
HAL Id: pastel-00769455
https://pastel.hal.science/pastel-00769455v1

Submitted on 1 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASIC Design Methodology for 3D NOC Based
Heterogeneous Multi Processor on Chip

Abir M’Zah

To cite this version:
Abir M’Zah. ASIC Design Methodology for 3D NOC Based Heterogeneous Multi Processor on Chip.
Micro and nanotechnologies/Microelectronics. Ecole Polytechnique X, 2012. English. �NNT : �.
�pastel-00769455�

https://pastel.hal.science/pastel-00769455v1
https://hal.archives-ouvertes.fr

����� � � � � � � �

�

THESE DE DOCTORAT

En co-tutelle entre

Ecole Doctorale de l’Ecole Polytechnique

Spécialité : Physique Polytechnique

Ecole : ENSTA ParisTech U2IS-Lab

Université Tunis El Manar

Spécialité : Génie Electrique

Ecole : ENIT Tunis

Présentée par :

 Mme Abir M’zah Ben Nejma

Sujet

�

ASIC Design Methodology for 3D NOC Based
Heterogeneous Multi Processor on Chip

�

Soutenue le 14/12/2012 devant les membres du Jury:

M. Bernard COURTOIS, Invité, Directeur de Recherches, CMP Grenoble, France

M. Marc DURANTON, Examinateur, Docteur, CEA LIST Saclay, France

M. Omar HAMMAMI, Directeur, Professeur, ENSTA ParisTech, France

M. Jaouhar MOUINE, Co-directeur, Maître de conférences, ENIT, Tunisie

M. Smail NIAR, Rapporteur, Professeur, Université de Valencienne, France

Mme. Laurence PIERRE, Examinatrice, Professeur, Laboratoire TIMA Grenoble, France

M. Hassan RABAH, Rapporteur, Professeur, Université Henri Poincaré Nancy, France

M. Fréderic ROUSSEAU, Examinateur, Professeur, Laboratoire TIMA Grenoble, France

A.M’zah 3D MPSOC

2�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A.M’zah 3D MPSOC

3�
�

���������

 ITRS Road Map predicts that the number of cores in the same chip will increase

following an exponential curve. Insuring the interconnections between the different cores in

the same chip is a real challenge when the number of components is high. The use of the NoC

(Network On Chip) is a suitable solution overcoming the limitations of the classical

interconnects methodologies. The regular NoC topology is costly in term of area and power

consumption that is why designing an optimized architecture is a major problematic in

MPSOC design. Moreover, with the semi-conductor CMOS shrinking, the interconnect delay

has overcome the gate delay. In fact there is a real need to find other methodologies to

continue the evolution of the chip design. 3D IC is one of the promising solutions which can

reduce the interconnect delay, minimize the area of the chip and allow the use of mixed

technologies. With the shortage of real 3D IC MPSOC implementation, we propose in this

thesis to study the 3D design methodologies on ASIC for MPSOC architectures based on 3D

NoC. Even though the NoC was proven to be an efficient solution to deal with the

interconnect problems between the different cores, only few works have validated the

architectures based NoC by a real implementation on FPGA/ASIC. We consider that the

validation of 3D NoC by synthesis, place and route workflow is an essential step which

guarantees the good functionality of the architecture before moving to 3D technology. That is

why we have validated our MPSOC based 16 PEs architecture with a butterfly NoC on

different FPGAs platforms. 3D IC design is facing new challenges like TSV assignment, heat

dissipation and partitioning problems. That is why, in order to generate an optimized 3D NoC

for a specific application and subject to the 3D Tezzaron technology, we propose in this work

a new 3D NoC synthesis methodology based on MOEA. A real 3D IC design implementation

of our tested and validated 3D MPSOC architecture was performed using the 3D IC Tezzaron

technique. Our real case study represents a significant example proving that there is no actual

3D tool taking in consideration all the 3D IC challenges like mapping and partitioning.

Keywords: NOC, MPSOC, 3DIC, EDA tools, Validation/Verification

A.M’zah 3D MPSOC

4�
�

���	A��

 La feuille de route d’ITRS prévoit que le nombre de processeurs dans la même puce va

augmenter suivant une courbe exponentielle. Assurer la connexion entre les différents

processeurs dans la même puce constitue un vrai défi quand le nombre des composants est

important. L’utilisation d’un réseau sur puce est une solution efficace qui résout les problèmes

des moyens classiques de connexion comme le bus et le point à point. Le réseau sur puce

régulier coûte cher en termes de surface et d’énergie, c’est pourquoi la conception d’une

architecture optimale représente une motivation majeure. En plus, avec la réduction de la

taille des transistors, le temps de propagation dans les liens dépasse celui des portes logiques.

En effet, il est indispensable de trouver de nouvelles techniques qui permettent de continuer le

développement des circuits du semi conducteur. La conception 3D des circuits intégrés est

une solution prometteuse qui peut réduire la longueur des liens, la surface de la puce et qui

permet d’utiliser des technologies différentes dans la même architecture. Vu le manque

d’implémentations réelles des architectures à base de multiprocesseurs avec la technique 3D,

nous proposons dans cette thèse d’étudier les méthodologies de conception ASIC des

architectures MPSOC à base du NoC 3D. Bien que les réseaux sur puce soient considérés

comme une solution efficace pour le problème de connexions entre les processeurs, rares sont

les travaux qui valident le NoC par une vraie implémentation sur FPGA/ASIC. Nous

considérons que la validation d’un NoC par émulation nous permet de garantir la bonne

fonctionnalité de notre architecture lors de l’implémentation en 3D. La technique de

conception en 3D IC est confrontée à plusieurs problèmes comme le placement des

connexions verticales, la dissipation de chaleur et le problème de partitionnement. Dans ce

cadre, nous proposons dans cette thèse une nouvelle méthodologie de synthèse NoC 3D qui se

base sur les algorithmes évolutionnaires. Nous avons implémenté une architecture MPSOC

avec la technologie 3D de Tezzaron. Notre cas d’étude représente une architecture

significative qui tient en considération les contraintes de la technologie 3D de Tezzaron.

Mots clés : NOC, MPSOC, 3DIC, EDA tools, Validation/Verification

�

�

�

A.M’zah 3D MPSOC

5�
�

�BAB��CBABD���

 Je tiens vraiment à remercier mes deux rapporteurs, Prof S. Niar et Prof H.Rabah, d’avoir
accepté d’évaluer mon rapport de thèse. Je vous remercie pour le temps précieux que vous m’avez
accordé. Vos remarques et votre évaluation ont très bien contribué à l’amélioration de mon manuscrit.

 Je tiens à remercier tous les membres de jury d’avoir accepté de faire partie de mon comité de
thèse. Je suis honorée par la participation de M.Courtois, M.Duranton, Mme Pierre et M.Rousseau
dans l’évaluation de ma thèse.

 Je voudrais maintenant remercier la personne que j’ai croisée dans l’accueil de l’ENSTA il y a
maintenant trois ans et qui est devenu par un coup de destin inévitable mon directeur de thèse. Prof.
Omar, merci de m’avoir appris des leçons pour toute ma vie. Je n’oublierai jamais mes moments de
souffrance, de stress, de patience et de succès. Je vous remercie pour votre temps, pour votre énergie
incroyable et pour votre confiance en moi. Je n’ai jamais croisé une personne comme vous, quand
vous étiez parfois dur avec moi je regardais vos yeux très fatigués et je me disais que vous êtes plus
dur avec vous-même et ça me donnait de la force pour continuer. C’était vraiment philosophique de
faire une thèse avec vous.

 Je tiens aussi à remercier mon co-directeur de thèse Prof. Jaouhar. Grâce à votre formation de
base j’ai pu bien avancer dans mes études doctorales. Je vous remercie pour vos qualités humaines
invraisemblables et pour votre support moral.

 Enfin je me rappelle de tous les visages qui m’ont accompagnée pendant ma thèse. Je voudrais
spécialement remercier Xinyu pour son encadrement au début de la thèse.

 Khawla mon amie de thèse, je pense que tu étais mon meilleur support quand les choses
allaient parfois mal tu étais là pour m’encourager et pour en discuter. Je suis très contente pour toi et
pour la petite qui vient.

 Thank you for Mohamed Hairol, we started the PHD together and it was a very good
experience. I will always like Malaysian people because they are kind and frank like you.

 Je remercie tous mes amis de l’ENSTA Isslem, Nessrine, Mazen, Ghassen, Souhir, Gangui
d’avoir fait partie de ma vie à l’ENSTA.

�

�

�

�

�

�

A.M’zah 3D MPSOC

6�
�

EBEC���B��

�

�������������	ABA�C�D�EF�����	�EA	���F�������������	�E�	�����F�	��F������F	��EF	AC�E�	���

��ABF�	��	A���F	E��E���CA	E������	�	����������	�E�	�������E�ABF�	�A����D�BF�	�C�����F�����

��E�C�E����������A����EA���������F������E���A���	�����F����������B���EA��������F��C��	A��

�AEA�������������E�A�������������F���C��EF���������A		���	���������	 ���A��C���EA������C������

��	�F�����F	�����������F������	�������A��BF�C���F��F�	�����BF�	����	����EF���������� 	�������F��

�A�	��������F	����������C��	���	������

�������������	ABA�C�D�E������	���A	���������BF���A�E���F	���BF��������EA�	A��F������	�����EF��

!	A���AEF�	��A���������B���������������FC���EAEA���A	����������������A���A��A��FE�A!���

�A����A�EACA������A�	A���A�E����	��CD��F�	�����F���	����EA�B�������C�C���A����"��	��A�A�������A���

�A	E��C���!����D������������A����A���E���EFE������������C�������ABA�������������A���B	A�E����

D�������������	E����E����������ACF	�������F��	���������� ����FEE������B	A���	��F��A���A����

�F�	��F��AEF�	��F�	�EF����

�������������	ABA�C�D�EA��� 	���#�	�$E�������A���������AE�CC������E��EA��������A��F����D�

E������%��	 	���&F'��A	����(CA�����������A		�B���A��D�BF���F��C��	����������D�BF�����A����

�F�	��)F��������E������%�A�!�����A�FC�������

���������D�	�E�	���	�E�����A�%��A	���������F����EA���CC���AE�CC������BF���	�E�	�����F�	�BF�	��

AEF�	�����F�	�BF�	������F	����

�������������	ABA�C�D��F����EA�!	A�����AE�CC���

�������������	ABA�C�D�EA��� 	��AE���&A	*F�EA��������C��E��CC��	��A��A��������A��������

C�+,-.(�E�	�����ABF�	����������#�	��F�	�EF���

����������������� ���D��F���E���AE�����������AC�E����D�/A�A���C�AE������EA�B����

+�������������������	ABA�C�D�EA���CC��.0,$-$+�������C��	���	�BFC���F��A�	������	FE��������1��

���

�

�

�

A.M’zah 3D MPSOC

7�
�

�

� �

A.M’zah 3D MPSOC

8�
�

List of Abbreviations

• MPSOC: Multi Processor System On Chip
• IC : Integrated Circuit
• NOC : Network On Chip
• GA : Genetic Algorithm
• MOEA : Multi Objective Evolutionary Algorithm
• LP : Linear Programming
• TSV : Through Silicon Via
• EDA : Electronic Design Automation
• IC : Integrated Circuit
• ILP : Integer Linear Programming
• MOGA : Multi Objective Genetic Algorithm
• ID : Individual
• FSL : Fast Simplex Link
• IP : Intellectual Property
• PE : Processing Element
• CMP : Chemical-Mechanical Polishing
• WNS : Worst Negative Slack
• WTW : Wafer To Wafer
• DTD : Die To Die
• DTW : Die To Wafer

A.M’zah 3D MPSOC

9�
�

Table of Contents

Introduction��

1� MPSOC State of The Art��

1.1� Trends���

1.2� MPSOC State of the Art���

1.3� MPSOC Actual implementation���

1.4� MPSOC Design methodologies��

1.5� Conclusion��

2� . 2D MPSOC Design and implementation��

2.1� Theoretical Complexity Problems in 2D Design and implementation���������������������������������������

2.2� Regular NoC implementation on FPGA: case study Butterfly���	�

2.2.1� Synthesis results���A�

2.2.2� Parallel Programming: Filter Harris���B�

2.3� NoC Design Space exploration on FPGA��

2.3.1� ModeFRONTIER tool��

2.3.2� Multi objective Genetic Algorithm NSGA-II Algorithm���	�

2.3.3� ModeFRONTIER project: MOEA on FPGA���

2.3.4� Machines Specifications���A�

2.3.5� Sequential DSE��	B�

2.4� Parallel and multi-scale software implementation���	��

2.5� Return on experience: Analyses and discussions���B�

2.6� Conclusion��B�

3� 3D Semi conductor Technology���

3.1� 3D Semi conductor Technology: Motivation���

3.2� 3D Semi conductor Technology: State of the Art��

3.3� 3D Design Methodologies��

3.3.1� Wire Bonded System-in-Package���

3.3.2� Peripheral Vertical Interconnects���A�

3.3.3� Micro Bumps���CB�

3.3.4� Through silicon via (TSV)���C��

3.3.5� Contactless���C��

3.4� Benefits and challenges in 3D Design���C��

3.4.1� Benefits of 3D Design���C��

A.M’zah 3D MPSOC

10�
�

3.4.2� Challenges of 3D Design��

3.5� 3D Academic and industrial devices��

3.5.1� 3D Academic��	�

3.5.2� 3D industrial���	�

3.6� Conclusion��	�

4� NoC Synthesis methodologies��

4.1� 2D NoC synthesis methodologies��

4.1.1� Deterministic methods��

4.1.2� Mixed methods���A�

4.1.3� Heuristic methods���A�

4.2� FPGA based NoC synthesis Design Flow���A��

4.3� Case study and performance evaluation results���A	�

4.3.1� Introduction to linear programming LP���A	�

4.3.2� OPL Modelling and CPLEX solver���A��

4.3.3� Our LP Problem Definition���A��

4.3.4� Experimental Results��B��

5� NoC Synthesis Methodology for 3D ASIC Design���B�

5.1� 3D NoC synthesis state of the Art���B�

5.2� 3D NoC synthesis design Flow���

5.3� Tezzaron Technology methodology��C�

5.4� 3D NoC Synthesis with GA��

5.5� Performance Evaluation Results��C�

5.5.1� Case Study���C�

5.6� Conclusion���

6� ASIC Design Methodology for 3D NoC based 3D Heterogenous Multiprocessor On Chip������������

6.1� 3D Multiprocessor Architecture Homogenous��

6.2� 3D Heterogeneous Multiprocessor architecture��

6.3� 3 Hardware Accelerator synthesis in 3D Heterogeneous Multiprocessor architecture�������������

6.4� Conclusion���

7� Theoretical Complexity and Parallel EDA for 3D��

7.1� Parallel EDA: Hierarchical MPSOC based 64 PEs on FPGA���

7.2� 3D Theoretical Complexity from return of experience��	B�

7.2.1� Core to layer mapping��	B�

7.2.2� Floorplanning���	B�

A.M’zah 3D MPSOC

11�
�

7.2.3� NoC topology���	B�

7.2.4� NoC floorplanning��	B�

7.3� Parallel EDA for 3D IC implementation��	��

7.4� Parallel EDA for 3D : Case study��	��

7.5� Conclusion��		�

8� 3IC Design and Modelling Case of Tezzaron��	C�

8.1� MPSOC basic components���	C�

8.1.1� Processor��	C�

8.1.2� Fast Simplex Link (FSL) Bus���	C�

8.1.3� 3D Router���	��

8.2� Architecture 1 : MPSOC1 based on mesh topology���	A�

8.3� Architecture 2 : MPSOC2 based on Butterfly topology��

8.4� Implementation results and discussion��

8.5� Complexity of 3D implementation��

8.6� 3D IC Fabrication��	�

8.7� Conclusion���A�

9� Conclusion��C��

References��C��

List of Publications���A��

�

�

�

�

�

�

�

�

�

� �

A.M’zah 3D MPSOC

12�
�

Table of Figures
Figure 0.1. Global and local wire delay evolution [1] ... 16
Figure 1.1 Design Complexity trend [2] ... 21
Figure 1.2. Point to Point Architecture .. 22
Figure 1.4. Industrial MPSOC number of cores evolution [4] .. 23
Figure 1.5. IEEE Xplorer hits for different “network-on-chip” researches [5] ... 24
Figure 1.6. Tile 64 Block Diagram Processor[17] .. 27
Figure 1.7. SpiNNaker MPSoC block diagram[13] .. 27
Figure 1.8. SpiNNaker MPSoC plot[13] ... 27
Figure 1.9. Kumar et al MPSOC Design flow[18] .. 28
Figure 1.10. Application Specific MPSOC workflow [22] ... 28
Figure 1.11. Xpipes Synthesis Flow[23] ... 29
Figure 1.12. STARSOC Design flow overview .. 30
Figure 1.13. Automatic heterogeneous design flow [25] .. 31
Figure 1.14. MPSOC Methodology Workflow of SpiNNaker [13] .. 32
Figure 2.1. MPSOC based Butterfly NoC: 2Ary 4Fly Architecture ... 36
Figure 2.2. Our MPSOC implementation workflow ... 39
Figure 2.3. Harris Filter Execution Time and speed up ... 41
Figure 2.4. ModeFRONTIER project example ... 42
Figure 2.5. ModeFRONTIER initial population ... 43
Figure 2.6. NSGA-II algorithm illustration ... 46
Figure 2.7. ModeFRONTIER DSE Project ... 47
Figure 2.8. Pareto Front DSE of Harris Filter on MPSOC 16x16 ... 48
Figure 2.9. SSM IP Architecture ... 50
Figure 2.10. MPSOC7: Execution time variation in function of the population size: ... 51
Figure 2.11. THALES2 : Comparison of FlexNoC (a) EDK (b) execution with different population sizes 52
Figure 2.12. MPSOC4: Comparison of FlexNoC (a), EDK (b), zCui (c) with different population sizes 53
Figure 2.13. Design Space Exploration for mathematical Model generation .. 55
Figure 2.14. MPSOC7 : Comparison of FlexNoC (a), EDK (b) execution with different numbers parallel Ids ... 56
Figure 2.15. THALES2: Comparison of FlexNoC (a), EDK (b) execution with different numbers parallel Ids .. 57
Figure 2.16. SSM IP 48 processors 32 BRAMs .. 58
Figure 3.1. Gate and Interconnect Delay as a function of gate technology [39] ... 63
Figure 3.2. Cost CMOS scaling[40] .. 64
Figure 3.3. Example of 3D Design [42] ... 64
Figure 3.4. Illustration of the evolution of the semi conductor technology with CMOS scaling with other ways of
development offering new functionalities [2] ... 65
Figure 3.5. 3D IC industriel design ... 67
Figure 3.6. Illustration of vertical interconnect technologies: wire bonded (a); microbump—3D package (b) and
face-to-face (c); contactless—capacitive with buried bumps (d) and inductive (e); through via—bulk (f) and
silicon on insulator (g) [54] ... 68
Figure 3.7. Wire bonding design [55] ... 69
Figure 3.8. Wire bonded System-in-Package[57] ... 69
Figure 3.9. SiP with peripheral connections: (a) solder balls (b) through-hole via and spacers ,......................... 70
Figure 3.10. 3D Chip with Micro Bumps .. 70
Figure 3.11. Process flow fabrications of CuSn solder Microbump[60] ... 71
Figure 3.12. SEM picture a die part of the interwoven daisy chain with 10µm diameter CuSn bumps formed by
electrochemical plating. The pitch of the bumps is 20µm [61] ... 71
Figure 3.13. Through silicon via (TSV)[62] ... 72
Figure 3.14. TSV examples [64] ... 73
Figure 3.15. General TSV flow fabrication [65] ... 73
Figure 3.16. Via first (left), Via last (right) 3D IC methodologies[63] ... 74

A.M’zah 3D MPSOC

13�
�

Figure 3.17. Stacking Methods[66] ... 76
Figure 3.18. RC delay vsTSV diameter[67] .. 77
Figure 3.19. TSV Area estimation[68] .. 77
Figure 3.20. 3D IC Inductive coupling[57] Figure 3.21. 3D IC capacitive coupling[70] 78
Figure 3.22. Area reduction with 3D Stacking [71] .. 79
Figure 3.23. Average latency 3D IC and 2D IC [67] .. 80
Figure 3.24. Number of repeaters with different technologies .. 80
Figure 3.25. 3D chip with heterogenous technologies [72] ... 81
Figure 3.27. Temperature distribution along the z Axis with different Silicon layers [69] 82
Figure 3.28. Microfluidic cooling ... 82
Figure 3.29. Thermal vias for heat dissipation [74] .. 82
Figure 3.30. Examples of TSV defects: insufficiently filled TSV (right), TSV containing Micro voids (left) 83
Figure 3.31. 3D IC testing model[75] ... 83
Figure 3.32.Geographic mapping of 3D IC players [76] ... 84
Figure 3.33. 3D TSV applications and players [77] .. 85
Figure 4.1. NoC synthesis on FPGA [87] ... 91
Figure 4.2. 2D NoC synthesis workflow ... 92
Figure 4.3. Prediction of the Frequency variation when the number and the average node degree of the
benchmark change [88] ... 93
Figure 4.4. An FPGA design flow[19] .. 94
Figure 4.5. The overall flow for analyzing multiple use-cases: the software part is performed for each
application, the hardware is performed only one time [89] ... 94
Figure 4.6. LP graphical solution .. 96
Figure 4.7. 263 enc MP3 Dec : coregraph (left), NoC toplogy (right) .. 104
Figure 4.8. MPEG4 Decoder[78] .. 105
Figure 4.9. MPEG 4 Decoder NoC topology .. 105
Figure 4.10. H264 Decoder ... 106
Figure 4.11. H264 Decoder NoC topology ... 106
Figure 4.12. Coregraph partitioning .. 107
Figure 5.1. 3D Design flow ... 113
Figure 5.2. Algorithm Steps .. 113
Figure 5.3. Communication graph with bandwidth demands on the edges [97] ... 114
Figure 5.4. Partitioning Graph (PG) and the min-cut partitions[97] ... 114
Figure 5.5. Scaling Parameter Graph (SPG)[97] ... 114
Figure 5.7. (left) D26_media communication, (middle) NoC architecture phase 1, (right) NoC Architecture phase
2 [97] ... 115
Figure 5.8. 3D NoC synthesis Design flow with GA, ... 115
Figure 5.9. 3D NoC synthesis Design flow based on floorplanning[92]... 116
Figure 5.10. 3D NoC synthesis workflow[95] .. 117
Figure 5.11. 3D-IC Automatic P&R using DBI and TSV ... 119
Figure 5.13. Signal to Bumps assignment .. 120
Figure 5.12. Create Bumps Array ... 120
Figure 5.14. Create pins under Bumps Tezzaron technology.. 121
Figure 5.15. Our 3D NoC synthesis workflow .. 122
Figure 5.16. Coregraph 1 : 12 Masters 8 slaves .. 127
Figure 5.17. Case 1: Error Path constraint evolution .. 129
Figure 5.18. Case 1 : Area Constraint evolution ... 129
Figure 5.19. Case 2 Min area constraint evolution .. 130
Figure 5.20. Case 2 Error path constraint Evolution ... 130
Figure 5.21. Case 3 : Area constraint evolution .. 131
Figure 5.22. Case 3 : Overlapping Constraint ... 132
Figure 5.23. Case 3 : Path constraint ... 132
Figure 5.24. Our 3D NoC synthesis floorplan Solution .. 133

A.M’zah 3D MPSOC

14�
�

Figure 5.25. The optimized NoC topology.. 133
Figure 6.1. Various layout views of the 3D-MAPS processor[48] ... 136
Figure 6.2. The structure of the PE [49] .. 138
Figure 6.3. The SAR FFT processor architecture[49] ... 138
Figure 6.4. T. Thorolfsson 3D Design flow[49] .. 139
Figure 6.5. The SAR FFT floorplan[49] ... 139
Figure 6.6.Schematic and layout view of 3D SoC H.264 Application [51] .. 140
Figure 6.7. 3D DRAM stacking [51] ... 140
Figure 6.8. The estimated cost of OpenSPARC : the separate core and memory fabrication reduces the cost [101]
 .. 141
Figure 6.9. cross section of the final package ... 142
Figure 6.10. 3D processor architecture CMP-FPGA[103] .. 143
Figure 7.1. MPSOC architecture 64 PEs on Multi-FPGA platform Zebu-UF4 .. 146
Figure 7.2. Parallel workflow EDA MPSOC implementation on FPGA .. 148
Figure 7.3. 3D IC parallel and automatic workflow .. 152
Figure 7.4. The placed and routed Filter with 3D Tezzaron Technology .. 153
Figure 7.5.. WNS (ps), Density (%) and power (mw) for the different combinations of the DSE (Freq=100MHZ)
 .. 154
Figure 8.1. Openfire processor architecture .. 158
Figure 8.2. 3D Router architecture .. 159
Figure 8.3. Network interface architecture .. 159
Figure 8.4. Architecture 1: MPSOC based on Mesh topology .. 160
Figure 8.5. Tile Block Diagram .. 160
Figure 8.6. Architecture 2 : MPSOC Based on the butterfly architecture ... 161
Figure 8.7. . MPSOC1 Mesh: Bottom tier routed layout ... 162
Figure 8.8. MPSOC2 Butterfly: Bottom Tier routed layout ... 162
Figure 8.9. 3D MPSOC partitioning ... 164
Figure 8.10. Tezzaron 3D Techniques: Super-Via(left), Super Contact(right)[107] ... 165
Figure 8.11. Illustration of Tezzaron’s Stacking method with the ‘’ Super Contact’’ Interconnect[107] 167
Figure 8.12. Tezzaron metal bonding[62] ... 167
Figure 8.13. Deposit D2D Vias[108] .. 167
Figure 8.14. CMP step for stack thinning [108] .. 168
Figure 8.15. Etching for power/Gnd TSV [108] ... 168
Figure 8.16.The Heat Sink creation [108] ... 168

A.M’zah 3D MPSOC

15�
�

List of Table

Table 1.1. ITRS 3D Interconnect TSV Roadmap .. 22
Table 1.2. MPSOC state of the Art.. 24
Table 1.3. MPSOC using busses communication ... 26
Table 1.4. Actual MPSOC implementation ... 26
Table 2.1. Comparison Mesh and Butterfly topology ... 35
Table 2.2 Address of the slaves ... 36
Table 2.3. Different switch routing tables ... 37
Table 2.4. Resource utilization of Zebu-UF4 .. 39
Table 2.5. Microblaze parameters ... 47
Table 2.6. Switch Options .. 48
Table 2.7. The properties of the machines .. 49
Table 2.8. ZEBU UF4 Emulator specifications ... 50
Table 2.9. SSM IP 48x32 on Zebu UF4 Resource utilizations .. 58
Table 2.10. SSM IP 48x32 Exploration Results .. 59
Table 3.1. 3D MPSOC design implementation [50] ... 66
Table 3.2. High-density through silicon via projections in 2008 ITRS update [63] 72
Table 3.3. TSV process flows [63] .. 74
Table 3.4. Comparison between bonding methods (KGD: Known Good Die)[60] 75
Table 3.5. Comparison of Via Filling Materials [55] .. 76
Table 3.6. Performance and power comparison between different 3D architectures[71] 79
Table 3.7. Reduction of integrated yield with stacking using wafer on wafer [70] 83
Table 4.1. Summary of 2D NOC synthesis Methods .. 90
Table 4.2. Semi conductor properties .. 103
Table 4.3. Properties and execution time for the different benchmarks .. 104
Table 4.4. Routers Description 263 Enc MP3 Dec.. 104
Table 4.5. Routers Description MPEG 4 Decoder .. 106
Table 4.6. Router configurations H264 Decoder ... 106
Table 5.1.3D NoC synthesis methodologies ... 111
Table 5.2. ARM used in the Design Kit Tezzaron library ... 119
Table 5.3. MOEA Project parameters ... 123
Table 5.4. Case study different configurations .. 128
Table 6.1. Physical Design Summary [48] .. 137
Table 6.2. Architectural Performance Metrics[48] .. 137
Table 7.1. Resources utilization .. 148
Table 7.2. 64PE MPSOC Used IPs ... 148
Table 7.3. Resource utilization of the MPSOC based 64 PEs NoC[104] .. 149
Table 7.4. Options of FILTER DSE .. 151
Table 7.5.Different ID (L: Low, H: High, M: Medium) ... 155
Table 8.1. MPSOC Implementation results ... 164

A.M’zah 3D MPSOC

16�
�

Introduction

 ITRS road map has predicted that the number of cores in the same chip will increase

following an exponential curve. This was the major motivation to create new techniques to

solve the interconnection problem between high number of cores in the same MPSOC. The

use of the Network On Chip represents an efficient solution to deal with classical interconnect

methods limitations like the point to point and the shared bus. But with the evolution of the

CMOS semi-conductor reaching the Nanometre scales, the interconnect delay is overcoming

the gate delay which is illustrated in Figure B��. The Interconnect delay is the new

performance limitation of the chip. The reduction of the interconnection length is the new

challenge in the MPSOC design. 3D IC is emerging as a suitable solution to reduce the global

interconnects delay thanks to the use of the vertical links.

�

Figure 0.1. Global and local wire delay evolution [1]

� Even though 3D IC design is not a new methodology, the number of works making

real 3D ASIC implementation is too limited. The major problem of the 3D IC design is the

shortage of 3D IC dedicated EDA tools. In fact, there is no complete industrial software

allowing the implementation of all the steps of 3D workflow.���

 The objective of this work is to evaluate the different MPSOC design methodologies

used in 3D IC design. We focus on the implementation of the NoC synthesis with

heterogeneous architectures.

 We propose in the first part of this work, to explore different MPSOC implementation

methodologies. A design space exploration of the different configurations of the hardware

A.M’zah 3D MPSOC

17�
�

architectures will be performed in order to find the optimal one in term of cost and

performance. The objective of this work is to validate the used MPSOC architectures before

their implementation on 3D IC.

 The main objective of this thesis is to propose a new 3D NoC synthesis methodology

taking in consideration the 3D IC used technology. A real implementation with 3D ASIC

design will be performed in order to show up the advantages of the 3D design compared to the

obtained results in 2D.

 The organization of this report is directly related to the scientific approach and

methodology adopted during this PHD studies. In fact, the first step of this work which is the

MPSOC state of the art represents an important introduction to the general research field. We

can then propose an MPSOC design implementation of an interesting architecture when

compared to the actual industrial and research achievements. Chapter two and three are

performed in parallel in order to have a good 2D experimental knowledge and a rich 3D

theoretical background which are necessary before the NoC synthesis section. As we believe

that the 3D NoC synthesis problem has a very high complexity, we propose to start by

exploiting our Lab experience in 2D NoC synthesis by proposing a new NoC synthesis model

based on the Microelectronics characteristics. After having a first experience in the 2D NoC

synthesis we can then move to the 3D NoC synthesis chapter with an efficient strategy. The

last three chapters concern the 3D IC MPSOC state of the art, complexity and real

implementation.

 We present in chapter 1 of this thesis, the state of the art of the existing MPSOC real

implementations listed in the literature. We also detail the different design methodologies

with real implementations.

 We introduce in chapter 2 the 2D design and implementation of our MPSOC

architecture based on software processors and regular NoC. The execution result of a parallel

image processing on FPGA will be reported. We will use the GA in order to explore and

evaluate the performance of the different industrial tools.

 Chapter 3 will be the subject of 3D semi conductor technology state of the art. We will

detail the different 3D ASIC design methodologies. We will then discuss the different issues

and challenges in 3D design.

A.M’zah 3D MPSOC

18�
�

 The NoC synthesis methodologies will be the subject of chapter 4. We will define the

exact, the mixed and the heuristic methods already used in literature. Our NoC synthesis 2D

solution will be presented as a case study of this chapter.

 We will introduce in chapter 5 the different properties of the 3D Tezzaron technology.

We will also detail the 3D ASIC methodologies presented in the literature. The sate of the art

of the 3D NoC synthesis problem will be summarized. We will detail in this chapter our 3D

NoC synthesis methodology based on the MOEA.

 In chapter 6, we will study different MPSOC architectures based on heterogeneous

components. We will then discuss the different methodologies to create MPSOC architectures

using 3D Hardware Accelerator.

 We will evaluate in chapter 7, the theoretical complexity and the experimental results

of our parallel EDA of the 3D NoC synthesis problem. We will perform a design space

exploration on the cadence tool to study the effect of the different properties on the synthesis,

place and route results.

 Chapter 8, will present the 3D ASIC design implementation of our MPSOC using the

3D Tezzaron technology. The results of synthesis, place and route of our 3D architecture will

be reported.

The last part of this report will include the conclusion and our future work.

PHD Plan and Scientific Approach Organization

A.M’zah 3D MPSOC

19�
�

A.M’zah 3D MPSOC

20�
�

��������������������������������	�A�BCDE��D�����F���������	�A�BCDE��D�����F���������	�A�BCDE��D�����F���������	�A�BCDE��D�����F�������������

A.M’zah 3D MPSOC

21�
�

1 MPSOC State of The Art

 The use of a single processor is not any more possible in the industrial products like

smart phones and medical devices needing high computational time and fast parallel

programming. That is why; the use of Multi Processor System On Chip (MPSOC) is

emerging. As a real example, we can notice that the MPSOC Cortex-A9 of ARM Company

was included in many industrial chips like Nvidia's Tegra 2 and Samsung's Exynos 4210.

1.1 Trends
�

�

Figure 1.1 Design Complexity trend [2]

The prevision of the International Technology Roadmap in Semi conductor (ITRS)

was considered as a sort of science fiction in the beginning of the last decades but researchers

have respected and sometime they have even exceeded this prevision. In fact, the evolution of

the number of IPs in the same chip was supposed to double each about 18 months as

presented in DEF���� ���. For this, the first alternative was scaling the technology but this

methodology has almost reached its limitation face to the physical problems of semi

conductor. In Figure B��, we can see that the global wire delay is becoming more important

than gates delay in Nanometre technologies. The global delay of the NoC is limited in this

case not by the gate delay but by the global wires delay. The connectivity becomes a major

problem when we increase the number of cores in the same chip. With the high complexity of

the multiprocessors system on chip MPSOC, the need for scalable and efficient

communication architectures to support inter-core data transfers has become paramount.

Network-on-Chip (NoC) fabrics have been shown to provide superior communication

A.M’zah 3D MPSOC

22�
�

bandwidth, scalability, and modularity compared to traditional bus-based architectures (Figure

 ��� and Figure ���).

� � � � � � � � � � �

� � �

Figure 1.2. Point to Point Architecture Figure 1.3. Bus Architecture

�� NoCs have gradually gained acceptance as the dominant interconnection paradigm for

emerging CMP systems with tens to hundreds of cores. The interconnect challenge is one of

the major problems in MPSOC architectures. Once solved with the NoC solution, a new

limitation related to the interconnect length is now faced. In fact, the design of future MPSOC

architectures especially with Nanometre technologies should minimize the interconnection

length in order to increase the performance.

. A new solution is emerging to deal with this limitation which is the 3D ASIC design.

In fact, with a 3D MPSOC, the global routing length can be shortening thanks to the use of

the vertical connection called TSV. ITRS roadmap presents in the report published in 2011[3],

the prediction of the evolution in the world of 3DIC which is presented in Table ���. Referring

to this table, the reduction of the TSV diameter and pitch will reach 50% between the years

2012-2015. This can be a major reason to increase the use of the 3DIC in the future chips.

Table 1.1. ITRS 3D Interconnect TSV Roadmap

Global Level, WTW, DTW, or DTD 3D stacking 2009-2012 2012-2015
Minimum TSV diameter 4-8 µm 2-4 µm
Minimum TSV pitch 8-16 µm 4-8 µm
Minimum TSV depth 20-50 µm 20-50 µm
Maximum TSV aspect ratio 5:1-10-1 10:1-20:1
Bonding overlay accuracy 1.0-1.5 µm 0.5-1.0 µm
Minimum contact pitch(thermo compression) 10 µm 5µm
Minimum contact pitch (solder or SLID) 20 µm 10µm
Number of tiers 2-3 2-4
INTERMEDIATE Level, WTW 3D stacking 2009-2012 2012-2015
Minimum TSV diameter 1-2 µm 0.8-1.5 µm
Minimum TSV pitch 2-4 µm 1.6-3 µm
Minimum TSV depth 6-10 µm 6-10µm
Maximum TSV aspect ratio 5:1-10:1 10:1-20:1
Bonding overlay accuracy 1.0-1.5 µm 0.5-1.0 µm
Minimum contact pitch 2-3 µm 2-3 µm
Number of tiers 2-3 8-16(DRAM)

A.M’zah 3D MPSOC

23�
�

1.2 MPSOC State of the Art

The first real MPSOC was created in the beginning of the last decade based on two

processors. The communication between cores was ensured in the beginning via the classical

communication technologies like shared busses and point to point methodologies. With

reference to the Figure 1.4, it is clear that the number of cores is increasing respecting an

exponential curve. Until the year 2000, only single processors were available like the well

known one which is the Pentium. This domain knew a real revolution in the previous decade

with the apparition of different MPSOCs architectures. The evolution of the MPSOC is

directly related the evolution of the interconnection methodologies.

Figure 1.4. Industrial MPSOC number of cores evolution [4]

This last decade has known a real explosion in term of research and industrial products

in these fields. The evolution of number of hits in the IEEE Xplorer for different NoC

searches presented in Figure 1.5 can be a real witness of this trend. We can conclude from this

curve that the Hardware field overcomes the Software filed in term of research papers. This

can explain the decrease of the NoC and the MPSOC curves by the year of 2010. In fact, there

is no meaningful need to increase the number of cores in the same chip if there is no suitable

parallel application to use the hardware researches. Moreover, the competition in the MPSOC

becomes costly with large Scale designs needing adequate emulation platforms instead of the

simulation. Many big companies like INTEL, TILERA, Philips and ST Microelectronics are

the leaders in this domain.

A.M’zah 3D MPSOC

24�
�

�

Figure 1.5. IEEE Xplorer hits for different “netwo rk-on-chip” researches [5]

 The point-to-point architecture and the bus based communication schemes are

considered as the origin of the first MPSOC topologies. We present in Table ��� some first

industrial chips based on the first MPSOC architectures. Starting from a trivial idea to connect

all the cores to each others, the P2P (point to point) method is an easy way to ensure the

communication between all the components of a design. This solution can be suitable with

few cores and reaches its limitation with larger designs. On the other hand, by using the

shared Bus architecture we can connect tens of cores. These two methods suffer from the lack

of scalability needed for big applications, but they are still used in the case of few cores in the

same chip due to their simplicity in term of design.

Table 1.2. MPSOC state of the Art

MPSOC Architecture Application

Lucent Daytona

[6]2000

Daytona was designed for

wireless base Stations

Processor : SPARC V8

Philips Viper

Nexperia[7]

2001

Multimedia processing

Processor : MIPS PR3940

A.M’zah 3D MPSOC

25�
�

The C-5 Network

Processor [8]

2002

Packet Processing in

networks.

Executive Processor: RISC

CPU

The Intel

IXP2855

[9]2002

Network processor

(TI) OMAP

[10]

2003

The cell phone processor.

Processors : ARM9 and a

TMS320C55x digital signal

processor (DSP)

ARM MPCore.

[11] 2005

The ST

Microelectronics

Nomadik [12]

2006

The cell phone processor.

Processor : ARM926EJ

� �

A.M’zah 3D MPSOC

26�
�

Table 1.3. MPSOC using busses communication

Company Name Number of cores Topology

INTEL Intel IXP2850 2 Busses

Philips [7] 2001 Philips NexperiaTM PNX-8500. 2 Busses

TI 2002 [10] TI OMAPTM 5910 2 Bridge

ST 2003 [12] ST NomadikTM 2 Bridge

Toshiba 2008 Venezia 8 Busses

TI 2008 TMS320VC544 4 Busses

ARM ARM11 4 Busses

1.3 MPSOC Actual implementation

 In the actual implementations, the use of the NoC in the MPSOC industry is taking

more and more place. With the increasing number of cores, the classical interconnection

technologies are not any more sufficient. We present in Table ���, a summary of actual

MPSOC implementation. We notice that the most popular NoC topology is the Mesh due to

its symmetry and to its simple routing algorithm. ARM has produced the Cortex family with

the technology 40 nm and below and Tilera has reached the 64 cores with its MPSOC Tile 64

presented in Figure ���. We present in Figure ��C and Figure ��� respectively the architecture

and the spot of the chip SpiNNaker including 18 processors.

Table 1.4. Actual MPSOC implementation

 NAME Number of cores Topology Technology

2011[13] SpiNNaker 18 Hierarchical UMC 8-metal layer

130nm

2009 [14] 81.6 GOPS 10 Mesh 180nm

LETI 2009 [15] The MAGALI 15 Mesh ST 65nm

ARM 2009[16] ARM Cortex-15

Cortex-5, Cortex-8

4 cores per cluster Mesh 40nm & below

Tilera 2009 [17] Tile 64 family 64 Mesh 90nm

MIPS 2009 MIPS32 1074K Dual core Bus

MIPS 2009 MIPS32 1074K Dual core Bus

A.M’zah 3D MPSOC

27�
�

�

Figure 1.6. Tile 64 Block Diagram Processor[17]

�

Figure 1.7. SpiNNaker MPSoC block diagram[13]
�

�

Figure 1.8. SpiNNaker MPSoC plot[13]
�

A.M’zah 3D MPSOC

28�
�

1.4 MPSOC Design methodologies

�

Figure 1.9. Kumar et al MPSOC Design flow[18]

 Kumar et al proposed in [19], a full and complete MPSOC design workflow. They

proposed to generate a customized NoC and cores in the same workflow design. The Silicon

Hive [20] processing core was used. This one is an entire tool chain for rapid design of

custom cores. For the NoC generation they proposed to use Æthereal [21] design flow. In

Figure ��A , we present the proposed design flow. The system level description is considered

as the input point of the design flow. In fact after the description of the NoC and the cores, the

HDL entities are generated together with a simulation model. An .edif file is then generated

automatically from Handel-C. These files and with the system level edif file are used during

Place and Route (P&R) to obtain the bit file (for FPGA configuration). ASIC design can also

be produced from the system-level HDL if desired.

�

Figure 1.10. Application Specific MPSOC workflow [22]

A.M’zah 3D MPSOC

29�
�

 In [22] the proposed design flow aiming to generate an application specific

heterogeneous pipelined multiprocessor system, is composed of two separate stages which

are: the Design Space Generation and the Design Space Exploration. The designer provides

the partitioned application, the pipelined architecture and the runtime constraint as inputs. The

different configurations and instructions are determined during the Design Space Generation

phase. The user can choose the basic processors as an input to this design flow. In this

methodology authors used ASIPs (Application Specific Instruction Set Processors) which is

generated using a commercial tool Tensilicia. Thanks to the input parameters, a designer can

control the amount of design space to be generated for a particular application. As shown in

Figure ���B , the simulation results are used to record the timing and the area values for all the

ASIP configurations which will be used in the exploration phase. In the second phase

dedicated to the Design Space exploration, authors proposed to use heuristic approach to run a

rapid exploration and to find a near Pareto front. This one will be the new design space to

explore in the last step and to find the optimal configuration.

�

Figure 1.11. Xpipes Synthesis Flow[23]

 In this paper [23] L. Benini proposed a new MPSOC Design flow based on the NoC

architecture synthesis called Xpipes NoC synthesis Design flow. In the first phase, the user

specifies the objectives and the constraints that should be satisfied by the designed NoC. The

application traffic characteristics, the size of the cores, the area and the power models of the

network components are also obtained. In the second phase of the flow, the NoC architecture

that optimizes the user objectives and satisfies the design constraints is automatically

A.M’zah 3D MPSOC

30�
�

synthesized. In the last step, the XpipesLite is used to generate the RTL (SystemC) code of

the switches, the network interfaces and the links for the designed topology. The RTL files

can be then synthesized and implemented on FPGA. A place and route steps are performed

using the industrial tool soc encounter from Cadence. The output of this phase is a total

floorplan design specification which can be sent to the fabrication. A real implementation was

realized in this work with a design consisting of 30 cores: 10 ARM7 processors with caches,

10 private memories (a separate memory for each processor), 5 custom traffic generators, 5

shared memories and devices to support inter processors communication.

�

Figure 1.12. STARSOC Design flow overview

 The input of STARSOC [24] design flow is a set of files in C code describing the

whole design: the number of processors, their configurations and their interconnections. After

the step of the hardware-software partitioning, the hardware part is synthesized into register

transfer-level (RTL) architecture, and the software part is distributed on the whole of

processors. The software part will be modified to ensure the operation of the hardware call.

The RTL code generated by the high-level synthesis and the communication system

synthesizer is then downloaded to the FPGA.

A.M’zah 3D MPSOC

31�
�

 X.Li and O.Hammami presented in their work [25] an automatic Heterogeneous

MPSOC design flow on Multi-FPGA. The input of the workflow is an ANSI C code of Triple

Data Encryption Standard (TDES) and a small-scale multiprocessor (SSM) IP which will

serve as the basic element for the parallelization process. At the first step, software

parallelization is explored through direct execution on multi-FPGA platform to find out the

best data parallel and the pipelined configuration. While the parallel programming ensures to

achieve a maximum design space exploration, the second step is reserved to explore

coprocessor – based TDES by incrementally adding TDES C-based synthesis generated

coprocessor. The last step compares the two paths and chooses the appropriate one.

�

Figure 1.13. Automatic heterogeneous design flow [25]

 We present in Figure ����, the workflow methodology to implement the SpiNNaker

MPSOC. Plana et al used a hierarchical place and route method to implement this architecture

considered complex. In fact the SpinNNaker includes different IPs devices ARM cores,

SDRAM controller, timers, interrupt controller and watchdog as well as the devices

developed specifically for SpiNNaker: multicast router, DMA controller and bridge, Ethernet

interface, and system controller. In this method the place and route step of the IP blocks was

applied separately. This was possible thanks to the fact that the MPSOC has a GALS nature

which means that each IP can have its different clock signal.

A.M’zah 3D MPSOC

32�
�

�

Figure 1.14. MPSOC Methodology Workflow of SpiNNaker [13]

1.5 Conclusion

 With reference to the ITRS road map, the number of cores in the same chip will

double each about 18 months to reach hundreds of cores by the end of the current decade (see�

DEF���� ����. Actually, many works have already reached few hundreds of cores in the same

chip: for example the number of cores in [26] is equal to 762. With this evolution, classical

interconnection methodologies like bus and point to point are not any more possible and other

interconnect solutions like the Network On Chip have appeared to deal with those limitations.

 We presented in this chapter a brief description of the evolution of the MPSOC during

last decades. The evolution of the number of cores is exponential which means that the design

complexity is also exponential. We presented the actual MPSOC implementations which have

different network On Chip topologies starting from a simple bus connection to a free NoC

topology. Designers used different methodologies to implement their own chips; we presented

a set of workflows with real implementations.

A.M’zah 3D MPSOC

33�
�

��A�A�A�A����BCDE�������������������������F����BCDE�������������������������F����BCDE�������������������������F����BCDE�������������������������F�����

A.M’zah 3D MPSOC

34�
�

2 . 2D MPSOC Design and implementation

 Before moving to 3D IC implementation, we propose in this chapter to test and to

verify our MPSOC designs with 2D implementation on FPGA. This approach will guarantee

the good functionality of our chip which helps us to solve the MPSOC problems and to only

focus on the specific 3D challenges. Thanks to the MPSOC state of the art performed in

chapter 1, we choose to study the Butterfly architecture which is an interesting case study for

EDA evaluation and of an eventual 3D IC design.

2.1 Theoretical Complexity Problems in 2D Design and implementation

 To perform an efficient implementation of a 2D Design, we have to deal with the

complexity of the workflow steps. We will present the complexity of the basic steps in 2D

design implementation on FPGA which are the partitioning, the floorplanning and the place

and route.

The partitioning:

 When the Netlist of a component or a design can not fit on a single FPGA the step of

partitioning on Multi-FPGA becomes necessary. This operation can be trivial with symmetric

and homogenous MPSOC but it becomes a real challenge with asymmetric and heterogeneous

architectures. The main goal of this operation is to find a methodology which minimizes the

connections between the partitions. In the provided solution, each partition should meet all the

design constraints (size, number of external connections...) and get a balanced distribution

between the different groups. The problem of VLSI partitioning can be defined by a

Hypergraph partitioning. Given a graph G= (V,E), we can model the cells of the Netlist or the

components by the set of the vertices V and the nets (or interconnections) by the set of the

edges E. K-way partitions can be defined by the division of the vertices into K groups. This

problem is known to be NP-Hard that is why the proposed solutions are based on

approximations and heuristic methods [27].

Placement:

 The step of placement on FPGA is the determination of the cell’s locations of the

Netlist in order to optimize the area and the frequency. Given a Nelist of logic blocks, I/O

pads and the set of interconnections between the cells, the output of the placement operation

are the coordinates (xi, yi) for each block. This problem is known to be NP Hard which means

that no polynomial algorithm is known to propose an exact solution to solve it [28].

A.M’zah 3D MPSOC

35�
�

Routing:

 Routing is one of the major steps in 2D FPGA designs as it has an important impact on

the performance of the circuit. The success of this operation is affected by the previous step

which is the placement. The routing step has been also proved to be NP-hard [29].

 The listed steps in the FPGA 2D design are classified in the family of the NP hard

problems which means that the optimization in the EDA tools is still possible. In general the

common tools used in the synthesis place and route for FPGA like ISE and EDK from Xilinx

[30], perform each step sequentially which is not an efficient approach as there is a real

dependency between the different operations. We propose in this chapter to study the

implementation of an MPSOC with 16 masters and 16 slaves based on the Butterfly NoC

topology. A real execution on FPGA will be performed.

2.2 Regular NoC implementation on FPGA: case study Butterfly

 The common NoC topology which is usually used in the literature and in the industrial

products is the mesh topology. This one is famous thanks to its symmetric architecture and to

the possibility to use a repetitive structure. A NoC with a mesh topology is relatively an easy

case study for the EDA tools implementation. In fact, partitioning tools can find a symmetric

structure even with a NoC with a very Large Scale MPSOC [26] . In this work [31], authors

implemented an MPSOC with 2048 cores. We choose in this chapter, to study the butterfly

topology to evaluate the limitation of EDA tools in order to solve the design step problematic.

In Table ���, we compare the mesh and the butterfly topology. With its asymmetric

architecture, the butterfly NoC represents an interesting case study to evaluate the portioning

algorithm used in the EDA tools. This NoC is composed of long wires compared to the mesh

topology with its equal short links. This characteristic can affect the maximum propagation

delay time and the power consumption of the NoC. It can also represent difficulties for the

automatic routing algorithms. In the mesh topology, links are bidirectional which is not the

case for the butterfly case which needs a request and a response NoC.

Table 2.1. Comparison Mesh and Butterfly topology

NoC topology Mesh Butterfly

Symmetry Symmetric Asymmetric

Wires Short Long

Direction Bidirectional unidirectional

A.M’zah 3D MPSOC

36�
�

 To study in deep the different characteristics of the butterfly architecture, we have

designed a NoC with 16 masters and 16 slaves. A such NoC is called 2Ary-4Fly : the term

2Ary refers to the fact that all the used switches have a degree equal to 2, the term 4Fly refers

to the number of stages needed which is equal to 4. The NoC’s topology is presented in the

Figure ���; Masters in the left are sharing 16 slave memories presented in the right part of the

NoC.

�

Figure 2.1. MPSOC based Butterfly NoC: 2Ary 4Fly Architecture

 The main component of the NoC is the switch, we use the switch library from the

company Arteris [32]. This switch presents different options like arbitration, pipelines...In

each router we have to modify the routing table according to the physical links and to the

position of the switch in the NoC. We can verify from the NoC’s architecture that all masters

are connected to all the slaves through a single path. According to the routing table and to the

message’s address, the packets can be routed by the switch. For each switch, we have 2 input

ports and 2 output ports. When the switch receives the packets, it can decide thanks to its

routing table through which output port to send it. We present the routing tables of each

switch in Table ���.

Table 2.2 Address of the slaves

Cores Addresses Cores Addresses

Slave0 0x0 Slave8 0x800000

Slave1 0x100000 Slave9 0x900000

Slave2 0x200000 Slave10 0xA00000

A.M’zah 3D MPSOC

37�
�

Slave3 0x300000 Slave11 0xB00000

Slave4 0x400000 Slave12 0xC00000

Slave5 0x500000 Slave13 0xD00000

Slave6 0x600000 Slave14 0xE00000

Slave7 0x700000 Slave15 0xF00000

Table 2.3. Different switch routing tables

Switches TX0 TX1

{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7}

0x0

0x100000

0x200000

0x300000

0x400000

0x500000

0x600000

0x700000

0x800000

0x900000

0xA00000

0xB00000

0xC00000

0xD00000

0xE00000

0xF00000

{1.0,1.1,1.2,1.3}

0x0

0x100000

0x200000

0x300000

0x400000

0x500000

0x600000

0x700000

{1.4,1.5,1.6,1.7}

0x800000

0x900000

0xA00000

0xB00000

0xC00000

0xD00000

0xE00000

0xF00000

{2,0,2.1}
0x0

0x100000

0x200000

0x300000

{2,2,2.3}
0x400000

0x500000

0x600000

0x700000

{2.4,2.5}
0x800000

0x900000

0xA00000

0xB00000

{2.6,2.7}
0xC00000

0xD00000

0xE00000

0xF00000

3.0 0x0 0x100000

3.1 0x200000 0x300000

3.2 0x400000 0x500000

3.3 0x600000 0x700000

3.4 0x800000 0x900000

A.M’zah 3D MPSOC

38�
�

3.5 0xA00000 0xB00000

3.6 0xC00000 0xD00000

3.7 0xE00000 0xF00000

 We add our NoC as an IP in the EDK project to connect 16 Microblaze processors

which are the masters to sixteen block memories representing the 16 slaves. To evaluate the

execution time of the design we add a timer which is connected to an OPB (On-Chip

Peripheral Bus). We start by the hardware part of the design. After we generate the Netlist of

the project, we use the command ngc2edif to transform the Netlist to edif files used by zCui.

This one is a compiler tool designed by EVE company [33] to synthesis the DUT (Design

Under Test) by calling Xilinx tools. At the end, it generates a bit file and several reports

describing the FPGA resources used after the place and route on the board. For each

Microblaze, we create a software application in the EDK project. In each application we add a

C code and header files to describe the tasks to be performed by the processor. Once we

define a software for each processor, EDK calls the C code compiler and generates *.elf files.

We transform these files to *.vhex files which can be run on the board. At this level we have

now hardware and software files ready to be run on the zebu board. We call the command

zRun to make the execution on the board. Eve tool offers the possibility to use static and

dynamic probes. In our case, we use a static probe to capture the end of the execution time. In

fact, the run will stop when the condition of stop which is related to the probe value will be

true. Then we can read the execution time needed for the program to be complete. A summary

of this workflow is presented in Figure ����

� �

A.M’zah 3D MPSOC

39�
�

2.2.1 Synthesis results

 ZCui compiler makes the synthesis using Xilinx’s tool. As Zebu-UF4 board has 4

FPGAs virtex 4 LX 200, zCui tool gives the possibility to make the mapping on one or more

FPGAs. In this work we choose to make the synthesis on only one FPGA. Table ��� presents

the resource utilization when we implement the project on the FPGA board. We note that this

design presented in Figure 2.1 reaches 100% of DSP48 available on the board, 81% of

BRAMs and 60% of slices. In this board, we have 96 slices which are totally used. Number of

BRAMS in the FPGA board is equal to 336. Each block is an 18 kb memory. The need of this

project in term of BRAM is almost equal to 5 Mbytes.

Table 2.4. Resource utilization of Zebu-UF4

�

Figure 2.2. Our MPSOC implementation workflow

 Resources utilization in %
 BRAM Slices DSP48

2Ary-4Fly 81 60 100

A.M’zah 3D MPSOC

40�
�

2.2.2 Parallel Programming: Filter Harris

 Thanks to this MPSOC architecture, we are now able to perform a parallel

programming using 16 processors and 16 slaves. In our case, we use this hardware design to

apply a parallel image application which is the Harris Filter in order to evaluate its speed up.

Principle

 Harris filter is a corner detector algorithm [34]. Corner detection is an approach used

in image analyses especially for object tracking. For an original image I we calculate the

corner curvature K defined as:

� � ������ 	 AB�CDE�F��

A is the Harris matrix , Ix and Iy are the derivations of the image intensity I successively with

the axes X and Y. � is a parameter of corner detection tolerance which is usually used

between 0.05 and 0.15. Local maxima of K determine the location of interest points.

� � � ��������� ������� � ���
������� � ��� ��������� �

 Parallel Programming

 The Harris filter is written in C code associated to each Microblaze processor. In this

application, we compute the Harris filter of a grey image of 256x256. Initial image will be

stored in the shared memory BRAM0. At the beginning of the algorithm, Microblaze 0 stores

the image I in the shared Memory then gives the order to all the Microblazes to start the task1.

Each Microblaze i will access the memory and calculate the values Ix and Iy of the pixels

composing a number of rows and then stores the result in BRAM1. When a Microblaze

finishes task 1, it changes the value of the flag of end of task 1. The Microblaze 0 finishes its

task and waits the other processors. When the task one is finished, Microblaze 0 gives the

permission to start the task2. Each MBi will access dx and dy memories and compute the value

of the Gaussian filter of each pixel as an estimation of Mean(Ix) and Mean(Iy). The last step

of task2 is to compute the curvature k. A comparison of the value k with a threshold value

will decide if the point is a corner or not. Each processor i computes the value of the matrix A

for each pixel of a specific number of rows. This number is equal to the total rows of the

image divided by the number of processors.

A.M’zah 3D MPSOC

41�
�

�

�

Figure 2.3. Harris Filter Execution Time and speed up

Implementation Results

 To evaluate the speed up of our parallel program we change the number of active

processors. We present in Figure ��� the execution time of the algorithm with different NoC

sizes. Harris filter uses in several steps the matrix multiplication and convolution, which is an

independent task suitable for parallelization. In the Figure ���, we notice the efficiency of our

parallel program. In fact, the speed up is equal to 3,65 with 4 processors to reach 9,96 for

16MB. The use of 16 processors reduces the time to 10% of the time needed in the sequential

program using one processor. Our results confirm theoretical results in [35], with a real

implementation of a NoC with different sizes. In fact, the speed up increases when the size of

the NoC increases (see Figure ���� but the curve of the speed up has a non linear form. This is

due to the fact that, when the number of cores increases, the time needed for synchronization

becomes considerable. In such case, the access to the shared memories is a difficult operation.

To deal with this problematic we use a home developed function called Read_exclusive.

Thanks to it, only one processor can access a memory at a time. When a processor is writing

or reading from a memory, the other masters must wait until the end of the operation that is

why it is called Exclusive.

���	�������

B�C��BB����

B���	�BC	C�
B��B����A�

B���	�����

B

�

�

�

�

�B

��

B

B��

B��

B��

B��

�

���

���

� � � � ��

��
��

�
�E
�
�
��
E�

�
�

E��
E�

��
�
�!

��
�"

�

#��$����%��"���&����""��"

#��$����%�������E����!���" '&�����&

A.M’zah

2.3 NoC Design Space e

 We propose in this se

design presented in section �2.2

parameters on the industrial

propose to explore the diffe

execution time of each used

algorithms looking for the set o

Bram and the number of slices

2.3.1 ModeFRONTIER to

 In this section we use

commercial software provided

to almost the most used Com

specific optimization algorith

objective problems like SIM

optimizers like MOGA-II and

multi-objective problems like s

Figu

42�

ce exploration on FPGA

 section to perform a design Space exploratio

2.2. The goal of this analysis is to study the eff

al tools used in FPGA workflow presented

fferent NoC and processor configurations in

sed tool in this workflow. We use a multi

et of combinations which minimize the number

es.

tool

e ModeFRONTIER[36] to perform our optimi

ed to solve multi-objective problems and to al

mputer Aided Engineering tools. ModeFRON

ithms. We can use deterministic optimizers

IMPLEX. The designer can also use differe

nd NSGA-II. This tool is suitable to solve re

e scheduling and resource optimization.

igure �2.4. ModeFRONTIER project example

 3D MPSOC

�

ation of our MPSOC

effect of the different

d in Figure ����. We

 in order to get the

ulti-objective genetic

er of cycles, the used

mization. This tool is

 allow easy coupling

NTIER has a set of

rs specific for single

erent multi-objective

 real constrained and

�

A.M’zah 3D MPSOC

43�
�

We present in Figure ���, a model of a ModeFRONTIER project with its basic components:

• Input Variables: The user should define at the beginning, the input variables and

their properties. These variables define the design space exploration and will be

affected to an input file. They can be real, integer and binary. A new input file is

generated during each iteration taking in consideration the new values of the variables.

• Initial population: The user should define the initial population. This choice depends

on the problem’s properties and affects the final result. ModeFRONITER offers the

possibility to choose between a set of initial population which are summarized in

Figure ��	. The initial population can be generated using one of the presented

algorithms or predefined by the user.

Figure 2.5. ModeFRONTIER initial population

• Optimizer: The tool offers different families of optimizers: Basic like MOGA-II,

advanced like NSGA-II and quadratic like NLPQLP. The choice of the adequate

optimizer is essential to get an optimized solution. We present the different algorithms

provided by ModeFRONTIER.

A.M’zah 3D MPSOC

44�
�

Schedulers

 • DOE : Sequence

 • MACK : Multivariate Adaptive Crossvalidating Kriging

 Basic Optimizers

 • SIMPLEX : Single-objective derivative-free optimizer

 • B-BFGS : Single objective Bounded BFGS algorithm

 • Levenberg-Marquardt

 • MOGAII : Multi Objective Genetic Algorithm

 • ARMOGA : Adaptive Range MOGA

 Advanced Schedulers

• MOSA : Multi Objective Simulated Annealing Algorithm

 • NSGA-II: Non-dominated Sorting Genetic algorithm

 • MOGT : Game Theory coupled with Simplex algorithm

 • F-MOGAII : Fast Multi Objective Genetic Algorithm

 • MOPSO : Multi Objective Particle Swarm Optimizer

 • F-SIMPLEX : Fast Single-objective derivative-free optimizer

 Evolution Strategy Schedulers

 • 1P1-ES

 • DES : Derandomised Evolution Strategy

 • MMES : Multi-membered evolution strategy

 Sequential Quadratic programming

 • NLPQLP : Robust implementation of a sequential quadratic programming

 algorithm.

 • NLPQLP-NBI : Multi-objective scheduler based on the

• The program: we should define the algorithm to evaluate during the exploration.

ModeFRONTIER offers the possibility to include different type of languages like

Bash script. We can also use an executable file or other industrial tools like Matlab.

Taking the variable from the input files, this program provides the value of the output

variables which can be the objective functions or the design constraints.

A.M’zah 3D MPSOC

45�
�

• The Objective Functions: We define the objective functions of the project using the

objective nodes provided by ModeFRONTIER. We can choose to minimize or to

maximize our objectives.

2.3.2 Multi objective Genetic Algorithm NSGA-II Algorithm

 Multi-objective evolutionary algorithms (MOEA) have been considered as a

successful solution to optimize the problems with multiple conflicting objectives. The Multi

objective problems are different from the single objective function. In the first one, the

solution of the single objective function is a single optimized point while it can be set of

points in the case of the multi objective formulation. The dependency between the objectives

can affect the final result. A classical formulation of the minimization of multi-objective

problem with m decision variables and n objectives is:

����������� � ���� � �� �! " " ! �#)

$%&'�()�)*�+�, - .�! � � /!0! " " 1

+�, � .! � � /!0" " ! 2

 The result of an optimization problem depends on different factors like the choice of

the optimizer and its parameters. As we are interested to solve multi objective problems using

MOEA, we choose to use the NSGA-II algorithm. This one proved its efficiency compared to

other algorithms especially with Multi objective problems. The NSGA-II is a fast elitist Multi

objective Non dominated Sorting Genetic algorithm suggested by K.Deb et al [37]. The

NSGA-II algorithm is based on the sorting of the different populations with respect to all the

functions. An individual p in the population Pt dominates an individual q if p dominates p in

all the objective functions. If for only one function, q is not dominated by p, the domination of

p to q is not any more valid. Starting from this idea the set of the individuals in the population

which are not dominated by any ID form the first front F1 of the non dominated Ids. The set of

individuals included in the first front F1 are deleted from the population and the computation

of the new front F2 is performed using the same method. This operation is repeated until all

the individuals of the population P are affected to a front. To create the new generation Pt+1 ,

the algorithms inserts the front with the increasing order until the number of population is

reached. When the insertion of the last front overcomes the number population size an

A.M’zah 3D MPSOC

46�
�

algorithm based on the crowding distance is used to choose the number of needed individuals

Figure ���.

Figure 2.6. NSGA-II algorithm illustration

�

2.3.3 ModeFRONTIER project: MOEA on FPGA

 We have already presented in section 2.2, the design of a 16x16 MPSOC and the

execution of a parallel Harris filter on FPGA. During this step, different choices should be

performed to define the different options of the processor and of the NoC. The Microblaze

processor can be used with full, basic or medium options. The user should find the needed

combination depending on his application. We propose in this section to study the effect of

the variation of these options on the area and on the execution time of the algorithm. In order

to get the optimized solution, we perform in this section a multi objective evolutionary

algorithm.

 We present in Figure 2.7 the project using the Tool ModeFRONTIER which is

specific for the optimization and the exploration. We propose to explore the different

processors and NoC options of our designed MPSOC already presented in section 2.2 . As we

affect the same configuration to all the processors, the number of possible individuals is equal

to 26 x 23x3. We use the evolutionary Genetic Algorithm NSGA-II to find the optimized

combination. We present in Table ��	 and Table ��� the input variables of our project. We use

the Microblaze processor from Xilinx presented in Figure ���. For each individual the

execution of the Harris Filter Algorithm on FPGA is performed. The outputs of this

exploration are the values of the number of cycles and the number of slices to be minimized.

A.M’zah 3D MPSOC

47�
�

�

Figure 2.7. ModeFRONTIER DSE Project

Figure 19. Microblaze Architecture [30]

Table 2.5. Microblaze parameters

�

�

�

�

�

�

Fasle(0),True(1)
Fasle(0),True(1)
Fasle(0),True(1)
Fasle(0),True(1)
Fasle(0),True(1)
Fasle(0),True(1)

Optimize Area
Use Barrel shifter
Use Msrset and Msrclr instructions
Use Pattern Compare instruction
Use divider
Use FPU

C_AREA_OPTIMIZED
C_USE_BARREL
C_USE_MSR_INSTR
C_USE_PCMP_INSTR
C_USE_DIV
C_USE_FPU

Values Definition Microblaze parameters

A.M’zah

 We present the differen

NSGA II Parameters:

• Number of generations

• Crossover Probability :

• Mutation Probability fo

real code

• Mutation Probability fo

Advanced Parameters:

• Distribution index for R

• Distribution index for R

• Crossover Type for bin

• Random Generator See

Figure �2.8. Pa

 We present in Figure

applied on FPGA. The explor

affects the execution time of

execution time is faster and t

population and after many gen

Switch Options

Arbitration Type

Input pipeline register

Forwards pipeline regis

Backwards pipeline regi

48�

Table �2.6. Switch Options

rent options of the NSGA-II algorithm:

ns : 100

y : 0.9

 for real coded vectors : 1/n ; n : number of dec

 for BinaryStrings: 1/l ; l : is the string length fo

r Real-Coded Crossover : 20

r Real-Coded Mutation : 20

binary-coded variables : simple

eed : 1

. Pareto Front DSE of Harris Filter on MPSOC 16x16

e ����, the obtained result of the Evolutionary

loration of the dif ferent options of the proces

 of the Harris Filter Algorithm. With powerf

d the number of used slices is higher. Startin

generations, the GA converges into the set of s

Values

Round-Robin(0),Rotate(1), Fifo(

 True(1), False(0)

gister True(1), False(0)

egister True(1), False(0)

 3D MPSOC

�

ecision variable in

 for binary coded

16

 Genetic Algorithm

cessors and the NoC

erful processors, the

rting from a random

f solutions optimized

fo(2)

A.M’zah 3D MPSOC

49�
�

for both objective functions. The output result of our Genetic Algorithm is a set of points

known by the name of the Pareto Front presented with green points in the previous figure. The

user can choose the appropriate configuration depending on his needs in term of time and

resources. The implementation of our design on FPGA, was a fast way to explore our

hardware design. The needed time to perform each step of the workflow depends on the

performance of the machines but it also depends on the design’s options. We will present in

the next section a design space exploration of our design on different machines.

2.3.4 Machines Specifications

 We present in this section the different specifications of the three used machines

during the sequential and the parallel exploration. We specify their software and their

hardware specifications.

Table 2.7. The properties of the machines

�

� �

MPSOC7 SPEC

Hardware Summary Software Ssummary

Type of System Homogeneous gcc 4.1.2-48

Compute Node MPSOC7 Linux Red Hat 5

Total Chips ModeFRONTIER
modeFRONTIER 4.2.0

b20091201

Total Cores 4 FlexNoC VFC 2.2

Total Threads 8 EDK Edk 9.2.02i

Total Memory 12 GB ISE Ise 9.2.04i

Memory Type DDR3-800/1066/1333 zCui Version 4.3.3B.00

MPSOC4 SPEC

Hardware Summary Software Ssummary

Type of System Homogeneous gcc 4.1.2

Compute Node MPSOC4 Linux Red Hat 5

Total Chips 1 ModeFRONTIER ModeFRONTIER 4.2.0 b20091201

Total Cores 1 FlexNoC VFC 2.2

Total Threads 2 EDK Edk 9.2.02i

Total Memory 8 GB ISE Ise 9.2.04i

Memory Type zCui Version 4.3.3B.00

A.M’zah 3D MPSOC

50�
�

�

�

Table 2.8. ZEBU UF4 Emulator specifications

2.3.5 Sequential DSE
�

�

Figure 2.9. SSM IP Architecture

THALES2 SPEC

Hardware Summary Software Summary

Type of System Homogeneous gcc 3.4.6

Compute Node Thales2 Linux Red Hat 4

Total Chips 2 ModeFRONTIER
modeFRONTIER 4.2.0

b20091201

Total Cores 4 FlexNoC VFC 2.2

Total Threads 4 EDK edk 9.2.02i

Total Memory 8 GB ISE Ise 9.2.04i

Memory Type GB DDR2 RAM ECC zCui Version 4.3.3B.00

Emulator platform : ZEBU UF4

Modules Descriptions Design 1 SSM IP 12MBs ,8 Brams

FPGA 4 Virtex-4 LX200 Resources utilizations

DRAM 512 MBytes Bram Slices DSP48

SSRAM 64 MBytes 62 66 54

ICE Smart and Direct

A.M’zah

 When we have used th

different parameters like the n

not justified. That is why we

options using different machin

presented in Figure ���A. We ap

����B and we study the variatio

EDK and zCui. We present the

Figure �2.10. MPSOC7:

�

CA CA C� CA

CB

C	

�B

�	

AB

A	

�BB

�B	

�(# "�

E
xe

cu
tio

n
tim

e
in

 s
ec

A��
��B��B�C

���

	BB

�BBB

�	BB

�BBB

�	BB

�(# "�

E
xe

cu
tio

n
tim

e
in

 s
ec

��AB ������C

�BBB

��BB

��BB

��BB

��BB

�BBB

��BB

��BB

��BB

�(# "�

��
��

�
�E
�
�
��
E�

��
E�

�"
��

51�

the GA during our work, we remarked that

e number of individuals and the number of gen

we choose to study the effect of the variation

hines. For this, we implement a Mesh MPSOC

 apply the same 2D FPGA workflow already p

tion of the execution time needed by the 3 bas

he results in Figure ����B.

7: Execution time variation in function of the popula
 FlexNoC (a), EDK (b), zCui (c)

�B���

�	

����

��

�����

�B�

CA
����A

A�

)*���F� "� �)+ "�

D���#�,������ ��

�BC�

����

��CC

���C

����

���

�B�C

)*���F� "� �)+ "�

�-.������ $�

��C	

����

����

���C

��CB
���C

����

)*���F� "� �)+ "�

/,�E������ ��

 3D MPSOC

�

hat the choice of the

generations is usually

ion of some of those

C topology SSM –IP

y presented in Figure

basic tools: FlexNoC,

ulation size:

A�
���010

���010

���010

���010

�B�C

���010

���010

���010

���010

����

���010

���010

���010

���010

A.M’zah

 The number of individ

NSGA-II algorithm used in M

We present the variation of the

presented in Table �2.7. We noti

almost the same for different p

depend on the population siz

between the Min average valu

FlexNoC and 50% for EDK a

individuals in term of option

hardware options. In fact they

of those steps is directly relate

with a hardware design using

synthesis, the place and route o

time when the population size

the probability to increase whe

Figure �2.11. THALES2 : Compar

 We present the results o

We notice that the average e

population size changes. The v

�B� �B� �B�

CB

�B

AB

�BB

��B

��B

�(# "�

E
xe

cu
tio

n
tim

e
in

 (
se

c)

����
���� ��	B

	BB

�BBB

�	BB

�BBB

�(# "�

��
��

�
�E
�
�
��
E�

��
E�

�
"�

��

52�

viduals in the same population is an important

ModeFRONTIER tool to perform the design

the execution time of the different tools on the

otice that the average time values presented in

t population sizes, we can conclude that the ave

size property. We notice that for the three to

alue and the Max Average value is considerab

K and zCui. This variation is due to the diffe

ions. EDK and zCui tools are sensitive to th

ey perform the steps of synthesis, place and rou

ated to the complexity of the hardware compon

ing a full processor, the number of logic cel

te operations are harder to perform. The variatio

ze changes is also due to the diversity of the po

hen the population size increases.

parison of FlexNoC (a) EDK (b) execution with differ

ts of the same exploration on the machine THA

execution time for all the tools is almost th

e value of the distance (difference between the

��B
��	

�BA ���
�B� �BA ���

)*���F� "� �)+ "�

FlexNoC (a)

�	B�

�C	�

�	�A

�C��

��	B

�	�C��	

�C	A

)*���F� "� �)+ "�

EDK (b)

 3D MPSOC

�

ant parameter for the

gn space exploration.

he machine MPSOC7

 in the Figure �2.10, are

average time does not

tools the difference

rable: about 20% for

fference between the

 the variation of the

oute. The complexity

ponents. For example

cells is high and the

ation of the execution

 population which has

ferent population sizes

ALES 2 (Table ���C).

t the same when the

the Min and the Max

���

���010

���010

���010

�C	A

���010

���010

���010

A.M’zah

values) is most important for

between the maximum and th

similar to the one already pres

properties has an important ef

those operations depends direc

�

Figure �2.12. MPSOC4: Compar

�

��� ��B ��B

�B

�B

�BB

��B

��B

��B

�(# "�

E
xe

cu
tio

n
tim

e
in

 (
se

c)

���B ��B�

	BB

�BBB

�	BB

�BBB

�(# "�

E
xe

cu
tio

n
tim

e
in

 (
se

c)

���� ����

��C�

�BBB

��BB

��BB

��BB

��BB

�BBB

��BB

��BB

��BB

�(# "�

E
xe

cu
tio

n
tim

e
in

 (
se

c)

53�

for the smallest population size. It is clear t

 the minimum values is meaningful for EDK

resented for the machine THALES 2. The vari

 effect on the steps of place and route. In fact

rectly on the complexity of the design.

arison of FlexNoC (a), EDK (b), zCui (c) with differe

����B� ��	������ ������

��A

)*���F� "� �)+ "�

FlexNoC (a)

�	A����

��	B

��B�

��BC���	

����

)*���F� "� �)+ "�

EDK (b)

�B�B�C	

����

�B�	���
����

��C�
�CA��C	

����

)*���F� "� �)+ "�

zCui (c)

 3D MPSOC

�

r that the difference

K tool. This result is

ariation of the design

act the complexity of

�

�

erent population sizes

���010

���010

���010

���010

���010

���010

���010

���010

���010

A.M’zah 3D MPSOC

54�
�

 We present in Figure ���� the DSE results on the machine MPSOC 4 presented in

Table ��C. The average execution time is almost invariant when the population size changes

for the tools FlexNoC and EDK. This average time is low when the population size is high.

The design space exploration of our MPSOC on different machines gives a better idea about

the effect of the population size on the MOEA. In fact, the average time is almost the same for

all the tools on the different machines. The value of the distance is meaningful with the tools

(EDK, zCui). In fact, the place and route steps take more time to be performed when the

design is complex. With full version hardware (processor full options, NoC full options) the

number of used slices and DSP are multiplied.

 If we compare now the average execution time to extract the NoC by the tool FlexNoC

using the 3 machines (Figure ���B, Figure ���� Figure ����), the value is about 120 sec for

THALES 2 and MPSOC 4 while it is about 80 sec for the machine MPSOC7. With 8 threads

and 12G memory, this machine is the most powerful one. The number of threads is a major

factor affecting the performance of the machine. This result is also the same for EDK and

zCui tools. The machine MPSOC7 can perform all the workflow faster than the other

machines. The industrial used tools offer the possibility to use all the processors of the

machine which is a way to perform a parallel execution.

2.4 Parallel and multi-scale software implementation

 With the shortage of information about the different parameters during the step of

design, we propose in this section to study the effect of different variables of the design. The

real goal of this work is to create a data base of designs which can be the input of a

mathematical predictive model. We present in Figure ���� the main idea of this work. The

different input variables of our work are:

• Parameter 0: NSGA-II options

• Parameter 1 : FPGA platform

• Parameter 2 : parallel flow

• Parameter 3 : the properties of the machines

 These different parameters can be the input to create a mathematical model to predict

the behavior of the workflow for a specific design. This step is a learning step in the

predictive model.

A.M’zah 3D MPSOC

55�
�

 At the end of this work and thanks to the obtained model, we can advice the user

referring to his personnel constraints (number of licenses, maximum time...) about the way to

schedule his DSE. This work can be used by the EDA companies as a consulting service to

get an optimized utilization of their tools.

Figure 2.13. Design Space Exploration for mathematical Model generation

 We performed at the previous section a study of the population size which is a basic

parameter in the NSGA-II algorithm. We have also presented the effect of the different

machines on the design workflow. We propose now to change the number of parallel used

threads. In fact, we can run the workflow at the same time on the same machine thanks to the

A.M’zah

option of parallel IDs run off

Design Space Exploration in F

the Machine MPSOC 7, we

memory is faced with higher

extract the NoC files by indi

affected compared to the sequ

when the number of parallel

parallel threads and the who

memory, we can only reach 1

between running 4 or 8 paralle

is equal to 16.

Figure �2.14. MPSOC7 : Compari

�

�

��	�

��	A

�CC�

	BB

�BBB

�	BB

�BBB

�	BB

�BBB

�)+ "�

E
xe

cu
tio

n
tim

e
in

 (
se

c)

A�
���

��C

�	A

�	B

�B

��B

��B

��B

��B

��B

��B

��B

��B

	�B

�)+ "�

E
xe

cu
tio

n
tim

e
in

 (
se

c)

Execution

56�

offered by ModeFRONTIER tool. We present

Figure ����� and Figure ����	. Thanks to the hi

e can run until 39 IDs at the same time, a

er number. The parallel execution increases t

ndividual. Until 8 parallel IDs the execution

quential treatment (see Figure ����B), but it is

el IDs reaches 16. There is a challenge betwe

hole exploration time. As the EDK tool is h

h 12 parallel IDs at the same time. There is

llel threads, but the real delay is reached when

arison of FlexNoC (a), EDK (b) execution with differe
Ids

��C�

�		��A�

���	
�	�B�A�

�CC�

���B

�B����

�(# "�)*���F� "�

Execution time EDK tool with parallel Ids (b)

�� �B��B�

�C�
�B����

��	 ��B�A

�	B

�CC
�B���

�(# "�)*���F� "�

ution time FlexNoC tool with parallel Ids (a)

 3D MPSOC

�

ent the results of this

 high performance of

a problem of out of

s the needed time to

on time is not really

is almost the double

tween the number of

s hungry in term of

is no real difference

en the number of IDs

erent numbers parallel

�B�����C	

��F� "�

��(�"

��(�"

���(�"

�B����
��(�"

��(�"

���(�"

���(�"

�A�(�"

A.M’zah

 We perform the same

using the tools FlexNoC and

number of parallel IDs change

number of parallel IDs increase

 The user should find th

execution time by IDs. Increas

single workflow slower. A pre

scheduling.

Figure �2.15. THALES2: Compari

��B

���

�C�

�B

��B

��B

��B

��B

��B

��B

��B

��B

	�B

�)+ "�

Execution

�CB�

����

		B�

	BB

�	BB

�	BB

�	BB

�	BB

		BB

�	BB

�)+ "�

Exec

57�

e parallel Design space exploration on the ma

nd EDK. The execution time is more than the

ges from 4 to 16. The execution time is also m

ases with EDK tools.

 the good combination between the number of p

easing the number of parallel designs make the

redictive model can give a better approach to m

arison of FlexNoC (a), EDK (b) execution with differe
Ids

��� ����CC

��� ��C��A	

��B
�	���	�

�(# "�)*���F� "�

on time FlexNoC tool with parallel Ids (a)

���A �	�C�	

�CC�
�BB��C

�C��

�		B�	�

�(# "�)*���F� "�

xecution time EDK tool with parallel Ids (b)

 3D MPSOC

�

 machine THALES 2

the double when the

 multiplied when the

f parallel IDs and the

he achievement of the

o make the optimized

�

�

erent numbers parallel

��&��������(�"

��&��������(�"

���&��������(�"

���&��������(�"

��&��������(�"

���&��������(�"

A.M’zah 3D MPSOC

58�
�

 Until now all the presented work was performed on a single FPGA, we propose now to

use a multi FPGA platform. That is why we implemented the next architecture with a mesh

topology using 48 processors and 32 memories. This architecture needs 5 FPGAs platforms.

The implementation of this design was performed on ZEBU–UF4 board. The resource

utilization is presented in Table ��A.

Figure 2.16. SSM IP 48 processors 32 BRAMs
Table 2.9. SSM IP 48x32 on Zebu UF4 Resource utilizations

Modules Descriptions Design 2 SSM IP 48MB,32 BRAMs

FPGA 4 Virtex-4 LX200

Ressources utilizations DRAM 512 MBytes

SSRAM 64 MBytes

ICE Smart and Direct Bram Slices DSP48

FPGA1 F_0_0_0 76% 44% 31%

FPGA2 F_0_0_1 57% 14% 9%

FPGA3 F_0_1_0 1% 78% 66%

FPGA4 F_0_1_1 95% 27% 18%

FPGA5 F_1_0_0 2% 32% 17%

A.M’zah 3D MPSOC

59�
�

 We perform the same design space exploration already presented in 2.3.3. In fact, we

change the population size of the generation and the number of parallel IDs. The obtained

results are summarized in Table ���B. By using MPSOC 7, it was only possible to run 8

parallel IDs with FlexNoC tool, 4 parallel IDs with EDK tool and only 2 parallel IDs with

zCui while no parallel execution was possible for zCui tool using the MPSOC 4 machine.

With this design the memory size of the used machines was the real limitation of the parallel

DSE. To perform the place and route operations, the machines use all the available memory.

The variation of the average execution time of the FlexNoC tools is not really meaningful

with the machine MPSOC7, but this one doubles when the population size doubles on the

machine MPSOC4. The parallel run of the FlexNoC tool is affected by the difference between

the available memories in both machines.

 From those results we can conclude that with the EDA tools, using deterministic

mathematical algorithms to perform the synthesis the place and route design, the choice of the

machine is a major operation to optimize the execution time of the exploration. For example

to perform the synthesis, the place and route operations with EDK (2 parallel Ids) the machine

MPSOC7 needs about 2 hours while MPSOC4 takes about 4 hours.

Table 2.10. SSM IP 48x32 Exploration Results

Exploration Results : MPSOC7

software Population size Parallel Ids Max(s) Min(s) Average(s)

FlexNoC 24 2 593 539 554,96

FlexNoC 24 4 614 568 591,71

FlexNoC 24 8 629 580 611,17

EDK 24 2 8297 6796 7600,58

EDK 24 4 16309 8944 12678,79

zCui 24 2 8829 6759 7778,71

Exploration Results : MPSOC 4

software Population size Parallel Ids Max(s) Min(s) Average(s)

FlexNoC 24 2 816 799 807,666667

FlexNoC 24 4 1683 1583 1633,20833

FlexNoC 24 8 4051 2193 3267,625

EDK 24 2 14181 11850 13105,6667

EDK 24 4 BLOCKED BLOCKED BLOCKED

zCui 24 2 BLOCKED BLOCKED BLOCKED

A.M’zah 3D MPSOC

60�
�

2.5 Return on experience: Analyses and discussions

 We presented in this chapter an experimental study of FPGA implementation using

different MPSOC designs. During the first step of the implementation, we needed to make

different choices on the machine, the tools and the scheduling of the exploration. It was clear

that there is no detailed work giving such information. That is why we performed a design

space exploration to get the optimized configuration. The number of input variables in the

step of design is important. That is why we performed a design space exploration to test the

effect of the different parameters.

 Thanks to our result we have now a data base of experimental results presenting the

relationship between different parameters. The real implementation and execution on FPGA,

offers a real freedom to realize this exploration compared to the simulation methodology. This

work can be a good database to perform a theoretical study and to create a predictive model

serving as an “Adviser” to the new users of the explored tools.

2.6 Conclusion

 We presented in this chapter the design of an MPSOC design having 16 masters and

16 salves based on the Butterfly NoC topology. This project was implemented on the Multi

FPGA platform ZEBU–UF4. We applied on this hardware design a parallel programming of

the Harris Filter algorithm. Thanks to this parallel programming, the speed up has reached the

value 10 when the sixteen processors were fully used.

 During this step of design, the shortage of information about the choice of the suitable

machines, tools, platforms, number of licences was a real handicap. That is why we

performed a Design Space Exploration by changing the different options of the processors and

the NoC. We applied a Multi Objective Evolutionary Algorithm in order to find the optimized

sets of individuals which are minimizing the area and the execution time of the design. We

got a pareto front of the optimized IDs.

 During our workflow implementation, three basic tools were used which are FlexNoC

(NoC extraction), EDK (place and route), zCui (portioning and execution). We performed a

Design Space Exploration in order to study the effect of the different parameters on the

performance of those tools. Thanks to the variation of the machines, the population size, the

number of FPGA and the architecture of the MPSOC, we provide a wide data base which can

be the input of a predictive mathematical model which is created later during an internship in

A.M’zah 3D MPSOC

61�
�

the lab [38]. Thanks to this model the user can have a better idea to make different choices

during the implementation of his design.

A.M’zah 3D MPSOC

62�
�

��A�A�A�A�������������D�����F�����F�������F�F��D�����F�����F�������F�F��D�����F�����F�������F�F��D�����F�����F�������F�F��

A.M’zah 3D MPSOC

63�
�

3 3D Semi conductor Technology

3.1 3D Semi conductor Technology: Motivation

 The development of semi conductor technology has targeted at the same time the

increase of the performance and the reduction of the power consumption and the cost.

Transistor shrinking was the principle key of this evolution but in these last years this method

has reached its limits. One of the major faced problems with high technology is presented in

Figure ���. In fact, between the 180 nm and the 130 nm the interconnect delay overcomes the

gate delay. In other words, the links are becoming the new limitation of the design’s

performance.

�

Figure 3.1. Gate and Interconnect Delay as a function of gate technology [39]

 Three-dimensional (3D) integrated circuits (ICs), is a design containing multiple

active silicon layers. This new approach of design can deal with the problem of the

interconnection delay. In fact, the key of the 3D IC design is the use of the vertical connection

called TSV (Through Silicon Via) which is an efficient technique to shorten the global

interconnection of the design.

 The other major limitation of the 2D shrinking is the increase of the cost changing

from a technology to another. CMOS scaling requires much higher cost, For example a node

mask set for 90 nm is about $1 million while it is about $2 million for 45 nm technology (see

Figure ���). We present in the same figure, the comparison between the CMOS scaling and

two different methodologies of 3D IC. It is clear that the cost of a single die overcomes the

cost of 3D design with high technology.

A.M’zah 3D MPSOC

64�
�

�

Figure 3.2. Cost CMOS scaling[40]

3.2 3D Semi conductor Technology: State of the Art

 Three-dimensional integrated circuit (3D-IC) is not really a new field, in fact it has

been studied since the 1980s [41][42]. However, CMOS scaling following Moore’s Law has

been the most explored in order to increase the density and the performance of ICs. The 3D

IC is emerging in the last decade as CMOS scaling has already reached its limitation.

Figure 3.3. Example of 3D Design [42]

 The 2005 edition of the ITRS was the first one which is projecting the need for

focusing not only on device integration that relies on the improvement of the form factor

(More Moore) but also on applications leveraging silicon technology to provide added

Options (More than Moore) (see Figure ����.

A.M’zah 3D MPSOC

65�
�

�

Figure 3.4. Illustration of the evolution of the semi conductor technology with CMOS scaling with other
ways of development offering new functionalities [2]

 We present in the Table ���, a summary of the implemented 3D MPSOC for these last

years. Even though the number of the papers studying 3D design is considerable, only few

works present a real implementation of a 3D MPSOC design.

 L.Zhou et al [43] implemented a 3D LDPC (Low Density Parity Check) design using

three tiers with the technology 180 nm. The frequency of this design reached the value of 128

MHz. The comparison of this 3D design with a 2D equivalent one has shown an improvement

of the 3D technology in term of power consumption, global interconnection, clock skew and

area. In [44] authors have designed a 3D NoC with Mesh topology. This design fitted on

1mm2 area with the technology 130nm. To perform this operation, 100 vertical connections

were used to ensure the connections between the different layers. The frequency of the design

can only reach 25 MHZ. An implementation of 3D adder and multiplier was performed in

[45]. Authors have used the technology 180 nm and TSV to ensure the communication

between the three different wafers. This work has proved the efficiency of 3D design with an

improvement up to 34% for speed and up to 46% reduction for power consumption. Memory

stacking is one of the major motivations in 3D IC design. In both works presented in [46][47],

authors have designed a 3D stacked SRAM memories. In fact, Chen et al have designed a 3D

SRAM using MITLL 180 nm FDSOI process, which improves the access time by 32%. and

speed up the access time to the world line of the memory. A 3D implementation of a complete

MPSOC design containing 64 cores and having a mesh topology was the subject of the paper

A.M’zah 3D MPSOC

66�
�

[48]. This work was performed using 3D Tezzaron technology with 130 nm technology. This

design has a frequency of 277 MHz . The vertical connections were ensured using TSV and

Micro bumps from 3D Tezzaron technology. The same technology was also used by

Thorolfsson et al to implement the 3D SoC for H.264 design[49].

Table 3.1. 3D MPSOC design implementation [50]

Teams Architecture Technology/Number of tier

L.Zhou et al [43] 2006 3D LDPC decoder 180 nm / 3tiers

C.Mineao et al 2008 [44] 3D mesh NoC 130 nm / 2 tiers

J. Ouyang et al [45] 2009 3D adder and 3D multiplier 180 nm / 3 tiers

X.Jing et al [47] 2010 3D SRAM 180 nm / 3tiers

M. B. Healy 2010 [48] 3D multicore (64 cores) 130 nm / 2 tiers

T. Thorolfsson et al [51]2010 3D SoC for H.264
130 nm / 5 tiers (2 tiers for logic, 3

tiers DRAM)

X.Chen et al [46], 2011 3D SRAM 180 nm / 3tiers

�

 3D IC is relatively a new research field that is why there is a shortage of 3D industrial

chips. The leader semi conductor companies like Intel and IBM are in a real course to be the

first provider of the first 3D industrial chip. We present in the Figure ��	, a set of 3D

industrial designs. In 2006 and for the first time, the three dimensionally stacked NAND Flash

memory was produced by the company Samsung. Thanks to the technology S3 (single-

crystal Si layer stacking), which was used to develop S3 SRAM previously, it was possible to

double the memory capacity without increasing the chip size [52]. On October 2011, Samsung

and Micron announced the new project of a new Hybrid Cube Memory (HMC) presented in

Figure ��	 (b). This memory is designed to ensure high performance computing which can

send information from memory chips to the CPU. IBM has announced in November 2011 the

production of the first commercial chip based on Micron’s Hybrid Memory Cube using TSV

technology. The actual high volume production is noticed for the image sensors of Toshiba.

�

�

A.M’zah 3D MPSOC

67�
�

�
 ���

Samsung’s Stacked Flash Memories 2006�

�

(b)

Micron's Hybrid Memory Cube (HMC) produced by
IBM[53] (2011)�

(c)

CMOS Imaging Sensor
CIS 1Q’07 Market Share

(d)

2MPixel (2.6x2.6um pixel) CIS: Leti & ST (Jun. 2007

�

(e)

Toshiba Image Sensor with TSV 2008

(d)

Cross-section image of IBM's "through-silicon-via"
technology in a stacked chip. (Source: IBM)

Figure 3.5. 3D IC industriel design
�

�

�

�

A.M’zah 3D MPSOC

68�
�

3.3 3D Design Methodologies

 The fabrication of a 3D IC design can be performed using different approaches. We

present in Figure ���, the basic 3D IC methodologies.

�

Figure 3.6. Illustration of vertical interconnect technologies: wire bonded (a); microbump—3D package
(b) and face-to-face (c); contactless—capacitive with buried bumps (d) and inductive (e); through via—

bulk (f) and silicon on insulator (g) [54]

3.3.1 Wire Bonded System-in-Package

 The Wire Bonding approach is the most common 3D methodology. After processing

and testing the independent components, they are stacked to create a System In Package (SiP).

The connection between the stacked chips is performed using external wires. The major

limitation of this solution is the resolution of wire bonders and especially the increase of the

number of inter chip connections. Unlike the other 3D IC approaches the vertical connections

in the wire bonded solution can be only performed on the chip’s periphery. This can seriously

limit the vertical interconnection density which is estimated to 102-103/cm2 [54]. The

reduction of size is the only meaningful benefit offered by the chip stacking method. In fact

the connecting wires can be shorter but the size of the components is almost the same

compared to 2D Design.

A.M’zah 3D MPSOC

69�
�

Chip stacking is a technology offered by companies like Sharp and STATSChipPAC.

Chipstacked. The produced SiPs are employed in cell phones thanks to their tight size. We

present in Figure ��C, an example of a 3D design based on the wire bonding methodology.

��

Figure 3.7. Wire bonding design [55]

 We present in Figure ���, different structures of wire-bonded. The separation between

the different stacks can be performed using spacer or adhesive. The connection using wire

bonding can be applied between Die to Die or die-to-package. The performance of the 3D

stacked design is determined from the length of the bonding wires and the resulting parasitic

impedance. Stacking up to four or five dies have been already implemented [56]. But the

parasitic impedance and the shortage of the number of available bonding wires are the

principle limitations of this approach leading designers to find other SiP methods to deal with

those problems.

�

Figure 3.8. Wire bonded System-in-Package[57]
�

3.3.2 Peripheral Vertical Interconnects

 In order to overcome the limitation of the Wire bonding method, a new SiP using

vertical peripheral connections is used. In fact the designer can replace the classical wires by

solder balls or Through Hole vias illustrated in Figure ��A. Thanks to this solution, the number

of stacked dies can increase as the constraints of parasitic, the impedance and the number of

A.M’zah 3D MPSOC

70�
�

linking wires are relaxed. Those techniques were used by several companies. In fact, Micron

Corporation company uses the Via hole method to produce fast 3D memory chips while

Hitachi attached the vertical pillars to the Printed Circuit Boards (PCB) to perform the vertical

connections of the 3D chip.

�

Figure 3.9. SiP with peripheral connections: (a) solder balls (b) through-hole via and spacers ,
(c) through-hole via in a PCB[57]

3.3.3 Micro Bumps

 The Micro Bumps can be defined as Small solder ball used to connect one die to

another; they are normally connected to a micro bump pad, or micro ball. Micro bump

technology is the use of solder or gold bumps on the surface of the die in order to establish the

vertical connections between the different dies. This 3D methodology was used in different

packaging technologies, like wire bonded chip stacking, chip stacking, system in package and

3D IC integration. In fact, the use of Micro bumps increases meaningfully the

interconnections density with a low cost. In order to decrease their resistance, the Micro

bumps are usually made up of Cu and Sn. Different bonding processes have been developed

for example the solid-liquid-inter diffusion method [58] and the thermal compression method

[59].

 We present in Figure ����, an example of a fabrication process of CuSn Solder Micro

bumps [60]. The Micro bumps are created on both sides of the Si chips to allow the assembly

of the 3D Chip with a Face to Face stacking method (see Figure ���B).

�

Figure 3.10. 3D Chip with Micro Bumps

A.M’zah 3D MPSOC

71�
�

 At the first step, two layers of SiO2 and Al films with a thick of 1µm are deposited on

the wafer (Figure ����.a). Then a patterned layer of 2µm photoresist is applied (Figure ����.b).

In order to form the metal pad the Al is etched and the photoresist is removed (Figure ����.c).

Another layer which has a passivation function is applied (Figure ����.(d,e,f)). After this, a

Ta/Cu of adhesion layer and seed layer are sputtered (Figure ����.g). After deposing a layer of

a thick photoresist (Figure ����.h), the CuSn is applied. In the last step, the photo resist is

stripped; the Cu and the Ta are etched sequentially.

�

Figure 3.11. Process flow fabrications of CuSn solder Microbump[60]

 This 3D approach is used by many companies. For example the company IMEC [61]

is providing CMOS image Sensors with high interconnect density using the Bump with a

pitch of 20µm in CuSn. These Micro bumps are illustrated in Figure ����.

�

Figure 3.12. SEM picture a die part of the interwoven daisy chain with 10µm diameter CuSn bumps
formed by electrochemical plating. The pitch of the bumps is 20µm [61]

�

A.M’zah 3D MPSOC

72�
�

3.3.4 Through silicon via (TSV)

�

Figure 3.13. Through silicon via (TSV)[62]

 The TSV (Through Silicon Via) is the most used 3D technology because it can be

scaled to achieve a high vertical connection density. It presents also physical advantages like

low electrical resistance, low parasitic capacity and impedance which represent real

motivations in the Microelectronics design. The 3 main steps in the fabrication of a 3D IC are:

• Wafer Thinning

• TSV etching and filling

• Tier Bonding

 When we change the order of those steps we can define different processes like “TSV

first”, “TSV last” and ‘’ TSV middle’’.

3.3.4.1 Structure

 The TSV is basically characterized by its diameter and its pitch. These two values are

shrinking when the technology is improved. We present in Table ���, the prediction of ITRS

roadmap for the 3D TSV evolution. In fact by 2015, the TSV diameter will reach 1µm while

the TSV pitch will be equal to 2.5 µm. This evolution will increase the density of the 3D

interconnections in a 3D chip and improve the global interconnect delay.

Table 3.2. High-density through silicon via projections in 2008 ITRS update [63]

Principle
parameters

2008 2009 2010 2011 2012 2013 2014 2015

TSV diameter,
D(µm)

1.6 1.5 1.4 1.3 1.3 1.2 1.2 1

TSV pitch,
P(µm)

5.6 5.5 4.4 3.8 3.8 2.7 2.6 2.5

Pad spacing,
S(µm)

1 1 1 0.5 0.5 0.5 0.5 0.5

Pad diameter,
PD(µm)

4.6 4.5 3.4 3.3 3.3 2.2 2.1 2

Bonding
accuracy,

�(µm), 3 sigma

1.5 1.5 1 1 1 0.5 0.5 0.5

A.M’zah 3D MPSOC

73�
�

�
Figure 3.14. TSV examples [64]

 Figure ���� is an illustration of different TSV examples designed in [64]. The diameter

is varying from 20µm to 70µm while the deep is in the margin of 100-140µm. Thanks to this

configuration the TSV density can allow for a pitch of 10µm a number of 10 000 vertical TSV

connections on the area of 1mm2.

3.3.4.2 Process of fabrication

�

Figure 3.15. General TSV flow fabrication [65]

 We present in Figure ���	, a WOW (Wafer On Wafer) flow process. At the first step

illustrated by (A) the Si wafer called Substrate I is thinned then bonded to another Si Wafer

(Si Substrate II) (B). These two steps are the step of thinning and bonding. During the third

operation called “Debonding”, the support glass is removed. The TSV etching is performed

during the fourth step of this process. Playing the role of an isolator, the SiN is chemically

deposited inside the TSV holes (E) then the TSV is filled with the metal Cu which is

A.M’zah 3D MPSOC

74�
�

illustrated in Figure ���	 (F). After the Wafer stacking the process is repeated to create all the

TSVs at the different levels.

 The presented process is related to the Via first process fabrication. In fact, The TSV

creation is performed before the stacking operation. When we invert the order of these steps,

the process is called Via last. We can see the difference between the two methodologies in

Figure ����. The summary of the different TSV process flows is presented in Table ���.

�

Figure 3.16. Via first (left), Via last (right) 3D IC methodologies[63]

Table 3.3. TSV process flows [63]

TSV first TSV middle TSV last
Etch deep silicon cavities Etch deep silicon cavities Fabricate transistors

Insulate cavities Insulate cavities
Fabricate BEOL
interconnect

Fill cavities with a conductor Fabricate transistors Bond Wafer pair

Fabricate BEOL interconnect Fill cavities with a conductor
Thin backside of upper

wafer

Bond wafer pair Fabricate BEOL interconnect
Backside etch deep silicon

cavities
Thin Backside of upper wafer Bond wafer pair Insulate cavities

Fabricate BEOL interconnect on upper wafer Thin backside of upper wafer Fill cavities with conductor
�

3.3.4.3 Stacking Methods

 The step of stacking or bonding can be realized with different methods: Chip to chip,

chip to wafer or Wafer to Wafer. The choice of the appropriate technology depends on the

user’s application and especially on the size of the die, the density of the interconnections, the

A.M’zah 3D MPSOC

75�
�

alignment and the bonding yield. The main advantage of using a Chip to Chip, or a Chip to

Wafer methodologies is the possibility to test the used dies before the stacking operation

which reduces the probability of the design failure. In fact only Known Good Die (KGD)

which are already tested are used. This is not the case when we use a wafer to wafer

technology where the testing step is performed at after the fabrication of the whole chip. For

this last approach the low cost is the main argument to choose it. Adding other steps in the 3D

IC process fabrication represents the principle inconvenient in the Chip stacking techniques.

Table 3.4. Comparison between bonding methods (KGD: Known Good Die)[60]

�

 Stacking methods can be also classified with reference to the direction of the active

Silicon area into 3 families: Face to Face, Back to Back and Face to Back (see Figure ���C).

The Face to Face stacking is also suitable for 3D IC using Micro Bumps. For both solutions

(Face to Face and Back to Back) the number of dies is limited to 2 which is the major

limitation of theses technologies. The Face to back methodology is more scalable and gives

the possibility to use a non limited number of stacked dies.

�

�

A.M’zah 3D MPSOC

76�
�

�

Figure 3.17. Stacking Methods[66]

3.3.4.4 TSV properties

 We present in Table ��	, the comparison between the used materials to fill the TSV.

The copper presents the main advantage which is the high conductivity and the compatibility

with the FEOL process. That is why; it is the most used in TSV technology. The Tungsten

(W) is also a common material in the 3D integration but it has lower conductivity compared

to the Copper. For the other materials, the low conductivity and the high price are the major

problems limiting their use in 3D IC.

Table 3.5. Comparison of Via Filling Materials [55]

�

A.M’zah 3D MPSOC

77�
�

 The use of the TSV can increase meaningfully the frequency of the design. In fact the

delay is reduced to less than 1fs while it is more than 10 ps in a conventional CMOS wire

[67]. The RC delay value in TSV depends on its material and on its diameter. We present in

Figure ����, the variation of this value function of the TSV diameter for Copper and Tungsten.

We can see that the copper has a better conductivity than Tungsten with lower RC delay

values. For both materials the RC delay is proportional to the TSV diameter.

�

Figure 3.18. RC delay vsTSV diameter[67]

3.3.4.5 TSV challenges

 Even though TSV technology is a promising technique by reducing the problem of

interconnect delay and form factor, it is facing a number of challenges. Area consumption is

one of the main problems. In fact , one TSV fits in a significant silicon area : For example a

TSV size is about 5 to 10 times the size of a standard cell in 32 nm (see Figure ���A), which is

also about 15 to 30 times of the minimum width of M1 [68]. The use of TSV has reached

66% of the total area consumption in the 3D design presented in [69].The shortage of TSV

tools, the high cost and the difficulty to test the chip are also challenges in the TSV

methodology.

�

Figure 3.19. TSV Area estimation[68]
�

�

A.M’zah 3D MPSOC

78�
�

3.3.5 Contactless

 Contactless coupling is another methodology of 3D design which does not require the

processing steps to create the connections between the different layers. That is why this

method is known to be cheaper than TSV or wire bonding methods. We can have two ways

of contactless coupling: the inductive and the capacitive. When the vertical connections are

based on the inductive coupling (see Figure ���B), each layer has spiral conductor which is

responsible of the vertical communications. In the capacitive coupling the small plate

capacitors on chip are playing the role of the vertical interconnects.

Figure 3.20. 3D IC Inductive coupling[57] Figure 3.21. 3D IC capacitive coupling[70]

3.4 Benefits and challenges in 3D Design

 3D IC stacking and use high number of vertical connections presents a lot of

advantages for the final 3D chip. However there is a shortage of adequate tools to perform all

the steps of the 3D design. We will detail in this sub section the benefits and the challenges of

the 3D design approach.

3.4.1 Benefits of 3D Design

3.4.1.1 Area Reduction:

 3D design is considered as the new way to continue the evolution of semi conductor

technology. A new rule know by “More than Moore “predicts to find new solutions for this

domain (see Figure ������3D Stacking represents a promising solution to reduce the chip area.

In fact, when the number of stacks increases the total chip area is reduced; an illustration of

this reduction is presented in Figure ����. For a square Chip format, the area can be reduced to

the half when the number of layers doubles: a 2D chip with an area A can be realized by a 3D

chip with 2 layers but with an area equal to A/2. This is a suitable technique for big sizes of

memory stacking.

�

A.M’zah 3D MPSOC

79�
�

�

Figure 3.22. Area reduction with 3D Stacking [71]

3.4.1.2 Performance improvement

 The use of the 3D design reduces the area of the chip which directly affects the

interconnection length. In fact, we can see that the longest 2D length in the 2D chip with an

area A is equal to 03� as already illustrated in Figure ����. When the number of dies

increases to 4, the maximum length of a wire can be equal to 3�. If we increase the number

of layers to n stacked dies, the maximum length will be reduced to 3� 3�. The reduction of

the global interconnection delay improves the performance of the chip by reducing the

propagation delay time of the wires. We present in Table ���, a comparison between the

interconnect delay values when the number of levels increases. The reduction of the

interconnect delay can reach 32% compared to a classical 2D design (ex: kogge-Stone

Adder).

 For tight technology, the interconnect delay reduction in 3D IC design, improves the

chip performance better than CMOS scaling. This result is illustrated in Figure ���� : scaling

the technology from 90n nm to 65 nm reduces 7% of the average latency of the design, while

with 3D IC and using the same technology the delay reduction is equal to 14% of the initial

value. This comment is also valid with the technology 65 nm and 45 nm. The difference

between the two techniques is more important when the technology is tighter. In fact for the

45 nm technology, the gain in term of delay reduction with 3D IC is about 22% while it is

only equal to 7% with a 2D design using 32nm CMOS.

Table 3.6. Performance and power comparison between different 3D architectures[71]

A.M’zah 3D MPSOC

80�
�

�

Figure 3.23. Average latency 3D IC and 2D IC [67]

3.4.1.3 Improve power consumption

 Power consumption is considered as the second most important design optimization

objective after cost nowadays. The chips are almost used in portable devices like cell phones

that is why power should be minimized in order to maximize the time between battery

recharges. The reduction of the interconnection’s length, thanks to the use of the vertical links

in 3D IC design, reduces the number of repeaters per gate Figure ����. This reduction

decreases the power consumption of the whole design.

�

Figure 3.24. Number of repeaters with different technologies

3.4.1.4 Heterogeneous Technology

 A typical Chip design includes different modules with different functionalities:

Processing, memory, networking... In order to optimize the functionality of each IP, it is

better to choose the suitable process of fabrication. This possibility is offered by the 3D

stacking, allowing the connection between different dies of the chip even having different

CMOS technologies. Dies can be produced by different vendors and then packaged in the

same 3D chip.

A.M’zah 3D MPSOC

81�
�

, �

Figure 3.25. 3D chip with heterogenous technologies [72]

3.4.1.5 Cost reduction

 The cost is the real motivation behind the evolution of semi conductor technology. The

classical CMOS scaling technique is becoming more difficult and more expensive to develop

with tight technologies. The price of developing a new process for a new node technology is

becoming so expensive that only big companies can choose it. We present in Figure 3.2, the

cost of 3D approaches compared to 2D design integration. From these curves we can conclude

that, when the number of gates increases the cost of 3D techniques (W2W and D2W) is

usually lower than the cost of 2D integration.

3.4.2 Challenges of 3D Design

3.4.2.1 Thermal dissipation

 Thermal dissipation is a critical challenge in 3D design. In fact a 3D chip with stacked

dies has higher temperature than a classical 2D design. A case study of a wireless sensor node

presented in [69], shows that when the number of levels increases in 3D design the

temperature increases. The obtained results are illustrated in Figure ����. There is a

meaningful difference between the temperature of the first layer and the second one (more

than 200% of difference). It is clear that farther layers have higher Temperature. Thermal

dissipation is a serious problem in chip design, in fact an increase of 15°C increases up to

15% of the interconnect delay and reduces the chip life time by 4 times[73].

A.M’zah 3D MPSOC

82�
�

�

Figure 3.26. Temperature distribution along the z Axis with different Silicon layers [69]

 To deal with this limitation, some methods are proposed to reduce the chip

temperature. In fact, Thermal vias can be added to ensure the heat transfer from the different

levels of the 3D chip. The Cu TSV, known by its high conductivity, is used to perform this

operation (see Figure ����). These TSVs are passing through all the dies of the 3D chip.

Microfluidic cooling is also another proposed solution to evacuate the heat from the 3D chip,

this method is illustrated in Figure ���C.

��

 Figure 3.27. Microfluidic cooling
 Figure 3.28. Thermal vias for heat dissipation [74]

�

A.M’zah 3D MPSOC

83�
�

3.4.2.2 Difficult Testing

�

Figure 3.29. Examples of TSV defects: insufficiently filled TSV (right), TSV containing Micro voids (left)

Table 3.7. Reduction of integrated yield with stacking using wafer on wafer [70]

Number of tiers 1 2 3 4

Yield 95% 91% 85% 81%

� During the step of TSV fabrication, many defaults can cause the damage of the whole

system on chip. We present in Figure ���A, two examples of TSV defects. When the TSV is

not fully filled or containing micro voids, the vertical interconnect is not ensured. That is why

when the number of stacks increases the yield of the chip decreases which is presented in

Table 3.7 , this value can move from 95% for one layer to 81% with a 3D chip having 4

layers. The need of developing suitable testing methodologies is a real need to prevent such

situations. Testing 3D becomes costly when the number of stacks increases especially when

the designer wants to perform a complete test, an illustration of an example of 3D testing chip

is presented in Figure 3.30.

�

Figure 3.30. 3D IC testing model[75]

A.M’zah 3D MPSOC

84�
�

3.4.2.3 Bonding strategy

 There is three different ways to perform 3D bonding: wafer to wafer, die to wafer and

die to die. We have already presented the advantages and the issues of each methodology

Table ���. Wafer to wafer bonding is the fastest one as all the wafers are created at the same

time with the constraint to have dies with the same size and shape at the same wafer which

reduces the possibility to have heterogeneous architectural layers. In the die to wafer stacking,

we can have different dies on the same wafer. Single dies will be stacked on the fixed wafer.

Even though this method presents a better freedom in term of design, the problem of

alignment is more difficult. The die to die Bonding offers the freest way to use mixed

technologies on 3D design however it increases production time and cost meaningfully[63].

3.5 3D Academic and industrial devices

�

Figure 3.31.Geographic mapping of 3D IC players [76]

 Figure ���� represents the actual geographic mapping of the players in the 3D IC field.

It is clear that 3D design is attracting the big semi conductor leaders. 3D stacking is

commonly used in CMOS image Sensors by different companies like IBM, Samsung, Sharp (

see Figure ����). 3D research field is attracting industrial and academic labs. Even though

researches are progressing, there is a real course between concurrent industrials to develop the

first industrial 3D chip.

�

A.M’zah 3D MPSOC

85�
�

�

Figure 3.32. 3D TSV applications and players [77]

3.5.1 3D Academic

We present the principle 3D IC tools dedicated for real implementation developed by

Academic labs:

• 3D Magic tool (MIT company)

• MIT – cu-cu bonding, 3D Magic tool 1

• CEA-Leti – 3D integration toolbox 2

• Pennsylvania SU – 3DCACTI3

• UCLA – MEVA-3D

3.5.2 3D industrial

• Tezzaron: via-last, metal thermal bonding, wafer level stacking, FaStack

• Ziptronic: covalent oxide bonding, DBI and ZiBond

• ZyCube: adhesive bonding, micro bumps

�

3.6 Conclusion

 3D IC design is a semi conductor methodology offering new solutions to overcome the

interconnect delay which is more important then the interconnect delay when using nanometre

technologies. Depending on the properties of the design, we can choose different techniques

A.M’zah 3D MPSOC

86�
�

of stacking like wafer to wafer, die to wafer and die to die. The vertical interconnections are

usually performed using TSV (Through Silicon Via).

 3D IC design offers various advantages like the chip area reduction, the decrease of

the interconnect delay and the decrease of power consumption, but challenges are also

considerable. In fact, the heat dissipation and the shortage of specific 3D tools represent the

major actual 3D IC difficulties.

 The main objective of this chapter was to detail the different characteristics of the 3D

technology in order to take them in consideration during the NoC synthesis step.

A.M’zah 3D MPSOC

87�
�

�������������������������������� ����A�A�A�A�!F��D�������������F�F�F����!F��D�������������F�F�F����!F��D�������������F�F�F����!F��D�������������F�F�F��������

A.M’zah 3D MPSOC

88�
�

4 NoC Synthesis methodologies

 In 3D IC design, new challenges should be taken in consideration like TSV

assignment, heat dissipation and partitioning. With the high cost of the 3D IC design, the

designer should consider the additional constraints in order to generate an optimized 3D NoC

for a set of objectives; a such problematic is called the 3D NoC synthesis problem which will

be the subject of this chapter.

4.1 2D NoC synthesis methodologies

Network-on-Chip (NoC) architectures have been gaining widespread acceptance as the

new communication technology for multi-core systems, thanks to their high scalability, their

predictability, and their performance. However, regular NoCs are resources hungry

components; this fact represents the main reason to create NoC synthesis methodologies

satisfying with optimal resources the needs of a particular application.

The definition of the NoC synthesis problem is the generation of a NoC topology

optimized for a specific objective function with respect to various constraints. The NoC

synthesis methodology should consider a multitude of non-trivial design problems which

enlarge the design space of the possible configurations that is why some people choose to use

heuristic methods to deal with this complexity. In spite of the complexity known to be NP-

hard, some other use deterministic methods which are a real guarantee to find the optimized

solution. Trying to find a deal between time and accuracy, we can find methods using a

mixture of heuristic and deterministic techniques.

4.1.1 Deterministic methods

 The Linear Programming (LP) and the Genetic Algorithms (GA) are the main

deterministic used methods in the literature to solve the NoC synthesis problem. The

resolution of this problem with Linear Programming, when solved, will generate the

optimized solution but when the problem is complex the resolution time can be too important

that we can face memory or solver limitations. When the Design Space of possible NoC

configurations is huge making impossible a Linear Programming resolution, a GA can be the

solution. The use of GA coupled with the exploration of the Design Space does not guarantee

reaching the optimized solution but will approach it in a faster time compared to exact

methods. The main advantage of GA is the possibility to solve accurately multi objective

problems, which is not the case of LP, in this case the resolution of the problem will not be a

A.M’zah 3D MPSOC

89�
�

single solution but a set of possible solutions representing a Pareto Front curve. Srinvasan et

al [78] have presented an integer linear programming (ILP) to generate a low power custom

NoC topology. In this work, authors have divided the NoC synthesis problem into 2 sub

problems: a floorplanning problem and the interconnection problem. M.Jun et al have used in

[79][80] a Mixed Integer Linear Programming (MILP) as a step of an iterative method to

solve the NoC synthesis problem. The GA has been used in [81] to generate two NoC

architectures: the first one is optimized for area while the other one is optimized for delay.

The generated solution is a combination of both separate topologies. This technology is also

used in other papers like [82][83]. In the majority of these previous works, an operation of

core partitioning is applied at some level to reduce the mathematical complexity of the

problem. This step is in the majority of cases done with heuristic algorithms.

4.1.2 Mixed methods

 In the previous section we presented works using deterministic methods for the main

NoC synthesis step. In reality the problem can be divided into sub problems and in this case

we can find that in some works authors use a deterministic method in one step while they use

a heuristic methodology in another. We present in Table ���, the summary of 2D NoC

synthesis methodologies. The work of K.Srinvasan et al presented in [78], is in reality a

mixture of deterministic and heuristics methodologies. Even though the principle steps of the

NoC synthesis problem were performed using LP algorithm, some steps like the floorplanning

of the routers or the clustering were heuristics. In fact the authors have considered that routers

can only be placed on the corners of the cores. The NoC synthesis solution proposed by B.Yu

et al in [84], is based on the Min-Cut algorithm for partitioning and NoC synthesis generation.

In this work authors suppose that the routers can only be only inserted in the white places of

the floorplan.

4.1.3 Heuristic methods

 In some works, authors choose heuristic methods to solve the problem of NoC

synthesis. In the quasi totality of the cases, this is used to reduce the complexity of the

problem when deterministic methods fail to generate the optimized solution. Heuristic is

usually used in clustering and solution post processing. V. Dumitriu et al [85], have used a

fully heuristic method to deal with the complexity of the NoC synthesis problem. Using the

principle of merging and dividing routers, the authors can explore different topologies. With

this method there is no prove to attend the optimized solution, but this algorithm can find

A.M’zah 3D MPSOC

90�
�

feasible solutions for complex designs. It is interesting to study the reduction of the

complexity when using heuristic methods which is the real motivation to choose between the

different proposed solutions. In the majority of the presented solutions, there is a need to

study the theoretical complexity of the proposed methodology and the complexity of the

tested benchmarks.

 Table 4.1. Summary of 2D NOC synthesis Methods

Works Clustering Core

Floorplanning

algorithm

Switches

Placement

algorithm

NoC

Topology

Assumptions Nature

K.Srinvasan

et al

[78]

* Heuristic * MILP(Mixed

Integer Linear

Programming)

*Heuristic *MILP(Mixed

Integer Linear

Programming)

* Routers are

smaller than

cores.

* Place routers

in the corners.

Mixed(

deterministic

+

Heuristic)

M.Jun et al

MIRO

[79]

*Heuristic * Parquet tool:

system level

Floorplanner

*Heuristic *MILP * Single

frequency of the

crossbar switch

network.

* Single path

between two

communicating

terminals.

Mixed(

deterministic

+

Heuristic)

M.Jun et al

[80]

*No *No *No *MILP * Consider only

the router hops.

deterministic

A.A.Morgan

et al

[81]

*No * No *No *MOGA * The length of

all the links is

the same and

allows for a

single clock

cycle data

transfer

*Fixed routers

number

deterministic

G.Leary et

al [82]

*No *Parquet

floorplanner

*MOGA *MOGA * Latency

constraints are

represented by

the number of

deterministic

A.M’zah 3D MPSOC

91�
�

4.2 FPGA based NoC synthesis Design Flow

 Even though the problem of NoC synthesis has been treated since many years, only

limited number of works have performed real implementation. In this section, we present the

main NoC synthesis design flow in the literature based on FPGA execution.

�

Figure 4.1. NoC synthesis on FPGA [87]

 The objectives and the constraints specification represents the first step of the NoC

synthesis flow presented in Figure ���. The library of the routers and the characteristics of the

application are also inputs to the workflow. During the step of Network generation, the user

changes the values of the aimed frequency, the maximum number of routers and the link

width. For each configuration, the algorithm should find the optimized NoC topology

satisfying all the user constraints. The generated topology is then simulated before the step of

hops.

X.Li,

O.Hammami

[86]

*No *No *No *MOGA * Consider a

NoC with only

2 stages.

deterministic

B.Yu et al

[84]

*yes ,

Min-cut

*yes *Heuristic *Min-cost *consider

partitioning

after

floorplanning

Mixed(

deterministic

+

Heuristic)

V.�Dumitriu

[85]

*No *No *No * point-to-
point oriented
algorithm
* Partitioned
Crossbar
Topologies

* use the

principle of

merging and

dividing routers.

Heuristic

A.M’zah 3D MPSOC

92�
�

implementation. In this methodology, authors have chosen to vary the maximum number of

used routers in order to deal with the complexity of the general problem. This exploration is

limited by the number of the cores in the design; in fact the authors supposed that the number

of routers should not overcome the number of cores.

 X.Li and O.Hammami have proposed a new NoC synthesis methodology with FPGA

emulation. The used workflow is summarized in Figure ���. The user objectives, the core

graph properties and the constraints are the input of this methodology. Depending on the used

core graph, the space of exploration is defined in function of the number of nodes and the

number of switches in each stage. After the generation of the initial population, different NoC

architectures are constructed. For each proposed design the total area of the NoC is

determined referring to the used switch library. At this level, a TLM simulation is performed

to measure the performance of the design. If the solution is not satisfying the user constraints,

a penalty is automatically added to the fitness function. The MOEA performs the different

steps of genetic algorithm to select the best solutions at each generation. At the end of this

exploration, a number of solutions are defining the Pareto solutions depending on the

objectives of the user.

�

Figure 4.2. 2D NoC synthesis workflow

A.M’zah 3D MPSOC

93�
�

 J.Lee et al have proposed in [88], an analytical model based on simple equations

defining the dependence between the operating frequency of the design and the different

parameters of the architecture like the number of nodes, the links properties and the used

board. This model can predict the implementation result of a specific design on a chosen

FPGA platform. Authors have used different families of FPGA (Virtex 2,4,5,6) and different

architectures to create the predictive model. Figure ��� illustrates the variation of the

frequency of the design when the number of nodes and the average degree change. When the

number of nodes increases the operation frequency decreases, the average degree is also a

very important parameter affecting the performance of the design.

�

Figure 4.3. Prediction of the Frequency variation when the number and the average node degree of the
benchmark change [88]

 A.Kumar et al have proposed an integrated flow in order to generate a highly

configurable NoC suitable for FPGA implementation, this methodology is presented in Figure

 ���. The description of the complete architecture is performed at the high level of abstraction.

In fact the VHDL of the processing cores and the NoC components are generated at the same

level with their simulation models. In this workflow, a hardware description which is FPGA

level HDL is also provided at the top level of this methodology. Handel-C will then generate

the EDIF files from the VHDL files which are used together with the system level EDIF files

during the step of place and route on FPGA. The P&R tool generates at the end of this

workflow the bit file to be embedded on FPGA. The user can also create an ASIC design

from the VHDL files.

A.M’zah 3D MPSOC

94�
�

�

Figure 4.4. An FPGA design flow[19]

�

Figure 4.5. The overall flow for analyzing multiple use-cases: the software part is performed for each
application, the hardware is performed only one time [89]

 A.Kumar et al have developed a new methodology for 2D application specific NoC on

FPGA presented in [89]. In this solution, authors proposed to generate a common hardware

design suitable for different specific applications. Different Use-cases defining multiple

coregraphs are the first input of this workflow. For each one, there is a specific hardware and

software properties which should be respected. The study of all the use-cases allows the

generation of a unique communication matrix satisfying all the input requirements. Thanks to

A.M’zah 3D MPSOC

95�
�

this matrix, the user can define the hardware description of the full design or the software of

only one application. The grey boxes are determining the steps to be applied with all the Use-

cases separately. The software part is studied for each input application in order to specify the

hardware needs and properties. The configuration of the FPGA is updated via the bit file

during each iteration. We notice that the hardware flow part is performed only one time. The

bit file is updated to take in account the software specifications of all the applications. When

the exploration of all the benchmarks is performed, the final multiple use-cases is generated.

Such methodology is very interesting to optimize the MPSOC architecture for real multimedia

devices using different functional modules.

�

4.3 Case study and performance evaluation results

 We propose in this section our 2D NoC synthesis solution with Linear Programming.

We create a mathematical model describing our application specific NoC. We present in this

section our LP problem definition and the obtained results.

4.3.1 Introduction to linear programming LP

 The Linear Programming can be defined as the generation of a solution which

maximizes or minimizes a linear objective function subject to linear constraints. This

algorithm can be used in different real life applications like scheduling, minimizing the cost of

a production and maximizing the profit. We present a simple example of a LP :

 We suppose that we want to find the maximum of the sum 4�5 ! 5�� � 5 6 5�

subject to the following constraints:

5 6 05� - 7

75 6 05� - /0

	5 6 5� - /

5 � 8 .! 5� 8 .

 In this problem there is only two unknown variables called the decision variables

which are X1 and X2 and five constraints. The objective function F and all the constraints are

linear. All the constraints are in form of inequalities. The two constraints 5 � 8 .! 5� 8 . are

called nonnegativity constraints, the other constraints are defined as main constraints. The

function F to be maximized is called the objective function. As we have only two variables to

A.M’zah 3D MPSOC

96�
�

find, this problem can be graphically solved as illustrated in Figure ���. A graphical

presentation of the objective function and the constraints, allows the definition of the feasible

points presented by the grey region. It is easy to find the optimal point giving the maximum

value of the objective function.

�

Figure 4.6. LP graphical solution

 When the number of decision variables is more than two, there are different algorithms

to solve the problem like the Simplex method.

4.3.2 OPL Modelling and CPLEX solver

 We use in this section the OPL Modeling language to describe our linear

Programming problem. This modeling language is provided by IMB ILOG OPL. The user

should create a model file *.mod, describing the LP problem with the objective function and

the different constraints. The initialization of the input data is performed in the input data file.

These two files will be the input of the CPLEX solver to give the optimized solution.

Applying the Simplex algorithm, the IBM ILOG CPLEX optimizer is a LP solver known to

be efficient.

4.3.3 Our LP Problem Definition

 We propose in this section to model the NoC synthesis problem using the OPL

language. A presentation of this problem can be defined as:

 Given:

• A directed communication trace graph G(V,E),where each vi � V �denotes either a

processing element or a memory unit and the directed edge ek = {v i,vj} � E denotes a

communication trace from vi to vj.

• N is the cardinal of V, representing the total number of cores, NE is the cardinal of E

which is the number of edges in the graph.

A.M’zah 3D MPSOC

97�
�

• For each ek = {v i,vj} � E, �(ek) denotes the bandwidth requirements in bits/cycle.

• A library of routers Rout, for each ri � Rout, In(ri) denotes the number of the input

router ports, Out(ri) denotes the number of output router ports, Area(ri) the area of the

router, �(ri) is the peak bandwidth that one port can support bits/cycle (we suppose

that each router has the same peak bandwidth for all its input output ports).

• A set of the used routers R where R 9 Rout.

• For each core vi �V, Req(vi) � R denotes a router request associated to vi and Resp(vi)

denotes a router response associated to vi .

• Er is the set of the used links between the routers.

• A set “long” defining a family of possible links with different lengths, we suppose that

we have a fixed width for all the links. The length is to be defined in unit length.

• Freq : is the desired frequency for the NoC.

• Timehops: is the delay time needed for data to be routed through one router (ps).

• Linkdelay : is a delay time for each unit length specified in ps.

 The objective of the NoC synthesis problem is to :

• Generate a NoC topology T(R,V,Er)

• Define the area and number of input output ports of each used router.

• Define the length of each link.

Such that:

• For each ek ={v i,vj}} � E , there exists a route p={(vi, rm),(rm,rn),..,(rc,vj) }that satisfies

�(ek)

• The bandwidth constraints on the ports of the routers are satisfied.

• The total area of the NoC is minimized.

• The aimed NoC frequency is respected.

Linear problem formulation

 In this section, we present the linear problem formulation of the NoC synthesis

problem. We present some used assumptions to simplify the problem formulation:

• We affect to each couple of routers related to a core vi these value Req(vi)=i and

Resp(vi)=i+N.

A.M’zah 3D MPSOC

98�
�

• Each edge ek={vi,vj} must pass through the switch Req(vi)=i and through the switch

Resp(vj)= vj +N.

• Req = {0..N-1} is representing the set of the request routers of all the cores.

• Resp={N..2*N-1} is representing the set of the response routers of all the cores.

• For each request router Req(vi)=i we associate a set of routers destination in the set

Resp defined as : r � Dest(i) if � ek={vi,vj} � E / Resp(vj)=r.

• For each response router Resp(vj)=j+N we associate a set of routers origin in the set

Req defined as : r � Orig(j+N) if � ek={vi,vj} � E / Req(vj)=r.

• Lr,w is representing a link between the router r in R and the router w � R_{r}.

 Decision Variables

 Independent variables

• For each edge ek � E, r � R, w � R_{r] and for each link lr,w , we define the Boolean

variable XRR[ek][lr,w] . This variable is equal to 1 if the edge ek pass through the link lr,w ,

0 else.

• For each used router r � R and for each family of router rout � Rout we define the

Boolean variable XRF[r][rout] . This variable is equal to 1 if the router r has the type family

of rout, 0 else.

• For each used link lr,w with r � R, w � R_{r } we define the Boolean variable

Long[lr,w][long] , which is equal to 1 when the link lr,w has a length equal to long, 0 else.

Dependent variables

• For each r : Req , ek : E and w : R\{r}, we define a boolean variable Xrrm[r][w]

which is equal to 1 if there is a link between r and w, 0 otherwise. This variable is equal to 1

if there exits at least for any edge ek a variable XRR[ek][lw,r] equal to 1, else XRR[ek][lw,r]

will be null. We can express this variable as:

{ },],][[max]][[rlwekXRRwrXrrm = for each ek � E

• For each router r=Req(vi) � Req , we define the integer variable Xrm[r] which is equal

to the number of input ports of the router r. We suppose that each router r has an input port

linked to the corresponding core vi that is why we add the value 1 to the variable.

A.M’zah 3D MPSOC

99�
�

• For each r ; Req, ek ; E and w � R, we define a Boolean variable Yrrm[r][w]. This

variable is equal to 1 if there exits at least, for any edge ek a variable, the value XRR[ek][lr,w]

which is equal to1, else XRR[ek][lr,w] will be null. We can express this variable as :

{ },],][[max]][[wlrekXRRwrYrrm = for each ek � E

• For each router r=Req(vi) � Req , we define the integer variable Yrm[r] which is equal

to the number of output ports of the router r.

�
−

=

=
1*2

0

]][[][
N

w

wrYrrmrYrm

• For each r � Resp, ek � E and w � R, we define a Boolean variable Xrrs[r][w]. This

variable is equal to 1 if there exits at least for any edge ek a variable XRR[ek][lw,r] equal to1,

else XRR[ek][lw,r] will be null. We can express this variable as:

{ },],][[max]][[rlwekXRRwrXrrs = for each ek � E

• For each router r=Resp(vi) � Resp , we define the integer variable Xrs[r] which is

equal to the number of input ports of the router r.

�
−

=

=
1*2

0

]][[][
N

w

wrXrrsrXrs

• For each r=Resp(vi) � Resp, ek � E and w � R, we define a Boolean variable

Yrrs[r][w]. This variable is equal to 1 if there exits at least for any edge ek a variable

XRR[ek][lr,w] equal to1, else XRR[ek][lr,w] will be null. Each router r has one link to its

associated core vi. We can express this variable as:

{ },],][[max]][[wlrekXRRwrYrrs = for each ek � E

• For each router r=Resp(vi) � Resp , we define the integer variable Yrs[r] which is

equal to the number of output ports of the router r.

�
−

=

+=
1*2

0

]][[1][
N

w

wrXrrmrXrm

A.M’zah 3D MPSOC

100�
�

�
−

=

+=
1*2

0

]][[1][
N

w

wrYrrsrYrs

• For each router r � R, we define an integer variable Area[r] which is equal to the area

of the used switch. Each used router is affected to a family router type Rout � L. We define

this variable as:

�
=

=
)(

0

)(*]][[][
Lcardinal

w

wAreawrXRFrArea

• For each link lr,w defined in the NoC topology we associate the variable linklong[l]

which is equal to its length. We define this variable as :

�
=

=
)(

0

*]][[][
longcardinal

k

kklLonglLinklong

• For each edge ek � E, we define the total length of all the links defined for this edge as:

�
∈

=
LRRl

llinklonglekXRRekLinkedge][*]][[][

 Objective Function

 The objective of this NoC synthesis problem is to generate a NoC topology which

minimizes the area of the NoC taking in consideration the area of routers and links subject to

a given timing delay constraint. We define the total area of the NoC as:

���������� � < �=���=� 6� < >���?*�@�?��
A:BCC

�DE

FGH

 Constraints

• C1 : For each router r � R and for each edge ek=(vi,vj) � E : r=Req(vi) or Resp(vi),

there is exactly one link between vi and wi � {Dest(vi) Union Orig(vj})}

{ ,1],][[
)()(� ∪∈

=
vjOrigrDestw

wlreXRR
 for each r � R, for each ek=(vi,vj) � E

• C2 : There is one link at most between 2 routers :

A.M’zah 3D MPSOC

101�
�

{ }rRwqrrwXrrmwrXrrm _,Re,1]][[]][[∈∈≤+

 { }rRwsprrwXrrswrXrrs _,Re,1]][[]][[∈∈≤+

• C3: for each router if there is an input link related to an edge ek there is an output link

for this edge.

:],][[],][[vjlreXRRrlvieXRR ≤ { })(Re),(Re_,),(vjspviqRrEvjvie ∈∈=

• C4: A link passes through a router if it is the origin or the destination of this link.

 for all e=(vi,vj) 9 E, r � R\{Req(vi)} and w � R\{Resp(vj)}

• C5: the bandwidth of the edge must be less than the peak bandwidth of the chosen

family router.

{ }rRwRrEvjvie

ffrXRFekwlrekXRR
Routf

_,,),(

)(*]][[)(*],][[

∈∈∈=

Ω≤ � ∈
ω

• C6: For each router r � R, we should have exactly one family from the library Rout.

� =
=)(

0
1]][[

Routcardinal

f
frXRF

,for each router r � R

• C7: The number of the input and output ports of each router r � R should not exceed

the corresponding number of the router family chosen.

qrfInfrXRFrXrm
Routcardinal

f
Re),(*]][[][

)(

0
∈≤ � =

sprfInfrXRFrXrs
Routcardinal

f
Re),(*]][[][

)(

0
∈≤ � =

qrfOutfrXRFrYrm
Routcardinal

f
Re),(*]][[][

)(

0
∈≤ � =

sprfOutfrXRFrYrs
Routcardinal

f
Re),(*]][[][

)(

0
∈≤� =

• C8: for each router r � R, the input flow should not exceed the output one.

EeffOutfrXRF

erlweXRR

Routcardinal

f

rRwEe

∈Ω

≤

�

��

=

′∈∈

),(*)(*]][[

)(*],][[

)(

0

]_
ω

• C9 : for each link lw,r in LRR we should have one only one length:

,0],][[=wlreXRR

A.M’zah 3D MPSOC

102�
�

LRRllonglXRR
longlong

∈=� ∈
,1]][[

• C10: When a link does not exist in the generated topology, its length will be equal to

0.

{ } � ∈
≤

longk
kkrlwLongrlwekXRR *]][,[],][[max

, for each lw,r � LRR

• C11: The length of one link should not exceed a maximum value.

LRRl

linklonglonglLong
longlong

∈

≤� ∈
,max*]][[

• C12: The delay of time depending on the frequency of the NoC, should not be

exceeded for each path. We take in consideration routers and link delay.

max,/1*][

*)1]][[(

latlinkdelayeklinkedge

timehopslekXRR
LRRl

≤

+−� ∈

4.3.4 Experimental Results

 Even though it is possible to present and before the experimental results the complete

resolution trace of the LP solver, this trace is based on an automatic execution of the Linear

Programming Solver. This technique is similar to all others used in Linear Programming

resolution. Observing the intermediary resolution stages does not have any effect on the

original model.

 We test our program using the modelling language OPL to create the mathematical

model and the tool CPLEX (version 12.2.0) to solve the generated problem. The used

machine has a dual processor Pentium(R) Dual-Core CPU E6500 @ 2.93GHz with a 2G

memory. We need as an input file a *.data file where we define the properties of the core

graph: the number of nodes, the different edges and the bandwidth of each edge. We define

also the library of routers. In our case we have 64 possible configurations including the switch

0 having the number of input output ports and area equal to 0. To avoid the case of giving

solutions with routers having one input port and one output port or a router with only one

input port or one output port we add to the library 3 fictive router configurations. These 3

routers have an area equal to 0. In the output result, we will only keep routers with an area

superior to 0. All the routers with an area null will be replaced by a simple link.

A.M’zah 3D MPSOC

103�
�

 We use various core graph of different applications like 263 dec M3 dec, 263 enc mp3

dec, mp3 enc mp3dec, mpeg4, MPW, H.264 (see Figure ��C, Figure ���) . In all these graphs,

the bandwidth values which are mentioned on the edges are in Kbits/s.

 We choose to affect to each core vi a couple of routers one for request Req(vi)=i and

one for Resp(vi)=i+N. At the end, the generated solution is a combination of the remaining

routers having a non null area. As we have already explained a router with an area equal to 0

is replaced by a simple link. We can see in the generated solution of the application 263 enc

MP3 dec (see Figure ��C) that only 4 switches are needed to ensure the different

communications between cores. Switch 12 is the response router of the core 0 and the switch

0 is the request one. We propose to use properties of the technology 45 nm [90][87]. In Table

 ���, we present the summary of the used parameters. We suppose that all the links have the

same width which is the minimum specified by ITRS2004-2007. We choose to affect to all

the used switches the same maximum value of delay time, represented by the variable

Timehops.

 With reference to Table ���, we can compare the needed time to get the optimal

solution of the presented multimedia applications. The execution time can give us a good idea

about the complexity of core graph from the point of view of our solution methodology. If we

compare the execution time of the 2 first applications, we can see that application 2 has less

nodes and edges than application 1, but the solver takes longer time to find the optimal

solution. In fact App (2), has a node with a degree equal to 5 whereas the maximum node

degree in the App (1) is equal to 4. We can conclude that the complexity of the graph has a

direct relation with the degrees of the nodes. App (5) takes 5058 seconds to find the optimal

solution. This application has exactly the same number of nodes than App (4), the number of

edges has only 4 more edges than application 4. If we analyse the core graph of H.264 we can

see that the average degree is equal to 4.54. This core graph has many adjacent nodes with

high degrees. This can be the reason of the complexity of the graph.

Table 4.2. Semi conductor properties

Timehops 253ps

Linkdelay/1nm 100ps

Freq 50Mhz

Maxlink 200nm

A.M’zah 3D MPSOC

104�
�

Table 4.3. Properties and execution time for the different benchmarks

Even though it is difficult to compare our work to another one as we don’t have the same

mathematical problem modelling, we will try to compare the NoC topology size. For

example, we propose to compare the NoC topology generated for the application 263 enc

MP3 Dec in our work and in the work of Srinivasan et al [87]. The solution provided by our

work needs 4 routers with a total number of ports is equal to 15 while the same application

needs 5 routers with a total number of ports equals to 25. If we consider the area of routers

from the Tezzaron library the area of our NoC is equal to 3897 (Nand 2x2) while it is equal to

8340 (Nand 2x2) for the other work. Our problem modeling reduces the NoC area to 47%

compared to the one generated in [87].

�

Figure 4.7. 263 enc MP3 Dec : coregraph (left), NoC toplogy (right)

Table 4.4. Routers Description 263 Enc MP3 Dec

�

Application
Number
of nodes

Number
of edges

Max(degree)
Number of

router
Execution
Time(s)

App(1) 263 dec MP3 dec 14 15 4 4 24.3
App(2) 263 enc MP3 dec 12 13 5 4 31.01
App(3) MP3 enc MP3 dec 13 12 3 4 11.89
App(4) MPEG 4 12 25 13 5 1512.88
App(5) H.264 12 29 10 10 5058.83
App(6) MWD 12 12 3 3 29

r � R In(r) Out(r) �(r) Area(r)
0 1 3 52 10¨6 1334
12 2 2 44 10¨6 1448
14 3 1 30 10¨6 611
23 2 1 48 10¨6 504

0

3

1 7 9

4

2

8 1 0

6

1 1

0

51 2

1 4

2 3

R o u te r

C o re

A.M’zah 3D MPSOC

105�
�

�

Figure 4.8. MPEG4 Decoder[78]

�

�

Figure 4.9. MPEG 4 Decoder NoC topology
�

6

3

1

7

9

4 2

8

1 0

0

1 1

1 2

5

1 3

1 9

2 34

5 1 4

1 7

1 8

2 2

R o u te r

C o re

�

A.M’zah 3D MPSOC

106�
�

Table 4.5. Routers Description MPEG 4 Decoder

�

�

Table 4.6. Router configurations H264 Decoder

�

�

r � R In(r) Out(r) �(r)(b/s) Area(r)(Nand2x2)
4 1 3 52 10¨6 1334
5 1 5 42 10¨6 2003
12 2 1 48 10¨6 504
13 4 6 48 10¨6 4464
14 2 1 48 10¨6 504
17 3 1 48 10¨6 504
18 2 1 48 10¨6 504
19 3 1 48 10¨6 504
22 3 1 30 10¨6 611
23 2 2 10¨6 611

r ∈ R In(r) Out(r) �(r)(b/s) Area(r)(Nand2x2)
1 1 5 42 10¨6 2003
13 5 1 46 10¨6 828
17 2 2 44 10¨6 1448
18 2 2 44 10¨6 1448
20 4 2 49 10¨6 2338

16 2 4 46 10¨6 2252

Figure 4.10. H264 Decoder

����

����

����
����

��������

����

����

� �� �� �� �

				

� �� �� �� �

� �� �� �� �

AAAA

� �� �� �� �

����

� �� �� �� �

� 	� 	� 	� 	

� �� �� �� �

B C D E F �

� C � F

Figure 4.11. H264 Decoder NoC topology

A.M’zah 3D MPSOC

107�
�

4.1 Theoretical Complexity issues and 2D challenges

 We evaluate in this section the mathematical complexity of our algorithm. The NoC

synthesis problem is known to be NP-Hard. The complexity of this problematic increases

when the number of nodes increases. To deal with this complexity, we choose to perform a

coregraph partitioning related to the spatial adjacency between nodes. In the step of pre-

treatment, we define for each node a group of routers defining its space of exploration. In fact

we reduce the design space exploration of a router to the set of the router destination of the

node and their antecedent nodes. We present in Figure 4.12, the partition of the node 0: the

request router of the node 0 can be connected to the response routers of its destinations (node

1, node 3) and the request routers of their antecedent, in this case the node 4.

Figure 4.12. Coregraph partitioning

 We remind that N is the number of nodes in the coregraph and NE is the number of its

edges. The complexity of the constraint C1 is equal to))((max**2*(rgroupcardNNEθ ,

where NE is the number of edges, 2*N is the number of all routers in R, we define

max_group(r) as the maximum cardinal of the groups related to each router. We present the

complexity of each constraint:

• C2:))12(*2(−NNθ , N is the cardinal of V

• C3:))22(*(−NNEθ

• C4:))22(*(−NNEθ

• C5:))(*)12(*2*(RoutcardNNNE −θ

• C6:))(*2(RoutcardNθ

• C7:))(*(RoutcardNθ

• C8:))(**)12(*2(RoutcardNENN −θ

A.M’zah 3D MPSOC

108�
�

 From this study, we can see that the complexity of C1 is reduced as the router is now

able to be connected to switches from his group. For other constraints like C5 and C8 the

complexity is still important. This model can be improved to reduce the constraint of all other

constraints.

4.2 Conclusion

 The NoC synthesis problem is the generation of NoC architecture optimized for a

specific application and subject to a set of constraints. This problem is proven to be classified

in the set of NP-Hard problems. For this reason, solving this problem with exact methods is

not mathematically possible.

 We presented in this chapter, the used methodologies in the literature to solve this

problem. We can classify these methods into three families: the exact, the mixed and the

heuristic methods. A solution is called exact, when only deterministic methods are used

during all the steps of the workflow like the use of LP, Min-Cut, Djikstra… The use of such

methodology can not solve the problems with a high degree of complexity. In the Mixed

methodology, the user reduces the complexity of the problem by mixing the use of exact and

heuristic algorithms. Fully heuristic methodology is the use of heuristic methods during all the

steps of the resolution.

 We propose a new NoC synthesis solution using the LP methods. We have modelled

the NoC synthesis problem with OPL Modelling language in order to minimize the NoC area

and the interconnect delay. In order to deal with the complexity of big coregraphs, we

performed a partitioning based on the degree of adjacency between the different nodes.

Thanks to this solution, we got application specific NoC free NoC topologies representing an

optimized solution which respects our problem considerations.

A.M’zah 3D MPSOC

109�
�

��������������������������������""""����A�A�A�A�!F��D���������B���F�F�F����F������D#��!F��D���������B���F�F�F����F������D#��!F��D���������B���F�F�F����F������D#��!F��D���������B���F�F�F����F������D#��

����������������������������

A.M’zah 3D MPSOC

110�
�

5 NoC Synthesis Methodology for 3D ASIC Design

 The NoC synthesis problem is known to be NP-Hard. We have already discussed this

problematic in chapter 4. The complexity of this problem increases when we propose to solve

it with 3D IC design. In fact additional problematic specific to 3D design are added in 3D

NoC synthesis problem like core to layer mapping, TSV area, symmetry… We propose in this

chapter to study the existing 3D NoC methodologies and to propose our new solution to solve

this problem.�

5.1 3D NoC synthesis state of the Art

 We present in Table 	��, a summary of the existing 3D NoC synthesis methodologies.

L.Benini team has proposed a 3D NoC synthesis workflow in order to generate a design

power-performance efficient 3D NoC. The core to layer mapping and the floorplanning are

taken as inputs. The 3D NoC synthesis problem is divided into sub problems: core to switch

connectivity, switch to switch connectivity and switch floorplanning. The resolution of this

problem is performed sequentially. The authors propose mixed algorithms based on the Min-

cut partitioning to solve the two first problems while LP is used to find the positions of the

routers. The 3D NoC synthesis problem is also an NP-Hard problem that is why, the

partitioning of the coregraph was used in order to reduce the mathematical complexity.

X.Jiang[91] et al have proposed another 3D NoC synthesis methodology. In fact they have

used the Tarjan Algorithm to perform the core to switch connectivity step and the Min-Cut

algorithm in order to partition the coregraph. The GA was used to solve the switch to switch

connectivity and routers floorplanning. In this work the core to layer mapping and the initial

core floorplanning are taken as an input to the workflow. In [92] W.Zhong et al have

proposed a power performance 3D NoC synthesis methodology. In this work the clustering of

the cores is performed after the floorplanning and routers can be only inserted in the white

places. A new workflow based on stochastic algorithms was proposed by Zhou et al in

[93][94]. In fact, authors have used the Simulation Allocation Algorithm SAL to find near

optimal solutions for the traffic flow. The use of this methodology avoids the need to choose

an order of treatment of the coregraph’s paths. In [95] S.Yan et al have proposed a 3D NoC

synthesis methodology based on the rip up and reroute procedure to generate a 3D NoC

topology. The step of core to layer mapping was taken as the input of the initial problem. In

order to optimize the generated NoC topology, a step of router merging is performed.

A.M’zah 3D MPSOC

111�
�

Table 5.1.3D NoC synthesis methodologies

Team Objective Methodology Comments
L.Benini
Team[96][97]
2009, 2010

• design
power-
performance
efficient 3D NoCs
• Main
objective: Design
NoC topology and
determine switches
positions.

• power and delay of
both switches and links are
taken in consideration
• Heuristic core graph
Partitioning
• Core to switch
connectivity(same layer)
(Heuristic+Min-Cut)
• Switch to switch
connectivity with path
computation
(Heuristic+Min-cut)
• Switch positions
computation (Linear
Programming)

• Core to layer
mapping and 2D layer
floorplan are taken as
input
• 65 nm
technology
• 3 layers :
Processors in top an
high layer, memories in
the middle layer
• Real
implementation

X. Jiang and T.
Watanabe[91],20
10

• 3D NoC
synthesis with
Genetic
Algorithms.
Minimize power
consumption in
the NoC

• Tarjan
Algorithm[98] : core to
switch connectivity
• CoreGraph
Partitioning : Min Cut
Partitioning
• Switch to Switch
Connection GA, path
computation and flow
control.
• GA switch position

• Core to layer
mapping and 2D layer
floorplan are taken as
input
• Core can only be
connected to a switch
from the same layer
• 65 nm low
power technology and 3
layers
• No real
implementation.
• No information
about method of power
estimation.

• W.Zhong
et al[92] 2011

• the power-
performance
efficient 3-D NoC
topology for the
application

• Cluster cores during
3D floorplanning
• Use ILP to place
switches and NIU in the 3D
floorplanning
• determine the
connectivity across
different switches using a
power and timing aware
path allocation algorithm
• a min-cost max-
flow based algorithm is
proposed for Through-
Silicon Via (TSV)
assignment to minimize the
link power consumption

• The algorithm is
sequential
• Use of the tool
IARFP for the multi
layer floorplanning with
a weighted function
• Insert switches
and NIU in white spaces
using the ILP
• applying
Dijastra’s shortest path
Algorithm for path
allocation
• TSV assignment
was using min-cost
maxflow algorithms
layer by layer
• No real
implementation

A.M’zah 3D MPSOC

112�
�

• 3D layers
Floorplanning and core
to layer mapping
included.

• P.Zhou et
al[93],[94]
2010,2012

• find the
best topology for
the application,
under different
optimization
objectives such as
power and network
latency, and
determine the
paths for traffic
flows.

• Thermal aware
floorplan based on B*-tree
floorplan model
• Use the Simulation
Allocation Algorithm SAL
to find near optimal
solutions for the traffic
flow.
• Return information
to the floorplanner to refine
the result.

• Use SAL
stochastic framework.
• No real
implementation

• S.Yan et
B.Lin [95] 2008

• Use Rip-
up and Reroute
procedure for
routing flows and
Router Merging
(RRRM) to
optimize the
network topology.
• Minimize
Power
Consumption
under performance
constraints

• 3D core to layer
mapping
• 3D Floorplanning
• Use the flow Ripup
and Rerouting to generate
the topology of the NoC
• Use the Router
Merging procedure to
optimize the generated
NoC.

• Floorplanning
included.
• Core to layer
mapping heuristic.
• Use power
Modeling for links and
routers using Orion
• Use 70 nm
technology.
• No real
implementation

5.2 3D NoC synthesis design Flow

 We propose in this section to detail the different 3D NoC synthesis workflow cited in

the literature. In the work [96], the authors have presented a 3D NoC synthesis methodology

which is summarized in the Table 	��. In this methodology, we have 3 main input files. The

first one is the communication specification file which is describing the coregraph application

(connection, bandwidth, latency ...). The second one is called a Core specification file. In fact

authors choose to treat manually the problem of core to layer assignment. The floorplan of

each layer is also taken as the input of the NoC synthesis problem. To take in consideration

the 3D technology specification, they used a third input file including the maximum number

of allowed TSV across adjacent layers. In this work, the NoC synthesis problem is restricted

to the NoC topology synthesis and the switches placement.

A.M’zah 3D MPSOC

113�
�

���������	AB�CAD�EF���	��	�F�

�����AAF��E��A���AF���E������	����

��������AE�����

�A��	FE��	�

�������

�EFEB�	�F�

�F�E��A��F�����E��

BA�����A��CAD�

�AB�A���	�

�����AAF��E�����
������E	�A� ��������

���CAD����	�����

���CAD����	������E��AF�	�B!�

!�

!�

!" !#

�AF�
$E�����	�

DAF��FE��

�

 Figure 5.1. 3D Design flow

 The obtained results were compared to mesh NoC topology and presented a large

interconnect power reduction with an average of 38% and a latency reduction with an average

equal to 25%. To have a complete 3D NoC synthesis problem, it would be better to include

the problem of core to layer assignment and the problem of floorplanning in the NoC

synthesis problem. With these initial manual consumptions this methodology can be classified

as a mixed one, including heuristic and deterministic algorithms. This work is a generation of

a specific NoC with a coregraph transformation. In fact, we can summarize the basic steps of

the algorithm as presented in the next table.

�

Figure 5.2. Algorithm Steps

A.M’zah 3D MPSOC

114�
�

�

Figure 5.3. Communication graph with bandwidth
demands on the edges [97]

 We present in the initial communication coregraph.
Each vertex is representing a core and each link is
representing the communication between the cores.
Values on edges are the bandwidth values on each
flow.

�

Figure 5.4. Partitioning Graph (PG) and the min-cut
partitions[97]

�

�

Figure 5.5. Scaling Parameter Graph (SPG)[97]

Core to switch connectivity : Phase 1

• Create a (PG) similar to the initial
communication graph, but the weight of the edges
defined as hij (connection between the core i and j)
hi,j = �×bwi,j/max−bw +(1 − �) × min−lat/ lati, j
max−bw is the maximum bandwidth value over all
flows, min−lat is the tightest latency constraint over
all flows and � is a weight parameter

• Partition the coregraph PG into the number
of switches: cores in the same partition are connected
to the same switch.

• If for a particular core to switch assignment
there is no possible solution meeting the constraints
the coregraph will be scaled (SPG). We denote

maxwt by the maximum edge weight in PG by

• Partitioning and switch to layer assignment
is applied on the SPG.

Figure 5.6. LPG for two layers[97]

�

• Core to switch connectivity : Phase 2 :

• In this step cores can only be connected to
switches in the same layer.
• This phase can be used when a tight inter-
layer link restriction is in place or when the
technology restricts connection between adjacent
layers.

A.M’zah 3D MPSOC

115�
�

�

Figure 5.7. (left) D26_media communication, (middle) NoC architecture phase 1, (right) NoC Architecture
phase 2 [97]

 We present in Figure 	�C, the obtained results for the presented methodology of the

work of S.Murali et al. The proposed workflow is applied on the media benchmarks. The

result of the first phase of the 3D NoC synthesis problem is presented in the figure of the

middle where switches can be only connected to the switches from the same layer. A second

phase of this work can be performed when the connections between switches from different

layers are allowed.

 In [91] Jiang et al, proposed a workflow based on the Genetic Algorithms for the

problem of the NoC synthesis. This solution is illustrated in Figure 	��.(a). This workflow

takes as input the communication parameters file which describes the Coregraph

characteristics. The Floorplan and the core to layer mapping is also taken as inputs. The

system analyzes the input data and automatically implements the synthesis process in three

phases as we can see in Figure 	��.(b). In fact, as cores and switches are already mapped to the

different layers, the only aim of the first step of this methodology is the core to switch

Figure 5.8. 3D NoC synthesis Design flow with GA,
 (a) left , (b) right [88]

A.M’zah 3D MPSOC

116�
�

connectivity. The core to switch connectivity step is applied for each layer separately. A core

can only be connected to a switch from the same layer. The number of sub graphs will decide

about the number of switches, as cores in the same partition are connected to the same switch

[99]. In this work, authors applied Tarjan Algorithm [98] to find the strong connectivity sub-

graphs. They have then used the methodologies presented in [99][96] to obtain the number of

switches and core to switch connectivity. The second step of the algorithms which is the

switch to switch connectivity is based on Genetic Algorithms to find the NoC architecture

which is optimized for power consumption. Authors also used the GA methods in the last

operation to define the optimized switch positions which minimizes the power length

consumption.

�

Figure 5.9. 3D NoC synthesis Design flow based on floorplanning[92]

 In [92] Zhong et al presented a sequential Design flow to solve the NoC synthesis

problem which is illustrated in Figure 	�A� As this problem is known to be NP hard, authors

divided it into 4 stages. In the first step which is the initial partitioning they applied a

recursive min-cut bi-partitioning algorithm on Core Communication Graph taking in

consideration the input communication file and the physical locations of the cores. They then

used a multi-layer floorplanning tool IARFP to ensure a TSV Aware Multi-layer

Floorplanning and Clustering. In the second step, an ILP based algorithm is proposed to place

switches and network interfaces on the 3-D floorplan in white places. Authors used the min-

cut max-flow algorithm to assign the TSV in order to minimize the link power consumption.

A.M’zah 3D MPSOC

117�
�

�

Figure 5.10. 3D NoC synthesis workflow[95]

 We present in Figure 5.10, a 3D NoC synthesis methodology proposed by S.Yan et al.

The core to layer mapping and the 3D floorplanning are taken as an input of this solution. The

NoC topology is generated by using the Rip-up and reroute procedure. This work proposes to

satisfy the coregraph edges following an increasing order. The floorplan of the chip is up-

dated after the generation of the NoC topology.

5.3 Tezzaron Technology methodology

 With the actual shortage of industrial tools for 3D design, Tezzaron Company

provides a custom script based on the classical Place and Route encounter version 8.1. This

flow is presented in Figure 	��� . The basic functions of the 3DIC flow are:

• Pre-synthesis logic simulation

 The user should verify the good functionality of his design at the HDL level. This step

is performed using Test bench models. The designer can use the Modelsim tool to check the

good behavior of the design without taking in consideration any timing constraint. This

verification is the first one of the set of verifications during the 3D design. It is applied before

the RTL synthesis operation.

• RTL/logic synthesis

 The RTL (Register Transaction Level) synthesis is the translation of the input RTL

description using the gate-level description. The output of this step is a generated Netlist

which does not only respect the functionality of the input design but it also satisfies the user

constraints (frequency, area…). The used cells in the generated Netlist are provided from the

user input library. The RTL synthesis step can be performed using different tools like Design

A.M’zah 3D MPSOC

118�
�

Compiler from Synopsys and RTL compiler from Cadence. These tools generate several

output files: a Verilog gate-level Netlist, timing constraint files and reports.

• Post-synthesis logic simulation

 In this second step of verification, the same Test bench models already developed can

be used to test the functionality of the generated Verilog Netlist. To perform this step, the

models of standard cells are generated by the RTL synthesis tool.

• Standard cell placement and routing

 The place and route step is the geometrical realization of the generated Gate Netlist

which is also called Layout. The logic gates are placed following rows of equal high by the

standard cell design style. That is why, all the standard cells from the same library have the

same heights but with different widths. The connection between the cells called also routing is

performed over the design since current processes allow several metal layers. Placement and

routing can take in consideration the timing constraints already defined during the RTL

synthesis step. At the end of these two steps several output files are generated by cadence

encounter place and route tool like the geometric description (Layout) of the design with GDS

format. The generated SDF (Standard Delay Format) description is including the gate and the

interconnect delays.

 Based on the presented operation, Tezzaon company provides a 3D IC flow by

changing some steps in the classical 2D IC design methodology (see Figure 	���). The first

step of this workflow is to load the design. We use the libraries from ARM provided with

Tezzaron Design kit Table 	��. The pre-synthesis simulation represents the next step of the

design which is performed using Modelsim. Once the design is verified, the step of RTL

synthesis is applied using RTL Compiler from Cadence. We use Tezzaron technology with

130 nm Global Foundries low power standard Library. The RTL synthesis needs basically 3

main input files which are the Hdl files, the library files and the user constraints file. Timing

constraints can be applied on the design to meet a specific frequency; these constraints should

be defined in the user constraint file. The output of this step is a generated Verilog Netlist

which will be the input of the Place and Rout step. This methodology proposes to use the

encounter tool from Cadence to make the Place and Route of the design. After the placement

A.M’zah 3D MPSOC

119�
�

�

Figure 5.11. 3D-IC Automatic P&R using DBI and TSV
�

Table 5.2. ARM used in the Design Kit Tezzaron library

ARM Standard-cells CORELIB
LP-LVT :

CSM013LP_LVT_SC_2007q2v1

scx2_csm13lp_lvt_ff_1p65v_m40c P/V/T = FF/1.65V/-40C
scx2_csm13lp_lvt_ss_1p35v_125c P/V/T = SS/1.35V/125C
scx2_csm13lp_lvt_tt_1p5v_25c P/V/T = TT/1.50V/25C
scx2_csm13lp_lvt_ff_1p32v_m40c P/V/T = FF/1.32V/-40C
scx2_csm13lp_lvt_ss_1p08v_125c P/V/T = SS/1.08V/125C
scx2_csm13lp_lvt_tt_1p2v_25c P/V/T = TT/1.20V/25C

ARM Standard-cells CORELIB
LP : CSM013LP_SC_2005q1v1

ff_1v65_cm40 P/V/T = FF/1.65V/-40C
ss_1v35_c125 P/V/T = SS/1.35V/125C
tt_1v50_c25 P/V/T = TT/1.50V/25C
ff_1v32_cm40 P/V/T = FF/1.32V/-40C
ss_1v08_c125 P/V/T = SS/1.08V/125C
tt_1v20_c25 P/V/T = TT/1.20V/25C

�

� �

A.M’zah 3D MPSOC

120�
�

operation and before the routing step, Tezzaron proposes additional steps which are : creating

Bumps Array, assigning signals to Bumps and preparing Bumps for routing. In fact, the user

should create an Array of Bumps by defining the number of rows and columns, the pitch

between the different Bumps and their format Figure 	���.

 Once the Array of Bumps is created, the user should assign the signals to the different

Bumps. A vertical signal is affected to one Bump. The same signal should be affected to

symmetric Bumps from the different layers. When a signal is assigned to a Bump, its color

changes to blue, this step is illustrated in Figure 	���.

�

Figure 5.13. Signal to Bumps assignment

Figure 5.12. Create Bumps Array

A.M’zah 3D MPSOC

121�
�

 The main contribution of 3D Tezzaon methodology is the modification of the Bumps

to enable their routing. In fact this company provides automatic scripts which add pins under

the Bumps. We can see the added pins in red in the Figure 	���. Thanks to this modification,

Cadence tool can perform the routing of all the signals taking in consideration the vertical

interconnections.

�

Figure 5.14. Create pins under Bumps Tezzaron technology

 The presented 3D Tezzaron workflow should be applied on the two layers of the

design. The whole 3D design is created during the packaging step. This solution is relatively

easy to integrate especially with people who are familiar with the classical 2D IC design. The

main challenge of this solution is the cost of design and verification time.

5.4 3D NoC Synthesis with GA

 We propose in this work to solve the problem of 3D NoC synthesis with a whole

parallel algorithm using the Evolutionary Genetic Algorithm. We believe that dividing the

problems and especially treat them separately and sequentially can affect the final result. We

propose in this work to solve the problem of the core to layer mapping, floorplanning and

NoC topology at the same time.

• Our 3D NoC synthesis workflow

 We present in Figure 5.15, our proposed 3D NoC synthesis methodology. In fact, the

coregraph, the Tezzaron technology, the router library and the user constraints represent the

input of our workflow. We apply at the first time the synthesis, the place and route using the

2D Tezzaron technology. Thanks to this step we can have an accurate idea about the area of

each core, memory and the library routers. This information represents the input of our 3D

NoC synthesis problem. In fact we propose in this work to solve the complete 3D NoC

synthesis problem without dividing it into sub-problems. We propose to solve the problem of

core to layer mapping, the NoC synthesis and the floorplanning using a MOEA. We choose to

describe our 3D NoC synthesis problem using ModeFRONTIER tool.

A.M’zah 3D MPSOC

122�
�

Figure 5.15. Our 3D NoC synthesis workflow
�

• Our GA problem modeling

 We propose to describe the 3D NoC synthesis problem using the GA methodology.

We use the modeFRONTIER tool to describe the genome and to solve it. Our 3D NoC

synthesis problem is a multi objective project with multiple constraints.

• Input File Constraints

 For each individual, a NoC topology is generated thanks to the presented parameters.

In fact, we connect each master and each memory to one random router, which is described

by the variable Router. The different connections between the routers are represented by the

vector RouterVector relative to each router. We choose to affect input constraints to generate

NoC topologies with routers from the library. A feasible individual or ID must respect the

input and the output constraints. To avoid topologies with circular paths we use the input

constraint C1. With this constraint a router can have an output port to a router with a higher

A.M’zah 3D MPSOC

123�
�

index. We accept NoC topologies using routers from the library; in our case we have 64

possible router configurations from 1x2 router to 8x8 router. This constraint is described by

the constraint C2.

• C1 : RouterVector[i][j] is equal to 0 if j�i , a router can have an output link only to a

router with higher index

• C2 : The number of the Input ports and the Output ports should be less than the

maximum value defined in the switch library.

• Output File Constraints

• In order to help the GA algorithm to find the feasible solutions, we define a set

of output constraints C3-C6.:

• C3: The ERROR_path error must be equal to 0 otherwise the generated NoC topology

does not have a path for some demands in the coregraph.

• C4: The ERROR_BP error must be equal to 0 otherwise in the generated NoC

topology there is a switch which is not respecting the bandwidth constraint.

• C5: The ERROR_overlapping error must be equal to 0 otherwise in the actual

floorplan there is some overlaps between cores.

• C6: ERROR_Ratio, We define the value of the aspect ratio of our chip which is a ratio

between the width and the high of the chip.

 We present in Table 5.3, the decxision variables of our ModeFRONTIER project. For

each core and memory, we define the variables X,Y and Z. X and Y are the coordinates of the

lower left corner of the core while Z is the number of the layer which can be in our case 0 or

1. The constants Width and High are respectively the width and the high of the core when it is

placed and routed in 2D. Each core must be connected to only one router; the index of this

router is affected to the variable Router. We define the maximum value of used routers in our

NoC synthesis problem. For each router we define the same X,Y and Z variables. The NoC

topology is defined using the RouterVector which is a binary variable ; if there is a connection

between router i and router i+1 RouterVector[i][i+1] is equal to 1, 0 otherwise.

Table 5.3. MOEA Project parameters

Core
X (µm) The abscise of the lower left corner of the core Variable : [0 .. MaxX] with a step of 50
Y (µm) The coordinate of the lower left corner of the

core
Variable : [0 .. MaxY] with a step of 50

Z The choice of the layer Variable : [0..1] Tezzaron tech we have 2
layers

A.M’zah 3D MPSOC

124�
�

Width (µm) The width of the core after a place and route in
2D

Constant

High(µm) The high of the core after a place and a route in
2D

Constant

Router Each core is connected to only one router Variable : [0…MaxRout]
Router

X (µm) The abscisse of the lower left corner of the
router

Variable : [0 .. MaxX] with a step of 50

Y (µm) The coordinate of the lower left corner of the
router

Variable : [0 .. MaxY] with a step of 50

Z The choice of the layer Variable : [0..1] Tezzaron tech we have 2
layers

Width (µm) The width of the core after a place and route in
2D (Tezzaron library)

Constant

High(µm) The high of the core after a place and a route in
2D (Tezzaron library)

Constant

RouterVector This variable is a binary vector describing the
connection between the routers.
RouterVector[i][j] is 1 if there is a link from the
router i to the router j , 0 otherwise.
Rq: to simplify the explication we will call j a
descendant of i if RouterVector[i][j] is equal to
1

Variable : [0..2Maxrout]

• Objective functions

• We propose in this methodology to solve a multi objective function. In fact, we

propose to generate a NoC topology which is optimized for chip area and NoC diameter.

• Chip Area : The Chip area is one objective of our NoC synthesis to be Minimized

• Diameter: The Diameter of the NoC is the second objective to be minimized.

• Objectives and Constraints Computation

ERROR_path:.

Algorithm 1 : ERROR_path computation

1. ERROR_path=0
2. For each e(orig,dest) in Edges
3. do
4. E={}
5. Routorig=e.orig
6. Routdest=e.dest
7. For i in Routorig+1 ..Maxrout
8. do
9. if RouterVector[Routorig][i]==1
10. Then
11. E=EI{i}
12. end if
13. end for
14. Level=0
15. While (Routdest J E & E!=F)
16. do
17. F=E

A.M’zah 3D MPSOC

125�
�

18. For i in E
19. do
20. For j in i+1..Maxrout
21. do
22. if (RouterVector[i][j]==1 & j J E)
23. Then
24. E=EI{j}
25. Level=level+1

26. end if
27. end for
28. end for
29. end while
30.
31. if Routdest J E
32. ERROR_path= ERROR_path+1
33. else
34. path[e]=1
35. end if
36. end for

 The goal of the Error_path constraint is to satisfy the required NoC topology. We

present in algorithm 1 the different steps of this algorithm. With this constraint we can only

verify the geometrical aspect of the NoC topology without taking in consideration the

bandwidth constraints. The first step of the algorithms is to make an initialization to the

Error_path variable to 0. For each edge e : Edges which is the set of the demands in the

coregraph, we define the Routorig and the Routdest which are respectively the routers of the

master and the slave of the edge e (see lines 5, 6). We define the set of routers E containing

the routers which are connected to the Routorig (see lines 7-13). The set of routers E includes

all the descendants of the router Routorig and their own descendants (see lines 15-28) . The

loop while will be stopped when the set E does not change any more or the router Routdest :
�E. In the last step of the algorithm we verify if the Routdest appears in the descendants

otherwise the Error_path constraint will be incremented. When there is a path for all the

edges of the coregraph, this constraint has the value equal to 0 if there is no path for any edge

the value of the constraint will be equal to the total number of edges.

ERROR_BP :

 To guide the MOEA, we separate the geometrical aspect from the bandwidth

limitation. In fact, we can have a path ensuring the communication between the origin and the

destination of a specific demand in the coregraph, but this path cannot respect this demand’s

bandwidth. We need to verify when there is a correct path for a demand if this path can

respect the bandwidth constraint. We can then conclude that the ERROR_BP is directly

A.M’zah 3D MPSOC

126�
�

affected by the ERROR_path. If the ERROR_path is equal to 100%, which means that 0 path

is found in the actual NoC topology, the ERROR_BP is equal to 0. The ERROR_BP is a

quotient between the existing path in the NoC respecting the Bandwidth and those not

respecting it.

Algorithm 2 : ERROR_BP computation

�
1. ERROR_BP=0
2. For each e(orig,dest) in Edges
3. do
4. if path[e]=1
5. Then
6. Descendant[level]= set of the descendant routers at the last level defined in Algorithm 1 line
25
7. Descendant[level-1]= set of the descendant routers at the level-1
8.
9. While (level � 0 & Affect[level-1]=1)
10. do
11. For ri in Descendant[level-1]
12. Do
13. For rj in Descendant[level]
14. Do
15. If (capacity Link_ri_rj 	 e.BP && Affect[level-1]�1)
16. then
17. Affect[level-1]=1
18. capacity Link_ri_rj = capacity Link_ri_rj-E.BP
19. end if
20. End for
21. End for
22. Level=level-1
23. End while
24.
25. If (level]� 0 or Affect[l]�1 (l�level))
26. Then
27. ERROR_BP= ERROR_BP+1
28. End if
29. End if
30. End for

�

� ERROR_overlapping :

 We propose to solve the floorplanning step simultaneously. In fact the generation of

the coordinates of all the cores are done at the same time thanks to the variables (X,Y,Z). That

is why we can have an overlapping situation. A feasible solution is the one with a value of

Error_overlapping equal to zero. The Error_overlapping constraint is equal to the ratio of the

overlapped area dividing the total area of the cores.

K==*L*M�=?�11��@ � NM�=?�11�O��=�� � /..
)*)�?�(*=�$��=��

A.M’zah 3D MPSOC

127�
�

ERROR_ratio :

 In order to determine the aspect ratio of our chip, we propose to use the Error_ratio

constraint. Thanks to this constraint we avoid to have a big difference between the width and

the high of our chip.

���M�?%� - KPPNP 	 =�)�* � ����(Q�1R�O)Q! (Q�1Q�@Q�
����(Q�1R�O)Q! (Q�1Q�@Q� - ���M�?%�

5.5 Performance Evaluation Results

5.5.1 Case Study

 With the shortage of information about the different choices when using the Genetic

Algorithms, we propose as a first step of our experimental work, to perform a study of the

different properties of the whole design. We use in this work the GA algorithms proposed by

ModeFRONTIER. We choose to test our 3D NoC synthesis methodology on the coregraph

presented in Figure 	���. This coregraph is including 12 masters and 8 slaves with 36

demands.

�

Figure 5.16. Coregraph 1 : 12 Masters 8 slaves

 When we use the GA to solve an optimization problem, we should choose different

options like: the initial population, the GA solver, the size of the population, the number of

generations… In this work we propose to solve the 3D NoC synthesis problem based on 3D

Tezzaron technology using the MOEA methodology. For this, we present the different case

studies, detailed in Table 	�� , applied on our core graph.

• Initial Population: We explore different configurations from the initial population. In

our work we are using a Multi objective Evolutionary algorithm with input and output

constraints. We choose to test two initial populations: Constraint Satisfactory Problem CSP

and Sobol. CSP is an initial population where only individuals which are respecting the initial

A.M’zah 3D MPSOC

128�
�

constraints are accepted. The use of Sobol initial population can guarantee an uniform

distribution for each variable, individuals with initial violated constraints are not accepted.

• Population size: We use different population sizes to study their effects on the

convergence of the algorithm.

• Constraints: We propose to change the limits of the accepted constraints, especially

for the area constraint.

• Constraints Priority: The different constraints of our problem are interdependent. We

suppose that the GA solver should satisfy all the constraints at the same order of priority, we will then

multiply the constraints by weighted values to define a specific order of resolution.

• GA: We will choose two different Genetic Algorithm solvers which are NSGA-II and

MOGA-II. These two algorithms treat the constrained problems differently, in fact the NSGA-II uses

the non dominance concept to satisfy the constraints while MOGA-II treats that by adding a penalty to

the fitness function when the ID is not respecting at least one constraint.

• Number of Generations: We explore the number of generations for the different case studies.

Table 5.4. Case study different configurations

Initial Population

Population

Size
Constraints

Constraints

Priority
GA

Number of

Generations

Case 1

CSP

Constraint

Satisfactory

Problem

100

Area<100

Bandwidth<0

Overlapping<0

Ports<8

No
NSGA-

II
500

Case 2 Sobol 100

Area<50

Bandwidth<0

Overlapping<0

Ports<8

No
NSGA-

II
500

Case 3 Sobol 250

Area<60

Bandwidth<0

Overlapping<0

Ports<8

Ratio<0,75

Yes

NSGA-

II
500

 Case 1 results

 We use in case 1 the CSP as initial population. All the Ids of this population satisfy the

input constraints which are the number of ports of the routers and the floorplan of the chip is

included in the defined area. The population size is equal to 100 Ids and the used GA is

NSGA II. We don’t define any order of priority between the constraints of the problem.

A.M’zah 3D MPSOC

129�
�

The evolution of the error path and area constraints is represented in Figure 	��C and Figure

 	���. Referring to these two curves, it is clear that the error path constraint was solved at

almost the 2800 Ids, which means during the generation number 28, while the area constraint

is not respected. We consider that a constraint is really respected when the GA provides a

feasible solution for a time while. The path constraint is maintained almost stable around the

value of 0, which means that there is no error path in the provided NoC. The evolution of the

area constraint seems to be stable around the value of 140% without reaching the objective

value which is 100%. This result is due to the first population choice. In fact, the input

constraints are basically related to the number of the input and output ports, which has a direct

effect on the NoC topology. We can conclude from this result that the initial population was

not diverse enough to provide individuals with area constraint favour.

�

Figure 5.17. Case 1: Error Path constraint evolution

Figure 5.18. Case 1 : Area Constraint evolution

A.M’zah 3D MPSOC

130�
�

Case 2 results

 In case 2, we change the initial population by using the Sobol algorithm proposed by

ModeFRONTIER. This one ensures a better space distribution than a random generation. We

keep the other parameters unchanged like the population size and the number of generations.

The obtained results are presented in Figure 	��A and Figure 	��B.

�

Figure 5.19. Case 2 Min area constraint evolution

�

Figure 5.20. Case 2 Error path constraint Evolution

 When we have changed the first population from CSP to Sobol the area constraint is

satisfied but the path topology and the overlapping are not satisfied (see Figure 5.19 and

A.M’zah 3D MPSOC

131�
�

Figure 5.20). Even though we are using NSGA-II algorithm, we conclude referring to this

experience that the tool ModeFRONTIER is using a weighted function with a sequential

treatment of the constraints. In this case, ModeFRONTIER tried to solve the overlapping

constraint before the path constraint but after more than 55 thousand iterations both

constraints are not solved. The normalization of the constraints has a big effect on the

evolution and the selection of the Ids. This configuration was not suitable to solve our 3D

NoC synthesis problem. There is a shortage in term of information about the algorithms

behind the ModeFRONTIER tool to manage a constrained problem. By our different

experiences, we can conclude that this tool tries to satisfy each constraint separately and

sequentially.

Case 3 results

 After testing different configurations, we choose to test the configuration presented in

case 3. In this one, the Sobol algorithm is used to generate the initial population with a size of

250 IDs. We propose to guide the optimizer to solve the different constraints with a specific

order. That is why we multiply them by different weights. We remark that ModeFRONTIER

starts by solving the first constraint having a far value from the objective. That is why we

multiply the path constraint by 1, the overlapping constraint by 0.3 and the min area constraint

by 0.5. Thanks to this choice the solver should start by generating the NoC topology then the

Min area constraint to finish by solving the overlapping of the floorplan. We present the

obtained results in the Figure 	���, Figure 	��� and Figure 5.23.

�

Figure 5.21. Case 3 : Area constraint evolution
�

A.M’zah 3D MPSOC

132�
�

 Thanks to this configuration, all the constraints are satisfied. The feasible IDs are

illustrated by blue squares in Figure 	���. They are respecting all the input and output

constraints. Thanks to the use of the weights, the Path constraints is respected at an early stage

before the other constraints while the overlapping constraints takes the most important part

time to be satisfied.

�

Figure 5.22. Case 3 : Overlapping Constraint

�

Figure 5.23. Case 3 : Path constraint

A.M’zah

Figure �5
�

Fi

 Thanks to our 3D No

mapping, the NoC topology a

Figure �	��	 and Figure �	��� the

of our 3D NoC synthesis meth

solver has converged to an ac

interaction the different constr

and the diameter of the NoC.

connections between the mast

Figure �	���) in term of connec

optimized, we can see that the

133�

5.24. Our 3D NoC synthesis floorplan Solution

Figure �5.25. The optimized NoC topology

NoC synthesis methodology, we have solved

y and the floorplanning problems simultaneou

the illustration of these results. This example is

ethodology. In fact, staring from a full random

 acceptable solution which is treating at the sa

straints of the problem in order to minimize th

C. The generated NoC topology which is descr

asters and the salves is respecting the initial c

nections and bandwidth. Even though the actu

he chip width and high are almost optimal.

 3D MPSOC

�

�

�

ed the core to layer

ously. We present in

e is a good validation

om combination, the

 same time and with

e the area of the chip

scribing the different

al core demands (see

ctual floorplan is not

A.M’zah 3D MPSOC

134�
�

5.6 Conclusion

 The 3D NoC synthesis problem is the generation of a NoC topology optimized for a

specific application in order to optimize one or more objective functions with respect to the

different constraints including the 3D IC design characteristics. We presented in this chapter

the state of the art of the 3D NoC synthesis methodologies using heuristic, mixed and

deterministic algorithms. In all the previous works and in order to reduce the mathematical

complexity, authors tried to solve this problem by dividing it in sub problems then solving

them sequentially and separately. The different steps like the core to layer mapping,

floorplanning, NoC topology and routing are known to be NP-Hard that is why it is

impossible to find a deterministic methodology to solve any 3D NoC synthesis problem.

 We proposed in this chapter a new 3D NoC synthesis methodology based on the 3D

Tezzaron technique. The new idea of our work is to solve all the 3D NoC synthesis sub-

problems at the same time. That is why we used the MOEA in order to generate the NoC

topology and the floorplan of the different dies specific for each coregraph applications. We

performed a design space exploration to experiment the different parameters of our genetic

algorithm project in order to determine the suitable choices: initial population, number of

generations... We tested our workflow methodology with different coregraphs. In our

knowledge, this work is the first proposition to solve all the 3D NoC synthesis sub problems

at the same time.

A.M’zah 3D MPSOC

135�
�

��������������������������������$$$$����A�A�A�A��D#���������B���F�F�F����F�����!F���D#���������B���F�F�F����F�����!F���D#���������B���F�F�F����F�����!F���D#���������B���F�F�F����F�����!F��

%��������%��������%��������%��������&����F����F��&����F����F��&����F����F��&����F����F������B������F��B������F��B������F��B������F����F��E��������F��E��������F��E��������F��E����������

A.M’zah 3D MPSOC

136�
�

6 ASIC Design Methodology for 3D NoC based 3D Heterogenous
Multiprocessor On Chip

6.1 3D Multiprocessor Architecture Homogenous
�

�

Figure 6.1. Various layout views of the 3D-MAPS processor[48]

 We present in this section a 3D MPSOC real implementation realized by Heal et al

[48]. The objective of this work is to implement a 3D-MAP (3D Massively Parallel processor

with Stacked memory). The advantage of this design is to demonstrate the extremely large

memory bandwidth available when using vertical 3D interconnects. In order to fabricate the

3D-MAPS, the authors used the 3D Tezzaron Technology which is based on 130nm process

provided with global Foundries. In this work, the used TSV are manufactured in Via-first

process and the chip is using two stacked dies with a face to face disposition. The thick of the

thinned die is equal to 12µm while for the thick one this value is equal to 765µm. The

physical implementation results of this 3D MPSOC is presented in 2�$��� ���. The global

Foundries 130nm represent the used process technology. The size of the die architecture is

equal 5mm2. The total vertical connections are equal to 47940 which mean that about 90% of

the TSV are used to ensure the Power Ground connections. Each core needs 116 F2F vertical

connections dedicated for the clock and the various signals which is a total of 7424 over the

entire die. Figure ��� is the illustration of the 3D-Maps processor. The footprint of the core is

equal to 560x560µm. A layout of a single memory tile is also shown: this one is composed of

4 memory banks of 1KB. The total memory capacity of this processor is equal to 4KBx64

which is equal to 256KB. In this work, the authors choose to create a layer for the cores and

another one for the memories. We have 64 cores tiles in the upper die and 64 memory tiles in

the other one. This design is run at the frequency of 277MHz.

�

A.M’zah 3D MPSOC

137�
�

Table 6.1. Physical Design Summary [48]

Process technology Global Foundries 130nm
Die size 5x5 mm
Core footprint 560x560µm
Core-to-core pitch 570µm
PG 3D connections/core 668
Total PG 3D connections 42,752
Data 3D connections/core 116
Total data 3D connections 7,424
TSVs/IO pad 204
Total IO TSVs 47,940
Dummy TSVs 6,540
Total maximum IR-drop 78mV
Maximum operating frequency 277MHz

 The simulation results of the different optimized Muticore benchmarks which were

applied on the hardware 3D-MAPS architecture are presented in Table ���. This table presents

the memory bandwidth in gigabytes per second (GB/s). Depending on the behavior of the

application, the memory bandwidth can reach up to 63.8 GB/s which is more important than

that of a modem Intel Core i7 processor[48].

 This work represents an interesting case study of a real 3D MPSOC design

implementation. In fact thanks to this work, the high bandwidth of the memory is proven to be

a principle reason to use the 3D IC design. This architecture is based on the mesh topology

which is a symmetric architecture linking the cores thanks to its short links. For this design,

the authors have used homogenous cores and tile memories. This choice can avoid showing

other faced problems when we implement a general MPSOC architecture like the core to layer

mapping and floorplanning. �

Table 6.2. Architectural Performance Metrics[48]

Benchmark Memory Bandwidth (GB/s)
String_search 8.9
Matrix_multiply 13.8
Median 63.8
Aes_encrypt 49.5
Motion estimation 24.1
Histogram 30.3
Edge detection 15.6
K-means 40.6

 T. Thorolfsson et al have implemented in [49] a 1024-point, memory-on-logic 3DIC

FFT processor for a synthetic aperture radar (SAR). This work was based on the MIT Lincoln

Labs’ manufacturing process which is using 3 tiers called A, B and C. The MPSOC

architecture is including 8PEs, one controller, thirty two SRAMs and 8 ROMs. The

processing element is illustrated in Figure ���. This core is implementing the FFT Butterfly

A.M’zah 3D MPSOC

138�
�

with four floating point multiplies and six addition/subtraction units. We can see that this

processor is based on the Butterfly architecture which is interesting to test with 3D IC design

due to its long links. The whole FFT SAR MPSOC architecture is presented in Figure ���.

�

Figure 6.2. The structure of the PE [49]
�

�

Figure 6.3. The SAR FFT processor architecture[49]

 Figure ��� represents the complete 3D workflow used in this work. The 3D

floorplanning and partitioning are the first steps of this flow. To perform these operations, the

authors had the objective to get the memories as close as possible to the processing elements.

That is why; they placed the memories with their interfaces in the middle tier, the obtained

result is illustrated in Figure ��	.

�

A.M’zah 3D MPSOC

139�
�

�

Figure 6.4. T. Thorolfsson 3D Design flow[49]
�

�

Figure 6.5. The SAR FFT floorplan[49]

A.M’zah 3D MPSOC

140�
�

�

Figure 6.6.Schematic and layout view of 3D SoC H.264 Application [51]

 T.Zhang et al have presented in [51] the 3D IC implementation of H.264 Application.

The illustration of this design is presented in Figure 6.6. This design is including different

components with various properties respecting an irregular topology. Authors choose to

divide this architecture into two logic tiers and three DRAM tiers as presented in Figure ��C.

The size of the two logic tiers is equal to 2.5x5.0mm2 while the DRAM tiers are

12.3x1.8mm2. All the I/O pads are placed on the back surface of DRAM tier. The partitioning

of this SoC is based on the power and on the area of the two tiers. The authors choose to place

the UniCore-II and H.264 encoder on Logic-1 as they consume high power and fit on a larger

area. All the remaining components including the DRAM controller are placed on the other

tier. Thanks to this partitioning the hotter tier is placed on the top of the chip which is suitable

to deal with the 3D thermal issues. Each layer will be synthesized using Synopsys tool. The

implementation of this architecture is presented in Figure 6.6.

�

Figure 6.7. 3D DRAM stacking [51]

A.M’zah 3D MPSOC

141�
�

 The 3D IC chip has been fabricated using the Global-Foundries 130nm low-power

process together with Tezzaron’s TSV bonding technology. The total area of tier-1 is equal to

6.2mm2 while it is about 7.3mm2 for tier-2. The frequency of the chip is equal to 60 MHz .

6.2 3D Heterogeneous Multiprocessor architecture

 Supporting heterogeneous stacking is considered as a major advantage to use 3D

integration. In fact, the different components of the architecture can be fabricated separately.

The use of heterogeneous technologies for large 2D design can reduce the cost of the chip by

three times, this result was proven by Intel [100]. The two principle cost reduction

methodologies are:

• Metal Layer Reduction : the use of the vertical interconnection can reduce the number

of metal layers during the fabrication of the chip

• Heterogeneous Technology stacking: thanks to this technique the noncritical

components can be mapped to a similar die which is manufactured using older and

chipper process node.

 In [101] Dong et al, have taken the OpenSPARC processor as a case study to test the

cost of the 3D heterogeneous integration. The 2D equivalent chip has an area size of 342

mm2 and fabricated with TI 65-nm process using 11 metal layers. The SRAM cache is fitting

on about 50% of the chip area. That is why, authors have mapped the memory to one layer

while all the remaining components are affected to another one. The estimation of the cost

design is presented in Figure ���. We can see that the 3D integration is cheaper than 2D with

homogenous and heterogeneous techniques.�

�

Figure 6.8. The estimated cost of OpenSPARC : the separate core and memory fabrication reduces the
cost [101]

�

A.M’zah 3D MPSOC

142�
�

 In the [101] authors have presented two partitioning methods in order to reduce the

cost when using 3D stacking which are the coarse-granulity partitioning and the Fine-

granularity. The first one, which is based on the separation of the memory and the other

components into different dies, is already presented. In the Fine-granularity method, the

components are divided at the unit level. The 8-core OpenSPARC T1 processor was divided

using this technique into two-layers. The authors have tested two different methods. In the

first one called 90nm-90nm stacking, the two layers are implemented using the 90nm

technology. Based on their cost model, the estimation of this implementation is equal to 125$

compared to the original 2D cost which is equal to 146$. In the second methodology called

90nm-130nm heterogeneous process technology, the authors have used the timing analysis

results to perform the partitioning step. In fact, thanks to this information, it is possible to

define the sets of components which are not situated on the critical path to move them into the

slower layer. With reference to the cost model the use of this technique can reduce the cost of

the chip to 121$ which is 82% of the classical 2D Chip.

�

Figure 6.9. cross section of the final package
(Courtesy of ST Microelectronics)[102]

 We present in Figure ��A, the cross section of a real 3D heterogeneous chip presented

in [102]. This design is a set top box demonstrator developed the complete workflow of 3D

implementation. The top layer is implemented using a 45 nm technology while the bottom one

is based on the 130nm. We can see clearly the difference between the TSV properties; in fact

the pitch is equal to 50µm for the 45nm technology while it is equal to 120µm for the 130nm

library.

A.M’zah 3D MPSOC

143�
�

6.3 3 Hardware Accelerator synthesis in 3D Heterogeneous Multiprocessor
architecture

 Stacked Multiprocessor architecture is a promising application for 3D IC integration.

The high bandwidth and the low latency which are characterizing such design are also behind

its high performance. The medical image processing is one of the basic domains where we

need to transfer a huge amount of data with a very powerful computation and in real time.

Some works have treated this application. In [103] Cong et al have designed a 3D specific

processor based on FPGA accelerator and applied on the medical image processing. The

architecture of this 3D processor is illustrated in Figure ���B.

�

Figure 6.10. 3D processor architecture CMP-FPGA[103]

 This proposed architecture is designed by stacking a programmable layer on a CMP

layer. The connection between them is ensured using the TSVs. Authors have used the

medical imaging to apply the idea of domain-specific acceleration, where many accelerators

are sharing the same set of applications. The medical imaging needing high performance

computational techniques are the basic tool to perform the treatment of many medical

problems. This architecture based on FPGA acceleration can improve the performance of

these computations.

6.4 Conclusion

 One major advantage of 3D IC design is giving the possibility to integrate

heterogeneous technologies. In fact, the different tiers of a stacked chip can be fabricated

separately. Depending on the cost and on the performance constraints, the designer defines the

appropriate technology for each layer.

A.M’zah 3D MPSOC

144�
�

 We presented in this chapter the state of the art of real 3D stacked processors. The

direct application of the heterogeneous technology is to map the processor and its cache

memory into different cores which can improve the access time and increase the bandwidth of

the design. A 3D MPSOC architecture can be used in the medical image processing where we

need to transfer a big amount of data in real time.

A.M’zah 3D MPSOC

145�
�

��������������������������������''''����A�A�A�A����F���������F����(��������C��������)������F���������F����(��������C��������)������F���������F����(��������C��������)������F���������F����(��������C��������)���

�F�����F�����F�����F��������

A.M’zah

7 Theoretical Compl

7.1 Parallel EDA: Hierarc

 We propose in this sec

PEs. This work is a multiplicat

already presented in section

architecture on multi FPGA pla

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Microblaze 0

Microblaze 1

Microblaze 2

Microblaze 3

Microblaze 4

Microblaze 5

Microblaze 6

Microblaze 7

Microblaze 8

Microblaze 9

Microblaze 10

Microblaze 11

Microblaze 12

Microblaze 13

Microblaze 14

Microblaze 15

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

OCP-to-NIU
interface

Figure �7.1. MPSOC
�

146�

plexity and Parallel EDA for 3D

rchical MPSOC based 64 PEs on FPGA

section to implement a hierarchical MPSOC d

cation of the elementary design based on 16 ma

 �2.2. We propose to perform a parallel impl

platform.�

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

1.0

1.6

1.5

1.4

1.3

1.2

1.1

1.7

2.0

2.6

2.5

2.4

2.3

2.2

2.1

2.7

Network-on-chip

C architecture 64 PEs on Multi-FPGA platform Zeb

 3D MPSOC

�

 design based on 64

masters and 16 slaves

plementation of this

BRAM 0

BRAM 1

BRAM 2

BRAM 3

BRAM 4

BRAM 5

BRAM 6

BRAM 7

BRAM 8

BRAM 9

BRAM 10

BRAM 11

BRAM 12

BRAM 13

BRAM 14

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

NIU-to-OCP
interface

To Upper NoC Level

�

�

ebu-UF4

A.M’zah 3D MPSOC

147�
�

 We propose to design the MPSOC architecture which is presented in Figure C��. This

topology is basically composed of 4 elementary NoCs and a hierarchical central one. The

elementary MPSOC is based on a NoC with 16 masters and 16 slaves interconnected with a

Butterfly NoC (2Ary-4Fly). During the design of this architecture, we multiply this MPSOC

four times and we connect the separate NoCs thanks to a central mesh NoC with four routers.

We add common shared memories to the central NoC. To ensure the connections between the

elementary NoCs and the central one, we should scarify one slave memory. In fact, instead of

the memory 15, we connect the NoC directly to the central one. Thanks to this architecture,

all the processors can access their local memories and the common memories situated at the

high level. The central NoC has a major role to ensure the synchronization between the 64

processors.

 We present in Figure 7.2, our EDA workflow to implement this architecture. In fact

the design of the different NoCs can be performed in parallel. Even though the NoC topology

is the same, we can choose different properties and options for each NoC. This step is

performed simultaneously. Using Xilinx tools (ISE, EDK), we can design the elementary

MPSOCs using the IPs presented in Table 7.2. During the hierarchical MPSOC design step,

the complete architecture is created.

 We apply the same implementation workflow already presented in Figure ���. The Eve

company tool zCui offers the possibility to run a multithread synthesis place and route.

Thanks to this option, we perform a parallel synthesis, place and route design. The

implementation of this architecture is realized on the platform emulation Zebu-UF4 which is

including five FPGAs board Virtex-4 LX-200 (see Table ���). Our MPSOC architecture fits

on five FPGAs, this result is illustrated in Table C��. We use zCcui compiler which is a

software tool of EVE Company, to make the synthesis, the placement and the routing on the

different FPGAs. We can choose in the zCui compiler the clustering options: manual or

automatic. In our case, we use the full automatic clustering, that is why this tool will share the

Netlist between FPGAs with equal rates which is illustrated by the synthesis results in Table

 C�� . We use more than 66% of Slices in all the FPGAs. Resources in term of memories are

also used with a percentage of 66% for 4 FPGAs and 55% for the fifth one. Partitioning is a

critical step when the tool is faced to cluster the Netlist of an asymmetric component like the

Butterfly topology.

A.M’zah 3D MPSOC

148�
�

 The Butterfly based NoC is a suitable case study to test the efficiency of the

partitioning algorithms used in the industrial tools. In fact it is difficult to find a method to

cluster this architecture. We have experimented this in our lab during the implementation of a

64PEs NoC with a Butterfly topology.

�

Figure 7.2. Parallel workflow EDA MPSOC implementation on FPGA

Table 7.1. Resources utilization

Table 7.2. 64PE MPSOC Used IPs

FPGAs Slices RAM
FPGA1 66% 66%
FPGA2 67% 66%
FPGA3 65% 66%
FPGA4 62% 66%
FPGA5 77% 55%

IP Name Version From
Microblaze 7.00.b Xilinx

lmb_v10 1.00a Xilinx
lmb_bram_if_cntlr 2.10.a Xilinx

bram_block 1.00.a Xilinx
opb_v20 1.10.c Xilinx

A.M’zah 3D MPSOC

149�
�

 We propose to compare our hierarchical architecture with an MPSOC based on 64 PEs

with a single Butterfly NoC. In fact, Hamwi and Hammami have designed an MPSOC

architecture with 64 processors, 64 memories and a central Butterfly NoC with five stages of

routers [104]. This work is exactly using the same basic IPs that we use in our design and

which are presented in Table 7.2. The authors have designed a network on chip with 3 stages,

in each one there are sixteen routers with a degree equal to four. This Netlist is a big challenge

to test the efficiency of the EDA tools; in fact it can not fit on a single FPGA. This work is

using the same workflow that we use to implement the design on FPGA. The implementation

of this 64 MPSOC architecture is performed on the board Zebu-UF4.

 We can compare the implementation results of both designs, the MPSOC design

presented in [104] needs 323% of the available BRAM of an FPGA Virtex-4 LX200 which is

almost the same value needed for our 64 PEs design. The number of slices used in our design

is equal to 337% of the slices available in a single FPGA wile the compared work needs

207%. This difference in term of number of slices is due to the fact that we are using 4 basic

NoCs and a hierarchical one which includes 132 routers for each request and response part

while in the single big NoC used in the other work we find 48 routers in both NoC sides. The

degree of all the used routers in our work is equal to two while this value is equal to four in

the work presented in [104] which means that the size of our routers is smaller than the ones

used in their design. Our work is based on the elementary 16x16 MPSOC architecture that is

why the partition of this design was relatively easy compared to the MPSOC with a single

NoC with 64 nodes. That is why we have almost a balanced distribution of the design on all

the FPGAs which is not the case of the other work where we can have an FPGA with 91% of

used slices and another one with only 31% Table C��. The used EDA tools take an important

time to perform the partitioning of the designs but it was clear that partitioning the design

with one big asymmetric Netlist was a real challenge.

Table 7.3. Resource utilization of the MPSOC based 64 PEs NoC[104]

opb_timer 1.00.b Xilinx
fsl_v20 2.11.a Xilinx

fsl2ocp_data 1.00.a ENSTA
ocp_bram 2.00.a ENSTA

FPGAs Slices RAM
FPGA1 32% 95%
FPGA2 91% 38%
FPGA3 44% 95%
FPGA4 40% 95%
FPGA5 0 0

A.M’zah 3D MPSOC

150�
�

7.2 3D Theoretical Complexity from return of experience

7.2.1 Core to layer mapping

� We propose in this section to evaluate the core to layer mapping complexity. This step

is usually performed manually by the user. In our 3D NoC synthesis methodology already

presented in the paragraph 5.4, we propose to solve this sub problem using the MOEA. We

propose to have a number of cores equal to N to be mapped into k layers, the complexity of

this step is equal to kN . In our case, we use the 3D Tezzaron methodology, which is a Face to

Face technology using 2 layers. The complexity of a core to layer mapping operation of a

coregraph including N cores is equal to 2N.

7.2.2 Floorplanning

 We can define the floorplanning step by fixing the different positions of the cores in

the chip area. We propose that we define a maximum values Xmax and Ymax which are

respectively the maximum values of the horizontal and vertical coordinates (X,Y) of the core.

X and Y are the coordinates of the upper left corner of the core which are two integers in the

margins [0,X] and [0,Y].The complexity of the floorplanning of a coregraph with N cores is

equal to (Xmax.Ymax)
N . In our case, the core can take any position in the chip area which

means that it is possible to have an overlap between different cores. A floorplanning of the

cores which is taking in consideration the already placed cores is not any more simultaneous.

In the case of a sequential floorplanning, new problems appear like the order of the core

treatment which can affect the final result. We use in our 3D NoC synthesis problem the

Error_overlapping constraint to guide the Evolutionary Algorithm toward feasible solutions

avoiding the superposition between the cores.

7.2.3 NoC topology

 In order to generate the NoC topology which is respecting all the demands of the

coregraph, we propose to define a set of routers indexed from 0 to N-1 where N is the number

of cores in the coregraph. A core can be connected to any router but a router i can only be

connected to router with a higher index. The complexity of the NoC topology generation is

equal to N!, the complexity of all the NoC topology generation is equal (N!)N.

7.2.4 NoC floorplanning

 We propose in our 3D NoC topology to generate the NoC floorplan at the same time

of the topology generation. The positions of the routers are generated for all the set of used or

A.M’zah 3D MPSOC

151�
�

not used switches. Which means that the complexity of this step is equal (XmaxxYmax)
N where

Xmax and Ymax are the coordinates of the upper left corner of the router and N is the

maximum of the used routers which is equal to the number of cores in the coregraph. In our

methodology, even though the floorplan is generated for all the routers only the used ones in

the NoC topology are taken in consideration. The output result is only representing the used

routers.

 We choose in our methodology to solve all the 3D NoC synthesis sub problems

simultaneously. That is why the complexity of our workflow is equal to

2N . (XmaxxYmax)
N . (N!)N . (XmaxxYmax)

N = 2N . (XmaxxYmax)
2N . (N!)N�

 We can see that the mathematical complexity of our 3D NoC synthesis is exponential.

It is known that the 3D NoC synthesis problem is NP-Hard. That is why; it is not possible to

solve it with deterministic algorithms. The complexity of the 3D NoC synthesis problem

represents our major motivation to use the MOEA(section 5.4) in order to solve it. In this

work, we choose to solve the 3D NoC synthesis problem as a complete system without

dividing it into sub problems. Dividing the 3D NoC synthesis problem is an efficient method

to reduce its complexity, but it can have a meaningful effect on the final results.�

7.3 Parallel EDA for 3D IC implementation

 We propose in this section to perform a parallel DSE to the 3DIC Tezzaron workflow.

In fact the 3D Tezzaron technology is based on the use of automatic scripts to perform the 3D

IC implementation. The basic steps of this workflow are: the synthesis, the floorplanning, the

placement, the Bumps creation and the routing of the signals. We basically use the Velocity

tool from cadence to perform these steps. In order to evaluate the compatibility of this tool

with the 3D Tezzaron technology, we propose to perform an exploration to the different

options of the tool during the placement and the routings steps. We propose to explore all the

combinations related to congestion, the timing and the power driven placement, the different

options of these parameters are presented in Table C��.

Table 7.4. Options of FILTER DSE

IN1 CongEffort (Medium, High, Low)
IN2 TimingDriven(0,1)
IN3 PowerDriven(0,1)
IN4 Frequency

A.M’zah 3D MPSOC

152�
�

 The variables presented in the previous table represent the different options for the

placement operation. The variable IN1 can have 3 possible values: Medium, High and low.

This option decides if the tool takes in consideration the congestion effort during the

placement step. The variables IN2 can have the value 0 or 1. When this value is true the

velocity tool performs a timing driven placement while the value zero means that the

placement operation is independent from the timing constraint. If we want to perform a power

driving placement, the value IN3 should be equal 1, 0 otherwise. The last value which is IN4

defines the frequency constraint value.

�

Figure 7.3. 3D IC parallel and automatic workflow

 We propose to create an automatic workflow using Bash scripts, to modify

automatically the input files of the 3D IC implementation. We present in Figure C��, our

A.M’zah 3D MPSOC

153�
�

parallel EDA workflow. In fact, we automatically modify the input constraint file before the

RTL-synthesis step. This modification is ensured thanks to the variable IN4. For each fixed

frequency we generate the corresponding Netlist which will be the input of the place and route

step. We define all the possible combinations of the input variables in an input file and we

develop automatic scripts to read the value of the variables then to modify the 3DIC Tezzaron

script. For a fixed frequency value we have 12 possible configurations. For each configuration

also called ID we implement the whole 3D IC script to perform the place and route

operations. These different implementations are run in parallel, providing different GDS

output results. The fact that the RTL synthesis provides a Netlist which is satisfying the

timing constraint does not guarantee that the place and route steps can be performed with the

same constraints. That is why, a step of constraints verification should be performed after

each 3D IC place and route. When there is a constraint violation, the input constraints should

be relaxed. The illustration of this parallel 3D IC flow is represented in Figure C��.

7.4 Parallel EDA for 3D : Case study

We propose in this section to perform the design space exploration of the options used by

Encounter tool to place the Filter design provided with Tezzaron Design kit. We perform all

the possible combinations of the 3 first inputs with fixed frequencies. These options are

affecting the step of the placement of the design. After each combination we take the value of

the density, the power and the WNS (Worst Negative Slack). The WNS is the difference

between the critical path of the design and the period which is the inverse of the frequency.

The result of the 3D implementation of the Filter is presented in Figure C��.

�

Figure 7.4. The placed and routed Filter with 3D Tezzaron Technology

�

A.M’zah 3D MPSOC

154�
�

 We illustrate in Figure C�	, the obtained results of our exploration. We propose to

evaluate the WNS value, the density of the chip and its steady power estimation. We explore

the twelve configurations presented in Table C�	. We define in the user constraint file, the

objective frequency of the design but after the place and route the velocity tool gives the value

of the WNS which gives a better idea about the real reached frequency. That is why when the

WNS is positive it means that the frequency constraint is met which is not the case when this

value is negative. From the curve of the WNS we can conclude the optimized frequency of the

design.

�

�

�

Figure 7.5.. WNS (ps), Density (%) and power (mw) for the different combinations of the DSE
(Freq=100MHZ)

�

�B�

�

��

�C

	�

�A

C�

	�

�	

	�

�B	

C�

B

�B

�B

�B

�B

�BB

��B

B � � � � 	 � C � A �B ��

3#' &"�

������ ����	A ���AC�

�B���� �B�	CC

���	�	

�B�B�C

����
�B����

���	�	

�B��AC

���A�C

C�

CA

�B

��

��

��

B � � � � 	 � C � A �B ��

-��"E�! 4�

A��BA

A�	�� A�	��

A�	��

A�	C	 A�	C�

A�	�C
A�	�C

A�	��

A�	��

A�	C�

A�		�

A�	

A�	�

A�	�

A�	�

A�	�

A��

A���

B � � � � 	 � C � A �B ��

0�5�� �3�

A.M’zah 3D MPSOC

155�
�

 We can see that the smallest worst negative slack is for the ID 1 which means that we

got the worst frequency with this configuration. If we look to the configuration of ID 1, we

have a low congestion effort, the value of the timing driven option is 0 while the power driven

option is activated. The activation of the power driven option ensures the power optimization

of the design, but there is a small difference between these values even though we change the

other parameters. We can conclude that the worst case for power consumption is the ID

number 0: this configuration is almost the best one in term of frequency but it is also the worst

one in term of power consumption. When the 3 options are activated, which means that we

use the High congestion effort with timing and power aware placement (configuration 11), the

output result is almost the average in term of frequency, density and power.

Table 7.5.Different ID (L: Low, H: High, M: Medium)

ID IN1 IN2 IN3
0 L 0 0
1 L 0 1
2 L 1 0
3 L 1 1
4 M 0 0
5 M 0 1
6 M 1 0
7 M 1 1
8 H 0 0
9 H 0 1
10 H 1 0
11 H 1 1

7.5 Conclusion

With the increase of the number of cores in the same chip which is following an

exponential curve, the graphical use of the EDA tools can not be any more possible. That is

why we proposed in this chapter to present our automatic and parallel used methodologies. In

fact, starting from a first MPSOC designed with 16 cores and 16 memories; we have designed

an hierarchical architecture with 64PEs and 64 memories. The basic design was multiplied

four times and a central high level NoC was designed to ensure the different interconnections.

The design of the sub-architectures was performed separately but the steps of synthesis, place

and route were performed at the same time using the multithread option.

We use in this work, the 3D Tezzaron methodology based on cadence tools. We

presented in this chapter an automatic exploration of the different options of these tools in

order to define the optimized design configurations which improves the performance and

minimizes the cost.

A.M’zah 3D MPSOC

156�
�

��������������������������������****����A�A�A�A��#��������������#��������������#��������������#�������������BF�������BF�������BF�������BF����������������F����++��F������F����++��F������F����++��F������F����++��F�����

A.M’zah 3D MPSOC

157�
�

8 3IC Design and Modelling Case of Tezzaron

 With the shortage of information and examples of real 3D IC implementation, we

propose in this chapter to implement an MPSOC architecture using the 3D IC Tezzaron

technology. The goal of this work is to experiment the different steps of the 3D workflow

methodology proposed by Tezzaron in order to choose the appropriate NoC synthesis

technique.

8.1 MPSOC basic components

 We present in this chapter the 3D IC implementation of two MPSOC architectures

based on Mesh and Butterfly NoCs. We present in this section the main components needed

to design these architectures���

8.1.1 Processor

 We choose in this work to use the OpenFire processor as a software core for our

designs. This one has almost the same architecture as the Microblaze processor from EDK

(Xilinx)[105] but the OpenFire processor is provided as an open source and can be

downloaded from opencores.org website with the Verilog Language. The architecture of this

processor is presented in Figure ���. In fact, the top level entity of this processor can be

connected to other components thanks to 8 FSL master ports (output) and 8 FSL slave ports

(input). The FSL (Fast Simplex Link) interface can be connected to an FSL bus which allows

a simple point to point connection. The communication with the processor can be also

performed thanks to the OPB (On chip Peripheral Bus) ports. The first port, called IOPB, is

dedicated to perform the read operation from the instruction memory while the DOPB port

allows the read/write from the OpenFire’s data memory. The CPU core, the local data

memory and instruction memory and the two OPB ports controller represent the main units

inside the top level entity. The CPU module uses a three stage pipeline based on the fetch,

decode and execute blocks. The pipeline control is the responsible to stall the pipeline when

multi-cycle instructions are executed. The implementation of all the internal programs is

performed thanks to the register files. This component interfaces with the other units in the

CPU in order to perform the data routing operation.

8.1.2 Fast Simplex Link (FSL) Bus

 The Fast Simplex Link (FSL) bus is a basic mono directional bus ensuring a point to

point based FIFO communication. FSL can perform a fast communication between any two

A.M’zah 3D MPSOC

158�
�

design elements having the suitable FSL interface which is the case of the Openfire Processor.

Thanks to its 8 FSL ports, this processor can be connected to 8 different components which

increases its bandwidth. The depth of the FIFO can reach 8K. This bus can support both FIFO

modes: synchronous and asynchronous which give the designer the freedom to affect different

clock domains to the different sides (master and slave).

�

Figure 8.1. Openfire processor architecture

8.1.3 3D Router

 3D router architecture which is illustrated in Figure ��� and Figure ��� comprises four

neighbouring ports, one vertical port for the connection to another tier and one local port to

the processor through network interface unit. Each input/output port has 35 bits data flits and

2 bits control signals for packet transfer between routers. Handshake protocol is used for

router to router communication and router to network interface communication. Each input

port has one buffer built using 16 words FIFO based dual port RAM architecture to support a

maximum of 16 data blocks transfer. As XY routing is deadlock free and we do not

implement priority packets transfer, virtual channel implementation is not necessary. We use

round robin arbitration for output port selection when there is more than one input requesting

the same output route. Wormhole switching is used for packet transfer in the NoC because it

does not require large buffer and has lower latency. For the routing, deterministic coordinate

based routing is implemented using XYZ coordinate where each packet will travel first in the

X direction followed by Y direction and finally through Z direction (vertical) to the other die.

The network interface architecture as shown in Figure ���, connects the router to the processor

through two FIFO ports. Based on data address and number of words sent by the processor

A.M’zah 3D MPSOC

159�
�

through one of the FIFO port, the network interface will access the processors data memory to

process data blocks through DMA. Each network interface unit connects a router to a

processor through 2 FSL ports (FIFO) of the Openfire processor; the first one is a master FSL

for writing data to be transferred through the NoC and the other one is a slave FSL for reading

synchronization flags sent by other processors. The synchronization FIFO has 16 words (one

word per processor) with 5 bits data width each. There is one 11 bits counter in the network

interface unit for measuring packets travel timing. The timing information is included in the

head flit attached to the packets when entering the network and is processed when the packets

arrive at the destination network interface.

�

Figure 8.2. 3D Router architecture

�

Figure 8.3. Network interface architecture

8.2 Architecture 1 : MPSOC1 based on mesh topology

 In order to explore the complete 3D IC workflow, we propose to design a basic 3D

architecture based on the Mesh topology. This design is a16 PEs MPSOC architecture fitting

on two face to face layers which is illustrated in Figure ���. Thanks to the symmetry of the

design the partitioning of the different cores is a trivial task. In fact, we group each core with

its local memories, a Network Interface Unit (NIU) and a router into an independent tile. We

present in Figure ��	 a detailed architecture of a tile. In each layer, we place 8 tiles following

A.M’zah 3D MPSOC

160�
�

mesh topology architecture. A processor can communicate with the different processors from

the same layer or from the opposite one thanks to the 3D router. The different routers are

connected creating a 3D Mesh NoC ensuring the data transfer between all the PEs included in

the 3D design. The routing of the different packets is performed in the router who decides to

send it to the horizontal PE neighbours via the X and Y ports or to the opposite processor in

the other tier thanks to the port Z.

�

Figure 8.4. Architecture 1: MPSOC based on Mesh topology
�

�

Figure 8.5. Tile Block Diagram

Synchronization between processors is ensured using FSL linked to the NoC. Processors

communicate together through their data memories. A processor will synchronize before

accessing its data memory by waiting for a tag word in its FSL sent by the writer processor.

This is a simple synchronization hardware implementation in order to reduce die area. If we

compare this 3D mesh MPSOC architecture with a 2D equivalent one (4PEs, 4PEs), the

diameter of the 3D NoC is equal to 5 where this value is equal to 6 in a 2D architecture. The

reduction of the NoC diameter is a theoretical proof that the 3D IC conception should increase

the performance of the design.

�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

��E��F����	�F�

$A		AB�	��F

	A��	��F

A.M’zah 3D MPSOC

161�
�

8.3 Architecture 2 : MPSOC2 based on Butterfly topology

 We present in this section the second MPSOC architecture based on the Butterfly

NoC. We choose to implement this topology as we believe that it represents an interesting

case study to show up the 3D IC advantages and limitations. In fact the transformation of the

long links into vertical connections is a real motivation to move from 2D to 3D design.

Moreover, the Butterfly NoC has an asymmetric architecture which represents a new problem

when performing the core to layer mapping step. This 3D architecture is mapped into 2 tiers:

Top and Bottom. We create a design based on an 8x8 Butterfly NoC linking 8 master

processors to 8 slave memories. We use the FSL (Fast Simplex Link) Bus to connect the

Openfire processor to the NoC via Network Interfaces. This processor gives the possibility to

connect up to 8 FSL links. That is why; we connect each processor to the NoC in the same

layer with an FSL port 1 and keep the FSL port 2 to make a vertical link with the processor in

the opposite tier. This architecture is presented in DEF���� ���. With these vertical connections,

processors from the Top tier and the bottom Tier can communicate and synchronize together.

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

(')D

(')D

(')D

(')D

(')D

(')D

(')D

(')D

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

(')D

(')D

(')D

(')D

(')D

(')D

(')D

(')D

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

'A�	�F�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

*�BAF�

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

C%&

Figure 8.6. Architecture 2 : MPSOC Based on the butterfly architecture

 This 3D MPSOC architecture is based on two Butterfly NoCs; each one is linking 8

cores to 8 memories. The number of routers in each NoC is equal to twelve forming three

different cascaded stages. The processors are connected to the first stage through the network

interface units called FSL2OCP. These elements transform the FSL bus signals to fit the OCP

(On Chip Protocol) interface. Another interface called OCP-to-NTTP transforms those signals

to fit the internal protocol of the NoC called NTTP. The routing of the packets is performed

thanks to the different routing tables included in all the routers. Depending on its address and

on the router’s routing table, the packet is routed to the suitable output port to finally reach its

last destination which is a slave master. In this architecture, processors from the same layer

can only communicate by reading or writing from the shared slave memories while the

A.M’zah

communication between the tw

links.

8.4 Implementation results

Figure �8

Proc0 Pr

SRAM 0 SR

Figure �8.8

 We apply our 3D Tezza

which is based on the Mesh to

present in Figure ���C and in

different properties of the two

mm2 area while MPSOC 2 r

memories than those used in M

different shared slave memor

processors can only store dat

topology needs about 1.3 Mill

NoC used in MPSOC 2 is crea

why the need of one router in

162�

e two different layers can be performed direct

lts and discussion
�

8.7. . MPSOC1 Mesh: Bottom tier routed layout

Proc1 Proc2 Proc3 Proc4 Proc5 Proc6 Proc7

SRAM 1 SRAM 2 SRAM 3 SRAM 4 SRAM 5 SRAM 6 SRAM 7

NoC

. MPSOC2 Butterfly: Bottom Tier routed layout

zzaron methodology on the two MPSOC archit

 topology and MPSOC 2 which is based on a B

in Figure ���� the implementation results of th

o chips are summarized in Table ����. MPSOC

 requires about 10mm2. In the MPSOC 1, w

in MPSOC2. In fact, the processors in MPSOC

ory which is not the case of the first archit

data in their local memories. The MPSOC b

illion Gate per tier while the other one needs

reated with an industrial tool which is offering m

 in term of logic gate is more important than t

 3D MPSOC

�

ectly thanks the FSL

�

�

hitectures: MPSOC 1

 a Butterfly NoC. We

f the two chips. The

C 1 needs about 15.7

1, we use larger data

OC 2 can access the

hitectures where the

 based on the mesh

ds 4 times more. The

g more options that is

n the home made 3D

A.M’zah 3D MPSOC

163�
�

router used in MPSOC 1. Both architectures have more than five hundred vertical signals

which are ensuring the communication between the different cores. In both cases the

frequency of one tier is equal to 100 MHz but we can not consider this value as the total

frequency of the 3D chip, such result can be only obtained at the end of the 3D chip creation.

After this 3D design experience, we get a clear idea about the 3D IC Tezzaron methodology:

issues and limitations. The floorplanning step is trivial with the Mesh topology of MPSOC 1.

In fact, the processors are homogenous in term of configuration and local memory sizes. In

this case, each tile is including a processor, a data memory, an instruction memory, a router

and a Network Interface. The grey boxes presented in each tile are reserved for the memories.

The implementation of the architecture MPSOC 1 was an easy way to validate and to

experiment the complete workflow. In fact, the complete workflow takes 2 hours and a half to

generate the GDS file describing the layout of the design. The step of routing where the

cadence tool takes in consideration the vertical 3D signals assigned to the different Bumps

represents about 50% of the whole design time. The implementation of the second

architecture presents more serious problems. The floorplanning of a heterogeneous MPSOC

architecture is known to be NP hard. The actual 3D IC Tezzaron workflow does not take in

consideration the automation of this step. With our chip, which is considered as a small

design, we perform this operation manually taking in consideration the architectural

properties of our design. We place the NoC in the middle between the processors and the

memories. The routing step takes about 3 hours which represents more than 75% of the

complete workflow implementation. The router takes a double time to perform the routing

step of MPSOC 2 compared to MPSOC1. This result is due to the complexity of the Butterfly

architecture which has an asymmetric topology but also to the limitation of the SoC encounter

tool. In fact, the 3D Tezzaron workflow methodology is a set of sequential and independent

steps. For example, the routing is performed after the placement step which means that the

placement does not take in consideration the cell connections. It is clear that the

floorplanning, the placement and the routing steps are interdependent that is why a sequential

and a static methodology can never guarantee an optimized result.

A.M’zah 3D MPSOC

164�
�

Table 8.1. MPSOC Implementation results

Parameters MPSOC 1 MPSOC 2
Die size per tier 3.2 mm x 4.895mm 1.99 mm x 4.95 mm
Number of ASIC gate per tier 1.3 Million 5.934 Millions
Inter die signal connections 594 560
Frequency 100Mhz 100 MHz

8.5 Complexity of 3D implementation

 3D conception is facing a big limitation which is the lack of the industrial EDA tools.

In fact until now, there is no complete tool for the real implementation of 3D ASIC design.

Tezzaron is providing home made scripts to modify the 2D EDA tools by adding pins under

the Bumps. The first difficulty in the design is the partitioning of the project conception. The

perfect partitioning of the 3D NoC Butterfly is the one replacing its long interconnect links by

vertical connections, a possible architecture is illustrated in Figure ��A. As we are using a face

to face 3D Technology, we propose to place the different stages of the NoC alternatively on

the different layers. The implementation of the different dies separately represents a major

problem in 3D IC conception. In fact, we should perform the complete place and route

workflow for each tier separately. When we have asymmetric designs this will be time costly.

In addition, the verification of the complete chip can be only performed at the end of the

workflow. The lack of EDA tools dedicated for 3D designs is the major faced difficulty. As

we are from the first users of Tezzaron technology in 3D , there is only few reference designs

provided with the design kit which are in the almost cases simple and not representing facing

the EDA faced problems.

�

Figure 8.9. 3D MPSOC partitioning

A.M’zah 3D MPSOC

165�
�

From return of experience, we can report the advantages and the issues of the 3D IC Tezzaron

workflow. In fact using this technique was a good experience to get familiar with the 3D IC

properties. It was a genius idea to modify the classical 2D workflow to suit the 3D

conception. This technique is principally dedicated for a chip with two face to face layers and

can be extended to at most 4 layers. The use of 2D tools in some critical steps like the

placement and the routing does not really prove the real motivation behind the 3D IC

technique. In fact the implementation of each tier is done separately without taking in

consideration the information from the opposite one which does not guarantee the optimal

chip result.

8.6 3D IC Fabrication

 We propose in this work to use the 3D Tezzaron technology provided by

Tezzaron[106] company. This 3D technique is a wafer level, Via-first and metal-to-metal

thermal bonding. This technique has produced two generations of 3D vertical connections:

The first one is “Super Via“ and the second one is “Super Contact’’, both are illustrated in

Figure ���B.

�

Figure 8.10. Tezzaron 3D Techniques: Super-Via(left), Super Contact(right)[107]

� The Advantage of the first generation of Tezzaron TSV is the fact that the fabrication

of the TSV is applied on the wafers after their complete process at a vendor fab. The main

issue of this method is the high cost of TSV insertion in term of area. The “super-Contact”

process needs to add a new process module at the vendor fab which is an easier task compared

to the “Super Via” method.

 We detail in Figure 8.11, the complete process of the ‘’Super Contact ‘’ fabrication.

We present in the first step a cross section of a wafer after the transistors process creation and

before the contact metal. In the next step, the “Super Contact” is etched passing through the

A.M’zah 3D MPSOC

166�
�

oxide and the Silicon Substrate to be then lined with SiO2/SiN. In the third step the “Super

Contact” is filled with Tungsten and finalized with chemical-mechanical polishing (CMP).

These are the only steps which are performed at the wafer level. During step 4, the wafer is

finished normally by adding the wiring layers. After recessing the oxide surface of two

wafers, those one area then aligned and bonded using a copper thermal diffusion process

which needs approximately about 400°C, this step is illustrated in step 5. During the sixth step

and after the bonding operation, the wafer situated on the top is thinned until reaching the

bottom of the “Super Contact”. The thickness of the substrate is about 4µm. After this, the

backside of the thinned wafer will be covered with an oxide. An additional process is then

performed to create bonding pads for an eventual stacking. The stack is then inverted which is

illustrated in step 7, the fist wafer is now situated on the top level. A final process will be

applied on the first level. In the last step of this process, the first wafer is thinned in the same

way of the previous steps and stops at the level of the bottom of the Tungsten super-contact.

This wafer is then covered by an aluminum layer to perform a normal bonding.

Step 1

Step 5

Step 2

Step 6

A.M’zah 3D MPSOC

167�
�

Step 3 Step 7

�

Step 4

Step 8

Figure 8.11. Illustration of Tezzaron’s Stacking method with the ‘’ Super Contact’’ Interconnect[107]

�

Figure 8.12. Tezzaron metal bonding[62]

 After the creation of each die separately, the process of the 3D chip manufacturing can

be performed. In fact, the vias can be deposit thanks to the stubs which are connected to the

last metal layer, in the case of Tezzaron Technology this one is metal 6. We can see the

illustration of this step in Figure ����.

�

Figure 8.13. Deposit D2D Vias[108]

 After the step of Via creation, the Thermo compression bonding operation will be

performed on the separate dies. The applied pressure and temperature during this step cause

the fusion of the copper stubs, at the end of this step opposite Via coppers from both dies are

A.M’zah 3D MPSOC

168�
�

fused together. The next step is the CMP (chemical mechanical polishing) thinning. In fact,

during this process the upper stack is thinned to 10 or 20mm [108]. We present in Figure

 ����, the illustration of the CMP thinning step.

�

Figure 8.14. CMP step for stack thinning [108]
�

 The next step of the 3D chip creation is the Backside etching dedicated for power,

ground and I/O. Thanks to the 3D stacking, the connections of the supply signals and the I/O

to be shorter. New TSVs are added on the thinned die (see Figure ���) to ensure this

functionality.

�

Figure 8.15. Etching for power/Gnd TSV [108]

 The last step of the 3D Chip manufacturing is the packaging. But with the thermal

dissipation problem which is considered as a serious challenge in 3D IC integration, a Heat

Sink must be added to the stacked chip. It is recommended to place the active component near

to the Heat sink in order to easily evacuate the thermal dissipation.

�

Figure 8.16.The Heat Sink creation [108]

A.M’zah 3D MPSOC

169�
�

8.7 Conclusion

3D conception is an emerging and an attracting research field, but only few works have

performed real implementation. In order to have a practical experience with 3D IC

conception, we designed two MPSOC architectures with 16 processors based on the Mesh and

the Butterfly architectures. The first design called MPSOC1 based on the Mesh topology was

an easy example to experiment the whole 3D workflow provided by the Tezzaron Company.

With its short interconnection, its homogenous tiles and its small size, this architecture does

not reveal critical problems during the implementation. The gain in term of chip area is

reduced to 50% of a 2D design but the frequency does not notice a meaningful increase. The

second design, based on the Butterfly NoC, which represents an asymmetric topology, was an

interesting case study for the 3D methodology. In fact, the partitioning of the architecture and

the core to layer mapping represent serious problems to perform the implementation of the

chip. Thanks to this experience, it was clear that the 3D Tezzaron methodology should be

modified to fit with different architectures. In fact, the core to layer mapping and the

partitioning should be taken in consideration during the conception. The prefect 3D

conception should be performed using specific 3D tools solving the different sub problems

with interaction between the different tasks.

�

�

A.M’zah 3D MPSOC

170�
�

�F������F��F������F��F������F��F������F�����

A.M’zah 3D MPSOC

171�
�

9 Conclusion

 Referring to the ITRS roadmap, the number of cores increases each 18 months

following an exponential curve. The NoC has been considered as an emerging solution to deal

with the problem of the chip interconnects. But the use of the Nanometer technology has

presented a new major limitation where the interconnect delay overcomes the gate delay. 3D

IC was one of the proposed solutions to deal with this problematic. Even though there exit

some industrial and academic 3D tools, the shortage of a complete 3D dedicated workflow

represents the major challenge in this field. We presented in this work a state of the art of the

existing 2D and 3D workflow methodologies. New 2D and 3D NoC synthesis workflow were

also proposed.

 In the first chapter, we presented the state of the art detailing the evolution of the

MPSOC design. Different 2D real implementation workflows used in literature have been

discussed. Even though the basic steps are the same for all the methodologies, which are the

design, the synthesis the place and the route and the execution, there is a big difference

between the different workflows. With the increase of the number of cores in the SoC, the

simulation is not any more possible. Only methodologies based on the emulation can deal

with large scale designs.

 In order to evaluate a set of industrial EDA tools, we presented in Chapter 2 the

implementation of MPSOC architecture with 16 processors, 16 memories and a Butterfly NoC

on FPGA. The used methodology is based on the industrial tools from the companies Arteris,

Xilinx and Eve. A real execution of our MPSOC architecture has been performed on different

FPGA emulators like Zebu-UF4 and Zebu-Server. To find the optimized MPSOC

configuration, we performed a MOEA on the different Hardware options. The results of our

DSE provided a set of Pareto front with a compromise between the area and the frequency.

Our design space exploration of the complete architecture represents a database which can be

used as a reference design to prevent the needs of the user in term of Hardware and Software

options.

 Chapter 3 was the subject of the 3D technology state of the art. We detailed the

different techniques of 3D IC stacking and the basic 3D interconnects notions like TSV and

Microbumps. 3D IC presents various advantages like reducing the interconnect length which

decreases the power consumption of the chip. The main difficulty which is discouraging the

designers to move from 2D to 3D design is the shortage of specific 3D tools.

A.M’zah 3D MPSOC

172�
�

 A major motivation of this work is to study the optimization methods of MPSOC

design. In this thesis, we focus on the NoC optimization based on the user constraints, which

represents, the subject of chapter 4. In fact, the basic 2D NoC synthesis methodologies present

in literature were discussed. We proposed 2D NoC synthesis solution based on LP and spatial

coregraph partitioning. We generated free NoC topologies optimized for area and delay tested

with different benchmarks.

 We presented in chapter 5, the 3D NoC synthesis methodologies already proposed in

literature. We then detailed the 3D Tezzaron technology properties to perform a suitable 3D

NoC synthesis methodology. We presented in this part our new 3D NoC synthesis

methodology with 3D Tezzaron technology. Our proposed solution is full parallel 3D NoC

synthesis solution taking in consideration all the 3D NoC synthesis sub-problems

simultaneously.

 We presented in chapter 6, a state of the art of real 3D MPSOC architecture. A set of

3D Hardware Accelerator were summarized. These 3D architectures are suitable in the image

processing filed where we need to transfer a huge amount of data with a high frequency.

 Chapter 7 was the subject of parallel EDA methodology. We presented a parallel

implementation of an MPSOC with 64PEs on a multi FPGA board. A basic MPSOC design

with 16 processors and 16 slaves has been duplicated four times then connected with a

hierarchical level. In order to evaluate the different options of the 3D Tezzaron methodology

we performed a DSE on the used EDA tools. The place and route algorithms behind the

cadence tools are not dedicated for 3D IC. The proposed 3D Tezzaron technology depends

basically from the efficiency of the synthesis, place and route performances.

 We presented in chapter 8, a real 3D IC design implementation of our MPSOC

architecture with 16 processors and 16 memories. We performed a comparison between two

different MPSOC with different NoC topologies (Mesh, Butterfly). Thanks to its symmetry,

the mesh based NoC architecture is easier to implement compared to the other one based on

the Butterfly NoC. In fact with this one, we have to deal with additional problems like

mapping and partitioning. With its long links, the Butterfly architecture is a better example

than the mesh topology to prove the efficiency of 3D design.

 The main parts of this work are basically classified into two different families:

technical and research. In fact the experimental or the practical operation is the first step to

A.M’zah 3D MPSOC

173�
�

define the properties and the challenges of the used methodology. The research step is directly

affected by the obtained results. That is why we can present the main contribution of this

work as follow:

• A design of MPSOC architecture (16PEs, 16 memories) based on a Butterfly NoC.

This design was implemented on FPGA emulator Plateform (Zebu -UF4, Zebu-

Server).

• A design of a hierarchical MPSOC design (64PEs, 64 memories) by the multiplication

of an MPSOC elementary design.

• A proposition of a 2D NoC synthesis solution based on linear Programming.

• A comparison between the different 2D/3D NoC synthesis methodologies.

• A proposition of a new 3D NoC synthesis methodology based on MOGA. The

parallelism and the simultaneous of the sub-problems resolution represent the main

originality of this work.

• A real 3D ASIC design implementation of our 3D MPSOC architecture using 3D

Tezzaron technology. A comparison between different 3D MPSOC architectures

based on Mesh and Butterfly NoCs.

 We believe that this work is a common platform to address other important issues such as

reconfigurability, models of programming and convergence of disciplines.

 3D IC design technology was the main motivation of this PHD studies. In this work

we have performed a real 3D ASIC real implementation using the face-to-face 3D Tezzaron

technology. In the future works, we are targeting the development of multi layer chips with

more developed techniques (Ex: 4 layers, use of the TSV, other stacking techniques). The use

of more than 2 layers in the 3D IC design can reveal new challenges like the use of the TSV

and the choice of the stacking technique.

 Another perspective of this work is to implement the extension of our hierarchical

MPSOC architecture based 64 PEs to create a large scale design with 256 PEs. Such

architecture will need a powerful machine to ensure the EDA tools functionality but it will be

a real challenge to test the efficiency and the limitations of the 3D Tezzaron workflow. With a

large scale design there will be a real need to increase the parallel tasks in the 3D IC

methodology.

A.M’zah 3D MPSOC

174�
�

 With the high theoretical complexity of the 3D NoC synthesis problem, we propose in

the future works to perform a Design Space Exploration on the different 3D MPSOC designs.

The goal of this work is to define the critical variables affecting the 3D chip performance.

When we define those parameters, we can reduce the Design Space Exploration by choosing

the most important options.

 The use of heterogeneous technologies represents one important motivation behind the

3D IC technique. In the future works we propose to implement heterogeneous 3D chips taking

in consideration the advantages of this methodology in term of area, cost and power

consumption. The implementation of the processors and the memories in separate layers and

with different technologies can be an interesting experimental case study.

 After this first 3D IC implementation experience we believe more and more that it is

not possible to study or to propose a theoretical 3D IC solution without having a deep and a

real knowledge of the 3D physical techniques. It is meaningless to propose a 3D ASIC

methodology which is only based on theoretical studies far from the fabrication reality.

 During this thesis we were faced to a major problem which is the limitations of the

actual EDA tools. Thanks to the real 3D ASIC design implementations we have proved that it

is not any more possible to perform a manual Place and Route with the evolution of the

MPSOC designs. The EDA tools perform these steps without taking in consideration the

architectural design information lost after the logical synthesis operation. It is necessary to

create a new EDA tool applying a design aware 3D ASIC workflow.

A.M’zah 3D MPSOC

175�
�

A.M’zah 3D MPSOC

176�
�

References
6�7�8�DE"�9$��9��:�;E��EF������2���E"�����<D�����-��E���E�����9����FE�"����������"��������"����

E������������&���E��E���<����������	AB�CBDE�BFFDEB��D����D�����B����AE��B��B��AD��B�����B

��D��������DB������D���B�����&&��CC=�����BBA��

6�7�555�E��"������

6�7�(28'��<29��(�������E�����2��9����F!�8�����&�'��E���������"��<��B����

6�7�;�>��E�E��<�0'�,"�?�@���5����&���%���"�<�)82('2��A�B#B�(('2����BBC��

6	7���D�)���"���-�,�8�%�"��:�:�*��������:�,����$E����<'��*�!��%�#�,�����0��F����E�F������"�

0��&�"��"�%����0'�,�<������B��D����D�����B�������B�CB�����D��B�������B�AA��A��*����A���������&&��

��A�=B���������9��B����

6�7�>�)�C�������������<)�"E�F��=�9E&�����=$E��E������=$��),A"�����E&����""���-'0�<�����B� B�����!B

�D�D�B������DA"B�������	��&&�����?������BBB��

6C7�'�-������8�:��"��������)�8E��C������<DEE&��F�)�����E&����""���'1,�%�����*������"��=��&�$���

�����EFE����2E�"!"���"�<�����B#�A B$�AD B�����D��*������������	��&&����=����1���$����BB���

6�7��!%$�B&�D����B�����AA��B#�D�B�E��DB������D��	B�!%B&�D����B�����AA��B'��A���B#(���BB��9�

���F�#���9�)���*�����BB���

6A7���)�E�������������<29��#����G������E����%�(�����(+0�#��5��C�0����""��"�<���D��B$��E����	�B

���������*��������������&&���=����)�F�"���BB���

6�B7�2(��<1�)0	A���F�1�)0	A���)&&�E���E��"�0����""���<�2���"�(�"�������"���;E���������#��$��F�

'08'���>���BB���

6��7�:�G������������)�#��'��""��<0�������E"�������9��)8��E�"�����E���"������9E��������<������D��B

)*��*������������C��&&����=	B��:��!��BB	��

6��7�'2�#1�)-(.��<H0�5�������F������%�������E���E��&����""���<��BB������9�E�������E����

'25���B���BB���

6��7�;�)�0�������������<'&E##�C��F�-�"EF������(�&��������E����%���G);'�����E�����'!"���=��=

,9E&�<����B�������B��B����	��	B$��E����	��AB��B�����D��	B��AD��A��*����C���������&������

-����$����B����

6��7�.�-��F9!�������.�.�5��9���<�����G10'�1$I����8���F�E�E���0����""���>�"�������������!=

,����E��#�,�<����	��AB��D����D�����B�����A���B��B&�D����A!��!�E��B+&,��-��*�����C���������&&��

�CB=������BBA��

6�	7�D�,����E�!��8�;���E����+�0�&����-��.�J��"������K�29��������<)��1&�������8����%EF���$���

0���%����%����G�2���������E���E��F�,����&�"�����)&&�E���E���<����������B���C������B��B

A.M’zah 3D MPSOC

177�
�

#�	�D��B��AD��B#�A�	�B+#�#-��&&����A=�	���)�F�"���BBA��

6��7�,�����=���	��61��E��7��,�����=���	F�9��&FAA555��������A&������"A&����""��"A������=�A������=

��	�&9&�

6�C7�<2E�����F�2(;���L�0����""���?�0�������>�E�%�<��BB���61��E��7��2E�����F�2(;���L�0����""���?�

0�������>�E�%���BB���

6��7�)�.������'�D���������K�I���@���>����"���������@�,��&�������<����E=0����""���'!"���=;�*���

'!��9�"E"�%�������E&���)&&�E���E��"����0���%����D0G)�<�.����B���	�����/��B0�	��B���B

�������D���A"B1((2 B.�0B1((2 B��D����D�����B���C������B��B��&&��A�=AC��

6�A7�)�.������)�@��""����:��@�E"C��������@�,��&�������<)��D0G)�-�"EF��D��5�%���8����%EF���$���

#��5��C=>�"�������E=0����""���'!"���"����,9E&�<����� B#�A�	�"B��D���D���B3B$�ADB��B������B

���C������B3B�4E�/�D��� B+#�$�-��&&���=����BBC��

6�B7�61��E��7��'E�E����9E*�F�9��&FAA555�"E�E���=9E*������

6��7�)�@��""����.�G��""��"��������>�C��EI��<,��0'�,F�)�2��&�����%���,��&�"�$�������

0���E���$�������E=0����""���'!"�������,9E&"�<����B$���A��D���AB��B#�A�	�B��D���D���B�CB

����D�����B��AD��A��*����������������BBA��

6��7�@�:�*�E������'��0�����"5������<)�-�"EF��D��5�%���)&&�E���E���'&��E%E��@�����F�����"�

0E&��E��������E&����""���'!"���"�<�#��B5(6B���������	AB�CBDE�B78DEB������B#�A�	�B��D���D���B

���C��������&&���	B=�	����BBA��

6��7�;�>��E�E��<)&&�E���E���'&��E%E��#�,�-�"EF��<�#�$�B5(8B���������	AB�CBDE�B���C������B��B#�A�	�"B

��D���D���B���BD�ADB��B������9B���������	A��*������������=	��&&���A�=�A	������9��BB���

6��7�)�'���9E�������>�>�����������<)���������(���F���E�������,�����E���E���'!��9�"E"��%�

8����%EF���$����0'�,�0���%����<����������	B�:�B5(2B���������	AB�CBDE�B������B&���;���B

���C������B��B����D���B:�������B���B��AD��A��&&���CA=��	��)�F��BBC��

6�	7�+�;E�����1�@�����E��<)���������E����"EF��%��5�%��������&������������&E&��E����"EF����

&����""E�F��&&�E���E��"������$����������E&����""���5E�9�#�,F��&&�E���E��������!&��F��&9!�<�

��D B� B<����C�	 B�����D��*�����BBA������	��&�����:�����!��BBA��

6��7�+�;E�����1��@�����E��<>>=C��F�-�"EF������(�&��������E����%�C���0����""�������E&����""���

����1,0=(0�>���9���CE�F�<�#�D����BBA��

6�C7�,��:��)�&�����:�@��@���F������)��>��.�9�F��<����E��*���,E���E��0���E�E��E�F�<���B���������	AB�CBDE�B

F66*B����;���B��D����D�����B���C������B��B�����D��!�����B��A�	�B+����#B56*-��&&��	B	=	����

�AAC��

6��7�.�'9�9��C�������0���/�������<E;'(������&������������9�EM��"�<����B�����D B���� B1)��*����

����&&�����=��B��:�����AA���

A.M’zah 3D MPSOC

178�
�

6�A7�3�K�=;E��F��2�'9�IE����-�5"C�������������C='���<1��,��&����E�����,��&���E�!��%���-���E����

8���E�F�0��$����E��25�=-E���"E�����D0G)"�<�'0��"BF667 B#�A�	�B��D���D���B�CB:�	EB

���C�������B'0��B��AD��A B=0�'B567"B���������	A "B.���DEB=���DB0���AB�����A�����&&��CB=C	��

����9��AA���

6�B7��E�E����555��E�E��������

6��7�1�@�����E��+�;E��;�>��F��������'�-����"���<)������E����$����������E�����G������E�������

�*�����E������9�����F!F���,�"��'���!��%���#1,�>�"�����BB=����"����E��!�;��F��'�����

���������<�>�<�B!B%DEB������B>���AE��B��B���E�D��D����B<�A����EB���D�D����	���B�B��

6��7������E"��555������E"������

6��7��*���61��E��7��9��&FAA555��*�=��������A�

6��7�,�@���E"�������'��&9��"��<)�,��$E����,������)�����F��-��������<����������	AB�CBDE�B7DEB

�����B'�A���B���C��������&&����C=�	����A����

6�	7�+�,9����N�;���)�:���"�9������'�,9����<'&����&�)���!"E"��%�-���=&��������)&&�E���E��"��������E=

�����#�,"�<�����"B����,&B5(6 B����B*DEB��D����D�����B���C��������&&���B	�=��B����B=���1�����BBA�

�BBA��

6��7�����%����E��������%����E����61��E��7��9��&FAA555�����%����E�������

6�C7�.�-�$��)��0����&��'��)F��5��������2����!��E*����<)�%�"��������E�E"������E�$I���E*��F����E��

��F��E�9�F�#'G)=((��<������D������B�����D�D���"B����B$���A��D���AB����*�������&&������=��AC���)&��

�BB���

6��7�8�2��&��E�0�""EF���������1�@�����E��<1&�E�E/���I�E���#)8+�)##�=���$������&����""���

��"EF�����9�����F!�<��������&&���AA=	B�����=���-����BBA��

6�A7�G�����/������.9$��"��#��G���"���������>�:���$��<@�����F�����"�E���F���E���<�$��EB$����B

&�D�A��*���������������&������BB���

6�B7�-��E����E"�����'����9E�����:�����E�E""����>��'5E�������������>�!����<(�&�����%��-���"EF���9�E��"�

�������%�����E�F���"����-�'!"����(���F���E���<�)#��B����B��D����D�����B���C��������&&���=	��

�BBA��

6��7����K�"�������@��@�!���������2�����������<0���E"E�F���5�%�$�E���E���&����""���*���&���%���

"���C���;'("�<���DB����D���B#�����AB���D��	��&�����O��A��-����A����

6��7�K�)C�"�C������2�#E"9E������<,����&������>�"E��2��9����FE�"�%����=-�(,�'���������<�����B

���������	AB�CB��D����D�����B����D���B#�����AB���D��	A��*��������&&�����=�A����A����

6��7�;�N9����,�3�C�!�����#�:��FC��I���F��@�>�������,��:��8�'9E��<)�9EF9=�9���F9&�����5�&�5���%���!�

&���������B���$E���A��=�������5����"E�!�&��E�!��9��C��������������E���-�E���F�������E���E�"�<�

A.M’zah 3D MPSOC

179�
�

#�A�	�B��D���D���B�A��B���B���DEB����C��B���C��������&������BB���

6��7�8��:��C����'��������������3��8�-�*E"�,���E�����<(����=�E��"EF���E�F�E���9�����E���"E�����

E���F�������E���E�"�<���AD��B��D�	��D��B������DAB���C������B����B������&&���		=�	����BB���

6�	7�:�1�!��F���������<)�E�9���E����E����"EF���"E�F���B���2'E=$�"����-�"���CE�F����9����F!�<�)#B

��AD��B��D�	��D���B1((6 B)#��B1((6 B����B��D����D�������&&���=���'�&���BBA��

6��7�2��N9������3��8��-�*E"�+��,9����<29�����E���"E�����'8)����"EF��5E�9���=�9E&�����""��E���

���"���������<�����D�����AB0�DD��AB�������C��&&����	=������B����

6�C7�+�:E�F��-�+E��F!�������+��K�����<�-������!�"���CE�F�%���%�"���9��C&�E��E�FA��"�����

�&&�E���E��"�<�)#B��AD��AB��D�	��D���B���C������B+)#��-B1(F(B����B��D����D�������&&���=����B�B��

6��7���>�@���!���������<-�"EF����������!"E"��%��-=�)0'F�)����!=������-�&����""���5E�9�"���C���

�����!�<���AD��B��D�	��D��B������DAB���C������B+����-"1(F(B������&&���=����B�B��

6�A7�2�29����%""����.�G��"��*�"������0��-�D���/����<-�"EF���������E���%������-(,�DD2�&����""���%���

"!��9��E���&������������F�)���"��"���!�<�#�A�	�B��D���D���B���C������B#��B���;������&&��	�=

	����BBA��

6	B7���@�:�$$�������-�@��/����<�-�)��9E��������(�&��������E��F�)�'��*�!�<���!�,�"B��B��?�##�#B

�@�$��B���C��������-����B����

6	�7�2�N9��F���������<)��-�'�,���"EF��%���@������&&�E���E���5E�9���=�9E&�-8)��"���CE�F�<�)#B

��AD��AB��D�	��D���B���C������B+)#��-"B1(F(B����B��D����D�������&&���=����B�B��

6	�7�:�'���=�������������<29����-E���"E�����!�'���C���#)#-�D��"9������!�2��9����F!�B"E�F�

'���CE�F�'E�F���,�!"����'E�;�!��"����(;-�����2)#1'�'���������%���>�!�����B���#����<�����D���B

#�����AB���D��	"B1((8 B��#�B5(8 B��D����D�����B��&&���=���-����BB���

6	�7�(>���9��&FAA555=B��E$�������

6	�7�3�8�-�*E"���������<-��!"�E%!E�F��-�(,"F�29��0��"�����,��"��%�G�E�F�E���E���<�#�A�	�B3B$�ADB�CB

�����D��A"B����B��*���������������&&���A�=	�B��#�*��BB	��

6		7�2�:E��F�����;�'9EIE����<�-�(���F���E��=0��"��������D������<�����D�����AB�����	��	B$��E����	�B

���C������"B1((* B��$�B1((* BF(DE��&&���C�=�C����BB���

6	�7���.����/�"��<�=-�0��C�FE�FF�39����)���2��9����FE�"�,����2�F��9���<����������	AB�CBDE�B

����;����B��D����D�����B����D�����AB����C��D����	B$��E����	�B�����A�����&&����=�C��:��!�

�BB���

6	C7�D�0�*�E�E"�E�"E�E"�����G�D�E��������$!��$E���!#����A�����B��D�	��D��B������DB#�A�	��F����F���

.��%����0�$�E"9��"���BBA��

A.M’zah 3D MPSOC

180�
�

6	�7�@�@P$������������<�E����,������"�5E�9�'�$=�BQ��0E��9�%����-�,9E&=��=,9E&�(���F���E���<������

����9��BB���

6	A7�.�2�C�9�"9E���������<B����=9EF9=���"E�!�E�����������E������9����F!��%��9���=�E���"E�����

&��C�FE�F�<����������D�����AB<����/���D���*��������&&�����C=��CA���BB���

6�B7�)�K����������<'���!��%��	R��&E��9�"�������E���$��&"�%����-�(,�E���F���E���<�����D�����B

��������DAB���B$��E����	�B���C������"B1((6 B��$�B1((6 B%6DE��&&���=�B����!��BBA��

6��7�(��,��61��E��7��9��&FAA555�E����$�A'�E���E%E�8�&���A'8�B�B�

6��7�,�2�.������.�#�,9����<3�%��=��*���$���E�FA"���CE�F����9����F!�%����-�E���F���E���<�

���������D�����AB<����/���D���*����	B���������&&�����=�����)&�E���B�B��

6��7�)�0�&��EC�������-�'����E"������8�8���I�E���$E���B#����A�����B��AD��B��D�	��D���B��B�D�����	B

�����AAB���B#�A�	��F�'&�E�F�����B����

6��7�+�G�F���������2������E����<29���F9�"E�E����*E�F�D�����9��,�1'�E��F���"��"���5�%�����*���

&��C�F������9���-�E���F���E���<����������D�����B��	�������	��*�����C���������&&���CB=�C�������9�

�B�B��

6�	7�2�19$����������<29E�����5�%�������E="���C��-(����9����F!�<����������D�����B��	�������	"�*����

�C��&&����	=�AB���B�B��

6��7���:����E�E""�������K��N��E����<2�"�E�F��-��9E&"������E�E�F��9���F9="E�E����*E�"�<�$�ADB

���C������"B1((6 B�$�B1((6 B��D����D�������&&���=�����BBA��

6�C7�.��)$���'��D�IE����K��.���"�5������)�.�F�"9E���.��#�������<0��%������������!"E"��%��-=(,�%���

����E=�����&����""��"�E��"�$=�	���,�1'����9����FE�"�<�������DAB���B��AD��AB

+�����-"���������	AB�CB1(F(B����B��D����D�����B�����A�����&&����C�=��CA���B�B��

6��7�E�G����"E"��<09!"E����-�"EF��(�&��������E���%����-�(,F����9�����F!�����2���"�<���B

���������	AB�CBDE�BF6DEB��D����D�����BA����A���B��B�E�A����B��A�	�B+���#B5F(-B��&&��	C=	C��

�B�B��

6�A7�8�3����"�C�����-�0�����5���N��;E=8��F������@��2��9������<25�=-E���"E���������29���=

-E���"E�����(���F���E����%�@�����F�����"���������E��'!"���"�B�����,�"���0��%�������������

2��9����FE����,��"���E��"�<������D��!�����B#�A�	�B�CB��D�	��D��B������DAB���B��AD��A"B����B

$���A��D���AB��B����������&&�����C=��	B���BBA��

6CB7���,�����E���������)�G�)��������<,�&��E�E*��(����=,9E&�-��������0�5���2���"%���%����=-�E;'(�<�

������DAB���B��AD��AB��9B�4���AAB?���CA"B����B$���A��D���AB����*����	���&&������=��	����BB���

6C�7�E�D�0�*�E�E"�������G�D�E�������<�=-�2�&���FE�"�%���#��5��C"=��=,9E&�<��,�B���C������"B1((8B

����B��D����D�������&&����	=�����'�&���BB���

A.M’zah 3D MPSOC

181�
�

6C�7�)�>������<�-�(���F���E���E��-�"EF������2�"��'�&&����<�'��E����������(�������E�����

 9��&FAA555�"��E����������������,)���	��A���BBA��

6C�7���'�����E�E��<29������E���F�E�!F�)���"��%�����5=&�5���(,��EFE������"EF��<��#&��&&���C?����'�&��

�BB	��

6C�7���3��F������;��'��F�.!���<�-�D����&����E�F�5E�9�29������EE�"�<�#�A�	�"B��D���D���B���B$�ADB

��B������"B1((8 B#�$�B5(8 B���������	A��&&���=����BB���

6C	7���:����E�E""�������K�N��E����<2�"�E�F��-��9E&"������E�E�F��9���F9="E�E����*E�"�<���D����D�����B

$�ADB���C������"B1((6 B�$���&&���=�����BBA��

6C�7�G')��<�-=(,�-�"EF������"�����"��*E��"�2����G�E���<�-),���B����

6CC7�K������*���&&�������<�-(,�S�2'E�0��%E��"-���$�"��-���$�"��S�,��&��!�0��%E��"�8�&�������

�9��D2�&�	BT�&��!��"���*���&E�F��-�2'E�2��9����FE�"�<�K������*���&&��������BB���

6C�7�.�'�E�E*�"����.�'��,9��9�������G��.��I�*����<;E����=0��F����E�F=>�"���2��9�EM��"�%���

'!��9�"E"��%�#��5��C=��=,9E&�)��9E�������"�<�'���B0��	�B�����B��D�	��D���B+'0��-B��AD��A"B����B

$���A��D���AB��B��*���������������&&���BC=��B��)&�E���BB���

6CA7���:����'�K����������K�,9��F��<2�&���F!�'!��9�"E"��%�,�"������,��""$���'5E��9�"�<������D��!

�����B#�A�	�B�CB��D�	��D��B������DAB���B��AD��A"B����B$���A��D���AB����*���������������&&��A��=

A�B��:�����BBA��

6�B7���:����'�K����������K�,9��F��<�E����E���F����E�����&��F����E�F=$�"����&�E������&���F!�

"!��9�"E"��%���"���������""$���"5E��9�"�<�#�A�	�B��D���D���B���C������"B1((* B���#��B1((* B

�A��B���B���DEB����C����&&��	��=	��������9��BB���

6��7�)�)����F����@����E�EFE��.�����=.9���"9E������D�G�$��E��<)������������!��&�E�E/��E���%���

#��5��C"=��=,9E&����9E�������"��"E�F�G����E��)�F��E�9�"�<�#�A�	�B���B$�ADB>���AE��B+�#$-"B

1((6B7DEB��D����D�����B��&&���=���#�*��BBA��

6��7�G�;���!��.�'�E�E*�"����.���9��������.�'�,9��9���<-�"EF���%�#��5��C=��=,9E&�)��9E�������"�3E�9�

��G����E��)�F��E�9�=>�"���2��9�EM���<�'���B0��	�B�����B��D�	��D���B+'0��-B��AD��A"B����B

$���A��D���AB����*�����C������	��&&���C�=��C����!��BBA��

6��7�+�;E�����1�@�����E��<����E=�$I���E*����&���F!�"!��9�"E"�����D0G)�&�����!&E�F�%����5��C��%�

�&&�E���E���"&��E%E�����5��C=��=�9E&�<���B���������	AB�CBDE�B1FADB���D���B�CBDE�B	���DB����AB

A����A���B��B=���DB����ABA����A���B��B'0��B+=0�'0��B5FF-��&&��		=�B���B����

6��7�K�>�E��-�'9�ME���,�'��F������'�G�����<D����&����E�F�����2�&���F!�G������E���%���)&&�E���E��=

'&��E%E��#��5��C=��=,9E&�<�#�A�	�B��D���D���B���C������B+���!#��-"B1(F(BF%DEB�A��B���B

���DEB����C����&&��	�	�?�	�B��:����B�B��

6�	7�E�-��E��E������G�#�.9����<29���F9&��=1�E������#�,�2�&���F!�G������E�������)���!"E"�%���

@EF9�0��%��������'�,"�<�'���B0��	�B�����B��D�	��D���B+'0��-B��AD��A"B����B$���A��D���AB��B��*����

A.M’zah 3D MPSOC

182�
�

�C�������B��&&������=������1����BBA��

6��7�+�;E�����1�@�����E��<H����E=�$I���E*��#��5��C=��=,9E&�"!��9�"E"�5E�9�����"���E�����*���

"E�����E���<����������D�����AB+���-"B1(F(B��D����D�����B���C������B��B���������D�����AB��&&��

��C�?��AB���B�B��

6�C7�'������E���������<-�"EF�E�F�)&&�E���E��='&��E%E��#��5��C"����,9E&"�5E�9�D����&����(�%�����E���<�

�����D��!�����B#�A�	�"B1((8 B����#B5(8 B����;���B��D����D�����B���C��������&&���		=�����

#�*���BB���

6��7�:�;�������;�'9�������<0���E��E�F��9��&��%���������%��&&�E���E��="&��E%E��#�,"�E�&������������

D0G)"�<���B���������	AB�CBDE�BF*DEB������B���;��=#�B��D����D�����BA����A���B��B.����B

���	�����/��B	�D�B�����AB+.�=�B5F(- B�����&&����=�����B�B��

6�A7�)�.������'�D���������K�@���>���"���������@�,��&�������<����E&����""���"!"���"�"!��9�"E"�%���

����E&����"�=��"�"��%�����E&����&&�E���E��"����D0G)�<����B$���A B#�A B��D�� B����D�����*�������

��������&���C��:��!��BB���

6AB7�:�+���3�3��%��:�@��C��������'�,9�C���9����<)���"EF�����9�����F!�%����&&�E���E��="&��E%E��

���5��C"=��=�9E&�<����B$���A B��/�� B�����D B��AD ��&&�����=��B����!��BB���

6A�7�+�:E��F�����2�3�����$���<)���%%E�E�����-�#�,�"!��9�"E"�$!��"E�F�F����E����F��E�9��<�$�&�,&B

1(F(B!B1(F(B����B<�	���BF(B���C��������&&����BC=������#�*��$����B�B��

6A�7�3�N9��F��'�,9����D�����2�K�"9E����������'��G�����<D����&����E�F���E*���#��5��C=��=,9E&�

"!��9�"E"�%����=-�'�,"�<�������DAB���B��AD��AB+�����-"B1(FFB����B��D����D�����B�����A�����&&��

��B�=��B�����!��B����

6A�7�0�N9����0�@�K�9������'�'�'�&����C����<)&&�E���E��="&��E%E���-�#��5��C=��=,9E&���"EF���"E�F�

"E���������������E���<�#�A�	�B��D���D���B���C������B+���!#��-"B1(F(BF%DEB�A��B���B���DEB

����C����&&��	�C=	����:����B�B��

6A�7�0�N9����0�@�K�9������'�'�'�&����C����<1&�E�E/����-�#��5��C=��=,9E&�-�"EF��B"E�F�'E��������

)������E���<����B$���A B#�A B��D�� B����D��� B��AD ��*�����C���������&���A�&�F�"��)&�E���B����

6A	7�'�K�������>�;E���<-�"EF���%��&&�E���E��="&��E%E���-�#��5��C"=��=,9E&����9E�������"�<������D��B

#�A�	�"B1((* B���#B1((* B����B��D����D�����B���C������B����&&�����=��A��1����BB���

6A�7�'������E��,�'�E����"����;�>��E�E�������G�-���E�9��E��<'!��9�"E"��%����5��C"�����9E&"�%����-�

"!"���"�����9E&"�<�#�A�	�B��D���D���B���C������B���!#��B1((6 B�A��B���B���DEB����C����&&��

���=��C���A=���:����BBA��

6AC7�'������E��;�>��E�E�G��-���E�9��E�,�'�E����"����<'��D������-F�)�2����%���#��5��C"����,9E&�

2�&���F!�'!��9�"E"�%����=-�'!"���"����,9E&"�<������D��!�����B#�A�	�B�CB��D�	��D��B������DAB

���B��AD��A"B����B$���A��D���A��*�����A����������&&���A�C=�BBB��-����$����B�B��

A.M’zah 3D MPSOC

183�
�

6A�7�8���2��I����<-�&�9=%E�"��"����9������E�����F��&9���F��E�9�"�<����D�E��	B���B��D���D�B$E����"B

F62F "BF1DEB������B�����A���B����&&�����=�������=�	�1���$����AC���

6AA7�(�;�E��D�)�FE��E�E������;�>��E�E��<'�&&���E�F�*���E�����E�C"�%����-����5��C"=��=�9E&F���5�������

������������"EF����������!"E"�%��5�<����������	AB�CBDE�B1��B��D����D�����B���C������B��B&���!

&�D����AB+&���!&�DB5(2- B���$B+��AD�D�D�BC��B�����D��B�������A"B������!��C����D��AB���B

$������������D���AB��	�������	-"B���$"B?��AA��A"B?��	�����&��	���BBC��

6�BB7�'�>��C����<�-=2��9����F!F�)�'!"����0��"&���E*��<���B��D����D�����B)#B��AD��B��D�	��D���B

���C���������BB���

6�B�7�+�-��F�����K��+E���<'!"���=��*�����"������!"E"�������"EF����&�����E���%����9���=�E���"E�����

E���F�������E���E�"� �-�(,"��< B��B���������	AB�CBDE�B1((6B�A��B���B���DEB����C��B#�A�	�B

��D���D���B���C������B+���!#��B5(6- B����B���AA"B��A��D����"B&�"A��B��&&�����=������BBA��

6�B�7�'�,9����!���������<�-�E���F���E���&����""�%��5�%���"��=��&�$����&&�E���E��F�-�"��E&�E����%�

���9����F!�����������E������"���"�<����������D�����AB���B�����	��	B���C������"B1((6 B����B

1((6 B��������B��&&���=����	=���:�����BBA��

6�B�7�:�,��F���������<-���E�="&��E%E��&����""���5E�9��-�E���F���E���%������E����E��F��&����""E�F�<�

�������D���!�����C��B��AD��A"B���E�D��D���AB���B�����AA��AB+����-"B1(FFB����B��D����D�����B

���C��������&&����C=�	B����=���'�&���B����

6�B�7�.�@��5E�����1�@�����E��<��=#����>�����%�!�#��5��CF�-�"EF������(�&��������E����������E=

D0G)�<�%DE��D����D�����B#�A�	�B3B$�ADB>���AE��B�#$BF("B�/�!#E�/�����=���-����B�B��

6�B	7��E�E����<�E���$��/��&����""�����%�������F�E����<�BGB��� *��������B����

6�B�7�9��&FAA555���//��������A��

6�BC7�8�'�0���E��<29���=-E���"E�����(���F������,E���E�"������9��D�������%�'!"���=��=,9E&�-�"EF�"�<�

���������	AB�CBDE�B������*����A����������&&�������=��������I�����BB���

6�B�7�.�0����"5��!�����G�@�;�9��<29������@���E�FF��E������9E��������2��9�EM��"�%���,�������E�F�

@��"&��"�E��@EF9=0��%���������-=(���F������0����""��"�<�:�	EB���C�������B�����D��B

���E�D��D���"B1((2 B:���B����BF)DEB��D����D�����B�����A�����&&���A�=�B����B=���D�$��BBC��

6�BA7�61��E��7��555�"��E�"�����

6��B7�G��U����+��N9E5�E��.��:��5�E������,�����=,9��F�D���C��<25���BG$A"A&E��;�5=0�5���

(���������������9��"�%����-�(,"�<������B�D�D�B������DAB���C������"B1((2 B�����B#�	�ADB�CB

$��E�����B�����A B����B��D����D�������&&�����=������BBC��

6���7�-���@!���.E���'���C9�&��9!�!������'��F�.!��;E���<2'E=�5����E���������������F�9�����

&�5���&���E��E���%����-�"���C���(,"�<���D��������DB$��E����	�B���C������"B1((6 B��$�B1((6 B

����B��D����D�������&&����=�����BBA��

A.M’zah 3D MPSOC

184�
�

6���7�:�K��F��.�)�9EC��5��F"���K�;����'�.�;E�������-�N�0����<2'E�"���""��5�����E�E�F�����!"E"�5E�9�

�&&�E���E��"�����-=(,���!�����&�E�E/��E���<�#�A�	�B��D���D���B���C������B+#��-"B1(F(B72DEB

���;������&&���B�=�B���:�����B�B��

6���7�:�@��;����<2'E�����%�����E�F�!E��������9E�������"�"�%����-�(,�E���F���E���<�����D�����B

��������DAB���B$��E����	�B���C������B+��$�-"B1(F(B���������	AB8(DE��&&���B��=�B����:����

�B�B��

6���7�K�:��F��:��.E�������,���.!��F��<2�&���F!�'!��9�"E"�%���;�5�0�5���,�"������,��""$���

'5E��9�"�<������D��!�����B#�A�	�B�CB��D�	��D��B������DAB���B��AD��A"B����B$���A��D���AB��B��

*�����A����������&&���B��=�B�	���B�B��

6��	7�K�)���'�2�"��������@�.�&�����<2�&G��F�)���5���F��E�9��%����������E����&���F!�F������E���%���

#��5��C����,9E&����9E�������"�����������&�5������"��&�E���<��������D���B�CB��C����D���B���B

���������D���B$��E����	��A"B1((6 B���$B1((6 B��D����D�����B���C��������&&���=	��1����BBA��

6���7���>�!�����������<29���F9="E�E����*E�������E��"���CE�F����9����FE�"�%����E���"!"���"=

E���F���E���<�����D���B#�����AB���D��	"B1((* B��#�B1((* B����B��D����D�������&&���=���-����BB���

6��C7�-�,��"�����������<29�����=�5����%����&����E�F���&�����E���%����-�����E=��������9E�������"�<���B

���������	AB�CBDE�B1(DEBA����A���B��B=���DB����ABA����A���B��B'0��B+=0�'0��B5F(- ��&&��AA=

�B����B�B��

6���7�G���;E�C�����#�EEI�!C�E"9�����<29�����������"�E������FE�F����9����FE�"�U���E�!���������E��

-�"EF��<���C�#B5(8 B2DEB��D����D�����B�����A���B����&�����������9��BB���

6��A7�G���;E�C�����#�EEI�!C�E"9�����<29�����������"�E������FE�F����9����FE�"�<�C����D�B����D�����B

#�A�	�"B1((8 B��C�#B5(8 B2DEB��D����D�����B�����A���B��B��&����������9��BB���

6��B7�,��,9E��F�����'��'E�9���<29�����������-��-)����������E��""�<�#�A�	�B��D���D���B���C������"B

1((6 B���!#��B1((6 B�A��B���B���DEB����C����&&����A=������BBA��

6���7�)��H/�9��1�@�����E������:����E����<29��(�&�����%��-)�2���"�E���-�(,�-�"EF��'&����

��&�����E��F�)�,�"��'���!�<�#�$�B1(F1B>���AE��B��B)#B��D�	��D���B�������D���A"B$��E����	�"B

���E�D��D���"B#�A�	�"B��D���D���"B���B$�AD���B����

6���7�8�2�EF����K�)!�E�����>�C����E����)$E�������:�;��-�C�!"����<29����"EF�����9�����F!������9��

E�&��������E����%��0'1,�$�"������-������(#"����D0G)�<����������D�����AB��D����D�����B

���C������B+���-��&&�����=������BBA��

6���7�K��,9�����.�,9�C��$���!���K�+E��+�3����<2�"�=����""����9��E"���&�E�E/��E���%�������=$�"���<�

��������D�����AB���������*�������������B��&&���B�=��	��:��!��B�B��

6���7�)�.�,�"C����)�>��.�9�F������2�'�8�"E�F��<2��&�������=�����,�"�=)5����-�"EF���%��-�

����E&����""���)��9E�������"�<�#�	�D��B��AD��B#�A�	�"B���E�D��D���A"B��DE��AB���B$���A"B1((6 B

#�#B5(6 BF1DEB���������B���C������B����&&�����=�AB��)�F��BBA��

A.M’zah 3D MPSOC

185�
�

6��	7�'�'�9�E��C�����������<'!"����;�*���0��%��������)���!"E"�%���8���=2E���)������E*������E=,����

����#��5��C�)��9E�������"�<�����B$���A��D���AB��B�����D��!�����B#�A�	�B�CB��D�	��D��B������DAB

���B��AD��A��*������������C��&&��ACA=AA����BBA��

6���7�'�K����<'!��9�"E"��%�)&&�E���E��='&��E%E��1�=,9E&�#��5��C"�<�B�E*��"E�!��%�,��E%���E���'���-E�F���

09���BBA��

6��C7�.�'��9!����'�0�"�E�9�������,�:���F9����<01'�(-1#F�)�%����5��C�%����&&�E���E��="&��E%E��

#��5��C=��=,9E&�"!��9�"E"�%���9�����F�����"��9E&�����E&����""��"�<�C����D�B����D�����B#�A�	�B

+��C�#-"B1(FFBF1DEB��D����D�����B�����A���B����&&���=C���B����

6���7�K�:�,9����,�;��K��F������0�@�3��F��<0�=,1'K#F�0�����������!�,�='!��9�"E"�%����0'�,"�<�

#�A�	�"B��D���D���B3B$�ADB��B������B���C������B3B�4E�/�D���B+#�$�-��&&���	AB�?��	A	���B�B��

6��A7�.�#�������.�)$���'�D�IE����K�.���"�5�������)�.�F�"9E����<0��%������������!"E"��%��-=(,�%���

����E=�����&����""��"�E��"�$=�	���,�1'����9����FE�"�<�������DAB���B��AD��AB+�����-"B

���������	AB�CB1(F(B����B��D����D�����B�����A���B��B��&&����C�=��CA����!=:�����B�B��

6��B7����$��9E�E����-���"9����$��0�;E�I�$��F������@�2��9������<0��%��������)���!"E"��%��-�#�,"�

0���E�E��E�F����9��"�<�'0��B+��'0��-"B1(F(B����B�����D��B�����D�B������B�����A���B����&&��

�CA=��B��:��!��B�B��

6���7�-��E��I�*E���8�8���I�E���8�,��&�����������0�����9����<0��9%E��E�FF�)���"EF�����9�����F!�%���

%�"����&�����E��������&�E�E"��E����%��-="���C���E���F�������E���E�"�<���AD��!��!�E��"B1((6 B�,�B

1((6 B��D����D�����B�����A���B��B��&&�����=������BBA��

6���7�2��-������:��:E�J��/��:�;������V���B��>E�����������)��)"��������<1*��*E�5��%�D0G)=>�"���

����E&����""���'!"���"�<���D����D�����B���C������B��B<����C�	���/��B�����D��	B���B.�=�A��

&&���C�=�C����BBA��

6���7�1�1/���C��D�3��F����.�����E�������K�+E���<1&�E������&���F!���&�����E���%����&&�E���E��=

"&��E%E���-����9E�������"�<�#�A�	�B��D���D���"B1((8 B�A��B���B���DEB����C��B���C������B����&�����

:����BB���

6���7�0������������.��"����<1&&�����E�E�"�����,9�����F�"�%����-�'!"���"�����29�E��-�"EF��<�#�A�	�B

3B$�ADB�CB�����D��A"B������*������������	��&&���=����'�&��=1����BBA��

6��	7�:�,9�������'��0�����"5������<#�,1B2�F�#�,���&���F!�F������E���5E�9��E����&��C��="5E��9���

����&�E��=��=&�E������5��C"�<�#�A�	�B��D���D���B���C������"B1((* B���#��B1((* B�A��B���B

���DEB����C����&&����	=�CB������9��BB���

6���7�-��>����//E���������<#�,�"!��9�"E"�%��5�%�����"���E/�������E��"&��E%E������E&����""���"!"���"=

��=�9E&�<�����B$���A B��������B���B#�AD��/�D��B��AD��A��*���������������&&�����?��A���BB	��

6��C7�>�'�D���������0�0�0������<#��5��C"=��=,9E&�E����29���=-E���"E�������*E�������F�)�

0��%���������*�����E���<������D��A"B����B$���A��D���AB����*����	����������&&����=�	���BBA��

A.M’zah 3D MPSOC

186�
�

6���7�2�@���F��K�,9����:�@�������+�;E�F��<#��5��C"=��=,9E&����������-�"EF��5E�9�D0G)�)���!�<�

���������D���A"B������DAB���B��AD��AB+������-��&&������?��AB���B�B��

6��A7�-�)�E��/����������<#��5��C=1�=,9E&�-�"EF������'!��9�"E"�1�����C�<���D�	��D���!$E�B'0��B

D��������*���������������&&����B=�	A���BB���

6��B7�3��3��%��)�)��:����!�������G������E���<����E&����""���'!"���=��=,9E&� �0'�,��2��9����F!�<�

����B�����D��!�����B#�A�	�B�CB��D�	��D��B������DAB���B��AD��A"B����B$���A��D���AB����*�����C��

�����B��&&���CB�=�C�����BB���

6���7�)�D����EF����G�>���������G�#E����"��������)$���9��E�������(�1W,�������<����E=F�������E�!�

�9�������*�����E����%��-��0'�,����9E�������"�<�#�A�	�"B��D���D���B3B$�ADB��B������B

���C������B3B�4E�/�D���B+#�$�-"B1(FFB��&&���=�������9��B����

6���7���)$��������=�$��9E����8�-�9���E��1�E����F����D�,�����������,�G��������<������E�F��%�

�9���F9�"E�E����*E��������*E��"����������F���E�����&�E�F�<���������D�����AB���������*������������

���&&�����=�����D�$��B����

6���7�;�1"����������<�����=$�"�����"EF��%��5�%���#�,=$�"����0'�,"�<������B1(F("B$E�BF2DEB����B

��D����D�����B���C������B��B����D�����A"B������DAB���B��AD��A��&&��C	B=C	���-����B�B��

6���7�)�:�����9���������.�)�2��C���<��,'K'F�)�����E=,���C�@!$�E��25�=;�!���8������)��9E��������

����(���F������2�&���F!�'!��9�"E"�D����5��C�%���'!"���=;�*���-�"EF���%�D0G)�>�"���1�=,9E&�

#��5��C"�<�'0��B#�A�	�"B1((* B'0��#B1((* B1FADB��D����D�����B���C������B����&&���AC=�B���

�BB���

6��	7�)�>�)$����/�C����)C������2�K�"9E��F����������'�5���<���9����E����������%�������E�$I���E*��

'!��9�"E"��%�#�,�)��9E�������"�<���������B�����AA��	B>���AE��A"B1((2 B����>B1((2 B

��D����D�����B���C������B��B��&������'�&���BBC��

6���7�G�,9���������G�D�E�������<;�5=&�5�����&�����"���E*E�F�8,�����8;,�E�����������"�5E�9�����!�

����$���5E��9����"���E��"�<�'���B0��	�B�����B��D�	��D���B+'0��-B��AD��A"B����B$���A��D���AB����

*���������������&&�����=�C���D�$��BB���

6��C7�+�;E�����1�@�����E��<;E�����0��F����E�F�>�"���-�"EF���%�8����%EF���$���#��5��C����,9E&�

����D0G)�<�����D�����A"B������DAB���B��AD��A"B1((* B�����B1((* BF%DEB����B��D����D�����B

���C������B��&&��C���?�C�	���BB���

6���7�.�'�E�E*�"�������.�'�,9��9���<('('F���F����E����F��E�9��$�"������9�EM���%�����"������=�9E&�

E�����������E������5��C�"!��9�"E"�<�'0��B#�A�	�"B1((% BF*DEB��D����D�����B���C������B����&&��

���=������:����BB	��

6��A7�3�;�@��F��G���;E�C��K����+E���#�EEI�!C�E"9�����������:�(�5E���<(�����������������9�����=

�5����%����&����E�F�%����-��E���&����""��"�<�C����D�B����D�����B#�A�	�"B1((8 B��C�#B5(8 B2DEB

��D����D�����B�����A���B����&&���=��������9��BB���

A.M’zah 3D MPSOC

187�
�

6�	B7�,9E�=:���,9��F��0��=:���@���F��2�E=,9���,9��������,�=#�:��;E���<(;0=$�"���E����=�E������E�F�%���

�-�(,"�<�#�A�	�B��D���D���B���C������B+���!#��-"B1(FFBF8DEB�A��B���B���DEB����C����&&����B=

��	��:����B����

6�	�7�9��&FAA555�/!=��$�����A�AE�����9�����

6�	�7�9��&FAA555�/E&����E�����A��

6�	�7�9��&FAA555�"���"�9E&&������A��

6�	�7�9��&FAA555�"9��&�"�������

6�		7�1&��%E���0����""���,�����9��&FAA�&������"���FA&��I�����&��%E��X������

6�	�7���.�!���FE��2�D�C�"9E��������2�2���C���<@EF9=-��"E�!�29���F9�'E�E����EE�"�%����=-�;'("�<�

���������	AB�CBDE�B����B��*����AC���������&&���A=	A��:����BBA��

6�	C7�'�;E���;�'���@�'���-�:E�������;�N��F��<@E�����9E����,��"���=>�"���(���F�����2�&���F!�

,�"���E/��E���%���#��5��C"=��=,9E&�<���/�����B���BA/�E��D��AB�����D��	"B1((* B�A�B5(* B

����;�.��B��D����D�����B���C������B����*�������&&���C�=�CC��-����BB���

6�	�7�#�,9���9��!����'�G�����E��;���E������E�'E�F9��<G����E����F��E�9��$�"�����&���F!�F������E���

%����&&�E���E���"&��E%E��#��5��C=��=,9E&�<�������DAB���B��AD��AB+�����-"B���������	AB�CB1(F(B

����B��D����D�����B�����A���B����&&����	�=��	A��:�����B�B��

6�	A7�G�;�E��+�;E�������'�;�E��<G)=$�"���%����&���=�5������&���F!�"!��9�"E"��%��&&�E���E��="&��E%E��

���5��C=��=�9E&�<���D����	��DB�����D��	B���B��D����	��DB��AD��AB+����-"B1(F(B����B��D����D�����B

���C������B����*�������&&��		�=		���1����B�B��

6��B7�#�,9���9��!����'�G�����E��;���E������E�'E�F9��<G)�$�"���,��F�"�E���)5����2�&���F!�

G������E���%���)&&�E���E���'&��E%E��#�,�<�����D�����B#�A�	�"B$�ADB���B�������D���B+#�0$�-"B1(FFB

��4DEB����B��D����D�����B�����A���B��B��&&��A��?�A����B����

6���7�)�.���������0�8��0������<D����=����-�"EF��D��5"�%���'!"���"����,9E&F�)����$������2����E���<�

'0��B#�A�	�B'0��#B5F(B1)��B��D����D�����B���C��������&&����C�?�������B�B��

6���7�@��1&�E�"���������<DE���F��E���9�����������E�F�������&��E�������*��E���E����%��-=(,"�<�

��������D�����ABD��������*���������������&&��	C�=	C���)&�E���B����

6���7�'�'���9E��0�������E����������;��8�%%���<��&��E�E�F�D0G)"�%������9����F!=�5����"!"���=��*���

�*�����E����%�����E=��������9E�������"�<�����B��D����D�����B�����A���B��B���C�������B�����A�AB

�CB��AD��AB���B��CD����B!B������B��&&���A��=��B����B�B��

6���7�3�,9�������+�@�������8�-������<�';�-�"EF����������E=,����E��E���E����"E�F��9��'!"���=��=

,9E&���*E��������<�B:�	EB0����B#�A�	�B'�����D���B���B$�ADB>���AE��B+:0#'$-"B1(F(B����B

��D����D�����"B"B1(F(B����B��D����D�������&&������?���C���B�B��

A.M’zah 3D MPSOC

188�
�

6��	7�0�G�-��E���������-�)�E��/���<������E��=$�"�������"E�����9�����������E�F��%��-A�-�"!"���"=

��=�9E&�<���������D�����ABD��������*���������������&&��	��=	C���)&�E���B����

6���7�(�'�*E�E"���������<������E���������E�F������9�������E/��E����%��9���F9="E�E���*E�" 2'E"��%����=-�

E���F������E���E�"�<����������D�����AB���������*��������&&��A=����:����B�B��

6��C7�(>���<�%%E�E���������E�F�5E�9�,0;�+�'���E��<�(>��)�*������)���!�E�"�'���E����)&�E���B����

6���7�>�>���C���������<-E��'���CE�F� �-���E������9E��������<���B���������	AB�CBDE�B)6DEB������B

����;���B��D����D�����B�����A���B��B��������E�D��D���B+���<,B)6- B����B�����D��B�����D�"B

>�AE��	D��"B#�"BA��"B��&&����A=�CA���BB���

6��A7�'������E��;�>��E�E������G�-���E�9��E��<-�"EF���%�#��5��C"����,9E&"�%����-�(,"�<�#�A�	�B

��D���D���B���C������B+���!#��-"B1(F(BF%DEB�A��B���B���DEB����C��B��&&����C=�����:����B�B��

6�CB7�G��E�������0��"���������<-�"EF��E""��"��������"E�����E��"�%�����5=��"���-�2'E�(,����9����F!�<�

�����!�D�D�B������DAB���C������B#�	�ADB�CB$��E�����B�����AB+�����-��&&�����=��A��D�$��B�B��

6�C�7�:�3���:�3E��E��"��#�>��F����������0�'�������<-�"EF����&�����E���%���D0G)=$�"���

����E&����""���)��9E�������F�:0�G������E�F�,�"��'���!�<�.����B���	�����/��B��AD��B

�����D��	B���E���AB.���B5(6��&&���AA�?��B���)&�E���BBA��

6�C�7�'�K�������>�;E���<,�"����#��5��C"=��=,9E&�)��9E�������"�3E�9�����E��"��8���E�F�<�'���B0��	�B

�����B��D�	��D���B+'0��-B��AD��A"B����B$���A��D���AB��B��*�����C���������&&�����=�		������9��BBA��

6�C�7�'�.�.E���,�,�;E���;�+��������'�2E5��E��<,��""���C�������E���E���E���="EF�����=-�E���F�������E���E�"�

5E�9�E������*E�����!���F������&�����<�����D���B#�����A"B����B$���A��D���AB��B+1((%-��*����	�������

C��&&����	A=���C��:��!��BB	��

6�C�7�0�-�D���/����3�8�-�*E"������2�29����%%"����<,����E�F��-�"&��E%E��"!"���"F�)��9E�����������"EF��

����,)-�<�#�A�	�"B��D���D���B3B$�ADB��B������B���C������B3B�4E�/�D���B+#�$�-��&&������=������

�B�B��

6�C	7�+�3����������<,�"�=��E*����-�E���F���E���5E�9�E��������������!��"�<�#�A�	�B��D���D���B

���C������B+#��-"B1(F(B72DEB���;����B��&&���	B=�		��:�����B�B��

6�C�7�,��0�����"�������0��)�9���"�'��,��*����<,��%EF���$���'�%��0����""���)���!"�B"E�F��9��1&��DE���

0����""���<����������	AB�CBDE�B*DEB������B���C������B��B����D���B���B����A����B

���	�����/��B0�	��B#�����AB���0#���BB	��

6�CC7���;�C�"E�5!�/����'����$�9�������G��""��,��@��$���������:�2�E�9��<,��$E����"!"����"!��9�"E"�

����������E���E������9E����������&�����E���%����0'�,"�<�#�A�	�"B��D���D���B3B$�ADB��B

������B���C������B3B�4E�/�D���"B1((6 B#�$�B5(6��&&���C�=�CC��)&�E���BBA��

6�C�7�D��"����������8�@�����C��������)��;�/�����<>E�C9�%%�&��!��&�"��9����C�����"�����F��&9�

���&���E�!�<���DD���B<���	��D���"B1((* B���<B1((* BF6DEB��D����D�����B���C������B����&&���=	��

A.M’zah 3D MPSOC

189�
�

-����BB���

6�CA7�1�@�����E��+�;E��;�;��/��������;�>��F����<)������E����"EF�����9�����FE�"�%����0'1,�����

&�����!&E�F��������E=D0G)�0���%���"�<����B#�A�	�B���C������B+��,��-��&&������?�������BBA��

6��B7�.�'�,9��9�C��.�'�E�E*�"��������G��.��I�*����<)���������2��9�EM��"�%���'!��9�"E"��%�

)&&�E���E��='&��E%E��#��5��C=��=,9E&�)��9E�������"�<������D��!�����B#�A�	�B�CB��D�	��D��B

������DAB���B��AD��A"B����B$���A��D���AB����*�����C���������&&�����	=������)�F��BB���

6���7�>�E�E�!����9�����������<)��9E����E�F��E���&����""���,��&�����"�E���-�-�"EF��'&����<���B

���������	AB�CBDE�B1(DEB��D����D�����B���C������B��B'0��B#�A�	�BE���BD���D��B��DEB8DEB

��D����D�����B���C������9B��/�����B��AD��AB+'0��#B5(2- B����B�����D��B�����D�"B>�AE��	D��"B

#�"BA��"BF��&&���B�=�B����BBC��

6���7�@�("9�$�$E���������<)�"5���'���*��"�"�(���F���;E�����0��F����E�F�%���)������E��'!��9�"E"��%�

����E&����""���'!"���"�%����8���=2E���0��������0��F���"�<�:������B��/��AE��	B�������D���B

��D����D�����B�������B�CB<����C�	���/��B�����D��	B��*�����BBA��&������

6���7�(�;�E�����;�>��E�E��<)���%%E�E�����E"��E$����������!�E����%����%������!=�����&���%����5E�9��-�

"���C���-8)��<�#�A�	�"B��D���D���B3B$�ADB��B������B���C������B3B�4E�/�D���B+#�$�-��&&��AA=

�B�������9��B�B��

6���7�G�0��������,�'E�*���������E�N�����E���<)���%%E�E����-�"EF��'&������&�����E������9�����F!�%���

1�=,9E&�����E&����""��"�'�$I�������)&&�E���E��='&��E%E��,��"���E��"�<��������D���B�����C��B

�����AA��A"B1((* B����B1((* B�����A���B��B��&&��C	=�����BB���

6��	7�;��DE��E��'��;�C�*E���<)��)���������-�"EF��D��5�%���#�,=$�"����0'�,"����D0G)�<�<����B

��AD��B���D�D����	"B<��B5(*B$E�BF6DEB����;�.��B��D����D�����B�����A�����&&��	��?������BB���

6���7�:�,��F��:E��3�E������K���N9��F��<)��9�����=��E*���%����&����E�F���F��E�9��%����-�(,"�<�

�����D��B�����B#�A�	�"B1((7 B����#!1((7 B����;���B��D����D�����B���C������B����&&���B�=�

�����#�*��BB���

6��C7�-���@!���.E���.�)�9EC��5��F"�������'��F�.!��;E���<)�"���!��%�29���F9='E�E���=EE��E�&�������

�9���-�"���C���(,���!����<������D��!�����B#�A�	�B!B#�	�ADB�CB$��E�����B�����A"B1((6 B����#B

1((6 B����;���B��D����D�����B���C������B����&&���C�=��B���BBA��

6���7�:�8�$E�����.�������'��G�&���.���<)�����E=1$I���E*���*����E����!�)�F��E�9��>�"���1&�E�E/��E���

������%���#��5��C=��=,9E&�'!��9�"E"�<���C����D���B$��E����	�"B1((2 B�$&=B5(2 B.���DEB

��D����D�����B���C������B����&&��ACC=A�����BBC��

6��A7�)�0E�����;�0�,�����E������)�;'��FE�*���E=EE��������E��<)����9�����F!�%���,��"���E��=-�E*���

'!��9�"E"��%�1�=,9E&�,�����E���E��"�<������D��!�����B#�A�	�B�CB��D�	��D��B������DAB���B

��AD��A"B����B$���A��D���AB��B��*���������������&&�����=�CC������9��BBA��

6�AB7�.�'�E�E*�"�������.�'�,9��9���<)�;�5�,��&���E�!�@���E"�E��%���-�"EF���%�,�"����#��5��C=��=

,9E&�)��9E�������"�<�#�A�	�"B��D���D���B���B$�ADB��B������"B1((8 B#�$�B5(8 B���������	AB��*����

A.M’zah 3D MPSOC

190�
�

���&&���=�������9��BB���

6�A�7�+�UE��0��K��F��<)�9!$�E���&�E�E/��E����&&����9�%����9E&�&����������%�����E=�9E&�<�

��������D�����AB���������*�����B��&&�����	=�������BBA��

6�A�7�G�;���!�����.�'�,9��9���<)�9��E"�E���&&����9����#��5��C=��=,9E&�"!��9�"E"�<�

:�������;��CD����B����A�	�B���B��AD��B���DE�A�AB+�,#��F����-"B1(F(B����;���;�.��B

��D����D�����B���C������B��B��&&�����=�����1����B�B��

6�A�7�)�.�'E�F9���������<)�-�"EF��'&������&�����E������9�����F!�%���)&&�E���E���'&��EY���0'�,�

-�"EF��<�'0��B+��'0��-"B1(FFB����B�����D��B�����D�B������B�����A���B��&&����A�?���B���B����

6�A�7�.�G��""��"���������<)���"EF��D�5�%����&&�E���E��="&��E%E�����5��C"�����9E&�5E�9�F����������

&��%����������������������'1,���"EF������*��E%E���E���<���B���������	AB�CBDE�B���C������B��B

#�A�	�"B��D���D���B���B$�ADB��B������"B����B�����D��B�����D���*�������&&�������=����C���BB	��

6�A	7�E�2!�����<�-(,�����E=&��I���=5�%���&��F���F�)������$����E������&��*E���%�$�E���E�������""�<�)#B

��AD��AB��D�	��D���B���C������B+)#��-"B1(F(B����B��D����D�����B+1(F(-��&&����?��C��#�*��B�B��

6�A�7�:�B�.�E�C��$��C�����������<�-�"E�E����E���F���E���<�G������/�����"B� A HB�����"B� � HB#��	"B? HB

:��D��"B< < HB��D��"B� � HB����AD��"B< � HB������"BG HB����	�A"B� � HB$A�B����D�����B��������DAB���B

$��E����	�B���C������"B1((* B��$�B1((* B%*DEB��&&��	��=	������!��BB���

6�AC7�0������9����)��0���E�E���;��>��E�E�(��;�E��<�-�#�,"�B�E%!E�F�E���������E������9E&�������E���E���<�

������DAB���B��AD��AB+�����-��&&�����C=���B���B�B��

6�A�7�)�NE���'��.���������@�:�,9��������G�'�8�"���<�-�#1,�%������!=�����&����""��"�<�

���������D�����AB���������*����������������&&�����B=��AB��-����$����B����

6�AA7�'��>��C����<�-�E���F���E���%�������F!��%%E�E����"!"������"EF��<���B���������	AB�CBDE�B7*DEB#�A�	�B

��D���D���B���C������B+#��B5FF- B�����&&�����=��A���B����

6�BB7�;�+����D�'9E��3�:E������@�.9����<�-�%����&����E�F��%���5=&�5�����������=�%%E�E����#��5��C=��=

,9E&����9E��������<�����������AA��AB���B�����A�AD��A��*�����	������	��&&�����?�A	���B����

6�B�7�2�-������:��:E�J��/��:�;������V�������B��>E�������<8����%EF���$�������E&����""���'!"���"F�)�

8�*E�5�<�:������B��/��AE��	B�������D���B��D����D�����B�������B�CB<����C�	���/��B�����D��	B

'�����B��*�����B�B������C��&���B���B�B��

6�B�7�:�-���!�3�����2�5��"�>��<0�E��E&��"�����0����E��"��%�(�����������E���#��5��C�<����	��B

G��C����B�����AE��AB���BB���

6�B�7�@�:�*�E���+�@���)�(F�I���*E�������'��0�����"5������<1&�E����"!��9�"E"��%�������!�����

�9���F9&������"���E����&E&��E�����0'�,"����F��E�F�"�����E�F��&&�E���E��"�<����������	AB�CB

DE�B��	EDEB����;���;�.��B��D����D�����B���C������B��B:���;A�CD����B����A�	�B���BA�AD��B

A��DE�A�AB+�,#��;����B5F(-��&&��C	=����

A.M’zah 3D MPSOC

191�
�

6�B�7�)�)�:����!���G������E��3��3��%��<����E&����""���'!"���=��=,9E&� �0'�,��2��9����F!�<�����B

$���A��D���AB��B�����D��!�����B#�A�	�B�CB��D�	��D��B������DAB���B��AD��AB!B$��#B��*�����C������

�B��&&���CB�=�C�����BB���

6�B	7�)�'���9E�������>��C�������<(�&��*����0'�,�,�=-�"EF�����9�����F!�%���'������1�E������

0����""E�F�)&&�E���E��"�<�����D�����A"B������DA"B���B��AD��AB+�����-"B1(F(BF2DEB����B

��D����D�����B���C��������&&��C	��?�C	C���B�B��

6�B�7�#�G��C���-�)�E��/���G��-���E�9��E������;�>��E�E��<D�������=�#�,�������E��F��������������"EF��

%��5�%����0'�,�<�������DAB���B��AD��AB��	�I���"B����B�AA��B#�D�B9B.���DEBC���D��B1((2������C��

&&�����?�	����BBC��

6�BC7�9��&FAA555�"9��&�"�����A���

6�B�7�61��E��7��555������E"�����

6�BA7�1�@���:�'�K��F��-�N��0���3�:��F��<,9��E���=���9��E����&��E"9E�F��5�����&&�E���E��="&��E%E���-�

#�,���"EF��<���B���������	AB�CBDE�B��D����D�����B���C������B��B�����D��!�����B#�A�	�B+����#B

5FF- B����B���AA"B��A��D����"B&���&&���BC=������B�B��

6��B7�'�0�"�E�9���<)�D����5��C�%���2'E�'��E��E/��E��=�5����'!��9�"E"��%�)&&�E���E���'&��E%E���-�

#��5��C"=��=,9E&�<���B���������	AB�CBDE�B1(F1B1%DEB��D����D�����B���C������B��B'0��B#�A�	�B

+'0��#B5F1- B����B�����D��B�����D�"B>�AE��	D��"B#�"BA��"B��&&�����=�C����B����

6���7�-�����"���������<D����&����E�F=�5������"EF��"&������&�����E���%����&&�E���E��="&��E%E��

9E�����9E�������5��C"���=�9E&�<���B���������	AB�CBDE�B7DEB��D����D�����B>���AE��B��B&�D����B

��B�E��B���E�D��D���AB+&�����B5FF- B���"B&��B@���"B&@"BA��"B��&&����=�����B����

6���7�1��@�����E��)���H/�9������.��@��5E��<-�"EF���%��-=(,�%���>�����%�!�#1,�>�"������0�=

����E����F�)���!"E"�����-�"EF��'&������&�����E���<�����B��D����D�����B)#B��AD��B��D�	��D���B

���C������B+)#��-��:�����!���=D�$����!��B����

6���7�#��.�&��E������'��0�"�E�9���<)�0�5���-��E*��!�#��5��C�)5����D����5��C�%���'!��9�"E"��%��-�

#��5��C"=��=,9E&�5E�9�����E&���E����F��("����"�<���B���������	AB�CBDE�B1(F1B1%DEB��D����D�����B

���C������B��B'0��B#�A�	�B+'0��#B5F1- B����B�����D��B�����D�"B>�AE��	D��"B#�"BA��"B��&&�����=

��C���B����

6���7�K�+E���:�,��F������'�'�&����C����<29���=-E���"E�����(���F������,E���E��-�"EF�F��-)��-�"EF������

�E������9E��������<������	�����B�B��

6��	7���@�:�$$����1�@�����E�-�@��/����<�-�(,��=�E�����0������E&����""���5E�9��-�#�,�

)��9E��������>�"������2�//�����2��9����F!�<���!�,�B���B����

6���7�)�'�9�EI*�������/���D�����B,�D���I�D���9B����E����B���B�CC��������F�'&�E�F�����BB���

6��C7�)����"�9�����'��-��,��*��������0�����)�9���"��<)�'���$���%�����&���E�F��9��1&��DE���

A.M’zah 3D MPSOC

192�
�

0����""���<��<��B��&&�����=�	����BBC��

6���7�;�FE,18��(0��<;�FE,18��(0�D�"��'E�&����;E�C� D';���<�-'��A�E�B� *��������)&�E���A���B�B��

6��A7�E�D��""����D�8��""����:�2����<G������E����%�������E���&���%���"�%���#�,���&�����E������D0G)�<�

<����B��AD��B���D�D����	B+<��-"B1(FFB11��B����B��D����D�����B�����A���B��B��&&�����=�A������=

�C���!��B����

6��B7�D�8��""����D�0���������)������$�E��<-�"EF����*E��������%����9��"�&&�����%����%EF���$���

#��5��C�(����%���"�E��#�,=$�"���&���%���"�<���/�����B�����D��B��AD��AB+���,�-"B1(F(B

��D����D�����B���C������B����&&�����=�CB���A=���:��!��B�B��

6���7�G�2"E�EFE���E"�����;�0E������<)��E����E��E%E���E���'�����F!�2�E������%���#��5��C"����,9E&�<�

&�D����AB��B�E��B+&���-"B1(F1B��4DEB����;���B��D����D�����B�����A���B����&&������=������A=���

��!��B����

6���7�E�;�%%�/���������<)���"EF��%��5�%�����E�E������$������"!"���"�<�����AD����B��/�����B��AD��AB

+����-"B1(F(B��D����D�����B�����A���B����&&����A=������C=A�:��!��B�B��

6���7����2�5C��.�N��($��9E�������'��#E����<0���������&&�E���E���"��&�E�F�%������������E�F��0'�,�

"E�����E���<����A��D��B�DB#�A�	�B��D�� BC��B��/ B��A ��&&����C=��C���B�B��

6���7�8�>��)�E�����9��Z�0E����'�#E����0����M���������:�;�-�C�!"����<)�%�"���0'�,�*E������&�����!&E�F�

%���E����"E*��"EF����&����""E�F��&&�E���E��"�<�����������AA��AB���B�����A�AD��AB!B��/�����B

:�������B#�A�	���*���������������&&���C�=��A���B����

6��	7����>�C9��!���'��'�$�9��:��G�$����2�����G9�/�5E������'��#E����<0��%���������*�����E�������

��"EF��������%%"��%���=�9E&�E���������������9E�������"�<�������D���B��������	B����D���B���B

$E������*�����A���������&&����A�=�	B	��:�����B����

6���7�@�;E���'�#E����K���=@E����E������)�8E*��M��<��$���������9E��������5E�9�9���5����������������%���

���F�������F�E�E���E����E*����""E"������"!"����<���=�<�:B�����D B���E�D��&&��	�=	A��-����$���

�B����

6��C7�)�)9�����)�)�E�������G���E"����@�8�$�9������K�>��*E������<�%%E�E����E�&��������E����%����=-�

���E����E��FE�F����&��""E���"!"�����"E�F�,)E;,�<�����B��&&���CC�=�CC����B�B��

6���7�>�,�����E"��<'1,A'(0�%�������F!�����F������<���D����D�����B���B#�A�	�B���C������B+��,��-��

�BBA��

6��A7�)�)9������)�)�E�������G���E"����@�8�$�9�������K�>��*E������<�%%E�E����E�&��������E����%����=-�

���E����E��FE�F����&��""E���"!"�����"E�F�,)E;,�<�������*������&&���CC�=�CC����B�B��

6��B7�9��&FAA555�����%����E������������%����E����61��E��7��9��&FAA555�����%����E�������

A.M’zah 3D MPSOC

193�
�

� �

B

�B

�B

�B

�B

	B

�B

[�BBC �BB� �BBA �B�B �B�� �B��

��������	���	���AB�C

#��$����%���%������"

A.M’zah 3D MPSOC

194�
�

List of Publications

International conferences

1. A.M'zah ; O.Hammami; , "Parallel programming and speed up evaluation of a NoC 2-
ary 4-fly," IEEE International Microelectronics (ICM), 2010 International Conference
on , vol., no., pp.156-159, 19-22 Dec. 2010

2. A.M'zah; O.Hammami , "Area/delay driven NoC synthesis," IEEE International
Microelectronics (ICM), 2011 International Conference on , vol., no., pp.1-6, 19-22
Dec. 2011

3. A.M’zah, O. Hammami and J. Mouine, "The Impact of EDA Tools in 3D IC Design
Space Exploration: A Case Study", DATE 2012 Workshop on 3D Integration
Applications, Technology, Architecture, Design, Automation, and Test, Dresden,
Germany, March, 2012

4. O.Hammami, A. M’zah and K.Hamwi, " Design of 3D-IC for Butterfly NOC Based
64 PE-Multicore: Analysis and Design Space Exploration", IEEE International 3D
System Integration Conference (3DIC) January 31-February 2, 2012, Osaka, Japan

5. O.Hammami, A.M’zah, M.H.Jabbar and D.Houzet, ‘’ 3D IC Implementation for
MPSOC Architectures: Mesh and Butterfly Based NoC’’, ASQED 2012, Kuala
Lumpur, Malaysia

National conferences

6. A.M’zah,O.Hammami,’’ La Technologie Tezzaron pour la Conception d'une
Architecture Multiprocesseurs 16PEs en 3D IC ‘’, GDR SOC-SIP 2012, Paris

7. O.Hammami, K.Hamwi, M.H.Jabbar M.Khaddour,A.M’zah, “Design and
Implementation of NOC Based 16 PE”, GDR SOC-SIP 2011, Lyon

Industrial conferences

8. A.M’zah and O.Hammami, “Multi-FPGA Design Based 64 PE with NoC Extension’’,
IP-SOC 2010 Conference & Exhibition - IP Based Electronic System, Grenoble 30
November – 1 December 2010

9. O.Hammami, A.M’zah, K.Hamwi, “ Design of 3D-IC for Butterfly NOC Based 64
PE-Multicore: Analysis and Design Space Exploration”, IP-SOC 2011 Conference &
Exhibition - IP Based Electronic System, Grenoble 2011

Journal

10. A.M’zah and O.Hammami, “NOSYTE : Multi Objective 3D NoC Synthesis with
Tezzaron Technology”, submitted to Journal of Microelectronics

�

A.M’zah 3D MPSOC

195�
�

