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 ITRS Road Map predicts that the number of cores in the same chip will increase 

following an exponential curve. Insuring the interconnections between the different cores in 

the same chip is a real challenge when the number of components is high. The use of the NoC 

(Network On Chip) is a suitable solution overcoming the limitations of the classical 

interconnects methodologies. The regular NoC topology is costly in term of area and power 

consumption that is why designing an optimized architecture is a major problematic in 

MPSOC design. Moreover, with the semi-conductor CMOS shrinking, the interconnect delay 

has overcome the gate delay. In fact there is a real need to find other methodologies to 

continue the evolution of the chip design. 3D IC is one of the promising solutions which can 

reduce the interconnect delay, minimize the area of the chip and allow the use of mixed 

technologies. With the shortage of real 3D IC MPSOC implementation, we propose in this 

thesis to study the 3D design methodologies on ASIC for MPSOC architectures based on 3D 

NoC. Even though the NoC was proven to be an efficient solution to deal with the 

interconnect problems between the different cores, only few works have validated the 

architectures based NoC by a real implementation on FPGA/ASIC. We consider that the 

validation of 3D NoC by synthesis, place and route workflow is an essential step which 

guarantees the good functionality of the architecture before moving to 3D technology. That is 

why we have validated our MPSOC based 16 PEs architecture with a butterfly NoC on 

different FPGAs platforms. 3D IC design is facing new challenges like TSV assignment, heat 

dissipation and partitioning problems. That is why, in order to generate an optimized 3D NoC 

for a specific application and subject to the 3D Tezzaron technology, we propose in this work 

a new 3D NoC synthesis methodology based on MOEA.  A real 3D IC design implementation 

of our tested and validated 3D MPSOC architecture was performed using the 3D IC Tezzaron 

technique. Our real case study represents a significant example proving that there is no actual 

3D tool taking in consideration all the 3D IC challenges like mapping and partitioning. 

   

Keywords: NOC, MPSOC, 3DIC, EDA tools, Validation/Verification   
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 La feuille de route d’ITRS prévoit que le nombre de processeurs dans la même puce va 

augmenter suivant une courbe exponentielle. Assurer la connexion entre les différents 

processeurs dans la même puce constitue un vrai défi quand le nombre des composants est 

important. L’utilisation d’un réseau sur puce est une solution efficace qui résout les problèmes 

des moyens classiques de connexion comme le bus et le point à point. Le réseau sur puce 

régulier coûte cher en termes de surface et d’énergie, c’est pourquoi la conception d’une 

architecture optimale représente une motivation majeure. En plus, avec la réduction de la 

taille des transistors, le temps de propagation dans les liens dépasse celui des portes logiques. 

En effet, il est indispensable de trouver de nouvelles techniques qui permettent de continuer le 

développement des circuits du semi conducteur. La conception 3D des circuits intégrés est 

une solution prometteuse qui peut réduire la longueur des liens, la surface de la puce et qui 

permet d’utiliser des technologies différentes dans la même architecture. Vu le manque 

d’implémentations réelles des architectures à base de multiprocesseurs avec la technique 3D, 

nous proposons dans cette thèse d’étudier les méthodologies de conception ASIC des 

architectures MPSOC à base du NoC 3D. Bien que les réseaux sur puce soient considérés 

comme une solution efficace pour le problème de connexions entre les processeurs, rares sont 

les travaux qui valident le NoC par une vraie implémentation sur FPGA/ASIC. Nous 

considérons que la validation d’un NoC par émulation nous permet de garantir la bonne 

fonctionnalité de notre architecture lors de l’implémentation en 3D. La technique de 

conception en 3D IC est confrontée à plusieurs problèmes comme le placement des 

connexions verticales, la dissipation de chaleur et le problème de partitionnement. Dans ce 

cadre, nous proposons dans cette thèse une nouvelle méthodologie de synthèse NoC 3D qui se 

base sur les algorithmes évolutionnaires. Nous avons implémenté une architecture MPSOC 

avec la technologie 3D de Tezzaron. Notre cas d’étude représente une architecture 

significative qui tient en considération les contraintes de la technologie 3D de Tezzaron.  

   

Mots clés :  NOC, MPSOC, 3DIC, EDA tools, Validation/Verification 
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List of Abbreviations 

•  MPSOC: Multi Processor System On Chip 
•  IC :   Integrated Circuit 
•  NOC : Network On Chip 
•  GA : Genetic Algorithm 
•  MOEA :  Multi Objective Evolutionary Algorithm 
•  LP : Linear Programming 
•  TSV : Through Silicon Via 
•  EDA : Electronic Design Automation 
•  IC :  Integrated Circuit 
•  ILP :  Integer Linear Programming 
•  MOGA :  Multi Objective Genetic Algorithm 
•  ID :  Individual 
•  FSL : Fast Simplex Link 
•  IP : Intellectual Property   
•  PE : Processing Element 
•  CMP : Chemical-Mechanical Polishing 
•  WNS : Worst Negative Slack 
•  WTW : Wafer To Wafer 
•  DTD :  Die To Die 
•  DTW : Die To Wafer 
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Introduction 
 

 ITRS road map has predicted that the number of cores in the same chip will increase 

following an exponential curve. This was the major motivation to create new techniques to 

solve the interconnection problem between high number of cores in the same MPSOC. The 

use of the Network On Chip represents an efficient solution to deal with classical interconnect 

methods limitations like the point to point and the shared bus. But with the evolution of the 

CMOS semi-conductor reaching the Nanometre scales, the interconnect delay is overcoming 

the gate delay which is illustrated in Figure  B��. The Interconnect delay is the new 

performance limitation of the chip.  The reduction of the interconnection length is the new 

challenge in the MPSOC design. 3D IC is emerging as a suitable solution to reduce the global 

interconnects delay thanks to the use of the vertical links.   

�

Figure  0.1. Global and local wire delay evolution [1] 

� Even though 3D IC design is not a new methodology, the number of works making 

real 3D ASIC implementation is too limited. The major problem of the 3D IC design is the 

shortage of 3D IC dedicated EDA tools. In fact, there is no complete industrial software 

allowing the implementation of all the steps of 3D workflow.���

 The objective of this work is to evaluate the different MPSOC design methodologies 

used in 3D IC design. We focus on the implementation of the NoC synthesis with 

heterogeneous architectures.  

 We propose in the first part of this work, to explore different MPSOC implementation 

methodologies. A design space exploration of the different configurations of the hardware 



A.M’zah      3D MPSOC 
  

17�
�

architectures will be performed in order to find the optimal one in term of cost and 

performance. The objective of this work is to validate the used MPSOC architectures before 

their implementation on 3D IC. 

 The main objective of this thesis is to propose a new 3D NoC synthesis methodology 

taking in consideration the 3D IC used technology. A real implementation with 3D ASIC 

design will be performed in order to show up the advantages of the 3D design compared to the 

obtained results in 2D.  

 The organization of this report is directly related to the scientific approach and 

methodology adopted during this PHD studies. In fact, the first step of this work which is the 

MPSOC state of the art represents an important introduction to the general research field. We 

can then propose an MPSOC design implementation of an interesting architecture when 

compared to the actual industrial and research achievements. Chapter two and three are 

performed in parallel in order to have a good 2D experimental knowledge and a rich 3D 

theoretical background which are necessary before the NoC synthesis section. As we believe 

that the 3D NoC synthesis problem has a very high complexity, we propose to start by 

exploiting our Lab experience in 2D NoC synthesis by proposing a new NoC synthesis model 

based on the Microelectronics characteristics. After having a first experience in the 2D NoC 

synthesis we can then move to the 3D NoC synthesis chapter with an efficient strategy. The 

last three chapters concern the 3D IC MPSOC state of the art, complexity and real 

implementation.           

 We present in chapter 1 of this thesis, the state of the art of the existing MPSOC real 

implementations listed in the literature. We also detail the different design methodologies 

with real implementations.  

 We introduce in chapter 2 the 2D design and implementation of our MPSOC 

architecture based on software processors and regular NoC. The execution result of a parallel 

image processing on FPGA will be reported. We will use the GA in order to explore and 

evaluate the performance of the different industrial tools. 

 Chapter 3 will be the subject of 3D semi conductor technology state of the art. We will 

detail the different 3D ASIC design methodologies. We will then discuss the different issues 

and challenges in 3D design.  
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 The NoC synthesis methodologies will be the subject of chapter 4. We will define the 

exact, the mixed and the heuristic methods already used in literature. Our NoC synthesis 2D 

solution will be presented as a case study of this chapter. 

 We will introduce in chapter 5 the different properties of the 3D Tezzaron technology. 

We will also detail the 3D ASIC methodologies presented in the literature. The sate of the art 

of the 3D NoC synthesis problem will be summarized. We will detail in this chapter our 3D 

NoC synthesis methodology based on the MOEA. 

 In chapter 6, we will study different MPSOC architectures based on heterogeneous 

components. We will then discuss the different methodologies to create MPSOC architectures 

using 3D Hardware Accelerator. 

 We will evaluate in chapter 7, the theoretical complexity and the experimental results 

of our parallel EDA of the 3D NoC synthesis problem. We will perform a design space 

exploration on the cadence tool to study the effect of the different properties on the synthesis, 

place and route results.  

 Chapter 8, will present the 3D ASIC design implementation of our MPSOC using the 

3D Tezzaron technology. The results of synthesis, place and route of our 3D architecture will 

be reported. 

The last part of this report will include the conclusion and our future work. 

 

PHD Plan and Scientific Approach Organization 
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1 MPSOC State of The Art 

 The use of a single processor is not any more possible in the industrial products like 

smart phones and medical devices needing high computational time and fast parallel 

programming. That is why; the use of Multi Processor System On Chip (MPSOC) is 

emerging. As a real example, we can notice that the MPSOC Cortex-A9 of ARM Company 

was included in many industrial chips like Nvidia's Tegra 2 and Samsung's Exynos 4210. 

1.1 Trends 
�

�

Figure  1.1 Design Complexity trend [2] 

The prevision of the International Technology Roadmap in Semi conductor (ITRS) 

was considered as a sort of science fiction in the beginning of the last decades but researchers 

have respected and sometime they have even exceeded this prevision. In fact, the evolution of 

the number of IPs in the same chip was supposed to double each about 18 months as 

presented in DEF����  ���. For this, the first alternative was scaling the technology but this 

methodology has almost reached its limitation face to the physical problems of semi 

conductor. In Figure  B��, we can see that the global wire delay is becoming more important 

than gates delay in Nanometre technologies. The global delay of the NoC is limited in this 

case not by the gate delay but by the global wires delay. The connectivity becomes a major 

problem when we increase the number of cores in the same chip. With the high complexity of 

the multiprocessors system on chip MPSOC, the need for scalable and efficient 

communication architectures to support inter-core data transfers has become paramount. 

Network-on-Chip (NoC) fabrics have been shown to provide superior communication 
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bandwidth, scalability, and modularity compared to traditional bus-based architectures (Figure 

 ��� and Figure  ���).  

� � � � � � � � � � �

� � �

Figure  1.2. Point to Point Architecture        Figure  1.3. Bus Architecture 

�� NoCs have gradually gained acceptance as the dominant interconnection paradigm for 

emerging CMP systems with tens to hundreds of cores. The interconnect challenge is one of 

the major problems in MPSOC architectures. Once solved with the NoC solution, a new 

limitation related to the interconnect length is now faced. In fact, the design of future MPSOC 

architectures especially with Nanometre technologies should minimize the interconnection 

length in order to increase the performance.   

.  A new solution is emerging to deal with this limitation which is the 3D ASIC design. 

In fact, with a 3D MPSOC, the global routing length can be shortening thanks to the use of 

the vertical connection called TSV. ITRS roadmap presents in the report published in 2011[3], 

the prediction of the evolution in the world of 3DIC which is presented in Table  ���. Referring 

to this table, the reduction of the TSV diameter and pitch will reach 50% between the years 

2012-2015. This can be a major reason to increase the use of the 3DIC in the future chips. 

Table  1.1. ITRS 3D Interconnect TSV Roadmap  

Global Level, WTW, DTW, or DTD 3D stacking 2009-2012 2012-2015 
Minimum TSV diameter 4-8 µm 2-4 µm 
Minimum TSV pitch 8-16 µm 4-8 µm 
Minimum TSV depth 20-50 µm 20-50 µm 
Maximum TSV aspect ratio 5:1-10-1 10:1-20:1 
Bonding overlay accuracy 1.0-1.5 µm 0.5-1.0 µm 
Minimum contact pitch(thermo compression) 10 µm 5µm 
Minimum contact pitch ( solder or SLID) 20 µm 10µm 
Number of tiers 2-3 2-4 
INTERMEDIATE Level, WTW 3D stacking 2009-2012 2012-2015 
Minimum TSV diameter 1-2 µm 0.8-1.5 µm 
Minimum TSV pitch 2-4 µm 1.6-3 µm 
Minimum TSV depth 6-10 µm 6-10µm 
Maximum TSV aspect ratio 5:1-10:1 10:1-20:1 
Bonding overlay accuracy 1.0-1.5 µm 0.5-1.0 µm 
Minimum contact pitch 2-3 µm 2-3 µm 
Number of tiers 2-3 8-16(DRAM) 
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1.2 MPSOC State of the Art 

The first real MPSOC was created in the beginning of the last decade based on two 

processors. The communication between cores was ensured in the beginning via the classical 

communication technologies like shared busses and point to point methodologies. With 

reference to the Figure  1.4, it is clear that the number of cores is increasing respecting an 

exponential curve. Until the year 2000, only single processors were available like the well 

known one which is the Pentium. This domain knew a real revolution in the previous decade 

with the apparition of different MPSOCs architectures. The evolution of the MPSOC is 

directly related the evolution of the interconnection methodologies.  

 

Figure  1.4. Industrial MPSOC number of cores evolution [4] 

This last decade has known a real explosion in term of research and industrial products 

in these fields. The evolution of number of hits in the IEEE Xplorer for different NoC 

searches presented in Figure  1.5 can be a real witness of this trend. We can conclude from this 

curve that the Hardware field overcomes the Software filed in term of research papers. This 

can explain the decrease of the NoC and the MPSOC curves by the year of 2010. In fact, there 

is no meaningful need to increase the number of cores in the same chip if there is no suitable 

parallel application to use the hardware researches. Moreover, the competition in the MPSOC 

becomes costly with large Scale designs needing adequate emulation platforms instead of the 

simulation. Many big companies like INTEL, TILERA, Philips and ST Microelectronics are 

the leaders in this domain.   
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Figure  1.5. IEEE Xplorer hits for different “netwo rk-on-chip” researches [5] 

 The point-to-point architecture and the bus based communication schemes are 

considered as the origin of the first MPSOC topologies. We present in Table  ��� some first 

industrial chips based on the first MPSOC architectures. Starting from a trivial idea to connect 

all the cores to each others, the P2P (point to point) method is an easy way to ensure the 

communication between all the components of a design. This solution can be suitable with 

few cores and reaches its limitation with larger designs. On the other hand, by using the 

shared Bus architecture we can connect tens of cores. These two methods suffer from the lack 

of scalability needed for big applications, but they are still used in the case of few cores in the 

same chip due to their simplicity in term of design.  

Table  1.2. MPSOC state of the Art 

MPSOC Architecture Application 

Lucent Daytona 

[6]2000 

 

 

Daytona was designed for 

wireless base Stations 

Processor : SPARC V8 

 
 

Philips Viper 

Nexperia[7] 

2001 

 

 

Multimedia processing 

Processor : MIPS PR3940 
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The C-5 Network 

Processor [8] 

2002 

  

Packet Processing in 

networks. 

Executive Processor: RISC 

CPU 

The Intel 

IXP2855 

[9]2002 

 

Network processor 

(TI) OMAP 

[10] 

2003 

 

The cell phone processor. 

Processors : ARM9 and a 

TMS320C55x digital signal 

processor (DSP) 

ARM MPCore. 

[11] 2005 

 

 

The ST 

Microelectronics 

Nomadik [12] 

2006 

 

The cell phone processor. 

Processor : ARM926EJ 

 
� �
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Table  1.3. MPSOC using busses communication 

 
Company Name Number of cores Topology 

INTEL Intel IXP2850 2 Busses 

Philips [7] 2001 Philips NexperiaTM PNX-8500. 2 Busses 

TI 2002 [10] TI OMAPTM  5910 2 Bridge 

ST 2003 [12] ST NomadikTM 2 Bridge 

Toshiba  2008 Venezia 8 Busses 

TI 2008 TMS320VC544 4 Busses 

ARM ARM11 4 Busses 

1.3 MPSOC Actual implementation 

 In the actual implementations, the use of the NoC in the MPSOC industry is taking 

more and more place. With the increasing number of cores, the classical interconnection 

technologies are not any more sufficient. We present in Table  ���, a summary of actual 

MPSOC implementation. We notice that the most popular NoC topology is the Mesh due to 

its symmetry and to its simple routing algorithm. ARM has produced the Cortex family with 

the technology 40 nm and below and Tilera has reached the 64 cores with its MPSOC Tile 64 

presented in Figure  ���.  We present in Figure  ��C and Figure  ��� respectively the architecture 

and the spot of the chip SpiNNaker including 18 processors.  

Table  1.4. Actual MPSOC implementation 

 NAME Number of cores Topology Technology 

2011[13] SpiNNaker 18 Hierarchical UMC 8-metal layer 

130nm 

2009 [14] 81.6 GOPS 10 Mesh 180nm 

LETI  2009 [15] The MAGALI 15 Mesh ST 65nm 

ARM 2009[16]  ARM Cortex-15 

Cortex-5, Cortex-8 

4 cores per cluster Mesh 40nm & below 

Tilera 2009 [17] Tile 64 family 64 Mesh 90nm 

MIPS 2009 MIPS32 1074K Dual core Bus  

MIPS 2009 MIPS32 1074K Dual core Bus  
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Figure  1.6. Tile 64 Block Diagram Processor[17] 

�

Figure  1.7. SpiNNaker MPSoC block diagram[13] 
�

�

Figure  1.8. SpiNNaker MPSoC plot[13] 
�  
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1.4  MPSOC Design methodologies 

�

Figure  1.9. Kumar et al MPSOC Design flow[18] 

 Kumar et al proposed in [19], a full and complete MPSOC design workflow. They 

proposed to generate a customized NoC and cores in the same workflow design. The Silicon 

Hive [20] processing core was used. This one is an entire tool chain for rapid design of 

custom cores. For the NoC generation they proposed to use Æthereal [21] design flow. In 

Figure  ��A , we present the proposed design flow. The system level description is considered 

as the input point of the design flow. In fact after the description of the NoC and the cores, the 

HDL entities are generated together with a simulation model. An .edif file is then generated 

automatically from Handel-C. These files and with the system level edif file are used during 

Place and Route (P&R) to obtain the bit file (for FPGA configuration). ASIC design can also 

be produced from the system-level HDL if desired. 

 

�

Figure  1.10. Application Specific MPSOC workflow [22] 
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 In [22] the proposed design flow aiming to generate an application specific 

heterogeneous pipelined multiprocessor system, is composed of two separate stages which 

are: the Design Space Generation and the Design Space Exploration. The designer provides 

the partitioned application, the pipelined architecture and the runtime constraint as inputs. The 

different configurations and instructions are determined during the Design Space Generation 

phase. The user can choose the basic processors as an input to this design flow. In this 

methodology authors used ASIPs (Application Specific Instruction Set Processors) which is 

generated using a commercial tool Tensilicia. Thanks to the input parameters, a designer can 

control the amount of design space to be generated for a particular application. As shown in 

Figure  ���B , the simulation results are used to record the timing and the area values for all the 

ASIP configurations which will be used in the exploration phase. In the second phase 

dedicated to the Design Space exploration, authors proposed to use heuristic approach to run a 

rapid exploration and to find a near Pareto front. This one will be the new design space to 

explore in the last step and to find the optimal configuration.  

�

Figure  1.11. Xpipes Synthesis Flow[23] 
 

 In this paper [23] L. Benini proposed a new MPSOC Design flow based on the NoC 

architecture synthesis called Xpipes NoC synthesis Design flow. In the first phase, the user 

specifies the objectives and the constraints that should be satisfied by the designed NoC. The 

application traffic characteristics, the size of the cores, the area and the power models of the 

network components are also obtained. In the second phase of the flow, the NoC architecture 

that optimizes the user objectives and satisfies the design constraints is automatically 
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synthesized. In the last step, the XpipesLite is used to generate the RTL (SystemC) code of 

the switches, the network interfaces and the links for the designed topology. The RTL files 

can be then synthesized and implemented on FPGA. A place and route steps are performed 

using the industrial tool soc encounter from Cadence. The output of this phase is a total 

floorplan design specification which can be sent to the fabrication. A real implementation was 

realized in this work with a design consisting of 30 cores: 10 ARM7 processors with caches, 

10 private memories (a separate memory for each processor), 5 custom traffic generators, 5 

shared memories and devices to support inter processors communication. 

�

Figure  1.12. STARSOC Design flow overview  
 

 The input of STARSOC [24] design flow is a set of files in C code describing the 

whole design: the number of processors, their configurations and their interconnections. After 

the step of the hardware-software partitioning, the hardware part is synthesized into register 

transfer-level (RTL) architecture, and the software part is distributed on the whole of 

processors. The software part will be modified to ensure the operation of the hardware call. 

The RTL code generated by the high-level synthesis and the communication system 

synthesizer is then downloaded to the FPGA.   
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 X.Li and O.Hammami presented in their work [25] an automatic Heterogeneous 

MPSOC design flow on Multi-FPGA. The input of the workflow is an ANSI C code of Triple 

Data Encryption Standard (TDES) and a small-scale multiprocessor (SSM) IP which will 

serve as the basic element for the parallelization process. At the first step, software 

parallelization is explored through direct execution on multi-FPGA platform to find out the 

best data parallel and the pipelined configuration. While the parallel programming ensures to 

achieve a maximum design space exploration, the second step is reserved to explore 

coprocessor – based TDES by incrementally adding TDES C-based synthesis generated 

coprocessor. The last step compares the two paths and chooses the appropriate one. 

 

�

Figure  1.13. Automatic heterogeneous design flow [25] 
 
 We present in Figure  ����, the workflow methodology to implement the SpiNNaker 

MPSOC. Plana et al used a hierarchical place and route method to implement this architecture 

considered complex. In fact the SpinNNaker includes different IPs devices ARM cores, 

SDRAM controller, timers, interrupt controller and watchdog as well as the devices 

developed specifically for SpiNNaker: multicast router, DMA controller and bridge, Ethernet 

interface, and system controller. In this method the place and route step of the IP blocks was 

applied separately. This was possible thanks to the fact that the MPSOC has a GALS nature 

which means that each IP can have its different clock signal.   
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Figure  1.14. MPSOC Methodology Workflow of SpiNNaker [13] 

   

1.5 Conclusion 

 With reference to the ITRS road map, the number of cores in the same chip will 

double each about 18 months to reach hundreds of cores by the end of the current decade (see�

DEF����  ����. Actually, many works have already reached few hundreds of cores in the same 

chip: for example the number of cores in [26] is equal to 762. With this evolution, classical 

interconnection methodologies like bus and point to point are not any more possible and other 

interconnect solutions like the Network On Chip have appeared to deal with those limitations.  

 We presented in this chapter a brief description of the evolution of the MPSOC during 

last decades. The evolution of the number of cores is exponential which means that the design 

complexity is also exponential. We presented the actual MPSOC implementations which have 

different network On Chip topologies starting from a simple bus connection to a free NoC 

topology. Designers used different methodologies to implement their own chips; we presented 

a set of workflows with real implementations.   
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2 .  2D MPSOC Design and implementation 

 Before moving to 3D IC implementation, we propose in this chapter to test and to 

verify our MPSOC designs with 2D implementation on FPGA. This approach will guarantee 

the good functionality of our chip which helps us to solve the MPSOC problems and to only 

focus on the specific 3D challenges. Thanks to the MPSOC state of the art performed in 

chapter 1, we choose to study the Butterfly architecture which is an interesting case study for 

EDA evaluation and of an eventual 3D IC design.   

2.1 Theoretical Complexity Problems in 2D Design and implementation 

 To perform an efficient implementation of a 2D Design, we have to deal with the 

complexity of the workflow steps. We will present the complexity of the basic steps in 2D 

design implementation on FPGA which are the partitioning, the floorplanning and the place 

and route. 

The partitioning:  

 When the Netlist of a component or a design can not fit on a single FPGA the step of 

partitioning on Multi-FPGA becomes necessary. This operation can be trivial with symmetric 

and homogenous MPSOC but it becomes a real challenge with asymmetric and heterogeneous 

architectures. The main goal of this operation is to find a methodology which minimizes the 

connections between the partitions. In the provided solution, each partition should meet all the 

design constraints (size, number of external connections...) and get a balanced distribution 

between the different groups. The problem of VLSI partitioning can be defined by a 

Hypergraph partitioning. Given a graph G= (V,E), we can model the cells of the Netlist or the 

components by the set of the vertices V and the nets ( or interconnections) by the set of the 

edges E. K-way partitions can be defined by the division of the vertices into K groups. This 

problem is known to be NP-Hard that is why the proposed solutions are based on 

approximations and heuristic methods [27].   

Placement:  

 The step of placement on FPGA is the determination of the cell’s locations of the 

Netlist in order to optimize the area and the frequency. Given a Nelist of logic blocks, I/O 

pads and the set of interconnections between the cells, the output of the placement operation 

are the coordinates (xi, yi) for each block. This problem is known to be NP Hard which means 

that no polynomial algorithm is known to propose an exact solution to solve it [28].   
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Routing:  

 Routing is one of the major steps in 2D FPGA designs as it has an important impact on 

the performance of the circuit. The success of this operation is affected by the previous step 

which is the placement. The routing step has been also proved to be NP-hard [29]. 

 The listed steps in the FPGA 2D design are classified in the family of the NP hard 

problems which means that the optimization in the EDA tools is still possible. In general the 

common tools used in the synthesis place and route for FPGA like ISE and EDK from Xilinx 

[30], perform each step sequentially which is not an efficient approach as there is a real 

dependency between the different operations. We propose in this chapter to study the 

implementation of an MPSOC with 16 masters and 16 slaves based on the Butterfly NoC 

topology. A real execution on FPGA will be performed. 

2.2 Regular NoC implementation on FPGA: case study Butterfly 

 The common NoC topology which is usually used in the literature and in the industrial 

products is the mesh topology. This one is famous thanks to its symmetric architecture and to 

the possibility to use a repetitive structure. A NoC with a mesh topology is relatively an easy 

case study for the EDA tools implementation. In fact, partitioning tools can find a symmetric 

structure even with a NoC with a very Large Scale MPSOC [26] . In this work [31], authors 

implemented an MPSOC with 2048 cores. We choose in this chapter, to study the butterfly 

topology to evaluate the limitation of EDA tools in order to solve the design step problematic. 

In Table  ���, we compare the mesh and the butterfly topology. With its asymmetric 

architecture, the butterfly NoC represents an interesting case study to evaluate the portioning 

algorithm used in the EDA tools. This NoC is composed of long wires compared to the mesh 

topology with its equal short links. This characteristic can affect the maximum propagation 

delay time and the power consumption of the NoC. It can also represent difficulties for the 

automatic routing algorithms. In the mesh topology, links are bidirectional which is not the 

case for the butterfly case which needs a request and a response NoC. 

Table  2.1. Comparison Mesh and Butterfly topology 

 
    

 

 

 

NoC topology Mesh Butterfly 

Symmetry Symmetric Asymmetric 

Wires Short Long 

Direction Bidirectional unidirectional 
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 To study in deep the different characteristics of the butterfly architecture, we have 

designed a NoC with 16 masters and 16 slaves. A such NoC is called 2Ary-4Fly : the term 

2Ary refers to the fact that all the used switches have a degree equal to 2, the term 4Fly refers 

to the number of stages needed which is equal to 4. The NoC’s topology is presented in the 

Figure  ���; Masters in the left are sharing 16 slave memories presented in the right part of the 

NoC.  

�

Figure  2.1. MPSOC based Butterfly NoC: 2Ary 4Fly Architecture 

 The main component of the NoC is the switch, we use the switch library from the 

company Arteris [32]. This switch presents different options like arbitration, pipelines...In 

each router we have to modify the routing table according to the physical links and to the 

position of the switch in the NoC. We can verify from the NoC’s architecture that all masters 

are connected to all the slaves through a single path. According to the routing table and to the 

message’s address, the packets can be routed by the switch. For each switch, we have 2 input 

ports and 2 output ports. When the switch receives the packets, it can decide thanks to its 

routing table through which output port to send it. We present the routing tables of each 

switch in Table  ���. 

Table  2.2 Address of the slaves 
 

Cores Addresses Cores Addresses 

Slave0 0x0 Slave8 0x800000 

Slave1 0x100000 Slave9 0x900000 

Slave2 0x200000 Slave10 0xA00000 
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Slave3 0x300000 Slave11 0xB00000 

Slave4 0x400000 Slave12 0xC00000 

Slave5 0x500000 Slave13 0xD00000 

Slave6 0x600000 Slave14 0xE00000 

Slave7 0x700000 Slave15 0xF00000 

Table  2.3. Different switch routing tables 

Switches TX0 TX1 

{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7} 

0x0 

0x100000 

0x200000 

0x300000 

0x400000 

0x500000 

0x600000 

0x700000 

 

0x800000 

0x900000 

0xA00000 

0xB00000 

0xC00000 

0xD00000 

0xE00000 

0xF00000 

{1.0,1.1,1.2,1.3} 

0x0 

0x100000 

0x200000 

0x300000 

0x400000 

0x500000 

0x600000 

0x700000 

 

{1.4,1.5,1.6,1.7} 

0x800000 

0x900000 

0xA00000 

0xB00000 

0xC00000 

0xD00000 

0xE00000 

0xF00000 

{2,0,2.1} 
0x0 

0x100000 

0x200000 

0x300000 

{2,2,2.3} 
0x400000 

0x500000 

0x600000 

0x700000 

{2.4,2.5} 
0x800000 

0x900000 

0xA00000 

0xB00000 

{2.6,2.7} 
0xC00000 

0xD00000 

0xE00000 

0xF00000 

3.0 0x0 0x100000 

3.1 0x200000 0x300000 

3.2 0x400000 0x500000 

3.3 0x600000 0x700000 

3.4 0x800000 0x900000 
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3.5 0xA00000 0xB00000 

3.6 0xC00000 0xD00000 

3.7 0xE00000 0xF00000 

 

 We add our NoC as an IP in the EDK project to connect 16 Microblaze processors 

which are the masters to sixteen block memories representing the 16 slaves. To evaluate the 

execution time of the design we add a timer which is connected to an OPB (On-Chip 

Peripheral Bus). We start by the hardware part of the design. After we generate the Netlist of 

the project, we use the command ngc2edif to transform the Netlist to edif files used by zCui. 

This one is a compiler tool designed by EVE company [33] to synthesis the DUT (Design 

Under Test) by calling Xilinx tools. At the end, it generates a bit file and several reports 

describing the FPGA resources used after the place and route on the board. For each 

Microblaze, we create a software application in the EDK project. In each application we add a 

C code and header files to describe the tasks to be performed by the processor. Once we 

define a software for each processor, EDK calls the C code compiler and generates *.elf files.  

We transform these files to *.vhex files which can be run on the board. At this level we have 

now hardware and software files ready to be run on the zebu board. We call the command 

zRun to make the execution on the board. Eve tool offers the possibility to use static and 

dynamic probes. In our case, we use a static probe to capture the end of the execution time. In 

fact, the run will stop when the condition of stop which is related to the probe value will be 

true. Then we can read the execution time needed for the program to be complete. A summary 

of this workflow is presented in Figure  ����

� �
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2.2.1 Synthesis results 
 
 ZCui compiler makes the synthesis using Xilinx’s tool. As Zebu-UF4 board has 4 

FPGAs virtex 4 LX 200, zCui tool gives the possibility to make the mapping on one or more 

FPGAs. In this work we choose to make the synthesis on only one FPGA. Table  ��� presents 

the resource utilization when we implement the project on the FPGA board. We note that this 

design presented in Figure  2.1 reaches 100% of DSP48 available on the board, 81% of 

BRAMs and 60% of slices. In this board, we have 96 slices which are totally used. Number of 

BRAMS in the FPGA board is equal to 336. Each block is an 18 kb memory. The need of this 

project in term of BRAM is almost equal to 5 Mbytes.        
 

Table  2.4. Resource utilization of Zebu-UF4 
 

�

 
 

 
 

 
 
 

Figure  2.2. Our MPSOC implementation workflow  

 Resources utilization in % 
 BRAM Slices DSP48 

2Ary-4Fly 81 60 100 
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2.2.2 Parallel Programming: Filter Harris 

 Thanks to this MPSOC architecture, we are now able to perform a parallel 

programming using 16 processors and 16 slaves. In our case, we use this hardware design to 

apply a parallel image application which is the Harris Filter in order to evaluate its speed up. 

Principle 

 Harris filter is a corner detector algorithm [34]. Corner detection is an approach used 

in image analyses especially for object tracking. For an original image I we calculate the 

corner curvature K defined as: 

� � ������ 	 AB�CDE�F�� 

A is  the Harris matrix , Ix and Iy are the derivations of  the image intensity I successively with 

the axes X and Y. � is a parameter of corner detection tolerance which is usually used 

between 0.05 and 0.15. Local maxima of K determine the location of interest points. 

� � � ��������� ������� � ���
������� � ��� ��������� � 

 

 Parallel Programming 

 The Harris filter is written in C code associated to each Microblaze processor. In this 

application, we compute the Harris filter of a grey image of 256x256. Initial image will be 

stored in the shared memory BRAM0.  At the beginning of the algorithm, Microblaze 0 stores 

the image I in the shared Memory then gives the order to all the Microblazes to start the task1. 

Each Microblaze i will access the memory and calculate the values Ix and Iy of the pixels 

composing a number of rows and then stores the result in BRAM1. When a Microblaze 

finishes task 1, it changes the value of the flag of end of task 1. The Microblaze 0 finishes its 

task and waits the other processors. When the task one is finished, Microblaze 0 gives the 

permission to start the task2. Each MBi will access dx and dy memories and compute the value 

of the Gaussian filter of each pixel as an estimation of Mean(Ix) and Mean(Iy). The last step 

of task2 is to compute the curvature k. A comparison of the value k with a threshold value 

will decide if the point is a corner or not. Each processor i computes the value of the matrix A 

for each pixel of a specific number of rows. This number is equal to the total rows of the 

image divided by the number of processors. 
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Figure  2.3.  Harris Filter Execution Time and speed up 

Implementation Results 

 To evaluate the speed up of our parallel program we change the number of active 

processors. We present in Figure  ��� the execution time of the algorithm with different NoC 

sizes. Harris filter uses in several steps the matrix multiplication and convolution, which is an 

independent task suitable for parallelization. In the Figure  ���, we notice the efficiency of our 

parallel program. In fact, the speed up is equal to 3,65 with 4 processors to reach 9,96 for 

16MB. The use of 16 processors reduces the time to 10% of the time needed in the sequential 

program using one processor. Our results confirm theoretical results in [35], with a real 

implementation of a NoC with different sizes. In fact, the speed up increases when the size of 

the NoC increases (see Figure  ���� but the curve of the speed up has a non linear form. This is 

due to the fact that, when the number of cores increases, the time needed for synchronization 

becomes considerable. In such case, the access to the shared memories is a difficult operation. 

To deal with this problematic we use a home developed function called Read_exclusive. 

Thanks to it, only one processor can access a memory at a time. When a processor is writing 

or reading from a memory, the other masters must wait until the end of the operation that is 

why it is called Exclusive.  
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We present in Figure  ���, a model of a ModeFRONTIER project with its basic components:  

•  Input Variables:  The user should define at the beginning, the input variables and 

their properties. These variables define the design space exploration and will be 

affected to an input file. They can be real, integer and binary. A new input file is 

generated during each iteration taking in consideration the new values of the variables.  

•  Initial population: The user should define the initial population. This choice depends 

on the problem’s properties and affects the final result. ModeFRONITER offers the 

possibility to choose between a set of initial population which are summarized in 

Figure  ��	. The initial population can be generated using one of the presented 

algorithms or predefined by the user.   

 

Figure  2.5. ModeFRONTIER initial population 

•  Optimizer:  The tool offers different families of optimizers: Basic like MOGA-II, 

advanced like NSGA-II and quadratic like NLPQLP. The choice of the adequate 

optimizer is essential to get an optimized solution. We present the different algorithms 

provided by ModeFRONTIER. 
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Schedulers 

 •  DOE : Sequence 

 •  MACK  : Multivariate Adaptive Crossvalidating Kriging 

 Basic Optimizers 

 •  SIMPLEX   : Single-objective derivative-free optimizer 

 •  B-BFGS :  Single objective Bounded BFGS algorithm 

 •  Levenberg-Marquardt  

 •  MOGAII :  Multi Objective Genetic Algorithm 

 •  ARMOGA :   Adaptive Range MOGA 

 Advanced Schedulers 

• MOSA :  Multi Objective Simulated Annealing Algorithm 

 •  NSGA-II:   Non-dominated Sorting Genetic algorithm 

 •  MOGT  : Game Theory coupled with Simplex algorithm 

 •  F-MOGAII : Fast Multi Objective Genetic Algorithm 

 •  MOPSO : Multi Objective Particle Swarm Optimizer 

 •  F-SIMPLEX  : Fast Single-objective derivative-free optimizer 

 Evolution Strategy Schedulers 

 •  1P1-ES 

 •  DES : Derandomised Evolution Strategy 

 •  MMES :  Multi-membered evolution strategy 

 Sequential Quadratic programming 

 •  NLPQLP :  Robust implementation of a sequential quadratic programming 

  algorithm. 

 •  NLPQLP-NBI :   Multi-objective scheduler based on the 

•  The program: we should define the algorithm to evaluate during the exploration. 

ModeFRONTIER offers the possibility to include different type of languages like 

Bash script. We can also use an executable file or other industrial tools like Matlab. 

Taking the variable from the input files, this program provides the value of the output 

variables which can be the objective functions or the design constraints.   
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•  The Objective Functions: We define the objective functions of the project using the 

objective nodes provided by ModeFRONTIER. We can choose to minimize or to 

maximize our objectives.    

2.3.2 Multi objective Genetic Algorithm NSGA-II Algorithm  
 
 Multi-objective evolutionary algorithms (MOEA) have been considered as a 

successful solution to optimize the problems with multiple conflicting objectives. The Multi 

objective problems are different from the single objective function. In the first one, the 

solution of the single objective function is a single optimized point while it can be set of 

points in the case of the multi objective formulation. The dependency between the objectives 

can affect the final result. A classical formulation of the minimization of multi-objective 

problem with m decision variables and n objectives is: 

����������� � ���� � �� �! " " ! �#) 

$%&'�()�)*�+�, - .�! � � /!0! " " 1 

+�, � .! � � /!0" " ! 2 

 The result of an optimization problem depends on different factors like the choice of 

the optimizer and its parameters. As we are interested to solve multi objective problems using 

MOEA, we choose to use the NSGA-II algorithm. This one proved its efficiency compared to 

other algorithms especially with Multi objective problems. The NSGA-II is a fast elitist Multi 

objective Non dominated Sorting Genetic algorithm suggested by K.Deb et al [37]. The 

NSGA-II algorithm is based on the sorting of the different populations with respect to all the 

functions. An individual p in the population Pt dominates an individual q if p dominates p in 

all the objective functions. If for only one function, q is not dominated by p, the domination of 

p to q is not any more valid. Starting from this idea the set of the individuals in the population 

which are not dominated by any ID form the first front F1 of the non dominated Ids. The set of 

individuals included in the first front F1 are deleted from the population and the computation 

of the new front F2 is performed using the same method. This operation is repeated until all 

the individuals of the population P are affected to a front. To create the new generation Pt+1 , 

the algorithms inserts the front with the increasing order until the number of population is 

reached. When the insertion of the last front overcomes the number population size an 
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algorithm based on the crowding distance is used to choose the number of needed individuals 

Figure  ���.  

 
Figure  2.6. NSGA-II algorithm illustration 

�

2.3.3 ModeFRONTIER project: MOEA on FPGA 

 We have already presented in section  2.2, the design of a 16x16 MPSOC and the 

execution of a parallel Harris filter on FPGA. During this step, different choices should be 

performed to define the different options of the processor and of the NoC. The Microblaze 

processor can be used with full, basic or medium options. The user should find the needed 

combination depending on his application. We propose in this section to study the effect of 

the variation of these options on the area and on the execution time of the algorithm. In order 

to get the optimized solution, we perform in this section a multi objective evolutionary 

algorithm.  

 We present in Figure  2.7 the project using the Tool ModeFRONTIER which is 

specific for the optimization and the exploration. We propose to explore the different 

processors and NoC options of our designed MPSOC already presented in section  2.2 . As we 

affect the same configuration to all the processors, the number of possible individuals is equal 

to 26 x 23x3. We use the evolutionary Genetic Algorithm NSGA-II to find the optimized 

combination. We present in Table  ��	 and Table  ��� the input variables of our project. We use 

the Microblaze processor from Xilinx presented in Figure  ���. For each individual the 

execution of the Harris Filter Algorithm on FPGA is performed. The outputs of this 

exploration are the values of the number of cycles and the number of slices to be minimized. 
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Figure  2.7. ModeFRONTIER DSE Project 

 

 
Figure 19. Microblaze Architecture [30] 

Table  2.5. Microblaze parameters 

�

�

 

 
 

�

 
�

�

�

Fasle(0),True(1) 
Fasle(0),True(1) 
Fasle(0),True(1) 
Fasle(0),True(1) 
Fasle(0),True(1) 
Fasle(0),True(1) 

Optimize Area 
Use Barrel shifter 
Use Msrset and Msrclr instructions 
Use Pattern Compare instruction 
Use divider 
Use FPU 

C_AREA_OPTIMIZED 
C_USE_BARREL 
C_USE_MSR_INSTR 
C_USE_PCMP_INSTR 
C_USE_DIV 
C_USE_FPU 

Values Definition  Microblaze parameters 
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for both objective functions.  The output result of our Genetic Algorithm is a set of points 

known by the name of the Pareto Front presented with green points in the previous figure. The 

user can choose the appropriate configuration depending on his needs in term of time and 

resources. The implementation of our design on FPGA, was a fast way to explore our 

hardware design. The needed time to perform each step of the workflow depends on the 

performance of the machines but it also depends on the design’s options. We will present in 

the next section a design space exploration of our design on different machines.   

2.3.4 Machines Specifications 

 We present in this section the different specifications of the three used machines 

during the sequential and the parallel exploration. We specify their software and their 

hardware specifications. 

Table  2.7. The properties of the machines 

�

� �

MPSOC7 SPEC 

Hardware Summary Software Ssummary 

Type of System Homogeneous gcc 4.1.2-48 

Compute Node MPSOC7 Linux Red Hat 5 

Total Chips  ModeFRONTIER 
modeFRONTIER 4.2.0 

b20091201 

Total Cores 4 FlexNoC VFC 2.2 

Total Threads 8 EDK Edk 9.2.02i 

Total Memory 12 GB ISE Ise 9.2.04i 

Memory Type DDR3-800/1066/1333 zCui Version 4.3.3B.00 

MPSOC4 SPEC 

Hardware Summary Software Ssummary 

Type of System Homogeneous gcc 4.1.2 

Compute Node MPSOC4 Linux Red Hat 5 

Total Chips 1 ModeFRONTIER ModeFRONTIER 4.2.0 b20091201 

Total Cores 1 FlexNoC VFC 2.2 

Total Threads 2 EDK Edk 9.2.02i 

Total Memory 8 GB ISE Ise 9.2.04i 

Memory Type  zCui Version 4.3.3B.00 
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Table  2.8. ZEBU UF4 Emulator specifications 

2.3.5 Sequential DSE 
�

�

Figure  2.9. SSM IP Architecture 

THALES2 SPEC 

Hardware Summary Software Summary 

Type of System Homogeneous gcc 3.4.6 

Compute Node Thales2 Linux Red Hat 4 

Total Chips 2 ModeFRONTIER 
modeFRONTIER 4.2.0 

b20091201 

Total Cores 4 FlexNoC VFC 2.2 

Total Threads 4 EDK edk 9.2.02i 

Total Memory 8 GB ISE Ise 9.2.04i 

Memory Type GB DDR2 RAM ECC zCui Version 4.3.3B.00 

Emulator platform : ZEBU UF4 

Modules Descriptions Design 1 SSM IP 12MBs ,8 Brams  

 

 

FPGA 4 Virtex-4 LX200 Resources utilizations 

DRAM 512 MBytes Bram Slices DSP48 

SSRAM 64 MBytes 62 66 54 

ICE Smart and Direct    
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 We present in Figure  ���� the DSE results on the machine MPSOC 4 presented in 

Table  ��C. The average execution time is almost invariant when the population size changes 

for the tools FlexNoC and EDK.  This average time is low when the population size is high.  

The design space exploration of our MPSOC on different machines gives a better idea about 

the effect of the population size on the MOEA. In fact, the average time is almost the same for 

all the tools on the different machines. The value of the distance is meaningful with the tools 

(EDK, zCui). In fact, the place and route steps take more time to be performed when the 

design is complex. With full version hardware (processor full options, NoC full options) the 

number of used slices and DSP are multiplied. 

 If we compare now the average execution time to extract the NoC by the tool FlexNoC 

using the 3 machines (Figure  ���B, Figure  ���� Figure  ����), the value is about 120 sec for 

THALES 2 and MPSOC 4 while it is about 80 sec for the machine MPSOC7. With 8 threads 

and 12G memory, this machine is the most powerful one. The number of threads is a major 

factor affecting the performance of the machine. This result is also the same for EDK and 

zCui tools. The machine MPSOC7 can perform all the workflow faster than the other 

machines. The industrial used tools offer the possibility to use all the processors of the 

machine which is a way to perform a parallel execution.  

2.4 Parallel and multi-scale software implementation  

 With the shortage of information about the different parameters during the step of 

design, we propose in this section to study the effect of different variables of the design. The 

real goal of this work is to create a data base of designs which can be the input of a 

mathematical predictive model. We present in Figure  ���� the main idea of this work. The 

different input variables of our work are: 

•  Parameter 0: NSGA-II options 

•  Parameter 1 : FPGA platform 

•  Parameter 2 : parallel flow 

•  Parameter 3 : the properties of the machines 

 These different parameters can be the input to create a mathematical model to predict 

the behavior of the workflow for a specific design. This step is a learning step in the 

predictive model. 
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 At the end of this work and thanks to the obtained model, we can advice the user 

referring to his personnel constraints (number of licenses, maximum time...) about the way to 

schedule his DSE. This work can be used by the EDA companies as a consulting service to 

get an optimized utilization of their tools.   

 
Figure  2.13. Design Space Exploration for mathematical Model generation 

 We performed at the previous section a study of the population size which is a basic 

parameter in the NSGA-II algorithm. We have also presented the effect of the different 

machines on the design workflow. We propose now to change the number of parallel used 

threads. In fact, we can run the workflow at the same time on the same machine thanks to the 
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 Until now all the presented work was performed on a single FPGA, we propose now to 

use a multi FPGA platform. That is why we implemented the next architecture with a mesh 

topology using 48 processors and 32 memories. This architecture needs 5 FPGAs platforms. 

The implementation of this design was performed on ZEBU–UF4 board. The resource 

utilization is presented in Table  ��A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.16. SSM IP 48 processors 32 BRAMs 
Table  2.9. SSM IP 48x32 on Zebu UF4 Resource utilizations 

Modules Descriptions Design 2 SSM IP 48MB,32 BRAMs 

FPGA 4 Virtex-4 LX200 

Ressources utilizations DRAM 512 MBytes 

SSRAM 64 MBytes 

ICE Smart and Direct Bram Slices DSP48 

FPGA1 F_0_0_0 76% 44% 31% 

FPGA2 F_0_0_1 57% 14% 9% 

FPGA3 F_0_1_0 1% 78% 66% 

FPGA4 F_0_1_1 95% 27% 18% 

FPGA5 F_1_0_0 2% 32% 17% 
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 We perform the same design space exploration already presented in  2.3.3. In fact, we 

change the population size of the generation and the number of parallel IDs. The obtained 

results are summarized in Table  ���B. By using MPSOC 7, it was only possible to run 8 

parallel IDs with FlexNoC tool, 4 parallel IDs with EDK tool and only 2 parallel IDs with 

zCui while no parallel execution was possible for zCui tool using the MPSOC 4 machine. 

With this design the memory size of the used machines was the real limitation of the parallel 

DSE. To perform the place and route operations, the machines use all the available memory. 

The variation of the average execution time of the FlexNoC tools is not really meaningful 

with the machine MPSOC7, but this one doubles when the population size doubles on the 

machine MPSOC4. The parallel run of the FlexNoC tool is affected by the difference between 

the available memories in both machines.  

 From those results we can conclude that with the EDA tools, using deterministic 

mathematical algorithms to perform the synthesis the place and route design, the choice of the 

machine is a major operation to optimize the execution time of the exploration. For example 

to perform the synthesis, the place and route operations with EDK (2 parallel Ids) the machine 

MPSOC7 needs about 2 hours while MPSOC4 takes about 4 hours.   

Table  2.10. SSM IP 48x32 Exploration Results 

Exploration Results : MPSOC7 

software Population size Parallel Ids Max(s) Min(s) Average(s) 

FlexNoC 24 2 593 539 554,96 

FlexNoC 24 4 614 568 591,71 

FlexNoC 24 8 629 580 611,17 

EDK 24 2 8297 6796 7600,58 

EDK 24 4 16309 8944 12678,79 

zCui 24 2 8829 6759 7778,71 

 

Exploration Results : MPSOC 4 

software Population size Parallel Ids Max(s) Min(s) Average(s) 

FlexNoC 24 2 816 799 807,666667 

FlexNoC 24 4 1683 1583 1633,20833 

FlexNoC 24 8 4051 2193 3267,625 

EDK 24 2 14181 11850 13105,6667 

EDK 24 4 BLOCKED BLOCKED BLOCKED 

zCui 24 2 BLOCKED BLOCKED BLOCKED 
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2.5 Return on experience: Analyses and discussions 

 We presented in this chapter an experimental study of FPGA implementation using 

different MPSOC designs. During the first step of the implementation, we needed to make 

different choices on the machine, the tools and the scheduling of the exploration. It was clear 

that there is no detailed work giving such information. That is why we performed a design 

space exploration to get the optimized configuration. The number of input variables in the 

step of design is important. That is why we performed a design space exploration to test the 

effect of the different parameters.  

 Thanks to our result we have now a data base of experimental results presenting the 

relationship between different parameters. The real implementation and execution on FPGA, 

offers a real freedom to realize this exploration compared to the simulation methodology. This 

work can be a good database to perform a theoretical study and to create a predictive model 

serving as an “Adviser” to the new users of the explored tools.  

2.6  Conclusion 

 We presented in this chapter the design of an MPSOC design having 16 masters and 

16 salves based on the Butterfly NoC topology. This project was implemented on the Multi 

FPGA platform ZEBU–UF4. We applied on this hardware design a parallel programming of 

the Harris Filter algorithm. Thanks to this parallel programming, the speed up has reached the 

value 10 when the sixteen processors were fully used.  

 During this step of design, the shortage of information about the choice of the suitable 

machines, tools, platforms, number of licences was a real handicap. That is why we 

performed a Design Space Exploration by changing the different options of the processors and 

the NoC. We applied a Multi Objective Evolutionary Algorithm in order to find the optimized 

sets of individuals which are minimizing the area and the execution time of the design. We 

got a pareto front of the optimized IDs. 

 During our workflow implementation, three basic tools were used which are FlexNoC 

(NoC extraction), EDK (place and route), zCui (portioning and execution). We performed a 

Design Space Exploration in order to study the effect of the different parameters on the 

performance of those tools. Thanks to the variation of the machines, the population size, the 

number of FPGA and the architecture of the MPSOC, we provide a wide data base which can 

be the input of a predictive mathematical model which is created later during an internship in 
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the lab [38]. Thanks to this model the user can have a better idea to make different choices 

during the implementation of his design.   
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3 3D Semi conductor Technology 

3.1 3D Semi conductor Technology: Motivation 

 The development of semi conductor technology has targeted at the same time the 

increase of the performance and the reduction of the power consumption and the cost. 

Transistor shrinking was the principle key of this evolution but in these last years this method 

has reached its limits. One of the major faced problems with high technology is presented in 

Figure  ���. In fact, between the 180 nm and the 130 nm the interconnect delay overcomes the 

gate delay. In other words, the links are becoming the new limitation of the design’s 

performance.    

�

Figure  3.1. Gate and Interconnect Delay as a function of gate technology [39] 

 Three-dimensional (3D) integrated circuits (ICs), is a design containing multiple 

active silicon layers. This new approach of design can deal with the problem of the 

interconnection delay. In fact, the key of the 3D IC design is the use of the vertical connection 

called TSV (Through Silicon Via) which is an efficient technique to shorten the global 

interconnection of the design. 

 The other major limitation of the 2D shrinking is the increase of the cost changing 

from a technology to another. CMOS scaling requires much higher cost, For example a node 

mask set for 90 nm is about $1 million while it is about $2 million for 45 nm technology (see 

Figure  ���). We present in the same figure, the comparison between the CMOS scaling and 

two different methodologies of 3D IC. It is clear that the cost of a single die overcomes the 

cost of 3D design with high technology.     
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Figure  3.2. Cost CMOS scaling[40] 

3.2 3D Semi conductor Technology: State of the Art 
 

 Three-dimensional integrated circuit (3D-IC) is not really a new field, in fact it has 

been studied since the 1980s [41][42].  However, CMOS scaling following Moore’s Law has 

been the most explored in order to increase the density and the performance of ICs. The 3D 

IC is emerging in the last decade as CMOS scaling has already reached its limitation.  

 

Figure  3.3. Example of 3D Design  [42] 

 The 2005 edition of the ITRS was the first one which is projecting the need for 

focusing not only on device integration that relies on the improvement of the form factor 

(More Moore) but also on applications leveraging silicon technology to provide added 

Options  (More than Moore) (see Figure  ����.  
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Figure  3.4. Illustration of the evolution of the semi conductor technology with CMOS scaling with other 
ways of development offering new functionalities [2] 

 We present in the Table  ���, a summary of the implemented 3D MPSOC for these last 

years. Even though the number of the papers studying 3D design is considerable, only few 

works present a real implementation of a 3D MPSOC design.  

 L.Zhou et al [43] implemented a 3D LDPC (Low Density Parity Check) design using 

three tiers with the technology 180 nm. The frequency of this design reached the value of 128 

MHz. The comparison of this 3D design with a 2D equivalent one has shown an improvement 

of the 3D technology in term of power consumption, global interconnection, clock skew and 

area.  In [44] authors have designed a 3D NoC with Mesh topology. This design fitted on 

1mm2 area with the technology 130nm. To perform this operation, 100 vertical connections 

were used to ensure the connections between the different layers. The frequency of the design 

can only reach 25 MHZ. An implementation of 3D adder and multiplier was performed in 

[45].  Authors have used the technology 180 nm and TSV to ensure the communication 

between the three different wafers. This work has proved the efficiency of 3D design with an 

improvement up to 34% for speed and up to 46% reduction for power consumption. Memory 

stacking is one of the major motivations in 3D IC design. In both works presented in [46][47], 

authors have designed a 3D stacked SRAM memories. In fact, Chen et al have designed a 3D 

SRAM using MITLL 180 nm FDSOI process, which improves the access time by 32%. and 

speed up the access time to the world line of the memory. A 3D implementation of a complete 

MPSOC design containing 64 cores and having a mesh topology was the subject of the paper 
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[48]. This work was performed using 3D Tezzaron technology with 130 nm technology.  This 

design has a frequency of 277 MHz . The vertical connections were ensured using TSV and 

Micro bumps from 3D Tezzaron technology. The same technology was also used by 

Thorolfsson et al to implement the 3D SoC for H.264 design[49].  

Table  3.1. 3D MPSOC design implementation [50] 

Teams Architecture Technology/Number of tier 

L.Zhou et al [43] 2006 3D LDPC decoder 180 nm / 3tiers 

C.Mineao et al 2008 [44] 3D mesh NoC 130 nm / 2 tiers 

J. Ouyang et al [45] 2009 3D adder and 3D multiplier 180 nm / 3 tiers 

X.Jing et al [47] 2010 3D SRAM 180 nm / 3tiers 

M. B. Healy 2010 [48] 3D multicore (64 cores) 130 nm / 2 tiers 

T. Thorolfsson et al [51]2010 3D SoC for H.264 
130 nm / 5 tiers (2 tiers for logic, 3 

tiers DRAM) 

X.Chen et al [46], 2011 3D SRAM 180 nm / 3tiers 

�

 3D IC is relatively a new research field that is why there is a shortage of 3D industrial 

chips. The leader semi conductor companies like Intel and IBM are in a real course to be the 

first provider of the first 3D industrial chip. We present in the Figure  ��	, a set of 3D 

industrial designs. In 2006 and for the first time, the three dimensionally stacked NAND Flash 

memory was produced by the company Samsung.  Thanks to the technology S3 (single-

crystal Si layer stacking), which was used to develop S3 SRAM previously, it was possible to 

double the memory capacity without increasing the chip size [52]. On October 2011, Samsung 

and Micron announced the new project of a new Hybrid Cube Memory (HMC) presented in 

Figure  ��	 (b). This memory is designed to ensure high performance computing which can 

send information from memory chips to the CPU. IBM has announced in November 2011 the 

production of the first commercial chip based on Micron’s Hybrid Memory Cube using TSV 

technology. The actual high volume production is noticed for the image sensors of Toshiba. 

 

�

�
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 ���

Samsung’s Stacked Flash Memories 2006�

�

(b) 

Micron's Hybrid Memory Cube (HMC) produced by 
IBM[ 53] (2011)�

 

(c) 

CMOS Imaging Sensor 
CIS 1Q’07 Market Share 

 
(d) 

 
2MPixel (2.6x2.6um pixel) CIS: Leti & ST (Jun. 2007 

�

 

(e) 

Toshiba Image Sensor with TSV 2008 

 
 

 
(d) 

 
 

Cross-section image of IBM's "through-silicon-via" 
technology in a stacked chip. (Source: IBM)  

 
 
 

Figure  3.5. 3D IC industriel design 
�

�

�

�
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3.3 3D Design Methodologies 

 The fabrication of a 3D IC design can be performed using different approaches. We 

present in Figure  ���, the basic 3D IC methodologies.   

�

Figure  3.6. Illustration of vertical interconnect technologies: wire bonded (a); microbump—3D package 
(b) and face-to-face (c); contactless—capacitive with buried bumps (d) and inductive (e); through via—

bulk (f) and silicon on insulator (g) [54] 

3.3.1 Wire Bonded System-in-Package 

 The Wire Bonding approach is the most common 3D methodology. After processing 

and testing the independent components, they are stacked to create a System In Package (SiP). 

The connection between the stacked chips is performed using external wires. The major 

limitation of this solution is the resolution of wire bonders and especially the increase of the 

number of inter chip connections. Unlike the other 3D IC approaches the vertical connections 

in the wire bonded solution can be only performed on the chip’s periphery. This can seriously 

limit the vertical interconnection density which is estimated to 102-103/cm2 [54]. The 

reduction of size is the only meaningful benefit offered by the chip stacking method. In fact 

the connecting wires can be shorter but the size of the components is almost the same 

compared to 2D Design. 
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Chip stacking is a technology offered by companies like Sharp and STATSChipPAC. 

Chipstacked. The produced SiPs are employed in cell phones thanks to their tight size. We 

present in Figure  ��C, an example of a 3D design based on the wire bonding methodology.  

��

Figure  3.7. Wire bonding design [55] 

 We present in Figure  ���, different structures of wire-bonded. The separation between 

the different stacks can be performed using spacer or adhesive. The connection using wire 

bonding can be applied between Die to Die or die-to-package. The performance of the 3D 

stacked design is determined from the length of the bonding wires and the resulting parasitic 

impedance. Stacking up to four or five dies have been already implemented [56]. But the 

parasitic impedance and the shortage of the number of available bonding wires are the 

principle limitations of this approach leading designers to find other SiP methods to deal with 

those problems.   

�

Figure  3.8. Wire bonded System-in-Package[57] 
�

3.3.2 Peripheral Vertical Interconnects 

 In order to overcome the limitation of the Wire bonding method, a new SiP using 

vertical peripheral connections is used. In fact the designer can replace the classical wires by 

solder balls or Through Hole vias illustrated in Figure  ��A. Thanks to this solution, the number 

of stacked dies can increase as the constraints of parasitic, the impedance and the number of 
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linking wires are relaxed. Those techniques were used by several companies. In fact, Micron 

Corporation company uses the Via hole method to produce fast 3D memory chips while 

Hitachi attached the vertical pillars to the Printed Circuit Boards (PCB) to perform the vertical 

connections of the 3D chip.   

�

Figure  3.9. SiP with peripheral connections: (a) solder balls  (b) through-hole via and spacers ,  
(c) through-hole via in a PCB[57] 

3.3.3 Micro Bumps 
 
 The Micro Bumps can be defined as Small solder ball used to connect one die to 

another; they are normally connected to a micro bump pad, or micro ball. Micro bump 

technology is the use of solder or gold bumps on the surface of the die in order to establish the 

vertical connections between the different dies. This 3D methodology was used in different 

packaging technologies, like wire bonded chip stacking, chip stacking, system in package and 

3D IC integration. In fact, the use of Micro bumps increases meaningfully the 

interconnections density with a low cost. In order to decrease their resistance, the Micro 

bumps are usually made up of Cu and Sn. Different bonding processes have been developed 

for example the solid-liquid-inter diffusion method [58] and the thermal compression method 

[59].  

 We present in Figure  ����, an example of a fabrication process of CuSn Solder Micro 

bumps [60]. The Micro bumps are created on both sides of the Si chips to allow the assembly 

of the 3D Chip with a Face to Face stacking method (see Figure  ���B).  

�

Figure  3.10. 3D Chip with Micro Bumps 
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 At the first step, two layers of SiO2 and Al films with a thick of 1µm are deposited on 

the wafer (Figure  ����.a). Then a patterned layer of 2µm photoresist is applied (Figure  ����.b). 

In order to form the metal pad the Al is etched and the photoresist is removed (Figure  ����.c). 

Another layer which has a passivation function is applied (Figure  ����.(d,e,f)). After this, a 

Ta/Cu of adhesion layer and seed layer are sputtered (Figure  ����.g). After deposing a layer of 

a thick photoresist (Figure  ����.h), the CuSn is applied. In the last step, the photo resist is 

stripped; the Cu and the Ta are etched sequentially.   

�

Figure  3.11. Process flow fabrications of CuSn solder Microbump[ 60] 

 This 3D approach is used by many companies. For example the company IMEC [61] 

is providing CMOS image Sensors with high interconnect density using the Bump with a 

pitch of 20µm in CuSn. These Micro bumps are illustrated in Figure  ����.  

�

Figure  3.12. SEM picture a die part of the interwoven daisy chain with 10µm diameter CuSn bumps 
formed by electrochemical plating. The pitch of the bumps is 20µm [61] 

 

�
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3.3.4 Through silicon via (TSV) 

�

Figure  3.13. Through silicon via (TSV)[62] 

 The TSV (Through Silicon Via) is the most used 3D technology because it can be 

scaled to achieve a high vertical connection density. It presents also physical advantages like 

low electrical resistance, low parasitic capacity and impedance which represent real 

motivations in the Microelectronics design. The 3 main steps in the fabrication of a 3D IC are:  

•  Wafer Thinning 

•  TSV etching and filling 

•  Tier Bonding   

 When we change the order of those steps we can define different processes like “TSV 

first”, “TSV last” and ‘’ TSV middle’’.  

3.3.4.1 Structure  

 The TSV is basically characterized by its diameter and its pitch. These two values are 

shrinking when the technology is improved. We present in Table  ���, the prediction of ITRS 

roadmap for the 3D TSV evolution. In fact by 2015, the TSV diameter will reach 1µm while 

the TSV pitch will be equal to 2.5 µm. This evolution will increase the density of the 3D 

interconnections in a 3D chip and improve the global interconnect delay.  

Table  3.2. High-density through silicon via projections in 2008 ITRS update [63] 

Principle 
parameters 

2008 2009 2010 2011 2012 2013 2014 2015 

TSV diameter, 
D(µm) 

1.6 1.5 1.4 1.3 1.3 1.2 1.2 1 

TSV pitch, 
P(µm) 

5.6 5.5 4.4 3.8 3.8 2.7 2.6 2.5 

Pad spacing, 
S(µm) 

1 1 1 0.5 0.5 0.5 0.5 0.5 

Pad diameter, 
PD(µm) 

4.6 4.5 3.4 3.3 3.3 2.2 2.1 2 

Bonding 
accuracy, 

�(µm), 3 sigma 

1.5 1.5 1 1 1 0.5 0.5 0.5 
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Figure  3.14. TSV examples [64] 

 Figure  ���� is an illustration of different TSV examples designed in [64]. The diameter 

is varying from 20µm to 70µm while the deep is in the margin of 100-140µm. Thanks to this 

configuration the TSV density can allow for a pitch of 10µm a number of 10 000 vertical TSV 

connections on the area of 1mm2. 

3.3.4.2 Process of fabrication 

�

Figure  3.15. General TSV flow fabrication [65] 

 We present in Figure  ���	, a WOW (Wafer On Wafer) flow process. At the first step 

illustrated by (A) the Si wafer called Substrate I is thinned  then bonded to another Si Wafer 

(Si Substrate II) (B). These two steps are the step of thinning and bonding. During the third 

operation called “Debonding”, the support glass is removed. The TSV etching is performed 

during the fourth step of this process. Playing the role of an isolator, the SiN is chemically 

deposited inside the TSV holes (E) then the TSV is filled with the metal Cu which is 



A.M’zah      3D MPSOC 
  

74�
�

illustrated in Figure  ���	 (F). After the Wafer stacking the process is repeated to create all the 

TSVs at the different levels.  

 The presented process is related to the Via first process fabrication. In fact, The TSV 

creation is performed before the stacking operation. When we invert the order of these steps, 

the process is called Via last. We can see the difference between the two methodologies in 

Figure  ����. The summary of the different TSV process flows is presented in Table  ���. 

�

Figure  3.16. Via first (left), Via last (right) 3D IC methodologies[63] 
 

Table  3.3. TSV process flows [63] 

TSV first TSV middle TSV last 
Etch deep silicon cavities Etch deep silicon cavities Fabricate transistors 

Insulate cavities Insulate cavities 
Fabricate BEOL 
interconnect 

Fill cavities with a conductor Fabricate transistors Bond Wafer pair 

Fabricate BEOL interconnect Fill cavities with a conductor 
Thin backside of upper 

wafer 

Bond wafer pair Fabricate BEOL interconnect 
Backside etch deep silicon 

cavities 
Thin Backside of upper wafer Bond wafer pair Insulate cavities 

Fabricate BEOL interconnect on upper   wafer Thin backside of upper wafer Fill cavities with conductor 
�

3.3.4.3 Stacking Methods 

 The step of stacking or bonding can be realized with different methods: Chip to chip, 

chip to wafer or Wafer to Wafer. The choice of the appropriate technology depends on the 

user’s application and especially on the size of the die, the density of the interconnections, the 
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alignment and the bonding yield. The main advantage of using a Chip to Chip, or a Chip to 

Wafer methodologies is the possibility to test the used dies before the stacking operation 

which reduces the probability of the design failure. In fact only Known Good Die (KGD) 

which are already tested are used. This is not the case when we use a wafer to wafer 

technology where the testing step is performed at after the fabrication of the whole chip.  For 

this last approach the low cost is the main argument to choose it. Adding other steps in the 3D 

IC process fabrication represents the principle inconvenient in the Chip stacking techniques.  

Table  3.4. Comparison between bonding methods (KGD: Known Good Die)[60] 

�

 Stacking methods can be also classified with reference to the direction of the active 

Silicon area into 3 families: Face to Face, Back to Back and Face to Back (see Figure  ���C). 

The Face  to Face stacking is also suitable for 3D IC using Micro Bumps. For both solutions 

(Face to Face and Back to Back) the number of dies is limited to 2 which is the major 

limitation of theses technologies. The Face to back methodology is more scalable and gives 

the possibility to use a non limited number of stacked dies.   

�

�
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Figure  3.17. Stacking Methods[66] 

3.3.4.4 TSV properties 

 We present in Table  ��	, the comparison between the used materials to fill the TSV. 

The copper presents the main advantage which is the high conductivity and the compatibility 

with the FEOL process. That is why; it is the most used in TSV technology. The Tungsten 

(W) is also a common material in the 3D integration but it has lower conductivity compared 

to the Copper. For the other materials, the low conductivity and the high price are the major 

problems limiting their use in 3D IC.   

Table  3.5. Comparison of Via Filling Materials [55] 

�
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 The use of the TSV can increase meaningfully the frequency of the design. In fact the 

delay is reduced to less than 1fs while it is more than 10 ps in a conventional CMOS wire 

[67]. The RC delay value in TSV depends on its material and on its diameter. We present in 

Figure  ����, the variation of this value function of the TSV diameter for Copper and Tungsten. 

We can see that the copper has a better conductivity than Tungsten with lower RC delay 

values. For both materials the RC delay is proportional to the TSV diameter.   

�

Figure  3.18. RC delay vsTSV diameter[67] 

3.3.4.5 TSV challenges 

 Even though TSV technology is a promising technique by reducing the problem of 

interconnect delay and form factor, it is facing a number of challenges. Area consumption is 

one of the main problems. In fact , one TSV fits in a significant silicon area : For example a 

TSV size is about 5 to 10 times the size of a standard cell in 32 nm (see Figure  ���A), which is 

also about 15 to 30 times of the  minimum width of M1 [68]. The use of TSV has reached 

66% of the total area consumption in the 3D design presented in [69].The shortage of TSV 

tools, the high cost and the difficulty to test the chip are also challenges in the TSV 

methodology.  

�

Figure  3.19. TSV Area estimation[68] 
�

�
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3.3.5 Contactless 

 Contactless coupling is another methodology of 3D design which does not require the 

processing steps to create the connections between the different layers. That is why this 

method is known to be cheaper than TSV or wire bonding methods.  We can have two ways 

of contactless coupling: the inductive and the capacitive. When the vertical connections are 

based on the inductive coupling (see Figure  ���B), each layer has spiral conductor which is 

responsible of the vertical communications. In the capacitive coupling the small plate 

capacitors on chip are playing the role of the vertical interconnects.   

Figure  3.20. 3D IC Inductive coupling[57]   Figure  3.21. 3D IC capacitive coupling[70] 

3.4 Benefits and challenges in 3D Design 

 3D IC stacking and use high number of vertical connections presents a lot of 

advantages for the final 3D chip. However there is a shortage of adequate tools to perform all 

the steps of the 3D design. We will detail in this sub section the benefits and the challenges of 

the 3D design approach.  

3.4.1 Benefits of 3D Design 

3.4.1.1 Area Reduction: 

 3D design is considered as the new way to continue the evolution of semi conductor 

technology. A new rule know by “More than Moore “predicts to find new solutions for this 

domain (see Figure  ������3D Stacking represents a promising solution to reduce the chip area. 

In fact, when the number of stacks increases the total chip area is reduced; an illustration of 

this reduction is presented in Figure  ����. For a square Chip format, the area can be reduced to 

the half when the number of layers doubles: a 2D chip with an area A can be realized by a 3D 

chip with 2 layers but with an area equal to A/2.  This is a suitable technique for big sizes of 

memory stacking. 

�
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Figure  3.22. Area reduction with 3D Stacking [71] 

3.4.1.2 Performance improvement 

 The use of the 3D design reduces the area of the chip which directly affects the 

interconnection length. In fact, we can see that the longest 2D length in the 2D chip with an 

area A is equal to 03� as already illustrated in Figure  ����. When the number of dies 

increases to 4, the maximum length of a wire can be equal to 3�. If we increase the number 

of layers to n stacked dies, the maximum length will be reduced to 3�  3�.  The reduction of 

the global interconnection delay improves the performance of the chip by reducing the 

propagation delay time of the wires. We present in Table  ���, a comparison between the 

interconnect delay values when the number of levels increases. The reduction of the 

interconnect delay can reach 32% compared to a classical 2D design (ex: kogge-Stone 

Adder).  

 For tight technology, the interconnect delay reduction in 3D IC design, improves the 

chip performance better than CMOS scaling. This result is illustrated in Figure  ���� : scaling 

the technology from 90n nm to 65 nm reduces 7% of the average latency of the design, while 

with 3D IC and using the same technology the delay reduction is equal to 14% of the initial 

value. This comment is also valid with the technology 65 nm and 45 nm. The difference 

between the two techniques is more important when the technology is tighter. In fact for the 

45 nm technology, the gain in term of delay reduction with 3D IC is about 22% while it is 

only equal to 7% with a 2D design using 32nm CMOS.     

Table  3.6. Performance and power comparison between different  3D architectures[71] 
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Figure  3.23. Average latency 3D IC and 2D IC [67] 

3.4.1.3 Improve power consumption 
 
 Power consumption is considered as the second most important design optimization 

objective after cost nowadays. The chips are almost used in portable devices like cell phones 

that is why power should be minimized in order to maximize the time between battery 

recharges. The reduction of the interconnection’s length, thanks to the use of the vertical links 

in 3D IC design, reduces the number of repeaters per gate Figure  ����. This reduction 

decreases the power consumption of the whole design.  

 

�

Figure  3.24. Number of repeaters with different technologies 

3.4.1.4 Heterogeneous Technology 

 A typical Chip design includes different modules with different functionalities: 

Processing, memory, networking... In order to optimize the functionality of each IP, it is 

better to choose the suitable process of fabrication. This possibility is offered by the 3D 

stacking, allowing the connection between different dies of the chip even having different 

CMOS technologies. Dies can be produced by different vendors and then packaged in the 

same 3D chip. 
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Figure  3.25. 3D chip with heterogenous technologies [72] 

3.4.1.5 Cost reduction 

 The cost is the real motivation behind the evolution of semi conductor technology. The 

classical CMOS scaling technique is becoming more difficult and more expensive to develop 

with tight technologies. The price of developing a new process for a new node technology is 

becoming so expensive that only big companies can choose it. We present in Figure  3.2, the 

cost of 3D approaches compared to 2D design integration. From these curves we can conclude 

that, when the number of gates increases the cost of 3D techniques (W2W and D2W) is 

usually lower than the cost of 2D integration.   

 

3.4.2 Challenges of 3D Design 

3.4.2.1 Thermal dissipation 

 Thermal dissipation is a critical challenge in 3D design. In fact a 3D chip with stacked 

dies has higher temperature than a classical 2D design. A case study of a wireless sensor node 

presented in [69], shows that when the number of levels increases in 3D design the 

temperature increases. The obtained results are illustrated in Figure  ����. There is a 

meaningful difference between the temperature of the first layer and the second one ( more 

than 200% of difference). It is clear that farther layers have higher Temperature. Thermal 

dissipation is a serious problem in chip design, in fact an increase of 15°C increases up to 

15% of the interconnect delay and reduces the chip life time by 4 times[73].   
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Figure  3.26. Temperature distribution along the z Axis with different Silicon layers [69] 

 To deal with this limitation, some methods are proposed to reduce the chip 

temperature. In fact, Thermal vias can be added to ensure the heat transfer from the different 

levels of the 3D chip. The Cu TSV, known by its high conductivity, is used to perform this 

operation (see Figure  ����). These TSVs are passing through all the dies of the 3D chip. 

Microfluidic cooling is also another proposed solution to evacuate the heat from the 3D chip, 

this method is illustrated in Figure  ���C. 

��

     Figure  3.27. Microfluidic cooling         
         Figure  3.28. Thermal vias for heat dissipation [74] 
        
  
�
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3.4.2.2 Difficult Testing 

�

Figure  3.29. Examples of TSV defects: insufficiently filled TSV (right), TSV containing Micro voids (left) 
   

Table  3.7. Reduction of integrated yield with stacking using wafer on wafer [70] 

Number of tiers 1 2 3 4 

Yield 95% 91% 85% 81% 

� During the step of TSV fabrication, many defaults can cause the damage of the whole 

system on chip. We present in Figure  ���A, two examples of TSV defects. When the TSV is 

not fully filled or containing micro voids, the vertical interconnect is not ensured. That is why 

when the number of stacks increases the yield of the chip decreases which is presented in 

Table  3.7 , this value can move from 95% for one layer to 81% with a 3D chip having 4 

layers. The need of developing suitable testing methodologies is a real need to prevent such 

situations. Testing 3D becomes costly when the number of stacks increases especially when 

the designer wants to perform a complete test, an illustration of an example of 3D testing chip 

is presented in Figure  3.30.   

�

Figure  3.30. 3D IC testing model[75] 
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3.4.2.3 Bonding strategy 

 There is three different ways to perform 3D bonding: wafer to wafer, die to wafer and 

die to die. We have already presented the advantages and the issues of each methodology 

Table  ���. Wafer to wafer bonding is the fastest one as all the wafers are created at the same 

time with the constraint to have dies with the same size and shape at the same wafer which 

reduces the possibility to have heterogeneous architectural layers. In the die to wafer stacking, 

we can have different dies on the same wafer. Single dies will be stacked on the fixed wafer. 

Even though this method presents a better freedom in term of design, the problem of 

alignment is more difficult. The die to die Bonding offers the freest way to use mixed 

technologies on 3D design however it increases production time and cost meaningfully[63]. 

3.5 3D Academic and industrial devices 

�

Figure  3.31.Geographic mapping of 3D IC players [76] 

 Figure  ���� represents the actual geographic mapping of the players in the 3D IC field. 

It is clear that 3D design is attracting the big semi conductor leaders. 3D stacking is 

commonly used in CMOS image Sensors by different companies like IBM, Samsung, Sharp ( 

see Figure  ����).  3D research field is attracting industrial and academic labs. Even though 

researches are progressing, there is a real course between concurrent industrials to develop the 

first industrial 3D chip.   

�
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Figure  3.32. 3D TSV applications and players [77] 

3.5.1 3D Academic  

We present the principle 3D IC tools dedicated for real implementation developed by 

Academic labs: 

•  3D Magic tool ( MIT company) 

•  MIT  – cu-cu bonding, 3D Magic tool 1 

•  CEA-Leti  – 3D integration toolbox 2 

•  Pennsylvania SU – 3DCACTI3 

•  UCLA – MEVA-3D 

 

3.5.2 3D industrial  

•  Tezzaron: via-last, metal thermal bonding, wafer level stacking, FaStack  

•  Ziptronic: covalent oxide bonding, DBI and ZiBond  

•  ZyCube: adhesive bonding, micro bumps  

�

3.6 Conclusion 

 3D IC design is a semi conductor methodology offering new solutions to overcome the 

interconnect delay which is more important then the interconnect delay when using nanometre 

technologies. Depending on the properties of the design, we can choose different techniques 
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of stacking like wafer to wafer, die to wafer and die to die. The vertical interconnections are 

usually performed using TSV (Through Silicon Via).  

 3D IC design offers various advantages like the chip area reduction, the decrease of 

the interconnect delay and the decrease of power consumption, but challenges are also 

considerable. In fact, the heat dissipation and the shortage of specific 3D tools represent the 

major actual 3D IC difficulties.  

 The main objective of this chapter was to detail the different characteristics of the 3D 

technology in order to take them in consideration during the NoC synthesis step.   
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4 NoC Synthesis methodologies 

 In 3D IC design, new challenges should be taken in consideration like TSV 

assignment, heat dissipation and partitioning. With the high cost of the 3D IC design, the 

designer should consider the additional constraints in order to generate an optimized 3D NoC 

for a set of objectives; a such problematic is called the 3D NoC synthesis problem which will 

be the subject of this chapter.  

4.1 2D NoC synthesis methodologies 

Network-on-Chip (NoC) architectures have been gaining widespread acceptance as the 

new communication technology for multi-core systems, thanks to their high scalability, their 

predictability, and their performance. However, regular NoCs are resources hungry 

components; this fact represents the main reason to create NoC synthesis methodologies 

satisfying with optimal resources the needs of a particular application.  

The definition of the NoC synthesis problem is the generation of a NoC topology 

optimized for a specific objective function with respect to various constraints.  The NoC 

synthesis methodology should consider a multitude of non-trivial design problems which 

enlarge the design space of the possible configurations that is why some people choose to use 

heuristic methods to deal with this complexity. In spite of the complexity known to be NP-

hard, some other use deterministic methods which are a real guarantee to find the optimized 

solution. Trying to find a deal between time and accuracy, we can find methods using a 

mixture of heuristic and deterministic techniques. 

4.1.1 Deterministic methods 

 The Linear Programming (LP) and the Genetic Algorithms (GA) are the main 

deterministic used methods in the literature to solve the NoC synthesis problem. The 

resolution of this problem with Linear Programming, when solved, will generate the 

optimized solution but when the problem is complex the resolution time can be too important 

that we can face memory or solver limitations. When the Design Space of possible NoC 

configurations is huge making impossible a Linear Programming resolution, a GA can be the 

solution. The use of GA coupled with the exploration of the Design Space does not guarantee 

reaching the optimized solution but will approach it in a faster time compared to exact 

methods. The main advantage of GA is the possibility to solve accurately multi objective 

problems, which is not the case of LP, in this case the resolution of the problem will not be a 
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single solution but a set of possible solutions representing a Pareto Front curve. Srinvasan et 

al [78] have presented an integer linear programming (ILP) to generate a low power custom 

NoC topology. In this work, authors have divided the NoC synthesis problem into 2 sub 

problems: a floorplanning problem and the interconnection problem. M.Jun et al have used in 

[79][80] a Mixed Integer Linear Programming (MILP) as a step of an iterative method to 

solve the NoC synthesis problem. The GA has been used in [81] to generate two NoC 

architectures: the first one is optimized for area while the other one is optimized for delay. 

The generated solution is a combination of both separate topologies. This technology is also 

used in other papers like [82][83]. In the majority of these previous works, an operation of 

core partitioning is applied at some level to reduce the mathematical complexity of the 

problem. This step is in the majority of cases done with heuristic algorithms.  

4.1.2 Mixed methods  

 In the previous section we presented works using deterministic methods for the main 

NoC synthesis step. In reality the problem can be divided into sub problems and in this case 

we can find that in some works authors use a deterministic method in one step while they use 

a heuristic methodology in another. We present in Table  ���, the summary of 2D NoC 

synthesis methodologies. The work of K.Srinvasan et al presented in [78], is in reality a 

mixture of deterministic and heuristics methodologies. Even though the principle steps of the 

NoC synthesis problem were performed using LP algorithm, some steps like the floorplanning 

of the routers or the clustering were heuristics. In fact the authors have considered that routers 

can only be placed on the corners of the cores. The NoC synthesis solution proposed by B.Yu 

et al in [84], is based on the Min-Cut algorithm for partitioning and NoC synthesis generation. 

In this work authors suppose that the routers can only be only inserted in the white places of 

the floorplan.  

4.1.3 Heuristic methods 

 In some works, authors choose heuristic methods to solve the problem of NoC 

synthesis. In the quasi totality of the cases, this is used to reduce the complexity of the 

problem when deterministic methods fail to generate the optimized solution. Heuristic is 

usually used in clustering and solution post processing. V. Dumitriu et al [85], have used a 

fully heuristic method to deal with the complexity of the NoC synthesis problem. Using the 

principle of merging and dividing routers, the authors can explore different topologies. With 

this method there is no prove to attend the optimized solution, but this algorithm can find 
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feasible solutions for complex designs. It is interesting to study the reduction of the 

complexity when using heuristic methods which is the real motivation to choose between the 

different proposed solutions. In the majority of the presented solutions, there is a need to 

study the theoretical complexity of the proposed methodology and the complexity of the 

tested benchmarks.  

 Table  4.1. Summary of 2D NOC synthesis Methods 

Works Clustering Core 

Floorplanning 

algorithm 

Switches 

Placement 

algorithm 

NoC 

Topology 

Assumptions Nature 

K.Srinvasan  

et al 

[78] 

* Heuristic * MILP(Mixed 

Integer Linear 

Programming) 

*Heuristic *MILP(Mixed 

Integer Linear 

Programming) 

* Routers are 

smaller than 

cores. 

* Place routers 

in the corners. 

Mixed( 

deterministic 

+ 

Heuristic) 

M.Jun et al 

MIRO 

[79] 

*Heuristic * Parquet tool: 

system level 

Floorplanner 

*Heuristic *MILP * Single 

frequency of the 

crossbar switch 

network. 

* Single path 

between two 

communicating 

terminals. 

Mixed( 

deterministic 

+ 

Heuristic) 

M.Jun et al 

[80] 

*No *No *No *MILP * Consider only 

the router hops. 

deterministic 

A.A.Morgan 

et al 

[81] 

*No * No *No *MOGA * The length of 

all the links is 

the same and 

allows for a 

single clock 

cycle data 

transfer 

*Fixed routers 

number 

deterministic 

G.Leary et 

al [82] 

*No *Parquet 

floorplanner 

*MOGA *MOGA * Latency 

constraints are 

represented by 

the number of 

deterministic 



A.M’zah      3D MPSOC 
  

91�
�

4.2 FPGA based NoC synthesis Design Flow 

 Even though the problem of NoC synthesis has been treated since many years, only 

limited number of works have performed real implementation. In this section, we present the 

main NoC synthesis design flow in the literature based on FPGA execution.  

�

Figure  4.1. NoC synthesis on FPGA [87] 

 The objectives and the constraints specification represents the first step of the NoC 

synthesis flow presented in Figure  ���. The library of the routers and the characteristics of the 

application are also inputs to the workflow.  During the step of Network generation, the user 

changes the values of the aimed frequency, the maximum number of routers and the link 

width. For each configuration, the algorithm should find the optimized NoC topology 

satisfying all the user constraints. The generated topology is then simulated before the step of 

hops. 

X.Li, 

O.Hammami 

[86] 

*No *No *No *MOGA * Consider a 

NoC with only 

2 stages. 

deterministic 

B.Yu et al 

[84] 

*yes , 

Min-cut 

*yes *Heuristic *Min-cost *consider 

partitioning 

after  

floorplanning 

Mixed( 

deterministic 

+ 

Heuristic) 

V.�Dumitriu 

[85] 

*No *No *No * point-to-
point oriented 
algorithm 
*   Partitioned 
Crossbar 
Topologies 

* use the 

principle of 

merging and 

dividing routers. 

Heuristic 
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implementation. In this methodology, authors have chosen to vary the maximum number of 

used routers in order to deal with the complexity of the general problem. This exploration is 

limited by the number of the cores in the design; in fact the authors supposed that the number 

of routers should not overcome the number of cores.  

 X.Li and O.Hammami have proposed a new NoC synthesis methodology with FPGA 

emulation. The used workflow is summarized in Figure  ���. The user objectives, the core 

graph properties and the constraints are the input of this methodology. Depending on the used 

core graph, the space of exploration is defined in function of the number of nodes and the 

number of switches in each stage. After the generation of the initial population, different NoC 

architectures are constructed. For each proposed design the total area of the NoC is 

determined referring to the used switch library. At this level, a TLM simulation is performed 

to measure the performance of the design. If the solution is not satisfying the user constraints, 

a penalty is automatically added to the fitness function. The MOEA performs the different 

steps of genetic algorithm to select the best solutions at each generation. At the end of this 

exploration, a number of solutions are defining the Pareto solutions depending on the 

objectives of the user.  

�

Figure  4.2. 2D NoC synthesis workflow  
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 J.Lee et al have proposed in [88], an analytical model based on simple equations 

defining the dependence between the operating frequency of the design and the different 

parameters of the architecture like the number of nodes, the links properties and the used 

board. This model can predict the implementation result of a specific design on a chosen 

FPGA platform. Authors have used different families of FPGA (Virtex 2,4,5,6) and different 

architectures to create the predictive model. Figure  ��� illustrates the variation of the 

frequency of the design when the number of nodes and the average degree change. When the 

number of nodes increases the operation frequency decreases, the average degree is also a 

very important parameter affecting the performance of the design. 

�

Figure  4.3. Prediction of the Frequency variation when the number and the average node degree of the 
benchmark change [88] 

 A.Kumar et al have proposed an integrated flow in order to generate a highly 

configurable NoC suitable for FPGA implementation, this methodology is presented in Figure 

 ���. The description of the complete architecture is performed at the high level of abstraction. 

In fact the VHDL of the processing cores and the NoC components are generated at the same 

level with their simulation models.  In this workflow, a hardware description which is FPGA 

level HDL is also provided at the top level of this methodology. Handel-C will then generate 

the EDIF files from the VHDL files which are used together with the system level EDIF files 

during the step of place and route on FPGA. The P&R tool generates at the end of this 

workflow the bit file to be embedded on FPGA.  The user can also create an ASIC design 

from the VHDL files. 
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Figure  4.4. An FPGA design flow[19] 

�

Figure  4.5. The overall flow for analyzing multiple use-cases: the software part is performed for each 
application, the hardware is performed only one time [89] 

 A.Kumar et al have developed a new methodology for 2D application specific NoC on 

FPGA presented in [89]. In this solution, authors proposed to generate a common hardware 

design suitable for different specific applications. Different Use-cases defining multiple 

coregraphs are the first input of this workflow. For each one, there is a specific hardware and 

software properties which should be respected. The study of all the use-cases allows the 

generation of a unique communication matrix satisfying all the input requirements. Thanks to 
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this matrix, the user can define the hardware description of the full design or the software of 

only one application. The grey boxes are determining the steps to be applied with all the Use-

cases separately. The software part is studied for each input application in order to specify the 

hardware needs and properties. The configuration of the FPGA is updated via the bit file 

during each iteration. We notice that the hardware flow part is performed only one time. The 

bit file is updated to take in account the software specifications of all the applications.  When 

the exploration of all the benchmarks is performed, the final multiple use-cases is generated. 

Such methodology is very interesting to optimize the MPSOC architecture for real multimedia 

devices using different functional modules. 

�

4.3 Case study and performance evaluation results 

 We propose in this section our 2D NoC synthesis solution with Linear Programming. 

We create a mathematical model describing our application specific NoC. We present in this 

section our LP problem definition and the obtained results. 

4.3.1 Introduction to linear programming LP 

 The Linear Programming can be defined as the generation of a solution which 

maximizes or minimizes a linear objective function subject to linear constraints. This 

algorithm can be used in different real life applications like scheduling, minimizing the cost of 

a production and maximizing the profit. We present a simple example of a LP : 

 We suppose that we want to find the maximum of the sum 4�5 ! 5�� � 5 6 5� 

subject to the following constraints:  

5 6 05� - 7 

75 6 05� - /0 

	5 6 5� - / 

5 � 8 .! 5� 8 . 

 In this problem there is only two unknown variables called the decision variables 

which are X1 and X2 and five constraints. The objective function F and all the constraints are 

linear. All the constraints are in form of inequalities. The two constraints 5 � 8 .! 5� 8 .  are 

called nonnegativity constraints, the other constraints are defined as main constraints. The 

function F to be maximized is called the objective function. As we have only two variables to 
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find, this problem can be graphically solved as illustrated in Figure  ���. A graphical 

presentation of the objective function and the constraints, allows the definition of the feasible 

points presented by the grey region. It is easy to find the optimal point giving the maximum 

value of the objective function. 

�

Figure  4.6. LP graphical solution 

 When the number of decision variables is more than two, there are different algorithms 

to solve the problem like the Simplex method.   

4.3.2 OPL Modelling and CPLEX solver 

 We use in this section the OPL Modeling language to describe our linear 

Programming problem. This modeling language is provided by IMB ILOG OPL. The user 

should create a model file *.mod, describing the LP problem with the objective function and 

the different constraints. The initialization of the input data is performed in the input data file. 

These two files will be the input of the CPLEX solver to give the optimized solution. 

Applying the Simplex algorithm, the IBM ILOG CPLEX optimizer is a LP solver known to 

be efficient.  

4.3.3 Our LP Problem Definition 

 We propose in this section to model the NoC synthesis problem using the OPL 

language. A presentation of this problem can be defined as: 

 Given: 

•  A directed communication trace graph G(V,E),where each vi � V �denotes either a 

processing element or a memory unit and the directed edge ek = {v i,vj} � E denotes a 

communication trace from vi to vj. 

•  N is the cardinal of V, representing the total number of cores, NE is the cardinal of E 

which is the number of edges in the graph. 
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•  For each ek = {v i,vj} � E, �(ek) denotes the bandwidth requirements in bits/cycle. 

•  A library of routers Rout, for each ri � Rout, In(ri) denotes the number of the input 

router ports, Out(ri) denotes the number of output router ports, Area(ri) the area of the 

router, �(ri) is the peak bandwidth that one port can support bits/cycle ( we suppose 

that each router has the same peak bandwidth for all its input output ports). 

•  A set of the used routers R where R 9 Rout.   

•  For each core vi �V, Req(vi) � R denotes a router request associated to vi and Resp(vi) 

denotes a router response associated to vi .  

•  Er is the set of the used links between the routers. 

•  A set “long” defining a family of possible links with different lengths, we suppose that 

we have a fixed width for all the links. The length is to be defined in unit length. 

•  Freq : is the desired frequency for the NoC. 

•  Timehops: is the delay time needed for data to be routed through one router (ps). 

•  Linkdelay : is a delay time for each unit length specified in ps. 

 

 The objective of the NoC synthesis problem is to : 

•  Generate a NoC topology T(R,V,Er)  

•  Define the area and number of input output ports of each used router. 

•  Define the length of each link. 

Such that: 

•  For each ek ={v i,vj}} � E , there exists a route p={(vi, rm),(rm,rn),..,(rc,vj) }that satisfies 

�(ek) 

•  The bandwidth constraints on the ports of the routers are satisfied. 

•  The total area of the NoC is minimized. 

•  The aimed NoC frequency is respected. 

Linear problem formulation 

 

 In this section, we present the linear problem formulation of the NoC synthesis 

problem. We present some used assumptions to simplify the problem formulation: 

•  We affect to each couple of routers related to a core vi these value Req(vi)=i and 

Resp(vi)=i+N.  
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•  Each edge ek={vi,vj} must pass through the switch Req(vi)=i and through the switch 

Resp(vj)= vj +N. 

•  Req = {0..N-1} is representing the set of the request routers of all the cores. 

•  Resp={N..2*N-1} is representing the set of the response routers of all the cores.  

•  For each request router Req(vi)=i we associate a set of routers destination in the set 

Resp  defined as : r � Dest(i) if � ek={vi,vj} � E / Resp(vj)=r. 

•  For each response router Resp(vj)=j+N we associate a set of routers origin in the set 

Req  defined as : r � Orig(j+N) if � ek={vi,vj} � E / Req(vj)=r. 

•  Lr,w is representing a link between the router r in R  and the router  w � R_{r}. 

 Decision Variables 

  Independent variables 

•  For each edge ek � E, r � R, w � R_{r] and for each link lr,w , we define the Boolean 

variable XRR[ek][lr,w] . This variable is equal to 1 if the edge ek pass through the link lr,w , 

0 else. 

•  For each used router r � R and for each family of router rout � Rout we define the 

Boolean variable XRF[r][rout] . This variable is equal to 1 if the router r has the type family 

of rout, 0 else. 

•  For each used link lr,w with r � R, w � R_{r } we define the Boolean variable 

Long[lr,w][long] , which is equal to 1 when the link lr,w  has a length equal to long, 0 else. 

 

Dependent variables 

•  For each r : Req , ek : E and w : R\{r}, we define a boolean variable  Xrrm[r][w] 

which is  equal to 1 if there is a link between r and w, 0 otherwise. This variable is equal to 1 

if there exits at least   for any edge ek a variable XRR[ek][lw,r] equal to 1, else XRR[ek][lw,r] 

will be null. We can express this variable as:       

{ },],][[max]][[ rlwekXRRwrXrrm =  for each ek � E 

•  For each router r=Req(vi) � Req , we define the integer variable Xrm[r] which is equal 

to the number of input ports of the router r. We suppose that each router r has an input port 

linked to the corresponding core vi that is why we add the value 1 to the variable. 
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•  For each r ; Req, ek ; E and w � R, we define a Boolean variable Yrrm[r][w]. This 

variable is equal to 1 if there exits at least, for any edge ek a variable, the value XRR[ek][lr,w] 

which is equal to1, else XRR[ek][lr,w] will be null. We can express this variable as :    

{ },],][[max]][[ wlrekXRRwrYrrm =  for each ek � E 

 

•  For each router r=Req(vi) � Req , we define the integer variable Yrm[r] which is equal 

to the number of output ports of the router r.  

�
−

=

=
1*2

0

]][[][
N

w

wrYrrmrYrm
 

•  For each r � Resp, ek � E and w � R, we define a Boolean variable Xrrs[r][w]. This 

variable is equal to 1 if there exits at least for any edge ek a variable XRR[ek][lw,r] equal to1, 

else XRR[ek][lw,r] will be null. We can express this variable as:       

{ },],][[max]][[ rlwekXRRwrXrrs =  for each ek � E 

•  For each router r=Resp(vi) � Resp , we define the integer variable Xrs[r] which is 

equal to the number of input ports of the router r.  

�
−

=

=
1*2

0

]][[][
N

w

wrXrrsrXrs
 

•  For each r=Resp(vi) � Resp, ek � E and w � R, we define a Boolean variable 

Yrrs[r][w]. This variable is equal to 1 if there exits at least   for any edge ek a variable 

XRR[ek][lr,w] equal to1, else XRR[ek][lr,w] will be null. Each router r has one link to its 

associated core vi. We can express this variable as:       

{ },],][[max]][[ wlrekXRRwrYrrs =  for each ek � E 

 

•  For each router r=Resp(vi) � Resp , we define the integer variable Yrs[r] which is 

equal to the number of output ports of the router r.  

�
−

=

+=
1*2

0

]][[1][
N

w

wrXrrmrXrm
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1*2
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N

w

wrYrrsrYrs
 

•  For each router r � R, we define an integer variable Area[r] which is equal to the area 

of the used switch. Each used router is affected to a family router type Rout � L. We define 

this variable as: 

�
=

=
)(

0

)(*]][[][
Lcardinal

w

wAreawrXRFrArea
 

•  For each link lr,w defined in the NoC topology we associate the variable linklong[l] 

which is equal to its length. We define this variable as : 

�
=

=
)(

0

*]][[][
longcardinal

k

kklLonglLinklong
 

•  For each edge ek � E, we define the total length of all the links defined for this edge as: 

�
∈

=
LRRl

llinklonglekXRRekLinkedge ][*]][[][
 

 Objective Function 

 The objective of this NoC synthesis problem is to generate a NoC topology which 

minimizes the area of the NoC taking in consideration the area of routers and links subject to 

a given timing delay constraint. We define the total area of the NoC as: 

���������� � < �=���=� 6� < >���?*�@�?��
A:BCC

�DE 

FGH
 

 Constraints 

•   C1 : For each router r � R and for each edge ek=(vi,vj) � E : r=Req(vi) or Resp(vi), 

there is exactly one link between vi and wi � {Dest(vi) Union Orig(vj})}  

{ ,1],][[
)()(� ∪∈

=
vjOrigrDestw

wlreXRR
 for each r � R, for each ek=(vi,vj) � E 

 

•  C2 :  There is one link at most between 2 routers : 
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{ }rRwqrrwXrrmwrXrrm _,Re,1]][[]][[ ∈∈≤+

 { }rRwsprrwXrrswrXrrs _,Re,1]][[]][[ ∈∈≤+  

•  C3: for each router if there is an input link related to an edge ek there is an output link 

for this edge. 

:],][[],][[ vjlreXRRrlvieXRR ≤   { })(Re),(Re_,),( vjspviqRrEvjvie ∈∈=  

•  C4: A link passes through a router if it is the origin or the destination of this link. 

  for all e=(vi,vj) 9 E, r � R\{Req(vi)} and w � R\{Resp(vj)} 

•  C5: the bandwidth of the edge must be less than the peak bandwidth of the chosen 

family router. 

{ }rRwRrEvjvie

ffrXRFekwlrekXRR
Routf

_,,),(

)(*]][[)(*],][[

∈∈∈=

Ω≤ � ∈
ω

 

•  C6: For each router r � R, we should have exactly one family from the library Rout. 

� =
=)(

0
1]][[

Routcardinal

f
frXRF

,for each router r � R 

•  C7: The number of the input and output ports of each router r � R should not exceed 

the corresponding number of the router family chosen. 

qrfInfrXRFrXrm
Routcardinal

f
Re),(*]][[][

)(

0
∈≤ � =  

sprfInfrXRFrXrs
Routcardinal

f
Re),(*]][[][

)(

0
∈≤ � =               

qrfOutfrXRFrYrm
Routcardinal

f
Re),(*]][[][

)(

0
∈≤ � =  

sprfOutfrXRFrYrs
Routcardinal

f
Re),(*]][[][

)(

0
∈≤� =  

•  C8: for each router r � R, the input flow should not exceed the output one. 

EeffOutfrXRF

erlweXRR

Routcardinal

f

rRwEe

∈Ω

≤

�

��

=

′∈∈

),(*)(*]][[

)(*],][[

)(

0

]_
ω

 

•  C9  :  for each link lw,r in LRR we should have one only one length: 

,0],][[ =wlreXRR
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LRRllonglXRR
longlong

∈=� ∈
,1]][[

 

•  C10: When a link does not exist in the generated topology, its length will be equal to 

0. 

{ } � ∈
≤

longk
kkrlwLongrlwekXRR *]][,[],][[max

, for each lw,r � LRR 

•  C11: The length of one link should not exceed a maximum value. 

LRRl

linklonglonglLong
longlong

∈

≤� ∈
,max*]][[

 

•  C12: The delay of time depending on the frequency of the NoC, should not be 

exceeded for each path. We take in consideration routers and link delay. 

max,/1*][

*)1]][[(

latlinkdelayeklinkedge

timehopslekXRR
LRRl

≤

+−� ∈  

4.3.4 Experimental Results 

 Even though it is possible to present and before the experimental results the complete 

resolution trace of the LP solver, this trace is based on an automatic execution of the Linear 

Programming Solver.  This technique is similar to all others used in Linear Programming 

resolution. Observing the intermediary resolution stages does not have any effect on the 

original model. 

 We test our program using the modelling language OPL to create the mathematical 

model and the tool CPLEX (version 12.2.0) to solve the generated problem. The used 

machine has a dual processor Pentium(R) Dual-Core CPU E6500 @ 2.93GHz with a 2G 

memory.  We need as an input file a *.data file where we define the properties of the core 

graph: the number of nodes, the different edges and the bandwidth of each edge. We define 

also the library of routers. In our case we have 64 possible configurations including the switch 

0 having the number of input output ports and area equal to 0. To avoid the case of giving 

solutions with routers having one input port and one output port or a router with only one 

input port or one output port we add to the library 3 fictive router configurations. These 3 

routers have an area equal to 0. In the output result, we will only keep routers with an area 

superior to 0. All the routers with an area null will be replaced by a simple link. 
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 We use various core graph of different applications like 263 dec M3 dec, 263 enc mp3 

dec, mp3 enc mp3dec, mpeg4, MPW, H.264 ( see Figure  ��C, Figure  ���) . In all these graphs, 

the bandwidth values which are mentioned on the edges are in Kbits/s. 

 We choose to affect to each core vi a couple of routers one for request Req(vi)=i and 

one for Resp(vi)=i+N. At the end, the generated solution is a combination of the remaining 

routers having a non null area. As we have already explained a router with an area equal to 0 

is replaced by a simple link. We can see in the generated solution of the application 263 enc 

MP3 dec (see Figure  ��C) that only 4 switches are needed to ensure the different 

communications between cores. Switch 12 is the response router of the core 0 and the switch 

0 is the request one. We propose to use properties of the technology 45 nm [90][87]. In Table 

 ���, we present the summary of the used parameters. We suppose that all the links have the 

same width which is the minimum specified by ITRS2004-2007. We choose to affect to all 

the used switches the same maximum value of delay time, represented by the variable 

Timehops.  

 

 

 

 

 

 With reference to Table  ���, we can compare the needed time to get the optimal 

solution of the presented multimedia applications. The execution time can give us a good idea 

about the complexity of core graph from the point of view of our solution methodology. If we 

compare the execution time of the 2 first applications, we can see that application 2 has less 

nodes and edges than application 1, but the solver takes longer time to find the optimal 

solution. In fact App (2), has a node with a degree equal to 5 whereas the maximum node 

degree in the App (1) is equal to 4. We can conclude that the complexity of the graph has a 

direct relation with the degrees of the nodes. App (5) takes 5058 seconds to find the optimal 

solution. This application has exactly the same number of nodes than App (4), the number of 

edges has only 4 more edges than application 4. If we analyse the core graph of H.264 we can 

see that the average degree is equal to 4.54. This core graph has many adjacent nodes with 

high degrees. This can be the reason of the complexity of the graph. 

Table  4.2. Semi conductor properties 

Timehops 253ps 

Linkdelay/1nm 100ps 

Freq 50Mhz 

Maxlink 200nm 
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Table  4.3. Properties and execution time for the different benchmarks 

 

Even though it is difficult to compare our work to another one as we don’t have the same 

mathematical problem modelling, we will try to compare the NoC topology size. For 

example, we propose to compare the NoC topology generated for the application 263 enc 

MP3 Dec in our work and in the work of Srinivasan et al [87]. The solution provided by our 

work needs 4 routers with a total number of ports is equal to 15 while the same application 

needs 5 routers with a total number of ports equals to 25. If we consider the area of routers 

from the Tezzaron library the area of our NoC is equal to 3897 (Nand 2x2) while it is equal to 

8340 (Nand 2x2) for the other work. Our problem modeling reduces the NoC area to 47% 

compared to the one generated in [87]. 

  

�
   
 
 
 
 
 
 
 
 
 

 
Figure  4.7. 263 enc MP3 Dec : coregraph (left), NoC toplogy (right) 

 
Table  4.4. Routers Description  263 Enc  MP3   Dec 

 
 
 
 
 
�

    

Application 
Number 
of nodes 

Number 
of edges 

Max(degree) 
Number of 

router 
Execution 
Time(s) 

App(1) 263 dec MP3 dec 14 15 4 4 24.3 
App(2) 263 enc MP3 dec 12 13 5 4 31.01 
App(3) MP3 enc MP3 dec 13 12 3 4 11.89 
App(4) MPEG 4 12 25 13 5 1512.88 
App(5) H.264 12 29 10 10 5058.83 
App(6) MWD 12 12 3 3 29 

r � R In(r) Out(r) �(r) Area( r) 
0 1 3 52 10¨6 1334 
12 2 2 44 10¨6 1448 
14 3 1 30 10¨6 611 
23 2 1 48 10¨6 504 

0

3

1 7 9
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2

8 1 0
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1 1

0
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Figure  4.8. MPEG4 Decoder[78] 
 

�
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Figure  4.9. MPEG 4 Decoder NoC topology 
�  
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Table  4.5. Routers Description MPEG 4 Decoder 
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Table  4.6. Router configurations H264 Decoder 

�

�

  

r �  R In(r) Out(r) �(r)(b/s) Area(r)(Nand2x2) 
4 1 3 52 10¨6 1334 
5 1 5 42 10¨6 2003 
12 2 1 48 10¨6 504 
13 4 6 48 10¨6 4464 
14 2 1 48 10¨6 504 
17 3 1 48 10¨6 504 
18 2 1 48 10¨6 504 
19 3 1 48 10¨6 504 
22 3 1 30 10¨6 611 
23 2 2 10¨6 611 

r ∈  R In(r) Out(r) �(r)(b/s) Area(r)(Nand2x2) 
1 1 5 42 10¨6 2003 
13 5 1 46 10¨6 828 
17 2 2 44 10¨6 1448 
18 2 2 44 10¨6 1448 
20 4 2 49 10¨6 2338 

16 2 4 46 10¨6 2252 

Figure  4.10. H264 Decoder 
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Figure  4.11. H264 Decoder NoC topology 
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4.1 Theoretical Complexity issues and 2D challenges  

 We evaluate in this section the mathematical complexity of our algorithm. The NoC 

synthesis problem is known to be NP-Hard. The complexity of this problematic increases 

when the number of nodes increases. To deal with this complexity, we choose to perform a 

coregraph partitioning related to the spatial adjacency between nodes. In the step of pre-

treatment, we define for each node a group of routers defining its space of exploration. In fact 

we reduce the design space exploration of a router to the set of the router destination of the 

node and their antecedent nodes. We present in Figure  4.12, the partition of the node 0: the 

request router of the node 0 can be connected to the response routers of its destinations (node 

1, node 3) and the request routers of their antecedent, in this case the node 4. 

 

Figure  4.12. Coregraph partitioning 

 We remind that N is the number of nodes in the coregraph and NE is the number of its 

edges. The complexity of the constraint C1 is equal to ))((max**2*( rgroupcardNNEθ , 

where NE is the number of edges, 2*N is the number of all routers in R, we define 

max_group( r ) as the maximum cardinal of the groups related to each router. We present the 

complexity of each constraint: 

•  C2: ))12(*2( −NNθ , N is the cardinal of V  

•  C3: ))22(*( −NNEθ  

•  C4: ))22(*( −NNEθ  

•  C5: ))(*)12(*2*( RoutcardNNNE −θ  

•  C6: ))(*2( RoutcardNθ  

•  C7: ))(*( RoutcardNθ  

•  C8: ))(**)12(*2( RoutcardNENN −θ  
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 From this study, we can see that the complexity of C1 is reduced as the router is now 

able to be connected to switches from his group. For other constraints like C5 and C8 the 

complexity is still important. This model can be improved to reduce the constraint of all other 

constraints.  

4.2 Conclusion 

 The NoC synthesis problem is the generation of NoC architecture optimized for a 

specific application and subject to a set of constraints. This problem is proven to be classified 

in the set of NP-Hard problems. For this reason, solving this problem with exact methods is 

not mathematically possible. 

 We presented in this chapter, the used methodologies in the literature to solve this 

problem. We can classify these methods into three families: the exact, the mixed and the 

heuristic methods. A solution is called exact, when only deterministic methods are used 

during all the steps of the workflow like the use of LP, Min-Cut, Djikstra… The use of such 

methodology can not solve the problems with a high degree of complexity. In the Mixed 

methodology, the user reduces the complexity of the problem by mixing the use of exact and 

heuristic algorithms. Fully heuristic methodology is the use of heuristic methods during all the 

steps of the resolution. 

 We propose a new NoC synthesis solution using the LP methods. We have modelled 

the NoC synthesis problem with OPL Modelling language in order to minimize the NoC area 

and the interconnect delay. In order to deal with the complexity of big coregraphs, we 

performed a partitioning based on the degree of adjacency between the different nodes. 

Thanks to this solution, we got application specific NoC free NoC topologies representing an 

optimized solution which respects our problem considerations.         
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5 NoC Synthesis Methodology for 3D ASIC Design 

 The NoC synthesis problem is known to be NP-Hard.  We have already discussed this 

problematic in chapter  4. The complexity of this problem increases when we propose to solve 

it with 3D IC design. In fact additional problematic specific to 3D design are added in 3D 

NoC synthesis problem like core to layer mapping, TSV area, symmetry… We propose in this 

chapter to study the existing 3D NoC methodologies and to propose our new solution to solve 

this problem.�

5.1 3D NoC synthesis state of the Art 

 We present in Table  	��, a summary of the existing 3D NoC synthesis methodologies. 

L.Benini team has proposed a 3D NoC synthesis workflow in order to generate a design 

power-performance efficient 3D NoC. The core to layer mapping and the floorplanning are 

taken as inputs. The 3D NoC synthesis problem is divided into sub problems: core to switch 

connectivity, switch to switch connectivity and switch floorplanning. The resolution of this 

problem is performed sequentially. The authors propose mixed algorithms based on the Min-

cut partitioning to solve the two first problems while LP is used to find the positions of the 

routers. The 3D NoC synthesis problem is also an NP-Hard problem that is why, the 

partitioning of the coregraph was used in order to reduce the mathematical complexity. 

X.Jiang[91] et al have proposed another 3D NoC synthesis methodology. In fact they have 

used the Tarjan Algorithm to perform the core to switch connectivity step and the Min-Cut 

algorithm in order to partition the coregraph. The GA was used to solve the switch to switch 

connectivity and routers floorplanning. In this work the core to layer mapping and the initial 

core floorplanning are taken as an input to the workflow.  In [92] W.Zhong et al have 

proposed a power performance 3D NoC synthesis methodology. In this work the clustering of 

the cores is performed after the floorplanning and routers can be only inserted in the white 

places. A new workflow based on stochastic algorithms was proposed by Zhou et al in 

[93][94]. In fact, authors have used the Simulation Allocation Algorithm SAL to find near 

optimal solutions for the traffic flow. The use of this methodology avoids the need to choose 

an order of treatment of the coregraph’s paths. In [95] S.Yan et al have proposed a 3D NoC 

synthesis methodology based on the rip up and reroute procedure to generate a 3D NoC 

topology. The step of core to layer mapping was taken as the input of the initial problem. In 

order to optimize the generated NoC topology, a step of router merging is performed.  
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Table  5.1.3D NoC synthesis methodologies 

Team Objective Methodology Comments 
L.Benini 
Team[96][97] 
2009, 2010 

•  design 
power-
performance 
efficient 3D NoCs 
•  Main 
objective: Design 
NoC topology and 
determine switches 
positions. 

•  power and delay of 
both switches and links are 
taken in consideration 
•  Heuristic core graph 
Partitioning 
•  Core to switch 
connectivity(same layer) 
(Heuristic+Min-Cut) 
•  Switch to switch 
connectivity with path 
computation 
(Heuristic+Min-cut) 
•  Switch positions 
computation (Linear 
Programming) 

 

•  Core to layer 
mapping and 2D layer 
floorplan are taken as 
input   
•  65 nm 
technology 
•  3 layers : 
Processors in top an 
high layer, memories in 
the middle layer 
•  Real 
implementation 

 
 

 

X. Jiang and T. 
Watanabe[91],20
10 

•  3D NoC 
synthesis with 
Genetic 
Algorithms. 
Minimize power 
consumption in 
the NoC 

 

•  Tarjan 
Algorithm[98] : core to 
switch connectivity 
•  CoreGraph 
Partitioning : Min Cut 
Partitioning 
•  Switch to Switch 
Connection GA, path 
computation and flow 
control. 
•  GA switch position  

 

•  Core to layer 
mapping and 2D layer 
floorplan are taken as 
input   
•  Core can only be 
connected to a switch 
from the same layer 
•  65 nm low 
power technology and 3 
layers 
•  No real 
implementation. 
•  No information 
about method of power 
estimation. 

 
•  W.Zhong 
et al[92] 2011 

•  the power-
performance 
efficient 3-D NoC 
topology for the 
application 

•  Cluster cores during 
3D floorplanning 
•  Use ILP to place 
switches and NIU in the 3D 
floorplanning 
•  determine the 
connectivity across 
different switches using a 
power and timing aware 
path allocation algorithm 
•  a min-cost max-
flow based algorithm is 
proposed for Through-
Silicon Via (TSV) 
assignment to minimize the 
link power consumption 

•  The algorithm is 
sequential 
•  Use of the tool 
IARFP for the multi 
layer floorplanning with 
a weighted function  
•  Insert switches 
and NIU in white spaces 
using the ILP 
•   applying 
Dijastra’s shortest path 
Algorithm for path 
allocation 
•  TSV assignment 
was using min-cost 
maxflow algorithms 
layer by layer 
•  No real 
implementation 
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•  3D layers 
Floorplanning and core 
to layer mapping 
included. 

•  P.Zhou et 
al[93],[94] 
2010,2012 

•  find the 
best topology for 
the application, 
under different 
optimization 
objectives such as 
power and network 
latency, and 
determine the 
paths for traffic 
flows. 

•  Thermal aware 
floorplan based on B*-tree 
floorplan model 
•  Use the Simulation 
Allocation Algorithm SAL 
to find near optimal 
solutions for the traffic 
flow. 
•  Return information 
to the floorplanner to refine 
the result. 

•  Use SAL 
stochastic framework. 
•  No real 
implementation 

 

•  S.Yan et 
B.Lin [95] 2008 

•  Use Rip-
up and Reroute 
procedure for 
routing flows and 
Router Merging 
(RRRM) to 
optimize the 
network topology.  
•  Minimize 
Power 
Consumption 
under performance 
constraints 

•  3D core to layer 
mapping 
•  3D Floorplanning 
•  Use the flow Ripup 
and Rerouting to generate 
the topology of the NoC 
•  Use the Router 
Merging procedure to 
optimize the generated 
NoC. 

•  Floorplanning 
included. 
•  Core to layer 
mapping heuristic. 
•  Use power 
Modeling for  links and 
routers using Orion 
•  Use 70 nm 
technology. 
•  No real 
implementation 

 

5.2 3D NoC synthesis design Flow 

 We propose in this section to detail the different 3D NoC synthesis workflow cited in 

the literature. In the work [96], the authors have presented a 3D NoC synthesis methodology 

which is summarized in the Table  	��.  In this methodology, we have 3 main input files. The 

first one is the communication specification file which is describing the coregraph application 

(connection, bandwidth, latency  ...). The second one is called a Core specification file. In fact 

authors choose to treat manually the problem of core to layer assignment. The floorplan of 

each layer is also taken as the input of the NoC synthesis problem. To take in consideration 

the 3D technology specification, they used a third input file including the maximum number 

of allowed TSV across adjacent layers. In this work, the NoC synthesis problem is restricted 

to the NoC topology synthesis and the switches placement. 
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             Figure  5.1. 3D Design flow                         

   The obtained results were compared to mesh NoC topology and presented a large 

interconnect power reduction with an average of 38% and a latency reduction with an average 

equal to 25%. To have a complete 3D NoC synthesis problem, it would be better to include 

the problem of core to layer assignment and the problem of floorplanning in the NoC 

synthesis problem. With these initial manual consumptions this methodology can be classified 

as a mixed one, including heuristic and deterministic algorithms. This work is a generation of 

a specific NoC with a coregraph transformation. In fact, we can summarize the basic steps of 

the algorithm as presented in the next table. 

�

Figure  5.2. Algorithm Steps 
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Figure  5.3. Communication graph with bandwidth 
demands on the edges [97] 

 

  We present in  the initial communication coregraph. 
Each vertex is representing a core and each link is 
representing the communication between the cores. 
Values on edges are the bandwidth values on each 
flow. 

�

Figure  5.4. Partitioning Graph (PG) and the min-cut 
partitions[ 97] 

�

�

Figure  5.5. Scaling Parameter Graph (SPG)[97] 

Core to switch connectivity : Phase 1    

•  Create a (PG) similar to the initial 
communication graph, but the weight of the edges 
defined as hij   (connection between the core i and j) 
hi,j = �×bwi,j/max−bw +(1 − �) × min−lat/ lati, j 
max−bw is the maximum bandwidth value over all 
flows,  min−lat is the tightest latency constraint over 
all flows and � is a weight parameter 

•  Partition the coregraph PG into the number 
of switches: cores in the same partition are connected 
to the same switch. 
 
•  If for a particular core to switch assignment 
there is no possible solution meeting the constraints 
the coregraph will be scaled (SPG). We denote 

maxwt by the maximum edge weight in PG by  
 

 
•  Partitioning and switch to layer assignment 
is applied on the SPG. 

Figure  5.6. LPG for two layers[97] 

�

•  Core to switch connectivity : Phase 2 : 

•  In this step cores can only be connected to 
switches in the same layer. 
•  This phase can be used when a tight inter-
layer link restriction is in place or when the 
technology restricts connection between adjacent 
layers. 
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Figure  5.7. (left) D26_media communication, (middle) NoC architecture phase 1, (right) NoC Architecture 
phase 2 [97] 

 We present in Figure  	�C, the obtained results for the presented methodology of the 

work of S.Murali et al. The proposed workflow is applied on the media benchmarks. The 

result of the first phase of the 3D NoC synthesis problem is presented in the figure of the 

middle where switches can be only connected to the switches from the same layer. A second 

phase of this work can be performed when the connections between switches from different 

layers are allowed.   

 

 

 In [91] Jiang et al, proposed a workflow based on the Genetic Algorithms for the 

problem of the NoC synthesis. This solution is illustrated in Figure  	��.(a). This workflow 

takes as input the communication parameters file which describes the Coregraph 

characteristics.  The Floorplan and the core to layer mapping is also taken as inputs. The 

system analyzes the input data and automatically implements the synthesis process in three 

phases as we can see in Figure  	��.(b). In fact, as cores and switches are already mapped to the 

different layers, the only aim of the first step of this methodology is the core to switch 

Figure  5.8. 3D NoC synthesis Design flow with GA, 
 (a) left , (b) right [88] 
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connectivity. The core to switch connectivity step is applied for each layer separately. A core 

can only be connected to a switch from the same layer. The number of sub graphs will decide 

about the number of switches, as cores in the same partition are connected to the same switch 

[99]. In this work, authors applied Tarjan Algorithm [98] to find the strong connectivity sub-

graphs. They have then used the methodologies presented in [99][96] to obtain the number of 

switches and core to switch connectivity.  The second step of the algorithms which is the 

switch to switch connectivity is based on Genetic Algorithms to find the NoC architecture 

which is optimized for power consumption. Authors also used the GA methods in the last 

operation to define the optimized switch positions which minimizes the power length 

consumption.  

�

Figure  5.9. 3D NoC synthesis Design flow based on floorplanning[ 92] 

 In [92] Zhong et al presented a sequential Design flow to solve the NoC synthesis 

problem which is illustrated in Figure  	�A� As this problem is known to be NP hard, authors 

divided it into 4 stages.  In the first step which is the initial partitioning they applied a 

recursive min-cut bi-partitioning algorithm on Core Communication Graph taking in 

consideration the input communication file and the physical locations of the cores. They then 

used a multi-layer floorplanning tool IARFP to ensure a TSV Aware Multi-layer 

Floorplanning and Clustering. In the second step, an ILP based algorithm is proposed to place 

switches and network interfaces on the 3-D floorplan in white places. Authors used the min-

cut max-flow algorithm to assign the TSV in order to minimize the link power consumption.  
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Figure  5.10. 3D NoC synthesis workflow[95] 

 We present in Figure  5.10, a 3D NoC synthesis methodology proposed by S.Yan et al. 

The core to layer mapping and the 3D floorplanning are taken as an input of this solution. The 

NoC topology is generated by using the Rip-up and reroute procedure. This work proposes to 

satisfy the coregraph edges following an increasing order. The floorplan of the chip is up-

dated after the generation of the NoC topology. 

5.3 Tezzaron Technology methodology 

 With the actual shortage of industrial tools for 3D design, Tezzaron Company 

provides a custom script based on the classical Place and Route encounter version 8.1.  This 

flow is presented in Figure  	��� .  The basic functions of the 3DIC flow are:  

•  Pre-synthesis logic simulation 

 The user should verify the good functionality of his design at the HDL level. This step 

is performed using Test bench models. The designer can use the Modelsim tool to check the 

good behavior of the design without taking in consideration any timing constraint. This 

verification is the first one of the set of verifications during the 3D design. It is applied before 

the RTL synthesis operation. 

•  RTL/logic synthesis 

 The RTL (Register Transaction Level) synthesis is the translation of the input RTL 

description using the gate-level description. The output of this step is a generated Netlist 

which does not only respect the functionality of the input design but it also satisfies the user 

constraints (frequency, area…). The used cells in the generated Netlist are provided from the 

user input library.  The RTL synthesis step can be performed using different tools like Design 
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Compiler from Synopsys and RTL compiler from Cadence. These tools generate several 

output files: a Verilog gate-level Netlist, timing constraint files and reports.  

•  Post-synthesis logic simulation 

 In this second step of verification, the same Test bench models already developed can 

be used to test the functionality of the generated Verilog Netlist. To perform this step, the 

models of standard cells are generated by the RTL synthesis tool.  

 

•  Standard cell placement and routing 

 The place and route step is the geometrical realization of the generated Gate Netlist 

which is also called Layout. The logic gates are placed following rows of equal high by the 

standard cell design style. That is why, all the standard cells from the same library have the 

same heights but with different widths. The connection between the cells called also routing is 

performed over the design since current processes allow several metal layers. Placement and 

routing can take in consideration the timing constraints already defined during the RTL 

synthesis step. At the end of these two steps several output files are generated by cadence 

encounter place and route tool like the geometric description (Layout) of the design with GDS 

format. The generated SDF (Standard Delay Format) description is including the gate and the 

interconnect delays.   

 Based on the presented operation, Tezzaon company provides a 3D IC flow by 

changing some steps in the classical 2D IC design methodology (see Figure  	���). The first 

step of this workflow is to load the design. We use the libraries from ARM provided with 

Tezzaron Design kit Table  	��. The pre-synthesis simulation represents the next step of the 

design which is performed using Modelsim. Once the design is verified, the step of RTL 

synthesis is applied using RTL Compiler from Cadence. We use Tezzaron technology with 

130 nm Global Foundries low power standard Library. The RTL synthesis needs basically 3 

main input files which are the Hdl files, the library files and the user constraints file. Timing 

constraints can be applied on the design to meet a specific frequency; these constraints should 

be defined in the user constraint file. The output of this step is a generated Verilog Netlist 

which will be the input of the Place and Rout step. This methodology proposes to use the 

encounter tool from Cadence to make the Place and Route of the design. After the placement  
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Figure  5.11. 3D-IC Automatic P&R using DBI and TSV 
�

Table  5.2. ARM used in the Design Kit Tezzaron library 

ARM Standard-cells CORELIB 
LP-LVT : 

CSM013LP_LVT_SC_2007q2v1 
 

scx2_csm13lp_lvt_ff_1p65v_m40c P/V/T = FF/1.65V/-40C 
scx2_csm13lp_lvt_ss_1p35v_125c P/V/T = SS/1.35V/125C 
scx2_csm13lp_lvt_tt_1p5v_25c P/V/T = TT/1.50V/25C 
scx2_csm13lp_lvt_ff_1p32v_m40c P/V/T = FF/1.32V/-40C 
scx2_csm13lp_lvt_ss_1p08v_125c P/V/T = SS/1.08V/125C 
scx2_csm13lp_lvt_tt_1p2v_25c P/V/T = TT/1.20V/25C 

ARM Standard-cells CORELIB 
LP : CSM013LP_SC_2005q1v1 

 

ff_1v65_cm40 P/V/T = FF/1.65V/-40C 
ss_1v35_c125 P/V/T = SS/1.35V/125C 
tt_1v50_c25 P/V/T = TT/1.50V/25C 
ff_1v32_cm40 P/V/T = FF/1.32V/-40C 
ss_1v08_c125 P/V/T = SS/1.08V/125C 
tt_1v20_c25 P/V/T = TT/1.20V/25C 

�

� �
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operation and before the routing step, Tezzaron proposes additional steps which are : creating 

Bumps Array, assigning signals to Bumps and preparing Bumps for routing. In fact, the user 

should create an Array of Bumps by defining the number of rows and columns, the pitch 

between the different Bumps and their format Figure  	���.  

  

 

 

 

 

 

 

 

 Once the Array of Bumps is created, the user should assign the signals to the different 

Bumps. A vertical signal is affected to one Bump. The same signal should be affected to 

symmetric Bumps from the different layers. When a signal is assigned to a Bump, its color 

changes to blue, this step is illustrated in Figure  	���.  

�

Figure  5.13.  Signal to Bumps assignment 

Figure  5.12. Create Bumps Array 
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 The main contribution of 3D Tezzaon methodology is the modification of the Bumps 

to enable their routing. In fact this company provides automatic scripts which add pins under 

the Bumps. We can see the added pins in red in the Figure  	���.  Thanks to this modification, 

Cadence tool can perform the routing of all the signals taking in consideration the vertical 

interconnections.  

�

Figure  5.14. Create pins under Bumps Tezzaron technology 

 The presented 3D Tezzaron workflow should be applied on the two layers of the 

design. The whole 3D design is created during the packaging step. This solution is relatively 

easy to integrate especially with people who are familiar with the classical 2D IC design. The 

main challenge of this solution is the cost of design and verification time.   

5.4 3D NoC Synthesis with GA  

 We propose in this work to solve the problem of 3D NoC synthesis with a whole 

parallel algorithm using the Evolutionary Genetic Algorithm. We believe that dividing the 

problems and especially treat them separately and sequentially can affect the final result. We 

propose in this work to solve the problem of the core to layer mapping, floorplanning and 

NoC topology at the same time.  

•   Our 3D NoC synthesis workflow 

 We present in Figure  5.15, our proposed 3D NoC synthesis methodology. In fact, the 

coregraph, the Tezzaron technology, the router library and the user constraints represent the 

input of our workflow. We apply at the first time the synthesis, the place and route using the 

2D Tezzaron technology. Thanks to this step we can have an accurate idea about the area of 

each core, memory and the library routers. This information represents the input of our 3D 

NoC synthesis problem. In fact we propose in this work to solve the complete 3D NoC 

synthesis problem without dividing it into sub-problems. We propose to solve the problem of 

core to layer mapping, the NoC synthesis and the floorplanning using a MOEA. We choose to 

describe our 3D NoC synthesis problem using ModeFRONTIER tool. 
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Figure  5.15. Our 3D NoC synthesis workflow 
�

•  Our GA problem modeling 

 We propose to describe the 3D NoC synthesis problem using the GA methodology. 

We use the modeFRONTIER tool to describe the genome and to solve it. Our 3D NoC 

synthesis problem is a multi objective project with multiple constraints.  

•  Input File Constraints 

 For each individual, a NoC topology is generated thanks to the presented parameters. 

In fact, we connect each master and each memory to one random router, which is described 

by the variable Router. The different connections between the routers are represented by the 

vector RouterVector relative to each router. We choose to affect input constraints to generate 

NoC topologies with routers from the library. A feasible individual or ID must respect the 

input and the output constraints. To avoid topologies with circular paths we use the input 

constraint C1. With this constraint a router can have an output port to a router with a higher 
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index. We accept NoC topologies using routers from the library; in our case we have 64 

possible router configurations from 1x2 router to 8x8 router. This constraint is described by 

the constraint C2.   

•  C1 :   RouterVector[i][j] is equal to 0 if j�i , a router can have an output link only to a 

router with higher index 

•  C2 :  The number of the Input ports and the Output ports should be less than the 

maximum value defined in the switch library.    

•  Output File Constraints  

•   In order to help the GA algorithm to find the feasible solutions, we define a set 

of output constraints C3-C6.: 

•  C3: The ERROR_path error must be equal to 0 otherwise the generated NoC topology 

does not have a path for some demands in the coregraph. 

•  C4: The ERROR_BP error must be equal to 0 otherwise in the generated NoC 

topology there is a switch which is not respecting the bandwidth constraint. 

•  C5: The ERROR_overlapping error must be equal to 0 otherwise in the actual 

floorplan there is some overlaps between cores. 

•  C6: ERROR_Ratio, We define the value of the aspect ratio of our chip which is a ratio 

between the width and the high of the chip.  

 We present in Table  5.3, the decxision variables of our ModeFRONTIER project. For 

each core and memory, we define the variables X,Y and Z. X and Y are the coordinates of the 

lower left corner of the core while Z is the number of the layer which can be in our case 0 or 

1. The constants Width and High are respectively the width and the high of the core when it is 

placed and routed in 2D. Each core must be connected to only one router; the index of this 

router is affected to the variable Router. We define the maximum value of used routers in our 

NoC synthesis problem. For each router we define the same X,Y and Z variables. The NoC 

topology is defined using the RouterVector which is a binary variable ; if there is a connection 

between router i and  router i+1  RouterVector[i][i+1] is equal to 1, 0 otherwise.  

Table  5.3. MOEA Project parameters 

Core 
X (µm) The abscise of the lower left corner of the core Variable : [0 .. MaxX ] with a step of  50 
Y (µm) The coordinate of the lower left corner of the 

core 
Variable : [0 .. MaxY ] with a step of  50 

Z   The  choice of the layer  Variable : [0..1] Tezzaron tech we have 2 
layers 
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Width (µm) The width of the core after a place and route in 
2D 

Constant 

High(µm) The high of the core after a place and a route in 
2D 

Constant 

Router Each core is connected to only one router   Variable : [0…MaxRout] 
Router 

X (µm) The abscisse of the lower left corner of the 
router 

Variable : [0 .. MaxX ] with a step of  50 

Y (µm) The coordinate of the lower left corner of the 
router 

Variable : [0 .. MaxY ] with a step of  50 

Z   The  choice of the layer  Variable : [0..1] Tezzaron tech we have 2 
layers 

Width (µm) The width of the core after a place and route in 
2D (Tezzaron library) 

Constant 

High(µm) The high of the core after a place and a route in 
2D (Tezzaron library) 

Constant 

RouterVector  This variable is a binary vector describing the 
connection between the routers. 
RouterVector[i][j] is 1 if there is a link from the  
router i to the  router j , 0 otherwise. 
Rq: to simplify the explication we will call j a 
descendant of  i  if RouterVector[i][j] is equal to 
1 

Variable : [0..2Maxrout] 

•  Objective functions 

•   We propose in this methodology to solve a multi objective function. In fact, we 

propose to generate a NoC topology which is optimized for chip area and NoC diameter. 

•  Chip Area : The Chip area is one objective of  our NoC synthesis to be Minimized 

•  Diameter: The Diameter of the NoC is the second objective to be minimized. 

•  Objectives and Constraints Computation 

ERROR_path:.  

Algorithm 1 : ERROR_path computation 

 

1. ERROR_path=0 
2. For each e(orig,dest) in Edges 
3. do  
4.          E={}  
5.          Routorig=e.orig 
6.          Routdest=e.dest 
7.          For i in  Routorig+1 ..Maxrout 
8.          do 
9.               if RouterVector[Routorig][i]==1 
10.                   Then 
11.                   E=EI{i} 
12.               end if 
13.           end for  
14.          Level=0 
15.          While (Routdest J E & E!=F) 
16.          do 
17.          F=E 
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18.              For i in E 
19.              do 
20.                     For j in   i+1..Maxrout  
21.                     do 
22.                           if  ( RouterVector[i][j]==1 & j J E) 
23.                              Then 
24.                                  E=EI{j} 
25.                                  Level=level+1 
 
26.                           end if  
27.                     end for  
28.              end for 
29.          end while 
30.  
31.         if  Routdest J E 
32.              ERROR_path= ERROR_path+1 
33.         else   
34.              path[e]=1 
35.         end if 
36. end for 

 
 
 The goal of the Error_path constraint is to satisfy the required NoC topology. We 

present in algorithm 1 the different steps of this algorithm. With this constraint we can only 

verify the geometrical aspect of the NoC topology without taking in consideration the 

bandwidth constraints. The first step of the algorithms is to make an initialization to the 

Error_path variable to 0. For each edge e : Edges which is the set of the demands in the 

coregraph, we define the Routorig and the Routdest which are respectively the routers of the 

master and the slave of the edge e (see lines 5, 6). We define the set of routers E containing 

the routers which are connected to the Routorig (see lines 7-13). The set of routers E includes 

all the descendants of the router Routorig and their own descendants ( see lines 15-28) . The 

loop while will be stopped when the set E does not change any more or the router Routdest  :
�E. In the last step of the algorithm we verify if the Routdest appears in the descendants 

otherwise the Error_path constraint will be incremented. When there is a path for all the 

edges of the coregraph, this constraint has the value equal to 0 if there is no path for any edge 

the value of the constraint will be equal to the total number of edges. 

ERROR_BP  : 

 To guide the MOEA, we separate the geometrical aspect from the bandwidth 

limitation. In fact, we can have a path ensuring the communication between the origin and the 

destination of a specific demand in the coregraph, but this path cannot respect this demand’s 

bandwidth. We need to verify when there is a correct path for a demand if this path can 

respect the bandwidth constraint. We can then conclude that the ERROR_BP is directly 
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affected by the ERROR_path. If the ERROR_path is equal to 100%, which means that 0 path 

is found in the actual NoC topology, the ERROR_BP is equal to 0. The ERROR_BP is a 

quotient between the existing path in the NoC respecting the Bandwidth and those not 

respecting it.   

Algorithm 2 : ERROR_BP computation 

�
1. ERROR_BP=0 
2. For each e(orig,dest) in Edges 
3. do  
4.    if  path[e]=1 
5.    Then 
6. Descendant[level]= set of the descendant  routers at the last level defined in Algorithm 1 line 
25 
7. Descendant[level-1]= set of the descendant routers at the level-1 
8.  
9. While (level � 0 & Affect[level-1]=1 ) 
10. do 
11. For ri in Descendant[level-1] 
12.        Do 
13. For rj in Descendant[level] 
14.        Do 
15.        If ( capacity Link_ri_rj 	 e.BP && Affect[level-1]�1 )  
16.        then 
17.        Affect[level-1]=1 
18.        capacity Link_ri_rj = capacity Link_ri_rj-E.BP 
19.        end if 
20.     End for  
21. End for 
22. Level=level-1 
23. End while 
24.  
25. If   ( level ]� 0 or Affect[l]�1 (l�level) ) 
26. Then  
27.      ERROR_BP= ERROR_BP+1 
28. End if  
29. End if  
30. End for 

�

� ERROR_overlapping  : 

 We propose to solve the floorplanning step simultaneously. In fact the generation of 

the coordinates of all the cores are done at the same time thanks to the variables (X,Y,Z). That 

is why we can have an overlapping situation. A feasible solution is the one with a value of 

Error_overlapping equal to zero. The Error_overlapping constraint is equal to the ratio of the 

overlapped area dividing the total area of the cores.  

K==*L*M�=?�11��@ � NM�=?�11�O��=�� � /..
)*)�?�(*=�$��=��  
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ERROR_ratio  : 

 In order to determine the aspect ratio of our chip, we propose to use the Error_ratio 

constraint. Thanks to this constraint we avoid to have a big difference between the width and 

the high of our chip. 

���M�?%� - KPPNP 	 =�)�* � ����(Q�1R�O)Q! (Q�1Q�@Q�
����(Q�1R�O)Q! (Q�1Q�@Q� - ���M�?%� 

5.5  Performance Evaluation Results 

5.5.1 Case Study 

 With the shortage of information about the different choices when using the Genetic 

Algorithms, we propose as a first step of our experimental work, to perform a study of the 

different properties of the whole design. We use in this work the GA algorithms proposed by 

ModeFRONTIER. We choose to test our 3D NoC synthesis methodology on the coregraph 

presented in Figure  	���. This coregraph is including 12 masters and 8 slaves with 36 

demands.  

�

Figure  5.16. Coregraph 1 : 12 Masters 8 slaves 

 When we use the GA to solve an optimization problem, we should choose different 

options like: the initial population, the GA solver, the size of the population, the number of 

generations… In this work we propose to solve the 3D NoC synthesis problem based on 3D 

Tezzaron technology using the MOEA methodology. For this, we present the different case 

studies, detailed in Table  	�� , applied on our core graph. 

•  Initial Population:  We explore different configurations from the initial population. In 

our work we are using a Multi objective Evolutionary algorithm with input and output 

constraints.  We choose to test two initial populations: Constraint Satisfactory Problem CSP 

and Sobol. CSP is an initial population where only individuals which are respecting the initial 
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constraints are accepted. The use of Sobol initial population can guarantee an uniform 

distribution for each variable, individuals with initial violated constraints are not accepted.  

•  Population size: We use different population sizes to study their effects on the 

convergence of the algorithm. 

•   Constraints: We propose to change the limits of the accepted constraints, especially 

for the area constraint.  

•  Constraints Priority: The different constraints of our problem are interdependent. We 

suppose that the GA solver should satisfy all the constraints at the same order of priority, we will then 

multiply the constraints by weighted values to define a specific order of resolution.   

•  GA:  We will choose two different Genetic Algorithm solvers which are NSGA-II and 

MOGA-II. These two algorithms treat the constrained problems differently, in fact the NSGA-II  uses 

the non dominance concept to satisfy the constraints while MOGA-II treats that by adding a penalty to 

the fitness function when the ID is not respecting at least one constraint.  

•  Number of Generations: We explore the number of generations for the different case studies. 

Table  5.4. Case study different configurations 

 
Initial Population 

Population 

Size 
Constraints 

Constraints 

Priority 
GA 

Number of 

Generations 

Case 1 

CSP 

Constraint 

Satisfactory 

Problem 

100 

Area<100 

Bandwidth<0 

Overlapping<0 

Ports<8 

No 
NSGA-

II 
500 

Case 2 Sobol 100 

Area<50 

Bandwidth<0 

Overlapping<0 

Ports<8 

No 
NSGA-

II 
500 

Case 3 Sobol 250 

Area<60 

Bandwidth<0 

Overlapping<0 

Ports<8 

Ratio<0,75 

Yes 

 

NSGA-

II 
500 

 Case 1 results 

 We use in case 1 the CSP as initial population. All the Ids of this population satisfy the 

input constraints which are the number of ports of the routers and the floorplan of the chip is 

included in the defined area. The population size is equal to 100 Ids and the used GA is 

NSGA II. We don’t define any order of priority between the constraints of the problem.  
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The evolution of the error path and area constraints is represented in Figure  	��C and Figure 

 	���. Referring to these two curves, it is clear that the error path constraint was solved at 

almost the 2800 Ids, which means during the generation number 28, while the area constraint 

is not respected. We consider that a constraint is really respected when the GA provides a 

feasible solution for a time while. The path constraint is maintained almost stable around the 

value of 0, which means that there is no error path in the provided NoC. The evolution of the 

area constraint seems to be stable around the value of 140% without reaching the objective 

value which is 100%. This result is due to the first population choice. In fact, the input 

constraints are basically related to the number of the input and output ports, which has a direct 

effect on the NoC topology. We can conclude from this result that the initial population was 

not diverse enough to provide individuals with area constraint favour.  

�

Figure  5.17. Case 1: Error Path constraint evolution

 
Figure  5.18. Case 1 : Area Constraint evolution 
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Case 2 results 

 In case 2, we change the initial population by using the Sobol algorithm proposed by 

ModeFRONTIER. This one ensures a better space distribution than a random generation. We 

keep the other parameters unchanged like the population size and the number of generations. 

The obtained results are presented in Figure  	��A and Figure  	��B.  

�

Figure  5.19. Case 2 Min area constraint evolution 

�

Figure  5.20. Case 2 Error path constraint Evolution 
 

 When we have changed the first population from CSP to Sobol the area constraint is 

satisfied but the path topology and the overlapping are not satisfied (see Figure  5.19 and 
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Figure  5.20).  Even though we are using NSGA-II algorithm, we conclude referring to this 

experience that the tool ModeFRONTIER is using a weighted function with a sequential 

treatment of the constraints. In this case, ModeFRONTIER tried to solve the overlapping 

constraint before the path constraint but after more than 55 thousand iterations both 

constraints are not solved. The normalization of the constraints has a big effect on the 

evolution and the selection of the Ids. This configuration was not suitable to solve our 3D 

NoC synthesis problem. There is a shortage in term of information about the algorithms 

behind the ModeFRONTIER tool to manage a constrained problem. By our different 

experiences, we can conclude that this tool tries to satisfy each constraint separately and 

sequentially.  

Case 3 results 

 After testing different configurations, we choose to test the configuration presented in 

case 3. In this one, the Sobol algorithm is used to generate the initial population with a size of 

250 IDs. We propose to guide the optimizer to solve the different constraints with a specific 

order. That is why we multiply them by different weights. We remark that ModeFRONTIER 

starts by solving the first constraint having a far value from the objective. That is why we 

multiply the path constraint by 1, the overlapping constraint by 0.3 and the min area constraint 

by 0.5. Thanks to this choice the solver should start by generating the NoC topology then the 

Min area constraint to finish by solving the overlapping of the floorplan. We present the 

obtained results in the Figure  	���, Figure  	��� and Figure  5.23. 

�

Figure  5.21. Case 3 : Area constraint evolution 
�  
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 Thanks to this configuration, all the constraints are satisfied. The feasible IDs are 

illustrated by blue squares in Figure  	���. They are respecting all the input and output 

constraints. Thanks to the use of the weights, the Path constraints is respected at an early stage 

before the other constraints while the overlapping constraints takes the most important part 

time to be satisfied. 

�

Figure  5.22. Case 3 : Overlapping Constraint 

�

Figure  5.23. Case 3 : Path constraint 
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5.6 Conclusion 

 The 3D NoC synthesis problem is the generation of a NoC topology optimized for a 

specific application in order to optimize one or more objective functions with respect to the 

different constraints including the 3D IC design characteristics. We presented in this chapter 

the state of the art of the 3D NoC synthesis methodologies using heuristic, mixed and 

deterministic algorithms. In all the previous works and in order to reduce the mathematical 

complexity, authors tried to solve this problem by dividing it in sub problems then solving 

them sequentially and separately. The different steps like the core to layer mapping, 

floorplanning, NoC topology and routing are known to be NP-Hard that is why it is 

impossible to find a deterministic methodology to solve any 3D NoC synthesis problem. 

 We proposed in this chapter a new 3D NoC synthesis methodology based on the 3D 

Tezzaron technique. The new idea of our work is to solve all the 3D NoC synthesis sub-

problems at the same time. That is why we used the MOEA in order to generate the NoC 

topology and the floorplan of the different dies specific for each coregraph applications. We 

performed a design space exploration to experiment the different parameters of our genetic 

algorithm project in order to determine the suitable choices: initial population, number of 

generations... We tested our workflow methodology with different coregraphs. In our 

knowledge, this work is the first proposition to solve all the 3D NoC synthesis sub problems 

at the same time.  
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6 ASIC Design Methodology for 3D NoC based 3D Heterogenous 
Multiprocessor On Chip 

6.1 3D Multiprocessor Architecture Homogenous 
�

�

Figure  6.1. Various layout views of the 3D-MAPS processor[48] 

 We present in this section a 3D MPSOC real implementation realized by Heal et al 

[48]. The objective of this work is to implement a 3D-MAP (3D Massively Parallel processor 

with Stacked memory). The advantage of this design is to demonstrate the extremely large 

memory bandwidth available when using vertical 3D interconnects. In order to fabricate the 

3D-MAPS, the authors used the 3D Tezzaron Technology which is based on 130nm process 

provided with global Foundries. In this work, the used TSV are manufactured in Via-first 

process and the chip is using two stacked dies with a face to face disposition. The thick of the 

thinned die is equal to 12µm while for the thick one this value is equal to 765µm. The 

physical implementation results of this 3D MPSOC is presented in 2�$���  ���. The global 

Foundries 130nm represent the used process technology. The size of the die architecture is 

equal 5mm2. The total vertical connections are equal to 47940 which mean that about 90% of 

the TSV are used to ensure the Power Ground connections. Each core needs 116 F2F vertical 

connections dedicated for the clock and the various signals which is a total of 7424 over the 

entire die. Figure  ��� is the illustration of the 3D-Maps processor. The footprint of the core is 

equal to 560x560µm. A layout of a single memory tile is also shown: this one is composed of 

4 memory banks of 1KB. The total memory capacity of this processor is equal to 4KBx64 

which is equal to 256KB.  In this work, the authors choose to create a layer for the cores and 

another one for the memories. We have 64 cores tiles in the upper die and 64 memory tiles in 

the other one. This design is run at the frequency of 277MHz. 

 
�
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Table  6.1. Physical Design Summary [48] 

Process technology Global Foundries 130nm 
Die size 5x5 mm 
Core footprint 560x560µm 
Core-to-core pitch 570µm 
PG 3D connections/core 668 
Total PG 3D connections 42,752 
Data 3D connections/core 116 
Total data 3D connections 7,424 
TSVs/IO pad 204 
Total IO TSVs 47,940 
Dummy TSVs 6,540 
Total maximum IR-drop 78mV 
Maximum operating frequency 277MHz 

 The simulation results of the different optimized Muticore benchmarks which were 

applied on the hardware 3D-MAPS architecture are presented in Table  ���. This table presents 

the memory bandwidth in gigabytes per second (GB/s). Depending on the behavior of the 

application, the memory bandwidth can reach up to 63.8 GB/s which is more important than 

that of a modem Intel Core i7 processor[48]. 

 This work represents an interesting case study of a real 3D MPSOC design 

implementation. In fact thanks to this work, the high bandwidth of the memory is proven to be 

a principle reason to use the 3D IC design. This architecture is based on the mesh topology 

which is a symmetric architecture linking the cores thanks to its short links. For this design, 

the authors have used homogenous cores and tile memories. This choice can avoid showing 

other faced problems when we implement a general MPSOC architecture like the core to layer 

mapping and floorplanning. �

Table  6.2. Architectural Performance Metrics[48] 

Benchmark Memory Bandwidth (GB/s) 
String_search 8.9 
Matrix_multiply 13.8 
Median 63.8 
Aes_encrypt 49.5 
Motion estimation 24.1 
Histogram 30.3 
Edge detection 15.6 
K-means 40.6 

 

 T. Thorolfsson et al have implemented in [49] a 1024-point, memory-on-logic 3DIC 

FFT processor for a synthetic aperture radar (SAR). This work was based on the MIT Lincoln 

Labs’ manufacturing process which is using 3 tiers called A, B and C.  The MPSOC 

architecture is including 8PEs, one controller, thirty two SRAMs and 8 ROMs. The 

processing element is illustrated in Figure  ���. This core is implementing the FFT Butterfly 
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with four floating point multiplies and six addition/subtraction units. We can see that this 

processor is based on the Butterfly architecture which is interesting to test with 3D IC design 

due to its long links. The whole FFT SAR MPSOC architecture is presented in Figure  ���. 

�

Figure  6.2. The structure of the PE [49]  
�

�

Figure  6.3. The SAR FFT processor architecture[49] 

 Figure  ��� represents the complete 3D workflow used in this work. The 3D 

floorplanning and partitioning are the first steps of this flow.  To perform these operations, the 

authors had the objective to get the memories as close as possible to the processing elements. 

That is why; they placed the memories with their interfaces in the middle tier, the obtained 

result is illustrated in Figure  ��	.  

�
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�

Figure  6.4. T. Thorolfsson 3D Design flow[49] 
�

�

Figure  6.5. The SAR FFT floorplan[49] 
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�

Figure  6.6.Schematic and layout view of 3D SoC H.264 Application [51] 

 T.Zhang et al have presented in [51] the 3D IC implementation of H.264 Application. 

The illustration of this design is presented in Figure  6.6. This design is including different 

components with various properties respecting an irregular topology. Authors choose to 

divide this architecture into two logic tiers and three DRAM tiers as presented in Figure  ��C. 

The size of the two logic tiers is equal to 2.5x5.0mm2 while the DRAM tiers are 

12.3x1.8mm2. All the I/O pads are placed on the back surface of DRAM tier. The partitioning 

of this SoC is based on the power and on the area of the two tiers. The authors choose to place 

the UniCore-II and H.264 encoder on Logic-1 as they consume high power and fit on a larger 

area. All the remaining components including the DRAM controller are placed on the other 

tier. Thanks to this partitioning the hotter tier is placed on the top of the chip which is suitable 

to deal with the 3D thermal issues. Each layer will be synthesized using Synopsys tool.  The 

implementation of this architecture is presented in Figure  6.6. 

�

Figure  6.7. 3D DRAM stacking [51] 
 
 



A.M’zah      3D MPSOC 
  

141�
�

 The 3D IC chip has been fabricated using the Global-Foundries 130nm low-power 

process together with Tezzaron’s TSV bonding technology. The total area of tier-1 is equal to 

6.2mm2 while it is about 7.3mm2 for tier-2.  The frequency of the chip is equal to 60 MHz .  

6.2 3D Heterogeneous Multiprocessor architecture 

 Supporting heterogeneous stacking is considered as a major advantage to use 3D 

integration. In fact, the different components of the architecture can be fabricated separately.  

The use of heterogeneous technologies for large 2D design can reduce the cost of the chip by 

three times, this result was proven by Intel [100]. The two principle cost reduction 

methodologies are: 

•  Metal Layer Reduction : the use of the vertical interconnection can reduce the number 

of metal layers during the fabrication of the chip 

•  Heterogeneous Technology stacking: thanks to this technique the noncritical 

components can be mapped to a similar die which is manufactured using older and 

chipper process node.  

 In [101] Dong et al, have taken the OpenSPARC processor as a case study to test the 

cost of the 3D heterogeneous integration.  The 2D equivalent chip has an area size of 342 

mm2 and fabricated with TI 65-nm process using 11 metal layers. The SRAM cache is fitting 

on about 50% of the chip area. That is why, authors have mapped the memory to one layer 

while all the remaining components are affected to another one. The estimation of the cost 

design is presented in Figure  ���. We can see that the 3D integration is cheaper than 2D with 

homogenous and heterogeneous techniques.�

�

Figure  6.8. The estimated cost of OpenSPARC : the separate core and memory fabrication reduces the 
cost [101] 

�
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 In the [101] authors have presented two partitioning methods in order to reduce the 

cost when using 3D stacking which are the coarse-granulity partitioning and the Fine-

granularity. The first one, which is based on the separation of the memory and the other 

components into different dies, is already presented. In the Fine-granularity method, the 

components are divided at the unit level. The 8-core OpenSPARC T1 processor was divided 

using this technique into two-layers. The authors have tested two different methods. In the 

first one called 90nm-90nm stacking, the two layers are implemented using the 90nm 

technology. Based on their cost model, the estimation of this implementation is equal to 125$ 

compared to the original 2D cost which is equal to 146$. In the second methodology called 

90nm-130nm heterogeneous process technology, the authors have used the timing analysis 

results to perform the partitioning step. In fact, thanks to this information, it is possible to 

define the sets of components which are not situated on the critical path to move them into the 

slower layer. With reference to the cost model the use of this technique can reduce the cost of 

the chip to 121$ which is 82% of the classical 2D Chip.   

�

Figure  6.9. cross section of the final package 
(Courtesy of ST Microelectronics)[102] 

 We present in Figure  ��A, the cross section of a real 3D heterogeneous chip presented 

in [102]. This design is a set top box demonstrator developed the complete workflow of 3D 

implementation. The top layer is implemented using a 45 nm technology while the bottom one 

is based on the 130nm. We can see clearly the difference between the TSV properties; in fact 

the pitch is equal to 50µm for the 45nm technology while it is equal to 120µm for the 130nm 

library.    
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6.3 3 Hardware Accelerator synthesis in 3D Heterogeneous Multiprocessor 
architecture 

 Stacked Multiprocessor architecture is a promising application for 3D IC integration. 

The high bandwidth and the low latency which are characterizing such design are also behind 

its high performance. The medical image processing is one of the basic domains where we 

need to transfer a huge amount of data with a very powerful computation and in real time. 

Some works have treated this application. In [103] Cong et al have designed a 3D specific 

processor based on FPGA accelerator and applied on the medical image processing. The 

architecture of this 3D processor is illustrated in Figure  ���B.   

�

Figure  6.10. 3D processor architecture CMP-FPGA[103] 

 This proposed architecture is designed by stacking a programmable layer on a CMP 

layer. The connection between them is ensured using the TSVs. Authors have used the 

medical imaging to apply the idea of domain-specific acceleration, where many accelerators 

are sharing the same set of applications. The medical imaging needing high performance 

computational techniques are the basic tool to perform the treatment of many medical 

problems. This architecture based on FPGA acceleration can improve the performance of 

these computations. 

6.4 Conclusion 

 One major advantage of 3D IC design is giving the possibility to integrate 

heterogeneous technologies. In fact, the different tiers of a stacked chip can be fabricated 

separately. Depending on the cost and on the performance constraints, the designer defines the 

appropriate technology for each layer. 
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 We presented in this chapter the state of the art of real 3D stacked processors. The 

direct application of the heterogeneous technology is to map the processor and its cache 

memory into different cores which can improve the access time and increase the bandwidth of 

the design. A 3D MPSOC architecture can be used in the medical image processing where we 

need to transfer a big amount of data in real time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A.M’zah      3D MPSOC 
  

145�
�

 

 

 

 

 

 

 

 

 

 

 

 

��������������������������������''''����A�A�A�A����F���������F����(��������C��������)������F���������F����(��������C��������)������F���������F����(��������C��������)������F���������F����(��������C��������)���

�F�����F�����F�����F��������

  



A.M’zah  
 

7 Theoretical Compl

7.1  Parallel EDA: Hierarc

 We propose in this sec

PEs. This work is a multiplicat

already presented in section 

architecture on multi FPGA pla

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Microblaze 0

Microblaze 1

Microblaze 2

Microblaze 3

Microblaze 4

Microblaze 5

Microblaze 6

Microblaze 7

Microblaze 8

Microblaze 9

Microblaze 10

Microblaze 11

Microblaze 12

Microblaze 13

Microblaze 14

Microblaze 15

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

OCP-to-NIU 
interface

Figure �7.1. MPSOC
�

    
 

146�

plexity and Parallel EDA for 3D 

rchical MPSOC based 64 PEs on FPGA 

section to implement a hierarchical MPSOC d

cation of the elementary design based on 16 ma

 �2.2. We propose to perform a parallel impl

platform.�

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

1.0

1.6

1.5

1.4

1.3

1.2

1.1

1.7

2.0

2.6

2.5

2.4

2.3

2.2

2.1

2.7

Network-on-chip

C architecture 64 PEs on Multi-FPGA platform Zeb

 3D MPSOC 

�

 

 design based on 64 

masters and 16 slaves 

plementation of this 

BRAM 0

BRAM 1

BRAM 2

BRAM 3

BRAM 4

BRAM 5

BRAM 6

BRAM 7

BRAM 8

BRAM 9

BRAM 10

BRAM 11

BRAM 12

BRAM 13

BRAM 14

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

NIU-to-OCP 
interface

To Upper NoC Level

�

�

ebu-UF4 



A.M’zah      3D MPSOC 
  

147�
�

 We propose to design the MPSOC architecture which is presented in Figure  C��. This 

topology is basically composed of 4 elementary NoCs and a hierarchical central one. The 

elementary MPSOC is based on a NoC with 16 masters and 16 slaves interconnected with a 

Butterfly NoC (2Ary-4Fly). During the design of this architecture, we multiply this MPSOC 

four times and we connect the separate NoCs thanks to a central mesh NoC with four routers. 

We add common shared memories to the central NoC. To ensure the connections between the 

elementary NoCs and the central one, we should scarify one slave memory. In fact, instead of 

the memory 15, we connect the NoC directly to the central one.  Thanks to this architecture, 

all the processors can access their local memories and the common memories situated at the 

high level. The central NoC has a major role to ensure the synchronization between the 64 

processors.  

 We present in Figure  7.2, our EDA workflow to implement this architecture. In fact 

the design of the different NoCs can be performed in parallel. Even though the NoC topology 

is the same, we can choose different properties and options for each NoC. This step is 

performed simultaneously. Using Xilinx tools (ISE, EDK), we can design the elementary 

MPSOCs using the IPs presented in Table  7.2. During the hierarchical MPSOC design step, 

the complete architecture is created.  

 We apply the same implementation workflow already presented in Figure  ���. The Eve 

company tool zCui offers the possibility to run a multithread synthesis place and route.  

Thanks to this option, we perform a parallel synthesis, place and route design.  The 

implementation of this architecture is realized on the platform emulation Zebu-UF4 which is 

including five FPGAs board Virtex-4 LX-200 (see Table  ���). Our MPSOC architecture fits 

on five FPGAs, this result is illustrated in Table  C��. We use zCcui compiler which is a 

software tool of EVE Company, to make the synthesis, the placement and the routing on the 

different FPGAs. We can choose in the zCui compiler the clustering options: manual or 

automatic. In our case, we use the full automatic clustering, that is why this tool will share the 

Netlist between FPGAs with equal rates which is illustrated by the synthesis results in Table 

 C�� . We use more than 66% of Slices in all the FPGAs. Resources in term of memories are 

also used with a percentage of 66% for 4 FPGAs and 55% for the fifth one. Partitioning is a 

critical step when the tool is faced to cluster the Netlist of an asymmetric component like the 

Butterfly topology.  
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 The Butterfly based NoC is a suitable case study to test the efficiency of the 

partitioning algorithms used in the industrial tools. In fact it is difficult to find a method to 

cluster this architecture. We have experimented this in our lab during the implementation of a 

64PEs NoC with a Butterfly topology. 

�

Figure  7.2. Parallel workflow EDA MPSOC implementation on FPGA 
  

Table  7.1. Resources utilization 

 
Table  7.2. 64PE MPSOC Used IPs 

FPGAs Slices RAM 
FPGA1 66% 66% 
FPGA2 67% 66% 
FPGA3 65% 66% 
FPGA4 62% 66% 
FPGA5 77% 55% 

IP Name Version From 
Microblaze 7.00.b Xilinx 

lmb_v10 1.00a Xilinx 
lmb_bram_if_cntlr 2.10.a Xilinx 

bram_block 1.00.a Xilinx 
opb_v20 1.10.c Xilinx 
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 We propose to compare our hierarchical architecture with an MPSOC based on 64 PEs 

with a single Butterfly NoC. In fact, Hamwi and Hammami have designed an MPSOC 

architecture with 64 processors, 64 memories and a central Butterfly NoC with five stages of 

routers [104]. This work is exactly using the same basic IPs that we use in our design and 

which are presented in Table  7.2. The authors have designed a network on chip with 3 stages, 

in each one there are sixteen routers with a degree equal to four. This Netlist is a big challenge 

to test the efficiency of the EDA tools; in fact it can not fit on a single FPGA. This work is 

using the same workflow that we use to implement the design on FPGA. The implementation 

of this 64 MPSOC architecture is performed on the board Zebu-UF4.  

 We can compare the implementation results of both designs, the MPSOC design 

presented in [104] needs 323% of the available BRAM of an FPGA Virtex-4 LX200 which is 

almost the same value needed for our 64 PEs design. The number of slices used in our design 

is equal to 337% of the slices available in a single FPGA wile the compared work needs 

207%. This difference in term of number of slices is due to the fact that we are using 4 basic 

NoCs and a hierarchical one which includes 132 routers for each request and response part 

while in the single big NoC used in the other work we find 48 routers in both NoC sides. The 

degree of all the used routers in our work is equal to two while this value is equal to four in 

the work presented in [104] which means that the size of our routers is smaller than the ones 

used in their design. Our work is based on the elementary 16x16 MPSOC architecture that is 

why the partition of this design was relatively easy compared to the MPSOC with a single 

NoC with 64 nodes. That is why we have almost a balanced distribution of the design on all 

the FPGAs which is not the case of the other work where we can have an FPGA with 91% of 

used slices and another one with only 31% Table  C��. The used EDA tools take an important 

time to perform the partitioning of the designs but it was clear that partitioning the design 

with one big asymmetric Netlist was a real challenge.    

Table  7.3. Resource utilization of the MPSOC based 64 PEs NoC[104] 

opb_timer 1.00.b Xilinx 
fsl_v20 2.11.a Xilinx 

fsl2ocp_data 1.00.a ENSTA 
ocp_bram 2.00.a ENSTA 

FPGAs Slices RAM 
FPGA1 32% 95% 
FPGA2 91% 38% 
FPGA3 44% 95% 
FPGA4 40% 95% 
FPGA5 0 0 
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7.2  3D Theoretical Complexity from return of experience  

7.2.1 Core to layer mapping 

� We propose in this section to evaluate the core to layer mapping complexity.  This step 

is usually performed manually by the user. In our 3D NoC synthesis methodology already 

presented in the paragraph  5.4, we propose to solve this sub problem using the MOEA.  We 

propose to have a number of cores equal to N to be mapped into k layers, the complexity of 

this step is equal to kN . In our case, we use the 3D Tezzaron methodology, which is a Face to 

Face technology using 2 layers. The complexity of a core to layer mapping operation of a 

coregraph including N cores is equal to 2N.  

7.2.2 Floorplanning 

 We can define the floorplanning step by fixing the different positions of the cores in 

the chip area. We propose that we define a maximum values Xmax and Ymax which are 

respectively the maximum values of the horizontal and vertical coordinates (X,Y) of the core. 

X and Y are the coordinates of the upper left corner of the core which are two integers in the 

margins [0,X] and [0,Y].The complexity of the floorplanning of a coregraph with N cores is 

equal to (Xmax.Ymax)
N . In our case, the core can take any position in the chip area which 

means that it is possible to have an overlap between different cores. A floorplanning of the 

cores which is taking in consideration the already placed cores is not any more simultaneous. 

In the case of a sequential floorplanning, new problems appear like the order of the core 

treatment which can affect the final result. We use in our 3D NoC synthesis problem the 

Error_overlapping constraint to guide the Evolutionary Algorithm toward feasible solutions 

avoiding the superposition between the cores.  

7.2.3 NoC topology 

 In order to generate the NoC topology which is respecting all the demands of the 

coregraph, we propose to define a set of routers indexed from 0 to N-1 where N is the number 

of cores in the coregraph. A core can be connected to any router but a router i can only be 

connected to router with a higher index. The complexity of the NoC topology generation is 

equal to N!, the complexity of all the NoC topology generation is equal (N!)N.  

7.2.4 NoC floorplanning 

 We propose in our 3D NoC topology to generate the NoC floorplan at the same time 

of the topology generation. The positions of the routers are generated for all the set of used or 
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not used switches. Which means that the complexity of this step is equal (XmaxxYmax)
N where 

Xmax and Ymax are the coordinates of the upper left corner of the router and N is the 

maximum of the used routers which is equal to the number of cores in the coregraph. In our 

methodology, even though the floorplan is generated for all the routers only the used ones in 

the NoC topology are taken in consideration. The output result is only representing the used 

routers.   

 We choose in our methodology to solve all the 3D NoC synthesis sub problems 

simultaneously. That is why the complexity of our workflow is equal to   

2N  . (XmaxxYmax)
N . (N!)N . (XmaxxYmax)

N = 2N  . (XmaxxYmax)
2N . (N!)N�

 We can see that the mathematical complexity of our 3D NoC synthesis is exponential. 

It is known that the 3D NoC synthesis problem is NP-Hard. That is why; it is not possible to 

solve it with deterministic algorithms. The complexity of the 3D NoC synthesis problem 

represents our major motivation to use the MOEA( section  5.4) in order to solve it. In this 

work, we choose to solve the 3D NoC synthesis problem as a complete system without 

dividing it into sub problems. Dividing the 3D NoC synthesis problem is an efficient method 

to reduce its complexity, but it can have a meaningful effect on the final results.�

7.3  Parallel EDA for 3D IC implementation 

 We propose in this section to perform a parallel DSE to the 3DIC Tezzaron workflow. 

In fact the 3D Tezzaron technology is based on the use of automatic scripts to perform the 3D 

IC implementation. The basic steps of this workflow are: the synthesis, the floorplanning, the 

placement, the Bumps creation and the routing of the signals. We basically use the Velocity 

tool from cadence to perform these steps. In order to evaluate the compatibility of this tool 

with the 3D Tezzaron technology, we propose to perform an exploration to the different 

options of the tool during the placement and the routings steps. We propose to explore all the 

combinations related to congestion, the timing and the power driven placement, the different 

options of these parameters are presented in Table  C��.   

Table  7.4. Options of FILTER DSE 

IN1 CongEffort (Medium, High, Low) 
IN2 TimingDriven(0,1) 
IN3 PowerDriven(0,1) 
IN4 Frequency 
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 The variables presented in the previous table represent the different options for the 

placement operation. The variable IN1 can have 3 possible values: Medium, High and low. 

This option decides if the tool takes in consideration the congestion effort during the 

placement step. The variables IN2 can have the value 0 or 1. When this value is true the 

velocity tool performs a timing driven placement while the value zero means that the 

placement operation is independent from the timing constraint. If we want to perform a power 

driving placement, the value IN3 should be equal 1, 0 otherwise. The last value which is IN4 

defines the frequency constraint value.  

�

Figure  7.3. 3D IC parallel and automatic workflow 

 We propose to create an automatic workflow using Bash scripts, to modify 

automatically the input files of the 3D IC implementation. We present in Figure  C��, our 
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parallel EDA workflow. In fact, we automatically modify the input constraint file before the 

RTL-synthesis step. This modification is ensured thanks to the variable IN4. For each fixed 

frequency we generate the corresponding Netlist which will be the input of the place and route 

step. We define all the possible combinations of the input variables in an input file and we 

develop automatic scripts to read the value of the variables then to modify the 3DIC Tezzaron 

script. For a fixed frequency value we have 12 possible configurations. For each configuration 

also called ID we implement the whole 3D IC script to perform the place and route 

operations. These different implementations are run in parallel, providing different GDS 

output results. The fact that the RTL synthesis provides a Netlist which is satisfying the 

timing constraint does not guarantee that the place and route steps can be performed with the 

same constraints. That is why, a step of constraints verification should be performed after 

each 3D IC place and route. When there is a constraint violation, the input constraints should 

be relaxed. The illustration of this parallel 3D IC flow is represented in Figure  C��. 

7.4 Parallel EDA for 3D : Case study 

We propose in this section to perform the design space exploration of the options used by 

Encounter tool to place the Filter design provided with Tezzaron Design kit. We perform all 

the possible combinations of the 3 first inputs with fixed frequencies. These options are 

affecting the step of the placement of the design. After each combination we take the value of 

the density, the power and the WNS (Worst Negative Slack). The WNS is the difference 

between the critical path of the design and the period which is the inverse of the frequency. 

The result of the 3D implementation of the Filter is presented in Figure  C��.   

�

Figure  7.4. The placed and routed Filter with 3D Tezzaron Technology 

�  
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 We illustrate in Figure  C�	, the obtained results of our exploration. We propose to 

evaluate the WNS value, the density of the chip and its steady power estimation. We explore 

the twelve configurations presented in Table  C�	. We define in the user constraint file, the 

objective frequency of the design but after the place and route the velocity tool gives the value 

of the WNS which gives a better idea about the real reached frequency. That is why when the 

WNS is positive it means that the frequency constraint is met which is not the case when this 

value is negative. From the curve of the WNS we can conclude the optimized frequency of the 

design.  

�

�

�

Figure  7.5.. WNS (ps), Density (%) and power (mw) for the different combinations of the DSE 
(Freq=100MHZ) 
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 We can see that the smallest worst negative slack is for the ID 1 which means that we 

got the worst frequency with this configuration. If we look to the configuration of ID 1, we 

have a low congestion effort, the value of the timing driven option is 0 while the power driven 

option is activated. The activation of the power driven option ensures the power optimization 

of the design, but there is a small difference between these values even though we change the 

other parameters. We can conclude that the worst case for power consumption is the ID 

number 0: this configuration is almost the best one in term of frequency but it is also the worst 

one in term of power consumption. When the 3 options are activated, which means that we 

use the High congestion effort with timing and power aware placement (configuration 11), the 

output result is almost the average in term of frequency, density and power.  

Table  7.5.Different ID (L: Low, H: High, M: Medium ) 

ID IN1 IN2 IN3 
0 L 0 0 
1 L 0 1 
2 L 1 0 
3 L 1 1 
4 M 0 0 
5 M 0 1 
6 M 1 0 
7 M 1 1 
8 H 0 0 
9 H 0 1 
10 H 1 0 
11 H 1 1 

7.5 Conclusion 

With the increase of the number of cores in the same chip which is following an 

exponential curve, the graphical use of the EDA tools can not be any more possible. That is 

why we proposed in this chapter to present our automatic and parallel used methodologies. In 

fact, starting from a first MPSOC designed with 16 cores and 16 memories; we have designed 

an hierarchical architecture with 64PEs and 64 memories. The basic design was multiplied 

four times and a central high level NoC was designed to ensure the different interconnections. 

The design of the sub-architectures was performed separately but the steps of synthesis, place 

and route were performed at the same time using the multithread option. 

We use in this work, the 3D Tezzaron methodology based on cadence tools. We 

presented in this chapter an automatic exploration of the different options of these tools in 

order to define the optimized design configurations which improves the performance and 

minimizes the cost. 
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8 3IC Design and Modelling Case of Tezzaron 

 With the shortage of information and examples of real 3D IC implementation, we 

propose in this chapter to implement an MPSOC architecture using the 3D IC Tezzaron 

technology. The goal of this work is to experiment the different steps of the 3D workflow 

methodology proposed by Tezzaron in order to choose the appropriate NoC synthesis 

technique.   

8.1 MPSOC basic components 

 We present in this chapter the 3D IC implementation of two MPSOC architectures 

based on Mesh and Butterfly NoCs. We present in this section the main components needed 

to design these architectures���

8.1.1 Processor 

 We choose in this work to use the OpenFire processor as a software core for our 

designs. This one has almost the same architecture as the Microblaze processor from EDK 

(Xilinx)[ 105] but the OpenFire processor is provided as an open source and can be 

downloaded from opencores.org website with the Verilog Language. The architecture of this 

processor is presented in Figure  ���. In fact, the top level entity of this processor can be 

connected to other components thanks to 8 FSL master ports (output) and 8 FSL slave ports 

(input). The FSL (Fast Simplex Link) interface can be connected to an FSL bus which allows 

a simple point to point connection. The communication with the processor can be also 

performed thanks to the OPB (On chip Peripheral Bus) ports. The first port, called IOPB, is 

dedicated to perform the read operation from the instruction memory while the DOPB port 

allows the read/write from the OpenFire’s data memory. The CPU core, the local data 

memory and instruction memory and the two OPB ports controller represent the main units 

inside the top level entity. The CPU module uses a three stage pipeline based on the fetch, 

decode and execute blocks. The pipeline control is the responsible to stall the pipeline when 

multi-cycle instructions are executed. The implementation of all the internal programs is 

performed thanks to the register files. This component interfaces with the other units in the 

CPU in order to perform the data routing operation.  

8.1.2 Fast Simplex Link (FSL) Bus 

 The Fast Simplex Link (FSL) bus is a basic mono directional bus ensuring a point to 

point based FIFO communication. FSL can perform a fast communication between any two 
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design elements having the suitable FSL interface which is the case of the Openfire Processor. 

Thanks to its 8 FSL ports, this processor can be connected to 8 different components which 

increases its bandwidth. The depth of the FIFO can reach 8K. This bus can support both FIFO 

modes: synchronous and asynchronous which give the designer the freedom to affect different 

clock domains to the different sides (master and slave).  

�

Figure  8.1. Openfire processor architecture 

8.1.3 3D Router  

 3D router architecture which is illustrated in Figure  ��� and Figure  ��� comprises four 

neighbouring ports, one vertical port for the connection to another tier and one local port to 

the processor through network interface unit. Each input/output port has 35 bits data flits and 

2 bits control signals for packet transfer between routers. Handshake protocol is used for 

router to router communication and router to network interface communication. Each input 

port has one buffer built using 16 words FIFO based dual port RAM architecture to support a 

maximum of 16 data blocks transfer. As XY routing is deadlock free and we do not 

implement priority packets transfer, virtual channel implementation is not necessary. We use 

round robin arbitration for output port selection when there is more than one input requesting 

the same output route. Wormhole switching is used for packet transfer in the NoC because it 

does not require large buffer and has lower latency. For the routing, deterministic coordinate 

based routing is implemented using XYZ coordinate where each packet will travel first in the 

X direction followed by Y direction and finally through Z direction (vertical) to the other die.  

The network interface architecture as shown in Figure  ���, connects the router to the processor 

through two FIFO ports. Based on data address and number of words sent by the processor 
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through one of the FIFO port, the network interface will access the processors data memory to 

process data blocks through DMA. Each network interface unit connects a router to a 

processor through 2 FSL ports (FIFO) of the Openfire processor; the first one is a master FSL 

for writing data to be transferred through the NoC and the other one is a slave FSL for reading 

synchronization flags sent by other processors. The synchronization FIFO has 16 words (one 

word per processor) with 5 bits data width each. There is one 11 bits counter in the network 

interface unit for measuring packets travel timing. The timing information is included in the 

head flit attached to the packets when entering the network and is processed when the packets 

arrive at the destination network interface.  

�

Figure  8.2. 3D Router architecture                          

�

Figure  8.3. Network interface architecture 

8.2 Architecture 1 : MPSOC1 based on mesh topology 

 In order to explore the complete 3D IC workflow, we propose to design a basic 3D 

architecture based on the Mesh topology. This design is a16 PEs MPSOC architecture fitting 

on two face to face layers which is illustrated in Figure  ���. Thanks to the symmetry of the 

design the partitioning of the different cores is a trivial task. In fact, we group each core with 

its local memories, a Network Interface Unit (NIU) and a router into an independent tile. We 

present in Figure  ��	 a detailed architecture of a tile. In each layer, we place 8 tiles following 
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mesh topology architecture. A processor can communicate with the different processors from 

the same layer or from the opposite one thanks to the 3D router. The different routers are 

connected creating a 3D Mesh NoC ensuring the data transfer between all the PEs included in 

the 3D design. The routing of the different packets is performed in the router who decides to 

send it to the horizontal PE neighbours via the X and Y ports or to the opposite processor in 

the other tier thanks to the port Z. 

�

Figure  8.4. Architecture 1: MPSOC based on Mesh topology 
�

�

Figure  8.5. Tile Block Diagram 

Synchronization between processors is ensured using FSL linked to the NoC. Processors 

communicate together through their data memories. A processor will synchronize before 

accessing its data memory by waiting for a tag word in its FSL sent by the writer processor. 

This is a simple synchronization hardware implementation in order to reduce die area. If we 

compare this 3D mesh MPSOC architecture with a 2D equivalent one (4PEs, 4PEs), the 

diameter of the 3D NoC is equal to 5 where this value is equal to 6 in a 2D architecture. The 

reduction of the NoC diameter is a theoretical proof that the 3D IC conception should increase 

the performance of the design.  
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8.3 Architecture 2 : MPSOC2 based on Butterfly topology 

 We present in this section the second MPSOC architecture based on the Butterfly 

NoC. We choose to implement this topology as we believe that it represents an interesting 

case study to show up the 3D IC advantages and limitations. In fact the transformation of the 

long links into vertical connections is a real motivation to move from 2D to 3D design. 

Moreover, the Butterfly NoC has an asymmetric architecture which represents a new problem 

when performing the core to layer mapping step. This 3D architecture is mapped into 2 tiers: 

Top and Bottom.  We create a design based on an 8x8 Butterfly NoC linking 8 master 

processors to 8 slave memories. We use the FSL (Fast Simplex Link) Bus to connect the 

Openfire processor to the NoC via Network Interfaces. This processor gives the possibility to 

connect up to 8 FSL links. That is why; we connect each processor to the NoC in the same 

layer with an FSL port 1 and keep the FSL port 2 to make a vertical link with the processor in 

the opposite tier. This architecture is presented in DEF���� ���. With these vertical connections, 

processors from the Top tier and the bottom Tier can communicate and synchronize together.  
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Figure  8.6. Architecture 2 : MPSOC Based on the butterfly architecture  

 This 3D MPSOC architecture is based on two Butterfly NoCs; each one is linking 8 

cores to 8 memories. The number of routers in each NoC is equal to twelve forming three 

different cascaded stages. The processors are connected to the first stage through the network 

interface units called FSL2OCP. These elements transform the FSL bus signals to fit the OCP 

(On Chip Protocol) interface. Another interface called OCP-to-NTTP transforms those signals 

to fit the internal protocol of the NoC called NTTP. The routing of the packets is performed 

thanks to the different routing tables included in all the routers. Depending on its address and 

on the router’s routing table, the packet is routed to the suitable output port to finally reach its 

last destination which is a slave master. In this architecture, processors from the same layer 

can only communicate by reading or writing from the shared slave memories while the 
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router used in MPSOC 1. Both architectures have more than five hundred vertical signals 

which are ensuring the communication between the different cores. In both cases the 

frequency of one tier is equal to 100 MHz but we can not consider this value as the total 

frequency of the 3D chip, such result can be only obtained at the end of the 3D chip creation.    

After this 3D design experience, we get a clear idea about the 3D IC Tezzaron methodology: 

issues and limitations. The floorplanning step is trivial with the Mesh topology of MPSOC 1. 

In fact, the processors are homogenous in term of configuration and local memory sizes. In 

this case, each tile is including a processor, a data memory, an instruction memory, a router 

and a Network Interface.  The grey boxes presented in each tile are reserved for the memories. 

The implementation of the architecture MPSOC 1 was an easy way to validate and to 

experiment the complete workflow. In fact, the complete workflow takes 2 hours and a half to 

generate the GDS file describing the layout of the design. The step of routing where the 

cadence tool takes in consideration the vertical 3D signals assigned to the different Bumps 

represents about 50% of the whole design time.  The implementation of the second 

architecture presents more serious problems. The floorplanning of a heterogeneous MPSOC 

architecture is known to be NP hard. The actual 3D IC Tezzaron workflow does not take in 

consideration the automation of this step. With our chip, which is considered as a small 

design, we perform this operation manually taking in consideration the architectural 

properties of our design. We place the NoC in the middle between the processors and the 

memories.  The routing step takes about 3 hours which represents more than 75% of the 

complete workflow implementation.  The router takes a double time to perform the routing 

step of MPSOC 2 compared to MPSOC1. This result is due to the complexity of the Butterfly 

architecture which has an asymmetric topology but also to the limitation of the SoC encounter 

tool. In fact, the 3D Tezzaron workflow methodology is a set of sequential and independent 

steps. For example, the routing is performed after the placement step which means that the 

placement does not take in consideration the cell connections.  It is clear that the 

floorplanning, the placement and the routing steps are interdependent that is why a sequential 

and a static methodology can never guarantee an optimized result.    
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Table  8.1. MPSOC Implementation results 

Parameters MPSOC 1 MPSOC 2 
Die size per tier 3.2 mm x 4.895mm 1.99 mm x 4.95 mm 
Number of ASIC gate per tier 1.3 Million 5.934 Millions 
Inter die signal connections 594 560 
Frequency 100Mhz 100 MHz 

8.5 Complexity of 3D implementation 

 3D conception is facing a big limitation which is the lack of the industrial EDA tools. 

In fact until now, there is no complete tool for the real implementation of 3D ASIC design. 

Tezzaron is providing home made scripts to modify the 2D EDA tools by adding pins under 

the Bumps. The first difficulty in the design is the partitioning of the project conception. The 

perfect partitioning of the 3D NoC Butterfly is the one replacing its long interconnect links by 

vertical connections, a possible architecture is illustrated in Figure  ��A. As we are using a face 

to face 3D Technology, we propose to place the different stages of the NoC alternatively on 

the different layers. The implementation of the different dies separately represents a major 

problem in 3D IC conception. In fact, we should perform the complete place and route 

workflow for each tier separately. When we have asymmetric designs this will be time costly. 

In addition, the verification of the complete chip can be only performed at the end of the 

workflow. The lack of EDA tools dedicated for 3D designs is the major faced difficulty. As 

we are from the first users of Tezzaron technology in 3D , there is only few  reference designs 

provided with the design kit which are in the almost cases simple and not representing facing 

the EDA faced problems.   

�

Figure  8.9. 3D MPSOC partitioning 
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From return of experience, we can report the advantages and the issues of the 3D IC Tezzaron 

workflow. In fact using this technique was a good experience to get familiar with the 3D IC 

properties. It was a genius idea to modify the classical 2D workflow to suit the 3D 

conception. This technique is principally dedicated for a chip with two face to face layers and 

can be extended to at most 4 layers. The use of 2D tools in some critical steps like the 

placement and the routing does not really prove the real motivation behind the 3D IC 

technique. In fact the implementation of each tier is done separately without taking in 

consideration the information from the opposite one which does not guarantee the optimal 

chip result.       

8.6  3D IC Fabrication 

 We propose in this work to use the 3D Tezzaron technology provided by 

Tezzaron[106] company. This 3D technique is a wafer level, Via-first and metal-to-metal 

thermal bonding. This technique has produced two generations of 3D vertical connections: 

The first one is “Super Via“ and the second one is “Super Contact’’, both are illustrated in 

Figure  ���B.  

�

Figure  8.10. Tezzaron 3D Techniques: Super-Via(left), Super Contact(right)[107] 

�  The Advantage of the first generation of Tezzaron TSV is the fact that the fabrication 

of the TSV is applied on the wafers after their complete process at a vendor fab. The main 

issue of this method is the high cost of TSV insertion in term of area. The “super-Contact” 

process needs to add a new process module at the vendor fab which is an easier task compared 

to the “Super Via” method.  

 We detail in Figure  8.11, the complete process of the ‘’Super Contact ‘’ fabrication. 

We present in the first step a cross section of a wafer after the transistors process creation and 

before the contact metal. In the next step, the “Super Contact” is etched passing through the 
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oxide and the Silicon Substrate to be then lined with SiO2/SiN. In the third step the “Super 

Contact” is filled with Tungsten and finalized with chemical-mechanical polishing (CMP). 

These are the only steps which are performed at the wafer level. During step 4, the wafer is 

finished normally by adding the wiring layers. After recessing the oxide surface of two 

wafers, those one area then aligned and bonded using a copper thermal diffusion process 

which needs approximately about 400°C, this step is illustrated in step 5. During the sixth step 

and after the bonding operation, the wafer situated on the top is thinned until reaching the 

bottom of the “Super Contact”. The thickness of the substrate is about 4µm. After this, the 

backside of the thinned wafer will be covered with an oxide. An additional process is then 

performed to create bonding pads for an eventual stacking. The stack is then inverted which is 

illustrated in step 7, the fist wafer is now situated on the top level. A final process will be 

applied on the first level. In the last step of this process, the first wafer is thinned in the same 

way of the previous steps and stops at the level of the bottom of the Tungsten super-contact. 

This wafer is then covered by an aluminum layer to perform a normal bonding. 

 

Step 1 

 

Step 5 

 

Step 2 

 

Step 6 
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Step 3 Step 7 

�

Step 4 

 

Step 8 

Figure  8.11. Illustration of Tezzaron’s Stacking method with the ‘’ Super Contact’’ Interconnect[107] 

�

Figure  8.12. Tezzaron metal bonding[62] 

 After the creation of each die separately, the process of the 3D chip manufacturing can 

be performed. In fact, the vias can be deposit thanks to the stubs which are connected to the 

last metal layer, in the case of Tezzaron Technology this one is metal 6. We can see the 

illustration of this step in Figure  ����.  

�

Figure  8.13. Deposit D2D Vias[108] 

 After the step of Via creation, the Thermo compression bonding operation will be 

performed on the separate dies. The applied pressure and temperature during this step cause 

the fusion of the copper stubs, at the end of this step opposite Via coppers from both dies are 
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fused together. The next step is the CMP (chemical mechanical polishing) thinning. In fact, 

during this process the upper stack is thinned to 10 or 20mm [108].  We present in Figure 

 ����, the illustration of the CMP thinning step.  

�

Figure  8.14. CMP step for stack thinning [108] 
�

 The next step of the 3D chip creation is the Backside etching dedicated for power, 

ground and I/O. Thanks to the 3D stacking, the connections of the supply signals and the I/O 

to be shorter. New TSVs are added on the thinned die (see Figure  ���	 ) to ensure this 

functionality.   

�

Figure  8.15. Etching for power/Gnd TSV [108] 

 The last step of the 3D Chip manufacturing is the packaging. But with the thermal 

dissipation problem which is considered as a serious challenge in 3D IC integration, a Heat 

Sink must be added to the stacked chip. It is recommended to place the active component near 

to the Heat sink in order to easily evacuate the thermal dissipation.  

�

Figure  8.16.The Heat Sink creation [108] 
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8.7 Conclusion 

3D conception is an emerging and an attracting research field, but only few works have 

performed real implementation. In order to have a practical experience with 3D IC 

conception, we designed two MPSOC architectures with 16 processors based on the Mesh and 

the Butterfly architectures. The first design called MPSOC1 based on the Mesh topology was 

an easy example to experiment the whole 3D workflow provided by the Tezzaron Company.  

With its short interconnection, its homogenous tiles and its small size, this architecture does 

not reveal critical problems during the implementation. The gain in term of chip area is 

reduced to 50% of a 2D design but the frequency does not notice a meaningful increase. The 

second design, based on the Butterfly NoC, which represents an asymmetric topology, was an 

interesting case study for the 3D methodology.  In fact, the partitioning of the architecture and 

the core to layer mapping represent serious problems to perform the implementation of the 

chip. Thanks to this experience, it was clear that the 3D Tezzaron methodology should be 

modified to fit with different architectures. In fact, the core to layer mapping and the 

partitioning should be taken in consideration during the conception. The prefect 3D 

conception should be performed using specific 3D tools solving the different sub problems 

with interaction between the different tasks. 

�
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9 Conclusion 

 Referring to the ITRS roadmap, the number of cores increases each 18 months 

following an exponential curve. The NoC has been considered as an emerging solution to deal 

with the problem of the chip interconnects. But the use of the Nanometer technology has 

presented a new major limitation where the interconnect delay overcomes the gate delay. 3D 

IC was one of the proposed solutions to deal with this problematic. Even though there exit 

some industrial and academic 3D tools, the shortage of a complete 3D dedicated workflow 

represents the major challenge in this field.  We presented in this work a state of the art of the 

existing 2D and 3D workflow methodologies. New 2D and 3D NoC synthesis workflow were 

also proposed. 

 In the first chapter, we presented the state of the art detailing the evolution of the 

MPSOC design. Different 2D real implementation workflows used in literature have been 

discussed. Even though the basic steps are the same for all the methodologies, which are the 

design, the synthesis the place and the route and the execution, there is a big difference 

between the different workflows.  With the increase of the number of cores in the SoC, the 

simulation is not any more possible. Only methodologies based on the emulation can deal 

with large scale designs.    

 In order to evaluate a set of industrial EDA tools, we presented in Chapter 2 the 

implementation of MPSOC architecture with 16 processors, 16 memories and a Butterfly NoC 

on FPGA. The used methodology is based on the industrial tools from the companies Arteris, 

Xilinx and Eve. A real execution of our MPSOC architecture has been performed on different 

FPGA emulators like Zebu-UF4 and Zebu-Server. To find the optimized MPSOC 

configuration, we performed a MOEA on the different Hardware options. The results of our 

DSE provided a set of Pareto front with a compromise between the area and the frequency. 

Our design space exploration of the complete architecture represents a database which can be 

used as a reference design to prevent the needs of the user in term of Hardware and Software 

options.  

 Chapter 3 was the subject of the 3D technology state of the art. We detailed the 

different techniques of 3D IC stacking and the basic 3D interconnects notions like TSV and 

Microbumps. 3D IC presents various advantages like reducing the interconnect length which 

decreases the power consumption of the chip. The main difficulty which is discouraging the 

designers to move from 2D to 3D design is the shortage of specific 3D tools.   
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 A major motivation of this work is to study the optimization methods of MPSOC 

design. In this thesis, we focus on the NoC optimization based on the user constraints, which 

represents, the subject of chapter 4. In fact, the basic 2D NoC synthesis methodologies present 

in literature were discussed. We proposed 2D NoC synthesis solution based on LP and spatial 

coregraph partitioning. We generated free NoC topologies optimized for area and delay tested 

with different benchmarks.  

 We presented in chapter 5, the 3D NoC synthesis methodologies already proposed in 

literature. We then detailed the 3D Tezzaron technology properties to perform a suitable 3D 

NoC synthesis methodology. We presented in this part our new 3D NoC synthesis 

methodology with 3D Tezzaron technology. Our proposed solution is full parallel 3D NoC 

synthesis solution taking in consideration all the 3D NoC synthesis sub-problems 

simultaneously. 

 We presented in chapter 6, a state of the art of real 3D MPSOC architecture. A set of 

3D Hardware Accelerator were summarized. These 3D architectures are suitable in the image 

processing filed where we need to transfer a huge amount of data with a high frequency. 

 Chapter 7 was the subject of parallel EDA methodology. We presented a parallel 

implementation of an MPSOC with 64PEs on a multi FPGA board. A basic MPSOC design 

with 16 processors and 16 slaves has been duplicated four times then connected with a 

hierarchical level. In order to evaluate the different options of the 3D Tezzaron methodology 

we performed a DSE on the used EDA tools. The place and route algorithms behind the 

cadence tools are not dedicated for 3D IC. The proposed 3D Tezzaron technology depends 

basically from the efficiency of the synthesis, place and route performances. 

 We presented in chapter 8, a real 3D IC design implementation of our MPSOC 

architecture with 16 processors and 16 memories. We performed a comparison between two 

different MPSOC with different NoC topologies (Mesh, Butterfly). Thanks to its symmetry, 

the mesh based NoC architecture is easier to implement compared to the other one based on 

the Butterfly NoC. In fact with this one, we have to deal with additional problems like 

mapping and partitioning. With its long links, the Butterfly architecture is a better example 

than the mesh topology to prove the efficiency of 3D design. 

 The main parts of this work are basically classified into two different families: 

technical and research.  In fact the experimental or the practical operation is the first step to 
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define the properties and the challenges of the used methodology. The research step is directly 

affected by the obtained results. That is why we can present the main contribution of this 

work as follow: 

•  A design of MPSOC architecture (16PEs, 16 memories) based on a Butterfly NoC. 

This design was implemented on FPGA emulator Plateform (Zebu -UF4, Zebu-

Server). 

•  A design of a hierarchical MPSOC design (64PEs, 64 memories) by the multiplication 

of an MPSOC elementary design. 

•  A proposition of a 2D NoC synthesis solution based on linear Programming. 

•  A comparison between the different 2D/3D NoC synthesis methodologies. 

•  A proposition of a new 3D NoC synthesis methodology based on MOGA. The 

parallelism and the simultaneous of the sub-problems resolution represent the main 

originality of this work. 

•  A real 3D ASIC design implementation of our 3D MPSOC architecture using 3D 

Tezzaron technology. A comparison between different 3D MPSOC architectures 

based on Mesh and Butterfly NoCs.  

 We believe that this work is a common platform to address other important issues such as 

reconfigurability, models of programming and convergence of disciplines.  

 3D IC design technology was the main motivation of this PHD studies. In this work 

we have performed a real 3D ASIC real implementation using the face-to-face 3D Tezzaron 

technology. In the future works, we are targeting the development of multi layer chips with 

more developed techniques (Ex: 4 layers, use of the TSV, other stacking techniques). The use 

of more than 2 layers in the 3D IC design can reveal new challenges like the use of the TSV 

and the choice of the stacking technique.   

 Another perspective of this work is to implement the extension of our hierarchical 

MPSOC architecture based 64 PEs to create a large scale design with 256 PEs. Such 

architecture will need a powerful machine to ensure the EDA tools functionality but it will be 

a real challenge to test the efficiency and the limitations of the 3D Tezzaron workflow. With a 

large scale design there will be a real need to increase the parallel tasks in the 3D IC 

methodology.   
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 With the high theoretical complexity of the 3D NoC synthesis problem, we propose in 

the future works to perform a Design Space Exploration on the different 3D MPSOC designs. 

The goal of this work is to define the critical variables affecting the 3D chip performance. 

When we define those parameters, we can reduce the Design Space Exploration by choosing 

the most important options.   

 The use of heterogeneous technologies represents one important motivation behind the 

3D IC technique. In the future works we propose to implement heterogeneous 3D chips taking 

in consideration the advantages of this methodology in term of area, cost and power 

consumption. The implementation of the processors and the memories in separate layers and 

with different technologies can be an interesting experimental case study.  

 After this first 3D IC implementation experience we believe more and more that it is 

not possible to study or to propose a theoretical 3D IC solution without having a deep and a 

real knowledge of the 3D physical techniques. It is meaningless to propose a 3D ASIC 

methodology which is only based on theoretical studies far from the fabrication reality.    

 During this thesis we were faced to a major problem which is the limitations of the 

actual EDA tools. Thanks to the real 3D ASIC design implementations we have proved that it 

is not any more possible to perform a manual Place and Route with the evolution of the 

MPSOC designs. The EDA tools perform these steps without taking in consideration the 

architectural design information lost after the logical synthesis operation. It is necessary to 

create a new EDA tool applying a design aware 3D ASIC workflow.      
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