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ABSTRACT 
 
The research theme of this dissertation is the multiple-vehicles cooperative perception 
(or cooperative perception) applied in the context of intelligent vehicle systems. The 
general methodology of the presented works in this dissertation is to realize multiple-
intelligent vehicles cooperative perception, which aims at providing better vehicle 
perception result compared with single vehicle perception (or non-cooperative 
perception). Instead of focusing our research works on the absolute performance of 
cooperative perception, we focus on the general mechanisms which enable the 
realization of cooperative localization and cooperative mapping (and moving objects 
detection), considering that localization and mapping are two underlying tasks for an 
intelligent vehicle system. We also exploit the possibility to realize certain augmented 
reality effect with the help of basic cooperative perception functionalities; we name this 
kind of practice as cooperative augmented reality. Naturally, the contributions of the 
presented works consist in three aspects: cooperative localization, cooperative local 
mapping and moving objects detection, and cooperative augmented reality. 
 

Description 
 
We have used in this work several sorts of sensors, namely GPS-based GNSS, a laser 
scanner, a camera, and a motion sensor, which have been commonly used for single 
intelligent vehicle operation. With these sensors, an intelligent vehicle can possess 
fairly complete perception abilities towards itself and the environment. We have 
reviewed the Bayesian filter framework that has been commonly used for recursive state 
estimation; we have also reviewed several recursive estimation methods that are derived 
from the Bayesian filter framework based on different kinds of approximations. We 
have discussed in detail the fundamental problems and the state-of-the-art methods 
concerning the cooperative localization, cooperative local mapping and moving objects 
detection. Based on these discussions, we propose a general architecture of cooperative 
localization using split covariance intersection filter (SCIF), an indirect vehicle-to-
vehicle relative pose estimation method, and a new method for occupancy grid maps 
merging to handle the fundamental problems in cooperative localization, and 
cooperative local mapping and moving objects detection. We finally propose a brand 
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new idea of cooperative augmented reality which utilizes cooperative perception results 
to realize a special augmented effect. 
We have provided a solution of multi-vehicles cooperative localization. We have 
reviewed the concept of estimate consistency and the SCIF. We have presented several 
forms of this filter together with their derivations and an original proof for the fusion 
consistency of this filter. We have introduced several basic functionalities as the 
condition for realizing cooperative localization; these functionalities are abstracted from 
field practice based on their feasibility in reality. We have described a general 
architecture of cooperative localization using the SCIF; as the architecture is 
decentralized, we have described from the perspective of an intelligent vehicle how it 
can evolve its state estimate using its motion measurements, how it can update its state 
estimate using its own absolute positioning measurements, and how it can update its 
state estimate with the data shared by neighbouring vehicles. We have presented the 
indirect vehicle-to-vehicle relative pose estimation strategy. 
We have provided a solution of cooperative local mapping and moving objects 
detection for laser scanner based intelligent vehicles. We have reviewed the method of 
occupancy grid based single vehicle local SLAM, including how to use laser scanner 
based range measurements to incrementally update the occupancy grid map estimate 
according to the inverse measurement model and how to estimate current vehicle local 
state (pose) with the last estimate of the vehicle local state and occupancy grid map. We 
have explained the different roles of vehicle local state and vehicle global state; we have 
described how vehicle local state estimate in SLAM can be used to assist vehicle global 
state estimation. We have presented the framework for occupancy grid maps fusion and 
merging by generalizing and formalizing its essential part into an optimization problem. 
We have proposed a new objective function that measures the consistency degree of 
maps alignment based on occupancy likelihood. We have adopted the spirit of genetic 
algorithms and designed a set of concrete procedures to search the optimal maps 
alignment. We have introduced the scheme of multi-vehicles cooperative moving 
objects detection based on occupancy grid maps merging; for a complete 
implementation, we have reviewed two basic moving objects detection methods, 
namely the consistency-based detection and the moving object map based detection. 
We have extended the spirit of augmented reality to cooperative perception, forming the 
concept of cooperative augmented reality in the context of intelligent vehicle systems. 
We have specified the front-following vehicles scenario to which the proposed idea of 
cooperative augmented reality is applied. We have reviewed the pinhole camera model 
and described how to establish spatial relationship between two views (easily 
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extendable to multi-views case) according to perspective geometry. We have described 
several coordinates systems i.e. the camera coordinates system, the laser scanner 
coordinates system, the ground coordinates system, and the vehicle coordinates system 
that are concerned in an intelligent vehicle; we have introduced a technique of utilizing 
a 2D laser scanner to assist a mono-camera in estimating the visual perception depth 
approximately. We have presented how to map the visual perception of a vehicle onto 
that of another vehicle, abiding by the multi-views perspective geometry described. We 
have also introduced a new extrinsic calibration method for a camera and a 2D laser 
scanner, which can reveal all the spatial relationships among the camera’s coordinates 
system, the laser scanner coordinates system, the ground coordinates system, and the 
vehicle coordinates system, based only on the popular chessboard calibration practice 
with few extra measurements. 
We have presented the experimental conditions and experimental results concerning 
cooperative localization, cooperative local mapping and moving objects detection, and 
cooperative augmented reality. We have presented the results of a simulation based 
comparative study which demonstrates the advantage of the proposed cooperative 
localization architecture using the split covariance intersection filter (the SCIFCL 
approach), especially for intelligent vehicles with heterogeneous absolute positioning 
ability. A prominent advantage of the SCIFCL method is that it enables good 
localization results to be naturally spread within a vehicle network in connection while 
always keeping a reasonable confidence for the state estimate of each vehicle. We have 
also presented the results of field tests (real-data) on cooperative localization, which 
lead to similar conclusions as in the simulation based comparative study. We have 
demonstrated the performance of the proposed occupancy grid maps merging method 
based on real-data tests. In spite of an intentionally exaggerated initial error range, local 
occupancy grid maps built by different vehicles can always be merged correctly using 
the proposed method; besides, the proposed occupancy grid maps merging method has 
the potential to recover the merging result from a kidnapping situation. We have 
demonstrated the performance of a proposed method coined as cooperative augmented 
reality, which realizes a vivid and lifelike effect of ‘seeing’ through the front vehicle for 
the following vehicle in a front-following vehicles scenario. 
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RÉSUMÉ 
 
Le thème de recherche de cette thèse est la perception coopérative multi-véhicules  
appliquée au contexte des systèmes de véhicules intelligents. L’objectif général des 
travaux présentés dans cette thèse est de réaliser la perception coopérative de plusieurs 
véhicules (dite « perception coopérative »), visant ainsi à fournir des résultats de 
perception améliorés par rapport à la perception d’un seul véhicule (ou « perception 
non-coopérative »). Au lieu de concentrer nos recherches sur la performance absolue de 
la perception coopérative, nous nous concentrons sur les mécanismes généraux qui 
permettent la réalisation de la localisation coopérative et de la cartographie de 
l’environnement routier (y compris la détection des objets), considérant que la 
localisation et la cartographie sont les deux tâches les plus fondamentales pour un 
système de véhicule intelligent. Nous avons également exploité la possibilité d’explorer 
les techniques de la réalité augmentée, combinées aux fonctionnalités de perception 
coopérative. Nous baptisons alors cette approche « réalité augmentée coopérative ».  
Par conséquent, nous pouvons d’ores et déjà annoncer trois contributions des travaux 
présentés: la localisation coopérative, la cartographie locale coopérative, et la réalité 
augmentée coopérative. 
 

Description 
 

Dans nos travaux, nous avons exploité plusieurs sortes de capteurs, à savoir un GNSS à 
base de GPS, un télémètre laser, une caméra, et des capteurs odométriques. Ces 
capteurs sont souvent employés pour le fonctionnement d’un véhicule intelligent et, 
grâce à ceux-ci, un véhicule intelligent est doté d’une capacité de perception assez 
complète lui permettant d’assurer sa propre localisation et la perception proprement dite 
de l’environnement.  
Afin d’assurer la localisation du véhicule, une architecture à base de filtre Bayésien a 
été examinée ; celui-ci est couramment utilisé pour l'estimation d'état récursive. Ainsi, 
un rappel des diverses méthodes d'estimation récursives dérivées de l’architecture de 
filtre Bayésien est fait. Dans la suite, sont discutés en détail les problèmes 
fondamentaux et les méthodes existantes dans l'état-of-the-art concernant la localisation 
et la cartographie locale coopératives. D’après ces réflexions, nous proposons une 
architecture générale de localisation coopérative en utilisant le « split covariance 
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intersection filter » (ou SCIF), une méthode de l’estimation indirecte de la localisation 
relative Véhicule-à-Véhicule. De même, une nouvelle méthode de fusion de grilles 
d’occupation est présentée et ce, afin de traiter les problèmes fondamentaux en matière 
de la localisation coopérative et de cartographie locale coopérative.  
Nous avons fourni une solution pour la localisation coopérative multi-véhicules. Nous 
avons rappelé le concept de consistance de l’estimation ainsi que le SCIF. Nous avons 
présenté plusieurs formes de ce filtre avec leurs dérivations et une preuve originale pour 
la consistance de la fusion de ce filtre. Nous avons introduit plusieurs fonctionnalités de 
base comme la condition pour réaliser la localisation coopérative. Nous avons introduit 
une architecture générale de localisation coopérative en utilisant un SCIF. Puisque 
l'architecture est décentralisée, nous avons décliné l’approche dans le cadre de la 
localisation d'un véhicule intelligent en s’appuyant sur ses capteurs de mouvement. 
Nous explicitons ainsi la manière dont il peut mettre à jour son estimation d'état en 
utilisant ses propres mesures de positionnement absolu, ainsi que la mise à jour de son 
estimation d'état avec les données partagées avec les véhicules voisins. Nous avons 
présenté la stratégie d’estimation indirecte de du positionnement relatif Véhicule-à-
Véhicule. 
Nous avons fourni une solution de cartographie locale coopérative pour les véhicules 
intelligents fondée sur la télémétrie laser. Nous avons décrit la méthode de SLAM local 
fondée sur la grille d’occupation. Nous faisons la distinction entre état local et état 
global puis nous décrivons comment les estimations de l'état local du véhicule obtenues 
par le SLAM peuvent être utilisées pour obtenir les estimations de l'état global de celui-
ci. Nous avons présenté l’architecture de fusion des grilles d’occupation en formalisant 
le problème dans un cadre généralisé de problème d'optimisation. Nous avons proposé 
une nouvelle fonction objective qui mesure le degré cohérence de l'alignement des 
cartes fondé sur la probabilité d'occupation. Ensuite, nous avons proposé une approche 
fondée sur un algorithme génétique dans le but de rechercher l'alignement optimal des 
grilles. Nous avons enfin introduit l’architecture de la détection coopérative des objets 
en mouvement, fondé sur la fusion des grilles occupations. Pour une mise en œuvre 
complète, nous avons adopté deux méthodes de base pour la détection des objets en 
mouvement. 
Nous avons exploité la notion de réalité augmentée à la perception coopérative, 
formalisant ainsi le concept de « réalité augmentée coopérative » appliquée au contexte 
des systèmes de véhicules intelligents. Nous nous sommes intéressés particulièrement 
au scénario de véhicules « leader-suiveur » auquel l’approche de réalité augmentée est 
appliquée. Pour cela, nous utilisons deux capteurs : un télémètre laser et une caméra. 
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Nous avons décrit comment établir une relation spatiale entre deux vues selon la 
géométrie perspective. Nous avons introduit une technique permettant à un télémètre 
laser 2D de fournir à une caméra des données lui permettant d’estimer la profondeur de 
perception visuelle. Nous avons présenté la façon de projeter la perception d'un véhicule 
sur celle d'un autre véhicule, en respectant la géométrie perspective décrite. Nous avons 
également introduit une nouvelle méthode de calibration extrinsèque pour une caméra et 
un télémètre laser 2D. 
Nous avons présenté les conditions expérimentales et les résultats expérimentaux 
concernant la localisation coopérative, la cartographie locale coopérative et la réalité 
augmentée coopérative. Nous avons présenté les résultats d'une étude comparative 
fondée sur la simulation qui démontre l'avantage de l'architecture de localisation 
coopérative proposée utilisant le filtre SCIF (l’approche SCIFCL), notamment pour les 
véhicules intelligents avec des capacités de positionnement absolu hétérogènes. Un 
avantage important de la méthode SCIFCL est qu'elle assure une localisation améliorée 
naturellement répartie au sein du réseau de véhicules, tout en gardant une consistance 
raisonnable pour l'estimation de l'état de chaque véhicule. Nous avons également 
présenté les résultats de tests réels sur la localisation coopérative, qui conduisent à des 
conclusions similaires à l’étude comparative fondée sur la simulation. Nous avons 
démontré les performances de la méthode de fusion de grilles occupations, fondés sur 
des tests effectués avec des données réelles. En dépit d'une erreur initiale 
intentionnellement exagérée, les cartes locales construites par différents véhicules 
peuvent toujours être agrégées correctement en utilisant la méthode proposée. D'ailleurs, 
la méthode de fusion des grilles d’occupation a le potentiel de trouver une solution pour 
le problème dit de « kidnapping ». Nous avons démontré les performances de la 
méthode baptisée comme « réalité augmentée coopérative », qui réalise un effet vif de 
‘voir’ à travers le véhicule leader pour le véhicule suiveur dans le scénario de véhicules 
« leader-suiveur ».  
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Résumé 
 
Le thème de recherche de cette thèse est la perception coopérative multi-véhicules  
appliquée au contexte des systèmes de véhicules intelligents. L’objectif général des 
travaux présentés dans cette thèse est de réaliser la perception coopérative de plusieurs 
véhicules (dite « perception coopérative »), visant ainsi à fournir des résultats de 
perception améliorés par rapport à la perception d’un seul véhicule (ou « perception 
non-coopérative »).  
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1.1 Context: Intelligent Vehicle Systems 
Vehicles (automobiles, ground vehicles) have been praised as one of the greatest 
inventions in modern history, as they have revolutionized our living mode and have 
contributed enormously to the development of modern society. Thanks to them, the 
living range and the working range of human beings have been largely enhanced. For 
example, we can take an exciting job in one town while enjoying a desirable habitation 
in another town. 
Since several decades ago, researchers have been making efforts on incorporating 
various intelligent functions into traditional vehicles, with a goal of realizing intelligent 
vehicle systems that make driving experience more convenient, more efficient, and safer. 
Take some scenarios as examples, as follows:  
Imagine that you are driving to Paris for the first time and you intend to go to a given 
destination whose location you do not know yet. In this case, an intelligent vehicle 
localization system [Skog & Handel 2009] can estimate current location of the vehicle, 
match the location onto a pre-stored digital map, and computes an itinerary to guide you 
from your current location to your destination. The localization system will update the 
estimate of vehicle location in real-time and always keep you on the correct itinerary.  
During your trip, you are a bit distracted by the exotic architectures on road sides and 
have not paid attention to gradual deviation of your vehicle; then an intelligent vision 
system that performs automatic lane detection [Li & Nashashibi 2011b] can monitor the 
vehicle-lane relative position and signal a lane departure warning message in time. You 
might have not paid attention to traffic lights or traffic speed signs either, then the 
vision system that performs traffic light detection [Charrette & Nashashibi 2009] and 
traffic speed sign detection [Moutarde et al. 2007] can also signal relevant message in 
time and display the traffic information. 
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Figure 1.1 Vehicle navigation guidance with a digital map (modification on pictures from Google 
maps) 
 
You might get tired of adjusting the vehicle speed; then an Adaptive Cruise Control 
(ACC) system [Vahidi & Eskandarian 2003] will liberate your foot from oil-pedal 
control and adjust the vehicle speed automatically. Suddenly, a pedestrian comes out 
from no where and rush across the road; for this sudden event, a system of pedestrian 
detection [Gate et al. 2009] will have rapid detection and recognition of the pedestrian 
and send proper commands to the vehicle controllers to avoid collision with the 
pedestrian. 
After a long driving, you finally arrive at your destination, yet with a fatigued body. At 
this moment, an automatic vehicle parking system [Xu et al. 2000] will take charge of 
vehicle parking and save you from all these last steps of vehicle maneuvering.  
Besides the examples listed above, an ocean of research works on intelligent vehicle 
systems can be found in literature. The research context of this dissertation is also the 
field of intelligent vehicle systems. In next sub-sections, we will specify our research 
focus in the context of intelligent vehicle systems (IVS). 

1.2 Vehicles Cooperation 
Most research works in the field of intelligent vehicle systems focus on SINGLE 
vehicle operation, i.e. the intelligent vehicle performs environment perception, 
decision making, and action execution, based only on its own sensor information and its 
own planning, without interacting with other intelligent vehicles.  
A typical example is vision based autonomous navigation [Thorpe et al. 1988] 
[Pomerleau 1989], where the on-vehicle vision processing module (based on either 
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mono-camera or stereo-camera) process digital image data to generate vehicle control 
law directly or generate useful spatial information of the environment that can be used 
to guide the behavior of the vehicle. Another typical example is laser scanner based 
simultaneous localization and mapping (SLAM) [Wang et al. 2003], the vehicle 
establishes spatially consistent relationship among its sequence of observations, 
generates a consistent environment representation (the process of mapping), and 
localizes itself with respect to this environment representation (the process of 
localization). Moreover, other examples of single intelligent vehicle operation can be 
found in the applications of GPS-based vehicle localization and navigation [Kao 1991] 
[Abuhadrous et al. 2003], pedestrian detection [Enzweiler & Gavrila 2009], vehicle 
detection [Sun et al. 2006], general objects detection [Bertozzi & Broggi 1998] 
[Labayrade et al. 2005], and vehicle lateral control and vehicle longitudinal control 
[Rajamani 2005] etc. 
The application background of intelligent vehicle systems is the outdoor traffic 
environment; a noticeable feature of outdoor traffic environment is that thousands of 
vehicles operate in the same environment. We can make a fair analogy between the 
outdoor traffic environment and our society, where an intelligent vehicle can be 
compared to an individual human being.  
Each of us possesses the ability of sensing the environment and the ability of reacting to 
the environment; one has the potential to survive by one’s own ability, as how Robinson 
Crusoe did on a remote tropical island. In a society, however, we always cooperate with 
each other, instead of being totally independent. For example, when we arrive at a new 
place and want to search a certain street, we tend to consult some local passers-by for a 
quick access to our destination; without this cooperation, we might spend hours on 
searching the destination and suddenly find ourselves back again to a place we have 
passed by. When we want to enter into a cinema, we form a queue based on certain rule 
and pass the entrance orderly; without this cooperation, we would bump into the 
entrance randomly and might get stuck into a stalemate at the entrance.  
In short, the cooperation among people in our society makes our lives more convenient 
and more efficient. Similarly, the cooperation among intelligent vehicle systems in 
traffic environment would also bring convenience and efficiency to traffic users.  
Early motivation for performing vehicles cooperation lies in the idea of increasing 
infrastructure capacity via cooperative platooning (or cooperative adaptive cruise 
control) [Raza & Ioannou 1996] [Tsugawa et al. 2000] [Tsugawa et al. 2001] [Bruin et 
al. 2004]. For a highway segment, its capacity is limited by the safety interval distance 
between neighboring vehicles; the smaller this distance is, the larger the highway 
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capacity is. In cooperative platooning, down-stream vehicle can share its motion state 
and motion intention with upstream vehicles which can then take anticipatory actions 
and avoid jerk movements; as a result, the gap between neighboring vehicles can be 
reduced while string stable behaviors can be maintained, as illustrated in Figure 1.2. In 
other words, compared with non-cooperative platooning, cooperative platooning 
requires smaller safety distance, which can enhance highway capacity because vehicles 
can pass the highway segment more tightly.  
 

Inter-vehicle communication

Vehicle sensing

Smaller safety interval

 
Figure 1.2 Vehicles platooning: (top) non-cooperative platooning; (bottom) cooperative platooning 
 
Another motivation for performing vehicles cooperation stems from the need to 
guarantee navigation safety, which stimulates the development of cooperative collision 
warning-avoiding systems (CCWAS) [Li & Wang 2006] [Farahmand & Mili 2009] 
[Tan & Huang 2006]. Take an intersection scenario as an example, as illustrated in 
Figure 1.3. Vehicle A and Vehicle B move toward an intersection; they have several 
possible motion modes at the intersection. Some motion mode might result in a collision 
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accident if the drivers of the two vehicles misjudge the situation. With inter-vehicle 
communication, they can share the information of their position, motion state, and 
motion intention etc; then they can evaluate the possibility of collision. If a risk of 
collision exists, they can take proper actions in time to prevent collision from happening. 
Besides intersection scenarios [Chan & Bougler 2005] [Li & Wang 2006], cooperative 
collision warning-avoiding systems are also valuable for guaranteeing navigation safety 
at lane changing scenarios [Ammoun et al. 2007] [Li et al. 2005]. 
 

B

A

Inter-vehicle communication

 
Figure 1.3 Cooperative collision warning-avoiding at an intersection 
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Moreover, the philosophy of vehicles cooperation has been applied to diverse kinds of 
scenarios, providing possible solutions for special demands of the society. For example, 
a new type of elderly driver assistance systems [Tsugawa et al. 2007] enables a host 
vehicle (driven by an assisting driver) to assist or escort the guest vehicle (driven by an 
elderly driver) through inter-vehicle communication. Europe has supported several large 
projects such as I-WAY [Rusconi et al. 2007], CVIS [Koenders & Vreeswijk 2008], 
and COOPERS [Piao & McDonald 2008], which attempt to integrate state-of-the-art 
V2V and V2I communication technologies and cooperative philosophy into 
comprehensive traffic scenarios.  

1.3 Cooperative Perception 
Generally speaking, single vehicle operation concerns two functionalities: perception 
and control. The vehicle perceives the environment and its own state, and then 
determines how to react to the environment; the vehicle repeatedly executes the 
procedures of perception and control, as illustrated in Figure 1.4.  
 

 
Figure 1.4 Intelligent vehicle operation paradigm 
 
Vehicles cooperation also concerns the functionalities of perception and control by each 
individual vehicle. Moreover, the vehicles in cooperation can share and fuse their 
perceptions, which results in the functionality of cooperative perception; they can also 
share their motion intentions and coordinate their actions, which results in the 
functionality of cooperative control. Besides cooperative perception and cooperative 
control, vehicles cooperation also concerns the functionality of vehicular 
communication which plays a fundamental role for vehicles cooperation, as illustrated 
in Figure 1.5. 
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Figure 1.5 Vehicles cooperation paradigm 
 
This dissertation will focus on the functionality of cooperative perception; see the 
hierarchy of research areas in Figure 1.6. In the next sub-section, we will explain the 
value of cooperative perception in the context of intelligent vehicle systems and specify 
the problems and applications of cooperative perception concerned in this dissertation. 
 

 
Figure 1.6 Hierarchy of research areas 
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1.3.1 Motivation 
As mentioned above, most research works in the field of intelligent vehicle systems 
focus on single vehicle operation; naturally, most research works on vehicle perception 
focus on the perception performed independently by a single vehicle.  
Compared with single vehicle perception (or non-cooperative perception), the 
motivation for developing cooperative perception can be illustrated by a typical traffic 
scenario, i.e. an overtaking scenario as shown in Figure 1.7. A vehicle is overtaking 
another vehicle while the overtaken vehicle (the first vehicle) occludes the view of the 
overtaking vehicle (the second vehicle). This scenario is potentially dangerous; for 
example, in the case where a careless pedestrian is rushing across the road in front of 
the first vehicle, then what might happen? 
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First

Second

 
Figure 1.7 Overtaking scenario: potentially dangerous 
 
For reasons of safety and efficiency, the second vehicle always wants to know: what 
objects are there occluded by the front vehicle? If there are some objects with risky 
trajectories, the second vehicle can make certain anticipatory actions such as 
deceleration or even braking-down. On the other hand, if there is no object, the second 
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vehicle can just keep going with high speed, this will be more efficient for the second 
vehicle and possibly other vehicles following the second vehicle.  
Unfortunately, the second vehicle can never answer this question by itself, simply 
because it cannot perceive the occluded environment. No matter how good sensors and 
how good algorithms the second vehicle is using, it can not have any inference about 
the occluded environment. Then, a simple motivation for developing cooperative 
perception is to help the second vehicle answer this question. More specifically, the 
basic idea of cooperative perception is to let the first vehicle share its perception with 
the second vehicle, in order that the second vehicle can “perceive” the occluded 
environment. 
Another traffic scenario that demonstrates the value of cooperative perception is 
illustrated in Figure 1.8(top). Two vehicles A and B navigate in the same area; each of 
them has self-localization ability; they can also estimate the relative pose between them 
using their perception components.  
Concerning the localization for vehicle B (similar reasoning can be carried out for 
vehicle A), the position of vehicle B can be estimated by vehicle B itself (shown in 
Figure 1.8(middle)). Besides, the position of vehicle B can be estimated indirectly from 
the perspective of vehicle A, as vehicle A can compound the estimate of relative pose 
between the two vehicles and the estimate of its own position (shown in Figure 
1.8(bottom)).  
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Figure 1.8 Multi-vehicles cooperative localization 
 
In other words, vehicle B can be localized based on two sources of data: one is of its 
own; the other one is of vehicle A. Better localization results might be achieved for 
vehicle B, if we fuse the two sources of data. The advantage of this fusion is especially 
noticeable for heterogeneous systems: imagine that vehicle A has high-quality 
positioning configuration whereas vehicle B has low-quality positioning configuration, 
then the high-quality positioning result of vehicle A can significantly improve the 
positioning results of vehicle B.  
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1.3.2 Problem statement 
The general methodology of the presented works in this dissertation is to realize multi-
intelligent vehicles cooperative perception, which aims at providing better vehicle 
perception result compared with single vehicle perception (or non-cooperative 
perception). 
Before further explanations for this methodology, we would like to review several 
underlying tasks of single vehicle perception. The essential purpose of vehicle 
perception is to provide relevant information, based on which the vehicle can decide 
how to react to the environment. For this purpose, first, the vehicle has to know its 
spatial state (position and orientation) with respect to a global reference, or to a local 
reference, or to both; the process of estimating this spatial state of the vehicle is usually 
referred to as vehicle localization (or localization for short). Second, the vehicle also 
has to establish spatial representation for the environment objects. Some environment 
objects are stationary, for example, buildings, road infrastructures etc; the process of 
establishing spatial representation for the stationary objects is usually referred to as 
mapping. Some environment objects are moving (or dynamic), for example, moving 
vulnerable road users; the process of establishing spatial representation for the moving 
objects is usually referred to as moving objects detection. The process of establishing 
spatial representation for both stationary objects and moving objects in the environment 
is referred to as mapping and moving objects detection. All these underlying tasks are 
important for successful and safe navigation of the vehicle. 
When we extend single vehicle perception to multi-vehicles cooperative perception, we 
will naturally focus on the underlying issues of cooperative localization and 
cooperative mapping and moving objects detection for cooperative perception. 
Simply speaking, cooperative localization is a process where multiple vehicles perform 
localization cooperative, i.e. a vehicle can utilize the data of other vehicles to assist the 
localization of the vehicle itself. Similarly, cooperative mapping and moving objects 
detection is a process where multiple vehicles perform mapping and moving objects 
detection cooperatively, i.e. a vehicle can utilize the data of other vehicles to assist its 
tasks of mapping and moving objects detection. 
It is worthy noting that the role of these cooperative perception functionalities is 
optional instead of being mandatory. A vehicle can choose to cooperate with other 
vehicles or not, depending on its judgement whether it can benefit from others or 
whether it can help others. For example, a vehicle with high quality GPS (Global 
Positioning System) and high quality IMU (Inertial Measurement Unit) might trust 
largely in its own positioning results and chooses not to fuse the positioning information 
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of other vehicles. It is like when we visit a new country, we tend to consult local people 
about our destinations (as we think local people are likely to be familiar with the local 
environment); if we find ourselves only with other foreigners nearby, we might choose 
to rely on ourselves to find our destinations (as we think these foreigners are unlikely to 
be familiar with the local environment). 
Since the role of cooperative localization and cooperative mapping and moving objects 
detection is optional, then a question arises naturally: how to determine whether to 
perform these cooperative functions or not? However, we will not discuss about this 
issue in this dissertation, as this issue will deviate the research focus of cooperative 
perception. What we will tackle is: how to realize cooperative localization and how to 
realize cooperative mapping and moving objects detection? 
It is also worthy noting that cooperation is NOT omnipotent and we had better NOT 
expect that cooperative perception can unlimitedly make improvements over single 
vehicle perception. For example, we can not expect that two vehicles both with ten-
meter level positioning accuracy can achieve centimeter-level accuracy through 
cooperative localization. The performance of cooperative perception largely depends on 
the perception ability of each individual vehicle in cooperation. The better the single 
vehicle perception is, the better the cooperative perception tends to be.  
Therefore, instead of focusing our research works on the absolute performance of 
cooperative perception, we would rather focus on the general mechanisms which 
enable the realization of above mentioned cooperative perception functionalities 
based on commonly used sensor configurations; we would rather examine the 
advantages of these cooperative perception functionalities relative to single vehicle 
perception. 
The final goal for developing intelligent vehicle systems in the long run is that all the 
vehicles in our society can reliably operate in full automated mode (or with only few 
human interventions such as designating the destination of the vehicle users). However, 
there is still considerable gap between current technical ability and the ability to achieve 
above goal. Before this final goal becomes true, it would be desirable that current 
techniques can be adapted for driver assistance. Better visualization of vehicle 
perception results would better assist the driver to judge the environment. Augmented 
reality techniques can make the perception visualization more direct and more vivid, 
which are commonly used in driver assistance oriented applications. Concerning 
cooperative perception, we will study the possibility of taking advantage of 
cooperative perception to generate augmented reality effects that would be 
valuable for drivers, which we name as cooperative augmented reality. 
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1.4 Contributions 
The contributions of the presented works in this dissertation consist in three aspects: 
cooperative localization, cooperative local mapping and moving objects detection, and 
cooperative augmented reality. 

1.4.1 Cooperative Localization  
We provide a solution of multi-vehicles cooperative localization (CL). First, we make 
an abstraction of the basic functionalities that are commonly available in the context of 
intelligent vehicle systems. Based on these abstracted functionalities, we propose a 
general architecture of cooperative localization using split covariance intersection filter. 
Second, concerning the functionality of vehicle-to-vehicle relative pose estimation that 
is fundamental for realizing cooperative localization, we propose a new method i.e. the 
indirect vehicle-to-vehicle relative pose estimation method to perform this functionality. 
We carry out a simulation based comparative study among the proposed cooperative 
localization architecture and several reference methods. Besides simulation, we also 
carry out cooperative localization in reality and present the results of real-data tests. 

1.4.2 Cooperative Local Mapping and Moving Objects Detection 
We provide a solution of cooperative local mapping and moving objects detection for 
laser scanner based intelligent vehicles. The method architecture is as follows: each 
vehicle establishes in real-time a local occupancy grid map and performs moving 
objects detection based on the established occupancy grid map. During vehicles 
cooperation, the local occupancy grid maps of different vehicles are merged, so that 
these different vehicles can be spatially related to each other; then the moving objects 
detection results of these vehicles can also be merged. As part of this method 
architecture, a new method for occupancy grid maps merging is proposed, which 
consists in a new objective function that measures the consistency degree of maps 
alignment and a genetic algorithm that searches for the optimal maps alignment. 
We carry out real-data tests on the proposed method and demonstrate its performance. 

1.4.3 Cooperative Augmented Reality 
We will extend the spirit of augmented reality to cooperative perception, forming the 
concept of cooperative augmented reality (CAR) in the context of intelligent vehicle 
systems. We provide a solution of cooperative augmented reality, which integrates the 
techniques of cooperative local mapping and augmented reality to generate an 
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augmented reality effect of ‘seeing through’ front vehicle. As part of the provided 
solution, a new method is proposed for extrinsic co-calibration of a camera and a 2D 
laser scanner.  
We will demonstrate the ‘seeing through’ effect of the introduced cooperative 
augmented reality method, based on real-data tests. 

1.5 Thesis Outline 
This dissertation is organized as follows: In chapter 2, we review in details the problems 
and the state-of-the-art methods concerned in the cooperative perception issues 
discussed in this dissertation. From chapter 3 to chapter 5, we respectively introduce our 
solutions of cooperative localization, cooperative local mapping and moving objects 
detection, and cooperative augmented reality. In chapter 6, we describe concrete 
implementation and integration of the proposed methods on our experimental vehicle 
platforms and demonstrate experimental results. In chapter 7, we summarize the works 
presented in this dissertation and discuss about their future extensions.  
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Résumé 
 
Dans nos travaux, nous avons exploité plusieurs sortes de capteurs, à savoir un GNSS à 
base de GPS, un télémètre laser, une caméra, et des capteurs odométriques. Ces 
capteurs sont souvent employés pour le fonctionnement d’un véhicule intelligent et, 
grâce à ceux-ci, un véhicule intelligent est doté d’une capacité de perception assez 
complète lui permettant d’assurer sa propre localisation et la perception proprement dite 
de l’environnement. Afin d’assurer la localisation du véhicule, une architecture à base 
de filtre Bayésien a été examinée ; celui-ci est couramment utilisé pour l'estimation 
d'état récursive. Ainsi, un rappel des diverses méthodes d'estimation récursives dérivées 
de l’architecture de filtre Bayésien est fait. Dans la suite, sont discutés en détail les 
problèmes fondamentaux et les méthodes existantes dans l'état-of-the-art concernant la 
localisation et la cartographie locale coopératives. D’après ces réflexions, nous 
proposons une architecture générale de localisation coopérative en utilisant le « split 
covariance intersection filter » (ou SCIF), une méthode de l’estimation indirecte de la 
localisation relative Véhicule-à-Véhicule. De même, une nouvelle méthode de fusion de 
grilles d’occupation est présentée et ce, afin de traiter les problèmes fondamentaux en 
matière de la localisation coopérative et de cartographie locale coopérative. 
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2.1 Introduction 
As we have stated in previous chapter: the performance of cooperative perception 
largely depends on the perception ability of each individual vehicle in cooperation; 
instead of focusing our research works on the absolute performance of cooperative 
perception, we would rather focus on the general mechanisms which enable the 
realization of previously mentioned cooperative perception functionalities based on 
common used sensor configurations; we would rather examine the advantages of 
these cooperative perception functionalities relative to single vehicle perception. 
Therefore, before going into detailed discussion on the cooperative perception issues, 
we had better first give an introduction of the state-of-the-art sensor configurations that 
are common for single intelligent vehicle operation. This can provide a baseline for our 
research works: First, concerning methodology, we can judge whether the proposed 
methods are generally applicable to vehicles with common sensor configurations? 
Second, concerning performance, we can examine what benefits can cooperative 
perception bring to vehicles with common sensor configurations? 
The execution of a perception task can be basically treated as a process of estimating 
certain state of interest (vehicle pose, environment map etc) based on the measurements 
of certain vehicle sensors. Following the introduction of intelligent vehicle sensor 
configurations, we would like to introduce some general mathematical foundations of 
estimation theory, which have been widely applied in real-time vehicle perception tasks. 
Then, we study in details the problems and the state-of-the-art methods concerned 
respectively in the issues of cooperative localization, cooperative local mapping and 
moving objects detection, and cooperative augmented reality, which have been briefly 
introduced in previous chapter. 

2.2 Intelligent Vehicle Sensor Configurations 
We review several kinds of sensors that are commonly used in nowadays intelligent 
vehicles.  

2.2.1 Global Positioning System (GPS) 
The Global Positioning System (GPS) is part of a satellite-based navigation system 
developed by the United States Department of Defense under its NAVSTAR satellite 
program. More detailed description of the history and technologies of the GPS can be 
found in an ocean of literature on this topic; refer to [Grewal et al. 2001] [Farrell & 
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Barth 1998] for examples. Briefly speaking, a GPS receiver (with related processing 
units) can provide information of its location and the GPS universal time, via analysis 
of the signals transmitted by the GPS satellites whose orbital information is known. 
Several factors account for the popularity of the GPS in the applications of intelligent 
vehicle systems: First, it can provide positioning measurement with respect to a global 
reference (a reference fixed with the environment where the intelligent vehicles operate). 
Second, it can provide the global positioning measurement directly, without the need 
for certain extra conditions such as pre-registration works about the operation 
environment. Third, it can provide error-bounded positioning measurement, without 
suffering from accumulated positioning errors. 
Although the U.S. America was the first to develop satellites-based global positioning 
system, yet nowadays it is not the only provider of satellites-based global positioning 
services. Some other entities such as Russia, Europe, and China have also been 
developing global positioning systems (in different names); for example, the GLObal 
Navigation Satellite System (GLONASS) by Russia, the GALILEO positioning system 
by European Union, and the COMPASS (or Bei Dou in Chinese) navigation system by 
China. Therefore, in this dissertation, the referring of the terms global positioning 
system (GPS) does not necessarily indicate that specific system developed by U.S.A, 
but generally indicates any possible system which performs the functionality of global 
positioning based on satellites.  
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Figure 2.1 Satellites-based global positioning systems (modification on pictures from Huan Qiu Shi 
Bao i.e. Global Times) 
 

2.2.2 Laser Scanner  
Laser scanner, or in other names such as laser rangefinder, laser telemeter, is a kind of 
device that can measure its distance to environment objects by emitting laser beams, 
receiving the reflection of the laser beams, and computing the distance traversed by the 
laser beams.  
A laser scanner can rapidly provide reliable range measurements with fairly small range 
errors (centimeter level errors). In other words, a laser scanner enables a vehicle to 
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efficiently monitor the spatial relationship between the vehicle and the surrounding 
objects. As a result, laser scanner plays an important role in guaranteeing vehicle 
navigation safety, especially for the purpose of environment objects collision avoidance 
(avoiding collision onto vulnerable road users, other vehicles, environment 
infrastructure etc).  
 

 
Figure 2.2 Range measurements provided by a laser scanner 
 

2.2.3 Camera 
Cameras can provide a kind of sensing data that is related to the most important 
perception system of human beings, i.e. our vision. As our vision provides the most part 
of information for our reasoning about the environment, cameras can also provide a 
large amount of information for intelligent vehicle systems to make inference about the 
environment. For example, based on vision data, on-vehicle vision systems can perform 
tasks of lane marks detection and traffic signs detection that are almost impossible for 
other kinds of perceptive sensors such as laser scanners. Vision data provide plenty of 
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clues for automatic recognition of environment objects (pedestrians, vehicles etc). 
Besides, camera data (original or with certain visualization effects) can be easily 
comprehended by human beings, which makes cameras valuable for the purpose of 
driver assistance, human-machine interaction etc. 

2.2.4 Motion Sensor 
Motion sensors are a kind of proprioceptive sensors (in contrast with exteroceptive 
sensors such as cameras and laser scanners) that are usually equipped on an intelligent 
vehicle to monitor vehicle motion state (longitudinal motion and lateral motion). 
Motion sensors used for intelligent vehicles include odometers (including steering 
encoders), accelerometers, gyroscopes etc.  
Normally, motion sensors can output motion measurements at comparatively high 
frequency (for example, 100 Hz). Therefore, motion measurements can be used to 
predict vehicle state when other sorts of measurements are temporarily unavailable. 
Besides, motion measurements can be fused with other sorts of measurements to 
enhance the accuracy of vehicle state estimates.  

2.2.5 Integration 
We have briefly introduced several sorts of sensors, namely GPS, laser scanner, camera, 
and motion sensor. For certain specific application, we might be able to resort to only 
one sort of these sensors. For example, for lane detection and lane following, we only 
need a vision system. 
On the other hand, it has been a tendency to incorporate all these sensors into an 
intelligent vehicle, in order that the vehicle possesses fairly complete perception ability 
towards itself and the environment. The reasons are two-folds: 
First, the functionality of each sort of these sensors is irreplaceable by the others. 
Without GPS, the vehicle has no error-bounded inference about its global position. 
Without camera, the vehicle has no visual data for computer-based image processing or 
for human-oriented visualization. Without laser scanner, the vehicle can not have range 
data of high reliability and accuracy. Without motion sensor, the vehicle can not have 
direct monitoring of its motion state. 
Second, the availability of all these sensors can complement each other and facilitate the 
functioning of each other. In other words, they are mutually beneficial. For example, 
motion data can be used to facilitate processing of range data and vision data; they can 
be fused with global positioning measurements. Range data based processing results can 
be used to correct motion data. 
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An example of intelligent vehicle equipped with GPS, laser scanner, camera, and 
motion sensors is illustrated in Figure 2.3. 
 

 
Figure 2.3 Intelligent vehicle sensor configurations (CyCab vehicle platform) 
 

2.3 Recursive State Estimation 

2.3.1 State, State Estimation, and Perception 
The term state is frequently adopted in a wide range of domains; the definition of state 
depends on concrete research and application areas. In the context of intelligent vehicle 
systems, we could generally think state as the collection of all properties of the vehicles 
and the environment. In reality, however, we can not really deal with all the properties, 
because they are infinite. In fact, we do not need to deal with all the properties; for 
example, we do not need to care about that an intelligent vehicle consists of how many 
molecules. In other words, we need to selectively deal with partial properties of the 
vehicles and the environment that are important in certain sense; then we treat these 



 27

partial properties as state. As in this dissertation, we deal with the spatial properties of 
the vehicles and the environment and treat them as state. 
State estimation addresses the problem of estimating the state of interest (the properties 
we care about) via analysis of sensor data. The need for state estimation lies in two 
aspects of reasons: First, certain state elements might not be directly observable from 
sensor data; they can only be inferred from sensor data. For example, GPS only outputs 
position measurement for the vehicle, whereas vehicle orientation can only be inferred 
from the process of vehicle pose estimation i.e. vehicle localization. Second, for those 
state elements directly observable from sensor data, techniques such as filtering and 
data fusion in state estimation can reduce the uncertainty of the raw sensor data of these 
state elements. 
After a brief introduction of state and state estimation, now we could further specify the 
meaning of perception. Literally, perception means 1) the ability of perceiving (sensing, 
recognizing etc), 2) the process of perceiving, and 3) the result of perceiving. In this 
dissertation, the perception, when used in general manner, still conveys all these senses 
of meaning. For example, cooperative perception implies the ability of perceiving 
cooperatively, the process of perceiving cooperatively, and the results of perceiving 
cooperatively.  
Concerning the third sense of meaning i.e. the result of perceiving, the perception only 
implies current result of perceiving, as we focus on real-time vehicle perception. In 
other words, the perception means current state estimate that might be obtained based 
(directly and indirectly) on analysis and fusion of a temporal sequence of sensor 
measurements. For example, when we express “a vehicle shares its perception with 
another vehicle” or “associate the perceptions of two vehicles”, here, the perception has 
such sense of meaning i.e. the current state estimate maintained by a vehicle. 

2.3.2 Vehicle-Environment Interaction 
During the operation of an intelligent vehicle, it gets sensor measurements about itself 
and the environment. We can assign its sensor measurements into two categories: 
vehicle proprioceptive measurements and vehicle exteroceptive measurements. The 
terms proprioceptive and exteroceptive have been briefly mentioned in the introduction 
of motion sensors; here we would like to explain their difference. 
 
Vehicle proprioceptive measurements: the proprio means “of one’s own”; vehicle 
proprioceptive measurements are measurements that only concern the vehicle itself. 
Vehicle motion measurements belong to such kind of measurements. 



 28

As will be explained later, among the four kinds of sensor measurements (GPS, laser 
scanner, camera, and motion sensor) introduced previously, only vehicle motion 
measurements are proprioceptive for the vehicle. Thus in this dissertation, the concepts 
of vehicle proprioceptive measurements and vehicle motion measurements are not 
distinguished from each other and they are used interchangeably. 
We generally denote vehicle motion measurements as u, and use a subscript to denote 
time. The vehicle motion measurements at time t will be denoted as 
 

tu  

 
The notation  
 

21121
,...,, 1: ttttt uuuu +=  

 
denotes the set of vehicle motion measurements from time t1 to time t2, for t1<t2. 
Besides being proprioceptive, another feature for vehicle motion measurements is that 
they are directly related to vehicle control actions that cause vehicle state to change. 
Therefore, the denotation u bears two aspects of indications: first, it denotes the passive 
measurements on vehicle motion; second, it denotes the motion actions that actively 
contribute to vehicle state transition. 
 
Vehicle exteroceptive measurements: the extero means “exterior”; vehicle 
exteroceptive measurements are measurements that concern the vehicle and the 
environment. GPS measurements, laser scanner measurements, and camera 
measurements belong to such kind of measurements. 
Sometimes, GPS measurements are regarded as proprioceptive measurements; however, 
we would rather treat GPS measurements as exteroceptive measurements, because what 
GPS measures is not some properties of the vehicle itself, but the spatial relationship 
between the vehicle and a group of satellites.  
We could do an imaginary experiment to better understand the difference between 
proprioceptive and exteroceptive: imagine that a cover is always around the vehicle and 
it absolutely cuts the vehicle away from environment. In this situation, GPS, laser 
scanner, and camera will lose their functioning, because environment objects outside 
the vehicle become totally “invisible”; so these sensors are exteroceptive. In contrast, 
motion sensors can still function; so vehicle motion sensors are proprioceptive. 
We generally denote vehicle exteroceptive measurements as z; and 
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tz  (for time t) 

 

21121
,...,, 1: ttttt zzzz +=  (from time t1 to time t2, for t1<t2) 

 
Vehicle-environment state: currently, we do not distinguish between the vehicles and 
the environment; we generally denote their state (i.e. their properties that we want to 
estimate) together as  
 

tx  (for time t) 

 

21121
,...,, 1: ttttt xxxx +=  (from time t1 to time t2, for t1<t2) 

 
The purpose of vehicle perception is to estimate the state x based on vehicle 
exteroceptive measurements z and vehicle motion measurments u, as illustrated in 
Figure 2.4. 
 

 
Figure 2.4 General perception process: State estimation 
 
In probabilistic terms, the problem is to estimate the posterior belief distribution of the 
following form: 
 

),|()( :1:1:1:1 tttt pbel uzxx =  
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Since we mainly focus on real-time perception that cares about state estimate at current 
time, the problem of vehicle perception turns to estimate the posterior distribution as 
specified in (2-1): 
 

),|()( :1:1 tttt pbel uzxx =  (2-1) 

 

2.3.3 Recursive Estimation: Bayesian Filter Framework 
In reality, the operation of an intelligent vehicle is a dynamic process of interaction 
between the vehicle and the environment; the vehicle has to perform perception tasks in 
dynamic way: the vehicle has to re-estimate the state of interest from time to time, 
because both the vehicle and the environment are changeable. 
Vehicle measurements accumulate as time passes; for each round of state estimation, 
we can not expect that the estimation is based on all historical measurements, because 
the huge amount of measurements will make the problem intractable neither at 
computational level nor at storage level. A more reasonable practice is to base a new 
round of state estimation on the results of last round of state estimation and the new 
measurements since last round of state estimation, in short words, to perform state 
estimation in recursive way. 
We can derive a recursive formulism of state estimation from (2-1), using some fair 
assumptions. Via Bayes rule we have 
 

),|(),,|(                            
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:11:1:11:1
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−−

−

−−

=

=
 (2-2) 

 
Where δ is a normalization factor. The first term of the right side in above equation, 
denotes the (conditional) probability of current exteroceptive measurement zt 
conditioned on the state xt, past exteroceptive measurements z1:t-1, and vehicle motion 
measurements u1:t. We can follow the Markov assumption or the complete state 
assumption [Thrun et al. 2005] i.e. the knowledge of xt is sufficient to predict zt; no 
past exteroceptive measurements or vehicle motion measurements would provide 
additional information about zt. In mathematical terms, zt is conditionally independent 
of z1:t-1 and u1:t: 
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)|(),,|( :11:1 tttttt pp xzuzxz =−  (2-3) 

 
Using the theorem of total probability on the second term of the right side in (2-2) and 
we have: 
 

∫
∫
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=

=

11:11:111

1:11:11:11:11:11:1

),|(),|(                              
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 (2-4) 

 
During the derivation of (2-4), the Markov assumption is used another time, i.e. xt is 
only dependent of xt-1 and ut, whereas past exteroceptive measurements and past vehicle 
motion measurements convey no information on the state xt. 
Substitute (2-3) and (2-4) into (2-2): 
 

∫ −−−−−= 11:11:111:1:1 ),|(),|()|(  ),|( tttttttttttt dpppδp xuzxuxxxzuzx  (2-5) 

 
Equation (2-5) describes how we can update the old distribution ),|( 1:11:11 −−− tttp uzx  

with new measurements ut and zt. This recursive estimation process is the so-called 
Bayesian filter in literature, which can be illustrated by dynamic Bayesian network 
(DBN) [Murphy 2002], as in Figure 2.5. 
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Figure 2.5 Dynamic Bayesian network: a framework for recursive state estimation 
 
In real implementation, we can not strictly follow the mathematical framework of 
Bayesian filter given by (2-5), because it is normally numerically intractable. We have 
to make certain approximations on (2-5) to simplify the original Bayesian filter into 
tractable formulism.  
Next, we are going to introduce several recursive estimation methods that are derived 
from the Bayesian filter (2-5) based on different kinds of approximations. 

2.3.4 Kalman Filter  
The Kalman filter was proposed by Rudolph Emil Kalman [Kalman 1960], as a 
technique of state filtering and prediction for linear systems.  
Given a linear state transition model (or system evolution model) ),|( 1 tttp uxx −  as 

 

tttttt BA εuxx ++= −1  

 
and a linear measurement model )|( ttp xz  as 

 

tttt C νxz +=  
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If we follow Gaussian noise assumption: 
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where Rt and Qt are respectively the covariance of the zero-mean random variables εt 
and υt. 
 
Then the Bayesian filter (2-5) will become the Kalman filter (KF) as: 
 

ttttt BA uxx += −1ˆ  

t
T

tttt RAA += −1ΣΣ  
1)( −+= t

T
ttt

T
ttt QCCCK ΣΣ  
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The estimated belief distribution also follows the Gaussian distribution  
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Detailed derivation of the Kalman filter can be referred to [Kalman 1960] [Thrun et al. 
2005] [Grewal & Andrews 2000]. 
For nonlinear state transition model and measurement model 
 

tttt g εuxx += − ),( 1  

ttt h νxz += )(  
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We can linearize the nonlinear functions with first-order Taylor expansion and also 
follow the Gaussian noise assumption. Then we get a set of estimation procedures 
similar to KF, which is referred to as Extended Kalman Filter (EKF) in literature. 
 

),ˆ( 1 ttt g uxx −=  

t
T

tttt RGG += −1ΣΣ  
1)( −+= t

T
ttt

T
ttt QHHHK ΣΣ  

))((ˆ ttttt hK xzxx −+=  

tttt HKI ΣΣ )( −=  

 
The Gt is the Jacobian matrix of function g with respect to xt-1; the Ht is the Jacobian 
matrix of function h with respect to xt. 
The KF (or EKF) has been favored in a wide range of applications, as it provides us a 
convenient and efficient way to approximate full posterior distribution of the state by 
estimating only a mean vector and a covariance matrix. Although the Gaussian 
assumption on which the KF (or EKF) is based can not be strictly satisfied in reality, yet 
the KF (or EKF) normally gives desirable estimation results for unimodal estimation 
problem (for example, for fusing GPS measurements and vehicle motion measurements 
both of which are unimodal). 

2.3.5 Incremental Maximum Likelihood Estimation 
During recursive state estimation, the KF (or EKF) tries to maintain an estimate of full 
posterior distribution of the state; however, this practice will soon become intractable as 
the dimension of the state increases to hundreds or even more. 
In contrast, if we do not maintain an estimate of full posterior distribution of the state, 
but only keeps the most likely state value (with maximum likelihood), then the 
Bayesian filter framework (2-5) will become the incremental maximum likelihood 
estimation framework: 
 

)},ˆ|()|( {maxargˆ 1 tttttt pp
t

uxxxzx
x

−=  

 
The advantage of the incremental maximum likelihood estimation framework lies in its 
simplicity, as it does not need to maintain a full posterior distribution estimate. The 
incremental maximum likelihood estimation framework is especially suitable for 



 35

estimating large dimensional state, such as in the process of simultaneous localization 
and mapping (SLAM) [Gutmann & Knolige 1999] [Lu & Milios 1997a] [Vu 2009]. 

2.3.6 Sampling-based Method: Particle Filter 
In KF, the Gaussian distribution assumption makes an analytical (closed-form) 
expression available for (2-5). If no specific distribution modeling is adopted, then (2-5) 
can only be executed with numerical discretization. The discrete form of the Bayesian 
filter is expressed in (2-6) (where the k and i denote the discretization index). 
 

∑ −−−−= i tttittitktkttttk pppδp ),|(),|()|(  ),|( 1:11:11,1,,,:1:1, uzxuxxxzuzx  (2-6) 

 
A naive implement of the discrete Bayesian filter (2-6) might be computationally 
expensive or even intractable. As a result, sampling-based techniques have been utilized 
to reduce the computational complexity of (2-6); a popular sampling-based method is 
particle filter, or sequential Monte Carlo method, which tries to approximate the state 
distribution with a group of particles and corresponding particle weights. Instead of 
updating the belief over all state space, the particle filter only updates the particles and 
their weights, thus largely reducing computational burden compared with naïve 
implementation of the discrete Bayesian filter.  
One merit of the particle filter lies in the ability of its particles and corresponding 
weights to generally represent arbitrary state distribution (especially for multi-modal 
distribution). The more the particles are, the better the representation ability is, and the 
better the particle filter performs. On the other hand, the particle filter is not 
computationally efficient compared with the KF (or EKF) for dealing with estimation 
problem of the same state dimension. Besides, as the state dimension increases, the 
number of particles usually has to increase exponentially in order to keep the 
representation ability of the particles, which will further cause explosion of 
computational complexity. One can refer to [Doucet et al. 2000] [Doucet et al. 2001] 
for further knowledge on particle filter. 

2.4 Cooperative Localization 

2.4.1 Operation Architecture 
For single vehicle localization, there is usually only one fusion center (the on-vehicle 
processing unit) which collects data from on-vehicle sensors (such as GPS [Redmill et 
al. 2001] [Rezaei & Sengupta 2007], cameras [Thorpe et al. 1988], laser scanners 
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[Wang et al. 2003] [Lingemann et al. 2005], or hybrid sorts of sensors [Li et al. 2010]), 
processes these sensor data, and outputs estimate of vehicle pose. In other words, the 
operation architecture for single vehicle localization is usually centralized.  
Concerning multi-vehicles cooperative localization, if the size of a group of vehicles in 
cooperation is small, then the centralized architecture [Roumeliotis2002] [Howard et al. 
2002] might be a possible solution. In the centralized architecture, one fusion center 
collects data from all the vehicles in cooperation, computes a global state estimate and 
distribute the global state estimate among all the vehicles, as illustrated in Figure 2.6. 
The fusion center can be situated at an infrastructure site or one of the vehicles in 
cooperation. 
 

 
Figure 2.6 Centralized operation architecture 
 
The advantage of centralized architecture is its convenience for data processing, as in 
single vehicle localization; all the data collected for the fusion are independent and 
there is no issue of data correlation which will be explained later. However, the 
centralized architecture suffers from large communication burden and delay; besides, as 
the number of vehicles increases, the computational burden will increase much faster. 
Moreover, the centralized architecture is inflexible in highly dynamic vehicle networks 
which are always the case in real traffic environment. 
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Instead of a centralized architecture, a decentralized architecture, where multiple 
fusion centers exist and each of them handles only local information, turns out to be a 
desirable solution in the long run. In the decentralized (or distributed) architecture, each 
vehicle collects data from its local surrounding environment and fuses the collected data 
for itself. The advantage of decentralized architecture lies in its flexibility for dealing 
with dynamic vehicle networks and comparatively low computational burden for each 
fusion center.  
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Center

Fusion 
Center

Fusion 
Center

Fusion 
Center

 
Figure 2.7 Decentralized (or distributed) operation architecture 
 

2.4.2 How to Handle Inter-Estimates Correlation? 
An important issue arises for decentralized architecture, i.e. how to handle inter-
estimates correlation, i.e. the correlation (interdependency) among different estimate 
sources. Careless handling of this correlation will lead to circular reasoning [Howard et 
al. 2003] which further leads to the over-convergence problem, i.e. the estimates 
quickly converge to inaccurate values or even severely diverged values while extremely 
large confidence is given to these inaccurate values. 
A simple example of the circular reasoning and over-convergence is illustrated in 
Figure 2.8. Here we have three vehicles vehicle 1 (V1), vehicle 2 (V2), and vehicle 3 
(V3); the uncertainty degree of their position estimates is indicated by the ellipses 
around them. Suppose at one moment, vehicle 1 gets a new positioning measurement; 
the uncertainty degree of this new measurement is also indicated by an ellipse. This new 
measurement can help vehicle 1 to reduce the uncertainty degree of its position estimate. 
With better self-positioning result, vehicle 1 can also have better estimation of the 
position of vehicle 2, which can reduce the position estimate uncertainty of vehicle 2. In 
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similar way, the position estimate uncertainty of vehicle 3 can be reduced with the help 
of vehicle 2. Then vehicle 3 might share its updated estimate with vehicle 1, which 
again can reduce the position estimate uncertainty of vehicle 1; so on and son on, such 
kind of circular update can continues until the position estimates of all the three vehicles 
converge to certain over-confident results.  
The estimates of these vehicles might be inaccurate; as they have already established 
over-confidence on the inaccurate estimates, they can not correct these inaccurate 
estimates in time even if some new measurements which bear brand new information 
are available. As this unreasonable circular reasoning continues, the estimates might 
diverge far and far away from the truth. 
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Figure 2.8 Circular reasoning and over-convergence problem 
 
Since the over-convergence problem is due to inter-estimates correlation, a natural idea 
for avoiding this problem is to control inter-estimates correlation, which is realized by 
monitoring and controlling the data flow within vehicle networks. This practice is 
popularly adopted for dealing with inter-estimates correlation in cooperative 
localization; here are some examples. 
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Simple heuristic rules: The authors in [Howard et al. 2003] propose a heuristic method 
based on a dependency tree which establishes for each distribution only one parent 
distribution and zero or more child distributions. A distribution can not be used to 
update its ancestors, but may be used to update its descendants. The relationship among 
these distributions may change according to the arrival of new observations. The 
authors in [Fox et al. 2000] propose some heuristic rules which function similarly with 
the idea of the dependency tree. The limitation of these heuristic methods is that they do 
not have complete monitoring or controlling of data flow; the risk of circular reasoning 
and over-convergence may still exist. 
 
Complicated data transfer scheme: The authors in [Leung et al. 2009] propose a data 
transfer scheme which enables distributed robots to obtain delayed estimates that are 
comparable with centralized estimates; the delay length depends on the evolution of the 
communication graph over time. One undesirable aspect of this method is the 
uncertainty of the availability of the fused estimates, which might not satisfy real-time 
requirements; besides, the communication requirement of this method is demanding, 
due to the large pedigrees of data that have to be relayed within the networks. 
 
Independent estimates exchange: The authors in [Karam et al. 2006a] [Karam et al. 
2006b] propose state exchange based method which only allows independent estimate 
(estimate maintained by each vehicle using its own sensor measurements) to be shared 
within vehicle networks; thus the risk of over-convergence can be thoroughly removed. 
The method can achieve locally centralized performance. On the other hand, a major 
disadvantage for this method is: a vehicle can not benefit from other vehicles that are 
outside its directly visible neighborhood. Besides, one more set of estimate should be 
maintained by each vehicle. 
 
We can still strive in the direction of monitoring and controlling the data flow within 
vehicle networks, with a goal of finding certain data transfer scheme that can keep 
desirable balance among its performance, efficiency, complexity, and feasibility.  
On the other hand, we could reflect a question: do we have to monitor and control the 
data flow for cooperative localization purpose? In above methods, the reason why we 
have to monitor and control the data flow is that the fusion methods used in above 
methods, such as Kalman filter, can not guarantee yielding consistent estimate when 
fusing correlated data (simply speaking, consistent means that the estimate should not 
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be over-confident compared with the ground-truth; detailed explanation is postponed to 
CHAPTER 3).  
What if there exist fusion methods that yield consistent estimate even facing unknown 
degree of inter-estimates correlation? The covariance intersection filters [Julier & 
Uhlmann 1997] [Julier & Uhlmann 2001] are such kind of fusion method.  
Recently, we propose in [Li & Nashashibi 2012a] a general architecture of 
cooperative localization using split covariance intersection filter [Julier & Uhlmann 
2001]. The basic idea is: each vehicle maintains an estimate of a decomposed group 
state and this estimate is shared with neighboring vehicles; the estimate of the 
decomposed group state is updated with both the sensor data of the ego-vehicle and the 
estimates sent from other vehicles, based on the split covariance intersection filter. 
Detailed description of this method will be presented in CHAPTER 3. 
This proposed method has several merits for implementing cooperative localization: 
First, the vehicles are exempted from complicated techniques of monitoring and 
controlling data flow within vehicle networks and the programming architecture for 
cooperative localization becomes simpler. Second, the risk of over-convergence can be 
essentially removed, because the risk is removed directly by the estimation method 
itself. Third, communication requirement are comparatively low, because no pedigree 
of information is needed to be explicitly relayed within vehicle networks. 

2.4.3 Vehicle-to-Vehicle Relative Pose Estimation 
An essential requirement for multiple vehicles to realize cooperative localization is their 
ability to estimate vehicle-to-vehicle (V2V) relative pose among them. In existing 
cooperative localization methods, V2V relative pose estimation is usually performed 
directly, i.e. a vehicle directly detects another vehicle and computes their relative pose 
from the detection result. The realization of a direct V2V relative pose estimation 
method requires dealing with three sub-problems: 1) detection: the vehicle should detect 
and recognize the existence of other vehicles from perceptive data (such as range data 
and vision data); 2) data association: a detection result should be correctly associated 
with a vehicle in cooperation; 3) relative pose computation: compute the relative pose 
from the detection result. In indoor environment applications where the number of 
cooperative vehicles is limited and the scenario is comparatively static, certain ad hoc 
patterns (with special colors, shapes etc) can be designed and installed on vehicles to 
facilitate dealing with these sub-problems [Fox et al. 2000] [Howard et al. 2003] 
[Howard et al. 2006]. 
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Figure 2.9 Intelligent vehicles (robots) with special patterns (Left picture from [Fox et al. 2000]; 
right picture from [Howard et al. 2006]) 
 
On the other hand, these sub-problems faced by direct V2V relative pose estimation 
methods are not easy to tackle in outdoor traffic environment which is dynamic, 
unpredictable, and full of partial or complete occlusions caused by dynamic entities. 
Reliable vehicle detection in outdoor environment is still a challenging problem which 
deserves continuous research works. Data association is an even challenging problem, 
especially when the vehicles have low-accuracy self-localization ability (with a normal 
GPS, the vehicle localization error can be a dozen of meters). Special patterns might be 
used to facilitate vehicle detection and data association, as in indoor environment. 
However, there are thousands of vehicle systems in traffic environment. The task of 
designing proper patterns to distinguish such huge number of vehicle systems is not 
trivial; besides, occlusions might cause miss detection and false detection of these 
patterns. Even if vehicle detection and data association are performed correctly, it is still 
difficult to extract accurate geometric information of the detected vehicle, because the 
detection result always corresponds to partial contour (sometimes even irregular) of the 
detected vehicle. 
Recently, we propose in [Li & Nashashibi 2012b] an indirect vehicle-to-vehicle (V2V) 
relative pose estimation method. The basic idea is as follows: each vehicle maintains 
in real-time a dynamic local map [Wang 2004] [Vu 2009] whose spatial relationship 
with respect to the vehicle can be rather precisely computed. When two vehicles are in 
cooperation, their local maps are spatially associated via maps merging. As the spatial 
relationship between each vehicle and its local map has already been computed, the 
relative pose between the two vehicles can be indirectly computed by compounding a 
chain of transformations.  



 43

In the indirect V2V relative pose estimation method, the challenging problems of 
vehicle detection, data association, and relative pose computation in direct V2V relative 
pose estimation methods are implicitly solved during local maps merging. For local 
maps of a scale such as 80 meters, large and stable objects (buildings, infrastructures etc) 
are usually the dominating factors, which contribute to successful local maps merging. 
 

 
Figure 2.10 The relative pose of one vehicle with respect to another vehicle 
 

2.5 Cooperative Local Mapping and Moving Objects 
Detection 

2.5.1 Perception Representation 
By so far, we have been often using the term perception whose meaning can be rather 
general. As we briefly specified in Introduction chapter, we deal with issues of vehicle 
localization and local environment mapping; in other words, we mainly deal with the 
perception concerning spatial properties of the vehicles and the environment. 
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Therefore, in this dissertation, we could fairly bear in mind that the perception 
concretely indicates certain localization result and local mapping result including 
moving objects. If we discuss some issues in a general manner, we would continue 
using the general term perception; if we discuss some concrete practice, we would use 
the specific terms vehicle pose and local map etc.  
The representation for vehicle pose is rather fixed; normally, vehicle pose is represented 
by a triplet, two elements for vehicle position and one element for vehicle orientation 
(heading direction). In contrast, there is considerable flexibility for environment 
representation. Here are several typical methods for environment representation (we 
usually only care about two-dimensional environment representation, as the vehicles 
operate only in horizontal plane).  
 
Direct representation: the environment can be represented by a registered list of raw 
perception scans (or frames), for example, a registered list of raw laser scans [Gutmann 
& Schlegel 1996] [Lu & Milios 1997b]. Direct representation exempts the perception 
system from making conversion on raw perception measurements. On the other hand, 
direct representation has several disadvantages: the perception uncertainties are usually 
not modeled. Besides, direct representation only models the environment part that the 
sensor can directly measure; for example, free space can not be modeled by direct 
representation. Moreover, management of direct representation is comparatively 
complicated; for example, how to deal with overlapping part of raw scans that contains 
redundant information (considering that different scans have certain degree of 
perception inconsistency about the overlapping perception part due to perception errors)? 
How to organize the data (structure) in direct representation so that we can conveniently 
and efficiently access and use the data? 
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Figure 2.11 Direct representation (from [Lu & Milios 1997b]) 
 
Features based representation: The environment can also be represented by a sparse 
map of features that are extracted from raw perception data. The features can be 
artificial landmarks [Montemerlo et al. 2002]; they can be natural landmarks such as 
trees outdoor [Guivant et al. 2000] or line segments indoor [Cox 1991]; they can also be 
of abstract form, picked out by certain specific detection algorithms [Royer 2006] [Gil 
et al. 2010]. An advantage of features based representation lies in its low memory 
requirement and its flexibility to adjust its elements. 
However, an apparent disadvantage for features based representation is that it lacks the 
ability to represent general unstructured environment, because it requires extraction of 
certain environment features and is only able to represent these features. Therefore, its 
application is usually limited to rather static environment where certain features are 
extractable. 
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Figure 2.12 Features based representation (from [Guivant et al. 2000]) 
 
Occupancy grid based representation: the occupancy grid [Elfes 1989] is a two-
dimensional lattice which divides the environment space into rectangular cells; each cell 
is associated with a real value in the unit interval [0, 1], where the cell value represents 
the degree of the cell being occupied by or free of object. The cell value 0.5 represents 
the cell being in unknown state, neither occupied nor free. For cell value larger than 0.5, 
the larger the cell value is, the more likely the cell is occupied. For cell value smaller 
than 0.5, the smaller the cell value is, the more likely the cell is free. 
The occupancy grid based representation has several merits: most importantly, it has the 
ability to represent general unstructured environment. Here, the general implies not 
only the place with objects but also the place free of objects. Besides, the occupancy 
grid based representation is similar to our daily-life maps, which makes it more suitable 
to our normal thinking habit for dealing with maps. It can also be directly and 
conveniently visualized.  
The occupancy grid based representation is a sort of dense representation for the 
environment. If we aim at establishing a global map for a large environment area, the 
memory requirement increases quickly, which might make the occupancy grid based 
representation intractable. On the other hand, global mapping is not necessary for many 
real-time vehicle operations; as the environment is always changing, even if the vehicle 
stores the map of a passed place, this map would be of little value for the vehicle when 
it re-passes the same place in future. Instead, it is better for a vehicle to maintain in real-
time a local map that the vehicle has to deal with directly and immediately. For local 
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mapping, the occupancy grid based representation can easily be controlled at tractable 
size. 
 

 
Figure 2.13 Occupancy grid based representation 
 

2.5.2 Perceptions Association 
The practice of cooperative perception is NOT simply the process of data sharing 
through inter-vehicle communication. For a vehicle, besides receiving the perceptions 
shared by other vehicles, it also has to be able to utilize the shared perceptions. For this 
purpose, a most fundamental problem is the problem of perceptions association i.e. 
given two perceptions from different vehicles, how to establish consistent (spatial) 
relationship between the two perceptions? 
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Figure 2.14 Perceptions association: the object you see corresponds to what (or where) I see?  
 
For example, given two vehicles (A and B) and two pedestrians (P1 and P2), as 
illustrated in Figure 2.14. For vehicle A, pedestrian P2 is occluded by vehicle B, so it 
can only perceive pedestrian P1, as represented by PA1 in the bottom-left sub-figure. 
Vehicle B can perceive both pedestrian P1 and P2, as represented by PB1 and PB2 in the 
bottom-right sub-figure. Suppose vehicle B share its perception (including PB1 and PB2) 
with vehicle A; how does vehicle A establish between its own perception and the 
perception of vehicle B a consistent relationship which can spatially associate PA1 and 
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PB1 correctly? This belongs to what perceptions association handles. Without correct 
perceptions association, vehicle A can not have any meaningful inference from the data 
shared by vehicle B. 
On the whole, there are two categories of methods for performing perceptions 
association: vehicle pose estimation based methods, and perceptions consistency based 
methods. These two categories of methods will be discussed in following sub-sections. 
Since perceptions are a kind of data, the scope of perceptions association belongs to a 
more general scope of data association. However, data do not necessarily mean 
perceptions; for example, the short-term motion intentions of the vehicles, their long-
term tasks planning, and the knowledge of specific traffic rules in certain particular area, 
they all are kinds of data. Therefore, the expression of perceptions association is 
preferred here in order to highlight and specify our concern on associating different 
perceptions (especially of different vehicles). 

2.5.3 Vehicle Pose Estimation based Methods 
If each vehicle can be precisely localized in a common global reference, then 
perceptions association is only a trivial issue of transforming the local maps of different 
vehicles into a common reference based on the precise vehicle localization results. In 
reality, however, we can not expect every vehicle possessing precise localization ability. 
For a vehicle equipped with low-cost GPS, the global localization error can be as large 
as ten meters in the position component. Even for a vehicle with high accuracy RTK-
GPS, it might encounter occasions of signal degradation. Therefore, perceptions 
association based on vehicles global localization results is generally impractical in real 
implementation. 
One possible practice for perceptions association is based on direct vehicle-to-vehicle 
relative pose estimation [Madhavan et al. 2004] [Howard 2006] [Carlone et al. 2011] 
[Nerurkar et al. 2009]. If a vehicle can determine the relative pose of another vehicle, 
then it can spatially relate the perception of this other vehicle to its own perception. On 
the other hand, as discussed in Section 2.4.3, the realization of a direct vehicle-to-
vehicle relative pose estimation method requires dealing with the sub-problems of 
detection, data association, and relative pose computation, which are NOT easy to 
handle in outdoor traffic environment. 
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2.5.4 Perceptions Consistency based Methods 
Perceptions consistency based methods do not require an accurate estimate of vehicle 
pose or vehicle-to-vehicle relative pose; they try to associate different perceptions 
directly, according to certain consistency measure between the perceptions themselves. 
The idea of perceptions consistency based perceptions association has been intensively 
exploited in literature, from different perspectives according to concrete applications. If 
we treat the perception of a vehicle generally as one scan of data, then the process of 
perceptions consistency based perceptions association becomes the process of scan 
matching [Lu & Milios 1997a], which tries to find correct alignment of two scans by 
maximizing certain consistency measure. If the perception concerned is a map, then the 
process of perceptions consistency based perceptions association becomes the process 
of maps merging [Birk & Carpin 2006], which tries to find correct alignment of two 
maps also by maximizing certain consistency measure.  
Various methods have been proposed in literature. We could categorize these methods 
according to different criteria; for example, concerning environment representation, 
some methods deal with direct representation [Lu & Milios 1997a], some methods deal 
with features based representation [Cox 1991], and some methods deal with occupancy 
grid based representation [Birk & Carpin 2006]. If we examine the procedure form of 
these methods, we could roughly assign them into three main categories: features 
based methods, iterative closest point (ICP) methods, and overall-direct 
optimization based methods. 
 
Features based method: For applications in structured indoor environment, one can 
fairly assume the existence of certain natural features or artificially deposited features; 
these features can be extracted first and then the association is carried out on these 
features [Cox 1990] [Cox 1991] [Grossmann & Poli 2001] [Dedeoglu & Sukhatme 
2000]. The availability of features would facilitate the process of perceptions 
association. However, similar to features based map representation, features based 
methods are usually limited to the environment where certain features (concrete or 
abstract) are extractable. 
It is worthy noting that features based methods are not necessarily juxtaposed with 
features based map representation. For example, occupancy grid based representation 
can be used, where features are extracted from the occupancy grid map only for 
association purpose [Saeedi et al. 2011] [Topal et al. 2010]. 
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Iterative closest point (ICP) method: the ICP method is a popular architecture to 
associate perceptions of general representation, without extraction and use of special 
features. It was originally introduced in [Besl & McKay 1992] (similar idea was 
introduced in [Chen & Medioni 1992]); a survey for the variants of the original ICP 
method can be referred to [Rusinkiewicz & Levoy 2001]. The ICP method consists in 
an iteration of two steps: first, a new set of correspondences between the two 
perceptions is established tentatively based on the closest point rule; second, the 
estimate of the perceptions alignment is updated by minimizing the overall distances 
between the points in the new set of correspondences. Given a suitable initial value, the 
estimate of the perceptions alignment will normally converge after a number of 
iterations of the two steps.  
The core of the ICP method is the practice of establishing point-to-point 
correspondences based on the closest point rule; originally, point-to-point distance is 
computed using the Euclidean distance measure. Later, more general distance measures 
[Lu & Milios 1997a] [Minguez et al. 2006] have been incorporated in ICP to establish 
correspondences, which might better capture the true alignment of perceptions.  
 
Overall-Direct optimization based method: this kind of method normally consists of 
two parts: First, an objective function in terms of the perceptions alignment variables is 
defined as the measure to characterize the overall consistency degree between the two 
perceptions; second, the defined objective function is optimized using certain 
optimization technique. For example, [Biber & Strasser 2003] propose a Normal 
Distribution Transform to transform raw scan points into a collection of normal 
distributions which serves as the consistency measure; then the Newton’s algorithm is 
used as the optimization technique. [Birk & Carpin 2006] propose a method for 
occupancy grid maps merging; in this method, the consistency degree between two 
occupancy grid maps is measured by an objective function consisting of a similarity 
term and a lock term; then random walk algorithm is used to search the optimum.  
Despite that features based methods and ICP methods also reflect the spirit of 
optimization in terms of perceptions consistency, they are essentially different from 
overall-direct optimization based methods in how they put this spirit into practice. In 
features based methods, each feature normally characterizes certain local property of the 
environment; when we associate the features, we actually deal with local consistency or 
partial consistency between the perceptions. In contrast, overall-direct optimization 
based methods deal with overall consistency between the perceptions. ICP methods also 
deal with overall consistency between the perceptions, yet their measure on perceptions 
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consistency changes during the association process; when a new measure is established, 
they have to re-execute an optimization process. In contrast, in overall-direct 
optimization based methods, once the measure on perceptions consistency is established, 
only one optimization process is needed; in other words, the optimization architecture is 
more direct. Naturally, above explanations also explain the meaning of overall and 
direct in overall-direct optimization based methods. 
 
We could also examine the problem size handled by the perceptions consistency based 
methods. There are three levels of problem size: problem at small, problem at middle, 
and problem at large, which are roughly classified according to the uncertainty level of 
initial estimate.  
 
Problem at small: initial estimate of the perceptions association is available and the 
initial estimate is close enough to the correct association. 
 
Problem at middle: initial estimate of the perceptions association is available, yet the 
initial estimate is not close to the correct association. According to the initial estimate, 
we can know there is a correct association between the perceptions; what to do is to find 
the correct association.  
 
Problem at large: No initial estimate of the perceptions association is available at all. 
We even do not know whether there is any relationship between the perceptions. For 
example, suppose two vehicles operate in separated areas and share their perceptions, 
then their perceptions have no relationship at all, not to mention an association between 
them.  
 
Above categorization is not strict; it is difficult to give concrete criteria to specify these 
three levels of problem size. We could conveniently think them via an analogy between 
perceptions association and a general optimization problem. For the optimization 
problem, if the starting point is already in the local unimodal neighborhood of the 
global optimum, then it is problem at small. If the starting point is not close to the 
global optimum (not in the unimodal neighborhood of the global optimum) but we 
know there is a global optimum in certain range with respect to the starting point, then it 
is problem at middle. If we have no idea about a possible range for the global optimum 
and even do not know whether there is a global solution, then it is problem at large.  
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ICP methods are usually limited to problem at small, because they need initial estimate 
that is good enough; otherwise, they would easily suffer from the problem of 
converging to a local optimum that is wrong solution. In contrast, features based 
methods and overall-direct optimization based methods have the potential to deal with 
all levels of problem size.  

2.5.5 Local Occupancy Grid Maps Merging 
For our research context, we prefer the occupancy grid based environment 
representation for its ability to represent general unstructured outdoor environment. 
Besides, as we deal with real-time vehicle perception, each vehicle only needs to 
maintain a local occupancy grid map. Then for two vehicles to perform cooperative 
mapping, we have to solve the fundamental problem of associating their local 
occupancy grid maps or local occupancy grid maps merging. 
Here, the problem of local occupancy grid maps merging belongs to problem at middle. 
On one hand, initial estimate of the association can be provided by GPS based global 
vehicle localization results. Despite of GPS positioning error which might be ten meters, 
we can at least know whether the vehicles are in the common area and whether their 
perceptions are associable. Therefore, the problem does not belong to problem at large. 
On the other hand, as GPS positioning error can be as large as ten meters, the initial 
estimate might not be close enough to the correct association; local optimization 
techniques tend to fail and get stuck into a wrong local optimum. Therefore, the 
problem does not belong to problem at small either. 
For occupancy grid maps merging, we can not rely on the ICP methods, as they are 
limited to problem at small; we do not want to rely either on extraction of certain map 
features. Instead, we prefer to follow the overall-direct optimization based methods. As 
mentioned in previous sub-sections, [Birk & Carpin 2006] propose a framework for 
merging different occupancy grid maps directly via optimization on an objective 
function. In [Birk & Carpin 2006], the objective function Fc consists of a similarity term 
and a lock term: the similarity term which is based on a distance-map represents the 
overall distances between the maps to-be-merged; the lock term is a part heuristically 
added to counteract the over-fitting effect.  
This objective function in [Birk & Carpin 2006] has two major disadvantages: first, the 
parameter clock in the heuristically added lock term has to be tuned empirically 
according to concrete scenarios. Second, this objective function is susceptible to maps 
inherent inconsistency i.e. maps inconsistency that still exists even if the maps to-be-
merged are aligned correctly. Maps inherent inconsistency can be caused by dynamic 
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entities which are common in outdoor environment. Maps inherent inconsistency can 
also be caused by the inconsistency of perception poses at different vehicles; for 
example, the same environment might appear noticeably different if it is scanned by 
laser scanners at different heights. For the objective function in [Birk & Carpin 2006], 
maps inherent inconsistency would cause drastic value change in the distance-map 
based similarity term and false counting of agreement and disagreement in the lock 
term. 
Recently, we propose in [Li & Nashashibi 2012c] a new method for occupancy grid 
maps merging: an objective function based on occupancy likelihood is introduced to 
measure the consistency degree of maps alignment; genetic algorithm implemented in a 
dynamic scheme is adopted to optimize the objective function. The proposed objective 
function only takes into account the consistent part of the maps to-be-merged; thus it is 
insensitive to maps inherent inconsistency. For local maps of enough size, stable and 
consistent objects (buildings, infrastructures etc) are usually the dominating factors, 
which always contribute to successful local maps merging. 

2.5.6 Moving Objects Detection 
One motivation for performing cooperative perception is to better detect moving objects, 
such as vulnerable road users, as illustrated in Figure 1.7. We care about moving objects 
because it is them who are likely to be involved in a traffic accident.  
Moving objects detection (and tracking) has been intensively and extensively 
researched since several decades ago. However, we do not intend to discuss much about 
this subject. As we have stated previously, we would rather focus on the general 
mechanisms which enable the realization of cooperative perception functionalities. 
Perceptions association based on the local occupancy grid maps merging is such kind of 
general mechanism, through which the moving objects detection result of an intelligent 
vehicle can be shared to and used by another intelligent vehicle, no matter what moving 
objects detection method is concretely adopted.  
To demonstrate a complete application of cooperative detection on moving objects, we 
incorporate two basic moving objects detection methods, namely consistency-based 
detection and moving object map based detection [Wang 2004] [Vu 2009]. More 
sophisticated moving objects detection methods can also be incorporated into the local 
occupancy grid maps merging based scheme of cooperative local mapping and moving 
objects detection. 
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2.6 Cooperative Augmented Reality 

2.6.1 Augmented Reality Effect of ‘Seeing’ Through Front Vehicle 
We propose in [Li & Nashashibi 2011a] a brand new idea of cooperative augmented 
reality which utilizes cooperative perception results to realize a special augmented 
effect. More specifically, in [Li & Nashashibi 2011a], we realize the effect of ‘seeing’ 
through front vehicle, as illustrated in Figure 2.15. To realize this, first, the 2D range 
data of the two vehicles is associated using the iterative closest point method. Second, 
3D perspective transform between the visual perceptions of the two vehicles is 
performed, based on approximate estimation of the visual perception depth with the 
help of 2D range perception. 
 

 
Figure 2.15 Augmented reality: ‘see’ through the front vehicle 
 
In [Li & Nashashibi 2011a], we used the iterative closest point method for perceptions 
association, as the GPS used provided rather accurate positioning result which can 
further provide good initial estimate of the association. We improve the works in [Li & 
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Nashashibi 2011a] by incorporating the proposed local occupancy grid maps merging 
method for perceptions association, which can work even facing large GPS position 
errors.  

2.7 Summary 
We have introduced several sorts of sensors, namely GPS, laser scanner, camera, and 
motion sensor, which have been commonly used for single intelligent vehicle operation; 
with these sensors, an intelligent vehicle can possess fairly complete perception ability 
towards itself and the environment. We have reviewed the Bayesian filter framework 
that has been commonly used for recursive state estimation; we have also reviewed 
several recursive estimation methods that are derived from the Bayesian filter 
framework based on different kinds of approximations. We have discussed in details the 
fundamental problems and the state-of-the-art methods concerned in cooperative 
localization, and cooperative local mapping and moving objects detection. Based on 
these discussions, we propose a general architecture of cooperative localization using 
split covariance intersection filter, an indirect vehicle-to-vehicle relative pose estimation 
method, and a new method for occupancy grid maps merging to handle the fundamental 
problems in cooperative localization, and cooperative local mapping and moving 
objects detection. We propose a brand new idea of cooperative augmented reality which 
utilizes cooperative perception results to realize certain augmented effect. The proposed 
methods (some of them have been published) will be detailed in the following chapters. 
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Résumé 
 
Nous avons fourni une solution pour la localisation coopérative multi-véhicules. Nous 
avons rappelé le concept de consistance de l’estimation ainsi que le SCIF. Nous avons 
présenté plusieurs formes de ce filtre avec leurs dérivations et une preuve originale pour 
la consistance de la fusion de ce filtre. Nous avons introduit plusieurs fonctionnalités de 
base comme la condition pour réaliser la localisation coopérative. Nous avons introduit 
une architecture générale de localisation coopérative en utilisant un SCIF. Puisque 
l'architecture est décentralisée, nous avons décliné l’approche dans le cadre de la 
localisation d'un véhicule intelligent en s’appuyant sur ses capteurs de mouvement. 
Nous explicitons ainsi la manière dont il peut mettre à jour son estimation d'état en 
utilisant ses propres mesures de positionnement absolu, ainsi que la mise à jour de son 
estimation d'état avec les données partagées avec les véhicules voisins. Nous avons 
présenté la stratégie d’estimation indirecte de du positionnement relatif Véhicule-à-
Véhicule. 
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3.1 Introduction 
In this chapter, we describe in details our solution of multi-vehicles cooperative 
localization. First, we review the split covariance intersection filter that yields 
consistent fusion estimates even facing unknown degree of inter-estimates correlation. 
Then we make an abstraction of the basic functionalities that are commonly available 
for intelligent vehicle systems; based on these abstracted functionalities, we introduce a 
general architecture of cooperative localization using split covariance intersection filter. 
Afterwards, we present the indirect vehicle-to-vehicle relative pose estimation strategy 
which enables a feasible realization of cooperative localization in reality.  

3.2 Consistent Fusion: Split Covariance Intersection Filter 

3.2.1 Estimate Consistency 
Given an estimate {X, P} where X denotes the estimated state vector and P denotes the 
estimated covariance matrix. Let P* denote the covariance of the true errors of the 
estimate X, i.e.  
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Then consistency characterizes a property of an estimate that the estimated covariance 
matrix is no smaller than the true covariance of the estimated state vector; in 
mathematical terms: 
 

0PP ≥− *  
 
In simple words, an estimate is consistent if it is NOT over-confident. 

3.2.2 Inconsistent Fusion of the Kalman Filter 
Given two source estimates {Xi,Pi}(i=1,2) to-be-fused; Xi denotes the estimated state 
vector and Pi denotes the estimated covariance matrix. Both estimates are assumed 
consistent: 
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Let their fusion estimate be denoted as {X,P}. Normally, we hope that the fusion 
estimate can also be consistent; we do not want to establish any extra confidence on the 
fusion estimate than what the source estimates can convey.  
Consider the Kalman filter which is popular in many applications; the basic formula of 
the Kalman filter can be written as: 
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The effectiveness of the Kalman filter is based on the assumption that the two source 
estimates are independent of each other. However, if there is correlation between them, 
the Kalman Filter might yield inconsistent fusion estimate. For example, let {X1,P1} 
and {X2,P2} are exactly two copies of the same estimate; naturally, a reasonable fusion 
of them will yield an estimate the same to them, especially satisfying P=P1=P2. In 
contrast, when they are fused with the Kalman filter, the fused covariance P will 
become a half of P1 (or P2), which is obviously inconsistent.  

3.2.3 Split Covariance Intersection Filter (Split CIF) 
The authors in [Julier & Uhlmann 1997] propose a new data fusion method named 
covariance intersection, which takes a convex combination of the means and 
covariances of the source estimates in the information space. The covariance 
intersection filter is theoretically guaranteed to yield consistent results. The formula of 
the covariance intersection filter can be written as:  
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This original covariance intersection filter (CIF) has a drawback of yielding pessimistic 
estimate, because it treats the source estimates as being totally correlated and neglects 
possible independent information in them. In [Julier & Uhlmann 2001] the generalized 
form of the covariance intersection filter, i.e. the split covariance intersection filter 
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(Split CIF) is introduced, which provides the ability to incorporate and maintain known 
independent information in the estimates. 
Given two consistent source estimates: {X1, P1d+P1i} and {X2, P2d+P2i}, where the 
covariance components P1d and P2d represent the maximum degree to which these 
estimates are possibly correlated with each other or others; the covariance components 
P1i and P2i represent the known degree of their absolute independence. Let the fusion 
estimate be denoted as {X, Pd+Pi}, also with its covariance separated as two parts: Pd 
and Pi respectively represent the correlated and the independent part. The formula of the 
split covariance intersection filter can be written as: 
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Where w belongs to the interval [0, 1] and any choice of w in this interval guarantees 
the consistency of the fusion estimate (see the proof below). In practice, w can be 
determined by optimizing an objective function in terms of w such as the determinant of 
the new covariance [Julier & Uhlmann 2001]. 
 
Proof: Let X1=X1d+X1i and X2=X2d+X2i, where X1d and X2d correspond to the 
correlated components; X1i and X2i correspond to the independent components. For 
each source estimate, its correlated component and independent component are 
both consistent, i.e. 
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We examine the independent component of the fusion estimate X: 
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We examine the correlated component of the fusion estimate X (for 0<w<1): 
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In summary, the correlated component and the independent component of the fusion 
estimate are also consistent. End. □ 
 
Note: originally in [Julier & Uhlmann 2001], no strict proof was given for the split CIF; 
it was not mentioned either the specification that the correlated component and the 
independent component of an estimate are consistent respectively (if so, the whole 
estimate is naturally consistent). From the proof that we give above, we think this 
specification is what consistency indeed means for split CIF. 
 
Notice that the split covariance intersection filter in (3-1) is compatible with the Kalman 
Filter: let the P1d and P2d be zero and (3-1) will become the same to the Kalman Filter. 
Therefore, the Kalman filter can be treated as a special case of the split covariance 
intersection filter where the two source estimates are known to be totally independent. 

3.2.4 Split CIF for Partial Observation Case 
Given two source estimates {X1, P1d+P1i} and {X2, P2d+P2i} whose meanings have been 
specified above, suppose the X1 is complete observation i.e. X1=Xtrue+noise, whereas 
the X2 is partial observation i.e. X2=HXtrue+noise (H is not of full rank). The split 
covariance intersection filter can be given as in (3-2): 
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Proof: Complement H with H0 to make an invertible matrix HA: 
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Augment X2 to a complete observation X2A with the covariance estimate P2Ad+P2Ai, 
which satisfy: 
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We apply the split CIF (3-1) on {X1, P1d+P1i} and {X2A, P2Ad+P2Ai}: 
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So we have (3-2). End. □ 
 
The split covariance intersection filter can also be given as in (3-3): 
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Proof: From (3-2) we have: 
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End. □ 
 
In (3-3), let the P1d and P2d be zero and the split covariance intersection filter (3-3) will 
become the same to the Kalman filter of partial observation form. 

3.3 Basic Functionalities for Cooperative Localization 
Suppose there are multiple vehicles and the total number of vehicles is unknown— the 
cooperative localization is realized in decentralized manner: each vehicle can only and 
need only to interact (perceiving and communicating) with its neighbouring vehicles. 
The following functionalities are assumed available; they are abstracted from field 
practice based on their feasibility in reality. 
 
Absolute positioning function: each vehicle is able to obtain a measurement on its 
position in an absolute reference or global reference. Absolute positioning function can 
be realized in different ways; a popular way is to use GPS to provide global positioning 
measurements. 
 
Relative positioning function: each vehicle is able to measure the relative position of 
neighbouring vehicles (vehicle-to-vehicle relative pose estimation). Here, neighbour 
indicates being within the perception range. In reality, perceptive sensors such as laser 
scanner can realize relative positioning function. 
 
Motion monitoring function: each vehicle is equipped with motion sensors which 
output measurements on its motion state (longitudinal motion and lateral motion). 
Motion data can be provided by sensors such as odometers (including steering 
encoders), accelerometers, gyroscopes etc. 
 
Communication function: data can be shared among neighbouring vehicles. Effective 
communication range is usually larger than effective perception range; so the term 
neighbour mentioned above has an additional meaning of being able to communicate 
with. 
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Time-stamping function: the vehicles are able to timestamp their data according to an 
absolute time reference. In reality, the system time of each intelligent vehicle can be 
related to the GPS universal time; even a low cost GPS can provide timing information 
with fairly high precision. 
 

3.4 Cooperative Localization Using Split Covariance 
Intersection Filter 

The idea of using split covariance intersection filter for cooperative localization in the 
context of intelligent vehicle systems was introduced in our previous works [Li & 
Nashashibi 2012a]. However, the architecture presented originally in [Li & Nashashibi 
2012a] has two implicit requirements: first, direct vehicle-to-vehicle relative pose 
estimation (see Section 2.4.3) is performed during cooperative localization; second, 
vehicle localization (vehicle pose estimation) is entangled with detected object tracking 
(detected object velocity estimation). In fact, these two requirements are NOT 
NECESSARY for cooperative localization. Therefore, we improve this original 
architecture and make it more general. 

3.4.1 Decomposed Group State 
The proposed method is of decentralized architecture; the distributed formalism for 
each vehicle is the same; therefore, the formalism will be described just from the 
perspective of one single vehicle (referred to as ego-vehicle). The ego-vehicle maintains 
an estimate of its group state XG: 
 

};{ LEG XXX =  

 
The group state XG consists of two parts: the XE=[xe;ye;θe]T denotes the pose of the ego-
vehicle; the XL is used to generally denote the estimate for its local neighboring 
environment. The (x,y) and θ respectively denote the position and the heading angle of 
the vehicle in the absolute reference.  
The term group state here is similar to but is different from that in [Karam et al. 2006b]: 
the group state in our method (only one estimate for the group state) can be updated 
with the estimates sent from other vehicles and can also be shared with other vehicles. 
In [Karam et al. 2006b], each vehicle maintains two estimates for its group state: one 
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estimate, which is updated only using the sensor data of the ego-vehicle, can be shared 
with other vehicles but can not be updated with the estimates sent from other vehicles; 
the other one can be updated with the estimates sent from other vehicles but can not be 
further shared with other vehicles. 
There is another difference: in [Karam et al. 2006b], a large global covariance matrix is 
maintained for the whole group state; on the other hand, in our method, the covariance 
matrix for the ego-vehicle state is separated from the estimate for the neighboring 
environment. In other words, the group state in our method is a decomposed group state, 
denoted as: 
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where the subscript d and i denote respectively the correlated component and the 
independent component of the covariance. 

3.4.2 State Evolution 
The motion of the vehicles can be modelled according to kinematic bicycle model, as 
illustrated in Figure 3.1: 
 

 
Figure 3.1 Kinematic bicycle model 
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Proof: Concerning vehicle motion during a short period, we assume that vehicle 
velocity and vehicle yawrate are both constant:  
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Suppose w is non-zero; we make integration on x component: 
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We make integration on y component: 
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If w is zero, we can verify that (3-4) also holds. End. □ 
 
The motion formula (3-4) is denoted in compact form by the function G, as follows: 
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The state of the ego-vehicle XE(t) can be evolved using its motion measurements uE(t) 
(here, it can be the original motion sensor measurements, or can be the data corrected 
by perceptive sensors such as laser scanner). 
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The uE(t) is assumed to follow the Gaussian distribution N(0,Σu). The evolution of the 
ego-vehicle state covariance is given as: 
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The GXe and Gu are respectively the Jacobian matrices of the function G with respect to 
the XE and uE; the RE(t) and RiE(t) characterize the motion model error. Since the split 
covariance intersection filter is used, not only the total covariance PE(t) but also the 
independent part PiE(t) are evolved. 
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We can assume Δdt and Δθt are independent of each other, then we can set Σu to be the 
diagonal matrix: 
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The traversed distance Δdt and the yaw change Δθt are respectively the integral of 
vehicle (longitudinal) velocity vt and vehicle yawrate wt: 
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If we assume that the errors of vehicle velocity and vehicle yawrate follow Gaussian 
white noise distribution, then the diagonal elements of Σu are proportional to the period 
ΔT or Tt-Tt-1 i.e. 
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The σv and σw are constants and set empirically. 

3.4.3 State Update with Absolute Positioning Measurements 
Let the absolute positioning measurement for the ego-vehicle be denoted as ZA=(xA,yA). 
The measurement model can be described as (at time t): 
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The measurement error RA is assumed to follow the Gaussian distribution N(0,ΣA). 
Notice that the absolute positioning measurement is completely independent of any 
existing estimates or any other measurements, the split covariance intersection filter is 
carried out as follows: 
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3.4.4 State Update with Relative Positioning Measurements and the 
States of Other Vehicles 

The ego-vehicle can share its group state with its neighboring vehicles via inter-vehicle 
communication; vice versa, it can also receive the group state estimates of its 
neighboring vehicles. Without loss of generality, let the group state shared by a 
neighboring vehicle (referred to as communicated ego-vehicle) be denoted as: 
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The XCE=[xce;yce;θce]T denotes the state of the communicated ego-vehicle and the XCL 
generally denotes its estimate for its local neighboring environment. The subscript d and 
i denote respectively the correlated component and the independent component of the 
covariance. 
According to the relative positioning function assumption, the relative pose between the 
ego-vehicle and the communicated ego-vehicle can be obtained. This relative pose can 
be revealed via analysis of the XL and XCL. For example, if the ego-vehicle can directly 
detect the entire communicated ego-vehicle and succeed in associating the latter, then 
the relative pose can be revealed from XL; if the communicated ego-vehicle can directly 
detect the entire ego-vehicle and succeed in associating the latter, then the relative pose 
can be revealed from XCL. We can generally treat the relative pose between the ego-
vehicle and the communicated ego-vehicle (denoted as ZR) as the output of a functional 
R in terms of XL and XCL i.e. 
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The error that affects ZR is assumed to follow Gaussian distribution N(0,ΣR). The state 
of the ego-vehicle can be indirectly computed by compounding the relative pose 
estimate and the state estimate of the communicated ego-vehicle; this indirect estimate 
of the ego-vehicle state is denoted as XEI with covariance PEI. (Refer to the 
compounding operation in Appendix I) 
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The ∂XEI/∂XCE and ∂XEI/∂ZR are respectively the Jacobian matrices of XEI with respect 
to the XCE and ZR.  
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Then XE is fused with XEI using the split covariance intersection filter as follows:  
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 (3-8) 

 
The w is determined by minimizing the determinant of the new covariance. Some 
practical issues deserve further explanations: 
 
Covariance of the relative pose estimate ZR: the covariance ΣR for ZR is also divided 
into two parts, the correlated part ΣdR and the independent part ΣiR. In practice, it might 
be difficult to have a systematic way to analytically compute the ΣR for ZR; the ΣR has 
to be set empirically to characterize the uncertainty of the relative pose estimate. The 
ratio of ΣiR (or ΣdR) in ZR has also to be set empirically. For simplicity, we can set ΣiR 
(or ΣdR) to be a half of ZR. 
 
Communication delay: In reality, when the communicated ego-vehicle has a new state 
estimate and shares it with the ego-vehicle, the ego-vehicle can not use the shared state 
immediately due to communication delay (including the time needed by the 
communicated ego-vehicle to package the shared state into data format suitable for 
transmitting, the time needed to transmit the data, the time needed by the ego-vehicle to 
unpack the data so that it can use the whole shared state). As vehicular communication 
technology has developed rapidly, careful implementation can reduce the 
communication delay to no more than dozens of milliseconds; the communication delay 
will be further reduced in future. There are two ways to deal with the communication 
delay. If the error caused by the communication delay makes up a small part of the 
overall error, then the error can be simply treated as random error. For example, if the 
communication delay is 20ms and the vehicle velocity is 5m/s, then this communication 
delay will result in an error of 0.1m which can be fairly treated as random error. In 
contrast, if the communication delay is 50ms and the vehicle velocity is 20m/s, then this 
communication delay will result in an error of 1.0m, then the delayed state estimate (XEI 
and PEI) had better be compensated by the motion data of the ego-vehicle, as in (3-5) 
and (3-6). 
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3.4.5 Cooperative Localization Architecture 
Cooperative localization is realized in decentralized (distributed) manner. From the 
perspective of an intelligent vehicle, the localization procedures are as follows (the 
procedures flow diagram is illustrated in Figure 3.2): 
 
At each period, the vehicle evolves its state estimate (including covariance) using its 
motion measurements, according to (3-5) and (3-6). 
When the vehicle has absolute positioning measurement of its own, it updates its state 
estimate according to (3-7). 
When the vehicle receives data from a neighbouring vehicle, it updates its state estimate 
according to (3-8). 
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Figure 3.2 Distributed cooperative localization procedures at one vehicle 
 
As we can see, this distributed cooperative localization architecture is rather simple: 
when the vehicle has some new data from itself or from another vehicle, it can use the 
new data to evolve or update its state estimate; when the vehicle has new state estimate, 
it can also share its data with other vehicles; no monitoring or controlling of data flow 
within vehicle networks is needed. Despite of the simplicity of this architecture, the risk 
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of over-convergence can be essentially removed, because the risk is removed directly 
by the split covariance intersection filter during estimates fusion.  

3.5 Indirect Vehicle-to-Vehicle Relative Pose Estimation 
In above introduced architecture of cooperative localization, the functionality of 
vehicle-to-vehicle (V2V) relative pose estimation is assumed available. In reality, V2V 
relative pose estimation is not a trivial issue, as we have discussed in Section 2.4.3. In 
this sub-section, we describe the indirect vehicle-to-vehicle relative pose estimation 
strategy.  
The basic idea is as follows: each vehicle performs local SLAM (Simultaneous 
Localization and Mapping) [Wang 2004] [Vu 2009]. Here, the purpose of local SLAM 
is not to build a global environment map, but to build in real-time a dynamic local map 
around the vehicle. As illustrated in Figure 3.3, when two vehicles A and B are in 
neighborhood and need to estimate the relative pose between them, this relative pose 
can be indirectly inferred via a chain of geometric relationships among vehicle A, local 
map of vehicle A, local map of vehicle B, and vehicle B. The relative pose between 
vehicle A and its local map can be estimated by SLAM method; the relative pose 
between vehicle B and its local map can also be estimated by SLAM method; the 
relative pose between local map of A and local map of B can be estimated by maps 
merging method. Then the relative pose between vehicle A and B can be indirectly 
estimated by compounding the relative poses among vehicle A, local map of A, local 
map of B, and vehicle B. 
Let the pose of vehicle A in its local map be denoted as pLA; let the pose of vehicle B in 
its local map be denoted as pLB; let the relative pose between the local map of vehicle B 
and the local map of vehicle A be denoted as pBA. If the estimates of pLA, pLB, and pBA 
are available, then the relative pose between vehicle B and vehicle A can be computed 
as: 
 

LBBALAvBA )( pppp ⊕⊕= inv  (3-9) 
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Figure 3.3 Indirect vehicle-to-vehicle relative pose estimation strategy 
 
SLAM suffers from accumulated error, especially when building a large and non-cyclic 
global map; yet SLAM can achieve desirable accuracy and consistency when building a 
local map of hundred meters scale [Wang 2004] [Vu 2009]. The local map built on-line 
is not dedicated only to cooperative localization; it is also valuable for safe navigation 
(such as collision avoidance) of a single vehicle system. In the indirect V2V relative 
pose estimation method, the challenging problems of vehicle detection, data association, 
and relative pose computation in direct V2V relative pose estimation method are 
implicitly solved during local maps merging (local map of vehicle A and local map of 
vehicle B as in Figure 3.3). For local maps of a scale such as 80 meters, large and stable 
objects (buildings, infrastructures etc) are usually the dominating factors, which 
contribute to successful local maps merging. 
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Detailed description of the local SLAM method and the maps merging method will be 
postponed to CHAPTER 4. An example of the local SLAM results and the maps 
merging results is illustrated in Figure 4.6. 

3.6 Summary 
We have reviewed the concept of estimate consistency and the split covariance 
intersection filter; we have presented several forms of this filter together with their 
derivations and an original proof for the fusion consistency of this filter. We have 
specified the compounding notation for coordinate transformation and explained some 
properties of this compounding notation. We have introduced several basic 
functionalities as the condition for realizing cooperative localization; these 
functionalities are abstracted from field practice based on their feasibility in reality. We 
have described a general architecture of cooperative localization using split covariance 
intersection filter; as the architecture is decentralized, we have described from the 
perspective of an intelligent vehicle how it can evolve its state estimate using its motion 
measurements, how it can update its state estimate using its own absolute positioning 
measurements, and how it can update its state estimate with the data shared by 
neighbouring vehicles. We have presented the indirect vehicle-to-vehicle relative pose 
estimation strategy; the concrete realization of some components in this strategy will be 
detailed in CHAPTER 4. 
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Résumé 
 
Nous avons fourni une solution de cartographie locale coopérative pour les véhicules 
intelligents fondée sur la télémétrie laser. Nous avons décrit la méthode de SLAM local 
fondée sur la grille d’occupation. Nous faisons la distinction entre état local et état 
global puis nous décrivons comment les estimations de l'état local du véhicule obtenues 
par le SLAM peuvent être utilisées pour obtenir les estimations de l'état global de celui-
ci. Nous avons présenté l’architecture de fusion des grilles d’occupation en formalisant 
le problème dans un cadre généralisé de problème d'optimisation. Nous avons proposé 
une nouvelle fonction objective qui mesure le degré cohérence de l'alignement des 
cartes fondé sur la probabilité d'occupation. Ensuite, nous avons proposé une approche 
fondée sur un algorithme génétique dans le but de rechercher l'alignement optimal des 
grilles. Nous avons enfin introduit l’architecture de la détection coopérative des objets 
en mouvement, fondé sur la fusion des grilles occupations. Pour une mise en œuvre 
complète, nous avons adopté deux méthodes de base pour la détection des objets en 
mouvement. 
 



 83

 

4.1 Introduction 
In this chapter, we describe in details our solution of multi-vehicles cooperative local 
mapping and moving objects detection for laser scanner based intelligent vehicles. The 
method architecture is as follows: each vehicle establishes in real-time a local 
occupancy grid map and performs moving objects detection based on the established 
occupancy grid map. During vehicles cooperation, the local occupancy grid maps of 
different vehicles are merged, so that these different vehicles can be spatially related to 
each other; then the moving objects detection results of these vehicles can also be 
merged. First, we describe the method of occupancy grid based single vehicle local 
SLAM (Simultaneous Localization And Mapping) and how local SLAM results can be 
used to assist vehicle global localization. Next, we introduce a new method of 
occupancy grid maps merging, which consists in a new objective function that measures 
the consistency degree of maps alignment and a genetic algorithm that searches for the 
optimal maps alignment. Then, based on the proposed occupancy grid maps merging 
method, we introduce the scheme of multi-vehicles cooperative moving objects 
detection. 

4.2 Occupancy Grid based Local SLAM 

4.2.1 Occupancy Grid based Mapping with Known Vehicle States 
For our research context, we prefer the occupancy grid based environment 
representation for its ability to represent general unstructured outdoor environment. The 
occupancy grid [Elfes 1989] is a two-dimensional lattice which divides the environment 
space into rectangular cells; each cell is associated with a real value in the unit interval 
[0, 1], which is called occupancy state. The cell value or the occupancy state of the cell 
represents the degree of the cell being occupied by or free of object. The cell value 0.5 
represents the cell being in unknown state, neither occupied nor free. For cell value 
larger than 0.5, the larger the cell value is, the more likely the cell is occupied. For cell 
value smaller than 0.5, the smaller the cell value is, the more likely the cell is free. 
Let S=[xs,ys,θs]T denotes the vehicle local state (or pose) as in local SLAM (Note: in 
order to be different from the denotation for vehicle global state X; explanations will be 
given later. In this sub-section, vehicle local state is also generally referred to as vehicle 
state without local); M denotes the occupancy grid map, and m denotes a generic cell in 
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the occupancy grid map; u denotes vehicle motion data; z denotes range measurements 
that are used to build the environment map, and subscript t denotes the time index.  
Suppose the occupancy states of grid cells are independent of each other and suppose 
vehicle poses are known. The purpose of the occupancy grid based mapping is to 
estimate the posterior probability of the occupancy state p(m|S1:t, z1:t) for each cell m. 
Since we focus on real-time perception, we can use the Bayes rule to derive a recursive 
scheme to estimate p(m|S1:t, z1:t), as in Section 2.3.3. 
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Following the Markov assumption, we can treat zt as being independent of past vehicle 
states S1:t-1 and past range measurements z1:t-1. Then, we simplify p(zt|S1:t,z1:t-1,m) and 
use the Bayes rule again: 
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Then we have: 
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 (4-1) 

 
During above derivation, the assumption that the m and the St is mutually independent 
has been used, because they are mutually non-generative, as will be illustrated latter in 
the Dynamic Bayesian Network chart of SLAM in Figure 4.3. Equation (4-1) computes 
the probability of a cell being occupied; in similar way, we can derive a formula to 
compute the probability of a cell being free (where m  denotes a free cell in contrast 
with m that denotes an occupied cell): 
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Divide (4-1) by (4-2) and we have: 
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Notice that the probabilities for m and m  are mutually complementing to 1. We define 
the Odds function as: 
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Then (4-3) turns into: 
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The a priori probability of m can be fairly assumed to be 0.5 (unknown state); then (4-4) 
turns into: 
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We can easily recover the probability from the Odds function: 
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From (4-4) we have: 
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Similarly, when a priori probability of m is assumed to be 0.5 (unknown state); then 
(4-6) turns into: 
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Equation (4-6) and (4-7) give a recursive way to update the old estimate of the 
occupancy grid map with new vehicle state St and new range measurement zt. 

4.2.2 Inverse Measurement Model 
As shown in (4-7), the inverse measurement model p(m|St,zt) determines how we can 
incrementally update the estimate for the occupancy grid map. The inverse 
measurement model is in contrast with measurement model p(zt|St,m); inverse here 
means the inverse reasoning from the effect to the cause. In reality, the environment is 
the cause, whereas the measurement is the effect. In other words, we have the 
environment and then we have the measurement; it is not that we have the measurement 
and then we have the environment.  
In our case, laser scanner is used to provide the range measurement zt. A frame of range 
measurement consists of a group of laser beam readings; a laser beam returns the 
distance measurement of the closest object that it hits along a specified direction with 
respect to the laser scanner. Denote zt as a set of distance measurements: 
 

}1|{ , nkz ktt ≤≤=z  

 
We assume that each laser beam returns its distance measurement independently of the 
operation of other laser beams. Then we consider one generic individual laser beam zt,k 
and consider the one dimensional grid cells along this laser beam, as illustrated in 
Figure 4.1.  
 

 
Figure 4.1 A laser beam and the grid cells along it 
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Suppose the laser scanner is situated at the origin and the laser beam hits an object at 
distance zt,k, indicated by the beam end point in Figure 4.1. Suppose the laser beam 
measurement is ideally reliable and accurate, then we can judge that an object exists at 
the beam end point and the cell at the beam end point should be occupied. We can also 
judge that the area before the beam end point i.e. the inner beam area is free of any 
object; otherwise, the laser beam would hit the closer object and return a measurement 
smaller than zt,k. The cells in the inner beam area should be free. For the area after the 
beam end point i.e. the outer beam area, we can not make any judgement whether any 
object exists there. Concerning a cell in the outer beam area, it could be occupied by an 
object or not. So the cells in the outer beam area are in unknown state. In summary, we 
can set the inverse measurement model p(m|St,zt,k) ideally as follows: 
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In reality, a laser beam measurement has certain degree of errors; besides, we do not 
want to settle down the judgement based on only one frame of range measurement. 
Therefore, we set soft thresholds for the inverse measurement model: if a cell is in the 
inner beam area, we set it to be 80% free (not completely free); if a cell is at the beam 
end point, we set it to be 80% occupied (not completely occupied). The inverse 
measurement model is illustrated in Figure 4.2. 
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Figure 4.2 The inverse measurement model p(m|St,zt) 
 

4.2.3 Incremental Maximum Likelihood SLAM 
In Section 4.2.1, we have introduced how to incrementally update the occupancy grid 
map estimate using range measurements, if vehicle states are already known. In real-
time applications, however, the vehicle (local) states themselves are also some states 
that need to be estimated recursively. The overall process of incremental SLAM can be 
represented by a Dynamic Bayesian Network graph model as illustrated in Figure 4.3. 
The vehicle evolves from last state to current state under recent motion actions; range 
measurements are generated according to the vehicle state and the environment.  
We might simply evolve vehicle state according to motion measurements, for example, 
odometer measurements (including steering measurements) that are commonly used in 
intelligent vehicle systems. However, odometers suffer from accumulated errors; a 
navigation distance of only several tens of meters might result in considerable error in 
vehicle state estimate and apparent inconsistency in the mapping result. We had better 
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use the inner spatial constraint among the sequence of range measurements to correct 
odometer based vehicle state prediction. In other words, we rely on the mapping result 
to obtain more accurate vehicle state estimate. Meanwhile, the mapping process 
depends on vehicle state estimation. Therefore, we have to carry out a process where 
vehicle state estimation and environment map estimation are juxtaposed together; this 
accounts for the meaning of simultaneous in SLAM. 
 

S1 S2 S3

U1 U2 U3

Z1 Z2 Z3

S0

Z0

M
 

Figure 4.3 Dynamic Bayesian Network of incremental SLAM 
 
The objective of SLAM is to estimate the joint posterior probability distribution 
p(St,M|z0:t,u1:t). As in Section 2.3.3, we can use the Bayes rule to derive a recursive 
estimation scheme for SLAM. 
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During above derivation, we have used the Markov assumption again and the static map 
assumption i.e. Mt=Mt-1. Since the dimension of the occupancy grid map is huge, it is 
difficult to maintain a full posterior distribution estimate during SLAM. We adopt the 
incremental maximum likelihood estimation framework as introduced in Section 2.3.5; 
eat each period, we only keep the most likely estimate of vehicle state and the map. 
More specifically, the incremental maximum likelihood SLAM is formulized as follows: 
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We follow the static map assumption again and then (4-8) turns into: 
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Once the vehicle state St is estimated, we can update the occupancy grid map by 
appending new data (St,zt) into the old map Mt-1: 
 

),ˆ(ˆˆ
1 tttt zSMM ∪−=  (4-10) 

 
Incremental maximum likelihood SLAM is a repetition of executing the steps (4-9) and 
(4-10). In the step (4-10), we can update each grid cell according to (4-7) (For the cells 
that are not influenced by the new frame of laser beams, we can just leave them 
unchanged). In the step (4-9), we adopt the occupancy grid based scan matching method 
as introduced in [Vu 2009] for its computational efficiency as well as its insensitiveness 
to dynamic entities in the environment. The occupancy grid based scan matching 
method is briefly reviewed as follows: 
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Step I: We randomly generate a set of vehicle state samples from last vehicle state 
estimate and vehicle motion measurements, satisfying the probabilistic vehicle motion 
model ),ˆ|( 1 tttp uSS − . More specifically, in each sampling, we generate a vehicle 

motion sample from the vehicle motion measurement according to a pre-defined motion 
error model. From this vehicle motion sample and last vehicle state estimate, we can 
generate a vehicle state sample according to the kinematic bicycle model specified in 
(3-4). Let the set of vehicle state samples be denoted as: 
 

}_1|{ ,, Nsamplejjtsamplest ≤≤= SS  

 
Step II: With a vehicle state sample, we can localize the end point cells of the laser 
beams in the occupancy map Mt-1. The sum of the occupancy states of all the occupied 
end point cells is used to measure the likelihood value of this vehicle state sample i.e.: 
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We select the vehicle state sample with highest likelihood value computed above way 
and treat it as the solution for the optimization problem in the step (4-9). 
 

4.2.4 Vehicle Local State vs. Vehicle Global State 
By so far, the incremental maximum likelihood SLAM scheme presented in steps (4-9) 
and (4-10) is generally applicable to SLAM, no matter global or local. As previously 
discussed in Section 2.5.1, for real-time vehicle operations, it is only needed to maintain 
a local map that the vehicle has to deal with directly and immediately.  
In local SLAM, we always maintain a local map for the surrounding environment of the 
vehicle. As presented in [Wang 2004] [Vu 2009], every time the vehicle arrives near the 
boundary of the current local map, a new local map is initialized; the pose of the new 
map is computed according to vehicle pose and the cells inside the intersection area of 
the two maps are copied from the old map to the new one.  
A bit different from the practice in [Wang 2004] [Vu 2009], we do not store old local 
maps and only keeps the current local map, because we have no intention to carry out 
any task related to global mapping. Besides, in [Wang 2004] [Vu 2009], when the old 
local map is transformed into new local map, the map is not only translated but also 
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rotated so that the vehicle always starts at a fixed position with a fixed direction in the 
new local map. In our practice, we do not rotate the map and only translate the map by 
times of grid cell side length, for the sake of implementation convenience. We always 
keep the vehicle almost at the center of the local map. In other words, the local SLAM 
is more like sliding a local map window along the vehicle trajectory, as illustrated in 
Figure 4.4. An example of local occupancy grid map built during SLAM is illustrated in 
Figure 2.13. 
 

Slide the local map 
with vehicle motion

Translate by times of 
cell side length

 
Figure 4.4 Slide the local occupancy grid map with vehicle motion 
 
As briefly mentioned in Section 4.2.1, there are two sorts of vehicle state (pose): vehicle 
local state and vehicle global state. Vehicle local state is concerned in local SLAM as 
described in this section, whereas vehicle global state is concerned in vehicle global 
localization as described in Section 3.4.2 and Section 3.4.3.  
The reason for not mixing vehicle global state and vehicle local state during local 
SLAM is that vehicle global state estimate might result in discontinuity of estimated 
vehicle trajectory and inconsistent mapping result. For example, imagine that the 
vehicle has no global (absolute) positioning measurement for a long duration and has a 
large deviation from its true position; at time t, the vehicle suddenly gets an ideally 
accurate global positioning measurement and update its state to the correct position. 
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Although the vehicle state estimate becomes accurate at time t, there turns to be a large 
discontinuity between the vehicle state estimate at time t-1 and that at time t, which will 
further result in spatially inconsistent mapping from time t-1 to time t.  
In fact, the essential function of local SLAM is to establish consistent relative spatial 
relationship among the vehicle states and the surrounding environment at consecutive 
time sequence. Whether or not the vehicle is globally registered is not so important in 
local SLAM.  
On the other hand, the vehicle local state estimate St in local SLAM can be used to 
correct original motion sensor measurements: 
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The corrected motion estimates Δdt

c and Δθt
c are then used to evolve vehicle global 

state Xt for global localization. 
For map representation convenience, the local map coordinates system is always 
attached to the local map. Let the local map coordinate system be denoted as Tt; we 
always set T0 to be 0. The local map window is translated along the vehicle trajectory 
by times of grid cell side length, i.e.  
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The nx(t) and ny(t) are the number of cells by which the local map is translated 
respectively along the x direction and the y direction; the lc is the grid cell side length. 
The vehicle local state St in the local map is also translated accordingly. In local SLAM, 
when we estimate St from St-1 and Mt-1, the St is actually represented in Tt-1. As the local 
map is slid to Tt, we have also to transform the St by subtracting from it the translation 
between Tt-1 and Tt, i.e.  
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Given vehicle local state St and vehicle global state Xt, for a point, the transformation 
between its coordinates in the local map (pL) and its coordinates in the global reference 
(pG) is as follows: 
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4.3 Occupancy Grid Maps Merging 
In previous sub-section, we have described occupancy grid based local SLAM method 
for single vehicle operation. In this sub-section, we introduce a new method of 
occupancy grid maps merging, which are used to associate the perceptions of different 
intelligent vehicles. 

4.3.1 Merging Framework 
Given two vehicles A and B; following the denotations used previously, let their global 
states be denoted as XA(t) and XB(t), their local states be denoted as SA(t) and SB(t), their 
occupancy grid maps be denoted as MA(t) and MB(t), and their occupancy grid maps 
coordinates systems be denoted as TA(t) and TB(t). Without loss of generality, we neglect 
the subscript of time index t during following description. Then MA and MB are 
intended to be merged. 
The process of occupancy grid maps merging can be generalized as the following 
optimization problem: First, design an objective function Fc in terms of two arbitrary 
occupancy grid maps M1 and M2, i.e. Fc(M1, M2), which is used to measure their 
consistency degree. Second, search the optimal relative pose pBA that maximizes the 
consistency measure between MA and pBA⊕MB, i.e. 
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In fact, the process of occupancy grid maps merging also includes a step of integrating 
the two occupancy grid maps into one map after they have been aligned correctly 
according to the estimated relative pose pBA. On the other hand, this last step would be 
comparatively trivial if the two occupancy grid maps can be aligned correctly. Besides, 
we may not need to use the integrated map; a more general and more fundamental role 
that the occupancy grid maps merging assumes is to spatially relate different intelligent 
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vehicles to each other, so that one vehicle can have meaningful inference about the 
perception of another vehicle. Therefore, when we mention occupancy grid maps 
merging, we do not necessarily indicate the practice of integrating two occupancy grid 
maps into one map; we would rather treat occupancy grid maps merging as a way to 
perform perceptions association. 

4.3.2 The Objective Function based on Occupancy Likelihood 
In [Birk & Carpin 2006], the objective function Fc consists of a similarity term and a 
lock term: the similarity term which is based on a distance-map represents the overall 
distances between the maps to-be-merged; the lock term is a part heuristically added to 
counteract the over-fitting effect.  
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 (4-12) 

 
This objective function in [Birk & Carpin 2006] has two major disadvantages: first, the 
parameter clock in the heuristically added lock term has to be tuned empirically 
according to concrete scenarios. Second, this objective function is sensitive to maps 
inherent inconsistency i.e. maps inconsistency that still exists even if the maps to-be-
merged are aligned correctly. Maps inherent inconsistency can be caused by dynamic 
entities which are common in outdoor environment. Maps inherent inconsistency can 
also be caused by the inconsistency of perception poses at different vehicles; for 
example, the same environment might appear noticeably different if it is scanned by 
laser scanners at different heights. For the objective function in [Birk & Carpin 2006], 
maps inherent inconsistency would cause drastic value change in the distance-map 
based similarity term and false counting of agreement and disagreement in the lock 
term. 
Here, we propose an objective function based on occupancy likelihood, similar to the 
idea of the occupancy grid based scan matching as introduced in [Vu 2009] (see Section 
4.2.3). Let the occupied cells with local maximum occupancy state (referred to as local 
maximum occupied cells) in MA and MB be respectively denoted as a set of two-
dimensional points {oA(1), oA(2), …, oA(na)} and another set {oB(1), oB(2), …, oB(nb)}—If 
the range scan has no measurement errors and is always ideally situated in the same 
scanning plane relative to the environment, then the occupancy grid map will be 
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comprised of a group of fine occupied border lines with only one cell width, which 
correspond to the intersection border lines between the scanning plane and the surfaces 
of environment objects. In reality, however, an occupancy grid map usually does not 
have such fine object border lines due to various sorts of errors. Therefore, we only 
select those local maximum occupied cells because they are most likely to be located on 
true objects borders—Let the occupancy state of a point p in an occupancy-grid map M 
be denoted as M(p); then the objective function Fc is defined as in (4-13): 
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Equation computes the occupancy likelihood sum of the local maximum occupied cells 
of MB in MA together with that of MA in MB. The Occ means the set of occupied cells, 
which are selected by a threshold. Here, the Occ threshold is not intended to determine 
whether a grid cell is truly occupied or not in reality; it is only used to select grid cells 
that tend to be occupied or be closer to truly occupied cells. So there is fair flexibility in 
setting this threshold. We can set the threshold to be just above the unknown occupancy 
state (i.e. 0.5), because according to the inverse measurement model introduced in 
Section 4.2.2, a grid cell with occupancy state above 0.5 even is not truly occupied, yet 
is at least no far away from truly occupied cells. For example, we can set the Occ 
threshold to be 0.6. 
In practice, a simplification of (4-13) , i.e. only computing the occupancy likelihood 
sum of the local maximum occupied cells of one map in the other without computing 
the converse part, would achieve fairly desirable performance as well, as in (4-14): 
 

∑
=

∈⊕ ⊕=⊕
nb

i
iOccc i

F
1

)B(BAA)(BBAA } )({),(
A)B(BA

opMMpM Mop  (4-14) 

 
The occupancy likelihood based objective functions in (4-13) and (4-14) only take into 
account the consistent part of the occupancy grid maps to-be-merged. In other words, 
they are not influenced by maps inconsistent part. For example, if an area in one map 
tends to be occupied whereas its counterpart in the other map tends to be free, then this 
area is not taken into account in the proposed objective function and naturally will not 
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have influence on the output of the latter. Therefore, the proposed objective function is 
insensitive to maps inherent inconsistency.  
For local maps of enough size, stable and consistent objects (buildings, infrastructures 
etc) are usually the dominating factors. These dominant consistent objects always 
contribute to successful local maps merging, because the correct maps relative pose 
which also aligns these consistent objects correctly normally achieves distinguished 
high value with the proposed objective function.  
If we set the occupancy state space to be comprise of only three discrete states 0 (free), 
0.5 (unknown), and 1 (occupied), then the occupancy likelihood based objective 
function is reduced to a simple formula similar to the agr term in the objective function 
in [Birk & Carpin 2006] which discretely computes the number of consistent cells, as 
follows: 
 

})()(|{#),(agr),( 2121BBAA CFc ∈==∝⊕ pMpMpMMMpM  

 
However, we try to avoid any preliminary step of discretization on the occupancy state 
space that is originally continuous, because a discretization step is unnecessary and it 
reduces the information originally contained in the occupancy grid map. Besides, the 
practice of discretization, especially the triplet discretization, can worsen the 
optimization structure and make it more difficult to search the correct solution. 
Therefore, we prefer the occupancy likelihood based objective function as in (4-13) or 
(4-14) that is directly applicable to merging general occupancy grid maps whose state 
spaces are continuous. 
The distance-map based similarity term in (4-12) [Birk & Carpin 2006] might smoother 
the value space of the objective function; an idea is to incorporate this similarity term 
into (4-14) (or (4-13)) and we have (4-15): 
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As will be demonstrated in experiments in Section 6.4.5, a large clock in (4-12) or (4-15) 
would make the objective function comparatively robust to maps inherent inconsistency 
and always enables finding the correct alignment (if suitable optimization technique is 
used, as will be introduced in the next sub-section). With a large clock, the distance-map 
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based similarity term has trivial contribution and can be totally neglected for simplicity. 
This is the reason why we propose to use the objective function (4-13) (or (4-14) for 
simplicity). 

4.3.3 Optimization using Genetic Algorithm 
The initial value of pBA can be computed with GPS based vehicle global localization 
results, yet this initial value might be far away from the global optimal maps alignment. 
For intelligent vehicle systems with low-accuracy GPS, the initial position error of pBA 
can be twenty meters; initial orientation error of pBA can also be large. Besides, the 
value space of the objective function is normally multimodal and of irregular shape on 
the whole. Therefore, local optimization searching techniques such as gradient based 
analytical techniques tend to fail when facing such large initial estimate error.  
The strategy of evolutionary genetic algorithm [Man et al. 1999] is adopted to solve the 
optimization problem (4-11). One important motivation for using genetic algorithm is 
that it is independent of the objective function value space and it is ready to solve 
multimodal, non-differentiable, or non-continuous problems. Another motivation lies in 
its intrinsic parallelism architecture, which makes it directly suitable for parallel 
computation framework if needed. Besides, it can be well implemented in a dynamic (or 
recursive) scheme for real-time vehicle operation.  
Genetic algorithm is rather a methodology instead of being a list of concrete execution 
procedures. As an analogy to species evolution under the influence of natural selection, 
the fundamental spirit of genetic algorithm is to evaluate the fitness values of a group of 
tentative solution individuals, vary them with biologically inspired operations such as 
crossover and mutation, and keep those better individuals. The concrete procedures to 
put this spirit into practice are problem oriented and can be specially designed and 
modified. The concrete procedures in our implementation are as follows: 
 
1. Initialization: randomly generate an initial population of pBA: 
(1-a) Compute the initial value of pBA with GPS based global localization results of the 
two vehicles: 
 

)()( BBAABA(init) SXXSp invinv ⊕⊕⊕=  

 
(1-b) In a certain error range around pBA(init), randomly generate an initial population of 
pBA i.e. {pBA(k)|k=1,2,…,n}. With an intention to examine the robustness of the method, 
we deliberately exaggerate this initial error range to be +30 meters in position and +30 
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degrees in orientation. The initial error range can also be estimated from the covariance 
estimates of the vehicles global states; a better estimation of the initial error range might 
accelerate the optimization searching process.  
Concerning the representation of a generic individual pBA(k) in the population, we do not 
make bit (binary) string encoding [Man et al. 1999] on pBA(k) as originally in genetic 
algorithm; instead, we directly handle the real-value vector form of pBA(k) for 
implementation convenience.  
 
2. Evolution: iteratively perform the following sub-steps as follows: 
(2-a) Compute the likelihood value (or fitness value in traditional genetic algorithm 
terms) of each individual in the population, according to (4-14). 
(2-b) Compute mean likelihood value of the population. For an individual, if its 
likelihood value is above the mean likelihood value, assign the individual to the elite 
group; otherwise, assign it to the inferior group. {pBA(k)|k=1,2,…,n} 
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Categorizing the population according to their mean likelihood value is a simple yet 
effective way to decide which individuals are more likely to survive and more likely to 
have influence on the following generation.  
(2-c) Mutate the individuals in the elite group. For an individual, if its mutation has 
higher likelihood value than its own, then replace this individual with its mutation; 
otherwise, just keep this individual originally in the elite group. 
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Among the elite group, the best individual is an exception, which gets more times (for 
example, 100 times) of mutation. If no mutation is better, then just keep the best 
individual unchanged; otherwise, keep the best mutation to replace the original best 
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individual. (Note: this is like a coarse-to-fine strategy executed for the best individual, 
which is intended to refine the precision of the best individual of maps alignment. On 
the other hand, a simple coarse-to-fine strategy for the overall optimization process 
tends to fail, because of the sparsity of the individuals and the irregularity of the value 
space; the best individual in one evolution does not guarantee reducing the error range 
largely) 
(2-d) Replace the inferior group with new individuals; more specifically, replace each 
individual in the inferior group with a new individual that is generated from old 
individuals by applying the following genetic operations with specified probabilities: 
(2-d-i) Copy the best individual (only performed once). 
(2-d-ii) Randomly select an individual from the elite group and mutate it to be the new 
individual.  
(2-d-iii) Randomly select two individuals from the elite group, create a new individual 
by executing crossover on them and mutating the crossover result. Two sorts of 
crossover are designed: 
Crossover I: Mix the position parts and orientation parts of the two individuals. Let the 
two elite individuals be denoted as pBA(e1)=[xBA(e1), yBA(e1), θBA(e1)]T and pBA(e2)=[xBA(e2), 
yBA(e2), θBA(e2)]T; the new individual is generated as follows: 
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Crossover II: Make a random linear combination of the two individuals (the λ is a 
randomly generated real value in [0, 1]:  
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The Crossover I and Crossover II are specially designed crossover operations to directly 
hand the real-value vector form of pBA(k), yet we can make an analogy between them 
and the traditional bit string based crossover operations by adopting the Building Block 
Hypothesis [Man et al. 1999]. For a generic individual pBA(k), if we believe that its 
position component and orientation component are basic building blocks which 
contribute to its fitness, then the traditional crossover operation turns to be Crossover I, 
as demonstrated by Figure 4.5(top). If we believe that the proportion between its 
position component and orientation component is basic building block which 
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contributes to its fitness, then the traditional crossover operation turns to be Crossover 
II, as demonstrated by Figure 4.5(bottom). 
 

Position

Orientation

Individual A Individual B Crossover I

Position

Orientation

Individual A Individual B Crossover II

 
Figure 4.5 Crossover operation: (top) crossover I; (bottom) crossover II 
 
It is worthy noting that the Building Block Hypothesis is a theory which does not strictly 
prove but heuristically explain the working mechanism of genetic algorithm. The 
Building Block Hypothesis can be rather treated as a guide for designing the genetic 
operations. 
(2-d-iv) Re-initialization: Create the new individual according to GPS based vehicle 
global localization results and the error range, as in the initialization process. This re-
initialization practice is to keep the diversity of the population. 
 
When two vehicles meet or re-meet, the initialization step is performed once and the 
sub-steps in evolution are repeatedly performed. A dynamic scheme of the genetic 
algorithm is used: the generation of pBA individuals from last period is propagated to the 
current period, according to the change of local map coordinates systems, i.e. (for 
k=1,2,…,n): 
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As long as the vehicles are in the neighborhood and in cooperation, the evolution step 
can be performed unceasingly. As a result, we only need to assign few times of 
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evolution for each period (for example, once), which largely reduces computational 
burden at one period; moreover, as the evolution continuous unceasingly, the dynamic 
scheme of genetic algorithm will finally converge to the optimum. In our tests, the 
genetic algorithm usually converges to the optimum in only few periods (no more than 
one second). 
An example of the local occupancy grid maps merging result is illustrated in Figure 4.6. 
 

 
Figure 4.6 (top) local SLAM results; (bottom-left) maps alignment according to low-accuracy GPS 
based localization results; (bottom-right) maps merging result 
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4.4 Cooperative Moving Objects Detection 
The purpose of this sub-section is not to propose certain moving object detection 
method, but to demonstrate a scheme of multi-vehicles cooperative moving objects 
detection: the occupancy grid maps merging method is used to associate the perceptions 
of different vehicles; based on the perceptions association result, the moving objects 
detected by a vehicle can be mapped into the local map of another vehicle and merged 
with the moving objects detected by the latter.  
 

Vehicle A

MOD

SLAM

Vehicle B

SLAM

MOD

Maps 
Merging

Cooperative 
MOD

 
Figure 4.7 Cooperative moving objects detection (Cooperative MOD) 
 
To demonstrate a complete application of cooperative moving objects detection, we 
incorporate two basic moving objects detection methods, namely consistency-based 
detection and moving object map based detection [Wang 2004] [Vu 2009]. More 
sophisticated moving objects detection methods can also be incorporated into the local 
occupancy grid maps merging based scheme of cooperative local mapping and moving 
objects detection. 
 
Consistency-based detection: given a new scan of range measurements and previously 
constructed occupancy grid maps, the idea is to find the inconsistent part between range 
measurements and free space in the local occupancy grid map. If a range point is 
detected on a location of previously free space, then it is regarded as a moving point. 
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The range data are clustered into segments; for a segment, if the number of moving 
points is larger than a half of the total points, then the segment is identified as potential 
moving object. 
 
Moving object map based detection: a local moving object map is created to store 
information about previously detected moving objects; each cell in the moving object 
map stores a value indicating the number of observations that a moving object has been 
observed at that cell location. If the cell value is above certain threshold, the range point 
associated with this cell is regarded as a moving point.  
 
During multi-vehicles cooperation, a vehicle (referred to as ego vehicle) will merge the 
local occupancy grid map of another vehicle into its own occupancy grid map, using 
introduced occupancy grid maps merging method. The detected moving objects of 
another vehicle can also be transformed into the ego vehicle reference and fused with 
the detected moving objects of the ego vehicle: if a detected moving object of another 
vehicle and a detected moving object of the ego vehicle have at least partial overlap, 
then the two objects are regarded as the same object and fused into one object.  
For the ego vehicle, the merged occupancy grid map which incorporates the data of 
another vehicle is only used for current time and will not be used during the following 
SLAM. In other words, the ego vehicle performs SLAM only based on its own sensor 
data. This is for guaranteeing the independence among the occupancy grid maps 
estimated by different vehicles. (Note: as we adopt the incremental maximum 
likelihood estimation framework to handle local SLAM with large size occupancy grid 
map, we do not maintain posterior estimate uncertainty; therefore, the strategy of 
applying the split covariance intersection filter as in CHAPTER 3 is not applicable here, 
not to mention the large computational burden if applicable. On the other hand, in future, 
it deserves finding a solution to enable a vehicle to utilize the merged map during its 
following process of SLAM and MOD. This future extension will be discussed in 
details in the last chapter of this dissertation) 

4.5 Summary 
We have reviewed the method of occupancy grid based single vehicle local SLAM, 
including how to use laser scanner based range measurements to incrementally update 
the occupancy grid map estimate according to the inverse measurement model and how 
to estimate current vehicle local state (pose) with last estimate of vehicle local state and 
occupancy grid map. We have explained the different roles of vehicle local state and 
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vehicle global state; we have described how vehicle local state estimate in SLAM can 
be used to assist vehicle global state estimation. We have presented the framework for 
occupancy grid maps merging by generalizing its essential part into an optimization 
problem; we have proposed a new objective function that measures the consistency 
degree of maps alignment based on occupancy likelihood. We have adopted the spirit of 
genetic algorithm and designed a set of concrete procedures to search the optimal maps 
alignment. We have introduced the scheme of multi-vehicles cooperative moving 
objects detection based on occupancy grid maps merging; for a complete 
implementation, we have reviewed two basic moving objects detection methods, 
namely the consistency-based detection and the moving object map based detection.  
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Résumé 
 
Nous avons exploité la notion de réalité augmentée à la perception coopérative, 
formalisant ainsi le concept de « réalité augmentée coopérative » appliquée au contexte 
des systèmes de véhicules intelligents. Nous nous sommes intéressés particulièrement 
au scénario de véhicules « leader-suiveur » auquel l’approche de réalité augmentée est 
appliquée. Pour cela, nous utilisons deux capteurs : un télémètre laser et une caméra. 
Nous avons décrit comment établir une relation spatiale entre deux vues selon la 
géométrie perspective. Nous avons introduit une technique permettant à un télémètre 
laser 2D de fournir à une caméra des données lui permettant d’estimer la profondeur de 
perception visuelle. Nous avons présenté la façon de projeter la perception d'un véhicule 
sur celle d'un autre véhicule, en respectant la géométrie perspective décrite. Nous avons 
également introduit une nouvelle méthode de calibration extrinsèque pour une caméra et 
un télémètre laser 2D. 
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5.1 Introduction 
In this chapter, we introduce a brand new idea of cooperative augmented reality which 
utilizes the results of cooperative local mapping to realize certain augmented reality 
effect. More specifically, we realize an augmented effect of ‘seeing’ through front 
vehicle, based on the intelligent vehicle sensor configurations described in Section 2.2. 
First, we describe the mathematical foundations of pinhole camera model and multi-
views perspective geometry. Then, we introduce a technique of utilizing a 2D laser 
scanner to assist a mono-camera in estimating the visual perception depth 
approximately. Next, we present the process of realizing perspective transformation 
between the visual perceptions of two vehicles. As part of the provided solution, a new 
method is proposed for extrinsic co-calibration of a camera and a 2D laser scanner; the 
proposed calibration method reveals all the spatial relationships among the camera 
coordinates system, the laser scanner coordinates system, the ground coordinates system, 
and the vehicle coordinates system. 

5.2 Front-Following Vehicles Scenario  
Given a scenario of two vehicles: the front (first) vehicle and the following (second) 
vehicle; the front vehicle occludes the view of the following vehicle, as illustrated in 
Figure 5.1. This front-following vehicles scenario is typical in traffic environment and 
is potential dangerous, especially in some occasions such as the overtaking occasion 
(see Figure 1.7). 
For this front-following vehicles scenario, the idea of cooperative augmented reality is 
to project the visual perception of the front vehicle onto that of the following vehicle, 
abiding by perspective geometry. In other words, we patch the occluded part of the view 
of the following vehicle with corresponding part of the view of the front vehicle. This is 
not simply a process of partial view copying and pasting between the two vehicles; we 
have to transform the partial view of the front vehicle according to perspective 
geometry, in order to make a vivid and natural reproduction of this partial view for the 
following vehicle, as if the following vehicle can directly see into the occluded area, as 
demonstrated in Figure 2.15. 
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Figure 5.1 Front-following vehicles scenario: (left) the view of the front vehicle; (right) the view of 
the following vehicle (occluded by the front vehicle) 
 

5.3 Camera Model and Multi-Views Perspective Geometry 

5.3.1 Pinhole Camera Model 
Camera model is used to characterize the spatial (geometric) relationships between the 
objects perceived by the camera and their projections on the captured image. After 
removal of image distortion (or image distortion is negligible), the ideal pinhole camera 
model [Faugeras 1993] [Zhang 2000] can be adopted, as illustrated in Figure 5.2. 
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Figure 5.2 Pinhole camera model 
 
There are three coordinates systems concerned in this model, namely the world 
coordinates system, the camera coordinates system, and the image coordinates system. 
The world coordinates system {Ow,Xw,Yw,Zw} is used to specify the location of 
environment objects in our 3-Dimensional (3D) world; it is usually established in ad 
hoc way which facilitates the fulfilling of certain tasks. The camera coordinates system 
{Oc,Xc,Yc,Zc} is attached to the camera, which is used to specify the location of 
environment objects relative to the camera; the origin Oc is situated on the virtual 
pinhole by which each projection line passes; the Zc is aligned with the principal axis 
which is perpendicular to the image plane. The image coordinates system {Oi,U,V} is 
attached with the virtual 2D digital image plane in pixels (Note: in a camera, there is a 
physical image plane which captures environment light; digital image data are then 
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generated by digitizing the image (light) captured by the physical image plane. We can 
fairly imagine there is a virtual digital image plane overlapped with the physical image 
plane; the difference between them only lies in a conversion between physical unit and 
pixel unit). 
The transformation from the world coordinates system to the camera coordinates system 
is given by a rotation Rwc and a translation Twc: 
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 (5-1) 

 
The transformation from the camera coordinates system to the image coordinates 
system is given as follows: 
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The (u0,v0) is the location of the principal point (the intersection point of the principal 
axis and the image plane); the α and β are scaling factors in image u and v axes; the γ 
describes the skewness of two image axes. We can represent (5-2) in matrix form: 
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The A is camera intrinsic matrix; the parameters in this matrix are camera intrinsic 
parameters, which can be calibrated using the chessboard plane based method [Zhang 
2000]. In many applications, we can fairly assume that the scaling factors along two 
image axes are the same and the two image axes are strictly orthogonal, in other words, 
we assume that the image plane is ideally fabricated, then (5-2) and (5-3) turn into a 
simplified (yet effective) version, as in (5-4).  
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Combining (5-1) and (5-3), we obtain the transformation from the world coordinates 
system to the image coordinates system, as in (5-5). 
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The M is the perspective matrix. The transformation described by (5-5) is referred to as 
perspective mapping. For a matrix M, we denote its k-th column vector as M(k); for 
example, the perspective matrix M (always having four columns) can be represented in 
decomposed form as: M=[M(1) M(2) M(3) M(4)]. 

5.3.2 Multi-Views Perspective Geometry 
Given two cameras (as illustrated in Figure 5.3) whose intrinsic matrixes are 
respectively denoted as A1 and A2 and whose spatial relationships with the world are 
respectively denoted as {Rwc1 and Twc1} and {Rwc2 and Twc2}; Let their perspective 
matrix be denoted as M1 and M2: 
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Let Pw=[xw,yw,zw]T denotes a 3D point in the world coordinates system; Pi1=[u1,v1]T and 
Pi2=[u2,v2]T denote the image points respectively in the first image coordinates system 
and the second image coordinates system. For an arbitrary vector V, let V(A) denotes its 
augmented vector i.e. V(A)=[V;1]T. Let e1, e2, e3 respectively denote the constant vectors 
[1,0,0]T, [0,1,0]T and [0,0,1]T. 
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Figure 5.3 Multi-views perspective geometry 
 
Formula I: 
Consider the perspective mapping as specified in (5-5); given a known zw, then xw can 
be computed as: 
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Proof: With a known zw, from (5-5) we have: 
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Divide the first element by the third element in above right-side expression and then we 
have (5-6). End. □ 
 
Formula II:  
Given the perspective mappings for two cameras: 
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For a 3D point Pw, if its xw coordinate is known, the geometric relationship between its 
projections on the two cameras image planes is given by (λ12 and λ21 are normalization 
constants): 
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 (5-7) 
 
Proof: With a known xw we have: 
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By rearranging the terms in above equation and we can get (5-7). End. □ 
 
Formula III:  
For a 3D point Pw, if ||Pw|| ∞, the geometric relationship between its projections on the 
two cameras image planes is given by: 
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Proof: We can verify that the following equation asymptotically holds as xw increases to 
infinite: 
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This is verified by brutal expansion of the matrixes elements in above equation and 
comparison among corresponding terms. We could resort to software with symbolic 
operation functionality to perform the verification; the piece of code for MATLAB is 
listed here:  
 
%% CODE BEGIN 
x=sym('x'); 
for r=1:3 
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for c=1:4 
mOne(r,c) = sym(['mOne' num2str(r) num2str(c)]); 
mTwo(r,c) = sym(['mTwo' num2str(r) num2str(c)]); 
end 
end 
mOneX=[mOne(:,2), mOne(:,3), x*mOne(:,1)+mOne(:,4)]; 
mTwoX=[mTwo(:,2), mTwo(:,3), x*mTwo(:,1)+mTwo(:,4)]; 
T = simple( mOneX*inv(mTwoX) ); 
Tx = simple( limit(T,x,inf) ); 
R = simple( mOne(:,1:3)*inv(mTwo(:,1:3)) ); 
simple( Tx-R ) 
%% The output should be a matrix of zero. 
%% CODE END 
 
From Formula II we can know that (5-8) as xw ∞. Since the form of (5-8) is 
symmetrical, we can verify that (5-8) also holds as yw ∞ or zw ∞. End. □ 
 
The meaning of Formula III can be interpreted in this way: given a 3D point which is 
far away enough from the two cameras, then the geometric relationship between its two 
image projections only depends on the perspective matrixes of the two cameras. In other 
words, given a pixel on one camera image, if the corresponding 3D point of this pixel is 
known to be far away from the two cameras, then even without any exact spatial 
information of this 3D point, the corresponding pixel on the other camera image can 
still be determined (suppose the perspective matrixes are known). 

5.4 Approximate Estimation of the Visual Perception Depth 
using a 2D Laser Scanner 

A prerequisite for performing the perspective transformation between the visual 
perceptions of the two vehicles is the knowledge of the visual perception depth. This 
knowledge can be estimated by stereo-vision, if correct correspondence is established 
(yet a challenging process) between the images pair in stereo-vision. Unfortunately, by 
so far, stereo-vision is not available in our vehicle sensor configurations. In spite of the 
absence of stereo-vision, approximate estimate of the visual perception depth can be 
obtained with the help of 2D range perception. Although the perspective transformation 
based on this approximate estimate might not be precise, its performance could still be 
lifelike enough for driver assistance, as will be shown later. 
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5.4.1 Coordinates Systems in an Intelligent Vehicle 
Before further introduction of the approximate estimation method, we give some 
explanations on several coordinates systems that are concerned in an intelligent vehicle, 
namely the camera coordinates system (CCS), the laser scanner coordinates system 
(SCS), the ground coordinates system (GCS), and the vehicle coordinates system (VCS), 
as illustrated in Figure 5.4.  
 
Camera Coordinates System: its origin and coordinate axes are denoted by 
{Oc,Xc,Yc,Zc}; the origin Oc is situated at the virtual pinhole by which a projection line 
passes; the Oc-Xc-Yc plane is parallel to the image plane.  
 
Laser Scanner Coordinates System: its origin and coordinate axes are denoted by 
{Os,Xs,Ys,Zs}; the origin Os is situated at the laser emitting point; the plane Zs=0 is the 
scanning plane of the 2D laser scanner.  
 
Vehicle Coordinates System: (Let the vehicle be stationary on the ground plane) its 
origin and coordinate axes are denoted by {Ov,Xv,Yv,Zv}; the coordinate axes 
{Xv,Yv,Zv} are respectively established along the longitudinal direction (pointing 
forward), along the lateral direction (pointing left), and along the vertical direction 
(point upward) of the vehicle; the origin Ov is at the projection of the rear wheel axle 
center on the ground.  
 
Ground Coordinates System: (Let the vehicle be stationary on the ground plane) its 
origin and coordinate axes are denoted by {Og,Xg,Yg,Zg}; the origin Og is at the 
projection of Oc on the ground, the axis Zg points from Og to Oc i.e. the ground plane is 
the plane Zg=0, and the axis Xg is along the projection of the axis Zc on the ground. 
 
It is worthy noting that these coordinates systems might be established differently; they 
are established in above way mainly for the convenience of calibration process and 
applications associated with intelligent vehicles. 
The camera coordinates system, the laser scanner coordinates system, the ground 
coordinates system, and the vehicle coordinates system, are always fixed with the 
vehicle (so they are also mutually fixed with each other). The rigid spatial relationships 
among them are calibrated off-line; a calibration method which reveals all these spatial 
relationships will be introduced in latter sub-section.  
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Figure 5.4 Coordinates systems in an intelligent vehicle 
 
It is assumed that the Og-Xg-Yg plane and the Ov-Xv-Yv plane are always situated on the 
ground surface during intelligent vehicle operation, i.e. the pitch-roll movements of the 
vehicle are assumed negligible. Although this assumption is not strictly correct, yet it is 
reasonable in practices.  

5.4.2 Approximate Estimation of the Visual Perception Depth 
The visual perception depth is approximately estimated in the following way. 
First step, compute the depth i.e. the xv value of the ground part on the visual perception 
using the formula I in Section 5.3.2. Suppose all the image part below the vanishing line 
corresponds to ground surface; then compute the depth of this part according to (5-6), 
considering that zv=0. The vanishing line is determined by finding the solution (the set 
of Pi) which makes the denominator in (5-6) be zero, i.e.  
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Second step, compute the depth of the image part that can be associated with 2D range 
perception. Given a range point, transformed into the vehicle coordinates system, 
denoted as [xv(i);yv(i);zv(i)]T. It is assumed that the detection of this point is caused by a 
vertical column which contains this point; the bottom part and the top part of this 
vertical column are respectively assumed to be situated on the ground surface and Hp 
meters (for example, let Hp be 2) above the ground surface; the width of this vertical 
column is chosen according to the range perception error. These assumptions are based 
on the following considerations: pedestrians, i.e. the environment objects that we care 
most concerning navigation safety, have vertical column-like shape normally within 2 
meters height; besides, many other environment objects also have vertical shape, such 
as vehicles, traffic signs, building and trees. 
The depth of all the image part that corresponds to this vertical column (determined 
through perspective mapping) is set to be xv(i). When the image projections of two such 
kind of vertical columns overlap with each other, the overlapping part will have two 
depth estimates, then only the smaller depth estimate is kept for the overlapping part. In 
other words, if an image part can be associated with two range perception points, then it 
is associated only with the point closer to the vehicle. 
Third step, the image parts whose depth have not been determined yet are assumed to 
correspond to far-away objects and their depth is set to be large. This assumption seems 
rude but is reasonable: normally, these image parts either correspond to the objects that 
are beyond the detection range of the laser scanner or correspond to the objects high 
above the ground. If the former case holds true, this directly means that the objects are 
far away because the detection range of the laser scanner can be 80 meters. If the later 
case holds true, these objects high above the ground are anyway of less interest; the 
perspective transformation of these objects, even inaccurate, does not matter so much. 
One example of the visual perception depth estimated through above steps is 
demonstrated in Figure 5.5, where the color varies from red to blue as the depth varies 
from small to large. In practice, it is not necessary to estimate the depth of the whole 
visual perception; the depth information of only the occluded part is needed. Besides, 
the Gaussian filtering is performed on the estimate of the visual perception depth in 
order to smooth visualization effect. 
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Figure 5.5 Approximate estimate of the visual perception depth 
 

5.5 Perspective Transformation between the Visual 
Perceptions of Two Intelligent Vehicles 

Let the relative pose between the front vehicle and the following vehicle be denoted as 
[x12;y12;θ12]T. This relative pose is obtained using the indirect vehicle-to-vehicle relative 
pose estimation method introduced in Section 3.5). Suppose the perspective mappings 
between the vehicle coordinates systems and the image coordinates systems at the front 
vehicle and the following vehicle are respectively given by (calibrated off-line): 
 
Vehicle 1: )(11)(1 AvAi1 PMP ⋅=λ  

Vehicle 2: )(22)(22 AvAi PMP ⋅=λ  

 
The Pi1(A)=[u1,v1,1]T and Pi2(A)=[u2,v2,1]T denote the augmented coordinates in the 
image coordinates systems respectively of the front and the following vehicles. The 
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Pv1(A)=[xv1,yv1,zv1,1]T and Pv2(A)=[xv2,yv2,zv2,1]T denote the augmented coordinates in the 
vehicle coordinates systems respectively of the front and the following vehicles. The 
relationship between Pv1(A) and Pv2(A) is given by: 
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The visual perceptions of the two vehicles can be related to a common spatial reference 
which is chosen to be the second vehicle coordinates system: 
 

Vehicle 1: )(2
1

121)(1 )( AvAi1 PRTMP −⋅=λ  

Vehicle 2: )(22)(22 AvAi PMP ⋅=λ  

 
Following the previous sub-section, the visual perception consists of two parts: the 
depth estimate of one part is determined; the depth estimate of the other part is large 
which means that this part corresponds to far-away objects. For the former part, 
perspective transformation between the visual perceptions of the two vehicles is carried 
out based on formula II in section 5.3.2. For the latter part, perspective transformation is 
carried out based on formula III. 

5.6 Extrinsic Co-Calibration of a Camera and a 2D Laser 
Scanner 

For the previously introduced method to be realized, the extrinsic parameters which 
characterize the (rigid) spatial relationships among the camera coordinates system, the 
laser scanner coordinates system, the ground coordinates system, and the vehicle 
coordinates system, have to be calibrated off-line. In this sub-section, we introduce a 
COMPREHENSIVE extrinsic calibration method which reveals ALL these spatial 
relationships, based only on the popular chessboard calibration practice [Zhang & Pless 
2004] with few extra measurements. 
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5.6.1 Mathematical Fundaments and Denotations 
In Section 5.4.1, we have introduced the camera coordinates system (CCS), the laser 
scanner coordinates system (SCS), the ground coordinates system (GCS), and the 
vehicle coordinates system (VCS) concerning an intelligent vehicle. As we use a 
chessboard for the calibration, we would like to introduce one more sort of coordinates 
system, i.e. the chessboard coordinates system (PCS), as illustrated in Figure 5.6. 
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Figure 5.6 Coordinates systems concerned in the calibration 
 
Given a pose of the chessboard plane, the origin and the coordinate axes of the PCS are 
denoted by {Op,Xp,Yp,Zp}, where the plane Zp=0 is situated on the chessboard plane, 
the origin Op is situated at the left-bottom corner of the chessboard, the axis Xp is along 
the bottom edge of the chessboard, and the axis Yp is along the left edge of the 
chessboard, as illustrated in Figure 5.6. The chessboard is placed with several different 
poses in the perception field of the camera and the 2D laser scanner; for each pose, a 
sub-script ‘(i)’ is used to distinguish the PCS. Thus the different chessboard poses that 
are used for calibration are denoted by a set of PCS(i), i.e. {Op(1),Xp(1),Yp(1),Zp(1)}, 
{Op(2),Xp(2),Yp(2),Zp(2)} etc.  
The {Xa,Ya,Za} also denote the unit vectors along corresponding coordinate axes (a={c, 
s, g, v, p(1), p(2), …}). The capitalized letter R and T generally denote a 3x3 rotation 
matrix and a 3x1 translation vector respectively. The Rab and Tab respectively denote 
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the rotation and translation from the coordinates system {Oa,Xa,Ya,Za} (a={c, s, g, v, 
p(1), p(2), …}) to the coordinate system {Ob,Xb,Yb,Zb} (b={c, s, g, v, p(1), p(2), …}). 
For example, Rcs and Tcs denote the transformation from the CCS to the SCS. The 
capitalized letter M generally denotes a point and Ma=[xa,ya,za]T denotes the coordinates 
of M in the coordinate system {Oa,Xa,Ya,Za} (a={c, s, g, v, p(1), p(2), …}). Thus the 
following relationships hold:  
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The a,b,f={c, s, g, v, p(1), p(2), …}. The spatial relationships among the CCS, the SCS, 
the GCS, and the VCS are fixed; the objective of the extrinsic calibration is to reveal 
these spatial relationships, i.e. the extrinsic parameters Rab and Tab (a,b={c, s, g, v}). 
In the CCS, the ‘Np(i)c’ is used to denote the perpendicular vector from the Oc to the 
chessboard plane PCS(i) {Op(i), Xp(i), Yp(i), Zp(i)}, where the magnitude ||Np(i)c|| equals the 
distance from the Oc to the PCS(i). The ‘Ngc’ is used to denote the perpendicular vector 
from the Oc to the ground plane. Let NGc=[Ngc

T,n0]T and let the ground plane be 
represented by equation NGc

T[Mc
T,1]T=0. 

Let e1, e2, e3 respectively denote the constant vectors [1,0,0]T, [0,1,0]T and [0,0,1]T. The 
norm ‘||.||’ denotes the L2-norm, i.e. given an arbitrary vector V, ||V||2=VTV. 

5.6.2 Comprehensive Extrinsic Calibration Method: Basic Version 
The proposed calibration method consists of three parts: 1) the calibration between the 
CCS and SCS, using the method introduced in [Zhang & Pless 2004] that is based on 
the chessboard calibration practice; 2) the calibration between the CCS and the GCS, 
based on the same chessboard calibration practice; 3) the calibration between the GCS 
and the VCS, with the help of few extra measurements in addition to the chessboard 
calibration practice. 
 
Part I: the calibration between the CCS and the SCS 
Assume that the intrinsic parameters of the camera are already calibrated using the 
method introduced in [Zhang 2000]; given several chessboard poses that are used for 
calibration: PCS(1){Op(1),Xp(1),Yp(1),Zp(1)}, PCS(2){Op(2),Xp(2),Yp(2),Zp(2)} etc. For a pose 
PCS(i){Op(i),Xp(i),Yp(i),Zp(i)}, a 3-vector Np(i)c that is perpendicular to the chessboard 
plane is computed as: 
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where the rotation matrix Rp(i)c and the translation vector Tp(i)c are computed based on 
the homography between the plane Zp(i)=0 of the PCS(i) and the 2D image coordinates 
system [Zhang 2000]. 
According to the geometric constraint that laser points should be located on the 
chessboard plane, the relative pose i.e. Rcs and Tcs between the camera and the 2D laser 
scanner are optimized by minimizing the summed square of distances (SSD) of all the 
laser points to corresponding chessboard planes: 
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where the rotation matrix Rcs is parameterized by a 3-vector using the Rodrigues 
formula [Faugeras 1993]; Ms(i,j) is the j-th laser point on the PCS(i). The initial value of 
Rcs and Tcs are estimated by solving a linear equation problem [Zhang & Pless 2004]: 
 
Initial Estimation of Rcs and Tcs: 
According to the geometric constraint that laser points should be located on the 
chessboard plane, the following relationship holds: 

2
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1
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Since all the laser points are on the plane Zs=0 in the SCS, above equation can be 
rewritten as follows: 
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Where the H is a 3x3 transform matrix from the SCS to the CCS; for each laser point 
Ms(i,j) and corresponding chessboard pose PCS(i), a linear equation of the unknown 
parameters of H can be formed. For all the laser points and corresponding chessboard 
poses, a linear equation group of the unknown parameters of H can be formed and can 
be solved with linear least squares method. Once the H is computed, the Rcs and Tcs can 
be estimated as follows: 
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The computed matrix Rcs might not satisfy the orthonormal condition of a rotation 
matrix; it can be approximated by a rotation matrix Rcs* which minimizes the Frobenius 
norm of Rcs*–Rcs (details can be referred to [Golub & Loan 1996]). End. □ 
 
The Rsc and Tsc can be computed using the dual relationship: Rsc=Rcs

T; Tsc=-Rcs
TTcs.  

 
Part II: the calibration between the CCS and the GCS 
We introduce how to reveal the spatial relationship between the CCS and the GCS, 
based on the same chessboard calibration practice (as used for the calibration between 
the CCS and the SCS) without any extra calibration practice. 
In the original chessboard calibration practice as in [Zhang & Pless 2004], one can hold 
the chessboard either on the ground or in the air, only if the camera and the 2D laser 
scanner can both perceive the chessboard; yet it is more convenient to hold the 
chessboard on the ground than in the air. Holding the chessboard on the ground will not 
have essential influence on the calibration results; the reason can be understood in this 
way: suppose one holds the chessboard in the air, imagine that the chessboard is 
extended onto the ground, thus holding the chessboard in the air is just like holding an 
extended chessboard on the ground.  
A calibration field where the ground is fairly flat could always be found; for example, 
on the floor in a garage room, or on a locally flat road. Then, posing the chessboard on 
the ground brings one more geometric constraint, which is referred to as ground plane 
constraint here; it means that the bottom edge of the chessboard is situated on the 
ground plane, or in geometric terms, the line Op(i)+λXp(i) (λ is a scalar) is situated on the 
ground plane. The ground plane constraint not only helps reveal the spatial relationship 
between the CCS and GCS, but also helps refine the calibration results. 
Let l be the length of the chessboard bottom edge; the points Op(i) and Op(i)+l·Xp(i), 
which represent the two corner points on the chessboard bottom edge, are chosen as 
control points. The relative pose between the PCS(i) and the camera, i.e. Rp(i)c and Tp(i)c 
can be computed, as mentioned in section 3.1; in the CCS, the coordinates of Op(i) and 
Xp(i) are respectively Tp(i)c and Rp(i)ce1. As the ground plane is denoted by equation 
NGc

T[Mc
T,1]T=0, a linear equation can be established:  
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The solution of this homogeneous linear equation, i.e. NGc is the eigenvector associated 
with the smallest eigenvalue of GTG. Let NGc be decomposed as NGc=[Ngc

T,n0]T; the 3-
vector Ngc is perpendicular to the ground plane. According to the establishment of the 
GCS as specified in Section 5.4.1, the spatial relationship between the CCS and GCS i.e. 
Rgc and Tgc, is computed as follows: 
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Lemma: Given a plane denoted as Np

T[MT,1]T=0, where Np=[NT,n0]T and N is a 3-
vector; for an arbitrary point Ma, the projection of Ma on this plane, denoted as Ma(p), is 
computed as: 
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Proof: As the 3-vector N is perpendicular to the plane, the projection Ma(p) is in the 
form Ma(p)=Ma+λN where λ is a scalar to-be-computed. Substitute Ma(p)=Ma+λN for M 
in the equation Np

T[MT,1]T=0, i.e. NT(Ma+λN)+n0=0, and compute the λ: 
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Substitute the λ into Ma(p)=Ma+λN and the lemma is done. □ 
 



 128

Proof of (5-12): In the CCS, let the ground plane be denoted by equation 
NGc

T[Mc
T,1]T=0 and the NGc=[Ngc

T,n0]T. According to the establishment of the GCS as 
specified in section 2, the Og (i.e. Tgc in the CCS) is the projection of the Oc (i.e. 0 in 
the CCS) on the ground plane; then Tgc can be computed via the lemma: 
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As the axis Zg points from Og to Oc, the unit vector Zg (i.e. Rgce3 in the CCS) is 
computed as: 

||||/3 gcgcgc TTeR −=  

Select a point on the axis Zc (let it be e3 in the CCS) and compute its projection on the 
ground plane: 
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As the axis Xg is along the projection of the axis Zc on the ground, the unit vector Xg 
(i.e. Rgce1 in the CCS) is computed as: 
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According to the right-hand rule, the unit vector Yg (i.e. Rgce2 in the CCS) is computed 
as: 

)()( 1gc3gc2gc eReReR ×=  

End. □ 
 
The Rcg and Tcg can be computed using the dual relationship: Rcg=Rgc

T; Tcg=-Rgc
TTgc. 

The spatial relationship between the SCS and the GCS can be computed using the chain 
relationship: Rsg=RcgRsc; Tsg=RcgTsc+Tcg.  
 
Part III: the calibration between the GCS and the VCS 
The chessboard calibration practice is enough for revealing spatial relationships among 
the CCS, the SCS, and the GCS as introduced previously. In order to further relate the 
CCS, the SCS, and the GCS to the VCS, an extra step of registering few control points 
in the VCS is needed and it is carried out by manual measurements. 
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According to the establishment of the GCS and the VCS as mentioned in Section 5.4.1, 
the transformation between the GCS and VCS is given by a rotation around the axis Zg 
and a translation along the ground plane, as follows: 
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Given a chessboard pose PCS(i), the origin Op(i) is chosen as a control point, which is 
called the ground control point. The coordinates of Op(i) in the GCS is computed as: 
Op(i)g=RcgTp(i)c+Tcg. Choose a set of ground control points Op(i) (it is NOT necessary to 
choose the origins of all chessboard poses), compute their coordinates 
Op(i)g=[xog(i),yog(i)]T in the GCS, and manually measure their coordinates 
Op(i)v=[xov(i),yov(i)]T in the VCS. Since zv=zg always holds here, the third coordinate is 
omitted.  
The objective is to reveal the parameters {θ,tx,ty} from the set of coordinates pairs 
{[xog(i),yog(i)]T, [xov(i),yov(i)]T}; each coordinates pair corresponds to a ground control point. 
Two coordinates pairs are enough to determine the parameters {θ,tx,ty}, while more 
available coordinates pairs might be expected to yield more accurate results. The initial 
value of {θ,tx,ty} is estimated by solving the following linear equation: 
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Afterward, an iteration process is carried out. At each iteration step, the non-linear 
function ‘cosθ’ and ‘sinθ’ are locally linearized with last estimate of θ; the increment of 
θ and new {tx,ty} are computed by solving a linear equation: 
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Normally, the results of {θ,tx,ty} will converge after several iterations; then the rotation 
Rgv and the translation Tgv are obtained. Since the spatial relationships among the CCS, 
the SCS, and the GCS have already been calibrated using the method described 
previously, by so far, all the spatial relationships among the CCS, the SCS, the GCS, 
and the VCS can be derived using the dual relationship and the chain relationship in 
(5-9). Therefore, the comprehensive extrinsic calibration of the camera and the 2D laser 
scanner is performed. 

5.6.3 Comprehensive Extrinsic Calibration Method: Improved Versions 
The basic version of the comprehensive extrinsic calibration method is introduced in the 
previous sub-section. Its performance depends on the accuracy of the camera intrinsic 
parameters which are not precisely known in practice. Concerning the calibration 
between the camera and the 2D laser scanner as in [Zhang & Pless 2004], besides the 
basic method as reviewed in Part I in Section 5.6.2, [Zhang & Pless 2004] further 
proposes a global optimization strategy which optimizes not only the {Rcs, Tcs} but also 
the {A, Rp(i)c, Tp(i)c} (A is the camera intrinsic matrix) in a joint objective function: 
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where m(i,k) is the extracted image coordinates of the k-th control point for the PCS(i); 
m(A,Rp(i)c,Tp(i)c,Mp(i,k)) is its projected image coordinates. This global optimization 
strategy can be used to refine the calibration results as presented in [Zhang & Pless 
2004]; it can be incorporated into the basic version of the comprehensive extrinsic 
calibration method to refine the estimates of all the spatial relationships among the CCS, 
the SCS, the GCS, and the VCS. Therefore, an improved version of the comprehensive 
extrinsic calibration method is formed, which is called the improved version I in this 
dissertation. 
On one hand, the global optimization strategy in [Zhang & Pless 2004] refines the 
estimates of {A, Rp(i)c, Tp(i)c}; on the other hand, it over-adjusts the estimates slightly to 
fit them to the sensor measurements that are also affected by noises. To make the global 
optimization strategy more reasonable, the ground plane constraint introduced in Part 
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II in Section 5.6.2 is proposed to be taken into account as a term of the objective 
function, i.e. the last term of F3, which stands for the summed square of distances of all 
the Op(i) and Op(i)+l·Xp(i) to the ground plane, as follows: 
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During the optimization, the initial value of the NGc is computed according to the initial 
estimates of {A, Rp(i)c, Tp(i)c}, using the method described in section 3.2. The 
Levenberg-Marquardt method [More 1977] is used as the optimization technique for all 
above optimization processes. The α is a scalar weight which normalizes the relative 
contribution of the laser error term and the camera error term [Zhang & Pless 2004]. 
The β is a scalar weight which in practice can be set to a comparatively large value; in 
our implementation, it is set to be 100. This proposed optimization strategy with the 
ground plane constraint is incorporated into the basic version of the comprehensive 
extrinsic calibration method, thus forming another improved version of the method 
which is called the improved version II in this dissertation. 

5.7 Summary 
We have specified the front-following vehicles scenario to which the proposed idea of 
cooperative augmented reality is applied. We have reviewed the pinhole camera model 
and described how to establish spatial relationship between two views (easily 
extendable to multi-views case) according to perspective geometry. We have described 
several coordinates systems i.e. the camera coordinates system, the laser scanner 
coordinates system, the ground coordinates system, and the vehicle coordinates system 
that are concerned in an intelligent vehicle; we have introduced a technique of utilizing 
a 2D laser scanner to assist a mono-camera in estimating the visual perception depth 
approximately. We have presented how to map the visual perception of a vehicle onto 
that of another vehicle, abiding by the multi-views perspective geometry described. We 



 132

have also introduced a new extrinsic calibration method for a camera and a 2D laser 
scanner, which can reveal all the spatial relationships among the camera coordinates 
system, the laser scanner coordinates system, the ground coordinates system, and the 
vehicle coordinates system, based only on the popular chessboard calibration practice 
with few extra measurements. 
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Résumé 
 
Nous avons présenté les conditions expérimentales et les résultats expérimentaux 
concernant la localisation coopérative, la cartographie locale coopérative et la réalité 
augmentée coopérative. Nous avons présenté les résultats d'une étude comparative 
fondée sur la simulation qui démontre l'avantage de l'architecture de localisation 
coopérative proposée utilisant le filtre SCIF (l’approche SCIFCL), notamment pour les 
véhicules intelligents avec des capacités de positionnement absolu hétérogènes. Un 
avantage important de la méthode SCIFCL est qu'elle assure une localisation améliorée 
naturellement répartie au sein du réseau de véhicules, tout en gardant une consistance 
raisonnable pour l'estimation de l'état de chaque véhicule. Nous avons également 
présenté les résultats de tests réels sur la localisation coopérative, qui conduisent à des 
conclusions similaires à l’étude comparative fondée sur la simulation. Nous avons 
démontré les performances de la méthode de fusion de grilles occupations, fondés sur 
des tests effectués avec des données réelles. En dépit d'une erreur initiale 
intentionnellement exagérée, les cartes locales construites par différents véhicules 
peuvent toujours être agrégées correctement en utilisant la méthode proposée. D'ailleurs, 
la méthode de fusion des grilles d’occupation a le potentiel de trouver une solution pour 
le problème dit de « kidnapping ». Nous avons démontré les performances de la 
méthode baptisée comme « réalité augmentée coopérative », qui réalise un effet vif de 
‘voir’ à travers le véhicule leader pour le véhicule suiveur dans le scénario de véhicules 
« leader-suiveur ». 
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6.1 Introduction 
In this chapter, we describe concrete implementation and integration of the proposed 
methods on our experimental vehicle platforms and demonstrate the experimental 
results concerning cooperative localization, cooperative local mapping and moving 
objects detection, and cooperative augmented reality. 

6.2 Cooperative Localization using Split Covariance 
Intersection Filter 

6.2.1 Simulation Based Comparative Study 
We carried out simulation based experiments on the proposed architecture of 
cooperative localization using split covariance intersection filter. Simulation was chosen 
for the tests mainly for two reasons: First, in simulation, we can examine the pure 
performance of a cooperative localization architecture, which is exempted from the 
influences of ad hoc implementation factors. Second, in simulation, we can easily tune 
the tests conditions, some of which are not easy to be satisfied in real-data tests. For 
example, we can set the number of vehicles to be as many as we like. It is true that the 
gap between the simulation performance and the performance in reality does always 
exist, yet simulation can demonstrate the reasonableness and potential of a method and 
serve as a guide for real implementation. 
As the experiments are carried out in simulation, a comparative study could be more 
meaningful than only demonstrating the performance of the proposed method. 
Therefore, the proposed cooperative localization method and several other methods are 
executed simultaneously on the same synthetic data and their respective performances 
are compared. The methods under tests are as follows:  
 
Single Vehicle Localization Method [Rezaei & Sengupta 2007] (SL): 
Each ego-vehicle performs localization using only its own sensor data and using the 
EKF for data fusion. More specifically, at each period, the ego-vehicle evolves its state 
estimate using its motion measurements; when the ego-vehicle has absolute positioning 
measurement of its own, it updates its state estimate according to the EKF. 
 
Naïve Cooperative Localization Method (NCL): 
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Each ego-vehicle performs single vehicle localization as described above; besides, 
when the ego-vehicle receives the data from a neighboring vehicle, it treats the received 
data as new independent information and it updates its state estimate also using the EKF. 
 
State Exchange based Cooperative Localization Method [Karam et al. 2006b] 
(SECL): 
Each ego-vehicle maintains two state estimates. The first estimate is maintained as in 
single vehicle localization. When the ego-vehicle receives the data from neighboring 
vehicles, it forms the second estimate by using the EKF to fuse its first estimate and the 
received data. The second estimate (i.e. the fusion result of the data of the ego-vehicle 
and other vehicles) will neither be further used in the localization process of the ego-
vehicle nor shared with other vehicles. 
 
Cooperative Localization Method using the Split Covariance Intersection Filter 
(SCIFCL): 
The proposed cooperative localization method as described in Section 3.4.  
 

6.2.2 Simulation Scenario 
A main scenario for comparative study is designed based on abstraction of real traffic 
scenarios and is illustrated in Figure 6.1: a chain of vehicles (for example, 8 vehicles) 
move on the same road in the same direction. Each vehicle is only able to observe its 
immediate neighbouring vehicles (as illustrated by the two-direction arrows), i.e. its 
immediate front vehicle and its immediate following vehicle. 
 

 
Figure 6.1 Simulation scenario: a chain of vehicles 
 
The simulation conditions have been set according to the availability of the 
functionalities specified in Section 3.3 and can be changed. Experiments have been 
carried out under different simulation conditions; the condition which mainly affects the 
performance of each method is the absolute positioning error level. Therefore, without 
loss of generality, we tested the performance of the methods under different absolute 
positioning error level while fixing other simulation conditions. 
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The different absolute positioning error levels used for tests will be specified 
respectively in later sub-sections. Concerning other simulation conditions, we set the 
number of vehicles to be 8; the interval distance between neighboring vehicles to be 20 
meters; the velocity of each vehicle to be 50 km/sec; the motion measurement standard 
errors to be 0.1 m/sec in velocity and 0.005 rad/sec in yawrate; the absolute positioning 
measurement period to be 1 second; the system period to be 0.1 second; the relative 
positioning standard errors to be 0.1 meter in relative position and 0.005 rad in relative 
orientation. We temporarily neglect in simulation the issue of communication delay, 
considering that the communication delay is usually short (no more than dozens of 
milliseconds) and that the errors caused by communication delay can be compensated 
by motion data as described in Section 3.4.2.  

6.2.3 Homogeneous Systems: All Vehicles with the Same Absolute 
Positioning Ability 

In this experiment, we let all the vehicles have the same absolute positioning ability; the 
absolute positioning standard error for each vehicle is set to be 5 meters. The simulation 
is carried out in the following way: at the first stage, each vehicle only uses the SL 
method until its own state estimate converges; then at the second stage, the SL method, 
the NCL method, the SECL method and the SCIFCL method are executed 
simultaneously and vehicle localization errors associated respectively with all these 
methods are collected for comparison. 
The vehicle localization errors of one round of test are demonstrated in Figure 6.2 as an 
example. There are several sub-figures; a sub-figure displays the localization errors of a 
vehicle using the different localization methods in comparison. The localization errors 
associated with these methods are distinguished by different types of line with different 
colours. The vertical coordinates indicates the position error and the horizontal 
coordinates indicates the time sequence. As we can see, the estimate obtained by the 
NCL method severely diverges, which shows that careless handling of the inter-
estimates correlation in cooperative localization will easily incur the over-convergence 
problem. 
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Figure 6.2 Performance of the SL method, the NCL method, the SECL method and the SCIFCL 
method (homogeneous absolute positioning ability) 
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On the other hand, both the SECL method and the SCIFCL method achieve better 
performance (in terms of localization accuracy) than the SL method on the whole, 
which shows that cooperative localization methods, if well designed, can considerably 
improve the performance of vehicle localization. 
The result shown in Figure 6.2 gives an intuitive comparison among the performance of 
the four methods. Furthermore, a large number of tests (totally fifty rounds of test) have 
been carried out to have a quantitative comparison among these methods. In every 
round of test, the RMS (Root Mean Square) of the position errors of all the vehicles, 
associated with each of the SL method, the SECL method and the SCIFCL method (the 
NCL method is excluded for comparison because it usually leads to severely diverged 
result), is computed. The results are demonstrated in Figure 6.3, where the vertical 
coordinates indicates the computed RMS and the horizontal coordinates indicates the 
indices of the round of test. 
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Figure 6.3 RMS of the localization error associated with the SL method, the SECL method and the 
SCIFCL method (homogeneous absolute positioning ability) 
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As we can see in Figure 6.3, the SECL method and the SCIFCL method always 
outperform the SL method, which shows the advantage of cooperative localization over 
single vehicle localization. The SCIFCL method also outperforms slightly the SECL 
method (the RMS errors of the 50 rounds of test for the SCIFCL and SECL method are 
respectively 0.71 meter and 0.92 meter).  

6.2.4 Heterogeneous Systems: One Vehicle with High-Accuracy 
Absolute Positioning Ability 

In this experiment, we let all the vehicles have the same low-accuracy absolute 
positioning ability, except the first vehicle (the left-most vehicle in Figure 6.1) which 
has high-accuracy absolute position ability. More specifically, the absolute position 
standard error for the first vehicle is set to be 0.1 meter, whereas that for other vehicles 
(the second vehicle to the eighth vehicle) is set to be 15 meters. The simulation is 
carried out in the same way as in the last experiment for Homogeneous Systems.  
The vehicle localization errors of one round of test are demonstrated in Figure 6.4 as an 
example. As in Figure 6.2, each sub-figure displays the localization errors associated 
with one vehicle; the vertical coordinates indicates the position error and the horizontal 
coordinates indicates the time sequence. The estimate obtained by the NCL method 
severely diverges; especially, we can pay attention to the first vehicle. In spite of the 
high-accuracy absolute positioning measurements the first vehicle has, yet its state 
estimate diverges far and far away from the ground-truth.  
The SECL method still achieves better performance than the SL method on the whole. 
For the second vehicle, its localization result is largely improved by the high-accuracy 
localization result of the first vehicle through cooperative localization. However, in the 
SECL method, an estimate obtained by fusing the data of different vehicles is not 
allowed to be further used, which limits the improvements that the SECL method can 
bring to the localization of the third to the eighth vehicles.  
The performance of the SCIFCL method is distinguished compared to that of the SECL 
method and the SL method; the localization results of all the vehicles are largely 
improved, especially for the third to the eighth vehicles. The reason can be understood 
as follows: through cooperative localization using the SCIFCL method, the high-
accuracy localization result of the first vehicle can improve the localization result of the 
second vehicle; the improved localization result of the second vehicle can further 
improve the localization result of the third vehicle and so on. This is like the “good” 
localization result originated from the first vehicle can be propagated to the second 
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vehicle, then to the third vehicle, then to the next vehicle until the eighth vehicle. 
Although the third to the eighth vehicles are not in the immediate neighborhood of the 
first vehicle, they can still indirectly benefit from the “good” data of the first vehicle.  
It is worthy reminding that NO monitoring and controlling of data flow is performed in 
the SCIFCL method. We do not deliberately control the data to flow successively from 
the first vehicle to the eighth vehicle; the localization results of two neighbouring 
vehicles are mutually influencing. The SCIFCL method enables good localization 
results to be naturally spread within a vehicle network in connection while always 
keeping a reasonable confidence for the state estimate of each vehicle. 
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Figure 6.4 Performance of the SL method, the NCL method, the SECL method and the SCIFCL 
method (heterogeneous absolute positioning ability) 
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Fifty rounds of tests have been carried out to have a quantitative comparison among the 
SL method, the SECL method and the SCIFCL method. As in the last experiment for 
Homogeneous Systems, in every round of test, the vehicles position error RMS of each 
method is computed. The results are demonstrated in Figure 6.5, where the vertical 
coordinates indicates the computed RMS and the horizontal coordinates indicates the 
indices of the round of test. 
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Figure 6.5 RMS of the localization error associated with the SL method, the SECL method and the 
SCIFCL method (heterogeneous absolute positioning ability) 
 
As we can see in Figure 6.5, the SCIFCL method always yields apparent performance 
improvement over the SL method and the SECL method, which demonstrates the 
effectiveness and the advantage of the proposed cooperative localization architecture 
using split covariance intersection filter.  
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6.2.5 Discussion 
Two kinds of experiments have been described in previous sub-sections. The 
experiment for homogeneous systems is intended to demonstrate the statistical 
advantage of cooperative localization using the SCIFCL method. In reality, each vehicle 
usually has few neighboring vehicles to cooperate with (for example, just the front one 
and the following one); as a consequence, this statistical advantage might be quite 
limited for intelligent vehicles with homogeneous absolute positioning ability in 
practical applications.  
On the other hand, cooperative localization is more valuable and practical for intelligent 
vehicles with heterogeneous absolute positioning ability, as demonstrated in the 
experiment for heterogeneous systems. A prominent advantage of the SCIFCL method 
is that it enables good localization results to be naturally spread within a vehicle 
network in connection while always keeping a reasonable confidence for the state 
estimate of each vehicle. 
The significance of cooperative localization demonstrated by the experiment for 
heterogeneous systems can be interpreted as follows: Suppose there are several vehicles 
in neighborhood; each vehicle might randomly loose their accurate absolute positioning 
ability. During cooperative localization, if only one vehicle can possess accurate 
absolute positioning ability, then other vehicles can also obtain rather accurate 
localization results. From statistical viewpoint, at a certain time, although some vehicles 
might temporarily loose their accurate absolute positioning ability, it is very 
UNLIKELY that all the vehicles loose their accurate absolute positioning ability. We 
can do a simple statistical calculation: Suppose there are Nv=8 vehicles and each vehicle 
has accurate absolute positioning ability during only half time (psingle=50%), then the 
percentage of time when all these vehicles can maintain rather accurate localization 
results would be as high as: pgroup=1-(1-psingle)Nv=99.6%, i.e. almost all the time.  

6.3 Field Tests on Cooperative Localization 

6.3.1 Experimental Conditions 
Real data were logged in INRIA campus (as shown in Figure 6.6), based on two CyCab 
vehicle platforms developed by INRIA-IMARA team. Each CyCab vehicle is equipped 
with a RTK-GPS, an IBEO laser scanner, and odometer sensors (including steering 
encoder). A RTK-GPS can achieve centimeter-level positioning accuracy. The vehicle 
trajectory registered by a RTK-GPS (interpolated with corrected motion data) is used as 
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the ground-truth for results comparison; an example is illustrated by the red line in 
Figure 6.6. The time of the two vehicle systems are related to the GPS universal time. 
Real data experiments were carried out on the cooperative localization methods (the SL 
method, the NCL method, the SECL method and the proposed SCIFCL method), 
similar to the simulation experiments demonstrated in Section 6.2. In the real data tests, 
the RTK-GPS outputs were deliberately degraded with random errors and were used as 
the absolute positioning measurements. The motion data (speed and yawrate) were 
provided (or indirectly computed) by the odometers and were corrected by laser scanner 
based local SLAM. The vehicle-to-vehicle relative poses (relative positioning) were 
estimated using the method described in Section 3.5. As in simulation experiments, we 
have also carried out two sets of experiments: one for homogeneous systems, the other 
for heterogeneous systems.  
 

 
Figure 6.6 Experimentation field and the ground-truth of one vehicle trajectory 
 

6.3.2 Homogeneous Systems: All Vehicles with the Same Absolute 
Positioning Ability 

As in the simulation experiments for homogeneous systems (Section 6.2.3), we let all 
the vehicles have the same absolute positioning ability; the standard error used to 
deliberately degrade the RTK-GPS outputs is set to be 5 meters. The experiments were 
carried out in the same way as in the simulation experiments, i.e. the SL method, the 
NCL method, the SECL method and the SCIFCL method are executed simultaneously 
on the same data and vehicle position errors associated respectively with all these 
methods are collected for comparison. 
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The vehicle position errors of one round of test are demonstrated in Figure 6.7. We can 
see that the estimate obtained by the NCL method severely diverges, same to the result 
in simulation tests.  
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Figure 6.7 Performance of the SL method, the NCL method, the SECL method and the SCIFCL 
method (homogeneous absolute positioning ability) 
 
Fifty rounds of tests have been carried out to have a quantitative comparison among the 
SL method, the SECL method and the SCIFCL method. In every round of test, the 
vehicles position error RMS of each method is computed. The results are demonstrated 
in Figure 6.8, where the vertical coordinates indicates the computed RMS and the 
horizontal coordinates indicates the indices of the round of test. As we can see, there is 
moderate statistical advantage of cooperative localization over single vehicle 
localization; the limited statistical advantage is due to the few vehicle number (only 
two).  
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Figure 6.8 RMS of the localization error associated with the SL method, the SECL method and the 
SCIFCL method (homogeneous absolute positioning ability) 
 
Certain special cases can highlight the advantage of cooperative localization; For 
example, when the bias errors (see the discussion in this sub-section later) of different 
GPS happen to counteract each other. We have carried out a test to demonstrate the 
apparent advantage of cooperative localization in such kind of special case. We 
degraded the GPS output of one vehicle with an extra bias error of (7, -8) meters (in the 
vehicle moving plane); we degraded that of the other vehicle with an extra bias error of 
(-6, 9) meters; the localization results of one round of test is illustrated in Figure 6.9. 
For the first vehicle, the root mean square (RMS) of its self-localization error is 10.24m 
and the RMS of its cooperative localization error is 2.98m. For vehicle 2, the RMS of 
its self-localization error is 10.64m and the RMS of its cooperative localization error is 
2.93m. In such kind of special case, much better localization results are achieved via 
cooperative localization. 
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Figure 6.9 Localization results at the existence of counteracting GPS bias errors 
 

6.3.3 Heterogeneous Systems: One Vehicle with High-Accuracy 
Absolute Positioning Ability 

As in the simulation experiments for heterogeneous systems (Section 6.2.4), we let one 
vehicle has comparatively high-accuracy absolute positioning ability; the standard error 
used to degrade its GPS output is set to be only 1.0 meter. The standard error used to 
degrade the GPS output of the other vehicle is set to be 15 meters. The experiments 
were carried out in the same way as for previous experiments demonstrated.   
The vehicle position errors of one round of test are demonstrated in Figure 6.10; The 
quantitative results of fifty rounds of tests are demonstrated in Figure 6.11. Thanks to 
cooperative localization which enables the second vehicle to take advantage of the data 
of the first vehicle, the localization errors of the second vehicle are largely reduced. 
Since we only had two vehicles for experimentation, we could not arrange certain 
experimental scenarios where some vehicles can not directly cooperate with the vehicle 
with better absolute positioning ability. Therefore, we can not demonstrate the apparent 
advantage of the proposed SCIFCL method over the SECL method, as demonstrated in 
the simulation experiments for heterogeneous systems (Section 6.2.4).  
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Figure 6.10 Performance of the SL method, the NCL method, the SECL method and the SCIFCL 
method (heterogeneous absolute positioning ability) 
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Figure 6.11 RMS of the localization error associated with the SL method, the SECL method and 
the SCIFCL method (heterogeneous absolute positioning ability) 
 
When GPS bias errors exist, the advantage of cooperative localization for 
heterogeneous systems is also apparent. We degraded the GPS output of one vehicle 
with Gaussian noise of standard error 7 meters and an extra bias error of (-6, 9) meters. 
The standard error used to degrade the GPS output of the other vehicle is still set to be 
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only 1.0 meter. The estimated vehicle trajectories using different methods are illustrated 
in Figure 6.12. As we can see, the estimated vehicle trajectory (the second vehicle) 
using the SCIFCL method is much closer to the ground-truth. 
 

Ground-truth
SL
SCIFCL

Ground-truth
SL
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Figure 6.12 Estimated vehicle trajectories using the CL method and the SCIFCL method at the 
existence of GPS bias errors: (top) the first vehicle, with better absolute positioning ability; (bottom) 
the second vehicle, with low-accuracy absolute positioning accuracy 
 

6.3.4 Discussion 
According to some research works [Laneurit et al. 2005], it seems that GPS errors can 
be modeled by a white Gaussian noise combined with a slowly-changing bias vector. 
Since in above experiments (synthetic data or real data), the absolute positioning 
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measurement error is assumed to follow zero-mean Gaussian distribution, a question 
arises naturally: what is the performance of the proposed cooperative localization 
method? 
In fact, when GPS accuracy is low, the GPS errors might had better be modeled as a 
combination of a slowly-changing bias vector and a white noise as in [Laneurit et al. 
2005]. On the other hand, for high-accuracy GPS (with sub-meter level precision), 
according to our experience, the GPS error can be fairly modeled by a zero-mean 
Gaussian. Therefore, the proposed cooperative localization method would be expected 
to bring benefits for multiple vehicles at least one of which has rather accurate absolute 
positioning ability, as demonstrated in the experiments for heterogeneous systems. As 
we have discussed in Section 6.2.5, cooperative localization is more valuable and 
practical for intelligent vehicles with heterogeneous absolute positioning ability. 

6.4 Cooperative Local Mapping and Moving Objects 
Detection 

6.4.1 Experimental Conditions 
Real data experiments were carried out in INRIA campus, based on two CyCab vehicle 
platforms developed by INRIA-IMARA team. Each CyCab vehicle is equipped with a 
RTK-GPS, an IBEO laser scanner, and odometer sensors (including steering encoder). 
A RTK-GPS can achieve centimeter-level positioning accuracy; however, we do not 
assume in our method that an intelligent vehicle should possess such high-quality 
configuration. In reality, an intelligent vehicle might be equipped not with a RTK-GPS 
but with a normal low-cost GPS, out of economical considerations. Even the availability 
of a RTK-GPS can not always guarantee centimeter-level positioning accuracy; the 
RTK-GPS positioning accuracy might be degraded to ten meters level due to signal 
blocking. Therefore, in order to simulate intelligent vehicles with low-cost GPS, we 
deliberately degraded the GPS outputs of both vehicles with random errors. The time of 
the two vehicle systems are related to the GPS universal time (a low-cost GPS can also 
obtain accurate GPS universal time). 
More specifically, the random error used to degrade a RTK-GPS is comprised of a bias 
error of 10 meters and a white noise of standard error 7 meters; the bias error vector is 
initialized randomly and assumed to be temporarily constant for each vehicle in a round 
of test (Note: according to some research works [Laneurit et al. 2005], GPS errors could 
be modeled by a combination of a white Gaussian noise and a slowly-changing bias 
vector). 



 152

6.4.2 Occupancy Grid Maps Merging: Ground-Truth 
Both CyCab vehicles perform local SLAM simultaneously; at each time, a pair of local 
occupancy grid maps from the two vehicles can be obtained—For maps merging itself, 
the generation of the two local maps do not need to be well synchronized or time-
stamped accurately, because a map reference (at any time, build by any vehicle) is 
always fixed with the environment. This is different from vehicle references which 
might move and whose motion should be well time-stamped—for each pair of local 
occupancy grid maps, we do not know the ground-truth of their correct alignment. 
Although we can measure the ground-truth of vehicles positions using RTK-GPS, we 
do not know the ground-truth of the relative pose between each vehicle and its local 
environment. The relative pose between the two local maps A and B can only be 
inferred indirectly (the meaning of the denotations is referred to Section 3.5): 
 

)( LBGPS)-vBA(RTKLAGPS)-BA(RTK pppp inv⊕⊕=  (6-1) 

 
The pvBA(RTK-GPS) can be computed from the RTK-GPS based estimates; the pLA and pLB 
can only be obtained from the local SLAM results. The estimated pvBA(RTK-GPS), pLA and 
pLB still have certain level of errors, especially the orientation error. After the 
compounding operation in (6-1), the errors in them will be propagated and amplified. 
As a result, if we align the two local maps using the pBA(RTK-GPS) computed in (6-1), 
there will be slight inconsistency between the aligned maps, as illustrated in the bottom-
right sub-figure in Figure 6.13. 
In order to determine the correct alignment (the ground-truth), we carry out a dense 
searching in a small range around of this initial alignment pBA(RTK-GPS) and choose the 
one with highest fitness value as the ground-truth, the merging result using the correct 
alignment is demonstrated in the top-right sub-figure in Figure 6.13.  
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Figure 6.13 Ground-truth of local maps alignment: (Left) the two local occupancy grid maps; (Top-
Right) the ground-truth; (Bottom-Right) Slight inconsistency 
 

6.4.3 Occupancy Grid Maps Merging: Experiment I 
The occupancy grid maps merging method introduced in Section 4.3 is tested on totally 
1155 pairs of local occupancy grid maps: for each pair, we randomly generated an 
initial maps alignment in a deliberately exaggerated error range around the ground-truth; 
the error range is +30 meters in position (both horizontally and vertically) and +30 
degrees in orientation (see Section 4.3.3); then we used the proposed occupancy grid 
maps merging method to merge the pair of local maps.  
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Figure 6.14 Occupancy grid maps merging effect 
 

 
Figure 6.15 Occupancy grid maps merging effect 
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Figure 6.16 Occupancy grid maps merging effect 
 

 
Figure 6.17 Occupancy grid maps merging effect 
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Figure 6.18 Occupancy grid maps merging effect 
 

 
Figure 6.19 Occupancy grid maps merging effect 
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Figure 6.20 Occupancy grid maps merging effect 
 

 
Figure 6.21 Occupancy grid maps merging effect 
 



 158

 
Figure 6.22 Occupancy grid maps merging effect 
 

 
Figure 6.23 Occupancy grid maps merging effect 
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The genetic evolution based optimization introduced in Section 4.3.3 is executed until 
certain convergence criterion is satisfied, i.e. the optimization output is within a certain 
error range around the ground-truth. The error range is set to be 20× 20 cm2 (the 
occupancy grid cell size) in position and half a degree in orientation. The population 
size in the genetic algorithm is controlled at a level such that one round of evolution can 
be performed within one system period (0.1 second); in our implementation, it is set to 
be 1000.  
Some examples of occupancy grid maps merging effect are demonstrated in Figures 
from Figure 6.14 to Figure 6.23. In each figure, the left two sub-figures display a pair of 
local occupancy grid maps built by the two CyCab vehicles; the bottom-right sub-figure 
displays the erroneous initial maps alignment; the top-right sub-figure displays the 
correct alignment after they are merged.  
For the test on each pair of maps, we compute the convergence evolution number, i.e. 
the number of genetic evolutions needed for the optimization to converge. The 
histogram of the convergence evolution number for all the pairs under test is 
demonstrated in Figure 6.24. As we can see, the optimization process normally 
converges within ten times of evolution. 
The average convergence evolution number is 5.46. We can make a rough analysis for 
the computational complexity of the genetic evolution based optimization method and 
that of an exhaustive searching based optimization method. We treat the computation of 
the fitness value of one individual as one operation. Each round of genetic evolution 
takes about 1000~2000 operations; let it be 1500 operations. The average number of 
operations needed for optimization convergence is about 5.46× 1500≈8000. For the 
exhaustive searching, in order to guarantee a searching accuracy of 20× 20 cm2 in 
position and 0.5 degree in orientation within an initial error range of 30× 30 m2 in 
position and 30 degrees in orientation, we averagely need (30×30×30)/(0.2×0.2×0.5) 
=1350000 operations. Therefore, the genetic evolution based optimization is more 
efficient than the exhaustive searching based optimization by a factor of 
1350000/8000=168.  
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Figure 6.24 Histogram of the convergence evolution number 
 

6.4.4 Occupancy Grid Maps Merging: Experiment II 
In this experiment, we demonstrate how the proposed occupancy grid maps merging 
method can recover the merging result from a kidnapping situation. Given a pair of 
local occupancy grid maps to-be-merged, as illustrated in Figure 6.25; first, they are 
merged using the proposed occupancy grid maps merging method. The process of 
genetic evolution is illustrated in Figure 6.26; in each sub-figure, the black points 
represent the positions of the individuals, each of which describes a tentative alignment 
of the two maps. The maps are aligned according to the individual with highest fitness 
value. 
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Figure 6.25 The pair of local occupancy grid maps to-be-merged 
 
At the beginning, as illustrated by the Figure 6.26(top-left), a population of individuals 
was initialized randomly in the error range; the initial maps alignment can be rather 
erroneous. The Figure 6.26(top-right) and Figure 6.26(bottom-left) display the evolution 
results before convergence. Finally, after seven rounds of evolution, the correct 
alignment (the optimal individual) was found, as shown in Figure 6.26(bottom-right); 
the population was more concentrated around the correct alignment, yet diversity of the 
population was still maintained. 
Then we deliberately changed the optimal individual back to be the initial erroneous 
maps alignment and also changed each of other individuals by the difference between 
the initial maps alignment and the optimal individual; we did not provide any 
information about this change. This is like that the entire population were kidnapped 
from the correct place to a wrong place, without being informed how they had been 
displaced or even whether they had been displaced; see the change from Figure 
6.26(bottom-right) to Figure 6.27(top-left). 
For this population kidnapped, no special procedure was carried out; the genetic 
evolution process continued in the same way as if no kidnapping had happened; the 
process is demonstrated in Figure 6.27. As we can see, after several rounds (9 in this 
case) of evolution, the population recovered from the influence of the kidnapping event 
and evolved to the correct place, as illustrated in Figure 6.27(bottom-right). 
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Figure 6.26 Process of genetic evolution 
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Figure 6.27 Re-convergence (or recovering) from kidnapping 
 
In reality, a kidnapping event hardly happens, yet this experiment demonstrates the 
potential of the proposed occupancy grid maps merging method to recover the merging 
result from unexpected misleading factors.  

6.4.5 Occupancy Grid Maps Merging: Experiment III 
In Section 4.3.2 we propose to use an objective function (4-14) (or (4-13)) for 
occupancy grid maps merging and extend it into a general formulism in the objective 
function (4-15) (the objective function (4-12) [Birk & Carpin 2006] is a special case of 
(4-15) under triplet discretization of the occupancy state space). Nevertheless, we prefer 
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adhering to (4-14) instead of (4-15), mainly for two reasons. First, we want to avoid any 
tuning of a heuristic parameter i.e. the clock. Second, our practices have shown that the 
objective function (4-15) with a clock not large enough might incur a wrong solution, 
whereas the objective function (4-14) or the objective function (4-15) with a large clock 
would always have a desirable performance. With a large clock, the distance-map based 
similarity term in (4-15) has trivial contribution and can be totally neglected for 
simplicity. Therefore, we do not need to maintain the complex formulism in (4-15) but 
just use (4-14), according to the spirit of Occam’s razor.  
In this sub-section, we use some examples of maps inherent inconsistency to show how 
the objective function (4-15) with a clock not large enough fails to generate a correct 
maps alignment. 
The first example is generated in simulation and illustrated in Figure 6.28; the top two 
sub-figures represent two local occupancy grid maps of the same environment. The 
correct maps alignment is indicated in the bottom-left sub-figure, which also shows the 
complete appearance of an object. As we can see, there is maps inherent inconsistency 
between the two local maps; they have a consistent vertical ‘T’ part, yet the horizontal 
line segment is pointing left in one map and pointing right in the other—We can 
imagine that the two local maps are built by two vehicles passing by the object from 
different sides.  
In the occupancy grid maps merging method introduced in Section 4.3, we only 
changed the objective function into (4-12) with clock being set to 10 (for expression 
simplicity, we only refer to (4-12) without always mentioning this value setting of clock); 
we kept other implementation conditions unchanged. After several rounds of genetic 
evolution, an optimal solution was found, as shown in the Figure 6.28 (bottom-right), 
which is not the correct maps alignment—In order to verify that this wrong optimal 
solution was not caused by the mal-functioning of the optimization technique, we 
manually set the maps alignment to be the ground-truth and computed its fitness value. 
In terms of (4-12), the fitness value of the correct maps alignment was indeed smaller 
than that of the wrong optimal solution—In contrast, the proposed occupancy grid maps 
merging method which adopts the objective function (4-14) succeeded in finding the 
correct maps alignment, as illustrated in Figure 6.28 (bottom-left). 
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Figure 6.28 Maps inherent inconsistency: synthetic data (top) two local maps; (bottom-left) correct 
maps alignment; (bottom-right) the wrong alignment  
 
Another example is from real-data and illustrated in Figure 6.29; the top two sub-figures 
represent two local occupancy grid maps. The objective function (4-12) was again used 
for the maps merging and a wrong optimal solution was found, as demonstrated in 
Figure 6.29 (bottom-right). In contrast, the proposed occupancy grid maps merging 
method which adopts the objective function (4-14) succeeded in finding the correct 
maps alignment, as demonstrated in Figure 6.29 (bottom-left). 
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Figure 6.29 Maps inherent inconsistency: real-data (top) two local maps; (bottom-left) correct maps 
alignment; (bottom-right) the wrong alignment 
 

6.4.6 Cooperative Moving Objects Detection 
The effect of cooperative moving objects detection is demonstrated in Figure 6.30. Each 
of the left two sub-figures shows the local occupancy grid map and detected moving 
objects of one single vehicle; the detected moving objects are marked by blue boxes. 
The merged occupancy grid map and moving objects are shown in bottom-right sub-
figure. Compared with the bottom-left sub-figure, the bottom-right sub-figure shows a 
more complete view for the vehicle.  
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Figure 6.30 Cooperative moving objects detection: (left) local maps and single vehicle moving 
objects detection; (top-right) local maps merging; (bottom-right) merged moving objects 
 

6.5 Cooperative Augmented Reality 
The experimental conditions are the same to those described in Section 6.4, i.e. real data 
experiments were carried out based on two CyCab vehicle platforms, each of which is 
equipped with a RTK-GPS, an IBEO laser scanner, and odometer sensors (including 
steering encoder). The RTK-GPS outputs are intentionally degraded with errors, in 
order to simulate the situation where only low-cost GPS (comparatively low accuracy) 
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is available. The time of the two vehicle systems are related to the GPS universal time 
(a low-cost GPS can also obtain accurate GPS universal time). 
In the experiments, one CyCab vehicle was in front and the other was behind, as in the 
front-following vehicles scenario described in Section 5.2. The sensor coordinates 
systems of each CyCab vehicle had been pre-calibrated off-line using the method 
introduced in Section 5.6. During vehicles cooperation, the following vehicle collected 
the perception of the front vehicle and used the proposed occupancy grid maps merging 
method to associate the perception of the front vehicle with its own perception. The 
method introduced in CHAPTER 5 is used to generate an augmented effect of ‘seeing’ 
the through front vehicle for the following vehicle. Some performance examples are 
demonstrated in Figure 2.15 and Figure 6.31 to Figure 6.34.  
Each of these examples shows the visual perception taken from the following vehicle in 
a scenario where the front vehicle occludes partial perception of the following vehicle; 
the occluded environment is displayed directly on the visual perception of the following 
vehicle, forming the effect of augmented reality. In spite of distortions at some local 
places, the effect of augmented reality in these synthetic visual perceptions is lifelike on 
the whole, as if we can really see through the front vehicle and have a direct and natural 
visual perception on the occluded environment. 
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Figure 6.31 Cooperative augmented reality effect: ‘see’ through front vehicle 
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Figure 6.32 Cooperative augmented reality effect: ‘see’ through front vehicle 
 



 171

 
Figure 6.33 Cooperative augmented reality effect: ‘see’ through front vehicle 
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Figure 6.34 Cooperative augmented reality effect: ‘see’ through front vehicle 
 

6.6 Summary 
We have presented the experimental conditions and experimental results concerning 
cooperative localization, cooperative local mapping and moving objects detection, and 
cooperative augmented reality. We have presented the results of a simulation based 
comparative study which demonstrates the advantage of the proposed cooperative 
localization architecture using split covariance intersection filter, especially for 
intelligent vehicles with heterogeneous absolute positioning ability. A prominent 
advantage of the SCIFCL method is that it enables good localization results to be 
naturally spread within a vehicle network in connection while always keeping a 
reasonable confidence for the state estimate of each vehicle. We have also presented the 
results of field tests (real-data) on cooperative localization, which lead to similar 
conclusions in the simulation based comparative study. We have demonstrated the 
performance of the proposed occupancy grid maps merging method based on real-data 
tests. In spite of an intentionally exaggerated initial error range, local occupancy grid 
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maps built by different vehicles can always be merged correctly using the proposed 
method; besides, the proposed occupancy grid maps merging method has the potential 
to recover the merging result from a kidnapping situation. We have demonstrated the 
performance of a proposed method coined as cooperative augmented reality, which 
realizes a vivid and lifelike effect of ‘seeing’ through the front vehicle for the following 
vehicle in a front-following vehicles scenario.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 174

 
 
 
 
 
 
 
 
 



 175

 

CHAPTER 7 Conclusion 
 

7.1 Dissertation Summary 
In the first chapter, we have specified the research theme of this dissertation, i.e. multi-
vehicles cooperative perception (or cooperative perception for short) applied in the 
context of intelligent vehicle systems; we have explained our research motivation with 
two typical traffic scenarios, yet the value of cooperative perception is not limited to 
them. The general methodology of the presented works in this dissertation is to realize 
multi-intelligent vehicles cooperative perception, which aims at providing better vehicle 
perception result compared with single vehicle perception (or non-cooperative 
perception). Instead of focusing our research works on the absolute performance of 
cooperative perception, we focus on the general mechanisms which enable the 
realization of cooperative localization and cooperative mapping (and moving objects 
detection), considering that localization and mapping are two underlying tasks for an 
intelligent vehicle system. We also exploit the possibility to realize certain augmented 
reality effect with the help of basic cooperative perception functionalities; we name this 
kind of practice as cooperative augmented reality. Naturally, the contributions of the 
presented works consist in three aspects: cooperative localization, cooperative local 
mapping and moving objects detection, and cooperative augmented reality.  
In CHAPTER 2, we have introduced several sorts of sensors, namely GPS, laser 
scanner, camera, and motion sensor, which have been commonly used for single 
intelligent vehicle operation; with these sensors, an intelligent vehicle can possess fairly 
complete perception ability towards itself and the environment. We have reviewed the 
Bayesian filter framework that has been commonly used for recursive state estimation; 
we have also reviewed several recursive estimation methods that are derived from the 
Bayesian filter framework based on different kinds of approximations. We have 
discussed in details the fundamental problems and the state-of-the-art methods 
concerned in cooperative localization, and cooperative local mapping and moving 
objects detection. Based on these discussions, we propose a general architecture of 
cooperative localization using split covariance intersection filter, an indirect vehicle-to-
vehicle relative pose estimation method, and a new method for occupancy grid maps 
merging to handle the fundamental problems in cooperative localization, and 
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cooperative local mapping and moving objects detection. We propose a brand new idea 
of cooperative augmented reality which utilizes cooperative perception results to realize 
a special augmented effect. 
In CHAPTER 3, we have provided a solution of multi-vehicles cooperative localization. 
We have reviewed the concept of estimate consistency and the split covariance 
intersection filter; we have presented several forms of this filter together with their 
derivations and an original proof for the fusion consistency of this filter. We have 
specified the compounding notation for coordinate transformation and explained some 
properties of this compounding notation. We have introduced several basic 
functionalities as the condition for realizing cooperative localization; these 
functionalities are abstracted from field practice based on their feasibility in reality. We 
have described a general architecture of cooperative localization using split covariance 
intersection filter; as the architecture is decentralized, we have described from the 
perspective of an intelligent vehicle how it can evolve its state estimate using its motion 
measurements, how it can update its state estimate using its own absolute positioning 
measurements, and how it can update its state estimate with the data shared by 
neighbouring vehicles. We have presented the indirect vehicle-to-vehicle relative pose 
estimation strategy. 
In CHAPTER 4, we have provided a solution of cooperative local mapping and moving 
objects detection for laser scanner based intelligent vehicles. We have reviewed the 
method of occupancy grid based single vehicle local SLAM, including how to use laser 
scanner based range measurements to incrementally update the occupancy grid map 
estimate according to the inverse measurement model and how to estimate current 
vehicle local state (pose) with last estimate of vehicle local state and occupancy grid 
map. We have explained the different roles of vehicle local state and vehicle global 
state; we have described how vehicle local state estimate in SLAM can be used to assist 
vehicle global state estimation. We have presented the framework for occupancy grid 
maps merging by generalizing its essential part into an optimization problem; we have 
proposed a new objective function that measures the consistency degree of maps 
alignment based on occupancy likelihood. We have adopted the spirit of genetic 
algorithm and designed a set of concrete procedures to search the optimal maps 
alignment. We have introduced the scheme of multi-vehicles cooperative moving 
objects detection based on occupancy grid maps merging; for a complete 
implementation, we have reviewed two basic moving objects detection methods, 
namely the consistency-based detection and the moving object map based detection. 
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In CHAPTER 5, we have extended the spirit of augmented reality to cooperative 
perception, forming the concept of cooperative augmented reality in the context of 
intelligent vehicle systems. We have specified the front-following vehicles scenario to 
which the proposed idea of cooperative augmented reality is applied. We have reviewed 
the pinhole camera model and described how to establish spatial relationship between 
two views (easily extendable to multi-views case) according to perspective geometry. 
We have described several coordinates systems i.e. the camera coordinates system, the 
laser scanner coordinates system, the ground coordinates system, and the vehicle 
coordinates system that are concerned in an intelligent vehicle; we have introduced a 
technique of utilizing a 2D laser scanner to assist a mono-camera in estimating the 
visual perception depth approximately. We have presented how to map the visual 
perception of a vehicle onto that of another vehicle, abiding by the multi-views 
perspective geometry described. We have also introduced a new extrinsic calibration 
method for a camera and a 2D laser scanner, which can reveal all the spatial 
relationships among the camera coordinates system, the laser scanner coordinates 
system, the ground coordinates system, and the vehicle coordinates system, based only 
on the popular chessboard calibration practice with few extra measurements. 
In CHAPTER 6, we have presented the experimental conditions and experimental 
results concerning cooperative localization, cooperative local mapping and moving 
objects detection, and cooperative augmented reality. We have presented the results of a 
simulation based comparative study which demonstrates the advantage of the proposed 
cooperative localization architecture using split covariance intersection filter (SCIFCL), 
especially for intelligent vehicles with heterogeneous absolute positioning ability. A 
prominent advantage of the SCIFCL method is that it enables good localization results 
to be naturally spread within a vehicle network in connection while always keeping a 
reasonable confidence for the state estimate of each vehicle. We have also presented the 
results of field tests (real-data) on cooperative localization, which lead to similar 
conclusions in the simulation based comparative study. We have demonstrated the 
performance of the proposed occupancy grid maps merging method based on real-data 
tests. In spite of an intentionally exaggerated initial error range, local occupancy grid 
maps built by different vehicles can always be merged correctly using the proposed 
method; besides, the proposed occupancy grid maps merging method has the potential 
to recover the merging result from a kidnapping situation. We have demonstrated the 
performance of a proposed method coined as cooperative augmented reality, which 
realizes a vivid and lifelike effect of ‘seeing’ through the front vehicle for the following 
vehicle in a front-following vehicles scenario. 
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To conclude in few words, we have proposed some cooperative perception methods 
which enable an intelligent vehicle to take advantage of the data from other vehicles, for 
the purpose of refining its global state estimate, the purpose of complementing its 
inference about the environment, and the purpose of generating vivid and lifelike 
visualization effect.  

7.2 Perspectives 
This dissertation has presented some works concerning cooperative perception and their 
applications in the context of outdoor intelligent vehicle systems. More works can 
further be done concerning this topic. Here, we discuss several valuable research 
directions for future extensions or improvements. 

7.2.1 Thorough Fusion of Environment State Estimates 
In current works, an intelligent vehicle always maintains an independent environment 
state estimate (mapping) and associate it with the independent environment state 
estimates of other vehicles; however, the merged environment state estimate which 
incorporates those of other vehicles is only used for current time and will not be used 
during following operation. In other words, the environment state estimates of other 
vehicles are not thoroughly fused into that of the ego vehicle. This practice is to 
guarantee the independence among the environment state estimates of different vehicles 
and further guarantee the consistency of fusion results. 
This is similar to the practice in [Karam et al. 2006b] which handles the estimation of 
vehicles states instead of environment states. In this dissertation, we have introduced a 
general architecture of cooperative localization using split covariance intersection filter, 
which is flexible to fuse various sources of data while always keeping the consistency 
of vehicle state estimate. Unfortunately, we can not adopt the split covariance 
intersection filter for environment states fusion in current works in a similar way. Why? 
First, a basic requirement for applying the split covariance intersection filter is the 
availability of posterior uncertainty. However, for each vehicle, we do not maintain 
posterior uncertainty for its environment state estimate; the local map estimated is only 
a map with maximum likelihood in certain recursive sense.  
Second, the environment state usually has huge dimensions. Direct application of the 
split covariance intersection filter on high dimensional environment state is 
computationally forbidding.  
Therefore, future research works are needed to find a methodology which enables a 
vehicle to thoroughly fuse the environment state estimates of other vehicles into its own.  
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7.2.2 General Architecture of C-SLAMMOT (Cooperative Simultaneous 
Localization and Mapping with Moving Objects Tracking) 

The techniques of moving objects detection and tracking are not exploited deeply in 
current works, partially because the local maps merging method (Cooperation) 
presented and the moving objects detection method adopted are rather independent of 
each other. In fact, even the relation between the SLAM (for one single vehicle) and the 
cooperation is also mutually independent: each vehicle always performs local SLAM 
independently; the local maps built by different vehicles are merged only instantly but 
not fused thoroughly (as explained in Section 7.2.1).  
As pointed out by Wang [Wang 2004], SLAM and MOT (moving objects tracking, 
including detection) are mutually beneficial and had better be handled together, forming 
the concept of SLAMMOT; this spirit was put forward in practice by Vu [Vu 2009]. 
Similarly, this spirit can be extended to multi-vehicles cooperation: SLAM and MOT, 
together with Cooperation, are also mutually beneficial.  
SLAM and MOT are beneficial to Cooperation: First, with better local maps, 
Cooperation would become more robust and accurate. Second, moving objects can be 
treated as special feature which might facilitate Cooperation.  
On the other hand, Cooperation is also beneficial to SLAM and MOT. With 
Cooperation, more complete map can be generated for an intelligent vehicle, which can 
make the SLAM more robust and accurate. With cooperation, occlusions which are 
undesirable factors for MOT can be largely reduced. 
Therefore, a direction is to put the processes of SLAM, MOT, and Cooperation into a 
general architecture, forming an integrated process of C-SLAMMOT. For distributed 
realization, this is not easy, yet worthy future research works. 
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APPENDIX 
 

I. Coordinate Transformation: Compounding Operation 
We follow the compounding notation in [Wang 2004]: 
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We can easily verify the associativity of the compounding notation i.e. 
 

321321 )()( TTTTTT ⊕⊕=⊕⊕  

 
We can also verify that 0 i.e. [0, 0, 0]T is the only identity element for the compounding 
operation, which satisfies 
 

0ITTI =⇔=⊕  
 
We can also verify that each non-identity element T has the only inverse element inv(T): 
 

)(TA0ATTA inv=⇔=⊕=⊕  
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The compounding notation is commonly used for coordinate transformation. For 
example, given a coordinates system parametrized as T in a global reference; then for 
an arbitrary point (or pose) p in T, its global representation is T⊕ p. 
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Perception Coopérative: Application au Contexte des Systèmes de 
Véhicules Intelligents à l'Extérieur 

RESUME : Le thème de recherche de cette thèse est la perception coopérative multi-véhicules  
appliquée au contexte des systèmes de véhicules intelligents. L’objectif général des travaux 
présentés dans cette thèse est de réaliser la perception coopérative de plusieurs véhicules (dite 
« perception coopérative »), visant ainsi à fournir des résultats de perception améliorés par 
rapport à la perception d’un seul véhicule (ou « perception non-coopérative »). Au lieu de 
concentrer nos recherches sur la performance absolue de la perception coopérative, nous nous 
concentrons sur les mécanismes généraux qui permettent la réalisation de la localisation 
coopérative et de la cartographie de l’environnement routier (y compris la détection des objets), 
considérant que la localisation et la cartographie sont les deux tâches les plus fondamentales 
pour un système de véhicule intelligent. Nous avons également exploité la possibilité d’explorer 
les techniques de la réalité augmentée, combinées aux fonctionnalités de perception 
coopérative. Nous baptisons alors cette approche « réalité augmentée coopérative ». Par 
conséquent, nous pouvons d’ores et déjà annoncer trois contributions des travaux présentés: la 
localisation coopérative, la cartographie locale coopérative, et la réalité augmentée coopérative. 

 

Mots clés : perception coopérative, fusion de données, véhicule intelligent, localisation, 
cartographie, détection 

 

Cooperative Perception: Application in the Context of Outdoor Intelligent Vehicle 
Systems 

ABSTRACT : The research theme of this dissertation is the multiple-vehicles cooperative 
perception (or cooperative perception) applied in the context of intelligent vehicle systems. The 
general methodology of the presented works in this dissertation is to realize multiple-intelligent 
vehicles cooperative perception, which aims at providing better vehicle perception result 
compared with single vehicle perception (or non-cooperative perception). Instead of focusing 
our research works on the absolute performance of cooperative perception, we focus on the 
general mechanisms which enable the realization of cooperative localization and cooperative 
mapping (and moving objects detection), considering that localization and mapping are two 
underlying tasks for an intelligent vehicle system. We also exploit the possibility to realize 
certain augmented reality effect with the help of basic cooperative perception functionalities; we 
name this kind of practice as cooperative augmented reality. Naturally, the contributions of the 
presented works consist in three aspects: cooperative localization, cooperative local mapping 
and moving objects detection, and cooperative augmented reality. 

 

Keywords : cooperative perception, data fusion, intelligent vehicle, localization, mapping, 
detection 
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