

Les dianions géminés comme précurseurs pour la synthèse de complexes carbéniques de métaux de transition

Hadrien Heuclin

► To cite this version:

Hadrien Heuclin. Les dianions géminés comme précurseurs pour la synthèse de complexes carbéniques de métaux de transition. Chimie de coordination. Ecole Polytechnique X, 2012. Français. NNT: . pastel-00761254

HAL Id: pastel-00761254 https://pastel.hal.science/pastel-00761254

Submitted on 5 Dec 2012 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Palaiseau

THÈSE

Présentée pour obtenir le titre de

DOCTEUR DE L'ÉCOLE POLYTECHNIQUE

Spécialité CHIMIE

Par

Hadrien Heuclin

Les dianions géminés comme précurseurs pour la synthèse de complexes carbéniques de métaux de transition

Thèse soutenue le 02 Octobre devant la commission d'examen composée de :

Antoine Baceiredo	Directeur de Recherche	Président
Karine Costuas	Chargée de Recherche	Rapporteur
Samuel Dagorne	Chargé de Recherche	Rapporteur
François Nief	Directeur de Recherche	Examinateur
Nicolas Mézailles	Directeur de Recherche	Directeur de thèse

Remerciements

Je remercie avant tout les membres du jury qui ont évalué ce travail. Je remercie M. Antoine Baceiredo qui m'a fait l'honneur de présider ce jury de thèse. Je remercie Mme Costuas et M. Dagorne d'avoir accepté d'être les rapporteurs de cette thèse.

Mes premières pensées vont à Pascal Le Floch. Son dynamisme et sa passion pour la chimie qu'il dégageait pendant ses cours m'ont incité à effectuer mon premier stage au labo. C'est ensuite lui qui m'a convaincu de réaliser mon stage de master puis ma thèse au laboratoire. Son investissement pendant les quelques mois où nous avons travaillé ensemble resterons gravés dans ma mémoire. Il nous a malheureusement quittés bien trop tôt.

Je remercie François Nief qui a eu la rude tâche de reprendre la direction du laboratoire dans un contexte très délicat. Grâce à lui, l'avenir du laboratoire a été assuré.

Je tiens également à remercier très chaleureusement Nicolas, mon directeur de thèse. Il est difficile de résumer l'influence considérable qu'il a eue sur ce travail. Je retiendrai sa motivation sans faille, ses encouragements et son sens de l'humour malheureusement pas toujours bien compris de ses contemporains. Il m'a très rapidement confié les rênes de mon sujet et m'a laissé libre des choix scientifiques le concernant. Il a su me guider tout au long de mes recherches en me considérant comme un collaborateur d'avantage que comme un étudiant. Je lui souhaite une entière réussite à Toulouse où il trouvera à n'en pas douter de quoi faire fructifier la myriade d'idées qu'il lui reste encore à explorer.

Je remercie Anne-Florence Eyssautier notre gestionnaire sans qui le quotidien aurait été beaucoup plus difficile à vivre. Toujours à l'écoute, de bon conseil et d'une bonne humeur constante. Je lui souhaite le meilleur pour la suite.

Je remercie Louis Ricard et Xavier le Goff pour leur aide précieuse dans l'analyse par diffraction des rayons X. Je les remercie également pour le soin qu'ils ont eu de transmettre leurs connaissances aux étudiants afin que la cristallographie ne soit pas qu'un côté obscur de la chimie. Je souhaite une bonne continuation à Louis au laboratoire. Je souhaite le meilleur à Xavier pour la suite de sa carrière au CEA (sans oublier la barre d'erreur bien sûr).

Je remercie l'ensemble des permanents du laboratoire avec qui j'ai eu plaisir à travailler : Audrey Auffrant, Corinne Gosmini, Duncan Carmichael, Elodie Dubois et Greg Nocton. Je remercie également Fabien Gagosz.

Je remercie Christian Müller de m'avoir accueilli dans son équipe pendant la durée de mon stage à Berlin.

Je remercie ensuite l'ensemble des étudiants avec qui j'ai eu le plaisir de partager ces quelques années. Impossible de ne pas commencer par le clan des « dîners du Jeudi » : Marie, Elsa, Stéphanie et Philippe. Grâce à vous j'ai passé trois excellentes années au labo (et en dehors), j'ai réalisé l'importance que peut avoir un groupe soudé pour affronter les épreuves de la thèse. Je remercie également Phuong Anh, Emmanuel, Martin et Xin. Je souhaite bon courage aux trois derniers pour leur troisième année de thèse. Je souhaite également bonne chance aux nouveaux thésards : Thibault et Eleonore.

Je remercie les anciens étudiants du laboratoire qui m'ont encadré à mon arrivée en particulier Antoine Buchard et Matthias Blug. Je remercie Thibault Cantat pour tous ses conseils et son expérience sur la chimie des dianions. Je remercie également Sophie, Matthieu, Aurélie, Aurélien, Eric, Elina et Jeanne-Marie.

Je tiens à remercier les stagiaires que j'ai encadrés au cours de ce travail : Sun Chao, Pierre, Jessica et Solène.

Je remercie chaleureusement Colombe Gronnier qui a accepté de relire ce manuscrit et pour le temps et la démoniaque précision avec laquelle elle s'est acquitté de cette tâche.

Je remercie tous mes collègues musiciens qui m'ont permis de souffler après les journées de travail et qui m'ont écouté me plaindre à longueur de répétition : Joël, Olivier, Lisa, Frédérick, Jean, Cyril, Divine, Florence, Elodie ainsi que l'ensemble des musiciens de l'orchestre de la philharmonie du COGE, de l'orchestre du théâtre de Rungis, de l'orchestre Opéracadémy, du quintette à vent Frakass et des courgettes enflammées.

Je remercie ma famille qui m'a toujours aidé tout au long de mon parcours. Je remercie également mes amis qui m'ont accompagné pendant ces trois ans.

Je remercie tous ceux que j'aurais pu oublier.

Je remercie en dernier lieu Rosalinda qui a supporté au quotidien mes tirades sur les dianions, les figures de diffraction, la RMN, les boîtes à gants, les complexes organométalliques. Merci pour ta patience et ta compréhension.

Avant-Propos

Considérations générales

Les travaux présentés dans ce manuscrit ont été réalisés dans le Laboratoire Hétéroéléments et Coordination de l'Ecole Polytechnique sous la direction du Dr. Nicolas Mézailles de Septembre 2009 à Septembre 2012.

La notation des références bibliographiques est propre à chaque chapitre. Celles-ci sont annotées en bas de page mais également présentes en fin de chapitre.

Les figures, tableaux et schémas sont numérotés par chapitre. La numérotation des molécules synthétisées est indépendante dans chaque chapitre sauf pour quatre molécules (1, 2, 3, 4 et leurs dérivés). Les molécules synthétisées sont numérotées à l'aide de chiffres arabes et les modèles théoriques en lettres capitales.

Les analyses cristallographiques par diffraction des rayons X sur monocristaux ont été menées avec l'aide du Dr. Xavier Le Goff et du Dr. Louis Ricard.

Abréviations utilisées

Ad : Adamantyle **BuLi** : Butyllithium **BV** : Basse vacante **CAAC** : Cyclic Alkyl Amino Carbene cat. : Catalyseur **CDA** : Charge Decomposition Analysis **CEA** : Commissariat à l'Energie Atomique **Cp** : Cyclopentadiényle **CpH** : Cyclopentadiène **DFT** : Density Functional Theory **Dipp** : Diisopropylphényle DME : 1,2-diméthoxyéthane dppm : bis(diphénylphosphino)méthane **FO** : Frontier Orbital HO : Haute Occupée **iPr** : Isopropyle KHMDS : Bis(triméthylsilyl)amidure de potassium LP: Lone Pair MeLi : Méthyllithium Mes : Mésityle **NBO** : Natural Bond Orbital **NHC** : *N*-Heterocyclic Carbene nPent : Néopentyle PhLi : Phényllithium **Py** : Pyridine RMN : Résonnance Magnétique Nucléaire RPE : Résonance Paramagnétique Electronique **RX** : Rayons X **SOMO** : Singly Occupied Molecular Orbital **SQUID** : Superconducting Quantum Interference Device tBu : Terbutyle $tBuLi: {\rm Terbutyllithium}$ THF : Tétrahydrofuranne TMEDA : Tétraméthyle éthylènediamine TMS : Triméthylsilyle **TS** : Transition State

À Bertrand

Sommaire

INT	RODUCTION : Les dianions géminés	15
I.	Introduction à la chimie des carbènes	15
II.	Synthèse des dianions géminés	22
III	Réactivité des dianions géminés	26
IV	Chimie de coordination des dianions géminés	28
	1. Groupe 2	29
	2. Groupe 3, lanthanides et actinides	29
	3. Groupe 4	31
	4. Groupe 6	
	5. Groupe 8	
	6. Groupe 9	35
	7. Groupe 10	35
	8. Groupe 11	
	9. Groupe 12	
	10. Groupes 13, 14 et 15	
V.	Présentation du sujet	40
VI	Bibliographie	41
Chap	itre 1 : Complexes carbéniques de métaux du groupe 4	49
I.	Introduction	49
II.	Synthèse de carbènes de titane	50
III	Dianion de phosphonate et carbènes de zirconium	54
IV	Réactivité des complexes carbéniques	59
V.	Etude Théorique	61
VI	Transmétalation de carbènes nucléophiles	67
VI	Conclusion et perspectives	71
VI	I. Bibliographie	73
Chap (II).	itre 2 : Comparaison de la coordination de deux systèmes dianioniques s	sur le cobalt 77
I.	Introduction	77
II.	Synthèse des complexes	78
III	Etude théorique	85
IV	Conclusions et perspectives	
V.	Bibliographie	90
Chap	itre 3 : Synthèse de nouveaux dianions géminés	93
I.	Introduction	93
II.	Synthèse des dianions	94

1. Ligand mixte oxyde de phosphine/sulfure de phosphine	94
2. Ligand bis-oxyde de phosphine	99
3. Ligand mixte sulfure de phosphine/phosphineborane	103
III. Etude théorique	108
IV. Conclusion et perspectives	118
V. Bibliographie	120
Chapitre 4 : Complexes carbéniques de ruthénium, activation CH intramoléculaire	. 123
I. Introduction	123
II. Synthèses et réactivité	126
III. Etude théorique	131
1. Insertion dans un noyau aromatique du groupe oxyde de phosphine	131
2. Insertion dans un noyau aromatique du groupe sulfure de phosphine	133
3. Réversibilité du processus	134
IV. Conclusions et perspectives	138
V. Bibliographie	141
Chapitre 5 : Comparaison de deux systèmes monoanioniques	. 145
I. Introduction	145
II. Comparaison des deux systèmes anioniques	147
III. Chimie de coordination, complexes de rhodium(I)	151
IV. Chimie de coordination, complexes d'or(I)	161
V. Conclusions et perspectives	166
VI. Bibliographie	170
Chapitre 6 : Activation de liaisons B-H par des composés carbénoïdes	. 175
I. Introduction	175
II. Résultats et discussion	181
1. Activation intramoléculaire	181
2. Activation intermoléculaire	186
III. Etude théorique	188
1. Activation intramoléculaire	188
2. Activation intermoléculaire	191
IV. Conclusions et perspectives	193
V. Bibliographie	195
PARTIE EXPÉRIMENTALE	. 199
I. Considérations générales	199
1. Procédures de synthèse	199
2. Spectroscopie RMN	199
3. Diffraction des rayons X	199
4. Analyses élémentaires	200

5.	Détails théoriques	
II. Mo	odes opératoires	201
1.	Chapitre 1	201
2.	Chapitre 2	203
3.	Chapitre 3	204
4.	Chapitre 4	208
5.	Chapitre 5	
6.	Chapitre 6	215
ANNEXES		217

Introduction

INTRODUCTION : Les dianions géminés

I. Introduction à la chimie des carbènes

Un carbène est une espèce contenant un atome de carbone divalent possédant deux électrons de valence. Un carbène peut exister sous deux formes : singulet et triplet. Dans un carbène singulet, l'écart énergétique entre les deux orbitales p occupées est tel que les deux électrons célibataires sont situés dans l'orbitale p de plus basse énergie. Au contraire, pour un carbène triplet, le faible écart énergétique entre ces deux orbitales conduit à une configuration dans laquelle chaque électron est situé dans une orbitale distincte (schéma 1).

Schéma 1 : Représentation simplifié d'un carbène dans ses deux états de spin.

Initialement, ces espèces ont été postulées ou observées comme intermédiaires réactionnels. Par exemple, la photolyse ou la thermolyse de composés diazoalcanes¹, diazirines², ou d'époxydes permet la génération de carbènes (schéma 2).

Schéma 2 : Exemples de carbènes générés in situ.

Ces espèces sont hautement réactives mais peuvent être stabilisées à l'état libre moyennant un contrôle très fin des substituants du carbone central. En effet, les carbènes sont à la fois des

¹ W. R. Bamford, T. S. Stevens, J. Chem. Soc. 1952, 4735-4740.

² M. T. H. Liu, Chem. Soc. Rev. 1982, 11, 127-140.

espèces nucléophiles et électrophiles. Abaisser soit la nucléophilie, soit l'électrophilie (soit les deux) d'un carbène empêche une trop grande réactivité. Ainsi, le premier exemple d'un carbène stable libre a été publié en 1988 par le groupe de Bertrand. Ces carbènes dits « push-pull » peuvent être vus soit comme des λ^3 -phosphinocarbènes soit des λ^5 -phosphaacétylènes (composé 1, schéma $3^{3,4,5}$. La structure RX de ce composé n'a été déterminée que dix ans après⁶. Ici, la nucléophilie et l'électrophilie du carbène ont été diminuées. En 1991, le groupe d'Arduengo a publié la première structure RX d'un carbène stable à température ambiante (composé 2, schéma 3)⁷. L'introduction des groupements azotés permet d'abaisser l'électrophilie du carbène en déstabilisant l'orbitale p_{π} par effets π -donneurs. A la suite de cet exemple précurseur, de nombreuses variantes de diaminocarbènes ont été développées. Ainsi, le composé 3, analogue de 2 mais ne présentant pas de double liaison a pu être synthétisé⁸. Ensuite en 1996, Alder a synthétisé les premiers diaminocarbènes acycliques (composé 4, schéma 3)9. Puis en 1997, Arduengo a décrit la synthèse d'un analogue de 2 possédant un atome de soufre dans le cycle (composé 5, schéma 3)¹⁰. En 1998 Alder a publié des exemples d'aminooxy et d'aminothiocarbènes (composé 6, schéma 3)¹¹. Par la suite le groupe de Bertrand a grandement contribué à la synthèse des carbènes libres avec les composés 7, 8, 9 et 10^{12,13,14,15} (schéma 3). En 2005, le premier exemple de dérivé phosphoré des NHC (PHC) a été publié (composé 11, schéma 3). Le domaine des carbènes a fait l'objet de plusieurs revues^{16,17,18,19}.

Bien qu'ils soient stables, ces carbènes restent des espèces sensibles à l'hydrolyse et à l'oxydation. Deux groupes sont parvenus à stabiliser certains carbènes afin de les rendre manipulables à l'air. En 2005, le groupe de Crabtree a montré que le dérivé carboxylate du diméthyle-NHC est stable à l'eau et à l'air et réagit de façon similaire au NHC libre moyennant un chauffage du milieu réactionnel (schéma 4)²⁰. En 2007, le groupe de Baceiredo a utilisé des huiles de silicones pour protéger les NHC de l'oxydation ou de l'hydrolyse²¹. Aucune altération de la réactivité des NHC

- ⁵ G. R. Gillette, A. Baceiredo, G. Bertrand, Angew. Chem. Int. Ed. 1990, 29, 1429-1431.
- ⁶ T. Kato, H. Gornitzka, A. Baceiredo, A. Savin, G. Bertrand, J. Am. Chem. Soc. 2000, 122, 998-999.
- ⁷ A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. **1991**, 113, 361-363.

¹⁹ J. Vignolle, X. Cattoën, D. Bourissou, *Chem. Rev.* **2009**, *109*, 3333-3384.

³ A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463-6466.

⁴ A. Igau, A. Baceiredo, G. Trinquier, G. Bertrand, Angew. Chem. Int. Ed. 1989, 28, 621-622.

⁸ A. J. Arduengo III, J. R. Goerlich, W. J. Marshall, J. Am. Chem. Soc. 1995, 117, 11027-11028.

⁹ R. W. Alder, P. R. Allen, M. Murray, A. G. Orpen, *Angew. Chem. Int. Ed.* **1996**, *35*, 1121-1123.

 ¹⁰ A. J. Arduengo III, J. R. Goerlich, W. J. Marshall, *Liebigs Ann./Recueil* **1997**, 365-374.
¹¹ R. W. Alder, C. P. Butts, A. G. Orpen, *J. Am. Chem. Soc.* **1998**, *120*, 11526-11527.

 ¹² C. Buron, H. Gornitzka, V. Romanenko, G. Bertrand, *Science* 2000, 288, 834-836.

¹³ S. Solé, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, *Science* **2001**, *292*, 1901-1903.

¹⁴ V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2006, 312, 722-724.

¹⁵ E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, *Science* 2009, 326, 556-559.

¹⁶ G. Bertrand, R. Reed, Coord. Chem. Rev. 1994, 137, 323-355.

¹⁷ A. J. Arduengo, Acc. Chem. Res. **1999**, 32, 913-921.

¹⁸ D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, *Chem. Rev.* **2000**, *100*, 39-92.

²⁰ A. M. Voutchkova, L. N. Appelhans, A. R. Chianese, R. H. Crabtree, J. Am. Chem. Soc. 2005, 127, 17624-17625.

²¹ F. Bonnette, T. Kato, M. Destarac, G. Mignani, F. P. Cossio, A. Baceiredo, Angew. Chem. Int. Ed. 2007, 46, 8632-8635.

n'est observée et, à la différence du groupe de Crabtree, le chauffage du milieu réactionnel n'est pas toujours nécessaire pour libérer le NHC.

Schéma 3 : Exemples de carbènes stables.

Schéma 4 : Protection des carbènes.

Avant l'exemple de Bertrand, il était nécessaire de stabiliser le fragment carbénique dans la sphère de coordination d'un métal pour pouvoir l'isoler. C'est ce qu'ont montré les exemples historiques de Fischer et Schrock. Le premier a publié en 1964 le tout premier exemple de complexe

carbénique d'un métal de transition (complexe **11**, schéma 5)^{22,23}. En partant de l'hexacarbonyltungstène [W(CO)₆], une attaque nucléophile d'un ligand carbonyle suivie d'une méthylation ont permis la synthèse du carbène. Par la suite, le groupe de Schrock a présenté le deuxième exemple marquant de carbènes de métaux de transition par réaction du néopentyllithium sur [/Bu₃TaCl₂] qui conduit au carbène [Ta(tBu_3)₂(CH/Bu)] (complexe **12**, schéma 5)²⁴.

Schéma 5 : Deux premiers exemples marquants de complexes carbéniques de métaux de transition.

Les premières études de réactivités menées sur ces deux exemples de carbènes ont permis de les classer en deux catégories. Les carbènes de types Fischer réagissent avec un grand nombre de nucléophiles alors que les carbènes de types Schrock réagissent avec des électrophiles. L'étude théorique de la liaison M=C au sein des complexes carbéniques a permis la compréhension de cette différence de réactivité^{25,26,27,28}. Il a été montré que l'écart énergétique entre les orbitales n_{σ} et p_{π} au sein du ligand et l'écart énergétique entre les orbitales de symétrie σ et π dans le fragment métallique influençaient grandement la nature de la liaison M=C. Dans un complexe de type Fischer, le carbone central porte usuellement des groupements π -donneurs. Ceci a pour conséquence une déstabilisation de l'orbitale p_{π} vacante du carbène, ainsi, l'écart n_{σ}/p_{π} est important. Dans ce cas, l'interaction M=C peut être vue comme la combinaison de deux fragments singulets. La BV du complexe carbénique est majoritairement développée sur le carbone central et ces complexes présentent donc une réactivité de type électrophile. A l'inverse, pour un carbène de type Schrock, les orbitales n_{σ} et p_{π} sont plus proches en énergie et le fragment carbénique est de configuration triplet. On peut alors voir la liaison M=C comme la combinaison de deux fragments triplets. La HO d'un tel système est plus développée sur le carbone et les

²² E. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. 1964, 3, 580-581.

²³ E. O. Fischer, A. Maasböl, Chem. Ber. 1967, 100, 2445-2456.

²⁴ R. R. Schrock, J. Am. Chem. Soc. 1974, 96, 6796-6797.

²⁵ T. R. Cundari, M. S. Gordon, J. Am. Chem. Soc. 1991, 113, 5231-5243.

²⁶ T. R. Cundari, M. S. Gordon, J. Am. Chem. Soc. **1992**, 114, 539-548.

²⁷ S. F. Vyboishchikov, G. Frenking, *Chem. Eur. J.* **1998**, *4*, 1428-1438.

²⁸ G. Frenking, N. Fröhlich, Chem. Rev. 2000, 100, 717-774.

complexes de type Schrock sont donc nucléophiles. Ces interactions sont représentées dans le schéma 6.

Schéma 6 : Diagramme d'interaction dans des carbènes de type Fischer et Schrock.

Comme on peut le voir dans le schéma 6, la réactivité d'un complexe carbénique dépend, et du fragment métallique, et de la nature des substituants au carbone. Un grand nombre de combinaisons sont ainsi possibles ce qui fait de la chimie des complexes carbéniques une chimie particulièrement riche.

Dès 1975, Dötz publie la réaction d'un carbène de chrome avec un alcyne qui conduit à la formation d'un phénol substitué (schéma 7)²⁹. Cette réaction est largement utilisée en chimie de synthèse de substances naturelles car elle permet un accès simple et rapide à des squelettes phénol très complexes. Le mécanisme de cette transformation a été amplement étudié tant expérimentalement que par calculs DFT^{30,31}. Toutefois, aucune version catalytique de cette réaction n'a été mise au point.

²⁹ K. H. Dötz, Angew. Chem. Int. Ed. **1975**, 14, 644-645.

³⁰ K. H. Dötz, P. Tomuschat, *Chem. Soc. Rev.* **1999**, *28*, 187-198.

³¹ J. O. C. Jimenez-Halla, M. Solà, *Chem. Eur. J.* **2009**, *15*, 12503-12510.

Schéma 7 : Réaction de Dötz.

En 1966, Pettit et Joly font état de la première réaction de cyclopropanation mettant en jeu un complexe carbénique³². La réaction en milieu acide de [Cp(CO)₂FeCH₂OCH₃] avec du cyclohexène conduit à la formation de norcarane (schéma 8). Les auteurs postulèrent le carbène de fer comme intermédiaire de la réaction. Des travaux de Guerchais vinrent confirmer cette hypothèse^{33,34}. Actuellement, des versions catalytiques et stéréosélectives de la réaction de cyclopropanation sont utilisées^{35,36,37}. La décomposition d'un dérivé diazo est effectuée in situ en présence de l'oléfine voulue (schéma 8). Cette décomposition est accélérée par un catalyseur qui peut être chiral. Cette réaction reste néanmoins d'un emploi limité à cause de la faible disponibilité des dérivés diazos.

Schéma 8 : Première réaction de cyclopropanation et une alternative catalytique.

L'application la plus reconnue des carbènes de métaux de transition est certainement la réaction de métathèse des oléfines^{38,39,40,41,42}. Elle valut à Schrock, Grubbs et Chauvin le prix Nobel de chimie en 2005. Formellement, cette réaction consiste en l'échange des substituants de deux oléfines (schéma 9).

³² P. W. Jolly, R. Pettit, J. Am. Chem. Soc. 1966, 88, 5044-5045.

³³ V. Guerchais, D. Astruc, J. Chem. Soc.-Chem. Commun. 1985, 835-837.

³⁴ V. Guerchais, C. Lapinte, J. Chem. Soc.-Chem. Commun. 1986, 894-896.

 ³⁵ M. P. Doyle, D. C. Forbes, *Chem. Rev.* **1998**, *98*, 911-935.
³⁶ H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, *Chem. Rev.* **2003**, *103*, 977-1050.

³⁷ K. H. Dötz, J. Stendel Jr., Chem. Rev. 2009, 109, 3227-3274.

³⁸ R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. **1995**, 28, 446-452.

³⁹ R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760-3765.

⁴⁰ J. L. Herisson, Y. Chauvin, *Makromolecul. Chemie* 1971, 141, 161-176.

⁴¹ Y. Chauvin, Angew. Chem. Int. Ed. 2006, 45, 3740-3747.

⁴² K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527.

Schéma 9 : Présentation générale d'une réaction de métathèse.

Cette réaction, qui ne possède pas d'équivalent en synthèse organique, est à la base d'un très grand nombre de procédés industriels tels que : la production de propène (procédés Philipps Trioléfines inverse⁴³ et Meta-4⁴⁴), le procédé SHOP⁴⁵ (*Shell Higher Olefin Process*) permettant la production d'oléfines linéaires à partir d'éthylène, la production des polymères Vestenamer[®] 8012⁴⁶ et Vestenamer[®] 6213⁴⁷ ainsi que la production de polynorbornène⁴⁸ (NORSOREX[®]). Les premiers catalyseurs efficaces de métathèse des oléfines ont été développés dans les années 1990. Ce sont des carbènes de ruthénium^{49,50}, molybdène⁵¹ ou tungstène⁵² (schéma 10). Les procédés industriels actuels utilisent davantage des catalyseurs hétérogènes supportés.

Schéma 10 : Exemples de catalyseurs de métathèse commerciaux.

Comme on peut le voir dans le schéma 6, les quatre électrons nécessaires à la double liaison M=C peuvent être formellement apportés à moitié par le fragment carbénique et à moitié par le fragment métallique. Une autre stratégie qui consiste à apporter directement les quatre électrons depuis le fragment carbénique a été envisagée. Cette stratégie impose l'utilisation de composés possédant deux paires libre sur l'atome de carbone central et les dianions géminés sont les candidats idéaux pour cette voie de synthèse.

⁴³ R. L. Banks, G. C. Bailey, Ind. Eng. Chem. Prod. Res. Dev. 1964, 3, 170-173.

⁴⁴ P. Amigues, Y. Chauvin, D. Commereuc, C. C. Lai, Y. H. Liu, J. M. Pan, *Hydrocarbon Process* **1990**, *69*, 79-80.

⁴⁵ E. R. Freitas, C. R. Gum, Chem. Eng. Prog. 1979, 75, 73-76.

⁴⁶ K. M. Diedrich, Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1993.

⁴⁷ K. M. Diedrich, B. J. Burns, *Polym. Recycling* **1999**, *4*, 237.

⁴⁸ R. F. Ohm, *Chemtech.* **1980**, *10*, 183-187.

⁴⁹ P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100-110.

⁵⁰ M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. **1999**, 953-956.

⁵¹ R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. Dimare, M. O'Regan, J. Am. Chem. Soc. **1990**, 112, 3875-3886.

⁵² R. R. Schrock, D. N. Clark, J. Sancho, J. H. Wengrovius, S. M. Rocklage, S. F. Pedersen, Organometallics 1982, 1, 1645-1651.

II. Synthèse des dianions géminés

L'obtention de dianions géminés est un processus difficile tant ces espèces sont réactives. Les premiers essais de synthèse de ce genre de composés datent de presque 60 ans avec la synthèse du dilithiométhane par West et Rochow en 1953⁵³ et Ziegler en 1955⁵⁴. Cette synthèse a ensuite été améliorée par le groupe de Lagow⁵⁵ qui a également publié la synthèse du dilithio tétraméthylcyclopropane⁵⁶ ainsi que de *I*BuCHLi₂ et TMSCHLi₂⁵⁷. La synthèse du dilithioéthane a également été publiée⁵⁸.

Cependant, la première structure cristallographique d'un dilithien géminé, le 9,9-dilithiofluorène, n'a été obtenue qu'en 2002 par le groupe de Linti⁵⁹. Celui-ci a été obtenu par dismutation du lithiofluorène dans un mélange THF/benzène (schéma 11). Par la suite, d'autres exemples de dianions géminés ont été décrits dans la littérature (schéma 11)^{60,61,62,63}. Toutefois, ces dianions ne sont jamais obtenus purs ou alors avec des rendements très faibles.

Schéma 11 : Exemples de dianions géminés.

Il est donc nécessaire de trouver une synthèse efficace pour obtenir des dianions géminés s'ils doivent être utilisés pour des réactions ultérieures. En 1999, une nouvelle famille de dianions géminés a fait son apparition suite à la publication simultanée par les groupes de Cavell⁶⁴ et Stephan⁶⁵ de la synthèse du dilithien **1.Li**₂ dérivé du composé bis-iminophosphorane **1** ($R = SiMe_3$) (schéma 12). **1.Li**₂ est obtenu par double déprotonation du composé neutre **1** par deux équivalents de base forte (PhLi pour le groupe de Cavell, MeLi pour le groupe de Stephan) dans le toluène ou le benzène. Dans les deux cas, **1.Li**₂ est obtenu proprement et avec de bons rendements sous la forme d'un dimère. Notre groupe s'est intéressé très tôt au développement de

⁵⁹ G. Linti, A. Rodig, H. Pritzkow, Angew. Chem. Int. Ed. 2002, 41, 4503-4506.

- ⁶¹ W. Zarges, M. Marsch, K. Harms, G. Boche, Chem. Ber. 1989, 122, 1307-1311.
- ⁶² J. F. K. Müller, M. Neuburger, B. Spingler, Angew. Chem. Int. Ed. 1999, 38, 3549-3552.
- ⁶³ J. F. K. Müller, M. Neuburger, B. Spingler, Angew. Chem. Int. Ed. 1999, 38, 92-94.

⁶⁵ C. M. Ong, D. W. Stephan, J. Am. Chem. Soc. **1999**, 121, 2939-2940.

⁵³ R. West, E. G. Rochow, J. Org. Chem. 1953, 18, 1739-1742.

⁵⁴ K. Ziegler, K. Nagel, M. Patheiger, Z. Anorg. Allg. Chem. **1955**, 282, 345-351.

⁵⁵ J. A. Gurak, J. W. Chinn Jr., R. J. Lagow, J. Am. Chem. Soc. **1982**, 104, 2637-2639.

⁵⁶ H. Kawa, B. C. Manley, R. J. Lagow, J. Am. Chem. Soc. **1985**, 107, 5313-5314.

⁵⁷ H. Kawa, B. C. Manley, R. J. Lagow, *Polyhedron* **1988**, *7*, 2023-2025.

⁵⁸ A. Maercker, M. Theis, A. J. Kos, P. von Ragué Schleyer, Angew. Chem. **1983**, 95, 755-757.

⁶⁰ H. J. Gais, J. Vollhardt, H. Gunther, D. Moskau, H. J. Lindner, S. Braun, J. Am. Chem. Soc. **1988**, 110, 978-980.

⁶⁴ A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 1999, 38, 1483-1484.

ces dianions et deux autres dianions, qui seront présentés plus tard, ont été développés en 2004 et 2006.

Notre laboratoire a permis une extension de la gamme des dianions dérivés de 1 en faisant varier les substituants R aux atomes d'azote⁶⁶ (R = *i*-Pr, Ph, (S)-MeC*H(*i*-Pr), schéma 12). Précédemment, l'obtention des ligands de type 1 se faisait par oxydation de la bis(diphénylphosphino) méthane (dppm) avec des composés azotures (méthode de Staudinger⁶⁷), mais cette méthode ne tolère que peu de substituants aux atomes d'azote. La généralisation de la méthode développée par Kirsanov⁶⁸ permet l'obtention d'un grand nombre de ligands dérivés de 1.

Le groupe de Henderson s'est intéressé à la réaction de 1 avec d'autres métaux alcalins (schéma 12). Ils ont ainsi pu obtenir une grande variété de dianions géminés. On peut noter la synthèse du dérivé disodique $1.Na_2$ et du dérivé mixte $1.LiNa^{69}$, ainsi que des composés $1_2.LiNa_3$, $1_2.Li_2K_2$, $1_2.Na_2K_2$, $1_2.Na_3K^{70}$. Ces derniers dérivés peuvent être obtenus directement par réaction de deux équivalents d'alcalin sur 1 soit par échange de métal en partant des composés précédemment déprotonés. En 2009, Harder *et coll.* ont tenté d'étendre la gamme des dianions $1.X_2$ (X = métal du groupe 1) aux dérivés dipotassiques, dirubidiques et dicésiques. Aucun produit n'a pu être isolé lorsque les atomes d'azote portent des substituants triméthylsilyle.

Schéma 12 : Dianions géminés dérivés du ligand bis-iminophosphorane.

⁶⁶ M. Demange, L. Boubekeur, A. Auffrant, N. Mézailles, L. Ricard, X. Le Goff, P. Le Floch, New J. Chem. 2006, 30, 1745-1754.

⁶⁷ H. Staudinger, J. Meyer, *Helv. Chim. Acta* **1919**, 635-646.

⁶⁸ A. V. Kirsanov, Izv. Akad. Nauk SSSR 1950, 426-437.

⁶⁹ K. L. Hull, B. C. Noll, K. W. Henderson, Organometallics **2006**, 25, 4072-4074.

⁷⁰ K. L. Hull, I. Carmichael, B. C. Noll, K. W. Henderson, *Chem. Eur. J.* **2008**, *14*, 3939-3953.

Le remplacement des groupes triméthylsilyles par des phényles leur a permis d'isoler les dérivés dipotassique, dirubidique ainsi que le composé mixte Li-Cs⁷¹. Cependant, le dérivé dicésique n'a pas pu être isolé. Celui-ci est instable et se réarrange pour former un nouveau type de dianion par un mécanisme non élucidé (schéma 13). Le point commun de toutes ces espèces est leur structure oligomérique à l'état solide (généralement dimérique). Le plus souvent, les synthèses sont effectuées en solvant non coordinant (toluène ou benzène) et la complétion de la sphère de coordination des atomes de lithium est assurée par l'agrégation de plusieurs molécules de dianions.

Schéma 13 : Extension de la gamme des dianions aux métaux lourds du groupe 1.

En 2010, le groupe de Liddle a obtenu un dérivé monomérique en utilisant un groupement très encombrant sur les atomes d'azote (dipp = diisopropylphényle) ainsi qu'un co-solvant fortement coordinant, la TMEDA⁷². La synthèse est effectuée en deux étapes. Une première déprotonation par réaction avec un équivalent de terbutyllithium conduit à la formation du monoanion. Ce monoanion est ensuite déprotoné une seconde fois avec un deuxième équivalent de terbutyllithium en présence de TMEDA. Le dilithien ainsi obtenu est monomérique et représente un cas extrêmement rare de carbone tetracoordiné plan (schéma 14).

⁷¹ L. Orzechowski, G. Jansen, S. Harder, Angew. Chem. Int. Ed. 2009, 48, 3825-3829.

⁷² O. J. Cooper, A. J. Wooles, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Angew. Chem. Int. Ed. 2010, 49, 5570-5573.

Schéma 14 : Synthèse du premier dianion géminé monomérique.

Comme mentionné précédemment, notre groupe s'est intéressé au développement des dianions géminés. En 2004, la synthèse du dilithien dérivé du composé bis-thiophosphine $2.Li_2$ obtenu, lui aussi, par double déprotonation du dérivé neutre 2 par deux équivalents de base forte (MeLi ou BuLi) dans le toluène ou l'éther (schéma 15)⁷³ a été publiée.

Schéma 15 : Synthèse du dianion dérivé du ligand bis-thiophosphine.

Les structures obtenues pour ce dianion mettent en avant l'importance du solvant dans la synthèse de ces composés. En présence de toluène, le dianion est obtenu sous la forme d'un dimère incorporant deux molécules d'éther ($2.Li_2(OEt_2)$, schéma 15). En l'absence de toluène la structure RX du dianion montre la présence de trois molécules d'éther ($2.Li_2(OEt_2)_{1,5}$, schéma 15).

Notre laboratoire s'est ensuite tourné vers la synthèse du dianion dérivé du diisopropyle méthylènediphosphonate 3^{74} . La synthèse du dianion $3.Li_2$ est réalisée dans l'éther par réaction avec deux équivalents de méthyllithium en présence de quatre équivalents de TMEDA, le dianion précipitant du milieu réactionnel après 3 jours d'agitation à température ambiante (cette même réaction faite dans le toluène nécessite une dizaine de jours). Cette espèce est insoluble dans les

⁷³ T. Cantat, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Angew. Chem. Int. Ed. 2004, 43, 6382-6385.

⁷⁴ T. Cantat, L. Ricard, P. Le Floch, N. Mezailles, *Organometallics* **2006**, 25, 4965-4976.

solvants avec lesquels elle ne réagit pas (toluène, éther, DME) et donc aucune caractérisation RMN ou RX n'a été possible. La réaction entre $3.Li_2$ et un large excès de D₂O a conduit à la formation du composé $3.D_2$ prouvant ainsi la double déprotonation de 3 (schéma 16).

Schéma 16 : Synthèse du dianion de phosphonate.

Finalement, le premier dérivé non symétrique des dianions géminés stabilisés par des groupements σ^4 -P a été synthétisé par le groupe de So (schéma 17)⁷⁵. Ce dianion incorpore à la fois une fonction iminophosphorane et une fonction thiophosphine et est synthétisé par réaction du dérivé mixte neutre avec deux équivalents de terbutyllithium dans l'éther. Par analogie, en combinant différentes fonctions au sein du ligand, on pourrait observer de nouvelles réactivités des dianions vis-à-vis des métaux de transition.

Schéma 17 : Premier exemple de synthèse d'un monoanion dissymétrique.

En environ 10 ans, le nombre de dianions disponibles a considérablement augmenté notamment grâce à l'utilisation de groupements σ^4 -P pour stabiliser les charges présentes sur l'atome de carbone central. La synthèse de ces dianions a fait l'objet d'une revue récente⁷⁶.

III. Réactivité des dianions géminés

Dans cette partie, nous allons discuter de la réactivité des dianions avant d'aborder la chimie de coordination de ces espèces. Peu d'études de réactivité ont été menées sur ces composés à l'heure actuelle. Le premier exemple est le réarrangement du dérivé dicésique en un nouveau dianion que nous avons déjà présenté (schéma 13). Notre laboratoire a publié, en 2007,

⁷⁵ J.-H. Chen, J. Guo, Y. Li, C.-W. So, Organometallics 2009, 28, 4617-4620.

⁷⁶ S. Harder, Coord. Chem. Rev. 2011, 255, 1252-1267.

l'oxydation du dianion **2.Li₂** par l'hexachloroéthane (schéma 18)⁷⁷, qui permet l'obtention du premier carbénoïde stable à température ambiante à l'état solide et en solution **2.LiCl**. Cette espèce réagit avec un précurseur de palladium(0) pour conduire au carbène désiré confirmant ainsi le caractère carbénoïde de **2.Li₂** (schéma 18). Il est intéressant de noter que, dans ce cas, l'utilisation de THF est possible ce qui n'est pas le cas pour **2.Li₂**.

Schéma 18 : Synthèse du premier carbénoïde stable à température ambiante.

De la même manière, en 2008, le groupe de Chivers a étudié l'oxydation du dianion **2.Li**₂ par l'iode. L'ajout d'un équivalent de diiode au dianion **2.Li**₂ dans un mélange toluène-éther à -80°C conduit à la formation du di-carbénoïde **2**₂.**Li**₂**I**₂ ainsi que d'un cycle à six chaînons $C_2P_2S_2$ provenant de la décomposition du composé **2**₂.**Li**₂**I**₂ (schéma 19)⁷⁸. Chivers a ensuite examiné la réaction de **2.Li**₂ avec les chalcogènes. La réaction de **2.Li**₂ avec un équivalent de soufre élémentaire ou de sélénium élémentaire en présence d'un agent chélatant (TMEDA) conduit à l'isolation des espèces **2.Li**₂**S** et **2.Li**₂**Se** dans lesquels le chalcogène est lié à l'atome de carbone central (schéma 20)⁷⁹. Les atomes de lithium sont alors coordinés au chalcogène central ainsi qu'aux atomes de soufre des substituants thiophosphine. Une revue récente détaille la chimie de ces nouvelles espèces dianioniques⁸⁰.

Schéma 19 : Oxydation du dianion 2.Li₂ par le diiode.

⁷⁷ T. Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, Angew. Chem. Int. Ed. 2007, 46, 5947-5950.

⁷⁸ J. Konu, T. Chivers, *Chem. Commun.* **2008**, 4995-4997.

⁷⁹ J. Konu, T. Chivers, H. M. Tuononen, *Chem. Eur. J.* **2010**, *16*, 12977-12987.

⁸⁰ T. Chivers, J. Konu, R. Thirumoorthi, *Dalton Trans.* 2012, 41, 4283-4295.

Schéma 20 : Réaction du dianion 2.Li2 avec les chalcogènes.

IV. Chimie de coordination des dianions géminés

La chimie de coordination des dianions géminés s'est considérablement développée depuis le premier exemple de 1999. De nombreux groupes (dont le nôtre) se sont intéressés au potentiel de ces espèces dans la synthèse de complexes carbéniques. Nous diviserons cette partie en sousparties correspondant chacune à un groupe du tableau périodique. Le groupe 1 a déjà été traité dans le **III** de cette introduction.

Trois méthodes principales sont utilisées pour l'obtention de complexes carbéniques incorporant les ligands X-C-X **1** et **2** (X = N, S). La première consiste à faire réagir le dianion sur un précurseur métallique possédant des groupes facilement labiles (le plus souvent des halogènes, voie A, schéma 21). La deuxième stratégie consiste à utiliser des précurseurs métalliques possédant des ligands très basiques (amidures, alkyles) qui vont déprotoner *in situ* le ligand dans la sphère de coordination du métal (voie B, schéma 21). Cette stratégie permet de pallier le caractère potentiellement réducteur des dianions. La troisième stratégie consiste à coordiner le monoanion au métal avant de le déprotoner par ajout d'une base forte (Voie C, schéma 21).

Schéma 21 : Trois voies de synthèse des complexes carbéniques des ligands (X-C-X).

1. Groupe 2

La coordination des dianions géminés n'a été étudiée que pour le calcium et le baryum. Dans les deux cas, la déprotonation du ligand a été effectuée dans la sphère de coordination du métal par des ligands basiques (voie B). Le groupe de Harder a publié en 2006 la synthèse d'un biscarbène de calcium par réaction du ligand neutre **1** avec (*p*-*t*Bubenzyl)₂Ca(THF)₄⁸¹. L'utilisation de groupements encombrés sur les atomes d'azote (diisopropylphényle) leur a permis d'isoler le mono-carbène de calcium en 2007⁸². Cette même année, les analogues du baryum de ces carbènes ont été synthétisés (schéma 22)⁸³.

Schéma 22 : Mono et bis-carbènes de calcium et baryum.

2. Groupe 3, lanthanides et actinides

⁸¹ L. Orzechowski, G. Jansen, S. Harder, J. Am. Chem. Soc. 2006, 128, 14676-14684.

⁸² L.Orzechowski, S. Harder, *Organometallics* **2007**, *26*, 2144-2148.

⁸³ L.Orzechowski, S. Harder, Organometallics 2007, 26, 5501-5506.

L'utilisation des dianions géminés comme précurseurs de carbènes des terres rares et des éléments f a provoqué une révolution dans ce domaine. A l'heure actuelle, presque tous les lanthanides ainsi que l'yttrium et le scandium ont pu être utilisés. Le premier exemple de carbène de lanthanide a été publié en 2000 par le groupe de Cavell qui a synthétisé un carbène de samarium(III) en utilisant le ligand **1**⁸⁴ (par la voie B). À partir de 2008, le groupe de Liddle s'est intensivement intéressé à la chimie de coordination du ligand **1** aux terres rares et à l'uranium. On peut noter la synthèse de carbènes d'yttrium^{85,86,87,88,89}, d'erbium^{50,90}, de dysprosium⁵³, ainsi que les composés mixtes alkyl-alkylidènes pour le lanthane, le cérium, le néodyme, le samarium et le gadolinium⁵³. Notre laboratoire a développé les complexes mixtes alkyle-alkylidènes de néodyme⁹¹ et leur application en catalyse de polymérisation des lactides⁹². Le ligand bis-iminophosphorane a également été utilisé avec succès pour la synthèse de carbènes d'uranium à différents degrés d'oxydation^{93,94,95} ainsi que pour la synthèse de dérivés du thorium. Le groupe de Liddle a également observé qu'un complexe particulier d'uranium obtenu par oxydation d'un carbène d'uranium(IV) possède un comportement de SMM (*single molecule magnet*)⁹⁶. Finalement, Zi et Fang ont décrit la synthèse d'un bis-carbène et d'un tris-carbène (polymérique) de thorium⁹⁷.

À partir de 2005, notre laboratoire a étudié la coordination du dianion $2.Li_2$ sur les lanthanides. La réaction de $2.Li_2$ avec un ou deux équivalents de SmI₃(THF)₃ conduit soit à un mono-carbène de samarium soit à un bis-carbène (schéma 23)⁹⁸. Peu après, la synthèse d'un bis-carbène de thulium a été également publiée⁹⁹. Plus récemment, les premiers exemples de carbènes de scandium ont été synthétisés par notre groupe (schéma 24)¹⁰⁰. En collaboration avec le CEA, notre groupe a développé la chimie de l'uranium en utilisant le ligand thiophosphine $2.Li_2$. Ainsi,

⁸⁴ A. Kasani, M. Ferguson, R. G. Cavell, J. Am. Chem. Soc. 2000, 122, 726-727.

⁸⁵ S. T. Liddle, J. McMaster, J. C. Green, P. L. Arnold, Chem. Commun. 2008, 1747-1479.

⁸⁶ D. P. Mills, O.J. Cooper, J. McMaster, W. Lewis, S. T. Liddle, *Dalton Trans.* 2009, 4547-4555.

⁸⁷ D. P. Mills, A. J. Wooles, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Organometallics 2009, 28, 6771-6776.

⁸⁸ S. T. Liddle, D. P. Mills, B. M. Gardner, J. McMaster, C. Jones, W. D. Woodul, *Inorg. Chem.* 2009, 48, 3520-3522.

⁸⁹ D. P. Mills, L. Soutar, W. Lewis, A. J. Blake, S. T. Liddle, J. Am. Chem. Soc. **2010**, 132, 14379-14381.

⁹⁰ A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake, S. T. Liddle, *Dalton Trans.* **2010**, *39*, 500-510.

⁹¹ A. Buchard, A. Auffrant, L. Ricard, X. F. Le Goff, R. H. Platel, C. K. Williams, P. Le Floch, Dalton Trans. 2009, 10219-10222.

⁹² A. Buchard, R.H. Platel, A. Auffrant, X. F. Le Goff, P. Le Floch, C. K. Williams, Organometallics 2010, 29, 2892-2900.

⁹³ O. J. Cooper, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Dalton Trans. 2010, 39, 5074-5076.

⁹⁴ O. J. Cooper, D. P. Mills, J. McMaster, F. Moro, E. S. Davies, W. Lewis, A. J. Blake, S. T. Liddle, Angew. Chem. Int. Ed. 2011, 123, 2431-2434.

⁹⁵ G. Ma, M. J. Ferguson, R. McDonald, R. G. Cavell, Inorg. Chem. 2011, 50, 6500-6508.

⁹⁶ D. P. Mills, F. Moro, J. McMaster, J. van Slageren, W. Lewis, A. J. Blake, S. T. Liddle, Nature Chem. 2011, 3, 454-460.

⁹⁷ W. Ren, X. Deng, G. Zi, D.-C. Fang, *Dalton Trans.* 2011, 40, 9662-9664.

⁹⁸ T. Cantat, F. Jaroschik, F. Nief, L. Ricard, N. Mézailles, P. Le Floch, Chem. Commun. 2005, 5178-5180.

⁹⁹ T.Cantat, F. Jaroschik, L. Ricard, P. Le Floch, F. Nief, N. Mézailles, *Organometallics* **2006**, *25*, 1329-1332.

¹⁰⁰ M. Fustier, X. F. Le Goff, P. Le Floch, N. Mézailles, J. Am. Chem. Soc. 2010, 132, 13108-13110.

un grand nombre de dérivés d'uranium(IV) ont été obtenus^{101,102,103} de même que les premiers dérivés uranyles de l'uranium(VI)¹⁰⁴.

Schéma 23 : Synthèse de carbènes de samarium et thulium.

Une revue récente du groupe de Liddle détaille la coordination des dianions aux terres rares, lanthanides et actinides¹⁰⁵.

Schéma 24 : Synthèse du premier exemple de carbène de scandium.

3. Groupe 4

La chimie du groupe 4 a été étudiée principalement par le groupe de Cavell et le nôtre. Les premiers exemples de carbènes du groupe 4 ont été synthétisés par réaction du dianion 1.Li₂ avec deux précurseurs classiques du groupe 4 : ZrCl₄(THF)₂ et TiCl₄(THF)₂. Dans les deux cas, les mono-carbènes correspondants sont obtenus (schéma 25)¹⁰⁶. L'utilisation de la voie B a permis la synthèse de carbènes analogues de zirconium ainsi que de hafnium (schéma 25)^{107,108}. En 2001, le groupe de Cavell a publié la synthèse d'un bis-carbène de zirconium¹⁰⁹. Cette synthèse a été possible en diminuant l'encombrement aux atomes d'azote du ligand. Pour ce faire, les groupes triméthylsilyles ont été remplacés par des groupements méthyles (schéma 25).Un résultat

¹⁰¹ T. Cantat, T. Arliguie, A. Noël, P. Thuéry, M. Ephritikhine, P. Le Floch, N. Mézailles, J. Am. Chem. Soc. 2009, 131, 963-972.

 ¹⁰² J.-C. Tourneux, J.-C. Berthet, P Thuéry, N. Mézailles, P. Le Floch, M. Ephritikhine, *Dalton Trans.* 2010, *39*, 2494-2496.
¹⁰³ J.-C. Tourneux, J.-C. Berthet, T. Cantat, P Thuéry, N. Mézailles, P. Le Floch, M. Ephritikhine, *Organometallics* 2011, *30*, 2957-2971.

¹⁰⁴ J.-C. Tourneux, J.-C. Berthet, T. Cantat, P Thuéry, N. Mézailles, M. Ephritikhine, J. Am. Chem. Soc. 2011, 133, 6162-6165.

¹⁰⁵ S. T. Liddle, D. P. Mills, A. J. Wooles, *Chem. Soc. Rev.* **2011**, *40*, 2164-2176.

¹⁰⁶ R. G. Cavell, R. P. K. Babu, A. Kasani, R. McDonald, J. Am. Chem. Soc. 1999, 121, 5805-5806.

¹⁰⁷ R. P. K. Babu, R. McDonald, S. A. Decker, M. Klobukowski, R. G. Cavell, Organometallics 1999, 18, 4226-4229.

¹⁰⁸ R. P. K. Babu, R. McDonald, R. G. Cavell, Chem. Commun. 2000, 481-482.

¹⁰⁹ A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 2001, 40, 4400-4402.

surprenant a été observé par Roesky *et coll*. La réaction du monoanion **1.K** avec Cp₂ZrCl₂ conduit au carbène de zirconium *via* élimination d'un ligand cyclopentadiène (CpH) du centre métallique, un seul atome de chlore étant déplacé du métal¹¹⁰. L'encombrement au niveau des atomes d'azote serait responsable de la libération du ligand CpH et permet ainsi la synthèse d'un carbène de zirconium par un mécanisme nouveau (schéma 25).

Schéma 25 : Synthèses de carbènes de métaux du groupe 4.

Suite au développement du dianion $2.Li_2$ notre groupe a présenté la synthèse des complexes carbéniques analogues de ceux précédemment obtenus avec le ligand bis-iminophosphorane. La voie A a été préférée dans ce cas. Les réactions de $2.Li_2$ avec $ZrCl_4(THF)_2$ ou Cp_2ZrCl_2 conduisent très proprement aux complexes carbéniques par élimination de chlorure de lithium (schéma 26)¹¹¹.

¹¹⁰ M. T. Gamer, M. Rastätter, P. W. Roesky, Z. Anorg. Allg. Chem. **2002**, 628, 2269-2272.

¹¹¹ T. Cantat, L. Ricard, N. Mézailles, P. Le Floch, Organometallics 2006, 25, 6030-6038.

Schéma 26 : Synthèses de complexes carbéniques de zirconium utilisant 2.Li2.

Dans le premier cas, un mono-carbène dimérique est obtenu, les chlores restants sur les atomes de zirconium permettent de ponter les deux unités carbéniques. Ce dimère peut être ouvert par ajout de pyridine (schéma 26). Les molécules de pyridine se coordinent au métal brisant ainsi les liaisons Zr-Cl et permettant l'isolation d'un complexe mono-carbénique monomérique de zirconium. Dans le deuxième cas, le mono-carbène biscyclopentadiényle est obtenu. La réactivité de ces complexes carbéniques du groupe 4 sera détaillée dans le Chapitre 1 du manuscrit.

4. Groupe 6

Peu d'exemples de carbènes du groupe 6 sont connus à l'heure actuelle. Cavell *et coll.* ont publié la synthèse de complexes pontants de chrome en utilisant le dianion **1.Li**₂¹¹². La réaction de **1.Li**₂ avec un ou deux équivalents de $CrCl_2(THF)_2$ a conduit dans le premier cas à un complexe paramagnétique dinucléaire de chrome(II) dont la structure est similaire à celle des complexes dinucléaires de calcium décrits précédemment, dans le deuxième cas à un complexe tétranucléaire de chrome(II). En 2003 le groupe de Leung a développé une synthèse alternative d'un complexe mono-carbénique de molybdène (schéma 27)¹¹³. Le produit de départ de cette synthèse est un complexe bis-germavinylidène qui réagit avec un équivalent de Mo(CO)₅(THF) pour former un molybdeno-germacyclopropane qui se réarrange spontanément pour donner le carbène de molybdène.

¹¹² A. Kasani, R. McDonald, R. G. Cavell, Chem. Commun. 1999, 1993-1994.

¹¹³ W.-P. Leung, C.-W. So, J.-Z. Wang, T. C. W. Mak, *Chem. Commun.* **2003**, 248-249.

Schéma 27 : Synthèse d'un carbène de molybdène.

5. Groupe 8

Du fait du rôle clé des carbènes de ruthénium comme catalyseurs des réactions de métathèse des oléfines, un attrait pour la synthèse de ce type de composés par la voie des dianions s'est naturellement développé. La première synthèse de complexes carbéniques de ruthénium a été effectuée par le groupe de Cadierno en 2004¹¹⁴. Elle a été réalisée par déprotonation du monoanion préalablement coordiné sur le centre métallique par réaction avec une base forte (Voie C, schéma 28). Des calculs DFT menés sur ces complexes carbéniques révèlent une faible interaction π entre le ruthénium et le carbone et conséquemment la présence d'une charge négative fortement localisée sur l'atome de carbone central. Peu après, notre groupe a exploité la réaction de **2.Li**₂ avec [RuCl₂(PPh₃)₄] pour obtenir le carbène de ruthénium par activation d'un noyau aromatique du ligand (schéma 29).

Schéma 28 : Synthèse de carbènes de ruthénium par le groupe de Cadierno.

¹¹⁴ V. Cadierno, J. Díez, J. García-Álvarez, J. Gimeno, *Organometallics* **2004**, *23*, 2421-2433.

¹¹⁵ T. Cantat, M. Demange, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Organometallics 2005, 24, 4838-4841.

Schéma 29 : Synthèse d'un carbène de ruthénium par la voie A et activation CH intramoléculaire.

6. Groupe 9

A ce jour, aucun carbène des métaux du groupe 9 n'a été publié. On peut cependant remarquer les travaux de Cavell et coll. qui ont obtenu un complexe spiro mixte lithium-rhodium par réaction de 1.Li₂ avec [Rh(COD)Cl]₂ (schéma 30)¹¹⁶. Dans ce cas, la combinaison d'une interaction C-Li et C-Rh est plus forte qu'une combinaison C=Rh et Li-O. Ce complexe a servi de base à la synthèse de complexes hétéro-bimétalliques incorporant le ligand 1 dans lequel l'atome de carbone de central est coordiné à deux métaux¹¹⁷.

Schéma 30 : Synthèse d'un complexe spiro par le groupe de Cavell.

Dans une optique similaire, le groupe de Leung a synthétisé des complexes mixtes germaniumrhodium¹¹⁸ analogues de ceux publiés par le groupe de Cavell présentés ci-dessus.

7. Groupe 10

Nous avons mentionné au III que la génération du carbénoïde 2.LiCl à partir de 2.Li₂ puis sa réaction avec un précurseur de palladium(0) conduisait à la formation du carbène de palladium correspondant. Notre groupe avait auparavant publié la synthèse de ce carbène de palladium en employant 2.Li₂. La réaction du dianion avec [PdCl₂(PPh₃)₂] conduit très proprement à la formation du carbène de palladium (schéma 31)¹¹⁹.

¹¹⁶ M. Fang, N. D. Jones, R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, Angew. Chem. Int. Ed. 2006, 45, 3097-3101.

¹¹⁷ M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652-1665. ¹¹⁸ W.-P. Leung, C.-W. So, K.-W. Kan, H.-S. Chan, T. C. W. Mak, *Inorg. Chem.* **2005**, *44*, 7286-7288.

¹¹⁹ T.Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, Angew. Chem. Int. Ed. 2007, 46, 5947-5950.

Schéma 31 : Synthèse du carbène de palladium S-C-S.

Les calculs théoriques menés sur ce carbène ont révélé que le carbone central possède un fort caractère nucléophile. Cette hypothèse a été prouvée expérimentalement par réaction du carbène avec un équivalent d'iodométhane. Le complexe cationique qui résulte de la méthylation du carbone central a été isolé.

Le groupe de Cavell a publié en 2003 la synthèse d'un carbène de platine par réaction du dianion **1.Li**₂ sur $[PtCl_2(COD)]^{120}$. Le carbène isolé possède une réactivité toute particulière. En effet, sa réaction avec une atmosphère de CO₂ conduit à l'insertion d'une molécule de CO₂ dans une des deux liaisons N-Si du ligand (schéma 32). En présence de CO, la réaction conduit à l'isolation d'un tris-carbène de platine résultant d'une double insertion dans les liaisons N-Si des fonctions iminophosphoranes (schéma 32)¹²¹. Ce complexe subit également un réarrangement thermique similaire à celui décrit précédemment pour le complexe de ruthénium incorporant le ligand **2**. Finalement, Cavell *et coll.* ont étudié la réaction du carbène de platine avec MeOTf puis avec l'eau à 65°C et qui permet la synthèse d'un cycle à six chaînons Pt-N-P-N-P-C très inhabituel (schéma 32)¹²².

Schéma 32 : Synthèse et réactivité de carbènes de platine.

¹²⁰ N. D. Jones, G. Lin, R. A. Gossage, R. McDonald, R. G. Cavell, *Organometallics* **2003**, *22*, 2832-2841.

¹²¹ G. Lin, N. D. Jones, R. A. Gossage, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 2003, 42, 4054-4057.

¹²² M. Fang, N. D. Jones, M. J. Ferguson, R. McDonald, R. G. Cavell, *Angew. Chem. Int. Ed.* **2005**, 44, 2005-2008.

8. Groupe 11

Un seul exemple de la littérature concerne les métaux du groupe 11. Il s'agit de la réaction entre deux équivalents du monoanion **1.K** et deux équivalents d'AuCl(PPh₃). Au lieu de donner le carbène d'or, cette réaction fournit le complexe dinucléaire d'Au(I) dans lequel les deux atomes d'or sont liés au carbone central¹²³. Le mécanisme proposé fait intervenir premièrement une coordination d'un monoanion à un atome d'or. S'en suit une déprotonation par le deuxième équivalent de monoanion restant puis coordination du deuxième atome d'or (schéma 33). Un équivalent de ligand neutre est formé au cours de la réaction.

Schéma 33 : Synthèse d'un complexe dinucléaire d'or.

9. Groupe 12

Comme pour le groupe 11, un seul exemple traite de la réaction d'un dianion avec un précurseur métallique du groupe 12. En 2003, Westerhausen *et coll*. ont étudié la réactivité de **1.Li**₂ vis-à-vis de ZnCl₂. Au lieu du carbène attendu, cette réaction conduit à un complexe trinucléaire de zinc dans lequel un atome de zinc ponte deux molécules de ligand (schéma 34)¹²⁴.

Schéma 34 : Réaction du dianion 1.Li2 avec ZnCl2.

10. Groupes 13, 14 et 15

Le premier exemple de synthèse de complexes métalliques de métaux du groupe principal en utilisant le dianion $1.Li_2$ a été publié par le groupe de Cavell en 1999¹²⁵. Deux complexes d'aluminium ont été synthétisés par réaction du ligand neutre 1 avec différentes stœchiométries d'AlMe₃. La réaction 1:1 (1:Al) forme un complexe anionique d'aluminium dans lequel le carbone

¹²³ T. K. Panda, P.W. Roesky, P. Larsen, S. Zhang, C. Wickleder, *Inorg. Chem.* **2006**, *45*, 7503-7508.

¹²⁴ T. Bollwein, M. Westerhausen, A. Pfitzner, Z. Naturforsch. 58b 2003, 493-495.

¹²⁵ A. Kasani, R. McDonald, M. Ferguson, R. G. Cavell, Organometallics 1999, 18, 4241-4243.

central est chargé négativement et n'est pas coordiné au métal. La réaction 1:2 (1:Al) conduit à un complexe spiro dinucléaire (schéma 35). Ces complexes ont été utilisés par la suite avec succès en polymérisation de l'éthylène¹²⁶ et des α -oléfines^{127,128}.

Schéma 35 : Synthèse de complexes mono et dinucléaires d'aluminium actifs en polymérisation des oléfines.

Le complexe spiro dinucléaire possède une réactivité intéressante vis-à-vis des isocyanates et des carbodiimides. Les complexes obtenus après réaction sont des complexes bicycliques d'aluminium. Ils sont formés suite à une double insertion des composés X=C=N (X=O, N) dans les liaisons Al-C_{central} du complexe (schéma 36)¹²⁹.

Schéma 36 : Réactivité du complexe spiro d'aluminium vis-à-vis des carbodiimides et des isocyanates.

Cavell *et coll*. ont étendu leur étude au métal le plus lourd du groupe 13, en synthétisant un complexe tétramérique de thallium par réaction de $1.Li_2$ avec deux équivalents de $[TICI]^{130}$. Un complexe analogue a été synthétisé par réaction de $2.Li_2$ avec $TIBr^{131}$.

Les groupes de Leung et So se sont intensivement intéressés à la réactivité des dianions vis-à-vis des éléments des groupes 13 à 15. On peut noter la synthèse des complexes carbéniques d'aluminium, de gallium et d'indium par réaction du monoanion **2.Li** avec les précurseurs

¹²⁶ R. G. Cavell, A. Kasani, R.P. K. Babu, Q.Wang, J. Mol. Catal.A-Chem. 2002, 189, 137-143.

¹²⁷ R. G. Cavell, Q. Wang, R. P. K. Babu, A. Kasani, U.S. (2001), US 6235919 B1 20010522.

¹²⁸ R. G. Cavell, Q. Wang, R. P. K. Babu, A. Kasani, U.S. (2002), US 6444834 B1 20020903.

¹²⁹ A. Kasani, R. McDonald, R. G. Cavell, J. Am. Chem. Soc. **2000**, 122, 9314-9315.

¹³⁰ G. Ma, M. J. Ferguson, R. G. Cavell, *Chem. Commun.* **2010**, *46*, 5370-5372.

¹³¹ J. C. Tourneux, Thèse de doctorat **2012**.

[MCl₃.LiCl] qui conduisent à des structures dimériques¹³². La première étape du mécanisme est la coordination du monoanion au centre métallique, suivie de l'élimination d'HCl pour obtenir le carbène voulu (schéma 37). Dans ce même article, la synthèse d'un carbène de magnésium non détaillée au début de cette introduction a été décrite.

Schéma 37 : Synthèse des carbènes de métaux du groupe 13.

L'utilisation de la voie B (réaction du neutre **1** avec $[M(N(SiMe_3)_2)_2]$, M = Pb, Sn) a permis la synthèse de complexes dinucléaires de plomb et d'étain dont la structure est similaire à celle des complexes de calcium décrits précédemment¹³³. So a étudié la réaction de deux équivalents du dianion **2.Li**₂ avec GeCl₄. Le bis-carbène de germanium a pu être isolé¹³⁴ (schéma 38). Auparavant, Leung *et coll.* avaient décrit la synthèse du complexe bis-germavinylidène présenté au **IV.6** de cette introduction¹³⁵. Par la suite, la chimie de ce complexe a été approfondie par ce même groupe^{136,137,138}.

Schéma 38 : Synthèse d'un bis-carbène de germanium et d'un bis-carbène d'étain.

Un complexe similaire a été obtenu dans le cas de l'étain par le groupe de Leung en 2011 par réaction d'un carbène de magnésium avec SnCl_4^{139} . Le bis-carbène d'étain est obtenu certainement *via* un processus de transmétalation, les fragments carbéniques étant transférés du magnésium vers l'étain (schéma 38).

¹³² W.-P. Leung, C.-L. Wan, T. C. W. Mak, *Organometallics* **2010**, *29*, 1622-1628.

¹³³ W.-P. Leung, C.-L. Wan, K.-W. Kan, T. C. W. Mak, *Organometallics* **2010**, *29*, 814-820.

¹³⁴ C. Foo, K.-C. Lau, Y.-F. Yanga, C.-W. So, *Chem Commun.* **2009**, 6816-6818.

¹³⁵ W.-P. Leung, Z.-X. Wang, H.-W. Li, T. C.W. Mak, Angew. Chem. Int. Ed. 2001, 40, 2501-2503.

¹³⁶ W.-P. Leung, C.-W. So, Z.-X. Wang, J.-Z. Wang, T. C. W. Mak, *Organometallics* **2003**, 22, 4305-43011.

¹³⁷ W.-P. Leung, C.-W. So, K.-W. Kan, H.-S. Chan, T. C. W. Mak, *Organometallics* **2005**, *24*, 5033-5037.

¹³⁸ W.-P. Leung, K.-W. Kan, C.-W. So, T. C. W. Mak, *Organometalllics* **2007**, *26*, 3802-3806.

¹³⁹ W.-P. Leung, Y.-C. Chan, T. C. W. Mak, *Inorg. Chem.* **2011**, *50*, 10517-10518.

Finalement, le groupe de Chivers a publié en 2011 la synthèse de deux carbènes d'antimoine et de bismuth de structures similaires par réaction entre $2.Li_2$ et MCl₃ (M = Sb, Bi)¹⁴⁰. Les complexes obtenus sont dimériques, un atome de soufre de chaque ligand permettant l'union des deux carbènes (schéma 39).

Schéma 39 : Synthèse de carbènes d'antimoine et de bismuth.

V. Présentation du sujet

Le sujet présenté ici s'inscrit dans la lignée des travaux réalisés au laboratoire concernant l'utilisation des dianions comme précurseurs de complexes carbéniques.

Premièrement, il s'agissait de poursuivre les études sur les dianions $2.Li_2$ et $3.Li_2$ en étudiant leur réactivité vis-à-vis de métaux jusque-là non utilisés. Il s'agissait également d'étudier la réactivité de complexes carbéniques déjà synthétisés au laboratoire. Ces études concernent les chapitres 1 et 2 de ce manuscrit.

Deuxièmement, nous nous sommes intéressés à la synthèse de nouveaux dianions géminés. En effet, au début de cette thèse, seuls trois exemples de ce type de composé étaient connus. Le développement du dianion $4.Li_2$ par le groupe de So au cours de cette thèse a suscité notre intérêt pour la synthèse de dianions non symétriques. Ceux-ci permettant d'associer des fonctions aux réactivités différentes sur un même ligand. Cette étude est présentée dans le chapitre 3 de ce manuscrit.

Troisièmement, nous avons commencé les études de réactivité de ces différents dianions. Afin de comparer directement nos nouveaux systèmes avec les dianions déjà connus, nous avons repris certaines études réalisées au laboratoire. Les résultats de deux études comparatives sont présentés dans les chapitres 4 et 5.

Finalement, nous nous sommes intéressés à l'utilisation d'espèces carbénoïdes non pas comme précurseurs de complexes carbéniques mais comme outil pour l'activation de petites molécules. Les résultats préliminaires sont présentés dans le chapitre 6.

¹⁴⁰ R. Thirumoorthi, T. Chivers, I. Vargas-Baca, Dalton Trans. 2011, 40, 8086-8088.

VI. Bibliographie

- 1) W. R. Bamford, T. S. Stevens, J. Chem. Soc. 1952, 4735-4740.
- 2) M. T. H. Liu, Chem. Soc. Rev. 1982, 11, 127-140.
- 3) A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463-6466.
- 4) A. Igau, A. Baceiredo, G. Trinquier, G. Bertrand, Angew. Chem. Int. Ed. 1989, 28, 621-622.
- 5) G. R. Gillette, A. Baceiredo, G. Bertrand, Angew. Chem. Int. Ed. 1990, 29, 1429-1431.
- 6) T. Kato, H. Gornitzka, A. Baceiredo, A. Savin, G. Bertrand, J. Am. Chem. Soc. 2000, 122, 998-999.
- 7) A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.
- 8) A. J. Arduengo III, J. R. Goerlich, W. J. Marshall, J. Am. Chem. Soc. 1995, 117, 11027-11028.
- R. W. Alder, P. R. Allen, M. Murray, A. G. Orpen, Angew. Chem. Int. Ed. 1996, 35, 1121-1123.
- 10) A. J. Arduengo III, J. R. Goerlich, W. J. Marshall, Liebigs Ann./Recueil 1997, 365-374
- 11) R. W. Alder, C. P. Butts, A. G. Orpen, J. Am. Chem. Soc. 1998, 120, 11526-11527.
- 12) C. Buron, H. Gornitzka, V. Romanenko, G. Bertrand, Science 2000, 288, 834-836.
- S. Solé, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, *Science* 2001, 292, 1901-1903.
- V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, *Science* 2006, *312*, 722-724.
- 15) E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, *Science* **2009**, *326*, 556-559.
- 16) G. Bertrand, R. Reed, Coord. Chem. Rev. 1994, 137, 323-355.
- 17) A. J. Arduengo, Acc. Chem. Res. 1999, 32, 913-921.
- 18) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39-92.
- 19) J. Vignolle, X. Cattoën, D. Bourissou, Chem. Rev. 2009, 109, 3333-3384.
- A. M. Voutchkova, L. N. Appelhans, A. R. Chianese, R. H. Crabtree, J. Am. Chem. Soc. 2005, 127, 17624-17625.
- 21) F. Bonnette, T. Kato, M. Destarac, G. Mignani, F. P. Cossio, A. Baceiredo, Angew. Chem. Int. Ed. 2007, 46, 8632-8635.
- 22) E. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. 1964, 3, 580-581.
- 23) E. O. Fischer, A. Maasböl, Chem. Ber. 1967, 100, 2445-2456.
- 24) R. R. Schrock, J. Am. Chem. Soc. 1974, 96, 6796-6797.
- 25) T. R. Cundari, M. S. Gordon, J. Am. Chem. Soc. 1991, 113, 5231-5243.
- 26) T. R. Cundari, M. S. Gordon, J. Am. Chem. Soc. 1992, 114, 539-548.
- 27) S. F. Vyboishchikov, G. Frenking, Chem. Eur. J. 1998, 4, 1428-1438.
- 28) G. Frenking, N. Fröhlich, Chem. Rev. 2000, 100, 717-774.
- 29) K. H. Dötz, Angew. Chem. Int. Ed. 1975, 14, 644-645.
- 30) K. H. Dötz, P. Tomuschat, Chem. Soc. Rev. 1999, 28, 187-198.
- 31) J. O. C. Jimenez-Halla, M. Solà, Chem. Eur. J. 2009, 15, 12503-12510.
- 32) P. W. Jolly, R. Pettit, J. Am. Chem. Soc. 1966, 88, 5044-5045.
- 33) V. Guerchais, D. Astruc, J. Chem. Soc.-Chem. Commun. 1985, 835-837.
- 34) V. Guerchais, C. Lapinte, J. Chem. Soc.-Chem. Commun. 1986, 894-896.
- 35) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911-935.

- 36) H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977-1050.
- 37) K. H. Dötz, J. Stendel Jr., Chem. Rev. 2009, 109, 3227-3274.
- 38) R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. 1995, 28, 446-452.
- 39) R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760-3765.
- 40) J. L. Herisson, Y. Chauvin, Makromolecul. Chemie 1971, 141, 161-176.
- 41) Y. Chauvin, Angew. Chem. Int. Ed. 2006, 45, 3740-3747.
- 42) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527.
- 43) R. L. Banks, G. C. Bailey, Ind. Eng. Chem. Prod. Res. Dev. 1964, 3, 170-173.
- 44) P. Amigues, Y. Chauvin, D. Commereuc, C. C. Lai, Y. H. Liu, J. M. Pan, *Hydrocarbon Process* 1990, *69*, 79-80.
- 45) E. R. Freitas, C. R. Gum, Chem. Eng. Prog. 1979, 75, 73-76.
- 46) K. M. Diedrich, Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1993.
- 47) K. M. Diedrich, B. J. Burns, Polym. Recycling 1999, 4, 237.
- 48) R. F. Ohm, Chemtech. 1980, 10, 183-187.
- 49) P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100-110.
- 50) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 953-956.
- 51) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. Dimare, M. O'Regan, J. Am. Chem. Soc. 1990, 112, 3875-3886.
- 52) R. R. Schrock, D. N. Clark, J. Sancho, J. H. Wengrovius, S. M. Rocklage, S. F. Pedersen, Organometallics 1982, 1, 1645-1651.
- 53) R. West, E. G. Rochow, J. Org. Chem. 1953, 18, 1739-1742.
- 54) K. Ziegler, K. Nagel, M. Patheiger, Z. Anorg. Allg. Chem. 1955, 282, 345-351.
- 55) J. A. Gurak, J. W. Chinn Jr., R. J. Lagow, J. Am. Chem. Soc. 1982, 104, 2637-2639.
- 56) H. Kawa, B. C. Manley, R. J. Lagow, J. Am. Chem. Soc. 1985, 107, 5313-5314.
- 57) H. Kawa, B. C. Manley, R. J. Lagow, Polyhedron 1988, 7, 2023-2025.
- 58) A. Maercker, M. Theis, A. J. Kos, P. von Ragué Schlever, Angew. Chem. 1983, 95, 755-757.
- 59) G. Linti, A. Rodig, H. Pritzkow, Angew. Chem. Int. Ed. 2002, 41, 4503-4506.
- H. J. Gais, J. Vollhardt, H. Gunther, D. Moskau, H. J. Lindner, S. Braun, J. Am. Chem. Soc. 1988, 110, 978-980.
- 61) W. Zarges, M. Marsch, K. Harms, G. Boche, Chem. Ber., 1989, 122, 1307-1311.
- 62) J. F. K. Müller, M. Neuburger, B. Spingler, Angew. Chem. Int. Ed. 1999, 38, 3549-3552.
- 63) J. F. K. Müller, M. Neuburger, B. Spingler, Angew. Chem. Int. Ed. 1999, 38, 92-94.
- 64) A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, *Angew. Chem. Int. Ed.* **1999**, *38*, 1483-1484.
- 65) C. M. Ong, D. W. Stephan, J. Am. Chem. Soc. 1999, 121, 2939-2940.
- 66) M. Demange, L. Boubekeur, A. Auffrant, N. Mézailles, L. Ricard, X. Le Goff, P. Le Floch, New J. Chem. 2006, 30, 1745-1754.
- 67) H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 635-646.
- 68) A. V. Kirsanov, Izv. Akad. Nauk SSSR 1950, 426-437.
- 69) K. L. Hull, B. C. Noll, K. W. Henderson, Organometallics 2006, 25, 4072-4074.
- 70) K. L. Hull, I. Carmichael, B. C. Noll, K. W. Henderson, Chem. Eur. J. 2008, 14, 3939-3953.
- 71) L. Orzechowski, G. Jansen, S. Harder, Angew. Chem. Int. Ed. 2009, 48, 3825-3829.
- 72) O. J. Cooper, A. J. Wooles, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Angew. Chem. Int. Ed. 2010, 49, 5570-5573.

- 73) T. Cantat, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Angew. Chem. Int. Ed. 2004, 43, 6382-6385.
- 74) T. Cantat, L. Ricard, P. Le Floch, N. Mezailles, Organometallics 2006, 25, 4965-4976.
- 75) J.-H. Chen, J. Guo, Y. Li, C.-W. So, Organometallics 2009, 28, 4617-4620.
- 76) S. Harder, Coord. Chem. Rev. 2011, 255, 1252-1267.
- 77) T. Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, Angew. Chem. Int. Ed. 2007, 46, 5947-5950.
- 78) J. Konu, T. Chivers, Chem. Commun. 2008, 4995-4997.
- 79) J. Konu, T. Chivers, H. M. Tuononen, Chem. Eur. J. 2010, 16, 12977-12987.
- 80) T. Chivers, J. Konu, R. Thirumoorthi, Dalton Trans. 2012, 41, 4283-4295.
- 81) L. Orzechowski, G. Jansen, S. Harder, J. Am. Chem. Soc. 2006, 128, 14676-14684.
- 82) L.Orzechowski, S. Harder, Organometallics 2007, 26, 2144-2148.
- 83) L.Orzechowski, S. Harder, Organometallics 2007, 26, 5501-5506.
- 84) A. Kasani, M. Ferguson, R. G. Cavell, J. Am. Chem. Soc. 2000, 122, 726-727.
- 85) S. T. Liddle, J. McMaster, J. C. Green, P. L. Arnold, Chem. Commun. 2008, 1747-1479.
- D. P. Mills, O.J. Cooper, J. McMaster, W. Lewis, S. T. Liddle, *Dalton Trans.* 2009, 4547-4555.
- 87) D. P. Mills, A. J. Wooles, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Organometallics 2009, 28, 6771-6776.
- S. T. Liddle, D. P. Mills, B. M. Gardner, J. McMaster, C. Jones, W. D. Woodul, *Inorg. Chem.* 2009, 48, 3520-3522.
- 89) D. P. Mills, L. Soutar, W. Lewis, A. J. Blake, S. T. Liddle, J. Am. Chem. Soc. 2010, 132, 14379-14381.
- 90) A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake, S. T. Liddle, *Dalton Trans.* 2010, 39, 500-510.
- 91) A. Buchard, A. Auffrant, L. Ricard, X. F. Le Goff, R. H. Platel, C. K. Williams, P. Le Floch, *Dalton Trans.* 2009, 10219-10222.
- 92) A. Buchard, R.H. Platel, A. Auffrant, X. F. Le Goff, P. Le Floch, C. K. Williams, Organometallics 2010, 29, 2892-2900.
- 93) O. J. Cooper, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, *Dalton Trans.* 2010, 39, 5074-5076.
- 94) O. J. Cooper, D. P. Mills, J. McMaster, F. Moro, E. S. Davies, W. Lewis, A. J. Blake, S. T. Liddle, *Angew. Chem. Int. Ed.* 2011, 50, 2431-2434.
- 95) G. Ma, M. J. Ferguson, R. McDonald, R. G. Cavell, Inorg. Chem. 2011, 50, 6500-6508.
- 96) D. P. Mills, F. Moro, J. McMaster, J. van Slageren, W. Lewis, A. J. Blake, S. T. Liddle, *Nature Chem.* 2011, 3, 454-460.
- 97) W. Ren, X. Deng, G. Zi, D.-C. Fang, Dalton Trans. 2011, 40, 9662-9664.
- 98) T. Cantat, F. Jaroschik, F. Nief, L. Ricard, N. Mézailles, P. Le Floch, *Chem. Commun.* 2005, 5178-5180.
- 99) T.Cantat, F. Jaroschik, L. Ricard, P. Le Floch, F. Nief, N. Mézailles, Organometallics 2006, 25, 1329-1332.
- 100) M. Fustier, X. F. Le Goff, P. Le Floch, N. Mézailles, J. Am. Chem. Soc. 2010, 132, 13108-13110.
- 101) T. Cantat, T. Arliguie, A. Noël, P. Thuéry, M. Ephritikhine, P. Le Floch, N. Mézailles, J. Am. Chem. Soc. 2009, 131, 963-972.

- 102) J.-C. Tourneux, J.-C. Berthet, P Thuéry, N. Mézailles, P. Le Floch, M. Ephritikhine, *Dalton Trans.* 2010, *39*, 2494-2496.
- 103) J.-C. Tourneux, J.-C. Berthet, T. Cantat, P Thuéry, N. Mézailles, P. Le Floch, M. Ephritikhine, Organometallics 2011, 30, 2957-2971.
- 104) J.-C. Tourneux, J.-C. Berthet, T. Cantat, P Thuéry, N. Mézailles, M. Ephritikhine, J. Am. Chem. Soc. 2011, 133, 6162-6165.
- 105) S. T. Liddle, D. P. Mills, A. J. Wooles, Chem. Soc. Rev. 2011, 40, 2164-2176.
- 106) R. G. Cavell, R. P. K. Babu, A. Kasani, R. McDonald, J. Am. Chem. Soc. 1999, 121, 5805-5806.
- 107) R. P. K. Babu, R. McDonald, S. A. Decker, M. Klobukowski, R. G. Cavell, Organometallics 1999, 18, 4226-4229.
- 108) R. P. K. Babu, R. McDonald, R. G. Cavell, Chem. Commun. 2000, 481-482.
- 109) A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 2001, 40, 4400-4402.
- 110) M. T. Gamer, M. Rastätter, P. W. Roesky, Z. Anorg. Allg. Chem. 2002, 628, 2269-2272.
- 111) T. Cantat, L. Ricard, N. Mézailles, P. Le Floch, Organometallics 2006, 25, 6030-6038.
- 112) A. Kasani, R. McDonald, R. G. Cavell, Chem. Commun. 1999, 1993-1994.
- 113) W.-P. Leung, C.-W. So, J.-Z. Wang, T. C. W. Mak, Chem. Commun. 2003, 248-249.
- 114) V. Cadierno, J. Díez, J. García-Álvarez, J. Gimeno, Organometallics 2004, 23, 2421-2433.
- 115) T. Cantat, M. Demange, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Organometallics 2005, 24, 4838-4841.
- 116) M. Fang, N. D. Jones, R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, Angew. Chem. Int. Ed. 2006, 45, 3097-3101.
- 117) M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652–1665.
- 118) W.-P. Leung, C.-W. So, K.-W. Kan, H.-S. Chan, T. C. W. Mak, *Inorg. Chem.* **2005**, *44*, 7286-7288.
- 119) T.Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, Angew. Chem. Int. Ed. 2007, 46, 5947-5950.
- 120) N. D. Jones, G. Lin, R. A. Gossage, R. McDonald, R. G. Cavell, Organometallics 2003, 22, 2832-2841.
- 121) G. Lin, N. D. Jones, R. A. Gossage, R. McDonald, R. G. Cavell, *Angew. Chem.-Int. Ed.* **2003**, *42*, 4054-4057.
- 122) M. Fang, N. D. Jones, M. J. Ferguson, R. McDonald, R. G. Cavell, *Angew. Chem. Int. Ed.* **2005**, *44*, 2005-2008.
- 123) T. K. Panda, P.W. Roesky, P. Larsen, S. Zhang, C. Wickleder, *Inorg. Chem.* 2006, 45, 7503-7508.
- 124) T. Bollwein, M. Westerhausen, A. Pfitzner, Z. Naturforsch. 58b 2003, 493-495.
- 125) A. Kasani, R. McDonald, M. Ferguson, R. G. Cavell, Organometallics 1999, 18, 4241-4243.
- 126) R. G. Cavell, A. Kasani, R.P. K. Babu, Q.Wang, J. Mol. Catal. A-Chem. 2002, 189, 137-143.
- 127) R. G. Cavell, Q. Wang, R. P. K. Babu, A. Kasani, U.S. (2001), US 6235919 B1 20010522.
- 128) R. G. Cavell, Q. Wang, R. P. K. Babu, A. Kasani, U.S. (2002), US 6444834 B1 20020903.
- 129) A. Kasani, R. McDonald, R. G. Cavell, J. Am. Chem. Soc. 2000, 122, 9314-9315.
- 130) G. Ma, M. J. Ferguson, R. G. Cavell, Chem. Commun. 2010, 46, 5370-5372.
- 131) J. C. Tourneux, Thèse de doctorat 2012.

- 132) W.-P. Leung, C.-L. Wan, T. C. W. Mak, Organometallics 2010, 29, 1622-1628.
- 133) W.-P. Leung, C.-L. Wan, K.-W. Kan, T. C. W. Mak, Organometallics 2010, 29, 814-820.
- 134) C. Foo, K.-C. Lau, Y.-F. Yanga, C.-W. So, Chem Commun. 2009, 6816-6818.
- 135) W.-P. Leung, Z.-X. Wang, H.-W. Li, T. C.W. Mak, Angew. Chem. Int. Ed. 2001, 40, 2501-2503.
- 136) W.-P. Leung, C.-W. So, Z.-X. Wang, J.-Z. Wang, T. C. W. Mak, Organometallics 2003, 22, 4305-43011.
- 137) W.-P. Leung, C.-W. So, K.-W. Kan, H.-S. Chan, T. C. W. Mak, Organometallics 2005, 24, 5033-5037.
- 138) W.-P. Leung, K.-W. Kan, C.-W. So, T. C. W. Mak, Organometalllics 2007, 26, 3802-3806.
- 139) W.-P. Leung, Y.-C. Chan, T. C. W. Mak, Inorg. Chem. 2011, 50, 10517-10518.
- 140) R. Thirumoorthi, T. Chivers, I. Vargas-Baca, Dalton Trans. 2011, 40, 8086-8088.

Chapitre 1 Complexes carbéniques de métaux du groupe 4

Chapitre 1 : Complexes carbéniques de métaux du groupe 4

I. Introduction

Comme nous l'avons vu dans l'introduction de ce manuscrit, la synthèse de complexes carbéniques de métaux du groupe 4 a été bien explorée. En particulier, les mono et bis-carbènes (**I.1** et **I.3**) de zirconium(IV) incorporant le ligand N-C-N ont été synthétisés par le groupe de Cavell^{1,2}. L'obtention du bis-carbène n'a été possible qu'en réduisant l'encombrement au niveau des atomes d'azote. Plus tard, notre laboratoire a étudié la réactivité du dianion S-C-S (**2.Li**₂) avec différents précurseurs de Zr(IV) pour obtenir un dérivé biscyclopentadiényle (**I.4**) ainsi qu'un dimère possédant des chlores pontants (**I.5**) (schéma 1)³. Aucun bis-carbène de zirconium n'a pu être isolé avec ce ligand. Le complexe **I.5** se réarrange rapidement en présence de pyridine pour conduire au mono-carbène monomérique **I.6** dans lequel deux molécules de pyridine ont remplacé les molécules de THF présentes dans **I.5**.

Schéma 1 : Complexes carbéniques de Zr(IV).

¹ R. G. Cavell, R. P. K. Babu, A. Kasani, R. McDonald, J. Am. Chem. Soc. 1999, 121, 5805-5806.

² A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 2001, 40, 4400-4403.

³ T. Cantat, L. Ricard, N. Mézailles, P. Le Floch, *Organometallics* **2006**, 25, 6030-6038.

Il apparaît que les deux systèmes dianioniques $1.Li_2$ et $2.Li_2$ possèdent des réactivités différentes. Dans le cas de $1.Li_2$, un complexe monomérique non-solvaté est obtenu alors que $2.Li_2$ conduit à la formation d'un complexe dimérique. De plus, malgré l'encombrement au niveau des atomes d'azote le bis-carbène possédant le ligand N-C-N est accessible contrairement au ligand S-C-S. Finalement, aucun complexe carbénique de titane n'a été à ce jour décrit en utilisant le ligand S-C-S. Nous avons donc voulu étudier la réactivité du dianion S-C-S $2.Li_2$ vis-à-vis du titane et étudier la possibilité d'utiliser un troisième type de dianion O-C-O ($3Li_2$) pour la synthèse de carbènes de zirconium. Au début de cette étude le groupe de Mueller avait montré que des clusters mixtes titane-lithium pouvaient être obtenus par réaction du phosphonate neutre **3** avec du butyllithium et un précurseur de titane(IV)⁴.

Dans ce chapitre, nous présenterons la synthèse du premier carbène de titane possédant le ligand S-C-S ainsi que l'utilisation du dianion $3Li_2$ qui a permis la synthèse du premier exemple de triscarbène de zirconium. Le comportement de cette espèce dans des solvants coordinant et noncoordinant et sa réactivité vis-à-vis d'électrophiles ont été étudiés. Des calculs DFT ont été menés afin d'étudier la nature de la liaison Zr-C et ainsi rationnaliser les observations expérimentales. Finalement, les réactivités des complexes I.5 et du carbène de titane dans des réactions de transmétalation seront décrites.

II. Synthèse de carbènes de titane

La réaction d'un équivalent de **2.Li**₂ avec un équivalent de [TiCl₄(THF)₂]⁵ dans le toluène conduit en 24h à la disparition du produit de départ dans le spectre RMN ³¹P ($\delta_p = 23$ ppm) et à l'apparition d'un singulet fin à 9 ppm. La réaction de deux équivalents de **2.Li**₂ avec un équivalent de [TiCl₄(THF)₂] conduit après 12h au même spectre RMN ³¹P. Ce déplacement unique pour les atomes de phosphore indique l'obtention d'un complexe hautement symétrique. De même dans le spectre RMN ¹H, seuls deux massifs larges de 0,1 ppm à $\delta_H = 7,77$ ppm et $\delta_H = 6,88$ ppm sont observés pour les protons aromatiques. De plus, aucun signal caractéristique de la présence d'un proton sur le pont P-C-P n'a été détecté. Dans le spectre RMN ¹³C, des signaux caractéristiques de carbones aromatiques sont observés, le signal correspondant au carbone central n'a pas été détecté. Compte tenu de la stœchiométrie de la réaction et des données RMN, le produit correspondant au singulet à 9 ppm est certainement le bis-carbène de titane(IV) **I.7** (schéma 2) possédant une symétrie D2. Des monocristaux analysables par diffraction des rayons X ont été

⁴ M. Spichty, K. J. Kulicke, M. Neuburger, S. Schaffner, J. F. K. Mueller, Eur. J. Inorg. Chem. 2008, 5024-5028.

⁵ L. E. Manzer, Inorg. Synth. 1982, 21, 135-140.

obtenus par diffusion lente de pentane dans une solution concentrée de **I.7** dans le toluène. Une représentation de **I.7** est donnée figure 1.

Schéma 2 : Synthèse du bis-carbène de titane I.7.

Comme supposé, **I.7** est un bis-carbène de titane(IV) dans lequel les deux fragments carbéniques sont orthogonaux. Les distances Ti-C de 2,108(2) Å et 2,069(2) Å sont légèrement plus longues que celles mesurées dans le complexe **I.2** de Cavell (2,008(4) Å). Ces deux distances sont également plus courtes que les distances M=C mesurées dans les complexes **I.4**, **I.5**, et **I.6** (2,251 Å, 2,180 Å et 2,172 Å respectivement). La somme des angles à chaque carbone est respectivement de 351,4° (C1) et 344,3° (C26). Les carbones centraux sont presque pyramidaux et se trouvent légèrement hors des plans P-Ti-P des ligands indiquant la présence d'une densité électronique importante. Les distances P-C sont de longueurs comparables à celles mesurées dans les complexes analogues, il en est de même pour les liaisons P-S. Une autre structure a été déterminée pour **I.7**, (**I.7b**). Les monocristaux ont été obtenus par diffusion lente de pentane dans une solution concentrée dans le dichlorométhane. Une vue de cette deuxième structure de **I.7** est donnée figure 2.

Figure 1 : Vue ORTEP de **I.7** (ellipsoïdes à 50% de probabilité). Les atomes d'hydrogène ont été omis par souci de clarté. Distances (Å) et angles(°) significatifs : Ti(1)-C(1) 2,108(2) ; Ti(1)-C(26) 2,069(2) ; C(1)-P(1) 1,678(2) ; C(1)-P(2) 1,674(2) ; P(1)-S(1) 2,0390(8) ; P(2)-S(2) 2,0367(8) ; C(26)-P(3) 1,683(2) ; C(26)-P(4) 1,683(2) ; P(3)-S(3) 2,0250(8) ; P(4)-S(4) 2,0230(8) ; P(1)-C(1)-P(2) 144,9(2) ; P(3)-C(26)-P(4) 145,8(1) ; C(1)-Ti(1)-C(26) 158,1(1).

Figure 2 : Vue ORTEP de **I.7b** (ellipsoïdes à 50% de probabilité). Les atomes d'hydrogène ont été omis par souci de clarté. Distances (Å) et angles(°) significatifs : Ti(1)-C(1) 2,073(2) ; Ti(1)-C(26) 2,088(2) ; C(1)-P(1) 1,667(2) ; C(1)-P(2) 1,676(2) ; P(1)-S(1) 2,0324(6) ; P(2)-S(2) 2,0176(6) ; C(26)-P(3) 1,672(2) ; C(26)-P(4) 1,679(2) ; P(3)-S(3) 2,0330(6) ; P(4)-S(4) 2,0251(6) ; P(1)-C(1)-P(2) 155,5(1) ; P(3)-C(26)-P(4) 158,1(1) ; C(1)-Ti(1)-C(26) 172,22(7).

Dans cette structure de I.7, les distances et angles sont comparables à la structure précédente. La principale différence réside dans la géométrie des carbones centraux. En effet dans I.7, ces carbones sont plutôt pyramidaux alors que dans I.7b, la somme des angles aux deux carbones est de $359,3^{\circ}$ pour C1 et $359,0^{\circ}$ pour C26. Ici, les deux carbones sont presque plans. Ceci indique que l'écart d'énergie entre une structure dans laquelle les carbones sont dans les plans P-Ti-P et une où ils en sont légèrement en-dehors est faible. Un phénomène semblable a été observé dans le cas d'un bis-carbène de thulium incorporant le ligand 2^{6} .

Nous nous sommes donc intéressés à la possibilité d'obtenir le mono-carbène de titane. La réaction d'un équivalent de $2.Li_2$ avec un équivalent de $[TiCl_4(THF)_2]$ a été étudiée en détail (schéma 3). Après 15 minutes de réaction, le spectre RMN ³¹P montre la quasi-disparition du produit de départ et l'apparition du signal correspondant à **I.7** qui est le produit cinétique de la réaction. De plus, un nouveau produit caractérisé par un singulet à 19 ppm en RMN ³¹P a été observé. Le mélange réactionnel a ensuite été porté à 60°C pendant 3h. Après ce temps, le spectre RMN ³¹P montre la conversion totale du bis-carbène en un nouveau produit qui correspond au singulet à 19 ppm en plus de deux pics d'intensités égales à 15 et 43 ppm indicatifs de deux atomes de phosphore aux environnements différents (20 % en tout par rapport au pic à 19 ppm). Après évaporation des solvants, un spectre RMN ¹H révèle qu'aucune protonation du carbone central n'a eu lieu. Des monocristaux analysables par diffraction des RX ont été obtenus par

⁶ T. Cantat, F. Jaroschik, L. Ricard, P. Le Floch, F. Nief, N. Mézailles, Organometallics 2006, 25, 1329-1332.

diffusion lente d'hexane dans une solution du mélange réactionnel dans le THF. A notre grande surprise, la structure obtenue n'est pas celle du mono-carbène de titane **I.8** mais celle d'un produit de décomposition du mono-carbène correspondant à l'hydrolyse d'une liaison Ti-Cl, le complexe **I.9** (schéma 3). Une représentation du complexe **I.9** est donnée figure 3.

Schéma 3 : Synthèse du mono-carbène I.8 et décomposition de I.8 en I.9.

Le complexe **I.9** est toujours un carbène de titane. C'est un complexe dinucléaire possédant un cycle à 6 chaînons Ti-O-Ti-C-P-S. Deux unités carbéniques [(S-C-S)TiCl] sont pontées par un atome d'oxygène. Ce complexe n'a été caractérisé que par RMN ³¹P. L'hydrolyse d'une liaison Ti-Cl doit générer une molécule d'HCl qui devrait reprotoner le ligand. Etonnamment, ce n'est pas le cas ici. Cette absence de protonation indique un transfert électronique très fort du carbone vers le métal (en témoigne la longueur de la liaison Ti-C de 1,997(2) Å) et une baisse de la basicité du carbone central. Cette description est totalement inattendue pour ce type de carbène. Cette réaction a été retentée plusieurs fois mais la présence de **I.9** à environ 20% est toujours remarquée. Une caractérisation RMN de **I.8** a ainsi été tentée sans que des informations pertinentes en soient retirées si ce n'est l'absence de proton sur le carbone du pont P-C-P et l'absence de solvant coordiné au centre métallique. Une structure RX qui confirme l'existence du mono-carbène **I.8** a toutefois été obtenue mais les données sont insuffisantes pour permettre une résolution satisfaisante.

Figure 3: Vue ORTEP de **I.9** (ellipsoïdes à 50% de probabilité). Les atomes d'hydrogène et les substituants phényles sur les atomes de phosphore (sauf les carbones ipso) ont été omis par souci de clarté. Distances (Å) et angles(°) significatifs : Ti(1)-C(1) 1,997(2) ; C(1)-P(1) 1,718(2) ; C(1)-P(2) 1,737(2) ; P(1)-S(1) 2,0216(7) ; P(2)-S(2) 2,0168(7) ; Ti(1)-S(1) 2,5407(6) ; Ti(1)-Cl(1) 2,3743(6) ; Ti(1)-O(1) 1,8005(6) ; P(1)-C(1)-P(2) 131,0(1) ; Ti(1)-O(1)-Ti(1') 153,6(1).

De façon intéressante, le complexe **I.7** peut être converti en **I.8** par réaction avec un équivalent de $[TiCl_4(THF)_2]$ (schéma 3). La redistribution des fragments carbéniques aboutit au complexe le plus stable thermodynamiquement, c'est-à-dire le complexe **I.8**. Ce type de réarrangement est très rare et sera étudié plus en détail dans la suite de ce chapitre.

III. Dianion de phosphonate et carbènes de zirconium

Nous avons ensuite étudié la réactivité du dianion du bis-phosphonate vis-à-vis de précurseurs de zirconium. La synthèse du dianion $3.Li_2$ a été décrite en introduction de ce manuscrit. Elle s'effectue par double déprotonation du composé bis-phosphonate neutre par deux équivalents de méthyllithium dans l'éther avec quatre équivalents de TMEDA⁷. Cette espèce, insoluble dans les solvants usuels, ne peut être manipulée que dans très peu d'entre eux (toluène, éther, DME). La réaction entre un équivalent de $3.Li_2$ avec un équivalent de $[ZrCl_4(THF)_2]$ a été menée dans le toluène (schéma 4), aucun des deux réactifs n'étant soluble dans le solvant. Après addition du précurseur de zirconium à la suspension du dianion, la formation d'un solide plus fin est observée.

⁷ T. Cantat, L. Ricard, P. Le Floch, N. Mézailles, Organometallics 2006, 25, 4965-4976.

Schéma 4 : Synthèse du complexe IV.

Le spectre RMN ³¹P du brut dans le toluène montre l'apparition d'un singulet très majoritaire (~80%) à 18,6 ppm ainsi que de plusieurs pics compris entre 20 et 25 ppm. Le suivi de la réaction par RMN ³¹P montre la décroissance du pic à 18,6 ppm (complexe **I.10**) simultanément à l'apparition d'un pic très large à 40 ppm environ. Ce dernier signal devient majoritaire après 24h de réaction, le pic à 18.6 ppm ayant alors totalement disparu. La solution est alors incolore et un précipité blanc est présent. L'extraction de la phase solide au dichlorométhane suivie d'une filtration pour éliminer le chlorure de lithium donne une solution incolore dont le spectre RMN ³¹P montre la présence du seul singulet à 18,6 ppm (qui a précipité du milieu réactionnel dans le toluène). Après évaporation des solvants, ce produit est isolé avec un rendement de l'ordre de 20%. Ce produit a été ensuite caractérisé par RMN multinoyaux. Dans le spectre RMN ¹³C le carbone du pont P-C-P a été localisé à $\delta_{\rm C} = 128,5$ ppm (t, $J_{\rm P-C} = 61$ Hz). Ce déplacement chimique est similaire à celui observé pour I.5 ($\delta_{\rm C} = 100,8$ ppm). La structure est présentée sous deux angles différents dans la figure 4.

Figure 4: Vue ORTEP de I.10 (ellipsoïdes à 50% de probabilité). Les groupements isopropyles, les atomes d'hydrogène et les molécules de solvant ont été omis par souci de clarté. Distances (Å) et angles(°) significatifs : Zr(2)-Zr(1) 3,2785(8); Zr(1)-Zr(3) 4,5400(8); Zr(1)-C(1) 2,168(3); C(1)-P(1) 1,687(5); C(1)-P(2) 1,665(5); Zr(2)-O(1) 2,178(3); P(1)-O(1) 1,566(3); P(2)-O(4) 1,519(3); Zr(1)-O(1) 2,310(3); Zr(3)-O(4) 2,089(3). Zr(2)-Zr(1)-Zr(3) 180,0; P(1)-C(1)-P(2) 130,4(2); C(1)-Zr(1)-C(1') 109,7(1); Zr(2)-O(1)-P(1) 166,2(2); Zr(3)-O(4)-P(2) 166,8(2).

Le complexe **I.10** est un tris-carbène de zirconium dans lequel l'équilibre des charges est assuré par la présence de deux fragments $ZrCl_3$ cationiques. Au regard du spectre RMN ³¹P, le fait le plus surprenant est que la structure du complexe à l'état solide n'est pas symétrique. En effet, l'atome de zirconium central n'est lié qu'à trois des six atomes d'oxygène. Cela rend les atomes de phosphore du fragment carbène non-équivalents. Malgré une structure très différente de celles obtenues en utilisant les ligands **1.Li**₂ et **2.Li**₂, des similitudes sont à noter.

La longueur de la liaison Zr-C dans **I.10** est très proche de celles des complexes **I.5** et **I.4** (2,168(3) Å pour **I.10** contre 2,190(8) Å et 2,172(2) pour **I.5** et **I.4** respectivement). Les liaisons P-C (1,676 Å (moy.)) sont aussi courtes que dans les dianions isolés **1.Li₂ et 2.Li₂** (1.681 Å (moy.)) et les complexes **I.1** (1,666 Å (moy.)) et **I.6** (1,668 Å (moy.)). Ces similitudes suggèrent une stabilisation semblable des paires libres au carbone central (cet aspect est présenté dans l'étude théorique présenté ci-après).

En revanche, les liaisons P-O (1,542 Å (moy.)) sont plus courtes que les liaisons P-N dans le complexe I.1 (1,630(6) Å) et nettement plus courtes que les liaisons P-S dans I.5 (2,0214(7) Å). De plus, l'angle P(1)-C(1)-P(2) de 130.4(2)° dans le complexe I.10 est plus fermé que pour les complexes I.1 et I.5 (148.3(5)° et 145,7(1)° respectivement). Ces différences géométriques empêchent l'atome de zirconium central de rester dans le plan défini par les atomes C(1), C(1') et C(1''). Il est clair au vu de la figure 4 que l'atome de carbone central C(1) est plan. La somme des angles est égale à 359,76° et traduit un caractère carbénique marqué. Une structure similaire a déjà été observée avec le dianion 2.Li₂ dans le cas d'un complexe d'uranium(IV)⁸. L'atome d'uranium central se trouve dans le plan défini par les trois atomes de carbones du fragment carbène. Dans le cluster Ti₂Li₆ observé par Mueller, l'atome de carbone adopte également une géométrie trigonale plan.

La structure à l'état solide du complexe **I.10** n'est pas en accord avec la RMN ³¹P observée en solution. Une analyse RMN à température variable a été menée mais n'a pas permis de remarquer un changement caractéristique du spectre RMN ³¹P même à -80°C dans le dichlorométhane. Cela indique que l'énergie requise par l'atome de zirconium pour atteindre le plan central est très faible (de l'ordre de quelques kcal/mol). Des calculs DFT ayant pour but de quantifier cet échange ont été menés. Une structure modèle du complexe **I.10** dans laquelle les groupements isopropyles ont été remplacés par des groupements méthyles a été optimisée (complexe **A**, schéma 5). Nous avons cherché un état de transition entre ce minimum et son équivalent par un miroir plan. Nous avons postulé que cet état de transition était un complexe symétrique dans lequel l'atome de

⁸ T. Cantat, T. Arliguie, A. Noël, P. Thuéry, M. Ephritikhine, P. Le Floch, Nicolas Mézailles, J. Am. Chem. Soc. 2009, 131, 963-972.

zirconium central se trouve à équidistance des deux autres atomes de zirconium et dans le plan défini par les trois atomes de carbones des fragments carbéniques. Cependant aucun état de transition n'a pu être optimisé (avec ou sans contrainte de symétrie C_3). Le processus d'échange implique probablement la décoordination d'un atome d'oxygène d'un groupement phosphonate du zirconium avant la recoordination d'un atome d'oxygène précédemment non coordiné.

Schéma 5 : Représentation de l'étude théorique sur l'état de transition.

Cette hypothèse de décoordination facile d'un atome d'oxygène est également cohérente avec l'évolution lente en solution de **I.10** (produit cinétique) vers le produit caractérisé par un signal large à 40 ppm en RMN ³¹P (produit thermodynamique). Comme mentionné précédemment cette évolution est observable dans le brut de réaction mais également à partir du complexe **I.10** isolé et sur la même échelle de temps. On peut donc supposer que le produit thermodynamique est un agrégat de fragments [(O-C-O)ZrCl₂]. Contrairement à la réactivité observée par Müller *et coll.* dont le cluster Ti-Li incorpore des molécules de chlorure de lithium à l'état solide, l'évolution en solution du complexe **I.10** pur indique l'absence de chlorure de lithium dans le produit final de la réaction. Ce type de réarrangement en solvant non-coordinant (toluène ou dichlorométhane) est assez surprenant.

Notre groupe a montré que le dimère **I.5** pouvait être clivé par ajout d'un solvant fortement coordinant tel que la pyridine ou le THF. Le complexe d'uranium(IV) cité précédemment peut aussi se réarranger en espèces mononucléaires mais uniquement en présence de THF. Nous avons alors décidé d'étudier la réaction entre le complexe **I.10** et la pyridine (schéma 6).

Schéma 6 : Réaction du complexe I.10 avec la pyridine.

Cette réaction est totale et instantanée à température ambiante dans le dichlorométhane. Un nouveau complexe (complexe **I.11**) est formé au cours de la réaction comme observé sur le spectre RMN ³¹P (singulet à $\delta_P = 24$ ppm). Après évaporation des solvants, ce complexe est isolé sous la forme d'un solide blanc. Le spectre RMN ¹H ne montre la présence que d'une seule molécule de pyridine coordinée au métal. Le signal correspondant au carbone du pont P-C-P n'a pas été observé par RMN ¹³C. Le stockage d'une solution du complexe **I.11** à -35°C pendant une nuit dans le dichlorométhane a permis l'obtention de monocristaux analysables par diffraction des RX. La structure du complexe **I.11** est présentée figure 5.

Figure 5: Vue ORTEP de I.11 (ellipsoïdes à 50% de probabilité). Les groupements isopropyles, les atomes d'hydrogène et les molécules de solvant ont été omis par souci de clarté. Distances (Å) et angles(°) significatifs : Zr(1)-C(1) 2,210(3); C(1)-P(1) 1,679(3); C(1)-P(2) 1,665(2); P(1)-O(1) 1,545(2); P(2)-O(2) 1,544(2); Zr(1)-N(1) 2,391(2); Zr(1)-Cl(1) 2,4334(7); Zr(1)-Cl(2) 2,4894(7); Zr(1)-O(2') 2,022(2); Zr(1)-O(1) 2,142(2); Cl(2)-Zr(1)-C(1) 153,60(6); O(1)-Zr(1)-O(2') 169,23(7); P(1)-C(1)-P(2) 129,3(2); N(1)-Zr(1)-O(1) 87,12(7); O(1)-Zr(1)-C(1) 69,87(8); O(1)-P(1)-C(1) 101,2(1); C(1)-P(2)-O(2) 110,8(1).

Le complexe **I.11** est un complexe dinucléaire dicarbénique de zirconium(IV). La structure confirme la coordination d'une molécule de pyridine à chaque atome de zirconium et témoigne d'un réarrangement majeur de **I.10**. En effet, dans **I.11** chaque fragment carbénique est maintenant coordiné à un seul atome de zirconium. La vitesse élevée du réarrangement indique que l'énergie d'activation est très faible. Malgré l'unique singulet observé en RMN ³¹P, les deux groupements phosphonates possèdent des environnements différents (comme dans le cas du complexe **I.10**). Cela indique, ici aussi, un phénomène dynamique rapide à température ambiante.

Les deux longueurs de liaisons P-O au sein d'un ligand sont identiques (1,544 Å). Même si la liaison Zr-C est légèrement plus longue que dans le complexe **I.10** (2,210(3) Å contre 2,168(3) Å pour **I.10**), elle correspond à celles habituellement observées pour les complexes carbéniques de zirconium(IV)^{1,2}. Le carbone central adopte également une géométrie trigonale plan (Σ angles à

C(1) de 359,4°). Les atomes de zirconium sont nettement plus proches des oxygènes pontants que des oxygènes terminaux des groupements phosphonates (Zr(1)-O(2) = 2,022(2) Å et Zr(1)-O(1) = 2,142(2) Å). Une dernière donnée illustre parfaitement la flexibilité du ligand utilisé : l'angle O-P-C, qui varie de 101.2(1)° à 110.8(1)° au sein du complexe **I.11**.

IV. Réactivité des complexes carbéniques

La réactivité de ces complexes a ensuite été examinée. Il a été montré que les complexes carbéniques obtenus par réaction des dianions géminés possèdent un caractère nucléophile marqué. En 2000, Cavell *et coll.* ont étudié des réactions de cycloadditions du carbène **I.1** et de son analogue du hafnium avec des hétéroallènes. Ces réactions conduisent à des cycloadditions [2+2] entre une liaison double de l'allène et la liaison M=C (schéma 7)⁹. Les complexes tricycliques **I.12** et **I.13** ont ainsi été isolés.

Schéma 7 : Réactivité du complexe I.1.

Notre groupe a également démontré le caractère nucléophile des complexes carbéniques générés grâce au dianion **2.Li**₂. Les carbènes **I.5** et **I.6** réagissent ainsi comme les carbènes de Schrock vis-à-vis des cétones et des aldéhydes pour former un alcène et l'oxyde métallique^{3,10,11,12,13}. En revanche, le complexe **I.4** électroniquement saturé est totalement inerte vis-à-vis des cétones et des aldéhydes. Nous avons donc privilégié l'utilisation d'un aldéhyde pour étudier la réactivité de nos carbènes. Dans le cas du carbène de samarium **I.14**, l'intermédiaire de la réaction avec la benzophénone a pu être isolé et caractérisé par diffraction des RX (complexe **I.15**, schéma 8).

⁹ R. P. K. Babu, R. McDonald, R. G. Cavell, *Organometallics* **2000**, *19*, 3462-3465.

¹⁰ G. C. Bazan, R. R. Schrock, M. B. O'Regan, *Organometallics* **1991**, *10*, 1062-1067.

L. L. Whinnery, L. M. Henling, J. E. Bercaw, J. Am. Chem. Soc. 1991, 113, 7575-7582.
K. A. Jørgensen, B. Schiøtt, Chem. Rev. 1990, 90, 1483-1506.

¹³ A. Dauth, J. A. Love, *Chem. Rev.* **2011**, *11*, 2010-2047.

Schéma 8 : Isolation de l'intermédiaire de la réaction entre le carbène de samarium et la benzophénone.

Nous avons donc testé la réactivité de nos nouveaux complexes de zirconium vis-à-vis d'un aldéhyde. La réaction entre le complexe **I.10** et l'antraldéhyde pour former l'alcène **I.16** correspondant est assez lente (10h) au contraire de la réaction du complexe **I.11** qui est totale après seulement 15 minutes (schéma 9).

Schéma 9 : Réaction entre les complexes I.10 et I.11 et l'antraldéhyde.

Nous avons ensuite reproduit cette réaction de piégeage dans différentes conditions. En effet, nous avons supposé que la réaction entre **3.Li**₂ conduisait à la formation d'agrégats de type [(O-C-O)ZrCl₂]. La formation de l'alcène **I.16** à partir de ces agrégats prouverait la nature carbénique de ceux-ci.

Premièrement, un excès d'antraldéhyde a été ajouté au brut d'une réaction entre **3.Li2** et $[ZrCl_4(THF)_2]$ après 24h d'agitation (le complexe **I.10** a alors précipité et le produit majoritaire est le produit correspondant au signal large à $\delta_p = 40$ ppm dans le spectre RMN ³¹P). L'alcène **I.16** a été obtenu avec un excellent rendement (93%). Deuxièmement, le complexe **I.10** pur a été mis en solution dans le toluène et laissé 24h (afin de s'assurer de son évolution complète en solution). Un excès d'antraldéhyde a alors été ajouté conduisant, cette fois encore, à la formation de l'alcène **I.16** avec un excellent rendement (94%). Ceci confirme la nature carbénique des agrégats postulés. Dans les deux cas, la réaction a une cinétique semblable à celle faite en partant du

complexe **I.11**. On peut supposer que des contraintes stériques ainsi que la saturation électronique de l'atome de zirconium dans le complexe **I.10** sont à l'origine de la lenteur de la réaction. Ceci est cohérent avec le mécanisme supposé qui débute par l'approche de l'électrophile puis sa coordination avant l'attaque nucléophile du carbone central.

V. Etude Théorique

Des calculs théoriques au niveau DFT ont été menés afin d'élucider la structure électronique du complexe **I.10** et du complexe [(O-C-O)ZrCl₂] postulé. Pour ce faire, des modèles simplifiés des différents complexes ont été utilisés. Ainsi, le modèle **A** dans lequel les groupements isopropyles ont été remplacés par des groupements méthyles a été utilisé pour modéliser **I.10** et un complexe carbénique mononucléaire hypothétique (O-C-O)ZrCl₂(OMe₂)₂ **B** a été étudié (schéma 10).

Schéma 10 : Modèles utilisés pour l'étude théorique.

Les géométries optimisées sont présentées dans la figure 6. Les données structurales théoriques sont en excellent accord avec les données expérimentales issues des structures RX. L'optimisation du complexe **I.A** n'aboutissant pas à un complexe de symétrie C₃ trois fragments dianioniques légèrement différents sont observés. Néanmoins leurs caractéristiques géométriques sont très proches comme en témoignent les longueurs des liaisons Zr-C calculées à 2,19 Å (mesurée à 2,167(3) Å dans la structure RX). De même, les longueurs de liaison au sein des ligands sont très proches des données expérimentales. La comparaison des données expérimentales et théoriques est présentée dans le tableau 1.

Figure 6 : Structure optimisée de A (gauche) et B (droite).

	Théorique (I.A)	Expérimental (I.10)	Ecart
P-C	1,67 (moy.)	1,665(5)	0,01
P-C	1,70 (moy.)	1,687(5)	0,01
P-O	1,60 (moy.)	1,566(3)	0,03
P-O	1,54 (moy.)	1,519(3)	0,02
Zr-C	2,19 (moy.)	2,168(3)	0,02

Tableau 1 : Comparaison des longueurs de liaison caractéristiques entre I.10 et A.

A partir de la structure optimisée **A**, nous avons cherché les différentes interactions π Zr=C dans les orbitales moléculaires du complexe. Ces interactions sont présentes dans la HO-2 et la HO-3 du complexe et dans les deux cas la participation des OA du métal est très peu marquée.

Une analyse NBO (voir partie expérimentale) a été réalisée sur **A**. Les principaux résultats sont présentés dans le tableau 2. Les carbones centraux portent une charge négative assez importante (q_c -1,72 en moyenne) de même que les atomes d'oxygène (q_o -1.11 en moyenne). Au contraire, les atomes de phosphores sont eux chargés positivement (q_p 2,48 et 2,51 en moyenne) de même que les atomes de zirconium (q_{zr} 1,82 ; 1,54 ; 1,56). Ceci semble indiquer que la liaison Zr-C est très fortement polarisée sur le carbone. En effet, l'analyse NBO indique que chaque carbone porte une paire libre de caractère p pur. Nous nous sommes donc intéressés à la stabilisation de ces paires libres au sein du complexe **A** comme déjà fait avec les dianions. Les résultats de ces stabilisations sont donnés dans le tableau 3. La stabilisation des paires libres aux carbones se fait de deux façons principales, d'une part par donation dans une orbitale vide du zirconium central, d'autre part par hyperconjugaison négative au sein des différents fragments carbènes.

Charges NBO		Indices de liaison		Paires libres au carbone		
С	-1,72 (moy)	Zr-C	0,73 (moy)	n° C	hybridation	population
Zr	1,82	P-C	1,11 (moy)	C(14)	p ^{1,00}	1,54
Zr	1,54	P-C	0,99 (moy)	C(25)	P ^{1,00}	1,55
Zr	1,56	P-O	0,71 (moy)	C(36)	p ^{1,00}	1,55
Р	2,48 (moy)	P-O	0,87 (moy)			
Р	2,51 (moy)					
0	-1,12					
0	-1,11					

Tableau 2 : Principaux paramètres de l'analyse NBO pour A.

Donneuse	Acceptrice	E(2) kcal/mol	ΔE _{ij} (u.a.)	F _{ij} (u.a.)
LP C(14)	sd* Zr(1)	23,97	0,16	0,057
	σ*(P-O)	15,10	0,39	0,075
	σ*(P-O)	14,91	0,39	0,073
	σ*(P-O)	14,23	0,40	0,073
	σ*(P-O)	10,42	0,40	0,062
	σ*(Zr-C)	5,87	0,30	0,041
	σ*(Zr-C)	3,83	0,27	0,031
	σ*(Zr-O)	5,41	0,21	0,033
	σ*(P-O)	14,45	0,40	0,073
	σ*(P-O)	14,16	0,44	0,076
	σ*(P-O)	10,71	0,51	0,072
	σ*(P-O)	10,18	0,40	0,061
LP C(25)	σ*(Zr-C)	7,37	0,29	0,025
	σ*(Zr-C)	5,37	0,30	0,039
	σ*(Zr-O)	10,06	0,21	0,045
	σ*(Zr-O)	6,38	0,21	0,036
	sd* Zr(1)	15,79	0,16	0,046
LP C(36)	σ*(P-O)	15,21	0,39	0,075
	σ*(P-O)	14,91	0,39	0,073
	σ*(P-O)	14,32	0,40	0,073
	σ*(P-O)	10,35	0,40	0,062
	σ*(Zr-C)	6,01	0,27	0,039
	σ*(Zr-O)	5,03	0,29	0,037
	σ*(Zr-O)	9,44	0,21	0,044

 $Tableau \ 3: {\it Stabilisation des paires libres à chaque carbone central dans \ A.$

Par souci de clarté, le modèle hypothétique **B** a été optimisé et les différents résultats seront développés sur ce modèle. Les liaisons P-C calculées à 1,65Å pour **B** sont légèrement plus courtes que pour **I.10** (1,676 Å (moy.)) et **I.11** (1,672 Å (moy.)). Les longueurs de liaisons Zr-C et P-O se situent entre les valeurs mesurées pour **I.10** et **I.11**. Il est donc pertinent d'utiliser le modèle **B** pour rendre compte de l'interaction Zr-C au sein des complexes mentionnés précédemment. Les différentes interactions métal-carbone ont ainsi été cherchées dans les orbitales moléculaires de **B**. L'interaction sigma a ainsi été localisée dans la HO-1 (combinaison liante) et la BV+3 (combinaison antiliante) et le système π de l'interaction Zr-C a été localisé dans la HO (combinaison liante) et la BV+1 (combinaison antiliante) de **B**. Ces quatre orbitales sont représentées dans les figures 7 et 8.

Figure 7 : HO-1 (gauche) et BV+3 (droite) du complexe monomérique B.

Figure 8 : HO (gauche) et BV+1 (droite) du complexe monomérique **B**. Les molécules de solvants ont été omises dans la représentation de la HO par souci de clarté.

Charges NBO		Indices de liaison		
Zr	1,56	Zr-C	0,79	
С	-1,68	P-C	1,05	
Р	2,47	P-C	1,05	
Р	2,47	P-O	0,85	
0	-1,10	P-O	0,85	
0	-1,10			

Une analyse NBO a été réalisée sur **B** (voir tableau 4) et montre que la charge au carbone central est de -1,68 alors qu'elle est de -2,01 pour le dianion **2.Li**₂. Ceci traduit un transfert électronique assez important vers le centre métallique dont la charge est de 1,56.

Tableau 4 : Données NBO pour le complexe B.

L'indice de liaison de 0,79 calculé pour la liaison Zr-C indique un caractère π peu marqué pour cette liaison. La liaison sigma est le résultat de l'interaction d'une orbitale p du carbone central (82,6 % p, sp^{4,76}) et une orbitale hybride sd du métal (29% s et 71 % d, sd^{2,41}) et est fortement polarisée sur l'atome de carbone (83,5 %). De plus, l'analyse NBO révèle la présence d'une paire libre au carbone central. Celle-ci possède un caractère p pur. Le tableau 5 détaille les différentes stabilisations de la paire libre au carbone central dans **B**.

Donneuse	Acceptrice	E(2) kcal/mol	ΔE_{ii} (u.a.)	F_{ii} (u.a.)
LP C(1)	σ*(P-O)	16,78	0,39	0,078
	σ*(P-O)	16,58	0,38	0,077
	σ*(P-O)	12,73	0,40	0,070
	σ*(P-O)	12,66	0,40	0,069
	σ*(Zr-Cl)	21,77	0,25	0,070
	σ*(Zr-Cl)	8,93	0,30	0,049

Tableau 5 : Stabilisation de la paire libre au carbone central dans B.

Comme dans le cas du complexe **A**, la stabilisation de la paire libre au carbone se fait à la fois par donation vers le métal et à la fois par hyperconjugaison négative au sein du fragment carbénique. Dans le premier cas, un transfert électronique dans les orbitales $\sigma^*(\text{Zr-Cl})$ est observé. Ces deux orbitales sont des orbitales hybrides sd^{3,71} et sd^{6,86} fortement localisées sur l'atome de zirconium central (à 94% dans les deux cas). Cette stabilisation a été quantifiée à environ 30 kcal/mol. Dans le deuxième cas, le transfert électronique se fait principalement dans les différentes orbitales $\sigma^*(\text{P-}$ O) du ligand de symétries adaptées avec une énergie totale de stabilisation d'environ 60 kcal/mol.

Pour déterminer plus en détails le caractère double de la liaison Zr=C, le complexe **B** a été décomposé en deux fragments. Le premier fragment (fragment a) est le fragment carbénique $((OMe_2)_2PO)_2C^2$, le deuxième (fragment b) est le fragment métallique $(OMe_2)_2Cl_2Zr^{2+}$. Les

orbitales moléculaires mises en jeu dans le système π du complexe **B** sont représentées dans la figure 9. L'analyse de l'interaction des deux fragments a été réalisée à l'aide du logiciel AOMIX développé par Gorelsky¹⁴. Le système π du complexe **B** résulte de l'interaction de deux orbitales de fragments (FO) de symétrie adaptée : d'un côté la BVa+2 qui est une orbitale hybride d_{xy} du fragment a, de l'autre la HOb-1 qui est la combinaison antiliante d'une paire libre au carbone central avec une paire libre sur chaque oxygène des groupements phosphonate (schéma 11). Cette interaction forme la HO et la BV+1 du complexe **B**. La HO fait intervenir une très grande contribution de la part du ligand par rapport au métal qui ont été évaluées à 77,2% pour la HOb-1 du ligand et 10,5% pour la Bva+2 du métal. Ces pourcentages sont similaires à ceux déjà calculés pour des complexes de zirconium analogues.

Cette étude théorique montre qu'une grande partie de la densité électronique est toujours localisée sur le carbone central ce qui est cohérent avec l'analyse NBO et une charge calculée au carbone de -1,67. Ceci peut s'expliquer par le fait que, dans les dianions possédant des groupements σ^4 -P, les charges au carbone sont très fortement stabilisées par ces groupements *via* une hyperconjugaison négative. On retrouve toujours cette forme de stabilisation au sein du complexe. Dès lors, il y a compétition entre hyperconjugaison et transfert électronique vers le métal. La nature exacte de la liaison M=C dans ce type de complexe carbénique va donc dépendre de la proportion relative de ces deux stabilisations. Ainsi, un dianion possédant des groupements peu stabilisants de la charge au carbone central (par exemple) donnera un complexe carbénique avec une liaison Zr=C plus forte que dans le cas étudié ici.

Figure 9 : HOb-1 (gauche) et BVa+2 (droite) des deux fragments du complexe I.B.

¹⁴ (a) S. I. Gorelsky, in AOMix: Program forMolecular Orbital Analysis, York University: Toronto, Canada, **1997**; (b) S. I. Gorelsky and A. B. P. Lever, *J. Organomet. Chem.* **2001**, *635*, 187-196.

Schéma 11 : Représentation du système π du complexe **B**.

VI. Transmétalation de carbènes nucléophiles

Guidés par la réaction de redistribution des fragments carbéniques dans le cas du bis-carbène de titane, nous nous sommes demandé si les complexes de titanes et de zirconium synthétisés dans notre laboratoire ne pourraient pas agir comme agents de transfert stœchiométriques de carbènes. L'utilisation de ces complexes carbéniques permettrait alors d'utiliser le THF comme solvant ce qui n'est pas le cas avec les dianions. Cette réaction est doublement favorisée. En effet, la différence d'électronégativité entre les deux centres métalliques permet le transfert du fragment carbénique du métal le moins électronégatif vers le plus électronégatif. Deuxièmement, la formation du résidu [ZrCl₄(THF)₂] permet de déplacer l'équilibre vers la formation du carbène désiré.

L'utilisation de cette réaction de transmétalation permet de pallier le caractère réducteur des dianions et ainsi permettre la synthèse de carbènes de métaux à haut degré d'oxydation. Dans la littérature, seul un exemple de transfert de fragment carbène nucléophile d'un complexe de tantale(V) vers un complexe de tungstène(VI) a été publié par le groupe de Schrock^{15,16}. Le cas des complexes électrophiles de type Fischer a lui été beaucoup plus étudié et a fait l'objet d'une revue en 2005¹⁷.

Nous nous sommes d'abord tournés vers la synthèse de complexes carbéniques déjà connus afin de valider notre méthode. La réaction du complexe **I.5** avec un équivalent de $[RuCl_2(PPh_3)_4]$ dans le THF conduit en 15 minutes à la conversion totale du complexe **I.5** en **I.18** (schéma 12). **I.18** a

¹⁵ J. H. Wengrovius, R. R. Schrock, M. R. Churchill, J. R. Missert, W. J. Youngs, J. Am. Chem. Soc. 1980, 102, 4515-4516.

¹⁶ R. R. Schrock, S. Rocklage, J. H. Wengrovius, G. Rupprecht, J. Fellmann, J. Mol. Catal. 1980, 8, 73-83.

¹⁷ M. Gómez-Gallego, M. J. Mancheño, M. A. Sierra, *Acc. Chem. Res.* **2005**, *38*, 44-53.

été publié par notre groupe en 2005¹⁸ et sa formation est observée sur le spectre RMN ³¹P (deux triplets à $\delta_p = 57,6$ ppm et 48,8 ppm avec $J_{p.p} = 12$ Hz). Deux équivalents de triphénylphosphine libre sont également présents. La même réaction a été ensuite réalisée avec [PdCl₂(PPh₃)₂]. La formation du carbène de palladium¹⁹ (complexe **I.19**, schéma 12) caractérisé par un doublet et un triplet à $\delta_p = 21,5$ ppm et 39,8 ppm respectivement ($J_{p.p} = 15$ Hz) est observée sur le spectre RMN ³¹P. Toutefois, cette réaction nécessite deux heures d'agitation.

Finalement, cette réaction a été menée avec $CoCl_2$. Aucune réaction n'est observée à température ambiante même après plusieurs jours d'agitation. Cependant, après 12h de réaction à 60°C, la conversion totale de **I.5** en un nouveau complexe est observée. Ce complexe est décrit au Chapitre 2 de ce manuscrit (complexe **II.10**). Le bis-carbène de titane **I.7** est lui aussi réactif vis-àvis de [RuCl₂(PPh₃)₄] mais il est nécessaire de chauffer la réaction à 60°C pendant une nuit pour obtenir une conversion totale. L'encombrement dû à la présence de deux fragments carbéniques autour du métal est responsable de la lenteur du phénomène. Dans cette optique, le mono carbène de titane serait plus réactif.

Nous avons tenté d'étendre cette méthode à la synthèse de nouveaux carbènes de métaux encore non étudiés à ce jour. Notre première cible à été la synthèse d'un carbène de fer. En effet, des réactions menées avec le dianion **2.Li₂**, n'ont conduit qu'à des phénomènes rédox et la formation de fer(0) ou à des produits de décomposition non identifiés. Malheureusement, la réaction de transmétalation vers [FeCl₂] ou [FeCl₂(THF)_{1,5}] n'a pas permis de former le carbène de fer espéré. En revanche, aucun phénomène redox n'a été observé ce qui confirme l'utilité de notre méthode de synthèse. Au contraire, l'utilisation d'un carbène de scandium synthétisé au laboratoire en 2010 (complexe **I.20**)²⁰ a permis cette transformation et un complexe dinucléaire de fer (complexe **I.21**, schéma 13) a été obtenu. Des premiers essais de transmétalation vers des centres métalliques très oxydés tels que $MoO_2Cl_2(THF)_2$ ou $MoOCl_4$ se sont révélés prometteurs mais nécessitent des approfondissements.

¹⁸ T. Cantat, M. Demange, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Organometallics 2005, 24, 4838-4841.

¹⁹ T. Cantat, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Angew. Chem. Int. Ed. 2004, 43, 6382-6385.

²⁰ M. Fustier, X. F. Le Goff, P. Le Floch, N. Mézailles, J. Am. Chem. Soc. 2010, 132, 13108-13110.

Schéma 12 : Réactions de transmétalation du carbène I.5.

Schéma 13 : Transmétalation d'un carbène de scandium vers un complexe de fer²¹.

Bien que ces réactions de transmétalation n'aient pas été développées jusqu'au point où nous aurions voulu les amener, le mécanisme reste intrigant. La première étape est le réarrangement du carbène **I.5** dans le THF pour former le complexe **I.22** mononucléaire dans lequel deux molécules de THF sont coordinées au zirconium (schéma 14). Ce réarrangement se fait concomitamment avec la solubilisation du complexe dans le solvant. Ainsi, **I.22** est caractérisé par un singulet à $\delta_p = 22$ ppm dans le spectre RMN ³¹P dans le THF. Des cristaux de **I.22** analysables par diffraction des RX ont été obtenus par diffusion lente de pentane dans une solution concentrée dans le THF. Ce déplacement est très semblable à celui de **I.5** dans le dichlorométhane ($\delta_p = 23$ ppm). Une représentation de **I.22** est donnée figure 10. Sa structure est similaire à celle de **I.6** (complexes bispyridine).Les atomes de chlore sont situés en *trans* du plan du ligand. La distance Zr-C de 2,185(4) Å est dans la norme des distances observées pour les autres carbènes de zirconium étudiés précédemment. Le carbone central adopte une géométrie trigonale plan légèrement distordue (somme des angles de 355,6°).

²¹ M. Fustier, Thèse de doctorat 2012

Schéma 14 : Formation de I.22 à partir de I.5.

Considérant ce complexe comme celui actif dans le processus de transmétalation, un mécanisme simplifié peut être proposé.

Figure 10 : Vue ORTEP de **I.22** (ellipsoïdes à 50% de probabilité). Les atomes d'hydrogène ont été omis par souci de clarté. Distances (Å) et angles(°) significatifs : Zr(1)-C(1) 2,185(4) ; P(1)-C(1) 1,679(1) ; P(1)-S(1) 2,017(1) ; Zr(1)-S(1) 2,6905(8) ; Zr(1)-O(1) 2,364(2), P(1)-C(1)-P(1') 148,1(3).

Comme nous l'avons vu, la première étape est l'ouverture du dimère **I.5** pour former **I.22**. Ensuite, nous pouvons proposer la coordination du fragment métallique réactif *via* un des atomes de chlore de **I.22**, suivie de la formation d'une espèce hétérobimétallique comme déjà observé par Leung *et coll.* avec un complexe mixte germanium-chrome²² ou par le groupe de Cavell²³. La dernière étape est la génération du carbène promue par la formation de $ZrCl_4(THF)_2$. Ce mécanisme est résumé schéma 15.

²² W.-P. Leung, C.-W. So, J.-Z. Wang, T. C. W. Mak, Chem. Commun. 2003, 248-249.

²³ M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652-1665.

Schéma 15 : Mécanisme simplifié de la réaction de transmétalation.

VII. Conclusion et perspectives

En conclusion, nous avons étendu la gamme des carbènes du groupe 4 aux dérivés du titane. Un bis-carbène de titane a été synthétisé en utilisant $2.Li_2$. Le mono-carbène de titane correspondant n'a pas pu être isolé à ce jour mais un produit de décomposition a pu être analysé. Nous avons ensuite étudié la coordination du dianion $3.Li_2$ vis-à-vis de $ZrCl_4(THF)_2$. Contrairement aux dianions $1.Li_2$ et $2.Li_2$ le premier exemple de tris-carbène de zirconium a été obtenu comme produit cinétique de la réaction, le produit thermodynamique de la réaction étant probablement un agrégat [(O-C-O)ZrCl₂]. Ces complexes se réarrangent facilement en solvant coordinant pour former des espèces mono-carbéniques. Les calculs DFT suggèrent une interaction de type π entre le carbone central et le zirconium. Cette interaction reste néanmoins très polarisée sur le carbone.

La réaction de piégeage des complexes carbéniques avec un aldéhyde a montré la possibilité d'obtenir des alcènes très fonctionnalisé. Cette étude pourrait être étendue à d'autres composés (cétones par exemple) afin d'obtenir aisément une large gamme d'alcène portant un groupement phosphonate. En effet, il a été montré que ces composés possèdent des activités biologiques intéressantes. Notre méthode aisée de synthèse de ce type de composé pourrait ainsi être valorisée.

Les complexes carbéniques de zirconium(IV) étudiés peuvent servir de base à une chimie intéressante. Le centre métallique peut être facilement réduit au degré d'oxydation +II de diverses manières (méthyllithium, butyllithium, potassium-graphite, naphtalénure de sodium...). Les complexes ainsi générés peuvent être piégés par des composés bien choisis (diazote, phosphore blanc, alcynes, alcènes) et présenter des réactivités intéressantes (schéma 16).

Schéma 16 : Réactivité des complexes carbéniques de zirconium.

Des réactions de transmétalation visant à obtenir de nouveaux carbène de métaux à haut degré d'oxydation ont été menées avec succès. Pour le moment, seules des espèces connues et accessibles par la voie des dianions ont été synthétisées. L'exemple de la synthèse du complexe de fer est prometteur même si l'utilisation de scandium n'est pas facilement valorisable. En revanche, l'utilisation de carbènes de zirconium est, elle, envisageable dans le but d'obtenir de nouveaux complexes aux réactivités particulières.

VIII. Bibliographie

- R. G. Cavell, R. P. K. Babu, A. Kasani, R. McDonald, J. Am. Chem. Soc. 1999, 121, 5805-5806.
- A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 2001, 40, 4400-4403.
- 3) T. Cantat, L. Ricard, N. Mézailles, P. Le Floch, Organometallics 2006, 25, 6030-6038.
- 4) M. Spichty, K. J. Kulicke, M. Neuburger, S. Schaffner, J. F. K. Mueller, *Eur. J. Inorg. Chem.* 2008, 5024-5028.
- 5) L. E. Manzer, Inorg. Synth. 1982, 21, 135-140.
- 6) T. Cantat, F. Jaroschik, L. Ricard, P. Le Floch, F. Nief, N. Mézailles, Organometallics 2006, 25, 1329-1332.
- 7) T. Cantat, L. Ricard, P. Le Floch, N. Mézailles, Organometallics 2006, 25, 4965-4976.
- 8) T. Cantat, T. Arliguie, A. Noël, P. Thuery, M. Ephritikhine, P. Le Floch, Nicolas Mézailles, J. Am. Chem. Soc. 2009, 131, 963-972.
- 9) R. P. K. Babu, R. McDonald, R. G. Cavell, Organometallics 2000, 19, 3462-3465.
- 10) G. C. Bazan, R. R. Schrock, M. B. O'Regan, Organometallics 1991, 10, 1062-1067.
- 11) L. L. Whinnery, L. M. Henling, J. E. Bercaw, J. Am. Chem. Soc. 1991, 113, 7575-7582.
- 12) K. A. Jørgensen, B. Schiøtt, Chem. Rev. 1990, 90, 1483-1506.
- 13) A. Dauth, J. A. Love, Chem. Rev. 2011, 11, 2010-2047.
- 14) (a) S. I. Gorelsky, in AOMix: Program forMolecular Orbital Analysis, York University: Toronto, Canada, 1997; (b) S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem. 2001, 635, 187-196.
- 15) J. H. Wengrovius, R. R. Schrock, M. R. Churchill, J. R. Missert, W. J. Youngs, J. Am. Chem. Soc. 1980, 102, 4515-4516.
- 16) R. R. Schrock, S. Rocklage, J. H. Wengrovius, G. Rupprecht, J. Fellmann, J. Mol. Catal. 1980, 8, 73-83.
- 17) M. Gómez-Gallego, M. J. Mancheño, M. A. Sierra, Acc. Chem. Res. 2005, 38, 44-53.
- 18) T. Cantat, M. Demange, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Organometallics 2005, 24, 4838-4841.
- 19) T. Cantat, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Angen. Chem. Int. Ed. 2004, 43, 6382-6385.
- 20) M. Fustier, X. F. Le Goff, P. Le Floch, N. Mézailles, J. Am. Chem. Soc. 2010, 132, 13108-13110.
- 21) M. Fustier, Thèse de doctorat 2012
- 22) W.-P. Leung, C.-W. So, J.-Z. Wang, T. C. W. Mak, Chem. Commun. 2003, 248-249.
- 23) M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, *Organometallics* **2009**, *28*, 1652-1665.

Chapitre 2 Comparaison de la coordination de deux systèmes dianioniques sur le cobalt (II)

Chapitre 2 : Comparaison de la coordination de deux systèmes dianioniques sur le cobalt (II)

I. Introduction

La chimie des dianions sur les métaux du groupe 9 a été relativement peu étudiée. Le groupe de Cavell a synthétisé en 2006 et en 2009 des complexes spiro mixtes lithium-rhodium ainsi que des composés hétérobimétalliques en utilisant le dianion N-C-N **1.Li**₂ (schéma 1)^{1,2}.

Schéma 1 : Travaux de Cavell sur les métaux du groupe 9.

Au début de notre projet, aucune étude de la coordination des dianions géminés sur le cobalt n'avait été publiée. Dans le passé, différents groupes s'étaient déjà intéressés à la chimie de coordination des dérivés neutres et monoanioniques sur le cobalt(II). En 1971, Davison et Reger ont publié la synthèse de complexes de cobalt(II), fer(II) et nickel(II) par réaction de **2.Li** avec différents précurseurs métalliques³. Leurs observations et les données récoltées sur le complexe de cobalt(II) (complexe **II.1**, schéma 2) - IR, analyse élémentaire, mesure de moment magnétique - les ont conduits à proposer la coordination de deux molécules de **2.Li** par les atomes de soufre sur l'atome de cobalt qui adopte une géométrie tétraédrique. La structure exacte de ce composé n'a toutefois pas été obtenue.

¹ M. Fang, N. D. Jones, R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, Angew. Chem. Int. Ed. 2006, 45, 3097-3101.

² M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652-1665.

³ A. Davison, D. L. Reger, Inorg. Chem. 1971, 10, 1967-1970.

Schéma 2 : Réaction de 2.Li avec un précurseur de Co(II).

Davison a également décrit en 1971 la synthèse de dérivés du cobalt(II) possédant un centre CoS_4 et incorporant des ligands de type S-N-S dans lequel l'atome d'azote central porte une paire libre (schéma 3)⁴. D'autres groupes ont étudié la chimie de ce type de ligand et de nombreuses variations des substituants aux atomes de phosphore ainsi que des hétéroatomes ont été décrites (complexes **II.2** à **II.8**, schéma 3). Les propriétés spectroscopiques et magnétiques de ces composés ont été, par la suite, abondamment étudiées^{5,6,7,8,9}.

Schéma 3 : Synthèse de complexes de Co(II) incorporant un ligand X-N-X.

Nous nous sommes donc naturellement intéressés à la chimie de coordination du monoanion et du dianion S-C-S (**2.Li** et **2.Li**₂) ainsi que du dianion O-C-O (**3.Li**₂) sur CoCl₂. La réaction de **2.Li** conduit à un complexe homoleptique de cobalt(II) ne présentant pas de liaison Co-C. En revanche, **2.Li**₂ et **3.Li**₂ conduisent à des complexes dimériques de cobalt(II) possédant un cœur Co_2C_2 suivant ainsi la même réactivité que le dianion N-C-N sur le rhodium(I).

II. Synthèse des complexes

Premièrement, le monoanion **2.Li** préparé par monodéprotonation de **2** dans le THF par un équivalent de méthyllithium a été ajouté à un équivalent de CoCl₂. Après 12h de réaction à température ambiante, le spectre RMN ³¹P montre la disparition du produit de départ ($\delta_{\rm p} = 37,5$ ppm) et l'apparition d'un nouveau produit caractérisé par un signal large à $\delta_{\rm p} = 70$ ppm. Cette même réaction a ensuite été conduite en utilisant deux équivalents de **2.Li** pour un équivalent de

⁴ A. Davison, E. L. Switkes, *Inorg. Chem.* **1971**, *10*, 837-842.

⁵ O. Siiman, *Inorg. Chem.* **1981**, 20, 2285-2292.

⁶ C. Silvestru, R. Rösler, I. Haiduc, R. Cea-Olivares, G. Espinosa-Pérez, Inorg. Chem. 1995, 34, 3352-3354.

⁷ L. M. Gilby, B. Piggott, *Polyhedron* **1999**, *18*, 1077-1082.

⁸ D. Maganas, S. S. Staniland, A. Grigoropoulos, F. White, S. Parsons, N. Robertson, P. Kyritsisa, G. Pneumatikakis, *Dalton Trans.* 2006, 2301-2315.

⁹ D. Maganas, S. Sottini, P. Kyritsis, E. J. J. Groenen, F. Neese, Inorg. Chem. 2011, 50, 8741-8754.

 $CoCl_2$ et le même produit est obtenu. Nous avons alors postulé que ce nouveau complexe était le complexe homoleptique **II.9** (schéma 4).

Schéma 4 : Synthèse du complexe II.9.

Après reprise au dichlorométhane (pour éliminer LiCl), le complexe **II.9** est isolé avec un bon rendement (80 %). Le spectre RMN ³¹P de **II.9** dans le dichlorométhane montre un signal large à $\delta_p = 4$ ppm, soit à champ nettement plus haut que les 70 ppm observés dans le THF. Une solution de **II.9** dans le dichlorométhane séchée puis reprise au THF donne à nouveau le signal à $\delta_p = 70$ ppm. Ceci indique une influence majeure du solvant sur le déplacement chimique de **II.9** en solution. Ce déplacement chimique évolue en effet en solution en fonction du rapport THF/dichlorométhane passant de $\delta_p = 4$ ppm pour le ratio (0 :100) à $\delta_p = 70$ ppm pour le ratio (100 :0). Cette influence du solvant sur le déplacement chimique d'un complexe de Co(II) a déjà été observée dans la littérature¹⁰. En RMN ¹H, seuls des signaux larges pour les protons aromatiques sont observés. Ils se situent dans une gamme de déplacement chimique allant de $\delta_H = 6,2$ ppm à $\delta_H = 8,7$ ppm qui correspond à une zone « diamagnétique ». Cela indique que l'influence du centre paramagnétique sur ces protons est modérée. Les signaux pour le proton central P-C**H**-P ainsi que celui du carbone correspondant n'ont pas été localisés sur les spectres RMN ¹H et ¹³C.

Les fluctuations de la géométrie complexe en solution dues à la possible non-coordination des carbones centraux au métal peut-être à l'origine de l'absence de ces signaux RMN. Une étude à température variable a été menée sur **II.9** dans le dichlorométhane sur une gamme de température allant de -80°C à 20°C mais aucun changement notable de l'allure du spectre RMN n'a été observé. Cependant, le déplacement chimique de **II.9** est considérablement affecté par la température, passant de $\delta_p = +4$ ppm à $\delta_p = -68$ ppm. L'évolution du déplacement chimique de **II.9** en RMN ³¹P en fonction de la température est donnée dans le tableau 1.

T (°C)	- 80	- 70	- 60	- 50	- 40	- 30	- 20	- 10	0	20
δ _P (ppm), CH₂Cl₂	- 68	- 54	- 43	- 31	- 22	- 16	- 11	- 7	- 3	+ 4

Tableau 1 : Evolution du déplacement chimique de II.9 en fonction de la température dans le dichlorométhane.

¹⁰ T. W. McGaughy, B. M. Fung, Inorg. Chem. 1972, 11, 2728–2733.

Ce phénomène est caractéristique de la coordination d'un ligand sur un centre paramagnétique et non d'un équilibre dynamique en solution¹¹. Pour le moment, aucune réponse sur la présence ou l'absence de liaison Co-C dans **II.9** ne peut être donnée. Des monocristaux de **II.9** analysables par diffraction des **RX** ont pu être obtenus par diffusion lente d'hexanes dans une solution concentrée dans le THF. Une représentation de **II.9** est donnée figure 1.

Cette structure confirme les hypothèses émises par Davison. On voit clairement que les deux carbones centraux ne sont pas coordinés au centre métallique, les distances Co-C de 3,230 Å et 3,824 Å sont très nettement plus longues que les distances Co-C typiquement observées dans des complexes pinceurs de cobalt. La géométrie au cobalt est tétraédrique distordue comme en témoignent la grande disparité des angles S-Co-S (de 93,21(4)° à 123,46(4)°). De plus, les liaisons P-C dans le ligand sont de longueurs comparables à celles du monoanion **2.Li**¹² (1,711 Å (mov.)) dans 2.Li, contre 1,706 Å (moy.) dans II.9) indiquant que la stabilisation de la charge au carbone central se fait de façon similaire dans les deux espèces. De fait, il apparaît que la stabilisation apportée par les deux groupements Ph₂PS est suffisamment forte pour que la coordination au centre métallique ne soit pas nécessaire. On peut alors décrire II.9 comme un complexe zwitterionique possédant un Co(II)²⁺ au centre et deux ligands (S-C-S)⁻ qui agissent comme ligands bidentes par leurs atomes de soufre. Ce mode de coordination est bien différent de celui observé pour les autres métaux du groupe 9. Des tentatives de déprotonation de II.9 avec différentes bases fortes (NaH, KH, KHMDS, MeLi, BuLi) en présence de ligands (PPh₃, pyridine, bipyridine) n'ont pas permis d'obtenir le carbène désiré (schéma 5). Dans la plupart des cas, les tentatives de déprotonation conduisent à de nombreux produits non identifiés. La présence de centres paramagnétiques complique énormément l'interprétation des spectres RMN.

¹¹ R. S. Drago, J. I. Zink, R. M. Richman, W. D. Perry, J. Chem. Educ. 1974, 51, 371-376.

¹² W.-P. Leung, C.-L. Wan, T. C. W. Mak, *Organometallics* **2010**, *29*, 1622-1628.

Figure 1: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de II.9. Les atomes d'hydrogène sur les noyaux aromatiques et les molécules de solvant ont été omis par souci de clarté. Distance (Å) et angles (°) significatifs : Co(1)-S(1) 2,327(1); Co(1)-S(2) 2,331(1); Co(1)-S(3) 2,308(1); Co(1)-S(4) 2,357(1); C(1)-P(1) 1,701(4); C(1)-P(2) 1,715(3); P(1)-S(1) 2,032(1); P(2)-S(2) 2,025(1); C(2)-P(3) 1,703(3); C(2)-P(4) 1,706(3); P(3)-S(3) 2,045(1); P(4)-S(4) 2,015(1); P(1)-C(1)-P(2) 125,3(2); P(3)-C(2)-P(4) 124,1(2); S(3)-Co(1)-S(1) 105,08(4); S(3)-Co(1)-S(2) 123,46(4); S(3)-Co(1)-S(4) 110,29(3); S(2)-Co(1)-S(4) 93,21(4).

Schéma 5 : Tentatives de formation du carbène de cobalt par déprotonation de II.9.

L'absence de liaison Co-C dans **II.9** nous a amené à étudier la réactivité du dianion $2.Li_2$ sur le même précurseur de cobalt. Le dianion est un ligand nettement plus fort que le monoanion correspondant et devrait permettre la coordination du carbone central au métal.

La réaction d'un équivalent de **2.Li**₂ avec un équivalent de CoCl₂ dans le toluène a été menée. Après 12h de réaction le spectre RMN ³¹P montre l'apparition d'un nouveau signal à $\delta_p = 187$ ppm (complexe **II.10**, schéma 6). Ce déplacement chimique est nettement plus haut que ce qui normalement observé pour ce ligand et indique que la coordination a bien eu lieu. Le spectre RMN ¹H de **II.10** montre des signaux pour les protons aromatiques allant de $\delta_H = -9$ ppm à $\delta_H = 13$ ppm indicatifs d'une influence beaucoup plus grande du centre paramagnétique sur ces protons. Les signaux correspondant au carbone central ainsi qu'aux carbones associés au signal à -9 ppm dans le spectre RMN ¹H (carbones *ortho*) n'ont pas été observé sur le spectre RMN ¹³C. La structure exacte du complexe **II.10** nous a été donnée par analyse de diffraction des RX. Des monocristaux ont été obtenus par diffusion lente d'hexanes dans une solution concentrée de **II.10** dans le toluène. Une représentation de **II.10** est donnée figure 2.

Schéma 6 : Réactivité du dianion 2.Li2 avec CoCl2.

Figure 2 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de II.10. Les atomes d'hydrogène sur les noyaux aromatiques et les molécules de solvant ont été omis par souci de clarté. Distance (Å) et angles (°) significatifs : Co(1)-Co(1') 2,4710(7); Co(1)-C(1) 2,044(3); Co(1')-C(1) 2,044(3); Co(1)-S(1) 2,3408(8); Co(2)-S(2) 2,3627(8); C(1)-P(1) 1,728(3); C(1)-P(2) 1,742(3); P(1)-S(1) 2,024(1); P(2)-S(2) 2,021(1); P(1)-C(1)-P(2) 129,7(1); C(1)-Co(1')-C(1) 105,6(2); C(1)-Co(1')-S(1) 84,20(8); Co(1)-C(1)-Co(1') 0.00.

II.10 est un complexe dimérique de cobalt possédant un cœur plan Co_2C_2 et dans lequel chaque ligand est coordiné à deux atomes de cobalt. Les distances Co-C (Co(1)-C(1) et Co(1')-C(1) de 2,044(3) Å) sont dans la moyenne des distances Co-C habituellement observées. Les liaisons P-S dans le ligand sont légèrement plus courtes que dans le dianion **2.Li2** (2,022 Å (moy.) dans **II.10** contre 2,040 Å (moy.) pour **2.Li**₂) alors que les liaisons P-C sont, elles, nettement plus longues dans **II.10** que dans **2.Li**₂ (1,735 Å (moy.) contre 1,676 Å (moy.)).

Cette évolution des longueurs de liaison peut être expliquée par une baisse de l'hyperconjugaison au sein du ligand, due à un transfert électronique plus important vers le centre métallique. Une interaction métal-carbone relativement forte est donc envisageable. La distance Co-Co de 2,4170(7) Å indique une possible interaction entre les deux centres métalliques (à noter qu'une recherche dans la base CCDC donne une distance moyenne de 2,50 Å dans les complexes possédant une liaison Co-Co quelle qu'en soit la nature).

Une étude RMN à température variable a été menée sur **II.10** dans le dichlorométhane dont les résultats sont donnés dans le tableau 2. Comme observé pour **II.9**, les déplacements chimiques dans **II.10** sont fortement dépendants de la température mais aucun changement d'aspect des signaux RMN n'est observé.

T (°C)	- 80	- 70	- 60	- 50	- 40	+ 25
δ _P (ppm)	147	150	154	158	161	187
δ _{ortho} -н (ppm)		- 15			- 13	- 9

Tableau 2: Evolution des déplacements chimiques ³¹P et ¹H de **II.10** en fonction de la température dans le dichlorométhane.

2.Li₂ réagit avec d'autres précurseurs de cobalt(II) (CoCl₂(bipy), CoCl₂(bipy)₂, Co(acac)₂) et à chaque fois, **II.10** est obtenu. Il semble donc que la synthèse d'un carbène de cobalt(II) par la voie des dianions soit difficile, **2.Li**₂ étant capable de déplacer des ligands fortement accrochés au métal.

Nous avons déjà vu que les dianions $2.Li_2$ et $3.Li_2$ se comportent très différemment vis-à-vis des mêmes précurseurs. En présence de $ZrCl_4(THF)_2$, $2.Li_2$ conduit à un complexe mono-carbénique de zirconium alors que $3.Li_2$ permet la synthèse d'un tris-carbène de zirconium. Nous avons donc décidé de comparer une fois de plus la réactivité de $3.Li_2$ avec celle de $2.Li_2$ vis-à-vis de $CoCl_2$. $3.Li_2$ n'est pas soluble dans les solvants avec lesquels il ne réagit pas et la réaction de $3.Li_2$ avec $CoCl_2$ dans le toluène à température ambiante ne forme aucun produit, même après 3 jours de réaction. En revanche, si la réaction est chauffée à 80°C pendant 3h, un précipité violet se forme (complexe II.11, schéma 7) qui peut être isolé par filtration. De façon surprenant, aucune précipitation de LiCl n'est observée pendant la réaction.

Schéma 7 : Synthèse du complexe de Co en utilisant 3.Li2.

Ce complexe a été caractérisé par spectroscopie RMN multinoyaux (³¹P, ¹H, ¹³C) dans le THF. Le spectre RMN ³¹P montre un seul singulet à $\delta_P = 63$ ppm qui confirme la conversion du produit de départ en un nouveau complexe. Ce déplacement chimique est à la fois cohérent avec le fait qu'on ait formé soit une espèce diamagnétique soit un complexe paramagnétique avec une faible influence du centre métallique. Les spectres RMN ¹H et ¹³C n'offrent pas d'informations supplémentaires quant à la structure de **II.11** si ce n'est le déplacement chimique du proton du groupement isopropyle à $\delta_H = 6,4$ ppm dans le spectre RMN ¹H (contre $\delta_H = 4,79$ ppm pour le ligand neutre¹³) ainsi que la non-équivalence des méthyles des groupements isopropyle. La structure de **II.11** a été élucidée par analyse de diffraction de RX. Des monocristaux ont été obtenus par diffusion lente de pentane dans une solution concentrée de **II.11** dans le THF à -35°C. Une représentation de **II.11** est donnée en figure 3.

Figure 3: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de II.11. Les atomes d'hydrogène, les groupements isopropyles, les carbones des molécules de THF ont été omis par souci de clarté. Distance (Å) et angles (°) significatifs : Co(1)-Co(1') 2.724(1); Co(1)-C(1) 2.077(3); Co(1)-C(1') 2.092(3); Co(1)-Cl(2) 2.353(1); Co(1)-Cl(1) 2.346(1); C(1)-P(1) 1.713(1); C(1)-P(2) 1.714(3); P(1)-O(1) 1.508(3); P(2)-O(4) 1.512(3); P(1)-C(1)-P(2) 1.234(2); C(1)-Co(1')-Co(1') 9.84(1); Co(1)-C(1)-C(1')-Co(1') 0.0.

Le cœur de II.11 est similaire à celui de II.10. Les deux complexes possèdent un cycle à quatre chaînons Co_2C_2 . Cependant, dans II.11, les atomes d'oxygène des groupements phosphonates ne sont pas directement coordinés aux atomes de cobalt. Ceci suggère que les chlorures sont de meilleurs ligands que les atomes d'oxygène. La stabilisation de la structure du complexe est assurée par la présence de quatre atomes de lithium et de quatre molécules de THF. Les liaisons P=O dans II.11 sont plus longues que dans le ligand neutre 3^{14} (1,508(3) Å et 1,512(3) Å dans II.11 contre 1,4840(12) Å et 1,4756(13) Å dans 3). La distance Co-Co de 2,724(1) Å est plus

¹³ T. H. Siddall, J. Phys. Chem. 1966, 70, 2249-2256.

¹⁴ K. W. Henderson, A. R. Kennedy, D. J. MacDougall, D. Strachan, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003, 59, m49–m51.

longue que dans **II.10**. De même, les distances Co-C (2,077(3) Å et 2.092(3) Å dans **II.11** contre 2,044(3) Å dans **II.10** indiquent une interaction plus faible avec le métal dans **II.11**.

III. Etude théorique

Afin de clarifier la structure électronique de **II.10** des calculs théoriques ont été menés en utilisant le programme GAUSSIAN 03 sur la structure complète de **II.10** (notée **A**). La fonctionnelle PBEPBE¹⁵ a été employée associée aux bases $6-311++G^{**}$ pour les carbones centraux, $6-31+G^*$ pour les atomes de phosphore et de soufre, $6-31G^*$ pour les carbones *ipso* et $3-21G^*$ pour les atomes restants (substituants phényles). La base DZVP2¹⁶ a été utilisée pour les deux atomes de cobalt. Deux états de spin ont été considérés pour **A**, un état singulet et un état triplet (**A**(**s**) et **A**(**t**)). Les deux états ont été optimisés comme minima sur la surface de potentiel et l'état triplet a été calculé comme étant plus stable d'environ 8 kcal/mol. Une représentation de la structure optimisée de **A**(**t**) est donnée figure 4 et une comparaison entre les données théoriques et les données expérimentales est présentée dans le tableau 3.

Figure 4 : Vue de la structure optimisée de A(t).

¹⁵ J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.

¹⁶ N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 1992, 70, 560–571.

I hapited [] I I comparation do la coordination do doux axistemos dianionication and lo cob			۰.
A TRAINITE 7 A COURATAISON DE LA COORDINATION DE DEUX SUSTEMES DIVATIONNUMES SUL LE COUR	alt (۱
Chapter 2. Comparation de la coordination de deux systemes diamoniques sur le cob	and 1	(11	1

Liaison	RX (Å)	DFT (Å)	Δ
Co-Co	2,47	2,42	0,04
Co-C	2,05	1,93	0,12
Co-C	2,06	1,93	0,13
P-C	1,74	1,77	0,03
P-C	1,74	1,77	0,03
P-S	2,02	2,04	0,02
P-S	2,02	2,04	0,02
Co-S	2,35	2,33	0,02
Co-S	2,35	2,33	0,02

Tableau 3 : Comparaison des longueurs de liaison entre A(t) et A.

La plupart des distances calculées sont très proches de celles mesurées expérimentalement. Le plus gros écart concerne les liaisons Co-C qui sont largement sous-estimées. Les liaisons P-C sont, elles, légèrement surestimées. Des tentatives d'obtenir un meilleur accord entre la théorie et l'expérience en modifiant les bases sur les carbones centraux et les atomes de cobalt (DEF2-QZVP) et les fonctionnelles (B3LYP, OPBE) n'ont pas abouti à de meilleurs résultats.

La faible qualité du calcul ne nous permet que de faire une analyse qualitative du système. La plus grande stabilité de l'état triplet par rapport à l'état singulet peut-être expliquée en s'intéressant aux orbitales frontières de **A** dans ses deux états de spin. Les SOMO et SOMO-1 (SOMO = *singly occupied molecular orbital*; orbitale simplement occupée) sont représentées figure 5.

Figure 5 : Vues de la SOMO-1 (gauche) et de la SOMO (droite) de A(t).

La SOMO-1 est la combinaison antiliante des deux orbitales $d_{x2,y2}$ des atomes de cobalt. Cette orbitale possède un caractère purement métallique car les deux orbitales atomiques n'ont pas la bonne symétrie pour interagir avec les orbitales du ligand. D'un autre côté, la SOMO n'est pas une orbitale moléculaire purement métallique et présente une combinaison antiliante entre les orbitales atomiques des atomes de cobalt et les orbitales moléculaires du ligand. Cette orbitale correspond à l'interaction liante entre les deux $d_{x2,y2}$ des atomes de cobalt combinée à une interaction antiliante avec les paires libres aux atomes de carbone. Ceci explique que ces deux orbitales soient proches en énergie (bien qu'une soit globalement liante entre les deux atomes de cobalt et l'autre antiliante) et que l'état triplet est donc favorisé (schéma 8).

Schéma 8 : Schéma d'interaction orbitalaire pour II.10

Dans la structure optimisée de A(s) la distance Co-Co est calculée à 2,54 Å; beaucoup plus longue que dans A(t). Ceci est cohérent avec le transfert d'un électron de la SOMO vers la SOMO-1 augmentant le caractère antiliant de la liaison Co-Co.

IV. Conclusions et perspectives

En conclusion, nous avons développé les premières réactions entre des dianions géminés et le cobalt. Dans le cas de **2.Li**₂ la réaction se fait à température ambiante alors que la mauvaise solubilité de **3.Li**₂ oblige à chauffer la réaction pour obtenir une coordination du ligand sur le métal. Les deux complexes obtenus sont de structure similaire, le cœur de chacun des complexes étant un cycle à quatre chaînons plan Co_2C_2 . Néanmoins, la coordination de **3.Li**₂ se fait en gardant les atomes de chlore sur le métal suggérant un mauvais pouvoir coordinant des groupements phosphonates. Les calculs DFT indiquent que l'état le plus stable de **II.10** est l'état triplet mais aucune description plus précise de la liaison Co-Co n'a été obtenue. Des études de magnétisme (RPE, SQUID) devraient permettre d'obtenir les informations nécessaires à l'établissement de la nature de l'interaction entre les deux atomes de cobalt dans les deux complexes.

Des expériences d'oxydoréduction pourraient être menées sur II.10 et II.11. En particulier pour II.10, au vu la nature des orbitales frontières des changements drastiques de géométrie sont à prévoir. Une oxydation permettrait formellement d'enlever un électron de la plus haute SOMO. Cette orbitale étant de caractère globalement antiliant entre les deux atomes de cobalt, l'interaction Co-Co serait renforcée. Au contraire, dans le cas d'un processus de réduction,

l'électron ajouté se situerait dans une orbitale à caractère globalement antiliant. Dès lors, l'interaction Co-Co serait affaiblie (schéma 9).

Schéma 9 : Diagramme orbitalaire de II.10 après oxydation ou réduction.

Nous pourrions également envisager des réactions d'oxydoréductions par voie chimique. Par analogie avec les systèmes développés par le groupe de Chivers¹⁷, une oxydation du complexe **II.10** par le soufre élémentaire ou le sélénium pourrait conduire à des complexes de structures nouvelles (schéma 10).

Schéma 10 : Réactivité de II.10.

Une question fondamentale qui se pose est : pourquoi le dimère se forme-t-il préférentiellement au monomère ? Le développement d'une méthode permettant la synthèse d'un mono-carbène de cobalt serait d'un grand intérêt. Nous avons vu que l'utilisation du dianion $2.Li_2$ ne permettait pas d'obtenir ce mono carbène même en utilisant des précurseurs de cobalt possédant de bons ligands. L'utilisation de précurseurs tels que (PPh₃)Co(N(SiMe₃)₂)¹⁸ ou PyCo(N(SiMe₃)₂)¹⁹ en

¹⁷ T. Chivers, J. Konu, R. Thirumoorthi, *Dalton Trans.* **2012**, *41*, 4283-4295.

¹⁸ D. C. Bradley, M. B. Hursthouse, R. J. Smallwood, A. J. Welch, J. Chem. Soc., Chem. Commun. 1972, 872-873.

¹⁹ A. Panda, M. Stender, M. M. Olmstead, P. Klavins, P. P. Power, *Polyhedron* 2003, 22, 67-73.

combinaison du ligand neutre pourrait s'avérer efficace. On peut espérer que, dans ce cas, la déprotonation *in situ* du ligand neutre se fasse dans la sphère de coordination du métal, sans déplacer le groupement triphénylphosphine ou pyridine.

$$\begin{array}{c} H \quad H \\ Ph_{2}P \\ \vdots \\ S \\ S \\ \end{array} \begin{array}{c} Ph_{2} P \\ PPh_{2} \\ \hline Ph_{2}P \\ \hline$$

Schéma 11 : Voie de synthèse possible d'un carbène mononucléaire de cobalt(II).

Finalement, une extension à la synthèse de carbènes de fer est envisageable. Nous avons vu au chapitre 1, que l'utilisation de $2.Li_2$ ne permettait pas d'obtenir des résultats satisfaisants. En revanche, l'utilisation des réactions de transmétalations à permis d'obtenir un complexe de fer de structure analogue à II.10. De façon analogue à ce que nous avons proposé ci-dessus, l'utilisation de précurseurs de fer possédant des ligands fortement basiques^{20/21/22/23} pourrait permettre d'accéder aux carbènes voulus en empêchant les phénomènes redox parasites.

²⁰ M. B. Hursthouse, P. F. Rodesiler, J. Chem. Soc., Dalton Trans. 1972, 2100-2102.

²¹ M. M. Olmstead, P. P. Power, S. C. Shoner, *Inorg. Chem.* **1991**, *30*, 2547-2551.

²² J. S. Duncan, T. M. Nazif, A. K. Verma, S. C. Lee, *Inorg. Chem.* **2003**, *42*, 1211-1224.

²³ P.-H. Lin, N. C. Smythe, S. I. Gorelsky, S. Maguire, N. J. Henson, I. Korobkov, B. L. Scott, J. C. Gordon, R. T. Baker, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 15806-15809.

V. Bibliographie

- 1) M. Fang, N. D. Jones, R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, *Angew. Chem. Int. Ed.* **2006**, *45*, 3097-3101.
- M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652–1665.
- 3) A. Davison, D. L. Reger, Inorg. Chem. 1971, 10, 1967-1970.
- 4) A. Davison, E. L. Switkes, Inorg. Chem. 1971, 10, 837-842.
- 5) O. Siiman, Inorg. Chem. 1981, 20, 2285-2292.
- 6) C. Silvestru, R. Rösler, I. Haiduc, R. Cea-Olivares, G. Espinosa-Pérez, *Inorg. Chem.* 1995, 34, 3352-3354.
- 7) L. M. Gilby, B. Piggott, Polyhedron 1999, 18, 1077-1082.
- 8) D. Maganas, S. S. Staniland, A. Grigoropoulos, F. White, S. Parsons, N. Robertson, P. Kyritsisa, G. Pneumatikakis, *Dalton Trans.* **2006**, 2301-2315.
- D. Maganas, S. Sottini, P. Kyritsis, E. J. J. Groenen, F. Neese, *Inorg. Chem.* 2011, 50, 8741-8754.
- 10) T. W. McGaughy, B. M. Fung, Inorg. Chem. 1972, 11, 2728-2733.
- 11) R. S. Drago, J. I. Zink, R. M. Richman, W. D. Perry, J. Chem. Educ. 1974, 51, 371-376.
- 12) W.-P. Leung, C.-L. Wan, T. C. W. Mak, Organometallics 2010, 29, 1622-1628.
- 13) T. H. Siddall, J. Phys. Chem. 1966, 70, 2249-2256.
- 14) K. W. Henderson, A. R. Kennedy, D. J. MacDougall, D. Strachan, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* 2003, *59*, m49–m51.
- 15) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
- 16) N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 1992, 70, 560-571.
- 17) T. Chivers, J. Konu, R. Thirumoorthi, Dalton Trans. 2012, 41, 4283-4295.
- 18) D. C. Bradley, M. B. Hursthouse, R. J. Smallwood, A. J. Welch, J. Chem. Soc., Chem. Commun. 1972, 872-873.
- 19) A. Panda, M. Stender, M. M. Olmstead, P. Klavins, P. P. Power, Polyhedron 2003, 22, 67-73.
- 20) M. B. Hursthouse, P. F. Rodesiler, J. Chem. Soc., Dalton Trans. 1972, 2100-2102.
- 21) M. M. Olmstead, P. P. Power, S. C. Shoner, Inorg. Chem. 1991, 30, 2547-2551.
- 22) J. S. Duncan, T. M. Nazif, A. K. Verma, S. C. Lee, Inorg. Chem. 2003, 42, 1211-1224.
- 23) P.-H. Lin, N. C. Smythe, S. I. Gorelsky, S. Maguire, N. J. Henson, I. Korobkov, B. L. Scott, J. C. Gordon, R. T. Baker, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 15806-15809.

Chapitre 3

Synthèse de nouveaux dianions géminés

Chapitre 3 : Synthèse de nouveaux dianions géminés

I. Introduction

A l'heure actuelle, quatre dianions géminés stabilisés par deux groupements σ^4 -P sont utilisés. Le premier, **1.Li**₂ porte deux groupements iminophosphoranes^{1,2}, le deuxième **2.Li**₂ possède deux groupements sulfure de phosphine³, **3.Li**₂ est un dérivé bis-phosphonate⁴ et **4.Li**₂ est le premier exemple de dianion mixte⁵ (schéma 1).

Schéma 1: Dianions géminés possédant des groupements σ⁴-P.

La stabilisation de la charge au carbone central dépend beaucoup des substituants aux atomes de phosphore. En effet, l'accessibilité d'un dianion géminé est directement liée à la capacité qu'ont ces substituants à accepter le surplus de densité électronique du carbone central. Deuxièmement, les études de coordination menées jusque-là montrent que les substituants aux atomes de phosphore influencent également la réactivité des différents dianions. Différentes structures ont été obtenues pour les complexes carbéniques synthétisés en utilisant les dianions comme précurseurs.

A titre d'exemple de l'influence des substituants aux atomes de phosphore, la synthèse du dianion géminé (avec un métal du groupe 1) dérivé du ligand bis-phosphineborane **III.1** n'a pas encore été possible. Cependant, un dérivé du calcium dans lequel une double déprotonation du ligand neutre a eu lieu a été synthétisé par le groupe de Harder⁶ (schéma 2). Le dérivé monoanionique est, quant à lui, aisément accessible^{7,8}.

¹ C. M. Ong, D. W. Stephan, J. Am. Chem. Soc. **1999**, 121, 2939-2940.

² A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 1999, 38, 1483-1484.

³ T. Cantat, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Angew. Chem. Int. Ed. 2004, 43, 6382-6385.

⁴ T. Cantat, L. Ricard, P. Le Floch, N. Mézailles, *Organometallics* 2006, 25, 4965-4976.

⁵ J.-H. Chen, J. Guo, Y. Li, C.-W. So, *Organometallics* **2009**, 28, 4617–4620.

⁶ L. Orzechowski, G. Jansen, M. Lutz, S. Harder, *Dalton Trans.* **2009**, 2958-2964.

⁷ J. Langer, K. Wimmer, H. Görls, M. Westerhausen, *Dalton Trans.* **2009**, 2951-2957.

⁸ M. Blug, D. Grünstein, G. Alcaraz, S. Sabo-Etienne, X. F. Le Goff, P. Le Floch, N. Mézailles, *Chem. Commun.* 2009, 4432-4434.

Schéma 2 : Tentatives de synthèse de dianions géminés.

De même en 2012, Gessner a montré que la synthèse du dianion géminé possédant un substituant sulfure de phosphine et un substituant TMS n'était pas immédiate⁹ (composé III.2, schéma 2). Notre groupe a néanmoins pu obtenir une structure RX du dianion issu de III.2¹⁰ ce qui prouve son existence même si son isolation n'a pas été possible. Nous nous sommes alors demandé s'il était possible de combiner les différentes fonctions connues pour stabiliser les dianions géminés au sein d'un même ligand. Cette stratégie a été utilisée avec succès pour la synthèse de 4.Li₂ et permettrait d'obtenir une large gamme de dianions géminés et ainsi d'offrir la possibilité de choisir le ligand le mieux adapté pour conférer à un métal les propriétés voulues.

II. Synthèse des dianions

1. Ligand mixte oxyde de phosphine/sulfure de phosphine

Comme notre laboratoire possède une connaissance aboutie du dianion bis-sulfure de phosphine, nous avons commencé notre étude par la synthèse d'un dianion géminé possédant d'un côté un groupement oxyde de phosphine, de l'autre un groupement sulfure de phosphine. La fonction sulfure de phosphine est connue pour stabiliser efficacement une charge au carbone central mais aucune information n'est disponible sur la fonction oxyde de phosphine. Les synthèses de **2.Li**₂ et **3.Li**₂ laissent à penser que le dianion désiré est accessible.

⁹ V. H. Gessner, Organometallics 2011, 30, 4228-4231.

¹⁰ S. Carenco, résultats non publiés

Le ligand a été synthétisé en trois étapes en un pot (schéma 3)^{11,12}. La première est la réaction d'un équivalent de méthyllithium avec un équivalent de sulfure de triphénylphosphine. Cette réaction conduit à la formation de l'anion $Ph_2(S)PCH_2Li$ (**III.3**, schéma 3) qui est ensuite piégé par un équivalent de chloro-diphénylphosphine pour conduire au composé mixte sulfure de phosphine/phosphine **III.4**. Celui-ci est ensuite oxydé avec un équivalent d'eau oxygénée pour conduire au composé voulu **III.5** avec un rendement global de 74 %. L'utilisation d'un excès d'H₂O₂ conduit à une conversion du sulfure de phosphine en oxyde de phosphine^{13,14}.

Schéma 3 : Synthèse du ligand neutre III.5 suivant la procédure de Grim.

III.5 est caractérisé en RMN ³¹P par un système AX à $\delta_{p} = 35,6$ et 23,1 ppm (${}^{2}J_{p,p} = 18$ Hz). Le proton central possède un déplacement chimique $\delta_{H} = 3,85$ ppm (dd, ${}^{2}J_{p,H} = 14,2$ Hz, ${}^{2}J_{p,H} = 12,5$ Hz) dans le spectre RMN ¹H et le carbone correspondant résonne à $\delta_{C} = 36,0$ ppm (dd, ${}^{1}J_{p,C} = 44,9$ Hz, ${}^{1}J_{P,C} = 58,4$ Hz). Afin de mesurer les évolutions géométriques de III.5 lors des déprotonation successives (qui sont directement corrélées à la stabilisation de la charge au carbone central), l'obtention d'une structure RX (non connue à ce jour) était déterminante. Des cristaux analysables par diffraction des RX ont été obtenus par évaporation lente d'une solution concentrée de III.5 dans le dichlorométhane. Une représentation de III.5 est donnée figure 1. Les distances mesurées dans III.5 sont classiques.

¹² S. O. Grim, E. D. Walton, *Inorg. Chem.* **1990**, *19*, 1982-1987.

¹¹ S. O. Grim, J. D. Mitchell, Synth. React. Inorg. Met. Org. Chem. 1974, 4, 221-230.

¹³ N. J. Death, K. Ellies, D. J. H. Smith, S. Tripett, *Chem. Commun.* **1971**, 714.

Figure 1 : Vue ORTEP (ellipsoïdes à 50% de probabilité) de **III.5**. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,819(2) ; C(1)-P(2) 1,818(2) ; P(1)-S(1) 1,949(1) ; P(2)-O(1) 1,495(1) ; P(1)-C(1)-P(2) 115,7(1).

Nous avons alors étudié les déprotonations successives de **III.5** (schéma 4). La première déprotonation se fait très facilement par ajout d'un équivalent de butyllithium dans le toluène. La solution se colore initialement en jaune et après 15 minutes, un solide jaune précipite. Aucun signal n'est alors visible en RMN ³¹P. Ce solide isolé par filtration et séché. Le spectre RMN ³¹P dans la pyridine montre la présence d'un nouveau système AB à $\delta_p = 35,3$ et 33,8 ppm (${}^2J_{p-p} = 24$ Hz) qui confirme la conversion totale de **III.5** en une seule nouvelle espèce. Le spectre RMN ¹H révèle la présence d'un unique proton central à $\delta_H = 2,30$ ppm (doublet large) associé à un carbone localisé à $\delta_C = 22,3$ ppm dans le spectre RMN ¹³C (dd, ${}^1J_{P-C} = 105$ Hz, ${}^1J_{P-C} = 135$ Hz). Ces données spectroscopiques permettent d'identifier ce nouveau produit comme le monoanion **III.5Li**.

Schéma 4 : Synthèse du monanion et du dianion dérivés de III.5.

La confirmation de la structure de **III.5Li** a été donnée par analyse de diffraction des RX. Des monocristaux ont été préparés par diffusion lente de pentane dans une solution de **III.5Li** dans la pyridine. Une représentation de **III.5Li** est donnée figure 2.

Figure 2 : Vue ORTEP (ellipsoïdes à 50% de probabilité) de **III.5Li**. Les atomes d'hydrogène (sauf H(1)) et les atomes de carbones sur les groupements phényles (sauf carbones ipso) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,721(3) ; C(1)-P(2) 1,703(3) ; P(1)-S(1) 1,994(1) ; P(2)-O(1) 1,524(2) ; O(1)-Li(1) 1,951(5) ; O(1)-Li(2) 1,922(5) ; C(26)-P(3) 1,721(3) ; C(26)-P(4) 1,702(3) ; P(3)-S(2) 1,992(1) ; P(4)-O(2) 1,523(2) ; O(2)-Li(1) 1,910(5) ; O(2)-Li(2) 1,922(5).

III.5Li cristallise sous forme dimérique dans laquelle chaque ligand ponte deux atomes de lithium par ses atomes de soufre et d'oxygène. La sphère de coordination des atomes de lithium est complétée par une molécule de pyridine. Par rapport au dérivé neutre **III.5**, les liaisons P-C dans **III.5Li** sont plus courtes (1,721(3) Å et 1,703(3) Å contre 1,819(2) Å et 1,818(2) Å). Au contraire, la liaison P-S et la liaison P-O sont rallongées dans **III.5Li** (1,994(1) Å contre 1,949(1) Å pour la liaison P-S et 1,542(2) Å contre 1,495(1) Å pour la liaison P-O). Ces changements de longueurs de liaison ont déjà été observés pour tous les autres types de monoanions. L'étude théorique développée dans la troisième partie de ce chapitre rationalisera ces modifications.

La seconde déprotonation de III.5Li pour former III.5Li₂ a été étudiée. De nombreuses combinaisons de bases (méthyllithium, butyllithium, *t*-butyllithium), solvants (toluène, DME, éther) et additifs (TMEDA) ont été employées. Toutes permettent de former le dianion voulu mais son isolation n'était pas toujours possible. La réaction optimale a lieu en utilisant deux équivalents de butyllithium et deux équivalents de TMEDA dans l'éther. La solution prend rapidement une coloration orange et après 1h d'agitation, un précipité jaune se forme. Celui-ci est isolé est traité. Il se décompose très rapidement à l'air (décoloration) mais est stable sous atmosphère inerte. Il est très peu soluble dans les solvants dans lesquels il ne se décompose pas (toluène, éther, DME) et n'a donc pas pu être entièrement caractérisé par RMN multinoyaux. La

première preuve de la formation de III.5Li₂ nous a été donnée par réaction avec D₂O. Un excès de D₂O ajouté à une suspension de III.5Li₂ dans le toluène conduit en RMN ³¹P à la conversion totale de III.5Li₂ en III.5D₂ (schéma 5). L'absence totale du signal correspondant au proton central de III.5 dans le spectre RMN ¹H confirme la double deutération du carbone central de III.5. De plus, le carbone central localisé à $\delta_{\rm C} = 36,0$ ppm résonne sous la forme d'un multiplet (et non plus d'un triplet).

Schéma 5 : Double deutération de III.5Li2.

La structure de III.5Li₂ a finalement été déterminée par diffraction des RX. Des monocristaux ont été obtenus en stockant une solution saturée de III.5Li₂ dans le benzène à température ambiante en une nuit. Une représentation de III.5Li₂ est donnée figure 3.

Figure 3 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **III.5Li**₂. Les atomes d'hydrogènes et les carbones des substituants phényles (sauf carbones ipso) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,671(2) ; C(1)-P(2) 1,681(2) ; P(1)-O(1) 1,535(1) ; P(2)-S(1) 2,0418(6) ; C(1)-Li(1) 2,189(3) ; S(1)-Li(1) 2,599(3) ; S(1)-Li(2) 2,462(3) ; Li(2)-N(1) 2,089(3) ; Li(2)-N(2) 2,113(3) ; P(1)-C(1)-P(2) 126,5(1).

Comme la plupart des dianions, $III.5Li_2$ cristallise sous forme dimérique. Chaque atome de carbone est lié aux deux atomes de lithium centraux dont la sphère de coordination est complétée par les atomes de soufre et d'oxygène des substituants aux atomes de phosphore. Deux atomes

de lithium ne sont pas directement liés aux carbones centraux et sont coordinés chacun à une molécule de TMEDA. Les distances P-C sont encore raccourcies par rapport à III.5Li (1,671(2) Å et 1,681(2) Å contre 1,721(3) Å et 1,703(3) Å dans III.5Li). Par rapport à III.5 elles sont plus courtes d'environ 0,15 Å. L'effet inverse est observé pour les liaisons P-S et P-O qui, elles, se rallongent au fur et à mesure des déprotonations. Le tableau 1 résume l'évolution des longueurs de liaisons entre III.5, III.5Li et III.5Li₂.

Liaison	Neutre (N)	Monoanion (M)	Dianion (D)	Ecart N/M	Ecart D/M	Ecart D/N
C-P(O)	1,818(2)	1,703(3)	1,671(2)	0,12	0,032	0,15
C-P(S)	1,819(2)	1,721(3)	1,681(2)	0 ,098	0,040	0,13
P-O	1,495(1)	1,524(2)	1,535(1)	0,029	0,011	0,040
P-S	1,949(1)	1,993(1)	2,0418(6)	0,044	0,049	0,093

Tableau 1 : Evolution des longueurs de liaisons avec les déprotonations successives de III.5.

Comme tous les autres dianions, $III.5Li_2$ ne peut être manipulé que dans certains solvants. Par exemple, il réagit quantitativement avec le THF et la pyridine pour conduire au composé monodéprotoné III.5Li.

On peut noter dans III.5Li₂ une très grande différence de longueur des liaisons P-X (X =O, S) mesurée à environ 0,5 Å. Ceci peut avoir une grande influence sur la chimie de coordination de III.5Li₂. En effet, dans les complexes carbéniques décrits jusque-là, la liaison métal-carbone est comprise entre 2,0 Å et 2,3 Å ce qui est du même ordre de grandeur qu'une liaison P-S. Ainsi, en chimie de coordination, le complexe carbénique obtenu comporte un métallacycle à quatre chaînons peu contraint. En revanche, la petitesse de la liaison P-O entraînerait la formation d'un cycle à quatre chaînons beaucoup plus tendu et donc potentiellement plus réactif (schéma 6).

Schéma 6 : Représentation simplifiée de la coordination de III5.Li₂ sur un centre métallique.

2. Ligand bis-oxyde de phosphine

Le dianion bis-phosphonate $3.Li_2$ a été synthétisé par notre groupe et utilisé en chimie de coordination et nous venons de voir que la combinaison PS/PO permet de stabiliser un dianion. Il était alors naturel de s'intéresser au bis-oxyde de la dppm (III.6). Celui-ci est préparé très simplement par oxydation de la dppm par deux équivalents d'H₂O₂ dans le dichlorométhane. La

simple déprotonation de **III.6** a déjà été publiée en 1970 par Issleib et Abicht¹⁵ avec l'utilisation de butyllithium comme base forte.

Nous avons donc repris la méthode d'Issleib et Abicht et synthétisé le monoanion **III.6Li** par réaction de **III.6** avec un équivalent de butyllithium dans le THF (schéma 7). En 15 minutes, la réaction est totale et conduit à l'apparition d'un singulet à $\delta_P = 36$ ppm dans le spectre RMN ³¹P. Après évaporation des solvants, **III.6Li** est isolé sous la forme d'un solide jaune. Le spectre RMN ¹H de **III.6Li** montre la présence d'un proton à $\delta_H = 1,76$ ppm (t, ${}^2J_{P-H} = 3$ Hz), dans la zone habituellement observée pour les espèces monoanioniques. Dans le produit neutre, ce proton sort à champ nettement plus bas ($\delta_H = 3,83$ ppm). De même, le spectre RMN ¹³C de **III.6Li** montre un carbone à $\delta_C = 19$ ppm (bs). La confirmation de la déprotonation de **III.6** nous a été donnée par analyse de diffraction des RX de monocristaux obtenus par diffusion lente de pentane dans une solution concentrée de **III.6Li** dans le THF. Une représentation en est donné figure 4. Cette structure est similaire à celle obtenue précédemment par le groupe d'Henderson¹⁶ mais l'ensemble des données RX est légèrement différent. Le dérivé potassique a également été obtenu (voir partie expérimentale et annexes).

Figure 4 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **III.6Li**. Les atomes d'hydrogènes (sauf H1 et H1') et les molécules de solvant ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,720(3) ; C(1)-P(2) 1,707(2) ; P(1)-O(1) 1,509(2) ; P(2)-O(2) 1,517(2) ; O(1)-Li(1) 1,916(4) ; O(2)-Li(1) 1,989(5) ; P(1)-C(1)-P(2) 121,5(1).

III.6Li est un dimère à l'état solide. Chaque atome de lithium est coordiné par trois atomes d'oxygène de deux ligands et par une molécule de THF (non représentée sur la figure 4). Comme

¹⁵ K. Issleib, H. P. Abicht, J. Prakt. Chem. 1970, 456-465.

¹⁶ R. Nassar, B. C. Noll, K. W. Henderson, *Polyhedron* **2004**, *23*, 2499-2506.

dans le cas de **III.5**, les liaisons sont profondément modifiées suite à la déprotonation. Ainsi les liaisons P-C sont plus courtes que dans l'espèce neutre¹⁷ (1,832 Å et 1,816 Å dans **III.6** contre 1,720(3) Å et 1,707(2) Å dans **III.6Li**) et les deux liaisons P-O plus longues (1,509(2) Å 1,517(2) Å pour **III.6Li** contre 1,495 Å et 1,500 Å pour **III.6**).

Schéma 7 : Déprotonations successives de III.6.

Nous avons ensuite tenté la double déprotonation de **III.6** avec deux équivalents de butyllithium, par analogie avec **III.5**. Dans le toluène ou dans l'éther, cette déprotonation ne se fait pas proprement et des produits de décomposition non identifiés sont observés. En revanche, si cette réaction est faite dans le DME un précipité blanc se forme (schéma 7). Ce produit est isolé avec un bon rendement (80 %). Il est insoluble dans les solvants ordinaires et n'a donc pas pu être caractérisé par RMN. Toutefois, la réaction de ce produit avec un excès de D₂O conduit au produit neutre deutéré deux fois au niveau du carbone central comme le confirment les spectres RMN ¹H et ¹³C (pas de signal pour le spectre ¹H et un multiplet très couplé pour le carbone central dans le spectre ¹³C). Ceci prouve bien la double déprotonation de **III.6** en **III.6Li₂**. Une structure RX a été obtenue pour **III.6Li₂** à partir de cristaux obtenus spontanément dans le DME. Les données ne sont pas d'excellente qualité mais les tentatives faites pour obtenir de meilleures données n'ont pas été couronnées de succès. Différentes représentations de **III.6Li₂** sont données dans les figures 5 et 6.

¹⁷ M. Y. Antipin, Y. T. Struchkov, S. A. Pisareva, T. Ya. Medved, M. I. Kabachnik, Zh. Strukt. Khim. (Russ.) 1980, 21, 101-105.

Figure 5: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **III.6Li**₂. Les atomes d'hydrogènes et les carbones des noyaux aromatiques (sauf carbones ipso) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : P(1)-C(1) 1,664(8); P(2)-C(1) 1,681(7); P(1)-O(1) 1,521(5); P(2)-O(2) 1,534(5); C(1)-Li(2) 2,23(1); C(1)-Li(3) 2,20(1); O(1)-Li(1) 1,84(1); O(2)-Li(3) 2,34(1); O(2)-Li(4) 1,93(1); O(2)-Li(5) 1,89(1); C(26)-P(3) 1,661(7); C(26)-P(4) 1,677(7); P(3)-O(3) 1,531(5); P(4)-O(4) 1,533(5); O(3)-Li(1) 1,81(1); O(4)-Li(3) 1,92(1); O(4)-Li(4) 2,48(1); O(4)-Li(6) 1,91(1).

Figure 6 : Vues ORTEP de III.6Li₂. Seuls les atomes de lithium et d'oxygène sont explicités (gauche). Seuls les ligands sont explicités (droite).

A l'état solide, **III.6Li**₂ est tétramérique. Le centre de la structure est composé d'un cube Li₄O₄, les quatre atomes de lithium restants sont groupés deux à deux de chaque côté de ce cube et deux molécules de DME viennent fermer l'édifice. En moyenne, les distances P-C sont plus courtes dans **III.6Li**₂ que dans **III.6Li** (1,67 Å (moy.) contre 1,720(3) Å et 1,701(2) Å). Comme observé jusque-là, les distances P-O sont, elles, légèrement plus longues (1,53 Å (moy.) dans **III.6Li**₂ contre 1,51 Å (moy.) dans **III.6Li**). L'évolution des distances est donnée dans le tableau 2. L'état d'agrégation particulier de **III.6Li**₂ explique sans doute son insolubilité une fois formé.

Liaison	Neutre (N)	Monoanion (M)	Dianion (D)	Ecart N/M	Ecart D/M	Ecart D/N
C-P(O)	1,82 (moy.)	1,71 (moy.)	1,66 (moy.)	0,11	0,04	0,16
P-O	1,50 (moy.)	1,51 (moy.)	1,53 (moy.)	0,01	0,02	0,03

Tableau 2 : Evolution des longueurs de liaisons avec les déprotonations successives de III.6.

3. Ligand mixte sulfure de phosphine/phosphineborane

En collaboration avec le groupe du Prof. So à la Nanyang Technical University de Singapour, nous avons entamé conjointement l'étude de deux nouveaux ligands possédant d'un côté une fonction phosphine-borane et de l'autre soit un sulfure de phosphine, soit un oxyde de phosphine (III.7 et III.8, schéma 8). Les fonctions sulfure de phosphine et oxyde de phosphine ont déjà montré leur grande efficacité dans la stabilisation de la charge centrale au carbone. Cependant, le groupement phosphine-borane est moins efficace, comme en témoigne la synthèse pour le moment non réussie du dianion dérivé du ligand III.2.

Schéma 8 : Ligands développés en partenariat avec la Nanyang Technical University.

De plus, le groupement BH₃ est connu pour être un moins bon ligand des métaux de transition que les atomes de soufre ou d'oxygène. L'utilisation d'un tel ligand a deux objectifs : stabiliser au minimum la charge au carbone central pour améliorer l'interaction métal-carbone par favorisation du transfert électronique d'une part, et intégrer un groupement peu coordinant afin de faciliter la libération de sites vacants sur le métal d'autre part. Nous étudierons dans cette partie le ligand **III.7**.

La même stratégie qui a été utilisée pour les dianions présentés précédemment est transposée ici. La synthèse du ligand neutre III.7 la même que celle employée pour III.5. L'utilisation de BH₃.SMe₂ permet d'obtenir la phosphineborane (H₂O₂ dans le cas de III.5). Après traitements, III.7 est obtenu avec un rendement correct (50 % sur les trois étapes, schéma 9). III.7 est caractérisé par un système AX dans le spectre RMN ³¹P (d à $\delta_P = 34,4$ ppm, ² $J_{P-P} = 9$ Hz et bs à $\delta_P = 14,3$ ppm). Le signal à $\delta_P = 14,3$ ppm est caractéristique d'un atome de phosphore coordiné à un atome de bore. Dans le spectre RMN ¹H, le proton central résonne à $\delta_H = 3,86$ ppm (dd, ² $J_{P-H} = 13$ Hz et ² $J_{P-H} = 10$ Hz) et le carbone correspondant est trouvé à $\delta_C = 29,6$ ppm (dd, ¹ $J_{P-C} = 26$ Hz et ¹ $J_{P-C} = 47$ Hz).

Schéma 9 : Synthèse de III.7.

Tous ces déplacements sont cohérents avec ceux habituellement observés pour les autres ligands similaires étudiés jusque-là. Une structure RX a pu être déterminée pour III.7. Les monocristaux ont été obtenus par évaporation lente d'une solution concentrée de III.7 dans le dichlorométhane. Une représentation de III.7 est donnée figure 7. Dans la structure de III.7, les atomes de soufre et les groupes BH_3 sont statistiquement répartis sur les deux positions. On peut noter pour III.7 que les longueurs des liaisons P-S et P-B sont très proches (1,962(2) Å et 1,962(2) Å pour les liaisons P-S contre 1,93(2) Å et 1,95(2) Å pour les liaisons P-B). Les longueurs de liaison sont par ailleurs parfaitement standard.

Figure 7: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **III.7**. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,839(2) ; C(1)-P(2) 1,830(2) ; P(1)-S(1) 1,963(2) ; P(1)-B(2) 1,93(2) ; P(2)-S(2) 1,963(2) ; P(2)-B(1) 1,95(2) ; P(1)-C(1)-P(2) 117,8(1).

Nous avons ensuite étudié la première déprotonation de **III.7**. Pour ce faire, un équivalent de butyllithium a été ajouté à une solution de **III.7** dans le THF à -78°C. La solution se colore instantanément en jaune et le spectre RMN ³¹P indique que la réaction est totale après 15 minutes d'agitation à température ambiante. Le spectre RMN ³¹P montre la disparition du produit de départ au profit d'un nouveau produit caractérisé par un système ABX à $\delta_p = 40,1$ ppm (d, ${}^2J_{P-P} = 40$ Hz) et $\delta_p = 8,7$ ppm (bs). Après évaporation des solvants, ce nouveau produit est obtenu sous la forme d'un solide jaune. Il a ensuite été caractérisé par RMN multinoyaux. Le spectre RMN ¹H montre la présence d'un proton à $\delta_H = 1,15$ ppm (dd, ${}^2J_{P-H} = 4$ Hz et ${}^2J_{P-H} = 6$ Hz) identifié comme le proton central qui résonne à champ plus fort que dans le ligand neutre ($\delta_H = 3,86$ ppm). Le carbone correspondant est lui aussi déplacé à champ plus fort ($\delta_C = 13,6$ ppm, dd, ${}^1J_{P-C} = 78$ Hz et ${}^1J_{P-C} = 112$ Hz). Le nouveau produit ainsi formé a été identifié comme le monoanion **III.7Li** (schéma 10). Une structure RX a été obtenue pour **III.7Li** qui confirme la

monodéprotonation. Des monocristaux ont été obtenus par diffusion lente de pentane dans une solution concentrée de **III.7Li** dans le THF. Une représentation de **III.7Li** est donnée figure 8.

Figure 8 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **III.7Li**. Les atomes d'hydrogène (sauf sur le groupement BH3) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,699(3) ; C(1)-P(2) 1,722(3) ; P(1)-S(1) 2,0323(8) ; P(2)-B(1) 1,933(3) ; S(1)-Li(1) 2,478(5) ; S(1)-Li(2) 2,466(5) ; C(26)-P(3) 1,708(2) ; C(26)-P(4) 1,723(2) ; P(3)-S(2) 2,0126(8) ; P(4)-B(2) 1,934(3) ; S(2)-Li(1) 2,505(5) ; S(2)-Li(2) 2,434(5) ; P(1)-C(1)-P(2) 126,4 (2) ; P(3)-C(26)-P(4) 129,0(2).

Là encore, **III.7Li** cristallise sous forme d'un dimère, les atomes de lithium ne sont pas directement liés aux carbones centraux. Ceux-ci sont stabilisés par les deux atomes de soufre de chaque ligand, par liaison hydrogène avec un groupement BH₃, et par une molécule de solvant (THF). Les données ne permettent pas d'affiner la nature de la liaison Li-H. Les liaisons P-S sont plus longues dans **III.7Li** (2,0323(8) Å et 2,0126(8) Å) que dans **III.7** (1,962(2) Å et 1,962(2) Å). On peut noter dans **III.7Li** de grandes disparités dans les distances P-C. Celles du côté du groupement Ph₂P(S) sont notablement plus courtes que celles situées du côté Ph₂P(BH₃) (1,699(3) Å et 1,708(2) Å contre 1,722(3) Å et 1,723(2) Å). Ceci semble indiquer un transfert électronique moins important vers les groupements phosphine-borane (dans les $\sigma^*(B-H)$). Ceci est confirmé par la stabilité de la longueur de liaison P-B qui demeure presque identique dans **III.7Li** alors que la liaison P-S s'allonge (2,0323(8) Å et 2,0126(8) Å contre 1,963(2) Å). Les groupements P-BH₃ semblent donc être de moins bons accepteurs de densité électronique que les groupements P-S.

Schéma 10 : Déprotonation successives de III.7.

Poursuivant notre démarche, la double déprotonation de **III.7** a été tentée. L'utilisation de TMEDA n'est pas compatible avec notre ligand : la réaction parasite de déprotection de la fonction phosphine-borane par l'amine est observée^{18,19,20}. Dans le toluène, deux équivalents de butyllithium sont ajoutés à une suspension de **III.7** à -78°C (schéma 9). Un spectre RMN ³¹P effectué après 1h d'agitation montre la conversion de **III.7** en **III.7Li**. Après 2h d'agitation à température ambiante, un précipité jaune pâle s'est formé concomitamment avec la disparition de tout signal en RMN ³¹P. Le précipité a été isolé et lavé. Il a été caractérisé par spectroscopie RMN multinoyaux dans l'éther deutéré. Dans le spectre RMN ³¹P, **III.7Li**₂ est caractérisé par deux signaux à $\delta_p = 23,5$ ppm (d, ${}^2J_{p,p} = 8$ Hz) et 5,8 ppm (bs). Le déplacement du phosphore PS est similaire à celui du dianion **2.Li**₂ ($\delta_p = 23$ ppm). Le spectre RMN ¹H ne montre aucun signal autre que ceux de protons aromatiques. Outre la confirmation de la double déprotonation du ligand, cela indique l'absence de molécule de co-solvant.

Ces données confirment la double déprotonation de III.7 pour former III.7Li₂. Il est à noter que contrairement à beaucoup d'autres dianions, III.7Li₂ n'incorpore aucune molécule de solvant dans sa structure (confirmé par analyse élémentaire). A l'état solide, III.7Li₂ est donc très certainement un oligomère ou un cluster. Le dianion est également soluble dans le DME et des cristaux analysables par diffraction des RX ont été obtenus par diffusion lente d'hexanes dans une solution concentrée de III.7Li₂ dans le DME. Une représentation de III.7Li₂ est donnée figure 9.

¹⁸ T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto, K. Sato, J. Am. Chem. Soc. 1990, 112, 5244-5252.

¹⁹ L. McKinstry, T. Livinghouse, *Tetrahedron* **1995**, *51*, 7655-7666.

²⁰ B. Wolfe, T. Livinghouse, J. Am. Chem. Soc. 1998, 120, 5116-5117.

Figure 9 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **III.7Li**₂. Les atomes d'hydrogène (sauf sur le groupement BH3) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,699(3) ; C(1)-P(2) 1,701(3) ; P(1)-S(1) 2.033(1) ; P(2)-B(1) 1,943(3) ; C(1)-Li(1) 2,225(6) ; C(1)-Li(2) 2,162(6) ; P(1)-C(1)-P(2) 126,4 (2).

III.7Li₂ cristallise sous la forme d'un monomère. Les deux atomes de lithium sont liés au carbone central et chacune des sphères de coordination est complétée par une molécule de DME. La géométrie au carbone central est tétraédrique distordue (angles allant de 85,9(2)° à 136,5(2)°). Les liaisons P-C sont maintenant de longueur homogène (1,699(3) Å et 1,701(3) Å). La liaison P-S n'est pas significativement rallongée par rapport au monoanion (2,033(1) Å dans **III.7Li**₂ contre 2,032 Å (moy.) dans **III.7Li**). En effet, dans le monoanion **III.7Li**, la charge négative est stabilisée presque exclusivement par le groupement $Ph_2P(S)$ et la liaison P-S est déjà considérablement rallongée. Dès lors dans le dianion **III.7Li**₂, le transfert électronique doit se faire *via* le groupement P-B. Mais de façon étonnante la liaison P-B demeure encore une fois inchangée. Seul le raccourcissement de la liaison C-P(B) (1,701(3) Å dans **III.7Li**₂ contre 1,722 Å (moy.) dans **III.7Li**) semble indiquer un certain transfert électronique vers les liaisons P-C_{phényle}. L'évolution des paramètres structuraux de **III.7** est donnée dans le tableau 3.

Liaison	Neutre (N)	Monoanion (M)	Dianion (D)	Ecart N/M	Ecart D/M	Ecart D/N
C-P(S)	1,839(2)	1,699(3)	1,699(2)	0,14	0,00	0,14
C-P(B)	1,830(2)	1,722(3)	1,701(2)	0 ,11	0,021	0,13
P-S	1,963(2)	2,023 (moy.)	2,033(1)	0,060	0,010	0,070
P-B	1,94 (moy.)	1,934 (moy.)	1,943(3)	0,006	0,009	0,003

Tableau 3 : Evolution des longueurs de liaisons avec les déprotonations successives de III.7.
III. Etude théorique

Afin de rationaliser les changements observés dans les longueurs de liaison pour les différents dianions et de comparer la stabilisation de la charge négative au carbone central entre les différents dianions, des calculs DFT ont été menés. Les calculs ont été effectués à l'aide du programme GAUSSIAN 03. La base $6-31+G^*$ a été utilisée pour le carbone central et les atomes qui y sont liés (P, Li) ainsi que pour les hétéroatomes au phosphore (S, O, ou B). La base 6-31G a été utilisée pour le reste de la molécule sauf dans le cas de **C** où les atomes d'hydrogène du groupement BH₃ ont été traités en $6-311++G^{**}$. Toutes les structures ont été optimisées comme minima sur la surface d'énergie potentielle. Bien que chaque composé ait une structure différente, un modèle commun a été choisi pour représenter chacun d'eux afin d'obtenir des résultats comparables. Dans ce modèle, chaque monoanion ou dianion est traité comme un monomère. Pour les monoanions, deux structures ont été optimisées : une première dans laquelle l'atome de lithium est coordiné au carbone central et une deuxième dans laquelle l'atome de lithium ne l'est pas (schéma 11). La deuxième structure est la plus basse en énergie pour toutes les espèces monoanioniques et a été utilisée par la suite.

Schéma 11 : Modèles utilisés pour l'étude théorique.

Dans le cas des dianions, les deux atomes de lithium sont liés au carbone central et leurs sphères de coordination sont complétées par deux molécules de solvant (diméthyle éther). Les modèles utilisés seront notés **A**, **B** et **C** pour les ligands neutres, **A-CLi** pour les monoanions et **A-CLi**₂ pour les dianions. La figure 10 représente les structures optimisées pour **C**, **CLi** et **CLi**₂.

Figure 10 : Vues des structures optimisées de C (haut-gauche), CLi (haut-droite) et CLi₂ (bas), les atomes d'hydrogènes (sauf sur les groupements BH_3 et le carbone central) ont été omis par souci de clarté.

Comme on peut le voir dans le tableau 4, les paramètres structuraux calculés pour les différents dianions sont en très bon accord avec les données RX ce qui légitime l'utilisation de nos modèles. En particulier, le raccourcissement des liaisons P-C et l'allongement des liaisons P-X (X = S, O, B) sont bien reproduits.

C1 .	2	C	.1 .	1		1.	•		•	1
Chapitre	Ĵ.	: 5	vnthese	de	nouveaux	dia	mons	gen	าเท	es
S	~		J					8		

Liaison	DFT	RX	Δ	DFT	RX	Δ	DFT	RX	Δ
		III.5			III.5Li			III.5Li ₂	
Ps-C	1,86	1,82	0,04	1,73	1,72	0,01	1,70	1,68	0,02
Po-C	1,85	1,82	0,03	1,73	1,70	0,03	1,70	1,67	0,03
P-S	1,97	1,95	0,02	2,01	1,99	0,02	2,06	2,04	0,02
P-O	1,51	1,50	0,01	1,54	1,52	0,02	1,55	1,54	0,01
		III.6			III.6Li			III.6Li ₂	
Po-C	1,85	1,83	0,02	1,74	1,72	0,02	1,68	1,67	0,01
Po-C	1,84	1,82	0,02	1,74	1,71	0,03	1,69	(moy.)	0,02
P-O	1,50	1,50	0,00	1,54	1,51	0,03	1,55	1,53	0,02
P-O	1,50	1,50	0,00	1,54	1,52	0,02	1,56	(moy.)	0,03
		III.7			III.7Li			III.7Li ₂	
Ps-C	1,86	1,84	0,02	1,72	1,70	0,02	1,71	1,70	0,01
P _B -C	1,85	1,83	0,02	1,74	1,72	0,02	1,73	1,70	0,03
P-S	1,96	1,96	0,00	2,03	2,03	0,00	2,06	2,03	0,03
P-B	1,93	1,93	0,00	1,94	1,93	0,01	1,95	1,94	0,01

Tableau 4 : Comparaison des distances de liaison entre les modèles théoriques et les données RX.

Afin d'étudier en détail l'effet de chaque substituant sur la stabilisation des charges négatives aux carbones centraux des dianions, une analyse NBO a été menée sur chaque modèle. Les données significatives (charges NBO, indices de Wiberg, nature des paires libres au carbone) sont rassemblées dans les tableaux 5 à 7.

				Charges NBO				
	Х	Y	qc	qu	q P(X)	q p(Y)	qx	qY
Α	S	0	-1,22	-	1,37	2,00	-0,59	-1,10
ALi	S	0	-1,47	0,87	1,44	1,99	-0,72	-1,22
ALi ₂	S	0	-1,79	0,88 ; 0,86	1,40	1,95	-0,81	-1,23
В	0	0	-1,24	-	2,00	2,01	-1,09	-1,09
BLi	0	0	-1,48	0,90	1,99	1,98	-1,22	-1,21
BLi ₂	0	0	-1,80	0,89 ; 0,88	1,93	1,94	-1,25	-1,24
С	S	В	-1,16	-	1,37	1,40	-0,55	-0,70
CLi	S	В	-1,41	0,86	1,45	1,42	-0,76	-0,76
CLi ₂	S	В	-1,76	0,87 ; 0,86	1,41	1,35	-0,80	-0,70

 Tableau 5 : Charges NBO significatives pour les différents modèles.

Indices de Wiberg										
	Х	Y	nC-Px	nC-P _Y	nP-X	nP-Y	nPx-C	nP _Y -C	nC-Li	
Α	S	0	0,83	0,81	1,40	1,19	0,85 ; 0,83	0,83 ; 0,82	-	
ALi	S	0	1,05	1,05	1,24	1,01	0,81 ; 0,80	0,82 ; 0,79	-	
ALi ₂	S	0	1,22	1,20	1,11	0,98	0,80 ; 0,78	0,76 ; 0,75	0,038 ; 0,047	
В	0	0	0,81	0,80	1,22	1,22	0,82 ; 0,82	0,83 ; 0,81	-	
BLi	0	0	1,04	1,05	1,02	1,03	0,81 ; 0,79	0,82 ; 0,80	-	
BLi ₂	0	0	1,23	1,23	0,97	0,96	0,75 ; 0,75	0,77 ; 0,76	0,047 ; 0,034	
С	S	В	0.81	0.84	1.44	0.99	0.83 ; 0.84	0.90 ; 0.88	-	
CLi	S	В	1,08	1,08	1,18	0,97	0,84 ; 0,80	0,86 ; 0,85	-	
CLi ₂	S	В	1,21	1,22	1,12	0,96	0,80 ; 0,77	0,80 ; 0,80	0,052 ; 0,033	

Tableau 6 : Indices de Wiberg des liaisons significatives pour les différents modèles.

	LF	21	LP2				
	hybridation	occupation	hybridation	occupation			
ALi	p ^{1,00}	1,67					
ALi ₂	sp ^{3,10}	1,70	P ^{1,00}	1,64			
BLi	sp ^{19,82}	1,70					
BLi ₂	sp ^{3,73}	1,69	P ^{1,00}	1,62			
CLi	p ^{1,00}	1,66					
CLi ₂	sp ^{2,74}	1,73	P ^{1,00}	1,63			

Tableau 7 : Hybridation et population des paires libres au carbone central dans les différents modèles.

L'analyse NBO montre la même tendance pour les trois dianions étudiés. La charge négative au carbone central augmente logiquement avec les déprotonations. Dans chaque dianion, cette charge négative est assez importante ($q_c = -1,79$; -1,80 et -1,76 pour ALi2, BLi2 et CLi2 respectivement). De même, les substituants aux atomes de phosphore portent eux aussi une charge négative qui augmente suivant les déprotonations successives. Les atomes de phosphore sont, eux, chargés positivement mais cette charge n'évolue pas de façon marquante.

Nous avons vu en étudiant les données RX que les déprotonations des différents ligands entraînent des modifications géométriques importantes. Le calcul des indices de Wiberg permet de confirmer ces observations. Dans les composés **A** et **C**, la liaison P-S est à mi-chemin entre une liaison simple et une liaison double (nP-S = 1,40 et 1,44 pour **A** et **C**). La liaison P-B dans **C** a globalement un caractère de liaison simple (nP-B = 0,99) et les liaisons P-O se situent entre ces deux représentations (nP-O ~ 1,22 en moyenne). On remarque dans le tableau 6 que toutes ces valeurs diminuent avec les déprotonations successives des ligands, ce qui traduit un affaiblissement des liaisons, en accord avec les observations expérimentales. Ainsi, les liaisons P-S dans les dianions **ALi**₂ et **CLi**₂ sont de 1,11 et 1,12 traduisant un caractère de liaison simple. Il en

est de même pour les liaisons P-O (nP-O ~ 0,96 dans **A.Li2** et **B.Li2** contre 1,22 dans **A** et **B**). En revanche, la liaison P-B n'est pas significativement affectée. L'effet inverse est observé pour les liaisons C-P du pont P-C-P. En moyenne, les indices de Wiberg pour ces liaisons passent de 0,8 dans les composés neutres à 1,22 dans les dianions. Cela va dans le sens d'une fortification de ces liaisons qui se traduit par un raccourcissement dans les structures RX. Les liaisons C-Li sont, elles, de nature principalement électrostatique ($q_{Li} = 0,88$ en moyenne et nC-Li < 0,1).

L'analyse NBO nous renseigne également sur les paires libres au carbone central. Dans les monoanions, chaque carbone central porte une paire libre de caractère p pur orthogonale au plan P-C-P. Dans les dianions, le carbone central porte deux paires libres. La première (LP1) est une orbitale hybride sp se situant dans le plan P-C-P et la seconde (LP2) une orbitale p pure orthogonale à ce plan, elles sont donc orthogonales l'une par rapport à l'autre. Elles sont représentées figure 11 dans le cas de **C.Li**₂. LP1 et LP2 ont des contributions non négligeables dans les orbitales moléculaires frontières des dianions. LP2 participe à la combinaison d'orbitales formant la HO de **CLi**₂ et LP1 contribue à la HO-1 de **CLi**₂. Ces deux orbitales moléculaires sont représentées figure 12. Dans **A.Li**₂, les atomes de soufre et d'oxygène portent trois paires libres, il en est de même pour **B.Li**₂ (deux atomes d'oxygène) et **C.Li**₂ (un atome de soufre). On peut alors dessiner une représentation de Lewis des dianions. Le carbone central est chargé deux fois négativement. Les liaisons P-X (X = O, S, B) sont de nature simple (schéma 12).

Figure 11 : Représentation des deux paires libres sur le carbone central dans CLi₂. Les molécules de solvant ont été omises par souci de clarté.

Figure 12 : Représentation de la HO (gauche) et de la HO-1 (droite) de CLi₂. Les molécules de solvant ont été omises par souci de clarté.

Schéma 12 : Représentation de Lewis des différents dianions.

L'analyse de la stabilisation des paires libres au carbone central dans les différents dianions permet de rendre compte de l'évolution des paramètres structuraux et des données NBO (charges et indices de Wiberg). Cette stabilisation s'effectue par donation électronique des orbitales occupées (LP1 et LP2) vers les orbitales antiliantes non occupées voisines de symétries adaptées. Ces interactions permettent une stabilisation efficace du surplus de densité électronique à l'atome de carbone central. Le tableau 8 résume les principales stabilisations de ces paires libres au sein des différents monoanions et dianions étudiés.

La stabilisation des paires libres au carbone se fait par donation électronique dans deux types d'orbitales différents, d'une part dans les orbitales antiliantes $\sigma^*(P-X)$ et d'autre part dans les orbitales antiliantes $\sigma^*(P-C)$. Pour les monoanions non symétriques, des considérations de symétrie font que la paire libre au carbon central ne peut se recouvrir qu'avec une seule $\sigma^*(P-X)$. Dans le cas de **ALi**, il s'agit de la $\sigma^*(P-O)$ et de la $\sigma^*(P-S)$ pour **CLi**. Cette stabilisation est de l'ordre de 10 kcal/mol. Dans le cas du monoanion symétrique **BLi**, le recouvrement peut se faire avec les deux orbitales $\sigma^*(P-O)$ apportant une énergie de stabilisation de 28 kcal/mol environ. Ensuite, le recouvrement de la paire libre avec les $\sigma^*(P-C)$ des groupements phényles permet d'assurer le reste de la stabilisation. L'énergie totale calculée est d'environ 50 kcal/mol pour les

	Acceptrice		E(2)	ΔEij	Fij	E(2)	ΔEij	Fij	E(2)	ΔEij	Fij	
n			5 (X= S, Y=O)			6	6 (X=Y=O)			7 (X=S, Y=BH ₃)		
		σ*(P-X)	0,72	0,30	0,014	17,47	0,47	0,085	10,70	0,29	0,053	
		σ*(P-Y)	13,00	0,45	0,073	11,23	0,47	0,069	-	-	-	
nLi	LP1	σ*(P-C _{Ph})	14,53	0,35	0,066	10,88	0,40	0,062	17,66	0,35	0,073	
		$\sigma^*(P-C_{Ph})$	13,20	0,39	0,067	7,17	0,41	0,050	11,77	0,37	0,062	
		σ*(P-C _{Ph})	8,94	0,35	0,052	-	-	-	9,91	0,37	0,058	
	Total			50,39		46,75			50,04			
		σ*(P-X)	-	-	-	9,41	0,50	0,065	-	-	-	
		σ*(P-Y)	7,67	0,52	0,060	4,92	0,50	0,046	1,89	0,48	0,029	
	1.04	σ*(P-C _{Ph})	18,78	0,42	0,081	13,08	0,43	0,069	15,78	0,43	0,075	
	LPI	σ*(P-C _{Ph})	8,61	0,45	0,058	8,94	0,43	0,057	10,12	0,44	0,061	
		σ*(P-C _{Ph})	4,61	0,52	0,060	6,84	0,44	0,051	4,91	0,44	0,043	
		$\sigma^*(P-C_{Ph})$	2,78	0,42	0,032	2,55	0,43	0,031	4,15	0,43	0,039	
nLi ₂		Total		42,45			45,74			36,85		
		σ*(P-X)	21,48	0,27	0,073	-	-	-	19,88	0,28	0,071	
		σ*(P-Y)	-	-	-	19,49	0,43	0,087	-	-	-	
		$\sigma^*(P-C_{Ph})$	19,42	0,37	0,080	21,88	0,37	0,084	18,53	0,36	0,077	
	LP2	$\sigma^*(P-C_{Ph})$	13,43	0,38	0,067	16,17	0,35	0,072	13,64	0,35	0,066	
		σ*(P-C _{Ph})	7,99	0,34	0,049	11,34	0,36	0,060	7,69	0,34	0,048	
		σ*(P-C _{Ph})	4,03	0,34	0,035	-	-	-	5,10	0,34	0,039	
		Total		66,35			68.88			64,84		
	Total LP1+LP2			108,8			114,62			101,69		

trois monoanions. Les principales interactions stabilisantes sont représentées figure 13 dans le cas de **CLi**.

Tableau 8 : Résumé de la stabilisation des paires libres au carbone dans les monoanions et dianions.

Figure 13 : Stabilisation de la paire libre au carbone central dans CLi. $\sigma^*(P-S)$ (haut gauche) et $\sigma^*(P-C)$.

Pour les dianions, il faut distinguer les deux paires libres. Comme LP1 est située dans le plan P-C-P, son recouvrement avec les orbitales $\sigma^*(P-X)$ n'est pas optimal et l'énergie de stabilisation apportée est, cette fois, inférieure à 10 kcal/mol dans les trois cas. On peut noter dans le cas particulier de **CLi**₂ que cette paire libre n'est que très peu stabilisée par le groupement P-B (E = 1,89 kcal/mol). Dès lors, la stabilisation de la première paire libre est assurée presque en totalité par donation dans les $\sigma^*(P-C)$ des groupements phényles (E ~ 35 kcal/mol). De ce fait, l'énergie totale de stabilisation de la première libre dans **CLi**₂ est inférieure à celle calculée pour **ALi**₂ et **BLi**₂ (37 kcal/mol pour **CLi**₂ contre 42 et 45 kcal/mol pour **ALi**₂ et **BLi**₂ respectivement). Les principales interactions sont représentées figure 14 pour **CLi**₂.

Figure 14 : Stabilisation de LP1 dans C.Li₂ par donation dans les σ^* (P-C).

LP2 est une orbitale p pure. Elle est donc située plus haut en énergie que LP1 qui est une orbitale hybride sp et ceci favorise ainsi son interaction avec les orbitales antiliantes $\sigma^*(P-X)$ et $\sigma^*(P-C)$. Ceci est vérifié en comparant les écarts d'énergies (Δ Eij) du tableau 8. Dans le cas de LP1, l'écart en énergie avec les $\sigma^*(P-C)$ est de l'ordre de 0,43 u.a. alors qu'il n'est que de 0,35 u.a. en moyenne pour LP2. La même observation peut être faite pour l'écart d'énergie avec les différentes orbitales $\sigma^*(P-X)$. En conséquence, le recouvrement de LP2 avec les différentes orbitales antiliantes est bien meilleur que celui de LP1. Les énergies de stabilisation qui en résultent sont donc plus importantes. Ainsi, l'énergie globale apportée par donation de LP2 dans les orbitales $\sigma^*(P-C)$ est respectivement de 45 kcal/mol, 49 kcal/mol et 45 kcal/mol pour **ALi₂**, **BLi₂** et **CLi₂** contre 42 kcal/mol, 45 kcal/mol et 36 kcal/mol pour LP1. De même, la stabilisation apportée par donation de LP2 dans les $\sigma^*(P-X)$ avoisine les 20 kcal/mol dans les trois dianions alors qu'elle n'est que de 7 kcal/mol pour **ALi₂**, 14 kcal/mol pour **BLi₂** et 1,89 kcal/mol pour **CLi₂** dans le cas de LP1. Au total, l'énergie de stabilisation de LP2 est de l'ordre de 65 kcal/mol. Les principales interactions stabilisantes sont représentées figure 15 pour **CLi₂**.

Cette étude permet également de comprendre les modifications de structures observées pour les différents composés. La stabilisation de la charge au carbone central se fait en peuplant des orbitales à caractère antiliant. Ainsi, les liaisons concernées sont affaiblies, l'allongement de ces liaisons en est le signe visible. Les liaisons P-S et P-O sont plus longues dans les dianions que dans les monoanions ou les ligands neutres et il en est de même pour les liaisons P-C des groupements phényles. La non-participation du groupement P-B à la stabilisation explique que cette la distance entre les deux atomes reste constante dans les composés **C**, **CLi** et **CLi**₂. La

conséquence de ces interactions donneur-accepteur est le raccourcissement de la liaison P-C. Les indices de Wiberg calculés dans les dianions suggèrent un caractère multiple pour cette liaison. Toutefois, cette liaison n'est pas une liaison double au sens classique du terme car elle ne fait pas intervenir explicitement les orbitales de l'atome de phosphore.

Finalement, la quantification de la stabilisation de la charge révèle que dans le cas de CLi_2 , seule 20% de celle-ci est assurée par le groupement P-S. La grande majorité de la densité est transférée vers les substituants aryles des atomes de phosphore. Cet effet est moindre pour ALi_2 et BLi2 mais la tendance est identique (~ 60% de la charge est stabilisée par les groupements carbonés aux atomes de phosphore). Un changement des groupes carbonés aux atomes de phosphore devrait avoir un effet considérable sur la stabilisation de la charge et donc sur l'accessibilité des dianions.

Figure 15 : Stabilisation de LP2 par hyperconjugaison négative vers la $\sigma^*(P-S)$ (haut-gauche) et les $\sigma^*(P-C)$.

IV.Conclusion et perspectives

La stratégie de synthèse des dianions développée dans notre laboratoire en 2006 a été appliquée avec succès à la synthèse de trois nouveaux dianions géminés au squelette dérivé de la dppm. Cette synthèse a été possible à la fois grâce à un choix très soigneux des hétéroatomes aux atomes de phosphore ainsi qu'à des conditions expérimentales strictes (solvant, base, additif éventuel). Deux dérivés dianioniques mixtes (P-S ; P-O et P-S ; P-B) ainsi que le dianion de l'oxyde de la dppm ont été obtenus. La structure à l'état solide de ces espèces a été élucidée et chacune cristallise de façon différente (monomère, dimère ou tétramère), illustrant bien que le changement des hétéroatomes a donc de profondes conséquences sur la structure des composés. La chimie de coordination de ces espèces reste encore à explorer.

Des calculs DFT menés sur ces 3 espèces confirme les résultats obtenus sur le dianion **2.Li**₂. Chaque carbone central possède deux paires libres qui sont stabilisées par hyperconjugaison négative dans les orbitales antiliantes voisines de symétries adaptées. La quantification de ces stabilisations a permis de montrer que le groupement phosphine-borane est un moins bon groupement stabilisateur que les groupements oxyde de phosphine ou sulfure de phosphine. De plus, l'essentiel de la stabilisation est assurée par les groupes carbonés présents sur les atomes de phosphore. On peut alors imaginer combiner différentes groupements afin d'obtenir des dianions plus ou moins stabilisés et donc aux réactivités différentes. Le cas limite du groupement BH₃ montre que la synthèse d'un dianion du type $R_2P(X)$ -C-PR'₂ (X = S, O, BH₃ par exemple) dans lequel un des deux atomes de phosphore n'est que tri substitué est envisageable, moyennant l'utilisation d'un additif pour stabiliser les atomes de lithium (kryptox[222], éther couronne, TMEDA) (schéma 13).

La méthode de synthèse des ligands présentée ici permet de faire varier facilement les groupements carbonés des atomes de phosphore. Ainsi la synthèse de dianions géminés ne possédant pas que des groupements aryles est possible (schéma 12). Finalement, de nouveaux types de dianions sont envisageables. En s'inspirant de la réaction utilisée pour synthétiser **III.4** et **III.7**, des dianions possédant un squelette indényle pourraient être obtenus (schéma 13). Ce type de composés a déjà été utilisé dans la synthèse de carbènes de métaux de transition²¹.

²¹ P. Oulié, N. Nebra, N. Saffon, L. Maron, B. Martin-Vaca, D. Bourissou, J. Am. Chem. Soc. 2009, 131, 3493-3498.

Schéma 13 : Synthèse de nouveaux dianions.

V. Bibliographie

- 1) C. M. Ong, D. W. Stephan, J. Am. Chem. Soc. 1999, 121, 2939-2940.
- A. Kasani, R. P. K. Babu, R. McDonald, R. G. Cavell, Angew. Chem. Int. Ed. 1999, 38, 1483-1484.
- 3) T. Cantat, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, *Angew. Chem. Int. Ed.* 2004, 43, 6382-6385.
- 4) T. Cantat, L. Ricard, P. Le Floch, N. Mézailles, Organometallics 2006, 25, 4965-4976.
- 5) J.-H. Chen, J. Guo, Y. Li, C.-W. So, Organometallics 2009, 28, 4617-4620.
- 6) L. Orzechowski, G. Jansen, M. Lutz, S. Harder, Dalton Trans. 2009, 2958-2964.
- 7) J. Langer, K. Wimmer, H. Görls, M. Westerhausen, Dalton Trans. 2009, 2951-2957.
- M. Blug, D. Grünstein, G. Alcaraz, S. Sabo-Etienne, X. F. Le Goff, P. Le Floch, N. Mézailles, *Chem. Commun.* 2009, 4432-4434.
- 9) V. H. Gessner, Organometallics 2011, 30, 4228-4231.
- 10) S. Carenco, résultats non publiés
- 11) S. O. Grim, J. D. Mitchell, Synth. React. Inorg. Met. Org. Chem. 1974, 4, 221-230.
- 12) S. O. Grim, E. D. Walton, Inorg. Chem. 1990, 19, 1982-1987.
- 13) N. J. Death, K. Ellies, D. J. H. Smith, S. Tripett, Chem. Commun. 1971, 714.
- 14) W. J. Stec, A. Okruszek, J. Michalski, J. Org. Chem. 1976, 41, 233-238.
- 15) K. Issleib, H. P. Abicht, J. Prakt. Chem. 1970, 456-465.
- 16) R. Nassar, B. C. Noll, K. W. Henderson, Polyhedron 2004, 23, 2499-2506.
- 17) M. Y. Antipin, Y. T. Struchkov, S. A. Pisareva, T. Ya. Medved, M. I. Kabachnik, *Zh. Strukt. Khim. (Russ.)* **1980**, *21*, 101-105.
- 18) T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto, K. Sato, J. Am. Chem. Soc. 1990, 112, 5244-5252.
- 19) L. McKinstry, T. Livinghouse, Tetrahedron 1995, 51, 7655-7666.
- 20) B. Wolfe, T. Livinghouse, J. Am. Chem. Soc. 1998, 120, 5116-5117.
- P. Oulié, N. Nebra, N. Saffon, L. Maron, B. Martin-Vaca, D. Bourissou, J. Am. Chem. Soc. 2009, 131, 3493-3498.

Chapitre 4 Complexes carbéniques de ruthénium, activation CH intramoléculaire

Chapitre 4 : Complexes carbéniques de ruthénium, activation CH intramoléculaire

I. Introduction

L'application la plus remarquable des complexes carbéniques de ruthénium est très certainement la métathèse des oléfines⁻ Depuis la démonstration de leur efficacité vis-à-vis de cette réaction¹, de nombreuses études ont été menées dans ce domaine^{2,3,4}. Toutefois, les complexes carbéniques de ruthénium présentent d'autres réactivités intéressantes.

En 1999, le groupe de Snapper a remarqué que le catalyseur de Grubbs de première génération $[(Cy_3P)_2Cl_2Ru=CHPh]$ pouvait catalyser l'addition du chloroforme sur des alcènes (schéma 1)⁵. Cette réaction se déroule dans des conditions plus douces que pour d'autres catalyseurs étudiés (2h à 65°C pour $[(Cy_3P)_2Cl_2Ru=CHPh]$ pour l'addition sur le styrène contre 8h à 120°C pour $[Cl_2Ru(PPh_3)_3]$). Cependant, cette réaction reste en compétition avec la réaction de métathèse.

Schéma 1 : Addition du chloroforme sur des alcènes catalysée par un complexe de Grubbs.

Les complexes carbéniques de ruthénium sont également actifs comme catalyseurs de réactions d'hydrogénations par transfert, de réductions de cétones et d'oléfines ainsi que d'oxydations déshydrogénatives des alcools. Ainsi, des procédés tandem combinant une réaction de métathèse et une des transformations citées ci-dessus ont été mis au point^{6,7}. Ces procédés ont permis la synthèse, par exemple, de la (R)-(-)-muscone en utilisant un catalyseur de Grubbs de deuxième génération (schéma 2).

En 2002, le groupe de Lee a étudié la condensation déshydrogénative d'alcools et de silanes ainsi que l'hydrosilylation de composés carbonyles catalysées par $[(Cy_3P)_2Cl_2Ru=CHPh]$ (schéma 3)⁸. Ces réactions sont effectuées sans solvant et conduisent aux composés désirés avec de très bons rendements (> 95% dans la plupart des cas).

¹G. C. Fu, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 9856-9857.

² T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.

³ C. Samojłowicz, M. Bieniek, K. Grela, Chem. Rev. 2009, 109, 3708-3742.

⁴ G. C. Vougioukalakis, R. H. Grubbs, *Chem. Rev.* **2010**, *110*, 1746-1787.

⁵ J. A. Tallarico, L. M. Malnick, M. L. Snapper, J. Org. Chem. **1999**, 64, 344-345.

 ⁶ J. Louie, C. W. Bielawski, R. H. Grubbs, *J. Am. Chem. Soc.* 2001, *123*, 11312-11313.
 ⁷ S. D. Drouin, F. Zamanian, D. E. Fogg, *Organometallics* 2001, *20*, 5495-5497.

⁸ S. V. Maifeld, R. L. Miller, D. Lee, *Tetrahedron Lett.* **2002**, *43*, 6363-6366.

Schéma 2 : Synthèse de la (R)-(-)-muscone utilisant un catalyseur de Grubbs de deuxième génération.

Schéma 3 : Condensation déshydrogénative de silanes.

Le groupe de Verpoort a étudié l'addition d'acides carboxyliques sur des alcynes ainsi que la dimérisation d'alcynes catalysées par [(Cy3P)2Cl2Ru=CHPh] (schéma 4)9. La thermolyse du catalyseur permet le déplacement d'un substituant tricyclohexylphosphine¹⁰ et la libération d'un site de coordination. Le devenir exact du catalyseur lors de cette étape n'est toutefois pas connu.

Schéma 4 : Addition d'acides sur des alcynes et dimérisation.

 ⁹ K. Melis, T. Opstal, F. Verpoort, *Eur. J. Org. Chem.* **2002**, 3779-3784.
 ¹⁰ M. Ulman, R. H. Grubbs, *J. Org. Chem.* **1999**, *64*, 7202-7207.

Le groupe de Cadierno a développé, en 2004, la synthèse des premiers exemples de complexes carbéniques de ruthénium incorporant un ligand de type N-C-N¹¹ (composé **IV.1**, schéma 5) analogue du ligand **1** abondamment utilisé par Cavell *et al.* La stratégie employée par Cadierno repose sur la coordination préalable du monoanion au centre métallique suivie d'une déprotonation *in situ* du ligand dans la sphère de coordination du métal afin de générer l'espèce carbénique désirée (complexes **IV.5-7**, schéma 5).

Schéma 5 : Complexe carbéniques de ruthénium développés par le groupe de Cadierno.

De façon analogue, notre groupe a publié en 2005 la synthèse d'un carbène de ruthénium en utilisant le dianion S-C-S **2.Li**₂ en combinaison avec $[RuCl_2(PPh_3)_4]$ (complexe **IV.8**, schéma 6)¹². Ce complexe est de structure analogue à celle des complexes de Cadierno. L'étude a également montré que ce carbène peut se réarranger thermiquement en un complexe alkyle de ruthénium par activation C-H d'un noyau aromatique du ligand (complexe **IV.9**, schéma 6). Ce type de comportement avait déjà été observé par le groupe de Cavell sur un complexe de platine¹³ et par notre groupe sur un complexe d'iridium¹⁴.

Schéma 6 : Synthèse du carbène de ruthénium S-C-S.

¹¹ V. Cadierno, J. Díez, J. García-Álvarez, J. Gimeno, Organometallics 2004, 23, 2421-2433.

¹² T. Cantat, M. Demange, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, *Organometallics* 2005, 24, 4838-4841.

¹³ N. D. Jones, G. Lin, R ; A. Gossage, R. McDonald, R. G. Cavell, *Organometallics* **2003**, *22*, 2832-2841.

¹⁴ M. Blug, H. Heuclin, T. Cantat, X.-F. Le Goff, N. Mézailles, P. Le Floch, Organometallics 2009, 28, 1969-1972.

Afin de comparer la réactivité du dianion mixte PO/PS (**IV.10Li**₂) présenté au chapitre 3 avec celle du dianion **2.Li**₂, vis-à-vis du même précurseur métallique de ruthénium [$\operatorname{RuCl}_2(\operatorname{PPh}_3)_4$]].

II. Synthèses et réactivité

La synthèse et les différentes caractérisations de IV.10 et IV.10 Li_2 ont été détaillées dans le chapitre 3. Le schéma 7 en résume néanmoins les principales propriétés.

Schéma 7 : Synthèse de IV.10Li₂.

Le dianion **IV.10Li**₂ est insoluble dans les solvants organiques et ne peut être manipulé que dans un nombre limité d'entre eux au risque de le protoner très rapidement. Ainsi, la réaction entre **IV.10Li**₂ et le précurseur métallique a été réalisée dans le toluène. Après 15 minutes à température ambiante, le spectre RMN ³¹P montre la présence de triphénylphosphine libre ($\delta_p = -5$ ppm) ainsi que plusieurs massifs non résolus. Après 3h de réaction le spectre RMN ³¹P montre quatre signaux distincts et bien résolus ($\delta_p = 73,7$; 64,1 ; 46,7 et 14,0 ppm) intégrant chacun pour 1 phosphore ainsi que deux équivalents de triphénylphosphine libre. Ces informations RMN préliminaires pourraient être compatibles avec le carbène de ruthénium **IV.11**. Après traitement, le complexe est obtenu pur sous la forme d'un solide vert. Il a ensuite été caractérisé par spectroscopie RMN multinoyaux.

À notre grande surprise, le spectre RMN ¹H montre la présence d'un proton central à $\delta_{\rm H} = 1,41$ ppm (multiplet) ainsi que 4 signaux pour des protons aromatiques localisés à champ anormalement haut ($\delta_{\rm H} = 6,92$; 6,65; 6,28 et 6,06 ppm). Ces quatre protons sont situés sur le même noyau aromatique (confirmé par une séquence cosy). Finalement, le spectre RMN ¹³C montre un carbone à $\delta_{\rm C} = 7,7$ ppm (multiplet) qui correspond au carbone central du pont P-C-P. Ces spectres RMN sont très semblables à ceux observés pour le complexe **IV.9**, ce qui nous a conduit à identifier ce complexe comme un complexe résultant de l'insertion du ruthénium dans une liaison C-H d'un des noyaux aromatiques du ligand. Cependant, aucune information ne permet de déterminer de quel côté s'est effectuée cette insertion. La réponse nous a été donnée

par analyse de diffraction des RX. Des monocristaux ont été obtenus par diffusion lente de pentane dans une solution du complexe dans le dichlorométhane. Cette analyse a permis l'identification de ce complexe comme celui provenant d'une insertion CH sur un noyau aromatique porté par le groupement oxyde de phosphine (complexe IV.12, schéma 8). Une représentation de IV.12 est donnée figure 1.

Schéma 8 : Synthèse du complexe IV.12.

Figure 1: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **IV.12**. Les carbones des ligands triphénylphosphine (sauf carbones *ipso*) et les atomes d'hydrogène (sauf H(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,762(5) ; C(1)-P(2) 1,816(5) ; P(1)-S(1) 2,000(2) ; P(2)-O(1) 1,526(4) ; Ru(1)-C(1) 2,267(5) ; Ru(1)-S(1) 2,580(1) ; Ru(1)-O(1) 2,319(3) ; Ru(1)-C(21) 2,067(5) ; P(2)-C(20) 1,769(5) ; C(20)-C(21) 1,407(7) ; Ru(1)-P(3) 2,330(1) ; Ru(1)-P(4) 2,271(1) ; P(1)-C(1)-P(2) 116,6(3) ; C(1)-Ru(1)-P(4) 160,5(1) ; S(1)-Ru(1)-C(21) 162,8(1) ; P(4)-Ru(1)-O(1) 162,5(1).

Le complexe **IV.12** est un complexe de ruthénium ML_6 pseudo-octaédrique. Un groupement phényle du substituant $Ph_2P(O)$ est maintenant orthométalé et deux molécules de triphénylphosphine sont encore liées au centre métallique. L'atome d'hydrogène précédemment situé sur le noyau aromatique est maintenant localisé sur le carbone central. La distance Ru(1)-C(21) est nettement plus courte que la distance Ru(1)-C(1) (2,067(5) Å contre 2,267(5) Å) et se situe dans la norme des distances Ru-C habituellement observées pour des complexes orthométalés de ruthénium^{15,16,17,18}. Ces deux distances sont d'ailleurs tout à fait comparables à celles mesurées dans **IV.9**. La distance C(20)-C(21) est quant à elle plus courte qu'une liaison C-C typique d'un noyau aromatique (1,407(7) Å contre 1,43 Å). Le complexe **IV.12** possède formellement deux centres asymétriques (C(1) et P(2)) mais la réaction d'insertion ne conduit qu'à un seul couple d'énantiomères de façon totalement diastéréosélective, le produit (S,R). Ce comportement est identique à celui observé pour **IV.9** et le complexe de platine de Cavell.

En vue d'explorer la réactivité de **IV.12**, une solution de celui-ci a été chauffée à 110°C dans le toluène pendant une nuit. La solution passe du vert à l'orange et le spectre RMN ³¹P du mélange réactionnel montre la conversion totale de **IV.12** en un unique nouveau produit, **IV.13**, caractérisé par quatre signaux distincts à $\delta_p = 53,4$; 47,0 ; 45,4 et -12,8 ppm. Après traitement, ce complexe est isolé sous la forme d'un solide orange. Les spectres RMN ¹H et ¹³C de **IV.13** sont très similaires à ceux de **IV.12** (un proton central à $\delta_H = 1,51$ ppm ; quatre protons aromatiques voisins à $\delta_H = 6,37$; 6,25 ; 5,63 et 4,81 ppm ; un carbone central à $\delta_C = 15$ ppm). Nous en avons alors déduit que **IV.13** était également un complexe orthométalé de ruthénium mais cette fois-ci l'insertion aurait eu lieu dans un noyau aromatique porté par le groupement sulfure de phosphine (schéma 9).

Schéma 9 : Conversion de IV.12 en IV.13.

De la même façon que pour l'obtention de IV.12, la conversion en IV.13 n'aboutit qu'à un seul couple d'énantiomères. La confirmation de la structure de IV.13 nous est donnée par analyse de diffraction des RX. Des monocristaux ont été obtenus par diffusion lente de pentane dans une solution concentrée de IV.13 dans le THF. Une représentation de IV.13 est donnée figure 2. Comme IV.12, IV.13 est un complexe ML_6 du ruthénium dans lequel l'atome de métal adopte une géométrie pseudo-octaédrique. Un désordre est présent sur un des noyaux aromatiques d'un ligand triphénylphosphine. La réaction d'insertion a bien eu lieu dans un noyau aromatique du

 ¹⁵ J.-P. Djukic, A. Berger, M. Duquenne, M. Pfeffer, A. de Cian, N. Kyritsakas-Gruber, J. Vachon, J. Lacour, *Organometallics* 2004, 23, 5757-5767.
 ¹⁶ W.Baratta, G. Chelucci, S. Gladiali, K. Siega, M. Toniutti, M. Zanette, E. Zangrando, P. Rigo, *Angew. Chem. Int. Ed.* 2005, 44, 6214-

 ¹⁷ W.Baratta, G. Chelucci, S. Gladiali, K. Siega, M. Toniutti, M. Zanette, E. Zangrando, P. Rigo, *Angew. Chem. Int. Ed.* 2005, 44, 6214-6219.
 ¹⁷ L. Leyva, C. Sirlin, L. Rubio, C. Franco, R. Le Lagadec, J. Spencer, P. Bischoff, C. Gaiddon, J.-P. Loeffler, M. Pfeffer, *Eur. J. Inorg.*

L. Leyva, C. Sirlin, L. Rubio, C. Franco, K. Le Lagadec, J. Spencer, P. Bischoff, C. Galddon, J.-P. Loeffler, M. Pfeffer, *Eur. J. Inorg Chem.* **2007**, 3055-3066. ¹⁸ A. Hijazi, J.-P. Djukic, L. Allouche, A. de Cian, M. Pfeffer, *Organometallics* **2007**, *26*, 4180-4196.

substituant $Ph_2P(S)$ de façon diastéréosélective. Les distances et angles dans **IV.13** sont très similaires à celles mesurées dans **IV.12**. La réaction d'insertion C-H observée dans le cas de **IV.12** est donc réversible thermiquement. **IV.13** semble être le produit thermodynamique de la réaction et **IV.12** le produit cinétique. Une étude DFT présentée dans la 3^{ème} partie de ce chapitre permettra de rationnaliser ces observations expérimentales.

Figure 2: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **IV.13**. Les carbones des ligands triphénylphosphine (sauf carbones *ipso*) et les atomes d'hydrogène (sauf H(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,80(1) ; C(1)-P(2) 1,80(2) ; P(1)-S(1) 2,002(4) ; P(2)-O(1) 1,513(7) ; Ru(1)-C(1) 2,28(1) ; Ru(1)-S(1) 2,499(2) ; Ru(1)-O(1) 2,428(7) ; Ru(1)-C(9) 2,04(1) ; P(1)-C(8) 1,75(2) ; C(8)-C(9) 1,43(1) ; P(1)-C(1)-P(2) 122,0(6) ; P(3)-Ru(1)-C(1) 160,5(3) ; C(9)-Ru(1)-O(1) 158,8(3) ; P(4)-Ru(1)-S(1) 168,4(1).

Ces données expérimentales permettent déjà de mettre en évidence la grande différence de réactivité des deux substituants aux atomes de phosphore. En effet, la différence de longueur entre une liaison P=O et une liaison P=S laissait supposer que l'atome d'oxygène était plus labile que l'atome de soufre. Dès lors, l'insertion CH devait se faire préférentiellement dans un noyau aromatique du groupement oxyde de phosphine. Les données expérimentales viennent confirmer notre hypothèse de départ : dans un cas l'insertion se fait à température ambiante alors que dans l'autre cas, un chauffage à 110°C est nécessaire. Cela indique que la décoordination d'un bras PO requiert nettement moins d'énergie que la décoordination d'un bras PS. Cette hypothèse peut également être vérifiée en comparant la réactivité de **IV.12** et **IV.13** vis-à-vis du monoxyde de carbone.

IV.13 réagit instantanément avec le monoxyde de carbone dans le dichlorométhane en tube RMN à l'aide d'une baudruche. La conversion totale de IV.13 en un nouveau complexe (complexe IV.14, schéma 10) est observée dans le spectre RMN ³¹P. Ce nouveau complexe est caractérisé par quatre signaux distincts à $\delta_p = 52,2$; 47,5; 30,5 et 7,3 ppm. Aucune libération de triphénylphosphine n'est observée. Le spectre RMN ¹³C de IV.14 montre la présence d'un signal très couplé à $\delta_c = 206,8$ ppm qui se découple en un singulet dans le spectre RMN ¹³C{³¹P} et qui confirme la coordination du monoxyde carbone au métal. Les signaux caractéristiques de IV.14 dans les autres spectres RMN sont très similaires à ceux des complexes étudiés jusque-là. Une analyse de diffraction des RX nous a permis de confirmer la structure de IV.14. Des monocristaux ont été obtenus par diffusion lente de pentane dans une solution concentrée de IV.14 dans le dichlorométhane. Une représentation de IV.14 est donnée figure 3.

Schéma 10 : Synthèse du complexe IV.14 par réaction de IV.13 avec CO.

Figure 3: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **IV.14**. Les carbones des ligands triphénylphosphine (sauf carbones *ipso*) et les atomes d'hydrogène (sauf H(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,766(2) ; C(1)-P(2) 1,789(2) ; P(1)-S(1) 2,0063(7) ; P(2)-O(1) 1,487(1) ; Ru(1)-C(1) 2,260(2) ; Ru(1)-C(9) 2,172(2) ; Ru(1)-C(62) 1,900(2) ; Ru(1)-S(1) 2,5149(5) ; Ru(1)-P(3) 2,3524(5) ; Ru(1)-P(4) 2,3842(5) ; P(1)-C(8) 1,784(2) ; C(62)-O(2) 1,149(2) ; C(8)-C(9) 1,412(2) ; P(1)-C(1)-P(2) 125,9(1) ; C(1)-Ru(1)-P(4) 162,38(5) ; C(9)-Ru(1)-C(62) 175,85(7) ; Ru(1)-C(62)-O(2) 176,6(2) ; S(1)-Ru(1)-P(3) 164,88(2).

Comme supposé, **IV.14** est un complexe ruthénium-carbonyle dans lequel le ligand CO a pris la place du groupement oxyde de phosphine dans la sphère de coordination du métal, l'atome de

ruthénium central étant toujours de géométrie pseudo-octaédrique. Les paramètres structuraux de **IV.14** n'ont rien de particulier par rapport aux autres complexes.

La même réaction effectuée cette fois-ci avec **IV.12** ne conduit pas instantanément au complexe ruthénium carbonyle. En effet, le spectre RMN ³¹P montre que même après deux heures sous atmosphère de CO, **IV.12** n'est converti qu'à environ 50 % en un mélange de différents produits dont tous n'ont pas été identifiés. Ceci confirme bien la moindre labilité du ligand sulfure de phosphine par rapport au ligand oxyde de phosphine. Des essais de remplacement des ligands triphénylphosphine sur les différents complexes étudiés ont été menés (échange avec d'autres phosphines, addition de CO, d'H₂, oxydation avec H₂O₂ ou Me₃NO) mais aucun n'a abouti à un résultat concluant.

III. Etude théorique

Afin de rationaliser les différentes observations expérimentales, des calculs DFT ont été menés sur les différents complexes étudiés. Au début de l'étude, des modèles simplifiés des différents complexes ont été utilisés mais ceux-ci ne rendaient pas bien compte des observations. Les optimisations ont donc été conduites sur les structures réelles des complexes. La fonctionnelle b3pw91 a été utilisée en combinaison des bases comme suit : 6-31G* pour P, S, O, le carbone orthométalé et le carbone central, 6-311++G** pour l'hydrure, 6-31G pour le reste des atomes du noyau aromatique orthométalé, STO-3G pour les autres atomes (C, H). La base lan2dz et la fonction de polarisation f associée ont été utilisés pour le ruthénium. Dans la partie c de cette section, par souci de symétrie du système les bases ont été changées pour les complexes **P**, **T**, **U**, **V** et les états de transition correspondant comme suit : 6-31G* pour P, S, O, les deux carbones orthométalés et le carbone central, 6-311++G** pour les deux hydrures, 6-31G pour le reste des atomes des noyaux aromatiques orthométalés, STO-3G pour les autres atomes (C, H).

1. Insertion dans un noyau aromatique du groupe oxyde de phosphine

Le mécanisme d'insertion étudié est le même que celui déjà optimisé dans notre groupe¹². Il se décompose en quatre étapes décrites dans le schéma 11. i) décoordination de l'atome d'oxygène, ii) insertion du ruthénium dans la liaison CH, iii) transfert d'hydrure du ruthénium vers le carbone central, iv) recoordination de l'atome d'oxygène au ruthénium.

Schéma 11 : Mécanisme d'insertion calculé menant à IV.12.

Le profil énergétique calculé pour cette transformation est présenté dans le schéma 12. La réaction est globalement exothermique ($\Delta E = -21,2 \text{ kcal/mol}$) conformément à l'expérience (la réaction est totale). La formation de **E** est irréversible à température ambiante, l'écart d'énergie total étant de 36,3 kcal/mol. L'étape cinétiquement déterminante est la décoordination de l'atome d'oxygène ($E_{TS} = 15,3 \text{ kcal/mol}$) qui conduit au complexe **B**, un complexe de ruthénium insaturé à 16 électrons. Cette énergie est tout à fait compatible avec un processus se déroulant à température ambiante. Ceci explique, dans un premier temps, que le carbène de ruthénium **A** n'est pas observé.

L'étape suivante est l'étape d'addition oxydante de la liaison C-H sur le centre métallique. Le complexe hydrure de ruthénium(II) **C** est alors généré. Cette étape est déterminante pour la géométrie du complexe final. En effet, l'insertion peut s'effectuer de deux façons différentes. Dans un cas, l'hydrure et l'atome d'oxygène sont situés du même côté du plan P-C-P (cis) alors que dans l'autre cas, ces deux atomes sont de part et d'autre de ce plan (trans). L'énergie du complexe issu de cette deuxième insertion (complexe **F**, non représenté) a été également calculée et se situe 3,0 kcal/mol plus haut que celle du complexe **C**, expliquant ainsi la discrimination entre les deux voies possibles. La troisième étape, correspondant à la migration de l'hydrure du métal vers le carbone central, est la plus exothermique ($\Delta E_{C-D} = 23,1$ kcal/mol). Finalement, la recoordination de l'atome d'oxygène permet d'obtenir le complexe final.

Schéma 12 : Profil énergétique calculé pour la formation de IV.12.

2. Insertion dans un noyau aromatique du groupe sulfure de phosphine

Ensuite, nous avons modélisé le même mécanisme mais en prenant en compte l'insertion dans le noyau aromatique du groupement Ph_2PS . Il est représenté schéma 13 et son profil énergétique est donné schéma 14.

Schéma 13 : Mécanisme d'insertion calculé menant à IV.13.

De façon analogue à la transformation précédente, l'étape cinétiquement déterminante est la décoordination de l'atome de soufre pour former le complexe **H**. L'énergie calculée de 29,4 kcal/mol n'est pas compatible avec un processus ayant lieu à température ambiante. Cette énergie est nettement supérieure à celle requise pour la même étape dans le cas de le formation de **IV.12**. La suite du mécanisme est ensuite très similaire à celle modélisée pour la formation de **IV.12**. La réaction est globalement exothermique ($\Delta E = -25,8$ kcal/mol). Le complexe résultant de l'insertion CH cis (complexe **L**) a été envisagé mais ne correspond pas à un minimum sur la surface d'énergie potentielle ce qui explique l'obtention d'un unique couple d'énantiomère.

coordonnées réactionnelles

Schéma 14 : Profil énergétique calculé pour la formation de IV.13.

Cette première étude théorique permet de rationaliser différentes observations. Premièrement, le carbène IV.11 n'est pas observé expérimentalement car la formation du complexe IV.12 est totale et irréversible à température ambiante. Deuxièmement, la formation de IV.13 n'est pas possible à température ambiante ($E_{act} = 29.4 \text{ kcal/mol}$). Troisièmement, les deux mécanismes calculés rationnalisent la formation du complexe IV.13 est un processus totalement irreversible avec une différence d'énergie globale de 55,2 kcal/mol. Ceci explique que ce soit l'unique produit observé après chauffage du milieu réactionnel à 120°C. A cette étape de l'étude, la transformation de IV.12 en IV.13 n'est pas expliquée. L'énergie requise pour passer du complexe E au complexe A est de 36,3 kcal/mol. Cette valeur nous a paru un peu trop élevée pour une température de réaction de 120°C et nous avons ainsi tenté de trouver un mécanisme de moindre énergie pouvant expliquer la conversion de IV.12 en IV.13.

3. Réversibilité du processus

Nous avons d'abord envisagé une deuxième insertion du ruthénium dans un des deux noyaux aromatiques du groupement Ph_2PS . Un complexe hydrure bis-alkyle de ruthénium(IV) serait ainsi formé (schéma 15). Deux voies permettent de former ce type de complexe. Premièrement, la décoordination de l'atome d'oxygène dans le complexe **E** pour obtenir **F** suivie de la décoordination de l'atome de soufre. Le complexe **M** formé se situe à 20,0 kcal/mol au-dessus du complexe **E**. Ce complexe est un complexe de ruthénium(II) à 14 électrons. Ensuite, l'insertion

du ruthénium dans une liaison CH d'un noyau aromatique conduit aux complexes N (atomes d'hydrogènes en trans) et O (atomes d'hydrogène en cis). Les géométries de ces complexes ont été optimisées mais aucune ne correspond à un minimum sur la surface d'énergie potentielle. L'optimisation de N conduit au complexe M alors que l'optimisation de O conduit à un transfert de l'hydrure sur le carbone central.

Deuxièmement, la décoordination de l'atome de soufre du complexe **E** permet de générer le complexe **P**. Cette étape est peu onéreuse en énergie ($\Delta E \sim 5 \text{ kcal/mol}$, $E_{TS} = 5,2 \text{ kcal/mol}$). Ensuite, l'insertion C-H peut avoir lieu. Malheureusement, les deux complexes **Q** et **R** ne sont pas des minima sur la surface d'énergie potentielle.

Schéma 15 : Premiers mécanismes possibles pour le passage de IV.12 à IV.13.

L'examen du profil énergétique de la réaction nous montre que, dans une optique de réversibilité du processus, l'étape la plus coûteuse en énergie est le passage du complexe ruthénium alkyle vers le complexe hydrure de ruthénium (~23 kcal/mol). Il nous est apparu probable que le passage du complexe **IV.12** au complexe **IV.13** se fasse donc sans affecter l'hydrogène situé sur le pont P-C-P. A l'image des travaux de Milstein sur les ligands non-innocents¹⁹, nous avons imaginé que les atomes de soufre ou d'oxygène présents au sein du ligand pouvaient servir d'agents de transfert de proton. Le mécanisme décrit au schéma 16 a alors été envisagé.

¹⁹ C. Gunanathan, D. Milstein, Acc. Chem. Res. 2011, 44, 588-602.

Schéma 16 : Mécanisme par transfert de proton assisté par le groupement oxyde de phosphine.

La première étape de ce mécanisme a déjà été optimisée. En partant du complexe **P**, une rotation du noyau aromatique est possible amenant au complexe **S**. La géométrie optimisée du complexe **S** fait apparaître une distance O-H entre l'atome d'oxygène du groupement oxyde de phosphine et l'hydrogène en ortho du noyau aromatique du groupement Ph₂PS de 2,1 Å environ. Nous avons alors envisagé le transfert de ce proton sur le groupement oxyde de phosphine pour conduire à un complexe bis-alkyle de ruthénium(II) (complexe **T**). Ce proton est ensuite retransféré sur le noyau aromatique voisin par un mécanisme similaire (complexes **U** et **J**). Seules les deux étapes clés de ce mécanisme ont été approfondies (passage de **S** à **U**). Les énergies des différents complexes sont données schéma 17. Les énergies calculées pour les complexes **S**, **T** et **U** sont compatibles avec un phénomène se déroulant à température ambiante. Le point le plus haut du mécanisme se situe 20,4 kcal/mol au-dessus du produit de départ. Cependant, les états de transition optimisés pour ce mécanisme ont des énergies nettement trop élevées (E = 40 kcal/mol) et ne sont pas compatibles avec les observations expérimentales.

Schéma 17 : Profil énergétique calculé pour le passage de IV.12 à IV.13 par transfert de proton assisté par le groupement oxyde de phosphine.

Nous avons finalement envisagé un dernier mécanisme permettant la conversion de **IV.12** en **IV.13**. En partant du complexe **E**, la décoordination de l'atome de soufre conduit au complexe **P**. Ensuite, un proton d'un noyau aromatique du groupement $Ph_2P(S)$ est transféré sur le carbone central conduisant à un complexe bis-alkyle de ruthénium(II) (complexe **V**). Finalement, ce proton est transféré à nouveau sur le noyau aromatique précédemment orthométalé permettant de former le complexe **J**. Ce mécanisme est représenté schéma 18 et certaines énergies calculées sont données schéma 19.

Schéma 18 : Mécanisme par transfert de proton assisté par le carbone central.

L'énergie du complexe V a été calculée à 21,6 kcal/mol au-dessus du complexe E mais avec un état de transition trop haut en énergie pour satisfaire aux observations expérimentales ($E_{TS} = 39$ kcal/mol).

Schéma 19 : Profil énergétique du mécanisme par transfert de proton assisté par le carbone central.

IV.Conclusions et perspectives

Cette étude a permis de mettre en évidence de grandes différences de comportement entre le dianion **2.Li**₂ et **IV.10Li**₂. La coordination de **2.Li**₂ à RuCl₂(PPh₃)₄ permet la formation initiale d'un carbène de ruthénium(II) après élimination de deux molécules de triphénylphosphine. Au contraire, l'utilisation de **IV.10Li**₂ ne permet pas d'isoler le carbène de ruthénium désiré. Un phénomène d'activation CH d'un noyau aromatique du ligand se produit, dès température ambiante, qui conduit à un complexe alkyle orthométalé de ruthénium. Ce phénomène avait déjà été étudié pour des complexes similaires. En revanche, aucune réversibilité du processus n'avait été observée. La clé de cette réactivité nouvelle est la différence de labilité entre les groupements oxyde de phosphine et sulfure de phosphine. Dans le premier cas, l'énergie nécessaire à la décoordination de l'atome d'oxygène n'est que de 15 kcal/mol environ alors qu'elle est de 27 kcal/mol dans le cas de l'atome de soufre.

A ce stade, le mécanisme du passage de **IV.12** à **IV.13** n'est pas encore élucidé. L'énergie nécessaire à la réversibilité du processus a été calculée pour le moment à 36,3 kcal/mol. Un changement de fonctionnelle ou de bases (3-21G sur les phényles et non STO-3G, bases tout électron sur le ruthénium) pourrait permettre d'abaisser cette énergie et la rendre compatible avec les observations expérimentales. Aucune des voies envisagées pour définir un chemin de moindre énergie n'a abouti à une solution satisfaisante. Une information capitale pourrait toutefois être donnée par l'expérience. La synthèse d'un ligand analogue de **IV.10** mais dont les deux noyaux aromatiques situés sur le groupement oxyde de phosphine seraient totalement deutérés (composé **IV.10D**₁₀) permettrait de suivre le devenir du proton central. Si la transformation de **IV.12** à **IV.13** se fait par chemin inverse, le complexe **IV.13** formé porterait un proton sur le pont P-C-P.

En revanche, si ce passage s'effectue par transfert de proton intramoléculaire, le complexe IV.13 final porterait un atome de deutérium sur le pont P-C-P (schéma 20).

Schéma 20 : Informations expérimentales sur le mécanisme.

La synthèse du ligand deutéré peut-être envisagée comme suit. En reprenant la synthèse décrite au Chapitre 3 pour **IV.10** et en remplaçant la diphénylchlorophosphine par son équivalent complètement deutéré, **IV.10D**₁₀ peut être facilement obtenu. L'enjeu est donc de synthétiser la diphénylchlorophosphine-d¹⁰. Une suite de réaction présentée schéma 21 peut permettre son obtention avec des rendements corrects^{20,21}.

$$P_{4}S_{10} \xrightarrow{AICI_{3}} Ph_{2}PSSH \xrightarrow{1) CI_{2}} Ph_{2}PCI + PCI_{3}$$

Schéma 21 : Synthèse possible de la chlorodiphénylphosphine deutérée.

La compréhension du mécanisme du passage de IV.12 à IV.13 nous renseignera sur les capacités catalytiques éventuelles de ces complexes. Si le passage du complexe E au complexe B est possible, on peut envisager de chauffer modérément le complexe IV.12 soit dans un solvant « activable » (toluène perfluoré par exemple) soit en présence d'un réactif particulier. Le but est de trouver un chemin réactionnel de moindre énergie afin d'éviter la conversion de IV.12 en IV.13 et ainsi forcer l'activation du réactif. En revanche, si le mécanisme réel fait intervenir le groupe oxyde de phosphine comme agent de transfert de protons, on peut alors envisager d'utiliser cet aspect particulier en catalyse ou pour l'activation de molécules spécifiques.

Ainsi, on peut envisager l'addition du dihydrogène sur une liaison M=C pour former M-C(H) et P=(OH) (schéma 22). De même, l'activation d'alcool ou d'amines par un procédé similaire serait

²⁰ W. A. Wiggins, P. W. Vogel, W. G. Craig, J. Am. Chem. Soc. 1955, 77, 1864-1867.

²¹ C. Stuebe, W. M. Lesuer, G. R. Norman, J. Am. Chem. Soc. 1955, 77, 3526-3529.

possible. A terme, des procédés tels que ceux développés par Milstein^{22,23} ou Novori^{24,25} pourraient être mis en place.

Schéma 22 : Addition d'H₂.

Finalement, nous avons vu qu'il était très difficile de déplacer les deux ligands triphénylphosphine présents sur le métal. Nos essais d'oxydation ou de substitution de ce ligand ont échoués. Il serait donc naturel de s'intéresser à d'autres précurseurs de ruthénium(II) similaires et de comparer les nouveaux systèmes obtenus avec le système déjà décrit. Ainsi, un ligand plus encombrant (tricyclohéxylphosphine) pourrait empêcher la rotation des bras ancillaires du ligand et permettre l'isolation du carbène. Les composés formés seraient proches en structure des catalyseurs de Grubbs. Au contraire, l'utilisation de ligands moins encombrés permettrait de favoriser grandement les phénomènes d'activation CH intramoléculaire observés jusque-là.

Schéma 23 : Améliorations possibles de notre système.

²² C. Gunanathan, Y. Ben-David, D. Milstein, Science 2007, 317, 790-792.

²³ S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstaninovski, L. J. W. Shimon, Y. Ben-David, M. A. Iron, D. Milstein, *Science* 2009, 324, 74-77. ²⁴ R. Noyori, S. Hashiguchi, *Acc. Chem. Res.* **1997**, *30*, 97-102.

²⁵ M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466-1478.

V. Bibliographie

- 1) G. C. Fu, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 9856-9857.
- 2) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.
- 3) C. Samojłowicz, M. Bieniek, K. Grela, Chem. Rev. 2009, 109, 3708-3742.
- 4) G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746-1787.
- 5) J. A. Tallarico, L. M. Malnick, M. L. Snapper, J. Org. Chem. 1999, 64, 344-345.
- 6) J. Louie, C. W. Bielawski, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 11312-11313.
- 7) S. D. Drouin, F. Zamanian, D. E. Fogg, Organometallics 2001, 20, 5495-5497.
- 8) S. V. Maifeld, R. L. Miller, D. Lee, Tetrahedron Lett. 2002, 43, 6363-6366.
- 9) K. Melis, T. Opstal, F. Verpoort, Eur. J. Org. Chem. 2002, 3779-3784.
- 10) M. Ulman, R. H. Grubbs, J. Org. Chem. 1999, 64, 7202-7207.
- 11) V. Cadierno, J. Díez, J. García-Álvarez, J. Gimeno, Organometallics 2004, 23, 2421-2433.
- 12) N. D. Jones, G. Lin, R. A. Gossage, R. McDonald, R. G. Cavell, Organometallics 2003, 22, 2832-2841.
- T. Cantat, M. Demange, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, Organometallics 2005, 24, 4838-4841.
- M. Blug, H. Heuclin, T. Cantat, X.-F. Le Goff, N. Mézailles, P. Le Floch, Organometallics 2009, 28, 1969-1972.
- 15) J.-P. Djukic, A. Berger, M. Duquenne, M. Pfeffer, A. de Cian, N. Kyritsakas-Gruber, J. Vachon, J. Lacour, *Organometallics* **2004**, *23*, 5757-5767.
- W.Baratta, G. Chelucci, S. Gladiali, K. Siega, M. Toniutti, M. Zanette, E. Zangrando, P. Rigo, *Angew. Chem. Int. Ed.* 2005, 44, 6214-6219.
- L. Leyva, C. Sirlin, L. Rubio, C. Franco, R. Le Lagadec, J. Spencer, P. Bischoff, C. Gaiddon, J.-P. Loeffler, M. Pfeffer, *Eur. J. Inorg. Chem.* 2007, 3055-3066.
- A. Hijazi, J.-P. Djukic, L. Allouche, A. de Cian, M. Pfeffer, Organometallics 2007, 26, 4180-4196.
- 19) C. Gunanathan, D. Milstein, Acc. Chem. Res. 2011, 44, 588-602.
- 20) W. A. Wiggins, P. W. Vogel, W. G. Craig, J. Am. Chem. Soc. 1955, 77, 1864-1867.
- 21) C. Stuebe, W. M. Lesuer, G. R. Norman, J. Am. Chem. Soc. 1955, 77, 3526-3529.
- 22) C. Gunanathan, Y. Ben-David, D. Milstein, Science 2007, 317, 790-792.
- S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L. J. W. Shimon, Y. Ben-David, M. A. Iron, D. Milstein *Science* 2009, *324*, 74-77.
- 24) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97-102.
- 25) M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466-1478.

Chapitre 5 Comparaison de deux systèmes monoanioniques
Chapitre 5 : Comparaison de deux systèmes monoanioniques

I. Introduction

Les ligands pinceurs de type X-C-X (X = hétéroatome) anioniques jouent un rôle très important en chimie de coordination et en catalyse. Ligands tridentes, ils sont étudiés afin d'apporter un transfert électronique fort vers le métal et pour contrôler l'environnement stérique autour du centre métallique.

Depuis les premiers travaux de Shaw¹ dans les années 70, ces ligands ont suscité un très fort intérêt². Les premiers squelettes utilisés du type $[2,6-(LCH_2)_2C_6H_3]^-$ (L-C-L) où L est un ligand donneur à deux électrons et C un carbone anionique de type aryle ont permis à différents groupes d'étudier les caractéristiques particulières de ces ligands (schéma 1). Parmi ces ligands L-C-L, les ligands de type P-C-P ont été de loin les plus utilisés^{3,4,5}. Les ligands pinceurs au squelette alcane ont été moins étudiés, probablement à cause de la grande flexibilité des cycles alcanes et du caractère beaucoup plus σ -donneur du carbone *ipso* sp³ qui exacerbe grandement la réactivité des complexes formés et rend leur utilisation plus difficile (schéma 1). De plus, la présence de la liaison C(H)-M peut permettre la génération d'une liaison double M=C par déprotonation du carbone. Quelle que soit l'hybridation du carbone central (sp² ou sp³), une coordination tridente est toujours observée.

Schéma 1 : Ligands pinceurs tridentes P-C-P.

Schéma 2 : Modes de coordination des systèmes [CH(PPh₂X)₂]⁻ (X= S, N).

¹ C. J. Moulton, B. L. Shaw, J. Chem. Soc., Dalton Trans. 1976, 1020–1024.

² D. J. Morales-Morales, C. M. Jensen, *The Chemistry of Pincer Compounds*, Elsevier, Amsterdam, 2007.

³ M. E. van der Boom, D. Milstein, *Chem. Rev.* **2003**, *103*, 1759–1792.

⁴ W. Leis, H. A. Mayer, W. C. Kaska, *Coord. Chem. Rev.* 2008, 252, 1787–1797.

⁵ J. Choi, A. H. R Mc Arthur, M. Brookhart, A. S. Goldman, Chem. Rev. 2011, 111, 1761–1779.

En revanche, dans les systèmes $[CH(PPh_2X)_2]^-$ (X= S, N) trois modes de coordination différents ont été observés (schéma 2) : une coordination tridente⁶ via les deux hétéroatomes et le carbone central, une coordination bidente des deux hétéroatomes uniquement⁷ et une deuxième forme de coordination bidente par l'atome de carbone central et un des deux hétéroatomes⁸. Les paramètres qui dirigent ces différents modes de coordination n'ont pas encore été rationnalisés mais cette adaptabilité des ligands peut avoir son importance lors de processus catalytiques. Par exemple, le groupe de Milstein a démontré l'intérêt de l'hémilabilité de l'atome d'azote dans des complexes pinceurs N-C-P de ruthénium, rhodium et platine^{9,10,11}. Nous avons voulu comparer deux ligands anioniques similaires et leur coordination sur le rhodium. Les deux ligands anioniques utilisés ont déjà été décrits dans ce manuscrit, il s'agit de **2.Li** et de l'anion dérivé du ligand mixte sulfure de phosphine/triméthylsilyle **III.2** (noté ici **V.1**) (schéma 3).

Schéma 3 : Deux ligands comparés dans cette étude.

Dans le cas de **V.1Li**, la coordination C-S est imposée alors que dans le cas de **2.Li** les trois modes de coordination décrits dans le schéma 2 peuvent être envisagés. En fait, peu d'exemples de coordination tridente ont été observés pour **2.Li**^{6f} et dans la plupart desquels $Y \neq H^{6b,12}$. Dans le cas particulier des métaux du groupe 9, seule la coordination S-S a été observée^{7c}. La

⁹ M. Gandelman, D. Milstein, Chem. Commun. 2000, 1603-1604.

⁶ a) R. P. K. Babu, R. McDonald, R. G. Cavell, *Organometallics* 2000, *19*, 3462-1465; b) M. Valderrama, R. Contreras, V. Arancibia, P. Muñoz, *Inorg. Chim. Acta* 1997, *255*, 221-227; c) J.-C. Tourneux, J.-C. Berthet, T. Cantat, P. Thuéry, N. Mézailles, M. Ephritikhine, *J. Am. Chem. Soc.* 2011, *133*, 6162-6165; d) G. Aharonian, K. Feghali, S. Gambarotta, G. P. A. Yap, *Organometallics* 2001, *20*, 2616-2622; e) P. Wei, D. W. Stephan, *Organometallics* 2002, *21*, 1308-1310; f) C. Bibal, M. Pink, Y. D. Smurnyy, J. Tomaszewski, K. G. Caulton, *J. Am. Chem. Soc.* 2004, *126*, 2312-2313; g) M. Valderrama, R. Contreras, M. Bascunan, S. Alegria, D. Boys, *Polyhedron* 1995, *14*, 2239-2246; h) C. Klemps, A. Buchard, R. Houdard, A. Auffrant, N. Mezailles, X. F. Le Goff, L. Ricard, L. Saussine, L. Magna, P. Le Floch, *New J. Chem.* 2009, *33*, 1748-1752; i) Y. Smurnyy, C. Bibal, M. Pink, K. G. Caulton, *Organometallics* 2005, *24*, 3849-3855; j) S. Al-Benna, M. J. Sarsfield, M. Thornton-Pett, D. L. Ormsby, P. J. Maddox, P. Brès, M. Bochmann, *J. Chem. Soc., Dalton Trans.* 2000, 4247-4257.

 ⁷ a) M. S. Hill, P. B. Hitchcock, J. Organomet. Chem. 2004, 689, 3163-3167; b) A. Kasani, R. McDonald, R. G. Cavell, Organometallics 1999, 18, 3775-3777; c) J. Browning, G. W. Bushnell, K. R. Dixon, R. W. Hilts, J. Organomet. Chem. 1992, 434, 241-252; d) A. Davison, D. L. Reger, Inorg. Chem. 1971, 10, 1967-1970; e) J. Browning, K. R. Dixon, R. W. Hilts, Organometallics 1989, 8, 552-554; f) T. K. Panda, P. W. Roesky, P. Larsen, S. Zhang, C. Wickleder, Inorg. Chem. 2006, 45, 7503-7508; g) M. S. Hill, P. B. Hitchcock, J. Chem. Soc., Dalton Trans. 2002, 4694-4702; h) M. S. Hill, P. B. Hitchcock, Dalton Trans. 2003, 570-574; i) S. Marks, R. Koppe, T. K. Panda, P. W. Roesky, Chem. Eur. J. 2010, 16, 7096-7100; j) S. Marks, T. K. Panda, P. W. Roesky, Dalton Trans. 2010, 39, 7230-7235.

⁸ a) C. Bibal, Y. D. Smurnyy, M. Pink, K. G. Caulton, J. Am. Chem. Soc. 2005, 127, 8944-8945; b) M. Fang, N. D. Jones, R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, Angew. Chem. Int. Ed. 2006, 45, 3097-3101; c) M. W. Avis, K. Vrieze, H. Kooijman, N. Veldman, A. L. Spek, C. J. Elsevier, Inorg. Chem. 1995, 34, 4092-4105; d) P. Imhoff, R. van Asselt, J. M. Ernsting, K. Vrieze, C. J. Elsevier, W. J. J. Smeets, A. L. Spek, A. P. M. Kentgens, Organometallics 1992, 12, 1523-1536; e) M. W. Avis, M. E. van der Boom, C. J. Elsevier, W. J. J. Smeets, A. L. Spek, J. Organomet. Chem. 1997, 527, 263-276; f) J. Browning, G. W. Bushnell, K. R. Dixon, A. Pidcock, Inorg. Chem. 1983, 22, 2226-2228; g) D. E. Berry, J. Browning, K. R. Dixon, R. W. Hilts, A. Pidcock, Inorg. Chem. 1992, 31, 1479-1487; h) A. Laguna, M. Laguna, A. Rojo, M. N. Fraile, J. Organomet. Chem. 1986, 315, 269-276; i) M. C. Gimeno, A. Laguna, M. Laguna, F. Sanmartin, P. G. Jones, Organometallics 1993, 12, 3984-3991; j) C. J. Elsevier, P. Imhoff, C. J. Elsevier, J. Organomet. Chem. 1989, 361, C61-C65; l) M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652-1665.

¹⁰ E. Poverenov, M. Gandelman, L. J. W. Shimon, H. Rozenberg, Y. Ben-David, D. Milstein, Organometallics 2005, 24, 1082-1090.

¹¹ B. Gnanaprakasam, D. Milstein, J. Am. Chem. Soc. 2011, 133, 1682-1685.

¹² T. Cantat, N. Mezailles, L. Ricard, Y. Jean, P. Le Floch, Angew. Chem. Int. Ed. 2004, 43, 6382-6385.

coordination tridente a été proposée uniquement dans un complexe d'Ir(I) intermédiaire¹³. Dans une première partie, nous présenterons une étude comparative expérimentale et théorique des deux anions afin de quantifier la stabilisation de la charge au carbone central. Dans une deuxième partie la chimie de coordination de ces anions sur le même précurseur de Rh(I) sera présentée et montrera que le passage de la coordination S-S à C-S est possible. Finalement, un équilibre dynamique entre la coordination des deux atomes de soufre a été observé par RMN et rationnalisé.

II. Comparaison des deux systèmes anioniques

La synthèse de **V.1** a été effectuée en reprenant une méthode publiée par Holmes-Smith *et al.* en 1983¹⁴. **V.1** est obtenu sous la forme d'un solide blanc cristallin après purification et avec un très bon rendement (84 %, schéma 4). Il est caractérisé en RMN ³¹P par un singulet à $\delta_p = 37,7$ ppm. En RMN ¹H, les deux protons centraux résonnent à $\delta_H = 1,70$ ppm (d, ${}^2J_{P-H} = 16$ Hz). Au cours de notre étude, Gessner a publié la structure de ce ligand¹⁵. Cet article détaille également la formation de **V.1Li** par déprotonation de **V.1** avec un équivalent de MeLi dans le THF (schéma 4). Nous avons employé la même méthode pour la synthèse de **V.1Li** et avons complété sa caractérisation. Il est caractérisé dans le spectre RMN ³¹P par un singulet à $\delta_p = 44,5$ ppm dans le benzène et la présence d'un unique proton à $\delta_H = 0,5$ ppm (d, $J_{P-H} = 9$ Hz) confirme la déprotonation. Afin de valider notre étude théorique, une structure RX de **V.1Li** a été réalisée. Des monocristaux ont été obtenus par diffusion lente d'hexanes dans une solution concentrée de **V.1Li** dans l'éther. Une représentation en est donnée en figure 1.

Schéma 4 : Synthèse de V.1 et de V.1Li.

¹³ M. Blug, H. Heuclin, T. Cantat, X. F. Le Goff, N. Mézailles, P. Le Floch, Organometallics 2009, 28, 1969-1972.

¹⁴ R. D. Holmes-Smith, R. D. Osei, S. R. Stobart, J. Chem. Soc., Perkin Trans. 1 1983, 861-866.

¹⁵ V. H. Gessner, *Organometallics* **2011**, *30*, 4228-4231.

Figure 1: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **V.1Li**. Les atomes d'hydrogène (sauf sur C(1) et C(1') ont été omis par souci de clarté. Distances (Â) et angles (°) significatifs : C(1)-P(1) 1,701(1) ; C(1)-Si(1) 1,827(1) ; P(1)-S(1) 2,0263(4) ; S(1)-Li(1) 2,542(2) ; C(1)-H(1) 0.95(2) ; P(1)-C(1)-Si(1) 129,56(7) ; S(1)-P(1)-C(1) 113,72(4).

V.1Li cristallise sous forme dimérique. Chaque atome de lithium est lié à un carbone, un atome de soufre de chaque ligand et une molécule de solvant. Par rapport au ligand neutre, **V.1Li** possède une liaison P-C nettement plus courte (1,701(1) Å contre 1,803(2) Å dans **V.1**). De même, la liaison C-Si est raccourcie (1,827(1) Å contre 1,896(2) Å). En revanche, la liaison P-S dans **V.1Li** est plus longue que dans **V.1** (2,0263(4) Å contre 1,9628(14) Å).

Le monoanion **2.Li** a également été étudié et sa synthèse et sa structure ont déjà été publiées¹⁶. Par rapport au ligand neutre **2**¹⁷, **2.Li** montre les mêmes évolutions des longueurs de liaison (raccourcissement des liaisons P-C, allongement des liaisons P-S). Ces changements géométriques ont été étudiés par calculs DFT. La fonctionnelle B3LYP a été utilisée en combinaison avec la base 6-31+G* pour tous les atomes. Notre intérêt premier était de comparer la stabilisation de la paire libre au carbone central par un groupement Ph₂PS et un groupement SiMe₃. Nous avons vu que la stabilité des dianions dépendait grandement de la capacité qu'avaient les substituants au carbone central d'accepter le surplus de densité électronique. Ici, les calculs ont été menés sur des modèles simplifiés de **V.1Li** et **2.Li** dans lesquels les noyaux aromatiques ont été remplacés par des atomes d'hydrogène (**A** et **B**, schéma 5).

¹⁶ W.-P. Leung, C.-L. Wang, T. C. W. Mak, Organometallics 2010, 29, 1622-1628.

¹⁷ C. J. Carmalt, A. H. Cowley, A. Decken, Y. G. Lawson, N. C. Norman, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, 52, 931-933.

Schéma 5 : Modèles simplifiés utilisés pour l'étude théorique.

Nous avons vérifié que la coordination de molécules de solvant à l'atome de lithium n'avait pas d'influence majeure sur les résultats et donc seuls les modèles les plus simples seront représentés. Les structures optimisées de **A** et **B** sont représentées figure 2.

Figure 2 : Représentations de structures optimisées de A (gauche) et B (droite).

Les paramètres structuraux calculés pour les deux modèles sont parfaitement en accord avec les données RX. Les modèles que nous avons choisis sont donc pertinents pour mener notre étude théorique. Une comparaison des données théoriques et des données RX est donnée dans le tableau 1.

Liaison	Α			В		
	RX	DFT	Δ	RX	DFT	Δ
P(1)-C	1,70	1,75	0,05	1,71	1,74	0,03
P(2)-C	-	-	-	1,71	1,74	0,03
C-Si	1,83	1,86	0,03	-	-	-
P(1)-S(1)	2,03	2,05	0,02	1,99	2,02	0,03
P(2)-S(2)	-	-	-	1,99	2,02	0,03

Tableau 1 : Comparaison des données RX et DFT de A et B.

Afin de pouvoir quantifier la stabilisation de la paire libre au carbone central, une analyse NBO a été menée sur les deux modèles. Dans les deux cas, cette paire libre est presque une orbitale p pure (91,3% de caractère p pour **A** et 99,1% de caractère p pour **B**). Les deux carbones portent tous les deux une charge négative assez importante ($q_c = -1,67$ et -1,48 pour **A** et **B**). Comme prévu les liaisons C-Li et S-Li sont de nature électrostatique ($q_{Li} = 0,85$ et 0,82 ; $n_{wiberg} \approx 0,1$ dans

chaque cas). Les paires libres aux carbones centraux sont stabilisées par hyperconjugaison négative vers les orbitales vides voisines $\sigma^*(P-S)$, $\sigma^*(P-H)$ et $\sigma^*(Si-C)$ pour **A** et $\sigma^*(P-S)$ et $\sigma^*(P-H)$ H) pour **B**. Le résultat de ces stabilisations est donné dans le tableau 2 (**A**) et le tableau 3 (**B**) et les différentes orbitales impliquées sont représentées figure 3 et figure 4.

Orbitale donneuse		Orbitale a				
	type	E(2) kcal/mol	ΔE_{ij} (u. a.)	F _{ij} (u. a.)	$\Sigma(E(2))$ Kcal/mol	
LP1(C)	$\sigma^*_{(P-S)}$	8,30	0,32	0,048		
LP1(C)	$\sigma_{(P-H)}^{*}$	10,27	0,41	0,060	19,20	
LP1(C)	$\sigma^{*}_{(P-H)}$	0,63	0,41	0,015		Total
LP1(C)	$\sigma^*_{(Si-C)}$	1,72	0,47	0,027		31,78
LP1(C)	$\sigma^*_{(Si-C)}$	9,96	0,47	0,064	12,58	
LP1(C)	$\sigma^*_{(Si-C)}$	0,90	0,47	0,019		

Tableau 2 : Stabilisation de la paire libre au carbone central dans A.

Orbitale		Orbitale a				
donneuse	type	E(2) kcal/mol	ΔE_{ij} (u. a.)	F _{ij} (u. a.)	$\Sigma(E(2))$ kcal/mol	
LP1(C)	$\sigma^*_{(P-S)}$	10,86	0,31	0,055	20.53	
LP1(C)	$\sigma^{*}_{(P-H)}$	9,67	0,39	0,057	20,55	Total 41,05
LP1(C)	σ* _(P-S)	10,87	0,31	0,055	20,53	
LP1(C)	$\sigma^*_{(P-H)}$	9,66	0,39	0,057		

Tableau 3 : Stabilisation de la paire libre au carbone central dans B.

Figure 3 : Représentation de la stabilisation de la paire libre au carbone central dans A.

Figure 4 : Représentation de la stabilisation de la paire libre au carbone central dans B.

D'après les énergies calculées, la stabilisation apportée par un groupement Ph₂PS est équivalente dans les deux modèles (19,2 kcal/mol et 20,5 kcal/mol). En revanche, la stabilisation apportée par le groupement SiMe₃ à été calculée à seulement 12 kcal/mol environ. Ceci indique que la stabilisation de la charge au carbone central est moins bonne dans **A** que dans **B**. Les changements géométriques sont également rationalisés par cette étude théorique. La donation électronique dans des orbitales à caractère antiliant provoque un allongement des liaisons correspondantes. La plus faible énergie de stabilisation calculée pour **A** permet d'envisager une donation électronique vers le centre métallique plus prononcée que dans le cas de **B**.

III. Chimie de coordination, complexes de rhodium(I)

Nous avons tout d'abord focalisé notre étude sur la coordination de ces ligands au rhodium(I). L'addition de deux équivalents de **V.1Li** à une solution de $[Rh(COD)Cl]_2$ (COD = 1,5-cyclooctadiène) dans le toluène conduit instantanément à une solution très foncée. Un suivi par RMN ³¹P révèle que la réaction de coordination au métal est totale en seulement 15 minutes. En effet, le signal correspondant au produit de départ (δ_P = 44,5 ppm) a complètement disparu au profit d'un doublet à δ_P = 37,8 ppm (${}^2J_{Rh-P}$ = 15,5 Hz). Le couplage Rh-P confirme la coordination de notre ligand au métal. Après traitement, le complexe **V.2** est isolé sous la forme d'une poudre orange foncé (schéma 6). Ce complexe a ensuite été caractérisé par spectroscopie RMN multinoyaux. Dans le spectre RMN ¹H, les protons éthyléniques du ligand cyclooctadiène sont observés en deux systèmes bien distincts : un massif à δ_H = 4,68 ppm (deux protons) et deux massifs à δ_H = 4,22 ppm (un proton) et δ_H = 3,99 ppm (un proton). Ceci dénote la grande différence d'influence *trans* de l'atome de soufre et du carbone central.

Schéma 6 : Synthèse de V.2 et V.3.

Le signal correspondant au proton central est malheureusement masqué par les protons aliphatiques du cyclooctadiène. Il a néanmoins été localisé à $\delta_{\rm H} = 1,70$ ppm grâce à une séquence hetcor ³¹P/¹H. Dans le spectre RMN ¹³C, le carbone central résonne à $\delta_{\rm C} = -2,7$ ppm (dd, ¹J_{Rh-C} = 15,5 Hz et ¹J_{P-C} = 26 Hz) à champ beaucoup plus haut que dans l'anion ($\delta_{\rm C} = 11,7$ ppm).

La même réaction avec un équivalent de $[Rh(NBD)Cl]_2$ (NBD = norbornadiène) conduit également à un nouveau produit en RMN ³¹P ($\delta_P = 57$ Hz, ${}^2J_{Rh-P} = 17,7$ Hz, complexe **V.3**) qui a été caractérisé par RMN multinoyaux mais n'a pas été utilisé par la suite en raison de la plus grande disponibilité du précurseur $[Rh(COD)Cl]_2$ au laboratoire.

L'évaporation lente d'une solution concentrée de **V.2** dans le dichlorométhane a conduit à la formation de cristaux analysables par diffraction des RX. Une représentation de **V.2** est donnée figure 5 (trois molécules indépendantes forment la maille de **V.2**, une seule est représentée ici). Dans **V.2**, l'atome de rhodium adopte une géométrie plan carré distordue (angle dièdre de 35° environ). Ce type de géométrie est classique pour les centres métalliques ML₄ de configuration d⁸ à 16 électrons. La distance Rh-C de 2,178(5) Å est dans la norme des distances habituellement observées pour des complexes pinceurs de rhodium^{18,19}. La liaison P-C est légèrement plus longue dans **V.2** que dans l'anion (1,747(5) Å contre 1,701(1) Å) alors que la liaison P-S est plus courte (2,013(2) Å contre 2,0263(4) Å). Ceci indique que la charge au carbone central est maintenant en partie transférée sur le centre métallique (donation plus faible dans la σ^* (P-S)).

¹⁸ M. Block, C. Wagner, S. Gómez-Ruiz, D. Steinborn, *Dalton Trans.* 2010, 39, 4636-4646.

¹⁹ W. Lesueur, E. Solari, C. Floriani, *Inorg. Chem.* **1997**, *36*, 3354-3362.

Ce type de complexe peut servir de point de départ à la synthèse de nouveaux complexes grâce à la labilité du ligand cyclooctadiène. Ainsi, les réactions entre **V.2** et le monoxyde de carbone ou une quantité stœchiométrique de 2,6-diphénylisonitrile ont été étudiées (schéma 7).

Figure 5 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de V.2. Les atomes d'hydrogène (sauf sur C(25)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(25)-P(2) 1,747(5) ; P(2)-S(2) 2,013(2) ; C(25)-Si(2) 1,869(5) ; C(25)-Rh(2) 2,178(5) ; S(2)-Rh(2) 2,398(1) ; Rh(2)-C(41) 2,165(5) ; Rh(2)-C(42) 2,112(5) ; Rh(2)-C(45) 2,184(6) ; Rh(2)-C(46) 2,178(5) ; C(41)-C(42) 1,138(8) ; C(45)-C(46) 1,367(7) ; P(2)-C(25)-Si(2) 118,5(3) ; S(2)-P(2)-C(25) 103,2(2) ; C(25)-Rh(2)-S(2) 80,1(1) ; P(2)-C(25)-Rh(2) 85,6(2) ; S(2)-P(2)-C(25)-Rh(2) 35,1.

Schéma 7 : Réactivité de V.2 vis-à-vis du monoxyde de carbone et d'un isonitrile.

Dans les deux cas, la réaction est instantanée et conduit à la formation des complexe V.4 et V.5. Ceux-ci sont caractérisés en RMN ³¹P par un doublet à $\delta_{\rm p} = 62,5$ ppm (² $J_{\rm Rh-P} = 16,6$ Hz) pour V.4 et à $\delta_{\rm p} = 51,4$ ppm (² $J_{\rm Rh-P} = 12,3$ Hz) pour V.5, soit à champ plus faible que le complexe de départ. Les spectres RMN ¹³C des deux complexes indiquent que deux ligands CO (V.4) et isonitrile (V.5) non-équivalents sont coordinés au rhodium (deux doublets à $\delta_{\rm C} = 187,3$ ppm avec ${}^{1}J_{\rm Rh-C} = 78$ Hz et à $\delta_{\rm C} = 186,1$ ppm avec ${}^{1}J_{\rm Rh-C} = 61$ Hz pour V.4 et deux doublet à $\delta_{\rm C} = 161,7$ ppm avec ${}^{1}J_{Rh-C} = 78$ Hz et à $\delta_{C} = 161,3$ ppm avec ${}^{1}J_{Rh-C} = 60$ Hz pour **V.5**). Dans les spectres RMN 1 H, chaque proton central est légèrement déplacé vers les champs faibles (doublet de doublet à $\delta_{H} = 0,76$ ppm avec ${}^{2}J_{Rh-H} = 1,3$ Hz et ${}^{2}J_{P-H} = 7,5$ Hz dans **V.4** et doublet de doublet à $\delta_{H} = 0,75$ ppm avec ${}^{2}J_{Rh-H} = 1,1$ Hz et ${}^{2}J_{P-H} = 7,3$ Hz dans **V.5**) par rapport à **V.2**. Finalement, dans le spectre RMN 13 C les carbones correspondants sont, eux, localisés à champ plus fort que dans le complexe de départ ($\delta_{C} = -7,4$ ppm et $\delta_{C} = -5,0$ ppm). Le tableau 4 regroupe les données RMN des différents produits étudiés jusque-là.

		V.1	V.1Li	V.2	V.3	V.4
RMN ³¹ P	δρ	37,7 (s)	44,5 (s)	37,8 (d)	62,5 (d)	51,4 (d)
RMN ¹ H	δн (PC(H)P)	1,70 (d)	0,5 (d)	1,70	0,76 (dd)	0,75 (dd)
	δc (PCP)	21,0 (d)	11,7 (d)	-2,7 (d)	-7,4 (dd)	-5,0 (dd)
RMN ¹³ C	δc (CX)				187,3 (d)	161,7 (d)
		-	-	- 186,1(186,1(d)	161,3 (d)

Tableau 4 : Données RMN pour les composés V.1 à V.4.

Après traitement ces deux complexes sont isolés sous forme de solide marron (V.4) et jaune (V.5) et sont stables à l'air et à l'eau contrairement au complexe de départ V.2. Les structures RX des deux complexes ont été déterminées. Pour V.4 des cristaux analysables par diffraction des RX ont été obtenus par diffusion d'eau dans une solution concentrée dans l'acétone. Pour V.5, les cristaux ont été obtenus par diffusion de pentane dans une solution concentrée dans le toluène à -35°C. Les représentations de V.4 et V.5 sont données figure 6 et figure 7.

Figure 6: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **V.4**. Les atomes d'hydrogène (sauf sur C(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,752(3); P(1)-S(1) 2,023(1); C(1)-Si(1) 1,883(3); Rh(1)-C(1) 2,149(3); Rh(1)-C(17) 1,888(4); Rh(1)-C(18) 1,847(4); C(17)-O(1) 1,131(5); C(18)-O(2) 1,138(5); Rh(1)-S(1) 2,398(1); P(1)-S(1) 2,023(1); P(1)-C(1)-Si(1) 119,7(2); O(1)-C(17)-Rh(1) 177,4(4); O(2)-C(18)-Rh(1) 177,3(4); C(17)-C(18)-C(1)-S(1) 3,77.

Dans les deux cas, l'atome de rhodium est toujours de géométrie plan carré presque parfaite (angles dièdres de 3,77° et 2,53°). Les liaisons C-O de 1,131(5) Å et 1,138(5) Å dans V.4 sont de longueur tout à fait classique pour des complexes pinceurs de Rh(I)²⁰ et il en est de même pour les liaisons CN dans V.5²¹. De facon très surprenante, dans la structure de V.5, les deux ligands isonitrile, bien que très encombrés, sont situés dans le même plan et ne sont pas orthogonaux comme on aurait pu l'envisager.

En infrarouge, les bandes correspondant aux groupements CO dans V.4 sont mesurées à 2145 et 2078 cm⁻¹ ce qui indique une faible rétrodonation du métal. Dans V.5 les bandes caractéristiques des isonitriles sont à 2117 et 2046 cm⁻¹. Étonnamment, la coordination de deux ligands très accepteurs tels que CO et CNR n'a pas une grande influence sur la longueur de la liaison Rh-C entre le métal et le ligand V.1 (2,171(6) Å dans V.2, 2,149(3) Å dans V.4 et 2,174(1) Å dans V.5). Il en est de même pour les autres longueurs de liaison suggérant que les co-ligands (COD, CO, CNR) ont une influence similaire sur le ligand coordiné au rhodium.

Figure 7 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de V.5. Les atomes d'hydrogène (sauf sur C(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,749(1) ; P(1)-S(1) 2,0131(6) ; C(1)-Si(1)1,871(2); C(1)–Rh(1) 2,174(1); S(1)–Rh(1) 2,4097(4); C(17)–N(1) 1,167(2); C(26)–N(2) 1,163(2); P(1)–C(1)–Si(1) 118,76(8); S(1)-P(1)-C(1) 103,23(5); C(1)-Rh(1)-S(1) 80,06(4); P(1)-C(1)-Rh(1) 89,21(6); S(1)-C(1)-C(26)-C(17) 80,06(4); P(1)-C(1)-Rh(1) 89,21(6); S(1)-C(1)-C(26)-C(17) 80,06(4); P(1)-C(1)-Rh(1) 80,06(4); P(1)-C(1)-Rh(1) 80,06(4); P(1)-C(1)-Rh(1) 80,06(4); P(1)-C(1)-Rh(1) 80,06(4); P(1)-Rh(1)-Rh(1) 80,06(4); P(1)-Rh(1) 80,06(4); P(1)-Rh(1)-Rh(1) 80,06(4); P(1)-Rh(12,35.

Nous avons alors voulu comparer la réactivité de V.1Li avec celle du monoanion 2.Li sur le même précurseur de rhodium. La réaction entre deux équivalents de 2.Li avec un équivalent de

²⁰ a) K.-W. Huang, D. C. Grills, J. H. Han, D. J. Szalda, E. Fujita, Inorg. Chim. Acta 2008, 361, 3327-3331 ; b) E. Kossoy, M. A. Iron, B. Rybtchinski, Y. Ben David, L. J. W. Shimon, L. Konstantinovski, J. M. L. Martin, D. Milstein, Chem. Eur. J. 2005, 11, 2319-2326 ; c) E. Kossoy, B. Rybtchinski, Y. Diskin-Posner, L. J. W. Shimon, G. Leitus, D. Milstein, Organometallics 2009, 28, 523-533 ; d) M. Montag, I. Efremenko, R. Cohen, L. J. W. Shimon, G. Leitus, Y. Diskin-Posner, Y. Ben-David, H. Salem, J. M. L. Martin, D. Milstein, Chem. Eur. J. **2010**, *16*, 328-353. ²¹ M. Rubio, A. Suarez, D. del Rio, A. Galindo, E. Alvarez, A. Pizzano, *Organometallics* **2009**, *28*, 547-560.

 $[Rh(COD)Cl]_2$ dans le toluène conduit instantanément à l'apparition d'un doublet à $\delta_p = 36,1$ ppm (${}^2J_{Rh-P} = 5$ Hz, complexe **V.6**, schéma 8) qui indique la coordination du ligand au métal comme précédemment décrit par Dixon *et coll.*²² Une série de données RX légèrement différentes de celles de Dixon ont été obtenues pour **V.6**. Une représentation en est donnée figure 8. Cette structure confirme que **2.Li** agit comme un ligand bidente *via* les deux atomes de soufre.

Schéma 8 : Synthèse de V.6.

Figure 8: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **V.6** Les atomes d'hydrogène (sauf sur C(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,706(2) ; C(1)-P(2) 1,717(2) ; P(1)-S(1) 2,0178(6) ; P(2)-S(2) 2,0445(6) ; Rh(1)-S(1) 2,3995(5) ; Rh(1)-S(2) 2,3768(5) ; Rh(1)-C(26) 2,135(2) ; Rh(1)-C(27) 2,138(2) ; Rh(1)-C(30) 2,146(2) ; Rh(1)-C(31) 2,154(2) ; C(26)-C(27) 1,404(3) ; C(30)-C(31) 1,397(3) ; P(1)-C(1)-P(2) 121,4(1).

Le ligand cyclooctadiène a été facilement déplacé du centre métallique par réaction avec le 2,6diphénylisonitrile. Dans un premier temps, la réaction d'un équivalent d'isonitrile avec un équivalent de **V.6** conduit à la conversion d'un demi équivalent de **V.6** en un nouveau complexe caractérisé dans le spectre RMN ³¹P par un signal large à $\delta_{\rm p}$ = 54,1 ppm (complexe **V.7**), l'autre

²² J. Browning, G. W. Bushnell, K. R. Dixon, R. W. Hilts, J. Organomet. Chem. 1992, 434, 241-252.

demi équivalent de **V.6** n'ayant pas réagi. L'addition d'un deuxième équivalent d'isonitrile permet la conversion totale de **V.6** en **V.7** (schéma 9**Schéma**).

Schéma 9 : Réactivité de V.6 vis-à-vis d'un isonitrile et du monoxyde de carbone.

V.7 a été caractérisé par spectroscopie RMN multinoyaux. Le signal correspondant au proton central a été observé à $\delta_{\rm H} = 2,58$ ppm (td avec ${}^{2}J_{\rm Rh-H} = 1,5$ Hz et ${}^{2}J_{\rm P,H} = 8$ Hz). La même réaction effectuée avec du monoxyde de carbone conduit également à la conversion de **V.6** en un nouveau complexe **V.8** caractérisé en RMN ³¹P par un doublet à $\delta_{\rm p} = 62.0$ ppm (${}^{2}J_{\rm Rh-P} = 10$ Hz) et en RMN ¹H par un signal du proton central à $\delta_{\rm H} = 2,68$ ppm (td, ${}^{2}J_{\rm Rh-H} = 1,8$ Hz et ${}^{2}J_{\rm P,H} = 8$ Hz). Etonnamment, dans les spectres ¹³C de **V.7** et **V.8**, un seul signal est observé pour les groupements CX (X = O, NR) à $\delta_{\rm C} = 160,0$ ppm (d, ${}^{1}J_{\rm Rh-C} = 69$ Hz) pour **V.7** et à $\delta_{\rm C} = 185,6$ ppm (d, ${}^{1}J_{\rm Rh-C} = 70$ Hz) pour **V.8**. Les signaux correspondant aux carbones centraux sont observés à $\delta_{\rm C} = 6,2$ ppm (**V.7**) et à $\delta_{\rm C} = 0,0$ ppm (**V.8**). Ce sont, dans les deux cas, des massifs non résolus. Le tableau 5 répertorie les différents déplacements chimiques observés dans les complexes étudiés.

		2 ²³	2.Li ¹⁶	V.6	V.7	V.8
RMN ³¹ P	δρ	35,1 (s)	37,5 (s)	36,1 (d)	54,1 (d)	62.0 (d)
RMN ¹ H	δн (PC(H)P)	3,98 (t)	2,23 (t)	1,70 (bt)	2,58 (td)	2,68 (td)
RMN ¹³ C	δc (PCP)	38,9 (t)	20,1(t)	12,3 (td)	-6,2 (m)	0,0 (m)
	δc (CX)	-	-	-	160,0	185,6

Tableau 5 : Données RMN pertinentes des complexes dérivés de 2.

A ce stade, à cause de l'équivalence apparente des ligands CX et des atomes de phosphore dans les complexes V.7 et V.8, trois structures sont envisagées pour ces complexes : i) un rhodium

²³ S. O. Grim, E. D. Walton, *Inorg. Chem.* **1980**, *19*, 1982-1987.

pentavalent avec une coordination tridente S-C-S du ligand et deux ligands CX; ii) une coordination bidente fixe S-S telle qu'observée pour V.6 avec un rhodium ML_4 ; iii) un équilibre rapide entre deux modes de coordination bidentes S-C (schéma 10).

Schéma 10 : Structures possibles pour les complexes V.7 et V.8.

Un premier élément de réponse est donné par la structure RX de V.7. Des monocristaux analysables par diffraction des RX ont été obtenus par diffusion lente de pentane dans une solution concentrée du complexe dans le toluène (malheureusement, aucune structure RX n'a pu être déterminée pour V.8). Une représentation de V.7 est donnée figure 9.

Figure 9 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de V.7 Les atomes d'hydrogène (sauf sur C(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,768(3); C(1)-P(2) 1,792(3); Rh(1)-C(1) 2,198(3); Rh(1)-S(1) 2,390(1); P(1)-S(1) 2,014(1); P(2)-S(2) 1,972(1); Rh(1)-C(27) 1,908(4); Rh(1)-C(26) 1,887(4); N(1)-C(26) 1,167(5); N(2)-C(27) 1,160(4); P(1)-C(1)-P(2) 118,7(2); N(2)-C(27)-Rh(1) 177,0(3); N(1)-C(26)-Rh(1) 176,2(3); C(27)-C(26)-C(1)-S(1) 2,27.

Dans V.7, l'atome de carbone central est cette fois-ci lié à l'atome de rhodium. La distance Rh-C mesurée à 2,198(3) Å est du même ordre de grandeur que dans les complexes V.2, V.4 et V.5. De plus celle-ci est nettement plus courte que dans V.6 (3,99 Å). La coordination des deux ligands isonitrile sur l'atome de rhodium a une influence considérable sur le mode de coordination du

ligand $[(Ph_2PS)_2CH]$. A l'état solide, **V.7** possède deux atomes de phosphore non-équivalents ce qui contredit les données RMN en solution et nous permet d'éliminer les deux premières hypothèses présentées ci-dessus.

Nous avons alors voulu vérifier si, effectivement, un équilibre dynamique en solution pouvait exister entre deux modes de coordination S-C dans **V.7**. Pour cela, une expérience de suivi RMN ³¹P à température variable a été menée sur **V.7**. Un échantillon de **V.7** dans le THF a été refroidi de 25°C jusqu'à -80°C. Une coalescence du signal à $\delta_p = 54$ ppm a été observée à environ – 65°C et à – 80°C le spectre RMN ³¹P montre un système AB large à $\delta_p = 76,5$ ppm et $\delta_p = 56,7$ ppm. Ce phénomène est totalement réversible et le réchauffement de l'échantillon jusqu'à 25°C fait réapparaître le signal initial. De ces observations expérimentales, l'énergie d'activation de ce processus peut être estimée à 8,4 kcal/mol²⁴.

Des calculs DFT ont ensuite été effectués afin d'expliquer l'équivalence apparente des deux atomes de phosphore en RMN ³¹P dans **V.7** et de confirmer l'énergie déduite expérimentalement. Cinq modèles de **V.7** ont ainsi été calculés. Ils sont notés **C, D, E, F** et **G** et sont représentés dans le schéma 11.

Schéma 11 : Modèles utilisés lors de l'étude théorique.

C est tiré directement de la structure RX de V.7, D est un complexe de rhodium pentacoordiné de géométrie bipyramide trigonale avec une coordination tridente du ligand S-C-S, E est un complexe de rhodium ML3 dans lequel aucun des atomes de soufre n'est lié au métal, F est un complexe de rhodium ML4 plan carré dans lequel le carbone central n'est pas lié au métal et G est obtenu à partir de C par rotation du bras P-S.

D et E pourraient être des intermédiaires possibles dans le processus d'échange des atomes de soufre. Cependant lors de l'optimisation de ces modèles, le minimum trouvé sur la surface d'énergie potentielle correspond en fait à G. Les deux autres modèles (C et F) ont pu être

²⁴ H. Günther, NMR Spectroscopy, Wiley, New York, 1980.

optimisés comme des minima sur la surface d'énergie potentielle. Les structures optimisées des 3 modèles cités sont représentées figure 10.

Au niveau énergétique, **G** est 6,4 kcal/mol plus haut que **C** et un état de transition reliant les deux images dans un miroir de **G** n'a pas été trouvé. **F** est quant à lui 7,2 kcal/mol plus haut que **C** ce qui explique pourquoi un mode de coordination bidente S-C est exclusivement observé pour **V.7**. Nous pouvons alors proposer un mécanisme pour ce processus d'échange. Partant du minimum d'énergie **C**, la rotation du bras P-S libre conduit à **G** légèrement moins stable. Dans ce complexe, les distances Rh-S calculées sont de 4,73 Å et 2,24 Å. Ensuite une décoordination de l'atome de carbone central compensée par une coordination de l'atome de soufre précédemment libre conduit à **F** dans lequel les distances Rh-S sont de 2,51 Å et la distance Rh-C de 4,20 Å. Une recherche d'état de transition entre ces deux géométries n'a pas été fructueuse. Ensuite, le mécanisme inverse a lieu : recoordination du carbone central et décoordination du soufre opposé et rotation du bras P-S pour obtenir l'image de **C** dans un miroir plan. Ce mécanisme est représenté de façon simplifiée dans le schéma 12.

Figure 10 : Structures optimisées de C (haut-gauche), F (haut-droite), G (bas).

Schéma 12 : Mécanisme proposé pour l'équilibre.

IV.Chimie de coordination, complexes d'or(I)

Depuis quelques années, un type particulier de molécule suscite un intérêt majeur. Il s'agit d'espèces neutres L^1 -C- L^2 ($L^{1,2}$ = ligands) dans lesquelles le carbone central porte deux paires libres. Le premier exemple d'une telle espèce a été synthétisé en 1961 par le groupe de Ramirez^{25,26} avec $L^1 = L^2 = PPh_3$. En 1975, le groupe de Schmidbaur a mis au point la synthèse de $C(PMe_3)_2^{27}$. Les propriétés de coordination de cette espèce sur l'or(I) ont été publiées en 1976²⁸. La réaction entre C(PMe₃)₂ et [(CH₃)AuP(CH₃)₃] conduit à un complexe dinucléaire d'or dans lequel le carbone central porte deux atomes de métal. En 2002, le groupe de Vicente a montré que la réaction entre le carbodiphosphorane C(PPh₃)₂ et [AuCl(THT)] pouvait conduire soit à un complexe mononucléaire soit à un complexe dinucléaire d'or(I)²⁹ (schéma 13). En 2006, le groupe de Frenking a mené une étude théorique sur cette espèce³⁰. Cette étude indique que le carbone central dans C(PPh₃)₂ porte deux paires libres orthogonales l'une à l'autre et une charge partielle négative de -1.43e. De plus, deux liaisons o C-P sont observées. Ce calcul va donc dans le sens d'une structure de Lewis dans laquelle le carbone central porte deux charges négatives et les deux atomes de phosphore une charge positive chacun (schéma 13). Cette publication a donné lieu à l'émergence du concept de carbone(0). En effet, les auteurs suggèrent une deuxième représentation possible des carbodiphosphoranes qui pourraient être vus comme des espèces possédant un carbone(0) stabilisé, par effet donneur-accepteur, par deux groupements PPh3 (schéma 13). Ce concept de carbone(0) et de cette représentation des carbodiphosphoranes est

²⁵ F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am. Chem. Soc. 1961, 83, 3539-3540.

²⁶ G. E. Hardy, J. I. Zink, W. C. Kaska, J. C. Baldwin, J. Am. Chem. Soc. 1978, 100, 8001-8002.

²⁷ O. Gasser, H. Schmidbaur, J. Am. Chem. Soc. **1975**, 97, 6281-6282.

²⁸ H. Schmidbaur, O. Gasser, Angew. Chem. Int. Ed. **1976**, 15, 502-503.

 ²⁹ J. Vicente, A. R. Singhal, Organometallics 2002, 21, 5887-5900.
 ³⁰ P. Tarmar F. Calar, P. Namailla, W. Patz, C. Familia, Annual Cham, Int.

³⁰ R. Tonner, F. Oxler, B. Neumüller, W. Petz, G. Frenking, Angew. Chem. Int. Ed. 2006, 45, 8038-8042.

sujet à débat³¹. Les auteurs même de cette représentation conviennent qu'elle est quelque peu fantaisiste³².

$$Me_{3}P^{-C}PMe_{3} \xrightarrow{2 Au(CH_{3})P(CH_{3})_{3}} H^{3}C_{Au-Au}CH_{3}$$

$$Me_{3}P^{-C}PMe_{3} \xrightarrow{Au-Au}PMe_{3}$$

$$Ph_{3}P^{-C}PPh_{3} \xrightarrow{2 AuCI(THT)} Ph_{3}P^{-C}PPh_{3}$$

$$Ph_{3}P^{-C}PPh_{3} \xrightarrow{Ph_{3}P^{-C}PPh_{3}} Ph_{3}P^{-C}PPh_{3}$$

Schéma 13 : Coordination de carbodiphosphoranes à l'or.

Si nous nous en tenons à la représentation raisonnablement déduite de l'étude théorique du groupe de Frenking, ces espèces sont des analogues neutres des dianions. En effet, dans les deux cas, le carbone central porte deux paires libres orthogonales et deux liaisons σ C-P sont présentes.

Par la suite, de nombreuses études théoriques ont été menées sur ces complexes^{33,34,35,36,37}. En 2009, le groupe de Fürstner a étudié la réactivité d'un composé analogue vis-à-vis de l'or(I)³⁸. Cette étude montre qu'à la différence d'un carbène ou d'un allène une espèce carbodiphosphorane est capable, grâce à ses deux paires libres, de coordiner jusqu'à deux atomes d'or (schéma 14). En 2011, le groupe de Frenking a rationnalisé ces observations expérimentales³⁹.

Schéma 14 : Réactivité d'un composé mixte allène-carbène vis-à-vis de l'or.

³¹ H. Schmidbaur, Angew. Chem. Int. Ed. 2007, 46, 2984-2985.

 ³² G. Frenking, B. Neumüller, W. Petz, R. Tonner, F. Oxler, *Angew. Chem. Int. Ed.* 2007, *46*, 2986-2987.
 ³³ R. Tonner, G. Frenking, *Chem. Eur. J.* 2008, *14*, 3260-3272.

³⁴ R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3273-3289.

³⁵ R. Tonner, G. Frenking, Organometallics 2009, 28, 3901-3905.

³⁶ M. M. Deshmukh, S. R. Gadre, R. Tonnerb, G. Frenking, Phys. Chem. Chem. Phys. 2008, 10, 2298-2301.

 ³⁷ G. Frenking, R. Tonner, *Pure Appl. Chem.* 2009, *81*, 597-614.
 ³⁸ M. Alcarazo, C. W. Lehmann, A. Anoop, W. Thiel, A. Fürstner, *Nature Chem.* 2009, *1*, 295-301.

³⁹ C. Esterhuysen, G. Frenking, Chem. Eur. J. 2011, 17, 9944-9956.

En 2006, le groupe de Roesky a publié la synthèse d'un complexe dinucléaire d'or(I) par réaction du monoanion **1.K** avec [AuCl(PPh₃)] (complexe **V.9**, schéma 15)⁴⁰. Contrairement aux attentes, le complexe mononucléaire n'est pas obtenu. Le mécanisme proposé par Roesky se décompose en trois étapes. Dans un premier temps, la coordination du ligand **1** à un atome d'or conduit à un complexe mononucléaire d'or(I). Ce complexe est ensuite déprotoné par une autre molécule de **1.K** et permet la coordination du deuxième atome d'or sur le carbone central. Le ligand neutre **1** est observé comme produit de la réaction confirmant cette hypothèse. Jamais le carbène d'or(I) n'est observé. La clé de ce mécanisme réside dans l'augmentation de l'acidité du proton central après coordination à un atome d'or.

Schéma 15 : Synthèse d'un complexe dinucléaire d'or(I) par le groupe de Roesky.

Dans notre laboratoire, nous avons reproduit la même réaction avec le monoanion **2.Li** (schéma 16). L'addition d'un équivalent d'[AuCl(PPh₃)] à une solution de **2.Li** dans le THF conduit très rapidement à la formation de plusieurs produits identifiés par RMN ³¹P. Le premier est caractérisé par un système AX₂ à $\delta_p = 41,6$ ppm (t, ${}^2J_{p.p} = 12$ Hz) et $\delta_p = 39,2$ ppm (d, ${}^2J_{p.p} = 12$ Hz) et nous proposons qu'il s'agit du complexe mononucléaire d'or(I) **V.10**. Le deuxième produit identifié est caractérisé par un système A₂X₂ à $\delta_p = 45,3$ ppm (t, ${}^2J_{p.p} = 8$ Hz) et $\delta_p = 35,7$ ppm (t, ${}^2J_{p.p} = 8$ Hz). Ce complexe a été identifié par analogie avec **V.9** comme étant le complexe dinucléaire d'or(I) **V.11**. La présence de ligand neutre est également observée.

Schéma 16 : Réaction de 2.Li avec AuCl(PPh₃).

⁴⁰ T. K. Panda, P.W. Roesky, P. Larsen, S. Zhang, C. Wickleder, *Inorg. Chem.* 2006, 45, 7503-7508.

La réaction évolue ensuite vers la formation exclusive du complexe **IV.11** ainsi qu'un équivalent du ligand neutre. Le complexe **V.10** n'a pas pu être isolé. Le comportement de **2.Li** est donc similaire à celui de **1.Li** et les études de réactivités n'ont pas été poussées plus loin. Nous avons vu que la clé de cette réaction était l'acidité du proton central après la première coordination à l'or. Plus celui-ci sera acide plus le complexe dinucléaire **V.11** se formera rapidement. L'utilisation d'un système dans lequel l'acidité de ce proton est modérée doit permettre l'isolation d'un complexe du type **I.10**. Précédemment, nous avons vu que la stabilisation de la charge au carbone central par le groupe triméthylsilyle est moins forte que pour le groupe sulfure de phosphine. Ainsi, **V.1Li** est un bon candidat pour cette étude.

Poursuivant la démarche entamée au III de ce chapitre, nous avons étudié la réaction entre **V.1Li** et [AuCl(PPh₃)] (schéma 15). **V.1Li** est préparé dans le THF puis un équivalent du précurseur d'or est ajouté. Après 15 minutes d'agitation à température ambiante, le spectre RMN ³¹P du mélange réactionnel montre la conversion totale de **V.1Li** en un nouveau produit caractérisé par un système AB à $\delta_p = 43,4$ ppm (d, ${}^2J_{P,P} = 15$ Hz) et $\delta_p = 39,4$ ppm (d, ${}^2J_{P,P} = 15$ Hz). Ceci montre qu'un seul atome d'or est coordiné au carbone central. Ce produit a été isolé et caractérisé par spectroscopie RMN multinoyaux dans le dichlorométhane deutéré. En RMN ¹H, le proton central du pont P-C-P est localisé à $\delta_H = 2,22$ ppm (dd, ${}^2J_{P-H} = 9$ Hz, ${}^2J_{P-H} = 14$ Hz), soit à champ plus bas que dans le cas du ligand neutre ($\delta_H = 1,70$ ppm). Ceci suggère que ce proton est un peu plus acide que dans le ligand neutre. Dans le spectre RMN ¹³C, en plus des signaux attribuables aux différents carbones aromatiques, le carbone du pont P-C-P résonne à $\delta_C = 32,5$ ppm (dd, ${}^1J_{P-C} = 68$ Hz) et les carbones du groupe triméthylsilyle à $\delta_C = 3,8$ ppm (pseudo-t, $\Sigma J = 8$ Hz). Ces données RMN nous ont permis de proposer la formation du complexe **V.12**, qui est un complexe mononucléaire d'or(I) (schéma 17).

Schéma 17 : Synthèse du complexe V.12.

Des monocristaux analysables par diffraction des RX ont été obtenus pour **V.12** par diffusion lente de pentane dans une solution concentrée dans le dichlorométhane. Une représentation de **V.12** est donnée en figure 11.

Figure 11 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de V.12 Les atomes d'hydrogène (sauf sur C(1)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : P(1)-C(1) 1,772(2) ; C(1)-Si(1) 1,883(2) ; P(1)-S(1) 1,9657(8); Au(1)-C(1) 2,094 (2); Au(1)-P(2) 2,2655(6); C(1)-Au(1)-P(2) 177,60(6).

La structure RX de V.12 confirme nos hypothèses tirées des données RMN. C'est un complexe d'or(I) dans lequel le ligand est lié uniquement par l'atome de carbone central (aucune liaison soufre-or n'est observée). L'atome d'or adopte une géométrie ML₂ linéaire, tout à fait classique pour les complexes d'or(I) bicoordinés. Les distances Au-P (2,2655(6) Å) et Au-C (2,094(2) Å) dans V.12 sont du même ordre de grandeur que celles mesurées dans des complexes similaires^{41,42,43,44,45,46,47}.

L'utilisation de V.1Li a permis de synthétiser le complexe mononucléaire d'or voulu. L'acidité du proton central dans V.12 nous a conduits à tenter la synthèse du carbène analogue. Ainsi, V.12 a été mis à réagir avec un équivalent de KH dans différents le THF. Le spectre RMN ³¹P ne montre aucune évolution, certainement à cause de la faible solubilité de ces réactifs. La solution devient progressivement foncée et des produits de décomposition sont observés (dont le ligand neutre). Une même réaction avec un équivalent de MeLi a également été essayée, et le même résultat a été observé. Néanmoins nous avons montré que l'utilisation d'un système moins accepteur de

⁴¹ Y. Ito, M. Inouye, M. Suginome, M. Murakami, J. Organomet. Chem. 1988, 342, C41-C44.

⁴² N. Dufour, A. Schier, H. Schmidbaur, Organometallics 1993, 12, 2408-2410.

⁴³ D.Steinborna, S. Becke, R. Herzog, M. Günther, R. Kircheisen, H. Stoeckli-Evans, Clemens Bruhn, Z. Anorg. Allg. Chem. 1998, 624, 1303-1307. ⁴⁴ B. Djordjevic, K. A. Porter, S. Nogai, A. Schier, H. Schmidbaur, *Organometallics* **2003**, *22*, 5336-5344.

⁴⁵ R. J. Bowen, J. Caddy, M. A. Fernandes, M. Layha, M. A. Mamo, *Polyhedron* **2004**, *23*, 2273-2280.

⁴⁶ A. S. K. Hashmi, S. Schäfer, M. Wölfle, C. D. Gil, P. Fischer, A. Laguna, M. C. Blanco, M. C. Gimeno, Angew. Chem. Int. Ed. 2007, 46, 6184-6187. ⁴⁷ R. L. LaLonde, W. E. Brenzovich Jr., D. Benitez, E. Tkatchouk, K. Kelley, W. A. Goddard III, F. D. Toste, *Chem. Sci.* 2010, *1*, 226-233.

densité électronique permet de pallier la déprotonation du complexe mononucléaire intermédiaire et d'obtenir le complexe alkyle d'or(I) voulu.

V. Conclusions et perspectives

En conclusion, nous avons comparé deux ligands anioniques possédant un fragment Ph_2PS commun. Ces deux ligands ne diffèrent que par la nature du deuxième substituant à l'atome de carbone central. Les calculs DFT ont montré que la stabilisation de la paire libre au carbone est beaucoup plus efficace dans le cas du groupement thiophosphine que dans le cas du groupement triméthylsilyle avec une différence calculée à environ 10 kcal/mol.

La réaction de **V.1Li** avec $[Rh(COD)CI]_2$ a conduit, comme prévu, à la coordination S-C du ligand sur le métal. Au contraire pour **2.Li**, deux modes de coordination ont été observés en fonction des co-ligands à l'atome de rhodium. De plus, un équilibre dynamique en solution existe entre deux formes du complexe **V.7** qui peut permettre dans le cas d'un cycle catalytique de modifier à volonté les propriétés électroniques du métal. Des tests catalytiques seraient nécessaires afin de confirmer cette hypothèse. Les complexes obtenus sont tous des complexes de Rh(I) à 16 électrons plan carré dans lesquels le métal est facilement accessible et des réactions d'addition oxydante (R₃SiH, R₂BH...) sont envisageables. La première étape serait l'hydrosilylation (ou hydroboration) du COD qui devient labile et peut être remplacé par une molécule d'alcène afin de rentrer dans le cycle catalytique (schéma 18). De la même manière, l'addition d'H₂ au complexe, en présence d'un alcène pourrait conduire à des réactions d'hydrogénation. La génération d'un complexe actif se fait alors par hydrogénation du ligand COD.

Schéma 18 : Catalyses envisagées pour les complexes de rhodium.

Les complexes de type (L)Rh(COD) (L = V.1, 2) peuvent également être utilisés comme brique de départ à la synthèse de nouveaux complexes par déplacement du ligand cyclooctadiène. Celuici est très labile. Un choix précis des co-ligands au métal pourrait permettre de générer des complexes actifs aux réactivités variées.

Le remplacement du groupement triméthylsilyle au niveau du carbone central par un groupement judicieusement choisi ouvrirait l'accès à la synthèse propre d'un dianion possédant un groupement non-coordinant. En effet, des calculs théoriques menés sur des composés de type $[Ph_2P(S)-CH-SiR_3]^-$ (R = Me, Et, *i*-Pr, *t*-Bu, Ph) nous ont montré que dans le cas des substituants méthyle, éthyle et isopropyle le proton central est moins acide que les protons situés sur les substituants à l'atome de silicium. Dès lors, il est fort probable que le deuxième équivalent de base forte vienne déprotoner préférentiellement ces positions. Dans le cas des groupements terbutyle et phényle ce problème ne se pose pas, le groupement phényle étant à privilégier pour des raisons d'encombrements stériques et la possibilité d'une coordination η^6 du lithium au noyau aromatique (schéma 19). Ce dianion pourrait ensuite être utilisé en chimie de coordination.

Schéma 19 : Synthèse d'un nouveau dianion.

A l'image des travaux du groupe de Cavell, la réaction du dianion $2.Li_2$ avec des précurseurs de rhodium(I) ou d'or(I) pourrait permettre la synthèse de complexes hétérobimétalliques. Dans une première étape, la coordination d'un métal au ligand forme un complexe mixte métal-lithium qui peut alors réagir à nouveau avec un autre précurseur métallique pour donner un complexe bimétallique (schéma 20).

Schéma 20 : Synthèse de complexes hétérobimétalliques.

Il est raisonnable de penser que la réaction de **2.Li**₂ avec un précurseur d'or(I) conduise au complexe **V.11**. Ainsi, la synthèse d'un carbène d'or passe par l'utilisation de **V.12** comme précurseur. L'oxydation de **V.12** par un oxydant approprié (PhICl₂⁴⁸, PhI(OAc)₂⁴⁹, Br₂, selectfluor⁵⁰) génère le complexe d'or(III). Celui-ci peut alors être converti en carbène soit par élimination spontanée de HX, ou par ajout d'une base (NEt₃, NaH, KH, schéma 21). De même, l'utilisation de **V.12** comme précurseur de complexes hétérobimétalliques est tout à fait envisageable. La déprotonation de **V.12** par une base forte (KH ou NaH par exemple pour favoriser une réaction douce) en présence d'un précurseur métallique conduit au complexe bimétallique désiré (schéma 21).

Schéma 21 : Projet de synthèse d'un carbène d'or(III) et de complexes hétérobimétalliques.

On peut également noter que les composés **III.7** et **III.8** présentés au chapitre 3 peuvent également servir de bons précurseurs pour ces synthèses. Un résultat préliminaire montre que la réaction entre **III.8** et [AuClPPh₃] peut conduire soit à un complexe mononucléaire d'or soit à un complexe dinucléaire selon les conditions expérimentales. Si on ajoute [AuClPPh₃] directement à une solution du monoanion **III.8Li**, le complexe dinucléaire est observé ($\delta_p = 37$; 36 et 25 ppm en proportion 1:2:1). En revanche, si on ajoute un équivalent de KHMDS à un mélange de **III.8** et [AuClPPh₃] à -78°C, le complexe mononucléaire est obtenu proprement ($\delta_p = 40$; 27 et 18 ppm en proportion 1:1:1) (schéma 22).

⁴⁸ H. J. Lucas, E. R. Kennedy, Organic Syntheses **1942**, 22, 69-70.

⁴⁹ J. G. Sharefkin, H. Saltzman, Organic Syntheses 1963, 43, 62-65.

⁵⁰ G. S. Lal, J. Org. Chem. **1993**, 58, 2791-2796.

Schéma 22 : Résultats préliminaires sur la synthèse de complexes mono et dinucléaires d'or.

Finalement, dans le but de comparer les carbodiphosphoranes avec les dianions géminés, il serait intéressant de synthétiser un ligand mixte possédant ces deux caractéristiques. Une voie de synthèse de Ph₃P-CH-P(S)Ph₂ est proposée schéma 23. L'ylure Ph₃P=CH₂⁵¹, obtenu par réaction de PPh₃CH₃I⁵² avec *t*BuOK, est mis en présence de Ph₂P(S)Cl (préparé par sulfuration de la chlorodiphénylphosphine) 53,54.

Schéma 23 : Synthèse proposée d'un ligand mixte.

 ⁵¹ M. Ludwiczak, M. Majchrzak, B. Marciniec, M. Kubicki, *J. Organomet. Chem.* 2011, 696, 1456-1464.
 ⁵² K. van Alem, G. Belder, G. Lodder, H. Zuilhof, *J. Org. Chem.* 2005, 70, 179-190.
 ⁵³ L.M. Hodgson, R. H. Platel, A. J. P. White, C. K. Williams, *Macromolecules* 2008, 41, 8603-8607.

⁵⁴ L. Weber, D. Wewers, *Chem. Ber.* **1985**, *118*, 541-550.

VI.Bibliographie

- 1) C. J. Moulton, B. L. Shaw, J. Chem. Soc., Dalton Trans. 1976, 1020-1024.
- 2) D. J. Morales-Morales, C. M. Jensen, *The Chemistry of Pincer Compounds*, Elsevier, Amsterdam, 2007.
- 3) M. E. van der Boom, D. Milstein, Chem. Rev. 2003, 103, 1759-1792.
- 4) W. Leis, H. A. Mayer, W. C. Kaska, Coord. Chem. Rev. 2008, 252, 1787-1797.
- 5) J. Choi, A. H. R Mc Arthur, M. Brookhart, A. S. Goldman, Chem. Rev. 2011, 111, 1761-1779.
- a) R. P. K. Babu, R. McDonald, R. G. Cavell, Organometallics 2000, 19, 3462-1465; b) M. Valderrama, R. Contreras, V. Arancibia, P. Muñoz, Inorg. Chim. Acta 1997, 255, 221-227; c) J.-C. Tourneux, J.-C. Berthet, T. Cantat, P. Thuéry, N. Mézailles, M. Ephritikhine, J. Am. Chem. Soc. 2011, 133, 6162-6165; d) G. Aharonian, K. Feghali, S. Gambarotta, G. P. A. Yap, Organometallics 2001, 20, 2616-2622; e) P. Wei, D. W. Stephan, Organometallics 2002, 21, 1308-1310; f) C. Bibal, M. Pink, Y. D. Smurnyy, J. Tomaszewski, K. G. Caulton, J. Am. Chem. Soc. 2004, 126, 2312-2313; g) M. Valderrama, R. Contreras, M. Bascunan, S. Alegria, D. Boys, Polyhedron 1995, 14, 2239-2246; h) C. Klemps, A. Buchard, R. Houdard, A. Auffrant, N. Mezailles, X. F. Le Goff, L. Ricard, L. Saussine, L. Magna, P. Le Floch, New J. Chem. 2009, 33, 1748-1752; i) Y. Smurnyy, C. Bibal, M. Pink, K. G. Caulton, Organometallics 2005, 24, 3849-3855; j) S. Al-Benna, M. J. Sarsfield, M. Thornton-Pett, D. L. Ormsby, P. J. Maddox, P. Brès, M. Bochmann, J. Chem. Soc., Dalton Trans. 2000, 4247-4257.
- a) M. S. Hill, P. B. Hitchcock, J. Organomet. Chem. 2004, 689, 3163-3167; b) A. Kasani, R. McDonald, R. G. Cavell, Organometallics 1999, 18, 3775-3777; c) J. Browning, G. W. Bushnell, K. R. Dixon, R. W. Hilts, J. Organomet. Chem. 1992, 434, 241-252; d) A. Davison, D. L. Reger, Inorg. Chem. 1971, 10, 1967-1970; e) J. Browning, K. R. Dixon, R. W. Hilts, Organometallics 1989, 8, 552-554; f) T. K. Panda, P. W. Roesky, P. Larsen, S. Zhang, C. Wickleder, Inorg. Chem. 2006, 45, 7503-7508; g) M. S. Hill, P. B. Hitchcock, J. Chem. Soc., Dalton Trans. 2002, 4694-4702; h) M. S. Hill, P. B. Hitchcock, Dalton Trans. 2003, 570-574; i) S. Marks, R. Koppe, T. K. Panda, P. W. Roesky, Chem. Eur. J. 2010, 16, 7096-7100; j) S. Marks, T. K. Panda, P. W. Roesky, Dalton Trans. 2010, 39, 7230-7235.
- a) C. Bibal, Y. D. Smurnyy, M. Pink, K. G. Caulton, J. Am. Chem. Soc. 2005, 127, 8944-8945 ; 8) b) M. Fang, N. D. Jones, R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, Angew. Chem.-Int. Ed. 2006, 45, 3097-3101; c) M. W. Avis, K. Vrieze, H. Kooijman, N. Veldman, A. L. Spek, C. J. Elsevier, Inorg. Chem. 1995, 34, 4092-4105 ; d) P. Imhoff, R. van Asselt, J. M. Ernsting, K. Vrieze, C. J. Elsevier, W. J. J. Smeets, A. L. Spek, A. P. M. Kentgens, Organometallics 1992, 12, 1523-1536; e) M. W. Avis, M. E. van der Boom, C. J. Elsevier, W. J. J. Smeets, A. L. Spek, J. Organomet. Chem. 1997, 527, 263-276 ; f) J. Browning, G. W. Bushnell, K. R. Dixon, A. Pidcock, Inorg. Chem. 1983, 22, 2226-2228 ; g) D. E. Berry, J. Browning, K. R. Dixon, R. W. Hilts, A. Pidcock, Inorg. Chem. 1992, 31, 1479-1487; h) A. Laguna, M. Laguna, A. Rojo, M. N. Fraile, J. Organomet. Chem. 1986, 315, 269-276 ; i) M. C. Gimeno, A. Laguna, M. Laguna, F. Sanmartin, P. G. Jones, Organometallics 1993, 12, 3984-3991 ; j) C. J. Elsevier, P. Imhoff, Phosphorus Sulfur Silicon Relat. Elem. 1990, 49-50, 405-408; k) P. Imhoff, C. J. Elsevier, J. Organomet. Chem. 1989, 361, C61-C65 ; 1) M. Fang, N. D. Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R. Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652-1665.
- 9) M. Gandelman, D. Milstein, Chem. Commun. 2000, 1603-1604.

- 10) E. Poverenov, M. Gandelman, L. J. W. Shimon, H. Rozenberg, Y. Ben-David, D. Milstein, *Organometallics* **2005**, *24*, 1082-1090.
- 11) B. Gnanaprakasam, D. Milstein, J. Am. Chem. Soc. 2011, 133, 1682-1685.
- 12) T. Cantat, N. Mezailles, L. Ricard, Y. Jean, P. Le Floch, *Angew. Chem. Int. Ed.* 2004, 43, 6382-6385.
- M. Blug, H. Heuclin, T. Cantat, X. F. Le Goff, N. Mézailles, P. Le Floch, Organometallics 2009, 28, 1969-1972.
- 14) R. D. Holmes-Smith, R. D. Osei, S. R. Stobart, J. Chem. Soc., Perkin Trans. 1 1983, 861-866.
- 15) V. H. Gessner, Organometallics 2011, 30, 4228-4231.
- 16) W.-P. Leung, C.-L. Wang, T. C. W. Mak, Organometallics 2010, 29, 1622-1628.
- C. J. Carmalt, A. H. Cowley, A. Decken, Y. G. Lawson, N. C. Norman, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* 1996, 52, 931-933.
- 18) M. Block, C. Wagner, S. Gómez-Ruiz, D. Steinborn, Dalton Trans. 2010, 39, 4636-4646.
- 19) W. Lesueur, E. Solari, C. Floriani, Inorg. Chem. 1997, 36, 3354-3362.
- a) K.-W. Huang, D. C. Grills, J. H. Han, D. J. Szalda, E. Fujita, *Inorg. Chim. Acta* 2008, 361, 3327-3331;
 b) E. Kossoy, M. A. Iron, B. Rybtchinski, Y. Ben David, L. J. W. Shimon, L. Konstantinovski, J. M. L. Martin, D. Milstein, *Chem. Eur. J.* 2005, 11, 2319-2326;
 c) E. Kossoy, B. Rybtchinski, Y. Diskin-Posner, L. J. W. Shimon, G. Leitus, D. Milstein, *Organometallics* 2009, 28, 523-533;
 d) M. Montag, I. Efremenko, R. Cohen, L. J. W. Shimon, G. Leitus, Y. Diskin-Posner, Y. Ben-David, H. Salem, J. M. L. Martin, D. Milstein, *Chem. Eur. J.* 2010, 16, 328-353.
- 21) M. Rubio, A. Suarez, D. del Rio, A. Galindo, E. Alvarez, A. Pizzano, Organometallics 2009, 28, 547-560.
- 22) J. Browning, G. W. Bushnell, K. R. Dixon, R. W. Hilts, J. Organomet. Chem. 1992, 434, 241-252.
- 23) S. O. Grim, E. D. Walton, Inorg. Chem. 1980, 19, 1982-1987.
- 24) H. Günther, NMR Spectroscopy, Wiley, New York, 1980.
- 25) F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am. Chem. Soc. 1961, 83, 3539-3540.
- 26) G. E. Hardy, J. I. Zink, W. C. Kaska, J. C. Baldwin, J. Am. Chem. Soc. 1978, 100, 8001-8002.
- 27) O. Gasser, H. Schmidbaur, J. Am. Chem. Soc. 1975, 97, 6281-6282.
- 28) H. Schmidbaur, O. Gasser, Angew. Chem. Int. Ed. 1976, 15, 502-503.
- 29) J. Vicente, A. R. Singhal, Organometallics 2002, 21, 5887-5900.
- 30) R. Tonner, F. Oxler, B. Neumüller, W. Petz, G. Frenking, Angew. Chem. Int. Ed. 2006, 45, 8038-8042.
- 31) H. Schmidbaur, Angew. Chem. Int. Ed. 2007, 46, 2984-2985.
- 32) G. Frenking, B. Neumüller, W. Petz, R. Tonner, F. Oxler, Angew. Chem. Int. Ed. 2007, 46, 2986-2987.
- 33) R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3260-3272.
- 34) R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3273-3289.
- 35) R. Tonner, G. Frenking, Organometallics 2009, 28, 3901-3905.
- 36) M. M. Deshmukh, S. R. Gadre, R. Tonnerb, G. Frenking, *Phys. Chem. Chem. Phys.* 2008, 10, 2298-2301.
- 37) G. Frenking, R. Tonner, Pure Appl. Chem. 2009, 81, 597-614.
- 38) M. Alcarazo, C. W. Lehmann, A. Anoop, W. Thiel, A. Fürstner, Nat. Chem. 2009, 1, 295-301.
- 39) C. Esterhuysen, G. Frenking, Chem. Eur. J. 2011, 17, 9944-9956.

- 40) T. K. Panda, P.W. Roesky, P. Larsen, S. Zhang, C. Wickleder, *Inorg. Chem.* 2006, 45, 7503-7508.
- 41) Y. Ito, M. Inouye, M. Suginome, M. Murakami, J. Organomet. Chem. 1988, 342, C41-C44.
- 42) N. Dufour, A. Schier, H. Schmidbaur, Organometallics 1993, 12, 2408-2410.
- 43) D.Steinborna, S. Becke, R. Herzog, M. Günther, R. Kircheisen, H. Stoeckli-Evans, Clemens Bruhn, Z. Anorg. Allg. Chem. 1998, 624, 1303-1307.
- 44) B. Djordjevic, K. A. Porter, S. Nogai, A. Schier, H. Schmidbaur, Organometallics 2003, 22, 5336-5344.
- 45) R. J. Bowen, J. Caddy, M. A. Fernandes, M. Layha, M. A. Mamo, *Polyhedron* **2004**, *23*, 2273-2280.
- 46) A. S. K. Hashmi, S. Schäfer, M. Wölfle, C. D. Gil, P. Fischer, A. Laguna, M. C. Blanco, M. C. Gimeno, *Angew. Chem. Int. Ed.* 2007, 46, 6184-6187.
- 47) R. L. LaLonde, W. E. Brenzovich Jr., D. Benitez, E. Tkatchouk, K. Kelley, W. A. Goddard III, F. D. Toste, *Chem. Sci.* 2010, *1*, 226-233.
- 48) H. J. Lucas, E. R. Kennedy, Organic Syntheses 1942, 22, 69-70.
- 49) J. G. Sharefkin, H. Saltzman, Organic Syntheses 1963, 43, 62-65.
- 50) G. S. Lal, J. Org. Chem. 1993, 58, 2791-2796.
- 51) M. Ludwiczak, M. Majchrzak, B. Marciniec, M. Kubicki, J. Organomet. Chem. 2011, 696, 1456-1464.
- 52) K. van Alem, G. Belder, G. Lodder, H. Zuilhof, J. Org. Chem. 2005, 70, 179-190.
- 53) L.M. Hodgson, R. H. Platel, A. J. P. White, C. K. Williams, *Macromolecules* **2008**, *41*, 8603–8607.
- 54) L. Weber, D. Wewers, Chem. Ber. 1985, 118, 541-550.

Chapitre 6 Activation de liaisons B-H par des composés carbénoïdes

Chapitre 6 : Activation de liaisons B-H par des composés carbénoïdes

I. Introduction

La fonctionnalisation efficace de petites molécules abondamment présentes et facilement accessibles telles que le dihydrogène, le diazote ou le dioxyde de carbone ou l'activation de liaisons fortes est un des enjeux majeurs de la chimie du XXIème siècle. L'utilisation de métaux de transition comme outil pour l'activation de ces molécules et liaisons est rapidement apparue comme une solution efficace pour la fixation et la fonctionnalisation de ces molécules. Ainsi, de nombreux complexes de métaux de transition du diazote ou du dihydrogène sont maintenant connus^{1,2}, les premiers exemples émanant respectivement des travaux de Senoff^{3,4} (complexe **VI.1**, 1965) et de Kubas⁵ (complexe **VI.2**, 1983).

Schéma 1 : Premiers complexes de diazote et de dihydrogène.

Le développement des réactions de couplages croisés, d'hydrosilylation, d'hydroboration, d'hydrogénation, d'hydrophosphination etc... de liaisons multiples catalysées par des métaux de transition illustre parfaitement l'efficacité des complexes de métaux de transition. Dans la plupart de ces procédés, l'addition oxydante d'un dérivé E-H (E = H, Si, P, B, C) sur un site de coordination vacant du centre métallique est considérée comme une étape clé. De fait, l'isolation de complexes σ stables de dérivés silanes⁶ et boranes^{7,8} permet de renforcer cette hypothèse. Il a été longtemps admis que seuls les complexes de métaux de transition étaient capables de telles transformations. Le diagramme d'interaction dans le cas du dihydrogène présenté au schéma 2 permet de comprendre pourquoi. L'interaction d'H₂ avec un fragment métallique fait intervenir deux phénomènes : une donation d'électron par la σ -H₂ dans la d_{z2} du métal et une rétrodonation d'un orbitale d du métal dans la σ^* -H₂. Si cette rétrodonation est suffisamment forte, la rupture

¹ M. P. Shaver, M. D. Fryzuk, Adv. Synth. Catal. 2003, 345, 1061-1076.

² G. J. Kubas, Acc. Chem. Res. 1988, 21, 120-128.

³ A. D. Allen, C. V. Senoff, Chem. Commun. 1965, 621-622.

⁴ C. V. Senoff, J. Chem. Educ. 1990, 67, 368.

⁵ G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, H. J. Wasserman, J. Am. Chem. Soc. 1984, 106, 452-454.

⁶ U. Schubert, Adv. Organomet. Chem. 1990, 30, 151.

⁷ J. F. Hartwig, C. N. Muhoro, X. He, J. Am. Chem. Soc. 1996, 118, 10936-10937.

⁸ G. J. Kubas, Metal Dihydrogen and σ-Bond Complexes; Fackler, J. P., Ed.; Kluwer Academic/Plenum Publishers: New York, 2001.

de la liaison H-H a lieu. La rupture homolytique d'une molécule de dihydrogène nécessite donc deux orbitales de symétrie adaptée.

Schéma 2 : Diagramme d'interaction entre H₂ et un centre métallique.

Cependant, en 2006, le groupe de Stephan a publié le premier système non-métallique capable d'activer réversiblement le dihydrogène (composé VI.3, schéma 2)^{9,10}. Ce système repose sur la combinaison d'une fonction phosphine (base de Lewis) et d'une fonction borane (acide de Lewis) dont l'éloignement et l'encombrement stérique ont été maximisés afin d'éviter la formation des composés phosphine-borane. VI.3 permet la dissociation du dihydrogène à température ambiante sous une atmosphère et le relargage de ce dihydrogène quand il est chauffé à plus de 100°C. Ce type de molécule a été baptisé « Paires de Lewis Frustrées » (FLP : Frustrated Lewis Pair) et a fait l'objet de nombreuses études^{11,12}.

Schéma 3 : Premier exemple d'activation du dihydrogène sans métal.

La principale différence de ces systèmes avec les systèmes métalliques est qu'on observe une rupture hétérolytique de la liaison H-H. En 2008, le groupe de Papái a présenté une étude théorique de l'activation d'H₂ par une FLP ((tBu)₃P et B(C₆F₅)₃)¹³. Selon cette étude, la première étape de l'activation est la formation d'un adduit faible (tBu)₃P-B(C₆F₅)₃ plus haut en énergie qu'une interaction classique phosphine-borane. Cette différence d'énergie est cruciale pour le

G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126.

 ¹⁰ G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881.
 ¹¹ D. W. Stephan, *Dalton Trans.* 2009, 3129-3136.

¹² D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46-76.

¹³ T. A. Rokob, A. Hamza, A. Stirling, T. Soós, I. Pápai, Angew. Chem. Int. Ed. 2008, 47, 2435-2438.

mécanisme car l'état de transition calculé est alors plus accessible (schéma 4). En outre, cet adduit présente une grande flexibilité de la liaison P-B qui peut être allongée ou raccourcie d'un angström pour un coût énergétique de seulement 2 kcal/mol. L'insertion d'H₂ au milieu de cet adduit est alors facilitée et l'état de transition calculé fait apparaître une polarisation de la liaison H-H (q(H) = +0,13 et q(H) = -0,08).

Schéma 4 : Mécanisme d'activation d'H2 proposé par le groupe de Papái.

En 2009, Grimme et Erker ont proposé sur la base de calculs théoriques que la polarisation de la liaison H-H résulte d'un champ électrique crée au cœur de la FLP¹⁴. L'état de transition calculé dans ce cas fait apparaître une organisation non-linéaire de l'enchaînement P-H-H-B dans laquelle la molécule d'H₂ est très éloignée de l'axe P-B. En remplaçant la FLP par un simple champ magnétique, les calculs théoriques indiquent des barrières d'activation semblables à celles obtenues en modélisant la FLP. Les auteurs concluent que : « *The basic message is that there is no need to involve specific* FLP/H₂ *orbitals, and that a very classical picture in the Lewis acid/base sense is sufficient to understand the mechanism* »[§].

Dans une optique similaire, le groupe de Power a démontré la capacité de certains dérivés du groupe 13 et 14 à activer le dihydrogène ou l'ammoniac^{15,16,17,18,19} (composés **VI.4** et **IV.5**, schéma 5).

¹⁴ S. Grimme, H. Kruse, L. Goerigk, G. Erker, Angew. Chem. Int. Ed. 2010, 46, 1402-1405.

¹⁵ G. H. Spikes, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2005, 127, 12232-12233.

¹⁶ Y. Peng, M. Brynda, B. D. Ellis, J. C. Fettinger, E. Rivard, P. P. Power, *Chem. Commun.* 2008, 6042-6044.

¹⁷ Y. Peng, B. D. Ellis, X. Wang, P. P. Power, J. Am. Chem. Soc. 2008, 130, 12268-12269.

¹⁸ Y. Peng, J.-D. Guo, B. D. Ellis, Z. Zhu, J. C. Fettinger, S. Nagase, P. P. Power, J. Am. Chem. Soc. 2009, 131, 16272-16282.

¹⁹ Z. Zhu, X. Wang, Y. Peng, H. Lei, J. C. Fettinger, E. Rivard, P. P. Power, Angew. Chem. Int. Ed. 2009, 48, 2031-2034.

⁸ Le message essentiel est qu'il n'y a pas besoin de faire intervenir des orbitales spécifiques du système LFP/H₂ et qu'une description classique au sens acide/base de Lewis est suffisante pour comprendre le mécanisme.

 $L = 2,6-(2,6-iPr_2C_6H_3)_2C_6H_3$

Schéma 5 : Activation d'H2 et de NH3 par des éléments du groupe principal.

Le groupe de Bertrand a montré que des carbènes singulets stables pouvaient également présenter des réactivités intéressantes vis-à-vis de petites molécules. Possédant une case vacante et une paire libre, les carbènes peuvent être vus comme des analogues de métaux. Ainsi, l'activation de CO, H₂, NH₃ ou P₄ a été possible (schéma 6)^{20,21,22,23,24}.

Schéma 6 : Activation de petites molécules par des carbènes.

- ²³ G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2007, 316, 439-441.

²⁰ V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, Angew. Chem. Int. Ed. 2006, 45, 3488-3491.

 ²¹ J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, *Angew. Chem. Int. Ed.* 2007, *119*, 7182-7185.
 ²² J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, *J. Am. Chem. Soc.* 2007, *129*, 14180-14181.

²⁴ O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2009, 48, 5530-5533.

Ces différents résultats mettent en lumière le caractère mixte nucléophile et électrophile des NHC et des CAAC. Des calculs théoriques menés sur différents carbènes singulets stables ont montré que les CAAC sont à la fois plus nucléophiles et plus électrophiles que les NHC²⁵. Ceci se vérifie expérimentalement. Ainsi, l'activation d'H₂ par un NHC n'a pas été possible et il est connu que les NHC ne réagissent pas avec NH₃²⁶. L'activation de l'ammoniac et du dihydrogène par les CAAC de Bertrand est donc un résultat majeur car la symétrie des orbitales du carbène n'est pas optimale pour effectuer ces transformations.

Plus récemment, ce même groupe a présenté les premiers exemples d'activation de liaisons E-H (E = Si, B, P) par des carbènes singulets stables²⁷. En particulier, la réaction entre les carbènes VI.10 et VI.11 et BH3 conduit à l'adduit de Lewis tel qu'usuellement observé pour les NHC (schéma 7)^{28,29,30,31,32,33,34,35}. Le groupe de Stephan avait présenté, en 2008, l'activation du cathécolborane par un mélange de tBu_3P et B(C₆F₅)₃³⁶. L'utilisation d'une liaison B-H plus réactive par le groupe de Bertrand a permis de façon similaire l'insertion du carbène. Ainsi, la réaction entre les carbènes VI.10 et VI.11 et le cathécolborane conduit facilement à l'activation de la liaison B-H (schéma 7). Dernièrement, la chimie d'une classe de composés carbonés connue depuis 1961 focalise une attention particulière : les carbodiphosphoranes. Ces molécules neutres possèdent un carbone central portant deux paires libres et peuvent agir de façon analogue aux NHC ou aux carbènes de Bertrand vis-à-vis de certains acides de Lewis et en particulier vis-à-vis de BH3. Ainsi, le groupe de Schmidbaur a présenté dès 1981 un premier adduit carbone-borane d'un carbodiphosphorane cyclique³⁷ (composé VI.12, schéma 8). Par la suite, Frenking et coll. ont montré que le carbodiphosphorane (PPh₃)₂C (VI.13)³⁸ pouvait se comporter comme base de Lewis simple ou double par réaction avec B_2H_6 (schéma 8)³⁹. Dans tous ces exemples, aucune activation de BH₃ n'est observée.

³⁶ M. A. Dureen, A. Lough, T. M. Gilbert, D. W. Stephan, *Chem. Commun.* 2008, 4303-4305.
 ³⁷ H. Schmidbaur, T. Costa, *Chem. Ber.* 1981, *114*, 3063-3069.

²⁵ V.Lavallo, J. Mafhouz, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, J. Am. Chem. Soc. 2004, 126, 8670-8671.

²⁶ W. A. Herrmann, M. Elison, J. Fischer, C. Kocher, G. R. J. Artus, *Chem. Eur. J.* 1996, 2, 772-780.

²⁷ G. D. Frey, J. D. Masuda, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49, 9444-9447.

²⁸ N. Kuhn, G. Henkel, T. Kratz, J. Kreutzberg, R. Boeseb, A. H. Maulitzb, Chem. Ber. 1993, 126, 2041-2045.

²⁹ D. P. Curran, A. Solovyev, M. M. Brahmi, L. Fensterbank, M. Malacria, E. Lacôte, Angew. Chem. Int. Ed. 2011, 50, 10294-10317.

³⁰ D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2008, 47, 7428-7432.

³¹ J. Monot, M. M. Brahmi, S.-H. Ueng, C. Robert, M. Desage-El Murr, D. P. Curran, M. Malacria, L. Fensterbank, E. Lacôte, Org. Lett.

²⁰⁰⁹, *11*, 4914-4917. ³² Q. Chu, M. M. Brahmi, A. Solovyev, S.-H. Ueng, D. P. Curran, M. Malacria, L. Fensterbank, E. Lacôte, *Chem. Eur. J.* **2009**, 15, 12397-12940.

³³ J. C. Walton, Angew. Chem. Int. Ed. 2009, 48, 1726-1728.

³⁴ J. Monot, L. Fensterbank, M. Malacria, E. Lacôte, S. J. Geib, D. P. Curran, *Beilstein J. Org. Chem.* 2010, 6, 709-712.

³⁵ D. M. Lindsay, D. McArthur, Chem. Commun. 2010, 46, 2474-2476.

³⁸ F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am. Chem. Soc. 1961, 83, 3539-3540.

³⁹ W. Petz, F. Öxler, B. Neumüller, R. Tonner, G. Frenking, Eur. J. Inorg. Chem. 2009, 4507-4517.

Schéma 7 : Addition de BH₃ sur des carbènes.

Schéma 8 : Réactivité de composés carbodiphosphorane vis-à-vis de BH₃ et B₂H₆.

A l'heure actuelle, aucune activation de BH_3 par des composés de type carbène ou carbodiphosphorane n'a été publiée. Nous nous sommes donc tournés vers une espèce développée au laboratoire : le carbénoïde **2.LiCl** présenté en introduction de ce manuscrit. Cette espèce est un bon précurseur de carbène en condition douce (schéma 9)⁴⁰ par élimination de LiCl. On peut donc espérer l'utiliser pour activer BH_3 . De même, l'utilisation du dianion mixte phosphine-borane / sulfure de phosphine pour la synthèse du carbénoïde analogue pourrait permettre une activation intramoléculaire.

Schéma 9 : Génération de carbènes à partir d'espèces carbénoïdes.

⁴⁰ T. Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, *Angew. Chem. Int. Ed.* **2007**, *46*, 5947-5950. **180**

II. Résultats et discussion

1. Activation intramoléculaire

Nous avons présenté au chapitre 3 la synthèse du dianion mixte phosphine-borane / sulfure de phosphine (VI.14, schéma 10). Ce dianion est analogue en termes de stabilité des autres dianions précédemment publiés.

$$\begin{array}{c} \begin{array}{c} \ominus \\ Ph_2P \end{array} \begin{array}{c} PPh_2 \\ \overrightarrow{S} \\ BH_3 \end{array} \\ \hline VI.14 \end{array}$$

Schéma 10 : Dianion mixte PS/PB et carbénoïde 2.LiCl.

Nous avons décidé d'étudier la réaction entre **VI.14** et C_2Cl_6 (schéma 11) afin de tenter d'obtenir le carbénoïde correspondant. Cette réaction a été menée dans l'éther à -78°C et a été suivie par RMN ³¹P une fois réchauffée à température ambiante.

Schéma 11 : Synthèse du carbénoïde VI.15, hydrolyse et évolution spontanée.

Après 15 minutes de réaction, le signal correspondant au dianion a complètement disparu au profit d'un nouveau produit majoritaire caractérisé par un système ABX à $\delta_p = 47.9$ ppm (d, $J_{p,p}=40$ Hz) et $\delta_p = 30$ ppm (large). Par analogie avec **2.LiCl** ($\delta_p = 45,5$ ppm), ce nouveau produit a été proposé comme étant le carbénoïde **VI.15**. Ce produit est instable en solution à température ambiante et se décompose très rapidement. Néanmoins, une structure RX a pu être déterminée pour ce composé. En effet, une solution contenant un équivalent de **VI.14** ainsi qu'un équivalent de C_2Cl_6 a été stockée sous atmosphère inerte à -35°C dans l'éther. Après un mois, des cristaux jaunes analysables par diffraction des RX ont été obtenus. Une représentation de **VI.15** est donnée figure 1.

Figure 1 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **VI.15**. Les atomes d'hydrogène (sauf sur B(1b)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,722(3) ; C(1)-P(2) 1,728(3) ; C(1)-Cl(1) 1,775(3) ; P(1)-B(1b) 1,89(3) ; P(2)-S(1b) 2,0526(8) ; S(1b)-Li(1) 2,42(1) ; Li(1)-O(1) 1,999(5) ; Li(1)-O(2) 1,972(6) ; P(1)-C(1)-P(1) 126,7(2) ; P(2)-C(1)-Cl(1) 118,5(2) ; P(1)-C(1)-Cl(1) 114,5(2).

La structure obtenue pour **VI.15** est analogue à celle de **2.LiCl**. Un atome de chlore est lié au carbone central et l'atome de lithium est coordiné par un atome de soufre, deux hydrogènes du groupement BH_3 et deux molécules de solvant. Comme dans **2.LiCl**, l'atome de lithium n'est pas directement lié au carbone central. La distance C-Cl mesurée dans **VI.15** est du même ordre de grandeur que celle mesurée dans **2.LiCl** (1,775(2) Å contre 1,781(2) Å). Cette distance est en revanche beaucoup plus courte que celle mesurée dans d'autres espèces carbénoïdes^{41,42,43}. Le carbone central est, comme pour **2.LiCl**, plan (somme des angles de 359,7°).

La séparation des charges assurée par le ligand permet une certaine stabilisation du carbénoïde et diminue la cinétique de l'élimination de LiCl. Les calculs théoriques menés sur **2.LiCl** ont permis de conclure que la stabilité du carbénoïde était également due à la bonne stabilisation de la paire libre au carbone central. Nous avons vu au chapitre 3 que, dans le cas de **VI.14**, cette paire libre n'était pas aussi bien stabilisée quand le ligand possède un groupement BH₃. Cette moindre stabilisation est certainement responsable de la décomposition de **VI.15** en solution à température ambiante alors que **2.LiCl** est stable jusqu'à 60°C.

Le devenir de **VI.15** en solution a été suivi par RMN ³¹P. Après 3h de réaction deux multiplets définis à $\delta_p = 46.1$ ppm et $\delta p = 45.9$ ppm (proportion 2 :3) ainsi qu'un signal large à $\delta_p = 19$ ppm sont observés sur le spectre RMN ³¹P (ainsi que des impuretés très minoritaires). Après hydrolyse du milieu réactionnel et lavage à l'acétone, un solide blanc est isolé. Ce solide est très

⁴¹ G. Boche, M. Marsch, A. Miiller, K. Harms, Angew. Chem. Int. Ed. 1993, 32, 1032-1033.

⁴² A. Müller, M. Marsch, K. Harms, J. C. W. Lohrenz, G. Boche, Angew. Chem. Int. Ed. 1996, 35, 1518-1520.

⁴³ G. Boche, J. C. W. Lohrenz, *Chem. Rev.* **2001**, *101*, 697-756.

peu soluble dans les solvants organiques mais des informations RMN ont néanmoins été obtenues. Le spectre RMN de ce solide dans dichlorométhane deutéré montre l'élimination efficace des impuretés. Les deux produits majoritaires observés précédemment sont toujours visibles (figure 4). Sur le spectre RMN ¹H deux signaux très couplés à $\delta_{H} = 3.37$ ppm et $\delta_{H} = 2.96$ ppm sont observés dans un ratio 2:3 correspondant à des protons de type PC(**H**)P couplés en plus à un atome de bore. Dans le spectre RMN ¹H {³¹P} ces deux signaux sont deux doublets larges qui illustrent ce couplage B-H. De plus, de nombreux signaux aromatiques distincts sont observés. Le spectre RMN ¹³C ne donne pas d'information utile quant à la structure de ce nouveau produit. Celui-ci existe manifestement sous deux formes diastéréoisomériques. Deux types de cristaux analysables par diffraction des RX ont été obtenus par évaporation lente d'une solution concentrée de **VI.17a** et **VI.17b** dans le dichlorométhane. Ces deux structures sont présentées figures 2 et 3.

Figure 2 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **VI.17a**. Les atomes d'hydrogène (sauf sur C(1), C(2), B(1) et B(2)) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,822(5) ; C(1)-P(2) 1,825(5) ; C(1)-B(2) 1,659(8) ; P(1)-S(1) 1,954(2) ; P(2)-B(1) 1,946(6) ; C(2)-P(3) 1,825(5) ; C(2)-P(4) 1,839(5) ; C(2)-B(1) 1,655(8) ; P(3)-S(2) 1.954(2) ; P(4)-B(2) 1.947(6) ; P(1)-C(1)-P(2) 119,89(7) ; P(1)-C(1)-B(1) 114,3(3) ; P(2)-C(1)-B(2) 118,0(3) ; P(3)-C(2)-P(4) 116,9(3) ; P(4)-C(2)-B(1) 107,7(4).

Figure 3 : Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **VI.17b**. Les atomes d'hydrogène (sauf sur C(1), C(1'), B(1) et B(1')) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,822(1) ; C(1)-P(2) 1,817(2) ; P(1)-S(1) 1,9525(5) ; C(1)-B(1) 1.669(2) ; P(2)-B(1') 1.951(2) ; P(1)-C(1)-P(2) 119,89(7).

Le composé **VI.17** est un composé cyclique à 6 chaînons $P_2C_2B_2$. Il est obtenu par activation intramoléculaire d'une liaison B-H du groupement borane présent sur l'atome de phosphore. Cette activation conduit au composé monomérique **VI.16** qui dimérise ensuite pour donner **VI.17a,b**. Cette dimérisation peut se faire selon deux « sens » possible conduisant donc à deux produits différents, **VI.17a** et **VI.17b**. Dans le premier cas, le cycle à 6 adopte une conformation bateau (**VI.17a**) dans laquelle les atomes d'hydrogène portés par les carbones du pont P-C-P sont situés dans le même plan. Dans le deuxième cas (**VI.17b**), le cycle à six chaînons est dans une conformation chaise et les deux atomes d'hydrogène sont situés en trans. L'obtention de ces deux structures RX permet de rationaliser les observations RMN (figure 4). Chacun des multiplets à δ_p = 46,1 ppm et δp = 45,9 ppm correspond à un atome de phosphore PS de **VI.17a** et **VI.17b**. Le signal large correspond, lui, aux deux fonctions phosphine-borane.

Figure 4 : Spectre RMN ³¹P de VI.17a,b dans le dichlorométhane.

Les distances intracycliques P-B de 1,948 Å (moy.) et P-C de 1,827 Å (moy.) sont du même ordre de grandeurs que dans le ligand neutre. Les liaisons C-B (1,659(8) Å ; 1,655(8) Å et 1.669(2) Å) sont légèrement plus longues que dans les cycles analogues^{44,45,46,47}. Aucune interconversion de **VI.17a** en **VI.17b** (ou inversement) même à haute température n'a été observée. **VI.17** est stable à l'air et à l'eau, en milieu acide comme en milieu basique. Nous avons tenté de rompre la liaison P-B par des méthodes classiques sans succès.

Cette réaction étant inconnue à ce jour, nous avons tenté de comprendre son déroulement exact et un suivi approfondi a été réalisé. Après ajout de l'hexachloroéthane, la réaction a été ramenée à -20°C et laissée 1h mais aucun changement du spectre n'est observé. A partir de 0°C en revanche, la formation du carbénoïde **VI.15** est observée mais celui-ci est trop instable et n'a pas pu être isolé. Pour prouver la formation de **VI.15**, un aliquot de la réaction dont le spectre RMN montre la présence de **VI.15** a été hydrolysé. Un nouveau produit caractérisé par un système AX sur le spectre RMN ³¹P à $\delta_p = 46,8$ ppm (d, $J_{p,p} = 10$ Hz) et $\delta_p = 32$ ppm (signal large) est observé. Par analogie avec **2.LiCl**, ce produit a été identifié comme **VI.18**. Dans le spectre RMN ¹H dans CD₂Cl₂ un proton central a été localisé à $\delta_H = 5,66$ ppm (dd, $J_{p-H} = 7,3$ Hz et $J_{p-H} = 8,7$ Hz) associé à un carbone à $\delta_C = 49,4$ ppm (dd, $J_{p-C} = 10$ Hz, $J_{p-C} = 39$ Hz). Ces déplacements

⁴⁴ R. Köster, G. Seidel, G. Müller, R. Boese, B. Wrackmeyer, Chem. Ber. 1988, 121, 1381-1392.

⁴⁵ A. S. Ionkin, S. N. Ignatéva, V. M. Nekhoroshkov, J. J. Efremov, B. A. Arbuzov, *Phosphorus, Sulfur Silicon Relat. Elem.* 1990, 53, 1-5.

⁴⁶ M. Yoshifuji, H. Takahashi, K. Toyota, *Heteroatom Chem.* 1999, 10, 187-196.

⁴⁷ C. A. Jaska, A. J. Lough, I. Manners, *Inorg. Chem.* 2004, 43, 1090-1099.

chimiques sont très nettement déblindés par rapport au ligand neutre ($\delta_{\rm H} = 3,86$ ppm et $\delta_{\rm C} = 29,6$ ppm) et sont là aussi comparables à ce qui a été observé pour **2.LiCl**. Étonnamment, **VI.18** n'est pas stable et se décompose en quelques heures pour donner **VI.19** avec libération probable de chloroborane empêchant d'avantage de caractérisation. Nous avons également tenté une synthèse alternative de **VI.18** par ajout de C₂Cl₆ à une solution du monanion de **VI.14** dans le THF. La formation de **VI.18** est observée mais sa décomposition à température ambiante est trop rapide pour en permettre l'isolation.

2. Activation intermoléculaire

Encouragés par ces résultats prometteurs nous nous sommes tournés vers le carbénoïde **2.LiCl** afin d'en étudier la réactivité vis-à-vis de BH₃. La synthèse de **2.LiCl** a déjà été décrite dans la littérature et la procédure a été reprise à l'identique. A une solution de **2.LiCl** dans l'éther ont été ajoutés 2 équivalents de BH₃.SMe₂ à -78°C (schéma 11).

Schéma 12 : Réactivité de 2.LiCl vis-à-vis de BH3.

Après 1h de réaction à température ambiante, le spectre RMN ³¹P de la solution indique la consommation totale de **2.LiCl**. Un nouveau produit majoritaire à $\delta_p = 50,1$ ppm ainsi que différentes impuretés sont observés. Après traitement, un solide blanc est isolé. Nous avons alors entrepris de le caractériser par spectroscopie RMN dans le dichlorométhane deutéré. Ce solide n'y est que partiellement soluble. Le spectre RMN ³¹P révèle la présence d'un singulet à $\delta_p = 51$ ppm. Dans le spectre RMN ¹H, un signal fort couplé (qui se simplifie par découplage phosphore en un signal caractéristique d'un couplage B-H) à $\delta_H = 3,62$ ppm est observé. Ce signal correspond à un proton situé sur le pont P-C-P et couplé à un atome de bore. En plus des signaux attribuables aux protons aromatiques, la présence d'une molécule d'éther est observée. Ces observations nous conduisent à proposer la formation du composé **VI.20** (schéma 12). **VI.20** résulte de l'activation d'une liaison B-H par **2.LiCl**. C'est un composé monomérique dans lequel une molécule d'éther vient se coordiner à l'atome de bore. La diffusion lente de pentane dans une solution concentrée de **VI.20** a permis la détermination d'une structure RX. Une vue en est donnée figure 5.

Figure 5: Vue ORTEP (ellipsoïdes à 50 % de probabilité) de **VI.21**. Les atomes d'hydrogène (sauf sur C(1), C(1'), B(1) et B(1')) et les atomes carbone des noyaux aromatiques (sauf C_{ipso}) ont été omis par souci de clarté. Distances (Å) et angles (°) significatifs : C(1)-P(1) 1,812(4) ; C(1)-P(2) 1,828(3) ; P(1)-S(1) 2.040(1) ; P(2)-S(2) 1,953(1) ; C(1)-B(1') 1,668(5) ; S(1)-B(1) 1,983(4) ; P(1)-C(1)-P(2) 116,9(2).

Contrairement à nos attentes, **VI.20** n'est pas un composé monomérique mais un composé cyclique à huit chaînons $P_2C_2S_2B_2$ (**VI.21**) qui, comme dans le cas de **VI.17**, résulte de l'activation de BH₃ par **2.LiCl**. L'espèce monomérique, solvatée par une molécule d'éther, qui est formée dimérise ensuite pour donner **VI.21**. C'est le premier exemple à ce jour de cycle à 8 chaînons de type $P_2C_2S_2B_2$. Contrairement à **VI.17**, **VI.21** est très sensible à l'eau. Ceci est certainement dû au fait que la stabilisation du groupement borane par coordination avec le soufre est très nettement plus faible qu'avec coordination à un atome de phosphore. Cette structure dimérique est en contradiction avec les données RMN, nous supposons qu'en solution l'espèce formée est le monomère **VI.20** alors qu'à l'état solide, la forme dimérique **VI.21** est préférée.

VI.20 n'est pas obtenu proprement lors de la réaction. Nous avons donc tenté de stabiliser cette espèce par ajout d'une phosphine afin de former le composé phosphine-borane correspondant après ouverture du cycle. Le produit obtenu pourrait avoir une meilleure stabilité et faciliter ainsi la purification. Ainsi, **VI.20** a été mis en présence de triphénylphosphine dans le dichlorométhane. Après un week-end à reflux, la conversion partielle de **VI.20** en une nouvelle espèce caractérisée par un système AX à $\delta_{\rm p} = 50,1$ ppm ($J_{\rm P-P} = 23$ Hz) et $\delta_{\rm p} = 16$ ppm (br) (ratio 2:1) est observée (schéma 13).

Schéma 13 : Formation du composé phosphine borane dérivé de VI.20.

Cette même réaction effectuée dans le dichloroéthane à reflux conduit à la conversion totale de **VI.20** en **VI.22** en 1h. Après évaporation des solvants, **VI.22** a pu être caractérisé dans le THF deutéré. Le proton central du pont P-C-P résonne à $\delta_{\rm H} = 4,10$ ppm (multiplet) dans le spectre RMN ¹H. Dans le spectre ¹H{³¹P} ce signal se simplifie en un signal large caractéristique d'un proton en α d'un atome de bore. Le carbone central est difficilement visible en RMN ¹³C mais il a été localisé grâce à une séquence HSQC à $\delta_{\rm C} = 34,2$ ppm. Ces données RMN confortent la formation de **VI.21**. Malheureusement, ce dernier est toujours sensible à l'eau (formation du ligand neutre **2** et de triphénylphosphine) et les techniques de purification disponibles sous atmosphère inerte n'ont pas permis de l'isoler pur.

III. Etude théorique

Le mécanisme de l'activation de la liaison B-H a été étudié grâce à des calculs DFT. Les calculs ont été menés avec la fonctionnelle b3pw91. Les bases suivantes ont été utilisées : $6-31G^*$ sur P, B, S, Cl, C(central) ; $6-311++G^{**}$ pour les atomes d'hydrogène du groupement BH₃, 3-21G sur les atome restants (C, H).

1. Activation intramoléculaire

Nous avons tout d'abord cherché à rationaliser la formation de **IV.17** à partir de **IV.15**. Pour ce faire, nous avons utilisé comme point de départ un modèle extrait directement de la structure RX de **IV.15** (composé **A**, schéma 14) dans lequel les molécules de solvant ont été remplacées par des molécules de diméthyle éther. Le mécanisme proposé est décrit schéma 15.

Schéma 14 : Mécanisme proposé pour la formation de VI.17.

La première étape consiste en un réarrangement de **A** pour former **B**. Formellement, il s'agit de la rotation du fragment Ph_2P -BH₃. Ensuite, le groupement BH3 est transféré de l'atome de phosphore au carbone central et le composé **C** est obtenu. L'élimination de l'atome de chlore du carbone central a ensuite lieu (composé **D**) puis l'activation de la liaison B-H concomitamment avec l'élimination de LiCl(OMe₂)₂. Le composé monomérique **E** est alors obtenu. Celui-ci dimérise finalement pour donner **F**. Le profil énergétique calculé pour cette transformation est donné schéma 14.

La réaction est thermodynamiquement très favorable ($\Delta E = -43,6$ kcal/mol). L'étape cinétiquement déterminante est la formation du composé **B**. La suite du mécanisme fait intervenir des étapes peu coûteuses en énergie. L'étape clé d'insertion B-H se fait avec un état de transition dont l'énergie a été calculée à +12,6 kcal/mol par rapport au composé **D**. La formation du composé **E** est l'étape la plus exothermique ($\Delta E = 47,6$ kcal/mol).

coordonnées réactionnelles

Schéma 15 : Energies calculées pour les différentes étapes du mécanisme de formation de VI.17.

Une représentation de l'état de transition de l'insertion B-H est donnée figure 6. Cet état de transition fait intervenir un carbone tri-coordinée plan (somme des angles de 358,4°). La liaison C-B a une longueur calculée à 1,54 Å. Celle-ci est plus courte que celle calculée dans les complexes **C** et **D** (1,67 Å et 1,66 Å respectivement). Une des liaisons B-H du groupement BH₃ est rallongée par rapport aux deux autres (1,25 Å contre 1,21 Å). La distance C-Cl est calculée à 3,98 Å indiquant l'absence de liaison. Ce mécanisme met en avant le caractère nucléophile du carbénoïde **VI.15** par formation de l'adduit de Lewis C-BH₃ comme l'étape précédant l'insertion B-H.

Figure 6: Vue simplifiée de l'état de transition TS_{DE}. Les noyaux aromatiques (sauf carbones ipso) et les atomes d'hydrogène (sauf sur le groupement BH₃) ont été omis par souci de clarté.

2. Activation intermoléculaire

Nous nous sommes ensuite tournés vers la compréhension du mécanisme de l'activation de BH₃ par **2.LiCl**. Le même type de mécanisme que celui calculé précédemment a été envisagé. Il est décrit schéma 16.

Schéma 16 : Mécanisme proposé pour la formation de VI.19.

Dans une première étape, le carbénoïde **G** se réarrange pour former le complexe **H**. L'addition de BH₃ assistée par une première coordination à un atome de soufre a ensuite lieu et le complexe **I** est obtenu. Le BH₃ migre ensuite du soufre vers le carbone pour conduire à l'adduit de Lewis **J**. Ensuite, l'addition dans la liaison BH a lieu avec libération de LiCl(OMe₂)₂ forme le complexe monomérique **K** qui dimérise ensuite pour donner **L**. Les énergies calculées pour les différents complexes sont données schéma 17.

L'étape la plus coûteuse en énergie est le réarrangement du carbénoïde **G** pour donner **H** l'écart d'énergie a été calculé à 9,1 kcal/mol. L'addition de BH₃ sur le carbénoïde est exothermique et la formation de l'adduit de Lewis **J** se fait avec un écart énergétique de 15,3 kcal/mol par rapport à **H**. Ensuite l'insertion BH se fait avec un état de transition (représenté figure 7) dont l'énergie a été calculée à 5,7 kcal/mol par rapport à **J**. La formation du monomère **K** est ensuite très largement exothermique ($\Delta E = \sim 47$ kcal/mol).

coordonnées réactionnelles

Schéma 17 : Energies calculées pour les différentes étapes de la formation de L.

Figure 7 : Vue simplifiée de l'état de transition TS_{JK} . Les noyaux aromatiques (sauf carbones ipso) et les atomes d'hydrogène (sauf sur le groupement BH₃) ont été omis par souci de clarté.

Comme pour le mécanisme précédent, une des trois liaisons B-H est considérablement rallongée par rapport aux deux autres (1,27 Å contre 1,20 Å). La liaison C-B calculée à 1,55 Å est nettement plus courte que la valeur calculée pour l'adduit I (1,67 Å) et que celle calculée pour J (1,60 Å). La liaison C-Cl est elle calculée à 2,34 Å ce qui est bien plus grand que la liaison C-Cl calculée pour G, H ou I (1,78 Å pour G, 1,82 Å pour H et 1,81 Å pour I). Cet état de transition correspond donc à la formation d'une liaison C-H et à la rupture d'une liaison B-H et d'une liaison C-Cl. Une fois encore, le caractère nucléophile du carbénoïde est mis en évidence par formation de l'adduit de Lewis.

Un deuxième mécanisme a été envisagé pour cette transformation. L'addition d'une molécule de BH_3 sur le carbone central du carbénoïde **G** conduit à l'adduit **M** qui peut être converti par la suite en **K** par élimination de LiCl(OMe₂)₂ et insertion B-H. L'élimination du chlore se fait en cis de l'hydrogène et non en trans comme dans le cas précédent. Ce mécanisme ainsi que les énergies calculées pour les différents intermédiaires sont représentés schéma 18.

Schéma 18 : Autre mécanisme envisagé pour la formation de VI.21.

La première étape de ce mécanisme, la coordination de BH_3 au carbone central est thermodynamiquement favorable ($\Delta E = 15,6$ kcal/mol). Comme dans le cas précédent, la formation du composé C(H)(BH₂) est aussi largement exothermique ($\Delta E = 31,4$ kcal/mol). Cependant, l'état de transition a, dans ce cas, une énergie calculée à 28,1 kcal/mol au-dessus du produit de départ. On peut donc raisonnablement penser que le mécanisme décrit au schéma 13, dont l'état de transition a une énergie de 5,7 kcal/mol par rapport au produit de départ est le plus probable.

IV.Conclusions et perspectives

En conclusion, nous avons présenté les premiers exemples d'activation de BH_3 par des composés non métalliques. Premièrement, la synthèse d'une nouvelle espèce carbénoïde obtenue par oxydation du dianion **VI.14** par C₂Cl₆ suivant une procédure déjà établie pour le dianion **2.Li**₂ a été réalisée. L'espèce formée n'est pas stable en solution à température ambiante. Une structure RX a néanmoins été obtenue pour ce carbénoïde qui adopte une structure similaire à celle observée pour **2.LiCl**. La décomposition du carbénoïde **VI.15** en solution a été suivie et a permis d'isoler un produit résultant d'une activation B-H intramoléculaire du groupement BH₃ du ligand. Ce produit constitue un des rares exemples de cycle à six chaînons $P_2C_2B_2$. Deuxièmement, nous avons réalisé l'activation intermoléculaire de BH₃ en utilisant le carbénoïde **2.LiCl** comme produit de départ. Cette fois, un cycle à huit chaînons $P_2C_2B_2S_2$ a été obtenu. Le mécanisme de ces transformations a été ensuite étudié par calcul DFT. L'étape d'activation B-H se fait, dans chaque cas, avec un état de transition facilement accessible (10 kcal/mol et 6 kcal/mol). Les produits obtenus sont ensuite très nettement plus bas en énergie expliquant la conversion totale des produits de départ. Ces deux mécanismes mettent en évidence le rôle nucléophile des carbénoïdes générés, des adduits de Lewis C-B étant des produits intermédiaires de ce mécanisme. Contrairement aux exemples de la litérature, l'électrophilie des carbénoïdes est cette fois suffisante pour permettre l'activation de la liaison B-H.

Il serait maintenant très intéressant d'étendre cette méthode à l'activation d'autres petites molécules telles que H_2 ou NH_3 afin de mettre en évidence un éventuel caractère électrophile du carbénoïde **2.LiCl**. Si ces activations sont possibles, on peut envisager d'utiliser **2.LiCl** pour séparer des adduits amine-borane tels que BH_3 - NH_3 par exemple. La réaction entre **2.LiCl** et un NHC bien choisi est à étudier et permettrait d'obtenir une oléfine très polarisée (système push-pull, schéma 19).

Schéma 19 : Exploration de la réactivité de 2.LiCl avec différents partenaires.

V. Bibliographie

- 1) M. P. Shaver, M. D. Fryzuk, Adv. Synth. Catal. 2003, 345, 1061-1076.
- 2) G. J. Kubas, Acc. Chem. Res. 1988, 21, 120-128.
- 3) A. D. Allen, C. V. Senoff, Chem. Commun. 1965, 621-622.
- 4) C. V. Senoff, J. Chem. Educ. 1990, 67, 368.
- G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, H. J. Wasserman, J. Am. Chem. Soc. 1984, 106, 452-454.
- 6) U. Schubert, Adv. Organomet. Chem. 1990, 30, 151.
- 7) J. F. Hartwig, C. N. Muhoro, X. He, J. Am. Chem. Soc. 1996, 118, 10936-10937.
- 8) G. J. Kubas, *Metal Dihydrogen and σ-Bond Complexes*; Fackler, J. P., Ed.; Kluwer Academic/Plenum Publishers: New York, **2001**.
- 9) G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126.
- 10) G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881.
- 11) D. W. Stephan, Dalton Trans. 2009, 3129-3136.
- 12) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46-76.
- T. A. Rokob, A. Hamza, A. Stirling, T. Soós, I. Pápai, Angew. Chem. Int. Ed. 2008, 47, 2435-2438.
- 14) S. Grimme, H. Kruse, L. Goerigk, G. Erker, Angew. Chem. Int. Ed. 2010, 46, 1402-1405.
- 15) G. H. Spikes, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2005, 127, 12232-12233.
- 16) Y. Peng, M. Brynda, B. D. Ellis, J. C. Fettinger, E. Rivard, P. P. Power, *Chem. Commun.* 2008, 6042-6044.
- 17) Y. Peng, B. D. Ellis, X. Wang, P. P. Power, J. Am. Chem. Soc. 2008, 130, 12268-12269.
- 18) Y. Peng, J.-D. Guo, B. D. Ellis, Z. Zhu, J. C. Fettinger, S. Nagase, P. P. Power, J. Am. Chem. Soc. 2009, 131, 16272-16282.
- 19) Z. Zhu, X. Wang, Y. Peng, H. Lei, J. C. Fettinger, E. Rivard, P. P. Power, *Angew. Chem. Int. Ed.* **2009**, *48*, 2031-2034.
- 20) V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, *Angew. Chem. Int. Ed.* **2006**, *45*, 3488-3491.
- 21) J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2007, 119, 7182-7185.
- 22) J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2007, 129, 14180-14181.
- 23) G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, *Science* 2007, *316*, 439-441.
- 24) O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2009, 48, 5530-5533.
- 25) V.Lavallo, J. Mafhouz, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, J. Am. Chem. Soc. 2004, 126, 8670-8671.
- 26) W. A. Herrmann, M. Elison, J. Fischer, C. Kocher, G. R. J. Artus, *Chem. Eur. J.* **1996**, *2*, 772-780.
- 27) G. D. Frey, J. D. Masuda, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49, 9444-9447.
- 28) N. Kuhn, G. Henkel, T. Kratz, J. Kreutzberg, R. Boeseb, A. H. Maulitzb, *Chem. Ber.* 1993, *126*, 2041-2045.

- 29) D. P. Curran, A. Solovyev, M. M. Brahmi, L. Fensterbank, M. Malacria, E. Lacôte, *Angen. Chem. Int. Ed.* 2011, *50*, 10294-10317.
- 30) D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, *Angew. Chem. Int. Ed.* **2008**, *47*, 7428-7432.
- J. Monot, M. M. Brahmi, S.-H. Ueng, C. Robert, M. Desage-El Murr, D. P. Curran, M. Malacria, L. Fensterbank, E. Lacôte, Org. Lett. 2009, 11, 4914-4917.
- 32) Q. Chu, M. M. Brahmi, A. Solovyev, S.-H. Ueng, D. P. Curran, M. Malacria, L. Fensterbank, E. Lacôte, *Chem.-Eur. J.* 2009, 15, 12397-12940.
- 33) J. C. Walton, Angew. Chem. Int. Ed. 2009, 48, 1726 1728.
- 34) J. Monot, L. Fensterbank, M. Malacria, E. Lacôte, S. J. Geib, D. P. Curran, Beilstein J. Org. Chem. 2010, 6, 709-712.
- 35) D. M. Lindsay, D. McArthur, Chem. Commun. 2010, 46, 2474-2476.
- 36) M. A. Dureen, A. Lough, T. M. Gilbert, D. W. Stephan, Chem. Commun. 2008, 4303-4305.
- 37) H. Schmidbaur, T. Costa, Chem. Ber. 1981, 114, 3063-3069.
- 38) F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am. Chem. Soc. 1961, 83, 3539-3540.
- 39) W. Petz, F. Öxler, B. Neumüller, R. Tonner, G. Frenking, Eur. J. Inorg. Chem. 2009, 4507-4517.
- 40) T. Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, *Angew. Chem. Int. Ed.* **2007**, *46*, 5947-5950.
- 41) G. Boche, M. Marsch, A. Müller, K. Harms, Angew. Chem. Int. Ed. 1993, 32, 1032-1033.
- 42) A. Müller, M. Marsch, K. Harms, J. C. W. Lohrenz, G. Boche, *Angew. Chem. Int. Ed.* **1996**, *35*, 1518-1520.
- 43) G. Boche, J. C. W. Lohrenz, Chem. Rev. 2001, 101, 697-756.
- 44) R. Köster, G. Seidel, G. Müller, R. Boese, B. Wrackmeyer, Chem. Ber. 1988, 121, 1381-1392.
- 45) A. S. Ionkin, S. N. Ignatéva, V. M. Nekhoroshkov, J. J. Efremov, B. A. Arbuzov, *Phosphorus, Sulfur Silicon Relat. Elem.* **1990**, *53*, 1-5.
- 46) M. Yoshifuji, H. Takahashi, K. Toyota, Heteroatom Chem. 1999, 10, 187-196.
- 47) C. A. Jaska, A. J. Lough, I. Manners, Inorg. Chem. 2004, 43, 1090-1099.

Partie expérimentale

PARTIE EXPÉRIMENTALE

I. Considérations générales

1. Procédures de synthèse

Sauf mention particulière, toutes les manipulations ont été effectuées sous atmosphère inerte (de diazote ou d'argon) en utilisant les techniques classiques de Schlenk et de boîte à gants. Les différents solvants utilisés ont été purifiés comme suit. Le dichlorométhane, le toluène, l'éther de pétrole, l'éther diéthylique et le THF sont fournis par une machine à solvants de type MBraun SPS-800. Le 1,2-diméthoxyéthane est séché sur CaH₂ puis distillé, la tétraméthyléthylènediamine sur KOH puis distillée, le pentane est séché sur P₂O₅ puis distillé. La pyridine est séchée sur KOH puis distillée. CoCl₂ est acheté sous forme hydratée et séché sous vide à haute température. ZrCl₄(THF)₂¹, TiCl₄(THF)₂¹, RuCl₂(PPh₃)₄², CoCl₂(bipy)³, CoCl₂(bipy)₂⁴, FeCl₂(THF)_{1.5}⁵, [Rh(COD)Cl]₂⁶, [Rh(NBD)Cl]₂⁶, AuClPPh₃⁷ ont été préparés suivants les procédures décrites dans la littérature. Tous les autres réactifs ont été achetés et utilisés tels quel.

2. Spectroscopie RMN

Les spectres RMN ont été enregistrés sur un spectromètre Bruker 300 SY opérant 300 MHz pour le ¹H, à 75,5 MHz pour le ¹³C et à 121,5 MHz pour le ³¹P. Les déplacements chimiques, positifs vers les champs faibles, sont exprimés en parties par million (ppm) par rapport au TMS (référence interne) pour le ¹H et le ¹³C et par rapport à H_3PO_4 (85%) (référence externe) pour le ³¹P. Les spectres sont enregistrés, sauf mention contraire, à 20°C. Les constantes de couplage sont données en Hertz. Les abréviations suivantes sont utilisées pour décrire les spectres RMN : s (singulet), d (doublet), t (triplet), q (quadruplet), dd (doublet de doublet), dt (doublet de triplet), td (triplet de doublet), l (large), m (multiplet ou massif)...

3. Diffraction des rayons X

Les données nécessaires à la détermination des structures RX ont été mesurées avec un diffractomètre kappa-CCD de Nonius puis kappa-APEX-2 de Bruker. Les mesures sont effectuées à la longueur d'onde K\alpha du molybdène filtrée par une lame de graphite. Elles sont,

¹ L. E. Manzer, Inorg. Synth. 1982, 21, 135-140.

² P. S. Hallman, T. A. Stephenson, G. Wilkinson, *Inorg. Synth.* **1970**, *12*, 237-240.

³ M. Mukhopadhyay, M. M. Reddy, G. C. Maikap, J. Iqbal, J. Org. Chem. 1995, 60, 2670-2676.

⁴ C. Chuy, L. R. Falvello, E. Libby, J. C. Santa-María, M. Tomás, Inorg. Chem. 1997, 36, 2004-2009.

⁵ R. J. Kern, J. Inorg. Nucl. Chem. 1962, 24, 1105-1109.

⁶ G. Giordano, R. H. Crabtree, *Inorg. Synth.* **1979**, *19*, 218-220.

⁷ P. Braunstein, H. Lehner, D. Matt, *Inorg. Synth.* **1990**, *27*, 218-221.

sauf exception, réalisées à 150K grâce à un cryostat à jet gazeux Cryostream Série 600 puis Cryostream série 700 de la société Oxford Cryosystems. Les structures sont résolues par méthode directe à l'aide des logiciels SIR97⁸ ou SHELXS-97⁹ et affinées par méthode des moindres carrés grâce au programme SHELXL-97.

4. Analyses élémentaires

Les microanalyses ont été effectuées au service d'analyse élémentaire de la London Metropolitan University.

5. Détails théoriques

L'ensemble des calculs ont été effectués au niveau DFT en utilisant la suite de logiciel GAUSSIAN 03¹⁰. Les analyses de population ont été effectuées suivant les méthodes NBO et CDA. Le logiciel AOMIX a été utilisé pour la description CDA et les interactions de fragments. Les logiciels Gaussview et Chemcraft ont permis la visualisation des résultats.

a. Méthode NBO

La méthode NBO permet de décrire la structure électronique d'un système moléculaire conformément à une représenation de Lewis. La densité électronique est alors décrite en terme d'orbitales de cœurs (CR), de doublets non-liants (LP) et d'orbitales de liaion (BD) localisées entre deux atomes¹¹. Cette analyse permet également le calcul d'indices de liaison au sens de Wiberg¹². Ces indices permettent de comparer différentes liaisons les unes avec les autres (à des niveaux de théorie identiques).

⁸ A. Altomare, M.C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.* **1999**, *32*, 115-119.

⁹ G. M. Sheldrick, **1997**, Universität Göttingen: Göttingen, Germany,

¹⁰ Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J.A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., *Gaussian 03*; Gaussian Inc., Wallingford, CT, **2004**.

A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem Rev.* **1988**, 88, 899-926.
 K. B. Wiberg, *Tetrahedron* **1968**, *24*, 1083-1096.

II. Modes opératoires

1. Chapitre 1

Synthèse du complexe I.7 : A une solution du dianion $2.Li_2$ (0.32 mmol dans 5 mL de toluène) est ajouté un demi-équivalent de $[TiCl_4(THF)_2]$ (53.4 mg, 0.16 mmol). La solution se colore instantanément en rouge puis en marron. Après 12h d'agitation à température ambiante, le mélange

réactionnel est filtré pour éliminer le chlorure de lithium. La phase liquide est séchée sous vide et le complexe **I.7** est isolé sous la forme d'une poudre orange (130 mg, 86%).

Caractérisation : RMN ³¹P (121.5 MHz, C_6D_6 , 25°C) : δ_P 19 ppm (s). RMN ¹H (300 MHz, C_6D_6 , 25°C) : δ_H 7.79-7.72 (m, 16H), 6.93-6.85 (m, 24H). RMN ¹³C (75 MHz, C_6D_6 , 25°C) : δ_C 149.6 (pseudo-t, C_{ipso}), 137.6 (dd, J_{P-C} = 83 Hz, J_{P-C} = 4 Hz, C_{ipso}), 131.8 (pseudo-t, CH), 131.6 (pseudo-t, CH), 130.8 (bs, CH).

Synthèse du complexe I.10: A une suspension du dianion $3.Li_2$ (188 mg, 0.53 mmol) dans du toluène (10 mL) est ajouté $[ZrCl_4(THF)_2]$ (200 mg, 0.53 mmol) dans la boîte à gants. La solution est laissée sous agitation pendant 24h. La phase solide est isolée par centrifugation et le complexe est extrait au dichlorométhane. Après

filtration et évaporation du solvant, **I.10** est isolé sous la forme d'un solide blanc (156 mg, 0.10 mmol, 19.5%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm p}$ 18.6 (s). RMN ¹H (300 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 4.84 (m, 6H, OCH(CH₃)₂), 1.36-1.46 (m, 36H, OCH(CH₃)₂). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 128.5 (d, ¹*J*_{P-C} = 61 Hz, PCP), 73.7 (t, ²*J*_{P-C} = 4 Hz, OCH(CH₃)₂), 24.0 (t, ³*J*_{P-C} = 1.9 Hz, OCH(CH₃)₂), 23.8 (t, ³*J*_{P-C} = 2.8 Hz, OCH(CH₃)₂).

Analyse élémentaire calculée pour $C_{39}H_{84}Cl_6O_{18}P_6Zr_3$: C 30.95, H 5.59; trouvée : C 31.28, H 5.79.

Synthèse du complexe I.11 : A une solution du complexe I.10 (91 mg, 0.06 mmol) dans le dichlorométhane (2 mL) sont ajoutés trois équivalents de pyridine (15 μ L, 0.18 mmol) dans la boîte à gants. Après 15 minutes, le solvant est

évaporé et le complexe **I.11** est isolé sous la forme d'un solide blanc (100 mg, 0.085 mmol, 95%). Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : δ_P 24.0 (s). RMN ¹H (300 MHz, CD₂Cl₂, 25°C) : δ_H 9.20 (bs, H *ortho*-pyridine), 7.79 (bs, H *para*-pyridine), 7.41 (bs, H *meta*-pyridine), 4.66 (m, 8H, OCH(CH₃)₂), 1.23 (m, 48H, OCH(CH₃)₂). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : δ_C 151.6 (bs, CH *ortho*-pyridine), 139.5 (bs, CH *para*-pyridine), 124.4 (bs, CH *meta*-pyridine), 70.7 (m, CH isopropyle), 23.1 (m, CH₃ isopropyle).

Analyse élémentaire calculée pour $C_{36}H_{66}Cl_4N_2O_{12}P_4Zr_2$: C 37.05, H 5.70 ; trouvée : C 37.31, H 5.91.

Synthèse du composé I.16 : A une solution du complexe I.10 (30 mg, 0.02 mmol) dans le dichlorométhane sont ajoutés trois équivalents de 9antraldéhyde (12.4 mg, 0.06 mmol). Après 10h d'agitation à température ambiante le milieu réactionnel est hydrolysé par ajout d'eau distillée. La phase organique est isolée et la phase aqueuse est extraite au dichlorométhane. Les phases organiques sont rassemblées, séchées sur

MgSO₄, filtrées et le solvant est évaporé sous vide. L'alcène **I.16** est isolé sous la forme d'un solide jaune (30 mg, 0.056 mmol, 94 %).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm p}$ 7.5 (d, ² $J_{\rm P-P}$ = 56.3Hz, 1P), 11.9 (d, ² $J_{\rm P-P}$ = 56.3Hz, 1P). RMN ¹H (300 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 8.88 (dd, ³ $J_{\rm P-H}$ = 28.4 Hz, ³ $J_{\rm P-H}$ = 47.5 Hz, 1H, **H**C=C(PO)₂), 8.50 (s, 1H, H anthracyle), 8.05-8.08 (m, 2H, H anthracyle), 7.94-7.97 (m, 2H, H anthracyle), 7.51-7.55 (m, 4H, H anthracyle), 5.02 (m, 2H, OC**H**(CH₃)₂), 4.33 (m, 2H, OC**H**(CH₃)₂), 1.55 (d, ³ $J_{\rm H-H}$ = 5.1 Hz, 6H, OCH(C**H**₃)₂), 1.53 (d, ³ $J_{\rm H-H}$ = 5.1 Hz, 6H, OCH(C**H**₃)₂), 0.83 (d, ³ $J_{\rm H-H}$ = 6.1 Hz, 6H, OCH(C**H**₃)₂), 0.77 (d, ³ $J_{\rm H-H}$ = 6.3 Hz, 6H, OCH(C**H**₃)₂). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 157.7 (bs, P₂C=**C**H), 131.3 (s, 1C anthracyle), 131.0 (s, 4C anthracyle), 128.4 (s, 2CH anthracyle), 127.9 (t, ¹ $J_{\rm P-C}$ = 1.3 Hz, P₂**C**=CH), 126.8 (s, 1CH anthracyle), 126.3 (s, 2CH anthracyle), 125.4 (s, 2CH anthracyle), 125.3 (s, 2CH anthracyle), 70.8 (d, ² $J_{\rm P-C}$ = 6.2 Hz, CH isopropyle), 69.8 (d, ² $J_{\rm P-C}$ = 6.8Hz, CH isopropyle), 23.2 (d, ³ $J_{\rm P-C}$ = 5.1 Hz, CH₃ isopropyle), 22.5 (d, ³ $J_{\rm P-C}$ = 3.5 Hz, CH₃ isopropyl), 22.3 (d, ³ $J_{\rm P-C}$ = 5.8Hz, CH₃ isopropyle).

Spectrométrie de masse à haute résolution (HRMS) : Masse calculée : 532.2144 ; trouvée : 532.2161.

Ph₂F

PPh₂

Synthèse du complexe I.18 : $[RuCl_2(PPh_3)_4]$ (71.1 mg, 0.058 mmol) a été ajouté à une solution du complexe I.5 (40 mg, 0.029 mmol) dans le THF dans un tube RMN. La solution se colore instantanément en marron. Après 15 minutes, la complétion de la réaction est vérifiée par RMN ³¹P.

Synthèse du complexe I.19 : A une solution du complexe I.5 (40 mg, 0.029 mmol) dans le THF est ajouté $[PdCl_2(PPh_3)_2]$ (40.7 mg, 0.058 mmol). La solution est chauffée à 60°C pendant 2h et se colore en rouge. La complétion de la réaction est vérifiée par RMN ³¹P.

Synthèse du complexe II.10 : A une solution du complexe I.5 (100 mg, 0.073 mmol) dans le THF est ajouté $CoCl_2$ (19 mg, 0.15 mmol). La solution est chauffée à 60°C pendant 12h et la complétion de la réaction est vérifiée par RMN ³¹P.

2. Chapitre 2

Synthèse du complexe II.9 : A une solution du monoanion 2.Li (143.6 mg, 0.32 mmol) dans le toluène (5 mL) est ajouté $CoCl_2$ (20.7 mg, 0.16 mmol). La solution est laissée sous agitation pendant 15h et se

colore en vert. Après filtration (pour éliminer LiCl) et séchage, le complexe **II.9** est isolé sous la forme d'un solide vert (80%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : δ_{p} 4.1 (bs). RMN ¹H (300 MHz, CD₂Cl₂, 25°C) : δ_{H} 8.70 (bs, CH_{meta}), 6.65 (bs, CH_{para}), 6.32 (bs, CH_{phenyl}). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : δ_{C} 227.2 (bs, C*ipso*), 148.0 (s, CH_{para}), 146.4 (s, CH_{meta}), 129.2 (bs, CH_{ortho}). Analyse élémentaire calculée pour C₅₀H₄₂CoP₄S₄·C₄H₈O : C 63.21, H 4.62 ; trouvée : C 63.07, H

5.11.

Synthèse du complexe II.10 : A une solution du dianion $2.Li_2$ (143.6 mg, 0.32 mmol) dans le toluène (4 mL) est ajouté $CoCl_2$ (41.4 mg, 0.32 mmol). La solution est laissée sous agitation pendant 12h et se colore en marron. Le complexe II.10 est obtenu sous la forme d'une poudre marron après filtration et évaporation des solvants (75%).

Caractérisation : RMN ³¹P (121.5 MHz, CD_2Cl_2 , 25°C) : δ_p 187.0 (bs). RMN ¹H (300 MHz, CD_2Cl_2 , 25°C) : δ_H 13.66 (bs, 8 H, CH_{ortho}), 9.69 (bs, 8 H, CH_{meta}), 9.05 (pseudo-t, 4 H, CH_{para}), 4.57 (pseudo-t, 4 H, CH_{para}), 2.79 (s, 8 H, CH_{meta}), - 9.12 (s, 8 H, CH_{ortho}). RMN ¹³C (75.5 MHz,

Ph₂R-

Ph₂P

II.10

I.18

 CD_2Cl_2 , 25°C) : δ_C 148.1 (s, CH_{ortho}), 136.2 (s, CH_{para}), 130.3 (s, CH_{meta}), 125.6 (s, CH_{para}), 121.4 (s, CH_{meta}).

Analyse élémentaire calculée pour $C_{50}H_{42}Co_2P_4S_4$: C 59.41, H 3.99 ; trouvée C 59.69, H 3.88.

Synthèse du complexe II.11 : A une suspension du dianion $3.Li_2$ (150 mg, 0.42 mmol) dans le toluène (5 mL) est ajouté $CoCl_2$ (54.5 mg, 0.42 mmol). La solution est chauffée à 80°C pendant 3h. Après filtration et lavage au toluène, le complexe II.11 est isolé sous la forme d'une poudre violette (83 %).

Caractérisation : RMN ³¹P (121.5 MHz, THF-d⁸, 25°C) :

 $δ_P 63 .0$ (bs). RMN ¹H (300 MHz, THF-d⁸, 25°C) : $δ_H 6.4$ (bs, 4 H, CH(CH₃)₂), 1.23 (bs, 12 H, CH(CH₃)₂), 1.06 (bs, 12 H, CH(CH₃)₂). RMN ¹³C (75.5 MHz, THF-d⁸, 25°C) : $δ_C 74.4$ (br. s, CH(CH₃)₂), 25.9 (br. s, CH(CH₃)₂).

Analyse élémentaire calculée pour $C_{42}H_{88}Cl_4Co_2Li_4O_{16}P_4$: C 40.02, H 7.04; trouvée : C 39.86, H 6.87.

3. Chapitre 3

Synthèse du composé III.5 : A une solution de sulfure de triphénylephosphine (4.23 g, 14.4 mmol) dans le THF (20 mL) est ajouté du méthyllithium (1.6 M, 9 mL, 14.4 mmol) à -78°C. Le mélange réactionnel est

ramené à température ambiante et agité une nuit. La solution prend une coloration rouge foncé. Cette solution est canulée sur une solution de Ph₂Cl (2.65 mL, 14.4 mmol) dans le THF (10 mL) à 0°C. Le mélange réactionnel est agité 4h à température ambiante puis H_2O_2 (35% wt dans H_2O_3 , 1.4 mL, 14.4 mmol) est ajoutée à 0°C. Après 3h d'agitation à température ambiante, le composé **III.5** précipite. Il est récupéré par filtration, lavé avec 2x10 mL de THF puis 3x15 mL de diéthyle éther et séché (4.0 g, 9.25 mmol, 64 %).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm P}$ 33.6 (d, ² $J_{\rm P-P}$ = 14.5 Hz, PS), 21.0 (d, ² $J_{\rm P-P}$ = 14.5 Hz, PO). RMN ¹H (300 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 7.96-7.88 (m, 4H, H_{ortho} Ph₂PS), 7.77-7.63 (m, 4H, H_{ortho} Ph₂PO), 7.54-7.37 (m, 12H, H_{arom}), 3.75 (dd, ² $J_{\rm P-H}$ = 12.4 Hz, ² $J_{\rm P-H}$ = 14.5 Hz, 2H, PCH₂P). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 133.7 (dd, ³ $J_{\rm P-C}$ = 2.6 Hz, ¹ $J_{\rm P-C}$ = 104 Hz, **C**_{ipso}), 133.1 (dd, ³ $J_{\rm P-C}$ = 1.5 Hz, ¹ $J_{\rm P-C}$ = 84 Hz, **C**_{ispo}), 132.0 (m, 8C, **C**H_{arom}), 131.1 (m, 4C, **C**H_{arom}), 128.7 (m, 8C, **C**H_{arom}), 37.1 (dd, ¹ $J_{\rm P-C}$ = 45 Hz, ¹ $J_{\rm P-C}$ = 59 Hz, PCH₂P).

Partie expérimentale

Synthèse du composé III.5Li : A une solution du composé III.5 (139.3 mg, 0.32 mmol) dans le diéthyle éther (5 mL) est ajouté du méthyllithium (1.6 M, 0.2 mL, 0.32 mmol) à -78°C. Le mélange réactionnel est ramené à température ambiante et laissé 1h sous agitation. Un solide jaune précipite. Il est isolé par filtration, lavé avec 2x3 mL de diéthyle éther et séché ().

Caractérisation : RMN ³¹P (121.5 MHz, pyridine-d⁵, 25°C) : $\delta_{\rm p}$ 35.3 (d, ² $J_{\rm p-p}$ = 24 Hz, PS), 33.8 (d, ² $J_{\rm p-p}$ = 24 Hz, PO). RMN ¹H (300.0 MHz, pyridine-d⁵, 25°C): $\delta_{\rm H}$ 8.24-8.17 (m, 10H, H_{arom}), 8.13-8.07 (m, 5H, H_{arom}), 8.03-7.96 (m, 5H, H_{arom}), 2.33 (bd, ² $J_{\rm P-H}$ = 4 Hz, 1H, PC(**H**)P). RMN ¹³C (75.5 MHz, pyridine-d⁵, 25°C): $\delta_{\rm C}$ 144.0 (dd, ³ $J_{\rm P-C}$ = 4 Hz, ¹ $J_{\rm P-C}$ = 80 Hz, **C**_{ipso}), 142.8 (dd, ³ $J_{\rm P-C}$ = 6 Hz, ¹ $J_{\rm P-C}$ = 100 Hz, **C**_{ipso}), 132.5 (d, $J_{\rm P-C}$ = 10 Hz, **C**H_{arom}), 131.8 (d, $J_{\rm P-C}$ = 10 Hz, **C**H_{arom}), 130.0 (d, ⁴ $J_{\rm P-C}$ = 3 Hz, **C**H_{para}), 128.3 (d, $J_{\rm P-C}$ = 10 Hz, **C**H_{arom}), 128.2 (d, $J_{\rm P-C}$ = 10 Hz, **C**H_{arom}), 23.5 (dd, ¹ $J_{\rm P-C}$ = 105 Hz, ¹ $J_{\rm P-C}$ = 135 Hz, **PC**HP).

Synthèse du composé III.5Li₂: A une suspension de III.5 (1.0 g, 2.32 mmol) dans le diéthyle éther (10 mL) est ajouté de la TMEDA (0.4 mL, 2.66 mmol). A -78°C, du butyllithium (1.6 M, 3 mL, 4.8 mmol) est ajouté et la solution devient orange foncé en se réchauffant à température ambiante. Après 2h d'agitation,

III.5Li₂ précipite sous la forme d'un solide jaune et la réaction est agitée pendant encore 2h.

III.5Li₂ est isolé par centrifugation, lavé avec 2x5 mL de diéthyle éther et 2x8mL de pentane (960 mg, 1.74 mmol, 75 %).

Analyse élémentaire calculée pour $C_{62}H_{72}Li_4N_4O_2P_4S_2$: C 66.43, H 6.47, N 5.00 ; trouvée : C 66.31, H 6.51, N 4.87.

Synthèse du composé III.5D₂ : A une suspension du dianion III.5Li₂ (100 mg, 0.18 mmol) dans le toluène (4 mL) est ajouté un excès de D₂O. Une décoloration instantanée est observée. Après 1h d'agitation, les solvants sont évaporés sous vide. 5 mL de dichlorométhane sont ensuite ajoutés et le mélange

est filtré. La phase organique est séchée sur $MgSO_4$, filtrée et séchée. **III.5D**₂ est isolé sous la forme d'un solide blanc (75 mg, 99%).

Caractérisation : ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm P}$ 33.6 (d, ² $J_{\rm P,P}$ = 14.5 Hz, PS), 21.0 (d, ² $J_{\rm P,P}$ = 14.5 Hz, PO). RMN ¹H (300 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 7.96-7.88 (m, 4H, H_{ortho} Ph₂PS), 7.77-7.63 (m, 4H, H_{ortho} Ph₂PO), 7.54-7.37 (m, 12H, H_{arom}). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 133.7 (dd, ³ $J_{\rm P-C}$ = 2.6 Hz, ¹ $J_{\rm P-C}$ = 104 Hz, **C**_{ipso}), 133.1 (dd, ³ $J_{\rm P-C}$ = 1.5 Hz, ¹ $J_{\rm P-C}$ = 84 Hz, **C**_{ispo}), 132.0 (m, 8C, **C**H_{arom}), 131.1 (m, 4C, **C**H_{arom}), 128.7 (m, 8C, **C**H_{arom}), 37.1 (m, P**C**D₂**P**).

Synthèse du composé III.6 : A une solution de dppm (20.0 g, 52.0 mmol) dans le dichlorométhane (50 mL) est ajouté un excès d' H_2O_2 (35% wt dans H_2O_3 , 6 mL, 116.7 mmol) à 0°C. La réaction est très exothermique. Après 12h

d'agitation, la phase organique est extraite à l'eau, séchée sur MgSO₄, filtrée et le solvant évaporé.

III.6 est obtenu sous la forme d'un solide blanc (21.6 g, 99%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : δ_P 23.0 (s).

Synthèse du composé III.6Li : A une solution de III.6 (1.0 g, 2.4 mmol) dans le THF (15 mL) est ajouté du butyllithium (1.6 M, 1.5 mL, 2.4 mmol) à -78°C. La solution se colore instantanément en jaune. Après 1h d'agitation, le solvant est évaporé et III.6Li est obtenu sous la forme d'un solide jaune pale (900 mg, 89%).

Caractérisation : RMN ³¹P (121.5 MHz, THF-d⁸, 25°C) : $\delta_{\rm p}$ 36.0 (s). RMN ¹H (300.0 MHz, THF-d⁸, 25°C) $\delta_{\rm H}$ 7.69 (m, 8H, H_{arom}), 7.09 (m, 12H, H_{arom}), 1.76 (t, ²J_{P-H} = 4 Hz, PC**H**P). RMN ¹³C (75.5 MHz, THF-d⁸, 25°C) : $\delta_{\rm C}$ 142.2 (dd, ³J_{P-C} = 3 Hz, ¹J_{P-C} = 110 Hz, C_{ipso}), 131.0 (pseudo-t, Σ J = 9 Hz, CH_{meta}), 128.9 (bs, CH_{para}), 127.3 (pseudo-t, Σ J = 12 Hz, CH_{ortho}).

Synthèse du composé III.6K : A une solution de III.6 (500 mg, 1.2 mmol) dans le THF (10 mL) est ajouté du methyllithium (1.6 M, 0.75 mL, 1.2 mmol) à -78°C. Après quelques minutes d'agitation, un solide blanc précipite. Après 1h d'agitation à température ambiante, un équivalent de 18-c-6 est ajouté (317.4 mg,

1.2 mmol). Le précipité se solubilise et la solution prend une coloration jaune. Le solvant est ensuite évaporé et **III.6K** est obtenu sous la forme d'un solide jaune pale (800 mg, 93%). Caractérisation : RMN ³¹P (121.5 MHz, THF-d⁸, 25°C) : $\delta_{\rm P}$ 33.2 (s). RMN ¹H (300.0 MHz, THF-d⁸, 25°C) $\delta_{\rm H}$ 7.85 (m, 8H, H_{aron}), 7.17 (m, 12H, H_{aron}), 3.66 (s, 24H, H du 18-c-6). RMN ¹³C (75.5 MHz, THF-d⁸, 25°C) : $\delta_{\rm C}$ 143.6 (bd, ¹*J*_{P-C} = 110 Hz, C_{ipso}), 131.3 (pseudo-t, ΣJ = Hz, CH_{aron}), 127.5 (bs, CH_{nara}), 126.3 (pseudo-t, ΣJ = 9 Hz, CH_{aron}).

Synthèse du composé III.6Li₂ : A une suspension de III.6 (1.0 g, 2.4 mmol) dans le DME (15 mL) est ajouté du butyllithium (1.6 M, 3 mL, 4.8 mmol) à - 78°C. Le mélange réactionnel est ramené à température ambiante et laissé sous agitation pendant 2h. Un solide blanc précipite. Celui-ci est isolé par

centrifugation, lavé deux fois au DME puis avec 3x10 mL de pentane et séché (1.02 g, 87%).

Synthèse du composé III.6D₂: A une suspension du dianion III.6Li₂ (100 mg, 0.18 mmol) dans le toluène (4 mL) est ajouté un excès de D₂O. Une décoloration instantanée est observée. Après 1h d'agitation, les solvants sont évaporés sous vide. 5 mL de dichlorométhane sont ensuite ajoutés et le mélange

 $\begin{array}{c} \mathsf{D} \ \mathsf{D} \\ \mathsf{Ph}_2\mathsf{P} & \mathsf{PPh}_2 \\ \mathsf{O} & \mathsf{O} \\ \mathsf{III.6D}_2 \end{array}$

est filtré. La phase organique est séchée sur MgSO₄, filtrée et séchée. **III.6D**₂ est isolé sous la forme d'un solide blanc (75 mg, 99%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm P}$ 23.0 (s). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 7.79-7.69 (m, 8H, H_{arom}), 7.54-7.47 (m, 4H, H_{arom}), 7.46-7.38 (m, 8H, H_{arom}). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 133.3 (d, ¹*J*_{P-C} = 105 Hz, C_{ipso}), 131.8 (bs, CH_{para}), 130.9 (pseudo-t, ΣJ = 10 Hz, CH_{meta}), 128.4 (pseudo-t, ΣJ = 12 Hz, CH_{ortho}), 33.8 (m, P**C**P).

Synthèse du composé III.7 : A une solution de sulfure de triphénylphosphine (3.76 g, 12.77 mmol) dans le THF (40 mL) est ajouté du méthyllithium (1.6 M, 8 mL, 12.8 mmol) à -78°C. Le mélange réactionnel est ramené à température

ambiante et laissé sous agitation pendant une nuit. La solution prend une coloration rouge foncé. Cette solution est canulée sur une solution de chlorodiphenylphosphine (2.30 mL, 12.8 mmol) dans le THF (15 mL) à 0°C. Le mélange réactionnel est ramené à température ambiante et agité 4h. BH₃:SMe₂ (1.2 mL, 12.8 mmol) est ensuite ajouté. La réaction est laissée 2h sous agitation. Les solvants sont évaporés et 30 mL de dichlorométhane sont ajoutés. Les impuretés insolubles sont éliminées par filtration et la solution résultante est concentrée à ~5mL. 40 mL de pentane sont ajoutés et un solide blanc précipite. Ce solide est isolé par filtration, lavé avec 2x20 mL de pentane et séché (2.8 g, 51%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm P}$ 34.1 (d, ² $J_{\rm P-P}$ = 8.9 Hz, PS), 14.8 (bd, PBH₃). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 8.04-7.93 (m, 8H, H_{arom}), 7.76-7.56 (m, 12H, H_{arom}), 3.86 (dd, ² $J_{\rm P-H}$ = 10.2 Hz, ² $J_{\rm P-H}$ = 13.1 Hz, 2H, PCH₂P), 1.6-0.5 (br, BH₃). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 133.1 (d, ² $J_{\rm P-C}$ = 10 Hz, CH_{ortho}), 132.9 (dd, ³ $J_{\rm P-C}$ = 2 Hz, ¹ $J_{\rm P-C}$ = 83 Hz, C_{ipso}), 131.6 (d, ⁴ $J_{\rm P-C}$ = 3 Hz, CH_{para}), 131.4 (d, ⁴ $J_{\rm P-C}$ = 3 Hz, CH_{para}), 131.0 (d, ² $J_{\rm P-C}$ = 11 Hz, CH_{ortho}), 128.6 (d, ³ $J_{\rm P-C}$ = 10 Hz, CH_{meta}), 128.4 (d, ³ $J_{\rm P-C}$ = 10 Hz, CH_{meta}), 128.1 (dd, ³ $J_{\rm P-C}$ = 3 Hz, ¹ $J_{\rm P-C}$ = 57 Hz, C_{ipso}), 29.6 (dd, ¹ $J_{\rm P-C}$ = 26 Hz, ¹ $J_{\rm P-C}$ = 48 Hz, PCH₂P). ¹¹B NMR (89.0 MHz, CD₂Cl₂) $\delta_{\rm B}$ -38.0 (bs).

Spectrométrie de masse à haute résolution (HRMS) : masse calculée 430.1245 ; trouvée : 430.1244 Analyse élémentaire calculée pour $C_{25}H_{23}P_2SB$: C 69.78, H 5.86 ; trouvée : C 69.84, H 5.95. Synthèse du composé III.7Li : A une solution de III.7 (206.5 mg, 0.48 mmol) dans le THF (5 mL) est ajouté du méthyllithium (1.6 M, 0.3 mL, 0.48 mmol) à - 78°C. La solution se colore instantanément en jaune. Le milieu réactionnel est ramené à température ambiante et laissé sous agitation pendant 1h. Le solvant

⊕ Li H ⊕/ Ph₂P PPh₂ Š BH₃ t III.7Li

est évaporé sous vide et le solide obtenu est lavé avec 2x5 mL de pentane puis séché (200 mg, 95%).

Caractérisation : RMN ³¹P (121.5 MHz, THF-d⁸, 25°C) $\delta_{\rm P}$ 40.4 (d, ² $J_{\rm P-P}$ = 41 Hz, PS), 8.7 (bd, PBH₃). RMN ¹H NMR (300.0 MHz, THF-d⁸, 25°C) $\delta_{\rm H}$ 7.96-7.89 (m, 4H, H_{arom}), 7.81-7.74 (m, 4H, H_{arom}), 7.21-7.13 (m, 12H, H_{arom}), 1.15 (dd, ² $J_{\rm P-H}$ = 4 Hz, ² $J_{\rm P-H}$ = 6 Hz, 1H, PC(**H**)P), 1.3-0.23 (bs, B**H**₃). RMN ¹³C (75.5 MHz, THF-d⁸, 25°C) $\delta_{\rm C}$ 143.9 (dd, ³ $J_{\rm P-C}$ = 4 Hz, ¹ $J_{\rm P-C}$ = 85 Hz, C_{ipso}), 141.5 (dd, ³ $J_{\rm P-C}$ = 4 Hz, ¹ $J_{\rm P-C}$ = 59 Hz, C_{ipso}), 132.6 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 132.1 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 128.9 (d, ⁴ $J_{\rm P-C}$ = 3 Hz, CH_{para}), 128.5 (d, ⁴ $J_{\rm P-C}$ = 3 Hz, CH_{meta}), 127.6 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 127.3 (d, $J_{\rm P-C}$ = 11 Hz, CH_{arom}), 13.6 (dd, ¹ $J_{\rm P-C}$ = 78 Hz, ¹ $J_{\rm P-C}$ = 112 Hz, P**C**(H)P). ¹¹B NMR (89.0 MHz, THF-d⁸, 25°C) $\delta_{\rm B}$ -37.3 (bs).

Synthèse du composé III.7Li₂: A une suspension de III.7Li₂ (688.8 mg, 1.6 mmol) dans le toluène (10 mL) est ajouté du butyllithium (1.6 M, 2 mL, 3.2 mmol) à -78°C. Le mélange réactionnel est ramené à température ambiante et agité pendant 3h. Un solide jaune précipité du milieu réactionnel. Celui-ci est

isolé par centrifugation, lavé avec 6 mL de toluène puis 2x6 mL de pentane puis séché (700 mg, 99%).

Caractérisation : RMN ³¹P (121.5 MHz, ether-d¹⁰, 25°C) δ_p 25.5 (d, ² $J_{p,p}$ = 8 Hz, **P**S), 4.8 (bd, **P**B). RMN ¹H (300.0 MHz, ether-d¹⁰, 25°C) δ_H 7.94-7.85 (m, 1H, H_{arom}), 7.76-7.62 (m, 4H, H_{arom}), 7.49-7.44 (m, 4H, H_{arom}), 7.27-6.95 (m, 11H, H_{arom}), 1.40-0.34 (m, BH₃). ¹¹B NMR (89.0 MHz, ether-d¹⁰) δ_B -29.6 (bs).

Analyse élémentaire calculée pour C₂₅H₂₃P₂SBLi₂ : C 67.85, H 5.24 ; trouvée : C 67.84, H 5.35.

4. Chapitre 4

Synthèse du complexe IV.12 : A une suspension du dianion IV.10Li₂ (100 mg, 0.18 mmol) dans le toluène (6 mL) est ajouté $[RuCl_2(PPh_3)_4]$ (220 mg, 0.18 mmol). La solution est laissé sous agitation pendant 3h et prend une coloration vert foncé. LiCl est éliminé par centrifugation et le surnageant est séché sous vide, lavé avec 3x5 mL de pentane et séché. Le complexe IV.12 est isolé sous la forme d'une poudre verte (160 mg, 84%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm p}$ 73.7 (d, $J_{\rm p-p}$ = 27 Hz, PPh₃), 64.1 (d, $J_{\rm p-p}$ = 6 Hz, PPh₃), 46.7 (m, PS), 14 (m, PO). RMN ¹H (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 7.57-7.50 (m, 6H, H_{arom}), 7.42-7.11 (m, 28H, H_{arom}), 7.06-8.97 (m, 7H, H_{arom}), 6.92 (1H, H_a), 6.83-6.77 (m, 5H, H_{arom}), 6.65 (m, 1H, H_b), 6.28 (m, 1H, H_c), 6.06 (m, 1H, H_d), 1.41 (m, 1H, PC(**H**)P). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 145.0 (dd, $J_{\rm P-C}$ = 2 Hz, $J_{\rm P-C}$ = 15 Hz, C_d), 137.6 (d, $J_{\rm P-C}$ = 43 Hz, C_{ipso}), 136.9 (d, $J_{\rm P-C}$ = 34 Hz ipso), 135.7 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 134.8 (bs, CH_{arom}), 134.5 (bd, $J_{\rm P-C}$ = 15 Hz, C_a), 134.0 (bs, CH_{arom}), 132.2 (bs, CH_{arom}), 131.5 (d, $J_{\rm P-C}$ = 2 Hz, CH_{arom}), 130.8 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 128.9 (bs, CH_{arom}), 128.8 (bs, CH_{arom}), 128.6 (bs, CH_{arom}), 128.0 (bs, CH_{arom}), 127.9 (d, $J_{\rm P-C}$ = 11 Hz, CH_{arom}), 127.7 (d, $J_{\rm P-C}$ = 3 Hz, C_a), 119.5 (d, $J_{\rm P-C}$ = 15 Hz, C_b), 7.7 (m, P**C**(H)P).

Synthèse du complexe IV.13 : A une suspension du dianion IV.10Li₂ (100 mg, 0.18 mmol) dans le toluène (6 mL) est ajouté $[RuCl_2(PPh_3)_4]$ (220 mg, 0.18 mmol). Le mélange réactionnel est chauffé à 110°C pendant une nuit et se colore progressivement en orange. LiCl est éliminé par centrifugation et le surnageant est séché sous vide. Le solide orange obtenu est lavé avec 3x5 mL d'éther de pétrole puis séché (170 mg, 89%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : δ_{P} 53.4 (dd, J_{P-P} = 6.6 Hz, J_{P-P} = 24 Hz, PPh₃), 47.0 (dt, J_{P-P} = 10 Hz, J_{P-P} = 24 Hz, PPPh₃), 45.4 (m, PO), -12.8 (m, PS). RMN ¹H (121.5 MHz, CD₂Cl₂, 25°C) : δ_{H} 7.73 (m, 5H, H_{arom}), 7.43-6.78 (m, 41H, H_{arom}), 6.37 (ddd, J_{H-H} = 1.5 Hz, J_{H-H} = 7.3 Hz, J_{P-H} = 12.5 Hz, **H**_a), 6.25 (m, **H**_b), 5.63 (m, **H**_c), 4.81 (m, **H**_d), 1.51 (m, PC(**H**)P). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : δ_{C} 175.9 (m, C orthométalé), 153.0 (bd, J_{P-C} = 108 Hz, C_{ipso}), 144.6 (dd, J_{P-C} = 2.4 Hz, J_{P-C} = 15 Hz, **C**_d), 139.7 (d, J_{P-C} = 35 Hz, C_{ispo}), 139.2 (bs, C_{ipso}), 139.1 (bs, C_{ipso}), 136.9 (dd, J_{P-C} = 10 Hz, J_{P-C} = 95 Hz, C_{ipso}), 136.9 (dd, J_{P-C} = 4 Hz, J_{P-C} = 40 Hz C_{ipso}), 134.8 (d, J_{P-C} = 5 Hz, CH_{arom}), 134.4 (d, J_{P-C} = 10 Hz, CH_{arom}), 131.3 (d, J_{P-C} = 3 Hz, CH_{arom}), 130.9 (d, J_{P-C} = 11 Hz, CH_{arom}), 130.6 (d, J_{P-C} = 11 Hz, CH_{arom}), 129.9 (d, J_{P-C} = 10 Hz, CH_{arom}), 127.7 (d, J_{P-C} = 10 Hz, CH_{arom}), 127.4 (d, J_{P-C} = 10 Hz, CH_{arom}), 127.3 (d, J_{P-C} = 11 Hz, CH_{arom}), 126.0 (d, J_{P-C} = 16 Hz, **C**_a), 123.9 (d, J_{P-C} = 4 Hz, **C**_c), 118.1 (d, J_{P-C} = 15 Hz, **C**_b), 15.0 (m, P**C**(H)P).

Synthèse du complexe IV.14 : A une solution du complexe IV.13 (50 mg) dans le dichlorométhane deutéré (0.5 mL) dans un tube RMN, est ajouté CO avec une baudruche. La solution passe rapidement de l'orange au jaune. La complétion de la réaction est confirmée par RMN.

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm P}$ 52.2 (dd, $J_{\rm P,P}$ = 8

Hz, $J_{P,P} = 21$ Hz, PPh₃), 47.5 (dt, $J_{P,P} = 6$ Hz, $J_{P,P} = 21$ Hz, PPh₃), 30.5 (d, $J_{P,P} = 6$ Hz, PO), 7.6 (t, $J_{P,P} = 8$ Hz, PS). RMN ¹H (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 7.78-6.95 (m, H_{arom} + H_a), 6.64 (m, 1H, H_b), 5.96 (m, 1H, H_c), 5.8 (m, 1H, H_d), 2.05 (m, 1H, PC(H)P). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 206.8 (m, CO), 183.5 (m, C orthométalé), 148.0 (m C_{ipso}), 144.0 (m, C_d), {138.4, 137.8, 136.4} (C_{ipso}), 132.5 (d, $J_{P,C} = 10$ Hz, CH_{arom}), 131.9 (d, $J_{P,C} = 10$ Hz, CH_{arom}), 131.8 (d, $J_{P,C} = 3$ Hz, CH_{arom}), 131.2 (d, $J_{P,C} = 3$ Hz, CH_{arom}), 130.6 (bs, CH_{arom}), 129.9 (bs, CH_{arom}), 129.8 (bs, CH_{arom}), 128.8 (d, $J_{P,C} = 10$ Hz, CH_{arom}), 128.7 (d, $J_{P,C} = 10$ Hz, CH_{arom}), 128.1 (bs, CH_{arom}), 128.0 (d, $J_{P,C} = 2$ Hz, CH_{arom}), 127.8 (d, $J_{P,C} = 2$ Hz, CH_{arom}), 127.4 (bd, $J_{P,P} = 8$ Hz, CH_{arom}), 127.2 (d, $J_{P,C} = 11$ Hz, CH_{arom}), 126.4 (d, $J_{P,C} = 20$ Hz, C_a), 125.0 (d, $J_{P,C} = 3$ Hz, C_b), 121.4 (d, $J_{P,C} = 13$ Hz, C_b), 24.6 (m, PC(H)P).

5. Chapitre 5

Synthèse du composé V.1 : A une solution de diphénylphosphine (2.22 mL, 12.8 mmol) dans le THF (30 mL) est ajouté du butyllithium (1.6 M, 8 mL, 12.8 mmol) à -78°C. La solution se colore instantanément en rouge. Le mélange

réactionnel est ramené à température ambiante et agité 1h. La solution est ensuite canulée sur une solution de chlorotriméthylsilane (1.8 mL, 12.8 mmol) dans le THF (10 mL) à 0°C. Le mélange réactionnel est ensuite agité pendant 1h. S8 (410.5 mg, 1.6 mmol) est ajouté et la solution est chauffée à 60°C pendant 4h. Les solvants sont évaporés et 20 mL d'hexanes sont ajoutés. Après chauffage à reflux pendant 15 minutes, le mélange est filtré. La phase liquide est ensuite évaporée et **V.1** est isolé sous la forme d'un solide cristallin incolore (3.3 g, 84%).

Caractérisation : RMN ³¹P (121.5 MHz, C₆D₆, 25°C) $\delta_{\rm P}$ 37.7 (s). RMN ¹H (300.0 MHz, C₆D₆, 25°C) $\delta_{\rm H}$ 7.78-7.88 (m, 4 H, H_{arom}), 7.0 (m, 6 H, H_{arom}), 1.70 (d, ²J_{P-H} = 16 Hz, PC(**H**)₂Si), 0.06 (s, 9 H, Si(C**H**3)3). RMN ¹³C (75.5 MHz, C₆D₆, 25°C) $\delta_{\rm C}$ 136.6 (d, ¹J_{P-C} = 80 Hz, C_{ipso}), 130.5 (d, ²J_{P-C} = 10.7 Hz, C_{arom}), 130.1 (d, ²J_{P-C} = 3.6 Hz, CH_{arom}), 127.8 (d, ²J_{P-C} = 12.3 Hz, CH_{arom}), 21.0 (d, ¹J_{P-C} = 47.6 Hz, P**C**(H)₂Si), 0.02 (d, ²J_{P-C} = 3.3 Hz, Si(**C**H₃)₃).

н

Ph₂P

ä

Θ

V.1Li

⊕ Li

SiMe₃

Synthèse du composé V.1Li : A une solution du composé **V.1** (121.8 mg, 0.4 mmol) dans le toluène (5 mL) est ajouté du méthyllithium (1.6 M, 0.25 mL, 0.4 mmol) à -78°C. Le mélange réactionnel est ramené à température ambiante et se colore en jaune. Après 1h d'agitation, la réaction est totale. **V.1Li** n'est jamais isolé et toujours utilisé *in situ*.

RMN ³¹P (121.5 MHz, C₆D₆, 25°C) $\delta_{\rm P}$ 44.5 (s). RMN ¹H (300.0 MHz, C₆D₆, 25°C) $\delta_{\rm H}$ 8.12 (m, 4 H, H_{ortho}), 7.08–7.19 (m, 6 H, H_{meta} + H_{para}), 0.50 (d, ²J_{P-H} = 9 Hz, 1 H, PCHSi), 0.00 (s, 9 H, Si(CH₃)₃). RMN ¹³C (75.5 MHz, C₆D₆, 25°C) $\delta_{\rm C}$ 138.6 (bs, C_{ipso}), 131.9 (d, ²J_{P-C} = 11.6 Hz, CH_{ortho}), 130.1 (bs, CH_{para}), 127.6 (d, ³J_{P-C} = 12.4 Hz, CH_{meta}), 11.7 (d, ¹J_{P-C} = 60Hz, P**C**HSi), 2.2 (d, ³J_{P-C} = 2Hz, Si(**C**H₃)₃).

Synthèse du complexe V.2 : A une solution de V.1Li (0.1 mmol/mL, 5 mL, 0.5 mmol) dans le toluène (5 mL) est ajouté une solution de $[Rh(COD)Cl]_2$ (123.3 mg, 0.25 mmol). La solution se colore instantanément en orange et est laissé sous agitation pendant 15 minutes. Après centrifugation et évaporation des solvants, V.2 est isolé sous la forme d'une poudre orange foncé (231.5 mg, 90%).

Caractérisation : RMN ³¹P (121.5 MHz, C₆D₆, 25°C) δ_{P} 37.8 (d, ²J_{Rh-P} = 15.5 Hz). RMN ¹H (300.0 MHz, C₆D₆, 25°C) δ_{H} 7.90 (m, 2 H, CH_{ortho}), 7.70 (m, 2 H, CH_{ortho}), 7.06 (m, 3 H, CH_{meta} + CH_{para}), 6.98 (m, 3 H, CH_{meta} + CH_{para}), 4.68 (m, 2 H, 2CH du COD), 4.22 (m, 1 H, CH du COD), 3.99 (m, 1 H, CH du COD), 1.37–2.44 (m, 9 H, 4 CH₂ du COD + PCHSi), 1.70 (PCHSi) 0.26 (s, 9 H, Si(CH₃)₃). RMN ¹³C (75.5 MHz, C₆D₆, 25°C) δ_{C} 140.7 (dd, ³J_{Rh-C} = 1.2 Hz, ²J_{P-C} = 46.5 Hz, C_{ipso}), 139.3 (d, ²J_{P-C} = 81 Hz, C_{ipso}), 84.6 (d, ¹J_{Rh-C} = 8.8 Hz, CH du COD), 83.2 (d, ¹J_{Rh-C} = 14 Hz, CH du COD), 70.9 (d, ¹J_{Rh-C} = 14Hz, CH du COD), 32.3 (s, CH₂ du COD), 30.2 (s, CH₂ du COD), 29.1 (s, CH₂ du COD), 27.8 (s, CH du COD), 2.9 (d, ³J_{P-C} = 4.8 Hz, Si(CH₃)₃), -2.7 (dd, ¹J_{Rh-C} = 15.5, ¹J_{P-C} = 26 Hz, PCSi).

Analyse élémentaire calculée pour C24H32PRhSSi : C 56.02, H 6.27 ; trouvée C 55.84, H 6.23.

Synthèse du complexe V.3 : A une solution du monoanion V.1Li (0.1 mmol/mL, 5mL, 0.5 mmol) dans le toluène est ajouté $[Rh(NBD)Cl]_2$ (115.2 mg, 0.25 mmol). La solution se colore instantanément en orange. Après 15 minutes d'agitation à température ambiante, le mélange réactionnel est filtré pour éliminer LiCl. Le surnageant est séché sous vide et le complexe V.3 est isolé sous la forme d'un solide orange (100 mg, 80%).

Caractérisation : RMN ³¹P (121.5 MHz, C₆D₆, 25°C) $\delta_{\rm p}$ 57.0 (d, ²J_{Rh-P} = 17.7 Hz). RMN ¹H (300.0 MHz, C₆D₆, 25°C) $\delta_{\rm H}$ 7.79-7.95 (m, 4H, CH_{arom}), 6.9-7.04 (m, 6H, CH_{arom}), 4.39 (bs, 1H, CH du NBD), 4.22 (bs, 1H, CH du NBD), 4.09 (bs, 1H, CH du NBD), 4.04 (bs, 1H, CH du NBD) 3.62 (bs, 1H, CH du NBD), 3.53 (bs, 1H, CH du NBD), 1.17 (dd, *J* = 21 Hz, *J* = 8 Hz, 2H, CH₂ du NBD), 0.09 (s, 9H, Si(CH₃)₃), -0.07 (dd, ²J_{P-H} = 7.6 Hz, ²J_{Rh-H} = 1.3 Hz, 1H, PCHSi). RMN ¹³C (75.5 MHz, C₆D₆, 25°C) $\delta_{\rm C}$ 139.3 (d, ¹J_{P-C} = 55 Hz, C_{ipso}), 137.8 (d, ¹J_{P-C} = 68 Hz, C_{ipso}), 131.5 (d, *J*_{P-C} = 11 Hz, CH_{arom}), 131.3 (d, *J*_{P-C} = 3 Hz, CH_{arom}), 131.1 (d, *J*_{P-C} = 3 Hz, CH_{arom}), 130.8 (d, *J*_{P-C} = 5 Hz, CH₂ du NBD), 62.0 (d, *J*_{Rh-C} = 8 Hz, CH du NBD), 59.5 (d, *J*_{Rh-C} = 8 Hz, CH du NBD), 54.5 (d, *J*_{Rh-C} = 8 Hz, CH du NBD), 51.6 (d, *J*_{Rh-C} = 8 Hz, CH du NBD), 50.5 (d, *J*_{Rh-C} = 17 Hz, **PCHSi**).

Synthèse du complexe V.4 : A une solution du complexe V.3 (41.2 mg, 0.08 mmol) dans le toluène (3 mL) est ajouté du CO à l'aide d'une baudruche et d'une aiguille. La solution se colore instantanément en orange puis en marron. Après 5 minutes, la réaction est complète. Les solvants sont évaporés et le

complexe est isolé sous la forme d'une poudre marron (30 mg, 81%). Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) $\delta_{\rm p}$ 62.1 (d, ² $J_{\rm Rh-P}$ = 16.6 Hz). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C) $\delta_{\rm H}$ 7.92–7.82 (m, 2H, CH_{arom}), 7.74-7.66 (m, 2H, CH_{arom}), 7.61-7.46 (m, 6H, CH_{arom}), 0.76 (dd, ² $J_{\rm Rh-H}$ = 1.3, ² $J_{\rm P-H}$ = 7.5 Hz, 1 H, PCHSi), 0.00 (s, 9 H, Si(CH₃)₃). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) $\delta_{\rm C}$ 187.3 (d, ¹ $J_{\rm Rh-C}$ = 78Hz, CO), 186.1 (d, ¹ $J_{\rm Rh-C}$ = 61Hz, CO), 137.9 (d, $J_{\rm P-C}$ = 55 Hz, C_{ipso}), 136.6 (d, $J_{\rm P-C}$ = 78 Hz, C_{ipso}), 131.9 (d, $J_{\rm P-C}$ = 2.9 Hz, CH_{para}), 131.5 (d, $J_{\rm P-C}$ = 2.2 Hz, CH_{para}), 130.8 (d, $J_{\rm P-C}$ = 12.0 Hz, CH_{arom}), 3.0 (bs, Si(CH₃)₃), -7.4 (dd, ² $J_{\rm Rh-C}$ = 12 Hz, ² $J_{\rm P-C}$ = 21 Hz, PCHSi). Spectrométrie de masse à haute résolution (HRMS) calculée pour C₁₈H₂₀O₂PRhSSi : 461.9746 ;

Synthèse du complexe V.5 : A une solution du complexe V.3 (123.6 mg, 0.24 mmol) dans le toluène (3 mL) est ajouté le 2,6-diméthylphénylisonitrile (63 mg, 0.48 mmol). La solution se colore instantanément en rouge. Après 15 minutes d'agitation, le solvant est évaporé sous vide. Ensuite, 5 mL d'éther de pétrole

sont ajoutés entraînant la précipitation d'un solide jaune. Ce solide a été isolé par filtration et lavé avec 2x5 mL d'éther de pétrole puis séché (149 mg, 93%). Caractérisation : RMN ³¹P (121.5 MHz, C₆D₆, 25°C) δ_P 51.4 (d, ²J_{P-Rh} = 12.3 Hz). RMN ¹H (300.0 MHz, C₆D₆, 25°C) δ_H 8.36-8.27

trouvée : 461.9753.

(m, 2H, CH_{arom}), 7.82-7.73 (m, 2H, CH_{arom}), 2.32 (s, 6H, CH3 d'isonitrile), 2.09 (s, 6H, CH3 d'isonitrile), 0.75 (dd, ${}^{2}J_{Rh-H} = 1.1$, ${}^{2}J_{P-H} = 7.3$ Hz 1H, PCHSi), 0.38 (s, 9H, Si(CH₃)₃). RMN ¹³C (75.5 MHz, C₆D₆, 25°C) δ_{C} 161.7 (d, ${}^{1}J_{Rh-C} = 78$ Hz, CN), 161.3 (d, ${}^{1}J_{Rh-C} = 60$ Hz, CN), 143.5 (d, ${}^{2}J_{Rh-C} = 48$ Hz, C_{ipso}), 142.3 (d, ${}^{2}J_{Rh-C} = 79.8$ Hz, PC_{ipso}), 134.1 (s, (CN)C_{ipso}), 133.8 (s, (CN)C_{ipso}), 21.4 (s, CH3 d'isonitrile), 21.1 (s, CH3 d'isonitrile), 6.7 (d, ${}^{3}J_{Rh-C} = 4.5$ Hz, Si(CH₃)₃), -5.0 (dd, ${}^{1}J_{Rh-C} = 11.5$ Hz, ${}^{1}J_{P-C} = 24.7$ Hz, PCHSi).

Analyse élémentaire calculée pour $C_{34}H_{38}N_2PRhSSi$: C 61.07, H 5.73, N 4.19; trouvée : C 60.88, H 5.61, N 4.29.

Synthèse du complexe V.6 : A une solution du monanion 2.Li (0.32 mmol), préparé par réaction d'un équivalent de méthyllithium avec le composé 2 dans le THF (5 mL), est ajouté $[Rh(COD)Cl]_2$ (78.9 mg, 0.16 mmol). La solution se colore en marron. Après 1h d'agitation, la solution est concentrée à ~0.5 mL et 5 mL d'éther de pétrole sont ajoutés. Le solide jaune qui précipite est isolé par centrifugation et lavé avec 2x4 mL d'éther de pétrole puis séché (198 mg, 94%).

RMN ³¹P (121.5 MHz, C₆D₆, 25°C) $\delta_{\rm p}$ 36.1 (d, ² $J_{\rm Rh-P}$ = 5 Hz). RMN ¹H (300.0 MHz, C₆D₆, 25°C) $\delta_{\rm H}$ 7.92-7.83 (m, 8H, H_{arom}), 6.85-6.78 (m, 12H, H_{arom}), 4.14 (bs, 4H, CH du COD), 1.84-1.72 (m, 4H, CH2 du COD), 1.79 (bt, ² $J_{\rm P-H}$ = 2Hz, 1H, PC**H**P), 1.35-1.27 (m, 4H, CH2 du COD). RMN ¹³C (75.5 MHz, C₆D₆, 25°C) $\delta_{\rm C}$ 137.7 (d, ¹ $J_{\rm P-C}$ = 90 Hz, C_{ipso}), 131.0 (pseudo-t, CH_{arom}), 129.5 (s, CH_{arom}), 127.2 (pseudo-t, CH_{arom}), 80.3 (d, ² $J_{\rm Rh-C}$ = 12 Hz, CH du COD), 30 (s, CH2 du COD), 12.3 (td, ¹ $J_{\rm P-C}$ = 93 Hz, ¹ $J_{\rm Rh-C}$ = 4 Hz, P**C**HP).

Analyse élémentaire calculée pour $C_{43}H_{39}N_2P_2RhS_2$: C 63.54, H 4.84, N 3.45 ; trouvée : C 63.48, H 4.84, N 3.33.

Synthèse du complexe V.7 : A une solution du complexe V.6 (100 mg, 0.15 mmol) dans le THF (5 mL) sont ajoutés deux équivalents de 2,6-diméthylphénylisonitrile (39.8 mg, 0.30 mmol). La solution passe instantanément de l'orange au rouge. Après 15 minutes d'agitation, le mélange réactionnel est concentré à ~0.5 mL et 5 mL d'éther de pétrole sont ajoutés. Le

solide jaune qui précipite est isolé par centrifugation et lavé avec 2x5mL d'éther de pétrole (117 mg, 96%).

Caractérisation : RMN ³¹P (121.5 MHz, toluène-d⁸, 25°C) δ_P 54 (bs). RMN ¹H (300.0 MHz, toluène-d⁸, 25°C) δ_H 7.83 (bs, 8H, H_{arom}), 7.12 (bs, 12H, H_{arom}), 7.02-6.90 (singulets, H_{arom} isonitrile), 2.58 (td, ²J_{Rh-H} = 1.5, ²J_{P-H} = 8Hz, PC**H**P), 2.14 (s, 12 H, CH3 isocyanides). RMN ¹³C

(75.5 MHz, toluène-d⁸, 25°C) δ_{C} 160 (d, ¹ J_{Rh-C} = 69Hz, CN), 137.1 (dd, ³ J_{P-C} = 4 Hz, ¹ J_{P-C} = 75 Hz, C_{ipso}), 134.8 (s, **C**(CH3) isonitrile), 132.9 (d, ² J_{P-C} = 11 Hz, C_{ortho}), 130.8 (d, ⁴ J_{P-C} = 4Hz, CH_{para}), 128.4 (s, CH_{meta} isonitrile), 128.0 (d, ³ J_{P-C} = 12Hz, CH_{meta}), 127.5 (s, CH_{para} isonitrile), 19.5 (s, CH3 isonitrile), 6.2 (m, P**C**HP).

Analyse élémentaire calculée pour $C_{43}H_{39}N_2P_2RhS_2$: C 63.54, H 4.84, N 3.45 ; trouvée : C 63.25, H 4.92, N 3.51.

Synthèse du complexe V.8 : A une solution du complexe **V.6** (100 mg, 0.15 mmol) dans le THF (5 mL) est ajouté du CO à l'aide d'une baudruche et d'une aiguille. La solution se colore instantanément en marron et après 5 minutes, la réaction est finie. Le solvant est évaporé et le complexe **V.8** est isolé sous la forme d'un solide marron (77 mg, 85%).

Caractérisation : RMN ³¹P (121.5 MHz, toluène-d⁸, 25°C) $\delta_{\rm P}$ 62.0 (d, ¹ $J_{\rm Rh-P}$ = 10 Hz). RMN ¹H (300.0 MHz, toluène-d⁸, 25°C) $\delta_{\rm H}$ 7.74-7.62 (m, 8H, H_{arom}), 7.18-6.87 (m, 12H, H_{arom}), 2.68 (td, ² $J_{\rm Rh-H}$ = 1.8, ² $J_{\rm P-H}$ = 8Hz, PCHP). RMN ¹³C (75.5 MHz, toluène-d⁸, 25°C) $\delta_{\rm C}$ 185.6 (d, ¹ $J_{\rm Rh-C}$ = 70Hz, CO), 135.2 (dd, ³ $J_{\rm P-C}$ = 4 Hz, ¹ $J_{\rm P-C}$ = 76 Hz, C_{ipso}), 132.2 (d, ³ $J_{\rm P-C}$ = 11 Hz, CH_{meta}), 131.8 (d, ⁴ $J_{\rm PC}$ = 3Hz, CH_{para}), 128.5 (d, ² $J_{\rm P-C}$ = 13 Hz, CH_{ortho}), 0.0 (m, PCHP).

Analyse élémentaire calculée pour C₂₇H₂₁O₂P₂RhS₂ : C 53.47, H 3.49 ; trouvée : C 53.40, H 3.67.

Synthèse du complexe V.12 : A une solution de V.1 (194.8 mg, 0.64 mmol) dans le THF (10 mL) est ajouté un équivalent de méthyllithium (1.6 M, 0.4 mL, 0.64 mmol) à -78°C. Le mélange réactionnel est ramené à température ambiante et se colore en jaune. Après 30 minutes d'agitation, un équivalent d'[AuCl(PPh₃)] (316 mg, 0.64 mmol) est ajouté et la solution se décolore instantanément. Après

30 minutes, le solvant est évaporé. Le solide obtenu est repris au dichlorométhane et le mélange est filtré. La phase liquide est alors concentrée à \sim 0.5 mL et 5 mL de pentane sont ajoutés. Le précipité qui se forme est isolé par filtration et lavé avec 2x5 mL de pentane puis séché (400 mg, 82%).

Caractérisation : RMN ³¹P NMR (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm p}$ 43.4 (d, ² $J_{\rm P-P}$ = 15 Hz, PS), 39.4 (d, ² $J_{\rm P-P}$ = 15 Hz, PPh₃). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C): $\delta_{\rm H}$ 8.17-8.09 (m, 2H, H_{ortho} de Ph₂PS), 7.96-7.87 (m, 2H, H_{ortho} de Ph₂PS), 7.47-7.16 (m, 21H, H_{arom} de Ph₂PS et PPh₃), 2.22 (dd, ³ $J_{\rm P-H}$ = 8.7 Hz, ² $J_{\rm P-H}$ = 14.3 Hz, 1H, PC(**H**)Si), 0.00 (s, 9H, Si(C**H**₃)₃). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 134.1 (d, $J_{\rm P-C}$ = 13 Hz, CH_{arom}), 131.3 (d, $J_{\rm P-C}$ = 3 Hz, CH_{arom}), 130.8 (d, $J_{\rm P-C}$ = 3 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 14.3 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 14.3 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 14.3 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 14.3 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 14.3 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 13 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 13 Hz, CH_{arom}), 129.5 (pseudo-t, $\Sigma J_{\rm P-C}$ = 7 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C}$ = 13 Hz, CH_{arom}), 129.0 (d, $J_{\rm P-C$

11 Hz, CH_{arom}), 127.6 (d, J_{P-C} = 11 Hz, CH_{arom}), 32.1 (dd, ${}^{2}J_{P-C}$ = 37 Hz, ${}^{1}J_{P-C}$ = 68 Hz, P**C**(H)Si), 3.4 (d, ${}^{2}J_{P-C}$ = 5 Hz, Si(**C**H₃)₃).

6. Chapitre 6

Synthèse des composés VI.17a et VI.17b : A une suspension du dianion VI.14 (141.5 mg, 0.32 mmol) dans le toluène (5 mL) est ajouté un équivalent d'hexachloroéthane (75.8 mg, 0.32 mmol) à -78°C. Le mélange réactionnel est ramené à température ambiante et laissé sous agitation pendant 3h. Ensuite, 4 mL de dichlorométhane sont ajoutés et le mélange

est filtré. Les solvants sont évaporés sous vide et un solide jaune est obtenu. Ce solide est lavé avec 3x2 mL d'acétone pour obtenir un solide blanc (50 mg, 70%).

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : δ_{P} 46.1 (dd, ³ $J_{P,P}$ = 29 Hz, ² $J_{P,P}$ = 65 Hz, PS), 44.5 (m, PS), 18.7 (bs, 2 PB). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C) : δ_{H} 8.19 (m, CH_{arom}), 7.90 (m, CH_{arom}), 7.76 (m, CH_{arom}), 7.63 (m, CH_{arom}), 7.43 (m, CH_{arom}), 7.32 (m, CH_{arom}), 7.24 (m, CH_{arom}), 7.07 (m, CH_{arom}), 7.00 (m, CH_{arom}), 6.78 (m, CH_{arom}), 3.37 (m, PCHP), 2.96 (m, PCHP), 2.6-0.7 (br, BH₂). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : δ_{C} 136.3 (d, J_{P-C} = 9 Hz, CH_{arom}), 134.4 (d, J_{P-C} = 8 Hz, CH_{arom}), 134.1 (d, J_{P-C} = 10 Hz, CH_{arom}), 132.4 (d, J_{P-C} = 2 Hz, CH_{arom}), 131.4 (d, J_{P-C} = 2 Hz, CH_{arom}), 130.8 (d, J_{P-C} = 2 Hz, CH_{arom}), 130.2 (d, J_{P-C} = 3 Hz, CH_{arom}), 130.0 (d, J_{P-C} = 10 Hz, CH_{arom}), 128.8 (d, J_{P-C} = 10 Hz, CH_{arom}), 128.5 (d, J_{P-C} = 12 Hz, CH_{arom}), 127.9 (d, J_{P-C} = 11 Hz, CH_{arom}), 127.3 (d, J_{P-C} = 10 Hz, CH_{arom}), 16.9 (br, P**C**P).

Analyse élémentaire calculée pour C₅₀H₄₆B₂P₄S₂ : C 70.11, H 5.41 ; trouvée C 70.11, H 5.34.

Synthèse du composé VI.18 : A une suspension du dianion **VI.14** (141.5 mg, 0.32 mmol) dans le toluène (5 mL) est ajouté un équivalent d'hexachloroéthane (75.8 mg, 0.32 mmol) à -78°C. Le mélange est ramené à 0°C et laissé à cette température pendant 1h. Un excès d'H₂O est ensuite ajouté. Les solvants sont

évaporés sous vide et le solide restant est repris au dichlorométhane (5 mL), filtré, séché sur $MgSO_4$ et séché sous vide. **VI.17** n'est pas obtenu proprement et se décompose en quelques heures. Quelques données RMN pertinentes ont néanmoins été obtenues.

Caractérisation : RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm p}$ 46.7 (d, ² $J_{\rm P-P}$ = 9 Hz, PS), 32.9 (bs). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm H}$ 5.66 (dd, ² $J_{\rm P-H}$ = 7 Hz, ² $J_{\rm P-H}$ = 8 Hz, PCH(Cl)P). RMN ¹³C (75.5 MHz, CD₂Cl₂, 25°C) : $\delta_{\rm C}$ 49.4 (dd, ¹ $J_{\rm P-C}$ = 10 Hz, ¹ $J_{\rm P-C}$ = 40 Hz, PCH(Cl)P).
Synthèse du composé VI.20 : A une suspension du carbénoïde 2.LiCl (141.5 mg, 0.29 mmol) dans le THF (5 mL) sont ajoutés trois équivalents de BH3.SMe₂ (83 μ L, 0.87 mmol) à -78°C. Le mélange réactionnel est ramené à température ambiante et laissé sous agitation pendant 3h. La solution se décolore progressivement. Le solvant est évaporé et le solide obtenu est repris au dichlorométhane. Une centrifugation permet d'éliminer LiCl.

RMN ³¹P (121.5 MHz, CD₂Cl₂, 25°C): δ_p 51 ppm (s). RMN ¹H (300.0 MHz, CD₂Cl₂, 25°C): δ_H 8.06-7.95 (m, H_{arom}), 7.89-7.80 (m, H_{arom}), 7.64-7.42 (m, H_{arom}), 7.36-7.23 (m, H_{arom}), 7.19-7.14 (m, H_{arom}), 7.05-6.99 (m, H_{arom}), 6.68 (bt, PC(H)P), 1.94-0.4 (br, BH₂). L'espèce monomérique précipite du milieu réactionnel en quelques heures, empêchant l'enregistrement d'un spectre RMN ¹³C exploitable.

Synthèse du composé VI.22 : A une solution de VI.20 (0.8 mmol) dans le dichloroéthane (10 mL) est ajouté un équivalent de triphénylphosphine (209.8 mg, 0.8 mmol). Le mélange réactionnel est porté au reflux pendant 1h. Le solvant est évaporé et VI.22 est obtenu sous la forme d'un solide blanc (470 mg, 81 %).

Caractérisation : RMN ³¹P (121.5 MHz, THF-d⁸, 25°C) : $\delta_{\rm p}$ 50.1 (d, ² $J_{\rm P-P}$ = 23 Hz, PS), 16.2 (bs). RMN ¹H (300.0 MHz, THF-d⁸, 25°C) : $\delta_{\rm H}$ 8.20-8.12 (m, 4H, H_{arom}), 8.03-7.93 (m, 2H, H_{arom}), 7.66-7.23 (m, 25H, H_{arom}), 7.07-7.01 (m, 2H, H_{arom}), 6.90-6.85 (m, 2H, H_{arom}), 3.98 (br td, PC(**H**)P). RMN ¹³C (75.5 MHz, THF-d⁸, 25°C) : $\delta_{\rm C}$ 135.5 (dd, ³ $J_{\rm P-C}$ = 3 Hz, ¹ $J_{\rm P-C}$ = 80 Hz, C_{quat}), 134.9 (d, $J_{\rm P-C}$ = 9 Hz, CH_{arom}), 134.4 (br d, $J_{\rm P-C}$ = 80 Hz, C_{quat}), 133.8 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 133.1 (pseudo-t, ΣJ = 10 Hz, CH_{arom}), 132.3 (pseudo-t, ΣJ = 11 Hz, CH_{arom}), 131.9 (d, $J_{\rm P-C}$ = 3 Hz, CH_{arom}), 131.8 (d, $J_{\rm P-C}$ = 3 Hz, CH_{arom}), 130.5 (br, CH_{arom}), 130.4 (d, $J_{\rm P-C}$ = 56 Hz, C_{quat}), 129.9 (br, CH_{arom}), 129.3 (d, $J_{\rm P-C}$ = 10 Hz, CH_{arom}), 129.1 (d, $J_{\rm P-C}$ = 11 Hz, CH_{arom}), 127.8 (d, $J_{\rm P-C}$ = 9 Hz, CH_{arom}), 127.7 (d, $J_{\rm P-C}$ = 6 Hz, CH_{arom}), 127.4 (pseudo-t, ΣJ = 12 Hz, CH_{arom}).

ANNEXES

I. Annexes Cristallographiques

La plupart des données cristallographiques sont disponibles gratuitemet auprès de la base de données de Cambridge (CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>)).

1. Chapitre 1

Les structures de **I.10** (CCDC-742484), **I.11** (CCDC-742485) et **I.22** (CCDC-848404) ont été déposées à la CCDC.

a. Données cristallographiques pour I.7

Table 1. Crystal data for I.7	
Compound	I.7
Molecular formula	$C_{50}H_{40}P_4S_4Ti$, 1/2(C_6H_{12})
Molecular weight	982.92
Crystal habit	Red Needle
Crystal dimensions(mm)	0.20x0.08x0.08
Crystal system	monoclinic
Space group	$P2_1/c$
a(Å)	12.491(1)
b(Å)	18.550(1)
c(Å)	21.965(1)
α(°)	90.00
β(°)	114.372(3)
$\gamma(^{\circ})$	90.00
$V(A^3)$	4635.9(5)
Z	4
$d(g-cm^{-3})$	1.408
F(000)	2040
$\mu(cm^{-1})$	0.541
Absorption corrections	multi-scan; 0.8996 min, 0.9580 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	27.48
HKL ranges	-16 16 ; -24 24 ; -27 28
Reflections measured	37314
Unique data	10583
Rint	0.0390
Reflections used	9066
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	532
Reflections / parameter	17
wR2	0.0937
R1	0.0436
Weights a, b	0.0239; 6.6028
GoF	1.090
difference peak / hole (e Å ⁻³)	0.408(0.066) / -0.338(0.066)

acom	×	У	Z	0 (eq)
Ti(1)	7678(1)	-3417(1)	-2327(1)	19(1)
S(1)	8244(1)	-4430(1)	-2872(1)	24(1)
S(2)	7634(1)	-2083(1)	-2155(1)	26(1)
S(3)	5741(1)	-3211(1)	-3385(1)	25(1)
S(4)	8747(1)	-3743(1)	-1095(1)	25(1)
P(1)	9666(1)	-3771(1)	-2636(1)	18(1)
P(2)	9244(1)	-2205(1)	-2169(1)	19(1)
P(3)	5165(1)	-3669(1)	-2738(1)	18(1)
P(4)	7095(1)	-4054(1)	-1266(1)	18(1)
C(1)	9368(2)	-3099(I)	-2218(1)	19(1)
C(2)	10350(2)	-1806(1)	-1421(1)	22(1)
C(3)	10212(3)	-1110(1)	-1225(1)	32(1)
C(4)	12107(2)	-803(2)	-003(2)	40(1) 20(1)
C(3)	122107(3)	-1200(2)	-299(1)	39(1)
C(0)	11362(2)	-2192(1)	-1042(1)	28(1)
C(8)	9321(2)	-1720(1)	-2868(1)	21(1)
C (9)	10183(2)	-1206(1)	-2793(1)	24(1)
C(10)	10246(2)	-903(1)	-3359(1)	29(1)
C(11)	9471(2)	-1116(1)	-3988(1)	32(1)
C(12)	8609(2)	-1624(1)	-4064(1)	30(1)
C(13)	8524(2)	-1920(1)	-3508(1)	25(1)
C(14)	9847(2)	-3511(1)	-3386(1)	22(1)
C(15)	10767(2)	-3049(1)	-3326(1)	27(1)
C(16)	10882(2)	-2805(2)	-3894(2)	36(1)
C(17)	10094(3)	-3020(2)	-4521(2)	45(1)
C(18)	9185(3)	-3475(2)	-4582(2)	51(1)
C(19)	9052(3)	-3720(2)	-4016(1)	36(1)
C(20)	10986(2)	-4271(1)	-2137(1)	20(1)
C(21)	11424(2)	-4258(1)	-1438(1)	27(1)
C(22)	12394(2)	-4674(2)	-1055(1)	32(1)
C(23)	12921(2)	-5110(1)	-1368(2)	32(1)
C(24)	12498(2)	-5125(1)	-2057(1)	29(1)
C(25)	11534(2)	-4705(1)	-2442(1)	24(1)
C(26)	6416(2)	-3922(1)	-2096(1)	19(1)
C(27)	4304(2)	-3049(1)	-2483(1)	21(1)
C(28)	4153(2)	-2334(1)	-2686(2)	32(1)
C(29)	3582(3)	-1860(2)	-2430(2) 1055(2)	40(1) 25(1)
C(30)	3198(2)	-2089(2)	-1955(2)	33(1) 30(1)
C(31)	3990(2)	-2004(2)	-2017(1)	24(1)
C(32)	1181(2)	-3200(1)	-2017(1)	24(1)
C(34)	3005(2)	-4285(1)	-3545(1)	27(1)
C(35)	2266(2)	-4862(2)	-3860(1)	34(1)
C (36)	2707(3)	-5559(2)	-3750(1)	35(1)
C(37)	3879(3)	-5687(2)	-3352(1)	36(1)
C(38)	4620(2)	-5111(1)	-3045(1)	27(1)
C(39)	7047(2)	-4985(1)	-1019(1)	22(1)
C(40)	5969(2)	-5344(1)	-1277(1)	26(1)
C(41)	5904(3)	-6059(1)	-1112(1)	32(1)
C(42)	6912(3)	-6418(2)	-697(2)	38(1)
C(43)	7985(3)	-6070(2)	-438(2)	38(1)
C(44)	8052(2)	-5350(1)	-597(1)	29(1)
C(45)	6503(2)	-3518(1)	-782(1)	21(1)
C(46)	6604(2)	-2770(1)	-803(1)	27(1)
C(47)	6138(2)	-2330(2)	-463(1)	33(1)
C(48)	5565(2)	-2632(2)	-99(1)	35(1)
C(49)	5448(2)	-3371(2)	-84(1)	33(1)
C(50)	5914(Z)	-38TA(T)	-4∠4(⊥)	∠0(⊥)

Table 2. Atomic Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for I.7

U(eq) is defined as 1/3 the trace of the Uij tensor.

Table 3. Bond lengths (A) and angles (deg) for ${\tt I.7}$

Ti(1)-C(26)	2.069(2)	Ti(1)-C(1)	2.108(2)
Ti(1)-S(1)	2.4820(7)	Ti(1)-S(2)	2.5076(7)
Ti(1)-S(4)	2.5476(8)	Ti(1)-S(3)	2.6001(8)
Ti(1)-P(2)	2.9058(7)	Ti(1)-P(1)	2.9065(7)
Ti(1)-P(3)	2.9244(7)	Ti(1)-P(4)	2.9600(7)
S(1)-P(1)	2.0390(8)	S(2)-P(2)	2.0367(8)
S(3)-P(3)	2.0250(8)	S(4)-P(4)	2.0230(8)

P(1) - C(1) $P(1) - C(14)$ $P(2) - C(2)$ $P(3) - C(26)$ $P(3) - C(27)$ $P(4) - C(39)$ $C(2) - C(7)$ $C(3) - C(4)$ $C(4) - C(5)$ $C(5) - C(6)$ $C(6) - C(7)$ $C(7) - H(7)$ $C(8) - C(9)$ $C(9) - H(9)$ $C(10) - H(10)$ $C(11) - H(11)$ $C(12) - H(12)$ $C(14) - C(19)$ $C(15) - C(16)$ $C(16) - C(17)$ $C(17) - C(18)$ $C(18) - C(19)$ $C(19) - H(19)$ $C(20) - C(21)$ $C(21) - H(21)$ $C(22) - H(22)$ $C(23) - H(23)$ $C(24) - H(24)$ $C(27) - C(28)$ $C(28) - C(29)$ $C(29) - C(30)$ $C(31) - C(31)$ $C(31) - C(32)$ $C(32) - H(32)$ $C(33) - C(33)$ $C(34) - H(34)$ $C(35) - H(35)$ $C(36) - H(36)$ $C(37) - H(37)$ $C(39) - C(44)$ $C(41) - C(42)$ $C(42) - C(43)$ $C(44) - H(44)$ $C(45) - C(50)$ $C(46) - H(46)$ $C(47) - H(47)$	1.678(2) 1.818(2) 1.812(2) 1.683(2) 1.815(2) 1.392(3) 1.391(4) 1.385(4) 1.385(4) 1.385(4) 1.397(4) 0.9500 0.9500 0.9500 0.9500 0.9500 1.397(4) 0.9500 1.397(4) 0.9500 1.397(4) 0.9500 1.397(4) 0.9500 0.9500 0.9500 1.387(3) 1.389(4) 1.381(4) 1.382(3) 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 1.387(3) 1.389(4) 1.382(3) 0.9500 1.391(3) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.387(3) 0.9500 1.391(3) 1.387(3) 0.9500 1.397(3) 0.9500 1.397(3) 0.9500 0.9500 1.397(3) 0.9500 0.9500 1.397(3) 0.9500 0.	P(1) - C(20) $P(2) - C(1)$ $P(2) - C(3)$ $P(3) - C(33)$ $P(4) - C(26)$ $P(4) - C(45)$ $C(2) - C(3)$ $C(3) - H(3)$ $C(4) - H(4)$ $C(5) - H(5)$ $C(6) - H(6)$ $C(8) - C(13)$ $C(9) - C(10)$ $C(10) - C(11)$ $C(11) - C(12)$ $C(12) - C(13)$ $C(12) - C(13)$ $C(14) - C(15)$ $C(16) - H(16)$ $C(17) - H(17)$ $C(18) - H(18)$ $C(20) - C(25)$ $C(21) - C(22)$ $C(22) - C(23)$ $C(23) - C(24)$ $C(24) - C(25)$ $C(27) - C(32)$ $C(29) - H(29)$ $C(30) - H(30)$ $C(31) - H(31)$ $C(31) - H(31)$ $C(34) - C(35)$ $C(35) - C(36)$ $C(36) - C(37)$ $C(37) - C(38)$ $C(39) - C(40)$ $C(40) - H(41)$ $C(42) - H(41)$ $C(42) - H(42)$ $C(43) - H(43)$ $C(45) - C(46)$ $C(46) - C(47)$ $C(47) - C(48)$ $C(49) - C(50)$	1.814(2) 1.674(2) 1.815(2) 1.810(2) 1.683(2) 1.393(3) 0.9500 0.9500 0.9500 1.396(3) 1.395(3) 1.395(3) 1.379(4) 1.387(4) 1.387(4) 1.387(4) 1.387(4) 1.395(3) 0.9500 0.9500 0.9500 1.395(3) 1.390(4) 1.389(4) 1.382(4) 1.389(4) 1.382(4) 1.382(4) 1.390(3) 0.9500 0.9500 1.401(3) 0.9500 1.395(3) 1.396(4) 1.384(4) 1.381(4) 1.381(4) 1.396(3) 0.9500 1.395(3) 1.395(3) 1.393(4) 1.393(4) 1.395(3) 1.393(4) 1.395(3) 1.395(3) 1.393(4) 1.395(3) 1.395(3) 1.395(3) 1.393(4) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.393(4) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.393(4) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.393(4) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.395(3) 1.395(4) 1.395(3) 1.395(4) 1.395(4) 1.395(4) 1.395(4) 1.395(4) 1.395(3) 1.395(4) 1.395(3) 1.395(4) 1.395(4) 1.395(4) 1.395(3) 1.395(4) 1.395(3) 1.395(4) 1.395(4) 1.395(4) 1.395(3) 1.395(4)
C (49) - H (49) $C (26) - Ti (1) - C (1)$ $C (1) - Ti (1) - S (1)$ $C (26) - Ti (1) - S (2)$ $C (26) - Ti (1) - S (4)$ $S (1) - Ti (1) - S (3)$ $S (1) - Ti (1) - S (3)$ $S (4) - Ti (1) - S (3)$ $S (4) - Ti (1) - P (2)$ $S (2) - Ti (1) - P (2)$ $S (3) - Ti (1) - P (2)$ $S (3) - Ti (1) - P (1)$ $S (2) - Ti (1) - P (1)$ $S (3) - Ti (1) - P (1)$ $S (3) - Ti (1) - P (1)$ $S (3) - Ti (1) - P (3)$ $S (4) - Ti (1) - P (4)$ $S (1) - Ti (1) - P (4)$ $S (2) - Ti (1) - P (4)$ $P (2) - Ti (1) - P (4)$ $P (2) - Ti (1) - P (4)$ $P (2) - S (2) - Ti (1)$ $P (4) - S (4) - Ti (1)$	0.9500 158.1(1) 78.19(6) 77.89(6) 75.57(7) 101.73(3) 76.30(7) 91.47(2) 150.55(2) 34.60(6) 43.43(2) 108.97(2) 34.69(6) 109.39(2) 113.19(2) 34.27(6) 102.28(2) 108.40(2) 138.14(2) 33.53(6) 106.80(2) 42.28(2) 125.97(2) 66.28(2) 78.75(3) 79.82(3)	C (50) -H (50) $C (26) -Ti (1) -S (1)$ $C (26) -Ti (1) -S (2)$ $S (1) -Ti (1) -S (2)$ $C (1) -Ti (1) -S (4)$ $C (2) -Ti (1) -S (4)$ $C (1) -Ti (1) -S (3)$ $C (26) -Ti (1) -P (2)$ $S (1) -Ti (1) -P (2)$ $S (4) -Ti (1) -P (2)$ $S (4) -Ti (1) -P (1)$ $S (3) -Ti (1) -P (1)$ $S (3) -Ti (1) -P (3)$ $S (3) -Ti (1) -P (3)$ $S (3) -Ti (1) -P (4)$ $S (3) -Ti (1) -P (4)$ $P (1) -Ti (1) -P (4)$ $P (1) -S (1) -Ti (1)$ $P (3) -S (3) -Ti (1)$ $C (1) -P (1) -C (20)$	$\begin{array}{c} 99.90(7)\\ 110.15(6)\\ 148.00(3)\\ 83.39(7)\\ 96.29(3)\\ 125.39(7)\\ 85.35(2)\\ 149.91(7)\\ 109.38(2)\\ 91.46(2)\\ 139.94(6)\\ 43.59(2)\\ 94.07(2)\\ 66.72(2)\\ 167.66(7)\\ 96.72(2)\\ 42.50(2)\\ 143.43(2)\\ 125.65(7)\\ 104.34(2)\\ 125.65(7)\\ 104.34(2)\\ 125.65(7)\\ 104.34(2)\\ 125.65(7)\\ 104.34(2)\\ 125.65(7)\\ 104.34(2)\\ 125.65(3)\\ 77.33(3)\\ 113.6(1)\\ \end{array}$

C(1)-P(1)-C(14)	115.9(1)	C(20)-P(1)-C(14)	105.2(1)
C(1) - P(1) - S(1)	102.57(8)	C(20) - P(1) - S(1)	109.03(7)
C(14) - P(1) - S(1) C(20) - P(1) - Ti(1)	128 67 (8)	C(1) = P(1) = T1(1) C(14) = P(1) = Ti(1)	43.65(7) 126 15(8)
S(1) - P(1) - Ti(1)	57.06(2)	C(1) - P(2) - C(2)	114.0(1)
C(1)-P(2)-C(8)	113.5(1)	C(2)-P(2)-C(8)	106.2(1)
C(1)-P(2)-S(2)	103.26(8)	C(2)-P(2)-S(2)	109.17(8)
C(8)-P(2)-S(2)	110.76(8)	C(1)-P(2)-Ti(1)	45.65(7)
C(2) - P(2) - Ti(1)	130.34(8)	C(8) - P(2) - Ti(1)	123.39(8)
S(2) = P(2) = T1(1) C(26) = P(3) = C(27)	57.82(2)	C(26) = P(3) = C(33) C(33) = P(3) = C(27)	113.8(1)
C(26) - P(3) - C(27)	103 21(8)	C(33) = P(3) = C(27)	110 28(8)
C(27) - P(3) - S(3)	112.23(8)	C(26) - P(3) - Ti(1)	43.80(7)
C(33)-P(3)-Ti(1)	134.34(8)	C(27)-P(3)-Ti(1)	120.04(8)
S(3)-P(3)-Ti(1)	60.17(2)	C(26)-P(4)-C(39)	113.3(1)
C(26)-P(4)-C(45)	114.2(1)	C(39)-P(4)-C(45)	105.9(1)
C(26) - P(4) - S(4)	100.31(8)	C(39) - P(4) - S(4)	111.80(8)
C(45) = P(4) = S(4) $C(30) = P(4) = T_{1}(1)$	131 47(9)	C(26) = P(4) = Ti(1) C(45) = P(4) = Ti(1)	42.//(/)
S(4) - P(4) - Ti(1)	57.90(2)	P(2) - C(1) - P(1)	144.9(2)
P(2) - C(1) - Ti(1)	99.8(1)	P(1) - C(1) - Ti(1)	99.7(1)
C(7)-C(2)-C(3)	119.4(2)	C(7)-C(2)-P(2)	119.8(2)
C(3)-C(2)-P(2)	120.9(2)	C(4)-C(3)-C(2)	120.0(3)
С(4)-С(3)-Н(3)	120.0	C(2)-C(3)-H(3)	120.0
C(5) - C(4) - C(3)	120.1(3)	C(5) - C(4) - H(4)	119.9
C(3) - C(4) - H(4)	119.9	C(6) - C(5) - C(4)	120.4(3)
C(5) = C(5) = C(7)	119.0	C(4) = C(5) = H(5) C(5) = C(6) = H(6)	120.3
C(7) - C(6) - H(6)	120.3	C(2) - C(7) - C(6)	120.5(2)
С(2)-С(7)-Н(7)	119.7	С(6)-С(7)-Н(7)	119.7
C(13)-C(8)-C(9)	119.6(2)	C(13)-C(8)-P(2)	117.1(2)
C(9)-C(8)-P(2)	123.1(2)	C(10)-C(9)-C(8)	119.6(2)
С(10)-С(9)-Н(9)	120.2	C(8)-C(9)-H(9)	120.2
C(11) = C(10) = C(9)	120.2(2)	C(11) - C(10) - H(10)	119.9
C(9) = C(10) = H(10) C(10) = C(11) = H(11)	119.9	C(12) = C(11) = C(12) C(12) = C(11) = H(11)	120.3(2)
C(13) - C(12) - C(11)	120.1(2)	C(12) - C(12) - H(12)	119.9
С(11)-С(12)-Н(12)	119.9	C(12)-C(13)-C(8)	120.1(2)
C(12)-C(13)-H(13)	119.9	C(8)-C(13)-H(13)	119.9
C(19)-C(14)-C(15)	119.4(2)	C(19)-C(14)-P(1)	121.7(2)
C(15) - C(14) - P(1)	118.8(2)	C(16) - C(15) - C(14)	120.0(3)
C(16) = C(15) = H(15) C(17) = C(16) = C(15)	120.0	C(14) = C(15) = H(15) C(17) = C(16) = H(16)	120.0
C(15) = C(16) = U(15)	119.8	C(17) = C(17) = C(16)	119.7(3)
C(18) - C(17) - H(17)	120.1	C(16) - C(17) - H(17)	120.1
C(17)-C(18)-C(19)	120.6(3)	С(17)-С(18)-Н(18)	119.7
C(19)-C(18)-H(18)	119.7	C(14)-C(19)-C(18)	119.9(3)
С(14)-С(19)-Н(19)	120.0	С(18)-С(19)-Н(19)	120.0
C(25) - C(20) - C(21)	119.3(2)	C(25) - C(20) - P(1)	120.5(2)
C(21) = C(20) = P(1) C(22) = C(21) = H(21)	120.1(2)	C(22) = C(21) = C(20) C(20) = C(21) = H(21)	120.2(2)
C(22) = C(21) = C(21)	119.8(3)	C(23) = C(22) = H(22)	120.1
C(21) -C(22) -H(22)	120.1	C(24) - C(23) - C(22)	120.5(2)
С(24)-С(23)-Н(23)	119.7	С(22)-С(23)-Н(23)	119.7
C(23)-C(24)-C(25)	120.0(2)	C(23)-C(24)-H(24)	120.0
С(25)-С(24)-Н(24)	120.0	C(24)-C(25)-C(20)	120.3(2)
С (24) – С (25) – Н (25)	119.9	С(20)-С(25)-Н(25)	119.9
P(4) = C(26) = P(3) $P(3) = C(26) = T_{1}(1)$	145.8(1)	P(4) = C(26) = T1(1) C(28) = C(27) = C(32)	103.7(1)
C(28) - C(27) - P(3)	101.9(1) 121.7(2)	C(20) = C(27) = C(32) C(32) = C(27) = P(3)	119.4(2) 118.6(2)
C(27) - C(28) - C(29)	120.0(3)	C(27) - C(28) - H(28)	120.0
С(29)-С(28)-Н(28)	120.0	C(30)-C(29)-C(28)	120.4(3)
С(30)-С(29)-Н(29)	119.8	С(28)-С(29)-Н(29)	119.8
C(29)-C(30)-C(31)	119.8(2)	С(29)-С(30)-Н(30)	120.1
С(31)-С(30)-Н(30)	120.1	C(32)-C(31)-C(30)	120.2(2)
C(32) = C(31) = H(31) C(31) = C(32) = C(27)	119.9 120 0(2)	C(3U) = C(3L) = H(3L) C(3L) = C(32) = H(32)	119.9 120 0
C(27) - C(32) - U(27) C(27) - C(32) - H(32)	120.0(2)	C(34) - C(32) - D(32) C(34) - C(33) - C(38)	119 R(2)
C(34) -C(33) -P(3)	120.8(2)	C(38)-C(33)-P(3)	119.4(2)
C(33)-C(34)-C(35)	120.0(2)	С(33)-С(34)-Н(34)	120.0
C(35)-C(34)-H(34)	120.0	C(36)-C(35)-C(34)	119.6(3)
С(36)-С(35)-Н(35)	120.2	С(34)-С(35)-Н(35)	120.2
C(37) - C(36) - C(35)	120.7(2)	С (37) –С (36) –Н (36)	119.6
C(35) = C(35) = H(35) C(36) = C(37) = H(37)	119.6 120 2	C(38) = C(37) = C(38) C(38) = C(37) = P(37)	120 2
C(37) - C(38) - C(33)	120.2(2)	C(37) - C(38) - H(38)	119.9
С(33)-С(38)-Н(38)	119.9	C(44)-C(39)-C(40)	119.5(2)

C(44)-C(39)-P(4)	122.0(2)	C(40)-C(39)-P(4)	118.6(2)
C(41)-C(40)-C(39)	120.1(2)	С(41)-С(40)-Н(40)	119.9
С(39)-С(40)-Н(40)	119.9	C(42)-C(41)-C(40)	119.8(3)
С(42)-С(41)-Н(41)	120.1	С(40)-С(41)-Н(41)	120.1
C(43)-C(42)-C(41)	120.8(3)	С(43)-С(42)-Н(42)	119.6
С(41)-С(42)-Н(42)	119.6	C(42)-C(43)-C(44)	119.6(3)
С(42)-С(43)-Н(43)	120.2	С(44)-С(43)-Н(43)	120.2
C(39)-C(44)-C(43)	120.2(3)	С(39)-С(44)-Н(44)	119.9
С(43)-С(44)-Н(44)	119.9	C(46)-C(45)-C(50)	119.4(2)
C(46)-C(45)-P(4)	117.4(2)	C(50)-C(45)-P(4)	123.1(2)
C(47)-C(46)-C(45)	120.3(2)	С(47)-С(46)-Н(46)	119.8
С(45)-С(46)-Н(46)	119.8	C(46)-C(47)-C(48)	120.1(3)
С(46)-С(47)-Н(47)	120.0	С(48)-С(47)-Н(47)	120.0
C(49)-C(48)-C(47)	119.9(2)	С(49)-С(48)-Н(48)	120.1
С(47)-С(48)-Н(48)	120.1	C(48)-C(49)-C(50)	120.5(2)
С(48)-С(49)-Н(49)	119.7	С(50)-С(49)-Н(49)	119.7
C(49)-C(50)-C(45)	119.7(2)	С(49)-С(50)-Н(50)	120.1
C(45)-C(50)-H(50)	120.1		

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for I.7 $\,$

atom	U11	U22	U33	U23	U13	U12
Ψi(1)	18(1)	19(1)	24(1)	1(1)	11(1)	-1(1)
S(1)	21(1)	19(1)	34(1)	-5(1)	12(1)	-4(1)
S(1) S(2)	21(1)	21(1)	11 (1)	-3(1)	19(1)	1(1)
S(2)	2 = (1) 24(1)	$2 \pm (1)$	$\pm \pm (\pm)$	7(1)	12(1)	(1)
S(J) S(A)	24(1) 17(1)	33(1)	22(1) 25(1)) (1)	12(1)	-1(1)
D(1)	$\pm / (\pm)$ 10(1)	JJ(1)	2J(1)	0(1)	0 (1) 10 (1)	-2(1) 1(1)
P(1)	10(1)	1/(1)	22(1)	-2(1)	10(1)	-1(1) 1(1)
P(2)	19(1)	10(1)	23(1)	-2(1)	$\perp \perp (\perp)$	-1(1) 1(1)
P(3)	$\perp / (\perp)$	19(1)	18(1)	$\perp (\perp)$	8(1) 0(1)	-1(1)
P(4)	10(1)	$\angle \perp (\perp)$ 17(1)	10(1)	$\perp (\perp)$	8 (⊥) 1 2 (1)	$\perp (\perp)$
C(1)	20(1)	1/(1)	25(1)	-1(1)	13(1)	-1(1)
C(2)	26(1)	19(1)	25(1)	$-\perp(\perp)$	14(1)	-4(1)
C(3)	41(2)	24(1)	31(1)	-3(1)	14(1)	$\perp (\perp)$
C(4)	56(2)	30(1)	35(2)	$-\perp\perp(\perp)$	19(1)	-11(1)
C(5)	42(2)	49(2)	26(1)	-9(1)	13(1)	-20(1)
C(6)	28(1)	4/(2)	30(2)	$\perp (\perp)$	9(1)	-2(1)
C(/)	26(1)	29(1)	30(1)	-5(1)	14(1)	-2(1)
C(8)	21(1)	18(1)	24(1)	$\perp (\perp)$	$\perp \perp (\perp)$	2(1)
C(9)	27(1)	20(1)	2/(1)	-4(1)	12(1)	-4(1)
C(10)	35(1)	24(1)	32(1)	$\perp (\perp)$	16(1)	-/(1)
C(11)	41(2)	31(1)	29(1)	9(1)	18(1)	6 (1)
C(12)	30(1)	31(1)	24(1)	3(1)	5(1)	6 (1)
C(13)	21(1)	23(1)	28(1)	2(1)	/(1)	$\perp (\perp)$
C(14)	22(1)	21(1)	23(1)	0(1)	10(1)	4(1)
C(15)	21(1)	32(1)	27(1)	4(1)	$\downarrow \downarrow (\downarrow)$	4(1)
C(16)	32(1)	39(2)	44(2)	16(1)	24(1)	$\downarrow \downarrow (\downarrow)$
C(1/)	60(2)	55(2)	31(2)	$\perp \perp (\perp)$	29(2)	14(2)
C(18)	68(2)	61(2)	22(2)	$-\perp\perp(\perp)$	15(2)	-6(2)
C(19)	42(Z)	40(2)	27(1)	-8(1)	14(1)	-9(1)
C(20)	18(1)	16(1)	26(1)	0(1)	10(1)	-2(1)
C(21)	2/(1)	28(1)	30(1) 07(1)	$\perp (\perp)$	15(1)	Z(1)
C(22)	28(1)	40(2)	2/(1)	5(1) 0(1)	12(1)	/(1) 0(1)
C(23)	24(1)	32(1)	43(2)	9(1)	16(1)	8(1)
C(24)	28(1) 21(1)	23(1)	42(2)	-2(1)	20(1)	4(1)
C(25)	$\angle \perp (\perp)$	22(1)	30(1) 20(1)	- 3 (1) 1 (1)	12(1)	-1(1)
C(20)	10(1)	21(1)	20(1)	$\perp (\perp)$	9(1)	0(1)
C(27)	10(1)	2Z(1)	22(1)	$-\perp(\perp)$	0(1) 20(1)	$\perp (\perp)$
C(20)	33(I) 39(2)	2J(1)	41(2)	0(1)	20(1)	2(1)
C(29)	38(2)	22(1)	64(Z) 47(2)	U(1)	20(2) 15(1)	4(1) 1(1)
C(30)	20(1)	32(1)	4/(Z) 20(1)	-14(1) E(1)	10(1)	$\perp (\perp)$
C(31)	22(1)	40(2)	29(1)	-5(1)	12(1)	0(1)
C(32)	22(1)	24(1)	23(1)	-1(1)	O(⊥) 11(1)	0(1)
C(33)	22(1)	24(1)	20(1)	-1(1)	(1)	-2(1)
C(34)	24(1)	53(1) 53(2)	22(1)	0(1)	9(1) 9(1)	-2(1)
C(35)	Z / (I)	52(2)	21(1)	-3(1)	8 (1) 1 C (1)	-12(1)
C(30)	43(2)	26(1)	20(1) 36(2)	= 9(1)	10(1)	-22(1)
C(32)	27(1)	∠∪(⊥) 26(1)	27(1)	-1 (1)	$\pm J(\pm)$ 11(1)	-1 (1)
C (30)	∠ / (⊥) 28 (1)	∠∪(⊥) 21(1)	$(-1)^{(\pm)}$	1 (1)	⊥⊥(⊥) 15(1)	⊥(⊥) 5(1)
C(29)	20(1)	() 26(1)	22 (±) 28 (1)	- (+) 1 (1)	± 3 (±) 18 (1)	-1(1)
C(41)	43(2)	27(1)	20(1)	-3(1)	29(1)	-4(1)
C(42)	-3(2)	(\pm) 23(1)	42(2)	5(±) 6(1)	∠J(⊥) 36(2)	¬(⊥) 8(1)
C(42)	50(2)	∠⊃(⊥) 33(1)	74 (4) 33 (2)	9(1)	21(1)	○(⊥) 16(1)
C(43)	30(2) 32(1)	29(1)	28(1)	→ (±) 3 (1)	() 13(1)	± 0 (±) 7 (1)
(11)	J (1)		20(1)			· (± /

C(45)	17(1)	28(1)	16(1)	-1(1)	4(1)	2(1)
C(46)	30(1)	27(1)	26(1)	-2(1)	14(1)	1(1)
C(47)	36(1)	30(1)	30(1)	-5(1)	11(1)	6(1)
C(48)	32(1)	45(2)	30(1)	-7(1)	15(1)	9(1)
C(49)	31(1)	47(2)	27(1)	2(1)	18(1)	5(1)
C(50)	26(1)	30(1)	25(1)	0(1)	13(1)	2(1)

The anisotropic displacement factor exponent takes the form 2 pi^2 [h^2a*^2U(11) +...+ 2hka*b*U(12)]

Table	5.	Hydrogen	Coordi	nates	3	(A :	хÌ	10^4)	and	equivalent	isotropic
displ	acen	ment para	meters	(A^2	Х	10	^3) for	I.7		

atom	X	У	Z	U (eq)
Н(3)	9517	-845	-1476	39
H(4)	10992	-329.0000	-529	49
H(5)	12710	-969	80	47
Н(б)	12944	-2143	-229	43
H(7)	11450	-2672	-1165	33
Н(9)	10724	-1064	-2359	29
H(10)	10825	-549	-3310	35
H(11)	9527	-915	-4372	39
H(12)	8077	-1768	-4499	36
H(13)	7923	-2259	-3561	30
H(15)	11316	-2901	-2896.0002	32
H(16)	11507	-2488	-3851	43
H(17)	10178	-2855	-4908	54
H(18)	8644	-3623	-5014	62
H(19)	8417	-4029	-4063	44
H(21)	11056	-3964	-1226	32
H(22)	12696	-4661	-581	38
H(23)	13577	-5399	-1106	39
H(24)	12865	-5422.0005	-2267	35
H(25)	11248	-4713	-2916	29
H(28)	4440	-2169	-3000	38
H(29)	3455	-1375	-2582	47
H(30)	2833	-1758	-1770	42
H(31)	3083	-2962	-1424	35
H(32)	3958	-3778	-1886	28
H(34)	2703	-3808	-3611	32
H(35)	1465	-4778	-4147	41
H(36)	2198	-5953	-3950	42
H(37)	4178	-6165	-3288	43
H(38)	5428	-5195.9995	-2772.0002	32
H(40)	5278	-5098	-1565	31
H(41)	5170	-6302.0005	-1284	39
H(42)	6866	-6909.0005	-588	46
H(43)	8673	-6320.0005	-153	45
H(44)	8787	-5107	-416	35
H(46)	6995	-2561.9998	-1051	33
H(47)	6208	-1821	-479	40
H(48)	5255	-2331	139	42
H(49)	5046	-3576	159	39
H(50)	5832	-4328	-411	31

b. Données cristallographiques pour I.9

Table 1. Crystal data for I.9	
Compound	I.9
Molecular formula	$C_{58}H_{56}Cl_2O_3P_4S_4Ti_2, 2(C_4H_8O)$
Molecular weight	1364.06
Crystal habit	Dark Brown Block
Crystal dimensions(mm)	0.30x0.25x0.25
Crystal system	monoclinic
Space group	C2/c
a(Å)	31.143(1)
b(Å)	11.777(1)
c(Å)	20.530(1)
Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å)	1364.06 Dark Brown Block 0.30x0.25x0.25 monoclinic C2/c 31.143(1) 11.777(1) 20.530(1)

α(°)	90.00
β(°)	120.597(1)
γ(°)	90.00
$V(Å^3)$	6481.4(7)
Z	4
$d(g-cm^{-3})$	1.398
F(000)	2840
$\mu(cm^{-1})$	0.605
Absorption corrections	multi-scan; 0.8392 min, 0.8634 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	30.01
HKL ranges	-43 43 ; -16 15 ; -28 28
Reflections measured	21794
Unique data	9290
Rint	0.0286
Reflections used	8034
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	375
Reflections / parameter	21
wR2	0.1181
R1	0.0457
Weights a, b	0.0544 ; 13.545
GoF	1.061
difference peak / hole (e $Å^{-3}$)	1.468(0.071) / -0.484(0.071)

Table 2. Atomic Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for I.9

atom	x	У	Z	U(eq)
Ti(1)	559(1)	8549(1)	2487(1)	22(1)
Cl(1)	1020(1)	6894(1)	3114(1)	37(1)
S(1)	1277(1)	9361(1)	2382(1)	28(1)
S(2)	92(1)	10100(1)	1469(1)	27(1)
P(1)	1316(1)	10210(1)	3266(1)	22(1)
P(2)	-651(1)	9904(1)	998(1)	24(1)
0(1)	0	8200(2)	2500	25(1)
0(2)	319(1)	7485(1)	1473(1)	35(1)
C(1)	847(1)	9620(2)	3363(1)	22(1)
C(2)	1937(1)	10058(2)	4086(1)	27(1)
C(3)	2180(1)	9021(2)	4219(1)	35(1)
C(4)	2646(1)	8871(2)	4861(2)	46(1)
C(5)	2873(1)	9749(3)	5366(2)	54(1)
C(6)	2632(1)	10778(3)	5240(2)	61(1)
C(7)	2162(1)	10937(2)	4602(1)	44(1)
C(8)	1236(1)	11705(2)	3025(1)	26(1)
C(9)	773(1)	12210(2)	2756(1)	36(1)
C(10)	702(1)	13343(2)	2529(2)	49(1)
C(11)	1091(1)	13966(2)	2570(2)	52(1)
C(12)	1550(1)	13455(2)	2813(2)	46(1)
C(13)	1620(1)	12326(2)	3036(1)	36(1)
C(14)	-937(1)	11204(2)	466(1)	34(1)
C(15)	-729(1)	12255(2)	751(2)	43(1)
C(16)	-980(1)	13243(3)	383(2)	60(1)
C(17)	-1431(2)	13182(3)	-280(2)	71(1)
C(18)	-1629(1)	12152(4)	-581(2)	78(1)
C(19)	-1390(1)	11158(3)	-209(2)	58(1)
C(20)	-864(1)	8821(2)	268(1)	29(1)
C(21)	-704(1)	8877(2)	-256(1)	42(1)
C(22)	-859(1)	8060(3)	-819(1)	49(1)

C (23) C (24) C (25) C (26) C (27) C (28) C (29) O (3) C (30) C (30) C (31) C (32) C (33)	-1166(1) -1326(1) -1182(1) 30(1) 55(1) 473(2) 532(1) 3078(1) 3037(2) 2533(2) 2272(2) 2596(1)	7177(3) 7130(3) 7955(2) 6464(2) 5744(3) 6208(4) 7405(3) 517(3) 1468(4) 1558(6) 558(6) 221(4)	-859(1) -347(2) 213(1) 1394(2) 813(2) 755(3) 1001(2) 2976(2) 2510(3) 1928(5) 1992(3) 2778(2)	46(1) 46(1) 37(1) 42(1) 55(1) 115(2) 53(1) 80(1) 88(1) 173(4) 115(2) 69(1)
U(eq) is def Table 3. Bond	ined as 1/3 l lengths (A)	the trace of and angles (the Uij tensor. deg) for I.9	
$\begin{array}{c} \text{Ti}(1)\\ \text{Ti}(1)\\ \text{Ti}(1)\\ \text{Ti}(1)\\ \text{S}(2) -\\ P(1) -\\ P(2) -\\ P(2) -\\ O(2) -\\ C(3) -\\ C(3) -\\ C(3) -\\ C(3) -\\ C(5) -\\ C(6) -\\ C(6) -\\ C(8) -\\ C(6) -\\ C(8) -\\ C(10)\\ C(11)\\ C(12)\\ C(13)\\ C(14)\\ C(15)\\ C(16)\\ C(17)\\ C(18)\\ C(14)\\ C(15)\\ C(16)\\ C(17)\\ C(18)\\ C(20)\\ C(21)\\ C(22)\\ C(23)\\ C(24)\\ C(25)\\ C(26)\\ C(27)\\ C(30)\\ C(30)\\ C(31)\\ C(32)\\ C(33)\\ $	$\begin{array}{c} -O(1) \\ -O(2) \\ -S(1) \\ -P(1) \\ P(2) \\ C(8) \\ C(1) \# 2 \\ C(14) \\ C(29) \\ P(2) \# 2 \\ C(7) \\ H(3) \\ H(4) \\ H(5) \\ H(6) \\ C(9) \\ C(10) \\ -C(11) \\ -C(12) \\ -C(13) \\ -H(13) \\ -C(19) \\ -H(15) \\ -H(16) \\ -H(17) \\ -H(16) \\ -H(17) \\ -H(16) \\ -H(17) \\ -H(18) \\ -C(22) \\ -C(23) \\ -C(22) \\ -C(23) \\ -C(24) \\ -C(25) \\ -H(26A) \\ -C(28) \\ -H(27B) \\ -H(26A) \\ -C(33) \\ -C(31) \\ -H(31A) \\ -C(33) \\ -H(32B) \\ -H(33B) $	$\begin{array}{c} 1.8005(6\\ 2.209(2)\\ 2.5407(6\\ 2.8470(6\\ 2.0168(7\\ 1.812(2)\\ 1.737(2)\\ 1.827(2)\\ 1.431(3)\\ 1.737(2)\\ 1.389(3)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.389(3)\\ 1.394(3)\\ 1.381(5)\\ 1.388(3)\\ 0.9500\\ 1.387(4)\\ 0.9500\\ 0.9500\\ 1.387(4)\\ 0.9500\\ 0.9500\\ 1.387(4)\\ 0.9500\\ 1.388(3)\\ 0.9500\\ 1.388(3)\\ 0.9500\\ 1.385(3)\\ 1.388(4)\\ 1.386(4)\\ 1.375(4)\\ 1.392(3)\\ 0.9500\\ 0.9900\\ 1.472(5)\\ 0.9900\\ 0.9900\\ 1.488(4)\\ 1.413(7)\\ 0.9900\\ 0.9900\\ 1.456(6)\\ 0.9900\\ 0.990\\ 0.990\\ 0.9900\\ 0.9900\\ 0.990\\ $	Ti (1) -C (1) Ti (1) -Cl (1) Ti (1) -Cl (1) P(1) -C(1) P(1) -C(1) P(1) -C(2) P(2) -C(20) O(1) -Ti (1) $\#2$ O(2) -C(26) C(2) -C(3) C(3) -C(4) C(4) -C(5) C(5) -C(6) C(6) -C(7) C(7) -H(7) C(8) -C(13) C(9) -H(9) C(10) -H(10) C(11) -H(11) C(12) -H(12) C(14) -C(15) C(15) -C(16) C(16) -C(17) C(17) -C(18) C(18) -C(19) C(19) -H(19) C(20) -C(21) C(19) -H(21) C(21) -H(21) C(22) -H(22) C(23) -H(23) C(24) -H(24) C(26) -C(27) C(26) -H(26B) C(27) -H(27A) C(28) -C(29) C(28) -H(28B) C(29) -H(29B) O(3) -C(30) C(31) -C(32) C(31) -H(31A) C(32) -H(33A)	1.997(2) 2.3743(6) 2.5928(6) 2.0216(7) 1.718(2) 1.814(2) 1.814(2) 1.8005(6) 1.459(3) 1.389(3) 1.388(3) 1.377(4) 1.378(5) 1.392(4) 0.9500 0.9500 0.9500 0.9500 1.381(4) 1.373(6) 1.359(6) 1.389(4) 0.9500 0.9500 1.399(3) 0.9500 0.9500 1.497(3) 0.9900 1.474(7) 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 1.474(7) 0.9900 0.9900 0.9900 1.474(7) 0.9900 0.900 0.900 0.9000 0.9000 0.9000 0.9000 0.
$\begin{array}{c} 0(1) - Ti(1) - C(\\ C(1) - Ti(1) - O(\\ C(1) - Ti(1) - Cl\\ 0(1) - Ti(1) - Cl\\ 0(1) - Ti(1) - S(\\ 0(2) - Ti(1) - S(\\ 0(2) - Ti(1) - S(\\ 0(2) - Ti(1) - S(\\ C(1) - Ti(1) - S(\\ C(1) - Ti(1) - P(\\ Cl(1) - P(1) - C(2\\ C(1) - P(1) - S(1) \\ \end{array}$	1) 2) (1) 1) 1) 2) 2) 2) 2) 1) ((1) 1) 1))	97.24(7) 171.30(7) 99.19(6) 170.41(6) 91.32(5) 91.39(5) 81.83(5) 79.76(2) 36.50(5) 99.17(2) 86.16(2) 109.96(3) 114.9(1) 103.78(6)	O(1)-Ti(1)-O(2) O(1)-Ti(1)-Cl(1) O(2)-Ti(1)-Cl(1) C(1)-Ti(1)-S(1) Cl(1)-Ti(1)-S(1) Cl(1)-Ti(1)-S(2) Cl(1)-Ti(1)-S(2) O(1)-Ti(1)-P(1) O(2)-Ti(1)-P(1) S(1)-Ti(1)-P(1) P(1)-S(1)-Ti(1) C(1)-P(1)-C(8) C(8)-P(1)-C(2) C(8)-P(1)-S(1)	91.05(6) 97.31(6) 82.29(5) 80.08(5) 92.21(2) 95.27(6) 162.01(2) 132.78(5) 134.84(5) 43.62(1) 76.28(2) 114.7(1) 106.4(1) 107.32(7)

C(2)-P(1)-S(1)	109.47(7)	C(1)-P(1)-Ti(1)	43.74(6)
C(8)-P(1)-Ti(1)	123.72(7)	C(2)-P(1)-Ti(1)	129.85(7)
S(1)-P(1)-Ti(1)	60.11(2)	C(1)#2-P(2)-C(20)	111.5(1)
C(1) #2 - P(2) - C(14)		C(20) = P(2) = C(14)	103.5(1)
C(1) #Z = P(Z) = S(Z)	114.70(7)	C(20) = P(2) = S(2) mi(1) #2 O(1) mi(1)	152 6(1)
C(14) - F(2) - S(2)	100.42(0)	$\Gamma_{1}(1) \# 2^{-}O(1)^{-}\Gamma_{1}(1)$	120 7(2)
C(25) = O(2) = Ti(1)	117 8(1)	P(1) = C(1) = P(2) #2	120.7(2) 131 0(1)
P(1) - C(1) - Ti(1)	99.8(1)	P(2) #2-C(1) -Ti(1)	129.2(1)
C(3) - C(2) - C(7)	119.4(2)	C(3) - C(2) - P(1)	119.1(2)
C(7) - C(2) - P(1)	121.4(2)	C(4) - C(3) - C(2)	120.0(2)
С(4)-С(3)-Н(3)	120.0	С(2)-С(3)-Н(3)	120.0
C(5)-C(4)-C(3)	120.5(3)	C(5)-C(4)-H(4)	119.8
C(3)-C(4)-H(4)	119.8	C(4)-C(5)-C(6)	119.8(2)
С(4)-С(5)-Н(5)	120.1	C(6)-C(5)-H(5)	120.1
C(5) - C(6) - C(7)	120.4(3)	C(5) - C(6) - H(6)	119.8
C(7) - C(6) - H(6)	119.8	C(2) = C(7) = C(6)	119.9(2)
C(2) = C(7) = H(7) C(9) = C(8) = C(13)	119 5(2)	C(0) = C(7) = R(7) C(0) = C(8) = R(1)	119 6(2)
C(13) = C(8) = P(1)	120.6(2)	C(3) = C(3) = C(10)	119 9(2)
C(8) - C(9) - H(9)	120.0(2)	C(10) - C(9) - H(9)	120.1
C(11) - C(10) - C(9)	120.2(3)	C(11)-C(10)-H(10)	119.9
С(9)-С(10)-Н(10)	119.9	C(10)-C(11)-C(12)	120.2(2)
C(10)-C(11)-H(11)	119.9	C(12)-C(11)-H(11)	119.9
C(13)-C(12)-C(11)	119.7(3)	С(13)-С(12)-Н(12)	120.2
С(11)-С(12)-Н(12)	120.2	C(12)-C(13)-C(8)	120.5(2)
C(12) - C(13) - H(13)	119.7	C(8) - C(13) - H(13)	119.7
C(15) = C(14) = C(19)	118.6(2)	C(15) = C(14) = P(2)	121.1(2)
C(14) = C(14) = P(2) C(14) = C(15) = H(15)	110.2(2)	C(14) = C(15) = C(16) C(16) = C(15) = H(15)	110.4(3)
C(17) - C(16) - C(15)	120.3(3)	C(17) = C(16) = H(16)	119.9
C(15) - C(16) - H(16)	119.9	C(18) - C(17) - C(16)	119.7(3)
С(18)-С(17)-Н(17)	120.2	С(16)-С(17)-Н(17)	120.2
C(17)-C(18)-C(19)	120.7(3)	C(17)-C(18)-H(18)	119.7
C(19)-C(18)-H(18)	119.7	C(14)-C(19)-C(18)	120.3(3)
С(14)-С(19)-Н(19)	119.9	С(18)-С(19)-Н(19)	119.9
C(25) - C(20) - C(21)	119.4(2)	C(25) - C(20) - P(2)	122.1(2)
C(21) = C(20) = P(2) C(22) = C(21) = H(21)	118.6(2)	C(22) = C(21) = C(20) C(20) = C(21) = H(21)	119.9(2)
C(22) = C(21) = C(21)	120.0 120.4(2)	C(23) = C(22) = H(22)	119 8
C(21) - C(22) - H(22)	119.8	C(24) - C(23) - C(22)	119.5(2)
C(24) -C(23) -H(23)	120.2	C(22) -C(23) -H(23)	120.2
C(23)-C(24)-C(25)	120.8(2)	С(23)-С(24)-Н(24)	119.6
C(25)-C(24)-H(24)	119.6	C(20)-C(25)-C(24)	119.9(2)
С(20)-С(25)-Н(25)	120.0	С(24)-С(25)-Н(25)	120.0
O(2) - C(26) - C(27)	106.1(2)	O(2)-C(26)-H(26A)	110.5
C(27) - C(26) - H(26A)	110.5	O(2) - C(26) - H(26B)	110.5
C(27) = C(27) = C(26)	105 1(2)	H(20A) = C(20) = H(20B) C(28) = C(27) = H(27A)	110 7
C(26) - C(27) - H(27A)	110.7	C(28) - C(27) - H(27B)	110.7
C(26) -C(27) -H(27B)	110.7	H(27A) - C(27) - H(27B)	108.8
C(27) - C(28) - C(29)	106.7(3)	С(27)-С(28)-Н(28А)	110.4
С(29)-С(28)-Н(28А)	110.4	С(27)-С(28)-Н(28В)	110.4
C(29)-C(28)-H(28B)	110.4	H(28A)-C(28)-H(28B)	108.6
O(2)-C(29)-C(28)	105.9(2)	O(2)-C(29)-H(29A)	110.6
С(28)-С(29)-Н(29А)	110.6	О(2)-С(29)-Н(29В)	110.6
C(28) - C(29) - H(29B)	110.6	H (29A) -C (29) -H (29B)	108.7
C(33) = O(3) = C(30)	106.5(3)	C(31) = C(30) = O(3)	107.9(4)
C(31) - C(30) - H(30R)	110.1	O(3) = C(30) = H(30R)	110.1
H(30A) - C(30) - H(30B)	108.4	C(30) - C(31) - C(32)	106.8(4)
C(30)-C(31)-H(31A)	110.4	C(32)-C(31)-H(31A)	110.4
С(30)-С(31)-Н(31В)	110.4	С(32)-С(31)-Н(31В)	110.4
H(31A)-C(31)-H(31B)	108.6	C(33)-C(32)-C(31)	102.4(4)
С(33)-С(32)-Н(32А)	111.3	C(31)-C(32)-H(32A)	111.3
С (33) –С (32) –Н (32В)	111.3	C(31)-C(32)-H(32B)	111.3
H(32A) - C(32) - H(32B)	109.2	$\cup (3) - C (33) - C (32)$	LU6.9(3)
U(3) = U(33) = H(33A) O(3) = C(33) = H(33B)	110.3	$\cup (32) = \cup (33) = H (33A)$ $\cap (32) = \cap (33) = H (33B)$	110.3
U(3) = U(33) = H(33B) H(33A) = C(33) = H(33B)	108 6	С (32) -С (33) -Н (33В)	110.3
	100.0		

_____ Estimated standard deviations are given in the parenthesis.

Symmetry operators :: 1: x, y, z 2: -x, y, -z+1/2 3: x+1/2, y+1/2, z 4: -x+1/2, y+1/2, -z+1/ 5: -x, -y, -z 6: x, -y, z-1/2 7: -x+1/2, -y+1/2, -z 8: x+1/2, -y+1/2, z-1/2

atom	U11	U22	U33	U23	U13	U12
Ti(1)	21(1)	20(1)	24(1)	-5(1)	11(1)	-1(1)
CI(1)	35(1)	25(1)	43(1)	-1(1)	14(1)	9(1)
S(1)	27(1)	29(1)	31(1)	-10(1)	18(1)	-6(1)
S(2)	24(1)	30(1)	25(1)	$\perp (\perp)$	12(1)	-4(1)
P(1)	21(1)	20(1)	23(1)	-4(1)	10(1)	-1(1)
P(2)	23(1)	27(1)	21(1)	3(1)	10(1)	-3(1)
O(1)	24(1)	21(1)	29(1)	0	13(1)	0
O(2)	45(1)	28(1)	36(1)	-13(1)	23(1)	-8(1)
C(1)	22(1)	23(1)	20(1)	-4(1)	10(1)	$\cup (\bot)$
C(2)	21(1)	25(1)	28(1)	$-\perp(\perp)$	9(1) 1((1)	$-\perp(\perp)$
C(3)	28(1)	32(1)	42(1)	0(1)	16(1)	4(1)
C(4)	28(1)	46(1)	56(2)	14(1)	16(1)	9(1)
C(5)	28(1)	57(2)	49(2)	15(1)	-2(1)	-5(1)
C(6)	49(2)	45(2)	45(2)	-3(1)	-9(1)	-14(1)
C(7)	41(1)	29(1)	35(1)	-4(1)	$\cup (1)$	-3(1)
C(8)	31(1)	21(1)	23(1)	-4(1)	12(1)	-2(1)
C(9)	40(1)	27(1)	37(1)	0(1)	1/(1)	6(1)
C(10)	60(2)	29(1)	52(2)	2(1)	23(1)	14(1)
C(11)	80(2)	22(1)	44(1)	$\cup (\perp)$	25(1)	$\cup (\bot)$
C(12)	63(2)	30(1)	42(1)	-4(1)	24(1)	-15(1)
C(13)	40(1)	30(1)	35(1)	-3(1)	16(1)	-/(1)
C(14)	36(1)	36(1)	35(1)	14(1)	21(1)	5(1)
C(15)	53(2)	34(1)	49(1)	13(1)	31(1)	3(1)
C(16)	81(2)	38(1)	80(2)	24(2)	54(2)	12(2)
C(1/)	75(2)	63(2)	89(3)	50(2)	51(2)	31(2)
C(18)	58(2)	80(3)	68(2)	43(2)	12(2)	20(2)
C(19)	4/(2)	55(2)	50(2)	22(1)	10(1)	8(1)
C(20)	26(1)	37(1)	20(1)	-1 (1)	10(1)	-6(1)
C(21)	46(1)	54(2)	27(1)	-5(1)	22(1)	-1/(1)
C(22)	56(2)	69(2)	30(1)	-13(1)	2/(1)	-18(1)
C(23)	4/(1)	57(2)	30(1)	-15(1)	16(1)	-14(1)
C(24)	48(1) 27(1)	52(2)	40(1) 20(1)	-16(1)	24(1)	-22(1)
C(25)	37(1)	45(1) 24(1)	30(1)	-8(1)	18(1)	-15(1)
C(26)	43(1)	34(1)	48(1)	-1/(1)	23(1)	-13(1)
C(27)	/6(2)	40(1)	52(2)	-23(1)	36(2)	-16(1)
C(28)	166(5)	90(3)	1/(5)	-98(3)	150(5)	- /8 (3)
C(29)	72(2)	56(2)	48(2)	-26(1)	43(2)	-25(2)
$\cup (3)$	70(2)	91 (Z)	19(2)	-/(2)	38(2)	-3(2)
C(30)	93(3)	/3(3)	126(4)	⊥(J) 1(0(7)	/ 6 (3)	-10(2)
C(31)	©U(3)	202(7)	229(8) 72(2)	100(/)	⊃4(4) 10(0)	∠/(4)
C(32)	5/(2)	18/(6)	13(3)	10(3)	12(2)	-4/(3)
U (33)	65(2)	σ⊥(J)	18(2)	11 (Z)	49(2)	-4(2)

Table 4. Anisotropic displacement parameters ($A^2 \times 10^3$) for I.9

The anisotropic displacement factor exponent takes the form 2 pi^2 [h^2a*^2U(11) +...+ 2hka*b*U(12)]

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for I.9

atom	х	У	Z	U(eq)
Н(3)	2027	8413	3871	42
H(4)	2809	8158	4953	55
H(5)	3194	9646	5799	65
H(6)	2787	11381	5590	73
H(7)	1997	11646	4520	52
H(9)	505	11783	2726	43
H(10)	385	13688	2345	59
H(11)	1044	14744	2431	62
H(12)	1814	13877	2825	56
H(13)	1932	11974	3198	44
H(15)	-413	12302	1202	52
H(16)	-839	13961	591	72
H(17)	-1604	13858	-528	85
H(18)	-1935	12111	-1050	93
H(19)	-1537	10443	-419	69
H(21)	-490	9474	-228	50
H(22)	-754	8105	-1179	59
H(23)	-1265	6609	-1237	55
H(24)	-1538	6527	-374	55

Н(25)	-1301	7923	556	44
H(26A)	-320	6663	1226	50
Н(26В)	175	6055	1883	50
H(27A)	116	4940	974	66
Н(27В)	-261	5795	320	66
H(28A)	400	6160	227	138
H(28B)	782	5776	1084	138
H(29A)	890	7616	1287	64
H(29B)	356	7914	559	64
H(30A)	3143	2172	2816	106
H(30B)	3252	1351	2291	106
H(31A)	2507	1571	1427	207
H(31B)	2384	2265	1987	207
H(32A)	1934	759	1889	138
Н(З2В)	2245	-53	1641	138
H(33A)	2497	618	3107	83
H(33B)	2572	-608	2834	83

2. Chapitre 2

Les structures de **II.9** (CCDC-812004), **II.10** (CCDC-812005) et **II.11** (CCDC-812010) ont été déposées à la CCDC.

3. Chapitre 3

Les structures de III.5 (CCDC-893613), III.5Li (CCDC-893614), III.5Li₂ (CCDC-893615), III.7 (CCDC-893679), III.7Li (CCDC-893681) et III.7Li₂ (CCDC-893683) ont été déposées à la CCDC.

a. Données cristallographiques pour III.6Li

Table 1. Crystal data for III.6Li	
Compound	III.6Li
Molecular formula	$C_{58}H_{58}Li_2O_6P_4$, C_4H_8O
Molecular weight	1060.91
Crystal habit	Colorless Block
Crystal dimensions(mm)	0.32x0.28x0.22
Crystal system	Monoclinic
Space group	$P2_1/c$
a(Å)	12.547(1)
b(Å)	11.300(1)
c(Å)	19.843(1)
α(°)	90.00
β(°)	101.383(1)
$\gamma(^{\circ})$	90.00
$V(Å^3)$	2758.0(4)
Z	2
$d(g-cm^{-3})$	1.277
F(000)	1120
μ (cm ⁻¹)	0.190
Absorption corrections	multi-scan; 0.9416 min, 0.9593 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	27.48
HKL ranges	-16 15 ; 0 14 ; 0 25
Reflections measured	6257

Unique data	6257
Rint	0.0508
Reflections used	4704
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	318
Reflections / parameter	14
wR2	0.1938
R1	0.0657
Weights a, b	0.1258; 1.6607
GoF	1.011
difference peak / hole (e Å ⁻³)	0.261(0.065)/-0.272(0.065)

Table 2. Atomic Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for III.6Li

atom	X	у	Z	U (eq)
P(1)	2108(1)	-706(1)	6491(1)	28(1)
P(2)	2093(1)	1103(1)	5389(1)	25(1)
0(1)	1315(2)	-1534(2)	6053(1)	34(1)
0(2)	966(1)	639(2)	5084(1)	30(1)
C(1)	2763(2)	331(2)	6084(1)	28(1)
C(2)	1385(2)	-34(3)	7102(1)	33(1)
C(3)	1783(2)	946(3)	7497(1)	38(1)
C(4)	1214(3)	1426(3)	7967(2)	51(1)
C(5)	232(3)	942(4)	8041(2)	56(1)
C(6)	-164(3)	-49(4)	7654(2)	56(1)
C(7)	401(2)	-525(3)	7188(2)	44(1)
C(8)	3201(2)	-1561(3)	7008(1)	33(1)
C(9)	3871(2)	-1142(3)	7596(1)	42(1)
C(10)	4718(3)	-1827(4)	7950(2)	51(1)
C(11)	4907(3)	-2947(3)	7716(2)	55(1)
C(12)	4244(3)	-3379(4)	7121(3)	76(1)
C(13)	3404(3)	-2682(3)	6771(2)	62(1)
C(14)	1940(2)	2671(2)	5539(1)	29(1)
C(15)	2317(2)	3206(3)	6174(1)	34(1)
C(16)	2156(2)	4405(3)	6262(2)	40(1)
C(17)	1631(2)	5099(3)	5722(2)	41(1)
C(18)	1270(2)	4582(3)	5081(2)	41(1)
C(19)	1412(2)	3388(3)	4991(1)	37(1)
C(20)	2929(2)	1108(2)	4738(1)	29(1)
C(21)	4036(2)	1319(4)	4897(2)	54(1)
C(22)	4638(3)	1324(4)	4387(2)	63(1)
C(23)	4166(3)	1112(3)	3715(2)	50(1)
C(24)	3085(3)	890(4)	3557(2)	53(1)
C(25)	2459(3)	882(3)	4065(1)	44(1)
0(3)	1147(2)	-2078(2)	4531(1)	47(1)
C(26)	2300(3)	-2312(3)	4676(2)	50(1)
C(27)	2649(5)	-2448(7)	4020(3)	121(3)
C(28)	1704(5)	-2539(8)	3506(3)	119(3)
C(29)	718(3)	-2293(4)	3818(2)	63(1)
Lı(l)	551(3) 	-1047(4)	5163(2)	30(1)
eq) is de	efined as 1/3	the trace of t	he Uij tensor.	
ble 3. Bo	ond lengths (A	A) and angles (deg) for III.6Li	
P(1)	-0(1)	1.509(2)	P(1)-C(1)	1.720(3)
P(1)	-C(2)	1.818(3)	P(1)-C(8)	1.819(3)
P(1)	-Li(1)	2.979(4)	P(2) = O(2)	1.517(2)
P(2)	-C(1)	1.707(2)	P(2) - C(14)	1.814(3)
P(2)	-C(20)	1.817(3)	P(2)-L1(1)	3.082(5)
0(1)	-L1(1)	1.916(4)	O(2)-Li(1)#3	1.926(5)
0(2)	-L1(1)	1.989(5)	C(1) - H(1)	0.9500
C(2)	-0(3)	1.391(4)	U(2) = U(7)	1.395(4)
C(3)		1.392(4)	C(3) = H(3)	0.9500
C(4)	-C(5)	1,302(3)	C(4) = H(4) C(5) = H(5)	0.9500
	-C(0)	1,090(0)	$C(3) = \pi(3)$	0.9500
C (6)	-U(7)	1.301(3)	$C(0) = \pi(0)$ C(0) = C(0)	1 390/41
C(I)	TT (/)	0.9000	$\cup (\cup) = \cup (\neg)$	1.300(4)

C (8) -C (13) C (9) -H (9) C (10) -H (10) C (11) -H (11) C (12) -H (12) C (14) -C (15) C (15) -C (16) C (16) -C (17) C (17) -C (18) C (18) -C (19) C (19) -H (19) C (20) -C (21) C (21) -H (21) C (22) -H (22) C (23) -H (23) C (24) -H (24) O (3) -C (29) O (3) -Li (1) C (26) -H (26) C (27) -C (28) C (27) -H (27) C (28) -H (29) Li (1) -O (2) #3	$\begin{array}{c} 1.393(5)\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.393(4)\\ 1.387(4)\\ 1.387(4)\\ 1.385(4)\\ 1.392(4)\\ 1.377(4)\\ 0.9500\\ 1.383(4)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.433(4)\\ 1.964(5)\\ 0.9900\\ 1.920(5)\\ \end{array}$	C (9) - C (10) $C (10) - C (11)$ $C (11) - C (12)$ $C (12) - C (13)$ $C (13) - H (13)$ $C (14) - C (19)$ $C (15) - H (15)$ $C (16) - H (16)$ $C (17) - H (17)$ $C (18) - H (18)$ $C (20) - C (25)$ $C (21) - C (22)$ $C (22) - C (23)$ $C (22) - C (23)$ $C (23) - C (24)$ $C (24) - C (25)$ $C (25) - H (25)$ $C (26) - C (27)$ $C (26) - C (27)$ $C (26) - H (26)$ $C (27) - H (27)$ $C (28) - C (29)$ $C (28) - H (28)$ $C (29) - H (29)$ $Li (1) - Li (1) #3$	1.389(4) 1.384(5) 1.392(6) 1.387(5) 0.9500 1.412(4) 0.9500 0.9500 0.9500 1.373(4) 1.377(4) 1.369(5) 1.353(5) 1.396(4) 0.9500 1.442(4) 1.460(6) 0.9900 0.9900 1.513(6) 0.9900 2.75(1)
$\begin{array}{l} 0(1) - P(1) - C(1) \\ C(1) - P(1) - C(2) \\ C(1) - P(1) - Li(1) \\ C(2) - P(1) - Li(1) \\ O(2) - P(2) - C(1) \\ C(1) - P(2) - C(2) \\ O(2) - P(2) - Li(1) \\ C(1) - P(2) - C(2) \\ O(2) - P(2) - Li(1) \\ P(1) - O(1) - Li(1) \\ P(1) - O(1) - Li(1) \\ P(2) - O(2) - Li(1) \\ P(2) - O(2) - Li(1) \\ P(1) - C(1) - P(1) \\ P(1) - C(1) - P(1) \\ C(3) - C(2) - P(1) \\ C(3) - C(2) - P(1) \\ C(3) - C(2) - P(1) \\ C(4) - C(3) - C(4) \\ C(4) - C(3) - H(3) \\ C(5) - C(4) - H(4) \\ C(4) - C(5) - C(6) \\ C(6) - C(5) - H(5) \\ C(7) - C(6) - H(6) \\ C(6) - C(7) - C(2) \\ C(2) - C(7) - H(7) \\ C(9) - C(8) - P(1) \\ C(8) - C(9) - C(10) \\ C(10) - C(9) - H(9) \\ C(11) - C(10) - H(10) \\ C(10) - C(11) - C(12) \\ C(12) - C(13) - L(12) \\ C(13) - C(12) - H(13) \\ C(15) - C(14) - P(2) \\ C(16) - C(15) - C(14) \\ C(16) - C(15) - C(14) \\ C(14) - C(15) - H(15) \\ C(17) - C(16) - H(16) \\ C(16) - C(17) - C(18) \\ C(18) - C(19) - C(14) \\ C(14) - C(19) - H(19) \\ C(25) - C(20) - P(2) \\ C(22) - C(21) - L(20) \\ C(22) - C(20) - P(2) \\ C(22) - C(21) - L(20) \\ C(22) - C(20) - L(20) \\ C(20) - C(21) - L(20) \\ C(20) - C(21) - L(20) \\ C(20) - C(20) - L(20) \\ C(20) - L(10) \\ C(20) -$	118.3(1) $112.0(1)$ $104.5(1)$ $33.7(1)$ $108.5(1)$ $114.7(1)$ $114.7(1)$ $114.7(1)$ $114.7(1)$ $135.2(1)$ $120.4(2)$ $122.5(2)$ $121.5(1)$ 119.2 $122.5(2)$ $120.9(3)$ 119.6 119.9 $119.3(3)$ 120.4 119.7 $120.7(3)$ 119.6 $124.1(2)$ $120.9(3)$ 119.5 119.9 $119.5(3)$ 120.2 120.2 $121.3(3)$ 119.4 $123.0(2)$ 120.4 119.5 119.4 $123.0(2)$ 120.4 119.5 $119.2(3)$ 120.4 119.5 $119.2(3)$ 120.4 119.5 $119.5(2)$ $120.3(3)$ 119.5 $119.5(2)$ $120.3(3)$ 119.5 $119.5(2)$ $120.3(3)$ 119.5 $119.5(2)$ $120.3(3)$ 119.5 $119.5(2)$ $120.3(3)$ 119.5 $119.5(2)$ $120.3(3)$ 119.5 $119.5(2)$ $120.5(3)$ 119.8 $128.0(2)$	$\begin{array}{c} 0(1) - P(1) - C(2) \\ 0(1) - P(1) - C(8) \\ C(2) - P(1) - Li(1) \\ C(8) - P(1) - Li(1) \\ 0(2) - P(2) - C(24) \\ 0(2) - P(2) - C(20) \\ C(14) - P(2) - C(20) \\ C(14) - P(2) - Li(1) \\ P(2) - 0(2) - P(1) \\ C(3) - C(2) - P(1) \\ C(2) - C(3) - H(3) \\ C(5) - C(4) - C(5) \\ C(5) - C(6) - H(6) \\ C(6) - C(7) - H(7) \\ C(9) - C(6) - C(5) \\ C(5) - C(6) - H(6) \\ C(6) - C(7) - H(7) \\ C(9) - C(6) - C(1) \\ C(10) - C(1) - H(10) \\ C(10) - C(10) - H(10) \\ C(10) - C(10) - H(10) \\ C(10) - C(11) - H(11) \\ C(13) - C(12) - C(11) \\ C(11) - C(12) - H(12) \\ C(12) - C(13) - H(13) \\ C(15) - C(14) - P(2) \\ C(16) - C(15) - H(15) \\ C(17) - C(16) - L(15) \\ C(17) - C(16) - L(15) \\ C(17) - C(16) - L(15) \\ C(17) - C(16) - H(16) \\ C(16) - C(17) - H(17) \\ C(19) - C(14) - P(2) \\ C(21) - C(20) - P(2) \\ C(22) - C(21) - H(21) \\ C(23) - C(22) - C(21) \\ C(21) - C(20) - P(2) \\ C(22) - C(21) - H(21) \\ C(23) - C(22) - L(21) \\ C(23) - C(22) - L(21) \\ C(23) - C(22) - L(21) \\ C(23) - C(22) - L(22) \\ C(24) - C(23) - H(23) \\ C(25) - C(20) - L(25) \\ C(26) - O(3) - Li(1) \\ \end{array}$	$106.5(1) \\109.5(1) \\109.5(1) \\105.4(1) \\87.9(1) \\136.1(1) \\106.4(1) \\110.0(1) \\102.0(1) \\84.8(1) \\109.5(1) \\144.6(2) \\89.4(2) \\119.2 \\118.4(3) \\119.1(2) \\119.6 \\120.2(3) \\119.7 \\119.6 \\120.4 \\120.5(3) \\119.7 \\119.6 \\120.4 \\120.5(3) \\119.7 \\119.6 \\120.3(3) \\119.7 \\119.6 \\120.3(3) \\119.7 \\119.6 \\120.3(3) \\119.9 \\120.2 \\119.5 \\120.3(3) \\119.9 \\120.2 \\119.5 \\120.3(3) \\119.9 \\120.2 \\119.5 \\120.3(3) \\119.5 \\120.4 \\120.2 \\119.5 \\120.4 \\120.2 \\119.5 \\120.4 \\120.2 \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (2) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\120.2 (3) \\119.5 \\120.4 \\12$

O(3)-C(26)-C(27)	107.9(3)	O(3)-C(26)-H(26)	110.1
С(27)-С(26)-Н(26)	110.1	O(3)-C(26)-H(26)	110.1
С(27)-С(26)-Н(26)	110.1	Н(26)-С(26)-Н(26)	108.4
C(28)-C(27)-C(26)	107.2(4)	С(28)-С(27)-Н(27)	110.3
С(26)-С(27)-Н(27)	110.3	С(28)-С(27)-Н(27)	110.3
С(26)-С(27)-Н(27)	110.3	H(27)-C(27)-H(27)	108.5
C(27)-C(28)-C(29)	109.3(4)	С(27)-С(28)-Н(28)	109.8
С(29)-С(28)-Н(28)	109.8	С(27)-С(28)-Н(28)	109.8
С(29)-С(28)-Н(28)	109.8	Н(28)-С(28)-Н(28)	108.3
O(3)-C(29)-C(28)	104.9(3)	O(3)-C(29)-H(29)	110.8
С(28)-С(29)-Н(29)	110.8	O(3)-C(29)-H(29)	110.8
С(28)-С(29)-Н(29)	110.8	Н(29)-С(29)-Н(29)	108.8
O(1)-Li(1)-O(2)#3	126.4(2)	O(1)-Li(1)-O(3)	103.5(2)
O(2)#3-Li(1)-O(3)	117.5(2)	O(1)-Li(1)-O(2)	104.9(2)
O(2)#3-Li(1)-O(2)	90.6(2)	O(3)-Li(1)-O(2)	112.3(2)
O(1)-Li(1)-Li(1)#3	126.9(3)	O(2)#3-Li(1)-Li(1)#3	46.3(1)
O(3)-Li(1)-Li(1)#3	126.6(3)	O(2)-Li(1)-Li(1)#3	44.4(1)
O(1)-Li(1)-P(1)	25.9(1)	O(2)#3-Li(1)-P(1)	129.6(2)
O(3)-Li(1)-P(1)	112.1(2)	O(2)-Li(1)-P(1)	79.0(1)
Li(1)#3-Li(1)-P(1)	107.9(2)	O(1)-Li(1)-P(2)	84.7(2)
O(2)#3-Li(1)-P(2)	114.1(2)	O(3)-Li(1)-P(2)	104.7(2)
O(2)-Li(1)-P(2)	24.53(8)	Li(1)#3-Li(1)-P(2)	68.2(2)
P(1)-Li(1)-P(2)	59.10(8)		

Estimated standard deviations are given in the parenthesis. Symmetry operators ::

1: x, y, z 4: x, -y-1/2, z-1/2 2: -x, y+1/2, -z+1/2 3: -x, -y, -z

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for III.6Li

atom	U11	U22	U33	U23	U13	U12
P(1)	24(1)	30(1)	28(1)	3(1)	1(1)	-3(1)
P(2)	20(1)	28(1)	26(1)	1(1)	3(1)	-2(1)
0(1)	30(1)	33(1)	34(1)	3(1)	-2(1)	-6(1)
0(2)	20(1)	33(1)	34(1)	1(1)	2(1)	-2(1)
C(1)	23(1)	29(1)	32(1)	4(1)	2(1)	-1(1)
C(2)	32(1)	38(2)	28(1)	6(1)	5(1)	-3(1)
C(3)	39(2)	40(2)	37(1)	2(1)	12(1)	-2(1)
C(4)	60(2)	56(2)	39(2)	-4(1)	18(1)	2(2)
C(5)	50(2)	83(3)	42(2)	-1(2)	22(1)	5(2)
C(6)	39(2)	81(3)	52(2)	3(2)	18(1)	-9(2)
C(7)	38(2)	54(2)	42(2)	5(1)	9(1)	-9(1)
C(8)	28(1)	34(2)	36(1)	9(1)	3(1)	-3(1)
C(9)	31(1)	66(2)	28(1)	-1(1)	3(1)	10(1)
C(10)	34(2)	85(3)	31(1)	6(2)	3(1)	10(2)
C(11)	36(2)	58(2)	67(2)	28(2)	-2(1)	2(2)
C(12)	57(2)	42(2)	112(3)	5(2)	-26(2)	3(2)
C(13)	50(2)	35(2)	85(3)	0(2)	-26(2)	-1(2)
C(14)	21(1)	33(1)	34(1)	2(1)	8(1)	-2(1)
C(15)	34(1)	35(2)	33(1)	-1(1)	9(1)	-7(1)
C(16)	42(2)	39(2)	45(2)	-7(1)	18(1)	-9(1)
C(17)	35(2)	30(2)	61(2)	-2(1)	19(1)	-2(1)
C(18)	33(1)	36(2)	54(2)	6(1)	6(1)	4(1)
C(19)	35(1)	39(2)	35(1)	2(1)	0(1)	1(1)
C(20)	25(1)	29(1)	34(1)	2(1)	7(1)	2(1)
C(21)	29(2)	92(3)	43(2)	-6(2)	11(1)	-6(2)
C(22)	34(2)	104(3)	56(2)	6(2)	18(1)	-5(2)
C(23)	54(2)	54(2)	50(2)	7(1)	29(2)	12(2)
C(24)	57(2)	73(3)	33(2)	-3(1)	16(1)	-4(2)
C(25)	36(2)	61(2)	34(1)	1(1)	10(1)	-8(1)
0(3)	40(1)	58(2)	44(1)	-14(1)	7(1)	10(1)
C(26)	40(2)	51(2)	63(2)	3(2)	17(1)	10(2)
C(27)	114(5)	182(7)	83(3)	48(4)	60(3)	85(5)
C(28)	104(4)	191(7)	76(3)	-71(4)	51(3)	-41(4)
C(29)	74(3)	76(3)	40(2)	-13(2)	13(2)	9(2)
Li(1)	23(2)	33(2)	33(2)	-2(2)	0(2)	2(2)

The anisotropic displacement factor exponent takes the form 2 pi^2 [h^2a*^2U(11) +...+ 2hka*b*U(12)]

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for III.6Li

atom	х	У	Z	U(eq)
H(1)	3514	478	6251	34
H(3)	2453	1291	7445	45
H(4)	1500	2089	8237	61
H(5)	-168	1282	8351	68
Н(б)	-828	-400	7712	67
H(7)	117	-1196	6924	53
Н(9)	3750	-374	7761	51
H(10)	5170	-1527.0001	8355	61
H(11)	5485	-3416.9998	7959	66
H(12)	4366	-4147	6955	92
H(13)	2958	-2975.0002	6362	75
H(15)	2687	2746	6549	40
H(16)	2409	4756	6699	48
H(17)	1518	5919	5788	49
H(18)	925	5054	4704	50
H(19)	1152	3041	4553	45
H(21)	4383	1462	5360	65
Н(22)	5396	1479	4504	76
Н(23)	4588	1119	3367	60
H(24)	2748	737	3093	64
H(25)	1703	719	3944	52
H(26)	2455	-3044	4952	60
H(26)	2694	-1648	4940	60
H(27)	3085	-1756.0001	3932	145
H(27)	3100	-3169.0002	4026	145
H(28)	1650	-3344	3305	143
H(28)	1735	-1963	3134	143
H(29)	317	-1593	3600	76
H(29)	221	-2982	3759	76

b. Données cristallographiques pour III.6K

Table 1. Crystal data for III.6K	
Compound	III.6K
Molecular formula	$C_{37}H_{45}KO_8P_2, C_4H_8O$
Molecular weight	790.87
Crystal habit	Colorless Block
Crystal dimensions(mm)	0.22x0.18x0.18
Crystal system	orthorombic
Space group	Pna21
a(Å)	21.493(1)
b(Å)	21.133(1)
c(Å)	8.950(1)
α(°)	90.00
β(°)	90.00
γ(°)	90.00
$V(Å^3)$	4065.2(5)
Z	4
$d(g-cm^{-3})$	1.292
F(000)	1680
$\mu(cm^{-1})$	0.262
Absorption corrections	multi-scan; 0.9445 min, 0.9543 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
$\lambda(\text{\AA})$	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	27.48
HKL ranges	-26 27 ; -27 27 ; -11 7
Reflections measured	24491

Unique data	8054
Rint	0.0377
Reflections used	7283
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	433
Reflections / parameter	16
wR2	0.1143
R1	0.0457
Flack's parameter	0.05(5)
Weights a, b	0.0527; 2.2626
GoF	1.108
difference peak / hole (e Å ⁻³)	0.301(0.056) / -0.252(0.056)

Table 2. Atomic Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for III.6K

atom	Х	У	Z	U (eq)
K(1)	18579(1)	19835(1)	13361(1)	31(1)
P(1)	17388(1)	18742(1)	11187(1)	26(1)
P(2)	17133(1)	20107(1)	11111(1)	26(1)
0(1)	17914(1)	18858(1)	12257(3)	31(1)
0(2)	17753(1)	20403(1)	11465(2)	32(1)
0(3)	19480(1)	18755(1)	13110(3)	45(1)
0(4)	18806(1)	18915(1)	15794(3)	57(1)
0(5)	18623(1)	20153(2)	16904(3)	62(1)
0(6)	18526(1)	21113(1)	14779(3)	51(1)
0(7)	19224(1)	20990(1)	12073(3)	39(1)
0(8)	19420(1)	19742(1)	10966(3)	37(1)
C(1)	17089(1)	19384(1)	10248(3)	27(1)
C(2)	17597(1)	18137(1)	9821(4)	29(1)
C(3)	17422(1)	18119(1)	8336(4)	36(1)
C(4)	17600(2)	17614(2)	7427(4)	42(1)
C(5)	17944(2)	17124(2)	7997(5)	50(1)
C(6)	18125(2)	17139(2)	9452(5)	67(1)
C(7)	17962(2)	17644(2)	10368(4)	50(1)
C(8)	16786(1)	18331(1)	12247(4)	31(1)
C(9)	16238(2)	18131(2)	11554(4)	39(1)
C(10)	15768(2)	17839(2)	12376(5)	48(1)
C(11)	15848(2)	17748(2)	13898(5)	57(1)
C(12)	16381(2)	17945(2)	14589(5)	66(1)
C(13)	16854(2)	18238(2)	13760(4)	49(1)
C(14)	16700(1)	20656(1)	9943(3)	30(1)
C(15)	16108(2)	20529(2)	9367(4)	38(1)
C(16)	15812(2)	20985(2)	8489(4)	48(1)
C(17)	16102(2)	21546(2)	8132(4)	53(1) 49(1)
C(18)	16081(2)	21077(2)	8/10(4)	48(1) 27(1)
C(19)	16600(1)	21232(1)	9J90(4) 12050(2)	37(1) 29(1)
C(20)	16021(1)	20051(1)	1/127(/)	20(1)
C(21)	10921(1) 16617(2)	20280(2)	15484(4)	JU(1)
C(22)	16086(2)	19908(2)	15584(4)	$\frac{1}{50}(1)$
C(24)	15853(2)	19616(2)	14320(4)	45(1)
C(25)	16157(2)	19691(1)	12956(4)	36(1)
C(26)	19152(2)	18257(2)	13840(5)	56(1)
C(27)	19159(2)	18357(2)	15457(6)	64(1)
C(28)	18818(2)	19057(3)	17332(5)	76(2)
C(29)	18396(2)	19588(3)	17636(5)	85(2)
C(30)	18215(2)	20663(3)	17096(5)	78(2)
C(31)	18474(2)	21226(3)	16345(6)	73(2)
C(32)	18780(2)	21634(2)	13976(5)	59(1)
C(33)	18786(2)	21485(2)	12343(5)	53(1)
C(34)	19229(2)	20828(2)	10537(4)	46(1)
C(35)	19666(2)	20292(2)	10273(4)	45(1)
C(36)	19827(2)	19226(2)	10838(4)	45(1)
C(37)	19515(2)	18663(2)	11517(4)	47(1)

U(eq) is defined as 1/3 the trace of the Uij tensor.

Table 3. Bond lengths (A) and angles (deg) for III.6K

K(1) - O(1) $K(1) - O(3)$ $K(1) - O(6)$ $K(1) - P(2)$ $P(1) - C(1)$ $P(1) - C(2)$ $P(2) - C(1)$ $P(2) - C(20)$ $O(3) - C(37)$ $O(4) - C(27)$ $O(5) - C(29)$ $O(6) - C(31)$ $O(7) - C(33)$ $O(8) - C(35)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(5)$ $C(5) - C(6)$ $C(6) - C(7)$ $C(7) - H(7)$ $C(8) - C(9)$ $C(9) - H(9)$ $C(10) - H(10)$ $C(11) - H(11)$ $C(12) - H(12)$ $C(14) - C(15)$ $C(15) - C(16)$ $C(16) - C(17)$ $C(17) - C(18)$ $C(18) - C(19)$ $C(19) - H(19)$ $C(19) - H(19)$ $C(19) - H(19)$ $C(20) - C(25)$ $C(21) - H(21)$ $C(22) - H(22)$ $C(23) - H(23)$ $C(24) - H(24)$ $C(26) - C(27)$ $C(26) - H(26B)$ $C(27) - H(27B)$ $C(30) - C(31)$ $C(30) - H(32A)$ $C(31) - H(31B)$ $C(32) - H(32A)$ $C(34) - H(34B)$ $C(35) - H(35B)$ $C(36) - H(35B)$ $C(37) - H(37A)$	2.699(2) 2.812(2) 2.986(3) 3.035(2) 3.746(1) 1.720(3) 1.825(3) 1.715(3) 1.419(3) 1.441(4) 1.435(6) 1.427(4) 1.426(5) 1.427(4) 1.395(4) 1.395(4) 1.395(4) 1.395(0) 1.396(4) 0.9500 0.9500 1.396(4) 0.9500 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(0) 1.395(1) 0.9500 1.395(4) 0.9500 1.395(4) 0.9500 1.395(4) 0.9500 1.395(4) 0.9500 1.395(4) 0.9500 1.395(4) 0.9500 1.462(6) 0.9900 0.9900 1.476(8) 0.9900 0.9900 1.476(8) 0.9900 0.900 0.9000 0.9000 0.9000 0.9000 0.900	$\begin{array}{c} \mathrm{K}(1) - \mathrm{O}(2) \\ \mathrm{K}(1) - \mathrm{O}(3) \\ \mathrm{K}(1) - \mathrm{O}(3) \\ \mathrm{K}(1) - \mathrm{O}(5) \\ \mathrm{P}(1) - \mathrm{O}(1) \\ \mathrm{P}(1) - \mathrm{C}(8) \\ \mathrm{P}(2) - \mathrm{O}(2) \\ \mathrm{P}(2) - \mathrm{O}(2) \\ \mathrm{P}(2) - \mathrm{C}(14) \\ \mathrm{O}(3) - \mathrm{C}(26) \\ \mathrm{O}(4) - \mathrm{C}(28) \\ \mathrm{O}(5) - \mathrm{C}(30) \\ \mathrm{O}(6) - \mathrm{C}(32) \\ \mathrm{O}(7) - \mathrm{C}(34) \\ \mathrm{O}(8) - \mathrm{C}(36) \\ \mathrm{C}(1) - \mathrm{H}(1) \\ \mathrm{C}(2) - \mathrm{C}(7) \\ \mathrm{C}(3) - \mathrm{H}(3) \\ \mathrm{C}(4) - \mathrm{H}(4) \\ \mathrm{C}(5) - \mathrm{H}(5) \\ \mathrm{C}(6) - \mathrm{H}(6) \\ \mathrm{C}(8) - \mathrm{C}(13) \\ \mathrm{C}(10) - \mathrm{C}(11) \\ \mathrm{C}(11) - \mathrm{C}(12) \\ \mathrm{C}(12) - \mathrm{C}(13) \\ \mathrm{C}(13) - \mathrm{H}(13) \\ \mathrm{C}(14) - \mathrm{C}(19) \\ \mathrm{C}(15) - \mathrm{H}(15) \\ \mathrm{C}(16) - \mathrm{H}(16) \\ \mathrm{C}(17) - \mathrm{H}(17) \\ \mathrm{C}(18) - \mathrm{H}(18) \\ \mathrm{C}(20) - \mathrm{C}(21) \\ \mathrm{C}(21) - \mathrm{C}(22) \\ \mathrm{C}(22) - \mathrm{C}(23) \\ \mathrm{C}(23) - \mathrm{C}(24) \\ \mathrm{C}(24) - \mathrm{C}(25) \\ \mathrm{C}(26) - \mathrm{H}(25) \\ \mathrm{C}(26) - \mathrm{H}(26A) \\ \mathrm{C}(27) - \mathrm{H}(27A) \\ \mathrm{C}(28) - \mathrm{C}(29) \\ \mathrm{C}(30) - \mathrm{H}(30A) \\ \mathrm{C}(31) - \mathrm{H}(31A) \\ \mathrm{C}(32) - \mathrm{C}(33) \\ \mathrm{C}(32) - \mathrm{H}(32B) \\ \mathrm{C}(33) - \mathrm{H}(33B) \\ \mathrm{C}(34) - \mathrm{H}(34A) \\ \mathrm{C}(35) - \mathrm{H}(35A) \\ \mathrm{C}(37) - \mathrm{H}(37B) \end{array}$	2.733(2) 2.960(3) 3.003(2) 3.243(3) 1.501(2) 1.825(3) 1.505(2) 1.817(3) 1.424(4) 1.409(6) 1.425(5) 1.417(4) 1.402(4) 0.9500 1.393(4) 0.9500 0.9500 1.376(5) 1.387(6) 1.387(6) 1.367(6) 1.402(5) 0.9500 1.400(4) 0.9500 0.9500 1.389(5) 1.389(5) 1.383(5) 1.383(5) 1.384(5) 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 1.389(4) 1.383(5) 1.383(5) 1.384(5) 0.9500 0.9900 0.9
O(1) - K(1) - O(2) $O(2) - K(1) - O(8)$ $O(2) - K(1) - O(4)$ $O(1) - K(1) - O(6)$ $O(8) - K(1) - O(6)$ $O(1) - K(1) - O(3)$ $O(6) - K(1) - O(3)$ $O(2) - K(1) - O(7)$ $O(4) - K(1) - O(7)$ $O(2) - K(1) - O(7)$ $O(3) - K(1) - O(5)$ $O(4) - K(1) - O(5)$ $O(3) - K(1) - O(5)$ $O(3) - K(1) - O(5)$ $O(3) - K(1) - P(2)$ $O(6) - K(1) - P(2)$ $O(6) - K(1) - P(2)$ $O(7) - K(1) - P(2)$ $O(1) - P(1) - C(1)$ $C(1) - P(1) - C(1)$ $C(1) - P(1) - C(2)$ $O(2) - P(2) - C(1)$	$76.43(6) \\88.59(7) \\148.47(7) \\145.87(7) \\114.29(7) \\74.48(6) \\58.33(7) \\138.04(7) \\72.99(6) \\137.09(7) \\106.77(6) \\122.34(8) \\54.0(1) \\102.21(8) \\58.79(5) \\97.74(5) \\93.35(5) \\92.94(5) \\117.7(1) \\111.3(1) \\108.5(1) \\121.0(1) \\$	$\begin{array}{c} O(1) - K(1) - O(8) \\ O(1) - K(1) - O(4) \\ O(8) - K(1) - O(4) \\ O(2) - K(1) - O(6) \\ O(4) - K(1) - O(6) \\ O(2) - K(1) - O(3) \\ O(1) - K(1) - O(3) \\ O(1) - K(1) - O(7) \\ O(8) - K(1) - O(7) \\ O(6) - K(1) - O(7) \\ O(6) - K(1) - O(7) \\ O(6) - K(1) - O(5) \\ O(8) - K(1) - O(5) \\ O(7) - K(1) - O(5) \\ O(7) - K(1) - O(5) \\ O(2) - K(1) - P(2) \\ O(4) - K(1) - P(2) \\ O(3) - K(1) - P(2) \\ O(3) - K(1) - P(2) \\ O(1) - P(1) - C(8) \\ O(1) - P(1) - C(2) \\ O(2) - P(2) - C(14) \\ \end{array}$	90.48(7) 81.60(7) 114.15(8) 80.91(7) 106.7(1) 134.98(7) 56.58(8) 135.95(8) 58.18(6) 56.71(8) 122.14(7) 137.81(7) 53.0(1) 101.02(8) 20.03(4) 129.27(5) 127.72(5) 121.20(5) 106.2(1) 110.8(1) 100.9(1) 108.0(1)

C(1)-P(2)-C(14)	106.3(1)	O(2)-P(2)-C(20)	107.5(1)
C(1)-P(2)-C(20)	107.4(1)	C(14)-P(2)-C(20)	105.7(1)
O(2) - P(2) - K(1)	38.47(8)	C(1) - P(2) - K(1)	98.7(1)
C(14) - P(2) - K(1) P(1) - O(1) - K(1)	140.3(1) 130 1(1)	C(20) = P(2) = K(1) P(2) = O(2) = K(1)	8/.3(1) 121 5(1)
C(26) = O(3) = C(37)	112 3(3)	C(26) = O(2) = K(1)	101 9(2)
C(37) = O(3) = K(1)	102.1(2)	C(28) = O(4) = C(27)	111.7(4)
C(28) - O(4) - K(1)	125.7(3)	C(27) - O(4) - K(1)	118.2(2)
C(30) - O(5) - C(29)	111.7(4)	С(30)-О(5)-К(1)	105.1(2)
C(29)-O(5)-K(1)	105.2(2)	C(32)-O(6)-C(31)	113.4(3)
C(32)-O(6)-K(1)	118.1(2)	C(31)-O(6)-K(1)	125.0(3)
C(34)-O(7)-C(33)	110.3(3)	C(34)-O(7)-K(1)	100.2(2)
C(33) - O(7) - K(1)	102.9(2)	C (36) -O (8) -C (35)	111.7(3)
C(36) - O(8) - K(1)	121.1(2)	C(35) = O(8) = K(1)	121.0(2)
P(2) = C(1) = P(1) P(1) = C(1) = H(1)	121 3	P(2) = C(1) = H(1) C(3) = C(2) = C(7)	118 0(3)
C(3) - C(2) - P(1)	121.3 126.7(2)	C(3) = C(2) = P(1)	115 3 (3)
C(2) - C(3) - C(4)	120.5(3)	C(2) - C(3) - H(3)	119.7
С(4)-С(3)-Н(3)	119.7	C(5) - C(4) - C(3)	120.6(3)
С(5)-С(4)-Н(4)	119.7	С(3)-С(4)-Н(4)	119.7
C(6)-C(5)-C(4)	119.5(3)	С(6)-С(5)-Н(5)	120.2
С(4)-С(5)-Н(5)	120.2	C(5)-C(6)-C(7)	120.7(4)
С(5)-С(6)-Н(6)	119.7	С(7)-С(6)-Н(6)	119.7
C(6) - C(7) - C(2)	120.6(4)	C(6) - C(7) - H(7)	119.7
C(2) - C(7) - H(7)	120 2(2)	C(13) - C(8) - C(9)	120 7 (2)
C(13) = C(8) = P(1) C(10) = C(9) = C(8)	120.3(2) 120.7(3)	C(9) - C(0) - P(1) C(10) - C(9) - H(9)	119 7
C(8) - C(9) - H(9)	119.7	C(11) - C(10) - C(9)	119.4(3)
C(11) - C(10) - H(10)	120.3	C(9) - C(10) - H(10)	120.3
C(12)-C(11)-C(10)	120.4(3)	С(12)-С(11)-Н(11)	119.8
C(10)-C(11)-H(11)	119.8	C(11)-C(12)-C(13)	120.1(4)
C(11)-C(12)-H(12)	119.9	С(13)-С(12)-Н(12)	119.9
C(8)-C(13)-C(12)	120.5(4)	С(8)-С(13)-Н(13)	119.8
C(12) - C(13) - H(13)	119.8	C(15) - C(14) - C(19)	119.0(3)
C(15) - C(14) - P(2)	123.8(2)	C(19) - C(14) - P(2) C(16) - C(15) - U(15)	11/.2(2)
C(14) = C(15) = C(14) C(14) = C(15) = H(15)	120 3	C(10) = C(10) = H(10) C(17) = C(16) = C(15)	120.3 121.2(3)
C(17) - C(16) - H(16)	119.4	C(15) - C(16) - H(16)	119.4
C(18) - C(17) - C(16)	119.7(3)	C(18) - C(17) - H(17)	120.2
С(16)-С(17)-Н(17)	120.2	C(17)-C(18)-C(19)	120.4(3)
C(17)-C(18)-H(18)	119.8	C(19)-C(18)-H(18)	119.8
C(18)-C(19)-C(14)	120.3(3)	С(18)-С(19)-Н(19)	119.8
C(14) - C(19) - H(19)	119.8	C(21) - C(20) - C(25)	118.6(3)
C(21) = C(20) = P(2) C(22) = C(21) = C(20)	119.9(2) 120.7(3)	C(25) = C(20) = P(2) C(22) = C(21) = P(21)	121.5(2)
C(22) = C(21) = C(20) C(20) = C(21) = H(21)	119 6	C(22) = C(21) = H(21) C(21) = C(22) = C(23)	120 2(3)
C(21) - C(22) - H(22)	119.9	C(23) - C(22) - H(22)	119.9
C(24) -C(23) -C(22)	119.9(3)	С(24)-С(23)-Н(23)	120.1
С(22)-С(23)-Н(23)	120.1	C(23)-C(24)-C(25)	119.7(3)
С(23)-С(24)-Н(24)	120.2	С(25)-С(24)-Н(24)	120.2
C (24) -C (25) -C (20)	120.9(3)	С (24) –С (25) –Н (25)	119.5
C(20) - C(25) - H(25)	119.5	O(3) - C(26) - C(27)	110.1(3)
O(3) = C(26) = H(26R)	109.6	C(27) = C(26) = H(26R)	109.0
H(26A) = C(26) = H(26B)	108.2	O(4) - C(27) - C(26)	108.8(3)
O(4) - C(27) - H(27A)	109.9	C(26) - C(27) - H(27A)	109.9
О(4)-С(27)-Н(27В)	109.9	С(26)-С(27)-Н(27В)	109.9
Н(27А)-С(27)-Н(27В)	108.3	O(4)-C(28)-C(29)	109.3(4)
O(4)-C(28)-H(28A)	109.8	С(29)-С(28)-Н(28А)	109.8
О(4)-С(28)-Н(28В)	109.8	С(29)-С(28)-Н(28В)	109.8
H(28A) - C(28) - H(28B)	108.3	O(5) - C(29) - C(28)	109.8(4)
O(5) = C(29) = H(29A) O(5) = C(29) = H(29B)	109.7	C(28) = C(29) = H(29A)	109.7
H(29A) = C(29) = H(29B)	108 2	O(5) - C(30) - C(31)	109.7
O(5) - C(30) - H(30A)	109.8	C(31) - C(30) - H(30A)	109.8
О(5)-С(30)-Н(30В)	109.8	С(31)-С(30)-Н(30В)	109.8
H(30A)-C(30)-H(30B)	108.3	O(6)-C(31)-C(30)	110.0(4)
O(6)-C(31)-H(31A)	109.7	C(30)-C(31)-H(31A)	109.7
О(6)-С(31)-Н(31В)	109.7	С(30)-С(31)-Н(31В)	109.7
H(31A) - C(31) - H(31B)	108.2	O(6) - C(32) - C(33)	109.5(3)
U(b) = C(32) = H(32A) O(6) = C(32) = H(32B)	100 0	U(33) = U(32) = H(32A)	109.8
H(32A) = C(32) = H(32B)	108.2	O(7) = C(32) = C(32)	109.0
O(7) - C(33) - H(33A)	109.9	C(32) - C(33) - H(33A)	109.9
О(7)-С(33)-Н(33В)	109.9	С (32) –С (33) –Н (33В)	109.9
Н(ЗЗА)-С(ЗЗ)-Н(ЗЗВ)	108.3	O(7)-C(34)-C(35)	110.0(3)
O(7)-C(34)-H(34A)	109.7	C(35)-C(34)-H(34A)	109.7

О(7)-С(34)-Н(34В)	109.7	С(35)-С(34)-Н(34В)	109.7
Н(34А)-С(34)-Н(34В)	108.2	O(8)-C(35)-C(34)	108.5(3)
O(8)-C(35)-H(35A)	110.0	С(34)-С(35)-Н(35А)	110.0
O(8)-C(35)-H(35B)	110.0	С(34)-С(35)-Н(35В)	110.0
Н(35А)-С(35)-Н(35В)	108.4	O(8)-C(36)-C(37)	107.9(3)
O(8)-C(36)-H(36A)	110.1	С(37)-С(36)-Н(36А)	110.1
O(8)-C(36)-H(36B)	110.1	С(37)-С(36)-Н(36В)	110.1
Н(З6А)-С(З6)-Н(З6В)	108.4	O(3)-C(37)-C(36)	108.6(3)
O(3)-C(37)-H(37A)	110.0	С(36)-С(37)-Н(37А)	110.0
O(3)-C(37)-H(37B)	110.0	С(36)-С(37)-Н(37В)	110.0
Н(37А)-С(37)-Н(37В)	108.4		

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for III.6K

atom U11 U22 U33 U23 U13 U12 K(1) 29(1) 31(1) 32(1) 1(1) $-1(1)$ $-2(1)$ P(1) 27(1) 24(1) 26(1) 1(1) 0(1) $-2(1)$ P(2) 26(1) 24(1) 27(1) 1(1) 0(1) $-1(1)$ O(2) 29(1) 38(2) 2(1) $-2(1)$ $-5(1)$ O(3) 47(1) 31(1) 57(2) 5(1) $-15(1)$ $-23(1)$ O(4) 59(2) 72(2) 41(2) 23(1) $-16(1)$ $-18(1)$ O(5) 38(1) 106(2) 41(2) $-23(1)$ $-10(1)$ $8(1)$ O(7) 37(1) 36(1) 44(2) $-2(1)$ $-1(1)$ $-1(1)$ C(1) 32(1) 24(1) $31(2)$ $-2(1)$ $-1(1)$ $-1(1)$ C(1) 32(1) 24(1) $31(2)$ $-2(1)$ $-1(1)$ $-1(1)$ C(1) 31(2)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	U11	U22	U33	U23	U13	U12
	K(1)	29(1)	31(1)	32(1)	1(1)	-1(1)	-2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	27(1)	24(1)	26(1)	1(1)	0(1)	-2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)	26(1)	24(1)	27(1)	1(1)	0(1)	0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cap (1)$	34(1)	29(1)	32(1)	-1 (1)	-4(1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	29(1)	29(1)	38(2)	2(1)	-2(1)	-5(1)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0(2)	2 J(1)	20(1)	57(2)	2(1) 5(1)	2(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(3)	= / (1) = 0 (2)	$J_{1}(1)$	11 (2)	2(1)	16(1)	J(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	J9(Z) 20(1)	12(2)	41(2) 41(2)	23(1)	-10(1)	-23(1) 19(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(3)	JO(1) 45(1)	100(2)	41(2) 51(2)	- 2 (2)	10(1)	-10(1) 0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(0)	4J(1) 37(1)	36(1)	$J_{1}(2)$	-23(1)	-10(1)	(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(7)	20(1)	JU(1)	44 (Z) 20 (1)	1 (1)	- J (1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(0)	29(1) 22(1)	43(1) 24(1)	39(1) 25(2)	(1)	O(1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32(1)	24(1)	2J(2)	0(1)	-2(1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	32(1) 41(0)	24(1)	31(2)	-2(1)	-1(1)	$\cup (1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	41(Z)	34(1) 44(2)	31(2)	-2(1)	-6(1)	$\perp (\perp)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	54(2)	44(2)	28(2)	-6(1)	-3(2)	Z(Z)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	65(2)	39(2)	46(2)	-16(2)	-4(2)	12(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	101(3)	48(2)	51(3)	-13(2)	-25(2)	38(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(/)	/8(3)	36(2)	37(2)	-5(1)	-19(2)	16(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	36(2)	25(1)	33(2)	5(1)	$-\perp(\perp)$	-6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	41(2)	36(2)	40(2)	-6(1)	2(1)	-8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	37(2)	45(2)	63(3)	0(2)	3(2)	-12(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	47(2)	59(2)	65(3)	27(2)	13(2)	-13(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	59(2)	90(3)	49(3)	36(2)	-3(2)	-17(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	43(2)	66(2)	39(2)	19(2)	-5(2)	-9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	36(1)	31(1)	23(2)	0(1)	$\perp (\perp)$	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	36(2)	46(2)	31(2)	2(1)	3(1)	8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	44(2)	65(2)	36(2)	4(2)	-1(2)	25(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	78(3)	45(2)	37(2)	7(2)	1(2)	31(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	76(2)	33(2)	36(2)	2(1)	4(2)	10(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	51(2)	29(1)	32(2)	-2(1)	3(1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	30(1)	30(1)	24(2)	0(1)	0(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	33(2)	41(2)	35(2)	-8(1)	-1(1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	40(2)	71(2)	30(2)	-18(2)	1(1)	-6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	45(2)	71(2)	34(2)	-10(2)	11(2)	-11(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	40(2)	52(2)	43(2)	-4(2)	9(2)	-13(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	37(2)	35(1)	34(2)	-6(1)	0(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	50(2)	30(2)	89(4)	17(2)	-26(2)	-7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	60(2)	54(2)	80(3)	39(2)	-30(2)	-22(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	72(3)	120(4)	37(2)	32(3)	-13(2)	-51(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	66(3)	160(5)	28(2)	1(3)	8(2)	-64(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	29(2)	165(5)	40(2)	-33(3)	0(2)	7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	47(2)	107(4)	65(3)	-57(3)	-20(2)	34(2)
C (33) 52 (2) 27 (2) 79 (3) 7 (2) -28 (2) 1 (2) C (34) 44 (2) 51 (2) 42 (2) 17 (2) -8 (2) -15 (2) C (35) 40 (2) 65 (2) 30 (2) 6 (2) 0 (1) -18 (2) C (36) 33 (2) 61 (2) 42 (2) -17 (2) -3 (1) 5 (2) C (37) 42 (2) 59 (3) -17 (2) -14 (2) 12 (1)	C(32)	57(2)	33(2)	86(3)	-18(2)	-28(2)	8(2)
C (34) 44 (2) 51 (2) 42 (2) 17 (2) -8 (2) -15 (2) C (35) 40 (2) 65 (2) 30 (2) 6 (2) 0 (1) -18 (2) C (36) 33 (2) 61 (2) 42 (2) -17 (2) -3 (1) 5 (2) C (37) 42 (2) 39 (2) 59 (3) -17 (2) -14 (2) 12 (1)	C(33)	52(2)	27(2)	79(3)	7(2)	-28(2)	1(2)
C (35) 40 (2) 65 (2) 30 (2) 6 (2) 0 (1) -18 (2) C (36) 33 (2) 61 (2) 42 (2) -17 (2) -3 (1) 5 (2) C (37) 42 (2) 39 (2) 59 (3) -17 (2) -14 (2) 12 (1)	C(34)	44(2)	51(2)	42(2)	17(2)	-8(2)	-15(2)
C (36) 33 (2) 61 (2) 42 (2) -17 (2) -3 (1) 5 (2) C (37) 42 (2) 39 (2) 59 (3) -17 (2) -14 (2) 12 (1)	C(35)	40(2)	65(2)	30(2)	6(2)	0(1)	-18(2)
C (37) 42 (2) 39 (2) 59 (3) -17 (2) -14 (2) 12 (1)	C(36)	33(2)	61(2)	42(2)	-17(2)	-3(1)	5(2)
	C(37)	42(2)	39(2)	59(3)	-17(2)	-14(2)	12(1)

The anisotropic displacement factor exponent takes the form 2 pi^2 $[h^2a^*^2U(11) + \ldots + 2hka^*b^*U(12)]$

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for III.6K

atom	х	У	Z	U(eq)
H(1) H(3)	16906 17179	19340 18452	9287 7930	33 43

H(4)	17482	17609	6404	50
H(5)	18056	16777	7379	60
H(6)	18364	16800	9848	80
H(7)	18100	17653	11375	60
H(9)	16185	18194	10510	47
H(10)	15396	17704	11898	58
H(11)	15530	17547	14464	68
H(12)	16431	17883	15634	79
H(13)	17224	18373	14246	59
H(15)	15908	20137	9571	45
H(16)	15403	20907	8132	58
H(17)	15904	21842	7489	64
H(18)	16873	22072	8504	58
H(19)	17391	21322	9971	45
H(21)	17284	20604	14069	43
H(22)	16772	20488	16348	56
H(23)	15883	19855	16518	60
H(24)	15487	19365	14382	54
H(25)	15993	19494	12086	43
H(26A)	19349	17846	13600	68
Н(26В)	18717	18246	13478	68
H(27A)	18974	17986	15969	77
Н(27В)	19592	18408	15810	77
H(28A)	19247	19169	17638	91
Н(28В)	18687	18681	17914	91
H(29A)	17974	19485	17266	102
Н(29В)	18370	19661	18727	102
H(30A)	18159	20750	18174	94
Н(ЗОВ)	17803	20558	16663	94
H(31A)	18199	21594	16521	88
H(31B)	18889	21325	16764	88
H(32A)	19210	21719	14323	71
Н(З2В)	18527	22017	14158	71
H(33A)	18366	21350	12019	63
Н(ЗЗВ)	18903	21866	11766	63
H(34A)	19359	21199	9937	55
Н(З4В)	18804	20704	10218	55
H(35A)	19716	20219	9187	54
Н(35В)	20079	20393	10699	54
H(36A)	20221	19316	11366	54
H(36B)	19922	19143	9773	54
H(37A)	19092	18613	11098	56
H(37B)	19756	18275	11289	56

_{c.} Données cristallographiques pour III.6Li₂

Table 1. Crystal data for III.6Li2	
Compound	III.6Li2
Molecular formula	$C_{108}H_{100}Li_8O_{12}P_8$
Molecular weight	1893.16
Crystal habit	Colorless Block
Crystal dimensions(mm)	0.16x0.10x0.04
Crystal system	Triclinic
Space group	P-1
a(Å)	13.028(1)
b(Å)	13.332(1)
c(Å)	32.501(1)
α(°)	78.845(1)
β(°)	79.139(1)
γ(°)	64.267(1)
$V(Å^3)$	4954.2(6)
Z	2
$d(g-cm^{-3})$	1.269
F(000)	1976
μ (cm ⁻¹)	0.202
Absorption corrections	multi-scan; 0.9685 min, 0.9920 max
Diffractometer	KappaCCD

X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	25.01
HKL ranges	-13 15 ; -15 15 ; -38 38
Reflections measured	43397
Unique data	16855
Rint	0.0974
Reflections used	10986
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	constr
Parameters refined	1229
Reflections / parameter	8
wR2	0.2165
R1	0.1146
Weights a, b	0.0000; 40.429
GoF	1.122
difference peak / hole (e Å ⁻³)	0.509 (0.095) / -0.486 (0.095)

Table 2. Atomic Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for III.6Li2

atom	х	У	Z	U(eq)
P(1)	4769(2)	6973(2)	1316(1)	32(1)
P(2)	5833(2)	5594(2)	2112(1)	28(1)
P(3)	8926(2)	6389(2)	1118(1)	30(1)
P(4)	7929(2)	8001(2)	1760(1)	28(1)
P(5)	5643(2)	9488(2)	3628(1)	28(1)
P(6)	4751(2)	8860(2)	2970(1)	26(1)
P(7)	6744(2)	5301(2)	3957(1)	31(1)
P(8)	8346(2)	5623(2)	3169(1)	24(1)
0(1)	5608(4)	7026(5)	926(2)	37(1)
0(2)	6573(4)	5751(4)	2388(2)	28(1)
0(3)	8003(4)	6521(4)	856(2)	36(1)
0(4)	6883(4)	8180(4)	2094(2)	30(1)
0(5)	5981(4)	8612(4)	4017(2)	30(1)
0(6)	5230(4)	7767(4)	2772(2)	27(1)
0(7)	6248(5)	6329(4)	4191(2)	47(2)
0(8)	8053(4)	6467(4)	2767(1)	25(1)
0(9)	7229(6)	5131(6)	303(2)	71(2)
0(10)	6936(7)	7229(7)	-11(2)	73(2)
0(11)	6679(6)	7386(5)	4942(2)	57(2)
0(12)	4470(5)	8089(5)	4893(2)	50(2)
C(1)	5296(6)	6760(6)	1769(2)	29(2)
C(2)	4246(6)	5937(7)	1252(3)	37(2)
C(3)	4684(8)	5328(8)	913(3)	53(2)
C(4)	4360(10)	4490(10)	897(3)	64(3)
C(5)	3550(10)	4293(8)	1199(3)	59(3)
C(6)	3096(8)	4898(8)	1530(3)	49(2)
C(7)	3441(7)	5723(7)	1560(3)	43(2)
C(8)	3471(6)	8277(6)	1246(3)	33(2)
C(9)	3330(7)	8889(7)	849(3)	44(2)
C(10)	2298(8)	9786(8)	781(3)	58(3)
C(11)	1389(8)	10074(8)	1095(3)	59(3)
C(12)	1515(8)	9471(7)	1486(3)	55(2)
C(13)	2561(7)	8575(7)	1564(3)	46(2)
C(14)	4691(6)	5318(7)	2474(2)	33(2)
C(15)	3883(6)	6190(7)	2695(2)	34(2)
C(16)	2966(7)	6085(7)	2962(2)	38(2)
C(17)	2792(7)	5132(8)	2994(3)	49(2)
C(18)	3571(8)	4257(8)	2786(3)	53(2)
C(19)	4534(7)	4334(7)	2532(3)	43(2)
C(20)	6735(6)	4228(6)	1918(2)	33(2)
C(21)	7865(8)	3687(8)	1990(4)	62(3)
C(22)	8578(8)	2652(8)	1849(4)	76(4)
C(23)	8159(8)	2144(8)	1645(3)	56(3)

	C(24)	7040(10)	2651(8)	1575(3)	58(3)
C (26) 8460 (6) 6723 (6) 1606 (2) 30 (2) C (27) 9931 (7) 4916 (6) 1134 (2) 36 (2) C (28) 11213 (8) 3194 (8) 1448 (3) 65 (3) C (30) 11380 (10) 2447 (8) 1448 (3) 65 (3) C (31) 10760 (10) 3244 (16) 799 (3) 61 (3) C (33) 9759 (6) 7108 (6) 782 (2) 31 (2) C (35) 1134 (67) 7648 (7) 677 (3) 47 (2) C (35) 1134 (67) 7740 (7) 402 (2) 40 (2) C (37) 10022 (8) 8330 (8) 304 (3) 53 (2) C (40) 9996 (6) 7378 (7) 2081 (2) 55 (2) C (41) 10707 (8) 7516 (8) 2312 (3) 44 (2) C (42) 10373 (8) 480 (10) 248 (3) 53 (2) C (44) 879 (7) 205 (8) 2203 (3) 44 (2) C (44) 65 (8) 960 (10) 1218 (2) 424 (2)	C(25)	6330(8)	3703(7)	1705(3)	51(2)
$\begin{array}{cccccc} C(2) & 10468(7) & 4320(7) & 1442(3) & 442(3) & 442(3) \\ C(29) & 11213(8) & 3194(8) & 1448(3) & 58(3) \\ C(30) & 11230(10) & 2240(10) & 804(4) & 88(4) \\ C(32) & 10070(10) & 2240(10) & 804(4) & 88(4) \\ C(32) & 10070(10) & 4344(8) & 799(3) & 61(3) \\ C(31) & 10786(7) & 7055(7) & 914(3) & 41(2) \\ C(35) & 10748(7) & 7055(7) & 914(3) & 41(2) \\ C(35) & 10748(7) & 7055(7) & 914(3) & 41(2) \\ C(35) & 10748(7) & 7056(7) & 914(3) & 41(2) \\ C(35) & 10748(7) & 7057(7) & 104(3) & 50(2) \\ C(38) & 9423(7) & 7740(7) & 402(2) & 40(2) \\ C(38) & 9423(7) & 7740(7) & 402(2) & 40(2) \\ C(41) & 10707(8) & 7356(8) & 2312(3) & 48(2) \\ C(42) & 10373(8) & 8480(10) & 2486(3) & 53(2) \\ C(44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(43) & 9312(8) & 9317(8) & 2430(3) & 53(2) \\ C(44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(45) & 7530(6) & 9183(6) & 1353(2) & 222 \\ C(46) & 6456(8) & 9600(10) & 1219(3) & 60(3) \\ C(47) & 6130(10) & 10400(10) & 884(3) & 83(4) \\ C(49) & 7970(10) & 10514(7) & 807(3) & 56(3) \\ C(49) & 7970(10) & 10514(7) & 807(3) & 56(3) \\ C(50) & 8278(8) & 9651(6) & 3191(2) & 31(2) \\ C(51) & 5756(6) & 9935(6) & 3191(2) & 31(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 11030(7) & 4219(3) & 60(3) \\ C(55) & 1973(7) & 11030(7) & 2219(3) & 51(2) \\ C(55) & 1973(7) & 11030(7) & 2219(3) & 51(2) \\ C(55) & 1973(7) & 11038(7) & 3556(3) & 51(2) \\ C(55) & 1973(7) & 11038(7) & 3487(4) & 58(3) \\ C(55) & 1973(7) & 10087(7) & 3893(3) & 45(2) \\ C(55) & 1973(7) & 10087(7) & 3893(3) & 45(2) \\ C(56) & 2480(10) & 807(8) & 3840(3) & 55(3) \\ C(66) & 7462(8) & 11127(8) & 3467(4) & 58(3) \\ C(56) & 2480(10) & 807(8) & 3840(3) & 55(3) \\ C(56) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ C(71) & 4585(7) & 10619(7) & 3384(3) & 55(3) \\ C(56) & 2480(10) & 4380(8) & 1033(3) & 54(3) \\ C(56) & 2480(10) & 4380(8) & 1033(3) & 54(3) \\ C(56) & 2480(10) & 4380(8) & 1033(3) & 54(3) \\ C(57) & 3704(7) & 7988(6) & 2224(3) & 399(3) & 51(2) \\ C(71) & 4585$	C(26)	8460(6)	6723(6)	1606(2)	30(2)
	C(27)	9913(7)	4916(6)	1134(2)	36(2)
$\begin{array}{cccccc} (30) & 11380(10) & 2647(8) & 1148(3) & 65(3) \\ (231) & 10070(10) & 2240(10) & 804(4) & 88(4) \\ (232) & 10070(10) & 4344(8) & 799(3) & 61(3) \\ (233) & 9759(6) & 7108(6) & 782(2) & 31(2) \\ (235) & 11346(7) & 7648(7) & 677(3) & 47(2) \\ (235) & 10022(8) & 8330(8) & 166(3) & 49(2) \\ (236) & 10079(8) & 8300(8) & 304(3) & 50(2) \\ (237) & 10022(8) & 8333(8) & 166(3) & 49(2) \\ (239) & 9924(6) & 8224(6) & 2025(2) & 31(2) \\ (240) & 9996(6) & 7378(7) & 2081(2) & 35(2) \\ (241) & 10077(8) & 7516(8) & 2312(3) & 48(2) \\ (242) & 10373(8) & 8480(10) & 2486(3) & 54(2) \\ (243) & 9312(8) & 9317(8) & 2430(3) & 53(2) \\ (244) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ (244) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ (245) & 7530(6) & 9183(6) & 1353(2) & 222(2) \\ (246) & 6455(8) & 9600(10) & 1219(3) & 60(3) \\ (248) & 6890(10) & 10300(10) & 675(3) & 82(4) \\ (248) & 6890(10) & 10300(10) & 675(3) & 82(4) \\ (249) & 7970(10) & 10514(7) & 807(3) & 56(3) \\ (250) & 8278(8) & 9651(7) & 1138(2) & 42(2) \\ (51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (55) & 1973(7) & 11030(7) & 4219(3) & 60(3) \\ (26) & 742(8) & 11423(8) & 3159(3) & 60(3) \\ (26) & 742(8) & 11423(8) & 3159(3) & 60(3) \\ (26) & 742(8) & 11423(8) & 3159(3) & 60(3) \\ (26) & 742(8) & 11423(8) & 3159(3) & 60(3) \\ (26) & 742(8) & 11423(8) & 3159(3) & 556(3) & 52(2) \\ (55) & 6743(8) & 10087(7) & 3893(3) & 45(2) \\ (56) & 4480(7) & 9921(8) & 3566(3) & 52(2) \\ (56) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ (26) & 742(8) & 11643(7) & 7988(6) & 3242(3) & 54(3) \\ (26) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ (77) & 5590(7) & 4830(6) & 3996(2) & 37(2) \\ (78) & 5608(8) & 11272(8) & 3487(4) & 58(3) \\ (26) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ (76) & 7428(8) & 1154(7) & 7988(3) & 556(3) & 52(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & 55(3) \\ (26) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ (73) & 3740(10) & 488(8) & 4730(3) & 51(2) \\ (74) & 350(10) & 4333(6) & 224$	C(28)	11213(8)	4320(7) 3197(8)	1482(3)	44 (Z) 58 (3)
$\begin{array}{cccccc} (31) & 10780(10) & 3240(10) & 604(4) & 88(4) \\ (32) & 10070(10) & 3344(8) & 799(3) & 61(3) \\ (33) & 9759(6) & 7108(6) & 782(2) & 31(2) \\ (34) & 10748(7) & 7648(7) & 677(3) & 47(2) \\ (35) & 11346(7) & 7648(7) & 677(3) & 47(2) \\ (36) & 10979(8) & 8300(8) & 304(3) & 50(2) \\ (37) & 10022(8) & 8333(8) & 166(3) & 49(2) \\ (38) & 9423(7) & 7740(7) & 402(2) & 40(2) \\ (38) & 9423(7) & 7740(7) & 402(2) & 40(2) \\ (41) & 10707(8) & 7516(8) & 2312(3) & 48(2) \\ (44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ (44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ (44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ (44) & 6579(7) & 9205(8) & 2203(3) & 44(2) \\ (44) & 6579(7) & 9205(8) & 2203(3) & 44(2) \\ (46) & 6456(8) & 9600(10) & 1219(3) & 60(3) \\ (47) & 6130(10) & 10460(10) & 884(3) & 83(4) \\ (249) & 7970(10) & 10514(7) & 607(3) & 56(3) \\ (50) & 8278(8) & 9651(7) & 1138(2) & 422(2) \\ (51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ (52) & 4224(6) & 10555(6) & 3781(2) & 312(2) \\ (55) & 1973(7) & 11030(7) & 4219(3) & 40(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (56) & 2631(8) & 1226(7) & 3556(3) & 51(2) \\ (56) & 2631(8) & 1226(7) & 3556(3) & 51(2) \\ (56) & 2631(8) & 1226(7) & 3556(3) & 51(2) \\ (56) & 2631(8) & 1123(8) & 3159(3) & 60(3) \\ (56) & 745(8) & 104210(6) & 3565(2) & 31(2) \\ (56) & 2631(8) & 11272(8) & 3487(4) & 58(3) \\ (66) & 7462(8) & 11423(8) & 3159(3) & 60(3) \\ (56) & 746(8) & 110210(6) & 3556(3) & 52(2) \\ (56) & 3440(7) & 7988(7) & 3576(3) & 40(2) \\ (56) & 1446(7) & 9921(6) & 3566(3) & 52(2) \\ (77) & 1590(7) & 1880(10) & 3783(3) & 54(3) \\ (66) & 1446(7) & 9921(6) & 3566(3) & 52(2) \\ (77) & 1590(7) & 1880(10) & 3727(4) & 64(3) \\ (68) & 3448(8) & 11374(7) & 1760(3) & 51(2) \\ (77) & 5590(7) & 4830(6) & 3996(2) & 37(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & 51(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & 51(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & 51(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & 51(2) \\ (78) & 1407(8) & 4184(7) & 776(3) & 52(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & 51(2) \\ (77) & 5590(7) & 4830(6) & 3996(3) & $	C(29)	11380(10)	2647 (8)	1148(3)	55 (S)
$\begin{array}{ccccc} (33) & 9759(6) & 7108(6) & 729(3) & 61(3) \\ C(33) & 9759(6) & 7108(6) & 782(2) & 31(2) \\ C(35) & 11346(7) & 7648(7) & 677(3) & 47(2) \\ C(36) & 10979(8) & 8300(8) & 304(3) & 50(2) \\ C(37) & 10022(8) & 8330(8) & 166(3) & 49(2) \\ C(39) & 8924(6) & 8224(6) & 2025(2) & 31(2) \\ C(40) & 9996(6) & 7376(7) & 2081(2) & 35(2) \\ C(42) & 10373(8) & 8480(10) & 2486(3) & 54(2) \\ C(42) & 10373(8) & 8480(10) & 2486(3) & 54(2) \\ C(43) & 3312(8) & 9317(8) & 2430(3) & 53(2) \\ C(44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(45) & 7530(6) & 9133(6) & 1353(2) & 222(2) \\ C(46) & 6456(8) & 9600(10) & 1219(3) & 60(3) \\ C(48) & 6890(10) & 10900(10) & 675(3) & 82(4) \\ C(48) & 6890(10) & 10900(10) & 675(3) & 82(4) \\ C(49) & 7970(10) & 10514(7) & 807(3) & 56(3) \\ C(50) & 8278(8) & 9651(6) & 1318(2) & 42(2) \\ C(51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ C(55) & 1973(7) & 12073(7) & 3933(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3934(3) & 41(2) \\ C(56) & 2631(8) & 1226(8) & 1316(3) & 316(2) \\ C(56) & 2631(8) & 1227(8) & 3487(4) & 58(3) \\ C(56) & 2631(8) & 1227(8) & 3487(4) & 58(3) \\ C(56) & 2631(8) & 1126(8) & 3159(3) & 61(2) \\ C(56) & 2631(8) & 10210(6) & 3565(2) & 31(2) \\ C(56) & 2631(8) & 1027(7) & 3893(3) & 45(2) \\ C(56) & 2424(7) & 9981(7) & 3298(3) & 45(2) \\ C(56) & 2424(7) & 9981(7) & 3298(3) & 45(2) \\ C(56) & 2440(7) & 7988(7) & 3576(3) & 40(2) \\ C(56) & 2424(7) & 9981(7) & 3298(3) & 45(2) \\ C(71) & 458(7) & 10819(7) & 2427(3) & 44(2) \\ C(72) & 458(8) & 11374(7) & 176(3) & 51(2) \\ C(73) & 3846(8) & 11374(7) & 176(3) & 51(2) \\ C(73) & 3846(8) & 11374(7) & 176(3) & 51(2) \\ C(73) & 3846(8) & 11374(7) & 176(3) & 51(2) \\ C(73) & 3846(8) & 11374(7) & 176(3) & 51(2) \\ C(74) & 3507(10) & 480(10) & 376(3) & 52(3) \\ C(75) & 7704(7) & 4830(6) & 9710(3) & 574(3) \\ C(66) & 1248(10) & 4530(10) & 43$	C(31)	10780(10)	3240(10)	804(4)	88(4)
	C(32)	10070(10)	4344 (8)	799(3)	61(3)
$ \begin{array}{ccccc} (235) & 11346(7) & 7633(7) & 914(3) & 41(2) \\ (235) & 11346(7) & 7648(7) & 677(3) & 47(2) \\ (237) & 10022(8) & 8330(8) & 304(3) & 50(2) \\ (237) & 10022(8) & 8333(8) & 166(3) & 49(2) \\ (239) & 8924(6) & 8224(6) & 2025(2) & 31(2) \\ (240) & 9996(6) & 7378(7) & 2011(2) & 35(2) \\ (241) & 10707(8) & 7516(8) & 2312(3) & 48(2) \\ (242) & 10373(8) & 8480(10) & 2486(3) & 54(2) \\ (243) & 3312(8) & 9317(8) & 2430(3) & 53(2) \\ (244) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ (245) & 7530(6) & 9183(6) & 1353(2) & 22(4) \\ (246) & 6456(8) & 9600(10) & 1219(3) & 60(3) \\ (247) & 6130(10) & 10460(10) & 884(3) & 63(4) \\ (248) & 6890(10) & 10900(10) & 675(3) & 82(4) \\ (248) & 6890(10) & 10900(10) & 675(3) & 82(4) \\ (248) & 6890(10) & 1055(6) & 3781(2) & 28(2) \\ (51) & 5756(6) & 955(6) & 3191(2) & 28(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ (55) & 1973(7) & 11030(7) & 4219(3) & 60(2) \\ (55) & 1973(7) & 11036(7) & 3556(3) & 46(2) \\ (55) & 6531(8) & 1227(8) & 3487(4) & 58(3) \\ (66) & 7462(8) & 11423(8) & 3159(3) & 51(2) \\ (56) & 6743(8) & 10863(8) & 3196(3) & 51(2) \\ (56) & 6743(8) & 10863(8) & 3196(3) & 51(2) \\ (56) & 6743(8) & 10863(8) & 3196(3) & 51(2) \\ (56) & 7462(8) & 11423(8) & 3159(3) & 60(3) \\ (66) & 7462(8) & 11423(8) & 3159(3) & 60(3) \\ (66) & 7462(8) & 11423(8) & 3159(3) & 55(3) \\ (66) & 7462(8) & 11423(8) & 3159(3) & 55(3) \\ (66) & 7464(7) & 9921(7) & 3298(3) & 45(2) \\ (76) & 1467(7) & 9891(7) & 3298(3) & 45(2) \\ (76) & 1467(8) & 890(10) & 3830(3) & 55(3) \\ (66) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ (71) & 3507(8) & 11504(7) & 1866(3) & 52(2) \\ (73) & 374(7) & 9788(6) & 2224(3) & 392(2) \\ (74) & 3507(8) & 11504(7) & 1846(3) & 47(2) \\ (77) & 5590(7) & 4830(6) & 9399(6) & 3213(7) & 428 \\ (83) & 370(7) & 1488(8) & 3710(3) & 77(3) \\ (66) & 3800(10) & 4230(10) & 4700(3) & 52(3) \\ (77) & 1188(8) & 350(10) & 377(3) & 4722 \\ (73) & 3770(10) & 5174(8) & 3999(3) & 51(2) \\ (74) & 3507(8) & 4502(1) & 7786(3) & 48(2) \\ (97) $	C(33)	9759(6)	7108(6)	782(2)	31(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	10748(7)	7053(7)	914(3)	41(2)
C (36) 10979 (8) 8300 (8) 304 (3) 50 (2) C (37) 10022 (8) 8333 (8) 166 (3) 49 (2) C (38) 9423 (7) 7740 (7) 402 (2) 40 (2) C (39) 8924 (6) 7378 (7) 2081 (2) 35 (2) C (41) 10707 (8) 7516 (8) 2312 (3) 44 (2) C (42) 10373 (8) 840 (10) 2486 (3) 54 (2) C (43) 9312 (8) 9317 (8) 2430 (3) 53 (2) C (44) 6870 (1) 1026 (8) 1253 (2) 322 (2) C (44) 6890 (10) 1090 (10) 675 (3) 82 (4) C (44) 6890 (10) 1090 (10) 675 (3) 82 (4) C (44) 6890 (10) 1090 (10) 675 (3) 82 (4) C (51) 575 (6) 3781 (2) 28 (2) C (51) 873 (7) 1003 (7) 4118 (3) 38 (2) C (54) 2391 (7) 11030 (7) 4219 (3) 40 (2) C (55)	C(35)	11346(7)	7648(7)	677(3)	47(2)
	C(36)	10979(8)	8300(8)	304(3)	50(2)
	C(37)	10022(8)	8333 (8)	166(3)	49(2)
$\begin{array}{ccccc} C(40) & 9996(6) & 7378(7) & 2021(2) & 351(2) \\ C(41) & 10707(8) & 7516(8) & 2132(3) & 48(2) \\ C(42) & 10373(8) & 8480(10) & 2486(3) & 54(2) \\ C(43) & 9312(8) & 9317(8) & 2430(3) & 53(2) \\ C(44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(44) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(45) & 7530(6) & 9183(6) & 1353(2) & 32(2) \\ C(46) & 6456(8) & 9600(10) & 1219(3) & 60(3) \\ C(48) & 6890(10) & 10090(10) & 675(3) & 824(4) \\ C(48) & 6890(10) & 10090(10) & 675(3) & 824(4) \\ C(48) & 6890(10) & 10055(6) & 3191(2) & 28(2) \\ C(50) & 8278(8) & 9651(7) & 1138(2) & 42(2) \\ C(51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ C(52) & 4224(6) & 10555(6) & 3781(2) & 31(2) \\ C(53) & 3521(7) & 11030(7) & 4219(3) & 40(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(56) & 2631(8) & 12238(7) & 3556(3) & 46(2) \\ C(59) & 6591(6) & 10210(6) & 3655(3) & 51(2) \\ C(50) & 7462(8) & 11423(8) & 3159(3) & 50(3) \\ C(50) & 7462(8) & 11423(8) & 3159(3) & 50(3) \\ C(51) & 8058(8) & 11272(8) & 3487(4) & 58(3) \\ C(52) & 7921(8) & 10610(10) & 3851(4) & 61(3) \\ C(53) & 3176(7) & 1087(7) & 3893(3) & 45(2) \\ C(56) & 3440(7) & 7988(7) & 3576(3) & 40(2) \\ C(56) & 3440(7) & 7988(7) & 3576(3) & 52(2) \\ C(56) & 3440(7) & 7988(7) & 3576(3) & 52(2) \\ C(56) & 3440(7) & 7988(7) & 3576(3) & 52(2) \\ C(56) & 3440(7) & 7988(7) & 3576(3) & 52(2) \\ C(70) & 4277(8) & 9921(8) & 3566(3) & 52(2) \\ C(71) & 4557(7) & 10891(7) & 2298(3) & 41(2) \\ C(70) & 4277(8) & 1992(6) & 2315(2) & 31(2) \\ C(73) & 348(8) & 11347(7) & 1760(3) & 51(2) \\ C(74) & 3507(8) & 10504(7) & 1846(3) & 47(2) \\ C(73) & 348(8) & 11347(7) & 1760(3) & 51(2) \\ C(74) & 3507(8) & 10504(7) & 1846(3) & 47(2) \\ C(73) & 348(8) & 11347(7) & 1760(3) & 51(2) \\ C(73) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(74) & 3507(8) & 11650(10) & 3727(4) & 64(3) \\ C(80) & 3800(10) & 4280(10) & 4727(3) & 77(4) \\ C(80) & 3800(10) & 4280(10) & 4726(3) & 57(3) \\ C(80) & 3800(10) & 4280(10) & 3727(4) & 64(3) \\ C(80) & 3800(10) & 4280(10) & 3766(2) & 36(2) \\ C(74) & 3507(8) & 11$	C(38)	9423(7)	7740(7)	4UZ(Z) 2025(2)	40(Z) 31(2)
C(41) 10707(8) 7516(8) 2312(3) 48(2) C(42) 10373(8) 8480(10) 2486(3) 54(2) C(43) 9312(8) 9317(8) 2430(3) 53(2) C(44) 8579(7) 9205(8) 2203(3) 44(2) C(45) 7530(6) 9133(6) 1353(2) 32(2) C(46) 6456(8) 9600(10) 1219(3) 60(3) C(47) 6130(10) 1040(10) 884(3) 83(4) C(48) 690(10) 1050(10) 84(3) 83(4) C(49) 7970(10) 10514(7) 807(3) 82(4) C(51) 5756(6) 8953(6) 3191(2) 28(2) C(51) 5756(6) 8953(6) 3191(2) 28(2) C(53) 3521(7) 10275(7) 4116(3) 38(2) C(55) 6731(8) 12368(7) 3559(3) 51(2) C(55) 6743(8) 10423(8) 3159(3) 60(3) C(56) 7442(8) 11423(8	C(30)	9996(6)	7378(7)	2023(2)	35(2)
$\begin{array}{ccccc} C(42) & 10373(8) & 8480(10) & 2486(3) & 54(2) \\ C(43) & 912(8) & 9317(8) & 2430(3) & 53(2) \\ C(43) & 8579(7) & 9205(8) & 2203(3) & 44(2) \\ C(45) & 7530(6) & 9183(6) & 1353(2) & 32(2) \\ C(46) & 6456(8) & 9600(10) & 1219(3) & 60(3) \\ C(47) & 6130(10) & 10460(10) & 884(3) & 83(4) \\ C(48) & 6890(10) & 1090(10) & 675(3) & 82(4) \\ C(48) & 6890(10) & 1090(10) & 675(3) & 82(4) \\ C(48) & 6890(10) & 1055(6) & 3191(2) & 28(2) \\ C(51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ C(51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ C(52) & 4224(6) & 10555(6) & 3781(2) & 31(2) \\ C(53) & 3221(7) & 11030(7) & 4219(3) & 40(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(56) & 2631(8) & 12328(7) & 3556(3) & 46(2) \\ C(58) & 6591(6) & 10210(6) & 3655(2) & 31(2) \\ C(59) & 6743(8) & 11423(8) & 3159(3) & 51(2) \\ C(60) & 7462(8) & 11423(8) & 3159(3) & 50(3) \\ C(61) & 8058(8) & 11272(8) & 3487(4) & 58(3) \\ C(62) & 7921(8) & 10610(10) & 3851(4) & 61(3) \\ C(53) & 7176(7) & 1087(7) & 3893(3) & 54(3) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 54(2) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 54(2) \\ C(70) & 4277(6) & 9929(6) & 2515(2) & 31(2) \\ C(70) & 4277(6) & 9929(6) & 2515(2) & 31(2) \\ C(71) & 458(7) & 10819(7) & 2427(3) & 44(2) \\ C(72) & 458(8) & 11374(7) & 1760(3) & 51(2) \\ C(73) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(74) & 3507(8) & 10504(7) & 1846(3) & 47(2) \\ C(73) & 3848(8) & 11374(7) & 1760(3) & 51(2) \\ C(73) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(75) & 3704(7) & 4185(6) & 4330(14) & 74(3) \\ C(83) & 8800(10) & 4230(10) & 4020(5) & 84(4) \\ C(81) & 3800(10) & 4230(10) & 4303(5) & 52(3) \\ C(73) & 9193(6) & 607(6) & 3449(2) & 29(2) \\ C(74) & 3507(8) & 5107(10) & 3766(3) & 57(3) \\ C(84) & 8060(10) & 3303(13) & 57(3) \\ C(85) & 1128(8) & 3350(10) & 3293(3) &$	C(41)	10707(8)	7516(8)	2312(3)	48(2)
$\begin{array}{ccccc} C(44) & 9312 (8) & 9317 (8) & 2430 (3) & 53 (2) \\ C(44) & 8579 (7) & 9205 (8) & 2203 (3) & 44 (2) \\ C(45) & 7530 (6) & 9183 (6) & 1353 (2) & 32 (2) \\ C(46) & 6456 (8) & 9600 (10) & 1219 (3) & 60 (3) \\ C(47) & 6130 (10) & 10040 (10) & 884 (3) & 83 (4) \\ C(48) & 6890 (10) & 10900 (10) & 675 (3) & 82 (4) \\ C(49) & 7970 (10) & 10514 (7) & 807 (3) & 56 (3) \\ C(50) & 8278 (8) & 9651 (7) & 1138 (2) & 42 (2) \\ C(51) & 5756 (6) & 8953 (6) & 3191 (2) & 28 (2) \\ C(52) & 4224 (6) & 10555 (6) & 3781 (2) & 31 (2) \\ C(53) & 3521 (7) & 10275 (7) & 4116 (3) & 388 (2) \\ C(54) & 2391 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 2631 (8) & 12268 (7) & 3656 (3) & 561 (2) \\ C(59) & 6743 (8) & 10863 (8) & 3196 (3) & 51 (2) \\ C(59) & 6743 (8) & 10863 (8) & 3196 (3) & 51 (2) \\ C(60) & 7462 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ C(61) & 8058 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ C(62) & 7921 (8) & 10610 (10) & 3851 (4) & 61 (3) \\ C(63) & 7176 (7) & 10087 (7) & 3893 (3) & 45 (2) \\ C(64) & 3439 (6) & 8919 (6) & 3301 (2) & 30 (2) \\ C(66) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(61) & 4648 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(77) & 4710 (10) & 3860 (10) & 3727 (4) & 64 (3) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(74) & 5507 (7) & 4830 (6) & 3996 (2) & 377 (2) \\ C(75) & 5708 (7) & 4186 (6) & 02494 (2) & 29 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(75) & 7780 (7) & 4186 (6) & 076 (3) & 496 (2) & 376 (2) \\ C(74) & 3700 (7) & 3768 (6) & 0256 (2) & 304 (3) \\ C(75) & 7189 (6) & 5514 (6) & 3499 (2) & 29 (2) \\ C(74) & 3700 (7) & 4186 (10) & 4330 (5) & 88 (4) \\ C(81) & 3740 (10) & 4780 (10) & 3766 (2) & 36(2) \\ C(74) & 3700 (7) & 4185 (6) & 4226 (2) & 344 (2) \\ C(75) & 9143 (7) & 2480 (10) & 4780 (3)$	C(42)	10373(8)	8480(10)	2486(3)	54(2)
C(44) 8579 (7) 9205 (8) 2203 (3) 44 (2) C(45) 7530 (6) 9183 (6) 1353 (2) 32 (2) C(46) 6456 (8) 9600 (10) 1219 (3) 60 (3) C(47) 6130 (10) 10400 (10) 84 (3) 83 (4) C(48) 6890 (10) 10514 (7) 807 (3) 56 (3) C(50) 8278 (8) 9651 (7) 1138 (2) 42 (2) C(51) 5756 (6) 8953 (6) 3191 (2) 28 (2) C(53) 3521 (7) 10275 (7) 4116 (3) 38 (2) C(54) 2391 (7) 11030 (7) 4219 (3) 40 (2) C(55) 1973 (7) 12073 (7) 3993 (3) 41 (2) C(56) 6591 (6) 10210 (6) 3555 (2) 31 (2) C(58) 6591 (6) 10201 (6) 3556 (3) 45 (2) C(58) 680 11227 (8) 3487 (4) 58 (3) C(54) 7921 (8) 10610 (10) 3851 (4) 61 (3) C	C(43)	9312(8)	9317(8)	2430(3)	53(2)
$\begin{array}{ccccc} C(46) & 6456 (8) & 9600 (10) & 1219 (3) & 600 (3) \\ C(47) & 6130 (10) & 10460 (10) & 884 (3) & 83 (4) \\ C(48) & 6890 (10) & 10900 (10) & 675 (3) & 82 (4) \\ C(49) & 7970 (10) & 10514 (7) & 807 (3) & 56 (3) \\ C(50) & 8278 (8) & 9651 (7) & 1138 (2) & 42 (2) \\ C(51) & 5756 (6) & 8953 (6) & 3191 (2) & 28 (2) \\ C(52) & 4224 (6) & 10555 (6) & 3781 (2) & 31 (2) \\ C(53) & 3521 (7) & 10275 (7) & 4116 (3) & 38 (2) \\ C(54) & 2391 (7) & 11030 (7) & 4219 (3) & 40 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(56) & 2631 (8) & 12368 (7) & 3656 (3) & 51 (2) \\ C(59) & 6743 (8) & 10863 (8) & 3196 (3) & 51 (2) \\ C(50) & 7452 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ C(61) & 7452 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ C(63) & 7176 (7) & 10087 (7) & 3893 (3) & 45 (2) \\ C(64) & 3439 (6) & 8919 (6) & 3301 (2) & 30 (2) \\ C(66) & 7462 (8) & 11423 (8) & 3840 (3) & 55 (3) \\ C(61) & 70921 (8) & 10087 (7) & 3893 (3) & 45 (2) \\ C(66) & 2440 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(67) & 1467 (8) & 8980 (10) & 3833 (3) & 54 (3) \\ C(66) & 2440 (10) & 8007 (8) & 38340 (3) & 55 (3) \\ C(70) & 4277 (6) & 9921 (6) & 33516 (3) & 52 (2) \\ C(70) & 4277 (6) & 9921 (8) & 3566 (3) & 52 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2427 (3) & 44 (2) \\ C(72) & 4388 (8) & 11374 (7) & 1780 (3) & 51 (2) \\ C(73) & 3704 (7) & 9788 (6) & 2244 (3) & 39(2) \\ C(76) & 7189 (6) & 5514 (6) & 3449 (2) & 29(2) \\ C(77) & 5500 (7) & 4830 (6) & 3996 (2) & 37 (2) \\ C(76) & 7704 (7) & 9788 (6) & 2244 (3) & 39(2) \\ C(77) & 5500 (7) & 4830 (6) & 3996 (2) & 37 (2) \\ C(73) & 3704 (7) & 9788 (6) & 2244 (3) & 370 (2) \\ C(74) & 3507 (10) & 4780 (10) & 377 (4) & 64 (3) \\ C(84) & 3800 (10) & 3570 (10) & 479 (3) & 77 (4) \\ C(85) & 932 (7) & 2480 (10) & 377 (4) & 64 (3) \\ C(85) & 8330 (7) & 3163 (7) & 3766 (2) & 36(2) \\ C(91) & 9799 (6) & 5256 (7) & 3766 (2) & 36(2) \\ C(92) & 10336 (8) & 6101 & 357 (3) & 499 (2) \\ C(93) & 9770 (10) & 7380 (10) & 3603 (3) & 57 (3) \\ C(94) & 917$	C(44)	8579(7)	9205(8)	2203(3)	44(2)
$ \begin{array}{cccc} C(47) & 6458(8) & 9600(10) & 1219(3) & 60(3) \\ C(47) & 6130(10) & 10900(10) & 675(3) & 82(4) \\ C(49) & 7970(10) & 10514(7) & 807(3) & 56(3) \\ C(50) & 8278(8) & 9651(7) & 1138(2) & 42(2) \\ C(51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ C(52) & 4224(6) & 10555(6) & 3781(2) & 31(2) \\ C(53) & 3521(7) & 10275(7) & 4116(3) & 38(2) \\ C(54) & 2391(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 2631(8) & 122368(7) & 3556(3) & 46(2) \\ C(57) & 3754(7) & 11613(7) & 3556(3) & 46(2) \\ C(58) & 6591(6) & 10210(6) & 3565(2) & 31(2) \\ C(59) & 6743(8) & 10863(8) & 3196(3) & 51(2) \\ C(50) & 6743(8) & 10863(8) & 3196(3) & 51(2) \\ C(60) & 7462(8) & 11423(8) & 3159(3) & 60(3) \\ C(61) & 8058(8) & 11272(8) & 3487(4) & 58(3) \\ C(62) & 7921(8) & 10610(10) & 3851(4) & 61(3) \\ C(63) & 7176(7) & 10087(7) & 3893(3) & 45(2) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ C(66) & 2440(10) & 8007(8) & 3840(3) & 55(3) \\ C(66) & 2440(10) & 8007(8) & 3840(3) & 55(3) \\ C(66) & 2442(7) & 9921(8) & 3556(3) & 22(2) \\ C(70) & 4277(6) & 9929(6) & 2515(2) & 31(2) \\ C(70) & 4277(6) & 9929(6) & 2515(2) & 31(2) \\ C(73) & 3744(7) & 9788(6) & 2224(3) & 39(2) \\ C(73) & 3748(8) & 11374(7) & 1760(3) & 51(2) \\ C(73) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(73) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(77) & 550(7) & 4830(6) & 3996(2) & 377(2) \\ C(78) & 5608(8) & 4188(8) & 3710(3) & 47(2) \\ C(77) & 5500(7) & 4830(6) & 3996(2) & 372(2) \\ C(77) & 5500(7) & 4830(6) & 3996(2) & 372(2) \\ C(77) & 5500(7) & 4830(6) & 3996(2) & 372(2) \\ C(77) & 550(7) & 4830(6) & 3999(3) & 45(2) \\ C(77) & 550(7) & 3103(7) & 4184(3) & 43(2) \\ C(84) & 8300(10) & 4230(10) & 4203(3) & 51(2) \\ C(73) & 3740(10) & 5169(8) & 4301(4) & 74(3) \\ C(85) & 8330(7) & 3103(7) & 4184(3) & 43(2) \\ C(84) & 8300(10) & 4330(10) & 3603(3) & 57(3) \\ C(85) & 8330(7) & 3103(7) & 4184(3) & 43(2) \\ C(84) & 8330(7) & 3103(7) & 4184(3) & 43(2) \\ C(77) & 11288(8) & 3550(10) & 352(3) & 57(3) \\ C(94) & 9714(7) & 7080(7) $	C(45)	7530(6)	9183(6)	1353(2)	32(2)
$\begin{array}{ccccc} C(42) & 6130(10) & 10430(10) & 643(3) & 63(4) \\ C(49) & 7970(10) & 10514(7) & 807(3) & 56(3) \\ C(50) & 8278(8) & 9651(7) & 1138(2) & 42(2) \\ C(51) & 5756(6) & 8953(6) & 3191(2) & 28(2) \\ C(52) & 4224(6) & 10555(6) & 3781(2) & 31(2) \\ C(53) & 3521(7) & 10275(7) & 4116(3) & 38(2) \\ C(54) & 2391(7) & 11030(7) & 4219(3) & 40(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(55) & 1973(7) & 12073(7) & 3953(3) & 41(2) \\ C(55) & 6591(6) & 10210(6) & 3565(2) & 31(2) \\ C(56) & 6591(6) & 10210(6) & 3565(2) & 31(2) \\ C(58) & 6591(6) & 10210(6) & 3565(2) & 31(2) \\ C(60) & 7462(8) & 11423(8) & 3159(3) & 60(3) \\ C(62) & 7921(8) & 10610(10) & 3851(4) & 61(3) \\ C(62) & 7921(8) & 10610(10) & 3851(4) & 61(3) \\ C(63) & 7176(7) & 10087(7) & 3893(3) & 45(2) \\ C(64) & 3439(6) & 8919(6) & 3301(2) & 30(2) \\ C(65) & 3440(7) & 7988(7) & 3576(3) & 40(2) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ C(67) & 1457(8) & 8980(10) & 3833(3) & 54(3) \\ C(68) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ C(70) & 4221(7) & 9821(7) & 2928(3) & 41(2) \\ C(71) & 455(7) & 10819(7) & 2427(3) & 44(2) \\ C(72) & 4358(8) & 11374(7) & 1760(3) & 51(2) \\ C(73) & 3848(8) & 11374(7) & 1760(3) & 51(2) \\ C(74) & 3507(8) & 10504(7) & 1846(3) & 47(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) 39(2) \\ C(77) & 4550(7) & 10819(7) & 2427(3) & 44(2) \\ C(73) & 3704(7) & 9788(6) & 3296(2) & 370(2) \\ C(74) & 3507(8) & 10504(7) & 1846(3) & 470(2) \\ C(75) & 3704(7) & 9788(6) & 3240(2) & 29(2) \\ C(77) & 5500(7) & 4830(6) & 3996(2) & 370(2) \\ C(78) & 5608(8) & 4188(8) & 3710(3) & 470(2) \\ C(79) & 4710(10) & 3860(10) & 3727(4) & 64(3) \\ C(80) & 3800(10) & 4230(10) & 4020(5) & 84(4) \\ C(81) & 3740(10) & 4860(10) & 4780(3) & 51(2) \\ C(78) & 8500(10) & 4780(3) & 51(2) \\ C(78) & 8300(7) & 4185(6) & 2966(2) & 30(2) \\ C(79) & 118(7) & 2267(8) & 4430(3) & 51(2) \\ C(84) & 8300(7) & 5147(8) & 3999(3) & 45(2) \\ C(93) & 9790(10) & 7380(10) & 3603(3) & 57(3) \\ C(84) & 8300(7) & 547(8) & 3999(3) & 45(2) \\ C(93) & 9790(10) & 7380(10) & 350(3)(3) & 57(3) \\ C(94) & 9193(6) & 5256(7) & 37$	C(46)	6456(8)	9600(LU)	1219(3)	60(3)
$\begin{array}{ccccc} (43) & 7970 (10) & 10514 (7) & 807 (3) & 56 (3) \\ C(50) & 8278 (8) & 9651 (7) & 1138 (2) & 42 (2) \\ C(51) & 5756 (6) & 8953 (6) & 3191 (2) & 28 (2) \\ C(52) & 4224 (6) & 10555 (6) & 3781 (2) & 31 (2) \\ C(53) & 3521 (7) & 11030 (7) & 4219 (3) & 40 (2) \\ C(54) & 2391 (7) & 11030 (7) & 4219 (3) & 40 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 2631 (8) & 12368 (7) & 3659 (3) & 51 (2) \\ C(55) & 6743 (8) & 10260 (6) & 3565 (2) & 31 (2) \\ C(56) & 6743 (8) & 10863 (8) & 3196 (3) & 51 (2) \\ C(60) & 7462 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ C(61) & 8058 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ C(62) & 7921 (8) & 10610 (10) & 3851 (4) & 61 (3) \\ C(63) & 7176 (7) & 10087 (7) & 3893 (3) & 44 (2) \\ C(66) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(66) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(66) & 1467 (8) & 8980 (10) & 3833 (3) & 54 (3) \\ C(66) & 1468 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ C(70) & 4277 (6) & 9929 (6) & 2515 (2) & 31 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2098 (3) & 41 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2098 (3) & 41 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2098 (3) & 41 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2098 (3) & 41 (2) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(73) & 3848 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ C(73) & 3848 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ C(73) & 3848 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(75) & 3704 (7) & 9788 (6) & 2224 (3) & 39 (2) \\ C(76) & 7189 (6) & 5514 (6) & 3499 (2) & 27 (2) \\ C(77) & 5590 (7) & 4380 (6) & 3999 (6) & 377 (4) & 64 (3) \\ C(82) & 4670 (10) & 4360 (10) & 3727 (4) & 64 (3) \\ C(83) & 3700 (10) & 4230 (10) & 4303 (5) & 88 (4) \\ C(81) & 3740 (10) & 4380 (6) & 3999 (3) & 45 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 57 (3) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 57 (3) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 57 (3) \\ C(77) & 4710 (10) & 350 (10) & 3766 (2) & 36 (2) \\ C(79) & 4710 (7) & 780 (7) & 3366 (3) & 37 (3) \\ C(81) & 3740 (7) & 1185 (6) & 2266 (2) & 30 (2$	C(47)	6130(10)	10460(10)	884(3) 675(3)	82(4) 82(4)
$\begin{array}{ccccc} (15) & 8278 (8) & 9651 (7) & 1138 (2) & 26 (2) \\ (251) & 5756 (6) & 8953 (6) & 3191 (2) & 28 (2) \\ (252) & 4224 (6) & 10555 (6) & 3781 (2) & 31 (2) \\ (253) & 3521 (7) & 10275 (7) & 4116 (3) & 38 (2) \\ (254) & 2391 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ (255) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ (255) & 2631 (8) & 12368 (7) & 3659 (3) & 51 (2) \\ (257) & 3754 (7) & 11613 (7) & 3556 (3) & 46 (2) \\ (259) & 6743 (8) & 10263 (8) & 3159 (3) & 51 (2) \\ (260) & 7462 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ (261) & 8058 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ (262) & 7921 (8) & 10610 (10) & 3851 (4) & 61 (3) \\ (263) & 7176 (7) & 10087 (7) & 3893 (3) & 45 (2) \\ (264) & 3439 (6) & 8919 (6) & 3301 (2) & 30 (2) \\ (265) & 3440 (7) & 7988 (7) & 3576 (3) & 40 (2) \\ (266) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ (266) & 1448 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ (270) & 4277 (6) & 9929 (6) & 2515 (2) & 31 (2) \\ (71) & 4585 (7) & 10819 (7) & 2427 (3) & 44 (2) \\ (277) & 4358 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ (773) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ (277) & 3508 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ (277) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ (277) & 3590 (7) & 4830 (6) & 3996 (2) & 37 (2) \\ (775) & 7104 (7) & 9788 (6) & 2224 (3) & 39 (2) \\ (776) & 7189 (6) & 5514 (6) & 3449 (2) & 29 (2) \\ (777) & 5590 (7) & 4830 (6) & 3996 (2) & 37 (2) \\ (778) & 5608 (8) & 4188 (8) & 3710 (3) & 47 (2) \\ (779) & 4710 (10) & 3860 (10) & 3727 (4) & 64 (3) \\ (283) & 3700 (7) & 4185 (6) & 2284 (3) & 70 (3) \\ (284) & 8060 (10) & 4388 (8) & 4638 (3) & 70 (3) \\ (284) & 8060 (10) & 4388 (8) & 4638 (3) & 70 (3) \\ (285) & 8350 (10) & 3570 (10) & 4780 (3) & 51 (2) \\ (294) & 9193 (6) & 6007 (6) & 3449 (2) & 29 (2) \\ (295) & 9437 (6) & 4335 (6) & 2966 (2) & 30 (2) \\ (296) & 9437 (6) & 4335 (6) & 2966 (2) & 30 (2) \\ (296) & 10495 (7) & 4292 (8) & 2768 (3) & 46 (2) \\ (297) & 11288 (8) & 3350 (10) & 5592 (3) & 77 (3) \\ (298) & 110027 (8) & 2477 (8) & 2277 (3) & 65 (3) \\ (2100) & 9193 (8) & 3423 (7) & 2777 (3) & 65 (3) \\ (2100) $	C(48)	7970(10)	10514(7)	807(3)	56(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(50)	8278 (8)	9651(7)	1138(2)	42(2)
$\begin{array}{cccccc} C(52) & 4224 (6) & 10555 (6) & 3781 (2) & 31 (2) \\ C(53) & 3521 (7) & 10275 (7) & 4116 (3) & 38 (2) \\ C(54) & 2391 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 1973 (7) & 12073 (7) & 3993 (3) & 41 (2) \\ C(55) & 2631 (8) & 12368 (7) & 3659 (3) & 51 (2) \\ C(57) & 3754 (7) & 11613 (7) & 3556 (3) & 46 (2) \\ C(58) & 6591 (6) & 10210 (6) & 3565 (2) & 31 (2) \\ C(59) & 6743 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ C(61) & 8058 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ C(62) & 7921 (8) & 10610 (10) & 3851 (4) & 61 (3) \\ C(63) & 7176 (7) & 10087 (7) & 3893 (3) & 45 (2) \\ C(64) & 3439 (6) & 8919 (6) & 3301 (2) & 30 (2) \\ C(65) & 3440 (7) & 7988 (7) & 3576 (3) & 40 (2) \\ C(66) & 1448 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ C(66) & 1448 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ C(70) & 4277 (6) & 9929 (6) & 2515 (2) & 31 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2427 (3) & 44 (2) \\ C(72) & 4358 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(75) & 7189 (6) & 5514 (6) & 3449 (2) & 29 (2) \\ C(77) & 5500 (7) & 4830 (6) & 3996 (2) & 37 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 51 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 51 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 51 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 51 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 51 (2) \\ C(79) & 4710 (10) & 3860 (10) & 3727 (4) & 64 (3) \\ C(80) & 3800 (100 & 4330 (5) & 4301 (4) & 74 (3) \\ C(81) & 3740 (10) & 4860 (10) & 4303 (5) & 88 (4) \\ C(81) & 3740 (10) & 438 (8) & 638 (3) & 70 (3) \\ C(83) & 7780 (7) & 2480 (10) & 4780 (3) & 51 (2) \\ C(84) & 3800 (10) & 4388 (8) & 638 (3) & 70 (3) \\ C(85) & 3850 (10) & 3570 (10) & 4779 (3) & 512 (2) \\ C(90) & 9799 (6) & 5256 (7) & 3766 (2) & 36 (2) \\ C(91) & 10393 (7) & 5547 (8) & 3999 (3) & 45 (2) \\ C(92) & 10366 (8) & 6610 (10) & 3919 (3) & 51 (2) \\ C(93$	C(51)	5756(6)	8953(6)	3191(2)	28(2)
$\begin{array}{cccccc} c(53) & 3521(7) & 10275(7) & 4116(3) & 38(2) \\ c(54) & 2391(7) & 11030(7) & 4219(3) & 40(2) \\ c(55) & 2631(8) & 12368(7) & 3659(3) & 51(2) \\ c(55) & 2631(8) & 12368(7) & 3556(3) & 46(2) \\ c(57) & 3754(7) & 11613(7) & 3556(3) & 46(2) \\ c(58) & 6591(6) & 10210(6) & 3655(2) & 31(2) \\ c(59) & 6743(8) & 10863(8) & 3196(3) & 51(2) \\ c(60) & 7462(8) & 11423(8) & 3159(3) & 60(3) \\ c(61) & 8058(8) & 11272(8) & 3487(4) & 58(3) \\ c(62) & 7921(8) & 10617(7) & 3893(3) & 45(2) \\ c(64) & 3439(6) & 8919(6) & 3301(2) & 30(2) \\ c(65) & 3440(7) & 7988(7) & 3576(3) & 40(2) \\ c(66) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ c(67) & 1467(8) & 8980(10) & 3833(3) & 54(3) \\ c(68) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ c(68) & 1448(7) & 9929(6) & 2515(2) & 31(2) \\ c(71) & 4585(7) & 10819(7) & 2427(3) & 44(2) \\ c(72) & 4358(8) & 11546(7) & 2054(3) & 52(2) \\ c(71) & 4585(7) & 10819(7) & 2427(3) & 44(2) \\ c(72) & 4358(8) & 11546(7) & 2054(3) & 52(2) \\ c(77) & 3504(8) & 10504(7) & 1846(3) & 47(2) \\ c(75) & 3704(7) & 9788(6) & 2224(3) & 392(2) \\ c(76) & 7189(6) & 5514(6) & 3449(2) & 29(2) \\ c(77) & 5590(7) & 4330(6) & 3996(2) & 37(2) \\ c(78) & 5608(8) & 4188(8) & 710(3) & 47(2) \\ c(79) & 4710(10) & 366(10) & 3727(4) & 64(3) \\ c(80) & 3800(10) & 4230(10) & 4020(5) & 84(4) \\ c(81) & 3740(10) & 4860(10) & 4301(4) & 74(3) \\ c(83) & 7780(7) & 4185(6) & 4286(2) & 34(2) \\ c(78) & 5608(8) & 4188(8) & 4701(3) & 51(2) \\ c(84) & 8060(10) & 4388(8) & 4638(3) & 70(3) \\ c(85) & 9382(7) & 2480(10) & 4780(3) & 51(2) \\ c(84) & 8060(10) & 4388(8) & 4638(3) & 70(3) \\ c(85) & 9382(7) & 2480(10) & 4780(3) & 51(2) \\ c(99) & 9133(6) & 6007(6) & 3449(2) & 292(2) \\ c(99) & 9133(6) & 6007(6) & 3449(2) & 292(2) \\ c(99) & 9133(6) & 6007(7) & 3366(3) & 60(2) \\ c(99) & 9133(6) & 6007(7) & 3366(3) & 60(2) \\ c(99) & 9133(6) & 3423(7) & 2978(3) & 49(2) \\ c(99) & 10000(10) & 2472(7) & 2978(3) & 49(2) \\ c(10$	C(52)	4224(6)	10555(6)	3781(2)	31(2)
$\begin{array}{cccccc} C(54) & 2391(7) & 11030(7) & 4219(3) & 40(2) \\ C(55) & 1973(7) & 12073(7) & 3993(3) & 41(2) \\ C(56) & 2631(8) & 12368(7) & 3659(3) & 51(2) \\ C(57) & 3754(7) & 11613(7) & 3556(3) & 46(2) \\ C(58) & 6591(6) & 10210(6) & 3565(2) & 31(2) \\ C(59) & 6743(8) & 110863(8) & 3196(3) & 51(2) \\ C(60) & 7462(8) & 11427(8) & 3487(4) & 58(3) \\ C(61) & 8058(8) & 11272(8) & 3487(4) & 58(3) \\ C(62) & 7921(8) & 10610(10) & 3851(4) & 61(3) \\ C(63) & 7176(7) & 10087(7) & 3893(3) & 45(2) \\ C(64) & 3439(6) & 8919(6) & 3301(2) & 30(2) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ C(67) & 1467(8) & 8980(10) & 3833(3) & 54(3) \\ C(68) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ C(70) & 4277(6) & 9229(6) & 2515(2) & 31(2) \\ C(71) & 4585(7) & 10819(7) & 2427(3) & 44(2) \\ C(70) & 4277(6) & 9929(6) & 2515(2) & 31(2) \\ C(71) & 4585(7) & 10819(7) & 2427(3) & 44(2) \\ C(72) & 4358(8) & 11374(7) & 1760(3) & 51(2) \\ C(73) & 3848(8) & 11374(7) & 1760(3) & 51(2) \\ C(73) & 3848(8) & 11374(7) & 1760(3) & 51(2) \\ C(76) & 7189(6) & 5514(6) & 3499(2) & 27(2) \\ C(77) & 5507(8) & 10504(7) & 1846(3) & 47(2) \\ C(76) & 7189(6) & 5514(6) & 3499(2) & 27(2) \\ C(77) & 5508(8) & 4188(8) & 3710(3) & 47(2) \\ C(78) & 3600(10) & 4230(10) & 4020(5) & 84(4) \\ C(82) & 4670(10) & 5169(8) & 4301(4) & 74(3) \\ C(83) & 7780(7) & 4185(6) & 4286(2) & 34(2) \\ C(84) & 8050(10) & 43370(10) & 4879(3) & 77(4) \\ C(86) & 9322(7) & 2480(10) & 4780(3) & 52(3) \\ C(83) & 7780(7) & 4185(6) & 2464(2) & 29(2) \\ C(79) & 9118(7) & 2267(8) & 4330(3) & 51(2) \\ C(93) & 9770(10) & 7380(10) & 360(3)(3) & 57(3) \\ C(93) & 9770(10) & 7380(10) & 360(3)(3) & 57(3) \\ C(94) & 9133(7) & 5547(8) & 3999(3) & 45(2) \\ C(95) & 9437(6) & 4335(6) & 2966(2) & 30,(2) \\ C(95) & 9437(6) & 4335(6) & 2966(2) & 30,(2) \\ C(95) & 9437(6) & 4335(6) & 2966(2) & 36(3) \\ C(95) & 9437(6) & 4335(6) & 2966(2) & 36(3) \\ C(95) & 9437(6) & 4335(6) & 2966(2) & 36(3)$	C(53)	3521(7)	10275(7)	4116(3)	38(2)
$\begin{array}{cccccc} C(55) & 19/3 (7) & 120/3 (7) & 3993 (3) & 41 (2) \\ C(55) & 2631 (8) & 12368 (7) & 3659 (3) & 51 (2) \\ C(57) & 3754 (7) & 11613 (7) & 3556 (3) & 46 (2) \\ C(58) & 6591 (6) & 10210 (6) & 3565 (2) & 31 (2) \\ C(59) & 6743 (8) & 10863 (8) & 3196 (3) & 51 (2) \\ C(60) & 7462 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ C(61) & 8058 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ C(62) & 7921 (8) & 10610 (10) & 3851 (4) & 61 (3) \\ C(63) & 7176 (7) & 10087 (7) & 3893 (3) & 45 (2) \\ C(64) & 3439 (6) & 8919 (6) & 3301 (2) & 30 (2) \\ C(65) & 3440 (7) & 7988 (7) & 3576 (3) & 40 (2) \\ C(66) & 2440 (10) & 8007 (8) & 3440 (3) & 55 (3) \\ C(66) & 1448 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ C(66) & 1448 (7) & 9921 (8) & 3566 (3) & 52 (2) \\ C(70) & 4277 (6) & 9229 (6) & 2515 (2) & 31 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2427 (3) & 44 (2) \\ C(72) & 4358 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 47 (2) \\ C(75) & 3704 (7) & 9788 (6) & 2224 (3) & 39 (2) \\ C(77) & 5500 (7) & 4830 (6) & 3996 (2) & 37 (2) \\ C(76) & 7189 (6) & 5514 (6) & 3449 (2) & 29 (2) \\ C(77) & 5500 (7) & 4830 (6) & 3966 (2) & 37 (2) \\ C(78) & 3700 (10) & 4380 (10) & 3727 (4) & 64 (3) \\ C(80) & 3600 (10) & 4330 (10) & 470 (3) & 51 (2) \\ C(78) & 780 (7) & 9788 (6) & 4301 (4) & 74 (3) \\ C(81) & 3740 (7) & 9788 (6) & 4301 (4) & 74 (3) \\ C(80) & 3600 (10) & 4330 (7) & 4185 (6) & 4286 (2) & 34 (2) \\ C(77) & 5790 (7) & 4185 (6) & 4386 (3) (30 (3) & 57 (3) \\ C(80) & 3800 (10) & 4330 (7) & 4184 (3) & 43 (2) \\ C(84) & 8330 (7) & 3103 (7) & 4184 (3) & 43 (2) \\ C(84) & 8330 (7) & 3103 (7) & 4184 (3) & 43 (2) \\ C(88) & 8330 (7) & 3103 (7) & 4184 (3) & 43 (2) \\ C(89) & 9133 (6) & 6007 (6) & 3449 (2) & 29 (2) \\ C(90) & 9799 (6) & 5256 (7) & 3766 (2) & 36 (3) \\ C(91) & 10393 (7) & 5547 (8) & 3999 (3) & 45 (2) \\ C(92) & 10366 (8) & 6610 (10) & 3199 (3) & 51 (2) \\ C(93) & 9770 (10) & 7380 (10) & 3603 (3) & 57 (3) \\ C(94) & 1027 (8) & 2447 (8) & 2612 (3) & 58 (3) \\ C(95) & 9437 (6) & 2447 (8) & 2612 (3) & $	C(54)	2391(7)	11030(7)	4219(3)	40(2)
	C(55)	1973(7)	12073(7)	3993(3)	41(2)
$\begin{array}{c} C(58) & 6591 (6) & 10210 (6) & 3556 (2) & 31 (2) \\ C(59) & 6743 (8) & 10210 (6) & 3565 (2) & 31 (2) \\ C(60) & 7462 (8) & 11423 (8) & 3159 (3) & 60 (3) \\ C(61) & 8058 (8) & 11272 (8) & 3487 (4) & 58 (3) \\ C(62) & 7921 (8) & 10610 (10) & 3851 (4) & 61 (3) \\ C(63) & 7176 (7) & 10087 (7) & 3893 (3) & 45 (2) \\ C(64) & 3439 (6) & 8919 (6) & 3301 (2) & 30 (2) \\ C(65) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(66) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(66) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(66) & 2480 (10) & 8007 (8) & 3840 (3) & 55 (3) \\ C(66) & 2421 (7) & 9891 (7) & 3298 (3) & 41 (2) \\ C(70) & 4277 (6) & 9922 (6) & 2515 (2) & 31 (2) \\ C(71) & 4585 (7) & 10819 (7) & 2427 (3) & 44 (2) \\ C(72) & 4358 (8) & 11546 (7) & 2054 (3) & 52 (2) \\ C(73) & 3848 (8) & 11374 (7) & 1760 (3) & 51 (2) \\ C(74) & 3507 (8) & 10504 (7) & 1846 (3) & 51 (2) \\ C(76) & 7189 (6) & 5514 (6) & 3449 (2) & 29 (2) \\ C(77) & 5500 (7) & 4330 (6) & 3996 (2) & 37 (2) \\ C(78) & 5608 (8) & 4188 (8) & 3710 (3) & 47 (2) \\ C(79) & 4710 (10) & 3860 (10) & 3727 (4) & 64 (3) \\ C(80) & 3800 (10) & 4230 (10) & 4020 (5) & 84 (4) \\ C(81) & 3740 (10) & 4860 (10) & 4303 (5) & 88 (4) \\ C(81) & 3740 (10) & 4860 (10) & 4303 (5) & 82 (4) \\ C(81) & 3740 (10) & 4860 (10) & 4303 (5) & 52 (3) \\ C(85) & 8550 (10) & 3570 (10) & 4879 (3) & 77 (4) \\ C(86) & 3830 (7) & 3103 (7) & 4184 (3) & 43 (2) \\ C(88) & 8330 (7) & 3103 (7) & 4184 (3) & 51 (2) \\ C(99) & 9193 (6) & 6007 (6) & 3449 (2) & 29 (2) \\ C(90) & 9799 (6) & 5256 (7) & 3766 (2) & 36 (2) \\ C(91) & 1033 (7) & 5574 (8) & 3999 (3) & 45 (2) \\ C(92) & 10366 (8) & 6610 (10) & 3919 (3) & 51 (2) \\ C(93) & 9770 (10) & 7380 (10) & 3603 (3) & 57 (3) \\ C(94) & 9171 (7) & 7080 (7) & 3366 (3) & 40 (2) \\ C(95) & 9437 (6) & 4335 (6) & 2966 (2) & 30(2) \\ C(95) & 9437 (6) & 4335 (6) & 2966 (2) & 30(2) \\ C(95) & 9437 (6) & 4335 (6) & 2966 (2) & 36(3) \\ C(97) & 11288 (8) & 3550 (10) & 2592 (3) & 57 (3) \\ C(99) & 10000 (10) & 2472 (7) & 2779 (3) & 56 (3) \\ C(100) & 9193 (8) & 3423 (7) & 2978 (3) & 49(2) \\ \end{array}$	C(56)	2031(8) 3754(7)	12368(7)	3659(3)	51(2) 46(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(58)	6591(6)	10210(6)	3565(2)	$\frac{10(2)}{31(2)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(59)	6743(8)	10863(8)	3196(3)	51(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(60)	7462(8)	11423(8)	3159(3)	60(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(61)	8058(8)	11272(8)	3487(4)	58(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(62)	7921(8)	10610(10)	3851(4)	61(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(63)	7176(7)	10087(7)	3893(3)	45(2)
$\begin{array}{c} C(85) & 3440(7) & 7988(7) & 3578(3) & 40(2) \\ C(66) & 2480(10) & 8007(8) & 3840(3) & 55(3) \\ C(67) & 1467(8) & 8980(10) & 3833(3) & 54(3) \\ C(68) & 1448(7) & 9921(8) & 3566(3) & 52(2) \\ C(69) & 2421(7) & 9891(7) & 3298(3) & 41(2) \\ C(70) & 4277(6) & 9929(6) & 2515(2) & 31(2) \\ C(71) & 4585(7) & 10819(7) & 2427(3) & 44(2) \\ C(72) & 4358(8) & 11546(7) & 2054(3) & 52(2) \\ C(73) & 3848(8) & 11374(7) & 1760(3) & 51(2) \\ C(74) & 3507(8) & 10504(7) & 1846(3) & 47(2) \\ C(75) & 3704(7) & 9788(6) & 2224(3) & 39(2) \\ C(76) & 7189(6) & 5514(6) & 3449(2) & 29(2) \\ C(77) & 5590(7) & 4830(6) & 3996(2) & 37(2) \\ C(78) & 5608(8) & 4188(8) & 3710(3) & 47(2) \\ C(78) & 5608(8) & 4188(8) & 3710(3) & 47(2) \\ C(79) & 4710(10) & 3860(10) & 3727(4) & 64(3) \\ C(80) & 3800(10) & 4230(10) & 4020(5) & 84(4) \\ C(81) & 3740(10) & 5169(8) & 4301(4) & 74(3) \\ C(83) & 7780(7) & 4185(6) & 4286(2) & 34(2) \\ C(84) & 8060(10) & 4370(10) & 4780(3) & 52(3) \\ C(85) & 8550(10) & 3570(10) & 479(3) & 77(4) \\ C(86) & 9382(7) & 2480(10) & 4780(3) & 52(3) \\ C(87) & 9118(7) & 2267(8) & 4430(3) & 51(2) \\ C(88) & 8330(7) & 3103(7) & 4184(3) & 43(2) \\ C(89) & 9193(6) & 6007(6) & 3449(2) & 29(2) \\ C(90) & 9799(6) & 5256(7) & 3766(2) & 36(2) \\ C(91) & 10393(7) & 5547(8) & 3999(3) & 45(2) \\ C(92) & 10366(8) & 6610(10) & 3919(3) & 51(2) \\ C(93) & 9770(10) & 7380(10) & 3603(3) & 57(3) \\ C(94) & 9171(7) & 7080(7) & 3366(3) & 40(2) \\ C(95) & 9437(6) & 4335(6) & 2966(2) & 30(2) \\ C(96) & 10495(7) & 4292(8) & 2768(3) & 48(2) \\ C(97) & 11288(8) & 3350(10) & 2592(3) & 57(3) \\ C(98) & 11027(8) & 2447(8) & 2612(3) & 58(3) \\ C(99) & 9193(8) & 3423(7) & 2978(3) & 49(2) \\ \end{array}$	C(64)	3439(6)	8919(6)	3301(2)	30(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(65)	2480(10)	8007(8)	3840(3)	40(Z) 55(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(67)	1467(8)	8980(10)	3833(3)	54(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(68)	1448(7)	9921(8)	3566(3)	52(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(69)	2421(7)	9891(7)	3298(3)	41(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(70)	4277(6)	9929(6)	2515(2)	31(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(71)	4585(7)	10819(7)	2427 (3)	44(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(72)	4338(8)	11374(7)	2054(3)	52(2) 51(2)
C (75)3704 (7)9788 (6)2224 (3)39 (2)C (76)7189 (6)5514 (6) $3449 (2)$ 29 (2)C (77)5590 (7)4830 (6)3996 (2)37 (2)C (78)5608 (8)4188 (8)3710 (3)47 (2)C (79)4710 (10)3860 (10)3727 (4)64 (3)C (80)3800 (10)4230 (10)4020 (5)84 (4)C (81)3740 (10)4860 (10)4303 (5)88 (4)C (82)4670 (10)5169 (8)4301 (4)74 (3)C (83)7780 (7)4185 (6)4286 (2)34 (2)C (84)8060 (10)4388 (8)4638 (3)70 (3)C (85)8850 (10)3570 (10)4879 (3)77 (4)C (86)9382 (7)2480 (10)4780 (3)52 (3)C (87)9118 (7)2267 (8)4430 (3)51 (2)C (88)8330 (7)3103 (7)4184 (3)43 (2)C (90)9799 (6)5256 (7)3766 (2)36 (2)C (91)10393 (7)5547 (8)3999 (3)45 (2)C (92)10366 (8)6610 (10)3919 (3)51 (2)C (93)9770 (10)7380 (10)3663 (3)40 (2)C (94)9171 (7)7080 (7)3366 (3)40 (2)C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8) <td>C(74)</td> <td>3507(8)</td> <td>10504(7)</td> <td>1846(3)</td> <td>47(2)</td>	C(74)	3507(8)	10504(7)	1846(3)	47(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(75)	3704(7)	9788(6)	2224(3)	39(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(76)	7189(6)	5514(6)	3449(2)	29(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(77)	5590(7)	4830(6)	3996(2)	37(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(78)	5608(8)	4188(8)	3710(3)	47(2)
C (80)3800 (10) $4230 (10)$ $4020 (5)$ $84 (4)$ C (81)3740 (10)4860 (10)4303 (5)88 (4)C (82)4670 (10)5169 (8)4301 (4)74 (3)C (83)7780 (7)4185 (6)4286 (2)34 (2)C (84)8060 (10)4388 (8)4638 (3)70 (3)C (85)8850 (10)3570 (10)4879 (3)77 (4)C (86)9382 (7)2480 (10)4780 (3)52 (3)C (87)9118 (7)2267 (8)4430 (3)51 (2)C (88)8330 (7)3103 (7)4184 (3)43 (2)C (89)9193 (6)6007 (6)3449 (2)29 (2)C (90)9799 (6)5256 (7)3766 (2)36 (2)C (91)10393 (7)5547 (8)3999 (3)45 (2)C (92)10366 (8)6610 (10)3919 (3)51 (2)C (93)9770 (10)7380 (10)3603 (3)57 (3)C (94)9171 (7)7080 (7)3366 (3)40 (2)C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C (79)	4710(10)	3860(10)	3727(4)	64(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(80)	3800(10)	4230(10)	4020(5)	84(4) 88(4)
C(83) $7780(7)$ $4185(6)$ $4286(2)$ $34(2)$ $C(84)$ $8060(10)$ $4388(8)$ $4638(3)$ $70(3)$ $C(85)$ $8850(10)$ $3570(10)$ $4879(3)$ $77(4)$ $C(86)$ $9382(7)$ $2480(10)$ $4780(3)$ $52(3)$ $C(87)$ $9118(7)$ $2267(8)$ $4430(3)$ $51(2)$ $C(88)$ $8330(7)$ $3103(7)$ $4184(3)$ $43(2)$ $C(89)$ $9193(6)$ $6007(6)$ $3449(2)$ $29(2)$ $C(90)$ $9799(6)$ $5256(7)$ $3766(2)$ $36(2)$ $C(91)$ $10393(7)$ $5547(8)$ $3999(3)$ $45(2)$ $C(92)$ $10366(8)$ $6610(10)$ $3919(3)$ $51(2)$ $C(93)$ $9770(10)$ $7380(10)$ $3603(3)$ $57(3)$ $C(94)$ $9171(7)$ $7080(7)$ $3366(3)$ $40(2)$ $C(95)$ $9437(6)$ $4335(6)$ $2966(2)$ $30(2)$ $C(96)$ $10495(7)$ $4292(8)$ $2768(3)$ $48(2)$ $C(97)$ $11288(8)$ $3350(10)$ $2592(3)$ $57(3)$ $C(98)$ $11027(8)$ $2447(8)$ $2612(3)$ $58(3)$ $C(99)$ $10000(10)$ $2472(7)$ $2797(3)$ $65(3)$ $C(100)$ $9193(8)$ $3423(7)$ $2978(3)$ $49(2)$	C(82)	4670(10)	5169(8)	4301(4)	74(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(83)	7780(7)	4185(6)	4286(2)	34(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(84)	8060(10)	4388(8)	4638(3)	70(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(85)	8850(10)	3570(10)	4879(3)	77(4)
C (87) 9118 (7) 2267 (8) 4430 (3) 51 (2) C (88) 8330 (7) 3103 (7) 4184 (3) 43 (2) C (89) 9193 (6) 6007 (6) 3449 (2) 29 (2) C (90) 9799 (6) 5256 (7) 3766 (2) 36 (2) C (91) 10393 (7) 5547 (8) 3999 (3) 45 (2) C (92) 10366 (8) 6610 (10) 3919 (3) 51 (2) C (92) 10366 (8) 6610 (10) 3919 (3) 51 (2) C (93) 9770 (10) 7380 (10) 3603 (3) 57 (3) C (94) 9171 (7) 7080 (7) 3366 (3) 40 (2) C (95) 9437 (6) 4335 (6) 2966 (2) 30 (2) C (96) 10495 (7) 4292 (8) 2768 (3) 48 (2) C (97) 11288 (8) 3350 (10) 2592 (3) 57 (3) C (97) 11288 (8) 3350 (10) 2592 (3) 57 (3) C (98) 11027 (8) 2447 (8) 2612 (3) 58 (3)	C(86)	9382(7)	2480(10)	4780(3)	52(3)
C (88) 8330 (7) 3103 (7) 4184 (3) 432) C (89) 9193 (6) 6007 (6) 3449 (2) 29 (2) C (90) 9799 (6) 5256 (7) 3766 (2) 36 (2) C (91) 10393 (7) 5547 (8) 3999 (3) 45 (2) C (92) 10366 (8) 6610 (10) 3919 (3) 51 (2) C (92) 10366 (8) 6610 (10) 3919 (3) 51 (2) C (92) 10366 (8) 6610 (10) 3603 (3) 57 (3) C (93) 9770 (10) 7380 (10) 3603 (3) 57 (3) C (94) 9171 (7) 7080 (7) 3366 (3) 40 (2) C (95) 9437 (6) 4335 (6) 2966 (2) 30 (2) C (96) 10495 (7) 4292 (8) 2768 (3) 48 (2) C (97) 11288 (8) 3350 (10) 2592 (3) 57 (3) C (97) 11288 (8) 3350 (10) 2592 (3) 57 (3) C (98) 11027 (8) 2447 (8) 2612 (3) 58 (3)	C(87)	9118(7)	2267(8)	4430(3)	51(2)
C (35) 9153 (6) 5007 (6) 514 (6) 25 (2) C (90) 9799 (6) 5256 (7) 3766 (2) 36 (2) C (91) 10393 (7) 5547 (8) 3999 (3) 45 (2) C (92) 10366 (8) 6610 (10) 3919 (3) 51 (2) C (92) 10366 (8) 6610 (10) 3919 (3) 51 (2) C (93) 9770 (10) 7380 (10) 3603 (3) 57 (3) C (94) 9171 (7) 7080 (7) 3366 (3) 40 (2) C (95) 9437 (6) 4335 (6) 2966 (2) 30 (2) C (96) 10495 (7) 4292 (8) 2768 (3) 48 (2) C (97) 11288 (8) 3350 (10) 2592 (3) 57 (3) C (98) 11027 (8) 2447 (8) 2612 (3) 58 (3) C (99) 10000 (10) 2472 (7) 2797 (3) 65 (3) C (100) 9193 (8) 3423 (7) 2978 (3) 49 (2)	C(88)	8330(7)	3103(7)	4184(3)	43(Z) 20(2)
C (91)10393 (7)5547 (8)3999 (3)45 (2)C (92)10366 (8)6610 (10)3919 (3)51 (2)C (93)9770 (10)7380 (10)3603 (3)57 (3)C (94)9171 (7)7080 (7)3366 (3)40 (2)C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C(90)	9799(6)	5256(7)	3766(2)	36(2)
C (92)10366 (8)6610 (10)3919 (3)51 (2)C (93)9770 (10)7380 (10)3603 (3)57 (3)C (94)9171 (7)7080 (7)3366 (3)40 (2)C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C(91)	10393(7)	5547 (8)	3999(3)	45(2)
C (93)9770 (10)7380 (10)3603 (3)57 (3)C (94)9171 (7)7080 (7)3366 (3)40 (2)C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C(92)	10366(8)	6610(10)	3919(3)	51(2)
C (94)9171 (7)7080 (7)3366 (3)40 (2)C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C(93)	9770(10)	7380(10)	3603(3)	57(3)
C (95)9437 (6)4335 (6)2966 (2)30 (2)C (96)10495 (7)4292 (8)2768 (3)48 (2)C (97)11288 (8)3350 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C(94)	9171(7)	7080(7)	3366(3)	40(2)
C (96) 10495 (7) 4292 (8) 2768 (3) 48 (2) C (97) 11288 (8) 3350 (10) 2592 (3) 57 (3) C (98) 11027 (8) 2447 (8) 2612 (3) 58 (3) C (99) 10000 (10) 2472 (7) 2797 (3) 65 (3) C (100) 9193 (8) 3423 (7) 2978 (3) 49 (2)	C(95)	9437(6)	4335(6)	2966(2)	30(2)
C (97)11200 (0)3530 (10)2592 (3)57 (3)C (98)11027 (8)2447 (8)2612 (3)58 (3)C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C (96) C (97)	11200())	4292(8) 3350(10)	∠/bb(J) 2502/2)	48(2) 57(2)
C (99)10000 (10)2472 (7)2797 (3)65 (3)C (100)9193 (8)3423 (7)2978 (3)49 (2)	C(97)	11027(8)	2447(8)	2612(3)	58(3)
C(100) 9193(8) 3423(7) 2978(3) 49(2)	C(99)	10000(10)	2472(7)	2797 (3)	65(3)
	C(100)	9193(8)	3423 (7)	2978(3)	49(2)

C(101)	7450(20)	5360(10)	-138(4)	111(5)
C(102)	6700(20)	6610(20)	-251(4)	124(6)
C(103)	7740(10)	3980(10)	452(5)	103(5)
C(104)	6270(10)	8400(10)	-85(4)	100(4)
C(105)	5890(10)	8170(10)	5206(4)	79(4)
C(106)	4790(10)	8060(10)	5279(3)	78(4)
C(107)	7790(10)	/390(10)	4860(4)	80(3)
C(108)	3430(10)	/940(10)	4938(4)	/5(3)
L1(1)	6960 (10)	64/0(10)	5/5(5)	44(4)
	6/80(10) ECZO(10)	5550(10) 7600(10)	1324(4)	40(3)
	3070(10) 7000(10)	/000(LU)	2171(4)	20(2)
山上(4) エキ(5)	7900(10) 6210(10)	6110(10)	2232(4)	20(2) 21(2)
L1 (J)	7000(10)	8010(10)	2931(4)	31(3)
L1(0)	6390(10)	0010(10) 7370(10)	2002(4)	30(3) ST(2)
L1(7)	5850(10)	7560(10)	AA57(A)	JU (J)
U(eq) is de	fined as 1/	3 the trace of	the Uij tensor.	
Table 3. Bo	nd lengths	(A) and angles	(deg) for III.6Li2	
P(1)	-0(1)	1.521(5)	P(1)-C(1)	1.664(8)
P(1)	-C(8)	1.837(8)	P(1)-C(2)	1.843(8)
P(1)	-Li(2)	2.58(1)	P(2)-O(2)	1.534(5)
P(2)	-C(1)	1.681(7)	P(2) - C(14)	1.839(7)
P(2)	-C(20)	1.844(7)	P(2)-Li(3)	2.74(1)
P(2)	-L1(5)	3.12(1)	P(3) = O(3)	1.531(5)
P(3)	-C(26)	1.661(7)	P(3) = C(27)	1.818(8)
P(3)	-C(33)	1.828(7)	P(3) = L1(2)	2.56(1)
P(4)	-0(4)	1.000(0)	P(4) = C(26)	1.077(7)
P(4)	-C(45)	1.802(8)	P(4) = C(39)	1.032(0)
P(4)	-LI(4)	2./U(1) 1.522/5)	P(4) = LL(0)	3.01(1) 1.664(7)
P(J)	-0(3) -C(52)	1 925 (3)	P(5) = C(51) D(5) = C(59)	1 931 (7)
I (J) P(5)	-Ti(7)	2 54(1)	P(6) = O(6)	1 530(5)
r (J) P (6)	$- \Box I (7)$	2.54(1)	P(6) = C(64)	1.330(3) 1.820(7)
P(6)	-C(70)	1,007(7) 1,832(8)	$P(6) = T_1 (6)$	2 69(1)
P(6)	-Li (3)	3 07(1)	P(7) = O(7)	1 525(5)
P(7)	-C(76)	1,655(7)	P(7) = C(83)	1.835(8)
P(7)	-C(77)	1.84(1)	$P(7) = T_i (7)$	2.59(1)
P(8)	-0(8)	1.540(5)	P(8) - C(76)	1,657(7)
P(8)	-C(89)	1.830(7)	P(8) - C(95)	1.837(7)
P(8)	-Li(5)	2.77(1)	P(8)-Li(7)	3.06(1)
P(8)	-Li(4)	3.10(1)	O(1)-Li(1)	1.84(1)
0(1)	-Li(2)	2.11(1)	O(2)-Li(5)	1.89(1)
0(2)	-Li(4)	1.93(1)	O(2)-Li(3)	2.34(1)
0(3)	-Li(1)	1.81(1)	O(3)-Li(2)	1.95(1)
0(4)	-Li(6)	1.91(1)	O(4)-Li(3)	1.92(1)
O(4)	-Li(4)	2.48(1)	O(5)-Li(8)	1.84(1)
0(5)	-Li(7)	2.01(1)	O(6)-Li(5)	1.93(1)
0(6)	-Li(3)	1.94(1)	O(6)-Li(6)	2.43(1)
0(7)	-Li(8)	1.83(1)	0(7)-Li(7)	2.00(1)
0(8)	-Li(6)	1.91(1)	O(8)-Li(4)	1.96(1)
0(8)	-Li(5)	2.52(1)	O(9)-C(103)	1.40(1)
0(9)	-C(101)	1.41(1)	O(9) - Li(1)	2.01(1)
0(10) - C (102)	1.39(1)	O(10) - C(104)	1.42(1)
U(10	$j = \perp \perp (\perp)$	1,98(2)	O(11) = C(105)	1.4U(1)
0(11) = C(107)	1.43(1)	O(11) - L1(8)	2.00(1)
0(12) = C(106)	1.38(1)	O(12) = C(108)	1.43(1)
0(12) = L1 (0)	2.01(1)	C(1) = L1(3)	2.20(1)
C(1)	-LI (2)	2.23(1)	C(2) = C(3)	1 27 (1)
C(2)	-C(7) -H(3)	1.39(1)	C(3) = C(4) C(4) = C(5)	1 38(1)
C(3)	-H(A)	0.9500	C(5) = C(6)	1 36(1)
	-H(5)	0 9500	C(6) = C(7)	1 38(1)
C (5)	-H(6)	0 9500	C(7) - H(7)	0,9500
C (8)	-C(13)	1.39(1)	C(8) - C(9)	1.39(1)
C (9)	-C(10)	1.38(1)	C(9) - H(9)	0.9500
C(10) - C(11)	1.38(1)	C(10)-H(10)	0.9500
C (11) - C(12)	1.36(1)	C(11) -H(11)	0.9500
C(12) -C(13)	1.40(1)	С(12)-Н(12)	0.9500
C(13)-Н(13)	0.9500	C(14)-C(19)	1.39(1)
C(14)-C(15)	1.40(1)	C(15)-C(16)	1.38(1)
C(15)-H(15)	0.9500	C(16)-C(17)	1.37(1)
C(16)-H(16)	0.9500	C(17)-C(18)	1.37(1)
C(17)-H(17)	0.9500	C(18)-C(19)	1.40(1)
C(18)-H(18)	0.9500	С(19)-Н(19)	0.9500

C(20) = C(21)	1 37(1)	C(20) = C(25)	1 38(1)
	1 20(1)	C(20) C(20)	1.30(1)
C(21) = C(22)	1.39(1)	C(21) = H(21)	0.9500
C (22) -C (23)	1.35(1)	С(22)-Н(22)	0.9500
C(23)-C(24)	1.36(1)	С(23)-Н(23)	0.9500
C(24)-C(25)	1.40(1)	С(24)-Н(24)	0.9500
С(25)-Н(25)	0.9500	C(26)-Li(4)	2.16(2)
C(26)-Li(2)	2.44(1)	C(27)-C(28)	1.38(1)
C(27)-C(32)	1.38(1)	C(28)-C(29)	1.39(1)
С(28)-Н(28)	0.9500	C(29) - C(30)	1.37(1)
C(29) = H(29)	0 9500	C(30) = C(31)	1 39(1)
C(20) = H(20)	0.9500	C(31) = C(32)	1 36(1)
C(30) $II(30)$	0.0500	C(31) C(32)	1.30(1)
C(31) = H(31)	0.9500	C(32) = H(32)	0.9500
C (33) -C (38)	1.38(1)	C(33) = C(34)	1.40(1)
C(34)-C(35)	1.38(1)	С(34)-Н(34)	0.9500
C(35)-C(36)	1.38(1)	С(35)-Н(35)	0.9500
C(36)-C(37)	1.38(1)	С(36)-Н(36)	0.9500
C(37)-C(38)	1.38(1)	С(37)-Н(37)	0.9500
C(38)-H(38)	0.9500	C(39)-C(40)	1.38(1)
C(39) - C(44)	1.39(1)	C(40) - C(41)	1.38(1)
C(40) - H(40)	0.9500	C(41) - C(42)	1.36(1)
C(41) = H(41)	0 9500	C(42) = C(43)	1 37(1)
C(42) = U(42)	0.9500	C(42) = C(43)	1, 39(1)
C(42) - H(42)	0.9500	C(43) - C(44)	1.30(1)
C(43) = H(43)	0.9500	C(44) = H(44)	0.9500
C(45)-C(46)	1.38(1)	C(45) - C(50)	1.39(1)
C(46)-C(47)	1.40(1)	С(46)-Н(46)	0.9500
C(47)-C(48)	1.38(2)	С(47)-Н(47)	0.9500
C(48)-C(49)	1.39(1)	C(48)-H(48)	0.9500
C(49)-C(50)	1.39(1)	С(49)-Н(49)	0.9500
C(50)-H(50)	0.9500	C(51)-Li(6)	2.23(1)
C(51)-Li(7)	2.30(1)	C(52) - C(57)	1.39(1)
C(52) = C(53)	1.39(1)	C(53) - C(54)	1,40(1)
C(53) = H(53)	0 9500	C(54) = C(55)	1 37(1)
C(54) = H(54)	0.9500	C(55) = C(56)	1.36(1)
	0.9500	C(55) = C(50)	1.30(1)
C(55) = H(55)	0.9300	C(58) = C(57)	1.39(1)
C(56)-H(56)	0.9500	C(5/) = H(5/)	0.9500
C(58)-C(63)	1.37(1)	C(58)-C(59)	1.38(1)
C(59)-C(60)	1.41(1)	С(59)-Н(59)	0.9500
C(60)-C(61)	1.37(1)	С(60)-Н(60)	0.9500
C(61)-C(62)	1.37(1)	С(61)-Н(61)	0.9500
C(62)-C(63)	1.40(1)	С(62)-Н(62)	0.9500
С(63)-Н(63)	0.9500	C(64)-C(65)	1.38(1)
C(64) - C(69)	1.39(1)	C(65) - C(66)	1.38(1)
С (65) - Н (65)	0.9500	C(66) - C(67)	1.39(1)
C(66) = H(66)	0 9500	C(67) = C(68)	1 38(1)
C(67) = H(67)	0 9500	C(68) = C(69)	1 38(1)
C(68) = H(68)	0.9500	C(69) = H(69)	0 9500
C(00) = H(00)	1 20(1)	C(09) = H(09)	1 20(1)
C(70) = C(71)	1.38(1)	C(70) = C(75)	1.39(1)
C(71) - C(72)	1.39(1)	C(/1) - H(/1)	0.9500
C(72) - C(73)	1.37(1)	С(72)-Н(72)	0.9500
C(73)-C(74)	1.38(1)	С(73)-Н(73)	0.9500
C(74)-C(75)	1.39(1)	С(74)-Н(74)	0.9500
С(75)-Н(75)	0.9500	C(76)-Li(5)	2.12(1)
C(76)-Li(7)	2.43(1)	C(77)-C(78)	1.37(1)
C(77)-C(82)	1.37(1)	C(78)-C(79)	1.40(1)
С(78)-Н(78)	0.9500	C(79)-C(80)	1.34(1)
С(79)-Н(79)	0.9500	C(80) - C(81)	1.33(2)
C(80) = H(80)	0 9500	C(81) = C(82)	1 44(2)
C(81) = H(81)	0 9500	C(82) = H(82)	0 9500
C(83) = C(84)	1 37(1)	C(83) = C(88)	1 38(1)
C(83) = C(84)	1 26(1)	C(03) = C(00)	1.30(1)
C(84) = C(85)	1.30(1)	C(04) = H(04)	0.9500
C (85) -C (86)	1.38(1)	С(85)-Н(85)	0.9500
C(86)-C(87)	1.36(1)	С(86)-Н(86)	0.9500
C(87)-C(88)	1.38(1)	С(87)-Н(87)	0.9500
C(88)-H(88)	0.9500	C(89)-C(90)	1.38(1)
C(89)-C(94)	1.39(1)	C(90)-C(91)	1.39(1)
С(90)-Н(90)	0.9500	C(91)-C(92)	1.37(1)
С(91)-Н(91)	0.9500	C(92)-C(93)	1.38(1)
С(92)-Н(92)	0.9500	C(93)-C(94)	1.40(1)
С(93)-Н(93)	0.9500	С(94)-Н(94)	0.9500
C(95) - C(100)	1.38(1)	C(95) - C(96)	1.39(1)
C(96) = C(97)	1.38(1)	C(96) = H(96)	0.9500
C(97) = C(98)	1 37(1)	C(97) - H(97)	0 9500
C(98) = C(98)	±•3/(±) 1 35/1)	C(98) = H(98)	0 9500
C(90) = C(99)	1 10(1)	$C(30) = \Pi(30)$	0.9500
C(33) = C(100)	1.4U(1)	C(33) = H(33)	0.9500
C(100) = H(100)	0.9500	C(101) = C(102)	1.53(2)
C(101) - H(10A)	0.9900	C(101)-H(10B)	0.9900
C(102)-L1(1)	2.13(2)	C(IUZ)-H(IUC)	0.9900

C (102) -H (10D) C (103) -H (10F) C (104) -H (10F) C (104) -H (10J) C (105) -Li (8) C (105) -H (10L) C (106) -H (10N) C (107) -H (10P) C (108) -H (10R) C (108) -H (10T) Li (2) -Li (3) Li (3) -Li (4) Li (3) -Li (6) Li (4) -Li (6) Li (5) -Li (7) Li (7) -Li (8)	0.9900 0.9800 0.9800 2.72(2) 0.9900 0.9900 0.9800 0.9800 3.02(2) 2.76(2) 2.83(2) 2.86(2) 3.19(2) 2.55(2)	C (103) -H (10E) C (103) -H (10G) C (104) -H (10I) C (105) -C (106) C (105) -H (10K) C (106) -H (10M) C (107) -H (100) C (107) -H (100) C (108) -H (10S) Li (1) -Li (2) Li (2) -Li (4) Li (3) -Li (5) Li (4) -Li (5) Li (5) -Li (6) Li (6) -Li (7)	0.9800 0.9800 1.47(2) 0.9900 0.9900 0.9800 0.9800 0.9800 2.55(2) 3.32(2) 2.83(2) 2.83(2) 2.93(2) 3.21(2)
$\begin{array}{l} 0(1) - P(1) - C(1) \\ C(1) - P(1) - C(8) \\ C(1) - P(1) - Li(2) \\ 0(1) - P(1) - Li(2) \\ 0(2) - P(2) - C(1) \\ C(1) - P(2) - C(20) \\ 0(2) - P(2) - Li(3) \\ C(14) - P(2) - Li(3) \\ C(14) - P(2) - Li(5) \\ C(3) - P(3) - C(27) \\ O(3) - P(3) - C(33) \\ C(27) - P(3) - C(33) \\ C(27) - P(3) - C(33) \\ C(26) - P(3) - Li(2) \\ C(33) - P(3) - Li(2) \\ C(33) - P(3) - Li(2) \\ O(4) - P(4) - C(45) \\ O(4) - P(4) - C(39) \\ C(26) - P(4) - Li(4) \\ C(26) - P(4) - Li(4) \\ C(26) - P(4) - Li(4) \\ C(26) - P(4) - Li(6) \\ C(39) - P(4) - Li(6) \\ C(39) - P(4) - Li(6) \\ O(5) - P(5) - C(51) \\ C(51) - P(5) - C(52) \\ C(51) - P(5) - C(51) \\ C(51) - P(5) - Li(7) \\ O(6) - P(6) - Li(7) \\ O(6) - P(6) - Li(6) \\ C(64) - P(6) - Li(6) \\ C(64) - P(6) - Li(3) \\ Li(6) - P(6) - Li(3) \\ O(7) - P(7) - C(77) \\ C(73) - P(7) - C(77) \\ C(76) - P(7) - C(77) \\ C(76) - P(7) - Li(7) \\ O(8) - P(8) - C(95) \\ C(89) - P(8) - C(95) \\ C(76) - P(8) - Li(7) \\ O(8) - P(8) - Li(4) \\ P(1) - O(1) - Li(1) \\ Li(1) - O(1) - Li(2) \\ P(2) - O(2) - Li(4) \\ \end{array}$	$113.8(3) \\114.2(4) \\115.2(3) \\54.9(4) \\124.7(4) \\124.7(4) \\120.3(4) \\58.6(3) \\110.0(4) \\27.4(3) \\81.4(3) \\57.4(4) \\104.7(3) \\105.5(3) \\103.3(3) \\66.6(4) \\134.7(4) \\107.6(3) \\103.6(3) \\103.0(3) \\53.0(4) \\100.2(4) \\112.8(3) \\73.3(3) \\114.2(3) \\115.0(4) \\112.8(3) \\73.3(3) \\114.2(3) \\115.0(4) \\112.8(3) \\73.3(3) \\114.2(3) \\115.0(4) \\111.3(3) \\52.1(3) \\131.3(4) \\111.0(3) \\118.1(4) \\113.2(4) \\63.4(3) \\157.5(4) \\31.7(3) \\123.1(3) \\56.4(4) \\105.5(3) \\106.6(4) \\103.6(3) \\65.4(4) \\120.0(4) \\107.6(3) \\103.1(3) \\101.7(3) \\101.7(3) \\103.1(3) \\101.7(3) \\101.7(3) \\101.7(3) \\102.4(4) \\102.0(4) \\102.4(4) \\122.4(4) \\52.3(4) \\166.2(3) \\31.3(3) \\132.4(3) \\57.3(3) \\154.5(6) \\80.0(6) \\130.4(5) \\100$	$ \begin{array}{c} 0(1) - P(1) - C(8) \\ 0(1) - P(1) - C(2) \\ C(8) - P(1) - C(2) \\ C(1) - P(1) - Li(2) \\ O(2) - P(2) - C(14) \\ O(2) - P(2) - C(20) \\ C(14) - P(2) - Li(3) \\ C(20) - P(2) - Li(3) \\ C(20) - P(2) - Li(5) \\ O(2) - P(2) - Li(5) \\ O(2) - P(2) - Li(5) \\ O(3) - P(3) - C(26) \\ C(26) - P(3) - C(27) \\ C(26) - P(3) - C(26) \\ C(26) - P(3) - Li(2) \\ O(4) - P(4) - C(26) \\ C(26) - P(3) - Li(2) \\ O(4) - P(4) - C(45) \\ C(26) - P(4) - C(45) \\ C(26) - P(4) - Li(4) \\ O(4) - P(4) - Li(6) \\ Li(4) - P(4) - Li(6) \\ C(45) - P(5) - C(52) \\ O(5) - P(5) - C(58) \\ C(52) - P(5) - C(58) \\ C(52) - P(5) - C(58) \\ C(52) - P(5) - Li(7) \\ O(6) - P(6) - Li(7) \\ O(6) - P(6) - Li(7) \\ O(6) - P(6) - Li(6) \\ C(70) - P(6) - Li(7) \\ C(51) - P(6) - Li(6) \\ C(70) - P(6) - Li(3) \\ O(7) - P(7) - C(77) \\ O(7) - P(7) - C(76) \\ C(76) - P(7) - C(77) \\ O(7) - P(7) - Li(7) \\ O(8) - P(8) - C(76) \\ C(76) - P(8) - C(76) \\ C(76) - P(8) - C(76) \\ C(76) - P(8) - Li(7) \\ O(8) - P(8) - Li(7) \\ O(8) - P(8) - Li(7) \\ C(89) - P(8) - Li(7) \\ Li(5) - P(8) - Li(7) \\ Li(5) - P(8) - Li(7) \\ Li(5) - P(8) - Li(4) \\ Li(7) - P(8) - Li(4) \\ Li(5) - O(2) - Li(5) \\ Li(5) - O(2) - Li(5) \\ Li(5) - O(2) - Li(4) \\ \end{array}$	$\begin{array}{c} 105.3(3)\\ 106.6(3)\\ 100.5(3)\\ 59.0(4)\\ 133.4(4)\\ 106.4(3)\\ 104.9(3)\\ 103.0(3)\\ 53.5(4)\\ 146.0(4)\\ 109.9(3)\\ 122.4(3)\\ 115.6(3)\\ 109.9(4)\\ 116.5(3)\\ 49.3(4)\\ 118.3(4)\\ 111.0(3)\\ 116.8(4)\\ 113.7(4)\\ 65.1(3)\\ 156.7(4)\\ 32.7(3)\\ 126.5(3)\\ 59.8(4)\\ 106.6(3)\\ 104.9(3)\\ 103.9(3)\\ 62.1(4)\\ 122.9(4)\\ 105.6(3)\\ 104.9(3)\\ 105.2(3)\\ 55.6(4)\\ 96.6(3)\\ 114.0(4)\\ 72.3(3)\\ 115.6(3)\\ 115.6(3)\\ 107.4(4)\\ 50.3(3)\\ 115.6(3)\\ 117.1(4)\\ 107.4(4)\\ 50.3(3)\\ 133.9(4)\\ 111.8(3)\\ 115.8(3)\\ 115.8(3)\\ 145.8(3)\\ 88.8(3)\\ 81.0(3)\\ 66.2(4)\\ 105.6(4)\\ 96.6(5)\\ 10.5(4)\\ 64.3(3)\\ 145.8(4)\\ 78.9(3)\\ 109.5(4)\\ 8.9(4)\\ 130.6(5)\\ 95.4(6)\\ \end{array}$
P(2)-O(2)-Li(3) Li(4)-O(2)-Li(3) P(3)-O(3)-Li(2)	87.4(4) 79.8(5) 94.1(5)	Li(5)-O(2)-Li(3) P(3)-O(3)-Li(1) Li(1)-O(3)-Li(2)	83.2(5) 171.7(6) 85.3(6)

P(4)-O(4)-Li(6)	121.6(5)	P(4)-O(4)-Li(3)	132.2(5)
Li(6)-O(4)-Li(3)	95.2(6)	P(4)-O(4)-Li(4)	80.9(4)
Li(6)-O(4)-Li(4)	80.2(5)	Li(3)-O(4)-Li(4)	76.4(5)
P(5)-O(5)-Li(8)	157.2(6)	P(5)-O(5)-Li(7)	90.9(5)
Li(8)-O(5)-Li(7)	83.0(6)	P(6)-O(6)-Li(5)	136.3(5)
P(6) = O(6) = L1(3)	123.8(4)	L1(5)-O(6)-L1(3)	93.9(6)
P(6) = O(6) = L1(6)	82.3(3)	$L_1(5) = O(6) = L_1(6)$	83.7(5)
$L_1(3) = O(6) = L_1(6)$	79.8(5)	P(7) = O(7) = L1(8)	172.2(6)
$P(/) = O(/) = L_1(/)$	93.7(4)	$L_1(8) = O(7) = L_1(7)$	83.2(6)
P(8) = O(8) = LI(6)	131.8(3)	P(8) = O(8) = LL(4)	124.0(3)
$L_1(6) = O(8) = L_1(4)$	93.3(0)	P(0) = O(0) = LL(3)	02.2(J) 77 2(E)
C(103) = O(8) = C(101)	01.0(3)	$L_{1}(4) = O(8) = L_{1}(5)$	130(1)
$C(101) = O(9) = T_i(1)$	109 5 (8)	C(102) = O(10) = C(104)	114(1)
C(102) = O(10) = Li(1)	107(1)	C(102) = O(10) = Li(1)	118.8(8)
C(105) = O(11) = C(107)	114.7(8)	C(105) = O(11) = Li(8)	105.1(7)
C(107)-O(11)-Li(8)	119.2(7)	C(106) - O(12) - C(108)	111.9(8)
C(106)-O(12)-Li(8)	111.4(7)	C(108)-O(12)-Li(8)	128.5(7)
P(1)-C(1)-P(2)	131.4(4)	P(1)-C(1)-Li(3)	140.0(5)
P(2)-C(1)-Li(3)	88.7(5)	P(1)-C(1)-Li(2)	81.4(5)
P(2)-C(1)-Li(2)	106.6(5)	Li(3)-C(1)-Li(2)	85.8(5)
C(3)-C(2)-C(7)	119.4(8)	C(3)-C(2)-P(1)	120.9(6)
C(7)-C(2)-P(1)	119.7(6)	C(4)-C(3)-C(2)	119(1)
С(4)-С(3)-Н(3)	120.3	C(2)-C(3)-H(3)	120.3
C(3)-C(4)-C(5)	121(1)	C(3)-C(4)-H(4)	119.5
C (5) -C (4) -H (4)	119.5	C(6) - C(5) - C(4)	121(1)
C(6)-C(5)-H(5)	119.7	C(4) - C(5) - H(5)	119.7
C(5) - C(6) - C(7)	120(1)	C(5) - C(6) - H(6)	120.3
C(7) - C(6) - H(6)	120.3	C(6) = C(7) = C(2)	120.3(8)
C(0) - C(7) - H(7)	119.9	C(2) = C(7) = H(7)	121 5(6)
C(13) = C(3) = C(3)	118 9(6)	C(10) = C(0) = C(0)	119 / (8)
C(10) - C(9) - H(9)	120 3	C(10) = C(9) = H(9)	120 3
C(11) - C(10) - C(9)	122(1)	C(11) - C(10) - H(10)	119.1
С(9)-С(10)-Н(10)	119.1	C(12) - C(11) - C(10)	119(1)
С(12)-С(11)-Н(11)	120.4	С(10)-С(11)-Н(11)	120.4
C(11)-C(12)-C(13)	120(1)	C(11)-C(12)-H(12)	120.1
С(13)-С(12)-Н(12)	120.1	C(8)-C(13)-C(12)	121(1)
С(8)-С(13)-Н(13)	119.6	C(12)-C(13)-H(13)	119.6
C(19)-C(14)-C(15)	117.1(7)	C(19)-C(14)-P(2)	125.5(6)
C(15)-C(14)-P(2)	117.3(6)	C(16)-C(15)-C(14)	121.9(7)
C(16) - C(15) - H(15)	119.0	C(14) - C(15) - H(15)	119.0
C(17) - C(16) - C(15)	119.7(8)	C(17) - C(16) - H(16)	120.2
C(15) = C(17) = H(17)	120.2	C(10) = C(17) = C(10) C(10) = C(17) = H(17)	120 1
C(17) - C(18) - C(19)	120.1	C(17) - C(18) - H(18)	119 6
C(19) - C(18) - H(18)	119.6	C(14) - C(19) - C(18)	120.5(8)
C(14) - C(19) - H(19)	119.8	C(18)-C(19)-H(19)	119.8
C(21)-C(20)-C(25)	117.3(7)	C(21)-C(20)-P(2)	119.5(6)
C(25)-C(20)-P(2)	123.2(6)	C(20)-C(21)-C(22)	121(1)
С(20)-С(21)-Н(21)	119.3	C(22)-C(21)-H(21)	119.3
C(23)-C(22)-C(21)	120(1)	С(23)-С(22)-Н(22)	119.8
С(21)-С(22)-Н(22)	119.8	C(22)-C(23)-C(24)	119.6(8)
С(22)-С(23)-Н(23)	120.2	С(24)-С(23)-Н(23)	120.2
C(23) - C(24) - C(25)	120.3(8)	C(23) - C(24) - H(24)	119.8
C(25) - C(24) - H(24)	119.8	C(20) = C(25) = C(24)	121.0(8)
D(20) = C(25) = H(25)	119.5	C(24) = C(25) = H(25)	119.5
P(3) = C(26) = P(4) $P(4) = C(26) = T_{1}(4)$	127.3(4)	P(3) = C(26) = Li(4) P(3) = C(26) = Li(2)	142.0(3)
P(4) = C(26) = Li(2)	99 1 (5)	$L_{1}(3) = C(26) = L_{1}(2)$	92 2(5)
C(28) - C(27) - C(32)	118.0(8)	C(28) - C(27) - P(3)	122.1(6)
C(32) - C(27) - P(3)	119.8(7)	C(27) - C(28) - C(29)	121(1)
С(27)-С(28)-Н(28)	119.6	С(29)-С(28)-Н(28)	119.6
C(30)-C(29)-C(28)	120(1)	С(30)-С(29)-Н(29)	119.8
С(28)-С(29)-Н(29)	119.8	C(29)-C(30)-C(31)	119(1)
С(29)-С(30)-Н(30)	120.6	C(31)-C(30)-H(30)	120.6
C(32)-C(31)-C(30)	121(1)	С(32)-С(31)-Н(31)	119.8
С(30)-С(31)-Н(31)	119.8	C(31)-C(32)-C(27)	121(1)
С(31)-С(32)-Н(32)	119.3	С (27) –С (32) –Н (32)	119.3
C(38) - C(33) - C(34)	110.0(7)	U(38) - U(33) - P(3)	121.7(6)
$\cup (34) = \cup (33) = P(3)$ $\cap (35) = \cap (34) = \pi (34)$	110 7	C(33) = C(34) = C(33)	110 7
C(34) = C(34) = C(34) C(34) = C(35) = C(36)	120 1(8)	$C(33) = C(34) = \pi(34)$ $C(34) = C(35) = \pi(35)$	119 0
C(36) = C(35) = U(35)	119 9	C(35) = C(36) = C(37)	119 5/81
C(35) - C(36) - H(36)	120.3	C(37) - C(36) - H(36)	120.3
C (38) -C (37) -C (36)	120.5(8)	С(38) –С(37) –Н(37)	119.8
С (36) – С (37) – Н (37)	119.8	С (37) –С (38) –С (33)	120.9(8)

C (40) -C (39) -C (44) C (44) -C (39) -P (4)		C(33) = C(38) = H(38)	119.0
C(44) = C(39) = P(4)	118.8(7)	C(40) - C(39) - P(4)	120.2(6)
C(39) = C(40) = H(40)	120.8(6)	C(39) - C(40) - C(41) C(41) - C(40) - H(40)	120 0
C(42) - C(41) - C(40)	121(1)	C(42) - C(41) - H(41)	119.3
С(40)-С(41)-Н(41)	119.3	C(41)-C(42)-C(43)	118.9(8)
C(41)-C(42)-H(42)	120.6	C(43)-C(42)-H(42)	120.6
C(42)-C(43)-C(44)	121(1)	C(42)-C(43)-H(43)	119.4
С(44)-С(43)-Н(43)	119.4	C(43) - C(44) - C(39)	119.7(8)
C(43) - C(44) - H(44)	120.1	C(39) - C(44) - H(44)	120.1
C(40) - C(45) - C(50) C(50) - C(45) - P(4)	123 5(6)	C(45) - C(45) - C(47)	122(1)
C(45) - C(46) - H(46)	119.0	C(47) - C(46) - H(46)	119.0
C(48)-C(47)-C(46)	119(1)	С(48)-С(47)-Н(47)	120.3
C(46)-C(47)-H(47)	120.3	C(47)-C(48)-C(49)	120(1)
С(47)-С(48)-Н(48)	120.0	С(49)-С(48)-Н(48)	120.0
C(50) - C(49) - C(48)	119(1)	C(50) - C(49) - H(49)	120.5
C(48) - C(49) - H(49) C(49) - C(50) - H(50)	118 8	C(49) - C(50) - C(45) C(45) - C(50) - H(50)	122(1) 118 8
P(5) - C(51) - P(6)	129.9(5)	P(5) - C(51) - Li(6)	143.7(5)
P(6)-C(51)-Li(6)	86.2(4)	P(5)-C(51)-Li(7)	78.1(4)
P(6)-C(51)-Li(7)	105.4(5)	Li(6)-C(51)-Li(7)	90.2(5)
C (57) –C (52) –C (53)	117.0(7)	C(57)-C(52)-P(5)	123.5(6)
C(53) - C(52) - P(5)	119.2(6)	C(52) - C(53) - C(54)	121.2(8)
C(52) = C(53) = H(53) C(55) = C(54) = C(53)	119.4	C(54) - C(53) - H(53) C(55) - C(54) - H(54)	120.2
C(53) - C(54) - H(54)	120.2	C(56) - C(55) - C(54)	120.7(8)
C (56) -C (55) -H (55)	119.7	С (54) –С (55) –Н (55)	119.7
C(55)-C(56)-C(57)	119.4(8)	С(55)-С(56)-Н(56)	120.3
С(57)-С(56)-Н(56)	120.3	C(52)-C(57)-C(56)	122.0(8)
С (52) – С (57) – Н (57)	119.0	С(56)-С(57)-Н(57)	119.0
C(63) - C(58) - C(59)	118.9(7)	C(63) - C(58) - P(5)	119.1(6)
C(58) = C(58) = H(59)	119.7	C(50) = C(59) = C(50) C(60) = C(59) = H(59)	119.7
C(61) - C(60) - C(59)	120(1)	C(61) - C(60) - H(60)	120.3
С(59)-С(60)-Н(60)	120.3	C(62)-C(61)-C(60)	119.9(8)
C(62)-C(61)-H(61)	120.1	C(60)-C(61)-H(61)	120.1
C(61) - C(62) - C(63)	121(1)	С(61)-С(62)-Н(62)	119.7
C(63) = C(62) = H(62) C(58) = C(63) = H(63)	119./	C(58) = C(63) = C(62) C(62) = C(63) = H(63)	120(1) 110 0
C(55) = C(55) = R(55)	117 8(7)	C(62) = C(63) = R(63)	119.8(6)
C(69) - C(64) - P(6)	122.3(6)	C(66) - C(65) - C(64)	121.7(8)
С(66)-С(65)-Н(65)	119.2	С(64)-С(65)-Н(65)	119.2
C(65)-C(66)-C(67)	120(1)	С(65)-С(66)-Н(66)	120.1
С(67)-С(66)-Н(66)	120.1	C(68) - C(67) - C(66)	119.5(8)
С(68)-С(6/)-Н(6/)	120.2	C(66) - C(67) - H(67)	120.2
C(67) C(69) C(69)			110 0
C(67)-C(68)-C(69) C(69)-C(68)-H(68)	119.9	C(68) - C(69) - C(64)	119.9 120.9(8)
C(67)-C(68)-C(69) C(69)-C(68)-H(68) C(68)-C(69)-H(69)	119.9 119.6	C (68) -C (69) -C (64) C (64) -C (69) -H (69)	119.9 120.9(8) 119.6
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75)	119.9 119.6 118.2(7)	C(67) - C(68) - R(68) C(68) - C(69) - C(64) C(64) - C(69) - H(69) C(71) - C(70) - P(6)	119.9 120.9(8) 119.6 121.1(6)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6)	119.9 119.6 118.2(7) 120.3(6)	C (66) - C (66) - H (66) C (66) - C (69) - C (64) C (64) - C (69) - H (69) C (71) - C (70) - P (6) C (70) - C (71) - C (72)	119.9 120.9(8) 119.6 121.1(6) 121.2(8)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71)	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4	C (68) - C (68) - H (68) C (68) - C (69) - C (64) C (64) - C (69) - H (69) C (71) - C (70) - P (6) C (70) - C (71) - C (72) C (72) - C (71) - H (71)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (72) -H (72)	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8	C (68) - C (69) - C (64) $C (68) - C (69) - C (64)$ $C (64) - C (69) - H (69)$ $C (71) - C (70) - P (6)$ $C (70) - C (71) - C (72)$ $C (72) - C (71) - H (71)$ $C (73) - C (72) - H (72)$ $C (72) - C (72)$	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73)	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3	C (68) - C (69) - C (64) $C (64) - C (69) - C (64)$ $C (64) - C (69) - H (69)$ $C (71) - C (70) - P (6)$ $C (70) - C (71) - C (72)$ $C (72) - C (71) - H (71)$ $C (73) - C (72) - H (72)$ $C (72) - C (73) - C (74)$ $C (74) - C (73) - H (73)$	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75)	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8)	C (68) - C (69) - C (64) $C (64) - C (69) - C (64)$ $C (64) - C (69) - H (69)$ $C (71) - C (70) - P (6)$ $C (70) - C (71) - C (72)$ $C (72) - C (71) - H (71)$ $C (73) - C (72) - H (72)$ $C (72) - C (73) - C (74)$ $C (74) - C (73) - H (73)$ $C (73) - C (74) - H (74)$	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74)	119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8	C (74) - C (75) - C (75) - C (75) $C (66) - C (67) - C (64)$ $C (74) - C (70) - C (74)$ $C (71) - C (70) - C (72)$ $C (72) - C (71) - C (72)$ $C (72) - C (71) - H (71)$ $C (73) - C (72) - H (72)$ $C (72) - C (73) - C (74)$ $C (74) - C (73) - H (73)$ $C (73) - C (74) - H (74)$ $C (74) - C (75) - C (70)$	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75)	119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 120.5(8) 119.8 119.9	C (74) - C (75) - C	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8)	119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 120.5(8) 119.8 119.9 136.0(5)	C (70) - C (71) - C (72) - C (71) - C (72) - C (72) - C (71) - C (72) - C (72) - C (73) - C (74) - C (73) - C (73) - C (74) - C (75) - C (70) - C (75) - C (70) - C (75) - C (70) - C (75) - C	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (9) -C (76) -Li (7)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4)	C (7) - C (7	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82)	119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1)	C (7) - C (7	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4) 88.8(5)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7)	119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 119.8(8)	C (7) - C (7) - C (6) - H (7) - C (7	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4) 88.8(5) 120.8(6) 120.8(6) 121.2(8) 120.2(8) 120.2(8) 120.2(8) 121.2(8) 121.2(8) 121.2(8) 122.2(8) 123.2(8) 123.2(8) 123.2(8) 123.2(8) 123.2(8) 123.2(8) 123.2(8) 123.2(8) 122.2(8) 1
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119.(1) 119.8(8) 119.4	C (76) - C (76) - C (64) $C (64) - C (69) - C (64)$ $C (64) - C (70) - C (70) - P (6)$ $C (70) - C (71) - C (72)$ $C (72) - C (71) - H (71)$ $C (73) - C (72) - H (72)$ $C (72) - C (73) - C (74)$ $C (74) - C (73) - H (73)$ $C (73) - C (74) - H (74)$ $C (74) - C (75) - C (70)$ $C (70) - C (75) - H (75)$ $P (7) - C (76) - Li (5)$ $P (7) - C (76) - Li (7)$ $Li (5) - C (76) - Li (7)$ $C (78) - C (77) - P (7)$ $C (77) - C (78) - C (79)$ $C (79) - C (78) - H (78)$	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4) 88.8(5) 120.8(6) 121.(1) 119.4
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (72) -C (73) -H (73) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -C (78)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 119.8(8) 119.4 119(1)	C (67) -C (78) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -C (70) C (70) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -C (79) C (79) -C (78) -H (78) C (80) -C (79) -H (79)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4) 88.8(5) 120.8(6) 121.(1) 119.4 120.5
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -C (78) C (78) -C (79) -H (79) C (78) -C (79) -H (79) C (78) -C (79) -H (79)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119.(1) 119.8(8) 119.4 119(1) 120.5	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -C (70) C (70) -C (75) -H (75) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (79) -C (78) -H (78) C (80) -C (79) -H (79) C (81) -C (80) -C (79) C (70) -C (60) -Li (7)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4) 88.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 119.4
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -C (78) C (78) -C (79) -H (79) C (81) -C (80) -H (80) C (80) -C (81) -C (82) C (80) -C (81) -C (82) C (80) -C (81) -C (82) C (80) -C (81) -C (80) -H (80) C (80) -C (81) -C (82) C (80) -C (81) -C (81) C (80) -C (81) -C (81) -C (81) C (80) -C (81) -C (8	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 119.8(8) 119.4 119(1) 120.5 118.9 120(1)	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -C (70) C (70) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -C (79) C (79) -C (78) -H (78) C (80) -C (79) -H (79) C (81) -C (80) -C (79) C (79) -C (80) -H (80) C (90) -C (91) -H (91) C (91) -H (91) C (91) -H (91) C (91) -H (91) C (91) -	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 76.3(4) 88.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 118.9 120.1
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (79) C (78) -C (79) -H (79) C (81) -C (80) -H (80) C (82) -C (81) -C (82) C (82) -C (81) -H (81)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 119.8(8) 119.4 119(1) 120.5 118.9 120(1) 120.1	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -C (70) C (70) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -C (79) C (79) -C (78) -H (78) C (80) -C (79) -H (79) C (81) -C (80) -C (79) C (79) -C (81) -H (81) C (80) -C (81) -H (81) C (77) -C (82) -C (81)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121.(1) 119.4 120.5 122(1) 118.9 120.1 119(1)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (78) -C (79) -H (79) C (81) -C (80) -H (80) C (80) -C (81) -C (82) C (82) -C (81) -H (81) C (77) -C (82) -H (82)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 119.8(8) 119.4 119(1) 120.5 118.9 120(1) 120.7	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -C (70) C (70) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -C (79) C (79) -C (78) -H (78) C (80) -C (79) -H (79) C (79) -C (80) -H (80) C (80) -C (81) -H (81) C (77) -C (82) -C (81) C (81) -C (82) -H (82)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 118.9 120.1 119(1) 120.7
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (68) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (78) -C (79) -H (79) C (81) -C (80) -H (80) C (80) -C (81) -C (82) C (82) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -C (88)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119.4 119(1) 120.5 118.9 120(1) 120.1 120.7 117.0(8)	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (80) -C (81) -H (81) C (79) -C (82) -H (82) C (84) -C (83) -P (7)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 118.9 120.1 119(1) 120.7 121.9(6)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (69) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (78) -C (79) -H (78) C (78) -C (79) -H (78) C (80) -C (81) -C (82) C (82) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -C (88) C (88) -C (83) -P (7)	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119.4 119(1) 120.5 118.9 120(1) 120.1 120.7 117.0(8) 121.2(6)	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -H (78) C (79) -C (78) -H (78) C (80) -C (79) -H (79) C (79) -C (80) -H (81) C (80) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -P (7) C (85) -C (84) -C (83)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 118.9 120.1 119(1) 120.7 121.9(6) 122(1)
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (69) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (78) -C (79) -H (78) C (78) -C (79) -H (78) C (78) -C (79) -H (78) C (80) -C (81) -C (82) C (82) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -C (88) C (88) -C (83) -P (7) C (85) -C (84) -H (84)	119.9 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 119.8(8) 119.4 119(1) 120.5 118.9 120(1) 120.1 120.7 117.0(8) 121.2(6) 118.8 121.2(6) 118.8 121.2(6) 118.8 121.2(6) 12	C (68) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -H (78) C (79) -C (78) -H (78) C (80) -C (79) -H (79) C (79) -C (80) -H (78) C (80) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -P (7) C (83) -C (84) -H (84) C (83) -C (84) -H (84)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 118.9 120.1 119(1) 120.7 121.9(6) 122(1) 118.8 120.2 121.1 122(1) 122.1 122.1 122.1 123.2 123.2 123.2 123.2 124.2 125
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (69) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (78) -C (79) -H (79) C (81) -C (80) -H (80) C (80) -C (81) -C (82) C (82) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -P (7) C (85) -C (84) -H (84) C (86) -C (85) -C (86) C (86) -C (85) -H (85) C (86) -C (85	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 119.8 119.9 136.0(5) 93.3(5) 95.1(4) 119(1) 120.5 118.9 120(1) 120.1 120.7 117.0(8) 121.2(6) 118.8 121(1) 119.8 119.8 121(1) 120.8 121.2(1) 120.8 121.2(1) 120.8 121.2(1) 120.8 121.2(1) 121.2	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -C (79) C (77) -C (78) -H (78) C (80) -C (79) -H (79) C (79) -C (80) -H (78) C (80) -C (81) -H (81) C (77) -C (82) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -P (7) C (83) -C (84) -H (84) C (83) -C (84) -H (84) C (83) -C (85) -H (85) C (87) -D	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121(1) 119.4 120.5 122(1) 118.9 120.1 119(1) 120.7 121.9(6) 122(1) 118.8 119.8 119.8 119.8 119.8 119.1 120.1 120.7 121.9(6) 122(1) 121.2 122(1) 122.1 120.7 122.9(6) 122.(1) 122.1 122.1 122.1 122.1 122.1 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 124.2 125.2 120.1 125.2 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.5 120.1 120.7 121.9(6) 122.(1) 122.2 121.9 122.2 121.9 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 123.2 123.2 123.2 124.2 125
C (67) -C (68) -C (69) C (69) -C (68) -H (68) C (69) -C (69) -H (69) C (71) -C (70) -C (75) C (75) -C (70) -P (6) C (70) -C (71) -H (71) C (73) -C (72) -C (71) C (71) -C (72) -H (72) C (72) -C (73) -H (73) C (73) -C (74) -C (75) C (75) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -P (8) P (8) -C (76) -Li (5) P (8) -C (76) -Li (5) P (8) -C (76) -Li (7) C (78) -C (77) -C (82) C (82) -C (77) -P (7) C (77) -C (78) -H (78) C (80) -C (79) -H (78) C (78) -C (79) -H (78) C (78) -C (79) -H (78) C (80) -C (81) -C (82) C (82) -C (81) -H (80) C (80) -C (81) -C (82) C (82) -C (81) -H (81) C (77) -C (82) -H (82) C (84) -C (83) -P (7) C (85) -C (84) -H (84) C (84) -C (85) -C (86) C (86) -C (85) -H (85) C (87) -C (86) -H (85) C (87) -C (86) -H (86)	120(1) 119.9 119.6 118.2(7) 120.3(6) 119.4 120.5(8) 119.8 120.3 120.5(8) 119.8 120.5(8) 119.8 136.0(5) 93.3(5) 95.1(4) 119.4 119.(1) 120.5 118.9 120(1) 120.1 120.7 117.0(8) 121.2(6) 118.8 121(1) 119.8 121.0	C (67) -C (68) -H (68) C (68) -C (69) -C (64) C (64) -C (69) -H (69) C (71) -C (70) -P (6) C (70) -C (71) -C (72) C (72) -C (71) -H (71) C (73) -C (72) -H (72) C (72) -C (73) -C (74) C (74) -C (73) -H (73) C (73) -C (74) -H (74) C (74) -C (75) -H (75) P (7) -C (76) -Li (5) P (7) -C (76) -Li (7) Li (5) -C (76) -Li (7) C (77) -C (76) -Li (7) C (77) -C (78) -C (79) C (77) -C (78) -C (79) C (77) -C (78) -H (78) C (80) -C (79) -H (79) C (81) -C (80) -H (80) C (80) -C (81) -H (81) C (77) -C (82) -C (81) C (81) -C (82) -H (82) C (84) -C (83) -P (7) C (85) -C (84) -C (83) C (83) -C (84) -H (84) C (84) -C (85) -H (85) C (87) -C (86) -C (85) C (85) -C (86) -H (86)	119.9 120.9(8) 119.6 121.1(6) 121.2(8) 119.4 119.8 119(1) 120.3 119.8 120.1(8) 119.9 128.8(5) 120.8(6) 121.1) 188.8(5) 120.8(6) 121.1) 119.4 120.5 122.(1) 118.9 120.1 119(1) 120.7 121.9(6) 122.(1) 118.8 119.8 119.8 119.8 119.1 121.0

С(88)-С(87)-Н(87)	119.4	C(87)-C(88)-C(83)	121.1(8)
C(87)-C(88)-H(88)	119.5	C(83)-C(88)-H(88)	119.5
C(90)-C(89)-C(94)	119.2(7)	C(90)-C(89)-P(8)	120.0(6)
C(94)-C(89)-P(8)	120.7(6)	C(89)-C(90)-C(91)	121.2(8)
C(89) - C(90) - H(90)	119.4	C(91) - C(90) - H(90)	119.4
C(92) - C(91) - C(90)	119.5(8)	C(92) - C(91) - H(91)	120.3
C(90) = C(91) = H(91) C(91) = C(92) = H(92)	110 8	C(91) = C(92) = C(93) C(93) = C(92) = H(92)	110 8
C(92) - C(93) - C(94)	120(1)	C(92) - C(92) - H(93)	119 9
C(94) - C(93) - H(93)	119.9	C(92) = C(93) = C(93)	119.5(8)
C(89) - C(94) - H(94)	120.3	C(93) - C(94) - H(94)	120.3
C(100) -C(95) -C(96)	118.6(7)	C(100)-C(95)-P(8)	120.7(6)
C(96)-C(95)-P(8)	120.5(6)	C(97)-C(96)-C(95)	121(1)
С(97)-С(96)-Н(96)	119.7	С(95)-С(96)-Н(96)	119.7
C(98)-C(97)-C(96)	120(1)	С(98)-С(97)-Н(97)	120.2
С(96)-С(97)-Н(97)	120.2	C(99)-C(98)-C(97)	121.1(8)
С (99) –С (98) –Н (98)	119.4	С (97) –С (98) –Н (98)	119.4
C(98) - C(99) - C(100)	120(1)	C(98) - C(99) - H(99)	120.3
C(100) = C(99) = H(99) C(95) = C(100) = H(100)	120.3	C(95) = C(100) = C(99)	110 7
O(9) - C(100) - H(100)	106(1)	O(9) - C(100) - H(100)	110 5
C(102) - C(101) - H(10A)	110.5	O(9) - C(101) - H(10B)	110.5
C(102) -C(101) -H(10B)	110.5	H(10A) - C(101) - H(10B)	108.7
O(10) -C(102) -C(101)	109(1)	O(10)-C(102)-Li(1)	43.9(6)
C(101)-C(102)-Li(1)	76.9(8)	O(10)-C(102)-H(10C)	110.0
С(101)-С(102)-Н(10С)	110.0	Li(1)-C(102)-H(10C)	151.5
O(10)-C(102)-H(10D)	110.0	C(101)-C(102)-H(10D)	110.0
Li(1)-C(102)-H(10D)	94.1	H(10C)-C(102)-H(10D)	108.3
O(9)-C(103)-H(10E)	109.5	O(9)-C(103)-H(10F)	109.5
H(10E) -C(103) -H(10F)	109.5	O(9)-C(103)-H(10G)	109.5
H(IUE) = C(IU3) = H(IUG)	109.5	H(10F) = C(103) = H(10G)	109.5
U(10) = C(104) = H(10H)	109.5	O(10) - C(104) - H(101)	109.5
H(10H) = C(104) = H(10T)	109.5	H(10T) = C(104) = H(10T)	109.5
O(11) - C(105) - C(106)	110(1)	O(11) - C(105) - Li(8)	45.1(5)
C(106)-C(105)-Li(8)	78.4(6)	O(11)-C(105)-H(10K)	109.7
С(106)-С(105)-Н(10К)	109.7	Li(8)-C(105)-H(10K)	91.7
O(11)-C(105)-H(10L)	109.7	C(106)-C(105)-H(10L)	109.7
Li(8)-C(105)-H(10L)	153.4	H(10K)-C(105)-H(10L)	108.2
O(12)-C(106)-C(105)	109(1)	O(12)-C(106)-H(10M)	110.0
С(105)-С(106)-Н(10М)	110.0	O(12)-C(106)-H(10N)	110.0
C(105) - C(106) - H(10N)	110.0	H(10M) - C(106) - H(10N)	108.4
U(11) - C(107) - H(100)	109.5	O(11) - C(107) - H(10P)	109.5
H(100) = C(107) = H(100) H(100) = C(107) = H(100)	109.5	H(10P) = C(107) = H(10Q)	109.5
O(12) - C(108) - H(10R)	109.5	O(12) - C(108) - H(10S)	109.5
H(10R) - C(108) - H(10S)	109.5	O(12) - C(108) - H(10T)	109.5
H(10R)-C(108)-H(10T)	109.5	H(10S)-C(108)-H(10T)	109.5
O(3)-Li(1)-O(1)	103.5(7)	O(3)-Li(1)-O(10)	113.8(8)
O(1)-Li(1)-O(10)	115.7(8)	O(3)-Li(1)-O(9)	123.2(8)
O(1)-Li(1)-O(9)	116.3(7)	O(10)-Li(1)-O(9)	84.1(6)
O(3)-Li(1)-Li(2)	49.6(5)	O(1)-Li(1)-Li(2)	54.6(5)
O(10) - Li(1) - Li(2)	139.7(8)	O(9) - Li(1) - Li(2)	136.2(8)
O(3) - L1(1) - C(102)	135.8(8)	$O(1) - L_1(1) - C(102)$	114.9(8)
U(10) = L1(1) = C(102) I = L(2) = I = L(1) = C(102)	29.2(4) 161 1(8)	$O(3) = L_1(1) = C(102)$ $O(3) = L_1(2) = O(1)$	37.1(6)
$O(3) = I_i(2) = C(1)$	157 4(8)	O(1) - Li(2) - C(1)	75 8 (5)
$O(3) - L_1(2) - C(26)$	75.2(5)	O(1) - Li(2) - C(26)	164.6(7)
C(1)-Li(2)-C(26)	119.5(6)	O(3) - Li(2) - Li(1)	45.1(4)
O(1)-Li(2)-Li(1)	45.3(4)	C(1)-Li(2)-Li(1)	116.6(6)
C(26)-Li(2)-Li(1)	120.2(6)	O(3)-Li(2)-P(3)	36.6(3)
O(1)-Li(2)-P(3)	126.5(6)	C(1)-Li(2)-P(3)	152.6(7)
C(26)-Li(2)-P(3)	38.7(3)	Li(1)-Li(2)-P(3)	81.5(5)
O(3)-Li(2)-P(1)	124.6(6)	O(1)-Li(2)-P(1)	36.2(3)
C(1) - Li(2) - P(1)	39.7(3)	C(26) - Li(2) - P(1)	159.2(6)
L1(1) - L1(2) - P(1)	19.5(5)	P(3) = L1(2) = P(1)	112 0(6)
$C(1) = T_i (2) = T_i (3)$	104.4(/) 46 7(4)	$C(26) = L_1(2) = L_1(3)$	113.3(0) 113.3(0)
$T_{i}(1) - T_{i}(2) - T_{i}(3)$	159.2(7)	$P(3) - I_i(2) - I_i(3)$	118.9(5)
P(1)-Li(2)-Li(3)	80.7(4)	O(3)-Li(2)-Li(4)	109.9(6)
O(1)-Li(2)-Li(4)	153.7(6)	C(1)-Li(2)-Li(4)	79.8(5)
C(26)-Li(2)-Li(4)	40.6(3)	Li(1)-Li(2)-Li(4)	147.2(7)
P(3)-Li(2)-Li(4)	74.9(4)	P(1)-Li(2)-Li(4)	119.1(5)
Li(3)-Li(2)-Li(4)	51.4(4)	O(4)-Li(3)-O(6)	98.6(6)
O(4)-Li(3)-C(1)	130.0(7)	O(6) - Li(3) - C(1)	128.7(6)
O(4) - Li(3) - O(2)	104.1(6)	O(6) - Li(3) - O(2)	83.7(5)
し(エ) = 山エ(ろ) = U(乙)	10.0(4)	∪(4)=⊥⊥(3)=P(Z)	⊥∠♂.⊃(b)

O(6)-Li(3)-P(2)	101.7(5)	C(1)-Li(3)-P(2)	37.9(3)
O(2)-Li(3)-P(2)	34.0(2)	O(4)-Li(3)-Li(4)	61.0(5)
O(6)-Li(3)-Li(4)	96.5(6)	C(1)-Li(3)-Li(4)	94.3(5)
O(2)-Li(3)-Li(4)	43.7(4)	P(2)-Li(3)-Li(4)	70.0(4)
O(4) - Li(3) - Li(5)	99.0(6)	O(6)-Li(3)-Li(5)	42.9(4)
$C(1) - L_1(3) - L_1(5)$	105.1(5)	O(2) - L1(3) - L1(5)	41.6(3)
$P(2) = L_1(3) = L_1(5)$	68.0(4)	L1(4) - L1(3) - L1(5)	60.8(5)
O(4) - L1(3) - L1(6)	42.2(4)	O(6) - L1(3) - L1(6)	5/./(4)
C(1) = L1(3) = L1(6)	100 5 (7)	U(2) = LI(3) = LI(6)	88.3(3) C1 C(E)
$P(2) = \Box I(3) = \Box I(0)$	122.3(3)	$\Box \perp (4) = \Box \perp (3) = \Box \perp (6)$	01.0(J) 92.5(5)
$D_{1}(2) = D_{1}(2) = D_{1}(2)$	164 0(7)	O(4) - III(3) - III(2)	02.J(J) 47.6(A)
$O(0) = I_1(3) = I_1(2)$	80 6(5)	$P(2) = I_1 i_1(3) = I_1 i_2(2)$	66 3 (4)
$L_1(4) = L_1(3) = L_1(2)$	69.9(5)	$L_{i}(5) = L_{i}(3) = L_{i}(2)$	121.2(6)
$L_1(1) = L_1(0) = L_1(2)$	118.6(6)	$O(4) - I_i(3) - P(6)$	86.9(4)
O(6)-Li(3)-P(6)	24.5(2)	C(1)-Li(3)-P(6)	143.0(6)
O(2)-Li(3)-P(6)	107.4(5)	P(2)-Li(3)-P(6)	125.3(4)
Li(4)-Li(3)-P(6)	109.4(5)	Li(5)-Li(3)-P(6)	65.9(4)
Li(6)-Li(3)-P(6)	54.2(3)	Li(2)-Li(3)-P(6)	168.0(5)
O(2)-Li(4)-O(8)	101.5(6)	O(2)-Li(4)-C(26)	125.9(7)
O(8)-Li(4)-C(26)	126.5(7)	O(2)-Li(4)-O(4)	98.7(5)
0(8)-Li(4)-0(4)	81.8(5)	C(26)-Li(4)-O(4)	69.1(5)
O(2)-Li(4)-P(4)	125.7(6)	O(8)-Li(4)-P(4)	95.9(5)
C(26)-Li(4)-P(4)	38.3(3)	O(4)-Li(4)-P(4)	34.1(2)
O(2)-Li(4)-Li(3)	56.5(4)	O(8)-Li(4)-Li(3)	96.5(6)
C(26) - Li(4) - Li(3)	91.4(6)	$O(4) - L_1(4) - L_1(3)$	42.6(3)
$P(4) = L_1(4) = L_1(3)$	/0.8(4)	O(2) - L1(4) - L1(5)	41./(4)
O(8) = L1(4) = L1(5)	60.2(4) 86.8(5)	C(20) = LI(4) = LI(5) D(4) = Ii(4) = Ii(5)	120.7(5)
$\Box(4) = \Box \pm (4) = \Box \pm (5)$	60.8(4)	(4) - 11 (4) - 11 (5)	96 1 (6)
$O(8) = I_1 (4) = I_1 (6)$	41 8 (4)	C(26) = Li(4) = Li(6)	103 7(6)
$O(4) - I_{i}(4) - I_{i}(6)$	41.1(3)	$P(4) = I_i (4) = I_i (6)$	65.5(4)
Li(3)-Li(4)-Li(6)	60.4(4)	Li(5) –Li(4) –Li(6)	62.0(4)
O(2)-Li(4)-P(8)	90.7(5)	O(8)-Li(4)-P(8)	24.1(2)
C(26)-Li(4)-P(8)	143.1(6)	O(4)-Li(4)-P(8)	104.8(4)
P(4)-Li(4)-P(8)	119.3(5)	Li(3)-Li(4)-P(8)	108.6(5)
Li(5)-Li(4)-P(8)	55.4(4)	Li(6)-Li(4)-P(8)	63.8(4)
O(2)-Li(4)-Li(2)	78.8(5)	O(8)-Li(4)-Li(2)	150.5(7)
C(26)-Li(4)-Li(2)	47.2(4)	O(4)-Li(4)-Li(2)	69.1(4)
P(4)-Li(4)-Li(2)	62.5(4)	Li(3) - Li(4) - Li(2)	58.7(4)
L1(5) = L1(4) = L1(2)	111.6(5)	L1(6) - L1(4) - L1(2)	108./(5)
P(0) = LI(4) = LI(2) O(2) = Ii(5) = C(76)	128 1 (7)	O(2) = L1(3) = O(8) O(6) = L1(5) = O(76)	97.4(0) 128 0(7)
$O(2) = I_1(5) = O(8)$	120.1(7) 85 0(5)	O(6) = Li(5) = O(8)	120.0(7) 95 5(5)
C(76) - Li(5) - O(8)	69.0(4)	$O(2) = I_1 i (5) = P(8)$	102.6(5)
O(6) - Li(5) - P(8)	120.4(5)	C(76)-Li(5)-P(8)	36.7(3)
O(8)-Li(5)-P(8)	33.5(2)	O(2)-Li(5)-Li(3)	55.2(4)
O(6)-Li(5)-Li(3)	43.2(4)	C(76)-Li(5)-Li(3)	150.7(6)
O(8)-Li(5)-Li(3)	83.3(4)	P(8)-Li(5)-Li(3)	116.7(5)
O(2)-Li(5)-Li(4)	42.9(4)	O(6)-Li(5)-Li(4)	94.6(5)
C(76)-Li(5)-Li(4)	102.8(6)	O(8)-Li(5)-Li(4)	42.5(3)
P(8)-Li(5)-Li(4)	67.3(4)	Li(3)-Li(5)-Li(4)	58.4(4)
O(2)-Li(5)-Li(6)	94.9(5)	O(6)-Li(5)-Li(6)	55.5(4)
C(76) - Li(5) - Li(6)	92.7(5)	O(8) - Li(5) - Li(6)	40.3(3)
P(8) = L1(5) = L1(6)	6/.2(4)	L1(3) - L1(5) - L1(6)	28.8(4)
LI(4) = LI(5) = LI(6)	59.6(4) 00.0(5)	O(2) = LI(3) = P(2)	22.0(2)
$O(8) = L_1(5) = P(2)$	90.0(J) 106.3(A)	$D(8) = T_{1}(5) = D(2)$	123 7 (4)
$U(0) = L_1(0) = F(2)$ $L_1(3) = L_1(5) = P(2)$	54 6(3)	$F(0) = \Box I(0) = F(2)$ $T_{ij}(4) = T_{ij}(5) = P(2)$	63 9(4)
$L_1(0) = L_1(0) = P(2)$	107.7(4)	O(2) = Li(5) = Li(7)	155.9(6)
$O(6) - I_i (5) - I_i (7)$	78.6(5)	C(76) = Li(5) = Li(7)	49.5(4)
O(8)-Li(5)-Li(7)	71.9(4)	P(8)-Li(5)-Li(7)	61.2(4)
Li(3)-Li(5)-Li(7)	113.6(5)	Li(4)-Li(5)-Li(7)	113.3(5)
Li(6)-Li(5)-Li(7)	63.0(4)	P(2)-Li(5)-Li(7)	168.1(5)
O(4)-Li(6)-O(8)	100.2(6)	O(4)-Li(6)-C(51)	129.8(6)
O(8)-Li(6)-C(51)	124.3(6)	O(4)-Li(6)-O(6)	83.9(5)
0(8)-Li(6)-O(6)	98.7(5)	C(51)-Li(6)-O(6)	68.8(4)
O(4)-Li(6)-P(6)	98.7(5)	O(8)-Li(6)-P(6)	125.7(6)
C(51)-Li(6)-P(6)	38.1(3)	O(6) - Li(6) - P(6)	34.3(2)
$\cup (4) - L1(6) - L1(3)$	42.6(4)	$\cup (8) - L1(6) - L1(3)$	95.2(5)
$\Box (JI) = LI (0) = LI (3)$ D (6) = Ii (6) = Ii (2)	LUD.D(0)	$\cup (0) = L1 (0) = L1 (3)$ $\cap (4) = L1 (6) = L1 (4)$	42.3(3) 50 777)
$O(8) = T_i i (6) = T_i i (4)$	42 9(4)	$C(51) = T_i (6) = T_i (4)$	148 3(7)
$O(6) - I_i (6) - I_i (4)$	72.J(4) 83 8(5)	$P(6) = T_i (6) = T_i (4)$	117 9(5)
Li(3) - Li(6) - Li(4)	58.0(4)	O(4) - Li(6) - Li(5)	95.9(5)
O(8)-Li(6)-Li(5)	58.2(4)	C(51)-Li(6)-Li(5)	89.9(5)
O(6)-Li(6)-Li(5)	40.8(3)	P(6)-Li(6)-Li(5)	69.5(4)

Li(3)-Li(6)-Li(5)	58.8(4)	Li(4)-Li(6)-Li(5)	58.5(4)
O(4)-Li(6)-P(4)	25.7(2)	O(8)-Li(6)-P(4)	87.4(4)
C(51)-Li(6)-P(4)	148.2(5)	O(6)-Li(6)-P(4)	107.9(4)
P(6)-Li(6)-P(4)	123.9(4)	Li(3)-Li(6)-P(4)	65.5(4)
Li(4)-Li(6)-P(4)	54.7(4)	Li(5)-Li(6)-P(4)	108.0(4)
O(4)-Li(6)-Li(7)	155.6(7)	0(8)-Li(6)-Li(7)	78.5(5)
C(51)-Li(6)-Li(7)	45.8(4)	0(6)-Li(6)-Li(7)	72.3(4)
P(6)-Li(6)-Li(7)	64.5(4)	Li(3)-Li(6)-Li(7)	113.0(5)
Li(4)-Li(6)-Li(7)	111.8(5)	Li(5)-Li(6)-Li(7)	62.4(4)
P(4)-Li(6)-Li(7)	165.8(5)	0(7)-Li(7)-0(5)	91.2(5)
O(7)−Li(7)−C(51)	155.7(7)	O(5)-Li(7)-C(51)	76.9(5)
O(7)−Li(7)−C(76)	74.2(5)	O(5)−Li(7)−C(76)	161.6(8)
C(51)-Li(7)-C(76)	120.8(6)	O(7)−Li(7)−P(5)	125.6(6)
O(5)-Li(7)-P(5)	37.1(3)	C(51)-Li(7)-P(5)	39.8(3)
C(76)-Li(7)-P(5)	159.9(6)	0(7)-Li(7)-Li(8)	45.6(4)
O(5)-Li(7)-Li(8)	45.7(4)	C(51)-Li(7)-Li(8)	118.8(6)
C(76)-Li(7)-Li(8)	119.2(6)	P(5)-Li(7)-Li(8)	80.9(5)
O(7)-Li(7)-P(7)	35.9(3)	0(5)-Li(7)-P(7)	126.6(6)
C(51)-Li(7)-P(7)	153.0(6)	C(76)-Li(7)-P(7)	38.3(3)
P(5)-Li(7)-P(7)	161.1(5)	Li(8)-Li(7)-P(7)	81.3(5)
O(7)-Li(7)-P(8)	97.6(5)	O(5)-Li(7)-P(8)	144.5(7)
C(51)-Li(7)-P(8)	104.4(5)	C(76)-Li(7)-P(8)	32.7(2)
P(5)-Li(7)-P(8)	133.0(5)	Li(8)-Li(7)-P(8)	133.5(6)
P(7)-Li(7)-P(8)	65.3(3)	0(7)-Li(7)-Li(5)	103.4(5)
O(5)-Li(7)-Li(5)	156.4(7)	C(51)-Li(7)-Li(5)	82.5(5)
C(76)-Li(7)-Li(5)	41.7(3)	P(5)-Li(7)-Li(5)	121.6(5)
Li(8)-Li(7)-Li(5)	144.4(6)	P(7)-Li(7)-Li(5)	71.5(4)
P(8)-Li(7)-Li(5)	52.6(3)	O(7)-Li(7)-Li(6)	154.9(6)
O(5)-Li(7)-Li(6)	113.6(6)	C(51)-Li(7)-Li(6)	44.0(4)
C(76)-Li(7)-Li(6)	80.8(4)	P(5)-Li(7)-Li(6)	79.3(4)
Li(8)-Li(7)-Li(6)	159.2(6)	P(7)-Li(7)-Li(6)	119.0(5)
P(8)-Li(7)-Li(6)	60.5(3)	Li(5)-Li(7)-Li(6)	54.5(4)
O(7)-Li(8)-O(5)	102.5(7)	O(7)-Li(8)-O(11)	117.9(8)
O(5)-Li(8)-O(11)	114.1(7)	O(7)-Li(8)-O(12)	123.1(8)
O(5)-Li(8)-O(12)	117.0(7)	O(11)-Li(8)-O(12)	82.2(5)
O(7)-Li(8)-Li(7)	51.2(5)	O(5)-Li(8)-Li(7)	51.4(5)
O(11)-Li(8)-Li(7)	136.0(8)	O(12)-Li(8)-Li(7)	141.5(8)
O(7)-Li(8)-C(105)	141.9(8)	O(5)-Li(8)-C(105)	110.5(6)
O(11)-Li(8)-C(105)	29.8(3)	O(12)-Li(8)-C(105)	56.2(4)
Li(7)-Li(8)-C(105)	156.5(7)		

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for III.6Li2

atom	U11	U22	U33	U23	U13	U12
P(1)	28(1)	32(1)	37(1)	-5(1)	-2(1)	-15(1)
P(2)	29(1)	27(1)	30(1)	-7(1)	0(1)	-14(1)
P(3)	31(1)	30(1)	30(1)	-6(1)	-1(1)	-12(1)
P(4)	28(1)	30(1)	25(1)	-2(1)	0(1)	-14(1)
P(5)	28(1)	24(1)	32(1)	-7(1)	2(1)	-13(1)
P(6)	25(1)	20(1)	28(1)	-4(1)	0(1)	-7(1)
P(7)	40(1)	24(1)	24(1)	-2(1)	2(1)	-13(1)
P(8)	26(1)	22(1)	23(1)	-3(1)	-1(1)	-9(1)
0(1)	34(3)	50(3)	33(3)	-5(3)	-3(2)	-23(3)
0(2)	32(3)	26(3)	29(3)	-7(2)	-5(2)	-13(2)
0(3)	35(3)	43(3)	31(3)	-6(2)	-3(2)	-16(3)
0(4)	34(3)	32(3)	27(3)	-2(2)	1(2)	-19(2)
0(5)	33(3)	25(3)	28(3)	-4(2)	-1(2)	-9(2)
0(6)	33(3)	20(2)	30(3)	-2(2)	-4(2)	-14(2)
0(7)	74(4)	25(3)	30(3)	-6(2)	2(3)	-13(3)
0(8)	27(3)	26(3)	20(3)	-2(2)	-2(2)	-10(2)
0(9)	81(5)	80(5)	67(5)	-41(4)	17(4)	-45(5)
0(10)	90(6)	115(7)	39(4)	1(4)	-16(4)	-65(5)
0(11)	57(4)	55(4)	47(4)	-17(3)	-9(3)	-7(3)
0(12)	59(4)	46(4)	34(3)	2(3)	5(3)	-19(3)
C(1)	28(4)	27(4)	35(4)	-3(3)	-1(3)	-15(3)
C(2)	30(4)	46(5)	38(5)	3(4)	-17(4)	-17(4)
C(3)	67(7)	58(6)	50(6)	-16(5)	1(5)	-41(5)
C(4)	72(7)	65(7)	74(7)	-30(6)	-9(6)	-37(6)
C(5)	78(7)	54(6)	67(7)	-1(5)	-26(6)	-43(6)
C(6)	50(6)	53(6)	53(6)	5(5)	-16(5)	-30(5)
C(7)	40(5)	36(5)	57(6)	-3(4)	-15(4)	-18(4)
C(8)	30(4)	31(4)	48(5)	-10(4)	-1(4)	-20(4)
C(9)	35(5)	49(5)	43(5)	7(4)	-4(4)	-17(4)
C(10)	57(6)	47(6)	76(7)	9(5)	-27(6)	-27(5)
C(11)	43(6)	44(6)	79(8)	-1(5)	-10(5)	-11(5)

C(12)	34(5)	41(5)	75(7)	-7(5)	-2(5)	-4(4)
C(13)	43(5)	43(5)	49(5)	-8(4)	0(4)	-16(4)
C(14)	27(4)	42(5)	37(5)	-5(4)	-1(3)	-21(4)
C(15)	35(4)	35(4)	33(4)	-2(4)	-2(4)	-16(4)
C(16)	30(4)	51(5)	34(5)	-6(4)	$\perp (4)$	-18(4)
C(17)	37(3)	03(0)	49(0)	-2(5)	0(4)	-29(5) -27(5)
C(10)	43(5)	33(5)	75(7) 56(6)	-6(4)	-5(4)	-27(3) -18(4)
C(20)	30(4)	30(4)	40(5)	-10(4)	3(4)	-14(4)
C(21)	34(5)	52(6)	100(10)	-32(6)	-6(5)	-15(5)
C(22)	32(5)	56(6)	140(10)	-50(7)	-6(6)	-2(5)
C(23)	54(6)	45(5)	66(7)	-28(5)	3 (5)	-14(5)
C(24)	73(7)	44(5)	66 ('7) CE (C)	-22(5)	-15(5)	-24(5)
C(25)	42(5)	39(5) 22(4)	65(6) 31(4)	-20(5)	-21(5)	U(4) -9(3)
C(27)	34(4)	35(4)	34(5)	-4(4)	-1(4)	-11(4)
C(28)	42(5)	39(5)	40(5)	-2(4)	-3(4)	-9(4)
C(29)	53(6)	44(6)	61(7)	-3(5)	3(5)	-12(5)
C(30)	69(7)	39(5)	74(8)	-13(5)	-17(6)	-4(5)
C(31)	110(10)	54(7)	100(10)	-38(7)	-22(8)	-12(7)
C(32)	72(7)	49(6) 38(4)	29(4)	=14(5) =13(4)	-11(5) 7(3)	-9(5) -14(4)
C (34)	31(4)	49(5)	40(5)	-7(4)	0(4)	-15(4)
C(35)	42(5)	54(6)	58(6)	-9(5)	-3(4)	-32(5)
C(36)	53(6)	50(6)	51(6)	-4(5)	4(5)	-31(5)
C(37)	67(6)	52(6)	29(5)	9(4)	-3(4)	-32(5)
C(38)	41(5)	42(5)	35(5)	-9(4)	3(4)	-16(4)
C(39)	32(4)	29(4)	32(4)	0(3)	\perp (3)	-17(4)
C(40)	29(4)	40 (5) 57 (6)	31(4) 45(5)	=10(4)	-7(4)	-8(4) -19(5)
C(42)	47(6)	75(7)	54(6)	-11(5)	-13(5)	-34(5)
C(43)	58(6)	64(6)	50(6)	-17(5)	9(5)	-40(6)
C(44)	36(5)	55(6)	51(5)	-16(4)	-4(4)	-23(4)
C(45)	33(4)	30(4)	28(4)	-3(3)	4(3)	-10(4)
C(46)	46(6)	72(7)	47(6)	14(5)	-6(5)	-19(5)
C(47)	63(7)	100(10) 56(7)	4/(/)	∠/(6) 13(5)	-11(6) 6(7)	-16(7)
C(40) C(49)	83(8)	38(5)	42(6)	3(4)	7 (5)	-29(5)
C(50)	50(5)	34(5)	35(5)	-2(4)	2(4)	-15(4)
C(51)	28(4)	27(4)	31(4)	-4(3)	-1(3)	-15(3)
C(52)	27(4)	29(4)	36(4)	-8(3)	1(3)	-12(3)
C(53)	37 (5)	32(4)	40(5)	-2(4)	-3(4)	-12(4)
C(54) C(55)	29(4)	44(5)	36(5)	-2(4)	3(4)	-9(4) -16(4)
C(56)	49(6)	27(4)	59(6)	-1 (4)	8(5)	-7(4)
C(57)	47 (5)	28(4)	50(5)	2(4)	13(4)	-15(4)
C(58)	24(4)	29(4)	39(5)	-12(4)	5(3)	-11(3)
C(59)	61(6)	55(6)	50(6)	-7(5)	3 (5)	-39(5)
C(60)	65(7)	43(5)	80(8)	-10(5)	17(6)	-40(5)
C(61)	48(6)	04(7) 75(7)	83(8) 77(8)	-33(6)	13(5)	-41(5) -34(6)
C(63)	47(5)	48(5)	48(5)	-10(4)	0(4)	-26(5)
C(64)	28(4)	34(4)	33(4)	-9(3)	-2(3)	-16(4)
C(65)	35(5)	35(5)	50(5)	-8(4)	-1(4)	-14(4)
C(66)	66(7)	55(6)	56(6)	1(5)	5(5)	-45(6)
C(67)	39(5)	73(7)	59(6) 65(6)	-22(5)	14(5)	-32(5)
C(69)	30(4)	54(8)	41 (5)	-23(3) -12(4)	9(4)	-15(4)
C(70)	29(4)	21(4)	34(4)	-6(3)	1(3)	-2(3)
C(71)	54(6)	34(5)	50(5)	-2(4)	-12(4)	-23(4)
C(72)	64(6)	25(4)	62(6)	13(4)	-14(5)	-18(4)
C(73)	55(6)	38(5)	47(6)	1(4)	-6(5)	-10(5)
C(74)	52(6)	38(5)	45(5)	(4)	-20(4)	-9(4)
C(75)	42(3) 29(4)	27(4)	41(3) 29(4)	-1(4)	-11(4) -4(3)	-7(4) -11(3)
C(77)	35(4)	22(4)	34(5)	10(3)	8(4)	-3(3)
C(78)	43(5)	56(6)	43(5)	6(4)	-11(4)	-22(5)
C(79)	54(6)	77(7)	76(8)	15(6)	-23(6)	-43(6)
C(80)	48(7)	54(7)	130(10)	27 (7)	-12(7)	-20(6)
C(81)	4U(6) 73(8)	/U(8) 41(6)	130(10)	-17(8)	35(7)	-17(6)
C (83)	44(5)	30(4)	23(4)	4(3)	3(3)	-20(0) -17(4)
C(84)	96(8)	49(6)	39(6)	-16(5)	-28(6)	5(6)
C(85)	76(8)	90(10)	40(6)	-18(6)	-23(6)	-1(7)
C(86)	31(5)	71(7)	37(5)	14(5)	-5(4)	-12(5)
C(87)	35(5)	40(5)	69(7)	0(5)	-8(5)	-9(4)
U(88)	46(5)	ろろ (ち)	52(6)	-⊥(4)	-⊥∪(4)	-18(4)

C(89) C(90) C(91)	22(4) 31(4) 33(5)	36(4) 39(5) 57(6)	25(4) 35(5) 42(5)	-11(3) 2(4) 5(4)	5 (3) -9 (4)	-9(3) -12(4)
C (91) C (92)	54(6)	84 (7)	42 (5) 37 (5)	-16(5)	-11(4)	-43(6)
C(93) C(94)	50(5)	35 (5)	47 (5)	-7 (4)	-8(4)	-27(4)
C(95) C(96)	31(4) 32(5)	21(4) 52(6)	27(4) 57(6)	-1(3) -21(5)	-2(3) 4(4)	-2(3) -11(4)
C(97) C(98)	32(5) 54(6)	66(7) 35(5)	61(6) 46(6)	-22(5) -10(4)	8(4) 5(5)	-7(5) 16(5)
C(99)	74(7)	27 (5)	79(8)	-17(5)	21(6)	-15(5)
C(101)	160 (10)	140 (10)	70(10)	-60(10)	30 (10)	-100 (10)
C(102) C(103)	80(10)	80 (10)	150(10)	-50(10)	10(10)	-26(8)
C(104) C(105)	100(10)	64(7)	68 (8)	-35(6)	-35(7)	-5(7)
C(106) C(107)	63 (7) 72 (8)	86(8) 90(10)	41(6) 90(10)	-21(6) -30(7)	1(5) -14(7)	13(6) -33(7)
C(108) Li(1)	66(7) 25(7)	58(7) 50(10)	87(8) 50(10)	13(6) -22(7)	14(6) 6(6)	-31(6) -11(7)
Li(2) Li(3)	40(8) 43(8)	50(10) 25(7)	34(8) 42(8)	-6(7) -7(6)	-3(6) 0(6)	-24(7) -19(6)
Li(4)	22(7)	42 (8)	46(8)	-14(7)	-2(6)	-8(6)
Li(6)	29(7)	25(6)	29(7)	0(5)	-12(5)	1(5)
Li(8)	60(10)	39(8)	33(7)	-14(6)	2(6)	-24(7)

The anisotropic displacement factor exponent takes the form 2 pi^2 [h^2a*^2U(11) +...+ 2hka*b*U(12)]

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for III.6Li2

atom	x	У	Z	U(eq)
Н(З)	5205	5490	693	63
H(4)	4697	4038	673	77
H(5)	3314	3729	1176	71
H(6)	2544	4755	1738	59
H(7)	3127	6147	1791	51
H(9)	3939	8692	625	52
H(10)	2213	10218	510	69
H(11)	681	10687	1039	70
H(12)	892	9660	1705	66
H(13)	2649	8164	1839	55
H(15)	3967	6876	2660	41
H(16)	2458	6673	3123	46
H(17)	2131	5078	3161	58
H(18)	3456	3589	2814	64
H(19)	5085	3707	2399	52
H(21)	8168	4025	2139	74
H(22)	9362	2303	1897	92
H(23)	8644	1436	1551	67
H(24)	6740	2290	1436	69
H(25)	5556	4060	1645	61
H(28)	10338	4684	1723	52
H(29)	11611	2802	1725	69
H(30)	11892	1879	1148	78
H(31)	10870	2860	570	106
H(32)	9671	4733	560	73
H(34)	11009	6602	1170	49
H(35)	12011	7610	771	57
H(36)	11380	8723	143	59
H(37)	9776	8768	-94	59
H(38)	8770	7767	303	48
H(40)	10246	6702	1962	42
H(41)	11443	6929	2349	57
H(42)	10869	8561	2643	65
H(43)	9075	9991	2550	63
H(44)	7843	9796	2169	53
H(46)	5928	9298	1359	72
H(47)	5378	10743	801	99
H(48)	6682	11469	440	99
H(49)	8492	10835	672	67

H(50)	9025	9371	1220	50
H(53)	3813	9556	4277	46
H(54)	1914	10819	4445	48
H(55)	1215	12596	4070	49
H(56)	2327	13085	3497	61
H(57)	4212	11828	3324	55
ц (50)	6359	10037	2063	62
п(JJ)	7524	11000	2903	70
H(60)	/534	11903	2908	12
H(61)	8566	11626	3461	69
H(62)	8336	10506	4079	73
H(63)	7075	9643	4150	55
H(65)	4126	7318	3583	48
Н(66)	2500	7357	4028	66
H(67)	793	8989	4010	65
H(68)	767	10595	3565	62
H(69)	2394	10541	3110	49
H(71)	4959	10939	2625	53
ц(72)	1560	12168	2004	63
u(73)	3730	119/0	1/00	61
п(73)	2120	10201	1045	EC
H(/4)	3130	10391	1045	20
H(/5)	3446	9204	2284	4 /
H(78)	6242	3958	3497	57
Н(79)	4746	3396	3534	77
H(80)	3183	4023	4027	101
H(81)	3077	5114	4504	106
H(82)	4649	5598	4507	89
H(84)	7691	5125	4718	83
H(85)	9035	3753	5116	93
н(86)	9914	1904	4952	63
H(87)	9484	1527	4353	61
H(88)	8162	2929	3942	52
ц(00)	0202	1526	3026	13
H(90)	1001E	4JZ0 E017	1010	45
п(91)	10762	JUL7 C014	4213	J4 C1
H(92)	10762	6814	4081	61
H(93)	9757	8105	3547	68
H(94)	8756	7608	3150	48
Н(96)	10673	4919	2753	58
Н(97)	12012	3324	2458	69
H(98)	11579	1795	2495	69
Н(99)	9821	1847	2804	78
H(100)	8472	3440	3111	58
H(10A)	7245	4899	-284	133
H(10B)	8269	5205	-223	133
H(10C)	6864	6842	-556	148
H(10D)	5877	6750	-191 0000	148
H(10F)	7393	3581	344	155
II (10E)	7607	2070	761	155
H(10F)	1021	2010	701	155
H(10G)	8367	3084	300	155
H(IUH)	6434	86/8	-381	150
H(10I)	6463	8784	98	150
H(10J)	5453	8558	-22	150
H(10K)	5771	8937	5073	95
H(10L)	6185	8034	5479	95
H(10M)	4865	7346	5457	94
H(10N)	4190	8687	5427	94
н(100)	7774	8040	4655	121
H(10P)	8343	6699	4744	121
H(100)	8029	7431	5123	121
(±∨у) ц(10р)	3510	7228	5116	112
II (10C)	2020	7016	1660	110
п(IUS) п(105)	3239	1910	4000	110
н (тод)	2191	806U	2069	ΤTR

4. Chapitre 4

Les structures de **IV.12** (CCDC-893616), **IV.13** (CCDC-893617) et **IV.14** (CCDC-893618) ont été déposées à la CCDC.

5. Chapitre 5

Les structure de **V.1Li** (CCDC-847286), **V.2** (CCDC-847287), **V.4** (CCDC-847288), **V.5** (CCDC-847289), **V.6** (CCDC-847290) et **V.7** (CCDC-847291) ont été déposées à la CCDC.
6. Chapitre 6

Les structures de VI.15 (CCDC-907108), VI.17a (CCDC-907109), VI.17b (CCDC-907110), VI.21 (CCDC-907111) ont été déposées à la CCDC.

II. Données théoriques

Dans un souci de respect de l'environnement, les données théoriques relatives à ce manuscrit n'ont pas été imprimées. Elles sont disponibles sur demande par email à hadrien.heuclin@gmail.com.