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Résumé

L'objectif principal de cette thèse est d'étudier quelques problèmes de mathématiques
�nancières dans un marché incomplet avec incertitude sur les modèles. Récemment, deux
approches di�érentes (mais liées) ont été développées sur ce sujet. L'une est la théorie
des G-espérances non-linéaires initiée par Peng [89], et l'autre est la théorie des équations
di�érentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSRs) introduite
par Soner, Touzi et Zhang [101]. Dans cette thèse, nous adoptons le point de vue de ces
derniers auteurs.

Cette thèse contient quatre parties dans le domain des 2EDSRs. Nous commençons par
généraliser la théorie des 2EDSRs initialement introduite dans le cas de générateurs lips-
chitziens continus à celui de générateurs à croissance quadratique. Cette nouvelle classe
des 2EDSRs nous permettra ensuite d'étudier le problème de maximisation d'utilité ro-
buste dans les modèles non-dominés, ce qui peut être considéré comme une extension
non-linéaire du problème de maximisation d'utilité standard. Dans la deuxième partie,
nous étudions ce problème pour les fonctions d'utilité exponentielle, puissance et logarith-
mique. Dans chaque cas, nous donnons une caractérisation de la fonction valeur et d'une
stratégie d'investissement optimale via la solution d'une 2EDSR.

Dans la troisième partie, nous fournissons également une théorie d'existence et unicité
pour des EDSRs ré�échies du second ordre avec obstacles inférieurs et générateurs lips-
chitziens, nous appliquons ensuite ce résultat à l'étude du problème de valorisation des
options américaines dans un modèle �nancier à volatilité incertaine. Dans la quatrième
partie, nous étudions une classe des 2EDSRs avec sauts. En particulier, nous prouvons
l'existence et l'unicité de solutions dans les espaces appropriés. Nous pouvons interpréter
ces équations comme des EDSRs standards avec sauts, avec volatilité et mesure de saut
incertaines. Ces équations sont les candidats naturels pour l'interprétation probabiliste
des équations aux dérivées partielles intégro-di�érentielles complètement non-linéaires.
Comme application de ces résultats, nous étudions un problème de maximisation d'utilité
exponentielle robuste avec incertitude sur les modèles. L'incertitude a�ecte à la fois le
processus de volatilité, mais également la mesure des sauts.

La dernière partie est dédiée à l'implémentation numérique des méthodes de Monte
Carlo pour la valorisation des options dans des modèles à volatilité incertaine. Ce travail
pratique a été réalisé lors d'un stage au cours de la première année de thèse.

Mots-clés: Équations di�éntielles stochastiques rétrogrades du second ordre, mesures
de probabilités mutuellement singulières, analyse stochastique quasi-sûre, formule de
Feynman-Kac non-linéaire, EDPs complètement non-linéaires, générateur à croissance
quadratique, maximisation d'utilité robuste, incertitude sur les modèles, problème
d'obstacle, options américaines, temps d'arrêt optimal,équations di�érentielles stochas-
tiques rétrogrades avec sauts.
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Abstract

The main objective of this PhD thesis is to study some �nancial mathematics problems
in an incomplete market with model uncertainty. In recent years, two di�erent, but
somewhat linked, frameworks have been developed on this topic. One is the nonlinear
G-expectation introduced by Peng [89], and the other one is the theory of second order
backward stochastic di�erential equations (2BSDEs for short) introduced by Soner, Touzi
and Zhang [101]. In this thesis, we adopt the latter point of view.

This thesis contains of four key parts related to 2BSDEs. In the �rst part, we generalize
the 2BSDEs theory initially introduced in the case of Lipschitz continuous generators to
quadratic growth generators. This new class of 2BSDEs will then allow us to consider the
robust utility maximization problem in non-dominated models, which can be regarded as
a nonlinear extension of the standard utility maximization problem. In the second part,
we study this problem for exponential utility, power utility and logarithmic utility. In each
case, we give a characterization of the value function and an optimal investment strategy
via the solution to a 2BSDE.

In the third part, we provide an existence and uniqueness result for second order re�ected
BSDEs with lower obstacles and Lipschitz generators, and then we apply this result to
study the problem of American contingent claims pricing with uncertain volatility. In the
fourth part, we de�ne a notion of 2BSDEs with jumps, for which we prove the existence
and uniqueness of solutions in appropriate spaces. We can interpret these equations as
standard BSDEs with jumps, under both volatility and jump measure uncertainty. These
equations are the natural candidates for the probabilistic interpretation of fully nonlinear
partial integro-di�erential equations. As an application of these results, we shall study
a robust exponential utility maximization problem under model uncertainty, where the
uncertainty a�ects both the volatility process and the jump measure.

The last part is about numerical implementation of Monte Carlo schemes for options
pricing in uncertain volatility models, which was realized during an internship during the
�rst year of this PhD study.

Keywords: Second order backward stochastic di�erential equations, mutually singular
probability measures, quasi-sure stochastic analysis, fully nonlinear PDEs, nonlinear
Feynman-Kac formula, quadratic growth generator, robust utility maximization, model
uncertainty, obstacle problem, American contingent claims, optimal stopping time,
backward stochastic di�erential equations with jumps.
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Chapitre 1

Introduction

The main objective of this PhD thesis is to study some �nancial mathematics problems
in an incomplete market with model uncertainty. In recent years, two di�erent, but
somewhat linked, frameworks have been developed on this topic. One is the nonlinear
G-expectation introduced by Peng [89], and the other one is the theory of second order
backward stochastic di�erential equations (2BSDEs for short) introduced by Soner, Touzi
and Zhang [101]. In this thesis, we adopt the latter point of view.

This thesis contains four key chapters related to 2BSDEs. We �rst generalize the 2BSDEs
theory initially introduced in the case of Lipschitz continuous generators to quadratic
growth generators in Chapter 2. This new class of 2BSDEs will then allow us to study
the robust utility maximization problem in non-dominated models, which can be regarded
as a nonlinear extension of the standard utility maximization problem. In Chapter 3, we
study this problem for exponential utility, power utility and logarithmic utility. In each
case, we give a characterization of the value function and an optimal investment strategy
via the solution to a 2BSDE. In Chapter 4, we also provide an existence and uniqueness
theoty for second order re�ected BSDEs (2RBSDEs for short) with one lower obstacle and
Lipschitz generators, then apply this result to study the problem of American contingent
claims pricing with uncertain volatility.

In Chapter 5, we de�ne a notion of 2BSDEs with jumps, for which we prove the existence
and uniqueness of solutions in appropriate spaces. We can interpret these equations as
standard BSDEs with jumps, under both volatility and jump measure uncertainty. These
equations are the natural candidates for the probabilistic interpretation of fully nonlinear
partial integro-di�erential equations. As an application of these results, we shall study
a robust exponential utility maximization problem under model uncertainty. The uncer-
tainty a�ects both the volatility process and the jump measure.

The last chapter (6) is about numerical implementation of Monte Carlo schemes for
options pricing with uncertain volatility models, which I realized during an internship at
Crédit Agricole CIB during the �rst year of my PhD study.

Backward stochastic di�erential equations (BSDEs for short) �rst appeared in Bismut
[11] in the linear case, and then have been widely studied since the seminal paper of Par-
doux and Peng [87]. Given a �ltered probability space (Ω,F , {Ft}0 6 t 6 T ,P) generated by
an Rd-valued Brownian motionW , a solution to a BSDE consists of a pair of progressively
measurable processes (Y, Z) such that

Yt = ξ +

∫ T

t

fs(Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ], P − a.s. (1.0.1)



2 Chapitre 1. Introduction

where f (called the generator) is a progressively measurable function and ξ (called the
terminal condition) is an FT -measurable random variable. Pardoux and Peng proved
existence and uniqueness of the above BSDE provided that the function f is uniformly
Lipschitz in y and z and that ξ and fs(0, 0) are square integrable. In the particular case
when the randomness in f and ξ is induced by the current value of a state process de�ned
by a forward stochastic di�erential equation, the solution to the so called Markovian BSDE
could be linked to the solution of a semilinear PDE by means of a generalized Feynman-
Kac formula. Since their pioneering work, many e�orts have been made to relax the
assumptions on the generator f ; for instance, Lepeltier and San Martin [67] have proved
the existence of a solution when f is only continuous in (y, z) with linear growth. Most of
these e�orts are particularly motivated by applications of BSDEs in many �elds such as:
�nancial mathematics, stochastic games, semilinear PDEs, stochastic controls, etc. We
refer to El Karoui, Peng and Quenez [33] for a review of these applications.

The link between BSDEs and semilinear PDEs is important for the formulation of 2BS-
DEs. Therefore let us show it with the following example. Consider the parabolic PDE:

{
(∂t + L)u(t, x) + f(t, x, u(t, x), σ∗Du(t, x)) = 0

u(T, x) = g(x)
(1.0.2)

where L is the second order di�erential operator de�ned as follows

Lϕ(x) :=
d∑

i=1

bi(x)∂xi
ϕ(x) +

1

2

d∑

i,j=1

(σσ∗)ij (x)∂2
xixj

ϕ(x) ϕ ∈ C2(Rd).

If g, f and the coe�cients of the operator L are smooth enough, the PDE(1.0.2)
has a classic solution u ∈ C1,2. Then the processes (Y, Z) = (Y t,x

s , Zt,x
s ) :=

(u(s,X t,x
s ), σ∗Du(s,X t,x

s )) solves the following BSDE:

Y t,x
s = g(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr,

where (X t,x
s )t 6 s 6 T is the di�usion process associated with the operator L starting from

x at t. In particular, u(t, x) = Y t,x
t , and σ∗Du(t, x) = Zt,x

t which is a generalization of the
well known Feynman-Kac formula to a semilinear case.

More recently, motivated by applications in �nancial mathematics and probabilistic nu-
merical methods for PDEs (see [20], [41], [91] and [100]), Cheridito, Soner, Touzi and
Victoir [22] introduced the �rst formulation of second order BSDEs, which are connected
to the larger class of fully nonlinear PDEs. Then, Soner, Touzi and Zhang [101] provided
a new formulation of 2BSDEs based on quasi-sure stochastic analysis. Their key idea was
to consider a family of BSDEs de�ned quasi surely (q.s. for short) under a non-dominated
class of mutually singular probability measures,which means P−a.s. for every probability
measure P in this class.

We �rst give some intuition in one dimensional case which will help to well understand the
new formulation of 2BSDEs. Let Ht(y, z, γ) := G(γ) := 1

2
supa 6 a 6 a(aγ) = 1

2
(aγ+ − aγ−)

with 0 < a 6 a <∞, and suppose that the following fully nonlinear PDE
{
∂tu+G(D2u) = 0

u(T, .) = Φ
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has a smooth solution. The process Xα
t :=

∫ t

0
α

1/2
r dWr is well de�ned with (αr)0 6 r 6 T a

process taking values in [a, a]. Then the pair (Yt := u(t,Xα
t ), Zt := Du(t,Xα

t )) satis�es
the following equation

Yt = Φ(Xα
T ) −

∫ T

t

ZsdX
α
s +KT −Kt

with Kt :=
∫ t

0

(
G(D2u) − 1

2
αsD

2u
)
(s,Xα

s )ds. In particular, we notice that K is a nonde-
creasing process such that K0 = 0. Thus, it is natural that there is some nondecreasing
process appearing in the formulation of 2BSDEs.

Next, with a similar example, we suggest a representation for the solution Y of 2BSDEs.
Let u be a solution of the following fully nonlinear PDE

∂tu+H(., u,Du,D2u) = 0 and u(T, .) = Φ

with H(t, x, r, p, γ) = supa>0

{
1
2
aγ − f(t, x, r, p, a)

}
. Then we should have, formally, u =

sup
a∈Df

ua where Df denote the de�nition domain of f in a on R∗
+ and ua is a solution of

∂tu
a +

1

2
aD2ua − f(., ua, Dua, a) = 0 and ua(T, .) = Φ.

Since the above PDE is semilinear, it corresponds to a BSDE. This provides a possible
candidate for the solution Y to the Markovian 2BSDE associated to the fully nonlinear
PDE. We should have, again formally, Yt = sup

α
Y α

t with

Y α
s = Φ(Xα

T ) −
∫ T

s

f(r,Xα
r , Y

α
r , Z

α
r , αr)dr −

∫ T

s

Zα
r α

1/2
r dWr, s ∈ [t, T ],

where (αr)t 6 r 6 T is a positive process taking values inDf and whereXα
s = x+

∫ s

t
α

1/2
r dWr.

With the above examples in mind, we will now give a rigorous description of this frame-
work. Let Ω :=

{
ω ∈ C([0, T ],Rd) : ω0 = 0

}
be the canonical space equipped with the

uniform norm ‖ω‖∞ := sup0 6 t 6 T |ωt|, B the canonical process.

We de�ne F as the corresponding conjugate of a given map H w.r.t.γ by

Ft(ω, y, z, a) := sup
γ∈DH

{
1

2
Tr(aγ) −Ht(ω, y, z, γ)

}
for a ∈ S>0

d ,

where S>0
d denotes the set of all real valued positive de�nite d× d matrices. And

F̂t(y, z) := Ft(y, z, ât)

with ât := lim sup
εց0

1
ε

(
〈B〉t − 〈B〉t−ε

)
, where 〈B〉t := BtB

T
t −2

∫ t

0
BsdB

T
s is de�ned pathwise

and the lim sup is taken componentwise.

We denote by PH the non-dominated class of mutually singular probability measures,
where under each P ∈ PH , â has positive �nite bounds which may depend on P. We shall
consider the following 2BSDE,
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Yt = ξ −
∫ T

t

F̂s(Ys, Zs)ds−
∫ T

t

ZsdBs +KT −Kt, 0 6 t 6 T, PH − q.s.. (1.0.3)

De�nition 1.0.1. We say (Y, Z) is a solution to 2BSDE (1.0.3) if :

• YT = ξ, PH − q.s.

• For all P ∈ PH , the process KP de�ned below has nondecreasing paths P − a.s.

KP
t := Y0 − Yt +

∫ t

0

F̂s(Ys, Zs)ds+

∫ t

0

ZsdBs, 0 6 t 6 T, P − a.s. (1.0.4)

• The family
{
KP,P ∈ PH

}
satis�es the minimum condition

KP
t = ess infP

P
′∈PH(t+,P)

EP
′

t

[
KP

′

T

]
, 0 6 t 6 T, P − a.s., ∀P ∈ PH . (1.0.5)

where PH(t+,P) is the set of probability measures in PH which coincide with P until

t+.

Moreover if the family
{
KP,P ∈ PH

}
can be aggregated into a universal process K, we

call (Y, Z,K) a solution of 2BSDE (1.0.3).

The above minimum condition can be understood as that K is a martingale under the
nonlinear expectation generated by the set of probability measures PH .

Under uniform Lipschitz conditions similar to those of Pardoux and Peng, Soner, Touzi
and Zhang [101] established a complete theory of existence and uniqueness for the solution
to the above 2BSDE. Possamaï in [90] extended their results to the case of a continuous
linear growth generator. In the following, we will concentrate ourselves on this new for-
mulation.

1.1 Second Order BSDEs with Quadratic Growth Gen-

erators

Motivated by a robust utility maximization problem under volatility uncertainty, in this
part of the thesis, we generalize the 2BSDEs theory to the case where the generators have
quadratic growth in z.

Quadratic BSDEs in the classical case was �rst studied by Kobylanski [63], who proved
existence and uniqueness of a solution by means of approximation techniques borrowed
from the PDE literature, when the generator is continuous and has quadratic growth in
z and the terminal condition ξ is bounded. Tevzadze in [107] has given a direct proof
for the existence and uniqueness of a bounded solution in the Lipschitz-quadratic case,
proving the convergence of the usual Picard iteration. Recently, Briand and Hu [12] have
extended the existence result to unbounded terminal condition with exponential moments
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and proved uniqueness for a convex coe�cient [13]. Finally, Barrieu and El Karoui [6]
recently adopted a completely di�erent approach, embracing a forward point of view to
prove existence under conditions similar to those of Briand and Hu. Quadratic BSDEs
�nd their applications essentially in dynamic risk measures and utility maximization under
constraints.

For 2BSDEs with quadratic growth generators, our main assumptions on the function
F is as follows

Assumption 1.1.1. (i) PH is not empty, and the domain DFt(y,z) = DFt is independent

of (ω, y, z).

(ii) F is F-progressively measurable in DFt.

(iii) F is uniformly continuous in ω for the || · ||∞ norm.

(iv) F is continuous in z and has the following growth property. There exists (α, β, γ) ∈
R+ × R+ × R∗

+ such that

∣∣∣F̂t(y, z)
∣∣∣ 6 α+ β |y| + γ

2

∣∣â1/2z
∣∣2 ,PH − q.s., for all (t, y, z).

(v) F is C1 in y and C2 in z, and there are constants r and θ such that for all (t, y, z),

|DyF̂t(y, z)| 6 r, |DzF̂t(y, z)| 6 r + θ
∣∣â1/2z

∣∣ ,

|D2
zzF̂t(y, z)| 6 θ, PH − q.s..

Among the above assumptions, (i) and (iii) are taken from [101] and are needed to
deal with the technicalities induced by the quasi-sure framework; (ii) and (iv) are quite
standard in the classical BSDEs literature; and (v) introduced in Tevzadze [107] is essential
to prove existence of a solution to quadratic 2BSDEs.

The main di�erence with the case of Lipschitz generators is the quadratic growth as-
sumptions on z, which induce many technical di�culties in our framework. As for the
BSDEs with quadratic growth, we show that the Z-part of a solution to 2BSDEs also
satis�es certain BMO property. This property plays a very important role in the proof for
2BSDEs, much more than for the classical BSDEs.

With a generalization of the comparison theorem proved in [107] (see Theorem 2), we
then obtain a representation formula for solution to 2BSDE as in Theorem 4.4 of [101].

Theorem 1.1.1. Let Assumptions 1.1.1 hold. Assuming that ξ ∈ L∞
H and (Y, Z) ∈

D∞
H ×H2

H (the solution space, see Chapter 2 for precise de�nition) is a solution to 2BSDE

(1.0.3). Then, for any P ∈ PH and 0 6 t1 < t2 6 T ,

Yt1 = ess supP

P
′∈PH(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s. (1.1.1)

where (yP, zP) := (yP(τ, ξ), zP(τ, ξ)) is the unique solution of the classical BSDE with the

same generator F̂ (existence and uniqueness have been proved under our assumptions
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by Tevzadze in [107]), for any P ∈ PH , F-stopping time τ , and Fτ -measurable random

variable ξ ∈ L∞(P).

Consequently, the 2BSDE (1.0.3) has at most one solution in D∞
H × H2

H .

To prove existence of a solution, we generalize the approach in the article [101] to
the quadratic case, where the main tool is the so-called regular conditional probability
distributions of Stroock and Varadhan [104]. This allows to construct a solution to the
2BSDE when the terminal condition belongs to the space UCb(Ω). Then, by passing to
limit, we prove existence of solution when the terminal condition is in L∞

H , the closure of
UCb(Ω) under a certain norm de�ned in Chapter 2.

Theorem 1.1.2. Let ξ ∈ L∞
H . Under Assumption 1.1.1, there exists a unique solution

(Y, Z) ∈ D∞
H × H2

H to the 2BSDE (1.0.3).

Indeed, this approach relies very heavily on the Lipschitz and Lipschitz-quadratic as-
sumption on the generator. Besides, it can only be used if we are able �rst to prove
uniqueness of the solution through a representation property. This is why we put some
e�orts to provide another proof of existence based on approximation techniques similar
to those used in the classical BSDEs literature recalled above. But, since we are working
under a family of mutually singular probability measures which is not necessarily weakly
compact, both the classical monotone convergence theorem and the one proved by Denis,
Hu and Peng [28] in the framework of G-expectation can not be applied in our framework.
So the second approach will be left for future research.

Finally, we consider Markovian 2BSDEs with quadratic growth generators, whose solu-
tion can be represented by a deterministic function of t and Bt, and show the connection
of these 2BSDEs with fully nonlinear PDEs.

We de�ne f and ĥ as the corresponding conjugate and bi-conjugate functions of a deter-
ministic map h. Our object of interest is the following Markovian 2BSDE with terminal
condition ξ = g(BT )

Yt = g(BT ) −
∫ T

t

f(s, Bs, Ys, Zs, âs)ds−
∫ T

t

ZsdBs +KP
T −KP

t , Ph − q.s.

We establish the connection Yt = v(t, Bt), Ph − q.s., where v is the solution in some sense
of the following fully nonlinear PDE





∂v
∂t

(t, x) + ĥ (t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0, t ∈ [0, T )

v(T, x) = g(x).
(1.1.2)

1.2 Robust Utility Maximization in Non-dominated

Models

After establishing the result of uniqueness and existence of solution to 2BSDE with
quadratic growth generators, we are ready to study the robust utility maximization prob-
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lem. The problem of utility maximization, in its most general form, can be formulated as
follows

V ξ(x) := sup
π∈A

inf
Q∈P

EQ[U(Xπ
T − ξ)],

where A is a given set of admissible trading strategies, P is the set of all possible models,
U is a utility function, Xπ

T is the liquidation value of a trading strategy π with positive
initial capital Xπ

0 = x and ξ is a terminal liability, equal to 0 if U is only de�ned on R+.

In the standard problem of utility maximization, P contains only one probability measure
P. This means that the investor knows the "historical" probability P that describes the
dynamics of the underlying asset. But, in reality, the investor may have some uncertainty
on this probability, which means that there can be several objective probability measures in
P . In this case, we call the problem robust utility maximization. Many authors introduce
a dominated set of probability measures which are absolutely continuous with respect to a
reference probability measure P. This is going to be the case if we only take into account
drift uncertainty. However, if we want to work in the framework of uncertain volatility
models (UVM for short) introduced by Avellaneda, Lévy and Paras. [2] and Lyons [75],
the set of probability measures becomes non-dominated.

After the pioneer work of Von Neumann and Morgenstern [109], Merton �rst studied
portfolio selection with utility maximization by stochastic optimal control in the seminal
paper [81]. Kramkov and Schachermayer solved the problem of maximizing utility of
�nal wealth in a general semimartingale model by means of duality in [64]. Later, El
Karoui and Rouge [38] considered the indi�erence pricing problem via exponential utility
maximization by means of the BSDE theory. Their strategy set is supposed to be closed
and convex, and the problem is solved using BSDEs with quadratic growth generators. In
[54], with a similar approach, Hu, Imkeller and Müller studied three important types of
utility function with only closed admissible strategies set within incomplete market and
found that the maximization problem is linked to quadratic BSDEs. They also showed a
deep link between quadratic growth and the BMO spaces. Morlais [82] extended results in
[54] to more general continuous �ltration, for this purpose, proved existence and uniqueness
of the solution to a particular type quadratic BSDEs driven by a continuous martingale.
In a more recent paper [57], Jeanblanc, Matoussi and Ngoupeyou studied the indi�erence
price of an unbounded claim in an incomplete jump-di�usion model by considering the risk
aversion represented by an exponential utility function. Using the dynamic programming
equation, they found the price of an unbounded credit derivatives as a solution of a
quadratic BSDE with jumps.

The problem of robust utility maximization with dominated models was introduced
by Gilboa and Schmeidler [44]. An example of this case is when the drift is uncertain.
Anderson, Hansen and Sargent [1] and Hansen et al. [53] then introduced and discussed
the basic problem of robust utility maximization penalized by a relative entropy term
of the model uncertainty Q ∈ P with respect to a given reference probability measure
P0. Inspired by these latter works, Bordigoni, Matoussi and Schweizer [15] considered the
robust problem in a general context of semimartingale by stochastic control and proved
that the solution of this problem is a solution of a particular BSDE. In Müller's thesis
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[84], he studied the robust problem in the case when the drift is unknown with BSDEs
theory. Some results in the robust maximization problem have also been obtained with
convex duality. We can refer to Gundel [46] , Quenez [94], Schied [97], Schied and Wu
[98], Skiadas [99] in the case of continuous �ltration, among others,

To our best knowledge, robust utility maximization with non-dominated models, en-
compassing the case of the UVM framework, was �rst studied with duality theory by
Denis and Kervarec [29]. In the article, they took into account uncertainty about both
the volatility and the drift. The utility function U in their framework was supposed to be
bounded and to satisfy some conditions as in the classical case. They �rst established a
dual representation for robust utility maximization and then they showed that there exists
a least favorable probability which means that solving the robust problem is equivalent to
solving the standard problem under this probability. More recently, Tevzadze et al. [108]
studied a similar robust utility maximization problem for exponential and power utility
functions (and also for mean-square error criteria), by means of the dynamic programming
approach already used in [105]. They managed to show that the value function of their
problem solves a PDE. We will compare their results with ours in Section 3.7 of Chapter
3.

In our framework, we study robust utility maximization with non-dominated models,
more precisely UVM where â has uniform positive �nite bounds, via 2BSDEs theory.
Meanwhile, our set of mutually singular probability measures is more restrictive than in
[29]. We study the problem for exponential utility, power utility and logarithmic utility,
which, unlike in [29], are not bounded. In particular, we prove the existence of optimal
strategy and provide characterization of value function via solution to 2BSDEs. Moreover,
for exponential utility, the result also gives us the indi�erence price for a contingent claim
payed at a terminal date in the case of UVM. Then it allows us to price and hedge
contingent claim in a market where some external risks can't be hedged. At the end, we
also give some examples where we can explicitly solve the robust utility maximization
problems by �nding the solution to the associated 2BSDEs, and we try to give some
intuitions and comparisons with the classical framework of Merton's PDEs.

To �nd the value function V ξ(x) and an optimal trading strategy π∗, we follow the
main ideas of the general martingale optimality principle approach as in [38] and [54], but
adapting it here to a non-dominated models framework.

Let A be the set of admissible trading strategies. We construct Rπ a family of processes
which satis�es the following properties:

Properties 1.2.1. (i) Rπ
T = U(Xπ

T − ξ) for all π ∈ A

(ii) Rπ
0 = R0 is constant for all π ∈ A

(iii) We have

ess infP

P′∈PH(t+,P)
EP′

t [U(Xπ
T − ξ)] 6 Rπ

t , ∀π ∈ A

Rπ∗

t = ess infP

P′∈PH(t+,P)
EP′

t [U(Xπ∗

T − ξ)] for some π∗ ∈ A,P − a.s. for all P ∈ PH
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As the minimum condition on K, the property (iii) can be understood as that Rπ is a
supermartingale under the nonlinear expectation generated by PH for every π and Rπ∗

is
a martingale under the nonlinear expectation. Then it's not di�cult to see that

inf
P∈PH

EP[U(Xπ
T − ξ)] 6 R0 = inf

P∈PH

EP[U(Xπ∗

T − ξ)] = V ξ(x). (1.2.1)

We consider a �nancial market which consists of one bond with zero interest rate and d
stocks. The price process is given by

dSt = diag [St] (btdt+ dBt), PH − q.s.

where b is an Rd-valued uniformly bounded stochastic process which is uniformly contin-
uous in ω for the || · ||∞ norm.

It is worth to notice that the volatility is implicitly embedded in the model. Indeed,
under each P ∈ PH , we have dBs ≡ â

1/2
t dW P

t where W P is a Brownian motion under P.
Therefore, â1/2 plays the role of volatility under each P and thus allows us to model the
volatility uncertainty.

In the sequel, we show the main result for the exponential utility function which is
de�ned as

U(x) = −exp(−βx), x ∈ R for β > 0.

We have similar results for the power and the logarithmic utility functions.

We de�ne the set of admissible trading strategies as follows

De�nition 1.2.1 (Admissible strategies with constraints). Let A be a closed set in Rd.

The set of admissible trading strategies A consists of all d-dimensional progressively mea-

surable processes, π = (πt)0 6 t 6 T satisfying

π ∈ BMO and πt ∈ A, dt⊗ PH − a.e.

Usually, when dealing with these type of problems (see for instance [38] and [54]), an
exponential uniform integrability assumption is made on the trading strategies. However,
we consider instead stronger integrability assumptions of BMO type on the trading strate-
gies. The mathematical reasons behind this are detailed in Chapter 3, however, this also
has a �nancial interpretation. As explained in [43] which adopts the same type of BMO
framework, this assumption corresponds to a situation where the market price of risk is
assumed to be BMO. Just as in the case of a bounded market price of risk, this implies
that the minimum martingale measure is a true probability measure, and therefore there
is no arbitrage, in the sense of No Free Lunch with Vanishing Risk.

The investor wants to solve the optimization problem

V ξ(x) := sup
π∈A

inf
Q∈PH

EQ

[
−exp

(
−β(x+

∫ T

0

πt
dSt

St

− ξ)

)]
(1.2.2)

Our main result for robust exponential utility is as follows
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Theorem 1.2.1. Assume that the border of the set A is a C2 Jordan arc. Then the value

function of the optimization problem (1.2.2) is given by

V ξ(x) = −exp (−β (x− Y0)) ,

where Y0 is de�ned as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H of the

following 2BSDE

Yt = ξ −
∫ T

t

ZsdBs −
∫ T

t

F̂s(Zs)ds+KP
T −KP

t , P − a.s., ∀P ∈ PH . (1.2.3)

The generator has quadratic growth and is de�ned as follows

F̂t(ω, z) := Ft(ω, z, ât), (1.2.4)

where

Ft(ω, z, a) = −β
2
dist2

(
a1/2z +

1

β
θt(ω), Aa

)
+ z

′

a1/2θt(ω) +
1

2β
|θt(ω)|2 , for a ∈ S>0

d ,

with θt(ω) = a−1/2bt(ω) and Aa := a1/2A =
{
a1/2b : b ∈ A

}
.

Moreover, there exists an optimal trading strategy π∗ ∈ A in the sense that for all P ∈ PH

â
1/2
t π∗

t ∈ ΠAbat

(
â

1/2
t Zt +

1

β
θ̂t

)
, t ∈ [0, T ], P − a.s. (1.2.5)

where θ̂t := â
−1/2
t bt and Abat := â

1/2
t A =

{
â

1/2
t b : b ∈ A

}
.

We also show that the above result can be applied to study the problem of indi�erence
pricing of a contingent claim in the framework of uncertain volatility.

1.3 Second Order Re�ected BSDEs

In this part of the thesis, we generalize 2BSDEs theory to the case where there is a
lower re�ecting obstacle. Re�ected backward stochastic di�erential equations (RBSDEs
for short) were introduced by El Karoui et al. [34], followed among others by El Karoui,
Pardoux and Quenez in [37] and Bally, Caballero, Fernandez and El Karoui in [3] to
study related obstacle problems for PDE's and American options pricing. In this case,
the solution Y of the BSDE is constrained to stay above a given obstacle process S. In
order to achieve this, a nondecreasing process K is added to the solution





Yt = ξ +
∫ T

t
fs(Ys, Zs)ds−

∫ T

t
ZsdWs +KT −Kt, t ∈ [0, T ], P − a.s.

Yt > St, t ∈ [0, T ], P − a.s.
∫ T

0
(Ys − Ss)dKs = 0, P − a.s.,

where the last condition, also known as the Skorohod minimum condition means that the

process K only acts when Y reaches the obstacle S. This condition is crucial to obtain
the uniqueness of the solution to classical RBSDEs.
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Following these pioneering works, many authors have tried to relax the assumptions on
the generator of the RBSDE and the corresponding obstacle. Hence, Matoussi [77] and
Lepeltier, Matoussi and Xu [70] have extended the existence and uniqueness results to
generators with arbitrary growth in y. Then, Kobylanski, Lepeltier, Quenez and Torres
[65], Lepeltier and Xu [69] and Bayraktar and Yao [7] studied the case of a generator
which is quadratic in z. Similarly, Hamadène [48] and Lepeltier and Xu [68] proved
existence and uniqueness when the obstacle is no longer continuous. Cvitani¢ and Karatzas
[25] introduced a new notion of double barrier re�ected BSDEs in the case of Lipschitz
generators and showed their link with Dynkin games. Later, Hamadène, Lepeltier and
Matoussi [50] extended the existence and uniqueness result to the case of continuous
generators.

Our aim is to provide a complete theory of existence and uniqueness of solution to
2RBSDEs under the Lipschitz-type hypotheses of [101] on the generator. We show that in
this context, the de�nition of a 2RBSDE with a lower obstacle S is very similar to that of a
2BSDE. We do not need to add another nondecreasing process, unlike in the classical case.
The only change required is in the minimum condition that the nondecreasing process K
of the 2RBSDE must satisfy. We then establish the link between 2RBSDEs and American
contingent claims pricing with UVM.

We start with giving the precise de�nition of 2RBSDEs and showing how they are
connected to classical RBSDEs. As for 2BSDEs with quadratic growth generators, we
de�ne F as the corresponding conjugate of a certain map H w.r.t.γ by

Ft(ω, y, z, a) := sup
γ∈DH

{
1

2
Tr(aγ) −Ht(ω, y, z, γ)

}
for a ∈ S>0

d ,

F̂t(y, z) := Ft(y, z, ât) and F̂
0
t := F̂t(0, 0).

Our main assumptions on the function F are as follows

Assumption 1.3.1. (i) The domain DFt(y,z) = DFt is independent of (ω, y, z).

(ii) F is F-progressively measurable in DFt.

(iii) We have the following uniform Lipschitz-type property in y and z

∣∣∣F̂t(y, z) − F̂t(y
′

, z
′

)
∣∣∣ 6 C

(∣∣∣y − y
′
∣∣∣+
∣∣∣â1/2

(
z − z

′
)∣∣∣
)
, Pκ

H − q.s.

for all (t, y, y
′
, z, z

′
).

(iv) F is uniformly continuous in ω for the || · ||∞ norm.

Given a process S which will play the role of our lower obstacle. We will always assume
S veri�es the following properties

(i) S is F-progressively measurable and càdlàg.
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(ii) S is uniformly continuous in ω in the sense that for all t

|St(ω) − St(ω̃)| 6 ρ (‖ω − ω̃‖t) , ∀ (ω, ω̃) ∈ Ω2

for some modulus of continuity ρ and where we de�ne ‖ω‖t := sup
0 6 s 6 t

|ω(s)|.

The assumption (i) is quite standard in the classical BSDEs literature; the assumption
(ii) is needed to deal with the technicalities induced by the quasi-sure framework.

We denote by Pκ
H the non-dominated class of mutually singular probability measures,

where under each P ∈ Pκ
H , â has positive �nite bounds which may depend on P. Then,

we shall consider the following 2RBSDE with the lower obstacle S

Yt = ξ −
∫ T

t

F̂s(Ys, Zs)ds−
∫ T

t

ZsdBs +KT −Kt, 0 6 t 6 T, Pκ
H − q.s. (1.3.1)

De�nition 1.3.1. For ξ ∈ L2,κ
H , we say (Y, Z) ∈ D

2,κ
H × H

2,κ
H (the solution space, see

Chapter 4 for precise de�nition) is a solution to the 2RBSDE (1.3.1) if

• YT = ξ, Pκ
H − q.s.

• Yt > St, Pκ
H − q.s..

• ∀P ∈ Pκ
H , the process KP de�ned below has nondecreasing paths P − a.s.

KP
t := Y0 − Yt +

∫ t

0

F̂s(Ys, Zs)ds+

∫ t

0

ZsdBs, 0 6 t 6 T, P − a.s. (1.3.2)

• We have the following minimum condition

KP
t − kP

t = ess infP

P
′∈Pκ

H(t+,P)
EP

′

t

[
KP

′

T − kP
′

T

]
, 0 6 t 6 T, P − a.s., ∀P ∈ Pκ

H . (1.3.3)

where (yP, zP, kP) := (yP(τ, ξ), zP(τ, ξ), kP(τ, ξ)) denote the unique solution to the

following classical RBSDE with obstacle S for any P ∈ Pκ
H , F-stopping time τ , and

Fτ -measurable random variable ξ ∈ L2(P),





yP
t = ξ −

∫ τ

t
F̂s(y

P
s , z

P
s )ds−

∫ τ

t
zP

s dBs + kP
τ − kP

t , 0 6 t 6 τ, P − a.s.

yP
t > St, P − a.s.
∫ t

0

(
yP

s− − Ss−
)
dkP

s = 0, P − a.s., ∀t ∈ [0, T ].

The process K plays a double role. Intuitively, K forces Y to stay above the barrier S
and it also pushes Y above every yP. To justify this formulation, we can consider the case
where the set Pκ

H is reduced to a singleton {P}. From the above minimum condition, we
know that KP − kP is a martingale with �nite variation. Since P satis�es the martingale
representation property, this martingale is also continuous, and is therefore a constant.
Thus we have

0 = kP −KP, P − a.s.,
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and the 2RBSDE is equivalent to a standard RBSDE. In particular, we see that the part
of KP which increases only when Yt− > St− is null, which means that KP satis�es the
usual Skorohod condition with respect to the obstacle.

With some additional integrability conditions on F̂ 0 and S, we can have a representation
formula for a solution to a 2RBSDE via solutions to standard RBSDEs, which in turn
implies uniqueness of the solution. This is similar to ones obtained in Theorem 4.4 of
[101] and Theorem 2.1 in [90].

Theorem 1.3.1. Let Assumption 1.3.1 and additional integrability assumptions on F̂ 0

and S hold. Assume ξ ∈ L
2,κ
H and that (Y, Z) is a solution to 2RBSDE (1.3.1). Then, for

any P ∈ Pκ
H and 0 6 t1 < t2 6 T ,

Yt1 = ess supP

P
′∈Pκ

H(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s. (1.3.4)

Consequently, the 2RBSDE (1.3.1) has at most one solution in D
2,κ
H × H

2,κ
H .

Now that we have proved the representation (1.3.4), we can show, as in the classical
framework, that the solution Y of the 2RBSDE is linked to an optimal stopping problem

Proposition 1.3.1. Let (Y, Z) be the solution to the above 2RBSDE (1.3.1). Then for

each t ∈ [0, T ] and for all P ∈ Pκ
H

Yt = ess supP

P
′∈Pκ

H(t+,P)

ess sup
τ∈Tt,T

EP
′

t

[
−
∫ τ

t

F̂s(y
P
′

s , z
P
′

s )ds+ Sτ1{τ<T} + ξ1{τ=T}

]
, P − a.s. (1.3.5)

= ess sup
τ∈Tt,T

EP
t

[
−
∫ τ

t

F̂s(Ys, Zs)ds+ AP
τ − AP

t + Sτ1{τ<T} + ξ1{τ=T}

]
, P − a.s. (1.3.6)

where Tt,T is the set of all stopping times valued in [t, T ] and AP
t :=

∫ t

0
1{Ys−>Ss−}dK

P
s is

the part of KP which only increases when Ys− > Ss−.

It is worth noting here that unlike with classical RBSDEs, considering an upper obstacle
in our context is fundamentally di�erent from considering a lower obstacle. Indeed, having
a lower obstacle corresponds, at least formally, to add an nondecreasing process in the
de�nition of a 2BSDE. Since there is already an nondecreasing process in that de�nition,
we still end up with an nondecreasing process. However, in the case of an upper obstacle,
we would have to add a non-increasing process in the de�nition, therefore ending up
with a �nite variation process. This situation thus becomes much more complicated.
Furthermore, in this case we conjecture that the above representation of Proposition
would hold with a sup-inf instead of a sup-sup, indicating that this situation should be
closer to stochastic games than to stochastic control. This is an interesting generalization
that we leave for future research.

Then, as for the classical RBSDEs (see Proposition 4.2 in [37]), if we have more regularity
on the obstacle S, we can give a more explicit representation for the processes KP. When
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S is a semimartingale of the form

St = S0 +

∫ t

0

Usds+

∫ t

0

VsdBs + Ct, Pκ
H − q.s.

For each P ∈ Pκ
H , there exists a progressively measurable process (αP

t )0 6 t 6 T such that
0 6 α 6 1 and

1{Yt−=St−}dK
P
t = αP

t 1{Yt−=St−}

([
F̂t(St, Vt) − Ut

]+
dt+ dC−

t

)
,P − a.s..

For existence of a solution, we will generalize the pathwise construction approach of [101]
to the re�ected case. Let us mention that this proof requires us to extend the existing
results on the theory of g-martingales of Peng (see [88]) to the re�ected case. Since to the
best of our knowledge, those results do not exist in the literature, we prove them in the
Appendix in Chapter 4. We are now in position to state the main result of this part

Theorem 1.3.2. Let ξ ∈ L2,κ
H . Under Assumption 1.3.1 and additional integrability

assumptions on F̂ 0 and S, there exists a unique solution (Y, Z) ∈ D∞
H ×H2

H of the 2RBSDE

(1.3.1).

Finally, we use 2RBSDEs introduced previously to study the pricing problem of Amer-
ican contingent claims in a market with volatility uncertainty. The pricing of European
contingent claims has already been treated in this context by Avellaneda, Lévy and Paras
in [2], Denis and Martini in[27] with capacity theory and more recently by Vorbrink in
[110] using the G-expectation framework.

In a �nancial market with one bond L0 with interest rate rt and one risky asset L, whose
dynamic is given by

dLt

Lt

= µtdt+ dBt, Pκ
H − q.s.,

we consider an American contingent claim whose payo� at a stopping time ν > t is

S̃ν = Sν1[ν<T ] + ξ1[ν=T ].

Then with some assumptions on r, µ and S which ensure the existence of a solution to
a 2RBSDE, we have that, for ξ ∈ L2,κ

H , a superhedging price for the contingent claim is

Yt = ess supP

P
′∈Pκ

H(t+,P)

Y P
′

t , P − a.s., ∀P ∈ Pκ
H ,

where Y P
′

t is the price at time t of the same contingent claim in the complete market, with
underlying probability measure P

′
. The process Yt is the solution to a 2RBSDE with a

Lipschitz generator which depends on r and µ.

Furthermore, we have, for all ε, the stopping time Dε
t = inf{s > t, Ys 6 Ss + ε} ∧ T

is ε-optimal after t. Besides, for all P, if we consider the stopping times Dε,P
t =

inf
{
s > t, Y P

s 6 Ss + ε
}
∧T , which are ε-optimal for the American contingent claim under

each P, then as a consequence of the representation formula, we have

Dε
t > Dε,P

t , P − a.s. (1.3.7)
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1.4 Second Order BSDEs with Jumps

From the literature, we know that in the case of a �ltered probability space generated
by both a Brownian motion W and a Poisson random measure µ with compensator ν,
one can consider the following natural generalization of BSDE (1.0.1) to the case with
jumps. We say that (Y, Z, U) is a solution of the BSDE with jumps (BSDEJ for short)
with generator f and terminal condition ξ if for all t ∈ [0, T ],

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdWs −
∫ T

t

∫

Rd\{0}

Us(x)(µ− ν)(ds, dx), P − a.s.

(1.4.1)

Tang and Li [106] were the �rst to prove existence and uniqueness of a solution for (1.4.1)
with a �xed point argument in the case where f is Lipschitz in (y, z, u). Barles et al. [5]
studied the link of those BSDEJs with viscosity solutions of integral-partial di�erential
equations. Hamadène and Ouknine [51] have considered one re�ecting barrier BSDEJs.
They showed existence and uniqueness of the solution when the re�ecting barrier has only
inaccessible jumps, i.e., jumps which come only from the Poisson part. Hamadène and
Ouknine [52] and Essaky [39] then respectively dealt with re�ected BSDEJs when the
re�ecting processes are càdlàg. In general, in contrary to BSDEs, there is no comparison
theorem for BSDEJs with only Lipschitz generators. One needs stronger assumptions.
Royer in [95] proved a comparison theorem and studied nonlinear expectations related
to BSDEs with jumps which extends Peng's g-expectation framework to the jump case.
Crépey and Matoussi [24] also provided a priori estimates and comparison theorem for
re�ected and doubly re�ected BSDEJs. [83] studied a special BSDEJ with quadratic
growth related to the problem of exponential utility maximization under constraint. Re-
cently, [36] adopted a forward approach as in [6] to prove existence of quadratic BSDEJs
with unbounded terminal condition.

In this part of the thesis, we generalize 2BSDEs to the jump case. We can interpret these
equations as standard BSDEJs, under both volatility and jump measure uncertainty.

On the Skorohod space, we de�ne the continuous part of the canonical process B, noted
by Bc, and its purely discontinuous part, noted by Bd, both local martingales under
a local martingale measure. Such local martingale measures are obtained by using the
notion of martingale problem for semimartingales with general characteristics, as de�ned
in the book by Jacod and Shiryaev [56]. We then associate to the jumps of B a counting
measure µBd .

To de�ne correctly the notion of second order backward SDEs with jumps (2BSDEJs),
an important issue is the possibility to aggregate both the quadratic variation [B,B] of the
canonical process and the compensated jump measure associated to Bd, in the following
sense of [103] and [23]:

Let P be a set of non necessarily dominated probability measures and let {XP, P ∈ P}
be a family of random variables indexed by P . An aggregator of the family {XP, P ∈ P}
is a random variable X̂ such that

X̂ = XP, P − a.s, for every P ∈ P .
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We know that the quadratic variation [B,B] can be aggregated as a consequence of
the results from Bichteler [9], Karandikar [58], or more recently Nutz [86]. However, the
predictable compensator is usually obtained by the Doob-Meyer decomposition of the
submartingale [B,B]. It is therefore clear that this compensator depends explicitly on the
underlying probability measure, and it is not clear at all whether an aggregator always
exists or not. This is a main di�erence with the continuous case.

Soner, Touzi and Zhang, motivated by the study of stochastic target problems under
volatility uncertainty, obtained in [103] an aggregation result for a family of probability
measures corresponding to the laws of some continuous martingales on the canonical space
Ω = C(R+,Rd), under a separability assumption on the quadratic variations (see their
de�nition 4.8) and an additional consistency condition (which is usually only necessary)
for the family to aggregate.

In our context, we follow the spirit of [103] and restrict our set of probability measures
(by adding an analogous separability condition for jump measures) in order to generalize
some of their results in [103] to the case of processes with jumps. We characterize the
family of probability measures where we can aggregate both the quadratic variation and
the compensated jump measure.

After addressing this aggregation issue, we are in a position to prove the wellposedness
of 2BSDEJ under a set of probability measures, denoted by PÃ, which has the required
characterization. We give a pathwise de�nition of the process â, which is an aggregator
for the density of the quadratic variation of the continuous part Bc,

ât := lim sup
εց0

1

ε

(
〈Bc〉t − 〈Bc〉t−ε

)
,

and de�ne a process ν̂, which is an aggregator of the predictable compensators associated
to the jump measure µBd

ν̂t(A) = νP
t (A), for every P ∈ P̃A. (1.4.2)

We then denote
µ̃Bd(dt, dx) := µBd(dt, dx) − ν̂t(dx)dt.

The generator F , de�ned as the convex conjugate of a given map, veri�es the usual
assumptions in t and ω as in the 2BSDEs framework and the uniform Lipschitz assumption
in y and z. In the variable u, we need an assumption similar to that in Royer [95].

For all (t, ω, y, z, u1, u2, a, ν), there exist two processes γ and γ
′
such that

(i)

∫

E

(
u1(e) − u2(e)

)
γt(e)ν(de) 6 Ft(ω, y, z, u

1, a, ν) − Ft(ω, y, z, u
2, a, ν),

(ii) Ft(ω, y, z, u
1, a, ν) − Ft(ω, y, z, u

2, a, ν) 6

∫

E

(
u1(e) − u2(e)

)
γ

′

t(e)ν(de)

with c1(1 ∧ |x|) 6 γt(x) 6 c2(1 ∧ |x|) where c1 6 0, 0 6 c2 < 1,

and c
′

1(1 ∧ |x|) 6 γ
′

t(x) 6 c
′

2(1 ∧ |x|) where c′1 6 0, 0 6 c
′

2 < 1.
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Then, with assumption (i), we have a comparison theorem which is crucial to have a
representation for the Y -part of a solution. We need assumption (ii) to prove the minimum
condition satis�ed by K for the existence result.

As in [101] we �x a constant κ ∈ (1, 2] and restrict the probability measures in Pκ
H ⊂ PÃ.

We shall consider the following 2BSDEJ, for 0 6 t 6 T and Pκ
H-q.s.

Yt = ξ −
∫ T

t

Fs(Ys, Zs, Us, âs, ν̂s)ds−
∫ T

t

ZsdB
c
s −

∫ T

t

∫

E

Us(x)µ̃Bd(ds, dx) +KT −Kt.

(1.4.3)
Similar to 2BSDEs, we say (Y, Z, U) is a solution to the 2BSDEJ (1.4.3) if the equa-
tion holds true under each P ∈ Pκ

H with a nondecreasing process KP and the family{
KP,P ∈ Pκ

H

}
satis�es the minimum condition.

With a generalization of the comparison theorem and the minimum condition on K, as
usual, we have a representation formula for the Y -part of a solution.

Yt1 = ess supP

P
′∈Pκ

H(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s., (1.4.4)

where yP
′

is the solution to the standard BSDE with the same generator under P
′ ∈ Pκ

H .

For the existence, we generalize the usual approach in 2BSDEs theory to the jump case.
We construct a solution pathwise when terminal condition is in a regular space, then by
passing to limit, we show existence of a solution for terminal condition in its closure under
a certain norm.

As an application of the above results, we study a problem of robust utility maximization
under model uncertainty, which a�ects both the volatility process and the jump measure.
We consider a �nancial market consisting of one riskless asset, whose price is assumed
to be equal to one for simplicity, and one risky asset whose price process (St)0 6 t 6 T is
assumed to follow a jump-di�usion with regular coe�cients

dSt

St−
= btdt+ dBc

t +

∫

E

βt(x)µBd(dt, dx). (1.4.5)

The problem of the investor in this �nancial market is to maximize his expected exponen-
tial utility under model uncertainty from his total wealth Xπ

T − ξ, where ξ is a liability at
time T which is a FT -measurable random variable. The trading strategies are supposed
to take value in some compact set C. Then the value function V of the maximization
problem can be written as

V ξ(x) : = sup
π∈C

inf
P∈Pκ

H

EP [−exp (−η (Xπ
T − ξ))]

= −inf
π∈C

sup
P∈Pκ

H

EP [exp (−η (Xπ
T − ξ))] . (1.4.6)

We follow the ideas of the martingale optimality principle approach adapted to the
nonlinear framework as in Chapter 3. We prove that the value function of the optimization
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problem 1.4.6 is given by
V ξ(x) = −e−ηxY0,

where Y0 is de�ned as the initial value of the unique solution (Y, Z, U) of the 2BSDEJ
with terminal condition eηξ and the generator

Ft(y, z, u, a, ν) := − inf
π∈C

{
(−ηbt +

η2

2
πa)πy − ηπaz +

∫

E

(
e−ηπβt(x) − 1

)
(y + u(x))ν(dx)

}
.

Moreover, there exists an optimal trading strategy π∗ realizing the in�mum above.

Finally, as in Lim and Quenez [73] for BSDEs, by making a change of variables, we
derive existence and uniqueness of a solution to a 2BSDEJ with quadratic growth from
this 2BSDEJ with a Lipschitz generator.

Recall that Pardoux and Peng [87] proved that if the randomness in g and ξ is induced
by the current value of a state process de�ned by a forward stochastic di�erential equation,
then the solution to a BSDE could be linked to the solution of a semilinear PDE by means
of a generalized Feynman-Kac formula. Soner, Touzi and Zhang [101] also introduced the
second order backward SDEs in a non dominated framework. Their equations generalize
the point of view of Pardoux and Peng, in the sense that they are connected to the larger
class of fully nonlinear PDEs. In this context, the 2BSDEJs are the natural candidates
for a probabilistic solution of fully nonlinear integro-di�erential equations. This is the
purpose of our accompanying paper [62].

1.5 Numerical Implementation

In this part of the thesis, I present some practical work realized during an internship during
the �rst year of this PhD study. The subject is Monte Carlo method for options pricing
with UVM . The objective is not to prove convergence results of new numerical schemes,
but to implement the existing schemes (see Guyon and Henry-Labordère [47]), and to test
and possibly make improvement in practice. This work allowed me to understand better
these schemes and to be familiar with them. For future research, I would like to suggest
a purely probabilistic scheme with the new formulation of 2BSDEs in view (see [101]).

As explained in El Karoui, Peng and Quenez [33] and in El Karoui, Hamadène and
Matoussi [35], BSDEs can be used for the pricing of contingent claims by replication in
a complete market (with a linear generator f) and more interesting in imperfect market
(with a Lipschitz generator f). More precisely, Y corresponds to the value of the repli-
cation portfolio and Z is related to the hedging strategy. Since the analytical solution
exists to BSDEs only in few case, numerical resolution is important for the application
of BSDEs theory in practice in mathematical �nance. Moreover, due to the link between
BSDEs and semilinear PDEs, numerical resolution of BSDEs is also useful to provide
probabilistic numerical methods to solve PDEs. These methods are alternative to �nite
di�erence ones, and they are more e�cient in high-dimensional case. However, compare
to the large amount literature dedicated to the mathematical analysis of BSDEs, only a
few numerical methods have been proposed to solve them. We can refer to Bouchard and
Touzi [16], Zhang [111], Gobet et al. [45] among others.
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We consider the following (decoupled) forward-backward stochastic di�erential equations
on the time interval [0, 1]:

dXt = b(Xt)dt+ σ(Xt)dWt, dYt = f(t,Xt, Yt, Zt)dt− Zt· dWt

X0 = x and Y1 = g(X[0,1])

Zhang [111] proved a regularity result on Z, which allows the use of a regular determinis-
tic time mesh. Therefore by discretizing the continuous processes of BSDE and taking the
conditional expectation of both sides of equations (resp. �rst multiplying both sides by
Brownian increment ∆W , then taking the conditional expectation), one can compute Y
(resp. Z) backwardly. The following is the complete scheme, for 0 = t0 < t1 < · · · < tn = 1





Y ∆
tn = g∆(X∆

{t0,··· ,tn})

Y ∆
ti−1

= Ei−1

[
Y ∆

ti

]
+ f

(
ti−1, X

∆
ti−1

, Y ∆
ti−1

, Z∆
ti−1

)
∆ti

Z∆
ti−1

=
1

∆ti
Ei−1

[
Y ∆

ti
∆Wti

]
(1.5.1)

The key point of this scheme is to compute the conditional expectations. In [111], the
complexity to compute the conditional expectations becomes very large in multidimen-
sional problems, like in the case of �nite di�erence schemes for PDEs. To better deal with
high-dimensional problems, Bouchard and Touzi [16] proposed a Monte Carlo approach
when the terminal condition is non-path-dependent (that is Y1 = g(X1)). They suggested
to use a general regression operator found with Malliavin calculus which, however, requires
multiple sets of paths. Later, Gobet et al. [45] developed an approach based on Monte
Carlo regression on a �nite basis of functions, which was �rst introduced by Longsta�
and Schwartz [74] for the pricing of Bermuda options. Their approach is more e�cient,
because it requires only one set of paths to approximate all regression operators.

Numerical resolution of BSDEs can be applied to numerically solve only semilinear
PDEs. More recently, some authors proposed several Monte Carlo numerical schemes for
fully nonlinear PDEs. Theses schemes are largely inspired by those for BSDEs.

In their �rst formulation of 2BSDEs, Cheridito et al. [22] suggests an adaptation of
BSDEs numerical scheme to the 2BSDEs case. Inspired by Scheme Cheridito et al., Fahim
et al. [41] gives a new scheme without appealing to the theory of 2BSDEs. With uncertain
volatility models, the pricing PDE derived in Avellaneda et al. [2] is fully nonlinear. In
this particular case, Guyon and Henry-Labordère [47] improves the two precedent schemes
without using the theory of 2BSDE. For path-dependent options, these schemes can also
be applied with some modi�cations and by using results obtained in Gobet et al. [45].

For the pricing of Bermuda options, Bouchard and Warin [18] suggests to construct
con�dence intervals for the true price, one bound from a backward computation and the
other one from a backward-forward computation. Both quantities can be computed at
the same time with almost no additional cost. Their construction can be adopted in
the above probabilistic numerical methods for fully nonlinear PDEs. A small con�dence
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interval should reveal a good approximation of the exact price, while a large con�dence
interval should be a sign that the estimator was poor.

We implement Scheme Guyon and Henry-Labordère [47] for pricing options, with both
backward computations and backward-forward computations. We also suggest some tech-
niques to improve the scheme in practice. From the numerical test results, we generally
observe that the Monte Carlo method performs well for non-path-dependent options and
can provide prices with good precision for path-dependent ones. Moreover, the pricing
precision depends essentially on the quality of the approximation of conditional expec-
tations by regression. In order to get more precise results with this method, we should
improve the approximation of conditional expectations by using better regression proce-
dure, suitable control variates and/or non-parametric regressions in higher dimension. In
particular, special knowledge of �nancial products could be used to have better result.

1.6 Work in preparation and future research perspec-

tives

We end the introduction by presenting some work in preparation and future research
topics.

First, we are interested in Sobolev solutions of the obstacle problems associated to partial
integral-di�erential equations (PIDEs for short). We give probabilistic interpretation for
these solutions via Lipschitz RBSDEs with jumps by developing a stochastic �ow method
which has been introduced by Bally and Matoussi in [4] in the study of weak solution of
stochastic partial di�erential equations. In another work, we prove existence and unique-
ness of a solution to BSDEs with jumps with quadratic growth generators by a �xed point
argument as in Tevzadze [107], and we generalize the results of g-nonlinear expectations
related to BSDEs with jumps in Royer [95] to the case of quadratic growth. Last but not
least, we study the connection between 2BSDEJs and fully nonlinear PIDEs.

For future research, one topic is about 2RBSDEs with one upper obstacle and with
double obstacles. This will allow us to study problems of stochastic games with volatility
uncertainty. Other possibility is to extend 2BSDEJs to the case of quadratic growth
generators and the case with obstacles. For the existence of a solution to 2BSDEs with
quadratic growth and 2RBSDEs, it is also interesting to have another proof based on
approximation techniques similar to those used in the classical BSDEs literature. For that,
we need general monotone convergence theorem and dominated convergence theorem for
quasi-sure stochastic analysis. This approach should allow us to prove the wellposedness
of these classes of 2BSDEs under weaker assumptions. The last topic is about numerical
method. With the new formulation of 2BSDEs and 2BSDEJs in view, it will be interesting
to �nd purely probabilistic schemes for fully nonlinear PDEs and PIDEs.



Chapitre 2

Second Order BSDEs with Quadratic

Growth

2.1 Introduction

In this chapter, we provide an existence and uniqueness result for 2BSDEs with quadratic
growth generators. The outline is as follows. After introducing the framework of 2BSDEs
and the main assumptions on the generator in Section 2.2, we give a stochastic repre-
sentation for the Y -part of a solution in Section 2.3. This representation then implies
the uniqueness of the solution. In Section 2.5, we use the method introduced by Soner,
Touzi and Zhang [101] to construct the solution to the quadratic 2BSDE path by path.
Finally, in Section 2.7, we extend the results of Soner, Touzi and Zhang on the connections
between fully nonlinear PDEs and 2BSDEs to the quadratic case. This chapter is based
on [92].

In this chapter, we propose two very di�erent methods to prove the wellposedness in
the 2BSDE case. First, we recall some notations in Section 2.2 and prove a uniqueness
result in Section 2.3 by means of a priori estimates and a representation of the solution
inspired by the stochastic control theory. Then, Section 2.4 is devoted to the study of
approximation techniques for the problem of existence of a solution. We advocate that
since we are working under a family of non-dominated probability measures, the monotone
or dominated convergence theorem may fail. This is a major problem, and we spend some
time explaining why, in general, the classical methods using exponential changes fail for
2BSDEs. Nonetheless, using very recent results of Briand and Elie [14], we are able to
show a �rst existence result using an approximation method. Then in Section 2.3, we use a
completely di�erent method introduced by Soner, Touzi and Zhang [101] to construct the
solution to the quadratic 2BSDE path by path. Next, we use these results in Section 2.6
to study an application of 2BSDEs with quadratic growth to robust risk-sensitive control
problems. Finally, in Section 2.7, we extend the results of Soner, Touzi and Zhang [101] on
the connections between fully non-linear PDEs and 2BSDEs to the quadratic case. This
chapter is based on [92].

2.2 Preliminaries

Let Ω :=
{
ω ∈ C([0, T ],Rd) : ω0 = 0

}
be the canonical space equipped with the uniform

norm ‖ω‖∞ := sup0 6 t 6 T |ωt|, B the canonical process, P0 the Wiener measure, F :=

{Ft}0 6 t 6 T the �ltration generated by B, and F+ :=
{
F+

t

}
0 6 t 6 T

the right limit of F.
We �rst recall the notations introduced in [101].
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2.2.1 A �rst set of probability measures

A probability measure P is said to be a local martingale measure if the canonical process
B is a local martingale under P. By Karandikar [58], tit is known that there exists an
F-progressively measurable process, denoted as

∫ t

0
BsdBs, which coincides with the Itô's

integral, P− a.s. for all local martingale measure P. In addition, this provides a pathwise
de�nition of

〈B〉t := BtB
T
t − 2

∫ t

0

BsdB
T
s and ât := lim sup

εց0

1

ε

(
〈B〉t − 〈B〉t−ε

)
,

where T denotes the transposition and the lim sup is componentwise.

Let PW denote the set of all local martingale measures P such that

〈B〉t is absolutely continuous in t and â takes values in S>0
d , P − a.s. (2.2.1)

where S>0
d denotes the space of all d× d real valued positive de�nite matrices.

As in [101], we concentrate on the subclass PS ⊂ PW consisting of all probability
measures

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0

α1/2
s dBs, t ∈ [0, T ], P0 − a.s. (2.2.2)

for some F-progressively measurable process α taking values in S>0
d and satisfying∫ T

0
|αs| ds < +∞ P0 − a.s. We recall from [102] that every P ∈ PS satis�es the Blu-

menthal zero-one law and the martingale representation property.

Notice that the set PS is bigger that the set P̃S introduced in [90], which is de�ned by

P̃S :=
{
Pα ∈ PS, a 6 α 6 ā, P0 − a.s.

}
, (2.2.3)

for �xed matrices a and ā in S>0
d .

2.2.2 The Generator and the �nal set PH

Before de�ning the spaces under which we will be working or de�ning the 2BSDE itself,
we �rst need to restrict one more time our set of probability measures, using explicitely
the generator of the 2BSDE.

Following the PDE intuition recalled in the Introduction 1, let us �rst consider a map
Ht(ω, y, z, γ) : [0, T ] × Ω × R × Rd × DH → R, where DH ⊂ Rd×d is a given subset
containing 0. As expected, we de�ne its Fenchel-Legendre conjugate w.r.t.γ by

Ft(ω, y, z, a) := sup
γ∈DH

{
1

2
Tr(aγ) −Ht(ω, y, z, γ)

}
for a ∈ S>0

d

F̂t(y, z) := Ft(y, z, ât) and F̂ 0
t := F̂t(0, 0).

We denote by DFt(y,z) the domain of F in a for a �xed (t, ω, y, z), and as in [101] we
restrict the probability measures in PH ⊂ PS



2.2. Preliminaries 23

De�nition 2.2.1. PH consists of all P ∈ PS such that

aP 6 â 6 āP, dt× dP − a.s. for some aP, āP ∈ S>0
d , and ât ∈ DFt(0,0), dt× dP − a.s..

Remark 2.2.1. The restriction to the set PH obeys two imperatives. First, since F̂ is

destined to be the generator of our 2BSDE, we obviously need to restrict ourselves to

probability measures such that ât ∈ DFt(0,0). Moreover, we also restrict the measures

considered to the ones such that the density of the quadratic variation of B is bounded to

ensure that B is actually a true martingale under each of those probability measures. This

will be important to obtain a priori estimates.

Finally, we recall

De�nition 2.2.2. We say that a property holds PH-quasi surely (PH − q.s. for short) if

it holds P − a.s. for all P ∈ PH .

2.2.3 Assumptions

We now state our main assumptions on the function F which will be our main interest in
the sequel

Assumption 2.2.1. (i) PH is not empty, and the domain DFt(y,z) = DFt is independent

of (ω, y, z).

(ii) In DFt, F is F-progressively measurable.

(iii) F is uniformly continuous in ω for the || · ||∞ norm.

(iv) F is continuous in z and has the following growth property. There exists (α, β, γ) ∈
R+ × R+ × R∗

+ such that
∣∣∣F̂t(y, z)

∣∣∣ 6 α+ β |y| + γ

2

∣∣â1/2z
∣∣2 ,PH − q.s., for all (t, y, z).

(v) F is C1 in y and C2 in z, and there are constants r and θ such that for all (t, y, z),

|DyF̂t(y, z)| 6 r, |DzF̂t(y, z)| 6 r + θ
∣∣â1/2z

∣∣ ,

|D2
zzF̂t(y, z)| 6 θ, PH − q.s..

Remark 2.2.2. Let us comment on the above assumptions. Assumptions 2.2.1 (i) and

(iii) are taken from [101] and are needed to deal with the technicalities induced by the

quasi-sure framework. Assumptions 2.2.1 (ii) and (iv) are quite standard in the classical

BSDE literature. Finally, Assumption 2.2.1 (v) was introduced by Tevzadze in [107] for

quadratic BSDEs. It allowed him to prove existence of quadratic BSDEs through �xed point

arguments. This is this consequence which will be used for technical reasons in Section

2.5.

However, it was also showed in [107], that if both the terminal condition and F̂ 0 are small

enough, then Assumption 2.2.1 (v) can be replaced by a weaker one. We will therefore

sometimes consider
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Assumption 2.2.2. Let (i), (ii),(iii) and (iv) of Assumption 2.2.1 hold and

(v) We have the following "local Lipschitz" assumption in z, ∃µ > 0 and a progressively
measurable process φ ∈ BMO(PH) such that for all (t, y, z, z

′
),

∣∣∣F̂t(y, z) − F̂t(y, z
′

) − φt.â
1/2(z − z

′

)
∣∣∣ 6 µâ1/2

∣∣∣z − z
′
∣∣∣
(∣∣â1/2z

∣∣+
∣∣∣â1/2z

′
∣∣∣
)

PH − q.s.

(vi) We have the following uniform Lipschitz-type property in y
∣∣∣F̂t(y, z) − F̂t(y

′

, z)
∣∣∣ 6 C

∣∣∣y − y
′
∣∣∣ ,PH − q.s., for all (y, y

′

, z, t).

Furthermore, we observe that our subsequent proof for uniqueness of a solution of our

quadratic 2BSDE only use Assumption 2.2.2.

Remark 2.2.3. Assumption 2.2.1(i) implies that â always belongs to DFt(y,z). Moreover,

by Assumption 2.2.1(iv), we have that F̂ 0
t is actually bounded, so the strong integrability

condition

EP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ

dt

) 2
κ

]
< +∞,

with a constant κ ∈ (1, 2] introduced in [101] is not needed here.

2.2.4 Spaces of interest

We now recall from [101] the spaces and norms which will be needed for the formulation of
2BSDEs and add some speci�c spaces which are linked to our quadratic growth framework.

For p > 1, Lp
H denotes the space of all FT -measurable scalar r.v. ξ with

‖ξ‖p
Lp

H
:= sup

P∈PH

EP [|ξ|p] < +∞.

In the case p = +∞ we de�ne similarly the space of random variables which are bounded
quasi-surely and take as a norm

‖ξ‖L∞
H

:= sup
P∈PH

‖ξ‖L∞(P) .

H
p
H denotes the space of all F+-progressively measurable Rd-valued processes Z with

‖Z‖p
H

p
H

:= sup
P∈PH

EP

[(∫ T

0

|â1/2
t Zt|2dt

) p
2

]
< +∞.

D
p
H denotes the space of all F+-progressively measurable R-valued processes Y with

PH − q.s. càdlàg paths, and ‖Y ‖p
D

p
H

:= sup
P∈PH

EP

[
sup

0 6 t 6 T
|Yt|p

]
< +∞.
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In the case p = +∞ we de�ne

‖Y ‖D∞
H

:= sup
0 6 t 6 T

‖Yt‖L∞
H
.

For each ξ ∈ L1
H , P ∈ PH and t ∈ [0, T ] denote

E
H,P
t [ξ] := ess sup

P
′∈PH(t+,P)

PEP
′

t [ξ] where PH(t+,P) :=
{

P
′ ∈ PH : P

′

= P on F+
t

}
.

Here EP
t [ξ] := EP[ξ|Ft]. Then we de�ne for each p > 1,

L
p
H :=

{
ξ ∈ Lp

H : ‖ξ‖L
p
H
< +∞

}
where ‖ξ‖p

L
p
H

:= sup
P∈PH

EP

[
ess sup
0 6 t 6 T

P
(
E

H,P
t [|ξ|]

)p
]
.

In the case p = +∞ the natural generalization of the norm L
p
H is the norm L∞

H introduced
above. Therefore, we will use the latter in order to be consistent with the notations of
[101].

Finally, we denote by UCb(Ω) the collection of all bounded and uniformly continuous
maps ξ : Ω → R with respect to the ‖·‖∞-norm, and we let

Lp
H := the closure of UCb(Ω) under the norm ‖·‖L

p
H
, for every p > 1.

2.2.4.1 The space BMO(PH) and important properties

It is a well known fact that the Z component of the solution of a quadratic BSDE with
a bounded terminal condition belongs to the so-called BMO space. Since this link will
be extended and used intensively throughout the paper, we will recall some results and
de�nitions for the BMO space, and then extend them to our quasi-sure framework. We
�rst recall (with a slight abuse of notation) the de�nition of the BMO space for a given
probability measure P.

De�nition 2.2.3. BMO(P) denotes the space of all F+-progressively measurable Rd-valued

processes Z with

‖Z‖BMO(P) := sup
τ∈T T

0

∥∥∥∥E
P
τ

[∫ T

τ

|â1/2
t Zt|2dt

]∥∥∥∥
∞

< +∞,

where T T
0 is the set of Ft stopping times taking their values in [0, T ].

We also recall the so called energy inequalities (see [59] and the references therein). Let
Z ∈ BMO(P) and p > 1. Then we have

EP

[(∫ T

0

∣∣â1/2
s Zs

∣∣2 ds
)p]

6 2p!
(
4 ‖Z‖2

H2
BMO

)p

. (2.2.4)

The extension to a quasi-sure framework is then naturally given by the following space.

BMO(PH) denotes the space of all F+-progressively measurable Rd-valued processes Z
with

‖Z‖BMO(PH) := sup
P∈PH

‖Z‖BMO(P) < +∞.
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We say that
∫ .

0
ZsdBs is a BMO(PH) martingale if Z ∈ BMO(PH).

The main interest of the BMO spaces is that if a process Z belongs to it, then the
stochastic integral

∫ .

0
ZsdBs is a uniformly integrable martingale, which in turn allows

us to use it for changing the probability measure considered via Girsanov's Theorem.
The two following results give more detailed results in terms of Lr integrability of the
corresponding Doléans-Dade exponentials.

Lemma 2.2.1. Let Z ∈ BMO(PH). Then there exists r > 1, such that

sup
P∈PH

EP

[(
E
(∫ .

0

ZsdBs

))r]
< +∞.

Proof. By Theorem 3.1 in [59], we know that if ‖Z‖BMO(P) 6 Φ(r) for some one-to-one
function Φ from (1,+∞) to R∗

+, then E
(∫ .

0
ZsdBs

)
is in Lr(P). Here, since Z ∈ BMO(PH),

the same r can be used for all the probability measures. ⊔⊓

Lemma 2.2.2. Let Z ∈ BMO(PH). Then there exists r > 1, such that for all t ∈ [0, T ]

sup
P∈PH

EP
t







E
(∫ t

0
ZsdBs

)

E
(∫ T

0
ZsdBs

)




1
r−1


 < +∞.

Proof. This is a direct application of Theorem 2.4 in [59] for all P ∈ PH . ⊔⊓

We emphasize that the two previous Lemmas are absolutely crucial to our proof of
uniqueness and existence. Besides, they will also play a major role in Chapter 3.

2.2.5 The de�nition of the 2BSDE

Everything is now ready to de�ne the solution of a 2BSDE. We shall consider the following
2BSDE, which was �rst de�ned in [101]

Yt = ξ −
∫ T

t

F̂s(Ys, Zs)ds−
∫ T

t

ZsdBs +KT −Kt, 0 6 t 6 T, PH − q.s. (2.2.5)

De�nition 2.2.4. We say (Y, Z) ∈ D∞
H × H2

H is a solution to 2BSDE (2.2.5) if :

• YT = ξ, PH − q.s.

• For all P ∈ PH , the process KP de�ned below has nondecreasing paths P − a.s.

KP
t := Y0 − Yt +

∫ t

0

F̂s(Ys, Zs)ds+

∫ t

0

ZsdBs, 0 6 t 6 T, P − a.s. (2.2.6)

• The family
{
KP,P ∈ PH

}
satis�es the minimum condition

KP
t = ess infP

P
′∈PH(t+,P)

EP
′

t

[
KP

′

T

]
, 0 6 t 6 T, P − a.s., ∀P ∈ PH . (2.2.7)
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Moreover if the family
{
KP,P ∈ PH

}
can be aggregated into a universal process K, we

call (Y, Z,K) a solution of 2BSDE (2.2.5).

Remark 2.2.4. Let us comment on this de�nition. As already explained, the PDE intu-

ition leads us to think that the solution of a 2BSDE should be a supremum of solution of

standard BSDEs. Therefore for each P, the role of the non-decreasing process KP is in

some sense to "push" the process Y to remain above the solution of the BSDE with termi-

nal condition ξ and generator F̂ under P. In this regard, 2BSDEs share some similarities

with re�ected BSDEs.

Pursuing this analogy, the minimum condition (2.2.7) tells us that the processes KP act

in a "minimal" way (exactly as implied by the Skorohod condition for re�ected BSDEs),

and we will see in the next Section that it implies uniqueness of the solution. Besides, if the

set PH was reduced to a singleton {P}, then (2.2.7) would imply that KP is a martingale

and a non-decreasing process and is therefore null. Thus we recover the standard BSDE

theory.

Finally, we would like to emphasize that in the language of G-expectation of Peng [89],

(2.2.7) is equivalent, at least if the family can be aggregated into a process K, to saying

that −K is a G-martingale. This link has already observed in [103] where the authors

proved the G-martingale representation property, which formally corresponds to a 2BSDE

with a generator equal to 0.

2.3 A priori estimates and uniqueness of the solution

Before proving some a priori estimates for the solution of the 2BSDE (2.2.5), we will �rst
prove rigorously the intuition given in the Introduction 1 saying that the solution of the
2BSDE should be, in some sense, a supremum of solution of standard BSDEs. Hence,
for any P ∈ PH , F-stopping time τ , and Fτ -measurable random variable ξ ∈ L∞(P), we
de�ne (yP, zP) := (yP(τ, ξ), zP(τ, ξ)) as the unique solution of the following standard BSDE
(existence and uniqueness have been proved under our assumptions by Tevzadze in [107])

yP
t = ξ −

∫ τ

t

F̂s(y
P
s , z

P
s )ds−

∫ τ

t

zP
s dBs, 0 6 t 6 τ, P − a.s. (2.3.1)

First, we introduce the following simple generalization of the comparison Theorem proved
in [107] (see Theorem 2).

Proposition 2.3.1. Let Assumptions 2.2.2 hold true. Let ξ1 and ξ2 ∈ L∞(P) for some

probability measure P, and V i, i = 1, 2 be two adapted, càdlàg nondecreasing processes

null at 0. Let (Y i, Zi) ∈ D∞(P) × H2(P), i = 1, 2 be the solutions of the following BSDE

Y i
t = ξi −

∫ T

t

F̂s(Y
i
s , Z

i
s)ds−

∫ T

t

Zi
sdBs + V i

T − V i
t , P − a.s., i = 1, 2,

respectively. If ξ1 > ξ2, P− a.s. and V 1 − V 2 is nondecreasing, then it holds P− a.s. that

for all t ∈ [0, T ]

Y 1
t > Y 2

t .
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Proof. First of all, we need to justify the existence of the solutions to those BSDEs.
Actually, this is a simple consequence of the existence results of Tevzadze [107] and for
instance Proposition 3.1 in [76]. Then, the above comparison is a mere generalization of
Theorem 2 in [107]. ⊔⊓

We then have similarly as in Theorem 4.4 of [101] the following results which justi�es
the PDE intuition given in the Introduction.

Theorem 2.3.1. Let Assumptions 2.2.2 hold. Assume ξ ∈ L∞
H and that (Y, Z) ∈ D∞

H ×H2
H

is a solution to 2BSDE (2.2.5). Then, for any P ∈ PH and 0 6 t1 < t2 6 T ,

Yt1 = ess supP

P
′∈PH(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s. (2.3.2)

Consequently, the 2BSDE (2.2.5) has at most one solution in D∞
H × H2

H .

Before proceeding with the proof, we will need the following Lemma which shows that in
our 2BSDE framework, we still have a deep link between quadratic growth and the BMO
spaces.

Lemma 2.3.1. Let Assumption 2.2.2 hold. Assume ξ ∈ L∞
H and that (Y, Z) ∈ D∞

H × H2
H

is a solution to 2BSDE (2.2.5). Then Z ∈ BMO(PH).

Proof. Denote T T
0 the collection of stopping times taking values in [0, T ] and for each

P ∈ PH , let (τP
n )n > 1 be a localizing sequence for the P-local martingale

∫ .

0
ZsdBs. By

Itô's formula under P applied to e−νYt , which is a càdlàg process, for some ν > 0, we have
for every τ ∈ T T

0

ν2

2

∫ τP
n

τ

e−νYt

∣∣∣â1/2
t Zt

∣∣∣
2

dt = e
−νY

τP
n − e−νYτ − ν

∫ τP
n

τ

e−νYt−dKP
t + ν

∫ τP
n

τ

e−νYtF̂t(Yt, Zt)dt

+ ν

∫ τP
n

τ

e−νYt−ZtdBt −
∑

τ 6 s 6 τP
n

e−νYs − e−νYs− + ν∆Yse
−νYs− .

Since Y ∈ D∞
H , KP is nondecreasing and since the contribution of the jumps is negative

because of the convexity of the function x→ e−νx, we obtain with Assumption 2.2.1(iv)

ν2

2
EP

τ

[∫ τP
n

τ

e−νYt

∣∣∣â1/2
t Zt

∣∣∣
2

dt

]
6 e

ν‖Y ‖
D
∞
H

(
1 + νT

(
α+ β ‖Y ‖D∞

H

))

+
νγ

2
EP

τ

[∫ τP
n

τ

e−νYt

∣∣∣â1/2
t Zt

∣∣∣
2

dt

]
.

By choosing ν = 2γ, we then have

EP
τ

[∫ τP
n

τ

e−2γYt

∣∣∣â1/2
t Zt

∣∣∣
2

dt

]
6

1

γ
e
2γ‖Y ‖

D
∞
H

(
1 + 2γT

(
α+ β ‖Y ‖D∞

H

))
.
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Finally, by monotone convergence and Fatou's lemma we get that

EP
τ

[∫ T

τ

∣∣∣â1/2
t Zt

∣∣∣
2

dt

]
6

1

γ
e
4γ‖Y ‖

D
∞
H

(
1 + 2γT

(
α+ β ‖Y ‖D∞

H

))
,

which provides the result by arbitrariness of P and τ . ⊔⊓

Proof. [Proof of Theorem 2.3.1] The proof follows the lines of the proof of Theorem 4.4

in [101], but we have to deal with some speci�c di�culties due to our quadratic growth
assumption. First (2.3.2) implies that

Yt = ess supP

P
′∈PH(t+,P)

yP
′

t (T, ξ), t ∈ [0, T ], P − a.s. for all P ∈ PH ,

and thus is unique. Then, since we have that d 〈Y,B〉t = Ztd 〈B〉t , PH − q.s., Z is
also unique. We now prove (2.3.2) in three steps. Roughly speaking, we will obtain
one inequality using the comparison theorem, and the other one by using the minimal
condition (2.2.7).

(i) Fix 0 6 t1 < t2 6 T and P ∈ PH . For any P
′ ∈ PH(t+1 ,P), we have

Yt = Yt2 −
∫ t2

t

F̂s(Ys, Zs)ds−
∫ t2

t

ZsdBs +KP
′

t2
−KP

′

t , t1 6 t 6 t2, P
′ − a.s.

and thatKP
′

is nondecreasing, P
′−a.s. Then, we can apply the comparison Theorem

2.3.1 under P
′
to obtain Yt1 > yP

′

t1
(t2, Yt2), P

′ − a.s. Since P
′

= P on F+
t , we get

Yt1 > yP
′

t1
(t2, Yt2), P − a.s. and thus

Yt1 > ess supP

P
′∈PH(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s.

(ii) We now prove the reverse inequality. Fix P ∈ PH . Let us assume for the moment
that

CP,p
t1 := ess supP

P
′∈PH(t+1 ,P)

EP
′

t1

[(
KP

′

t2
−KP

′

t1

)p]
< +∞, P − a.s., for all p > 1.

For every P
′ ∈ PH(t+,P), denote

δY := Y − yP
′

(t2, Yt2) and δZ := Z − zP
′

(t2, Yt2).

By the Lipschitz Assumption 2.2.2(vi) and the local Lipschitz Assumption 2.2.2(v),
there exist a bounded process λ and a process η with

|ηt| 6 µ
(∣∣∣â1/2

t Zt

∣∣∣+
∣∣∣â1/2

t zP
′

t

∣∣∣
)
, P

′ − a.s.

such that

δYt =

∫ t2

t

(
λsδYs + (ηs + φs)â

1/2
s δZs

)
ds−

∫ t2

t

δZsdBs +KP
′

t2
−KP

′

t , t 6 t2, P
′ −a.s.
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De�ne for t1 6 t 6 t2

Mt := exp

(∫ t

t1

λsds

)
, P

′ − a.s.

Now, since φ ∈ BMO(PH), by Lemma 2.3.1, we know that the P
′
-exponential martin-

gale E
(∫ .

0
(φs + ηs)â

−1/2
s dBs

)
is a P

′
-uniformly integrable martingale (see Theorem

2.3 in the book by Kazamaki [59]). Therefore we can de�ne a probability measure
Q

′
, which is equivalent to P

′
, by its Radon-Nykodym derivative

dQ
′

dP′ = E
(∫ T

0

(φs + ηs))â
−1/2
s dBs

)
.

Then, by Itô's formula, we obtain, as in [101], that

δYt1 = E
Q

′

t1

[∫ t2

t1

MtdK
P
′

t

]
6 E

Q
′

t1

[
sup

t1 6 t 6 t2

(Mt)(K
P
′

t2
−KP

′

t1
)

]
,

since KP
′

is nondecreasing. Then, since λ is bounded, we have that M is also
bounded and thus for every p > 1

EP
′

t1

[
sup

t1 6 t 6 t2

(Mt)
p

]
6 Cp, P

′ − a.s. (2.3.3)

Since (η + φ)â
−1/2
s is in BMO(PH), we know by Lemma 2.2.1 that there ex-

ists r > 1, independent of the probability measure considered, such that

E
(∫ T

0
(φs + ηs)â

−1/2
s dBs

)
∈ Lr

H . Then it follows from the Hölder inequality and

Bayes Theorem that

δYt1 6

(
EP

′

t1

[
E
(∫ t2

0
(φs + ηs)â

−1/2
s dBs

)r]) 1
r

EP
′

t1

[
E
(∫ t2

0
(φs + ηs)â

−1/2
s dBs

)]
(

EP
′

t1

[(
sup

t1 6 t 6 t2

Mt

)q (
KP

′

t2
−KP

′

t1

)q
]) 1

q

6 C
(
CP,4q−1

t1

) 1
4q
(
EP

′

t1

[
KP

′

t2
−KP

′

t1

]) 1
4q
.

By the minimum condition (2.2.7) and since P
′ ∈ PH(t+,P) is arbitrary, this ends

the proof.

(iii) It remains to show that the estimate for CP,p
t1 holds for p > 1. By de�nition of the

family
{
KP,P ∈ PH

}
, we have

EP
′
[(
KP

′

t2
−KP

′

t1

)p]
6 C

(
1 + ‖Y ‖p

D∞
H

+ ‖ξ‖p
L∞

H
+ EP

′

t1

[(∫ t2

t1

∣∣∣â1/2
t Zt

∣∣∣
2

dt

)p])

+ CEP
′

t1

[(∫ t2

t1

ZtdBt

)p]
.
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Thus by the energy inequalities for BMO martingales and by Burkholder-Davis-
Gundy inequality, we get that

EP
′
[(
KP

′

t2
−KP

′

t1

)p]
6 C

(
1 + ‖Y ‖p

D∞
H

+ ‖ξ‖p
L∞

H
+ ‖Z‖2p

BMOH
+ ‖Z‖p

BMOH

)
.

Therefore, we have proved that

sup
P
′∈PH(t+1 ,P)

EP
′
[(
KP

′

t2
−KP

′

t1

)p]
< +∞.

Then we proceed exactly as in the proof of Theorem 4.4 in [101]. ⊔⊓

Remark 2.3.1. It is interesting to notice that in contrast with standard quadratic BSDEs,

for which the only property of BMO martingales used to obtain uniqueness is the fact

that their Doléans-Dade exponential is a uniformly integrable martingale, we need a lot

more in the 2BSDE framework. Indeed, we use extensively the energy inequalities and

the existence of moments for the Doléans-Dade exponential (which is a consequence of the

so called reverse Hölder inequalities, which is a more general version of Lemma 2.2.1).

Furthermore, we will also use the so-called Muckenhoupt condition (which corresponds

to Lemma 2.2.2, see [59] for more details) in both our proofs of existence. This seems

to be directly linked to the presence of the non-decreasing processes KP and raises the

question about whether it could be possible to generalize the recent approach of Barrieu

and El Karoui [6], to second-order BSDEs. Indeed, since they no longer assume a bounded

terminal condition, the Z part of the solution is no-longer BMO. We leave this interesting

but di�cult question to future research.

We conclude this section by showing some a priori estimates which will be useful in the
sequel. Notice that these estimates also imply uniqueness, but they use intensively the
representation formula (2.3.2).

Theorem 2.3.2. Let Assumption 2.2.2 hold.

(i) Assume that ξ ∈ L∞
H and that (Y, Z) ∈ D∞

H × H2
H is a solution to 2BSDE (2.2.5).

Then, there exists a constant C such that

‖Y ‖D∞
H

+ ‖Z‖2
BMO(PH) 6 C

(
1 + ‖ξ‖L∞

H

)

∀p > 1, sup
P∈PH , τ∈T T

0

EP
τ

[
(KP

T −KP
τ )p
]

6 C
(
1 + ‖ξ‖p

L∞
H

)
.

(ii) Assume that ξi ∈ L∞
H and that (Y i, Zi) ∈ D∞

H × H2
H is a corresponding solution to

2BSDE (2.2.5), i = 1, 2. Denote δξ := ξ1 − ξ2, δY := Y 1 − Y 2, δZ := Z1 − Z2 and

δKP := KP,1 −KP,2. Then, there exists a constant C such that

‖δY ‖D∞
H

6 C ‖δξ‖L∞
H

‖δZ‖2
BMO(PH) 6 C ‖δξ‖L∞

H

(
1 +

∥∥ξ1
∥∥

L∞
H

+
∥∥ξ2
∥∥

L∞
H

)

∀p > 1, sup
P∈PH

EP

[
sup

0 6 t 6 T

∣∣δKP
t

∣∣p
]

6 C ‖ξ‖
p
2
L∞

H

(
1 +

∥∥ξ1
∥∥ p

2

L∞
H

+
∥∥ξ2
∥∥ p

2

L∞
H

)
.
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Proof.

(i) By Theorem 2.3.1 we know that for all P ∈ PH and for all t ∈ [0, T ] we have

Yt = ess sup
P
′∈PH(t+,P)

yP
′

t P − a.s..

Then by Lemma 1 in [12], we know that for all P ∈ PH

∣∣yP
t

∣∣ 6
1

γ
log
(
EP

t [ψ(|ξ|)]
)
, where ψ(x) := exp

(
γα

eβT − 1

β
+ γeβTx

)
.

Thus, we obtain
∣∣yP

t

∣∣ 6 α
eβT − 1

β
+ eβT ‖ξ‖L∞

H
,

and by the representation recalled above, the estimate of ‖Y ‖D∞
H
is obvious.

By the proof of Lemma 2.3.1, we have now

‖Z‖2
BMO(PH) 6 Ce

C‖Y ‖
D
∞
H

(
1 + ‖Y ‖D∞

H

)
6 C

(
1 + ‖ξ‖L∞

H

)
.

Finally, we have for all τ ∈ T T
0 , for all P ∈ PH and for all p > 1, by de�nition

(KP
T −KP

τ )p =

(
Yτ − ξ +

∫ T

τ

F̂t(Yy, Zt)dt+

∫ T

τ

ZtdBt

)p

.

Therefore, by our growth Assumption 2.2.1(iv)

EP
τ

[
(KP

T −KP
τ )p
]

6 C

(
1 + ‖ξ‖p

L∞
H

+ ‖Y ‖p
D∞

H
+ EP

τ

[(∫ T

τ

∣∣∣â1/2
t Zt

∣∣∣
2

dt

)p])

+ CEP
τ

[(∫ T

τ

ZtdBt

)p]

6 C
(
1 + ‖ξ‖p

L∞
H

+ ‖Z‖2p
BMO(PH) + ‖Z‖p

BMO(PH)

)

6 C
(
1 + ‖ξ‖p

L∞
H

)
,

where we used again the energy inequalities and the BDG inequality. This provides
the estimate for KP by arbitrariness of τ and P.

(ii) With the same notations and calculations as in step (ii) of the proof of Theorem
2.3.1, it is easy to see that for all P ∈ PH and for all t ∈ [0, T ], we have

δyP
t = E

Q
t [MT δξ] 6 C ‖δξ‖L∞

H
,

since M is bounded and we have (2.3.3). By Theorem 2.3.1, the estimate for δY
follows.
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Now apply Itô's formula under a �xed P ∈ PH to |δY |2 between a given stopping
time τ ∈ T T

0 and T

EP
τ

[
|δYτ |2 +

∫ T

τ

∣∣∣â1/2
t δZt

∣∣∣
2

dt

]
6 EP

τ

[
|δξ|2 − 2

∫ T

τ

δYt

(
F̂t(Y

1
t , Z

1
t ) − F̂t(Y

2
t , Z

2
t )
)
dt

]

+ 2EP
τ

[∫ T

τ

δYt−d(δK
P
t )

]
.

Then, we have by Assumption 2.2.1(iv) and the estimates proved in (i) above

EP
τ

[∫ T

τ

∣∣∣â1/2
t δZt

∣∣∣
2

dt

]
6 C ‖δY ‖D∞

H

(
1 +

2∑

i=1

∥∥Y i
∥∥

D∞
H

+
∥∥Zi
∥∥

BMO(PH)

)

+ ‖δξ‖2
L∞

H
+ 2 ‖δY ‖D∞

H
EP

τ

[∣∣∣KP,1
T −KP,1

τ

∣∣∣+
∣∣∣KP,2

T −KP,2
τ

∣∣∣
]

6 C ‖δξ‖L∞
H

(
1 +

∥∥ξ1
∥∥

L∞
H

+
∥∥ξ2
∥∥

L∞
H

)
,

which implies the required estimate for δZ.

Finally, by de�nition, we have for all P ∈ PH and for all t ∈ [0, T ]

δKP
t = δY0 − δYt +

∫ t

0

F̂s(Y
1
s , Z

1
s ) − F̂s(Y

2
s , Z

2
s )ds+

∫ t

0

δZsdBs.

By Assumptions 2.2.2(iv) and (vi), it follows that

sup
0 6 t 6 T

∣∣δKP
t

∣∣ 6 C

(
‖δY ‖D∞

H
+

∫ T

0

∣∣â1/2
s δZs

∣∣ (1 +
∣∣â1/2

s Z1
s

∣∣+
∣∣â1/2

s Z2
s

∣∣) ds
)

+ sup
0 6 t 6 T

∣∣∣∣
∫ t

0

δZsdBs

∣∣∣∣ ,

and by Cauchy-Schwarz, BDG and energy inequalities, we see that

EP

[
sup

0 6 t 6 T

∣∣δKP
t

∣∣p
]

6 CEP

[(∫ T

0

(
1 +

∣∣â1/2
s Z1

s

∣∣2 +
∣∣â1/2

s Z2
s

∣∣2
)
ds

)p] 1
2

× EP

[(∫ T

0

∣∣â1/2
s δZs

∣∣2 ds
)p] 1

2

+ C

(
‖δξ‖p

L∞
H

+ EP

[(∫ T

0

∣∣â1/2
s δZs

∣∣2 ds
)p/2

])

6 C ‖δξ‖p/2
L∞

H

(
1 +

∥∥ξ1
∥∥p/2

L∞
H

+
∥∥ξ2
∥∥p/2

L∞
H

)
.

⊔⊓

Remark 2.3.2. Let us note that the proof of (i) only requires that Assumption 2.2.2(iv)

holds true, whereas (ii) also requires Assumption 2.2.2(v) and (vi).
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2.4 2BSDEs and monotone approximations

This Section is devoted to the study of monotone approximations in the 2BSDE framework.
We start with the simplest quadratic 2BSDEs, which allows us to introduce a quasi-
sure version of the entropic risk measure. In that case, we obtain existence through
the classical exponential change. Then, we show that for more general generators, this
approach usually fails because of the absence of a general quasi-sure monotone convergence
Theorem. Finally, we prove an existence result using another type of approximation which
has the property to be stationary.

2.4.1 Entropy and purely quadratic 2BSDEs

Given ξ ∈ L∞
H , we �rst consider the purely quadratic 2BSDE de�ned as follows

Yt = −ξ +

∫ T

t

γ

2

∣∣â1/2
s Zs

∣∣2 ds−
∫ T

t

ZsdBs +KP
T −KP

t , 0 6 t 6 T, PH − q.s. (2.4.1)

Then we use the classical exponential change of variables and de�ne

Y t := eγYt , Zt := γY tZt, K
P

t := γ

∫ t

0

Y sdK
P
s −

∑

0 6 s 6 t

eγYs − eγYs− − γ∆Yse
γYs− .

At least formally, we see that (Y , Z,K
P
) veri�es the following equation

Y t = e−γξ −
∫ T

t

ZsdBs +K
P

T −K
P

t , 0 6 t 6 T, P − a.s. ∀P ∈ PH (2.4.2)

which is in fact a 2BSDE with generator equal to 0 (and thus Lipschitz), provided that

the familly
(
K

P
)

P∈PH

satis�es the minimum condition (2.2.7). Thus the purely quadratic

2BSDE (2.4.1) is linked to the 2BSDE with Lipschitz generator (2.4.2), which has a unique
solution by Soner, Touzi and Zhang [101]. We now make this rigorous.

Proposition 2.4.1. The 2BSDE (2.4.1) has a unique solution (Y, Z) ∈ D∞
H × H2

H given

by

Yt =
1

γ
ln

(
ess supP

P
′∈PH(t+,P)

EP
′

t

[
e−γξ

]
)
, P − a.s., t ∈ [0, T ], for all P ∈ PH .

Proof. Uniqueness is a simple consequence of Theorem 2.3.1. In the following, we prove
the existence in 3 steps.
Step 1: Let (Y , Z) ∈ D2

H ×H2
H be the unique solutinon to the 2BSDE (2.4.2) and K

P
be

the correponding non-decreasing processes. In particular, we know that

Y t = ess supP

P
′∈PH(t+,P)

EP
′

t

[
e−γξ

]
, P − a.s.,

which implies that Y ∈ D∞
H , since

0 < e
−γ‖ξ‖

L
∞
H 6 Yt 6 e

γ‖ξ‖
L
∞
H .
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We can therefore make the following change of variables

Yt :=
1

γ
ln
(
Y t

)
, Zt :=

1

γ

Zt

Y t

.

Then by Itô's formula, we can verify that the pair (Y, Z) ∈ D∞
H ×H2

H satis�es (2.4.1) with

KP
t :=

∫ t

0

1

γY s

dK
P,c

s −
∑

0<s 6 t

1

γ
log

(
1 − ∆K

P,d

s

Y s−

)
.

Moreover, notice that KP is non-decreasing with KP
0 = 0.

Step 2: Denote now (yP, zP) the solutions of the standard BSDEs corresponding to the
2BSDE (2.4.1) (existence and uniqueness are ensured for example by [107]). Furthermore,
if we de�ne

yP
t := eγyP

t , zP
t := γyP

t z
P
t ,

then we know that (yP, zP) solve the standard BSDE under P corresponding to (2.4.2).
Due to the monotonicity of the function x→ ln(x) and the representation for Y

Y t = ess supP

P
′∈PH(t+,P)

yP
t = ess supP

P
′∈PH(t+,P)

EP
′

t

[
e−γξ

]
, P − a.s.,

we have the following representation for Y

Yt = ess supP

P
′∈PH(t+,P)

yP
t =

1

γ
ln

(
ess supP

P
′∈PH(t+,P)

EP
′

t

[
e−γξ

]
)
, P − a.s.

Step 3: Finally, it remains to check the minimum condition for the family of non-
decreasing processes

{
KP
}
. Since the purely quadratic generator satis�es the Assumption

2.2.1, we can derive the minimum condition from the above representation for Y exactly
as in the proof of Theorem 2.4.1 in Subsection 2.4.3. ⊔⊓
Thanks to the above result, we can de�ne a quasi-sure (or robust) version of the entropic

risk measure under volatility uncertainty

eγ,t(ξ) :=
1

γ
ln

(
ess supP

P
′∈PH(t+,P)

EP
′

t

[
e−γξ

]
)
,

where the parameter γ stands for the risk tolerance. We emphasize that, as proved in
[102] (see Proposition 4.11), the solution of (2.4.1) is actually F-measurable, so we also
have

eγ,t(ξ) :=
1

γ
ln

(
ess supP

P
′∈PH(t,P)

EP
′

t

[
e−γξ

]
)
,

which in particular implies that

eγ,0(ξ) =
1

γ
ln

(
sup

P∈PH

EP
[
e−γξ

])
.

More generally, by the same exponential change and arguments above, we can also prove
that there exists a unique solution to 2BSDEs with terminal condition ξ ∈ L∞

H and the

following type of quadratic growth generators â1/2
t zg(t, ω) + h(t, ω) − γ

2

∣∣∣â1/2
t z

∣∣∣
2

where g

and h are assumed to be bounded, adapted and uniformly continuous in ω for the ‖·‖∞.
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2.4.2 Why the exponential transformation may fail in general?

Coming back to Kobylanski [63], we know that the exponential transformation used in
the previous subsection is an important tool in the study of quadratic BSDEs. However,
unlike with a purely quadratic generator, in the general case the exponential change does
not lead immediately to a Lipschitz BSDE. For the sake of clarity, let us consider the
2BSDE (2.2.5) and let us denote

η := eγξ, Y t := eγYt , Zt := γY tZt, K
P

t := γ

∫ t

0

Y sdK
P
s −

∑

0 6 s 6 t

eγYs − eγYs− −γ∆Yse
γYs− .

Then we expect that, at least formally, if (Y, Z) is a solution of (2.2.5), then (Y , Z) is a
solution of the following 2BSDE

Y t = η− γ

∫ T

t

Y s


F̂s

(
logY s

γ
,
Zs

γY s

)
+

∣∣∣â1/2
s Zs

∣∣∣
2

2γY
2

s


 ds−

∫ T

t

ZsdBs +K
P

T −K
P

t . (2.4.3)

Let us now de�ne for (t, y, z) ∈ [0, T ] × R∗
+ × Rd,

Gt(ω, y, z) := γy


F̂t

(
ω,

logy

γ
,
z

γy

)
+

∣∣∣â1/2
t z

∣∣∣
2

2γy2


 .

Then, despite the fact that the generator G is not Lipschitz, it is possible, as shown
by Kobylanski [63], to �nd a sequence (Gn)n > 0 of Lipschitz functions which decreases
to G. Then, it is possible, thanks to the result of [101] to de�ne for each n the solution
(Y n, Zn) of the corresponding 2BSDE. The idea is then to prove existence and uniqueness
of a solution for the 2BSDE with generator G (and thus also for the 2BSDE (2.2.5)) by
passing to the limit in some sense in the sequence (Y n, Zn).

If we then follow the usual approach for standard BSDEs, the �rst step is to argue
that thanks to the comparison theorem (which still holds true for Lipschitz 2BSDEs,
see [101]), the sequence Y n is decreasing, and thanks to a priori estimates that it must
converge PH −q.s. to some process Y . And this is exactly now that the situation becomes
much more complicated with 2BSDEs. Indeed, if we were in the classical framework,
this convergence of Y n together with the a priori estimates would be su�cient to prove
the convergence in the usual H2 space, thanks to the dominated convergence theorem.
However, in our case, since the norms involve the supremum over a family of probability
measures, this theorem can fail (we refer the reader to Section 2.6 in [90] for more details).
Therefore, we cannot obtain directly that

sup
P∈PH

EP

[∫ T

0

|Y n
t − Yt|2 dt

]
−→

n→+∞
0,

which is a crucial step in the approximation proof.

This is precisely the major di�culty when considering the 2BSDE framework. The only
monotone convergence Theorem in a similar setting has been proved by Denis, Hu and
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Peng (see [28]). However, one need to consider random variables Xn which are regular
in ω, more precisely quasi-continuous, that is to say that for every ε > 0, there exists an
open set Oε such that the Xn are continuous in ω outside Oε and such that

sup
P∈PH

P(Oε) 6 ε.

Moreover, the set of probability measures considered must be weakly compact. This
induces several fundamental problems when one tries to apply directly this Theorem to
(Y n)n > 0.

(i) First, if we assume that the terminal condition ξ is in UCb(Ω), since the generator

F̂ (and thus Gn) are uniformly continuous in ω, we can reasonably expect to be able to

prove that the Y n will be also continuous in ω, P − a.s., for every P ∈ PH . However, this

is clearly not su�cient to obtain the quasi-continuity. Indeed, for each P, we would have

a P-negligible set outside of which the Y n are continuous in ω. But since the probability

measures are mutually singular, this does not imply the existence of the open set of the

de�nition of quasi-continuity.

We moreover emphasize that it is a priori a very di�cult problem to show the quasi-

continuity of the solution of a 2BSDE, because by de�nition, it is de�ned P − a.s. for

every P, and the quasi-continuity is by essence a notion related to the theory of capacities,

not of probability measures.

(ii) Next, it has been shown that if we assume that the matrices aP and aP appearing

in De�nition 2.2.1 are uniform in P, then the set PH is only weakly relatively compact.

Then, we are left with two options. First, we can restrict ourselves to a closed subset of

PH , which will therefore be weakly compact. However, as pointed out in [102], it is not

possible to restrict arbitrarily the probability measures considered. Indeed, since the whole

approach of [101] to prove existence of Lipschitz 2BSDEs relies on stochastic control and

the dynamic programming equation, we need the set of processes α in the de�nition of PS

(that is to say our set of control processes) to be stable by concatenation and bifurcation

(see for instance Remark 3.1 in [17]) in order to recover the results of [101]. And it is not

clear at all to us whether it is possible to �nd a closed subset of PH satisfying this stability

properties.

Otherwise, we could work with the weak closure of PH . The problem now is that the

probability measures in that closure no longer satisfy necessarily the martingale represen-

tation property and the 0-1 Blumenthal law. In that case (since the �ltration F will only

be quasi-left continuous), and as already shown by El Karoui and Huang [32], we would

need to rede�ne a solution of a 2BSDE by adding a martingale orthogonal to the canonical

process. However, de�ning such solutions is a complicated problem outside of the scope of

this paper.

We hope to have convinced the reader that because of all the reasons listed above, it
seems di�cult in general to prove existence of a solution to a 2BSDE using approximation
arguments. However, the situation is not hopeless. Indeed, in [90], the author uses such
an approach to prove existence of a solution to a 2BSDE with a generator with linear
growth satisfying some monotonicity condition. The idea is that in this case it is possible
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to show that the sequence of approximated generators converges uniformly in (y, z), and
this allows to have a control on the di�erence |Y n

t − Yt| by a quantity which is regular
enough to apply the monotone convergene Theorem of [28]. Nonetheless, this relies heavily
on the type of approximation used and cannot a priori be extended to more general cases.

Notwithstanding this, we will show an existence result in the next subsection using an
approximation which has the particularity of being stationary, which immediately solves
the convergence problems that we mentioned above. This approach is based on very recent
results of Briand and Elie [14] on standard quadratic BSDEs.

2.4.3 A stationary approximation

For technical reasons that we will explain below, we will work throughout this subsection
under a subset of PH , which was �rst introduced in [103]. Namely, we will denote by Ξ

the set of processes α satisfying

αt(ω) =
+∞∑

n=0

+∞∑

i=1

αn,i
t 1Ei

n
(ω)1[τn(ω),τn+1(ω))(t),

where for each i and for each n, αn,i is a bounded deterministic mapping, τn is an F -
stopping time with τ0 = 0, such that τn < τn+1 on {τn < +∞}, inf{n > 0, τn = +∞} <
+∞, τn takes countably many values in some �xed I0 ⊂ [0, T ] which is countable and
dense in [0, T ] and for each n, (En

i )i > 1 ⊂ Fτn forms a partition of Ω.

We will then consider the set P̃H := {Pα ∈ PH , α ∈ Ξ} . As shown in [102], this set
satis�es the right stability properties (already mentioned in the previous subsection) so
much so that the Lipschitz theory of 2BSDEs still holds when we are working P̃H − q.s.

Notice that for the sake of simplicity, we will keep the same notations for the spaces
considered under P̃H or PH . Let us now describe the Assumptions under which we will
be working

Assumption 2.4.1. Let Assumption 2.2.2 holds, with the addition that the process φ in

(v) is bounded and that the mapping F is deterministic.

The main result of this Section is then

Theorem 2.4.1. Let Assumption 2.4.1 hold. Assume further that ξ ∈ L∞
H , that it is

Malliavin di�erentiable P̃H − q.s. and that its Malliavin derivative is in D∞
H . Then the

2BSDE (2.2.5) (considered P̃H −q.s.) has a unique solution (Y, Z) ∈ D∞
H ×H2

H . Moreover,

the family {KP, P ∈ P̃H} can be aggregated.

Proof. Uniqueness follows from Theorem 2.3.1, so we concentrate on the existence part.
Let us de�ne the following sequence of generators

F n
t (y, z, a) := Ft

(
y,

|z| ∧ n
|z| z, a

)
, and F̂ n

t (y, z) := F n
t (y, z, ât).

Then for each n, F n is uniformly Lipschitz in (y, z) and thanks to Assumption 2.4.1, we
can apply the result of [101] to obtain the existence of a solution (Y n, Zn) to the 2BSDE

Y n
t = ξ−

∫ T

t

F̂ n
s (Y n

s , Z
n
s )ds−

∫ T

t

Zn
s dBs +KP,n

T −KP,n
t , P−a.s., for all P ∈ P̃H . (2.4.4)
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Moreover, we have for all P ∈ P̃H and for all t ∈ [0, T ]

Y n
t = ess supP

P
′∈ ePH(t+,P)

yP,n
t ,P − a.s., (2.4.5)

where (yP,n, zP,n) is the unique solution of the Lipschitz BSDE with generator F̂ n and
terminal condition ξ under P. Now, using Lemma 2.1 in [14] and its proof (see Remark
2.4.1 below) under each P ∈ P̃H , we know that the sequence yP,n is actually stationary.
Therefore, by (2.4.5), this also implies that the sequence Y n is stationary. Hence, we
immediately have that Y n converges to some Y in D∞

H . Moreover, we still have the
representation

Yt = ess supP

P
′∈ ePH(t+,P)

yP
t ,P − a.s., (2.4.6)

Now, identifying the martingale parts in (2.4.4), we also obtain that the sequence Zn

is stationary and thus converges trivially in H2
H to some Z. For n large enough, we thus

have

F̂ n
t (Y n

t , Z
n
t ) = F̂ n

t (Yt, Zt).

Besides, we have by Assumption 2.4.1

∣∣∣F̂ n
t (Yt, Zt)

∣∣∣ 6 α+ β |Yt| +
γ

2

∣∣∣∣â
1/2 |Zt| ∧ n

|Zt|
Zt

∣∣∣∣
2

6 α+ β |Yt| +
γ

2

∣∣â1/2Zt

∣∣2 , P̃H − q.s.

Since (Y, Z) ∈ D∞
H × H2

H , we can apply the dominated convergence theorem for the
Lebesgue measure to obtain by continuity of F that

∫ T

0

F̂ n
s (Y n

s , Z
n
s )ds −→

n→+∞

∫ T

0

F̂s(Ys, Zs)ds, P̃H − q.s.

Using this result in (2.4.4), this implies necessarily that for each P,KP,n converges P−a.s.
to a non-decreasing process KP. Now, in order to verify that we indeed have obtained the
solution, we need to check if the processes KP satisfy the minimum condition (2.2.7). Let
P ∈ P̃H , t ∈ [0, T ] and P

′ ∈ P̃H(t+,P). From the proof of Theorem 2.3.1, we have with
the same notations

δYt = E
Q

′

t

[∫ T

t

MtdK
P
′

t

]
> E

Q
′

t

[
inf

t 6 s 6 T
(Ms)(K

P
′

T −KP
′

t )

]

=

EP
′

t

[
E
(∫ T

0
(φs + ηs)â

−1/2
s dBs

)
inf

t 6 s 6 T
(Ms)(K

P
′

T −KP
′

t )

]

EP
′

t

[
E
(∫ T

0
(φs + ηs)â

−1/2
s dBs

)]

For notational convenience, denote Et := E
(∫ t

0
(φs + ηs)â

−1/2
s dBs

)
. Let r be the number
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given by Lemma 2.2.2 applied to E . Then we estimate

Et

[
KP

′

T −KP
′

t

]

6 EP
′

t

[ET

Et

inf
t 6 s 6 T

(Ms)(K
P
′

T −KP
′

t )

] 1
2r−1

EP
′

t

[(ET

Et

inf
t 6 s 6 T

(Ms)
−1

) 1
2(r−1)

(KP
′

T −KP
′

t )

] 2(r−1)
2r−1

6 (δYt)
1

2r−1

(
EP

′

t

[(ET

Et

) 1
r−1

]) r−1
2r−1 (

EP
′

t

[
inf

t 6 s 6 T
(Ms)

− 2
r−1

]
EP

′

t

[
(KP

′

T −KP
′

t )4
]) r−1

2(2r−1)

6 C

(
EP

′

t

[(
KP

′

T

)4
]) r−1

2(2r−1)

(δYt)
1

2r−1 .

By following the arguments of the proof of Theorem 2.3.1 (ii) and (iii), we then deduce
the minimum condition. Finally, the fact that the processes KP can be aggegated is a
direct consequence of the general aggregation result of Theorem 5.1 in [103]. ⊔⊓

Remark 2.4.1. We emphasize that the result of Lemma 2.1 in [14] can only be applied

when the generator is deterministic. However, even though F is indeed deterministic, F̂

is not, because â is random. Nonetheless, given the particular form for the density of

the quadratic variation of the canonical process we assumed in the de�nition of P̃H , we

can apply the result of Briand and Elie between the stopping times and on each set of the

partition of Ω, since then â and thus F̂ is indeed deterministic.

2.5 A pathwise proof of existence

We have seen in the previous Section that it is usually extremely di�cult to prove existence
of a solution to a 2BSDE using monotone approximation techniques. Nonetheless, we have
shown in Theorem 2.3.1 that if a solution exists, it will necessarily verify the representation
(2.2.7). This gives us a natural candidate for the solution as a supremum of solutions to
standard BSDEs. However, since those BSDEs are all de�ned on the support of mutually
singular probability measures, it seems di�cult to de�ne such a supremum, because of the
problems raised by the negligible sets. In order to overcome this, Soner, Touzi and Zhang
proposed in [101] a pathwise construction of the solution to a 2BSDE. Let us describe
brie�y their strategy.

The �rst step is to de�ne pathwise the solution to a standard BSDE. For simplicity, let
us consider �rst a BSDE with a generator equal to 0. Then, we know that the solution
is given by the conditional expectation of the terminal condition. In order to de�ne this
solution pathwise, we can use the so-called regular conditional probability distribution
(r.p.c.d. for short) of Stroock and Varadhan [104]. In the general case, the idea is similar
and consists on de�ning BSDEs on a shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus
obtained, and the decomposition (2.2.5) is obtained through a non-linear Doob-Meyer
decomposition. Our aim in this section is to extend this approach to the quadratic case.
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2.5.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in
[101].

• For 0 6 t 6 T , denote by Ωt :=
{
ω ∈ C

(
[t, T ],Rd

)
, w(t) = 0

}
the shifted canonical

space, Bt the shifted canonical process, Pt
0 the shifted Wiener measure and Ft the

�ltration generated by Bt. We de�ne the density process ât of the quadratic variation
process 〈Bt〉.

• For 0 6 s 6 t 6 T and ω ∈ Ωs, de�ne the shifted path ωt ∈ Ωt

ωt
r := ωr − ωt, ∀r ∈ [t, T ].

• For 0 6 s 6 t 6 T and ω ∈ Ωs, ω̃ ∈ Ωt de�ne the concatenation path ω ⊗t ω̃ ∈ Ωs

by

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r)1[t,T ](r), ∀r ∈ [s, T ].

• For 0 6 s 6 t 6 T and a F s
T -measurable random variable ξ on Ωs, for each ω ∈ Ωs,

de�ne the shifted F t
T -measurable random variable ξt,ω on Ωt by

ξt,ω(ω̃) := ξ(ω ⊗t ω̃), ∀ω̃ ∈ Ωt.

Similarly, for an Fs-progressively measurable process X on [s, T ] and (t, ω) ∈ [s, T ]×
Ωs, the shifted process {X t,ω

r , r ∈ [t, T ]} is Ft-progressively measurable.

• For a F-stopping time τ , the r.c.p.d. of P (noted Pω
τ ) induces naturally a probability

measure Pτ,ω (that we also call the r.c.p.d. of P) on F τ(ω)
T which in particular satis�es

that for every bounded and FT -measurable random variable ξ

EPω
τ [ξ] = EPτ,ω

[ξτ,ω] .

• We de�ne similarly as in Section 2.2 the set P̄ t
S, by restricting to the shifted canonical

space Ωt, and its subset P t
H .

• Finally, we de�ne our "shifted" generator

F̂ t,ω
s (ω̃, y, z) := Fs(ω ⊗t ω̃, y, z, â

t
s(ω̃)), ∀(s, ω̃) ∈ [t, T ] × Ωt.

Notice that thanks to Lemma 4.1 in [102], this generator coincides for P-a.e. ω with the
shifted generator as de�ned above, that is to say

Fs(ω ⊗t ω̃, y, z, âs(ω ⊗t ω̃)).

The advantage of the chosen "shifted" generator is that it inherits the uniform continuity
in ω under the L∞ norm of F .
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2.5.2 Existence when ξ is in UCb(Ω)

As mentioned at the beginning of the Section, we will need to prove some measurability and
regularity on our candidate solution. For this purpose, we need to assume more regularity
on the terminal condition. When ξ is in UCb(Ω), by de�nition there exists a modulus of
continuity function ρ for ξ and F in ω. Then, for any 0 6 t 6 s 6 T, (y, z) ∈ [0, T ]×R×Rd

and ω, ω′ ∈ Ω, ω̃ ∈ Ωt,
∣∣∣ξt,ω (ω̃) − ξt,ω′

(ω̃)
∣∣∣ 6 ρ (‖ω − ω′‖t) and

∣∣∣F̂ t,ω
s (ω̃, y, z) − F̂ t,ω′

s (ω̃, y, z)
∣∣∣ 6 ρ (‖ω − ω′‖t) ,

where ‖ω‖t := sup0 6 s 6 t |ωs| , 0 6 t 6 T .

To prove existence, as in [101], we de�ne the following value process Vt pathwise:

Vt(ω) := sup
P∈Pt

H

YP,t,ω
t (T, ξ) , for all (t, ω) ∈ [0, T ] × Ω, (2.5.1)

where, for any (t1, ω) ∈ [0, T ] × Ω, P ∈ P t1
H , t2 ∈ [t1, T ], and any Ft2-measurable

η ∈ L∞ (P), we denote YP,t1,ω
t1 (t2, η) := yP,t1,ω

t1 , where
(
yP,t1,ω, zP,t1,ω

)
is the solution of the

following BSDE on the shifted space Ωt1 under P

yP,t1,ω
s = ηt1,ω −

∫ t2

s

F̂ t1,ω
r

(
yP,t1,ω

r , zP,t1,ω
r

)
dr−

∫ t2

s

zP,t1,ω
r dBt1

r , s ∈ [t1, t2] , P− a.s. (2.5.2)

We recall that since the Blumenthal zero-one law holds for all our probability measures,
YP,t,ω

t (1, ξ) is constant for any given (t, ω) and P ∈ P t
H . Therefore, the process V is well

de�ned. However, we still do not know anything about its measurability. The following
Lemma answers this question and explains the uniform continuity Assumptions in ω we
made.

Lemma 2.5.1. Let Assumptions 2.2.1 hold true and let ξ be in UCb(Ω). Then

|Vt (ω)| 6 C
(
1 + ‖ξ‖L∞

H

)
, for all (t, ω) ∈ [0, T ] × Ω.

Furthermore

|Vt (ω) − Vt (ω′)| 6 Cρ (‖ω − ω′‖t) , for all (t, ω, ω′) ∈ [0, T ] × Ω2.

In particular, Vt is Ft-measurable for every t ∈ [0, T ].

Proof. (i) For each (t, ω) ∈ [0, T ] × Ω and P ∈ P t
H , note that

yP,t,ω
s = ξt,ω −

∫ T

s

[
F̂ t,ω

r (0) + λry
P,t,ω
r + ηr

(
ât

r

)1/2
zP,t,ω

r + φr

(
ât

r

)1/2
zP,t,ω

r

]
dr

−
∫ T

s

zP,t,ω
r dBt

r, s ∈ [t, T ] , P − a.s.

where λ is bounded and η satis�es

|ηr| 6 µ
∣∣∣â1/2

t zP,t,ω
r

∣∣∣ , P − a.s.
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Then proceeding exactly as in the second step of the proof of Theorem 2.3.1, we can
de�ne a bounded process M and a probability measure Q equivalent to P such that

∣∣∣yP,t,ω
t

∣∣∣ 6 E
Q
t

[
MT

∣∣ξt,ω
∣∣] 6 C

(
1 + ‖ξ‖L∞

H

)
.

By arbitrariness of P, we get |Vt(ω)| 6 C(1 + ‖ξ‖L∞
H

).

(ii) The proof is exactly the same as above, except that we need to use uniform continuity
in ω of ξt,ω and F̂ t,ω. In fact, if we de�ne for (t, ω, ω′) ∈ [0, T ] × Ω2

δy := yP,t,ω − yP,t,ω′

, δz := zP,t,ω − zP,t,ω′

, δξ := ξt,ω − ξt,ω′

, δF̂ := F̂ t,ω − F̂ t,ω′

,

then we get with the same notations

|δyt| = EQ

[
MT δξ +

∫ T

t

MsδF̂sds

]
6 Cρ(‖ω − ω′‖t).

We get the result by arbitrariness of P. ⊔⊓

Then, we show the same dynamic programming principle as Proposition 4.7 in [102]

Proposition 2.5.1. Let ξ ∈ UCb(Ω). Under Assumption 2.2.1 or Assumption 2.2.2 with

the addition that the L∞
H -norms of ξ and F̂ 0 are small enough, we have for all 0 6 t1 <

t2 6 T and for all ω ∈ Ω

Vt1(ω) = sup
P∈P

t1
H

YP,t1,ω
t1 (t2, V

t1,ω
t2 ).

The proof is almost the same as the proof in [102], but we give it for the convenience of
the reader.

Proof. Without loss of generality, we can assume that t1 = 0 and t2 = t. Thus, we have
to prove

V0(ω) = sup
P∈PH

YP
0 (t, Vt).

Denote (yP, zP) := (YP(T, ξ),ZP(T, ξ))

(i) For any P ∈ PH , it follows from Lemma 4.3 in [102], that for P − a.e. ω ∈ Ω, the
r.c.p.d. Pt,ω ∈ P t

H . By Tevzadze [107], we know that when the norm of the terminal
condition and the norm of the generator valued on (0, 0) are small, a quadratic BSDE
whose generator satis�es Assumption (2.2.2) (v) can be constructed via Picard iteration.
Thus, it means that at each step of the iteration, the solution can be formulated as a
conditional expectation under P. Then, for general case, Tevzadze showed that if the
generator satis�es Assumption (2.2.1) (v), the solution of the quadratic BSDE can be
written as a sum of quadratic BSDEs with small terminal conditions and generators which
are small on (0, 0). By the properties of the r.p.c.d., this implies that

yP
t (ω) = YPt,ω ,t,ω

t (T, ξ), for P − a.e. ω ∈ Ω.
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By de�nition of Vt and the comparison principle for quadratic BSDEs, we deduce that
yP

0 6 YP
0 (t, Vt) and it follows from the arbitrariness of P that

V0(ω) 6 sup
P∈PH

YP
0 (t, Vt).

(ii) For the other inequality, we proceed as in [102]. Let P ∈ PH and ε > 0. The idea
is to use the de�nition of V as a supremum to obtain an ε-optimizer. However, since V
depends obviously on ω, we have to �nd a way to control its dependence in ω by restricting
it in a small ball. But, since the canonical space is separable, this is easy. Indeed, there
exists a partition (Ei

t)i > 1 ⊂ Ft such that ‖ω − ω′‖t 6 ε for any i and any ω, ω′ ∈ Ei
t .

Now for each i, �x an ω̂i ∈ Ei
t and let, as advocated above, Pi

t be an ε−optimizer of
Vt(ω̂i). If we de�ne for each n > 1, Pn := Pn,ε by

Pn(E) := EP

[
n∑

i=1

EPi
t
[
1t,ω

E

]
1Ei

t

]
+ P(E ∩ Ên

t ), where Ên
t := ∪i>nE

i
t ,

then, by the proof of Proposition 4.7 in [102], we know that Pn ∈ PH and that

Vt 6 yPn

t + ε+ Cρ(ε), Pn − a.s. on ∪n
i=1 E

i
t .

Let now (yn, zn) := (yn,ε, zn,ε) be the solution of the following BSDE on [0, t]

yn
s =

[
yPn

t + ε+ Cρ(ε)
]
1∪n

i=1Ei
t
+ Vt1 bEn

t
−
∫ t

s

F̂r(y
n
r , z

n
r )dr −

∫ t

s

zn
r dBr, Pn − a.s. (2.5.3)

Note that since Pn = P on Ft, the equality (2.5.3) also holds P−a.s. By the comparison
theorem, we know that YP

0 (t, Vt) 6 yn
0 . Using the same arguments and notations as in the

proof of Lemma 2.5.1, we obtain

∣∣yn
0 − yPn

0

∣∣ 6 CEQ
[
ε+ ρ(ε) +

∣∣Vt − yPn

t

∣∣ 1
bEn

t

]
.

Then, by Lemma 2.5.1, we have

YP
0 (t, Vt) 6 yn

0 6 V0(ω) + C
(
ε+ ρ(ε) + EQ

[
Λ1

bEn
t

])
.

The result follows from letting n go to +∞ and ε to 0. ⊔⊓

Remark 2.5.1. We want to emphasize here that it is only because of this Proposition prov-

ing the dynamic programming equation that we had to consider Tevzadze [107] approach

to quadratic BSDEs, instead of the more classical approach of Kobylanski [63]. Indeed, as

pointed out in the proof, for technical reasons we want to be able to construct solutions of

BSDEs via Picard iterations, to build upon the known properties of the r.c.p.d. Using the

Assumptions 2.2.1 or 2.2.2 with the addition that the L∞
H -norms of ξ and F̂ 0 are small

enough, this allows us to recover this property.
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Now that we solved the measurability issues for Vt, we need to study its regularity in
time. However, it seems di�cult to obtain a result directly, given the de�nition of V . This
is the reason why we de�ne now for all (t, ω), the F+-progressively measurable process

V +
t := lim

r∈Q∩(t,T ],r↓t
Vr.

This new value process will then be proved to be càdlàg. Notice that a priori V +

is only F+-progressively measurable, and not F-progressively measurable. This explains
why in the de�nition of the spaces in Section 2.2.4, the processes are assumed to be
F+-progressively measurable.

Lemma 2.5.2. Under the conditions of the previous Proposition, we have

V +
t = lim

r∈Q∩(t,T ],r↓t
Vr, PH − q.s.

and thus V + is càdlàg PH − q.s.

Proof. Actually, we can proceed exactly as in the proof of Lemma 4.8 in [102], since
the theory of g-expectations of Peng has been extended by Ma and Yao in [76] to the
quadratic case (see in particular their Corollary 5.6 for our purpose). ⊔⊓

Finally, proceeding exactly as in Steps 1 and 2 of the proof of Theorem 4.5 in [102],
and in particular using the Doob-Meyer decomposition proved in [76] (Theorem 5.2), we
can get the existence of a universal process Z and a family of nondecreasing processes{
KP,P ∈ PH

}
such that

V +
t = V +

0 +

∫ t

0

F̂s(V
+
s , Zs)ds+

∫ t

0

ZsdBs −KP
t , P − a.s. ∀P ∈ PH .

For the sake of completeness, we provide the representation (2.3.2) for V and V +, and
that, as shown in Proposition 4.11 of [102], we actually have V = V +, PH − q.s., which
shows that in the case of a terminal condition in UCb(Ω), the solution of the 2BSDE is
actually F-progressively measurable. This will be important in Section 2.7.

Proposition 2.5.2. Let ξ ∈ UCb(Ω). Under Assumption 2.2.1 or Assumption 2.2.2 with

the addition that the L∞
H -norms of ξ and F̂ 0 are small enough, we have

Vt = ess supP

P
′∈PH(t,P)

YP
′

t (T, ξ) and V +
t = ess supP

P
′∈PH(t+,P)

YP
′

t (T, ξ), P − a.s., ∀P ∈ PH .

Besides, we also have for all t, Vt = V +
t , PH − q.s.

Proof. The proof for the representations is the same as the proof of proposition 4.10 in
[102], since we also have a stability result for quadratic BSDEs under our assumptions.
For the equality between V and V +, we also refer to the proof of Proposition 4.11 in [102].

⊔⊓

To be sure that we have found a solution to our 2BSDE, it remains to check that the
family of nondecreasing processes above satis�es the minimum condition. Let P ∈ PH ,
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t ∈ [0, T ] and P
′ ∈ PH(t+,P). From the proof of Theorem 2.3.1, we have with the same

notations

δVt = E
Q

′

t

[∫ T

t

MtdK
P
′

t

]
> E

Q
′

t

[
inf

t 6 s 6 T
(Ms)(K

P
′

T −KP
′

t )

]

=

EP
′

t

[
E
(∫ T

0
(φs + ηs)â

−1/2
s dBs

)
inf

t 6 s 6 T
(Ms)(K

P
′

T −KP
′

t )

]

EP
′

t

[
E
(∫ T

0
(φs + ηs)â

−1/2
s dBs

)]

For notational convenience, denote Et := E
(∫ t

0
(φs + ηs)â

−1/2
s dBs

)
. Let r be the number

given by Lemma 2.2.2 applied to E . Then we estimate

EP
′

t

[
KP

′

T −KP
′

t

]

6 EP
′

t

[ET

Et

inf
t 6 s 6 T

(Ms)(K
P
′

T −KP
′

t )

] 1
2r−1

EP
′

t





 Et

inf
t 6 s 6 T

(Ms)ET




1
2(r−1)

(KP
′

T −KP
′

t )




2(r−1)
2r−1

6 (δVt)
1

2r−1

(
EP

′

t

[( Et

ET

) 1
r−1

]) r−1
2r−1 (

EP
′

t

[
inf

t 6 s 6 T
(Ms)

− 2
r−1

]
EP

′

t

[
(KP

′

T −KP
′

t )4
]) r−1

2(2r−1)

6 C

(
EP

′

t

[(
KP

′

T

)4
]) r−1

2(2r−1)

(δVt)
1

2r−1 .

By following the arguments of the proof of Theorem 2.3.1 (ii) and (iii), we then deduce
the minimum condition.

Remark 2.5.2. In order to prove the minimum condition it is fundamental that the

process M above is bounded from below. For instance, it would not be the case if we had

replaced the Lipschitz assumption on y by a monotonicity condition as in [90].

2.5.3 Main result

We are now in position to state the main result of this section

Theorem 2.5.1. Let ξ ∈ L∞
H . Under Assumption 2.2.1 or Assumption 2.2.2 with the

addition that the L∞
H -norms of ξ and F̂ 0 are small enough, there exists a unique solution

(Y, Z) ∈ D∞
H × H2

H of the 2BSDE (2.2.5).

Proof. For ξ ∈ L∞
H , there exists ξn ∈ UCb(Ω) such that ‖ξ − ξn‖ →

n→+∞
0. Then, thanks

to the a priori estimates obtained in Proposition 2.3.2, we can proceed exactly as in the
proof of Theorem 4.6 (ii) in [101] to obtain the solution as a limit of the solution of the
2BSDE (2.2.5) with terminal condition ξn. ⊔⊓
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2.6 An application to robust risk-sensitive control

One application of classical quadratic BSDEs is to study risk-sensitive control problems,
see El Karoui, Hamadène et Matoussi [35] for more details. In this section, we will consider
a robust version of these problems.

First of all, for technical reasons, we restrict the probability measures in P̃H := P̃S

⋂PH ,
where P̃S is de�ned in Subsection 2.2.1. Then â is uniformly bounded by some a, a ∈ S>0

d .

For each P ∈ P̃H , we can de�ne a P-Brownian motion W P by

dW P
t = â

−1/2
t dBt P − a.s.

Let us now consider some system, whose evolution is decribed (for simplicity) by the
canonical process B. A controller then intervenes on the system via an adapted stochastic
process u which takes its values in a compact metric space U . The set of those controls is
called admissible and denoted by U . When the controller acts with u under the probability
P ∈ P̃H , the dynamic of the controlled system remains the same, but now under the
probability measure Pu de�ned by its density with respect to P

dPu

dP
= exp

(∫ T

0

â
−1/2
t g(t, B., ut)dW

P
t − 1

2

∫ T

0

∣∣∣â−1/2
t g(t, B., ut)

∣∣∣
2

dt

)
,

where g(t, ω, u) is assumed to be bounded, continuous with respect to u, adapted and
uniformly continuous in ω. Notice that this probability measure is well de�ned since â is
uniformly bounded.

Then, under Pu, the dynamic of the system is given by

dBt = g(t, B., ut)dt+ â
1/2
t dW P,u, Pu − a.s.

where W P,u is a Brownian motion under Pu de�ned by

dW P,u
t = dW P

t − â
−1/2
t g(t, B., ut)dt.

When the controller is risk seeking, we assume that the reward functional of the control
action is given by the following expression

∀u ∈ U , J(u) := sup
P∈ ePH

EP,u

[
exp

(
θ

∫ T

0

h(s, B., us)ds+ Ψ(BT )

)]

where θ > 0 is a real parameter which represents the sensitiveness of the controller with
respect to risk. Here h(t, ω, u) is assumed to adapted and continuous in u, and both Ψ

and h are assumed to be bounded and uniformly continuous in ω for the ‖·‖∞ norm. We
are interested in �nding an admissible control u∗ which maximizes the reward J(u) for
the controller.

We begin with establishing the link between J(u) and 2BSDEs in the following propo-
sition



48 Chapitre 2. Second Order BSDEs with Quadratic Growth

Proposition 2.6.1. There exists a unique solution (Y u, Zu) of the 2BSDE associated with

the generator −zg(t, B., ut) − h(t, B., ut) − θ
2
|â1/2

t z|2, i.e., P − a.s., for all P ∈ P̃H

Y u
t = Ψ(BT ) +

∫ T

t

(
Zu

s g(s, B., us) + h(s, B., us) +
θ

2
|â1/2

s Zu
s |2
)
ds−

∫ T

t

Zu
s dBs − dKu,P

t .

(2.6.1)
Moreover J(u) = exp (θY u

0 ).

Proof. With our assumptions on g, h and Ψ, we know that the generator satis�es the
Assumption 2.2.1, therefore there exists a unique solution to the 2BSDE (2.6.1). According
to [35], the solution to the classical BSDE with the same terminal condition and generator
as the 2BSDE (2.6.1) under each P is

yu,P
t =

1

θ
ln

(
E

P,u
t

[
exp

(
θ

∫ T

t

h(s, B., us)ds+ Ψ(BT )

)])
, P − a.s.

Then by the representation for Y u, we have

Y u
t =

1

θ
ess supP

P′∈ ePH(t+,P)

ln

(
E

P,u
t

[
exp

(
θ

∫ T

t

h(s, B., us)ds+ Ψ(BT )

)])
,P − a.s.

Since the functional ln(x) is monotone non-decreasing, then

Y u
t =

1

θ
ln

(
ess supP

P′∈ ePH(t+,P)

EP′u

t

[
exp

(
θ

∫ T

t

h(s, B., us)ds+ Ψ(BT )

)])
, P − a.s.

Therefore, we have J(u) = exp {θY u
0 }. ⊔⊓

As explained in [35], by applying Benes' selection theorem, there exists a measurable
version u∗(t, B., z) of

arg max I(t, B., z, u) := zg(t, B., u) + h(t, B., u).

We know that I∗(t, B., z) := supu∈UI(t, B., z, u) = I(t, B., z, u∗(t, B., z)) is convex uni-
formly Lipschitz in z because it is the supremum of functions which are linear in z. So the
mapping z → I∗(t, B., z) + 1

2
|â1/2

t z|2 is continuous with quadratic growth, implying that a
solution (y∗,P, z∗,P) of the BSDE associated to this generator exists. Then we have

Theorem 2.6.1. There exists a unique solution (Y ∗, Z∗) to the following 2BSDE

Y ∗
t = Ψ(BT ) +

∫ T

t

(
I∗(s, B., Z∗

s ) +
θ

2
|â1/2

s Z∗
s |2
)
ds−

∫ T

t

Z∗
sdBs +K∗,P

T −K∗,P
t . (2.6.2)

The admissible control u∗ := (u∗(t, B., Z∗
t ))t 6 T is optimal and (exp(Y ∗

t ))t 6 T is the value

function of the robust risk-sensitive control problem, i.e., for any t 6 T we have:

exp(Y ∗
t ) = ess supP

P′∈PH(t+,P)

ess supP

u∈U
E

P
′
,u

t

[
exp

(
θ

∫ T

t

h(s, B., us)ds+ Ψ(BT )

)]
.
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Proof. First, we need to prove the existence of a solution to the quadratic 2BSDE (2.6.2).
Unlike in Proposition 2.6.1, here u∗ also depends on z, so we do not know whether I∗ is
twice di�erentiable with respect to z. Therefore the generator of the 2BSDE may not
satisfy the Assumption 2.2.1. But it's easy to see that it always satis�es the weaker
Assumption 2.2.2, and we only need this Assumption to have uniqueness of the solution.
Moreover, it was also the only one used to prove the minimum condition for the familly
of non-decreasing processes in Subsection 2.5.2. Therefore, exactly as in Section 2.4, for
P ∈ P̃H , by making the exponential change

Y t := eθY ∗
t , Zt := θY tZ

∗
t , K

P

t := θ

∫ t

0

Y sdK
∗,P
s −

∑

0 6 s 6 t

eθY ∗
s − eθY ∗

s− − θ∆Y ∗
s e

θY ∗
s− ,

we see that (Y , Z,K
P
) formally veri�es the following equation

Y t = eθΨ(BT )+

∫ T

t

sup
u∈U

{
Zsg(s, B., u) + θY sh(s, B., u)

}
ds−

∫ T

t

ZsdBs+K
P

T −K
P

t , P−a.s.
(2.6.3)

Since this is 2BSDE with Lipschitz generator from Soner, Touzi and Zhang [101], we
know that (Y , Z,K

P
) exists, is unique and satis�es the representation property (2.3.2).

Arguing exactly as in Subsection 2.4.1 for the purely quadratic 2BSDEs, we can then
obtain the existence. Now, from [35], we have that

exp
(
y∗,Pt

)
= ess supP

u∈U
EPu

t

[
exp

(
θ

∫ T

t

h(s, B., us)ds+ Ψ(BT )

)]
.

Then the representation for Y ∗ implies the desired result. ⊔⊓

2.7 Connection with fully nonlinear PDEs

In this section, we place ourselves in the general case of Section 2.2, and we assume
moreover that all the nonlinearity in H only depends on the current value of the canonical
process B (the so-called Markov property)

Ht(ω, y, z, γ) = h(t, Bt(ω), y, z, γ),

where h : [0, T ] × Rd × R × Rd ×Dh → R is a deterministic map. Then, we de�ne as in
Section 2.2 the corresponding conjugate and bi-conjugate functions

f(t, x, y, z, a) := sup
γ∈Dh

{
1

2
Tr [aγ] − h(t, x, y, z, γ)

}
(2.7.1)

ĥ(t, x, y, z, γ) := sup
a∈S>0

d

{
1

2
Tr [aγ] − f(t, x, y, z, a)

}
(2.7.2)

We denote Ph := PH , and following [101], we strengthen Assumption 2.2.1

Assumption 2.7.1. (i) Ph is not empty, and the domain Dft of the map a →
f(t, x, y, z, a) is independent of (x, y, z).
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(ii) On Dft, f is uniformly continuous in t, uniformly in a.

(iii) f is continuous in z and has the following growth property. There exists (α, β, γ)

such that

|f(t, x, y, z, a)| 6 α+ β |y| + γ

2

∣∣a1/2z
∣∣2 , for all t ∈ [0, T ], x, z ∈ Rd, y ∈ R, a ∈ Dft .

(iv) f is C1 in y and C2 in z, and there are constants r and θ such that for all t ∈
[0, T ], x, z ∈ Rd, y ∈ R, a ∈ Dft

|Dyf(t, x, y, z, a)| 6 r, |Dzf(t, x, y, z, a)| 6 r + θ
∣∣a1/2z

∣∣

|D2
zzf(t, x, y, z, a)| 6 θ.

(v) On Dft, f is uniformly continuous in x, uniformly in (t, y, z, a), with a modulus of

continuity ρ which has polynomial growth.

Remark 2.7.1. As mentioned in Subsection 2.2.3, when the norm of the terminal condi-

tion and the norm of f(·, 0, 0, a) are small enough, Assumption 2.7.1 (iv) can be replaced

by the following weaker assumptions.

(iv')[a] There exists µ > 0 and a bounded Rd-valued function φ such that for all t ∈
[0, T ], x, z, z

′ ∈ Rd, y ∈ R, a ∈ Dft

∣∣∣f(t, x, y, z, a) − f(t, x, y, z
′

, a) − φ(t).a1/2(z − z
′

)
∣∣∣ 6 µa1/2

∣∣∣z − z
′
∣∣∣
(∣∣a1/2z

∣∣+
∣∣∣a1/2z

′
∣∣∣
)
.

(iv')[b] On Dft, f is Lipschitz in y, uniformly in (t, x, z, a).

Let now g : Rd → R be a Lebesgue measurable and bounded function. Our object of
interest here is the following Markovian 2BSDE with terminal condition ξ = g(BT )

Yt = g(BT ) −
∫ T

t

f(s, Bs, Ys, Zs, âs)ds−
∫ T

t

ZsdBs +KP
T −KP

t , Ph − q.s. (2.7.3)

The aim of this section is to generalize the results of [101] and establish the connection
Yt = v(t, Bt), Ph−q.s., where v is the solution in some sense of the following fully nonlinear
PDE





∂v
∂t

(t, x) + ĥ (t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0, t ∈ [0, T )

v(T, x) = g(x).
(2.7.4)

Following the classical terminology in the BSDE literature, we say that the solution of
the 2BSDE is Markovian if it can be represented by a deterministic function of t and Bt.
In this subsection, we will construct such a function following the same spirit as in the
construction in the previous section.
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With the same notations for shifted spaces, we de�ne for any (t, x) ∈ [0, T ] × Rd

Bt,x
s := x+Bt

s, for all s ∈ [t, T ].

Let now τ be an Ft-stopping time, P ∈ P t
h and η a P-bounded F t

τ -measurable random
variable. Similarly as in (2.5.2), we denote (yP,t,x, zP,t,x) := (YP,t,x(τ, η),ZP,t,x(τ, η)) the
unique solution of the following BSDE

yP,t,x
s = η −

∫ τ

s

f(u,Bt,x
u , yP,t,x

u , zP,t,x
u , ât

u)du−
∫ τ

s

zP,t,x
u dBt,x

u , t 6 s 6 τ, P − a.s. (2.7.5)

Next, we de�ne the following deterministic function (by virtue of the Blumenthal 0 − 1

law)
u(t, x) := sup

P∈Pt
h

YP,t,x
t (T, g(Bt,x

T )), for (t, x) ∈ [0, T ] × Rd. (2.7.6)

We then have the following Theorem, which is actually Theorem 5.9 of [101] in our
framework

Theorem 2.7.1. Let Assumption 2.7.1 hold, and assume that g is bounded and uniformly

continuous. Then the 2BSDE (2.7.3) has a unique solution (Y, Z) ∈ D∞
H × H2

H and we

have Yt = u(t, Bt). Moreover, u is uniformly continuous in x, uniformly in t and right-

continuous in t.

Proof. The existence and uniqueness for the 2BSDE follows directly from Theorem 2.5.1.
Since ξ ∈ UCb(Ω), we have with the notations of the previous section Vt = u(t, Bt). But,
by Proposition 2.5.2, we know that Yt = Vt, hence the �rst result.

Then the uniform continuity of u is a simple consequence of Lemma 2.5.1. Finally, the
right-continuity of u in t can be obtained exactly as in the proof of Theorem 5.9 in [101].

⊔⊓

2.7.1 Nonlinear Feynman-Kac formula in the quadratic case

Exactly as in the classical case and as in Theorem 5.3 in [101], we have a nonlinear version
of the Feynman-Kac formula. The proof is the same as in [101], so we omit it. Notice
however that it is more involved than in the classical case, mainly due to the technicalities
introduced by the quasi-sure framework.

Theorem 2.7.2. Let Assumption 2.7.1 hold true. Assume further that ĥ is continuous

in its domain, that Df is independent of t and is bounded both from above and away from

0. Let v ∈ C1,2([0, T ),Rd) be a classical solution of (2.7.4) with {(v,Dv)(t, Bt)}0 6 t 6 T ∈
D∞

H × H2
H . Then

Yt := v(t, Bt), Zt := Dv(t, Bt), Kt :=

∫ t

0

ksds,

is the unique solution of the quadratic 2BSDE (2.7.3), where

kt := ĥ(t, Bt, Yt, Zt,Γt) −
1

2
Tr
[
â

1/2
t Γt

]
+ f(t, Bt, Yt, Zt, ât) and Γt := D2v(t, Bt).
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2.7.2 The viscosity solution property

As usual when dealing with possibly discontinuous viscosity solutions, we introduce the
following upper and lower-semicontinuous envelopes

u∗(t, x) := lim
(t′,x′)→(t,x)

u(t′, x′), u∗(t, x) := lim
(t′,x′)→(t,x)

u(t′, x′)

ĥ∗(ϑ) := lim
(ϑ′)→(ϑ)

ĥ(ϑ′), ĥ∗(ϑ) := lim
(ϑ′)→(ϑ)

ĥ(ϑ′)

In order to prove the main Theorem of this subsection, we will need the following Propo-
sition, whose proof (which is rather technical) is omitted, since it is exactly the same as
the proof of Propositions 5.10 and 5.14 and Lemma 6.2 in [101].

Proposition 2.7.1. Let Assumption 2.7.1 hold. Then for any bounded function g

(i) For any (t,x) and arbitrary Ft-stopping times
{
τP,P ∈ P t

h

}
, we have

u(t, x) 6 sup
P∈Pt

h

YP,t,x
t (τP, u∗(τP, Bt,x

τP )).

(ii) If in addition g is lower-semicontinuous, then

u(t, x) = sup
P∈Pt

h

YP,t,x
t (τP, u(τP, Bt,x

τP )).

Now we can state the main Theorem of this section

Theorem 2.7.3. Let Assumption 2.7.1 hold true. Then

(i) u is a viscosity subsolution of

−∂tu
∗ − ĥ∗(·, u∗, Du∗, D2u∗) 6 0, on [0, T ) × Rd.

(ii) If in addition g is lower-semicontinuous and Df is independent of t, then u is a

viscosity supersolution of

−∂tu∗ − ĥ∗(·, u∗, Du∗, D2u∗) > 0, on [0, T ) × Rd.

Proof. The proof follows closely the proof of Theorem 5.11 in [101], with some minor
modi�cations (notably when we prove (2.7.10)). We provide it for the convenience of the
reader.

(i) Assume to the contrary that

0 = (u∗ − φ)(t0, x0) > (u∗ − φ)(t, x) for all (t, x) ∈ [0, T ) × Rd\ {(t0, x0)} , (2.7.7)
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for some (t0, x0) ∈ [0, T ) × Rd and

(
−∂tφ− ĥ∗(·, φ,Dφ,D2φ)

)
(t0, x0) > 0, (2.7.8)

for some smooth and bounded function φ (we can assume w.l.o.g. that φ is bounded since
we are working with bounded solutions of 2BSDEs).

Now since φ is smooth and since by de�nition ĥ∗ is upper-semicontinuous, there exists
an open ball O(r, (t0, x0)) centered at (t0, x0) with radius r, which can be chosen less than
T − t0, such that

−∂tφ− ĥ(·, φ,Dφ,D2φ) > 0, on O(r, (t0, x0)).

By de�nition of ĥ, this implies that for any α ∈ S>0
d

− ∂tφ− 1

2
Tr
[
αD2φ

]
+ f(·, φ,Dφ, α) > 0, on O(r, (t0, x0)). (2.7.9)

Let us now denote
µ := − max

∂O(r,(t0,x0))
(u∗ − φ).

By (2.7.7), this quantity is strictly positive.

Let now (tn, xn) be a sequence in O(r, (t0, x0)) such that (tn, xn) → (t0, x0) and
u(tn, xn) → u∗(t0, x0). Denote the following stopping time

τn := inf
{
s > tn, (s, Btn,xn

s /∈ O(r, (t0, x0))
}
.

Since r < T − t0, we have τn < T and therefore (τn, B
tn,xn
τn

) ∈ ∂O(r, (t0, x0)). Hence, we
have

cn := (φ− u)(tn, xn) → 0 and u∗(τn, B
tn,xn
τn

) 6 φ(τn, B
tn,xn
τn

) − µ.

Fix now some Pn ∈ P tn
h . By the comparison Theorem for quadratic BSDEs, we have

YPn,tn,xn
tn (τn, u

∗(τn, B
tn,xn
τn

)) 6 YPn,tn,xn
tn (τn, φ(τn, B

tn,xn
τn

) − µ).

Then proceeding exactly as in the second step of the proof of Theorem 2.3.1, we can
de�ne a bounded processMn, whose bounds only depend on T and the Lipschitz constant
of f in y, and a probability measure Qn equivalent to Pn such that

YPn,tn,xn
tn (τn, φ(τn, B

tn,xn
τn

) − µ) − YPn,tn,xn
tn (τn, φ(τn, B

tn,xn
τn

)) = −E
Qn
tn [Mτnµ] 6 − µ′,

for some strictly positive constant µ′ which is independent of n.

Hence, we obtain by de�nition of cn

YPn,tn,xn
tn (τn, u

∗(τn, B
tn,xn
τn

)) − u(tn, xn) 6 YPn,tn,xn
tn (τn, φ(τn, B

tn,xn
τn

)) − φ(tn, xn) + cn − µ′.

(2.7.10)
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With the same arguments as above, it is then easy to show with Itô's formula that

YPn,tn,xn
tn (τn, φ(τn, B

tn,xn
τn

)) − φ(tn, xn) = E
Qn
tn

[
−
∫ τn

tn

Mn
s ψ

n
s ds

]
,

where
ψn

s := (−∂tφ− 1

2
Tr
[
ât

sD
2φ
]
+ f(·, Dφ, ât

s))(s, B
tn,xn
s ).

But by (2.7.9) and the de�nition of τn, we know that for tn 6 s 6 τn, ψn
s > 0. Recalling

(2.7.10), we then get

YPn,tn,xn
tn (τn, u

∗(τn, B
tn,xn
τn

)) − u(tn, xn) 6 cn − µ′.

Since cn does not depend on Pn, we immediately get

sup
P∈Ptn

h

YPn,tn,xn
tn (τn, u

∗(τn, B
tn,xn
τn

)) − u(tn, xn) 6 cn − µ′.

The right-hand side is strictly negative for n large enough, which contradicts Proposition
2.7.1(i).

(ii) We also proceed by contradiction. Assuming to the contrary that

0 = (u∗ − φ)(t0, x0) < (u∗ − φ)(t, x) for all (t, x) ∈ [0, T ) × Rd\ {(t0, x0)} , (2.7.11)

for some (t0, x0) ∈ [0, T ) × Rd and
(
−∂tφ− ĥ∗(·, φ,Dφ,D2φ)

)
(t0, x0) < 0, (2.7.12)

for some smooth and bounded function φ (we can assume w.l.o.g. that φ is bounded since
we are working with bounded solutions of 2BSDEs).

Now we have by de�nition ĥ∗ 6 ĥ, hence

(
−∂tφ− ĥ(·, φ,Dφ,D2φ)

)
(t0, x0) < 0, (2.7.13)

Unlike with the subsolution property, we do not know whether D2φ(t0, x0) ∈ D
bh or not.

If it is the case, then by the de�nition of ĥ, there exists some ᾱ ∈ S>0
d such that

(
−∂tφ− 1

2
Tr
[
ᾱD2φ

]
+ f(·, φ,Dφ, ᾱ)

)
(t0, x0) < 0, (2.7.14)

which implies in particular that ᾱ ∈ Df .

If D2φ(t0, x0) /∈ D
bh, we still have that ∂tφ(t0, x0) is �nite, and thus ᾱ ∈ Df and (2.7.13)

holds.

Now since φ is smooth and since Df does not depend on t, there exists an open ball
O(r, (t0, x0)) centered at (t0, x0) with radius r, which can be chosen less than T − t0, such
that

−∂tφ− 1

2
Tr
[
ᾱD2φ

]
+ f(·, φ,Dφ, ᾱ) 6 0, on O(r, (t0, x0)).
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Let us now denote
µ := min

∂O(r,(t0,x0))
(u∗ − φ).

By (2.7.11), this quantity is strictly positive.

Let now (tn, xn) be a sequence in O(r, (t0, x0)) such that (tn, xn) → (t0, x0) and
u(tn, xn) → u∗(t0, x0). Denote the following stopping time

τn := inf
{
s > tn, (s, Btn,xn

s /∈ O(r, (t0, x0))
}
.

Since r < T − t0, we have τn < T and therefore (τn, B
tn,xn
τn

) ∈ ∂O(r, (t0, x0)). Hence, we
have

cn := (φ− u)(tn, xn) → 0 and u∗(τn, B
tn,xn
τn

) > φ(τn, B
tn,xn
τn

) + µ.

Now for each n consider the probability measure P̄n := Pᾱ induced by the constant
di�usion ᾱ from time tn onwards. It is clearly in P tn

h . Then, arguing exactly as in (i), we
prove that

u(tn, xn) − Y P̄n,tn,xn
tn (τn, u∗(τn, B

tn,xn
τn

)) 6 cn − µ′, P̄n − a.s.

For n large enough, the right-hand side becomes strictly negative, which contradicts
Proposition 2.7.1(ii). ⊔⊓





Chapitre 3

Robust Utility Maximization in

Non-dominated Models with 2BSDEs

3.1 Introduction

In this chapter, we study the problem of robust utility maximization with closed con-
straints set in uncertain volatility models via quadratic 2BSDEs introduced in Chapter 2.
The rest of the chapter is organized as follows. In Section 3.2, we recall some notations
of quadratic 2BSDEs. Then inspired by [38] and [54], in Sections 3.3, 3.4, 3.5 and 3.6,
we study the problem for robust exponential utility, robust power utility and robust loga-
rithmic utility. Finally, in Section 3.7, we provide some examples where we can explicitly
solve the robust utility maximization problems by �nding the solution of the associated
2BSDEs, and we give some insights and comparisons with the classical dynamic program-
ming approach adopted in the seminal work of Merton [81]. This chapter is based on
[78].

3.2 Preliminaries

We will use the notations and notions related to the theory of 2BSDEs with quadratic
growth generators. The only di�erence is with the non-dominated family of mutually
singular probability measures. We �x a, a ∈ S>0

d such that a 6 a (for the usual order on
positive de�nite matrices, i.e. (a− a) ∈ S>0

d ) and we de�ne the family:

PH = P :=
{
P ∈ PS s.t. a 6 â 6 a, dt× dP − a.e.

}
.

In fact, this reduces to a particular case of De�nition 2.2.1 in Chapter 2 where the bounds
on â are independent of the probability measures and where F̂ 0 is bounded. Throughout
this chapter we assume that PH is not empty.

De�nition 3.2.1. We say a property holds PH-quasi-surely (PH-q.s. for short) if it holds

P-a.s. for all P ∈ PH .

Remark 3.2.1. The �ltration F+ de�ned in Chapter 2 is right-continuous but not complete

under each P ∈ PH . However, as shown in Lemma 2.4 of [103], for every P ∈ PH , we

can always consider a version which is progressively measurable for the completion of F+

under P. This shows that all the usual properties are still satis�ed in our framework.
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3.3 Robust utility maximization

We will now present the main problem of this paper and introduce a �nancial market with
volatility uncertainty. The �nancial market consists of one bond with zero interest rate
and d stocks. The price process is given by

dSt = diag [St] (btdt+ dBt), PH − q.s.

where b is an Rd-valued uniformly bounded stochastic process which is uniformly contin-
uous in ω for the || · ||∞ norm.

Remark 3.3.1. The volatility is implicitly embedded in the model. Indeed, under each

P ∈ PH , we have dBs ≡ â
1/2
t dW P

t where W P is a Brownian motion under P. Therefore,

â1/2 plays the role of volatility under each P and thus allows us to model the volatility

uncertainty. We also note that we make the uniform continuity assumption for b to ensure

that the generators of the 2BSDEs obtained later satisfy Assumptions 2.2.1 or 2.2.2.

We then denote π = (πt)0 6 t 6 T a trading strategy, which is a d-dimensional F -
progressively measurable process, supposed to take its value in some closed set A. We
refer to De�nitions 3.4.1, 3.5.1 and 3.6.1 in the following sections for precise de�nitions of
the set of admissible strategies A for the three utility functions we study.

The process πi
t describes the amount of money invested in stock i at time t, with

1 6 i 6 d. The number of shares is πi
t

Si
t
. So the liquidation value of a trading strat-

egy π with positive initial capital x is given by the following wealth process

Xπ
t = x+

∫ t

0

πs(dBs + bsds), 0 6 t 6 T, PH − q.s.

Since we assumed zero interest rate, the amount of money in the bank π0 does not
appear in the wealth process X.

Let ξ be a liability that matures at time T , which is a random variable assumed to be
FT -measurable and in L∞

H . The problem of the investor in this �nancial market is to
maximize her expected utility under model uncertainty from her total wealth Xπ

T − ξ. Let
U be a utility function, then the value function V of the maximization problem can be
written as

V ξ(x) := sup
π∈A

inf
Q∈PH

EQ[U(Xπ
T − ξ)]. (3.3.1)

In the case where PH contains only one probability measure, the problem reduces to the
classical utility maximization problem.

Remark 3.3.2. Due to the construction of 2BSDEs, we need the liability ξ to be in the

class L∞
H . It is easy to see that ξ can be constant, deterministic or in the form of g(BT )

where g is a Lipschitz bounded function, such as a Put or a Call spread payo� function.

However, we notice that vanilla options payo�s with underlying S may not be in L∞
H .

Indeed, we have in the one-dimensional framework

ST = S0exp

(∫ T

0

btdt−
1

2
〈B〉T +BT

)
, PH − q.s.
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Since the quadratic variation of the canonical process can be written as follows

lim
n→+∞

∑

i 6 2nt

(
B i+1

2n
(ω) −B i

2n
(ω)
)2

,

it is not too di�cult to see that S can be approximated by a sequence of random variables

in UCb(Ω). Besides, this sequence converges in L2
H . However, we cannot be sure that it

also converges in L∞
H , which is our space of interest here.

Of course, in the uncertain volatility framework, this seems to be a major drawback.

Nevertheless, to deal with these options, it su�ces to redo the whole 2BSDE construction

from scratch but taking the exponential of the Brownian motion under the Wiener measure

as the canonical process instead of the Brownian motion itself. This would amount to

restrict ourselves to the subset P+
H of PH , containing only those P ∈ PH such that the

canonical process is a positive continuous local martingale under P.

To �nd the value function V ξ and an optimal trading strategy π∗, we follow the ideas of
the general martingale optimality principle approach as in [38] and [54], but adapt it here
to a nonlinear framework. We recall that A is the admissibility set of the strategies π.

Let {Rπ}π∈A be a family of processes which satis�es the following properties

Properties 3.3.1. (i) Rπ
T = U(Xπ

T − ξ) for all π ∈ A.

(ii) Rπ
0 = R0 is constant for all π ∈ A.

(iii) We have

Rπ
t > ess infP

P′∈PH(t+,P)
EP′

t [Rπ
T ], ∀π ∈ A

Rπ∗

t = ess infP

P′∈PH(t+,P)
EP′

t [Rπ∗

T ] for some π∗ ∈ A, P − a.s. for all P ∈ PH .

Then it follows

inf
P∈PH

EP[U(Xπ
T − ξ)] 6 R0 = inf

P∈PH

EP[U(Xπ∗

T − ξ)] = V ξ(x). (3.3.2)

In the following sections we will follow the ideas of Hu, Imkeller and Müller [54] to
construct such a family for our three utility functions U .

3.4 Robust exponential utility

In this section, we will consider the exponential utility function which is de�ned as

U(x) = −exp(−βx), x ∈ R for β > 0.

In our context, the set of admissible trading strategies is de�ned as follows
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De�nition 3.4.1. Let A be a closed set in Rd. The set of admissible trading strategies A
consists of all d-dimensional progressively measurable processes, π = (πt)0 6 t 6 T satisfying

π ∈ BMO(PH) and πt ∈ A, dt⊗ PH − a.e.

Remark 3.4.1. Many authors have shed light on the natural link between BMO class,

exponential uniformly integrable class and BSDEs with quadratic growth. See [12], [6] and

[54] among others. In the standard utility maximization problem studied in [54], their trad-

ing strategies satisfy a uniform integrability assumption on the family (exp(Xπ
τ ))τ . Since

the optimal strategy is a BMO martingale, it is easy to see that the utility maximization

problem can also be solved if the uniform integrability assumption is replaced by a BMO

assumption. However, at the end of the day, those two assumptions are deeply linked, as

shown in the context of quadratic semimartingales in [6]. Nonetheless, in our framework,

as explained below in Remark 3.4.3, we need to generalize the BMO martingale assumption

instead of the uniform integrability assumption. Moreover, as recalled in the Introduction,

from a �nancial point of view these admissibility sets are related to absence of arbitrage

in the market considered.

3.4.1 Characterization of the value function and existence of an

optimal strategy

The investor wants to solve the maximization problem

V ξ(x) := sup
π∈A

inf
Q∈PH

EQ [−exp (Xπ
T − ξ)] . (3.4.1)

In order to construct a process Rπ which satis�es the Properties 3.3.1, we set

Rπ
t = −exp(−β(Xπ

t − Yt)), t ∈ [0, T ], π ∈ A,

where (Y, Z) ∈ D∞
H ×H2

H is the unique solution of a 2BSDE with a well chosen quadratic
generator F̂ satisfying Assumption 2.2.1 or 2.2.2

Yt = ξ −
∫ T

t

ZsdBs −
∫ T

t

F̂ (s, Zs)ds+KP
T −KP

t , P − a.s., ∀P ∈ PH .

Remark 3.4.2. From Theorem 2.3.1 of Chapter 2, we have the following representation

Yt = ess supP

P′∈PH(t+,P)

yP′

t (T, ξ).

Therefore, in general Y0 is only F0+-measurable and therefore not a constant. But by

Proposition 2.5.2 of Chapter 2, we know that the process Y is actually F-measurable (this

is true when the terminal condition is in UCb(Ω) and by passing to the limit when the

terminal condition is in L∞
H ). This and the above representation imply easily that

Y0 = ess supP

P′∈PH(0+,P)

yP′

0 (T, ξ) = sup
P′∈PH

yP′

0 (T, ξ),

then by the Blumenthal Zero-One law Y0 is a constant.
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Let us now de�ne for all a ∈ S>0
d such that a 6 a 6 a the set Aa by

Aa := a1/2A =
{
a1/2b, b ∈ A

}
.

For any a ∈ [a, a], the set Aa is still closed. Moreover, since A 6= ∅ we have

min {|r| , r ∈ Aa} 6 k, (3.4.2)

for some constant k independent of a.

We can now state the main result of this section

Theorem 3.4.1. Assume that ξ ∈ L∞
H and either that ‖ξ‖L∞

H
+ sup

0 6 t 6 T
‖bt‖L∞

H
is small

and that 0 ∈ A, or that the set A is C2 (in the sense that its border is a C2 Jordan arc).

Then, the value function of the optimization problem (3.4.1) is given by

V ξ(x) = −exp (−β (x− Y0)) ,

where Y0 is de�ned as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H of the

following 2BSDE

Yt = ξ −
∫ T

t

ZsdBs −
∫ T

t

F̂s(Zs)ds+KP
T −KP

t , P − a.s., ∀P ∈ PH . (3.4.3)

The generator is de�ned as follows

F̂t(ω, z) := Ft(ω, z, ât), (3.4.4)

where for all t ∈ [0, T ], z ∈ Rd and a ∈ S>0
d

Ft(ω, z, a) = −β
2
dist2

(
a1/2z +

1

β
θt(ω), Aa

)
+ z

′

a1/2θt(ω) +
1

2β
|θt(ω)|2 ,

where θt(ω) := a−1/2bt(ω) and where for any x ∈ Rd and any set E ⊂ Rd, dist(x,E)

denotes the distance from x to E.

Moreover, there exists an optimal trading strategy π∗ satisfying

â
1/2
t π∗

t ∈ ΠAbat

(
â

1/2
t Zt +

1

β
θ̂t

)
, t ∈ [0, T ], PH − q.s. (3.4.5)

with θ̂t := â
−1/2
t bt.

Proof. The proof is divided into 5 steps. First, we show that the 2BSDE with the
generator de�ned in (3.4.4) has indeed a unique solution. Then, we prove a multiplicative
decomposition for the process Rπ and some BMO integrability results on the process Z
and the optimal strategy π∗. Using these results, we are then able to show that (iii) of
Properties 3.3.1 holds.

Step 1: We �rst show that the 2BSDE (3.4.3) has an unique solution. We need to verify
that the generator F̂ satis�es the conditions of Assumption 2.2.2 or 2.2.1.
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First of all, F de�ned above is a convex function of a, for all a ∈ S>0
d , and thus for any

t ∈ [0, T ], F can be written as the Fenchel transform of a function

Ht(ω, z, γ) := sup
a∈DF

{
1

2
Tr(aγ) − Ft(ω, z, a)

}
for γ ∈ Rd×d.

That F satis�es the �rst two conditions of either Assumption 2.2.2 or 2.2.1 is obvious.
For Assumptions 2.2.2(iii) and 2.2.1(iii), the assumption of boundedness and uniform
continuity in ω on b implies that b2 is uniformly continuous in ω. Since b and b2 are the
only non-deterministic terms in F , then F is also uniformly continuous in ω.

Then, since we consider the distance function to a closed set, we know that it is attained
for some element of Rd. It is therefore clear that the generator of this 2BSDE is linear
and quadratic in z. Besides, as recalled earlier in (3.4.2), there exists a constant k > 0

such that
min {|d| , d ∈ A

bat} 6 k for dt⊗ P − a.e., for all P ∈ PH .

Then we get, for all z ∈ Rd, t ∈ [0, T ],

dist2

(
â

1/2
t z +

1

β
θ̂t, Abat

)
6 2

∣∣∣â1/2
t z

∣∣∣
2

+ 2

(
1

β

∣∣∣θ̂t

∣∣∣+ k

)2

.

Thus, we obtain from the boundedness of θ̂

∣∣∣F̂t(z)
∣∣∣ 6 c0 + c1

∣∣∣â1/2
t z

∣∣∣
2

,

that is to say that Assumptions 2.2.2(iv) and 2.2.1(iv) are satis�ed.

Finally, Assumption 2.2.2(v) is clear from the Lipschitz property of the distance function,
and Assumption 2.2.1(v) is also clear by our regularity assumption on the border of A.

The terminal condition ξ is in L∞
H and we have proved that the generator F̂ satis�es

Assumption 2.2.2 or Assumption 2.2.1. Moreover, by the de�nition of the generator F , it
is clear that if the process b has a small L∞

H -norm and if 0 ∈ A, then F̂ 0 also has a small
L∞

H -norm. Indeed, in this case we have

F̂ 0
t = −β

2
dist

(
θt

β
,A

bat

)
+

1

2β
|θt|2 ,

which tends to 0 as bt and thus θt goes to 0 (this is clear for the second term on the
right-hand side, and for the �rst one, continuity of the distance function and the fact
0 ∈ A ensure the result).

Therefore Theorem 2.5.1 in Chapter 2 states that the 2BSDE (3.4.3) has a unique
solution in D∞

H × H2
H .

Step 2: We �rst decompose Rπ as the product of a process Mπ and a non-increasing
process Nπ that is constant for some π∗ ∈ A.
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De�ne for all P ∈ PH any for any t ∈ [0, T ]

Mπ
t = e−β(x−Y0)exp

(
−
∫ t

0

β(πs − Zs)dBs −
1

2

∫ t

0

β2
∣∣â1/2

s (πs − Zs)
∣∣2 ds− βKP

t

)
, P−a.s.

We can then write for all t ∈ [0, T ]

Rπ
t = Mπ

t N
π
t ,

with

Nπ
t = −exp

(∫ t

0

v(s, πs, Zs)ds

)
,

and
v(t, π, z) = −βπbt + βF̂t(z) +

1

2
β2
∣∣∣â1/2

t (π − z)
∣∣∣
2

.

Clearly, for every t ∈ [0, T ], we may rewrite v(t, πt, Zt) in the following form

1

β
v(t, πt, Zt) =

β

2

∣∣∣â1/2
t πt

∣∣∣
2

− βπ
′

tâ
1/2
t

(
â

1/2
t Zt +

1

β
θ̂t

)
+
β

2

∣∣∣â1/2
t Zt

∣∣∣
2

+ F̂t(Zt)

=
β

2

∣∣∣∣â
1/2
t πt −

(
â

1/2
t Zt +

1

β
θ̂t

)∣∣∣∣
2

− Z
′

t â
1/2
t θ̂t −

1

2β

∣∣∣θ̂t

∣∣∣
2

+ F̂t(Zt).

By a classical measurable selection theorem (see [31] or Lemma 3.1 in [33]), we can
de�ne a progressively measurable process π∗ satisfying (3.4.5). Then, it follows from the
de�nition of F̂ that PH − q.s.

• v(t, πt, Zt) > 0 for all π ∈ A, t ∈ [0, t].

• v(t, π∗
t , Zt) = 0, t ∈ [0, T ],

which implies that the process Nπ is always non-increasing for all π and is equal to −1

for π∗.

Step 3: In this step, we show that the processes
∫ ·

0

ZsdBs,

∫ ·

0

π∗
sdBs,

are BMO(PH) martingales.

First of all, by Lemma 2.2.1 in Chapter 2, we know that
∫ ·

0
ZsdBs is a BMO(PH) mar-

tingale. By the triangle inequality and the de�nition of π∗ together with (3.4.2), we have
for all t ∈ [0, T ]

∣∣∣â1/2
t π∗

t

∣∣∣ 6

∣∣∣∣â
1/2
t Zt +

1

β
θ̂t

∣∣∣∣+
∣∣∣∣â

1/2
t π∗

t −
(
â

1/2
t Zt +

1

β
θ̂t

)∣∣∣∣

6 2
∣∣∣â1/2

t Zt

∣∣∣+
2

β

∣∣∣θ̂t

∣∣∣+ k 6 2
∣∣∣â1/2

t Zt

∣∣∣+ k1,
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where k1 is a bound on θ̂.

Then, for every probability P ∈ PH and every stopping time τ 6 T ,

EP
τ

[∫ T

τ

∣∣∣â1/2
t π∗

t

∣∣∣
2

dt

]
6 EP

τ

[∫ T

τ

8
∣∣∣â1/2

t Zt

∣∣∣
2

dt+ 2Tk2
1

]
,

and therefore

‖π∗‖BMO(PH) 6 8 ‖Z‖BMO(PH) + 2Tk2
1.

This implies the BMO(PH) martingale property of
∫ ·

0
π∗

sdBs as desired.

Step 4: We then prove that π∗ ∈ A and Rπ∗ ≡ −Mπ∗
satis�es (iii) of Properties 3.3.1,

that is to say for all t ∈ [0, T ]

ess supP

P′∈PH(t+,P)

EP′

t

[
Mπ∗

T

]
= Mπ∗

t , P − a.s., ∀P ∈ PH .

For a �xed P′ ∈ PH(t+,P), we denote

Lt :=

∫ t

0

β(π∗
s − Zs)dBs +

1

2

∫ t

0

β2
∣∣â1/2

s (π∗
s − Zs)

∣∣2 ds+ βKP′

t , 0 6 t 6 T,

then with Itô's formula, we obtain for every t ∈ [0, T ], thanks to the BMO(PH) property
proved in Step 3

EP′

t

[
Mπ∗

T

]
−Mπ∗

t = −βEP′

t

[∫ T

t

Mπ∗

s−dK
P′

s

]

+ EP
′

t

[
∑

t 6 s 6 T

e−Ls − e−Ls− + e−Ls− (Ls − Ls−)

]
. (3.4.6)

First, we prove

ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t

Mπ∗

s−dK
P′

s

]
= 0, t ∈ [0, T ], P − a.s.

For every t and every P′ ∈ PH(t+,P), we have

0 6 EP′

t

[∫ T

t

Mπ∗

s−dK
P′

s

]
6 EP′

t

[(
sup

0 6 s 6 T
Mπ∗

s

)(
KP′

T −KP′

t

)]
.

Besides, since KP
′

is nondecreasing, we obtain for all s > t

Mπ∗

s 6 e−β(x−Y0)E
(
β

∫ s

0

(Zu − π∗
u) dBu

)
.

Then, again thanks to Step 3, we know that

(Zs − π∗
s) ∈ BMO(PH),
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and thus the exponential martingale above is a uniformly integrable martingale for all P

and is in Lr
H for some r > 1 (see Lemma 2.2.2 in Chapter 2). Thus, by Hölder inequality,

we have for all t ∈ [0, T ]

EP′

t

[∫ T

t
Mπ∗

s−dKP′

s

]
6 eβ(Y0−x)EP′

t

[
sup

0 6 s 6 T
Er

(
β

∫ s

0
(Zu − π∗

u) dBu

)] 1
r

EP′

t

[(
KP′

T − KP′

t

)q] 1
q
.

With Doob's maximal inequality, we have for every t ∈ [0, T ]

EP′

t

[
sup

0 6 s 6 T
Er

(
β

∫ s

0
(Zu − π∗

u) dBu

)]1/r

6 CEP′

t

[
Er

(
β

∫ T

0
(Zu − π∗

u) dBu

)]1/r

< +∞,

where C is an universal constant that can change value from line to line.

Then by the Cauchy-Schwarz inequality, we get for 0 6 t 6 T

EP′

t

[(
KP′

T − KP′

t

)q]1/q
6 C

(
EP′

t

[(
KP′

T − KP′

t

)]
EP′

t

[(
KP′

T − KP′

t

)2q−1
]) 1

2q

6 C

(
ess supP

P′∈PH(t+,P)

EP′

t

[(
KP′

T − KP′

t

)2q−1
]) 1

2q (
EP′

t

[(
KP′

T − KP′

t

)]) 1
2q

.

Arguing as in the proof of Theorem 2.3.1 in Chapter 2 we know that

(
ess supP

P′∈PH(t+,P)

EP′

t

[(
KP′

T −KP′

t

)2q−1
]) 1

2q

< +∞, 0 6 t 6 T.

Hence, we obtain for 0 6 t 6 T

0 6 ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t

Mπ∗

s−dK
P′

s

]
6 C ess infP

P′∈PH(t+,P)

(
EP′

t

[(
KP′

T −KP′

t

)]) 1
2q

= 0,

which means

ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t

Mπ∗

s−dK
P′

s

]
= 0, 0 6 t 6 T.

Finally, we have for every t ∈ [0, T ]

ess infP

P′∈PH(t+,P)
EP′

t



∫ T

t
Mπ∗

s−dKP′

s −
∑

t 6 s 6 T

exp(−βLs) − exp(−βLs−) + βexp(−βLs−)(Ls − Ls−)




6 ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t
Mπ∗

s−dKP′

s

]

− ess infP

P′∈PH(t+,P)
EP′

t



∑

t 6 s 6 T

exp(−βLs) − exp(−βLs−) + βexp(−βLs−)(Ls − Ls−)




6 0,

because the function x→ exp(−x) is convex and the jumps of L are positive.
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Hence, using (3.4.6), we have for every t ∈ [0, T ]

ess supP

P′∈PH(t+,P)

EP′

t

[
Mπ∗

T −Mπ∗

t

]
> 0.

But by de�nition Mπ∗
is the product of a martingale and a positive non-increasing

process and is therefore a supermartingale. This implies that for every t ∈ [0, T ]

ess supP

P′∈PH(t+,P)

EP′

t

[
Mπ∗

T −Mπ∗

t

]
= 0.

Finally, π∗ is an admissible strategy, Rπ∗
satis�es (iii) of Properties 3.3.1 and

Rπ∗

0 = inf
P∈PH

EP

[
−exp

(
−β
(
x+

∫ T

0

π∗
s (dBs + θsds) − ξ

))]

= −exp (−β (x− Y0)) .

Step 5: Next we will show that for all π ∈ A, Rπ satis�es (iii) of Properties 3.3.1, that
is, for every t ∈ [0, T ]

ess infP

P′∈PH(t+,P)
EP′

t [−exp(−β(Xπ
T − ξ))] 6 Rπ

t , P − a.s.

Since π ∈ A, the process ∫ .

0

(Zs − πs) dBs,

is a BMO(PH) martingale. Then the process

Gπ = exp (−β(x− Y0)) E
(
−β
∫ .

0

(πs − Zs) dBs

)
,

is a uniformly integrable martingale under each P ∈ PH .

As in the previous steps, we write Rπ as Rπ = MπNπ, where Nπ is a negative non-
increasing process. We then have for 0 6 s 6 t 6 T

ess infP

P′∈PH(s+,P)
EP′

s [Mπ
t N

π
t ] 6 ess infP

P′∈PH(s+,P)
EP′

s [Mπ
t N

π
s ] , P − a.s.

= ess supP

P′∈PH(s+,P)

EP′

s [Mπ
t ]Nπ

s , P − a.s.

because Nπ is negative. By the same arguments as in Step 3 for Mπ∗
, we have for

0 6 s 6 t 6 T

ess supP

P′∈PH(s+,P)

EP′

s [Mπ
t ] = Mπ

s , P − a.s.

Therefore the following inequality holds for 0 6 s 6 t 6 T

ess infP

P′∈PH(s+,P)
EP′

s [Rπ
t ] 6 Rπ

s , P − a.s.

which ends the proof. ⊔⊓
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Remark 3.4.3. We see here why it is essential in our context to have strong integrability

assumptions on the trading strategies. Indeed, in the proof of the above property for Mπ∗
,

the fact that the stochastic integral ∫ ·

0

π∗
sdBs,

is a BMO(PH) martingale allowed us to control the moments of its stochastic exponential,

which in turn allowed us to deduce from the minimal property for KP a similar minimal

property for ∫ ·

0

Mπ∗

s dKP
s .

This term is new when compared with the context of [54]. To deal with it, we have to

impose the BMO(PH) property. Let us note however that since the optimal strategy already

has this property, we do not lose much by restricting the strategies.

Remark 3.4.4. We note that our approach still works when there are no constraints on

trading strategies. In this case, the 2BSDE related to the maximization problem has a

uniformly Lipschitz generator, thus the theory developed in [101] for Lipschitz 2BSDEs

can be used.

3.4.2 A min-max property

By comparing the value function of our robust utility maximization problem and the one
presented in [54] for standard utility maximization problem, we are able to have a min-
max property similar to the one obtained by Denis and Kervarec in [29]. We observe that
we were only able to prove this property after having solved the initial problem, unlike in
the approach of [29].

Theorem 3.4.2. Under the previous assumptions on the probability measures set PH and

the admissible strategies set A, the following min-max property holds.

sup
π∈A

inf
P∈PH

EP [Rπ
T ] = inf

P∈PH

sup
π∈A

EP [Rπ
T ] = inf

P∈PH

sup
π∈AP

EP [Rπ
T ] ,

where AP is the set consisting of trading strategies π which are in A and such that the

process
(∫ t

0
πsdBs

)
0 6 t 6 T

is a BMO(P) martingale.

Proof. First note that we have

D := sup
π∈A

inf
P∈PH

EP [Rπ
T ] 6 inf

P∈PH

sup
π∈A

EP [Rπ
T ] 6 inf

P∈PH

sup
π∈AP

EP [Rπ
T ] =: C.

Indeed, the �rst inequality is obvious and the second one follows from the fact that for
all P, A ⊂ AP.

It remains to prove that C 6 D. By the previous sections, we know that

D = −exp (−β (x− Y0)) .
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Moreover, we know from Chapter 2 that we have a representation for Y0,

Y0 = sup
P∈PH

yP
0 ,

where yP
0 is the solution of the standard BSDE with the same generator F̂ .

On the other hand, we observe from [54] that

C = inf
P∈PH

[
−exp

(
−β
(
x− yP

0

))]
,

implying that C = D. ⊔⊓

3.4.3 Indi�erence pricing via robust utility maximization

It has been shown in [38] that in a market model with constraints on the portfolios, if we
de�ne the indi�erence price for a contingent claim Φ as the smallest number p such that

sup
π

E
[
−exp

(
−β
(
Xx+p,π − Φ

))]
> sup

π
E [−exp (−βXx,π)] ,

where Xx,π is the wealth associated with the portfolio π and initial value x, then this
problem turns into the resolution of BSDEs with quadratic growth generators.

In our framework of uncertain volatility, the problem of indi�erence pricing of a contin-
gent claim Φ boils down to solve the following equation in p

V 0(x) = V Φ(x+ p).

Thanks to our results, we know that if Φ ∈ L∞
H then the two sides of the above equality

can be calculated by solving 2BSDEs. The price p can therefore be calculated as soon as
we are able to solve the 2BSDEs (explicitly or numerically). We provide two examples in
Section 3.7.

3.5 Robust power utility

In this section, we will consider the power utility function

U(x) = −1

γ
x−γ, x > 0, γ > 0.

Here we shall use a di�erent notion of trading strategy: ρ = (ρi)i=1,...,d denotes the

proportion of wealth invested in stock i. The number of shares of stock i is given by ρi
tXt

Si
t
.

Then the wealth process is de�ned as

Xρ
t = x+

∫ t

0

d∑

i=1

Xρ
s ρ

i
s

Si
s

dSi
s = x+

∫ t

0

Xρ
s ρs (dBs + bsds) , PH − q.s. (3.5.1)

and the initial capital x is positive.

In the present setting, the set of admissible strategies is de�ned as follows
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De�nition 3.5.1. Let A be a closed set in Rd. The set of admissible trading strategies A
consists of all Rd-valued progressively measurable processes ρ = (ρt)0 6 t 6 T satisfying

ρ ∈ BMO(PH) and ρ ∈ A, dt⊗ PH − a.e.

The wealth process Xρ can be written as

Xρ
t = xE

(∫ t

0

ρs(dBs + bsds)

)
, t ∈ [0, T ] , PH − q.s.

Then for every ρ ∈ A, the wealth process Xρ is a local P-martingale bounded from
below, hence, a P-supermartingale, for all P ∈ PH .

We suppose that there is no liability (ξ = 0). Then the investor faces the maximization
problem

V (x) = sup
ρ∈A

inf
P∈PH

EP [U(Xρ
T )] . (3.5.2)

In order to �nd the value function and an optimal strategy, we apply the same method
as in the exponential utility case. We therefore have to construct a stochastic process Rρ

with terminal value

Rρ
T = U

(
x+

∫ T

0

Xρ
s ρs

dSs

Ss

)
.

satisfying Properties 3.3.1.

Then the value function will be given by V (x) = R0. Applying the utility function to
the wealth process yields

− 1

γ
(Xρ

t )−γ = −1

γ
x−γexp

(
−
∫ t

0

γρsdBs −
∫ t

0

γρsbsds+
1

2

∫ t

0

γ
∣∣â1/2

s ρs

∣∣2 ds
)
. (3.5.3)

This equation suggests the following choice

Rρ
t = −1

γ
x−γexp

(
−
∫ t

0

γρsdBs −
∫ t

0

γρsbsds+
1

2

∫ t

0

γ
∣∣â1/2

s ρs

∣∣2 ds+ Yt

)
,

where (Y, Z) ∈ D∞
H × H2

H is the unique solution of the following 2BSDE

Yt = 0 −
∫ T

t

ZsdBs −
∫ T

t

F̂s(Zs)ds+KT −Kt, t ∈ [0, T ], PH − q.s. (3.5.4)

In order to get (iii) of Properties 3.3.1 for Rρ, we have to construct F̂t(z) such that, for
t ∈ [0, T ]

γρtbt −
1

2
γ
∣∣∣â1/2

t ρt

∣∣∣
2

− F̂t(Zt) 6 − 1

2

∣∣∣â1/2
t (γρt − Zt)

∣∣∣
2

for all ρ ∈ A, (3.5.5)

with equality for some ρ∗ ∈ A. This is equivalent to

F̂t(Zt) > − 1

2
γ (1 + γ)

∣∣∣∣â
1/2
t ρt −

1

1 + γ

(
−â

1/2
t Zt + θ̂t

)∣∣∣∣
2

− 1

2

γ
∣∣∣−â

1/2
t Zt + θ̂t

∣∣∣
2

1 + γ
+

1

2

∣∣∣â1/2
t Zt

∣∣∣
2
.
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Hence, the appropriate choice for F̂ is

F̂t(z) = −γ(1 + γ)

2
dist2

(
−â1/2

t z + θ̂t

1 + γ
,A

bat

)
+
γ
∣∣∣−â1/2

t z + θ̂t

∣∣∣
2

2(1 + γ)
+

1

2

∣∣∣â1/2
t z

∣∣∣
2

, (3.5.6)

and a candidate for the optimal strategy must satisfy

â
1/2
t ρ∗t ∈ ΠAbat

(
1

1 + γ

(
−â1/2

t Zt + θ̂t

))
, t ∈ [0, T ].

We summarize the above results in the following Theorem.

Theorem 3.5.1. Assume either that the drift b veri�es that sup
0 6 t 6 T

‖bt‖L∞
H

is small and

that the set A contains 0, or that the set A is C2 (in the sense that its border is a C2

Jordan arc). Then, the value function of the optimization problem (3.5.2) is given by

V (x) = −1

γ
x−γexp(Y0) for x > 0,

where Y0 is de�ned as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H of the

quadratic 2BSDE

Yt = 0 −
∫ T

t

ZsdBs −
∫ T

t

F̂s(Zs)ds+KT −Kt, t ∈ [0, T ] PH − q.s. (3.5.7)

where F̂ is given by (3.5.6).

Moreover, there exists an optimal trading strategy ρ∗ ∈ A with the property

â
1/2
t ρ∗t ∈ ΠAbat

(
1

1 + γ

(
−â1/2

t Zt + θ̂t

))
, t ∈ [0, T ]. (3.5.8)

Proof. The proof is very similar to the case of robust exponential utility. First we
can show, with the same arguments, that the generator F̂ satis�es the conditions of
Assumption 2.2.1 or Assumption 2.2.2, hence there exists a unique solution to the 2BSDE
(3.5.7).

Let then ρ∗ denote the progressively measurable process, constructed with a measurable
selection theorem, which realizes the distance in the de�nition of F̂ . The same arguments
as in the case of robust exponential utility show that ρ∗ ∈ A.

Then with the choice we made for F̂ , we have the following multiplicative decomposition

Rρ
t = −1

γ
x−γE

(
−
∫ t

0

(γρs − Zs) dBs

)
e−γKP

t exp

(
−
∫ t

0

vsds

)
,

where

vt = γρtbt −
1

2
γ
∣∣∣â1/2

t ρt

∣∣∣
2

− F̂t(Zt) +
1

2

∣∣∣â1/2
t (γρt − Zt)

∣∣∣
2

6 0, dt⊗ P−a.e.
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Then since the stochastic integral
∫ t

0
(ρs−Zs)dBs is a BMO(PH) martingale, the stochas-

tic exponential above is a uniformly integrable martingale. By exactly the same arguments
as before, we have

ess infP

P′∈PH(s+,P)
EP′

s [Rρ
t ] 6 Rρ

s , s 6 t, P − a.s.

with equality for ρ∗.

Hence, the terminal value Rρ
T is the utility of the terminal wealth of the trading strategy

ρ. Consequently,

inf
P∈PH

EP [U (Xρ
T )] 6 R0 = −1

γ
x−γexp(Y0) for all ρ ∈ A.

⊔⊓

Remark 3.5.1. Of course, the min-max property of Theorem 3.4.2 still holds.

3.6 Robust logarithmic utility

In this section, we consider logarithmic utility function

U(x) = log(x), x > 0.

Here we use the same notion of trading strategies as in the power utility case, ρ =

(ρi)i=1,...,d denotes the part of the wealth invested in stock i. The number of shares of

stock i is given by ρi
tXt

Si
t
. Then the wealth process is de�ned as

Xρ
t = x+

∫ t

0

d∑

i=1

Xρ
s ρ

i
s

Si
s

dSi
s = x+

∫ t

0

Xρ
s ρs (dBs + bsds) , PH − q.s. (3.6.1)

and the initial capital x is positive.

The wealth process Xρ can be written as

Xρ
t = xE

(∫ t

0

ρs(dBs + bsds)

)
, t ∈ [0, T ] , PH − q.s.

In this case, the set of admissible strategies is de�ned as follows

De�nition 3.6.1. Let A be a closed set in Rd. The set of admissible trading strategies A
consists of all Rd-valued progressively measurable processes ρ satisfying

sup
P∈PH

EP

[∫ T

0

|â1/2
t ρt|2dt

]
<∞,

and ρ ∈ A, dt⊗ dP − a.s., ∀P ∈ PH .
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For the logarithmic utility, we assume the agent has no liability at time T (ξ = 0). Then
the optimization problem is given by

V (x) = sup
ρ∈A

inf
P∈PH

EP[log(Xρ
T )]

= log(x) + sup
ρ∈A

inf
P∈PH

EP

[∫ T

0

ρsdBs +

∫ T

0

(ρsbs −
1

2
|â1/2

s ρs|2)ds
]
. (3.6.2)

We have the following theorem.

Theorem 3.6.1. Assume either that the drift b veri�es that sup
0 6 t 6 T

‖bt‖L∞
H

is small and

that the set A contains 0, or that the set A is C2 (in the sense that its border is a C2

Jordan arc). Then, the value function of the optimization problem (3.6.2) is given by

V (x) = log(x) − Y0 for x > 0,

where Y0 is de�ned as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H of the

quadratic 2BSDE

Yt = 0 −
∫ T

t

ZsdBs −
∫ T

t

F̂sds+KP
T −KP

t , t ∈ [0, T ], P − a.s., ∀P ∈ PH . (3.6.3)

The generator is de�ned by

F̂s = Fs(âs),

where

Fs(a) = −1

2
dist2(θs, Aa) +

1

2
|θs|2, for a ∈ S>0

d .

Moreover, there exists an optimal trading strategy ρ∗ ∈ A with the property

â
1/2
t ρ∗t ∈ ΠAbat

(
θ̂t

)
. (3.6.4)

Proof. The proof is very similar to the case of exponential and power utility. First
we show that there exists an unique solution to the 2BSDE (3.6.3). We then write, for
t ∈ [0, T ]

Rρ
t = Mρ

t +Nρ
t ,

where

Mρ
t = log(x) − Y0 +

∫ t

0

(ρs − Zs) dBs +KP
t ,

Nρ
t =

∫ t

0

(
−1

2

∣∣∣â1/2
s ρs − θ̂s

∣∣∣
2

+
1

2

∣∣∣θ̂s

∣∣∣
2

− F̂s

)
ds.

Then, we similarly prove that ρ∗, which can be constructed by means of a classical
measurable selection argument, is in A. Note in particular that ρ∗ only depends on
θ̂, â1/2 and the closed set A describing the constraints on the trading strategies.
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Next, due to De�nition 3.6.1, the stochastic integral in Rρ is a martingale under each
P for all ρ ∈ A. Moreover, F̂ is chosen to make the process Nρ non-increasing for all ρ
and a constant for ρ∗. Thus, the minimum condition of KP implies that Rρ satis�es (iii)

of Properties 3.3.1.

Furthermore, the initial value Y0 of the simple 2BSDE (3.6.3) satis�es

Y0 = sup
P∈PH

EP

[
−
∫ T

0

F̂sds

]
.

Hence,

V (x) = Rρ∗

0 (x) = log(x) − sup
P∈PH

EP

[
−
∫ T

0

F̂sds

]
.

⊔⊓
Remark 3.6.1. Of course, the min-max property of Theorem 3.4.2 still holds. Moreover,

it is an easy exercise to show that the 2BSDE (3.6.3) has a unique solution given by

Yt = ess supP

P
′∈PH(t+,P)

EP
′
[∫ T

t

1

2

(
dist2(θs, Abas) − |θs|2

)
ds

]
.

3.7 Examples

In general, it is di�cult to solve BSDEs and 2BSDEs explicitly. In this section, we will
give some examples where we have an explicit solution. In particular, we show how the
optimal probability measure is chosen. In all our examples, we will work in dimension
one, d = 1.

First, we deal with robust exponential utility. We consider the case where there are
no constraints on trading strategies, that is A = R. Then the associated 2BSDE has a
generator which is linear in z. In the �rst example, we consider a deterministic terminal
liability ξ and show that we can compare our result with the one obtained by solving the
HJB equation in the standard Merton's approach, working with the probability measure
associated to the constant process a. In the second example, we show that with a random
payo� ξ = −B2

T , where B is the canonical process, we end up with an optimal probability
measure which is not of Bang-Bang type (Bang-Bang type means that, under this proba-
bility measure, the density of the quadratic variation â takes only the two extreme values,
a and a). We emphasize that this example does not have real �nancial signi�cance, but
shows nonetheless that one cannot expect the optimal probability measure to depend only
on the two bounds for the volatility unlike with option pricing in the uncertain volatility
model.

3.7.1 Example 1: Deterministic payo�

In this example, we suppose that b is a constant in R. From Theorem 3.4.1, we know that
the value function of the robust maximization problem is given by

V ξ(x) = −exp (−β (x− Y0)) ,
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where Y is the solution of a 2BSDE with a quadratic generator. When there are no
constraints, the 2BSDE can be written as follows

Yt = ξ −
∫ T

t

ZsdBs −
∫ T

t

F̂s(Zs)ds+KP
T −KP

t , P − a.s., ∀P ∈ PH .

and the generator is given by

F̂t(z) := Ft(ω, z, â) = bz +
b2

2βâ
.

Then we can solve explicitly the corresponding BSDEs with the same generator under
each P. Let

Mt = e−
R t
0

1
2
b2ba−1

s ds−
R t
0 bba−1

s dBs .

By applying Itô's formula to yP
t Mt, we have

yP
0 = EP

[
ξMT − b2

2β

∫ T

0

â−1
s Msds

]
.

Since a 6 â 6 a, we derive that

yP
0 6 ξ − 1

2β

b2

a
T.

Therefore, by the representation of Y , we have

Y0 6 ξ − 1

2β

b2

a
T.

Moreover, under the speci�c probability measure Pa ∈ PH , we have

yPa

0 = ξ − 1

2β

b2

a
T.

This implies that Y0 = yPa

0 , which means that the robust utility maximization problem
is degenerated and is equivalent to a standard utility maximization problem under the
probability measure Pa. We discuss in more detail this result in Example 3.7.3 below.

3.7.2 Example 2 : Non-deterministic payo�

In this subsection, we consider a non-deterministic payo� ξ = −B2
T . As in the �rst

example, there are no constraints on trading strategies. Then, the 2BSDE has a linear
generator. We can verify that −B2

T can be written as the limit under the norm ‖·‖L2
H
of

a sequence which is in UCb(Ω), and thus is in L2
H , which is the terminal condition set for

2BSDEs with Lipschitz generators. Here, we suppose that b is a deterministic continuous
function of time t.

By the same method as in the previous example, let

Mt = e−
R t
0

1
2
b2sba−1

s ds−
R t
0 bsba−1

s dBs ,
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then we obtain

yP
0 = EP

[
−MTB

2
T −

∫ T

0

b2s
2β
â−1

s Msds

]
.

By applying Itô's formula to MtBt, we have

dMtBt = MtdBt +BtdMt − btMtdt.

Since b is deterministic, by taking expectation under P and localizing if necessary, we
obtain

EP [MTBT ] = EP

[
−
∫ T

0

btMtdt

]
= −

∫ T

0

btdt.

Again, by applying Itô's formula to −MtB
2
t , we have

−dMtB
2
t = −2MtBtdBt −B2

t dMt − âtMtdt+ 2btMtBtdt.

Therefore yP
0 can be rewritten as

yP
0 = EP

[∫ T

0

−Mt

(
ât +

b2t
2βât

)
dt

]
−
∫ T

0

2bt

(∫ t

0

bsds

)
dt.

By analyzing the map g : x ∈ R+ 7−→ x− b2t
2βx

, we know that g′(x) = 1 − b2t
2βx2 , implying

that g is nondecreasing when x2 >
b2t
2β
.

Let us now assume that b is a deterministic positive continuous and nondecreasing func-
tion of time t such that

b20
2β

6 a2
6 a2

6
b2T
2β
.

Let t be such that
b2t
2β

= a and t be such that
b2
t

2β
= a, and de�ne

a∗t := a10 6 t 6 t +
bt√
2β

1t 6 t 6 t + a1t 6 t 6 T , 0 6 t 6 T,

then as in Example 3.7.1, we can show that Pa∗
is an optimal probability measure, which

is not of Bang-Bang type.

3.7.3 Example 3 : Merton's approach for robust power utility

Here, we deal with robust power utility. As in Example 3.7.1, we suppose that b is a
constant in R and ξ = 0. First, we consider the case where A = R. From Theorem 3.5.1,
F̂t(z) can be rewritten as

F̂t(z) =
γ
∣∣∣−â1/2

t z + bâ
−1/2
t

∣∣∣
2

2(1 + γ)
+

1

2

∣∣∣â1/2
t z

∣∣∣
2

,

which is quadratic and linear in z.
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According to BSDEs theory, we can solve explicitly the corresponding BSDEs with this
generator under each probability measure P. We use an exponential transformation and
let

α := 1 +
γ

1 + γ
, y′P := e−αyP

, z′P := e−αyP

zP.

By applying Itô's formula, we know that (y′P, z′P) is the solution of the following linear
BSDE

dy′Pt = −αy′Pt
[

γ

2(1 + γ)

(
b2â−1

t − 2bzP
t

)
dt+ z′Pt dBt

]
,

with the terminal condition y′PT = 1.

For t ∈ [0, T ], let

λt :=
αγ

2(1 + γ)
b2â−1

t , ηt := − γ

2(1 + γ)
2bâ

−1/2
t , and Mt := e

R t
0 λs−

η2
s
2

ds+
R t
0 ba

−1/2
s ηsdBs .

By applying Itô's formula to y′Pt Mt, we obtain

y′Pt = EP
t [MT/Mt] , so y

P
0 = − 1

α
ln
(
EP [MT ]

)
.

Since a 6 â 6 a, we derive that

yP
0 6 − γ

2(1 + γ)

b2

a
T.

Thus by the representation of Y , we have

Y0 6 − γ

2(1 + γ)

b2

a
T.

Moreover, under the speci�c probability measure Pa ∈ PH , we have

yPa

0 = − γ

2(1 + γ)

b2

a
T.

This implies that Y0 = yPa

0 . Finally, the value of the robust power utility maximization
problem is

V (x) = −1

γ
x−γexp (Y0) .

As in Example 3.7.1, the robust utility maximization problem is degenerate, and becomes
a standard utility maximization problem under the probability measure Pa. In order
to shed more light on this somehow surprising result, we �rst recall the HJB equation
obtained by Merton [81] in the standard utility maximization problem

−∂v
∂t

− sup
δ∈A

[
Lδ,αv(t, x)

]
= 0,

together with the terminal condition

v(T, x) = U(x) := −x
−γ

γ
, x ∈ R+, γ > 0,
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where

Lδ,αv(t, x) = xδb
∂v

∂x
+

1

2
x2δ2α

∂2v

∂x2
,

with a constant volatility α1/2.

It turns out that, when A = R, the value function is given by

v(t, x) = exp

(
b2

2α

−γ
(1 + γ)

(T − t)

)
U(x), (t, x) ∈ [0, T ] × R+.

Let α = a, we have v(0, x) = V (x), which is the result given by our 2BSDE method.
Intuitively and formally speaking (in the case of controls taking values in compact sets,
it has actually been proved under other technical conditions in [105] that the solution to
the stochastic game we consider is indeed a viscosity solution of the equation below, see
also Remark 3.7.2), the HJB equation for the robust maximization problem should then
be

−∂v
∂t

− sup
δ∈A

inf
α∈[a,a]

[
Lδ,αv(t, x)

]
= 0

together with the terminal condition v(T, x) = U(x), x ∈ R+.

Note that the value function we obtained from our 2BSDE approach solves the above
PDE, con�rming the intuition that this is the correct PDE to consider in this context.
Now assume that A = R. If the second derivative of v is positive, then the term

sup
δ∈A

inf
α∈[a,a]

[
Lδ,αv(t, x)

]
,

becomes in�nite, so the above PDE has no meaning. This implies that v should be
concave. Then a is the minimizer. This explains why the robust utility maximization
problem degenerates in the case A = R. From a �nancial point of view, this is the same
type of results as in the problem of superreplication of an option with convex payo� under
volatility uncertainty. Then, similarly as the so-called robustness of the Black-Scholes
formula, this leads to the fact that the probability measure with the highest volatility
corresponds to the worst-case for the investor. However, it is clear that when, for instance,
we impose no short-sale and no large sales constraints (that is to say A is a segment), the
problem should not degenerate and the optimal probability measure switches between the
two bounds a and a.

Finally, notice that using the language of G-expectation introduced by Peng in [89], if
we let

G(Γ) =
1

2
sup

a 6 α 6 a
αΓ =

1

2

(
a (Γ)+ − a (Γ)−

)
,

then the above PDE can be rewritten as follows

− ∂v

∂t
+ inf

δ∈A

[
Lδ,a,av(t, x)

]
= 0, (3.7.1)

where

Lδ,a,av(t, x) = x2δ2G

(
−∂

2v

∂x2

)
.
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Then, our PDE plays the same role for Merton's PDE as the Black-Scholes-Barenblatt
PDE plays for the usual Black-Scholes PDE, by replacing the second derivative terms by
their non-linear versions.

Remark 3.7.1. It could be interesting to consider more general constraints for the volatil-

ity process. For instance, we may hope to consider cases where a can become 0 and a can

become +∞. From the point of view of existence and uniqueness of the 2BSDEs with

quadratic growth considered here, this is not a problem, since there is no uniform bound

on â for the set of probability measures considered in Chapter 2 (see De�nition 2.2.1).

However, this boundedness assumption is crucial to retain the BMO integrability of the

optimal strategy and thus also crucial for our proofs. We think that without it, the prob-

lem could still be solved but by now using the dynamic programming and PDE approach

that we mentioned. However, delicate problems would arise in the sense that on the one

hand, if a = 0, then the PDE will become degenerate and one should then have to consider

solutions in the viscosity sense, and on the other hand, if a = +∞, the PDE will have to

be understood in the sense of boundary layers.

Another possible generalizations would be to consider time-dependent or stochastic uncer-

tainty sets for the volatility. This would be possible if we were able to weaken Assumption

2.2.1(i), which was already crucial in the proofs of existence and uniqueness in [101]. One

�rst step in this direction has been taken by Nutz in [86] where he de�nes a notion of

G-expectation (which roughly corresponds to a 2BSDE with a generator equal to 0) with a

stochastic domain of volatility uncertainty.

Remark 3.7.2. In [108], a similar problem of robust utility maximization is considered.

They consider a �nancial market consisting of a riskless asset, a risky asset with unknown

drift and volatility and an untradable asset with known coe�cients. Their aim is to solve

the robust utility maximization problem without terminal liability and without constraints

for exponential and power utilities, by means of the dynamic programming approach already

used in [105]. They managed to show that the value function of their problem solves a PDE

similar to (3.7.1), and also that (see Proposition 2.2) the optimal probability measure was

of Bang-Bang type, thus con�rming our intuition in their particular framework. Besides,

they give some semi-explicit characterization of the optimal strategies and of the optimal

probability measures. From a technical point of view, the main di�erence between our two

approaches, beyond the methodology used, is that their set of generalized controls (that

is to say their set of probability measures) is compact for the weak topology, because it

corresponds to the larger set PW de�ned in Section 2.2 of Chapter 2. This is also the

framework adopted in [29]. However, as shown in [27] for instance, our smaller set PH

is only relatively compact for the weak topology. Nonetheless, working with this smaller

set has no e�ect from the point of view of applications, and more importantly allows us

to obtain results which are not attainable by their PDE methods, for instance with non-

Markovian terminal liability ξ and also when the set of trading strategies is constrained in

an arbitrary closed set.



Chapitre 4

Second Order Re�ected BSDEs

4.1 Introduction

In this chapter, we study a class of 2RBSDEs with a given lower càdlàg obstacle. The out-
line is as follows. In Section 4.2, we provide the precise de�nition of 2RBSDEs and show
how they are connected to classical RBSDEs. Next, in Section 4.3, we prove a representa-
tion formula for the Y -part of a solution of a 2RBSDE which in turn implies uniqueness.
We then provide some links between 2RBSDEs and optimal stopping problems. In Section
4.4, we give a proof of existence by means of regular conditional probability distribution
techniques, as in [101] for Lipschitz 2BDSEs. Let us mention that this proof requires to
extend existing results on the theory of g-martingales of Peng (see [88]) to the re�ected
case. Since to the best of our knowledge, those results do not exist in the literature, we
prove them in the Appendix 4.6. Finally, we use these new objects in Section 4.5 to study
the pricing problem of American contingent claims in a market with volatility uncertainty.
This chapter is based on [79].

4.2 Preliminaries

We consider the same framework as in Chapter 2 (see Section 2.2).

4.2.1 The nonlinear generator

Given a map Ht(ω, y, z, γ) : [0, T ]×Ω×R×Rd ×DH → R, where DH ⊂ Rd×d is a subset
containing 0, we de�ne the corresponding conjugate of H w.r.t.γ by

Ft(ω, y, z, a) := sup
γ∈DH

{
1

2
Tr(aγ) −Ht(ω, y, z, γ)

}
for a ∈ S>0

d ,

F̂t(y, z) := Ft(y, z, ât) and F̂
0
t := F̂t(0, 0).

We denote by DFt(y,z) := {a, Ft(ω, y, z, a) < +∞} the domain of F in a for a �xed
(t, ω, y, z).

As in [101] we �x a constant κ ∈ (1, 2] and restrict the probability measures in Pκ
H ⊂ PS

De�nition 4.2.1. Pκ
H consists of all P ∈ PS such that

aP 6 â 6 āP, dt× dP − a.s. for some aP, āP ∈ S>0
d , and EP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ

dt

) 2
κ

]
< +∞
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De�nition 4.2.2. We say that a property holds Pκ
H-quasi-surely (Pκ

H-q.s. for short) if it

holds P-a.s. for all P ∈ Pκ
H .

We now state our main assumptions on the function F which will be our main interest
in the sequel

Assumption 4.2.1. (i) Pκ
H is not empty, and the domain DFt(y,z) = DFt is independent

of (ω, y, z).

(ii) F is F-progressively measurable in DFt.

(iii) We have the following uniform Lipschitz-type property in y and z

∣∣∣F̂t(y, z) − F̂t(y
′

, z
′

)
∣∣∣ 6 C

(∣∣∣y − y
′
∣∣∣+
∣∣∣â1/2

(
z − z

′
)∣∣∣
)
, Pκ

H − q.s.

for all (t, y, y
′
, z, z

′
).

(iv) F is uniformly continuous in ω for the || · ||∞ norm.

Remark 4.2.1. The assumptions (i) and (ii) are classic in the second order framework

([101]). The Lipschitz assumption (iii) is standard in the BSDE theory since the paper

[87]. The last hypothesis (iv) is also proper to the second order framework, it is linked to

our intensive use of regular conditional probability distributions (r.c.p.d.) in our existence

proof, and to the fact that we construct our solutions pathwise, thus avoiding complex

issues related to negligeable sets.

Remark 4.2.2. (i) Pκ
H is decreasing in κ since for κ1 < κ2 with Hölder's inequality

EP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ1

dt

) 2
κ1

]
6 CEP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ2

dt

) 2
κ2

]
.

(ii) The Assumption 4.2.1, together with the fact that F̂ 0
t < +∞, P-a.s for every P ∈ Pκ

H ,

implies that ât ∈ DFt, dt× P-a.s., for all P ∈ Pκ
H .

4.2.2 The spaces and norms

We now recall from [101] the spaces and norms which will be needed for the formulation
of the 2RBSDEs. Notice that all subsequent notations extend to the case κ = 1.

For p > 1, Lp,κ
H denotes the space of all FT -measurable scalar r.v. ξ with

‖ξ‖p
Lp,κ

H
:= sup

P∈Pκ
H

EP [|ξ|p] < +∞.

H
p,κ
H denotes the space of all F+-progressively measurable Rd-valued processes Z with

‖Z‖p
H

p,κ
H

:= sup
P∈Pκ

H

EP

[(∫ T

0

|â1/2
t Zt|2dt

) p
2

]
< +∞.
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D
p,κ
H denotes the space of all F+-progressively measurable R-valued processes Y with

Pκ
H − q.s. càdlàg paths, and ‖Y ‖p

D
p,κ
H

:= sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T
|Yt|p

]
< +∞.

I
p,κ
H denotes the space of all F+-progressively measurable R-valued processes K null at 0

with

Pκ
H − q.s. càdlàg and non-decreasing paths, and ‖K‖p

I
p,κ
H

:= sup
P∈Pκ

H

EP [(KT )p] < +∞.

For each ξ ∈ L1,κ
H , P ∈ Pκ

H and t ∈ [0, T ] denote

E
H,P
t [ξ] := ess supP

P
′∈Pκ

H(t+,P)

EP
′

t [ξ] where Pκ
H(t+,P) :=

{
P

′ ∈ Pκ
H : P

′

= P on F+
t

}
.

Here EP
t [ξ] := EP[ξ|Ft]. Then we de�ne for each p > κ,

L
p,κ
H :=

{
ξ ∈ Lp,κ

H : ‖ξ‖L
p,κ
H
< +∞

}
where ‖ξ‖p

L
p,κ
H

:= sup
P∈Pκ

H

EP

[
ess sup
0 6 t 6 T

P
(
E

H,P
t [|ξ|κ]

) p
κ

]
.

Finally, we denote by UCb(Ω) the collection of all bounded and uniformly continuous
maps ξ : Ω → R with respect to the ‖·‖∞-norm, and we let

Lp,κ
H := the closure of UCb(Ω) under the norm ‖·‖L

p,κ
H
, for every 1 6 κ 6 p.

4.2.3 Formulation

First, we consider a process S which will play the role of our lower obstacle. We will
always assume that S veri�es the following properties

(i) S is F-progressively measurable and càdlàg.

(ii) S is uniformly continuous in ω in the sense that for all t

|St(ω) − St(ω̃)| 6 ρ (‖ω − ω̃‖t) , ∀ (ω, ω̃) ∈ Ω2,

for some modulus of continuity ρ and where we de�ne ‖ω‖t := sup
0 6 s 6 t

|ω(s)|.

Then, we shall consider the following 2RBSDE with lower obstacle S

Yt = ξ −
∫ T

t

F̂s(Ys, Zs)ds−
∫ T

t

ZsdBs +KT −Kt, 0 6 t 6 T, Pκ
H − q.s. (4.2.1)

We follow Soner, Touzi and Zhang [101]. For any P ∈ Pκ
H , F-stopping time τ , and

Fτ -measurable random variable ξ ∈ L2(P), let (yP, zP, kP) := (yP(τ, ξ), zP(τ, ξ), kP(τ, ξ))

denote the unique solution to the following standard RBSDE with obstacle S (existence
and uniqueness have been proved under our assumptions by Lepeltier and Xu in [68])
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yP
t = ξ −

∫ τ

t

F̂s(y
P
s , z

P
s )ds−

∫ τ

t

zP
s dBs + kP

τ − kP
t , 0 6 t 6 τ, P − a.s.

yP
t > St, P − a.s.
∫ T

0

(
yP

s− − Ss−
)
dkP

s = 0, P − a.s.

(4.2.2)

De�nition 4.2.3. For ξ ∈ L
2,κ
H , we say (Y, Z) ∈ D

2,κ
H ×H

2,κ
H is a solution to the 2RBSDE

(4.2.1) if

• YT = ξ, Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process KP de�ned below has nondecreasing paths P − a.s.

KP
t := Y0 − Yt +

∫ t

0

F̂s(Ys, Zs)ds+

∫ t

0

ZsdBs, 0 6 t 6 T, P − a.s. (4.2.3)

• We have the following minimum condition

KP
t − kP

t = ess infP

P
′∈PH(t+,P)

EP
′

t

[
KP

′

T − kP
′

T

]
, 0 6 t 6 T, P − a.s., ∀P ∈ Pκ

H . (4.2.4)

• Yt > St, Pκ
H − q.s.

Remark 4.2.3. In our proof of existence, we will actually show, using recent results of

Nutz [86], that the family
(
KP
)

P∈Pκ
H
can always be aggregated into a universal process K.

Following [101], in addition to Assumption 4.2.1, we will always assume

Assumption 4.2.2. The processes F̂ 0 and S satisfy the following integrability conditions

φ2,κ
H := sup

P∈Pκ
H

EP

[
ess sup
0 6 t 6 T

P

(
E

H,P
t

[∫ T

0

|F̂ 0
s |κds

]) 2
κ

]
< +∞ (4.2.5)

ψ2,κ
H := sup

P∈Pκ
H

EP

[
ess sup
0 6 t 6 T

P

(
E

H,P
t

[(
sup

0 6 s 6 T
(Ss)

+

)κ]) 2
κ

]
< +∞. (4.2.6)

4.2.4 Connection with standard RBSDEs

If H is linear in γ, that is to say

Ht(y, z, γ) :=
1

2
Tr
[
a0

tγ
]
− ft(y, z),

where a0 : [0, T ] × Ω → S>0
d is F-progressively measurable and has uniform upper and

lower bounds. As in [101], we no longer need to assume any uniform continuity in ω in
this case. Besides, the domain of F is restricted to a0 and we have

F̂t(y, z) = ft(y, z).
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If we further assume that there exists some P ∈ PS such that â and a0 coincide P− a.s.

and EP

[∫ T

0
|ft(0, 0)|2 dt

]
< +∞, then Pκ

H = {P}.

Then, unlike with 2BSDEs, it is not immediate from the minimum condition (4.2.4) that
the process KP −kP is actually null. However, we know that KP −kP is a martingale with
�nite variation. Since P satisfy the martingale representation property, this martingale is
also continuous, and therefore it is null. Thus we have

0 = kP −KP, P − a.s.,

and the 2RBSDE is equivalent to a standard RBSDE. In particular, we see that the part
of KP which increases only when Yt− > St− is null, which means that KP satis�es the
usual Skorohod condition with respect to the obstacle.

4.3 Uniqueness of the solution and other properties

4.3.1 Representation and uniqueness of the solution

We have similarly as in Theorem 4.4 of [101]

Theorem 4.3.1. Let Assumptions 4.2.1 and 4.2.2 hold. Assume ξ ∈ L
2,κ
H and that (Y, Z)

is a solution to 2RBSDE (4.2.1). Then, for any P ∈ Pκ
H and 0 6 t1 < t2 6 T ,

Yt1 = ess supP

P
′∈Pκ

H(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s. (4.3.1)

Consequently, the 2RBSDE (4.2.1) has at most one solution in D
2,κ
H × H

2,κ
H .

Remark 4.3.1. Let us now justify the minimum condition (4.2.4). Assume for the sake

of clarity that the generator F̂ is equal to 0. By the above Theorem, we know that if there

exists a solution to the 2RBSDE (4.2.1), then the process Y has to satisfy the representation

(4.3.1). Therefore, we have a natural candidate for a possible solution of the 2RBSDE.

Now, assume that we could construct such a process Y satisfying the representation (4.3.1)
and which has the decomposition (4.2.1). Then, taking conditional expectations in Y − yP,

we end up with exactly the minimum condition (4.2.4).

Proof. The proof follows the lines of the proof of Theorem 4.4 in [101].

First,

Yt = ess supP

P
′∈Pκ

H(t+,P)

yP
′

t (T, ξ), t ∈ [0, T ], P − a.s., for all P ∈ Pκ
H ,

and thus is unique. Then, since we have that d 〈Y,B〉t = Ztd 〈B〉t , Pκ
H −q.s., Z is unique.

Finally, the process KP is uniquely determined. We shall now prove (4.3.1).

(i) Fix 0 6 t1 < t2 6 T and P ∈ Pκ
H . For any P

′ ∈ Pκ
H(t+1 ,P), we have

Yt = Yt2 −
∫ t2

t

F̂s(Ys, Zs)ds−
∫ t2

t

ZsdBs +KP
′

t2
−KP

′

t , t1 6 t 6 t2, P
′ − a.s.
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Now, it is clear that we can always decompose the nondecreasing process KP into

KP
′

t = AP
′

t +BP
′

t , P
′ − a.s.,

were AP
′

and BP
′

are two nondecreasing processes such that AP
′

only increases when
Yt− = St− and BP

′

only increases when Yt− > St− . With that decomposition, we
can apply a generalization of the usual comparison theorem proved by El Karoui et
al. (see Theorem 5.2 in [35]), whose proof is postponed to the Appendix, under P

′

to obtain Yt1 > yP
′

t1
(t2, Yt2) and A

P
′

t2
−AP

′

t1
6 kP

′

t2
− kP

′

t1
, P

′ − a.s. Since P
′
= P on F+

t ,

we get Yt1 > yP
′

t1
(t2, Yt2), P − a.s. and thus

Yt1 > ess supP

P
′∈Pκ

H(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s.

(ii) We now prove the reverse inequality. Fix P ∈ Pκ
H . We will show in (iii) below that

CP
t1

:= ess supP

P
′∈Pκ

H(t+1 ,P)

EP
′

t1

[(
KP

′

t2
− kP

′

t2
−KP

′

t1
+ kP

′

t1

)2
]
< +∞, P − a.s.

For every P
′ ∈ Pκ

H(t+,P), denote

δY := Y − yP
′

(t2, Yt2), δZ := Z − zP
′

(t2, Yt2) and δK
P
′

:= KP
′

− kP
′

(t2, Yt2).

By the Lipschitz Assumption 4.2.1(iii), there exist two bounded processes λ and η
such that for all t1 6 t 6 T2

δYt =

∫ t2

t

(
λsδYs + ηsâ

1/2
s δZs

)
ds−

∫ t2

t

δZsdBs + δKP
′

t2
− δKP

′

t1
, P

′ − a.s.

De�ne for t1 6 t 6 t2 the following continuous process

Mt := exp

(∫ t

t1

(
λs −

1

2
|ηs|2

)
ds+

∫ t

t1

ηsâ
−1/2
s dBs

)
, P

′ − a.s.

Note that since λ and η are bounded, we have for all p > 1

EP
′

t1

[
sup

t1 6 t 6 t2

(Mt)
p + sup

t1 6 t 6 t2

(M−1
t )p

]
6 Cp, P

′ − a.s. (4.3.2)

Then, by Itô's formula, we obtain

δYt1 = EP
′

t1

[∫ t2

t1

MtdδK
P
′

t

]
. (4.3.3)
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Let us now prove that the process KP
′

− kP
′

is nondecreasing. By the minimum
condition (4.2.4), it is clear that it is actually a P

′
-submartingale. Let us apply the

Doob-Meyer decomposition under P
′
, we get the existence of a P

′
-martingale NP

′

and a nondecreasing process P P
′

, both null at 0, such that

KP
′

t − kP
′

t = NP
′

t + P P
′

t , P
′ − a.s.

Then, since we know that all the probability measures in Pκ
H satisfy the martingale

representation property, the martingale NP
′

is continuous. Besides, by the above
equation, it also has �nite variation. Hence, we have NP

′

= 0, and the result follows.

Returning back to (4.3.3), we can now write

δYt1 6 EP
′

t1

[
sup

t1 6 t 6 t2

(Mt)
(
δKP

′

t2
− δKP

′

t1

)]

6

(
EP

′

t1

[
sup

t1 6 t 6 t2

(Mt)
3

])1/3(
EP

′

t1

[(
δKP

′

t2
− δKP

′

t1

)3/2
])2/3

6 C(CP
t1
)1/3

(
EP

′

t1

[
δKP

′

t2
− δKP

′

t1

])1/3

, P − a.s.

By taking the essential in�mum in P
′ ∈ Pκ

H(t+1 ,P) on both sides and using the
minimum condition (4.2.4), we obtain the reverse inequality.

(iii) It remains to show that the estimate for CP
t1

holds. But by de�nition, we clearly
have

EP
′
[(
KP

′

t2
− kP

′

t2
−KP

′

t1
+ kP

′

t1

)2
]

6 C
(
‖Y ‖2

D
2,κ
H

+ ‖Z‖2
H2,κ

H
+ φ2,κ

H

)

+ C sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T

∣∣yP
t

∣∣2 +

∫ T

0

∣∣∣â1/2
t zP

s

∣∣∣
2

ds

]

< +∞,

since the last term on the right-hand side is �nite thanks to the integrability assumed
on ξ and F̂ 0.

Then we can proceed exactly as in the proof of Theorem 4.4 in [101]. ⊔⊓

Finally, the following comparison Theorem follows easily from the classical one for RBS-
DEs (see for instance Theorem 5.2 in [35] and Theorem 3.4 in [68]) and the representation
(4.3.1).

Theorem 4.3.2. Let (Y, Z) and (Y ′, Z ′) be the solutions of 2RBSDEs with terminal con-

ditions ξ and ξ
′
, lower obstacles S and S

′
and generators F̂ and F̂

′
respectively (with the

corresponding functions H and H
′
), and let (yP, zP, kP) and (y′P, z′P, k′P) the solutions of

the associated RBSDEs. Assume that they both verify our Assumptions 4.2.1 and 4.2.2,

that Pκ
H ⊂ Pκ

H
′ and that we have



86 Chapitre 4. Second Order Re�ected BSDEs

• ξ 6 ξ
′
, Pκ

H − q.s.

• F̂t(y
′P
t , z

′P
t ) > F̂

′

t (y
′P
t , z

′P
t ), P − a.s., for all P ∈ Pκ

H .

• St 6 S
′

t, Pκ
H − q.s.

Then Y 6 Y ′, Pκ
H − q.s.

Remark 4.3.2. Note that in our context, in the above comparison Theorem, even if the

obstacles S and S
′
are identical, we cannot compare the nondecreasing processes KP and

K ′P. This is due to the fact that the processes KP do not satisfy the Skorohod condition,

since it can be considered, at least formally, to come from the addition of a nondecreasing

process due to the fact that we work with 2BSDEs, and a nondecreasing process due to the

re�ection constraint. And only the second one is bound to satisfy the Skorohod condition.

4.3.2 Some properties of the solution

Now that we have proved the representation (4.3.1), we can show, as in the classical
framework, that the solution Y of the 2RBSDE is linked to an optimal stopping problem

Proposition 4.3.1. Let (Y, Z) be the solution to the above 2RBSDE (4.2.1). Then for

each t ∈ [0, T ] and for all P ∈ Pκ
H

Yt = ess supP

P
′∈Pκ

H(t+,P)

ess sup
τ∈Tt,T

EP
′

t

[
−
∫ τ

t

F̂s(y
P
′

s , z
P
′

s )ds+ Sτ1{τ<T} + ξ1{τ=T}

]
, P − a.s. (4.3.4)

= ess sup
τ∈Tt,T

EP
t

[
−
∫ τ

t

F̂s(Ys, Zs)ds+ AP
τ − AP

t + Sτ1{τ<T} + ξ1{τ=T}

]
, P − a.s. (4.3.5)

where Tt,T is the set of all stopping times valued in [t, T ] and where AP
t :=∫ t

0
1{Ys−>Ss−}dK

P
s is the part of KP which only increases when Ys− > Ss−.

Remark 4.3.3. We want to highlight here that unlike with classical RBSDEs, considering

an upper obstacle in our context is fundamentally di�erent from considering a lower obsta-

cle. Indeed, having a lower obstacle corresponds, at least formally, to add an nondecreasing

process in the de�nition of a 2BSDE. Since there is already an nondecreasing process in

that de�nition, we still end up with an nondecreasing process. However, in the case of a

upper obstacle, we would have to add a non-increasing process in the de�nition, therefore

ending up with a �nite variation process. This situation thus becomes much more compli-

cated. Furthermore, in this case we conjecture that the above representation of Proposition

4.3.1 would hold with a sup-inf instead of a sup-sup, indicating that this situation should be

closer to stochastic games than to stochastic control. This is an interesting generalization

that we leave for future research.

Proof. By Proposition 3.1 in [68], we know that for all P ∈ Pκ
H

yP
t = ess sup

τ∈Tt,T

EP
t

[
−
∫ τ

t

F̂s(y
P
s , z

P
s )ds+ Sτ1{τ<T} + ξ1{τ=T}

]
, P − a.s.
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Then the �rst equality is a simple consequence of the representation formula (4.3.1). For
the second one, we proceed exactly as in the proof of Proposition 3.1 in [68]. Fix some
P ∈ Pκ

H and some t ∈ [0, T ]. Let τ ∈ Tt,T . We obtain by taking conditional expectation
in (4.2.1)

Yt = EP
t

[
Yτ −

∫ τ

t

F̂s(Ys, Zs)ds+KP
τ −KP

t

]

> EP
t

[
−
∫ τ

t

F̂s(Ys, Zs)ds+ Sτ1{τ<T} + ξ1{τ=T} + AP
τ − AP

t

]
.

This implies that

Yt > ess sup
τ∈Tt,T

EP
t

[
−
∫ τ

t

F̂s(Ys, Zs)ds+ AP
τ − AP

t + Sτ1{τ<T} + ξ1{τ=T}

]
, P − a.s.

Fix some ε > 0 and de�ne the stopping timeDP,ε
t := inf {u > t, Yu 6 Su + ε, P − a.s.}∧

T . It is clear by de�nition that on the set
{
DP,ε

t < T
}
, we have YDP,ε

t
6 SDP,ε

t
+ε. Similarly,

on the set
{
DP,ε

t = T
}
, we have Ys > Ss + ε, for all t 6 s 6 T . Hence, for all s ∈ [t,DP,ε

t ],

we have Ys− > Ss− . This implies that KDP,ε
t

−Kt = ADP,ε
t

− At, and therefore

Yt 6 EP
t

[
−
∫ DP,ε

t

t

F̂s(Ys, Zs)ds+ AP

DP,ε
t

− AP
t + SDP,ε

t
1{DP,ε

t <T} + ξ1{DP,ε
t =T}

]
+ ε,

which ends the proof by arbitrariness of ε. ⊔⊓

We now show that we can obtain more information about the non-decreasing processes
KP.

Proposition 4.3.2. Let Assumptions 4.2.1 and 4.2.2 hold. Assume ξ ∈ L
2,κ
H and (Y, Z) ∈

D
2,κ
H × H

2,κ
H is a solution to the 2RBSDE (4.2.1). Let

{
(yP, zP, kP)

}
P∈Pκ

H
be the solutions

of the corresponding BSDEs (4.2.2). Then we have the following result. For all t ∈ [0, T ],

∫ t

0

1{Ys−=Ss−}dK
P
s =

∫ t

0

1{Ys−=Ss−}dk
P
s , P − a.s.

Proof. Let us �x a given P ∈ Pκ
H . Let τ1 and τ2 be two P-stopping times such that for

all t ∈ [τ1, τ2), Yt− = St− , P − a.s.

First, by the representation formula (4.3.1), we necessarily have for all P, Yt− > yP
t− ,

P − a.s. for all t. Moreover, since we also have yP
t > St by de�nition, this implies, since

all the processes here are càdlàg, that we must have

Yt− = yP
t− = St− , t ∈ [τ1, τ2), P − a.s.

Using the fact that Y and yP solve respectively a 2BSDE and a BSDE, we also have

St− +∆Yt = Yt = Yu −
∫ u

t

F̂s(Ys, Zs)ds−
∫ u

t

ZsdBs +KP
u −KP

t , τ1 6 t 6 u < τ2, P−a.s.,
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and

St− + ∆yP
t = Yt = yP

u −
∫ u

t

F̂s(y
P
s , z

P
s )ds−

∫ u

t

zP
s dBs + kP

u − kP
t , τ1 6 t 6 u < τ2, P − a.s.

Identifying the martingale parts above, we obtain that Zs = zP
s , P−a.s. for all s ∈ [t, u].

Then, identifying the �nite variation parts, we have

∆Yu − ∆Yt −
∫ u

t

F̂s(Ys, Zs)ds+KP
u −KP

t = ∆yP
u − ∆yP

t −
∫ u

t

F̂s(y
P
s , z

P
s )ds+ kP

u − kP
t .

Now, we clearly have
∫ u

t

F̂s(Ys, Zs)ds =

∫ u

t

F̂s(y
P
s , z

P
s )ds,

since Zs = zP
s , P− a.s. and Ys− = yP

s− = Ss− for all s ∈ [t, u]. Moreover, since Ys− = yP
s− =

Ss− for all s ∈ [t, u] and since all the processes are càdlàg, the jumps of Y and yP are equal
to the jumps of S. Therefore, we can further identify the �nite variation part to obtain

KP
u −KP

t = kP
u − kP

t ,

which is the desired result. ⊔⊓

Remark 4.3.4. Recall that at least formally, the role of the non-decreasing processes KP

is on the one hand to keep the solution of the 2RBSDE above the obstacle S and on the

other hand to keep it above the corresponding RBSDE solutions yP, as con�rmed by the

representation formula (4.3.1). What the above result tells us is that if Y becomes equal

to the obstacle, then it su�ces to push it exactly as in the standard RBSDE case. This

is conform to the intuition. Indeed, when Y reaches S, then all the yP are also on the

obstacle, therefore, there is no need to counter-balance the second order e�ects.

Remark 4.3.5. The above result leads us naturally to think that one could decompose

the non-decreasing process KP into two non-decreasing processes AP and V P such that AP

satis�es the usual Skorohod condition and V P satis�es

V P
t = ess infP

P
′∈Pκ

H(t+,P)
EP

′

t

[
V P

′

T

]
, 0 6 t 6 T, P − a.s., ∀P ∈ Pκ

H .

Such a decomposition would isolate the e�ects due to the obstacle and the ones due to

the second-order. Of course, the choice AP := kP would be natural, given the minimum

condition (4.2.4). However the situation is not that simple. Indeed, we know that
∫ t

0

1{Ys−=Ss−}dK
P
s =

∫ t

0

1{Ys−=Ss−}dk
P
s .

But kP can increase when Y is strictly above the obstacle, since we can have Yt− > yP
t− =

St−. We can thus only write

KP
t =

∫ t

0

1{Ys−=Ss−}k
P
s + V P

t .

Then V P satis�es the minimum condition (4.2.4) when Yt− = St− and when yP
t− > St−.

However, we cannot say anything when Yt− > yP
t− = St−. The existence of such a decom-

position, which is also related to the di�cult problem of the Doob-Meyer decomposition for

the G-submartingales of Peng [89], is therefore still an open problem.
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As a Corollary of the above result, if we have more information on the obstacle S, we
can give a more explicit representation for the processes KP. The proof comes directly
from the above Proposition and Proposition 4.2 in [37].

Assumption 4.3.1. S is a semi-martingale of the form

St = S0 +

∫ t

0

Usds+

∫ t

0

VsdBs + Ct, Pκ
H − q.s.

where C is càdlàg process of integrable variation such that the measure dCt is singular

with respect to the Lebesgue measure dt and which admits the following decomposition

Ct = C+
t − C−

t ,

where C+ and C− are nondecreasing processes. Besides, U and V are respectively R and

Rd-valued Ft progressively measurable processes such that

∫ T

0

(|Ut| + |Vt|2)dt+ C+
T + C−

T < +∞, Pκ
H − q.s.

Corollary 4.3.1. Let Assumptions 4.2.1, 4.2.2 and 4.3.1 hold. Let (Y, Z) be the solution

to the 2RBSDE (4.2.1), then

Zt = Vt, dt× Pκ
H − q.s. on the set {Yt− = St−} , (4.3.6)

and there exists a progressively measurable process (αP
t )0 6 t 6 T such that 0 6 α 6 1 and

1{Yt−=St−}dK
P
t = αP

t 1{Yt−=St−}

([
F̂t(St, Vt) − Ut

]+
dt+ dC−

t

)
.

4.3.3 A priori estimates

We conclude this section by showing some a priori estimates which will be useful in the
sequel.

Theorem 4.3.3. Let Assumptions 4.2.1 and 4.2.2 hold. Assume ξ ∈ L
2,κ
H and (Y, Z,K) ∈

D
2,κ
H × H

2,κ
H × I

2,κ
H is a solution to the 2RBSDE (4.2.1). Let

{
(yP, zP, kP)

}
P∈Pκ

H
be the

solutions of the corresponding BSDEs (4.2.2). Then, there exists a constant Cκ depending

only on κ, T and the Lipschitz constant of F̂ such that

‖Y ‖2
D

2,κ
H

+ ‖Z‖2
H

2,κ
H

+ sup
P∈Pκ

H

EP
[
(KP

T )2
]

6 C
(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H + ψ2,κ

H

)
,

and

sup
P∈Pκ

H

{∥∥yP
∥∥2

D2(P)
+
∥∥zP
∥∥2

H2(P)
+
∥∥kP
∥∥2

I2(P)

}
6 C

(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H + ψ2,κ

H

)
.

Proof. By Lemma 2 in [49], we know that there exists a constant Cκ depending only on
κ, T and the Lipschitz constant of F̂ , such that for all P

∣∣yP
t

∣∣ 6 CκEP
t

[
|ξ|κ +

∫ T

t

∣∣∣F̂ 0
s

∣∣∣
κ

ds+ sup
t 6 s 6 T

(S+
s )κ

]
. (4.3.7)
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Let us note immediately, that in [49], the result is given with an expectation and not a
conditional expectation, and more importantly that the process considered are continuous.
However, the generalization is easy for the conditional expectation. As far as the jumps
are concerned, their proof only uses Itô's formula for smooth convex functions, for which
the jump part can been taken care of easily in the estimates. Then, one can follow exactly
their proof to get our result.

This immediately provides the estimate for yP. Now by de�nition of our norms, we get
from (4.3.7) and the representation formula (4.3.1) that

‖Y ‖2
D

2,κ
H

6 Cκ

(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H + ψ2,κ

H

)
. (4.3.8)

Now apply Itô's formula to |Y |2 under each P ∈ Pκ
H . We get as usual for every ε > 0

EP

[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt

]
6 CEP

[
|ξ|2 +

∫ T

0

|Yt|
(∣∣∣F̂ 0

t

∣∣∣+ |Yt| +
∣∣∣â1/2

t Zt

∣∣∣
)
dt

]

+ EP

[∫ T

0

|Yt| dKP
t

]

6 C

(
‖ξ‖

L
2,κ
H

+ EP

[
sup

0 6 t 6 T
|Yt|2 +

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt
)2
])

+ εEP

[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt+
∣∣KP

T

∣∣2
]

+
C2

ε
EP

[
sup

0 6 t 6 T
|Yt|2

]
. (4.3.9)

Then by de�nition of our 2RBSDE, we easily have

EP
[∣∣KP

T

∣∣2
]

6 C0E
P

[
|ξ|2 + sup

0 6 t 6 T
|Yt|2 +

∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt+

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt
)2
]
, (4.3.10)

for some constant C0, independent of ε.

Now set ε := (2(1 + C0))
−1 and plug (4.3.10) in (4.3.9). One then gets

EP

[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt

]
6 CEP

[
|ξ|2 + sup

0 6 t 6 T
|Yt|2 +

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt
)2
]
.

From this and the estimate for Y , we immediately obtain

‖Z‖
H

2,κ
H

6 C
(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H + ψ2,κ

H

)
.

Then the estimate for KP comes from (4.3.10). The estimates for zP and kP can be
proved similarly. ⊔⊓

Theorem 4.3.4. Let Assumptions 4.2.1 and 4.2.2 hold. For i = 1, 2, let (Y i, Zi) be the

solutions to the 2RBSDE (4.2.1) with terminal condition ξi and lower obstacle S. Then,
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there exists a constant Cκ depending only on κ, T and the Lipschitz constant of F̂ such

that ∥∥Y 1 − Y 2
∥∥

D
2,κ
H

6 C
∥∥ξ1 − ξ2

∥∥
L

2,κ
H
,

and

∥∥Z1 − Z2
∥∥2

H
2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T

∣∣∣KP,1
t −KP,2

t

∣∣∣
2
]

6 C
∥∥ξ1 − ξ2

∥∥
L

2,κ
H

(∥∥ξ1
∥∥

L
2,κ
H

+
∥∥ξ1
∥∥

L
2,κ
H

+ (φ2,κ
H )1/2 + (ψ2,κ

H )1/2
)
.

Proof. As in the previous Proposition, we can follow the proof of Lemma 3 in [49], to
obtain that there exists a constant Cκ depending only on κ, T and the Lipschitz constant
of F̂ , such that for all P

∣∣∣yP,1
t − yP,2

t

∣∣∣ 6 Cκ

(
EP

t

[∣∣ξ1 − ξ2
∣∣κ]) 1

κ . (4.3.11)

Now by de�nition of our norms, we get from (4.3.11) and the representation formula
(4.3.1) that ∥∥Y 1 − Y 2

∥∥2

D
2,κ
H

6 Cκ

∥∥ξ1 − ξ2
∥∥2

L
2,κ
H
. (4.3.12)

Applying Itô's formula to |Y 1 − Y 2|2, under each P ∈ Pκ
H , leads to

EP

[∫ T

0

∣∣∣â1/2
t (Z1

t − Z2
t )
∣∣∣
2

dt

]
6 CEP

[∣∣ξ1 − ξ2
∣∣2
]

+ EP

[∫ T

0

∣∣Y 1
t − Y 2

t

∣∣ d(KP,1
t −KP,2

t )

]

+ CEP

[∫ T

0

∣∣Y 1
t − Y 2

t

∣∣
(∣∣Y 1

t − Y 2
t

∣∣+ |â1/2
t (Z1

t − Z2
t )|
)
dt

]

6 C
(∥∥ξ1 − ξ2

∥∥2

L
2,κ
H

+
∥∥Y 1 − Y 2

∥∥2

D
2,κ
H

)

+
1

2
EP

[∫ T

0

∣∣∣â1/2
t (Z1

t − Z2
t )
∣∣∣
2

dt

]

+ C
∥∥Y 1 − Y 2

∥∥
D

2,κ
H

(
EP

[
2∑

i=1

(
KP,i

T

)2
])1/2

The estimate for (Z1 − Z2) is now obvious from the above inequality and the estimates
of Proposition 4.3.3.

Finally the estimate for the di�erence of the nondecreasing processes is obvious by
de�nition. ⊔⊓

4.4 A direct existence argument

We have shown in Theorem 4.3.1 that if a solution exists, it will necessarily verify the
representation (4.3.1). This gives us a natural candidate for the solution as a supremum of
solutions to standard RBSDEs. However, since those BSDEs are all de�ned on the support
of mutually singular probability measures, it seems di�cult to de�ne such a supremum,
because of the problems raised by the negligible sets. In order to overcome this, Soner,
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Touzi and Zhang proposed in [101] a pathwise construction of the solution to a 2BSDE.
Let us describe brie�y their strategy.

The �rst step is to de�ne pathwise the solution to a standard BSDE. For simplicity, let
us consider �rst a BSDE with a generator equal to 0. Then, we know that the solution
is given by the conditional expectation of the terminal condition. In order to de�ne this
solution pathwise, we can use the so-called regular conditional probability distribution
(r.p.c.d. for short) of Stroock and Varadhan [104]. In the general case, the idea is similar
and consists on de�ning BSDEs on a shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus
obtained, and the decomposition (4.2.1) is obtained through a non-linear Doob-Meyer
decomposition. Our aim in this section is to extend this approach to the re�ected case.
We refer to Section 2.5 in Chapter 2 for notations.

4.4.1 Existence when ξ is in UCb(Ω)

When ξ is in UCb(Ω), we know that there exists a modulus of continuity function ρ for ξ,
F and S in ω. Then, for any 0 6 t 6 s 6 T, (y, z) ∈ [0, T ]×R×Rd and ω, ω′ ∈ Ω, ω̃ ∈ Ωt,
∣∣∣ξt,ω (ω̃) − ξt,ω′

(ω̃)
∣∣∣ 6 ρ (‖ω − ω′‖t) ,

∣∣∣F̂ t,ω
s (ω̃, y, z) − F̂ t,ω′

s (ω̃, y, z)
∣∣∣ 6 ρ (‖ω − ω′‖t)

∣∣∣St,ω
s (ω̃) − St,ω′

s (ω̃)
∣∣∣ 6 ρ (‖ω − ω′‖t) .

We then de�ne for all ω ∈ Ω

Λ (ω) := sup
0 6 s 6 t

Λt (ω) , (4.4.1)

where

Λt (ω) := sup
P∈Pt,κ

H

(
EP

[
∣∣ξt,ω

∣∣2 +

∫ T

t

|F̂ t,ω
s (0, 0)|2ds+

(
sup

t 6 s 6 T
(St,ω

s )+

)2
])1/2

.

Now since F̂ t,ω is also uniformly continuous in ω, we have

Λ (ω) <∞ for some ω ∈ Ω i� it holds for all ω ∈ Ω. (4.4.2)

Moreover, when Λ is �nite, it is uniformly continuous in ω under the L∞-norm and is
therefore FT -measurable.

Now, by Assumption 4.2.2, we have

Λt (ω) <∞ for all (t, ω) ∈ [0, T ] × Ω. (4.4.3)

To prove existence, we de�ne the following value process Vt pathwise

Vt(ω) := sup
P∈Pt,κ

H

YP,t,ω
t (T, ξ) , for all (t, ω) ∈ [0, T ] × Ω, (4.4.4)
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where, for any (t1, ω) ∈ [0, T ] × Ω, P ∈ P t1,κ
H , t2 ∈ [t1, T ], and any Ft2-measurable η ∈

L2 (P), we denote YP,t1,ω
t1 (t2, η) := yP,t1,ω

t1 , where
(
yP,t1,ω, zP,t1,ω, kP,t1,ω

)
is the solution of

the following RBSDE with lower obstacle St1,ω on the shifted space Ωt1 under P

yP,t1,ω
s = ηt1,ω −

∫ t2

s

F̂ t1,ω
r

(
yP,t1,ω

r , zP,t1,ω
r

)
dr −

∫ t2

s

zP,t1,ω
r dBt1

r + kP,t1,ω
t2 − kP,t1,ω

t1 (4.4.5)

yP,t1,ω
t > St1,ω

t , P − a.s.
∫ t2

t1

(
yP,t1,ω

s− − St1,ω
s−

)
dkP,t1,ω

s = 0, P − a.s. (4.4.6)

In view of the Blumenthal zero-one law, YP,t,ω
t (T, ξ) is constant for any given (t, ω) and

P ∈ P t,κ
H . Moreover, since ω0 = 0 for all ω ∈ Ω, it is clear that, for the yP de�ned in

(4.2.2),
YP,0,ω (t, η) = yP (t, η) for all ω ∈ Ω.

Remark 4.4.1. We could have de�ned our candidate solution in another way, using BS-

DEs instead of RBSDEs, but with a random time horizon. This is based on the link with

optimal stopping given by (4.3.4). Notice that this approach is similar to the one used by

Fabre [40] in her PhD thesis when studying 2BSDEs with the Z part of the solution con-

strained to stay in a convex set. Using this representation as a supremum of BSDEs for a

constrained BSDE is particularly e�cient, because in general the non-decreasing process

added to the solution has no regularity and we cannot obtain stability results. In our case,

the two approaches lead to the same result, in particular because the Skorohod condition

for the RBSDE allows us to recover stability, as shown in the Lemma below.

Lemma 4.4.1. Let Assumptions 4.2.1 and 4.2.2 hold and consider some ξ in UCb(Ω).

Then for all (t, ω) ∈ [0, T ] × Ω we have |Vt (ω)| 6 C(1 + Λt (ω)). Moreover, for all

(t, ω, ω′) ∈ [0, T ] × Ω2, |Vt (ω) − Vt (ω′)| 6 Cρ (‖ω − ω′‖t). Consequently, Vt is Ft-

measurable for every t ∈ [0, T ].

Proof. (i) For each (t, ω) ∈ [0, T ] × Ω and P ∈ P t,κ
H , let α be some positive constant

which will be �xed later and let η ∈ (0, 1). By Itô's formula we have, since F̂ is uniformly

Lipschitz and since by (4.4.6)
∫ T

t
eαs
(
yP,t,ω

s− − St,ω
s−

)
dkP,t,ω

s = 0

eαt
∣∣∣yP,t,ω

t

∣∣∣
2

+

∫ T

t

eαs
∣∣(ât

s)
1/2zP,t,ω

s

∣∣2 ds 6 eαT
∣∣ξt,ω

∣∣2 + 2C

∫ T

t

eαs
∣∣yP,t,ω

s

∣∣
∣∣∣F̂ t,ω

s (0)
∣∣∣ ds

+ 2C

∫ T

t

∣∣yP,t,ω
s

∣∣ (∣∣yP,t,ω
s

∣∣+
∣∣(ât

s)
1/2zP,t,ω

s

∣∣) ds− 2

∫ T

t

eαsyP,t,ω
s− zP,t,ω

s dBt
s

+ 2

∫ T

t

eαsSt,ω
s− dk

P,t,ω
s − α

∫ T

t

eαs
∣∣yP,t,ω

s

∣∣2 ds

6 eαT
∣∣ξt,ω

∣∣2 +

∫ T

t

eαs
∣∣∣F̂ t,ω

s (0)
∣∣∣
2

ds− 2

∫ T

t

eαsyP,t,ω
s− zP,t,ω

s dBt
s + η

∫ T

t

eαs
∣∣(ât

s)
1/2zP,t,ω

s

∣∣2 ds

+

(
2C + C2 +

C2

η
− α

)∫ T

t

eαs
∣∣yP,t,ω

s

∣∣2 ds+ 2 sup
t 6 s 6 T

eαs(St,ω
s )+(kP,t,ω

T − kP,t,ω
t ).
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Now choose α such that ν := α− 2C − C2 − C2

η
> 0. We obtain for all ε > 0

eαt
∣∣∣yP,t,ω

t

∣∣∣
2

+ (1 − η)

∫ T

t

eαs
∣∣(ât

s)
1/2zP,t,ω

s

∣∣2 ds 6 eαT
∣∣ξt,ω

∣∣2 +

∫ T

t

eαs
∣∣∣F̂ t,ω

s (0, 0)
∣∣∣
2

ds

+
1

ε

(
sup

t 6 s 6 T
eαs(St,ω

s )+

)2

+ ε(kP,t,ω
T − kP,t,ω

t )2

− 2

∫ T

t

eαsyP,t,ω
s− zP,t,ω

s dBt
s. (4.4.7)

Taking expectation in (4.4.7) yields

∣∣∣yP,t,ω
t

∣∣∣
2

+ (1 − η)EP

[∫ T

t

∣∣(ât
s)

1/2zP,t,ω
s

∣∣2 ds
]

6 CΛt(ω)2 + εEP
[
(kP,t,ω

T − kP,t,ω
t )2

]
.

Now by de�nition, we also have for some constant C0 independent of ε

EP
[
(kP,t,ω

T − kP,t,ω
t )2

]
6 C0E

P

[∣∣ξt,ω
∣∣2 +

∫ T

t

∣∣∣F̂ t,ω
s (0, 0)

∣∣∣
2

ds+

∫ T

t

∣∣yP,t,ω
s

∣∣2 ds
]

+ EP

[∫ T

t

∣∣(ât
s)

1/2zP,t,ω
s

∣∣2 ds
]

6 C0

(
Λt(ω) + EP

[∫ T

t

∣∣yP,t,ω
s

∣∣2 ds+

∫ T

t

∣∣(ât
s)

1/2zP,t,ω
s

∣∣2 ds
])

.

Choosing η small enough and ε = 1
2C0

, Gronwall inequality then implies

∣∣∣yP,t,ω
t

∣∣∣
2

6 C(1 + Λt(ω)).

The result then follows from arbitrariness of P.

(ii) The proof is exactly the same as above, except that one has to use uniform continuity
in ω of ξt,ω, F̂ t,ω and St,ω. Indeed, for each (t, ω) ∈ [0, T ]×Ω and P ∈ P t,κ

H , let α be some
positive constant which will be �xed later and let η ∈ (0, 1). By Itô's formula we have,
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since F̂ is uniformly Lipschitz

eαt
∣∣∣yP,t,ω

t − yP,t,ω′

t

∣∣∣
2

+

∫ T

t

eαs
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′

s )
∣∣∣
2

ds 6 eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣
2

+ 2C

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
(∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣+
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′

s )
∣∣∣
)
ds

+ 2C

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s ) − F̂ t,ω′

s (yP,t,ω
s , zP,t,ω

s )
∣∣∣ ds

+ 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )d(kP,t,ω
s − kP,t,ω′

s ) − α

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
2

ds

− 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt
s

6 eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣
2

+

∫ T

t

eαs
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s ) − F̂ t,ω′

s (yP,t,ω
s , zP,t,ω

s )
∣∣∣
2

ds

+

(
2C + C2 +

C2

η
− α

)∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
2

ds

+ η

∫ T

t

eαs
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′

s )
∣∣∣
2

ds

− 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt
s

+ 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )d(kP,t,ω
s − kP,t,ω′

s ).

By the Skorohod condition (4.4.6), we also have

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )d(kP,t,ω
s − kP,t,ω′

s ) 6

∫ T

t

eαs(St,ω
s− − St,ω′

s− )d(kP,t,ω
s − kP,t,ω′

s ).

Now choose α such that ν := α− 2C − C2 − C2

η
> 0. We obtain for all ε > 0

eαt
∣∣∣yP,t,ω

t − yP,t,ω′

t

∣∣∣
2

+ (1 − η)

∫ T

t

eαs
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′

s )
∣∣∣
2

ds

6 eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣
2

+

∫ T

t

eαs
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s ) − F̂ t,ω′

s (yP,t,ω
s , zP,t,ω

s )
∣∣∣
2

ds

+
1

ε

(
sup

t 6 s 6 T
eαs(St,ω

s − St,ω′

s )+

)2

+ ε(kP,t,ω
T − kP,t,ω′

T − kP,tω
t + kP,t,ω′

t )2

− 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt
s. (4.4.8)

The end of the proof is then similar to the previous step, using the uniform continuity
in ω of ξ, F and S. ⊔⊓

Then, we show the same dynamic programming principle as Proposition 4.7 in [102]
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Proposition 4.4.1. Under Assumptions 4.2.1, 4.2.2 and for ξ ∈ UCb(Ω), we have for all

0 6 t1 < t2 6 T and for all ω ∈ Ω

Vt1(ω) = sup
P∈P

t1,κ
H

YP,t1,ω
t1 (t2, V

t1,ω
t2 ).

The proof is almost the same as the proof in [102], but we give it for the convenience of
the reader.

Proof. Without loss of generality, we can assume that t1 = 0 and t2 = t. Thus, we have
to prove

V0(ω) = sup
P∈Pκ

H

YP
0 (t, Vt).

Denote (yP, zP, kP) := (YP(T, ξ),ZP(T, ξ),KP(T, ξ))

(i) For any P ∈ Pκ
H , we know by Lemma 4.3 in [102], that for P−a.e. ω ∈ Ω, the r.c.p.d.

Pt,ω ∈ P t,κ
H . Now thanks to the paper of Xu and Qian [93], we know that the solution of

re�ected BSDEs with Lipschitz generators can be constructed via Picard iteration. Thus,
it means that at each step of the iteration, the solution can be formulated as a conditional
expectation under P. By the properties of the r.p.c.d., this entails that

yP
t (ω) = YPt,ω ,t,ω

t (T, ξ), for P − a.e. ω ∈ Ω. (4.4.9)

Hence, by de�nition of Vt and the comparison principle for RBSDEs, we get that
yP

0 6 YP
0 (t, Vt). By arbitrariness of P, this leads to

V0(ω) 6 sup
P∈Pκ

H

YP
0 (t, Vt).

(ii) For the other inequality, we proceed as in [102]. Let P ∈ Pκ
H and ε > 0. By

separability of Ω, there exists a partition (Ei
t)i > 1 ⊂ Ft such that ‖ω − ω′‖t 6 ε for any i

and any ω, ω′ ∈ Ei
t . Now for each i, �x an ω̂i ∈ Ei

t and let Pi
t be an ε−optimizer of Vt(ω̂i).

Now if we de�ne for each n > 1, Pn := Pn,ε by

Pn(E) := EP

[
n∑

i=1

EPi
t
[
1t,ω

E

]
1Ei

t

]
+ P(E ∩ Ên

t ), where Ên
t := ∪i>nE

i
t .

Then, by the proof of Proposition 4.7 in [102], we know that Pn ∈ Pκ
H . Besides, by

Lemma 4.4.1 and its proof, we know that V and YP,t,ω are uniformly continuous in ω and
thus

Vt(ω) 6 Vt(ω̂i) + Cρ(ε) 6 YPi
t,t,bωi

t (T, ξ) + ε+ Cρ(ε)

6 YPi
t,t,ω

t (T, ξ) + ε+ Cρ(ε) = Y(Pn)t,ω ,t,ω
t (T, ξ) + ε+ Cρ(ε).

Then, it follows from (4.4.9) that
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Vt 6 yPn

t + ε+ Cρ(ε), Pn − a.s. on ∪n
i=1 E

i
t . (4.4.10)

Let now (yn, zn, kn) := (yn,ε, zn,ε, kn,ε) be the solution of the following RBSDE with
lower obstacle S on [0, t]

yn
s =

[
yPn

t + ε+ Cρ(ε)
]
1∪n

i=1Ei
t
+ Vt1 bEn

t
−
∫ t

s

F̂r(y
n
r , z

n
r )dr −

∫ t

s

zn
r dBr + kn

t − kn
s , P − a.s.

(4.4.11)

By the comparison principle for RBSDEs, we know that YP
0 (t, Vt) 6 yn

0 . Then since
Pn = P on Ft, the equality (4.4.11) also holds P − a.s. Using the same arguments and
notations as in the proof of Lemma 4.4.1, we obtain

∣∣yn
0 − yPn

0

∣∣2 6 CEP
[
ε2 + ρ(ε)2 +

∣∣Vt − yPn

t

∣∣2 1
bEn

t

]
.

Then, by Lemma 4.4.1, we have

YP
0 (t, Vt) 6 yn

0 6 yPn

0 + C

(
ε+ ρ(ε) +

(
EP
[
Λ2

t 1 bEn
t

])1/2
)

6 V0(ω) + C

(
ε+ ρ(ε) +

(
EP
[
Λ2

t 1 bEn
t

])1/2
)
.

Then it su�ces to let n go to +∞ and ε to 0. ⊔⊓

De�ne now for all (t, ω), the F+-progressively measurable process

V +
t := lim

r∈Q∩(t,T ],r↓t
Vr.

We have the following lemma whose proof is postponed to the Appendix

Lemma 4.4.2. Under the conditions of the previous Proposition, we have

V +
t = lim

r∈Q∩(t,T ],r↓t
Vr, Pκ

H − q.s.

and thus V + is càdlàg Pκ
H − q.s..

Proceeding exactly as in Steps 1 et 2 of the proof of Theorem 4.5 in [102], we can
then prove that V + is a strong re�ected F̂ -supermartingale. Then, using the Doob-Meyer
decomposition proved in the Appendix in Theorem 4.6.2 for all P, we know that there
exists a unique (P − a.s.) process Z

P ∈ H2(P) and unique nondecreasing càdlàg square
integrable processes AP and BP such that

• V +
t = V +

0 +
∫ t

0
F̂s(V

+
s , Z

P

s )ds+
∫ t

0
Z

P

sdBs − AP
t −BP

t , P − a.s., ∀P ∈ Pκ
H .

• V +
t > St, P − a.s. ∀P ∈ Pκ

H .
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•
∫ T

0
(Vt− − St−) dAP

t , P − a.s., ∀P ∈ Pκ
H .

• AP and BP never act at the same time.

We then de�ne KP := AP+BP. By Karandikar [58], since V + is a càdlàg semimartingale,

we can de�ne a universal process Z which aggregates the family
{
Z

P
,P ∈ Pκ

H

}
.

Recall that V + is de�ned pathwise, and so is the Lebesgue integral
∫ t

0
F̂s(V

+
s , Zs)ds.

With the recent results of Nutz [86], we know that the stochastic integral
∫ t

0
ZsdBs can

also be de�ned pathwise. We can therefore de�ne pathwise

Kt := V +
0 − V +

t −
∫ t

0

F̂s(V
+
s , Zs)ds+

∫ t

0

ZsdBs,

and K is an aggregator for the family
(
KP
)

P∈Pκ
H
, that is to say that it coincides P − a.s.

with KP, for every P ∈ Pκ
H .

We next prove the representation (4.3.1) for V and V +, and that, as shown in Proposition
4.11 of [102], we actually have V = V +, Pκ

H−q.s., which shows that in the case of a terminal
condition in UCb(Ω), the solution of the 2RBSDE is actually F-progressively measurable.

Proposition 4.4.2. Assume that ξ ∈ UCb(Ω). Under Assumptions 4.2.1 and 4.2.2, we

have

Vt = ess supP

P
′∈Pκ

H(t,P)

YP
′

t (T, ξ) and V +
t = ess supP

P
′∈Pκ

H(t+,P)

YP
′

t (T, ξ), P − a.s., ∀P ∈ Pκ
H .

Besides, we also have for all t

Vt = V +
t , Pκ

H − q.s.

Proof. The proof for the representations is the same as the proof of proposition 4.10 in
[102], since we also have a stability result for RBSDEs under our assumptions. For the
equality between V and V +, we also refer to the proof of Proposition 4.11 in [102]. ⊔⊓

Therefore, in the sequel we will use V instead of V +.

Finally, we have to check that the minimum condition (4.2.4) holds. Fix P in Pκ
H and

P
′ ∈ Pκ

H(t+,P). By the Lipschitz property of F , we know that there exists bounded
processes λ and η such that

Vt − yP
′

t =

∫ T

t

λs(Vs − yP
′

s )ds−
∫ T

t

â1/2
s (Zs − zP

′

s )(â−1/2
s dBs − ηsds)

+KT −Kt − kP
′

T + kP
′

t . (4.4.12)

Then, one can de�ne a probability measure Q
′
equivalent to P

′
such that

Vt − yP
′

t = e−
R t
0 λuduE

Q
′

t

[∫ T

t

e
R s
0 λudud(Ks − kP

′

s )

]
.
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Now de�ne the following càdlàg nondecreasing processes

Ks :=

∫ s

0

e
R u
0 λrdrdKu, k

P
′

s :=

∫ s

0

e
R u
0 λrdrdkP

′

u .

By the representation (4.3.1), we deduce that the process K−kP
′

is a Q
′
-submartingale.

Using Doob-Meyer decomposition and the fact that all the probability measures we con-
sider satisfy the martingale representation property, we deduce as in Step (ii) of the proof
of Theorem 4.3.1 that this process is actually nondecreasing. Then by de�nition, this
entails that the process K − kP

′

is also nondecreasing.

Let us denote

P P
′

t := K − kP
′

.

Returning to (4.4.12) and de�ning a process M as in Step (ii) of the proof of Theorem
4.3.1, we obtain that

Vt − yP
′

t = EP
′

t

[∫ T

t

MsdP
P
′

s

]
> EP

′

t

[
inf

t 6 s 6 T
Ms

(
P P

′

T − P P
′

t

)]
.

Then, we have

EP
′

t

[
P P

′

T − P P
′

t

]

= EP
′

t

[(
inf

t 6 s 6 T
Ms

)1/3 (
P P

′

T − P P
′

t

)(
inf

t 6 s 6 T
Ms

)−1/3
]

6

(
EP

′

t

[
inf

t 6 s 6 T
Ms

(
P P

′

T − P P
′

t

)]
EP

′

t

[
sup

t 6 s 6 T
M−1

s

]
EP

′

t

[(
P P

′

T − P P
′

t

)2
])1/3

6 C

(
ess supP

P
′∈Pκ

H(t+,P)

EP
′
[(
P P

′

T − P P
′

t

)2
])1/3 (

Vt − yP
′

t

)1/3

.

Arguing as in Step (iii) of the proof of Theorem 4.3.1, the above inequality shows that
we have

ess infP

P
′∈Pκ

H(t+,P)
EP

′
[
P P

′

T − P P
′

t

]
= 0,

that is to say that the minimum condition (4.2.4) is satis�ed.

4.4.2 Main result

We are now in position to state the main result of this section

Theorem 4.4.1. Let ξ ∈ L2,κ
H . Under Assumptions 4.2.1 and 4.2.2, there exists a unique

solution (Y, Z,K) ∈ D
2,κ
H × H

2,κ
H × I

2,κ
H of the 2RBSDE (4.2.1).
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Proof. The proof follow the lines of the proof of Theorem 4.7 in [101]. In general for a
terminal condition ξ ∈ L2,κ

H , there exists by de�nition a sequence (ξn)n > 0 ⊂ UCb(Ω) such
that

lim
n→+∞

‖ξn − ξ‖
L

2,κ
H

= 0 and sup
n > 0

‖ξn‖L
2,κ
H
< +∞.

Let (Y n, Zn) be the solution to the 2RBSDE (4.2.1) with terminal condition ξn and

Kn
t := Y n

0 − Y n
t +

∫ t

0

F̂s(Y
n
s , Z

n
s )ds+

∫ t

0

Zn
s dBs, P − a.s.

By the estimates of Proposition 4.3.4, we have as n,m→ +∞

‖Y n − Y m‖2
D

2,κ
H

+ ‖Zn − Zm‖2
H

2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T
|Kn

t −Km
t |
]

6 Cκ ‖ξn − ξm‖L
2,κ
H

→ 0.

Extracting a subsequence if necessary, we may assume that

‖Y n − Y m‖2
D

2,κ
H

+ ‖Zn − Zm‖2
H

2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T
|Kn

t −Km
t |
]

6
1

2n
. (4.4.13)

This implies by Markov inequality that for all P and all m > n > 0

P

[
sup

0 6 t 6 T

{
|Y n

t − Y m
t |2 + |Kn

t −Km
t |2
}

+

∫ T

0

|â1/2
t (Zn

s − Zm
s )|2dt > n−1

]
6 Cn2−n.

(4.4.14)

De�ne

Y := lim
n→+∞

Y n, Z := lim
n→+∞

Zn, K := lim
n→+∞

Kn,

where the lim for Z is taken componentwise. All those processes are clearly F+-
progressively measurable.

By (4.4.14), it follows from Borel-Cantelli Lemma that for all P we have P − a.s.

lim
n→+∞

[
sup

0 6 t 6 T

{
|Y n

t − Yt|2 + |Kn
t −Kt|2

}
+

∫ T

0

|â1/2
t (Zn

s − Zs)|2dt
]

= 0.

It follows that Y is càdlàg, Pκ
H − q.s., and that K is a càdlàg nondecreasing process,

P − a.s. Furthermore, for all P, sending m to in�nity in (4.4.13) and applying Fatou's
lemma under P gives us that (Y, Z) ∈ D

2,κ
H × H

2,κ
H .

Finally, we can proceed exactly as in the regular case (ξ ∈ UCb(Ω)) to show that the
minimum condition (4.2.4) holds. ⊔⊓
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4.5 American contingent claims under volatility uncer-

tainty

First let us recall the link between American contingent claims and RBSDEs in the classical
framework (see [37] for more details). Let M be a standard �nancial complete market
(n risky assets and a bond). It is well known that in some constrained cases the pair
wealth-portfolio (XP, πP) satis�es:

XP
t = ξ −

∫ T

t

b(s,XP
s , π

P
s )ds−

∫ T

t

πP
sσsdWs

where W is a Brownian motion under the underlying probability measure P, b is convex
and Lipschitz with respect to (x, π). In addition we assume that the process (b(t, 0, 0))t 6 T

is square-integrable and (σt)t 6 T , the volatility matrix of the n risky assets, is invertible
and its inverse (σt)

−1 is bounded. The classical case corresponds to b(t, x, π) = rtx+π.σtθt,
where θt is the risk premium vector.

When the American contingent claim is exercised at a stopping time ν > t, the yield is
given by

S̃ν = Sν1[ν<T ] + ξT1[ν=T ].

Let t be �xed and let ν > t be the exercising time of the contingent claim. Then, since the
market is complete, there exists a unique pair (XP

s (ν, S̃ν), π
P
s (ν, S̃ν)) = (XP,ν

s , πP,ν
s ) which

replicates S̃ν , i.e.,

dXP,ν
s = b(s,XP,ν

s , πP,ν
s )dt+ πP,ν

s σsdWs, s 6 ν; XP,ν
ν = S̃ν .

Therefore the price of the contingent claim is given by:

Y P
t = ess sup

ν∈Tt,T

XP
t (ν, S̃ν).

Then, the link with RBSDE is given by the following Theorem of [37]

Theorem 4.5.1. There exist πP ∈ H2(P) and a nondecreasing continuous process kP such

that for all t ∈ [0, T ]





Y P
t = ξ −

∫ T

t
b(s, Y P

s , π
P
s )ds−

∫ T

t
πP

sσsdWs + kP
T − kP

t

Y P
t > St∫ T

0
(Y P

t − St)dk
P
t = 0.

Furthermore, the stopping time DP
t = inf{s > t, Y P

s = Ss} ∧ T is optimal after t.

Let us now go back to our uncertain volatility framework. The pricing of European
contingent claims has already been treated in this context by Avellaneda, Lévy and Paras
in [2], Denis and Martini in [27] with capacity theory and more recently by Vorbrink in
[110] using the G-expectation framework.
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We still consider a �nancial market with a bond and d risky asset L1 . . . Ld, whose
dynamics are given by

dLi
t

Lit
= µi

tdt+ dBi
t, Pκ

H − q.s. ∀i = 1 . . . d.

Then for every P ∈ Pκ
H , the wealth process has the following dynamic

XP
t = ξ −

∫ T

t

b(s,XP
s , π

P
s )ds−

∫ T

t

πP
s dBs, P − a.s..

In order to be in our 2RBSDE framework, we have to assume that the generator b
satis�es Assumptions 4.2.1 and 4.2.2. The main di�erence is that now b must satisfy
stronger integrability conditions and also that it has to be uniformly continuous in ω

(when we assume that â in the expression of b is constant). For instance, in the classical
case recalled above, it means that r and µ must be uniformly continuous in ω, which is
the case if for example they are deterministic. We will also assume that ξ ∈ L2,κ

H . Finally,
since S is going to be the obstacle, it has to be uniformly continuous in ω.

Following the intuitions in the papers mentioned above, it is natural in our now incom-
plete market to consider as a superhedging price for our contingent claim

Yt = ess supP

P
′∈Pκ

H(t+,P)

Y P
′

t , P − a.s., ∀P ∈ Pκ
H ,

where Y P
t is the price at time t of the contingent claim in the complete market mentioned

at the beginning, with underlying probability measure P. Notice immediately that we do
not claim that this price is the superreplicating price in our context, in the sense that
it would be the smallest one for which there exists a strategy which superreplicates the
American contingent claim quasi-surely.

The following Theorem is then a simple consequence of the previous one.

Theorem 4.5.2. There exist π ∈ H
2,κ
H and a universal of nondecreasing càdlàg process K

such that for all t ∈ [0, T ] and for all P ∈ Pκ
H





Yt = ξ −
∫ T

t
b(s, Ys, πs)ds−

∫ T

t
πsdBs +KT −Kt, P − a.s.

Yt > St, P − a.s.

Kt − kP
t = ess infP

P
′∈Pκ

H(t+,P)
EP

′

t

[
KT − kP

′

T

]
, P − a.s.

Furthermore, for all ε, the stopping time Dε
t = inf{s > t, Ys 6 Ss + ε, Pκ

H − q.s.} ∧
T is ε-optimal after t. Besides, for all P, if we consider the stopping times DP,ε

t =

inf
{
s > t, Y P

s 6 Ss + ε, P − a.s.
}
∧ T , which are ε-optimal for the American contingent

claim under each P, then for all P

Dε
t > Dε,P

t , P − a.s. (4.5.1)
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Proof. The existence of the processes is a simple consequence of Theorem 4.4.1 and the
fact thatX is the superhedging price of the contingent claim comes from the representation
formula (4.3.1). Then, the ε-optimality of Dε

t and the inequality (4.5.1) are clear by
de�nition. ⊔⊓

Remark 4.5.1. The formula (4.5.1) con�rms the natural intuition that the smallest op-

timal time to exercise the American contingent claim when the volatility is uncertain is

the supremum, in some sense, of all the optimal stopping times for the classical American

contingent claim for each volatility scenario.

Remark 4.5.2. As explained in Remark 4.3.5, we cannot �nd a decomposition that would

isolate the e�ects due to the obstacle and the ones due to the second-order. It is not clear

neither for the existence of an optimal stopping time. Dt = inf{s > t, Ys− 6 Ss− , Pκ
H −

q.s.} ∧ T is not optimal after t. Between t and Dt, K
P is reduced to the part related to

the second-order. However this part does not verify the minimum condition because it is

possible to have Yt− > yP
t− = St−, thus the process kP is not identically null.

4.6 Appendix

4.6.1 Technical proof

Proof. [Proof of Lemma 4.4.2] For each P, let (ȲP, Z̄P) be the solution of the BSDE with
generator F̂ and terminal condition ξ at time T . We de�ne

Ṽ P := V − ȲP.

Then, Ṽ P > 0, P − a.s.

For any 0 6 t1 < t2 6 T , let (yP,t2 , zP,t2 , kP,t2) := (YP(t2, Vt2),ZP(t2, Vt2),KP(t2, Vt2)).
Since we have for P − a.e. ω, YP

t1
(t2, Vt2)(ω) = YP,t1,ω(t2, V

t1,ω
t2 ), we get from Proposition

4.4.1

Vt1 > yP,t2
t1 , P − a.s.

Denote

ỹP,t2
t := yP,t2

t − ȲP
t , z̃

P,t2
t := â

1/2
t (zP,t2

t − Z̄P
t ).

Then Ṽ P
t1

> ỹP,t2
t1 and (ỹP,t2 , z̃P,t2) satis�es the following RBSDE with lower obstacle

S − ȲP on [0, t2]

ỹP,t2
t = Ṽ P

t2
−
∫ t2

t

fP
s (ỹP,t2

s , z̃P,t2
s )ds−

∫ t2

t

z̃P,t2
s dW P

s + kP,t2
t2 − kP,t2

t ,

where

fP
t (ω, y, z) := F̂t(ω, y + ȲP

t (ω), â
−1/2
t (ω)z + Z̄P

t (ω)) − F̂t(ω, ȲP
t (ω), Z̄P

t (ω)).
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By the de�nition given in the Appendix, Ṽ P is a positive weak re�ected fP-
supermartingale under P. Since fP(0, 0) = 0, we can apply the downcrossing inequality
proved in the Appendix in Theorem 4.6.3 to obtain classically that for P−a.e. ω, the limit

lim
r∈Q∪(t,T ],r↓t

Ṽ P
r (ω)

exists for all t.

Finally, since ȲP is continuous, we get the result. ⊔⊓

4.6.2 Re�ected g-expectation

In this section, we extend some of the results of Peng [88] concerning g-supersolution of
BSDEs to the case of RBSDEs. Let us note that the majority of the following proofs
follows straightforwardly from the original proofs of Peng, with some minor modi�cations
due to the added re�ection. However, we still provide most of them since, to the best of
our knowledge, they do not appear anywhere else in the literature.

In the following, we �x a probability measure P

4.6.2.1 De�nitions and �rst properties

Let us be given the following objects

• A function gs(ω, y, z), F-progressively measurable for �xed y and z, uniformly Lips-
chitz in (y, z) and such that

EP

[∫ T

0

|gs(0, 0)|2 ds
]
< +∞.

• A terminal condition ξ which is FT -measurable and in L2(P).

• A càdlàg process V with EP

[
sup

0 6 t 6 T
|Vt|2

]
< +∞.

• A càdlàg process S such that EP

[(
sup

0 6 t 6 T
(St)

+

)2
]
< +∞.

We want to study the following problem. Finding (y, z, k) ∈ D2(P)×H2(P)× I2(P) such
that





yt = ξ +

∫ T

t

gs(ys, zs)ds−
∫ T

t

zsdWs + kT − kt + VT − Vt, 0 6 t 6 T, P − a.s.

yt > St, P − a.s.
∫ T

0

(ys− − Ss−) dks = 0, P − a.s.

(4.6.1)

We �rst have a result of existence and uniqueness
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Proposition 4.6.1. Under the above hypotheses, there exists a unique solution (y, z, k) ∈
D2(P) × H2(P) × I2(P) to the re�ected BSDE (4.6.1).

Proof. Consider the following penalized BSDE, whose existence and uniqueness are
ensured by the results of Peng [88]

yn
t = ξ +

∫ T

t

gs(y
n
s , z

n
s )ds−

∫ T

t

zn
s dWs + kn

T − kn
t + VT − Vt,

where kn
t := n

∫ t

0
(yn

s − Ss)
−ds.

Then, de�ne ỹn
t := yn

t + Vt, ξ̃ := ξ + VT , z̃n
t := zn

t , k̃
n
t := kn

t and g̃t(y, z) := gt(y − V, z).
We have

ỹn
t = ξ̃ −

∫ T

t

g̃s(ỹ
n
s , z̃

n
s )ds−

∫ T

t

z̃n
s dWs + k̃n

T − k̃n
t ,

Then, since we know by Lepeltier and Xu [68], that the above penalization procedure
converges to a solution of the corresponding RBSDE, existence and uniqueness are then
simple generalization of the classical results in RBSDE theory. ⊔⊓

We also have a comparison theorem in this context

Proposition 4.6.2. Let ξ1 and ξ2 ∈ L2(P), V i, i = 1, 2 be two adapted, càdlàg processes

and gi
s(ω, y, z) two functions, which all verify the above assumptions. Let (yi, zi, ki) ∈

D2(P) × H2(P) × I2(P), i = 1, 2 be the solutions of the following RBSDEs with lower

obstacle Si

yi
t = ξi +

∫ T

t

gi
s(y

i
s, z

i
s)ds−

∫ T

t

zi
sdWs + ki

T − ki
t + V i

T − V i
t , P − a.s., i = 1, 2,

respectively. If

• ξ1 > ξ2, P − a.s.

• V 1 − V 2 is nondecreasing, P − a.s.

• S1 > S2, P − a.s.

• g1
s(y

1
s , z

1
s) > g2

s(y
1
s , z

1
s), dt× dP − a.s.

then it holds P − a.s. that for all t ∈ [0, T ]

y1
t > y2

t .

Besides, if S1 = S2, then we also have dk1 6 dk2.

Proof. The �rst part can be proved exactly as in [34], whereas the second one comes from
the fact that the penalization procedure converges in this framework, as seen previously.

⊔⊓
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Remark 4.6.1. If we replace the deterministic time T by a stopping time τ , then all the

above is still valid.

From now on, we will specialize the discussion to the case where the process V is actually
in I2(P) and consider the following RBSDE





yt = ξ +

∫ τ

t∧τ

gs(ys, zs)ds+ Vτ − Vt∧τ + kτ − kt∧τ −
∫ τ

t∧τ

zsdWs, 0 6 t 6 τ, P − a.s.

yt > St, P − a.s.
∫ τ

0

(ys− − Ss−) dks = 0, P − a.s.

(4.6.2)

De�nition 4.6.1. If y is a solution of a RBSDE of the form (4.6.2), then we call y a

re�ected g-supersolution on [0, τ ]. If V = 0 on [0, τ ], then we call y a re�ected g-solution.

We now face a �rst di�erence from the case of non-re�ected supersolution. Since in our
case we have two nondecreasing processes, if a g-supersolution is given, there can exist
several nondecreasing processes V and k such that (4.6.2) is satis�ed. Indeed, we have
the following proposition

Proposition 4.6.3. Given y a g-supersolution on [0, τ ], there is a unique z ∈ H2(P) and

a unique couple (k, V ) ∈ (I2(P))2 (in the sense that the sum k + V is unique), such that

(y, z, k, V ) satisfy (4.6.2). Besides, there exists a unique quadruple (y, z, k′, V ′) satisfying

(4.6.2) such that k′ and V ′ never act at the same time.

Proof. If both (y, z, k, V ) and (y, z1, k1, V 1) satisfy (4.6.2), then applying Itô's formula
to (yt − yt)

2 gives immediately that z = z1 and thus k + V = k1 + V 1, P − a.s.

Then, if (y, z, k, V ) satisfying (4.6.2) is given, then it is easy to construct (k′, V ′) such
that

• k′ only increases when yt− = St− .

• V ′ only increases when yt− > St− .

• V ′
t + k′t = Vt + kt, dt× dP − a.s.

and such a couple is unique. ⊔⊓

Remark 4.6.2. We give a counter-example to the general uniqueness in the above Propo-

sition. Let T = 2 and consider the following RBSDE





yt = −2 + 2 − t+ k2 − kt −
∫ 2

t
zsdWs, 0 6 t 6 2, P − a.s.

yt > − t2

2
, P − a.s.

∫ 2

0

(
ys− + s2

2

)
dks = 0, P − a.s.
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We then have z = 0, yt = 10 6 t 6 1

(
1
2
− t
)
− t2

2
11<t 6 2, V = 0 and kt = 1t > 1

t2−2t+1
2

.

However, we can also take

y′t = 1t > 1
t2 − 2t+ 1

4
and k′t = 1t > 11t > 1

t2 − 2t+ 1

4
.

Following Peng [88], this allows us to de�ne

De�nition 4.6.2. Let y be a supersolution on [0, τ ] and let (y, z, k, V ) be the related

unique triple in the sense of the RBSDE (4.6.2), where k and V never act at the same

time. Then we call (z, k, V ) the decomposition of y.

4.6.2.2 Monotonic limit theorem

We now study a limit theorem for re�ected g-supersolutions, which is very similar to
theorems 2.1 and 2.4 of [88].

We consider a sequence of re�ected g-supersolutions





yn
t = ξn +

∫ T

t
gs(y

n
s , z

n
s )ds+ V n

T − V n
t + kn

T − kn
t −

∫ T

t
zn

s dWs, 0 6 t 6 T, P − a.s.

yn
t > St, P − a.s.
∫ T

0

(
yn

s− − Ss−
)
dkn

s = 0, P − a.s.

where the V n are in addition supposed to be continuous.

Theorem 4.6.1. If we assume that (yn
t ) increasingly converges to (yt) with

EP

[
sup

0 6 t 6 T
|yt|2

]
< +∞,

and that (kn
t ) decreasingly converges to (kt), then y is a g-supersolution, that is to say that

there exists (z, V ) ∈ H2(P) × I2(P) such that




yt = ξ +
∫ T

t
gs(ys, zs)ds+ VT − Vt + kT − kt −

∫ T

t
zsdWs, 0 6 t 6 T, P − a.s.

yt > St, P − a.s.
∫ T

0
(ys− − Ss−) dks = 0, P − a.s.

Besides, z is the weak (resp. strong) limit of zn in H2(P) (resp. in Hp(P) for p < 2) and

Vt is the weak limit of V n
t in L2(P).

Before proving the Theorem, we will need the following Lemma

Lemma 4.6.1. Under the hypotheses of Theorem 4.6.1, there exists a constant C > 0

independent of n such that

EP

[∫ T

0

|zn
s |2 ds+ (V n

T )2 + (kn
T )2

]
6 C.
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Proof. We have

V n
T + kn

T = yn
0 − yn

T −
∫ T

0

gs(y
n
s , z

n
s )ds+

∫ T

0

zn
s dWs

6 C

(
sup

0 6 t 6 T
|yn

t | +
∫ T

0

|zn
s | ds+

∫ T

0

|gs(0, 0)| ds+

∣∣∣∣
∫ T

0

zn
s dWs

∣∣∣∣
)
. (4.6.3)

Besides, we also have for all n > 1, y1
t 6 yn

t 6 yt and thus |yn
t | 6 |y1

t | + |yt|, which in
turn implies that

sup
n

EP

[
sup

0 6 t 6 T
|yn

t |2
]

6 C.

Reporting this in (4.6.3) and using BDG inequality, we obtain

EP
[
(V n

T )2 + (kn
T )2
]

6 EP
[
(V n

T + kn
T )2
]

6 C0

(
1 + EP

[∫ T

0

|gs(0, 0)|2 ds+

∫ T

0

|zn
s |2 ds

])
. (4.6.4)

Then, using Itô's formula, we obtain classically for all ε > 0

EP

[∫ T

0

|zn
s |2 ds

]
6 EP

[
(yn

T )2 + 2

∫ T

0

yn
s gs(y

n
s , z

n
s )ds+ 2

∫ T

0

yn
s−d(V

n
s + kn

s )

]

6 EP

[
C

(
1 + sup

0 6 t 6 T
|yn

t |2
)

+

∫ T

0

|zn
s |2
2

ds+ ε
(
|V n

T |2 + |kn
T |2
)
]
.

(4.6.5)

Then, from (4.6.4) and (4.6.5), we obtain by choosing ε = 1
4C0

that

EP

[∫ T

0

|zn
s |2 ds

]
6 C.

Reporting this in (4.6.4) ends the proof. ⊔⊓

Proof. [Proof of Theorem 4.6.1] By Lemma 4.6.1 and its proof we �rst have

EP

[∫ T

0

|gs(y
n
s , z

n
s )|2 ds

]
6 CEP

[∫ T

0

|gs(0, 0)|2 + |yn
s |2 + |zn

s |2 ds
]

6 C.

Thus gs(y
n
s , z

n
s ) and zn are bounded in H2(P), and there exists subsequences which

converge respectively to some gs and zs. Therefore, for every stopping time τ , we also
have the following weak convergences

∫ τ

0

zn
s dWs →

∫ τ

0

zsdWs,

∫ τ

0

gs(y
n
s , z

n
s )ds→

∫ τ

0

ḡsds,

V n
τ → −yτ + y0 − kτ −

∫ τ

0

ḡsds+

∫ τ

0

zsdWs.
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Then by the section theorem, it is clear that V and k are nondecreasing, and by Lemma
2.2 of [88] we know that y, V and k are càdlàg. We now show the strong convergence
of zn. Following Peng [88], we apply Itô's formula between two stopping times τ and σ.
Since V n is continuous, we obtain

EP

[∫ τ

σ

|zn
s − zs|2 ds

]
6 EP

[
|yn

τ − yτ |2 +
∑

σ 6 t 6 τ

(∆(Vt + kt))
2

]

+ 2EP

[∫ τ

σ

|yn
s − ys| |gs(y

n
s , z

n
s ) − ḡs| ds+

∫ τ

σ

(yn
s − ys)d(Vs + ks)

]
.

Then we can �nish exactly as in [88] to obtain the desired convergence. Since g is
supposed to be Lipschitz, we actually have

ḡs = gs(ys, zs), P − a.s.

Finally, since for each n, we have yn
t > St, we have yt > St. For the Skorohod condition,

we have, since the kn are decreasing

EP

[∫ T

0

(yt− − St−) dkt

]
6 EP

[∫ T

0

(yt− − yn
t−) dkt +

∫ T

0

(yn
t− − St−) dkn

t

]

= EP

[∫ T

0

(yt− − yn
t−) dkt

]
.

Then, we have

EP

[∫ T

0

(yt− − yn
t−) dkt

]
6

(
EP

[
sup

0 6 t 6 T

∣∣y1
t − yt

∣∣2
])1/2 (

EP
[
k2

T

])1/2
< +∞

Therefore by Lebesgue dominated convergence Theorem, we obtain that

EP

[∫ T

0

(yt− − yn
t−) dkt

]
→ 0,

and thus

EP

[∫ T

0

(yt− − St−) dkt

]
6 0,

which ends the proof. ⊔⊓

4.6.2.3 Doob-Meyer decomposition

We now introduce the notion of re�ected g-(super)martingales.

De�nition 4.6.3. (i) A re�ected g-martingale on [0, T ] is a re�ected g-solution on

[0, T ].

(ii) (Yt) is a re�ected g-supermartingale in the strong (resp. weak) sense if for all stop-

ping time τ 6 T (resp. all t 6 T ), we have EP[|Yτ |2] < +∞ (resp. EP[|Yt|2] < +∞)

and if the re�ected g-solution (ys) on [0, τ ] (resp. [0, t]) with terminal condition Yτ

(resp. Yt) veri�es yσ 6 Yσ for every stopping time σ 6 τ (resp. ys 6 Ys for every

s 6 t).
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As in the case without re�ection, under mild conditions, a re�ected g-supermartingale in
the weak sense corresponds to a re�ected g-supermartingale in the strong sense. Besides,
thanks to the comparison Theorem, it is clear that a g-supersolution on [0, T ] is also a g-
supermartingale in the weak and strong sense on [0, T ]. The following Theorem addresses
the converse property, which gives us a nonlinear Doob-Meyer decomposition.

Theorem 4.6.2. Let (Yt) be a right-continuous re�ected g-supermartingale on [0, T ] in

the strong sense with

EP

[
sup

0 6 t 6 T
|Yt|2

]
< +∞.

Then (Yt) is a re�ected g-supersolution on [0, T ], that is to say that there exists a unique

triple (z, k, V ) ∈ H2(P) × I2(P) × I2(P) such that





Yt = YT +
∫ T

t
gs(Ys, zs)ds+ VT − Vt + kT − kt −

∫ T

t
zsdWs, 0 6 t 6 T, P − a.s.

Yt > St, P − a.s.
∫ T

0
(Ys− − Ss−) dks = 0, P − a.s.

V and k never act at the same time.

We follow again [88] and consider the following sequence of RBSDEs




yn
t = YT +

∫ T

t
gs(y

n
s , z

n
s )ds+ n

∫ T

t
(Ys − yn

s )ds+ kn
T − kn

t −
∫ T

t
zn

s dWs, 0 6 t 6 T

yn
t > St, P − a.s.
∫ T

0

(
yn

s− − Ss−
)
dkn

s = 0, P − a.s.

We then have

Lemma 4.6.2. For all n, we have

Yt > yn
t .

Proof. The proof is exactly the same as the proof of Lemma 3.4 in [88], so we omit it.
⊔⊓

Proof. [Proof of Theorem 4.6.2] The uniqueness is due to the uniqueness for re�ected
g-supersolutions proved in Proposition 4.6.3. For the existence part, we �rst notice that
since Yt > yn

t for all n, by the comparison Theorem for RBSDEs, we have yn
t 6 yn+1

t and
dkn

t > dkn+1
t . Therefore they converge monotonically to some processes y and k. Besides,

y is bounded from above by Y . Therefore, all the conditions of Theorem 4.6.1 are satis�ed
and y is a re�ected g-supersolution on [0, T ] of the form

yt = YT +

∫ T

t

gs(ys, zs)ds+ VT − Vt + kT − kt −
∫ T

t

zsdWs,

where Vt is the weak limit of V n
t := n

∫ t

0
(Ys − yn

s )ds.

From Lemma 4.6.1, we have

EP[(V n
T )2] = n2EP

[∫ T

0

|Ys − yn
s |2 ds

]
6 C.

It then follows that Yt = yt, which ends the proof. ⊔⊓
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4.6.2.4 Downcrossing inequality

In this section we prove a downcrossing inequality for re�ected g-supermartingales in the
spirit of the one proved in [21]. We use the same notations as in the classical theory of
g-martingales (see [21] and [88] for instance).

Theorem 4.6.3. Assume that g(0, 0) = 0. Let (Yt) be a positive re�ected g-

supermartingale in the weak sense and let 0 = t0 < t1 < ... < ti = T be a subdivision

of [0, T ]. Let 0 < a < b, then there exists C > 0 such that Db
a[Y, n], the number of

downcrossings of [a, b] by
{
Ytj

}
, veri�es

E−µ[Db
a[Y, n]] 6

C

b− a
Eµ[Y0 ∧ b],

where µ is the Lipschitz constant of g.

Proof. Consider




yi
t = Yti −

∫ ti
t

(µ |yi
s| + µ |zi

s|)ds+ ki
ti
− ki

t −
∫ ti

t
zi

sdWs, 0 6 t 6 ti, P − a.s.

yi
t > St, P − a.s.
∫ ti

0

(
yi

s− − Ss−
)
dki

s = 0, P − a.s.

We de�ne ai
s := −µsgn(zi

s)1tj−1<s 6 tj and as :=
∑n

i=0 a
i
s. Let Qa be the probability

measure de�ned by
dQa

dP
= E

(∫ T

0

asdWs

)
.

We then have easily that yi
t > 0 since Yti > 0 and

yi
t = ess sup

τ∈Tt,ti

E
Qa

t

[
e−µ(τ−t)Sτ1τ<ti + Ytie

−µ(ti−t)1τ=ti

]
.

Since Y is re�ected g-supermartingale (and thus also a re�ected g−µ-supermartingale
where g−µ

s (y, z) := −µ(|y| + |z|)), we therefore obtain

ess sup
τ∈Tti−1,ti

E
Qa

ti−1

[
e−µ(τ−ti−1)Sτ1τ<ti + Ytie

−µ(ti−ti−1)1τ=ti

]
6 Yti−1

.

Hence, by choosing τ = tj above, we get

E
Qa

ti−1

[
Ytie

−µ(ti−ti−1)
]

6 Yti−1
,

which implies that (e−µtiYti)0 6 i 6 n is a Qa-supermartingale. Then we can �nish the proof
exactly as in [21]. ⊔⊓





Chapitre 5

Second Order BSDEs With Jumps

5.1 Introduction

In this chapter, we study a class of 2BSDEs with jumps. The rest of the chapter is
organized as follows. In Section 5.2, we introduce the set of probability measures on
the Skorohod space D that we will work with. Using the notion of martingale problems
on D, we construct probability measures under which the canonical process has given
characteristics. Then we prove an aggregation result under this family. Finally, we de�ne
the notion of 2BSDEJs and show how it is linked with classic BSDEs with jumps. Section
5.3 is devoted to a uniqueness result and some a priori estimates, and Section 5.4 concerns
our existence result. In Section 5.5, as an application of previous results, we study a robust
exponential utility maximization problem. The Appendix 5.6 is dedicated to the proof of
some important technical results. This chapter is based on [60] and [61].

5.2 Preliminaries

Let Ω := D([0, T ],Rd) be the space of càdlàg paths de�ned on [0, T ] with values in Rd

and such that w(0) = 0, equipped with the Skorohod topology, so that it is a com-
plete, separable metric space (see [10] for instance). The uniform norm on Ω is de-
�ned by ‖ω‖∞ := sup0 6 t 6 T |ωt|. We denote B the canonical process, F := {Ft}0 6 t 6 T

the �ltration generated by B, F+ :=
{
F+

t

}
0 6 t 6 T

the right limit of F and for any P,
FP

t := F+
t ∨N P(F+

t ) where

N P(G) :=
{
E ∈ Ω, there exists Ẽ ∈ G such that E ⊂ Ẽ and P(Ẽ) = 0

}
.

As usual, for any �ltration G and any probability measure P, GP
will denote the corre-

sponding completed �ltration.

We then de�ne as in [101] a local martingale measure P as a probability measure such
that B is a P-local martingale. Since we are working in the Skorohod space, we can then
de�ne the continuous martingale part of B, noted Bc, and its purely discontinuous part,
noted Bd, both being local martingales under each local martingale measures (see [56]).
We then associate to the jumps of B a counting measure µBd , which is a random measure
on B(R+) × E (where E := Rr\{0} for some r ∈ N∗), de�ned pathwise by

µBd([0, t], A) :=
∑

0<s 6 t

1{∆Bd
s∈A}, ∀t > 0, ∀A ⊂ E. (5.2.1)
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We also denote by νP
s (ds, dx) the compensator of µBd(ds, dx), which is a predictable

random measure, under P and by µ̃P
Bd(ds, dx) the corresponding compensated measure.

We then denote PW the set of all local martingale measures P such that P-a.s.

(i) The quadratic variation of Bc is absolutely continuous with respect to the Lebesgue
measure dt and its density takes values in S>0

d .

(ii) The compensator νP
t (dt, dx) under P is absolutely continuous with respect to the

Lebesgue measure dt.

In this discontinuous setting, we will say that a probability measure P ∈ PW satis�es
the martingale representation property if for any (F

P
,P)-local martingale M , there exists

a unique F
P
-predictable processes H and a unique F

P
-predictable function U such that

(H,U) ∈ H2
loc(P) × J2

loc(P) (those spaces are de�ned later) and

Mt = M0 +

∫ t

0

HsdB
c
s +

∫ t

0

∫

E

Us(x)µ̃
P
Bd(ds, dx).

We now follow [103] and introduce their so-called universal �ltration. For this we let P
be a given subset of PW , we de�ne

De�nition 5.2.1. (i) A property is said to hold P-quasi-surely (P-q.s. for short), if it

holds P − a.s. for all P ∈ P.

(ii) We call P-polar sets the elements of NP := ∩P∈PN P(F∞).

Then, we de�ne as in [103]

F̂P :=
{
F̂P

t

}
t > 0

where F̂P
t :=

⋂

P∈P

(
FP

t ∨NP

)
.

Finally, we let T and T̂ P the sets of all F and F̂P stopping times, and we recall that
thanks to Lemma 2.4 in [103] we do not have to worry about the universal �ltration not
being complete under each P ∈ P .

5.2.1 Issues related to aggregation

5.2.1.1 The main problem

A crucial issue in the de�nition of the 2BSDEs in [101] is the aggregation of the quadratic
variation of the canonical process B under a wide family of probability measures.

Let P ⊂ PW be a set of non necessarily dominated probability measures and let {XP, P ∈
P} be a family of random variables indexed by P . One can think for example of the
stochastic integrals XP

t := (P)
∫ t

0
HsdBs, where {Ht, t > 0} is a predictable process.
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De�nition 5.2.2. An aggregator of the family {XP, P ∈ P} is a random variable X̂ such

that

X̂ = XP, P − a.s, for every P ∈ P .

Bichteler [9], Karandikar [58], or more recently Nutz [86] all showed in di�erent contexts,
and under di�erent assumptions, that it is possible to �nd an aggregator for the Itô
stochastic integrals (P)

∫ t

0
HsdBs.

A direct consequence of this result is the possibility to aggregate the quadratic variation
process {[B,B]t, t > 0}. Indeed, using Itô's formula, we can write

[B,B]t = BtB
T
t − 2

∫ t

0

Bs−dB
T
s

and the aggregation of the stochastic integrals automatically yields the aggregation of the
bracket {[B,B]t, t > 0}.

This also allows us to give a pathwise de�nition of the process â, which is an aggregator
for the density of the quadratic variation of the continuous part of B, by

ât := lim sup
εց0

1

ε

(
〈Bc〉t − 〈Bc〉t−ε

)
,

Soner, Touzi and Zhang, motivated by the study of stochastic target problems under
volatility uncertainty, obtained in [103] an aggregation result for a family of probability
measures corresponding to the laws of some continuous martingales on the canonical
space Ω = C(R+,Rd), under a separability assumption on the quadratic variations (see
their de�nition 4.8) and under an additional consistency condition (which is usually only
necessary) for the family to aggregate.

To de�ne correctly the notion of 2BSDEJs, we need to aggregate not only the quadratic
variation [B,B] of the canonical process, but also its compensated jump measure. How-
ever, this predictable compensator is usually obtained thanks to the Doob-Meyer decom-
position of the submartingale [B,B]. It is therefore clear that this compensator depends
explicitly on the underlying probability measure, and it is not clear at all whether an
aggregator always exists or not. This is a �rst main di�erence with the continuous case.
In order to solve this problem, we follow the spirit of [103] and restrict our set of proba-
bility measures (by adding an analogous separability condition for jump measures) so as
to generalize some of their results of [103] to the case of processes with jumps.

After these �rst notations, in the following subsection, in order to construct a probability
measure under which the canonical process has a given quadratic variation and a given
jump measure, we will use the notion of martingale problem for semimartingales with
general characteristics, as de�ned in the book by Jacod and Shiryaev [56] to which we
refer.
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5.2.1.2 Characterization by martingale problems

In this subsection, we extend the connection between di�usion processes and probability
measures established in [103] thanks to weak solutions of SDEs, to our general jump case
with the more general notion of martingale problems.

Let N be the set of F-predictable random measures ν on B(E) satisfying

∫ T

0

∫

E

(1 ∧ |x|2)νs(dx)ds < +∞ and
∫ T

0

∫

|x|>1

|x| νs(dx)ds < +∞, ∀ω ∈ Ω, (5.2.2)

and let D be the set of F-predictable processes α taking values in S>0
d with

∫ T

0

|αt|dt < +∞, for every ω ∈ Ω.

We de�ne a martingale problem as follows

De�nition 5.2.3. For F-stopping times τ1 and τ2, for (α, ν) ∈ D×N and for a probability

measure P1 on Fτ1, we say that P is a solution of the martingale problem (P1, τ1, τ2, α, ν)

if

(i) P = P1 on Fτ1.

(ii) The canonical process B on [τ1, τ2] is a semimartingale under P with characteristics

(
−
∫ ·

τ1

∫

E

x1|x|>1νs(dx)ds,

∫ ·

τ1

αsds, νs(dx)ds

)
.

Remark 5.2.1. We refer to Theorem III.2.7 in [56] for the fact that P is a solution of

the martingale problem (P1, τ1, τ2, α, ν) if and only if the following properties hold:

(i) P = P1 on Fτ1.

(ii) The processes M , J and L de�ned below are P-local martingales on [τ1, τ2]

Mt := Bt −
∑

τ1 6 s 6 t

1|∆Bs|>1∆Bs +

∫ t

τ1

x1|x|>1νs(dx)ds, τ1 6 t 6 τ2

Jt := M2
t −

∫ t

τ1

αsds−
∫ t

τ1

∫

|x| 6 1

x2νs(dx)ds, τ1 6 t 6 τ2

Qt :=

∫ t

τ1

∫

E

g(x)µB(ds, dx) −
∫ t

τ1

∫

E

g(x)νs(dx)ds, τ1 6 t 6 τ2, ∀g ∈ C+(Rd).

We say that the martingale problem associated to (α, ν) has a unique solution if, for
every stopping times τ1, τ2 and for every probability measure P1, the martingale problem
(P1, τ1, τ2, α, ν) has a unique solution.

Let now AW be the set of (α, ν) ∈ D × N , such that there exists a solution to the
martingale problem (P1, 0,+∞, α, ν), where P1 is such that P1(B0 = 0) = 1.
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We also denote by AW the set of (α, ν) ∈ AW such that there exists a unique solution to
the martingale problem (P1, 0,+∞, α, ν), where P1 is such that P1(B0 = 0) = 1. Denote
Pα

ν this unique solution. Finally we set

PW := {Pα
ν , (α, ν) ∈ AW} .

Remark 5.2.2. We take here as an initial condition that B0 = 0. This does not generate

a loss of generality, since at the end of the day, the probability measures under which we

are going to work will all satisfy the Blumenthal 0 − 1 law. Hence, B0 will have to be a

constant and we choose 0 for simplicity.

5.2.1.3 Notations and de�nitions

Following [103], for a, b ∈ D and ν1, ν2 ∈ N , we de�ne the �rst disagreement times as
follows

θa,b := inf

{
t > 0,

∫ t

0

asds 6=
∫ t

0

bsds

}
,

θν1,ν2 := inf

{
t > 0,

∫ t

0

∫

E

xν1
s (dx)ds 6=

∫ t

0

∫

E

xν2
s (dx)ds

}

θa,b
ν1,ν2

:= θa,b ∧ θν1,ν2 .

For every τ̂ in F̂P , we de�ne the following event

Ωa,ν1,b,ν2

bτ :=
{
τ̂ < θa,b

ν1,ν2

}
∪
{
τ̂ = θa,b

ν1,ν2
= +∞

}
.

Finally, we introduce the following notion inspired by [103]

De�nition 5.2.4. A0 ⊂ AW is a generating class of coe�cients if

(i) A0 is stable for the concatenation operation, i.e. if (a, ν1), (b, ν2) ∈ A0 ×A0 then for

each t,

(
a1[0,t] + b1[t,+∞), ν11[0,t] + ν21[t,+∞)

)
∈ A0.

(ii) For every (a, ν1), (b, ν2) ∈ A0 ×A0, θ
a,b
ν1,ν2

is a constant. Or equivalently, for each t,

Ωa,ν1,b,ν2
t equals Ω or ∅.

De�nition 5.2.5. We say that A is a separable class of coe�cients generated by A0 if A0

is a generating class of coe�cients and if A consists of all processes (a, ν) of the form

a =
+∞∑

n=0

+∞∑

i=1

an
i 1En

i
1[τn,τn+1) and ν =

+∞∑

n=0

+∞∑

i=1

νn
i 1Ẽn

i
1[τ̃n,τ̃n+1), (5.2.3)

where for each i and for each n, (an
i , ν

n
i ) ⊂ A0, τn and τ̃n are F-stopping times with

τ0 = 0, such that

(i) τn < τn+1 on {τn < +∞}.
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(ii) inf{n > 0, τn = +∞} <∞.

(iii) τn takes countably many values in some �xed I0 ⊂ [0, T ] which is countable and

dense in [0, T ].

(iv) For each n, (En
i )i > 1 ⊂ Fτn and (Ẽn

i )i > 1 ⊂ Fτ̃n form a partition of Ω.

Remark 5.2.3. If we re�ne the subdivisions, we can always take a common sequence of

stopping times (τn)n > 0 and common sets (En
i )i > 1,n > 0 for a and for ν. Moreover, the

de�nition indeed depends on the countable subset I0 introduced above. We acknowledge that

as in [103] this set could be changed, but for the sake of clarity, it will be �xed throughout

the chapter. We will also show in Section 5.4.4 that this has only limited impact on our

results. For practical purposes, one could take for instance I0 = Q ∩ [0, T ].

Example 5.2.1. Ã0 composed of deterministic processes a and ν forms a generating class

of coe�cients.

The following Proposition generalizes Proposition 4.11 of [103] and shows that a sepa-
rable class of coe�cients inherits the "good" properties of its generating class.

Proposition 5.2.1. Let A be a separable class of coe�cients generated by A0. Then

(i) If A0 ⊂ AW , then A ⊂ AW .

(ii) A-quasi surely is equivalent to A0-quasi surely.

(iii) If every P ∈ {Pα
ν , (α, ν) ∈ A0} satis�es the martingale representation property, then

every P ∈ {Pα
ν , (α, ν) ∈ A} also satis�es the martingale representation property.

(iv) If every P ∈ {Pα
ν , (α, ν) ∈ A0} satis�es the Blumenthal 0 − 1 law, then every P ∈

{Pα
ν , (α, ν) ∈ A} also satis�es the Blumenthal 0 − 1 law.

As in [103], to prove this result, we need two Lemmas. The �rst one is a straightforward
generalization of Lemma 4.12 in [103], so we omit the proof. The second one is analogous
to Lemma 4.13 in [103].

Lemma 5.2.1. Let A be a separable class of coe�cients generated by A0. For any (a, ν) ∈
A, and any F-stopping time τ ∈ T , there exist τ̃ ∈ T with τ̃ > τ , a sequence (ai, νi)i > 1 ⊂
A0 and a partition (Ei)i > 1 ⊂ Fτ of Ω such that τ̃ > τ on {τ < +∞} and

at =
∑

i > 1

ai(t)1Ei
and νt =

∑

i > 1

νi(t)1Ei
, t < τ̃ . (5.2.4)

In particular, Ei ⊂ Ωa,ν,ai,νi

τ̃ which implies that ∪nΩa,ν,ai,νi

τ̃ = Ω. Finally, if a and ν take

the form (5.2.3) and τ > τn, then we can choose τ̃ > τn+1.

Proof. We refer to the proof of lemma 4.12 in [103]. ⊔⊓
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Lemma 5.2.2. Let τ1, τ2 ∈ T be two stopping times such that τ1 6 τ2, and (ai, νi)i > 1 ⊂
AW and let {Ei, i > 1} ⊂ Fτ1 be a partition of Ω. Finally let P0 be a probability measure

on Fτ1 and let {Pi, i > 1} be a sequence of probability measures such that for each i, Pi is

a solution of the martingale problem (P0, τ1, τ2, ai, νi). De�ne

P(E) :=
∑

i > 1

Pi(E ∩ Ei) for all E ∈ Fτ2 ,

at :=
∑

i > 1

ai(t)1Ei
and νt :=

∑

i > 1

νi(t)1Ei
, t ∈ [τ1, τ2].

Then P is a solution of the martingale problem (P0, τ1, τ2, a, ν).

Proof. By de�nition, P = P0 on Fτ1 . In view of remark 5.2.1, it is enough to prove
that M , J and Q are P-local martingales on [τ1, τ2]. By localizing if necessary, we may
assume as usual that all these processes are actually bounded. For any stopping times
τ1 6 R 6 S 6 τ2, and any bounded FR-measurable random variable η, we have

IEP ([MS −MR]η) =
∑

i > 1

IEPi

([MS −MR]η1Ei
)

=
∑

i > 1

IEPi
(
IEPi

([MS −MR]|FR)η1Ei

)
= 0.

Thus M is a P-local martingale on [τ1, τ2]. We can prove in exactly the same manner
that J and Q are also P-local martingales on [τ1, τ2] and the proof is complete. ⊔⊓

Proof. [Proof of Proposition 5.2.1] The proof follows closely the proof of Proposition 4.11

in [103] and we give it for the convenience of the reader.

(i) We take (a, ν) ∈ A, let us prove that (a, ν) ∈ AW .

We �x two stopping times θ1, θ2 in T and a probability measure P0 on Fθ1 . We de�ne a
sequence (τ̃n)n > 0 as follows:

τ̃0 := θ1 and τ̃n := (τn ∨ θ1) ∧ θ2, n > 1.

To prove that the martingale problem (P0, θ1, θ2, a, ν) has a unique solution, we prove by
induction on n that the martingale problem (P0, τ̃0, τ̃n, a, ν) has a unique solution.

Step 1 of the induction: Let n = 1, and let us �rst construct a solution to the
martingale problem (P0, τ̃0, τ̃1, a, ν). For this purpose, we apply Lemma 5.2.1 with τ = τ̃0
and τ̃ = τ̃1, which leads to at =

∑
i > 1 ai(t)1Ei

and νt =
∑

i > 1 νi(t)1Ei
for all t < τ̃1,

where (ai, νi) ∈ A0 and {Ei, i > 1} ⊂ Fτ̃0 form a partition of Ω. For i > 1, let P0,i be the
unique solution of the martingale problem (P0, τ̃0, τ̃1, ai, νi) and de�ne

P0,a(E) :=
∑

i > 1

P0,i(E ∩ Ei) for all E ∈ Fτ̃1 .
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Lemma 5.2.2 tells us that P0,a solves the martingale problem (P0, τ̃0, τ̃1, a, ν). Now let P

be an arbitrary solution of the martingale problem (P0, τ̃0, τ̃1, a, ν), and let us prove that
P = P0,a. We �rst de�ne

Pi(E) := P(E ∩ Ei) + P0,i(E ∩ Ec
i ), ∀E ∈ Fτ̃1 .

Using Lemma 5.2.2, and the facts that ai = a1Ei
+ ai1Ec

i
and νi = ν1Ei

+ νi1Ec
i
, we

conclude that Pi solves the martingale problem (P0, τ̃0, τ̃1, ai, νi). This problem having a
unique solution, we have Pi = P0,i on Fτ̃1 . This implies that for each i > 1 and for each
E ∈ Fτ̃1 , Pi(E ∩ Ei) = P0,i(E ∩ Ei), and �nally

P0,a(E) =
∑

i > 1

P0,i(E ∩ Ei) =
∑

i > 1

Pi(E ∩ Ei) = P(E), ∀E ∈ Fτ̃1 .

Step 2 of the induction: We assume that the martingale problem (P0, τ̃0, τ̃n, a, ν) has a
unique solution denoted Pn. Using the same reasoning as above, we see that the martingale
problem (Pn, τ̃n, τ̃n+1, a, ν) has a unique solution, denoted Pn+1. Then the processes M ,
J and Q de�ned in Remark 5.2.1 are Pn+1-local martingales on [τ̃n, τ̃n+1], and since Pn+1

coincides with Pn on Fτ̃n , M , J and Q are also Pn+1-local martingales on [τ̃0, τ̃n]. And
hence Pn+1 solves the martingale problem (P0, τ̃0, τ̃n+1, a, ν). We suppose now that P is
another arbitrary solution to the problem (P0, τ̃0, τ̃n+1, a, ν). By the induction assumption,
Pn = P on Fτ̃n , then P solves the problem (Pn, τ̃n, τ̃n+1, a, ν), and by uniqueness P = Pn+1

on Fτ̃n+1 . The induction is now complete.

Remark that Fθ2 = ∨n > 1Fτ̃n . Indeed, since inf{n > 1 : τn = +∞} < +∞, then
inf{n > 1 : τ̃n = θ2} < +∞. This allows to de�ne P∞(E) := Pn(E) for E ∈ Fτ̃n and
to extend it uniquely to Fθ2 . Now using again Remark 5.2.1, we conclude that P∞ solves
(P0, θ1, θ2, a, ν) and is unique.

(ii) We now prove that A-quasi surely is equivalent to A0-quasi surely.

We take (a, ν) ∈ A and we apply Lemma 5.2.1 with τ = +∞ to write at =
∑

i > 1 ai(t)1Ei

and νt =
∑

i > 1 νi(t)1Ei
for all t > 0, where (ai, νi) ∈ A0 and {Ei, i > 1} ⊂ F∞ form a

partition of Ω. Take a set E such that Pã
ν̃(E) = 0 for every (ã, ν̃) ∈ A0, then

Pa
ν(E) =

∑

i > 1

Pa
ν(E ∩ Ei) =

∑

i > 1

Pai
νi

(E ∩ Ei) = 0.

(iii) Let N be a Pa
ν-local martingale, and let us prove by induction that N has a martin-

gale representation property under Pa
ν , on the interval [0, τn].

As we can choose τ0 = 0 without loss of generality, the result is trivially true for n = 0.
Suppose that N has a martingale representation on [0, τn). We apply Lemma 5.2.1 with
τ = τn and τ̃ = τn+1, then at =

∑
i > 1 ai(t)1Ei

and νt =
∑

i > 1 ν
i(t)1Ei

for all τn 6 t <

τn+1, where (ai, ν
i) ∈ A0 and {Ei, i > 1} ⊂ Fτn form a partition of Ω. We have that for

each i > 1, N i is a P
ai

νi-local martingale, where

N i
t :=

(
Nt∧τn+1 −Nτn

)
1Ei

1[τn,+∞)(t).
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Since (ai, ν
i) ∈ A0, then by assumption there exist processes H i and ψi such that

N i
t :=

∫ t

τn

H i
sdB

c
s +

∫ t

τn

∫

E

ψi
s(x)

(
µBd(ds, dx) − νi

s(ds, dx)
)
, P

ai

νi-a.s, τn 6 t < τn+1.

We de�ne

Ht :=
∑

i > 1

H i
t1Ei

and ψt(x) :=
∑

i > 1

ψi
t(x)1Ei

, ∀x ∈ E, τn 6 t < τn+1,

then

Nt :=

∫ t

τn

HsdB
c
s +

∫ t

τn

∫

E

ψs(x) (µBd(ds, dx) − νs(ds, dx)) , Pa
ν-a.s, τn 6 t < τn+1.

So N has a martingale representation on [0, τn+1], and the induction is complete. Now
recall that inf{n : τn = ∞} < +∞ to conclude that N has a martingale representation
on [0,+∞).

(iv) Take (a, ν) ∈ A of the form (5.2.3), in which we can take τ0 = 0 without loss of
generality.

There exists 0 < t0 < τ1 such that for every t 6 t0, Pa
ν is the law on [0, t0] of a

semimartingale with characteristics
(
−
∫ t

0

∫
E
x1|x|>1ν̃s(dx)ds,

∫ t

0
ãsds, ν̃s(dx)ds

)
where

ãt :=
∑

i > 1

a0
i (t)1E0

i
and ν̃t :=

∑

i > 1

ν0
i (t)1E0

i
,

where {E0
i , i > 1} ⊂ F0 is a partition of Ω. Since F0 is trivial, the partition is only

composed of Ω and ∅, and then

ãt := a0
1(t) and ν̃t = ν0

1(t).

Then for E ∈ F0+ ,

Pa
ν(E) = Pã

ν̃(E) = 0 ou 1,

since Pã
ν̃ satis�es the Blumenthal 0 − 1 law by hypothesis. ⊔⊓

Remark 5.2.4. If A0 consists in deterministic mappings as in example 5.2.1, then Pa
ν

is the law on [0, τ1] of an additive process with non random characteristics, for which the

Blumenthal 0 − 1 law holds (see for instance [96]).

We now state the following Proposition which tells us that our probability measure
coincides until their �rst time of disagreement.

Proposition 5.2.2. Let A be a separable class of coe�cients generated by A0, let PA :=

{Pa
ν , (a, ν) ∈ A} and let (a, ν1) × (b, ν2) ∈ A×A.

(i) θa,b
ν1,ν2 is an F-stopping time taking countably many values.
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(ii) Moreover, we have the following coherence condition

Pa
ν1

(
E ∩ Ωa,ν1,b,ν2

bτ

)
= Pb

ν2

(
E ∩ Ωa,ν1,b,ν2

bτ

)
, ∀τ̂ ∈ T PA , ∀E ∈ FPA

bτ .

Proof.

(i) Let us prove that
{
θa,b

ν1,ν2 6 t1

}
∈ Ft1 , for any t1 > 0.

We apply Lemma 5.2.1 for (a, ν1) and (b, ν2) with τ = t1 to obtain that at and bt coincide
with ai(t) and bi(t) on Ei and that νj

t coincides with νj
i (t) on Ei, j = 1, 2, for t < τ̃ , where

τ̃ > t1, (ai, ν
1
i ) × (bi, ν

2
i ) ∈ A0 ×A0 and {Ei, i > 1} ⊂ Ft1 form a partition of Ω. Then

{
θa,b

ν1,ν2
6 t1

}
=
⋃

i > 1

{
θai,bi

ν1
i ,ν2

i
6 t1

}
∩ Ei

By the constant disagreement times property of A0,
{
θai,bi

ν1
i ,ν2

i
6 t1

}
is either Ω or ∅, and

since Ei ∈ Ft1 , then
{
θa,b

ν1,ν2 6 t1

}
∈ Ft1 .

To show that θa,b
ν1,ν2 takes countably many values, we apply again Lemma 5.2.1 with

τ = θa,b
ν1,ν2 , which gives that at and bt coincide with ai(t) and bi(t) on Ei and that νj

t

coincides with νj
i (t) on Ei, j = 1, 2, for t < τ̃ , where τ̃ > τ , (ai, ν

1
i ) × (bi, ν

2
i ) ∈ A0 × A0

and {Ei, i > 1} ⊂ Fτ form a partition of Ω. Since θai,bi

ν1
i ,ν2

i
is a constant and given that

θa,b
ν1,ν2 = θai,bi

ν1
i ,ν2

i
on Ei, we have the desired result.

(ii) We write that

E ∩ Ωa,ν1,b,ν2

bτ ∩
{
θa,b

ν1,ν2 6 t
}

= E ∩
{
τ̂ < θa,b

ν1,ν2

}
∩
{
θa,b

ν1,ν2 6 t
}

=
⋃

m > 1

(
E ∩

{
τ̂ < θa,b

ν1,ν2

}
∩
{
τ̂ 6 t− 1

m

}
∩
{
θa,b

ν1,ν2 6 t
})

.

Since
{
θa,b

ν1,ν2 6 t
}
∈ Ft, we get that for any m > 1,

E ∩
{
τ̂ < θa,b

ν1,ν2

}
∩
{
τ̂ 6 t− 1

m

}
∈ FP

t− 1
m
⊂ F+

t− 1
m

∨N Pa
ν1 (F∞)

⊂ Ft ∨N Pa
ν1 (F∞),

and then

E ∩ Ωa,ν1,b,ν2

bτ ∈ Fθa,b

ν1,ν2
∨N Pa

ν1 (F∞).
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From this last assertion, we deduce that there exist measurable sets Ea,ν1

i , Eb,ν2

i belonging
to Fθa,b

ν1,ν2
, i = 1, 2, such that

Ea,ν1

1 ⊂ E ∩ Ωa,ν1,b,ν2

bτ ⊂ Ea,ν1

2 , Eb,ν2

1 ⊂ E ∩ Ωa,ν1,b,ν2

bτ ⊂ Eb,ν2

2

Pa
ν1

(
Ea,ν1

2 \Ea,ν1

1

)
= Pb

ν2

(
Eb,ν2

2 \Eb,ν2

1

)
= 0.

We set E1 := Ea,ν1

1 ∪ Eb,ν2

1 and E2 := Eb,ν2

2 ∩ Eb,ν2

1 , then

E1, E2 ∈ Fθa,b

ν1,ν2
, E1 ⊂ E ∩ Ωa,ν1,b,ν2

bτ ⊂ E2 and Pa
ν1

(
E2\E1

)
= Pb

ν2

(
E2\E1

)
= 0.

This implies that

Pa
ν1

(
E ∩ Ωa,ν1,b,ν2

bτ

)
= Pa

ν1(E2) and Pb
ν2

(
E ∩ Ωa,ν1,b,ν2

bτ

)
= Pb

ν2(E2),

but the solutions of the martingale problems (P0, 0, θa,b
ν1,ν2 , a, ν

1) and (P0, 0, θa,b
ν1,ν2 , b, ν

2) are
equal by de�nition. And since E2 ∈ Fθa,b

ν1,ν2
, we have

Pa
ν1(E2) = Pb

ν2(E2)

which gives the desired result. ⊔⊓

We now have all tools we need to state and prove the main result of this section, which
generalizes the aggregation result of Theorem 5.1 in [103]. For this purpose, we use the
more general aggregation result of Cohen [23], that does not concern only volatility or
jump measure uncertainty.

Theorem 5.2.1. Let A be a separable class of coe�cients generated by A0 and PA the

corresponding probability measures. Let

{Xa,ν , (a, ν) ∈ A} ,

be a family of F̂PA-progressively measurable processes.

Then the following two conditions are equivalent

(i) {Xa,ν , (a, ν) ∈ A} satis�es the following consistency condition

Xa,ν1

= Xb,ν2

, Pa
ν1-a.s. on [0, θa,b

ν1,ν2) for any (a, ν1) ∈ A and (b, ν2) ∈ A.

(ii) There exists a PA-q.s. unique process X such that

X = Xa,ν , Pa
ν-a.s., ∀(a, ν) ∈ A.
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Proof. We �rst prove that (i) implies (ii). Using Lemma 3 in [23], we see that the
de�nition of the generating classes, together with Proposition 5.2.2, implies that the family
PA satis�es the Hahn property de�ned in [23]. Now Theorem 4 of [23] gives the result.
The fact that (ii) implies (i) is a consequence of the uniqueness of the solution of the
martingale problem (P0, 0,+∞, a, ν1) on [0, θa,b

ν1,ν2). ⊔⊓

Now that we have Theorem 5.2.1, we can answer our �rst issue concerning the aggrega-
tion of the predictable compensators associated to the jump measure µBd of the canonical
process. Indeed, let A be a separable class of coe�cients generated by A0. Then, for each

Borel set A ∈ B(E) and for each t ∈ [0, T ] the family
{
ν

Pa
ν

t (A)
}

(a,ν)∈A
clearly satis�es the

consistency condition above (because it is de�ned trough the Doob-Meyer decomposition),
and therefore there exists a process ν̂ such that

ν̂t(A) = νP
t (A), for every P ∈ PA. (5.2.5)

We then denote

µ̃Bd(dt, dx) := µBd(dt, dx) − ν̂t(dx)dt.

5.2.1.4 The strong formulation

In this subsection, we will concentrate on a subset of PW . For this purpose, we de�ne

V := {ν ∈ N , (Id, ν) ∈ AW} .

For each ν ∈ V , we denote Pν := PId
ν and for each α ∈ D, we de�ne

Pα,ν := Pν ◦ (Xα
. )−1 , where Xα

t :=

∫ t

0

α1/2
s dBc

s +Bd
t , Pν − a.s. (5.2.6)

Let us now de�ne,

PS := {Pα,ν , (α, ν) ∈ AW} .

Then α is the quadratic variation density of the continuous part of Xα and

dBc
s = α−1/2

s dXα,c
s ,

under Pν . Moreover, νt(dx)dt is the compensator of the measure associated to the jumps
of Xα and ∆Xα

s = ∆Bs under Pν .

We also de�ne for each P ∈ PW the following process

LP
t := W P

t +Bd
t , P − a.s., (5.2.7)

where W P
t is a P-Brownian motion de�ned by

W P
t :=

∫ t

0

â−1/2
s dBc

s.
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Then, PS is a subset of PW and we have by de�nition

the Pα,ν-distribution of (B, â, ν̂, LPα,ν

) is equal to the Pν-distribution of (Xα, α, ν, B).
(5.2.8)

We also have the following characterization in terms of �ltrations, which is similar to
Lemma 8.1 in [103]

Lemma 5.2.3. PS =
{

P ∈ PW , FLP
P

= F
P
}

Proof. By the above remarks, it is clear that α and B are FXαPν

-progressively measurable.

But by de�nition, F is generated by B, thus we conclude easily that F
Pν

⊂ FXαPν

. The
other inclusion being clear by de�nition, we have

F
Pν

= FXαPν

.

Now we can use (5.2.8) to obtain that

FLPα,ν Pα,ν

= F
Pα,ν

.

Conversely, let P ∈ PW be such that FLP
P

= F
P
. Then, there exists some measurable

function β such that B. = β(LP
. ). Let ν be the compensator of the measure associated to

the jumps of B under P. De�ne then,

αt :=
d < β(B), β(B) >c

t

dt
,

we conclude then that P = Pα,ν . ⊔⊓

De�ne now AS := {(α, ν) ∈ AW , Pα
ν ∈ PS}. It is important to notice that in our frame-

work, it is not clear whether all the probability measures in PS satisfy the martingale
representation property and the Blumenthal 0−1 law. Indeed, this is due to the fact that
the process LP does not necessarily satisfy them. This is a major di�erence with [103].
Nonetheless, if we restrict ourselves to a subset of PS, we are going to see that we can still
recover them.

First, we have the following generalization of Proposition 8.3 of [103].

Proposition 5.2.3. Let A be a separable class of coe�cients generated by A0. If A0 ⊂ AS,

then A ⊂ AS.

Proof. This is a straightforward generalization of the proof of Proposition 8.3 in [103],
using the same kind of modi�cations as in our previous proofs, so we omit it. ⊔⊓

Let us now consider the set introduced above in Example 5.2.1

Ã0 := {(α, ν) ∈ D ×N which are deterministic} , PÃ0
:=
{

Pα
ν , (α, ν) ∈ Ã0

}
.

Ã0 is a generating class of coe�cients, and it is a well known result that Ã0 ⊂ AW

(see Theorem III.2.16 in [56]) and that every probability measure in PÃ0
satis�es the

martingale representation property and the Blumenthal 0 − 1 law, since the canonical
process is actually an additive process under them. Moreover we also have
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Lemma 5.2.4. We have

PÃ0
⊂ PS.

Proof. Let P := Pα
ν be a probability measure in PÃ0

. As argued previously, we have
P − a.s.

Bc
t =

∫ t

0

α1/2
s dLP,c

t and ∆LP
t = ∆Bt.

Since α is deterministic, it is clear that we have F
P

= FLP
P

, which implies the result.
⊔⊓

Finally, we consider Ã the separable class of coe�cients generated by Ã0 and PÃ the
corresponding set of probability measures. Then, using the above results and Propositions
5.2.1 and 5.2.3, we have

Proposition 5.2.4. PÃ ⊂ PS and every probability measure in PÃ satis�es the martingale

representation property and the Blumenthal 0 − 1 law.

Proof. Once we know that the augmented �ltration generated by LP satis�es the mar-
tingale representation property and the Blumenthal 0 − 1 law for every P ∈ P

eA0
, we can

argue exactly as in the proof of Lemma 8.2 of [103] to obtain the results for P
eA0
. The

result for P
eA then comes easily from Proposition 5.2.1. ⊔⊓

Remark 5.2.5. In our jump framework, we need to impose this separability structure on

both α and ν, in order to be able to retrieve not only the aggregation result of Theorem

5.2.1 but also the property that all our probability measures satisfy the Blumenthal 0 − 1

law and the martingale representation property. However, if one is only interested in being

able to consider standard BSDEJs, then we do not need the aggregation result and we can

work with a larger set of probability measures without restrictions on the α. Namely, let

us de�ne

P
eA :=

{
Pa,ν , a ∈ D, (Id, ν) ∈ Ã

}
.

Then we can show as above that P
eA ⊂ PS and that all the probability measures in P

eA

satisfy the Blumenthal 0−1 law and the martingale representation property. This is going

to be useful for us in Section 5.4.4.

5.2.2 The nonlinear generator

In this subsection we will introduce the function which will serve as the generator of our
2BSDEJs. Let us de�ne the spaces

L̂2 := ∩ν∈NL
2(ν) and L̂1 := ∩ν∈NL

1(ν).

For any C1 function v with bounded gradient, any ω ∈ Ω and any 0 6 t 6 T , we denote
ṽ the function

ṽ(e) := v(e+ ω(t)) − v(ω(t)) − 1{|e| 6 1} e.(∇v)(ω(t)), for e ∈ E.
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The hypothesis on v ensure that ṽ is an element of L̂1. We then consider a map

Ht(ω, y, z, u, γ, ṽ) : [0, T ] × Ω × R × Rd × L̂2 ×D1 ×D2 → R,

where D1 ⊂ Rd×d is a given subset containing 0, D2 ⊂ L̂1 ∩ CK(E), and CK(E) denotes
the set of continuous functions on E with a compact support.

De�ne the following conjugate of H with respect to γ and v by

Ft(ω, y, z, u, a, ν) := sup
{γ,ṽ}∈D1×D2

{
1

2
Tr(aγ)+ < ṽ, ν > −Ht(ω, y, z, u, γ, ṽ)

}
,

for a ∈ S>0
d and ν ∈ N , and where < ṽ, ν > is de�ned by

< ṽ, ν >:=

∫

E

ṽ(e)ν(de). (5.2.9)

The quantity < ṽ, ν > will not appear again in the chapter, since we formulate the needed
hypothesis for the backward equation generator directly on the function F . But the
particular form of < ṽ, ν > comes from the intuition that the 2BSDEJ is an essential
supremum of classical BSDEJs. Indeed, solutions to Markovian BSDEJs provide viscosity
solutions to some parabolic partial integro-di�erential equations whose non local operator
is given by a quantity similar to < ṽ, ν > (see [5] for more details).

We de�ne

F̂t(y, z, u) := Ft(y, z, u, ât, ν̂t) and F̂
0
t := F̂t(0, 0, 0), Pα,ν-a.s. (5.2.10)

We denote by D1
Ft(y,z,u) the domain of F in a and by D2

Ft(y,z,u) the domain of F in ν, for
a �xed (t, ω, y, z, u).

As in [101] we �x a constant κ ∈ (1, 2] and restrict the probability measures in Pκ
H ⊂ PÃ

De�nition 5.2.6. Pκ
H consists of all P ∈ PÃ such that

aP
6 â 6 aP, dt× dP − a.e. for some aP, aP ∈ S>0

d , and EP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ

dt

) 2
κ

]
< +∞,

∫

E

(1 ∧ |x|2)νP(dx) 6

∫

E

(1 ∧ |x|2)ν̂t(dx) 6

∫

E

(1 ∧ |x|2)νP(dx), and
∫

|x|>1

|x| νP(dx) 6

∫

|x|>1

|x| ν̂t(dx) 6

∫

|x|>1

|x| νP(dx), dt× dP − a.e.

for νP, νP, two σ − �nite Lévy measures in N .

Remark 5.2.6. With the above de�nition, for a �xed P ∈ Pκ
H , we have

∫ T

0

∫

E

(1 ∧ |x|2)νP(dx) 6 EP

[∫ T

0

∫

E

(1 ∧ |x|2)ν̂t(dx)

]
6

∫ T

0

∫

E

(1 ∧ |x|2)νP(dx) <∞,

and

∫ T

0

∫

|x|>1

|x| νP(dx) 6 EP

[∫ T

0

∫

|x|>1

|x| ν̂t(dx)

]
6

∫ T

0

∫

|x|>1

|x| νP(dx) <∞.
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We now state our main assumptions on the function F which will be our main interest
in the sequel

Assumption 5.2.1. (i) The domains D1
Ft(y,z,u) = D1

Ft
and D2

Ft(y,z,u) = D2
Ft

are inde-

pendent of (ω, y, z, u).

(ii) For �xed (y, z, a, ν), F is F-progressively measurable in D1
Ft
×D2

Ft
.

(iii) We have the following uniform Lipschitz-type property in y and z

∀(y, y
′

, z, z
′

, u, t, a, ν, ω),
∣∣∣Ft(ω, y, z, u, a, ν) − Ft(ω, y

′

, z
′

, u, a, ν)
∣∣∣ 6 C

(∣∣∣y − y
′
∣∣∣+
∣∣∣a1/2

(
z − z

′
)∣∣∣
)
.

(iv) For all (t, ω, y, z, u1, u2, a, ν), there exist two processes γ and γ
′
such that

∫

E

(
u1(e) − u2(e)

)
γt(e)ν(de) 6 Ft(ω, y, z, u

1, a, ν) − Ft(ω, y, z, u
2, a, ν),

Ft(ω, y, z, u
1, a, ν) − Ft(ω, y, z, u

2, a, ν) 6

∫

E

(
u1(e) − u2(e)

)
γ

′

t(e)ν(de) and

c1(1 ∧ |x|) 6 γt(x) 6 c2(1 ∧ |x|) where c1 6 0, 0 6 c2 < 1,

c
′

1(1 ∧ |x|) 6 γ
′

t(x) 6 c
′

2(1 ∧ |x|) where c
′

1 6 0, 0 6 c
′

2 < 1.

(v) F is uniformly continuous in ω for the || · ||∞ norm.

Remark 5.2.7. (i) For κ1 < κ2, applying Hölder's inequality gives us

EP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ1

dt

) 2
κ1

]
6 CEP

[(∫ T

0

∣∣∣F̂ 0
t

∣∣∣
κ2

dt

) 2
κ2

]
,

where C is a constant. Then it is clear that Pκ
H is decreasing in κ.

(ii) The Assumption 5.2.1, together with the fact that F̂ 0
t < +∞, Pα,ν-a.s for every

Pα,ν ∈ Pκ
H , implies that ât ∈ D1

Ft
and ν̂ ∈ D2

Ft
dt× dPα,ν-a.e., for all Pα,ν ∈ Pκ

H .

5.2.3 The spaces and norms

We now de�ne as in [101], the spaces and norms which will be needed for the formulation
of the second order BSDEs.

For p > 1, Lp,κ
H denotes the space of all FT -measurable scalar r.v. ξ with

‖ξ‖p
Lp,κ

H
:= sup

P∈Pκ
H

EP [|ξ|p] < +∞.

H
p,κ
H denotes the space of all F+-predictable Rd-valued processes Z with

‖Z‖p
H

p,κ
H

:= sup
P∈Pκ

H

EP

[(∫ T

0

|â1/2
t Zt|2dt

) p
2

]
< +∞.



5.2. Preliminaries 129

D
p,κ
H denotes the space of all F+-progressively measurable R-valued processes Y with

Pκ
H − q.s. càdlàg paths, and ‖Y ‖p

D
p,κ
H

:= sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T
|Yt|p

]
< +∞.

J
p,κ
H denotes the space of all F+-predictable functions U with

‖U‖p
J

p,κ
H

:= sup
P∈Pκ

H

EP

[(∫ T

0

∫

E

|Us(x)|2 ν̂t(dx)ds

) p
2

]
< +∞.

For each ξ ∈ L1,κ
H , P ∈ Pκ

H and t ∈ [0, T ] denote

E
H,P
t [ξ] := ess supP

P
′∈Pκ

H(t+,P)

EP
′

t [ξ] where Pκ
H(t+,P) :=

{
P

′ ∈ Pκ
H : P

′

= P on F+
t

}
.

Then we de�ne for each p > κ,

L
p,κ
H :=

{
ξ ∈ Lp,κ

H : ‖ξ‖L
p,κ
H
< +∞

}
where ‖ξ‖p

L
p,κ
H

:= sup
P∈Pκ

H

EP

[
ess sup
0 6 t 6 T

P
(
E

H,P
t [|ξ|κ]

) p
κ

]
.

Finally, we denote by UCb(Ω) the collection of all bounded and uniformly continuous
maps ξ : Ω → R with respect to the ‖·‖∞-norm, and we let

Lp,κ
H := the closure of UCb(Ω) under the norm ‖·‖L

p,κ
H
, for every 1 6 κ 6 p.

For a given probability measure P ∈ Pκ
H , the spaces Lp(P), Dp(P), Hp(P) and Jp(P)

correspond to the above spaces when the set of probability measures is only the singleton
{P}. Finally, we have H

p
loc(P) denotes the space of all F+-predictable Rd-valued processes

Z with (∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt

) p
2

< +∞, P − a.s.

J
p
loc(P) denotes the space of all F+-predictable functions U with

(∫ T

0

∫

E

|Us(x)|2 ν̂t(dx)ds

) p
2

< +∞, P − a.s.

5.2.4 Formulation

We shall consider the following 2BSDEJ, for 0 6 t 6 T and Pκ
H-q.s.

Yt = ξ−
∫ T

t

F̂s(Ys, Zs, Us)ds−
∫ T

t

ZsdB
c
s −
∫ T

t

∫

E

Us(x)µ̃Bd(ds, dx)+KT −Kt. (5.2.11)

De�nition 5.2.7. We say (Y, Z, U) ∈ D
2,κ
H ×H

2,κ
H × J

2,κ
H is a solution to 2BSDEJ (5.2.11)

if
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• YT = ξ, Pκ
H-q.s.

• For all P ∈ Pκ
H and 0 6 t 6 T , the process KP de�ned below is predictable and has

nondecreasing paths P − a.s.

KP
t := Y0−Yt +

∫ t

0

F̂s(Ys, Zs, Us)ds+

∫ t

0

ZsdB
c
s +

∫ t

0

∫

E

Us(x)µ̃Bd(ds, dx). (5.2.12)

• The family
{
KP,P ∈ Pκ

H

}
satis�es the minimum condition

KP
t = ess infP

P
′∈PH(t+,P)

EP
′

t

[
KP

′

T

]
, 0 6 t 6 T, P − a.s., ∀P ∈ Pκ

H . (5.2.13)

Moreover if the family
{
KP,P ∈ Pκ

H

}
can be aggregated into a universal process K, we

call (Y, Z, U,K) a solution of the 2BSDEJ (5.2.11).

Remark 5.2.8. Since with our set Pκ
H we have the aggregation property of Theorem 5.2.1,

and since the minimum condition (5.2.13) implies easily that the family
{
KP,P ∈ Pκ

H

}

satis�es the consistency condition, we can apply Theorem 5.2.1 and �nd an aggregator for

the family. This is di�erent from [101] or [90], because we are working with a smaller set

of probability measures.

Following [101], in addition to Assumption 5.2.1, we will always assume

Assumption 5.2.2. (i) Pκ
H is not empty.

(ii) The process F̂ 0 satisfy the following integrability condition

φ2,κ
H := sup

P∈Pκ
H

EP

[
ess sup
0 6 t 6 T

P

(
E

H,P
t

[∫ T

0

|F̂ 0
s |κds

]) 2
κ

]
< +∞ (5.2.14)

5.2.5 Connection with standard BSDEJs

Let us assume that H is linear in γ and ṽ, in the following sense

Ht(y, z, u, γ, ṽ) :=
1

2
Tr [Idγ] + 〈ṽ, ν∗〉 − ft(y, z, u), (5.2.15)

where ν∗ ∈ N . We then have the following result

Lemma 5.2.5. If H is of the form (5.2.15), then D1
Ft

= {Id}, D2
Ft

= {ν∗} and

Ft(ω, y, z, u, a, ν) = Ft(ω, y, z, u, Id, ν
∗) = ft(y, z, u).

Proof. First notice that

Ht(ω, y, z, u, γ, ṽ) = sup
(a,ν)∈S>0

d ×N

{
1

2
Tr(aγ) +

∫ T

0

∫

E

ṽ(e)νs(ω)(ds, de) − δId(a) − δν∗(ν)

}

− ft(y, z, u).
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By de�nition of F , we get

Ft(ω, y, z, u, a, ν) = ft(y, z, u) +H∗∗(a, ν),

where H∗∗ is the double Fenchel-Legendre transform of the function

(a, ν) 7→ δId(a) + δν∗(ν),

with δId(a) = 01{a=Id} + ∞1{a 6=Id} and δν∗(ν) = 01{ν=ν∗} + ∞1{ν 6=ν∗}.

The above function is convex and lower-semicontinuous, implying that

Ft(ω, y, z, u, a, ν) = ft(y, z, u) + δId(a) + δν∗(ν),

which is the desired result. ⊔⊓

If we further assume that EPν∗

[∫ T

0
|ft(0, 0, 0)|2 dt

]
< +∞, then Pκ

H = {Pν∗} and the

minimality condition on K = KPν∗ implies that 0 = EPν∗ [KT ], which means that K = 0,
Pν∗-a.s. and the 2BSDEJ is reduced to a classical BSDEJ.

5.2.6 Connection with G-expectations and G-Lévy processes

In a recent paper [55], Hu and Peng introduced a new class of processes with independent
and stationary increments, called G-Lévy processes. These processes are de�ned without
making reference to any probability measure.
Let Ω̃ be a given set and let H be a linear space of real valued functions de�ned on

Ω̃, containing the constants and such that |X| ∈ H if X ∈ H. A sublinear expectation
is a functional ÎE : H → R which is monotone nondecreasing, constant preserving, sub-
additive and positively homogeneous. We refer to De�nition 1.1 of [89] for more details.
The triple (Ω̃,H, ÎE) is called a sublinear expectation space.

De�nition 5.2.8. A d-dimensional càdlàg process {Xt, t > 0} de�ned on a sublinear

expectation space (Ω̃,H, ÎE) is called a G-Lévy process if:

(i) X0 = 0.

(ii) X has independent increments: ∀s, t > 0, the random variable (Xt+s −Xt) is inde-

pendent from (Xt1 , . . . , Xtn), for each n ∈ N and 0 6 t1 < · · · < tn 6 t. The notion

of independence used here corresponds to de�nition 3.10 in [89].

(iii) X has stationary increments: ∀s, t > 0, the distribution of (Xt+s − Xt) does not

depend on t. The notion of distribution used here corresponds to the de�nition given

in �3 of [89].

(iv) For each t > 0, there exists a decomposition Xt = Xc
t +Xd

t , where {Xc
t , t > 0} is a

continuous process and {Xd
t , t > 0} is a pure jump process.

(v) (Xc
t , X

d
t ) is a 2d-dimensional process satisfying conditions (i), (ii) and (iii) of this

de�nition and

lim
t→0+

1

t
Ê
(
|Xc

t |3
)

= 0, Ê
(∣∣Xd

t

∣∣) 6 Ct, t > 0

for a real constant C.
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In [55], Hu and Peng proved the following Lévy-Khintchine representation for G-Lévy
processes:

Theorem 5.2.2 ([55]). Let {Xt, t > 0} be a G-Lévy process. Then for each Lipschitz

and bounded function ϕ, the function u de�ned by u(t, x) := ÎE (ϕ[x+Xt]) is the unique

viscosity solution of the following partial integro-di�erential equation:

∂tu(t, x) − sup(b,α,ν)∈U{
∫

E

[u(t, x+ z) − u(t, x)]ν(dz)

+ < Du(t, x), b >Rd +
1

2
Tr
[
D2u(t, x)ααT

]
} = 0

where U is a subset of Rd × Rd×d ×M+
R satisfying

sup(b,α,ν)∈U

{∫

Rd

|z| ν(dz) + |b| + Tr
[
ααT

]}
< +∞

and where M+
R denotes the set of positive Radon measures on E.

Hu and Peng studied the case of G-Lévy processes with a discontinuous part that is
of �nite variation. In our framework, we know that Bd is a purely discontinuous semi-
martingale of �nite variation if

∫ T

0

∫
|x| 6 1

|x| νs(dx)ds < +∞, Pν-a.s. We give a function
H below, that is the natural candidate to retrieve the example of G-Lévy processes in our
context. This is one of the points of our paper [62].

Let Ñ be any subset of N that is convex and closed for the weak topology on M+
R. We

de�ne

Ht(ω, γ, ṽ) := sup(a,ν)∈S>0
d ×N

{
1

2
Tr(aγ) +

∫ T

0

∫

E

ṽ(e)νs(de)ds− δ[a1,a2](a) − δÑ (ν)

}
.

Since [a1, a2] and Ñ are closed convex spaces, Ft(ω, a, ν) is the double Fenchel-Legendre
transform in (a, ν) of the convex and lower semi-continuous function (a, ν) 7→ δ[a1,a2](a) +

δÑ (ν) and then
Ft(ω, a, ν) = δ[a1,a2](a) + δÑ (ν),

where δ[a1,a2](a) = 01{a∈[a1,a2]} + ∞1{a/∈[a1,a2]} and δÑ (ν) = 01{ν∈Ñ} + ∞1{ν /∈Ñ}.

5.3 Uniqueness result

5.3.1 Representation of the solution

We have similarly as in Theorem 4.4 of [101]

Theorem 5.3.1. Let Assumptions 5.2.1 and 5.2.2 hold. Assume ξ ∈ L
2,κ
H and that

(Y, Z, U) is a solution to 2BSDEJ (5.2.11). Then, for any P ∈ Pκ
H and 0 6 t1 < t2 6 T ,

Yt1 = ess supP

P
′∈Pκ

H(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s., (5.3.1)
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where, for any P ∈ Pκ
H , F+-stopping time τ , and F+

τ -measurable random variable ξ ∈
L2(P), (yP(τ, ξ), zP(τ, ξ)) denotes the solution to the following standard BSDE on 0 6 t 6 τ

yP
t = ξ −

∫ τ

t

F̂s(y
P
s , z

P
s , u

P
s )ds−

∫ τ

t

zP
s dB

c
s −

∫ τ

t

∫

E

uP
s (x)µ̃Bd(ds, dx), P − a.s. (5.3.2)

Remark 5.3.1. We �rst emphasize that existence and uniqueness results for the standard

BSDEs (5.3.2) are not given directly by the existing literature, since the compensator of

the counting measure associated to the jumps of B is not deterministic. However, since

all the probability measures we consider satisfy the martingale representation property and

the Blumenthal 0 − 1 law, it is clear that we can straightforwardly generalize the proof of

existence and uniqueness of Tang and Li [106] (see also [8] and [24] for related results).

Furthermore, the usual a priori estimates and comparison Theorems will also hold.

Remark 5.3.2. It is worth noticing that, unlike in the case of 2BSDEs (see [101] for

example), this representation does not imply directly the uniqueness of the solution in

D
2,κ
H × H

2,κ
H × J

2,κ
H .

Indeed, by taking t2 = T in this representation formula, we have

Yt = ess supP

P
′∈Pκ

H(t+,P)

yP
′

t (T, ξ), t ∈ [0, T ], P − a.s., for all P ∈ Pκ
H ,

and thus Y is unique.

Then, since we have that d 〈Y c, Bc〉t = Ztd 〈Bc〉t , Pκ
H − q.s., Z is unique. However,

here we are not able to obtain that U and KP are uniquely determined. Nonetheless, this

representation is necessary to prove some a priori estimates in Theorem 5.3.4 which, as

for the standard BSDEJs, insure the uniqueness of the solution.

Before giving the proof of the above theorem, we �rst state the following Lemma which
is a generalization of the comparison theorem proved by Royer (see Theorem 2.5 in [95]).
Its proof is a straightforward generalization so we omit it.

Lemma 5.3.1. Let P ∈ Pκ
H . We consider two generators f 1 and f 2 satisfying Assumption

Hcomp in [95] (which is a consequence of our more restrictive Assumption 5.2.1(iv)). Given

two nondecreasing processes k1 and k2, let ξ1 and ξ2 be two terminal conditions for the

following BSDEJs driven respectively by f 1 and f 2,

yi
t =ξi −

∫ T

t

f i
s(y

i
s, z

i
s, u

i
s)ds−

∫ T

t

zi
sdB

c
s −

∫ T

t

∫

E

ui
s(x)µ̃Bd(ds, dx)

+ ki
T − ki

t, for i = 1, 2, P − a.s.

Denote by (y1, z1, u1) and (y2, z2, u2) the respective solutions. If ξ1 6 ξ2, k1 − k2 is non-

increasing and f 1(t, y1
t , z

1
t , u

1
t ) > f 2(t, y1

t , z
1
t , u

1
t ), then ∀t ∈ [0, T ], y1

t 6 y2
t .

Proof. [Proof of Theorem 5.3.1] The proof follows the lines of the proof of Theorem 4.4

in [101].
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(i) Fix 0 6 t1 < t2 6 T and P ∈ Pκ
H . For any P

′ ∈ Pκ
H(t+1 ,P) and t1 6 t 6 t2, we have,

Yt =Yt2 −
∫ t2

t

F̂s(Ys, Zs, Us)ds−
∫ t2

t

ZsdB
c
s −

∫ t2

t

∫

E

Us(x)µ̃Bd(ds, dx)

+KP
′

t2
−KP

′

t , P
′ − a.s.

With Assumption 5.2.1, we can apply the above Lemma 5.3.1 under P
′
to obtain

Yt1 > yP
′

t1
(t2, Yt2), P

′ − a.s.. Since P
′
= P on F+

t1 , we get Yt1 > yP
′

t1
(t2, Yt2), P − a.s.

and thus

Yt1 > ess supP

P
′∈Pκ

H(t+1 ,P)

yP
′

t1
(t2, Yt2), P − a.s.

(ii) We now prove the reverse inequality. Fix P ∈ Pκ
H . We will show in (iii) below that

CP
t1

:= ess supP

P
′∈Pκ

H(t+1 ,P)

EP
′

t1

[(
KP

′

t2
−KP

′

t1

)2
]
< +∞, P − a.s.

For every P
′ ∈ Pκ

H(t+,P), denote

δY := Y − yP
′

(t2, Yt2), δZ := Z − zP
′

(t2, Yt2) and δU := U − uP
′

(t2, Yt2).

By the Lipschitz Assumption 5.2.1(iii), there exist two bounded processes λ and η
such that for all t1 6 t 6 t2,

δYt =

∫ t2

t

(
λsδYs + ηsâ

1/2
s δZs

)
ds−

∫ t2

t

(
F̂s(y

P
′

s , z
P
′

s , Us) − F̂s(y
P
′

s , z
P
′

s , u
P
′

s )
)
ds

−
∫ t2

t

δZsdB
c
s −

∫ t2

t

∫

E

δUs(x)µ̃Bd(ds, dx) +KP
′

t2
−KP

′

t , P
′ − a.s.

De�ne for t1 6 t 6 t2 the following processes

Nt :=

∫ t

t1

ηsâ
−1/2
s dBc

s −
∫ t

t1

∫

E

γs(x)µ̃Bd(ds, dx),

and

Mt := exp

(∫ t

t1

λsds

)
E(N)t,

where E(N)t denotes the Doléans-Dade exponential martingale of Nt.

By the boundedness of λ and η and the assumption on γ in Assumption 5.2.1(iv),
we know that M has moments (positive or negative) of any order (see [72] for the
positive moments and Lemma 5.6.6 in the Appendix for the negative ones). Thus
we have for p > 1

EP
′

t1

[
sup

t1 6 t 6 t2

Mp
t + sup

t1 6 t 6 t2

M−p
t

]
6 Cp, P

′ − a.s. (5.3.3)
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Then, by Itô's formula, we obtain

d(MtδYt) =Mt−d(δYt) + δYt−dMt + d [M, δY ]t

=Mt−

[(
−λtδYt − ηtâ

1/2
t δZt + F̂t(y

P
′

t , z
P
′

t , Ut) − F̂t(y
P
′

t , z
P
′

t , u
P
′

t )
)
dt

+δZtdB
c
t +

∫

E

(δUt(x) − γt(x)δUt(x)) µ̃Bd(dt, dx)

]

+ δYt−Mt−

(
λtdt+ ηtâ

−1/2
t dBc

t −
∫

E

γt(x)µ̃Bd(dt, dx)

)

+Mt

(
ηtâ

1/2
t δZtdt−

∫

E

γt(x)δUt(x)ν̂t(dx)dt

)
−Mt−dK

P
′

t .

Thus, by Assumption 5.2.1(iv), we have

δYt1 6 −
∫ t2

t1

Ms

(
δZs + δYsηsâ

−1/2
s

)
dBc

s +

∫ t2

t1

Ms−dK
P
′

s

−
∫ t2

t1

Ms−

∫

E

(δUs(x) − δYsγs(x) − γs(x)δUs(x)) µ̃Bd(ds, dx).

By taking conditional expectation, we obtain

δYt1 6 EP
′

t1

[∫ t2

t1

Mt−dK
P
′

t

]
. (5.3.4)

Applying the Hölder inequality, we can now write

δYt1 6 EP
′

t1

[
sup

t1 6 t 6 t2

(Mt)
(
KP

′

t2
−KP

′

t1

)]

6

(
EP

′

t1

[
sup

t1 6 t 6 t2

(Mt)
3

])1/3(
EP

′

t1

[(
KP

′

t2
−KP

′

t1

)3/2
])2/3

6 C(CP
t1
)1/3

(
EP

′

t1

[
KP

′

t2
−KP

′

t1

])1/3

, P − a.s.

Taking the essential in�mum on both sides �nishes the proof.

(iii) It remains to show that the estimate for CP
t1

holds. But by de�nition, and the
Lipschitz Assumption on F we clearly have

sup
P
′∈Pκ

H(t+1 ,P)

EP
′
[(
KP

′

t2
−KP

′

t1

)2
]

6 C
(
‖Y ‖2

D
2,κ
H

+ ‖Z‖2
H2,κ

H
+ ‖U‖2

J
2,κ
H

+ φ2,κ
H

)

< +∞, (5.3.5)

since the last term on the right-hand side is �nite thanks to the integrability assumed
on ξ and F̂ 0.

We then use the de�nition of the essential supremum (see Neveu [85] for example)
to have the following equality

ess supP

P
′∈Pκ

H(t+1 ,P)

EP
′

t1

[(
KP

′

t2
−KP

′

t1

)2
]

= sup
n > 1

EPn
t1

[(
KPn

t2
−KPn

t1

)2]
, P − a.s. (5.3.6)
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for some sequence (Pn)n > 1 ⊂ Pκ
H(t+1 ,P).

Moreover, in Lemma 5.6.3 of the Appendix, it is proved that the set Pκ
H(t+1 ,P) is

upward directed which means that for any P
′

1, P
′

2 ∈ Pκ
H(t+1 ,P), there exists P

′ ∈
Pκ

H(t+1 ,P) such that

EP
′

t1

[(
KP

′

t2
−KP

′

t1

)2
]

= max

{
E

P
′

1
t1

[(
K

P
′

1
t2 − K

P
′

1
t1

)2
]
, E

P
′

2
t1

[(
K

P
′

2
t2 − K

P
′

2
t1

)2
]}

.

Hence, by using a subsequence if necessary, we can rewrite (5.3.6) as

ess supP

P
′∈Pκ

H(t+1 ,P)

EP
′

t1

[(
KP

′

t2
−KP

′

t1

)2
]

= lim
n→∞

↑ EPn
t1

[(
KPn

t2
−KPn

t1

)2]
, P − a.s.

With (5.3.5), we can then �nish the proof exactly as in the proof of Theorem 4.4 in
[101]. ⊔⊓

Finally, the comparison Theorem below follows easily from the classical one for BSDEJs
(see for instance Theorem 2.5 in [95]) and the representation (5.3.1).

Theorem 5.3.2. Let (Y, Z, U) and (Y ′, Z ′, U ′) be the solutions of 2BSDEJs with terminal

conditions ξ and ξ
′
, generators F̂ and F̂

′
respectively, and let (yP, zP, uP) and (y′P, z′P, u′P)

the solutions of the associated BSDEJs. Assume that they both verify our Assumptions

5.2.1 and 5.2.2 and that we have

• ξ 6 ξ
′
, Pκ

H − q.s.

• F̂t(y
′P
t , z

′P
t , u

′P
t ) > F̂

′

t (y
′P
t , z

′P
t , u

′P
t ), P − a.s., for all P ∈ Pκ

H .

Then Y 6 Y ′, Pκ
H − q.s.

5.3.2 A priori estimates and uniqueness of the solution

We conclude this section by showing some a priori estimates which not only will imply
uniqueness of the solution of the 2BSDEJ (5.2.11), but also will be useful to obtain the
existence of a solution.

Theorem 5.3.3. Let Assumptions 5.2.1 and 5.2.2 hold. Assume ξ ∈ L
2,κ
H and (Y, Z, U) ∈

D
2,κ
H × H

2,κ
H × J

2,κ
H is a solution to the 2BSDEJ (5.2.11). Let

{
(yP, zP, uP)

}
P∈Pκ

H
be the

solutions of the corresponding BSDEJs (5.3.2). Then, there exists a constant Cκ depending

only on κ, T and the Lipschitz constant of F such that

‖Y ‖2
D

2,κ
H

+ ‖Z‖2
H

2,κ
H

+ ‖U‖2
J
2,κ
H

+ sup
P∈Pκ

H

EP
[∣∣KP

T

∣∣2
]

6 Cκ

(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H

)
,

and

sup
P∈Pκ

H

{∥∥yP
∥∥2

D2(P)
+
∥∥zP
∥∥2

H2(P)
+
∥∥uP
∥∥2

J2(P)

}
6 Cκ

(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H

)
.
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Proof. As in the proof of the representation formula in Theorem 5.3.1, the Lipschitz
assumption 5.2.1(iii) of F implies that there exist two bounded processes λ and η such
that for all t,

yP
t =ξ +

∫ T

t

(
λsy

P
s + ηsâ

1/2
s zP

s

)
ds−

∫ T

t

(
F̂s(0, 0, u

P
s )
)
ds

−
∫ T

t

zP
s dB

c
s −

∫ T

t

∫

E

uP
s (x)µ̃Bd(ds, dx), P − a.s.

De�ne the following processes

Nr :=

∫ r

t

ηsâ
−1/2
s dBc

s −
∫ r

t

∫

E

γs(x)µ̃Bd(ds, dx),

and

Mr := exp

(∫ r

t

λsds

)
E(N)r,

where E(N)r denotes the Doléans-Dade exponential martingale of Nr.

Then by applying Itô's formula to Mty
P
t , we obtain

yP
t = EP

t

[
MT ξ −

∫ T

t

MsF̂s(0, 0, u
P
s )ds+

∫ T

t

∫

E

Msγs(x)u
P
s (x)ν̂s(dx)ds

]

Finally with Assumption (5.2.1)(iv), the Hölder inequality and the inequality (5.3.3),
we conclude that there exists a constant Cκ depending only on κ, T and the Lipschitz
constant of F , such that for all P

∣∣yP
t

∣∣ 6 CκEP
t

[
|ξ|κ +

∫ T

t

∣∣∣F̂ 0
s

∣∣∣
κ

ds

]1/κ

. (5.3.7)

This immediately provides the estimate for yP. Now by de�nition of our norms, we get
from (5.3.7) and the representation formula (5.3.1) that

‖Y ‖2
D

2,κ
H

6 Cκ

(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H

)
. (5.3.8)

Now apply Itô's formula to |Y |2 under each P ∈ Pκ
H . We get as usual for every ε > 0

|Y0|2 +

∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt+

∫ T

0

∫

E

|Ut(x)|2 ν̂t(dx)dt

= |ξ|2 − 2

∫ T

0

YtF̂t(Yt, Zt, Ut)dt+ 2

∫ T

0

Yt−dK
P
t

− 2

∫ T

0

YtZtdB
c
t −

∫ T

0

∫

E

(
|Ut(x)|2 + 2Yt−Ut(x)

)
µ̃Bd(dt, dx)

6 |ξ|2 + 2

∫ T

0

|Yt| |F̂t(Yt, Zt, Ut)|dt+ 2 sup
0 6 t 6 T

|Yt|KP
T

− 2

∫ T

0

YtZtdB
c
t −

∫ T

0

∫

E

(
|Ut(x)|2 + 2Yt−Ut(x)

)
µ̃Bd(dt, dx)
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By our assumptions on F , we have

∣∣∣F̂t(Yt, Zt, Ut)
∣∣∣ 6 C

(
|Yt| +

∣∣∣â1/2
t Zt

∣∣∣+
∣∣∣F̂ 0

t

∣∣∣+
(∫

E

|Ut(x)|2 ν̂t(dx)

)1/2
)
.

With the usual inequality 2ab 6
1
ε
a2 + εb2,∀ε > 0, we obtain

EP

[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt+

∫ T

0

∫

E

|Ut(x)|2 ν̂t(dx)dt

]

6 CEP

[
|ξ|2 +

∫ T

0

|Yt|
(∣∣∣F̂ 0

t

∣∣∣+ |Yt| +
∣∣∣â1/2

t Zt

∣∣∣+
(∫

E

|Ut(x)|2 ν̂t(dx)

)1/2
)
dt

]

+ EP

[∫ T

0

|Yt−| dKP
t

]

6 C

(
‖ξ‖

L
2,κ
H

+ EP

[(
1 +

C

ε

)
sup

0 6 t 6 T
|Yt|2 +

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt
)2
])

+ εEP

[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt+

∫ T

0

∫

E

|Ut(x)|2 ν̂t(dx)dt+
∣∣KP

T

∣∣2
]
. (5.3.9)

Then by de�nition of our 2BSDEJ, we easily have

EP
[∣∣KP

T

∣∣2
]

6 C0E
P

[
|ξ|2 + sup

0 6 t 6 T
|Yt|2 +

∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt

+

∫ T

0

∫

E

|Ut(x)|2 ν̂t(dx)dt+

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt
)2
]
, (5.3.10)

for some constant C0, independent of ε.

Now set ε := (2(1 + C0))
−1 and plug (5.3.10) in (5.3.9). One then gets

EP

[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣
2

dt+

∫ T

0

∫

E

|Ut(x)|2 ν̂t(dx)dt

]
6 CEP

[
|ξ|2 + sup

0 6 t 6 T
|Yt|2

+

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt
)2
]
.

From this and the estimate for Y , we immediately obtain

‖Z‖
H

2,κ
H

+ ‖U‖
J
2,κ
H

6 C
(
‖ξ‖2

L
2,κ
H

+ φ2,κ
H

)
.

Then the estimate for KP comes from (5.3.10). The estimates for zP and uP can be
proved similarly. ⊔⊓

Theorem 5.3.4. Let Assumptions 5.2.1 and 5.2.2 hold. For i = 1, 2, let us consider the

solutions (Y i, Zi, U i,
{
KP,i,P ∈ Pκ

H

}
) of the 2BSDEJs (5.2.11) with terminal condition ξi.
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Then, there exists a constant Cκ depending only on κ, T and the Lipschitz constant of F

such that ∥∥Y 1 − Y 2
∥∥

D
2,κ
H

6 Cκ

∥∥ξ1 − ξ2
∥∥

L
2,κ
H
,

and

∥∥Z1 − Z2
∥∥2

H
2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T

∣∣∣KP,1
t −KP,2

t

∣∣∣
2
]

+
∥∥U1 − U2

∥∥2

J
2,κ
H

6 Cκ

∥∥ξ1 − ξ2
∥∥

L
2,κ
H

(∥∥ξ1
∥∥

L
2,κ
H

+
∥∥ξ2
∥∥

L
2,κ
H

+ (φ2,κ
H )1/2

)
.

Consequently, the 2BSDEJ (5.2.11) has at most one solution in D
2,κ
H × H

2,κ
H × J

2,κ
H .

Proof. As in the previous Theorem, we can obtain that there exists a constant Cκ

depending only on κ, T and the Lipschitz constant of F̂ , such that for all P

∣∣∣yP,1
t − yP,2

t

∣∣∣ 6 CκEP
t

[∣∣ξ1 − ξ2
∣∣κ]1/κ

. (5.3.11)

Now by de�nition of our norms, we get from (5.3.11) and the representation formula
(5.3.1) that ∥∥Y 1 − Y 2

∥∥2

D
2,κ
H

6 Cκ

∥∥ξ1 − ξ2
∥∥2

L
2,κ
H
. (5.3.12)

Applying Itô's formula to |Y 1 − Y 2|2, under each P ∈ Pκ
H , leads to

EP

[∫ T

0

∣∣∣â1/2
t (Z1

t − Z2
t )
∣∣∣
2

dt+

∫ T

0

∫

E

∣∣U1
t (x) − U2

t (x)
∣∣2 ν̂t(dx)dt

]

6 CEP
[∣∣ξ1 − ξ2

∣∣2
]

+ EP

[∫ T

0

∣∣Y 1
t − Y 2

t

∣∣ d(KP,1
t −KP,2

t )

]

+ CEP
[ ∫ T

0

∣∣Y 1
t − Y 2

t

∣∣
(∣∣Y 1

t − Y 2
t

∣∣+ |â1/2
t (Z1

t − Z2
t )|

+

(∫

E

∣∣U1
t (x) − U2

t (x)
∣∣2 ν̂t(dx)dt

)1/2
)
dt
]

6 C
(∥∥ξ1 − ξ2

∥∥2

L
2,κ
H

+
∥∥Y 1 − Y 2

∥∥2

D
2,κ
H

)

+
1

2
EP

[∫ T

0

∣∣∣â1/2
t (Z1

t − Z2
t )
∣∣∣
2

dt+

∫ T

0

∫

E

∣∣U1
t (x) − U2

t (x)
∣∣2 ν̂t(dx)dt

]

+ C
∥∥Y 1 − Y 2

∥∥
D

2,κ
H

(
EP

[
2∑

i=1

(
Ki

T

)2
])1/2

.

The estimates for (Z1 − Z2) and (U1 − U2) are now obvious from the above inequality
and the estimates of Theorem 5.3.3.

Finally the estimate for the di�erence of the nondecreasing processes is obvious by
de�nition. ⊔⊓
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5.4 A direct existence argument

In the article [101], the main tool to prove existence of a solution is the so called regular
conditional probability distributions (r.c.p.d.) of Stroock and Varadhan [104]. Indeed,
these tools allow to give a pathwise construction for conditional expectations. Since,
at least when the generator is null, the y component of the solution of a BSDE can be
written as a conditional expectation, the r.c.p.d. allows us to construct solutions of BSDEs
pathwise. Earlier in the chapter, we have identi�ed a candidate solution to the 2BSDEJ
as an essential supremum of solutions of classical BSDEJs (see (5.3.1)). However those
BSDEJs are written under mutually singular probability measures. Hence, being able to
construct them pathwise allows us to avoid the problems related to negligible-sets. In this
section we will generalize the approach of [101] to the jump case.

5.4.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in
[101] and [30]. Remember that we are working in the Skorohod space Ω = D

(
[0, T ],Rd

)

endowed with the Skorohod metric which makes it a separable space.

• For 0 6 t 6 T , we denote by Ωt :=
{
ω ∈ D

(
[t, T ],Rd

)}
the shifted canonical space

of càdlàg paths on [t, T ] which are null at t, Bt the shifted canonical process. Let
N t be the set of measures ν on B(E) satisfying

∫ T

t

∫

E

(1 ∧ |x|2)νs(dx)ds < +∞ and
∫ T

t

∫

|x|>1

|x| νs(dx)ds < +∞, ∀ω̃ ∈ Ωt,

(5.4.1)

and let Dt be the set of Ft-progressively measurable processes α taking values in S>0
d

with
∫ T

t
|αs|ds < +∞, for every ω̃ ∈ Ωt.

Ft is the �ltration generated by Bt. We de�ne similarly the continuous part of
Bt, denoted Bt,c, its discontinuous part denoted Bt,d, the density of the quadratic
variation of Bt,c, denoted ât, and µBt,d the counting measure associated to the jumps
of Bt.

Exactly as in Section 5.2, we can de�ne semimartingale problems and the corre-
sponding probability measures. We then restrict ourselves to deterministic (α, ν)

and we let Ãt be the corresponding separable class of coe�cients and PÃt the cor-
responding family of probability measures, which will be noted Pt,α,ν . Then, this
family also satis�es the aggregation property of Theorem 5.2.1, and we can de�ne
v̂t, the aggregator of the predictable compensators of Bt.

• For 0 6 s 6 t 6 T and ω ∈ Ωs, we de�ne the shifted path ωt ∈ Ωt by

ωt
r := ωr − ωt, ∀r ∈ [t, T ].
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• For 0 6 s 6 t 6 T and ω ∈ Ωs, ω̃ ∈ Ωt we de�ne the concatenation path ω⊗t ω̃ ∈ Ωs

by
(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r)1[t,T ](r), ∀r ∈ [s, T ].

• For 0 6 s 6 t 6 T and a F s
T -measurable random variable ξ on Ωs, for each ω ∈ Ωs,

we de�ne the shifted F t
T -measurable random variable ξt,ω on Ωt by

ξt,ω(ω̃) := ξ(ω ⊗t ω̃), ∀ ω̃ ∈ Ωt.

Similarly, for an Fs-progressively measurable process X on [s, T ] and (t, ω) ∈ [s, T ]×
Ωs, we can de�ne the shifted process {X t,ω

r , r ∈ [t, T ]}, which is Ft-progressively
measurable.

• For a F-stopping time τ , we use the same simpli�cation as [101]

ω ⊗τ ω̃ := ω ⊗τ(ω) ω̃, ξ
τ,ω := ξτ(ω),ω, Xτ,ω := Xτ(ω),ω.

• We de�ne our "shifted" generator

F̂ t,ω
s (ω̃, y, z, u) := Fs(ω ⊗t ω̃, y, z, u, â

t
s(ω̃), ν̂t

s(ω̃)), ∀(s, ω̃) ∈ [t, T ] × Ωt.

Then note that since F is assumed to be uniformly continuous in ω under the L∞

norm, then so is F̂ t,ω. Notice that this implies that for any P ∈ PÃt

EP

[(∫ T

t

∣∣∣F̂ t,ω
s (0, 0, 0)

∣∣∣
κ

ds

) 2
κ

]
< +∞,

for some ω if and only if it holds for all ω ∈ Ω.

• Finally, we extend De�nition 5.2.6 in the shifted spaces

De�nition 5.4.1. P t,κ
H consists of all P := Pt,α,ν ∈ PÃt such that

aP
6 ât

6 aP, ds× dP − a.e. on [t, T ] × Ωt for some aP, aP ∈ S>0
d ,

EP

[(∫ T

t

∣∣∣F̂ t,ω
s (0, 0, 0)

∣∣∣
κ

ds

) 2
κ

]
< +∞, for all ω ∈ Ω.

∫

E

(1 ∧ |x|2)νP(dx) 6

∫

E

(1 ∧ |x|2)ν̂t
s(dx) 6

∫

E

(1 ∧ |x|2)νP(dx), and
∫

|x|>1

|x| νP(dx) 6

∫

|x|>1

|x| ν̂t
s(dx) 6

∫

|x|>1

|x| νP(dx), ds× dP − a.e.

on [t, T ] × Ωt for νP, νP, two σ − �nite Lévy measures in N t.

Remark 5.4.1. With the above de�nition, for a �xed P ∈ P t,κ
H , we have

∫ T

t

∫

E

(1 ∧ |x|2)νP(dx) 6 EP

[∫ T

t

∫

E

(1 ∧ |x|2)ν̂t
s(dx)

]
6

∫ T

t

∫

E

(1 ∧ |x|2)νP(dx) <∞,

and

∫ T

t

∫

|x|>1

|x| νP(dx) 6 EP

[∫ T

t

∫

|x|>1

|x| ν̂t
s(dx)

]
6

∫ T

t

∫

|x|>1

|x| νP(dx) <∞.



142 Chapitre 5. Second Order BSDEs With Jumps

For given ω ∈ Ω, F-stopping time τ and P ∈ Pκ
H , the r.c.p.d. of P is a probability

measure Pω
τ on FT such that for every bounded FT -measurable random variable ξ

EP
τ [ξ] (ω) = EPω

τ [ξ], for P-a.e. ω.

Furthermore, Pω
τ naturally induces a probability measure Pτ,ω on F τ(ω)

T such that the
Pτ,ω-distribution of Bτ(ω) is equal to the Pω

τ -distribution of
{
Bt −Bτ(ω), t ∈ [τ(ω), t]

}
.

Besides, we have
EPω

τ [ξ] = EPτ,ω

[ξτ,ω].

Remark 5.4.2. We emphasize that the above notations correspond to the ones used in

[101] when we consider the subset of Ω consisting of all continuous paths from [0, T ] to Rd

whose value at time 0 is 0.

We now prove the following Proposition which gives a relation between (ât,ω, ν̂t,ω) and
(ât, ν̂t).

Proposition 5.4.1. Let P ∈ Pκ
H and τ be an F-stopping time. Then, for P-a.e. ω ∈ Ω,

we have for ds× dPτ,ω-a.e. (s, ω̃) ∈ [τ(ω), T ] × Ωτ(ω)

âτ,ω
s (ω̃) = âτ(ω)

s (ω̃)

ν̂τ,ω
s (ω̃, A) = ν̂τ(ω)

s (ω̃, A) for every A ∈ B(E).

This result is important for us, because it implies that for P-a.e. ω ∈ Ω and for ds ×
dPt,ω − a.e. (s, ω̃) ∈ [t, T ] × Ωt

Fs (ω ⊗t ω̃, y, z, u, âs(ω ⊗t ω̃), ν̂s(ω ⊗t ω̃)) = Fs

(
ω ⊗t ω̃, y, z, u, â

t
s(ω̃), ν̂t

s(ω̃)
)
.

Whereas the left-hand side has in general no regularity in ω, the right-hand side, that
we choose as our shifted generator, is uniformly continuous in ω.

Proof. The proof of the equality for â is the same as the one in Lemma 4.1 of [102], so
we omit it.

Now, for s > τ and for any A ∈ B(E), we know by the Doob-Meyer decomposition that
there exist a P-local martingale M and a Pτ,ω-martingale N such that

µBd([0, s], A) = Ms +

∫ s

0

ν̂r(A)dr, P − a.s.,

and

µBτ(ω),d([τ(ω), s], A) = Ns +

∫ s

τ

ν̂τ(ω)
r (A)dr.

Then, we can rewrite the �rst equation above for P-a.e. ω ∈ Ω and for Pτ,ω-a.e. ω̃ ∈ Ωτ(ω)

µBd(ω ⊗τ ω̃, [0, s], A) = M τ,ω
s (ω̃) +

∫ s

0

ν̂τ,ω
r (ω̃, A)dr. (5.4.2)
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Now, by de�nition of the measures µBd and µBτ(ω),d , we have

µBd(ω ⊗τ ω̃, [0, s], A) = µBd(ω, [0, τ ], A) + µBτ(ω),d(ω̃, [τ, s], A).

Hence, we obtain from (5.4.2) that for P-a.e. ω ∈ Ω and for Pτ,ω-a.e. ω̃ ∈ Ωτ(ω)

µBd(ω, [0, τ ], A) −
∫ τ

0

ν̂r(ω,A)dr +Ns(ω̃) −M τ,ω
s (ω̃) =

∫ s

τ

(
ν̂τ,ω

r (ω̃, A) − ν̂τ(ω)
r (ω̃, A)

)
dr

In the left-hand side above, the terms which are Fτ -measurable are constants in Ωτ(ω)

and using the same arguments as in Step 1 of the proof of Lemma 5.6.1, we can show that
M τ,ω is a Pτ,ω-local martingale for P-a.e. ω ∈ Ω. This means that the left-hand side is a
Pτ,ω-local martingale while the right-hand side is a predictable �nite variation process. By
the martingale representation property which still holds in the shifted canonical spaces,
we deduce that for P-a.e. ω ∈ Ω and for ds× dPτ,ω-a.e. (s, ω̃) ∈ [τ(ω), T ] × Ωτ(ω)

∫ s

τ

(
ν̂τ,ω

r (ω̃, A) − ν̂τ(ω)
r (ω̃, A)

)
dr = 0,

which is the desired result. ⊔⊓

5.4.2 Existence when ξ is in UCb(Ω)

When ξ is in UCb(Ω), we know that there exists a modulus of continuity function ρ for
ξ and F in ω. Then, for any 0 6 t 6 s 6 T, (y, z, ν) ∈ [0, T ] × R × Rd × V and
ω, ω′ ∈ Ω, ω̃ ∈ Ωt,
∣∣∣ξt,ω (ω̃) − ξt,ω′

(ω̃)
∣∣∣ 6 ρ (‖ω − ω′‖t) ,

∣∣∣F̂ t,ω
s (ω̃, y, z, u) − F̂ t,ω′

s (ω̃, y, z, u)
∣∣∣ 6 ρ (‖ω − ω′‖t)

We then de�ne for all ω ∈ Ω

Λ (ω) := sup
0 6 s 6 t

Λt (ω) , (5.4.3)

where

Λt (ω) := sup
P∈Pt

H

(
EP

[∣∣ξt,ω
∣∣2 +

∫ T

t

|F̂ t,ω
s (0, 0, 0)|2ds

])1/2

.

Now since F̂ t,ω is also uniformly continuous in ω, it is easily veri�ed that

Λ (ω) <∞ for some ω ∈ Ω i� it holds for all ω ∈ Ω. (5.4.4)

Moreover, when Λ is �nite, it is uniformly continuous in ω under the L∞-norm and is
therefore FT -measurable.

Now, by Assumption 5.2.2, we have

Λt (ω) <∞ for all (t, ω) ∈ [0, T ] × Ω. (5.4.5)
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To prove existence, we de�ne the following value process Vt pathwise

Vt(ω) := sup
P∈Pt,κ

H

YP,t,ω
t (T, ξ) , for all (t, ω) ∈ [0, T ] × Ω, (5.4.6)

where, for any (t1, ω) ∈ [0, T ] × Ω, P ∈ P t1,κ
H , t2 ∈ [t1, T ], and any Ft2-measurable

η ∈ L2 (P), we denote YP,t1,ω
t1 (t2, η) := yP,t1,ω

t1 , where
(
yP,t1,ω, zP,t1,ω, uP,t1,ω

)
is the solution

of the following BSDEJ on the shifted space Ωt1 under P

yP,t1,ω
s = ηt1,ω −

∫ t2

s

F̂ t1,ω
r

(
yP,t1,ω

r , zP,t1,ω
r , ν

)
dr −

∫ t2

s

zP,t1,ω
r dBt1,c

r

−
∫ t2

s

∫

Rd

uP,t1,ω
s (x)µ̃Bt1,d(ds, dx), P − a.s., s ∈ [t, T ], (5.4.7)

where as usual µ̃Bt1,d(ds, dx) := µBt1,d(ds, dx) − ν̂t1
s (dx)ds.

In view of the Blumenthal 0− 1 law, yP,t,ω
t is constant for any given (t, ω) and P ∈ P t,κ

H ,
and therefore the value process V is well de�ned. Let us now show that V inherits some
properties from ξ and F .

Lemma 5.4.1. Let Assumptions 5.2.1 and 5.2.2 hold and consider some ξ in UCb(Ω).

Then for all (t, ω) ∈ [0, T ] × Ω we have |Vt (ω)| 6 CΛt (ω). Moreover, for all (t, ω, ω′) ∈
[0, T ] × Ω2, |Vt (ω) − Vt (ω′)| 6 Cρ (‖ω − ω′‖t). Consequently, Vt is Ft-measurable for

every t ∈ [0, T ].

Proof. (i) For each (t, ω) ∈ [0, T ]×Ω and P ∈ P t,κ
H , let α be some positive constant which

will be �xed later and let η ∈ (0, 1). Since F is uniformly Lipschitz in (y, z) and satis�es
Assumption 5.2.1(iv), we have

∣∣∣F̂ t,ω
s (y, z, u)

∣∣∣ 6

∣∣∣F̂ t,ω
s (0, 0, 0)

∣∣∣+ C

(
|y| + |

(
ât

s

)1/2
z| +

(∫

E

|u(x)|2 ν̂t
s(dx)

)1/2
)
.

Now apply Itô's formula. We obtain

eαt
∣∣∣yP,t,ω

t

∣∣∣
2

+

∫ T

t

eαs
∣∣(ât

s)
1/2zP,t,ω

s

∣∣2 ds+

∫ T

t

∫

E

eαs
∣∣uP,t,ω

s (x)
∣∣2 ν̂t

s(dx)ds

= eαT
∣∣ξt,ω

∣∣2 − 2

∫ T

t

eαsyP,t,ω
s F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s , uP,t,ω
s )ds

− α

∫ T

t

eαs
∣∣yP,t,ω

s

∣∣2 ds− 2

∫ T

t

eαsyP,t,ω
s− zP,t,ω

s dBt,c
s

−
∫ T

t

∫

E

eαs
(
2yP,t,ω

s− uP,t,ω
s (x) +

∣∣uP,t,ω
s (x)

∣∣2
)
µ̃Bt,d(ds, dx)

6 eαT
∣∣ξt,ω

∣∣2 +

∫ T

t

eαs
∣∣∣F̂ t,ω

s (0, 0, 0)
∣∣∣
2

ds+

(
1 + 2C +

2C2

η
− α

)∫ T

t

eαs
∣∣yP,t,ω

s

∣∣2 ds

+ η

∫ T

t

eαs
∣∣(ât

s)
1/2zP,t,ω

s

∣∣2 ds+ η

∫ T

t

∫

E

eαs
∣∣uP,t,ω

s (x)
∣∣2 ν̂t

s(dx)ds

− 2

∫ T

t

eαsyP,t,ω
s− zP,t,ω

s dBt,c
s −

∫ T

t

∫

E

eαs
(
2yP,t,ω

s− uP,t,ω
s (x) +

∣∣uP,t,ω
s (x)

∣∣2
)
µ̃Bt,d(ds, dx).
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Now choose η = 1/2 for instance and α large enough. By taking expectation we obtain
easily

∣∣∣yP,t,ω
t

∣∣∣
2

6 C |Λt(ω)|2 .

The result then follows from the arbitrariness of P.

(ii) The proof is exactly the same as above, except that one has to use uniform continuity
in ω of ξt,ω and F̂ t,ω. Indeed, for each (t, ω) ∈ [0, T ] × Ω and P ∈ P t,κ

H , let α be some
positive constant which will be �xed later and let η ∈ (0, 1). By Itô's formula we have,
since F̂ is uniformly Lipschitz

eαt
∣∣∣yP,t,ω

t − yP,t,ω′

t

∣∣∣
2

+

∫ T

t

eαs

„

˛

˛

˛

(bat
s)

1/2(zP,t,ω
s −zP,t,ω′

s )
˛

˛

˛

2
+

R

E eαs(uP,t,ω
s −uP,t,ω′

s )2(x)bνt
s(dx)

«

ds

6 eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣
2

+ 2C

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
2

ds

+ 2C

∫ T

t

∣∣∣yP,t,ω
s − yP,t,ω′

s

∣∣∣
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′

s )
∣∣∣ ds

+ 2C

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
(∫

Rd

∣∣∣uP,t,ω
s (x) − uP,t,ω′

s (x)
∣∣∣
2

ν̂t
s(dx)

)1/2

ds

+ 2C

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s , uP,t,ω
s ) − F̂ t,ω′

s (yP,t,ω
s , zP,t,ω

s , uP,t,ω
s )

∣∣∣ ds

− α

∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
2

ds− 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt,c
s

−
∫ T

t

∫

E

eαs
(
2(yP,t,ω

s− − yP,t,ω′

s− )(uP,t,ω
s − uP,t,ω′

s ) + (uP,t,ω
s − uP,t,ω′

s )2
)

(x)µ̃Bt,d(ds, dx).

We then deduce

eαt
∣∣∣yP,t,ω

t − yP,t,ω′

t

∣∣∣
2

+

∫ T

t

eαs

„

˛

˛

˛

(bat
s)

1/2(zP,t,ω
s −zP,t,ω′

s )
˛

˛

˛

2
+

R

E eαs(uP,t,ω
s −uP,t,ω′

s )2(x)bνt
s(dx)

«

ds

6 eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣
2

+

∫ T

t

eαs
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s , uP,t,ω
s ) − F̂ t,ω′

s (yP,t,ω
s , zP,t,ω

s , uP,t,ω
s )

∣∣∣
2

ds

+ η

∫ T

t

eαs
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′

s )
∣∣∣
2

ds+ η

∫ T

t

∫

E

eαs
∣∣∣uP,t,ω

s (x) − uP,t,ω′

s (x)
∣∣∣
2

ν̂t
s(dx)ds

+

(
2C + C2 +

2C2

η
− α

)∫ T

t

eαs
∣∣∣yP,t,ω

s − yP,t,ω′

s

∣∣∣
2

ds

− 2

∫ T

t

eαs(yP,t,ω
s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt,c
s

−
∫ T

t

∫

E

eαs
(
2(yP,t,ω

s− − yP,t,ω′

s− )(uP,t,ω
s − uP,t,ω′

s ) + (uP,t,ω
s − uP,t,ω′

s )2
)

(x)µ̃Bt,d(ds, dx).

Now choose η = 1/2 and α such that ν := α−2C−C2− 2C2

η
> 0. We obtain the desired

result by taking expectation and using the uniform continuity in ω of ξ and F . ⊔⊓
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The next proposition is a dynamic programming property veri�ed by the value process,
which will prove useful when proving that V provides a solution to the 2BSDEJ with
generator F and terminal condition ξ. The result and its proof are intimately connected
and use the same arguments as the proof of Proposition 4.7 in [102].

Proposition 5.4.2. Under Assumptions 5.2.1, 5.2.2 and for ξ ∈ UCb(Ω), we have for all

0 6 t1 < t2 6 T and for all ω ∈ Ω

Vt1(ω) = sup
P∈P

t1,κ
H

YP,t1,ω
t1 (t2, V

t1,ω
t2 ).

The proof is almost the same as the proof in [102], with minor modi�cations due to the
introduction of jumps.

Proof. Without loss of generality, we can assume that t1 = 0 and t2 = t. Thus, we have
to prove

V0(ω) = sup
P∈Pκ

H

YP
0 (t, Vt).

Denote (yP, zP, uP) := (YP(T, ξ),ZP(T, ξ),UP(T, ξ))

(i) For any P ∈ Pκ
H , we know by Lemma 5.6.1 in the Appendix, that for P− a.e. ω ∈ Ω,

the r.c.p.d. Pt,ω ∈ P t,κ
H . Now thanks to the paper of Tang and Li [106], we know that

the solution of BSDEs on the Wiener-Poisson space with Lipschitz generators can be
constructed via Picard iteration. Thus, it means that at each step of the iteration, the
solution can be formulated as a conditional expectation under P. By the properties of the
r.p.c.d., this entails that

yP
t (ω) = YPt,ω ,t,ω

t (T, ξ), for P − a.e. ω ∈ Ω. (5.4.8)

Hence, by de�nition of Vt and the comparison principle for BSDEJs, we get that
yP

0 6 YP
0 (t, Vt). By arbitrariness of P, this leads to

V0(ω) 6 sup
P∈Pκ

H

YP
0 (t, Vt).

(ii) For the other inequality, we proceed as in [102]. Let P ∈ Pκ
H and ε > 0. By

separability of Ω, there exists a partition (Ei
t)i > 1 ⊂ Ft such that dS(ω, ω′)t 6 ε/2 for any

i and any ω, ω′ ∈ Ei
t . Now by Billinsgley [10], we know that the distance for the uniform

topology is dominated by the Skorohod metric in the sense that

‖ω − ω′‖t 6 2dS(ω, ω′)t 6 ε, for any i and any ω, ω′ ∈ Ei
t . (5.4.9)

Now for each i, �x a ω̂i ∈ Ei
t and let Pi

t be an ε−optimizer of Vt(ω̂i). If we de�ne for
each n > 1, Pn := Pn,ε by

Pn(E) := EP

[
n∑

i=1

EPi
t
[
1t,ω

E

]
1Ei

t

]
+ P(E ∩ Ên

t ), where Ên
t := ∪i>nE

i
t , (5.4.10)
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then, by Lemma 5.6.2, we know that Pn ∈ Pκ
H . Besides, by Lemma 5.4.1 and its proof,

we have for any i and any ω ∈ Ei
t

Vt(ω) 6 Vt(ω̂i) + Cρ(ε) 6 YPi
t,t,bωi

t (T, ξ) + ε+ Cρ(ε)

6 YPi
t,t,ω

t (T, ξ) + ε+ Cρ(ε) = Y(Pn)t,ω ,t,ω
t (T, ξ) + ε+ Cρ(ε),

where we used successively the uniform continuity of V in ω and (5.4.9), the de�nition of
Pi

t, the uniform continuity of YP,t,ω
t in ω and �nally the de�nition of Pn.

Then, it follows from (5.4.8) that

Vt 6 yPn

t + ε+ Cρ(ε), Pn − a.s. on ∪n
i=1 E

i
t . (5.4.11)

Let now (yn, zn, un) := (yn,ε, zn,ε, un,ε) be the solution of the following BSDEJ on [0, t]

yn
s =

[
yPn

t + ε+ Cρ(ε)
]
1∪n

i=1Ei
t
+ Vt1 bEn

t
−
∫ t

s

F̂r(y
n
r , z

n
r , u

n
r )dr −

∫ t

s

zn
r dB

c
r

−
∫ t

s

∫

E

un
r (x)µ̃Bd(dr, dx), Pn − a.s. (5.4.12)

By the comparison principle for BSDEJs, we know that YP
0 (t, Vt) 6 yn

0 . Then since
Pn = P on Ft, the equality (5.4.12) also holds P − a.s. Using the same arguments and
notations as in the proof of Lemma 5.4.1, we obtain

∣∣yn
0 − yPn

0

∣∣2 6 CEP
[
ε2 + ρ(ε)2 +

∣∣Vt − yPn

t

∣∣2 1
bEn

t

]
.

Then, by Lemma 5.4.1, we have

YP
0 (t, Vt) 6 yn

0 6 yPn

0 + C

(
ε+ ρ(ε) +

(
EP
[
Λ2

t 1 bEn
t

])1/2
)

6 V0(ω) + C

(
ε+ ρ(ε) +

(
EP
[
Λ2

t 1 bEn
t

])1/2
)
.

Then it su�ces to let n go to +∞, use the dominated convergence theorem, and �nally
let ε go to 0. ⊔⊓

Now we are facing the problem of the regularity in t of V . Indeed, if we want to obtain a
solution of the 2BSDE, then it has to be at least càdlàg, Pκ

H − q.s. To this end, we de�ne
now for all (t, ω), the F+-progressively measurable process

V +
t := lim

r∈Q∩(t,T ],r↓t
Vr.

Lemma 5.4.2. Under the conditions of the previous Proposition, we have

V +
t = lim

r∈Q∩(t,T ],r↓t
Vr, Pκ

H − q.s.

and thus V + is càdlàg Pκ
H − q.s.
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Proof. For each P, we de�ne

Ṽ P := V − YP(T, ξ).

Then, we recall that we have Ṽ P > 0, P − a.s. Now for any 0 6 t1 < t2 6 T , let
(yP,t2 , zP,t2 , uP,t2) := (YP(t2, Vt2),ZP(t2, Vt2),UP(t2, Vt2)). Once more, we remind that since
solutions of BSDEs can be de�ned by Picard iterations, we have by the properties of the
r.p.c.d. that

YP
t1
(t2, Vt2)(ω) = YPt1,ω ,t1,ω

t1 (t2, V
t1,ω
t2 ), for P − a.e. ω.

Hence, we conclude from Proposition 5.4.2

Vt1 > yP,t2
t1 , P − a.s.

Denote

ỹP,t2
t := yP,t2

t − YP
t (T, ξ), z̃P,t2

t := â
−1/2
t (zP,t2

t −ZP
t (T, ξ)), ũP,t2

t := uP,t2
t − UP

t (T, ξ).

Then Ṽ P
t1

> ỹP,t2
t1 and (ỹP,t2 , z̃P,t2 , ũP,t2) satis�es the following BSDEJ on [0, t2]

ỹP,t2
t = Ṽ P

t2
−
∫ t2

t

fP
s (ỹP,t2

s , z̃P,t2
s , ũP,t2

s )ds−
∫ t2

t

z̃P,t2
s dW P

s −
∫ t2

t

∫

Rd

ũP,t2
s (x)µ̃Bd(ds, dx),

where

fP
t (ω, y, z, u) : = F̂t(ω, y + YP

t (ω), â
−1/2
t (ω)(z + ZP

t (ω)), u+ ŪP
t (ω))

− F̂t(ω,YP
t (ω),ZP

t (ω),UP
t (ω)).

By the de�nition given in Royer [95], we conclude from the above that Ṽ P is a positive fP-
supermartingale under P. Since fP(0, 0, 0) = 0, we can apply the downcrossing inequality
proved in [95] to obtain classically that for P − a.e. ω, the limit

lim
r∈Q∪(t,T ],r↓t

Ṽ P
r (ω)

exists for all t.

Finally, since ȲP is càdlàg, we obtain the desired result. ⊔⊓

We follow now Remark 4.9 in [102], and for a �xed P ∈ Pκ
H , we introduce the following

RBSDEJ and with lower obstacle V + under P

Ỹ P
t = ξ −

∫ T

t

F̂s(Ỹ
P
s , Z̃

P
s , Ũ

P
s , ν)ds−

∫ T

t

Z̃P
s dB

c
s −

∫ T

t

∫

E

ŨP
s (x)µ̃Bd(ds, dx) + K̃P

T − K̃P
t

Ỹ P
t > V +

t , 0 6 t 6 T, P − a.s.
∫ T

0

(
Ỹ P

s− − V +
s−

)
dK̃P

s = 0, P − a.s.
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Remark 5.4.3. Existence and uniqueness of the above RBSDE under our Assumptions,

with the restrictions that the compensator is not random, have been proved by Hamadène

and Ouknine [52] or Essaky [39]. However, their proofs can be easily generalized to our

context.

Let us now argue by contradiction and suppose that Ỹ P is not equal P − a.s. to V +.
Then we can assume without loss of generality that Ỹ P

0 > V +
0 , P−a.s. �x now some ε > 0

and de�ne the following stopping-time

τ ε := inf
{
t > 0, Ỹ P

t 6 V +
t + ε

}
.

Then Ỹ P is strictly above the obstacle before τ ε, and therefore K̃P is identically equal
to 0 in [0, τ ε]. Hence, we have

Ỹ P
t = Ỹ P

τε −
∫ τε

t

F̂s(Ỹ
P
s , Z̃

P
s , Ũ

P
s )ds−

∫ τε

t

Z̃P
s dB

c
s −

∫ τε

t

∫

E

ŨP
s (x)µ̃Bd(ds, dx), P − a.s.

Let us now de�ne the following BSDEJ on [0, τ ε]

y+,P
t = V +

τε −
∫ τε

t

F̂s(y
+,P
s , z+,P

s , u+,P
s )ds−

∫ τε

t

z+,P
s dBc

s−
∫ τε

t

∫

E

u+,P
s (x)µ̃Bd(ds, dx), P−a.s.

By the standard a priori estimates already used in this chapter, we obtain that

Ỹ P
0 6 y+,P

0 + C
∣∣∣V +

τε − Ỹ P
τε

∣∣∣ 6 y+,P
0 + Cε,

by de�nition of τ ε.

Following the arguments in Step 1 of the proof of Theorem 4.5 in [102], we can show
that y+,P

0 6 V +
0 which in turn implies

Ỹ P
0 6 V +

0 + Cε,

hence a contradiction by arbitrariness of ε.

Therefore, we have obtained the following decomposition

V +
t = ξ−

∫ T

t

F̂s(V
+
s , Z̃

P
s , Ũ

P
s )ds−

∫ T

t

Z̃P
s dB

c
s−
∫ T

t

∫

E

ŨP
s (x)µ̃Bd(ds, dx)+K̃P

T −K̃P
t , P−a.s.

Finally, we can use the result of Nutz [86] to aggregate the families
{
Z̃P, P ∈ Pκ

H

}
and

{
ŨP, P ∈ Pκ

H

}
into universal processes Z̃ and Ũ .

We next prove the representation (5.3.1) for V and V +, and that, as shown in Proposition
4.11 of [102], we actually have V = V +, Pκ

H−q.s., which shows that in the case of a terminal
condition in UCb(Ω), the solution of the 2BSDEJ is actually F-progressively measurable.
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Proposition 5.4.3. Assume that ξ ∈ UCb(Ω) and that Assumptions 5.2.1 and 5.2.2 hold.

Then we have

Vt = ess supP

P
′∈Pκ

H(t,P)

YP
′

t (T, ξ) and V +
t = ess supP

P
′∈Pκ

H(t+,P)

YP
′

t (T, ξ), P − a.s., ∀P ∈ Pκ
H .

Besides, we also have for all t

Vt = V +
t , Pκ

H − q.s.

Proof. The proof for the representations is the same as the proof of proposition 4.10 in
[102], since we also have a stability result for BSDEJs under our assumptions. For the
equality between V and V +, we also refer to the proof of Proposition 4.11 in [102]. ⊔⊓

Therefore, in the sequel we will use V instead of V +.

Finally, we have to check that the minimum condition (5.2.13) holds. Fix P in Pκ
H and

P
′ ∈ Pκ

H(t+,P). Then, proceeding exactly as in Step 2 of the proof of Theorem 5.3.1, but
introducing the process γ′ of Assumption 5.2.1(iv) instead of γ, we can similarly obtain

Vt − yP
′

t > EP
′

t

[∫ T

t

M ′
sdK̃

P
′

s

]
> EP

′

t

[
inf

t 6 s 6 T
M ′

s

(
K̃P

′

T − K̃P
′

t

)]
,

where M ′ is de�ned as M but with γ′ instead of γ.

Now let us prove that for any n > 1

EP
′

t

[(
inf

t 6 s 6 T
M ′

s

)−n
]
< +∞, P

′ − a.s. (5.4.13)

First we have

M ′
s = exp

(∫ s

t

λrdr +

∫ s

t

ηrâ
−1/2
r dBc

s −
1

2

∫ s

t

|ηr|2 dr −
∫ s

t

∫

E

γ′r(x)µ̃Bd(dr, dx)

)

×
∏

t 6 r 6 s

(1 − γ′r(∆Br))e
γ′

r(∆Br).

De�ne, then Vs = E
(∫ s

t
ηrâ

−1/2
r dBc

s

)
and Ws = E

(∫ s

t

∫
E
γ′r(x)µ̃Bd(dr, dx)

)
. Notice that

both these processes are strictly positive martingales, since η and γ′ are bounded and we
have assumed that −γ′ is strictly greater than −1. We have

M ′
s = exp

(∫ s

t

λrdr

)
VsWs.

Since the process λ is bounded, we have
(

inf
t 6 s 6 T

M ′
s

)−n

6 C

(
inf

t 6 s 6 T
VsWs

)−n

= C

(
sup

t 6 s 6 T
(VsWs)

−1

)n

.
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Using the Doob inequality for the submartingale (VsWs)
−1, we obtain

EP
′

t

[(
inf

t 6 s 6 T
M ′

s

)−n
]

6 CEP
′

t

[
(WTVT )−n

]

6 C
(
EP

′

t

[
(WT )−2n

]
EP

′

t

[
(VT )−2n

])1/2

< +∞,

where we used the fact that since η is bounded, the continuous stochastic exponential
V has negative moments of any order, and where the same result holds for the purely
discontinuous stochastic exponential W by Lemma 5.6.6.

Then, we have for any p > 1

EP
′

t

[
K̃P

′

T − K̃P
′

t

]

= EP
′

t

[(
inf

t 6 s 6 T
M ′

s

)1/p (
K̃P

′

T − K̃P
′

t

)(
inf

t 6 s 6 T
M ′

s

)−1/p
]

6

(
EP

′

t

[
inf

t 6 s 6 T
M ′

s

(
K̃P

′

T − K̃P
′

t

)])1/p(
EP

′

t

[
inf

t 6 s 6 T
M

′− 2
p−1

s

]
EP

′

t

[(
K̃P

′

T − K̃P
′

t

)2
]) p−1

2p

6 C

(
ess supP

P
′∈Pκ

H(t+,P)

EP
′
[(
K̃P

′

T − K̃P
′

t

)2
]) p−1

2p (
Vt − yP

′

t

)1/p

,

where we used (5.4.13).

Arguing as in Step (iii) of the proof of Theorem 5.3.1, the above inequality along with
Proposition 5.4.3 shows that we have

ess infP

P
′∈Pκ

H(t+,P)
EP

′
[
K̃P

′

T − K̃P
′

t

]
= 0,

that is to say that the minimum condition 5.2.13 is satis�ed. This implies that the family{
K̃P

}
P∈Pκ

H

satis�es the consistency condition (i) of Theorem 5.2.1 and therefore can be

aggregated by this Theorem 5.2.1.

5.4.3 Main result

We are now in position to state the main result of this section

Theorem 5.4.1. Let ξ ∈ L2,κ
H . Under Assumptions 5.2.1 and 5.2.2, there exists a unique

solution (Y, Z, U) ∈ D
2,κ
H × H

2,κ
H × J

2,κ
H of the 2BSDEJ (5.2.11).

Proof. The proof follow the lines of the proof of Theorem 4.7 in [101]. In general for a
terminal condition ξ ∈ L2,κ

H , there exists by de�nition a sequence (ξn)n > 0 ⊂ UCb(Ω) such
that

lim
n→+∞

‖ξn − ξ‖
L

2,κ
H

= 0 and sup
n > 0

‖ξn‖L
2,κ
H
< +∞.

Let (Y n, Zn, Un) be the solution to the 2RBSDE (5.2.11) with terminal condition ξn and

KP,n
t := Y n

0 − Y n
t +

∫ t

0

F̂s(Y
n
s , Z

n
s , U

n
s )ds+

∫ t

0

Zn
s dB

c
s +

∫ t

0

∫

E

Un
s (x)µ̃Bd(ds, dx), P− a.s.
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By the estimates of Proposition 5.3.4, we have as n,m→ +∞

‖Y n − Y m‖2
D

2,κ
H

+ ‖Zn − Zm‖2
H

2,κ
H

+ ‖Un − Um‖2
J
2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T
|KP,n

t −KP,m
t |

]

6 Cκ ‖ξn − ξm‖L
2,κ
H

→ 0.

Extracting a subsequence if necessary, we may assume that

‖Y n − Y m‖2
D

2,κ
H

+ ‖Zn − Zm‖2
H

2,κ
H

+ ‖Un − Um‖2
J
2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0 6 t 6 T
|KP,n

t −KP,m
t |

]
6

1

2n
. (5.4.14)

This implies by Markov inequality that for all P and all m > n > 0

P

[
sup

0 6 t 6 T

{
|Y n

t − Y m
t |2 + |KP,n

t −KP,m
t |2

}
+

∫ T

0

|â1/2
t (Zn

s − Zm
s )|2dt (5.4.15)

+

∫ T

0

∫

E

|Un
t (x) − Um

t (x)|2ν̂t(dx)dt > n−1

]
6 Cn2−n. (5.4.16)

De�ne

Y := lim
n→+∞

Y n, Z := lim
n→+∞

Zn, U := lim
n→+∞

Un, KP := lim
n→+∞

KP,n,

where the lim for Z is taken componentwise and the lim for U is taken pointwise. All
those processes are clearly F+-progressively measurable. By (5.4.15), it follows from Borel-
Cantelli Lemma that for all P we have P − a.s.

lim
n→+∞

[
sup

0 6 t 6 T

{
|Y n

t − Yt|2 + |KP,n
t −KP

t |2
}

+

∫ T

0

|â1/2
t (Zn

s − Zs)|2dt

+

∫ T

0

∫

E

|Un
t (x) − Um

t (x)|2ν̂t(dx)dt

]
= 0.

It follows that Y is càdlàg, Pκ
H − q.s., and that KP is a càdlàg nondecreasing process,

P − a.s. Furthermore, for all P, sending m to in�nity in (5.4.14) and applying Fatou's
lemma under P gives us that (Y, Z, U) ∈ D

2,κ
H × H

2,κ
H × J

2,κ
H .

Finally, we can proceed exactly as in the regular case (ξ ∈ UCb(Ω)) to show that the
minimum condition (5.2.13) holds. ⊔⊓

5.4.4 An extension of the representation formula

So far, we managed to provide wellposedness results for 2BSDEJs, by working under a set
a probability measures which, if restricted to the ones for which the canonical process is a
continuous local martingale is strictly smaller than the one considered in [101], Chapter 2
or Chapter 4. This is due mainly to the fact that we had to restrict ourselves to processes
α of the form (5.2.3) in order to retrieve the aggregation result of Theorem 5.2.1, which
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was crucial to our analysis since it allowed us to de�ne an aggregator for the family of
predictable compensators.

This is clearly not very satisfying, not only from the theoretical point of view, but also
from the practical one. Indeed, the set from which the processes α are allowed to be
chosen corresponds in �nancial applications to the set of possible volatility processes for
the market considered. It is therefore desirable to have the greatest generality possible.
However, we emphasize that the restrictions we put on the predictable compensators ν
are clearly not a problem from the point of view of the applications. Indeed, our set of
compensators is strictly greater than the one associated to pure jump additive processes.
Those processes, and more precisely the Lévy processes, being the most widely used in
applications, our set is not really restrictive.

The aim of this section is to show that under additional assumptions, we can show that
the representation formula (5.3.1) also holds for a larger set of probability measures fro
which there is no longer any restrictions on the processes α. In this regard, we recall the
set of probability measures P

eA de�ned in Remark 5.2.5. We recall that every probability
measure in this set satisfy the Blumenthal 0 − 1 law and the martingale representation
property. Moreover, exactly as in De�nition 5.2.6, we de�ne and restrict ourselves to the
subset Pκ

H of P
eA. We de�ne the following space for each p > κ,

L
p,κ

H :=
{
ξ, ‖ξ‖L

p,κ
H
< +∞

}
where ‖ξ‖p

L
p,κ
H

:= sup
P∈P

κ
H

EP

[
ess sup
0 6 t 6 T

P
(
E

H,P
t [|ξ|κ]

) p
κ

]
,

and we let

Lp,κ

H := the closure of UCb(Ω) under the norm ‖·‖L
p,κ
H
, for every 1 6 κ 6 p.

We then have the following result, which is similar to Theorem 5.3 in [102]

Theorem 5.4.2. Let ξ ∈ L2,κ

H and in addition to Assumptions 5.2.1 and 5.2.2, assume

that

• F is uniformly continuous in a for a ∈ D1
Ft
, and for all (t, ω, y, z, u, a, ν)

|Ft(ω, y, z, u, a, ν)| 6 C
(
1 + ‖ω‖t + |y| + |z| +

∣∣a1/2
∣∣) . (5.4.17)

• Pκ
H is dense in Pκ

H in the sense that for any Pα,ν ∈ Pκ

H and for any ε > 0, there

exists Pαε,ν ∈ Pκ
H such that

EPν

[∫ T

0

|(αε
t )

1/2 − α
1/2
t |2dt

]
6 ε. (5.4.18)

Then, we have

Y0 = sup
P∈Pκ

H

yP
0 = sup

P∈P
κ
H

yP
0 ,

where under any P := Pα,ν ∈ Pκ

H , (yP, zP, uP) is the unique solution of the BSDEJ

yP
t = ξ −

∫ T

t

Fs(y
P
s , z

P
s , u

P
s , âs, νs)ds−

∫ T

t

ZsdB
c
s −

∫ T

t

∫

E

uP
s (x)µ̃

P
Bd(ds, dx), P − a.s.
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Proof. First, we remind Remark 5.3.1 ensures existence and uniqueness of the solutions
of our BSDEs under any P ∈ Pκ

H . We will proceed in two steps.

(i) ξ ∈ UCb(Ω)

For any P := Pα,ν ∈ Pκ

H and any ε > 0, let Pε := Pαε,ν ∈ Pκ
H be given by (5.4.18). Using

the process LP de�ned in (5.2.7), we have P − a.s.

yP
t = ξ(B.) −

∫ T

t

Fs(B., y
P
s , z

P
s , u

P
s , âs, νs)ds−

∫ T

t

â1/2
s zP

s dL
P,c
s

−
∫ T

t

∫

E

uP
s (x) (µLP,d(ds, dx) − νs(dx)ds) .

Let now (yP, zP, uP) denote the unique solution of the following BSDEJ under Pν

yP
t = ξ(Xα,ν

. ) −
∫ T

t

Fs(X
α,ν
. , yP

s , z
P
s , u

P
s , αs, νs)ds−

∫ T

t

α1/2
s zP

sdB
c
s

−
∫ T

t

∫

E

uP
s (x) (µBd(ds, dx) − νs(dx)ds) .

By de�nition of Pα,ν , we know that the distribution of yP under P is equal to the dis-
tribution of yP under Pν . Since the Blumenthal 0 − 1 law also holds, this implies clearly
that we have

yP
0 = yP

0 .

Similarly, we de�ne yPε
and yPε

. Then, using classical estimates from the BSDEJ theory
(see [5] for instance) we have

|yP
0 − yPε

0 |2 = |yP
0 − yPε

0 |2

6 CEPν

[
|ξ(Xα,ν

. ) − ξ(Xαε,ν
. )|2 +

∫ T

0

∣∣Ft(X
α
. , y

P
t , z

P
t , αt, νt) − Ft(X

αε

. , yP
t , z

P
t , α

ε
t , νt)

∣∣2 dt
]
.

Then, we have by (5.4.17)
∣∣Ft(X

αε

. , yP
t , z

P
t , α

ε
t , νt)

∣∣ 6 C
(
1 +

∥∥Xαε,ν
∥∥

t
+ |yP

t | + |zP
t | + |αε

t |1/2
)

6 C
(
1 + ‖Xα,ν‖ + |yP

t | + |zP
t | + |αt|1/2

)

+ C
(∥∥Xαε,ν −Xα,ν

∥∥+ |αε
t − αt|1/2

)
. (5.4.19)

Using Doob's inequality and Itô's isometry, it is easy to see that (5.4.18) implies that

EPν

[
sup

0 6 t 6 T

∣∣∣Xαε,ν
t −Xα,ν

t

∣∣∣
2
]

6 ε.

Since ξ is also uniformly continuous and bounded in ω, we can apply the dominated
convergence Theorem in (5.4.19) to obtain

lim
ε→0

|yP
0 − yPε

0 | = 0.

This clearly implies the result in that case.
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(ii) ξ ∈ L2,κ

H

In that case, with the same notations as above, let ξn ∈ UCb(Ω) such that
‖ξ − ξn‖L

2,κ
H

−→
n→+∞

0. Then, we de�ne yP,n the solution of the BSDEJ with terminal con-

dition ξn and generator Ft(·, âs, νs) under P. Then, we have

sup
P∈Pκ

H

yP,n
0 = sup

P∈P
κ
H

yP,n
0 . (5.4.20)

Moreover, using exactly the same estimates as in the proof of Theorem 5.3.4, we can
show that ∣∣∣yP,n

0 − yP
0

∣∣∣
2

6 C ‖ξn − ξ‖2

L
2,κ
H
.

This shows that the convergence of yP,n
0 to yP

0 is uniform with respect to P ∈ Pκ

H . Hence
we can pass to the limit in (5.4.20) and exchange the limit and the suprema to obtain the
desired result. ⊔⊓

We �nish this section by recalling a result from [102] (see Proposition 5.4) which gives
a su�cient condition for the density condition (5.4.18)

Lemma 5.4.3. Assume that the domain of F does not depend on t and that D1
F contains

a countable dense subset. Then (5.4.18) holds.

Proof. It su�ces to notice that in our framework, all the constant mappings belong to
Ã0. Then Proposition 5.4 in [102] applies. ⊔⊓

5.5 Application to a robust utility maximization prob-

lem

In this section, we will always assume that the matrices a := aP and a := aP are uni-
formly bounded in P. In particular, this implies that we can restrict ourselves to the
case where the parameter a in the de�nition of a generator F is bounded. We consider a
�nancial market consisting of one riskless asset, whose price is assumed to be equal to 1

for simplicity, and one risky asset whose price process (St)0 6 t 6 T is assumed to follow a
mixed-di�usion

dSt

St−
= btdt+ dBc

t +

∫

E

βt(x)µBd(dt, dx), Pκ

H − q.s., (5.5.1)

where we assume that

Assumption 5.5.1. (i) (bt) is a bounded F-predictable process which is also uniformly

continuous in ω.

(ii) (βt) is a bounded F-predictable process which is uniformly continuous in ω, veri�es

sup
ν∈N

∫ T

0

∫

E

|βt(x)| νt(dx)dt < +∞, Pκ

H − q.s.,
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and satis�es

C2(1 ∧ |x|) > βt(x) > C1(1 ∧ |x|), Pκ

H − q.s., for all (t, x) ∈ [0, T ] × E,

where C2 > 0 > C1 > −1.

Remark 5.5.1. The uniform continuity assumption on ω is here to ensure that the 2BS-

DEs we will encounter in the sequel indeed have solutions. The assumption on β is classical

and implies that the price process S is positive.

Remark 5.5.2. The volatility is implicitly embedded in the model. Indeed, under each

P ∈ Pκ
H , we have dBc

s ≡ â
1/2
t dW P

t where W P is a Brownian motion under P. Therefore,

â1/2 plays the role of volatility under each P and thus allows us to model the volatility

uncertainty. Similarly, we have incertitude on the jumps of our price process, since the

predictable compensator of the jumps of discontinuous part of the canonical process changes

with the probability considered. This allows us to have incertitude not only about the size

of the jumps but also about their laws.

We then denote π = (πt)0 6 t 6 T a trading strategy, which is a 1-dimensional F -
predictable process, supposed to take its value in some compact set C. The process
πt describes the amount of money invested in the stock at time t. The number of shares
is πt

St−
. So the liquidation value of a trading strategy π with positive initial capital x is

given by the following wealth process:

Xπ
t = x+

∫ t

0

πs

(
dBc

s + bsds+

∫

E

βs(x)µBd(ds, dx)

)
, 0 6 t 6 T, Pκ

H − q.s.

The problem of the investor in this �nancial market is to maximize his expected expo-
nential utility under model uncertainty from his total wealth Xπ

T − ξ where ξ is a liability
at time T which is a random variable assumed to be FT -measurable. Then the value
function V of the maximization problem can be written as

V ξ(x) : = sup
π∈C

inf
P∈P

κ
H

EP [−exp (−η (Xπ
T − ξ))]

= −inf
π∈C

sup
P∈P

κ
H

EP [exp (−η (Xπ
T − ξ))] . (5.5.2)

where
C := {(πt) which are predictable and take values in C} ,

is our set of admissible strategies.

Before going on, we emphasize immediately, that in the sequel we will limit ourselves to
probability measures in Pκ

H . We will recover the supremum over all probability measures
in Pκ

H at the end by showing that Theorem 5.4.2 applies.

To �nd the value function V ξ and an optimal trading strategy π∗, we follow the ideas of
the general martingale optimality principle approach as in [38] and [54], but adapt it here
to a nonlinear framework as in Chapter chap:robust.

Let {Rπ} be a family of processes which satis�es the following properties
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Properties 5.5.1. (i) Rπ
T = exp(−η(Xπ

T − ξ)) for all π ∈ C.

(ii) Rπ
0 = R0 is constant for all π ∈ C.

(iii) We have

Rπ
t 6 ess supP

P
′∈Pκ

H(t+,P)

EP
′

t [Rπ
T ], ∀π ∈ C

Rπ∗

t = ess supP

P
′∈Pκ

H(t+,P)

EP
′

t [Rπ∗

T ] for some π∗ ∈ C, P − a.s. for all P ∈ Pκ
H .

Then it follows

sup
P∈Pκ

H

EP[U(Xπ
T − ξ)] > R0 = sup

P∈Pκ
H

EP[U(Xπ∗

T − ξ)] = −V ξ(x). (5.5.3)

To construct Rπ, we set

Rπ
t = exp(−ηXπ

t )Yt, t ∈ [0, T ], π ∈ C,

where (Y, Z, U) ∈ D
2,κ
H × H

2,κ
H × J

2,κ
H the unique solution of the following 2BSDEJ

Yt = eηξ−
∫ T

t

F̂s(Ys, Zs, Us)ds−
∫ T

t

ZsdB
c
s−
∫ T

t

∫

E

Us(x)µ̃Bd(ds, dx)+KP
T −KP

t , Pκ
H−q.s.
(5.5.4)

The generator F̂ is chosen so that Rπ satis�es the Properties 5.5.1. Let us apply Itô's
formula to exp(−ηXπ

t )Yt under some P ∈ Pκ
H . We obtain after some calculations

d
(
e−ηXπ

t Yt

)
= e−ηXπ

t−

[
−ηπtbtYtdt+

η2

2
π2

t âtYtdt− ηπtâtZtdt+ F̂t(Yt, Zt, Ut)dt

+

∫

E

(
e−ηπtβt(x) − 1

)
(Yt + Ut(x))ν̂t(dx)dt+ (Zt − ηπtYt) dB

c
t

+

∫

E

(
e−ηπtβt(x) − 1

)
(Yt− + Ut(x)) + Ut(x)µ̃Bd(dt, dx) − dKP

t

]
. (5.5.5)

Hence the appropriate choice for F

Fs(y, z, u, a, ν) := − inf
π∈C

{
(−ηbs +

η2

2
πa)πy − ηπaz +

∫

E

(
e−ηπβs(x) − 1

)
(y + u(x))ν(dx)

}
.

First, because of Assumption 5.5.1, F is uniformly Lipschitz in (y, z), uniformly contin-
uous in ω. It is also continuous in a and since D1

F = [a, a], it is even uniformly continuous
in a. Besides, it is convex in a and ν (since it is the minus in�mum of a family of linear
functions) and hence can be written as a Fenchel-Legendre transform. Moreover, its do-
main clearly does not depend on (ω, t, y, z, u) by our boundedness assumptions. Besides,
D1

F clearly contains a countable dense subset. This in particular shows that Theorem
5.4.2 applies here.
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Finally,

inf
π∈C

∫

E

(
1 − e−ηπβs(ω,x)

)
(u(x) − u′(x))ν(dx) 6 Fs(ω, y, z, u, a, ν) − Fs(ω, y, z, u

′, a, ν)

Fs(ω, y, z, u, a, ν) − Fs(ω, y, z, u
′, a, ν) 6 sup

π∈C

∫

E

(
1 − e−ηπβs(ω,x)

)
(u(x) − u′(x))ν(dx).

Since C is compact and β is bounded, it is therefore clear from the above inequalities
that Assumption 5.2.1(iv) is satis�ed. Therefore, if we assume that eηξ ∈ L2,κ

H (for instance
if ξ ∈ L∞,κ

H ), the 2BSDEJ (5.5.4) indeed has a unique solution and Rπ is well de�ned. Let
us now prove that it satis�es the properties 5.5.1. The property (i) is clear by de�nition
and (ii) holds because of Proposition 5.4.3. Now for any 0 6 t 6 T , any π ∈ C, any
P ∈ Pκ

H and any P
′ ∈ Pκ

H(t+,P), we have from (5.5.5)

EP
′

t [Rπ
T ] −Rπ

t > − EP
′

t

[∫ T

t

e−ηXπ
s−dKP

′

s

]
. (5.5.6)

Let us now prove that for any π ∈ C and for any P, we have

ess infP

P
′∈Pκ

H(t+,P)
EP

′

t

[∫ T

t

e−ηXπ
s−dKP

′

s

]
= 0. (5.5.7)

This is similar to what we did in the proof of Theorem 5.3.1, and therefore we know
that it is su�cient to prove that for any p > 1

EP
′

t

[
sup

t 6 s 6 T
e−pXπ

s

]
6 Cp, (5.5.8)

for some positive constant Cp depending only on p and the bounds for π, b and β.

Let M be such that −M 6 π 6 M , and let

Nt = e2M
R t
0

R

E |βs(x)|eµs(dx)ds−
R t
0

R

E(e2M|βs(x)|−1−2M |βs(x)|)bνs(dx)ds,

then we have

e−Xπ
s 6 e(TM‖b‖∞−

R t
0 πsdBc

s+M
R t
0

R

E |βs(x)|µ
Bd (ds,dx))

6 C
[
e(2TM‖b‖∞−2

R t
0 πsdBc

s) + e(2M
R t
0

R

E |βs(x)|µ
Bd (ds,dx))

]

= C

[
e(2TM‖b‖∞+2

R t
0 π2

sbasds) × E
(
−2

∫ t

0

πsdB
c
s

)

+e(2M
R t
0

R

E |βs(x)|bνs(dx)ds+
R t
0

R

E(e2M|βs(x)|−1−2M |βs(x)|)bνs(dx)ds) ×Nt

]

6 C ′

(
E
(
−2

∫ t

0

πsdB
c
s

)
+Nt

)

where we used in the last inequality the fact that π and â are uniformly bounded and that
sup
ν∈N

∫ T

0

∫
E
|βt(x)| νt(dx)dt < +∞.
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Then (5.5.8) comes from the fact that the expectations of the above Doléans-Dade
exponential and Nt are �nite. Using (5.5.7) in (5.5.6), we obtain

Rπ
t 6 ess supP

P
′∈Pκ

H(t+,P)

EP
′

t [Rπ
T ].

Now, using a classical measurable selection argument (see [26] (chapitre III) or [31] or
Lemma 3.1 in [33]) we can de�ne a predictable process π∗ ∈ C such that

−F̂s(Ys, Zs, Us) = (−ηbs +
η2

2
π∗

s âs)π
∗
sYs − ηπ∗

s âs +

∫

E

(
e−ηπ∗

sβs(x) − 1
)
(Ys + Us(x))ν̂s(dx).

Using the same arguments as above, we obtain

Rπ∗

t = ess supP

P
′∈Pκ

H(t+,P)

EP
′

t [Rπ∗

T ],

which proves (iii) of Property 5.5.1 holds.

We summarize everything in the following proposition

Proposition 5.5.1. Assume that exp(ηξ) ∈ L2,κ

H . Then, under Assumption 5.5.1, the

value function of the optimization problem (5.5.2) is given by

V ξ(x) = −e−ηxY0,

where Y0 is de�ned as the initial value of the unique solution (Y, Z, U) ∈ D
2,κ
H ×H

2,κ
H × J

2,κ
H

of the following 2BSDEJ

Yt = ξ−
∫ T

t

F̂s(Ys, Zs, Us)ds−
∫ T

t

ZsdB
c
s −
∫ T

t

∫

E

Us(x)µ̃Bd(ds, dx) +KP
T −KP

t , (5.5.9)

where the generator is de�ned as follows

F̂t(ω, y, z, u) := Ft(ω, y, z, u, ât, ν̂t), (5.5.10)

where

Ft(y, z, u, a, ν) := − inf
π∈C

{
(−ηbt +

η2

2
πa)πy − ηπaz +

∫

E

(
e−ηπβt(x) − 1

)
(y + u(x))ν(dx)

}
.

Moreover, there exists an optimal trading strategy π∗ realizing the in�mum above.

Furthermore, by making a change of variables and applying Itô's formula, we can prove
existence and uniqueness of a solution to a particular 2BSDEJ whose generator satis�es
a quadratic growth condition.
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Proposition 5.5.2. Assume that ξ ∈ L∞,κ

H . Then, there exists a unique solution

(Y ′, Z ′, U ′) ∈ D
∞,κ
H × H

2,κ
H × J

2,κ
H to the quadratic 2BSDEJ

Y ′
t = ξ−

∫ T

t

F̂ ′
s(Y

′
s , Z

′
s, U

′
s)ds−

∫ T

t

Z ′
sdB

c
s−
∫ T

t

∫

E

U ′
s(x)µ̃Bd(ds, dx)+K ′P

T −K ′P
t , (5.5.11)

where the generator is de�ned as follows

F̂ ′
t(ω, z, u) := F ′

t(ω, z, u, ât, ν̂t), (5.5.12)

where

F ′
t(z, u, a, ν) : = − inf

π∈C

{
η

2

∣∣∣∣πa
1/2 −

(
a1/2z +

bt +
∫

E
βt(x)ν(dx)

a1/2η

)∣∣∣∣
2

+
1

η
j (η(u− πβt))

}

+

(
bt +

∫

E

βt(x)ν(dx)

)
z +

|bt +
∫

E
βt(x)ν(dx)|2
2aη

,

where j(u) :=
∫

E

(
eu(x) − 1 − u(x)

)
ν(dx).

Moreover, Y ′
t = ess supP

P
′∈P

κ
H(t+,P)

y′Pt , where y
′P is the solution to the quadratic BSDE with the

same terminal condition ξ and generator F̂ ′.

As for quadratic BSDEs and 2BSDEs, we always have a deep link between the Z-part
of a solution and the BMO spaces in the case with jumps. So we need to introduce the
following spaces.

J
2,κ

BMO(Pκ
H)

denotes the space of predictable and E-measurable applications U : Ω×[0, T ]×
E such that

‖U‖2
J
2,κ

BMO(Pκ
H)

:= sup
P∈Pκ

H

∥∥∥∥
∫ .

0

∫

E

Us(x)µ̃Bd(ds, dx)

∥∥∥∥
BMO(P)

< +∞,

where ‖·‖BMO(P) is the usual BMO(P) norm under P.

H
2,κ

BMO(Pκ
H)

denotes the space of all F+-progressively measurable Rd-valued processes Z

with

‖Z‖H2,κ
BMO(Pκ

H
)
:= sup

P∈Pκ
H

∥∥∥∥
∫ .

0

ZsdB
c
s

∥∥∥∥
BMO(P)

< +∞.

Now we are in position to prove the proposition.
Proof. As for the previous proposition, it is su�cient to consider the set of probability
measures Pκ

H .

Step 1: We can make the following change of variables: Y ′
t = 1

η
log (Yt), Z ′

t = 1
η

Zt

Yt
,

U ′
t = 1

η
log
(
1 + Ut

Yt−

)
. Then by Itô's formula and the fact that K has only predictable

jumps, we can verify that the triple (Y ′, Z ′, U ′) satis�es (5.5.11) with K ′P
t =

∫ t

0
1

ηYs
dKP,c

s −
∑

0<s 6 t
1
η
log
(
1 − ∆KP,d

s

Ys−

)
. In particular, K ′P is nondecreasing with K ′P

0 = 0.

Step 2: As in Morlais [83], we can verify that the generator F̂ ′ satis�es the following
conditions.
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(i) F̂ ′ has the quadratic growth property. There exists (α, δ) ∈ R+ × R∗
+ such that for

all (t, z, u), Pκ
H − q.s.

∣∣∣F̂ ′
t(0, 0)

∣∣∣ 6 α and

−
∣∣∣F̂ ′

t(0, 0)
∣∣∣− δ

2

∣∣∣â1/2
t z

∣∣∣
2

− 1

δ
ĵ(−ηu) 6 F̂ ′

t(z, u) 6

∣∣∣F̂ ′
t(0, 0)

∣∣∣+
δ

2

∣∣∣â1/2
t z

∣∣∣
2

+
1

δ
ĵ(γu),

where ĵ(u) :=
∫

E

(
eu(x) − 1 − u(x)

)
ν̂(dx).

(ii) We have the "local Lipschitz" condition in z, ∃µ > 0 and a progressively measurable
process φ ∈ H

2,κ

BMO(Pκ
H)

such that for all (t, z, z
′
, u), Pκ

H − q.s.

∣∣∣F̂ ′
t(z, u) − F̂ ′

t(z
′

, u) − φt.(â
1/2
t z − â

1/2
t z

′

)
∣∣∣ 6 µ

∣∣∣â1/2
t z − â

1/2
t z

′
∣∣∣
(∣∣∣â1/2

t z
∣∣∣+
∣∣∣â1/2

t z
′
∣∣∣
)
.

(iii) For every (z, u, u′) there exist two predictable and E-measurable processes (γt) and
(γ′t) such that

F̂ ′
t(z, u) − F̂ ′

t(z, u
′) 6

∫ t

0

∫

E

γ′s(x) (u(x) − u′(x)) ν̂(dx)ds,

∫ t

0

∫

E

γs(x) (u(x) − u′(x)) ν̂(dx)ds 6 F̂ ′
t(z, u) − F̂ ′

t(z, u
′) Pκ

H − q.s.,

where there exists constants C1, C
′
1 < 0 and 1 > C2, C

′
2 > 0, independent of (z, u, u′)

such that

C1(1 ∧ |x|) 6 γt(x) 6 C2(1 ∧ |x|),

C ′
1(1 ∧ |x|) 6 γ′t(x) 6 C ′

2(1 ∧ |x|).

In particular, γ and γ′ are in J
2,κ

BMO(Pκ
H)
.

Then we know, from [83], that under each P the BSDEJ with the same terminal condition
ξ and generator F̂ ′ has a unique solution, which we note by (y′P, z′P, u′P). Due to the
monotonicity of the function 1

η
log(x), we have the following representation for Y ′: Y ′

t =

ess supP

P
′∈Pκ

H(t+,P)

y′Pt .

Step 3: Next, we will prove the minimum condition for K ′P. As in Chapter 2 for
2BSDEs with quadratic growth generators, we use the above representation of Y ′ and the
conditions of F̂ ′ in z and u.

Fix P in Pκ
H and P

′ ∈ Pκ
H(t+,P), denote

δY ′ := Y ′ − y′P
′

, δZ ′ := Z ′ − z′P
′

and δU ′ := U ′ − u′P
′

.

By the "local Lipschitz" condition (ii) of F̂ ′ in z, there exist a process η with

|ηt| 6 µ
(∣∣∣â1/2

t Z ′
t

∣∣∣+
∣∣∣â1/2

t z′
P
′

t

∣∣∣
)
, P

′ − a.s.



162 Chapitre 5. Second Order BSDEs With Jumps

such that

δY ′
t =

∫ T

t

(
(ηs + φs)â

1/2
s δZ ′

s

)
ds−

∫ T

t

δZ ′
sdB

c
s

−
∫ T

t

∫

E

δU ′
s(x) [µ̃Bd(ds, dx) + γ′s(x)ν̂(dx)ds]

−
∫ T

t

[
F̂ ′

s(z
′
s, U

′
s) − F̂ ′

s(z
′
s, u

′
s)
]
ds+

∫ T

t

∫

E

γ′s(x)δU
′
s(x)ν̂(dx)ds

+K ′P
′

T −K ′P
′

t , t 6 T, P
′ − a.s..

As in the proof of Lemma 2.3.1 in Chapter 2, by applying Itô's formula to e−νY ′
t for some

ν > 0, we have Z ∈ H
2,κ

BMO(Pκ
H)
. Then the process η de�ned above is also in H

2,κ

BMO(Pκ
H)
.

So, with Girsanov's theorem we can �nd an equivalent probability measure Q′ such that

dQ′

dP′
= E

(∫ ·

0

(ηs + φs) â
−1/2
s dBc

s −
∫ ·

0

∫

E

γ′s(x)µ̃Bd(ds, dx)

)
.

Thus, we obtain

Y ′
t − y′

P
′

t > E
Q

′

t

[
K ′P

′

T −K ′P
′

t

]
.

For notational convenience, denote E1
t := E

(∫ t

0
(φs + ηs)â

−1/2
s dBc

s

)
and

E2
t := E

(
−
∫ t

0

∫
E
γ′s(x)µ̃Bd(ds, dx)

)
. Let r be the number given by Lemma 2.2.2 in 2

applied to E1. Then we estimate

EP
′

t

[
K ′P

′

T −K ′P
′

t

]

6 EP
′

t

[ET

Et

(K ′P
′

T −K ′P
′

t )

] 1
2r−1

EP
′

t

[( Et

ET

) 1
2(r−1)

(K ′P
′

T −K ′P
′

t )

] 2(r−1)
2r−1

6 (δY ′
t )

1
2r−1

(
EP

′

t

[(E1
t

E1
T

) 1
r−1

]) r−1
2r−1

(
EP

′

t

[(E2
t

E2
T

) 2
r−1

]
EP

′

t

[
(K ′P

′

T −K ′P
′

t )4
]) r−1

2(2r−1)

6 C

(
EP

′

t

[(
K ′P

′

T

)4
]) r−1

2(2r−1)

(δY ′
t )

1
2r−1 .

With the same argument as in Step (iii) of the proof of Theorem 5.3.1, the above
inequality along with the representation for Y ′ shows that we have

ess infP

P
′∈Pκ

H(t+,P)
EP

′
[
K ′P

′

T −K ′P
′

t

]
= 0,

that is to say that the minimum condition 5.2.13 is veri�ed.

Step 4: Finally, by uniqueness of the solution of 2BSDEJ (5.5.9), the quadratic 2BS-
DEJ (5.5.11) has a unique solution. In fact, after making the reverse change of vari-
ables: Yt = exp(ηY ′

t ), Zt = exp(ηY ′
t )ηZ

′
t, Ut = exp(η(Y ′

t− + U ′
t)) − exp(ηY ′

t−), we can
verify that (Y, Z, U) is the solution of 2BSDE (5.5.9) with KP

t =
∫ t

0
exp(ηY ′

s )dK
′P,c
s +∑

0<s 6 t(exp(ηY ′
s−)− exp(η(Y ′

s− −∆K ′P,d
s ))), where the minimum condition of KP can be

veri�ed similarly as in Step 3. ⊔⊓
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5.6 Appendix

5.6.1 The measures Pα,ν

Lemma 5.6.1. Let P ∈ PÃ and τ be an FB-stopping time. Then

Pτ,ω ∈ Pτ(ω)

Ã

Proof.

Step 1: Let us �rst prove that

(Pν)
τ,ω = P

τ(ω)
ντ,ω , Pν-a.s. on Ω, (5.6.1)

where (Pν)
τ,ω denotes the probability measure on Ωτ , constructed from the r.c.p.d. of Pν

for the stopping time τ , evaluated at ω, and P
τ(ω)
ντ,ω is the unique solution of the martingale

problem (P1, τ(ω), T, Id, ντ,ω), where P1 is such that P1(Bτ
τ = 0) = 1.

It is enough to show that the shifted processes M τ , Jτ , Qτ are (Pν)
τ,ω-local martingales,

where M,J and Q are de�ned in Remark 5.2.1. For this, take a bounded F τ -stopping
time S. Observe that it is then clear that there exists a bounded F-stopping time S̃ such
that S = S̃τ,ω. Then, following the de�nitions in Subsection 5.4.1,

∆Bτ,ω
S (ω̃) = ∆BS(ω ⊗τ ω̃) = ∆(ω ⊗τ ω̃)(S)

= ∆ωS1{S 6 τ} + ∆ω̃S1{S>τ},

and that for S > τ

BS(ω ⊗τ ω̃) = (ω ⊗τ ω̃)(S) = ωτ + ω̃S

= Bτ (ω) +Bτ
S(ω̃).

From this we get

M τ,ω
S (ω̃) =MS(ω ⊗τ ω̃)

=BS(ω ⊗τ ω̃) −
∑

u 6 S

1|∆Bu(ω⊗τ eω)|>1∆Bu(ω ⊗τ ω̃)

+

∫ S

0

x1|x|>1νu(ω ⊗τ ω̃)(dx) du

=Bτ
S(ω̃) +Bt(ω) −

∑

u 6 τ

1|∆ωu|>1∆ωu −
∑

τ<u 6 S

1|∆Bτ
u(eω)|>1∆B

τ
u(ω̃)

+

∫ τ

0

x1|x|>1νu(ω)(dx) du+

∫ S

τ

x1|x|>1ν
τ,ω
u (ω̃)(dx) du

=M τ
S(ω̃) +Mτ (ω),

and we can now compute

IE(Pν)τ,ω

[M τ
S ] = IE(Pν)τ,ω

[M τ,ω
S −Mτ (ω)]

= IE(Pν)τ,ω
[
M τ,ω

S̃τ,ω

]
−Mτ (ω)

= IEPν
τ [MS̃](ω) −Mτ (ω) = 0, for Pν-a.e. ω.
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Since S is an arbitrary bounded stopping time, we have that M τ is a (Pν)
τ,ω-local

martingale for Pν-a.e. ω..

We treat the case of the process Jτ analogously and write

Jτ,ω
S (ω̃) = (M τ,ω

S (ω̃))2 − S −
∫ τ

0

∫

E

x2νu(ω)(dx)du−
∫ S

τ

∫

E

x2ντ,ω
u (ω̃)(dx)du

= (M τ
S(ω̃))2 + (Mτ (ω))2 + 2M τ

S(ω̃)Mτ (ω) − (S − τ) −
∫ S

τ

∫

E

x2ντ,ω
u (ω̃)(dx)du

−
∫ τ

0

∫

E

x2νu(ω)(dx)du− τ

=Jτ
S(ω̃) + Jτ (ω) + 2M τ

S(ω̃)Mτ (ω).

Then we can compute the expectation

IE(Pν)τ,ω

[Jτ
S ] = IE(Pν)τ,ω

[Jτ,ω
S − 2M τ

SMτ (ω)] − Jτ (ω) = 0, for Pν-a.e. ω.

Jτ is then a (Pν)
τ,ω-local martingale for Pν-a.e. ω.. Finally, we do the same kind of

calculation for Qτ , and we obtain

Qτ,ω
S (ω̃) =

∫ S

0

∫

E

g(x)µB(ω ⊗τ ω̃, dx, du) −
∫ S

0

∫

E

g(x)ντ,ω
u (ω̃)(dx) du

=

∫ τ

0

∫

E

g(x)µB(ω, dx, du) +

∫ S

τ

∫

E

g(x)µBτ (ω̃, dx, du)

−
∫ τ

0

∫

E

g(x)νu(ω)(dx)du−
∫ S

τ

∫

E

g(x)ντ,ω
u (ω̃)(dx) du

=Qτ
S(ω̃) +Qτ (ω).

And again we compute the expectation over the ω̃ ∈ Ωτ , under the measure (Pν)
τ,ω

IE(Pν)τ,ω

[Qτ
S] = IE(Pν)τ,ω

[Qτ,ω
S −Qτ (ω)]

= IEPν
τ [QS](ω) −Qτ (ω) = 0, for Pν-a.e. ω.

We have the desired result, and conclude that (5.6.1) holds true.

We can now deduce that for any (α, ν) ∈ Ã

Pατ,ω ,ντ,ω ∈ Pτ(ω)

Ã
Pν-a.s. on Ω. (5.6.2)

Indeed, if (α, ν) ∈ D ×N , then (ατ,ω, ντ,ω) ∈ Dτ(ω) ×N τ(ω), because
∫ T

τ(ω)

∫

E

(1 ∧ |x|2)ντ,ω
s (ω̃)(dx)ds < +∞,

∫ T

τ(ω)

∫

|x|>1

|x| ντ,ω
s (ω̃)(dx)ds < +∞,

∫ T

τ(ω)

|ατ,ω
s (ω̃)| ds <∞.

Moreover, if (α, ν) have the form (5.2.3), it is clear that it also holds true for (ατ,ω, ντ,ω).
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Step 2: We de�ne τ̃ := τ ◦ Xα, α̃τ,ω := ατ̃ ,βα(ω) and ν̃τ,ω := ν τ̃ ,βα(ω) where βα is a
measurable map such that B = βα(Xα), Pν-a.s. Moreover, τ̃ is a stopping time and we
have τ = τ̃ ◦ βα since

τ̃ ◦ βα = τ ◦ βα(Xα) = τ ◦B = τ

and using (5.6.2),

Pα̃τ,ω ,ν̃τ,ω ∈ Pτ(ω)

Ã
Pα,ν-a.s. on Ω.

Step 3: We show that

IEPα,ν

[φ (Bt1∧τ , . . . , Btn∧τ )ψ (Bt1 , . . . , Btn)] = IEPα,ν [φ (Bt1∧τ , . . . , Btn∧τ )ψτ ]

for every 0 < t1 < · · · < tn 6 T , every continuous and bounded functions φ and ψ and

ψτ (ω) = IEPα̃τ,ω,ν̃τ,ω
[
ψ(ω(t1), . . . , ω(tk), ω(t) +Bt

tk+1
, . . . , ω(t) +Bt

tn)
]
,

for t := τ(ω) ∈ [tk, tk+1[.

Recall that Pα̃τ,ω ,ν̃τ,ω
is de�ned by Pα̃τ,ω ,ν̃τ,ω

= Pν̃τ,ω ◦
(
X α̃τ,ω)−1

, then

ψτ (ω) = IEP
τ(ω)
ν̃τ,ω

[
ψ
(
ω(t1), . . . , ω(tk), ω(t) +

∫ tk+1

t

(
ατ̃ ,βα(ω)

s

)1/2
d(Bc

s)
τ(ω)

+

∫ tk+1

t

∫

E

x(µBτ(ω)(ds, dx) − ν τ̃ ,βα(ω)
s (dx)ds), . . . , ω(t) +

∫ tn

t

(
ατ̃ ,βα(ω)

s

)1/2
d(Bc

s)
τ(ω)

+

∫ tn

t

∫

E

x(µBτ(ω)(ds, dx) − ν τ̃ ,βα(ω)
s (dx)ds)

)]
.

Then, ∀ω ∈ Ω, if t := τ̃(ω) = τ (Xα(ω)) ∈ [tk, tk+1[,

ψτ (Xα(ω)) = IEP
τ̃(ω)

ντ̃,ω

[
ψ
(
Xα

t1
(ω), . . . , Xα

tk
(ω), Xα

t (ω) +

∫ tk+1

t

(
ατ̃ ,ω

s

)1/2
d(B τ̃(ω)

s )c

+

∫ tk+1

t

∫

E

x(µBτ̃(ω)(ds, dx) − ν τ̃ ,ω
s (dx)ds), . . . , Xα

t (ω) +

∫ tn

t

(
ατ̃ ,ω

s

)1/2
d(B τ̃(ω)

s )c

+

∫ tn

t

∫

E

x(µBτ̃(ω)(ds, dx) − ν τ̃ ,ω
s (dx)ds)

)]
.

(5.6.3)

We remark that for every ω ∈ Ω,

αs(ω) = αs

(
ω ⊗τ̃(ω) ω

τ̃(ω)
)

= ατ̃ ,ω
s

(
ωτ̃(ω)

)

and νs(ω)(dx) = νs

(
ω ⊗τ̃(ω) ω

τ̃(ω)
)
(dx) = ν τ̃ ,ω

s

(
ωτ̃(ω)

)
(dx)

By de�nition, the (Pν)
τ̃ ,ω-distribution of B τ̃(ω) is equal to the (Pν)

ω
τ̃ -distribution of (B·−
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Bτ̃(ω)). (5.6.3) then becomes

ψτ (Xα(ω)) =IE(Pν)ω
τ̃

[
ψ
(
Xα

t1
(ω), . . . , Xα

tk
(ω), Xα

t (ω) +

∫ tk+1

t

α1/2
s (Bc)d(Bc

s)

+

∫ tk+1

t

∫

E

x(µB(ds, dx) − νs(dx)ds), . . . , X
α
t (ω) +

∫ tn

t

α1/2
s (Bc)d(Bc

s)

+

∫ tn

t

∫

E

x(µB(ds, dx) − νs(dx)ds)
)]

=IE(Pν)ω
τ̃

[
ψ
(
Xα

t1
, . . . , Xα

tk
, Xα

tk+1
, . . . , Xα

tn

)]

=IEPν

[
ψ
(
Xα

t1
, . . . , Xα

tk
, Xα

tk+1
, . . . , Xα

tn

)
|Fτ̃

]
(ω), Pν-a.s. on Ω.

Then we have

IEPα,ν

[φ (Bt1∧τ , . . . , Btn∧τ )ψτ ] = IEPν

[
φ
(
Xα

t1∧τ̃ , . . . , X
α
tn∧τ̃

)
ψτ̃ (X

α)
]

= IEPν

[
φ
(
Xα

t1∧τ̃ , . . . , X
α
tn∧τ̃

)
IEPν

[
ψ
(
Xα

t1
, . . . , Xα

tk
, Xα

tk+1
, . . . , Xα

tn

)
|Fτ̃

]]

= IEPν

[
φ
(
Xα

t1∧τ̃ , . . . , X
α
tn∧τ̃

)
ψ
(
Xα

t1
, . . . , Xα

tk
, Xα

tk+1
, . . . , Xα

tn

)]

= IEPα,ν [φ (Bt1∧τ , . . . , Btn∧τ )ψ (Bt1 , . . . , Btn)] .

Step 4: Now we prove that Pτ,ω = Pα̃τ,ω ,ν̃τ,ω
, P-a.s. on Ω.

By de�nition of the conditional expectation,

ψτ (ω) = IEPτ,ω
[
ψ(ω(t1), . . . , ω(tk), ω(t) +Bt

tk+1
, . . . , ω(t) +Bt

tn)
]
, Pα,ν-a.s.,

where t := τ(ω) ∈ [tk, tk+1[, and where the Pα,ν-null set can depend on (t1, . . . , tn) and ψ,
but we can choose a common null set by standard approximation arguments.

Then by a density argument we obtain

IEPτ,ω

[η] = IEPα̃τ,ω,ν̃τ,ω

[η] , for Pα,ν-a.e. ω,

for every bounded and F τ(ω)
T -measurable random variable η. This implies Pτ,ω = Pα̃τ,ω ,ν̃τ,ω

,

P-a.s. on Ω. And from the Step 1 we deduce that Pτ,ω ∈ Pτ(ω)

Ã . ⊔⊓

Lemma 5.6.2. We have Pn ∈ Pκ
H , where Pn is de�ned by (5.4.10).

Proof. Since by de�nition, Pi
t ∈ P t

H and P ∈ PH , we have Pi
t = Pαi,νi

and P = Pα,ν , for
(αi, νi) ∈ Ãt and (α, ν) ∈ Ã, i = 1, . . . , n. Next we de�ne

αs := αs1[0,t)(s) +

[
n∑

i=1

αi
s1Ei

t
(Xα) + αs1ÎE

n
t
(Xα)

]
1[t,T ](s), and

νs := νs1[0,t)(s) +

[
n∑

i=1

νi
s1Ei

t
(Xα) + νs1ÎE

n
t
(Xα)

]
1[t,T ](s).
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Now following the arguments in the proof of step 3 of Lemma 5.6.1, we prove that for any
0 < t1 < · · · < tk = t < tk+1 < tn and any continuous and bounded functions φ and ψ,

IEPα,ν

[
φ(Bt1 , . . . , Btk)

n∑

i=1

IEPαi
t,νi

t

[
ψ(Bt1 , . . . , Btk , Bt +Bt

tk+1
, . . . , Bt +Bt

tn)
]
1Ei

t

]

= IEPα,ν

[φ(Bt1 , . . . , Btk)ψ(Bt1 , . . . , Btn)] .

This implies that Pn = Pα,ν ∈ P
eA. And since all the probability measures Pi satisfy the

requirements of De�nition 5.4.1, we have Pn = Pα,ν ∈ Pκ
H . ⊔⊓

Lemma 5.6.3. Fix an arbitrary measure P = Pα,ν in Pκ
H . The set Pκ

H(t+,P) is upward

directed, i.e. for each P1 := Pα1,ν1 and P2 := Pα2,ν2 in Pκ
H(t+,P), there exists P

′ ∈
Pκ

H(t+,P) such that ∀u > t,

IEP
′

t

[(
KP

′

u −KP
′

t

)2
]

= max
{
IEP1

t

[(
KP1

u −KP1
t

)2]
, IEP2

t

[(
KP2

u −KP2
t

)2]}
. (5.6.4)

Proof.

We de�ne the following Ft-measurable sets

E1 :=
{
ω ∈ Ω : IEP2

t

[(
KP2

u −KP2
t

)2]
(ω) 6 IEP1

t

[(
KP1

u −KP1
t

)2]
(ω)
}

and E2 := Ω\E1. Then for all A ∈ FT , we de�ne the probability measure P
′
by,

P
′

(A) := P1(A ∩ E1) + P2(A ∩ E2).

By de�nition, P
′
satis�es (5.6.4). Let us prove now that P

′ ∈ Pκ
H(t+,P). As in the proof

of claim (4.17) in [101], for s ∈ [0, T ], we de�ne the processes α∗ and ν∗ as follows

α∗
s(ω) = αs(ω)1[0,t)(s) +

(
α1

s(ω)1{Xα∈E1}(ω) + α2
s(ω)1{Xα∈E2}(ω)

)
1[t,T ](s),

ν∗s (ω) = νs(ω)1[0,t)(s) +
(
ν1

s (ω)1{Xα∈E1}(ω) + ν2
s (ω)1{Xα∈E2}(ω)

)
1[t,T ](s),

where Xα is de�ned in (5.2.6). We have

0 < α ∧ α1 ∧ α2
6 α∗

6 α ∨ α1 ∨ α2,

where α, α, αi, αi are the lower and upper bounds of the processes α, α1 and α2. Next,
we have
∫ T

0

∫

E

(1 ∧ |x|2)ν∗s (ds, dx) 6

∫ T

0

∫

E

(1 ∧ |x|2)νs(ds, dx) +

∫ T

0

∫

E

(1 ∧ |x|2)ν1
s (ds, dx)

+

∫ T

0

∫

E

(1 ∧ |x|2)ν2
s (ds, dx) < +∞,

and the same way we see that
∫ T

0

∫
{|x|>1}

xν∗s (ds, dx) < +∞. Then, we have therefore

clearly (α∗, ν∗) ∈ Ã, and we can de�ne the element Pα∗,ν∗
of PÃ.
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Now using the same arguments as in the Step 3 of the proof of the previous Lemma, we
obtain that for any t1 < · · · < tk = t < tk+1 < · · · < tn and any bounded and continuous
functions φ and ψ,

IEPα∗,ν∗
[
φ(Bt1 , . . . , Btk)ψ(Bt1 , . . . , Btn)

]

= IEPα,ν
[
φ(Bt1 , . . . , Btk)

(
IEPα1,ν1 [ψ(Bt1 , . . . , Btk , Bt +Bt

tk+1
, . . . , Bt +Bt

tn)]1E1

+ IEPα2,ν2 [ψ(Bt1 , . . . , Btk , Bt +Bt
tk+1

, . . . , Bt +Bt
tn)]1E2

)]
.

This shows that

(Pα∗,ν∗

)ω
t = (P

′

)ω
t for Pα∗,ν∗

-almost every ω in Ω and every t > 0.

Thus P
′
= Pα∗,ν∗ ∈ PÃ. To prove that P

′ ∈ Pκ
H , we compute

IEP
′
[∫ T

0

∣∣∣F̂ 0
s

∣∣∣
2

ds

]
= IEP

[∫ t

0

∣∣∣F̂ 0
s

∣∣∣
2

ds

]
+ IEP1

[∫ T

t

∣∣∣F̂ 0
s

∣∣∣
2

ds1E1

]
+ IEP2

[∫ T

t

∣∣∣F̂ 0
s

∣∣∣
2

ds1E2

]

6 IEP

[∫ T

0

∣∣∣F̂ 0
s

∣∣∣
2

ds

]
+ IEP1

[∫ T

0

∣∣∣F̂ 0
s

∣∣∣
2

ds1E1

]
+ IEP2

[∫ T

0

∣∣∣F̂ 0
s

∣∣∣
2

ds1E2

]
< +∞.

Since by construction P
′
coincides with P on Ft, the proof is complete. ⊔⊓

5.6.2 Lr-Integrability of exponential martingales

Lemma 5.6.4. Let δ > 0 and n ∈ N∗. Then there exists a constant Cn,δ depending only

on δ and n such that

(1 + x)−n − 1 + nx 6 Cn,δx
2, for all x ∈ [−1 + δ,+∞).

Proof. De�ne for x > − 1 + δ and for any C > 0 the function

fC(x) := (1 + x)−n − 1 + nx− Cx2.

First, we have

fC(−1 + δ) = δ−n − 1 + n(−1 + δ) − C(−1 + δ)2.

Since this quantity goes to −∞ when C goes to +∞, it is clear that we can choose C
large enough so that fC(−1 + δ) 6 0.

Let us now study the function fC . We have for any x > − 1 + δ

f ′
C(x) = −n(1 + x)−n−1 + n− 2Cx =

(n− 2Cx)(1 + x)n+1 − n

(1 + x)n+1
.

De�ne the function

gC(x) := (n− 2Cx)(1 + x)n+1 − n = x

(
n

(1 + x)n+1 − 1

x
− 2C(1 + x)n+1

)

= x

(
n

n∑

k=0

Ck+1
n+1x

k − 2C(1 + x)n+1

)
.
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Consider then

hC(x) := n
n∑

k=0

Ck+1
n+1x

k − 2C(1 + x)n+1.

For all 0 6 l 6 n, we have by di�erentiating repeatedly

h
(l)
C (x) = n

n−l∑

k=0

(k + l)!

l!
Ck+l+1

n+1 xk − 2C
(n+ 1)!

(n− l + 1)!
(1 + x)n−l+1.

It is clear in this expression that we can always choose C large enough so that for every
l 6 n, h(l)

C (−1 + δ) 6 0. Then, we have after some calculations

h
(n−1)
C (x) = n!

(
−C(n+ 1)x2 + (n− 2C(n+ 1))x+ (n+ 1)(1 − C)

)
.

The roots of this second degree polynomial are given by

x =
n− 2C(n+ 1) +

√
n2 + 4c(n+ 1)

2C(n+ 1)
or x =

n− 2C(n+ 1) −
√
n2 + 4c(n+ 1)

2C(n+ 1)
.

Since both these roots can be made as close as we want to−1 by choosing C large enough,
we can conclude that for C large enough, we will have h(n−1)

C (x) 6 0, for x > − 1 + δ.
Hence, the function h

(n−2)
C is decreasing for x > − 1 + δ. But since we recalled earlier

that h(l)
C (−1 + δ) 6 0, we also have h(n−2)

C (x) 6 0, for x > − 1 + δ. Repeating those
arguments, we show recursively that the function hC itself is decreasing for x > − 1 + δ

and since we also have hC(−1 + δ) 6 0, we �nally obtain that the function hC is negative
for x > − 1 + δ.

Therefore, the function gC is positive for x 6 0 and negative for x > 0. Since fC(−1 +

δ) 6 0 and fC(0) = 0, this ends the proof. ⊔⊓

Mémin [80] and then Lépingle and Mémin [72] proved some useful multiplicative decom-
positions of exponential semimartingales. We give here one of these representations that
we will use in the proof of Lemma 5.6.5.

Proposition 5.6.1 (Proposition II.1 of [71]). Let N be a local martingale and let A be a

predictable process with �nite variation such that ∆A 6= −1. We assume N0 = A0 = 0.

Then there exists a local martingale Ñ with Ñ0 = 0 and such that

E(N + A) = E(Ñ)E(A).

Lemma 5.6.5. Let λ > 0 and M be a local martingale with bounded jumps, such that

∆M > − 1 + δ, for a �xed δ > 0. Let V −λ be the predictable compensator of
{
W−λ

t =
∑

s 6 t

[
(1 + ∆Ms)

−λ − 1 + λ∆Ms

]
, t > 0

}
.

We have
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(i) E−λ(M) = E(N−λ + A−λ) where

A−λ =
λ(λ+ 1)

2
〈M c,M c〉T + V −λ

N−λ = −λMT +W−λ − V −λ.

(ii) There exists a local martingale Ñ−λ such that

E−λ(M) = E(Ñ−λ)E(A−λ).

Proof. First note that thanks to lemma 5.6.4, for λ > 0, (1 + x)−λ − 1 + λx 6 Cx2, and
thus W−λ is integrable. We set

Tn = inf{t > 0 : E(M)t 6
1

n
} and Mn

t = Mt∧Tn .

Then Mn and E(Mn) are local martingales, E(Mn) >
1
n
and E(Mn)t = E(M)t if t < Tn.

The assumption ∆M > −1 shows that Tn tends to in�nity when n tends to in�nity. For
each n > 1, we apply Itô's formula to a C2 function fn that coincides with x−λ on [ 1

n
,+∞[:

E−λ(Mn)t = 1 − λ

∫ t

0

E−λ−1(Mn)s−dE(Mn)s

+
λ(λ+ 1)

2

∫ t

0

E−λ−2(Mn)s−d 〈(E(Mn))c, (E(Mn))c〉s

+
∑

s 6 t

[
E−λ(Mn)s − E−λ(Mn)s− + λE−λ−1(Mn)s−∆E−λ(Mn)s

]

= 1 +

∫ t

0

E(Mn)s−dX
n
s ,

where

Xn
t := −λMn

t +
λ(λ+ 1)

2
〈(Mn)c, (Mn)c〉t +

∑

s 6 t

[
(1 + ∆Ms)

−λ − 1 + λ∆Ms

]
,

and then E−λ(Mn) = E(Xn).

Let us de�ne the non-truncated counterpart X of Xn:

X = −λM +
λ(λ+ 1)

2
〈M c,M c〉 +W−λ.

On the interval [0, Tn[, we have Xn = X and E−λ(M) = E(X), now letting n tends to
in�nity, we obtain that E−λ(M) and E(X) coincide on [0,+∞[, which is the point (i) of
the Lemma.

We want to use the proposition 5.6.1 to prove the point (ii), so we need to show that
∆A > −1. We set

S = inf{t > 0 : ∆A−λ
t 6 − 1}.

It is a predictable time. Using this, and the fact that M and (W−λ − V −λ) are local
martingales, we have

∆A−λ
S = IE

[
∆A−λ

S |FS−

]
= IE [∆XS|FS− ] = IE

[
(1 + ∆MS)−λ|FS−

]
,
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and since {S < +∞} ∈ FS− ,

0 > IE
[
1{S<+∞}(1 + ∆A−λ

S )
]

= IE
[
1{S<+∞}(1 + ∆MS)−λ

]
.

Then ∆MS 6 − 1 on {S < +∞}, which means that S = +∞ and ∆A > −1 a.s. The
proof is now complete. ⊔⊓

We are �nally in a position to state the Lemma on Lr integrability of exponential mar-
tingales for a negative exponent r.

Lemma 5.6.6. Let λ > 0 and let M be a local martingale with bounded jumps, such that

∆M > − 1 + δ, for a �xed δ > 0, and 〈M,M〉t is bounded a.s. Then

IE
[
E(M)−λ

t

]
< +∞.

Proof. Let n > 1 be an integer. We will denote µ̃M = µM − νM the compensated jump
measure of M . Thanks to lemma 5.6.5, we write the decomposition

E(M)−n = E(Ñ−n)E
(

1

2
n(n+ 1) < M c,M c > +V −n

)
,

where Ñ−n is a local martingale and V −n is de�ned as V −λ. Using Lemma 5.6.4, we have
the inequality

V −n
t 6

∫ t

0

∫

E

Cx2νM(ds, dx)

and using the previous representation we obtain

E(M)−n
t 6 E(Ñ−n)tE

(
1

2
n(n+ 1) 〈M c,M c〉 +

∫ ·

0

∫

E

Cx2νM(ds, dx)

)

t

6 E(Ñ−n)texp

(
1

2
n(n+ 1) 〈M c,M c〉t +

∫ t

0

∫

E

Cx2νM(ds, dx)

)

6 E(Ñ−n)texp

(
(
1

2
n(n+ 1) + C) 〈M,M〉t

)

6 CE(Ñ−n)t since 〈M,M〉t is bounded.

Let us prove now that the jumps of Ñ−n are strictly bigger than −1. We compute

∆Ñ−n =
∆N−n

1 + ∆A−n
where A−n is de�ned as in lemma 5.6.6

=
(1 + ∆M)−n

1 + ∆V −n
− 1 > −1 since − 1 < ∆M 6 B and ∆V −n > −1.

This implies that E(Ñ−n) is a positive supermartingale which equals 1 at t = 0. We
deduce

IE
[
E(M)−n

t

]
6 CIE

[
E(Ñ−n)t

]
6 C.

We have the desired integrability for negative integers. We extend the property to any
negative real number by Hölder's inequality. ⊔⊓





Chapitre 6

Numerical Implementation

6.1 Introduction

Avellaneda et al. [2] derived a pricing PDE (Avellaneda PDE aftermath) for uncertain
volatility models. In practice, Avellaneda PDE is not solvable and one must rely on a
�nite di�erence scheme. But standard �nite di�erence schemes can only be implemented
when the number of variables - underlying assets or auxiliary variables - is small. For high
dimensional case one needs to use Monte Carlo approach.

The Monte Carlo method is developed from a new advancement on the connection
between fully nonlinear PDEs and second order backward stochastic di�erential equations
(2BSDEs for short) presented in Cheridito et al. [22]. There exist three Monte Carlo
schemes for UVM. Introduced with the �rst notion of 2BSDEs, Scheme Cheridito et al.
[22] generalized the numerical method for solving classical BSDEs. Inspired by Scheme
Cheridito et al., Fahim et al. [41] gave a new scheme without appealing to the theory
of 2BSDEs. They proved the convergence of the scheme with a EDP approach. With
UVM, the Avellaneda PDE for pricing is fully nonlinear. In this particular case, Scheme
Guyon and Henry-Labordère [47] improved the two precedent ones without using the
theory of 2BSDEs. For path-dependent options, these schemes can also be applied with
some modi�cations and by using results obtained in Gobet et al. [45].

The main objective of this chapter is to study and implement the Scheme Guyon and
Henry-Labordère.

6.2 Avellaneda pricing PDE

UVMwere introduced by Avellaneda et al. [2], where the volatility process is only supposed
to lie within an interval (it does not have a speci�c dynamic). And the value V of a
derivative delivering some payo� HT (St, 0 6 t 6 T ) at maturity T is

Vt = sup[t,T ]E[HT |Ft]

where sup[t,T ] means that the supremum is taken over all (Fs)-adapted processes

(ξs)t 6 s 6 T ≡
((
σα

s , ρ
αβ
s

)
1 6 α<β 6 d

)
t 6 s 6 T

such that for all s ∈ [t, T ], ξs belongs to

some compact domain D. Notice that the covariance matrix
(
ραβσασβ

)
1 6 α,β 6 d

should
be non-negative. We consider domains D of the form D = [σ, σ̄] when d = 1, and
D = [σ1, σ̄1] × [σ2, σ̄2] × [ρ, ρ̄] when d = 2.
Applying stochastic control theory, the ask price can be presented by the solution of a

fully nonlinear PDE.
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In one-dimensional case, a risky asset follows a controlled di�usion under a risk-neutral
measure

dSt = σtStdWt.

The valuation of an option can be written as the solution (in the viscosity sense) of an
HJB equation with a control on the di�usion coe�cient. This leads to a fully nonlinear
second order PDE, the Avellaneda PDE.

∂tu(t, x) +
1

2
x2G(∂xxu(t, x))∂xxu(t, x) = 0, (t, x) ∈ [0, T ) × R∗

+

with some terminal condition u(T, x) = g(x), and G(Γ) = σ21Γ<0 + σ̄21Γ > 0.
In d-dimensional case,

dSα
t = σα

t S
α
t dW

α
t , dW

α
t dW

β
t = ρβα

t dt, 1 6 α < β 6 d.

where ραβσασβ
1 6 α<β 6 d is the non-negative covariance matrix.

For vanilla payo�s HT = g(ST ), where the payo� function g is assumed continuous with
quadratic growth, we have the price Vt = u(t, St) where u(·, ·) is the unique (viscosity)
solution with quadratic growth of the following PDE

∂tu(t, x) + f(x,∇xxu(t, x)) = 0, (t, x) ∈ [0, T ) × (R∗
+)d

with the terminal condition u(T, x) = g(x) and the Hamiltonian

f(x,Γ) =
1

2
max(ραβ ,σα)1 6 α<β 6 d∈D

d∑

α,β=1

ραβσασβxαxβΓαβ.

6.3 Di�erent schemes

In their paper introducing the 2BSDEs theory, Cheridito et al. provided a numerical
scheme using Monte Carlo method to solve fully nonlinear PDEs. Fahim et al. then proved
the convergence of a similar Monte Carlo scheme without appealing to the 2BSDEs. As
presented in previous sections, Avellaneda PDE is a fully nonlinear PDE, so one can solve
it numerically using both schemes. In the following, we derive this two schemes for this
particular PDE.

1.With 2BSDEs theory (Cheridito et al.):

The 2BSDE associated to the Avellaneda PDE is




dXα
t = σ̂αXα

t dW
α
t , dWα

t dW
β
t = ρ̂βαdt, 1 6 α < β 6 d.

dYt = −f(Xt,Γt)dt+
d∑

α=1

Zα
t ◦ σ̂αXα

t dW
α
t

dZα
t = Aα

t dt+
d∑

β=1

Γαβ
t σ̂βXβ

t dW
β
t

YT = g(XT )

(6.3.1)
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with some constant volatility σ̂α and some constant correlation ρ̂αβ and where ◦ is the
Stratonovich integral. Cheridito et al. proved that Yt = u(t,Xt), Zt = ∇xu(t,Xt), Γt =

∇xxu(t,Xt) and At = (∂t + LX)∇xu(t,Xt). Then we have Y0 = u(0, X0) = u(0, S0) = V0.
By discretizing the continuous processes of the 2BSDE and taking the conditional expec-

tation of both sides of equations (resp. �rst multiplying both sides by Brownian increment
∆W , then taking the conditional expectation), we can compute the price Y (resp. the
delta Z and the gamma Γ) backwardly. The following is the complete scheme deriving
from 2BSDEs theory.
Scheme Cheridito et al.:




Y ∆
tn = g(X∆

tn), Z∆
tn = ∇g(X∆

tn)

Y ∆
ti−1

= Ei−1

[
Y ∆

ti

]

+

(
f
(
ti−1, X

∆
ti−1

, Y ∆
ti−1

, Z∆
ti−1

,Γ∆
ti−1

)
− 1

2
tr

[(
σ̂X∆

ti−1

)(
σ̂X∆

ti−1

)′
Γ∆

ti−1

])
∆ti

Z∆
ti−1

=
1

∆ti

(
σ̂X∆

ti−1

)′−1

Ei−1

[
Y ∆

ti
∆Wti

]

Γ∆
ti−1

=
1

∆ti
Ei−1

[
Z∆

ti
∆W ′

ti

] (
σ̂X∆

ti−1

)−1

(6.3.2)

2.Without 2BSDEs theory (Fahim et al.):

We can rewrite ∂tu(t, x) + f(x,∇xxu(t, x)) = 0, (t, x) ∈ [0, T ) × (R∗
+)d as

∂tu(t, x) +
1

2

d∑

α,β=1

ρ̂αβσ̂ασ̂βxαxβ (∇xxu(t, x))
αβ

+

(
f(x,∇xxu(t, x)) −

d∑

α,β=1

ρ̂αβσ̂ασ̂βxαxβ (∇xxu(t, x))
αβ

)
= 0

Let us denote

F (x,∇xxu(t, x)) = f(x,∇xxu(t, x)) −
d∑

α,β=1

ρ̂αβσ̂ασ̂βxαxβ (∇xxu(t, x))
αβ

and
dXα

t = σ̂α
t X

α
t dW

α
t , dW

α
t dW

β
t = ρ̂βα

t dt, 1 6 α < β 6 d.

a log-normal dynamics with constant σ̂α and constant ρ̂αβ. Assuming that the Avellaneda
PDE has a classical solution, it follows from Itô's formula that

Eti,x

[
u
(
ti+1, Xti+1

)]
= u (ti, x) + Eti,x

[∫ ti+1

ti

(∂t + LX)u (t,Xt) dt

]

Since u solves the above PDE, this provides

Eti,x

[
u
(
ti+1, Xti+1

)]
= u (ti, x) − Eti,x

[∫ ti+1

ti

F (Xt,∇xxu (t,Xt))dt

]

By approximating the integral
∫ ti+1

ti
F (Xt,∇xxu (t,Xt))dt and applying the Malliavin

calculus for the second derivative Γ, one can also derive a similar scheme without appealing
to the 2BSDEs theory. The following is the complete scheme.
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Scheme Fahim et al.:





Y ∆
tn = g(X∆

tn)

Y ∆
ti−1

= Ei−1

[
Y ∆

ti

]

+

(
f
(
ti−1, X

∆
ti−1

, Y ∆
ti−1

, Z∆
ti−1

,Γ∆
ti−1

)
− 1

2
tr

[(
σ̂X∆

ti−1

)(
σ̂X∆

ti−1

)′
Γ∆

ti−1

])
∆ti

Γ∆
ti−1

= Ei−1

[
Y ∆

ti

((
σ̂X∆

ti−1

)′)−1 ∆Wti

(
∆W ′

ti
− ∆tiId

)

∆t2i

(
σ̂X∆

ti−1

)−1
]

(6.3.3)

In the particular case of UVM, based on the Scheme Fahim et al., by taking arbitrary
constant volatility σ̂ and correlation ρ̂ to simulate the process (thus a Black-Scholes model)
and applying the Malliavin calculus for a log-normal di�usion, one can have a new scheme
for Avellaneda PDE.

Scheme Guyon and Henry-Labordère:





Xα
ti

= Xα
0 e

−(σ̂α)2
ti
2

+σ̂αW α
ti , E

[
∆W α

ti
∆W β

ti

]
= ρ̂αβ∆ti

Ytn = g(Xtn)

Yti−1
= E

[
Yti|Xti−1

]
+

(
f
(
Xti−1

,Γti−1

)
− 1

2

d∑

α,β=1

ρ̂αβσ̂ασ̂βXα
ti−1

Xβ
ti−1

Γαβ
ti−1

)
∆ti

(∆ti)
2 σ̂ασ̂βXα

ti−1
Xβ

ti−1
Γαβ

ti−1
= E

[
Yti

(
Uα

ti
Uβ

ti − ∆tiρ̂
−1
αβ − ∆tiσ̂

αUα
ti
δαβ

)
|Xti−1

]

(6.3.4)
with Uα

ti
≡∑α

β=1 ρ̂
−1
αβ∆W β

ti .

Notice that for the Avellaneda PDE the coe�cient f depends only on the second deriva-
tive of the solution (Γ), so there is no need to compute the �rst derivative (Z), then
Scheme Fahim et al. and Scheme Guyon and Henry-Labordère should be more e�cient
than Scheme Cheridito et al. with which one always needs the �rst derivative in order to
obtain the second derivative.

Furthermore, there are also other di�erences between the three schemes:

In Scheme Cheridito et al. they discretized the continuous process of the Gamma Γ.
In Scheme Fahim et al. they used the Gamma Malliavin weight for the Bachelier model.
In Scheme Guyon and Henry-Labordère they use explicitly the Malliavin weight for a
log-normal di�usion with constant volatility σ̂ and correlation ρ̂.

With Scheme Fahim et al., the forward di�usion process is simulated by Euler scheme
while with Scheme Guyon and Henry-Labordère the di�usion is simulated exactly. And
for this reason, there is di�erence in computing Gamma Γ for these two schemes.

In the particular cases of no volatility uncertainty or of convex or concave European
payo�s, the nonlinear PDE reduces to a (classical) Black-Scholes pricing PDE and Scheme
Guyon and Henry-Labordère is exact, contrary to Scheme Cheridito et al. and Scheme
Fahim et al.. Also Scheme Guyon and Henry-Labordère can be applied for discontinuous
payo�s.
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6.4 Approximation of Conditional Expectations

The most important part in all three schemes is the approximation of conditional expec-
tations. With Scheme Guyon and Henry-Labordère, there are d(d+1)

2
+ 1 expectations to

compute at each discrete backward date, one for price Y and the other d(d+1)
2

for Gamma
Γ where d is the number of underlying assets.
There exits several ways to approximate conditional expectations as for the pricing of

Bermuda options.

1. One can use parametric regression as in the Longsta�-Schwartz methods (see Gobet
et al. [45] for details in the case of BSDEs):

E [Yi+1|Xi = x] ≈
N∑

k=1

ckpk(x)

2. For low dimensional case, one can also use non-parametric regression:

E[Yi+1|Xi = x] ≈ E[Yi+1δN(Xi − x)]

E[δN(Xi − x)]

with δN(·) a kernel approximating a Dirac mass at zero.

3. Another possibility is to use Malliavin's weight (see Bouchard and Touzi [16] in the
case of BSDEs and Bouchard and Warin [18] for Bermuda options).

Since parametric regression is the most appropriate for high dimensional case, we choose
the technique which is similar to the Longsta�-Schwartz Monte Carlo regression. For
possible improvements, one can try all techniques then compare results and choose perhaps
the best technique.
When there are several backward dates, who represent the discretization points of the

time dimension for a continuous process, the regression error cumulates from a date to
another, thus a non accurate approximation can deteriorate the pricing quality. From our
di�erent tests we can see that the conditional expectation for Y can be approximated well
by regression. When σmin is equal to σmax, the Avellaneda model is reduced to the simple
Black-Scholes model then the option price does not depend on Gamma Γ. In this case,
we have a good precision for the option price. That means a good approximation of the
conditional expectation for Y . When σmin is di�erent from σmax, the option price does
depend on Gamma Γ and becomes less precise, this could mean that the approximation
of the conditional expectations for Gamma is not as good as for Y . This can be explained
by the fact that the Gamma Γ simulated with Malliavin calculus has large variance.
There are many active studies in variance reduction techniques for computing Greeks.
Several methods exist such as localization and importance sampling. We don't apply
these techniques here. In the real life pricing, these techniques could be used to have a
better precision for Gamma thus for price.
In conclusion, the pricing precision depends essentially on quality of approximation of

conditional expectations by regression , particularly for Gamma Γ.
As presented in Bouchard and Warin [18], there are two main questions for the ap-

proximation by regression. First is the choice of the regression procedure which refers to
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numerical algorithm to solve the system Aα = B for α and second the choice of regression
basis functions.
Regression procedure

We can use the following techniques.

1. Choleski decomposition LL′ of A′A: In this case, one solves LL′α = A′B. It is not
memory consuming because the A matrix does not need to be constructed. This
algorithm is the most e�cient but not stable.

2. QR decomposition of A as QR: One solves Rα = Q′B. This technique is more
stable but much more time consuming. The A matrix has to be stored.

3. Singular Value Decomposition (SVD) of A as UWV ′ : One has α =

V [diag [1/wi]]U
′B. It is the most stable among these three techniques. However,

this method su�ers the same problem as the QR algorithm in term of memory needed
to create the matrix A and is the most time consuming.

Basis functions

1. Polynomial.

This kind of function basis is very easy to implement in practice, but it has a
major �aw. It is di�cult to �nd an optimal degree of the functional basis. Besides,
an increase in the number of basis functions often leads to a deterioration in the
accuracy of the result. This is due to extreme events that the polynomials try to �t,
leading to some bad representation of the function.

From our numerical tests, we see that the choice of maximal degree for polynomial
basis can a�ect the results. And in general, with numerical experimentations and
good understanding of the �nancial product to price, we can �nd a suitable maximal
degree with which this function basis works well.

Note that, in the case where an explicit formula is available for the correspond-
ing European option, one can replace the estimator Ê[Yti+1

|Fti ] in algorithms by
Ê[Yti+1

−P euro(ti+1, Xti+1
)|Fti ] +P euro(ti, Xti) where P

euro(t, x) denotes the price of
the corresponding European option at time t if Xt = x. This is similar to control
variates technique for variance reduction. The idea behind this comes from the fact
that the European price process (discounted) P euro(·, X) is a martingale, and that
it generally explains a large part of the price. Alternatively, P euro(ti, ·) could also
be included in the regression basis.

2. Calls with di�erent strikes.

In practice, one possibility is to regress on options of the underlying that are very
similar to the payo�s we are trying to price. It seems obvious that the more an
option looks like the option we are pricing, the more it will contains information
about the price. The theoretical perfect case is for example when we are trying to
price a Call and when that Call is in the regression basis, we just need one basis
function. When payo�s are Calls combination, we can regress on a base of Calls
with di�erent strikes centered around the money-strike.
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3. Hypercubes (Adaptative local basis approach)

The idea is to use, at each time step ti, a set of functions ψq (for instance, polynomial
with maximal degree 1 or 2), q ∈ [0,MM ] having local hypercube support Di1,i2,...,id

where ij = 1 to Ij, MM =
∏

k=1,··· ,d Ik. With this approximation we do not assure
the continuity of the approximation. It has the advantage to be able to �t any ,
even discontinuous, function. In order to avoid oscillations, the support are chosen
so that they contain roughly the same number of particles. When using such local
functions, it is possible to use the Choleski method, which is the most e�cient for
solving the regression problem.

Given that the main objective for us is to have a stable pricing algorithm so we choose
the more stable procedure SVD although it's time and memory consuming. Indeed, for
the next step, we can e�ectively choose the regression procedure according to the choice
of basis functions. This should make the pricing procedure more e�cient.
And we notice that di�erent basis functions can be used for approximating price Y and

Gamma Γ, for instance polynomial for Y and local support basis (hypercube) for Γ. That
could improve the option price precision in some cases. The idea behind this is that Y
and Γ have di�erent forms , one kind of basis functions may be a good choice for Y but a
bad one for Γ. So well understanding of products is important for a e�cient application
of the scheme.

6.5 Forward Monte Carlo Pricing Step

From our numerical experiments, we see that the algorithm presented above produces an
unpredictable bias (lower or higher).
As suggested in Guyon and Henry-Labordère [47], one can have a lower price by adding

a forward simulation step. This is a commonly used technique for the pricing of American
options with Monte Carlo method. In this step, the optimal volatility is determined by
the function of Gamma computed in the �rst step.
In order to build a low-biased estimate, one can simulate another set of replicas of X

dXα
t = σ∗α

t Xα
t dW

α
t dWα

t dW
β
t = ρ∗βα

t dt 1 6 α < β 6 d

in an independent second Monte Carlo procedure, where the simulated optimal volatility
and correlation, σ∗α

t and ρ∗αβ
t , are the solutions to

max(ραβ ,σα)1 6 α<β 6 d∈D

d∑

α,β=1

ραβσασβxαxβψ(t,Xt)

with ψ the approximation for Gamma Γ of the �rst backward step. Because the covariance
matrix is suboptimal, the obtained estimator is low-biased. One can run the second
Monte Carlo simulation with more paths and a (much smaller) time step for the forward
discretization of X. Since the estimator is low-biased, the true price is larger than each
of the simulated prices.
When the bias is unknown, one cannot make such a claim and it is hard to guess where

the true price is. But the low-biased price could be imprecise like in the case of Call
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Sharpe options and generally of path-dependent options. Also we know that Monte Carlo
simulated price lies in a con�dential interval including the true price for a �xed number
of paths (even very large). Since the second step is a Monte Carlo pricing method, then
the simulated price can be larger than the true price. So we have to be cautious with
this low-biased price. In general, we prefer the low-biased price for European options and
the backward price for path-dependent ones. In the real life pricing, we'd better compute
both low-biased and backward prices. Then if theses prices are very di�erent from each
other, this could mean that the low-biased price does not have a good precision.
Furthermore, in the forward step, there is another problem. From the backward step,

we get the estimation of Gamma Γ only for N − 1 of the N time-intervals (there is no
regression performed for the �rst time interval). It means that we have to take an arbitrary
�xed value of volatility σ̂ (for example the mid-volatility) for the �rst time interval. If
this period is large which is the case when there are 2 or 4 backward dates, then the error
induced by this arbitrary choice could be important. To �x this problem, we propose to
add an extra backward date close to the initial date in the �rst step. By doing so, we may
introduce more regression approximation error, but we reduce the size of time interval
where an arbitrary volatility is used, so the error induced by non-optimal volatility. The
better results show that with a large number of simulations, the added regression error is
small compare to the reduced non-optimal volatility error.

6.6 Pricing with path-dependent variables

When the price of an option depends on path-dependent variables A (can be average,
max, min, realized variance) whose values can change only at discrete dates (�xing dates),
one solves Avellaneda PDE between two such discrete dates tl and tl−1 for �xed values of
the path-dependent variables A, and de�nes

u(t−tl−1
, X,A) = u(t+tl−1

, X, φ(A))

with the function φ linking the past and new values of the path-dependent variables on
each �xing date.
For instance, if the option value depends on a monthly-computed realized variance, then

A1
t =

∑

{l|tl 6 t}

(
ln

Xtl

Xtl−1

)2

, A2
t = Xsup{l|tl 6 t}tl , φ(A) = A1 +

(
ln
X

A2

)2

.

In our numerical experiments, we apply the Monte Carlo scheme to price Asian options
and Call Sharpe options with UVM.
In real-life contracts, Asian options are in fact de�ned in terms of discretely sampled

average, like

A =
T

n

n∑

i=1

Xti .

Let us introduce the process Y such that

Y (ti 6 t < ti+1) =
1

i

i∑

k=1

Xtk .
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The factor process (X, Y ) is Markovian in the risk-neutral Black-Scholes model for X,
with related generator GX,Y v(X, Y ) given by the usual Black-Scholes generator GXv(X, Y )

on each time interval (ti−1, ti). Moreover, one has

A = TYT .

We proceed backwardly within each time interval (ti−1, ti) as in the case of European
options with a terminal condition obtaining by the continuation condition at the �xing
date ti,




∂tvi +

1

2
σ2X2∂2

X2vi = 0

vi(ti+1, X, Y ) = vi+1(ti+1, X, Y+)
(6.6.1)

where Y+ is obtained via the following jump conditions at the monitoring date ti+1:

Y+ =
i

i+ 1
Y +

X

i+ 1
.

Indeed, the cost of solving the above PDE is essentially that of solving M one-
dimensional PDE problems, where M is a generic number of mesh points for average
dimension.
We implement two algorithms for path-dependent options derived from Scheme Guyon

and Henry-Labordère for non-path-dependent ones presented in previous sections. The
�rst one is inspired by the �nite di�erence method. That mean we subdivide the path-
dependent variable (discrete arithmetic average for Asian options and discrete realized
variance for Call Sharpe). We know that between two discrete �xing dates, the path-
dependent variable does not change. So we use the scheme within such period taking
price at latest �xing date as terminal condition. And at each discrete �xing date, we
compute price depending on the path-dependent variable of the previous date using the
continuation condition.
But this algorithm is very time and memory consuming. Because Scheme Guyon and

Henry-Labordère is applied to each subdivided value of path-dependent variable. And
if there are several discrete �xing dates, we need to simulate a large number of paths to
have a good convergence for each subdivided value. On average, 50000 simulated paths are
needed and if there are 100 subdivided values, then there will be 100 × 50000 = 5000000

simulations. That takes a lot of time and memory. Instead the second algorithm is a
purely Monte Carlo method which is inspired by Gobet et al [45]. With this method,
in order to approximate conditional expectations, we use spot price and path-dependent
variable value to construct regression basis functions. Thus we need to simulate the path-
dependent variable value at each �xing date. It is also possible to construct regression
basis functions with only spot price. This approximation induces some additional error,
but it's easier to implement and takes less time to execute. If we use path-dependent
variable to construct basis functions, then for di�erent payo�s, we need di�erent form of
basis function. For instance, the polynomial basis with spot price and path-dependent
variable works for pricing Asian options but is not well adapted for Call Sharpe options,
since the payo� for a Sharpe option is the ratio of an European payo� and the realized
standard deviation (which is the path-dependent variable in this case). So polynomial
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Figure 6.1: 2BSDE scheme for path-dependent options pricing

function basis constructed with the ratio of spot price and realized standard deviation
should work better. However one need to pay attention while using the ratio, since the
realized standard deviation may be very small for �xing dates close to the initial pricing
date. Then the ratio may become very big which deteriorates the quality of approximation
of conditional expectations by regression and give irrational option price. We do some tests
with both algorithms and with di�erent basis functions.
For path-dependent options as Asian ones or Call Sharpe, there is also a problem in the

forward Monte Carlo simulation step. For the Finite Di�erence-like Monte Carlo scheme,
the regression function for Gamma Γ will depend on the path-dependent variable, so we
need to stock the regression parameters in a 5-dimensional variable. And in the forward
step, we need to simulate the path-dependent variable to estimate Gamma Γ. With the
purely Monte Carlo method where we simulate the path-dependent variables, the forward
step does not perform very well neither. Imagine that within one time interval, the paths
are simulated with a sub-optimal volatility, then this sub-optimality will persist until
the maturity, so lead to bad estimation of the path-dependent variable thus to severe
mis-pricing. Therefore, we prefer the backward price for path-dependent options.
When the path-dependent variables values change continuously, it is possible treat these

variables like processes by adding some di�usion terms.
For an option depending on continuous path-dependent variables , the Hamiltonian f

may not involve only the Gammas. For instance, in the single-asset case, if the price
u(t, x, v) of an option depends on the continuously compounded realized variance v, the
Hamiltonian reads

f(x, ∂2
xu, ∂vu) = maxσ 6 σ 6 σ̄σ

2

(
1

2
x2∂2

xu+ ∂vu

)
,

i.e., the optimal volatility is either σ or σ̄, depending on the sign, not of the Gamma
∂2

xu, but of
1
2
x2∂2

xu+ ∂vu.
The 2BSDEs approach can easily be adapted to the case when the realized variance Vt

changes continuously. One can show that in this case the price of the option with UVM
can be written u(t,Xt, Vt) where u is solution to

∂tu+ f(x, ∂2
xu(t, x, v), ∂vu(t, x, v) = 0
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Then one can associate a two-dimensional 2BSDE on the (X,V ) plane to this fully
nonlinear PDE:





dXt = σ̂XtdW
0
t

dVt = σ̂2dt+ ηdW 1
t

dYt = (−f(Xt,Γ
XX
t , ZV

t ) + LX,V u(t,Xt, Vt))dt+ ZX
t σ̂XtdW

0
t + ZV

t ηdW
1
t

(6.6.2)

with
LX,V =

1

2
σ̂2(X2ΓXX + 2ZV ) +

1

2
η2ΓV V .

In Guyon and Henry-Labordère [47], they used σ̂2 as the (forward) drift for the variance
V , but this is arbitrary. They have introduced a di�usion term for Vt. Here η is a constant
and W 1 a Brownian motion orthogonal to W 0. Adding this purely numerical volatility
term allows to compute ZV

t = ∂V u. Just as the solution u of the PDE, the 2BSDE is
independent of η, but the numerical scheme depends on it. A too small or too large value
for η would lead to a bad regression-based estimation of ZV

t .
For Asian options with continuous average, the factors are X (price) and I =

∫ ·

0
Xtdt,

the running time-average of X. With the Black-Scholes model, the pair (X, I) is then a
Markov process with generator GX,I given by

GX,I =
1

2
σ2X2∂2

X2 +X∂I .

Note that the generator GX,I is degenerate in the I variable.
Then the pricing problem writes:

{
∂tv + GX,Iv = 0

v(T,X, I) = φ (X, I)
(6.6.3)

Note that the numerical resolution of the above PDE requires special care to cope with
the degeneracy of the generator in the I variable (PDE in dimension 11

2
).

Alternatively to the previous approach, it is possible to reduce the pricing problem to
a one-dimensional PDE easier to solve numerically, by working in the numeraire X. The
price is Xtu(t, ηt), t ∈ (0, T ] where ηt = 1

Xt

(
K − It

T

)
and u is the solution of the following

one-dimensional PDE:




∂tu+

1

T
∂ηu+

1

2
σ2η2∂2

η2u = 0

u(T, η) = η+
(6.6.4)

For Asian options, we can take a similar approach as for Call Sharpe:



∂tu+ x∂Au+maxσ 6 σ 6 σ̄σ

2

(
1

2
x2∂2

xu

)
= 0

u(T, x,A) = φ(A)

(6.6.5)

We can associate a two-dimensional 2BSDE on the (X,A) plane to this fully nonlinear
PDE:





dXt = σ̂XtdW
0
t

dAt = Xtdt+ ηdW 1
t

dYt = (−f(Xt,Γ
XX
t ) + LX,Au(t,Xt, At))dt+ ZX

t σ̂XtdW
0
t + ZA

t ηdW
1
t

(6.6.6)
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with

LX,Au(t,Xt, At) =
1

2
η2ΓAA

t +
1

2
σ̂2X2

t ΓXX

As presented in Gobet et al. [45], one can probably also use an discrete approximation
for the continuous running-time average, then apply the same approach as for the case of
discrete average. This is a better alternative than having to solve the two-dimensional de-
generate PDEs (problems in dimension 11

2
, unless speci�c dimension reduction techniques

are available).

6.7 Numerical Experiments

The �nal meta-algorithm for pricing can be summarized in the following steps:

1. Simulate N1 replicas of X with a log-normal di�usion on discrete dates tk, k =

1, . . . ,M1.

More precisely, from the initial spot price X0, generate N1 paths of X with a time
step for discretization ∆t = T/M1.

XM1
tk+1

= XM1
tk
exp

{
−1

2
σ̂2∆tk + σ̂∆Wtk

}

For the path-dependent options, path-dependent variables are simulated with these
realizations of X.

2. Apply the backward algorithm Scheme Guyon and Henry-Labordère using a regres-
sion approximation.

Calculate the maturity payo�s YT for all N1 simulated paths. Then compute back-
wardly from k = M1 − 1 to k = 1.

At each tk, construct the explanatory matrix Ak with basis functions p0, · · · , pl−1

Ak =




p0(X
N1,1
tk

) p1(X
N1,1
tk

) · · · pl−1(X
N1,1
tk

)

p0(X
N1,2
tk

) p1(X
N1,2
tk

) · · · pl−1(X
N1,2
tk

)
...

...
...

...
p0(X

N1,N1
tk

) p1(X
N1,N1
tk

) · · · pl−1(X
N1,N1
tk

)




Ak has N1 rows and l columns, where l is the number of basis functions.

Perform the regression for Γ and Y on the columns of Ak, then compute Γtk and Ytk

by formulas in the equation (6.3.4) where the conditional expectations are replaced
by their approximations

E[·|X] =
l−1∑

i=0

kipi(X).

From t = t1 to t = t0, there is no regression to perform since the conditional
expectations E [·|F0] are indeed expectations E [·]. Apply always the scheme to the
price Y and Gamma Γ
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(∆t1)
2 σ̂ασ̂βXα

t0
Xβ

t0Γ
αβ
t0 = E

[
Yt1

(
Uα

t1
Uβ

t1 − ∆t1ρ̂
−1
αβ − ∆t1σ̂

αUα
t1
δαβ

)]

Yt0 = E [Yt1 ] +

(
f (Xt0 ,Γt0) −

1

2

d∑

α,β=1

ρ̂αβσ̂ασ̂βXα
t0
Xβ

t0Γ
αβ
t0

)
∆t1.

This is the end of the backward step.

3. Simulate N2 independent replicas of X on discrete dates tk, k = 1 . . .M2 using the
Gamma functions computed at the previous step then compute the mean of payo�s
on maturity tM2 = T . For the forward step, it's a classic Monte Carlo method with
N2 simulations and M2 discrete dates.

It is noteworthy that the scheme presented previously have 3 key convergence parameters
(N2 and M2 being �xed in our tests): the number of time steps for discretization M1;
the basis functions; the number of simulations N1; Besides the backward step di�usion
volatility σ̂ can also in�uence the pricing precision.
As M1 becomes large, which means the time step ∆t becomes small, we need more

and more simulations (increasing N1) to obtain an accurate price. Gobet et al. [45], for
BSDEs, and A. Fahim et al. [41] for fully nonlinear PDEs, also noticed that the numerical
scheme diverges when the time step ∆t goes to zero, the number of simulations N1 being
�xed.
A kind of Picard iterations method can also be applied to reduce the pricing error.

Before proceeding to Step 3, we may repeat Steps 1 and 2, replacing (ρ̂αβσ̂ασ̂β) by the
optimal covariance matrix estimated at Step 2. This should improve the precision of lower
bound for the price in Step 3.
In our numerical experiments, we take T = 1, and, for each asset α, Xα

0 = 100, σα = 0.1,
σ̄α = 0.2 and we use the constant mid-volatility σ̂α = 0.15 (it will be mentioned if other
values are used) to generate the �rst N1 replicas of X. We also pick ti = i/n, so that
∆ = 1/n. In the forward Monte Carlo pricing step (contrary to the backward step where
Gamma Γ is calibrated), the N2 = 50000 replicas of X use a time step ∆2 = 1/52.
European Call. First, let us test our algorithm in the case of an European Call option

with payo� (XT −K)+. We take K = 100. The true BS price is CBS = 7.97. As showed
on the following �gure, the algorithm with backward step produces an unpredictable bias.

By adding the forward step, the prices obtained are low-biased. For a Call option, these
prices have good precision with a small number of simulations.
We know that theoretically the pricing of European Call option with UVM depends

only on the maximal volatility σ̄, because the payo�s is convex and the Gamma Γ is
always positive. But as we show in the tests, the numerical result depends on the minimal
volatility σ. The reason is that the simulated Gamma Γ may take negative value in
numerical experience, then during the forward Monte Carlo simulation step, in some time
intervals paths are generated with the minimal volatility σ, so simulated prices may be
much lower than the true BS price when σ is very small. We can also see that increasing
simultaneously the backward dates number and the simulated paths number can diminish
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Figure 6.2: European Call Pricing with Backward step only Vol min=10% Vol max=20%
for polynomial basis

Figure 6.3: Call pricing with Forward step for di�erent backward dates and polynomial
basis functions

this di�erence. But this will increase considerably the computation time. So an advice for
the use of this pricing algorithm is varying di�erent parameters and taking the maximum
of simulated prices (because these prices are low-biased).

Figure 6.4: In�uence of Vol Min to Call pricing Vol max=20%

For an European Call, the Gamma Γ is positive, so the optimal volatility σ∗ is always
equal to σ̄. To test our algorithm, a more interesting case is European Call Spread whose
Gamma Γ can be positive or negative.
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European Call Spread. Let us test our algorithm in the case of a Call Spread option
with payo� (XT − K1)

+ − (XT − K2)
+. We pick K1 = 90 and K2 = 110. The true

price (PDE) is CPDE = 11.20 and the Black-Scholes price with the mid-volatility 15% is
CBS = 9.52.
In this case, the Monte Carlo approach can capture the right magnitude of the price.

From the following �gure, we see that the choice of basis functions (here polynomial with
di�erent maximal degree) and time step clearly a�ects the price estimate. However, as
the estimator is low-biased, one possibility is to use the pricing algorithm with di�erent
parameters and take the maximum of simulated prices.

Figure 6.5: Call Spread pricing with Forward step for di�erent backward dates and poly-
nomial basis functions

Also the choice for the backward step di�usion coe�cient σ̂ can in�uence numerical
results. In fact, theoretically this scheme does not depend on σ̂, but since we have to use
Monte Carlo regression, then the scheme is very sensible to this parameter. To �x this
issue, one possible way is to price with di�erent values for σ̂. It is reported in Guyon and
Henry-Labordère et al. [47] that, among all the constant volatilities tested, the best result
for European Call Spread is obtained with the mid-volatility σ̂ = 15%. But we need to
emphasize that the mid-volatility may not be the optimal choice for others options.
Asian Call. We begin our tests for path-dependent options with an Asian Call. The

payo� is (AT −K)+ where AT = T
12

∑12
i=1Xti the monthly sampled arithmetic average. The

PDE price is CPDE = 4.85 with K = 100, σ̄ = 20%, σ = 10%, 15%, 20%. As explained
in the section on path-dependent options, we try two algorithms for Asian options in the
numerical tests. The �rst one is a Finite Di�erence inspired Monte Carlo scheme (denoted
by FC+MC) and the second one is a purely Monte Carlo scheme. Both algorithms give
good results with suitable parameters. But the �rst one is time and memory-consuming, so
we can't compute prices with more than 100000 simulations in the case of 250 subdivisions.
And for the second algorithm, we can construct basis functions either with only Spot

price or with both Spot price and average. The simulated prices in these two cases have
good precision with a large number of simulations. When constructing only with Spot
price, we make an approximation that

E
[
·|Xti−1

, Ati−1

]
≈ E

[
·|Xti−1

]
.
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Figure 6.6: Asian Call Pricing with FD+MC Vol min=15% Vol max=20% for di�erent
subdivisions of the average (NA)

Figure 6.7: Asian Call Pricing with MC Backward step only Vol min=15% Vol max=20%

Figure 6.8: Asian Call Pricing with MC Forward step Vol min=10% Vol max=20% Vol
di�usion σ̂=19%

We have computed the price of the above Asian Call option with di�erent values for the
backward step di�usion volatility σ̂. It turns out the best result is obtained with σ̂ = 19%

(which is close to the Max Vol σ̄ = 20%).
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Figure 6.9: Asian Call Pricing with MC Forward step Vol min=10% Vol max=20% for
di�erent di�usion vols σ̂

Asian Call Spread. As European Call Spread for non-path-dependent options, Asian
Call Spread is more interesting to test our algorithm for path-dependent options. The
payo� is (AT−K1)

+−(AT−K2)
+ where AT = T

12

∑12
i=1Xti the monthly sampled arithmetic

average and K1 < K2. For our numerical tests,we take K1 = 90, K2 = 110. The PDE
price CPDE = 10.67 with σ̄ = 20%, σ = 10%, CPDE = 10.16 with σ̄ = 20%, σ = 15%,
and CPDE = 9.85 with σ̄ = σ = 20%. From our tests, we notice that by using the value
of an European Call option with same strike as control variate, the prices have better
precision than the ones obtained without control variate. Unlike for European options, it
is necessary to apply control variates for path-dependent options.

Figure 6.10: Asian Call Spread Pricing with control variate Vol min=10% Vol max=20%

Call Sharpe. To �nish our numerical tests, let us test the algorithms with a Call Sharpe

option paying (XT − 100)+/
√
VT where VT = 1

T

∑12
l=1

(
ln

Xtl

Xtl−1

)2

is the realized volatility

computed using monthly returns.
As mentioned in the section on path-dependent options pricing, it is notably di�cult

to �nd a convenient basis to compute the conditional expectations and we assume as an
approximation that

E

[
·|Xti−1

, A1
ti−1

, A2
ti−1

]
≈ E

[
·|Xti−1

]
.

We notice also that with well chosen control variates, the estimated prices have better
precision.
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Vol min max PDE without control control for Y control for Y ,Z control for Y ,Z(HC)

15%-15% 40.71 41.09 40.65 40.65 40.65

15%-20% 47.50 45.53 46.36 46.90 47.09

10%-20% 57.66 51.64 54.1 54.05 56.04

Table 6.1: Calls Sharpe pricing with Backward step only for di�erent Vols Min and Vol
Max

European Call with 2 underlying assets. We also test the algorithm in the case
of an European Call option with 2 underlying assets. The payo� is (

X1
T +X2

T

2
− K)+.

We take K = 100. The PDE price is CPDE = 5.98 when the correlation ρ = 100%

and CPDE = 5.58 when ρ = 70%. As showed on following �gures, the algorithm with
backward step produces a good estimation of the price when there is no uncertainty on
both volatilities and correlations. But in the case of uncertain volatilities or correlations,
we need to improve the estimated prices precision by using suitable backward step di�usion
volatilities and correlations or more appropriate basis functions.

Figure 6.11: Call (100%) Pricing 2 underlyings Vol1 min=Vol1 max=20% Vol2 min=Vol2
max=10% Correl=100%

Figure 6.12: Call (100%) Pricing 2 underlyings Vol1 min=Vol1 max=20% Vol2 min=Vol2
max=10% Correl Min=50% Correl Max=70%
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6.8 An algorithm without regression

We see that in our previous tests, using the Monte Carlo regression method to approximate
conditional expectation often leads to time consuming pricing procedure or mis-pricing. In
this section, we present an alternative way to implement the Scheme Guyon and Henry-
Labordère. We derive a new algorithm where no Monte Carlo simulations are needed.
According to the paper of Carr and Madan [19], we know that under some assumptions,
the price of an European style option can be presented like a continuous sum of puts and
calls (with BS model) with di�erent strikes. There are closed formulas for conditional
expectations of these puts and calls. So if we write price Y at every backward date on
functions of puts and calls with BS model, then we can use closed formulas to approximate
conditional expectations in the formulas for option price and Gamma with UVM. By doing
so, there is no Monte Carlo regression to perform, so the program is quicker to execute and
there is no simulation error. But we also need to choose a di�usion volatility to calculate
BS puts and calls prices and Gammas like the previous method. And the quality of the
approximation by payo�s of puts and calls is very important to have the right price. And
for path-dependent options, we need to integrate the path-dependent variables in the puts
and calls basis. In the following, to simplify the formulas, we denote the Malliavin weight
for Gamma Γ by C·.

In one-dimensional case, the formulas (6.3.4) become:





Xti = X0e
−σ̂2 ti

2
+σ̂Wti

Yti−1
= E

[
Yti|Xti−1

]
+

(
f
(
Xti−1

,Γti−1

)
− 1

2
σ̂2X2

ti−1
Γti−1

)
∆ti

∆tiσ̂X
2
ti−1

Γti−1
= E

[
Yti ·

(
∆W 2

ti

σ̂∆ti
− ∆Wti −

1

σ̂

)
|Xti−1

]
(6.8.1)

We have closed formulas for Y BS,i and ΓBS,i. If we write

YtN=T =
I∑

i=1

αi(XT −Ki)
+ +

J∑

j=1

βj(Kj −XT )+

=
I∑

i=1

αiY
BS,Call,T,i
T +

J∑

j=1

βjY
BS,Put,T,j
T

Then, we get

ΓtN−1
= E

[
CtNYtN |FtN−1

]

=
I∑

i=1

αiE

[
CtNY

BS,Call,tN ,i
tN

|FtN−1

]
+

J∑

j=1

βjE

[
CtNY

BS,Put,tN ,j
tN

|FtN−1

]

=
I∑

i=1

αiΓ
BS,Call,tN ,i
tN−1

+
J∑

j=1

βjΓ
BS,Put,tN ,j
tN−1
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And

YtN−1
= E

[
YtN=T |FtN−1

]
+

(
1

2

(
(σ∗)2 − σ̂2

)
X2

tN−1
ΓtN−1

)
∆tN

=
I∑

i=1

αi

[
Y BS,Call,tN ,i

tN−1
+

(
1

2

(
(σ∗)2 − σ2

)
X2

tN−1
ΓBS,Call,,tN ,i

tN−1

)
∆tN

]

+
J∑

j=1

βj

[
Y BS,Put,tN ,j

tN−1
+

(
1

2

(
(σ∗)2 − σ2

)
X2

tN−1
ΓBS,Put,tN ,j

tN−1

)
∆tN

]

Then on tN−1, we can �nd new αi and βj such that

YtN−1
∼=

I∑

i=1

αi(StN−1
−Ki)

+ +
J∑

j=1

βj(Kj − StN−1
)+

=
I∑

i=1

αiY
BS,Call,tN−1,i
tN−1

+
J∑

j=1

βjY
BS,Put,tN−1,j
tN−1

So

ΓtN−2
= E

[
CtN−1

YtN−1
∆W 2

tN−1
|FtN−2

]

=
I∑

i=1

αiE

[
CtN−1

Y
BS,Call,tN−1,i
tN−1

|FtN−2

]
+

J∑

j=1

βjE

[
CtN−1

Y
BS,Put,tN−1,j
tN−1

|FtN−2

]

=
I∑

i=1

αiΓ
BS,Call,tN−1,i
tN−2

+
J∑

j=1

βjΓ
BS,Put,tN−1,j
tN−2

...
By continuing this routine, we can get Y0 which is the price at the initial pricing date.
In this method, the question is how to choose the di�erent Strikes and how to obtain

the coe�cients before Calls and Puts. One possible way is to use the same grid for Spot
Prices and Strikes. And we choose a particular strike which generally could be the initial
spot price(or a price close to this one), Puts are with strikes smaller than this particular
strike and Calls are with strikes bigger than this one. Then by identifying the option
price Y and the sum of Calls and Puts for each Spot Price in price grid, we get two linear
systems to solve. Thanks to the particular choice of Calls and Puts, these two systems are
an upper triangular one and a lower triangular one which are easy to solve numerically.
In this method, two parameters are important. The �rst one is number of backward dates
who represents the discretization of the time dimension for a continuous process. And
the second one is number of subdivision for spot price dimension. In order to better
approach a continuous process by a discrete version, we need more backward dates, but
more backward dates mean more approximations of option price by sum of Calls and Puts
payo�, then probably more errors. So we should choose this parameter cautiously. In order
to approximate better option price by sum of Calls and Puts, it's natural to subdivide
more the Spot Price dimension thus have more Calls and Puts with strikes closer to each
other. But more subdivision means more computational time and particularly this may
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introduce some instability. As for the time dimension, this parameter should be chosen
carefully.
We apply this new algorithm to both path- and non-path-dependent options. As we

can see from the tests, with 30-50 backward dates and 300-500 Spot Price subdivision, we
can have a price estimation with good precision. We use a non-uniform subdivision with
concentration around the initial Spot for Spot price. Idea behind this is to better capture
the convexity around the initial spot.
But this approach is very similar to the Finite Di�erence method: subdivide each di-

mension, then compute the price by a roll-back process. Particularly in the cases with
path-dependent variables or of multi-dimension, this approach su�ers the same problem
as Finite Di�erence method. So in thess cases we prefer the Monte Carlo method.
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Figure 6.13: Call Spread (90%-110%) Pricing without MC regression Vol min=10% Vol
max=20%
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Figure 6.14: Call (100%) Pricing without MC regression Vol min=10% Vol max=20%
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Figure 6.15: Asian Call (100%) Pricing without MC regression Vol min=10% Vol
max=20%

6.9 Conclusion

From our numerical tests (see Appendix 6.10 for more results), we generally observe that
the Monte Carlo method performs well for non-path-dependent options and can provide
good precision prices for path-dependent ones with well chosen basis functions.
In order to get more precise results with this method, we should improve the approxima-

tion of conditional expectations by using better regression procedure, local support basis
functions, suitable control variates and non-parametric regressions in higher dimension.
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6.10 Appendix

Here we report more results of our numerical tests.

Figure 6.16: Asian Call Pricing with FD+MC Vol min=10% Vol max=20%

Figure 6.17: Asian Call Pricing with FD+MC Vol min=15% Vol max=20%

Figure 6.18: Asian Call Pricing with FD+MC Vol min=20% Vol max=20%
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Figure 6.19: Asian Call Pricing with MC Backward step and Forward step Vol min=10%
Vol max=20%

Figure 6.20: Asian Call Pricing with MC Backward step only Vol min=20% Vol max=20%

Figure 6.21: Asian Call Pricing with MC Forward step Vol min=10% Vol max=20% Vol
di�usion σ̂=20%
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Figure 6.22: European Call Pricing with Backward step only Vol min=10% Vol max=20%
for di�erent di�usion vols σ̂

Figure 6.23: European Call Spread Pricing with Backward step only Vol min=10% Vol
max=20% for di�erent polynomial basis
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Figure 6.24: Call Spread (90%-110%) Pricing without MC regression Vol min=15% Vol
max=20%
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Figure 6.25: Call Spread (90%-110%) Pricing without MC regression Vol min=Vol
max=20%
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Figure 6.26: Call (100%) Pricing without MC regression Vol min=15% Vol max=20%
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Figure 6.27: Call (100%) Pricing without MC regression Vol min=Vol max=20%
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Figure 6.28: Asian Call (100%) Pricing without MC regression Vol min=15% Vol
max=20%
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Figure 6.29: Asian Call Spread (90%-110%) Pricing without MC regression Vol min=10%
Vol max=20%
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Figure 6.30: Asian Call Spread (90%-110%) Pricing without MC regression Vol min=15%
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Figure 6.31: Call (100%) Pricing 2 underlyings Vol1 min=Vol1 max=20% Vol2 min=Vol2
max=10% Correl=50%

Figure 6.32: Call (100%) Pricing 3 underlyings Vol1 min=Vol1 max=20% Vol2 min=Vol2
max=15% Vol2 min=Vol2 max=10% Correl=100%
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