring and we can write by [AM94, Theorem 8.7, page 90]

Z =

s∏
i=1

Ai

in a unique way (up to isomorphism) where Ai is a finite local commutative ring for
i = 1, . . . , s. We must have s ≥ r: by [Rag69, Theorem 2, page 199] the cardinality of

106 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

Ai is a prime power, thus if s < r it would contradict the fact that pi divides |Z| for
i = 1, . . . , r.

Denote by mi the maximal ideal of Ai for i = 1, . . . , r. Since S is a subtractive subset
of Z we must have

|S| ≤ min
i∈{1,...,r}

|Ai/mi| . (3.2)

We can assume that the right hand side of the above inequality is equal to |A1/m1|
without loss of generality. There exists a positive integer l such that |A1/m1| = pl1 and
we have |S| ≤ pl1 ≤ |Ai| ≤ p

li
i for j = 2, . . . , r and j = 1.

Now let B =
∏s
i=1 Fplii

be the product ring of finite fields. Then Inequality 3.2

implies that B contains a subtractive subset T such that |T | = |S|.

We have proved Theorem 128.

Theorem 154. For a GRS code over a finite ring A with parameters [n, k, n− k+ 1]A,
there exists a GRS code over a commutative ring B with |B| = |A| and of parameters
[n, k, n− k + 1]B.

Proof. It is a direct consequence of Proposition 153.

Theorem 155. Suppose that A is finite and that {x1, . . . , xn} ⊆ Z(A). Then
⊥GRSA(v, x, k) = GRSA(v, x, k)⊥ = GRSA(v′, x, n− k) where v′ = (v′1, . . . , v

′
n) with

v′i =

vi∏
j 6=i

(xi − xj)

−1

∈ Z(A).

Proof. In short: we let C = GRSA(v, x, k), bi = (v1x
i
1, v2x

i
2, . . . , vnx

i
n) ∈ Z(A)n for

i = 0, . . . , k − 1 and C ′ = GRSA(v′, x, n− k).
We first prove that C ′ ⊆ C⊥. Let f(X) ∈ A[X]<k and g(X) ∈ A[X]<n−k. Then

fg ∈ A[X]<n−1. According to Equation 3.1 we have

f(X)g(X) =
n∑
i=1

f(xi)g(xi)Li(xi)
−1Li(X).

Equating coefficients of degree n− 1, we get

0 =
n∑
i=1

vif(xi) (viLi(xi))
−1 g(xi).

Hence C ′ ⊆ C⊥. Doing the same with gf instead of fg, we also get C ′ ⊆ ⊥C.
We now have to prove that C ′ = C⊥. Let c′ = (c′1, . . . , c

′
n) ∈ An. Then c′ ∈ C⊥ if

and only if 
v1 v2 . . . vn
v1x1 v2x2 . . . vnxn
v1x

2
1 v2x

2
2 . . . vnx

2
n

. .

v1x
k−1
1 v2x

k−1
2 . . . vnx

k−1
n



c′1
c′2
...
c′n

 = 0. (3.3)

3.3. GENERALIZED REED-SOLOMON CODES 107

The matrix has its coefficients in the commutative ring Z(A) thus we can compute the
determinant of

V =


v1 v2 . . . vk
v1x1 v2x2 . . . vkxk
v1x

2
1 v2x

2
2 . . . vkx

2
k

. .

v1x
k−1
1 v2x

k−1
2 . . . vkx

k−1
k

 .

And we have

detV =

(
k∏
i=1

vi

)∏
i 6=j

(xi − xj)

 .

This determinant is a unit of Z(A) by the hypothesis made on the weight v and the
support x of the code C. Thus V has an inverse in Mk(Z(A)) and therefore V −1 is also
the left and right inverse of V in Mk(A). As a consequence given (c′k+1, . . . , c

′
n) ∈ An−k

there exists one and only one k-tuple (c′1, . . . , c
′
k) ∈ Ak such that Equation 3.3 is satisfied.

Thus the number of solutions in An of Equation 3.3 is equal to |A|n−k which is also the
number of elements of C ′.

Using the fact that (bi)i=0,...,k−1 is a basis of C as a right module and the following
system of equations

(
c′1, c

′
2, . . . , c

′
n

)
v1 v1x1 . . . v1x

k−1
1

v2 v2x2 . . . v2x
k−1
2

. .
vn vnxn . . . vnx

k−1
n

 = 0,

(which is the transposed system of system 3.3) instead of the system 3.3 of equations,
we get C ′ = ⊥C.

Corollary 156. Suppose that A is finite and that {x1, . . . , xn} ⊆ Z(A). Then there
exists a parity-check matrix for GRSA(v, x, k) equal to

v′1 v′2 . . . v′n
v′1x1 v′2x2 . . . v′nxn
v′1x

2
1 v′2x

2
2 . . . v′nx

2
n

. .

v′1x
n−k−1
1 v′2x

n−k−1
2 . . . v′nx

n−k−1
n


where the v′i are defined as in Theorem 155.

Lemma 157 (Goppa formulation for GRS codes). When A is finite and {x1, . . . , xn} ⊆
Z(A), we have, for c = (c1, . . . , cn) ∈ An,

c ∈ GRSA(v, x, k)⇐⇒
n∑
i=1

civ
′
i

1− xiX
= 0 mod Xn−k (3.4)

where the v′i are defined as in Theorem 155.

108 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

Proof. We check that equation 3.4 makes sense. First, The ideal generated by Xn−k

is a two sided ideal. Secondly, in A[[X]] the power series (1 − f(X)) where f(X) ∈
XA[[X]] has a two-sided inverse given by

∑∞
i=0 f(X)iXi. This can be shown by direct

computation.
The rest of the proof is also a direct computation and is left to the reader.

Proposition 158 (Key equation for GRS codes). Suppose that A is finite and that
{x1, . . . , xn} ⊆ Z(A). Let y = (y1, . . . , yn) ∈ An be the received word such that there
exists a unique codeword c = (c1, . . . , cn) ∈ GRS(n, k) at distance at most

⌊
n−k

2

⌋
. We

let e = (e1, . . . , en) = y − c and E = Supp(e). Let

σ(X) =
∏
i∈E

(1− xiX),

ω(X) =
∑
i∈E

eiv
′
i

 ∏
j∈E and j 6=i

(1− xjX)


and

S(X) =

n∑
i=1

yiv
′
i

1− xiX
mod Xn−k.

Then we have σ(X)S(X) = ω(X) mod Xn−k.

Proof. This is a direct computation using Lemma 157.

The following proposition will be useful to compute the complexities of the proposed
algorithms and to prove MacWilliams identity for GRS codes over non commutative
rings.

Proposition 159. Suppose that A is finite. Let Cs be the number of codewords from
GRS(n, k) of weight s. Then C0 = 1, Cs = 0 for 1 ≤ s ≤ d− 1 and

Cs =

(
n
s

) s−n+k∑
i=0

(−1)i
(
s
i

)(
|A|s−n+k+1−i − 1

)
(3.5)

for d ≤ s ≤ n.

Proof. The result is obvious for C0 and Cs for 1 ≤ s ≤ d− 1. So now let d ≤ s ≤ n and
denote by N(i1, . . . , is) the number of codewords with zeros at coordinates i1, . . . , is.
Then |N(i1, . . . , is)| = |A|k−s by Remark 135 and Corollary 136. The rest of the proof
is identical to [PW72, paragraph 3.9, page 79].

Proposition 160. Suppose that A is finite and that {x1, . . . , xn} ⊆ Z(A). With the
notations of Proposition 159, let C = GRSA(v, x, k),

WC(X,Y) =

n∑
i=0

CiXn−iY i,

3.4. UNIQUE DECODING OF GENERALIZED REED-SOLOMON CODES 109

and

WC⊥(X,Y) =
n∑
i=0

(C⊥)iX
n−iY i.

Then

WC(X,Y) =
1

|A|n−k
WC⊥(X + (|A| − 1)Y,X − Y).

Proof. By Proposition 153 there exists a RS code over a commutative ring B of car-
dinality |A|. We denote by D this code. It has parameters [n, k, n − k + 1]B over B.
We can take B to be a product of finite fields by 153 again. Seen as module over it-
self, B is semisimple and thus by [Smi81, Paragraph 1, page 989] is injective. Now
by [Woo99, Theorem 1.2 page 4] and [Woo99, Remark 1.3, page 4] B is a Frobenius
ring and [Woo99, Theorem 8.3 page 18] can be applied. By Proposition 159 the weight
distribution of C is the same as the one of D.

Gathering the above results we finally get

WC(X,Y) = WD(X,Y)

=
1

|B|n−k
WD⊥(X + (|B| − 1)Y,X − Y)

=
1

|A|n−k
WC⊥(X + (|A| − 1)Y,X − Y).

3.4 Unique decoding of generalized Reed-Solomon codes

3.4.1 Unique decoding over certain valuation rings

In this section we design a unique decoding algorithm for GRS codes over a discrete
valuation ring. We suppose that A has the following property:

(∗) there exists a regular element p which is not a unit such that p ∈ Z(A) and such
that every element a ∈ A can be uniquely written as

∑∞
i=0 aip

i where, for all i ∈ N,
ai is in a set of representatives of A/(p).

It is the case for example for the two rings Zq and M`(Zq) where Zq denotes an unramified
extension of the p-adic numbers or for the power series ring κ[[t]] and the ring of matrices
M`(κ[[t]]). We will need in this section and the rest of this paper to divide elements of
A by p, which is provided by the following lemma.

Lemma 161. The ring of right fractions with respect to the subset S of A formed by
the powers of p exists.

Proof. Clearly S is a multiplicative subset of A. The fact that p is in the center of A
and regular implies that S satisfies the right Ore condition (Definition 138) and that
ass(S) = {0}. Therefore we can apply Proposition 139.

110 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

Lemma 161 in combination with [MRS01, Paragraph 1.3 (iii), page 42] shows that
we have a natural injection A ⊆ AS−1 and we will freely use this injection to identify
elements of A and their images in the ring AS−1.

We let Λ = A/(p) be the residual ring of A. In the sequel for a vector
b = (b1, . . . , bn) ∈ An, we will denote by b mod p the vector (b1 mod p, . . . , bn
mod p) ∈ (A/(p))n and if f ∈ A[X], recall that we denote by f(b) the vector
(f(b1), . . . , f(bn)) ∈ An.

Let C = GRSA(v, x, k) be a generalized Reed-Solomon code. Then C/prC =
GRSA/(pr)(v mod pr, x mod pr, k).

Lemma 162. Let c ∈ C such that c/p ∈ An. Then c/p ∈ C.

Proof. Let f ∈ A[X]<k such that c = f(x). Then f(x) mod p = 0. By Corollary 136
we have f mod p = 0 and there exists g ∈ A[X]<k such that f(X) = pg(X).

We now give an algorithm of unique decoding for GRS codes over B = A/(pr) for a
positive integer r. We let τ =

⌊
n−k

2

⌋
. The idea of the algorithm is to do a Hensel lifting.

We first look at the received word modulo p. Then we call a decoding algorithm for the
GRS code modulo p. It then returns the component of degree 0 of the wanted codeword
and the error. We subtract these to the received word and then can divide the result by
p to reiterate the process and obtain the component of degree 1, 2 up to r− 1. We first
precise what is the black box algorithm.

Algorithm 15 Black box unique decoding algorithm

Input: a received vector y of Λn with at most
⌊
n−k

2

⌋
errors.

Output: the message m ∈ Λk such that the corresponding codeword is within distance⌊
n−k

2

⌋
of y and the error e ∈ Λn.

In the following algorithm we denote by G a generator matrix of C.

Algorithm 16 Unique decoding over a valuation ring

Input: a received vector y = (y1, . . . , yn) ∈ Bn with at most τ errors, and a black box
unique decoding algorithm for C/pC as Algorithm 15.

Output: the unique codeword of C/prC within distance τ of y.
1: Compute y0 ∈ A such that y0 mod pr = y.
2: for i = 0→ r − 1 do
3: Call the black box with input yi mod p and obtain mi ∈ Λk and e′i ∈ Λn.
4: ci ← miG ∈ C.
5: ei ← a representative of e′i such that Supp(ei) = Supp(e′).
6: yi+1 ← (yi − ci − ei)/p.
7: end for
8: return

∑r−1
i=0 p

ici mod pr.

Proposition 163. Algorithm 16 is correct and can decode up to τ errors.

3.4. UNIQUE DECODING OF GENERALIZED REED-SOLOMON CODES 111

Proof. We let c ∈ C and e ∈ An be such that w(e) ≤ τ and y = c+ e. We will show by
induction on i that the following items holds after step 7 of Algorithm 16:

1. y0 =
∑i

j=0 p
j(cj + ej) + pi+1yi+1,

2. yi+1 = (yi−ci−ei)/p = c′′+e′′ where c′′ ∈ C and e′′ ∈ An with Supp(e′′) ⊆ Supp(e).

For i = 0 item 1 is trivially satisfied and we have at step 4

y mod p = (c+ e) mod p = c′ + e′

where c′ ∈ C/pC and e′ ∈ Λn such that w(e′) ≤ τ . By unicity of c′ we must have c
mod p = c′ and e mod p = e′. Therefore we have after step 6

(y0 − c0 − e0)/p = (c− c0)/p+ (e− e0)/p

and by Lemma 162 we have (c − c0)/p ∈ C. Moreover Supp(e0) ⊆ Supp(e) thus item 2
is satisfied.

Now suppose that the induction holds for i ≥ 0. Then we get from item 2 of the
inductive hypothesis and from step 4

yi+1 mod p = (c′′ + e′′) mod p = c′ + e′

where c′′ ∈ C and e′′ ∈ An such that Supp(e′′) ⊆ Supp(e), thus w(e′′) ≤ τ . Therefore by
unicity of c′ we must have c′′ mod p = c′ and e′′ mod p = e′. Therefore we deduce

(yi+1 − ci+1 − ei+1)/p = (c′′ − ci+1)/p+ (e′′ − ei+1)/p

and by Lemma 162 (c′′ − ci+1)/p ∈ C. Moreover Supp(ei+1) ⊆ Supp(e′′) ⊆ Supp(e) and
item 2 is satisfied. As for item 1, we have

pi+2yi+2 = pi+1(yi+1 − ci+1 − ei+1)

= y0 −
i∑

j=0

pj(cj + ej)− pi+1(ci+1 + ei+1).

Now taking i = r, we get

y = y0 mod pr =

r−1∑
j=0

pjcj +

r−1∑
j=0

pjej mod pr.

We have cj ∈ C for j = 1, . . . , r − 1 thus

r−1∑
j=0

pjcj mod pr ∈ C/prC.

112 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

As Supp(ej) ⊆ Supp(e) for j = 1, . . . , r − 1 we have

w

r−1∑
j=0

pjej mod pr

 ≤ τ.
Therefore the unicity of c implies that

c =

r−1∑
j=0

pjcj mod pr.

Proposition 164. Let UDec(C) be the complexity of the black box decoding algorithm
for C/pC in terms of the number of bit-operations given as input of Algorithm 16 and
Lift(C) the complexity of lifting a codeword from C/pC into C (i.e. the bit-cost of step 4
of Algorithm 16). Then Algorithm 16 performs a number of r(UDec(C) + Lift(C)) bit-
operations.

Lemma 165. Suppose that v = (1B, . . . , 1B). If B = GR(pr, s) we can take Lift(C) =
O(nkMFp(s) I(log p)) bit-operations. If B = Fps [[t]]/(tr) we can take Lift(C) = O(nk)
arithmetic operations in Fps; in the situation where the support of C is contained in Fps
we can take Lift(C) = O(MFps (n) log n) arithmetic operations in Fps.

Proof. Lifting a codeword from C/pC into C can be done by the matrix-vector product
mG where G is a generator matrix of C and

• m ∈ Bk is a representative of the message modulo p whose coefficients have the
same bit-size as elements of Fp when B = GR(pr, s),

• m ∈ Fps is a representative of the message modulo t when B = Fps [[t]]/(tr).

In the situation where B = Fps [[t]]/(tr) and that the support of C is included in Fps we
can use fast multipoint evaluation of a polynomial of degree at most n with coefficients
in Fps in n points of Fps which is done in O(MFps (n) log n) by [GG03, Corollary 10.8,
page 295].

Corollary 166. Suppose that B is the ring Fps [[t]]/(tr). Then there exists a unique
decoding algorithm for RSA(v, x, k) where x ∈ Fps with an asymptotic complexity of
Õ(rn) arithmetic operations in Fps.

Proof. This is a direct consequence of Proposition 164, Lemma 165 and [Jus76].

Remark 167. Taking the notations as Corollary 166 note that, given any GRS code C
over B, we can always find a GRS code C ′ over B with same parameters as C such that
its support is included in Fps .

We denote by D the unique decoding algorithm that can be found in [Ber68,Mas69,
SKHN75,Jus76,BW86,Gao02].

3.4. UNIQUE DECODING OF GENERALIZED REED-SOLOMON CODES 113

Theorem 168. Given a finite field A, a truncated power series ring B such that |A| =
|B|, a RS code CA over A of parameters [n, k, n−k+1]A and a unique decoding algorithm
UDec from the list D for CA. Suppose that there exists a RS code CB over B of parameters
[n, k, n−k+ 1]B. Then there exists a RS code C′B over B of parameters [n, k, n−k+ 1]B
such that CB/pCB = C′B/pC′B and a unique decoding algorithm for C′B with a better
asymptotic complexity than UDec as soon as the complexity of UDec is equal or greater
than Lift(C′B).

Note that the classical unique decoding algorithms over a finite fields F have a com-
plexity ofO(MF(n) log n) so that the theorem holds when UDec is the algorithm of [Gao02]
or of [Jus76].

Corollary 169. Suppose that B is the Galois ring GR(pr, s). Then there exists a unique
decoding algorithm for RSA(v, x, k) with an asymptotic complexity of Õ(rnks log p) bit-
operations.

Proof. This is a direct consequence of Proposition 164, Lemma 165 and [Jus76].

Remark 170. We show that the gain is more significant when the arithmetic of the
underlying rings and fields is not done with asymptotically fast algorithms which is the
case for practical applications. By [CAY08, Table 1, page 5] the complexity of the unique
decoding black box algorithm is O(n2) arithmetic operations over the alphabet when the
latter is a finite field of characteristic 2.

• If B = GR(pr, s) then Algorithm 16 performs at most O(rn2s2 log2 p) bit-
operations.

• If B = Fps [[t]]/(tr) then Algorithm 16 performs at most O(rn2s2) arithmetic op-
erations over Fp.

Note that if B is a finite field of cardinality prs the cost of unique decoding is
O(n2r2s2 log2 p) bit-operations. The unique decoding becomes cheaper when the al-
phabet is a ring and we have a similar theorem as Theorem 168 for Galois rings.

Example 171. Let now C be the RS code over Z/113Z with support (1, 2, 3, 4, 5, 6, 7)
of dimension 3. Thus C has parameters [7, 3, 5]Z/113Z by Corollary 151. Therefore its
unique decoding radius is 2. Let y = (133, 158, 163, 181, 201, 344, 247) be a received
word. Executing algorithm 16 we get the following:

1. i = 0 and y0 = y mod 11 = (1, 4, 9, 5, 3, 3, 5) ∈ F11.
The black box algorithm returns

• c0 mod p = (1, 4, 9, 5, 3, 3, 5) ∈ C/11C ⊆ F7
11 and

• e0 mod p = (0, 0, 0, 0, 0, 0, 0) ∈ F7
11,

which can be lifted to

• c0 = (1, 4, 9, 16, 25, 36, 49) ∈ C ⊆ (Z/113Z)7 and

114 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

• e0 = (0, 0, 0, 0, 0, 0, 0) ∈ (Z/113Z)7.

2. i = 1 and y1 = (y0 − c0 − e0)/11 mod 11 = (1, 3, 3, 4, 5, 6, 7).
The black box algorithm returns

• c1 mod p = (1, 2, 3, 4, 5, 6, 7) ∈ C/11C and

• e1 mod p = (0, 1, 0, 0, 0, 0, 0) ∈ F7
11,

which can be lifted to

• c1 = (1, 2, 2, 4, 5, 6, 7) ∈ C and

• e1 = (0, 1, 0, 0, 0, 0, 0) ∈ (Z/113Z)7.

3. i = 2 and y2 = (y1 − c1 − e1)/11 mod 11 = (1, 1, 1, 1, 1, 2, 1).
The black box algorithm returns

• c2 mod p = (1, 1, 1, 1, 1, 1, 1) ∈ C/11C and

• e2 mod p = (0, 0, 0, 0, 0, 1, 0) ∈ F7
11,

which can be lifted to

• c2 = (1, 1, 1, 1, 1, 1, 1) ∈ C and

• e2 = (0, 1, 0, 0, 0, 1, 0) ∈ (Z/113Z)7.

4. We then build the codeword from its homogeneous components y0 + 11y1 + 112y2

mod 113 = (133, 147, 163, 181, 201, 223, 247).

In this example the error is e = e0 + 11e1 + 112e2 mod 113 = (0, 11, 0, 0, 0, 112, 0).

3.4.2 The Welch-Berlekamp algorithm

Before giving the Welch-Berlekamp decoding algorithm, we need to define what the
evaluation of a bivariate polynomial over A is. Let Q =

∑
Qi,jX

iY j ∈ A[X,Y] be such
a polynomial. We define the evaluation of Q at (a, b) ∈ A2 to be

Q(a, b) =
∑

Qi,jb
jai ∈ A.

Be careful of the order of a and b. This choice will be explained in the proof of
Lemma 172. Let f ∈ A[X], we define the evaluation of Q at f to be

Q(X, f(X)) =
∑

Qi,j(f(X))jXi ∈ A[X].

As in the univariate case, the evaluation maps defined above are not ring homomorphisms
in general.

Lemma 172. Let g ∈ A[X], Q ∈ A[X,Y] of degree at most 1 in Y and a ∈ A. Then

(Q(X, g(X)))(a) = Q(a, g(a)).

3.4. UNIQUE DECODING OF GENERALIZED REED-SOLOMON CODES 115

Proof. We write

Q(X,Y) = Q0(X) +Q1(X)Y

= Q0(X) +

(∑
i

Q1iX
i

)
Y.

The proof is an easy calculation:

(Q(X, g(X)))(a) =

(
Q0(X) +

∑
i

Q1ig(X)Xi

)
(a)

= Q0(a) +
∑
i

Q1ig(a)ai

= Q(a, g(a)) by definition.

We now adapt the Welch-Berlekamp algorithm [BW86] to noncommutative GRS. By
Corollary 151, we have

⌊
d−1

2

⌋
=
⌊
n−k

2

⌋
. We let τ =

⌊
n−k

2

⌋
.

Algorithm 17 Welch-Berlekamp

Input: a received vector y of An with at most τ errors.
Output: the unique codeword within distance τ of y.
1: z = (z1, . . . , zn)← (v−1

1 y1, . . . , v
−1
n yn).

2: Find Q = Q0(X) +Q1(X)Y ∈ (A[X])[Y] of degree 1 such that

1. Q(xi, zi) = 0 for all 1 ≤ i ≤ n,

2. degQ0 ≤ n− τ − 1,

3. degQ1 ≤ n− τ − 1− (k − 1).

4. The leading coefficient of Q1 is 1A.

3: f ← the unique root of Q in A[X]<k.
4: return (v1f(x1), . . . , vnf(xn)).

In order to prove the correctness of the Welch-Berlekamp algorithm, we start with
the following lemmas.

Lemma 173. Let y = (y1, . . . , yn) ∈ An be such that τ ≤
⌊
n−k

2

⌋
. Then there exists a

nonzero bivariate polynomial Q = Q0 +Q1Y ∈ A[X,Y] satisfying

1. Q(xi, zi) = 0 for i = 1, . . . , n.

2. degQ0 ≤ n− τ − 1.

3. degQ1 ≤ n− τ − 1− (k − 1).

116 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

4. The leading coefficient of Q1 is 1A.

Proof. We can write y = c + e uniquely with c = (v1f(x1), . . . , vnf(xn)) ∈ GRS(n, k)
for a polynomial f ∈ A[X]<k and e ∈ An, w(e) ≤ τ . Let E = Supp(e) and Q1(X) =∏
i∈E(X − xi). Then take Q0(X) = −f(X)Q1(X). Then Q(X,Y) = Q0(X) +Q1(X)Y

satisfies the conditions of the lemma.

Lemma 174. Let Q ∈ A[X,Y] be a bivariate polynomial satisfying the four conditions
of Lemma 173 and f ∈ A[X]<k be such that d(z, f(x)) ≤ τ . Then Q(X, f(X)) = 0.

Proof. The polynomial Q(X, f(X)) has degree at most n−τ−1. By Lemma 172 we have
(Q(X, f(X)))(xi) = Q(xi, f(xi)) = Q(xi, zi) = 0 for at least n−τ values of i ∈ {1, . . . , n}.
And by Corollary 136 we must have Q(X, f(X)) = 0.

The correctness of the algorithm is a direct consequence of Lemma 173 and 174.

Proposition 175. Algorithm 17 works correctly as expected and can correct up to
⌊
n−k

2

⌋
errors.

Example 176. Let C be the RS code over M2(F7) with support((
1 0
0 1

)
;

(
2 0
0 2

)
;

(
3 0
0 3

)
;

(
4 0
0 4

)
;

(
5 0
0 5

))
of dimension 3. Thus C is a [5, 3, 2]M2(F7) linear code by Corollary 151. Therefore its
unique decoding radius is 2. Let

y =

((
5 3
2 2

)
;

(
2 2
4 1

)
;

(
4 0
0 4

)
;

(
2 3
3 3

)
;

(
5 5
0 6

))
be a received word. Executing algorithm 17 we get the following:

1. By Lemma 173, Q is found using linear algebra with the affine systems of equations



1 0 1 0 1 0 1 0 5 3 5 3
0 1 0 1 0 1 0 1 2 2 2 2
1 0 2 0 4 0 1 0 2 2 4 4
0 1 0 2 0 4 0 1 4 1 1 2
1 0 3 0 2 0 6 0 4 0 5 0
0 1 0 3 0 2 0 6 0 4 0 5
1 0 4 0 2 0 1 0 2 3 1 5
0 1 0 4 0 2 0 1 3 3 5 5
1 0 5 0 4 0 6 0 5 5 4 4
0 1 0 5 0 4 0 6 0 6 0 2


×



a0 b0
u0 v0

a1 b1
u1 v1

a2 b2
u2 v2

a3 b0
u3 v3

a4 b4
u4 v4

1 0
0 1



= 0.

3.4. UNIQUE DECODING OF GENERALIZED REED-SOLOMON CODES 117

From this we find a solution and therefore polynomials

Q0(X) =

(
a0 b0
u0 v0

)
+

(
a1 b1
u1 v1

)
X +

(
a2 b2
u2 v2

)
X2

(
a3 b3
u3 v3

)
X3

=

(
2 1
2 6

)
+

(
0 5
0 3

)
X +

(
2 4
0 5

)
X2 +

(
6 3
2 4

)
X3.

and

Q1(X) =

(
a4 b4
u4 v4

)
+

(
1 0
0 1

)
X

=

(
4 0
0 4

)
+

(
1 0
0 1

)
X.

2. Q(X,Y) = Q0(X) + Q1(X)Y has only one root in M2(F7)[X] by Lemma 134.
It is computed with the classical Euclidean division algorithm. Thus we get the
following root of Q (

3 5
3 2

)
+

(
1 1
1 4

)
X +

(
1 4
5 3

)
X2.

And then retrieve the corresponding codeword

c =

((
5 3
2 2

)
;

(
2 2
4 1

)
;

(
1 2
2 6

)
;

(
2 2
2 3

)
;

(
5 5
0 6

))
.

We can modify Algorithm 17 so that it also returns the error. In this example the error
is

e =

((
0 0
0 0

)
;

(
0 0
0 0

)
;

(
3 5
5 5

)
;

(
0 0
0 0

)
;

(
0 0
0 0

))
.

We now give an example of a Reed-Solomon code defined over M2(Z/52Z). We use
Algorithm 16 together with Algorithm 17 to decode a word.

Example 177. Let A = M2(Z/52Z). The ideal generated by p =

(
5 0
0 5

)
is two sided and

p satisfies the condition (∗) of Subsection 3.4.1. Therefore we can apply Algorithm 16
to the Reed-Solomon code whose support is((

1 0
0 1

)
;

(
2 0
0 2

)
;

(
3 0
0 3

)
;

(
4 0
0 4

))
and of dimension 2. Let

y =

((
21 14
14 22

)
;

(
20 8
15 7

)
;

(
5 17
5 1

)
;

(
22 6
13 3

))
be a received word. Executing Algorithm 16 we get

118 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

1. i = 0 and

y0 mod p = y mod p =

((
1 4
4 2

)
;

(
0 3
0 2

)
;

(
0 2
0 1

)
;

(
2 1
3 3

))
.

Algorithm 17 with input y0 returns

c0 mod p =

((
1 4
4 2

)
;

(
3 3
2 4

)
;

(
0 2
0 1

)
;

(
2 1
3 3

))
and the error

e0 mod p =

((
0 0
0 0

)
;

(
2 0
3 3

)
;

(
0 0
0 0

)
;

(
0 0
0 0

))
which can be lifted to the codeword

c0 =

((
6 4
4 2

)
;

(
8 8
7 4

)
;

(
10 12
10 6

)
;

(
12 16
13 8

))
.

We then compute

y1 = (y0 − c0 − e0)/p =

((
3 2
2 4

)
;

(
2 0
1 0

)
;

(
4 1
4 4

)
;

(
2 3
0 4

))
.

2. i = 1 and

y1 mod p =

((
3 2
2 4

)
;

(
2 0
1 0

)
;

(
4 1
4 4

)
;

(
2 3
0 4

))
.

Algorithm 17 with input y1 mod p returns

c0 mod p =

((
3 2
2 4

)
;

(
1 4
3 4

)
;

(
4 1
4 4

)
;

(
2 3
0 4

))
and the error

e0 mod p =

((
0 0
0 0

)
;

(
1 1
3 1

)
;

(
0 0
0 0

)
;

(
0 0
0 0

))
which can be lifted to the codeword

c0 =

((
3 2
2 4

)
;

(
6 4
3 4

)
;

(
9 6
4 4

)
;

(
12 8
5 4

))
.

3. We then return the codeword

c = c0 + c1p mod p2 =

((
21 14
14 22

)
;

(
13 3
22 24

)
;

(
5 17
5 1

)
;

(
22 6
13 3

))
.

In this example the error is

e =

((
0 0
0 0

)
;

(
7 5
18 8

)
;

(
0 0
0 0

)
;

(
0 0
0 0

))
.

3.5. LIST DECODING OF GENERALIZED REED-SOLOMON CODES 119

3.5 List decoding of generalized Reed-Solomon codes

3.5.1 List-decoding over certain valuation rings

In this subsection, as in Subsection 3.4.1 we let A be a ring satisfying (∗), S be the
set formed by the powers of p, C = GRSA(v, x, k) be a GRS code and G a generator
matrix of C and Λ = A/(p) be the residual ring. We precise our black box list decoding
algorithm.

Algorithm 18 Black box list decoding algorithm

Input: a received vector y of Λn with at most τ errors.
Output: a subset S of Λk × Λn such that (m, e) ∈ S ⇔ mG+ e = y and w(e) ≤ τ .

The list decoding algorithm we propose is recursive and the following algorithm is
its recursive step.

Algorithm 19 List decoding from valuation i up to valuation r.

Input: two nonnegative integers i ≤ r, a received vector y of An with at most τ errors.
A black box list decoding algorithm as specified by Algorithm 18 for the code C/pC
for decoding up to τ errors.

Output: The set U
def
= {c ∈ C : d(c mod pr−i, y mod pr−i) ≤ τ}.

1: if i = r then
2: return {0}.
3: end if
4: Call the black box algorithm with input (y mod p) to obtain a subset S ⊆ Λk×Λn.

5: for each (m0, e0) ∈ S do
6: c0 ← m0G.
7: Call recursively Algorithm 19 with arguments i + 1, r and yc0 = (y − c0 − e0)/p

to get the set Sc0 of all the codewords in the ball centered in yc0 of radius τ .
8: end for
9: return {c0+c1p : c0 ∈ S and c1 ∈ Sc0 and d(c0+pc1 mod pr−i, y mod pr−i) ≤ τ}.

Proposition 178. Algorithm 19 is correct and can decode up to τ errors.

Proof. The proof is done by descending induction on i. If i = r − 1 the proposition
holds.

Now let i < r−1, c ∈ U , e = y−c. There exists (m0, e0) ∈ S such that c0 = m0G = c
mod p. Then by Lemma 162 (c0 − c)/p ∈ C. Moreover we have Supp(e0) ⊆ Supp(e)
and w(e) ≤ τ . Therefore w((e0 − e)/p) ≤ τ . We have yc0 = (y − (c0 + e0))/p =
(c − c0)/p + (e0 − e)/p and by the inductive hypothesis there exists c1 ∈ Sc0 such that
(c− c0)/p = c1 mod pr−(i+1).

120 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

The complexity of Algorithm 19 will be studied in detail in Subsection 3.5.3 when the
ring A is finite. We now give an algorithm for list decoding a GRS code over B = A/(pr)
for a positive integer r.

Algorithm 20 List decoding over a valuation ring.

Input: a positive integer τ , a received vector y of Bn with at most τ errors and a black
box unique decoding algorithm for C/pC.

Output: the list of codewords within distance τ of y.
1: z ← a representative of y in An.
2: Call Algorithm 19 with parameters 0, r, and z and obtain the set T .
3: return {c mod pr : c ∈ T}.

Proposition 179. Algorithm 20 works correctly as expected.

Proof. This is a direct consequence of Proposition 178

Example 180. In this example we work with the RSZ/72Z(6, 2) code whose support is
(1, 2, 3, 4, 5, 6). The unique decoding radius is 2 while the list decoding algorithm radius
is 3. Suppose we received the word y = (8, 15, 22, 11, 12, 13) ∈ (Z/72Z)6. We skip
steps 1, 2 and 4 of Algorithm 20 and identify the elements of Z7 up to precision 2 with
the elements of Z/72Z for the clarity of the example. The execution of Algorithm 20 is
as follows:

• We enter Algorithm 19 with y = (8, 15, 22, 11, 12, 13).

• At step 4, the call to the black box algorithm with y mod 7 = (1, 1, 1, 4, 5, 6)
returns two codewords and their corresponding errors (step 5):

1. The codeword (1, 1, 1, 1, 1, 1) which can be lifted to (1, 1, 1, 1, 1, 1) and the
error (0, 0, 0, 3, 4, 5).

2. The codeword (1, 2, 3, 4, 5, 6) which can be lifted to (1, 2, 3, 4, 5, 6) and the
error (0, 1, 2, 0, 0, 0).

• We have a list of two candidates, for each one we do a recursive call of Algorithm 19.

• For item 1:

– We enter recursively Algorithm 19 with [y − (1, 1, 1, 1, 1, 1) −
(0, 0, 0, 3, 4, 5)]/7 = (1, 2, 3, 1, 1, 1).

– At step 4 the call to the black box algorithm with (1, 2, 3, 1, 1, 1) returns
the two codewords (1, 1, 1, 1, 1, 1, 1) and (1, 2, 3, 4, 5, 6) which can be lifted to
(1, 1, 1, 1, 1, 1, 1) and (1, 2, 3, 4, 5, 6) (step 5).

– At step 9, we return (1, 1, 1, 1, 1, 1, 1) and (1, 2, 3, 4, 5, 6).

• For item 2:

3.5. LIST DECODING OF GENERALIZED REED-SOLOMON CODES 121

– We enter recursively Algorithm 19 with [y − (1, 2, 3, 4, 5, 6) −
(0, 1, 2, 0, 0, 0)]/7 = (1, 1, 1, 1, 1, 1).

– At step 4 the call to the black box algorithm with (1, 1, 2, 1, 1, 1) returns the
codeword (1, 1, 1, 1, 1, 1, 1) which can be lifted to (1, 1, 1, 1, 1, 1, 1).

– At step 9, we return (1, 1, 1, 1, 1, 1, 1).

• Due to the condition of step 9 of Algorithm 19 we return only the two codewords

– (1, 1, 1, 1, 1, 1) + 7× (1, 2, 3, 4, 5, 6) mod 72 = (8, 15, 22, 29, 36, 43) and

– (1, 2, 3, 4, 5, 6) + 7× (1, 1, 1, 1, 1, 1) mod 72 = (8, 9, 10, 11, 12, 13).

The codeword (1, 1, 1, 1, 1, 1) + 7× (1, 1, 1, 1, 1, 1) = (8, 8, 8, 8, 8, 8) is not returned
at step 9 because d(y, (8, 8, 8, 8, 8, 8)) = 5 > J = 3.

3.5.2 The Guruswami-Sudan algorithm

We now extend the Guruswami-Sudan [GS98] algorithm to noncommutative GRS codes.
We assume in this section that {x1, . . . , xn} ⊆ Z(A). Almost nothing has to be changed
from the original algorithm. In this subsection we do the following assumption on A:
every linear system with coefficients in A with more unknowns than equations has a
nonzero solution (with coefficients also in A). This is the case for example when A is
finite.

Lemma 181. Let A be any finite ring, n < m two positive integers and M ∈Mn×m(A).
Then there exists a nonzero x ∈ Am such that Mx = 0.

Proof. The matrix M defines a left A-linear map Am → An and therefore a morphism
of abelian groups. The kernel of this morphism has cardinality at least |Am/An| =
|A|m−n > 0.

Lemma 182. Let y ∈ An be a received word with at most τ errors with τ < J . Then
there exists a nonzero bivariate polynomial Q ∈ A[X,Y] satisfying the three conditions
of step 3 of Algorithm 21.

Proof. As usual we consider the coefficients of Q to be unknowns satisfying the equations
Q(xi, zi) = 0 and [Q(X + xi, Y + zi)]s′ = 0 for i = 1, . . . , n and s′ = 0, . . . , s − 1 where
[Q]s′ denotes the homogeneous component of degree s′ of Q.

First note that the value of s in step 2 together with τ < J imply[
(n− τ)2 − (k − 1)n

]
s2 − (k − 1)s− 1 > 0,

which in turn implies
s2(n− τ)2 − 1 > n(k − 1)(s2 + s),

and then gives (
s(n− τ)− 1

k − 1

)(
s(n− τ) + 1

2

)
> n

(
s+ 1

2

)
.

122 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

Algorithm 21 Guruswami-Sudan

Input: a positive integer τ < J and a received vector y of An with at most τ errors.
Output: all the f ∈ A[X]<k such that d(y, f(x)) ≤ τ .

1: s←
⌊

(k−1)n+
√

(k−1)2n2+4((n−τ)2−(k−1)n)

2((n−τ)2−(k−1)n)

⌋
+ 1.

2: L←
⌈
s(n−τ)−1

k−1

⌉
− 1.

3: z = (z1, . . . , zn)← (v−1
1 y0, . . . , v

−1
n yn).

4: Find Q =
∑L

i=0Qi(X)Y i ∈ (A[X])[Y] of degree at most L such that

1. Q(xi, zi) = 0 for all 1 ≤ i ≤ n.

2. Q(X + xi, Y + zi) has valuation at least s.

3. degQi ≤ s(n− τ)− 1− i(k − 1) for all 0 ≤ i ≤ L.

5: Z ← Roots of Q in A[X]<k such that d(z, f(x)) ≤ τ .
6: return {(v1f(x1), . . . , vnf(xn) : f ∈ Z}

Counting the coefficients of Q we get

(L+ 1)

(
s(n− τ)− (k − 1)

L

2

)
unknowns which is greater or equal than(

s(n− τ)− 1

k − 1

)(
s(n− τ) + 1

2

)
.

On the other hand conditions 1 and 2 of step 3 of Algorithm 21 give n

(
s+ 1

2

)
equations.

And we have a nonzero solution by the hypothesis made on A.

Lemma 183. Let g ∈ A[X], Q ∈ A[X,Y] and z ∈ Z(A). Then

(Q(X, g(X)))(a) = Q(a, g(a)).

Proof. According to the definition we took for evaluating polynomials in Subsec-
tion 3.4.2, we have:

(Q(X, g(X)))(a) =
∑

(Qij(g(X))jXi)(a)

=
∑

Qij(g(a))jai because a ∈ Z(A)

= Q(a, g(a)) by definition.

3.5. LIST DECODING OF GENERALIZED REED-SOLOMON CODES 123

Remark 184. Note that for the Guruswami-Sudan algorithm we could have defined the
evaluation of bivariate polynomials in the “usual way” that is, for f ∈ A[X], Q ∈ A[X,Y]
and a, b ∈ A,

Q(a, b) =
∑
i,j

Qija
ibj

and

Q(X, f(X)) =
∑
i,j

QijX
i(f(X))j .

As the evaluation is done at points from the center of A both definitions for evaluation
give the exact same result.

Lemma 185. Let Q ∈ A[X,Y] verifying the three conditions of step 1 of Algorithm 21.
Let f ∈ A[X]<k such that f(xi) = zi for a fixed i ∈ {1, . . . , n}. Then (X − xi)s divides
Q(X, f(X)).

Proof. By assumption we have

Q(X + xi, Y + zi) =
∑
λ≥s

∑
j+l=λ

QjlX
jY l

with Qjl ∈ A and where s′ ≥ s is the valuation of Q. By Remark 135, there exists a
polynomial g(X) ∈ A[X] such that f(X)− zi = g(X)(X − xi). As xi ∈ Z(A) we have

Q(X, f(X)) = Q((X − xi) + xi, (f(X)− zi) + zi)

=
∑
λ≥s′

∑
j+l=λ

Qjl(g(X)(X − xi))l(X − xi)j

=
∑
λ≥s′

∑
j+l=λ

Qjlg(X)l(X − xi)λ

= (X − xi)s
′
h(X)

where h(X) ∈ A[X].

Lemma 186. Let Q ∈ A[X,Y] be a bivariate polynomial satisfying the three conditions
of step 4 of Algorithm 21 and let f ∈ A[X]<k be such that d(y, f(x)) ≤ τ . Then
Q(X, f(X)) = 0.

Proof. Let f ∈ A[X]<k be a polynomial such that d(y, f(x)) ≤ τ . Then Q(X, f(X)) is a
polynomial of degree at most s(n− τ)− 1. We have f(xi) = zi for at least n− τ values
of i. By Lemma 183, (Q(X, f(X)))(xi) = Q(xi, f(xi)) = 0 for at least n− τ values of i.

Denote by E the set {i ∈ {1, . . . , n} : Q(xi, f(xi))) = 0} and by Pr(X) the polynomial∏
i∈E(X − xi)r. We prove by induction on r ≤ s that Pr(X) divides Q(X, f(X)). For

r = 1 it is a consequence of Remark 135 and the assumption we made on the support x of
the code. By induction there exists R(X) ∈ A[X] such that Q(X, f(X)) = R(X)Pr(X).
Let i0 ∈ E, by Lemma 185 we also have Q(X, f(X)) = S(X)(X−xi0)r+1. By Lemma 134

124 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

we have S(X)(X − xi0) = R(X)
∏
i∈E,i 6=i0(X − xi)r, whence R(xi0) = 0. This is true

for all i0 ∈ E and by Remark 135 and the property of the support x we deduce that
Pr+1(X) divides Q(X, f(X)).

It follows that Q(X, f(X)) is divisible by a monic polynomial of degree s(n − τ)
which implies Q(X, f(X)) = 0.

Proposition 187. Algorithm 21 works correctly as specified and can correct up to dJe−1
errors.

Proof. This is direct consequence of Lemma 182 and Lemma 186.

3.5.3 Complexities for list decoding algorithms

In order to study the complexity of Algorithm 20, we need a result about the number of
codewords that can be returned by Algorithm 21. The results of [NH00, Section 5] remain
valid in our context. In other words, they do not depend on the algebraic structure of
the alphabet. We recall them in the following proposition for the sake of completeness.
We assume throughout this subsection that all errors with weight at most τ occur with
the same probability regardless of the weight of the transmitted codeword.

Proposition 188. We let C = GRSA(n, k), c ∈ C, w = w(c);

N(c, a, i) = 0 if w > a+ i,

and

N(c, a, i) =

min
(⌊

i−(w−a)
2

⌋
,n−w

)∑
j=0

[(
w

w − a+ j

)(
n− w
j

)

(|A| − 1)j
(

a− j
i− (w − a)− 2j

)
(|A| − 2)i−(w−a)−2j

]
else. We now let

M(τ) =

min(2τ,n)∑
u=d

τ∑
a=u−τ

τ∑
i=u−a

N(c, a, i).

Then the probability that Algorithm 21 returns more than one codeword is at most

M(τ)∑τ
i=0

[(
n
i

)
(|A| − 1)i

] .
Proof. The proof is identical to [NH00, Proposition 12, page 9].

In Tables 3.1 and 3.2 we give examples of this upper bound as it is difficult to
get a simple asymptotic equivalent. These calculations have been made for finite fields
in [NH00, Section 5] and for Galois rings in [Arm05b, Section 5]. As shown in the tables
the probability is very small.

3.5. LIST DECODING OF GENERALIZED REED-SOLOMON CODES 125

r (nilpotency index of p = 3) Upper bound

1 0.001310
2 1.386× 10−6

3 1.850× 10−9

4 2.530× 10−12

5 3.469× 10−15

6 4.759× 10−18

7 6.528× 10−21

8 8.954× 10−24

9 1.228× 10−26

10 1.685× 10−29

Figure 3.1: Table for RSGR(3r,2)[8, 4, 5] and a codeword of weight 6.

` (matrix size) Upper bound

1 0.001310
2 2.530× 10−12

3 1.228× 10−26

4 1.123× 10−46

5 1.930× 10−72

6 6.247× 10−104

7 3.804× 10−141

8 4.358× 10−184

9 9.396× 10−233

10 3.812× 10−287

Figure 3.2: Table for RSM`(F9)[8, 4, 5] and a codeword of weight 6.

126 CHAPTER 3. REED-SOLOMON CODES OVER NONCOMMUTATIVE RINGS

Remark 189. As pointed out in the introduction of this subsection the upper bound
on the probability given in Proposition 188 is independent of the algebraic structure
of the alphabet. Therefore there is no gain in taking the Galois ring or a matrix ring
(over a finite field or a Galois ring) instead of the finite field of same cardinality. In fact
the advantage resides in the asymptotic complexity of the decoding algorithms given in
Subsection 3.4.1 and 3.5.1.

We now let, as in Subsection 3.5.2, J = n−
√

(k − 1)n be the generic Johnson bound.
We recall the following proposition:

Proposition 190. Let y ∈ An. Then there exist at most n(|A| − 1) codewords within
distance J from y.

Proof. See [Gur04, Corollary 3.3 page 36].

We can now state the proposition about the complexity of Algorithm 20.

Proposition 191. With the same notations as in Subsection 3.5.1, let LDec(C) be the
complexity in terms of the number of bit-operations of a list decoding algorithm for
GRSA/(p)(C) and ρ be the probability that the latter algorithm returns more than one
codeword. We suppose that LDec(C) does not depend on ρ. Then Algorithm 20

• performs at most

[n(|A| − 1)]r − 1

n(|A| − 1)− 1
(LDec(C) + Lift(C)) = (n|A|)r−1(LDec(C) + Lift(C)).

bit-operations.

• performs an expected number of at most

[(1− ρ) + ρ(n(|A| − 1))]r − 1

[(1− ρ) + ρ(n(|A| − 1))]− 1
(LDec(C) + Lift(C)).

bit-operations.

Proof. It is a direct consequence of Proposition 188 and 190.

Remark 192. Taking the notations of Proposition 191 Recall that LDec(C) does not
depend on ρ. Heuristically it is interesting to see that as ρ→ 0 we have

[(1− ρ) + ρ(n(|A| − 1))]r − 1

[(1− ρ) + ρ(n(|A| − 1))]− 1
(LDec(C) + Lift(C))

→ (r + ρo(1)) (LDec(C) + Lift(C)) = r(LDec(C) + Lift(C))

Therefore the complexity of Algorithm 20 is heuristically polynomial in r, n and |A|
whenever LDec(C) and Lift(C) are polynomial in r, n and |A|. This heuristic analysis
is reasonable according to Tables 3.1 and 3.2. Therefore we can notice, as in Proposi-
tion 166, that if we denote by B the Galois ring GR(pr, s) then the asymptotic complexity
given above is better than the complexity of the corresponding decoding algorithm over
the finite field of size prs.

3.6. CONCLUSION 127

Corollary 193. Suppose that A is the Galois ring GR(pr, s). Then there exists a list
decoding algorithm for GRS(v, x, k) with an asymptotic complexity of

Õ

(
nr(ρrs − 1)r − 1

n(ρrs − 1)− 1
n7k5s log p

)
= Õ(nr+6ρr(r−1)sk5s log p)

arithmetic operations in Fp, or heuristically an expected number of Õ(rn7k5s log p) bit-
operations which can decode up to the generic Johnson bound.

Proof. This is a direct consequence of Proposition 191, Remark 192, Lemma 165 and
[Gur04, Lemma 6.13, page 111].

Note that the algorithm presented in [Gur04, Algorithm Poly-Reconstruct, page 102]
applied to a RS code over Fprs performs at most Õ(n7k5rs) arithmetic operations in Fp.
We have an heuristic result for list decoding similar to Theorem 130. Let D be the list
decoding algorithm of [Ale05,AZ08,GS98,Köt96,KV03,RR98,Sud97b].

Heuristic Result 194. Given a finite field A, a Galois ring B such that |A| = |B|, a RS
code CA over A of parameters [n, k, n− k + 1]A and a list decoding algorithm LDec from
the list D for CA. Suppose that there exists a RS code CB over B of parameters [n, k, n−
k + 1]B. Then there exists a list decoding algorithm for CB with a better asymptotic
complexity than LDec.

3.6 Conclusion

In this paper we showed that, with strong constraints on their supports, GRS codes
can be considered over non commutative rings. But this generalization does not lead to
better codes than GRS codes over commutative rings in terms of the parameters.

We also proposed two new decoding algorithms with a low complexity for GRS codes
over Galois rings and rings of matrices over a Galois ring. Using these algorithms we
showed that given a prime power q and a unique (resp. list) decoding algorithm for a
GRS code over Fq there exists a unique (resp. list) decoding algorithm for a GRS code
with same parameters (provided that the GRS code exists with our conditions on its
support) over Z/qZ with a better asymptotic complexity.

Acknowledgment

The authors would like to thank Daniel Augot for his precious advices and Alain Cou-
vreur and Grégoire Lecerf for their careful readings of this article.

Chapter 4

A Lifting Decoding Scheme and
its Application to Interleaved
Linear Codes

This chapter constitutes an accepted paper at ISIT (International Symposium on Infor-
mation Theory) 2012.

Abstract—In this paper we design a decoding algorithm based on a lifting decoding
scheme. This leads to a unique decoding algorithm with complexity quasi linear in all
the parameters for Reed-Solomon codes over Galois rings and a list decoding algorithm.
We show that, using erasures in our algorithms, allows one to decode more errors than
half the minimum distance with a high probability. Finally we apply these techniques
to interleaved linear codes over a finite field and obtain a decoding algorithm that can
recover more errors than half the minimum distance.

Keywords—Algorithm design and analysis, Decoding, Error correction, Reed-Solomon
codes, Interleaved codes.

4.1 Introduction

Reed-Solomon (RS) codes form an important and well-studied family of codes. They
can be efficiently decoded. See for example [Gao02, Jus76]. They are widely used in
practice [WB99]. Sudan’s 1997 breakthrough on list decoding of RS codes [Sud97b],
further improved by Guruswami and Sudan in [GS98], showed that RS codes are list
decodable up to the Johnson bound in polynomial time.

4.1.1 Our contributions

Let B be a quotient ring of a discrete valuation ring A with uniformizing parameter π.
We design a decoding scheme that can be adapted to a wide range of linear codes over
B. Let C be a code over B, then given a black box decoding algorithm BlackBoxDec

129

130 CHAPTER 4. LIFTING DECODING AND INTERLEAVED LINEAR CODES

for C/πC, we can construct a decoding algorithm for C generalizing [GV98, algorithm
of Section 3]. The constructed decoding algorithm has the property to correct all error
patterns that can be corrected by BlackBoxDec. We study in detail the complexities in
the case of Reed-Solomon codes over Galois rings and truncated power series rings over
a finite field.

We improve the construction given in [GV98, algorithm of Section 3] and in [BZ01,
Byr01] by integrating an idea used by Marc Armand in [AdT05, Arm05a]. We use
erasures at suitable places within our decoding algorithm to improve its decoding radius.
This improvement allows one to decode more error patterns than BlackBoxDec with a
high probability. We study and give complexities when RS codes are involved. In fact,
we decode exactly the same error patterns as in Armand’s papers [AdT05,Arm05a] but
with a lower complexity thanks to the decoding scheme of [GV98].

Finally we show that, given any linear code C′ over Fq, we can view interleaved
codes with respect to C′ as codes over Fq[[t]]/(tr). This allows one to apply the previous
techniques to interleaved codes to obtain a decoding algorithm that can decode more
errors than half the minimum distance of C′ with a high probability over small alphabets
(small finite fields). Our approach is different from [BKY03], which treats a priori only
the case of interleaved RS codes while our algorithm is able to decode (further than half
the minimum distance) any interleaved linear code as soon as a decoding algorithm for
the underlying code is available. Therefore we can consider codes over small alphabet
like F2. A lot of families of codes are subfield-subcodes of alternant codes. Thus a lot
of interleaved codes can be decoded with the approach of [BKY03] but at a higher cost
than our approach which does not need to consider alternant codes.

4.1.2 Related work

Our approach for a lifting decoding scheme has first been studied in [GV98], then in
[BZ01,Byr01] RS codes over a commutative finite ring have been studied by M. Armand
in [Arm04,Arm05b,Arm05a,AdT05]. The decoding of interleaved codes has been studied
in [BKY03,CS03,GGR11].

4.2 Prerequisites

4.2.1 Complexity model

The “soft-Oh” notation f(n) ∈ Õ(g(n)) means that f(n) ∈ g(n) logO(1)(3 + g(n)). It
is well known [Für07] that the time needed to multiply two integers of bit-size at most
n in binary representation is Õ(n). The cost of multiplying two polynomials of degree
at most n over a ring A is Õ(n) in terms of the number of arithmetic operations in A.
Thus the bit-cost of multiplying two elements of the finite field Fpn is Õ(n log p).

4.2. PREREQUISITES 131

4.2.2 Error correcting codes

In this section we let A be any commutative ring with identity and n be a positive
integer. Let C be a subset of An. We call C an error correcting code over A or simply
a code over A. If C is a submodule of An we say that C is a linear code over A. The
integer n is called the blocklength of C. If C is a linear code and C is free of rank k,
then we say that C has parameters [n, k]A.

Definition 195. Let u = (u1, . . . , un) ∈ An. We call the integer

w(u) := |{i ∈ {1, . . . , n} : ui 6= 0}|

the Hamming weight (or simply weight) of u. Let v be another vector of An. The integer
w(u − v) is called the Hamming distance (or simply distance) between u and v and is
denoted by d(u, v).

The integer d = minu,v∈C and u6=v d(u, v) is called the minimum distance of C. Note
that when C is a linear code we have d = minu∈C\{0}w(u), we then say that C has
parameters [n, k, d]A if C is free of rank k.

Definition 196. Suppose that C is free of rank k. A matrix whose rows form a basis
of C is called a generator matrix of C.

The generator matrix is used to encode a message m ∈ Ak. A generator matrix
induces a one-to-one correspondence between messages and codewords, the map m 7→
mG is a A-linear embedding Ak → An. Under this map, we will identify messages and
codewords.

Let m be a maximal ideal of A. The vector space C/mC, if not zero, is a linear code
with parameters [n,≤ k,≤ d]A/m with generator matrix G′. The matrices G and G′ have
the same number of columns but can have a different number of rows. However G′ can
be deduced from G, first compute G′′ = G mod m, then remove from G′′ appropriate
rows to obtain a basis of C/mC.

Definition 197. Borrowing the terminology of [GV98, Section 3], if G and G′ have the
same number of rows and columns and that G mod m = G′ then C is called a splitting
code.

We will consider codes over a special kind of rings which we define now.

Definition 198. Let A be a ring. If A is a local principal ideal domain, we call A a
discrete valuation ring (DVR). Any element π ∈ A such that (π) is the maximal ideal
of A is called a uniformizing parameter of A.

4.2.3 Reed-Solomon codes over rings

Reed-Solomon codes over rings are defined in a slightly different way to their field coun-
terparts. We let A[X]<k denote the submodule of A[X] consisting of all the polynomials
of degree at most k − 1 of A[X].

132 CHAPTER 4. LIFTING DECODING AND INTERLEAVED LINEAR CODES

Definition 199. Let x1, . . . , xn be elements of A such that xi − xj ∈ A× fir i 6= j
(where A× is the group of units of A). The submodule of An generated by the vectors
(f(x1), . . . , f(xn)) ∈ An where f ∈ A[X]<k is called a Reed-Solomon code over A. The
n-tuple (x1, . . . , xn) is called the support of the RS code.

Proposition 200. Let C be a RS code over A. Then C has parameters [n, k, d = n −
k + 1]A.

Proposition 201. Let C be a RS code with parameters [n, k, d = n − k + 1]A over a
discrete valuation ring A with uniformizing parameter π. Then C/πrC is a RS code with
parameters [n, k, d]A/(πr) over A/(πr). Moreover of (x1, . . . , xn) is the support of C then
(x1 mod πr, . . . , xn mod πr) is the support of C/πrC.

4.3 Improved π-adic lifting.

In this section we let A be a discrete valuation ring with uniformizing parameter π and
by κ = A/(π) the residue field of A. We also let C be a free splitting linear code over A
of parameters [n, k, d]A and with generator matrix G. We let C′ denote the linear code
C/πC and G′ a generator matrix of C′ such that G′ = G mod π.

Algorithm 22 BlackBoxDec

Input: A positive integer τ ≤ n and a received vector y of κn (with zero or more
erasures).

Output: A nonempty set U ⊆ κk × κn satisfying

(m, e) ∈ U ⇒ y = mG′ + e and w(e) ≤ τ (4.1)

or ∅ (meaning FAILURE).

Note that BlackBoxDec can return one or more codewords in particular it can be
a list decoding algorithm; but we do not require that it return all codewords within
distance τ of y.

Proposition 202. Suppose that BlackBoxDec returns all the codewords from C′ within
distance τ of y ∈ κn. Then Algorithm 23 can decode up to τ errors up to precision r.

Proof. The proof is done by descending induction on i. For i = r and i = r − 1 the
proposition holds.

Now let i < r−1 and (m, e) ∈ κk×κn. Let c = mG be such that w(e mod πr−i) ≤ τ
and y = c+e. There exists (m0, e0) ∈ S such that c0 = m0G = c mod π, e = e0 mod π
and Supp(e0) ⊆ Supp(e). If we count erasures as errors, we have w(e) ≤ τ and therefore
w(π−1(e0 − e)) ≤ τ . On the other hand we have mG = m0G mod π and mG′ = m0G

′

in C′ whence m = m0 mod π. Therefore π−1(mG−m0G) = (π−1(m−m0))G ∈ C.
We deduce from the above that

y1 = π−1(y − (c0 + e0)) = π−1(c− c0) + π−1(e0 − e).

4.3. IMPROVED π-ADIC LIFTING. 133

Algorithm 23 Decoding from valuation i up to valuation r.

Input: A positive integer τ ≤ n, two nonnegative integers i ≤ r, a received vector y of
An (with zero or more erasures) and a black box decoding algorithm BlackBoxDec

for C(π).
Output: A nonempty set U ⊆ κk × κn satisfying

(m, e) ∈ U ⇒ y = mG+ e mod πr−i and w(e) ≤ τ (4.2)

or ∅ (meaning FAILURE).
1: if i = r then
2: return {(0, 0)}.
3: end if
4: Call to BlackBoxDec with input τ and (y mod π) to obtain the set S.
5: if BlackBoxDec returns ∅ (FAILURE) then
6: return ∅ (FAILURE).
7: end if
8: U ← ∅.
9: for each (m0, e0) ∈ S do

10: y1 ← π−1(y −m0G− e0).
11: Put erasures in y1 at the locations indicated by Supp(e0).
12: Call recursively Algorithm 23 with input τ , i+1, r, y1 and BlackBoxDec to obtain

the set T .
13: for each (m1, e1) ∈ T do
14: if |Supp(e0) ∪ Supp(e1)| ≤ τ then
15: U ← U ∪ {(m0 + πm1, e0 + πe1)}.
16: end if
17: end for
18: end for
19: return U .

Algorithm 24 Decoding up to precision r.

Input: A positive integer τ ≤ n, a positive integer r, a received vector y of An (with
zero or more erasures) and a black box decoding algorithm BlackBoxDec for C(π).

Output: A nonempty set U ⊆ κk × κn satisfying

(m, e) ∈ U ⇒ y = mG′ + e mod πr and w(e) ≤ τ (4.3)

or ∅ (meaning FAILURE).
1: return the set returned by the call to Algorithm 23 with input τ , 0, r, y and

BlackBoxDec.

134 CHAPTER 4. LIFTING DECODING AND INTERLEAVED LINEAR CODES

By the inductive hypothesis, we can find (m1, e1) ∈ T such that π−1(c − c0) = m1G
mod πr−(i+1) and π−1(e− e0) = e1 mod πr−(i+1).

We now have the straightforward proposition which gives the complexity of Algo-
rithm 24 in terms of bit operations.

Proposition 203. Suppose that the number of codewords returned by BlackBoxDec is at
most L > 1. Denote by Lift(C) the complexity of lifting a codeword of C′ into a codeword
of C up to precision r in terms of the number of bit operations. Denote by UDec(C) the
complexity of algorithm BlackBoxDec in terms of the number of bit operations. Then
Algorithm 24 performs at most

Lr − 1

L− 1
(Lift(C) + UDec(C)) = O(Lr−1) (Lift(C) + UDec(C))

bit operations. If L ≤ 1 then Algorithm 24 performs at most r (Lift(C) + UDec(C)) bit
operations.

Algorithm 25 Decoding algorithm for C/πrC.
Input: A positive integer τ ≤ n, a received vector y of (A/(pr))n (with zero or more

erasures) and a black box decoding algorithm BlackBoxDec for C(π).
Output: A nonempty set U ⊆ κk × κn satisfying

(m, e) ∈ U ⇒ y = mG′ + e and w(e) ≤ τ (4.4)

or ∅ (meaning FAILURE).
1: Lift y ∈ (A/(pr))n into y′ ∈ An.
2: S ← the set returned by the call to Algorithm 23 with input τ , 0, r, y′ and

BlackBoxDec.
3: return {c mod πr : c ∈ S}.

The interesting part of Algorithm 23 (and hence of all other algorithms) resides in
the BlackBoxDec argument. We have shown that if BlackBoxDec is a classical decoding
algorithm then Algorithm 24 becomes a decoding algorithm with the same decoding
radius as BlackBoxDec.

From now we suppose that κ = A/(π) is a finite field. Every element of B = A/(πr)
can be uniquely written as uπs, where u ∈ B× and 0 ≤ s ≤ r − 1.

RS codes are free splitting codes over B by Proposition 201 so we can apply Algo-
rithm 25 to RS codes. Complexities of decoding with Algorithm 25 are given by the
following proposition which is a direct consequence of Proposition 203.

Example-proposition 204. Suppose that C is a RS code over B. If B = GR(pr, s)
(the unique Galois extension over Z/pZ of degree s) then

• if BlackBoxDec is the unique decoding algorithm of [Jus76] (that can decode up to
τ =

⌊
d−1

2

⌋
errors) then Algorithm 25 can decode up to τ errors in Õ(rnks log p)

bit operations,

4.3. IMPROVED π-ADIC LIFTING. 135

• if BlackBoxDec is the Guruswami-Sudan list decoding algorithm of [Gur04, Corol-

lary 3.3, page 36] (that can decode up to J =
⌈
n−

√
(k − 1)n

⌉
− 1 errors) then

Algorithm 25 can list decode up to J errors in Õ
(
[n(|κ| − 1)]r−1n7k5s log p

)
bit

operations.

If B = κ[[t]]/(tr) then

• if BlackBoxDec is the unique decoding algorithm of [Jus76] (that can decode up
to τ =

⌊
d−1

2

⌋
errors) then Algorithm 25 can decode up to τ errors in Õ(rnk)

arithmetic operations over κ.

• if BlackBoxDec is the Guruswami-Sudan list decoding algorithm of [Gur04, Corol-

lary 3.3, page 36] (that can decode up to J =
⌈
n−

√
(k − 1)n

⌉
− 1 errors) then

Algorithm 25 can list decode up to J errors in Õ
(
[n(|κ| − 1)]r−1n7k5

)
arithmetic

operations over κ.

We show that if we choose a decoding algorithm able to handle errors and erasures
for BlackBoxDec then we can decode, with a non negligible probability, further than half
the minimum distance and further than the Johnson bound.

Definition 205. Following the terminology of [Laz65, Subsection 2.1, page 404] we say
that an element of B has filtration s if it is written uπs where u ∈ B×.

We let q be the cardinality of κ. Then the cardinality of B is qr while the cardinality
of A/(πs)

A/(πs+1)
is q.

Algorithm 26 BlackBoxErasuresDec

Input: A received vector y of κn with ε erasures and at most τ(ε) errors.
Output: All the codewords within distance τ(ε) + ε of y or ∅ (FAILURE).

Proposition 206. Let C be a splitting code over B with parameters [n, k]B. Suppose
that ε erasures occurred and that BlackBoxErasuresDec is provided as the BlackBoxDec

argument to Algorithm 25. The number of error vectors of weight w that can be corrected
by Algorithm 25 is at least

N(ε, B,w) =

(
n
ε

)
qrε
(
n− ε
w

)
×

∑
(v0,...,vr−1)∈Vw

[
r−1∏
i=0

(
w − v0 − · · · − vi−1

vi

)
(q − 1)viqv0+···+vi−1

]
(4.5)

where

Vw = {(v0, . . . , vr−1) ∈ Nr : v0 + · · ·+ vr−1 = w and

0 ≤ v0 ≤ τ(ε) and 0 ≤ vi−1 ≤ τ(ε+ v0 + · · ·+ vi−2)

for i = 2, . . . , r − 1} ,

136 CHAPTER 4. LIFTING DECODING AND INTERLEAVED LINEAR CODES

hence the fraction of corrigible error patterns is at least

P (ε, B,w) =

∑w
i=0N(ε, B,w)∑w

i=0

(
n
i

)
(qr − 1)i

(4.6)

Proof. Let e ∈ Bn be an error vector. We let vi(e) for i = 1, . . . , r − 1 denote the
number of coordinates of e of filtration i. The number of error vectors e ∈ Bn such that
(v0(e), . . . , vr−1(e)) ∈ Vw is given by formula 4.5. Let c be a codeword of C and y = c+e
with vi = vi(e) for i = 0, . . . , r − 1 and (v0, . . . , vr−1) ∈ Vw. The rest of the proof is
similar to the proof of Proposition 202.

Proposition 207. Let C be a splitting code over B with parameters [n, k, d]B. Then
there exists a decoding algorithm such that τ(ε) =

⌊
d−ε−1

2

⌋
.

Proof. This is a consequence of [Rot06, Theorem 1.7, page 16].

Proposition 208. Let C be a Reed-Solomon code over B with parameters [n, k, d =
n− k + 1]B then there exists

• a unique decoding algorithm which can correct errors and erasures with τ(ε) =⌊
n−ε−k

2

⌋
,

• a list decoding algorithm which can correct errors and erasures with τ(ε) =⌈
(n− ε)−

√
(k − 1)(n− ε)

⌉
− 1 and

• a unique decoding algorithm which can correct up to w errors and ε erasures with
w ≤ n − ε − k and which does succeed for a fraction of at least P (ε, B,w) error
patterns.

In addition the costs of Algorithm 25 are the same as the ones given in Proposition 204.

Proof. For the first item, see for example [Gao02, Section 4, page 7 and 8] while for the
second item see [GS98, Theorem 16, page 1762]. The third item is a consequence of the
first item and Proposition 206.

4.4 Application to interleaved linear codes.

In this section we let A be the power series ring over the finite field Fq namely we let
A = Fq[[t]], π = t and B = Fq[[t]]/(tr). We recall the construction of interleaved codes
and show that all interleaved codes over Fq are exactly codes over B. We let C′ be a
linear code over Fq with parameters [n, k, d]Fq and with generator matrix G′.

Let r messages m0, . . . ,mr−1 ∈ Fkq and their encodings c0 = m0G
′, . . . , cr−1 =

mr−1G
′. For i = 0, . . . , r − 1 and j = 1, . . . , n define cij to be the j-th coordinate

of ci and sj = (c0,j , . . . , cr−1,j).

4.4. APPLICATION TO INTERLEAVED LINEAR CODES. 137

c0,1 c0,2 . . . c0,n → c0

c1,1 c1,2 . . . c1,n → c1
...

...
...

...
cr−1,1 cr−1,2 . . . cr−1,n → cr−1

↓ ↓ ↓
s1 s2 sn

The vectors transmitted over the channel are not c1, . . . , cr−1 ∈ Fnq but s1, . . . , sn ∈
Frq. We will make an abuse of notation and call such an encoding scheme a interleaved
code with respect to C′ and of degree r. Usually the vector sj (for j = 1, . . . , n) is
seen as an element of Fqr , but we can associate the element

∑r−1
i=0 ci,jt

i ∈ B to sj . In
this context, if y = (y1, . . . , yn) ∈ (Frq)n, the weight of y is the nonnegative integer
|{i ∈ {1, . . . , n} : yi 6= 0}| and if y corresponds to the received word then the weight of
the error is |{i ∈ {1, . . . , n} : yi 6= si}|.

Proposition 209. The words transmitted over the channel using interleaved linear codes
are precisely the transmitted words using linear codes over truncated power series.

Proof. Let G = G′ be the generator of the linear code C over B with parameters [n, k,≤
d]B, then C/tC = C′. We have ci = miG

′ for i = 0, . . . , r − 1. As a consequence we have(
r−1∑
i=0

mit
i

)
G =

r−1∑
i=0

(miG) ti =

r−1∑
i=0

cit
i

=

(
r−1∑
i=0

ci,1t
i,
r−1∑
i=0

ci,2t
i, . . . ,

r−1∑
i=0

ci,nt
i

)
= (s1, s2, . . . , sn) .

This shows that the transmitted words using interleaved linear codes correspond exactly
to codewords of C. Moreover the weight of (s1, . . . , sn) as defined above is the same as

the Hamming weight of
(∑r−1

i=0 ci,1t
i,
∑r−1

i=0 ci,2t
i, . . . ,

∑r−1
i=0 ci,nt

i
)
∈ C.

Theorem 210. Given a linear code C′ over Fq with parameters [n, k, d]Fq and a unique
decoding algorithm BlackBoxErasuresDec from errors and erasures that can correct ε
erasures and τ(ε) errors in dec(C′) arithmetic operations over Fq, there exists a unique
decoding algorithm for interleaved codes with respect to C′ and of degree r from errors
and erasures that can correct ε erasures and τ(ε) errors with at most r dec(C′) arithmetic
operations over Fq. Moreover it can correct at least a fraction of P (ε, B,w) error patterns
of Hamming weight at most w > τ(ε) over B where P is defined by 4.6, also with at
most r dec(C′) arithmetic operations over Fq.

Proof. As G = G′ there is no need to lift a codeword from C′ into C and the given
complexities are a consequence of Proposition 203. The existence of both algorithm is
ensured by Proposition 209 and Proposition 206.

138 CHAPTER 4. LIFTING DECODING AND INTERLEAVED LINEAR CODES

2 3 4 5 6

7 1.0 1.0 1.0 1.0 1.0

8 0.96 0.98 0.99 0.99 0.99
9 0.81 0.94 0.96 0.97 0.98
10 0.49 0.80 0.88 0.91 0.91
11 0.0073 0.53 0.70 0.75 0.78
12 0.00012 0.14 0.38 0.48 0.53

Figure 4.1: Fraction of corrigible error patterns for a Goppa code of parameters
[256, 200, 15]F2 .

3 4 5 6

22 1.00000 1.00000 1.00000 1.00000

23 0.999997 0.999999 0.999999 0.999999
25 0.999844 0.999963 0.999981 0.999987
27 0.998099 0.999469 0.999715 0.999789
28 0.995114 0.998531 0.999185 0.999391
29 0.989079 0.996477 0.997984 0.998470
30 0.978112 0.992458 0.995554 0.996581

Figure 4.2: Fraction of corrigible error patterns for an Extended BCH code with param-
eters [256, 100, 46]F2 .

4.5. CONCLUSION 139

In Tables 4.1 and 4.2, the first row gives the degrees of interleaving and the first
column shows the number of errors up to which we want to decode. The second row
corresponds to half the minimum distance and, as expected, all of the probabilities are
1.0. We can see that the fraction of corrigible error patterns increases with the degree
of interleaving and that codes with a high minimal distance are good candidates for
interleaving.

4.5 Conclusion

In this paper we designed a decoding algorithm based on a lifting decoding scheme. It
allowed us to obtain a unique decoding algorithm for RS codes over Galois rings with
a low complexity. We also applied this scheme to get a list decoding algorithm for RS
codes over Galois rings. We then show that using erasures at appropriate positions
in the proposed algorithms allows us to decode more errors than half the minimum
distance. Finally we applied these techniques to decode interleaved linear codes over
a finite field and get a decoding algorithm that can decode more errors than half the
minimum distance.

Acknowledgment

The author would like to thank Daniel Augot for his precious advice and readings of
this article and Grégoire Lecerf for his careful readings of this article. The author would
also like to thank the reviewers who helped improve this article.

Part III

Related work on error correcting
codes

141

143

Context

In this part I present other results obtained during my PhD thesis. They concern quasi
cyclic codes whose definition is given above and number fields codes which are introduced
later in this introduction.

Quasi cyclic codes

Let n = m` be three positive integers.

Definition 211. Let C ⊆ Fnq be a code. We say that C is cyclic if

(c1, . . . , cn−1, cn) ∈ C ⇒ (cn, c1, . . . , cn−1) ∈ C

and we say that C is `-quasi-cyclic if

(c1, . . . , cn) ∈ C ⇒ (cn−`+1, . . . , cn, c1, . . . , cn−`) ∈ C.

It is well known [MS86a, Theorem 1, page 190] that there is a one-to-one correspon-
dence between cyclic codes and ideals of the ring Fq[X]/(Xn−1). The goal of our paper
is to extend this correspondence to quasi cyclic codes.

Number fields codes

Number fields codes form a subfamily of Chinese remaindering theorem-codes (CRT
codes) which were first studied in [GSS00] then in [Gur04, Chapter 7, page 147–175].

Definition 212. Let A be any commutative ring with identity and I1, . . . , In be coprime
ideals and let E ⊆ A. Then the CRT code denoted by CRT((I1, . . . , In), E) is the set

{(x mod I1, . . . , x mod In) |x ∈ E} .

When A = Z, I1 = (p1), . . . , In = (pn) where p1, . . . , pn are primes and

E =

{
x ∈ Z|0 ≤ x <

k∏
i=0

pi

}

where k < n we obtain a well studied class of codes [Man76, GRS99, Bon00, GSS00,
Gur04]. This subfamily of CRT codes is badly called “CRT codes” in the literature. We
will call them “CRT codes over Z”.

There is a Johnson bound (Definition 15) for CRT codes as soon as |A/Ii| < +∞ for
all i ∈ {1, . . . , n}. The Johnson bound of Definition 15 works when the error correcting
code C is a subset of An. This is not the case for CRT codes as one have

C ⊆
n∏
i=1

|A/Ii| where |A/Ii| < +∞ and, a priori, |A/Ii| 6= |A/Ij |.

144

Theorem 213. Let A1, . . . , An be n finite sets such that |Ai| = qi for i = 1, . . . , n and
C be a code of minimal distance d of A1 × · · · ×An. Then

n−
√
n(n− d)

is a Johnson bound for C.

The proof can be found in [Gur04, Theorem 7.10, page 163]. Number fields codes
are a subfamily of CRT codes we describe now.

Definition 214. Let K be a finite extension of Q. The Hermitian norm of an element
x ∈ K is

‖x‖ :=

√√√√[K:Q]∑
i=1

|σi(x)|2

where the σi are the embeddings K → C.

Definition 215. Let K be a finite extension of Q and OK be the integral closure of Z
in K. Let p1, . . . , pn be n integral prime ideals. The CRT code

CRT ((p1, . . . , pn), {x ∈ OK |‖x‖ ≤ B}) .

where B is a fixed integer is called a number field code.

As |OK/pi| < +∞ Theorem 213 can be applied and we obtain the following Johnson
bound for a number field code of minimum distance d

n−
√
n(n− d).

Number fields codes have been studied in only two papers [Len86, Gur03]. Their list
decoding has been quickly considered in [CH11]. The authors used the Coppersmith
theorem to claim that they can list decode number fields codes. Unfortunately they
did not give any algorithm, complexity or comparison of their decoding radius with the
Johnson bound. It turns out that a direct application of their theorem shows that it
does not reach the Johnson bound.

Contributions

In Chapter 5 we show that `-quasi-cyclic codes, like cyclic codes, are in one-to-one
correspondence with left ideals of the ring M`(Fq)[X]/(Xm − 1), give their generator
matrix and a key equation. Then in Chapter 6 we give the first list decoding algorithm
for number fields codes that can decode up to the Johnson bound.

Chapter 5

On Quasi-Cyclic Codes as a
Generalization of Cyclic Codes

This chapter constitutes an accepted paper at FFA (Finite Fields and Their Applica-
tions) in 2012. It has been done in collaboration with Morgan Barbier and Christophe
Chabot.

Abstract—In this article we see quasi-cyclic codes as block cyclic codes. We generalize
some properties of cyclic codes to quasi-cyclic codes. We show a one-to-one correspon-
dence between `-quasi-cyclic codes of length m` and left ideals of M`(Fq)[X]/(Xm − 1).
Then, we generalize BCH codes and evaluation codes in this context. We study their
parameters and establish a key equation. Finally, we present a new [189, 11, 125]F4 code
beating the known minimum distance for fixed length and dimension. Many codes with
good parameters beating best known ones have been found from this latter.
Keywords—quasi-cyclic codes, left ideals, matrix rings, cyclic codes, evaluation codes,
key equation

5.1 Introduction

5.1.1 Context

Many codes with best known minimum distances are quasi-cyclic codes or derived from
them [LS03,Gra07]. This family of codes is therefore very interesting. Quasi-cyclic codes
were studied and applied in the context of McEliece’s cryptosystems [McE78,BCGO09]
and Niederreiter’s [Nie86,LDW94]. They permit to reduce the size of keys in opposition
to Goppa codes. However, since the decoding of random quasi-cyclic codes is difficult,
only quasi-cyclic alternant codes were proposed for the latter cryptosystems. The high
structure of alternant codes is actually a weakness and two cryptanalysis were proposed
in [FOPT10,UL10]. For these reasons, studying the decoding methods and the general
properties of quasi-cyclic codes are interesting topics.

In [LF01, LS01], `-quasi-cyclic codes of length m` are seen as R-submodules of R`

for a certain ring R. However, in [LF01], Gröbner bases are used in order to describe

145

146 CHAPTER 5. QUASI-CYCLIC CODES

polynomial generators of quasi-cyclic codes whereas in [LS01], the authors decompose
quasi-cyclic codes as direct sums of shorter linear codes over various extensions of Fq
(when gcd(m, q) = 1). This last work leads to an interesting trace representation of
quasi-cyclic codes. In [CCN10], the approach is more analogous to the cyclic case. The
authors consider the factorization of Xm − 1 ∈ M`(Fq)[X] with reversible polynomi-
als in order to construct `-quasi-cyclic codes canceled by those polynomials and called
Ω(P)-codes. This leads to the construction of self-dual codes and codes beating known
bounds. But the factorization of univariate polynomials over a matrix ring remains dif-
ficult. In [Cha11] the author gives an improved method for particular cases of the latter
factorization problem.

In this article, we prove, analogously to the cyclic case, a one-to-one correspondence
between `-quasi-cyclic codes of length m` and left ideals of M`(Fq)[X]/(Xm − 1). We
study the properties of quasi-cyclic codes and propose to extend the definition of BCH
and evaluation codes to the context of quasi-cyclic codes. Namely, we define quasi-
BCH and quasi-evaluation codes. The natural notion of folded and unfolded codes is
presented for simplicity and decoding purposes. Finally, we exhibit a quasi-cyclic code
whose parameters are better than the previous known and 48 other codes derived from
the first one.

Subsection 5.1.2 is devoted to some recalls about Ω(P)-codes and definitions. Then
in Section 5.2 we prove interesting properties about quasi-cyclic codes and, in particular,
the correspondence between left ideals and quasi-cyclic codes. Section 5.3 deals with the
definition, parameters and a decoding algorithm of quasi-BCH codes. Finally, Section 5.5
introduces quasi-evaluation codes and gives lower bounds on their parameters.

5.1.2 First definitions

In this section, we fix a positive integer n and let C be a code of length n over the finite
field Fq, i.e. a vector subspace of Fnq .

Definition 216 (Quasi-cyclic codes). From now and until the end of this article we
define T : Fnq → Fnq to be the left cyclic shift defined by:

T (c1, c2, . . . , cn) = (c2, c3, . . . , c1).

Suppose that ` divides n. Then we call an `-quasi-cyclic code over Fq of length n a code
of length n over Fq stable by T `. If the context is clear we will simply say `-quasi-cyclic
code.

Let ` be an integer, and α ∈ Fq` be such that (1, α, . . . , α`−1) is an Fq-base of the
vector space Fq` . We define the folding to be the Fq-linear map

φ : F`q → Fq` = Fq[α]

(a1, . . . , a`) 7→ a1 + a2α+ · · ·+ a`α
`−1.

The unfolding is the inverse Fq-linear map

φ−1 : Fq` → F`q
a = a1 + a2α+ · · ·+ a`α

`−1 7→ (a1, a2, . . . , a`).

5.2. PROPERTIES OF QUASI-CYCLIC CODES 147

Let m be a positive integer, f : E → F be any map of sets. We denote by f×m the map
of sets f×m : Em → Fm such that f×m(x1, . . . , xm) = (f(x1), . . . , f(xm)).

Definition 217 (Folded and unfolded codes). Suppose that n = m`. We define the
folded code of C to be φ×m(C). Let C′ be a code in Fm

q`
. We define the unfolded code of

C′ to be (φ−1)×m(C′).

Remark 218. Observe that a code C is `-quasi cyclic if and only if its folded C′ = φ×m(C)
is cyclic. But C′ is not necessarily Fq`-linear.

5.2 Properties of quasi-cyclic codes

In the present section we generalize the results of [MS86a, Theorem 1, page 190] to
quasi-cyclic codes. We fix a positive integer n and suppose that n = m` for two positive
integers m and `.

5.2.1 The one-to-one correspondence

It is well-known [MS86a, Theorem 1, page 190] that there is a one-to-one correspondence
between cyclic codes of length n over Fq and monic factors of Xn− 1 ∈ Fq[X] i.e. ideals
of Fq[X]/(Xn−1). In [CCN10,Cha11] the authors start to exhibit such a correspondence
for quasi-cyclic codes. They show that there is a correspondence between a subfamily of
`-quasi-cyclic codes of length m` over Fq and reversible factors of Xn − 1 ∈M`(Fq)[X].

The one-to-one correspondence between `-quasi cyclic codes and left ideals of
M`(Fq)[X]/(Xm − 1) is a consequence of the two following lemmas. In what follows
we consider principal ideal rings which are not necessarily integral domains.

Lemma 219. Let R be a commutative principal ideal ring and M be a free left module
of finite rank s over R. Then every submodule N of M can be generated by at most s
elements.

Proof. It is an easy adaptation of the proof of [Lan02, Theorem 7.1, page 146].

Lemma 220. Let s be a positive integer and R be a commutative principal ideal ring.
Then there is a one-to-one correspondence between the submodules of Rs and the left
ideals of Ms(R).

Proof. Note that this is a particular case of the Morita equivalence for modules. See
for example [Bou11, no4, page 99]. This particular case can be proved directly. To a
submodule N ⊆ Rs, we can build a left ideal of Ms(R) whose elements have rows in N .
Conversely, to a left ideal I ⊆ Ms(R) we associate the submodule of Rs generated by
all the rows of all the elements of I. It is straightforward to check that these maps are
inverse to each other.

148 CHAPTER 5. QUASI-CYCLIC CODES

Note that M`(Fq)[X]/(Xm − 1) and M`(Fq[X]/(Xm − 1)) are isomorphic as rings
and that R = Fq[X]/(Xm − 1) is a commutative principal ideal ring. By Lemma 219
any submodule of R` can be generated by at most ` elements. Therefore by Lemma 220
any left ideal of M`(R) = M`(Fq)[X]/(Xm − 1) is principal.

Theorem 4. There is a one-to-one correspondence between `-quasi-cyclic codes over Fq
of length m` and left ideals of M`(Fq)[X]/(Xm − 1).

Proof. Let g = (g11, . . . , g1`, g21, . . . , g2`, . . . , gm1, . . . , gm`) ∈ Fm`q . We associate to g the

element ϕ(g) ∈ (Fq[X]/(Xm − 1))` defined by

ϕ(g) =
(
g11 + g21X + · · ·+ gm1X

m−1;

g12 + g22X + · · ·+ gm2X
m−1; . . . ;

g1` + g2`X + · · ·+ gm`X
m−1

)
.

Then ϕ induces a one-to-one correspondence between `-quasi-cyclic codes of length m`
over Fq and submodules of (Fq[X]/(Xm−1))`. The theorem follows by Lemma 220.

Let pri,j be the projection of the i, i+ 1, . . . , j coordinates:

pri,j : Fnq −→ Fj−i+1
q

(x1, . . . , xn) 7−→ (xi, xi+1, . . . , xj−1, xj).

We have the following obvious lemma:

Lemma 221. Let C be an `-quasi-cyclic code over Fq of dimension k and length m`.
Then there exists an integer r such that 1 ≤ r ≤ k and for any generator matrix G of C
and 0 ≤ i ≤ m− 1, the rank of the i`+ 1, i`+ 2, . . . , (i+ 1)` columns of G is r.

Definition 222 (Block rank). Taking the notation of Lemma 221, we call the integer r
the block rank of C. Note that r depends only on C and not on any particular generator
matrix of C.

5.2.2 The generator polynomial of an `-quasi-cyclic code

In this subsection we fix an `-quasi-cyclic code C over Fq. If ` = 1, then C is a cyclic code
of length n and a generator matrix of C can be given [MS86a, Theorem 1, (e), page 191]
by 

g(X)
Xg(X)

. . .
Xn−deg gg(X)

 , (5.1)

where g(X) ∈ Fq[X] is the generator polynomial of C. The block rank of C is 1 and
we see that we can write a generator matrix of C with only 1 vector and its shifts (by
T ` = T). The natural generalization of this result for quasi-cyclic codes is done using
the block rank.

5.2. PROPERTIES OF QUASI-CYCLIC CODES 149

Let r be the block rank of C, the following algorithm computes a basis of C from r
vectors of C and their shifts. We call the first index of a nonzero vector x = (x1, . . . , xm`)
the least integer 0 ≤ i ≤ m − 1 such that (xi`+1, . . . , x(i+1)`) 6= 0 and denote it by
F(x) = F(x1, . . . , xm`). Let

p : Fm`q −→ F`q
x = (x1, . . . , xm`) 7−→ (xi`+1, . . . , x(i+1)`),

where i = F(x1, . . . , xn) if x 6= 0 and p(0) = 0.

Algorithm 27 Basis computation with the block rank

Input: A generator matrix G of C.
Output: A generator matrix formed by r rows from G and some of their shifts.
1: G′ ← a row echelon form of G.
2: Denote by g1, . . . , gk the rows of G′.
3: M ← max{F(gi) : i ∈ {0, . . . ,m− 1}}.
4: B′M ← ∅.
5: GM+1 ← ∅.
6: for j = M → 0 do
7: Bj ← {gi : i ∈ {1, . . . , k} and F(gi) = j}.
8: for each element x of Bj do
9: if p(B′j) ∪ {p(x)} are independent then

10: B′j ← B′j ∪ {x}.
11: end if
12: end for
13: Gj ← Gj+1 ∪B′j .
14: B′j−1 ← T `(B′j).
15: end for
16: return G0.

Note that Algorithm 27 applied to a cyclic code, i.e. ` = 1, returns exactly the ma-
trix 5.1 and we can deduce the generator polynomial of C at the cost of the computation
of a row echelon form of any generator matrix of C.

Proposition 223. Algorithm 27 works correctly as expected and returns a generator
matrix G of C made of r linearly independent vectors of C and some of their shifts.

Proof. We will prove by descending induction on j that:

1. B′j ⊇ T `(B′j+1) ⊇ · · · ⊇ T (M−j)`(B′M).

2. #B′j ≤ r.

3. The vectors of B′j are linearly independent.

4. The vectors of Gj are linearly independent.

150 CHAPTER 5. QUASI-CYCLIC CODES

5. 〈Gj〉 = 〈gi : i ∈ {1, . . . , k} and F(gi) ≥ j〉.

Let j = M . By step 3, we have BM 6= ∅. Item 1 is trivially satisfied. By Lemma 221,
#BM ≤ r and item 2 is satisfied. As GM+1 = B′M = ∅ then GM = B′M = BM = {gi :
i ∈ {1, . . . , k} and F(gi) ≥M} and items 3 to 5 are satisfied.

Suppose that j < M and that items 1 to 5 are satisfied for i = j+1, . . . ,M . First note
that Bj 6= ∅. If we had Bj = ∅ then, as G′ is in row echelon form, g1, . . . , gk, T

(M−j)`(gk)
would be linearly independent which is a contradiction.

Items 1 and 3 are satisfied by steps 7, 9 and 10 of the algorithm. By Lemma 221
and step 9, item 2 is satisfied. For all x ∈ Gj+1, we have F(x) ≥ j + 1, thus, by item 3,
the elements of Gj are linearly independent and item 4 is satisfied. Let g be a vector of
G′ such that F(g) = j, then the construction of B′j implies that we have

F

g − ∑
u∈B′j

µuu

 ≥ j + 1

where µu ∈ Fq for u ∈ B′j . Then by item 5 of the inductive hypothesis, we have(
g −

∑
µuu

)
∈ Gj+1.

Thus we have 〈Gj〉 = 〈gi : i ∈ {1, . . . , k} and F(gi) ≥ j〉 and item 5 is satisfied.
As a consequence of the previous induction, G0 is constituted of linearly independent

vectors and generates 〈gi : i ∈ {1, . . . , k} and F(gi) ≥ 0〉 = C by item 5. By Lemma 221
we must have exactly r vectors g ∈ G0 such that F(g) = 0. Thus by items 1 and 2 we
have

r = #B′0 =

M∑
λ=0

#
(
B′λ \ T `(B′λ+1)

)
which shows that G0 is constituted of r linearly independent vectors of C and some of
their shifts.

Corollary 224. There exist g1, . . . , gr linearly independent vectors of C such that
g1, . . . , gr, T

`(g1), . . . , T `(gr), . . . , T
(m−1)`(g1), . . . , T (m−1)`(gr) span C. If we denote by

gi,j the j’th coordinate of gi and let

Gi =


g1,i`+1 . . . g1,(i+1)`

...
...

gr,i`+1 . . . gr,(i+1)`

0

 ∈M`(Fq)

and

g(X) =
1

Xν

m−1∑
i=0

GiX
i ∈M`(Fq)[X],

where ν is the least integer such that Gi 6= 0, then C corresponds to the left ideal 〈g(X)〉
by Theorem 4.

5.2. PROPERTIES OF QUASI-CYCLIC CODES 151

Corollary 225. Taking the notation of the proof of Theorem 4, the submodule ϕ(C) ⊆
(Fq[X]/(Xm− 1))` is generated by r elements as an Fq[X]/(Xm− 1)-module but cannot
be generated by less that r elements. If C is a cyclic code then we have r = 1 and we
find the classical result about cyclic codes.

Definition 226 (Generator polynomial). The polynomial g(X) ∈ M`(Fq)[X] from
Corollary 224 is called a generator polynomial of C.

Example 227. Let F4 = F2[ω] and I = 〈P (X), Q(X)〉 ⊂ M3(F4)[X]/(X5 − 1) be a left
ideal with

P (X) =

 ω 0 1
ω ω 0
ω2 ω2 0

X4 +

 ω ω2 ω2

0 ω 1
ω2 0 ω

X3 +

0 ω2 ω
ω ω2 ω2

0 1 ω2

X2+

1 0 ω2

0 ω 1
0 ω 1

X +

1 0 ω2

0 1 ω2

0 0 0


and

Q(X) =

 ω 0 1
ω ω 0
ω2 ω2 0

X4 +

0 1 ω2

0 1 ω2

0 ω 1

X3 +

ω ω2 ω2

1 ω ω
ω ω2 ω2

X2+

1 ω2 1
0 ω2 ω
0 1 ω2

X +

 1 1 0
ω ω2 ω2

ω2 1 1

 .

The row echelon form generator matrix of the 3-quasi cyclic code CI associated to the
left ideal I is

G =


1 0 ω2 0 0 0 0 ω2 ω ω 0 1 0 0 0
0 1 ω2 0 0 0 0 0 0 ω ω 0 1 0 ω2

0 0 0 1 0 ω2 0 0 0 0 ω2 ω ω 0 1
0 0 0 0 1 ω2 0 ω2 ω ω 0 1 ω ω 0

0 0 0 0 0 0 1 1 0 ω2 0 ω 0 ω2 ω

 .

Algorithm 27 gives that (g4, g5, T
3(g4), T 3(g5), T 2×3(g5)) is a basis of CI . Moreover

g(X) =

0 1 ω2

0 0 0
0 0 0

+

0 ω2 ω
1 1 0
0 0 0

X +

 ω 0 1
ω2 0 ω
0 0 0

X2 +

ω ω 0
0 ω2 ω
0 0 0

X3

is a generator polynomial of CI and I = 〈P (X), Q(X)〉 = 〈g(X)〉.

152 CHAPTER 5. QUASI-CYCLIC CODES

5.2.3 A property of generator polynomials

The following proposition generalizes [MS86a, Theorem 1, (c), page 190] and [MS86a,
Theorem 4, page 196].

Proposition 228. Let C be an `-quasi-cyclic code of length m` over Fq. Let P (X) be a
generator polynomial of C and Q(X) a generator polynomial of its dual. Then

P (X)
(
tQ?(X)

)
≡ 0 (mod Xm − 1)

where Q?(X) = Xdeg(Q)Q(1/X) denotes the reciprocal polynomial of Q and tQ the poly-
nomial whose coefficients are the transposed matrices of the coefficients of Q.

Proof. Since P (X) =
∑m−1

i=0 PiX
i is a generator polynomial of C, the rows of the matrix(
P0 P1 . . . Pm−1

)
and their shifts span C. Similarly Q(X) =

∑m−1
i=0 QiX

i and the rows of(
Q0 Q1 . . . Qm−1

)
and their shifts span C⊥. By definition of a dual code, we have

(
P0 P1 · · · Pm−1

)


tQ0
tQ1

...
tQm−1

 =
m−1∑
i=0

Pi
(
tQi
)

= 0.

As C and C⊥ are `-quasi cyclic codes we also have

m−1∑
i=0

Pi
(
tQi+j mod m

)
= 0

for all j ∈ Z. Therefore

P (X)
(
tQ?(X)

)
=

m−1∑
j=0

m−1∑
i=0

Pi
(
tQi−j mod m

)
Xj = 0 mod (Xm − 1).

Hence the proposition.

5.3 Quasi-BCH

In Section 5.2 we saw that quasi-cyclic codes can be regarded as a generalization of cyclic
codes. Therefore, it is interesting to focus on the generalization of BCH codes. We start
with the definition and then study their parameters. Finally we present a decoding
scheme for quasi-BCH codes raising interesting questions. We fix four positive integers
n = m` and s.

5.3. QUASI-BCH 153

5.3.1 Definition

Definition 229 (Primitive root of unity). Let q be a prime power. A matrix A ∈
M`(Fqs) is called a primitive m-th root of unity if

• Am = I`,

• Ai 6= I` if i < m,

• det(Ai −Aj) 6= 0, whenever i 6= j.

Proposition 230. Let q be a prime power and suppose that qs` − 1 = m. Then there
exists a primitive m-th root of unity in M`(Fqs).

Proof. Let α ∈ Fqs` be a primitive m-th root of unity and A ∈M`(Fqs) be the companion
matrix of the irreducible polynomial f(X) ∈ Fqs [X] of α over Fqs . There exists P ∈
GL`(Fqs`) and an upper triangular matrix U ∈M`(Fqs`) whose diagonal coefficients are
the eigenvalues of A such that A = P−1UP . The eigenvalues of A are exactly the roots
of f and then are primitive m-th roots of unity. Therefore A satisfies the three conditions
of Definition 229.

Definition 231 (Block minimum distance). Let C be a linear code over Fq of length
m`. We define the `-block minimum distance of C to be the minimum distance of the
folded code of C.

Definition 232 (Left quasi-BCH codes). Let A be a primitive m-th root of unity in
M`(Fqs) and δ ≤ m. We define the `-quasi-BCH code of length m`, with respect to A,
with designed minimum distance δ, over Fq by

Q-BCHq(m, `, δ, A) :=(c1, . . . , cm) ∈ (F`q)m :

m−1∑
j=0

Aijcj+1 = 0 for i = 1, . . . , δ − 1

 .

We call the linear map

SA : (F`q)m → (F`qs)m

x = (x1, . . . , xm) 7→
∑m−1

j=0 Ajxj+1

the syndrome map with respect to Q-BCH(m, `, δ, A).

Proposition 233. Using the notation of Definition 232, Q-BCHq(m, `, δ, A) has dimen-
sion at least (m − s(δ − 1))` and `-block minimum distance at least δ. In other words
Q-BCHq(m, `, δ, A) is an [m`,≥ (m− s(δ − 1))`,≥ δ]Fq -code.

154 CHAPTER 5. QUASI-CYCLIC CODES

Proof. According to Definition 232 we have that

H =


I` A · · · Am−1

I` A2 · · · A2(m−1)

...
...

...

I` Aδ−1 · · · A(δ−1)(m−1)

 ∈M(δ−1)`,m`(Fqs)

is a parity check matrix of Q-BCHq(m, `, δ, A). Let

V =


I` A · · · Aδ−1

I` A2 · · · A2(m−1)

...
...

...

I` Aδ−1 · · · A(δ−1)2

 .

Using the Vandermonde matrix trick we find that the determinant D of V over
M`(Fqs)[A] is

∏
i<j(A

i − Aj). By the definition of A we have detFqs D 6= 0, thus V
is invertible over M`(Fqs)[A] and then, invertible over Fqs . Therefore H has full rank
over Fqs .

Let i : Fm`q → Fm`qs be the canonical injection and denote by h : Fm`qs → F(δ−1)`
qs the Fq-

linear map given by H. Then we have dimFq(Imh) = s(δ− 1)`. Thus dimFqs (Imh ◦ i) ≤
(δ − 1)` and dimFq(Imh ◦ i) ≤ s(δ − 1)`. Therefore dimFq(kerh ◦ i) ≥ m` − s(δ − 1)`.
Suppose that there exists a codeword c = (c1, . . . , cm) ∈ C \ {0} with `-block weight b ≤
δ− 1. Note i1, . . . , ib the indexes such that cij 6= 0 for i = 1, . . . , b. This implies that the
matrix 

Ai1 Ai2 · · · Aib

A2i1 A2i2 · · · A2ib

...
...

...

A(δ−1)i1 A(δ−1)i2 · · · A(δ−1)ib


has not full rank which is absurd.

Example 234. Consider the 3-quasi-BCH codes defined by primitive roots in M3(F22) of
length 63 over F2 with designed minimum distance 6 defined by a 21-th root of unity in
F26 . In other words, q = 2,m = 21, ` = 3, s = 2 and δ = 6. There are 22 non-equivalent
codes splitting as follows:

Number of codes Parameters

2 [63, 33, 6]F2

18 [63, 33, 7]F2

2 [63, 36, 6]F2

Notice that their dimension is always at least (m− s(δ − 1))` = 33 and their minimum
distance is at least δ = 6. All the computations have been performed with the magma
computer algebra system [BCP97].

5.4. DECODING SCHEME FOR QUASI-BCH CODES 155

Example 235. Let q = 5,m = 7, ` = 3, s = 2 and δ = 3. Let ω ∈ F52 be a primitive
(52 − 1)-th root of unity and

A =

 ω9 ω4 ω22

ω11 ω11 ω15

ω2 ω19 1

 ∈M3(F52).

Then the left 3-quasi-BCH code of length 21 with respect to A with designed minimum
distance 3 over F5 has parameters [21, 9, 7]F5 . Its generator polynomial is given by

g(X) =

1 4 3
3 3 4
1 1 4

X4 +

4 0 0
4 0 0
4 0 4

X3 +

3 0 4
0 3 4
0 0 0

X2+

2 3 2
4 4 4
3 1 1

X +

1 0 0
0 1 0
0 0 1

 ∈M3(F5)[X].

5.4 Decoding scheme for quasi-BCH codes

For this section we fix five positive integers n = m`, r and δ, a primitive m-th root of
unity A ∈M`(Fqs) and C = Q-BCH(m, `, δ, A). If the folded of C is a BCH code C′ over
Fq` (which is not the case in general) then we can apply the standard, unique and list,
decoding algorithms. See for example [MS86a, Paragraph 6, page 270] and [ABC11]. If
C′ is not a code for which a decoding algorithm is known, we propose in what follows
a decoding scheme for C based on the key equation that we establish for quasi-BCH
codes. Following the same techniques as for BCH codes, we first compute the locator
and evaluator polynomials by solving the key equation and then compute the error vector
and recover the original message.

Notation 236. Let κ be any field and x = (x1, . . . , xn) ∈ κn. We denote by w(x)
the Hamming weight of x i.e. the cardinal of W = {i : i ∈ {1, . . . , n} s.t. xi 6= 0}. We
denote by Supp(x) the support of x i.e. the set W .

5.4.1 The key equation

As in the scalar case, we exhibit a key equation for quasi-BCH codes. In this subsection,
all vectors are considered to be single-column matrices. Consider F`q as a product ring
of ` copies of Fq. We define a map

Ψ : M`(Fqs)[[X]]× F`q[[X]] → F`qs [[X]]

(f, g) 7→
∑

i,j fjgiX
i+j

where the figj are matrix-vector products. In the sequel we will denote Ψ(f, g) simply
by f � g. Note that we have (fh) � g = f � (h � g) for any h ∈M`(Fqs).

156 CHAPTER 5. QUASI-CYCLIC CODES

Let c be a codeword of C sent over a channel, y ∈ (F`q)m be the received word
and let e be the error vector i.e. e = y − c such that w(e) = w ≤ b(δ − 1)/2c. Let
W = Supp(e) = {i1, . . . , iw}.

Definition 237 (Locator and evaluator polynomials). We define the locator polynomial
by

Λ(X) :=
∏
i∈W

(1−AiX) ∈M`(Fqs)

and the evaluator polynomial by

L(X) :=
∑
i∈W

 w∏
j 6=i

Ai(1−Aj)X

 � yi ∈ F`qs [X].

Lemma 238. Let B ∈M`(Fq) be a nonzero matrix, then 1−BX has a left- and right-
inverse in M`(Fq)[[X]], both equal to

+∞∑
j=0

BjXj .

We see that the locator polynomial Λ(X) is invertible in the power series ring
M`(Fqs)[[X]] and we have

(
Λ(X)−1

)
� L(X) =

∑
i∈W

(
Ai(1−AiX)−1

)
� yi

=
∑
i∈W

+∞∑
j=0

Ai(j+1)Xj

 � yi
=

+∞∑
j=0

∑
i∈W

Ai(j+1)yiX
j .

Using the fact that y = c + e and that, by definition, SAi(y) = SAi(e) for any
i = 0, . . . , δ − 1 we have

(
Λ(X)−1

)
� L(X) =

+∞∑
j=0

SAj+1(e)Xj := S∞(X).

Proposition 239. For any error vector e ∈ Fm`q such that w(e) ≤ b(δ − 1)/2c we have

Λ(X) � S∞(X) = L(X)

and therefore
Λ(X) � S∞(X) ≡ L(X) mod Xδ. (5.2)

We will refer to 5.2 as the key equation.

5.4. DECODING SCHEME FOR QUASI-BCH CODES 157

Problems solving the key equation

In the case of BCH codes, the extended Euclidean and Berlekamp-Massey algorithms
can be used to solve the key equation. We denote by Sδ(X) the polynomial S∞(X)
mod Xδ from 5.2 which can be written as

(
Λ0 . . . Λδ−1 L0 . . . Lδ−1

)



S0 S1 . . . Sδ−1

S0
...

. . .
...
S0

−1 0 . . . 0

0 −1
...

...
. . . 0

0 . . . 0 −1


= 0. (5.3)

Where the Si’s and Li’s are column vectors such that the Si’s are the coefficients of
Sδ in F`qs and the Li’s are the coefficients in F`qs of L(X). The Λi’s are the coefficients
of Λ(X) in M`(Fqs). This system of linear equations over Fqs has many solutions in Fqs
since there are `δ + δ unknowns and only δ equations for each row of(

Λ0 . . . Λδ−1 L0 . . . Lδ−1

)
.

However, we are only interested in the solution such that (Λ0, . . . ,Λδ−1) is an error
locator polynomial. In other words, if we let B be the solutions of 5.3 and

S =

{∏
i∈W

(1−AiX) ∈M`(Fqs) : W ⊂ {1, . . . ,m} and #W ≤ b(δ − 1)/2c

}
be the set of all possible locator polynomials corresponding to errors of weight at most
b(δ − 1)/2c, we are interested in the elements of B ∩S.

Proposition 240. There exists one and only one solution of equation 5.3 in S.

Proof. Equation 5.2 ensures that there exists at least one element in B∩S. If there were
more than one solution in S there would exist more than one codeword in a Hamming
ball of radius b(δ − 1)/2c which is absurd.

The solving of 5.3 remains difficult. One needs an exponential (in `δ) number of
arithmetic operations in Fqs to find the element of B ∩S. For small values of q, ` and
δ the solution can be found by exhaustive search on the solutions of 5.3.

Unambiguous decoding scheme

In this subsection, we prove that, as in the BCH case, the roots of the locator polynomial
(in Fqs [A]) give precious information about the location of errors. The factorization of
polynomials of M`(Fqs)[X] is not unique, all the roots of the locator polynomial do not
indicate an error position.

158 CHAPTER 5. QUASI-CYCLIC CODES

Proposition 241. Let e ∈ Fm`q be an error vector such that w(e) ≤ b(δ − 1)/2c and
Λ(X) be the locator polynomial associated to e. We have

ei 6= 0⇐⇒ Λ(A−i) = 0.

Proof. By definition, we have Λ(A−i) = 0 if ei 6= 0. Conversely, if ei = 0 then AjA−i 6= I`
for j ∈ Supp(e). Thus 1 − AjA−i is a unit in Fqs [A] by definition of A. Therefore
Λ(A−i) 6= 0.

These roots can be found by an exhaustive search on the powers of A in at most
m attempts. At this step the support of the error vector e is known. The last step to
complete the decoding is to find the value of the error.

Proposition 242. Let e ∈ Fm`q be an error such that w(e) ≤ b(δ−1)/2c, W = Supp(e),
Λ(X) be the locator and L(X) be the evaluator polynomials associated to e. If A−i is a
root of Λ(X) for i ∈W , then

ei =
∏

j∈W\{i}

(Ai −Aj)−1L(A−i)

where L(Aj) denotes
∑

(Aj)iLi.

Proof. Let i0 ∈W . We have

L(A−i0) =
w∑
i=1

w∏
j 6=i

Ai(1−A−i0Aj)yi

=
∏

j∈W\{i0}

Ai0(1−A−i0Aj)ei0

=
∏

j∈W\{i0}

(Ai0 −Aj)ei0 .

By definition of A, Ai0 −Aj is invertible for all j ∈W hence the result.

5.5 Evaluation codes

5.5.1 Definition and parameters

In this subsection we generalize evaluation codes. For any ring R and any positive integer
k, we denote by R[X]<k the left R-module of all polynomials of R[X] of degree at most
k − 1.

Proposition 243. Let q be a prime power and `,m be positive integers such that m =
q` − 1. Let A ∈ M`(Fq) be a primitive m-th root of unity. Then Fq[A] and Fq` are
isomorphic as rings.

5.5. EVALUATION CODES 159

Algorithm 28 Decoding algorithm for quasi-BCH codes

Input: The received word y = c+ e where c ∈ C and w(e) ≤ b(δ − 1)/2c.
Output: The codeword c, if it exists such that d(y, c) ≤ b(δ − 1)/2c.
Sδ(X)← Syndrome of y.
Compute Λ(X) and L(X) (Subsection 5.4.1).
R← roots of Λ(X) in Fqs [A].
W ← {i|A−i ∈ R}.
ζ ← (0, . . . , 0).
for i ∈W do
ζi =

∏
j∈W\{i}(A

i −Aj)−1L(A−i).
end for
return y − ζ.

Proof. Let µ(X) be the minimal polynomial of A of degree at most `. We have µ|Xm−1,
thus the roots of µ are all distinct. By Definition 229-(3), the roots of µ lie in Fq` and
not in any subfield. Therefore µ is irreducible.

Definition 244 (Quasi-cyclic evaluation codes). Let ` be a positive integer and q be a
prime power. Let m = q` − 1 and k ≤ m. Let A ∈ M`(Fq) a primitive m-th root of
unity. Let π be a Fq-linear map from Fq[A] into F`q. We denote by CA,k,π the image of:

(Fq[A])[X]<k
evA−→ (Fq[A])m

π×m−→ (F`q)m
P (X) 7−→

(
P (A0), . . . , P (Am−1)

)
7−→

(
π(P (A0)), . . . , π(P (Am−1))

)
.

Proposition 245. Taking the notation of Definition 244, CA,k,π is a `-quasi cyclic code
over Fq of length m` and of dimension over Fq at least k`− dimFq(kerπ×m).

Proof. By Proposition 243 the statement about the dimension of CA,k,π is obvious. Let

P (X) =
k−1∑
i=0

m−1∑
j=0

PijA
jXi ∈ Fq[A][X]<k

with Pij ∈ Fq. Then

Q(X) =
k−1∑
i=0

m−1∑
j=0

PijA
j+iXi ∈ Fq[A][X]<k

is such that Q(Ai) = P (Ai+1) for all i ∈ Z and CA,k,π is `-quasi cyclic.

5.5.2 New good codes

Proposition 246. Using the notation of Definition 244, if π is such that for B = (bij) ∈
Fq[A]

160 CHAPTER 5. QUASI-CYCLIC CODES

• π(B) = (bi1, . . . , bi`) for some i,

• or π(B) = (b1j , . . . , b`j) for some j,

then dimCA,k,π ≥ k` and CA,k,π has minimum distance d ≥ m− k + 1.

Proof. In both cases, it suffices to notice that π×m is injective. If π×m(B1, . . . , Bm) = 0
then detBi = 0 for i = 1, . . . ,m. As Fq[A] is a field we must have Bi = 0 for i =
1, . . . ,m. In fact under the assumptions of the proposition π×m is an isomorphism since
#((Fq[A])m) = qm` = #((F `q)m).

Remark 247. All the computations of the examples below have been performed with the
magma computer algebra system [BCP97].

1. For some particular choices of π, especially when we decrease the dimension k, we
observe that the minimum distance is multiplied by `− 1. For example, with

A =

0 ω 0
ω ω2 ω2

1 ω2 1

 ∈M3(F4) with F4 = F2[ω],

k = 4 and π((bij)) = (b2,1, b1,2, b2,3), we find a [189, 11, 125]F4-code. According
to [Gra07], the previous best known minimum distance was 121.

2. As for Reed-Solomon codes, we can evaluate polynomials of (Fq[A])[X]<k at less
than m = q` − 1 points. Following this approach, we find the following new good
codes listed below together with the corresponding previous best known minimum
distances:

[186, 11, 122]F4 , 120;
[183, 11, 119]F4 , 117;
[180, 11, 116]F4 , 114;
[177, 11, 113]F4 , 112.

3. Markus Grassl applied different methods to construct new codes from our
[189, 11, 125]F4 code (item 1 of Remark 247). For example, he used a puncturing
method [GW04]. Some of the codes he obtained have the same parameters as the
codes listed in item 2 of Remark 247. He found [186, 11, 122]F4 , [183, 11, 119]F4 and
[180, 11, 116]F4 codes. He also found a [177, 11, 114]F4 code while the best known
minimum distance was 112. The 49 new codes found with the help of Markus
Grassl are listed in Table 5.1. All the methods used for the construction of these
codes are detailed in [Gra07].

Remark 248. We have proved in Proposition 243 that Fq[A] is a field such that [Fq[A] :
Fq] = `. Thus there is a Fq-linear isomorphism from Fq[A] to F`q. Consider the following
one:

Fq[A]
ψ−→ F`q

B = b0I` + b1A+ · · ·+ b`−1A
`−1 7−→ (b0, b1, . . . , b`−1).

5.6. CONCLUSION 161

New codes over F4

[171, 11, 109]4 [172, 11, 110]4 [173, 11, 110]4 [174, 11, 111]4 [175, 11, 112]4
[176, 11, 113]4 [177, 11, 114]4 [178, 11, 115]4 [179, 11, 115]4 [180, 11, 116]4
[181, 11, 117]4 [182, 11, 118]4 [183, 11, 119]4 [184, 10, 121]4 [184, 11, 120]4
[185, 10, 122]4 [185, 11, 121]4 [186, 10, 123]4 [186, 11, 122]4 [187, 10, 124]4
[187, 11, 123]4 [188, 10, 125]4 [188, 11, 124]4 [189, 10, 126]4 [189, 11, 125]4
[190, 10, 127]4 [190, 11, 126]4 [191, 10, 128]4 [191, 11, 127]4 [192, 11, 128]4
[193, 11, 128]4 [194, 11, 128]4 [195, 11, 128]4 [196, 11, 129]4 [197, 11, 130]4
[198, 11, 130]4 [199, 11, 131]4 [200, 11, 132]4 [201, 10, 133]4 [201, 11, 132]4
[202, 10, 134]4 [202, 11, 132]4 [203, 10, 135]4 [204, 10, 136]4 [204, 11, 133]4
[205, 11, 134]4 [210, 11, 137]4 [213, 11, 139]4 [214, 11, 140]4

Table 5.1: 49 new codes over F4 which have a larger minimum distance than the
previously known ones.

Then
CA,k,ψ = ψ×m(evA(Fq[A][X]<k))

is still an `-quasi cyclic code of length m` and of dimension k`. Let Π ∈M`(Fq) and let

π : F`q → F`q
x 7→ xΠ

for a given Π ∈M`(Fq). Then

CA,k,ψ,π = π×m(ψ×m(evA(Fq[A][X]<k)))

is an `-quasi cyclic code of length m` and dimension ≥ k`− dim(kerπ).
We notice that there exist matrices Π for which the obtained minimum distance is

always greater than m− k + 1. For instance, taking ` = 3, q = 4 and the matrix

Π =

 1 ω2 ω
ω2 ω 1
1 1 1

 ,

give codes with minimum distance close to 2(m− k + 1).

5.6 Conclusion

In this paper we presented a generalization of results for cyclic codes to quasi-cyclic
codes. We proved that there is a natural one-to-one correspondence between `-quasi-
cyclic codes and left ideals of M`(Fq)[X]/(Xm − 1). We then extended the construction
of BCH and evaluation codes to this context. This generalization allowed us to find a lot
of new codes with good parameters and, sometimes, beating previous known minimum
distances. A deeper study of decoding algorithms for quasi-BCH need more work and
remains an open problem.

162 CHAPTER 5. QUASI-CYCLIC CODES

Acknowledgments

We would like to thank the referees, whose suggestions have permit to improve this
article, in particular, for Algorithm 27 and for the idea of using the Morita equivalence
to prove the one-to-one correspondence between left ideals and quasi-cyclic codes. We
would like to thank Markus Grassl for his precious help for finding new good codes.

Chapter 6

An algorithm for list decoding
number field codes

This chapter constitutes an accepted paper at ISIT (International Symposium on Infor-
mation Theory) 2012. It has been done in collaboration with Jean-François Biasse.

Abstract—We present an algorithm for list decoding codewords of algebraic number
field codes in polynomial time. This is the first explicit procedure for decoding number
field codes whose construction were previously described by Lenstra [Len86] and Gu-
ruswami [Gur03]. We rely on a new algorithm for computing the Hermite normal form
of the basis of an OK-module due to Biasse and Fieker [BF12] where OK is the ring of
integers of a number field K.

6.1 Introduction

Algorithms for list decoding Reed-Solomon codes, and their generalization the algebraic-
geometric codes are now well understood. The codewords consist of sets of functions
whose evaluation at a certain number of points are sent, thus allowing the receiver to
retrieve them provided that the number of errors is manageable.

The idea behind algebraic-geometric codes can be adapted to define algebraic codes
whose messages are encoded as a list of residues redundant enough to allow errors during
the transmission. The Chinese Remainder codes (CRT codes) have been fairly studied
by the community [GSS00, Man76]. The encoded messages are residues modulo N :=
p1, · · · , pn of numbers m ≤ K := p1 · · · pk where p1 < p2 < · · · < pn are prime numbers.
They are encoded by using

Z −→ Z/p1 × · · · × Z/pn
m 7−→ (m mod p1, · · · ,m mod pn).

Decoding algorithms for CRT codes were significantly improved to reach the same level
of tolerance to errors as those for Reed-Solomon codes [Bon00, GRS99, GSS00]. As
algebraic-geometric codes are a generalization of Reed-Solomon codes, the idea arose

163

164CHAPTER 6. AN ALGORITHM FOR LIST DECODING NUMBER FIELD CODES

that we could generalize the results for CRT codes to redundant residue codes based
on number fields. Indeed, we can easily define an analogue of the CRT codes where a
number field K plays the role of Q and its ring of integers OK plays the role of Z. Then,
for prime ideals p1, · · · , pn such that N (p1) < · · · < N (pn), a message m ∈ OK can be
encoded by using

OK −→ OK/p1 × · · · × OK/pn
c : m 7−→ (m mod p1, · · · ,m mod pn).

The construction of good codes on number fields have been independently studied by
Lenstra [Len86] and Guruswami [Gur03]. They provided indications on how to chose
number fields having good properties for the underlying codes. In particular, Gu-
ruswami [Gur03] showed the existence of asymptotically good number field codes, that
is a family Ci of [ni, ki, di]q codes of increasing block length with

lim inf
ki
ni
> 0 and lim inf

di
ni
> 0.

Neither of them could provide a decoding algorithm. In the concluding remarks
of [Gur03], Guruswami identifies the application of the decoding paradigm of [Gur04,
GS98,GSS00] to number field codes as an open problem.
Contribution: The main contribution of this paper is to provide the first algorithm for
decoding number field codes. We first show that a direct adaptation of an analogue of
Coppersmith’s theorem due to Cohn and Heninger [CH11] allows to follow the approach
of Boneh [Bon00] which does not allow to reach the Johnson bound. Then we adapt
the decoding paradigm of [Gur04, Chap. 7] to number field codes, by using methods
for manipulating modules over the ring of integers of a number field recently described
in [BF12] to achieve the Johnson bound.

Throughout this paper, we denote by K a number field of degree d, of discriminant
∆ and of ring of integers OK . The prime ideals (pi)i≤n satisfy N (p1) < N (p2) < · · · <
N (pn), and we define N :=

∏
i≤nN (pi) and B :=

∏
i≤kN (pi)

1/d for integers k, n such
that 0 < k < n. Before describing our algorithm in more details in the following sections,
let us state the main result of the paper.

Theorem 5. Let ε > 0, and a message m ∈ OK satisfying ‖m‖ ≤ B, then there is an
algorithm that returns all the messages m′ ∈ OK such that ‖m′‖ ≤ B and that c(m) and
c(m′) have mutual agreement t satisfying

t ≥
√
k(n+ ε).

This algorithm is polynomial in d , log(N), 1/ε and log |∆|.

6.2 Generalities on number fields

Let K be a number field of degree d. It has r1 ≤ d real embeddings (θi)i≤r1 and 2r2

complex embeddings (θi)r1<i≤r1+2r2 (coming as r2 pairs of conjugates). The field K is

6.3. DECODING WITH COPPERSMITH’S THEOREM 165

isomorphic to OK ⊗Q where OK denotes the ring of integers of K. We can embed K in

KR := K ⊗ R ' Rr1 × Cr2 ,

and extend the θi’s to KR. Let T2 be the Hermitian form on KR defined by

T2(x, x′) :=
∑
i

θi(x)θi(x
′),

and let ‖x‖ :=
√
T2(x, x) be the corresponding L2-norm. Let (αi)i≤d be such that

OK = ⊕iZαi, then the discriminant of K is given by ∆ = det2(T2(αi, αj)). The norm
of an element x ∈ K is defined by N (x) =

∏
i |θi(x)|.

We encode our messages with prime ideals of OK . However, for decoding, we need
a more general notion of ideal, namely the fractional ideals of OK . A subset a ⊆ K is
said to be a fractional ideal if ∃r ∈ Z, ra ⊆ OK . When a fractional ideal is contained in
OK , we refer to it as an integral ideal.two fractional ideals of OK is given by

ab = {a1b1 + · · ·+ albl | l ∈ N, a1, · · · al ∈ a, b1, · · · bl ∈ b}

a + b = {a+ b | a ∈ a, b ∈ b}.

Any non zero fractional ideal a of OK is invertible, that is there exists a−1 := {x ∈
K | xa ⊆ OK} such that aa−1 = OK . The norm of integral ideals is given by N (I) :=
[OK : I], which extends to fractional ideals by N (I/J) := N (I)/N (J). The norm of a
principal ideal agrees with the norm of its generator N (xOK) = | N (x)|.

In the following, we will study finitely generated sub OK-module of OK [y]. Let
M ⊆ K l be a finitely generated OK-module. As in [Coh91, Chap. 1], we say that
[(ai), (ai)]i≤n, where ai ∈ K and ai is a fractional ideal of K, is a pseudo-basis for M if
M = a1a1 ⊕ · · · ⊕ anan. We also call a pseudo-matrix representing M the matrix of the
coefficients of the (ai)i≤n along with the ideals ai. The algorithm [BF12, Alg.4] returns
a pseudo-matrix representing M where the matrix of the (ai)i≤n has a triangular shape
in polynomial time.

6.3 Decoding with Coppersmith’s theorem

An analogue of Coppersmith’s theorem was described by Cohn and Heninger in [CH11].
It was used to provide an elegant way of decoding Reed-Solomon codes, and the possi-
bility to use it for breaking lattice- based cryptosystems in OK modules was considered,
although they concluded that it would not improve the state-of-the-art algorithms.

Theorem 6 (Cohn-Heninger). Let f ∈ OK [X] be a monic polynomial of degree l, 0 <
β ≤ 1, λ1, · · · , λd > 0 and I (OK an ideal. We can find in polynomial time all the
ω ∈ OK such that |ω|i := |σi(ω)| ≤ λi and

N (gcd(f(ω)OK , I) > N (I)β,

provided that the λi satisfy
∏
i λi < (2 + o(1))−d

2/2N (I)β
2/l.

166CHAPTER 6. AN ALGORITHM FOR LIST DECODING NUMBER FIELD CODES

Although not mentioned in [CH11], a straightforward adaptation of Theorem 6 with

β :=

√∑
i≤k logN (pi)∑
i≤n logN (pi)

where 0 < k < n, I :=
∏
i≤n pi and ∀i, λi :=

∏
i≤kN (pi)

1/d provides

a polynomial time algorithm for decoding number field codes.

Theorem 7. Let (r1, · · · , rn) ∈ OnK and m ∈ OK satisfying ∀i, m = ri mod pi, then
Theorem 6 applied to f(ω) := ω−m allows to return in polynomial time a list of m′ ∈ OK
with N (m′) ≤

∏
i≤kN (pi) that differ from m in at most e places where

e < n−

√
kn

logN (pn)

logN (p1)
.

In the rest of the paper, we present a method based on Guruswami’s general frame-
work for residue codes [Gur04] that allows us to get rid in the dependency in logN (pn)

logN (p1)
in the decoding bound thus reaching the Johnson bound.

6.4 Johnson-type bound for number fields codes

A Johnson-type bound is a positive number J depending on the distance, the blocklength
and the cardinalities of the alphabets constituting the code. It guaranties that a “small”
number of codewords are in any sphere of radius J . By “small” number, we mean
a number of codewords which is linear in the code blocklength and the dimension of
the code. In our case, the Johnson-type bound for number fields codes depends only
on the code blocklength and its minimal distance, and “small” means polynomial in∑n

i=1 logN (pi).
The Johnson-type bound of [Gur04, Section 7.6.1] remains valid for number field

codes. For any prime ideal p ⊂ OK , the quotient OK/p is a finite field. Thus the i’th
symbol of a codeword comes from an alphabet of size N (pi) = |OK/pi| and [Gur04, Th.

7.10] can be applied. Let t be the least positive integer such that
∏t
i=1N (pi) >

(
2B
d

)d
,

where d = [K : Q] and let T =
∏t
i=1N (pi). Then, by [Gur03, Lem. 12], the minimal

hamming distance of the number fields code is at least n−t+1. Using [Gur04, Th. 7.10],
we can show that for a given message and ε > 0, only a “small” number of codewords
satisfy

n∑
i=1

ai >
√

(t+ ε)n, (6.1)

where ai = 1 if the codeword and the message agree at the i-th position, ai = 0 oth-
erwise. Thus, if our list decoding algorithm returns all the codewords having at most
n −

√
(t+ ε)n errors then this number is guaranteed to be “small”. Therefore, the

Johnson bound appears to be a good objective for our algorithm. Note that we would
derive a different bound by using weighted distances. In particular, by using the log-

weighted hamming distance i.e. d(x, y) =
∑

i:x 6=y mod pi

logN (pi), the condition would be∑n
i=1 ai logN (pi) >

√
(log T + ε) logN .

6.5. GENERAL DESCRIPTION OF THE ALGORITHM 167

6.5 General description of the algorithm

In this section, we give a high-level description of our decoding algorithm. We follow
the approach of the general framework described in [Gur04], making the arrangements
required in our context. Our code is the set of m ∈ OK such that ‖m‖ ≤ B where
B =

∏
i≤kN (pi)

1/d. We also define N :=
∏
i≤nN (pi). A codeword m is encoded via

OK −→ OK/p1 × · · · × OK/pn
m 7−→ (m mod p1, · · · ,m mod pn).

Let z1, · · · , zn be non-negative real numbers, and let Z be a parameter. In this section,
as well as in Section 6.6 and 6.7, we assume that the zi are integers. We assume that
we received a vector (r1, · · · , rn) ∈

∏
iOK/pi. We wish to retrieve all the codewords m

such that
∑

i aizi > Z where ai = 1 if m mod pi = ri and 0 otherwise (we say that m
and (ri)i≤n have weighted agreement Z).

We find the codewords m with desired weighted agreement by computing roots of a
polynomial c ∈ OK [y] that satisfies

‖m‖ ≤ B =⇒ ‖c(m)‖ < F, (6.2)

for an appropriate bound F . We choose the polynomial c satisfying 6.2 in the ideal∏
i≤n J

zi
i ⊆ OK [y] where

Ji = {a(y)(y − ri) + p · b(y) | a, b ∈ OK [y] and p ∈ pi}.

With such a choice of a polynomial, we necessarily have c(m) ∈
∏
i p
ziai
i , where ai = 1 if

c(m) mod pi = ri, 0 otherwise. In particular, if c(m) 6= 0 then N (c(m)) ≥
∏
iN (pi)

ziai .
In addition, we know, from the inequality between arithmetic and geometric mean, that
‖c(m)‖ ≥

√
dN (c(m))1/d. We thus know that if the weighted agreement satisfies

∑
i≤n

aizi logN (pi) > −
d

2
log(d) + d log(F), (6.3)

which in turns implies
√
d (
∏
iN (pi)

ziai)1/d > F , then c(m) has to be zero, since other-
wise it would contradict 6.2.

Algorithm 29 Decoding algorithm

Input: OK , z1, · · · , zn, B, Z, r1, · · · , rn ∈
∏
iOK/pi.

Output: All m such that
∑

i aizi > Z.
1: Compute l and F .
2: Find c ∈

∏
i≤n J

zi
i ⊆ OK [y] of degree at most l such that ‖m‖ ≤ B =⇒ ‖c(m)‖ < F .

3: Find all roots of c and report those roots ξ such that ‖ξ‖ ≤ B and
∑

i aizi > Z.

168CHAPTER 6. AN ALGORITHM FOR LIST DECODING NUMBER FIELD CODES

6.6 Existence of the decoding polynomial

In this section, given weights (zi)i≤n, we prove the existence of a polynomial c ∈
∏
i J

zi
i

and a constant F > 0 such that for all ‖m‖ ≤ B, m ∈ OK , we have ‖c(m)‖ ≤ F . This
proof is not constructive. The actual computation of this polynomial will be described
in Section 6.7. We first need to estimate the number of elements of OK bounded by a
given size.

Lemma 249. Let F ′ > 0 and 0 < γ < 1, then the number of x ∈ OK such that ‖x‖ ≤ F ′
is at least ⌊

πd/2F ′d

2r1+r2−1+γ
√
|∆|Γ(d/2)

⌋
.

Proof. As in [Neu99, Chap. 5], we use the standard results of Minkowski theory for
our purposes. More precisely, there is an isomorphism f : KR −→ Rr1+2r2 and a scalar
product (x, y) :=

∑
i≤r1 xiyi +

∑
r1<i≤r1+2r2

2xiyi on Rr1+2r2 transferring the canonical

measure from KR to Rr1+2r2 . Let λ = f(OK), X := {x ∈ KR | ‖x‖ ≤ F ′}, and m ∈ N.
We know from Minkowski’s lattice point theorem that if Vol(X) > m2d det(λ), then
#(f(x) ∩ λ) ≥ m. As Vol(X) = 2r2

(
2πd/2F ′d/Γ(d/2)

)
and det(λ) =

√
|∆|, we have the

desired result.

Then, we must derive from Lemma 249 an analogue of [Gur04, Lemma 7.6] in our
context. This lemma allows us to estimate the number of polynomials of degree l satis-
fying 6.2. To simplify the expressions, we use the following notation in the rest of the
paper

αd,∆,γ :=
πd/2

2r1+r2−1+γ
√
|∆|Γ(d/2)

.

Lemma 250. For positive integers B,F ′, the number of polynomials c ∈ OK [y] of degree
at most l satisfying 6.2 is at least(

αd,∆,γ

(
F ′

(l + 1)Bl/2

)d)l+1

.

Proof. Let c(y) = c0 + c1y + · · ·+ cly
l. We want the ci’s to satisfy ‖cimi‖ < F ′/(l + 1)

whenever ‖m‖ ≤ B. This is the case when ‖ci‖ < F ′/(Bi(l + 1)). By Lemma 249,

there are at least αd,∆,γ
(
F ′/((l + 1)Bi)

)d
possibilities for ci. Therefore, the number of

polynomials c satisfying 6.2 is at least

(αd,∆,γ)l+1

((
F ′

l + 1

)l+1 l∏
i=0

B−i

)d
,

which finishes the proof.

6.7. COMPUTATION OF THE DECODING POLYNOMIAL 169

Now that we know how to estimate the number of c ∈ OK [y] of degree at most l
satisfying 6.2, we need to find a lower bound on F to ensure that we can find such a
polynomial in

∏
i J

zi
i . The following lemma is an equivalent of [Gur04, Lemma 7.7].

Lemma 251. Let l, B, F be positive integers, there exists c ∈
∏
i J

zi
i satisfying 6.2

provided that

F > 2(l + 1)Bl/2 1

(αd,∆,γ)1/d

(∏
i

N (pi)
(zi+1

2)

) 1
d(l+1)

. (6.4)

Proof. Let us apply Lemma 250 to F ′ = F/2. There are at least

(
αd,∆,γ

(
F/2

(l + 1)Bl/2

)d)l+1

polynomial c ∈ OK [y] satisfying ‖m‖ ≤ B ⇒ ‖c(m)‖ < F/2. In addition, we know

from [Gur04, Corollary 7.5] that
∏
i |N (pi)|(

zi+1
2) ≥ |OK [y]/

∏
i J

zi
i |, which implies that

if 6.4 is satisfied, then necessarily

(
αd,∆,γ

(
F/2

(l + 1)Bl/2

)d)l+1

>

∣∣∣∣∣OK [y]/
∏
i

Jzii

∣∣∣∣∣ .
This means that there are at least two distinct polynomials c1, c2 ∈ OK [y] of degree at
most l such that (c1 − c2) ∈

∏
i J

zi
i and ‖c1(m)‖, ‖c2(m)‖ < F/2 whenever ‖m‖ ≤ B.

The choice of c := c1 − c2 finishes the proof.

6.7 Computation of the decoding polynomial

Let l > 0 be an integer to be determined later. To compute c ∈
∏
i J

zi
i of degree at most

l satisfying 6.2, we need to find a short pseudo-basis of the sub OK-module M ∩
∏
i J

zi
i of

K l+1 where M is the OK-module of the elements of OK [y] of degree at most l embedded
in K l+1 via

∑
i ciy

i → (ci). We first compute a pseudo-generating set for each M ∩ Jzii ,
then we compute a pseudo-basis for their intersection, and we finally call the algorithm
of [FS10] to produce a short pseudo-basis of M ∩

∏
i J

zi
i from which we derive c.

An algorithm for computing a pseudo-basis of the intersection of two modules given
by their pseudo-basis is described by Cohen in [Coh91, 1.5.2]. It relies on the HNF algo-
rithm for OK-modules. The HNF algorithm presented in [Coh91, 1.4] is not polynomial,
but a variant recently presented in [BF12] enjoys this property. We can therefore ap-
ply [Coh91, 1.5.2] with the HNF of [BF12] successively for each pseudo-basis of M ∩ Jzii
to produce a pseudo-basis of M ∩

∏
i J

zi
i .

170CHAPTER 6. AN ALGORITHM FOR LIST DECODING NUMBER FIELD CODES

Algorithm 30 Computation of the decoding polynomial

Input: (pi, zi)i≤n, l, N , B, F such that ∃c ∈
∏
i J

zi
i of degree at most l satisfying 6.2

for F , and the encoded message (r1, · · · , rn) ∈
∏
iOK/pi.

Output: c ∈
∏
i J

zi
i satisfying 6.2 for F ′ = 2

dl
2

√
l + 1

(
22+d(6+3d)d3|∆|2+ 11

2d

)
F of degree

at most l.
1: for i ≤ n do
2: z̃i ← min(zi, l).
3: For 0 ≤ j ≤ z̃i: aij ← pzi−ji , aij ← (y − ri)j .
4: For 1 ≤ j ≤ l − zi: aij ← OK , aij ← yj(y − ri)zi .
5: Let

(
(aij), (a

i
j)j≤l+1

)
be a pseudo matrix for M ∩ Jzii .

6: end for
7: Compute a pseudo-basis [(ci), (ci)]i≤l+1 of M1 = M ∩

∏
i J

zi
i .

8: Deduce a pseudo-basis [(di), (di)]i≤l+1 of the module M2 given by

(v0, v1, · · · , vl) ∈M1 ⇐⇒ (v0, v1 ·B, · · · , vl · (B)l) ∈M2.

9: Let [(bi), (bi)]i≤l+1 be a short pseudo-basis of M2 obtained with the reduction algo-
rithm of [FS10].

10: Let x1, x2 be a short basis of b1 obtained with [FS10, Th. 3].
11: return c ∈M1 corresponding to x1b1 ∈M2.

6.8 Good weight settings

To derive our main result, we need to consider weights zi > 0 in R rather than Z. Let

βd,∆,γ :=
d3− d

2 23(1+d(2+d))|∆|2+ 11
2d

αd,∆,γ
1
d

,

then by combining 6.3, 6.4 and Algorithm 30, we know that given (r1, · · · , rn) ∈∏
i≤nOK/pi, l > 0, B =

∏
i≤kN (pi)

1/d and integer weights zi > 0, Algorithm 30
returns a polynomial c of degree at most l such that all m ∈ OK satisfying ‖m‖ ≤ B
and ∑

i≤n
aizi logN (pi) ≥

l

2
log(2d

2
Bd) +

3d

2
log(l + 1)

+
1

l + 1

∑
i≤n

(
zi + 1

2

)
logN (pi) + log βd,∆,γ , (6.5)

(where ai = 1 if m mod pi = ri, 0 otherwise) are roots of c. In the following, we no
longer assume the zi to be integers. However, we will use our previous results with the
integer weights z∗i := dAzie for a sufficiently large integer A to be determined.

6.8. GOOD WEIGHT SETTINGS 171

Proposition 252. Let ε > 0, non-negative reals zi, B =
∏
i≤kN (pi)

1/d, and an encoded

message (r1, · · · , rn) ∈
∏
iOK/pi, then our algorithm finds all the m ∈ OK such that

‖m‖ ≤ B and

∑
i≤n

aizi logN (pi) ≥

√√√√√log(2d2Bd)

∑
i≤n

z2i logN (pi) + εz2max

,
where ai = 1 if m mod pi = ri, 0 otherwise.

Proof. Note that we can assume without loss of generality that zmax = 1. Let z∗i = dAzie
for a sufficiently large integer A, which thus satisfies Azi ≤ z∗i < Azi + 1. The decoding
condition 6.5 is met whenever

∑
i≤n

aizi logN (pi) ≥
l

2A
log(2d

2
Bd) +

3d

2A
log(l + 1)

+
A

2(l + 1)

∑
i≤n

(
z2
i +

3

A
zi +

2

A2

)
logN (pi)

+
1

A
log βd,∆,γ . (6.6)

Let Zi := z2
i + 3

Azi + 2
A2 for i ≤ n and

l :=

A
√∑

i≤n Zi logN (pi)

log(2d2Bd)

− 1.

We assume that A ≥ log(2d
2
Bd), which ensures that l > 0. For this choice of l, condi-

tion 6.6 is satisfied whenever

∑
i≤n

aizi logN (pi) ≥
3d

2A
log

A√∑i≤n Zi logN (pi)

log(2d2Bd)
+ 1


+

√√√√√log(2d2Bd)

∑
i≤n

Zi logN (pi)


+

1

A
log βd,∆,γ . (6.7)

Assume that A ≥ 10 logN
ε and A ≥ log βd,∆,γ

logN , then for N large enough, the right side

172CHAPTER 6. AN ALGORITHM FOR LIST DECODING NUMBER FIELD CODES

of 6.7 is at most

O

(
log logN

logN

)
+

√√√√√log(2d2Bd)

∑
i≤n

z2
i logN (pi) +

ε

2



≤

√√√√√log(2d2Bd)

∑
i≤n

z2
i logN (pi) + ε


The degree l of our decoding polynomial c is therefore polynomial in logN , 1

ε , d and
log |∆|. By [Aya10, 2.3], we know that the complexity to find the roots of c is polynomial
in d, l and in the logarithm of the height of c, which we already proved to be polynomial
in the desired values.

Corollary 253. Let ε > 0, k < n and prime ideals p1, · · · pn satisfying N (pi) < N (pi+1)
and logN (pk+1) ≥ (k logN (pk) + d2), then with the previous notations, our algorithm
finds a list of all codewords which agree with a received word in t places provided t ≥√
k(n+ ε).

Proof. The proof is similar to the one of [Gur04, Th. 7.14]. The main difference is that

we define δ := k − log(2d
2
Bd)

logN (pk+1) which satisfies δ ≥ 0 since by assumption logN (pk+1) ≥
(k logN (pk) + d2). We apply Proposition 252 with zi = 1/ logN (pi) for i ≥ k + 1,
zi = 1/ logN (pk+1) for i ≤ k, and ε′ = ε/ logN (pk+1). It allows us to retrieve the
codewords whose number of agreements t is at least√√√√ log(2d2Bd)

logN (pk+1)

(
log(B)

logN (pk+1)
+

n∑
i=k+1

N (pk+1)

logN (pi)
+ ε′

)

≤ δ +

√√√√ log(2d2Bd)

logN (pk+1)

(
log(2d2Bd)

logN (pk+1)
+

n∑
i=k+1

N (pk+1)

logN (pi)
+ ε

)
.

This condition is met whenever t ≥ δ+
√

(k − δ)(n− δ + ε). From the Cauchy-Schwartz
inequality, we notice that √

k(n+ ε) ≥
√

(k − δ)(n− δ + ε),

which proves that our decoding algorithm works when t ≥
√
k(n+ ε).

6.9 Conclusion

We presented the first method for list decoding number field codes. A straightforward
application of Theorem 6 allows to derive a decoding algorithm in polynomial time.

6.9. CONCLUSION 173

However, we cannot achieve the Johnson bound with this method. To solve this problem,
we described an analogue of the CRT list decoding algorithm for codes based on number
fields. This is the first algorithm allowing list decoding of number field codes up to the
Johnson bound. We followed the approach of [Gur04, Ch. 7] that provides a general
frameworks for list decoding of algebraic codes, along with its application to CRT codes.
The modifications to make this strategy efficient in the context of number fields are
substantial. We needed to refer to the theory of modules over a Dedekind domain, and
carefully analyze the process of intersecting them, as well as finding short elements. We
proved that our algorithm is polynomial in the size of the input, that is in d, log(N),
log |∆| and 1

ε .

Acknowledgment

The first author would like to thank Guillaume Hanrot for his helpful comments on the
approach based on Coppersmith’s theorem. We also thank an anonymous referee for
helpful comments on this paper.

Part IV

Implementation

175

177

In this part I present the implementation in C/C++ of some algorithms presented
in the first two parts of the PhD thesis. First in Chapter 7, I present the C++ com-
puter algebra system Mathemagix where I have implemented finite fields arithmetic with
a special emphasis for finite fields of characteristic 2 in the finitefiedz package. I
also present the implementation if the arithmetic of Galois rings and the root finding
of univariate and bivariate polynomials over Galois rings and truncated power series
rings in the quintix package. Then in Chapter 8, I present the implementation in C of
list decoding algorithms in an independant library called decoding. This library allows
one to have list decoding algorithms without having to install a while computer alge-
bra system. To my knowledge there was no open source implementation available for
list decoding generalized Reed-Solomon codes thus it was necessary to have a working
implementation.

Chapter 7

Implementation within Mathemagix

7.1 Introduction

I began to contribute to the Mathemagix computer algebra system in the end of 2009.
Mathemagix provides a new high level language, which is imperative, strongly typed,
with polymorphism and parametrized types. Mathemagix can be used as an “extension
language”, i.e. easy to embed into other applications and to extend with existing libraries
written in other languages like C or C++. An interesting feature is that this extension
mechanism supports template types.

Standard libraries are available for algebraic computation (large numbers, polyno-
mials, power series, matrices, etc. based on FFT and other fast algorithms) for exact
and approximate computation. This should make Mathemagix particularly suitable as a
bridge between symbolic computation and numerical analysis. These packages written
in C++ are connected to the interpreter (and later to the compiler), but can also be used
independently as standalone libraries. Separate documentation for each of the packages
is also available.

I wrote, with the help of Grégoire Lecerf, three packages. I first wrote the mgf2x

package. It is a wrapper for the gf2x library [BGTZ08, BGTZ09] which is a highly
optimized C library specialized in univariate polynomial multiplications over F2. Then
I wrote the finitefieldz package which provides finite fields, the main fields used
in coding theory. Finally I wrote the quintix package which provides Galois rings
arithmetic and the univariate root finding algorithms of Berthomieu, Lecerf and Quintin
[BLQ11].

All package are written in C++ and uses C++ templates to for efficiency reasons. They
allow functions and classes to operate with generic types and avoid typing functions and
classes several times for each type you want to use. Moreover the compiler usually knows
what types are used within templates which allows it to do a lot of optimizations.

Mathemagix can be downloaded from http://www.mathemagix.org/www/main/

index.en.html. The latest development version can be obtained via svn.

svn checkout svn://scm.gforge.inria.fr/svnroot/mmx/

179

http://www.mathemagix.org/www/main/index.en.html
http://www.mathemagix.org/www/main/index.en.html

180 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

7.2 Overview of the C++ side of Mathemagix

7.2.1 The directory tree of Mathemagix

The directory tree of Mathemagix is quite simple. Basically every subdirectory of the
root directory of Mathemagix represents a package. A package is nothing than a library.
It can be a dynamic library (.so files), a static library (.a files) or both. We list a few
available packages.

• basix contains, among others, the implementation of vectors, lists and tables. It
is the core library of Mathemagix upon which all other libraries rely.

• numerix contains, among others, the implementation of multiprecision integers,
rational, complex numbers, intervals and balls.

• algebramix contains, among others, the implementation of univariate polynomials,
power series and matrices.

• finitefieldz contains the implementation of finite fields.

• mpari contains a wrapper to the PARI library [PAR11].

• quintix is my package which contains the algorithms that I implemented in
Mathemagix. Usually the packages named after a person, like gregorix or jorix,
contain versions in development of algorithms or features which, when considered
stable, are moved to other packages.

Packages aim to be as independent as possible from each other. But some packages
depend on others. For example the finitefieldz package depends on algebramix

and numerix to provide large prime fields and extensions of finite fields. These two
dependencies allow the finitefieldz package to benefit from all the optimizations
and fast algorithms implemented in numerix and algebramix. The build system of
Mathemagix takes care of the dependencies. For example if you type

./ configure --enable -finitefieldz

you will see that the algebramix and numerix packages are automatically selected by
the build system as well as the core package basix.

Packages:

[] automagix

[*] basix

[] borderbasix

[] mcoq

[] mmancient

[] mmcompiler

[] mmdoc

[] mmxtools

7.2. OVERVIEW OF THE C++ SIDE OF MATHEMAGIX 181

[*] numerix

[*] algebramix

[] analyziz

[*] finitefieldz

[] graphix

[] holonomix

[] lattiz

[] linalg

[] mgf2x

[] mmaple

[] mpari

[] multimix

[] continewz

[] factorix

[] gregorix

[] mfgb

[] quintix

[] realroot

[] mmps

[] newmac

[] polytopix

[] shape

[] symbolix

[] asymptotix

[] columbus

[] jorix

[] mmxlight

configure: creating ./ config.status

config.status: creating Makefile

config.status: creating mmxlight/src/mmxlight_evaluator.cpp

Then you simply have to type make to build only the packages (or libraries) you want
to use.

When opening a package directory, let say, finitefieldz, there are many subdirec-
tories, common to almost all packages:

• doc/ contains the documentation files for the package.

• specif/ contains the specifications of the package like its name, version, depen-
dencies. As an example the specif/finitefieldz-autotools.mmx file contains
the following which is self-understandable:

finitefieldz: Package := package (" finitefieldz", "0.1");

finitefieldz.dependencies := ["algebramix"];

finitefieldz.externals := ["mpfq"];

182 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

finitefieldz.documentation := false;

finitefieldz.automatic := [

"configure.ac",

"Makefile.am",

"build/Makefile.am",

"script/finitefieldz -config.in",

"man/man1/finitefieldz -config .1.in"];

finitefieldz.description :=

/" Finite fields. "/;

create_package (finitefieldz);

• test/ contains C++ source files to test the algorithms and functionalities provided
by the package.

• bench/ contains C++ source files to bench the algorithms and functionalities pro-
vided by the package.

• include/finitefieldz/ contains C++ header files for the algorithms and features
provided by the package.

• src/finitefieldz/ also contains C++ source files for the algorithms and features
provided by the package. Almost all the C++ code uses many template classes,
structures and functions which must go into C++ header files with their bodies.
This is a consequence of the design of C++. Therefore almost all the code of the
libraries (or packages) are in the include/finitefieldz folder.

7.2.2 C++ classes and variants

We first present what is the general philosophy behind the C++ libraries of Mathemagix.
C++ templates are heavily used. They help write generic code and, at the same time,
help the compiler to perform some optimizations. Note that the listings of C++ code
we present in this section are not part of Mathemagix. They are to be considered as
examples to understand how Mathemagix works.

Let say we want to implement vectors as n-tuples over any kind of mathematical
object that has an addition. Each object is implemented in a separate C++ header file
(.hpp). Suppose that we implement our tuples in the myvector.hpp header file within
the algebramix package.

#include <basix/basix.hpp >

template < typename R, typename V >

class myvector {

...

};

7.2. OVERVIEW OF THE C++ SIDE OF MATHEMAGIX 183

The first template parameter of the template myvector class is a C++ class known
as R within the myvector class. It represents the mathematical object with which the
vectors are made of. For example it can be a field, a ring or any implemented class like
the following one implemented in the myint.hpp header file in the algebramix package.

#include <basix/basix.hpp >

class myint {

int n;

/* a constructor that takes an C++ int to

set the value of our new myint object. */

myint (int n) {

this ->n= n;

}

myint operator+ (myint& a,myint& b) {

return myint (a.n + b.n);

}

};

The second parameter of the template myvector class is also a C++ class which will
represent the variant used by the functions and algorithms manipulating myvector-type
objects. For example, the V parameter can be used to specify that the user wants to
use SSE instructions to add two vectors or loop unrolling. Usually default values for
template parameters indicating variants are provided. Therefore the user does not need
to know all the available variants and just use the default ones.

#include <basix/basix.hpp >

struct myvector_default;

template < typename R, typename V= myvector_default >

class myvector {

...

};

Now new vectors can be created and manipulated. If the user wants to use vectors
over “small integers” represented by the myint C++ class, he will have to type:

#include <algebramix/myvector.hpp >

#include <algebramix/myint.hpp >

int main (void) {

myvector < myint > v, w;

return 0;

184 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

}

The Mathemagix C++ packages come with a lot of types representing various mathe-
matical objects. We list a few of them here.

• integer for multiprecision integers. (numerix/include/numerix/integer.hpp)

• rational for multiprecision rational numbers.
(numerix/include/numerix/rational.hpp)

• complex for complex numbers. (numerix/include/numerix/complex.hpp)

• polynomial for univariate polynomials. (algebramix/include/algebramix/polynomial.hpp)

Of course they can be used to make vectors with our myvector class. For example over
the rational numbers it suffices to type:

#include <algebramix/myvector.hpp >

#include <numerix/rational.hpp >

int main(void) {

myvector < rational > v;

return 0;

}

The polynomial class is also template and takes two arguments.

template < typename C,

typename V=typename Polynomial_variant(C) >

class polynomial {

...

};

Therefore, we can use it with our myvector class to make vectors over polynomials over
myint numbers.

#include <algebramix/myvector.hpp >

#include <algebramix/myint.hpp >

#include <algebramix/polynomial.hpp >

int main(void) {

myvector < polynomial < myint > > v, w;

return 0;

}

We do not specify any variant and let Mathemagix use the default ones for our class and
the polynomial class.

7.2. OVERVIEW OF THE C++ SIDE OF MATHEMAGIX 185

We now give more details about the implementation of variants. We continue
with our example and give pieces of code to help fix the ideas. We begin with the
implementation structure which will help create the variants. Let’s say say we propose
for the implementation of the component wise addition of two myvector classes three
algorithms. The first will be the default variant corresponding to a naive for loop. The
second variant will use the SSE instructions while the third variant will use unrolled
loops. All these variants can be written in the myvector.hpp file.

template <typename F, typename V, typename W=V>

struct implementation;

/* F parameter: variant for which type of operations?

GCD , multiplications , ...

In our case: component wise operations.

Thus we call it linear for linear operations

in the memory. */

struct myvector_linear;

/* V, W parameters: list of proposed variants */

struct myvector_sse; // use of the SSE instructions

struct myvector_naive; /* naive (and default) variant

which will be a simple for

loop */

struct myvector_unrolled; /* unrolled loop variant */

Suppose that we have a constructor for our myvector class that takes an int sz and
create a vector of size sz whose elements are accessible with the “[]” operator.

#include <basix/basix.hpp >

template < typename R, typename V= myvector_naive >

struct myvector {

R *tab; // a pointer to the elements of type R

int size; // the size of tab

/* the constructor that allocates memory of

size (sz * sizeof (R)) */

myvector (int sz) {

...

}

// return the i’th element of tab

myvector operator [] (int i) {

...

}

186 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

}

The default variant is the naive one. The implementation of the component wise addition
is quite simple with the implementation structure.

#include <basix/basix.hpp >

template < typename R, typename V= myvector_naive >

struct myvector {

...

myvector operator+ (myvector& a,myvector& b) {

return implementation < myvector_linear , V >::add (a, b);

}

...

}

The code that will really perform the addition must be written within the instantiations
of the implementation structure for all the proposed variants.

template < >

struct implementation < myvector_linear , myvector_naive > {

myvector add (myvector& a, myvector& b) {

ASSERT (a.size == b.size , "vectors must same length");

myvector r= myvector (a.size);

for (int i= 0; i < a.size; i++) {

r[i]= a[i] + b[i];

}

return r;

}

};

template < >

struct implementation < myvector_linear , myvector_unrolled > {

myvector add (myvector& a, myvector& b) {

ASSERT (a.size == b.size , "vectors must same length");

myvector r= myvector (a.size);

int i, n= a.size % 4;

for (i= 0; i < n; i++) {

r[i]= a[i] + b[i];

}

for (; i < a.size; i += 4) {

r[i]= a[i] + b[i];

r[i + 1]= a[i + 1] + b[i + 1];

r[i + 2]= a[i + 2] + b[i + 2];

r[i + 3]= a[i + 3] + b[i + 3];

7.2. OVERVIEW OF THE C++ SIDE OF MATHEMAGIX 187

}

return r;

}

};

template < >

struct implementation < myvector_linear , myvector_sse > {

myvector add (myvector& a, myvector& b) {

ASSERT (a.size == b.size , "vectors must same length");

myvector r= myvector (a.size);

int i, n= a.size % 4;

for (i= 0; i < n; i++) {

r[i]= a[i] + b[i];

}

// use SSE instructions here

return r;

}

};

Almost all the C++ classes of Mathemagix do not contain the actual representation
of objects.

Listing 7.1: basix/include/basix/vector.hpp

template < typename C, typename V >

class vector {

...

protected:

vector_rep < C, V >* rep;

...

};

The vector class contains a field rep which is a pointer to another class vector rep. It
contains the representation of vectors.

Listing 7.2: basix/include/basix/vector.hpp

class vector_rep : public rep_struct , public format < C > {

...

private:

C* a; // entries of vector

nat n; // dimension of vector

nat l; // allocated number of entries

bool scalar_flag; // is the vector a scalar value?

...

188 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

};

The vector rep structure inherits of the rep struct structure which contains all the
necessary fields for the implementation of a reference counting garbage collector which
is used by the Mathemagix interpreter and compiler.

Listing 7.3: basix/include/basix/basix.hpp

struct rep_struct {

...

int ref_count;

inline rep_struct (): ref_count (1) {}

virtual inline ~rep_struct () {}

};

Mathemagix does not depend on the standard template library (STL) library. The
standard input/output streams can be used but it is recommended to use they replace-
ment: mmout for standard output, cin for standard input and cerr for error output.

We finish this section with the nat type. The nat type represents the natural integer
type of the processor. For x86 and x86 64 processors it is usually a typedef for unsigned
int and is therefore a 32-bits unsigned integer. The nat type is usually used to index
C++ arrays, Mathemagix lists and vectors.

7.3 The mgf2x package

The mgf2x package is the first package I wrote at the very beginning of my thesis with
the help of Grégoire Lecerf. It is a wrapper to the gf2x library [BGTZ08,BGTZ09], more
particularly to the gf2x mul function. It is implemented as an additional variant for poly-
nomials over integers modulo 2. As explained in Subsection 7.2.2 the implementation

structure is appropriately instantiated.

Listing 7.4: mgf2x/include/mgf2x/polynomial gf2x.hpp

#include <gf2x.h>

#include <numerix/modular_int.hpp >

#include <algebramix/polynomial.hpp >

#include <algebramix/polynomial_dicho.hpp >

template <typename V>

struct implementation < polynomial_multiply ,

V,

polynomial_gf2x > :

public implementation <polynomial_linear ,V>

{

...

public:

7.4. THE FINITEFIELDZ PACKAGE 189

template < typename I, typename MoV , typename MaV >

static inline void

mul (modular < modulus < I, MoV >, MaV >* dest ,

const modular < modulus < I, MoV >, MaV >* s1,

const modular < modulus < I, MoV >, MaV >* s2,

nat n1 , nat n2)

{

// input conversions

gf2x_mul (d, t1, m1, t2, m2);

// output conversions

}

...

};

The implemented variant is called polynomial gf2x and can be used whenever polyno-
mial over F2 are needed provided that the gf2x library is present on the system.

7.4 The finitefieldz package

The finitefieldz package provides the arithmetic for finite fields. I wrote this package
with the help of Grégoire Lecerf during the first year of my PhD thesis. I wrote finite
fields arithmetic using univariate polynomials and multiprecision integers. The user can
then use all finite field of any characteristic and can build towers of finite fields. I also
included and corrected some bugs in the functions, written by Lecerf, which implement
univariate polynomials root finding over finite fields.

The finitefieldz package uses the algebramix and numerix packages which were
mainly written by Lecerf and van der Hoeven.

7.4.1 Prime fields

We begin with the construction of prime fields. Choose a prime integer and denote by p

the corresponding variable in C++ of type I. We do not give p an explicit type for now.
First we need to build a modulus with the modulus class, then we can build any elements
of Z/pZ using the modular class.

#include <numerix/modular.hpp >

int main(void) {

modulus < I > mod= modulus < I > (p);

modular < modulus >:: set_modulus (mod);

modular < modulus > a, b;

I another_integer= 12345;

modular < modulus > c= modular < modulus > (another_integer);

return 0;

190 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

}

We often call p or the integer it represents the modulus. As usual Mathemagix provides
default variants for modulus and modular. The modular class has a local and global
variant. The default variant is the global one. All element of type modular< modulus

< I > > or modular< modulus< I >, modular global > share the same modulus and
therefore live in the same prime field. Each element of type modular< modulus< I >,

modular local > has its own modulus and therefore lives in its own finite field. If two
such elements have the same modulus they live in the same prime field. Suppose that q
is another variable of type I representing a prime.

#include <numerix/modular.hpp >

int main(void) {

modulus < I > modp= modulus < I > (p);

modulus < I > modq= modulus < I > (q);

modular < modulus , modular_local > a, b;

set_modulus (a, p);

set_modulus (b, q);

I c= 12345;

a= modular < modulus < I >, modular_local > (c);

b= modular < modulus < I >, modular_local > (c);

mmout << (a == b) << "\n";

return 0;

}

The a and b variables have the same type but live in two different finite fields. We have

“a ∈ Z/pZ and b ∈ Z/qZ”.

The mmout variable will output 0 unless p == q. It is recommended to use the non-static
version of the set modulus function as it works also with the global variant.

There exists a third variant for modular. When the modulus is known at compile
time and hold in a machine word (char, short, int, long or long long) the compiler
can do optimizations, for example, in the reduction modulo functions. In this situation
one can use the modular fixed variant.

#include <numerix/modular.hpp >

#include <numerix/modular_int.hpp >

int main(void) {

unsigned char p= 5;

modulus < unsigned char > mod= modulus < unsigned char > (p);

modular < modulus < unsigned char >,

modular_fixed < unsigned char , 5 > > a, b;

return 0;

7.4. THE FINITEFIELDZ PACKAGE 191

}

The modular fixed structure is template and takes two arguments. The first argument
indicates the type of integer that will be used to represents the elements of Z/pZ. The
second argument is the number of bits needed to represent p.

The modulus structure is also template and takes two arguments. The first argument
is the integer type that will be used to store the modulus p. The second argument is the
variant that controls the algorithms related to the arithmetic of Z/pZ. We list some of
them here.

template< nat size > struct modulus int naive;

is the naive variant for machine integers (int). The size argument is the maximum
bit-size allowed for the modulus. This variant is valid only when the modulus is a
C++ integer type.

template< nat m > struct modulus int preinverse;

is a variant where a suitable inverse of the modulus is pre-computed. The m argument
is the maximum bit-size allowed for the modulus. This variant is valid only when
the modulus is a C++ integer type.

struct modulus integer naive;

is the variant to be used when the modulus is a multiprecision integer of type
integer.

7.4.2 Extensions of finite fields

The C++ class which represents a finite field extension is the template ffe class which
takes two arguments.

#include <basix/list.hpp >

#include <finitefieldz/ffe_naive.hpp >

template < typename M, typename V= typename Ffe_variant(M) >

class ffe {

...

};

As before the V represents the variant for finite fields which has a default value and thus
need not be specified. The M argument is the base field. In fact the type ffe represents
an extension of the base field designated by the type M. For example, suppose that M is
any finite field.

#include <finitefieldz/ffe.hpp >

int main(void) {

192 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

ffe < ffe < ffe < M > > > a, b;

return 0;

}

The elements a and b lie in an extension of an extension of an extension of the finite
field M. As often, we do not specify any variant and let Mathemagix decides what variant
to use.

We do not specify what are degrees of the extensions we build. The degree of an
extension is set with the set extension degree function which takes an argument of
type nat.

#include <finitefieldz/ffe.hpp >

int main(void) {

int d;

...

ffe < M >:: set_extension_degree (d);

return 0;

}

The set extension degree functions finds an irreducible polynomial of degree d over
M and build the extension of M defined by the latter polynomial. If the user wants to
use its own irreducible polynomial, he can use the set defining polynomial function
which takes one argument of type polynomial< M, W >. Suppose that M is F5 then one
can make an extension of degree 3 with X3 +X + 1.

#include <finitefieldz/ffe.hpp >

#include <algebramix/polynomial.hpp >

int main(void) {

polynomial < M > X= polynomial < M > (M (1), 1);

polynomial < M > phi= (X * X * X) + X + 1;

ffe < M >:: set_defining_polynomial (phi);

return 0;

}

Of course one can obtain all the properties of a finite field. The
get extension degree functions returns the degree of the extension “[ffe< M >:M]”.
The get defining polynomial returns the irreducible polynomial phi used to build
the extension

“ffe< M > =
M[X]

(phi(X))
”.

7.4.3 Variants available for ffe

We now describe how to make two different extensions of M. The set extension degree

and set defining polynomial functions we presented are static functions and thus

7.4. THE FINITEFIELDZ PACKAGE 193

apply to each element of type ffe. Therefore all theses elements lie in the same extension.
To make two different extensions we have to use variants. It is possible to have a general
extension degree for all variable of type ffe< M > or to define, for each variable of type
ffe< M >, an extension degree so that two different variable can represent two finite
fields elements not lying in the same extension. The so-called local variant allows one to
have a different extension for each variable of type ffe< M >. Suppose that M represents
F5.

int main(void) {

polynomial < M > X= polynomial < M > (M (1), 1);

ffe < M, ffe_naive_local > a, b;

set_defining_polynomial (a, (X * X) + X + 1);

set_defining_polynomial (b, (X * X * X) + X + 1);

return 0;

}

The variable a lies in as extension of degree 2 of M while b lies in as extension of degree 3.
The non-static version of the set defining polynomial is used to set, for each variable,
the finite field it lives in. The default variant for the ffe class is ffe naive which
corresponds to the global variant. Each variable of type ffe< M, ffe naive > or ffe<
M > shares the same extensions it lives in.

int main(void) {

polynomial < M > X= polynomial < M > (M (1), 1);

ffe < M, ffe_naive > a;

ffe < M > b;

set_defining_polynomial (a, (X * X) + X + 1);

set_defining_polynomial (b, (X * X * X) + X + 1);

return 0;

}

We first set the variable a and b to live in the same extension of degree 2 then of
degree 3. In the end both variables lives in the same extension of degree 3 defined by
the irreducible polynomial X3 +X + 1 over F5.

It is recommended to use only the non-static versions of functions as they also work
for variables of type ffe< M, ffe naive >. The code produced following this guideline
will then be compatible for local and global variant and it will be more generic. We list
here some functions to manipulate finite fields extensions.

polynomial< M > get defining polynomial (ffe< M, V >& x);

returns the defining polynomial of the extension where x lives.

void set defining polynomial (ffe< M, V >& x, polynomial< M, W >& p);

sets the polynomial for the extension where x lives. If x is of type ffe< M, ffe naive

> then all variables of type ffe< M. ffe naive > will live in the same extension.

194 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

If however x is of type ffe< M, ffe naive local > then only x will live in the
extension defined by the polynomial p.

mat get extension degree (ffe< M, V >& x);

returns the extension degree “[ffe< M, V > : M]”.

void set extension degree (ffe< M, V >& x, nat d);

sets the degree of the extension where x lives to d.

integer get characteristic (ffe< M, V >& x);

returns the characteristic of the field where x lives.

nat get degree over prime field (ffe< M, V >& x);

returns the degree of the extension where x lives over the prime field. If the prime
field is Fp then it returns “[ffe< M, V > : Fp]” even if M 6= Fp.

The variant for ffe does not only contain whether an element is local or global.
It also contains information on the underlying algorithms used for the arithmetic. An
element of type ffe< M, V > is represented as a polynomial with coefficients in M. To
multiply two elements of type ffe< M, V >, a multiplication of two polynomials of
type polynomial< M > is performed. Then the result is reduced modulo the polyno-
mial defining the extension ffe< M, V >. Both the multiplication and the reduction
modulo are controlled by the variant V. For more details about the variants see the
finitefieldz/include/finitefieldz/ffe naive.hpp file. It is recommended to let
the default variant proposed by Mathemagix as a variant for polynomial dedicated for
ffe has been written by Lecerf.

7.4.4 Finite fields of characteristic 2

Finite fields of characteristic 2 can be efficiently implemented. Their elements can be
represented in a efficient form within machine words. Their addition becomes then a
simple XOR. Finite fields of characteristic 2 can of course be built with the ffe class.
However an optimized implementation is proposed with by ffe 2 class. This class is
specialized for finite fields of characteristic 2 whose elements can be represented in a
machine word.

#include <numerix/modular.hpp >

#include <numerix/modular_int.hpp >

#include <finitefieldz/ffe_2.hpp >

int main(void) {

typedef modular < modulus < unsigned char ,

modulus_int_preinverse <5> >,

7.4. THE FINITEFIELDZ PACKAGE 195

modular_fixed <unsigned char , 2> > F2;

ffe_2 < F2 , int , 3 > a;

ffe_2 < F2 , int , 5 > b;

return 0;

}

The variable a will represent an element of F23 while b will represent an element of F25 .
The ffe 2 class is template with four arguments.

template < typename M, typename I, nat d,

typename V= typename Ffe_2_variant(M,I,d) >

class ffe_2 {

...

};

The first argument M indicates the type chosen for the base field F2. Here it is the
modular class with a fixed modulus. The second argument is the C++ type that will
be used to represents the elements of the finite field. The third argument indicates the
degree of the extension over F2,

d = [ffe 2 < M, I, d > : F2].

The fourth argument is the variant which has a default value. We list here all the possible
variants for ffe 2.

template< nat d > struct ffe 2 naive;

is the default variant. All the arithmetic is done with schoolbook algorithms. The
argument d is the degree of the extension over F2. It must have the same value as
the third argument of the ffe 2 class.

template< nat d > struct ffe 2 table;

is a variant where precomputations are done. The multiplication and inverse tables
are computed. These two operations consist then of reading the wanted value in
memory. The argument d is the degree of the extension over F2. It must have the
same value as the third argument of the ffe 2 class.

template< nat d > struct ffe 2 mpfq;

is the variant where the arithmetic of the finite field is done by the mpfq library
[GT06]. If you want to use this variant and if the mpfq library is not present on your
system Mathemagix will automatically use the naive variant. The argument d is the
degree of the extension over F2. It must have the same value as the third argument
of the ffe 2 class.

196 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

7.5 The quintix package

The quintix package contains many functions and interfaces that I test. They concern
Galois rings, pseudo random generators, Reed-Solomon codes and linear algebra over
Galois rings. In this section we describe only the implementation of the arithmetic of
Galois rings and the implementation of the univariate polynomial root finding algorithms
of [BLQ11].

7.5.1 Prime Galois rings

We begin with the construction of prime fields. Choose a prime integer and denote by
p the corresponding variable in C++ of type I. We let r designate an integer of type
nat. Prime Galois rings can be built, like prime finite fields, with the modular class. To
take into account the p-adic structure of Galois rings a dedicated variant for modulus is
proposed.

#include <numerix/modular.hpp >

#include <quintix/modulus_power.hpp >

int main(void) {

I p;

nat r;

modulus < I, modulus_power < I, I, V > > mod= binpow (p, r);

modular < modulus < I, modulus_power < I, I, V > > > a;

set_modulus (a, mod);

return 0;

}

Here we have

“a ∈ Z/prZ.”

The modulus power structure is template and takes three arguments.

template< typename C, typename T, typename V= typename Modulus variant

(C) > struct modulus power : V {};
The C argument indicates the integer type for the elements of the prime Galois ring,
typically a type large enough to hold pr. The T argument is the integer type of
the prime p. The optional V argument is a valid variant for the modulus listed in
Subsection 7.4.1.

7.5.2 Extensions of Galois rings

Galois rings behave almost like finite fields and their implementation is somehow similar
to finite fields. The C++ class that represents a Galois ring extension is the gre class.

7.5. THE QUINTIX PACKAGE 197

#include <basix/list.hpp >

#include <numerix/modular.hpp >

#include <quintix/gre_naive.hpp >

#include <quintix/modulus_power.hpp >

#include <quintix/residue_field.hpp >

#include <finitefieldz/ffe.hpp >

template < typename M, typename V= typename Gre_variant(M) >

class gre {

...

};

As before the V represents the variant for Galois rings which has a default value and thus
need not be specified. The M argument is the base field. In fact the type gre represents
an extension of the base field designated by the type M. For example, suppose that M is
any finite field.

#include <quintix/gre.hpp >

int main(void) {

gre < gre < gre < M > > > a, b;

return 0;

}

The elements a and b lies in an extension of an extension of an extension of the finite
field M. As often, we do not specify any variant and let Mathemagix decides what variant
to use. As in the case of finite fields, the set defining polynomial can be used to
specify the of the extension “gre < M, V >/M”. Suppose that M is Z/52Z, then one can
make an extension of degree 3 with X3 +X + 1.

#include <quintix/gre.hpp >

#include <quintix/polynomial.hpp >

int main(void) {

polynomial < M > X= polynomial < M > (M (1), 1);

polynomial < M > phi= (X * X * X) + X + 1;

gre < M >:: set_defining_polynomial (phi);

return 0;

}

The constructed Galois ring is then

“gre < M, V > =
Z/52Z[X]

(phi(X))
”.

Global and local variants are proposed as for finite fields. Suppose that M represents
Z/52Z.

198 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

#include <quintix/gre.hpp >

#include <quintix/polynomial.hpp >

int main(void) {

polynomial < M > X= polynomial < M > (M (1), 1);

polynomial < M > P= (X * X) + X + 1;

polynomial < M > Q= (X * X * X) + X + 1;

polynomial < M > R= binpow (X, 7) + X + 1;

gre < M > a;

gre < M, gre_naive > b;

set_defining_polynomial (a, P);

gre < M, gre_naive_local > c, d;

set_defining_polynomial (c, Q);

set_defining_polynomial (d, R);

return 0;

}

The a and b variables have the same type gre< M, gre naive > with the global, default
variant. They live in the same extension of Z/52Z,

“a, b ∈ Z/52Z[X]

(P(X))
”.

The c and d variables have the same type with the local variant gre naive local. They
do not, a priori, live in two different extensions

“c ∈ Z/52Z[X]

(Q(X))
and d ∈ Z/52Z[X]

(R(X))
”.

It is recommended to use only the non-static versions of functions as they also work
for variables of type gre< M, gre naive >. The code produced following this guideline
will then be compatible for local and global variant and it will be more generic. We list
here some functions to manipulate Galois rings extensions.

polynomial< M > get defining polynomial (gre< M, V >& x);

returns the defining polynomial of the extension where x lives.

void set defining polynomial (gre< M, V >& x, polynomial< M, W >& p);

sets the polynomial for the extension where x lives. If x is of type gre< M, gre naive

> then all variables of type gre< M. gre naive > will live in the same extension.
If however x is of type gre< M, gre naive local > then only x will live in the
extension defined by the polynomial p.

7.5. THE QUINTIX PACKAGE 199

nat get extension degree (gre< M, V >& x);

returns the extension degree “[gre< M, V > : M]”.

void set extension degree (gre< M, V >& x, nat d);

sets the degree of the extension where x lives to d.

integer get characteristic (gre< M, V >& x);

returns the characteristic of the field where x lives.

nat get degree over prime field (gre< M, V >& x);

returns the degree of the extension where x lives over the prime field. If the prime
field is Fp then it returns “[gre< M, V > : Fp]” even if M 6= Fp.

A Galois ring has a p-adic structure as it is a quotient ring of an unramified extension
of Zp. Let GR(pr, s) be a Galois ring and let

a =
r−1∑
i=0

aip
i.

We call left shift the map

GR(pr, s) −→ GR(pr, s)∑r−1
i=0 aip

i 7−→
∑r−1

i=1 aip
i−1,

and right shift the map
GR(pr, s) −→ GR(pr, s)

a 7−→ pa.

The left and right shifts are implemented by the following functions:

gre< M, V > lshiftz(const gre< M, V >& a, const nat& shift= 1);

returns the left shift of a.

gre< M, V > rshiftz(const gre< M, V >& a, const nat& shift= 1);

returns the right shift of a.

It also possible to obtain the filtration of any element in Galois rings. Given any
nonzero element a of a Galois ring GR(pr, s), its filtration is defined to the valuation of
any preimage of a in Zps . The filtration of 0 ∈ GR(pr, s) is set to +∞.

template<typename GR> nat get valuation (const GR& a);

returns the filtration of a.

200 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

Galois rings are local rings and computations need to be made in their residue field,
see Chapters 1 to 4. A C++ helper structure is provided to obtain the residue field, as well
as functions for computing residue images and preimages. Suppose that M is a Galois
ring.

#include <quintix/gre.hpp >

int main(void) {

typedef residue_field_helper < M >::F F;

typedef gre < M > GR;

typedef residue_field_helper < gre < M > > helper;

typedef helper ::F GF;

GR a, b;

GF abar , bbar;

...

abar= helper :: residue (a);

b= helper :: preimage (bbar);

return 0;

}

This situation can be summed up with the following commutative diagram.

GR
ϕ−→ GF −→ 0

↑ ↑
M −→ F −→ 0
↑ ↑
0 0

and abar = ϕ(a), bbar = ϕ(b).

Let GR be a Galois ring and GF its residue field. The residue field helper contains
helpful functions to compute residue field elements and their preimages. GR, the canonical
surjection

Listing 7.5: quintix/include/quintix/residue field.hpp

#include <quintix/modulus_power.hpp >

#include <numerix/modular_int.hpp >

#include <numerix/modular_integer.hpp >

#include <finitefieldz/ffe.hpp >

#include <quintix/modulus_power.hpp >

#include <algebramix/series.hpp >

template < typename FR >

struct residue_field_helper {

typedef ... F;

static inline

7.5. THE QUINTIX PACKAGE 201

F residue (const FR& a) {

...

}

static inline

FR preimage (const F& a) {

...

}

};

We have that

• “F = GF”,

• residue : FR −→ F is the canonical surjection and

• preimage : F −→ FR computes preimages of elements of F.

7.5.3 Galois rings of characteristic 2r

Prime Galois rings of characteristic 2r can be efficiently implemented. The reduction
modulo 2r becomes a bitmask and a dedicated variant is provided.

Listing 7.6: quintix/include/quintix/gre 2.hpp

#include <numerix/modular.hpp >

#include <quintix/gre_naive.hpp >

#include <quintix/residue_field.hpp >

#include <finitefieldz/ffe.hpp >

template < nat d, typename I= nat >

class gre_2 {

...

};

The d template argument is the precision of the prime Galois ring gre 2< d, I > or
gre 2 < d, I > = Z/2dZ. The I argument indicates the integer type for to represent
the elements of the Galois ring. Typically when d < 32 one can take I = int and
I = integer otherwise.

Of course extensions of gre 2< d, I > can be made in the same way as in Subsec-
tion 7.5.2.

#include <quintix/gre_2.hpp >

#include <algebramix/polynomial.hpp >

int main(void) {

typedef gre_2 < 10, int > GR_2_10;

202 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

polynomial < GR_2_10 > X=

polynomial < GR_2_10 > (GR_2_10 (1), 1);

typedef gre < GR_2_10 > GR;

GR a;

set_defining_polynomial (a, (X * X) + X + 1);

return 0;

}

An extension of degree 2 is build with a prime Galois ring gre 2< 10, int > and we
have

“a ∈ gre 2 < 10, int >[X]

(X2 +X + 1)
”.

7.5.4 Implementation of univariate root finding over Galois rings

The algorithms given in Chapter 2 have been implemented within the quintix package.
The algorithms are valid over Galois rings. They have been implemented for Galois
rings in the quintix/include/quintix/solver gre.hpp file and for truncated power
series in the quintix/include/quintix/solver dim1.hpp file. The interface is very
simple. The function returning the wanted roots is a static member of a structure which
is template, allowing the user to choose between the naive algorithm (Algorithm 9) and
the semifast algorithm (Algorithm 13).

#include <quintix/gre.hpp >

#include <quintix/solver_gre.hpp >

#include <quintix/solver_ffe.hpp >

int main(void) {

polynomial < M > f;

...

typedef solver_ffe < polynomial_berlekamp_naive > solver1;

typedef solver_ffe < roots_tiny_field > solver2;

mmout << gre_roots < solver1 >::roots (f) << "\n";

mmout << gre_roots < solver2 >::roots (f) << "\n";

return 0;

}

The root finding algorithm over Galois rings needs a root finding algorithm over their
residue fields. The solver ffe structure indicates which root finding algorithm is to
be used. The static roots function of the gre roots structure is called and returns a
vector of pairs. Each pair designates a class of roots for the polynomial f (Theorem 93
of Chapter 2).

template< typename Impl > struct solver ffe;

7.5. THE QUINTIX PACKAGE 203

contains the root finding algorithm for finite fields. The Impl argument indicates
which algorithm to use. An exhaustive search can be performed when the finite
field has a “small” cardinality with roots tiny field. The Berlekamp root finding
algorithm can be used with polynomial berlekamp naive

template< typename Impl, typename V= gre roots naive > struct gre roots;

contains the function that implements the root finding algorithm over Galois rings.
The Impl argument indicates which root finding algorithm to use over the residue
field. The optional V argument indicates the algorithm variant. The naive algorithm
(Algorithm 9) can be used with gre roots naive while the semifast algorithm (Al-
gorithm 13) is used with gre roots hensel. By default the naive variant is used.

static vector< pair< GR, nat > > roots (const polynomial< GR, PV >& f);

is the function inside the gre roots structure that returns the roots of f ∈ GR[X].
Each pair designates a class of roots for the polynomial f (Theorem 93 of Chapter 2).

Unlike the default naive variant, the semifast variant gre roots hensel needs a root
finding function over the residue field that also returns the multiplicities of the roots.
Therefore a dedicated structure must be used in this case.

#include <quintix/gre.hpp >

#include <quintix/solver_gre.hpp >

#include <quintix/ffe_roots_tiny_field.hpp >

#include <finitefieldz/berlekamp.hpp >

#include <quintix/solver_ffe.hpp >

int main(void) {

polynomial < M > f;

...

typedef solver_ffe_mult < polynomial_berlekamp_naive >

solver1;

typedef solver_ffe_mult < roots_tiny_field > solver2;

mmout << gre_roots < solver1 , gre_roots_hensel >::roots (f)

<< "\n";

mmout << gre_roots < solver2 , gre_roots_hensel >::roots (f)

<< "\n";

return 0;

}

template< typename Impl > struct solver ffe mult;

contains the root finding algorithm for finite fields which also returns their multiplic-
ities needed by the gre roots hensel variant. The Impl argument indicates which

204 CHAPTER 7. IMPLEMENTATION WITHIN MATHEMAGIX

algorithm to use. An exhaustive search can be performed when the finite field has a
“small” cardinality with roots tiny field. The Berlekamp root finding algorithm
can be used with polynomial berlekamp naive

The algorithms of Chapter 2 have also been implemented for truncated power series
rings. The interface is exactly the same except for the name of structures and functions.
They are prefixed by “dim1” instead of by “gre”.

#include <quintix/gre.hpp >

#include <quintix/solver_gre.hpp >

#include <quintix/ffe_roots_tiny_field.hpp >

#include <finitefieldz/berlekamp.hpp >

#include <quintix/solver_ffe.hpp >

int main(void) {

polynomial < M > f;

...

typedef solver_ffe < polynomial_berlekamp_naive > solver1;

typedef solver_ffe < roots_tiny_field > solver2;

mmout << dim1_roots < solver1 >::roots (f) << "\n";

mmout << dim1_roots < solver2 >::roots (f) << "\n";

typedef solver_ffe_mult < polynomial_berlekamp_naive >

solver3;

typedef solver_ffe_mult < roots_tiny_field > solver4;

mmout << dim1_roots < solver3 ,

dim1_roots_hensel >::roots (f)

<< "\n";

mmout << dim1_roots < solver4 ,

dim1_roots_hensel >::roots (f)

<< "\n";

return 0;

}

template< typename Impl, typename V= dim1 roots naive > struct

dim1 roots;

contains the function that implements the root finding algorithm over truncated
power series rings. The Impl argument indicates which root finding algorithm to
use over the residue field. The optional V argument indicates the algorithm variant.
The naive algorithm (Algorithm 9) can be used with dim1 roots naive while the

7.5. THE QUINTIX PACKAGE 205

semifast algorithm (Algorithm 13) is used with dim1 roots hensel. By default the
naive variant is used.

static vector< pair< R, nat > > roots (const polynomial< R, PV >& f);

is the function inside the dim1 roots structure that returns the roots of f ∈ R[X].
Each pair designates a class of roots for the polynomial f (Theorem 93 of Chapter 2).

The semifast variant needs a Hensel lifting which I have implemented with the help
of Jérémy Berthomieu in the quintix/include/quintix/homogeneous hensel.hpp file.
We recall the definitions of Section 2.2.

Let R be any N-graded ring. Recall that K := QuotR represents the total field
of fractions of R. Since R is supposed to be complete, so is K, and we still write ν
for the extension of the valuation from R to K. Any element a of K can be uniquely
written as the sum

∑
i>ν(a)[a]i, where [a]i is 0 or has valuation i and is the quotient

of two homogeneous elements in R. For any i ∈ Z, we write Ki for the set of the
elements a ∈ K such that either a is 0 or a has a single component of valuation i, which
means that a = [a]i. The subset of the elements of K of valuation at least i is written Oi.

For any polynomial F (x) =
∑d

l=0 Flx
l ∈ K[x] of degree d, and any w ∈ Z, we

write [F]i,w for the polynomial

[F]i,w :=
d∑
l=0

[Fl]i−wlx
l,

and call it the w-homogeneous component of w-valuation i of F . In addition, the expres-
sion [F]j...j+k,w is used to represent the sum

∑k−1
l=0 [F]j+l,w. Remark that if a ∈ K has

valuation at least w then [F]i,w(a) has valuation at least i. Finally the quantity νw(F),
called the w-valuation of F , stands for the first index i ∈ Z such that [F]i,w is nonzero,
with the convention that νw(0) := +∞.

The hensel function is a static member of the homogeneous hensel helper struc-
ture. It can be accessed directly with the homogeneous hensel function.

template< typename C, typename V > vector< polynomial< C, V > >

homogeneous hensel (const polynomial< C, V >& f, const vector<

polynomial< C, V > >& H, nat w, nat n);

returns the lifting of the w-homogeneous polynomials up to precision n of the factors
contained in H such that [f]j,w = [H1 × H2 × · · · × Hs]j,w where j is the sum of all the
w-valuation of the polynomials Hi of H. It is an implementation of Algorithm 12.

Chapter 8

The decoding Library for List
Decoding

The first section of this chapter constitutes an accepted extended abstract at ISSAC
(International Symposium on Symbolic and Algebraic Computation) 2012. The other
sections gives more details about the library.

8.1 Overview of decoding

8.1.1 Introduction and motivation

Reed-Solomon (RS) codes form an important and well-studied family of codes. They
were first proposed in 1960 by Reed and Solomon in their original paper [RS60]. They
are widely used in practice [WB99]. RS codes can be efficiently unique decoded [Gao02]
and [Jus76]. Sudan’s 1997 breakthrough on list decoding of RS codes [Sud97b], further
improved by Guruswami and Sudan in [GS98], showed that RS codes are list decodable
up to the Johnson bound in polynomial time. decoding is a C library whose main goal
is to implement as efficiently as possible the Guruswami-Sudan algorithm. It is written
in C89 and is stand-alone.

The Guruswami-Sudan algorithm

The decoding library is devoted to algorithms concerning the Guruswami-Sudan list
decoding scheme and does not limit itself to finite fields as it is often the case in cod-
ing theory. Let us fix a finite ring with identity A not necessarily commutative. The
Guruswami-Sudan algorithm has two main steps. The first one (interpolation step) con-
sists in finding a “curve” of equation Q(X,Y) = 0 in A2 which passes through given
points with certain multiplicities. The second step (root-finding) finds the roots of
Q(X,Y) seen in (A[X])[Y].

The interpolation step dominates the cost of the whole Guruswami-Sudan algorithm.
Many methods have been proposed but without any available implementations or com-

207

208 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

parisons to other ones. A few timings of the Guruswami-Sudan algorithm can be found,
but again without the corresponding implementation.

8.1.2 The implementation

To the knowledge of the author no implementation of the Guruswami-Sudan algorithm
has been proposed. The only available implementation is constituted by a set of C++
functions, not directly accessible, inside Percy++ [Gol07b] whose purpose is not error
correction and which does not use fast algorithms for dense bivariate polynomials.

The algorithms provided by decoding

The implemented algorithm for interpolation is a variant of the Koetter algo-
rithm [McE03] in the include/decoding/algos/koetter.c file. It uses polyno-
mial arithmetic with fast bivariate shifting (computation of Q(X + x0, Y + y0)
where (x0, y0) ∈ A2) in include/decoding/algos/dbpol shift fast.c and fast uni-
variate shifting (computation of f(X + x0) where f ∈ A[X] and x0 ∈ A) in
include/decoding/algos/upol shift fast.c. Specific variants of these algorithms
for commutative rings of characteristic 2 are also present in the same files.

The second step (root-finding) implemented in the library is a variant of the Roth
and Ruckenstein algorithm [RR98] and the naive algorithm of [BLQ11]. It is in
include/decoding/algos/dbpol Xroots.c.

The design of decoding

The decoding library is designed to be easy to use in a C or C++ program. One of its
particularities is to use the C preprocessor to generate algorithms for a ring (generally
a finite field) which must be provided by the end-user. Therefore efficient libraries like
Mpfq [GT06] can be used by the end-user. For the sake of completeness, some finite
fields are provided by default.

Error correcting codes are often regarded over finite fields, in particular F2, together
with the classical Hamming distance. But other distances, like the Lee distance, are
better suited for some applications. Usually the Lee distance is needed for codes over
Galois rings. Error correcting codes over the ring of matrices over a finite field or a finite
commutative ring are also considered for example in [OSB12]. Therefore decoding
proposes generic algorithms whenever possible. This flexibility is needed when studying
codes over Galois rings for example where the end-user needs to manipulate codes over
a Galois ring and its residue field at the same time.

Although decoding proposes certain fast bivariate polynomial algorithms, it is not
its goal to propose fast algorithms for univariate and bivariate polynomial multiplication.
In fact, decoding is designed to be used in conjunction with other efficient libraries like
Gmp [Gra91], NTL [Sho90] or Flint [Har10]. For the sake of completeness decod-
ing provides these algorithms in their “schoolbook” form but it is recommended, for
efficiency, to use external libraries.

8.2. MORE DETAILS ON DECODING 209

A very simple mechanism using the C preprocessor allows one to override
the default generic algorithms proposed by decoding. For example see at the
include/decoding/rings/GF5.c file which implements the finite field F5. It shows how
to replace the univariate polynomial root finding over F5. All C macros that control this
mechanism are in the include/decoding/ring reset.h file.

8.1.3 Presentation

The decoding library is the first library which proposes a flexible and efficient way to
implement algorithms related to the Guruswami-Sudan decoding scheme. It can be used
with efficient external libraries to obtain more efficient implementations of Guruswami-
Sudan related algorithms.

I will first present quickly the history of the Guruswami-Sudan algorithm and show
that it needs dense bivariate polynomials only available, not necessarily directly, in
computer algebra systems such as Magma [BCP97] or Mathemagix [H+02]. As error
correcting codes are often used over binary fields, dedicated fast algorithms must be
used. The bivariate polynomials appearing in the list decoding algorithms can have
large degrees even when RS codes with small parameters are considered. Hence fast
algorithms are needed.

I will then present the flexibility of decoding, needed to obtain efficient algorithms
over several finite rings and fields.

• It is easy to replace a key algorithm, such as univariate polynomial multiplication or
univariate polynomial root-finding, by a very efficient one provided by an external
library such as Flint or NTL for example.

• It is easy to choose a finite ring or a finite field, or even to use different rings at
the same time in order to implement algorithms related to RS codes over Galois
rings. The decoding library is not restricted to mathematical object whose binary
representation holds in a single machine word. It requires no supplementary efforts
to use, for example, multiple precision integers from Gmp or large binary fields from
Mpfq.

Finally, I will present the provided algorithms concerning dense bivariate polynomials
and their applications to list decoding.

8.2 More details on decoding

8.2.1 The directory tree of decoding

The decoding library follows the general principal of GMP [Gra91]. There are two main
sets of functions.

• The functions in the include/decoding/lowlevels directory are low levels func-
tions and do not provide a coherent calling interface. Their names are prefixed

210 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

by ll. They aim at implementing algorithms as efficiently as possible. They are
the equivalent of the mpn functions from GMP. Each file contains a coherent group
of functions. For example, the include/decoding/lowlevels/vec.c contains all
the vectors manipulation functions. When using the ll functions, memory has to
be properly managed by hand. This can be tricky as no verification is performed.

• The functions in the include/decoding/sugar directory form a coherent call-
ing interface and are to be called for a normal use of the library. On the con-
trary to the ll functions they perform verifications on their input and take
care of all the memory needed. They are the equivalent of the mpz func-
tions from GMP. Each file contains a coherent group of functions. For example,
the include/decoding/sugar/vec.c contains all the vectors manipulation func-
tions which will manage the memory and call the corresponding ll functions of
include/decoding/lowlevels/vec.c.

The include/decoding/rings directory contains the implementation of the rings (finite
rings, finite fields) provided by decoding. Each file corresponds to a single ring or a
family of rings. For example include/decoding/rings/gfp word.c implements all the
finite fields Fp where p holds within a machine word. The tests, benchs and samples

directories contains respectively test files, bench files and example files for the library.
The doc directory contains the documentation in two different formats.

• The doc/man3 directory contains UNIX manpages.

• The doc/html directory contains HTML pages.

The documentation is generated from files in the doc directory and from the comments
contained in the .c files. Finally the utils directory contains some utilities for building
the library.

The library depends on two external libraries.

• The GMP library is used for the arithmetic of univariate and bivariate polynomials
over the rings Z/nZ.

• The mpfq library is used for the arithmetic of the finite fields F2n , 2 ≤ n ≤ 255.

You need to install or build GMP and mpfq in order to build decoding. To build the
library it is sufficient to type make. The Makefile will detect the best options to pass
to the compiler and then the libdecoding.a will be built.

8.2.2 The internals of the library

The libdecoding.a contains in fact a few functions about the computation of the pa-
rameters of the Guruswami-Sudan algorithm, they do not require optimizations. All the
other C functions are not compiled, they must be included (#include) in the program
you write. This has an advantage, the compiler sees the code as a whole and is therefore
able to perform some optimizations such as inlining small functions. We present an

8.2. MORE DETAILS ON DECODING 211

example of this mechanism. This is a simplified example which does not correspond to
the actual code of the library.

Listing 8.1: decoding.h

/* macro concatenation */

#define __C2(a,b) a##b

#define __C(a,b) __C2(a,b)

/* Addition functions */

#define R_add __C(R,_add)

#define R_vec_add __C(R,_vec_add)

Listing 8.2: gfp.c

#define R RING_NAME

typedef R int [1];

void R_add(R c,R a,R b) {

c[0] = a[0] + b[0] % p;

}

Listing 8.3: gf2n.c

#define R RING_NAME

typedef R int [1];

void R_add(R c,R a,R b) {

c[0] = a[0] ^ b[0];

}

Listing 8.4: vec.c

void R_vec_add(R *r,R *a,R *b,int n) {

int i;

for(i = 0 ; i < n ; i++) {

R_add(r[i],a[i],b[i]);

}

}

#undef RING_NAME

#undef R

The decoding.h, gfp.c, gf2n.c and vec.c files would be provided by the library.
The following listing corresponds to a file written by a user of decoding.

212 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

Listing 8.5: program.c

#include <decoding.h>

#define RING_NAME gfp

#include <gfp.c>

#include <vec.c>

#define RING_NAME gf2n

#include "gf2n.c"

#include "vec.c"

int main(void) {

gfp a[5],b[5],c[5];

gf2n u[5],v[6],w[5];

gfp_vec_add(a,b,c);

gf2n_vec_add(u,v,w);

return 0;

}

To better understand what happens when the compiler processes program.c, it is
interesting to see the output of the C preprocessor.

Listing 8.6: Output of “cpp program.c”

typedef gfp int [1];

void gfp_add(gfp c,gfp a,gfp b) {

c[0] = (a[0] + b[0]) % p;

}

void gfp_vec_add(gfp *r,gfp *a,gfp *b,int n) {

int i;

for(i = 0 ; i < n ; i++) {

gfp_add(r[i],a[i],b[i]);

}

}

typedef gf2n int [1];

void gf2n_add(gf2n c,gf2n a,gf2n b) {

c[0] = a[0] ^ b[0];

}

8.2. MORE DETAILS ON DECODING 213

void gf2n_vec_add(gf2n *r,gf2n *a,gf2n *b,int n) {

int i;

for(i = 0 ; i < n ; i++) {

gf2n_add(r[i],a[i],b[i]);

}

}

int main(void) {

gfp a[5],b[5],c[5];

gf2n u[5],v[6],w[5];

gfp_vec_add(a,b,c);

gf2n_vec_add(u,v,w);

return 0;

}

The R add function is provided by both gfp.c and gf2n.c. This function implements
the addition of two elements from the ring R. In gfp.c it corresponds to the usual
addition modulo p while in gf2n.c it corresponds to the addition in F2n , which can
be implemented with a XOR. Within the vec.c file, we do not know which ring we
manipulate so we use the R add function to add two elements from R and then obtain
a generic component-wise addition for vectors. This mechanism allows one to write
algorithms with a limited genericity to the choice of the underlying ring and the user
can benefit from a unified interface.

When the user wants to use a ring, he must provide a name for the ring using the
RING NAME macro. This name will also be a genuine C type representing an element of
the ring.

#define RING_NAME gfp

#include <gfp.c>

As the R add token is defined as a macro in decoding.h it will be replaced by
RING NAME add and, as RING NAME has the value gfp, will be further replaced by
gfp add. The same holds for R vec add. Therefore gfp add, gfp vec add and gf2n add,
gf2n vec add will be generated by the preprocessor and the user will be able to use both
Fp and F2n at the same time.

The macros

#define R_add __C(R,_add)

#define R_vec_add __C(R,_vec_add)

are declared in a separate file from the actual implementation of the additions. Therefore
the code contained in all the .c files contained in the include/decoding/lowlevels

and include/decoding/sugar directories is valid C code without macros and can be

214 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

used by itself. A direct consequence is that error and warning messages printed by the
compiler are quite simple to decipher.

8.2.3 Customization of the library

It is possible and very simple to customize the library. Suppose that you want to
unroll the loops for vector addition for efficiency. You can achieve this by giving to the
MY VEC ADD macro the name of the function you provide to replace vector addition.

Listing 8.7: Modified program.c

#include <decoding.h>

#define RING_NAME gfp

#include <gfp.c>

#define MY_VEC_ADD my_vec_add

void my_vec_add(R *r,R *a,R *b,int n) {

int i,m;

m = n % 4;

for(i = 0 ; i < m ; i++) {

R_add(r[i],a[i],b[i]);

}

for(; i < n ; i += 4) {

R_add(r[i],a[i],b[i]);

R_add(r[i + 1],a[i + 1],b[i + 1]);

R_add(r[i + 2],a[i + 2],b[i + 2]);

R_add(r[i + 3],a[i + 3],b[i + 3]);

}

}

#include <vec.c>

#define RING_NAME gf2n

#include "gf2n.c"

#include "vec.c"

int main(void) {

gfp a[5],b[5],c[5];

gf2n u[5],v[6],w[5];

gfp_vec_add(a,b,c);

gf2n_vec_add(u,v,w);

return 0;

8.2. MORE DETAILS ON DECODING 215

}

In order for this to work the library contains a modified version of vec.c.

Listing 8.8: Modified vec.c

void R_vec_add(R *r,R *a,R *b,int n) {

#ifdef MY_VEC_ADD

MY_VEC_ADD(r,a,b,n);

#else

int i;

for(i = 0 ; i < n ; i++) {

R_add(r[i],a[i],b[i]);

}

#endif

}

#undef RING_NAME

#undef R

#ifdef MY_VEC_ADD

#undef MY_VEC_ADD

#endif

Many low level functions can be customized by the user including, among other,
vector arithmetic, polynomial arithmetic and memory management functions. No-
table examples are for finite fields of characteristic 2 whose implementations has to
be completely different from prime fields in order to be efficient. By default the li-
brary provides portable and as optimized as possible (under the constraint of portabil-
ity) C code. The customization macros allows a user to put his own (more efficient)
code in a very simple way. All the currently implemented customization macros can
be found in include/decoding/ring reset.h. The example implementation of F17 in
include/decoding/rings/GF17.c shows how to use customization macros.

8.2.4 Rings provided by default with the library

By default, decoding comes with several finite fields. Each ring is implemented in a
separate file within the include/decoding/rings directory. To use a ring provided by
the library, say myring.c you must do

#include <decoding/decoding.h>

#define RING_NAME rng

#include <decoding/rings/myring.c>

#include <decoding/algos.c>

int main(void) {

216 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

...

return 0;

}

where RING NAME is the name you want to give to the ring. It will also be a genuine C

type representing an element of the ring. The include line

#include <decoding/algos.c>

imports all the code implementing vectors, polynomials, error correcting codes. The files
GF5.c and GF17.c are examples of implementations of finite fields. They are not to be
used if one wants optimized implementations. Here is a list of finite fields contained in
include/decoding/rings.

Small prime fields

The file gfp word.c implements all prime fields Fp whose characteristic holds within
a machine word. Use PRIME to indicate the modulus of the finite field you want to
construct.

#define PRIME 101

#include <decoding/rings/gfp_word.c>

#include <decoding/algos.c>

In the above example the name of the finite field will be gf101. You can of course
use several prime fields in the same program.

#define PRIME 7

#include <decoding/rings/gfp_word.c>

#include <decoding/algos.c>

#define PRIME 11

#include <decoding/rings/gfp_word.c>

#include <decoding/algos.c>

It will then generate the code for the two finite fields F7 and F11. You will then have
two types.

• gf7 corresponding to F7.

• gf11 corresponding to F11.

The prime number defining the field is accessible with the R characteristic vari-
able. For example we will have the following.

• gf7 characteristic = 7.

8.2. MORE DETAILS ON DECODING 217

• gf11 characteristic = 11.

By default, the unsigned int C type is chosen to hold the elements of the field. You
can specify a different genuine integer C type like unsigned short or unsigned long if
you need with WORD TYPE. You must choose an unsigned type.

#define WORD_TYPE unsigned long

#define PRIME 101

#include <decoding/rings/gfp_word.c>

#include <decoding/algos.c>

• void R ring init(void);

Initializes the ring. A call to this function is mandatory before doing anything
else.

• void R ring clear(void);

Free the memory occupied by the ring. A call to this function is recommended
when the ring is no more needed.

Dynamic small prime fields

The implementation in gfp word.c is static. The characteristic is chosen and known
at compile time. The user cannot change it at run time. The gfp word dynamic.c file
implements exactly the same finite fields as gfp word.c with the possibility of changing
the characteristic at run time. It implements all prime fields Fp whose characteristic
holds within a machine word.

#include <decoding/rings/gfp_word_dynamic.c>

#include <decoding/algos.c>

In the above example the name of the finite field will be gfp. You can of course use
several prime fields in the same program as soon as they have different names.

#define RING_NAME fld1

#include <decoding/rings/gfp_word_dynamic.c>

#include <decoding/algos.c>

#define RING_NAME fld2

#include <decoding/rings/gfp_word_dynamic.c>

#include <decoding/algos.c>

The prime number defining the field is accessible with the R characteristic vari-
able. For example we will have access to the following variables:

• fld1 characteristic.

• fdl2 characteristic.

218 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

By default, the unsigned int C type is chosen to hold the elements of the field. You
can specify a different genuine integer C type like unsigned short or unsigned long if
you need with WORD TYPE. You must choose an unsigned type.

#define WORD_TYPE unsigned long

#include <decoding/rings/gfp_word_dynamic.c>

#include <decoding/algos.c>

• void R ring init(R characteristic p);

Initialize the ring with prime p. A call to this function is mandatory before doing
anything else.

• void R ring clear(void);

Free the memory occupied by the ring. A call to this function is recommended
when the ring is no more needed.

You can change the prime of the ring with successive calls to R ring clear and
R ring init.

#include <decoding/decoding.h>

#define RING_NAME fld

#include <decoding/rings/gfp_word_dynamic.c>

...

int main(void) {

fld_init_ring (101);

...

fld_clear_ring ();

fld_init_ring (67);

...

fld_clear_ring ();

return 0;

}

Finite fields of characteristic 2

The mpfq gf2n wrapper.c file implements all fields F2n with 2 ≤ s ≤ 255. It is a
wrapper to mpfq [GT06]. The DEGREE indicates which extension of F2 you want to use.

#define DEGREE 8

#include <decoding/rings/mpfq_gf2n_wrapper.c>

#include <decoding/algos.c>

In the above example the name of the finite field will be gf2 8. You can of course
use several mpfq fields in the same program.

8.2. MORE DETAILS ON DECODING 219

#define DEGREE 8

#include <decoding/rings/mpfq_gf2n_wrapper.c>

#include <decoding/algos.c>

#define DEGREE 64

#include <decoding/rings/mpfq_gf2n_wrapper.c>

#include <decoding/algos.c>

It will then generate the code for the two finite fields F28 and F264 . You will then
have two types.

• gf2 8 corresponding to F28 .

• gf2 64 corresponding to F264 .

The degree of the extension is accessible with the R ext degree variable. For example
we will have the following.

• gf2 8 ext degree = 8.

• gf2 64 ext degree = 64.

8.2.5 Implemented algorithms

Algorithms in low levels functions

The Kötter algorithm [Köt96] has been implemented with polyno-
mial shiftings computations instead of binomials computations in
the include/decoding/lowlevels/koetter*.c files. It makes the
Kötter algorithm faster. The polynomial shifting algorithm im-
plemented in the include/decoding/lowlevels/upol shift*.c and
include/decoding/lowlevels/dbpol shift*.c files follows the divide-and-conquer
paradigm and can be found in [BLQ11, Lemma 14, page 12]. The latter al-
gorithm needs quasi-linear univariate polynomial multiplication in order to be
quasi-linear. The Kronecker substitution [Kro82] has been implemented for fields of
characteristic 6= 2 in include/decoding/lowlevels/upol kronecker word.c and
include/decoding/generic/kronecker.c.

The binomials computations are done with GMP in characteris-
tic 6= 2 and a special variant has been written for characteris-
tic 2. It can be found in include/decoding/lowlevels/binomial.c,
include/decoding/lowlevels/* discrepancy.c.

The decoding API

We list here a few of the “sugar” functions provided by decoding. They are the equiva-
lent of GMP mpz functions, form a coherent calling interface and should be called by the

220 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

user of the library. Their implementation can be found in the include/decoding/sugar
directory. The function names are prefixed by the name of the chosen ring.

• void vec init(vec r);

Initialize the vector r. This function must be called before anything else.

• void vec inits(vec r,...);

Initialize a NULL-terminated list of vectors. This function must be called before
anything else.

• void vec clear(vec r);

Free the memory occupied by the vector r. You must not use r after a call to this
function. If you want to use r you must make a call to vec init.

• void vec clears(vec r,...);

Free a NULL-terminated list of vectors. You must not use the vectors after a call
to this function. If you want to use some or all of the vectors you must make calls
to vec init or vec inits.

• void vec zero(vec r);

Set all the components of r to zero.

• void vec append(vec r,R a);

Append a to r.

• void vec random(vec r);

Set all the components of r to random elements of the ring.

• void vec random hamming weight(vec r,int nr,int w);

Set r to be a random vector of length nr and Hamming weight w.

• void vec add(vec r,vec a,vec b);

Set r to a + b. If a and b do not have the same length the shortest vector is
padded with zeros.

• void vec sub(vec r,vec a,vec b);

Set r to a - b. If a and b do not have the same length the shortest vector is
padded with zeros.

• void vec mul by cte(vec r,vec a,R b);

Set r to a * b.

• void vec set coeff(vec r,R a,int i);

Set the i-th coefficient of r to a.

• void vec get coeff(R r,vec a,int i);

Set r to the i-th coefficient of a.

8.2. MORE DETAILS ON DECODING 221

• int vec get len(vec a);

Return the length of a.

• int vec hamming weight(vec a);

Return the Hamming weight of a.

• int vec hamming distance(vec a,vec b);

Return the Hamming distance between a and b. If a and b do not have the the
same size then -1 is returned.

• int vec copy(vec r,vec a);

Make a deep copy of a into r.

• int vec cmp(vec a,vec b);

Return 0 if and only if a equals b. If a and b do not have the same length they
are not equal.

• void vec ptr clear(vec *a,int n);

Clear the array a of vectors of size n.

• void vec print(FILE *out,vec ptr a);

Print a into out.

• void rs code init(rs code rs,int n,int k);

Initialize rs of length n and dimension k. This function must be called before
doing anything else with rs. The support of rs will be a zero vector.

• void rs code init with support(rs code rs,int n,int k);

Initialize rs of length n and dimension k. This function must be called before doing
anything else with rs. Decoding will attempt to create the support of rs: it will
first set the first coordinate to zero, then it will use R next to set the other coor-
dinates. Make sure that the ring you are using has enough elements. For example,
if the ring is a prime field then the support will be set to [0,1,2,3,...,n].

• void rs code clear(rs code rs);

Free the memory occupied by rs.

• void rs code random(vec r,rs code rs);

Set r to be a random codeword of rs.

• int rs code sudan koetter(vec **r,rs code rs,vec y,int tau);

Given a Reed-Solomon code rs and a received word y with at most tau errors,
return the number of codewords within distance tau of y and set r to an array
containing the codewords. The Sudan algorithm is used, the interpolation step is
done with the Kötter algorithm.

222 CHAPTER 8. THE DECODING LIBRARY FOR LIST DECODING

• int rs code guruswami sudan koetter(vec **r,rs code rs,vec y,int

tau);

Given a Reed-Solomon code rs and a received word y with at most tau errors,
return the number of codewords within distance tau of y and set r to an
array containing the codewords. The Guruswami-Sudan algorithm is used, the
interpolation step is done with the Kötter algorithm.

8.2.6 Timings

We present some timings of the Guruswami-Sudan algorithm done by decoding and com-
pare them to a similar implementation from the Percy++ library [Gol07b] although the
main goal of Percy++ is not to provide decoding algorithm but rather to provide a frame-
work for Private Information Retrieval (PIR) [CGKS95,Gol07a]. The C and C++ code for
the timings of both decoding and Percy++ can be found in include/decoding/benchs.

The timings were done on an Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz, with 4Go
of RAM, GMP 5.0.5, mpfq 1.0-rc3, Percy++ 0.3 and NTL 5.5.2, compiled with gcc (GCC)
4.4.6 20120305.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 60 80 100 120 140 160 180 200 220 240 260

ti
m

e
 (

s
e
c
o
n
d
s
)

length

Decoding
Percy++

Figure 8.1: Timings over F257

The implementation of the Guruswami-Sudan algorithm in Percy++ provides several
interpolation algorithms. We have compared the Percy++ Kötter implementation to
our implementation which can be found in include/decoding/lowlevels/koetter.c.
For both figure 8.1 and 8.2 the Guruswami-Sudan list decoding algorithm is applied for

8.2. MORE DETAILS ON DECODING 223

Reed-Solomon codes with parameters [n, bn/5c]F257
, to words having a number of errors

corresponding to the multiplicity 2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 60 80 100 120 140 160 180 200 220 240 260

ti
m

e
 (

s
e

c
o
n

d
s
)

length

Decoding
Percy++

Figure 8.2: Timings over F28

Figure 8.1 shows the timings for Reed-Solomon codes over F257 where decoding is
faster than Percy++ by a factor of 4. Figure 8.2 shows the timings for Reed-Solomon
codes over F28 where decoding is faster than Percy++ by a factor of 45.

Bibliography

[ABC10] D. Augot, M. Barbier, and A. Couvreur. List-decoding of binary Goppa codes
up to the binary Johnson bound. Research Report RR–7490, INRIA, 2010.

[ABC11] D. Augot, M. Barbier, and A. Couvreur. List-decoding of binary Goppa codes
up to the binary Johnson bound. In Information Theory Workshop (ITW),
2011 IEEE, pages 229–233, oct 2011.

[AdT05] M. A. Armand and O. de Taisne. Multistage list decoding of generalized Reed-
Solomon codes over Galois rings. Communications Letters, IEEE, 9(7):625–
627, jul 2005.

[Ajt98] M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized reduc-
tions (extended abstract). In Proceedings of the thirtieth annual ACM sympo-
sium on Theory of computing, STOC’98, pages 10–19, New York, NY, USA,
1998. ACM.

[Ale05] M. Alekhnovich. Linear Diophantine equations over polynomials and soft de-
coding of Reed-Solomon codes. IEEE Trans. Inform. Theory, 51(7):2257–2265,
2005.

[ALRS92] S. Ar, R.J. Lipton, R. Rubinfeld, and M. Sudan. Reconstructing algebraic
functions from mixed data. In Foundations of Computer Science, 1992. Pro-
ceedings, 33rd Annual Symposium on, pages 503–512, oct 1992.

[ALRS98] S. Ar, R.J. Lipton, R. Rubinfeld, and M. Sudan. Reconstructing Algebraic
Functions from Mixed Data. SIAM Journal of Computing, 28(2):487–510, 1998.

[AM94] M.F. Atiyah and I.G. MacDonald. Introduction to commutative algebra.
Addison-Wesley series in mathematics. Westview Press, 1994.

[Arm02] M. A. Armand. Efficient decoding of Reed-Solomon codes over Zq based on
remainder polynomials. WSEAS Transactions on Communications, 1(1):116–
121, 2002.

[Arm04] M. A. Armand. Improved list decoding of generalized Reed-Solomon and al-
ternant codes over rings. In IEEE International Symposium on Information
Theory 2004 (ISIT 2004), page 384, 2004.

225

226 BIBLIOGRAPHY

[Arm05a] M. A. Armand. Improved list decoding of generalized Reed-Solomon and
alternant codes over Galois rings. IEEE Trans. Inform. Theory, 51(2):728–
733, feb 2005.

[Arm05b] M. A. Armand. List decoding of generalized Reed-Solomon codes over com-
mutative rings. IEEE Trans. Inform. Theory, 51(1):411–419, 2005.

[Arm05c] M. A. Armand. Solving the Welch-Berlekamp key equation over a Galois ring.
In WSEAS Transactions on Mathematics, volume 4, pages 319–326, 2005.

[Arm10] M. A. Armand. A Note on Interleaved Reed-Solomon Codes Over Galois Rings.
IEEE Trans. Inform. Theory, 56(4):1574–1581, april 2010.

[Aya10] A. Ayad. A lecture on the complexity of factoring polynomials over global
fields. International Mathematical Forum, 5(10):477–486, 2010.

[AZ08] D. Augot and A. Zeh. On the Roth and Ruckenstein Equations for the
Guruswami-Sudan Algorithm. In IEEE International Symposium on Infor-
mation Theory - ISIT 2008, pages 2620–2624, Toronto, Canada, July 2008.
IEEE.

[Bar06] K. Bartley. Decoding algorithms for algebraic geometric codes over rings. PhD
thesis, University of Nebraska at Lincoln, Lincoln, NB, USA, 2006.

[BCGO09] T. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length of
the McEliece Cryptosystem. In Proceedings of the 2nd International Conference
on Cryptology in Africa: Progress in Cryptology, AFRICACRYPT ’09, pages
77–97, Berlin, Heidelberg, 2009. Springer-Verlag.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[BCQ12] M. Barbier, C. Chabot, and G. Quintin. On quasi-cyclic codes as a general-
ization of cyclic codes. Finite Fields and Their Applications, 18(5):904–919,
2012.

[Ber68] E.R. Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.

[Ber84] E. R. Berlekamp. Algebraic coding theory. M-6. Aegean Park Press, 1984.

[BF01] E. Byrne and P. Fitzpatrick. Gröbner Bases over Galois Rings with an Ap-
plication to Decoding Alternant Codes. J. Symbolic Comput., 31(5):565–584,
2001.

[BF02] E. Byrne and P. Fitzpatrick. Hamming metric decoding of alternant codes over
Galois rings. IEEE Trans. Inform. Theory, 48(3):683–694, mar 2002.

BIBLIOGRAPHY 227

[BF12] J.-F. Biasse and C. Fieker. A polynomial time algorithm for computing the
HNF of a module over the integers of a number field, 2012. http://www.lix.
polytechnique.fr/~biasse/papers/HNF_pol.pdf.

[BGTZ08] R. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. Faster multiplication
in GF(2)[x]. In Proceedings of the 8th international conference on Algorithmic
number theory, ANTS-VIII, pages 153–166, Berlin, Heidelberg, 2008. Springer-
Verlag.

[BGTZ09] R. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. gf2x. http://gf2x.

gforge.inria.fr/, 2009.

[BGU07] D. Boucher, W. Geiselmann, and F. Ulmer. Skew-cyclic codes. Applicable
Algebra in Engineering, Communication and Computing, 18:379–389, 2007.

[BHL10] J. Berthomieu, J. van der Hoeven, and G. Lecerf. Relaxed algorithms for p-adic
numbers. J. Théor. Nombres Bordeaux, (to appear) 2010. Preliminary version
available from http://hal.archives-ouvertes.fr/hal-00486680/.

[BKY03] D. Bleichenbacher, A. Kiayias, and M. Yung. Decoding of Interleaved Reed
Solomon Codes over Noisy Data. In Jos Baeten, Jan Lenstra, Joachim Par-
row, and Gerhard Woeginger, editors, Automata, Languages and Programming,
volume 2719 of Lecture Notes in Computer Science, pages 188–188. Springer
Berlin / Heidelberg, 2003.

[Bla83] R.E. Blahut. Theory and practice of error control codes. Addison-Wesley Pub.
Co., 1983.

[BLQ11] J. Berthomieu, G. Lecerf, and G. Quintin. Polynomial root finding over lo-
cal rings and application to error correcting codes. http://hal.inria.fr/

hal-00642075, 2011.

[Bon00] D. Boneh. Finding smooth integers in short intervals using CRT decoding. In
Proceedings of the thirty-second annual ACM symposium on Theory of com-
puting, STOC ’00, pages 265–272, New York, NY, USA, 2000. ACM.

[Bou11] N. Bourbaki. Algèbre: Chapitre 8. Springer Verlag, 2011.

[BP94] D. Bini and V. Y. Pan. Polynomial and matrix computations. Vol. 1. Fun-
damental algorithms. Progress in Theoretical Computer Science. Birkhäuser,
1994.

[Bro93] W.C. Brown. Matrices over commutative rings. Pure and applied mathematics.
M. Dekker, 1993.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special
sets of points. J. Complexity, 21(4):420–446, 2005.

http://www.lix.polytechnique.fr/~biasse/papers/HNF_pol.pdf
http://www.lix.polytechnique.fr/~biasse/papers/HNF_pol.pdf
http://gf2x.gforge.inria.fr/
http://gf2x.gforge.inria.fr/
http://hal.archives-ouvertes.fr/hal-00486680/
http://hal.inria.fr/hal-00642075
http://hal.inria.fr/hal-00642075

228 BIBLIOGRAPHY

[BSU08] D. Boucher, P. Solé, and F. Ulmer. Skew constacyclic codes over Galois rings.
Advances in mathematics of communications, 2(3):273–292, 2008.

[BU09a] D. Boucher and F. Ulmer. Codes as Modules over Skew Polynomial Rings.
In Matthew Parker, editor, Cryptography and Coding, volume 5921 of LNCS,
pages 38–55. Springer Berlin / Heidelberg, 2009.

[BU09b] Delphine Boucher and Felix Ulmer. Coding with skew polynomial rings. Jour-
nal of Symbolic Computation, 44(12):1644–1656, 2009.

[BW86] E. R. Berlekamp and L. R. Welch. Error correction for algebraic block codes,
1986. US Patent 4633470.

[Byr01] E. Byrne. Lifting Decoding Schemes over a Galois Ring. In Serdar Boztas and
Igor Shparlinski, editors, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, volume 2227 of Lecture Notes in Computer Science, pages
323–332. Springer Berlin / Heidelberg, 2001.

[BZ01] N.S. Babu and K.-H. Zimmermann. Decoding of linear codes over Galois rings.
Information Theory, IEEE Transactions on, 47(4):1599–1603, may 2001.

[CAY08] N. Chen and Z. A Yan. Complexity Analysis of Reed-Solomon Decoding over
GF(2m) without Using Syndromes. EURASIP Journal on Wireless Commu-
nications and Networking, 2008, 2008.

[CC86] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions
in power and Puiseux series. I. J. Complexity, 2(4):271–294, 1986.

[CC87] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions
in power and Puiseux series. II. J. Complexity, 3(1):1–25, 1987.

[CCN10] P.-L. Cayrel, C. Chabot, and A. Necer. Quasi-cyclic codes as codes over rings
of matrices. Finite Fields and Their Applications, 16(2):100–115, 2010.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-
trieval. In Foundations of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 41–50, oct 1995.

[CH11] H. Cohn and N. Heninger. Ideal forms of Coppersmith’s theorem and
Guruswami-Sudan list decoding. In Proceedings of Innovations in computer
science, 2011.

[Cha11] C. Chabot. Factorisation in M`(Fq)[X]. Construction of quasi-cyclic codes.
In WCC 2011 - Workshop on coding and cryptography, pages 209–218, Paris,
France, apr 2011.

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Inform., 28:693–701, 1991.

BIBLIOGRAPHY 229

[CLU09] L. Chaussade, P. Loidreau, and F. Ulmer. Skew codes of prescribed distance
or rank. Designs, Codes and Cryptography, 50:267–284, 2009.

[Coh46] I. S. Cohen. On the structure and ideal theory of complete local rings. Trans.
Amer. Math. Soc., 59:54–106, 1946.

[Coh91] H. Cohen. Advanced topics in computational algebraic number theory, volume
193 of Graduate Texts in Mathematics. Springer-Verlag, 1991.

[Cop97] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. cryptology, 10:233–260, 1997.

[CS03] D. Coppersmith and M. Sudan. Reconstructing curves in three (and higher)
dimensional space from noisy data. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, STOC ’03, pages 136–142, New
York, NY, USA, 2003. ACM.

[CT06] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series
in Telecommunications and Signal Processing. Wiley-Interscience, 2006.

[Dum89] I. I. Dumer. Two Decoding Algorithms for Linear Codes. Problems of Infor-
mation Transmission, 25(1):24–32, 1989.

[Duv89] D. Duval. Rational Puiseux expansions. Compositio Math., 70(2):119–154,
1989.

[Eli57] P. Elias. List decoding for noisy channels. Technical report, Research Labora-
tory of Electronics, Massachusetts Institute of Technology, 1957.

[Eli91] P. Elias. Error-correcting codes for list decoding. IEEE Trans. Inform. Theory,
37(1):5–12, jan 1991.

[FOPT10] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Crypt-
analysis of McEliece Variants with Compact Keys. In Henri Gilbert, editor,
Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 279–298. Springer Berlin / Heidelberg, 2010.

[FS56] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos.
Trans. Roy. Soc. London. Ser. A., 248:407–432, 1956.

[FS10] C. Fieker and D. Stehlé. Short Bases of Lattices over Number Fields. In
G. Hanrot, F. Morain, and E. Thomé, editors, Algorithmic Number Theory,
9th International Symposium, ANTS-IX, Nancy, France, July 19-23, 2010.
Proceedings, volume 6197 of Lecture Notes in Computer Science, pages 157–
173. Springer, 2010.

[Für07] M. Fürer. Faster Integer Multiplication. In Proceedings of the Thirty-Ninth
ACM Symposium on Theory of Computing (STOC 2007), pages 57–66. ACM,
2007.

230 BIBLIOGRAPHY

[Gao02] S. Gao. A New Algorithm for Decoding Reed-Solomon Codes. In Communica-
tions, Information and Network Security, V. Bhargava, H.V. Poor, V. Tarokh,
and S. Yoon, pages 55–68. Kluwer, 2002.

[Gat84] J. von zur Gathen. Hensel and Newton methods in valuation rings. Math.
Comp., 42(166):637–661, 1984.

[GG03] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge
University Press, second edition, 2003.

[GGR11] P. Gopalan, V. Guruswami, and P. Raghavendra. List Decoding Tensor Prod-
ucts and Interleaved Codes. SIAM Journal of Computing, 40(5):1432–1462,
2011.

[GJV03] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial
matrix computations. In Proceedings of the 2003 international symposium on
Symbolic and algebraic computation, ISSAC ’03, pages 135–142, New York,
NY, USA, 2003. ACM.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way func-
tions. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, STOC ’89, pages 25–32, New York, NY, USA, 1989. ACM.

[Gol07a] I. Goldberg. Improving the Robustness of Private Information Retrieval. In
Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages 131–148, may
2007.

[Gol07b] I. Goldberg. Percy++. Software available from http://percy.sourceforge.

net/, 2007.

[Gra91] T. Granlund. The GNU Multiple Precision Arithmetic Library, 1991. http:

//gmplib.org/.

[Gra07] Markus Grassl. Bounds on the minimum distance of linear codes and quantum
codes. Online available at http://www.codetables.de, 2007. Accessed on 2011-
04-19.

[GRS99] O. Goldreich, D. Ron, and M. Sudan. Chinese remaindering with errors. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
STOC ’99, pages 225–234, New York, NY, USA, 1999. ACM.

[GS98] V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon and
Algebraic-Geometric Codes. IEEE Trans. Inform. Theory, 45:1757–1767, 1998.

[GS00] S. Gao and A. Shokrollahi. Computing roots of polynomials over function
fields of curves. In D. Joyner, editor, Proceedings of the Annapolis Confer-
ence on Number Theory, Coding Theory, and Cryptography: From Enigma and
Geheimschreiber to Quantum Theory, pages 214–228. Springer-Verlag, 2000.

http://percy.sourceforge.net/
http://percy.sourceforge.net/
http://gmplib.org/
http://gmplib.org/

BIBLIOGRAPHY 231

[GSS00] V. Guruswami, A. Sahai, and M. Sudan. “Soft-decision” decoding of Chinese
remainder codes. In Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on, pages 159–168, 2000.

[GT06] P. Gaudry and E. Thomé. MPFQ : Fast Finite fields, 2006. http://mpfq.

gforge.inria.fr/.

[Gur03] V. Guruswami. Constructions of codes from number fields. IEEE Trans. In-
form. Theory, 49(3):594–603, 2003.

[Gur04] V. Guruswami. List decoding of error-correcting codes: winning thesis of the
2002 ACM doctoral dissertation competition. Lecture Notes in Computer Sci-
ence. Springer, 2004.

[Gur10] V. Guruswami. Bridging Shannon and Hamming: List Error-Correction with
Optimal Rate. In Proceedings of ICM 2010 (invited survey), aug 2010.

[GV98] M. Greferath and U. Vellbinger. Efficient decoding of Zpk -linear codes. IEEE
Trans. Inform. Theory, 44(3):1288–1291, may 1998.

[GW04] M. Grassl and G. White. New good linear codes by special puncturings. In
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium
on, page 454, jun 2004.

[H+02] J. van der Hoeven et al. Mathemagix. Software available from http://www.

mathemagix.org, 2002.

[Hal01] É. Hallouin. Computing local integral closures. J. Symbolic Comput.,
32(3):211–230, 2001.

[Ham50] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 29:147–160, apr 1950.

[Har10] W. Hart. Fast Library for Number Theory: An Introduction. In Komei Fukuda,
Joris Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathematical
Software ICMS 2010, volume 6327 of Lecture Notes in Computer Science,
pages 88–91. Springer Berlin / Heidelberg, 2010. http://www.flintlib.org/.

[HM87] J.-P. Henry and M. Merle. Complexity of Computation of Embedded Resolu-
tion of Algebraic Curves. In Proceedings of Eurocal 87, volume 378 of LNCS,
pages 381–390. Springer-Verlag, 1987.

[IPE97] J.C. Interlando, Jr. Palazzo, R., and M. Elia. On the decoding of Reed-
Solomon and BCH codes over integer residue rings. IEEE Trans. Inform.
Theory, 43(3):1013–1021, may 1997.

[Iwa05] M. Iwami. Extension of expansion base algorithm for multivariate analytic
factorization including the case of singular leading coefficient. SIGSAM Bull.,
39(4):122–126, 2005.

http://mpfq.gforge.inria.fr/
http://mpfq.gforge.inria.fr/
http://www.mathemagix.org
http://www.mathemagix.org
http://www.flintlib.org/

232 BIBLIOGRAPHY

[Joy00] D. Joyner. Coding theory and cryptography: from Enigma and Geheimschreiber
to quantum theory. Springer-Verlag, 2000.

[Jus76] J. Justesen. On the complexity of decoding Reed-Solomon codes (Corresp.).
IEEE Trans. Inform. Theory, 22(2):237–238, March 1976.

[JV05] C.P. Jeannerod and G. Villard. Essentially optimal computation of the in-
verse of generic polynomial matrices. Journal of Complexity, 21(1):72–86, 2005.
Foundations of Computational Mathematics Conference 2002.

[JV06] C.-P. Jeannerod and G. Villard. Asymptotically fast polynomial matrix
algorithms for multivariable systems. International Journal of Control,
79(11):1359–1367, 2006.

[Ked01] K. S. Kedlaya. The algebraic closure of the power series field in positive char-
acteristic. Proc. Amer. Math. Soc., 129(12):3461–3470, 2001.

[Köt96] R. Kötter. On Algebraic Decoding of Algebraic-Geometric and Cycling Codes.
PhD thesis, Linköping University, Sweden, 1996.

[Kro82] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen
Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum,
10. September 1881.). Journal für die reine und angewandte Mathematik, 92:1–
122, 1882.

[Kuo89] T. C. Kuo. Generalized Newton-Puiseux theory and Hensel’s lemma in C[[x, y]].
Canad. J. Math., 41(6):1101–1116, 1989.

[KV03] R. Kötter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon
codes. IEEE Trans. Inform. Theory, 49(11):2809–2825, 2003.

[Lan02] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-
Verlag, third edition, 2002.

[Laz65] M Lazard. Graduations, filtrations, valuations. Publications Mathématiques de
L’IHÉS, 26:15–43, 1965.

[LDW94] Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of McEliece’s
and Niederreiter’s public-key cryptosystems. IEEE Trans. Inform. Theory,
40(1):271–273, January 1994.

[Lec08] G. Lecerf. Fast Separable Factorization and Applications. Appl. Algebra Engrg.
Comm. Comput., 19(2):135–160, 2008.

[Len86] H. Lenstra. Codes from algebraic number fields. In M. Hazewinkel, J.K.
Lenstra, and L.G. L.T. Meertens, editors, Mathematics and computer science
II, Fundamental contributions in the Netherlands since 1945, volume 4 of CWI
Monograph, pages 94–104, North-Holland, Amsterdam, 1986.

BIBLIOGRAPHY 233

[LF01] K. Lally and P. Fitzpatrick. Algebraic structure of quasicyclic codes. Discrete
Applied Mathematics, 111(1–2):157–175, 2001.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lászlo. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982.

[LS01] S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes .I. Finite
fields. IEEE Trans. Inform. Theory, 47(7):2751–2760, nov 2001.

[LS03] S. Ling and P. Solé. Good self-dual quasi-cyclic codes exist. IEEE Trans.
Inform. Theory, 49(4):1052–1053, april 2003.

[Man76] D. Mandelbaum. On a class of arithmetic codes and a decoding algorithm
(Corresp.). IEEE Trans. Inform. Theory, 22(1):85–88, jan 1976.

[Map12] Maplesoft. Maple. http://www.maplesoft.com/, 2012.

[Mas69] J. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inform.
Theory, 15(1):122–127, jan 1969.

[Mat80] H. Matsumura. Commutative Algebra. Mathematics Lecture Note Series. Ben-
jamin/Cummings Publishing Company, 1980.

[McE78] R. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, 1978.

[McE03] R. J. McEliece. The Guruswami-Sudan Decoding Algorithm for Reed-
Solomon Codes, 2003. http://www.ee.caltech.edu/EE/Faculty/rjm/

papers/RSD-JPL.pdf.

[Moo05] T. K. Moon. Error Correction Coding: Mathematical Methods and Algorithms.
Wiley-Interscience, 2005.

[MRS01] J.C. McConnell, J.C. Robson, and L.W. Small. Noncommutative Noetherian
rings. Graduate studies in mathematics. American Mathematical Society, 2001.

[MS81] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.
Commun. ACM, 24(9):583–584, September 1981.

[MS86a] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting codes.
North-Holland mathematical library. North-Holland, 1986.

[MS86b] R. McEliece and L. Swanson. On the decoder error probability for Reed-
Solomon codes (Corresp.). IEEE Trans. Inform. Theory, 32(5):701–703, sep
1986.

[MS03] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices.
J. Symbolic Comput., 35(4):377–401, 2003.

http://www.maplesoft.com/
http://www.ee.caltech.edu/EE/Faculty/rjm/papers/RSD-JPL.pdf
http://www.ee.caltech.edu/EE/Faculty/rjm/papers/RSD-JPL.pdf

234 BIBLIOGRAPHY

[Neu99] J. Neukirch. Algebraic number theory. Comprehensive Studies in Mathematics.
Springer-Verlag, 1999. ISBN 3-540-65399-6.

[NH00] Rasmus R. Nielsen and T. Hoeholdt. Decoding Reed-Solomon codes beyond
half the minimum distance. In Johannes Buchmann, Tom Hoeholdt, Henning
Stichtenoth, and Horacio Tapia Recillas, editors, Coding Theory, Cryptography
and Related Areas. Springer-Verlag, April 2000.

[Nie86] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986.

[Nor99] G. Norton. On Minimal Realization Over a Finite Chain Ring. Designs, Codes
and Cryptography, 16:161–178, 1999.

[NSM00] G.H. Norton and A. Salagean Mandache. On the Key Equation Over a Com-
mutative Ring. Designs, Codes and Cryptography, 20:125–141, 2000.

[OS99] V. Olshevsky and M. A. Shokrollahi. A displacement approach to efficient
decoding of algebraic-geometric codes. In Proceedings of the thirty-first annual
ACM symposium on Theory of computing, STOC ’99, pages 235–244, New
York, NY, USA, 1999. ACM.

[OSB12] F. Oggier, P. Sole, and J.-C. Belfiore. Codes Over Matrix Rings for Space-Time
Coded Modulations. IEEE Trans. Inform. Theory, 58(2):734–746, February
2012.

[PAR11] The PARI Group, Bordeaux. PARI/GP, version 2.5.0, 2011. available from
http://pari.math.u-bordeaux.fr/.

[Pet60] W. Peterson. Encoding and error-correction procedures for the Bose-Chaudhuri
codes. Information Theory, IRE Transactions on, 6(4):459–470, sep 1960.

[PR10] A. Poteaux and M. Rybowicz. Complexity Bounds for the rational Newton-
Puiseux Algorithm over Finite Fields. Appl. Algebra Engrg. Comm. Comput.,
(to appear) 2010.

[PW72] W.W. Peterson and E.J. Weldon. Error-correcting codes. MIT Press, 1972.

[Rag69] R. Raghavendran. Finite associative rings. Compositio Math., 21:195–229,
1969.

[Rot06] R. Roth. Introduction to coding theory. Cambridge University Press, 2006.

[RR98] R. M. Roth and G. Ruckenstein. Efficient decoding of Reed-Solomon codes
beyond half the minimum distance. In IEEE Trans. Inform. Theory, page 56,
1998.

http://pari.math.u-bordeaux.fr/

BIBLIOGRAPHY 235

[RS60] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304,
1960.

[RU10] A. Rudra and S. Uurtamo. Two Theorems on List Decoding. In Maria Serna,
Ronen Shaltiel, Klaus Jansen, and José Rolim, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, vol-
ume 6302 of Lecture Notes in Computer Science, pages 696–709. Springer Berlin
/ Heidelberg, 2010.

[Ser62] J.-P. Serre. Corps locaux. Number ns 1296 à 1297 in Actualités scientifiques
et industrielles. Hermann, 1962.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 5:3–55, 1948.

[Sha79] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November
1979.

[Sho90] V. Shoup. NTL: A Library for doing Number Theory, 1990. http://www.

shoup.net/ntl/index.html.

[Sid94] V. M. Sidelnikov. Decoding Reed-Solomon Codes Beyond (d−1)/2 and Zeros of
Multivariate Polynomials. Problems of Information Transmission, 30(1):44–59,
1994.

[SKHN75] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method
for solving key equation for decoding goppa codes. Information and Control,
27(1):87–99, 1975.

[Smi81] P.F. Smith. Injective modules and prime ideals. Communications in Algebra,
9(9):989–999, 1981.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-
puting, 7:281–292, 1971.

[Sud97a] M. Sudan. Decoding of Reed-Solomon Codes beyond the Error-Correction
Bound. Journal of Complexity, 13(1):180–193, 1997.

[Sud97b] M. Sudan. Decoding Reed-Solomon codes beyond the error-correction diame-
ter. In the 35th Annual Allerton Conference on Communication, Control and
Computing, pages 215–224, 1997.

[SV05] A. Storjohann and G. Villard. Computing the rank and a small nullspace basis
of a polynomial matrix. In Proceedings of the 2005 international symposium
on Symbolic and algebraic computation, ISSAC ’05, pages 309–316, New York,
NY, USA, 2005. ACM.

http://www.shoup.net/ntl/index.html
http://www.shoup.net/ntl/index.html

236 BIBLIOGRAPHY

[TERH88] T. K. Truong, W. L. Eastman, I. S. Reed, and I. S. Hsu. Simplified procedure
for correcting both errors and erasures of Reed-Solomon code using Euclidean
algorithm. IEEE Proc. Comput. and Digit. Tech., 135(6):318–324, 1988.

[UL10] V. G. Umaña and G. Leander. Practical Key Recovery Attacks On Two
McEliece Variants. In Carlos Cid and Jean-Charles Faugére, editors, Pro-
ceedings of the Second International Conference on Symbolic Computation and
Cryptography, pages 27–44, June 2010.

[VVO89] S.A. Vanstone and P.C. Van Oorschot. An Introduction to Error Correct-
ing Codes With Applications. Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, 1989.

[VW99] J.F. Veloch and J.L. Walker. Codes over rings from curves of higher genus.
IEEE Trans. Inform. Theory, 45(6):1768–1776, sep 1999.

[Wal78] R. J. Walker. Algebraic curves. Springer-Verlag, New York, 1978.

[Wal99a] J. L. Walker. Algebraic geometric codes over rings. J. Pure Appl. Algebra,
144(1):91–110, 1999.

[Wal99b] P. G. Walsh. On the complexity of rational Puiseux expansions. Pacific J.
Math., 188(2):369–387, 1999.

[Wal00] P. G. Walsh. A polynomial-time complexity bound for the computation of the
singular part of a Puiseux expansion of an algebraic function. Math. Comp.,
69(231):1167–1182, 2000.

[WB99] S.B. Wicker and V.K. Bhargava. Reed-Solomon Codes and Their Applications.
John Wiley & Sons, 1999.

[WB08] J. Walker and K. Bartley. Algebraic Geometric Codes over Rings. Series on
Coding Theory and Cryptology. World Scientific, 2008.

[Woo99] J.A Wood. Duality for modules over finite rings and applications to coding
theory. American Journal of Mathematics, 121(3):555–575, 1999.

[Woz58] J. M. Wozencraft. List Decoding. Quarterly Progress Report, Research Labo-
ratory of Electronics, MIT, 1958.

[ZP81] V. V. Zyablov and M. S. Pinsker. List Cascade Decoding. Problems of Informa-
tion Transmission, 17(4):29–34, 1981. (in Russian) pp. 236–240 (in English),
1982.

List of Symbols

N natural numbers
Z integers
Q rational numbers
R real numbers
C complex numbers
Fq finite fields with q elements
GR(pr, s) Galois ring with prs elements of characteristic pr

Zp p-adic integers
Zps unramified extension of the p-adic integers
κ field
κ[[t]] power series in t over κ
κ[[t1, . . . , tr]] power series in t1, ..., tr over κ
C error correcting code
p prime ideal
m maximal ideal
OK algebraic integers in the number field K
Z(A) center of the ring A
A× group of units of the ring A
A2(Fq) affine plane over Fq
A[X]<k polynomials of degree at most k − 1 over the ring A
bxc largest previous integer of x
dxe smallest integer following x(
n
k

)
binomial coefficient for n, k ∈ N

RSA(x, k) Reed-Solomon code of support x and dimension k over the ring A
RSA(n, k) Reed-Solomon code of length n and dimension k over the ring A
GRSA(n, k) generalized Reed-Solomon code of length n and dimension k over

the ring A
GRSA(v, x, k) generalized Reed-Solomon code of weight v, support x and di-

mension k over the ring A
Q-BCH(m, `, δ, A) `-quasi-BCH code of length m` and designed minimum dis-

tance δ with respect to A
[n, k, d]A free linear code over A of length n, dimension k and dimension d

237

238 LIST OF SYMBOLS

M`(Fq) square `× ` matrices over Fq
GL`(Fqs`) group of invertible `× ` matrices over Fqs`
M(n) cost for multiplying two polynomials of degree n
I(n) cost for multiplying two integers of bit-size n
ω feasible linear algebra exponent
〈f〉 module spanned by the components of f

Index

w-homogeneous
component, 64
component of w-valuation, 64

w-valuation, 64

alphabet, 15

BCH code, 17–19
block minimum distance, 153

code, 16
blocklength, 16
folded, 147
interleaved, 137
left linear, 102
length, 16
linear, 16, 102
minimum distance, 16
parameters, 17
quasi-BCH, 153
quasi-cyclic, 146
rate, 16
right linear, 102
unfolded, 147

codeword, 16
commutative subset, 100
Coppersmith’s theorem, 36, 165
cyclic code, 18

decoding radius, 17
designed minimum distance, 19
discrete valuation ring, 46, 131

erasure, 19
error correcting code, 16
error correction, 17
evaluator polynomial, 156

fractional ideal, 165

Galois ring, 61, 103
generalized Reed-Solomon code, 18, 104
generator matrix, 131
Guruswami-Sudan algorithm, 21, 48, 122

Hamming, 15
distance, 15, 102, 131
weight, 15, 102, 131
weighted distance, 16

homogeneous polynomial, 59

interleaved code, 137
interpolation step, 20

Johnson bound, 21, 166

key equation, 156

Lee, 16
distance, 16
metric, 21

list decoding, 20
list decoding radius, 20
locator polynomial, 156

maximum distance separable, 17
MDS code, 17
multiplicity, 64

norm, 165
number field, 164

parity-check matrix, 103
pseudo-basis, 165

quasi-BCH code, 153

239

240 INDEX

quasi-cyclic code, 146
quasi-homogeneous

Euclidean division, 64
Hensel lifting, 75
multifactor Hensel lifting, 79

Reed-Solomon code, 17, 18, 47, 60, 104, 132
residue field, 59
root finding step, 20
root of unity, 153

Singleton bound, 17
subtractive subset, 100
Sudan algorithm, 47
symbol, 15

uniformizing parameter, 46, 131
unique decoding, 17
unique decoding function, 17
unramified, 59

valuation, 46

weighted Hamming distance, 16
Welch-Berlekamp algorithm, 115
word, 15

Abstract

This thesis studies the algorithmic techniques of list decoding, first proposed by Gu-
ruswami and Sudan in 1998, in the context of Reed-Solomon codes over finite rings.
Two approaches are considered. First we adapt the Guruswami-Sudan (GS) list decod-
ing algorithm to generalized Reed-Solomon (GRS) codes over finite rings with identity.
We study in details the complexities of the algorithms for GRS codes over Galois rings
and truncated power series rings. Then we explore more deeply a lifting technique for list
decoding. We show that the latter technique is able to correct more error patterns than
the original GS list decoding algorithm. We apply the technique to GRS code over Galois
rings and truncated power series rings and show that the algorithms coming from this
technique have a lower complexity than the original GS algorithm. We show that it can
be easily adapted for interleaved Reed-Solomon codes. Finally we present the complete
implementation in C and C++ of the list decoding algorithms studied in this thesis.
All the needed subroutines, such as univariate polynomial root finding algorithms, finite
fields and rings arithmetic, are also presented. Independently, this manuscript contains
other work produced during the thesis. We study quasi cyclic codes in details and show
that they are in one-to-one correspondence with left principal ideal of a certain matrix
ring. Then we adapt the GS framework for ideal based codes to number fields codes and
provide a list decoding algorithm for the latter.

Résumé

Cette thèse porte sur l’algorithmique des techniques de décodage en liste, initiée par
Guruswami et Sudan en 1998, dans le contexte des codes de Reed-Solomon sur les
anneaux finis. Deux approches sont considérées. Dans un premier temps, nous adaptons
l’algorithme de décodage en liste de Guruswami-Sudan aux codes de Reed-Solomon
généralisés sur les anneaux finis. Nous étudions en détails les complexités de l’algorithme
pour les anneaux de Galois et les anneaux de séries tronquées. Dans un deuxième temps
nous approfondissons l’étude d’une technique de remontée pour le décodage en liste.
Nous montrons que cette dernière permet de corriger davantage de motifs d’erreurs que la
technique de Guruswami-Sudan originale. Nous appliquons ensuite cette même technique
aux codes de Reed-Solomon généralisés sur les anneaux de Galois et les anneaux de
séries tronquées et obtenons de meilleures bornes de complexités. Enfin nous présentons
l’implantation des algorithmes en C et C++ des algorithmes de décodage en liste étudiés
au cours de cette thèse. Tous les sous-algorithmes nécessaires au décodage en liste,
comme la recherche de racines pour les polynômes univariés, l’arithmétique des corps
et anneaux finis sont aussi présentés. Indépendamment, ce manuscrit contient d’autres
travaux sur les codes quasi-cycliques. Nous prouvons qu’ils sont en correspondance
biunivoque avec les idéaux à gauche d’un certain anneaux de matrices. Enfin nous
adaptons le cadre proposé par Guruswami et Sudan pour les codes à base d’ideaux
aux codes construits à l’aide des corps de nombres. Nous fournissons un algorithme de
décodage en liste dans ce contexte.

	List of Algorithms
	List of Figures
	Organization of the document
	Introduction
	I The Classical List Decoding Framework for Finite Rings
	Shortest Vectors in Polynomial Lattices Over Galois Rings and Application to List Decoding
	Introduction
	Related work

	Prerequisites
	Complexity model
	Discrete valuation rings
	Reed-Solomon codes over valuation rings

	Computing the shortest vector
	Preliminaries
	The naive algorithm

	Application to list decoding of Reed-Solomon codes
	Preliminaries
	Application to the Sudan algorithm

	Conclusion

	Polynomial root finding over local rings and application to error correcting codes
	Introduction
	Application to list decoding
	Complexity model
	Our contributions
	Related works

	Algorithm with linear convergence
	Local multiplicities
	Representation of the set of roots
	Naive local solver
	Cumulative cost of steps 1
	Cumulative cost of steps 2
	Cumulative cost of steps 3
	Cumulative cost of steps 4
	Total cost of Algorithm 9

	Faster algorithm with splitting
	Quasi-homogeneous Hensel lifting
	Quasi-homogeneous multifactor Hensel lifting
	Local solver with splitting
	Total cost of Algorithm 13
	Implementation and timings
	Cost analysis in higher dimension

	Application to error correcting codes
	Algorithm
	Experiments

	II A Lifting Framework for List Decoding over some Finite Rings
	On Generalized Reed-Solomon Codes Over Commutative and Noncommutative Rings
	Introduction
	Our contributions
	Related work

	Prerequisites
	Error correcting codes
	Galois rings
	Complexity model

	Generalized Reed-Solomon codes
	Unique decoding of generalized Reed-Solomon codes
	Unique decoding over certain valuation rings
	The Welch-Berlekamp algorithm

	List decoding of generalized Reed-Solomon codes
	List-decoding over certain valuation rings
	The Guruswami-Sudan algorithm
	Complexities for list decoding algorithms

	Conclusion

	A Lifting Decoding Scheme and its Application to Interleaved Linear Codes
	Introduction
	Our contributions
	Related work

	Prerequisites
	Complexity model
	Error correcting codes
	Reed-Solomon codes over rings

	Improved -adic lifting.
	Application to interleaved linear codes.
	Conclusion

	III Related work on error correcting codes
	On Quasi-Cyclic Codes as a Generalization of Cyclic Codes
	Introduction
	Context
	First definitions

	Properties of quasi-cyclic codes
	The one-to-one correspondence
	The generator polynomial of an -quasi-cyclic code
	A property of generator polynomials

	Quasi-BCH
	Definition

	Decoding scheme for quasi-BCH codes
	The key equation

	Evaluation codes
	Definition and parameters
	New good codes

	Conclusion

	An algorithm for list decoding number field codes
	Introduction
	Generalities on number fields
	Decoding with Coppersmith's theorem
	Johnson-type bound for number fields codes
	General description of the algorithm
	Existence of the decoding polynomial
	Computation of the decoding polynomial
	Good weight settings
	Conclusion

	IV Implementation
	Implementation within Mathemagix
	Introduction
	Overview of the C++ side of Mathemagix
	The directory tree of Mathemagix
	C++ classes and variants

	The mgf2x package
	The finitefieldz package
	Prime fields
	Extensions of finite fields
	Variants available for ffe
	Finite fields of characteristic 2

	The quintix package
	Prime Galois rings
	Extensions of Galois rings
	Galois rings of characteristic 2r
	Implementation of univariate root finding over Galois rings

	The decoding Library for List Decoding
	Overview of decoding
	Introduction and motivation
	The implementation
	Presentation

	More details on decoding
	The directory tree of decoding
	The internals of the library
	Customization of the library
	Rings provided by default with the library
	Implemented algorithms
	Timings

	Bibliography
	List of symbols
	Index

