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Résumé

L’objectif principal de cette thése est d’étudier quelques problémes de mathématiques
financiéres dans un marché incomplet avec incertitude sur les modéles. Récemment, deux
approches différentes (mais liées) ont été développées sur ce sujet. L’une est la théorie
des G-espérances non-linéaires initiée par Peng [89], et 'autre est la théorie des équations
différentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSRs) introduite
par Soner, Touzi et Zhang [101|. Dans cette thése, nous adoptons le point de vue de ces
derniers auteurs.

Cette thése contient quatre parties dans le domain des 2EDSRs. Nous commencons par
généraliser la théorie des 2EDSRs initialement introduite dans le cas de générateurs lips-
chitziens continus a celui de générateurs a croissance quadratique. Cette nouvelle classe
des 2EDSRs nous permettra ensuite d’étudier le probléme de maximisation d’utilité ro-
buste dans les modéles non-dominés, ce qui peut étre considéré comme une extension
non-linéaire du probléme de maximisation d’utilité standard. Dans la deuxiéme partie,
nous étudions ce probléme pour les fonctions d’utilité exponentielle, puissance et logarith-
mique. Dans chaque cas, nous donnons une caractérisation de la fonction valeur et d’une
stratégie d’investissement optimale via la solution d’'une 2EDSR.

Dans la troisiéme partie, nous fournissons également une théorie d’existence et unicité
pour des EDSRs réfléchies du second ordre avec obstacles inférieurs et générateurs lips-
chitziens, nous appliquons ensuite ce résultat a ’étude du probléme de valorisation des
options américaines dans un modeéle financier a volatilité incertaine. Dans la quatriéme
partie, nous étudions une classe des 2EDSRs avec sauts. En particulier, nous prouvons
I’existence et 'unicité de solutions dans les espaces appropriés. Nous pouvons interpréter
ces équations comme des EDSRs standards avec sauts, avec volatilité et mesure de saut
incertaines. Ces équations sont les candidats naturels pour l'interprétation probabiliste
des équations aux dérivées partielles intégro-différentielles complétement non-linéaires.
Comme application de ces résultats, nous étudions un probléme de maximisation d’utilité
exponentielle robuste avec incertitude sur les modéles. L’incertitude affecte & la fois le
processus de volatilité, mais également la mesure des sauts.

La derniére partie est dédiée a l'implémentation numérique des méthodes de Monte
Carlo pour la valorisation des options dans des modéles a volatilité incertaine. Ce travail
pratique a été réalisé lors d’un stage au cours de la premiére année de thése.

Mots-clés: Equations difféntielles stochastiques rétrogrades du second ordre, mesures
de probabilités mutuellement singuliéres, analyse stochastique quasi-sire, formule de
Feynman-Kac non-linéaire, EDPs complétement non-linéaires, générateur a croissance
quadratique, maximisation d’utilité robuste, incertitude sur les modéles, probléme
d’obstacle, options américaines, temps d’arrét optimal,équations différentielles stochas-
tiques rétrogrades avec sauts.
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Abstract

The main objective of this PhD thesis is to study some financial mathematics problems
in an incomplete market with model uncertainty. In recent years, two different, but
somewhat linked, frameworks have been developed on this topic. One is the nonlinear
G-expectation introduced by Peng [89], and the other one is the theory of second order
backward stochastic differential equations (2BSDEs for short) introduced by Soner, Touzi
and Zhang [101]. In this thesis, we adopt the latter point of view.

This thesis contains of four key parts related to 2BSDEs. In the first part, we generalize
the 2BSDEs theory initially introduced in the case of Lipschitz continuous generators to
quadratic growth generators. This new class of 2BSDEs will then allow us to consider the
robust utility maximization problem in non-dominated models, which can be regarded as
a nonlinear extension of the standard utility maximization problem. In the second part,
we study this problem for exponential utility, power utility and logarithmic utility. In each
case, we give a characterization of the value function and an optimal investment strategy
via the solution to a 2BSDE.

In the third part, we provide an existence and uniqueness result for second order reflected
BSDEs with lower obstacles and Lipschitz generators, and then we apply this result to
study the problem of American contingent claims pricing with uncertain volatility. In the
fourth part, we define a notion of 2BSDEs with jumps, for which we prove the existence
and uniqueness of solutions in appropriate spaces. We can interpret these equations as
standard BSDEs with jumps, under both volatility and jump measure uncertainty. These
equations are the natural candidates for the probabilistic interpretation of fully nonlinear
partial integro-differential equations. As an application of these results, we shall study
a robust exponential utility maximization problem under model uncertainty, where the
uncertainty affects both the volatility process and the jump measure.

The last part is about numerical implementation of Monte Carlo schemes for options
pricing in uncertain volatility models, which was realized during an internship during the
first year of this PhD study.

Keywords: Second order backward stochastic differential equations, mutually singular
probability measures, quasi-sure stochastic analysis, fully nonlinear PDEs, nonlinear
Feynman-Kac formula, quadratic growth generator, robust utility maximization, model
uncertainty, obstacle problem, American contingent claims, optimal stopping time,
backward stochastic differential equations with jumps.
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CHAPITRE 1

Introduction

The main objective of this PhD thesis is to study some financial mathematics problems
in an incomplete market with model uncertainty. In recent years, two different, but
somewhat linked, frameworks have been developed on this topic. One is the nonlinear
G-expectation introduced by Peng [89], and the other one is the theory of second order
backward stochastic differential equations (2BSDEs for short) introduced by Soner, Touzi
and Zhang [101]. In this thesis, we adopt the latter point of view.

This thesis contains four key chapters related to 2BSDEs. We first generalize the 2BSDEs
theory initially introduced in the case of Lipschitz continuous generators to quadratic
growth generators in Chapter 2. This new class of 2BSDEs will then allow us to study
the robust utility maximization problem in non-dominated models, which can be regarded
as a nonlinear extension of the standard utility maximization problem. In Chapter 3, we
study this problem for exponential utility, power utility and logarithmic utility. In each
case, we give a characterization of the value function and an optimal investment strategy
via the solution to a 2BSDE. In Chapter 4, we also provide an existence and uniqueness
theoty for second order reflected BSDEs (2RBSDEs for short) with one lower obstacle and
Lipschitz generators, then apply this result to study the problem of American contingent
claims pricing with uncertain volatility.

In Chapter 5, we define a notion of 2BSDEs with jumps, for which we prove the existence
and uniqueness of solutions in appropriate spaces. We can interpret these equations as
standard BSDEs with jumps, under both volatility and jump measure uncertainty. These
equations are the natural candidates for the probabilistic interpretation of fully nonlinear
partial integro-differential equations. As an application of these results, we shall study
a robust exponential utility maximization problem under model uncertainty. The uncer-
tainty affects both the volatility process and the jump measure.

The last chapter (6) is about numerical implementation of Monte Carlo schemes for
options pricing with uncertain volatility models, which I realized during an internship at
Crédit Agricole CIB during the first year of my PhD study.

Backward stochastic differential equations (BSDEs for short) first appeared in Bismut
[11] in the linear case, and then have been widely studied since the seminal paper of Par-
doux and Peng [87]. Given a filtered probability space (2, F,{Fi}, <, < 7, P) generated by
an R%valued Brownian motion W, a solution to a BSDE consists of a pair of progressively
measurable processes (Y, Z) such that

T T
Y;=¢ +/ fs(Ys, Zs)ds — / ZdWs, t € [0,T], P —a.s. (1.0.1)
t ¢
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where f (called the generator) is a progressively measurable function and & (called the
terminal condition) is an Fp-measurable random variable. Pardoux and Peng proved
existence and uniqueness of the above BSDE provided that the function f is uniformly
Lipschitz in y and z and that £ and f,(0,0) are square integrable. In the particular case
when the randomness in f and £ is induced by the current value of a state process defined
by a forward stochastic differential equation, the solution to the so called Markovian BSDE
could be linked to the solution of a semilinear PDE by means of a generalized Feynman-
Kac formula. Since their pioneering work, many efforts have been made to relax the
assumptions on the generator f; for instance, Lepeltier and San Martin [67] have proved
the existence of a solution when f is only continuous in (y, z) with linear growth. Most of
these efforts are particularly motivated by applications of BSDEs in many fields such as:
financial mathematics, stochastic games, semilinear PDEs, stochastic controls, etc. We
refer to El Karoui, Peng and Quenez [33] for a review of these applications.

The link between BSDEs and semilinear PDEs is important for the formulation of 2BS-
DEs. Therefore let us show it with the following example. Consider the parabolic PDE:
{ (0 + L)u(t,x) + f(t,z,u(t,x),0c*Du(t,z)) =0

u(T,z) = g(x)

where L is the second order differential operator defined as follows

(1.0.2)

Lo(w) i= YW @)0up(w) + 3 3 (00)7 (0032, 0(a) € CPRY)

If g, f and the coefficients of the operator £ are smooth enough, the PDE(1.0.2)
has a classic solution u € C%2.  Then the processes (V,Z) = (Y!* Zb") =
(u(s, XE*), 0* Du(s, X*)) solves the following BSDE:

T T
vir =g+ [y zear— [ zaw,

S
where (X57%), < s <1 is the diffusion process associated with the operator £ starting from
x at t. In particular, u(t,z) = Y;"*, and o*Du(t, z) = Z'* which is a generalization of the
well known Feynman-Kac formula to a semilinear case.

More recently, motivated by applications in financial mathematics and probabilistic nu-
merical methods for PDEs (see [20], [41], [91] and [100]), Cheridito, Soner, Touzi and
Victoir [22] introduced the first formulation of second order BSDEs, which are connected
to the larger class of fully nonlinear PDEs. Then, Soner, Touzi and Zhang [101]| provided
a new formulation of 2BSDEs based on quasi-sure stochastic analysis. Their key idea was
to consider a family of BSDEs defined quasi surely (q.s. for short) under a non-dominated
class of mutually singular probability measures,which means P — a.s. for every probability
measure P in this class.

We first give some intuition in one dimensional case which will help to well understand the
new formulation of 2BSDEs. Let H(y, z,7) := G(v) := 3sup, < o <a(ay) = 3 (@y" —ay™)
with 0 < a < @ < 0o, and suppose that the following fully nonlinear PDE

O + G(D*u) =0
w(T,.)=>o



has a smooth solution. The process X[ := fot ar?dW, is well defined with (0 )ocrcr @

X

process taking values in [a,@]. Then the pair (Y; := u(t, X7), Z; := Du(t, X)) satisfies
the following equation

T
Y, = ®(X3) — / Z,dX* + Kz — K,
t

with K; := f(f (G(D*u) — 3a,D%u) (s, X$)ds. In particular, we notice that K is a nonde-
creasing process such that Ky = 0. Thus, it is natural that there is some nondecreasing
process appearing in the formulation of 2BSDEs.

Next, with a similar example, we suggest a representation for the solution Y of 2BSDEs.
Let u be a solution of the following fully nonlinear PDE

O+ H(.,u, Du, D*u) = 0 and u(T,.) = ®

with H(t,z,r,p,7v) = supa>0{%a7 — flt,z, 7 p, a)}. Then we should have, formally, u =

sup u® where Dy denote the definition domain of f in @ on R? and u® is a solution of
aEDf

1
du” + §aD2 = f(,u, Dut a) = 0 and u*(T),.) = @.

Since the above PDE is semilinear, it corresponds to a BSDE. This provides a possible
candidate for the solution Y to the Markovian 2BSDE associated to the fully nonlinear
PDE. We should have, again formally, ¥; = supY¥,* with

T T
Y;O‘:@(X%)—/ f(r,Xf‘,Y,,a,Zf,ar)dr—/ Zoak2dw,, s € [t,T),

S
where (o), ¢, < 7 15 a positive process taking values in Dy and where X = z+ [ a2 dw,.

With the above examples in mind, we will now give a rigorous description of this frame-
work. Let Q := {w € C([0,T],RY) : wy = O} be the canonical space equipped with the
uniform norm ||wl| , := supy ¢ ; < p|ws|, B the canonical process.

We define F' as the corresponding conjugate of a given map H w.r.t.y by

1
Fi(w,y,z,a) :== sup {§TT(OW) - Ht(w,y,z,v)} for a € S;°,

ve€Dy

where Sjo denotes the set of all real valued positive definite d x d matrices. And

ﬁ(y’ Z) = Ft(yv Z,Zl\t)

with @, := limsup? ((B), — (B),_.) , where (B), := B,Bf —2 [ B,dB! is defined pathwise
e\.0

t—e
and the lim sup is taken componentwise.
We denote by Py the non-dominated class of mutually singular probability measures,

where under each P € Py, @ has positive finite bounds which may depend on P. We shall
consider the following 2BSDE,
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T T
Y, —¢— / FL(Y,, Z.)ds — / 2B, + Kr — Ky, 0<t <T, Py —qs..  (1.0.3)
¢ ¢
Definition 1.0.1. We say (Y, Z) is a solution to 2BSDE (1.0.3) if :

i YT:€7 PH—QS

o For all P € Py, the process K defined below has nondecreasing paths P — a.s.

t t
K =Y,-Y, —|—/ Fy(Ys, Zy)ds +/ ZdB,, 0<t<T, P—a.s. (1.0.4)
0 0
o The famuly {KP,IP’ € PH} satisfies the minimum condition

KP = essinf? EF [Kﬂ L0<t<T, P—as., VP e Py. (1.0.5)

P Py (t+,P)

where Py (tT,P) is the set of probability measures in Py which coincide with P until
tt.

Moreover if the family {KP,P € PH} can be aggregated into a universal process K, we
call (Y, Z,K) a solution of 2BSDE (1.0.3).

The above minimum condition can be understood as that K is a martingale under the
nonlinear expectation generated by the set of probability measures Ppg.

Under uniform Lipschitz conditions similar to those of Pardoux and Peng, Soner, Touzi
and Zhang [101] established a complete theory of existence and uniqueness for the solution
to the above 2BSDE. Possamali in [90] extended their results to the case of a continuous
linear growth generator. In the following, we will concentrate ourselves on this new for-
mulation.

1.1 Second Order BSDEs with Quadratic Growth Gen-
erators

Motivated by a robust utility maximization problem under volatility uncertainty, in this
part of the thesis, we generalize the 2BSDEs theory to the case where the generators have
quadratic growth in z.

Quadratic BSDEs in the classical case was first studied by Kobylanski [63], who proved
existence and uniqueness of a solution by means of approximation techniques borrowed
from the PDE literature, when the generator is continuous and has quadratic growth in
z and the terminal condition ¢ is bounded. Tevzadze in [107] has given a direct proof
for the existence and uniqueness of a bounded solution in the Lipschitz-quadratic case,
proving the convergence of the usual Picard iteration. Recently, Briand and Hu [12] have
extended the existence result to unbounded terminal condition with exponential moments
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and proved uniqueness for a convex coefficient [13]. Finally, Barrieu and El Karoui [6]
recently adopted a completely different approach, embracing a forward point of view to
prove existence under conditions similar to those of Briand and Hu. Quadratic BSDEs
find their applications essentially in dynamic risk measures and utility maximization under
constraints.

For 2BSDEs with quadratic growth generators, our main assumptions on the function
F'is as follows

Assumption 1.1.1. (i) Py is not empty, and the domain Dy, .y = Dp, is independent
of (w,y, 2).

(ii) F is F-progressively measurable in Dp,.
(iii) F is uniformly continuous in w for the ||+ || norm.

(iv) F is continuous in z and has the following growth property. There ezists (c, 3,7) €
Ry x Ry x R such that

? , Py — q.s., for all (t,y, z).

Fily,2)| <o+ Blyl+ 2 a2

(v) Fis C' iny and C? in z, and there are constants r and 0 such that for all (t,y, z),
|Dyﬁt(y7 z)| <, |Dzl3t(y, ) <r+6 |al/22| :
D2 Fy(y,2)| <0, Py —q.s.

Among the above assumptions, (i) and (iii) are taken from [101] and are needed to
deal with the technicalities induced by the quasi-sure framework; (ii) and (iv) are quite
standard in the classical BSDEs literature; and (v) introduced in Tevzadze [107] is essential
to prove existence of a solution to quadratic 2BSDEs.

The main difference with the case of Lipschitz generators is the quadratic growth as-
sumptions on z, which induce many technical difficulties in our framework. As for the
BSDEs with quadratic growth, we show that the Z-part of a solution to 2BSDEs also
satisfies certain BMO property. This property plays a very important role in the proof for
2BSDEs, much more than for the classical BSDEs.

With a generalization of the comparison theorem proved in [107] (see Theorem 2), we
then obtain a representation formula for solution to 2BSDE as in Theorem 4.4 of [101].

Theorem 1.1.1. Let Assumptions 1.1.1 hold. Assuming that £ € Ly and (Y,Z) €
D x H% (the solution space, see Chapter 2 for precise definition) is a solution to 2BSDE
(1.0.3). Then, for anyP € Py and 0 < t; <ty < T,

Y;, = esssup’ y, (t2,Y:,), P—a.s. (1.1.1)
P ePy (t] P)

where (y*, 2%) == (y¥(7,€), 25 (7,€)) is the unique solution of the classical BSDE with the

~

same generator F (existence and uniqueness have been proved under our assumptions
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by Tevzadze in [107]), for any P € Py, F-stopping time 7, and F.-measurable random
variable & € L>°(P).

Consequently, the 2BSDE (1.0.3) has at most one solution in D3y x HZ,.

To prove existence of a solution, we generalize the approach in the article [101] to
the quadratic case, where the main tool is the so-called regular conditional probability
distributions of Stroock and Varadhan [104]. This allows to construct a solution to the
2BSDE when the terminal condition belongs to the space UCy(2). Then, by passing to
limit, we prove existence of solution when the terminal condition is in £, the closure of
UCy(Q2) under a certain norm defined in Chapter 2.

Theorem 1.1.2. Let & € L. Under Assumption 1.1.1, there exists a unique solution
(Y, Z) € D x H% to the 2BSDE (1.0.3).

Indeed, this approach relies very heavily on the Lipschitz and Lipschitz-quadratic as-
sumption on the generator. Besides, it can only be used if we are able first to prove
uniqueness of the solution through a representation property. This is why we put some
efforts to provide another proof of existence based on approximation techniques similar
to those used in the classical BSDEs literature recalled above. But, since we are working
under a family of mutually singular probability measures which is not necessarily weakly
compact, both the classical monotone convergence theorem and the one proved by Denis,
Hu and Peng [28] in the framework of G-expectation can not be applied in our framework.
So the second approach will be left for future research.

Finally, we consider Markovian 2BSDEs with quadratic growth generators, whose solu-
tion can be represented by a deterministic function of ¢ and B;, and show the connection
of these 2BSDEs with fully nonlinear PDEs.

We define f and 1 as the corresponding conjugate and bi-conjugate functions of a deter-
ministic map h. Our object of interest is the following Markovian 2BSDE with terminal
condition ¢ = g(Br)

T T
Y;‘, :g(BT) _/ f<57387}/;725aas)d5_/ stBs—f—K’_IIP;_KF’ 7)h_q-s-
t t

We establish the connection Y; = v(t, By), Py — q.s., where v is the solution in some sense
of the following fully nonlinear PDE

% (¢, ) + h (t,x,0(t,x), Do(t,z), D2u(t,z)) = 0, t € [0,T)

o(T,x) = g(x).

(1.1.2)

1.2 Robust Utility Maximization in Non-dominated
Models

After establishing the result of uniqueness and existence of solution to 2BSDE with
quadratic growth generators, we are ready to study the robust utility maximization prob-
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lem. The problem of utility maximization, in its most general form, can be formulated as
follows

V&(z) = supinf E}[U(XT —¢)],

(@) = supinf EYU(XF - )
where A is a given set of admissible trading strategies, P is the set of all possible models,
U is a utility function, X7 is the liquidation value of a trading strategy m with positive
initial capital XJ = x and ¢ is a terminal liability, equal to 0 if U is only defined on R™.

In the standard problem of utility maximization, P contains only one probability measure
P. This means that the investor knows the "historical" probability P that describes the
dynamics of the underlying asset. But, in reality, the investor may have some uncertainty
on this probability, which means that there can be several objective probability measures in
‘P. In this case, we call the problem robust utility maximization. Many authors introduce
a dominated set of probability measures which are absolutely continuous with respect to a
reference probability measure IP. This is going to be the case if we only take into account
drift uncertainty. However, if we want to work in the framework of uncertain volatility
models (UVM for short) introduced by Avellaneda, Lévy and Paras. [2| and Lyons [75],
the set of probability measures becomes non-dominated.

After the pioneer work of Von Neumann and Morgenstern [109], Merton first studied
portfolio selection with utility maximization by stochastic optimal control in the seminal
paper [81]. Kramkov and Schachermayer solved the problem of maximizing utility of
final wealth in a general semimartingale model by means of duality in [64|. Later, El
Karoui and Rouge [38] considered the indifference pricing problem via exponential utility
maximization by means of the BSDE theory. Their strategy set is supposed to be closed
and convex, and the problem is solved using BSDEs with quadratic growth generators. In
[54], with a similar approach, Hu, Imkeller and Miiller studied three important types of
utility function with only closed admissible strategies set within incomplete market and
found that the maximization problem is linked to quadratic BSDEs. They also showed a
deep link between quadratic growth and the BMO spaces. Morlais [82] extended results in
[54] to more general continuous filtration, for this purpose, proved existence and uniqueness
of the solution to a particular type quadratic BSDEs driven by a continuous martingale.
In a more recent paper [57], Jeanblanc, Matoussi and Ngoupeyou studied the indifference
price of an unbounded claim in an incomplete jump-diffusion model by considering the risk
aversion represented by an exponential utility function. Using the dynamic programming
equation, they found the price of an unbounded credit derivatives as a solution of a
quadratic BSDE with jumps.

The problem of robust utility maximization with dominated models was introduced
by Gilboa and Schmeidler [44]. An example of this case is when the drift is uncertain.
Anderson, Hansen and Sargent [1] and Hansen et al. [53] then introduced and discussed
the basic problem of robust utility maximization penalized by a relative entropy term
of the model uncertainty Q € P with respect to a given reference probability measure
Py. Inspired by these latter works, Bordigoni, Matoussi and Schweizer [15] considered the
robust problem in a general context of semimartingale by stochastic control and proved
that the solution of this problem is a solution of a particular BSDE. In Miiller’s thesis
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[84], he studied the robust problem in the case when the drift is unknown with BSDEs
theory. Some results in the robust maximization problem have also been obtained with
convex duality. We can refer to Gundel [46] , Quenez [94], Schied [97], Schied and Wu
[98], Skiadas [99] in the case of continuous filtration, among others,

To our best knowledge, robust utility maximization with non-dominated models, en-
compassing the case of the UVM framework, was first studied with duality theory by
Denis and Kervarec [29]. In the article, they took into account uncertainty about both
the volatility and the drift. The utility function U in their framework was supposed to be
bounded and to satisfy some conditions as in the classical case. They first established a
dual representation for robust utility maximization and then they showed that there exists
a least favorable probability which means that solving the robust problem is equivalent to
solving the standard problem under this probability. More recently, Tevzadze et al. [108]
studied a similar robust utility maximization problem for exponential and power utility
functions (and also for mean-square error criteria), by means of the dynamic programming
approach already used in [105]. They managed to show that the value function of their
problem solves a PDE. We will compare their results with ours in Section 3.7 of Chapter
3.

In our framework, we study robust utility maximization with non-dominated models,
more precisely UVM where @ has uniform positive finite bounds, via 2BSDEs theory.
Meanwhile, our set of mutually singular probability measures is more restrictive than in
[29]. We study the problem for exponential utility, power utility and logarithmic utility,
which, unlike in [29], are not bounded. In particular, we prove the existence of optimal
strategy and provide characterization of value function via solution to 2BSDEs. Moreover,
for exponential utility, the result also gives us the indifference price for a contingent claim
payed at a terminal date in the case of UVM. Then it allows us to price and hedge
contingent claim in a market where some external risks can’t be hedged. At the end, we
also give some examples where we can explicitly solve the robust utility maximization
problems by finding the solution to the associated 2BSDEs, and we try to give some
intuitions and comparisons with the classical framework of Merton’s PDEs.

To find the value function V¢(x) and an optimal trading strategy 7*, we follow the
main ideas of the general martingale optimality principle approach as in [38] and [54], but
adapting it here to a non-dominated models framework.

Let A be the set of admissible trading strategies. We construct R™ a family of processes
which satisfies the following properties:

Properties 1.2.1. (i) RF =U(X] —¢) forallme A
(ii) Rf = Ry is constant for all me A
(iii) We have
essinf” Ef [U(X] — &) < R}, Ve A

PPy (t+,P)

*

R = essinff EF[U(XE —¢€)] for some n* € AP — a.s. for all P € Py
P/EPy (t+,P)



1.2. Robust Utility Maximization in Non-dominated Models 9

As the minimum condition on K, the property (iii) can be understood as that R™ is a
supermartingale under the nonlinear expectation generated by Py for every m and R™ is
a martingale under the nonlinear expectation. Then it’s not difficult to see that

inf E'[U(XF —&)] < Ry = inf EF[U(XF —&)] = V(). (1.2.1)

PePy

We consider a financial market which consists of one bond with zero interest rate and d
stocks. The price process is given by

dSt = dlag [St] (btdt + dBt), PH — (.S.

where b is an R%valued uniformly bounded stochastic process which is uniformly contin-
uous in w for the || - || norm.

It is worth to notice that the volatility is implicitly embedded in the model. Indeed,
under each P € Py, we have dB, = @, *dWF where W is a Brownian motion under P.

1/2

Therefore, a'/# plays the role of volatility under each P and thus allows us to model the

volatility uncertainty.

In the sequel, we show the main result for the exponential utility function which is
defined as
U(z) = —exp(—pfz), x € R for > 0.

We have similar results for the power and the logarithmic utility functions.
We define the set of admissible trading strategies as follows

Definition 1.2.1 (Admissible strategies with constraints). Let A be a closed set in RY.
The set of admissible trading strategies A consists of all d-dimensional progressively mea-
surable processes, m = (7)o <+ <1 Satisfying

m € BMO and m € A, dt @ Py — a.e.

Usually, when dealing with these type of problems (see for instance [38| and [54]), an
exponential uniform integrability assumption is made on the trading strategies. However,
we consider instead stronger integrability assumptions of BMO type on the trading strate-
gies. The mathematical reasons behind this are detailed in Chapter 3, however, this also
has a financial interpretation. As explained in [43] which adopts the same type of BMO
framework, this assumption corresponds to a situation where the market price of risk is
assumed to be BMO. Just as in the case of a bounded market price of risk, this implies
that the minimum martingale measure is a true probability measure, and therefore there
is no arbitrage, in the sense of No Free Lunch with Vanishing Risk.

The investor wants to solve the optimization problem

V&(z) := sup inf E® {—exp (—ﬁ(a:Jr/Oth—— ))} (1.2.2)

rcAQEPH

Our main result for robust exponential utility is as follows
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Theorem 1.2.1. Assume that the border of the set A is a C? Jordan arc. Then the value
function of the optimization problem (1.2.2) is given by

V() = —exp (=8 (z — Y0)),

where Yy is defined as the initial value of the unique solution (Y,Z) € DY x H2, of the
following 2BSDE

T T
Y, =¢&— / Z,dB, — / F.(Z)ds + Ky — K;, P—a.s., VP € Py. (1.2.3)
t t

The generator has quadratic growth and is defined as follows
Fi(w,z) = Fy(w,2,a), (1.2.4)
where

1 / 1
Fy(w,z,a) = —gdis‘c2 (a1/2z + Bet(w), Aa) + 2 a'?0,(w) + 35 10,(w)|?, foraesS;°,

with 0;(w) = a”2by(w) and A, = a'?A = {a'/?b : be A}.

Moreover, there ezists an optimal trading strateqy 7 € A in the sense that for allP € Py

1~
a/*m; € Ty, (ai”zt + Bet) . te[0,7], P-as. (125)

where 0, = ’a\t_l/zbt and Ag, = Zz\tl/?A = {Zz\tl/Qb cbe A}.

We also show that the above result can be applied to study the problem of indifference
pricing of a contingent claim in the framework of uncertain volatility.

1.3 Second Order Reflected BSDEs

In this part of the thesis, we generalize 2BSDEs theory to the case where there is a
lower reflecting obstacle. Reflected backward stochastic differential equations (RBSDEs
for short) were introduced by El Karoui et al. [34], followed among others by El Karoui,
Pardoux and Quenez in [37] and Bally, Caballero, Fernandez and El Karoui in [3] to
study related obstacle problems for PDE’s and American options pricing. In this case,
the solution Y of the BSDE is constrained to stay above a given obstacle process S. In
order to achieve this, a nondecreasing process K is added to the solution

Yi=¢&+ [ (Y, Z)ds — [ ZdW, + Ky — Ky, t €[0,T], P — a.s.
Y; = 5, t€[0,T], P—a.s.
[ (Y, = Sy)dK, =0, P — a.s.,
where the last condition, also known as the Skorohod minimum condition means that the

process K only acts when Y reaches the obstacle S. This condition is crucial to obtain
the uniqueness of the solution to classical RBSDESs.
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Following these pioneering works, many authors have tried to relax the assumptions on
the generator of the RBSDE and the corresponding obstacle. Hence, Matoussi [77] and
Lepeltier, Matoussi and Xu [70] have extended the existence and uniqueness results to
generators with arbitrary growth in y. Then, Kobylanski, Lepeltier, Quenez and Torres
[65], Lepeltier and Xu [69] and Bayraktar and Yao |7] studied the case of a generator
which is quadratic in z. Similarly, Hamadéne [48] and Lepeltier and Xu [68]| proved
existence and uniqueness when the obstacle is no longer continuous. Cvitani¢ and Karatzas
[25] introduced a new notion of double barrier reflected BSDEs in the case of Lipschitz
generators and showed their link with Dynkin games. Later, Hamadéne, Lepeltier and
Matoussi [50] extended the existence and uniqueness result to the case of continuous
generators.

Our aim is to provide a complete theory of existence and uniqueness of solution to
2RBSDEs under the Lipschitz-type hypotheses of [101] on the generator. We show that in
this context, the definition of a 2RBSDE with a lower obstacle S is very similar to that of a
2BSDE. We do not need to add another nondecreasing process, unlike in the classical case.
The only change required is in the minimum condition that the nondecreasing process K
of the 2RBSDE must satisfy. We then establish the link between 2RBSDEs and American
contingent claims pricing with UV M.

We start with giving the precise definition of 2RBSDEs and showing how they are
connected to classical RBSDEs. As for 2BSDEs with quadratic growth generators, we
define F' as the corresponding conjugate of a certain map H w.r.t.y by

1
Ft(wayaz7a) = sup {§T1"(CL’}/) - Ht(w7y7z7’7>} for a € Siou

YEDH
ﬁt(y,z) = Fy(y, z,a;) and ﬁto = ﬁt(0,0).
Our main assumptions on the function F' are as follows
Assumption 1.3.1. (i) The domain Dp,(y.) = Dp, is independent of (w,y, 2).
(ii) F is F-progressively measurable in Dp,.

(iii) We have the following uniform Lipschitz-type property in y and z

Fi(y,z)— Fi(y,2)

<C <‘y—y/‘ + ‘51/2 (z - z,>’> , Py —q.s.
for all (t,y,y',2,2).
(iv) F is uniformly continuous in w for the || - ||s norm.

Given a process S which will play the role of our lower obstacle. We will always assume
S verifies the following properties

(i) S is F-progressively measurable and cadlag.
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(ii) S is uniformly continuous in w in the sense that for all ¢
[S(w) = S @) <p(llw=al,), ¥ (w,@) € Q*

for some modulus of continuity p and where we define ||w||, ;== sup |w(s)]|.
0<s <t
The assumption (i) is quite standard in the classical BSDEs literature; the assumption
(ii) is needed to deal with the technicalities induced by the quasi-sure framework.

We denote by Pj; the non-dominated class of mutually singular probability measures,
where under each P € P}, @ has positive finite bounds which may depend on P. Then,
we shall consider the following 2RBSDE with the lower obstacle .S

T T
Y, =¢— / F,(Ys, Z)ds — / ZdB,+ Kr— K, 0<t<T, Py—qs.  (131)
t t

Definition 1.3.1. For £ € E?f, we say (Y,Z) € D?f X H?f (the solution space, see
Chapter 4 for precise definition) is a solution to the 2RBSDE (1.3.1) if

o Yr=¢& Ph—q.s.
® 1/;5 = St, P’;I —(.S..

o VP € Py, the process K¥ defined below has nondecreasing paths P — a.s.

t

, t
K =Y,-Y +/ Fy(Ys, Zy)ds —I—/ ZdB,, 0<t<T, P—a.s. (1.3.2)
0 0

o We have the following minimum condition

KP — kP = essinf® EF [K]{i/ - kEj’i’} L0<t<T, P—as., VP Py (1.3.3)
P ePL (t+,P)

where (yF, 25 k%) == (y¥(7,€),25(7,€), kP (1,€)) denote the unique solution to the

following classical RBSDE with obstacle S for any P € Py, F-stopping time 7, and

F,.-measurable random variable & € 1L2(PP),

yF =& — [T F(F, 25)ds — [] 2FdB, + kE —kF, 0<t <7, P—as.
f} Si, P —a.s.
C(yF — S-)dkE =0, P—a.s., Vt€[0,T].

The process K plays a double role. Intuitively, K forces Y to stay above the barrier S
and it also pushes Y above every y*. To justify this formulation, we can consider the case
where the set P} is reduced to a singleton {P}. From the above minimum condition, we
know that K¥ — k¥ is a martingale with finite variation. Since P satisfies the martingale
representation property, this martingale is also continuous, and is therefore a constant.
Thus we have

0=k — K P—a.s.,
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and the 2RBSDE is equivalent to a standard RBSDE. In particular, we see that the part
of K¥ which increases only when Y,- > S,- is null, which means that K¥ satisfies the
usual Skorohod condition with respect to the obstacle.

With some additional integrability conditions on FOand S , we can have a representation
formula for a solution to a 2RBSDE via solutions to standard RBSDEs, which in turn
implies uniqueness of the solution. This is similar to ones obtained in Theorem 4.4 of
[101] and Theorem 2.1 in [90].

Theorem 1.3.1. Let Assumption 1.5.1 and additional integrability assumptions on FO
and S hold. Assume & € 3" and that (Y, Z) is a solution to 2RBSDE (1.3.1). Then, for
any P e Pfand 0 <ty <12 < T,

Y, = esssup’ yEI (t2,Y,), P —a.s. (1.3.4)
P ePr(t],P)

Consequently, the 2RBSDE (1.3.1) has at most one solution in D3 x Hy".

Now that we have proved the representation (1.3.4), we can show, as in the classical
framework, that the solution Y of the 2RBSDE is linked to an optimal stopping problem

Proposition 1.3.1. Let (Y, Z) be the solution to the above 2RBSDE (1.3.1). Then for
each t € [0,T] and for all P € P

Y; = esssup’ esssup E]f)/ [—/ ﬁfg(yfl,zf/)ds%—&l{m:r} +§1{7_T}] , P—a.s. (1.3.5)
t

P'ePy (t+,P) €T T

= esssup IETItP {—/ ﬁS(Y;, Zs)ds + A]E — Af + Srlrery + 51{7T}] , P—a.s. (1.3.6)
t

€Ty T

where T, 1 is the set of all stopping times valued in [t,T) and A} := fg I{Y,>s 7}dK]f 18
the part of K* which only increases when Yy~ > S,-.

It is worth noting here that unlike with classical RBSDEs, considering an upper obstacle
in our context is fundamentally different from considering a lower obstacle. Indeed, having
a lower obstacle corresponds, at least formally, to add an nondecreasing process in the
definition of a 2BSDE. Since there is already an nondecreasing process in that definition,
we still end up with an nondecreasing process. However, in the case of an upper obstacle,
we would have to add a non-increasing process in the definition, therefore ending up
with a finite variation process. This situation thus becomes much more complicated.
Furthermore, in this case we conjecture that the above representation of Proposition
would hold with a sup-inf instead of a sup-sup, indicating that this situation should be
closer to stochastic games than to stochastic control. This is an interesting generalization
that we leave for future research.

Then, as for the classical RBSDEs (see Proposition 4.2 in [37]), if we have more regularity
on the obstacle S, we can give a more explicit representation for the processes K¥. When
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S is a semimartingale of the form

¢ t
Sy =Sy +/ Usds + / VidBs + Cy, Pf — q.s.
0 0

For each P € P, there exists a progressively measurable process (af )o <¢ <7 such that
0<a<1land

~ +
iy s A =afly, s, ([Ft(St, V)= U] dt+ dc;) P —a.s.

For existence of a solution, we will generalize the pathwise construction approach of [101]
to the reflected case. Let us mention that this proof requires us to extend the existing
results on the theory of g-martingales of Peng (see [88]) to the reflected case. Since to the
best of our knowledge, those results do not exist in the literature, we prove them in the
Appendix in Chapter 4. We are now in position to state the main result of this part

Theorem 1.3.2. Let £ € Ei}”. Under Assumption 1.3.1 and additional integrability
assumptions on F° and S, there exists a unique solution (Y, Z) € DX xH?, of the 2RBSDE
(1.3.1).

Finally, we use 2RBSDEs introduced previously to study the pricing problem of Amer-
ican contingent claims in a market with volatility uncertainty. The pricing of European
contingent claims has already been treated in this context by Avellaneda, Lévy and Paras
in [2], Denis and Martini in|27| with capacity theory and more recently by Vorbrink in
[110] using the G-expectation framework.

In a financial market with one bond L° with interest rate r, and one risky asset L, whose

dynamic is given by

dL
T: = wdt + dBy, Py — q.s.,

we consider an American contingent claim whose payoff at a stopping time v > ¢ is

SV = SV1[V<T] + gl[uzT]-

Then with some assumptions on r, ; and S which ensure the existence of a solution to
a 2RBSDE, we have that, for £ € E?f, a superhedging price for the contingent claim is

Y, = esssup’ Y}, P—a.s., VPcPL,
P ePy (t+,P)

where Y/ is the price at time ¢ of the same contingent claim in the complete market, with
underlying probability measure P'. The process Y is the solution to a 2RBSDE with a
Lipschitz generator which depends on r and pu.

Furthermore, we have, for all €, the stopping time D = inf{s > ¢,Y, < Sg+ e} AT
is e-optimal after t. Besides, for all P, if we consider the stopping times Df’P =
inf {3 >t YE < S+ 5} AT, which are e-optimal for the American contingent claim under
each P, then as a consequence of the representation formula, we have

D > DY P —as. (1.3.7)
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1.4 Second Order BSDEs with Jumps

From the literature, we know that in the case of a filtered probability space generated
by both a Brownian motion W and a Poisson random measure p with compensator v,
one can consider the following natural generalization of BSDE (1.0.1) to the case with
jumps. We say that (Y, Z,U) is a solution of the BSDE with jumps (BSDEJ for short)
with generator f and terminal condition & if for all ¢ € [0, T,

T T T

Y, =¢ +/ f(s,Ys, Zs,Ug)ds — / ZdWs — / / Us(z)(p — v)(ds,dx), P — a.s.
t t t  JRAN{0}

(1.4.1)

Tang and Li [106] were the first to prove existence and uniqueness of a solution for (1.4.1)
with a fixed point argument in the case where f is Lipschitz in (y, z,u). Barles et al. [5]
studied the link of those BSDEJs with viscosity solutions of integral-partial differential
equations. Hamadéne and Ouknine [51] have considered one reflecting barrier BSDEJs.
They showed existence and uniqueness of the solution when the reflecting barrier has only
inaccessible jumps, i.e., jumps which come only from the Poisson part. Hamadéne and
Ouknine [52] and Essaky [39] then respectively dealt with reflected BSDEJs when the
reflecting processes are cadlag. In general, in contrary to BSDEs, there is no comparison
theorem for BSDEJs with only Lipschitz generators. One needs stronger assumptions.
Royer in [95] proved a comparison theorem and studied nonlinear expectations related
to BSDEs with jumps which extends Peng’s g-expectation framework to the jump case.
Crépey and Matoussi [24] also provided a priori estimates and comparison theorem for
reflected and doubly reflected BSDEJs. [83] studied a special BSDEJ with quadratic
growth related to the problem of exponential utility maximization under constraint. Re-
cently, [36] adopted a forward approach as in [6] to prove existence of quadratic BSDEJs
with unbounded terminal condition.

In this part of the thesis, we generalize 2BSDEs to the jump case. We can interpret these
equations as standard BSDEJs, under both volatility and jump measure uncertainty.

On the Skorohod space, we define the continuous part of the canonical process B, noted
by B¢, and its purely discontinuous part, noted by B? both local martingales under
a local martingale measure. Such local martingale measures are obtained by using the
notion of martingale problem for semimartingales with general characteristics, as defined
in the book by Jacod and Shiryaev [56]. We then associate to the jumps of B a counting
measure figd.

To define correctly the notion of second order backward SDEs with jumps (2BSDEJs),
an important issue is the possibility to aggregate both the quadratic variation [B, B] of the
canonical process and the compensated jump measure associated to B¢, in the following
sense of [103]| and [23]:

Let P be a set of non necessarily dominated probability measures and let {X*, P € P}
be a family of random variables indexed by P. An aggregator of the family {XF, P € P}
is a random variable X such that

X = XP P —as, for every P € P.
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We know that the quadratic variation [B, B] can be aggregated as a consequence of
the results from Bichteler [9], Karandikar [58], or more recently Nutz [86]. However, the
predictable compensator is usually obtained by the Doob-Meyer decomposition of the
submartingale [B, B|. It is therefore clear that this compensator depends explicitly on the
underlying probability measure, and it is not clear at all whether an aggregator always
exists or not. This is a main difference with the continuous case.

Soner, Touzi and Zhang, motivated by the study of stochastic target problems under
volatility uncertainty, obtained in [103] an aggregation result for a family of probability
measures corresponding to the laws of some continuous martingales on the canonical space
Q = C(R*,RY), under a separability assumption on the quadratic variations (see their
definition 4.8) and an additional consistency condition (which is usually only necessary)
for the family to aggregate.

In our context, we follow the spirit of [103] and restrict our set of probability measures
(by adding an analogous separability condition for jump measures) in order to generalize
some of their results in [103]| to the case of processes with jumps. We characterize the
family of probability measures where we can aggregate both the quadratic variation and
the compensated jump measure.

After addressing this aggregation issue, we are in a position to prove the wellposedness
of 2BSDEJ under a set of probability measures, denoted by Pz, which has the required
characterization. We give a pathwise definition of the process @, which is an aggregator
for the density of the quadratic variation of the continuous part B¢,

1
a; := limsup— ((B°), — (B¢ ,
t 0 P(Cj (< >t < >t78)

and define a process 7, which is an aggregator of the predictable compensators associated
to the jump measure pga

D (A) = VF(A), for every P € Py. (1.4.2)

We then denote
fpa(dt,dz) = pga(dt,dx) — vy(dz)dt.

The generator F', defined as the convex conjugate of a given map, verifies the usual
assumptions in ¢ and w as in the 2BSDEs framework and the uniform Lipschitz assumption
in y and z. In the variable u, we need an assumption similar to that in Royer [95].

For all (t,w,y, z,u',u* a,v), there exist two processes v and ~" such that
(i) / (u'(e) — u?(e)) vele)v(de) < Fi(w,y, z,u',a,v) = Fi(w,y, 2,4, a,v),
E

(ii) Fi(w,y, z,u',a,v) — Fy(w,y, z,u* a,v) < /E (u'(e) — u?(e)) ~,(e)v(de)

with ¢ (1A |z]) < 1(x) < co(1 A |z|) where ¢; <0, 0 < e <1,
and ¢ (1 A |z]) < 7,(z) < cy(1 A |z|) where ¢; <0, 0< ¢y < 1.
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Then, with assumption (i), we have a comparison theorem which is crucial to have a
representation for the Y-part of a solution. We need assumption (ii) to prove the minimum
condition satisfied by K for the existence result.

As in [101] we fix a constant x € (1, 2] and restrict the probability measures in Py, C P ;.
We shall consider the following 2BSDEJ, for 0 < ¢t < 7" and Pj-q.s.

Y, =¢— / s(Ys, Zs, Uy, a5, Vs )ds —/ Z,dBS — / / x)figa(ds,dzr) + Kr — K.
t
(1.4.3)
Similar to 2BSDEs, we say (Y, Z,U) is a solution to the 2BSDEJ (1.4.3) if the equa-
tion holds true under each P € P§ with a nondecreasing process K' and the family
{KF® P € Py} satisfies the minimum condition.

With a generalization of the comparison theorem and the minimum condition on K, as
usual, we have a representation formula for the Y-part of a solution.

Y, = esssup’ y]tP;/ (t2,Y,), P—a.s., (1.4.4)
P’ ePy (¢ ,P)

where ¢ is the solution to the standard BSDE with the same generator under P’ € Py.

For the existence, we generalize the usual approach in 2BSDEs theory to the jump case.
We construct a solution pathwise when terminal condition is in a regular space, then by
passing to limit, we show existence of a solution for terminal condition in its closure under
a certain norm.

As an application of the above results, we study a problem of robust utility maximization
under model uncertainty, which affects both the volatility process and the jump measure.
We consider a financial market consisting of one riskless asset, whose price is assumed
to be equal to one for simplicity, and one risky asset whose price process (Si)o <t < is
assumed to follow a jump-diffusion with regular coefficients

dSt

-

The problem of the investor in this financial market is to maximize his expected exponen-
tial utility under model uncertainty from his total wealth X7 — £, where ¢ is a liability at
time 7" which is a Fp-measurable random variable. The trading strategies are supposed
to take value in some compact set C'. Then the value function V of the maximization
problem can be written as

VE(z): =sup inf B [~exp (—n (XT — £))]
nec PePy

= —inf sup E¥ [exp (—n (XF — €))]. (1.4.6)

T€C pepy,

We follow the ideas of the martingale optimality principle approach adapted to the
nonlinear framework as in Chapter 3. We prove that the value function of the optimization
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problem 1.4.6 is given by

VE(z) = —e 1Yy,
where Yj is defined as the initial value of the unique solution (Y, Z,U) of the 2BSDEJ
with terminal condition €7 and the generator

2

Fi(y,z,u,a,v) := —in(fJ {(—nbt + %W@)Wy —nmaz + / (e’"”ﬁt(x) —1) (y+ u(x))u(dx)} :
e E

Moreover, there exists an optimal trading strategy 7* realizing the infimum above.

Finally, as in Lim and Quenez [73] for BSDEs, by making a change of variables, we
derive existence and uniqueness of a solution to a 2BSDEJ with quadratic growth from
this 2BSDEJ with a Lipschitz generator.

Recall that Pardoux and Peng [87] proved that if the randomness in g and ¢ is induced
by the current value of a state process defined by a forward stochastic differential equation,
then the solution to a BSDE could be linked to the solution of a semilinear PDE by means
of a generalized Feynman-Kac formula. Soner, Touzi and Zhang [101] also introduced the
second order backward SDEs in a non dominated framework. Their equations generalize
the point of view of Pardoux and Peng, in the sense that they are connected to the larger
class of fully nonlinear PDEs. In this context, the 2BSDEJs are the natural candidates
for a probabilistic solution of fully nonlinear integro-differential equations. This is the
purpose of our accompanying paper [62].

1.5 Numerical Implementation

In this part of the thesis, I present some practical work realized during an internship during
the first year of this PhD study. The subject is Monte Carlo method for options pricing
with UVM . The objective is not to prove convergence results of new numerical schemes,
but to implement the existing schemes (see Guyon and Henry-Labordére [47]), and to test
and possibly make improvement in practice. This work allowed me to understand better
these schemes and to be familiar with them. For future research, I would like to suggest
a purely probabilistic scheme with the new formulation of 2BSDEs in view (see [101]).

As explained in El Karoui, Peng and Quenez [33] and in El Karoui, Hamadéne and
Matoussi [35], BSDEs can be used for the pricing of contingent claims by replication in
a complete market (with a linear generator f) and more interesting in imperfect market
(with a Lipschitz generator f). More precisely, Y corresponds to the value of the repli-
cation portfolio and Z is related to the hedging strategy. Since the analytical solution
exists to BSDEs only in few case, numerical resolution is important for the application
of BSDEs theory in practice in mathematical finance. Moreover, due to the link between
BSDEs and semilinear PDEs, numerical resolution of BSDEs is also useful to provide
probabilistic numerical methods to solve PDEs. These methods are alternative to finite
difference ones, and they are more efficient in high-dimensional case. However, compare
to the large amount literature dedicated to the mathematical analysis of BSDEs, only a
few numerical methods have been proposed to solve them. We can refer to Bouchard and
Touzi [16], Zhang [111], Gobet et al. [45] among others.
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We consider the following (decoupled) forward-backward stochastic differential equations
on the time interval [0, 1]:

dXt = b(Xt)dt + U(Xt)th, dYt == f(t, Xt7 Y;, Zt)dt - Zt' th

Xo== and Y; = g(Xp)

Zhang [111] proved a regularity result on Z, which allows the use of a regular determinis-
tic time mesh. Therefore by discretizing the continuous processes of BSDE and taking the
conditional expectation of both sides of equations (resp. first multiplying both sides by
Brownian increment AW, then taking the conditional expectation), one can compute Y’
(resp. Z) backwardly. The following is the complete scheme, for 0 =ty <t; <--- <t, =1

Yt = 0% (X8 )
YA = Ei*l [Y;‘/zA} + f (ti*l? Xﬁ—l’ Y;‘/FL‘AA’ Zt?&) Ati (1.5.1)

ti—1

1
22, = B (1AW

The key point of this scheme is to compute the conditional expectations. In [111], the
complexity to compute the conditional expectations becomes very large in multidimen-
sional problems, like in the case of finite difference schemes for PDEs. To better deal with
high-dimensional problems, Bouchard and Touzi [16] proposed a Monte Carlo approach
when the terminal condition is non-path-dependent (that is Y} = g(X;)). They suggested
to use a general regression operator found with Malliavin calculus which, however, requires
multiple sets of paths. Later, Gobet et al. [45] developed an approach based on Monte
Carlo regression on a finite basis of functions, which was first introduced by Longstaff
and Schwartz |74| for the pricing of Bermuda options. Their approach is more efficient,
because it requires only one set of paths to approximate all regression operators.

Numerical resolution of BSDEs can be applied to numerically solve only semilinear
PDEs. More recently, some authors proposed several Monte Carlo numerical schemes for
fully nonlinear PDEs. Theses schemes are largely inspired by those for BSDEs.

In their first formulation of 2BSDEs, Cheridito et al. [22] suggests an adaptation of
BSDEs numerical scheme to the 2BSDEs case. Inspired by Scheme Cheridito et al., Fahim
et al. |[41] gives a new scheme without appealing to the theory of 2BSDEs. With uncertain
volatility models, the pricing PDE derived in Avellaneda et al. [2] is fully nonlinear. In
this particular case, Guyon and Henry-Labordére [47] improves the two precedent schemes
without using the theory of 2BSDE. For path-dependent options, these schemes can also
be applied with some modifications and by using results obtained in Gobet et al. [45].

For the pricing of Bermuda options, Bouchard and Warin [18| suggests to construct
confidence intervals for the true price, one bound from a backward computation and the
other one from a backward-forward computation. Both quantities can be computed at
the same time with almost no additional cost. Their construction can be adopted in
the above probabilistic numerical methods for fully nonlinear PDEs. A small confidence
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interval should reveal a good approximation of the exact price, while a large confidence
interval should be a sign that the estimator was poor.

We implement Scheme Guyon and Henry-Labordére [47] for pricing options, with both
backward computations and backward-forward computations. We also suggest some tech-
niques to improve the scheme in practice. From the numerical test results, we generally
observe that the Monte Carlo method performs well for non-path-dependent options and
can provide prices with good precision for path-dependent ones. Moreover, the pricing
precision depends essentially on the quality of the approximation of conditional expec-
tations by regression. In order to get more precise results with this method, we should
improve the approximation of conditional expectations by using better regression proce-
dure, suitable control variates and/or non-parametric regressions in higher dimension. In
particular, special knowledge of financial products could be used to have better result.

1.6 Work in preparation and future research perspec-

tives

We end the introduction by presenting some work in preparation and future research
topics.

First, we are interested in Sobolev solutions of the obstacle problems associated to partial
integral-differential equations (PIDEs for short). We give probabilistic interpretation for
these solutions via Lipschitz RBSDEs with jumps by developing a stochastic flow method
which has been introduced by Bally and Matoussi in [4] in the study of weak solution of
stochastic partial differential equations. In another work, we prove existence and unique-
ness of a solution to BSDEs with jumps with quadratic growth generators by a fixed point
argument as in Tevzadze [107], and we generalize the results of g-nonlinear expectations
related to BSDEs with jumps in Royer [95] to the case of quadratic growth. Last but not
least, we study the connection between 2BSDEJs and fully nonlinear PIDEs.

For future research, one topic is about 2RBSDEs with one upper obstacle and with
double obstacles. This will allow us to study problems of stochastic games with volatility
uncertainty. Other possibility is to extend 2BSDEJs to the case of quadratic growth
generators and the case with obstacles. For the existence of a solution to 2BSDEs with
quadratic growth and 2RBSDEs, it is also interesting to have another proof based on
approximation techniques similar to those used in the classical BSDEs literature. For that,
we need general monotone convergence theorem and dominated convergence theorem for
quasi-sure stochastic analysis. This approach should allow us to prove the wellposedness
of these classes of 2BSDEs under weaker assumptions. The last topic is about numerical
method. With the new formulation of 2BSDEs and 2BSDEJs in view, it will be interesting
to find purely probabilistic schemes for fully nonlinear PDEs and PIDEs.



CHAPITRE 2

Second Order BSDEs with Quadratic
Growth

2.1 Introduction

In this chapter, we provide an existence and uniqueness result for 2BSDEs with quadratic
growth generators. The outline is as follows. After introducing the framework of 2BSDEs
and the main assumptions on the generator in Section 2.2, we give a stochastic repre-
sentation for the Y-part of a solution in Section 2.3. This representation then implies
the uniqueness of the solution. In Section 2.5, we use the method introduced by Soner,
Touzi and Zhang [101] to construct the solution to the quadratic 2BSDE path by path.
Finally, in Section 2.7, we extend the results of Soner, Touzi and Zhang on the connections
between fully nonlinear PDEs and 2BSDEs to the quadratic case. This chapter is based
on [92].

In this chapter, we propose two very different methods to prove the wellposedness in
the 2BSDE case. First, we recall some notations in Section 2.2 and prove a uniqueness
result in Section 2.3 by means of a priori estimates and a representation of the solution
inspired by the stochastic control theory. Then, Section 2.4 is devoted to the study of
approximation techniques for the problem of existence of a solution. We advocate that
since we are working under a family of non-dominated probability measures, the monotone
or dominated convergence theorem may fail. This is a major problem, and we spend some
time explaining why, in general, the classical methods using exponential changes fail for
2BSDEs. Nonetheless, using very recent results of Briand and Elie [14], we are able to
show a first existence result using an approximation method. Then in Section 2.3, we use a
completely different method introduced by Soner, Touzi and Zhang [101] to construct the
solution to the quadratic 2BSDE path by path. Next, we use these results in Section 2.6
to study an application of 2BSDEs with quadratic growth to robust risk-sensitive control
problems. Finally, in Section 2.7, we extend the results of Soner, Touzi and Zhang [101] on
the connections between fully non-linear PDEs and 2BSDEs to the quadratic case. This
chapter is based on [92].

2.2  Preliminaries

Let Q := {w e C([0,T),RY) : wy = O} be the canonical space equipped with the uniform
norm |lw||, := supg ;< rlw:|, B the canonical process, Py the Wiener measure, F :=
{Fi}o <t < the filtration generated by B, and F* := {.7-}*}0 <1 <7 the right limit of F.
We first recall the notations introduced in [101].
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2.2.1 A first set of probability measures

A probability measure P is said to be a local martingale measure if the canonical process
B is a local martingale under P. By Karandikar [58], tit is known that there exists an
F-progressively measurable process, denoted as fot B,dBg, which coincides with the Itd’s
integral, P — a.s. for all local martingale measure P. In addition, this provides a pathwise
definition of

t
1
(B), := B,BI — 2/ BydB! and @, := limsup- ((B), — (B),_.) ,
0 e\o €

where T denotes the transposition and the lim sup is componentwise.
Let Py denote the set of all local martingale measures IP such that
(B), is absolutely continuous in ¢ and @ takes values in S;°, P — a.s. (2.2.1)
where Sjo denotes the space of all d x d real valued positive definite matrices.

As in [101], we concentrate on the subclass Ps C Py consisting of all probability
measures

t
P* ;= Py o (X*)~! where X := / al2dB,, t € [0,T], Py — a.s. (2.2.2)
0

for some F-progressively measurable process a taking values in S;° and satisfying
fOT lag| ds < +00 Py — a.s. We recall from [102] that every P € Pg satisfies the Blu-
menthal zero-one law and the martingale representation property.

Notice that the set Pg is bigger that the set Pg introduced in [90], which is defined by
Py 1= {IP’O‘ €Pg, a<a<a, Py— a.s.} , (2.2.3)

for fixed matrices ¢ and @ in S;°.

2.2.2 The Generator and the final set Py

Before defining the spaces under which we will be working or defining the 2BSDE itself,
we first need to restrict one more time our set of probability measures, using explicitely
the generator of the 2BSDE.

Following the PDE intuition recalled in the Introduction 1, let us first consider a map
Hi(w,y,2,7) : [0,T] x 2 x R x R x Dy — R, where Dy C R%? is a given subset
containing 0. As expected, we define its Fenchel-Legendre conjugate w.r.t.y by

1
Rl sa) = sup {T0(e) — B2 ) or a € 57°

Y€DH

Fy(y,z) == Fi(y, 2, @) and E* := F}(0,0).

We denote by Dp,, .y the domain of F'in a for a fixed (t,w,y,2), and as in [101] we
restrict the probability measures in Py C Py



2.2. Preliminaries 23

Definition 2.2.1. Py consists of all P € Py such that

ap <@ < ap, dt x dP — a.s. for some ap,ap € S;°, and @, € D00y, dt x dP — a.s..

Remark 2.2.1. The restriction to the set Py obeys two imperatives. First, since F s
destined to be the generator of our 2BSDE, we obviously need to restrict ourselves to
probability measures such that @, € Dp,00). Moreover, we also restrict the measures
considered to the ones such that the density of the quadratic variation of B s bounded to
ensure that B is actually a true martingale under each of those probability measures. This
will be important to obtain a priori estimates.

Finally, we recall

Definition 2.2.2. We say that a property holds Pg-quasi surely (Py — q.s. for short) if
it holds P — a.s. for all P € Py.

2.2.3 Assumptions

We now state our main assumptions on the function F' which will be our main interest in
the sequel

Assumption 2.2.1. (i) Py is not empty, and the domain Dy, .y = Dp, is independent
Of <w7 y7 Z).

(ii) In Dp,, F is F-progressively measurable.
(iii) F is uniformly continuous in w for the || - || norm.

(iv) F is continuous in z and has the following growth property. There exists (a, 3,7) €
Ry x Ry x R such that

Fiy.2)| <a+alyl+2[a"

5 ? , Py — q.s., for all (t,y, z).

(v) Fis Ciny and C? in z, and there are constants v and 0 such that for all (t,y,2),
‘Dyﬁt(% z)| <, ‘Dzﬁt(y, 2)| <r+46 |al/22| ,
D2 Fi(y,2)| <0, Pu — q.s.

Remark 2.2.2. Let us comment on the above assumptions. Assumptions 2.2.1 (i) and
(iii) are taken from [101] and are needed to deal with the technicalities induced by the
quasi-sure framework. Assumptions 2.2.1 (ii) and (iv) are quite standard in the classical
BSDE literature. Finally, Assumption 2.2.1 (v) was introduced by Tevzadze in [107] for
quadratic BSDEs. It allowed him to prove existence of quadratic BSDEs through fized point
arguments. This is this consequence which will be used for technical reasons in Section
2.5.

However, it was also showed in [107], that if both the terminal condition and FO are small
enough, then Assumption 2.2.1 (v) can be replaced by a weaker one. We will therefore
sometimes consider
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Assumption 2.2.2. Let (i), (ii),(iii) and (iv) of Assumption 2.2.1 hold and

(v) We have the following "local Lipschitz" assumption in z, 3u > 0 and a progressively
measurable process ¢ € BMO(Py) such that for all (¢,y,2,2),

Fily,z) — Fi(y,2) — ¢r.a" (2 — Z’>‘ < pa'’?

z— z" (‘61/22‘ +

Pu — q.s.

R ’
~1/2, D

(vi) We have the following uniform Lipschitz-type property in y

ﬁt(ywz) - E(y/az)‘ < C ‘?/ - y,‘ 77DH —4q.s., fOI’ all (yaylaz7t)‘

Furthermore, we observe that our subsequent proof for uniqueness of a solution of our
quadratic 2BSDE only use Assumption 2.2.2.

Remark 2.2.3. Assumption 2.2.1(i) implies that @ always belongs to Dy, .). Moreover,
by Assumption 2.2.1(iv), we have that F) is actually bounded, so the strong integrability

(/15 )

with a constant k € (1,2] introduced in [101] is not needed here.

condition

EF ﬁ’to < +00,

2.2.4 Spaces of interest

We now recall from [101] the spaces and norms which will be needed for the formulation of
2BSDEs and add some specific spaces which are linked to our quadratic growth framework.

For p > 1, L%, denotes the space of all Fr-measurable scalar r.v. £ with
€115, = sup EF[[]7] < +oo.
H PePr

In the case p = +00 we define similarly the space of random variables which are bounded
quasi-surely and take as a norm

s 1= SU oo (P -
H£||LH Pepﬁ;”f”/: (P)

H?, denotes the space of all F™-progressively measurable R%valued processes Z with

T z
< / |a§/22t|2dt)
0

D%, denotes the space of all F*-progressively measurable R-valued processes Y with

||ZH%I;I = sup E < F00.
Pe H

< +00.

Pu — q.s. cadlag paths, and ||V}, := sup EF [ sup |Yi|?
H PePy 0<t<T
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In the case p = 400 we define

Y = su Y, .
¥l =, s ¥l

For each £ € Ly, P € Py and t € [0,7] denote

EF[¢] .= esssup PEED/ €] where Py (th,P) := {}P’, €Py:P =Pon .7-?} :
P €Py (t+,P)
Here Ef[¢] := E¥[¢|F]. Then we define for each p > 1,
P
LY = {5 e Lh €]l < +oo} where [[|, = sup E" {esssupp (]EtHPHfH) 1 :
H H PePy 0<t<T

In the case p = 400 the natural generalization of the norm LY, is the norm L% introduced
above. Therefore, we will use the latter in order to be consistent with the notations of
[101].

Finally, we denote by UC,(£2) the collection of all bounded and uniformly continuous
maps ¢ : @ — R with respect to the ||| _-norm, and we let

LY, := the closure of UC(€2) under the norm H'HLZ’ for every p > 1.

2.2.4.1 The space BMO(Py) and important properties

It is a well known fact that the Z component of the solution of a quadratic BSDE with
a bounded terminal condition belongs to the so-called BMO space. Since this link will
be extended and used intensively throughout the paper, we will recall some results and
definitions for the BMO space, and then extend them to our quasi-sure framework. We
first recall (with a slight abuse of notation) the definition of the BMO space for a given
probability measure P.

Definition 2.2.3. BMO(P) denotes the space of all F+-progressively measurable R -valued

processes Z with
T
E? { / @) Z,2dt

where Ty is the set of F; stopping times taking their values in [0,T).

12l gmoe) = sup
TeT{d

| <o
00

We also recall the so called energy inequalities (see [59] and the references therein). Let
Z € BMO(P) and p > 1. Then we have

T p
P ~1/2 7 |2 | ( 2 >P
E K/O [a/?Z,| ds)} <29 (41212, ) - (2.2.4)

The extension to a quasi-sure framework is then naturally given by the following space.
BMO(Py) denotes the space of all F*-progressively measurable R-valued processes Z
with

1 Z]lgnory) = SUP 1 Z][gnmoge) < o0
PePy
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We say that [; Z,dB, is a BMO(Py) martingale if Z € BMO(Py).

The main interest of the BMO spaces is that if a process Z belongs to it, then the
stochastic integral fo ZsdB; is a uniformly integrable martingale, which in turn allows
us to use it for changing the probability measure considered via Girsanov’s Theorem.
The two following results give more detailed results in terms of L" integrability of the
corresponding Doléans-Dade exponentials.

Lemma 2.2.1. Let Z € BMO(Py). Then there exists r > 1, such that

e[ 2))]

Proof. By Theorem 3.1 in [59], we know that if || Z]|z\or) < ®(r) for some one-to-one
function ® from (1, 4o00) to R, then € ([; Z,dBy) is in L"(IP). Here, since Z € BMO(Py),
the same 7 can be used for all the probability measures. ]

Lemma 2.2.2. Let Z € BMO(Py). Then there exists r > 1, such that for all t € [0,T]

& (Jy z.an,) o

sup E; T < F00.
reru |\ & (fy Zan,)
Proof. This is a direct application of Theorem 2.4 in [59] for all P € Py. (]

We emphasize that the two previous Lemmas are absolutely crucial to our proof of
uniqueness and existence. Besides, they will also play a major role in Chapter 3.

2.2.5 The definition of the 2BSDE

Everything is now ready to define the solution of a 2BSDE. We shall consider the following
2BSDE, which was first defined in [101]

T T
Y, =€ — / F(Y,, Z,)ds — / ZydB, + Kp — K, 0<t<T, Py —qs.  (2.25)
t t

Definition 2.2.4. We say (Y, Z) € DY x H% is a solution to 2BSDE (2.2.5) if :

o Yr =& Py —q.s.

o For all P € Py, the process K* defined below has nondecreasing paths P — a.s.

t t
KF ::Yo—Yt+/ FS(Y;,ZS)ds+/ ZdB,, 0<t<T, P—as.  (2.2.6)
0 0

o The famuly {KP,IP’ € PH} satisfies the minimum condition

KF = essinf? EF [Kﬂ L0<t<T, P—as., VP e Py. (2.2.7)
P Py (t+,P)
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Moreover if the family {KP,IP’ € PH} can be aggregated into a universal process K, we
call (Y, Z, K) a solution of 2BSDE (2.2.5).

Remark 2.2.4. Let us comment on this definition. As already explained, the PDE intu-
itton leads us to think that the solution of a 2BSDE should be a supremum of solution of
standard BSDEs. Therefore for each P, the role of the non-decreasing process K* is in
some sense to "push” the process Y to remain above the solution of the BSDE with termi-
nal condition & and generator F under P. In this regard, 2BSDEs share some similarities
with reflected BSDEs.

Pursuing this analogy, the minimum condition (2.2.7) tells us that the processes K* act
in a "minimal” way (exactly as implied by the Skorohod condition for reflected BSDEs),
and we will see in the next Section that it implies uniqueness of the solution. Besides, if the
set Py was reduced to a singleton {P}, then (2.2.7) would imply that K¥ is a martingale
and a non-decreasing process and is therefore null. Thus we recover the standard BSDE
theory.

Finally, we would like to emphasize that in the language of G-expectation of Peng [89)],
(2.2.7) is equivalent, at least if the family can be aggregated into a process K, to saying
that —K is a G-martingale. This link has already observed in [103] where the authors
proved the G-martingale representation property, which formally corresponds to a 2BSDE
with a generator equal to 0.

2.3 A priori estimates and uniqueness of the solution

Before proving some a priori estimates for the solution of the 2BSDE (2.2.5), we will first
prove rigorously the intuition given in the Introduction 1 saying that the solution of the
2BSDE should be, in some sense, a supremum of solution of standard BSDEs. Hence,
for any P € Py, F-stopping time 7, and F,-measurable random variable £ € L>*(P), we
define (yf, 2F) := (4% (7, ), 25(7, €)) as the unique solution of the following standard BSDE
(ex1stence and uniqueness have been proved under our assumptions by Tevzadze in [107])

=& - / (Ysr %) —/ 2ldBs, 0<t <7, P—a.s. (2.3.1)
t

First, we introduce the following simple generalization of the comparison Theorem proved
in [107| (see Theorem 2).

Proposition 2.3.1. Let Assumptions 2.2.2 hold true. Let &' and &2 € L°°(P) for some
probability measure P, and V¢, i = 1,2 be two adapted, cadlag nondecreasing processes
null at 0. Let (Y, Z') € D®(P) x H3(P), i = 1,2 be the solutions of the following BSDE

T T
—¢ / F(Y?, Zl)ds—/ ZidB, + Vi — Vi, P—as., i=1,2,
t t
respectively. If E1 > €2, P —a.s. and V' — V2 is nondecreasing, then it holds P — a.s. that

for allt € 0,T]
AR
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Proof. First of all, we need to justify the existence of the solutions to those BSDEs.
Actually, this is a simple consequence of the existence results of Tevzadze [107| and for
instance Proposition 3.1 in [76]. Then, the above comparison is a mere generalization of
Theorem 2 in [107]. o

We then have similarly as in Theorem 4.4 of [101] the following results which justifies
the PDE intuition given in the Introduction.

Theorem 2.3.1. Let Assumptions 2.2.2 hold. Assume & € LY and that (Y, Z) € DY xH%
is a solution to 2BSDE (2.2.5). Then, for any P € Py and 0 < t; <ty < T,

= esssup’ yﬁ(tg,l@), P—a.s. (2.3.2)
P ePy (tf P)

Y,

1

Consequently, the 2BSDE (2.2.5) has at most one solution in D3 x H?,.

Before proceeding with the proof, we will need the following Lemma which shows that in
our 2BSDE framework, we still have a deep link between quadratic growth and the BMO
spaces.

Lemma 2.3.1. Let Assumption 2.2.2 hold. Assume £ € LY and that (Y,Z) € DY x H3,
is a solution to 2BSDE (2.2.5). Then Z € BMO(Py).

Proof. Denote 7 the collection of stopping times taking values in [0,7] and for each
P € Py, let (7,)n>1 be a localizing sequence for the P-local martingale [; Z,dB,. By
[t6’s formula under P applied to e~¥¥*, which is a cadlag process, for some v > 0, we have
for every 7 € 7"

2 TP
v / " Y
2 T

P P
2 Tn Tn ~
ai/QZt‘ dt = e W — e — ’// e Vi dKT + V/ e (Y, Zy)dt
ng T T
+ I// e_VYti thBt — Z B_VYS — €_VY57 + VAYSB_Vysi.

T<s<TE

Since Y € D%, K is nondecreasing and since the contribution of the jumps is negative
because of the convexity of the function z — e "%, we obtain with Assumption 2.2.1(iv)

o
[
T

2
v

P
—EF

2
5 ay/ QZt‘ dt

< oW llnge (1 + T (a + 0 ||Y||D;,°>>

™ 2
+ gEE} [/ eV dt

~1/2
at Zt

By choosing v = 2v, we then have

P

T’l’L
/ e~ 27Vt
-

RV 1 .
EP a2z, at| < =Ml (1 + 29T (a +0 HYHD%O» :

v
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Finally, by monotone convergence and Fatou’s lemma we get that

1/2

“[f

2 1
dt] <2 (1420 (o BV Iy ) )

which provides the result by arbitrariness of P and 7. ]

Proof. [Proof of Theorem 2.3.1] The proof follows the lines of the proof of Theorem 4.4
in [101], but we have to deal with some specific difficulties due to our quadratic growth

assumption. First (2.3.2) implies that

Y, = esssup’ yf/(T, ), t€[0,T], P—a.s. for all P € Py,
P Py (t+,P)

and thus is unique. Then, since we have that d(Y,B), = Z,d(B),, Py — q.s., Z is
also unique. We now prove (2.3.2) in three steps. Roughly speaking, we will obtain

one inequality using the comparison theorem, and the other one by using the minimal
condition (2.2.7).

(i)

Fix 0 <t; <ty <T and P € Py. For any P’ € Py (t],P), we have

to R t2 / ’ ,
1@:342_/ FS(YS,ZS)ds—/ ZdB,+ K — KF |ty <t <ty, P —a.s.
t t

and that K¥ is nondecreasing, P’ —a.s. Then, we can apply the comparison Theorem
2.3.1 under P’ to obtain Y;, > yf (t2,Y,), P’ — a.s. Since P' = P on F,", we get

Y, > yt}P{ (t2,Y3,), P — a.s. and thus

Vi > esssup’ o, (12, Ya), P - aus.
P Py (t],P)

We now prove the reverse inequality. Fix P € Ppy. Let us assume for the moment
that

/ / / p
Cffp = esssup’ B [(KE - KE) ] < 400, P—a.s., forallp > 1.
P ePg(t],P)

For every P’ € Py (t*,P), denote
0Y =Y — o (12, V) and 62 = Z — 2F (1, Yy,).

By the Lipschitz Assumption 2.2.2(vi) and the local Lipschitz Assumption 2.2.2(v),
there exist a bounded process A and a process n with

~1/2 p
at/ 2P

1/2
ay' "z t

_I_

|7 <M( ),P,—a.s.
such that

to t2 / / ,
5Y, :/ (AOY; + (ns + bs)ar 26 Zy) ds—/ §ZdBs+ K;, —K{ , t <ts, P —a.s.
t t
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Define for t; <t <ty

t
M, := exp (/ )\sds) , P —a.s.
t1

Now, since ¢ € BMO(Py), by Lemma, 2.3.1, we know that the P’-exponential martin-
gale &£ ( Jo(@s + n5)as Y 2dBS> is a P’-uniformly integrable martingale (see Theorem
2.3 in the book by Kazamaki [59]). Therefore we can define a probability measure
Q', which is equivalent to P, by its Radon-Nykodym derivative

/

d r A,
d% =€ (/0 (6 +15))3, ”de3> '

Then, by Itd’s formula, we obtain, as in [101], that

, to ’ ’ / /
5Y;, = E2 [/ MtdKF] <E2 { sup (M) (K, — K, >] ;
t1

t1 <t <t

since K is nondecreasing. Then, since A\ is bounded, we have that M is also
bounded and thus for every p > 1

Elfl { sup (Mt)p:| <Gy, P —as. (2.3.3)

t1 <t <t

Since (7 + ¢)as /* is in BMO(Py), we know by Lemma 2.2.1 that there ex-
ists » > 1, independent of the probability measure considered, such that
£ ( 1T (s +n5)a;1/2d35) € L7, Then it follows from the Holder inequality and
Bayes Theorem that

e LG 0 ) ey

Ef, [5 ( 0 (s + ns)agl/Qstﬂ h<t<te

<C <CE’4‘1_1> a (EE’; [Kf: _ Kgﬂ ) i

By the minimum condition (2.2.7) and since P' € Py (t*,P) is arbitrary, this ends
the proof.

It remains to show that the estimate for C’E’p holds for p > 1. By definition of the
family { K¥,IP € Py }, we have

2 p
atl/?Zt‘ dt) D

/ / '\ P / to
B (k5 - KL <c (1+ 1Y B + €117 + EE, K/
t1

, to p
+ CE;, [(/ thBt> ]
t1
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Thus by the energy inequalities for BMO martingales and by Burkholder-Davis-
Gundy inequality, we get that

/ / '\ P 2
B (K - K5 )] <O (1+1YIBg + €1 + 121300, + 11 21B00, ) -
Therefore, we have proved that

’ / I\ P
sup EF [(Kg —Kg) } < +00.
P Py (t],P)

Then we proceed exactly as in the proof of Theorem 4.4 in [101]. (]

Remark 2.3.1. It is interesting to notice that in contrast with standard quadratic BSDFEs,
for which the only property of BMO martingales used to obtain uniqueness is the fact
that their Doléans-Dade exponential is a uniformly integrable martingale, we need a lot
more in the 2BSDE framework. Indeed, we use extensively the energy inequalities and
the ezistence of moments for the Doléans-Dade exponential (which is a consequence of the
so called reverse Hélder inequalities, which is a more general version of Lemma 2.2.1).
Furthermore, we will also use the so-called Muckenhoupt condition (which corresponds
to Lemma 2.2.2, see [59] for more details) in both our proofs of ewistence. This seems
to be directly linked to the presence of the non-decreasing processes K* and raises the
question about whether it could be possible to generalize the recent approach of Barrieu
and El Karoui [6], to second-order BSDEs. Indeed, since they no longer assume a bounded
terminal condition, the Z part of the solution is no-longer BMO. We leave this interesting
but difficult question to future research.

We conclude this section by showing some a priori estimates which will be useful in the
sequel. Notice that these estimates also imply uniqueness, but they use intensively the
representation formula (2.3.2).

Theorem 2.3.2. Let Assumption 2.2.2 hold.

(1) Assume that & € LY and that (Y, Z) € DY x HY, is a solution to 2BSDE (2.2.5).
Then, there exists a constant C' such that

1Y lloge + 12 2st0p < € (1+ €l )

w1, sw  BE[(KF - KD) <O (14 €l ).

PePy, T€TT

(ii) Assume that & € Ly and that (Y, Z") € DY x H3, is a corresponding solution to
9BSDE (2.2.5), i = 1,2. Denote 66 := &' — €2, 6Y :=Y' — Y2, 67 := Z' — 72 and
SK® := KP' — KP2. Then, there exists a constant C' such that

10 [Ipee < C |08 ]|
18210 < C 1660 (1+ 1€ s + €%, )

Vp>1, sup EF { sup . léKf}p} <C HfHE;;O <1 + H£1”E;§ + ngHE?) :

PePy 0<t<
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Proof.

(i) By Theorem 2.3.1 we know that for all P € Py and for all ¢ € [0, 7] we have

/
Y, = esssup y, P—a.s.
P ePpy (t+,P)

Then by Lemma 1 in [12], we know that for all P € Py

8T __
57| < Stog (5 6(1€D) . where vi(z) :ZeXp(we . 1+76BT93>-

Thus, we obtain

—1
T el

and by the representation recalled above, the estimate of ||Y||D? is obvious.

By the proof of Lemma 2.3.1, we have now

CllY lIpee
1Zssom < Ce™ 9 (1415 ) <€ (14 €y )

Finally, we have for all 7 € 7, for all P € Py and for all p > 1, by definition

p

T T
(Ky — KBy = (YT —¢ +/ Ft(Yy,Zt)dt+/ thBt) :

Therefore, by our growth Assumption 2.2.1(iv)

4l 2y

T
B [(F - K27) < € (14 el + IV + 5| ([

+ CEL K / ' thBt)p}

<C (1416125 + 121 s0m + 12 Brom)

C (1+l¢lt,)

where we used again the energy inequalities and the BDG inequality. This provides
the estimate for K* by arbitrariness of 7 and P.

)

With the same notations and calculations as in step (ii) of the proof of Theorem
2.3.1, it is easy to see that for all P € Py and for all ¢ € [0, T, we have

oyf = B [Mr6€] < C||6€]ly .

since M is bounded and we have (2.3.3). By Theorem 2.3.1, the estimate for 0Y
follows.
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Now apply Ito’s formula under a fixed P € Py to \5Y!2 between a given stopping

time 7 € 7" and T

T
E? {IéYAQ +/

T

T
dt} <EE {I6§|2—2/ oV (B}, 2)) - Fv?, 23) dt}

T
+ 2E7 { / 53@0[(51(}”)] :

Then, we have by Assumption 2.2.1(iv) and the estimates proved in (i) above

T 2 2 ; ;
EE [/ dt} <C ”5Y||]D)?{° (1 + Z HYZHD;; + HZZHBMO(PH)>
i i—1

P,2 P,2
‘KT K"

a/%527,

|

— K;l?vl +

1106 + 216l B |
<16l (1411 g + 1€805)

which implies the required estimate for 7.

Finally, by definition, we have for all P € Py and for all t € [0, 7]

t t
SKF = 6Y, — 0V, + / FY! ZY) — F(Y2, 2%)ds + / 8Z,dB,.
0 0

By Assumptions 2.2.2(iv) and (vi), it follows that

T
sup  [6K7| < (||5Y||Doo / al?s2,| (1+ |a 1/2Z1|+\A1/2Z2\)d>

0<t<T
/ 0ZsdBs

and by Cauchy-Schwarz, BDG and energy inequalities, we see that
T 2 2 ak
E? [ sup \6Kf’]p} < CFF K [ (1+ ez + ez ds> }
0

o<t T
T ) P73
x P K/ [REYA ds> }
0

T p/2
+C<H(55HP%@+EP (/ |a;/2523\2ds> ])

<C e (1+ €% + ll€less) -

sup
0<t<T

Y

1]

Remark 2.3.2. Let us note that the proof of (i) only requires that Assumption 2.2.2(iv)
holds true, whereas (i) also requires Assumption 2.2.2(v) and (vi).
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2.4 2BSDEs and monotone approximations

This Section is devoted to the study of monotone approximations in the 2BSDE framework.
We start with the simplest quadratic 2BSDEs, which allows us to introduce a quasi-
sure version of the entropic risk measure. In that case, we obtain existence through
the classical exponential change. Then, we show that for more general generators, this
approach usually fails because of the absence of a general quasi-sure monotone convergence
Theorem. Finally, we prove an existence result using another type of approximation which
has the property to be stationary.

2.4.1 Entropy and purely quadratic 2BSDEs

Given £ € L3, we first consider the purely quadratic 2BSDE defined as follows
T, ) T
Y, = —¢ +/ o) [al?Z,|" ds — / ZdB,+ Ky — K{, 0<t<T, Py—qs. (2.4.1)
t t
Then we use the classical exponential change of variables and define

t
Y, =, Z,:= VY Zy, ?T = fy/ stKf - Z eYs — Yo — ’yAY;GVYS‘.

0 0<s<t

At least formally, we see that (Y, Z, FP) verifies the following equation
- e T_ —P —P
Y,=e 7 — ZdBs+ Ky —K,, 0<t<T, P—a.s VP e Py (2.4.2)
t

which is in fact a 2BSDE with generator equal to 0 (and thus Lipschitz), provided that
the familly (f]P) satisfies the minimum condition (2.2.7). Thus the purely quadratic

PeP
2BSDE (2.4.1) is linked to the 2BSDE with Lipschitz generator (2.4.2), which has a unique

solution by Soner, Touzi and Zhang [101]. We now make this rigorous.

Proposition 2.4.1. The 2BSDE (2.4.1) has a unique solution (Y, Z) € DY x H% given
by

1 /
Y,=—In ( esssup’ E; [e’”ﬂ) , P—a.s., t€]0,T], for all P € Pg.

v P €Py (t+,P)

Proof. Uniqueness is a simple consequence of Theorem 2.3.1. In the following, we prove
the existence in 3 steps.

Step 1: Let (Y, Z) € D% x HZ be the unique solutinon to the 2BSDE (2.4.2) and K be
the correponding non-decreasing processes. In particular, we know that

Y, = esssup’ EJ [e"yg] , P—a.s.,
P Py (t+,P)

which implies that Y € D%, since
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We can therefore make the following change of variables
1= 1Z
Y,:=—In (Yt) VARES i
Y 7Yy
Then by Tto’s formula, we can verify that the pair (Y, Z) € D3y x H satisfies (2.4.1) with

S R 1 AR
KF Z:/ TdKIj — Z —log 1 - — 5 .
0 ’}/YS Y

0<s <t S

Moreover, notice that K¥ is non-decreasing with K = 0.

Step 2: Denote now (yF, 2F) the solutions of the standard BSDEs corresponding to the
2BSDE (2.4.1) (existence and uniqueness are ensured for example by [107]). Furthermore,
if we define

U= =
then we know that (7*,2z%) solve the standard BSDE under P corresponding to (2.4.2).
Due to the monotonicity of the function z — In(x) and the representation for Y’
Y, = esssup’ 7 = esssup’ Ef/ [e"yé] , P—a.s.,
P Py (tt,P) P Py (tT,P)

we have the following representation for Y

1 /
Y, = esssup’ ¢y} = —In [ esssup® E} [e"yg] , P—a.s.
P ePpy (t+,P) g P Py (t+,P)

Step 3: Finally, it remains to check the minimum condition for the family of non-
decreasing processes {K P}. Since the purely quadratic generator satisfies the Assumption
2.2.1, we can derive the minimum condition from the above representation for Y exactly
as in the proof of Theorem 2.4.1 in Subsection 2.4.3. ]

Thanks to the above result, we can define a quasi-sure (or robust) version of the entropic
risk measure under volatility uncertainty

1 ’
ey (€)= —In| esssup’ E; [e7] |,

Y P ePy (t+,P)
where the parameter v stands for the risk tolerance. We emphasize that, as proved in
[102] (see Proposition 4.11), the solution of (2.4.1) is actually F-measurable, so we also
have

1 /

e, (€)== =1In | esssup’ E; [e "] |,

Y P ePy (t,P)

which in particular implies that

ey0(8) = Ly (sup E” [e-’yf}) :

fy PePy

More generally, by the same exponential change and arguments above, we can also prove

that there exists a unique solution to 2BSDEs with terminal condition £ € L% and the

2
following type of quadratic growth generators ZL\tl/ng(t,w) + h(t,w) — 3 ’ai/gz‘ where ¢

and h are assumed to be bounded, adapted and uniformly continuous in w for the ||-|| .
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2.4.2 Why the exponential transformation may fail in general?

Coming back to Kobylanski [63], we know that the exponential transformation used in
the previous subsection is an important tool in the study of quadratic BSDEs. However,
unlike with a purely quadratic generator, in the general case the exponential change does
not lead immediately to a Lipschitz BSDE. For the sake of clarity, let us consider the
2BSDE (2.2.5) and let us denote

t
ni=e" Y, =" Zy:=7Y,Z,, f]f = ”y/ Y. dK: — Z Y —eYem —yAY,eem
0

0<s<t

Then we expect that, at least formally, if (Y, Z) is a solution of (2.2.5), then (Y, Z) is a
solution of the following 2BSDE

~1/27 2

_ /

T as' "4 T

_ — [~ (1087, Z, S Zs ~ S

Yt=n—7/ V. Fs<0g L ) + ds—/ ZdB+Ky—K,. (2.4.3)
t 7Y 27Y t

gl

Let us now define for (¢,y,z) € [0,7] x R% x R?,

~1/2

2
a, z‘

Gi(w.y.2) =y | Fy (w, loﬁ’ i) +
YooY 2vy

Then, despite the fact that the generator G is not Lipschitz, it is possible, as shown
by Kobylanski |63], to find a sequence (G™),, >0 of Lipschitz functions which decreases
to G. Then, it is possible, thanks to the result of [101] to define for each n the solution
(Y™, Z™) of the corresponding 2BSDE. The idea is then to prove existence and uniqueness
of a solution for the 2BSDE with generator G (and thus also for the 2BSDE (2.2.5)) by
passing to the limit in some sense in the sequence (Y, Z™).

If we then follow the usual approach for standard BSDEs, the first step is to argue
that thanks to the comparison theorem (which still holds true for Lipschitz 2BSDEs,
see [101]), the sequence Y™ is decreasing, and thanks to a priori estimates that it must
converge Py — q.s. to some process Y. And this is exactly now that the situation becomes
much more complicated with 2BSDEs. Indeed, if we were in the classical framework,
this convergence of Y" together with the a priori estimates would be sufficient to prove
the convergence in the usual H? space, thanks to the dominated convergence theorem.
However, in our case, since the norms involve the supremum over a family of probability
measures, this theorem can fail (we refer the reader to Section 2.6 in [90] for more details).
Therefore, we cannot obtain directly that

T
sup EF {/ |y —Yt|2dt} — 0,
PePy 0 n—+00
which is a crucial step in the approximation proof.

This is precisely the major difficulty when considering the 2BSDE framework. The only
monotone convergence Theorem in a similar setting has been proved by Denis, Hu and
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Peng (see [28]). However, one need to consider random variables X™ which are regular
in w, more precisely quasi-continuous, that is to say that for every £ > 0, there exists an
open set O° such that the X" are continuous in w outside O° and such that

sup P(O°) < e.
PePy
Moreover, the set of probability measures considered must be weakly compact. This
induces several fundamental problems when one tries to apply directly this Theorem to

(Y™")n>o0

(1) First, if we assume that the terminal condition & is in UC,(2), since the generator
F (and thus G™) are uniformly continuous in w, we can reasonably expect to be able to
prove that the Y™ will be also continuous in w, P — a.s., for every P € Py. However, this
s clearly not sufficient to obtain the quasi-continuity. Indeed, for each P, we would have
a P-negligible set outside of which the Y™ are continuous in w. But since the probability
measures are mutually singular, this does not imply the existence of the open set of the
definition of quasi-continuity.

We moreover emphasize that it s a priori a very difficult problem to show the quasi-
continuity of the solution of a 2BSDE, because by definition, it is defined P — a.s. for
every P, and the quasi-continuity is by essence a notion related to the theory of capacities,
not of probability measures.

(ii) Next, it has been shown that if we assume that the matrices a® and a* appearing
in Definition 2.2.1 are uniform in P, then the set Py is only weakly relatively compact.
Then, we are left with two options. First, we can restrict ourselves to a closed subset of
P, which will therefore be weakly compact. However, as pointed out in [102], it is not
possible to restrict arbitrarily the probability measures considered. Indeed, since the whole
approach of [101] to prove existence of Lipschitz 2BSDEs relies on stochastic control and
the dynamic programming equation, we need the set of processes o in the definition of Pg
(that is to say our set of control processes) to be stable by concatenation and bifurcation
(see for instance Remark 3.1 in [17]) in order to recover the results of [101]. And it is not
clear at all to us whether it is possible to find a closed subset of Py satisfying this stability
properties.

Otherwise, we could work with the weak closure of Py. The problem now is that the
probability measures in that closure no longer satisfy necessarily the martingale represen-
tation property and the 0-1 Blumenthal law. In that case (since the filtration F will only
be quasi-left continuous), and as already shown by El Karoui and Huang [32], we would
need to redefine a solution of a 2BSDE by adding a martingale orthogonal to the canonical
process. However, defining such solutions is a complicated problem outside of the scope of
this paper.

We hope to have convinced the reader that because of all the reasons listed above, it
seems difficult in general to prove existence of a solution to a 2BSDE using approximation
arguments. However, the situation is not hopeless. Indeed, in [90], the author uses such
an approach to prove existence of a solution to a 2BSDE with a generator with linear
growth satisfying some monotonicity condition. The idea is that in this case it is possible
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to show that the sequence of approximated generators converges uniformly in (y, z), and
this allows to have a control on the difference |Y;* —Y;| by a quantity which is regular
enough to apply the monotone convergene Theorem of [28|. Nonetheless, this relies heavily
on the type of approximation used and cannot a priori be extended to more general cases.

Notwithstanding this, we will show an existence result in the next subsection using an
approximation which has the particularity of being stationary, which immediately solves
the convergence problems that we mentioned above. This approach is based on very recent
results of Briand and Elie [14] on standard quadratic BSDEs.

2.4.3 A stationary approximation

For technical reasons that we will explain below, we will work throughout this subsection
under a subset of Ppy, which was first introduced in [103]. Namely, we will denote by =
the set of processes « satisfying

“+o00 400

(W) =) 0 g (W) Lir, () ) (1),
n=0 =1
where for each i and for each n, o™ is a bounded deterministic mapping, 7, is an F-
stopping time with 7o = 0, such that 7,, < 7,41 on {7, < +o0}, inf{n > 0, 7, = 400} <
+00, T, takes countably many values in some fixed Iy C [0,7] which is countable and
dense in [0, 7] and for each n, (EI"); >1 C Fr, forms a partition of €.

We will then consider the set Py := {P* € Py, o € Z}. As shown in [102], this set
satisfies the right stability properties (already mentioned in the previous subsection) so
much so that the Lipschitz theory of 2BSDEs still holds when we are working Py — q.S.
Notice that for the sake of simplicity, we will keep the same notations for the spaces
considered under ﬁH or Py. Let us now describe the Assumptions under which we will
be working

Assumption 2.4.1. Let Assumption 2.2.2 holds, with the addition that the process ¢ in
(v) is bounded and that the mapping F is deterministic.

The main result of this Section is then

Theorem 2.4.1. Let Assumption 2.4.1 hold. Assume further that & € L3, that it is
Malliavin differentiable Pu — q.s. and that its Malliavin derivative is in D$. Then the
2BSDE (2.2.5) (considered Py —q.s.) has a unique solution (Y, Z) € D% x H2,. Moreover,
the family {K®, P € ﬁH} can be aggregated.

Proof. Uniqueness follows from Theorem 2.3.1, so we concentrate on the existence part.

Let us define the following sequence of generators

lz| An
]
Then for each n, F" is uniformly Lipschitz in (y, z) and thanks to Assumption 2.4.1, we

can apply the result of [101] to obtain the existence of a solution (Y, Z") to the 2BSDE

F'(y,z,a) = F, (y, z,a) , and ]?’f(y,z) = F'(y, z,ap).

T T
Y :g_/ Fg(ysn,zg)ds—/ ZMBy+ K" — K", P—a.s., for all P € Py. (2.4.4)
t t
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Moreover, we have for all P € Py and for all ¢ € [0, 7]

Y = esssup’ u" P —a.s., (2.4.5)
P €Py (t+,P)

Pn
)

is the unique solution of the Lipschitz BSDE with generator F™ and

ZIP’,n)

where (y
terminal condition ¢ under P. Now, using Lemma 2.1 in [14] and its proof (see Remark
2.4.1 below) under each P € 75H, we know that the sequence ¥ is actually stationary.
Therefore, by (2.4.5), this also implies that the sequence Y™ is stationary. Hence, we
immediately have that Y" converges to some Y in Dj. Moreover, we still have the
representation

Y, = esssup’ y;,P—a.s., (2.4.6)

P’ Py (t+,P)

Now, identifying the martingale parts in (2.4.4), we also obtain that the sequence Z"
is stationary and thus converges trivially in H% to some Z. For n large enough, we thus
have

~ ~

FYS 20 = B (Y, Zy).

Besides, we have by Assumption 2.4.1

2
<o+ BV + % @'z,

~

/9|2 A
Ftn(}/;’Zt) 1/2| t|

a't—7
2]

‘2 5 j)VH —(.S.

<Oz+ﬁ\Yt\+%

Since (Y,Z) € Dy x H?, we can apply the dominated convergence theorem for the
Lebesgue measure to obtain by continuity of F' that

T

T
/ an(}/;ny Z:)ds - FS(}/:% Zs)ds77DH —(q.s.
0

n—-4o0o 0

Using this result in (2.4.4), this implies necessarily that for each P, K®* converges P—a.s.
to a non-decreasing process K*. Now, in order to verify that we indeed have obtained the
solution, we need to check if the processes K* satisfy the minimum condition (2.2.7). Let
P e Py, t € [0,T] and P’ € Py(tT,P). From the proof of Theorem 2.3.1, we have with
the same notations

/ T / / / /
oY, = EY [/ MtdKf} > E2 L inf (M,)(KE — KF )}
t

<s<T

7 & (4 00+ i MaB.) | it (KT~ K7)

t<s<T ]

B (& (Ji (65 +nas aB, )|

For notational convenience, denote & := € (fot(gés + ns)5§1/2d38>. Let 7 be the number
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given by Lemma 2.2.2 applied to £. Then we estimate

E, [K%’ll - Kf"}

By following the arguments of the proof of Theorem 2.3.1 (ii) and (iii), we then deduce
the minimum condition. Finally, the fact that the processes K* can be aggegated is a
direct consequence of the general aggregation result of Theorem 5.1 in [103]. (]

Remark 2.4.1. We emphasize that the result of Lemma 2.1 in [1]] can only be applied
when the generator is deterministic. However, even though F' is indeed deterministic, F
is not, because a is random. Nonetheless, given the particular form for the density of
the quadratic variation of the canonical process we assumed in the definition of 75H, we
can apply the result of Briand and Elie between the stopping times and on each set of the
partition of 1, since then a and thus F is indeed deterministic.

2.5 A pathwise proof of existence

We have seen in the previous Section that it is usually extremely difficult to prove existence
of a solution to a 2BSDE using monotone approximation techniques. Nonetheless, we have
shown in Theorem 2.3.1 that if a solution exists, it will necessarily verify the representation
(2.2.7). This gives us a natural candidate for the solution as a supremum of solutions to
standard BSDEs. However, since those BSDEs are all defined on the support of mutually
singular probability measures, it seems difficult to define such a supremum, because of the
problems raised by the negligible sets. In order to overcome this, Soner, Touzi and Zhang
proposed in [101] a pathwise construction of the solution to a 2BSDE. Let us describe
briefly their strategy.

The first step is to define pathwise the solution to a standard BSDE. For simplicity, let
us consider first a BSDE with a generator equal to 0. Then, we know that the solution
is given by the conditional expectation of the terminal condition. In order to define this
solution pathwise, we can use the so-called regular conditional probability distribution
(r.p.c.d. for short) of Stroock and Varadhan [104]. In the general case, the idea is similar
and consists on defining BSDEs on a shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus
obtained, and the decomposition (2.2.5) is obtained through a non-linear Doob-Meyer
decomposition. Our aim in this section is to extend this approach to the quadratic case.
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2.5.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in
[101].

e For 0 <t < T, denote by Qf := {w eC ([t, T],]Rd) , w(t) = O} the shifted canonical
space, B! the shifted canonical process, P} the shifted Wiener measure and F* the
filtration generated by BY. We define the density process a* of the quadratic variation
process (B').

e For 0 < s <t < T andw € O, define the shifted path w! € Q*

Wi = w, —wy, Vr e [t,T).

eFor 0 <s<t<Tand w e O, w € O define the concatenation path w ®, w € Q°
by
(W@ 0)(1) = wyplis (1) + (we + &)1y (r), Vr € [s,T].

e For 0 < s <t < T and a Fj-measurable random variable £ on §2°, for each w € Q°,
define the shifted Ft-measurable random variable % on Q' by

(@) = E(w @ @), Yo € Q.

Similarly, for an F*-progressively measurable process X on [s,T] and (¢t,w) € [s,T] X
Q*, the shifted process { X, r € [t,T|} is F'-progressively measurable.

e For a F-stopping time 7, the r.c.p.d. of P (noted P¥) induces naturally a probability
measure P (that we also call the r.c.p.d. of P) on Fi*) which in particular satisfies
that for every bounded and Fp-measurable random variable £

E [¢] = E* [€7].

e We define similarly as in Section 2.2 the set Pk, by restricting to the shifted canonical
space Q', and its subset PY.

e Finally, we define our "shifted" generator
F(@,y, 2) i= Fy(w ©, 0, y, z,a.(@)), ¥(s,®) € [t,T] x Q.

Notice that thanks to Lemma 4.1 in [102], this generator coincides for P-a.e. w with the
shifted generator as defined above, that is to say

Fi(w®w,y, z,as(w ®; 0)).

The advantage of the chosen "shifted" generator is that it inherits the uniform continuity
in w under the L norm of F.
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2.5.2 Existence when ¢ is in UCy(Q2)

As mentioned at the beginning of the Section, we will need to prove some measurability and
regularity on our candidate solution. For this purpose, we need to assume more regularity
on the terminal condition. When ¢ is in UCy(€2), by definition there exists a modulus of
continuity function p for € and F in w. Then, forany 0 <t < s < T, (y, 2) € [0, T] xRxR?
and w,w' € Q, @ € O

£ (@) =€ (@) <p(lw=ol,) and |FP (@,y,2) = FP¥ (@,9,2)| < p(lw=ll,),
where [|wl], 1= supy ¢, < |ws|, 0 <t LT
To prove existence, as in [101], we define the following value process V; pathwise:

Vi(w) := sup Y™ (T,€), for all (t,w) € [0,T] x Q, (2.5.1)

PPy

where, for any (t;,w) € [0,T] x Q, P € Pj}, ta € [t1,T], and any JF,-measurable
n € L (P), we denote Y, " (tz, ) := y, ", where (y"1« zF4«) is the solution of the
following BSDE on the shifted space Q" under P

to N to
yoivw — e —/ El (gt z0he) dr —/ EedBit s € [ty L], P—as. (2.5.2)
S S

We recall that since the Blumenthal zero-one law holds for all our probability measures,
Vi (1,€) is constant for any given (¢,w) and P € P%,. Therefore, the process V is well
defined. However, we still do not know anything about its measurability. The following
Lemma answers this question and explains the uniform continuity Assumptions in w we
made.

Lemma 2.5.1. Let Assumptions 2.2.1 hold true and let € be in UC, (). Then
V@) <C(1+ 16l )+ for all () € [0,7] x 2
Furthermore
Vi (W) = Vi ()] < Cp(Jlw—=|,), for all (t,w,w') € [0,T] x Q2.

In particular, V; is Fi-measurable for every t € [0,T].
Proof. (i) For each (t,w) € [0,T] x Q and P € P}, note that

T
yEhe = g — / B (0) 4+ Al g, (@) 280 g (@) V2 250 ar

S

T
—/ tedBt s e [t,T], P—a.s.

where \ is bounded and 7 satisfies

~1/2 Ptw
| < pla," 2|, P—as.
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Then proceeding exactly as in the second step of the proof of Theorem 2.3.1, we can
define a bounded process M and a probability measure Q equivalent to P such that

P.t,w
Yt

<E? [Mr|g|] <C (1+¢ly;) -

By arbitrariness of P, we get |[Vy(w)| < C(1+[|€]ly).

(ii) The proof is exactly the same as above, except that we need to use uniform continuity
in w of & and F*. In fact, if we define for (¢,w,w’) € [0,T] x Q2

! ! ! f o o !
6y — y]P,t,w . yIP’,t,w ’ 52 — ZP,t,w o Z[P,t,w ’ 5§ — gt,w . é&t,w 7 (SF — Ft,w . Ft,w 7

then we get with the same notations
T A~
|6y,| = E© {MT(% —|—/ MséFsds} < Cp(flw = '],)-
t

We get the result by arbitrariness of P. ]
Then, we show the same dynamic programming principle as Proposition 4.7 in [102]

Proposition 2.5.1. Let £ € UCL(Q2). Under Assumption 2.2.1 or Assumption 2.2.2 with
the addition that the L5 -norms of & and F° are small enough, we have for all 0 < t; <
to < T and for all w € Q)

‘/tl(w) = sup yg,h,w(t% ‘/;ZI,W).
PPy}

The proof is almost the same as the proof in [102], but we give it for the convenience of
the reader.

Proof. Without loss of generality, we can assume that ¢t; = 0 and ¢, = t. Thus, we have
to prove

Vo(w) = sup Vg (t, V).

PePy

Denote (y*, 25) := (V*(T,€), Z5(T,€))

(i) For any P € Py, it follows from Lemma 4.3 in [102], that for P — a.e. w € €, the
r.c.p.d. P e Pl. By Tevzadze [107], we know that when the norm of the terminal
condition and the norm of the generator valued on (0,0) are small, a quadratic BSDE
whose generator satisfies Assumption (2.2.2) (v) can be constructed via Picard iteration.
Thus, it means that at each step of the iteration, the solution can be formulated as a
conditional expectation under P. Then, for general case, Tevzadze showed that if the
generator satisfies Assumption (2.2.1) (v), the solution of the quadratic BSDE can be
written as a sum of quadratic BSDEs with small terminal conditions and generators which
are small on (0,0). By the properties of the r.p.c.d., this implies that

e (W) = yfi’“”t’“”(T, €), for P —a.e. we .
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By definition of V; and the comparison principle for quadratic BSDEs, we deduce that
0 < Vi (t,V;) and it follows from the arbitrariness of P that

Vo(w) < sup Vg (1, V3).

PePy

(ii) For the other inequality, we proceed as in [102]. Let P € Py and € > 0. The idea
is to use the definition of V' as a supremum to obtain an e-optimizer. However, since V'
depends obviously on w, we have to find a way to control its dependence in w by restricting
it in a small ball. But, since the canonical space is separable, this is easy. Indeed, there
exists a partition (E}); 1 C JF; such that [w — «'||, < ¢ for any ¢ and any w,w’ € EJ.

Now for each i, fix an ©; € E! and let, as advocated above, P! be an e—optimizer of
Vi(@;). If we define for each n > 1, P* := P™¢ by

ZEP tw 1E1

then, by the proof of Proposition 4.7 in [102]|, we know that P" € Py and that

P"(E) := E* +P(ENEP), where EP := Ujs, B,

Vi<y, +e+Cple), P*—as. on UL, EL
Let now (y", 2") := (y™°, 2™°) be the solution of the following BSDE on [0, t]

¢ ¢
Yl =ly, +e+Cple)] Lop g+ Vilgy — / F.(yl, zM)dr — / 2rdB,, P" —a.s. (2.5.3)

Note that since P" = P on F;, the equality (2.5.3) also holds P — a.s. By the comparison
theorem, we know that V5 (¢,V;) < yi. Using the same arguments and notations as in the
proof of Lemma 2.5.1, we obtain

IPWL

lve — v | < CE® [€+p )+ Vi — yfm‘lﬁp].

Then, by Lemma 2.5.1, we have

V51, V2) < o < Volw) +C (= +ple) +E2 [ALg, ] ).

The result follows from letting n go to +oo and € to 0. (]

Remark 2.5.1. We want to emphasize here that it is only because of this Proposition prov-
ing the dynamic programming equation that we had to consider Tevzadze [107] approach
to quadratic BSDEs, instead of the more classical approach of Kobylanski [65]. Indeed, as
pointed out in the proof, for technical reasons we want to be able to construct solutions of
BSDFEs via Picard iterations, to build upon the known properties of the r.c.p.d. Using the
Assumptions 2.2.1 or 2.2.2 with the addition that the L3 -norms of € and Y are small
enough, this allows us to recover this property.
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Now that we solved the measurability issues for V;, we need to study its regularity in
time. However, it seems difficult to obtain a result directly, given the definition of V. This
is the reason why we define now for all (¢,w), the F™-progressively measurable process

Viti= lim V.
reQnN(¢,T],r |t

This new value process will then be proved to be cadlag. Notice that a priori V'
is only FT-progressively measurable, and not F-progressively measurable. This explains

why in the definition of the spaces in Section 2.2.4, the processes are assumed to be
F*-progressively measurable.

Lemma 2.5.2. Under the conditions of the previous Proposition, we have

Vii= lim V, Py-—gqs.
reQn(t,T],rlt

and thus V' is cadlag Py — q.s.

Proof. Actually, we can proceed exactly as in the proof of Lemma 4.8 in |102], since
the theory of g-expectations of Peng has been extended by Ma and Yao in [76] to the
quadratic case (see in particular their Corollary 5.6 for our purpose). ]

Finally, proceeding exactly as in Steps 1 and 2 of the proof of Theorem 4.5 in [102],
and in particular using the Doob-Meyer decomposition proved in [76] (Theorem 5.2), we

can get the existence of a universal process Z and a family of nondecreasing processes
{KF® P € Py} such that

t t

V=V, + / F (V' Z,)ds +/ Z B, — K}, P—a.s. VP € Py.

0 0

For the sake of completeness, we provide the representation (2.3.2) for V and V', and

that, as shown in Proposition 4.11 of [102], we actually have V' = V* Py — q.s., which

shows that in the case of a terminal condition in UC,(€2), the solution of the 2BSDE is
actually F-progressively measurable. This will be important in Section 2.7.

Proposition 2.5.2. Let £ € UC,(Q). Under Assumption 2.2.1 or Assumption 2.2.2 with
the addition that the LY -norms of & and F° are small enough, we have

V, = esssup’ y}”'(T, ¢) and V;" = esssup” y}”' (T,¢), P—a.s., VP € Py.
P ePy (t,P) P ePy (t+,P)

Besides, we also have for all t, V, = V;*, Py — q.s.

Proof. The proof for the representations is the same as the proof of proposition 4.10 in
[102], since we also have a stability result for quadratic BSDEs under our assumptions.
For the equality between V and VT, we also refer to the proof of Proposition 4.11 in [102].

(]

To be sure that we have found a solution to our 2BSDE;, it remains to check that the
family of nondecreasing processes above satisfies the minimum condition. Let P € Py,
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t €[0,7] and P’ € Py (t*,P). From the proof of Theorem 2.3.1, we have with the same
notations

/ T / I / /
vi=5f | [ anant| > 5| it 007 - 7))
t

t<s<T

EF [5 ( fOT(d)erns)a;l/QdBS) inf (MQ(K&E’_KF’)}

t<s<T

B (& (Ji (6. +nas aB, )|

For notational convenience, denote & := € (fot(gﬁs + ns)agl/Qst) Let r be the number
given by Lemma 2.2.2 applied to £. Then we estimate

EED/ |:K£Pj‘/ _ Kfp/}

2(r—1)

TE : = €
<EF [—T inf (M)(KE — K? >} EF :

E t<s<T
r—1
gt Til 2=t IP’ . 2 P/ IED/ P/ 4 2(2r—1)
= Ef |, inf (M) | E] (K - K7)'|

<C (EE“" [(K&‘i)])” (6V,)7 .

By following the arguments of the proof of Theorem 2.3.1 (ii) and (iii), we then deduce

< (BT (E?"

the minimum condition.

Remark 2.5.2. In order to prove the minimum condition it is fundamental that the
process M above is bounded from below. For instance, it would not be the case if we had
replaced the Lipschitz assumption on y by a monotonicity condition as in [90].

2.5.3 Main result

We are now in position to state the main result of this section

Theorem 2.5.1. Let £ € LY. Under Assumption 2.2.1 or Assumption 2.2.2 with the
addition that the L3 -norms of & and F° are small enough, there exists a unique solution
(Y, Z) € Dy x H2, of the 2BSDE (2.2.5).

Proof. For ¢ € LY, there exists &, € UCL(Q2) such that || — &, || = 0. Then, thanks

to the a priori estimates obtained in Proposition 2.3.2, we can proceed exactly as in the
proof of Theorem 4.6 (ii) in [101] to obtain the solution as a limit of the solution of the
2BSDE (2.2.5) with terminal condition &,. o
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2.6 An application to robust risk-sensitive control

One application of classical quadratic BSDEs is to study risk-sensitive control problems,
see El Karoui, Hamadéne et Matoussi [35] for more details. In this section, we will consider
a robust version of these problems.

First of all, for technical reasons, we restrict the probability measures in ﬁH = ﬁs P,
where Pg is defined in Subsection 2.2.1. Then @ is uniformly bounded by some @, a € S;°.

For each P € 75H, we can define a P-Brownian motion W¥ by
dWF =a,'?dB, P — a.s.

Let us now consider some system, whose evolution is decribed (for simplicity) by the
canonical process B. A controller then intervenes on the system via an adapted stochastic
process u which takes its values in a compact metric space U. The set of those controls is
called admissible and denoted by /. When the controller acts with u under the probability
P e 751{, the dynamic of the controlled system remains the same, but now under the
probability measure P* defined by its density with respect to P

2
dt) ,

dp* T 1 (T
= O (/0 a, g(t, B.,u,)dWF — 5/0

where ¢(t,w,u) is assumed to be bounded, continuous with respect to u, adapted and

a, ?q(t, B, uy)

uniformly continuous in w. Notice that this probability measure is well defined since @ is
uniformly bounded.

Then, under P*, the dynamic of the system is given by
dB; = g(t, B.,u;)dt + a;/deP’“, P* — a.s.
where WP is a Brownian motion under P* defined by
AWE" = awF —a; " g(t, B, uy)dt.

When the controller is risk seeking, we assume that the reward functional of the control
action is given by the following expression

T
Yu €U, J(u) := sup " [exp (9/ h(s, B.,us)ds + \I/(BT))]
0

[P’Gﬁ]—[

where 6 > 0 is a real parameter which represents the sensitiveness of the controller with
respect to risk. Here h(t,w,u) is assumed to adapted and continuous in u, and both ¥
and h are assumed to be bounded and uniformly continuous in w for the [-||  norm. We
are interested in finding an admissible control u* which maximizes the reward J(u) for
the controller.

We begin with establishing the link between J(u) and 2BSDEs in the following propo-
sition
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Proposition 2.6.1. There exists a unique solution (Y, Z") of the 2BSDFE associated with
the generator —zg(t, B.,u;) — h(t, B.,u;) — 3]62/2742, i.e., P—a.s., for all P € Py

T T
6 . u
Y = U(By) +/ (Zgg(s,B.,uS) + h(s, B.,us) + §|ai/22;‘|2> ds — / Z%dB, — dK;"".
t t
(2.6.1)
Moreover J(u) = exp (6Yy").

Proof. With our assumptions on g, h and ¥, we know that the generator satisfies the
Assumption 2.2.1, therefore there exists a unique solution to the 2BSDE (2.6.1). According
to [35], the solution to the classical BSDE with the same terminal condition and generator
as the 2BSDE (2.6.1) under each P is

1 T
yzulP’ = In <Ef’u {exp (9/ h(s, B.,us)ds + \II(BT))}) , P—a.s.
t

Then by the representation for Y*, we have

1 T
Y = 3 esssup’ In (E]f“ {exp (9/ h(s, B.,us)ds + ‘I/(BT))}) P —a.s.
t

PPy (t+,P)

Since the functional In(x) is monotone non-decreasing, then

T
Y =-1In ( esssup” B {exp (9/ h(s, B.,us)ds + \IJ(BT))]> , P—a.s.
t

P’ ePy (t+,P)

Therefore, we have J(u) = exp {0Y;'}. (]

As explained in [35], by applying Benes’ selection theorem, there exists a measurable
version u*(t, B., z) of

arg max [(t, B., z,u) := zg(t, B.,u) + h(t, B.,u).

We know that I*(t, B.,z) := sup,cy{(t, B.,z,u) = I(t, B., z,u*(t, B., 2)) is convex uni-
formly Lipschitz in z because it is the supremum of functions which are linear in z. So the
mapping z — I*(t, B., z) + %|Zit1/2z\2 is continuous with quadratic growth, implying that a

solution (y*F, 2*F) of the BSDE associated to this generator exists. Then we have

Theorem 2.6.1. There exists a unique solution (Y*, Z*) to the following 2BSDE
T 0 T
Y, = U(By) +/ (I*(s, B.,Z%) + éya;ﬂz;y?) ds — / ZXdB, 4+ K3F — K. (2.6.2)
¢ t

The admissible control u* := (u*(t, B., Z})): < v is optimal and (exp(Y,*)); < 1 is the value
function of the robust risk-sensitive control problem, i.e., for any t < T we have:

, T
exp(Y;*) = esssup® esssup’ Ej [exp (9/ h(s, B.,us)ds + \IJ(BT))} :
t

PePy(tt,P) ueld
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Proof. First, we need to prove the existence of a solution to the quadratic 2BSDE (2.6.2).
Unlike in Proposition 2.6.1, here u* also depends on z, so we do not know whether I* is
twice differentiable with respect to z. Therefore the generator of the 2BSDE may not
satisfy the Assumption 2.2.1. But it’s easy to see that it always satisfies the weaker
Assumption 2.2.2, and we only need this Assumption to have uniqueness of the solution.
Moreover, it was also the only one used to prove the minimum condition for the familly
of non-decreasing processes in Subsection 2.5.2. Therefore, exactly as in Section 2.4, for
P e 75H, by making the exponential change
t
V= G 0V 2 K =0 / VK — 3 e - M gAY

0 0<s<t

we see that (Y, Z, XP) formally verifies the following equation

T T
Y, = eeq'(BT)—i—/ sup {Z,9(s, B.,u) + 0Y ;h(s, B.,u)} ds—/ 7@1%—1—??—715, P—a.s.
t t

uelU
(2.6.3)
Since this is 2BSDE with Lipschitz generator from Soner, Touzi and Zhang [101], we
know that (Y, Z, FP) exists, is unique and satisfies the representation property (2.3.2).
Arguing exactly as in Subsection 2.4.1 for the purely quadratic 2BSDEs, we can then
obtain the existence. Now, from [35], we have that

T
exp (yf’P> — esssup’ B {exp <9/ h(s, B.,us)ds + \II(BT))} :
t

ueU

Then the representation for Y* implies the desired result. ]

2.7 Connection with fully nonlinear PDEs

In this section, we place ourselves in the general case of Section 2.2, and we assume
moreover that all the nonlinearity in H only depends on the current value of the canonical
process B (the so-called Markov property)

Ht(w7 y? z? ’y) = h(t7 Bt(w)7 y? Z? ’y)?

where h : [0,T] x R? x R x R? x D;, — R is a deterministic map. Then, we define as in
Section 2.2 the corresponding conjugate and bi-conjugate functions

1
f(t,2,y,2,a) ;= sup {—Tr [av] — h(t,w,y,z,v)} (2.7.1)
YEDy 2
—~ 1
h(t,x,y,z,7v) == sup {éTr lay] — f(t,x,y,z,a)} (2.7.2)
aeSiO

We denote Py, := Py, and following [101], we strengthen Assumption 2.2.1

Assumption 2.7.1. (i) P, is not empty, and the domain Dy, of the map a —
flt,x,y, 2, a) is independent of (z,vy, ).
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(ii) On Dy,, fis uniformly continuous in t, uniformly in a.

(iii) f is continuous in z and has the following growth property. There exists (c, 3,7)
such that

|[f(t,z,y,2,a0)| <a+Blyl+ % |a1/22|2, for allt € [0,T],z,2 € Ry € R,a € Dy,.
(iv) f is C' in y and C? in z, and there are constants v and 0 such that for all t €
0,T],z,2 € RY,y € R,a € Dy,
|Dyf(t7xayazaa’)| < T’, |DZf(t7x7y7 z,a)| < r + 0 ‘a1/22‘
D2 f(t,2,y,2,0)] < 6.

(v) On Dy,, f is uniformly continuous in x, uniformly in (t,y, z,a), with a modulus of
continuity p which has polynomual growth.

Remark 2.7.1. As mentioned in Subsection 2.2.3, when the norm of the terminal condi-
tion and the norm of f(-,0,0,a) are small enough, Assumption 2.7.1 (iv) can be replaced

by the following weaker assumptions.
(iv')[a] There exists p > 0 and a bounded R¥-valued function ¢ such that for all t €
0,T),2,2,2 € R,y € R, a € Dy,

!

)’ < pat? ‘z — z,‘ (‘almz‘ + ‘alﬂz,

).

flt,z,y,2z,a) — f(t,x,y, z,,a) — gb(t).al/Q(z —z

(iv’)[b] On Dy,, f is Lipschitz in y, uniformly in (t,z,z,a).

Let now g : R? — R be a Lebesgue measurable and bounded function. Our object of
interest here is the following Markovian 2BSDE with terminal condition £ = ¢g(Bry)

T T
Y, = g(Br) — / f(s,Bs, Yy, Zy, a5)ds — / Zy B, + KY — K¥', Py, — q.5. (2.7.3)
t t

The aim of this section is to generalize the results of [101] and establish the connection
Y, = v(t, By), Pr—q.s., where v is the solution in some sense of the following fully nonlinear
PDE

(¢ x) + h (t,z,v(t, x), Du(t,z), D*u(t,x)) = 0, t € [0,T)

o(T,x) = g(x).

(2.7.4)

Following the classical terminology in the BSDE literature, we say that the solution of
the 2BSDE is Markovian if it can be represented by a deterministic function of ¢ and B;.
In this subsection, we will construct such a function following the same spirit as in the

construction in the previous section.
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With the same notations for shifted spaces, we define for any (¢,z) € [0,7] x R?

BY =g+ B!, for all s € [t,T).

Let now 7 be an F'-stopping time, P € P! and n a P-bounded F‘-measurable random
variable. Similarly as in (2.5.2), we denote (y™5 2500) .= (YP4e(7 ), ZB02(7 n)) the
unique solution of the following BSDE

u »

Yot =g — / fu, BE* yiote 226 Gty dy, — / 2 ABY < s <1, P—a.s. (2.7.5)

s

Next, we define the following deterministic function (by virtue of the Blumenthal 0 — 1
law)
u(t,z) == sup Y, V(T g(BL")), for (t,x) € [0,T] x R% (2.7.6)
PeP}
We then have the following Theorem, which is actually Theorem 5.9 of |[101] in our
framework

Theorem 2.7.1. Let Assumption 2.7.1 hold, and assume that g is bounded and uniformly
continuous. Then the 2BSDFE (2.7.3) has a unique solution (Y,Z) € D% x H% and we
have Y; = u(t, By). Moreover, u is uniformly continuous in x, uniformly in t and right-
conlinuous in t.

Proof. The existence and uniqueness for the 2BSDE follows directly from Theorem 2.5.1.
Since £ € UCy(2), we have with the notations of the previous section V; = u(t, B;). But,
by Proposition 2.5.2, we know that Y; = V;, hence the first result.

Then the uniform continuity of u is a simple consequence of Lemma 2.5.1. Finally, the
right-continuity of u in ¢ can be obtained exactly as in the proof of Theorem 5.9 in [101].
(]

2.7.1 Nonlinear Feynman-Kac formula in the quadratic case

Exactly as in the classical case and as in Theorem 5.3 in [101], we have a nonlinear version
of the Feynman-Kac formula. The proof is the same as in [101], so we omit it. Notice
however that it is more involved than in the classical case, mainly due to the technicalities
introduced by the quasi-sure framework.

Theorem 2.7.2. Let Assumption 2.7.1 hold true. Assume further that h s continuous
in its domain, that Dy is independent of t and is bounded both from above and away from
0. Let v € CH*([0,T),R?) be a classical solution of (2.7.4) with {(v, Dv)(t, B))}, <, <1 €
D% x H%,. Then

t
Y :=w(t,By), Zy := Du(t, By), K ::/ kds,

0

is the unique solution of the quadratic 2BSDE (2.7.3), where

R 1
ke = h(t, B, Y, 2, T) = 5T [atl/?rt} v f(t, B, Ys, Z4,,) and Ty := D*u(t, By).
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2.7.2 The viscosity solution property

As usual when dealing with possibly discontinuous viscosity solutions, we introduce the
following upper and lower-semicontinuous envelopes

u,(t,z) = lim  w(t, 7)), v (t,z) = lim wu(t,2)
(" 2")—(t,z) (t"2)—(tz)

ho(9) = lim A(Y), h*(@W):= TLim h(?)

(9)—(9) (9)—(9)

In order to prove the main Theorem of this subsection, we will need the following Propo-
sition, whose proof (which is rather technical) is omitted, since it is exactly the same as
the proof of Propositions 5.10 and 5.14 and Lemma 6.2 in [101].

Proposition 2.7.1. Let Assumption 2.7.1 hold. Then for any bounded function g
(i) For any (t,z) and arbitrary F'-stopping times {TP,P € 77,’;}7 we have

u(t,z) < sup Y, (7F, ur (75, BE)).
PeP}

(ii) If in addition g is lower-semicontinuous, then
u(t,z) = sup Y, (7, u(rt, BY)).
PeP}
Now we can state the main Theorem of this section
Theorem 2.7.3. Let Assumption 2.7.1 hold true. Then
(i) w is a viscosity subsolution of
—ou* —/fz*(~,u*,Du*, D*u*) <0, on[0,T) x R
(ii) If in addition g is lower-semicontinuous and Dy is independent of t, then u is a
wiscosity supersolution of

— Oy —ﬁ*(-,u*,Du*, D?u,) >0, on[0,T) x R%.

Proof. The proof follows closely the proof of Theorem 5.11 in [101]|, with some minor
modifications (notably when we prove (2.7.10)). We provide it for the convenience of the

reader.

(i) Assume to the contrary that

0 = (u* — ¢)(ty, m) > (u* — ¢)(t,z) for all (t,z) € [0,T) x RN {(to, o)}, (2.7.7)
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for some (tg, ) € [0,T) x R? and

(—atqs — W (-, 6, Do, D2¢)> (to, 7o) > 0, (2.7.8)

for some smooth and bounded function ¢ (we can assume w.l.o.g. that ¢ is bounded since
we are working with bounded solutions of 2BSDEs).

Now since ¢ is smooth and since by definition h* s upper-semicontinuous, there exists
an open ball O(r, (to, x¢)) centered at (t9, xo) with radius r, which can be chosen less than
T — tgy, such that

~0,¢ — (-, 6, Do, D*¢) = 0, on O(r, (to, x)).

By definition of %, this implies that for any « € S;°
1
— 06— 5Tr [aD?¢] + f(-, 6, D, a) = 0, on O(r, (to, o). (2.7.9)

Let us now denote

= — max (u*— ¢).
Iu 80(7‘,(t0,1’0))( ¢)
By (2.7.7), this quantity is strictly positive.

Let now (t,,z,) be a sequence in O(r,(to,x¢)) such that (¢,,z,) — (to,z0) and
u(tn, x,) — u*(ty, xo). Denote the following stopping time

Tn ‘— mf {3 > tn: (S7 B.zmmn ¢ O(T, (tO’ZEO))} ’

Since r < T — to, we have 7, < T and therefore (7,,, Bt*") € 0O(r, (to, zo)). Hence, we
have
¢n = (¢ — u)(tn, ) — 0 and u* (7, B") < ¢(7, B™) — .

Fix now some P" € 73;1”. By the comparison Theorem for quadratic BSDEs, we have

VO (' (7, Blz)) € VP (7, 0, BE) = ).

Then proceeding exactly as in the second step of the proof of Theorem 2.3.1, we can
define a bounded process M,,, whose bounds only depend on 7" and the Lipschitz constant
of f in y, and a probability measure Q,, equivalent to P,, such that

]P)’(Lv nybn nyTn Pna nyln nyLn _ n
Vo Ty Gy Bl ™) = 1) = Vo (T, (7, Bi™)) = =B My, i) < = 41,
for some strictly positive constant p’ which is independent of n.

Hence, we obtain by definition of ¢,

Vot (g (T, BE™)) =t ) < Vo™ (T, (T, BE™)) — ¢ty ) + o — 11
(2.7.10)
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With the same arguments as above, it is then easy to show with It6’s formula that

T

yfy’t’“"f'(rn, O(Tn, B2 ™)) — d(ty, ) = ng‘ {_/ Msn@bgds] )
t

n
where

1 N ~
L= (=00 — ST [alD?¢] + f(-, Do.ay))(s, By).
But by (2.7.9) and the definition of 7,,, we know that for ¢, < s < 7,, Y% > 0. Recalling
(2.7.10), we then get
ij:“tmxn (Tna U*(Tna B;f_z7$n)) - U(tn, xn) g Cn - ILL/.
Since ¢, does not depend on P, we immediately get

/

i (U (T, BE)) — w(t, 1) < e — p

n

sup Y,
PEP

The right-hand side is strictly negative for n large enough, which contradicts Proposition
2.7.1(1).

(ii) We also proceed by contradiction. Assuming to the contrary that

0 = (uy — @) (to, 7o) < (us — @)(t,2) for all (t,x) € [0,T) x RN\ {(to,z0)}, (2.7.11)
for some (tg, ) € [0,T) x R? and
(=046 = Rl 6, D6, D)) (to,20) < 0, (27.12)

for some smooth and bounded function ¢ (we can assume w.l.o.g. that ¢ is bounded since
we are working with bounded solutions of 2BSDEs).

Now we have by definition ﬁ* < ﬁ, hence

<—0t¢ “h(-, 6, Do, Dqu)) (to, 7o) < 0, (2.7.13)

Unlike with the subsolution property, we do not know whether D?¢(tg, z) € D; or not.
If it is the case, then by the definition of h, there exists some & € S;O such that

1
(—@qﬁ —5Tr [aD?*¢] + f(-, ¢, Do, a)) (to, o) < 0, (2.7.14)
which implies in particular that @ € Dy.

If D?¢(to, x0) ¢ D5, we still have that 9, (¢, zo) is finite, and thus & € Dy and (2.7.13)
holds.

Now since ¢ is smooth and since Dy does not depend on ¢, there exists an open ball
O(r, (to, o)) centered at (tg, xo) with radius r, which can be chosen less than T'— g, such
that 1

-0 — §Tr [@D%} + f(-, 0, Do, &) <0, on O(r, (tg, xg)).
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Let us now denote
= min Ue — Q).
Iu 80(7’,(t0,x0))< ¢)
By (2.7.11), this quantity is strictly positive.
Let now (tn,z,) be a sequence in O(r, (to, o)) such that (¢,,x,) — (to,x0) and
w(tp, Tn) — ui(to, o). Denote the following stopping time

= inf {s >, (s, B ¢ O, (t0.20)}

Since r < T — to, we have 7,, < T and therefore (7,,, Bir*") € 90O(r, (to, x0)). Hence, we
have
n = (¢ — u)(tn, 2,) — 0 and wy (7, B2") = ¢(7, BE™) + pa.

Now for each n consider the probability measure P* := P® induced by the constant
diffusion & from time ¢, onwards. It is clearly in P;". Then, arguing exactly as in (i), we
prove that

Wty Tn) = V1 (1 Ty BI™)) < 0 — gy, P — acs.

For n large enough, the right-hand side becomes strictly negative, which contradicts
Proposition 2.7.1(ii). (]






CHAPITRE 3

Robust Utility Maximization in
Non-dominated Models with 2BSDEs

3.1 Introduction

In this chapter, we study the problem of robust utility maximization with closed con-
straints set in uncertain volatility models via quadratic 2BSDEs introduced in Chapter 2.
The rest of the chapter is organized as follows. In Section 3.2, we recall some notations
of quadratic 2BSDEs. Then inspired by [38] and [54], in Sections 3.3, 3.4, 3.5 and 3.6,
we study the problem for robust exponential utility, robust power utility and robust loga-
rithmic utility. Finally, in Section 3.7, we provide some examples where we can explicitly
solve the robust utility maximization problems by finding the solution of the associated
2BSDEs, and we give some insights and comparisons with the classical dynamic program-
ming approach adopted in the seminal work of Merton [81]. This chapter is based on
[78].

3.2 Preliminaries

We will use the notations and notions related to the theory of 2BSDEs with quadratic
growth generators. The only difference is with the non-dominated family of mutually
singular probability measures. We fix a,a € S7° such that a < @ (for the usual order on
positive definite matrices, i.e. (@ —a) € S;°) and we define the family:

Py =P := {]P’Eﬁs s.t. anga,dtxdﬂ”—a.e.}.

In fact, this reduces to a particular case of Definition 2.2.1 in Chapter 2 where the bounds
on a are independent of the probability measures and where F° is bounded. Throughout
this chapter we assume that Py is not empty.

Definition 3.2.1. We say a property holds Py-quasi-surely (Pg-q.s. for short) if it holds
P-a.s. for all P € Py.

Remark 3.2.1. The filtration F™ defined in Chapter 2 is right-continuous but not complete
under each P € Py. However, as shown in Lemma 2.4 of [103], for every P € Py, we
can always consider a version which is progressively measurable for the completion of F*
under P. This shows that all the usual properties are still satisfied in our framework.
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3.3 Robust utility maximization

We will now present the main problem of this paper and introduce a financial market with
volatility uncertainty. The financial market consists of one bond with zero interest rate
and d stocks. The price process is given by

dSt = dlag [St] (btdt + dBt), pH —(.S.

where b is an R%valued uniformly bounded stochastic process which is uniformly contin-
uous in w for the || - ||» norm.

Remark 3.3.1. The volatility is implicitly embedded in the model. Indeed, under each
P € Py, we have dB,; = Zitl/2thP where W is a Brownian motion under P. Therefore,
a'’? plays the role of volatility under each P and thus allows us to model the volatility
uncertainty. We also note that we make the uniform continuity assumption for b to ensure
that the generators of the 2BSDFEs obtained later satisfy Assumptions 2.2.1 or 2.2.2.

We then denote m = (m)o<t<7 a trading strategy, which is a d-dimensional F-
progressively measurable process, supposed to take its value in some closed set A. We
refer to Definitions 3.4.1, 3.5.1 and 3.6.1 in the following sections for precise definitions of
the set of admissible strategies A for the three utility functions we study.

The process 7} describes the amount of money invested in stock i at time ¢, with
1 < 4 < d. The number of shares is % So the liquidation value of a trading strat-
t
egy 7 with positive initial capital x is given by the following wealth process

t
X7 :gg+/ ms(dBs + bgds), 0 <t < T, Py —q.s.
0

Since we assumed zero interest rate, the amount of money in the bank 7° does not
appear in the wealth process X.

Let ¢ be a liability that matures at time 7T, which is a random variable assumed to be
Fr-measurable and in £3. The problem of the investor in this financial market is to
maximize her expected utility under model uncertainty from her total wealth X7 —¢. Let
U be a utility function, then the value function V' of the maximization problem can be
written as

VE&(z) :=sup inf EQ[U(XF —£)]. (3.3.1)

reA QEPH
In the case where Py contains only one probability measure, the problem reduces to the
classical utility maximization problem.

Remark 3.3.2. Due to the construction of 2BSDESs, we need the liability & to be in the
class L55. It is easy to see that & can be constant, deterministic or in the form of g(Br)
where g is a Lipschitz bounded function, such as a Put or a Call spread payoff function.
However, we notice that vanilla options payoffs with underlying S may not be in L.
Indeed, we have in the one-dimensional framework

T 1
ST = Soexp (/ btdt — 5 <B>T + BT) ) PH —4.s.
0
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Since the quadratic variation of the canonical process can be written as follows

it 1s not too difficult to see that S can be approximated by a sequence of random variables
in UCy(QY). Besides, this sequence converges in L. However, we cannot be sure that it
also converges in L35, which is our space of interest here.

Of course, in the uncertain volatility framework, this seems to be a major drawback.
Nevertheless, to deal with these options, it suffices to redo the whole 2BSDE construction
from scratch but taking the exponential of the Brownian motion under the Wiener measure
as the canonical process instead of the Brownian motion itself. This would amount to
restrict ourselves to the subset P}, of Py, containing only those P € Py such that the
canonical process is a positive continuous local martingale under IP.

To find the value function V¢ and an optimal trading strategy 7*, we follow the ideas of
the general martingale optimality principle approach as in [38] and [54], but adapt it here
to a nonlinear framework. We recall that A is the admissibility set of the strategies 7.

Let { R™}rea be a family of processes which satisfies the following properties

Properties 3.3.1. (i) R} =U(X] =€) forallme A.
(ii) Ry = Ry is constant for all m € A.

(iii) We have

RT > essinff EF[RT], Vre A
P'€Py (t+,P)

R = essinf® EF[RE] for some n* € A, P — a.s. for all P € Py.
P/ EPy (t+,P)

Then it follows

inf BF[U(XT —€)] < Ry = inf EF[U(XT —¢)] = V(). (3.3.2)

PePy PePy

In the following sections we will follow the ideas of Hu, Imkeller and Miiller [54] to
construct such a family for our three utility functions U.

3.4 Robust exponential utility
In this section, we will consider the exponential utility function which is defined as
U(z) = —exp(—pz), x € R for § > 0.

In our context, the set of admissible trading strategies is defined as follows
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Definition 3.4.1. Let A be a closed set in RY. The set of admissible trading strategies A
consists of all d-dimensional progressively measurable processes, T = (7)o <t < T Satisfying

m € BMO(Py) and m € A, dt ® Py — a.e.

Remark 3.4.1. Many authors have shed light on the natural link between BMO class,
exponential uniformly integrable class and BSDFEs with quadratic growth. See [12], [6] and
[54] among others. In the standard utility mazimization problem studied in [54], their trad-
ing strategies satisfy a uniform integrability assumption on the family (exp(XT)).. Since
the optimal strategy is a BMO martingale, it is easy to see that the utility maximization
problem can also be solved if the uniform integrability assumption is replaced by a BMO
assumption. However, at the end of the day, those two assumptions are deeply linked, as
shown in the context of quadratic semimartingales in [6]. Nonetheless, in our framework,
as explained below in Remark 3.4.3, we need to generalize the BMO martingale assumption
instead of the uniform integrability assumption. Moreover, as recalled in the Introduction,
from a financial point of view these admissibility sets are related to absence of arbitrage
in the market considered.

3.4.1 Characterization of the value function and existence of an
optimal strategy

The investor wants to solve the maximization problem

V&(z) := sup inf E?[—exp (XF —&)]. (3.4.1)
reA Q€PH

In order to construct a process R™ which satisfies the Properties 3.3.1, we set
RY = —exp(—ﬁ(XZr - Ygf))» te [O’T]v T E A,

where (Y, Z) € D x H% is the unique solution of a 2BSDE with a well chosen quadratic

A~

generator F' satisfying Assumption 2.2.1 or 2.2.2
T T _
}/t:g_/ stBs_/ F<S7ZS>dS+K$—KF,P—CLS, V]P)GPH
t t

Remark 3.4.2. From Theorem 2.3.1 of Chapter 2, we have the following representation

Y, = esssup” yf (T.¢).
P'ePpy (t+,P)
Therefore, in general Yy is only Fo+-measurable and therefore not a constant. But by
Proposition 2.5.2 of Chapter 2, we know that the process Y is actually F-measurable (this
is true when the terminal condition is in UCL(Q2) and by passing to the limit when the
terminal condition is in L37). This and the above representation imply easily that

Yo = esssup’ yi (T,€) = sup v (T,€),
P'ePy (0F,P) P'ePy

then by the Blumenthal Zero-One law Yy is a constant.
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Let us now define for all a € S;° such that ¢ < a < @ the set A, by

Ay i=aPA={a'b, be A}.

For any a € [a,al, the set A, is still closed. Moreover, since A # @ we have
min {|r|, r € A} <k, (3.4.2)
for some constant k independent of a.
We can now state the main result of this section

Theorem 3.4.1. Assume that £ € LS and either that ||§||L?{o + sup ||bt||L%o is small

and that 0 € A, or that the set A is C* (in the sense that its border is a C* Jordan arc).
Then, the value function of the optimization problem (3.4.1) is given by

Vi(z) = —exp (=8 (z — Y0)),
where Yy is defined as the initial value of the unique solution (Y,Z) € DY x H2, of the
following 2BSDFE

T T
Y, =¢— / Z,dB, — / F(Z)ds + Kb — K, P—a.s., VP € Py. (3.4.3)
t t

The generator is defined as follows
Fi(w,z) = Fy(w,z,a), (3.4.4)

where for all t € [0,T], z € R and a € S;°
_ B e, 1 ' 1/2 1 2
Fy(w,z,a) = —§d15t a’“z+ Bet(u}), A, ) +za7 0 (w) + % 10:(w)]|”,

where 0;(w) := a~'/?b(w) and where for any * € R and any set £ C R?, dist(z, F)
denotes the distance from x to E.

Moreover, there exists an optimal trading strategy 7™ satisfying

. . 1~
a;/zﬂ': € Iy, <ai/2Zt + 39,5) , t€]0,T], Py —q.s. (3.4.5)

with 0, = @, "/*b,.

Proof. The proof is divided into 5 steps. First, we show that the 2BSDE with the
generator defined in (3.4.4) has indeed a unique solution. Then, we prove a multiplicative
decomposition for the process R™ and some BMO integrability results on the process Z

and the optimal strategy 7*. Using these results, we are then able to show that (iii) of
Properties 3.3.1 holds.

Step 1: We first show that the 2BSDE (3.4.3) has an unique solution. We need to verify
that the generator F' satisfies the conditions of Assumption 2.2.2 or 2.2.1.
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First of all, F' defined above is a convex function of a, for all @ € S7°, and thus for any
t €10,7], F can be written as the Fenchel transform of a function

1
Hy(w, z,7) := sup {§Tr(a7) — Ft(w,z,a)} for v € R,

a€EDp

That [ satisfies the first two conditions of either Assumption 2.2.2 or 2.2.1 is obvious.
For Assumptions 2.2.2(iii) and 2.2.1(iii), the assumption of boundedness and uniform
continuity in w on b implies that b? is uniformly continuous in w. Since b and b? are the
only non-deterministic terms in F', then F' is also uniformly continuous in w.

Then, since we consider the distance function to a closed set, we know that it is attained
for some element of R, It is therefore clear that the generator of this 2BSDE is linear
and quadratic in z. Besides, as recalled earlier in (3.4.2), there exists a constant k > 0
such that

min{|d|, d € Az,} <k for dt®@P —a.e., for all P € Py.

2
+k>.

Then we get, for all 2 € RY, t € [0, 7],

1
B

~1/2

dist? (a§/2z+ @,Aat) <2 0,

22+2(%

Thus, we obtain from the boundedness of )

2

ﬁt(z)‘ <co+olaz

9

that is to say that Assumptions 2.2.2(iv) and 2.2.1(iv) are satisfied.

Finally, Assumption 2.2.2(v) is clear from the Lipschitz property of the distance function,
and Assumption 2.2.1(v) is also clear by our regularity assumption on the border of A.

The terminal condition £ is in £3 and we have proved that the generator F satisfies
Assumption 2.2.2 or Assumption 2.2.1. Moreover, by the definition of the generator F, it
is clear that if the process b has a small L3-norm and if 0 € A, then [ also has a small
L%-norm. Indeed, in this case we have

~ B (0 Lo

FtO = _EdlSt EvAat + % |9t’ 3
which tends to 0 as b, and thus 6, goes to 0 (this is clear for the second term on the
right-hand side, and for the first one, continuity of the distance function and the fact
0 € A ensure the result).

Therefore Theorem 2.5.1 in Chapter 2 states that the 2BSDE (3.4.3) has a unique
solution in Dy x H,.

Step 2: We first decompose R™ as the product of a process M™ and a non-increasing
process N™ that is constant for some 7* € A.
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Define for all P € Py any for any t € [0, T
t 1 t
M = e PEY0exp (—/ B(ms — Zs)dBs — 5/ 32 ‘ai/Q(WS — Zs)‘2 ds — ﬁKF) , P—a.s.
0 0

We can then write for all ¢ € [0, 7]

Ri = M{N/,

t
NJ = —exp (/ U(S,WS,ZS)CLS) ,
0

v(t, 7, z) = —[Fnb, —I—ﬂFt( )+ 52

with

and

2
/\1/2 (71' . Z)‘

Clearly, for every t € [0, T], we may rewrite v(t, m;, Z;) in the following form

1 R R R R ~
Bv(t’ﬂt’Zt> = g i/Q’ﬂ't — ﬁ’ﬂ't 1/2 ( 1/2Zt + ﬁ6t> g 1/2Zt + Ft(Zt)

2
+ F(Zy).

~

O

s . ’
~1/2 ~1/2
- 5‘“/7”_( / t+ﬁ9t)

1
— Za,%0, — —
t Qﬁ

By a classical measurable selection theorem (see [31] or Lemma 3.1 in [33]), we can
define a progressively measurable process m* satisfying (3.4.5). Then, it follows from the
definition of F' that Py — q.s.

v(t,m, Zy) = 0 for all m € A, t € [0,1t].
o(t, 75, Z) =0, t € [0,T],

which implies that the process N7 is always non-increasing for all = and is equal to —1
for 7*.

Step 3: In this step, we show that the processes

/ Z.dB,, / 7tdB,,
0 0

First of all, by Lemma 2.2.1 in Chapter 2, we know that fo ZdBy is a BMO(Py) mar-
tingale. By the triangle inequality and the definition of 7* together with (3.4.2), we have
for all t € [0, T

are BMO(Py) martingales.

. . R 1~ - . . 1~
a,tl/zﬂ't < (Itl/QZt + Bet ;/Qﬂ't — (ai/QZt + Bet> ‘
< 20@°Z) + +3 2 6] + k< 2[a 2] + k.
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where k; is a bound on 0.

Then, for every probability P € Py and every stopping time 7 < 7T,
T 9 T
= ([ frefa] <=

~1/2 4
Q- Ty

,4/222

dt + 2ka} ,

and therefore

This implies the BMO(Py) martingale property of [, widB; as desired.

Step 4: We then prove that 7" € A and R™ = —M™ satisfies (iii) of Properties 3.3.1,
that is to say for all ¢ € [0, 7]

esssup” EY [M7'] =M, P—as., YPE Py.
P'ePy (t+P)

For a fixed P’ € Py (t*,P), we denote
L, ._/ B(m* — Z,)dB, + = /52\“/2 ZS)\2d3+ﬁKf’, 0<t<T,

then with Itd’s formula, we obtain for every ¢ € [0, T, thanks to the BMO(Py) property
proved in Step 3

T
7 (M) - 17 = o | [z ar? |

i [ S et e )|, G

t<s<T

First, we prove

essinf® B [/ M~ d KP'l_O te[0,T], P—as.

P'ePy (tT,P)

For every ¢ and every P’ € Py (t™,P), we have

0 < EY [/T M:desP'} <E” K sup Mg*) (Kg’i’ - KF’)} .
t 0<s<T
Besides, since K P s nondecreasing, we obtain for all s > ¢
MT L e PleYolg (ﬁ / S (Zy —7) dBu) :
0
Then, again thanks to Step 3, we know that

(Zs — ;) € BMO(Pn),
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and thus the exponential martingale above is a uniformly integrable martingale for all P
and is in LY, for some r > 1 (see Lemma 2.2.2 in Chapter 2). Thus, by Hélder inequality,
we have for all ¢t € [0, T]

1

T s % , , 1
EF' [/ Mgdef’} <eﬂ<YO—w>E§?’[ sup & (ﬁ/ (Zu — ) dB, )} P [(KT KP) }
t 0<s<T 0

With Doob’s maximal inequality, we have for every ¢ € [0, 7]

, s 1/r , T 1/r
EF { sup &7 <ﬁ/ (Zy — m,)dBy >] < CE! [ST (ﬂ/ (Zy — m,)dBy )] < 400,
0<s<T 0 0

where C' is an universal constant that can change value from line to line.

Then by the Cauchy-Schwarz inequality, we get for 0 <t < T

1
/ / / 1/q / / / / / N 29—1 2q
e [(kF - 7)) <C<Ef (k5 - &) | [(ng k7Y D q
1
PP P/ p\ 21\ % / P\ ]\ 20
< C| esssup’ E; (KT —Kt) (Et [(KT - K, )D .
P/ Py (t+,P)

Arguing as in the proof of Theorem 2.3.1 in Chapter 2 we know that

1

/ AN2e-1] | >
(esssup EP [(KP K[P) ]) <400, 0K<tLT.

P'ePy (t+,P)

Hence, we obtain for 0 <t < T

0 < essinff EP {/ M dKP,} <O essinfp)<]EItp, [(K%,PQI—KF’)DZ =0,

PePy(t+,P) PePy(tt,P

which means

essinf® EY U M KP/}_O 0<t<T.

P’ ePy (tt,P)

Finally, we have for every t € [0, 7]

T
essinf® B’ { /t MIdKY — ) exp(ﬂLs)exp(ﬂLs)Jrﬂexp(ﬁLs)(LsLs)]

P’ tt P
EPH( 7) tSSST

T
< essinf® EY [/ M:defl
IP’GPH(t+,P) t

— essinf® EY |: Z exp(—fLs) — exp(—BL4-) + Pexp(—FLs-)(Ls — Ls- )]

' +
P'ePy(tt,P) t<s<T

<0,

because the function x — exp(—z) is convex and the jumps of L are positive.
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Hence, using (3.4.6), we have for every ¢ € [0, T

esssup” EIE/ [M}T — Mt’r*] > 0.
P'€Py (t+,P)

But by definition M™ is the product of a martingale and a positive non-increasing
process and is therefore a supermartingale. This implies that for every ¢ € [0, T

esssup” EF [M% - Mf} = 0.

P'ePy (t+,P)

Finally, 7* is an admissible strategy, R™ satisfies (iii) of Properties 3.3.1 and

T
R Y T R B |
€Pu 0
= —exp(—f(z —Yp)).

Step 5: Next we will show that for all 7 € A, R™ satisfies (iii) of Properties 3.3.1, that
is, for every t € [0, T

essinf? EY [—exp(—B(XE — €))] < R, P — a.s.

P'ePy(tt,P)

Since 7 € A, the process

| @-mam,

0
is a BMO(Py) martingale. Then the process

G = exp (—B(x — Vo)) € <—ﬁ /0 (me— Z) st) ,

is a uniformly integrable martingale under each P € Py.

As in the previous steps, we write R™ as R™ = M™N™, where N™ is a negative non-
increasing process. We then have for 0 < s <t T
essinf® EY [MTNT] < essinff EF [MTNT], P — a.s.
PPy (s+,P) P'ePy(s+,P)
= esssup’ EY [MT]NT, P — a.s.
P'ePy(s+,P)
because N™ is negative. By the same arguments as in Step 3 for M™ , we have for
0<sg<tLT

esssup’ EY [MT] = MT, P — a.s.
P ePy (s+,P)

Therefore the following inequality holds for 0 < s <t < T

essinf® EY [RT] < RT, P — a.s.
P'€Py (s+,P)

which ends the proof. ]
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Remark 3.4.3. We see here why it is essential in our context to have strong integrability
assumptions on the trading strategies. Indeed, in the proof of the above property for M™
the fact that the stochastic integral
/ m.dBs,
0

is a BMO(Py) martingale allowed us to control the moments of its stochastic exponential,
which in turn allowed us to deduce from the minimal property for K* a similar minimal

property for
/ MTdK?.
0

This term is new when compared with the context of [54]. To deal with it, we have to
impose the BMO(Py) property. Let us note however that since the optimal strategy already
has this property, we do not lose much by restricting the strategies.

Remark 3.4.4. We note that our approach still works when there are no constraints on
trading strategies. In this case, the 2BSDE related to the mazimization problem has a
uniformly Lipschitz generator, thus the theory developed in [101] for Lipschitz 2BSDEs
can be used.

3.4.2 A min-max property

By comparing the value function of our robust utility maximization problem and the one
presented in [54] for standard utility maximization problem, we are able to have a min-
max property similar to the one obtained by Denis and Kervarec in [29]. We observe that
we were only able to prove this property after having solved the initial problem, unlike in
the approach of [29].

Theorem 3.4.2. Under the previous assumptions on the probability measures set Py and
the admissible strategies set A, the following min-maz property holds.

sup inf E¥ [R%] = inf sup E¥[R%] = inf supEF[R%],
sup o BY [RF] = inf sup B [RF] = inf  sup B[R]

where AY is the set consisting of trading strategies m which are in A and such that the

process (fot 7TSdBS) is a BMO(P) martingale.

0<t<T

Proof. First note that we have

— . P T < i P T < i P T —. (.
D= o, B VLSl sup B S s R = ¢

Indeed, the first inequality is obvious and the second one follows from the fact that for
all P, A C A",

It remains to prove that C' < D. By the previous sections, we know that

D= —exp (A (z - Yp)).



Chapitre 3. Robust Utility Maximization in Non-dominated
68 Models with 2BSDEs

Moreover, we know from Chapter 2 that we have a representation for Y,

P
Yy = sup yp,
PePy

where yg is the solution of the standard BSDE with the same generator F.

On the other hand, we observe from [54] that

C = inf [—exp (—ﬁ (515 - yg))] 5

PePy

implying that C' = D. ]

3.4.3 Indifference pricing via robust utility maximization

It has been shown in [38] that in a market model with constraints on the portfolios, if we
define the indifference price for a contingent claim ® as the smallest number p such that

sup E [—exp (=4 (X*7 — 2))] > sup E[~exp (=6X"7)],

where X7 is the wealth associated with the portfolio 7 and initial value z, then this
problem turns into the resolution of BSDEs with quadratic growth generators.

In our framework of uncertain volatility, the problem of indifference pricing of a contin-
gent, claim ® boils down to solve the following equation in p

VOx) = V®(x +p).
Thanks to our results, we know that if ® € L3 then the two sides of the above equality
can be calculated by solving 2BSDEs. The price p can therefore be calculated as soon as

we are able to solve the 2BSDEs (explicitly or numerically). We provide two examples in
Section 3.7.

3.5 Robust power utility

In this section, we will consider the power utility function

1
Ul)=——z", >0, v>0.
Y

Here we shall use a different notion of trading strategy: p = (p')i=1.._a denotes the

proportion of wealth invested in stock . The number of shares of stock ¢ is given by %
Then the wealth process is defined as
t 4 xp oo t
X/ =z+ / Z%dsg =+ / X?ps (dBs + byds), Py — q.5. (3.5.1)
0 ,_ s 0

and the initial capital x is positive.

In the present setting, the set of admissible strategies is defined as follows
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Definition 3.5.1. Let A be a closed set in RY. The set of admissible trading strategies A
consists of all R%-valued progressively measurable processes p = (pi)o <t < satisfying

p € BMO(Pg) and p € A, dt @ Py — a.e.

The wealth process X” can be written as

t
ti =z& (/ ps(st +b3d3)> s t € [07T]7 7DH —4q.s.
0

Then for every p € A, the wealth process X” is a local P-martingale bounded from
below, hence, a P-supermartingale, for all P € Py.

We suppose that there is no liability ({ = 0). Then the investor faces the maximization

problem
V(x) =sup inf E¥ [U(X2)]. (3.5.2)

peA PEPH

In order to find the value function and an optimal strategy, we apply the same method
as in the exponential utility case. We therefore have to construct a stochastic process R”

T
R’}zU(x—i—/ Xﬁpsdgs).
0 s

Then the value function will be given by V(z) = Ry. Applying the utility function to

with terminal value

satisfying Properties 3.3.1.

the wealth process yields
1 _ 1 ! ! L[t 2
— :Y (X)) " = —;a:’“’exp (—/0 ~Vpsd B —/O Vpsbsds + 5/0 ¥ ‘ai/st‘ ds) . (3.5.3)

This equation suggests the following choice

1 t t 1 t
R} = ——xYexp <—/ YpsdBs — / vpsbsds + —/ ¥ |a;/2p5|2 ds + Yt) ,
gl 0 0 2 Jo

where (Y, Z) € D¥ x H% is the unique solution of the following 2BSDE

T T
Y, =0— / Z,dB, — / Fy(Z)ds + Kp — Ky, t € [0,T], Py — q.5. (3.5.4)
t t

In order to get (iii) of Properties 3.3.1 for R, we have to construct I*A}(z) such that, for
te0,T]

R 2 —~ 1 R 2
a’p| —F(Z)< — 5 @ (vp, — Z,)| for all p € A, (3.5.5)

1
vpiby — 37

with equality for some p* € A. This is equivalent to
12
2 17‘—6;/2@4-94 12, |2
. ~ a2z
2 1+~ *3 ‘at t‘ '

1 ~
Zii/zpt i (—&\;/2275 + 9,5)

. 1
F(Z)> — =~(1
+(Z4) 27( +7) -
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Hence, the appropriate choice for Fis

~ ~1/2 w
~ 1 _nl2 0 7y ‘—at z+ 6,
Fe) = — LY g2 (% A )+

2

1
+_
2(14+7) 2

~1/2
a,' "z

. (3.5.6)

:

and a candidate for the optimal strategy must satisfy

. 1 "
a,p; €Iy, (m (—atht +6t>> L te0,T].

We summarize the above results in the following Theorem.
Theorem 3.5.1. Assume either that the drift b verifies that sup ”thL%" is small and
T

<t

that the set A contains 0, or that the set A is C? (in the sense thal its border is a C?
Jordan arc). Then, the value function of the optimization problem (3.5.2) is given by

1
V(z) = —;x’”exp(YO) for z > 0,

where Yy is defined as the initial value of the unique solution (Y,Z) € DY x H% of the
quadratic 2BSDE

T T
Y, =0-— / Z,dB, — / Fy(Z)ds + Ky — K,, t €[0,T) Py — q.s. (3.5.7)
t t

where F is given by (3.5.6).

Moreover, there exists an optimal trading strategy p* € A with the property

_1/2 4 1 12 ~
;" Py € HAEt (m (—at Zt + 9t>) 5 te [O,T] (358)
Proof. The proof is very similar to the case of robust exponential utility. First we
can show, with the same arguments, that the generator F satisfies the conditions of
Assumption 2.2.1 or Assumption 2.2.2, hence there exists a unique solution to the 2BSDE
(3.5.7).

Let then p* denote the progressively measurable process, constructed with a measurable
selection theorem, which realizes the distance in the definition of F'. The same arguments
as in the case of robust exponential utility show that p* € A.

Then with the choice we made for ﬁ, we have the following multiplicative decomposition

1 t '
R} = ——x77& (—/ (vps — Zs) dBS> G_WK]tPeXp (—/ Usds) ,
Y 0 0

2
<0, dt @ P—ae.

where

2 1
— F{(Zy) +§

1 . ~
vy = Ypeby — = az/Qﬂt ai/z(VPt - Zt)

2
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Then since the stochastic integral fot(ps — Zs)dBy is a BMO(Py) martingale, the stochas-
tic exponential above is a uniformly integrable martingale. By exactly the same arguments
as before, we have

essinf® EY [R?] < R?, s<t, P—a.s.
P'€Py (s+,P)
with equality for p*.

Hence, the terminal value RY. is the utility of the terminal wealth of the trading strategy
p. Consequently,

1
inf B [U (X£)] < Ry = —;wexp(yo) for all p € A.

PePy

Remark 3.5.1. Of course, the min-maz property of Theorem 3.4.2 still holds.

3.6 Robust logarithmic utility
In this section, we consider logarithmic utility function
U(x) =log(z), = > 0.

Here we use the same notion of trading strategies as in the power utility case, p =

(p")i=1,.a denotes the part of the wealth invested in stock i. The number of shares of

t

stock ¢ is given by =% pt . Then the wealth process is defined as

p t
Xp:x+/ 'OédSl —x—i—/ X?ps (dBs + bsds), Py — q.s. (3.6.1)
0

and the initial capital x is positive.

The wealth process X” can be written as

t
X! = z& (/ ps(dBs + bsds)> , t €[0,T], Pu —q.s.
0

In this case, the set of admissible strategies is defined as follows

Definition 3.6.1. Let A be a closed set in RY. The set of admissible trading strategies A
consists of all R%-valued progressively measurable processes p satisfying

sup EF [/ ]51/2,0t| dt
0

PePy

< 00,

and p € A, dt @ dP — a.s., VP € Py.



Chapitre 3. Robust Utility Maximization in Non-dominated
72 Models with 2BSDEs

For the logarithmic utility, we assume the agent has no liability at time 7' (£ = 0). Then
the optimization problem is given by

Vi(z) = inf E*[log(X%
(v) = sup inf E-llog(X7)]

T T
1
= log(x) +sup inf E* [/ psd B +/ (psbs — §|a;/2ps|2)ds : (3.6.2)
0 0

peA PEPH

We have the following theorem.

Theorem 3.6.1. Assume either that the drift b verifies that sup HthL;y is small and
<t<T

that the set A contains 0, or that the set A is C? (in the sense thal its border is a C?
Jordan arc). Then, the value function of the optimization problem (3.6.2) is given by

V(z) =log(z) — Yy for z >0,

where Yy is defined as the initial value of the unique solution (Y,Z) € DY x H% of the
quadratic 2BSDE

T T
Yt:()—/ ZSdBS—/ Fuds+ KE—KF, t€[0,T), P—as., VP € Py.  (3.6.3)
t

t

The generator is defined by

where ] ]
Fy(a) = —idistQ(Qs,Aa) + 5]95]2, fora € S7°.

Moreover, there exists an optimal trading strategy p* € A with the property

a/p; €Ty, (@) . (3.6.4)

Proof. The proof is very similar to the case of exponential and power utility. First
we show that there exists an unique solution to the 2BSDE (3.6.3). We then write, for
te[0,T]

R} = M{ + N,

where

t
Mtp = 1Og($)_Yb+/ (ps_Zs)st+KF7
0

t 1 2
Nf = / (—— —Fs) ds.
0 2

Then, we similarly prove that p*, which can be constructed by means of a classical

2
3

al/zps - é\s é\s

S

measurable selection argument, is in A. Note in particular that p* only depends on
6, a'/? and the closed set A describing the constraints on the trading strategies.



3.7. Examples 73

Next, due to Definition 3.6.1, the stochastic integral in R is a martingale under each
P for all p € A. Moreover, F is chosen to make the process N” non-increasing for all p
and a constant for p*. Thus, the minimum condition of K¥ implies that R’ satisfies (iii)
of Properties 3.3.1.

Furthermore, the initial value Y; of the simple 2BSDE (3.6.3) satisfies
T A~
Yy = sup EF {—/ Fsds} )
PePy 0

V(z) = R () = log(x) — sup E? {_ /0 ' ﬁsds] |

Hence,

PePy

(]

Remark 3.6.1. Of course, the min-mazx property of Theorem 3.4.2 still holds. Moreover,
it is an easy exercise to show that the 2BSDE (3.6.3) has a unique solution given by

’ T 1
Y, = esssup” EF { / §(dist2(08,Aas)—|95|2) ds].
t

P Py (t+,P)

3.7 Examples

In general, it is difficult to solve BSDEs and 2BSDEs explicitly. In this section, we will
give some examples where we have an explicit solution. In particular, we show how the
optimal probability measure is chosen. In all our examples, we will work in dimension
one, d = 1.

First, we deal with robust exponential utility. We consider the case where there are
no constraints on trading strategies, that is A = R. Then the associated 2BSDE has a
generator which is linear in 2. In the first example, we consider a deterministic terminal
liability ¢ and show that we can compare our result with the one obtained by solving the
HJB equation in the standard Merton’s approach, working with the probability measure
associated to the constant process a. In the second example, we show that with a random
payoff £ = — B2, where B is the canonical process, we end up with an optimal probability
measure which is not of Bang-Bang type (Bang-Bang type means that, under this proba-
bility measure, the density of the quadratic variation a takes only the two extreme values,
a and @). We emphasize that this example does not have real financial significance, but
shows nonetheless that one cannot expect the optimal probability measure to depend only
on the two bounds for the volatility unlike with option pricing in the uncertain volatility
model.

3.7.1 Example 1: Deterministic payoff

In this example, we suppose that b is a constant in R. From Theorem 3.4.1, we know that
the value function of the robust maximization problem is given by

V() = —exp (=8 (z — Y0)),
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where Y is the solution of a 2BSDE with a quadratic generator. When there are no
constraints, the 2BSDE can be written as follows

T T
Y, :5_/ stBs_/ Fy(Z)ds + Kj. — K[, P—a.s., VP € Py.
t t

and the generator is given by

~ . b2
Fi(z) := Fy(w, z,a) = bz + 5

Then we can solve explicitly the corresponding BSDEs with the same generator under

each P. Let
M, = e S Lv2astds— [ bas tdB,

By applying Ito’s formula to yf M;, we have

P P [ -
W =E [5M — | a Msds}.
° t28
Since a < a < a, we derive that
1 b?
PLeE— ——T.
Yo <& 23 a

Therefore, by the representation of Y, we have

Yogf—%ET-

Moreover, under the specific probability measure P% € Py, we have
= 1 v?
IED(l
=¢(— ——T.
Yo § 23 a

This implies that Yy = ygﬁ, which means that the robust utility maximization problem
is degenerated and is equivalent to a standard utility maximization problem under the
probability measure P?. We discuss in more detail this result in Example 3.7.3 below.

3.7.2 Example 2 : Non-deterministic payoff

In this subsection, we consider a non-deterministic payoff ¢ = —B2%. As in the first
example, there are no constraints on trading strategies. Then, the 2BSDE has a linear
generator. We can verify that —B2% can be written as the limit under the norm HH% of
a sequence which is in UCy (), and thus is in £%, which is the terminal condition set for
2BSDEs with Lipschitz generators. Here, we suppose that b is a deterministic continuous
function of time t.

By the same method as in the previous example, let

t132~—1 t, ~—1
— =bZas ds— [, bsas dBs
Mt = e J0 27879 fO s 2,



3.7. Examples 75

then we obtain

b2
y%quwﬁ—AQﬁle}

By applying 1t6’s formula to M, B;, we have

thBt — MtdBt + Btht — thtdt
Since b is deterministic, by taking expectation under P and localizing if necessary, we

obtain . .
EF [MrBr] = EF l— / thtdt] = — / bedt.
0 0

Again, by applying It6’s formula to —M; B?, we have
—thBtZ = —2M,B,dB; — Btszt — ayM,dt + 2b, M, B,dt.

Therefore y5 can be rewritten as

5 b T b2 T t
=K —M; | a; + dt / 2b (/ bsd5> dt.
e [ (e gz )] = ()]

By analyzing the map g : z € Rt — oz — W’ we know that ¢'(z) =1 — 2&;, implying

2
that ¢ is nondecreasing when 22 > ﬁ

Let us now assume that b is a deterministic positive continuous and nondecreasing func-
tion of time ¢ such that

ﬁgﬁg#\@.
26 20
Let t be such that L = g and t be such that = a, and define
by

<t<t mlggtgf‘i‘al i<t<r 0<t<T,
then as in Example 3.7.1, we can show that P* is an optimal probability measure, which
is not of Bang-Bang type.

3.7.3 Example 3 : Merton’s approach for robust power utility

Here, we deal with robust power utility. As in Example 3.7.1, we suppose that b is a
constant in R and & = 0. First, we consider the case where A = R. From Theorem 3.5.1,
F(z) can be rewritten as

R v at/z—i-batl/ 1

Fi(z) = 2(147) T3

a;" " z|

~1/2 )2

which is quadratic and linear in z.
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According to BSDEs theory, we can solve explicitly the corresponding BSDEs with this
generator under each probability measure P. We use an exponential transformation and
let

=141 R L
I+~

By applying It6’s formula, we know that (y*, 2F)

BSDE

is the solution of the following linear

dyt = —ay (v*a; ' —2bz)) dt + 2 dB; |,

_Tr
2(1+7)
with the terminal condition y% = 1.

For t € [0, 7], let

t~—1/2

a”y ~—1/2 ta T .
2ba, / , and M; := elo =T dstfy @ TnsdBs

N i= ——b%a; = —

2(1+7) 2(147)

By applying It6’s formula to 3 M;, we obtain
1
yl =E; [My/M,], soyy = ——n (E¥ [M7]) .

Since a < a < @, we derive that

b2
Yo < — i =T
2(l+7)a
Thus by the representation of Y, we have
b2
Yo< — = T.
2l+7)a

Moreover, under the specific probability measure P* € Py, we have

@ Y b2
= g
2(1+7)a
This implies that Y, = ygpa. Finally, the value of the robust power utility maximization
problem is

Vi(z) = —iwexp (Ya).

Asin Example 3.7.1, the robust utility maximization problem is degenerate, and becomes
a standard utility maximization problem under the probability measure P? In order
to shed more light on this somehow surprising result, we first recall the HJB equation
obtained by Merton [81] in the standard utility maximization problem

ov

oY . X _
T 216111: [L2v(t,z)] =0,

together with the terminal condition

-

v(T,z) =U(x) = —xT, reRL, v>0,
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where 5 . o
Sa _ ov Ll o9cp OV
L U(t’x)—x5b8x+2x5aﬁx2’

with a constant volatility a'/2.

It turns out that, when A = R, the value function is given by

b2

(t, ) = exp (% (1;77) (T — t)) U(z), (t,z) €[0,T] x R,.

Let a = @, we have v(0,2) = V(z), which is the result given by our 2BSDE method.
Intuitively and formally speaking (in the case of controls taking values in compact sets,
it has actually been proved under other technical conditions in [105] that the solution to
the stochastic game we consider is indeed a viscosity solution of the equation below, see

also Remark 3.7.2), the HJB equation for the robust maximization problem should then
be

ov
—— —sup inf [£%%(t,z)] =0
ot 565 a€la,a] | (t,2)]

together with the terminal condition v(T,z) = U(x), = € R,.

Note that the value function we obtained from our 2BSDE approach solves the above
PDE, confirming the intuition that this is the correct PDE to consider in this context.
Now assume that A = R. If the second derivative of v is positive, then the term

sup inf [£%%(t, )],

secA a€lad]
becomes infinite, so the above PDE has no meaning. This implies that v should be
concave. Then @ is the minimizer. This explains why the robust utility maximization
problem degenerates in the case A = R. From a financial point of view, this is the same
type of results as in the problem of superreplication of an option with convex payoff under
volatility uncertainty. Then, similarly as the so-called robustness of the Black-Scholes
formula, this leads to the fact that the probability measure with the highest volatility
corresponds to the worst-case for the investor. However, it is clear that when, for instance,
we impose no short-sale and no large sales constraints (that is to say A is a segment), the
problem should not degenerate and the optimal probability measure switches between the
two bounds a and a@.

Finally, notice that using the language of G-expectation introduced by Peng in [89)], if
we let

- =+ in£ [Lo%%(t, )] =0, (3.7.1)

where
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Then, our PDE plays the same role for Merton’s PDE as the Black-Scholes-Barenblatt
PDE plays for the usual Black-Scholes PDE, by replacing the second derivative terms by
their non-linear versions.

Remark 3.7.1. It could be interesting to consider more general constraints for the volatil-
ity process. For instance, we may hope to consider cases where a can become 0 and @ can
become +00. From the point of view of existence and uniqueness of the 2BSDFEs with
quadratic growth considered here, this is not a problem, since there is no uniform bound
on a for the set of probability measures considered in Chapter 2 (see Definition 2.2.1).
However, this boundedness assumption s crucial to retain the BMO integrability of the
optimal strategy and thus also crucial for our proofs. We think that without it, the prob-
lem could still be solved but by now using the dynamic programming and PDE approach
that we mentioned. However, delicate problems would arise in the sense that on the one
hand, if a = 0, then the PDE will become degenerate and one should then have to consider
solutions in the viscosity sense, and on the other hand, if @ = +o00, the PDE will have to
be understood in the sense of boundary layers.

Another possible generalizations would be to consider time-dependent or stochastic uncer-
tainty sets for the volatility. This would be possible if we were able to weaken Assumption
2.2.1(1), which was already crucial in the proofs of existence and uniqueness in [101]. One
first step in this direction has been taken by Nutz in [86] where he defines a notion of
G-expectation (which roughly corresponds to a 2BSDE with a generator equal to 0) with a
stochastic domain of volatility uncertainty.

Remark 3.7.2. In [108], a similar problem of robust utility mazimization is considered.
They consider a financial market consisting of a riskless asset, a risky asset with unknown
drift and volatility and an untradable asset with known coefficients. Their aim is to solve
the robust utility mazimization problem without terminal liability and withoutl constraints
for exponential and power utilities, by means of the dynamic programming approach already
used in [105]. They managed to show that the value function of their problem solves a PDE
similar to (3.7.1), and also that (see Proposition 2.2) the optimal probability measure was
of Bang-Bang type, thus confirming our intuition in their particular framework. Besides,
they give some semi-explicit characterization of the optimal strategies and of the optimal
probability measures. From a technical point of view, the main difference between our two
approaches, beyond the methodology used, is that their set of generalized controls (that
is to say their set of probability measures) is compact for the weak topology, because it
corresponds to the larger set Py defined in Section 2.2 of Chapter 2. This is also the
framework adopted in [29]. However, as shown in [27] for instance, our smaller set Py
15 only relatively compact for the weak topology. Nonetheless, working with this smaller
set has no effect from the point of view of applications, and more importantly allows us
to obtain results which are not attainable by their PDE methods, for instance with non-
Markovian terminal liability & and also when the set of trading strategies is constrained in
an arbitrary closed set.



CHAPITRE 4

Second Order Reflected BSDEs

4.1 Introduction

In this chapter, we study a class of 2RBSDEs with a given lower cadlag obstacle. The out-
line is as follows. In Section 4.2, we provide the precise definition of 2RBSDEs and show
how they are connected to classical RBSDEs. Next, in Section 4.3, we prove a representa-
tion formula for the Y-part of a solution of a 2RBSDE which in turn implies uniqueness.
We then provide some links between 2RBSDEs and optimal stopping problems. In Section
4.4, we give a proof of existence by means of regular conditional probability distribution
techniques, as in [101] for Lipschitz 2BDSEs. Let us mention that this proof requires to
extend existing results on the theory of g-martingales of Peng (see [88]) to the reflected
case. Since to the best of our knowledge, those results do not exist in the literature, we
prove them in the Appendix 4.6. Finally, we use these new objects in Section 4.5 to study
the pricing problem of American contingent claims in a market with volatility uncertainty.
This chapter is based on [79].

4.2 Preliminaries

We consider the same framework as in Chapter 2 (see Section 2.2).

4.2.1 The nonlinear generator

Given a map Hy(w,y,2,7) : [0,T] x Q@ x R x R x Dy — R, where Dy C R¥? is a subset
containing 0, we define the corresponding conjugate of H w.r.t.y by

1
Fi(w,y,z,a) :== sup {—Tr(av) — Ht(w,y,z,w)} for a € S;°,
ve€Dy 2

Fi(y,z) := F(y, 2,4@;) and F? := F,(0,0).

We denote by Dp,(y.) = {a, Fi(w,y,2,a) < +oo} the domain of F' in a for a fixed
(t,w,y, z).

As in [101] we fix a constant x € (1,2] and restrict the probability measures in P}, C Pg

Definition 4.2.1. P}, consists of all P € Pg such that

2
~ | K r
ap <@ < ap, dt x dP — a.s. for some ap,ap € S;°, and EF F dt)

< +00

(
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Definition 4.2.2. We say that a property holds Py -quasi-surely (Py-q.s. for short) if it
holds P-a.s. for all P € Py;.

We now state our main assumptions on the function F' which will be our main interest
in the sequel

Assumption 4.2.1. (i) Py is not empty, and the domain D, .y = Dp, is independent
Of (w7 y’ Z)'

(ii) F is F-progressively measurable in Dp,.

(iii) We have the following uniform Lipschitz-type property in y and z

Fi(y,2) — Fi(y,2)

<C <‘y—y/‘ + ‘81/2 (z — z/>’> , Pl —q.s.
for all (t,y,y ,2,2).

(iv) F is uniformly continuous in w for the || - ||s norm.

Remark 4.2.1. The assumptions (i) and (i) are classic in the second order framework
([101]). The Lipschitz assumption (iii) is standard in the BSDE theory since the paper
[87]. The last hypothesis (iv) is also proper to the second order framework, it is linked to
our intensive use of reqular conditional probability distributions (r.c.p.d.) in our existence
proof, and to the fact that we construct our solutions pathwise, thus avoiding complex
wssues related to negligeable sets.

Remark 4.2.2. (i) P} is decreasing in k since for k; < ko with Holder’s inequality

([ a)] <o [([ 7))

(ii) The Assumption 4.2.1, together with the fact that ﬁto < 400, P-a.s for every P € Py,
implies that a; € Dp,, dt x P-a.s., for all P € P};.

~

EIP’ th[] < C«E]P’ ﬁwtO

4.2.2 The spaces and norms

We now recall from [101] the spaces and norms which will be needed for the formulation
of the 2RBSDESs. Notice that all subsequent notations extend to the case k = 1.

For p > 1, L% denotes the space of all Fr-measurable scalar r.v. £ with
1€]1% 5. := sup EF [|€]7] < +o0.
H PePy,
H’;}” denotes the space of all F*-progressively measurable Re-valued processes Z with

T 5
( / ay’/ 2Zt|2dt)
0

< +00.

HZH%%R .= sup E"
Py
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D% denotes the space of all F™-progressively measurable R-valued processes Y with

Py, — g.s. cadlag paths, and ||Y||P, := sup E" [ sup |Y}|p} < 400.
= PePy 0<t<T

%" denotes the space of all F™-progressively measurable R-valued processes K null at 0
with

Py — q.s. cadlag and non-decreasing paths, and HKH%;’” .= sup E¥ [(K7)?] < 4o0.
PEPY;

For each £ € Lyj*, P € P} and ¢ € [0, T] denote

EF[€] := esssup® ]EED/ (€] where P (t7,P) := {IP’, cePr:P =Pon .7-":}

P’ ePy (t+,P)

Here EF[¢] := E¥[¢|F;]. Then we define for each p > &,

Bl

L = {g € I - [|€llpy < +oo} where [[¢]fy = sup E” {esssupﬂm (Eff’P[|g\ﬂ]) } .
e K

" 0<t<T

Finally, we denote by UC,(£2) the collection of all bounded and uniformly continuous
maps ¢ : @ — R with respect to the ||| _-norm, and we let

LY := the closure of UC,(€2) under the norm ||-||]L%K,, for every 1 < k < p.

4.2.3 Formulation

First, we consider a process S which will play the role of our lower obstacle. We will
always assume that S verifies the following properties

(i) S is F-progressively measurable and cadlag.
(ii) S is uniformly continuous in w in the sense that for all ¢
|Si(w) = Su@)] < p(lw—5ll,), ¥ (w,d) € 2,

for some modulus of continuity p and where we define |w||, ;== sup |w(s)].
0<s<t

Then, we shall consider the following 2RBSDE with lower obstacle S

T T
Y, :5—/ FS(YS,ZS)ds—/ ZdBs+ Kr — Ky, 0<t< T, Py —qs.  (4.2.1)
t t

We follow Soner, Touzi and Zhang [101|. For any P € Py, F-stopping time 7, and
F,-measurable random variable ¢ € L2(P), let (v, 2%, k%) = (5 (7, &), 25(7, &), kP (1,€))
denote the unique solution to the following standard RBSDE with obstacle S (existence
and uniqueness have been proved under our assumptions by Lepeltier and Xu in [68])
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Y, =& — ys,Sds—/zdeerk:f—kf,OétéT,]P’—a.s.
¢
—a.s

yi =S, P (4.2.2)

T
/ (vs- — Ss-) dk; =0, P—a.s.
\ JO

Definition 4.2.3. For £ € L3, we say (Y, Z) € D%" x H}" is a solution to the 2RBSDE
(4.2.1) if

o Yr = 57 ’PI“{ —
o VP € Py, the process K¥ defined below has nondecreasing paths P — a.s.
t t
K/ =Y, -Y, —|—/ Fi(Ys, Zs)ds +/ ZydBs, 0<t<T, P—a.s. (4.2.3)
0 0
o We have the following minimum condition

KP — kP = essinf® EY [Kgi' - kf;f} L0<t<T, P—as, VPP  (4.2.4)

P ePy (t+,P)

.}/t>St;P?]_qS

Remark 4.2.3. In our proof of existence, we will actually show, using recent results of

Nutz [86], that the family (K*)

peps Can always be aggregated into a universal process K.
H

Following [101], in addition to Assumption 4.2.1, we will always assume

Assumption 4.2.2. The processes FY and S satisfy the following integrability conditions

- 2
T W
27H . P P Hv]P) AO K
¢y == sup E" |esssup (Et [/ |FY| ds})
PPy 0<t<T 0

oo 2
?f = sup EF | esssup® (]Ef’]P [( sup (Ss)+) })

PEPE, 0<t<T 0<s<T

< 400 (4.2.5)

< +00. (4.2.6)

4.2.4 Connection with standard RBSDEs

If H is linear in v, that is to say

Hi(y, 2,7) o= 5T [ab] — Fily.2),

where a® : [0,T] x Q — S7° is F-progressively measurable and has uniform upper and
lower bounds. As in [101], we no longer need to assume any uniform continuity in w in
this case. Besides, the domain of F is restricted to a” and we have

ﬁ;t(yu Z) = ft(yv Z)'
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If we further assume that there exists some P € Pg such that @ and a° coincide P — a.s.
and E? [fOT |ft(0,0)\2dt] < 400, then Pj = {P}.

Then, unlike with 2BSDEs, it is not immediate from the minimum condition (4.2.4) that
the process K¥ — k¥ is actually null. However, we know that K — k® is a martingale with
finite variation. Since PP satisfy the martingale representation property, this martingale is
also continuous, and therefore it is null. Thus we have

0=k —KF P—as,

and the 2RBSDE is equivalent to a standard RBSDE. In particular, we see that the part
of K which increases only when Y,- > S,- is null, which means that KT satisfies the
usual Skorohod condition with respect to the obstacle.

4.3 Uniqueness of the solution and other properties

4.3.1 Representation and uniqueness of the solution
We have similarly as in Theorem 4.4 of [101]

Theorem 4.3.1. Let Assumptions 4.2.1 and 4.2.2 hold. Assume & € L?f and that (Y, Z)
is a solution to 2RBSDE (4.2.1). Then, for any P € Py and 0 <t; <ty < T,

Y, = esssup’ yzl(tg,}/;,z), P—a.s. (4.3.1)
P ePr (t],P)

Consequently, the 2RBSDE (4.2.1) has at most one solution in D3* x H3;".

Remark 4.3.1. Let us now justify the minimum condition (4.2.4). Assume for the sake
of clarity that the generator F is equal to 0. By the above Theorem, we know that if there
exists a solution to the 2RBSDE (4.2.1), then the process Y has to satisfy the representation
(4.3.1). Therefore, we have a natural candidate for a possible solution of the 2RBSDE.
Now, assume that we could construct such a process Y satisfying the representation (4.3.1)
and which has the decomposition (4.2.1). Then, taking conditional expectations inY — ¥,
we end up with exactly the minimum condition (4.2.4).

Proof. The proof follows the lines of the proof of Theorem 4.4 in [101].

First,

Y, = esssup® of (T,€), t € [0,T], P— a.s., for all P € PL,
P ePr (t+,P)

and thus is unique. Then, since we have that d(Y, B), = Z,d (B),, Py —q.s., Z is unique.
Finally, the process K¥ is uniquely determined. We shall now prove (4.3.1).

(i) Fix 0 < t; <t, < T and P € P. For any P’ € Py (t],P), we have

to R to ’ ’ ’
Y, =Y, _/ E(Ys, Z,)ds —/ ZdBs+ K, — K{ , ti <t <ty, P —as.
t t
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Now, it is clear that we can always decompose the nondecreasing process K¥ into

KPP =AY + BY P —as,

were AF and B¥ are two nondecreasing processes such that AP only increases when
Y- = S5;- and BF only increases when Y;- > S;-. With that decomposition, we
can apply a generalization of the usual comparison theorem proved by El Karoui et
al. (see Theorem 5.2 in [35]), whose proof is postponed to the Appendix, under P’
to obtain Y;, > yfj (t5,Y;,) and A]f: — A]tpll < kg — kt]PI, P’ —a.s. Since P’ =P on F;",
we get Y;, > ytﬂ’r (t2,Y:,), P — a.s. and thus

1
Y, > esssup’ y;, (t2,Y;,), P—a.s.
P ePy (] P)

We now prove the reverse inequality. Fix P € Pj;. We will show in (iii) below that

’ ’ / / N\ 2
CE = esssup’ Efl [(Kg —k‘i —Kg +ktﬂ);> < 400, P—a.s.

P ePy (¢ ,P)

For every P’ € P (t*,P), denote

OV =Y —of (t,Yy,), 02 1= Z — 2 (82,Y,) and KT = K¥ — K (15, y,).

By the Lipschitz Assumption 4.2.1(iii), there exist two bounded processes A and n
such that for all t; <t <15

to t2 / / ,
§Y, = / (AOYs +nsat/26 Z,) ds — / 0Z,dBs + 6K, — 6K, , P —a.s.
t t

Define for ¢t; <t <ty the following continuous process

t 1 t N ,
M, := exp (/ ()\8 B |778\2) ds +/ nsas_l/Qst) , P —a.s.
t1 t1

Note that since A\ and 7 are bounded, we have for all p > 1

Ef{ sup  (M;)P +  sup (Mt—l)p] <C,, P —as. (4.3.2)

t1 <t <t t] <t<t

Then, by Itd’s formula, we obtain

’ t2 /
§Y;, = E; { / MdSK} ] : (4.3.3)
t1
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(i)

Let us now prove that the process K¥ — ¥ is nondecreasing. By the minimum
condition (4.2.4), it is clear that it is actually a P-submartingale. Let us apply the
Doob-Meyer decomposition under P', we get the existence of a P'-martingale NP
and a nondecreasing process PP’, both null at 0, such that

KF — ¥ =NF + PP P —as.

Then, since we know that all the probability measures in Py; satisfy the martingale
representation property, the martingale N* is continuous. Besides, by the above
equation, it also has finite variation. Hence, we have N¥ = 0, and the result follows.

Returning back to (4.3.3), we can now write

mlgEf’l’[ sup (M )(5[(};—5[(}‘;)]

i1 St <t

/ ’ N 3/2 2/3
(€] e o) o))
t1 <t <t

< (i) (B [or, —5KPD L P—as.
By taking the essential infimum in P° € Pg(t],P) on both sides and using the
minimum condition (4.2.4), we obtain the reverse inequality.

It remains to show that the estimate for CE holds. But by definition, we clearly
have

/ / / / / 2
B | (2 - 4 - K5 4| <0 (1Y Iy + 12050 + 637)

~1/2 p
a;' "z

T
+CsupEP{ sup ‘yt{ +/

PePy 0<t<T

2
ds}

since the last term on the right-hand side is finite thanks to the integrability assumed
on £ and FO.

< 400,

Then we can proceed exactly as in the proof of Theorem 4.4 in [101]. (]

Finally, the following comparison Theorem follows easily from the classical one for RBS-
DEs (see for instance Theorem 5.2 in [35] and Theorem 3.4 in [68]) and the representation
(4.3.1).

Theorem 4.3.2. Let (Y, Z) and (Y', Z') be the solutions of 2RBSDEs with terminal con-
ditions & and £, lower obstacles S and S' and generators F and F' respectively (with the
corresponding functions H and H'), and let (y*, 2%, k%) and (y%, 2%, k'®) the solutions of
the associated RBSDFEs. Assume that they both verify our Assumptions 4.2.1 and 4.2.2,
that Pg; C P}, and that we have



86 Chapitre 4. Second Order Reflected BSDEs

«<E Py —qs
. I*A}(yép, 2F) > ﬁ;’(ygp, 2B), P —a.s., for all P € PE.
e S, <S5, P& —q.s.

ThenY <Y, P}, —q.s.

Remark 4.3.2. Note that in our context, in the above comparison Theorem, even if the
obstacles S and S' are identical, we cannot compare the nondecreasing processes K¥ and
K'™. This is due to the fact that the processes K* do not satisfy the Skorohod condition,
since it can be considered, at least formally, to come from the addition of a nondecreasing
process due to the fact that we work with 2BSDEs, and a nondecreasing process due to the
reflection constraint. And only the second one is bound to satisfy the Skorohod condition.

4.3.2 Some properties of the solution

Now that we have proved the representation (4.3.1), we can show, as in the classical
framework, that the solution Y of the 2RBSDE is linked to an optimal stopping problem

Proposition 4.3.1. Let (Y, Z) be the solution to the above 2RBSDE (4.2.1). Then for
each t € [0,T] and for all P € Py

Y, = esssup’ esssup Efl [—/ ﬁs(yf,, zfl)ds + S lrery + fl{T:T}} , P—a.s. (4.3.4)
P'ePy (t+,P) €T T t

= esssup E} {—/ F\S(YS, Zy)ds + AZ — AT + Selirery + fl{T:T}} , P—a.s. (4.3.5)
T€TT t

where Tir is the set of all stopping times wvalued in [t,T] and where A =

fg 1{Ys— >SS_}szP is the part of K¥ which only increases when Y, > S,-.

Remark 4.3.3. We want to highlight here that unlike with classical RBSDEs, considering
an upper obstacle in our context is fundamentally different from considering a lower obsta-
cle. Indeed, having a lower obstacle corresponds, at least formally, to add an nondecreasing
process in the definition of a 2BSDE. Since there is already an nondecreasing process in
that definition, we still end up with an nondecreasing process. However, in the case of a
upper obstacle, we would have to add a non-increasing process in the definition, therefore
ending up with a finite variation process. This situation thus becomes much more compli-
cated. Furthermore, in this case we conjecture that the above representation of Proposition
4.3.1 would hold with a sup-inf instead of a sup-sup, indicating that this situation should be
closer to stochastic games than to stochastic control. This is an interesting generalization
that we leave for future research.

Proof. By Proposition 3.1 in [68], we know that for all P € P},

y, = esssup Ef [—/ F(yF, 2F)ds + S:ligrery +{lr=ry |, P—a.s.
t

TG'EyT
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Then the first equality is a simple consequence of the representation formula (4.3.1). For
the second one, we proceed exactly as in the proof of Proposition 3.1 in [68]|. Fix some
P € Pj; and some t € [0,T]. Let 7 € T 7. We obtain by taking conditional expectation
in (4.2.1)

Y, = Ef {YT - / Fy(Ys, Zy)ds + KF — K}f’]
t

> E} {— / Fu(Ya, Z)ds + Solery + €l (o) + AT — Aﬂ :
t

This implies that

Y, > esssup Elf l—/ ﬁS(Y;, Zs)ds + AE — Af + S lrery + 51{7T}] , P —a.s.
t

TG'Tt,T

Fix some & > 0 and define the stopping time D} © := inf {u > t, Y,
T'. Tt is clear by definition that on the set {Df F < T}, we have YDE»A,S

Su+e, P—as}A
S ppeTE- Similarly,

NN

on the set {Dtp’E = T}, we have Y, > S, +¢, for all t < s < T. Hence, for all s € [t, D} ],
we have Y,- > S,-. This implies that KDE»,E - K, = AD]f’,s — A;, and therefore

Dy
Yt < ]EiED —/t FS(YS,ZS)dS + A%f*g — A]f + SDf’El{Df‘S<T} +§1{D$’E:T} + ¢,

which ends the proof by arbitrariness of ¢. ]

We now show that we can obtain more information about the non-decreasing processes
K.

Proposition 4.3.2. Let Assumptions 4.2.1 and 4.2.2 hold. Assume & € ]L?f and (Y, Z) €
Dy x Hy" is a solution to the 2RBSDE (4.2.1). Let {(y°, 2F, k:P)}PGPI,} be the solutions
of the corresponding BSDEs (4.2.2). Then we have the following result. For allt € [0,T],

t t
/ 1{YS_:SS_}CZKS]P :/ 1{YS_:SS_}CU{]§, P—a.s.
0 0
Proof. Let us fix a given P € Pj;. Let 7, and 79 be two P-stopping times such that for

all t € [1, 1), Y- =5, P—a.s.

First, by the representation formula (4.3.1), we necessarily have for all P, Y;- > yf_,
P — a.s. for all t. Moreover, since we also have 3 > S; by definition, this implies, since
all the processes here are cadlag, that we must have

Y, = ytP, =85, t€n,n), P—as.

Using the fact that Y and y* solve respectively a 2BSDE and a BSDE, we also have

St+AY;:Yt:Yu—/ ﬁS(YS,ZS)ds—/ ZdB,+KF — K] i <t<u<m, P-as.,
t t
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and
St—i—Ayf:Y}:yg—/ ﬁs(yf,zf)ds—/ 2dBy+ K K, n<t<u<m, P—as.
t ¢

Identifying the martingale parts above, we obtain that Z, = 2f, P —a.s. for all s € [t, u].
Then, identifying the finite variation parts, we have

AY, — AY; / Fo(Ya, Zu)ds + KP — KF = Ayf — AgF — / Pi(yf, F)ds + KE — KE.
t t
Now, we clearly have

/ﬁS(YS,ZS)dSZ/ F\S(yf,zf)ds,
¢ ¢

since Zs = z,, P—a.s. and Y- =y = S, for all s € [t,u]. Moreover, since Y- =y, =
S,- for all s € [t,u] and since all the processes are cadlag, the jumps of Y and ¢ are equal
to the jumps of S. Therefore, we can further identify the finite variation part to obtain

K, = K =k, =k,

which is the desired result. o

Remark 4.3.4. Recall that at least formally, the role of the non-decreasing processes K=
is on the one hand to keep the solution of the 2RBSDE above the obstacle S and on the
other hand to keep it above the corresponding RBSDE solutions y*, as confirmed by the
representation formula (4.3.1). What the above result tells us is that if Y becomes equal
to the obstacle, then it suffices to push it exactly as in the standard RBSDE case. This
is conform to the intuition. Indeed, when Y reaches S, then all the y* are also on the
obstacle, therefore, there is no need to counter-balance the second order effects.

Remark 4.3.5. The above result leads us naturally to think that one could decompose
the non-decreasing process K* into two non-decreasing processes A¥ and V¥ such that A®
satisfies the usual Skorohod condition and V¥ satisfies
VE = ess inf” E; [Vj]?} , 0<t T, P—a.s., VPe Py
P' e Py (t+,P)

Such a decomposition would isolate the effects due to the obstacle and the ones due to
the second-order. Of course, the choice A¥ := k¥ would be natural, given the minimum
condition (4.2.4). However the situation is not that simple. Indeed, we know that

t t
/ 1{Y57:5'57}dKf = / 1{Y57:sz}dkf.
0 0

But k¥ can increase when'Y is strictly above the obstacle, since we can have Y,— > yf_ =
Si-. We can thus only write

t
KF = / Ly, —s ki + V.
0

Then V¥ satisfies the minimum condition (4.2.4) when Y;- = S;- and when yf, > S
However, we cannot say anything when Y;- > yf_ = S,-. The existence of such a decom-
position, which is also related to the difficult problem of the Doob-Meyer decomposition for
the G-submartingales of Peng [89], is therefore still an open problem.
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As a Corollary of the above result, if we have more information on the obstacle S, we
can give a more explicit representation for the processes K*. The proof comes directly
from the above Proposition and Proposition 4.2 in [37].

Assumption 4.3.1. S is a semi-martingale of the form
t t
Sy =95 —I—/ Ugds +/ VidBs + Cy, P —q.s.
0 0

where C' s cadlag process of integrable variation such that the measure dCy is singular
with respect to the Lebesgue measure dt and which admits the following decomposition

C,=Cf —-Cr,

where C and C~ are nondecreasing processes. Besides, U and V are respectively R and
Re-valued F, progressively measurable processes such that

T
/ (|U:] + |V;|2)dt + Cf + C7 < 400, Py —q.s.
0

Corollary 4.3.1. Let Assumptions 4.2.1, 4.2.2 and 4.3.1 hold. Let (Y, Z) be the solution
to the 2RBSDE (4.2.1), then

Zy =V, dt X Py —q.s. on the set {Y;- = Si-}, (4.3.6)

and there exists a progressively measurable process (af )o <t <1 such that 0 < a < 1 and
~ +
1{Y,:st,}dK£P = O‘?l{Yt,:St,} ([Ft(st, Vi) — Ut} dt + dC’t) )

4.3.3 A priori estimates

We conclude this section by showing some a priori estimates which will be useful in the
sequel.

Theorem 4.3.3. Let Assumptions 4.2.1 and 4.2.2 hold. Assume £ € L?f and (Y, Z,K) €
D3 x H3* x I3 is a solution to the 2RBSDE (4.2.1). Let {(yp,zp,kp)}]?epg be the
solutions of the corresponding BSDEs (4.2.2). Then, there exists a constant C,, depending
only on k, T and the Lipschitz constant of F' such that

IV 132 + 1202 + sup BF [(KE)2] < C (Il + 03" +03")
PePy,

and
sup {15 ee + 127 ey + H’fPH;@)} <C (||5||12ug~ + o5 +¢i}“) :
H

Proof. By Lemma 2 in [49], we know that there exists a constant C,, depending only on
k, T and the Lipschitz constant of F', such that for all P

730
FS

T K
WF| < C.EF [|gr~+ / ds+  sup (sj)%] (4.3.7)
t

t<s<<T
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Let us note immediately, that in [49], the result is given with an expectation and not a
conditional expectation, and more importantly that the process considered are continuous.
However, the generalization is easy for the conditional expectation. As far as the jumps
are concerned, their proof only uses [t6’s formula for smooth convex functions, for which
the jump part can been taken care of easily in the estimates. Then, one can follow exactly
their proof to get our result.

This immediately provides the estimate for 4. Now by definition of our norms, we get
from (4.3.7) and the representation formula (4.3.1) that

IV 132 < Co (e + 635 + 037 (4.3.8)

Now apply Ito’s formula to ]Y]Z under each P € Pj;. We get as usual for every € > 0

E” VOT th] < CEF [£i+/OTYt( )dt]
e[ o] |
)

T
<C (Hf”ﬂﬁf +E" | sup |Y;t|2 + (/ t
0<t<T 0
T 02
+ eEF [/ dt+ ‘Kﬁ } + —EF { sup |Yt|2] . (4.3.9)
0 3

0<t<T
Then by definition of our 2RBSDE, we easily have

a7, a2z,

| +

al 12z

: “Kﬁ‘z] < CoE” a2,

T/\
dt+</ h
0

Now set € := (2(1 + Cy))~! and plug (4.3.10) in (4.3.9). One then gets

T T
EP [/ P+ sup mh(/ ‘
0 0<t<T 0

From this and the estimate for Y, we immediately obtain

Pt sup [V +/

0<tLT

)2] . (4.3.10)

for some constant Cj, independent of e.

~1/2

2
dt} < CEP

2 2.k 2,k
12l < © (IlEye + 65" +5)

Then the estimate for K* comes from (4.3.10). The estimates for 2¥ and k¥ can be

proved similarly. ]

Theorem 4.3.4. Let Assumptions 4.2.1 and 4.2.2 hold. For i = 1,2, let (Y*, Z") be the
solutions to the 2RBSDE (4.2.1) with terminal condition £ and lower obstacle S. Then,
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there exists a constant C,, depending only on k, T and the Lipschitz constant of F such
that
1 2 1 2
V' = Y2 <CIE" = €|z,

]

<6 =&z (N1 e + 116" e + (630 + () 72)

and

2
2.k
HE"

HZI—ZQH + supEP[ sup ‘KF’I—KF’Q

PEPy 0<t<T

Proof. As in the previous Proposition, we can follow the proof of Lemma 3 in [49], to
obtain that there exists a constant C\ depending only on x, T" and the Lipschitz constant
of F, such that for all P

1
K

P,1 P2
Y — Yt

<0, (E] [l - ) (4.3.11)

Now by definition of our norms, we get from (4.3.11) and the representation formula
(4.3.1) that
[V = V2|2o. < Cpllet —€f3an - (4.3.12)
H H

Applying Tto’s formula to |Y? — Y2|°, under each P € P%, leads to

“[[

a7t - 77

T
zdt} <CE® || - '] + EF V v — Y2 d(] - Kf”z)}
0

T
+ CE V =2 (9 =¥+ @ - 2D dt]

<O(Jle" = &lZy + 1V = ¥2I2s)

1 P g ~1/2 /71 2 2
+ 5E /O a,/*(z} — 72)| dt
2 N 2 /2
+C [V = Y2 e (EP 3 (Kﬁ”) D
i=1

The estimate for (Z' — Z?) is now obvious from the above inequality and the estimates
of Proposition 4.3.3.

Finally the estimate for the difference of the nondecreasing processes is obvious by
definition. ]

4.4 A direct existence argument

We have shown in Theorem 4.3.1 that if a solution exists, it will necessarily verify the
representation (4.3.1). This gives us a natural candidate for the solution as a supremum of
solutions to standard RBSDEs. However, since those BSDEs are all defined on the support
of mutually singular probability measures, it seems difficult to define such a supremum,
because of the problems raised by the negligible sets. In order to overcome this, Soner,
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Touzi and Zhang proposed in [101| a pathwise construction of the solution to a 2BSDE.
Let us describe briefly their strategy.

The first step is to define pathwise the solution to a standard BSDE. For simplicity, let
us consider first a BSDE with a generator equal to 0. Then, we know that the solution
is given by the conditional expectation of the terminal condition. In order to define this
solution pathwise, we can use the so-called regular conditional probability distribution
(r.p.c.d. for short) of Stroock and Varadhan [104]. In the general case, the idea is similar
and consists on defining BSDEs on a shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus
obtained, and the decomposition (4.2.1) is obtained through a non-linear Doob-Meyer
decomposition. Our aim in this section is to extend this approach to the reflected case.
We refer to Section 2.5 in Chapter 2 for notations.

4.4.1 Existence when ¢ is in UCy(Q2)

When ¢ is in UCy(2), we know that there exists a modulus of continuity function p for &,
Fand S inw. Then, forany 0 <t <s< T, (y,2) € [0, T|xRxR?and w,w’ € Q, @ € O,

£ (@) — € (@) EP (@,y.2) = F* (@,9,2)| < p(llw—o/]],)

<P ([l =)

5o (@) = S (@)

<p(llw =)

We then define for all w € Q

A(w):= sup A (w), (4.4.1)
0<s <t
where
- o7\ 1/2
Ay (W) == sup [EF |£t’”|2+/ \Fj‘”((),())]%s—i—( sup (Sz"”)*) :
PePL” t t<s<T

Now since F** is also uniformly continuous in w, we have

A (w) < oo for some w € Q iff it holds for all w € Q. (4.4.2)
Moreover, when A is finite, it is uniformly continuous in w under the L°°-norm and is
therefore Fpr-measurable.

Now, by Assumption 4.2.2, we have

Ay (w) < oo for all (t,w) € [0,T] x Q. (4.4.3)

To prove existence, we define the following value process V; pathwise

Vi(w) := sup V" (T,€), for all (t,w) e [0,T] x €, (4.4.4)

PePy;
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where, for any (t;,w) € [0,T] x Q, P € Pp" t, € [t;,T], and any F,-measurable n €
L2 (P), we denote Y, (ty,n) 1= y}itl’ , Where (yPiw, 2P gBhe) s the solution of
the following RBSDE with lower obstacle S on the shifted space Q' under P

to to
Pt1,w t1,w Ttiw [, Ptiw Pi1,w Pit1,w j Rt P ,w P ,w
yS - /’7 - / F’r‘ (y'/‘ 727‘ ) dr - / dB _|_ k - ktl (445)
S S

Pyt ¢
Y Y =S¢ P —as.

t2
/ (yp_tl’ g )dkml’ —=0, P—as. (4.4.6)
t1

In view of the Blumenthal zero-one law, Y, (T, €) is constant for any given (t,w) and
P e PH . Moreover, since wy = 0 for all w € €, it is clear that, for the y* defined in
(4.2.2),

VPO (tm) = yF (t,n) for all w € Q.

Remark 4.4.1. We could have defined our candidate solution in another way, using BS-
DFEs instead of RBSDFEs, but with a random time horizon. This is based on the link with
optimal stopping given by (4.3.4). Notice that this approach is similar to the one used by
Fabre [[0] in her PhD thesis when studying 2BSDEs with the Z part of the solution con-
strained to stay in a convex set. Using this representation as a supremum of BSDEs for a
constrained BSDE is particularly efficient, because in general the non-decreasing process
added to the solution has no regqularity and we cannot obtain stability results. In our case,
the two approaches lead to the same result, in particular because the Skorohod condition
for the RBSDE allows us to recover stability, as shown in the Lemma below.

Lemma 4.4.1. Let Assumptions 4.2.1 and 4.2.2 hold and consider some & in UCy ().
Then for all (t,w) € [0,T] x Q we have |V, (w)] < C(1 4+ Ay (w)). Moreover, for all
(t,w,w') € [0,7] x Q% |V (w) = Vi ()] < Cp(llw—u'|,). Consequently, V; is F;-
measurable for every t € [0,T].

Proof. (i) For each (t,w) € [0,7] x Q and P € P}, let a be some positive constant
which will be fixed later and let n € (0,1). By Itd’s formula we have, since F' is uniformly

Lipschitz and since by (4.4.6) j;T e’ < Pyt S“") dkFte =0

at

P.t,w
€ Yt

ﬁ;vwm)‘ ds

2 T 2 2 T
+/ s |(a§)1/22f,t,w‘ ds < €aT }gt,w| + 20/ e |yf,t,w|
t

T
+20/ ‘yIP’,t, P,t,w‘ + | At 1/2 P,t,w’) ds — 2/ s yIF’,_t,w thde
t

T
t 2
+ 2/ e St Rt _ a/ e’ ‘yp’t’“" ds
s s s
t t
9 T
eaT lgt,w’ +/ s
t

02 T
+ (20 +C*P 4+ — — a) / e’ ‘yf’t’wf ds+2 sup eO‘S(Sz"*’)JF(kI;’t’” — kf’t’“’),
t

n t<s<T

~ 2 T T
FSt“’(O)‘ ds — 2/ e yP’f"” Pt“dBi + 77/ e’ |(a§)1/22f’t’“’|2 ds
t t




94 Chapitre 4. Second Order Reflected BSDEs

Now choose « such that v :=«a — 2C — C? — %2 > 0. We obtain for all e > 0

Pt w|? g ~ 2 2 ! E ’
ot ye w4 (1 _ 77)/ %S ’(ai)1/2zg’,t,w‘ ds < eaT |£t,w| + / oS Fst,w<0’ O) ds
t t

1 2

+ = ( sup eo‘s(Sﬁ"“ﬁ)
€ \t<s<T

+ g(kle;,t,w o kf”,t,w)2

T
—2 / eyt Bteqpt. (4.4.7)
t

Taking expectation in (4.4.7) yields

P.t,w 2
Yy

T

+ (1 —n)EF [/ !(62)1/223““‘2 ds| < OAy(w)? + eEF [(képi’t’“’ — k?’t’w)2 )
t

Now by definition, we also have for some constant Cy independent of

T T
E]P (kgi’t’w _kf’,t,w)Q] < COE]P’ |:|€t,w|2+/ ﬁ?w(o,())‘zds—{—/ |y£’,t,w|2d5:|
t t
T
L EP {/ ‘(ai)l/?zlsf”,t,wfds]
t

T T
<Gy <At(w)+EP { / P ds + / ](6@)1/2,23’5’“"2(13}).
t t

1

Choosing 7 small enough and ¢ = STot

Gronwall inequality then implies

P.t,w 2
Yy

< O(1+ Ay(w)).

The result then follows from arbitrariness of P.

(i) The proof is exactly the same as above, except that one has to use uniform continuity
in w of &, F and S*. Indeed, for each (¢,w) € [0,T] x Q and P € P}, let a be some
positive constant which will be fixed later and let n € (0,1). By It&’s formula we have,
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since F is uniformly Lipschitz

2 T
+ / s
t

at Ptw P,t,w’
— Y

t,w tw’2
Yt g =&

2
(a\i)l/Q(ZLP’,t,w . Zf’t’w/)’ ds < eaT

4 20/ P,t,w yiP,t,w ( yISP,t,w yf’,t,w + ‘(62)1/2<Zf’t’w . Z§7t’w/)‘> ds
IP’,t, P, it P, P,t, ot P, P,
+2C/ @ gt ‘Fs”(ys aet) = By 200 | ds
T
9 as(, Ptw Pt d kIP,t,w . kP,t,w’ - P.t,w P,t,w’ 2d
+ ey, =y, m )d(kg S —a Ty =y $
t t
T
S [ e - ) e B
t
12 T ~ ~ 2
T gt,w _gt,w +/ s Fst,w( E",t,w7 E’,t,w) o Fst,w( E’tw7 E’J,w) ds
t

C2 T 2
+<20+CQ—|———04>/ S |ybte — yftw ds
n t
T 2
o [ e @yt e[ as
t

T
o 2/ s(yIP’,_t,w . yff,d)(zf’,t,w . Zf,t,w’)de
t

T
+ 2/ (yIP’_tw yIP’it,w )d(kiP,t,w _ kISP,t,w’)
t
By the Skorohod condition (4.4.6), we also have

T T
/ e (y 1 — y U )d (kT — KPR < / ™ (S5 — SEYA(KE — kP,
t t

Now choose « such that v :=«a — 2C — C? — > 0. We obtain for all e > 0
t |, Ptw Pt |2 g ~t\1/2¢ Pt P.t,w’ 2
et yrt =yt e [ e @ - e ds
t

F\St,w( P.t,w P,t,w) o ﬁst,w( P.t,w ]P’,t,w) 2d$

ys 75 ys 75

T
/ s
t

1 D\ / :
i ( sup eas(sﬁ,w . Sz,w )Jr) 4 E(kITP;,t,w - kI;’t’w o kf’,tw + ki?’,t,w )2

€ \t<s<T

T | ¢t t’2
g — | +

T
-9 / (y]P’_t w yIF’Lt,w )(ZISP’,t,w . ZISP,t,w’>de' (448)
t

The end of the proof is then similar to the previous step, using the uniform continuity
inwof& FandS. ]

Then, we show the same dynamic programming principle as Proposition 4.7 in [102]
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Proposition 4.4.1. Under Assumptions 4.2.1, 4.2.2 and for £ € UCy(R2), we have for all
0<t; <ty <T and for all w € Q)

Vii(w) = sup Yo" (ts, VI,

Pepil”

The proof is almost the same as the proof in [102], but we give it for the convenience of
the reader.

Proof. Without loss of generality, we can assume that ¢; = 0 and ¢, = t. Thus, we have
to prove

Vo(w) = sup Yy (1, V).
H

Denote (yF, 2%, k¥) .= (J¥(T, ), Z5(T, €), KF (T, €))

(i) For any P € Py;, we know by Lemma 4.3 in [102], that for P—a.e. w € 2, the r.c.p.d.
Pt € Py, Now thanks to the paper of Xu and Qian [93], we know that the solution of
reflected BSDEs with Lipschitz generators can be constructed via Picard iteration. Thus,
it means that at each step of the iteration, the solution can be formulated as a conditional
expectation under P. By the properties of the r.p.c.d., this entails that

yr (W) = VEO(T ), for P — ae. w € Q. (4.4.9)

Hence, by definition of V; and the comparison principle for RBSDEs, we get that
ye < VE(t,V;). By arbitrariness of P, this leads to

Vo(w) < sup Vg (£, V).

PEPy

(ii) For the other inequality, we proceed as in [102|. Let P € P§ and ¢ > 0. By
separability of €, there exists a partition (Ej); >1 C F; such that |w — «'||, < ¢ for any ¢
and any w,w’ € E!. Now for each i, fix an &; € E! and let P! be an e—optimizer of V;(&;).

Now if we define for each n > 1, P" := P"™* by

ZE]P’ tw 1E‘1

—E° +P(ENEP), where EP := Ujs, Bl

Then, by the proof of Proposition 4.7 in [102]|, we know that P" € Pj;. Besides, by
Lemma 4.4.1 and its proof, we know that V and %% are uniformly continuous in w and
thus

V(@) + Cp(e) < V™ (T,€) + £ + Cple)

Vi(w) <
S VT, €) + e+ Cple) = VI (T ¢) + e+ Cple).

Then, it follows from (4.4.9) that
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Vi<vy; +e+Cp(e), P"—a.s. on U, E}. (4.4.10)

Let now (y™, 2" k™) = (y™*, 2™ k™°) be the solution of the following RBSDE with
lower obstacle S on [0, ¢]

t t
g — [yipn +e+Cp(e)] Lo g+ Vilg, — / F.(yl, zM)dr — / 2 dB, + k' — k', P —a.s.
) ) (4.4.11)

By the comparison principle for RBSDEs, we know that Vi (¢,V;) < y3. Then since
P* = P on F;, the equality (4.4.11) also holds P — a.s. Using the same arguments and
notations as in the proof of Lemma 4.4.1, we obtain

n

P 2

}yg — Yo

* < CEF [62 +o(E)?+ |Vi—y,

15|
Then, by Lemma 4.4.1, we have
P pr P2 1/2
Yt Vi) <o <y 4+ C (e+p(e) + (B [A%15]) )

< Vo(w)+C (5 + p(e) + <EP [Aflﬁtn])l/z) .

Then it suffices to let n go to +o00 and ¢ to 0. ]

Define now for all (¢,w), the Ft-progressively measurable process

V= lim V.

reQnN(¢,T],r |t

We have the following lemma whose proof is postponed to the Appendix

Lemma 4.4.2. Under the conditions of the previous Proposition, we have

V= lim V., Py —q.s.
t reQn(¢,T],rlt H q

and thus V't is cadlag Py — q.s..

Proceeding exactly as in Steps 1 et 2 of the proof of Theorem 4.5 in [102], we can
then prove that V' is a strong reflected ﬁ—supermartingale. Then, using the Doob-Meyer
decomposition proved in the Appendix in Theorem 4.6.2 for all P, we know that there
exists a unique (P — a.s.) process 7 H?(P) and unique nondecreasing cadlag square
integrable processes A® and BY such that

o Vit = Vit + [LE(V Z.)ds + [ Z.dB, — A¥ — Bf, P —a.s., VP € Py

e VF =8, P—as VPePy.
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o [/ (Vi- — S )dAF, P—as., VP € Py
o AP and BP never act at the same time.

We then define K := A¥+ BY. By Karandikar [58], since VT is a cadlag semimartingale,

we can define a universal process Z which aggregates the family {EP, Pe 771’3}.

Recall that V" is defined pathwise, and so is the Lebesgue integral fg EF,(V:H, Z,)ds.
With the recent results of Nutz [86], we know that the stochastic integral fot Z.dB; can
also be defined pathwise. We can therefore define pathwise

Kt::VO*—V;*—/
0

t t

BV Z.)ds + / Z.dB,,
0

and K is an aggregator for the family (K P)

with K, for every P € Pg.

pepr s that 1s to say that it coincides P — a.s.
ePy,

We next prove the representation (4.3.1) for V and V', and that, as shown in Proposition
4.11 of [102], we actually have V' = VT, Pf —q.s., which shows that in the case of a terminal
condition in UCy(2), the solution of the 2RBSDE is actually F-progressively measurable.

Proposition 4.4.2. Assume that £ € UC(QY). Under Assumptions 4.2.1 and 4.2.2, we
have

Vi = esssupPyF/(T,f) and V;" = esssup” yf"/(T,g), P—a.s., VP € Pg.

P’ ePy (t,P) P ePy (tT,P)

Besides, we also have for all t
V;f - V;S+7 PIH{ —(q.S.

Proof. The proof for the representations is the same as the proof of proposition 4.10 in
[102], since we also have a stability result for RBSDEs under our assumptions. For the
equality between V and V', we also refer to the proof of Proposition 4.11 in [102]. O

Therefore, in the sequel we will use V instead of V.

Finally, we have to check that the minimum condition (4.2.4) holds. Fix P in Pj; and
P’ € Pg(tT,P). By the Lipschitz property of F, we know that there exists bounded
processes A and 7 such that

/ T / T . /
Vi— o = / (Ve — g )ds — / AV(Z, — )@ V2dB, — n.ds)
t t
Ky — K — K R (4.4.12)

Then, one can define a probability measure Q' equivalent to P’ such that

’ t ’ T s /
Vimof = e rag | [ e, i)
t



4.4. A direct existence argument 99

Now define the following cadlag nondecreasing processes

K, ::/ elo MK, EIE ::/ efou’\rdrdkfl.
0 0

/

By the representation (4.3.1), we deduce that the process K-F isa Q'-submartingale.
Using Doob-Meyer decomposition and the fact that all the probability measures we con-
sider satisfy the martingale representation property, we deduce as in Step (ii) of the proof
of Theorem 4.3.1 that this process is actually nondecreasing. Then by definition, this
entails that the process K — k¥ s also nondecreasing.

Let us denote
Pf =K k",

Returning to (4.4.12) and defining a process M as in Step (ii) of the proof of Theorem
4.3.1, we obtain that

/ / T / / / /
V,— of —EF {/ Msde] > EF { inf M8<P$ —PF)].
t

t<s<<T

Then, we have

s[5 — ]

1/3 / , ~1/3
( inf MS) (P;F’ —PE’>< inf MS) ]
t<s<T t<s<T

/ / ’ ’ / / /N 2 1/3
< (Ef { inf M, (Pgli’ —PE’)]EEE { sup Msl] EP [(P:}'f —PF> D

t<s<T t<s<T

1/3
’ ’ N\ 2 N\ 1/3
éC’(esssupP EF [(P%lf —PF) }) (‘/t_yf> .

P’ ePy (t+,P)

/

=

Arguing as in Step (iii) of the proof of Theorem 4.3.1, the above inequality shows that

we have
/ / /
essinf’ EF [P%lf - Ptp] =0,
P ePL (t+,P)

that is to say that the minimum condition (4.2.4) is satisfied.

4.4.2 Main result

We are now in position to state the main result of this section

Theorem 4.4.1. Let £ € E?f. Under Assumptions 4.2.1 and 4.2.2, there exists a unique
solution (Y, Z, K) € D" x HY* x I3 of the 2RBSDE (4.2.1).
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Proof. The proof follow the lines of the proof of Theorem 4.7 in [101]. In general for a

terminal condition £ € L3, there exists by definition a sequence (£,), > o C UCp(2) such
that

1. n — K — 0 d n N < .
Jim (16, = €llez, and sup 1€nll 2 < 400
Let (Y™, Z") be the solution to the 2RBSDE (4.2.1) with terminal condition §,, and

t t
KM =YY" —Y" + / F(Y", ZM)ds + / Z"dB,, P — a.s.
0 0

By the estimates of Proposition 4.3.4, we have as n,m — +oo

V=Yg 412 - 2 g+ supBF | sup (K7 = K| < Gl — Gl

PePr, 0<t<T
— 0.
Extracting a subsequence if necessary, we may assume that
1
|y — Ym||12Dz,m +||Z" — Zm||]?ﬂ2,n + sup EF { sup |K[ — Kt’”@ < —. (4.4.13)
H H  pepy 0<t<T 2"

This implies by Markov inequality that for all P and all m >n > 0

T
P| sup {[Y" = Y"]? +|K — K"|*} +/ a/*(zr — Zm)2dt > !
0

—n
< Cn27".
0<t<T

(4.4.14)

Define
Y:= lim Y, Z:= lim Z" K := lim K",

n—-+4oo n—-+o0o n—-+o00
where the lim for Z is taken componentwise. All those processes are clearly F*-

progressively measurable.

By (4.4.14), it follows from Borel-Cantelli Lemma that for all P we have P — a.s.

T
lim sup {|Y = Y|*+ |K} — K} +/ |a§/2(zg — Z)2dt| = 0.
0

n—=+00 gLt LT

It follows that Y is cadlag, Pj; — ¢.s., and that K is a cadlag nondecreasing process,
P — a.s. Furthermore, for all P, sending m to infinity in (4.4.13) and applying Fatou’s
lemma under P gives us that (Y, Z) € D%" x H3".

Finally, we can proceed exactly as in the regular case (£ € UCy(Q2)) to show that the
minimum condition (4.2.4) holds. o
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4.5 American contingent claims under volatility uncer-
tainty

First let us recall the link between American contingent claims and RBSDEs in the classical
framework (see [37] for more details). Let M be a standard financial complete market
(n risky assets and a bond). It is well known that in some constrained cases the pair
wealth-portfolio (XT, 7%) satisfies:

T
XF = — / s, XIED —/ WfJSdWS
t

where W is a Brownian motion under the underlying probability measure P, b is convex
and Lipschitz with respect to (z, 7). In addition we assume that the process (b(t,0,0)); <7
is square-integrable and (o:): < r, the volatility matrix of the n risky assets, is invertible
and its inverse (0;) ! is bounded. The classical case corresponds to b(t, z, 7) = ryw+7.040;,
where 6, is the risk premium vector.

When the American contingent claim is exercised at a stopping time v > t, the yield is
given by
S, = SV]-[V<T} + gT]-[V:T}-

Let t be fixed and let v > t be the exercising time of the contingent claim. Then, since the
market is complete, there exists a unique pair (XF(v,S,), 75 (v, S,)) = (XP¥, 7%) which
replicates S, i.e.,

dXP = b(s, XB 7Bdt + 78 o dW,, s <v; XEV =8,
Therefore the price of the contingent claim is given by:

Y = esssup X (1, S,).

veTy T
Then, the link with RBSDE is given by the following Theorem of 37|

Theorem 4.5.1. There exist 7° € H*(P) and a nondecreasing continuous process k¥ such
that for all t € [0, T

YtP =¢— j;T b(s, YS]P, Wf)ds — ftT WfadeS + k%)l — ktp
St
fo P —S)dkE = 0.

Furthermore, the stopping time Df = inf{s > t,YF = S;} AT is optimal after t.

Let us now go back to our uncertain volatility framework. The pricing of European
contingent claims has already been treated in this context by Avellaneda, L.évy and Paras
in [2], Denis and Martini in [27] with capacity theory and more recently by Vorbrink in
[110] using the G-expectation framework.
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We still consider a financial market with a bond and d risky asset L'...L¢ whose
dynamics are given by
dL!

L = pidt +dB], Pl —q.s. Yi=1...d.
L’Lt

Then for every P € Py, the wealth process has the following dynamic

T
=& - / (s, XE 7t ds—/ dB,, P —a.s
t

In order to be in our 2RBSDE framework, we have to assume that the generator b
satisfies Assumptions 4.2.1 and 4.2.2. The main difference is that now b must satisfy
stronger integrability conditions and also that it has to be uniformly continuous in w
(when we assume that @ in the expression of b is constant). For instance, in the classical
case recalled above, it means that r» and pu must be uniformly continuous in w, which is
the case if for example they are deterministic. We will also assume that £ € L?f. Finally,
since S is going to be the obstacle, it has to be uniformly continuous in w.

Following the intuitions in the papers mentioned above, it is natural in our now incom-
plete market to consider as a superhedging price for our contingent claim

Y, = esssup’ Y}, P—a.s., VPcPL,
P ePy (t+,P)

where Y;¥ is the price at time ¢ of the contingent claim in the complete market mentioned
at the beginning, with underlying probability measure P. Notice immediately that we do
not claim that this price is the superreplicating price in our context, in the sense that
it would be the smallest one for which there exists a strategy which superreplicates the
American contingent claim quasi-surely.

The following Theorem is then a simple consequence of the previous one.

Theorem 4.5.2. There exist m € H?f and a universal of nondecreasing cadlag process K
such that for all t € [0,T] and for all P € Py

Y, =¢— ftT b(s,Ys, ms)ds — ftT wsdBs + K1 — K;, P — a.s.
Yt 2 St7 P—a.s.
K, — k' = essinf’ ]EP [KT — k:%)l,] , P—a.s.

P ePy (¢t ,P)

Furthermore, for all €, the stopping time Di = inf{s > t,Y; < Ss + ¢, Pf; — q¢.s.} A
T is c-optimal after t. Besides, for all P, if we consider the stopping times Df’e =
inf {s >t,YE< S+, P— a.s.} AT, which are e-optimal for the American contingent
claim under each P, then for all P

D> D", P—a.s. (4.5.1)
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Proof. The existence of the processes is a simple consequence of Theorem 4.4.1 and the
fact that X is the superhedging price of the contingent claim comes from the representation
formula (4.3.1). Then, the e-optimality of D; and the inequality (4.5.1) are clear by
definition. ]

Remark 4.5.1. The formula (4.5.1) confirms the natural intuition that the smallest op-
timal time to exrercise the American contingent claim when the volatility is uncertain is
the supremum, in some sense, of all the optimal stopping times for the classical American
contingent claim for each volatility scenario.

Remark 4.5.2. As explained in Remark 4.3.5, we cannot find a decomposition that would
1solate the effects due to the obstacle and the ones due to the second-order. It is not clear
neither for the existence of an optimal stopping time. Dy = inf{s > t,Y,- < Sy, P} —
q.s.} AT is not optimal after t. Between t and D;, K* is reduced to the part related to
the second-order. However this part does not verify the minimum condition because it is
possible to have Y- > ytP, = S,-, thus the process k¥ is not identically null.

4.6 Appendix

4.6.1 Technical proof

Proof. [Proof of Lemma 4.4.2] For each P, let (JF, ZF) be the solution of the BSDE with
generator F' and terminal condition £ at time 7. We define

VP =V - )"

Then, VE >0, P — a.s.

For any 0 < t; <ty < T, let (y'=, 2502, k5%2) = (V¥ (t, Vi), 27 (ta, Vi), K¥ (t2, Vi)
Since we have for P — a.e. w, V; (t2, Vi) (w) = Y514(ty, 1/;;’”), we get from Proposition
4.4.1

Pt
Vi z )t P—as.

Denote

~Pita . Pto P Pty ~1/20 P >P
Yy " =Y — N B =0y (% _Zt)'

Then VF > 7™ and (§5%2,25%) satisfies the following RBSDE with lower obstacle
S — 5)]? on [O,tg]

to to

~Ptas _ /P P/~Pito =Pto Pt P Pto Pt

Yy - ‘/;2 - / fs (ys ) R )dS - 2 dWs + ktz - kt )
t t

where

flw,y,2) = Fw,y + VW), a P(w)z + 2 (W) — Fi(w, Y (w), 28 (w)).
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By the definition given in the Appendix, VP is a positive weak reflected fF-
supermartingale under P. Since f(0,0) = 0, we can apply the downcrossing inequality
proved in the Appendix in Theorem 4.6.3 to obtain classically that for P—a.e. w, the limit

lim  VF(w)
reQuU(t,T,rlt

exists for all ¢.

Finally, since J¥ is continuous, we get the result. ]

4.6.2 Reflected g-expectation

In this section, we extend some of the results of Peng [88] concerning g-supersolution of
BSDEs to the case of RBSDEs. Let us note that the majority of the following proofs
follows straightforwardly from the original proofs of Peng, with some minor modifications
due to the added reflection. However, we still provide most of them since, to the best of
our knowledge, they do not appear anywhere else in the literature.

In the following, we fix a probability measure P

4.6.2.1 Definitions and first properties
Let us be given the following objects

e A function gs(w,y, z), F-progressively measurable for fixed y and z, uniformly Lips-
chitz in (y, z) and such that

EP UT |gs(0,0)|2d3} < 400,

0

e A terminal condition & which is Fr-measurable and in L?(P).

o A cadlag process V with EF [ sup |Vt|2] < 400.
0<t<T

e A cadlag process S such that EF < +o0.

2
( sup (St)Jr)
0<t<T

We want to study the following problem. Finding (y, z, k) € D*(P) x H?*(P) x I*(P) such
that

( T T
yt:£+/ gs(ys,zs)ds—/ stWs—i-kT—/{t—l-VT—Vz, Ogth, P—a.s.
t t

Yt 2 St, P —a.s.

T
/ (ys* - Ss*) dks = O, P—a.s.
\Jo

(4.6.1)

We first have a result of existence and uniqueness
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Proposition 4.6.1. Under the above hypotheses, there exists a unique solution (y, z, k) €
D*(P) x H3(P) x I*(P) to the reflected BSDE (4.6.1).

Proof. Consider the following penalized BSDE, whose existence and uniqueness are
ensured by the results of Peng [88]

T T
Yy :£+/ gs(y;‘,z;"‘)ds—/ 20dWy + k. — k) + Vp =V,
t t

where k' := n [ (y? — S,)~ds.
Then7 deﬁne gz? = y? + ‘/t; g:: g + VT7 ’Z"tn = Z?a E;L = kf and gt(yu Z) = gt(y - v7 Z)'
We have

T T
5?:5—/ §s(§?,%‘2)ds—/ AW, + ki — kP,
t t

Then, since we know by Lepeltier and Xu [68], that the above penalization procedure
converges to a solution of the corresponding RBSDE, existence and uniqueness are then
simple generalization of the classical results in RBSDE theory. ]

We also have a comparison theorem in this context

Proposition 4.6.2. Let & and & € L*(P), V', i = 1,2 be two adapled, cadlag processes
and g'(w,y,z) two functions, which all verify the above assumptions. Let (v, 2% k') €
D?(P) x H2(P) x I*(P), i = 1,2 be the solutions of the following RBSDEs with lower
obstacle S

T T
yr =€+ / gt (y, 2 )ds — / AW+ ke — K+ V=V P—as., i=1,2,
t t
respectively. If

e (126, P—a.s.

o V! — V2 is nondecreasing, P — a.s.

e S1>52 P—a.s.

 9:(Usr2s) 2 925, 20), dt x dP — a.s.
then it holds P — a.s. that for all t € [0,T]

1 2
Yy 2 Y-

Besides, if S* = S?%, then we also have dk* < dk>.

Proof. The first part can be proved exactly as in [34], whereas the second one comes from
the fact that the penalization procedure converges in this framework, as seen previously.
(Cn



106 Chapitre 4. Second Order Reflected BSDEs

Remark 4.6.1. If we replace the deterministic time T' by a stopping time 7, then all the
above is still valid.

From now on, we will specialize the discussion to the case where the process V' is actually
in I?(P) and consider the following RBSDE

T

4 T
yt:“/ gs(ys,zs)ds—f—VT—Vt/\T—i—/{:T—/{:MT—/ 2 dW,, 0<t <7, P—as.
t

AT tAT
ye = Sy, P—a.s.

/ (ys’ - Ss*) dks - O, P—a.s.
\ JO

(4.6.2)

Definition 4.6.1. If y is a solution of a RBSDE of the form (4.6.2), then we call y a
reflected g-supersolution on [0,7]. If V=10 on [0, 7], then we call y a reflected g-solution.

We now face a first difference from the case of non-reflected supersolution. Since in our
case we have two nondecreasing processes, if a g-supersolution is given, there can exist
several nondecreasing processes V' and k such that (4.6.2) is satisfied. Indeed, we have
the following proposition

Proposition 4.6.3. Given y a g-supersolution on [0, 7], there is a unique z € H*(P) and
a unique couple (k, V) € (I*(P))? (in the sense that the sum k +V is unique), such that
(y, 2z, k, V) satisfy (4.6.2). Besides, there exists a unique quadruple (y,z, k', V') satisfying
(4.6.2) such that k' and V' never act at the same time.

Proof. If both (y,z,k, V) and (y, 2!, k', V1) satisfy (4.6.2), then applying It6’s formula
to (y: — y¢)? gives immediately that z = 2! and thus k +V = k' + V1, P — a.s.

Then, if (y, z, k, V') satisfying (4.6.2) is given, then it is easy to construct (k¥’,V’) such
that

e k' only increases when y,- = S;-.
e V' only increases when ;- > Sj-.
o V/+ki=V,+ ki dt xdP — a.s.
and such a couple is unique. (]

Remark 4.6.2. We give a counter-example to the general uniqueness in the above Propo-
sition. Let T'= 2 and consider the following RBSDE

Yo=—2+2—t+ky—k — [ 2dW,, 0<t <2, P—as.
Yp = —%, P —a.s.
fOQ <ys_ —|—§> dks =0, P—a.s.
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t2—2t+1

We then have z = 0, ytzlogtgl(l—t)—§11<t<2, V=0and k=1, 31 —;

2

However, we can also take

2 —2t+1 2 —2t+1

vy =154 1 and ky = 1; 51151 1

Following Peng [88], this allows us to define

Definition 4.6.2. Let y be a supersolution on [0,7] and let (y,z,k, V) be the related
unique triple in the sense of the RBSDE (4.6.2), where k and V' never act at the same
time. Then we call (z,k, V') the decomposition of y.

4.6.2.2 Monotonic limit theorem

We now study a limit theorem for reflected g-supersolutions, which is very similar to
theorems 2.1 and 2.4 of [88§].

We consider a sequence of reflected g-supersolutions

g ="+ [ ga(un, 2)ds + Vi = Vi K — ke — [ AW, 0<t < T, P —as.
yp = Sy, P—a.s.
Iy = Se)dkn =0, P—a.s.

where the V™ are in addition supposed to be continuous.

Theorem 4.6.1. If we assume that (y}') increasingly converges to (y;) with

o, ] < .
0<t<T
and that (k') decreasingly converges to (ki), then y is a g-supersolution, that is to say that
there exists (z,V) € H*(P) x T*(P) such that

o=+ [ gy 2)ds + Ve = Vit kp —ky — [ 2dW,, 0<E< T, P—as.

Yt 2 St, P — a.s.

[7 (s — S ) dky =0, P — a.s.

Besides, z is the weak (resp. strong) limit of 2" in H2(P) (resp. in HP(P) for p < 2) and
V; is the weak limit of V™ in L*(P).

Before proving the Theorem, we will need the following Lemma
Lemma 4.6.1. Under the hypotheses of Theorem J.6.1, there exists a constant C' > 0

independent of n such that

T
EF {/ 1202 ds + (Vi) + (k)?| < C.
0
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Proof. We have
T T
VR K = — / gu(y, 2M)ds + / 2w,
0 0

T T T
< C( sup |yy| +/ |z§‘|ds—|—/ |g5(0,0)| ds + )/ 20 dWs
0 0 0

0<t<T

) . (46.3)

Besides, we also have for all n > 1, y} < ¢y < y; and thus |y?| < |y} + |y¢|, which in
turn implies that

supEP{ sup |yt"|2} <C.
n 0<t<T

Reporting this in (4.6.3) and using BDG inequality, we obtain

E [(V)? + (k7)*] <E” [(VF + k7)°]
< Cy (1 + EF UOT 195(0,0)|” ds + /OT |z;|2dsD . (4.6.4)

Then, using [td’s formula, we obtain classically for all € > 0

T T T
£ | [ o] <5 [ 2 [ o s v [ amaer i)
0 0 0

T | n|2
<E¥|C (1 + sup |yf\2) +/ @ds+g (VP + yk’;ﬁ)] .
0<t<T 0 2
(4.6.5)

Then, from (4.6.4) and (4.6.5), we obtain by choosing ¢ = ﬁ that

T

EF [/ ]z?]zds} < C.

0

Reporting this in (4.6.4) ends the proof. (]

Proof. |[Proof of Theorem 4.6.1] By Lemma 4.6.1 and its proof we first have
T T
B | [l as] < o8 | [T la00F ¢+ fas| <
0 0

Thus g,(y", 2") and 2" are bounded in H?(P), and there exists subsequences which

converge respectively to some g, and z,. Therefore, for every stopping time 7, we also
have the following weak convergences

/z?dWs—>/ 2sdW, / gs(yg,zg)ds—>/ gsds,
0 0 0 0

et [ [,
0 0
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Then by the section theorem, it is clear that V' and £k are nondecreasing, and by Lemma
2.2 of [88] we know that y, V and k are cadlag. We now show the strong convergence
of z". Following Peng [88], we apply 1t6’s formula between two stopping times 7 and o.

Since V™ is continuous, we obtain
B | [t -] <t owl e X (A k)
o o<t<T

1 oF* [ / " — vyl 15 27 — 5| ds + / (o — g )d(Va+ k)| .

Then we can finish exactly as in [88] to obtain the desired convergence. Since ¢ is
supposed to be Lipschitz, we actually have

gS - gs(y5725), IP) — a.s.

Finally, since for each n, we have y; > S;, we have y, > S;. For the Skorohod condition,
we have, since the k" are decreasing

EF UOT (g — st_)dkt] <EF MT (Y- — i) +/OT (- — St—)d’f?]

& [ [ - uran].

Then, we have

EF [/OT (v — yl‘)dktl < (JEP { sup |y} — yﬂ)m (BF [K2])"* < +o0

0<t<T
Therefore by Lebesgue dominated convergence Theorem, we obtain that
- T
E” / (Y- — i) dkt:| — 0,
LJo

and thus

r T
EF / (yt* - St*) dk’t} <0,
LJOo

which ends the proof. (]

4.6.2.3 Doob-Meyer decomposition

We now introduce the notion of reflected g-(super)martingales.

Definition 4.6.3. (i) A reflected g-martingale on [0,T] is a reflected g-solution on
[0,77.

(i1) (V) is a reflected g-supermartingale in the strong (resp. weak) sense if for all stop-
ping time T < T (resp. allt < T), we have EF[|Y;]?] < +oo (resp. EF[|Y;|’] < +00)
and if the reflected g-solution (ys) on [0,7] (resp. [0,t]) with terminal condition Y,
(resp. Y;) verifies y, < Y, for every stopping time o < 1 (resp. ys < Yy for every
s<t).
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As in the case without reflection, under mild conditions, a reflected g-supermartingale in
the weak sense corresponds to a reflected g-supermartingale in the strong sense. Besides,
thanks to the comparison Theorem, it is clear that a g-supersolution on [0, 7] is also a g-
supermartingale in the weak and strong sense on [0, 7]. The following Theorem addresses
the converse property, which gives us a nonlinear Doob-Meyer decomposition.

Theorem 4.6.2. Let (Y;) be a right-continuous reflected g-supermartingale on [0,T] in
the strong sense with

EP{ sup \Y}\Q] < +00.
0<t<T

Then (Y;) is a reflected g-supersolution on [0, T, that is to say that there exists a unique
triple (z,k,V) € H?(P) x I3(P) x I*(P) such that

Y;t:YT+LTgs(}/;725>dS+VT_V;t‘F/fT—kt—fthdeS, O<t<T7 P—a.s.
Y;S>St, P—a.s.
S (Yo = Sy ) dky, =0, P — as.

V' and k never act at the same time.
We follow again [88] and consider the following sequence of RBSDEs
yp = Yo+ [T gy, 20ds +n [ (Vs —y)ds + K — kp — [ 2rdW,, 0<t < T

y;l Z St, P—a.s.
fOT (yr- — S-) dk =0, P — a.s.

We then have

Lemma 4.6.2. For all n, we have
Yi 2y,

Proof. The proof is exactly the same as the proof of Lemma 3.4 in [88], so we omit it.
n

Proof. [Proof of Theorem 4.6.2] The uniqueness is due to the uniqueness for reflected
g-supersolutions proved in Proposition 4.6.3. For the existence part, we first notice that
since Y; >y for all n, by the comparison Theorem for RBSDEs, we have y? < 't and
dk? > dk**. Therefore they converge monotonically to some processes y and k. Besides,
y is bounded from above by Y. Therefore, all the conditions of Theorem 4.6.1 are satisfied
and y is a reflected g-supersolution on [0, 7] of the form
T T
w=Yr+ [ g n)ds £ Vo= Vit ke — b= [ zaW,
t t
where V; is the weak limit of V" := n [}(Y — y2)ds.

From Lemma 4.6.1, we have
T
EF[(V2)?] = n?EF [/ Y, — o7 ds] <C.
0

It then follows that Y; = y;, which ends the proof. (]
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4.6.2.4 Downcrossing inequality

In this section we prove a downcrossing inequality for reflected g-supermartingales in the
spirit of the one proved in [21]. We use the same notations as in the classical theory of
g-martingales (see [21] and [88] for instance).

Theorem 4.6.3. Assume that ¢(0,0) = 0. Let (Y:) be a positive reflected g-
supermartingale in the weak sense and let 0 =ty < t; < ... < t; = T be a subdivision
of [0,T]. Let 0 < a < b, then there erists C > 0 such that D°[Y,n], the number of
downcrossings of |a,b] by {Ytj}, verifies

C_eryy n)

—a

EMDaYon]] <

where 1 1s the Lipschitz constant of g.

Proof. Consider

vi = Yo — [yl + pleiDds + ki — k] = [ 2idW, 0 <t <ty P—aus,
Yyl > S, P—a.s.
f(fi (yio — Ss-)dki =0, P—a.s.

We define a’ = —psgn(zl)l;,_,<s <y, and ay == Y7 (al. Let Q® be the probability
measure defined by

dQ* g
¥z =& (/0 ades> )

We then have easily that y; > 0 since Y;, > 0 and

Yy = esssup Ega [e_“(T_t)ST]‘T<ti + Ytie_u(ti_t)lT:tJ :

T€T 1,

Since Y is reflected g-supermartingale (and thus also a reflected g*-supermartingale
where g;*(y, z) == —p(|y| + |2|)), we therefore obtain

esssup B [t g 1, 4+ Y eI ] Y
T€T, 4.1,

Hence, by choosing 7 = t; above, we get

B, Ve )] <

1—17

which implies that (e 7Y}, ) < < 18 @ Q®-supermartingale. Then we can finish the proof
exactly as in [21]. o






CHAPITRE 5

Second Order BSDEs With Jumps

5.1 Introduction

In this chapter, we study a class of 2BSDEs with jumps. The rest of the chapter is
organized as follows. In Section 5.2, we introduce the set of probability measures on
the Skorohod space D that we will work with. Using the notion of martingale problems
on D, we construct probability measures under which the canonical process has given
characteristics. Then we prove an aggregation result under this family. Finally, we define
the notion of 2BSDEJs and show how it is linked with classic BSDEs with jumps. Section
5.3 is devoted to a uniqueness result and some a priori estimates, and Section 5.4 concerns
our existence result. In Section 5.5, as an application of previous results, we study a robust
exponential utility maximization problem. The Appendix 5.6 is dedicated to the proof of
some important technical results. This chapter is based on [60] and [61].

5.2 Preliminaries

Let Q := D([0,T],R%) be the space of cadlag paths defined on [0, 7] with values in R?
and such that w(0) = 0, equipped with the Skorohod topology, so that it is a com-
plete, separable metric space (see [10]| for instance). The uniform norm on 2 is de-
fined by [lw||,, := supy < < r|wi|. We denote B the canonical process, F := {F;}; o, < p
the filtration generated by B, FT := {ft+}o<t<T the right limit of F and for any P,
Ffi=F VNE(F) where

NE(G) = {E € Q, there exists £ € G such that E C E and P(E) = 0}.

As usual, for any filtration G and any probability measure P, EP will denote the corre-
sponding completed filtration.

We then define as in [101] a local martingale measure PP as a probability measure such
that B is a P-local martingale. Since we are working in the Skorohod space, we can then
define the continuous martingale part of B, noted B¢, and its purely discontinuous part,
noted BY, both being local martingales under each local martingale measures (see [56]).

We then associate to the jumps of B a counting measure pigs, which is a random measure
on B(R*) x E (where E := R"\{0} for some r € N*), defined pathwise by

ppa([0,t], A) = > Liapieay, ¥t >0, VAC E. (5.2.1)

0<s <t
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We also denote by vf(ds,dz) the compensator of pga(ds,dz), which is a predictable
random measure, under P and by ﬁﬂgd(ds, dx) the corresponding compensated measure.

We then denote Py the set of all local martingale measures P such that P-a.s.

(i) The quadratic variation of B¢ is absolutely continuous with respect to the Lebesgue
measure dt and its density takes values in S;O.

(i) The compensator vt (dt,dr) under P is absolutely continuous with respect to the
Lebesgue measure dt.

In this discontinuous setting, we will say that a probability measure P € Py satisfies
the martingale representation property if for any (FP, P)-local martingale M, there exists

a unique Fp—predictable processes H and a unique Fp—predictable function U such that
(H,U) € H2 (P) x J2 (P) (those spaces are defined later) and

loc

t t
Mt:MoJr/ HSngJr/ /Us(x)ﬁ%d(ds,dx).
0 0 E

We now follow [103] and introduce their so-called universal filtration. For this we let P
be a given subset of Py, we define

Definition 5.2.1. (i) A property is said to hold P-quasi-surely (P-q.s. for short), if it
holds P — a.s. for all P € P.

(ii) We call P-polar sets the elements of Np := NpepNT(Fa).

Then, we define as in [103]
FP .= {_7/%7’} where ﬁtp = m (Fy VNp) .

t>0
= PeP

Finally, we let 7 and 77 the sets of all F and F” stopping times, and we recall that
thanks to Lemma 2.4 in [103] we do not have to worry about the universal filtration not
being complete under each P € P.

5.2.1 Issues related to aggregation
5.2.1.1 The main problem

A crucial issue in the definition of the 2BSDEs in [101] is the aggregation of the quadratic
variation of the canonical process B under a wide family of probability measures.

Let P C Py be a set of non necessarily dominated probability measures and let { X P €
P} be a family of random variables indexed by P. One can think for example of the
stochastic integrals X := () fot H,dBs, where {Hy, t > 0} is a predictable process.
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Definition 5.2.2. An aggregator of the family { X, P € P} is a random variable X such
that

X = X¥ P — a.s, for every P € P.

Bichteler [9], Karandikar [58], or more recently Nutz [86] all showed in different contexts,
and under different assumptions, that it is possible to find an aggregator for the Ito
stochastic integrals (P)fot H.dB,.

A direct consequence of this result is the possibility to aggregate the quadratic variation
process {[B, B];, t > 0}. Indeed, using It6’s formula, we can write

t
B,Bl, = B.BF —2 | B,-dBT
t s
0

and the aggregation of the stochastic integrals automatically yields the aggregation of the
bracket {[B, Bl:, t > 0}.

This also allows us to give a pathwise definition of the process @, which is an aggregator
for the density of the quadratic variation of the continuous part of B, by

1
I = 1 _ BC - BC
@ = limsup- ((B%), — (B),_.) ,

Soner, Touzi and Zhang, motivated by the study of stochastic target problems under
volatility uncertainty, obtained in [103] an aggregation result for a family of probability
measures corresponding to the laws of some continuous martingales on the canonical
space 2 = C(RT,R?), under a separability assumption on the quadratic variations (see
their definition 4.8) and under an additional consistency condition (which is usually only
necessary) for the family to aggregate.

To define correctly the notion of 2BSDEJs, we need to aggregate not only the quadratic
variation [B, B| of the canonical process, but also its compensated jump measure. How-
ever, this predictable compensator is usually obtained thanks to the Doob-Meyer decom-
position of the submartingale [B, B]. It is therefore clear that this compensator depends
explicitly on the underlying probability measure, and it is not clear at all whether an
aggregator always exists or not. This is a first main difference with the continuous case.
In order to solve this problem, we follow the spirit of [103] and restrict our set of proba-
bility measures (by adding an analogous separability condition for jump measures) so as
to generalize some of their results of [103| to the case of processes with jumps.

After these first notations, in the following subsection, in order to construct a probability
measure under which the canonical process has a given quadratic variation and a given
jump measure, we will use the notion of martingale problem for semimartingales with
general characteristics, as defined in the book by Jacod and Shiryaev [56] to which we
refer.
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5.2.1.2 Characterization by martingale problems

In this subsection, we extend the connection between diffusion processes and probability
measures established in [103] thanks to weak solutions of SDEs, to our general jump case
with the more general notion of martingale problems.

Let AV be the set of F-predictable random measures v on B(F) satisfying

T T
/ /(1 A |z?)vg(dx)ds < 400 and / / |z| vs(dz)ds < 400, Yw € Q,  (5.2.2)
0o JE 0 Jlz|>1
and let D be the set of F-predictable processes « taking values in Sjo with

T
/ lay|dt < +o0, for every w € Q.
0

We define a martingale problem as follows

Definition 5.2.3. For F-stopping times 7, and 72, for (o, v) € DXN and for a probability
measure Py on F.,, we say that P is a solution of the martingale problem (P, 1, 7o, v, V)

if
(i) P=P; on F,,.

(ii) The canonical process B on |11, T3] is a semimartingale under P with characteristics

(—/ /x1x|>11/s(dx)ds,/ ozsds,i/s(dx)ds).
71 JE 1

Remark 5.2.1. We refer to Theorem IIL.2.7 in [56] for the fact that P is a solution of
the martingale problem (P, 11, 79, o, v) if and only if the following properties hold:

(i) P=P; on F,,.

(ii) The processes M, J and L defined below are P-local martingales on |11, 2]

t
Mt = Bt — Z ]-\ABS >1AB —l—/ x1|x‘>1ys(dﬂj)d8 T1 < t < T2

T1<s<t

Jt::Mf—/asds—// wysdxds n<t<
lz| <1
Q¢ —// x)pp(ds, dr) // x)vs(dx)ds, 1 <t < 7o, Vg€C+(Rd).

We say that the martingale problem associated to (a,r) has a unique solution if, for
every stopping times 7, 7, and for every probability measure PPy, the martingale problem
(Py, 71, T2, a, ) has a unique solution.

Let now Aw be the set of (a,v) € D x N, such that there exists a solution to the
martingale problem (Py,0, 400, v, v), where IP; is such that P1(By = 0) = 1.
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We also denote by Ay, the set of (o, ) € Ay such that there exists a unique solution to
the martingale problem (P, 0,400, a, V), where P; is such that P;(By = 0) = 1. Denote
P2 this unique solution. Finally we set

Pw = 1{P;, (,v) € Aw}.

Remark 5.2.2. We take here as an initial condition that By = 0. This does not generate
a loss of generality, since at the end of the day, the probability measures under which we
are going to work will all satisfy the Blumenthal 0 — 1 law. Hence, By will have to be a
constant and we choose 0 for simplicity.

5.2.1.3 Notations and definitions

Following [103], for a,b € D and v, € N, we define the first disagreement times as

follows
¢ t
6% .= inf {t >0, / asds # / bsds} ,
0 0
¢ ¢
0,, ., = inf {t >0, / /xysl(dx)ds %/ /xusz(dx)ds}
0o JE 0o JE

b ,b
0% = 0 NG, .

V1,2

For every 7 in F7, we define the following event

Qb= f2 < g2b LU {F =020, = +oo}.

v1,U2 vi,V2

Finally, we introduce the following notion inspired by [103|
Definition 5.2.4. Ay C Aw s a generating class of coefficients if

(i) Ag is stable for the concatenation operation, i.e. if (a,v1), (b, 15) € Ay X Ay then for
each t,

(al[O,t] + bl[t,—i-OO)a Vll[O,t] + V21[t,+oo)) e Ap.

(ii) For every (a,vy), (b,1a) € Ay X Ay, 91‘21?,/2 is a constant. Or equivalently, for each t,
QEbr2equals Q or 0.

Definition 5.2.5. We say that A is a separable class of coefficients generated by Aqy if Ap
is a generating class of coefficients and if A consists of all processes (a,v) of the form

+oo 400 +oo +o00
a= Y alply .y adv=> > V1l ), (5.2.3)
n=0 i=1 n=0 =1

where for each i and for each n, (a,v}') C Ay, 7, and 7, are F-stopping times with
70 = 0, such that

(1) 7 < Tpy1 on {1, < +00}.
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(ii) inf{n >0, 7,, = +00} < o0.

(iii) 7, takes countably many values in some fized Iy C [0,T] which is countable and
dense in [0,T].

(iv) For each n, (E!');i>1 C F,, and (E?); 1 C F, form a partition of €.

K3 3

Remark 5.2.3. If we refine the subdivisions, we can always take a common sequence of
stopping times (T,)n >0 and common sets (EI');>1n >0 for a and for v. Moreover, the

definition indeed depends on the countable subset Iy introduced above. We acknowledge that
as in [103] this set could be changed, but for the sake of clarity, it will be fized throughout
the chapter. We will also show in Section 5.4.4 that this has only limited tmpact on our
results. For practical purposes, one could take for instance Iy = QN [0,T].

Example 5.2.1. JZO composed of deterministic processes a and v forms a generating class
of coefficients.

The following Proposition generalizes Proposition 4.11 of [103] and shows that a sepa-
rable class of coefficients inherits the "good" properties of its generating class.
Proposition 5.2.1. Let A be a separable class of coefficients generated by Ay. Then

(i) If Ay C Aw, then A C Ay.

(ii) A-quasi surely is equivalent to Ag-quasi surely.

(iii) If every P € {P2, (a,v) € Ao} satisfies the martingale representation property, then
every P € {P%, (a,v) € A} also satisfies the martingale representation property.

(iv) If every P € {P%, (a,v) € Ao} satisfies the Blumenthal 0 — 1 law, then every P €
{P2, (a,v) € A} also satisfies the Blumenthal 0 — 1 law.

As in [103], to prove this result, we need two Lemmas. The first one is a straightforward
generalization of Lemma 4.12 in [103], so we omit the proof. The second one is analogous
to Lemma 4.13 in [103].

Lemma 5.2.1. Let A be a separable class of coefficients generated by Ay. For any (a,v) €
A, and any F-stopping time T € T, there exist T € T with T > 7, a sequence (a;,v;); >1 C
Ay and a partition (E;); >1 C Fr of Q such that T > 7 on {17 < +00} and

a; = Z a;(t)1g, and vy = Z vi(t)1lg, t <T. (5.2.4)

i>1 i>1

In particular, E; C Q""" which implies that U,Q3" """ = Q. Finally, if a and v take
the form (5.2.8) and T > 1,, then we can choose T = Tpyq.

Proof. We refer to the proof of lemma 4.12 in [103]. (]
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Lemma 5.2.2. Let 71,75 € T be two stopping times such that 71 < 1o, and (a;,v;)i>1 C
Aw and let {E;, i > 1} C F,, be a partition of ). Finally let P° be a probability measure
on F,, and let {P', i > 1} be a sequence of probability measures such that for each i, P is
a solution of the martingale problem (P°, 71,72, a;,v;). Define

P(E) := ZP’(E N E;) for all E € F,,,

i1

a; = Z a;(t)1g, and vy := Z vi(t)1g,, t € [11, 7o)

i>1 i>1
Then P is a solution of the martingale problem (P°, 1,7, a,v).

Proof. By definition, P = P° on F,,. In view of remark 5.2.1, it is enough to prove
that M, J and @ are P-local martingales on [, 73|. By localizing if necessary, we may
assume as usual that all these processes are actually bounded. For any stopping times
1 < R <S5 <7, and any bounded Fr-measurable random variable 7, we have

B ([Ms — Mgln) = > E* ([Ms — MgJnlg,)

i>1

- Y EF (EW([MS . MRHJ-"R)nlEi) — 0.

i>1

Thus M is a P-local martingale on [y, 75]. We can prove in exactly the same manner
that J and @ are also P-local martingales on [y, 75| and the proof is complete. (]

Proof. [Proof of Proposition 5.2.1] The proof follows closely the proof of Proposition 4.11
in [103] and we give it for the convenience of the reader.

(i) We take (a,v) € A, let us prove that (a,v) € Aw.

We fix two stopping times 61,6, in 7 and a probability measure P° on F,,. We define a
sequence (7,,)n >0 as follows:

To:=0y and 7, := (1, V1) ANy, n > 1.

To prove that the martingale problem (P° 6y, 605, a,v) has a unique solution, we prove by
induction on n that the martingale problem (P°, 7y, 7,,, a, ) has a unique solution.

Step 1 of the induction: Let n = 1, and let us first construct a solution to the
martingale problem (P°, 7y, 71, a, v). For this purpose, we apply Lemma 5.2.1 with 7 = 7
and 7 = 7y, which leads to a; = Zi}lai(t)]‘Ei and v, = Z¢>1Vi(t)1Ei for all ¢t < 71,
where (a;,1;) € Ag and {E;, i > 1} C F5, form a partition of Q. For i > 1, let P% be the
unique solution of the martingale problem (P°, 7y, 7, a;, v;) and define

P(E) = PY(ENE)for all E € F,.

i>1
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Lemma 5.2.2 tells us that P%® solves the martingale problem (P°, 7y, 71, a,v). Now let P
be an arbitrary solution of the martingale problem (P°, 7y, 71, a,v), and let us prove that
P = P% We first define

P(E) :=P(ENE;) +P"(ENEY), VE € F5.

Using Lemma 5.2.2, and the facts that a; = alp, + a;lpe and v; = vlg, + vilge, we
conclude that P solves the martingale problem (P°, 7y, 71, a;,v;). This problem having a
unique solution, we have P* = P% on F; . This implies that for each ¢ > 1 and for each
E € F:, P(ENE;) =P%(ENE;), and finally

PYU(E) =Y P(ENE)=Y» P(ENE)=PE), VE € F,

i1 i>1

Step 2 of the induction: We assume that the martingale problem (P°, 7, 7,,, a, ) has a
unique solution denoted P". Using the same reasoning as above, we see that the martingale
problem (P", 7,,,7..1,a,v) has a unique solution, denoted P"™!. Then the processes M,
J and Q defined in Remark 5.2.1 are P""!-local martingales on [7,, 7,,+1], and since P!
coincides with P" on F; , M, J and Q are also P"*!-local martingales on [7,7,]. And
hence P"™! solves the martingale problem (P°, 7y, 7,11, a,v). We suppose now that P is
another arbitrary solution to the problem (P°, 7, 7,11, a, ). By the induction assumption,
P" = P on F;,, then P solves the problem (P", 7,,7,11,a,v), and by uniqueness P = P"+!
on F-

#...- The induction is now complete.

Remark that Fy, = V,, >1F5,. Indeed, since inf{n > 1 : 7, = 400} < 400, then
inf{n > 1 : 7, = 0} < 4oo. This allows to define P>*(FE) := P"(FE) for E € F;, and
to extend it uniquely to Fy,. Now using again Remark 5.2.1, we conclude that P> solves
(P°, 64,05, a,v) and is unique.

(ii) We now prove that A-quasi surely is equivalent to 4p-quasi surely.

We take (a,v) € Aand we apply Lemma 5.2.1 with 7 = 400 to write a; = 3, 5 | a;(t)1g,
and v = ) ;5 vi(t)1g, for all t > 0, where (a;,v;) € Ag and {E;, i > 1} C Fi form a
partition of 2. Take a set E such that Pi(E) = 0 for every (a, ) € Ay, then

=) PYENE)=) PY(ENE)=0.

i>1 i>1

(iii) Let N be a P%-local martingale, and let us prove by induction that N has a martin-
gale representation property under P%, on the interval [0, 7,].

As we can choose 1) = 0 without loss of generality, the result is trivially true for n = 0.
Suppose that N has a martingale representation on [0, 7,). We apply Lemma 5.2.1 with
T =1, and 7 = 7,11, then a; = 37, 5 a;(t)1g and v, = 35, 5 V'(t)1g, forall 7, <t <
Tns1, Where (a;, ") € Ay and {E;, i > 1} C F,, form a partition of Q. We have that for
each i > 1, Niis a [P*-local martingale, where

Ntl = (Nt/\Tn+1 - NTn) 1Ei1[7"’+°°)(t)'
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Since (a;, V') € Ay, then by assumption there exist processes H* and v such that

/ H!dB¢ + / / Y (x qu (ds,dx) — vi(ds, dx)) , Ph-as, 7, <t < Thgr.
We define

Hy:=> Hjlg and ¢y(2):= > ¢j(2)lg, Vo € B, 7 <t < Tnpa,

i>1 i>1

then
t t
N; = / H,dB; +/ / Vs(x) (pa(ds,dr) — vs(ds,dx)) , Pl-a.s, 7, <t < Tpi1.
Tn ™ JE

So N has a martingale representation on [0, 7,.1], and the induction is complete. Now
recall that inf{n : 7,, = co} < +00 to conclude that N has a martingale representation
on [0, 400).

(iv) Take (a,v) € A of the form (5.2.3), in which we can take 75 = 0 without loss of
generality.

There exists 0 < ¢y < 7 such that for every ¢ < ¢, P% is the law on [0,¢y] of a

semimartingale with characteristics (— fot fEx1|x|>1ﬂS(dx)ds,f0t ELsds,ﬁS(dw)ds) where

t:—z t)1go and 7 .—Zug(t)lE?,

i>1 i>1

where {E? i > 1} C Fy is a partition of Q. Since F is trivial, the partition is only
composed of 2 and (), and then

a; == al(t) and 7, = 0(t).
Then for £ € Foy+,

Py(E) = P;

(E) =0 ou 1,
since P¢ satisfies the Blumenthal 0 — 1 law by hypothesis. ]
Remark 5.2.4. If Ay consists in deterministic mappings as in example 5.2.1, then P¢

is the law on [0, 1] of an additive process with non random characteristics, for which the
Blumenthal 0 — 1 law holds (see for instance [96]).

We now state the following Proposition which tells us that our probability measure
coincides until their first time of disagreement.

Proposition 5.2.2. Let A be a separable class of coefficients generated by Ay, let Py :=
{P%, (a,v) € A} and let (a, ') x (b,1?) € A X A.

(i) 6% byg is an F-stopping time taking countably many values.
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(ii) Moreover, we have the following coherence condition

a, (E N QA"> — P, (E N QAb) , V7 € TPA VE € FFA.

Proof.

i) Let us prove that Ha’lb » <t ¢ € F;, for any t; > 0.
v,V 1

We apply Lemma 5.2.1 for (a,v!') and (b, v*) with 7 = ¢; to obtain that a; and b; coincide
with a;(t) and b;(t) on E; and that 1 coincides with v/ (t) on E;, j = 1,2, for t < 7, where
7>y, (a;,v}) x (b, v?) € Ay X Ag and {E;, i > 1} C F;, form a partition of 2. Then

{ort, <uy= U {ot <u}ne

i>1

By the constant disagreement times property of Ay, {951?}2 < tl} is either Q or (), and
since F; € F;,, then

{955’”2 < } € F.

To show that Qaib _» takes countably many values, we apply again Lemma 5.2.1 with
7 = 0% ,. which gives that a; and b, coincide with a;(t) and b;(t) on E; and that th

vip2s

coincides with v/} ( Jon E;, j =1,2, for t < 7, where 7 > 7, (a;,v}) x (b, v?) € Ay x Ay

(2

and {E;, 1 > 1} C F, form a partition of Q. Since 6 i’ 12 is a constant and given that
0P, 0‘“1’ ", on L, we have the desired result.
7%

1’7,

(ii) We write that

Enoe* n{oi,. < } {7< eyl } {ost,. <t}

~ ]- a
9 m b
m>1
Since {QZ;bVQ < t} € F;, we get that for any m > 1,

- 1 P pa
Eﬂ{7<<9yly2}ﬂ{7<t—%} €F 1 C}—tt% VN (Foo)

C Fi VN (Fy),
and then

ENQE" " € Fpon VNT(Fy).
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From this last assertion, we deduce that there exist measurable sets Ef’”l, E? »* belonging
to Fyep , i =1,2, such that

vl 2

1 1 2 1 2 1 2 2
EY C ENQYY Y C EYY BV Cc ENQEYM C BYY

P, (Eg’”l\Ef”’l) =P, (ES’”Z\Ef’”Q) ~0.

We set B! := B UE" and E? := B N E* then

E', B € Fyo , B'C ENQZ " C E? and Py (E*\E') = Pl (E*\E") = 0.

This implies that
s (B0 ) = Po(B?) and Pl (B0 ) = PLa(E2),

but the solutions of the martingale problems (P°,0,6% ,,a,v') and (P°,0,0% ,,b,1?) are
equal by definition. And since E? € feaib L we have

Py (E?) = Ppa(E?)
which gives the desired result. ]

We now have all tools we need to state and prove the main result of this section, which
generalizes the aggregation result of Theorem 5.1 in [103]. For this purpose, we use the
more general aggregation result of Cohen [23], that does not concern only volatility or
jump measure uncertainty.

Theorem 5.2.1. Let A be a separable class of coefficients generated by Ay and P4 the
corresponding probability measures. Let

{X (a,v) € A},

be a family of I@PA—progressively measurable processes.

Then the following two conditions are equivalent

(i) {X*", (a,v) € A} satisfies the following consistency condition

X = X P as. on [0,0%0 ) for any (a,v') € A and (b,v?) € A.

I 1,1,,/2

(ii) There exists a Pa-q.s. unique process X such that

X =X Pla.s., Y(a,v) € A



124 Chapitre 5. Second Order BSDEs With Jumps

Proof. We first prove that (i) implies (ii). Using Lemma 3 in [23], we see that the
definition of the generating classes, together with Proposition 5.2.2, implies that the family
P4 satisfies the Hahn property defined in [23]. Now Theorem 4 of [23] gives the result.
The fact that (i) implies (i) is a consequence of the uniqueness of the solution of the
martingale problem (P°, 0, 400, a, ') on [0,60%" ,). o

vlp?

Now that we have Theorem 5.2.1, we can answer our first issue concerning the aggrega-
tion of the predictable compensators associated to the jump measure pga of the canonical
process. Indeed, let A be a separable class of coefficients generated by Ay. Then, for each
Borel set A € B(E) and for each ¢ € [0, 7] the family {I/FZ(A)} clearly satisfies the

(a,v)EA
consistency condition above (because it is defined trough the Doob-Meyer decomposition),
and therefore there exists a process 7 such that

U,(A) = v (A), for every P € Py. (5.2.5)

We then denote
fipa(dt,dz) = ppa(dt, dz) — vy(dzx)dt.

5.2.1.4 The strong formulation

In this subsection, we will concentrate on a subset of Py,. For this purpose, we define

={venN, (I,v) € Ay}.
For each v € V, we denote P” := Pl¢ and for each o € D, we define

t
P =P o (X*)", where X := / al?dB¢ + BY, PY — a.s. (5.2.6)
0

Let us now define,
Pg :={P*, (a,v) € Ay }.

Then « is the quadratic variation density of the continuous part of X and
dB¢ = a7 Y?dX e,

under P”. Moreover, v;(dx)dt is the compensator of the measure associated to the jumps
of X* and AXY = AB; under P”.

We also define for each P € Py, the following process
Li =W+ B P—a.s., (5.2.7)

where W} is a P-Brownian motion defined by

t
Wk .= / a;'\%aBe.
0
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Then, Pg is a subset of Py, and we have by definition

the P*"-distribution of (B,a,?, L¥"") is equal to the P"-distribution of (X%, a, v, B).
(5.2.8)

We also have the following characterization in terms of filtrations, which is similar to
Lemma 8.1 in [103]

_]P7 L
Lemma 5.2.3. Pg = {]P € Pw, FLIF = IFP}

v

——P
Proof. By the above remarks, it is clear that o and B are FX* -progressively measurable.
—pv —pv
But by definition, F is generated by B, thus we conclude easily that F c FX* . The
other inclusion being clear by definition, we have

—JpV Pl/
F —F .
Now we can use (5.2.8) to obtain that
WPW _F

Conversely, let P € Py, be such that WF — 7 Then, there exists some measurable
function 3 such that B, = 3(LF). Let v be the compensator of the measure associated to
the jumps of B under P. Define then,

_ d<B(B).A(B) >
dt ’
we conclude then that P = P*". ]

(673

Define now Ag := {(a, v) € Ay, P? € Pg}. It is important to notice that in our frame-
work, it is not clear whether all the probability measures in Pg satisfy the martingale
representation property and the Blumenthal 0 — 1 law. Indeed, this is due to the fact that
the process L¥ does not necessarily satisfy them. This is a major difference with [103].
Nonetheless, if we restrict ourselves to a subset of Pg, we are going to see that we can still
recover them.

First, we have the following generalization of Proposition 8.3 of [103].

Proposition 5.2.3. Let A be a separable class of coefficients generated by Ag. If Ay C Ag,
then A C Asg.

Proof. This is a straightforward generalization of the proof of Proposition 8.3 in [103],
using the same kind of modifications as in our previous proofs, so we omit it. ]

Let us now consider the set introduced above in Example 5.2.1

Ay = {(o,v) € D x N which are deterministic} Pi, = {Pf,“, (o,v) € /(0} .

flo is a generating class of coefficients, and it is a well known result that .,Zlg C Aw
(see Theorem II1.2.16 in [56]) and that every probability measure in Pz satisfies the
martingale representation property and the Blumenthal 0 — 1 law, since the canonical
process is actually an additive process under them. Moreover we also have
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Lemma 5.2.4. We have
’PAO C PS.

Proof. Let P := P} be a probability measure in P4 . As argued previously, we have
P—a.s.

t
B = / al2dL;) and ALY = AB,.
0

. . e =P 5P L .
Since « is deterministic, it is clear that we have F = FL" | which implies the result.
n

Finally, we consider A the separable class of coefficients generated by Ay and P i the
corresponding set of probability measures. Then, using the above results and Propositions
5.2.1 and 5.2.3, we have

Proposition 5.2.4. P ; C Ps and every probability measure in P 5 satisfies the martingale
representation property and the Blumenthal 0 — 1 law.

Proof. Once we know that the augmented filtration generated by LF satisfies the mar-
tingale representation property and the Blumenthal 0 — 1 law for every P € P i, » We can
argue exactly as in the proof of Lemma 8.2 of [103] to obtain the results for Pz . The
result for Pz then comes easily from Proposition 5.2.1. ]

Remark 5.2.5. In our jump framework, we need to impose this separability structure on
both o and v, in order to be able to retrieve not only the aggregation result of Theorem
5.2.1 but also the property that all our probability measures satisfy the Blumenthal 0 — 1
law and the martingale representation property. However, if one is only interested in being
able to consider standard BSDEJs, then we do not need the aggregation result and we can
work with a larger set of probability measures without restrictions on the o. Namely, let
us define

ﬁg = {]P)a’y, a €D, (Id7V) ej}

Then we can show as above that fj C Ps and that all the probability measures in fj
satisfy the Blumenthal 0 — 1 law and the martingale representation property. This is going
to be useful for us in Section 5.4.4.

5.2.2 The nonlinear generator

In this subsection we will introduce the function which will serve as the generator of our
2BSDEJs. Let us define the spaces

L? = NyenL?(v) and L' := Nyen L' (v).
For any C! function v with bounded gradient, any w € Q and any 0 < ¢t < T, we denote
v the function

t(e) :==v(e+w(t)) —v(w(t)) — Ly <1y e-(Vo)(w(t)), for e € E.
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The hypothesis on v ensure that o is an element of L'. We then consider a map
Hy(w,y, z,u,7,0) : [0,T] x Q x R x R x L2 x Dy x Dy — R,

where D; C R%? is a given subset containing 0, Dy C L' N Ck(F), and Ck(F) denotes
the set of continuous functions on F with a compact support.

Define the following conjugate of H with respect to v and v by

1
Fw,y,z,u,a,v) = sup {—Tr(a’y)+ < U,V > —Ht(w,y,z,u,”y,ﬁ)} ,
{’y,f}}GDlng

for a € S;° and v € NV, and where < 0, > is defined by

<V, v >i= /Eﬁ(e)l/(de). (5.2.9)

The quantity < v, v > will not appear again in the chapter, since we formulate the needed
hypothesis for the backward equation generator directly on the function F. But the
particular form of < ¥,v > comes from the intuition that the 2BSDEJ is an essential
supremum of classical BSDEJs. Indeed, solutions to Markovian BSDEJs provide viscosity
solutions to some parabolic partial integro-differential equations whose non local operator
is given by a quantity similar to < 0, > (see [5] for more details).

We define

~

Fi(y,z,u) :== F(y, z,u,d,,0;) and F? := F,(0,0,0), P*"-a.s. (5.2.10)

We denote by D1
a fixed (t,w,v, z, u)

) the domain of F in a and by D2, the domain of F in v, for

1 (y,2,u) Fi(y,z,u)

As in [101] we fix a constant x € (1, 2] and restrict the probability measures in Py, C P4

Definition 5.2.6. P consists of all P € P; such that

2

Edt) |

a" <a<a, dt x dP — a.e. for some d”,a €S;°, and EF < 400,

([ 17

/E(l/\ |z F (dx) < /E(l/\ |z[*) 7 (dz) < [E(l/\ \z|*)7F (dz), and

/ |xy£(dx)</ |x\ﬁt(dac)</ 2|78 (da), dt x dP — a.c.
|z[>1 |z[>1 lz|>1

for V¥, 7%, two o — finite Lévy measures in N.

Remark 5.2.6. With the above definition, for a fired P € Py, we have

/OT/E(M\Q;F (d) EPU /mm utdx] //mm dz) <
and /OT/lxbl\M(dx)ng VO /x|>1\x|ﬁt(dx)] g/o /I|>1 12|72 (dz) < o0
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We now state our main assumptions on the function £ which will be our main interest
in the sequel

Assumption 5.2.1. (i) The domains Dy, .., = Dy, and D3, . = D}, are inde-
pendent of (w,y, z,u).

(ii) For fized (y, z,a,v), F is F-progressively measurable in Dy, x DF, .
(iii) We have the following uniform Lipschitz-type property in y and z

v(y? y/7z7 Zl7u7 t’ a? V7w>7

Fiw,y,z,u,a,v) — Fiw,y, % u,a, 1/)‘ <C (’y — y,) + ‘al/z (z — zl> D :
(iv) For all (t,w,y, z,u',u? a,v), there exist two processes v and v such that

/E (ul(e) — u2(e)) y(e)v(de) < Fy(w,y, z,u',a,v) — Fi(w,y, z,u?, a,v),

—~

R,y 0t a,0) = Fiozitian) < [ (ah(e) = () ri(e)v(de) and

E
(1A |z]) < p(z) < (1A |z]) where ¢p <0, 0< ¢y <1,
’ 0,0<

< <6 <
cll(l Alz]) < y(x) < 0/2(1 A |z|) where c/1 < c/2 < 1.

Y

(v) F is uniformly continuous in w for the || - || norm.

Remark 5.2.7. (i) For k1 < ks, applying Holder’s inequality gives us

([ )] <[ )]

where C' is a constant. Then it is clear that Py, is decreasing in k.

EIP’ j_ﬁtﬂ < C]E]P’

70
Ft

(ii) The Assumption 5.2.1, together with the fact that ﬁ’to < 400, P*"-a.s for every
P¥ € Py, implies that @, € Dy, and U € D}, dt x dP*"-a.e., for all P*" € Pj,.

5.2.3 The spaces and norms

We now define as in [101], the spaces and norms which will be needed for the formulation
of the second order BSDEs.

For p > 1, L%" denotes the space of all Fr-measurable scalar r.v. £ with
€110 == sup E¥ [|¢]7] < +o0.
H PePY

HE" denotes the space of all F*-predictable Ri-valued processes Z with

T 5
( / ay’/ 2Zt|2dt)
0

HZH%,ER .= sup E" < +o0.
PEPy,
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D% denotes the space of all F™-progressively measurable R-valued processes Y with

Py — q.s. cadlag paths, and [[Y]|?,.« := sup EF [ sup |Yi|P| < +o0.
H PePy 0<tLT
J&" denotes the space of all F'-predictable functions U with
U3 == sup EF (/ / \U(x)|* D(dx)d ) < ~00.
H

For each ¢ € Ly}*, P € Py and t € [0, 7] denote

EtH’P[S] = esssup’ E /[5] where Pp (17, P) := {IP’, € Py P =Pon .7-":}

P ePr (t+,P)

Then we define for each p > &

Bl S]

LB .= {5 e Ly 1€]lpz~ < +oo} where HSHE%K, = sup EF [esssup (EHPHS\ ]>

3 0<t<T

|

Finally, we denote by UC,(€2) the collection of all bounded and uniformly continuous
maps £ :  — R with respect to the ||| -norm, and we let

LY := the closure of UC,(€2) under the norm NIy~ for every 1 < & <p.
For a given probability measure P € Py, the spaces LP(P), DP(P), HP(P) and J?(P)

correspond to the above spaces when the set of probability measures is only the singleton
{P}. Finally, we have H! (P) denotes the space of all F*-predictable R%-valued processes

loc
Z with
T
yi

P (P) denotes the space of all Ft-predictable functions U with

(//w )9, (dw)d ) < to0, P—a.s.

5.2.4 Formulation

~1/2

2 N2
dt) < 400, P—a.s.

We shall consider the following 2BSDEJ, for 0 < ¢ < 7" and Pj-q.s.

YV, =¢— / YS,ZS,U)ds—/ ZsdBS — / / x)figa(ds,dz) + Kr — K. (5.2.11)
¢

Definition 5.2.7. We say (Y, Z,U) € D3 x H3* x J5* is a solution to 2BSDEJ (5.2.11)
if
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[ YT = f, Pﬁ-q.s.

o For allP € Py, and 0 <t < T, the process K* defined below is predictable and has
nondecreasing paths P — a.s.

~
S

t t t
K} ::YO—Yt+/ F(}/'S,ZS,US)ds+/ ZSng—l—/ /Us(x)ﬂBd(ds,dx). (5.2.12)
0 0 0o JE
o The famuly {KP,IP’ € 731’3} satisfies the minimum condition

KP = essinff EY [Kg’f} L0<t<T, P—as., VP € PL. (5.2.13)
P ePy (t+,P)

Moreover if the family {K]P,]P’ € 731’51} can be aggregated into a universal process K, we
call (Y, Z,U, K) a solution of the 2BSDEJ (5.2.11).

Remark 5.2.8. Since with our set Py, we have the aggregation property of Theorem 5.2.1,
and since the minimum condition (5.2.13) implies easily that the family {KP,IP’ € 73['}}
satisfies the consistency condition, we can apply Theorem 5.2.1 and find an aggregator for
the family. This is different from [101] or [90], because we are working with a smaller set
of probability measures.

Following [101], in addition to Assumption 5.2.1, we will always assume
Assumption 5.2.2. (i) Py, is not empty.

(ii) The process FO satisfy the following integrability condition

T 5
oo = sup EF |esssup” (Ef]’P [/ \Ff|”ds}) < +o0 (5.2.14)
PePy  0<t<T 0
5.2.5 Connection with standard BSDEJs
Let us assume that H is linear in v and o, in the following sense
. 1 -
Hi(y, z,u,7,0) := §Tr [Ly] + (0,v") — fily, z,u), (5.2.15)

where v* € N. We then have the following result
Lemma 5.2.5. If H is of the form (5.2.15), then Dy, = {I;}, D3, = {v*} and
Fiw,y,z,u,a,v) = F(w,y, z,u, [d, V") = fi(y, z,u).

Proof. First notice that

Hy(w 42 0,7,5) = sup {%Trm) -/ ) [ e, de) = duala) - wu)}

(a,y)ESio XN

— fily, z,u).
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By definition of F', we get
Fi(w,y,z,u,a,v) = fi(y, z,u) + H(a,v),
where H** is the double Fenchel-Legendre transform of the function
(a,v) +— d1q4(a) + 6,4 (v),
with 67q(a) = 01a—1ay + 001faz1qy and 6, (V) = 01—y} + 001 (03
The above function is convex and lower-semicontinuous, implying that
Fiw,y,z,u,a,v) = fi(y, z,u) + dra(a) + 6, (v),

which is the desired result. o

If we further assume that EF [fOT |£:(0,0,0)? dt] < 400, then Pj; = {P,~} and the
minimality condition on K = K*»* implies that 0 = EF* [K7], which means that K = 0,
P,«-a.s. and the 2BSDEJ is reduced to a classical BSDEJ.

5.2.6 Connection with G-expectations and G-Lévy processes

In a recent paper [55], Hu and Peng introduced a new class of processes with independent
and stationary increments, called G-Lévy processes. These processes are defined without
making reference to any probability measure.

Let Q be a given set and let H be a linear space of real valued functions defined on
Q, containing the constants and such that | X| € Hif X € H. A sublinear expectation
is a functional £ : H — R which is monotone nondecreasing, constant preserving, sub-
additive and positively homogeneous. We refer to Definition 1.1 of [89] for more details.

The triple (ﬁ, H, ]E’) is called a sublinear expectation space.

Definition 5.2.8. A d-dimensional cadlag process {X;, t = 0} defined on a sublinear
expectation space (U, H, IE) is called a G-Lévy process if:

(i) X, = 0.

(ii) X has independent increments: Vs, t > 0, the random variable (Xiys — Xt) is inde-
pendent from (X, ..., Xy,), for eachn € Nand 0 <t; <--- <t, <t. The notion
of independence used here corresponds to definition 3.10 in [89].

(iii) X has stationary increments: Vs, t > 0, the distribution of (X5 — X;) does not
depend on t. The notion of distribution used here corresponds to the definition given

in §3 of [89)].
(iv) For each t > 0, there exists a decomposition X; = X{ + X2, where {X¢, t >0} is a

continuous process and {Xf, t > 0} is a pure jump process.

(v) (X¢, X2) is a 2d-dimensional process satisfying conditions (i), (i1) and (iii) of this
definition and
1~ N
lim —E (Ix:1>) =0, E(|X|) <Ct, t=0
t—0

for a real constant C.
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In [55], Hu and Peng proved the following Lévy-Khintchine representation for G-Lévy
processes:

Theorem 5.2.2 ([55]). Let {X;, t > 0} be a G-Lévy process. Then for each Lipschitz

~

and bounded function ¢, the function u defined by u(t,z) := IF (p[z + Xy]) is the unique
wscosity solution of the following partial integro-differential equation:

Beult, 7) — supgsmcaid / fult, @ + 2) — ult, )w(dz)
E
+ < Du(t, 1‘), b >pad +%Tr [DQU(t,x)aaT]} =0

where U is a subset of R? x R x M7 satisfying

SUP (b, a,v) el {/Rd |Z| l/(dZ) + |b| +Tr [(XO[T}} < 400

and where M7, denotes the set of positive Radon measures on E.

Hu and Peng studied the case of G-Lévy processes with a discontinuous part that is
of finite variation. In our framework, we know that B¢ is a purely discontinuous semi-

martingale of finite variation if fOT f‘ vs(dx)ds < 400, P,-a.s. We give a function

o <11l
H below, that is the natural candidate to retrieve the example of G-Lévy processes in our

context. This is one of the points of our paper [62].

Let A be any subset of A that is convex and closed for the weak topology on MF. We
define

i 1 T
Hy(w,~,0) = SUD (4,1 €830 x A {éTr(a’y) + /0 /Ev(e)ys(de)ds — Ofay,a0 (@) — 5J\7(u)} .

Since [a1,as] and N are closed convex spaces, Fi(w,a,v) is the double Fenchel-Legendre
transform in (a, ) of the convex and lower semi-continuous function (a,v) — 0ja, 4.)(a) +
d5(v) and then

Fy(w,a,v) = djay az)(a) + 0 (v),

where 0o, 0:](@) = 01{aefor aal} + 001 {aglar,aaly a0d Og(v) = 01,y + 00115501

5.3 Uniqueness result

5.3.1 Representation of the solution

We have similarly as in Theorem 4.4 of [101]

Theorem 5.3.1. Let Assumptions 5.2.1 and 5.2.2 hold. Assume & € 15" and that
(Y, Z,U) is a solution to 2BSDEJ (5.2.11). Then, for any P € P}, and 0 < t; <ty < T,

Y, = esssup’ yzl<t2,}/;2), P—a.s., (5.3.1)
P'ePy (t],P)
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where, for any P € P, Ft-stopping time 7, and F; -measurable random variable & €
L2(P), (y*(7,€), 25 (1,€)) denotes the solution to the following standard BSDE on 0 <t < T

y =&~ / s(Ys s 21, ul )ds —/ 2FdBe — // x)jiga(ds, dz), P—a.s. (5.3.2)

Remark 5.3.1. We first emphasize that existence and uniqueness results for the standard
BSDEFEs (5.3.2) are not given directly by the existing literature, since the compensator of
the counting measure associated to the jumps of B is not deterministic. However, since
all the probability measures we consider satisfy the martingale representation property and
the Blumenthal 0 — 1 law, it is clear that we can straightforwardly generalize the proof of
existence and uniqueness of Tang and Li [106] (see also [8] and [24] for related results).
Furthermore, the usual a priori estimates and comparison Theorems will also hold.

Remark 5.3.2. It is worth noticing that, unlike in the case of 2BSDFEs (see [101] for
example), this representation does not imply directly the uniqueness of the solution in
D3 x Hy x J3".

Indeed, by taking to =T in this representation formula, we have

Y; = esssup’ yf/(T,g), te€[0,T], P—a.s., for alP € Py,

P ePy (t,P)
and thus 'Y s unique.

Then, since we have that d(Y°, B®), = Z,d(B°),, Pi; — q.s., Z is unique. However,
here we are not able to obtain that U and K* are uniquely determined. Nonetheless, this
representation is necessary to prove some a priori estimates in Theorem 5.3.4 which, as
for the standard BSDEJs, insure the uniqueness of the solution.

Before giving the proof of the above theorem, we first state the following Lemma which
is a generalization of the comparison theorem proved by Royer (see Theorem 2.5 in [95]).
Its proof is a straightforward generalization so we omit it.

Lemma 5.3.1. Let P € P. We consider two generators f1 and f? satisfying Assumption
Homyp in [95] (which is a consequence of our more restrictive Assumption 5.2.1(iv)). Given
two nondecreasing processes k' and k%, let &' and £ be two terminal conditions for the
following BSDEJs driven respectively by f! and f?,

gl / f ys7Zsau dS—/ Z dBC / / ,lLBd dS dl’)
t
+ kb — K fori=1,2, P—a.s.

Denote by (y*, z', u') and (y?, 2%, u?) the respective solutions. If &+ < &2, k' — k? is non-
increasing and f'(t,yl, 2, up) = [ty 24, up), then Yt € [0,T],yp < vy

Proof. [Proof of Theorem 5.3.1] The proof follows the lines of the proof of Theorem 4.4
in [101].
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(i) Fix 0 <ty <ty <T and P € Pf. For any P' € Pi(t,P) and ¢; <t < ty, we have,

to - to to
Y: =Y, —/ Fy(Ys, Zs,Uy)ds —/ ZsdBS —/ / Us(x)figa(ds, dz)
t t t JE

/

+K, K ,P —as.

With Assumption 5.2.1, we can apply the above Lemma 5.3.1 under P’ to obtain
Y, = yEl(tg,KZ), P' — a.s.. Since P’ = P on F;!, we get V;, > yEl(tg,KZ), P — a.s.
and thus
Y, > esssup’ yzl(tg,}/;,z), P — a.s.
P ePr (t],P)

(i) We now prove the reverse inequality. Fix P € P},. We will show in (iii) below that

’ ’ N\ 2
CE = esssup’ E]fl [(Kz —KE) } < 400, P—a.s.
P’ ePy (t1,P)

For every P’ € Py (t+,P), denote

/

oYy =Y — ?/P <t2aY22)7 0/ =7 — ZP/ (t2>Y;€2) and 0U :=U — uP/(t27}/;2)'

By the Lipschitz Assumption 5.2.1(iii), there exist two bounded processes A and n
such that for all t; <t < o,

to [ Y , / ~ ’ / /
3Y, :/ (/\5(5}/; + nsai/zéZs) ds — / (Fs(yg1> ceb U — Fu(yf 28 b )) ds
¢ ¢

to to ’ ’ ,
—/ 6ZSdB§—/ /5Us(x)g3d(ds,dx)+f(f; ~ K, P —as.
t t E

Define for ¢; <t <t the following processes

t t
N, = / nia V2dBe - / / (@) fipa(ds, da),
t1 t1 E

t
M, = exp </ )\Sds) E(N)y,
t1

where £(N); denotes the Doléans-Dade exponential martingale of Nj.

and

By the boundedness of A and 7 and the assumption on 7 in Assumption 5.2.1(iv),
we know that A has moments (positive or negative) of any order (see [72] for the
positive moments and Lemma 5.6.6 in the Appendix for the negative ones). Thus
we have for p > 1

EF | sup MP+ sup M ?| <C, P —as. 5.3.3
t1 t t p

t1 <t <t t1 <t <t
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(i)

Then, by It6’s formula, we obtain
d(M6Yy) =M,_d(0Y;) + 6Y;—dM, + d [M,6Y],
=M;_ [(—/\t(SYt - Utatl/25Zt + ﬁt(?ﬁp> aZF U — ﬁt(?ﬁ 72’? ,Uf )) dt

+6Z,dB; + /E (60U () — v (x)0Uy(x)) fuga(dt, dw)}

+8Y,_ M, (/\tdt + na; PdBS — /E %(az)ﬁBd(dt,da:))

+ M, <maj/2aztdt - /E %<x>5Ut<x>at(dx>dt> ~ M,_dK¥.
Thus, by Assumption 5.2.1(iv), we have

to t2 ’
§Y, < — / M, (6Z, + 0Ysnsa, /?) dBS + / M, _dK!
t t1

1

to

[ / (0UL(2) — 6Yova(x) — 4s(2)0U(2)) i (ds, dr).
t1 E

By taking conditional expectation, we obtain

’ t2 ’
§Y;, <E} [/ Mt_dKf}. (5.3.4)
t1

Applying the Hélder inequality, we can now write

5Y;, <Ef { sup (M) (K, - K )}

1 <t<t

) 1/3 ) ) i\ 3/2]\ /3
< (Efl { sup (Mt)3:|) (EE {(Kg —Kfi) D
1 <t<t
/ / / 1/3
<) (B KL - kL)) P-as

Taking the essential infimum on both sides finishes the proof.

It remains to show that the estimate for CE holds. But by definition, and the
Lipschitz Assumption on F' we clearly have

’ ’ N\ 2
swp B | (5 - K2 )| < € (Ve + 12030 + 101 + 637)
P ePy (t]P)

< +00, (5.3.5)

since the last term on the right-hand side is finite thanks to the integrability assumed
on & and FO.

We then use the definition of the essential supremum (see Neveu [85] for example)
to have the following equality

/ ’ N 2
esssup? B {(K}” - K) ] = swp Efr [(Kfy — K[)’], P—as. (536)



136 Chapitre 5. Second Order BSDEs With Jumps

for some sequence (P,),>1 C Py (t],P).

Moreover, in Lemma 5.6.3 of the Appendix, it is proved that the set Py (tf,P) is
upward directed which means that for any P}, P, € Py (t],P), there exists P’ €

Py (t],P) such that
(Kﬂ»; B Ku»;> ’ (Ku»; B Kp;) : }
to t1 to t1 :

/ ’ N\ 2 /
EF [(KE’ - K } — max {]Ef}
Hence, by using a subsequence if necessary, we can rewrite (5.3.6) as

/

]PJQ
) Etl

/ ’ AN
esssup’ EE {(Kg —KE) } = lim TIEE” [(Kf;” —KE”)Q], P—a.s.

P ePr (¢ P) oo

With (5.3.5), we can then finish the proof exactly as in the proof of Theorem 4.4 in
[101]. O

Finally, the comparison Theorem below follows easily from the classical one for BSDEJs
(see for instance Theorem 2.5 in [95]) and the representation (5.3.1).

Theorem 5.3.2. Let (Y, Z,U) and (Y', Z',U’) be the solutions of 2BSDEJs with terminal
conditions & and £, generators F and F' respectively, and let (4%, 2%, u¥) and (y, 2'F, u'F)
the solutions of the associated BSDEJs. Assume that they both verify our Assumptions
5.2.1 and 5.2.2 and that we have

o (K&, P —qs.
° F\t(ygp, 2F ul) > ﬁt/(ygp, 2P ulf), P—a.s., for all P € Py,

ThenY <Y', P}y — q.s.

5.3.2 A priori estimates and uniqueness of the solution

We conclude this section by showing some a priori estimates which not only will imply
uniqueness of the solution of the 2BSDEJ (5.2.11), but also will be useful to obtain the
existence of a solution.

Theorem 5.3.3. Let Assumptions 5.2.1 and 5.2.2 hold. Assume & € %" and (Y, Z,U) €
D% x H%" x J%* is a solution to the 2BSDEJ (5.2.11). Let {(QP’ZP7UP)}PGP;I be the
solutions of the corresponding BSDEJs (5.3.2). Then, there exists a constant C,, depending
only on k, T and the Lipschitz constant of F' such that

2 2 2 2 2 K
1Y B+ 121 e + U2 + IP%%EP 1K51] <G (Nl + 03).

and

PSUQ {HQPH;(P) + HZP”;IZ(JP) + H“PH;(P)} < G (Hinif + ¢§iﬁ> ~
Py,
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Proof. As in the proof of the representation formula in Theorem 5.3.1, the Lipschitz
assumption 5.2.1(iii) of F' implies that there exist two bounded processes A and n such
that for all ¢,

T T,
yr :§—|—/ ()\sys + nsay al/? S) ds —/ (FJ0,0,uf)) ds
t

—/ 2LdB¢ — / / x)figa(ds,dx), P — a.s.

Define the following processes

N, / D= V2B — / / (@) ia(ds, do),
t t F
M, = exp </ )\Sds) E(N),,
t

where £(N), denotes the Doléans-Dade exponential martingale of N,.

and

Then by applying Itd’s formula to My, we obtain

T
y, =EF {MTg—/ M,F,(0,0,uf ds+/ /Ms% 1)V, (dx)ds
t

Finally with Assumption (5.2.1)(iv), the Holder inequality and the inequality (5.3.3),
we conclude that there exists a constant C\ depending only on x, T and the Lipschitz
constant of F', such that for all P

T
m|@wWw[ s

This immediately provides the estimate for y*. Now by definition of our norms, we get
from (5.3.7) and the representation formula (5.3.1) that

1Y 132 < O (NeliZze + 637) (5.3.9)

} " (5.3.7)

Now apply Ito’s formula to |Y|2 under each P € Py;. We get as usual for every € > 0

|Y012+/ dt+/ /[Ut )2 7 (d)dt

= ¢/® —2/ YtFt(K:,Zt,Ut)dtm/ Y,-dK}
0

al 2y

~2 [ vz~ [ [ (0 4 2 t00) pstat )

< ¢ 42 / Y |E (Y, Z0, Ut +2 sup [V K2

0gLtLT

~2 [ vz - [ [ (0@ 4 2 00) st
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By our assumptions on F', we have

< (\Y;|+ 0| 4 </E|Ut(x)]23t(dx))l/2>.

With the usual inequality 2ab < %aQ + b?, Ve > 0, we obtain

T
EP Al/QZt d ACAC d]

UO t+//| yu x)dt

1/2
< CEF ||¢? Y, a?z ( Uy( td) d
< _|s|+/0|t\< J+ ([ WP )t]
r T
EF Y, | dK}
wu | [ ekt
)])

A12

ﬁjt()/h Zt7 Ut)

| +

C 9 T
1+— | sup |Yi|"+ / b
€/)0<tLT 0

dt+/ /]Ut ut(da:)dt+|K1_1,’l\2}. (5.3.9)

c <|I§||L§f TES

T
0

Then by definition of our 2BSDEJ, we easily have

al 12y

St
)2] : (5.3.10)

Now set € := (2(1 + C5))~! and plug (5.3.10) in (5.3.9). One then gets

[

[ImE] < o [ige+ s i+ [ iz

//|Ut ytdx)dt+(/0T !

for some constant Cj, independent of e.

~1/2,, |2 g 2~ P (o2 2
a,’ " Z| dt + \Up(x)|” p(dx)dt| < CE" [[€]"+ sup |V
0o JE

0<t<T
T/\
+</ ‘
0

2
il
From this and the estimate for Y, we immediately obtain

2 2,k
121z + 10Nz < C (l€lR2r + 037

Then the estimate for K¥ comes from (5.3.10). The estimates for z¥ and u* can be
proved similarly. ]

Theorem 5.3.4. Let Assumptions 5.2.1 and 5.2.2 hold. For i = 1,2, let us consider the
solutions (Y*, Z*,U', { K®',P € Py }) of the 2BSDEJs (5.2.11) with terminal condition £'.
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Then, there exists a constant C,, depending only on k, T and the Lipschitz constant of F
such that

" =¥ < Cue? €

and

HZ1 — Z2||;Iz,ﬁ + sup EF { sup ’Kf’l — KF’Q
H PPy, 0<t<T

2 2
|+l = o),
<Ol = g (1€ g+ 1€+ (@52)

Consequently, the 2BSDEJ (5.2.11) has at most one solution in ]D)H X ]HIH X JH .

Proof. As in the previous Theorem, we can obtain that there exists a constant C,
depending only on x, T" and the Lipschitz constant of F', such that for all P

1/k

(5.3.11)

W= of| < CEF [l6 - ¢

Now by definition of our norms, we get from (5.3.11) and the representation formula
(5.3.1) that

IV = Y?|[5en < Ol = €17 (5.3.12)

Applying It6’s formula to |Y? — Y2|°, under each P € P%, leads to

EF [/0 dt+/ /\U UZ( yt(dx)dt]

<crr [l -] vm [ [ v - ve o - w7

T
+CEP[/ ;! Y2|(\3@1—3@2}+ya§/2(zg_zf)\

( / UM (z) — U2(x)| yt(d:p)dt>l/2) q

<C(Il¢" = &7z + V' = V252,

;]EP {/0 dt+/ /|U1 2 D,(dw)dt

5 1/2
relrt vl (23] )

A1/2(Z1 Zz

A1/2(Z1 Z2

=1

The estimates for (Z! — Z?) and (U — U?) are now obvious from the above inequality
and the estimates of Theorem 5.3.3.

Finally the estimate for the difference of the nondecreasing processes is obvious by
definition. (]
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5.4 A direct existence argument

In the article [101], the main tool to prove existence of a solution is the so called regular
conditional probability distributions (r.c.p.d.) of Stroock and Varadhan [104]. Indeed,
these tools allow to give a pathwise construction for conditional expectations. Since,
at least when the generator is null, the y component of the solution of a BSDE can be
written as a conditional expectation, the r.c.p.d. allows us to construct solutions of BSDEs
pathwise. Earlier in the chapter, we have identified a candidate solution to the 2BSDEJ
as an essential supremum of solutions of classical BSDEJs (see (5.3.1)). However those
BSDEJs are written under mutually singular probability measures. Hence, being able to
construct them pathwise allows us to avoid the problems related to negligible-sets. In this
section we will generalize the approach of [101] to the jump case.

5.4.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in
[101] and [30]. Remember that we are working in the Skorohod space Q = D ([0, T],R?)
endowed with the Skorohod metric which makes it a separable space.

e Ior 0 <t < T, we denote by Qf := {w eD ([t,T],]Rd)} the shifted canonical space
of cadlag paths on [t,T] which are null at ¢, B' the shifted canonical process. Let
N be the set of measures v on B(FE) satisfying

T T
/ /(1 A \:U]Q)us(dx)ds < 400 and / / |z| vs(dx)ds < +o0, Vo € QF,
t E t |z|>1
(5.4.1)

and let D' be the set of F'-progressively measurable processes a taking values in S;;°
with ftT las|ds < +oo, for every @ € Q.

F! is the filtration generated by B'. We define similarly the continuous part of
Bt, denoted B'¢, its discontinuous part denoted B%?, the density of the quadratic
variation of B¢, denoted @', and pg.a the counting measure associated to the jumps
of B

Exactly as in Section 5.2, we can define semimartingale problems and the corre-
sponding probability measures. We then restrict ourselves to deterministic («,v)
and we let A! be the corresponding separable class of coefficients and P4 the cor-
responding family of probability measures, which will be noted P“*". Then, this
family also satisfies the aggregation property of Theorem 5.2.1, and we can define
v?, the aggregator of the predictable compensators of B.

e For 0 < s <t < T and w € QF, we define the shifted path w! € Q by

Wi = w, —wy, Vr e[t T).



5.4. A direct existence argument 141

e For0<s<t<Tandw e QF, & € O we define the concatenation path w®,w € Q°
by
(W@ @)(r) = wplisy(r) + (we + @p) Ly 1y (r), Vr €[5, 7).

e For 0 < s <t <7 and a Fj-measurable random variable £ on 2°, for each w € Q°,
we define the shifted Fi-measurable random variable £ on Q' by

(D) = E(we @), VI e Q.

Similarly, for an F*-progressively measurable process X on [s,T] and (¢,w) € [s,T] x
%, we can define the shifted process {X'* r € [t,T]}, which is F'-progressively
measurable.

e For a F-stopping time 7, we use the same simplification as [101]

W B B = w By B, € 1= T, XT i XTI,

e We define our "shifted" generator

Fi(3,y, 2,u) == Fy(w @, 3,y 2,u, @4 (©), 74(D)), V(s,@) € [t,T] x Q.

’Ts

Then note that since F' is assumed to be uniformly continuous in w under the L*>°
norm, then so is F*“. Notice that this implies that for any P € P

([ pronafe)

for some w if and only if it holds for all w € Q.

EP F4(0,0,0)

< 400,

e Finally, we extend Definition 5.2.6 in the shifted spaces

Definition 5.4.1. P} consists of all P := P4 € P, such that

a' <a' <@, ds x dP —a.e. on [t,T] x Q' for some a", @ € S;°,
- 2
fi )
t
Janln < [@nlidn < [ QAL o). and
E E E

/ 2| VF (dr) < / 2| ! (dr) < / |lz| 7F (dx), ds x dP — a.e.
|z[>1 |z|>1 || >1

on [t,T] x Q' for V", 7", two o — finite Lévy measures in N".

EF F(0,0,0) < 400, for allw € .

Remark 5.4.1. With the above definition, for a fived P € 732’,“, we have

/tT/JS(lA\x|2>zP<dx) < EF [/tT/E(l/\|x|2)ﬁ§(dx)] < /tT/E(M 12277 (dx) < oo,
and /tT/|ac>1 2| vF (dz) < EF {/tT/IxIM |x]ﬁ§(da;)] < /tT/le 12| PP (dz) < oo.
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For given w € (), F-stopping time 7 and P € Py, the r.c.p.d. of P is a probability
measure P¥ on Fp such that for every bounded Fp-measurable random variable &

EL [¢] (w) = B [¢], for P-a.e. w.

Furthermore, P¥ naturally induces a probability measure P™“ on f;(w) such that the
P-distribution of B™“) is equal to the P#-distribution of {B, — By, t € [T(w),t]} .
Besides, we have

E™[¢] =E77[¢™).

Remark 5.4.2. We emphasize that the above notations correspond to the ones used in
[101] when we consider the subset of Q consisting of all continuous paths from [0,T)] to R?
whose value at time 0 is 0.

We now prove the following Proposition which gives a relation between (a**,7"*) and
(at,vh).

Proposition 5.4.1. Let P € Py, and 7 be an F-stopping time. Then, for P-a.e. w € €2,
we have for ds x dP™-a.e. (5,0) € [T(w),T] x Q™)

(@, A) = 0T(D, A) for every A € B(E).
This result is important for us, because it implies that for P-a.e. w € € and for ds x
dP — a.e. (s,w) € [t,T] x Q

Fy (w®@,y, 2, u,Gs(w @ 0), Us(w @ @) = Fy (w @ 0,9, 2,u,a5(@0), (D)) .

’7s

Whereas the left-hand side has in general no regularity in w, the right-hand side, that
we choose as our shifted generator, is uniformly continuous in w.

Proof. The proof of the equality for @ is the same as the one in Lemma 4.1 of [102], so
we omit it.

Now, for s > 7 and for any A € B(E), we know by the Doob-Meyer decomposition that
there exist a P-local martingale M and a P™“-martingale N such that

wpa([0,s], A) :Ms—i—/ v.(A)dr, P—a.s.,
0

and .
pprea([T(w),s], A) = Ny + / l//\:(w) (A)dr.

Then, we can rewrite the first equation above for P-a.e. w € Q and for P™“-a.e. @ € Q)

ppd(w @, @,[0,s], A) = M7 (@) + / v (w, A)dr. (5.4.2)
0
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Now, by definition of the measures pps and pigr().a, we have

ppd(w @, @,[0,s], A) = ppa(w, [0,7], A) + pigrw.a(@, [T, s], A).

Hence, we obtain from (5.4.2) that for P-a.e. w € Q and for P™%-a.e. & € Q@

puga(w, 0, 7], A) — /0 () A)dr + Ny(®) — MT#(@) = / (4@, A) — 779G, A)) dr

In the left-hand side above, the terms which are F,-measurable are constants in Q7
and using the same arguments as in Step 1 of the proof of Lemma 5.6.1, we can show that
M™* is a P™*-local martingale for P-a.e. w € €). This means that the left-hand side is a
P™“-local martingale while the right-hand side is a predictable finite variation process. By
the martingale representation property which still holds in the shifted canonical spaces,
we deduce that for P-a.e. w € Q and for ds x dP™“-a.e. (5,) € [1(w), T] x Q™

/ (07 (@, A) — 7@, A)) dr = 0,

which is the desired result. n

5.4.2 [Existence when ¢ is in UCy(Q)

When ¢ is in UC,(£2), we know that there exists a modulus of continuity function p for
€ and F in w. Then, for any 0 < t < s < T, (y,2z,v) € [0,T] x R x R? x V and
w,w' €N, ©e

£ @) — & @) <p(lw—wNl,), [F5 (@9, 2,u) — EX (@,y, z,u)| < p(Jw—'],)
We then define for all w € Q

A(w) = sup A¢(w), (5.4.3)

0<s<t

where

T 1/2
Ay (w) := sup (EP “ft"”{?—i—/ |F§""(O,O,0)|2ds}> :
¢

PePy;
Now since F' is also uniformly continuous in w, it is easily verified that
A (w) < oo for some w € Q iff it holds for all w € Q. (5.4.4)

Moreover, when A is finite, it is uniformly continuous in w under the L*°-norm and is
therefore Fr-measurable.

Now, by Assumption 5.2.2, we have

At (w) < oo for all (t,w) € [0,T] x Q. (5.4.5)
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To prove existence, we define the following value process V; pathwise

Vi(w) = sup V(T €), for all (t,w) € [0,T] x Q, (5.4.6)

PePy”

where, for any (t;,w) € [0,7] x Q, P € Pp" t, € [t;,T], and any F;,-measurable
n € L? (P), we denote yP’ Y (ty,m) = yztl , where (y®fe, 2Pt o P1e) g the solution
of the following BSDEJ on the shifted space Q" under P

to
Pti,w _ ti,w t1w ( Pt1,w ]Ptlw . Pit1,w t1,c
Yy, Y =n / E; ) 2y )dr z, " "dB,
s

to
—/ / s () figr.a(ds, dz), P —a.s., s € [t,T], (5.4.7)
s R4

where as usual figi.qa(ds, dr) = pge.a(ds,dx) — U (dx)ds.

In view of the Blumenthal 0 — 1 law, y,""* is constant for any given (¢,w) and P € PL",
and therefore the value process V' is well defined. Let us now show that V' inherits some
properties from & and F.

Lemma 5.4.1. Let Assumptions 5.2.1 and 5.2.2 hold and consider some & in UCy(€2).
Then for all (t,w) € [0,T] x Q we have |V; (w)| < CA; (w). Moreover, for all (t,w,w’) €
0,T] x 2, Vs (w) = Vi ()] < Cp(lw—0u'|l,). Consequently, V; is Fi-measurable for
every t € [0,T].

Proof. (i) For each (t,w) € [0,T] x Q and P € P}, let a be some positive constant which
will be fixed later and let n € (0,1). Since F' is uniformly Lipschitz in (y, z) and satisfies
Assumption 5.2.1(iv), we have

F(0,0,0)| +C (m +] @) 2| + ([E \u<x>y%;<dx))l/2> .

Now apply Itd’s formula. We obtain

2 T r
+ / e | (@) /22F 0 ds + / / ¢ [ult (x)|* D (dx)ds
n t E

T
2 ~
— eaT ‘gt,w‘ o 2/ easyf’,t,wFSt,w<yP7t,w Z]P’,t,w u]P’,t,w)dS
t

S »s » s

T
_a/ oas‘yf’twfds 2/ e” y]P’itw ]P’t,dez,c
t

[ (o )+ @) s,

oT | ¢tw]? r as | pt,w 2 202 T as Potowl?
<eoT e+ [ e |Fh (0,0,0)‘ ds + 1+20+7_a e [yote| ds
t

+77/ e ‘ 1/2 th‘ d8+77/ / ozs|uIP’tw At d[L‘)d

T
—2/ ey th twqphe — / / ]th ubt )+’uf’t’w(x)’2> fpta(ds,dx).
¢

~

F(y, z,U)‘ <

P.t,w
Y’

Oét
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Now choose n = 1/2 for instance and « large enough. By taking expectation we obtain

easily

th

u < OAw)”

The result then follows from the arbitrariness of P.

(i) The proof is exactly the same as above, except that one has to use uniform continuity
in w of &% and F'. Indeed, for each (t,w) € [0,T] x Q and P € P}, let a be some
positive constant which will be fixed later and let n € (0,1). By It&’s formula we have,

since F is uniformly Lipschitz

2 T
_I_/ eas
L=
2 T
+20/
t

Pt,w Pt,w’
Y — Y

6oet

12 /
a2 =) e (e —al )Q(x)ﬁé(dx))ds

2
T | ¢ctyw tw' P.t,w P,t,w’
& =< y Y =y, | ds

#20 [ |yt g [y e - 5 as
t T 2 1/2
wac [Fe i | ([ i - o an ) as
Rd
+ 20/ IP,t,w yf,t,w ‘Ft w( IP’tw’ Zf’t’w, u[ﬁ’,t,w) Ftw ( I[D,t,u)7 Zf,t,w’ ulg,t,w
T
- a/ yLF’,t,w yIsP’tw dS o 2/ as (yIP’,_t,w yIP,_t,w )(Zf)’t’w _ Zf’t’w/)dB?C
t

/ / IP’,t,w _ yiP,_t,w’>(u15,t,w i S uf,t,w’)Q) (2)figna(ds, dz).

We then deduce

Pt,w Pt,w’

ot Y T Y

’
(52)1/2 (ZE’Tt,wiz]g,t»w )

2 T
+/t eas(

/2 T
T | ¢tw tw as
gu e+ [ e

!/
e (ug Y —ug )2(x)ag(dx))ds

Ft,w( P.t,w Z]P’tw uIP’tw) Ftw( P.t,w ZIP’,t,w U]P’,t,w
/ 2,\
+77/ e | (@) V/2 (2Bt — LBty d3+77/ / utt (x) — bt (a:)’ vl(dx)ds
t
202 T
+<2C—|—CQ+——04)/ s Jybte gt Cds
n t

s

T
= [ e ) — e ape
t

T
[ (2 g ) (W ) (@) )
t E

Now choose n = 1/2 and « such that v := a—2C — C?— % > 0. We obtain the desired
result by taking expectation and using the uniform continuity in w of £ and F.

1
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The next proposition is a dynamic programming property verified by the value process,
which will prove useful when proving that V' provides a solution to the 2BSDEJ with
generator F' and terminal condition £. The result and its proof are intimately connected
and use the same arguments as the proof of Proposition 4.7 in [102].

Proposition 5.4.2. Under Assumptions 5.2.1, 5.2.2 and for £ € UCy(Q)), we have for all
0<t; <ty <T and for all w € Q)

Wl(w) = sup yg,thcu(t%‘/;?,w)'
PeP,} "

The proof is almost the same as the proof in [102]|, with minor modifications due to the
introduction of jumps.

Proof. Without loss of generality, we can assume that ¢{; = 0 and ¢, = t. Thus, we have
to prove

Vo(w) = sup ygh(t, Vi).

PePy;

Denote (37, 2%, u%) := (Y¥(T,€), Z¥(T, &), U" (T, €))

(i) For any P € Py§;, we know by Lemma 5.6.1 in the Appendix, that for P —a.e. w € Q,
the r.c.p.d. P* € P;;". Now thanks to the paper of Tang and Li [106], we know that
the solution of BSDEs on the Wiener-Poisson space with Lipschitz generators can be
constructed via Picard iteration. Thus, it means that at each step of the iteration, the
solution can be formulated as a conditional expectation under P. By the properties of the
r.p.c.d., this entails that

yr (W) = yf’t’“”t’“(T, €), for P—a.e. w e Q. (5.4.8)

Hence, by definition of V; and the comparison principle for BSDEJs, we get that
yo < V5 (t,V;). By arbitrariness of P, this leads to

Vo(w) < sup Yy (t, VA).

PePy

(ii) For the other inequality, we proceed as in [102|. Let P € PJ and ¢ > 0. By
separability of Q, there exists a partition (E;); 1 C F; such that dg(w,w’); < €/2 for any
i and any w,w’ € E!. Now by Billinsgley [10], we know that the distance for the uniform
topology is dominated by the Skorohod metric in the sense that

|w— ||, <2ds(w,w’); < e, for any i and any w,w’ € Ej. (5.4.9)

Now for each i, fix a &; € E} and let P} be an e—optimizer of V,(&;). If we define for
each n > 1, P" := P™* by

n

> ER[157] 1

=1

P"(E) := E* +P(ENEP), where E := Ujs, Bl (5.4.10)
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then, by Lemma 5.6.2, we know that P" € Pj;. Besides, by Lemma 5.4.1 and its proof,
we have for any i and any w € E!

Vi(w) < Vi(@) + Cple) < VIPPH(T,€) + e + Cple)
SV ) + e+ Cple) = YE M (T &) + e + Cple),

where we used successively the uniform continuity of V' in w and (5.4.9), the definition of
P, the uniform continuity of Vi in w and finally the definition of P,

Then, it follows from (5.4.8) that
Vi<y +e+Cple), P"—as. on UL, EL. (5.4.11)

Let now (y", 2™, u™) := (y™°, 2™, u™°) be the solution of the following BSDEJ on [0, ]

t t
= [ e o) Mg+ Vidgy — [ Bt — [ aras;

/ / ©)iga(dr, dz), P" — a.s. (5.4.12)

By the comparison principle for BSDEJs, we know that V5 (¢,V;) < y§. Then since
P* = P on F;, the equality (5.4.12) also holds P — a.s. Using the same arguments and
notations as in the proof of Lemma 5.4.1, we obtain

v = o8 ” < CEP |24 ple) + Vi = o " 1|
Then, by Lemma 5.4.1, we have
n 1/2
Vot,V)) <yp <wp +C <5 +ple) + (]EIP’ [AflE?D )
/
<W(w)+C <€ + p(e) + <EP {AflE?Dl 2) .

Then it suffices to let n go to +o00, use the dominated convergence theorem, and finally
let € go to 0. ]

Now we are facing the problem of the regularity in ¢ of V. Indeed, if we want to obtain a
solution of the 2BSDE, then it has to be at least cadlag, Pj; — ¢.s. To this end, we define
now for all (¢,w), the F*-progressively measurable process

Vii=lim V.

reQn(t,T],r |t

Lemma 5.4.2. Under the conditions of the previous Proposition, we have

Vi=lim V,, Py -

reQN(¢,T],rlt

and thus V' is cadlag Py, —
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Proof. For each P, we define
V=V = YH(T,¢).

Then, we recall that we have VE > 0, P —a.s. Now for any 0 < t; < to < T, let
(yBtz) 2Bt B2y = (VP (29, Vi), ZF (L, Vi, ), U (L2, V4,)). Once more, we remind that since
solutions of BSDEs can be defined by Picard iterations, we have by the properties of the
r.p.c.d. that

VP (t2, Vi) (w) = Vi1 (b, V), for P — ae. w.
Hence, we conclude from Proposition 5.4.2

Pty
Viz ' P—as.

Denote

ﬁ»tg — y]tP’tQ yt (T, ¢€), ~{P’t2 — at—l/2( P,to ZIP(T ), U ~]P’t2 — uf’m UF(T,E)-

Then \7;]11) ST

1

g =V - /mff(@'f’tz,zvtz ke ds—/ gl — //”’M a(ds, dz),
t R?

where

2 and (yPt2, 2% Pt2) satisfies the following BSDEJ on [0, t,]

JE (@, y,2,u) = Fi(w,y + V@), @)z + 2] (@), u+Uf (@)
— Fyw, Y (@), ZF (@), Uf ().

By the definition given in Royer [95], we conclude from the above that V¥ is a positive f%-
supermartingale under P. Since fF(0,0,0) = 0, we can apply the downcrossing inequality
proved in [95] to obtain classically that for P — a.e. w, the limit

lim  VF(w)

reQU(T],rit
exists for all .
Finally, since J¥ is cadlag, we obtain the desired result. ]

We follow now Remark 4.9 in [102], and for a fixed P € P}, we introduce the following
RBSDEJ and with lower obstacle V' under P

= Y]P ZIED U]P ds — Z]PdBc x)figa(ds, dx —I—KP KF
t
¢
Y; >V, O\t\T, P—a.s.

T
/ (Yfi — VJ[) dKY =0, P—a.s.
0

s
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Remark 5.4.3. Eristence and uniqueness of the above RBSDE under our Assumptions,
with the restrictions that the compensator is not random, have been proved by Hamadene
and Ouknine [52] or Essaky [39]. However, their proofs can be easily generalized to our
context.

Let us now argue by contradiction and suppose that YP is not equal P — a.s. to V.
Then we can assume without loss of generality that Y3 > V', P—a.s. fix now some ¢ > 0
and define the following stopping-time

7 ::inf{t>0, }ZP<W+5}.

Then YP is strictly above the obstacle before 75, and therefore KPis identically equal
to 0 in [0, 7¢]. Hence, we have

£

YP=vE —/ ﬁs(ip,gf,ﬁf)ds—/ ZFdBe — / / x)ppa(ds,dz), P —a.s.
¢ ¢

Let us now define the following BSDEJ on [0, 7¢]

€

fevie [ Rt s [ ertap [ ] et ipds. o), P
t t t E

By the standard a priori estimates already used in this chapter, we obtain that

Y <y T C|VE-YE] <yit+Ce,

by definition of 7°.

Following the arguments in Step 1 of the proof of Theorem 4.5 in [102], we can show
that yg ™ < V5" which in turn implies

YE SVt 4 Ce,
hence a contradiction by arbitrariness of ¢.

Therefore, we have obtained the following decomposition
=& / E, (Vi 28, UPds / ZFdBe— / / 2)figa(ds, dz)+ Kb —KF, P—a.s.
t

Finally, we can use the result of Nutz [86] to aggregate the families {ZP, Pe 77}?]} and
{(7]?, Pe 771’3} into universal processes Z and U.
We next prove the representation (5.3.1) for V and V', and that, as shown in Proposition

4.11 of [102], we actually have V = V't Py —q.s., which shows that in the case of a terminal
condition in UCy(€2), the solution of the 2BSDEJ is actually F-progressively measurable.
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Proposition 5.4.3. Assume that £ € UC,(Q2) and that Assumptions 5.2.1 and 5.2.2 hold.
Then we have

V, = esssupPyF/(T, €) and V;" = esssup” yfb/(T, ), P—a.s., VP € Py.

P’ ePy (t,P) P ePy (tT,P)

Besides, we also have for all t
Vi= V;Jrv ,PI‘?I —4q.S.

Proof. The proof for the representations is the same as the proof of proposition 4.10 in
[102], since we also have a stability result for BSDEJs under our assumptions. For the
equality between V and V', we also refer to the proof of Proposition 4.11 in [102]. O

Therefore, in the sequel we will use V instead of V7.

Finally, we have to check that the minimum condition (5.2.13) holds. Fix P in P}, and
P’ € P (t*,P). Then, proceeding exactly as in Step 2 of the proof of Theorem 5.3.1, but
introducing the process 7' of Assumption 5.2.1(iv) instead of ~, we can similarly obtain

/ / T ~ ! / ~ ~ !
Vi — o > EP [/ Ms’dKf} > B [ inf Mé(K?—KF)},
t

t<s<T
where M’ is defined as M but with ' instead of ~.

Now let us prove that for any n > 1

—-n
inf M.
E<s<T

/

E; < 400, P' —a.s. (5.4.13)

First we have

S S 1 S S
M! = exp ( [ e [naass =g [ [ f mﬁ(m)ﬁBd(dr,dx))
t t 2 t t E

< TI (L =AlaB)eres),

t<r<s

Define, then V, = & ( [ mar Qng) and W, = & ([ [, 7.(x)igs(dr, dz)). Notice that
both these processes are strictly positive martingales, since n and ' are bounded and we
have assumed that —+' is strictly greater than —1. We have

M = exp </ /\Tdr> V. Ws.
¢

Since the process )\ is bounded, we have

( inf Ms’> gC( inf VSWS)
t<s<T t<s<T

ZC( sup (VSWS)_I)“‘

t<s<T
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Using the Doob inequality for the submartingale (V,W,)™!, we obtain

—-n
inf M.
t<s<T

/

EF < CE! [(WiVir) ™)

<o (B (v B [n)])" < oo,

where we used the fact that since 7 is bounded, the continuous stochastic exponential
V' has negative moments of any order, and where the same result holds for the purely
discontinuous stochastic exponential W by Lemma 5.6.6.

Then, we have for any p > 1

ol [R;P’ _ fcf”}

e ., _, —1/p
(pnt o) (R &) dnt o)
p=1

’ ~ ~ l/p / r__2 / ~ o I\ 2 2p
< (B | ng oo (7 - &) ) (o | o o o [(7 - 7))

p—1

/ ~_ ~ I\ 2 % N 1/p
< C | esssup® EF [(KE‘S —KF) } (Vt—ytp> ;

P'ePy (t+,P)

/
_ P
_]Et

where we used (5.4.13).

Arguing as in Step (iii) of the proof of Theorem 5.3.1, the above inequality along with
Proposition 5.4.3 shows that we have

essinf® EF [I?%Pj - I?F/} =0,
P ePy (t+,P)

that is to say that the minimum condition 5.2.13 is satisfied. This implies that the family
{KP} satisfies the consistency condition (i) of Theorem 5.2.1 and therefore can be
PePy

aggregated by this Theorem 5.2.1.

5.4.3 Main result
We are now in position to state the main result of this section

Theorem 5.4.1. Let & € E?f. Under Assumptions 5.2.1 and 5.2.2, there exists a unique
solution (Y, Z,U) € D3F x HY" x J%" of the 2BSDEJ (5.2.11).

Proof. The proof follow the lines of the proof of Theorem 4.7 in [101]. In general for a
terminal condition £ € £5", there exists by definition a sequence (£,), o C UCp(2) such
that

Jdim ([, — €|z = 0 and sup [1€nll 2 < +o00.
Let (Y™, Z™, U™) be the solution to the 2RBSDE (5.2.11) with terminal condition §,, and

¢ ¢ ¢
K™ =Y —Y]" +/ Fy(Y, Z2,UM)ds + / Z'dB¢ +/ / Ul(x)ppa(ds,dz), P—a.s.
0 0 0o JE
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By the estimates of Proposition 5.3.4, we have as n,m — +oo

V" = Y™ 2o + (|27 = Z™||f2n + U™ = U™ || T2 + sup EF | sup |K," — K|
H H 7 pepy 0<t<T

Extracting a subsequence if necessary, we may assume that
n __ ym|2 n __ m||2 n __ rrm|2
Y Y™ 2an 4 (127 — 27 e | U" — U2

1
+ supEP{ sup |KF’"—KF””|} < —. (54.14)

< —
PEPY, 0<t<T AL

This implies by Markov inequality that for all P and all m >n > 0

T
P[ sup V7 = VR KT KSR / (27 -zt (5.4.15)
0

0<t<T

T
+/ / \UM(z) — U™ ()P0, (dx)dt > n~ | < Cn27" (5.4.16)
o JE

Define

Y:= lim Y", Z:= lim Z" U:= lim U", K':= lim K®",
n—-—+00 n——+o0o n——+0o0o n——+0o00
where the lim for Z is taken componentwise and the lim for U is taken pointwise. All
those processes are clearly F*-progressively measurable. By (5.4.15), it follows from Borel-
Cantelli Lemma that for all P we have P — a.s.

T
i | s (v P 10 P [ @z - Zop
0

n—+00 |0t KT

+ [ [ 10w - vpwpaana] <o

It follows that Y is cadlag, Pg — ¢.s., and that K¥ is a cadlag nondecreasing process,
P — a.s. Furthermore, for all P, sending m to infinity in (5.4.14) and applying Fatou’s
lemma under P gives us that (Y, Z,U) € D3* x Hy" x J3".

Finally, we can proceed exactly as in the regular case (£ € UCL(Q2)) to show that the
minimum condition (5.2.13) holds. o

5.4.4 An extension of the representation formula

So far, we managed to provide wellposedness results for 2BSDEJs, by working under a set
a probability measures which, if restricted to the ones for which the canonical process is a
continuous local martingale is strictly smaller than the one considered in [101], Chapter 2
or Chapter 4. This is due mainly to the fact that we had to restrict ourselves to processes
a of the form (5.2.3) in order to retrieve the aggregation result of Theorem 5.2.1, which
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was crucial to our analysis since it allowed us to define an aggregator for the family of
predictable compensators.

This is clearly not very satisfying, not only from the theoretical point of view, but also
from the practical one. Indeed, the set from which the processes a are allowed to be
chosen corresponds in financial applications to the set of possible volatility processes for
the market considered. It is therefore desirable to have the greatest generality possible.
However, we emphasize that the restrictions we put on the predictable compensators v
are clearly not a problem from the point of view of the applications. Indeed, our set of
compensators is strictly greater than the one associated to pure jump additive processes.
Those processes, and more precisely the Lévy processes, being the most widely used in
applications, our set is not really restrictive.

The aim of this section is to show that under additional assumptions, we can show that
the representation formula (5.3.1) also holds for a larger set of probability measures fro
which there is no longer any restrictions on the processes . In this regard, we recall the
set of probability measures P i defined in Remark 5.2.5. We recall that every probability
measure in this set satisfy the Blumenthal 0 — 1 law and the martingale representation
property. Moreover, exactly as in Definition 5.2.6, we define and restrict ourselves to the
subset fz of P i We define the following space for each p > &

NS

L = {& llellgy < +oo} where [[¢]2,. := sup E” {esssup (& 11g17) " |
H IPEPH o<t T

and we let
lef := the closure of UC,(€2) under the norm H'HEIEN, for every 1 < k < p.

We then have the following result, which is similar to Theorem 5.3 in [102]

Theorem 5.4.2. Let £ € Z?f and in addition to Assumptions 5.2.1 and 5.2.2, assume
that

e F is uniformly continuous in a for a € D, and for all (t,w,y,z, u,a,v)

Fw,,%w0,0)] < C (14wl + ol + 2] + ') (5.4.17)

o Pj is dense in f; in the sense that for any P € fz and for any € > 0, there
exists P € Py such that

T
EE V2 — o224t < e 5.4.18
t t
0

Then, we have

P P
Yo = sup y, = sup yp,
PePy PePy

where under any P := P> € Py, (yF, 2F,uF) is the unique solution of the BSDE.J

T
y]f:ﬁ—/ F(ys,zs,us,ag,ys)ds—/ ZydBS — / / T)figa(ds, dz), P— a.s.
¢ ¢
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Proof. First, we remind Remark 5.3.1 ensures existence and uniqueness of the solutions
of our BSDEs under any P € 7_7';,. We will proceed in two steps.

(i) £ € UCL(Q2)

For any P := P%" € P}, and any € > 0, let P° := P*** € P¥ be given by (5.4.18). Using
the process LF defined in (5.2.7), we have P — a.s.

T T
o= €B) = [ BB s - [ AL
t

/ / ) (ppra(ds, dz) — vy(dz)ds) .

Let now (y,Z",u ) denote the unique solution of the following BSDEJ under P,

T T
yi[b = é(X.a’V) - / FS(X.QV7yE)7 Zfaﬂlspa Xs, VS)dS - / O‘;/2§Isde§
t t

- /t ! [E T (2) (upa(ds, dz) — vy(dz)ds) .

By definition of P*", we know that the distribution of y* under P is equal to the dis-
tribution of ¥ under P,. Since the Blumenthal 0 — 1 law also holds, this implies clearly
that we have

Yo = To-

Similarly, we define y*~ and 7*". Then, using classical estimates from the BSDEJ theory
(see [5] for instance) we have
%o — o I =150 — % I

T
< C]EPV |€(X.a,l/) o g(X.af,l/”Q +/ }Ft<X.a’yItP7ziP7at; Vt) - Ft(X.a 7??7E£€P7at7 Vi ‘ dt:| :
0

Then, we have by (5.4.17)

af =P =P
‘Ft(X aytaztaatayt)‘

SO T+ ||X*|, + wr |+ 7] + o [V?)
SC L+ X+ G ]+ [ZF] + |ae]'?)
+

<HXC“ Yo X+ Jaf — o |1/2> (5.4.19)

Using Doob’s inequality and Itd’s isometry, it is easy to see that (5.4.18) implies that

€
EF [ sup ‘Xf‘ Y- X
0<t<T

2
< e

Since £ is also uniformly continuous and bounded in w, we can apply the dominated
convergence Theorem in (5.4.19) to obtain

lim|yg — yo | = 0.
e—0

This clearly implies the result in that case.
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(i) £ € L

In that case, with the same notations as above, let &, € UCL(2) such that
1€ — anf“ - 0. Then, we define y*" the solution of the BSDEJ with terminal con-

dition &, and generator F,(-,as,vs) under P. Then, we have

sup g = sup yp". (5.4.20)
PePy PePy
Moreover, using exactly the same estimates as in the proof of Theorem 5.3.4, we can
show that

Pn ]P’2 2
-] <Ol — €l

This shows that the convergence of yE”“ to y is uniform with respect to P € P},. Hence
we can pass to the limit in (5.4.20) and exchange the limit and the suprema to obtain the
desired result. (]

We finish this section by recalling a result from [102] (see Proposition 5.4) which gives
a sufficient condition for the density condition (5.4.18)

Lemma 5.4.3. Assume that the domain of F' does not depend on t and that D}. contains
a countable dense subset. Then (5.4.18) holds.

Proof. It suffices to notice that in our framework, all the constant mappings belong to
Ap. Then Proposition 5.4 in [102| applies. (]

5.5 Application to a robust utility maximization prob-
lem

In this section, we will always assume that the matrices a := o and @ := @ are uni-

formly bounded in P. In particular, this implies that we can restrict ourselves to the
case where the parameter a in the definition of a generator F' is bounded. We consider a
financial market consisting of one riskless asset, whose price is assumed to be equal to 1
for simplicity, and one risky asset whose price process (S;)o <+ < is assumed to follow a
mixed-diffusion

S,
S,

where we assume that

= bdt + dBj + /ﬁt Vuga(dt,dz), Py — q.s., (5.5.1)

Assumption 5.5.1. (i) (b;) is a bounded F-predictable process which is also uniformly
CONLINUOUS 1N W.

(ii) (B;) is a bounded F-predictable process which is uniformly continuous in w, verifies

T
sup/ / |8 ()| vy (dx)dt < +o0, 7_72 —q.s.,
veN Jo E
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and satisfies
Co(1A |2]) = Bi(x) = CL(1 A |z]), Py — q.s., for all (t,z) € [0,T] x E,
where Cy > 0> C; > —1.

Remark 5.5.1. The uniform continuity assumption on w s here to ensure that the 2BS-
DFEs we will encounter in the sequel indeed have solutions. The assumption on 3 is classical
and implies that the price process S is positive.

Remark 5.5.2. The volatility ts implicitly embedded in the model. Indeed, under each
P € Pf, we have dBS = ai/QthP where W¥ is a Brownian motion under P. Therefore,
a'’? plays the role of volatility under each P and thus allows us to model the volatility
uncertainty. Similarly, we have incertitude on the jumps of our price process, since the
predictable compensator of the jumps of discontinuous part of the canonical process changes
with the probability considered. This allows us to have incertitude not only about the size
of the jumps but also about their laws.

We then denote m = (m)o<t<r a trading strategy, which is a 1-dimensional F-
predictable process, supposed to take its value in some compact set C. The process
7 describes the amount of money invested in the stock at time t. The number of shares
is 57:_t, So the liquidation value of a trading strategy 7 with positive initial capital z is
given by the following wealth process:

t
X[ = x+/ s (dB§+bsds+/ﬁs(a:)qu(ds,dx)) L, 0<t<T, Py —q.s.
0 E

The problem of the investor in this financial market is to maximize his expected expo-
nential utility under model uncertainty from his total wealth X7 — & where ¢ is a liability
at time T which is a random variable assumed to be Fp-measurable. Then the value
function V' of the maximization problem can be written as

VE(z): =sup inf EF [—exp (—n (XF —£))]
weC PePy
= —inf sup E [exp (—n (XF —&))]. (5.5.2)
m€C pepy,
where
C := {(m) which are predictable and take values in C'},

is our set of admissible strategies.
Before going on, we emphasize immediately, that in the sequel we will limit ourselves to

probability measures in Pj;. We will recover the supremum over all probability measures
in fﬁH at the end by showing that Theorem 5.4.2 applies.

To find the value function V¢ and an optimal trading strategy 7*, we follow the ideas of
the general martingale optimality principle approach as in [38] and [54], but adapt it here
to a nonlinear framework as in Chapter chap:robust.

Let {R™} be a family of processes which satisfies the following properties
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Properties 5.5.1. (i) R} = exp(—n(XF —¢&)) for all m € C.
(ii) Ry = Ry is constant for all m € C.
(iii) We have

RT < esssup’ E] [R}], Vr€C
P ePy (tT,P)

RT = esssup’ E} [R] for some n* € C, P —a.s. for all P € Py,
P ePy (t+,P)

Then it follows

sup EF[U(XT — &)] > Ry = sup EF[U(XT — &) = —V¢(x). (5.5.3)

PEPY, PPy

To construct R™, we set
R} = exp(—nX[)Y;, t €[0,T], m €C,

where (Y, Z,U) € %" x H3" x I3 the unique solution of the following 2BSDE.J

T
Y, = 6775—/ FS(Y&stUs)dS_/ ZsdBg— / / x)figa(ds, dx)+ K5 — KF, P —q.s.
t t
(5.5.4)

The generator F is chosen so that R™ satisfies the Properties 5.5.1. Let us apply It6’s
formula to exp(—nX/)Y; under some P € Pp;. We obtain after some calculations

2 ~
d (e 7Y;) = e "N { b Yydt + o 20,Ydt — nmay Zydt + Fy(Yy, Zy, Uy)dt

—I—/ (e‘"”tﬁt(w) — 1) (Vs + Up(x))vp(dz)dt + (Z, — nmYy) dBy
E

+/ (e7mm ) — 1) (Y- + Uy(x)) + Up(2)fipa(dt, dx) — dKF] . (5.5.5)

Hence the appropriate choice for F'

2

Fi(y,z,u,a,v) == —inf {(—7719S + n—ﬂa)wy —nmaz +/
el 2 E

(€76 = 1) (o) ()}

First, because of Assumption 5.5.1, F'is uniformly Lipschitz in (y, z), uniformly contin-
uous in w. It is also continuous in a and since D}, = [a, @, it is even uniformly continuous
in a. Besides, it is convex in a and v (since it is the minus infimum of a family of linear
functions) and hence can be written as a Fenchel-Legendre transform. Moreover, its do-
main clearly does not depend on (w,t,y, z,u) by our boundedness assumptions. Besides,
DL clearly contains a countable dense subset. This in particular shows that Theorem
5.4.2 applies here.
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Finally,

in / (1 — e @) (u(z) — () ) (da) < Fu(w,9, 20,0, ) — Fa(w,y, 2,1, a,v)
E

el

Fs(w7y7 Z, U, a, I/) - Fs<wvya z,u’,a, V) < Sup/ (1 - efmrﬂs(w,x)) (u(:c) - u’(m))y(dx)
meC JE

Since C' is compact and [ is bounded, it is therefore clear from the above inequalities
that Assumption 5.2.1(iv) is satisfied. Therefore, if we assume that " € £3" (for instance
if £ € L3"), the 2BSDEJ (5.5.4) indeed has a unique solution and R™ is well defined. Let
us now prove that it satisfies the properties 5.5.1. The property (i) is clear by definition
and (ii) holds because of Proposition 5.4.3. Now for any 0 < t < T, any © € C, any
P € Pf and any P’ € P (t7,P), we have from (5.5.5)

/ / T T /
EF [RY] — RF > —EF U e—"Xdef’}. (5.5.6)
t

Let us now prove that for any m € C and for any [P, we have

/ T T /
essinf’ K} { / e_"Xdef} =0. (5.5.7)
t

P’ ePy (t+,P)

This is similar to what we did in the proof of Theorem 5.3.1, and therefore we know
that it is sufficient to prove that for any p > 1

Efl[ sup e—PX%T} <G, (5.5.8)

t<s<T
for some positive constant C), depending only on p and the bounds for 7, b and 3.
Let M be such that —M < 7 < M, and let

N, = ¢2M g J5lBs(@)lfis(dw)ds— 5 f5(eM10 @) =125, (2)|)s (da)ds

)

then we have

e XT < (TMIBlloo=fo medBE+M [ [i8s(2)l1tpa (ds,d))

N

8. [€(2TM||b||oo72 Jo medBS) 4 o(2M [ fEms(mde(ds,dr))]

_C |:€(2TM||b||oo+2fg7r§ans) < £ (_2 /t 7TsdBc>
0

Jre(zM Jo Jp|Bs @) [Ds(dz)ds+ [y [ (e2M1Ps (@] —1-2M|B,(2)|)Ds (dz)ds) > Nt]

t
o (5 (—2 / 775ng> + Nt)
0

where we used in the last inequality the fact that 7 and @ are uniformly bounded and that
suj{)/ foT [ 18i(z)| v (da)dt < +o0.
I4S

N
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Then (5.5.8) comes from the fact that the expectations of the above Doléans-Dade
exponential and N; are finite. Using (5.5.7) in (5.5.6), we obtain

RT < esssup’ E] [RF].
P'ePy (t+,P)

Now, using a classical measurable selection argument (see [26] (chapitre III) or [31] or
Lemma 3.1 in [33]) we can define a predictable process 7* € C such that

2
—F,(Ys, Zs,Uy) = (—nbs + %wﬁas)w;*yg —nrias + / (6_7771':/65(33) — 1) (Y, + Us(x))v,(dz).
E

Using the same arguments as above, we obtain

* / *
RT = esssup’ E} [RE],
P’ ePy (t+,P)

which proves (iii) of Property 5.5.1 holds.

We summarize everything in the following proposition

Proposition 5.5.1. Assume that exp(nf) € Z?f. Then, under Assumption 5.5.1, the
value function of the optimization problem (5.5.2) is given by

VE(r) = —e 1Yy,

where Yy is defined as the initial value of the unique solution (Y, Z,U) € Dif X H?f X J?f
of the following 2BSDFE.J

T T T
Ytzg—/ FS(YS,ZS,US)ds—/ stBg—/ /Us(x)ﬁBd(ds,dxHK;’i—KF, (5.5.9)
t t t E

where the generator is defined as follows

ﬁt(w,y,z,u) = F(w,y, z,u,a, 1), (5.5.10)
where

2
Fi(y, z,u,a,v) := —ire% {(—nbt + %ﬂa)ﬂy —nraz + / (e7mmhele) 1) (y + u(:v))y(dx)} :
g E

Moreover, there exists an optimal trading strategy © realizing the infimum above.

Furthermore, by making a change of variables and applying It6’s formula, we can prove
existence and uniqueness of a solution to a particular 2BSDEJ whose generator satisfies
a quadratic growth condition.
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Proposition 5.5.2. Assume that & € Z;{o’n. Then, there exists a unique Ssolution
(Y, Z',U") € D" x Hy* x I3 to the quadratic 2BSDEJ

Y, =¢— / F(Y!, 7, U )ds— / Z'dBS— // o) figa(ds, dz)+ K3 —K', . (5.5.11)
t

where the generator is defined as follows

Fl(w, 2z,u) = Fl(w, 2, u, G, 7), (5.5.12)
where
2
S s N 172 12, bt+fEﬁt dx) 1.
Fi(z,u,a,v) s = —inf {5 ma'l? — (a / a1/277 o GIOE )

+ (bt + /Eﬁt(x)l/(dx)) z+ bt Jp iz;f;)’/(dmw’

where j(u) = [, ("™ — 1 —u(z)) v(dz).

Moreover, Y! = esssup® y[F, where y"¥ is the solution to the quadratic BSDE with the
P Py (t+,P)
same terminal condition & and generator F’.

As for quadratic BSDEs and 2BSDEs, we always have a deep link between the Z-part
of a solution and the BMO spaces in the case with jumps. So we need to introduce the
following spaces.

J>" denotes the space of predictable and £-measurable applications U : Q x [0, T'] x

BMO(P};)
/ / 0)ga(ds, dz)

E such that
< 400,
where [|-[|gy0(p) is the usual BMO(P) norm under P.

BMO(P)

||U||J2]2K = sup

BMO 7>"”~ PePy

H2* denotes the space of all F*-progressively measurable R%-valued processes Z
BMO(Py;)

/ ZsdB;

0

with
< +00.
Now we are in position to prove the proposition.

BMO(P)

| Z]] 2. = sup

]BMO(PH) PG’P}TI

Proof. As for the previous proposition, it is sufficient to consider the set of probability
measures Pj.

12
nYy’
Ul = llog (1 + i) Then by Ito’s formula and the fact that K has only predictable
jumps, we can verify that the triple (Y’, Z’, U’) satisfies (5.5.11) with K’} = fo o dK®e —

> o<s <t %log (1 - %) In particular, K’* is nondecreasing with K’; = 0.

Step 1: We can make the following change of variables: Y, = %log Y2), Z] =

Step 2: As in Morlais [83], we can verify that the generator I’ satisfies the following
conditions.
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(i) F’ has the quadratic growth property. There exists («,0) € Ry x R such that for

all (t,z,u), P5 — ¢.s. |F/(0,0)] <o and

J

~1/2 ‘2 1~
2

- )
- t(070)’_§ a;' "z +SJ(7U),

£/ (0, 0)‘+

a2 — (o) < Fi(u) <

where j(u) := [, (e“® — 1 — u(x)) D(dx).

(ii)) We have the "local Lipschitz" condition in z, 3u > 0 and a progressively measurable

process ¢ € H>" such that for all (¢,2,2,u), P& — q.5

BMO(Pj;)

~

Fl(z,u) — F/(z',u) — ¢.(a} 2 — 3,2

z| + ai/22/>.

(iii) For every (z,u,u') there exist two predictable and £-measurable processes (7y;) and
(;) such that

5172 ~1/2 /‘ (

~1/2
t 2 ay

S pla

Filen) = FGal) < [ [ 30 (uta) = (@) ),

/o [E%@) (u(z) = /'(z)) D(da)ds < F(z,u) = F{(z,4) Py = q.s.,

where there exists constants C1,C] < 0 and 1 > Cy, CY > 0, independent of (z, u, u’)
such that

Cr(I A fz]) < wlx) < Co(T A z)),
CLA A Jz]) < 7i(x) < Cy(LA [z]).

In particular, v and ' are in JBMO(PK).

Then we know, from [83], that under each P the BSDEJ with the same terminal condition
¢ and generator ' has a unique solution, which we note by (yF, 2F,«/?). Due to the
monotonicity of the function %log(:p), we have the following representation for Y': Y/ =

esssup® yF.
P ePy (t+,P)

Step 3: Next, we will prove the minimum condition for K. As in Chapter 2 for
2BSDEs with quadratic growth generators, we use the above representation of Y’ and the
conditions of F” in z and u.

Fix P in P} and P’ € Py (t+,P), denote

/ /

§Y' =Y — ¥ 62" = 7' — 2% and 6U' == U’ — u® .

By the "local Lipschitz" condition (ii) of [’ in z, there exist a process 7 with

|7 gﬂ(

t

) , P — a.s.
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such that
T T
5Y; = / (s + 6,)aY/2627) ds — / SZ1dB:
t t

- /t /E5Ué(w) [fipa(ds, dz) + 7, (2)P(dx)ds]

T

—/ [Fs'(z;,U) Fl(2 ) ds+/ /73 VOU.(x)v(dx)ds
¢

+Kp —K', t<T, P —as.

As in the proof of Lemma 2.3.1 in Chapter 2, by applying It6’s formula to e "7 for some
v > 0, we have Z € HBMO@KM) Then the process 1 defined above is also in HBMO(Pw.
So, with Girsanov’s theorem we can find an equivalent probability measure Q' such that

d@/ . . ~—1/2 c . / T )
= ([ onroparian- [ [ s

Thus, we obtain

Y/ -y >Ef [K’g —K'H :
For notational convenience, denote &! := & (fo b5 + ns)as 1/QCZBC> and

< fo S va(x)figa(ds dx)) Let 7 be the number given by Lemma 2.2.2 in 2
apphed to £!. Then we estimate

’ ’ /
P /P /P
E: [KT K" }
2(r—1)

, 5 2('r 1) , , 2r—1
ey D (o) W -k >]

51 Til % , 52 % , /]P’/ /]P’/ 2(2;1)
@)7]) (e [ ot )

P’ P 4 2(;%1) N5t
<C(E |(K57) (6Y,) 7.

With the same argument as in Step (iii) of the proof of Theorem 5.3.1, the above

_1
2r—1

Er

<& |7

< oY)z (E

inequality along with the representation for Y’ shows that we have
essinf® EF [K’“} - K/H —0,
P’ ePy (t+,P)
that is to say that the minimum condition 5.2.13 is verified.

Step 4: Finally, by uniqueness of the solution of 2BSDEJ (5.5.9), the quadratic 2BS-
DEJ (5.5.11) has a unique solution. In fact, after making the reverse change of vari-
ables: Y, = exp(nY/), Z, = exp(nY{)nZ;, Uy = exp(n(Y,_ + Uj)) — exp(nY;_), we can
verify that (Y, Z,U) is the solution of 2BSDE (5.5.9) with K] = [/ exp(nY)dK',* +
> 0<s <c(exp(nY_) —exp(n(Y]_ — AK'™™")), where the minimum condition of KF can be
verified similarly as in Step 3. (]
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5.6 Appendix

5.6.1 The measures P“"
Lemma 5.6.1. Let P € P; and T be an FB_stopping time. Then
T,wW T(w)
P e P;
Proof.

Step 1: Let us first prove that
(P,)™ =P[%), P,-as. on Q, (5.6.1)

where (P,)™ denotes the probability measure on Q7, constructed from the r.c.p.d. of P,
for the stopping time 7, evaluated at w, and IP’IT,S“L) is the unique solution of the martingale
problem (P!, 7(w), T, Id,v™), where P! is such that P!(BI = 0) = 1.

It is enough to show that the shifted processes M7, J7, Q7 are (P,)"*-local martingales,
where M, J and @) are defined in Remark 5.2.1. For this, take a bounded F7-stopping
time S. Observe that it is then clear that there exists a bounded F-stopping time S such
that S = S™. Then, following the definitions in Subsection 5.4.1,

AB(@) = ABs(w ®, @) = Alw ®, D)(S5)
= Awsl{g <+ ACJS]-{S>T}7
and that for S > 7

Bs(w ®; w) = (w®; w)(S) = w, + Ws
= B;(w) + Bg(w).

From this we get
ME*(@) =Ms(w ©, )
=Bs(w @) — Z 1|aB, (we,3)>1ABu(w ®; 0)

u<S
s
+/ 2151 (w @7 W) (dx) du
0

=By(@) + Bi(w) = Y Ljaw 18w, — Y Liap;@)>1AB(@)

u<T T<u LS

+ /OT T1 g1 v (w)(dx) du + /S T1jps1vy (W) (dx) du
—ME(@) + M, (), T
and we can now compute
E®I™ [Mg) = E® M — M, (w)
_ EE [MS“’] — M, (w)
= E [Mg)(w) — M,(w) = 0, for P,-a.e. w.
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Since S is an arbitrary bounded stopping time, we have that M™ is a (P,)™“-local
martingale for P,-a.e. w..

We treat the case of the process J7 analogously and write

J5¥ (@) = (MZ“([@))* — S — //azl/u dxdu—// 2079(@) (dar) du

— (MI(@))? + (M (w))? + 2M5(@) M, (w) — (S — 7) / / 2,7(3) (di)du
/ / vy, (w)(dx)du — T
=T5(@) + T (@) + 2ME (@) M. ().
Then we can compute the expectation

E®)™ [J7] = B®)™ [J3Y — 2MIM, (w)] — J,(w) = 0, for P,-a.e. w.

J7 is then a (P,)"“-local martingale for P,-a.e. w.. Finally, we do the same kind of
calculation for )7, and we obtain

/ / ) pp(w ®; 0, dx, du) / / w)(dzx) du
/ / ) pp(w, dz, du) + / / z)ppr (@0, dx, du)
/ / ) v (w)(dz) du—/ / 5)(dz) du

_QS + QT )

And again we compute the expectation over the @ € 27, under the measure (P,)™"

B [Q5] = B (05 - @r(w)
= F™[Qs](w) — Q- (w) = 0, for P,-a.e. w.

We have the desired result, and conclude that (5.6.1) holds true.
We can now deduce that for any (a,v) € A

T,w

P

T,w
sV

€ 79;(“) P,-a.s. on (). (5.6.2)

Indeed, if (o, v) € D x N, then (o™, 7)) € D™« x N7« because

T T
/ /(1A 220 (3) (da)ds < +oo, / / 2| 7 (@) (da)ds < +o,
T(w) JE T(w) J|z|>1
T
/ lal¥(@)|ds < oo.
7(w)

Moreover, if (o, v) have the form (5.2.3), it is clear that it also holds true for (o™, v7%).
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Step 2: We define 7 := 70 X®, a™ := ™% and 77 = 17 where G, is a
measurable map such that B = (3,(X®), P,-a.s. Moreover, T is a stopping time and we
have 7 = 7 o (3, since

Tofa=T0f(X¥)=T0oB=r1

and using (5.6.2),

~THW 5T,w
sV

P € 77:{(”) P*"_a.s. on (2.

Step 3: We show that

E]P‘"‘*" [¢ (Bt1/\7'7 I Btn/\T) ’QZ) (Btp s 7Btn)] = EPO"V [Qb (Btl/\T7 ey Btn/\T) ¢T]

for every 0 < t; < --- <t, <T, every continuous and bounded functions ¢ and ¥ and

T,W ~T,w
W T

o (w) = EF° [¢(w(t1),...,w(tk),w(t)+Bt wt) + B

thy1?

for t := 7(w) € [tg, tht1[-
Recall that P is defined by P47 = Pyru o (X57) 7", then
pr() 1 1/2
belw) = BZ2 | (wlta), ot w(t) + / (al )2 g(Beyr
t
tet1 ~ tn ~ 1/2
+ / / (e (ds,dx) — V;’ﬁa(“)(dx)ds), o w(t) + / (a;’ﬂ"(“’)) d(Bg)T(“’)
t E t

tn
T / / (o (ds. di) — v (da)ds) )]
t E

Then, Vw € Q, if t := T(w) = 7 (X*(w)) € [tk, trs1],

« PL o @ @ s 7w\ 1/2 T(w)ye
Ur (X)) = B [ (Xa (), - X3 (), X, (w)+/ (a7) 2 4(BT)
t
. g o 1/2 s
+ / / t(pprw (ds, dz) — vI¥(dx)ds), ..., XX (w) + / (O‘?w) d(B;-(w))C
t E .

o [ ] s, a0) — 7))

We remark that for every w € €,

as(w) = ag (w Q7 (w) w%(w)) =al¥ (W%(w))
and vy(w)(dz) = v, (w @z 0™ @) (do) = ] (W) (da)

By definition, the (P,)™*-distribution of B™“) is equal to the (P, )¢-distribution of (B. —
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Bs(.). (5.6.3) then becomes
e (X (@) =B [0(Xg @) X @), X0 @)+ [ ol BB
| [ #tuatis.de) = w(dn)as), ..., X () + " (BB

/ / (up(ds, dz) —ys(dx)ds)>]

=B (X0, X X X))

—E" (X0 XX X0 )| (@), Puas. on O
Then we have
EPO‘YV [¢ (Btl/\‘f'? s 7Btn/\7') wT] = E]PV [¢ (Xg/\ﬂ .- tn/\7—> wT(Xa)]

= B [6( X X P [ (X2 Xi’Xf;w'“’Xi)‘f*H
= [E™ [QS(XEIA%’ ce 7X5LA%>¢<X$7 o XtCZ’XtiH’ o ’Xiﬂ
= [FFev [¢ (Bt1/\77 s 7Btn/\7') 1/1 (Btv R Btn)] )

Step 4: Now we prove that P™ = P27 P.as. on (.

By definition of the conditional expectation,

¢T(w) = E]PT’W w(w(h), .. ,w(tk), ( )+Btk+1" . ( )+ Bt") ’ P*_a.g

where t 1= 7(w) € [tk, tgr1], and where the P*¥-null set can depend on (t1,...,t,) and 1,
but we can choose a common null set by standard approximation arguments.

Then by a density argument we obtain

Tw oTw

E" [y = E* 0], for P*"-a.e. w,

for every bounded and f;(w)—measurable random variable 7. This implies P™ = P 7"

P-a.s. on . And from the Step 1 we deduce that P™* & f;(w). ]

Lemma 5.6.2. We have P" € P§;, where P" is defined by (5.4.10).

Proof. Since by definition, P! € P% and P € Py, we have Pi = P**" and P = P, for
(a’,v") € At and (a,v) € A, i =1,...,n. Next we define

0 = a1y (s Za lEl )+ a,l; n(Xa)] 1y7(s), and
Ug i:= Vsl[gt) Zl/llEb Xa) /N I n(Xa)] ]-[t,T](S)-
=1
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Now following the arguments in the proof of step 3 of Lemma 5.6.1, we prove that for any
0<t; < - <t =t <tp <t,and any continuous and bounded functions ¢ and v,

n

E™ |$(By,..., By) S EF [¢(Bt1, voisByy B+ Bl ... Bi+ Btn)} 1Ez']

=1

= E"" [¢(By,, ..., By )(By,, ..., By)].

This implies that P" = P*” € Pz And since all the probability measures P satisfy the
requirements of Definition 5.4.1, we have P" = P%” € Py ]

Lemma 5.6.3. Fiz an arbitrary measure P = P*" in Py. The set Py (t*,P) is upward
directed, i.e. for each Py := P and Py = P2¥2 in PL(tT,P), there exists P' €
P (tT,P) such that Vu > t,

’ / /N 2
B |(57 - )

— max {JEFI [(K}jl - K}”l)z} P [(K}j’2 - KFQ)Z] } . (5.6.4)

Proof.
We define the following F;-measurable sets

Buim{we @ B (K7 = KP)| @) < B (K0 = K77 @)

and E, := Q\E;. Then for all A € Fr, we define the probability measure P’ by,

/

P (A) =P (AN E)) +Py(AN Ey).

By definition, P’ satisfies (5.6.4). Let us prove now that P € P (¢, P). As in the proof
of claim (4.17) in [101], for s € [0, T], we define the processes a* and v* as follows

w)1xoep (W) + o2 (W)lxoem) (W) 1pn(s),
w)lxocp (W) + V2 (w)Lixoer) (W) Lpr(s),

ag(w) = as(w)1 + (o

vi(w) = vs(w) 1[0t s) (S1

where X is defined in (5.2.6). We have

where o, @, o, @ are the lower and upper bounds of the processes a, o' and a?. Next,
we have

T
//(1/\|x| Y(ds,dx) //1/\\x| Jws(ds, dz) + //1/\|x! 1(ds, dzx)
o JE

//1/\|x| 2(ds, dz) < +o0,

and the same way we see that fOT f{\x\>1} xvi(ds,dx) < +oo. Then, we have therefore

clearly (a*,v*) € A, and we can define the element P of Pj.
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Now using the same arguments as in the Step 3 of the proof of the previous Lemma, we
obtain that for any t; < --- <ty =t < tpy1 < --- <t, and any bounded and continuous
functions ¢ and 1,

B [¢<Bt1; oy By )W( By, - Btn)]

_ Epa,u |:¢(Btl7‘ ) .7Btk)<E]Pa1’V1 [¢(Bt17' . .,Btk7Bt +Bfk+17 e ,Bt +Bttn)}1E1
+EP&2,V2[¢(BH7_ . -7BtkaBt +B§k+1’ .. -,Bt +B€n)]1E2>:|

This shows that
(P ") = (P')% for P*"* -almost every w in Q and every t > 0.

Thus P' = P*"*" ¢ P ;. To prove that P e P, we compute

, T 2 t 2 T 2 T
E" [/ ds}:EP[/ ds]—i—EPl U dlel]—i—jEP? U
0 0 t t

T 2 T 2 T
gEP[/ ds]JrEPl U dlel]JrEP? U
0 0 0

Since by construction P’ coincides with P on F;, the proof is complete. ]

70 70 0 0
F Fy Fg F

2
ds 1E2:|

70 70 70
Fy F Fy

2
ds 1E2] < +o0.

5.6.2 L'-Integrability of exponential martingales

Lemma 5.6.4. Let 6 > 0 and n € N*. Then there exists a constant C,, s depending only
on & and n such that

(14+2)™" =1+ nx < C,s2°, for all v € [-1+ 6, +00).
Proof. Define for x > — 1+ ¢ and for any C' > 0 the function

fol@) =1 +2)™" —1+4+nz — Ca?

First, we have
fo(=14+68)=6"—14+n(-1+08) - C(—=1+0)*

Since this quantity goes to —oo when C goes to 400, it is clear that we can choose C
large enough so that fo(—14 ) < 0.

Let us now study the function fo. We have for any x > — 146

(n—2Cz)(1+z)"* —n
(14 z)ntt

fo(x) = —n(l+ :)3)_"_1 +n—-2Cr =

Define the function

go(z) = (n—202)(1+z)"™" —n=2x (n<1 i x):ﬂ —1 20(1 + x)"“)

=z (n Z Cktiah —20(1 + x)"“) :

k=0
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Consider then

he(x) :=n Z Cktiah —20(1 + )"t

k=0
For all 0 < I < n, we have by differentiating repeatedly

L (k+ D)
Il

(n+1)!
(n—14+1)!

Chtlitiagh — 20 (1+ )"

It is clear in this expression that we can always choose C' large enough so that for every
I <n, h(cl)(—l +d) < 0. Then, we have after some calculations

R V(@) = nl (=Cln+ 1)2? + (n —2C(n + 1))z + (n+1)(1 - C)).

The roots of this second degree polynomial are given by

n—2C(n+1)+/n?+4c(n+1) n—2C0(n+1)—/n?+4c(n+1)
T = or r = :
2C(n+1) 2C(n+1)

Since both these roots can be made as close as we want to —1 by choosing C' large enough,
we can conclude that for C' large enough, we will have h(cn_l)(x) <0, forx> —1+0.
Hence, the function h(g_m is decreasing for x > — 1 4+ J. But since we recalled earlier
that h(cl)(—l +6) < 0, we also have hglﬂ)(x) <0, for x > — 1+ 9. Repeating those
arguments, we show recursively that the function ho itself is decreasing for x > — 140
and since we also have ho(—149) < 0, we finally obtain that the function h¢ is negative
forx > —1+06.

Therefore, the function g¢ is positive for z < 0 and negative for z > 0. Since fo(—1+
9) < 0and fo(0) = 0, this ends the proof. (]

Mémin [80] and then Lépingle and Mémin |72 proved some useful multiplicative decom-
positions of exponential semimartingales. We give here one of these representations that
we will use in the proof of Lemma 5.6.5.

Proposition 5.6.1 (Proposition II.1 of [71]). Let N be a local martingale and let A be a
predictable process with finite variation such that AA # —1. We assume Ny = Ag = 0.
Then there exists a local martingale N with No = 0 and such that

E(N+ A)=E(N)E(A).

Lemma 5.6.5. Let A > 0 and M be a local martingale with bounded jumps, such that
AM > — 1+, for a fivzed 6 > 0. Let V= be the predictable compensator of

{Wt‘* =Y [I+AM)™—1+AAM,], t > o} .

s<t

We have
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(i) ENM) =EN+ A™*) where

AN+ 1)
2

N A= M+ W -V

A—)\ _ <]\4c7 MC>T + V—/\

(ii) There exists a local martingale N™ such that

EMNM) =E(NNHEA™).

Proof. First note that thanks to lemma 5.6.4, for A > 0, (1+2)™ — 1 + Az < Cz?, and
thus W~ is integrable. We set

1
Tn = lnf{t 2 0 : g(M),: < —} and Mgl = Mt/\Tn'
n

Then M™ and £(M™) are local martingales, E(M™) > L and E(M™), = E(M), if t < T,,.
The assumption AM > —1 shows that T, tends to infinity when n tends to infinity. For
each n > 1, we apply Itd’s formula to a C? function f,, that coincides with = on [%, +ool:

£, = 1= [ e, de ),

205 e, ey, amy,
£ AWM, — M), A, AEA M)

t
=1 +/ E(M™),-dX",
0

where
AA+1)

Xp' = =AM+ =5

(M™E (M) + Y [(1+ AM) ™ =1+ AAM,]

s<t
and then £~ M") = £(X™).
Let us define the non-truncated counterpart X of X":
AN+ 1)
2

On the interval [0, T,[, we have X" = X and £ (M) = £(X), now letting n tends to
infinity, we obtain that £~*(M) and £(X) coincide on [0, 4+o0[, which is the point (i) of
the Lemma.

X =AM+ (M, M) + W,

We want to use the proposition 5.6.1 to prove the point (ii), so we need to show that
AA > —1. We set
S=inf{t >0 : AA}< — 1}

It is a predictable time. Using this, and the fact that M and (W~* — V=) are local
martingales, we have

AAG = B [AAPFs] = BIAXs|Fs] = B [(1+ AMg) ™| Fs-]
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and since {S < o0} € Fs-,
0> [Liscioop (1 + AAGY] = I [Lisciony (1 + AMg) ] .

Then AMg < — 1 on {S < +oo}, which means that S = +o0c0 and AA > —1 a.s. The
proof is now complete. ]

We are finally in a position to state the Lemma on L" integrability of exponential mar-
tingales for a negative exponent r.

Lemma 5.6.6. Let A > 0 and let M be a local martingale with bounded jumps, such that
AM > — 1+, for a fized 6 > 0, and (M, M), is bounded a.s. Then

E [E(M);*] < +oo0.

Proof. Let n > 1 be an integer. We will denote [ip; = pps — v the compensated jump
measure of M. Thanks to lemma 5.6.5, we write the decomposition

~ 1
E(M)™" = E(N"™)E (§n(n F1) < M¢,ME > +v—n) ,

where N~" is a local martingale and V=" is defined as V. Using Lemma 5.6.4, we have

t
Vi < / /C’a:QVM(ds,dx)
0o JE

and using the previous representation we obtain

the inequality

EM);" < ENTE Gn(n +1) (M, M®) + /0 | /E C’x2yM(ds,da:)>

t

< E(N")exp <%n(n+ 1) (M€, M), + /0 t /E c:c%M(ds,dx>>

N

~ 1
E(N™")exp <(§n(n +1)+C) (M, M>t)
< CE(N™™), since (M, M), is bounded.

Let us prove now that the jumps of N~ are strictly bigger than —1. We compute

- AN
AN™™ = —— where A™" is defined as in lemma 5.6.6
14+ AA™
:w—l>—lsmce —1<AM < Band AV™" > —1.
1+ AV

This implies that E(N_”) is a positive supermartingale which equals 1 at ¢t = 0. We
deduce
E[E(M);"] <CE[e(V"),] <C.

We have the desired integrability for negative integers. We extend the property to any
negative real number by Holder’s inequality. ]






CHAPITRE 6

Numerical Implementation

6.1 Introduction

Avellaneda et al. |2]| derived a pricing PDE (Avellaneda PDE aftermath) for uncertain
volatility models. In practice, Avellaneda PDE is not solvable and one must rely on a
finite difference scheme. But standard finite difference schemes can only be implemented
when the number of variables - underlying assets or auxiliary variables - is small. For high
dimensional case one needs to use Monte Carlo approach.

The Monte Carlo method is developed from a new advancement on the connection
between fully nonlinear PDEs and second order backward stochastic differential equations
(2BSDEs for short) presented in Cheridito et al. [22]. There exist three Monte Carlo
schemes for UVM. Introduced with the first notion of 2BSDEs, Scheme Cheridito et al.
[22] generalized the numerical method for solving classical BSDEs. Inspired by Scheme
Cheridito et al., Fahim et al. [41] gave a new scheme without appealing to the theory
of 2BSDEs. They proved the convergence of the scheme with a EDP approach. With
UVM, the Avellaneda PDE for pricing is fully nonlinear. In this particular case, Scheme
Guyon and Henry-Labordére [47] improved the two precedent ones without using the
theory of 2BSDEs. For path-dependent options, these schemes can also be applied with
some modifications and by using results obtained in Gobet et al. [45].

The main objective of this chapter is to study and implement the Scheme Guyon and
Henry-Labordére.

6.2 Avellaneda pricing PDE

UVM were introduced by Avellaneda et al. |2], where the volatility process is only supposed
to lie within an interval (it does not have a specific dynamic). And the value V of a
derivative delivering some payoft Hy(S;,0 <t < T) at maturity T is

Vi = supy, nE[Hr|F]
where supy ;) means that the supremum is taken over all (Fs)-adapted processes

Eicscr = (<U?’pgﬂ>1<a<6<d)tgng such that for all s € [t,T], & belongs to

some compact domain D. Notice that the covariance matrix (paﬁao‘aﬁ)l <af< Should

be non-negative. We consider domains D of the form D = [g,5] when d = 1, and
D =[c',¢'] x [0%,6°] X [p,p] when d = 2.
Applying stochastic control theory, the ask price can be presented by the solution of a

fully nonlinear PDE.
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In one-dimensional case, a risky asset follows a controlled diffusion under a risk-neutral
measure

dSt = O'tStth.

The valuation of an option can be written as the solution (in the viscosity sense) of an
HJB equation with a control on the diffusion coefficient. This leads to a fully nonlinear
second order PDE, the Avellaneda PDE.

dult, z) + %xQG(amu(t, 2))Oheult,z) = 0, (t,2) € [0,T) x R,

with some terminal condition u(7,z) = g(x), and G(T') = ¢®1r<o + 7%1r > 0.
In d-dimensional case,

dSe = g SEAWE, dWedW) = pl¥dt, 1< a < < d.

where paﬁoaalﬁ <a<p < d 15 the non-negative covariance matrix.

For vanilla payoffs Hr = g(Sr), where the payoff function ¢ is assumed continuous with
quadratic growth, we have the price V; = u(t,S;) where u(-,-) is the unique (viscosity)
solution with quadratic growth of the following PDE

Owu(t,x) + f(x,Vyu(t,z)) =0, (t,z) € [0,T) x (Ri)d

with the terminal condition u(7,x) = g(x) and the Hamiltonian

d

1
f(z,T) = SMAT (o5 ,52), < acp< a€D Z p*Poo
a,B=1

By BB,

6.3 Different schemes

In their paper introducing the 2BSDEs theory, Cheridito et al. provided a numerical
scheme using Monte Carlo method to solve fully nonlinear PDEs. Fahim et al. then proved
the convergence of a similar Monte Carlo scheme without appealing to the 2BSDEs. As
presented in previous sections, Avellaneda PDE is a fully nonlinear PDE, so one can solve
it numerically using both schemes. In the following, we derive this two schemes for this
particular PDE.

1.With 2BSDEs theory (Cheridito et al.):
The 2BSDE associated to the Avellaneda PDE is

(dX& = 6oXdWS, dWEdW] = pPdt, 1< a < B <d.
d
dY, = — (X, Ty)dt + Y Z{ 0 6° X dW,
. (6.3.1)
dzg = Aydt+ Y 176X dwy
B=1

\ Yr = g(XT)
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with some constant volatility % and some constant correlation p* and where o is the
Stratonovich integral. Cheridito et al. proved that Y; = u(t, Xy), Z, = Vu(t, Xy), Ty =
Vaet(t, X;) and A; = (9; + LX)V, u(t, X;). Then we have Yy = u(0, Xo) = u(0, Sp) = Vj.

By discretizing the continuous processes of the 2BSDE and taking the conditional expec-
tation of both sides of equations (resp. first multiplying both sides by Brownian increment
AW, then taking the conditional expectation), we can compute the price Y (resp. the
delta Z and the gamma I') backwardly. The following is the complete scheme deriving
from 2BSDEs theory.

Scheme Cheridito et al.:

(
Vi =g(X2), Zi = V(X))
Vi, =B [V
1 R R /
b (roxe 2z 2 ) - g (ox2 ) (ox2 ) ek | ) s .
1 /. -1
Zt?fl - At <0X$71> Ei*l [}/;ZAAWtZ]
1 -1
e, = B [Z2AW,] (6x2,)
\ 7

2.Without 2BSDEs theory (Fahim et al.):
We can rewrite dyu(t,z) + f(z, Vyu(t,z)) =0, (t,2) € [0,T) x (R%)? as

d
1 Z 0B rarf o
8tu(t,$) + 5 ﬂ_lp 50‘ Uﬁx .Z'ﬁ (szU,(t,x)) B

d
" (f(x’ Vaau(t,w) = ) p*0%6 0 (Vmu(t,x))aﬁ> =0
a,f=1
Let us denote
d
F(I7 VJIIu(t; -T)) = f($, Vmu(t, x)) — Z ﬁaﬁa.aaﬂxaxﬁ (Vzg;u(t, l’))aﬁ
a,B=1

and
dX[ = 6P XPAWS, AWEAW! = 5 dt, 1 <o < B <d.

a log-normal dynamics with constant 6* and constant p*°. Assuming that the Avellaneda
PDE has a classical solution, it follows from It6’s formula that

tit1
Eti,m [u (ti+17 Xti+1)] =u (tla x) + Eti,m |:/ (at + EX)u (t7 Xt) dt‘|
t
Since u solves the above PDE, this provides
tit1
]Eti,x [U (ti—i-la XtiJrl)} = U (tl, ZE) — Eti,x |:/ F(Xt, Vmu (t, Xt))dt:|
t;

By approximating the integral ftt_i“ F(X;, Vaeu(t, Xy))dt and applying the Malliavin
calculus for the second derivative I', one can also derive a similar scheme without appealing
to the 2BSDEs theory. The following is the complete scheme.
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Scheme Fahim et al.:

1 /
+ (f (0 X2, V2, 20 T8 ) = St {<6X$_1> (6x2) PQ_ID At; (6.3.3)

v <<&X$_1>/) LAW, (AW — AtY) (&X$_1>1]

I‘\A
Al

ti—1

=i

\

In the particular case of UVM, based on the Scheme Fahim et al., by taking arbitrary
constant volatility ¢ and correlation p to simulate the process (thus a Black-Scholes model)

and applying the Malliavin calculus for a log-normal diffusion, one can have a new scheme
for Avellaneda PDE.

Scheme Guyon and Henry-Labordére:

.

X2 = Xge @ 3HWE | [AW@‘AWS} = pPA

Ve, = 9(Xe,)
d
1 NG TG aN s o (07
}/tifl =K [Yh Xti—1i| + <f (Xti717]‘—‘ti71) - 5 Z p BU UﬁXti_ng_lrtﬁl) Ati
a,B=1
| (A eoa’xp X[ T, =B (Y., (USU] = Atipyh — AL6"Ugdas ) 1X, |

(6.3.4)
with U2 = Y20 pas AW,

Notice that for the Avellaneda PDE the coefficient f depends only on the second deriva-
tive of the solution (I'), so there is no need to compute the first derivative (Z), then
Scheme Fahim et al. and Scheme Guyon and Henry-Labordére should be more efficient
than Scheme Cheridito et al. with which one always needs the first derivative in order to
obtain the second derivative.

Furthermore, there are also other differences between the three schemes:

In Scheme Cheridito et al. they discretized the continuous process of the Gamma I
In Scheme Fahim et al. they used the Gamma Malliavin weight for the Bachelier model.
In Scheme Guyon and Henry-Labordére they use explicitly the Malliavin weight for a
log-normal diffusion with constant volatility 6 and correlation p.

With Scheme Fahim et al., the forward diffusion process is simulated by Euler scheme
while with Scheme Guyon and Henry-Labordére the diffusion is simulated exactly. And
for this reason, there is difference in computing Gamma I' for these two schemes.

In the particular cases of no volatility uncertainty or of convex or concave European
payoffs, the nonlinear PDE reduces to a (classical) Black-Scholes pricing PDE and Scheme
Guyon and Henry-Labordére is exact, contrary to Scheme Cheridito et al. and Scheme
Fahim et al.. Also Scheme Guyon and Henry-Labordére can be applied for discontinuous
payoffs.



6.4. Approximation of Conditional Expectations 177

6.4 Approximation of Conditional Expectations

The most important part in all three schemes is the approximation of conditional expec-
d(d+1)

tations. With Scheme Guyon and Henry-Labordére, there are + 1 expectations to

compute at each discrete backward date, one for price Y and the other @ for Gamma,

I' where d is the number of underlying assets.
There exits several ways to approximate conditional expectations as for the pricing of
Bermuda options.

1. One can use parametric regression as in the Longstaff-Schwartz methods (see Gobet
et al. [45] for details in the case of BSDEs):

N
E Vil X; = 2] & ) cipe(z)
k=1

2. For low dimensional case, one can also use non-parametric regression:

E[Yi116n(X; — 7)]
E[on(Xi — )]

with dx(-) a kernel approximating a Dirac mass at zero.

E[Yi1|X; = 2] =

3. Another possibility is to use Malliavin’s weight (see Bouchard and Touzi [16] in the
case of BSDEs and Bouchard and Warin [18| for Bermuda options).

Since parametric regression is the most appropriate for high dimensional case, we choose
the technique which is similar to the Longstaff-Schwartz Monte Carlo regression. For
possible improvements, one can try all techniques then compare results and choose perhaps
the best technique.

When there are several backward dates, who represent the discretization points of the
time dimension for a continuous process, the regression error cumulates from a date to
another, thus a non accurate approximation can deteriorate the pricing quality. From our
different tests we can see that the conditional expectation for Y can be approximated well
by regression. When o¢,,;, is equal to 0,,.,, the Avellaneda model is reduced to the simple
Black-Scholes model then the option price does not depend on Gamma I'. In this case,
we have a good precision for the option price. That means a good approximation of the
conditional expectation for Y. When o,,;, is different from o,,,,, the option price does
depend on Gamma I' and becomes less precise, this could mean that the approximation
of the conditional expectations for Gamma is not as good as for Y. This can be explained
by the fact that the Gamma ' simulated with Malliavin calculus has large variance.
There are many active studies in variance reduction techniques for computing Greeks.
Several methods exist such as localization and importance sampling. We don’t apply
these techniques here. In the real life pricing, these techniques could be used to have a
better precision for Gamma thus for price.

In conclusion, the pricing precision depends essentially on quality of approximation of
conditional expectations by regression , particularly for Gamma I.

As presented in Bouchard and Warin [18], there are two main questions for the ap-
proximation by regression. First is the choice of the regression procedure which refers to
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numerical algorithm to solve the system Aa = B for a and second the choice of regression
basis functions.

Regression procedure

We can use the following techniques.

1. Choleski decomposition LL’ of A’A: In this case, one solves LL'a = A’B. Tt is not
memory consuming because the A matrix does not need to be constructed. This
algorithm is the most efficient but not stable.

2. QR decomposition of A as QR: One solves Ra = (Q’B. This technique is more
stable but much more time consuming. The A matrix has to be stored.

3. Singular Value Decomposition (SVD) of A as UWV’'’ : One has a =
V' [diag [1/w;]] U'B. It is the most stable among these three techniques. However,
this method suffers the same problem as the QR algorithm in term of memory needed
to create the matrix A and is the most time consuming.

Basis functions

1. Polynomial.

This kind of function basis is very easy to implement in practice, but it has a
major flaw. It is difficult to find an optimal degree of the functional basis. Besides,
an increase in the number of basis functions often leads to a deterioration in the
accuracy of the result. This is due to extreme events that the polynomials try to fit,
leading to some bad representation of the function.

From our numerical tests, we see that the choice of maximal degree for polynomial
basis can affect the results. And in general, with numerical experimentations and
good understanding of the financial product to price, we can find a suitable maximal
degree with which this function basis works well.

Note that, in the case where an explicit formula is available for the correspond-
ing European option, one can replace the estimator E[Y}/H\]—}] in algorithms by
E[Y,,, — P“(tii1, Xi,, )| Fi] + P(t;, X,,) where P(t, ) denotes the price of
the corresponding European option at time ¢ if X; = x. This is similar to control
variates technique for variance reduction. The idea behind this comes from the fact
that the European price process (discounted) P°“°(-, X) is a martingale, and that
it generally explains a large part of the price. Alternatively, P<“"°(¢;,-) could also

be included in the regression basis.

2. Calls with different strikes.

In practice, one possibility is to regress on options of the underlying that are very
similar to the payoffs we are trying to price. It seems obvious that the more an
option looks like the option we are pricing, the more it will contains information
about the price. The theoretical perfect case is for example when we are trying to
price a Call and when that Call is in the regression basis, we just need one basis
function. When payoffs are Calls combination, we can regress on a base of Calls
with different strikes centered around the money-strike.



6.5. Forward Monte Carlo Pricing Step 179

3. Hypercubes (Adaptative local basis approach)

The idea is to use, at each time step t;, a set of functions v, (for instance, polynomial
with maximal degree 1 or 2), ¢ € [0, My,]| having local hypercube support D;, ;, . i,
where ¢; = 1 to I;, My = Hk:L___’d I.. With this approximation we do not assure
the continuity of the approximation. It has the advantage to be able to fit any |,
even discontinuous, function. In order to avoid oscillations, the support are chosen
so that they contain roughly the same number of particles. When using such local
functions, it is possible to use the Choleski method, which is the most efficient for

solving the regression problem.

Given that the main objective for us is to have a stable pricing algorithm so we choose
the more stable procedure SVD although it’s time and memory consuming. Indeed, for
the next step, we can effectively choose the regression procedure according to the choice
of basis functions. This should make the pricing procedure more efficient.

And we notice that different basis functions can be used for approximating price Y and
Gamma T, for instance polynomial for Y and local support basis (hypercube) for I'. That
could improve the option price precision in some cases. The idea behind this is that Y
and I have different forms , one kind of basis functions may be a good choice for Y but a
bad one for I'. So well understanding of products is important for a efficient application
of the scheme.

6.5 Forward Monte Carlo Pricing Step

From our numerical experiments, we see that the algorithm presented above produces an
unpredictable bias (lower or higher).

As suggested in Guyon and Henry-Labordére [47], one can have a lower price by adding
a forward simulation step. This is a commonly used technique for the pricing of American
options with Monte Carlo method. In this step, the optimal volatility is determined by
the function of Gamma computed in the first step.

In order to build a low-biased estimate, one can simulate another set of replicas of X

AdXO = o X2dWe dWedW) = piPdt 1< a<pB<d

in an independent second Monte Carlo procedure, where the simulated optimal volatility
and correlation, o;* and ,0:0‘6, are the solutions to

d

MAT (pas 5o, < oy < 4€D Z p*PoaPaaPy(t, X,)
a,f=1

with 1 the approximation for Gamma I of the first backward step. Because the covariance
matrix is suboptimal, the obtained estimator is low-biased. Omne can run the second
Monte Carlo simulation with more paths and a (much smaller) time step for the forward
discretization of X. Since the estimator is low-biased, the true price is larger than each
of the simulated prices.

When the bias is unknown, one cannot make such a claim and it is hard to guess where
the true price is. But the low-biased price could be imprecise like in the case of Call
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Sharpe options and generally of path-dependent options. Also we know that Monte Carlo
simulated price lies in a confidential interval including the true price for a fixed number
of paths (even very large). Since the second step is a Monte Carlo pricing method, then
the simulated price can be larger than the true price. So we have to be cautious with
this low-biased price. In general, we prefer the low-biased price for European options and
the backward price for path-dependent ones. In the real life pricing, we’d better compute
both low-biased and backward prices. Then if theses prices are very different from each
other, this could mean that the low-biased price does not have a good precision.

Furthermore, in the forward step, there is another problem. From the backward step,
we get the estimation of Gamma I" only for N — 1 of the N time-intervals (there is no
regression performed for the first time interval). It means that we have to take an arbitrary
fixed value of volatility ¢ (for example the mid-volatility) for the first time interval. If
this period is large which is the case when there are 2 or 4 backward dates, then the error
induced by this arbitrary choice could be important. To fix this problem, we propose to
add an extra backward date close to the initial date in the first step. By doing so, we may
introduce more regression approximation error, but we reduce the size of time interval
where an arbitrary volatility is used, so the error induced by non-optimal volatility. The
better results show that with a large number of simulations, the added regression error is
small compare to the reduced non-optimal volatility error.

6.6 Pricing with path-dependent variables

When the price of an option depends on path-dependent variables A (can be average,
max, min, realized variance) whose values can change only at discrete dates (fixing dates),
one solves Avellaneda PDE between two such discrete dates t; and ¢;_; for fixed values of
the path-dependent variables A, and defines

u(t,

t—1?

X, A) =t , X, ¢(A4))

with the function ¢ linking the past and new values of the path-dependent variables on
each fixing date.
For instance, if the option value depends on a monthly-computed realized variance, then

X 2 X\ 2
Ag - Z <lnX : ) ’ Atz - Xsup{l\tz <t}tl7¢<A) = Al + <lnﬁ> .

t
{UIty <t} 1

In our numerical experiments, we apply the Monte Carlo scheme to price Asian options
and Call Sharpe options with UVM.
In real-life contracts, Asian options are in fact defined in terms of discretely sampled

A= %ZX“.

=1

average, like

Let us introduce the process Y such that

1 7
Y(t; <t <tlip) = - Zth.
k=1
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The factor process (X,Y') is Markovian in the risk-neutral Black-Scholes model for X,
with related generator Gx yv(X,Y) given by the usual Black-Scholes generator Gxv(X,Y)
on each time interval (¢;_i,t;). Moreover, one has

A=TYr.

We proceed backwardly within each time interval (¢;_1,t;) as in the case of European
options with a terminal condition obtaining by the continuation condition at the fixing
date t;,

1
Oy + =02 X20%,0; =0
T2 X (6.6.1)
Vi(tiy1, X, Y) = vip1 (Liy1, X, Y5)

where Y, is obtained via the following jump conditions at the monitoring date ¢;,1:
i X
= Y .
1 +1 + 1 +1
Indeed, the cost of solving the above PDE is essentially that of solving M one-

Yy

dimensional PDE problems, where M is a generic number of mesh points for average
dimension.

We implement two algorithms for path-dependent options derived from Scheme Guyon
and Henry-Labordére for non-path-dependent ones presented in previous sections. The
first one is inspired by the finite difference method. That mean we subdivide the path-
dependent variable (discrete arithmetic average for Asian options and discrete realized
variance for Call Sharpe). We know that between two discrete fixing dates, the path-
dependent variable does not change. So we use the scheme within such period taking
price at latest fixing date as terminal condition. And at each discrete fixing date, we
compute price depending on the path-dependent variable of the previous date using the
continuation condition.

But this algorithm is very time and memory consuming. Because Scheme Guyon and
Henry-Labordére is applied to each subdivided value of path-dependent variable. And
if there are several discrete fixing dates, we need to simulate a large number of paths to
have a good convergence for each subdivided value. On average, 50000 simulated paths are
needed and if there are 100 subdivided values, then there will be 100 x 50000 = 5000000
simulations. That takes a lot of time and memory. Instead the second algorithm is a
purely Monte Carlo method which is inspired by Gobet et al [45]. With this method,
in order to approximate conditional expectations, we use spot price and path-dependent
variable value to construct regression basis functions. Thus we need to simulate the path-
dependent variable value at each fixing date. It is also possible to construct regression
basis functions with only spot price. This approximation induces some additional error,
but it’s easier to implement and takes less time to execute. If we use path-dependent
variable to construct basis functions, then for different payoffs, we need different form of
basis function. For instance, the polynomial basis with spot price and path-dependent
variable works for pricing Asian options but is not well adapted for Call Sharpe options,
since the payoff for a Sharpe option is the ratio of an European payoff and the realized
standard deviation (which is the path-dependent variable in this case). So polynomial
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Asian Fixing Dates Backward Dates

ANV

ti—1

Backward algotithm between
two Asian fixing dates ¢;—1 and
t; for fixed values of A

A "4 "8

tioath th th t
Figure 6.1: 2BSDE scheme for path-dependent options pricing

function basis constructed with the ratio of spot price and realized standard deviation
should work better. However one need to pay attention while using the ratio, since the
realized standard deviation may be very small for fixing dates close to the initial pricing
date. Then the ratio may become very big which deteriorates the quality of approximation
of conditional expectations by regression and give irrational option price. We do some tests
with both algorithms and with different basis functions.

For path-dependent options as Asian ones or Call Sharpe, there is also a problem in the
forward Monte Carlo simulation step. For the Finite Difference-like Monte Carlo scheme,
the regression function for Gamma I' will depend on the path-dependent variable, so we
need to stock the regression parameters in a 5-dimensional variable. And in the forward
step, we need to simulate the path-dependent variable to estimate Gamma I". With the
purely Monte Carlo method where we simulate the path-dependent variables, the forward
step does not perform very well neither. Imagine that within one time interval, the paths
are simulated with a sub-optimal volatility, then this sub-optimality will persist until
the maturity, so lead to bad estimation of the path-dependent variable thus to severe
mis-pricing. Therefore, we prefer the backward price for path-dependent options.

When the path-dependent variables values change continuously, it is possible treat these
variables like processes by adding some diffusion terms.

For an option depending on continuous path-dependent variables , the Hamiltonian f
may not involve only the Gammas. For instance, in the single-asset case, if the price
u(t, z,v) of an option depends on the continuously compounded realized variance v, the
Hamiltonian reads

1
f(z,0%u, 0yu) = Mazy < 5 < 50° (ﬁﬁaiu + &,u) ,

i.e., the optimal volatility is either o or &, depending on the sign, not of the Gamma
d2u, but of $220%u + dyu.

The 2BSDEs approach can easily be adapted to the case when the realized variance V;
changes continuously. One can show that in this case the price of the option with UVM
can be written u(t, X;,V;) where u is solution to

O+ f(z,02u(t, x,v), 0yu(t,z,v) =0



6.6. Pricing with path-dependent variables 183

Then one can associate a two-dimensional 2BSDE on the (X,V') plane to this fully
nonlinear PDE:
dX, = 6 X, dW}
dV; = 62dt + ndW}! (6.6.2)
dY, = (— (X, I35, Z0) + £5Vult, Xy, Vo)) dt + ZX 6 X, dW) + Z) ndW!
with 1 1
rxv _ 56_2(X21—\XX +27v) + 57721“‘/‘/.
In Guyon and Henry-Labordére [47], they used 62 as the (forward) drift for the variance
V', but this is arbitrary. They have introduced a diffusion term for V;. Here 7 is a constant
and W' a Brownian motion orthogonal to W9 Adding this purely numerical volatility
term allows to compute Z) = dyu. Just as the solution u of the PDE, the 2BSDE is
independent of 7, but the numerical scheme depends on it. A too small or too large value
for  would lead to a bad regression-based estimation of 7).
For Asian options with continuous average, the factors are X (price) and I = [ X,dt,
the running time-average of X. With the Black-Scholes model, the pair (X, I) is then a
Markov process with generator Gy ; given by

1
QXJ = 502X28§(2 + Xa[

Note that the generator Gx ; is degenerate in the I variable.
Then the pricing problem writes:

{ O+ Gx v =0

(6.6.3)
o(T, X, 1) = ¢ (X, I)

Note that the numerical resolution of the above PDE requires special care to cope with
the degeneracy of the generator in the I variable (PDE in dimension 11).

Alternatively to the previous approach, it is possible to reduce the pricing problem to
a one-dimensional PDE easier to solve numerically, by working in the numeraire X. The
price is Xyu(t,n;), t € (0, 7] where 1, = X% (K — 1) and w is the solution of the following
one-dimensional PDE:

1 1
8tu + Tﬁnu + 50'27]2872]211, =0

(6.6.4)
wT,n) =n"
For Asian options, we can take a similar approach as for Call Sharpe:
1
0w+ 204U + Mmaz, < » < S02 (—:EQ(?iu) =0
- 2 (6.6.5)

w(T,z, A) = ¢p(A)
We can associate a two-dimensional 2BSDE on the (X, A) plane to this fully nonlinear
PDE:
dX, = 6 X, dW)
dA; = Xdt + ndW} (6.6.6)
dY, = (—f( X, T + £54(t, Xy, Ay))dt + ZX 6 X dWP + Znd W}
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with

1 1
L5t Xy, Ay) = §n2r;4A -+ 5&QXEFXX

As presented in Gobet et al. [45], one can probably also use an discrete approximation
for the continuous running-time average, then apply the same approach as for the case of
discrete average. This is a better alternative than having to solve the two-dimensional de-
generate PDEs (problems in dimension 1%, unless specific dimension reduction techniques
are available).

6.7 Numerical Experiments
The final meta-algorithm for pricing can be summarized in the following steps:
1. Simulate N; replicas of X with a log-normal diffusion on discrete dates tx, k =
1,..., M.

More precisely, from the initial spot price Xy, generate N; paths of X with a time
step for discretization At = T'/M;.

tit1

, 1
XM _ Xt]:[lea:p {—5&2Atk + &AWtk}

For the path-dependent options, path-dependent variables are simulated with these
realizations of X.

2. Apply the backward algorithm Scheme Guyon and Henry-Labordére using a regres-
sion approximation.

Calculate the maturity payoffs Y for all N; simulated paths. Then compute back-
wardly from k= M; —1to k= 1.

At each t, construct the explanatory matrix A, with basis functions pg, - -+, pi_1
pO(XtJ]:I,l) pl(X%l,l) pz_l(Xf;“I)
)2 2 2
pO(thl ) pl(thl ) e pl—l(thl )
Ay = : : :
NuN NN ' Ny N
po(Xp ") pu(X ) pa (X

Ay has N7 rows and [ columns, where [ is the number of basis functions.

Perform the regression for I' and Y on the columns of Ay, then compute I';, and Y},
by formulas in the equation (6.3.4) where the conditional expectations are replaced
by their approximations

BLX) = Yk (X).

From ¢t = t; to t = ty, there is no regression to perform since the conditional
expectations E [-|Fy] are indeed expectations E[-]. Apply always the scheme to the
price Y and Gamma I’
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(A1) 56" X X0 = B |V, (USUS = Atipgh — A6 Usiées ) |

d
]' OO A A « «
Y, =E[Y;,] + (f (Xi:Top) = 5 > aﬁxtoxfortf> At;.

a,B=1

This is the end of the backward step.

3. Simulate N, independent replicas of X on discrete dates tx, k = 1... M, using the
Gamma functions computed at the previous step then compute the mean of payoffs
on maturity ¢, = T'. For the forward step, it’s a classic Monte Carlo method with
N, simulations and M, discrete dates.

It is noteworthy that the scheme presented previously have 3 key convergence parameters
(N3 and M, being fixed in our tests): the number of time steps for discretization M;
the basis functions; the number of simulations N;; Besides the backward step diffusion
volatility & can also influence the pricing precision.

As M; becomes large, which means the time step At becomes small, we need more
and more simulations (increasing N;) to obtain an accurate price. Gobet et al. [45], for
BSDEs, and A. Fahim et al. [41] for fully nonlinear PDEs, also noticed that the numerical
scheme diverges when the time step At goes to zero, the number of simulations N; being
fixed.

A kind of Picard iterations method can also be applied to reduce the pricing error.
Before proceeding to Step 3, we may repeat Steps 1 and 2, replacing (p*’6°6”) by the
optimal covariance matrix estimated at Step 2. This should improve the precision of lower
bound for the price in Step 3.

In our numerical experiments, we take 7' = 1, and, for each asset a, X§ = 100, o® = 0.1,
d“ = 0.2 and we use the constant mid-volatility 6* = 0.15 (it will be mentioned if other
values are used) to generate the first Ny replicas of X. We also pick ¢; = i/n, so that
A = 1/n. In the forward Monte Carlo pricing step (contrary to the backward step where
Gamma T is calibrated), the Ny = 50000 replicas of X use a time step Ay = 1/52.

European Call. First, let us test our algorithm in the case of an European Call option
with payoff (X7 — K)*. We take K = 100. The true BS price is Cpg = 7.97. As showed
on the following figure, the algorithm with backward step produces an unpredictable bias.

By adding the forward step, the prices obtained are low-biased. For a Call option, these
prices have good precision with a small number of simulations.

We know that theoretically the pricing of European Call option with UVM depends
only on the maximal volatility &, because the payoffs is convex and the Gamma I is
always positive. But as we show in the tests, the numerical result depends on the minimal
volatility g. The reason is that the simulated Gamma I' may take negative value in
numerical experience, then during the forward Monte Carlo simulation step, in some time
intervals paths are generated with the minimal volatility o, so simulated prices may be
much lower than the true BS price when ¢ is very small. We can also see that increasing
simultaneously the backward dates number and the simulated paths number can diminish
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Figure 6.2: European Call Pricing with Backward step only Vol min=10% Vol max=20%
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Figure 6.3: Call pricing with Forward step for different backward dates and polynomial
basis functions

this difference. But this will increase considerably the computation time. So an advice for
the use of this pricing algorithm is varying different parameters and taking the maximum
of simulated prices (because these prices are low-biased).

Influence of vol_min to Call price (AvellaDates=16)
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Figure 6.4: Influence of Vol Min to Call pricing Vol max=20%

For an European Call, the Gamma I is positive, so the optimal volatility o* is always
equal to . To test our algorithm, a more interesting case is European Call Spread whose
Gamma [I' can be positive or negative.
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European Call Spread. Let us test our algorithm in the case of a Call Spread option
with payoff (X7 — K1)T — (X — K3)*. We pick K; = 90 and Ky = 110. The true
price (PDE) is Cppr = 11.20 and the Black-Scholes price with the mid-volatility 15% is
Cps = 9.52.

In this case, the Monte Carlo approach can capture the right magnitude of the price.
From the following figure, we see that the choice of basis functions (here polynomial with
different maximal degree) and time step clearly affects the price estimate. However, as
the estimator is low-biased, one possibility is to use the pricing algorithm with different
parameters and take the maximum of simulated prices.

Call Spread pricing with forward MC step (10%-20%)
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Figure 6.5: Call Spread pricing with Forward step for different backward dates and poly-
nomial basis functions

Also the choice for the backward step diffusion coefficient ¢ can influence numerical
results. In fact, theoretically this scheme does not depend on &, but since we have to use
Monte Carlo regression, then the scheme is very sensible to this parameter. To fix this
issue, one possible way is to price with different values for &. It is reported in Guyon and
Henry-Labordére et al. [47] that, among all the constant volatilities tested, the best result
for Furopean Call Spread is obtained with the mid-volatility 6 = 15%. But we need to
emphasize that the mid-volatility may not be the optimal choice for others options.

Asian Call. We begin our tests for path-dependent options with an Asian Call. The
payoffis (A7 —K)T where Ay = 1—7; Zil X, the monthly sampled arithmetic average. The
PDE price is Cppr = 4.85 with K = 100, ¢ = 20%, o = 10%, 15%, 20%. As explained
in the section on path-dependent options, we try two algorithms for Asian options in the
numerical tests. The first one is a Finite Difference inspired Monte Carlo scheme (denoted
by FC+MC) and the second one is a purely Monte Carlo scheme. Both algorithms give
good results with suitable parameters. But the first one is time and memory-consuming, so
we can’t compute prices with more than 100000 simulations in the case of 250 subdivisions.

And for the second algorithm, we can construct basis functions either with only Spot
price or with both Spot price and average. The simulated prices in these two cases have
good precision with a large number of simulations. When constructing only with Spot
price, we make an approximation that

E |:.|Xti—17 Ati—1:| ~E ['|Xt1:—1] :
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Asian Option Pricing (NA=250)
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Figure 6.6: Asian Call Pricing with FD+MC Vol min=15% Vol max—20% for different
subdivisions of the average (NA)
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Figure 6.7: Asian Call Pricing with MC Backward step only Vol min=15% Vol max=20%
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Figure 6.8: Asian Call Pricing with MC Forward step Vol min=10% Vol max=20% Vol
diffusion 6=19%

We have computed the price of the above Asian Call option with different values for the
backward step diffusion volatility . It turns out the best result is obtained with ¢ = 19%
(which is close to the Max Vol 6 = 20%).
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Figure 6.9: Asian Call Pricing with MC Forward step Vol min=10% Vol max=20% for
different diffusion vols &

Asian Call Spread. As Furopean Call Spread for non-path-dependent options, Asian
Call Spread is more interesting to test our algorithm for path-dependent options. The
payoff is (Ap— K1) " —(Ar—K,)* where Ap = L S°12. X;, the monthly sampled arithmetic
average and K; < K,. For our numerical tests,we take K7 = 90, Ky = 110. The PDE
price Cppp = 10.67 with ¢ = 20%, o = 10%, Cppr = 10.16 with ¢ = 20%, o = 15%,
and Cppr = 9.85 with & = ¢ = 20%. From our tests, we notice that by using the value
of an European Call option with same strike as control variate, the prices have better
precision than the ones obtained without control variate. Unlike for European options, it
is necessary to apply control variates for path-dependent options.
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Figure 6.10: Asian Call Spread Pricing with control variate Vol min=10% Vol max=20%

Call Sharpe. To finish our numerical tests, let us test the algorithms with a Call Sharpe
2
option paying (X; — 100)*//Vy where Vp = £ 372 (ln s > is the realized volatility

T £ul=1 Xt

computed using monthly returns.

As mentioned in the section on path-dependent options pricing, it is notably difficult
to find a convenient basis to compute the conditional expectations and we assume as an
approximation that

E || X,

i—17

Al}z‘—ﬁAi‘—l} ~ E [.|Xti—1} :

We notice also that with well chosen control variates, the estimated prices have better
precision.
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’ Vol min max ‘ PDE ‘ without control | control for Y | control for Y,Z | control for Y ,Z(HC) ‘

15%-15% 40.71 41.09 40.65 40.65 40.65
15%-20% 47.50 45.53 46.36 46.90 47.09
10%-20% 57.66 51.64 54.1 54.05 56.04

Table 6.1: Calls Sharpe pricing with Backward step only for different Vols Min and Vol
Max

European Call with 2 underlying assets. We also test the algorithm in the case
of an European Call option with 2 underlying assets. The payoff is (w - K)*.
We take K = 100. The PDE price is Cppr = 5.98 when the correlation p = 100%
and Cppr = 5.58 when p = 70%. As showed on following figures, the algorithm with
backward step produces a good estimation of the price when there is no uncertainty on
both volatilities and correlations. But in the case of uncertain volatilities or correlations,
we need to improve the estimated prices precision by using suitable backward step diffusion

volatilities and correlations or more appropriate basis functions.
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Figure 6.12: Call (100%) Pricing 2 underlyings Voll min=Voll max=20% Vol2 min=Vol2
max=10% Correl Min=50% Correl Max=70%
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6.8 An algorithm without regression

We see that in our previous tests, using the Monte Carlo regression method to approximate
conditional expectation often leads to time consuming pricing procedure or mis-pricing. In
this section, we present an alternative way to implement the Scheme Guyon and Henry-
Labordére. We derive a new algorithm where no Monte Carlo simulations are needed.
According to the paper of Carr and Madan [19], we know that under some assumptions,
the price of an European style option can be presented like a continuous sum of puts and
calls (with BS model) with different strikes. There are closed formulas for conditional
expectations of these puts and calls. So if we write price Y at every backward date on
functions of puts and calls with BS model, then we can use closed formulas to approximate
conditional expectations in the formulas for option price and Gamma with UVM. By doing
so, there is no Monte Carlo regression to perform, so the program is quicker to execute and
there is no simulation error. But we also need to choose a diffusion volatility to calculate
BS puts and calls prices and Gammas like the previous method. And the quality of the
approximation by payoffs of puts and calls is very important to have the right price. And
for path-dependent options, we need to integrate the path-dependent variables in the puts
and calls basis. In the following, to simplify the formulas, we denote the Malliavin weight
for Gamma I' by C'.

In one-dimensional case, the formulas (6.3.4) become:

( ~oti | oA
X, = Xoe 72T Wu
3

1.
Y;tiq =K [}/vti‘Xtifl} + (f (Xti—l’rtifl) - 5 2X152¢1Fti1> At; (6.8.1)

2

g AWti 1
AtiUXtinti—l =E Y, - N - AWtz‘ - g ’Xtiﬂ

\

We have closed formulas for Y29 and T'B%%. If we write
I J
Yieer = Y oa(Xr — Kt + ) B5(K; — Xp)*
i=1 =1
I J
_ Z ainS,Call,T,i n Z ﬁjYY{BS,Put,T,j
i1 =1

Then, we get

FtN,1 = E[CtN}/;N|ftN—l:|

N N

I J

_ BS,Call,ty,i BS,Put,tn,j

= Y aE|G,Y, Fines| + D BE [ CuYs o
=1 Jj=1

I J
B BS,Call,tn i BS,Put,tn.j
- 2 :aiFtN—1 + E :6thN—1
i=1 j=1
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And
1 .
Y%Nfl = K [YtN:TU:tNA] + <§ ((U*)2 - 02) XENlrtNl) Aty
I
. 1 :
_ Z%‘ {Y;ﬁiq,lcall,m,z + (5 ((O_*)Q . 02> XENIFgVS_,?all,,tN,1> AtN}
i=1
J . 1 .
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By continuing this routine, we can get Yy which is the price at the initial pricing date.
In this method, the question is how to choose the different Strikes and how to obtain
the coefficients before Calls and Puts. One possible way is to use the same grid for Spot
Prices and Strikes. And we choose a particular strike which generally could be the initial
spot price(or a price close to this one), Puts are with strikes smaller than this particular
strike and Calls are with strikes bigger than this one. Then by identifying the option
price Y and the sum of Calls and Puts for each Spot Price in price grid, we get two linear
systems to solve. Thanks to the particular choice of Calls and Puts, these two systems are
an upper triangular one and a lower triangular one which are easy to solve numerically.
In this method, two parameters are important. The first one is number of backward dates
who represents the discretization of the time dimension for a continuous process. And
the second one is number of subdivision for spot price dimension. In order to better
approach a continuous process by a discrete version, we need more backward dates, but
more backward dates mean more approximations of option price by sum of Calls and Puts
payoff, then probably more errors. So we should choose this parameter cautiously. In order
to approximate better option price by sum of Calls and Puts, it’s natural to subdivide
more the Spot Price dimension thus have more Calls and Puts with strikes closer to each
other. But more subdivision means more computational time and particularly this may
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introduce some instability. As for the time dimension, this parameter should be chosen
carefully.

We apply this new algorithm to both path- and non-path-dependent options. As we
can see from the tests, with 30-50 backward dates and 300-500 Spot Price subdivision, we
can have a price estimation with good precision. We use a non-uniform subdivision with
concentration around the initial Spot for Spot price. Idea behind this is to better capture
the convexity around the initial spot.

But this approach is very similar to the Finite Difference method: subdivide each di-
mension, then compute the price by a roll-back process. Particularly in the cases with
path-dependent variables or of multi-dimension, this approach suffers the same problem
as Finite Difference method. So in thess cases we prefer the Monte Carlo method.
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Figure 6.13: Call Spread (90%-110%) Pricing without MC regression Vol min=10% Vol
max—20%

Figure 6.14: Call (100%) Pricing without MC regression Vol min=10% Vol max=20%
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Figure 6.15: Asian Call (100%) Pricing without MC regression Vol min=10% Vol
max—20%

6.9 Conclusion

From our numerical tests (see Appendix 6.10 for more results), we generally observe that
the Monte Carlo method performs well for non-path-dependent options and can provide
good precision prices for path-dependent ones with well chosen basis functions.

In order to get more precise results with this method, we should improve the approxima-
tion of conditional expectations by using better regression procedure, local support basis
functions, suitable control variates and non-parametric regressions in higher dimension.
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6.10 Appendix

Here we report more results of our numerical tests.
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Figure 6.16: Asian Call Pricing with FD+MC Vol min=10% Vol max=20%
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Figure 6.17: Asian Call Pricing with FD+MC Vol min=15% Vol max=20%
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Figure 6.18: Asian Call Pricing with FD+MC Vol min=20% Vol max=20%
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Figure 6.19: Asian Call Pricing with MC Backward step and Forward step Vol min=10%
Vol max—20%
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Figure 6.28: Asian Call (100%) Pricing without MC regression Vol min=15% Vol
max—20%

Figure 6.29: Asian Call Spread (90%-110%) Pricing without MC regression Vol min=10%
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Figure 6.30: Asian Call Spread (90%-110%) Pricing without MC regression Vol min=15%
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