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Abstract

The primary goal of the thesis is to study localization of Laplacian eigenfunctions in bounded domains

when an eigenfunction is mainly supported by a small region of the domain and vanishing outside this

region. The high-frequency and low-frequency localization in simple and irregular domains has been

investigated for both Dirichlet and Neumann boundary conditions.

Three types of high-frequency localization (whispering gallery, bouncing ball, and focusing eigemodes)

have been revisited in circular, spherical and elliptical domains by deriving explicit inequalities on the

norm of eigenfunctions. In turn, no localization has been found in most rectangular domains that led to

formulating an open problem of characterization of domains that admit high-frequency localization.

Using the Maslov-type differential inequalities, the exponential decay of low-frequency Dirichlet eigenfunc-

tions has been extensively studied in various domains with branches of variable cross-sectional profiles.

Under an explicit condition, the L2-norm of an eigenfunction has been shown to exponentially decay along

the branch with an explicitly computed decay rate. This rigorous upper bound, which is applicable in any

dimension and for both finite and infinite branches, presents a new achievement in the theory of classical

and quantum waveguides, with potential applications in microelectronics, optics and acoustics.

For bounded quantum waveguides with constant cross-sectional profiles, a sufficient condition on the

branch lengths has been derived for getting a localized eigenfunction. The existence of trapped modes

in typical finite quantum waveguides (e.g L-shape, bent strip and cross of two strips) has been proven

provided that their branches are long enough, with an accurate estimate on the required minimal length.

The high sensitivity of the localization character of eigenmodes to the length of branches and to the shape

of the waveguide may potentially be used for switching devices in microelectronics and optics.

The properties of localized eigenmodes in a class of planar spectral graphs have been analyzed. An

efficient divide-and-conquer algorithm for solving the eigenproblem of the Laplacian matrix of undirected

weighted graphs has been proposed and shown to run faster than traditional algorithms.

A spectral approach has been developed to investigate the survival probability of reflected Brownian

motion in reactive media. The survival probabilities have been represented in the form of a spectral

decomposition over Laplacian eigenfunctions. The role of the geometrical structure of reactive regions

and its influence on the overall reaction rate in the long-time regime has been studied. This approach

presents a mathematical basis for designing optimal geometrical shapes of efficient catalysts or diffusive

exchangers.
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Chapter 1

Motivation

The Laplace eigenvalue problem has always been a golden topic in physics, mathematics and computer

science. A classical eigenproblem in a bounded domain Ω ∈ Rd can be formulated as

{

△u+ λu = 0, in Ω,

it satisfies a boundary conditon on ∂Ω,
(1.1)

where △ = ∇ · ∇ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

is the Laplace operator. The most common boundary conditions are

given as following







Dirichlet boundary condition: u = 0 on ∂Ω,

Neumann boundary condition: ∂u
∂n

= 0 on ∂Ω,

Robin boundary condition: ∂u
∂n

+ hu = 0 on ∂Ω (h > 0),

(1.2)

where h is a positive constant and n is the normal vector oriented outwards the domain.

The Laplacian eigenproblem may arise from various problems of mathematical physics, such e.g vibration

modes of a thin membrane, vibration of water waves on the ocean surface, standing waves in optical or

acoustical cavity resonators, propagation of particles in waveguides, chemical reactors with heterogeneous

spatial distributions of catalytic germs, the eigenstates of a single trapped particle in quantum mechanics

etc. The properties of Laplacian eigenvalues and eigenfunctions have been investigated in many scientific

disciplines, including spectral theory, theory of acoustical, optical, and quantum waveguides, condensed

matter physics and quantum mechanics, quantum graphs, spectral theory, image processing, computer

graphics, dynamical systems and quantum billiards, biology, etc.

The geometrical structure of Laplacian eigenfunctions has been studied in various directions [4, 51, 52,

80, 108, 109, 111, 116–118, 131, 145, 156, 159, 167, 168, 171, 176, 213, 228–230]. During 1990s, Sapoval

and co-workers have formulated and investigated the problem of localization in irregularly-shaped do-

mains through numerical simulations and experiments [71, 76, 104, 106, 187, 188, 191–193]. Localized

eigenmodes in bounded planar domains have a special interest in their own right. Qualitatively, an eigen-

function is localized if it is mainly distributed in a fraction of a domain, and decays rapidly outside this

region. There are many questions related to localization. How can the geometrical irregularities influence

1
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localization? What is the difference between localized and non-localized eigenmodes? Interestingly, a

generic mathematical definition of localization is still unknown. One of the goals of this monograph is to

investigate the properties of localization, and more importantly, to find a mechanism for explaining this

phenomenon.

This chapter serves first to introduce a historical overview about localization of Laplacian eigenfunctions

in a bounded domain in R2 and second to emphasize our contribution and the importance of our works.

The chapter ends by giving the outline of the monograph.

1.1 High-frequency localization

1.1.1 History

During 1870s, Lord Rayleigh, one of the most famous English physicists, mentioned in his textbook The-

ory of Sound about the study of whispering waves in Saint Paul Cathedral in London. During 1910s,

he continued by studying the problem of whispering gallery and showing the existence of localized eigen-

modes in elliptical domains [179]. Motivated by Rayleigh’s works, Raman and Sutherland documented an

acoustical observation in the whispering gallery under the dome of Saint Paul Cathedral in London. In

this observation, a whisper from a person standing at one position in the whispering gallery will propa-

gate along the curved wall to another person stood near the wall [177, 178]. In 1960, Keller and Rubinow

discussed these so-called whispering gallery modes (Fig. 1.1a) and also bouncing ball modes (Fig. 1.1b),

and showed that these modes exist for a two-dimensional domain with arbitrary smooth convex curve as

its boundary [128]. Lazutkin and co-workers developed a semiclassical approximation of Laplacian eigen-

functions in convex domains [13, 137–140]. In 1994, Chen and his colleagues used Mathieu and modified

Mathieu functions to visualize whispering gallery modes and bouncing ball modes in elliptical domains

[41], and moreover, they also reported another type of localization named focusing modes (Fig. 1.1c).

All these eigenmodes become more and more localized in a small subdomain when the corresponding

eigenvalue increases. In 1997, Bäcker and co-workers investigated the number of these eigenmodes in a

class of two-dimensional quantized billiards with two parallel walls [14].

In quantum billiards, a lot of studies are related to the structure of high-frequency Laplacian eigenfunctions

[11, 13, 89, 141, 148, 201]. For a bounded domain Ω with an ergodic billiard flow [200], Shnirelman proved

one of his well-known theorems (also known as quantum ergodicity theorem [34, 45, 232, 233]) which states

that among the set of L2-normalized Dirichlet (or Neumann) Laplacian eigenfunctions, there is a sequence

ujk
of density 1 (i.e., lim

k→∞
jk/k = 1), such that for any open subset V ⊂ Ω, one has [198]

lim
k→∞

∫

V

|ujk
(r)|2dr =

µd(V )

µd(Ω)
, (1.3)

where µd is the Lebesgue measure.

From Shnirelman’s theorem, {ujk
} is a sequence of non-localized eigenfunctions which become more and

more uniformly distributed over the domain (see [34, 89, 116] for further discussion and references). How-
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ever, this theorem does not prevent the existence of localized eigenmodes in Ω. How large the excluded

subsequence of “localized” eigenfunctions may be? In a special case of arithmetic hyperbolic manifolds,

Rudnick and Sarnak proved that there is no strong localization (“scarring”) onto totally geodesic sub-

manifolds [186]. This statement is known as the quantum unique ergodicity (QUE). The validity of

this statement for other dynamical systems (in particular, ergodic billiards) remains under investigation

[17, 65, 105]. The related notion of weak quantum ergodicity was discussed by Kaplan and Heller [125].

A classification of eigenstates to regular and irregular ones was thoroughly discussed (see [175, 219] and

references therein).

Related to “scarring“ phenomenon, Liu and co-workers investigated the localization of Dirichlet-Laplacian

eigenfunctions on classical periodic orbits in a spiral-shaped billiards. Bies and co-workers presented a

brief survey on scarring and symmetric effects of eigenfunctions in a stadium billiard [24]. Other references

can be found in [95].

It is worth mentioning that there are many physical experiments related to whispering gallery and bounc-

ing ball modes. For instance, Wiersig investigated the structure of whispering gallery modes in optical

microdisks perturbed by nanoparticles [227]. Albert and co-workers discussed whispering gallery modes

lasing in electrically driven quantum dot micropillars [3]. Sridhar and co-workers performed a series of

experiments in microwave cavities in the shape of Sinai’s billiard [206, 207]. In particular, they observed

bouncing ball modes and modes with quasi-rectangular or quasi-circular symmetry. Bäcker and Schubert

briefly studied the rate of quantum ergodicity in Euclidean billiards and visualized theoretical results

by numerical computations in three kinds of Euclidean billiards (stadium, cosine, and cardioid billards)

using up to 6000 eigenfunctions. They also analyzed the influence of localized eigenfunctions (such as e.g

bouncing ball modes or scarred eigenfunctions) on the rate of quantum ergodicity [15].

(a) A whispering gallery mode (b) A bouncing ball mode (c) A focusing mode

Figure 1.1: Three types of high-frequency localization: (a) - whispering gallery modes, (b) - bouncing
ball modes, (c) - focusing modes.

1.1.2 Our research goal and contribution

As mentioned above, there are numerous localized eigenfunctions (such as e.g whispering gallery and

bouncing ball modes) in two-dimensional domains with smooth and convex boundaries. We aim at

investigating high-frequency localization in several simple domains.
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By a method of separating variables, we will revisit three types of high-frequency localizations: whispering

gallery, bouncing ball and focusing modes in circular, spherical and elliptical domains. We present rigorous

inequalities for better illustration for the existence of such localized eigenmodes in these domains. Using

these inequalities, we show the emergence of bouncing ball modes in an elliptical annulus. This is also an

example of a non-convex domain in which the high-frequency localization happens.

Note that the unit disk can be regarded as the N-sided polygon in the limit N →∞. Although there exist

various localized eigenmodes in the unit disk, the existence of high-frequency localization in an N-sided

regular (equilateral) polygon is still unknown. We guess that there may be no localized eigenmode in

any regular polygon. In order to clarify this statement, we consider the eigenfunctions in rectangles or

equilateral triangles. We indicate that there is no localization in most rectangular domains. For the

equilateral triangle, we prove that all symmetric eigenfunctions of the Dirichlet-Laplace operator are not

localized.

(a)

Figure 1.2: A localized vibration in a fractal drum from an experiment of Sapoval and co-workers [191].

1.2 Low-frequency localization

1.2.1 Previous works

The low-frequency localization of Laplacian eigenfunctions in bounded domains has been investigated for

a long time. In 1989, when observing low-frequency vibrations of several fractal drums, Sapoval found

several localized modes (Fig. 1.5, top), which are mostly distributed near the boundary [190]. These

localized modes have infinite derivatives near the re-entrant point of the boundary of the domains. Two

years later, by using experimental and numerical approaches, Sapoval and co-workers observed several

low-frequency localized vibrations of a membrane bounded by a rigid fractal drum (Fig. 1.2 and 1.3)

[191]. Motivated by these results, Sapoval and Gobron continued the study of vibrations in irregular or

fractal resonators with Dirichlet boundary condition and concluded that localized modes can emerge at

low-frequency eigenvalues if there exist “narrow channels” in the drum geometry [192]. Lapidus and Pang

[135] studied Laplacian eigenfunctions with Dirichlet boundary condition in a class of planar domains Ω

with fractal boundaries and explained the damping of wave excitations in a fractal drum from previous

experiments by Sapoval et al.. A numerical evidence for the boundary behavior of eigenfunctions was

reported by Lapidus and co-workers in [136], with numerous pictures of eigenfunctions. Later, Daudert
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and Lapidus considered more specifically the localization character of eigenfunctions in von Koch domains

[58]. In particular, different measures of localization were discussed.

O

Vibrating membrane

Rigid support

Loudspeaker

(a) (b)

Figure 1.3: An experiment by using the visual observation of low-frequency vibrations of a fractal drum
[191]: (a) - The loudspeaker is situated above the fractal drum to excite low-frequency vibration, above
20Hz, (b)- A prefractal domain.

For Neumann boundary condition, there also exist localized eigenmodes (Fig. 1.5, bottom) in irregular

and fractal resonators, which are confined near the boundary [188]. Even and his co-workers [71] exper-

imentally observed acoustical resonances of a fractal-shaped liquid crystal film. For Dirichlet boundary

condition, they compared the amplitude distribution of Laplacian eigenfunctions in a fractal domain from

numerical and experimental approaches, and more importantly, visualized the emergence of localized

modes at various frequencies in fractal geometries. The resonance frequencies from their experiments

agree with numerical results. They analyzed two types of localization related to “strong” and “weak”

localization mechanisms. In the study of sound attenuation by noise-protective walls, Félix and co-workers

have further extended the analysis to the union of two domains with different refraction indices which

are separated by an irregular boundary [76]. Many eigenfunctions (Fig. 1.4) of the related second order

elliptic operator were shown to be localized on this boundary (so-called “astride localization”). A rigorous

mathematical theory of these important phenomena is still missing.

A “definition” of localization was also given in [76] by combining L2 and L4 norms to define the “existence

area” as

S(u) =
‖u‖4L2(Ω)

‖u‖4L4(Ω)

. (1.4)

From this definition, a function u was called localized when its existence area S(u) was much smaller than

the area µ2(Ω) [76] (this definition trivially extends to higher dimensions). In fact, if a function is small

in a subdomain, the fourth power diminishes it stronger than the second power. For instance, if Ω = [0, 1]

and u is 1 on the subinterval Ω0 = [1/4, 1/2] and 0 otherwise, one has ‖u‖L2(Ω) = ‖u‖L4(Ω) = 1/2 so that

S(u) = 1/4, i.e. the length of the subinterval Ω0. Once again, the smallness of S(u)/µ2(Ω) is conventional.

Berry and co-workers developed a new method to approximate the Neumann spectrum of the Laplace

operator on a planar fractal set Ω as a renormalized limit of the Neumann spectra of the standard Laplacian
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(a) u8 (b) u8 (c) u21 (d) u21

(e) u8 (f) u10 (g) u12 (h) u16

Figure 1.4: Examples of localized Neumann eigenfunctions in two domains adapted from [76]: square
with many elongated holes (top) and random sawteeth (bottom). Colors represent the amplitude of
eigenfunctions, from the most negative value (dark blue), through zero (green), to the largest positive value
(dark red). One can notice that the eigenfunctions on the top are not negligible outside the localization
region. This is yet another illustration for the conventional character of localization in bounded domains.

on a sequence of domains that approximate Ω from the outside [23]. They applied this method to compute

the Neumann-Laplacian eigenfunctions in several domains, including a sawtooth domain, Sierpinski gasket

and carpet, as well as nonsymmetric and random carpets and the octagasket. In particular, they gave a

numerical evidence for the localized eigenfunctions for a sawtooth domain, in agreement with the earlier

work by Félix et al. [76]. Recently, Filoche and Mayboroda have studied the problem of localization

for bi-Laplacian in rigid thin plates and discovered that clamping just one point inside such a plate not

only perturbs its spectral properties, but essentially divides the plate into two independently vibrating

regions [77]. Heilman and Strichartz have reported numerical examples of localized Neumann-Laplacian

eigenfunctions in several two-dimensional domains [107].

1.2.2 Our research goal and contribution

Understanding the “mechanism” of low-frequency localization is important first for the theory of Lapla-

cian eigenproblems, and second, from a practical point of view, for the theory of acoustics and quantum

waveguides. Motivated by the previous works, we are interested in investigating the low-frequency local-

ization of Laplacian eigenfunctions in bounded domains. We will analyze localization in various kinds

of domains, either simple or irregular. We focus on finding rigorous mathematical explanations for the

existence of low-frequency localized eigenfunctions.

For better understanding low-frequency localization, we aim at studying the exponential decay of the

Dirichlet-Laplacian eigenfunctions in a large class of domains D composed of a basic domain V of arbitrary
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(a) u1 (b) u8 (c) u38

(d) u2 (e) u3 (f) u12

Figure 1.5: Several Dirichlet (top) and Neumann (bottom) eigenfunctions for the prefractal domain on Fig.
1.3b. The 38th Dirichlet and the 12th Neumann eigenfunctions are localized in a small subdomain (located
in the upper right corner on Fig. 1.3b), while the first Dirichlet and the third Neumann eigenfunctions
are almost zero on this subdomain. Finally, the 8th Dirichlet and the second Neumann eigenfunctions
are examples of eigenfunctions extended over the whole domain.

shape and a branch Q of variable cross-sectional profile. We will rigorously prove that under certain

conditions, the L2-norm of an eigenfunction exponentially decays inside the branch with an explicit decay

rate. It is important to emphasize that the exponential estimate is applicable in any dimension and

for both finite and infinite branches. We show that the exponential estimate is also applicable for any

V with arbitrary boundary condition on ∂V for which the Laplace operator is still self-adjoint. Using

the theoretical results, one can explain the existence of low-frequency localized eigenmodes in various

domains.

We extend our results to the problem of localized eigenmodes of the Laplace operator in resonators with

long branches. Using an explicit representation of an eigenfunction in branches, we propose a general

variational formalism for checking the existence of localized eigenmodes. We derive sufficient conditions

on the branch lengths for getting a localized eigenfunction. We illustrate our approach for several typical

waveguides, and in particular, we obtain an upper bound for the minimal branch length which is sufficient

for localization. We prove the existence of a trapped mode in finite L-shape, bent strip and cross of two

strips provided that their branches are long enough, with an accurate estimate on the required minimal

length. Our method can be applied for studying the localization in many other waveguides.

In addition, we will analyze localization in a specific class of planar graphs. We will describe the properties
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of localized eigenmodes and visualize them. Using these properties, one can easily distinguish localized

and non-localized eigenmodes in these planar graphs. When the number of vertices in the graphs is very

large, a traditional computational method becomes too slow so that an efficient algorithm is necessary

for numerical computations. To overcome this limitation, we will propose a fast and stable algorithm for

solving the eigenproblem in these graphs.

In another approach, we will discuss the low-frequency localization for either Dirichlet or Neumann

boundary condition in dumbbell domains (domains with narrows connections). We will indicate that

low-frequency localization can occur in numerous elongated polygons. It shows that localization may

exist not only in irregular domains but also in a variety of simple domains.

1.3 Applications of Laplacian eigenfunctions

There are numerous applications of Laplacian eigenfunctions, which range from pure and applied mathe-

matics to physics, chemistry, biology and computer sciences. For instance, Laplacian eigenfunctions can

be used to investigate the increased damping in irregular acoustics cavities [76, 187]. Using the eigen-

functions of the Laplace operator, one can analyze and represent data recorded on general domains in

Rd [189]. Jones and co-workers studied manifold parameterizations by eigenfunctions of the Laplacian

and heat kernels [123]. McGraw and Menzinger used Laplacian spectra as a diagnostic tool for network

structure and dynamics [154].

Beside theoretical results on different types of localization, one of the goals in this monograph is to apply

Laplacian eigenfunctions to study the survival probabilities in porous media. We will present a spectral

approach to investigate the survival probability of reflected Brownian motion in reactive media. Using

the spectral approach, the survival probability is represented in the form of spectral decomposition over

Laplacian eigenfunctions. We aim at studying the role of the geometrical structure of reactive regions

and its influence on the overall reaction rate in the long-time regime. For this purpose, we compute the

survival probability in several model reactive media and show how the shape and spatial arrangement of

reactive regions affect the overall reaction rate. That can be adapted for designing the geometrical shapes

of efficient catalysts or diffusive exchangers.

1.4 Outline of the monograph

The monograph is organized as follows. In Chapter 1, we explain our motivation in this thesis. In Chapter

2, we provide basic properties and definitions of the Laplacian eigenproblem with Dirichlet, Neumann or

Robin boundary condition in bounded domains. In Chapter 3, we discuss high-frequency localization in

simple domains such as circular, spherical and elliptical domains.

In Chapters 4 and 5, we study the exponential decay of low-frequency eigenfunctions of the Laplace

operator in domains with branches of variable cross-sectional profiles and present several applications for

finite quantum waveguides. We also discuss low-frequency localization in elongated polygons. In Chapter

6, we analyze the existence of localization in planar spectral graphs. We also propose an efficient and
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stable divide-and-conquer algorithm for solving the eigendecomposition of the Laplacian matrix of an

undirected and weighted graph.

In Chapter 7, we use a spectral approach for studying the survival probability of reflected Brownian

motion in reactive media. Finally, the thesis ends by conclusions and further questions in Chapter 8.



Chapter 2

Preliminary

In this chapter, we give basis definitions and properties of the Laplace eigenvalue problem in bounded

domains Ω in Rd, which we will use throughout this monograph. The discussion is adapted for non-experts,

so that an experienced reader may skip this chapter and move to the next ones.

2.1 Properties of eigenvalue problems

A function u 6= 0 satisfying Eq. (1.1) and one of boundary conditions in (1.2) is called an eigenfunction of

the Laplace opertor in Ω, and the corresponding λ is called an eigenvalue with that boundary condition.

In this section, we start by recalling several basic properties of Laplacian eigenvalues and eigenfunctions.

For each u and v from L2(Ω), we denote (., .) the L2 inner product on a domain Ω

(u, v) =

∫

Ω

u(r)v(r)dr. (2.1)

The Green formula for all u, v ∈ C2
(

Ω̄
)

is

∫

Ω

(u△v − v△u) dr =

∫

∂Ω

(

u
∂v

∂n
− v ∂u

∂n

)

ds. (2.2)

If both u and v satisfy one of boundary conditions in (1.2), one has

∫

Ω

u△vdr =

∫

Ω

v△udr, (2.3)

or

(u,△v) = (△u, v) . (2.4)

With the boundary conditions in (1.2), the Laplace operator is thus self-adjoint.

10
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2.1.1 Basic properties

The spectrum of the Laplace operator with one of the boundary condition (1.2) is known to be countably

infinite and discrete and the eigenvalues can be ordered in an ascending order by the index m = 1, 2, 3, . . .

(with possible multiplicities) as following 0 ≤ λ1 < λ2 ≤ λ3 ≤ . . . , while the set of Laplacian eigenfunctions

{um(x)} form a complete basis in the functional space L2(Ω) of measurable and square-integrable functions

on Ω [54, 133]:

Theorem 2.1.1. Suppose that {uk}∞
k=1 is the set of all normalized, orthogonal eigenfunctions of the

Laplace operator with Dirichlet, Neumann or Robin boundary condition. For any function f ∈ L2(Ω),

there exists a sequence {ck}∞k=1 such that

lim
n→∞

∥
∥
∥
∥
∥
f −

n∑

k=1

ckuk

∥
∥
∥
∥
∥

2

L2(Ω)

= 0, (2.5)

where

ck = (f, uk) ,∀k ≥ 1. (2.6)

In other words, the associated eigenfunctions can be chosen to form an orthonormal eigenbasis in L2(Ω).

The eigenfunctions are infinitely differentiable inside the domain Ω [133]. For any open set V ⊂ Ω, the

restriction of an eigenfunction um cannot be strictly 0.

When a domain Ω is not connected and separated into several non-overlapping subdomains, the eigen-

problem of the Laplace operator in Ω can be reduced into the corresponding problem in each subdomain

[54]:

Theorem 2.1.2. Suppose that Ω is a bounded domain consisting of non-overlapping domains Ω1,Ω2, . . . ,Ωk

(Fig. 2.1), then the set of Laplacian eigenvalues and eigenfunctions in Ω with Dirichlet, Neumann

or Robin boundary condition includes all Laplacian eigenvalues and eigenfunctions in each subdomain

Ω1,Ω2, . . . ,Ωk, where each eigenfunction vanishes identically in all except one of the separate subdomains.

2.1.2 Minimum - Minimax principle

Two of the most crucial properties of Laplacian eigenvalues and eigenfunctions are the minimum and

minimax principles. Many important properties can be derived from these principles. In this section, we

introduce the minimum and minimax principles for Laplacian eigenvalues in a bounded domain Ω with

Dirichlet boundary condition.
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Ω1

Ω2

Ωk−1

Ωk

u = 0

u = 0

u = 0

u = 0

Figure 2.1: The Laplacian eigenvalue problem in a domain Ω with k non-overlapping components
Ω1,Ω2, . . . ,Ωk with Dirichlet boundary condition.

2.1.2.1 Minimum principle

For a given function u in Ω, we define the Rayleigh quotient R(u; Ω) as

R(u; Ω) =

∫

Ω
|▽u|2 dr

∫

Ω
u2dr

. (2.7)

The following theorems hold [54]:

Theorem 2.1.3. (Minimum principle for the first eigenvalue) The first eigenvalue λ1 with Dirichlet

boundary condition satisfies

λ1 = min
v∈A1

R(v; Ω), (2.8)

where A1 is the set of all admissible functions v such that

A1 =
{

v ∈ C2(Ω), v 6= 0, v = 0 on the boundary ∂Ω
}

. (2.9)

A function u that minimizes the Rayleigh quotient R(v; Ω) in (2.8) is the corresponding eigenfunction.

Similarly, one can extend the minimum principle for general eigenvalues:

Theorem 2.1.4. (Minimum principle for λn+1) For a given positive integer n, we suppose that u1, u2, . . . , un

are the first n eigenfunctions of the Laplace operator with Dirichlet boundary condition in a domain Ω

and can be chosen to be orthogonal. We define

An =
{

v ∈ C2(Ω), v 6≡ 0, v = 0 on ∂Ω, v ⊥ ui,∀i = 1, 2, . . . , n
}

. (2.10)
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Then,

λn+1 = min
v∈An

R(v; Ω), (2.11)

Moreover, a function u which minimizes the above Rayleigh quotient is an eigenfunction associated to the

eigenvalue λn+1.

2.1.2.2 Minimax principle

For any n linearly independent continuous and piecewise differential functions φ1, φ2, . . . , φn ∈ A1, we

denote

L(φ1, . . . , φn) =

{

u ∈ C2(Ω) : u =
n∑

i=1

ciφi, c1, c2, . . . , cn ∈ R

}

. (2.12)

The Laplacian eigenvalues with Dirichlet boundary conditon satisfy the minimax principle [54, 133].

Theorem 2.1.5. (Minimax principle) For any positive integer n, the nth eigenvalue λn with Dirichlet

boundary condition can be computed by

λn = min
φ1,φ2,...,φn∈A1

max
u∈L(φ1,...,φn)

R(u; Ω) (2.13)

where R(u; Ω) is the Rayleigh quotient of u in the domain Ω.

Ω1 Ω2

u = 0

Figure 2.2: The domain monotonicity of Dirichlet-Laplace eigenproblem: when Ω1 ⊂ Ω2, λn(Ω2) ≤
λn(Ω1).

For Robin boundary condition with h > 0, the minimax principle becomes

λn = min max
‖∇v‖2L2(Ω) + h‖v‖2L2(∂Ω)

‖v‖2L2(Ω)

, (2.14)

where the maximum is over all linear combinations of the form

v = a1φ1 + ...+ anφn,

and the minimum is over all choices of n linearly independent continuous and piecewise-differentiable
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functions φ1, ..., φn (said to be in the functional space C1(Ω)) [54]. It is important to note that the

minimum is reached exactly on the eigenfunction un.

2.1.3 Domain monotonicity

The minimax principle implies the property of domain monotonicity for Dirichlet boundary condition:

Theorem 2.1.6. Suppose that Ω1 ⊂ Ω2 are two bounded domains (Fig. 2.2). We denote λk(Ωi) the kth

eigenvalue of the Laplace operator with Dirichlet boundary condition in the domain Ωi, i = 1, 2. Then,

λk(Ω2) ≤ λk(Ω1),∀k.

However, this property is not applicable for Neumann or Robin boundary condition. We present the

following theorem about the relation of Laplacian eigenvalues with Dirichlet and Robin boundary condition

[54]:

Theorem 2.1.7. Suppose that {λk}∞
k=1 is the set of Laplacian eigenvalues with Dirichlet boundary con-

dition (1.2) and {µk}∞
k=1 is the set of Laplacian eigenvalues with Robin boundary condition (1.2) in a

bounded domain Ω. Then, µk ≤ λk, ∀k.

From the domain monotonicity theorem, one can prove that

Theorem 2.1.8. Let {λk}∞
k=1 be the set of Laplacian eigenvalues with Dirichlet boundary condition (1.2)

in a bounded domain Ω ∈ Rn. Then, lim
k→∞

λk = +∞.

The above theorem ensures that the spectrum of the Laplace operator with Dirichlet boundary condition

has an infinite number of eigenvalues.

2.1.4 Weyl’s law

The Weyl’s law is one of the first connections between the spectral properties of the Laplace operator

and the geometrical structure of a bounded domain Ω. In 1911, Hermann Weyl derived the asymptotic

behavior of the Laplacian eigenvalues [225, 226]:

λm ∼
4π2

(ωdµd(Ω))2/d
m2/d (m→∞), (2.15)

where µd(Ω) is the Lebesgue measure of Ω (its area in 2D and volume in 3D), and

ωd =
πd/2

Γ(d/2 + 1)
(2.16)

is the volume of the unit ball in d dimensions (Γ(z) being the Gamma function). As a consequence,

plotting eigenvalues versus m2/d allows one to extract the area in 2D or the volume in 3D. This result

can equivalently be written for the counting function N(λ) = #{m : λm < λ} (i.e., the number of

eigenvalues smaller than λ):

N(λ) ∼ ωdµd(Ω)

(2π)d
λd/2 (λ→∞). (2.17)
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2.1.5 Several basic inequalities

The “amplitudes” of eigenfunctions can be characterized either globally by their Lp norms

‖u‖p ≡




∫

Ω

|u(r)|p dr





1/p

(p ≥ 1), (2.18)

or locally by pointwise estimates. Since eigenfunctions are defined up to a multiplicative constant, one

often uses L2(Ω) normalization: ‖u‖2 = 1. Note also the limiting case of L∞-norm

‖u‖∞ = max
x∈Ω
|u(x)|. (2.19)

It is worth recalling the Hölder’s inequality for any two measurable functions u and v and for any positive

p, q such that 1/p + 1/q = 1:

‖uv‖1 ≤ ‖u‖p‖v‖q. (2.20)

In addition, for a bounded domain Ω ⊂ Rd (with a finite Lebesgue measure µd(Ω)), the Jensen’s inequality

for convex functions yields

‖u‖p ≤ [µd(Ω)]
1
p

− 1
p′ ‖u‖p′ (1 ≤ p ≤ p′). (2.21)

2.1.6 Nodal sets, nodal domains

There are numerous studies on nodal sets and nodal domains of Laplacian eigenfunctions with Dirichlet,

Neumann and Robin boundary conditions [4, 51, 52, 80, 108, 109, 111, 118, 145, 156, 159, 171, 176, 213].

In an open, bounded domain Ω ∈ Rd with one of boundary condition in (1.2), the nodal set of an

eigenfunction can be determined by the following definition:

Definition 2.1.1. The nodal set N(u) of an eigenfunction u(r) is the set of all points in Ω at which the

eigenfunction u vanishes:

N(u) = {r ∈ Ω : u(r) = 0} . (2.22)

For each eigenfunction, its nodal set divides the domain Ω into non-overlapping subdomains (called nodal

domains) with piecewise smooth boundaries. In other words, the nodal domains of an eigenfunction u

are the connected components of Ω \N(u).

Theorem 2.1.9. (Courant Nodal Domains Theorem)

a. The first Laplacian eigenfunction u1 with Dirichlet boundary condition has no nodal domains in the

interior of the domain Ω. It also means that u1 does not change sign in Ω.

b. For any integer k ≥ 2, an eigenfunction uk corresponding to the eigenvalue λk (counting multiplicity)

has at least two and at most k nodal domains.

A simple proof can be found in [54]. An example on Fig. 2.3 illustrates that the eigenfunction uk has at

most k nodal domains for k = 1, 3, 4, 5.

Theorem 2.1.10. A nodal set of a Dirichlet-Laplacian eigenfunction u is not open in Ω.
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(a) u1 (b) u3 (c) u4 (d) u5

Figure 2.3: Several Dirichlet eigenmodes in a trapeze Ω. The first eigenfunction has only one nodal
domain while the 3rd/5th eigenfunctions have three nodal domains. The fourth eigenfunction u4 has 4
nodal domains.

From the above theorems, it is not difficult to get the following theorems:

Theorem 2.1.11. Suppose that a Dirichlet-Laplace eigenfunction un with its corresponding eigenvalue

λn has k nodal domains Ω1,Ω2, . . . ,Ωk in Ω (k ≤ n). Then, for any 1 ≤ i ≤ k, the function un|Ωi is the

first eigenfunction of the Laplace operator and λn is the smallest Laplacian eigenvalue in the subdomain

Ωi.

Theorem 2.1.12. Let Ω be an open bounded domain, and {un} be the set of all Dirichlet eigenfunctions

of the Laplace operator in Ω. For any open set Ω1 ⊂ Ω and any positive integer n,

∫

Ω1

u2
ndr > 0 (2.23)

2.2 Eigenproblem in simple domains

2.2.1 Intervals

All eigenfunctions of the Laplace operator in an arbitrary interval Ω = [a, b] with Neumann boundary

condition can be determined by

λm =

(
πm

b− a

)2

, um(x) =

√

2

b− a cos

(

πm

(
x− a
b− a

))

(m = 1, 2, ...), (2.24)

and u0(x) =

√

1

b− a .

For Dirichlet boundary condition,

λm =

(
πm

b− a

)2

, um(x) =

√

2

b− a sin

(

πm

(
x− a
b− a

))

(m = 1, 2, ...). (2.25)
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For Robin boundary condition, all normalized Laplacian eigenfunctions in the interval Ω = [0, 1] can be

given by

um(x) = Am cos (αmx) +Bm sin(αmx) (m = 0, 1, 2, ...), (2.26)

and the corresponding eigenvalues λm = α2
m. Here, αm is the positive zero of the following transcendental

equation
(

h2 − z2
)

sin z + 2hz cos z = 0. (2.27)

Two parameters Am and Bm are the normalization coefficients that satisfy Am = αmym, Bm = hym, where

ym =
√

2
α2

m+h2+4h cos2 αm
. In practice, both eigenfunction um(x) and its eigenvalue λm are computed from

Eq.(2.26).

Lemma 2.2.1. Suppose that Ω = [0, 1]. For 0 ≤ a < b ≤ 1, there exists ǫ(a, b) > 0 such that for any

positive integer m and any boundary condition (Dirichlet, Neumann, Robin), the Laplacian eigenfunction

um(x) in the domain Ω satisfies that

b∫

a

u2
m(x)dx ≥ ǫ(a, b) > 0, (2.28)

Proof. The following proof is given for Robin boundary condition (h > 0) and the other cases are similar.

Eq.(2.26) implies

b∫

a

u2
m(x)dx =

(
b− a

2

)(

2
(
α2

m + h2
)

α2
m + h2 + 4h cos2 αm

)(

1+

sin (αm(b− a))

αm(b− a)
cos (αm(b+ a) + 2ϕ)

)

,

(2.29)

where

cosϕ =
αm

√

α2
m + h2

, sinϕ =
h

√

α2
m + h2

. (2.30)

Using the inequality
(

α2
m + h2

α2
m + h2 + 4h cos2 αm

)

≥ h2

h2 + 4h
, (2.31)

one can get the conclusion with

ǫ(a, b) =
b− a

2
×
(

2h

h+ 4

)

×min

{
1

2
, 1 +

sin (αm(b− a))

αm(b− a)
: αm ∈

(

0,
2

b− a

)}

> 0, (2.32)
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2.2.2 Circular domains

2.2.2.1 Disks

a. Neumann/Robin boundary condition

The rotation symmetry of a disk Ω = {r ∈ R2 : |r| < R} of radius R (see Fig. 2.4a) leads to an explicit

representation of the eigenfunctions with Neumann boundary condition in polar coordinates:

unk1(r, ϕ) =

√
2√
π

βnk

Jn(αnk)
Jn

(

αnk
r

R

)

cos(nϕ)

unk2(r, ϕ) =

√
2√
π

βnk

Jn(αnk)
Jn

(

αnk
r

R

)

sin(nϕ)

(n > 0),

u0k1(r, ϕ) =
1√
π

β0k

J0(α0k)
J0

(

α0k
r

R

)

(n = 0).

(2.33)

For each n ≥ 0, αnk (k = 1, 2, ...) denote all the positive roots of the equation:

J ′
n(z) = 0, (2.34)

where Jn(z) is the Bessel function of the first kind, and prime denotes the derivative. The eigenvalues are

λnk = α2
nk/R

2, while the normalization constants βnk are defined as [96]

βnk =

√

λnk

(λnk − n2)
.

The eigenfunctions are enumerated by the triple index nki, with n = 0, 1, 2, ... counting the order of Bessel

functions, k = 1, 2, 3, ... counting the positive zeros, and i = 1, 2. Since u0k2(r, ϕ) are trivially zero (as

sin(nϕ) = 0 for n = 0), they are not counted as eigenfunctions. The eigenvalues λnk = α2
nk/R

2, which are

independent of the last index i, are simple for n = 0 and twice degenerate for n > 0. In the latter case,

the eigenfunction is any nontrivial linear combination of unk1 and unk2.

For Robin boundary condition, the Laplacian eigenfunctions in the disk Ω can be determined by the same

representation as Eq. (2.33). However, the normalization coefficients βnk have the following formula

βnk =

√

λnk

(λnk − n2 + h2)
,

and the eigenvalues λnk = α2
nk, where αnk are positive zeros of the functions

zJ ′
n(z) + hJn(z) = 0.

b. Dirichlet boundary condition

For Dirichlet boundary condition, the Laplacian eigenfunctions in the disk Ω can be determined by the
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O

R

(a) A disk

O

πϕ0

R

(b) A sector

O

R0

R1

(c) A circular annulus

Figure 2.4: Several types of circular domains in R2: (a) - a disk of radius R, (b) - a circular sector Ω of
the radius R and the angle πϕ0, and (c) - a circular annulus Ω.

(a) u00 (b) u10 (c) u01 (d) u40

Figure 2.5: Several Laplacian eigenfunctions with Dirichlet boundary condition in the unit disk Ω in R2.

following representation

unk1(r, ϕ) =

√
2√
π

βnk

J ′
n(αnk)

Jn

(

αnk
r

R

)

cos(nϕ)

unk2(r, ϕ) =

√
2√
π

βnk

J ′
n(αnk)

Jn

(

αnk
r

R

)

sin(nϕ)

(n > 0),

u0k1(r, ϕ) =
1√
π

β0k

J ′
0(α0k)

J0

(

α0k
r

R

)

(n = 0),

(2.35)

where the coefficients βnk satisfy that βnk = 1. Fig. 2.5 shows several eigenfunctions in the unit disk

satisfying Dirichlet boundary condition.

2.2.2.2 Circular sectors

We consider a sector Ω (see Fig. 2.4b) such that

Ω = {(r cos(ϕ), r sin(ϕ)), 0 ≤ r ≤ R, 0 ≤ ϕ ≤ πϕ0} (2.36)
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The Laplacian eigenfunctions satisfying Dirichlet boundary condition are given by

unk(r, ϕ) = βnkJn/ϕ0

(
αnkr

R

)

sin

(
nϕ

ϕ0

)

, (2.37)

where Jn/ϕ0
(x) is the Bessel function of fractional order

n

ϕ0
and βnk are the normalization constants

βnk =
2

R
√
πϕ0

∣
∣
∣J ′

n/ϕ0
(αnk)

∣
∣
∣

. (2.38)

The corresponding eigenvalue λnk = α2
nk/R

2. Here, αnk is the kth zero of the equation: Jn/ϕ0
(z) = 0 for

any positive integer n.

Example 2.2.1. Suppose that Ω is the sector of radius R = 1 and angle
π

6
(Fig. 2.4b). We consider

the Laplace eigenvalue problem with Dirichlet boundary condition in Ω. In this case, all eigenvalues

λnk = α2
nk, where αnk are the zeros of the Bessel functions

J6n(z) = 0. (2.39)

In Appendix A2, one can find several first zeros of the Bessel functions J6n(z), n = 1, 2, 3. In Fig. 2.6, we

plot Laplacian eigenfunctions corresponding to four smallest eigenvalues: λ10 = 98.7263, λ11 = 184.6688,

λ21 = 278.8316, and λ13 = 289.1299.

(a) u10 (b) u11 (c) u21 (d) u13

Figure 2.6: The first 4 Laplacian eigenfunctions in a circular sector Ω of the radius R0 = 1 and the angle
π

6
in R2.

2.2.2.3 Circular annuli

a. Dirichlet-Neumann boundary condition

We consider the Laplacian eigenproblem in a circular annulus Ω = {r ∈ R2 : R0 < |r| < R1 = 1}
with the inner radius R0 and the outer radius R1, 0 < R0 < R1 (Fig. 2.4c). The normalized Laplacian
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eigenfunctions in Ω have the following forms [96]

unk1(r, ϕ) =

√
2√
π
βnk

vnk(r)

vnk(R1)
cos(nϕ)

unk2(r, ϕ) =

√
2√
π
βnk

vnk(r)

vnk(R1)
sin(nϕ)

(n > 0),

u0k1(r, ϕ) =
1√
π
β0k

v0k(r)

v0k(R1)
(n = 0).

(2.40)

For each non-negative integer n, the functions vnk(r) satisfy the Bessel equation

r2v′′ + rv′ +
(

α2r2 − n2
)

v = 0, (2.41)

then it has the following representation

vnk(r) = c1Jn(αnkr) + c2Yn(αnkr). (2.42)

Depending on the boundary condition and the normalization of the eigenfunction unkl, one can determine

the parameters c1, c2, αnk and the normalization coefficients βnk. For example, if the eigenfunction satisfies

Dirichlet boundary condition at the inner circle and Neumann boundary condition at outer circle, these

parameters can be computed by the following equations

c1Jn(αnkR0) + c2Yn(αnkR0) = 0, (2.43)

c1J
′
n(αnkR1) + c2Y

′
n(αnkR1) = 0. (2.44)

Here, the eigennvalue λnk = α2
nk, and αnk is the kth positive zero of the equation

Yn(αR0)J ′
n(αR1)− Y ′

n(αR0)Jn(αR1) = 0 (2.45)

The normalization coefficients βnk can be obtained as

βnk =






λnk

λnk − n2 − λnk

[
J ′

n(αnk)
Jn(αnkR0)

]2






1
2

(2.46)

b. Robin-Robin boundary condition

In this section, we consider the eigenproblem of the Laplace operator in a circular annulus Ω = {r ∈
R2 : R0 < |r| < R1 = 1} (Fig. 2.4c) satisfying Robin boundary condition at both inner and outer

circle: ∂um
∂n +hum = 0. The Laplacian eigenfunctions have the same representation as Eq.(2.40). For each

non-negative integer n, the corresponding eigenvalues λnk = α2
nk, where αnk is the kth positive solution
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of the equation [100]

[
αJ ′

n(αR0)− hJn(αR0)
] [
αY ′

n(αR1) + hYn(αR1)
]

− [αJ ′
n(αR1) + hJn(αR1)

] [
αY ′

n(αR0)− hYn(αR0)
]

= 0
(2.47)

The normalization coefficients βnk can be obtained as follows [100]

βnk =

(

λnk
[
(λnk + h2)R2

1 − n2
]− [(λnk + h2)R2

0 − n2
]
ξ2

nk

) 1
2

(2.48)

with

ξnk =
vnk(R0)

vnk(R1)
. (2.49)

In the special case h = 0 (Neumann boundary condition at both inner and outer circles), the equation

Eq.(2.47) can be reduced as

Y ′
n(αR1)J ′

n(αR0)− Y ′
n(αR1)J ′

n(αR0) = 0. (2.50)

2.2.3 Ball

In the unit ball Ω, the normalized eigenfunctions (with Robin boundary condition) are

unkl(r, θ, ϕ) =
1√
2π

βnk

jn(αnk)
jn(αnkr)P

l
n(cos θ)eilϕ, (2.51)

where 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π [96, 97]. Here, jν(z) =
√

π
2zJν+1/2(z) are the spherical Bessel

functions, and P l
n(x) are the associated Legendre polynomials. The corresponding eigenvalue λnkl = α2

nk

is expressed through the positive zeros αnk of the equation

zj′
n(z) + hjn(z) = 0. (2.52)

One can express the normalization coefficients βnk by [96, 97]

βnk =

(
(2n+ 1)λnk

λnk − n(n+ 1) + h(h− 1)

) 1
2

, (2.53)

and β00 =
√

3
2 .

2.2.4 Rectangular domains

We consider a rectangular domain Ω = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b} with two sides a and b. The

normalized Laplacian eigenfunctions with Dirichlet boundary condition are

umn(x, y) =
2√
ab

sin

(
πmx

a

)

sin

(
πny

b

)

, ∀ 0 ≤ x ≤ a, 0 ≤ y ≤ b, (2.54)
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A

B

Ωα

Ωα

α
α α

α
−a a

x

y

Figure 2.7: Two ellipses of radii R = 0.5 (dashed line) and R = 1 (solid line), with the focal distance
a = 1. The major and minor semi-axes, A = a coshR and B = a sinhR, are shown by black dotted lines.
The horizonal thick segment connects the foci.

and the corresponding eigenvalues are

λmn = π2

[(
m

a

)2

+

(
n

b

)2
]

, m, n = 1, 2, . . . (2.55)

which can be degenerated if a, b are commensurable.

2.2.5 Elliptical domains

2.2.5.1 Ellipses

It is convenient to introduce the elliptic coordinates as

{

x1 = a cosh r cos θ,

x2 = a sinh r sin θ,
(2.56)

where a > 0 is the prescribed distance between the origin and the foci, r ≥ 0 is the radial coordinate

that fixes the major and minor semi-axes: A = a cosh r and B = a sinh r, and 0 ≤ θ < 2π is the angular

coordinate (Fig. 2.7). An ellipse of radius R > 0 is the curve of constant r = R whose points (x1, x2)

satisfy x2
1/A

2 + x2
2/B

2 = 1. Note that the eccentricity e = a/A = 1/ cosh r is strictly positive. A filled

ellipse Ω (i.e., the interior of a given ellipse) can be characterized in elliptic coordinates as 0 ≤ r < R and

0 ≤ θ < 2π. The elliptic coordinates yield the separation of the radial and angular variables as

u(x, y) = f(r)g(θ).
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Substituting this formula into the eigenvalue problem −∆u = λu, one gets

(
f ′′

f
+
g′′

g

)

+
a2λ

2
(cosh 2r − cos 2θ) = 0.

Letting

c =

(
f ′′

f

)

+
a2λ

2
cosh 2r = −

(
g′′

g

)

+
a2λ

2
cos 2θ,

the angular and radial parts, g(θ) and f(r), become solutions of the Mathieu equation and the modified

Mathieu equation, respectively [41]

g′′(θ) + (c− 2q cos 2θ) g(θ) = 0, (2.57)

f ′′(r)− (c− 2q cosh 2r) f(r) = 0, (2.58)

where c is the characteristic value of the corresponding Mathieu function, and

q =
a2

4
λ. (2.59)

Periodic solutions of the Mathieu equation are possible for specific values of c. They are denoted as

cen(θ, q) and sen+1(θ, q) (with n = 0, 1, 2, ...) and called the angular Mathieu functions of the first and

second kind. Each function cen(θ, q) and sen+1(θ, q) corresponds to its own characteristic value c (the

relation being implicit, see [155]).

For the radial part, there are two linearly independent solutions for each characteristic value c: two

modified Mathieu functions Mc(1)
n (r, q) and Mc(2)

n (r, q) correspond to the same c as cen(θ, q), and two

modified Mathieu functions Ms
(1)
n+1(r, q) and Ms

(2)
n+1(r, q) correspond to the same c as sen+1(θ, q). As a

consequence, there are four families of eigenfunctions (distinguished by the index i = 1, 2, 3, 4) in a filled

ellipse:

unk1 = cen(θ, qnk1)Mc(1)
n (r, qnk1),

unk2 = cen(θ, qnk2)Mc(2)
n (r, qnk2),

unk3 = sen+1(θ, qnk3)Ms
(1)
n+1(r, qnk3),

unk4 = sen+1(θ, qnk4)Ms
(2)
n+1(r, qnk4),

(2.60)

where the parameters qnki are determined by the boundary condition. For instance, for a filled ellipse of

radius R with Dirichlet boundary condition, there are four individual equations for the parameter qnki,

for each n = 0, 1, 2, ...:

Mc(1)
n (R, qnk1) = 0, Mc(2)

n (R, qnk2) = 0,

Ms
(1)
n+1(R, qnk3) = 0, Ms

(2)
n+1(R, qnk4) = 0,

(2.61)

each of them having infinitely many positive solutions qnki enumerated by k = 1, 2, . . . [1, 155]. The
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associated eigenvalues λnki can be determined by Eq. (2.59) as

λnki =
4qnki

a2
. (2.62)

For solving Eqs. (2.61), one needs an efficient approximation of the modified Mathieu functions Mc(1,2)
n (z, q)

and Ms
(1,2)
n+1 (z, q) [160]. In chapter 3, we calculate these functions by using truncated recurrence relations

[234] (see Appendix C for details). The accurate approximation for Mathieu and modified Mathieu

functions is one of the most time-consuming steps in the numerical approach.

2.2.5.2 Elliptical annuli

The above analysis can be applied almost directly to an elliptical annulus Ω, i.e. a domain between an

inner ellipse Ω1 and an outer ellipse Ω2, with the same foci. In elliptic coordinates, Ω can be defined by

two inequalities: R1 < r < R2 and 0 ≤ θ < 2π, where the prescribed radii R1 and R2 determine Ω1 and

Ω2, respectively.

In chapter 3, we consider two families of eigenfunctions in Ω as

unk1 = cen(θ, qnk1)
[

ank1Mc(1)
n (r, qnk1) + bnk1Mc(2)

n (r, qnk1)
]

,

unk2 = sen+1(θ, qnk2)
[

ank2Ms
(1)
n+1(r, qnk2) + bnk2Ms

(2)
n+1(r, qnk2)

]

.
(2.63)

The parameters anki, bnki and qnki (i = 1, 2) are set by boundary conditions and the normalization of

eigenfunctions. For Dirichlet boundary condition, one solves the following equations [160]

Mc(1)
n (R1, qnk1)Mc(2)

n (R2, qnk1)−Mc(1)
n (R2, qnk1)Mc(2)

n (R1, qnk1) = 0,

Ms
(1)
n+1(R1, qnk2)Ms

(2)
n+1(R2, qnk2)−Ms

(1)
n+1(R2, qnk2)Ms

(2)
n+1(R1, qnk2) = 0.

(2.64)

For each n = 0, 1, 2, ..., each of these equations has infinitely many solutions denoted as {qnk1} and {qnk2},
and enumerated by k = 1, 2, 3, ... [155].

2.2.6 Equilateral triangle

In 1852, by using reflections and the related symmetries, Lamé discovered the Dirichlet eigenvalues and

eigenfunctions of the Laplace operator in the equilateral triangle

Ω =
{

(x, y) ∈ R2 : 0 < x < 1, 0 < y < x
√

3, y <
√

3(1− x)
}

, (2.65)

as following

λmn =

(

16π2

27

)
(

m2 + n2 −mn
)

,m, n = 0,±1, . . . , (2.66)

umn(x, y) =
∑

(m′,n′)

± exp

(
2πi

3

)(

m′x+
(2n′ −m′)y√

3

)

, (2.67)
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with the following conditions:

(A) m+ n is a multiple of 3,

(B) m 6= 2n,

(C) n 6= 2m,

and (m′, n′) range over ℘ ⊂ Z2, where |℘| = 6, and ± is determined by the following rules:

(−n,m− n)→ (−n,−m)→ (n−m,−m)→ (n−m,n)→ (m,n)→ (m,m− n) (2.68)

Each translation induces a change of sign in the (m,n) entry of the above rule. Pinsky showed that this

set of eigenfunctions is complete in L2(Ω) [173, 174].

The Dirichlet eigenfunctions can be separated into two families of eigenfunctions: symmetric and complex

eigenfunctions. In particular, an eigenvalue corresponds to a symmetric eigenfunction if and only if m is

multiple of 3, and the associated eigenfunction umn is enumerated by the index (m, 0) where m = 3q.

The eigenfunctions for Neumann boundary condition are

umn(x, y) =
∑

(m′,n′)

exp

(
2πi

3

)(

m′x+
(2n′ −m′)y√

3

)

, (2.69)

where the only condition is that (m+ n) are multiples of 3, and no sign change.



Chapter 3

High-frequency localization of Laplacian

eigenfunctions

A mathematician is a blind man in a dark room looking for a black cat which isn’t there.

- Charles Robert Darwin

What is the simplest two-dimensional shape for getting localized eigenfunctions? This is one of the first

questions we asked ourselves. In this chapter, we revisit the existence of high-frequency localization in

several simple domains.

In the first part of this chapter, we investigate Laplacian eigenfunctions in circular, spherical and elliptical

domains and then discuss three kinds of high-frequency localization: whispering gallery modes, bouncing

ball modes and focusing modes. Although the existence of these modes was known for a class of convex do-

mains with piece-wise smooth boundary [128, 137, 138], the seperation of variables for the aforementioned

domains helps us to prove more precisely the high-frequency localization of Laplacian eigenfunctions, i.e

how an eigenfunction is getting distributed in a small region of the domain, and decays rapidly outside

this region. Basing on the properties of Bessel and Mathieu functions, we derive the inequalities which

imply and clearly illustrate localization. Moreover, we will provide an example of a non-convex domain

(an elliptical annulus) for which the high-frequency localized modes are still present.

In the second part of this chapter, we discuss the high-frequency localization in convex polygons. In

most rectangles, we can prove that there is no localized eigenmode. Interestingly, the existence of some

localized eigenmode in regular polygons (such as e.g. equilateral triangle, square, etc) is still an open

question. Several numerical results are given in Appendix C6 for future references.

The results of this chapter are reported in [160].

27
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3.1 Introduction

We call an eigenfunction u of the Laplace operator in a bounded domain Ω ⊂ Rd Lp-localized (p ≥ 1) if

it is essentially supported by a small subdomain Ωα ⊂ Ω, i.e.

‖u‖Lp(Ω\Ωα)

‖u‖Lp(Ω)
≪ 1,

µd(Ωα)

µd(Ω)
≪ 1, (3.1)

where ‖.‖Lp is the Lp-norm, and µd is the Lebesgue measure. We stress that this “definition” is qualitative

as there is no objective criterion for deciding how small these ratios have to be. This is the major problem

in defining the notion of localization.

For circular, spherical and elliptical domains, we will show in Sect. 3.2 and 3.3 that the ratios can be made

arbitrarily small. In other words, for any prescribed threshold ε, there exist a subdomain Ωα and infinitely

many eigenfunctions for which both ratios are smaller than ε. Most importantly, we will provide a simple

example of a non-convex domain for which the high-frequency localization is still present. At the same

time, we will show in Sect. 3.4 that there is no localization in most of rectangle-like domains. Finally,

using this terminology, we prove that all symmetric eigenfunctions of the Dirichlet-Laplace operator in

equilateral triangles are non-localized. This observation will help us formulating an open problem of

localization in polygonal domains.

3.2 Localization in circular and spherical domains

In circular and spherical domains, all Laplacian eigenvalues and eigenfunctions can be explicitly deter-

mined as shown in Section 2.2.2 and 2.2.3. These eigenvalues and eigenfunctions can be easily found by a

numerical computation implemented in Matlab. In this section, we will discuss high-frequency localization

in these domains.

3.2.1 Whispering gallery modes

The disk is the simplest shape for illustrating the whispering gallery modes and focusing modes. The

explicit form (2.33) of eigenfunctions allows one to derive accurate bounds, as shown below. When the

index k is fixed, while n increases, the Bessel functions Jn(αnkr/R) become strongly attenuated near the

origin (as Jn(z) ∼ (z/2)n/n! at small z) and essentially localized near the boundary, yielding whispering

gallery modes. In turn, when n is fixed while k increases, the Bessel functions highly oscillate, the

amplitude of oscillations decreasing towards to the boundary. In that case, the eigenfunctions are mainly

localized at the origin, yielding focusing modes. These qualitative arguments are rigorously formulated

in the following theorem

Theorem 3.2.1. Let D = {r ∈ R2 : |r| < R} be a disk of radius R > 0, and Dnk = {r ∈ R2 : |r| <
Rdn/αnk}, where dn = n−n2/3, and αnk are the positive zeros of Jn(z) (Dirichlet), J ′

n(z) (Neumann) or

J ′
n(z)+hJn(z) for some h > 0 (Robin), with n = 0, 1, 2, ... denoting the order of Bessel function Jn(z) and

k = 1, 2, 3, ... counting zeros. Then for any p ≥ 1, there exists a universal constant Cp > 0 such that for
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any k = 1, 2, 3, ..., there exists Np,k > 0 such that for any integer n > Np,k, the Laplacian eigenfunction

unk for Dirichlet, Neumann or Robin boundary condition satisfies

‖unk‖Lp(Dnk)

‖unk‖Lp(D)
< Cpn

1
3

+ 2
3p 2−n1/3/3. (3.2)

This estimate implies that

lim
n→∞

‖unk‖Lp(Dnk)

‖unk‖Lp(D)
= 0, (3.3)

while

lim
n→∞

µ2(Dnk)

µ2(D)
= 1. (3.4)

Proof. One can find the proof in Appendix B1.

The theorem shows the existence of infinitely many Laplacian eigenmodes which are Lp-localized near the

boundary ∂D. In fact, for any prescribed thresholds for both ratios in (3.1), there exists n0 such that for

all n > n0, the eigenfunctions unk are Lp-localized. These eigenfunctions are called “whispering gallery

eigenmodes” and illustrated on Fig. 3.1.

A simple consequence of the above theorem is

Theorem 3.2.2. For any p ≥ 1 and any open subset V compactly included in D (i.e., V̄ ∩ ∂D = ∅), one

has

lim
n→∞

‖unk‖Lp(V )

‖unk‖Lp(D)
= 0. (3.5)

As a consequence,

Cp(V ) ≡ inf
nk

{

‖unk‖Lp(V )

‖unk‖Lp(Ω)

}

= 0. (3.6)

In fact, for any open subset V compactly included in D, there exists n0 such that for all n > n0, V ⊂ Dnk

so that ‖unk‖Lp(V ) ≤ ‖unk‖Lp(Dnk) yielding Eq. (3.5).

In the same way, the localization also happens for any circular sector (as illustrated on Fig. 3.2):

Theorem 3.2.3. Let

S =
{

(r cosϕ, r sinϕ) ∈ R2 : 0 ≤ r < R, 0 < ϕ < φ
}

, (3.7)

be a circular sector of radius R > 0, and Snk =
{

r ∈ S0 : |r| < dn
αnk

R
}

, where dn = n−n2/3 and αnk are

the positive zeros of Jnπ/φ(z) (Dirichlet), J ′
nπ/φ(z) (Neumann) or J ′

nπ/φ(z) + hJnπ/φ(z) for some h > 0

(Robin), with n = 0, 1, 2, ... and k = 1, 2, 3, ... counting zeros. Then for any p ≥ 1, there exists a universal

constant Cp > 0 such that for any k = 1, 2, 3, ..., there exists Np,k > 0 such that for any integer n > Np,k,

the Laplacian eigenfunction unk for Dirichlet, Neumann or Robin boundary condition satisfies

‖unk‖Lp(Snk)

‖unk‖Lp(S)
< Cpn

1
3

+ 2
3p 2−(nφ/π)1/3/3. (3.8)
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n = 0 n = 5 n = 20 n = 50

n = 0 n = 5 n = 20 n = 50

Figure 3.1: Formation of whispering gallery modes unk in the unit disk with Dirichlet boundary condition:
for a fixed k (k = 0 for top figures and k = 1 for bottom figures), an increase of the index n leads to
stronger localization of the eigenfunction near the boundary.

It also implies that, for any positive integer k,

lim
n→∞

‖unk‖Lp(Snk)

‖unk‖Lp(S)
= 0, (3.9)

while

lim
n→∞

µ2(Snk)

µ2(S)
= 1. (3.10)

Proof. The proof is completely similar to that of Theorem 3.2.1.

In three dimensions, the existence of whispering gallery modes in a ball follows from the following

Theorem 3.2.4. Let B = {r ∈ R3 : |r| < R} be a ball of radius R, and Bnk = {r ∈ B : 0 < |r| <
Rsn/αnk}, where sn = (n+ 1/2) − (n+ 1/2)2/3 and αnk are the positive zeros of jn(z) (Dirichlet), j′

n(z)

(Neumann) or j′
n(z) + hjn(z) for some h > 0 (Robin), with n = 0, 1, 2, ... denoting the order of spherical

Bessel function jn(z) and k = 1, 2, 3, ... counting zeros. Then, for any p ≥ 1, there exists a universal

constant C̃p > 0 such that for any k = 1, 2, 3, ..., there exists Np,k > 0 such that for any integer n > Np,k,

the Laplacian eigenfunction unk with Dirichlet, Neumann or Robin boundary condition satisfies

‖unk‖Lp(Bnk)

‖unk‖Lp(B)
< C̃p(n + 1/2)

1
3

+ 2
3p exp

(

−1

3

(

n+
1

2

)1/3
)

(n≫ 1). (3.11)

As a consequence, for any positive integer k,

lim
n→∞

‖unk‖Lp(Bnk)

‖unk‖Lp(B)
= 0, (3.12)

while

lim
n→∞

µ3(Bnk)

µ3(B)
= 1. (3.13)
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(a) n = 1 (b) n = 6 (c) n = 11 (d) n = 36

(e) n = 1 (f) n = 6 (g) n = 11 (h) n = 36

Figure 3.2: Formation of whispering gallery modes unk in the sector of radius R = 1 and angle π
6 with

Dirichlet boundary condition: for a fixed k (k = 0 for top figures and k = 1 for bottom figures), an
increase of the index n leads to stronger localization of the eigenfunction near the boundary.

Proof. See Appendix B2 for details.

As for the disk, the above results show that infinitely many high-frequency eigenfunctions are Lp-localized

near the boundary of the ball. This is the well-known whispering gallery phenomenon.

3.2.2 Focusing modes

The localization of focusing modes at the origin is described by

Theorem 3.2.5. For each R0 ∈ (0, 1), let D(R0) = {r ∈ R2 : R0 < |r| < 1}, and D be the unit disk.

Then, for any n = 0, 1, 2, ... and p > 4, the Laplacian eigenfunction unk with Dirichlet, Neumann or

Robin boundary condition satisfies

lim
k→∞

‖unk‖L∞(D(R0))

‖unk‖L∞(D)
= 0, (3.14)

lim
k→∞

‖unk‖Lp(D(R0))

‖unk‖Lp(D)
= 0 (3.15)

and

lim
k→∞

‖unk‖L2(D(R0))

‖unk‖L2(D)
=
√

1−R0 > 0. (3.16)

Proof. See Appendix B1.

This theorem states that for each non-negative integer n, when the index k increases, the eigenfunctions

unk become localized more and more near the origin. These eigenfunctions are called “focusing eigen-

modes” and illustrated on Fig. 3.3. This theorem shows that the definition of localization is sensitive to
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k = 1 k = 5 k = 20 k = 50

k = 1 k = 5 k = 20 k = 50

Figure 3.3: Formation of focusing modes unk in the unit disk with Dirichlet boundary condition: for a
fixed n (n = 0 for top figures and n = 1 for bottom figures), an increase of the index k leads to stronger
localization of the eigenfunction at the origin.

the norm: the above focusing modes are Lp-localized (for all p > 4, including p = ∞), but they are not

L2-localized.

Remark 3.2.1. It is interesting to understand the limit value of
‖unk‖pLp(D(R0))

‖unk‖pLp(D)

when k → ∞, for

1 ≤ p < 2 and 2 < p ≤ 4. We expect that

lim
k→∞

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

> 0,∀1 ≤ p ≤ 2, (3.17)

lim
k→∞

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

= 0,∀2 ≤ p ≤ 4. (3.18)

(see Appendix B1 for further discussions).

One can generalize the above theorem for a circular sector in two dimensions (Fig. 3.4):

Theorem 3.2.6. For each R0 ∈ (0, 1), let S0 is the circular sector of radius R = 1, defined in (3.7), and

S(R0) = {r ∈ S : R0 < |r| < 1}. Then, for any n = 1, 2, . . . and p > 4, the Laplacian eigenfunction unk

with Dirichlet, Neumann or Robin boundary condition satisfies

lim
k→∞

‖unk‖L∞(S(R0))

‖unk‖L∞(S)
= 0, (3.19)

lim
k→∞

‖unk‖Lp(S(R0))

‖unk‖Lp(S)
= 0 (3.20)

and

lim
k→∞

‖unk‖L2(S(R0))

‖unk‖L2(S)
=
√

1−R0 > 0. (3.21)

Proof. Similar to Theorem 3.2.5.
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(a) k = 0 (b) k = 5 (c) k = 20 (d) k = 100

(e) k = 0 (f) k = 5 (g) k = 20 (h) k = 100

Figure 3.4: Formation of focusing modes unk in the sector of radius R = 1 and angle π
6 with Dirichlet

boundary condition: for a fixed n (n = 1 for top figures and n = 2 for bottom figures), an increase of the
index k leads to stronger localization of the eigenfunction near the origin.

A similar theorem can be reformulated for a ball in three dimensions.

Theorem 3.2.7. For each R0 ∈ (0, 1), let B(R0) = {r ∈ R3 : R0 < |r| < 1}, and B be the unit ball.

Then, for any n = 0, 1, 2, ... and p > 3, the Laplacian eigenfunction unk with Dirichlet, Neumann or

Robin boundary condition satisfies

lim
k→∞

‖unk‖L∞(B(R0))

‖unk‖L∞(B)
= 0, (3.22)

lim
k→∞

‖unk‖Lp(B(R0))

‖unk‖Lp(B)
= 0 (3.23)

and

lim
k→∞

‖unk‖L2(B(R0))

‖unk‖L2(B)
=
√

1−R0 > 0. (3.24)

Proof. See Appendix B2.

Remark 3.2.2. For other cases 1 ≤ p < 2 and 2 < p ≤ 3, we expect that

lim
k→∞

‖unk‖pLp(B(R0))

‖unk‖pLp(B)

> 0,∀1 ≤ p < 2, (3.25)

lim
k→∞

‖unk‖pLp(B(R0))

‖unk‖pLp(B)

= 0,∀2 < p ≤ 3, (3.26)

which still requires a rigorous proof.
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3.3 Localization in elliptical domains

3.3.1 Eigenfunctions for an ellipse or elliptical annuli

In Section 2.2.5, we introduced four families of Laplacian eigenfunctions in an ellipse and two families of

Laplacian eigenfunctions in an elliptical annuli. One can first solve Eqs. (2.61) or (2.64) for values of qnki,

and then compute the corresponding eigenvalues and eigenfunctions by using the numerical algorithms

from Appendix C.

3.3.2 Bouncing ball modes

For each α ∈ (0, π
2

)
, we consider the elliptical sector Ωα inside an elliptical domain Ω (Fig. 2.7)

Ωα = {R1 < r < R2, θ ∈ (α, π − α) ∪ (π + α, 2π − α)} .

Theorem 3.3.1. Let Ω be an ellipse or an elliptical annulus (with a focal distance a > 0), defined in

Section 2.2.5. For any α ∈ (0, π
2

)

, n ≥ 0, p ≥ 1 and i = 1, 2, 3, 4 (for ellipse) or i = 1, 2 (for elliptical

annulus), there exists Λα,n > 0 such that for any λnki > Λα,n,

‖unki‖Lp(Ω\Ωα)

‖unki‖Lp(Ω)

< Dn

(
16α

π − α/2

)1/p

exp

(

−a
√

λnki

[

sin

(
π

4
+
α

2

)

− sinα

])

, (3.27)

where

Dn = 3

√
√
√
√
√

1 + sin
(

3π
8 + α

4

)

[
tan

( π
16 − α

8

)]n . (3.28)

Proof. See Appendix B5.

Given that λnki →∞ as k increases (for any fixed n and i), while the area of Ωα can be made arbitrarily

small by sending α→ π/2, the theorem implies that there are infinitely many eigenfunctions unki which

are Lp-localized (in the elliptical sector Ωα)

lim
k→∞

‖unki‖Lp(Ω\Ωα)

‖unki‖Lp(Ω)
= 0. (3.29)

These eigenfunctions are called “bouncing ball modes” and illustrated on Fig. 3.5. We note that the

existence of bouncing ball modes was already known for an ellipse and, more generally, for convex planar

domains with smooth boundary [41, 128]. Although our estimates are specific to elliptical shapes, they

are simpler and also applicable to elliptical annuli, i.e. non-convex domains.

The quality of the above estimates was checked numerically. Fig. 3.6 shows the ratio
‖unk1‖L2(Ω\Ωα)

‖unk1‖L2(Ωα)
and

its upper bound for two families of eigenfunctions in a filled ellipse and an elliptical annulus, respectively.

One can clearly see the rapid exponential decay of this ratio when k increases that implies the localization

in a thin sector around the vertical (minor) axis. Note that the upper bound is not sharp and can be

further improved.
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k = 1 k = 5 k = 9 k = 20

k = 1 k = 5 k = 9 k = 20

Figure 3.5: Formation of bouncing ball modes unki in a filled ellipse of radius R = 1 (top) and an elliptical
annulus of radii 0.5 and 1 (bottom), with the focal distance a = 1 and Dirichlet boundary condition. For
fixed n = 1 and i = 1, an increase of the index k leads to stronger localization of the eigenfunction near
the vertical semi-axis (Kmax = 200, see Appendix C1).
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Figure 3.6: The ratio
‖unk1‖L2(Ω\Ωα)

‖unk1‖L2(Ωα)
(solid blue line) and its upper bound (3.27) (dashed red line) in a

filled ellipse of radius R = 1 and focal distance a = 1 (top) and in an elliptical annulus of radii R0 = 0.5
and R = 1 and focal distance a = 1 (bottom), with n = 0 and α = π/4 (left) and n = 1 and α = π/3
(right). For numerical computation of Mathieu functions, we used Kmax = 200 (see Appendix C).
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The explicit estimates from previous sections provide us with simple examples of domains for which there

are infinitely many Lp-localized eigenfunctions, according to the definition (3.1). Most importantly, the

high-frequency localization may occur in both convex and non-convex domains. This observation relaxes,

at least for elliptical domains, the condition of convexity that was significant for the construction of whis-

pering gallery and bouncing ball modes by Keller and Rubinow [128] and for semiclassical approximations

by Lazutkin [138–140]. At the same time, these approximations suggest the existence of Lp-localized

eigenfunctions for a large class of domains. How large is this class? What are the relevant conditions on

the domain? To our knowledge, these questions are open. In order to highlight the relevance of these

questions, it is instructive to give an example of domains for which there is no localization.

3.4 Localization in rectangular domains

The study of localization in rectangle-like domains, Ω = (0, ℓ1)× ...× (0, ℓd) ⊂ Rd (with the sizes ℓi > 0),

may seem to be the simplest case because the Laplacian eigenfunctions are factored and expressed through

sines (Dirichlet), cosines (Neumann) or their combination (Robin):

un1,...,nd
(x1, ..., xd) = u(1)

n1
(x1) . . . u(d)

nd
(xd), λn1,...,nd

= λ(1)
n1

+ ...+ λ(d)
nd
, (3.30)

with the multiple index n1...nd, and u
(i)
ni (xi) and λ

(i)
ni (i = 1, ..., d) corresponding to the one-dimensional

problem on the interval (0, ℓi):

u(i)
n (x) = sin(πnx/ℓi), λ(i)

n = π2n2/ℓ2i , n = 1, 2, 3, ... (Dirichlet),

u(i)
n (x) = cos(πnx/ℓi), λ(i)

n = π2n2/ℓ2i , n = 0, 1, 2, ... (Neumann)

(Robin boundary condition will not be considered here). The situation is indeed elementary for rectangle-

like domains for which all eigenvalues are simple.

Theorem 3.4.1. Let Ω = (0, ℓ1) × ... × (0, ℓd) ⊂ Rd be a rectangle-like domain with sizes ℓ1 > 0, ...,

ℓd > 0 such that

ℓ2i /ℓ
2
j /∈ Q ∀ i 6= j. (3.31)

(Q denoting the set of rational numbers). Then for any p ≥ 1 and any open subset V ⊂ Ω,

Cp(V ) = inf
n1,...,nd

{

‖un1,...,nd
‖Lp(V )

‖un1,...,nd
‖Lp(Ω)

}

> 0. (3.32)

The proof is elementary (see Appendix B3) and relies the fact that all the eigenvalues are simple due to

the condition (3.31). The fact that Cp(V ) > 0 for any open subset V means that there is no eigenfunction

that could fully “avoid” any location inside the domain, i.e., there is no L2-localized eigenfunction. Since

the set of rational numbers has zero Lebesgue measure, the condition (3.31) is fulfilled almost surely, if

one would choose a rectangle-like domain randomly. In other words, for most rectangle-like domains,

there is no L2-localized eigenfunctions.
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Remark 3.4.1. When at least one ratio ℓ2i /ℓ
2
j is rational, certain eigenvalues are degenerate, and the

associated eigenfunctions become linear combinations of products of sines or cosines. For instance, for

the square with ℓ1 = ℓ2 = π and Dirichlet boundary condition, the eigenvalue λ1,2 = 12 + 22 is twice

degenerate, and u1,2(x1, x2) = c1 sin(x1) sin(2x2) + c2 sin(2x1) sin(x2), with arbitrary constants c1 and c2

(c2
1 + c2

2 6= 0). Although the computation is still elementary for each eigenfunction, it is unknown whether

the infimum Cp(V ) from Eq. (3.32) is strictly positive or not, for arbitrary rectangle-like domain Ω and

any open subset V . For instance, the most general known result for a rectangle Ω = (0, ℓ1)× (0, ℓ2) states

that C2(V ) > 0 for any V ⊂ Ω of the form V = (0, ℓ1)×ω, where ω is any open subset of (0, ℓ2) [34]. Even

for the unit square, the statement Cp(V ) > 0 for any open subset V seems to be an open problem. More

generally, one may wonder whether Cp(V ) is strictly positive or not for any open subset V in polygonal

convex domains or in piecewise smooth convex domains. Following an approach of Zelditch and Zworski

[232], Marlof and Rudnick proved that among an orthogonal basis {un} of Laplacian eigenfunctions in a

rational polygon Ω (satisfying Dirichlet boundary condition), there exists a density-one subsequence
{

unj

}

such that for any subset V ⊂ Ω with boundary of Lebesgue measure zero, [151]

lim
j→∞

{

‖unj‖L2(V )

‖unj‖L2(Ω)

}

=
µ2(V )

µ2(Ω)

where µ2(.) is the Lebesgue measure in R2. This remarkable result shows that in a rational polygon, the set

of localized eigenfunctions of the Laplace operator with Dirichlet boundary condition has measure zero. The

study for localization in polygonal convex domains is still interesting and requires further investigations.

3.5 Localization in equilateral triangles

Let Ω be the equilateral triangle

Ω =
{

(x, y) : 0 < y < x
√

3, 0 < y <
√

3(1− x)
}

(3.33)

The Dirichlet eigenvalues and eigenfunctions in this domain can be computed explicitly as shown in

Section 2.2.6. For symmetric eigenvalues λ3p,0, the associated eigenfunction can be represented as

u3p,0(x, y) = sin
(

2πpd1

)

+ sin
(

2πpd2

)

+ sin
(

2πpd3

)

, p = 1, 2, . . . (3.34)

where d1 = 2y√
3
, d2 = x − y√

3
and d3 = 1 − x − y√

3
. Here, d1, d2, d3 are the normalized altitudes of the

point (x, y) in the triangle Ω, which satisfy the normalization d1 + d2 + d3 = 1. The following theorem

concerns the high-frequency localization of symmetric eigenfunctions in Ω:

Theorem 3.5.1. Let {u3p,0(x, y)} be the set of all symmetric Laplacian eigenfunctions (Fig. 3.7) with

Dirichlet boundary condition in Ω. Then, for any open set V ⊂ Ω, there exists a universal constant

CV > 0, such that ∫

V

u2
3p,0(x, y)dxdy ≥ CV

∫

Ω

u2
3p,0(x, y)dxdy, ∀p = 1, 2, . . . (3.35)
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Proof. See Appendix B6.

(a) u1 (b) u2 (c) u3 (d) u4

(e) u5 (f) u6 (g) u7 (h) u8

Figure 3.7: Several eigenmodes of the Laplace operator in the equilateral triangles. The first/fourth eigen-
functions are symmetric eigenmodes while the remaining shown eigenfunctions are complex eigenmodes.

Remark 3.5.1. From the above theorem, all symmetric eigenfunctions in the triangle Ω are not localized.

In turn, the existence of localized eigenmodes among complex eigenfunctions is still an open question.

3.6 Conclusion

In this chapter, we revived the classical problem of high-frequency localization of Laplacian eigenfunctions.

For circular, spherical and elliptical domains, we derived the inequalities for Lp-norms of the Laplacian

eigenfunctions that clearly illustrate the emergence of whispering gallery, bouncing ball and focusing

eigenmodes. We gave an alternative proof for the existence of bouncing ball modes in elliptical domains.

This proof relies on the properties of modified Mathieu functions and is as well applicable to elliptical

annuli. As a consequence, we showed that bouncing ball modes also exist in non-convex domains. At the

same time, we proved that there is no localization in most rectangle-like domains that led us to formulating

the problem of how to characterize the class of domains admitting high-frequency localization. The non-

localization of symmetric eigenfunctions in equilateral triangles was proven. In particular, the roles of

convexity and smoothness have to be further investigated. The problem of localization in polygonal

convex domains or, more generally, in piecewise smooth convex domains, remains open.



Chapter 4

Exponential decay of Laplacian

eigenfunctions in domains with branches

In this chapter, we study the behavior of Laplacian eigenfunctions in domains with branches of variable

cross-sectional profile. If an eigenvalue is below a threshold which is determined by the shape of the

branch, the associate eigenfunction is proved to exponentially decay inside the branch. The decay rate is

twice the square root of the difference between the threshold and the eigenvalue. The derived exponential

estimate is applicable for arbitrary domains in any spatial dimension. It allows us to explain the existence

of low-frequency localized eigenmodes in various domains. In particular, we show the existence of localized

eigenmodes in elongated polygons.

The results of this chapter up to Section 4.7 are reported in a joint-work with A. Delitsyn [60].

4.1 Introduction

We investigate the behavior of Laplacian eigenfunctions in domains with branches. We show that certain

eigenfunctions are “expelled” from the branch, i.e., their amplitude along the branch decays exponentially

fast. A similar “expulsion” effect is well known in optics and acoustics: a wave of wavelength ℓ cannot

freely propagate inside a rectangular channel of width b smaller than ℓ/2 because of the exponential

attenuation ∼ e−xπ/b along the channel [115, 191]. We extend this classical result to arbitrary domains

with branches of arbitrary shape. We derive a rigorous exponential estimate for the L2-norm of the

eigenfunction in cross-sections of the branch. We obtain the sharp decay rate which generalizes and

refines the classical rate π/b. Although this problem is remotely related to localization of waves in optical

or acoustical waveguides (e.g., infinite bent tubes [36, 91, 115]), we mainly focus on bounded domains.

It is worth noting that the exponential decay of eigenfunctions of Schrödinger operators in free space

(so-called strong localization) has been thoroughly investigated in physical and mathematical literature

(see, e.g., [2, 152, 153, 166, 194]). The first exploration of this problem for arbitrary Schrödinger potential

bounded from below was given by Schnol’ [194] who proved an exponential decay of eigenfunctions in

which the decay rate was related to the distance between the corresponding eigenvalue and the essential

spectrum. This result is of remarkable generality because the essential spectrum may be arbitrary, for

39
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x0

Q(x0)

0

Figure 4.1: A bounded domain D is the union of a basis domain V of arbitrary shape and a rectangular
branch Q.

example with gaps, and may not consist of the positive axis. A sharp estimate for the decay rate was

made by Maslov who reduced the problem to a differential inequality [152, 153]. Anderson discovered

the exponential decay of eigenfunctions of the Schrödinger operator with random potentials [6]. This

phenomenon, known as the Anderson localization, has been intensively investigated (see reviews [19, 72]).

Although the Laplace operator in a bounded domain is a much simpler mathematical object, the properties

of its eigenfunctions are still poorly understood.

The chapter is organized as follows. In Sec. 4.2, we start by considering a two-dimensional domain

with a rectangular branch. In this special case, the estimates are derived in a rather elementary and

straightforward way that helps to illustrate many properties of eigenfunctions. Section 4.3 presents the

analysis for domains with branches of arbitrary shape in any spatial dimension. We provide a sufficient

condition on the eigenvalue, under which the related eigenfunction decays exponentially inside the branch.

In Sections 4.4 and 4.5, we discuss the exponential decay for domains with infinite branches and higher-

dimensional domains. Sec. 4.6 presents numerical examples which illustrate the theoretical results and

suggest new perspectives for further investigations. In Sec. 4.7, we show the existence of localized

eigenfunctions in elongated polygons. The chapter ends by conclusions, in which the main results are

summarized and their consequences are discussed.

4.2 Rectangular branches

In order to describe our approach, we consider the Dirichlet eigenproblem

{

△u+ λu = 0, in D,

u = 0 on ∂D,
(4.1)

in a planar bounded domain D̄ = V̄ ∪ Q̄, which is decomposed into a basic domain V of arbitrary shape

and a rectangular branch Q of side a and b (see on Fig. 4.1) such that

Q =
{

(x, y) ∈ R2 : 0 < x < a, 0 < y < b
}

.

Assuming an eigenvalue λ is smaller than the first eigenvalue of the Laplace operator in the cross-section of
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the branch Q (i.e the interval [0,b]), λ < π2

b2 , we aim at showing the classical result that the corresponding

eigenfunction u decays exponentially along this branch. The general case of variable cross-sectional profiles

will be presented below.

One can easily check that a general solution of Eq. (4.1) in the rectangular branch Q can be determined

by the following form

u(x, y) =
∞∑

n=1

cn sinh(γ̃n(a− x)) sin(πny/b), (4.2)

where γ̃n =
√

(π
b n)2 − λ, and cn are constants. We now consider the energetic norm of the eigenfunction

u in the subdomain Q(x0) = {(x, y) ∈ R2 : x0 < x < a, 0 < y < b} which is defined as

||∇u||2L2(Q(x0)) ≡
∫

Q(x0)

(∇u,∇u)dxdy. (4.3)

We substitute Eq.(4.2) into Eq.(4.3):

||∇u||2L2(Q(x0)) =
∞∑

n=1

c2
n

b

2

a∫

x0

[

(
π

b
n)2 sinh2(γ̃n(a− x)) + γ2

n cosh2(γ̃n(a− x))

]

dx. (4.4)

Using elementary inequalities for the integral (see Appendix D1), one gets

||∇u||2L2(Q(x0)) ≤ Ce−2γ̃1x0

∞∑

n=1

nc2
n sinh2(γ̃1a), (4.5)

where C is an explicit constant.

By the trace theorem, one can estimate the upper bound of the above series (see Appendix D1)

||∇u||2L2(Q(x0)) ≤ C1e
−2γ̃1x0 ,

with another explicit constant C1 that does not depend on x0 (and the L2-norm of u in D was set to 1).

As a result, we established the exponential decay of the energy ||∇u||2 along the branch Q with the decay

rate 2γ̃1 = 2
√
µ− λ where µ = (π

b )2.

From the above estimate, it is not difficult to deduce a similar estimate in L2−norm,

||u||2L2(Q(x0)) ≡
∫

Q(x0)

u2dxdy ≤ C2e
−2γ̃1x0, (4.6)

where C2 is another constant. The derivation implies that this estimate is sharp, i.e. the decay rate

cannot be improved in general.

Remark 4.2.1. It is worth noting no information about the basic domain V was used. In particular, the

Dirichlet boundary condition on ∂V ∪ ∂D can be replaced by arbitrary boundary condition on ∂V under

which the Laplace operator is still self-adjoint.
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V
Q

x

y

a

Ω(x)

0

(a)

Q
x

Q(x)

(b)

Figure 4.2: A bounded domain D is the union of a basic domain V of arbitrary shape and a branch Q
of a variable cross-sectional profile Ω(x) ⊂ Rn: (a) - two-dimensional domains, (b) - three-dimensional
domain.

4.3 Branch of arbitrary shape

In this section, we show that the above estimate is still valid for Dirichlet eigenfunctions in a much more

general case with a branch of arbitrary shape in Rn+1(n = 1, 2, 3, . . . ). We consider again the eigenvalue

problem

{

△u+ λu = 0, in D,

u = 0 on ∂D,
(4.7)

where D̄ = V̄ ∪ Q̄ is decomposed into a basic bounded domain V ∈ Rn+1 of arbitrary shape and a branch

Q ⊂ Rn+1 of a variable cross-sectional profile Ω(x) ⊂ Rn (Fig. 4.2) such that

Q = {(x,y) ∈ Rn+1 : y ∈ Ω(x), 0 < x < a}.

Each cross-section Ω(x) is a bounded domain which is parameterized by x from 0 to a. The boundary of

the branch Q is assumed to be piecewise smooth [102].

For a fixed x ∈ (0, a), we call µ1(x) the first eigenvalue of the problem

−∆⊥φ(y) = µ1(x)φ(y) y ∈ Ω(x), φ|∂Ω = 0, (4.8)

where ∆⊥ is the n-dimensional Laplace operator. We denote

µ = inf
0<x<a

µ1(x) (4.9)

the smallest first eigenvalue among all cross-sections of the branch. For example, if Ω(x) = [0, b] (inde-

pendent of x), one has µ = π2/b2 and retrieves the example from previous section.

Now, we formulate our main result as

Theorem 4.3.1. If the basic domain V is large enough such that there exists an eigenvalue

λ < µ, (4.10)
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the squared L2-norm of the associated eigenfunction u in the cross-section Ω(x0),

I(x0) ≡
∫

Ω(x0)

u2(x0,y)dy, (4.11)

has an upper bound which decays exponentially with x0:

I(x0) ≤ I(0)e−βx0 (0 ≤ x0 < a), (4.12)

with the decay rate

β =
√

2
√

µ− λ. (4.13)

Moreover, if the branch profile Ω(x) satisfies the condition

(ex,n(x,y)) ≥ 0 ∀(x,y) ∈ ∂Q, (4.14)

where ex is the unit vector along the x coordinate, and n(x,y) the unit normal vector at the boundary

point (x,y) directed outwards the domain, then the decay rate is improved:

β = 2
√

µ− λ. (4.15)

Proof. We will prove the theorem by three steps.

(i) First, we derive the inequality

I ′′(x0) ≥ cγ2I(x0), (4.16)

where c = 2 for arbitrary branch and c = 4 for branches satisfying the condition (4.14), and γ =
√
µ− λ.

This type of inequalities was first established by Maslov for Schrödinger operators in free space [152, 153].

For this purpose, we consider the first two derivatives of I(x0):

I ′(x0) = 2

∫

Ω(x0)

u
∂u

∂x
dy, (4.17)

I ′′(x0) = 2

∫

Ω(x0)

u
∂2u

∂x2
dy + 2

∫

Ω(x0)

(
∂u

∂x

)2

dy, (4.18)

where the boundary condition u|∂Q = 0 cancels the integrals over the “lateral” boundary of Q(x0).

One can estimate the first integral in Eq. (4.18) by

∫

Ω(x0)

u
∂2u

∂x2
dy =

∫

Ω(x0)

u
[

∆u−∆⊥u
]

dy =

∫

Ω(x0)

(∇⊥u,∇⊥u)dx − λ
∫

Ω(x0)

u2dy (4.19)
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Using the Friedrichs-Poincaré inequality for the cross-section Ω(x0) (see Appendix D2), one has

∫

Ω(x0)

(∇⊥u,∇⊥u)dy ≥ µ1(x0)

∫

Ω(x0)

u2dy. (4.20)

Since µ1(x0) ≥ µ by definition of µ in Eq. (4.9), one gets

∫

Ω(x0)

(∇⊥u,∇⊥u)dy ≥ µ
∫

Ω(x0)

u2dy.

Bringing the above results together, it is easy to see that

∫

Ω(x0)

u
∂2u

∂x2
dy ≥ (µ− λ)

∫

Ω(x0)

u2dy. (4.21)

Since the second term in Eq. (4.18) is always positive, it implies that

I ′′(x0) ≥ 2

∫

Ω(x0)

u
∂2u

∂x2
dy ≥ 2(µ− λ)

∫

Ω(x0)

u2dy,

from which follows the inequality (4.16) with c = 2.

If the condition (4.14) is satisfied, one can get a more accurate estimate of the second term in Eq. (4.18)

from the Rellich’s identity (see Appendix D3):

∫

Ω(x0)

(
∂u

∂x

)2

dy =

∫

Ω(x0)

(∇⊥u,∇⊥u)dy− λ
∫

Ω(x0)

u2dy +

∫

∂Q(x0)\Ω(x0)

(
∂u

∂n

)2

(ex,n(S))dS, (4.22)

where Q(x0) denotes the “right” part of the branch Q delimited by Ω(x0):

Q(x0) =
{

(x,y) ∈ Rn+1 : y ∈ Ω(x), x0 < x < a
}

. (4.23)

It is easy to see that the condition (4.14) implies the positivity of the last term in Eq. (4.22), which can

therefore be dropped off in order to get the following estimate:

∫

Ω(x0)

(
∂u

∂x

)2

dy ≥
∫

Ω(x0)

(∇⊥u,∇⊥u)dy− λ
∫

Ω(x0)

u2dy ≥ (µ− λ)

∫

Ω(x0)

u2dy.

Combining this result with (4.21), one gets the inequality (4.16) with c = 4.

(ii) Secondly, we prove that

I(a) = 0, I ′(a) = 0, I(x0) 6= 0, I ′(x0) < 0,∀x0 ∈ [0, a). (4.24)
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By using Eq.(4.17) and applying the Green’s formula in the subdomain Q(x0), one gets

I ′(x0) = −2

∫

Q(x0)

u∆u dxdy− 2

∫

Q(x0)

(∇u,∇u)dxdy− 2

∫

∂Q(x0)\Ω(x0)

u
∂u

∂x
dy

= −2

∫

Q(x0)

u∆u dxdy− 2

∫

Q(x0)

(∇u,∇u)dxdy = −2λ

∫

Q(x0)

u2 dxdy− 2

∫

Q(x0)

(∇u,∇u)dxdy.
(4.25)

Using again the Friedrichs-Poincaré inequality (4.20), one can estimate the second term in Eq.(4.25):

∫

Q(x0)

(∇u,∇u)dxdy =

∫

Q(x0)

[(
∂u

∂x

)2

+ (∇⊥u,∇⊥u)

]

dxdy

≥
a∫

x0

dx

∫

Ω(x)

(∇⊥u,∇⊥u)dy ≥ µ
a∫

x0

dx

∫

Ω(x)

u2dxdy = µ

∫

Q(x0)

u2dxdy.

(4.26)

From the above inequality, one obtains

−I ′(x0) = −2λ

∫

Q(x0)

u2dxdy + 2

∫

Q(x0)

(∇u,∇u)dxdy ≥ 2(µ− λ)

∫

Q(x0)

u2dxdy ≥ 0,

i.e the function I(x0) monotonously decays in the interval (0, a).

Substituting x0 by a in Eq. (4.25), it is easy to see that I ′(a) = 0 and I(a) = 0.

Finally, we prove that I(x0) 6= 0 for 0 ≤ x0 < a. Conversely, if one can find some x0 such that I(x0) = 0,

then the restriction of u to the subdomain Q(x0) is a solution of the eigenvalue problem in Q(x0):

−∆u = λu (x,y) ∈ Q(x0), u|∂Q(x0) = 0.

Multiplying this equation by u and integrating over the domain Q(x0) lead to

λ

∫

Q(x0)

u2dxdy =

∫

Q(x0)

(∇u,∇u)dxdy.

On the other hand, the Friedrichs-Poincaré inequality (4.26) yields

∫

Q(x0)

(∇u,∇u)dxdy ≥ µ
∫

Q(x0)

u2dxdy,

from which λ ≥ µ, in contradiction to the condition (4.10).

(iii) Thirdly, we establish the exponential decay (4.12) following the Maslov’s method [152, 153]. The

multiplication of the inequality (4.16) by I ′(x0) yields

((I ′)2)′ ≤ cγ2(I2)′.
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After integrating from x0 to a, one gets

−(I ′(x0))2 ≤ −cγ2I2(x0),

where I(a) = I ′(a) = 0 from Eq. (4.24). Taking in account that I ′ < 0, one deduces

−I ′(x0) ≥ √cγI(x0).

Dividing by I(x0) and integrating from 0 to x0 lead to Eq. (4.12) that completes the proof.

As in Sec. 4.2, no information about the basic domain V was used so that the Dirichlet boundary condition

on ∂V can be replaced by arbitrary boundary condition on ∂V under which the Laplace operator in D

remains self-adjoint.

4.4 Infinite branches

For an infinite branch, the exponential decay is still valid if the condition (4.10) is satisfied. However,

it is worth noting that when the branch Q is infinite, the eigenspectrum of the Laplace operator is not

necessarily discrete, and L2-normalized eigenfunctions may not exist. For example, in a semi-infinite strip

D = [0,∞) × [0, π], the functions fn(x) = sinh(
√
n2 − λx) sin(ny) satisfy the Laplacian eigenproblem

(4.7), but their L2(D)-norms are infinite.

As shown by Rellich, if the first eigenvalue µ1(x) in the cross-section Ω(x) of an infinite branch Q goes to

infinity as x→∞, then there exist infinitely many L2-normalized eigenfunctions [181]. In two dimensions,

the bound µ1(x) = π2/ℓ(x)2 is related to the length ℓ(x) of the largest interval in the cross-section Ω(x).

It is easy to see that the condition µ1(x)→∞ requires ℓ(x)→ 0.

For infinite decreasing branches, eigenfunctions can be shown to decay faster than an exponential with

any decay rate. We assume that the domain D can be separated into a basic domain V and an infinite

decreasing branch Q so that the separation happens at x = x0. The norm of Laplacian eigenfunctions

satisfies

I(x) ≤ I(x0) exp

[

−2
√

µ(x0)− λ (x− x0)

]

x ≥ x0,

where the new threshold µ(x0) = inf
x0<x

[
π

ℓ(x)

]2
increases with x0, while the prefactor I(x0) also decays

exponentially with x0 according to Eq. (4.12). We assume that lim
x→∞

ℓ(x) = 0. One can easily see that

the value µ(x0) tends to ∞ as x0 → ∞. Since the above estimate is applicable for any x0, for a given

decay rate, one can choose an appropriate value of x0 so that the function I(x) decays faster than the

exponential with this rate along the branch Q(x0).
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4.5 Three-dimensional domains

Our exponential estimate is also valid in three or higher dimensional domains (Sec. 4.3). For an example

shown on Fig. 4.2, one can see that the shape of the cross-section Ω(x) can vary significantly. Whatever the

shape of the branch is, the only relevant information for the exponential decay is the smallest eigenvalue

µ in all cross-sections Ω(x).

For example, if Ω(x) = [0, b(x)] × [0, c(x)], the first eigenvalue of the Laplace operator in Ω(x) is

µ1(x) = π2

b(x)2 + π2

c(x)2 . One can bound the value of µ1(x) from below by some µ (µ1(x) > µ,∀x) even

if one of two sides b(x) and c(x) is extremely large (b(x) ≫ 1 or c(x) ≫ 1). As a consequence, when the

basic domain V is large enough, there may exist some eigenvalues λ smaller than µ, whose eigenfunctions

exponentially decay even along extremely-long-growing branches.

4.6 Discussion

From the main results in Section 4.3, if an eigenvalue λ with Dirichlet boundary condition in the domain

D is below the smallest eigenvalue µ in all cross-sections Ω(x), the corresponding eigenfunction u decays

exponentially along the branch Q. One can replace this condition on the eigenvalue λ in D by a stronger

condition,

κ < µ (4.27)

on the eigenvalue κ in the basic domain V :

−∆φ = κφ, (x,y) ∈ V, φ|∂V = 0. (4.28)

Using the domain monotonicity property of Dirichlet-Laplacian eigenfunctions (Theorem 2.1.6), the con-

dition (4.27) is sufficient for the existence of the eigenvalue λ lying below µ (see Appendix D2). In practice,

one can use the condition (4.27) for studying different branches Q attached to the same basic domain V

so that the eigenvalue κ is computed only once.

In the next subsections, we will present several numerical simulations to show the accuracy of our expo-

nential estimate and the behavior of the associated eigenfunctions u.

4.6.1 Numerical simulations

For numerical simulations, we consider several planar bounded domains D which are all composed of the

unit square V as the basic domain and a branch Q of different shapes (See Fig. 4.3 for details) and make

the computation by the following steps:

• Step 1:

We solve the eigenproblem (4.7) with Dirichlet boundary condition in these domains by the package

PDETools in Matlab.

• Step 2:

After computing the eigenvalues and the corresponding eigenfunctions, we approximate the squared
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Figure 4.3: The unit square (basic domain V ) and several shapes of the branch Q: (a) rectangular
branch; (b) half of the domain ’a’; (c) narrow-then-wide channel; (d) wide-then-narrow channel; (e)
increasing branch with the width linearly changing from b/2 to b; (f) branch with a partial cut at the
middle; (g) parallelogram branch; (h) circular branch; (i) branch with a small broadening in the middle;
(j) bifurcating branch. We set a = 1 and b = 1/4 in all cases, except ’g’ and ’h’, for which a = 1/

√
2 and

a = 5/8, respectively. For shapes ’c’, ’d’, ’e’, ’f’, ’i’ and ’j’, the branching is up-shifted by 1/8 in order
to break the reflection symmetry (for cases ’g’ and ’h’, there is no shift because the branch itself has no
reflection symmetry).
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n 2a 2c 2d 2e 2f 2g 2h 2i 2j

1 19.33 19.66 19.39 19.64 19.58 19.39 19.33 19.39 19.39
2 47.53 48.95 47.58 48.94 48.59 47.86 47.54 47.58 47.58
3 49.32 49.35 49.33 49.35 49.33 49.32 49.32 49.33 49.33
4 78.83 78.75 77.85 78.90 78.54 78.85 78.84 77.85 77.85
5 93.12 97.87 94.41 97.69 97.09 94.48 93.12 94.40 94.41
6 98.70 98.71 98.67 98.71 98.66 98.71 98.71 98.67 98.67
7 126.1 127.8 125.2 127.9 127.3 126.9 126.1 125.2 125.2
8 128.0 128.3 128.0 128.3 128.0 128.1 128.0 128.0 127.7
9 151.7 166.1 154.1 165.8 164.6 158.5 151.6 150.4 128.0
10 167.7 167.8 167.8 167.8 167.8 167.7 167.7 156.8 153.6
11 167.8 177.5 176.5 177.1 177.0 175.8 171.8 167.8 167.8
12 175.3 193.9 182.3 196.9 183.4 196.5 176.1 176.7 167.8
13 191.7 196.1 196.1 197.5 195.3 197.4 196.4 185.3 176.7
14 196.4 197.5 197.4 239.6 197.4 229.6 197.4 197.1 185.4
15 197.4 245.1 229.1 244.4 244.1 245.9 204.5 197.4 195.2
16 218.8 246.8 246.0 246.8 246.2 250.7 235.5 218.5 195.5
17 245.7 254.3 249.2 254.1 252.4 256.7 245.8 242.8 197.4
18 246.7 256.7 256.6 256.7 256.6 284.6 250.5 246.1 214.8
19 252.5 284.7 269.6 285.8 259.3 285.5 256.7 250.6 229.0
20 256.6 286.3 285.9 286.3 283.2 304.1 278.7 256.6 245.9

Table 4.1: First 20 eigenvalues of the Laplace operator in domains shown on Fig. 4.3.

L2-norm of the eigenfunction un in the subregion Q(x0) = {(x, y) ∈ Q : x0 < x < a} of the branch

Q as

Jn(x0) ≡
∫

Q(x0)

u2
n(x, y)dxdy ≃

∑

T

S(T )

3

3∑

j=1

u2
n(xT

j , y
T
j ), (4.29)

where the sum runs over all triangles T of the mesh, S(T ) being the area of the triangle T , and

{(xT
j , y

T
j )}j=1,2,3 its three vertices.

• Step 3:

For checking whether the results are accurate or not, we firstly compute the function Jn(x0) at

different levels k of mesh refinement (once the initial triangular mesh is generated by Matlab, each

level of refinement consists in dividing each triangle of the mesh into four triangles of the same

shape). Then, we checked the exponential decay of the function Jn(x0) as shown in the inequality

(4.31).

Taking into account the exponential decay (4.12) for I(x0), one checks

Jn(x0) =

a∫

x0

In(x) dx ≤
a∫

x0

In(0)e−2γnx dx ≤ In(0)

2γn
e−2γnx0, (4.30)



Chapter 4. Exponential decay of Laplacian eigenfunctions in domains with branches 50

0 0.2 0.4 0.6 0.8 1
10

−20

10
−15

10
−10

10
−5

10
0

x
0

J n(x
0)

Figure 4.4: Computation of Jn(x0) at different levels k of mesh refinement of the rectangular branch on
Fig. 4.3a: k = 3 (symbols, 6848 triangles in the mesh), k = 4 (solid lines, 27392 triangles), k = 5 (dashed
lines, 109568 triangles) and k = 6 (dash-dotted lines, 438272 triangles). For n = 1, all these curves fall
onto each other, confirming the accurate computation which is independent of the mesh size. In turn, the
curves for n = 3 coincide only for small x0 but deviate from each other for larger x0. The higher k, the
closer the curve to the expected exponential decay (Fig. 4.5).

where

γn =
√

µ− λn,

and we take c = 4 even if the sufficient condition (4.14) is not satisfied. In what follows, we will check

numerically the stronger inequality

Jn(x0) ≤ Jn(0)e−2γnx0, (4.31)

from which (4.30) follows, because

Jn(0) =

a∫

0

In(x) dx ≤ In(0)

a∫

0

e−2γnx dx ≤ In(0)

2γn
.

It is worth stressing that the inequality (4.31) for the squared L2-norm Jn(x0) in the subregion Q(x0) is a

weaker result than the inequality (4.12) for the squared L2-norm In(x0) in the cross-section Ω(x0). How-

ever, the analysis of In(x0) would require an accurate computation of the restriction of an eigenfunction

un, which was computed on a triangular mesh in D, onto the cross-section Ω(x0). The resulting In(x0)

would be less accurate than Jn(x0). For this reason, we will focus on checking the exponential decay of

Jn(x0).

We have the following remarks about the error of the computation in Matlab.

Remark 4.6.1. Since the eigenfunctions are analytic inside the domain, the error of the above approxi-

mation is mainly determined by the areas of triangles.

Remark 4.6.2. The higher k, the closer the resulting curve to the expected exponential decay.

For illustrating the above remark, we give the following example.
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Figure 4.5: The squared L2-norm, Jn(x0), of four eigenfunctions with n = 1, 8, 9, 13 (symbols) for the
rectangular branch on Fig. 4.3a. The estimate (4.31) with µ = π2/(1/4)2 is plotted by dashed (n = 1),
solid (n = 8) and dash-dotted (n = 9) lines. The estimate with µ = π2/(1/8)2 is shown for n = 8 by
dotted line.

Example 4.6.1. In Fig. 4.4, we show the resulting curves for the rectangular branch (Fig. 4.3a). For

the first eigenfunction, all the curves fall onto each other, i.e. J1(x0) is independent of k, as it should be.

In turn, the curves for n = 3 coincide only for small x0 but deviate from each other for larger x0.

It means that even 6 levels of mesh refinement (i.e., a mesh with 438272 triangles) is not enough for an

accurate computation of the integral J3(x0). Among the 20 first eigenfunctions, similar deviations were

observed for n = 3, 4, 8, 10, 14, 15, 17. The specific behavior of these eigenfunctions seems to be related to

their reflection symmetry.

Remark 4.6.3. For all following data sets, we checked the accuracy by performing computations with

different k and presented only the reliable data with k = 5 (such meshes contain between 100000 and

170000 triangles, except for the case on Fig. 4.3f with 671744 triangles).

4.6.2 Rectangular branch

In this domain, we consider the rectangular branch of width b = 1
4 (see Fig. 4.3a). Since the value

µ = 16π2 ≈ 157.91, among the first 20 Dirichlet-Laplacian eigenvalues in Table 4.1, there are 9 eigenvalues

λn below µ.

a. Case λ < µ:

Among these eigenvalues, for the eigenmodes with n = 1, 2, 5, 7, 9 (illustrated by n = 1, 9), the estimate

is very accurate. In this case, the decay rate 2γn is sharp and cannot be improved.

In turn, for the remaining eigenfunctions with n = 3, 4, 6, 8 (illustrated by n = 8), the function Jn(x0) is

significantly smaller than the estimate.

For x0 < 0.4, J8(x0) decays as J8(0) exp[−2γ′
8x0], where 2γ′

8 = 2
√

4µ− λ8 is the improved decay rate
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(for larger x0, the computation is inaccurate as explained earlier and its result is not shown). For better

understanding this behavior, we analyze the shape of the eigenfunction u8(x, y) as shown in Fig. 4.5b.

This eigenfunction is anti-symmetric with respect to the horizontal line which splits the domain D into

two symmetric subdomains. As a result, u8(x, y) is 0 along this line and it is thus a solution of the

Dirichlet eigenvalue problem for each subdomain (Fig. 4.3b). The width of the branch in each subdomain

is twice smaller so that one can apply the general estimate with µ′ = 4µ. This is a special feature of all

symmetric domains.

If we shift the branch upwards or downwards, the reflection symmetry would be broken, and the decay

rate 2γ′
n would not be applicable any more. This example shows that the estimate (4.12) may not be

sharp for certain eigenfunctions.

b. Case λ > µ:

For the eigenfunction u13, the corresponding eigenvalue λ13 is greater than µ and the exponential decay

estimate (4.31) is not applicable (Fig. 4.3a) along the branch Q. One can expect this behavior from the

shape of this eigenfunction u13 (Fig. 4.3b).

4.6.3 Narrow/wide and wide/narrow branches

In this section, the branch Q consists of two channels as shown on Fig. 4.3c and 4.3d. Any cross-section

Ω(x) of the branch Q is a union of intervals. The first eigenvalue µ(x) in this cross-section is equal to
π2

l(x)2 , where l(x) is the length of the largest interval in Ω(x). If we put b = max
x∈(0,a)

l(x), the bound µ of the

exponential decay can be easily determined by µ = π2

b2 .

In Fig. 4.3c, the narrow channel of width b
2 is placed first for which µ = 16π2. Although the narrow

channel strongly attenuates the amplitude of an eigenfunction u, it does not imply the exponentially decay

with a hypothetical rate 2
√

4µ− λ along the next wider channel of width b. For example, in Fig. 4.6, one

can see that the theoretical estimate with the decay rate 2
√
µ− λ is applicable for n = 1. However, with

the rate 2
√

4µ− λ, the function J1(x) only decays exponentially up to x0 ≈ 0.5 and then starts to slow

down in the interval (0.5, 1). We also get the same behavior for n = 9.

In turn, if one puts the wider channel first, the eigenfunction decays exponentially with the decay rate

2
√
µ− λ on the whole branch Q. Here, the value µ is still equal to 16π2. Moreover, if one consider a basic

domain including both the unit square and the wider channel, the decay rate 2
√

4µ− λ can be applicable

along the narrow one (see details on Fig. 4.7).

Remark 4.6.4. If the branch Q = Q1∪Q2∪· · ·∪Qk can be decomposed into k channels Q1, Q2, . . . , Qk with

the corresponding widths b1, b2, . . . , bk such that b1 ≥ b2 ≥ · · · ≥ bk, the eigenfunction will exponentially

decay with the rate 2
√

π2

b2
i
− λ along the sub-branch Qi ∪Qi+1 ∪ · · · ∪Qk for all i = 1, . . . , k when λ < π2

b2 .

Here, b = max
1≤i≤k

bi.

4.6.4 Increasing branch

Let us consider the branch Q as shown on Fig. 4.3e. One can see that l(x) is an increasing function for

x ∈ (0, a). Although the condition (4.14) is not satisfied in Q, one can obtain the sharp exponential decay
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Figure 4.6: The squared L2-norm, Jn(x0), of three eigenfunctions with n = 1, 9, 12 (symbols) for the
narrow-than-wide branch on Fig. 4.3c. The estimate (4.31) with µ = π2/(1/4)2 = 16π2 is plotted for
n = 1 by solid line. The hypothetical estimate with µ = π2/(1/8)2 = 64π2 is shown by dash-dotted
(n = 1) and dashed (n = 9) lines. The vertical dotted line indicates the connection between two parts of
the branch.

0 0.2 0.4 0.6 0.8 1

10
−20

10
−10

10
0

x
0

J n(x
0)

(a)

 

 

n = 1
n = 3
n = 12

n = 1 n = 3

n = 11 n = 12

(b)

Figure 4.7: The squared L2-norm, Jn(x0), of three eigenfunctions with n = 1, 3, 12 (symbols) for the
wide-than-narrow branch on Fig. 4.3d. The estimate (4.31) with µ = π2/(1/4)2 = 16π2 is plotted by
dotted lines for n = 1 and n = 3. The combined estimate (for the wide part with µ = π2/(1/4)2 and for
the narrow part with µ = π2/(1/8)2 = 64π2) is shown by solid (n = 1), dashed (n = 3) and dash-dotted
(n = 12) lines. The vertical dotted line indicates the connection between two parts of the branch.
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Figure 4.8: The squared L2-norm, Jn(x0), of two eigenfunctions with n = 1, 8 (symbols) for the increasing
branch on Fig. 4.3e. The estimate (4.31) with µ = π2/(1/4)2 is plotted by solid (n = 1) and dash-dotted
(n = 8) lines. The hypothetical estimate with µ = π2/(1/8)2 is shown by dashed (n = 1) and dotted
(n = 8) lines.

with the rate 2
√
µ− λ (Fig. 4.8) for which µ = 16π2.

4.6.5 Branch with a cut

In this example, the rectangular branch Q has a horizontal cut at the middle of this branch. This branch

is useful to check the robustness of the exponential estimate (4.31).

If the cut goes along the whole branch, Q can be decomposed into two similar rectangular branch of width
b
2 . In this case, one can apply the theoretical estimate (4.31) individually to each branch with the bound

µ = 4π2

b2 of the exponential estimate.

If the cut goes partially on the branch with the length acut ∈ (0, a), the value of µ is equal to π2

b2 , and

when λ < µ, the theoretical estimate with the rate 2
√
µ− λ is applicable along the branch Q.

In Fig. 4.9a, we show the squared L2-norm Jn(x) of three eigenfunctions un with n = 1, 11, 12 for

x ∈ (0, a). In case n = 1, we compare the exponential decay of J1(x) with the theoretical bound

µ = π2

b2 = 16π2 and another hypothetical bound µ = 4π2

b2 = 64π2. In this case, one can see that the

theoretical bound is applicable but not sharp for all x ∈ (0, a). In turn, the hypothetical bound is sharp

but it works only up to x = 0.4, and the decay of the function J1(x) starts to slow down from 0.4 to 1.

For cases n = 11, 12, the eigenvalues are greater than the theoretical bound µ = 16π2, and the exponen-

tially decaying estimate is not applicable.

4.6.6 Tilted and circular branches

In this section, we consider two kinds of branches Q: tilted and circular branches.

In Fig. 4.3g, the branch Q is a rectangular branch tilted by the angle π
4 . One may apply the exponential

decay (4.31) with the bound µ = π2

b2 in this case. Figure 4.10 shows the exponential decay of J1(x) for the

first eigenfunction with µ = 16π2. However, since the branch Q was turned clockwise by π
4 , the accurate
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Figure 4.9: The squared L2-norm, Jn(x0), of three eigenfunctions with n = 1, 11, 12 (symbols) for the
branch with a cut on Fig. 4.3f. The estimate (4.31) with µ = π2/(1/4)2 is plotted by solid (n = 1) and
dash-dotted (n = 11) lines. The hypothetical estimate with µ = π2/(1/8)2 for n = 1 is shown by dashed
line. The vertical dotted line indicates the end of the cut.

width of Q is bnew = b√
2
. From the estimate, one can expect the exponential decay of Jn(x) with the

new bound µnew = 2µ = 32π2. It is clear that the behavior of eigenfunctions does not depend neither on

rotations of the domain, nor on the parameterization of the branch. Figure 4.10 shows the exponential

decay with the latter threshold µ.

Next, we consider a circular branch Q with b = 1 and a = 5
8 (Fig. 4.11). In this branch, the largest

cross-section appears at x = 3
8 , and it is equal to 1

2 . For this reason, the bound µ = 4π2. From Table 4.1,

one can see that the exponential decay is only applicable for the first eigenfunction (as λ2 > µ).

Naturally, the circular branch Q can be parameterized by the angle φ or by an arc, as illustrated in Fig.

4.3h. However, there is an ambiguity in the choice between arcs of various radii (e.g., inner, outer or

middle arcs). Although the length of all these arcs is proportional to the angle φ, the proportionality

coefficient enters in the decay rate. In Fig. 4.11, we made the computation for the inner arc of radius

r = 3/8. The squared L2-norm was plotted as a function of the curvilinear coordinate x′
0 = rφ, with φ

varying between 0 and π/2. For such a curvilinear parameterization, the width of the branch is constant,

b = 1/4, so that there are 9 eigenvalues λn below µ = 16π2. One can see the exponential decay of the 9th

eigenfunction on Fig. 4.11.

4.6.7 Branch with a small broadening

We consider a rectangular branch Q with a small broadening at the middle (Fig. 4.3i). In this case, the

largest cross-section has the width b = 1
2 so that threshold bound µ is equal to 4π2 ≈ 39.4784. As a result,

from the Table 4.1, only the first eigenvalue λ1 is smaller than µ. One can see the exponential decay of

the function J1(x) in Fig. 4.12.

What is the behavior of other eigenfunctions with the bound value µ′ = 16π2 ≈ 157.91 along the branch?
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Figure 4.10: The squared L2-norm, Jn(x0), of two eigenfunctions with n = 1, 14 (symbols) for the tilted
branch on Fig. 4.3g. The formal estimate (4.31) with µ = π2/(1/4)2 is plotted by solid line for n = 1.
The improved estimate with µ = π2/(1/4/

√
2))2 is shown by dashed (n = 1) and dash-dotted (n = 14)

lines.
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Figure 4.11: The squared L2-norm, Jn(x′
0), of four eigenfunctions with n = 1, 9, 10, 11 (symbols) for the

circular branch on Fig. 4.3h. The estimate (4.31) with µ = π2/(1/4)2 is plotted by solid (n = 1) and
dashed (n = 9) lines. The curvilinear coordinate x′

0 = rφ with r = 3/8 and the angle φ varying from 0 to
π/2, was used.
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Figure 4.12: The squared L2-norm, Jn(x0), of three eigenfunctions with n = 1, 8, 9 (symbols) for the
branch with a broadening on Fig. 4.3i. The estimate (4.31) with µ = π2/(1/2)2 for n = 1 is shown by
dotted line. The hypothetical estimate (4.31) with µ = π2/(1/4)2 is plotted by solid (n = 1), dashed
(n = 8) and dash-dotted (n = 9) lines. Vertical dotted lines indicate the position of the broadening.

From Table 4.1, only first 10 eigenvalues are smaller than µ′. Among these eigenmodes, the first 8

eigenfunctions un still decay exponentially along the branch except for the case n = 9, 10. In Fig. 4.12,

we plot the function Jn(0) exp(−2
√
µ′ − λnx0) for three eigenfunctions with n = 1, 8, 9. One can see that

this function correctly capture the behavior of Jn(x) for n = 1, 8, but fails to be its upper bound (there

are some sets of (0, a) where Jn(x) exceeds this function).

In conclusion, although the small broadening of the branch does not significantly influence the exponen-

tially decay of the first eigenfunctions, the upper bound may not be valid.

4.6.8 Bifurcating branch

In the last example, we consider a rectangular branch which bifurcates into two rectangular branches (Fig.

4.3j). In this case, the length of the largest cross-section is 1 so that µ = π2 = 9.8696. From the Table

4.1, all eigenvalues exceed µ so that the exponential decay with the theoretical bound µ is not applicable

for all eigenfunctions. Now, what does happen for Jn(x) if we use the hypothetical bound µ = 16π2 as

for the rectangular branch? In Fig. 4.13, one can see that for the first eigenfunction, the function J1(x)

can be well estimated by the exponential function J1(0) exp(−2
√
µ′ − λ1x0) practically along the interval

(0, 1) except for a small deviation at the bifurcation region (x0 > 1).

Similar behavior can be observed for other eigenfunctions up to n = 7. The larger the index n, the earlier

the deviation from the exponential estimate appears (e.g., in case n = 7, the estimate works only for

x0 < 0.3). In turn, the 8th eigenfunction has no exponential decay in the branch as it is localized in the

bifurcation region.
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Figure 4.13: The squared L2-norm, Jn(x0), of three eigenfunctions with n = 1, 7, 8 (symbols) for the
bifurcating branch on Fig. 4.3j. The hypothetical estimate (4.31) with µ = π2/(1/4)2 is plotted by solid
(n = 1), dashed (n = 7) and dash-dotted (n = 8) lines. The vertical dotted line indicates the position of
bifurcation.

4.6.9 Neumann boundary condition

The theoretical derivation in Sec. 4.3 essentially relies on the Dirichlet boundary condition on the branch

boundary: u|∂Q = 0. This condition can be interpreted, e.g., as a rigid fixation of a vibrating membrane

at the boundary, or as a perfect absorption of diffusing particles at the boundary. The opposite case

of free vibrations of the membrane or a perfect reflection of the particles is described by Neumann

boundary condition, ∂u/∂n|∂Q = 0. Although the eigenvalue problem may look similar, the behavior of

eigenfunctions is different. In particular, an extension of the results of Sec. 4.3 fails even in the simplest

case of a rectangular branch, as illustrated on Fig. 4.14. Although the 8 first eigenvalues λn are below

µ = 16π2 (Table 4.1), only some of them decay exponentially (e.g., with n = 4). This decay seems to be

related to the reflection symmetry of the domain.

In Fig. 4.14, the eigenfunctions with n = 4, 10 are anti-symmetric so that they get the value 0 along the

horizontal line at the middle of the branch. As a result, one can split Q into two symmetric sub-branches

and apply the Dirichlet boundary condition along the splitting line. One can prove that with this mixed

Dirichlet-Neumann boundary condition, there may exist the exponential decay of Jn(x) along the whole

branch by the following theorem.

Theorem 4.6.1. Suppose that a bounded domain D can be decomposed into a basic domain V of arbitrary

shape and a branch Q =
{

(x,y) ∈ Rn+1 : 0 ≤ x ≤ a, |y| < f(x)
}

(as illustrated on Fig. 4.15) with a

piecewise smooth function f(x). We assume that the branch Q is not increasing i.e f ′(x) ≤ 0, ∀x ∈ (0, a)

and f(a) = 0 and denote

J(x0) =
1

ωn

∫

Q(x0)

u(x,y)2dxdy (4.32)
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Figure 4.14: Six eigenfunctions with n = 2, 3, 4, 5, 9, 10 for the rectangular branch (Fig. 4.3a) with
Neumann boundary condition (the fundamental eigenfunction with n = 1 is constant and not shown).
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Figure 4.15: A bounded domain D is the union of a basic domain V of arbitrary shape and a branch
Q =

{
(x,y) ∈ Rn+1 : 0 ≤ x ≤ a, |y| < f(x)

}
, where f ′(x) ≤ 0 and f(a) = 0. Here, one imposes Neumann

boundary condition on the boundary ∂Q.
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where Q(x0) =
{

(x,y) ∈ Rn+1 : x0 ≤ x ≤ a, |y| < f(x)
}

, and ωn is the volume of the unit n-dimensional

ball. We consider the Laplacian eigenproblem with Neumann boundary condition on the boundary ∂Q.

Then, if an eigenvalue λ is smaller than the smallest Dirichlet-Laplacian eigenvalue µ over the cross-

section Ω(x) of Q, the corresponding eigenfunction u exponentially decays along the branch:

J(x0) ≤ J(0) exp(−
√

2
√

µ− λx0), ∀x ∈ [0, a). (4.33)

Proof. Firstly, from the definition of J(x) and the parameterization of branch Q , one gets

J(x0) =

a∫

0

f(x)∫

0

rn−1u2(x, r)dr (4.34)

J ′(x0) = −
f(x0)∫

0

rn−1u2(x0, r)dr (4.35)

J ′′(x0) =

a∫

0

f(x0)∫

0

rn−1u(x0, r)dr
∂u

∂x
− u2(x0, f(x0))f ′(x0)fn−1(x0) (4.36)

Using the Green’s formula and the boundary condition on ∂Q, one has

∫

Q(x0)

u∆udxdy +

∫

Q(x0)

|∇u|2 dxdy =

∫

∂Q(x0)

u
∂u

∂n
dS = −ωn

f(x0)∫

0

rn−1u(x0, r)
∂u

∂x
dr (4.37)

where ∂u
∂n = −∂u

∂x over the cross-section Ω(x0). Finally, using Friedrichs-Poincaré again, one can show that

J ′′(x0) =
2

ωn

∫

Q(x0)

(

u∆u+ |∇u|2
)

dxdy − u2(x0, f(x0))f ′(x0)fn−1(x0)

≥ 2 (µ− λ)

ωn

∫

Q(x0)

u2(x,y)dxdy = 2 (µ− λ)J(x0).

(4.38)

Secondly, the condition f(a) = 0 implies J(a) = J ′(a) = 0. From the initial assumption that f(a) = 0

and f ′(x0) ≤ 0, one can show that J(x0) 6= 0 and J ′(x0) < 0 for all x0 ∈ (0, a).

Finally, by applying Maslov’s inequalities, one gets the exponential estimate (4.33) of J(x0) in the same

way as in Section 4.3.

4.6.10 Expelling from the branch

It is important to stress that the “smallness” of an eigenfunction in the branch and its exponential decay

are different notions which should not to be confused. In fact, the eigenfunction can be small in the branch

either due to a rapid exponential decay, or because of the small constant In(0) or Jn(0) in front of the

estimate. For instance, Fig. 4.11a shows the behavior of J10(x0) without an exponential decay, but the
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eigenfunction is nevertheless small (Fig. 4.11b). Another example on Fig. 4.5a with n = 9 illustrates the

opposite situation: the eigenfunction decays exponentially along the branch but it does not look small.

4.7 Localization in elongated polygons

In this section, we show the existence of localized eigenfunctions in elongated polygons for which the

ratio between their diameter and their inradius is quite large. We first construct a right triangle in which

low-frequency localization happens for Dirichlet boundary condition, and then we extend this idea to

general elongated polygons.

4.7.1 Localization in triangles

4.7.1.1 Estimate for the first eigenvalue

We consider a rectangle of sides a and b on which a right triangle with legs c and d is constructed as

shown on Fig. 4.16. Without loss of generality, we assume a ≥ b. Note that the triangle is uniquely

defined by one of the legs (e.g., d), while the other leg is given as c = ad/(d − b).
The vertical line at x = a splits the triangle Ω into two subdomains, Ω1 (a trapeze) and Ω2 (a triangle).

We call λ1 the first eigenvalue of the Laplace operator in Ω with Dirichlet boundary condition:

∆u+ λ1u = 0, u|∂Ω = 0. (4.39)

For fixed a and b, we are searching for a sufficient condition on d under which

λ1 < π2/b2. (4.40)

If this condition is satisfied, from Theorem 4.3.1, the eigenfunction u becomes localized in Ω1, i.e., it

decays exponentially fast in the subdomain Ω2 (see Fig. 4.16). The condition (4.40) can be replaced by

a weaker condition

γ1 < π2/b2. (4.41)

where γ1 is the first eigenvalue of the Laplace operator in Ω1 with Dirichlet boundary condition. In fact,

since λ1 < γ1, (4.41) implies (4.40). The eigenvalue γ1 can be found as

γ1 = inf
v∈H1

0 (Ω1)
γ(v) (4.42)

where

γ(v) =
(∇v,∇v)L2(Ω1)

(v, v)L2(Ω1)
. (4.43)

Using the same technique as in Chapter 5, we search for a trial function v such that γ(v) < π2/b2, in
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Figure 4.16: A right triangle Ω which can be decomposed into a trapeze Ω1 and a right triangle Ω2.

order to get γ1 < π2/b2 and thus λ1 < π2/b2. We consider the trial function

v(x, y) = y

(

y − d+
d− b
a

x

)

sin(πx/a) (4.44)

which satisfies Dirichlet boundary condition on the boundary of Ω1. We consider the conditions under

which

Q =
π2

b2
(v, v)L2(Ω1) − (∇v,∇v)L2(Ω1) > 0. (4.45)

The direct integration yields

Q =
b5

720π2a
P (e), P (x) =

5∑

j=0

(k2Aj −Bj)xj, (4.46)

where e = (d/b) − 1, k = a/b and

A5 = 2π4 − 15π2 + 45 ≈ 91.7741 B5 = 2π4 + 15π2 − 45 ≈ 297.8622

A4 = 6(2π4 − 10π2 + 15) ≈ 666.7328 B4 = 6(2π4 + 10π2 − 15) ≈ 1671.0854

A3 = 30(π4 − 4π2 + 3) ≈ 1827.9202 B3 = 30(π4 + 3π2) ≈ 3810.5371

A2 = 20(2π4 − 9π2 + 9) ≈ 2299.8348 B2 = 20(2π4 + 3π2) ≈ 4488.5399

A1 = 30(π4 − 6π2) ≈ 1145.7439 B1 = 30π4 ≈ 2922.2727

A0 = 12(π4 − 10π2) ≈ −15.4434 B0 = 12π4 ≈ 1168.9091

(4.47)

Note that all Bj > 0 and Aj > 0 except for A0 < 0. From the fact that Aj < Bj , one has P (x) < 0 for

all x > 0 when k = 1 (i.e., a = b). The sign of Q is determined by the sign of P (e). We have therefore

two parameters, e and k, which determine the localization. The condition Q > 0 can be rewritten as

P (e) = k2PA(e)− PB(e) > 0, (4.48)

where PA(e) and PB(e) are two polynomials of the fifth order determined by the coefficients Aj and Bj,

respectively:

PA(e) =
5∑

j=0

Aje
j , PB(e) =

5∑

j=0

Bje
j , (4.49)
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Since PB(e) > 0 for all e ≥ 0, the above condition is equivalent to two inequalities:

PA(e) > 0, k2 >
PB(e)

PA(e)
. (4.50)

One can check that PA(e0) = 0 at e0 ≈ 0.0131 and PA(e) > 0 iff e > e0. We get therefore a explicit

sufficient condition for low-frequency localization in right triangles

e > 0.0131, k2 >
PB(e)

PA(e)
. (4.51)

We remind that this condition is not necessary (as we deal with an estimate for the first eigenvalue). For

a given a and b (i.e., k), the above inequalities determine the values of e (and thus the leg d) for which

localization occurs. Alternatively, one can express a and b from the legs c and d (and parameter e) as

a =
ce

e+ 1
, b =

d

e+ 1
(4.52)

from which k = ce/d. For given c and d, one can vary e to get a family of inclosed rectangles (of sides a

and b). The above inequalities can be reformulated as

e > e0 ⇔ b <
d

e0 + 1
, k2 >

PB(e)

PA(e)
⇔ c

d
>

√

PB(e)
√

PA(e) e
= f(e) (4.53)

Since the function f(e) turns out to be monotonously decreasing (checked numerically), the last inequality

yields

e > f−1(c/d) ⇔ b <
d

f−1(c/d) + 1
(4.54)

where f−1 denotes the inverse of the function f(e). This condition determines the choice of the inscribed

rectangle (the size b) for a given triangle.

Let us now consider the “worst” case c = d, for which a numerical computation yields f−1(1) ≈ 1.515 so

that

b <
d

2.515
≈ 0.3976 d (4.55)

This example shows that one can always inscribe a rectangle in such a way that λ < π2/b2. Of course,

the “branch” Ω2 in which an exponential decay of the eigenfunction is expected, is small. For this reason,

this decay will not be “visible”.

4.7.1.2 Numerical computation

We visualize our theoretical results by two following examples.

a. Example 1

In this example, we take b = 1 and a = 2 (i.e, k = 2), for which the inequalities (4.51) allow us to

estimate the threshold e for localization as e ≈ 0.3352 (see on Fig. 4.17). A direct numerical solution of

the eigenvalue problem in Ω1 gives a smaller threshold 0.32 for which γ1 = π2. The comparison shows
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k

Q > 0

Q < 0

Figure 4.17: The diagram in the space of parameters e and k for positive and negative signs of Q which
correspond to localization and non-localization regions. For a given k (e.g., k = 2 shown by horizontal
dotted line), one can determine the values of e, for which localization occurs.

that our estimate is indeed accurate.

For e = 0.32, the numerical solution yields λ1 ≈ 9.2719 while γ1 ≈ 9.8405. As expected, the eigenvalue

λ1 is smaller than γ1. On Fig. 4.18, the first eigenfunction u1 is shown to be localized in the domain Ω1.

(a) u1 (b) u2 (c) u3 (d) u4

Figure 4.18: Several Dirichlet eigenfunctions in the right triangle Ω with a = 2, b = 1 and e = 0.32 for
which c = 8.25 and d = 1.32. The four first eigenvalues are λ1 ≈ 9.2719, λ2 ≈ 12.9094, λ3 ≈ 16.6383 and
λ4 ≈ 20.5730. The first eigenfunction u1 is localized in the trapeze Ω1 and decays exponentially along
the subdomain Ω2.

b. Example 2

Another example is a = 4, b = 1, for which we can estimate the threshold as e ≈ 0.0782. Using the

numerical computation in Matlab, one can get the direct solution e ≈ 0.07 for γ1 = π2 and e ≈ 0.025

for λ1 = π2. The first Dirichlet eigenfunction u1 decays exponentially along the triangle Ω2 and becomes

localized in the subdomain Ω1 (Fig. 4.19).

The above numerical computation confirms theoretical results. Although our technique is applicable for

the first eigenfunction u1, one can generalize the idea to other eigenfunctions. In particular, one can

explain the existence of localized eigenmodes in elongated isosceles triangles (Fig. 4.20).
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(a) u1 (b) u2 (c) u3 (d) u4

Figure 4.19: Several Dirichlet eigenfunctions in the right triangle Ω with a = 4, b = 1 and e = 0.07
for which c = 61.1429 and d = 1.07. First 4 eigenvalues are λ1 ≈ 9.6834, λ2 ≈ 10.5395, λ3 ≈ 11.2851
and λ4 ≈ 11.9796. Since λ1 < π2, the first eigenfunction u1 is localized in the trapeze Ω1 and decays
exponentially along the subdomain Ω2. The eigenfunctions u2, u3 and u4 are also concentrated in Ω1.

(a) u1 (b) u2 (c) u3 (d) u4

Figure 4.20: Localized modes in an elongated isosceles triangle.

4.7.2 Localization in elongated polygons

Motivated by the above results, we construct elongated polygons of n vertices for each positive integer n

(n ≥ 3) for which there exist low-frequency localized eigenfunctions.

We fix a positive integer n ≥ 3. If n = 3, one can construct an elongated triangle as shown in the previous

section. Without loss of generality, we suppose that n > 3 and a, b are given parameters.

We consider an elongated polygon P (n) as shown in Fig. 4.21 such that k points Pi do not depend on two

parameters c and d. The parameter d varies in the interval (b,∞) and c = ad/(d − b).
By the domain monotonicity theorem (Theorem 2.1.6), the first Dirichlet eigenvalue of the Laplace opera-

tor in the polygon P (n) is smaller than the first Dirichlet eigenvalue in the right triangle Ω = Ω1∪Ω2. Using

the results of the previous section, one can estimate a threshold for the parameter e by condition (4.51)

for which the first Dirichlet eigenvalue in P (n) does not exceed π2/b2 and the associated eigenfunction

decays exponentially along the subdomain Ω2.

For instance, on Figs. 4.22 and 4.23, we illustrate low-frequency localization in elongated quadrangles

and hexagons. In agreement with our results, the first eigenfunction u1 is localized in the polygons P (4)

and P (6).

In summary, we have already shown how to construct an elongated polygon of n vertices for arbitrary

positive integer n ≥ 3. It shows that low-frequency localization can occur in very simple domains such as

elongated polygons. In the above examples, localization depends on the ratio between the inradius and

the diameter of an elongated polygon (see more on Fig. 4.24). The larger this ratio is, more localized
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Ω1 Ω2
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Figure 4.21: An elongated polygon P with n vertices {0, B,A, P1, P2, . . . , Pk}, where k = n − 3. Here,
Ω3 is the polygon including n − 1 vertices {0, A, P1, P2, . . . , Pk}. Ω1 and Ω2 are a trapeze and a right
triangle as shown in Fig. 4.16.

(a) u1 (b) u2 (c) u3 (d) u4

Figure 4.22: Low-frequency localization in an elongated quadrangle P (4).

eigenfunctions are.

4.8 Conclusion

We have studied the behavior of the Laplace operator eigenfunctions in a large class of domains composed

of a basic domain of arbitrary shape and a branch Q which can be parameterized by a variable profile

Ω(x). We have rigorously proved that each eigenfunction whose eigenvalue λ is smaller than the threshold

µ = inf{µ1(x)}, exponentially decays inside the branch, where µ1(x) is the first eigenvalue of the Laplace

operator in the cross-section Ω(x). In general, the decay rate was shown to be at least
√

2
√
µ− λ. For

non-increasing branches, the decay rate 2
√
µ− λ was derived and shown to be sharp for an appropriate

parameterization of the branch. The exponential estimate is applicable in any dimension and for finite

and infinite branches. In the latter case, the condition µ1(x) → ∞ as x → ∞ is imposed to ensure the

existence of L2-normalized eigenfunctions. Since the derivation did not involve any information about the

basic domain V , the exponential estimate is applicable for arbitrary V with any boundary condition on

∂V for which the Laplace operator in D is still self-adjoint. In turn, the Dirichlet boundary condition on

the branch boundary was essential.
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(a) u1 (b) u2 (c) u3 (d) u4

Figure 4.23: Low-frequency localization in an elongated hexagon P (6).

The numerical simulations have been used to illustrate and extend the theoretical results. It was shown

that the sufficient condition λ < µ is not necessary, i.e., the eigenfunctions may exponentially decay even

if λ > µ. However, in this case, the decay rate and the range of its applicability strongly depend on the

specific shape of the branch. For all numerical examples, the sharp decay rate 2
√
µ− λ was correct, even

if the condition (4.14) for non-increasing branches was not satisfied. In future, it is tempting either to

relax this condition, or to find counter-examples, for which the sharp decay is not applicable.

For any positive integer n ≥ 3, one can construct many elongated polygons of n vertices in which there exist

low-frequency localized eigenfunctions. This localization depends on the ratio between the inradius and

the diameter of elongated polygons. Although our approach was focused on the first Dirichlet eigenmode,

these results can be extended to other eigenfunctions.

Basing on our approach in this chapter, we will study in chapter 5 trapped modes of the Laplace operator

in finite quantum waveguides. Some other discussions can be found in [60, 161].
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(a) u1 (b) u2 (c) u3 (d) u4

(e) u1 (f) u2 (g) u3 (h) u4

(i) u1 (j) u2 (k) u3 (l) u4

Figure 4.24: The first four Dirichlet eigenfunctions for three elongated domains: (first row) rectangle of
size 25×1; (second row) right trapezoid with bases 1 and 0.9 and height 25 which is very close to the above
rectangle; (last row) right triangle with edges 25 and 1 (half of the rectangle). There is no localization
for the first shape, while the first eigenfunctions for the second and third domains tend to be localized.



Chapter 5

Trapped modes in finite waveguides

In the previous chapter, we have discussed the exponential decay of Laplacian eigenfunctions in a domain

with branches when the corresponding eigenvalue is smaller than some threshold. In this chapter, we will

analyze sufficient conditions for trapping an eigenfunction.

The eigenstates of an electron in an infinite quantum waveguide (e.g., a bent strip or a twisted tube)

are often trapped or localized in a bounded region that prohibits the electron transmission through the

waveguide at the corresponding energies. We revisit this statement for resonators with long but finite

branches that we call “finite waveguides”. Although the Laplace operator in bounded domains has no

continuous spectrum and all eigenfunctions have finite L2 norm, the trapping of an eigenfunction can

be understood as its exponential decay inside the branches. We describe a general variational formalism

for detecting trapped modes in such resonators. For finite waveguides with general cylindrical branches,

we obtain a sufficient condition which determines the minimal length of branches for getting a trapped

eigenmode. Varying the branch lengths may switch certain eigenmodes from non-trapped to trapped or,

equivalently, the waveguide state from conducting to insulating. These concepts are illustrated for several

typical waveguides (L-shape, bent strip, crossing of two strips, etc.).

The results of this chapter up to Section 5.3 are reported in a joint-work with A. Delitsyn [61].

5.1 Introduction

The theory of quantum waveguides has been often employed to describe and model microelectronic devices

[35–37, 149, 195, 208]. In a high purity crystallic semiconductor, the electron mean free path can be

orders of magnitude larger than the size of the structure that allows one to consider the electron as a

free particle [67]. In this approximation, the original many-body Schrödinger equation is replaced by the

Helmholtz equation with Dirichlet boundary condition. The latter mathematical problem also describes

the electromagnetic waves in microwave and optical waveguides [115]. The transmission properties of a

waveguide are characterized by its resonance frequencies, i.e. by the spectrum of the Laplace operator.

In general, the Laplacian spectrum consists in two parts: (i) the discrete (or point-like) spectrum, with

eigenfunctions of finite L2 norm that are necessarily “trapped” or “localized” in a bounded region of

the waveguide, and (ii) the continuous spectrum, with associated functions of infinite L2 norm that are

69
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extended over the whole domain. The continuous spectrum may also contain embedded eigenvalues whose

eigenfunctions have finite L2 norm. A wave excited at the frequency of a trapped eigenmode remains in the

bounded region and does not propagate. Similarly, an electron at the energy of a trapped eigenmode does

not move through the quantum waveguide, strongly reducing its conductivity. Since the presence of such

eigenmodes drastically changes the transmission properties of waveguides, their qualitative understanding

and quantitative characterization are important for describing microelectronic, microwave and optical

devices.

The existence of trapped, bound or localized eigenmodes in classical and quantum waveguides has been

thoroughly studied in mathematical and applied physics (see [149], reviews [67, 146] and also references in

[163]). In the seminal paper, Rellich proved the existence of a localized eigenfunction in a deformed infinite

cylinder [181]. His results were significantly extended by Jones [122]. Ursell reported on the existence of

trapped modes in surface water waves in channels [216–218], while Parker observed experimentally the

trapped modes in locally perturbed acoustic waveguides [169, 170]. Exner and Seba considered an infinite

bent strip of smooth curvature and showed the existence of trapped modes by reducing the problem to

Schrödinger operator in the straight strip, with the potential depending on the curvature [74]. Goldstone

and Jaffe gave the variational proof that the wave equation subject to Dirichlet boundary condition always

has a localized eigenmode in an infinite tube of constant cross-section in two and three dimensions,

provided that the tube is not exactly straight [91]. This result was further extended by Chenaud et

al. to arbitrary dimension [42]. The problem of localization in acoustic waveguides with Neumann

boundary condition has also been investigated [69, 70]. For instance, Evans et al. considered a straight

strip with an inclusion of arbitrary (but symmetric) shape [70] (see [59] for further extension). Such an

inclusion obstructed the propagation of waves and was shown to result in trapped modes. The effect of

mixed Dirichlet, Neumann and Robin boundary conditions on the localization was also investigated (see

[32, 64, 81, 163] and references therein). A mathematical analysis of guided water waves was developed in

[27]. Lower bounds for the eigenvalues below the cut-off frequency (for which the associated eigenfunctions

are localized) were obtained by Ashbaugh and Exner for infinite thin tubes in two and three dimensions

[10]. In addition, these authors derived an upper bound for the number of the trapped modes. More

recently, Exner et al. considered the Laplacian in finite-length curved tubes of arbitrary cross-section,

subject to Dirichlet boundary conditions on the cylindrical surface and Neumann conditions at the ends

of the tube. They expressed a lower bound for the spectral threshold of the Laplacian through the lowest

eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry of the tube [73].

All the aforementioned works (except the last one) dealt with infinite waveguides for which the Laplace

operator spectrum is continuous, with a possible inclusion of isolated or embedded eigenvalues. Since

they were responsible for trapped modes, the major question was whether or not such eigenvalues exist.

It is worth noting that the localized modes have to decay relatively fast at infinity in order to guarantee

the finite L2 norm. But the same question about the existence of rapidly decaying eigenfunctions may be

formulated for bounded domains (resonators) with long branches that we call “finite waveguides” (Fig.

5.1). This problem is different in many aspects. Since all eigenfunctions have now finite L2 norms, the

definition of trapped or localized modes has to be revised. Quite surprisingly, a rigorous definition of
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localization in bounded domains turns out to be a challenging problem [71, 76, 191]. In the context of

the present paper concerning finite waveguides, an eigenmode is called trapped or localized if it decays

exponentially fast in prominent subregions (branches) of a bounded domain. A sufficient condition for the

exponential decay of an eigenfunction along the branch can be related to the smallness of the associated

eigenvalue in comparison to the cut-off frequency, i.e. the first eigenvalue of the Laplace operator in

the cross-section of that branch [115]. In other words, the existence of a trapped mode is related to

“smallness” of the eigenvalue, in full analogy to infinite waveguides (here, we focus on isolated eigenvalues

below the continuous spectrum; note that the eigenfunctions associated to embedded eigenvalues may

also decay exponentially). Using the standard mathematical tools such as domain decomposition, explicit

representation of solutions of the Helmholtz equation and variational principle, we aim at formalizing

these ideas and providing a sufficient condition on the branch lengths for getting a trapped mode. The

dependence of the localization character (i.e., the conductivity) on the length of branches is the main

result of the paper and a new feature of finite waveguides which was overseen in the well-established

theory of infinite waveguides. It is worth recalling that a physical justification for considering infinite

quantum waveguides relied on the fact that their length was typically several orders of magnitude bigger

than their width [67]. The recent progress in lithography led to further miniaturization of microelectronic

devices for which an approximation by infinite waveguides may be questionable. As a consequence, finite-

size effects such as a sensitive dependence of the conductivity of finite waveguides on their length, require

new theoretical developments and may have potential applications, as discussed below. These results are

also relevant for the theory of classical microwave cavities or resonators.

This chapter is organized as following. In Sec. 5.2, we adapt the method by Bonnet-Ben Dhia and Joly

[27] in order to reduce the original eigenvalue problem in the whole domain to the nonlinear eigenvalue

problem in the domain without branches. Although the new problem is more sophisticated, its variational

reformulation provides a general framework for proving the trapping (or localization) of eigenfunctions.

We use it to derive the main result of the paper: a sufficient condition (5.19) on the branch lengths for

getting a trapped mode. In sharp contrast to infinite non-straight waveguides of a constant cross-section,

for which the first eigenfunction is always trapped and exponentially decaying [91], finite waveguides may

or may not have such an eigenfunction, depending on the length of branches. In Sec. 5.3, we illustrate

our approach by several typical waveguides. For these examples, we estimate the minimal branch length

which is sufficient for getting at least one localized mode. At the same time, we provide an example of a

waveguide, for which there is no localization for any branch length. We also construct a family of finite

waveguides for which the minimal branch length varies continuously. As a consequence, for a given (large

enough) branch length, one can construct two almost identical resonators, one with and the other without

localized mode. This observation may be used for developing quantum switching devices. In Sec. 5.4, we

propose several sufficient conditions related to the basis domain for getting a trapped modes on general

shapes of the branches. The chapter ends by conclusions and further works.
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5.2 Exponential decay in rectangular domains

To clarify our approach, we start by considering planar bounded domains D with the rectangular branches,

and then generalize the problem for any domain in Rn with cylindrical branches.

We assume that a planar bounded domain D can be decomposed into a basic domain Ω of arbitrary shape

and M rectangular branches Qi of length ai and width bi as shown on Fig. 5.1:

D = Ω ∪
M⋃

i=1

Qi.

We denote Γi = ∂Ω ∩ ∂Qi the inner boundary between the basic domain Ω and the branch Qi and

Γ = ∂Ω\⋃M
i=1 Γi the exterior boundary of Ω. Now, we study the Laplacian eigenproblem in the domain

D with Dirichlet boundary condition on ∂D:

{

△U + λU = 0, in D,

U = 0 on ∂D,
(5.1)

Γ Γ1

Γ2

Γ3

a1

a2a3

Q1

Q2

Q3 Ω

(a)

Q1

Q2

Q3

(b)

Figure 5.1: Two examples of a finite waveguide: (a) a planar bounded domain D which is composed of
a basic domain Ω of arbitrary shape and three rectangular branches Qi of lengths ai and width b; (b) a
three-dimensional bounded domain with three general cylindrical branches.

5.2.1 Theoretical results

For the sake of convenience, we suppose that bi = 1 and the coordinates x and y can be chosen so that

each branch Qi =
{
(x, y) ∈ R2 : x ∈ (0, ai), y ∈ (0, 1)

}
. For an eigenfunction U of the eigenproblem (5.1),

we denote ui(x, y) the restriction of this function to each branch Qi. The eigenfunction ui(x, y) can be

represented by the following form:

ui(x, y) ≡ U|Qi
=

∞∑

n=1

cn sinh(γn(ai − x)) sin(πny), (5.2)
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in which γn =
√
π2n2 − λ and cn are the Fourier coefficients of the function U at the inner boundary Γi

(at x = 0):

cn =
2

sinh(γnai)

1∫

0

u(0, y) sin(πny) dy. (5.3)

By substituting the coefficients (5.3) into Eq. (5.2) one gets

ui(x, y) = 2
∞∑

n=1

(
U|Γi

, sin(πny)
)

L2(Γi)

sinh(γn(ai − x))

sinh(γnai)
sin(πny). (5.4)

Here,
(
U|Γi

, sin(πny)
)

L2(Γi)
=

∫

Γi

U|Γi
(0, y) sin(πny)dy.

Each rectangular branch Qi has the same height b = 1. For this reason, the smallest Dirichlet-Laplacian

eigenvalue in all cross-section along Qi is equal to π2 (µ = π2). Using the same technique as in the

previous chapter, one can easily prove that the squared L2-norm of the function ui(x, y) exponentially

decays with the decay rate 2γ1 = 2
√
π2 − λ along the branch Qi whenever its corresponding eigenvalue λ

is smaller than µ:

Ii(x) ≤ Ii(0) exp (−2γ1x) , (5.5)

for any 0 < x < a, where

Ii(x) ≡
1∫

0

u2
i (x, y)dy = 2

∞∑

n=1

(

U|Γi
, sin(πny)

)2

L2(Γi)

sinh2(γn(ai − x))

sinh2(γnai)
. (5.6)

When λ > π2, several γn are purely imaginary so that the function sinh(γiz) becomes sin(|γn|z), and the

above exponential decay is replaced by an oscillating behavior.

The condition λ < µ is only a sufficient but not necessary condition for the existence of exponentially

decaying eigenfunctions. In fact, one may find some eigenmodes which has such behavior even when

λ > µ. However, it is difficult to find these eigenvalues in general.

In this chapter, we will focus on establishing the condition for getting some eigenvalues λ smaller than

a given threshold µ that implies that the corresponding eigenfunctions exponentially decay according to

the inequality (5.5).

5.2.2 Nonlinear eigenvalue problem

We denote u = U |Ω the restriction of a solution U onto the basic domain Ω. Then, this restriction satisfies

the following equation

−∆u = λu in Ω, u|Γ = 0,

u|Γi = ui|Γi ,
∂u

∂n

∣
∣
∣
∣
Γi

= − ∂ui

∂n

∣
∣
∣
∣
Γi

,
(5.7)
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Here, ∂
∂n denotes the normal derivative directed outwards the domains. The last boundary condition in

(5.7) ensures the continuity of the eigenfunction u and its derivative at each inner boundary Γi. At each

Γi, the normal derivatives on its both sides are opposite which implies that ∂u
∂n |Γi = −∂ui

∂n |Γi . Using Eq.

(5.2), the normal derivative of ui can be explicitly represented as

∂ui

∂n

∣
∣
∣
∣
Γi

= − ∂ui

∂x

∣
∣
∣
∣
x=0

= 2
∞∑

n=1

γn coth(γnai)
(
U|Γi

, sin(πny)
)

L2(Γi)
sin(πny). (5.8)

Now, for each i, one denotes an operator Ti : H1/2(Γi)→ H−1/2(Γi) (see [147] for details) such that

Ti(λ)f ≡ 2
∞∑

n=1

γn coth(γnai)
(
f, sin(πny)

)

L2(Γi)
sin(πny).

It is important to remark that Ti is a positive-definite operator for each i. Then, Eq.(5.8) can be repre-

sented as

∂ui

∂n

∣
∣
∣
∣
Γi

= Ti(λ)U|Γi
.

Bringing all above facts together, a solution (u, λ) of Eq. (5.7) satisfies

−∆u = λu in Ω, u|Γ = 0,
∂u

∂n

∣
∣
∣
∣
Γi

= −Ti(λ)u|Γi . (5.9)

Here, the new eigenvalue problem is more complicated because the eigenvalue appears in the boundary

condition through the operators Ti(λ) that implies the nonlinearity of Eq. (5.9). One can overcome

this difficulty by using a standard method originally proposed by Birman and Schwinger [26, 196]. In our

approach, we adapt the technique developed in [27]. For a given λ, we solve the following linear eigenvalue

problem

−∆u = µ(λ)u in Ω, u|Γ = 0,
∂u

∂n

∣
∣
∣
∣
Γi

= −Ti(λ)u|Γi , (5.10)

where µ(λ) denotes the eigenvalue which is parameterized by λ. The solution of the original problem is

recovered when µ(λ) = λ.

It is much more difficult to get a numerical solution of the new eigenvalue problem in Eq. (5.10) with the

subsequent resolution of the equation µ(λ) = λ than that for the original problem. However, it is more

convenient to check whether the eigenvalue λ is smaller or greater than the threshold µ, e.g π2. In the

following section, we will provide more details about this technique.

5.2.3 Variational formulation

We denote V the space of functions from the standard Sobolev space H1
0 (D) that are restricted to the

basic domain Ω. The Rayleigh quotient corresponding to Eq. (5.10) can be written as [61]
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µ(v;λ) =

(∇v,∇v)
L2(Ω)

+
∑M

i=1

(
Ti(λ)v, v

)

L2(Γi)
(
v, v

)

L2(Ω)

, (5.11)

where v ∈ V is a trial function. From the Rayleigh’s principle, the first eigenvalue µ1(λ) in Eq. (5.10)

can be obtained by

µ1(λ) = inf
v∈V, v 6=0

µ(v;λ), (5.12)

and the other eigenvalues can be determined by the minimax principle as following

µk(λ) = sup
v1,...,vk−1∈V

inf
v ∈ V, v 6= 0,

v ⊥ {v1, ..., vk−1}

µ(v;λ), (5.13)

where the supremum is taken over k − 1 linearly independent functions v1, ..., vk−1, and the infimum is

over functions v 6= 0 that are orthogonal to the linear span over v1, ..., vk−1.

Lemma 5.2.1. For any k = 1, 2, 3, ..., µk(λ) are positive continuous monotonously decreasing functions

of λ on the segment [0, π2].

Proof. One first computes explicitly the derivative of the function

h(λ) ≡ γn coth(γnai) =
√

π2n2 − λ coth
(√

π2n2 − λ ai

)

as following

h′(λ) =
−ai

4z sinh(z)
(sinh(2z) − 2z)

where z = ai

√
π2n2 − λ.

The inequality sinh y ≥ y (∀y ≥ 0) implies h′(λ) < 0 so that µ(v, λ) monotonously decreases with λ for

any v ∈ V . Now one can show that µk(λ1) ≤ µk(λ2) if λ1 > λ2. If some trial functions v1, ..., vk−1 ∈ V
and v ∈ V orthogonal to the linear span {v1, ..., vk−1}, optimize µ(v, λ2), one has

µk(λ1) ≤ µ(v, λ1) ≤ µ(v, λ2) = µk(λ2),

where the monotonous decrease of µ(v, λ) was used (the mathematical proof of the continuity for an

analogous functional is given in [62]).

Since the function µk(λ) is positive, continuous and monotonously decreasing, the equation µk(λ) = λ

has a solution 0 < λ < π2 if and only if µk(π2) < π2. This solution gives the k-th eigenvalue λk of the

original eigenvalue problem. In what follows, we focus on the first eigenvalue.



Chapter 5. Trapped modes in finite waveguides 76

5.2.4 Sufficient condition

In this section, we find a sufficient condition for the equation µ1(λ) = λ to have one solution in (0, π2).

From Eq. (5.12), if one can find a trial function v ∈ V such that µ(v, λ) < π2 for some λ ∈ (0, π2), then

the first eigenvalue µ1(π2) (corresponding to λ = π2 in Eq. (5.10)) is smaller than π2.

Following this idea, we set λ = π2 and denote µ(v) ≡ µ(v, π2). The functional µ(v) can be represented

by the following form

µ(v) =
(
v, v

)−1

L2(Ω)

{
(∇v,∇v)

L2(Ω)
+ 2

M∑

i=1

1

ai

(
v, sin(πy)

)2

L2(Γi)

+ 2π
∞∑

n=2

√

n2 − 1
M∑

i=1

coth(πai

√

n2 − 1)
(
v, sin(πny)

)2

L2(Γi)

}

.

Here, γn(π2) = π
√
n2 − 1 and γ1(π2) = 0.

For any n ≥ 2, coth(πai

√
n2 − 1) ≤ coth(πai

√
3). Using this inequality, we obtain the following theorem

Theorem 5.2.1. The condition µ(v) < π2 is implied by the following sufficient condition

M∑

i=1

σi

ai
< β −

M∑

i=1

κi coth(πai

√
3), (5.14)

where

β = π2(v, v
)

L2(Ω)
− (∇v,∇v)

L2(Ω)
, (5.15)

σi = 2
(
v, sin(πy)

)2

L2(Γi)
, (5.16)

κi = 2π
∞∑

n=2

√

n2 − 1
(
v, sin(πny)

)2

L2(Γi)
. (5.17)

It is worth noting that the above condition is a sufficient but not necessary condition for the equation

µ1(λ) = λ to have a solution smaller than π2. In the next section, we will illustrate this approach by

several examples.

One can extend the above analysis to a bounded domain in Rn with general cylindrical branches by using

the separation of variables (in directions parallel and perpendicular to each branch). In fact, the Fourier

coefficients (U |Γi , sin (πny)))L2(Γi) in Eq. (5.2) have to be replaced by a spectral decomposition over the

orthonormal eigenfunctions {ψn(y)}∞n=1 of the Laplace operator ∆⊥ in the cross-section Γi of the studied

branch (in general, Γi is a bounded domain in Rn−1):

∆⊥ψn + νnψn = 0 in Γi, ψn|∂Γi
= 0. (5.18)

In particular, the operator Ti(λ) becomes

Ti(λ)f =
∞∑

n=1

γn coth(γnai)
(
f, ψn)L2(Γi)ψn(y),
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with γn =
√
νn − λ.

Theorem 5.2.2. Similar to the above analysis, a sufficient condition for getting a trapped mode can be

given by

M∑

i=1

σi

ai
< β −

M∑

i=1

κi coth(ai

√
ν2 − ν1), (5.19)

with

β = ν1
(
v, v

)

L2(Ω)
− (∇v,∇v)

L2(Ω)
, (5.20)

σi =
(
v, ψ1

)2

L2(Γi)
, (5.21)

κi =
∞∑

n=2

√
νn − ν1

(
v, ψn

)2

L2(Γi)
. (5.22)

and v is a trial function from V .

For example, in the rectangular branches, one has ψn(y) =
√

2 sin(πny) and νn = π2n2.

Remark 5.2.1. One should choose the trial function v such that the series in Eq. (5.22) converges for

each branch Γi. If the boundary of Ω is smooth, the convergence of the series in Eq. (5.22) is ensured

for any function v from V according to the trace theorem [147]. In turn, the presence of corners or other

singularities may require additional verifications for the convergence, as illustrated in the next section.

There are several ways to check whether a trial function v satisfies the inequality (5.19) or not. Since

σi ≥ 0,∀i, this inequality can only be satisfied if β > 0. For a given trial function v, the first check

concerns the positivity of β.

Remark 5.2.2. The exponential decay of an eigenfunction in all rectangular branches of width bi can

be ensured if the corresponding eigenvalue λ is smaller than a threshold µ =
π2

max b2
i

. In general, similar

results can be applicable for any bi. To apply the above analysis, one can rescale the whole domain D in

such a way that max{bi} = 1.

Remark 5.2.3. If the branches are long enough, one can see that the value of coth (ai
√
ν2 − ν1) is very

close to 1 and can be replaced by 1+ ǫ where ǫ = max
i
{coth (ai

√
ν2 − ν1)− 1}. Then, the condition (5.19)

can be substituted by the following inequality

M∑

i=1

σi

ai
< β − (1 + ǫ)

M∑

i=1

κi. (5.23)

Especially, when all σi are the same, one can introduce the threshold value η such that

M∑

i=1

1

ai
< η, η ≡ β

σ1
− (1 + ǫ)

σ1

M∑

i=1

κi. (5.24)
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For domains with identical branches (of the same length ai = a), one can use the above condition to

determine the minimal length ath = M
η for the existence of trapped modes. If η > 0 and a > ath, there

exists at least one localized eigenmode. However, when a < ath, the emergence of localization is not clear.

Once again, the above condition is only a sufficient but not necessary condition to ensure that the first

eigenfunction is localized in the waveguide.

Remark 5.2.4. The estimate µ(v) is not an upper bound for the eigenvalue λ. On one hand, one has

λ = µ1(λ) ≥ µ1(π2) because the function µ1(λ) is monotonously decreasing. On the other hand, µ(v) ≥
µ1(π2) according to the definition of µ1(π2) as the infimum of the functional µ(v). As a consequence, λ

can be larger or smaller than µ(v). In turn, the inequality µ(v) < π2 implies µ1(π2) < π2 which in turn

implies λ < π2 and ensures the localization of the corresponding eigenfunction.

Remark 5.2.5. The above analysis was focused on the first eigenvalue. In particular, the sufficient

condition (5.19) ensures that the first eigenmode is localized. At the same time, the examples of waveguides

with numerous localized states were reported in the literature. For instance, Avishai et al. demonstrated the

existence of many localized states for a sharp “broken strip”, i.e. a waveguide made of two channels of equal

width intersecting at a small angle θ [12]. Carini and co-workers reported an experimental confirmation

of this prediction and its further extensions [36, 149]. Bulgakov et al. considered two straight strips of

the same width which cross at an angle θ ∈ (0, π/2) and showed that, for small θ, the number of localized

states is greater than (1−2−2/3)3/2/θ [31]. Even for the simple case of two strips crossed at the right angle

θ = π/2, Schult et al. showed the existence of two localized states, one lying below the cut-off frequency

and the other being embedded into the continuous spectrum [195]. The latter state is localized only because

it has odd parity with respect to the fourfold rotational symmetry of this waveguide. The above variational

approach allows one to investigate the localization of the second and higher-order eigenfunctions that

correspond to isolated eigenvalues lying below the continuous spectrum (here, λk < π2). While this is an

interesting perspective for future work, we keep considering the first eigenvalue in the following examples.

5.3 Examples

In this section, we will illustrate our approach by several examples. As we mentioned before, there is no

recipe for choosing a trial function v in a general domain D. The best choice of the trial function v makes

µ(v) reaching the minimal value in the Rayleigh quotient. Except for some domains (e.g circular, elliptical,

spherical, rectangular domains, etc) in which Laplacian eigenfunctions are analytically determined, the

eigenfunctions are not known. In the following examples (L-shape, cross, bent strip, etc), we will show

how to guess a possible trial function v and get sufficient conditions for a trapped mode in these domains.

5.3.1 L-shape

The first domain we consider here is an L-shape with two rectangular branches of length a1 and a2 as

shown in Fig. 5.2a. In this case, the basic domain Ω is simply a unit square.

When a1 = a2 = 0, the domain D has no branches (D = Ω), and the first eigenvalue λ1 is equal to 2π2

so that there is no localization of this eigenfunction ( since λ > π2).
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Figure 5.2: Three types of a bent waveguide: (a) L-shape, (b) bent strip, and (c) truncated L-shapes
parameterized by the length ℓ varying from 0 (triangular basic domain) to 1 (the original L-shape).

When a1 = a2 = a, the first eigenvalue λ1 is a continuous function of variable a so that the inequality

λ1 > π2 still remains true for relatively short branches. For infinitely long branches (a = ∞), the first

eigenvalue becomes smaller than π2. As a consequence, there exists the minimal length amin such that

the corresponding λ1 = π2, and more importantly, from the domain monotonicity theorem, the first

eigenfunction passes from the non-localized state (a < amin) to the localized state (a > amin). We aim

at getting the upper bound ath of this amin.

From the special structure of the basic domain (the unit square), the simplest choice for a trial function

v is v(x, y) = sin(πx) sin(πy) for which one can easily check that β = 0. Following the remark (5.2.1),

this trial function does not satisfy the inequality (5.7) so that it is not a good choice in this case.

One can choose the following trial function v:

v(x, y) = (1 + x) sin(πy) + (1 + y) sin(πx). (5.25)

Computing explicitly the values of β, σi and κi from Eqs. (5.15-5.17), one gets

β = 1, σ1 = σ2 =
1

2
, κ1 = κ2 = 0.

The inequality (5.19) becomes
1

a1
+

1

a2
< 2. (5.26)

From the above inequality, when two branches have the same length a1 = a2 = a, an upper bound of the

theoretical minimal branch length amin for getting the transition from a non-localized mode to localized

mode is given by ath = 1.

For comparison, we solved the Laplacian eigenproblem in a L-shape with a1 = a2 = a with Dirichlet

boundary condition by using a finite element method implemented by PDETools package in Matlab. For

each a, we computed the first eigenvalue in the corresponding domain. In Fig. 5.3, the first eigenvalue λ1

is shown as a function of the branch length a. The theoretical minimal branch length can be estimated

as amin ≈ 0.84. One can obtain similar results for L-shape in three dimensions as shown in Section 5.3.2.
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Figure 5.3: The first eigenvalue λ1 divided by π2, as a function of the branch length a (a1 = a2 = a),
for three bent waveguides shown on Fig. 5.2: L-shape (solid line), bent strip (dashed line) and truncated
L-shape with ℓ = 0 (dash-dotted line). For the first two cases, the curves cross the level 1 at amin ≈ 0.84
and amin ≈ 2.44, respectively. In turn, the third curve always remains greater than 1 (see explanations
in Sec. 5.3.5). For a = 0, λ1 is respectively equal to 2π2, 4j2

0,1 and 5π2, where j0,1 ≈ 2.4048 is the first
positive zero of the Bessel function J0(z).
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Figure 5.4: L-shape in three dimensions for which the basic domain Ω = [−1, 0]3 is the unit cube.

5.3.2 L-shape in three dimensions

As we mentioned at the end of Sec. 5.2, an extension of the presented approach to other types of

branches is straightforward. We illustrate this point by considering the L-shape in three dimensions, i.e.

two connected parallelepipeds of cross-section in the form of the unit square, for which the basic domain

Ω is the unit cube (Fig. 5.4). For each branch, the eigenvalues and eigenfunctions in Eq. (5.18) for the

cross-section can be parameterized by two indexes m and n:

νm,n = π2(m2 + n2), ψm,n(y, z) = 2 sin(πmy) sin(πnz)

(similar for the second branch).

We take the trial function

v(x, y, z) =
[
(1 + x) sin(πy) + (1 + y) sin(πx)

]
sin(πz),

which satisfies the Dirichlet boundary condition. The coefficients β, σi and κi can be found from Eqs.
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(5.20 - 5.22), for which the explicit integration yields

(
v, v

)

L2(Ω)
=

0∫

−1

0∫

−1

0∫

−1

v2 dz dy dx =
1

6
+

1

π2
,

(∇v,∇v)
L2(Ω)

=

0∫

−1

0∫

−1

0∫

−1

(∇v,∇v) dz dy dx =
π2

3
+

3

2
,

so that β = 2π2
(∇v,∇v)

L2(Ω)
− (v, v)

L2(Ω)
= 1/2, and

(
v, ψ1,1

)

L2(Γ1)
=

0∫

−1

0∫

−1

v(0, y, z) 2 sin(πy) sin(πz) dz dy =
1

2
,

while
(
v, ψm,n

)

L2(Γ1)
= 0 for m 6= 1 or n 6= 1, from which σ1 = σ2 = 1/4 and κ1 = κ2 = 0. The condition

(5.19) reads as
1

a1
+

1

a2
< 2.

If the branches have the same length, a1 = a2 = a, then the upper bound of the minimal branch length

for getting a localized eigenfunction is given by ath = 1, as in two dimensions.

5.3.3 Cross

We continue by considering a crossing of two perpendicular rectangular branches (see Fig. 5.5). Here,

the basic domain Ω is again the unit square. What is a sufficient condition to get a trapped mode in this

domain?

From Eq. (5.12), one can easily see that any increase of the basic domain will decrease the eigenvalue

µk(λ) on Eq. (5.10). Using this fact, if one considers the basic domain as the unit square with two

rectangular branches Q3 and Q4 of lengths a3 and a4, the condition (5.26) in the previous section is

enough for the existence of localized eigemodes in this domain. A similar argument is applicable when

the basis domain is the union of the unit square and two arbitrary consecutive rectangular branches in

(Q1, Q2), (Q2, Q3), (Q3, Q4), (Q4, Q1). For example, the first eigenfunction in the domain D is localized

in Ω = [−1, 0] × [−1, 0] ∪ Q1 ∪ Q4 if 1/a2 + 1/a3 < 2 for any a1 and a4, etc. However, the condition

1/a4 + 1/a2 < 2 or 1/a1 + 1/a3 < 2 is not sufficient for getting some trapped modes in this domain. For

instance, if 1/a4 + 1/a2 < 2 and a1 = a3 = 0, the domain D becomes a rectangle and no localization

happens.

Another choice of a trial function is as follows

v(x, y) = x(1 + x) + y(1 + y). (5.27)

One can easily see that this trial function satisfies Dirichlet boundary condition at four corners of the
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Figure 5.5: (a) Crossing of two rectangular branches; (b) an extension of the related basic domain Ω;
and (c) coupling between two waveguides from Fig. 5.2c (ℓ = 0) with an opening of size ε.

basic domain. The explicit integration yields

β =
11

90
π2 − 2

3
, σi =

32

π6
, κi = 2π

∞∑

n=2

√

n2 − 1

(

2
1− (−1)n

π3n3

)2

≈ 4.4768 · 10−4.

The sufficient condition (5.14) for getting a trapped mode becomes

4∑

i=1

1

ai
<

β

σ1
− κ1

σ1

4∑

i=1

coth(πai

√
3). (5.28)

When all branches have the same lengths a1 = a2 = a3 = a4 = a, the above condition yields the following

equation for the upper bound ath of the theoretical minimal length amin:

4

ath
=

β

σ1
− 4κ1

σ1
coth(πath

√
3).

Solving this equation, one can estimate ath as ath ≈ 0.2458. It is worth noting that this result proves and

further extends the prediction of localized eigenmodes in the crossing of infinite rectangular strips which

was made by Schult et al. by numerical computation [195]. In that reference, the importance of localized

electron eigenstates in four terminal junctions of quantum wires was discussed.

In [82], Freitas and Krejčiřík estimated the upper bound for the first eigenvalue λ1 of the Laplace operator

with Dirichlet boundary condition in a cross with equal branches which reads in our notations as

λ1 ≤ 4j2
0,1

1 + 2a+ 4a2

1 + 6a+ 8a2
,

where j0,1 ≈ 2.4048 is the first zero of the Bessel function J0(z). However, one can easily check that

4j2
0,1

1 + 2a+ 4a2

1 + 6a+ 8a2
≥ 4j2

0,1

(

2
√

3− 3
)

≈ 10.7357 > π2, ∀a ≥ 0.

For this reason, this inequality is not sufficient to determine the localization character of the first eigen-
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n = 1 n = 3 n = 4 n = 5

Figure 5.6: First eigenfunctions for the crossing of two rectangular branches (ai = 5). The associated
eigenvalues are λ1 ≈ 0.661π2, λ2 = λ3 ≈ 1.032π2, λ4 ≈ 1.036π2 and λ5 ≈ 1.044π2.

function in this example.

In Fig. 5.6, we present the first eigenfunctions for the cross of two perpendicular rectangular branches

with ai = a = 5. Using the sufficient condition (5.28), one can see that a > ath so that the first eigenvalue

should be smaller than π2. As predicted, the first eigenvalue λ1 in this case is found to be λ1 ≈ 0.66π2,

and the first eigenfunction is clearly localized in the basic domain and decays exponentially along the

branches. The other eigenvalues are greater than π2 so that the corresponding eigenfunctions are not

localized (Fig. 5.6).

Remark 5.3.1. It is important to emphasize that any increase of the basic domain as shown in Fig. 5.5b

decreases the eigenvalues so that the similar sufficient condition, as in (5.28), can be obtained for getting

localization in a larger domain.

5.3.4 Bent strip

In this example, we consider the basic domain Ω as a sector of the unit disk as shown on Fig. 5.2b. This

basic domain can be seen as the connector between two parts of a bent strip.

Goldstone and Jaffe proved the existence of a localized eigenmode for any bending of an infinite strip

(except for the straight strip) [91]. However, for a finite bent strip, there is a minimal branch length

required for the emergence of a localized eigenfunction. For this example, we compute an upper bound

ath of the minimal branch length in a bent strip.

Let us consider the domain D consisting of the basic domain Ω and two rectangular branches Q1 and Q2

of length a1 and a2, respectively. A family of trial functions v is

vα(r) =
sinπr

rα
(0 < α < 1). (5.29)

The coefficients β, σi, and κi (i = 1, 2) are found in Appendix E (see Eqs. (E.1 - E.3)). Using the

numerical computation, one can estimate that the maximum value of η occurs at α ≈ 1/3 which implies

η ≈ 0.7154. As a consequence, if the branches have the same lengths a1 = a2 = a, one obtains an upper
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bound ath of the minimal branch length as

ath ≈
2

η
≈ 2.7956. (5.30)

It ensures that when a > ath, the first eigenfunction becomes localized in the basic domain Ω.

Using the numerical computation of the first eigenvalue in the bent strip for each a (by Matlab PDETools),

we estimate the minimal branch length as amin ≈ 2.44. This value is smaller (as expected) but relatively

close to the upper bound ath. It means that the chosen trial function is quite good.

5.3.5 Waveguide without localization

As discussed in previous sections, any increase of the basic domain decreases the eigenvalue and favors the

localized eigenfunction. In turn, a decrease of the basic domain may lead to the suppression of localization.

In this example, we will illustrate this point by considering a L-shape domain D as shown in Fig. 5.2c

(l = 0) with the triangular basic domain Ω:

Ω = {(x, y) ∈ R2 : −1 < x < 0, −1 < y < 0, x+ y > −1}. (5.31)

Lemma 5.3.1. All Laplacian eigenvalues in the above domain D with Dirichlet boundary condition is

greater than π2 for any positive a1 and a2.

Proof. It is easy to see that u(x, y) = cos(πx)+cos(πy) is the first eigenfunction of the following eigenvalue

problem in Ω:

−∆u = µ̃u in Ω, u|Γ = 0,
∂u

∂n
|Γi = 0,

with the eigenvalue µ̃1 = π2 (since u satisfies the eigenvalue equation and does not change sign on the

domain Ω). Using the variational principle (see Theorem 2.1.3), one gets

µ̃1 = inf
v∈V,v 6=0

(∇v,∇v)
L2(Ω)

(

v, v
)

L2(Ω)

,

which implies
(∇v,∇v)

L2(Ω)
≥ µ̃1

(
v, v

)

L2(Ω)
= π2(v, v

)

L2(Ω)

for all v ∈ V . Moreover, the Friedrichs-Poincaré inequality in the branches Qi yields [147]

(∇v,∇v)
L2(Qi)

≥ π2(v, v
)

L2(Qi)
∀v ∈ H1

0 (Qi),

Bringing the above inequalities together, one gets

(∇v,∇v)
L2(D)

≥ π2(v, v
)

L2(D)
∀v ∈ H1

0 (D).

As a consequence, all Laplacian eigenvalues in the domain D with Dirichlet boundary condition exceed

π2.
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(a) (b) (c)

Figure 5.7: The first eigenfunction for three bent waveguides shown on Fig. 5.2 (ℓ = 0), with a = 20.
The associate eigenvalue λ1 is equal to 0.9302π2, 0.9879π2 and 1.0032π2, respectively. Although the last
two values are very close to each other, the behavior of the eigenfunctions is completely different.

On Fig. 5.7, we show the first eigenfunction for three bent waveguides from Fig. 5.2, with a = 20. The

corresponding eigenvalue λ1 is equal to 0.9302π2, 0.9879π2 and 1.0032π2, respectively. According the

sufficient conditions in previous discussion, the first two eigenfunctions are localized in the basic domain,

but the last one is not.

5.3.6 Two coupled waveguides

In the last example, we consider a coupling of two finite crossing waveguides through an opening of small

size ε as shown in Fig. 5.5c. When ε = 0, the domain is separated into two bent waveguides, and from

Section 5.3.5, there is no trapped modes in this case. When ε =
√

2, the domain is a crossing as discussed

in Section 5.3.3.

In Fig. 5.8, two coupled waveguides have identical branch lengths with ai = a = 5, 1 ≤ i ≤ 4 and the

opening ε varies from 0 to
√

2. When ε = 0 and ε = 0.4
√

2, the corresponding eigenvalues λ1 are equal to

1.05π2 and 1.02π2 so that no localization happens. When ε = 0.5
√

2, the first eigenvalue λ1 is equal to

0.97π2, and the associate eigenfunction becomes trapped in the basic domain. Finally, when ε =
√

2, as

already expected as a > ath ≈ 0.84 (from Section 5.3.1), the first eigenfunction is clearly localized in Ω.

Since the first eigenvalue λ1 is a continuous function of ε, there exists εtrapped for which λ1 = π2 and there

is a transition from a non-localized state to a localized state at εtrapped. For example, for ai = a = 5, one

can estimate εtrapped ∈
(

0.4
√

2, 0.5
√

2
)

. As a result, the existence of localization in two couple waveguides

seems to be very sensitive to the opening ε and the branch lengths. An estimation of εtrapped depending

on the structure of the waveguides, can have useful applications in quantum switching devices. For two

coupled infinite waveguives, a fruitful discussion can be found in [75].

5.4 Exponential decay in variable branches

In Section 5.2, we obtained a sufficient conditions (5.19) for getting trapped modes in a finite waveguide

with several rectangular branches Qi. In this section, we assume that a finite waveguide D consists of a

basic domain V and the branches Qi of length ai and width bi such that

Qi =
{

(x, y) ∈ R2 : y ∈ (fi(x), fi(x) + bi) , x ∈ (0, ai)
}

, (5.32)
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ε =
√

2 (100%)ε = 0.5
√

2 (50%)ε = 0.4
√

2 (40%)ε = 0 (0%)

Figure 5.8: The first eigenfunction for two coupled waveguides shown on Fig. 5.5c, with ai = 5 and
different coupling (opening ε): ε = 0 (fully separated waveguides, zero coupling), ε = 0.4

√
2 (opening

40% of the diagonal), ε = 0.5
√

2 (opening 50% of the diagonal) and ε =
√

2 (fully coupled waveguides, no
barrier). The associate eigenvalue λ1 is equal to 1.05π2, 1.02π2, 0.97π2, and 0.67π2, respectively. In the
first two cases, the eigenmodes is not localized. Changing the opening ε, one passes from non-localized
to localized eigenmodes.

where fi ∈ C2([0, ai]) and ai, bi > 0. In what follows, we will derive a sufficient condition for the existence

of localized eigenmodes in the waveguide D. Note that when fi is a constant function, one gets back to

the problem in Section 5.2.

First, we prove the following lemma:

Lemma 5.4.1. For any fi ∈ C2([0, ai]) and ai, bi > 0, all eigenvalues of the Laplace operator in the

domain Qi (defined in Eq. (5.32)) with Dirichlet boundary condition are always greater or equal to π2

b2
i

.

Proof. By changing the coordinates

x = t, t ∈ (0, ai),

y = s− f(t), s ∈ (0, bi),
(5.33)

one can map the original Laplacian eigenvalue problem (5.1) in Qi onto the following eigenvalue problem

in the rectangle R0 = [0, ai]× [0, bi]:

{
∂2v
∂2t + ∂2v

∂2s + λv + [f ′(t)]2 ∂2v
∂2s − 2f ′(t) ∂2v

∂t∂s − f ′′(t)∂v
∂s = 0 in R0,

v = 0 on ∂R0.
(5.34)

From the Rayleigh’s principle, one gets

λ1 = inf
v∈H1

0 (R0),v 6=0

I0 + I1 + I2 + I3

ai∫

0

bi∫

0
v2dsdt

, (5.35)

where

I0 =

ai∫

0

bi∫

0

(

∂2v

∂2s
+
∂2v

∂2t

)

vdsdt, I1 =

ai∫

0

bi∫

0

[
f ′(t)

]2 ∂
2v

∂2s
vdsdt, (5.36)

I2 =

ai∫

0

bi∫

0

f ′(t)
∂2v

∂t∂s
vdsdt, I3 =

ai∫

0

bi∫

0

f ′′(t)
∂v

∂s
vdsdt. (5.37)
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Integrating by parts and using Dirichlet boundary conditions, one gets

I1 = −
ai∫

0

bi∫

0

[

f ′(t)
∂v

∂s

]2

dsdt, I2 = −
ai∫

0

bi∫

0

f ′(t)
∂v

∂t

∂v

∂s
dsdt, I3 = 0. (5.38)

Then, one gets

λ1 = inf
v∈H1

0 (R0),v 6=0

ai∫

0

bi∫

0

(
∂v
∂s

)2
dsdt +

ai∫

0

bi∫

0

(

f ′(t)∂v
∂s − ∂v

∂t

)2
dsdt

ai∫

0

bi∫

0
v2dsdt

. (5.39)

Basically, one can decompose the function v

v(t, s) =
∞∑

n=1

∞∑

k=1

cnkϕnk(t, s), (5.40)

over the set {ϕnk(t, s)} of L2-normalized Laplacian eigenfunctions with Dirichlet boundary condition in

the rectangle R0

ϕnk(t, s) =
2√
aibi

sin

(
πnt

ai

)

sin

(
πks

bi

)

. (5.41)

Then,
ai∫

0

bi∫

0

v2dsdt =
∞∑

n=1

∞∑

k=1

c2
nk. (5.42)

It is easy to see that

ai∫

0

bi∫

0

(
∂v

∂s

)2

dsdt =
π2

b2
i

∞∑

n=1

∞∑

k=1

k2c2
nk ≥

π2

b2
i

∞∑

n=1

∞∑

k=1

c2
nk =

π2

b2
i

ai∫

0

bi∫

0

v2dsdt, (5.43)

that implies the conclusion.

(a) Domain D (b) u1 (c) u2 (d) u3

Figure 5.9: The domain D consists of a basic domain V and one branch Q =
{

(x, y) ∈ R2 : y ∈ (f(x), f(x) + 1) , x ∈ (0, a)
}

where b = 1, a = 1, f(x) = sinx and V is a square of
side L = 1.54. Here, the first eigenfunction exponentially decays along the branch Q, while the second
and third eigenfunctions are not localized.
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Now, we give a sufficient condition for the emergence of localized modes in the waveguide D:

Theorem 5.4.1. Suppose that a waveguide D has a basic domain V and M branches Qi of width b.

Then, if the inradius of V is greater than
j0,1b

π
, for any fi ∈ C2([0, ai]) and arbitrary ai > 0, there exists

at least one eigenmode localized in the basic domain V and exponentially decaying along each branch Qi

with the decay rate 2
√

π2/b2
i − λ. Here,

j0,1b

π
≈ 0.7665b and j0,1 is the first zero of the Bessel function

J0(x).

(a) Domain D (b) u1 (c) u2 (d) u3

Figure 5.10: The domain D consists of a basic domain V and one branch Q =
{
(x, y) ∈ R2 : y ∈ (f(x), f(x) + 1) , x ∈ (0, a)

}
where b = 1, a = 5, f(x) = sinx and V is a square of

side L = 1.54. In this domain, the first eigenfunction is localized in V , while the third eigenfunction is
localized in Q.

Proof. Suppose that r0 is the inradius of the domain D. The first eigenvalue λ1(D) in the whole domain

D is smaller than the first eigenvalue λ1,r0 of the Laplace operator with Dirichlet boundary condition in

a disk of radius r0. Since r0 >
j0,1b

π
, one has

λ1(D) ≤ λ1,r0 =
j2
0,1

r2
0

<
π2

b2
. (5.44)

From Theorem 4.3.1, the first eigenfunction becomes localized in the basic domain V .

Remark 5.4.1. According to the theorem, for any geometrical structure (defined by function fi) of each

branch Qi of width bi and for any basic domain V satisfying the condition of Theorem 5.4.1, there exists

at least one eigenfunction localized in V while the ratio
µ2(V )

µ2(D)
may be made arbitrarily small by taking

ai →∞.

5.4.1 Examples

To clarify the above results, we consider several examples.

Suppose that the domain D has only one branch Q of length a and width b such that

Q =
{

(x, y) ∈ R2 : y ∈ (f(x), f(x) + b) , x ∈ (0, a)
}

, (5.45)

where f(x) = sinx and the basic domain is a square of side L. In this example, we fix b = 1 and L = 1.54.
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n a=1 a=5 a=20

1 7.4787 7.4782 7.4781
2 15.8260 12.5005 12.4969
3 20.5826 15.3153 12.4991
4 23.1802 15.6921 12.5029
5 29.5236 17.5366 12.5075
6 33.7590 20.3117 12.5119

Table 5.1: The first 6 eigenvalues of the Laplace operator in domains shown on Fig. 5.9, 5.10 and 5.11
with a = 1, 5, 20.

In Table 5.1, we compute numerically first 6 eigenvalues in the domain D when a = 1, 5, 20. Since the

inradius of the square V is greater than
j0,1

π
, from Theorem 5.4.1, the first eigenvalue in these domains

should be smaller than π2. Table 5.1 confirms this result.

When a = 1, the first eigenfunction decays exponentially along the branch Q, while the next two eigen-

functions are not localized (see Fig. 5.9).

When a = 5, the first eigenfunction becomes clearly localized in the basic domain V as shown on Fig.

5.10.

When a = 20 (Fig. 5.11), although the basic domain is about 7.15% of the area of the whole domain, the

first eigenfunction is localized in V .

(a) Domain D (b) u1 (c) u2 (d) u3

Figure 5.11: The domain D consists of a basic domain V and one branch Q =
{
(x, y) ∈ R2 : y ∈ (f(x), f(x) + 1) , x ∈ (0, a)

}
where b = 1, a = 20, f(x) = sin x and V is a square of

side L = 1.54. One can clearly see that the first eigenfunction is mainly localized in the basic domain V

although the ratio
µ2(V )

µ2(D)
= 0.0715.

5.5 Conclusion

We have studied the problem of localized eigenmodes of the Laplace operator in resonators with long

branches. In this chapter, an eigenfunction u is called localized if it decays exponentially “in some L2-

sense” inside the branches. According to the results of Chapter 4, if the associated eigenvalue λ is

smaller than the theoretical bound µ = π2

b2 , where b is the length of the largest cross-section Ω(x) of the

branch Q, the L2-norm of the eigenfunction u exponentially decay with rate c
√
µ− λ. Using the explicit
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(a) Domain D (b) u1 (c) u2

(d) u3 (e) u4 (f) u5

Figure 5.12: Localization of Dirichlet eigenmodes in a domain D with 51 branches.

representation of an eigenfunction in branches, we proposed a general variational formalism for checking

the existence of localized eigenmodes. We derived a sufficient condition (5.14) on the branch lengths for

getting a trapped mode. A practical use of the sufficient condition relies on an intuitive choice of a trial

function in the basic domain (without branches). The trial function should be chosen as close as possible

to the (unknown) eigenfunction. Although there is no general recipe for choosing a good trial function,

one can often guess an appropriate choice basing on the geometry of the basic domain.

If the basic domain V satisfies the condition of Theorem 5.4.1, for any shape of branches Qi defined

in (5.32), there exist Dirichlet eigenfunctions of the Laplace operator which are mainly localized in V .

Using this result, one can explain the emergence of localized eigenmodes in various domain, such as e.g

on Figs. 5.12 and 5.13. An extension of our theoretical approach to study localization of the second and

higher-order eigenmodes presents an interesting perspective.

We illustrated our approach for several typical waveguides, including 2D and 3D L-shapes, crossing of the

rectangular strips, and bent strips. For all these cases, the basic domain was simple enough to guess an

appropriate trial function in order to derive an explicit sufficient condition for getting at least one localized

mode. In particular, we obtained an upper bound for the minimal branch length which is sufficient for

localization. We proved the existence of a trapped mode in finite L-shape, bent strip and cross of two

strips provided that their branches are long enough, with an accurate estimate on the required minimal

length. These results were confirmed by a direct numerical resolution of the original eigenvalue problem
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(a) Domain D (b) u1 (c) u2

(d) u3 (e) u4 (f) u5

Figure 5.13: Localization of Dirichlet eigenmodes in a sawtooth domain D.

by finite element method implemented in Matlab PDEtools. The presented method can be applied for

studying the localization in many other waveguides, e.g. smooth bent strip [163], sharply bent strip

[12, 36], Z-shapes [37] or two strips crossing at arbitrary angle [31].

It is worth emphasizing that the distinction between localized and non-localized modes is much sharper

in infinite waveguides than in finite ones. Although by definition the localized eigenfunction in a finite

waveguide decays exponentially, the decay rate may be arbitrarily small. If the branch is not long enough,

the localized mode may be visually indistinguishable from a non-localized one, as illustrated on Fig. 5.7.

In turn, the distinction between localized and non-localized modes in infinite waveguides is always present,

whatever the value of the decay rate.

The main practical result is an explicit construction of two families of waveguides (truncated L-shapes on

Fig. 5.2c and coupled waveguides on Fig. 5.5c), for which the minimal branch length amin for getting a

trapped mode continuously depends on the parameter ℓ or ε of the basic domain. For any prescribed (long

enough) branch length, one can thus construct two almost identical finite waveguides, one with and the

other without a trapped mode. The high sensitivity of the localization character to the shape of the basic

domain and to the length of branches may potentially be used for switching devices in microelectronics

and optics.



Chapter 6

Localization in undirected graphs

As mentioned before, for two-dimensional domains, localization can happen in convex domains with

smooth boundary (such as circular, spherical, elliptical domains, etc) and in many irregular domains

[71, 76, 104, 106, 187, 188, 191–193]. In practice, one can solve Laplacian eigenproblem in a bounded

domain by creating a “fine” mesh (or a spectral graph) that approximates the geometrical structure of the

domain, and then using a standard finite element method to compute eigenvalues and eigenfunctions. For

each localized eigenfunction in the original domain, one can get an approximated Laplacian eigenfunction

in the spectral graph which has similar properties of localization. The problem of localized eigenmodes

in a spectral graph would be an interesting approach for better understanding the “mechanism” of low-

frequency localization.

In this chapter, we aim at studying the existence of localized modes in a class of planar graphs. We also

describe some properties of the Laplace eigenvalue problem in these domains. For numerical simulations,

we propose an efficient algorithm for solving the Laplacian eigenvalue problem not only in these graphs,

but also in the general case. The results of this chapter are reported in [161].

6.1 Introduction

In the first part of this chapter, we discuss the existence of localized eigenmodes in some planar graphs. In

Sec. 6.2, we analyze the properties of these localized eigenmodes and visualize them by several numerical

computations.

In the remaining part of this chapter, we describe an efficient divide-and-conquer algorithm for solving

the eigensystem for the Laplacian matrix LG of an undirected and weighted graph G. Using numerical

computations, we compare our approach with other algorithms (Sec. 6.3). It confirms that our algorithm

runs faster than traditional approaches. This chapter ends by conclusions and further questions.

6.2 Localization in a special class of graphs

We consider the Laplace eigenvalue problem with Dirichlet boundary condition in a graph Ω, which can

be decomposed into K identical vertical lines A1B1, A2B2, . . . , AKBK and one horizontal line C1C2

92
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A1 A2 AK−1 AK

B1 B2 BK−1 BK

C1 C2D1 D2 DK−1 DK. . .

Figure 6.1: A planar graph Ω combining K vertical lines A1B1, A2B2, . . . , AKBK and one horizontal
line C1C2.

(Fig. 6.1). The set of points {A1, . . . , AK , B1, . . . , BK , C1, C2} is the boundary of Ω. We call Di the

midpoint of AiBi with AiDi = DiBi = d1 and C1D1 = DiDi+1 = · · · = DKC2 = d2. Throughout this

section, E1 =
{

k2π2

d2
1
, k = 1, 2, . . .

}

, E2 =
{

m2π2

d2
2
,m = 1, 2, . . .

}

, E = E1 ∪ E2, and we assume that each

eigenfunction U satisfies the Kirckhoff boundary condition at each midpoint Di:







U(Di) = lim
D→Di

U(D)

∂U(Di)
∂x + ∂U(Di)

∂y = 0
(6.1)

Lemma 6.2.1. Any λ ∈ E is an eigenvalue of the Dirichlet-Laplace operator in the graph Ω.

Proof. For each i ∈ {1, 2, . . . ,K}, the eigenvalues of the Dirichlet-Laplace operator in the interval AiDi

are

λ =
k2π2

d2
1

, k = 1, 2, 3, . . . (6.2)

We denote u1(r) the corresponding eigenfunction in AiDi and define

U(r) =







u1(r) , r ∈ AiDi

−u1(r) , r ∈ DiBi

0 , r /∈ AiBi

(6.3)

where r = (x, y) is a point in R2. For this reason, U(r) is an eigenfunction in Ω that implies λ is the

associate eigenvalue.

Similarly, one can prove that λ =
m2π2

d2
2

is an eigenvalue of the Dirichlet-Laplace operator in Ω for any

positive integer m.
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Lemma 6.2.2. We consider the Laplace eigenvalue problem in an interval (c, d):

u” + λu = 0 in (c, d), (6.4)

u(c) = x0, u(d) = y0. (6.5)

If there exists an eigenvalue λ0 such that λ0 =
k2π2

(d− c)2 for some integer k, then x0 = ±y0.

Proof. Suppose that u(x) is an eigenfunction associated to λ0, then u(x) can be represented by the

following form

u(x) = c1 cos

(

kπ
x− c
d− c

)

+ c2 sin

(

kπ
x− c
d− c

)

.

One can see that u(c) = c1, u(d) = c1(−1)k that implies the conclusion.

Theorem 6.2.1. Let U(r) be an eigenfunction of the Dirichlet-Laplace operator in Ω. Then, ∃i ∈
{1, 2, . . . ,K}, U(Di) = 0 if and only if the corresponding eigenvalue λ belongs to E. In addition, if

∃i ∈ {1, 2, . . . ,K} such that U(Di) = 0, then U(Dj) = 0,∀j.

Proof. We prove the above theorem for K = 2, while other cases are similar.

Without loss of generality, we assume that i = 1.

(→) If U(r) is an eigenfunction of the Dirichlet-Laplace in Ω such that U(D1) = 0, it is also an eigenfunc-

tion of the Dirichlet-Laplace at least in one of the intervals: A1D1, D1B1, C1D1 and D1D2. As a result,

the corresponding eigenvalue λ belongs to E.

(←) Suppose that the corresponding eigenvalue λ of U(r) is equal to k2π2

d2
1

for some positive integer k and

U(D1) = a. If a 6= 0, from the continuity of the eigenfunction U(r), U(r) 6= 0 in the sub-interval A1D1.

For this reason, U(r) is an eigenfunction of the Laplace operator in A1D1 and satisfies U(A1) = 0 and

U(D1) = a. Using Lemma 6.2.2, it only occurs when a = 0. It is contradictory to our initial assumption.

So, U(D1) = 0. Similarly, U(D2) = 0.

If λ is equal to m2π2

d2
2

for some positive integer m, one can prove that U(Di) = 0 for all i.

Theorem 6.2.2. Suppose that Ωi = Ω \ AiBi,∀i ∈ {1, 2, . . . ,K}, then

Cp(Ωi) ≡ inf
u

{

‖u‖Lp(Ωi)

‖u‖Lp(Ω)

}

= 0, (6.6)

for any p ≥ 1 and i = 1, 2, . . . ,K. Here, u is an eigenfunction of Dirichlet-Laplace operator in Ω.

Proof. From the above theorem, for each i ∈ {1, 2, . . . ,K}, one can choose an eigenfunction U(r) such

that U(Di) = 0 and U(r) = 0 in Ωi. It is easy to see that

‖U‖Lp(Ωi)

‖U‖Lp(Ω)
= 0,

for any p ≥ 1, that implies the conclusion.
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Theorem 6.2.3. Let Q be the set of rational numbers and λ is an eigenvalue of the Dirichlet-Laplace

operator in Ω. Then,

a) If λ 6∈ E, its multiplicity is 1.

b) If
d1

d2
6∈ Q and λ ∈ E:

• If λ ∈ E1, its multiplicity is K and the corresponding eigenfunction U(r) = 0, r ∈ C1C2.

• If λ ∈ E2, its multiplicity is 1 and the corresponding eigenfunction U(r) = 0, r ∈ AiBi,∀i.

c) If
d1

d2
=
r1

r2
∈ Q (the greatest common divisor of two positive integers r1 and r2 is 1) and λ = k2π2

d2
1
∈ E1:

• If k is not a multiple of r1, the multiplicity of λ is K and the corresponding eigenfunction U(r) = 0,

r ∈ C1C2.

• Otherwise, its multiplicity is 2K + 1.

d) If
d1

d2
=
r1

r2
∈ Q (the greatest common divisor of two positive integers r1 and r2 is 1) and λ = m2π2

d2
2
∈ E2:

• If m is not a multiple of r2, the multiplicity of λ is 1 and the corresponding eigenfunction U(r) = 0,

r ∈ AiBi,∀i.

• Otherwise, its multiplicity is 2K + 1.

Proof. We prove the above theorem for K = 2, while other cases are similar.

a) We assume that λ /∈ E and its multiplicity is greater than 1. Then, λ has at least two linearly

independent and normalized eigenfunctions U1 and U2.

If U1(D1) = a and U2(D1) = b (a, b 6= 0), one considers the following function

U = bU1 − aU2. (6.7)

Note that U 6= 0 and U satisfies the boundary condition in Ω. It is easy to check that U is also an

eigenfunction corresponding to λ. Moreover,

U(D1) = ba− ab = 0, (6.8)

that implies λ ∈ E (from Theorem 6.2.1). It is contradictory to our initial assumption. Consequently, λ

has the multiplicity 1.

b) Using Theorems 6.2.1 and 6.2.2.

c-d) Using Theorems 6.2.1 and 6.2.2 and a similar proof as the above case (a).

Remark 6.2.1. In this section, an eigenfunction is considered to be localized if it is mainly distributed

in a small region of the domain, and decays rapidly outside the region.
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• From Theorem 6.2.3, one can easily find the multiplicities of the Laplacian eigenvalues in the graph

Ω.

• If
d1

d2
6∈ Q, a localized eigenfunction is distributed either in vertical lines, or in the horizontal line

C1C2, but not on both of them.

• If
d1

d2
∈ Q, a localized eigenfunction is distributed either in vertical lines, or in the horizontal line

C1C2, or in both.

6.2.1 Numerical implementation

We use a Finite Difference scheme for solving the Laplace eigenvalue problem in Ω. First, we compute

the stiffness matrix L of the Laplace operator in the domain, and then solve the eigenvalue problem of

the matrix L.

Definition 6.2.1. For a given N , we define the matrix

BN =


















2 −1 0 0 . . . 0 0

−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . −1 2 −1 0

0 0 . . . 0 −1 2 −1

0 0 . . . 0 0 −1 2


















N×N

(6.9)

and

CN = B2N+1 + 2zT
0 z0, z0 =

[

0 . . . 0 1 0 . . . 0
]

1×(2N+1)
. (6.10)

Here, z0(N + 1) = 1, otherwise z0(i) = 0.

6.2.1.1 Stiffness matrix

For an easier implementation, we assume that d1 = q1l0, d2 = q2l0, q1, q2 ∈ N∗. For each M = q1p − 1

and M = q2p − 1 (p ∈ N∗), we divide all vertical lines A1D1, D1B1, A2D2, D2B2, . . . , AKDK , DKBK

into M + 1 identical subintervals and all horizontal lines C1D1, D1D2, . . . , DK−1DK , DkC2 into N + 1

identical subintervals of length dp = l0
p (Fig. 6.2a).

In this mesh, one can approximate the Laplace operator at xk
i and yk

j via the following formulas

• k = 0

△u(xk
i ) =







1

d2
p

[

−2u(xk
1) + u(xk

i+1)
]

(i = 1) ,

1

d2
p

[

u(xk
i−1)− 2u(xk

i ) + u(xk
i+1)

]

(1 < i < N) ,

1

d2
p

[

u(xk
i−1)− 2u(xk

i ) + u(Dk+1)
]

(i = N) .

(6.11)
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• 0 < k < K

△u(xk
i ) =







1

d2
p

[

u(Dk)− 2u(xk
1) + u(xk

i+1)
]

(i = 1) ,

1

d2
p

[

u(xk
i−1)− 2u(xk

i ) + u(xk
i+1)

]

(1 < i < N) ,

1

d2
p

[

u(xk
i−1)− 2u(xk

i ) + u(Dk+1)
]

(i = N) ,

△u(yk
j ) =







1

d2
p

[

−2u(yk
j ) + u(xk

j+1)
]

(j = 1) ,

1

d2
p

[

u(xk
j−1)− 2u(yk

j ) + u(xk
j+1)

]

(1 < i < M) ∨ (M + 1 < j < 2M ) ,

1

d2
p

[

u(xk
j−1)− 2u(yk

j ) + u(Dk)
]

(j = M) ,

1

d2
p

[

u(Dk)− 2u(yk
j ) + u(xk

j+1)
]

(i = M + 1) ,

1

d2
p

[

u(xk
j−1)− 2u(yk

j )
]

(j = 2M ) .

(6.12)

• k = K

△u(xk
i ) =







1

d2
p

[

u(Dk)− 2u(xk
1) + u(xk

i+1)
]

(i = 1) ,

1

d2
p

[

u(xk
i−1)− 2u(xk

i ) + u(xk
i+1)

]

(1 < i < N) ,

1

d2
p

[

u(xk
i−1)− 2u(xk

i )
]

(i = N) ,

△u(yk
j ) =







1

d2
p

[

−2u(yk
j ) + u(xk

j+1)
]

(j = 1) ,

1

d2
p

[

u(xk
j−1)− 2u(yk

j ) + u(xk
j+1)

]

(1 < i < M) ∨ (M + 1 < j < 2M ) ,

1

d2
p

[

u(xk
j−1)− 2u(yk

j ) + u(Dk)
]

(j = M) ,

1

d2
p

[

u(Dk)− 2u(yk
j ) + u(xk

j+1)
]

(j = M + 1) ,

1

d2
p

[

u(xk
j−1)− 2u(yk

j )
]

(j = 2M ) .

(6.13)

Using the above approximation, the eigenvalue equation becomes

Au+ λu = 0, (6.14)
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. . .
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Figure 6.2: A mesh decomposition in a planar graph G: (a) - a general mesh for positive integers K, M
and N , (b) - an example with K = 1, M = 2 and N = 3.
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where the stiffness matrix A of the Laplace operator has a blocked structure

A =
−1

d2
p


















BN A1,2 0 0 . . . 0 0

A2,1 CM A2,3 0 . . . 0 0

0 A3,2 BN A3,4 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . A2K−1,2K−2 BN A2K−1,2K 0

0 0 . . . 0 A2K,2K−1 CM A2K,2K+1

0 0 . . . 0 0 A2K+1,2K BN


















(6.15)

For 1 ≤ i ≤ K, the matrix A has the size P × P , matrices A2i,2i−1 = AT
2i−1,2i have the size P1 × P2 and

matrices A2i+1,2i = AT
2i,2i+1 have the size P2 × P1, where

P = (2M +N + 1)K +N, P1 = N, P2 = 2M + 1. (6.16)

Moreover, A2i,2i−1(j, k) = 0, A2i+1,2i(j, k) = 0 except

A2i,2i−1(M + 1, N) = −1, A2i+1,2i(1,M + 1) = −1. (6.17)

For a better illustration, we consider the following example.

Example 6.2.1. When K = 1, M = 2 and N = 3 (Fig. 6.2b),

A =
−1

d2
p





























2 −1 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0 0

0 −1 2 0 0 −1 0 0 0 0 0

0 0 0 2 −1 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0

0 0 −1 0 −1 4 −1 0 −1 0 0

0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 −1 2 0 0 0

0 0 0 0 0 −1 0 0 2 −1 0

0 0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 0 −1 2





























6.2.1.2 Eigendecomposition of the matrix A

For solving the eigenvalue problem for the matrix A in Eq. (6.15), one can use classical algorithms for

symmetric matrices. For instance, one can find its eigendecomposition in Matlab by one of two functions

eig or eigs.

We propose a fast and efficient divide-and-conquer algorithm to compute the eigensystem of all symmetric
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matrices H having similar structures to the matrix A as following [161]:

H =












H11 H12 0 0 ... 0

H21 H22 H23 0 ... 0

0 H32 H33 H34 ... 0

... ... ... ... ... ...

0 0 0 ... HK,K−1 HKK












(6.18)

where Hij ∈ R(2M+1)×(2M+1), Hi,i+1 has only one non-zero entry, Hi+1,i = HT
i,i+1, and P = (2M + 1)K is

the size of the matrix H. The approach avoids the tridiagonalization step in classical algorithms which

mostly costs O(P 3) multiplications, and the algorithm only costs O(KM3) + O(P 2) i.e. faster than

classical algorithms when K ≫M . One can see in [161] for details.

In Section 6.3, we will present an algorithm for computing the eigendecomposition of the Laplacian matrix

in a weighted, undirected graph G = (V,E, ω). One can also apply the new algorithm for finding the

eigendecomposition of the matrix A.

6.2.2 Numerical results

In this section, we solve the Laplacian eigenproblem in several graphs and visualize some localized eigen-

modes in these domains.

Example 6.2.2. We consider a graph Ω of two vertical lines of sides d1 = 0.5 and d2 = π
5 . It is easy to

see that

E1 =
{

4k2π2 : k = 1, 2, . . .
}

, E2 =
{

25m2 : m = 1, 2, . . .
}

. (6.19)

Since
d1

d2
=

5

π
6∈ Q, from Theorem 6.2.3, all eigenfunctions corresponding to eigenvalues λ ∈ E1 are

localized in vertical lines, while if λ ∈ E2, the corresponding eigenfunction is localized in the horizontal

line C1C2.

Table 6.1 presents the first 10 eigenvalues computed with M = 300 and N = 101. The numerical values

λ3 = 24.9995 ≈ 25 ∈ E2 and λ10 = 99.9919 ≈ 100 ∈ E2, so that two eigenfunctions u3 and u10 are

supported in the horizontal line C1C2 (Fig. 6.3).

In addition, λ6 = λ7 ≈ 4π2 and λ13 = λ14 ≈ 16π2, so that the corresponding eigenfunctions u6, u7, u13

and u14 are localized in vertical lines A1B1 and A2B2 (Fig. 6.3).

Example 6.2.3. In this example, we assume that K = 2, d1 = 0.5 and d2 = 1
3 . Then,

E1 =
{

4k2π2 : k = 1, 2, . . .
}

, E2 =
{

9m2π2 : m = 1, 2, . . .
}

. (6.20)

Since
d1

d2
=

3

2
, from Theorem 6.2.3, the multiplicity of λ ∈ {4π2, 16π2, 9π2

}
is 2, and the multiplicity of

λ = 36π2 is 5.

For computing Laplacian eigenproblem in this graph, we use M = 300 and N = 601. In Table 6.1,

λ3 = λ4 = 39.4781 ≈ 4π2, λ10 = λ11 = 157.9079 ≈ 16π2 and λ14, λ15, λ16, λ17, λ18 ≈ 36π2. These
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i d2 = π
5 d2 = 1

3 i d2 = π
5 d2 = 1

3

1 4.8622 9.8805 11 119.8694 157.9079
2 10.7213 24.5008 12 134.9594 193.3879
3 24.9995 39.4781 13 157.8627 247.0077
4 30.1449 39.4781 14 157.8627 355.2767
5 34.0202 45.4036 15 181.4601 355.2767
6 39.4752 55.9341 16 199.0515 355.2801
7 39.4752 88.8262 17 224.9954 355.2847
8 60.5574 129.399 18 267.7518 355.3025
9 75.6610 146.7115 19 299.2119 484.1251
10 99.9919 157.9079 20 355.2767 566.6966

Table 6.1: The first 15 Laplacian eigenvalues in the graph Ω with K = 2, d1 = 0.5 and d2 = π
5 .

numerical results fit to Theorem 6.2.3.

Since λ7 ≈ 9π2 ∈ E2, u7 is localized in the horizontal line C1C2 (Fig. 6.4). In addition, the eigenfunction

u18 is also localized in this line.

6.2.3 Discussion

In Section 6.2, we have already studied the Laplacian eigenproblem in several graphs Ω as shown on Fig.

6.1. By Theorem 6.2.3, one can easily obtain the multiplicity of each Laplacian eigenvalue. Moreover, we

also give a mechanism of localized eigenmodes in this domain. In the next section, we study Laplacian

eigenvalue problem in a weighted graph G = (V,E, ω) and give a fast and efficient algorithm for solving

the eigendecomposition of Laplacian matrix in G.

6.3 Laplacian eigenvalue problem in a weighted graph

Motivated from the previous section, we consider a weighted undirected graph G = (V,E, ω) of n vertices,

n = |V |, and m edges, m = |E|, with a positive function ω : E → R (Fig. 6.6). We suppose that G

has K disjoint connected weighted subgraphs G1, G2, . . . , GK in which Gi = (Vi, Ei, ω), ni = |Vi| and

mi = |Ei| and each pair of the consecutive subgraphs {Gi, Gi+1} can be connected by an edge with weight

wi (1 ≤ i < k). In the graph G, its adjacency matrix, denoted AG, is

AG(i, j) =

{

w(i, j) if (i, j) ∈ E
0 otherwise,

(6.21)

and its degree matrix, denoted DG, is a diagonal matrix of size n× n such that

DG(i, i) =
∑

(i,j)∈E

AG(i, j). (6.22)
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(a) u3 (b) u6 (c) u7

(d) u10 (e) u13 (f) u14

Figure 6.3: Some localized eigenfunctions in the graph Ω with d1 = 0.5 and d2 = π
5 . The eigenfunctions

u3 and u10 are localized in the horizontal line (cases a, d), while the eigenfunctions u6, u7, u13 and u14

are distributed in the vertical lines (cases b, c, e, f). The red and blue lines represent the values of the
eigenfunction in the horizontal line C1C2 and in vertical lines, respectively.

The Laplacian matrix LG of the weighted graph G can now be defined by

LG = DG −AG. (6.23)

For example, if G is a weighted graph as shown in Fig. 6.5, its adjacency, degree and Laplacian matrices

are given as follows

AG =







0 1 1

1 0 1

1 1 0






, DG =







2 0 0

0 2 0

0 0 2






, LG =







2 −1 −1

−1 2 −1

−1 −1 2






. (6.24)

In this section, we are only interested in finding the eigendecomposition of Laplacian matrices LG. Clas-

sically, one can solve this problem in O(n3) time. We aim at answering the question “If one knows all
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(a) u7 (b) u18

Figure 6.4: Some localized eigenfunctions in the graph Ω with d1 = 0.5 and d2 = 1
3 . The eigenfunctions

u7 and u18 are localized in the horizontal line. The red and blue lines represents the values of the
eigenfunction in the horizontal line C1C2 and in vertical lines, respectively.

1

1

1

a

b c

Figure 6.5: The ring graph R3 with three vertices {a, b, c} and three weighted edges: w(a, b) = w(a, c) =
w(b, c) = 1.

eigendecompositions of the Laplacian matrices LG1, LG2 , . . . , LGk
in subgraphs G1, G2, . . . , Gk, can one

use this knowledge to reduce the complexity of numerical computation ? ”

6.3.1 Description of the problem

For notational convenience, we assume that

• Gi has ni vertices Vi =
{

v
(i)
1 , v

(i)
2 , . . . , v

(i)
ni

}

and pi = n1 + · · ·+ ni, for all i = 1, 2, . . . ,K.

• There exist a1 ∈ {1, 2, . . . , n1}, b2 ∈ {1, 2, . . . , n2} such that G1 is connected to G2 by a weighted

undirected edge v
(1)
a1

w1−→ v
(2)
b2

, and D1, E1,2 are the matrices of size n1×n1 and n2×n1 respectively,

D1(j, k) =

{

w1 (j, k) ≡ (a1, a1)

0 otherwise

E1,2(j, k) =

{

−w1 (j, k) ≡ (a1, b2)

0 otherwise

(6.25)
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G1
G2

Gk−1

Gk

. . .

wk−1

w1

Figure 6.6: A weighted undirected graph G.

• For each i = 2, . . . ,K − 2, there exist ai ∈ {1, 2, . . . , ni}, bi+1 ∈ {1, 2, . . . , ni+1} such that Gi is

connected to Gi+1 by a weighted undirected edge v
(i)
ai

wi−→ v
(i+1)
bi+1

, and Di, Ei,i+1 are the matrices of

size ni × ni and ni+1 × ni respectively,

Di(j, k) =







wi−1 (j, k) ≡ (bi, bi)

wi (j, k) ≡ (ai, ai)

0 otherwise

Ei,i+1(j, k) =

{

−wi (j, k) ≡ (ai, bi+1)

0 otherwise

(6.26)

When ai = bi, one has

Di(j, k) =

{

wi−1 + wi (j, k) ≡ (bi, bi)

0 otherwise
(6.27)

• There exist aK−1 ∈ {1, 2, . . . , nK−1} and bK ∈ {1, 2, . . . , nK} such that GK−1 is connected to GK

by a weighted undirected edge v
(K−1)
aK−1

wK−1−−−−→ v
(K)
bK

, and DK−1, EK−1,K are the matrices of size

nK−1 × nK−1 and nK × nK−1 respectively,

DK−1(j, k) =







wK−2 (j, k) ≡ (bK−1, bK−1)

wK−1 (j, k) ≡ (aK−1, aK−1)

0 otherwise

EK−1,K(j, k) =

{

−wK−1 (j, k) ≡ (aK−1, bK)

0 otherwise

(6.28)
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When aK−1 = bK−1, one has

DK−1(j, k) =

{

wK−2 + wK−1 (j, k) ≡ (bK−1, bK−1)

0 otherwise
(6.29)

• Finally, DK is the matrix of size nK × nK :

DK(j, k) =

{

wK−1 (j, k) ≡ (bK , bK)

0 otherwise
(6.30)

Remark 6.3.1. It is worth noting that ai may be equal to bi for some i.

From the above assumption, LG can be represented as

LG =












LG1 0 0 . . . 0

0 LG2 0 . . . 0

0 0 LG3 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0 LGK












+












D1 E1,2 0 . . . 0

E2,1 D2 E2,3 . . . 0

0 E3,2 D3 . . . . . .

. . . . . . . . . . . . EK−1,K

0 0 . . . EK,K−1 DK












, (6.31)

where Ei,i+1 = ET
i+1,i,∀i ∈ {1, 2, . . . ,K − 1}.

We can now address the problem:

Problem 6.3.1. Suppose we have already known the eigendecompositions LGi = UiDiU
T
i ,∀i ∈ {1, 2, . . . ,K},

can we use this knowledge to compute the eigenvalue problem of the Laplacian matrix LG in (6.31) more

efficiently than by traditional algorithms?

6.3.2 Description of the method

Laplacian matrices of weighted graphs are symmetric and positive semi-definite. As a consequence, all

eigenvalues are non-negative and any algorithm for solving a symmetric eigensystem is applicable. Before

showing our approach, we summarize some traditional algorithms.

6.3.2.1 Traditional methods

Traditionally, there are two phases to compute the eigendecomposition of a symmetric matrix A of size

n:

• In the first phase, one transforms A into a symmetric tridiagonal matrix T by a sequence of orthog-

onal similarity transformations:

T = QT
k · · ·QT

2 Q
T
1 AQ1Q2 · · ·Qk (6.32)
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• In the second phase, one computes the corresponding eigendecomposition of the tridiagonal matrix

T :

T = V DV T , (6.33)

where V is an orthogonal matrix and D is diagonal.

• Finally, the eigendecomposition of the matrix A is

A = UDUT , (6.34)

where U = Q1Q2 · · ·QkV
T .

For tridiagonalizing an n×n symmetric matrix, one can apply Householder algorithm [113], which uses n−2

orthogonal reflectors. The total cost in this step is O(n3) in time. For computing the eigendecomposition

of a tridiagonal matrix, one can use one of the most classical algorithms called QR algorithm that costs

O(n2) in time. This algorithm was independently studied by Francis [79] and Kublanovskaja [132] in

1961.

In 1978, Bunch and co-workers [33] presented an efficient algorithm for computing the eigensystem of

the rank-one modification of a symmetric matrix with known eigendecompostion. In 1981, motivated in

Bunch’s paper, Cuppen proposed an efficient divide-and-conquer algorithm of the symmetric tridiagonal

eigenproblem [56]. His algorithm could asymptotically be faster than traditional QR algorithm. In 1991,

by using arrowhead matrices and fast multiploe method, Gu and his colleagues [87, 88] proposed another

fast and stable divide-and-conquer algorithm for computing the eigensystem of a symmetric tridiagonal

matrix with improvements on the orthogonality of eigenvectors. In 1997, Dhillon investigated an O(n2)

algorithm for computing both eigenvalues and eigenvectors of a tridiagonal matrix [63]. For the eigenvalue

problem of a non-symmetric and tridiagonal matrix, a fast algorithm was proposed by Bini et al. [25],

using Ehrlich-Aberth interations. In 2007, Slemons presented, in his thesis [204], a fast and accurate

algorithm costing O(n2) flops for computing both eigenvectors and eigenvalues of a non-symmetric and

tridiagonal matrix.

6.3.2.2 Our approach

In the previous section, computing the eigendecomposition of the matrix LG costs O(p3
K) in time. In this

section, we will consider the case n1 = n2 = · · · = nK = N , ωi 6= 0,∀i = 1, . . . ,K, and present an efficient

divide-and-conquer algorithm to solve this eigenproblem.

Our algorithm consists of two steps: dividing step and conquering step. In the dividing step, we reduce

the eigenproblem from the original matrix into small-size submatrices recursively, and then, we solve the

eigenproblem in each submatrix by a classical algorithm. In the conquering step, by using all eigendecom-

positions computed from these submatrices, we obtain step by step the eigendecomposition of the matrix

LG.
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6.3.3 A divide-and-conquer approach for Laplacian matrix LG

6.3.3.1 Dividing Step

For a better explanation, we denote M(i, j) the entry (i, j) of the matrix M and a(i) the ith element

of the vector a. For any i ≤ j, we also denote Gi→j = (Vi→j, Ei→j , ω) a subgraph of graph G, where

Vi→j = Vi ∪ Vi+1 ∪ · · · ∪ Vj and Ei→j = Ei ∪Ei+1 ∪ · · · ∪Ej. Next, we call LGi→j the Laplacian matrix of

the subgraph Gi→j.

Now, we represent the matrix LG as following

LG =

(

LG1→k
0

0 LGk+1→K

)

+

(

B11 B12

B21 B22

)

where

B11(j, k) =

{

wk (j, k) ≡ (ak, ak)

0 otherwise

B12(j, k) =

{

−wk (j, k) ≡ (ak, bk+1)

0 otherwise

(6.35)

B22(j, k) =

{

wk (j, k) ≡ (bk+1, bk+1)

0 otherwise

B12(j, k) = BT
12

(6.36)

and

k =

⌊
K

2

⌋

Using rank-one decomposition, the matrix LG can be decomposed as following

LG =

(

LG1→k
0

0 LGk+1→K

)

+ ρzzT (6.37)

where ρ = 2ωk and z has only two non-zero entries

z(i1) =
1√
2
, z(j1) = − 1√

2
. (6.38)

Here, i1 = pk−1 + ak and j1 = pk + bk+1.

By this way, we split the original problem for two eigenproblems of two half-size submatrices. Recursively,

we continue dividing these matrices until they have only one block LGi for i = 1, 2, ..., N . At this step,

we use the eigendecomposition of LGi = UiDiU
T
i ,∀i = 1, 2, .., N .



Chapter 6. Localization in undirected graphs 108

6.3.3.2 Conquering step

In this step, our goal is to compute the eigendecomposition of LG in Eq. (6.37) given that Q1D1Q
T
1 and

Q2D2Q
T
2 are eigendecompositions of LG1→k

and LGk+1→K
respectively. We can rewrite Eq. (6.37) as

LG =

(

Q1D1Q
T
1 0

0 Q2D2Q
T
2

)

+ ρzzT = QDQT + ρzzT (6.39)

where

Q =

(

Q1 0

0 Q2

)

, D =

(

D1 0

0 D2

)

. (6.40)

For computing the eigendecomposition of LG in Eq. (6.39), one can use the rank-one modification method

of symmetric eigenproblem [33]. The algorithm which was proposed by Bunch et al [33] consists of three

steps:

1. Initial deflation.

2. Solving the secular equation to compute the eigenvalues of the matrix LG.

3. Computing its eigenvectors.

Deflation occurs when x = QT z has zero entries or there exists an entry ith of the vector z such that

|z(i)| = 1. Deflation also happens whenD has degenerate eigenvalues. It means that there exist k diagonal

entries {i1, i2, · · · , ik} of the matrix D such that di1 = · · · = dik
. The details of the initial deflation step

were stated explicitly in [33].

After initial deflation step, we suppose that k × k is the size of the deflated system. One obtains

LG = Q̃(D̃ + ρzzT )Q̃T = (Q̃1, Q̃2)

(

D̃1 0

0 D̃2 + ρz2z
T
2

)

(Q̃1, Q̃2)T

where Q = (Q̃1, Q̃2) is the orthogonal matrix with Q̃1 ∈ Rn×(n−k) and Q̃2 ∈ Rn×k; D̃2 ∈ Rk×k is the

diagonal matrix with distinct values on the diagonal and z2 ∈ Rk×1 is the vector with no zero entry.

Next, we need to compute the eigendecomposition of D̃2 + ρz2z
T
2 . The following theorem characterizes

the eigenvalues and eigenvectors of the deflated system [33]:

Theorem 6.3.1. Assume that d1 < d2 < ... < dn and ρ > 0. Then the eigenvalues {λi}ni=1 of D + ρzzT

satisfy the interlacing property

d1 < λ1 < d2 < λ2 < ... < dn < λn

and are the roots of the secular equation

f(λ) = 1 + ρ
n∑

j=1

z2
j

dj − λ
= 0 (6.41)
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For each eigenvalue λi, the corresponding eigenvector is given by

ui = (
z1

d1 − λi
, ...,

zn

dn − λi
)T /

√
√
√
√

n∑

j=1

z2
j

(dj − λi)2
(6.42)

In [33], Bunch et al proposed a rational interpolation method to approximate the roots of the secular

equation (6.41) efficiently with the quadratic rate of convergence. The corresponding eigenvector of each

computed eigenvalue can be computed directly using Eq. (6.42). Suppose that the eigendecomposition of

D̃2 + ρz2z
T
2 is Q̄2D̄2Q̄

T
2 , the matrix whose columns are the eigenvectors of the matrix LG is (Q̃1, Q̃2Q̄2)

and the corresponding diagonal matrix of eigenvalues is Λ = (D̃1, D̄2). The bottleneck in our computing

overhead is the computation of Q̃2Q̄2 which is O(nk2). In the next part, we will show that by using the

Fast Multipole Method, we can accelerate the computation of the eigenvectors.

6.3.3.3 Acceleration using Fast Multipole Method

In this section, we present the acceleration of our algorithm by using Fast Multipole Method (FMM)

which was proposed by Carrier, Greengard and Rokhlin [39, 92], and intensively studied in [88].

Let ui be the corresponding eigenvector of the eigenvalue λi of the deflated system D̃2 + ρz2z
T
2 and

d1 < d2 < ... < dk are the diagonal entries of D̃2; then, for any vector q ∈ Rk×1, one can write the value

uT
i q as

uT
i q =

∑k
j=1

q(j)z2(j)
dj−λi

√
∑k

l=1
(z2(l))2

(dl−λi)2

=
Φ1(λi)
√

Φ2(λi)

where

Φ1(λ) =
k∑

j=1

q(j)z2(j)

dj − λ
, (6.43)

Φ2(λ) =
k∑

l=1

(z2(l))2

(dl − λ)2
. (6.44)

For this reason, Q̄T
2 q can be computed by evaluating the functions Φ1(λ) and Φ2(λ) at k points λ1, λ2,

..., λk. Note also that Eq. (6.43) and (6.44) are of the form Φ(x) =
∑n

i=1 cjϕ(x − xj), where ϕ(x) is

1/x or 1/x2, and the direct computation of Q̄T
2 q takes O(k2) time. Using Fast Multipole Method (FMM)

[39, 92], it only takes O(k) in time to approximate Φ1(x) and Φ2(x) at these points to a precision specified

by the user. Therefore, one can accelerate the computing overhead of the matrix-vector product Q̄T
2 q to

O(k). In addition, each row of Q̃2Q̄2 is of the form (Q̄T
2 q)

T , which reduces the cost for computing Q̃2Q̄2

to O(nk).
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6.3.3.4 Complexity analysis of the proposed algorithm

Let T (K) be complexity of the proposed algorithm for matrix LG. Tthe complexity for computing the

eigendecomposition of each Laplacian matrix LGi by classical approaches is normally O(N3) that implies

T (1) = O(N3). In the dividing step, we usually choose k = ⌊K/2⌋. The overhead for the conquering step

is O(P 2) = O(K2N2) if FMM is used. One can formulate the complexity T (K) as following:







T (K) = 2T (K/2) +O(K2N2)

T (1) = O(N3)
(6.45)

Similar to [161], one can prove that

T (K) ≤ O(KN3) + 2O(K2N2) = O(KN3) +O(p2
K) (6.46)

where pk = KN . As a consequence, the complexity of our algorithm is in the order of T (K) = O(KN3)+

O(p2
K). When K >> 1, our algorithm is much faster than a classical algorithm of complexity O(p3

K).

Remark 6.3.2. If G1, G2, . . . , GK are identical, one only need to solve the eigendecomposition of G1,

and then use this decomposition in the problem (6.3.1). As a result, the complexity of our approach can

be reduced to T (K) = O(N3) +O(p2
K), and our algorithm becomes very powerful when K >> 1.

Remark 6.3.3. If one has already known the eigendecomposition LGi = UiDiU
T
i ,∀i ∈ {1, 2, . . . ,K}, one

only needs O(p2
K) flops more for obtaining the eigenvalues and eigenvectors of LG.

6.3.3.5 Examples

In this section, we illustrate our approach for K = 2k and ni = N for 1 ≤ i ≤ K (Fig. 6.7). Using our

algorithm, one can find the eigendecomposition of the Laplacian matrix LG in the graph G by k steps as

following:

• Step 1 : Knowing the eigendecomposition of the Laplacian matrices LGi , for all i = 1, . . . ,K, we

solve the eigenproblem for the Laplacian matrix LG1→2 , LG3→4 , . . . , LGK−1→K
by the divide-and-

conquer method described in Section 6.3.3.1 and 6.3.3.2 , respectively.

• Step i: For each 2 ≤ i < k, using all the knowledge from the previous steps, we find the eigende-

composition of the Laplacian matrices LG
1→2i

, . . . , LG
2k−1−2i+1→2k

.

• Step k: Using the computed eigendecomposition of the Laplacian matrices LG
1→2k−1

and LG
2k−1+1→2k

,

we finally obtain the eigendecomposition of the matrix LG.

One can see that the computation in this example is much faster than by any traditional algorithm.
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LG1 LG2 LG3 LG4
LGK−3

LGK−2
LGK−1

LGK

LG1→2
LG3→4

LGK−3→K−2
LGK−1→K

LG1→4
LGK−3→K

LG
1→2k−1

LG
2k−1+1→K

LG

. . .

. . . . . .

. . .. . .

. . .

Figure 6.7: Illustration of our algorithm when the graph G has 2k subgraphs of N vertices.
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Figure 6.8: The total computational time comparison (by second) between our algorithm and other
algorithms for solving the eigenproblem for the Laplacian matrix LG of a graph G with K subgraphs Gi:
(a) - Gi is a ring graph of 11 vertices, (b) - Gi is a complete graph of 11 vertices. All edges in G have the
weight 1 and K varies in the set {1, 2, 4, 8, 16, 32, 64, 128}.
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6.3.4 Numerical experiments

In this section, we start by comparing our divide-and-conquer algorithm (denotes PA below) with three

other algorithms for solving the eigenproblem of the Laplacian matrix in a graph G:

• QR: using a sequence of Householder reflectors for tridiagonalization [214, p. 196] and QR algorithm

with Wilkinson’s shift for a symmetric tridiagonal eigenproblem [79, 132], [214, p. 222]

• CDC: using a sequence of Householder reflectors for tridiagonalization [214, p. 196] and Cuppen’s

divide-and-conquer algorithm for a symmetric tridiagonal eigenproblem [56]

• ADC: using a sequence of Householder reflectors for tridiagonalization [214, p. 196] and the arrow-

head divide-and-conquer algorithm for a symmetric tridiagonal eigenproblem [88]

Since the number of vertices in G was not too large, we did not implement FMM in our computation. In

the rank-one modification step, the enhancement of orthogonality of eigenvectors (proposed by Ming Gu

and Eisenstat [87]) was implemented in both PA and CDC.

All codes are written in Matlab and all computations were done by a Intel core i3 2.10 GHz computer.

The machine precision is ǫ = 1.1 × 10−16.

It is important to emphasize that in each conquering step, we solve each secular equation (6.41) by the

bisection method. As already known, the secular equation has exactly one solution in any interval (di, di+1)

(dn+1 =∞). In our computation, we find an approximate solution λ∗
i satisfying that |λi − λ∗

i | < |di−di+1|ǫ
for 1 ≤ i < n and |λn − λ∗

n| < |dn −M∗|ǫ, in which M∗ is large enough in order to get exactly a solution

of the associated secular equation in (dn,M
∗). Note that the choice of the value M∗ also influences the

final error of the numerical computation.

In Tables 6.2 and 6.3, we compare our algorithm (without FMM) with other algorithms by the total

computational time, the residual error and the orthogonal error. We suppose that the Laplacian matrix

LG has the eigendecomposition UΛUT where U is an orthogonal matrix and Λ is a diagonal matrix with

eigenvalues on its diagonal. The residual error for the computed eigensystem can be evaluated by the

formula
max

i
‖LGui − λiui‖2
pKǫ‖LG‖2

where ui is the ith column of U and λi is the ith entry on the diagonal of Λ.

The orthogonality error for the computed eigensystem can be calculated by the formula
max

i
‖UTui − ei‖2
pKǫ

where ei is unit vector with 1 in its ith entry.

6.3.4.1 Example 1

We consider a graph G which has K subgraphs Gi and each subgraph Gi is a ring graph (Figure 6.9a) of

11 vertices. We assume that all edges in each Gi have the weight 1 and ωi = 1 for any 1 ≤ i < K.

We solve the eigensystem for the Laplacian matrix LG corresponding to a value K = 2i where 1 ≤ i ≤ 7.

In Table 6.2, one can see the comparison between our algorithm PA and three other algorithms: ADC,

CDC and QR. Figure 6.8a shows that as K increases, the algorithm PA runs faster than others and the

algorithm QR is the slowest one. In particular, as K = 128, our algorithm is about 200 times faster
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11

1

1

(a) A ring graph R4

1

1

1

1 1

1

11

1

(b) A complete graph K6

Figure 6.9: An example of ring and complete graphs.

than the traditional QR. The orthogonality error of the algorithm PA is better than ADC, CDC and QR.

However, the residual errors in our computation, ADC and CDC are not as good as the algorithm QR.

6.3.4.2 Example 2

In this example, a graph G has K subgraphs, each of them being a complete graph (Figure 6.9b) of 11

vertices. We also assume that all edges have the weight 1, K varies from 1 to 128 and we compute the

eigenvalues and eigenvectors of the Laplacian matrix LG.

The comparison of the total computational time (second), the residual errors and the orthogonality errors

is shown on Table 6.3. In this table, one can see that our algorithm runs faster than others when the

number of subgraphs increases. In this example, the algorithm ADC seems to be slower than CDC, but

still faster than QR (Fig. 6.8b). The residual errors of our algorithm in this example are relatively good,

and the corresponding orthogonality errors are better than three other algorithms.

6.3.4.3 Discussion

In two above examples, the algorithm QR is the slowest when the size of the matrix increases. However, it

achieves the least errors in comparison with other algorithms. Our algorithm runs faster than ADC, CDC

and QR and its orthogonality errors are relatively good. In some cases, the group of three algorithms

PA, ADC and CDC has large residual errors in comparison with QR algorithm. One reason is that the

strategy for solving the eigensystem in this group is different from that for QR. In QR algorithm, one

only uses similar transformation to gradually diagonalize the original matrix while in PA, ADC and CDC

algorithms, one computes the eigenvalues first and then construct the corresponding eigenvectors. It

indicates that our implementation still has some drawbacks and requires several improvements in future.

In what follows, we discuss various aspects of the implementation of our algorithm in Matlab.

Firstly, we present the numerical deflation of a rank-one modification. In other words, we consider the

problem of computing the eigendecomposition of D + ρzzT , where D is a diagonal matrix and z is a

vector. As described in [33], the rank-one modification can be deflated whenever di = dj or zi = 0,
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(a) Time (second)

K PA ADC CDC QR

1 0.042 0.062 0.054 0.012
2 0.008 0.023 0.018 0.003
4 0.032 0.089 0.061 0.013
8 0.109 0.190 0.166 0.053
16 0.328 0.309 0.438 0.536
32 1.004 1.226 1.181 7.691
64 3.167 4.692 3.802 88.180
128 12.166 22.122 13.726 2.6e+ 04

(b) Residual Error:
max

i
‖LGui − λiui‖2

pKǫ‖LG‖2

K PA ADC CDC QR

1 0.586 0.471 0.620 0.586
2 6.341 38.933 8.468 0.504
4 2.945 2029337.7 792800.6 8.697
8 1.444 994882.9 826743.9 2.901
16 0.719 740525.9 193355.5 1.930
32 0.667 305931.8 251122.6 0.971
64 222724.4 266043.3 138472.1 0.593
128 37303.3 1496420.7 90779.9 0.272

(c) Orthogonality:
max

i
‖UT ui − ei‖2

pKǫ

K PA ADC CDC QR

1 1.5023 0.6562 0.8107 1.5023
2 0.9807 0.4556 0.3785 1.3046
4 0.5562 0.2504 0.3041 0.9518
8 0.2612 0.1387 0.1730 0.7060
16 0.1272 0.1044 0.1110 0.4783
32 0.0698 0.0611 0.0656 0.4024
64 0.0361 0.0418 0.0382 0.3727
128 0.0209 0.0258 0.0257 0.3224

Table 6.2: The comparison between our algorithm PA and three other algorithms: ADC, CDC and QR.
We numerically solve the eigenproblem for the Laplacian matrix in a graph G including K subgraphs.
Each subgraph Gi is a complete graph of 11 vertices and each edge in G has weight 1. Tables (a), (b) and
(c) show the total time (second), the residual error and the orthogonality error, respectively.

where di and dj are two diagonal entries of the diagonal matrix D and zi is an element of the vector z.

Because of the machine precision, one needs to choose a threshold τ such that |di − dj | < τ in order to

approximate di = dj . The choice of the threshold is very important because it can affect the errors of

the whole algorithm. More clearly, the orthogonality of eigenvectors can be lost whenever |di − dj| is too

small. One can see that there is a trade-off in choosing τ here. If τ is larger, it helps us to avoid the loss

of orthogonality of eigenvectors, but the corresponding residual errors can be bigger. On the other hand,

if τ is too small, the residual errors are smaller, but the orthogonality of computed eigenvectors can be

lost. For this reason, in our implementation, we choose τ = 10−12. This choice of τ is quite conservative

because it helps our algorithm to increase the orthogonality of computed eigenvectors in many test cases,

but it also allows a bigger residual error.

Similarly, in one deflation case (zi = 0), we also need an appropriate threshold η so that if |zi| < η, one can

consider z ≈ 0 in numerical computations. For a better explanation, we give the following example. As

already known, the secular equation of the rank-one modification step has the form f(λ) = 1+ρ
∑n

i=1
z2

i
di−λ .

Here, the roots of the secular equation are the eigenvalues of the original matrix. what happens if one

chooses an extremely small η such as e.g η = 10−14? Practically, sometimes we can get zj ≈ 10−13
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for some j. In this situation, one gets z2
j ≈ 10−26. However, it is worth emphasizing that when the

machine precision (ǫ = 1.1 × 10−16) is greater than 10−26, z2
j may be considered as 0. For this reason,

one practically loses the term
z2

j

dj−λ in the above equation, and makes some numerical errors. Therefore,

in our implementation, we choose η = 5× 10−8. This choice of η ensures that all terms
z2

i
di−λ , i = 1, . . . , n

are not omitted. However, it is important to note that this drawback in implementing our algorithm is

only related to the machine precision.

6.4 Conclusion

In this chapter, we have studied localization in some specific graphs, and shown how to find a localized

eigenmode. An eigenfunction u is localized in these graphs if and only if it has zero value at all connectors.

In addition, all non-localized eigenmodes have the multiplicity 1.

We have proposed a divide-and-conquer algorithm for computing the eigendecomposition of the Laplacian

matrix for undirected, weighted graphs illustrated in Fig. 6.6. Our algorithm avoids the tridiagonalization

step in traditional algorithms which costs O(p3
K) multiplications. As a consequence, our algorithm only

costs O(KN3) + O(p2
K), and runs faster than classical algorithms when K >> 1. However, there are

several drawbacks from the numerical experiments concerning the loss of orthogonality of eigenvectors.

In the future, we will improve these points.



Chapter 6. Localization in undirected graphs 117

(a) Time (second)

K PA ADC CDC QR

1 0.0044 0.0042 0.0053 0.0033
2 0.0053 0.0081 0.0067 0.0012
4 0.0144 0.0159 0.0163 0.0084
8 0.0508 0.0564 0.0644 0.0461
16 0.1287 0.1372 0.1506 0.4328
32 0.3040 0.4765 0.4199 4.1831
64 1.0021 2.6853 1.5929 51.4558
128 3.4667 24.9412 4.4832 686.4115

(b) Residual Error:
max

i
‖LGui − λiui‖2

pKǫ‖LG‖2

K PA ADC CDC QR

1 1.0376 0.5191 1.0408 1.0376
2 0.5066 553005.2343 5.7516 6.1564
4 0.2581 1556777.655 8.1779 0.7666
8 0.1340 2855.3081 75102.1883 0.7844
16 0.2428 397826.8293 4991.9984 0.9220
32 0.3142 249097.7777 2165343.645 0.4851
64 0.6839 371122.5186 24122499.93 0.3039
128 0.6921 530522.3532 8534774.75 1.06e + 09

(c) Orthogonality:
max

i
‖UT ui − ei‖2

pKǫ

K PA ADC CDC QR

1 1.2288 0.7341 0.8250 1.2288
2 0.9300 0.4720 0.4965 0.7349
4 0.3806 0.2552 0.3629 0.8896
8 0.2037 0.2417 0.2455 0.4977
16 0.1019 0.1223 0.1144 0.4704
32 0.0516 0.0933 0.0938 0.3849
64 0.0252 0.1082 0.1082 0.3097
128 0.0143 0.0542 0.0564 0.2282

Table 6.3: The comparison between our algorithm PA and three other algorithms: ADC, CDC and QR.
We numerically solve the eigenproblem for the Laplacian matrix in a graph G including K subgraphs.
Each subgraph Gi is a ring graph of 11 vertices and each edge in G has weight 1. Tables (a), (b) and (c)
show the total time (second), the residual error and the orthogonality error respectively.



Chapter 7

A spectral approach to survival

probabilities in porous media

In this chapter, we consider a diffusive process in a bounded domain with heterogeneously distributed

traps, reactive regions or relaxing sinks. This is a mathematical model for chemical reactors with heteroge-

neous spatial distributions of catalytic germs, for biological cells with specific arrangements of organelles,

and for mineral porous media with relaxing agents in NMR experiments. Using a spectral approach, we

compute the survival probabilities which are represented in the form of spectral decomposition over Lapla-

cian eigenfunctions. We illustrate the performances of the approach by considering diffusion inside the

unit disk filled with reactive regions of various shapes and reactivities. The role of the spatial arrangement

of these regions and its influence on the overall reaction rate are investigated in the long-time regime.

When the reactivity is finite, a uniform filling of the disk is shown to provide the highest reaction rate.

Although the heterogeneity tends to reduce the reaction rate, reactive regions can still be heterogeneously

arranged to get nearly optimal performances.

The results of this chapter are reported in [162].

7.1 Introduction

Diffusion is a fundamental transport mechanism in physics, chemistry and biology [114, 180, 223]. During

the diffusive exploration, particles may encounter traps, reactive regions or relaxing sinks which are

distributed either in the bulk, or on the interface. While staying inside or in vicinity of these specific

zones, particles may disappear with a given rate. This is a common mathematical model for many

biological and industrial systems, e.g.

1. chemical reactors with heterogeneous spatial distributions of catalytic germs [53, 224];

2. biological cells with specific arrangements of organelles [112, 235];

3. mineral porous media with relaxing agents in nuclear magnetic resonance (NMR) experiments [30].

118
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If the system is isolated (no new particle is injected), the survival probability, as well as the concentration

of the survived particles that diffuse in such a medium, decays in time. In the long-time regime, the

survival probability exhibits an exponential decay, and the decay constant (i.e the average “lifetime” of a

diffusing particle) is expected to be proportional to the total amount of traps, relaxing sinks or reactive

regions. This is a consequence of the classical Smoluchowski formula Φ ≈ 4πDRc0 for the diffusive flux

Φ of particles which are uniformly distributed with concentration c0 and react on a single absorbing

sphere of radius R, D being the diffusion coefficient of particles [205]. In particular, the diffusive flux is

proportional to the size R of the sphere, not to its surface area 4πR2, as one could naively expect for

reaction on a surface. For n well-separated absorbing spheres (a diluted suspension), the overall reaction

rate k of a single diffusing particle is then k ≈ nΦ/N ≈ 3Dφ/R2, where N = c0V is the number of

diffusing particles and φ = n(4πR3/3)/V is the volume fraction of absorbing spheres, V being the volume

of the medium. It means that the overall reaction rate k (i.e., the decay constant) is proportional to the

volume fraction φ of reactive grains (i.e., their total amount or “strength”).

Since this seminal result, the survival probability of Brownian motion in reactive porous media was studied

by different mathematical and numerical tools [114, 180, 223]. The asymptotic behavior of the survival

probability in randomly located traps and the role of averaging over trap configurations were analyzed

in a series of publications [16, 94, 126, 127]. In the long-time limit, the survived particles reside in large

voids, and the statistics of these voids leads to a stretched-exponential decay of the survival probability.

Torquato and co-workers performed numerous Monte Carlo simulations in order to investigate how the

reaction rate κ depends on the volume fraction φ, the shape of individual grains, their polydispersity,

overlapping and reactivity, etc. [124, 142, 157, 158, 209]. Using the mean-field approximation, Richards

proposed an explicit formula for the survival probability which was shown to be accurate for a wide range

of times [182, 183]. Upper and lower bounds for the reaction rate were derived in a series of papers by

Torquato and co-workers [184, 185, 210–212]. Singer et al. dealt with the narrow escape problem to

find an asymptotic expansion of the expected lifetime of Brownian motions as the absorbing part of the

boundary shrinks to zero [202, 203]. Another insight onto this problem was brought by Bénichou and

Voituriez [22]. The case of small traps was considered by Ward and co-workers who derived a number

of rigorous asymptotic results [43, 44, 130, 172, 221]. Finally, the survival probability is closely related

to first-passage and residence times which have been actively studied during the last years [20, 21, 46–

50, 144, 231].

Among various theoretical approaches for describing diffusive motion in confined domains, a spectral

theory involving the Laplace operator eigenbasis provides perhaps the most fundamental insight onto this

process. For instance, Brownstein and Tarr used this technique to explain multiexponential relaxation for

water in biological cells [30]. Recently, a matrix formalism was applied for computing the residence times

and other functionals of reflected Brownian motion by Grebenkov [97]. In diffusion-reaction equations,

reactive regions or relaxing sinks are represented through a spatially heterogeneous trapping reaction or

relaxation rate B(r). In this chapter, the survival probability is expressed in a matrix form involving two

infinite-dimensional matrices: the diagonal matrix Λ representing the Laplace operator in its own basis,

and a matrix B representing the reaction rate B(r) in the Laplacian basis. After computing these two
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matrices analytically and numerically, the survival probability takes an explicit multi-exponential form.

In this chapter, we aim at revealing the role of a spatial heterogeneity B(r) of traps, reactive regions or

relaxing sinks onto the survival probability in the long-time regime (see more discussions and references in

[162]). We study several model arrangements of reactive regions in order to increase the overall reaction

performance of a medium, aiming in future at design of efficient catalysts or diffusive exchangers via

optimization of their geometrical shapes. In other words, we address the question: for a fixed total

amount or “strength” of reactive regions, what is the “optimal” shape and arrangement of these regions?

Although the spectral approach is applicable to any bounded confining domain, we illustrate its concepts

and performances by considering diffusion inside the unit disk which is filled with reactive grains. The

explicit form of the Laplace operator eigenfunctions in the disk significantly simplifies computation and

allows one to grasp the main features of the spectral approach. It is worth stressing that, in contrast

to works by Ward and co-workers [43, 44, 130, 172, 221], our approach is not limited to small reactive

regions and is in fact more accurate when these regions are extended. As a consequence, the spectral

approach and perturbative techniques turn out to be complementary to each other. Other references and

discussions can be found in [162].

This chapter is organized as follows. In Section 2, we recall the derivation of a multi-exponential form

of the survival probability. Section 3 summarizes the main steps for a numerical implementation of the

spectral approach, error estimation and improvements. In Section 4, we presented numerical results for

both bulk and surface reactivity. Finally, we give our conclusions and further questions.

7.2 A spectral approach to survival probability

7.2.1 Matrix representation

We consider independent particles diffusing inside a bounded domain Ω with a smooth reflecting boundary

∂Ω. At time t = 0, the particles are distributed with a given initial density ρ(r0). For a given function

B(r), a random variable

φt =

t∫

0

B(Xs) ds

is associated to a random trajectory Xs of the reflected Brownian motion in Ω. Intuitively, the function

B(r) can be thought of as a distribution of “markers” for distinguishing different points and regions of

the confining domain. When a diffusing particle passes through these regions, the random variable φt

accumulates the corresponding “marks”. In other words, different parts of the trajectory are weighted

according to the function B(r), encoding thus the whole stochastic process. For instance, if the bulk

contains reactive regions, the function B(r) can represent the distribution of their reaction rates, respec-

tively, while φt is the cumulant factor penalizing the trajectories that pass through these regions. When

B(r) is an applied magnetic field, φt is the total dephasing of the nuclei in a pulsed-gradient spin-echo

NMR experiment [98].

We recall that the probability distribution of the random variable φt can be found in two steps [97]. The
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first step is based on the classical Kac formula relating the expectation E{e−hφt} to the solution of a

diffusion equation with bulk relaxation [150, 215]. This expectation includes the average of the functional

e−hφt over all random trajectories {Xs}0≤s≤t of the reflected Brownian motion between the starting point

r0 at time 0 and the arrival point r at time t, as well as the average over all r0 and r with given initial

density ρ(r0) and weighting function ρ̃(r) respectively; in this case, Kac formula reads as [97]

E{e−hφt} =

∫

Ω

c(r, t)ρ̃(r) dr, (7.1)

where c(r, t) obeys the equation

∂c(r, t)

∂t
−D∆c(r, t) + hB(r)c(r, t) = 0, (7.2)

with the initial condition c(r0, t = 0) = ρ(r0), and ∆ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

is the Laplace operator in d

dimensions. The reflected character of Brownian motion is represented by Neumann boundary condition,

when the normal derivative ∂/∂n at the boundary vanishes: ∂c(r, t)/∂n = 0 on ∂Ω. If B(r) is the

distribution of bulk sinks (or their absorption rates), c(r, t) can be interpreted as the probability density

for a Brownian particle, started according to the initial density ρ(r0), to arrive in an infinitesimal vicinity

of the point r at time t, without being trapped, reacted, absorbed or relaxed during its motion. The

weighting function ρ̃(r) allows one to delimit the region of interest inside the confining domain. Since

c(r, t) is weighted by ρ̃(r) in Eq. (7.1), only those Brownian trajectories that arrived into the “pickup”

regions at time t do contribute to the expectation in Eq. (7.1).

At the second step, one uses the Laplace operator eigenfunctions um(r) (m = 0, 1, 2, ...) that satisfy

D∆um(r) + λmum(r) = 0 (r ∈ Ω),

∂um(r)

∂n
= 0 (r ∈ ∂Ω),

λm being the Laplace operator eigenvalues. Since the eigenfunctions um(r) form a complete orthonormal

basis, the solution c(r, t) of Eq. (7.2) can be expanded as

c(r, t) =
∑

m′

cm′(t)um′(r).

Substitution of this expansion in Eq. (7.2), multiplication by u∗
m(r), and integration over Ω yield a set of

ordinary differential equations for the unknown coefficients cm(t),

∂cm(t)

∂t
+
∑

m′

(
Λm,m′ + hBm,m′

)
cm′(t) = 0,
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where the infinite-dimensional matrices B and Λ are

Bm,m′ =

∫

Ω

u∗
m(r) B(r) um′(r) dr,

Λm,m′ = δm,m′λm.

Thinking of cm(t) as components of an infinite-dimensional vector C(t), one easily finds the solution of

the above matrix equation. The expectation E{e−hφt} can thus be written in a form of a scalar product:

Sh(t) = E{e−hφt} =
(

U e−(Λ+hB)tŨ
)

, (7.3)

where the infinite-dimensional vectors U and Ũ represent the projections of the initial density ρ(r) and

the weighting function ρ̃(r) onto the eigenfunctions um(r):

Um =

∫

Ω

u∗
m(r) ρ(r) dr,

Ũm =

∫

Ω

um(r) ρ̃(r) dr.
(7.4)

The matrix e−(hB+Λ)t can be thought of as a kind of evolution operator acting on the initial state ρ(r)

(represented by the vector U). The resulting density c(r, t) at time t is then projected onto the weighting

function ρ̃(r) (represented by the vector Ũ). It is important to note that the matrices B and Λ do not

commute.

For a positive h, the expectation E{e−hφt} can be interpreted as the Laplace transform of the probability

density pt(ϕ) of φt,

E{e−hφt} =

∞∫

0

e−hϕ pt(ϕ) dϕ,

allowing one, at least formally, to find the latter by the inverse Laplace transform. Thus, the properties

of the expectation E{e−hφt} provides a complete probabilistic description of the random variable φt.

7.2.2 Multi-exponential decay

Since the matrix Λ + hB is symmetric, all its eigenvalues γh
m are real and can be ordered as γh

0 ≤ γh
1 ≤

γh
2 ≤ .... The associated eigenvectors form an orthogonal matrix V h such that

Λ + hB = V h










γh
0 0 0 0 ...

0 γh
1 0 0 ...

0 0 γh
2 0 ...

0 0 0 γh
3 ...










(V h)T. (7.5)
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The substitution of Eq. (7.5) into Eq. (7.3) yields

Sh(t) =
∞∑

m=0

Ah
me

−γh
mt, (7.6)

where

Ah
m = (UV h)m((V h)T Ũ)m. (7.7)

The eigenvalues γh
m define the “lifetimes”, 1/γh

m, of the eigenmodes, while Ah
m set their relative contri-

butions to Sh(t). This multi-exponential decay is a generic feature for diffusive processes in bounded

reactive media, whatever the spatial heterogeneity B(r) is. For instance, Brownstein and Tarr derived

similar relation for surface relaxation in NMR experiments [30].

In the long-time regime, the only significant contribution comes from the smallest eigenvalue λh
0 which

can therefore be interpreted as the overall reaction rate k. In what follows, the focus will be on this

spectral characteristics.

7.2.3 Residence and survival times

How long does a diffusing particle reside in a given subset A of a confining domain Ω up to time t? This

so-called residence (or occupation) time, φt, can be computed through the spectral approach by setting

B(r) = IA(r), where IA(r) is the indicator function of the set A : IA(r) = 1 for r ∈ A, and 0 otherwise

[97–100]. This function can be thought of as a “counter” which is turned on whenever the diffusing particle

resides in A. The inverse Laplace transform of the survival probability Sh(t) with respect to h gives, at

least formally, the probability density of the residence time φt (here t is a fixed parameter).

In addition, the survival probability allows one to retrieve the first passage time τ at the reactive region

A. In fact, if a particle hits A during the time interval [0, t], then φt > 0, while φt = 0 otherwise. So, the

limit of E{e−hφt} as h→∞ is the probability that a random trajectory Xs does not hit the set A up to

time t:

S∞(t) = lim
h→∞

E{e−hφt}.

This is the survival probability in a medium containing infinitely reactive regions, in which particles react

or relax at the first hit, i.e., S∞(t) = P{τ > t}. The time derivative, −dS∞(t)/dt, is then the probability

density of the first passage time τ .

In analogy, the survival probability Sh(t) can be interpreted as the cumulative distribution function

P{τh > t} where τh is the survival time, i.e., a random moment, at which a particle reacts in a medium

with finite reactivity h or, equivalently, up to which the particle survives. Since a particle may hit a

partially reactive boundary many times without being reacted, the random moment τh at which reaction

occurs, can also be termed as “the last passage time” [101]. The probability density of τh is −∂Sh(t)/∂t.

In summary, the spectral representation (7.6) allows one to study various time statistics of the diffusive

process in heterogeneous reactive media. In Sect. 7.4, we analyze the long-time behavior of the survival

probability for surface reaction (A ⊂ ∂Ω) and bulk reaction (A ⊂ Ω).
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7.3 Numerical implementation

In this section, we describe an implementation of the spectral approach for computing the survival prob-

ability Sh(t) on the unit interval or the unit disk containing a given reactive region A. The matrix Λ is

formed by the Laplace operator eigenvalues which are known explicitly for these confining domains, while

the computation of the matrix B relies on the integration of two explicitly known eigenfunctions over A:

Bm,m′ =

∫

A

um(r) um′(r) dr. (7.8)

In what follows, we recall the form of the Laplace operator eigenbasis, describe the main steps of the

numerical algorithm, and discuss accuracy and improvements.

7.3.1 Eigenbasis in 1D and 2D

For the unit interval Ω = [0, 1] with reflecting endpoints, the eigenvalues and eigenfunctions of the Laplace

operator are determined explicitly in Eq. (2.24). For this reason, both matrices Λ and B have explicit

forms so that the survival probability in the unit interval with any reactive region A can easily be found.

For example, if A is the boundary of Ω, A = {0, 1}, the matrix B has the following representation

Bm,m′ = εmεm′

[

1 + (−1)m−m′
]

.

Simple computations for the unit interval allow one to analyze in depth the performances of the spectral

approach.

For the unit disk Ω = {r ∈ R2 : |r| < 1}, the eigenfunctions of the Laplace operator with Neumann

boundary condition are given in Eq. (2.33). For the sake of convenience, the eigenfunctions, eigenvalues

and other spectral quantities can be enumerated by the triple index nkl. This enumeration is also used

for the related vectors and matrices, e.g., Bnkl,n′k′l′ is the element of the matrix B that corresponds to

the eigenfunctions unkl(r) and un′k′l′(r) (cf. Eq. (7.8)).

7.3.2 Algorithm

In this section, we give our algorithm for computing the survival probability Sh(t). For numerical im-

plementation, the eigenvalues λnk are sorted in an ascending order to truncate the infinite-dimensional

matrices B and Λ. The position of the eigenmode in such a sequence can be used as its single index m.

The numerical algorithm consists of the following steps:

1. For a chosen truncation size N , to determine the first N Laplace operator eigenvalues λnk in the unit

disk by finding the first positive roots of Eq. (2.34) with different values of n by the bisection method.

Since the eigenvalues λnk depend only on the confining domain, this step has to be performed only

once, and the stored values of λnk can then be used in following computations.

2. For a given reactive region A, to compute the truncated matrix B of size N ×N . Except for certain

specific cases, for which the integral in Eq. (7.8) can be found explicitly by using the properties
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of Bessel functions [28, 55], a numerical integration is required. For this purpose, the region A is

conveniently discretized and integrals are approximated by finite sums. This step is time-consuming

and is a major source of numerical inaccuracy.

3. For a given reactivity h, to compute the eigenvalues γh
m and eigenvectors V h

m of the matrix Λ + hB.

This step is the most time-consuming when the size N of the matrix Λ + hB is large.

4. For a chosen initial density ρ(r) and weighting function ρ̃(r), to find the truncated vectors U and

Ũ according to Eqs. (7.4). When the starting and arrival points are irrelevant, the functions ρ(r)

and ρ̃(r) are considered to be uniform, in which case Um = Ũm = δm,0. In other cases, a numerical

integration may be required, as in the step 2.

5. to get the amplitudes Ah
m from Eq. (7.7).

6. if necessary, to extrapolate γh
m and Ah

m to the limit of N going to infinity (see below).

As a result, the survival probability Sh(t) is obtained in its explicit spectral form (7.6).

The computation involves two approximations: numerical integration in Eq. (7.8) and truncation of the

matrices Λ and B. The first approximation is classical, and its error is relatively easy to control. The

second approximation is more subtle, and its accuracy strongly depends on the reactive region A. In order

to illustrate this point, we consider A to be a small region. In this case, slowly varying eigenfunctions

(i.e., with small eigenvalues) are almost constant on A so that the corresponding elements of the matrix

B are: Bm,m′ ≈ um(rA)um′(rA)SA, SA being the surface area of A, and rA a point in A. It means

that slowly varying eigenfunctions cannot distinguish the shape of a small region A. In order to reveal

small geometrical features of A, highly oscillating eigenfunctions (i.e., with large eigenvalues) have to be

included. In this sense, the truncation size N determines how accurate the spatial resolution of a spectral

decomposition is. The choice of an appropriate value for N is therefore strongly dependent on the reactive

region A. Since the computational time for finding eigenvalues and eigenvectors of a matrix of size N ×N
grows typically as O(N3), this may be a limiting factor for using the spectral approach, especially for small

reactive regions. In this specific case, perturbative techniques are preferred [43, 44, 130, 172, 202, 203, 221].

7.3.3 Rotation-invariant reactive regions

The above numerical limitation can be overcome when the reaction rate distribution B(r) is rotation-

invariant (i.e., B(r, ϕ) is independent of ϕ). In this case, the Laplace operator eigenvalues can be grouped

in such a way that the matrix B gets a block structure. In fact, one has

Bnk0,n′k′0 = Bnk1,n′k′1 = 2δn,n′
βnkβnk′

Jn(αnk)Jn(αnk′)
×

1∫

0

Jn(αnkr) Jn(αnk′r) B(r) r dr,

Bnk0,n′k′1 = Bnk1,n′k′0 = 0.
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Instead of previously used ascending order, let us now order the first N eigenvalues as

λ00, λ01, ..., λ0k0 ,
︸ ︷︷ ︸

block 0

λ10, λ11, ..., λ1k1 ,
︸ ︷︷ ︸

block 1

... λn−1,0, λn−1,1, ..., λn−1,kn−1 ,
︸ ︷︷ ︸

block n−1

λn0
︸︷︷︸

block n

,

where the indices k0, k1, ... are chosen such that λj,kj+1 > λmax (j = 0, 1, ...), and the index n is such

that λn+1,0 > λmax (here λmax is the maximal eigenvalue among the first N eigenvalues). It is worth

stressing that the eigenvalues λnk with n > 0 are twice degenerate and they should appear twice in the

above sequence. The matrix B is then decomposed into block matrices Bj:

B =












B0 0

B1

B2

...

0 Bn












,

where Bj
k,k′ = Bjk0,jk′0 (j = 0, ..., n). Since Λ is a diagonal matrix, it can also be written in a form of

blocks. Consequently, the diagonalization of the matrix Λ +hB is reduced to separate diagonalizations of

the (much) smaller matrices Λj + hBj. This gives a tremendous gain in computational time that allowed

us to increase the value of N up to 105.

When studying the long-time regime, only the smallest eigenvalue γh
0 is needed, and it turns out to be

the smallest eigenvalue of the first block matrix Λ0 + hB0. Although this statement is not yet proved

rigorously, there are strong numerical evidences for its correctness.

7.3.4 Convergence and accuracy

In this section, we analyze the accuracy of the spectral approach for computing γh
0 . For this purpose, we

consider several examples for which the theoretical value of γh
0 is known. Since large h is expected to be

more problematic for computing the eigenvalues of the matrix Λ + hB (because the “perturbation” hB is

large), the value h = 108 is taken as a proxy for the limit of h going to infinity. This limit corresponds

to a perfectly reactive/absorbing/relaxing medium, in which particles are “killed” at the first encounter

with A.

7.3.4.1 Example 1

In this example, Ω = (0, 1) (the unit interval), A = {0, 1} (two endpoints).

In Fig. 7.1, one can see the smallest eigenvalue γh
0,N of the matrix Λ + hB truncated to size N ×N as a

function of N ranging from 500 to 2500. One gets

γh
0,N ≈ 9.8696 +

8.0301

N
,

where the limiting value 9.8696 is very close to the theoretical value γ∞
0 = π2 ≈ 9.8696... (the smallest
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Figure 7.1: The smallest eigenvalue γh
0,N of the truncated matrix Λ + hB (of size N ×N) for Ω = (0, 1),

A = {0, 1}, h = 108. The error is almost linear with 1/N .

eigenvalue of the Laplace operator on the unit interval with Dirichlet boundary conditions).

7.3.4.2 Example 2

We consider the unit interval Ω = (0, 1) and A = [0.2, 0.8] (subinterval).

Fig. 7.2 shows γh
0,N as a function of N ranging from 400 to 1000, which can be fitted as

γh
0,N ≈ 61.593 +

92.92

N
.

This limit value 61.593 is very close to the theoretical value γ∞
0 = π2/(2 · 0.2)2 ≈ 61.685... (the smallest

eigenvalue of the Laplace operator on the interval [0, 0.2] with the reflecting endpoint 0 and the absorbing

endpoint 0.2).

Remark 7.3.1. In general, when A is a compact subset of the unit interval, the error of computation can

be estimated in the order of 1/N :

γh
0,N ≈ γh

0 +
const

N
. (7.9)

Knowing the convergence rate, one can compute the value γh
0,N (or other spectral characteristics) for

different N , fit them by a linear function of 1/N and finally extrapolate the numerical values to the limit.

It is worth emphasizing that such supplementary steps do not almost increase the computational time. In

fact, one can construct the matrix Λ + hB of the largest available size N and then find eigenvalues of its

smaller submatrices.
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Figure 7.2: The smallest eigenvalue γh
0,N of the truncated matrix Λ + hB (of size N ×N) for Ω = (0, 1),

A = [0.2, 0.8], h = 108. The error is approximately linear with 1/N .

7.3.4.3 Example 3

In this example, Ω = {r ∈ R2 : |r| < 1} (the unit disk), A = ∂Ω (its boundary).

On Fig. 7.3, γh
0,N is shown as a function of N ranging from 5000 to 17000 which can be fitted as

γh
0,N ≈ 5.7829 +

3.732√
N
.

The limiting value 5.7829 is very close to the theoretical value γ∞
0 = 5.7832... (the square of the first

positive root α00 of the equation J0(z) = 0, which is the smallest eigenvalue of the Laplace operator on

the unit disk with Dirichlet boundary condition).

7.3.4.4 Example 4

Let us consider Ω = {r ∈ R2 : |r| < 1} (the unit disk), A = {r ∈ R2 : |r| < r0} (the smaller disk of

radius r0 = 0.5 shown on Fig. 7.4a).

Fig. 7.5 shows the value γh
0,N as a function of N ranging from 104 to 1.9 · 104 which can be fitted as

γh
0,N ≈ 7.345 +

81.016√
N

.

The limiting value 7.345 is very close to the theoretical value 7.3474... (the square of the first positive root

of Eq. (F.2) from Appendix F2 with r0 = 0.5, which is the smallest eigenvalue of the Laplace operator

on the circular layer with inner absorbing circle and outer reflecting circle).



Chapter 7. A spectral approach to survival probabilities in porous media 129

0 0.005 0.01 0.015
5.78

5.8

5.82

5.84

N−1/2

γ 0,
N

h

 

 

data
linear

Figure 7.3: The smallest eigenvalue γh
0,N of the truncated matrix Λ + hB (of size N × N) for the unit

disk, when A is the unit circle, and h = 108. The error is almost linear with 1/
√
N .
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Figure 7.4: Several shapes of the reactive region A inside the unit disk. (a) a smaller disk of radius
r0 centered at the origin; (b) the union of M identical angular sectors of angle β, with the total area
SA = Mβ/2 fixed to be π/5. (c) a circular annulus of the inner and outer radii r0 − δ/2 and r0 + δ/2,
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Figure 7.5: The smallest eigenvalue γh
0,N of the truncated matrix Λ + hB (of size N × N) for the unit

disk, when A is a smaller disk of radius r0 = 0.5, and h = 108. The error is approximately linear with
1/
√
N .

Remark 7.3.2. In general, the error of computation is expected to be in the order of 1√
N

:

γh
0,N ≈ γh

0 +
const√
N

.

A slower convergence for two-dimensional domains is expected from Weyl’s asymptotic law for the eigen-

values: λN ∼ N2/d [134]. In fact, the error of computation is related to the largest eigenvalue λN in the

truncated matrix Λ so that Eq. (7.9) implies the error to be in the order of λ−1/2
N in the one-dimensional

case. Assuming the same behavior of the error in higher dimensions, one gets the error in the order of

N−1/d, as confirmed by numerical results. Although the convergence is even slower in two dimensions

than in one dimension, an extrapolation can still be used to get accurate results (e.g., see Examples 3 and

4).

Remark 7.3.3. For rotation-invariant functions B(r), one can get a significant improvement. As shown

in Sect. 7.3.3, the matrix Λ + hB has a block structure, and the computation is reduced to the diagonal-

ization of each block. We checked numerically that the smallest eigenvalue of a block matrix of size n× n
behaves as

γh
0,n ≈ γh

0 +
const

n
,

as in the one-dimensional case. The extrapolation is also useful. In summary, the computation for the

rotation-invariant case runs faster and uses a smaller number of eigenvalues to estimate more accurately

the value of γh
0 than in the general case.
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7.4 Numerical results

7.4.1 Surface reaction on the unit circle

As already mentioned, reactive regions may lie either in the bulk or on the boundary of a confining

domain. In the latter case, although the boundary is formally reflecting, particles can eventually react

when hitting the boundary. Traditionally, partially reflecting-absorbing surfaces are modeled through

Robin boundary condition:
∂uh

m(r)

∂n
+ huh

m(r) = 0 (r ∈ ∂Ω),

with a positive constant h. In our approach, the reflecting character of the surface is incorporated through

the Laplace operator eigenfunctions with Neumann boundary condition, while the absorbing counter-part

is introduced through the matrix B. As discussed in [99], using this separation of the reflection and

absorption mechanisms has many advantages. First, one can easily introduce heterogeneous reaction rate

on the boundary (as illustrated below). Second, the eigenfunctions uh
m(r) with Robin boundary condition

depend on h, and have to be recalculated for each value of h. In turn, here h appears as a constant in

the matrix Λ + hB so that one needs to construct the matrices Λ and B only once.

On Figs. 7.1 and 7.3, we illustrate a numerical validation of the above implementation of the surface

reaction mechanism. In these examples, we used the Laplacian eigenfunctions with Neumann bound-

ary condition (reflecting surface) to compute the value γ∞
0 , that is exactly the smallest eigenvalue of

the Laplace operator with Dirichlet boundary condition (absorbing boundary). The accuracy of this

computation is remarkably good.

In order to illustrate the use of heterogeneous reaction rate on the surface, we consider two cases. First,

we take A to be an arc of length 2ε. When ε is small, this is so-called narrow escape problem which was

thoroughly studied by Singer et al. [202, 203]. In particular, they found the exact formula for the mean

exit time from the unit disk. As discussed in Sect. 7.2.3, the survival probability allows one to investigate

first passage times and other time statistics of Brownian motion in reactive media. In Appendix F3, we

express the mean exit time in terms of the spectral characteristics γh
m and Ah

m and compare the numerical

results to the exact formula.

Second, we choose A to be the union of M identical arcs of the unit circle:

A =

{

(x, y) ∈ R2 : x = cosϕ, y = sinϕ, ϕ ∈
M⋃

k=1

(
2πk

M
,

2πk + L

M

)}

.

The total length L of these arcs is fixed. The smallest eigenvalue γh
0 for h = 108 is extrapolated to the

limit N → ∞ and plotted on Fig. 7.6 as a function of M for L = 2π/5. One can see that γh
0 rapidly

approaches the limit 5.7829... as M increases. The same behavior was observed for other choices of the

total length L (ranging between 0 and 2π). It means that a partly reactive boundary, in which many

small reactive grains are equidistributed, has almost the same overall reaction rate as a fully reactive

boundary, i.e., a small amount of catalytic grains (here, small length L) works as efficiently as a large

amount of catalytic grains. In other words, if the catalytic grains are equidistributed over the surface,
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Figure 7.6: The extrapolated smallest eigenvalue γh
0 for the unit disk, when A is composed of M identical

arcs of the unit circle. The total length L is kept to be 2π/5 for different M , and h = 108. When M
increases, the eigenvalue γh

0 rapidly approaches the limit 5.7832... which corresponds to a perfectly reactive
circle (cf. Fig. 7.3).

M 1 5 10 15 20 30 35 50

γh
0 2.43 30.26 126.18 626.38 807.15 1.50 · 105 2.49 · 106 2.49 · 107

Table 7.1: The extrapolated smallest eigenvalue γh
0 for the union of M identical sectors of the unit disk

(Fig. 7.4b), with the total surface area SA = π/4, and h = 108. When M increases, γh
0 approaches the

limit h/4 = 2.5 · 107.

its performance is independent of the amount of catalytic grains (the length L). One can find more

probabilistic interpretation of this result in [162].

7.4.2 Infinite reactivity in the bulk

Similar to Sect. 7.4.1, we consider A as the union of M identical sectors of the unit disk (Fig. 7.4b), with

the total surface area SA to be fixed π/4. For numerical computations, we chose h = 108 as a proxy for

the infinite limit. Table 7.1 shows the values of γh
0 , which tend to SAh/π for increasing M (see Appendix

F1).

If the reactivity h was infinite, one would expect γ∞
0 →∞ as M →∞, independently of the total surface

area SA. In what follows, we focus on the case of a finite reactivity which seems to be more relevant for

practical situations.
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Figure 7.7: The extrapolated smallest eigenvalue γh
0 as a function of the radius r0 of the reactive region

(the disk) shown on Fig. 7.4a, with hSA = π.

7.4.3 Finite reactivity in the bulk

When the reactivity h is finite, the amount of reactive grains can be naturally characterized by hSA, SA

being the total area of the reactive region. Fixing hSA, one may wonder how the reaction performance of

the medium depends on the reactivity h and the shape of the reactive region. For instance, what is the

shape of the most reactive medium? For the computations of this section, we fix hSA = π and analyze

the smallest eigenvalue γh
0 . We focus on the unit disk as the confining domain.

In the trivial case A = Ω, Eq. (7.8) yields Bm,m′ = δm,m′ due to the orthogonality of the eigenfunctions.

The matrix BΩ is just the identity matrix, and γh
0 is equal to h.

Example 1: A = {r ∈ R2 : |r| < r0} (the disk of radius r0)

The condition hSA = π implies h = 1/r2
0 which varies from 1 to infinity as r0 goes from 1 to 0. The

behavior of γh
0 is shown on Fig. 7.7.

When r0 is close to 1, the reactive region is nearly the whole disk so that γh
0 ≈ h ≈ 1. In the opposite limit

of r0 going to 0, the values γh
0 approach 0, as one may expect for a shrinking reactive region. However, the

decay is logarithmically slow, as in the case of a perfectly reactive region (h =∞). In fact, the probability

for Brownian motion to find (and then react immediately on) a small disk vanishes logarithmically with

its radius r0 in two dimensions. The asymptotic behavior of γ∞
0 as r0 → 0 is given in Appendix F2. On

the other hand, for a reactive region with fixed h, a perturbative theory yields

γh
0 ≈ λ0 + hB0,0 = hr2

0 (r0 → 0)

that is a much faster decay. The example shown on Fig. 7.7 is a somewhat intermediate situation, in

which the condition hSA = π makes the first-order perturbative term hr2
0 to be constant. In this case,

the whole perturbative series has to be computed for a fixed r0, and the resulting sum turns out to decay
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logarithmically as r0 → 0.

Since γh
0 decays logarithmically, even a very small reactive region yields a significant reaction rate γh

0

as shown on Fig. 7.7 (although the values of γh
0 seem to approach a positive constant, it is a visual

deception).

Example 2: A = {r ∈ R2 : r0 − δ/2 < |r| < r0 + δ/2}
Another interesting example is a circular annulus with the inner and outer radii r0 − δ/2 and r0 + δ/2

(Fig. 7.4c). When δ is small, the matrix B can be approximated as

Bnkl,n′k′l′ =

r0+δ/2∫

r0−δ/2





2π∫

0

unkl(r, ϕ) un′k′l′(r, ϕ) dϕ



 r dr ≈ r0δ B(0,r0)
nkl,n′k′l′ ,

where

B(0,r0)
nkl,n′k′l′ =

2π∫

0

unkl(r0, ϕ) un′k′l′(r0, ϕ) dϕ

is the matrix B for a perfectly reactive circle of radius r0 (centered at the origin). Since the condition

hSA = π implies hr0δ = 1/2, the matrix Λ + hB becomes

Λ + hB ≈ Λ + hr0δB(0,r0) = Λ +
1

2
B(0,r0).

The behavior of γh
0 is shown on Fig. 7.8. Interestingly, there is an optimal radius r0 ≈ 0.7 for which a thin

circular annulus has the highest reaction rate γh
0 . The latter is slightly below 1 that is the reaction rate

for a uniformly filled unit disk (under the condition of fixed hSA = π). This is an example of geometry

optimization for reactive media (see below).

Example 3: Multiple equidistant annuli shown on Fig. 7.4d

Next, we consider A be to the union of M thin annuli shown on Fig. 7.4d, each annulus having the width

δ. The total area SA is πδ(M − 1), implying hδ(M − 1) = 1. When δ → 0, the matrix Λ + hB converges

to

Λ + hB ≈ Λ + hδ
M−1∑

i=1

ri B(0,ri) = Λ +
1

M(M − 1)

M−1∑

i=1

i B(0,ri).

As shown on Fig. 7.9, the value of γh
0 tends to 1 when the number M of annuli increases.

Our numerical examples suggest that a uniform filling of a medium with reactive grains of finite reactivity

h provides the highest overall reaction rate γh
0 . This seems to be the optimal geometry of the reactive

region under the constraint of fixed hSA. A theoretical argument supporting this suggestion is presented

in Appendix F4, while a rigorous proof is still missing. However, such a uniform filling is not available in

many practical situations (e.g., when multiple processes have to be maintained in parallel, like in the case

of a living cell). In this case, one may wonder whether it is possible to fill the medium heterogeneously

nearly as good as uniformly, and what is the optimal shape of the reactive region (perhaps, under some

additional constraints).

Two examples of this section illustrate these issues. Fig. 7.8 shows that there is an optimal radius for a
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Figure 7.8: The extrapolated smallest eigenvalue γh
0 as a function of the radius r0 of the reactive region

(the annulus of width δ) shown on Fig. 7.4c, with hSA = π and δ → 0.

single thin circular annulus (i.e., under specific geometrical constraint), while Fig. 7.9 confirms that the

performance of several thin circular annuli is nearly as good as the best one (for uniform filling). These

“toy” models can be considered as the first steps towards geometrical design and engineering of optimal

catalysts and diffusive exchangers.

7.5 Conclusion

We have presented a spectral approach to study the survival probability of reflected Brownian motion in

reactive media. For arbitrary spatial distribution B(r) of trapping, reaction or relaxation rate, a multi-

exponential representation of the survival probability was derived. Its amplitudes Ah
m and characteristic

times 1/γh
m were expressed through the spectral properties of the two infinite-dimensional matrices Λ and

B which represent the Laplace operator and the distribution B(r) in the Laplace operator eigenbasis on

a chosen confining domain. The advantage of such a representation is that the geometrical complexity of

the problem (i.e., the shape of reactive regions) is incorporated through the matrix B, independently of

the Laplace operator eigenbasis. In other words, computation of the eigenfunctions, which is often the

most time-consuming step, has to be performed only once for a given confining domain. Moreover, in

many cases, the shape of the confining domain is irrelevant, and simple confining domains such as a disk

or a sphere can be used. In these cases, the Laplace operator eigenfunctions and eigenvalues are known

explicitly that significantly simplifies computations. For this reason, we considered the unit disk as a

confining domain.

From a numerical point of view, the computational performance of the spectral approach may be inferior

to other numerical techniques. It is not surprising because the conventional techniques (such as Monte

Carlo simulations or finite difference or finite element methods) search for a single solution of a diffusive
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Figure 7.9: The extrapolated smallest eigenvalue γh
0 as a function of the number M of annuli shown on

Fig. 7.4d, with hSA = π and δ → 0.

problem with a given set of physical parameters. On the contrary, the use of eigenfunctions allows one

to find (or, at least, to formally express) all the solutions at once and to analyze the structure of these

solutions and their dependence on physical parameters. This much more detailed information comes

at the cost of more time-consuming computations. In the general case of any spatial distribution of

reactive regions, the accuracy of the algorithm is in the order of N−1/d, while the computational time for

finding eigenvalues of an N × N matrix grows as O(N3), where N is the number of the eigenfunctions

used, and d is the space dimension. Nonetheless, an extrapolation to the limit N → ∞ allows one to

get reasonably accurate results. In addition, we showed that significant improvements in computational

time and accuracy can be achieved for rotation-invariant reactive regions. More importantly, a multi-

exponential representation (7.6) of the survival probability provides a much deeper insight onto diffusive

processes in reactive media than other numerical techniques. The spectral approach computes separately a

large number of terms in Eq. (7.6), while other techniques approximates the whole sum. As a consequence,

an accurate determination of rapidly decaying terms (with high eigenvalues) is unfeasible by conventional

methods.

Using the spectral approach, we studied the role of the geometrical structure of reactive regions and its

influence on the overall reaction rate γh
0 in the long-time regime. For this purpose, we computed the

survival probability in several model reactive media and showed that the shape and spatial arrangement

of reactive regions could significantly affect γh
0 . When the reactivity h was infinite, the confining domain

could be filled with numerous reactive regions of arbitrarily small total surface area to make the overall

reaction rate arbitrarily high. For the case of finite reactivity h, we discussed the optimization of the

geometrical shape of reactive regions under the constraint of having fixed total reactivity (i.e., fixed

product hSA). A uniform filling with A = Ω appeared as the optimal solution yielding the highest

reaction rate. In turn, heterogeneity tends to reduce the reaction rate. However, when such a uniform
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filling is not possible (or undesired), one can still arrange the reactive regions heterogeneously in a way to

get the reaction rate almost as good as the optimal one. This is an interesting perspective for designing

the geometrical shapes of efficient catalysts or diffusive exchangers.



Chapter 8

Conclusion and further works

We have studied localization of Laplacian eigenfunctions in various bounded domains. Localization has

been shown to emergence in both simple and irregular domains. An eigenfunction u of the Laplace

operator is called “Lp-localized” (p ≥ 1) in a bounded domain Ω ⊂ Rd if it is essentially supported by a

small subdomain Ωα ⊂ Ω, i.e.
‖u‖Lp(Ω\Ωα)

‖u‖Lp(Ω)
≪ 1,

µd(Ωα)

µd(Ω)
≪ 1, (8.1)

where ‖.‖Lp is the Lp-norm, and µd is the Lebesgue measure. It is worth emphasizing that the above

definition of localization remains qualitative. We distinguished two types of localization: high-frequency

and low-frequency localization.

High-frequency localization exists in two-dimensional domains with smooth and convex boundary (Chap-

ter 3). For circular, spherical and elliptical domains, we derived the inequalities for the Lp-norm of

Laplacian eigenfunctions that clearly illustrate the existence of whispering gallery, bouncing ball and

focusing modes. We gave an alternative proof for the emergence of bouncing ball modes in elliptical

domains. At the same time, we showed that there is no localization in most rectangular domains that

led us to an open problem of characterization of domains admitting high-frequency localization. We also

proved that in the equilateral triangle, all symmetric eigenfunctions are not localized.

We investigated the behavior of the Laplacian eigenfunctions in a large class of domains, composed of a

basic domain V of arbitrary shape and a branch Q of variable cross-sectional profile Ω(x) (Chapter 4). We

showed that if an eigenvalue λ is smaller than the threshold µ = inf {µ1(x)}, the associated eigenfunction

exponentially decays inside the branch, where µ1(x) is the first eigenvalue of the Laplace operator in the

cross-section Ω(x). The decay rate was shown to be at least
√

2
√
µ− λ. For non-increasing branches,

the larger decay rate 2
√
µ− λ was derived and shown to be sharp for an appropriate parameterization of

the branch. The exponential estimate is applicable in any dimension and for finite and infinite branches.

Since the derivation did not involve any information about the basic domain V , the exponential estimate

is applicable for arbitrary V with any boundary condition on ∂V for which the Laplace operator in V ∪Ω

is still self-adjoint. In turn, the Dirichlet boundary condition on the branch boundary was essential.

We illustrated theoretical results by numerical simulations. It was shown that the sufficient condition

λ < µ is not necessary, i.e., the eigenfunctions may exponentially decay even if λ > µ. However, in this

138
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case, the decay rate and the range of its applicability strongly depend on the specific shape of the branch.

For all numerical examples, the sharp decay rate 2
√
µ− λ was correct, even if the condition (4.14) for

non-increasing branches was not satisfied. In future, it would be interesting either to relax this condition,

or to find counter-examples, for which the sharp decay rate is not applicable.

It is worth emphasizing that a rigorous upper bound for different norms of Laplacian eigenfunctions in

branches of variable cross-sectional profile is a new achievement in the theory of classical and quantum

waveguides, with potential applications in microelectronics, optics and acoustics. Using these theoretical

results, one can explain the existence of low-frequency localized eigenmodes in various domains. Note that

mathematical methods from our approach can be adapted for studying eigenfunctions for other spectral

problems or other kinds of domains.

We studied the problem of localized eigenmodes of the Laplace operator in resonators with long branches

of constant cross-sectional profile (Chapter 5). The localization here was understood as an exponential

decay of an eigenfunction inside the branches. This behavior was related to the smallness of the associated

eigenvalue in comparison to the first eigenvalue of the Laplace operator in the cross-section of the branch

with Dirichlet boundary condition. Using the explicit representation of an eigenfunction in branches, we

proposed a general variational formalism for checking the existence of localized eigenmodes. The main

result of this chapter is the sufficient condition (5.14) on the branch lengths for getting a trapped mode.

In spite of the generality of the formalism, a practical use of the sufficient condition replies on an intuitive

choice of the trial function in the basic domain (without branches). The trial function should be chosen as

close as possible to the (unknown) eigenfunction. Although there is no general recipe for choosing a good

trial function, one can often guess an appropriate choice basing on the geometry of the basic domain.

When the basic domain V and the branch shape satisfy the conditions of Theorem 5.4.1, there exists at

least one Dirichlet-Laplacian eigenfunction which is localized in V . Using this result, one can explain

the emergence of localized eigenmodes in various domains. We illustrated theoretical results for several

typical waveguides, including 2D and 3D L-shapes, crossing of the rectangular strips, and bent trips. In

particular, we obtained an upper bound for the minimal branch length which is sufficient for localization.

The presented method can be applied for studying the localization in many other waveguides.

It is worth emphasizing that the distinction between localized and non-localized modes is much sharper

in infinite waveguides than in finite ones. Although by definition a localized eigenfunction in a finite

waveguide decays exponentially, the decay rate may be arbitrarily small. If the branch is not long enough,

the localized mode may be visually indistinguishable from a non-localized one. In turn, the distinction

between localized and non-localized modes in infinite waveguides is always present, whatever the value of

the decay rate. The high sensitivity of the localization character to the shape of the basic domain and to

the length of branches may potentially be used for switching devices in microelectronics and optics.

We discussed other kinds of low-frequency localization such as e.g localization in dumbbell domains

with narrow connections (Appendix G) and elongated polygons (Chapter 4). In a dumbbell domain,

it was shown that low-frequency localization depends on the widths of connectors and may happen for

both Dirichlet and Neumann boundary conditions. It is important to emphasize that there may exist

only a finite number of low-frequency localized eigenmodes in these domains. We proved the existence
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of low-frequency localization in elongated polygons and visualized localized eigenmodes by numerical

computations. These results show that even in very simple domains, low-frequency eigenfunctions may

be localized.

We studied the existence of localized eigenmodes in a specific class of planar spectral graphs (Chapter 6).

We presented several properties of Laplacian eigenvalues and associated eigenfunctions in these domains.

Using these properties, one can easily distinguish localized and non-localized eigenmodes in these planar

graphs. These points were illustrated by several numerical simulations. We proposed an efficient divide-

and-conquer algorithm to solve the eigenvalue problem for Laplacian matrices in a class of undirected

and weighted graphs with N vertices. The complexity of our algorithm reduces to O(N2) by the fast

multipole method (FMM) that is much faster than traditional approaches of complexity O(N3).

Finally, we presented a spectral approach to study the survival probability of reflected Brownian motion

in reactive media (Chapter 7). For arbitrary spatial distribution B(r) of trapping, reaction or relaxation

rate, we derived a multi-exponential representation of the survival probability. Its amplitudes Ah
m and

characteristic times 1/γh
m were expressed through the spectral properties of the two infinite-dimensional

matrices Λ and B which represent the Laplace operator and the distribution B(r) in the Laplace operator

eigenbasis on a chosen confining domain. The advantage of such a representation is that the geometrical

complexity of the problem (i.e., the shape of reactive regions) is incorporated through the matrix B.

Computation of the eigenfunctions, which is often the most time-consuming step, has to be performed

only once for a given confining domain. Moreover, if the shape of the confining domain is irrelevant,

simple confining domains such as a disk or a sphere can be used. In these cases, the Laplace operator

eigenfunctions and eigenvalues are known explicitly that significantly simplifies computations.

Using the spectral approach, we investigated the role of the geometrical structure of reactive regions and its

influence on the overall reaction rate in the long-time regime. For this purpose, we computed the survival

probability in several model reactive media and showed that the shape and spatial arrangement of reactive

regions could significantly affect γh
0 . When the reactivity h was infinite, the confining domain could be

filled with numerous reactive regions of arbitrarily small total surface area to make the overall reaction

rate arbitrarily high. For the case of finite reactivity h, we discussed the optimization of the geometrical

shape of reactive regions under the constraint of having fixed total reactivity (i.e., fixed product hSA). A

uniform filling with A = Ω appeared as the optimal solution yielding the highest reaction rate. In turn,

heterogeneity tends to reduce the reaction rate. However, when such a uniform filling is not possible (or

undesired), one can still arrange the reactive regions heterogeneously in a way to get the reaction rate

almost as good as the optimal one. This approach can be adapted for designing the geometrical shapes

of efficient catalysts or diffusive exchangers.

8.1 Further works

Localized eigenmodes in bounded planar domains have a special interest in their own right. In future, we

plan to study the most interesting open questions related to localization, including the following points.

• Localization in convex polygons
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Can high-frequency localization happen in a regular polygon or not? As already discussed, even for

an equilateral triangle and a square, the rigorous answer is unknown. In the equilateral triangle, all

symmetric Dirichlet-Laplace eigenfunctions are not localized. However, it is unclear whether one

can find some localized eigenmodes or not among the remaining eigenfunctions.

In Chapter 4, it was shown that localized low-frequency eigenmodes may exist in various elongated

polygons. The ratio between the diameter and the inradius of these polygons seems to influence the

properties of low-frequency localization. The larger the ratio is, the larger the number of localized

eigenfunctions is. At the same time, this ratio can be arbitrary large in irrational rectangles but there

is no localization in these domains. It would be interesting to find a “mechanism” of localization in

such domains.

• Counting the number of localized eigenfunctions

The Weyl’s law estimates the counting function N(λ) = #{m : λm < λ} of the Laplacian

eigenvalues (i.e., the number of eigenvalues smaller than λ) as following [225, 226]

N(λ) ∝ ωdµd(Ω)

(2π)d
λd/2 (λ→∞). (8.2)

As mentioned before, Bäcker and co-workers estimated the number of bouncing ball modes of the

Laplace operator in a class of two-dimensional quantized billiards Ω with two parallel walls [14]

Nbouncing ball(λ) = {n : λn ≤ λ, un is a bouncing ball mode} . (8.3)

It is interesting to investigate the number of localized eigenmodes in a bounded domain in general.

In future, we aim at counting the number of localized eigenmodes of the Dirichlet-Laplacian in a

bounded domain as following

Nlocalized(λ) = {n : λn ≤ λ, un is localized} . (8.4)

Deriving the asymptotic behavior of Nlocalized(λ) may give a better understanding of localization in

a general domain. For this purpose, one can start with both numerical and analytical observations

in some simple domains, such as e.g disks, elliptical domains, rectangles, and regular polygons.

• Localization of the Neumann-Laplacian eigenfunctions

In previous chapters, we have already illustrated the existence of localized eigenfunctions satisfying

the Neumann boundary condition in both irregular and simple domains. A “mechanism” of such

localization is still poorly understood.

• The definition of localization

Although we provided one possible definition (8.1) of localization, the definition is still qualitative.

One of the most important objectives in future is to provide an “appropriate” definition for general

kinds of localization in bounded domains. Localized and non-localized eigenfunctions may have
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very close eigenvalues. For instance, in a dumbbell domain shown in Fig. G.2, the eigenfunction

u14 is not localized while the consecutive eigenfunction u15 is localized in Ω1 (Fig. 8.1). Note that

the difference between λ14 and λ15 are small. Although the eigenvalues λ19 and λ20 are close to

each other, the eigenfunction the 19th eigenfunction is localized in Ω2 while the 20th eigenfunctions

is localized in Ω1. This is one of the difficulties to overcome for getting a generic definition of

localization.

(a) u14 (b) u15 (c) u19 (d) u20

Figure 8.1: Several Dirichlet eigenfunctions in a dumbbell domain Ωε shown on Fig. G.2. The 14th,
15th, 19th, and 20th eigenvalues are 165.4611, 167.9188, 197.0922, and 197.3857. The 15th/20th eigen-
functions are localized in Ω1, while the 19th eigenfunction is localized in Ω2. At the same time, the 14th

eigenfunctions is not localized. Note that λ14 is relatively close to λ15, while λ19 is close to λ20.



Appendix A

Preliminaries

A1 Several lower estimates

In this Appendix, we sketch the proof for the lower estimate, following and extending the ideas by Filoche

and Mayboroda [78]. Although the results are formulated for the Laplace operator on domains with

smooth boundaries, extensions to other elliptic operators or more general boundaries are possible.

Theorem A1.1. Let u be an eigenfunction of the Laplace operator in a bounded domain Ω ⊂ Rd with

Dirichlet boundary condition, and λ the associated eigenvalue. Let D ⊂ Ω is an open subdomain of Ω, and

v the harmonic function in D with v|∂D = u|∂D on a piecewise smooth boundary ∂D. Then the following

inequality holds:

‖u‖L2(D) ≥
λ1(D)

λ+ λ1(D)
‖v‖L2(D), (A.1)

where λ1(D) is the first Dirichlet-Laplacian eigenvalue in D.

Proof. Following the proof by Filoche and Mayboroda, we consider the function w = u− v which satisfies

−∆w = λu (r ∈ D), w = 0 (r ∈ ∂D).

Let {ϕD
k } denote the set of L2-normalized eigenfunctions (with eigenvalues λD

k ) of the Dirichlet-Laplace

operator in D that form an orthonormal basis in L2(D). The function ∆w can be expanded over this

basis as

−∆w =
∑

k

ckϕ
D
k ,

where the coefficients ck are

ck =

∫

D

(−∆w(r)) ϕD
k (r) = λD

k

∫

D

w(r)ϕD
k (r)dr.

143
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k n = 0 n = 1 n = 2 n = 3

1 2.4048 3.8317 5.1356 6.3802
2 5.5201 7.0156 8.4172 9.7610
3 8.6537 10.1735 11.6198 13.0152
4 11.7915 13.3237 14.7960 16.2235
5 14.9309 16.4706 17.9598 19.4094
6 18.0711 19.6159 21.1170 22.5827
7 21.2116 22.7601 24.2701 25.7482
8 24.3525 25.9037 27.4206 28.9084
9 27.4935 29.0468 30.5692 32.0649
10 30.6346 32.1897 33.7165 35.2187

Table A.1: Table of the first 10 positive zeros of the Bessel functions Jn(z) = 0.

One gets

(λ‖u‖L2(D))
2 = ‖∆w‖2L2(D) =

∑

k

c2
k =

∑

k



λD
k

∫

D

w(r)ϕD
k (r)dr





2

≥ (λD
1 )2

∑

k





∫

D

w(r)ϕD
k (r)dr





2

≥
(

λD
1 ‖w‖L2(D)

)2
,

from which

λ‖u‖L2(D) ≥ λD
1 ‖u− v‖L2(D).

Adding λD
1 ‖u‖L2(D) to both sides, one gets

(λ+ λD
1 )‖u‖L2(D) ≥ λD

1

(‖u− v‖L2(D) + ‖u‖L2(D)

) ≥ λD
1 ‖v‖L2(D),

from which the inequality (A.1) follows.

A2 Zeros of Bessel functions

In this section, we provide some zeros of Bessel functions and its derivative by numerical computations.
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k n = 0 n = 1 n = 2 n = 3

1 3.8317 1.8412 3.0542 4.2012
2 7.0156 5.3314 6.7061 8.0152
3 10.1735 8.5363 9.9695 11.3459
4 13.3237 11.7060 13.1704 14.5858
5 16.4706 14.8636 16.3475 17.7887
6 19.6159 18.0155 19.5129 20.9725
7 22.7601 21.1644 22.6716 24.1449
8 25.9037 24.3113 25.8260 27.3101
9 29.0468 27.4571 28.9777 30.4703
10 32.1897 30.6019 32.1273 33.6269

Table A.2: Table of the first 10 positive zeros of the functions J ′
n(z) = 0.

k n = 1 n = 2 n = 3

1 9.9361 16.6982 23.2568
2 13.5893 20.7899 27.6979
3 17.0038 24.4949 31.6501
4 20.3208 28.0267 35.3747
5 23.5861 31.4600 38.9654
6 26.8202 34.8300 42.4678
7 30.0337 38.1564 45.9077
8 33.2330 41.4511 49.3011
9 36.4220 44.7219 52.6589
10 39.6032 47.9743 55.9885

Table A.3: Table of the first 10 zeros of the Bessel functions J6n(z) = 0.



Appendix B

High-frequency localization of Laplacian

eigenfunctions

B1 Proofs for a disk

The proof of Theorem 3.2.1 is based on several estimates for Bessel functions and their roots that we

recall in the following lemmas. In this Appendix, jν,k and j′
ν,k denote all positive zeros (enumerated by

k = 1, 2, 3, ... in an increasing order) of the Bessel function Jν(x) and its derivative J ′
ν(x), respectively.

Lemma B1.1. For any n = 1, 2, 3, ... and any ε ∈ (0, 2/3), the Bessel function Jn(x) satisfies [131]

0 < Jn(nz) < 2−nε/3 ∀ z ∈ (0, 1 − nε− 2
3 ). (B.1)

Lemma B1.2. For the first zeros jn,1 and j′
n,1 with n = 1, 2, ..., one has [40, 222]

n < j′
n,1 < jn,1 <

√
n+ 1

(√
n+ 2 + 1

)

. (B.2)

Lemma B1.3. For large enough n, the asymptotic relations hold [222]:

Jn(n) = C ′
1n

−1/3 +O(n−5/3)

(

C ′
1 =

Γ(1/3)

22/331/6π
≈ 0.4473

)

(B.3)

and

j′
n,1 = n+ n1/3 C ′

2 +O(n−1/3) (C ′
2 = 0.808618...). (B.4)

As a consequence, taking smaller constants (e.g., C1 = 0.447 and C2 = 0.8086), one gets lower bounds

for large enough n:

Jn(n) > C1n
−1/3 (n≫ 1) (B.5)

and

j′
n,1 > n+ C2n

1/3 (n≫ 1), (B.6)

146
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Lemma B1.4. For fixed k and large ν, the Olver’s expansion holds [68, 164, 165]

jν,k = ν + δkν
1/3 +

3

10
δ2

kν
−1/3 +

5− δ3
k

350
ν−1 − 479δ4

k + 20δk

63000
ν−5/3

+
20231δ5

k − 27550δ2
k

8085000
ν−7/3 +O(ν−3),

(B.7)

where δk = −ak2−1/3 > 0 and ak are the negative zeros of the Airy function. Taking ck = δk + ǫ (e.g.,

ǫ = 1), one gets the upper bounds for jν,k for ν large enough

jν,k < ν + ckν
1/3 (ν ≫ 1). (B.8)

In particular, δ1 = 1.855757....

Lemma B1.5. For fixed ν and large k, the McMahon’s expansion holds [222] (p. 506)

jν,k = kπ +
π

2
(ν − 1/2) − 4ν2 − 1

8(kπ + π(ν − 1/2)/2)
+O(1/k3). (B.9)

Lemma B1.6. The absolute extrema of any Bessel function Jν(z) progressively decrease [222] (p. 488),

i.e.

|Jν(j′
ν,1)| > |Jν(j′

ν,2)| > |Jν(j′
ν,3)| > ... (B.10)

Lemma B1.7. The k-th positive zero αnk of the function J ′
n(z) + hJn(z) for any h > 0 lies between the

k-th positive zeros jn,k and j′
n,k of the Bessel function Jn(z) and its derivative J ′

n(z):

jn,k < αnk < j′
n,k. (B.11)

Proof. This is a direct consequence of the minimax principle that ensures the monotonous increase of

eigenvalues with the parameter h [54].

a. Now, we prove Theorem 3.2.1.

The proof formalizes the idea that the eigenfunction unk is small in the large subdomain Dnk = {r ∈
D : |r| < Rdn/αnk} (with dn = n− n2/3) and large in the small subdomain Ank = {r ∈ D : Rn/αnk <

|r| < Rj′
n,1/αnk}. Since Ank ⊂ D, we have

‖unk‖pLp(Dnk)

‖unk‖pLp(D)

<
‖unk‖pLp(Dnk)

‖unk‖pLp(Ank)

=

Rdn/αnk∫

0
dr r [Jn(rαnk/R)]p

Rj′
n,1/αnk
∫

Rn/αnk

dr r [Jn(rαnk/R)]p

=

dn∫

0
dzz [Jn(z)]p

j′
n,1∫

n
dzz [Jn(z)]p

.

The numerator can be bounded by the inequality (B.1) with ǫ = 1/3:

dn∫

0

dzz [Jn(z)]p <
(

2−n1/3/3
)p d2

n

2
< 2−pn1/3/3 n2

2
(n = 1, 2, 3, ...).
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In order to bound the denominator, we use the inequalities (B.5, B.6) and the fact that Jn(z) increases

on the interval [n, j′
n,1] (up to the first maximum at j′

n,1):

j′
n,1∫

n

dzz [Jn(z)]p > [Jn(n)]p
(j′

n,1)2 − n2

2
> [C1n

−1/3]p
(n+ C2n

1/3)2 − n2

2
> Cp

1C2n
(4−p)/3

for n large enough, from which

‖unk‖Lp(Dnk)

‖unk‖Lp(Ank)
<
n

1
3

+ 2
3p 2−n1/3/3

C1(2C2)1/p
(n≫ 1)

that implies Eq. (3.2). Finally, from Lemmas B1.4 and B1.7, we have

1 >
µ2(Dnk)

µ2(D)
=

(
dn

αnk

)2

>
d2

n

j2
n,k

>
(n− n2/3)2

(n+ ckn1/3)2
(n≫ 1)

so that the ratio of the areas tends to 1 as n goes to infinity.

b. In what follows, let us prove Theorem 3.2.5. Using the explicit representation (2.33) of eigenfunctions,

it is easy to see that

‖unk‖L∞(D(R0))

‖unk‖L∞(D)
=

max
r∈[R0,1]

|Jn(αnkr)|

max
r∈[0,1]

|Jn(αnkr)|
=

max
r∈[R0,1]

|Jn(αnkr)|
∣
∣
∣Jn(j′

n,1)
∣
∣
∣

, (B.12)

where we used the fact that the first maximum (at j′
n,1) is the largest (lemma B1.6). Since lim

k→∞
αnk =∞,

the Bessel function Jn(αnkr) with k ≫ 1 can be approximated in the interval [R0, 1] as [1]

Jn(αnkr) ≈
√

2

παnkr
cos

(

αnkr −
nπ

2
− π

4

)

. (B.13)

It also means that there exists a positive integer K0 and a constant A0 > 0 such that

|Jn(αnkr)| <
√

A0

αnkR0
, ∀r ∈ [R0, 1], k > K0. (B.14)

Given that the denominator in Eq. (B.12) is fixed, while the numerator decays as α
−1/2
nk , one gets Eq.

(3.14). Now we prove Eq. (3.16). One has

‖unk‖2L2(D(R0))

‖unk‖2L2(D)

=

1∫

R0

dr r [Jn(αnkr)]
2

1∫

0
dr r [Jn(αnkr)]2

.
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Using the basic properties of Bessel functions [1],

b∫

a

dr r [Jn(αnkr)]
2 =

{

r2[J ′
n(αnkr)]

2 +

(

r2 − n2

α2
nk

)

[Jn(αnkr)]
2

}b

a

, (B.15)

one has

‖unk‖2L2(D(R0))

‖unk‖2L2(D)

= 1−R2
0







[J ′
n(αnkR0)]2 +

(

1− n2

α2
nk

R2
0

)

[Jn(αnkR0)]2

[J ′
n(αnk)]2 +

(

1− n2

α2
nk

)

[Jn(αnk)]2






.

In order to compute the limit of the expression in large brackets, we write the leading term approximation

of the derivative of the Bessel function for k ≫ 1 from Eq. (B.13):

J ′
n(αnkR0) ≈ −

√

2

παnkR0
sin

(

αnkR0 −
nπ

2
− π

4

)

. (B.16)

In the limit k →∞, the term n2/α2
nk can be neglected as compared to 1, so that for k ≫ 1

[J ′
n(αnkR0)]2 +

(

1− n2

α2
nk

R2
0

)

[Jn(αnkR0)]2

[J ′
n(αnk)]2 +

(

1− n2

α2
nk

)

[Jn(αnk)]2

≈
2

παnkR0
sin2

(
αnkR0 − nπ

2 − π
4

)
+ 2

παnkR0
cos2

(
αnkR0 − nπ

2 − π
4

)

2
παnk

sin2
(
αnk − nπ

2 − π
4

)
+ 2

παnk
cos2

(
αnk − nπ

2 − π
4

) =
1

R0

that completes the proof for Eq. (3.16).

Finally, we prove Eq. (3.15). For p > 4, one has

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

=

1∫

R0

dr r |Jn(αnkr)|p

1∫

0
dr r |Jn(αnkr)|p

=

αnk∫

αnkR0

dr r |Jn(r)|p

αnk∫

0
dr r |Jn(r)|p

Using the approximation (B.13), for each positive integer n, there exists a positive integer K1n such that

|Jn(z)| <
√

3

πz
, ∀z ∈ [αnkR0, αnk] , k > K1n. (B.17)

For k > K1n, using the approximation (B.17 ), one gets

αnk∫

αnkR0

dr r |Jn(r)|p ≤
(

3

π

)p/2
αnk∫

αnkR0

dz z1−p/2 (B.18)

≤ 1

p/2− 2

(
3

π

)p/2
((

1

αnkR0

)p/2−2

−
(

1

αnk

)p/2−2
)

. (B.19)
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Bringing the above results together, when k ≫ 1, one has

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

<

1
p/2−2

(
3
π

)p/2
((

1
αnkR0

)p/2−2
−
(

1
αnk

)p/2−2
)

1∫

0
dr r |Jn(r)|p

,

where the right-hand side tends to 0 as k →∞, that completes the proof.

Remark B1.1. In the case 2 < p < 4, similarly, for k > K1n, using the approximation (B.17 ),one also

gets

Hn,p(αnk) =

αnk∫

αnkR0

dr r |Jn(r)|p ≤
(

3

π

)p/2
αnk∫

αnkR0

dz z1−p/2 (B.20)

≤ 1

2− p/2

(
3

π

)p/2 (

(αnk)2−p/2 − (αnkR0)2−p/2
)

. (B.21)

When k →∞, one expects that

In,p(αnk) =

αnk∫

0

dr r |Jn(r)|p ∼ C(n, p)α
γ(n,p)
nk , (B.22)

where C(n, p) is a constant, only depending on n and p. It also means that there exist two positive

constants D(n, p) and E(n, p), and a positive integer K2n such that

D(n, p)α
γ(n,p)
nk ≤ In,p(αnk) ≤ E(n, p)α

γ(n,p)
nk ,∀k > K2n. (B.23)

If one can prove that

γ(n, p) > 2− p/2,∀n ∈ N, p ∈ (2, 4], (B.24)

then for k > max{K1n,K2n},

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

<

1
2−p/2

(
3
π

)p/2 (

(αnk)2−p/2 − (αnkR0)2−p/2
)

D(n, p)α
γ(n,p)
nk

,

<

1
2−p/2

(
3
π

)p/2

D(n, p)

[

1−R2−p/2
0

]

(αnk)2−p/2−γ(n,p) ,

where the right-hand side tends to zero as k →∞, or

lim
k→∞

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

= 0, (B.25)
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n,

p)
/(

2−
p/

2)

 

 

n=1
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Figure B.1: The behavior of the function
γ(n, p)

2− p
2

in the interval [2, 4] for n = 1 (blue), n = 5 (green) and

n = 10 (red). In this figure, this function increases everywhere from p = 2 to p = 4 and its initial value
at p = 2 is equal to 1.

It is interesting to note that,

lim
k→∞

‖unk‖2L2(D(R0))

‖unk‖2L2(D)

= 1−R0,

and one may expect that

lim
p→2

γ(n, p) = 1.

To clarify the inequality (B.24), we will check it by numerical computations. In Fig. B.1, we compute the

value of γ(n, p) for n = 1 (blue), n = 5 (green) and n = 10 (red). One can see that the function
γ(n, p)

2− p
2

is an increasing function in the interval [2, 4] for these cases and its value at p = 2 is equal to 1. The

numerical results confirms the inequality (B.24).

Remark B1.2. In the case p = 4, for k > K1n, using the approximation (B.17 ), one also gets

αnk∫

αnkR0

dr r |Jn(r)|p ≤
(

3

π

)p/2
αnk∫

αnkR0

dz
1

z
(B.26)

≤ 1

2− p/2

(
3

π

)p/2

log

(
1

R0

)

. (B.27)
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Similarly, from the inequality (B.24), we also expect that

lim
k→∞

‖unk‖4L4(D(R0))

‖unk‖4L4(D)

= 0. (B.28)

Remark B1.3. It is interesting to understand the limit value of
‖unk‖pLp(D(R0))

‖unk‖pLp(D)

when k → ∞, for

1 ≤ p < 2. When k ≫ 1, one may expect the following asymptotic approximation

Hn,p(αnk) ∼ F (n, p)α
β(n,p)
nk , (B.29)

and from the above discussions, it seems to be true that

β(n, p) ≤ 2− p

2
< γn,p,∀2 < p ≤ 4. (B.30)

In Fig. B.2, we compare the values of β(n, p) and γ(n, p) in the interval [1, 4] for n = 1 and R0 = 0.7.

One can see that β(n, p) ≤ γ(n, p),∀1 ≤ p ≤ 4, and especially, for 1 ≤ p ≤ 2,

β(n, p) ≈ 2− p

2
≈ γ(n, p). (B.31)

Bringing these numerical results together, one can expect that

lim
k→∞

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

> 0,∀1 ≤ p ≤ 2, (B.32)

lim
k→∞

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

= 0,∀2 ≤ p ≤ 4, (B.33)

which requires a rigorous proof and further investigation.

B2 Proofs for a ball

In this Appendix, we generalize the previous estimates to a ball B = {r ∈ R3 : |r| < R} of radius R > 0.

We start by recalling and extending several classical estimates.

Lemma B2.1. For any ν ∈ R+ and any x ∈ (0, 1), the Kapteyn’s inequality holds [199]

0 < Jν(νx) <
xν exp(ν

√
1− x2)

(

1 +
√

1− x2
)ν . (B.34)

Now we can prove the following
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Figure B.2: The behaviors of β(n, p) and γ(n, p) when p varies in the interval [1, 4] (n = 1 and R0 = 0.7):

(a) - The comparison between β(n,p)
2−p/2 and γ(n,p)

2−p/2 , (b) - The function β(n,p)
γ(n,p) .

Lemma B2.2. For any ν > 1 and 0 < ǫ < 2/3, one has

0 < jν− 1
2
(x) <

√
π

2ν
exp

(
2

3
− 1

3
νǫ
)

∀ x ∈ (0, ν − νǫ+1/3). (B.35)

Proof. Using the Kapteyn’s inequality (B.34) and taking x = νz with z ∈ (0, 1 − νǫ−2/3), one has

jν−1/2(νz) =

√
π

2ν

Jν(νz)√
z

<

√
π

2ν
f(z),

where

f(z) =
zν−1/2eν(1−z2)

1/2

(

1 +
√

1− z2
)ν .

Substituting u =
√

1− z2 ∈ (0, 1), one gets

f(z) =





(

1− u2
)1− 1

2ν e2u

(1 + u)2





ν/2

=
e

u
2

(1 + u)
1
2

[(
1− u
1 + u

)

e2u
] ν

2
−1/4

.

Using the inequality
1− u
1 + u

e2u < 1− 2

3
u3 ∀ u ∈ (0, 1),

one gets

f(z) <
e

1
2

(1 + 0)
1
2

[

1− 2

3
u3
]ν

2
−1/4

< e
1
2

[

1− 2

3
u3
] ν

2
−1/4

.
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Since z < 1− νǫ−2/3, one has

u =
√

1− z2 >
√

1− z > ν
ǫ
2

− 1
3 > ν

ǫ
3

− 1
3 ,

from which

f(z) < e
1
2

[

1− 2

3
νǫ−1

]ν
2

−1/4

< e
1
2

[(

1− 2

3
νǫ−1

) 3
2

ν1−ǫ]
ν
2

−1/4

3
2 ν1−ǫ

.

Since

(1− x)
1
x < e−1, ∀x ∈ (0, 1), and 0 <

2

3
νǫ−1 <

2

3
< 1,

one finally gets

f(z) < exp

(

1

2
−

ν
2 − 1/4
3
2ν

1−ǫ

)

< exp

(
1

2
+

1

6
νǫ−1 − 1

3
νǫ
)

< exp

(
2

3
− 1

3
νǫ
)

,

that completes the proof.

As a consequence, taking ν = n+ 1/2 and ǫ = 1/3, one has

Lemma B2.3. For n = 1, 2, ... and any z ∈ (0, n + 1/2− (n+ 1/2)2/3
)
,

jn(z) <

√
π

2n+ 1
exp

(

2

3
− 1

3

(

n+
1

2

)1/3
)

. (B.36)

The lemmas for Bessel functions and their zeros from Appendix B1 allow one to get similar estimates for

spherical Bessel functions jn(z), their positive zeros γn,k and the positive zeros γ′
n,k of j′

n(z). They are

summarized in the following

Lemma B2.4. For n large enough,

jn(n+ 1/2) > C̃1(n+ 1/2)−5/6 (C̃1 =
√

π/2C1), (B.37)

γn,k < (n+ 1/2) + c̃k(n+ 1/2)1/3, (B.38)

γ′
n,1 > n+ 1/2 + C̃2(n+ 1/2)1/3 (C̃2 = 0.80), (B.39)

γ′
n,k < αnk < γn,k. (B.40)

Proof. From Lemma B1.3, we have

jν−1/2(ν) =

√
π

2ν
Jν(ν) >

√
π

2ν
C1ν

−1/3 = C̃1ν
−5/6,

from which (B.37) follows by taking ν = n+ 1/2.

The zeros γn,k of the spherical Bessel function jn(z) are also the zeros of the Bessel function Jn+1/2(z) so

that (B.38) follows directly from Eq. (B.8) for ν = n+ 1/2 large enough.
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The inequality (B.39) follows from the asymptotic expansion of γ′
n,1 for large n [1] (p. 441)

γ′
n,1 = n+ 1/2 + 0.8086165(n + 1/2)1/3 − 0.236680(n + 1/2)−1/3

− 0.20736(n + 1/2)−1 + 0.0233(n + 1/2)−5/6 + ... (n≫ 1).

Taking C̃2 = 0.80, one gets the inequality (B.39).

Finally, the inequalities (B.40) follow from the general minimax principle as for the disk.

We also prove that the first maximum of the spherical Bessel function at γ′
n,1 is the largest (although this

is a classical result, we did not find an explicit reference).

Lemma B2.5. For an integer n ≥ 0, one has

max
x∈(0,∞)

jn(x) = jn(γ′
n,1). (B.41)

Proof. The spherical Bessel function jn(x) satifies

x2j′′
n + 2xj′

n + [x2 − (n+ 1)n]jn = 0.

Denoting κ = n(n+ 1), one can rewrite this equation as

j′′
n(x) = −2xj′

n(x) +
(

x2 − κ) jn(x)

x2
,

from which

d

dx

[

x2

x2 − κ
(
j′
n(x)

)2

]

=
d

dx

[
(
j′
n(x)

)2
+

κ

x2 − κ
(
j′
n(x)

)2
]

= 2j′
n(x)j′′

n(x) + κ

[

2(x2 − κ)j′
n(x)j′′

n(x)− 2x (j′
n(x))2

(x2 − κ)2

]

=
2x2

x2 − κj
′
n(x)j′′

n(x)− 2xκ

(x2 − κ)2

(
j′
n(x)

)2

= −2j′
n(x)

x2 − κ
[

2xj′
n(x) +

(

x2 − κ
)

jn(x)
]

− 2xκ

(x2 − κ)2

(
j′
n(x)

)2

= − 2x

(x2 − κ)2

(
j′
n(x)

)2
[

2(x2 − κ) + κ
]

− 2jn(x)j′
n(x)

= − 2x

(x2 − κ)2

(
j′
n(x)

)2
[

2x2 − κ
]

− d

dx

[

j2
n(x)

]

.

Now, if we put

Λn(x) = j2
n(x) +

[

x2

x2 − κ
(

j′
n(x)

)2

]

,

then
d

dx
Λn(x) = − 2x

(x2 − κ)2

(

j′
n(x)

)2
[

2x2 − κ
]

< 0
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for all x >
√

n(n+1)
2 , i.e. Λn(x) monotonously decreases. Given that Λn(γ′

n,k) = j2
n(γn,k) and

√

n(n+ 1)

2
< γ′

n,1 < γ′
n,2 < . . . ,

we get the conclusion.

a. Now, we can prove Theorem 3.2.4.

As earlier, the proof formalizes the idea that the eigenfunction unk is small in the large subdomain

Bnk = {r ∈ B : |r| < Rsn/αnk} (with sn = (n+ 1/2) − (n+ 1/2)2/3) and large in the small subdomain

Ank = {r ∈ B : R(n+ 1/2)/αnk < |r| < Rγ′
n,1/αnk}. Since Ank ⊂ B, we have

‖unk‖pLp(Bnk)

‖unk‖pLp(B)

<
‖unk‖pLp(Bnk)

‖unk‖pLp(Ank)

=

Rsn/αnk∫

0
dr r2 [jn(rαnk/R)]p

Rγ′
n,1/αnk
∫

R(n+1/2)/αnk

dr r2 [jn(rαnk/R)]p

=

sn∫

0
dzz2 [jn(z)]p

γ′
n,1∫

n+1/2

dzz2 [jn(z)]p

.

The numerator can be bounded by the inequality (B.36):

sn∫

0

dzz2 [jn(z)]p <

(
π

2n+ 1

)p/2

exp

(

2p

3
− p

3

(

n+
1

2

)1/3
)

s3
n

3

<
(π/2)p/2

3
exp

(

2p

3
− p

3

(

n+
1

2

)1/3
)

(n + 1/2)3−p/2

(n = 1, 2, 3, ...).

In order to bound the denominator, we use the inequalities (B.37, B.39) and the fact that jn(z) increases

on the interval [n+ 1/2, γ′
n,1] (up to the first maximum at γ′

n,1):

γ′
n,1∫

n+1/2

dzz2 [jn(z)]p > [jn(n+ 1/2)]p
(γ′

n,1)3 − (n+ 1/2)3

3

> [C̃1(n+ 1/2)−5/6]p
(n + 1/2 + C̃2(n+ 1/2)1/3)3 − (n+ 1/2)3

3

> C̃p
1 C̃2(n+ 1/2)7/3−5p/6

for n large enough, from which

‖unk‖Lp(Bnk)

‖unk‖Lp(Ank)
<

√

π/2

C̃1(3C̃2)1/p
exp

(

2

3
− 1

3

(

n+
1

2

)1/3
)

(n+ 1/2)1/3+2/(3p) (n≫ 1)
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that implies Eq. (3.11). Finally, from Lemma B2.4, we have for n large enough

1 >
µ3(Bnk)

µ3(B)
=

(
sn

αnk

)3

>
s3

n

γ3
n,k

>
(n + 1/2 − (n+ 1/2)2/3)3

(n + 1/2 + c̃k(n+ 1/2)1/3)3

so that the ratio of volumes tends to 1 as n goes to infinity.

b. The proof of Theorem 3.2.7 for a ball is similar to that of Theorem 3.2.5.

Using the explicit representation (2.51) of eigenfunctions, it is easy to see that

‖unk‖L∞(B(R0))

‖unk‖L∞(B)
=

max
r∈[R0,1]

|jn(αnkr)|

max
r∈[0,1]

|jn(αnkr)|
=

max
r∈[R0,1]

|jn(αnkr)|
∣
∣
∣jn(γ′

n,1)
∣
∣
∣

, (B.42)

where we used the fact that the first maximum (at γ′
n,1) is the largest (Lemma B2.5). Since lim

k→∞
αnk =∞,

the spherical Bessel function jn(αnkr) with k ≫ 1 can be approximated in the interval [R0, 1] as [1]

jn(αnkr) =

√
π

2αnkr
Jn+1/2(αnkr) ≈

1

αnkr
cos

(

αnkr −
(n+ 1)π

2

)

. (B.43)

It also means that there exists a positive integer K0 and a constant A0 > 0 such that

|jn(αnkr)| <
A0

αnkR0
, ∀ r ∈ [R0, 1], k > K0.

Given that the denominator in Eq. (B.42) is fixed, while the numerator decays as α−1
nk , one gets Eq.

(3.22).

Now we prove Eq. (3.24). One has

‖unk‖2L2(B(R0))

‖unk‖2L2(B)

=

1∫

R0

dr r2 [jn(αnkr)]
2

1∫

0
dr r2 [jn(αnkr)]2

.

Using Eq. (B.15), one gets

b∫

a

dr r2 [jn(αnkr)]
2 =

π

2αnk

{

r2[J ′
n+1/2(αnkr)]

2 +

(

r2 − (n+ 1/2)2

α2
nk

)

[Jn+1/2(αnkr)]
2

}b

a

,

from which

‖unk‖2L2(D(R0))

‖unk‖2L2(D)

= 1−R2
0







[J ′
n+1/2(αnkR0)]2 +

(

1− (n+1/2)2

α2
nk

R2
0

)

[Jn+1/2(αnkR0)]2

[J ′
n+1/2(αnk)]2 +

(

1− (n+1/2)2

α2
nk

)

[Jn+1/2(αnk)]2






.

In order to compute the limit of the expression in large brackets, we write the leading term approximation
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of the derivative of the Bessel function for k ≫ 1 from Eq. (B.13):

J ′
n+1/2(αnkR0) ≈ −

√

2

παnkR0
sin

(

αnkR0 −
(n+ 1)π

2

)

.

In the limit k →∞, the term (n+ 1/2)2/α2
nk can be neglected as compared to 1, so that for k ≫ 1

[J ′
n+1/2(αnkR0)]2 +

(

1− (n+1/2)2

α2
nk

R2
0

)

[Jn+1/2(αnkR0)]2

[J ′
n+1/2(αnk)]2 +

(

1− (n+1/2)2

α2
nk

)

[Jn+1/2(αnk)]2

≈
2

παnkR0
sin2

(

αnkR0 − (n+1)π
2

)

+ 2
παnkR0

cos2
(

αnkR0 − (n+1)π
2

)

2
παnk

sin2
(

αnk − (n+1/2)π
2

)

+ 2
παnk

cos2
(

αnk − (n+1/2)π
2

) =
1

R0

that completes the proof for Eq. (3.24).

Finally, we prove Eq. (3.23). For p > 3, one has

‖unk‖pLp(D(R0))

‖unk‖pLp(D)

=

1∫

R0

dr r2 |jn(αnkr)|p

1∫

0
dr r2 |jn(αnkr)|p

=

αnk∫

αnkR0

dr r2 |jn(r)|p

αnk∫

0
dr r2 |jn(r)|p

Using the approximation (B.43), for each positive integer n, there exists a positive integer K1n such that

|jn(z)| < 2

z
, ∀z ∈ [αnkR0, αnk] , k > K1n. (B.44)

For k ≫ 1, using the inequality (B.44), one gets

αnk∫

αnkR0

dr r2 |jn(r)|p ≤ 2p

αnk∫

αnkR0

dz z2−p (B.45)

≤
(

2p

p− 3

)((
1

αnkR0

)p−3

−
(

1

αnk

)p−3
)

. (B.46)

Bringing the above results together, when k ≫ 1, one has

‖unk‖pLp(B(R0))

‖unk‖pLp(B)

<

(
2p

p−3

)((
1

αnkR0

)p−3
−
(

1
αnk

)p−3
)

1∫

0
dr r |Jn(r)|p

,

where the right-hand side tends to 0 as k →∞, that completes the proof.
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B3 No localization in rectangle-like domains

Theorem 3.4.1 relies on the following simple estimate.

Lemma B3.1. For 0 ≤ a < b and any positive integer m, one has

b∫

a

| sin(mx)|dx ≥
b∫

a

sin2(mx)dx ≥ ǫ(a, b) > 0,

b∫

a

| cos(mx)|dx ≥
b∫

a

cos2(mx)dx ≥ ǫ(a, b) > 0,

(B.47)

where

ǫ(a, b) = min

{
b− a

4
,
b− a

2
− 1

2

∣
∣
∣
∣

sin(n(b− a))

n

∣
∣
∣
∣ : n = 1, 2, . . . ,

[
2

b− a

]}

> 0, (B.48)

Proof. One has

b∫

a

sin2(mx)dx =
b− a

2
− sin (m(b− a)) cos (m(b+ a))

2m
> ǫ(a, b),

b∫

a

cos2(mx)dx =
b− a

2
+

sin (m(b− a)) cos (m(b+ a))

2m
> ǫ(a, b),

that implies the conclusion.

It is important to stress that the lower bound ǫ(a, b) does not depend on m.

The proof of Theorem 3.4.1 is a simple consequence.

Proof. The condition (3.31) ensures that all the eigenvalues are simple so that each eigenfunction is

un1,...,nd
(x1, ..., xd) =







sin(πn1x1/ℓ1)... sin(πndxd/ℓd) (Dirichlet),

cos(πn1x1/ℓ1)... cos(πndxd/ℓd) (Neumann).

For any open subset V , there exists a ball included in V and thus there exists a rectangle-like domain

ΩV = [a1, b1]× ... × [ad, bd] ⊂ V , with 0 ≤ ai < bi ≤ ℓi for all i = 1, ..., d. The L1-norm of u in V can be

estimated as

‖un1,...,nd
‖L1(V ) ≥ ‖un1,...,nd

‖L1(ΩV ) =
d∏

i=1

bi∫

ai

dxi







| sin(πnixi/ℓi)|
| cos(πnixi/ℓi)|

=
ℓ1...ℓd
πd

d∏

i=1

πbi/ℓi∫

πai/ℓi

dxi







| sin(nixi)|
| cos(nixi)|

≥ ℓ1...ℓd
πd

d∏

i=1

ǫ(πai/ℓi, πbi/ℓi),
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where the last inequality results from (B.47). To complete the proof, one uses the Jensen’s inequality for

Lp-norms and µd(V ) ≥ µd(ΩV ) = (b1 − a1)...(bd − ad)

‖un1,...,nd
‖Lp(V )

‖un1,...,nd
‖Lp(Ω)

>
‖un1,...,nd

‖L1(V )(µd(V ))
1
p

−1

‖un1,...,nd
‖L∞(Ω)(µd(Ω))

1
p

≥ 1

πd

d∏

i=1

(
bi − ai

ℓi

) 1
p

−1

ǫ

(

π
ai

ℓi
, π
bi

ℓi

)

> 0.

Since the right-hand side is strictly positive and independent of n1, ... , nd, the infimum of the left-hand

side over all eigenfunctions is strictly positive.

B4 Asymptotic behavior of Mathieu functions for large q

The large-q asymptotic expansions of cen(z, q) and sen+1(z, q) for z ∈ [0, π
2 ) and n = 0, 1, 2, ... are [83, 155]

cen(z, q) = Cn(q)

(

e2
√

q sin zh+
n (z)

∞∑

k=0

f+
k (z)

qk/2
+ e−2

√
q sin zh−

n (z)
∞∑

k=0

f−
k (z)

qk/2

)

, (B.49)

sen+1(z, q) = Sn+1(q)

(

e2
√

q sin zh+
n (z)

∞∑

k=0

f+
k (z)

qk/2
− e−2

√
q sin zh−

n (z)
∞∑

k=0

f−
k (z)

qk/2

)

, (B.50)

where

h+
n (z) = 2n+ 1

2

[

cos
(

1
2z + π

4

)]2n+1

(cos z)n+1 =

√

(1− sin z)n

(1 + sin z)n+1
, (B.51)

h−
n (z) = 2n+ 1

2

[

sin
(

1
2z + π

4

)]2n+1

(cos z)n+1 =

√

(1 + sin z)n

(1− sin z)n+1
, (B.52)

and the coefficients Cn(q) and Sn+1(q) are given explicitly in [155]. The coefficients f±
k (z) can be computed

through the recursive formulas given in [83], e.g.

f±
0 (z) = 1, f±

1 (z) =
2n + 1∓ (n2 + n+ 1

)
sin z

8 cos(z)2
.

When q is large enough, one can truncate the asymptotic expansions (B.49, B.50) by keeping only two

terms (k = 0, 1) and get accurate approximations for cen and sen+1, as illustrated on Fig. B.3.

It is convenient to define the functions

G±
n (z, q) = h+

n (z)± e−4
√

q sin(z)h−
n (z) + h+

n (z)
∞∑

k=1

f+
k (z)

qk/2
± e−4

√
q sin(z)h−

n (z)
∞∑

k=1

f−
k (z)

qk/2
,

in order to write

cen(z, q) = Cn(q)e2
√

q sin(z)G+
n (z, q), sen+1(z, q) = Sn+1(q)e2

√
q sin(z)G−

n (z, q).

In what follows, we will estimate the functions G±
n (z, q) by their leading terms, given that the remaining
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Figure B.3: The functions ce1(z, q) and se1(z, q) (solid and dashed lines), computed by our algorithm
with Kmax = 200, and their approximations (circles and triangles) by the asymptotic expansions (B.49,
B.50) truncated to two terms (k = 0, 1), with q = 20.

part is getting small for large q:

Lemma B4.1. For γ ∈ (0, π
2

)
, there exists Nγ,n > 0 such that for q > Nγ,n and z ∈ (0, γ)

∣
∣
∣
∣
∣

∞∑

k=1

f±
k (z)

qk/2

∣
∣
∣
∣
∣
<

1

2
. (B.53)

Now, we establish the upper and lower bounds for the functions G±
n .

Lemma B4.2. Let α ∈ (0, π
2

)

, γ ∈ (α, π
2

)

. Then, there exists Nγ,n > 0 such that for any β ∈ (α, γ) and

q > Nγ,n:

∣
∣G±

n (z1, q)
∣
∣ <

3

2

(

1 + h−
n (α)e−4

√
q sin(z1)

)

∀ z1 ∈ (0, α), (B.54)

∣
∣G±

n (z2, q)
∣
∣ >

1

2
h+

n (γ) ∀ z2 ∈ (β, γ), (B.55)

Proof. From Lemma B4.1, there exists Nγ,n > 0 such that for q > Nγ and z1 ∈ (0, α), one has

∣
∣G±

n (z1, q)
∣
∣ <

3

2

(

h+
n (z1) + h−

n (z1)e−4
√

q sin(z1)
)

<
3

2

(

1 + h−
n (α)e−4

√
q sin(z1)

)

.

For q > Nγ,n and z2 ∈ (β, γ), one has

∣
∣
∣G+

n (z2, q)
∣
∣
∣ >

1

2

(

h+
n (z2) + h−

n (z2)e−4
√

q sin(z2)
)

>
1

2
h+

n (γ) > 0

and

∣
∣
∣G−

n (z2, q)−
(

h+
n (z2)− h−

n (z2)e−4
√

q sin(z2)
)∣
∣
∣ <

1

2

(

h+
n (z2) + h−

n (z2)e−4
√

q sin(z2)
)

.
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The last inequality implies

∣
∣G−

n (z2, q)
∣
∣ > min

{(

h+
n (z2)− h−

n (z2)e−4
√

q sin(z2)
)

,
1

2

(

h+
n (z2)− 3h−

n (z2)e−4
√

q sin(z2)
)}

.

Since h−
n (z2) > 0 and h+

n (z2) is a decreasing function, one gets

∣
∣G−

n (z2, q)
∣
∣ >

1

2
h+

n (γ),

that completes the proof.

B5 Proofs for elliptical domains

Now we can prove Theorem 3.3.1.

We first consider the case i = 1. Using the symmetric properties of Mathieu functions [234], one has

‖unk1‖pLp(Ω\Ωα)

‖unk1‖p
Lp(Ωα)

=

α∫

0
|cen(z1, qnk1)|pdz1

π/2∫

α
|cen(z2, qnk1)|pdz2

.

Choosing β = π
4 + α

2 and γ = 3π
8 + α

4 , one gets

α∫

0
|cen(z1, qnk1)|pdz1

π/2∫

α
|cen(z2, qnk1)|pdz2

<

α∫

0
|cen(z1, qnk1)|pdz1

γ∫

β
|cen(z2, qnk1)|pdz2

.

From Lemma B4.2, there exists Nγ,n > 0 such that for q > Nγ,n,

α∫

0

|cen(z1, q)|pdz1 = (Cn(q))p

α∫

0

e2p
√

q sin z1|G+
n (z1, q)|pdz1

< (Cn(q))p
(

3

2

)p
α∫

0

( p
∑

k=0

(

p

k

)

[e2
√

q sin z1]p−2k(h−
n (α))k

)

dz1

≤ α(Cn(q))p
(

3

2

)p




[p/2]
∑

k=0

(

p

k

)

[e2
√

q sin α]p−2k(h−
n (α))k +

p
∑

k=[p/2]+1

(

p

k

)

(h−
n (α))k



 ,

where the terms em
√

q sin z1 were bounded by em
√

q sin α for m > 0, and by 1 for m ≤ 0 (here [x] denotes
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the integer part of x). In addition,

γ∫

β

|cen(z2, q)|pdz2 > (Cn(q))p
(

1

2

)p

(h+
n (γ))p

γ∫

β

e2p
√

q sin z2dz2

> (Cn(q))p
(

1

2

)p

(h+
n (γ))p(γ − β)e2p

√
q sin β,

from which

‖unk1‖p
Lp(Ω\Ωα)

‖unk1‖p
Lp(Ωα)

<
3pα

(γ − β)(h+
n (γ))p

e−2p
√

qnk1(sin β−sin α)

(

1 +





[p/2]
∑

k=1

(

p

k

)

(e2
√

q sin α)−2k(h−
n (α))k + e−2p

√
q sin α

p
∑

k=[p/2]+1

(

p

k

)

(h−
n (α))k





)

.

Taking q large enough, one can make the terms in large brackets smaller than any prescribed threshold

ǫ. For ǫ = 1, one can simplify the estimate as

‖unk1‖pLp(Ω\Ωα)

‖unk1‖pLp(Ωα)

< 2
3pα

(γ − β)(h+
n (γ))p

exp

[

−2p
√
qnk1(sin β − sinα)

]

.

Substituting β = π/4 + α/2 and γ = 3π/8 + α/4, one gets Eq. (3.27) after trigonometric simplifications.

For i = 2, one has

‖unk2‖pLp(Ω\Ωα)

‖unk2‖pLp(Ωα)

=

α∫

0
|sen+1(z1, qnk2)|pdz1

π/2∫

α
|sen+1(z2, qnk2)|pdz2

and similar analysis is applicable.

B6 Proofs for equilateral triangles

We denote the vertices of an equilateral triangle Ω as O(0, 0), A
(√

3/2, 1/2
)

, B(1, 0). Let Ω1 be an

equilateral triangle inside Ω (Figure B.4) as following

Ω1 =
{

y0 ≤ y ≤ x
√

3 + x0, y ≤
√

3(x1 − x)
}

, (B.56)

whose three vertices are O1 (xO1 , yO1), A1 (xA1, yA1) and B1 (xB1 , yB1). It is not difficult to see that

xO1 =
y0 − x0√

3
, xB1 =

√
3x1 − y0√

3
(B.57)

xA1 =

√
3x1 − x0

2
√

3
, yO1 = yB1 = y0, yA1 =

√
3x1 + x0

2
. (B.58)

If H(xH , yH) is the middle of the side O1B1, xH =
√

3x1−x0

2
√

3
and yH = y0. For any positive integer p, we
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O1 B1

A1

H

O

A

B

Ω11 Ω12

Figure B.4: An equilateral triangle Ω with three vertices: O, A and B.

consider

Ap =

∫

Ω1

u2
0,p(x, y)dxdy, Bp =

∫

Ω

u2
0,p(x, y)dxdy. (B.59)

We call Ω11 the triangle with vertices O1, A1, and H, and Ω12 the triangle with vertices O1, B1, and H.

From Eq. (3.34), we have

u2
0,p(x, y) =

3

2
− 1

2

[

cos
(

4πpd1

)

+ cos
(

4πpd2

)

+ cos
(

4πpd3

)]

+ cos
(

2πp
(

d1 − d2

))

+ cos
(

2πp
(

d1 − d3

))

+ cos
(

2πp
(

d2 − d3

))

−
[

cos
(

2πpd1

)

+ cos
(

2πpd2

)

+ cos
(

2πpd3

)]

where d1, d2 and d3 are defined in Eq. (3.34). We will compute the following integrals:
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+ The first term:

I11(p) =

∫

Ω11

cos
(

4πpd1

)

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos

(

4πp
2y√

3

)

dydx

=

√
3

(8πp)2

[

cos

[
8πp√

3

(

xO1

√
3 + x0

)]

− cos

[
8πp√

3

(

xH

√
3 + x0

)]]

−
√

3

8πp
(xH − xO1) sin

[
8πp√

3
y0

]

=

√
3

(8πp)2

[

cos

[
8πp√

3
y0

]

− cos

[
8πp√

3
yA1

]]

−
√

3

8πp
(xH − xO1) sin

[
8πp√

3
y0

]

I12(p) =

∫

Ω12

cos
(

4πpd1

)

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos

(

4πp
2y√

3

)

dydx

= −
√

3

(8πp)2 [cos [8πp (x1 − xB1)]− cos [8πp (x1 − xH)]]

−
√

3

8πp
(xB1 − xH) sin

[
8πp√

3
y0

]

= −
√

3

(8πp)2

[

cos

[
8πp√

3
y0

]

− cos

[
8πp√

3
yA1

]]

−
√

3

8πp
(xB1 − xH) sin

[
8πp√

3
y0

]

+ The second term:

I21(p) =

∫

Ω11

cos
(

4πpd2

)

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos

(

4πp

(

x− y√
3

))

dydx

= −
√

3

(4πp)2

[

cos

[

4πp

(

xH −
y0√

3

)]

− cos

[

4πp

(

xO1 −
y0√

3

)]]

+

√
3

4πp
(xH − xO1) sin

[
4πp√

3
x0

]

I22(p) =

∫

Ω12

cos
(

4πpd2

)

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos

(

4πp

(

x− y√
3

))

dydx

= −
√

3

(4πp)2

[

cos

[

4πp

(

xB1 −
y0√

3

)]

− cos

[

4πp

(

xH −
y0√

3

)]]

+

√
3

2 (4πp)2 [cos [4πp (2xB1 − x1)]− cos [4πp (2xH − x1)]]
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+ The third term:

I31(p) =

∫

Ω11

cos
(

4πpd3

)

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos

(

4πp

(

x+
y√
3

))

dydx

=

√
3

(4πp)2

[

cos

[

4πp

(

xH +
y0√

3

)]

− cos

[

4πp

(

xO1 +
y0√

3

)]]

−
√

3

2 (4πp)2

[

cos

[

4πp

(

2xH +
x0√

3

)]

− cos

[

4πp

(

2xO1 +
x0√

3

)]]

I32(p) =

∫

Ω12

cos
(

4πpd3

)

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos

(

4πp

(

x+
y√
3

))

dydx

=

√
3

(4πp)2

[

cos

[

4πp

(

xB1 +
y0√

3

)]

− cos

[

4πp

(

xH +
y0√

3

)]]

+

√
3

4πp
(xB1 − xH) sin [4πpx1]

+ The fourth term:

I41(p) =

∫

Ω11

cos
(

2πpd1

)

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos

(

2πp
2y√

3

)

dydx

=

√
3

(4πp)2

[

cos

[
4πp√

3

(

xO1

√
3 + x0

)]

− cos

[
4πp√

3

(

xH

√
3 + x0

)]]

−
√

3

4πp
(xH − xO1) sin

[
4πp√

3
y0

]

=

√
3

(4πp)2

[

cos

[
4πp√

3
y0

]

− cos

[
4πp√

3
yA1

]]

−
√

3

4πp
(xH − xO1) sin

[
4πp√

3
y0

]

I42(p) =

∫

Ω12

cos
(

2πpd1

)

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos

(

2πp
2y√

3

)

dydx

= −
√

3

(4πp)2 [cos [4πp (x1 − xB1)]− cos [4πp (x1 − xH)]]

−
√

3

4πp
(xB1 − xH) sin

[
4πp√

3
y0

]

= −
√

3

(4πp)2

[

cos

[
4πp√

3
y0

]

− cos

[
4πp√

3
yA1

]]

−
√

3

4πp
(xB1 − xH) sin

[
4πp√

3
y0

]
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+ The fifth term:

I51(p) =

∫

Ω11

cos
(

2πpd2

)

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos

(

2πp

(

x− y√
3

))

dydx

= −
√

3

(2πp)2

[

cos

[

2πp

(

xH −
y0√

3

)]

− cos

[

2πp

(

xO1 −
y0√

3

)]]

+

√
3

2πp
(xH − xO1) sin

[
2πp√

3
x0

]

I52(p) =

∫

Ω12

cos
(

2πpd2

)

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos

(

2πp

(

x− y√
3

))

dydx

= −
√

3

(2πp)2

[

cos

[

2πp

(

xB1 −
y0√

3

)]

− cos

[

2πp

(

xH −
y0√

3

)]]

+

√
3

2 (2πp)2 [cos [2πp (2xB1 − x1)]− cos [2πp (2xH − x1)]]

+ The sixth term:

I61(p) =

∫

Ω11

cos
(

2πpd3

)

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos

(

2πp

(

x+
y√
3

))

dydx

=

√
3

(2πp)2

[

cos

[

2πp

(

xH +
y0√

3

)]

− cos

[

2πp

(

xO1 +
y0√

3

)]]

−
√

3

2 (2πp)2

[

cos

[

2πp

(

2xH +
x0√

3

)]

− cos

[

2πp

(

2xO1 +
x0√

3

)]]

I62(p) =

∫

Ω12

cos
(

2πpd3

)

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos

(

2πp

(

x+
y√
3

))

dydx

=

√
3

(2πp)2

[

cos

[

2πp

(

xB1 +
y0√

3

)]

− cos

[

2πp

(

xH +
y0√

3

)]]

+

√
3

2πp
(xB1 − xH) sin [2πpx1]
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+ The seventh term:

I71(p) =

∫

Ω11

cos
(

2πp
(

d1 − d2

))

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos
(

2πp
(

x−
√

3y
))

dydx

= −
√

3

6 (2πp)2

[

cos
[

2πp
(

2xH +
√

3x0

)]

− cos
[

2πp
(

2xO1 +
√

3x0

)]]

−
√

3

3 (2πp)2

[

cos
[

2πp
(

xH −
√

3y0

)]

− cos
[

2πp
(

xO1 −
√

3y0

)]]

I72(p) =

∫

Ω12

cos
(

2πp
(

d1 − d2

))

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos
(

2πp
(

x−
√

3y
))

dydx

=

√
3

12 (2πp)2 [cos [2πp (4xB1 − 3x1)]− cos [2πp (4xH − 3x1)]]

−
√

3

3 (2πp)2

[

cos
[

2πp
(

xB1 −
√

3y0

)]

− cos
[

2πp
(

xH −
√

3y0

)]]

+ The eighth term:

I81(p) =

∫

Ω11

cos
(

2πp
(

d1 − d3

))

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos
(

2πp
(

x+
√

3y
))

dydx

= −
√

3

12 (2πp)2

[

cos
[

2πp
(

4xH +
√

3x0

)]

− cos
[

2πp
(

4xO1 +
√

3x0

)]]

+

√
3

3 (2πp)2

[

cos
[

2πp
(

xH +
√

3y0

)]

− cos
[

2πp
(

xO1 +
√

3y0

)]]

I82(p) =

∫

Ω12

cos
(

2πp
(

d1 − d3

))

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos
(

2πp
(

x+
√

3y
))

dydx

=

√
3

12 (2πp)
[cos [2πp (2xB1 − 3x1)]− cos [2πp (2xH − 3x1)]]

+

√
3

3 (2πp)2

[

cos
[

2πp
(

xB1 +
√

3y0

)]

− cos
[

2πp
(

xH +
√

3y0

)]]
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+ The last term:

I91(p) =

∫

Ω11

cos
(

2πp
(

d2 − d3

))

dydx =

xH∫

xO1

x
√

3+x0∫

y0

cos (4πpx)dydx

=

√
3

(4πp)
[xH sin (4πpxH)− xO1 sin (4πpxO1)] +

√
3

(4πp)2 [cos (4πpxH)]

−
√

3

(4πp)2 [cos (4πpxO1)] +
x0 − y0

4πp
[sin (4πpxH)− sin (4πpxO1)]

I92(p) =

∫

Ω12

cos
(

2πp
(

d2 − d3

))

dydx =

xB1∫

xH

√
3(x1−x)∫

y0

cos (4πpx)dydx

= − 1

(4πp)
[xB1 sin (4πpxB1)− xH sin (4πpxH)]− 1

(4πp)2 [cos (4πpxB1)]

+
1

(4πp)2 [cos (4πpxH)] +

√
3x1 − y0

4πp
[sin (4πpxB1)− sin (4πpxH)]

Finally, one can see that Ap = 3
2 |Ω1| +

9∑

i=1

2∑

j=1
Iij(p) = 3

2 |Ω1| + O
(

1
p

)

. Similarly, Bp = 3
2 |Ω1| + O

(
1
p

)

.

From Theorem 2.1.12, Ap > 0, Bp > 0,∀p = 1, 2, . . . . Moreover, lim
p→∞

Ap = 3
2 |Ω1| and lim

p→∞
Bp = 3

2 |Ω1|.
Then, there exists a universal constant CΩ1 > 0, independent of p, such that Bp ≤ CΩ1Ap, for any positive

integer p. It is equivalent to

∫

Ω

u2
3p,0(x, y)dxdy ≤ CΩ1

∫

Ω1

u2
3p,0dxdy, ∀p = 1, 2, . . . (B.60)

As a consequence, one obtains the conclusion for a general open subset V ⊂ Ω.



Appendix C

Algorithms for computing Mathieu

functions

C1 Calculation of Mathieu functions

Several algorithms have been proposed for a numerical computation of Mathieu functions [5, 103, 143,

197, 220]. The main difficulty is the computation of Mathieu characteristic numbers (MCNs). Alhargan

introduced a complete method for calculating these MCNs of integer orders by using some new recurrence

relations for MCNs [5]. His algorithm is a good compromise between complexity, acurracy, speed and

ease of use. However, we use a simpler approach by Zhang et al. [234].

a. Angular Mathieu functions

The common formulas for angular Mathieu functions cen(z, q) and sen(z, q) are

ce2r(z, q) =
∞∑

k=0

A2r
2k cos 2kz,

ce2r+1(z, q) =
∞∑

k=0

A2r+1
2k+1 cos (2k + 1)z,

se2r+1(z, q) =
∞∑

k=0

B2r+1
2k+1 sin (2k + 1)z,

se2r+2(z, q) =
∞∑

k=0

B2r+2
2k+2 sin (2k + 2)z,

(C.1)

in which ce2r(z, q) and ce2r+1(z, q) are even functions of z with periods π and 2π, respectively, while

se2r+1(z, q) and se2r+2(z, q) are odd functions of z with periods π and 2π, respectively. Specifically,

when q = 0, the angular Mathieu functions become cen(z, 0) = cosnz and sen(z, 0) = sinnz (since sin nz

becomes 0 for n = 0, se0(z, q) was excluded from the analysis). The above coefficients satisfy the following

recurrent relations:

170
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• for the series
{

A2r
2k

}

:

cA2r
0 − qA2r

2 = 0

(c− 4)A2r
2 − q

(

2A2r
0 +A2r

4

)

= 0
[

c− (2k)2
]

A2r
2k − q

(

A2r
2k−2 +B2r

2k+2

)

= 0 (k ≥ 2).

(C.2)

• for the series
{

A2r+1
2k+1

}

:

(c− 1− q)A2r+1
1 − qA2r+1

1 = 0
[

c− (2k + 1)2
]

A2r+1
2k+1 − q

(

A2r+1
2k−1 +B2r+1

2k+3

)

= 0 (k ≥ 1).
(C.3)

• for the series
{

B2r+1
2k+1

}

:

(c− 1 + q)B2r+1
1 − qB2r+1

1 = 0
[

c− (2k + 1)2
]

B2r+1
2k+1 − q

(

B2r+1
2k−1 +B2r+1

2k+3

)

= 0 (k ≥ 1).
(C.4)

• for the series
{

B2r+2
2k+2

}

:

(c− 4)B2r+2
2 − qB2r+2

4 = 0
[

c− (2k + 2)2
]

B2r+2
2k+2 − q

(

B2r+2
2k +B2r+2

2k+4

)

= 0 (k ≥ 1).
(C.5)

Due to the orthogonal relations of the Mathieu functions, the normalization relations can be obtained as

2
(

A2r
0

)2
+

∞∑

k=1

(

A2r
2k

)2
=

∞∑

k=0

(

A2r+1
2k+1

)2
= 1,

∞∑

k=0

(

B2r+1
2k+1

)2
=

∞∑

k=0

(

B2r+2
2k+2

)2
= 1.

(C.6)

Using these relations, one can reduce the problem of calculating expansion coefficients to an eigenproblem

for infinite-dimensional tridiagonal matrices Ci, i = 1, 2, 3, 4, as shown in Appendix C2. In particular,

the characteristic value c can be determined as an eigenvalue of each matrix Ci, while the expansion

coefficient series is given by the corresponding eigenvector. In practice, one has to truncate the above

expansions for angular Mathieu functions at some k = Kmax (see Appendix C3 and C4 for details).

b. Radial Mathieu functions
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Index kc̃
2

√
4q

1 4.21899612 4.2189961192
2 5.30803620 5.3080361961
3 6.29769953 6.2976995316
4 7.24310924 7.2431092413
5 8.16335720 8.1633572021
6 9.06741194 9.0674119150
7 9.96018976 9.9601897419
8 10.84465048 10.844650431
9 11.72268331 11.722683203
10 12.59552397 12.595523897

Table C.1: Comparison of the first 10 values of kc̃
2 with R0 = 2, a = 1, and c̃ = 2 between our algorithm

and Chen et al. [41] (second column).

For radial Mathieu functions, ones uses the classical repsresentation

Mc
(j)
2r (z, q) =

1

A2r
0

∞∑

k=0

(−1)k+rA2r
2k(q)Jk(u1)Z

(j)
k (u2),

Mc
(j)
2r+1(z, q) =

1

A2r+1
1

∞∑

k=0

(−1)k+rA2r+1
2k+1(q)

[

Jk(u1)Z
(j)
k+1(u2) + Jk+1(u1)Z

(j)
k (u2)

]

,

Ms
(j)
2r+1(z, q) =

1

B2r+1
1

∞∑

k=0

(−1)k+rB2r+1
2k+1(q)

[

Jk(u1)Z
(j)
k+1(u2)− Jk+1(u1)Z

(j)
k (u2)

]

,

Mc
(j)
2r+2(z, q) =

1

B2r+2
2

∞∑

k=0

(−1)k+rA2r+2
2k+2(q)

[

Jk(u1)Z
(j)
k+2(u2)− Jk+2(u1)Z

(j)
k (u2)

]

,

(C.7)

where u1 =
√
qe−z and u2 =

√
qez. The index j ∈ {1, 2} distinguishes two kinds of radial Mathieu

functions for which Z
(1)
k (x) = Jk(x) and Z

(2)
k (x) = Yk(x) are Bessel functions of the first and second

kinds. Since the computation of radial Mathieu functions employes the expansion coefficients of angular

Mathieu functions, one needs to compute the characteristic values and the expansion coefficients only

once.

Since we have rebuilt the computation of Mathieu functions and modified Mathieu functions, we check

the accuracy of the numerical algorithm by comparing their values to whose published in the literature

[41, 129, 234]. We also checked that the truncation of tridiagonal matrices to the size Kmax = 200 was

enough for getting very accurate results.

Example C1.1. In Table C1, we choose a = 1 and compare numerical values of the modified Mathieu

function Ce5(1, q) by our algorithm and several other algorithms. From this table, we conclude that our

numerical results are very accurate.

Example C1.2. In this example, we check again all results in [41] by our algorithm. In [41], the authors

compute the first 28 roots kc̃
2 of the equation Ce11(R0, q), with R0 = 2 and a = 1. Note that, the notations

k2 = 16q
c̃2 and c̃ = 2 were used in [41], so it is equivalent that kc̃

2 =
√

4q, where q is the zero of the function
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q Chen’s Our algorithm Kirkpatrick’s

1 54.60629927 54.606299266 54.6063
2 39.51952105 39.519521053 39.5195
3 28.02845421 28.028454209 29.0285
4 19.37904040 19.379040397 19.3790
5 12.95741669 12.957416687 12.9574
6 8.26755682 8.267556817 8.2676
7 4.91210250 4.912102499 4.9121
8 2.57540926 2.575409256 2.5754
9 1.00823869 1.008238689 1.0082
10 0.01416872 0.014168715 0.01418
12 −0.84047602 −0.840476022 −0.84049
14 −0.86017691 −0.860176915 −0.86016
16 −0.54740402 −0.547404017 −0.54741
18 −0.17203806 −0.172038062 −0.17196
20 0.12766301 0.127663014 −0.12777

Table C.2: Comparison of the modified Mathieu function Ce5(1, q), obtained by Chen’s algorithm (second
column, from [41]), by our algorithms (third column), and by Kirkpatrick (last column, from [129], Table
6).

Ce11(R0, q) = 0 in our algorithm. In Table C1, we solve this equation again and compare the first 10

values.

C2 Computation of Characteristic Values

The characteristic values c(q) can be determined by solving an eigenvalue problem for infinite-dimensional

tridiagonal matrices C1, C2, C3 and C4 [234]:

C1 =















0 q 0 0 . . . 0 . . .

2q 4 q 0 . . . 0 . . .

0 q 16 q . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . q (2k)2 q . . .

. . . . . . . . . . . . . . . . . . . . .















(C.8)

C2 =















1 + q q 0 0 . . . 0 . . .

2q 9 q 0 . . . 0 . . .

0 q 25 q . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . q (2k + 1)2 q . . .

. . . . . . . . . . . . . . . . . . . . .















(C.9)



Appendix C. Algorithms for computing Mathieu functions 174

C3 =















1− q q 0 0 . . . 0 . . .

2q 9 q 0 . . . 0 . . .

0 q 25 q . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . q (2k + 1)2 q . . .

. . . . . . . . . . . . . . . . . . . . .















(C.10)

C4 =















4 q 0 0 . . . 0 . . .

2q 16 q 0 . . . 0 . . .

0 q 36 q . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . q (2k + 2)2 q . . .

. . . . . . . . . . . . . . . . . . . . .















(C.11)

For computing angular and radial Mathieu functions, one can truncate the expansions in (C.7) at some

k = Kmax. After that, one can calculate the corresponding expansion coefficient series
{
A2r

2k

}Kmax

k=0 ,
{

A2r+1
2k+1

}Kmax

k=0
,
{

B2r+1
2k+1

}Kmax

k=0
and

{

B2r+2
2k+2

}Kmax

k=0
by solving the eigenvalue problems for the truncated

tridiagonal matrices C̃i of size Kmax + 1.

It is important to note that these above matrices are sparse, and moreover, the matrix C1 is non-symmetric

only at one entry (2, 1), while the other matrices are symmetric. The eigendecomposition problems for

symmetric and tridiagonal matrices C̃i, i = 1, 2, 3, 4 can thus be solved by standard routines (e.g., the

function eigs in Matlab).

C3 Computation of Expansion Coefficients

We summarize all necessary algorithms as following

Algorithm C3.1. (Computing
{
A2r

2k

}Kmax

k=0 )

• Input: r, q,Kmax.

• Step 1: One solves the eigenvalue problem of the truncated matrix C̃1. Suppose that all eigenvalues

are c0(q) < c1(q) < · · · < cKmax(q) and the corresponding eigenvectors {uk}Kmax
k=0 .

• Step 2: Choose

ur =










A2r
0

A2r
2

. . .

A2r
2Kmax










,

and normalize
{

A2r
2k

}Kmax

k=0 by (C.6).
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• Output:
{
A2r

2k

}Kmax

k=0 .

Algorithm C3.2. (Computing
{

A2r+1
2k+1

}Kmax

k=0
)

• Input: r, q,Kmax.

• Step 1: One solves the eigenvalue problem of the truncated matrix C̃2. Suppose that all eigenvalues

are c0(q) < c1(q) < · · · < cKmax(q) and the corresponding eigenvectors {uk}Kmax
k=0 .

• Step 2: Choose

ur =










A2r+1
1

A2r+1
3

. . .

A2r+1
2Kmax+1










,

and normalize
{

A2r+1
2k+1

}Kmax

k=0
by (C.6).

• Output:
{

A2r+1
2k+1

}Kmax

k=0
.

Algorithm C3.3. (Computing
{

B2r+1
2k+1

}Kmax

k=0
)

• Input: r, q,Kmax.

• Step 1: One solves the eigenvalue problem of the truncated matrix C̃3. Suppose that all eigenvalues

are c0(q) < c1(q) < · · · < cKmax(q) and the corresponding eigenvectors {uk}Kmax
k=0 .

• Step 2: Choose

ur =










B2r+1
1

B2r+1
3

. . .

B2r+1
2Kmax+1










,

and normalize
{

B2r+1
2k+1

}Kmax

k=0
by (C.6).

• Output:
{

B2r+1
2k+1

}Kmax

k=0
.

Algorithm C3.4. (Computing
{

B2r+2
2k+2

}Kmax

k=0
)

• Input: r, q,Kmax.

• Step 1: One solves the eigenvalue problem of the truncated matrix C̃4. Suppose that all eigenvalues

are c0(q) < c1(q) < · · · < cKmax(q) and the corresponding eigenvectors {uk}Kmax
k=0 .
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• Step 2: Choose

ur =










B2r+2
2

B2r+2
4

. . .

B2r+2
2Kmax+2










,

and normalize
{

B2r+2
2k+2

}Kmax

k=0
by (C.6).

• Output:
{

B2r+2
2k+2

}Kmax

k=0
.

C4 Computation of Mathieu functions

After computing the expansion coefficients, Mathieu functions are then computed by the recurrence

relations (C.2), (C.3) ,(C.4), and (C.5):

Algorithm C4.1. (Computing cem(z, q))

• Input: m, z, q,Kmax.

• Step 1:

– If m = 2r: use Algorithm C3.1 to compute

u =










A2r
0

A2r
2

. . .

A2r
2Kmax










, v =










v0

v1

. . .

vKmax










,

where vk = cos 2kz.

– If m = 2r + 1: use Algorithm C3.2 to compute

u =










A2r+1
1

A2r+1
3

. . .

A2r+1
2Kmax+1










, v =










v0

v1

. . .

vKmax










,

where vk = cos (2k + 1) z.

• Step 2: Compute

cem(z, q) = u′v.

• Output: return cem(z, q) .
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Algorithm C4.2. (Computing sem(z, q))

• Input: m, z, q,Kmax.

• Step 1:

– If m = 2r + 1: use Algorithm C3.3 to compute

u =










B2r+1
1

B2r+1
3

. . .

B2r+1
2Kmax+1










, v =










v0

v1

. . .

vKmax










,

where vk = sin (2k + 1) z.

– If m = 2r + 2: use Algorithm C3.4 to compute

u =










B2r+2
2

B2r+2
4

. . .

B2r+2
2Kmax+2










, v =










v0

v1

. . .

vKmax










,

where vk = sin (2k + 2) z.

• Step 2: Compute

sem(z, q) = u′v.

• Output: return sem(z, q) .

Algorithm C4.3. (Computing Mc(j)
m (z, q))

• Input: m, z, q,Kmax.

• Step 1:

– If m = 2r: use Algorithm C3.1 to compute

u =










A2r
0

A2r
2

. . .

A2r
2Kmax










, v =
1

u(1, 1)










v0

v1

. . .

vKmax










,

where vk = (−1)k+rJk(u1)Z
(j)
k (u2).
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– If m = 2r + 1: use Algorithm C3.2 to compute

u =










A2r+1
1

A2r+1
3

. . .

A2r+1
2Kmax+1










, v =
1

u(1, 1)










v0

v1

. . .

vKmax










,

where vk = (−1)k+r
[

Jk(u1)Z
(j)
k+1(u2) + Jk+1(u1)Z

(j)
k (u2)

]

.

Here, u1 =
√
qe−z, u2 =

√
qez, Z(1)

k (x) = Jk(x) and Z(2)
k (x) = Yk(x).

• Step 2: Compute

Mc(j)
m (z, q) = u′v.

• Output: return Mc(j)
m (z, q) .

Algorithm C4.4. (Computing Ms(j)
m (z, q))

• Input: m, z, q,Kmax.

• Step 1:

– If m = 2r + 1: use Algorithm C3.3 to compute

u =










B2r+1
1

B2r+1
3

. . .

B2r+1
2Kmax+1










, v =
1

u(1, 1)










v0

v1

. . .

vKmax










,

where vk = (−1)k+r
[

Jk(u1)Z
(j)
k+1(u2)− Jk+1(u1)Z

(j)
k (u2)

]

.

– If m = 2r + 2: use Algorithm C3.4 to compute

u =










B2r+2
2

B2r+2
4

. . .

B2r+2
2Kmax+2










, v =
1

u(1, 1)










v0

v1

. . .

vKmax










,

where vk = (−1)k+r
[

Jk(u1)Z
(j)
k+2(u2)− Jk+2(u1)Z

(j)
k (u2)

]

.

Here, u1 =
√
qe−z, u2 =

√
qez, Z(1)

k (x) = Jk(x) and Z(2)
k (x) = Yk(x).

• Step 2: Compute

Ms(j)
m (z, q) = u′v.

• Output: return Ms(j)
m (z, q) .
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q m = 0 m = 1 m = 2 m = 3 m = 4

0 0 1 4 9 16
1 −0.455138604 1.859108073 4.371300983 9.078368847 16.033832340
2 −1.513956885 2.379199880 5.172665133 9.370322484 16.141203786
3 −2.834391890 2.519039088 6.045196852 9.915506290 16.338720746
4 −4.280518818 2.318008170 6.829074835 10.671027103 16.649818907
5 −5.800046021 1.858187542 7.449109740 11.548832036 17.096581684
6 −7.368830832 1.214278164 7.870064475 12.465600683 17.688782955
7 −8.973742506 0.438349090 8.086623145 13.358421316 18.416608662
8 −10.606729236 −0.435943601 8.115238830 14.181880362 19.252705059
9 12.262414218 −1.386701566 7.982843163 14.903679668 20.160926386

Table C.3: Characteristic values of cem(z, q) with Kmax = 200.

C5 Computing Mathieu functions at many points

In principle, for given m, q, one can use Algorithms C4.1, C4.2, C4.3 and C4.4 to compute values of

angular Mathieu functions cem(z0, q), sem+1(z0, q) and radial Mathieu functions Mc(j)
m (z0, q),Ms

(j)
m+1(z0, q)

at a point z0. However, when computing these functions at many points, for example, calculating an

eigenfunction at all points in an elliptical mesh by PDETool, it is not efficient to repeat these algorithms

at each point. Assume that one needs to compute the values of these Mathieu functions at n points

{z1, z2, . . . , zn}. In that case, one has to compute the expansion coefficient series only once, and then use

these coefficients and Eq. (C.1) to get the results at zi (i = 1, . . . , n). For this reason, one can use the

following algorithm

Algorithm C5.1. (Computing cem(z, q), sem+1(z, q), Mc(j)
m (z, q) or Ms

(j)
m+1(z, q) at n points {z1, z2, . . . , zn})

• Input: m, q,Kmax and {z1, z2, . . . , zn}.

• Step 1: For the expected Mathieu function, compute the corresponding expansion coefficients
{
A2r

2k

}Kmax

k=0 ,
{

A2r+1
2k+1

}Kmax

k=0
,
{

B2r+1
2k+1

}Kmax

k=0
or
{

B2r+2
2k+2

}Kmax

k=0
by Algorithm C3.1, C3.2, C3.3 or C3.4.

• Step 2: For each zi ∈ {z1, z2, . . . , zn}, use the expansion coefficients computed in Step 1 and zi for

truncating into Eq. (C.1) or (C.7) like Algorithms C4.1, C4.2, C4.3 and C4.4 to get the value of

the expected Mathieu function at this point.

• Output: return all computed results.

C6 Computational tables

Using the above algorithms, we created the following tables, which may be helpful for readers to check

their calculation of Mathieu functions.
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q m = 1 m = 2 m = 3 m = 4 m = 5

0 1 4 9 16 25
1 −0.110248817 3.917024773 9.047739260 16.032970081 25.020840823
2 −1.390676501 3.672232706 9.140627738 16.127687953 25.083349030
3 −2.785379700 3.276921970 9.223132848 16.272701196 25.187079803
4 −4.259182901 2.746881027 9.261446132 16.452035290 25.330544872
5 −5.790080599 2.099460445 9.236327714 16.648219937 25.510816046
6 −7.363911012 1.351381155 9.137905846 16.844601644 25.723410652
7 −8.971202351 0.517545407 8.962385459 17.026660783 25.962447176
8 −10.605368139 −0.389361770 8.709914358 17.182527771 26.220999473
9 −12.261661653 −1.358810117 8.383119158 17.303010962 26.491547241

Table C.4: Characteristic values of sem(z, q) with Kmax = 200.

k m = 0 m = 1 m = 2 m = 3 m = 4

0 0.007626518 0.053598748 0.245888349 0.704827934 1.127106792
1 0.008631881 0.058224751 0.257429643 0.716794783 1.122152122
2 0.011890635 0.072755792 0.292515785 0.751420208 1.104754244
3 0.018163645 0.099129840 0.352270238 0.804576169 1.067584319
4 0.028821870 0.140469081 0.437663770 0.868480904 0.999481596
5 0.045973997 0.200791397 0.548111731 0.930742353 0.887476524
6 0.072581757 0.284372427 0.679528225 0.973858031 0.720264157
7 0.112481611 0.394589841 0.822112479 0.976023743 0.493186097
8 0.170197928 0.532165534 0.958512543 0.914144106 0.214008154
9 0.250418807 0.692937976 1.063412814 0.769537055 −0.092315174
10 0.357040942 0.865645544 1.105781366 0.535802627 −0.382664667
11 0.491801944 1.030591606 1.054662779 0.226789996 −0.601399228
12 0.6527102141 1.160289964 0.888276725 −0.118865411 −0.693815322
13 0.832706667 1.222990778 0.604409424 −0.440533066 −0.625176856
14 1.019145539 1.189187885 0.228347198 −0.667919481 −0.398957918
15 1.194634216 1.039919774 −0.185995131 −0.741313933 −0.065523331
16 1.339445822 0.774395216 −0.564604034 −0.633505011 0.285829580
17 1.435165432 0.413936167 −0.830827857 −0.364310367 0.552131051
18 1.468660471 0.000000000 −0.926759264 −0.000000000 0.651324612

Table C.5: Mathieu functions cem(z, q) with Kmax = 200, q = 10 and z = kπ
36 .
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k m = 1 m = 2 m = 3 m = 4 m = 5

0 0 0 0 0 0
1 0.004008864 0.022333463 0.075602285 0.173365551 0.294755345
2 0.009061572 0.048447659 0.157907189 0.349591356 0.573379470
3 0.016407523 0.082417037 0.253106061 0.529184405 0.816764588
4 0.027711005 0.128791303 0.366088158 0.707957455 1.001001300
5 0.045255052 0.192529657 0.499154634 0.874932104 1.097923031
6 0.072104509 0.278524592 0.650181014 1.011102993 1.079151892
7 0.112156846 0.390555937 0.810464774 1.090088042 0.924174575
8 0.169972731 0.529602733 0.962917266 1.081850768 0.631534785
9 0.250262080 0.691656459 1.081702815 0.960234992 0.229995316
10 0.356934814 0.865526742 1.134640982 0.713721899 −0.215738525
11 0.491736521 1.031519867 1.089327172 0.356717576 −0.610888766
12 0.652680162 1.162097406 0.922742898 −0.063405298 −0.851725542
13 0.832708813 1.225421853 0.632252755 −0.468942933 −0.859260387
14 1.019177082 1.191892921 0.244040712 −0.767449961 −0.614578909
15 1.194691443 1.042483685 −0.185605609 −0.878382249 −0.179275304
16 1.339523355 0.776398714 −0.579189641 −0.762530757 0.313448765
17 1.435256082 0.415035173 −0.856332566 −0.441982586 0.699950206
18 1.468755664 0.000000000 −0.956262144 −0.000000000 0.846038434

Table C.6: Mathieu functions sem(z, q) with Kmax = 200, q = 10 and z = kπ
36 .

z m = 0 m = 1 m = 2 m = 3 m = 4

0.0 0.332122615 0.371203150 0.441872647 0.546737927 0.467102045
0.2 0.129816272 0.215369357 0.335595266 0.495488437 0.474932079
0.4 0.230408874 −0.127448229 0.052166842 0.322398207 0.467346828
0.6 −0.251122288 −0.320089063 −0.254281879 0.016914506 0.352245174
0.8 0.139122673 −0.075999430 −0.278230676 −0.276099346 0.045538281
1.0 0.199455250 0.262138333 0.099390624 −0.194128818 −0.268958658
1.2 −0.220574331 −0.036427802 0.201921817 0.215214749 −0.074585906
1.4 0.102124849 −0.132183115 −0.218473516 −0.013980652 0.221009347
1.6 −0.056100683 0.159796027 0.168024720 −0.069527138 −0.203183617
1.8 0.115703622 −0.099125208 −0.174506332 0.019722580 0.184918357
2.0 −0.157345656 −0.083590927 0.121379496 0.131761064 −0.084989638

Table C.7: Modified Mathieu functions Mc(1)
m (z, q) with Kmax = 200, q = 10.
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k m = 0 m = 1 m = 2 m = 3 m = 4

0.0 0.404999050 0.491467279 0.605582252 0.451660995 0.150452642
0.2 0.282688376 0.412368634 0.573364459 0.464496562 0.171886282
0.4 −0.016244620 0.189447366 0.462450425 0.488134607 0.235917413
0.6 −0.296077529 −0.112233018 0.244792612 0.472643070 0.331783123
0.8 −0.305807925 −0.332680285 −0.064878520 0.334290961 0.407276972
1.0 0.024144065 −0.250375761 −0.310204967 0.024731667 0.339075692
1.2 0.284535369 0.128913811 −0.203810720 −0.276718680 0.023636964
1.4 −0.024212844 0.232012077 0.197958688 −0.136838161 −0.273733535
1.6 −0.196630636 −0.193387510 0.091011737 0.240678789 0.014205214
1.8 0.214902382 0.050257739 −0.198179490 −0.123060552 0.154823555
2.0 −0.192891034 −0.015072841 0.191631508 0.071838061 −0.171071700

Table C.8: Modified Mathieu functions Mc(1)
m (z, q) with Kmax = 200, q = 5.

z m = 1 m = 2 m = 3 m = 4 m = 5

0.0 0 0 0 0 0
0.2 0.301260817 −0.292997874 0.262742684 −0.197435311 0.110612450
0.4 0.217308520 −0.319932923 0.381448654 −0.355614796 0.240376373
0.6 −0.164516936 −0.012428757 0.227223019 −0.375166960 0.360546042
0.8 −0.243685476 0.284490373 −0.141265707 −0.131669932 0.336939817
1.0 0.166240482 0.058673840 −0.258284059 0.232676804 0.019419331
1.2 0.090851527 −0.241581481 0.150100227 0.116887381 −0.262672811
1.4 −0.192710753 0.178116954 0.052254263 −0.226626571 0.113144618
1.6 0.190647344 −0.121995786 −0.112631351 0.196841139 −0.003617280
1.8 −0.138757611 0.152755184 0.054956289 −0.184266632 0.035017342
2.0 −0.046228277 −0.142054020 0.113384891 0.096012978 −0.153042158

Table C.9: Modified Mathieu functions Ms(1)
m (z, q) with Kmax = 200, q = 10.

k m = 1 m = 2 m = 3 m = 4 m = 5

0.0 0 0 0 0 0
0.2 0.281792834 −0.242707948 0.168187100 −0.081713955 0.027477039
0.4 0.382965213 −0.399693616 0.323068522 −0.181387073 0.071353497
0.6 0.207395869 −0.378714269 0.419826272 −0.301065998 0.149282364
0.8 −0.141453939 −0.130169641 0.366927451 −0.395710334 0.266916569
1.0 −0.309846112 0.213605299 0.090320416 −0.342937946 0.370317077
1.2 −0.015423176 0.262818916 −0.248584668 −0.033495361 0.291591224
1.4 0.259025162 −0.133302869 −0.165062010 0.271723102 −0.077445556
1.6 −0.132080769 −0.140826863 0.233116044 −0.009080134 −0.228729511
1.8 −0.010336083 0.211095806 −0.106550875 −0.157369244 0.202110727
2.0 0.029937230 −0.195913873 0.058550109 0.172382445 −0.143821849

Table C.10: Modified Mathieu functions Ms(1)
m (z, q) with Kmax = 200, q = 5.
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z m = 0 m = 1 m = 2 m = 3 m = 4

0.0 −0.000018408 −0.000902636 −0.019033459 −0.181989273 −0.632949374
0.2 0.301253662 0.292501273 0.249787992 0.060294155 −0.369846012
0.4 0.217317361 0.320105997 0.378827511 0.282210844 −0.100650087
0.6 −0.164507924 0.012885216 0.232784972 0.370212810 0.178982127
0.8 −0.243689096 −0.284378718 −0.135717179 0.169833197 0.333677609
1.0 0.166235498 −0.058926268 −0.259632019 −0.210488912 0.116529242
1.2 0.090855832 0.241601846 0.147417860 −0.136480311 −0.247620918
1.4 −0.192712313 −0.178025496 0.054533539 0.227584501 0.064274558
1.6 0.190648023 0.121907430 −0.114049409 0.192590816 0.034005206
1.8 −0.138758855 −0.152709560 0.056175370 0.183270584 0.007437921
2.0 −0.046226837 0.142083260 0.112673816 −0.101327038 −0.143357469

Table C.11: Modified Mathieu functions Mc(2)
m (z, q) with Kmax = 200, q = 10.

k m = 0 m = 1 m = 2 m = 3 m = 4

0.0 −0.000753837 −0.025129572 −0.255352516 −0.807148299 −1.710397645
0.2 0.281296916 0.223746073 −0.035409095 −0.545721522 −1.068582676
0.4 0.382936918 0.391291381 0.186971269 −0.300026787 −0.699988306
0.6 0.207711848 0.380826057 0.359767146 −0.036471909 −0.438946008
0.8 −0.141151997 0.137870930 0.377094983 0.225906741 0.166475784
1.0 −0.309847897 −0.208367862 0.136827027 0.349615971 0.145446204
1.2 −0.015608838 −0.264652069 −0.223222487 0.136877618 0.317654592
1.4 0.259031081 0.130139217 −0.184667692 −0.237882859 0.058225775
1.6 −0.131990823 0.142868441 0.225585244 −0.048015125 −0.248104220
1.8 −0.010414477 −0.211482224 −0.093347521 0.182779665 0.159299197
2.0 0.029994822 0.195985747 0.048132472 −0.184881723 −0.102455629

Table C.12: Modified Mathieu functions Mc(2)
m (z, q) with Kmax = 200, q = 5.

z m = 1 m = 2 m = 3 m = 4 m = 5

0.0 −0.332123704 0.371282329 −0.445221788 0.631637579 −1.199905424
0.2 −0.129802231 0.214807024 −0.328166170 0.489712364 −0.768490768
0.4 0.230418371 −0.128017698 −0.041343255 0.264428165 −0.496096931
0.6 0.251117149 −0.320141830 0.260287006 −0.047470970 −0.229199818
0.8 −0.139129930 −0.075668868 0.275967235 −0.300583079 0.101525038
1.0 −0.199451497 0.262209754 −0.103568450 −0.170627033 0.300138821
1.2 0.220576323 −0.036622843 −0.200135461 0.227843128 0.003837373
1.4 −0.102128068 −0.132069201 0.219127600 −0.030907762 −0.203048801
1.6 0.056103278 0.159732881 −0.169046942 −0.057873643 0.207283441
1.8 −0.115705193 −0.099058722 0.174929914 0.010664770 −0.182500908
2.0 0.157345265 −0.083643115 −0.120743781 0.135862108 0.067105124

Table C.13: Modified Mathieu functions Ms(2)
m (z, q) with Kmax = 200, q = 10.
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k m = 1 m = 2 m = 3 m = 4 m = 5

0.0 −0.405070673 0.496582932 −0.751974676 1.625573565 −5.120133530
0.2 −0.282283730 0.405279031 −0.604198406 1.038926043 −2.438115060
0.4 0.016765518 0.176436235 −0.416942550 0.698253660 −1.265592714
0.6 0.296344606 −0.123688032 −0.163940853 0.451596697 −0.741825701
0.8 0.305697116 −0.336689816 0.135615280 0.184465033 −0.451045741
1.0 −0.024390508 −0.246620568 0.331757914 −0.131574894 −0.166651837
1.2 −0.284556864 0.133322597 0.176733494 −0.315917231 0.167804420
1.4 0.024353432 0.230434311 −0.216580391 −0.065047406 0.278565228
1.6 0.196575692 −0.195025139 −0.072691797 0.248087833 −0.109463548
1.8 −0.214908984 0.052156550 0.192039143 −0.156575476 −0.098885996
2.0 0.192901735 −0.016505872 −0.189056381 0.100062369 0.140506961

Table C.14: Modified Mathieu functions Ms(2)
m (z, q) with Kmax = 200, q = 5.

m k = 1 k = 2 k = 3 k = 4 k = 5

0 0.268144489 0.734309332 1.089382454 1.362969790 1.582095757
1 0.327751006 0.834992742 1.185871249 1.448171414 1.656703799
2 0.430950699 0.954525930 1.288098947 1.534732337 1.731154786
3 0.609782985 1.090863509 1.394975749 1.622544005 1.805704508
4 0.823744379 1.230182722 1.501184299 1.709076510 1.878962931
5 1.001027162 1.352184052 1.596756000 1.788283700 1.946828844
6 1.136859062 1.453768228 1.679465911 1.858481664 2.007978689
7 1.250044621 1.542334725 1.753333663 1.922183927 2.064120315
8 1.349499545 1.622091004 1.820864625 1.981052920 2.116432510
9 1.438776256 1.694950751 1.883272196 2.035923639 2.165520902

Table C.15: First k zeros of Modified Mathieu functions Mc(1)
m (z, q) with Kmax = 200, q = 10.

m k = 1 k = 2 k = 3 k = 4 k = 5

1 0.515828312 0.924144038 1.234401061 1.478084351 1.676832399
2 0.606240826 1.024677860 1.325300928 1.557742976 1.746789213
3 0.725648125 1.134523114 1.418481630 1.637366815 1.815945297
4 0.866780341 1.247500982 1.510908834 1.715385079 1.883411453
5 1.009120767 1.355712997 1.598821200 1.789659594 1.947817635
6 1.137636317 1.454126090 1.679681872 1.858628569 2.008085894
7 1.250092565 1.542357660 1.753347831 1.922193726 2.064127557
8 1.349501690 1.622092062 1.820865291 1.981053387 2.116432859
9 1.438776330 1.694950789 1.883272219 2.035923656 2.165520915

Table C.16: First k zeros of Modified Mathieu functions Ms(1)
m (z, q) with Kmax = 200, q = 10.
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m k = 1 k = 2 k = 3 k = 4 k = 5

1 0.268136947 0.734305362 1.089380284 1.362968477 1.582094891
2 0.327392889 0.834841832 1.185793965 1.448125165 1.656673167
3 0.424656219 0.952416576 1.287043221 1.534095319 1.730727477
4 0.571107814 1.078822161 1.388792213 1.618719756 1.803088757
5 0.740013296 1.201581947 1.485733151 1.699213177 1.872066301
6 0.896006033 1.312621322 1.574410247 1.773620911 1.936376823
7 1.030234520 1.411111872 1.654610032 1.841830789 1.995928471
8 1.146707405 1.499272735 1.727645638 1.904691278 2.051303212
9 1.249828826 1.579222993 1.794799128 1.963058208 2.103107601

Table C.17: First k zeros of Modified Mathieu functions Ms(2)
m (z, q) with Kmax = 200, q = 10.

m k = 1 k = 2 k = 3 k = 4 k = 5

0 0.000009604 0.515833826 0.924146936 1.234402728 1.478085407
1 0.000526312 0.606468865 1.024783310 1.325359797 1.557780232
2 0.013201542 0.729033826 1.135968721 1.419288093 1.637883188
3 0.150818078 0.886124652 1.255852511 1.515694149 1.718517268
4 0.470769547 1.053290112 1.376128240 1.610988746 1.797834705
5 0.722818089 1.196542381 1.483091831 1.697547266 1.870908650
6 0.894443779 1.312121596 1.574137787 1.773444729 1.936252202
7 1.030141404 1.411080362 1.654592344 1.841819127 1.995920102
8 1.146703339 1.499271301 1.727644814 1.904690726 2.051302811
9 1.249828689 1.579222943 1.794799099 1.963058188 2.103107586

Table C.18: First k zeros of Modified Mathieu functions Mc(2)
m (z, q) with Kmax = 200, q = 10.
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k m = 1 m = 2 m = 3 m = 4 m = 5

1 0.500000000 0.404217111 0.323838555 0.241683761 0.165614189
2 0.595782889 0.500000000 0.421713163 0.351471846
3 0.676161445 0.578286837 0.500000000
4 0.758316239 0.648528154
5 0.834385811

k m = 6 m = 7 m = 8 m = 9 m = 10

1 0.117087626 0.090560661 0.074464765 0.063584125 0.055670378
2 0.293229923 0.247584677 0.212378563 0.185222263 0.164002338
3 0.433952567 0.379148346 0.333908116 0.296660163 0.265964368
4 0.566047433 0.500000000 0.445655071 0.400266182 0.362055548
5 0.706770077 0.620851654 0.554344929 0.500000000 0.454432315
6 0.882912374 0.752415323 0.666091884 0.599733818 0.545567685
7 0.909439339 0.787621437 0.703339837 0.637944452
8 0.925535235 0.814777737 0.734035632
9 0.936415875 0.835997662
10 0.944329622

Table C.19: Values ak = zk
π , where zk are zeros of Mathieu functions cem(z, q) with Kmax = 200, q = 10

in [0, π].

k m = 1 m = 2 m = 3 m = 4 m = 5

0 0 0 0 0 0
1 0.999999999 0.500000000 0.404693801 0.329222085 0.264337426
2 1.000000000 0.500000000 0.500000000 0.426669186
3 1.000000000 0.670777915 0.573330814
4 1.000000000 0.735662574
5 1.000000000

k m = 6 m = 7 m = 8 m = 9 m = 10

0 0 0 0 0 0
1 0.211905613 0.173255479 0.145682200 0.125630336 0.110531870
2 0.365726121 0.315496693 0.274830356 0.242150638 0.215813606
3 0.500000000 0.440183133 0.390556786 0.349197076 0.314624955
4 0.634273879 0.559816867 0.500000000 0.450371221 0.408554591
5 0.788094387 0.684503307 0.609443214 0.549628779 0.500000000
6 1.000000000 0.826744521 0.725169644 0.650802924 0.591445409
7 1.000000000 0.854317800 0.757849362 0.685375045
8 1.000000000 0.874369664 0.784186394
9 1.000000000 0.889468130
10 1.000000000

Table C.20: Values ak = zk
π , where zk are zeros of Mathieu functions sem(z, q) with Kmax = 200, q = 10

in [0, π].



Appendix D

Exponential decay of Laplacian

eigenfunctions in domains with branches

D1 Estimate for rectangular branch

From the inequality sinhx ≤ cosh x, Eq. (4.4) is bounded as

||∇u||2L2(Q(x0)) ≤
b

2

∞∑

n=1

c2
n

[

(
π

b
n)2 + γ̃n

2
] a∫

x0

cosh2(γ̃n(a− x))dx.

The last integral is estimated as

a∫

x0

cosh2(γ̃n(a− x))dx ≤
a∫

x0

e2γ̃n(a−x)dx =

e2γ̃na

2γ̃n

(

e−2γ̃nx0 − e−2γ̃na) ≤ e2γ̃na

2γ̃n
e−2γ̃nx0 ≤ e2γ̃na

2γ̃n
e−2γ̃1x0,

where we used the inequality cosh x ≤ ex for x ≥ 0 and the fact that γ̃n =
√

π2n2/b2 − λ increases with

n. We have then

||∇u||2L2(Q(x0)) ≤
b

2
e−2γ̃1x0

∞∑

n=1

c2
n

[
π2

b2

n2

2γ̃n
+
γ̃n

2

]

e2γ̃na.

Writing two inequalities:

γ̃n =
√

π2n2/b2 − λ ≤ π

b
n,

n2

γ̃n
=

n

(π/b)
√

1− λb2/(π2n2)
≤ C1n,

187
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where C1 is a constant, one gets an upper bound in the order of n for the expression in large brackets.

Finally, we have an estimate for e2γ̃na as

sinh2(2γ̃na) =
e2γ̃na

4
(1− e−2γ̃na)2 ≥ e2γ̃na

4
(1− e−2γ̃1a)2,

from which

e2γ̃na ≤ C2 sinh2(2γ̃na),

with a constant C2 = 4/(1− e−2γ̃1a)2. Bringing together these inequalities, we get the estimate (4.5).

Trace theorem

The trace theorem implies [147] that the series

f(x) ≡
∞∑

n=1

n
(
u(x, y), sin(πny/b)

)2

L2(0,b)
,

which is equivalent to the squared norm of u(x, y) in the Sobolev space H
1/2
(0,b), may be estimated from

above by the norm ||∇u||2L2(D). For completeness, we provide the proof for our special case.

For a fixed x, we denote

Xn(x) ≡ (u(x, y), sin(πny/b)
)

L2(0,b)

the Fourier coefficients of the function u(x, y):

u(x, y) =
2

b

∞∑

n=1

Xn(x) sin(πny/b).

On one hand, starting from Xn(a) = 0, one gets

X2
n(x) =

∣
∣
∣
∣
∣
∣

a∫

x

(X2
n)′dx1

∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣

a∫

x

XnX
′
ndx1

∣
∣
∣
∣
∣
∣

,

while the Cauchy inequality implies

2

∣
∣
∣
∣
∣
∣

a∫

x

XnX
′
ndx1

∣
∣
∣
∣
∣
∣

≤ 2||Xn||L2(0,a)||X ′
n||L2(0,a).

The inequality 2αβ ≤ α2 + β2 yields

2(πn/b)||Xn||L2(0,a)||X ′
n||L2(0,a) ≤ ||X ′

n||2L2(0,a) + (πn/b)2||Xn||2L2(0,a),

from which

(πn/b)X2
n(x) ≤ ||X ′

n||2L2(0,a) + (πn/b)2||Xn||2L2(0,a).
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On the other hand, we write explicitly the energetic norm of u:

||∇u||2L2(Q) =
2

b

∞∑

n=1

(

||X ′
n||2L2(0,a) + (πn/b)2||Xn||2L2(0,a)

)

,

from which

f(x) =
∞∑

n=1

nX2
n(x) ≤ b2

2π
||∇u||2L2(Q) ≤

b2

2π
||∇u||2L2(D).

Since the coefficients Xn(x) and cn are related as

Xn(x) =
b

2
cn sinh(γ̃n(a− x)),

the substitution of x = 0 into this equation yields

∞∑

n=1

nc2
n sinh2(γ̃na) =

4

b2

∞∑

n=1

nXn(0)2 =
4

b2
f(0) ≤ 2λ

π
||u||2L2(D) =

2λ

π
||u||2L2(D). (D.1)

For completeness, in what follows, we recall the derivation of several classical results [90, 147] which are

well known for spectral analysts but may be unfamiliar for other readers.

D2 Rayleigh’s principle

Let us start with the first eigenvalue λ1 of the problem (4.1) which can be found as

λ1 = inf

v∈
◦

H1

(∇v,∇v)L2(D)

(v, v)L2(D)
, (D.2)

where
◦
H1 = {v ∈ L2(D), ∂v/∂xi ∈ L2(D), i = 1, ..., n+1, v|∂D = 0}. Denoting φ1 the first eigenfunction

in Eq. (4.28), one takes

v =







φ1, (x,y) ∈ V,
0, (x,y) /∈ V,

as a trial function in Eq. (D.2) to obtain

λ1 <
(∇φ1,∇φ1)L2(V )

(φ1, φ1)L2(V )
= κ1,

i.e., the first eigenvalue λ1 in the whole domain D is always smaller than the first eigenvalue κ1 in its

subdomain V . More generally, if there are n eigenvalues κ1 ≤ · · · ≤ κn ≤ µ then there exist n eigenvalues

λ1 ≤ · · · ≤ λn < µ.

Note that the Friedrichs-Poincaré inequality (4.20) follows from (D.2).



Appendix D. Exponential decay of Laplacian eigenfunctions in domains with branches 190

D3 Rellich’s identity

Let u be an eigenfunction which satisfies the equation

∆u+ λu = 0 (x,y) ∈ D, u|∂D = 0.

We multiply this equation by ∂u
∂x and integrate over the domain Q(x0) defined by Eq. (4.23):

∫

Q(x0)

∂u

dx
∆u dxdy + λ

∫

Q(x0)

u
∂u

dx
dxdy = 0. (D.3)

The second integral can be transformed as

λ

∫

Q(x0)

u
∂u

dx
dxdy =

λ

2

∫

Q(x0)

(
∂

∂x
u2
)

dxdy = −λ
2

∫

∂Q(x0)

u2(x0,y)(ex,n)dS = −λ
2

∫

Ω(x0)

u2(x0,y)dy, (D.4)

where n = n(S) is the unit normal vector at S ∈ ∂Q(x0) and the boundary condition u∂D = 0 was used

on Γ(x0) = ∂Q(x0)\Ω(x0).

Using the Green’s formula, the first integral in Eq. (D.3) can be transformed to

∫

Q(x0)

∂u

∂x
∆udxdy =

∫

∂Q(x0)

∂u

∂x

∂u

∂n
dS −

∫

Q(x0)

(

∇u,∇∂u
∂x

)

dxdy. (D.5)

The first integral over ∂Q(x0) can be split in two terms:

∫

∂Q(x0)

∂u

∂x

∂u

∂n
dS =

∫

Γ(x0)

∂u

∂x

∂u

∂n
dS −

∫

Ω(x0)

(
∂u

∂x

)2

dy,

where ∂/∂n = (n,∇) is the normal derivative pointing outwards the domain, and the sign minus appears

because ∂u/∂n = −∂u/∂x at Ω(x0).

The second integral in Eq. (D.5) is

∫

Q(x0)

(

∇u,∇∂u
∂x

)

dxdy =
1

2

∫

Q(x0)

∂

∂x
(∇u,∇u)dxdy =

1

2

∫

Γ(x0)

(∇u,∇u)(ex,n)dS +
1

2

∫

Ω(x0)

(∇u,∇u)dy.

Taking into account the Dirichlet boundary condition u|Γ(x0) = 0, one has

(∇u)|Γ(x0) = n
∂u

∂n
|Γ(x0),

∂u

∂x
|Γ(x0) = (ex,∇u) = (ex,n)

∂u

∂n
|Γ(x0).
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Combining these relations, one gets

∫

Q(x0)

∂u

∂x
∆u dxdy =

1

2

∫

Γ(x0)

(
∂u

∂n

)2

(ex,n)dS − 1

2

∫

Ω(x0)

(
∂u

∂x

)2

dy +
1

2

∫

Ω(x0)

(∇⊥u,∇⊥u)dy,

from which and Eqs. (D.3, D.4) the Rellich’s identity (4.22) follows.



Appendix E

Trapped modes in finite waveguides

E1 Computation for bent strip

The computation of the coefficients β and σi is straightforward, while that for κi requires supplementary

estimates.

Coefficient β. One has

(vα, vα)L2(Ω) =
π

2

1∫

0

r1−2α sin2(πr)dr =
π

4

[
1

2(1− α)
− w2α−1(2π)

]

,

where

wν(q) ≡
1∫

0

r−ν cos(qr)dr.

Similarly,

(∇vα,∇vα)L2(Ω) =
π

2

1∫

0

r(v′
α)2dr =

π

2

1∫

0

r

(
π cos πr

rα
− α sin πr

r1+α

)2

dr.

Expanding the quadratic polynomial and integrating by parts, one gets

(∇vα,∇vα)L2(Ω) =
π3

4

[
1

2(1− α)
+
w2α−1(2π)

1− 2α

]

.

Combining this term with the previous result yields

β =
π3

4

2α

2α − 1
w2α−1(2π). (E.1)

In the limit α→ 1/2, one has

lim
α→1/2

w2α−1(2π)

2α− 1
=

Si(2π)

2π
≈ 0.2257,

192
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where Si(x) is the integral sine function.

Coefficients σi. For these coefficients, one gets

(
vα, sin(πr)

)

L2(Γi)
=

1∫

0

r−α sin2(πr)dr =
1

2

(
1

1− α − wα(2π)

)

,

from which

σ1 = σ2 =
1

2

(
1

1− α − wα(2π)

)2

. (E.2)

Coefficients κi. One considers

(
vα, sin(πnr)

)

L2(Γi)
=

1∫

0

r−α sin(πr) sin(πnr)dr =
1

2

[

wα(π(n− 1)) −wα(π(n + 1))

]

.

The function wα(q) can be decomposed into two parts [93],

wα(q) =

∞∫

0

r−α cos(qr)dr −
∞∫

1

r−α cos(qr)dr = qα−1

√
π Γ(1−α

2 )

2αΓ(α
2 )

− w̃α(q),

where

w̃α(q) ≡
∞∫

1

r−α cos(qr)dr.

We have

κi = 2π
∞∑

n=2

√

n2 − 1
(
v, sin(πnr)

)2

L2(Γi)
= 2π

∞∑

n=2

√

n2 − 1 (dn − en)2,

where

dn =
πα− 1

2 Γ(1−α
2 )

21+αΓ(α
2 )

[

(n− 1)α−1 − (n+ 1)α−1
]

,

en =
1

2

[

w̃α(π(n− 1)) − w̃α(π(n + 1))

]

.

In order to estimate the coefficients en, the function w̃α(q) is integrated by parts that yields for q = π(n±1):

w̃α(q) = α
cos q

q2
− α(α + 1)

w̃α+2(q)

q2
= α

cos q

q2

− α(α+ 1)(α + 2)
cos q

q4
+ α(α + 1)(α + 2)(α+ 3)

w̃α+4(q)

q4
.

The inequality

(α+ 3)|w̃α+4(q)| ≤ (α+ 3)

∞∫

1

r−α−4dr = 1
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leads to

α
cos q

q2
− α(α + 1)(α + 2)

cos q + 1

q4
≤ w̃α(q) ≤ αcos q

q2
− α(α + 1)(α + 2)

cos q − 1

q4
,

from which

e−
n ≤ en ≤ e+

n ,

where lower and upper bounds are

e±
n =

1

2

[(
α

π2

(−1)n−1

(n− 1)2
− α(α+ 1)(α + 2)

π4

(−1)n−1 ∓ 1

(n − 1)4

)

−
(
α

π2

(−1)n+1

(n + 1)2
− α(α + 1)(α + 2)

π4

(−1)n+1 ± 1

(n+ 1)4

)]

.

Using these estimates, one gets

∞∑

n=2

√

n2 − 1 d2
n ≡ A1,

∞∑

n=2

√

n2 − 1 dnen ≥
∞∑

n=2

√

n2 − 1 dne
−
n ≡ A−

2 ,

∞∑

n=2

√

n2 − 1 e2
n ≤

∞∑

n=2

√

n2 − 1 (e+
n )2 ≡ A+

3 ,

from which

κi ≤ κ, κ ≡ 2π(A1 − 2A−
2 +A+

3 ). (E.3)

Although the expressions for A1, A−
2 and A+

3 are cumbersome, the convergence of these series can be

easily checked, while their numerical evaluation is straightforward.

The numerical computation of these coefficients shows that the threshold value η is maximized at α ≈ 1/3:

η ≈ 0.7154. Note that if the coefficients κi were computed by direct numerical integration and summation,

the value of η for α = 1/3 could be slightly improved to be 0.7256. The difference results from the estimates

we used, and its smallness indicates that the estimates are quite accurate.



Appendix F

Several computations for survival

probabilities in porous media

F1 Equidistributed arcs and sectors

When a reactive region A lies on the boundary of the unit disk, finding the elements of the matrix B is

reduced to computation of integrals over the angular coordinate ϕ that can be performed analytically.

For instance, if the reactive region is composed of M identical arcs of angle β which are equidistributed

over the circle (Sect. 7.4.1), the truncated matrix B of size N ×N takes a simple form for M > 2N + 1

Bnkl,n′k′l′ =

[

2δn,n′δl,l′(1− δl,1δl′,1δn,0δn′,0)βnkβn′k′

]
Mβ

2π
(F.1)

(when M ≤ 2N + 1, a more complicated explicit formula can also be derived). When M increases in such

a way that the total length L = Mβ of the arcs is kept constant, the truncated matrix B is

B =
L

2π
B(∂Ω),

where B(∂Ω) denotes the matrix in the large brackets of Eq. (F.1) and corresponds to the matrix B for the

reactive region A = ∂Ω (the whole boundary of the unit disk). As a consequence, the survival probability

for a large number M of arcs (partly reactive boundary) turns out to approach the survival probability

for the whole circle (fully reactive boundary) when h =∞.

Similarly, when A is the union of M identical angular sectors of angle β which are equidistributed in the

unit disk (Fig. 7.4b), the truncated matrix B gets a simple form

B =
SA

π
I,

where the identity matrix I is the matrix B for the unit disk.

195
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F2 Analytical results for reactive disks

We consider the survival probability for infinitely reactive region (h = ∞) in the shape of a disk of

radius r0 centered at the origin (Fig. 7.4a). This problem is equivalent to diffusion in a circular layer

Ω1 = {r ∈ R2 : r0 < |r| < 1} with the absorbing inner circle of radius r0 and the reflecting outer circle

of radius 1. The smallest eigenvalue α2 of the Laplace operator in this layer is determined by the first

positive root α of the following equation [38, 55, 100]

J0(αr0)Y ′
0(α) − Y0(αr0)J ′

0(α) = 0, (F.2)

where J0(z) and Y0(z) are the Bessel functions of the first and second kind, respectively. Solving numer-

ically this equation, one can find the theoretical value γ∞
0 = α2 for any r0 between 0 and 1. In the limit

of r0 going to 1, the following asymptotic behavior can be derived

γ∞
0 ≈

π2

4(1− r0)2
(r0 → 1). (F.3)

In the opposite limit of r0 going to 0, the asymptotic behavior of Bessel functions allows one to reduce

Eq. (F.2) to

γ∞
0 ≈

2

ln(a/r0)
+

ln(ln(a/r0)/2)

(ln(a/r0))2
(r0 → 0), (F.4)

where a = 2e−γ and γ = 0.5772157... is the Euler-Mascheroni constant. Although γ∞
0 approaches 0 as

r0 → 0, the decay is logarithmically slow so that even very small reactive regions may yield significant

reaction rates, as shown on Fig. 7.7. Note that the logarithmically slow decay is the specific feature of

the two-dimensional case.

It is worth noting that the limits r0 → 1 and h → ∞ cannot be exchanged. In fact, for numerical

computations, one always uses a large but finite value of h (e.g., h = 108). In this case, the asymptotic

behavior of γh
0 as r0 → 1 is different from Eq. (F.3). Denoting ε = 1− r0, we have

B = B(Ω) − B(Ω1) ≈ I − εB(∂Ω),

where B(∂Ω) corresponds to B(r) = I∂Ω(r). The matrix Λ + hB can then be approximated as

Λ + hB ≈ (Λ + hI)− hεB(∂Ω).

For a finite h, the last term appears as a correction to the first one so that

γh
0 ≈ h(1−O(ε)) (ε→ 0).
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Figure F.1: The relative error between the exact formula (F.5) and the truncated spectral representation
(F.6) for the mean exit time from the unit disk whose boundary is reflecting but for an absorbing arc of
length 2ε.

F3 Narrow escape problem

Singer and co-workers dealt with the exit problem from the unit disk with reflecting boundary, except

for an absorbing arc of length 2ε [202, 203]. For Brownian motion x(t) started from the origin, the mean

exit time is found to be

E [τ |x(0) = (0, 0)] =

√
2

2π

π−ε∫

0

u sin u
2√

cosu+ cos ε
du+

1

4
. (F.5)

When the absorbing part shrinks to zero, this formula yields the following asymptotic behavior

E [τ |x(0) = 0] = log
1

ε
+ log 2 +

1

4
+O(ε).

These two analytical formulas can be used for checking spectral computations.

Starting from the origin is introduced into the spectral approach through the point-like initial density

ρ(r0) = δ(r0), where δ(r0) is the Dirac distribution. The vector U becomes

Unkl =
δn,0δl,0

Jn(αnk)
, n = 0, 1, ... , k = 0, 1, ... , l = 0, 1.

Since the weighting function ρ̃(r) remains constant, the vector Ũ does not change:

Ũnkl = δn,0δk,0δl,0, n = 0, 1, ... , k = 0, 1, ... , l = 0, 1.

Using Eq. (7.6), the mean exit time from the unit disk can be computed as

E [τ |x(0) = (0, 0)] =
∞∑

m=0

A∞
m

γ∞
m

. (F.6)



Appendix F. Several computations for survival probabilities in porous media 198

0 1 2 3 4 5 6
0

2

4

6

2ε

γ 0∞

 

 

spectral approach
asymptotic formula

Figure F.2: The smallest eigenvalue γ∞
0 for the unit disk when the reactive region is an arc of length 2ε

(with h = 108). When 2ε goes to 2π (the whole circle), γ∞
0 approaches the theoretical value 5.7829..., as

expected. The asymptotic formula (F.7) is accurate for small ε but inapplicable for large ε.

Fig. F.1 helps to compare Eqs. (F.5, F.6) for the mean exit time as a function of ε. As we discussed in

Sect. 7.3.3, the accuracy of the spectral approach decreases when ε is getting smaller. Since the spectral

computation of the mean exit time includes both the truncation of the matrix Λ +hB and the truncation

of the series in Eq. (F.6), the results are not as good as for the smallest eigenvalue γh
0 . Nevertheless, an

extrapolation helps to get reasonably accurate results even for small ε (up to 0.01).

A more direct comparison can be realized for the smallest eigenvalue γ∞
0 whose asymptotic behavior was

derived by Ward and co-workers [172]. For a single arc of length 2ε, their asymptotic formula reads as

γ∞
0 ≈ −

1

ln(ε/2)
− 1

8[ln(ε/2)]2
+O([ln(ε/2)]−3). (F.7)

Since the expansion parameter here is ln(ε/2) (and not ε itself), this formula is only applicable for small

ε. On Fig. F.2, we compare the asymptotic result (F.7) to the γ∞
0 computed by the spectral approach.

As expected, two curves are close to each other for small ε. It is worth stressing again that, for smaller

ε, the spectral computation requires larger matrices and takes longer time, while the asymptotic formula

is getting more accurate. On the contrary, when 2ε exceeds 1, the asymptotic formula becomes less and

less accurate, and it finally diverges at ε = 2.

In summary, when the reactive regions are very small, perturbative techniques are preferred [43, 44, 130,

172, 202, 203, 221]. In turn, the spectral approach is more appropriate for extended reactive regions, for

which perturbative techniques become useless. These two approaches are complementary to each other.

F4 Optimal reactive region

Numerical evidences (Figs. 7.7, 7.9) suggest that a uniform filling of a confining domain provides the

highest overall reaction rate γh
0 under the condition that the total amount of reactive grains is fixed. We

propose a theoretical argument in favor of this statement, although a rigorous proof is still missing. This

argument relies on a perturbation theory applied to the matrix Λ + hB. In the limit of small h, the
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smallest eigenvalue γh
0 can be written as a perturbation series in powers of h. Keeping the terms up to

the second order in h, we get

γh
0 ≈ λ0 + hB0,0 − h2

∑

m>0

B0,mBm,0

λm − λ0
=
h

S

∫

Ω

dr B(r)− h2
∑

m>0

B2
0,m

λm

(since λ0 = 0). The first term is the total amount of reactive grains (which may have spatially heteroge-

neous reactivities incorporated via B(r)). In our numerical examples, when B(r) = IA(r), the first term

was simply hSA/S. Since this term is supposed to be fixed, the influence of B(r) on γh
0 is represented

through the second term. For a uniform filling with A = Ω, Bm,m′ = δm,m′ so that the second term is

zero. Since λm > 0, the uniform filling is indeed optimal for getting the highest γh
0 :

γh
0 ≤ γh

0,uni = h.

Further analysis is required for a rigorous proof of this result.



Appendix G

Localization in dumbbell domains

In previous chapters, we have discussed localized eigenmodes of the Laplace operator with Dirichlet

boundary conditionc. In domains with branches, under certain conditions, the L2-norm of Laplacian

eigenfunctions decays exponentially along the branches that leads to the emergence of localized eigen-

functions. In this appendix, we continue discussing other kinds of low-frequency localization.

G1 Localization in dumbbell domains

One kind of localization happens in bounded domains which can be split into two or several sub-domains

with narrow connections of width ε. A basic example is a dumbbell domain Ωε = Ω1∪Qε∪Ω2 (Fig. G.1).

The asymptotic behavior of Laplacian eigenvalues and eigenfunctions was thoroughly investigated for both

Dirichlet and Neumann boundary conditions. We start by considering Dirichlet boundary condition.

Dirichlet boundary condition

We assume that when ε tends to zero, the limiting domain Ω0 can be split into N subdomains Ω1, Ω2,

. . . , ΩN . In this case, the eigenproblem with Dirichlet boundary condition in the whole domain can be

separately formulated for each subdomain. Let Λi be the set of all Dirichlet-Laplacian eigenvalues in the

subdomain Ωi. Each Dirichlet-Laplacian eigenvalue λε of the domain Ωε approaches an eigenvalue λ0 of

one limiting subdomain Ωi for certain i. Moreover, if

Λi ∩ Λj = ∅ ∀ i 6= j, (G.1)

the space of eigenfunctions in the limiting (disconnected) domain Ω0 is the direct product of spaces of

eigenfunctions for each subdomain Ωi (see [57] for discussion on the convergence and related issues). This

is a basis for what we call “bottle-neck localization”.

In fact, when ε tends to zero, each Dirichlet eigenfunction uε
m of the domain Ωε approaches an eigen-

function of the limiting domain Ω0 which is fully localized in one subdomain Ωi and zero in the others.

Therefore, for a small ε, the eigenfunction uε
m is mainly localized in the corresponding ith subdomain Ωi,

and is almost zero in the other subdomains. In other words, for any positive integer m, one can take the
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Ω1 Ω2

Qε

ε

Ωε

Ω1 Ω2

Ω0

Figure G.1: A dumbbell domain Ωε = Ω1 ∪ Qε ∪ Ω2 with a narrow connection Qε of width ε. When
ε→ 0, the limiting domain Ω0 can be separated into two subdomains Ω1 and Ω2.

(a) u8 (b) u9 (c) u15 (d) u19

Figure G.2: Bottle-neck localization of Dirichlet eigenfunctions in a domain Ωε = Ω1∪Qε∪Ω2 (Fig. G.1),
where ε = 0.3, Ω1 is the unit square and Ω2 is a rectangle of two sides a = 1 and b = 0.5. The 8th and 15th

eigenfunctions are localized in Ω1, while the 19th eigenfunction is localized in Ω2. The 9th eigenfunction
is not localized.

width ε small enough to ensure that the L2-norm of the eigenfunction uε
m in one of Ωi is close to that in

the whole domain Ωε:

∀m,∃i ∈ {1, ..., N} ∀ δ ∈ (0, 1) ∃ ε > 0 : ‖uε
m‖L2(Ωi) > (1− δ)‖uε

m‖L2(Ωε). (G.2)

Fig. G.2 illustrates this behavior for a domain Ωε which is decomposed into two rectangles Ω1 and Ω2

connected by a narrow connection Qε. One can find several eigenmodes (u8, u15, u19, etc) localized in

each subdomain Ωi, while most of eigenfunctions are not localized, such as e.g the eigenfunction u9. Most

importantly, in this numerical example, the width ε = 0.3 is not too small. While the small ε asymptotic

behavior of eigenfunctions was thoroughly investigated [8, 9, 18, 110, 119, 120], localization for moderate

values of ε remains poorly understood.

It is important to emphasize that for fixed values of the width ε and the threshold δ, there may be

infinitely many high-frequency non-localized eigenfunctions which do not satisfy the inequality (G.2). For

a given domain Ωε, there may exist only a finite number of low-frequency localized eigenfuntions.

The condition (G.1) makes sure that the limiting eigenfunctions are fully localized in their respective

subdomains. When this condition is not satisfied, there may exist degenerate eigenvalues in the limiting

domain Ω, and a limiting eigenfunction would be a linear combination of eigenfunctions in different

subdomains with the same eigenvalue. That would destroy the low-frequency localization.
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Neumann boundary condition

For Neumann boundary condition, the situation is more complicated, as the eigenvalues and eigenfunctions

may also approach the eigenvalues and eigenfunctions of the limiting connector (in the simplest case, the

interval). Arrieta considered a planar dumbell domain Ωε consisting of two disjoint domains Ω1 and

Ω2 joint by a channel Qε of variable profile g(x): Qε = {r ∈ R2 : 0 < x1 < 1, 0 < x2 < εg(x1)}, where

g ∈ C1(0, 1) and g(x1) ≥ 0 for all x1 ∈ [0, 1]. In the limit ε→ 0, each eigenvalue of the Laplace operator in

Ωε with Neumann boundary condition was shown to converge either to an eigenvalue µk of the Neumann-

Laplace operator in Ω1 ∪ Ω2, or to an eigenvalue νk of the Sturm-Liouville operator −1
g (gux)x acting

on a function u on (0, 1), with Dirichlet boundary condition [8, 9]. The first-order term in the small

ε-asymptotic expansion was obtained. The special case of cylindrical channels (of constant profile) in

higher dimensions was studied by Jimbo [119] (see also results by Hempel et al. [110]). Jimbo and Morita

studied an N -dumbell domain, i.e. a family of N pairwise disjoint domains joint by thin channels [120].

They proved that λε
m = Cmε

d−1 + o(εd−1) as ε→ 0 for m = 1, 2, . . . , N , while λε
N+1 is uniformly bounded

away from zero, where d is the dimension of the embedding space, and Cm are shape-dependent constants.

Jimbo also analyzed the asymptotic behavior of the eigenvalues λε
m with m > N under the condition that

the sets {µk} and {νk} do not intersect [121]. In particular, for an eigenvalue λε
m that converges to an

element of {µk}, the asymptotic behavior is λε
m = µk + Cmε

d−1 + o(εd−1).

Brown and co-workers studied upper bounds for |λε
m − λ0

m| and showed [29]:

(i) If λ0
m ∈ {µk} \ {νk},

|λε
m − λ0

m| ≤ C| ln ε|−1/2 (d = 2),

|λε
m − λ0

m| ≤ Cε(d−2)/d (d ≥ 3).

(ii) If λ0
m ∈ {νk} \ {µk},

|λε
m − λ0

m| ≤ Cε1/2| ln ε| (d = 2),

|λε
m − λ0

m| ≤ Cε1/2 (d ≥ 3).

For a dumbbell domain in Rd with a thin cylindrical channel of a smooth profile, Gadyl’shin obtained

the complete small ε asymptotics of the Neumann-Laplace eigenvalues and eigenfunctions and explicit

formulas for the first term of these asymptotics, including multiplicities [84–86].

More recently, Arrieta and Krejcirik considered the problem of spectral convergence from another point of

view [7]. They showed that if Ω0 ⊂ Ωε are bounded domains and if the eigenvalues and eigenfunctions of

the Laplace operator with Neumann boundary condition in Ωε converge to the ones in Ω0, then necessarily

µd(Ωε\Ω0)→ 0 as ε→ 0, while it is not necessarily true that dist(Ωε,Ω0)→ 0. As a matter of fact, they

constructed an example of a perturbation where the spectra behave continuously but dist(Ωε,Ω0) → ∞
as ε→ 0.

For example, we consider the eigenproblem with Neumann boundary condition in a dumbbell domain

Ωε on Fig. G.3. In this domain, we found only two localized eigenmodes u4 and u41 among first 45
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(a) u4 (b) u9 (c) u21 (d) u41

Figure G.3: Bottle-neck localization of Neumann eigenfunctions in a domain Ωε = Ω1 ∪ Qε ∪ Ω2 (Fig.
G.1), where ε = 0.3, Ω1 is the unit square and Ω2 is a rectangle of two sides a = 1 and b = 0.5. Among
first 45 eigenfunctions, only the 4th and 41st eigenfunctions are localized (in Ω1), while the others are not
localized, such as e.g the eigenfunctions u9 and u21.

eigenfunctions. These eigenfunctions are localized in the subdomain Ω1.

In [107], Heilman and co-workers gave several numerical examples of localized eigenfunctions of the Laplace

operator with Neumann boundary condition in a “cow” domain (Fig. G.4a). They argued that one

subdomain must possess an axis of symmetry for getting localized eigenfunctions. Since an anti-symmetric

eigenfunction vanishes on the axis of symmetry, it is necessarily small near the bottle-neck that somehow

“prevents” its extension to the other domain. Although the argument is plausible, it is worth emphasizing

that such a symmetry is neither sufficient, nor necessary for localization. It is obviously not sufficient

because even for symmetric domain, there exist plenty of non-localized eigenmodes (including the trivial

example of the ground eigenmode which is a constant over the whole domain). In order to illustrate

that the reflection symmetry is not necessary, Figs. G.4b and G.4c show several examples of localized

eigenfunctions for modified domains for which the symmetry is broken [95]. Although rendering the upper

subdomain less and less symmetric gradually reduces or even fully destroys localization (Fig. G.4d), its

“mechanism” remains poorly understood.

(a) (b) (c) (d)

Figure G.4: Localized Neumann eigenfunction u4 in the original “cow” domain from [107] (a) and in
three modified domains (b,c,d), in which the reflection symmetry of the upper subdomain is broken. This
eigenfunction is localized for the first three domains (a,b,c), while the last domain with the stronger
modification shows no localization (d). Colors represent the amplitude of an eigenfunction, from the most
negative value (dark blue), through zero (green), to the largest positive value (dark red).
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G2 Conclusion

In this appendix, we have discussed the low-frequency localization in dumbbell domains. In this domains,

the existence of low-frequency localization depends on the width ε of narrow connectors and occurs for

both Dirichlet and Neumann boundary condition. For Dirichlet boundary condition, an eigenfunction

may be localized in one subdomain of the limiting domain Ω0. For Neumann boundary condition, there

may exist several eigenmodes localized in the connectors. For a given dumbbell domain Ωε, there may be

a finite number of localized Neumann (Dirichlet) eigenfunctions. Other discussions can be found in [95].
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