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Résumé

L'objectif principal de cette thése est d'étudier quelques problemes de mathématiques
nanciéres dans un marché incomplet avec incertitude sur les modéles. Récemment, deux
approches di érentes (mais liées) ont été développées sur ce sujet. L'une est la théorie
desG-espérances non-linéaires initiée par Pen8d], et I'autre est la théorie des équations
di érentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSRS) introduite
par Soner, Touzi et Zhang101]. Dans cette thése, nous adoptons le point de vue de ces
derniers auteurs.

Cette these contient quatre parties dans le domain des 2EDSRs. Nous commengons par
généraliser la théorie des 2EDSRs initialement introduite dans le cas de générateurs lips-
chitziens continus a celui de générateurs a croissance quadratique. Cette nouvelle classe
des 2EDSRs nous permettra ensuite d'étudier le probléeme de maximisation d'utilité ro-
buste dans les modeles non-dominés, ce qui peut étre considéré comme une extension
non-linéaire du probléme de maximisation d'utilité standard. Dans la deuxiéme partie,
nous étudions ce probleme pour les fonctions d'utilité exponentielle, puissance et logarith-
mique. Dans chaque cas, nous donnons une caractérisation de la fonction valeur et d'une
stratégie d'investissement optimale via la solution d'une 2EDSR.

Dans la troisieme partie, nous fournissons également une théorie d'existence et unicité
pour des EDSRs ré échies du second ordre avec obstacles inférieurs et générateurs lips-
chitziens, nous appliquons ensuite ce résultat a I'étude du probleme de valorisation des
options américaines dans un modele nancier a volatilité incertaine. Dans la quatrieme
partie, nous étudions une classe des 2EDSRs avec sauts. En particulier, nous prouvons
I'existence et l'unicité de solutions dans les espaces appropriés. Nous pouvons interpréter
ces équations comme des EDSRs standards avec sauts, avec volatilité et mesure de saut
incertaines. Ces équations sont les candidats naturels pour l'interprétation probabiliste
des équations aux dérivées partielles intégro-di érentielles complétement non-linéaires.
Comme application de ces résultats, nous étudions un probleme de maximisation d'utilité
exponentielle robuste avec incertitude sur les modeéles. L'incertitude a ecte a la fois le
processus de volatilité, mais également la mesure des sauts.

La derniere partie est dédiée a l'implémentation numérique des méthodes de Monte
Carlo pour la valorisation des options dans des modéles a volatilité incertaine. Ce travail
pratique a été réalisé lors d'un stage au cours de la premiére année de thése.

Mots-clés: Equations di éntielles stochastiques rétrogrades du second ordre, mesures
de probabilités mutuellement singulieres, analyse stochastique quasi-sdre, formule de
Feynman-Kac non-linéaire, EDPs compléetement non-linéaires, générateur a croissance
guadratique, maximisation d'utilité robuste, incertitude sur les modeles, probleme
d'obstacle, options américaines, temps d'arrét optimal,équations di érentielles stochas-
tiques rétrogrades avec sauts.







Abstract

The main objective of this PhD thesis is to study some nancial mathematics problems
in an incomplete market with model uncertainty. In recent years, two di erent, but
somewhat linked, frameworks have been developed on this topic. One is the nonlinear
G-expectation introduced by Peng 9], and the other one is the theory of second order
backward stochastic di erential equations (2BSDEs for short) introduced by Soner, Touzi
and Zhang [L0]]. In this thesis, we adopt the latter point of view.

This thesis contains of four key parts related to 2BSDEs. In the rst part, we generalize
the 2BSDEs theory initially introduced in the case of Lipschitz continuous generators to
guadratic growth generators. This new class of 2BSDEs will then allow us to consider the
robust utility maximization problem in non-dominated models, which can be regarded as
a nonlinear extension of the standard utility maximization problem. In the second part,
we study this problem for exponential utility, power utility and logarithmic utility. In each
case, we give a characterization of the value function and an optimal investment strategy
via the solution to a 2BSDE.

In the third part, we provide an existence and uniqueness result for second order re ected
BSDEs with lower obstacles and Lipschitz generators, and then we apply this result to
study the problem of American contingent claims pricing with uncertain volatility. In the
fourth part, we de ne a notion of 2BSDEs with jumps, for which we prove the existence
and uniqueness of solutions in appropriate spaces. We can interpret these equations as
standard BSDEs with jumps, under both volatility and jump measure uncertainty. These
equations are the natural candidates for the probabilistic interpretation of fully nonlinear
partial integro-di erential equations. As an application of these results, we shall study
a robust exponential utility maximization problem under model uncertainty, where the
uncertainty a ects both the volatility process and the jump measure.

The last part is about numerical implementation of Monte Carlo schemes for options
pricing in uncertain volatility models, which was realized during an internship during the
rst year of this PhD study.

Keywords: Second order backward stochastic di erential equations, mutually singular
probability measures, quasi-sure stochastic analysis, fully nonlinear PDEs, nonlinear
Feynman-Kac formula, quadratic growth generator, robust utility maximization, model
uncertainty, obstacle problem, American contingent claims, optimal stopping time,
backward stochastic di erential equations with jumps.
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Chapitre 1
Introduction

The main objective of this PhD thesis is to study some nancial mathematics problems
in an incomplete market with model uncertainty. In recent years, two di erent, but
somewhat linked, frameworks have been developed on this topic. One is the nonlinear
G-expectation introduced by Peng 89, and the other one is the theory of second order
backward stochastic di erential equations (2BSDEs for short) introduced by Soner, Touzi
and Zhang [L0]]. In this thesis, we adopt the latter point of view.

This thesis contains four key chapters related to 2BSDEs. We rst generalize the 2BSDEs
theory initially introduced in the case of Lipschitz continuous generators to quadratic
growth generators in Chapter2. This new class of 2BSDEs will then allow us to study
the robust utility maximization problem in non-dominated models, which can be regarded
as a nonlinear extension of the standard utility maximization problem. In ChapteB, we
study this problem for exponential utility, power utility and logarithmic utility. In each
case, we give a characterization of the value function and an optimal investment strategy
via the solution to a 2BSDE. In Chapter4, we also provide an existence and uniqueness
theoty for second order re ected BSDEs (2RBSDEs for short) with one lower obstacle and
Lipschitz generators, then apply this result to study the problem of American contingent
claims pricing with uncertain volatility.

In Chapter 5, we de ne a notion of 2BSDEs with jumps, for which we prove the existence
and uniqueness of solutions in appropriate spaces. We can interpret these equations as
standard BSDEs with jumps, under both volatility and jump measure uncertainty. These
equations are the natural candidates for the probabilistic interpretation of fully nonlinear
partial integro-di erential equations. As an application of these results, we shall study
a robust exponential utility maximization problem under model uncertainty. The uncer-
tainty a ects both the volatility process and the jump measure.

The last chapter 6) is about numerical implementation of Monte Carlo schemes for
options pricing with uncertain volatility models, which | realized during an internship at
Crédit Agricole CIB during the rst year of my PhD study.

Backward stochastic di erential equations (BSDEs for short) rst appeared in Bismut
[11] in the linear case, and then have been widely studied since the seminal paper of Par-
doux and Peng 87]. Given a Itered probability space( ;F;fF (9,4 ¢ 1 ; P) generated by
an RY-valued Brownian motionW, a solution to a BSDE consists of a pair of progressively
measurable processd¥; Z) such that

Z Z
Yy = + fs(Ys; Zs)ds ZdWs; t 2 [0;T]; P a:s: (2.0.1)

t t
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wheref (called the generator) is a progressively measurable function and(called the
terminal condition) is an Fr-measurable random variable. Pardoux and Peng proved
existence and uniqueness of the above BSDE provided that the functiénis uniformly
Lipschitz in y and z and that and f4(0; 0) are square integrable. In the particular case
when the randomness ii and is induced by the current value of a state process de ned
by a forward stochastic di erential equation, the solution to the so called Markovian BSDE
could be linked to the solution of a semilinear PDE by means of a generalized Feynman-
Kac formula. Since their pioneering work, many e orts have been made to relax the
assumptions on the generatof ; for instance, Lepeltier and San Martin §7] have proved
the existence of a solution whef is only continuous in(y; z) with linear growth. Most of
these e orts are particularly motivated by applications of BSDEs in many elds such as:
nancial mathematics, stochastic games, semilinear PDESs, stochastic controls, etc. We
refer to El Karoui, Peng and Quenez33] for a review of these applications.

The link between BSDEs and semilinear PDEs is important for the formulation of 2BS-
DEs. Therefore let us show it with the following example. Consider the parabolic PDE:

(@+ L)u(t;x) + f(t;x;u(t;x); Du(tx))=0

u(TX) = o) (02
wherelL is the second order di erential operator de ned as follows
. X : 1 X 7 : . 2/od
L'(x)=  Bx@ )+35 () ()@, (x) ' 2 CHRY):
i=1 i =1

If g, f and the coe cients of the operator L are smooth enough, the PDE(.0.2

has a classic solutionu 2 C¥2. Then the processes(Y;Z) = (Y&;zl) =
(u(s; X5);  Du(s; XE*)) solves the following BSDE:
Z Z;
Y& = g(XP)+  F (X PGV Z5)dr Z™dw,;
S S

where (Xt*);6 s6 1 is the di usion process associated with the operatdr starting from
x at t. In particular, u(t;x) = Y,**, and Du(t;x) = Z* which is a generalization of the
well known Feynman-Kac formula to a semilinear case.

More recently, motivated by applications in nancial mathematics and probabilistic nu-
merical methods for PDEs (see2[)], [41], [9]1] and [10Q), Cheridito, Soner, Touzi and
Victoir [ 22] introduced the rst formulation of second order BSDES, which are connected
to the larger class of fully nonlinear PDEs. Then, Soner, Touzi and Zhan@{1] provided
a new formulation of 2BSDEs based on quasi-sure stochastic analysis. Their key idea was
to consider a family of BSDEs de ned quasi surely (g.s. for short) under a non-dominated
class of mutually singular probability measures,which mears a:s: for every probability
measureP in this class.

We rst give some intuition in one dimensional case which will help to well understand the
new formulation of 2BSDEs. LetH(y;z; )= G( ):= isupgaca(@ )= 3@ "7 a )
with 0<a 6 a< 1, and suppose that the following fully nonlinear PDE

@u+ G(D?u)=0
u(T;:) =



has a smooth solution. The procesX, = Rot 2dw; is well de ned with ( osre T @
process taking values iffa;al. Then the pair (Y; := u(t; X, ); Z; := Du(t; X)) satis es
the following equation

Z T

Yo = ( Xq) ZsdX, + K1 K,
t

R
with Ky := é G(D?u) % sD?u (s;X4)ds. In particular, we notice that K is a nonde-
creasing process such that, = 0. Thus, it is natural that there is some nondecreasing

process appearing in the formulation 02BSDEs.

Next, with a similar example, we suggest a representation for the solutiof of 2BSDEs.
Let u be a solution of the following fully nonlinear PDE

@+ H(;;u;Du;D%u)=0 and u(T;:) =

with H(t;X;r;p; ) = SUPaso %a f(t;x;r;p;a) . Then we should have, formallyu =

supu? whereD; denote the de nition domain off in a on R, and u? is a solution of
a2D¢

1
@@ + EaDzua f(;;u¥;Du®;a) =0 and u(T;:) =

Since the above PDE is semilinear, it corresponds to a BSDE. This provides a possible
candidate for the solutionY to the Markovian 2BSDE associated to the fully nonlinear
PDE. We should have, again formallyY; = supY; with

Z Z;
Y, = ( Xq) f(nX,;Y ;Z,; ;dr Z, F2W;; s2 [t T];

S S

. iy . . Rs 1=
where( (), ;¢ 7 IS @ positive process taking values iD; and whereX = x+ ° 2dW, .

With the above examples in mind, we will now give a rigorous description of this frame-
work. Let = I 2 C(0;T];RY:!,=0 be the canonical space equipped with the
uniform norm k! k; :=supy¢ (¢ 7]! tJ, B the canonical process.

We de ne F as the corresponding conjugate of a given map w.r.t. by

1
Fi(l;y;z;a) ;== sup éTr(a) H((l;y;z; ) fora2 S3%
2Dy

where S;° denotes the set of all real valued positive de nitel  d matrices. And

Bi(y;2) = Fuly; z;ly)
R
with b :=limsup MBi, hBi, . ;wherehBi, := B{B] 2 ,B.dB is de ned pathwise
"& 0
and the lim sup is taken componentwise.

We denote byPy the non-dominated class of mutually singular probability measures,
where under eactP 2 P, b has positive nite bounds which may depend of?. We shall
consider the following2BSDE,
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Z 1
Y, = B,(Ys; Zs)ds

t t

Z 1
Z,dB;+ Ky K; 06t6 T; Py q:s: (2.0.3)

De nition 1.0.1. We say(Y;Z) is a solution to 2BSDE (1.0.3 if :
Yr= ,Py Qs

For all P2 Py, the processk P de ned below has nondecreasing patls  a:s:
z Z,

t
KtP =Yy Y+ IbS(YS;ZS)ds+ ZdBs; 06 t6 T; P as: (1.0.4)
0 0

The family KP;P2 Py satis es the minimum condition

. S N
KS= essinf Ef KP ;06t6T;P as; 8P2Py: (1.0.5)
PO%2P , (t* ;P)
wherePy (t*; P) is the set of probability measures iRy which coincide withP until
t*.

Moreover if the family KP;P2 Py can be aggregated into a universal proceks, we
call (Y;Z;K) a solution of 2BSDE (1.0.3.

The above minimum condition can be understood as tha{ is a martingale under the
nonlinear expectation generated by the set of probability measuré, .

Under uniform Lipschitz conditions similar to those of Pardoux and Peng, Soner, Touzi
and Zhang [LO]] established a complete theory of existence and uniqueness for the solution
to the above 2BSDE. Possamai in9[)] extended their results to the case of a continuous
linear growth generator. In the following, we will concentrate ourselves on this new for-
mulation.

1.1 Second Order BSDEs with Quadratic Growth Gen-
erators

Motivated by a robust utility maximization problem under volatility uncertainty, in this
part of the thesis, we generalize the 2BSDESs theory to the case where the generators have
quadratic growth in z.

Quadratic BSDEs in the classical case was rst studied by Kobylanské$], who proved
existence and uniqueness of a solution by means of approximation technigques borrowed
from the PDE literature, when the generator is continuous and has quadratic growth in
z and the terminal condition is bounded. Tevzadze in107 has given a direct proof
for the existence and uniqueness of a bounded solution in the Lipschitz-quadratic case,
proving the convergence of the usual Picard iteration. Recently, Briand and HaJ] have
extended the existence result to unbounded terminal condition with exponential moments
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and proved uniqueness for a convex coe cientl[l]. Finally, Barrieu and El Karoui [6]
recently adopted a completely di erent approach, embracing a forward point of view to
prove existence under conditions similar to those of Briand and Hu. Quadratic BSDEs
nd their applications essentially in dynamic risk measures and utility maximization under
constraints.

For 2BSDEs with quadratic growth generators, our main assumptions on the function
F is as follows

Assumption 1.1.1. (i) Py is not empty, and the domairDg,(y.,y = D, is independent
of (}y;z).
(i) F is F-progressively measurable iDg, .
(i) F is uniformly continuous in! for thejj jj; norm.

(iv) F is continuous inz and has the following growth property. There exis{s ; )2
R+ R: R, such that

B(y:iz2) 6 + jyj+ = 8722 %Py q:s:; for all (Gy;2):
2

(v) FisC'inyandC?in z, and there are constants and such that for all(t;y; z),
iD,B.(y;2)j6 r; D,B(y;2)j6 r+ Bz ;
ngzlbt(y;Z)j 6 ; PH g:s:

Among the above assumptions(i) and (iii) are taken from [LO]] and are needed to
deal with the technicalities induced by the quasi-sure frameworKji) and (iv) are quite
standard in the classical BSDEs literature; and (v) introduced in Tevzadz&(7] is essential
to prove existence of a solution to quadratic 2BSDEs.

The main di erence with the case of Lipschitz generators is the quadratic growth as-
sumptions onz, which induce many technical di culties in our framework. As for the
BSDEs with quadratic growth, we show that theZ-part of a solution to 2BSDEs also
satis es certain BMO property. This property plays a very important role in the proof for
2BSDEs, much more than for the classical BSDEs.

With a generalization of the comparison theorem proved inLp7 (see Theorem?), we
then obtain a representation formula for solution to2BSDE as in Theoremd4:4 of [101].

Theorem 1.1.1. Let Assumptions1.1.1 hold. Assuming that 2 L}, and (Y;Z) 2
DL HZ (the solution space, see ChaptéX for precise de nition) is a solution to 2BSDE
(1.0.3. Then, foranyP2 Py and06 t; <t,6 T,

0
Y, = esssup Yy (t2;Yy,); P as: (1.1.1)
PO2P i (t] ;P)

where (yP;zP) := (y°(; );z°(; )) is the unique solution of the classical BSDE with the
same generatorlb (existence and uniqueness have been proved under our assumptions
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by Tevzadze in 107), for any P 2 Py, F-stopping time , and F -measurable random
variable 2 L?! (P).

Consequently, the2BSDE (1.0.3 has at most one solution iD}, H3.

To prove existence of a solution, we generalize the approach in the article0]] to
the quadratic case, where the main tool is the so-called regular conditional probability
distributions of Stroock and Varadhan 104. This allows to construct a solution to the
2BSDE when the terminal condition belongs to the spac®lC,() . Then, by passing to
limit, we prove existence of solution when the terminal condition is i}, , the closure of
UCy() under a certain norm de ned in Chapter2.

Theorem 1.1.2. Let 2 L{ . Under Assumptionl.1.1, there exists a unique solution
(Y;Z) 2 D} H to the 2BSDE (1.0.3.

Indeed, this approach relies very heavily on the Lipschitz and Lipschitz-quadratic as-
sumption on the generator. Besides, it can only be used if we are able rst to prove
uniqueness of the solution through a representation property. This is why we put some
e orts to provide another proof of existence based on approximation techniques similar
to those used in the classical BSDEs literature recalled above. But, since we are working
under a family of mutually singular probability measures which is not necessarily weakly
compact, both the classical monotone convergence theorem and the one proved by Denis,
Hu and Peng R§ in the framework of G-expectation can not be applied in our framework.
So the second approach will be left for future research.

Finally, we consider Markovian 2BSDEs with quadratic growth generators, whose solu-
tion can be represented by a deterministic function af and B, and show the connection
of these 2BSDEs with fully nonlinear PDEs.

We de ne f and B as the corresponding conjugate and bi-conjugate functions of a deter-
ministic map h. Our object of interest is the following Markovian2BSDE with terminal
condition = g(Bt)

Z ; Z;
Y, = g(B7) f (s;Bs; Ys; Zs; Bs)ds ZdBs+ K¥ K7 P, q:s:
t t
We establish the connectiorY; = v(t;B¢), P, Q:s; wherev is the solution in some sense
of the following fully nonlinear PDE

8
< Q(tx)+ Rtxv(6x);Dv(tx); DAV(tx)) =0; t 2 [0;T)

v(T;x) = g(x):

(1.1.2)

1.2 Robust Utility Maximization in Non-dominated
Models

After establishing the result of uniqueness and existence of solution BSDE with
guadratic growth generators, we are ready to study the robust utility maximization prob-
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lem. The problem of utility maximization, in its most general form, can be formulated as
follows

V (x) = sup inf EFU(X: )

whereA is a given set of admissible trading strategie®, is the set of all possible models,
U is a utility function, X+ is the liquidation value of a trading strategy with positive
initial capital X, = x and is a terminal liability, equal to O if U is only de ned onR™.

In the standard problem of utility maximization, P contains only one probability measure
P. This means that the investor knows the "historical" probability P that describes the
dynamics of the underlying asset. But, in reality, the investor may have some uncertainty
on this probability, which means that there can be several objective probability measures in
P. In this case, we call the problem robust utility maximization. Many authors introduce
a dominated set of probability measures which are absolutely continuous with respect to a
reference probability measurd. This is going to be the case if we only take into account
drift uncertainty. However, if we want to work in the framework of uncertain volatility
models (UVM for short) introduced by Avellaneda, Lévy and Paras.2] and Lyons [75],
the set of probability measures becomes non-dominated.

After the pioneer work of Von Neumann and MorgensternlpD9, Merton rst studied
portfolio selection with utility maximization by stochastic optimal control in the seminal
paper Bl. Kramkov and Schachermayer solved the problem of maximizing utility of
nal wealth in a general semimartingale model by means of duality in6f]. Later, El
Karoui and Rouge B8] considered the indi erence pricing problem via exponential utility
maximization by means of the BSDE theory. Their strategy set is supposed to be closed
and convex, and the problem is solved using BSDEs with quadratic growth generators. In
[54], with a similar approach, Hu, Imkeller and Mduller studied three important types of
utility function with only closed admissible strategies set within incomplete market and
found that the maximization problem is linked to quadratic BSDEs. They also showed a
deep link between quadratic growth and the BMO spaces. Morlai8F] extended results in
[54] to more general continuous ltration, for this purpose, proved existence and uniqueness
of the solution to a particular type quadratic BSDEs driven by a continuous martingale.
In a more recent paper%7], Jeanblanc, Matoussi and Ngoupeyou studied the indi erence
price of an unbounded claim in an incomplete jump-di usion model by considering the risk
aversion represented by an exponential utility function. Using the dynamic programming
equation, they found the price of an unbounded credit derivatives as a solution of a
quadratic BSDE with jumps.

The problem of robust utility maximization with dominated models was introduced
by Gilboa and Schmeidler 44]. An example of this case is when the drift is uncertain.
Anderson, Hansen and Sargenti] and Hansen et al. $3] then introduced and discussed
the basic problem of robust utility maximization penalized by a relative entropy term
of the model uncertainty Q 2 P with respect to a given reference probability measure
Po. Inspired by these latter works, Bordigoni, Matoussi and Schweizet considered the
robust problem in a general context of semimartingale by stochastic control and proved
that the solution of this problem is a solution of a particular BSDE. In Muller's thesis
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[84], he studied the robust problem in the case when the drift is unknown with BSDESs
theory. Some results in the robust maximization problem have also been obtained with
convex duality. We can refer to Gundel46] , Quenez 94], Schied P7], Schied and Wu
[98], Skiadas 99| in the case of continuous lItration, among others,

To our best knowledge, robust utility maximization with non-dominated models, en-
compassing the case of the UVM framework, was rst studied with duality theory by
Denis and Kervarec 29. In the article, they took into account uncertainty about both
the volatility and the drift. The utility function U in their framework was supposed to be
bounded and to satisfy some conditions as in the classical case. They rst established a
dual representation for robust utility maximization and then they showed that there exists
a least favorable probability which means that solving the robust problem is equivalent to
solving the standard problem under this probability. More recently, Tevzadze et al1(§
studied a similar robust utility maximization problem for exponential and power utility
functions (and also for mean-square error criteria), by means of the dynamic programming
approach already used in]05. They managed to show that the value function of their
problem solves a PDE. We will compare their results with ours in Sectid®7 of Chapter
3.

In our framework, we study robust utility maximization with non-dominated models,
more precisely UVM whereh has uniform positive nite bounds, via 2BSDEs theory.
Meanwhile, our set of mutually singular probability measures is more restrictive than in
[29. We study the problem for exponential utility, power utility and logarithmic utility,
which, unlike in [29], are not bounded. In particular, we prove the existence of optimal
strategy and provide characterization of value function via solution to 2BSDEs. Moreover,
for exponential utility, the result also gives us the indi erence price for a contingent claim
payed at a terminal date in the case of UVM. Then it allows us to price and hedge
contingent claim in a market where some external risks can't be hedged. At the end, we
also give some examples where we can explicitly solve the robust utility maximization
problems by nding the solution to the associated 2BSDEs, and we try to give some
intuitions and comparisons with the classical framework of Merton's PDEs.

To nd the value function V (x) and an optimal trading strategy , we follow the
main ideas of the generainartingale optimality principle approach as in 8§ and [54], but
adapting it here to a non-dominated models framework.

Let A be the set of admissible trading strategies. We construg& a family of processes
which satis es the following properties:

Properties 1.2.1. () Ry =UX;y )forall 2A
(i) Ry = Ry is constant for all 2 A
(i) We have

. PO .
Pgl;sf(ugfp)lzt [UX; )6 R,;8 2A

R, = essinf EtF’O[U(XT )] forsome 2A;P as:forall P2Py
PO2P 4 (t* ;P)
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As the minimum condition on K, the property (iii) can be understood as thatR is a
supermartingale under the nonlinear expectation generated B, for every andR s
a martingale under the nonlinear expectation. Then it's not di cult to see that

Pizrng EP[lU(X; )]6 Ro= FEQJHEP[U(XT =V (X): (1.2.1)

We consider a nancial market which consists of one bond with zero interest rate awd
stocks. The price process is given by

dS =diag[S](hdt+ dB;); Py g:s:

wherebis an R9-valued uniformly bounded stochastic process which is uniformly contin-
uous in! for thejj jj1 norm.

It is worth to notice that the volatility is implicitly embedded in the model. Indeed,
under eachP 2 Py, we havedBsg btlzdetP where WP is a Brownian motion underP.
Therefore, B plays the role of volatility under eachP and thus allows us to model the
volatility uncertainty.

In the sequel, we show the main result for the exponential utility function which is
de ned as
UX)= exp( x); x2Rfor > O

We have similar results for the power and the logarithmic utility functions.
We de ne the set of admissible trading strategies as follows

De nition 1.2.1  (Admissible strategies with constraints) Let A be a closed set irRC.
The set of admissible trading strategie& consists of alld-dimensional progressively mea-
surable processes, = ( t)os t6 T Satisfying

2BMO and {2 A;dt P4 ae:

Usually, when dealing with these type of problems (see for instancegg] and [54]), an
exponential uniform integrability assumption is made on the trading strategies. However,
we consider instead stronger integrability assumptions of BMO type on the trading strate-
gies. The mathematical reasons behind this are detailed in Chapt8r however, this also
has a nancial interpretation. As explained in 3] which adopts the same type of BMO
framework, this assumption corresponds to a situation where the market price of risk is
assumed to be BMO. Just as in the case of a bounded market price of risk, this implies
that the minimum martingale measure is a true probability measure, and therefore there
is no arbitrage, in the sense of No Free Lunch with Vanishing Risk.

The investor wants to solve the optimization problem
Z

V (x) := sup inf E? exp (x + as

up inf g ) (1.2.2)

Our main result for robust exponential utility is as follows
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Theorem 1.2.1. Assume that the border of the sek is a C? Jordan arc. Then the value
function of the optimization problem(1.2.2 is given by

V.x)= exp( (x Yo));

where Y, is de ned as the initial value of the unique solutiorfY;Z) 2 D, HZ of the
following 2BSDE
Z Z
Y, = Z.dBs B, (Zg)ds+ K? KPP as; 8P2Py: (1.2.3)

t t

The generator has quadratic growth and is de ned as follows
Bi(hz) = Fi(liz; By); (1.2.4)
where

. _ 1 - 1. .
F(l;z;a) = EdIStZ al?z+ = (1);Ay +Zal2 (1)+ > (1)j%; fora2 §°

with (! )= a ¥Qp(') andA, = a@A = a'*b: b2 A .

Moreover, there exists an optimal trading strategy 2 A in the sense that for alP 2 P

i} _ 1
B2, 2 A BZZ,+=B ; t2[0T]P as (1.2.5)
t b

t

n 0
whereb := b, " and A, = B A= B b b2 A .

We also show that the above result can be applied to study the problem of indi erence
pricing of a contingent claim in the framework of uncertain volatility.

1.3 Second Order Re ected BSDEs

In this part of the thesis, we generalize2BSDEs theory to the case where there is a
lower re ecting obstacle. Re ected backward stochastic di erential equations (RBSDEs
for short) were introduced by El Karoui et al. B4], followed among others by El Karoui,
Pardoux and Quenez in 37] and Bally, Caballero, Fernandez and El Karoui in 3] to
study related obstacle problems for PDE's and American options pricing. In this case,
the solution Y of the BSDE is constrained to stay above a given obstacle proce&ss In
order to achieve this, a nondecreasing proceksis added to the solution

8 R, R,

3 Yi= + [ f(YsiZg)ds | ZdWs+ Ky K t2 [0 T, P as:
Yi> S; t2[0;T]; P as:

2 R

. o (Ys S)dKs=0; P as;

where the last condition, also known as the Skorohod minimum condition means that the

processK only acts whenY reaches the obstacl&. This condition is crucial to obtain
the unigueness of the solution to classical RBSDEs.
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Following these pioneering works, many authors have tried to relax the assumptions on
the generator of the RBSDE and the corresponding obstacle. Hence, Matouss] [and
Lepeltier, Matoussi and Xu [f0] have extended the existence and uniqueness results to
generators with arbitrary growth in y. Then, Kobylanski, Lepeltier, Quenez and Torres
[65], Lepeltier and Xu [69 and Bayraktar and Yao [7] studied the case of a generator
which is quadratic in z. Similarly, Hamadene §8 and Lepeltier and Xu p8g proved
existence and uniqueness when the obstacle is no longer continuous. Cvitani¢ and Karatzas
[25] introduced a new notion of double barrier re ected BSDEs in the case of Lipschitz
generators and showed their link with Dynkin games. Later, Hamadene, Lepeltier and
Matoussi B0 extended the existence and uniqueness result to the case of continuous
generators.

Our aim is to provide a complete theory of existence and uniqueness of solution to
2RBSDEs under the Lipschitz-type hypotheses o011 on the generator. We show that in
this context, the de nition of a 2RBSDE with a lower obstacleS is very similar to that of a
2BSDE. We do not need to add another nondecreasing process, unlike in the classical case.
The only change required is in the minimum condition that the nondecreasing procdss
of the 2RBSDE must satisfy. We then establish the link between 2RBSDEs and American
contingent claims pricing with UVM.

We start with giving the precise de nition of 2RBSDEs and showing how they are
connected to classical RBSDEs. As for 2BSDEs with quadratic growth generators, we
de ne F as the corresponding conjugate of a certain map w.r.t. by

Fi(l;y;z;a) := sup }Tr(a) Hi(hy;z; ) fora2 S;%
2Dy 2

B(y;2) := Fi(y; z;B) and B° := 1,(0; 0):

Our main assumptions on the functiorF are as follows
Assumption 1.3.1. (i) The domainDg,(y,) = Dg, is independent of(!;y;z ).
(i) F is F-progressively measurable iDg, .

(i) We have the following uniform Lipschitz-type property iy and z

0

t\y;Z tly.Z y y +b87° z z ; P qg:s:
B2 B52) 6C T+ H

for all (t)y;y";z;2).
(iv) F is uniformly continuous in! for the jj jj; norm.

Given a processS which will play the role of our lower obstacle. We will always assume
S veri es the following properties

(i) S is F-progressively measurable and cadlag.
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(i) S is uniformly continuous in! in the sense that for allt
iS(') S(e)i6 (k kk);8(;E)2 *

for some modulus of continuity and where we de nek! k, := sup j! (s)j.

S
06 s6t

The assumption (i) is quite standard in the classical BSDEs literature; the assumption
(ii) is needed to deal with the technicalities induced by the quasi-sure framework.

We denote byP,, the non-dominated class of mutually singular probability measures,
where under eactP 2 P, b has positive nite bounds which may depend orP. Then,
we shall consider the following 2RBSDE with the lower obstacle

Z Z
Y, = B,(Ys; Zs)ds ZBs+ Kr K 06t6 T; P, qs: (1.3.1)
t t
De niton 1.3.1. For 2 L%, we say(Y;Z) 2 D HZ (the solution space, see
Chapter 4 for precise de nition) is a solution to the 2RBSDE(1.3.]) if

Yr= ,Py (s
Yi> S, Py Qs

8 P2 P, the processk P de ned below has nondecreasing patis a:s:
z z,

t
KP:=Yy Y+ By(YsZo)ds+ Z@dBs; 06t6 T; P as:  (1.3.2)
0 0

We have the following minimum condition
h [
KP KkP= essinf EP KP kP :06t6T:P as;8P2P,: (13.3)
P2P , (t*;P)
where (y"; zP;kP) == (yP(; );Z°(; );kP(; )) denote the unique solution to the
following classical RBSDE with obstacl& for any P 2 P, F-stopping time , and
F -measurable random variable 2 L?(P),

8 R R

3 y= | B(yhzZD)ds | Z2dBs+ kP kP 0616 ; P as:
P> S: P as:

> B

(f yo S dkl=0; P as;8t2[0T]

The processK plays a double role. Intuitively, K forcesY to stay above the barrierS
and it also pushesy above everyyF. To justify this formulation, we can consider the case
where the setP,, is reduced to a singletorf Pg. From the above minimum condition, we
know that KP kP is a martingale with nite variation. Since P satis es the martingale
representation property, this martingale is also continuous, and is therefore a constant.
Thus we have

0=k?” KPP as;
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and the 2RBSDE is equivalent to a standard RBSDE. In particular, we see that the part
of K® which increases only wherY; > S; is null, which means thatK P satis es the
usual Skorohod condition with respect to the obstacle.

With some additional integrability conditions on B0 and S, we can have a representation
formula for a solution to a 2RBSDE via solutions to standard RBSDEs, which in turn
implies uniqueness of the solution. This is similar to ones obtained in Theore4w of
[101 and Theorem2:1 in [9Q].

Theorem 1.3.1. Let Assumption 1.3.1 and additional integrability assumptions onf2°
and S hold. Assume 2 Lﬁ and that (Y;Z) is a solution to 2RBSDE (1.3.1). Then, for
anyP2P, and06 t;<t,6 T,

0
Y, = esssup yi (t2;Yy,); P as: (1.3.4)

P%2P , (t] ;P)
Consequently, the2RBSDE (1.3.1) has at most one solution iD%  HZ .
Now that we have proved the representation1(.3.4, we can show, as in the classical
framework, that the solutionY of the 2RBSDE is linked to an optimal stopping problem

Proposition 1.3.1. Let (Y;Z) be the solution to the abov@RBSDE (1.3.1). Then for
eacht 2 [0; T] and for allP 2 P

Z
Y, = esssup esssupEtF’O Ibs(yg’o;zso)ds+ Slicrgt L =1g ; P as: (1.3.5)
P2P , (t*;P) 2TeT t
Z
= ess SupEy By (Ys; Zg)ds+ AP AP+ S 1+ 1t -1q ; P as: (1.3.6)
2Tt t
R
where T, is the set of all stopping times valued ift; T] and A} := glfY oS gdKSP is

the part of K ® which only increases whely; > Sg .

It is worth noting here that unlike with classical RBSDES, considering an upper obstacle
in our context is fundamentally di erent from considering a lower obstacle. Indeed, having
a lower obstacle corresponds, at least formally, to add an nondecreasing process in the
de nition of a 2BSDE. Since there is already an nondecreasing process in that de nition,
we still end up with an nondecreasing process. However, in the case of an upper obstacle,
we would have to add a non-increasing process in the de nition, therefore ending up
with a nite variation process. This situation thus becomes much more complicated.
Furthermore, in this case we conjecture that the above representation of Proposition
would hold with a sup-inf instead of a sup-sup, indicating that this situation should be
closer to stochastic games than to stochastic control. This is an interesting generalization
that we leave for future research.

Then, as for the classical RBSDESs (see Propositidr? in [37]), if we have more regularity
on the obstacleS, we can give a more explicit representation for the procesg€$. When
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S is a semimartingale of the form
YA t YA t

Si= S+ Usds + VsdBs + Ci; Py Q:s:
0 0

For eachP 2 P, there exists a progressively measurable procgss)os 16 T Such that
06 6 1and
[

h .
1ty s gdKE= [y, =s ¢ B(SiV) U dt+dC ;P as:

For existence of a solution, we will generalize the pathwise construction approachidi]
to the re ected case. Let us mention that this proof requires us to extend the existing
results on the theory ofg-martingales of Peng (seeBp]) to the re ected case. Since to the
best of our knowledge, those results do not exist in the literature, we prove them in the
Appendix in Chapter 4. We are now in position to state the main result of this part

Theorem 1.3.2. Let 2 Lﬁ . Under Assumption 1.3.1 and additional integrability
assumptions or?? and S, there exists a unique solutiofY; Z) 2 DY, HZ of the 2RBSDE

(1.3.9).

Finally, we use 2RBSDEs introduced previously to study the pricing problem of Amer-
ican contingent claims in a market with volatility uncertainty. The pricing of European
contingent claims has already been treated in this context by Avellaneda, Lévy and Paras
in [2], Denis and Martini in[27] with capacity theory and more recently by Vorbrink in
[114 using the G-expectation framework.

In a nancial market with one bond L° with interest rate r, and one risky asset., whose
dynamic is given by
— = dt+dBy; Py Qs
we consider an American contingent claim whose payo at a stopping time> t is

S =S 1[<T]+ 1[:1-]:

Then with some assumptions om, and S which ensure the existence of a solution to
a 2RBSDE, we have that, for 2 L ﬁ , & superhedging price for the contingent claim is
0
Y,= esssuf Y,"; P as:; 8P2P,;
P2P , (t*;P)
0
whereY,P is the price at timet of the same contingent claim in the complete market, with

underlying probability measureP’. The processY; is the solution to a 2RBSDE with a
Lipschitz generator which depends on and

Furthermore, we have, for all", the stopping time D, = inffs > t;Ys 6 Sg+ "g" T
is "-optimal after t. Besides, for allP, if we consider the stopping timesD," =
inf s>tYFP6 Sg+" ~T, which are"-optimal for the American contingent claim under
eachP, then as a consequence of the representation formula, we have

D,>D,/"; P as: (1.3.7)
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1.4 Second Order BSDEs with Jumps

From the literature, we know that in the case of a Itered probability space generated
by both a Brownian motion W and a Poisson random measure with compensator ,
one can consider the following natural generalization of BSDEL.Q.]) to the case with
jumps. We say that(Y;Z;U) is a solution of the BSDE with jumps (BSDEJ for short)
with generatorf and terminal condition if for all t 2 [O; T],

Z Z A4
Y= + f(s;Ys; Zs; Us)ds ZsdWs Us(x)( )(ds;dx); P a:s:

t t t Rdnf Og

(1.4.1)

Tang and Li [104 were the rst to prove existence and uniqueness of a solution fat.4.1)
with a xed point argument in the case wheref is Lipschitz in (y; z;u). Barles et al. p]
studied the link of those BSDEJs with viscosity solutions of integral-partial di erential
equations. Hamadéne and Ouknines]] have considered one re ecting barrier BSDEJs.
They showed existence and uniqueness of the solution when the re ecting barrier has only
inaccessible jumps, i.e., jumps which come only from the Poisson part. Hamadéne and
Ouknine [62] and Essaky B9 then respectively dealt with re ected BSDEJs when the
re ecting processes are cadlag. In general, in contrary to BSDES, there is no comparison
theorem for BSDEJs with only Lipschitz generators. One needs stronger assumptions.
Royer in [95 proved a comparison theorem and studied nonlinear expectations related
to BSDEs with jumps which extends Peng'g-expectation framework to the jump case.
Crépey and Matoussi 24] also provideda priori estimates and comparison theorem for
re ected and doubly re ected BSDEJs. 83 studied a special BSDEJ with quadratic
growth related to the problem of exponential utility maximization under constraint. Re-
cently, [36 adopted a forward approach as ing| to prove existence of quadratic BSDEJs
with unbounded terminal condition.

In this part of the thesis, we generalize 2BSDESs to the jump case. We can interpret these
equations as standard BSDEJs, under both volatility and jump measure uncertainty.

On the Skorohod space, we de ne the continuous part of the canonical proc&snoted
by B¢, and its purely discontinuous part, noted byB¢, both local martingales under
a local martingale measure. Such local martingale measures are obtained by using the
notion of martingale problem for semimartingales with general characteristics, as de ned
in the book by Jacod and Shiryaevd6]. We then associate to the jumps oB a counting
measure ga.

To de ne correctly the notion of second order backward SDEs with jumps (2BSDEJSs),
an important issue is the possibility to aggregate both the quadratic variatiofB; B ] of the
canonical process and the compensated jump measure associateB tpin the following
sense of103 and [23]:

Let P be a set of non necessarily dominated probability measures and1&”; P2 Pg
be a family of random variables indexed by . An aggregatorof the family fX"; P2 Pg
is a random variableX such that

X =XP P as, foreveryP2P:
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We know that the quadratic variation [B;B] can be aggregated as a consequence of
the results from Bichteler P], Karandikar [58], or more recently Nutz B6]. However, the
predictable compensator is usually obtained by the Doob-Meyer decomposition of the
submartingale[B; B ]. It is therefore clear that this compensator depends explicitly on the
underlying probability measure, and it is not clear at all whether an aggregator always
exists or not. This is a main di erence with the continuous case.

Soner, Touzi and Zhang, motivated by the study of stochastic target problems under
volatility uncertainty, obtained in [ 103 an aggregation result for a family of probability
measures corresponding to the laws of some continuous martingales on the canonical space

= C(R*;RY), under a separability assumption on the quadratic variations (see their
de nition 4:8) and an additional consistencycondition (which is usually only necessary)
for the family to aggregate.

In our context, we follow the spirit of [LO3 and restrict our set of probability measures
(by adding an analogous separability condition for jump measures) in order to generalize
some of their results in 03 to the case of processes with jumps. We characterize the
family of probability measures where we can aggregate both the quadratic variation and
the compensated jump measure.

After addressing this aggregation issue, we are in a position to prove the wellposedness
of 2BSDEJ under a set of probability measures, denoted #9,, which has the required
characterization. We give a pathwise de nition of the procesh, which is an aggregator
for the density of the quadratic variation of the continuous partB°¢,

. 1 . .
la{::lm]gléjp; B, hB, . ;

and de ne a procesd, which is an aggregator of the predictable compensators associated
to the jump measure ga

b(A) = [(A); for everyP 2 Pa: (1.4.2)

We then denote
egd(dt;dx) ;= ga(dt;dx) b (dx)dt:

The generatorF, de ned as the convex conjugate of a given map, veri es the usual
assumptions int and! as in the2BSDEs framework and the uniform Lipschitz assumption
in y and z. In the variable u, we need an assumption similar to that in Royer9g|.

For all (t;!;y;z;u %;u% a; ), there exist two processes and ° such that

Z
(i) ul(e) u®(e) () (de) 6 F(l;y;z;utia; ) F(liy;z;u?a; ),
E
Z
(i) Fu(hyszubas ) Flhysziu%a )6 u'(e) u*(e) (e (de)
E
with ¢ (17 %)) 6 (X) 6 (1] X)) wherec; 6 0; 06 ¢, < 1,
and c,(17)xj) 6 (X) 6 c,(17jxj) wherec, 6 0; 06 ¢, < 1:
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Then, with assumption (i), we have a comparison theorem which is crucial to have a
representation for theY -part of a solution. We need assumption (ii) to prove the minimum
condition satis ed by K for the existence result.

Asin [10]] we x a constant 2 (1;2]and restrict the probability measures inP,; P ..
We shall consider the following?BSDEJ, for06 t6 T and P,-Q.s.
Z; Z . Z.Z
Y = Fs(Ys; Zs; Us; Bs; b)ds ZsdB¢ Us(X)~ga(ds;dx) + K+ Kq:

t t b (1.4.3)

Similar to 2BSDEs, we say(Y;Z;U) is a solution to the 2BSDEJ (1.4.3 if the equa-

tion holds true under eachP 2 P, with a nondecreasing proces& " and the family
KP:P2P, satises the minimum condition.

With a generalization of the comparison theorem and the minimum condition oK , as
usual, we have a representation formula for th¥ -part of a solution.

0
Y, = esssup yi (t;Yy,); P as; (1.4.4)

PO2P , (t] ;P)
whereyF>0 is the solution to the standard BSDE with the same generator unde?’ 2 P .

For the existence, we generalize the usual approach2BSDEs theory to the jump case.
We construct a solution pathwise when terminal condition is in a regular space, then by
passing to limit, we show existence of a solution for terminal condition in its closure under
a certain norm.

As an application of the above results, we study a problem of robust utility maximization
under model uncertainty, which a ects both the volatility process and the jump measure.
We consider a nancial market consisting of one riskless asset, whose price is assumed
to be equal to one for simplicity, and one risky asset whose price proc€Sg)os 16 T IS
assumed to follow a jump-di usion with regular coe cients

d$ z
— = hdt+ dBf + t(X) ga(dt; dx): (1.4.5)
St E

The problem of the investor in this nancial market is to maximize his expected exponen-
tial utility under model uncertainty from his total wealth X, , where is a liability at
time T which is aFt-measurable random variable. The trading strategies are supposed
to take value in some compact se€. Then the value functionV of the maximization
problem can be written as

V (x):=sup inf EP[ exp( Xy )]
2c P2P
= inf supE [exp( (X; ))I: (1.4.6)
2C p2p

We follow the ideas of themartingale optimality principle approach adapted to the
nonlinear framework as in ChapteB. We prove that the value function of the optimization
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problem 1.4.6is given by
V (X)= e *Yy;
where Yy is de ned as the initial value of the unique solution(Y; Z;U) of the 2BSDEJ
with terminal condition e and the generator
z
2

Fly;zzuia )= inf (bt —a)y az+ e L (y+ u(x) (dx)
E

Moreover, there exists an optimal trading strategy realizing the in mum above.

Finally, as in Lim and Quenez 73] for BSDEs, by making a change of variables, we
derive existence and uniqueness of a solution to a 2BSDEJ with quadratic growth from
this 2BSDEJ with a Lipschitz generator.

Recall that Pardoux and Peng §7] proved that if the randomness ing and is induced
by the current value of a state process de ned by a forward stochastic di erential equation,
then the solution to a BSDE could be linked to the solution of a semilinear PDE by means
of a generalized Feynman-Kac formula. Soner, Touzi and Zharif[l] also introduced the
second order backward SDEs in a non dominated framework. Their equations generalize
the point of view of Pardoux and Peng, in the sense that they are connected to the larger
class of fully nonlinear PDEs. In this context, the 2BSDEJs are the natural candidates
for a probabilistic solution of fully nonlinear integro-di erential equations. This is the
purpose of our accompanying pape6§.

1.5 Numerical Implementation

In this part of the thesis, | present some practical work realized during an internship during
the rst year of this PhD study. The subject is Monte Carlo method for options pricing
with UVM . The objective is not to prove convergence results of new numerical schemes,
but to implement the existing schemes (see Guyon and Henry-Laborde#&]), and to test
and possibly make improvement in practice. This work allowed me to understand better
these schemes and to be familiar with them. For future research, | would like to suggest
a purely probabilistic scheme with the new formulation of 2BSDEs in view (se&(1]).

As explained in El Karoui, Peng and Quenez3p] and in El Karoui, Hamadéne and
Matoussi 35, BSDEs can be used for the pricing of contingent claims by replication in
a complete market (with a linear generatoif ) and more interesting in imperfect market
(with a Lipschitz generator f ). More precisely,Y corresponds to the value of the repli-
cation portfolio and Z is related to the hedging strategy. Since the analytical solution
exists to BSDEs only in few case, numerical resolution is important for the application
of BSDEs theory in practice in mathematical nance. Moreover, due to the link between
BSDEs and semilinear PDEs, numerical resolution of BSDEs is also useful to provide
probabilistic numerical methods to solve PDEs. These methods are alternative to nite
di erence ones, and they are more e cient in high-dimensional case. However, compare
to the large amount literature dedicated to the mathematical analysis of BSDEs, only a
few numerical methods have been proposed to solve them. We can refer to Bouchard and
Touzi [1€6], Zhang [L1]], Gobet et al. 45 among others.
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We consider the following (decoupled) forward-backward stochastic di erential equations
on the time interval [O; 1]:

dXt = uXt)dt+ (Xt)th, dYt = f(t,Xt,Yt,Zt)dt Zt th

Xo = X and Y]_ = g(X[O;l])

Zhang [L11] proved a regularity result onZ, which allows the use of a regular determinis-
tic time mesh. Therefore by discretizing the continuous processes of BSDE and taking the
conditional expectation of both sides of equations (resp. rst multiplying both sides by
Brownian increment W, then taking the conditional expectation), one can comput&/
(resp. Z) backwardly. The following is the complete scheme, f@r= ty <t; < <tp,=1

8
Ytn =9 (Xfto; ;tng)
Yo ,=E 1Y, +f t X, Y
Z, = %Ei 1 Yy Wy

to1
i

4

v, U (1.5.1)

The key point of this scheme is to compute the conditional expectations. 1111], the
complexity to compute the conditional expectations becomes very large in multidimen-
sional problems, like in the case of nite di erence schemes for PDEs. To better deal with
high-dimensional problems, Bouchard and Touzilp] proposed a Monte Carlo approach
when the terminal condition is non-path-dependent (that isY; = g(X1)). They suggested
to use a general regression operator found with Malliavin calculus which, however, requires
multiple sets of paths. Later, Gobet et al. 45 developed an approach based on Monte
Carlo regression on a nite basis of functions, which was rst introduced by Longsta
and Schwartz [4] for the pricing of Bermuda options. Their approach is more e cient,
because it requires only one set of paths to approximate all regression operators.

Numerical resolution of BSDEs can be applied to numerically solve only semilinear
PDEs. More recently, some authors proposed several Monte Carlo numerical schemes for
fully nonlinear PDEs. Theses schemes are largely inspired by those for BSDESs.

In their rst formulation of 2BSDEs, Cheridito et al. [22] suggests an adaptation of
BSDEs numerical scheme to the 2BSDESs case. Inspired by Scheme Cheridito et al., Fahim
et al. [4]] gives a new scheme without appealing to the theory of 2BSDEs. With uncertain
volatility models, the pricing PDE derived in Avellaneda et al. P] is fully nonlinear. In
this particular case, Guyon and Henry-Labordéred|7] improves the two precedent schemes
without using the theory of 2BSDE. For path-dependent options, these schemes can also
be applied with some modi cations and by using results obtained in Gobet et al4).

For the pricing of Bermuda options, Bouchard and Warin 18 suggests to construct
con dence intervals for the true price, one bound from a backward computation and the
other one from a backward-forward computation. Both quantities can be computed at
the same time with almost no additional cost. Their construction can be adopted in
the above probabilistic numerical methods for fully nonlinear PDEs. A small con dence
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interval should reveal a good approximation of the exact price, while a large con dence
interval should be a sign that the estimator was poor.

We implement Scheme Guyon and Henry-Laborderd] for pricing options, with both
backward computations and backward-forward computations. We also suggest some tech-
niques to improve the scheme in practice. From the numerical test results, we generally
observe that the Monte Carlo method performs well for non-path-dependent options and
can provide prices with good precision for path-dependent ones. Moreover, the pricing
precision depends essentially on the quality of the approximation of conditional expec-
tations by regression. In order to get more precise results with this method, we should
improve the approximation of conditional expectations by using better regression proce-
dure, suitable control variates and/or non-parametric regressions in higher dimension. In
particular, special knowledge of nancial products could be used to have better result.

1.6 Work in preparation and future research perspec-
tives

We end the introduction by presenting some work in preparation and future research
topics.

First, we are interested in Sobolev solutions of the obstacle problems associated to partial
integral-di erential equations (PIDEs for short). We give probabilistic interpretation for
these solutions via Lipschitz RBSDEs with jumps by developing a stochastic ow method
which has been introduced by Bally and Matoussi ird] in the study of weak solution of
stochastic partial di erential equations. In another work, we prove existence and unique-
ness of a solution to BSDEs with jumps with quadratic growth generators by a xed point
argument as in Tevzadzell07, and we generalize the results aj-nonlinear expectations
related to BSDEs with jumps in Royer P5 to the case of quadratic growth. Last but not
least, we study the connection between 2BSDEJs and fully nonlinear PIDEs.

For future research, one topic is about 2RBSDEs with one upper obstacle and with
double obstacles. This will allow us to study problems of stochastic games with volatility
uncertainty. Other possibility is to extend 2BSDEJs to the case of quadratic growth
generators and the case with obstacles. For the existence of a solution to 2BSDEs with
guadratic growth and 2RBSDEs, it is also interesting to have another proof based on
approximation techniques similar to those used in the classical BSDEs literature. For that,
we need general monotone convergence theorem and dominated convergence theorem for
guasi-sure stochastic analysis. This approach should allow us to prove the wellposedness
of these classes of 2BSDEs under weaker assumptions. The last topic is about numerical
method. With the new formulation of 2BSDEs and 2BSDEJs in view, it will be interesting
to nd purely probabilistic schemes for fully nonlinear PDEs and PIDEs.



Chapitre 2

Second Order BSDEs with Quadratic
Growth

2.1 Introduction

In this chapter, we provide an existence and uniqueness result 88SDEs with quadratic
growth generators. The outline is as follows. After introducing the framework @SDEs
and the main assumptions on the generator in Sectiol.2, we give a stochastic repre-
sentation for the Y -part of a solution in Section2.3. This representation then implies
the uniqueness of the solution. In Sectio.5 we use the method introduced by Soner,
Touzi and Zhang [L0]] to construct the solution to the quadratic 2BSDE path by path.
Finally, in Section 2.7, we extend the results of Soner, Touzi and Zhang on the connections
between fully nonlinear PDEs and2BSDEs to the quadratic case. This chapter is based
on [92).

In this chapter, we propose two very di erent methods to prove the wellposedness in
the 2BSDE case. First, we recall some notations in Sectidh2 and prove a uniqueness
result in Section2.3 by means of a priori estimates and a representation of the solution
inspired by the stochastic control theory. Then, Sectior?.4 is devoted to the study of
approximation techniques for the problem of existence of a solution. We advocate that
since we are working under a family of non-dominated probability measures, the monotone
or dominated convergence theorem may fail. This is a major problem, and we spend some
time explaining why, in general, the classical methods using exponential changes fail for
2BSDEs. Nonetheless, using very recent results of Briand and EIlB], we are able to
show a rst existence result using an approximation method. Then in Sectidh3, we use a
completely di erent method introduced by Soner, Touzi and Zhangl[0]] to construct the
solution to the quadratic 2BSDE path by path. Next, we use these results in Sectich6
to study an application of 2BSDEs with quadratic growth to robust risk-sensitive control
problems. Finally, in Section2.7, we extend the results of Soner, Touzi and Zhan@(1] on
the connections between fully non-linear PDEs andBSDEs to the quadratic case. This
chapter is based on92).

2.2 Preliminaries

Let := ! 2C(0;T];RY:!3=0 be the canonical space equipped with the uniform
norm k! K, := supgg (s 7! tJ, B the canonical processP, the Wiener measureF :=
fF 0y ¢ ¢ 7 the ltration generated by B, and F* := F/ the right limit of F.
We rst recall the notations introduced in [101].

06t6 T
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2.2.1 A rst set of probability measures

A probability measureP is said to be a local martingale measure if the canonical process
B is a local martingale underP. By Karandlkalzr2 [58], tit is known that there exists an
F-progressively measurable process, denoted %sB dBs, which coincides with the It6'
integral, P a:s: for all local martingale measureP. In addition, this provides a pathW|se

de nition of
Z, 1
hBi,:= BB 2 BB andh :=limsup; MBi, hBi, . ;
0 "& 0

whereT denotes the transposition and thdim sup is componentwise.
Let Py denote the set of all local martingale measurd3 such that
hBi, is absolutely continuous int and b takes values inS;°, P a:s: (2.2.1)
where S;° denotes the space of al  d real valued positive de nite matrices.

As in [101], we concentrate on the subclasPg Pw consisting of all probability
measures

Z t
P : =P, (X ) *whereX, := =2dBg; t 2 [0;T]; Py as: (2.2.2)
0

E)r some F-progressively measurable process taking values in S;° and satisfying
oTj sjds < +1 Py ais: We recall from [L0] that every P 2 Pg satis es the Blu-
menthal zero-one law and the martingale representation property.

Notice that the set P is bigger that the set®s introduced in [90], which is de ned by
Bs:= P 2Ps; a6 6 a P, as: (2.2.3)

for xed matrices aandain S;°.

2.2.2 The Generator and the nal set Px

Before de ning the spaces under which we will be working or de ning the 2BSDE itself,
we rst need to restrict one more time our set of probability measures, using explicitely
the generator of the 2BSDE.

Following the PDE intuition recalled in the Introduction 1, let us rst consider a map
H(';y;z; ) : [0;T] R RY Dy ! R,whereDy RYYis a given subset
containing 0. As expected, we de ne its Fenchel-Legendre conjugate w.r.tby

1
Fo(l;y;z;a):= sup =Tr(a) H(l;y;z; ) fora2s;®
2Dy 2
B(y;2) := Fi(y; z;B) and B° := ©,(0; 0):

We denote byDg,(y.,) the domain of F in a for a xed (t;!;y;z), and as in [LO] we
restrict the probability measures inPy  Pg
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De nition 2.2.1. Py consists of allP 2 Pg such that

a6 b6 ap; dt dP a:s:for somea; ap 2 Sjo; and b; 2 Dg, 0, dt dP a:s::

Remark 2.2.1. The restriction to the setP, obeys two imperatives. First, sincd® is
destined to be the generator of our 2BSDE, we obviously need to restrict ourselves to
probability measures such thab; 2 Dg o.0). Moreover, we also restrict the measures
considered to the ones such that the density of the quadratic variationBfis bounded to
ensure thatB is actually a true martingale under each of those probability measures. This
will be important to obtain a priori estimates.

Finally, we recall

De nition 2.2.2. We say that a property hold$’y -quasi surely Py g:s: for short) if
it holdsP as:forall P2Py.

2.2.3 Assumptions

We now state our main assumptions on the functio which will be our main interest in
the sequel
Assumption 2.2.1. (i) Py is not empty, and the domairDg,(y,y = D, is independent
of (1y;2).
(i) In Dg,, F is F-progressively measurable.

(i) F is uniformly continuous in! for thejj jj. norm.

(iv) F is continuous inz and has the following growth property. There exis{s ; ) 2
R: R: R, such that

B(y:iz2) 6 + jyj+ = 8722 %Py q:s:; for all (ty;2):
2

(v) FisClinyandC?in z, and there are constants and such that for all(t;y; z),
iD,B.(y;2)j6 r; D, B(y;2)j6 r+ Bz ;
jDZP(y;2)j6 ; Py st

Remark 2.2.2. Let us comment on the above assumptions. Assumptioh2.1 (i) and
(i) are taken from [LO] and are needed to deal with the technicalities induced by the
quasi-sure framework. Assumptiong.2.1 (ii) and (iv) are quite standard in the classical
BSDE literature. Finally, Assumption 2.2.1 (v) was introduced by Tevzadze in7] for
guadratic BSDEs. It allowed him to prove existence of quadratic BSDESs through xed point

arguments. This is this consequence which will be used for technical reasons in Section
2.5.

However, it was also showed ii (7], that if both the terminal condition andib? are small
enough, then Assumptior2.2.1 (v) can be replaced by a weaker one. We will therefore
sometimes consider
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Assumption 2.2.2. Let (i), (ii),(iii) and (iv) of Assumption 2.2.1hold and

(v) We have the following "local Lipschitz" assumption inz, 9 > 0 and a progressively
measurable process 2 BMO(Py) such that for all (t;y; z; z');

0

B(y:2) B(y;2) bz ) 6 B2z z° Bz + B2
Py Qs

(vi) We have the following uniform Lipschitz-type property iny

B(y;2) By52) 6Cy y Py qs:;forall (y;y)z;1):

Furthermore, we observe that our subsequent proof for uniqgueness of a solution of our
guadratic 2BSDE only use Assumptior2.2.2.

Remark 2.2.3. Assumption2.2.1(i) implies that b always belongs t®,.,). Moreover,
by Assumption2.2.1(iv), we have thatht0 Is actually bounded, so the strong integrability

condition "z, L

EP PO dt < +1;
0

with a constant 2 (1; 2] introduced in [10]] is not needed here.

2.2.4 Spaces of interest

We now recall from [LO]] the spaces and norms which will be needed for the formulation of
2BSDEs and add some speci ¢ spaces which are linked to our quadratic growth framework.

For p> 1, L, denotes the space of alF+-measurable scalar r.v. with
k kP, == supE"[j jP]< +1:
H P2P

Inthe casep=+ 1 we de ne similarly the space of random variables which are bounded
guasi-surely and take as a horm

k k. :=supkk :

Lﬁ P2PF2| Lt (@)
HY, denotes the space of alF* -progressively measurabl®?-valued processeZ with
n Z #

;
kZkPp := sup EP jBzZj%dt < +1:
H P2P 4 0

N[O

DP, denotes the space of aF* -progressively measurabl&-valued processe¥ with

Py o:s:cadlag paths, andkYkP, = sup E?  sup jYj° < +1:
H P2P 4 061t6T
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In the casep=+ 1 we de ne

KYkpa = sup K¥ik., :

06t6 T

Foreach 2 L}%,P2Py andt 2 [0;T] denote
n 0
Ef"F[ ]:= esssup PEf’o[ ] wherePy (t*;P):= P 2Py :P'= PonF;
PY2P 4 (t* ;P)
Here EY[ ] := EP[ jF]. Then we de ne for eachp > 1,

n o]
: P
LP = 2LP:kkp <+1 wherek kP, := supE” esssuf E{"Ffj j]
H Lh P2P 4 061t6T
Inthe casep = + 1 the natural generalization of the normL_}, is the normL}, introduced
above. Therefore, we will use the latter in order to be consistent with the notations of
[101.

Finally, we denote by UG,() the collection of all bounded and uniformly continuous
maps : ! R with respect to thek k, -norm, and we let

L}, := the closure of UG() under the normk kLg , for everyp> 1.

2.2.4.1 The space BMO(Py) and important properties

It is a well known fact that the Z component of the solution of a quadratic BSDE with

a bounded terminal condition belongs to the so-called BMO space. Since this link will
be extended and used intensively throughout the paper, we will recall some results and
de nitions for the BMO space, and then extend them to our quasi-sure framework. We
rst recall (with a slight abuse of notation) the de nition of the BMO space for a given
probability measureP.

De nition 2.2.3.  BMO(P) denotes the space of a* -progressively measurablR®-valued
processesZ with
Z
KZKgyocp = SUp EP  jBTZj%dt < +1;
2T 1

where T, is the set ofF; stopping times taking their values iff0; T].

We also recall the so called energy inequalities (sé&®][and the references therein). Let
Z 2 BMO(P) and p> 1. Then we have
Z ¢ P

EP B2z, %ds 6 2p 4kzkl, (2.2.4)
0

The extension to a quasi-sure framework is then naturally given by the following space.

BMO(Py) denotes the space of alF* -progressively measurabl®‘-valued processe&
with

kKZk = sup kZkgyop < +1:

BMO(Py) "~ 2P
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R.
We say that ;ZsdBs is a BMO(Py) martingale if Z 2 BMO(Py).

The main interesﬁ of the BMO spaces is that if a procesg belongs to it, then the
stochastic integral ;ZsdBs is a uniformly integrable martingale, which in turn allows
us to use it for changing the probability measure considered via Girsanov's Theorem.
The two following results give more detailed results in terms df" integrability of the
corresponding Doléans-Dade exponentials.

Lemma 2.2.1. Let Z 2 BMO(Py). Then there existsr > 1, such that

supE® E ZdBs < +1:
P2P 4 0

Proof. By Theorem 3:1in [59], we knggv that if kZkgyop 6 ( 1) for some one-to-one
function from (1;+1 )toR,,thenE (;ZSdBS isinL"(P). Here, sinceZ 2 BMO(Py),
the samer can be used for all the probability measures. u

Lemma 2.2.2. Let Z 2 BMO(Py). Then there existsr > 1, such that for allt 2 [0; T]

20 R . 1.3
E ZsdBg
supEfg@ Ri A Lcs1:
P2P E o ZsdB,

Proof. This is a direct application of Theorem2:4 in [59 for all P2 Py. u

We emphasize that the two previous Lemmas are absolutely crucial to our proof of
uniqueness and existence. Besides, they will also play a major role in Chafer

2.2.5 The de nition of the 2BSDE

Everything is now ready to de ne the solution of a 2BSDE. We shall consider the following
2BSDE, which was rst de ned in [10]]
Z Z
Y, = By (Ys; Zs)ds ZdBs+ Kt K 06t6T; Py qs:  (2.2.5)

t t

De nition 2.2.4.  We say(Y;Z) 2 D}, H3 is a solution to 2BSDE (2.2.5 if :
Yr = , Py g:s:

For all P2 Py, the processKk P de ned below has nondecreasing patis a:s:
Z Z,

t
KPi=Yy Yo+ By(YsZo)ds+ ZdBg, 06t6 T; P ass:  (2.2.6)
0 0

The family KP;P2 Py, satis es the minimum condition

Oh Oi
KP= essinf EP KF ;06t6T;P as;8P2Py: (2.2.7)
P2P 4 (t* ;P)
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Moreover if the family KP;P2 P, can be aggregated into a universal proceks, we
call (Y;Z;K) a solution of 2BSDE (2.2.95.

Remark 2.2.4. Let us comment on this de nition. As already explained, the PDE intu-
ition leads us to think that the solution of a 2BSDE should be a supremum of solution of
standard BSDEs. Therefore for eachP, the role of the non-decreasing proced$® is in
some sense to "push” the process to remain above the solution of the BSDE with termi-
nal condition and generator® under P. In this regard, 2BSDEs share some similarities
with re ected BSDEs.

Pursuing this analogy, the minimum condition(2.2.7) tells us that the processek " act
in a "minimal” way (exactly as implied by the Skorohod condition for re ected BSDES),
and we will see in the next Section that it implies uniqueness of the solution. Besides, if the
set Py was reduced to a singletohPg, then (2.2.7) would imply thatK P is a martingale
and a non-decreasing process and is therefore null. Thus we recover the standard BSDE
theory.

Finally, we would like to emphasize that in the language of G-expectation of Pe8®, [
(2.2.7) is equivalent, at least if the family can be aggregated into a procd&s to saying
that K is a G-martingale. This link has already observed inl)3 where the authors
proved the G-martingale representation property, which formally corresponds to a 2BSDE
with a generator equal td.

2.3 A priori estimates and uniqueness of the solution

Before proving some a priori estimates for the solution of the 2BSDR.@.5, we will rst
prove rigorously the intuition given in the Introduction 1 saying that the solution of the
2BSDE should be, in some sense, a supremum of solution of standard BSDEs. Hence,
for any P 2 P, F-stopping time , and F -measurable random variable 2 L* (P), we

de ne (y?;z°) := (yP(; );z°(; )) as the unique solution of the following standard BSDE

(existence and uniqueness have been proved under our assumptions by Tevzadz&0i)[
z z

yE = B, (yP; ZP)ds zZdBs; 06 t6 ; P as: (2.3.1)
t

t

First, we introduce the following simple generalization of the comparison Theorem proved
in [107] (see Theoren®).

Proposition 2.3.1. Let Assumptions2.2.2 hold true. Let ' and 22 L* (P) for some

probability measureP, and V', i = 1;2 be two adapted, cadlag nondecreasing processes
null at 0. Let (Y';Z")2 D' (P) H?(P), i =1;2 be the solutions of the following BSDE
Z Z
Y, = B, (Yd; zlyds zidBs+ Vi VP as:;i=1;2

t t
respectively. If 1> 2 P ais:andV! V?2is nondecreasing, then it hold® a:s: that

forall t 2 [O; T]
Yl > Y2
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Proof. First of all, we need to justify the existence of the solutions to those BSDEs.
Actually, this is a simple consequence of the existence results of Tevzadk@7] and for
instance Proposition3:1 in [76]. Then, the above comparison is a mere generalization of
Theorem2 in [107. u

We then have similarly as in Theorem4:4 of [10]] the following results which justi es
the PDE intuition given in the Introduction.

Theorem 2.3.1. Let Assumptions2.2.2hold. Assume 2 L} andthat(Y;Z) 2 D} H3
is a solution to 2BSDE (2.2.5. Then, forany P2 Py and06 t; <t,6 T,

0
Y, = esssup yf (t2;Yy,); P as: (2.3.2)
PO2P 4 (1] :P)

Consequently, the2BSDE (2.2.5 has at most one solution iD}, H3.

Before proceeding with the proof, we will need the following Lemma which shows that in
our 2BSDE framework, we still have a deep link between quadratic growth and the BMO
spaces.

Lemma 2.3.1. Let Assumption2.2.2 hold. Assume 2 L{, and that(Y;Z) 2 D}, H3
is a solution to 2BSDE (2.2.5. Then Z 2 BMO(Py).

Proof. Denote T, the collection of stopping times taking values ir[O;T]Rand for each
P2 Py, let ( P),>1 be a localizing sequence for thB-local martingale (;stBS. By
Itd's formula under P applied toe Yt, which is a cadlag process, for some> 0, we have
for every 2T,

ZZ r']j 2 Z ry]: Z r,]:,
) e V' Bz, dt=e "F e Y e "t dK+ e YuB(Y; Z,)dt
Z ¢ X
+ e 't Z,dB, e’s e Vs + Ye Vs
6s6 F

SinceY 2 D}, , KP is nondecreasing and since the contribution of the jumps is negative
because of the convexity of the functiox ! e *, we obtain with Assumption 2.2.1(iv)

"z . #

2 n = 2
EEP e Y b.g-_ Zi dt 6 e

YL 1+ T+ KYky,

'z 3 2 #
+ 7EF’ e V' Bz, dt

By choosing =2 , we then have
n #
n _ 2 1
EP e 2V B7Z dt 6 =R 142T 4+ Kk

P
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Finally, by monotone convergence and Fatou's lemma we get that
Z

o 2 1
EP B7Z dt 6 =e' R 142T o+ KYky
which provides the result by arbitrariness oP and . u

Proof. [Proof of Theorem2.3.1 The proof follows the lines of the proof of Theorer:4
in [101], but we have to deal with some speci ¢ di culties due to our quadratic growth
assumption. First (2.3.2 implies that

0
Yy = esssup yO (T; ); t2[0;T]; P as:foral P2Py;
PO2P y (t* ;P)
and thus is unique. Then, since we have thatihY;Bi, = ZdhBi,; Py q:s; Z is
also unique. We now prove 4.3.2) in three steps. Roughly speaking, we will obtain

one inequality using the comparison theorem, and the other one by using the minimal
condition (2.2.7).

(i) Fix 06 t;<t,6 T andP2Py. For any P°2 P, (t};P), we have
z. z
Y. = Y, By (Ys; Zs)ds

t t

t2

P’ p° 0
ZdBs+ K, K{;t:61t6t; P as:

and that K P is nondecreasingP’ as: Then, we can apply the comparison Theorem

2.3.1under P to obtain Y, > Yf (t;Y,), P° as: SinceP’ = P on F{', we get
0

Y., > Vi (t2; Vy,), P a:s:and thus

0
Y,, > esssup yf (t2;Yy,); P as:
P2P 4, (t} ;P)

(i) We now prove the reverse inequality. FixP 2 Py. Let us assume for the moment
that
. 0 h 0 0 pi
CP:= esssup E, K{ K{ <+1;P as;foralp>1lL
P2P y, (t} ;P)

For every P’ 2 Py (t*; P), denote
0 0
Y =Y y(tY,)and Z =2 Z°(tyY,):

By the Lipschitz Assumption 2.2.Qvi) and the local Lipschitz Assumption2.2.2V),
there exist a bounded process and a process with

j 6 B °Z, + tatlzzztpO P’ as:

such that
yA t2 Z t2 0 0
— 0
Y, = sYs+( s+ BT Zg ds ZdBs+K{ K;t6 1ty P as:

t t
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Denefort; 6 t6 t,
Z t
M, :=exp ds ; P as:

ta

Now, si%e 2 BMO(Py), by Lemma2.3.1, we know that the P’-exponential martin-
galeE (;( s+ s)bs 4B, is a P’-uniformly integrable martingale (see Theorem

2:3in the book by Kazamaki p9]). Therefore we can de ne a probability measure
Q°, which is equivalent toP’, by its Radon-Nykodym derivative

z

dQ’ T _
d_go =E . (st s))bsl_des

Then, by It6's formula, we obtain, as in L01], that

Sz
Yy, = E2

t2 0 0 0 0
MdK? 6 B2 sup (M(K{  Kf) ;
t1 t16 t6 to
sinceKPo is nondecreasing. Then, since is bounded, we have thatM is also
bounded and thus for everyp > 1

EP sup (M)P 6 Cp P as: (2.3.3)

t16 t6 to

Since ( + )lasl:2 is in BMO(Py), we know by Lemma2.2.1 that there ex-
ister > 1, independent of the probability measure considered, such that
E ,(s+ sbs'?dBs 2 Lj. Then it follows from the Holder inequality and
Bayes Theorem that

h R i1

0 — r T
= E o( s+ s)bsdBs o e

SR, = | E, sup M, Ki, K

Ei, E 0 ( s+ s)bs "dBs 1616t

Q-

q

Y., 6

Paq 1 4 oh o o %

6 C C.™ Er K{ K¢ ;

By the minimum condition (2.2.7 and sinceP’ 2 P (t*; P) is arbitrary, this ends
the proof.

(iii) 1t remains to show that the estimate for C{® holds forp > 1. By de nition of the
family KP;P2Py , we have

POh p° p° pl p p p° ‘e =2 2 °
EP K{ KL 6C 1+kvky +k K + Ef bz, dt

0 Z to p
+ CE{ Z,dB;

t1
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Thus by the energy inequalities for BMO martingales and by Burkholder-Davis-

Gundy inequality, we get that
h [

0 o p
E® K{ K  6C L+kYkp +kk +kZkgyo, + kZkgyo,

Therefore, we have proved that
h i
0 0 0o p
sup E” K{ K = <+1:
PP2P i (t1 ;P)

Then we proceed exactly as in the proof of Theored4 in [101]. u

Remark 2.3.1. It is interesting to notice that in contrast with standard quadratic BSDEs,

for which the only property of BMO martingales used to obtain uniqueness is the fact
that their Doléans-Dade exponential is a uniformly integrable martingale, we need a lot
more in the 2BSDE framework. Indeed, we use extensively the energy inequalities and
the existence of moments for the Doléans-Dade exponential (which is a consequence of the
so called reverse Holder inequalities, which is a more general version of LemPn2a 1).
Furthermore, we will also use the so-called Muckenhoupt condition (which corresponds
to Lemma 2.2.2, see p9] for more details) in both our proofs of existence. This seems
to be directly linked to the presence of the non-decreasing processésand raises the
guestion about whether it could be possible to generalize the recent approach of Barrieu
and El Karoui [6], to second-order BSDEs. Indeed, since they no longer assume a bounded
terminal condition, the Z part of the solution is no-longer BMO. We leave this interesting
but di cult question to future research.

We conclude this section by showing soneepriori estimates which will be useful in the
sequel. Notice that these estimates also imply uniqueness, but they use intensively the
representation formula @.3.2.

Theorem 2.3.2. Let Assumption2.2.2 hold.

() Assume that 2 L} and that(Y;Z) 2 D}, HZ is a solution to 2BSDE (2.2.5.
Then, there exists a constan€ such that

KYKps + KZKguogpyy 6 C 1+ K ki

8p>1 sup EP (KPP KPP 6C 1+k ki

PPy ; 2T
(i) Assume that ' 2 LY and that (Y';Z') 2 DL, HZ is a corresponding solution to
2BSDE (2.2.5,i=1;2. Denote = ! 2 Y :=Y! Y2 Z:=27' Z?and
K P:= KP1  KP™2 Then, there exists a constan€ such that
KYkp 6Ck ki

KZ Kguo(py) 8 Ck Ky 1+ 1+ 2

1 1
LY LY

— No
I+

p p
8p> 1, supE” sup KP"” 6Ckki 1+ ! El + 2
P2P 4 06t6T H H
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Proof.

(i) By Theorem 2.3.1we know that for all P2 P and for allt 2 [0; T] we have

0
Y, = esssupyl P as:
PY2P i (t* ;P)

Then by Lemmalin [12], we know that for all P2 Py

y? 6 log EP[ (j )] ; where (x):=exp

Thus, we obtain

1
yi 6 el kky

and by the representation recalled above, the estimate k¥ kDﬁ is obvious.

By the proof of LemmaZ2.3.1 we have now

CkY kD#

KZKguo(p,) 6 Ce€ 1+kYky 6C 1+kk.

Finally, we have for all 2 TOT, forall P2 Py and for all p> 1, by de nition
Z Z p
(KPP KPP= Y  +  B(Y;Z)dt+  zdB,

Therefore, by our growth Assumption2.2.1(iv)

E° (KT KPP 6 C L1+kkl, +kYkl, +FE B °Z, dt
Z 1 p
+ CEP Z,dB,

2
6 C 1+Kk kis + KZkgyop,) + kKZKgyo(py)

6C 1+kKk ;

where we used again the energy inequalities and the BDG inequality. This provides
the estimate forK ? by arbitrariness of and P.

(i) With the same notations and calculations as in steg(ii) of the proof of Theorem
2.3.] it is easy to see that for allP 2 Py and for all t 2 [0; T], we have

yf=EZMr 16 Ck ki ;

sinceM is bounded and we have2.3.3. By Theorem 2.3.1, the estimate for Y
follows.
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Now apply Itd's formula under a xed P 2 Py to j Y j* between a given stopping
time 2T, andT
Z ) Z
EP jY j?+ B2z, dt 6 E° j j2 2 Y. Byhzh B(YvZzd dt
VA T
+2EP Y. d(K)

Then, we have by Assumptior2.2.1(iv) and the estimates proved in(i) above

Z - ) X2 |
P = i i
E B Z, dt 6CkYth 1+ Y Dﬁ+ Z BMO( Py)
=1 i
+k Ky +2kYky EP KPL KPE 4 KPZ K2
6 Ck ku 1+ 1, + 2

1
I‘H

which implies the required estimate forZ .

Finally, by de nition, we have for all P2 Py and for allt 2 [0; T]
z Z,

t
KFP= Yo Y+ B(YLzd) B(¥%zH)ds+  Z.dBq:
0 0

By Assumptions2.2.4iv) and (vi), it follows that

ZT
sup K{ 6C kYky + B2z 1+ BI¥%z! + B?z2 ds
06t6T H 0
Zt
+ sup Z dBs ;
06t6 T 0

and by Cauchy-Schwarz, BDG and energy inequalities, we see that

Zq p i
E° sup KPP 6CEP 1+ B2z %+ 2727 ds
06t6 T 0
Z P 3
EP B2z, “ds
i " ZT P=2#!
+C k ki +E° B2 27, °ds

6 Ck k' 1+ LPEy 202
u

Remark 2.3.2. Let us note that the proof of(i) only requires that Assumption2.2.2(iv)
holds true, whereagii) also requires Assumptior2.2.2(v) and (vi).
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2.4 2BSDEs and monotone approximations

This Section is devoted to the study of monotone approximations in the 2BSDE framework.

We start with the simplest quadratic 2BSDEs, which allows us to introduce a quasi-
sure version of the entropic risk measure. In that case, we obtain existence through
the classical exponential change. Then, we show that for more general generators, this
approach usually fails because of the absence of a general quasi-sure monotone convergence
Theorem. Finally, we prove an existence result using another type of approximation which
has the property to be stationary.

2.4.1 Entropy and purely quadratic 2BSDEs

Given 2L}, we rst consider the purely quadratic 2BSDE de ned as follows

Z Z
Y=+ 5 HZ 2 ds Z}dB+ KP KP; 0616 T; Py qs: (2.4.1)
t t
Then we use the classical exponential change of variables and de ne
_ e X
Yii=e' Zo= YiZy, Ky = YsdK$ e’s e's Yse's
0 06 s6t

At least formally, we see that(Y:Z: K ') veri es the following equation
Z
Y.=e ZaBs+ K, K.;06t6T;P as8P2Py (2.4.2)
t
which is in fact a 2BSDE with generator equal td (and thus Lipschitz), provided that

the familly K" oop satis es the minimum condition (2.2.7). Thus the purely quadratic
H

2BSDE (2.4.)) is linked to the 2BSDE with Lipschitz generator @.4.2), which has a unique
solution by Soner, Touzi and Zhang101]. We now make this rigorous.

Proposition 2.4.1. The 2BSDE (2.4.1) has a unique solution(Y;Z) 2 D}, HZ given
by !

1 0
Y= ZIn esssup E{ e ;P as; t2[0;T]; forall P2Py:
PP2P y (t* ;P)

Proof. Uniqueness is a simple consequence of Theor2r8.1 In the following, we prove
the existence in 3 steps.

Step 1: Let (Y;Z) 2 D4 H2 be the unigue solutinon to the 2BSDE 2.4.2 and K be
the correponding non-decreasing processes. In particular, we know that

— 0
Y= esssup Ef e ;P as;
PP2P y (t* P)

which implies that Y 2 D, , since

k k1

O<e 6 Y 6 e
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We can therefore make the following change of variables

1 = 1Z
Yt = —In Yt ; Zt = —:t:
Y

t

Then by Itd's formula, we can verify that the pair(Y;Z) 2 D}, Hla satis es (2.4.1) with
Z —Pd’
1 —pc X 1 K
K= 7dK o Zlog 1 2

0 s 0<s 6 t s

Moreover, notice thatK P is non-decreasing withK § = 0.

Step 2: Denote now(y®; zP) the solutions of the standard BSDEs corresponding to the
2BSDE (2.4.]) (existence and unigueness are ensured for example b97). Furthermore,
if we de ne
v, = e 7= yg
then we know that (y7; z") solve the standard BSDE undelP corresponding to @.4.2.
Due to the monotonicity of the functionx ! In(x) and the representation forY’

N 0
Y.= esssup y' = esssup Ef e ;P as;
PO2P yy (t* ;P) PO2P |, (t* ;P)

we have the following representation fol¥

1 0
Y,= esssuf y' = ZIn esssup E{ e P as:

PY2P 4 (t* ;P) PP2P y (t* ;P)

Step 3. Finally, it remains to check the minimum condition for the family of non-
decreasing processeX P . Since the purely quadratic generator satis es the Assumption
2.2.1, we can derive the minimum condition from the above representation fof exactly
as in the proof of Theorem2.4.1in Subsection2.4.3 u

Thanks to the above result, we can de ne a quasi-sure (or robust) version of the entropic
risk measure under volatility uncertainty |
1 0 '
e«():=>In esssup E e :
PO2P , (t* :P)
where the parameter stands for the risk tolerance. We emphasize that, as proved in
[102 (see Proposition4:11), the solution of (2.4.1) is actually F-measurable, so we also
have !
e.():=>In esssupEl e ;
PP2P y (t;P)
which in particular implies that

1
eo )= ~In PséngP e
H

More generally, by the same exponential change and arguments above, we can also prove
that there exists a unique solution to 2BSDEs with terminal condition 2 L} and the
_ _ 2
following type of quadratic growth generatorshtl'zzg(t;! Y+ h(t!) - btl'zz whereg
and h are assumed to be bounded, adapted and uniformly continuous linfor the k k; .
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2.4.2 Why the exponential transformation may fail in general?

Coming back to Kobylanski B3], we know that the exponential transformation used in
the previous subsection is an important tool in the study of quadratic BSDEs. However,
unlike with a purely quadratic generator, in the general case the exponential change does
not lead immediately to a Lipschitz BSDE. For the sake of clarity, let us consider the
2BSDE (2.2.5 and let us denote
Z, X
=e : Yy=e': Zyi= YiZ EP = YsdK? e¥s e's Yee's :
0 06 s6t

Then we expect that, at least formally, if(Y; Z) is a solution of 2.2.5, then (Y ;Z) is a
solution of the following2BSDE
0 ,1
Z v 7 a7z, Z
- - logYs Z s &s = —P
Y, = V. b, 29, Zs " Xds  Z.dBs+Ko K (24.3)
t Ys 2 Y, t

Let us now de ne for(t;y;z) 2 [0;T] R, RY,
0 1

_ 2
yiz) = y B 1 00 2 b2 ¢.
Gi(lhy;z) =y ¢ h + 2y A

Then, despite the fact that the generatorG is not Lipschitz, it is possible, as shown
by Kobylanski [63], to nd a sequence(G"), - o of Lipschitz functions which decreases
to G. Then, it is possible, thanks to the result of J0]] to de ne for eachn the solution
(Y"™;Z") of the corresponding 2BSDE. The idea is then to prove existence and unigueness
of a solution for the 2BSDE with generatorG (and thus also for the 2BSDE 2.2.5) by
passing to the limit in some sense in the sequenfeé"; Z").

If we then follow the usual approach for standard BSDESs, the rst step is to argue
that thanks to the comparison theorem (which still holds true for Lipschitz 2BSDEs,
see 101]), the sequenceY" is decreasing, and thanks to a priori estimates that it must
convergePy (:s:to some proces¥ . And this is exactly now that the situation becomes
much more complicated with 2BSDEs. Indeed, if we were in the classical framework,
this convergence ofY " together with the a priori estimates would be su cient to prove
the convergence in the usuaH? space, thanks to the dominated convergence theorem.
However, in our case, since the norms involve the supremum over a family of probability
measures, this theorem can fail (we refer the reader to Secti2® in [90] for more details).
Therefore, we cannot obtain directly that

Z
P v N 2 | .
PszlPJ[H)E . 1" Yy dt 4 0;
which is a crucial step in the approximation proof.

This is precisely the major di culty when considering the 2BSDE framework. The only
monotone convergence Theorem in a similar setting has been proved by Denis, Hu and
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Peng (see 28]). However, one need to consider random variablés§" which are regular
in !, more precisely quasi-continuous, that is to say that for everyy> 0, there exists an
open setO" such that the X" are continuous in! outside O" and such that

supP(0") 6 "
P2P 4
Moreover, the set of probability measures considered must be weakly compact. This
induces several fundamental problems when one tries to apply directly this Theorem to

(Yn)n > 0-

(i) First, if we assume that the terminal condition is in UCy() , since the generator
= (and thus G") are uniformly continuous in!, we can reasonably expect to be able to
prove that theY" will be also continuous inl , P a:s:, for every P 2 P . However, this
is clearly not su cient to obtain the quasi-continuity. Indeed, for eachP, we would have
a P-negligible set outside of which th¥" are continuous in! . But since the probability
measures are mutually singular, this does not imply the existence of the open set of the
de nition of quasi-continuity.

We moreover emphasize that it is a priori a very di cult problem to show the quasi-
continuity of the solution of a 2BSDE, because by de nition, it is de ned® a:s: for
every P, and the quasi-continuity is by essence a notion related to the theory of capacities,
not of probability measures.

(i) Next, it has been shown that if we assume that the matric&Ss and a° appearing
in De nition 2.2.1 are uniform in P, then the setPy is only weakly relatively compact.
Then, we are left with two options. First, we can restrict ourselves to a closed subset of
Px, which will therefore be weakly compact. However, as pointed out i3, it is not
possible to restrict arbitrarily the probability measures considered. Indeed, since the whole
approach of L01] to prove existence of Lipschitz 2BSDEs relies on stochastic control and
the dynamic programming equation, we need the set of processés the de nition of Pg
(that is to say our set of control processes) to be stable by concatenation and bifurcation
(see for instance Remark3:1 in [17]) in order to recover the results of 101]. And it is not
clear at all to us whether it is possible to nd a closed subsetRf satisfying this stability
properties.

Otherwise, we could work with the weak closure Bf;. The problem now is that the
probability measures in that closure no longer satisfy necessarily the martingale represen-
tation property and the 0-1 Blumenthal law. In that case (since the lItratiorF will only
be quasi-left continuous), and as already shown by EIl Karoui and Huargg][ we would
need to rede ne a solution of a 2BSDE by adding a martingale orthogonal to the canonical
process. However, de ning such solutions is a complicated problem outside of the scope of
this paper.

We hope to have convinced the reader that because of all the reasons listed above, it
seems di cult in general to prove existence of a solution to a 2BSDE using approximation
arguments. However, the situation is not hopeless. Indeed, i@(, the author uses such
an approach to prove existence of a solution to a 2BSDE with a generator with linear
growth satisfying some monotonicity condition. The idea is that in this case it is possible
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to show that the sequence of approximated generators converges uniformlyynz), and
this allows to have a control on the dierenceY," Y;j by a quantity which is regular
enough to apply the monotone convergene Theorem @8]. Nonetheless, this relies heavily
on the type of approximation used and cannot a priori be extended to more general cases.

Notwithstanding this, we will show an existence result in the next subsection using an
approximation which has the particularity of being stationary, which immediately solves
the convergence problems that we mentioned above. This approach is based on very recent
results of Briand and Elie [L4] on standard quadratic BSDEs.

2.4.3 A stationary approximation

For technical reasons that we will explain below, we will work throughout this subsection
under a subset ofP,, which was rst introduced in [103. Namely, we will denote by
the set of processes satisfying

Xt xt

()= e (1200 ) e 0oy (1);

n=0 i=1
where for eachi and for eachn, "™ is a bounded deterministic mapping, ,, is an F -
stopping time with ¢ =0, suchthat , < .+ onf < +1g,inffn>0; ,=+1g <
+1, , takes countably many values in some xed, [O;T] which is countable and
dense in[0; T] and for eachn, (E")i> 1 F , forms a partition of

We will then consider the setPy = fP 2Py; 2 ¢: As shown in [L0Z, this set
satis es the right stability properties (already mentioned in the previous subsection) so
much so that the Lipschitz theory of 2BSDEs still holds when we are workinBy  g:s:
Notice that for the sake of simplicity, we will keep the same notations for the spaces
considered under®, or Py . Let us now describe the Assumptions under which we will
be working

Assumption 2.4.1. Let Assumption 2.2.2 holds, with the addition that the process in
(v) is bounded and that the mapping is deterministic.

The main result of this Section is then

Theorem 2.4.1. Let Assumption 2.4.1 hold. Assume further that 2 L}, that it is
Malliavin di erentiable By q:s:and that its Malliavin derivative is in D}, . Then the
2BSDE (2.2.5 (considered®, q:s) has a unique solution(Y;Z) 2 D}, HZ. Moreover,
the family fK P; P 2 B, g can be aggregated.

Proof. Uniqueness follows from Theorer2.3.1, so we concentrate on the existence patrt.
Let us de ne the following sequence of generators

n . . - .jzjl\ n . . n . - n . . .
ROz = Ry —zia ;and B (y;2) == F(y; z:B):

Then for eachn, F" is uniformly Lipschitz in (y; z) and thanks to Assumption2.4.1, we

can apply the result of L0]] to obtain the existence of a solution(Y";Z") to the 2BSDE
Z Z .

Y = Br (Y zM)ds ZMdBs+ KE" K™ P as:; forall P2 By: (2.4.4)

t t
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Moreover, we have for alP 2 B, and for all t 2 [0; T]

Y" = esssuf yi";P as; (2.4.5)
P28, (t*;P)

where (yP"; z°") is the unique solution of the Lipschitz BSDE with generatof®" and

terminal condition under P. Now, using Lemma2:1 in [14] and its proof (see Remark
2.4.1below) under eachP 2 B, we know that the sequencg™" is actually stationary.

Therefore, by @.4.9, this also implies that the sequence’" is stationary. Hence, we
immediately have that Y" converges to someé’ in DY, . Moreover, we still have the
representation

Y, = esssup y7;P as:; (2.4.6)
P28 (t* ;P)

Now, identifying the martingale parts in (2.4.4, we also obtain that the sequenc&"
is stationary and thus converges trivially inH% to someZ. For n large enough, we thus
have

Ibtn(Yn;Ztn) = |if)tn(Yt;Zt):
Besides, we have by Assumptio.4.1

12JZg ™ n

2
Br(Y;;Z) 6+ thj+§ 2} iz Z, 6 + thj+§ blzzztz; B, q:s:

Since(Y;Z) 2 DY, HZ%, we can apply the dominated convergence theorem for the
Lebesgue measure to obtain by continuity df that

Z Z

.
#ﬂg(vsn;zg)dsm! . B(Ys; Zo)ds: By q:s:
0 Cr 0

Using this result in (2.4.4), this implies necessarily that for eacte, K P" converge a:s:
to a non-decreasing proces$”. Now, in order to verify that we indeed have obtained the
solution, we need to check if the process&s” satisfy the minimum condition (2.2.7). Let
P2®B,, t2][0;T]and P’ 2 B, (t";P). From the proof of Theorem2.3.1, we have with
the same notations

0 ) 0 o 0 0
Y= E7 MK > EZinf _(M(KT  K{)
t t6s6T
0

R _

EFE J(o+ ob'ZdB. inf _(M)(KE KP)

_ h _ t6 s6 T :

_ e R
E” E ,( s+ shs " dBs

R _
For notational convenience, denot& = E ,( s+ )b -dBs . Letr be the number
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given by Lemma2.2.2applied to E. Then we estimate

h | ol
E. KY KP
) n . #2(r 1)
F,O ET . po PO 51 PO ET ) 1 2(r 1) Po PO 2r 1
6 E Ete”s“; T(MS)(KT Ki') B, EtGIQE T(MS) Ky K)
1] #| ro1 .
e L h I 1
1 0 B 71 0 . 2 0 0 0 2er 1)
6 (Y)7 1 EP E EP L nf (M) ET (K¥ K{)*
r 1
0 0 4 22r 1)
6 C Ef KP (YO 1

By following the arguments of the proof of Theoren2.3.1(ii) and (iii) , we then deduce
the minimum condition. Finally, the fact that the processesKk P can be aggegated is a
direct consequence of the general aggregation result of Theorbrhin [103. u

Remark 2.4.1. We emphasize that the result of Lemm21 in [14] can only be applied
when the generator is deterministic. However, even thoughis indeed deterministic,

is not, becauseh is random. Nonetheless, given the particular form for the density of
the quadratic variation of the canonical process we assumed in the de nition Bf;, we

can apply the result of Briand and Elie between the stopping times and on each set of the
partition of , since thenh and thus® is indeed deterministic.

2.5 A pathwise proof of existence

We have seen in the previous Section that it is usually extremely di cult to prove existence
of a solution to a 2BSDE using monotone approximation techniques. Nonetheless, we have
shown in Theorem2.3.1that if a solution exists, it will necessarily verify the representation
(2.2.7. This gives us a natural candidate for the solution as a supremum of solutions to
standard BSDEs. However, since those BSDEs are all de ned on the support of mutually
singular probability measures, it seems di cult to de ne such a supremum, because of the
problems raised by the negligible sets. In order to overcome this, Soner, Touzi and Zhang
proposed in 101 a pathwise construction of the solution to a 2BSDE. Let us describe
brie y their strategy.

The rst step is to de ne pathwise the solution to a standard BSDE. For simplicity, let
us consider rst a BSDE with a generator equal td. Then, we know that the solution
is given by the conditional expectation of the terminal condition. In order to de ne this
solution pathwise, we can use the so-called regular conditional probability distribution
(r.p.c.d. for short) of Stroock and Varadhan 104. In the general case, the idea is similar
and consists on de ning BSDEs on a shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus
obtained, and the decomposition 2.2.5 is obtained through a non-linear Doob-Meyer
decomposition. Our aim in this section is to extend this approach to the quadratic case.
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2.5.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in
[101].

For06 t6 T,denoteby ':= ! 2C [t;T];RY ; w(t)=0 the shifted canonical
space,B! the shifted canonical processP;, the shifted Wiener measure and the
ltration generated by B!. We de ne the density proces&' of the quadratic variation
processBli.

For06 s6 t6 T and! 2 S, de ne the shifted path!t'2 !
Iie=1, 1y 82Tl
For06 s6t6 Tand! 2 S kB2 !dene the concatenation path! k2 S

by
(! t b)(r) =1 rl[s;t)(r) + ( ! t br)]-[t;T](r); 8r 2 [S;T]:

For06 s6 t6 T and aF3-measurable random variable on *°, for each! 2 9,
de ne the shifted F!-measurable random variable* on ! by

()= (I (k)82 "

Similarly, for an F°-progressively measurable proce¥son|[s; T]and (t;! ) 2 [s; T]
s, the shifted procesd X' ;r 2 [t; T]g is F'-progressively measurable.

For a F-stopping time , the r.c.p.d. of P (noted P") induces naturally a probability
measureP* (that we also call the r.c.p.d. ofP) on FT(! ) which in particular satis es
that for every bounded andFt-measurable random variable

EP[1=E" ["]:

We de ne similarly as in Section2.2the setP, by restricting to the shifted canonical
space ', and its subsetP},.

Finally, we de ne our "shifted" generator
B (By;z) = Fs(! By;z; Bi(B); 8(s;B) 2 [ T] .

Notice that thanks to Lemma4:1 in [107, this generator coincides foP-a.e.! with the
shifted generator as de ned above, that is to say

Fs(!' t(By;z; Bs(! B)):

The advantage of the chosen "shifted" generator is that it inherits the uniform continuity
in! under theL! norm of F.



42  Chapitre 2. Second Order BSDEs with Quadratic Growth

2.5.2 Existence when is in UCp()

As mentioned at the beginning of the Section, we will need to prove some measurability and
regularity on our candidate solution. For this purpose, we need to assume more regularity
on the terminal condition. When is in UC,() , by de nition there exists a modulus of
continuity function for andF in!. Then, forany06 t6 s6 T; (y;z) 2[0;T] R RY
and!;! 92 k2 Y

) M) 6 (ko k) and B (kyiz) BET(kyiz) 6 (K 1%
wherek! k, :=supgg s ¢Jj!sj; 06 16 T.

To prove existence, as inlj01], we de ne the following value proces¥, pathwise:

Vi(1):= sup YOH (T; ); forall (t;1)21[0;T] (2.5.1)
P2P |,
where, for any (t;;!) 2 [0;T] , P2 P t, 2 [ty;;T], and any F,-measurable

2 L (P), we denoteY{ ™" (ty; ):= yo™*', where yPt:!;zPt! s the solution of the
following BSDE on the shifted space '* under P
Z,, Z,,

yorut = Pl yPtil . ZPlt gy 7' dBM; s 2 [ty;ty]; P as. (2.5.2)

S S

We recall that since the Blumenthal zero-one law holds for all our probability measures,
YIP;“! (1; ) is constant for any given(t;! ) and P 2 P,. Therefore, the proces¥ is well
de ned. However, we still do not know anything about its measurability. The following
Lemma answers this question and explains the uniform continuity Assumptions in we
made.

Lemma 2.5.1. Let Assumptions2.2.1 hold true and let be inUCy() . Then
V()6 C 1+Kk kL; ; forall (t;!) 2 [0;T]
Furthermore
V() v(9%6cC (kR 1%); foral (5! 92[0;T] 2

In particular, V; is Fy-measurable for every 2 [0; T].

Proof. (i) For each(t;!) 2 [0; T] and P2 P},, note that

z T h 1=2 1=2 I
y£>;t;! — |;brt;! (0)+ ryP;t;! + b: = ZP;t;! + b}. = ZP;t;! dr

r r r
VA
z7% dB!; s2 [t;T]; P as:

S

where is bounded and satis es

.6 B7ZPY P as:
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Then proceeding exactly as in the second step of the proof of Theorén3.1, we can
de ne a bounded proces$! and a probability measureQ equivalent to P such that

i BES My ¥ 6C l+kky,

By arbitrariness of P, we getjV;(! )] 6 C(1+ k kLﬁ ).

(i) The proofis exactly the same as above, except that we need to use uniform continuity
in! of % and ®% . In fact, if we de ne for (t;1;! 92 [0;T] 2

y = yPtt P . 5 .= Pt PO =t 6 .- Pt Pt
then we get with the same notations
Z
jyd=E® My + MgBds 6C (k !%):

t

We get the result by arbitrariness ofP. u
Then, we show the same dynamic programming principle as Propositidtv in [102

Proposition 2.5.1. Let 2 UCy() . Under Assumption2.2.1 or Assumption 2.2.2 with
the addition that theL% -norms of and B° are small enough, we have for all 6 t; <
t,6 T and for all ! 2

Vi (1) = sup Y (i Vi ):
P2P 1

The proof is almost the same as the proof i3, but we give it for the convenience of
the reader.

Proof. Without loss of generality, we can assume that; = 0 and t, = t. Thus, we have
to prove
Vo(!) = sup YE(t; VL):
P2P 4

Denote (yP; z°) := (YP(T; );ZP(T; ))

(i) For any P 2 Py, it follows from Lemma 4:3 in [102, that for P ae:! 2 , the
rcpd. P¥ 2 Pl. By Tevzadze L07, we know that when the norm of the terminal
condition and the norm of the generator valued orf0; 0) are small, a quadratic BSDE
whose generator satis es Assumption2(2.2 (v) can be constructed via Picard iteration.
Thus, it means that at each step of the iteration, the solution can be formulated as a
conditional expectation underP. Then, for general case, Tevzadze showed that if the
generator satis es Assumption 2.2.1) (v), the solution of the quadratic BSDE can be
written as a sum of quadratic BSDEs with small terminal conditions and generators which
are small on(0; 0). By the properties of the r.p.c.d., this implies that

yPO )= Y (T ) forP aer! 2
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By de nition of V; and the comparison principle for quadratic BSDEs, we deduce that
y? 6 YE(t; V) and it follows from the arbitrariness ofP that

Vo(1) 6 SupYE(t Ve):

P2P

(i) For the other inequality, we proceed as in103. Let P2 Py and" > 0. The idea
is to use the de nition of V as a supremum to obtain an'-optimizer. However, sinceV
depends obviously orh , we have to nd a way to control its dependence it by restricting
it in a small ball. But, since the canonical space is separable, this is easy. Indeed, there
exists a partition (E{)i>1 F {suchthatk! !% 6 " foranyi andany!;! °2 E/.

Now for eachi, x an b; 2 E! and let, as advocated aboveP! be an" optimizer of
Vi(by). If we de ne for eachn > 1, P" := P by
" #
X0 — _
P"(E) = EP E 1Y 1 + P(E\ B)); whereB) := [, E/;

i=1
then, by the proof of Proposition4:7 in [104, we know that P" 2 P and that

Vi6y"+"+C ("); P" as:ion [N, El!

Let now (y";z") := (y™ ;z"") be the solution of the following BSDE on0; t]
YA t YA t
yi= y"+"+C (") g o, el Vil B (y"; 2")dr z'dB,; P" as: (2.5.3)
S S
Note that sinceP" = P on Fy, the equality (2.5.3 also holdsP a:s: By the comparison
theorem, we know thatY§'(t; V;) 6 y5. Using the same arguments and notations as in the
proof of Lemma2.5.1 we obtain
h [
Yo Yo 6 CEC "+ ()+ Vi ¥ L

Then, by Lemma2.5.1 we have
h [
YOt V)6 yi6 Vo(l)+C "+ (M+EQ 1 i

The result follows from lettingn goto+1 and™ to O. u

Remark 2.5.1. We want to emphasize here that it is only because of this Proposition prov-
ing the dynamic programming equation that we had to consider Tevzadz@7 approach

to quadratic BSDES, instead of the more classical approach of KobylangKi][ Indeed, as
pointed out in the proof, for technical reasons we want to be able to construct solutions of
BSDEs via Picard iterations, to build upon the known properties of the r.c.p.d. Using the
Assumptions2.2.1 or 2.2.2 with the addition that theL% -norms of and B° are small
enough, this allows us to recover this property.
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Now that we solved the measurability issues fov;, we need to study its regularity in
time. However, it seems di cult to obtain a result directly, given the de nition of V. This
is the reason why we de ne now for al(t;! ), the F* -progressively measurable process

V= lim Ve
r2Q\ (4T ];r#t

This new value process will then be proved to be cadlag. Notice that a priov*
is only F* -progressively measurable, and ndt-progressively measurable. This explains

why in the de nition of the spaces in Section2.2.4 the processes are assumed to be
F* -progressively measurable.

Lemma 2.5.2. Under the conditions of the previous Proposition, we have

V' = lim V;; Py q:s:
r2Q\ (4T Jir#t

and thusV™ is cadlagPy q:s:

Proof. Actually, we can proceed exactly as in the proof of Lemma38 in [103, since
the theory of g-expectations of Peng has been extended by Ma and Yao irg] to the
guadratic case (see in particular their Corollarys:6 for our purpose). u

Finally, proceeding exactly as in Stepd and 2 of the proof of Theorem4:5 in [107,
and in particular using the Doob-Meyer decomposition proved irvf] (Theorem 5:2), we
can get the existence of a universal proce&s and a family of nondecreasing processes

KP:P2 Py such that

YA t Z t
V=V o+ BV Z)ds+ ZdBs KPP asi8P2Py:
0 0

For the sake of completeness, we provide the representatich3.2 for V and V*, and
that, as shown in Proposition4:11 of [104, we actually haveV = V*, Py q:s; which
shows that in the case of a terminal condition ifJCy() , the solution of the 2BSDE is
actually F-progressively measurable. This will be important in SectioA.7.

Proposition 2.5.2. Let 2 UCy() . Under Assumption2.2.1 or Assumption 2.2.2 with
the addition that theL}, -norms of and 00 are small enough, we have

0 0
V= esssup Y{ (T; ) andV," = esssuf Y (T; ); P as:; 8P2Py:
PP2P y (t;P) PO2P y (t* ;P)

Besides, we also have for all V; = V,"; P4y q:s:

Proof. The proof for the representations is the same as the proof of propositidriO in
[103, since we also have a stability result for quadratic BSDEs under our assumptions.
For the equality betweenV and V™, we also refer to the proof of Propositiod:11in [107.

u

To be sure that we have found a solution to ouBBSDE, it remains to check that the
family of nondecreasing processes above satis es the minimum condition. 1RBR Py,
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t 2 [0;T] and P’ 2 Py (t*;P). From the proof of Theorem2.3.1, we have with the same
notations

Vv, = EQ ZTMdKPO Q" inf (M)(KE KP
= >
t t t taK, t tG'QGT( s) (Kt t)
0 RT 1=0 . 0 0
) EC E ,( S+hs)as dBs inf T(MS)(Kﬁ KP)
n R — !
E” E ,( s+ shs " dBs

R _
For notational convenience, denot& = E  ,( s+ )b -dBs . Letr be the number
given by Lemma2.2.2applied to E. Then we estimate

h [
0 0 0
Ef KE K¢
20 1 . SE
o B 0 9 “y 0 og
poBro P P A P P
6 Et E[IGIQE T(MS)(KT t In.l: (Ms)ET (KT Kt )
n #! r .
1 0 E o 7 E &0 o0 N o0 0 4' D
6 (Vi)' E E = t6|21; T(MS) T Er (Ky K{)
0 o 4 ﬁ 1
6 C Ef K¥ (V)7 1:

By following the arguments of the proof of Theoren2.3.1(ii) and (iii) , we then deduce
the minimum condition.

Remark 2.5.2. In order to prove the minimum condition it is fundamental that the
processM above is bounded from below. For instance, it would not be the case if we had
replaced the Lipschitz assumption oy by a monotonicity condition as in Q).

2.5.3 Main result

We are now in position to state the main result of this section

Theorem 2.5.1. Let 2 LY. Under Assumption2.2.1 or Assumption 2.2.2 with the
addition that the L}, -norms of and 0O are small enough, there exists a unique solution
(Y;Z) 2 D}, HZ of the 2BSDE (2.2.5.

Proof. For 2L}, there exists , 2 UC,() such thatk nk |! 0. Then, thanks

nl +1

to the a priori estimates obtained in Proposition2.3.2 we can proceed exactly as in the
proof of Theorem4:6 (ii) in [10]] to obtain the solution as a limit of the solution of the
2BSDE (2.2.5 with terminal condition . u
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2.6 An application to robust risk-sensitive control

One application of classical quadratic BSDES is to study risk-sensitive control problems,
see El Karoui, Hamadéne et MatoussBp] for more details. In this section, we will consider

a robust version of these problems.

. . . . . T
First of all, for technical reasons, we restrict the probability measures iy := Bs Py,

wherePs is de ned in Subsection2.2.1 Then h is uniformly bounded by somez; a2 S;°.

For eachP 2 B, we can de ne aP-Brownian motion WP by
dw/ = b, *?dB; P as:

Let us now consider some system, whose evolution is decribed (for simplicity) by the
canonical proces8. A controller then intervenes on the system via an adapted stochastic
processu which takes its values in a compact metric spadd. The set of those controls is
called admissible and denoted by. When the controller acts withu under the probability
P 2 By, the dynamic of the controlled system remains the same, but now under the
probability measureP" de ned by its density with respect to P
Z Z

— 1=2 D P
dp—exp . B, “7g(t; B up)dW,

u

_ 2
b Pg(t;B:;uy) dt

NI =

0

where g(t;!;u ) is assumed to be bounded, continuous with respect tg adapted and
uniformly continuous in! . Notice that this probability measure is well de ned sincea is
uniformly bounded.

Then, under PY, the dynamic of the system is given by
dB = g(t;B:;uy)dt + B 2dWPY; PY  as:
whereWPY is a Brownian motion underP" de ned by
dW™ = dw? B, Pg(t; B u)dt:

When the controller is risk seeking, we assume that the reward functional of the control
action is given by the following expression
Z

8u2U; J(u):= sup EPY exp h(s;B:;us)ds+ ( Brt)
P2, 0

where > 0 is a real parameter which represents the sensitiveness of the controller with
respect to risk. Hereh(t;!;u ) is assumed to adapted and continuous in, and both

and h are assumed to be bounded and uniformly continuous Infor the k k, norm. We
are interested in nding an admissible controlu which maximizes the rewardJ (u) for
the controller.

We begin with establishing the link between] (u) and 2BSDEs in the following propo-
sition
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Proposition 2.6.1. There exists a unique solutiorfY"; Z") of the 2BSDE associated with
the generator zg(t;B:;uy) h(t;B:;uy) Ejbtlzzzjz, ie., P as; forall P2 By
Z Z;
Y= ( Br)+ t ZYg(s; B:;us) + h(s; B:;ug) + Ejtafzzg‘jz ds t zidBs dK.":
(2.6.1)
Moreover J(u) = exp( Yq').

Proof. With our assumptions ong, h and , we know that the generator satis es the
Assumption2.2.], therefore there exists a unique solution to the 2BSDE(6.1). According
to [35], the solution to the classical BSDE with the same terminal condition and generator
as the 2BSDE @.6.1) under eachP is
I : Z1
y'P = ZIn ETY exp h(s;B:; us)ds+ ( Br) P as:
t

Then by the representation forY", we have
1 £
U= Zesssuf In E{M exp h(s;B:;us)ds+ ( By) P as:
PO2y (t*;P) t

Since the functional In(x) is monotone non-decreasing, then

Z
1 T
U= ZIn  esssuP EP exp h(s;B:;ug)ds+ ( Br) P as:
P2 B, (t+;P) t
Therefore, we havel (u) = expf Y'0. u

As explained in B5], by applying Benes' selection theorem, there exists a measurable
versionu (t;B:;z) of

arg max| (t;B:;z;u) := zg(t;B:;u) + h(t;B:;u):

We know that | (t;B:;z) := sup !l (t;B:;z;u) = 1(t;B:;z;u (t;B:;z)) is convex uni-
formly Lipschitz in z because it is the supremum of functions which are linear m So the
mappingz! | (t;B:;;z)+ %jlatlzzzj2 is continuous with quadratic growth, implying that a
solution (y 7; z ‘P) of the BSDE associated to this generator exists. Then we have

Theorem 2.6.1. There exists a unique solutiorfY ;Z ) to the following 2BSDE
Z Z -
Y, = ( By)+ | (s;B:;Z,)+ éjlafzzsj2 ds Z.dBs+ K7 K, (2.6.2)
t t
The admissible controli := (u (t;B:;Z,)):s 7 is optimal and(exp(Y; )):s T IS the value
function of the robust risk-sensitive control problem, i.e., for any6 T we have:
Z T

0.
exp(Y, ) = esssup esssuP Ef " exp h(s;B:;ug)ds+ ( Br)
PR2P y (t*;P) u2U t
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Proof. First, we need to prove the existence of a solution to the quadratic 2BSDE.(.2).
Unlike in Proposition 2.6.1, hereu also depends orz, so we do not know whethelt is
twice di erentiable with respect to z. Therefore the generator of the 2BSDE may not
satisfy the Assumption2.2.1 But it's easy to see that it always satis es the weaker
Assumption 2.2.2 and we only need this Assumption to have uniqueness of the solution.
Moreover, it was also the only one used to prove the minimum condition for the familly
of non-decreasing processes in Subsecti@®h.2 Therefore, exactly as in Sectior2.4, for
P 2 B, by making the exponential change
Z, X
= YiZ,; K= YsdK P e’s e's Y.e's ;

0 06 s6t

N

Vt = eYt ;

we see that(Y;Z: K ) formally veri es the following equation
Z Z
Yi=e B+  sup Zg(s;B:;;u)+ Ysh(s;B:;u) ds ZdB.+K; K,; P as:
Lo t (2.6.3)
Since this is 2BSDE with Lipschitz generator from Soner, Touzi and Zhand{1], we
know that (Y ;Z; ?P) exists, is unique and satis es the representation property2(3.2.
Arguing exactly as in Subsection2.4.1 for the purely quadratic 2BSDEs, we can then
obtain the existence. Now, from35], we have that
Z
exp y,© =esssup EM exp h(s:B:;us)ds+ ( Br)

u2U t

Then the representation forY implies the desired result. u

2.7 Connection with fully nonlinear PDEs

In this section, we place ourselves in the general case of SectibB and we assume
moreover that all the nonlinearity inH only depends on the current value of the canonical
processB (the so-called Markov property)

He( vz )= h(tB(!);y:z; );

whereh :[0;T] RY R RY Dy! R is a deterministic map. Then, we de ne as in
Section2.2 the corresponding conjugate and bi-conjugate functions

f(t;x;y;z;a) := sup %Tr[a] h(t;x;y;z; ) (2.7.2)
2Dy

h(t;x;y;z; ) = sup %Tr[a] f(t;x;y;z;a) (2.7.2)
a2s;®

We denotePy, := Py, and following [LO]], we strengthen Assumptiorn2.2.1

Assumption 2.7.1. (i) Py is not empty, and the domainD;, of the mapa !
f (t;x;y;z;a) is independent of(x;y; z).
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(i) On Dy,, fis uniformly continuous in t, uniformly in a.

(i) f is continuous in z and has the following growth property. There exis(s;, ; )
such that

if(txy;z;a)j 6 + jy+ > a1=222; forallt2 [0;T]:x;z2 R%y2 R;a2 Ds,:

(iv) f is Clin y and C? in z, and there are constants and such that for allt 2
[0;T];x;z2 R%y 2 R;a2 Dy,

iDyf (txy;Z;@)j 6 1; |Df(txy;Z;@)j6 r+  a™z

jDZf (t;x;y;2;a)] 6

(v) On Dg,, f is uniformly continuous in x, uniformly in (t;y;z;a), with a modulus of
continuity ~ which has polynomial growth.

Remark 2.7.1. As mentioned in Subsectior2.2.3, when the norm of the terminal condi-
tion and the norm off ( ;0;0;a) are small enough, Assumptior2.7.1 (iv) can be replaced
by the following weaker assumptions.

(iv)[a] There exists > 0 and a boundedR%-valued function such that for allt 2
[0;T];x;z;2 2 R%y 2 R;a2 Dy,

f(txy;z:a) fxy;z:a) M2z 2 6 a2z 2° a¥?z + a7

(iv)[b] On Dg,, f is Lipschitz iny, uniformly in (t;X;z;a).

Let now g: RY! R be a Lebesgue measurable and bounded function. Our object of
interest here is the following Markovian2BSDE with terminal condition = g(Bt)
Z; Z
Y, = g(Bt) f (s;Bs; Ys; Zs: Bs)ds ZdBs+ KY KPP, qis: (2.7.3)

t t

The aim of this section is to generalize the results 0f(1] and establish the connection
Yy = v(t;By), Pn  g:s; wherev is the solution in some sense of the following fully nonlinear
PDE

8
< Q)+ Rtxv(6x);Dv(tx); DAV(tx)) = 0; t 2 [0;T)

v(T;x) = g(x):

(2.7.4)

Following the classical terminology in the BSDE literature, we say that the solution of
the 2BSDE is Markovian if it can be represented by a deterministic function df and B;.
In this subsection, we will construct such a function following the same spirit as in the
construction in the previous section.
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With the same notations for shifted spaces, we de ne for anft;x) 2 [0;T] R

B :=x+ B, foralls2 [t;T]:

Let now be anF'-stopping time, P 2 P and a P-boundedF'-measurable random
variable. Similarly as in 2.5.9, we denote(yPtx;zPtx) = (YPWX(; );ZP%(; )) the
unique solution of the following BSDE

Z Z
yorx = f (u;BE, yh™; 2% B)du z7"™dBS; t6 s6 ; P as: (2.7.5)
S S
Next, we de ne the following deterministic function (by virtue of the Blumenthal0 1
law)
u(t; x) := sup Y (T; g(BY)); for (tx) 2 [0;T] R%: (2.7.6)
P2P |
We then have the following Theorem, which is actually Theoren®:9 of [10]] in our
framework

Theorem 2.7.1. Let Assumption2.7.1 hold, and assume thag) is bounded and uniformly
continuous. Then the2BSDE (2.7.9 has a unique solution(Y;Z) 2 D}, HZ and we
haveY; = u(t;B;). Moreover, u is uniformly continuous in x, uniformly in t and right-
continuous int.

Proof. The existence and uniqueness for tiZBSDE follows directly from Theorem2.5.1
Since 2 UCy() , we have with the notations of the previous sectiol; = u(t; B{). But,
by Proposition 2.5.2 we know that Y; = V4, hence the rst result.

Then the uniform continuity of u is a simple consequence of Lemn2a5.1 Finally, the
right-continuity of u in t can be obtained exactly as in the proof of Theoref9 in [101].
u

2.7.1 Nonlinear Feynman-Kac formula in the quadratic case

Exactly as in the classical case and as in Theore®3 in [10]], we have a nonlinear version
of the Feynman-Kac formula. The proof is the same as il(]], so we omit it. Notice
however that it is more involved than in the classical case, mainly due to the technicalities
introduced by the quasi-sure framework.

Theorem 2.7.2. Let Assumption 2.7.1 hold true. Assume further thath is continuous
in its domain, that D¢ is independent oft and is bounded both from above and away from
0. Let v 2 C¥2([0; T); RY) be a classical solution 0f2.7.4 with f (v; DV)(t;B1)Gyg 16 T 2
DY H3. Then
z t
Yy = v(t;By); Zy := Dv(t;By); Ky = ksds;
0

is the unique solution of the quadrati@BSDE (2.7.3, where
h [
1 _
ko= Bt B Vi Zy; o) ST B ¢ +f(tBY;Zik) and (= DV(tBy):
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2.7.2 The viscosity solution property

As usual when dealing with possibly discontinuous viscosity solutions, we introduce the
following upper and lower-semicontinuous envelopes

u(x):= Iim u(t®xy; u(@t;x):= lm u(t®x9
(t%% 9! (t;x) (t%9! (tx)
B #) = (J%#)h(#o), R #) = (#g)i!m(#)h(#%

In order to prove the main Theorem of this subsection, we will need the following Propo-
sition, whose proof (which is rather technical) is omitted, since it is exactly the same as
the proof of Propositions5:10 and 5:14 and Lemma®6:2 in [101].

Proposition 2.7.1. Let Assumption 2:7:1 hold. Then for any bounded functiorg
(i) For any (t,x) and arbitrary F'-stopping times P;P2 P} , we have

u(t;x) 6 supY{ ™ ( Pru ( P:B%)):

P2P |

(i) If in addition g is lower-semicontinuous, then
u(t;x) = sup YO ( Pru( P BR)):
P2P !
Now we can state the main Theorem of this section
Theorem 2.7.3. Let Assumption2.7.1 hold true. Then

(i) u is a viscosity subsolution of

@ R(;u;Du;D%)60 on[OT) R%

(ii) If in addition g is lower-semicontinuous and; is independent oft, then u is a
viscosity supersolution of

@ B (;u;Du;D%)>0 on[0;T) R

Proof. The proof follows closely the proof of Theorem®:11 in [10]], with some minor
modi cations (notably when we prove @.7.10). We provide it for the convenience of the
reader.

(i) Assume to the contrary that

0=(u )(to; Xo) > (u )(t;x) for all (t;x) 2 [0;T) RYnf(to: Xo)g; (2.7.7)
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for some(to; %) 2 [0;T) RY and
@ R(;:DiD ?) (toixo) >0 (2.7.8)

for some smooth and bounded function (we can assume w.l.0.g. that is bounded since
we are working with bounded solutions 02BSDES).

Now since is smooth and since by de nitionB is upper-semicontinuous, there exists
an open ballO(r; (tg; Xg)) centered at(to; Xo) with radius r, which can be chosen less than
T to, such that

@ HR(;;D;D 2)>0; onO(r (to; X0)):

By de nition of B, this implies that for any 2 S;°
@ %Tr D2 +f(;;D; )>0 onO(r; (to; Xo)): (2.7.9)

Let us now denote
= max (u ):
@D(r; (to:x0))
By (2.7.7), this quantity is strictly positive.

Let now (tn;Xn) be a sequence IrO(r; (to; Xo)) such that (tn;Xxn) ! (to;Xo) and
u(th; Xn) ! u (to; Xo). Denote the following stopping time

no=inf s>t (s;BI* 20 (n; (to; Xo))

Sincer<T  to, we have , <T and therefore( ,;B™*") 2 @(r; (to; Xo0)). Hence, we
have
G :=( u)(th;xn)! Oandu (,;B"*")6 (n;B"")

Fix now someP" 2 P{". By the comparison Theorem for quadratic BSDEs, we have
Ytpnn;thXn( nu ( n;Bt:JXn)) 6 Ytpnn;tn?xn( N ( n;Bt:;Xn) ):
Then proceeding exactly as in the second step of the proof of Theorén3.1, we can

de ne a bounded proces#/,, whose bounds only depend oh and the Lipschitz constant
of f iny, and a probability measureQ,, equivalent to P, such that

YtPnn;tn;Xn(n; (n;Bt:;Xn) ) Y tPnn;tn;Xn(n; (n;Bt:;Xn)): Ethn[Mn ]6 O;
for some strictly positive constant °which is independent ofn.
Hence, we obtain by de nition ofc,

Ytnn;tn;xn( n,u ( n;Bt:;Xn)) u(tn,Xn) 6 Ytnn;tn;xn( n; ( n;Bt:;Xn)) (tn;xn)+ Cn 0-
(2.7.10)
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With the same arguments as above, it is then easy to show with Itd's formula that
Z

Yt}znﬂn;Xn( . (n;Bt:;Xn)) (tn;xn): Ethn Msn st :

tn

where 1

:=( @ ST BD* +f(;D; B))(s;B™):
But by (2.7.9 and the de nition of ,, we know that fort, 6 s6 ,, 1> 0. Recalling
(2.7.10, we then get
Ytlznitn;xn( au ( n;Bt:;Xn)) U(tn;Xn) 6 Ch 0-
Sincec, does not depend orP,, we immediately get

sup Y (Cpsu (s BR))  u(tnixn) 6 ¢ °

P2P

The right-hand side is strictly negative forn large enough, which contradicts Proposition

2.7.10).

(i) We also proceed by contradiction. Assuming to the contrary that

0=(u )(to; Xo0) < (u )(t;x) for all (t;x) 2 [0;T) RYnf(te;x0)g:  (2.7.11)
for some(to; %) 2 [0;T) RY and
@ R (;:D:D 2) (toixo) < O; (27.12)

for some smooth and bounded function (we can assume w.l.0.g. that is bounded since
we are working with bounded solutions 02BSDES).

Now we have by de nitonA 6 A, hence
@ R(;:D:D ?) (toixo) <O (2.7.13)

Unlike with the subsolution property, we do not know whetheD? (to;Xo) 2 Dy or not.
If it is the case, then by the de nition of B, there exists some 2 S, such that

@ %Tr D2 +f(;;D; ) (to;Xo)<0; (2.7.14)

which implies in particular that 2 Dy.

If D? (to; Xo) 2 Dy, we still have that @ (to; Xo) is nite, and thus 2 D¢ and (2.7.13
holds.

Now since is smooth and sinceDs does not depend ort, there exists an open ball
O(r; (to; Xo)) centered at(to; Xo) with radius r, which can be chosen less thah tg, such

that 1
@ m D2 +f(;;D; )6 0; onO(r; (ty;Xo)):
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Let us now denote

= min u :
@(r; (to;xO))( )

By (2.7.1)), this quantity is strictly positive.

Let now (tn;Xx,) be a sequence inO(r; (to; Xo)) such that (t,;x,) ! (to;Xo) and
u(tn;xn) ! U (to; Xo). Denote the following stopping time

no=inf s>t (s;BY 20(r; (to; Xo))

Sincer<T tg, we have , <T and therefore( ,; Btg;xn) 2 @D(r; (to; X0)). Hence, we
have
Ch = ( u)(ta;xn) ! Oandu ( ;B ) > (;BYXn)+

Now for eachn consider the probability measureP" := P induced by the constant
diusion from time t, onwards. It is clearly inP;". Then, arguing exactly as in(i), we
prove that

u(tn;Xn) Y tF:;t”;X”( nU (n;BY*)) 6 cy ¢ p" as:

For n large enough, the right-hand side becomes strictly negative, which contradicts
Proposition 2.7.(ii) . u






Chapitre 3

Robust Utility Maximization In
Non-dominated Models with 2BSDEs

3.1 Introduction

In this chapter, we study the problem of robust utility maximization with closed con-
straints set in uncertain volatility models via quadratic2BSDEs introduced in Chapter2.

The rest of the chapter is organized as follows. In Sectidh2, we recall some notations

of quadratic 2BSDEs. Then inspired by 88 and [54], in Sections3.3, 3.4, 3.5 and 3.6,

we study the problem for robust exponential utility, robust power utility and robust loga-
rithmic utility. Finally, in Section 3.7, we provide some examples where we can explicitly
solve the robust utility maximization problems by nding the solution of the associated
2BSDEs, and we give some insights and comparisons with the classical dynamic program-
ming approach adopted in the seminal work of Merton8[l]. This chapter is based on

[78].

3.2 Preliminaries

We will use the notations and notions related to the theory of 2BSDEs with quadratic
growth generators. The only di erence is with the non-dominated family of mutually
singular probability measures. We xa;a2 S;° such thata 6 a (for the usual order on

positive de nite matrices, i.e. (2 a) 2 S;°) and we de ne the family:

Po=P:= P2Pgsst a6h6 adt dP ae: :

In fact, this reduces to a particular case of De nition2.2.1in Chapter 2 where the bounds
on b are independent of the probability measures and whef@° is bounded. Throughout
this chapter we assume thaPy is not empty.

De nition 3.2.1. We say a property hold$y -quasi-surely Py -q.s. for short) if it holds
P-a.s. forallP2 Py.

Remark 3.2.1. The ltration F* de ned in Chapter 2 is right-continuous but not complete
under eachP 2 Py. However, as shown in Lemma&:4 of [103, for every P 2 P, we
can always consider a version which is progressively measurable for the completioR™of
under P. This shows that all the usual properties are still satis ed in our framework.



Chapitre 3. Robust Utility Maximization in Non-dominated
58 Models with 2BSDEs

3.3 Robust utility maximization

We will now present the main problem of this paper and introduce a nancial market with
volatility uncertainty. The nancial market consists of one bond with zero interest rate
and d stocks. The price process is given by

dS, = diag[S](hdt + dB,); Py q:s:

whereb is an RY-valued uniformly bounded stochastic process which is uniformly contin-
uous in! for the jj jj; norm.

Remark 3.3.1. The volatility is implicitly embedded in the model. Indeed, under each
P2 Py, we havedBg btlzdetP where WP is a Brownian motion underP. Therefore,
B2 plays the role of volatility under eactP and thus allows us to model the volatility
uncertainty. We also note that we make the uniform continuity assumption forto ensure
that the generators of theBSDEs obtained later satisfy Assumption®.2.1 or 2.2.2.

We then denote = ( ()oste T @ trading strategy, which is a d-dimensional F -
progressively measurable process, supposed to take its value in some closed setve
refer to De nitions 3.4.1, 3.5.1and 3.6.1in the following sections for precise de nitions of
the set of admissible strategies for the three utility functions we study.

The process | describes the amount of money invested in stodk at time t, with
16 i 6 d The number of shares isg:. So the liquidation value of a trading strat-
egy with positive initial capital x is given by the following wealth process

Z t
X, =x+ s(dBs+ hds); 06 t6 T; Py q:s:
0

Since we assumed zero interest rate, the amount of money in the bank does not

appear in the wealth procesX .

Let be a liability that matures at time T, which is a random variable assumed to be
Fr-measurable and inL{,. The problem of the investor in this nancial market is to
maximize her expected utility under model uncertainty from her total wealthX; . Let
U be a utility function, then the value function V of the maximization problem can be
written as

V (x):=sup inf EQU(X; )l (3.3.1)
2A Q2P y

In the case wherePy contains only one probability measure, the problem reduces to the
classical utility maximization problem.

Remark 3.3.2. Due to the construction of 2BSDEs, we need the liability to be in the
classL}, . It is easy to see that can be constant, deterministic or in the form ofy(B+)
whereg is a Lipschitz bounded function, such as a Put or a Call spread payo function.
However, we notice that vanilla options payo s with underlying may not be inL} .
Indeed, we have in the one-dimensional framework

Zy

St = Spexp . b dt %kBiT+BT : Py Qs
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Since the quadratic variation of the canonical process can be written as follows
. 2
lim Bi%_lr(! ) B%T(! )

it is not too di cult to see that S can be approximated by a sequence of random variables
in UC,() . Besides, this sequence convergeslif . However, we cannot be sure that it
also converges i}, , which is our space of interest here.

Of course, in the uncertain volatility framework, this seems to be a major drawback.
Nevertheless, to deal with these options, it su ces to redo the wh&@BSDE construction
from scratch but taking the exponential of the Brownian motion under the Wiener measure
as the canonical process instead of the Brownian motion itself. This would amount to
restrict ourselves to the subse®, of Py, containing only thoseP 2 Py such that the
canonical process is a positive continuous local martingale under

To nd the value function V and an optimal trading strategy , we follow the ideas of
the generalmartingale optimality principle approach as in 38 and [54], but adapt it here
to a nonlinear framework. We recall thatA is the admissibility set of the strategies .

Let fR g ,a be a family of processes which satis es the following properties

Properties 3.3.1. () Ry = U(X+ ) forall 2A.
(i) Ry = Ro is constant for all 2 A.

(i) We have

R, > inf E”[R-1: 8 2A
t P0§|§H5(|t+;P) t[Rr]; 8

R, = essinf EP[R; ]forsome 2A; P as:forall P2Py:
PP |, (t* ;P)

Then it follows
. =] — P — B
P|2rF1)fHE UX;: )6 Ro= FI’QF]:HE [U(X+ )N=V (X): (3.3.2)
In the following sections we will follow the ideas of Hu, Imkeller and Muller5f] to
construct such a family for our three utility functions U.
3.4 Robust exponential utility
In this section, we will consider the exponential utility function which is de ned as
UXx)= exp( x);x2Rfor > O

In our context, the set of admissible trading strategies is de ned as follows
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De nition 3.4.1. Let A be a closed set ifrRY. The set of admissible trading strategiea
consists of alld-dimensional progressively measurable processes; ( t)os t6 T Satisfying

2 BMO(Py)and {2 A;dt P ae:

Remark 3.4.1. Many authors have shed light on the natural link between BMO class,
exponential uniformly integrable class and BSDEs with quadratic growth. S&&]][ [6] and
[54] among others. In the standard utility maximization problem studied irbfl], their trad-

ing strategies satisfy a uniform integrability assumption on the familiexp(X )) . Since
the optimal strategy is a BMO martingale, it is easy to see that the utility maximization
problem can also be solved if the uniform integrability assumption is replaced by a BMO
assumption. However, at the end of the day, those two assumptions are deeply linked, as
shown in the context of quadratic semimartingales i®]] Nonetheless, in our framework,
as explained below in Remar8.4.3, we need to generalize the BMO martingale assumption
instead of the uniform integrability assumption. Moreover, as recalled in the Introduction,
from a nancial point of view these admissibility sets are related to absence of arbitrage
in the market considered.

3.4.1 Characterization of the value function and existence of an
optimal strategy

The investor wants to solve the maximization problem

V (x) = sup Qizr;fH E?[ exp(X; )I: (3.4.1)
In order to construct a proces®R which satis es the Properties3.3.1, we set

Ry = exp( (X; Y)); t2[0T]; 2A;

where(Y;Z) 2 DY, HZ is the unique solution of a 2BSDE with a well chosen quadratic
generatorlb satisfying Assumption2.2.1or 2.2.2
y y
Y, = Z0Bs B(s;Z)ds+ KP KPP as:; 8P2Py:

t t

Remark 3.4.2. From Theorem 2.3.1 of Chapter 2, we have the following representation

Y, = esssup y*(T; ):
PO2P  (t* ;P)
Therefore, in generalYy is only Fo- -measurable and therefore not a constant. But by
Proposition 2.5.2 of Chapter 2, we know that the procesy¥ is actually F-measurable (this
is true when the terminal condition is inUC,() and by passing to the limit when the
terminal condition is in LY ). This and the above representation imply easily that

Yo= esssup yo(T; )= sup yo(T; );
PR2P 4 (0* ;P) PO2P

then by the Blumenthal Zero-One law, is a constant.
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Let us now de ne for alla2 S;° such thata 6 a6 athe setA, by

A,:= a@?A= a¥b; b2 A

For any a 2 [a; @], the setA, is still closed. Moreover, sincé 6 ? we have
minfjrj; r 2 A,g 6 k; (3.4.2)
for some constantk independent ofa.

We can now state the main result of this section

Theorem 3.4.1. Assume that 2 L{, and either thatk ki + sup khbk; is small
06t6T

and that0 2 A, or that the setA is C2? (in the sense that its border is &C? Jordan arc).
Then, the value function of the optimization probleng3.4.1) is given by

V.x)= exp( (x Yo));

where Y, is de ned as the initial value of the unique solutiorfY;Z) 2 D, HZ of the
following 2BSDE
Z Z
Y, = ZdBs B,(Zg)ds+ K? KPP as; 8P2Py: (3.4.3)

t t

The generator is de ned as follows
B(hz) = F(hz; By); (3.4.4)
where for allt 2 [0;T], z2 R%anda2 S;°
F(l;z;a) = Edist2 a2z + 1 ()AL +Z7a™ (1) + Zij O
where (1) := a ¥n(!) and where for anyx 2 RY and any setE  RY, dist(x;E)

denotes the distance fronx to E.

Moreover, there exists an optimal trading strategy satisfying

= = 1
B 2 A, BZ+ =B t2[0T] Py gs: (3.4.5)

with B := B, *h.

Proof. The proof is divided into 5 steps. First, we show that the 2BSDE with the
generator de ned in (3.4.4 has indeed a unique solution. Then, we prove a multiplicative
decomposition for the proces® and some BMO integrability results on the procesg
and the optimal strategy . Using these results, we are then able to show thdiii) of
Properties 3.3.1 holds.

Step 1: We rst show that the 2BSDE (3.4.3 has an unique solution. We need to verify
that the generatorlb satis es the conditions of Assumption2.2.2or 2.2.1
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First of all, F de ned above is a convex function o, for all a2 S;°, and thus for any
t 2 [0; T], F can be written as the Fenchel transform of a function

Hi(l;z; ):= sup %Tr(a) Fi(l:z;a) for 2RY ¢

a2Dg

That F satis es the rst two conditions of either Assumption 2.2.2or 2.2.1is obvious.
For Assumptions 2.2.4iii) and 2.2.1(iii) , the assumption of boundedness and uniform
continuity in ! on bimplies that k? is uniformly continuous in! . Sinceb and I are the
only non-deterministic terms inF, then F is also uniformly continuous in! .

Then, since we consider the distance function to a closed set, we know that it is attained
for some element oRY. It is therefore clear that the generator of this2BSDE is linear
and quadratic in z. Besides, as recalled earlier in3(4.2, there exists a constantk > 0
such that

minfjdj; d2 A,b,g 6 k fordt P awe;forallP2Py:

Then we get, for allz2 RY; t 2 [0; T],

— _ 2
dist? Bz + Ebt;Abt 6 2Bz +2 1 b+ k

Thus, we obtain from the boundedness q
_ 2
Bi(z) 6 co+c Bz ;

that is to say that Assumptions2.2.4iv) and 2.2.1(iv) are satis ed.

Finally, Assumption 2.2.2V) is clear from the Lipschitz property of the distance function,
and Assumption2.2.1(v) is also clear by our regularity assumption on the border @&&.

The terminal condition is in L}, and we have proved that the generatolb satis es
Assumption 2.2.2or Assumption 2.2.1 Moreover, by the de nition of the generatorF, it
is clear that if the processb has a smallLL -norm and if 0 2 A, then 0 also has a small
L% -norm. Indeed, in this case we have

1. .
+—Jt12;

BO=  _dist LA
t 2d|S ; Ap 5

which tends to 0 ash and thus ; goes toO (this is clear for the second term on the
right-hand side, and for the rst one, continuity of the distance function and the fact
02 A ensure the result).

Therefore Theorem2.5.1 in Chapter 2 states that the 2BSDE (3.4.3 has a unique
solution in D, HZ.

Step 2. We rst decomposeR as the product of a proces#! and a non-increasing
processN that is constant for some 2A.
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Dene for all P2 Py any for anyt 2 [0; T]
Zt Zt

1 _
M, =e & Yexp (s Z9dBs 5 2B(, Z)) ‘ds KP ;P as:
0 0

We can then write for allt 2 [0; T]

with Z,

N, = exp V(s; s;Zs)ds ;
0
and

Giz) = b+ B@+; 2R D)

Clearly, for everyt 2 [0; T]; we may rewritev(t; ¢;Z;) in the following form

1 5 2 _ - 1 _ 2
=Vv(t; ;Zy) 2 htl 2 t fbtl 2 htl 2Zt"‘ —q + 5 bil 2Zt + ﬂﬂt(zt)

2
2 B2 B Zo+ Eq Z.8h zi t{2+ B,(Z,):

By a classical measurable selection theorem (séd][or Lemma 3:1 in [33]), we can
de ne a progressively measurable process satisfying (3.4.5. Then, it follows from the
de nition of P that Py qQ:s:

v(t; ¢;Zy) > Oforall 2A,t2][0;t].
v(t; (;Z;)=0,t2[0;T],

which implies that the processN is always non-increasing for all and is equal to 1
for

Step 3: In this step, we show that the processes
Z Z

Z.dBs; <dBs;
0 0

are BMO(Py) martingales.

R
First of all, by Lemma 2.2.1in Chapter 2, we know that ;ZsdBs is a BMO(Py) mar-
tingale. By the triangle inequality and the de nition of  together with (3.4.2, we have
forallt 2 [0;T]

= = 1 - _ 1
B2, 6 BzZe+ =R+ BT, BTzo+ b

_ 2 _
6 2B °Z += 0B +k6 2872 +kg
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wherek; is a bound onP.

Then, for every probability P2 P and every stopping time 6 T,
=] z T 1=2 2 =] z T 1=2 2 2
E B, dt 6 E 8 B °Zy dt+2TKkj ;

and therefore
K Kevo(p,) 6 8kZKgyo(p,,) +2TKs:

R
This implies the BMO(Py) martingale property of , (dBs as desired.

Step 4. We then prove that 2 A andR M  satis es (iii) of Properties3.3.],
that is to say for all t 2 [0; T]

esssuBEP” My =M, ; P as; 8P2Py:
PO2P |, (t* :P)
For a xed P°2 P, (t*;P), we denote
Z, 1Zt
L= (s Z9dBs+ 5 2B, Z9) ?ds+ K P~ 06 t6 T;
0 0

then with 1t6's formula, we obtain for everyt 2 [0; T], thanks to the BMO(Py) property
proved in Step3

Z
0 0 0
Ef Mo M, = FEf M, dK{
n t #
SRR Ls L L .
+ E; e es +e"s (Lg Lg) : (3.4.6)
t6s6 T
First, we prove
Z
essinf EF M, dK” =0;t2[0;T]; P as
PO2P | (t* ;P) t

For everyt and everyP°2 P (t*; P), we have
Z

06 E” M, dK?” 6 EF  sup My K KP
t 06 s6T

0
Besides, sinc&k P is nondecreasing, we obtain for alf > t
Z S

M, 6 e X YE (z, ,)dB,
0

Then, again thanks to Step3, we know that

(Zs ) 2 BMO(Py);
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and thus the exponential martingale above is a uniformly integrable martingale for aft
and is inL}, for somer > 1 (see Lemma2.2.2in Chapter 2). Thus, by Holder inequality,
we have for allt 2 [0; T]

0 z T 0 0 z s fl oh 0 0 qi :
EF M, dKE 6 e (o YEF  sup E (Zy ,)dBy, EY K¥ KP O :
t 06 s6T 0
With Doob's maximal inequality, we have for everyt 2 [0; T]
Z s 1=r Z T 1=r
E” sup E (Zu ) dBy 6 CEP F (Zu ) dBy < +1:
06 s6 T 0 0

where C is an universal constant that can change value from line to line.

Then by the Cauchy-Schwarz inequality, we get fop6 t6 T

POh PO
E: Ki K

h i =

i 1= 2q 1 2
po q q po po po po po po q q
t 6C E Ky Ky E Ky t

(]

0 0 029 1 %
6 C esssup E KFP KT
PO2P , (t*:P)

Oh 0 Oi 2l
2 P P q.
EF KP K :

Arguing as in the proof of Theoren2.3.1in Chapter 2 we know that

0 0 o 201 =
esssup Ef KT K <+1,;061t6T:
PO2P  (t*;P)
Hence, we obtain fol06 t 6 T
. PO Z T PO . pOh PO pOi %
06 essinf Ef M, dKZ 6 C essinf EP K K| =0;
PR2P  (t* ;P) t PO2P y (t*;P)
which means 7
0 T 0
essinf E} M, dKE =0; 0616 T:
PO2P 4 (t+;P) ¢
Finally, we have for everyt 2 [0; T]
2 3

Z+

X
. 0 0
ngf;gfp)Ef’ 4 M, dK § exp( Ls) exp( Lg)+ exp( Lg)Ls Lg)d

t6s6T
Z1

6 essinf_ E’ M, dk?

H (t7P) 3 3

. PO X
essinf 4 exp( Ls) exp( Ls)+ exp( Lg)Ls Ls)d

H(15P) t6s6T

6 0

because the functiorx ! exp( x) is convex and the jumps oL are positive.
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Hence, using 8.4.6, we have for everyt 2 [0; T]

esssuBE” M; M, >0
PO2P  (t* ;P)

But by de nition M is the product of a martingale and a positive non-increasing
process and is therefore a supermartingale. This implies that for evetrg [0; T]

esssup E” M; M, =0:
PO2P  (t* ;P)

Finally, is an admissible strategyR satis es (iii) of Properties3.3.1and

Z
R, = inf E° exp X + < (dBs+ 4ds)

P2P 0

= exp( (x Yo)):

Step 5: Next we will show that for all 2 A, R satis es (iii) of Properties3.3.1 that
is, for everyt 2 [0; T]

essinf EP[ exp( Xy )I6R; P as:

PRP y (t*;P)
Since 2 A, the process 7
(Zs ) dBs;
0
is a BMO(Py) martingale. Then the process
Z .
G =exp( (X Yo)E (s Zs)dBs ;

0

is a uniformly integrable martingale under eacli® 2 P .

As in the previous steps, we writeR asR = M N , whereN is a negative non-
increasing process. We then have f@6 s6 t6 T
essinf EX[M, N, 16 essinf EF’[M,N,]; P as:
P2P  (s+;P) P2P 4 (s+;P)
= esssuf EP’[M,IN,; P as:
PO2P  (s+;P)

becauseN is negative. By the same arguments as in Step for M , we have for
06s6t6T

esssufp EX’[M, 1= M,; P as:
PO2P  (s+;P)

Therefore the following inequality holds for06 s6 t6 T

essinf EP’[R,] 6 R,; P as:
POZPH (S+ P)

which ends the proof. u
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Remark 3.4.3. We see here why it is essential in our context to have strong integrability
assumptions on the trading strategies. Indeed, in the proof of the above propertyNbr ,
the fact that the stochastic integral 7
<dBg;

0
is a BMO(Py) martingale allowed us to control the moments of its stochastic exponential,
which in turn allowed us to deduce from the minimal property fd€ ” a similar minimal
property for 7

M. dK?{:
0

This term is new when compared with the context 0%4]. To deal with it, we have to

impose theBMO(Py) property. Let us note however that since the optimal strategy already
has this property, we do not lose much by restricting the strategies.

Remark 3.4.4. We note that our approach still works when there are no constraints on
trading strategies. In this case, the 2BSDE related to the maximization problem has a
uniformly Lipschitz generator, thus the theory developed ii(Q1] for Lipschitz 2BSDEs
can be used.

3.4.2 A min-max property

By comparing the value function of our robust utility maximization problem and the one
presented in 4] for standard utility maximization problem, we are able to have a min-
max property similar to the one obtained by Denis and Kervarec ir2P]. We observe that

we were only able to prove this property after having solved the initial problem, unlike in
the approach of 9.

Theorem 3.4.2. Under the previous assumptions on the probability measures Bgt and
the admissible strategies se&t, the following min-max property holds.

sup inf EP[R;] = PiQIIH sup EP[R;] = inf SupE” [R;];

2A P2Py Ho oAP

where AP _js the set consisting of trading strategies which are in A and such that the

R
process ' dBs is a BMO(P) martingale.

0 0616 T

Proof. First note that we have

— ; P ; P ; P —
D = Slélf P|2rF1)fHE [R;] 6 P|2rF1)fH s;JApE [R{] 6 F7|2r|;f SuUpE" [R] =: C:

H 2A P

Indeed, the rst inequality is obvious and the second one follows from the fact that for
allP,A A P

It remains to prove that C 6 D: By the previous sections, we know that

D= exp( (X Yo)):



Chapitre 3. Robust Utility Maximization in Non-dominated
68 Models with 2BSDEs

Moreover, we know from Chapter2 that we have a representation forYp,

Yo = Sup yp;

P2P 4
whereyf is the solution of the standard BSDE with the same generatd‘?’.
On the other hand, we observe frombH] that

C=inf exp X vy

P2P

implying that C = D. u

3.4.3 Indierence pricing via robust utility maximization

It has been shown in38] that in a market model with constraints on the portfolios, if we
de ne the indi erence price for a contingent claim as the smallest numbep such that

SUpE exp XX > supE[ exp( X ™ )I;

where X% is the wealth associated with the portfolio and initial value x, then this
problem turns into the resolution of BSDEs with quadratic growth generators.

In our framework of uncertain volatility, the problem of indi erence pricing of a contin-
gent claim boils down to solve the following equation irp

Vox)=V (x+ p):

Thanks to our results, we know that if 2 L3 then the two sides of the above equality
can be calculated by solvingBSDESs. The pricep can therefore be calculated as soon as
we are able to solve theBSDEs (explicitly or numerically). We provide two examples in
Section3.7.

3.5 Robust power utility

In this section, we will consider the power utility function

1
Ux)= —x ;x>0 > 0

Here we shall use a dierent notion of trading strategy: = ( ")iz1...q denotes the

.....

proportion of wealth invested in stocki. The number of shares of stockis given byi;(—‘.
t

Then the wealth process is de ned as
Z ¢ xd X i Z,
X, = X+ —=5dS,=x+ X  s(dBs+ hds); Py q:s: (3.5.1)

i
0 i=1 SS 0

and the initial capital x is positive.

In the present setting, the set of admissible strategies is de ned as follows
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De nition 3.5.1. Let A be a closed set ifrRY. The set of admissible trading strategiea
consists of allR%-valued progressively measurable processes ( )os 16 T Satisfying

2 BMO(Py)and 2 A; dt P 4 ae:

The wealth processX can be written as
Z t

X: = xE s(dBs+ hds) ; t2[0;T]; Py q:s:
0

Then for every 2 A, the wealth processX is a local P-martingale bounded from
below, hence, &-supermartingale, for allP2 P .

We suppose that there is no liability ( = 0). Then the investor faces the maximization
problem
V(x) =sup inf EP[U(X{)]: (3.5.2)
oA P2P 4

In order to nd the value function and an optimal strategy, we apply the same method
as in the exponential utility case. We therefore have to construct a stochastic procd®s
with terminal value Z

T dSs

R =U x+ Xs s—
T 0 SSSS

satisfying Properties3.3.1

Then the value function will be given byV(x) = Rqg. Applying the utility function to
the wealth process yields
Z t Z t z t
2

E(Xt) = }x exp <dBq sbsds+% ¥ ¢ “ds : (3.5.3)
0 0 0

This equation suggests the following choice

1 Z t Z t lZ t
0 0 2 0
where(Y;Z) 2 D}, HZ is the unique solution of the following 2BSDE
Y, =0 Z.dBs B(Z)ds+ Kt Ky t2 ][0T Py q:s: (3.5.4)

t t

In order to get (iii) of Properties3.3.1for R , we have to constructlbt(z) such that, for
t2[0;T]

1 - 2 1 .- 2
L B, B(z)6 éatl‘z( ¢ Zy) forall 2A; (3.5.5)
with equality for some 2 A. This is equivalent to
1=2 b 2
1 - 1 - 2 1 BT+ R 2
Bzy> 5 @+ )T - Bz S + OB
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Hence, the appropriate choice fol® is

2

_ : 1=2 b

@+ ), BPz+h B z+ R
@ = g OISt — A T

1 _ 2
+ 5 B’z ; (3.5.6)

and a candidate for the optimal strategy must satisfy

1

1o B °Z+ B t2[0T]:

1=2
bt t 2 Ap

We summarize the above results in the following Theorem.

Theorem 3.5.1. Assume either that the driftb veri es that sup kb(kL&‘ is small and
06t6 T

that the setA contains 0, or that the setA is C? (in the sense that its border is aC?
Jordan arc). Then, the value function of the optimization problen(3.5.2 is given by

V(x) = Ex exp(Yp) for x> O;

where Y, is de ned as the initial value of the unique solutiorfY;Z) 2 D}, HZ of the
quadratic 2BSDE
Y Y
Y, =0 Z.dBs B(Z)ds+ Kt Ky t2[0;T]|Py qs: (3.5.7)

t t

where P is given by(3.5.6.

Moreover, there exists an optimal trading strategy 2 A with the property

1
t 1 +

B2, 2 a B2z, + B t2[0T]: (3.5.8)

Proof. The proof is very similar to the case of robust exponential utility. First we
can show, with the same arguments, that the generatdb satis es the conditions of
Assumption 2.2.1or Assumption 2.2.2 hence there exists a unique solution to the 2BSDE

(3.5.7).

Letthen denote the progressively measurable process, constructed with a measurable
selection theorem, which realizes the distance in the de nition #. The same arguments
as in the case of robust exponential utility show that 2 A.

Then with the choice we made fof, we have the following multiplicative decomposition

1 ‘i ‘i
R,= =x E ( s Zg)dBs e Kfexp veds
0 0
where
1 - 2 1 4 2
vi = ¢k > btl 2 Ibt(Zt)+ > btl 2( t Zy) 60, dt P ae
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R
Then since the stochastic integralg( s Zs)dBgis aBMO(Py) martingale, the stochas-
tic exponential above is a uniformly integrable martingale. By exactly the same arguments

as before, we have
essinf EX'[R,] 6 R,; s6t P as:
PO2P  (s+;P)

with equality for

Hence, the terminal valueR; is the utility of the terminal wealth of the trading strategy
. Consequently,

Pizrg,f EP[U(X;)] 6 Ro = Ex exp(Yo) forall 2A:

Remark 3.5.1. Of course, the min-max property of Theoren3.4.2 still holds.

3.6 Robust logarithmic utility

In this section, we consider logarithmic utility function
U(x) =log(x); x> 0:

Here we use the same notion of trading strategies as in the power utility case=

.....

stocki is given by isx—t Then the wealth process is de ned as

VA t Xd i Z,
Xgi sdsl = x+ X  s(dBs+ hds); Py q:s: (3.6.1)
S 0

0 i=1
and the initial capital x is positive.

The wealth processX can be written as
Z t

X; = xE s(dBs+ hbds) ;t2][0;T]; Py q:s:
0

In this case, the set of admissible strategies is de ned as follows

De nition 3.6.1. Let A be a closed set ifrRY. The set of admissible trading strategiea
consists of allR%-valued progressively measurable processesatisfying
Z 1
SUpE” B j%dt <1
P2P 4 0

and 2 A;dt dP as:; 8P2Py.
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For the logarithmic utility, we assume the agent has no liability at timeT ( =0). Then
the optimization problem is given by

— ; P
V(x) = Sl;/E) Plszl)fH E [log(X)]

_ 1 ., .
=log(x) +sup inf EP sdBs+  (sh  ZjBI? j?)ds : (3.6.2)
o P2Py 0 0 2

We have the following theorem.

Theorem 3.6.1. Assume either that the driftb veri es that sup kb(kL&I is small and
06t6 T

that the setA contains 0, or that the setA is C? (in the sense that its border is aC?
Jordan arc). Then, the value function of the optimization probler(3.6.2 is given by

V(x)=log(x) Yo forx> 0

where Y, is de ned as the initial value of the unique solutiorfY;Z) 2 D, HZ of the
quadratic 2BSDE
Z - Z -
Y, =0 Z,dBs Bds+ KPP KP t2[0T; P as; 8P2Py: (3.6.3)

t t

The generator is de ned by

Ibs = Fs(bs);
where 1 1
Fs(a) = édistz( AL+ Ej % fora2 S;°:

Moreover, there exists an optimal trading strategy 2 A with the property

B2, 2 a B : (3.6.4)

t

Proof. The proof is very similar to the case of exponential and power utility. First
we show that there exists an unique solution to the 2BSDE3(6.3. We then write, for
t2[0;T]

R, = M; + Ny;
where
Z,
M, = log(x) Yo+ (s Zs)dBs+ KIP;
Z, 0
1.,._ 2 1 2
Nt = E bé_z s bs + E bs |bs ds:

Then, we similarly prove that , which can be constructed by means of a classical
measurable selection argument, is i®\. Note in particular that only depends on
b 172 and the closed sefA describing the constraints on the trading strategies.
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Next, due to De nition 3.6.1, the stochastic integral inR is a martingale under each
Pforall 2 A. Moreover, ® is chosen to make the proceds non-increasing for all
and a constant for . Thus, the minimum condition of K ? implies that R satis es (iii)
of Properties3.3.1

Furthermore, the initial value Y, of the simple 2BSDE 8.6.3 satis es
Z

;
Yo = sup EF B.ds :
PZPH 0
Hence,
Zq
V(x)= R, (x)=log(x) supEP B.ds
P2P 0

u

Remark 3.6.1. Of course, the min-max property of Theoren3.4.2 still holds. Moreover,
it is an easy exercise to show that the 2BSDB.6.3 has a unique solution given by
0 z T 1
Y, = esssup E” 5 dist?( s;An) | s° ds :

PO2P 4 (t* ;P) t

3.7 Examples

In general, it is di cult to solve BSDEs and 2BSDEs explicitly. In this section, we will
give some examples where we have an explicit solution. In particular, we show how the
optimal probability measure is chosen. In all our examples, we will work in dimension
one,d=1.

First, we deal with robust exponential utility. We consider the case where there are
no constraints on trading strategies, that isA = R. Then the associatedBSDE has a
generator which is linear inz. In the rst example, we consider a deterministic terminal
liability and show that we can compare our result with the one obtained by solving the
HJB equation in the standard Merton's approach, working with the probability measure
associated to the constant process In the second example, we show that with a random
payo = B2, whereB is the canonical process, we end up with an optimal probability
measure which is not of Bang-Bang type (Bang-Bang type means that, under this proba-
bility measure, the density of the quadratic variationh takes only the two extreme values,
a and a). We emphasize that this example does not have real nancial signi cance, but
shows nonetheless that one cannot expect the optimal probability measure to depend only
on the two bounds for the volatility unlike with option pricing in the uncertain volatility
model.

3.7.1 Example 1. Deterministic payo

In this example, we suppose thabis a constant inR. From Theorem3.4.1, we know that
the value function of the robust maximization problem is given by

V.x)= exp( (x Yo));
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where Y is the solution of a 2BSDE with a quadratic generator. When there are no
constraints, the 2BSDE can be written as follows
Z, Z,
Y, = Z,dBs B(Z)ds+ KP KPP as:; 8P2Py:

t t

and the generator is given by

Ibt(z) = F(';z; B) = bz+ %:

Then we can solve explicitly the corresponding BSDEs with the same generator under

eachP. Let R R
M, = e o 50%Bs tds ; bag *dBs.

By applying It6's formula to y’M;, we have

BT
Yo=E" M7 —  B'Mdds
2
Sincea 6 b6 a, we derive that
1K
"6 ——T:
Yo 2 =

Therefore, by the representation off', we have

1P
Y, 2T
06 2 a

Moreover, under the speci ¢ probability measuré?? 2 P, we have

= 1
P2 _ .
= ——T:
yO 2 7
This implies that Yo = y5", which means that the robust utility maximization problem
is degenerated and is equivalent to a standard utility maximization problem under the
probability measureP?. We discuss in more detail this result in Exampl&.7.3below.

3.7.2 Example 2 : Non-deterministic payo

In this subsection, we consider a non-deterministic payo = B2. As in the rst
example, there are no constraints on trading strategies. Then, the 2BSDE has a linear
generator. We can verify that B2 can be written as the limit under the normk kLﬁ of

a sequence which is iWCy() , and thus is inL?Z, which is the terminal condition set for
2BSDEs with Lipschitz generators. Here, we suppose thhtis a deterministic continuous
function of time t.

By the same method as in the previous example, let

R R
M, = e o sb2hs tds ' bshs 'dBs.
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then we obtain Z -

yo = EF  M{B? ZgbslMsds ;
0

By applying Itd's formula to MB., we have

thBt = MtdBt + Btht hMtdt

Sinceb is deterministic, by taking expectation underP and localizing if necessary, we
obtain y. Z
EP[M:B;]= EP hMdt = hdt:
0 0

Again, by applying Ité's formula to M;B?2, we have
dMB2= 2MB;dB; B2dM; BM,dt+2MB,dt:

Thereforey§ can be rewritten as
Z Z z

t
yo = E° M b+ L dt 2 hds dt:
0 2 b( 0 0

By analyzing the mapg:x 2 R* 7! x % we know that g4x) = 1 L implying

2 X 2
that g is nondecreasing whem? > gﬁ

Let us now assume thabis a deterministic positive continuous and nondecreasing func-
tion of time t such that
5 6 a’6 a6 ﬁ:

2 2

N

= aandt be such thatgE = g, and de ne

o!
a = alogtett 1971;6te i+ alkgrs7; 06 L6 T;

Let t be such that

then as in Example3.7.1, we can show thatP? is an optimal probability measure, which
is not of Bang-Bang type.

3.7.3 Example 3 : Merton's approach for robust power utility

Here, we deal with robust power utility. As in Example3.7.1 we suppose thatb is a
constant inR and = 0. First, we consider the case wher&A = R. From Theorem3.5.],
B,(z) can be rewritten as

b2z + b, 17 2 e
R2)= —5qy 382

which is quadratic and linear inz.
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According to BSDEs theory, we can solve explicitly the corresponding BSDEs with this
generator under each probability measur®. We use an exponential transformation and

let

=1+ ®o—e V" 2= VP

1+ Y

By applying Ité's formula, we know that (y%; z%) is the solution of the following linear
BSDE

dyf= y?F ) b’e, * 2bz dt+ z"dB; ;

with the terminal condition y¥ = 1.

Fort 2 [0; T]; let

T2+ )bzb‘l; t

2bp, 1 dM ¢ R
= ;and M := eo s 257 ofs TS
2(1+ )

By applying It6's formula to y¥*M,, we obtain
1
y* = EP[M:=M]; soyf = =In E°[M+] :

Sincea 6 b6 a, we derive that

k?
P ——T:
b a3
Thus by the representation ofY, we have
k?
Yo 6 —T:
0 2(1+ )a
Moreover, under the speci ¢ probability measuré”?? 2 P, we have
x k?
S
Yo 2(l+ )a

This implies that Yo = y5°. Finally, the value of the robust power utility maximization
problem is

V= Ix exp(Yo):

As in Example3.7.1, the robust utility maximization problem is degenerate, and becomes
a standard utility maximization problem under the probability measureP?. In order
to shed more light on this somehow surprising result, we rst recall the HIB equation
obtained by Merton [8]] in the standard utility maximization problem

@v .
—.  sup L' v(t;x) =0;
at S (t;x)

together with the terminal condition

v(T;x) = U(x) := X—; X2Ry; >0
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where Qv 1 &
D vt w) = Qv 1.2 @V,
L' v(t;x)=x b@x+ 2x @z

with a constant volatility 2.

It turns out that, when A = R, the value function is given by

v(t;X) = exp E (T t) UX); (Ex)2[0;T] Rs:

2 1+ )

Let = & we havev(0;x) = V(x), which is the result given by our 2BSDE method.
Intuitively and formally speaking (in the case of controls taking values in compact sets,
it has actually been proved under other technical conditions irnp3 that the solution to
the stochastic game we consider is indeed a viscosity solution of the equation below, see
also Remark3.7.2, the HIB equation for the robust maximization problem should then
be

@v ) .
— sup inf L’ v(tx) =0
@t 2Ap 2[aza] (tx)

together with the terminal condition v(T;x) = U(X); X 2 R;.

Note that the value function we obtained from our2BSDE approach solves the above
PDE, con rming the intuition that this is the correct PDE to consider in this context.
Now assume thatA = R. If the second derivative ofv is positive, then the term

s;JAp ;”@f;g] L' v(t;x) ;
becomes in nite, so the above PDE has no meaning. This implies that should be
concave. Thena is the minimizer. This explains why the robust utility maximization
problem degenerates in the cas& = R. From a nancial point of view, this is the same
type of results as in the problem of superreplication of an option with convex payo under
volatility uncertainty. Then, similarly as the so-called robustness of the Black-Scholes
formula, this leads to the fact that the probability measure with the highest volatility
corresponds to the worst-case for the investor. However, it is clear that when, for instance,
we impose no short-sale and no large sales constraints (that is to gays a segment), the
problem should not degenerate and the optimal probability measure switches between the
two boundsa and a.

Finally, notice that using the language ofG-expectation introduced by Peng in 89, if
we let

1 1 +
G()= = su = — a a :
0= 33w =330° a0
then the above PDE can be rewritten as follows
Qv . asay(t -0-
@t+ 'ng L %%v(t;x) =0; (3.7.1)

where

@v
@%

L 23y(t;x) = x? 2G
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Then, our PDE plays the same role for Merton's PDE as the Black-Scholes-Barenblatt
PDE plays for the usual Black-Scholes PDE, by replacing the second derivative terms by
their non-linear versions.

Remark 3.7.1. It could be interesting to consider more general constraints for the volatil-
ity process. For instance, we may hope to consider cases whaman become) and a can
become+1 . From the point of view of existence and uniqueness of the 2BSDEs with
guadratic growth considered here, this is not a problem, since there is no uniform bound
on b for the set of probability measures considered in Chapt@r(see De nition 2.2.1).
However, this boundedness assumption is crucial to retain the BMO integrability of the
optimal strategy and thus also crucial for our proofs. We think that without it, the prob-
lem could still be solved but by now using the dynamic programming and PDE approach
that we mentioned. However, delicate problems would arise in the sense that on the one
hand, if a= 0, then the PDE will become degenerate and one should then have to consider
solutions in the viscosity sense, and on the other hand,af= + 1 , the PDE will have to

be understood in the sense of boundary layers.

Another possible generalizations would be to consider time-dependent or stochastic uncer-
tainty sets for the volatility. This would be possible if we were able to weaken Assumption
2.2.1(i), which was already crucial in the proofs of existence and uniquenessli@l]. One
rst step in this direction has been taken by Nutz ing6] where he de nes a notion of
G-expectation (which roughly corresponds to a 2BSDE with a generator equalfavith a
stochastic domain of volatility uncertainty.

Remark 3.7.2. In [108§), a similar problem of robust utility maximization is considered.
They consider a nancial market consisting of a riskless asset, a risky asset with unknown
drift and volatility and an untradable asset with known coe cients. Their aim is to solve
the robust utility maximization problem without terminal liability and without constraints

for exponential and power utilities, by means of the dynamic programming approach already
used in [L05. They managed to show that the value function of their problem solves a PDE
similar to (3.7.1), and also that (see Propositior2:2) the optimal probability measure was

of Bang-Bang type, thus con rming our intuition in their particular framework. Besides,
they give some semi-explicit characterization of the optimal strategies and of the optimal
probability measures. From a technical point of view, the main di erence between our two
approaches, beyond the methodology used, is that their set of generalized controls (that
is to say their set of probability measures) is compact for the weak topology, because it
corresponds to the larger sePy, de ned in Section 2.2 of Chapter 2. This is also the
framework adopted in 29]. However, as shown in47] for instance, our smaller setPy

is only relatively compact for the weak topology. Nonetheless, working with this smaller
set has no e ect from the point of view of applications, and more importantly allows us
to obtain results which are not attainable by their PDE methods, for instance with non-
Markovian terminal liability —and also when the set of trading strategies is constrained in
an arbitrary closed set.



Chapitre 4
Second Order Re ected BSDEs

4.1 Introduction

In this chapter, we study a class 0PRBSDEs with a given lower cadlag obstacle. The out-
line is as follows. In Sectiont.2, we provide the precise de nition of 2RBSDEs and show
how they are connected to classical RBSDEs. Next, in Sectidi3, we prove a representa-
tion formula for the Y -part of a solution of a 2RBSDE which in turn implies uniqueness.
We then provide some links between 2RBSDEs and optimal stopping problems. In Section
4.4, we give a proof of existence by means of regular conditional probability distribution
techniques, as in10]] for Lipschitz 2BDSEs. Let us mention that this proof requires to
extend existing results on the theory ofy-martingales of Peng (see8p]) to the re ected
case. Since to the best of our knowledge, those results do not exist in the literature, we
prove them in the Appendix4.6. Finally, we use these new objects in Sectigh5to study
the pricing problem of American contingent claims in a market with volatility uncertainty.
This chapter is based on19.

4.2 Preliminaries

We consider the same framework as in Chapt@r(see Sectior.2).

4.2.1 The nonlinear generator
Given a mapH.(';y;z; ):[0;T] R RY Dy! R,whereDy RY %is a subset
containing 0, we de ne the corresponding conjugate dfl w.r.t. by

1
Fi(l;y;z;a) := sup éTr(a) H(l;y;z; ) fora2 3%
2Dy

B.(y;2) := Fu(y;z;b) and B0 := B,(0; 0):

We denote by D¢, y.,) := fa; F(!;y;z;a) < +1g the domain of F in a for a xed
thy;z).

Asin [10] we x a constant 2 (1;2]and restrict the probability measures inP,, Pg
De nition 4.2.1. P, consists of allP 2 Pg such that

n Z ; g#

a,6 B6 ap; dt dP as:for someas;ap 2 S;% and E” B0 dt < +1
0
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De nition 4.2.2.  We say that a property hold$,, -quasi-surely @,,-g.s. for short) if it
holdsP-a.s. forallP2 P .

We now state our main assumptions on the functiofr which will be our main interest
in the sequel

Assumption 4.2.1. (i) Py is not empty, and the domairDg,(y.,) = D¢, is independent
of (1;y;z).

(i) F is F-progressively measurable iDg, .

(i) We have the following uniform Lipschitz-type property iy and z
Ibt(y;z) Ibt(yo; zo) 6C vy yo + B2z 72 Py Qs
0 0.
for all (t;y;y;z;2).

(iv) F is uniformly continuous in! for thejj jj; norm.

Remark 4.2.1. The assumptions (i) and (ii) are classic in the second order framework
([101]). The Lipschitz assumption (iii) is standard in the BSDE theory since the paper
[87]. The last hypothesis (iv) is also proper to the second order framework, it is linked to
our intensive use of regular conditional probability distributions (r.c.p.d.) in our existence
proof, and to the fact that we construct our solutions pathwise, thus avoiding complex
issues related to negligeable sets.

Remark 4.2.2. (i) Py is decreasing in since for 1 < , with Holder's inequality
n Z T %# n Z T %#

EP Be " dt 6 CEP Be “dt
0 0

(i) The Assumption4.2.1, together with the fact thatht0 <+1,P-asforeveryP2P,,,
implies thatl; 2 Dg,, dt P-a.s., forallP2P,.

4.2.2 The spaces and norms

We now recall from [LO]] the spaces and norms which will be needed for the formulation
of the 2RBSDEs. Notice that all subsequent notations extend to the case=1.

For p> 1, LY denotes the space of alFr-measurable scalar r.v. with
k k' = supE[j jPI< +1:
H P2P
HY; denotes the space of alF* -progressively measurabl&?-valued processeZ with

n Z #
:
:= sup E? jBrZj%dt < +1:
P2P 0

N[

KZKP

H
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DP; denotes the space of aF* -progressively measurabl&-valued processe¥ with

P, q:s:cadlag paths, andkYkP, = supE” sup jYjP < +1:
H P2P 061t6T

I} denotes the space of alF* -progressively measurabl®-valued processek null at 0
with

Py, q:s:cadlag and non-decreasing paths, ankkK kf’ﬂ = szup EP[(KT)P< +1:
P2P

Foreach 2L} ,P2P, andt2 [0;T] denote
_ . n 0
EMP[ 1:= esssuf EF[ ] whereP, (t";P):= P 2P, :P'=PonF;
P%2P , (t* ;P)
Here EF[ 1:= EP[ jF{]. Then we de ne for eachp>
n 0

P
Ly = 2L :kke <+1 wherek kP := supE” esssup E{"7[j j ]
H H P2P 06t6T

Finally, we denote by UG,() the collection of all bounded and uniformly continuous
maps : ! R with respect to thek k, -norm, and we let

LP := the closure of UG() under the normk kLE; , foreveryl6 6 p:

4.2.3 Formulation

First, we consider a proces$ which will play the role of our lower obstacle. We will
always assume thasS veri es the following properties

(i) S is F-progressively measurable and cadlag.

(i) S is uniformly continuous in! in the sense that for allt
iSi(') S(B)j6 (k' Ek);8(5EB)2 %

for some modulus of continuity and where we de nek! k, :== sup j! (s)j.
06 s6t

Then, we shall consider the followin@RBSDE with lower obstacleS
Z Z
Y; = Ibs(Ys;Zs)ds ZdBs+ Ky Ki; 06t6 T, Py qQ:s: (4.2.1)

t t

We follow Soner, Touzi and Zhangl0l. For any P 2 P, F-stopping time , and
F -measurable random variable 2 L2(P), let (y;z%: k) = (y°(; );Z°(; );kP(; )
denote the unique solution to the following standard RBSDE with obstacl& (existence
and uniqueness have been proved under our assumptions by Lepeltier and XuGd)[
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Z Z
yP = B, (yP; 20)ds zfdBs+ kP kP, 06t6 ; P as:
t t
yip >S; P as: (4.2.2)
;

0

VWA AW 00

yo S dki=0;P as:

De nition 4.2.3.  For 2 L% ,wesay(Y;Z)2 D H7 is a solution to the 2RBSDE
(4.2.7 if

Yr= ,Py (s

8P 2P, the processk P de ned below has nondecreasing patis a:s:
YA t Z t
KtP =Yy Y+ IbS(YS;ZS)ds+ ZdBs; 06 t6 T; P as: (4.2.3)
0 0

We have the following minimum condition
h [
KP KkP= essinf EP KE kP :06t6 T:P as:;8P2P,: (4.2.4)

PO2P y (t* :P)

Y:> S, Py Qs

Remark 4.2.3. In our proof of existence, we will actually show, using recent results of

Nutz [86], that the family KP PP, can always be aggregated into a universal procdss

Following [101], in addition to Assumption 4.2.1, we will always assume

Assumption 4.2.2. The processeéf’0 and S satisfy the following integrability conditions

Z 2 #
Z .= supE" esssuf EMF jFdj ds <+1 (4.2.5)
P2P 06t6 T 0
n g#
% .= supEP esssuf E;" sup (Ss)” < +1: (4.2.6)
P2P 06t6 T 06s6T
4.2.4 Connection with standard RBSDEs
If H is linear in , that is to say
1
Hiy:zi )= STr & fu(y;2);
where a° : [0;T] I S;° is F-progressively measurable and has uniform upper and

lower bounds. As in L01], we no longer need to assume any uniform continuity ih in
this case. Besides, the domain &f is restricted to a° and we have

B.(y;2) = f(y; 2):
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If we fyther assume that there exists somB 2 Ps such that b and a° coincideP  a:s:
andEP | jf(0;0)j°dt < +1 ,then P, = fPg.

Then, unlike with 2BSDEs, it is not immediate from the minimum condition @.2.4) that
the procesK ® kP is actually null. However, we know thatk ? k" is a martingale with
nite variation. Since P satisfy the martingale representation property, this martingale is
also continuous, and therefore it is null. Thus we have

0=kP K P as;
and the 2RBSDE is equivalent to a standard RBSDE. In particular, we see that the part

of KP which increases only whery; > S; is null, which means thatK P satis es the
usual Skorohod condition with respect to the obstacle.

4.3 Uniqueness of the solution and other properties

4.3.1 Representation and uniqueness of the solution
We have similarly as in Theorem4:4 of [10]]

Theorem 4.3.1. Let Assumptions4.2.1 and 4.2.2 hold. Assume 2 Lﬁ and that (Y; 2)
is a solution to 2RBSDE (4.2.1). Then, foranyP2P, and06 t; <t,6 T,

0
Y, = esssup yf (t2;Yy,); P as: (4.3.1)

P%2P , (t} ;P)
Consequently, the2RBSDE (4.2.1) has at most one solution irD5 ~ HZ .

Remark 4.3.1. Let us now justify the minimum condition(4.2.4. Assume for the sake
of clarity that the generatorlb is equal to0. By the above Theorem, we know that if there
exists a solution to th&2RBSDE (4.2.1), then the proces¥ has to satisfy the representation
(4.3.7). Therefore, we have a natural candidate for a possible solution of tARBSDE.
Now, assume that we could construct such a procéésatisfying the representation(4.3.1)
and which has the decompositiof#.2.1). Then, taking conditional expectations iy  y®,
we end up with exactly the minimum conditioi(4.2.4).

Proof. The proof follows the lines of the proof of Theorem:4 in [107].

First,
0
Yy = esssuf yO (T; ); t2[0;T]; P as:; forall P2Py;
P%2P , (t*;P)
and thus is unique. Then, since we have thathY;Bi, = Z,dhBi,; P, q:s; Z is unique.
Finally, the processK " is uniquely determined. We shall now prove4(3.1).

(i) Fix 06 t;<t,6 TandP2P,. Forany P°2 P, (t};P), we have
z., z
Yi =Y, Ibs(Ys;Zs)dS

t t

t2

Z.dBg + Ktpz0 KtPO; t,6 16 t,; P as:
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Now, it is clear that we can always decompose the nondecreasing prodégsinto

KPO = AP0+ BtPO; P as:
wereAP andB” are two nondecreasing processes such tlm? only increases when
Y, =S and BP only increases wherlY; > S; . With that decomposition, we
can apply a generalization of the usual comparison theorem proved by El Karoui et
l. (see Theorerrﬁ 2 in [39), Whose proof is postponed to the Appendlx undep’
to obtaln Y, > ytl (ta: Yoy) andA Af’l 6 kf; kﬁ, P’ as:SinceP’ = PonF{,
we getYy, > y{ (tz,YtZ), P as: and thus

Yy, > esssuB Vi (tz,YtZ) P as:
PP, (t! iP)

(i) We now prove the reverse inequality. FixP 2 P, . We will show in (iii) below that

0 0 0 0o 2
C{ = esssup E Kb ki, KE+ki <+1;P as
P2P , (t] ;P)

For every P’ 2 P, (t*; P), denote
0 0 0 0 0
Y =Y y(tyY,); Z =2 z°(tyY,) and KP = KPP kP (t2; V,):
By the Lipschitz Assumption 4.2.1(iii) , there exist two bounded processes and
such that forallt; 6 t6 T,
Z,, Z,, i

_ 1=2 P0 P o
Yt - S YS + Sbs Z S dS Z SdBS + K t2 K tl y P a.S.
t t

De ne for t; 6 t 6 t, the following continuous process
Z t Z t
— 1. 2 1=2 . p° e
Mt L eXp S é] sJ dS+ SbS dBS y P a-S-

ty t1
Note that since and are bounded, we have for alp > 1

EP sup (M)P+ sup (M, 6 Cy P as: (4.3.2)

t16 16 tp t16 16 t2

Then, by Ité's formula, we obtain

0 2 0
Yy, = Ef, Md K (4.3.3)
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Let us now prove that the procesK P kP s nondecreasing. By the minimum
condition (4.2.4), it is clear that it is actually a P’-submartingale. Let us apply the
Doob-Meyer decomposition urgdePO, we get the existence of #"-martingale N P
and a nondecreasing process” , both null at 0, such that

0 0 0 0 0
KP kP =NF +PP; P as:

Then, since we know that all the probability measures i, satisfy the martingale

0
representation property, the martingaleN® is continuoous. Besides, by the above
equation, it also has nite variation. Hence, we havé&\ " = 0, and the result follows.

Returning back to (4.3.3, we can now write

0 0 0
Y, 6 E, sup (My) K¢ K[

t1

t16 t6 ty
P 3 1= P P ) 372 2=3
6 E;, sup (M) E, K K
t16 t6 ty )
ol 1=3

0 0
6 C(CH™ Ef K K
By taking the essential in mum in P’ 2 P, (t7;P) on both sides and using the
minimum condition (4.2.4), we obtain the reverse inequality.

(i) It remains to show that the estimate for CtPl holds. But by de nition, we clearly
have

0 0 0 0 0o 2 .
EP K§ ki K{+kj 6C kvkp +kZkjz + §
Z

2
2 =
+ CsupE” sup yf+ B zP ds
P2P,, 061t6T 0

< +1:

since the last term on the right-hand side is nite thanks to the integrability assumed
on and B°.

Then we can proceed exactly as in the proof of Theored in [101]. u

Finally, the following comparison Theorem follows easily from the classical one for RBS-
DEs (see for instance Theorer:2 in [35] and Theorem3:4 in [68]) and the representation

(4.3.1),

Theorem 4.3.2. Let (Y;Z) and (Y% Z9 be the solutions 02RBSDEs with terminal con-
ditons and °, lower obstacless and S’ and generators® and B° respectively (with the
corresponding functionsH and H®), and let (yP; z°; kP) and (y®; z®; k®) the solutions of
the associated RBSDEs. Assume that they both verify our Assumptiagh.1 and 4.2.2,

that P, P . and that we have
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0

6 ,Py Qs

B.(y®; z%) > B(y®;z%), P as;, forall P2 Py,:

S 6 S, P, Qs
ThenY 6 YO P, q:s:

Remark 4.3.2. Note that in our context, in the above comparison Theorem, even if the
obstaclesS and S’ are identical, we cannot compare the nondecreasing procesge3 and

K ®. This is due to the fact that the processeas ” do not satisfy the Skorohod condition,
since it can be considered, at least formally, to come from the addition of a nondecreasing
process due to the fact that we work with 2BSDESs, and a nondecreasing process due to the
re ection constraint. And only the second one is bound to satisfy the Skorohod condition.

4.3.2 Some properties of the solution

Now that we have proved the representation4.3.1), we can show, as in the classical
framework, that the solutionY of the 2RBSDE is linked to an optimal stopping problem

Proposition 4.3.1. Let (Y;Z) be the solution to the abov@RBSDE (4.2.1). Then for
eacht 2 [0; T] and for allP 2 P

Z
0 0 0
Y, = esssup essSupEl By ;2P )ds+ S Lcr g+ L -1y ; P as: (4.3.4)
P2P , (t+;P) 2Tur t
Z
= ess SupEy Bi(Ys; Zs)ds+ AP AP+ S Loy g+ L -1q ; P as: (4.35)
2Tyt t

where Ter is the set of all stopping times valued int;T] and where AP :=

. lfy, »s, gdKs is the part of K™ which only increases wheiYs >S; .

Remark 4.3.3. We want to highlight here that unlike with classical RBSDES, considering
an upper obstacle in our context is fundamentally di erent from considering a lower obsta-
cle. Indeed, having a lower obstacle corresponds, at least formally, to add an nondecreasing
process in the de nition of a 2BSDE. Since there is already an nondecreasing process in
that de nition, we still end up with an nondecreasing process. However, in the case of a
upper obstacle, we would have to add a non-increasing process in the de nition, therefore
ending up with a nite variation process. This situation thus becomes much more compli-
cated. Furthermore, in this case we conjecture that the above representation of Proposition
4.3.1 would hold with a sup-inf instead of a sup-sup, indicating that this situation should be
closer to stochastic games than to stochastic control. This is an interesting generalization
that we leave for future research.

Proof. By Proposition 3:1 in [68], we know that for all P 2 P,
z

yf = esssupEl By z)ds+ S L oy g+ L -7g ; P as:
2Tyt t
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Then the rst equality is a simple consequence of the representation formuld.8.1). For
the second one, we proceed exactly as in the proof of Propositi8i in [68. Fix some
P2 P, and somet 2 [0;T]. Let 2 T.r. We obtain by taking conditional expectation
in (4.2.1)

z
Y, =E’ Y By (Ys; Zg)ds+ KP K[
7 t
> Ef Bi(Ys; Zs)ds+ S L <7 g+ L =1q+ AP AP
t
This implies that
Z
Y, > esssupE; By (Ys; Z)ds+ AP AP+ S L+ L org ; P as:
t

2TI;T

Fix some" > 0and de ne the stopping fmeD¢" :ginf fu>t; Y, 6 S+ ", P aisg’
T. Itis clear by de nition thatonthe set D{" <T ,we haveYge: 6 Sye- +". Similarly,
n O t t

onthe set D" = T ,we haveYs>S,+ ", forallt6 s6 T. Hence, foralls2 [t; D" ],
we haveYs > Sg . This implies that KDtp;-- K= ADf’i" A, and therefore

" Z P-“ #
Dy’
Yt 6 EF Ibs(Ys; Zs)ds+ Agtp;u Af + SDtF’;" 1f DIP;" <Tg + lf DIF’:" =Tg +

t

which ends the proof by arbitrariness of. u

We now show that we can obtain more information about the non-decreasing processes
KP.

Proposition 4.3.2. Let Assumptions4.2.1and 4.2.2 hold. Assume 2 Lﬁ and(Y;Z) 2

Di  H} is a solution to the 2RBSDE(4.2.1). Let (y*;z"k") . be the solutions
of the corresponding BSDE$4.2.2). Then we have the following resurt. For all 2 [O; T],
YA t Z t
1st =S, gszz 1fYS =S, gdksp, P as:
0 0

Proof. Letus xagiven P2P,. Let ; and ;, be two P-stopping times such that for
allt2[q4 2,y =S ,P as:

First, by the representation formula @.3.1), we necessarily have for alP, Y; > yf,
P as:for all t. Moreover, since we also havg > S; by de nition, this implies, since
all the processes here are cadlag, that we must have

Yy =y =S ;t2[4 2); P as:
Using the fact that Y and y” solve respectively a 2BSDE and a BSDE, we also have
Z

Z u u
S+ Y=Y =Y, B, (Ys; Zs)ds ZdBs+ K. K 16t6u< 5 P as;

t t
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and
Z Z

u u

S + y=v=yP B, (yP; 2P)ds zPdBs+ kT k7 16t6 u< 5 P as:
t t

Identifying the martingale parts above, we obtain thatZs = zF, P a:s:for all s 2 [t; u].

Then, identifying the nite variation parts, we have .
u

u
Y. Y By(Ys; Zs)ds+ KE KP= yP P By zD)ds+ ki k!
t

t

Now, we clearly have .

u u
By(YsiZs)ds= By(yS:2D)ds;
t t
sinceZs = z{, P ass:andYs =y. =Sg forall s2 [t;u]. Moreover, sinceYs = y? =
S, forall s 2 [t;u] and since all the processes are cadlag, the jumpsyoind y* are equal
to the jumps of S. Therefore, we can further identify the nite variation part to obtain

Ki Ke=ki ke

which is the desired result. u

Remark 4.3.4. Recall that at least formally, the role of the non-decreasing proces$e8

is on the one hand to keep the solution of the 2RBSDE above the obst&cénd on the
other hand to keep it above the corresponding RBSDE solutioyf§ as con rmed by the
representation formula(4.3.1). What the above result tells us is that i¥ becomes equal
to the obstacle, then it su ces to push it exactly as in the standard RBSDE case. This
is conform to the intuition. Indeed, whenY reachesS, then all they” are also on the
obstacle, therefore, there is no need to counter-balance the second order e ects.

Remark 4.3.5. The above result leads us naturally to think that one could decompose
the non-decreasing proceds P into two non-decreasing processes” and VP such thatAP

satis es the usual Skorohod condition an¥ P satis es
|

i p 0 0
VP = essinf Ef VW ;06t6 T, P as; 8P2P,:
PO2P , (t*:P)

Such a decomposition would isolate the e ects due to the obstacle and the ones due to
the second-order. Of course, the choic&® := kP would be natural, given the minimum
condition (4.2.4). However the situation is not that simple. Indeed, we know that

Z t YA t

1fYS =S, gdKE: 1st =S, gdksi
0 0

But k" can increase wherY is strictly above the obstacle, since we can have >y =
S; . We can thus only write
Z t
K= iy, =s, gke+ W™
0
Then VP satis es the minimum condition (4.2.4 whenY; = S; and wheny? >S; .
However, we cannot say anything wheyy >y = S; . The existence of such a decom-
position, which is also related to the di cult problem of the Doob-Meyer decomposition for
the G-submartingales of Pengd9), is therefore still an open problem.
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As a Corollary of the above result, if we have more information on the obstack we
can give a more explicit representation for the process&s”. The proof comes directly
from the above Proposition and Propositior4:2 in [37].

Assumption 4.3.1. S is a semi-martingale of the form
Z t z t
S =S5+ Usds + VsdBs + Ci; Py, Q:s:
0 0
where C is cadlag process of integrable variation such that the meas@a@; is singular
with respect to the Lebesgue measuie and which admits the following decomposition

C=C' GC;

whereC* and C are nondecreasing processes. Besidé$,and V are respectivelyR and
RY-valuedF, progressively measurable processes such that
Z T
(iU + jVj*)dt+ C; + Cr < +1; Py qs:
0
Corollary 4.3.1. Let Assumptions4.2.1, 4.2.2 and 4.3.1 hold. Let (Y;Z) be the solution
to the 2RBSDE (4.2.1), then

Zi=V; dt P qis:onthesetfY, =S g; (4.3.6)

and there exists a progressively measurable procésg)oes +s + such that06 6 1 and

h .
Ly, -5 gdKT= Tlv, =5, ¢ R(StW) U dt+dC

4.3.3 A priori estimates

We conclude this section by showing sonmee priori estimates which will be useful in the
sequel.

Theorem 4.3.3. Let Assumptions4.2.1and 4.2.2 hold. Assume 2 Lﬁ and(Y;Z;K) 2
DY Hi 1§ is a solution to the 2RBSDE(4.2.9. Let (y":z%k") ,, be the
solutions of the corresponding BSDE&4.2.2). Then, there exists a constanC depending

only on , T and the Lipschitz constant of? such that

kYK + KZKGe + SUpE® (KP)* 6 C kkz + &5 + &

H P2P
and n o
su P2 4 % 4 kP 6 C kk¥ + 2 + 2
odP Y e py HZ(P) 12(P) TR T
iy

Proof. By Lemma2 in [49], we know that there exists a constanC depending only on
, T and the Lipschitz constant of®, such that for all P
Z ¢

yv 6 CEP jj + B ds+ sup (S!) (4.3.7)
t t6s6T
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Let us note immediately, that in [49, the result is given with an expectation and not a
conditional expectation, and more importantly that the process considered are continuous.
However, the generalization is easy for the conditional expectation. As far as the jumps
are concerned, their proof only uses Ité's formula for smooth convex functions, for which
the jump part can been taken care of easily in the estimates. Then, one can follow exactly
their proof to get our result.

This immediately provides the estimate fory”. Now by de nition of our norms, we get
from (4.3.7) and the representation formula 4.3.1) that

KYkyz 6 C kkiz + § + F (4.3.8)

Now apply It6's formula to jYj* under eachP 2 P,,. We get as usual for every > 0

Zy Z . )
E°  B™Z dt 6 CE” jj*+ jYj B +jYj+ BTZ dt
0 7 ; 0
+ EP jYyjdK P
O n
z . H
6 C kko +E° sup jYj°+ B0 dt
H 06t6T 0
Z T

L 2 C? .
+ "EP Bz, dt+ KP? + = E”  sup jv? : (4.3.9)
0 06t6 T

Then by de nition of our 2RBSDE, we easily have
h Z Z o
EP KP° 6 CE" jj?+ sup jYj2+ B °Z, dt+ B0 dt  ; (4.3.10)
06t6 T 0 0

for some constantC,, independent of".

Now set" := (2(1+ Cp)) ! and plug (4.3.10 in (4.3.9. One then gets
Z; " z o

2 T
EP B °Z, dt 6 CE? jj%+ sup jYj*+ 0O dt
0 06t6 T 0

From this and the estimate forY, we immediately obtain

KZkyz 6 C kkiz + § + §

Then the estimate forK” comes from $4.3.1Q. The estimates forzP and k” can be
proved similarly. u

Theorem 4.3.4. Let Assumptions4.2.1 and 4.2.2 hold. Fori =1;2, let (Y';Z') be the
solutions to the 2RBSDE(4.2.1) with terminal condition ' and lower obstacleS. Then,
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there exists a constanC depending only on , T and the Lipschitz constant off such
that
Yty . 6C Y2 5

i L
and
2 . .
z' 7% 5, +supE” sup K{POK{?
H P2P, 061t6T
1 2 1 1 2, y1=2 2; \1=2 .
6 C .z et Tt )T

Proof. As in the previous Proposition, we can follow the proof of Lemma in [49], to
obtain that there exists a constantC depending only on , T and the Lipschitz constant
of B, such that for all P

=

vt oy ec EF Y 2 : (4.3.11)

Now by de nition of our norms, we get from @.3.1) and the representation formula
(4.3.7) that

vytoy2Zi e6c ot 2% (4.3.12)
H H
Applying Itd's formula to jY? Y2j® under eachP 2 P, leads to
Z T _ 2 h 2i Z T . .
EP bzt z?) dt 6 CEP ' 27 +EP Yr Y2 dKPT KPP
0 0
Z
+CE” VY2 Y YE T ZY) dt
0
1 2 2 1 2 2
1 T 2
+ SE 0 Bz zp) dt
n #' -
1 2 P )@ P;i 2 =
+C Y Y D2 E KT,

H
i=1
The estimate for(Z! Z?) is now obvious from the above inequality and the estimates
of Proposition 4.3.3

Finally the estimate for the di erence of the nondecreasing processes is obvious by
de nition. u

4.4 A direct existence argument

We have shown in Theorem4.3.1that if a solution exists, it will necessarily verify the
representation @.3.1). This gives us a natural candidate for the solution as a supremum of
solutions to standard RBSDEs. However, since those BSDEs are all de ned on the support
of mutually singular probability measures, it seems di cult to de ne such a supremum,
because of the problems raised by the negligible sets. In order to overcome this, Soner,
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Touzi and Zhang proposed inJ0]] a pathwise construction of the solution to a 2BSDE.
Let us describe brie y their strategy.

The rst step is to de ne pathwise the solution to a standard BSDE. For simplicity, let
us consider rst a BSDE with a generator equal td. Then, we know that the solution
is given by the conditional expectation of the terminal condition. In order to de ne this
solution pathwise, we can use the so-called regular conditional probability distribution
(r.p.c.d. for short) of Stroock and Varadhan 104. In the general case, the idea is similar
and consists on de ning BSDEs on a shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus
obtained, and the decomposition 4.2.1) is obtained through a non-linear Doob-Meyer
decomposition. Our aim in this section is to extend this approach to the re ected case.
We refer to Section2.5in Chapter 2 for notations.

4.4.1 Existence when s in UCy()

When isin UCy() , we know that there exists a modulus of continuity function for |,
FandSin!. Then, forany06 t6 s6 T; (y;z2) 2 [0;T] R RYand!;! °2 ;+2

Bk UO(R) 6 (k1 %), BY (kyiz) BY(kyiz) 6 (k1 %)

s (k) SH(v) 6 (K 1%):

We then de ne for all! 2
()= sup (); (4.412)
06 s6 t

where
: Zy 2#! 1=2
((1):=sup E° ¥ %+ B (0;0)2ds+ sup (SI')*

pzpﬁ t t6s6T
Now sinceBt! s also uniformly continuous in! , we have
(!')<1 forsome! 2 i itholdsforall ! 2 (4.4.2)
Moreover, when is nite, it is uniformly continuous in ! under the L! -norm and is
therefore Ft-measurable.
Now, by Assumption4.2.2 we have

t(1)< 1 forall (t;!)2[0;T] : (4.4.3)

To prove existence, we de ne the following value proces pathwise

Vi(1):= sup YO8 (T; ); forall (t1)21[0;T] (4.4.4)

t
P2p |
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where, for any(t;;!) 2 [0;T] ; P2 P ;t, 2 [ty; T], and any F,-measurable 2
L2(P), we denoteY{ ™" (tz; ) = yo'*', where yPt!;zPtit kP! s the solution of
the following RBSDE with lower obstacIeStl?’ on the shifted space ' under P

z,, z., » »

yPut =l Pt yPtt gzt dr zPttdBl + ki K (4.4.5)
S S

yzp;tl” > St P oas:

t2
yout gt kPt =05 P ars: (4.4.6)

t1

In view of the Blumenthal zero-one lawy{* (T; ) is constant for any given(t;! ) and
P2 P,tj, . Moreover, sincel o = 0 for all ! 2 , it is clear that, for the y® de ned in

(4.2.9,
YPO (Y= yP(t; ) forall ! 2

Remark 4.4.1. We could have de ned our candidate solution in another way, using BS-
DEs instead of RBSDEs, but with a random time horizon. This is based on the link with
optimal stopping given by(4.3.4. Notice that this approach is similar to the one used by
Fabre 0] in her PhD thesis when studying 2BSDEs with th& part of the solution con-
strained to stay in a convex set. Using this representation as a supremum of BSDEs for a
constrained BSDE is particularly e cient, because in general the non-decreasing process
added to the solution has no regularity and we cannot obtain stability results. In our case,
the two approaches lead to the same result, in particular because the Skorohod condition
for the RBSDE allows us to recover stability, as shown in the Lemma below.

Lemma 4.4.1. Let Assumptions4.2.1 and 4.2.2 hold and consider some in UCy() .
Then for all (t;!') 2 [0;T] we havejV; ()] 6 C(2+ (')). Moreover, for all
5 9 2 [0;,T] 2, V() V(19 6 C (k !'%). Consequently,V; is Fy-
measurable for every 2 [0; T].

Proof. (i) For each(t;! ) 2 [0;T] and P 2 Pﬁ , let  be some positive constant
which will be xed later and Iel& 2 (0;1). By Ité's formula we have, since is uniformly

Lipschitz and since by ¢.4.6 ' es y™™ s¥ dkP =0

V4 V4
o 2 T . . T :
et Y T+ et (W)LY Cds6 e’ ¥ fr2C et YW B (0) ds
z ‘ Z t
T T
+2C  yPE YRR @)T2PY ds 2 esyP 20 B!
t t
zy Z . 2
+2 e S dkb es yot “ds
t t
2 £ 2 £ | £ 2
6e’ T+ es B0 ds 2 ey zPMdBl+ e (B)'z5% “ds
t t t
C o
+ 2C+ C2+ ~ es ySPtI ds+2 sup es (S;;! )+ (k_IF_’;t;! ktP;t;! ):
t t6s6 T
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Now choose such that := 2C C2 <> 0 Weobtainforall"> 0

Z; Z ,
et ytP;t;! + (1 ) es (bts)1:22§;t;! 2ds6 eT tr 2 + es I;bst;! (0’0) ds
t t

1 2

+ > sup e’ (St)*

t6s6 T
+ (5 ki )?
2 ety ZP% dBL: (4.4.7)
t
Taking expectation in (4.4.7) yields
Z h i

2 T
ytP;t;! +(1 )EP (bg)lZZZIS:’;t;! 2ds 6 C t(' )2+ HEP (k"?;t;! ktP;t;! )2 .

t

Now by de nition, we also have for some constant, independent of"

h o ) Z 2 Z )
E” (kfY  kT™)2 6 CoEP Y “+  BY(0;0) ds+  yPM “ds
7 t t
T
= t1 2
+E ()Y Tds
t Z . Z
6Co (1)+E”  yI¥ Cds+  (B)MY “ds
t t
Choosing small enough and' = ﬁ Gronwall inequality then implies

P;t;! 2 .
Vi 6 C1+ ()):

The result then follows from arbitrariness ofP.

(i) The proof is exactly the same as above, except that one has to use uniform continuity
in! of ® MY andSY . Indeed, for each(t;! ) 2 [0; T] andP2P/ ,let be some
positive constant which will be xed later and let 2 (0;1). By Itd's formula we have,
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since® is uniformly Lipschitz

Z
" 2 T ~ N N 2 _ 02
et ytP,t,! ytPt'O + es (bts)l_z(zsp,t,! Zs,t,! 0) ds6 e’ t;! t1 0
Z . t
£2C et NPT RS IE T ()R M) ds
Z .
+2C es yst' Pt' 0 |th (yPt' -z Pt') |th O(yPt' -7 Pt') ds
z ;! Z . ,
+2 es (yPt' Pt' )d(kF’t' kISD;t;! O) es ygt' ySPt'O ds
Vi t
T
2 es (yg;t;! y5;t;! 0)(Z§;t;! ZSP;t;! O)dB;
t
2 Z
6 el b ! 0 + |th (yPt' . Pt') |th O(yPt' . Pt') ds
t
Z
2 T 2
v 2c+c2e & es yPt YRt ? T gg
t
Z T — . 4.1 O 2
et (W)Y xY) ds
t
Z;
2 es (yPt' ysPt' 0)( P;t;! Zs;t;! O)dB;
Zt
+2 es (yPtl Pt' )d(th' kSP;t;! 0):
t
By the Skorohod condition @.4.6, we also have
Z - Z;
es (yPt' Ptl )d(th' kSP;t;! 0) 6 es (S;;! S;” O)d(kg’;t;! ks;t;! 0):
t t
Now choose such that := 2C C2? 2> 0. Weobtainforall"> 0
e 02 Z T 0 2
eyt T ) et @)PEY MY ds
t
| -1 0 2 Z T 1 | 1 1 0 | 1
6 eT t;! t;! + |;bt (yPt -7 Pt ) |;bt (yPt -7 Pt ) dS
1 t 2 6 6
+ sup es (S;I S;;! O)+ + n(k_ll?;t;! k_ll?;t;! ktF’:t! + ktP;t;! )2
t6s6T
2 e (o5 YRR Pz ) dBL: (4.4.8)

t

The end of the proof is then similar to the previous step, using the uniform continuity
in! of ,F andS. u

Then, we show the same dynamic programming principle as Propositidti7 in [102
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Proposition 4.4.1. Under Assumptions4.2.1, 4.2.2 and for 2 UCy() , we have for all
06 t;<t,6 T and forall! 2

Vu(t) = sup Yt (2 Vg ):

P2pP 1

The proof is almost the same as the proof i3, but we give it for the convenience of
the reader.

Proof. Without loss of generality, we can assume that; = 0 and t, = t. Thus, we have
to prove

Vo(!) = sup YE(t; VL):
P2P |,

Denote (y7; 2% kP) := (YP(T; );ZP(T; );KP(T; )

(i) Forany P2 P, we know by Lemma4:3 in [103, that for P a:e:! 2 |, ther.c.p.d.
Pt 2 P,ﬁ . Now thanks to the paper of Xu and Qian 93], we know that the solution of
re ected BSDEs with Lipschitz generators can be constructed via Picard iteration. Thus,
it means that at each step of the iteration, the solution can be formulated as a conditional
expectation underP. By the properties of the r.p.c.d., this entails that

vy )= YR (T ) forP aer! 2 (4.4.9)
Hence, by de nition of V; and the comparison principle for RBSDEs, we get that
y& 6 Y{(t; V). By arbitrariness of P, this leads to

Vo(!) 6 supYg(t; Va):
P2P

(i) For the other inequality, we proceed as in103. Let P 2 P, and" > 0. By
separability of , there exists a partition (E{)i> 1 F  such thatk! !%, 6 " for anyi
and any!;! °2 E!. Now for eachi, x an b; 2 E! and letP! be an" optimizer of V;(b;).

Now if we de ne for eachn > 1, P" := P"" by
" #

n .— EP X PL 4t , @n . @n —. i.
P (E) = E E 1E 1Et| + P(E\ t), where . [ i>n Et'
i=1

Then, by the proof of Proposition4:7 in [104, we know that P" 2 P . Besides, by
Lemma4.4.1and its proof, we know thatV and Y™ are uniformly continuous in! and
thus

Ve(1) 6 Vi(b)+ C (") 6 YO (T; Y+ "+ C (")
6 YtP{:t;! (T; )+ "y C (..) — Yt(pn)t;! 1 (T; )+ "y C (..):

Then, it follows from (4.4.9 that
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Vi6y"+"+C ("), P" as:ion [N, El! (4.4.10)

Let now (y";z";k") := (y™";z"";k™") be the solution of the following RBSDE with
lower obstacleS on [0; t]
Z t Z t
yil= y+r+Co(") Lo, e + Vile B (y"; z")dr z'dB, + k' k; P as:
) ) (4.4.11)

By the comparison principle for RBSDEs, we know thaty{(t;V;) 6 y5. Then since
P" = P on F¢, the equality (4.4.1 also holdsP a:s: Using the same arguments and
notations as in the proof of Lemmad.4.1, we obtain

h [

Yo Y5 T8 CE” P+ (4 Vi ' "l

Then, by Lemma4.4.1, we have

h I 1o
YOt V)6 yi6 Yy +C "+ ()+ EP £ L

h I 1=
6 Vo(!)+C "+ (")+ EP tzlﬂ_gtn

Thenitsucestolet ngoto+1 and" to O. u

De ne now for all (t;! ), the F* -progressively measurable process

Vihi= o lim Ve
r2Q\ (4T ];r#t

We have the following lemma whose proof is postponed to the Appendix

Lemma 4.4.2. Under the conditions of the previous Proposition, we have

\VARE im V,; P 'S:
t r2Q\ (4T ];r#t ' H g

and thusV™ is cadlagP, q:s:

Proceeding exactly as in Stepd et 2 of the proof of Theorem4:5 in [104, we can
then prove that V* is a strong re ected Ib-supermartingale. Then, using the Doob-Meyer
decomposition proved in the Appendix in Theoren#.6.2 for all P, we know that there

, . . P 2 . . TN
exists a uniqgue P a:s) processZ 2 H<(P) and unique nondecreasing cadlag square
integrable processeéP and BP such that

R _ R _.
V= Vg o+ B(VFiZods+ oZ.dBs AP BP P ais; 8P2P:

Vi">S; P as:8P2P,:
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Ry .
o M St )dAT; P ais; 8P2Py:

AP and BP never act at the same time.

We then de neK " := AP+ B”. By Karandikar [58], sinceV* is § cadlag semjmartingale,
we can de ne a universal procesg which aggregates the family ZP; P2P,

Recall that V* is de ned pathwise, and so is the Lebesgue integraR!)t F%(VJ;Zst.
With the recent results of Nutz B6], we know that the stochastic integral OtZst can
also be de ned pathwise. We can therefore de ne pathwise

Z t Z t
Ki:=V, BV ;Zg)ds+  ZdBq;
0 0

and K is an aggregator for the family K P
with K P, for everyP 2 P ,.

p2p " that is to say that it coincidesP a:s:

We next prove the representation4.3.1 for V andV*, and that, as shown in Proposition
4:110f[102, we actually haveV = V*, P, q:s; which shows that in the case of a terminal
condition in UCy() , the solution of the 2RBSDE is actually F-progressively measurable.

Proposition 4.4.2. Assume that 2 UC,() . Under Assumptions4.2.1 and 4.2.2, we
have

0 0
V= esssuf Y{ (T; )andV," = esssuf Y (T; ); P as:; 8P2P,:

P2P , (t;P) PO2P , (t*;P)

Besides, we also have for all
Vi=V'; Py qs:

Proof. The proof for the representations is the same as the proof of propositidriO in
[104, since we also have a stability result for RBSDEs under our assumptions. For the
equality betweenV and V*, we also refer to the proof of Propositiod:11in [103. u

Therefore, in the sequel we will us¥ instead of V™.

Finally, we have to check that the minimum condition é.2.4 holds. Fix P in P, and
P° 2 P, (t";P). By the Lipschitz property of F, we know that there exists bounded
processes and such that

o Z, 0 zZy
Vi oy o= s(Vs Y5 )ds B?(Zs  zo )(B*PdBs  <ds)

t t

FKr Ko K+ K (4.4.12)

Then, one can de ne a probability measur€®’ equivalent to P’ such that
0 Ry 0 z T Ry 0
Vi yW=e o vER eo *dd(Ks kD)

S
t
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Now de ne the following cadlag nondecreasing processes
YA S R, —PO yA S R, 0
Ks:= eo "dK,; kg = eo ¥dkl:
0 0

0

By the representation @.3.1), we deduce that the procesk K is aQ’-submartingale.
Using Doob-Meyer decomposition and the fact that all the probability measures we con-
sider satisfy the martingale representation property, we deduce as in St@p of the proof
of Theorem 4.3.1 that this process is actually nondecreasing. Then by de nition, this
entails that the processK kP is also nondecreasing.

Let us denote

Returning to (4.4.129 and de ning a processM as in Step(ii) of the proof of Theorem
4.3.1, we obtain that

Z
0 0 0 0 0 0
Vi ytp = Ef MSdPsP > Ef telgg TMS PWP Ptp
t
Then, we have
h i
0 0 0
EF PT P/
0 1=3 0 0 l=3#
= Er inf _M PP PP inf M
Y oteseT T Y teseT
1=3
0 0 0 0 0 0 0 2
6 E nf Ms P{ P E’ sup M;' ET Pf PS
t6s6 T t6s6 T
2 s 1=3
0 0 0 0 =
6 C esssupE” PF PP Vi yP
PO2P, (t*;P)

Arguing as in Step(iii) of the proof of Theorem4:3:1, the above inequality shows that
we have h i
. 0 0 ol
essinf EP PY P =0;
P2P , (t* ;P)

that is to say that the minimum condition (4.2.4 is satis ed.

4.4.2 Main result

We are now in position to state the main result of this section

Theorem 4.4.1. Let 2 Lﬁ . Under Assumptions4.2.1 and 4.2.2, there exists a unique
solution (Y;Z;K) 2 D4  HZ 12 of the 2RBSDE (4.2.1).
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Proof. The proof follow the lines of the proof of Theorend:7 in [101. In general for a
terminal condition 2L ﬁ{ , there exists by de nition a sequencé ,),>0 UCy() such
that

im kn kz =0and r?l),l[())k nkiz < +1:
Let (Y";Z") be the solution to the2RBSDE (4.2.1) with terminal condition , and

Zt Zt
K=Y Y+  By(Y ;zD)ds+ ZMdBg; P as:
0 0

By the estimates of Proposition4.3.4 we have am;m! +1
KY" Y™kZ +kZ" ZMk’> + supE”  sup jK!' KM 6C k., mke
H H P2P 061t6T H
o

Extracting a subsequence if necessary, we may assume that

. . 1
KY" Y"KZ: +kz" Z™Kl. + supEP  sup jK! KM 6 - (4.4.13)
H H O PP,  0616T 2"
This implies by Markov inequality that for all Pand allm > n> 0
Z
P sup jY" Y"2+ K" KM? +  jB@) zMjdt>n ' 6 Cn2 "
06t6T 0
(4.4.14)
De ne
Y:= lim Y";, Z:= lim Z"; K := lim K";
n +1 n! +1 n!' +1

where the lim for Z is taken componentwise. All those processes are cleaffy -
progressively measurable.

By (4.4.19, it follows from Borel-Cantelli Lemma that for all P we haveP a:s:
Z

im  sup Y YR+ KD K2 o+ jBTH(ZD Zo)jPdt =0:
nt +1 o06t6T 0

It follows that Y is cadlag,P, q:s; and that K is a cadlag nondecreasing process,
P a:s: Furthermore, for all P, sendingm to in nity in ( 4.4.13 and applying Fatou's
lemma underP gives us that(Y;Z) 2 D5 HZ .

Finally, we can proceed exactly as in the regular case 2 UCy() ) to show that the
minimum condition (4.2.4 holds. u
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4.5 American contingent claims under volatility uncer-
tainty

First let us recall the link between American contingent claims and RBSDEs in the classical
framework (see 37] for more details). LetM be a standard nancial complete market
(n risky assets and a bond). It is well known that in some constrained cases the pair
wealth-portfolio (X P; P) satis es:
Z Z
X{ = b(s; X<, 5)ds s sdWs
t t
whereW is a Brownian motion under the underlying probability measurd®, b is convex
and Lipschitz with respect to(x; ). In addition we assume that the procesf(t; 0;0));6 T
is square-integrable and )¢ 1, the volatility matrix of the n risky assets, is invertible
and its inverse( ;) !is bounded. The classical case corresponddti X; )= r¢x+ @ ¢ ¢,
where . is the risk premium vector.

When the American contingent claim is exercised at a stopping time > t, the yield is
given by
S =S 1[<T 1T Tl[ =T]-

Lett be xed and let > t be the exercising time of the contingent claim. Then, since the
market is complete, there exists a unique paiiX(; S); °(; S)) = (X2 ; &) which
replicatesS , i.e:,

dX& = b(s; X5 Pydt+ Pogdwg s6  XP =S

s ' S

Therefore the price of the contingent claim is given by:

Y,” = esssupX{(; S):

2T
Then, the link with RBSDE is given by the following Theorem of 37]
Theorem 4.5.1. There exist ? 2 H2(P) and a nondecreasing continuous proce&8 such

that for all t 2 [O; T]

P

R R
U B(s YR Pyds TP dW+ kB kP

t

"W /W0
<

Y,P> S
R
o (Y7 S)dk =0:

Furthermore, the stopping timeDP =inffs> t; Y = Ssg~ T is optimal after t.

Let us now go back to our uncertain volatility framework. The pricing of European
contingent claims has already been treated in this context by Avellaneda, Lévy and Paras
in [2], Denis and Martini in [27] with capacity theory and more recently by Vorbrink in
[11Q using the G-expectation framework.
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We still consider a nancial market with a bond andd risky assetL':::L9 whose
dynamics are given by
dL! ; i :
F:: dt+ dB{; P, qs:8i=1:::d:
Then for everyP 2 P, the wealth process has the following dynamic
Z Z -
XF= b(s; X$; D)ds PdBs; P as::

s’ S
t t

In order to be in our 2RBSDE framework, we have to assume that the generatdr
satis es Assumptions4.2.1 and 4.2.2 The main di erence is that now b must satisfy
stronger integrability conditions and also that it has to be uniformly continuous in!
(when we assume that in the expression ob is constant). For instance, in the classical
case recalled above, it means that and must be uniformly continuous in! , which is
the case if for example they are deterministic. We will also assume tha® L,Z_; . Finally,
sinceS is going to be the obstacle, it has to be uniformly continuous ih.

Following the intuitions in the papers mentioned above, it is natural in our now incom-
plete market to consider as a superhedging price for our contingent claim

B0
Y,= esssuf Y, ; P as:; 8P2P,;
P2P , (t*;P)

whereY," is the price at timet of the contingent claim in the complete market mentioned
at the beginning, with underlying probability measureP. Notice immediately that we do
not claim that this price is the superreplicating price in our context, in the sense that
it would be the smallest one for which there exists a strategy which superreplicates the
American contingent claim quasi-surely.

The following Theorem is then a simple consequence of the previous one.

Theorem 4.5.2. There exist 2 Hﬁ and a universal of nondecreasing cadlag procdss
such that for allt 2 [0; T] and for allP 2 P,

8 R, R,
% Y; = . (s Ys; 9)ds [ sdBs+ Ky Ky Poas:
Y:> S; P as: h .
0 OI
_§ K. kP= essinf EP Ky kF ;P as:
P2P , (t*;P)

Furthermore, for all ", the stopping timeD, = inffs > t;Ys 6 S¢+"; P, qisg”
T is "-optimal after t. Besides, for all P, if we consider the stopping timeD" =
inf s>tYP6 Ss+ ", P as: AT, which are"-optimal for the American contingent
claim under eachP, then for all P

D, > D,”; P as: (4.5.1)
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Proof. The existence of the processes is a simple consequence of Thedrdm and the
fact that X is the superhedging price of the contingent claim comes from the representation
formula (4.3.1). Then, the "-optimality of D, and the inequality (4.5.1) are clear by
de nition. u

Remark 4.5.1. The formula (4.5.1) con rms the natural intuition that the smallest op-
timal time to exercise the American contingent claim when the volatility is uncertain is
the supremum, in some sense, of all the optimal stopping times for the classical American
contingent claim for each volatility scenario.

Remark 4.5.2. As explained in Remark4.3.5, we cannot nd a decomposition that would
isolate the e ects due to the obstacle and the ones due to the second-order. It is not clear
neither for the existence of an optimal stopping timeD; = inffs> t;Ys 6 S ; Py

q:sg” T is not optimal after t. Betweent and D, K" is reduced to the part related to
the second-order. However this part does not verify the minimum condition because it is
possible to haver, >yP” =S , thus the procesk® is not identically null.

4.6 Appendix

4.6.1 Technical proof

Proof. [Proof of Lemma4.4. For eachP, let (YP;Z") be the solution of the BSDE with
generatorlb and terminal condition attime T. We de ne

¢P=Vv YP

Then, "> 0; P a:s:

Forany 06 t; <t, 6 T, let (yP'2;zP12;kPt2) = (YP(t2; W,); ZP(t2; Vi) KP(t2; W,)) -
Since we have foP ae: !, Y{(t; Vi,)(1) = YPU! (t5; VEH' ), we get from Proposition
4.4.1

Vi, > yo'% P as:

Denote
Pty .

%= Ytp;tz Ytp; etp;t2 = btlzz(ztp;t2 th):

Ptz

Then ¥7 > ¥
S YPon]0;t,]

and (g™'2; g”'2) satis es the following RBSDE with lower obstacle

Z,, Z,,
EtP;tz — gts fs(?sp;tz;esp;tz)ds Es;tdeSP + ktF;;tz ktP;tz;
t

t

where

fPy;z) = By + YR )k 2z + 2P0 ) B YR ) Z8()):
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By the de nition given in the Appendix, ¥P is a positive weak re ected f P-
supermartingale underP. Sincef P(0;0) = 0, we can apply the downcrossing inequality
proved in the Appendix in Theorem4.6.3to obtain classically that forP a:e: !, the limit

lim &P
r2Q[ (4T ir#t ' ( )
exists for all t.
Finally, since Y is continuous, we get the result. u

4.6.2 Re ected g-expectation

In this section, we extend some of the results of Pen§f concerningg-supersolution of
BSDEs to the case of RBSDEs. Let us note that the majority of the following proofs
follows straightforwardly from the original proofs of Peng, with some minor modi cations
due to the added re ection. However, we still provide most of them since, to the best of
our knowledge, they do not appear anywhere else in the literature.

In the following, we x a probability measure P

4.6.2.1 De nitions and rst properties
Let us be given the following objects

A function gs(!;y; z ), F-progressively measurable for xe¢ and z, uniformly Lips-
chitz in (y;z) and such that
Z

EP jos(0; 0)j%ds < +1 :
0

A terminal condition which is Ft-measurable and irL2(P).

A cadlag procesd/ with EP  sup jVij? < +1 .
06t6 T

! #
2

A cadlag processS such that EP sup (S)* < +1.
06t6T

We want to study the following problem. Finding(y;z;k) 2 D?(P) H?(P) 12%(P) such
that

8 Z Z
% yi= o+ os(YsZo)ds z,dWs + kr  ke+ Vi ;0616 T; P as:
t t
Vi > S, P as:
3

(ys Ss)dks=0; P a:s:
0
(4.6.1)

We rst have a result of existence and uniqueness
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Proposition 4.6.1. Under the above hypotheses, there exists a unique solufipre; k) 2
D?(P) H?(P) I%(P) to the re ected BSDE (4.6.1).

Proof. Consider the following penalized BSDE, whose existence and uniqueness are
ensured by the results of Pengf|

Z - Z -
yi = +  o(ys;z)ds zgdWs + k3 ki' + Vo

t t
n.— Rt n
whereki :=n  (y¢ Ss) ds.
Then, deneg = y"+ V,, €= + Vr, 8= 2", R := k! and g(y;2) := a(y V;2).
We have Z . Z -
g =€ gs(%c; 20)ds eldWs + BT R

t t

Then, since we know by Lepeltier and Xug8], that the above penalization procedure
converges to a solution of the corresponding RBSDE, existence and uniqueness are then
simple generalization of the classical results in RBSDE theory. u

We also have a comparison theorem in this context

Proposition 4.6.2. Let i and , 2 L?(P), V', i =1;2 be two adapted, cadlag processes
and d.(!;y;z) two functions, which all verify the above assumptions. Léy';z';k') 2
D?(P) H2(P) I%(P), i = 1;2 be the solutions of the following RBSDEs with lower
obstacleS'
Z . Z .
yi= T+ di(y.;Z)ds zZdWs + ki ki+ Vi VP as:; i=1;2

t t

respectively. If
1> o, P as:
V! VZ2is nondecreasingP a:s:
S'> S22 P as:
%(¥s:2z5) > &(ys: ), dt dP  as:
then it holdsP a:s: that for all t 2 [0; T]

yi > yZ

Besides, ifSt = S2, then we also havelk! 6 dk2.

Proof. The rst part can be proved exactly as in B4], whereas the second one comes from
the fact that the penalization procedure converges in this framework, as seen previously.
u
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Remark 4.6.1. If we replace the deterministic timeT by a stopping time , then all the
above is still valid.

From now on, we will specialize the discussion to the case where the prodéss actually
in 12(P) and consider the following RBSDE

Z Z
= + Os(Ys; Zs)ds+ V. Vin + k  Kia zdW;; 06t6 : P as:

8
§ Yt
t t
)%> S, P oas:
.E (ys Ss)dks=0; P as:
0
(4.6.2)

De nition 4.6.1. If y is a solution of a RBSDE of the form(4.6.2, then we cally a
re ected g-supersolution on[0; ]. If V =0 on [0; ], then we cally a re ected g-solution.

We now face a rst di erence from the case of non-re ected supersolution. Since in our
case we have two nondecreasing processes, g-supersolution is given, there can exist
several nondecreasing process€sand k such that (4.6.2 is satis ed. Indeed, we have
the following proposition

Proposition 4.6.3. Giveny a g-supersolution on[0; ], there is a uniquez 2 H?(P) and
a unique couple(k; V) 2 (12(P))? (in the sense that the sunk + V is unique), such that
(y; z;k; V) satisfy (4.6.2. Besides, there exists a unique quadruplg; z; k% V9 satisfying
(4.6.2 such thatk® and V° never act at the same time.

Proof. If both (y;z;k;V) and (y; z}; k*; V?) satisfy (4.6.2), then applying Itd's formula
to (yi Vi)? gives immediately thatz = z* and thusk+ V = k' + V1, P as:

Then, if (y;z;k;V) satisfying (4.6.9 is given, then it is easy to construct(k% V9 such
that

kOonly increases whery, = S; .
VOonly increases whery, > S, .

VOo+ Ko= V, + k, dt  dP a:s:

and such a couple is unique. u

Remark 4.6.2. We give a counter-example to the general uniqueness in the above Propo-
sition. Let T =2 and consider the following RBSDE

8 R
3 yi= 2+2 t+k k[ zdW;; 06162 P as:

2
> 5P as:

3 ﬁz s2 . s
: o ¥Ys +5 dks=0; P as:
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We then havez =0,y =1o6 161 5 t Slice2 V=0andk =1, 52

However, we can also take
2 2t+1 2 2t+1

andktO:lt>1lt>1 4

ye=1¢s1

Following Peng B9, this allows us to de ne

De nition 4.6.2. Let y be a supersolution on0; ] and let (y;z;k;V) be the related
unique triple in the sense of the RBSDK4.6.2, wherek and V never act at the same
time. Then we call(z; k; V) the decomposition ofy.

4.6.2.2 Monotonic limit theorem

We now study a limit theorem for re ected g-supersolutions, which is very similar to
theorems2:1 and 2:4 of [88].

We consider a sequence of re ectegtsupersolutions

8 R R
yr= "+ To(yhz)ds+ VOVt + ko kM T z0dW,; 0616 T; P as:
t t s14s T t T t t S

P> S, Pooas:

3 &T n n
' o Yo S5 dk§=0;P as:

where theV" are in addition supposed to be continuous.

Theorem 4.6.1. If we assume that(y') increasingly converges tdy;) with

E° sup jyj® <+1;
06t6 T
and that (k{') decreasingly converges tk;), theny is a g-supersolution, that is to say that
there exists(z; V) 2 H?(P) 1%(P) such that

8 R R
3 %= + tT Os(Ys; Zs)ds+ Vr - Vi + kr  k; tT zdWs; 06 t6 T; P as:
> S, P as:
> B>
: o Vs  Sg)dks=0; P as:
Besides,z is the weak (resp. strong) limit ofz" in H2(P) (resp. in HP(P) for p < 2) and
V; is the weak limit of V" in L2(P).

Before proving the Theorem, we will need the following Lemma

Lemma 4.6.1. Under the hypotheses of Theorem.6.1, there exists a constantC > 0
independent ofn such that
Zy
E°  jzj?ds+(V)?+ (k) 6 C:
0
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Proof. We have
y Y
Vi+kr=yo yr Os(Ys; Z5)ds+ zgdWs
°  z. °Z ; Z .
6 C sup jyij+ jzljds+ jgs(0; 0)j ds + z2dWs :  (4.6.3)
06t6 T 0 0 0

Besides, we also have for al > 1, y! 6 y" 6 y; and thusjy?j 6 jylj + jy:j, which in
turn implies that

supE® sup jy"j* 6 C:
n 06t6T
Reporting this in (4.6.3 and using BDG inequality, we obtain

E” (V)2 +(KD)? 6 EP (W + KBY?
Y y

6 Co 1+EF jos(0;0)j%ds+  jz0j%ds (4.6.4)
0 0

Then, using Ité's formula, we obtain classically for all' > 0
Z T z T Z T

E i jz3j°ds 6 EP (y§)*+2 CYe(Eiz)ds T2yl d(V k)

#
. ne2 T jan2 . 2 . .2
6 EF C 1+ sup jy'j° +  —=—ds+" V" + jki]
061t6T o 2

(4.6.5)

Then, from (4.6.4) and (4.6.5, we obtain by choosing' = % that

Z 1
EP jzlj’ds 6 C:
0
Reporting this in (4.6.4 ends the proof. u

Proof. [Proof of Theorem4.6.]] By Lemma4.6.1and its proof we rst have
Z Z

EP jos(y);zD)j’ds 6 CE®  jgs(0;0)* + jytj® + jz0j°ds 6 C:
0 0

Thus gs(yD;z") and z" are bounded inH?(P), and there exists subsequences which
converge respectively to somgs and zs. Therefore, for every stopping time , we also
have the following weak convergences

z z z Z
z)dW; ! ZsdWs; Os(ye; zd)ds! gsds;
0 0 0 0
Z Z

Vil oy +y K gsds + ZsdWs:
0 0
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Then by the section theorem, it is clear thatv and k are nondecreasing, and by Lemma
2:2 of [88] we know thaty, V and k are cadlag. We now show the strong convergence
of z". Following Peng BE], we apply Ité's formula between two stopping times and
SinceV" is continuous, we obtain

z " X
E°  jz0 zj°ds 6 EP jy" yji+ (( e+ k)2

7 6t6 7

n

+2E7 vl veiios(ye;zd)  asids+ (YD ys)d(Vs+ ko) :

#

Then we can nish exactly as in 8§ to obtain the desired convergence. Sincg is
supposed to be Lipschitz, we actually have

O = Os(Ys; Zs); P as:

Finally, since for eachn, we havey! > S;, we havey; > S;. For the Skorohod condition,
we have, since thé&" are decreasing
E° (Yt S )dk 6 EF (Ve y ) dk + (¢ S )dk!
0 Z0 0
T

= EP . (Yt yi )dk; :

Then, we have

Z T 1=2
1=2

E° (v Y')dk 6 E° sup yi oy ° EP k2 <41
0 06t6 T

Therefore by Lebesgue dominated convergence Theorem, we obtain that
Z

E° (ye yi)dk ! O
0

and thus Z .

E" (i S )dk 60
0

which ends the proof. u

4.6.2.3 Doob-Meyer decomposition
We now introduce the notion of re ectedg-(super)martingales.

De nition 4.6.3. (i) A reected g-martingale on [0;T] is a re ected g-solution on
[0 T].

(i) (Y;) is a re ected g-supermartingale in the strong (resp. weak) sense if for all stop-
ping ime 6 T (resp. allt 6 T), we haveEP[jY j*]< +1 (resp. EP[[Y;j*]< +1)
and if the re ected g-solution (ys) on [O; ] (resp. [0;t]) with terminal condition Y
(resp. Y;) veries y 6 Y for every stopping time 6  (resp. ys 6 Ys for every
S6 t).
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As in the case without re ection, under mild conditions, a re ectedg-supermartingale in
the weak sense corresponds to a re ectedsupermartingale in the strong sense. Besides,
thanks to the comparison Theorem, it is clear that a-supersolution on[0; T] is also ag-
supermartingale in the weak and strong sense ¢ T]. The following Theorem addresses
the converse property, which gives us a nonlinear Doob-Meyer decomposition.

Theorem 4.6.2. Let (Y;) be a right-continuous re ectedg-supermartingale on[0; T] in
the strong sense with

EP  sup jYij® < +1:
06t6 T

Then (Y;) is a re ected g-supersolution on[0; T], that is to say that there exists a unique
triple (z;k;V) 2 H3(P) 12(P) 1%(P) such that

Ry
. ZsdWs; 06 t6 T; P as:

Y;> S, P as:
OT (Ys Ss)dks=0; P as:

8 R;
% Yt = YT + t gS(Ys;Zs)dS+ VT Vt + kT kt
’ V and k never act at the same time.

We follow again B8] and consider the following sequence of RBSDEs

RT RT RT
3 Y=Y+ ¢ Os(yS;zd)ds+n [ (Ys yd)ds+ ks ki, zldWs; 06 t6 T
> S; P oas:
3 ¥éT nS[ n
' o Yo Ss dki=0;P as:

We then have

Lemma 4.6.2. For all n, we have
Y >y

Proof. The proof is exactly the same as the proof of Lemnta4 in [88], so we omit it.
u

Proof. [Proof of Theorem4.6.2 The uniqueness is due to the uniqueness for re ected
g-supersolutions proved in Propositio.6.3 For the existence part, we rst notice that
sinceY, > y! for all n, by the comparison Theorem for RBSDEs, we havwg 6 yi*' and
dk > dk['**. Therefore they converge monotonically to some processeand k. Besides,
y is bounded from above byy. Therefore, all the conditions of Theorend.6.1are satis ed
andy is a re ected g-supersolution on[0; T] of the form
Z Z ;
ye= Yo+ Os(Ys; Zs)ds+ V¢ Vi + kr k ZsdW;

t t
R
whereV; is the weak limit of ;" := n J(Ys yd)ds.

From Lemma4.6.1, we have
Z
n?E” iY ylj’ds 6 C:
0

E[(V)?]

It then follows that Y; = y;, which ends the proof. u
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4.6.2.4 Downcrossing inequality

In this section we prove a downcrossing inequality for re ected-supermartingales in the
spirit of the one proved in R1]. We use the same notations as in the classical theory of
g-martingales (see?1] and [8] for instance).

Theorem 4.6.3. Assume that g(0;0) = 0. Let (Y;) be a positive re ected g-
supermartingale in the weak sense and 16t= to <t,; <::<t; = T be a subdivision
of [0;T]. Let 0 < a < b, then there existsC > 0 such thatD.[Y;n], the number of
downcrossings ofa; B by Y. , veries

E DAYiAI6 [ E Yo" b}

where is the Lipschitz constant ofg.

Proof. Consider

8 R R

3 vi=Y, ' iyi+ jZjds+ ki ki "zidWs 06 t6t; P as:
'> S P as:

2 &ti \?t i

: o Y Ss dkg=0; P as:

. . P .
We de ne &, = sgn(zi)l; ,<sey andas :=  ;al. Let Q2 be the probability
measure de ned by 7
dQ” E ! dw,
ap - =, B

We then have easily thaty! > 0 sinceY;, > 0 and

yi =esssupEZ e ¢ YS 1, +Y,e O V1_,
2T1;1i

SinceY is re ected g-supermartingale (and thus also a re ectedy -supermartingale
whereg, (y;z):= (Jyi * Jzj)), we therefore obtain

esssuEy , e ( TS 1,4 +Ye OOl
2Ty gy

6V ,:

Hence, by choosing = t; above, we get

EQ

to1

Y, e i ti1) g Yo o

which implies that (e 'Yy )o6 i 6 n iS @Q®-supermartingale. Then we can nish the proof
exactly as in R1]. u






Chapitre 5
Second Order BSDEs With Jumps

5.1 Introduction

In this chapter, we study a class o2BSDEs with jumps. The rest of the chapter is
organized as follows. In Sectiob.2, we introduce the set of probability measures on
the Skorohod spacé that we will work with. Using the notion of martingale problems
on D, we construct probability measures under which the canonical process has given
characteristics. Then we prove an aggregation result under this family. Finally, we de ne
the notion of 2BSDEJs and show how it is linked with classic BSDEs with jumps. Section
5.3is devoted to a uniqueness result and sonaepriori estimates, and Sectiorb.4 concerns
our existence result. In Sectio®.5, as an application of previous results, we study a robust
exponential utility maximization problem. The Appendix 5.6 is dedicated to the proof of
some important technical results. This chapter is based o06(] and [61].

5.2 Preliminaries

Let := D([0;T];RY) be the space of cadlag paths de ned of®; T] with values in R
and such that w(0) = 0, equipped with the Skorohod topology, so that it is a com-
plete, separable metric space (se&( for instance). The uniform norm on s de-
ned by k! k; :=supgg (6 7i!tj. We denoteB the canonical processk := fF (g4 6 T
the Itration generated by B, F* = F/ the right limit of F and for any P,
FP:=F _NP(F) where
n o]
NP(G) := E 2 ; there existsE 2 G such thatE E andP(E)=0

06t6 T

As usual, for any ltration G and any probability measureP, G will denote the corre-
sponding completed lItration.

We then de ne as in [LO]] a local martingale measurd® as a probability measure such
that B is a P-local martingale. Since we are working in the Skorohod space, we can then
de ne the continuous martingale part ofB, noted B¢, and its purely discontinuous part,
noted B¢, both being local martingales under each local martingale measures (S&€)|
We then associate to the jumps oB a counting measure gq, Which is a random measure
onB(R") E (whereE := R"nfOg for somer 2 N ), de ned pathwise by

X
gd([0;t]; A) = 1t ggoag 81> 0; 8A E: (5.2.1)
O<s 6t
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We also denote by P(ds;dx) the compensator of za(ds;dx), which is a predictable
random measure, undeP and by ef,(ds; dx) the corresponding compensated measure.

We then denoteP, the set of all local martingale measureB such that P-a.s.

(i) The quadratic variation of B is absolutely continuous with respect to the Lebesgue
measuredt and its density takes values irs;°.

(i) The compensator 7(dt;dx) under P is absolutely continuous with respect to the
Lebesgue measurdt.

In this discontinuous setting, we will say that a probability measure® 2 Py, satis es
the martingale representation property if for any(fp; P)-local martingale M , there exists
a unigue E- -predictable processe#l and a uniquefp -predictable function U such that
(H;U) 2 H2 (P) J2.(P) (those spaces are de ned later) and

Z, YAV

M{= Mo+  HdBS+ Us(x)e5q(ds; dx):
0 0 E

We now follow [LO3 and introduce their so-called universal lItration. For this we letP
be a given subset oPy,, we de ne

De nition 5.2.1. (i) A property is said to holdP-quasi-surely P-q.s. for short), if it
holdsP a:s:forall P2P.

(i) We call P-polar sets the elements dfip := \ p;p NP(F1 ).

Then, we de ne as in 103

\
pP .= P where P := FZ_Np
P2P

Finally, we let T and PP the sets of allF and PP stopping times, and we recall that
thanks to Lemma2:4 in [103 we do not have to worry about the universal Itration not
being complete under eacl? 2 P .

5.2.1 Issues related to aggregation
5.2.1.1 The main problem

A crucial issue in the de nition of the 2BSDEs in L0]] is the aggregation of the quadratic
variation of the canonical proces®8 under a wide family of probability measures.

LetP P be asetof non necessarily dominated probability measures andfiat®; P 2
Pg be a family of random \ﬁlrlables indexed by. One can think for example of the
stochastic integralsX” := (P H sdBs, wherefHy¢; t > Og is a predictable process.
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De nition 5.2.2.  An aggregator of the familyf X ”; P 2 Pg is a random variableX such
that

X =XP, P as, for everyP2 P:

Bichteler [9], Karandikar [58], or more recently Nutz B6] all showed in di erent contexts,
and under di erent ?§sumptions, that it is possible to nd an aggregator for the I1t6
stochastic integrals(” Ot HdBs.

A direct consequence of this result is the possibility to aggregate the quadratic variation
processf[B;BJ;; t > 0g. Indeed, using It6's formula, we can write

Zt
[B;B],= BB 2 B dB/
0

and the aggregation of the stochastic integrals automatically yields the aggregation of the
bracket f[B;B];; t > 0g.

This also allows us to give a pathwise de nition of the proceds which is an aggregator
for the density of the quadratic variation of the continuous part ofB, by

, 1 . ,
bt::hn];lojp; B, hB, . ;

Soner, Touzi and Zhang, motivated by the study of stochastic target problems under
volatility uncertainty, obtained in [ 103 an aggregation result for a family of probability
measures corresponding to the laws of some continuous martingales on the canonical
space = C(R*;RY), under a separability assumption on the quadratic variations (see
their de nition 4:8) and under an additional consistencycondition (which is usually only
necessary) for the family to aggregate.

To de ne correctly the notion of 2BSDEJs, we need to aggregate not only the quadratic
variation [B; B] of the canonical process, but also its compensated jump measure. How-
ever, this predictable compensator is usually obtained thanks to the Doob-Meyer decom-
position of the submartingale[B; B]. It is therefore clear that this compensator depends
explicitly on the underlying probability measure, and it is not clear at all whether an
aggregator always exists or not. This is a rst main di erence with the continuous case.
In order to solve this problem, we follow the spirit of J03 and restrict our set of proba-
bility measures (by adding an analogous separability condition for jump measures) so as
to generalize some of their results oflp3 to the case of processes with jumps.

After these rst notations, in the following subsection, in order to construct a probability
measure under which the canonical process has a given quadratic variation and a given
jump measure, we will use the notion of martingale problem for semimartingales with
general characteristics, as de ned in the book by Jacod and Shiryaesq] to which we
refer.
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5.2.1.2 Characterization by martingale problems

In this subsection, we extend the connection between di usion processes and probability
measures established inpJ thanks to weak solutions of SDEs, to our general jump case
with the more general notion of martingale problems.

Let N be the set ofF-predictable random measures on B(E) satisfying

Z.Z Z.Z

(17j%j?) s(dx)ds < +1 and iXj s(dx)ds<+1;8 2 ; (522
E

0 0 jxj>1

and let D be the set ofF-predictable processes taking values in S;° with
Zy

j jdt< +1 ; for every! 2
0

We de ne a martingale problem as follows

De nition 5.2.3.  For F-stopping times ; and ,, for (; )2 D N and for a probability
measureP; on F |, we say thatP is a solution of the martingale problenfP;; 1; 2;; )
if

(i) P=PionF ..

(i) The canonical proces8 on [ 1; 2] is a semimartingale underP with characteristics
Z Z Z
X1jj>1 s(dx)ds;  sds; s(dx)ds
E

1 1

Remark 5.2.1. We refer to Theorem [I1.2.7 in [56] for the fact that P is a solution of
the martingale problem(Py; 1; »; ; ) if and only if the following properties hold:

(i) P=PronF ..

(i) The processeM, J and L de ned below areP-local martingales on[ 1; ;]

X Z4
M; := B; 1j Bj>1 Bs+  Xljx>1 s(dX)ds; 1616 »
6 s6t 1
Z, Z.z
Ji = M2 ds x? (dx)ds; 16t6
ixXj g 1
z.z P Mgtz
Q = g(x) s (ds;dx) g(x) s(dx)ds; 16 t6 2 8g2C(RY):
E E

1 1

We say that the martingale problem associated t¢; ) has a unique solution if, for
every stopping times ;; , and for every probability measureP;, the martingale problem
(P1; 1; 2;; ) has a unique solution.

Let now Ay be the set of(; ) 2 D N , such that there exists a solution to the
martingale problem(P.;0;+1 ; ; ), whereP; is such thatP,(Bo=0)=1.
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We also denote byA,, the setof(; )2 Ay such that there exists a unique solution to
the martingale problem(P4;0;+1 ; ; ), whereP; is such thatP;(Bo; = 0) = 1. Denote
P this unique solution. Finally we set

Pw =fP; (; )2Awg:

Remark 5.2.2. We take here as an initial condition thatBo = 0. This does not generate

a loss of generality, since at the end of the day, the probability measures under which we
are going to work will all satisfy the Blumenthad 1 law. Hence,Bq will have to be a
constant and we choos8 for simplicity.

5.2.1.3 Notations and de nitions

Following [103, for a;b2 D and ;; , 2 N, we de ne the rst disagreement times as
follows

z t Z t

&b -—inf t>0 ads6 hds ;
2.z 0 z.Z

L, =inf t> 0 X I(dx)ds 6 x 2(dx)ds

0 E 0 E
ab — abna
1, 2 1, 2
For everyb in P we de ne the following event
F= be L[ b= P =e1

Finally, we introduce the following notion inspired by 103
De nition 5.2.4. Ao A w is a generating class of coe cients if

(i) Ag is stable for the concatenation operation, i.e. ifa; 1);(b; 2) 2A o A o then for
eacht,

alpy + blgva)s 1oy + 211y 2A0

(i) For every(a; 1);(b; 2) 2Ao A o, ai'? , Is a constant. Or equivalently, for each,
& 1Pz equals  or ;.
De nition 5.2.5. We say thatA is a separable class of coe cients generated By, if Ag
is a generating class of coe cients and ifA consists of all processe&; ) of the form
Xt Xt Xt Xt
a= a1n:I'E|n 1[ nion+l) and = inlEin 1["h;"n+1); (523)
n=0 i=1 n=0 i=1

where for eachi and for eachn, (a'; ") A o, n and ~ are F-stopping times with
o =0, such that

(I) n< n+1 Onfn<+1g.
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(i) inffn>0;, ,=+1g <1.

(i) , takes countably many values in some xel, [O; T] which is countable and
dense in[0; T].

(iv) Foreachn, (E")i~1 F , and(E")i>1 F -, form a partition of

Remark 5.2.3. If we re ne the subdivisions, we can always take a common sequence of
stopping times( )n> 0 and common set{E/"); > 1.n> o for a and for . Moreover, the

de nition indeed depends on the countable subdgtintroduced above. We acknowledge that
as in [103 this set could be changed, but for the sake of clarity, it will be xed throughout
the chapter. We will also show in Sectiob.4.4 that this has only limited impact on our
results. For practical purposes, one could take for instandg = Q\ [0; T].

Example 5.2.1. &, composed of deterministic process@sand forms a generating class
of coe cients.

The following Proposition generalizes Propositiod:11 of [103 and shows that a sepa-
rable class of coe cients inherits the "good" properties of its generating class.

Proposition 5.2.1. Let A be a separable class of coe cients generated By. Then
(l) If Ag A W,thenA A w.
(i) A-quasi surely is equivalent t&\ o-quasi surely.

(i) IfeveryP2fP ; (; ) 2A,gsatis es the martingale representation property, then
everyP2fP ; (; )2Ag also satis es the martingale representation property.

(iv) IfeveryP2fP ; (; )2Aog satises the Blumenthal0 1 law, then everyP 2
fP; (; )2Ag also satis es the BlumenthalD 1 law.

As in [103, to prove this result, we need two Lemmas. The rst one is a straightforward
generalization of Lemma4:12in [103, so we omit the proof. The second one is analogous
to Lemma4:13in [103.

Lemma 5.2.1. Let A be a separable class of coe cients generated By. For any (a; ) 2
A, and anyF -stopping time 2 T, there exist~2 T with ~> , a sequencéa;; i) > 1
Ao and a partition (Ej)i-1 F of suchthat~> onf < +1g and
X X
a=  a(t)lg and = i(D1lg,; t< = (5.2.4)
i>1 i>1
In particular, E; %@ 1 which implies that[ , "' = . Finally, if aand take
the form (5.2.3) and > ,, then we can choose > ;.

Proof. We refer to the proof of lemma 4.12 in103. u
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Lemma 5.2.2. Let ;; , 2T be two stopping times such that 6 5, and (&; i)i>1
Aw and letfE;; i > 1g F , be a partition of . Finally let P° be a probability measure
onF , and letfP'; i > 1g be a sequence of probability measures such that for egch' is
a solution of the martingale problenf{P?; 1; »;a; ;). De ne

X
P(E) := P(E\ E;) forallE2F ;
X i>1 X
a; ;= a(t)lg, and = (D1 t2 [ 45 2l
i>1 i>1

Then P is a solution of the martingale problenfP®; 1; ,;a; ).

Proof. By de nition, P = P° on F ,. In view of remark 5.2.1, it is enough to prove
that M, J and Q are P-local martingales on[ 1; »]. By localizing if necessary, we may
assume as usual that all these processes are actually bounded. For any stopping times
16 R6 S6 ,, and any boundedFr-measurable random variable , we have

X .
EP(Ms Mg])= EF (Ms Mg] 1)
i>1
=  EP EP(Ms MQgJiFr) 1g =0:

i>1

Thus M is a P-local martingale on[ 1; »]. We can prove in exactly the same manner
that J and Q are alsoP-local martingales on[ 1; »] and the proof is complete. u

Proof. [Proof of Proposition5.2.]] The proof follows closely the proof of Propositiod:11
in [103 and we give it for the convenience of the reader.

(i) We take(a; ) 2A, letus prove that(a; )2Aw.

We x two stopping times 1; , in T and a probability measureP® on F . We de ne a
sequenc€~,)n > o as follows:

»= andw:=(n_ )" 2 n>1L

To prove that the martingale problem(P°; 1; ,;a; ) has a unique solution, we prove by
induction on n that the martingale problem (P°; -; +;a; ) has a unique solution.

Step 1 of the induction : Let n = 1, and let us rst construct a solution to the
martingale problem (P°; «; ~; a; )P For this purpose, we aBpIy Lemmd.2.1with =~
and ~ = ~1, which leads toa, = ,, ;a&(t)lg, and (= ., i()1g forallt < =,
where(a; i) 2AoandfE;;i > 1g F . form a partition of . Fori > 1, let P%' be the
unique solution of the martingale problem(P%; ~; ~;a;; ;) and de ne

X
P3E):=  PY(E\ E)forall E 2F .:

i>1
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Lemma5.2.2tells us that P%2 solves the martingale problen{P°; ~; ~;a; ). Now let P
be an arbitrary solution of the martingale problem(P°; ~; ~;a; ), and let us prove that
P= P%, We rst de ne

P(E):= P(E\ Ej)+ PY(E\ EY); 8E 2F _:

Using Lemmab5.2.2 and the facts thata; = alg, + algc and | = 1g + 1lge, we
conclude thatP' solves the martingale problen(P°; —; ~;a; i). This problem having a
unique solution, we haveP' = P% on F_. This implies that for eachi > 1 and for each
E2F_,P(E\ E)=PY(E\ E;), and nally

POa(E) = X PU(E\ E;) = X P(E\ E;)= P(E); 8E 2F _:

i>1 i>1

Step 2 of the induction: ~ We assume that the martingale probleniP°; v; ~;a; ) has a
unique solution denotedP". Using the same reasoning as above, we see that the martingale
problem (P"; ~; <+1;a; ) has a unique solution, denoted®"*!. Then the processed,

J and Q de ned in Remark 5.2.1are P"*! -local martingales on[~,; <+1], and sinceP"*!
coincides withP" on F_, M, J and Q are alsoP"*!-local martingales on[~; -]. And
henceP"*! solves the martingale problem(P°; ~; w+1;a; ). We suppose now thatP is
another arbitrary solution to the problem (P°; ~; <+1;a; ). By the induction assumption,

"= PonF_, then P solves the problem(P"; +; <+1;@; ), and by uniquenes$® = P"*!

onF The induction is now complete.

“h+1 *

Remark that F , = _, iF. . Indeed, sinceinffn > 1 : , = +1g < +1, then
inffn> 1 :+ = ,g< +1. This allows to de ne P! (E) := P"(E) for E 2 F_ and
to extend it uniquely to F ,. Now using again Remars.2.1, we conclude thatP! solves
(P% 1; »;a; ) and is unique.

(i) We now prove that A-quasi surely is equivalent toA o-quasi surely.

P
We takelga; ) 2 A and we apply Lemmé&b.2.1with =+ 1 towrite a, = . ; &(t)1g,

and = ., i(t)1g forallt> O, where(a; i) 2AgandfE;;i > 1g F ; forma
partition of . Take a setE such that P*(E) = 0 for every(&;~) 2 Ao, then
X X
P3(E) = PA(E\ Ej) = P(E\ Ej)=0:
i>1 i>1

(i) Let N be aP?-local martingale, and let us prove by induction thatN has a matrtin-
gale representation property undeP?, on the interval [O; ,].

As we can choosey = 0 without loss of generality, the result is trivially true forn = 0.
Suppose thatN has a martingalS representation of0; n)P We apply Lemmab.2.1with

= pand~= p4q,thena = , a(t)lg and (= ., '(t)1g forall ,6 t<
n+1, Where(a; )2 Ao andfE;;i > 1g F _ form a partition of . We have that for
eachi > 1, N' is a P -local martingale, where

N/ = N, N, g1 a1)(t):
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Since(a;; ') 2 Ao, then by assumption there exist processé$' and ' such that

Z, z.z
N/ := H.BS+ LX) ge(ds;dX) L(ds;dX) ; Pi-a.§ 6 t< pu1:
n n E
We de ne
X _ X
H = Hilg, and (x):= (()1g; 8X 2 E; 06 t< ni;
i>1 i>1
then
Z, Z.,2
N, := HSdB§+ s(X) ( ga(ds;dx) s(ds; dx)) ; Pias 6 t< pu:
n n E

SoN has a martingale representation oni0; ,+;], and the induction is complete. Now
recall that inffn: , = 1g < +1 to conclude that N has a martingale representation
on[0;+1).

(iv) Take (a; ) 2 A of the form (5.2.3, in which we can take o = O without loss of
generality.

There exists0 < tg < ; such that_for everyt 6 to, P2 is the law on [0;t,] of a
semimartingale with characteristics Ot e X1jxj>1s(dX)ds; ;asds;~s(dx)ds where

X X
& = a|0(t)1E|0 and ~ = |0(t)1E,0’

i>1 i>1

wherefE?; i > 1g F o is a partition of . SinceF, is trivial, the partition is only
composed of and;, and then

& = al(t) and v = 2(1):
Then forE 2 F o+,
P*(E)= P*E)=0 oul;
sinceP? satis es the Blumenthal 0 1 law by hypothesis. u
Remark 5.2.4. If Ay consists in deterministic mappings as in examplg.2.1, then P2

is the law on[0; 4] of an additive process with non random characteristics, for which the
Blumenthal0 1 law holds (see for instance9f]).

We now state the following Proposition which tells us that our probability measure
coincides until their rst time of disagreement.

Proposition 5.2.2. Let A be a separable class of coe cients generated By, let P, =
fP3; (a; )2Ag and let(a; 1) (b; 22A A

0] af;’ . IS an F -stopping time taking countably many values.
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(i) Moreover, we have the following coherence condition

P, E\ 2P = pb, BV 3R gh2TPA8E 2F P4

Proof.
n o]
(i) Let us prove that a'f? .6t 2F,foranyt; > 0.

We apply Lemmabs.2.1for (a; 1) and(b; 2) with = t; to obtain that a, and b coincide
with a(t) and b (t) on E; and that ! coincides with ! (t) onE;,j = 1;2, fort< ~ where
~>tq, (a; 1) (b; )2A0 A gandfE;;i> 1g F ., form a partition of . Then

[ n 0
ait;)z 6 t, = aiil';biiz 6 5] \ E;
i>1
n o]

By the constant disagreement times property of g, a_‘l;;b‘_z 6 t; iseither or;, and

sinceE; 2 Fy,, then -

n b (0]
a;’[’26t1 2Ft1

To show that af;’ , takes countably many values, we apply again Lemm&.2.1 with

= %, which gives thata and b coincide with a(t) and h(t) on E; and that |
coincides with ! (t) onE;, j =1;2, fort< ~ where~> ,(a; 1) (b; ) 2A, A
andfE;;i > 1g F form a partition of . Since ""i‘l;;“iz is a constant and given that

ab = &b onE;, we have the desired result.
! i

i

(i) We write that

TP LLE o n .0 n o

EV 5%y ®,6t =E\ b< P, \ .6t
[ n .0 1 n o
= E\ b< %0, \ b6t — \ .6t

Since ®°,6 t 2F, we get that for anym > 1,

n ] 0] 1 a
E\ b< %, \ b6t —2F7 . B NTu(F)

t
F( NPiy(F,);
and then

a; Lib; ? pa .
E\ b 2Fa;i);2_N 1(Fq):
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From this last assertion, we deduce that there exist measurable s&8 y = ’ belonging
toFa ,i=1;2 suchthat

a; ! a; Lib; 2 a l. b ? a; Lib; 2 b; 2
=H E\ E; ; Ep E\ E,

P, EF nEY  =P% EYnE)’ =0:
We setEl:= E¥ '[ EX " andE2:= EX "\ E®’ then

ELE22F » ;E' E\ §7M° E?andP% E’nE' = P°, E’E! =0

.2

This implies that
Py EN BT = PLED and P BV BT = PYL(ED);

but the solutions of the martingale problemgP?; 0; *° ;;a; !) and (P%0; *° ,;b; 2) are

equal by de nition. And sinceE?2F ap _, We have

P (E%) = P%(E?)
which gives the desired result. u

We now have all tools we need to state and prove the main result of this section, which
generalizes the aggregation result of Theorem 5.1 ih0fj. For this purpose, we use the
more general aggregation result of Cohe2d, that does not concern only volatility or
jump measure uncertainty.

Theorem 5.2.1. Let A be a separable class of coe cients generated By and P, the
corresponding probability measures. Let

fX%;(a; )2Ag;
be a family of APa -progressively measurable processes.

Then the following two conditions are equivalent

(i) fX& ; (a; )2Ag satis es the following consistency condition
-1

X&' = X% pas. on[o; af;’ ,) forany (a; ) 2A and(b; 3 2A:

(i) There exists aP-qg.s. unique procesX such that

X = X% ; P*as, 8(a; ) 2A:
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Proof. We rst prove that (i) implies (ii). Using Lemma 3 in 23], we see that the
de nition of the generating classes, together with Propositios.2.2 implies that the family

P satis es the Hahn property de ned in [23]. Now Theorem4 of [23] gives the result.
The fact that (ii) implies (i) is a consequence of the uniqueness of the solution of the
martingale problem(P°%; 0;+1 ;a; ) on|0; a;f;’ 2). u

Now that we have Theorenb.2.1, we can answer our rst issue concerning the aggrega-
tion of the predictable compensators associated to the jump measurgs of the canonical
process. Indeed, leA be a separable class of coe cignts gengrated y,. Then, for each
Borel setA 2 B(E) and for eacht 2 [0; T] the family tpa(A) @ )2 clearly satis es the

consistency condition above (because it is de ned trough the Déob-Meyer decomposition),
and therefore there exists a procedssuch that

b(A)= [(A); for everyP2 P,: (5.2.5)

We then denote
ega(dt; dx) ;= ga(dt;dx) b(dx)dt:

5.2.1.4 The strong formulation

In this subsection, we will concentrate on a subset &, . For this purpose, we de ne

V:

f 2N; (Ile; )2Awg:

P'« and for each 2 D, we de ne
Z t

PP =P (X.)*'; whereX, := 2dBS+ BY; P as: (5.2.6)
0

For each 2V, we denoteP :

Let us now de ne,
Ps:=fP ; (; )2AwgQ:

Then is the quadratic variation density of the continuous part ofX and
dBg = ('ZdX(°;

under P . Moreover, (dx)dt is the compensator of the measure associated to the jumps
of X and X, = BsunderP .

We also de ne for eachP 2 P, the following process
LP:=wW'+B% P as; (5.2.7)

where W is a P-Brownian motion de ned by
yA t

W= B dBS
0
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Then, Ps is a subset ofP\y and we have by de nition

the P° -distribution of (B;B;hL ? ) is equal to theP -distribution of (X ; : ;B ).
(5.2.8)

We also have the following characterization in terms of Itrations, which is similar to

Lemma8:1lin [103
n _, 0
Lemma 5.2.3. Ps= P2Py; F° =F

Proof. By the above remarks, itis clear that andB areFX -progressively measurable.
But by de nition, F is generated byB, thus we conclude easily thaF FX . The
other inclusion being clear by de nition, we have
=
Now we can use&.2.8 to obtain that
FLP - =

Conversely, letP 2 Py be such that F'P. = F - Then, there exists some measurable
function such thatB.= (LP). Let be the compensator of the measure associated to
the jumps of B under P. De ne then,

_d< (B); (B)>¢.
t = dt ’
we conclude then thatP= P . u

DenenowAs:=f(; )2Aw; P 2Psg. Itisimportant to notice that in our frame-
work, it is not clear whether all the probability measures inPg satisfy the martingale
representation property and the BlumenthalD 1 law. Indeed, this is due to the fact that
the processL® does not necessarily satisfy them. This is a major di erence witH (3.
Nonetheless, if we restrict ourselves to a subset®§, we are going to see that we can still
recover them.

First, we have the following generalization of Propositio8:3 of [103.

Proposition 5.2.3. Let A be a separable class of coe cients generated By. If Ag A s,
thenA A s.

Proof. This is a straightforward generalization of the proof of Propositior8:3 in [103,
using the same kind of modi cations as in our previous proofs, so we omit it. u

Let us now consider the set introduced above in Exampe2.1
n 0

Ao:=f(; )2D N which are deterministig; P, = P; (; )2 Ao

Ao is a generating class of coe cients, and it is a well known result thalx, A w
(see Theorem [11.2.16 in $€]) and that every probability measure inP,  satis es the
martingale representation property and the Blumenthald 1 law, since the canonical
process is actually an additive process under them. Moreover we also have
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Lemma 5.2.4. We have

PA‘ P S.

0
Proof. Let P := P be a probability measure inP,, . As argued previously, we have
P as: Z,

BS= i =g and LY = By

] —FP
Since is deterministic, it is clear that we haveF = FL° , which implies the result.
u

Finally, we considerA™ the separable class of coe cients generated b, and P, the
corresponding set of probability measures. Then, using the above results and Propositions
5.2.1and 5.2.3 we have

Proposition 5.2.4. P, P s and every probability measure if? . satis es the martingale
representation property and the Blumenthad 1 law.

Proof. Once we know that the augmented Itration generated byl " satis es the mar-
tingale representation property and the BlumenthaD 1 law for everyP 2 P ., we can
argue exactly as in the proof of Lemma:2 of [103 to obtain the results for P . The
result for P ¢ then comes easily from Propositiors.2.1 u

Remark 5.2.5. In our jump framework, we need to impose this separability structure on
both and , in order to be able to retrieve not only the aggregation result of Theorem
5.2.1 but also the property that all our probability measures satisfy the Blumentital 1
law and the martingale representation property. However, if one is only interested in being
able to consider standard BSDEJs, then we do not need the aggregation result and we can
work with a larger set of probability measures without restrictions on the Namely, let
us de ne n 0

Pe= P*¥;a2D; (Ig; )2~

Then we can show as above th®, P s and that all the probability measures i .
satisfy the Blumenthald 1 law and the martingale representation property. This is going
to be useful for us in Sectiorb.4.4.

5.2.2 The nonlinear generator

In this subsection we will introduce the function which will serve as the generator of our
2BSDEJs. Let us de ne the spaces

P2:=\ Ly L% )andPl:=\ LY ):

For any C! function v with bounded gradient, any! 2 and any06 t 6 T, we denote
v the function

wWe) = v(e+ 1 (1) V(I (1)) Lgee 19 €(r V)(! (1)); fore2 E:
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The hypothesis onv ensure thatv is an element of@®. We then consider a map
Hi(Ly;z;u; ;o W [0 T] R R P2 D, D,! R;

whereD; RY 9 is a given subset containind), D, B\ C (E), and G (E) denotes
the set of continuous functions orE with a compact support.

De ne the following conjugate ofH with respectto andv by

Fi(l;y;z;u;a;, )= sup }Tr(a *+<w > H(Lhy;z;u; ;W
fivg2D; D, 2
fora2 §;°and 2N, and where< v, > is de ned by
Z
<wv >:= we) (de: (5.2.9)
E

The quantity < v, > will not appear again in the chapter, since we formulate the needed
hypothesis for the backward equation generator directly on the functiofr. But the
particular form of < w; > comes from the intuition that the 2BSDEJ is an essential
supremum of classical BSDEJs. Indeed, solutions to Markovian BSDEJs provide viscosity
solutions to some parabolic partial integro-di erential equations whose non local operator
is given by a quantity similar to < v; > (see p] for more details).

We de ne
Ibt(y;z;u) = Fu(y; z;u;B; ) and Iif’t0 = Ibt(O; 0;0); P -as. (5.2.10)
We denote byD{ .., the domain of F in aand by DZ ,.,, the domain ofF in , for

a xed (t;l;y;z;u).
As in [10] we x a constant 2 (1;2] and restrict the probability measures inP,; P .

De nition 5.2.6. Py consists of allP 2 P .. such that

n Z T g#
a6 b6 a; d dP ae:for somea”;a” 2 S;°% andEP B0 dt <+1;
z z z °
(Lhx%) (@) 6 (1 jx’)b(dx) 6 (17jxj*)"(dx); and
ZF Z E Z E
ixj_P(dx) 6 jxj b (dx) 6 ixj (dx); dt dP ae:
jxj>1 ixj>1 ixj>1
for P:~": two nite Lévy measures inN :

Remark 5.2.6. With the above de nition, for a xed P2 P, we have
Z;Z Z.Z Z.Z
(17jxj")_P(dx) 6 E (L jx*)b(dx) 6 (17X F(dx) < 1
° 7.z 7.7 z7zF

and ixj_P(dx) 6 EP jXjb(dx) 6 ixj P(dx) < 1 :
0 ixj>1 0 ixj>1 0 iXj>1
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We now state our main assumptions on the functiof which will be our main interest
in the sequel

Assumption 5.2.1. (i) The domainsD¢ .., = D¢ and DZ .., = Df are inde-
pendent of(!;y;z;u).

(i) For xed (y;z;a; ), F is F-progressively measurable iD}  DZ .
(i) We have the following uniform Lipschitz-type property iy and z
8(y;y z;Z it a; ;! );

0

F(l;y;z;ua; ) Ft(!;yo;zo;u;a;) 6C vy y0 + a2 z z

(iv) For all (t;!;y;z;u ;u%a; ), there exist two processes and ° such that
Z
ut(e) u’(e) (e) (de) 6 Fi(liysziuba ) F(lyiziuZa; )
E
Z
F(;y;z;uta; ) F(liy;z;u%a; )6 ul(e) u?e) () (de) and
E
a(l”jxj) 6 (x) 6 (1™ xj) wherec; 6 0, 06 ¢, < 1;
C(L7jxj) 6 ()6 C(17jxj) wherec, 6 0; 06 ¢, < I

(v) F is uniformly continuous in! for the jj jj; norm.

Remark 5.2.7. () For ;< ,, applying Holder's inequality gives us

EP B “dt 6 CEP B “dt
0 0

whereC is a constant. Then it is clear thatP,, is decreasing in .
(i) The Assumption5.2.1, together with the fact thatlif’tO < +1, P -as for every
P: 2Py, implies thath 2 D} andb2 DZ dt dP' -a.e,forallP: 2P,.

5.2.3 The spaces and norms

We now de ne as in [L0]], the spaces and norms which will be needed for the formulation
of the second order BSDEs.

For p> 1, L denotes the space of alFr-measurable scalar r.v. with
k kK'p == supE°[j jPI< +1:
H P2P
HP: denotes the space of alF* -predictable R%-valued processeZ with

n Z #
.
:= sup E? jBrZj%dt < +1:
P2P 0

N[

KZKP

H
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DP; denotes the space of aF* -progressively measurabl&-valued processe¥ with

P, q:s:cadlag paths, andekgp; = supE” sup jYjP < +1:
H P2P , 06t6T

J% denotes the space of alF* -predictable functionsU with

n ZTZ #

KUK = sup " jUs00f°b(dgds < +1:

NIT

Foreach 2L} ,P2P, andt2 [0;T] denote

. 0 n 0]
EMP[]1:= esssuf EF[ ] whereP,(t';P):= P’ 2P, :P'= PonF,
P%2P , (t* ;P)
Then we de ne for eachp>
. n . 0 . P
Ly = 2Ly 1k k'—fﬁ <+1 wherek kE'ﬁf = sup EP esssuf EFPj]
P2P 06t6 T

Finally, we denote by UG() the collection of all bounded and uniformly continuous
maps : ! R with respect to thek k, -norm, and we let

L := the closure of UG() under the normk kp: . foreveryl6 6 p:

For a given probability measureP 2 P, the spacesLP(P), DP(P), HP(P) and JP(P)
correspond to the above spaces when the set of probability measures is only the singleton
f Pg. Finally, we haveH? (P) denotes the space of afF* -predictable R%-valued processes

i loc
Z with z.

No

1=2-, 2 . .
B,z dt < +1;P as:
0

JP.(P) denotes the space of alF* -predictable functionsU with

YA

N[o

jUs(X)j’bi(dx)ds < +1 ;P as:
0 E

5.2.4 Formulation

We shall consider the following?BSDEJ, for06 t6 T and P,-Q.s.
Z Z Z+Z
Y, = Ibs(Ys;Zs;Us)ds ZsdB¢ Us(X)~ga(ds;dx)+ K+ Ky: (5.2.11)

t t t E

De nition 5.2.7.  We say(Y;Z;U)2 D5 HZ JZ is a solution to2BSDEJ (5.2.1)
if
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YT = ) PH 'q.S.

Forall P2P, and06 t6 T, the processK P de ned below is predictable and has
nondecreasing path® a:s:
V4 Z, Z.Z

t
KPi=Yo Yo+  By(YsZsUg)ds+  ZdBS+ Us(X)~ga(ds; dx): (5.2.12)
0 0 0 E

The family KP;P2 P, satis es the minimum condition

oh
K= essinf EF KPP ;06t6T;P as;8P2P,: (5.2.13)
PY2P , (t* ;P)

Moreover if the family KP;P2 P, can be aggregated into a universal proceks, we
call (Y; Z;U;K) a solution of the2BSDEJ (5.2.1]).

Remark 5.2.8. Since with our setP,, we have the aggregation property of Theorebi2.1,
and since the minimum condition(5.2.13 implies easily that the family KP;P2 P,
satis es the consistency condition, we can apply Theore2.1 and nd an aggregator for

the family. This is di erent from [ 10]] or [90], because we are working with a smaller set

of probability measures.

Following [101], in addition to Assumption 5.2.1, we will always assume
Assumption 5.2.2. (i) Py is not empty.

(i) The processt? satisfy the following integrability condition
n Z g#

.
% .= supE" esssuf EMP jFYj ds <+1 (5.2.14)
PZPH 06t6 T 0

5.2.5 Connection with standard BSDEJs

Let us assume thatH is linear in and v, in the following sense
Hi(y;z;u; 5 w) = %Tr[ld 1+ 0 iy zu); (5.2.15)
where 2 N . We then have the following result
Lemma 5.2.5. If H is of the form (5.2.19), then D, = flqg, DEt =f gand
F(hyszuas )= R(hyszousld, ) = fo(y;z;u):

Proof. First notice that

1 zZ.Z

Hi(hyiziup s w)= sup  STr(a )+
(& )25;°N 2 0

fi(y;z;u):

Ev(e) s(!)(ds;d®  14(a) ()
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By de nition of F, we get
F(hy;zouray )= fuly;zzu+ H (& );
whereH is the double Fenchel-Legendre transform of the function

(@& )7 w@+ ()
with g(a) =01faziag+ 1 Liagagand () =01 - ¢g+1 1 g

The above function is convex and lower-semicontinuous, implying that
F(byszzuas )= flyszzi+ w@+ ()

which is the desired result. u
h .

R |
If we further assume thatEP Oijt(O;O; 0)j%dt < +1 , then P, = fP g and the
minimality condition on K = KP implies that 0 = EP [K ], which means thatKk =0,
P -a.s. and the 2BSDEJ is reduced to a classical BSDEJ.

5.2.6 Connection with G-expectations and G-Lévy processes

In a recent paper $5], Hu and Peng introduced a new class of processes with independent
and stationary increments, calleds-Lévy processes. These processes are de ned without
making reference to any probability measure.

Let € be a given set and letH be a linear space of real valued functions de ned on
€, containing the constants and such thafXj2 H if X 2 H. A sublinear expectation
is a functional ® : H! R which is monotone nondecreasing, constant preserving, sub-
additive and positively homogeneous. We refer to De nition 1.1 oBp] for more details.
The triple (€;H; Ii?) is called a sublinear expectation space.

De nition 5.2.8. A d-dimensional cadlag proces§X;;t > 0g de ned on a sublinear
expectation spacé®€;H; IiE’) is called aG-Lévy process if:

(i) Xo=0.

(i) X has independent increments8s;t > 0O, the random variable(X+s X;) is inde-
pendent from(Xy,;:::;Xy,), foreachn 2 Nand 06 t; < <t, 6 t. The notion
of independence used here corresponds to de nition 3.10 iB9].

(i) X has stationary increments: 8s;t > 0, the distribution of (X{+s X) does not
depend ort. The notion of distribution used here corresponds to the de nition given
in Y3 of BY.

(iv) For eacht > 0, there exists a decompositiolX; = X+ X4, wheref X t > Og is a

continuous process and X d; t > Og is a pure jump process.

(v) (X& X3 is a 2d-dimensional process satisfying condition), (i) and (iii ) of this
de nition and
lim %E XSG =0; B X% 6cCctt>0
t ot
for a real constantC.
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In [55], Hu and Peng proved the following Lévy-Khintchine representation foG-Lévy
processes:

Theorem 5.2.2 ([559]). Let fX;t > Og be aG-Lévy process. Then for each Lipschitz
and bounded functioni , the function u de ned by u(t; x) := B (" [x + X;]) is the unique
viscosity solution of the following partial integro-di erential equation:

Z

@u(t;x)  supp,; yauf E[U(UX+ z) u(t;x)] (dz)
+ < Du (t;X); b >ga +%Tr D2u(t;x) T g=0

whereU is a subset oRY RY ¢ M [ satisfying
Z
Sup(b;; )2U JZJ (dZ) + JbJ +Tr T <+1
Rd

and whereM ; denotes the set of positive Radon measures Bn

Hu and Peng studied the case oB-Lévy processes with a discontinuous part that is
of nite variation. In our framey\yorFlé, we know that BY is a purely discontinuous semi-
martingale of nite variation if OT ixi 6 JXj s(dx)ds < +1 , P -a.s. We give a function
H below, that is the natural candidate to retrieve the example oG-Lévy processes in our

context. This is one of the points of our paperdZ].

Let N* be any subset ofN that is convex and closed for the weak topology oMl ;. We
de ne
Z.Z

MG 5 W)= S gon THA) T W) (0905 an(® ()

0

Sincela;; a;] and N are closed convex spaceb;(!;a; ) is the double Fenchel-Legendre
transform in (a; ) of the convex and lower semi-continuous functiofe; ) 7! (a,.a,;(a) +
() and then

Fe(ba )= aag(@+ ();

where [a,:a,)(8) = 0 1razjassazg * 1 lrazfasiaig @nd () =01 ang 11 2Ng’

5.3 Uniqueness result

5.3.1 Representation of the solution

We have similarly as in Theorem4:4 of [10]]

Theorem 5.3.1. Let Assumptions5.2.1 and 5.2.2 hold. Assume 2 LZ and that
(Y;Z;U) is a solution to 2BSDEJ (5.2.1). Then, foranyP2 P, and06 t; <t,6 T,

0
Y, = esssup yi (t2; Yy,); P as; (5.3.1)
P%2P , (1] ;P)
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where, for anyP 2 P, F"-stopping time , and F*-measurable random variable 2
L2(P), (yP(; );zP(; )) denotes the solution to the following standard BSDE @6 t 6
Z Z Z Z
yE = B, (yP; 22 ub)ds zPdB¢ uf(x)~ga(ds; dx); P as: (5.3.2)
t t t E
Remark 5.3.1. We rst emphasize that existence and uniqueness results for the standard
BSDEs (5.3.2 are not given directly by the existing literature, since the compensator of
the counting measure associated to the jumps Bf is not deterministic. However, since
all the probability measures we consider satisfy the martingale representation property and
the Blumenthal0 1 law, it is clear that we can straightforwardly generalize the proof of
existence and uniqueness of Tang and L1(Qq (see also §] and [24] for related results).
Furthermore, the usual a priori estimates and comparison Theorems will also hold.

Remark 5.3.2. It is worth noticing that, unlike in the case of2BSDEs (see 101] for
example), this representation does not imply directly the uniqueness of the solution in
DZ HZ  J%.

Indeed, by takingt, = T in this representation formula, we have

Y, = esssup ytPO(T; ); 12 [0;T; P as:;forall P2P,;

P2P , (t* ;P)
and thusY is unique.

Then, since we have thadhy ¢, B¢, = Z,dhB¢,; Py, q:s; Z is unique. However,
here we are not able to obtain thdt) and K P are uniquely determined. Nonetheless, this
representation is necessary to prove some a priori estimates in Theorén8.4 which, as
for the standard BSDEJs, insure the uniqueness of the solution.

Before giving the proof of the above theorem, we rst state the following Lemma which
is a generalization of the comparison theorem proved by Royer (see Theorgmin [95]).
Its proof is a straightforward generalization so we omit it.

Lemma5.3.1. LetP 2P, . We consider two generator$ * and f 2 satisfying Assumption
Hcomp N [95] (Which is a consequence of our more restrictive Assumpti@n?.1(iv)). Given
two nondecreasing processds and k2, let ! and 2 be two terminal conditions for the
following BSDEJs driven respectively bf/* and f 2,
Z Z Z.Z
="' fvszu)ds  zdBg Uy(x)~ga(ds; dx)
t t t E

+ ki ki;fori=1;2, P as:

Denote by(y?; z'; ul) and (y?; z%; u?) the respective solutions. If 16 2, k! k2 is non-
increasing andf 1(t;y?; zh; ul) > f2(t;yi; zt; ul), then 8t 2 [O; T, yi 6 y2.

Proof. [Proof of Theorem5.3.1] The proof follows the lines of the proof of Theorem:4
in [101.
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(i) Fix 06 t;<t,6 TandP2P,. Forany P2 P, (t;;P) andt; 6 t 6 t;, we have,
Z., Z., z,Z
Y, =Y, B,(Ys; Zs; Us)ds Z<dB¢ Us(X)~g (ds; dX)

t t t E
0

0 0
+K{ K, P as:

With Assumptlon 5.2.1 we can apply the above Lemm&.3. 1under P’ to obtain
Yi, > Vi (tz,Ytz) P° as. SinceP’= P on F, we getY, > y{ (tz,Ytz) P as:
and thus

Yy, > esssuﬁ Vi (tz,Ytz) P as:
PO2P , (t}:P)

(i) We now prove the reverse inequality. FixP 2 P, . We will show in (iii) below that

0 0o 2
C{ := esssup E Ki KI  <+1;P as:
P2P , (t; ;P)

For every P’ 2 P, (t*; P), denote
0 0 0
Y =Y Y (tuY,), Z =2 Z°(tyY,) and U := U u” (t2;Yy,):

By the Lipschitz Assumption 5.2.1(iii) , there exist two bounded processes and
such that forallt; 6 t 6 t,,
to Z t2

_ 0 0 0 0 0
Y = sYs+ B Zs ds Bu(yS 5285 Us)  Bu(yE ;28 ;uf) ds

'z, z,Z '
0 0 0

Z sdB¢ Us(X)~ge(ds;d¥) + K K P as:

t t E

De ne for t; 6 t 6 t, the following processes
Z, Z.Z
Nei= by ™2dBS s(X)~g(ds; dX);

t1 tp, E

and Z,
M; ;== exp sds E(N)y;

t1

where E(N); denotes the Doléans-Dade exponential martingale bif;.

By the boundedness of and and the assumption on in Assumption 5.2.1(iv),
we know that M has moments (positive or negative) of any order (seéf for the
positive moments and Lemm&b.6.6in the Appendix for the negative ones). Thus
we have forp> 1

Eflo sup MP+ sup M,P 6C, P as: (5.3.3)

t16 t6 t2 t1 6 t6 t>
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Then, by It6's formula, we obtain

d(Mt Yt):Mt dh( Yt)‘l‘ Yt th+ d[M, Y ]t

=M t Yt tb11=2 Z+ Ibt()’tp ;ZtP;Ut) Ii:Y’t(Ytp ;ZtP ;utp) dt
Z
+ ZdBf + (U(x) t(X) Uy(X)) ~ga(dt; dx)
E
Z
+ Yy My dt+ B PdB¢ {(X)~ga (dt; dX)
Z E

F M, (B2 Zdt () U()b(dx)dt M, dkP:
E

Thus, by Assumption5.2.1(iv), we have

Z,, Z ., i
Y, 6 Ms Zs+ Ys sB '™ dBS+ Ms dK{
t t
thz Z 1
Ms (Us(X)  Ys s(X)  s(X) Ug(x)) ~ga(ds; dx):
ty E
By taking conditional expectation, we obtain
0 z t2 0
Yy, 6 Ef, M, dK{ (5.3.4)

t1

Applying the Holder inequality, we can now write

0 0 0
Y, 6 E. sup (M) K K

t1 6 t6 to
1=3 2=3
0 0 0 0 3=2
P 3 P P P
6 E, sup (My E, K¢ K
t16 t6 to .
[
0 0 0 1=3
P\1=3 P P P . .
6 C(Ci)™ E; K Ky , P as:

Taking the essential in mum on both sides nishes the proof.

(iii) It remains to show that the estimate for C{, holds. But by de nition, and the
Lipschitz Assumption onF we clearly have
0 0 0o 2 .
sup EP K{ K{  6C kYK +kZkKi +KUK: + 7
PO2p , (t%;P) H H H

<+1; (5.3.5)

since the last term on the right-hand side is nite thanks to the integrability assumed
on and 1O,

We then use the de nition of the essential supremum (see NeveBH for example)

to have the following equality
p° p° p° 2 P h P P 2
esssup E;, K{ K =supE K K " ;P as: (53.6)
P2P, (t] ;P) n>1
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for some sequencén)n>1 P 4 (t7;P).

Moreover, in Lemma5.6.3 of the Appendix, it is proved that the setP,, (t7;P) is
upward directed which means that for anyP}; P, 2 P, (t:;P), there existsP’ 2
P, (t1; P) such that

2 ( 0 " 0 0 2# 0 ) 0 0 2#)
P kP KP o=max ER KD KD G ER KD KD

Hence, by using a subsequence if necessary, we can rewbt8.¢ as

h i
2

0 0 o 2
gzsssuB B, Ki Ki =lm"E} K K" ;P as
P°2P , (t1 :P) '

With (5.3.5, we can then nish the proof exactly as in the proof of Theorerd:4 in
[101. u

Finally, the comparison Theorem below follows easily from the classical one for BSDEJs
(see for instance Theoren2:5 in [99) and the representation 6.3.1).

Theorem 5.3.2. Let (Y;Z;U) and (Y% Z% U9 be the solutions 02BSDEJs with terminal
conditions and °, generatorslb and P° respectively, and le(y®; zP; u®) and (y®; z®; u®)

the solutions of the associated BSDEJs. Assume that they both verify our Assumptions
5.2.1and 5.2.2 and that we have

0

6 ,Py, Qs

B (y®; z%;u®P) > B'(y®;z%;uP), P as;, forall P2 P,:

ThenY 6 YO P, q:s:

5.3.2 A priori estimates and uniqueness of the solution

We conclude this section by showing somee priori estimates which not only will imply
uniqueness of the solution of the 2BSDEJ5(2.17), but also will be useful to obtain the
existence of a solution.

Theorem 5.3.3. Let Assumptions5.2.1 and 5.2.2 hold. Assume 2 Lﬁ and (Y;Z;U) 2
DZ HZ JZ is a solution to the 2BSDEJ(5.2.1). Let (yP;z";uP) eop, b the
solutions of the corresponding BSDEJ&.3.2. Then, there exists a constanC depending

only on , T and the Lipschitz constant oF such that
h [
KYKGz +kZKGe + KUK + supEP KP® 6 C kikz +

h
P2P

and n ) ) X o) , ,

P P P :

Psz:;lp Y oemt 7 et U e 6C kkiz + oy
"
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Proof. As in the proof of the representation formula in Theorenb.3.1, the Lipschitz
assumption5.2.1(iii) of F implies that there exist two bounded processes and such
that for all t,

Z, Z .
ytP: + sysp+ sbézzzsP ds Ibs(O;O; usP) ds

z% Z.Z ‘
zJdB¢ uf(x)~ga(ds;dx); P as

t t E

De ne the following processes
Z . Z.Z
N, := sh 2dB¢ s(X)~g(ds; dX);
t t E
and Z,
M, = exp sds E(N);;

t
whereE(N), denotes the Doléans-Dade exponential martingale bf; .

Then by applying Ité's formula to M;yF, we obtain
Z Z.Z
yw= EP My M<B,(0; 0; uP)ds + Ms (x)uf(x)bs(dx)ds
t t E
Finally with Assumption (5.2.1)(iv), the Holder inequality and the inequality (5.3.3,
we conclude that there exists a constan€C depending only on , T and the Lipschitz
constant of F, such that for all P
Y 1=
yv 6 CEP jj + B0 ds (5.3.7)

t

This immediately provides the estimate fory®. Now by de nition of our norms, we get
from (5.3.7 and the representation formula 6.3.1) that

KYkyz 6 C kkiz + § (5.3.8)

Now apply I1t6's formula to ij2 under eachP 2 P,,. We get as usual for every > 0

Z . Z.2
_ 2
Yol +  BTZ dt+ JUL(0)j% by (dx)at
0 7 0 E 7
T T
= jz 2 Ytlbt(Yt;Zt;Ut)dt+2 Y, dK{
z.° Z.Z 0
2 Y,Z,dB¢ jUi(X)j> +2Y; U(x) ~ge(dt; dx)
0 7 0 E
- T . .. . . . P
6 ji°+2  jYViR(YaZoWidt+2 sup jYjK§
7 0 7 7 06t6 T
T T
2 Y,Z.dBS jU()I2 +2Y; U(X) ~ga(dt; dx)

0 0 E
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By our assumptions onF, we have

|
z 1=2"

B(Y;Z;U) 6 C jYhj+ Bz + BY +  jU(x)j®bi(dx)
E

With the usual inequality 2ab6 ia?+ "b?; 8" > 0, we obtain

Z , Z:Z
E° B Z dt+ JUL(¥)}% b (dx)dlt
0 n 0 E | #
Z B Z 1=2
6 CE” jj?+ jYj B +jvj+ B7Z +  jU(x)i* bi(dx) dt
0 E
Zy
+ EP iy jdK P
0 n
. z . H#
6 C kko +E° 1+ sup jYj°+ B0 dt
H 06t6 T 0
y , Z:Z
+ "EP B2z, dt+ U ()2 b(dx)dt + K22 (5.3.9)
0 0 E

Then by de nition of our 2BSDEJ, we easily have
h Zr
EP KP® 6 CoEP jj%+ sup jYj?+ Bz, dt
06t6 T 0 #
Z.2 . )
+ U (x)j? by (dx)dt + B0 dt (5.3.10)
0 E 0

for some constantC,, independent of".

Now set" := (2(1 + Co)) ! and plug (5.3.1Q in (5.3.9. One then gets
Z. ,  Z:Z
EP B °Z, dt+ jU(x)j’bi(dx)dt 6 CEP j j*+
0 0 E Z )
+ 0O dt
0

sup _jYij®
616

#

0
2

From this and the estimate forY, we immediately obtain

2 2;
kaHa; + kUkJa; 6 C k kl_a; + 5

Then the estimate forK” comes from 6.3.1Q. The estimates forz® and u® can be
proved similarly. u

Theorem 5.3.4. Let Assumptions5.2.1 and 5.2.2 hold. Fori =1;2, let us consider the
solutions(Y';Z";U'; KP;P2P, ) of the 2BSDEJs(5.2.1) with terminal condition '.
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Then, there exists a constanC depending only on , T and the Lipschitz constant of
such that
1 2 1 2 .
Y Y D'2—|, 6 C La ’
and

2
2 . .
z' z? . +supE” sup K{TOKP o+ U UZ %,
H P2P 06t6 T H

12 1 2 2 \1=2 .
C . o+ o+ (G
6 Lz Lz Lz (H) :

; I 2, 2
Consequently, the2BSDEJ (5.2.11) has at most one solution irDj Hy  J5 .

Proof. As in the previous Theorem, we can obtain that there exists a constar@
depending only on , T and the Lipschitz constant of®, such that for all P

vt oy ecEP 1 2 (5.3.11)

Now by de nition of our norms, we get from 6.3.1]) and the representation formula

(5.3.1) that
2

2;
Dy

6Cc 1 27, . (5.3.12)

2;
L

Yl y?

Applying Itd's formula to jY?! Y2j2, under eachP 2 P, leads to

Z . ,  Z:Z
EP (¢ z)) dt+ UL(x)  UZ(x) “by(dx)dt
0 ) 0 E
h 2I £ P;1 P;2
6 CEP t 27 +FEP Y Y2 dKTY KT)
0
hZ t -
+ CE” . YO Y YR iR ZY)
Z 1:2! i

+ UL(x) UZ(x) °b(dx)dt dt
E

6 C 1 2 22: + Yl Y2 22;
z Mz 7z
l T ~ 2 T
+5E Bzt ZP) dt+ Y UZ(x) * by(dx)dt
" # 1o
+C Y Y2 EP X Ki 2
D% T

The estimates for(Z! Z2) and (U* U?) are now obvious from the above inequality
and the estimates of Theoren®.3.3

Finally the estimate for the dierence of the nondecreasing processes is obvious by
de nition. u
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5.4 A direct existence argument

In the article [101], the main tool to prove existence of a solution is the so called regular
conditional probability distributions (r.c.p.d.) of Stroock and Varadhan [L04. Indeed,
these tools allow to give a pathwise construction for conditional expectations. Since,
at least when the generator is null, they component of the solution of a BSDE can be
written as a conditional expectation, the r.c.p.d. allows us to construct solutions of BSDEs
pathwise. Earlier in the chapter, we have identi ed a candidate solution to the 2BSDEJ
as an essential supremum of solutions of classical BSDEJs (s&8.(0)). However those
BSDEJs are written under mutually singular probability measures. Hence, being able to
construct them pathwise allows us to avoid the problems related to negligible-sets. In this
section we will generalize the approach oi(]] to the jump case.

5.4.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in
[107] and [30. Remember that we are working in the Skorohod space= D [0; T]; R¢
endowed with the Skorohod metric which makes it a separable space.

For06 t6 T,wedenoteby ':= ! 2D [t;T];RY the shifted canonical space
of cadlag paths on[t; T] which are null att, B! the shifted canonical process. Let
N ' be the set of measures on B(E) satisfying

Z.Z Z.:Z
(1"jxj2) s(dx)ds< +1 and iXj s(dx)ds<+1;8~2
E

t ixj>1
(5.4.1)

t

and Ig D! be the set ofF!-progressively measurable processesaking values inS;°
with tTj sjds< +1 ,forevery~2

F! is the ltration generated by B'. We de ne similarly the continuous part of
B!, denotedB*', its discontinuous part denotedB®®, the density of the quadratic
variation of B%¢, denotedh!, and g« the counting measure associated to the jumps
of B

Exactly as in Section5.2, we can de ne semimartingale problems and the corre-
sponding probability measures. We then restrict ourselves to deterministic; )
and we let At be the corresponding separable class of coe cients ai). the cor-
responding family of probability measures, which will be noted®:: . Then, this
family also satis es the aggregation property of Theorens.2.1, and we can de ne
i', the aggregator of the predictable compensators 8f.

For06 s6 t6 T and! 2 S, we de ne the shifted path! 2 ! by

b=, 1y 8r2[tTl:
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For06 s6t6 Tand! 2 S5 k2 !'wedenetheconcatenationpath 2 *

by
(" e B)(r) = N hey(r) + (e + Br)Lrs(r); 8r 2 [s; Tl

For06 s6 t6 T and aF3-measurable random variable on *°, for each! 2 S,
we de ne the shifted F-measurable random variable® on ' by

)= ( (k)82 "

Similarly, for an F5-progressively measurable proce¥son|[s; T]and (t;! ) 2 [s; T]
s, we can de ne the shifted proces§ X ;r 2 [t; T]g, which is F'-progressively
measurable.

For a F-stopping time , we use the same simpli cation asl0]]

LoBi=1 gy = G = (O

We de ne our "shifted" generator
B (By;ziu) = Fo(! By;ziu; Bi(E);bi(E)); 8(s;B) 2 [ T] &

Then note that sinceF is assumed to be uniformly continuous i under the L*
norm, then so isP% . Notice that this implies that for any P 2 P

Z 2 #
T 2
EP B (0;0;0) ds <+1;
t
for some! if and only if it holds for all | 2
Finally, we extend De nition 5.2.6in the shifted spaces

De nition 5.4.1. P}, consists of allP:= P*: 2 P . such that

a°6 B 6a;ds dP aeon[;T] 'for somea”;a” 2 §°;

Z, 2
EP B¢ (0;0;0) ds <+1; forall! 2
z z z
@7 jx?)_PAx) 6 (17jx)bi(dx) 6 (17]xj*)"(dx); and
ZE Z E Z E
ixj _P(dx) 6 jxj b(dx) 6 ixjP(dx); ds dP ae:
jxj>1 jxj>1 jxj>1
on [t;T] ‘for P;~P; two nite Lévy measures inN '

Remark 5.4.1. With the above de nition, for a xed P2 P}, , we have

Z.2 Z.2 Z.2
(17jxj*)_P(dx) 6 EP (17jxj*)bi(dx) 6 17 jxj?)Pdx) < 1 ;
' 2.2 'z .z z.zF
and jxj_P(dx) 6 E? jxjbi(dx) 6 jixj P(dx) < 1 :

t jxj>1 t jxj>1 t ixj>1
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For given! 2 | F-stopping time and P 2 P, the r.c.p.d. of P is a probability
measureP' on F1 such that for every boundedF-measurable random variable

EP[1()= EP []; for P-ae.!.

Furthermore, P' naturally induces a probability measureP" on F." such that the
P -distribution of B ) is equal to the P' -distribution of By B (); t2[ (!);t] :
Besides, we have

EP[]1=E>" [ "]

Remark 5.4.2. We emphasize that the above notations correspond to the ones used in
[101] when we consider the subset of consisting of all continuous paths fronf0; T] to R®
whose value at timeéd is O.

We now prove the following Proposition which gives a relation betwegi® ; b"% ) and
(8'; bY).

Proposition 5.4.1. LetP2 P, and be anF-stopping time. Then, forP-a.e. ! 2 ,
we have fords dP* -a.e. (s;) 2 [ (!);T] )

b (e) = B")(k)
b (BA)= b,")(EA) for everyA 2 B(E).

This result is important for us, because it implies that forP-a.e. ! 2  and for ds
dPt'  ae:(s;k) 2 [t;T] t

Fs(!' (By;z;upbs(! (B);b(! (B)=Fs | (By;z;u; By(E); bi(k) :

Whereas the left-hand side has in general no regularity in, the right-hand side, that
we choose as our shifted generator, is uniformly continuous lin

Proof. The proof of the equality forh is the same as the one in Lemmad1 of [10], so
we omit it.

Now, fors> and for any A 2 B(E), we know by the Doob-Meyer decomposition that
there exist aP-local martingaleM and aP? -martingale N such that
Z S
ga([0;S[;A) = Ms+  b(A)dr, P as;
0

and A
s ([ (1)ishA)= Ns+ b (A)dr:

Then, we can rewrite the rst equation above foP-a.e.! 2 andforP" -ae.e2 ()
Z S

ga(! B [0;s];A)= M (B)+ Db (BA)dr (5.4.2)
0
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Now, by de nition of the measures gz« and g «)«, we have

sa(! B [OSA)= (5 [0 TA)+ 5 ere(B [SLA):

Hence, we obtain from §.4.2 that for P-a.e.! 2 andforP" -a.e.k2 )
z Z .

sa(l; [0; T;A) b (;;A)dr+ Ng(e) M/' (k)= b' (BA) b ") (BA) dr
0

In the left-hand side above, the terms which ar& -measurable are constants in ‘)
and using the same arguments as in Stepof the proof of Lemmab.6.1, we can show that
M * isaP? -local martingale forP-a.e.! 2 . This means that the left-hand side is a
P+ -local martingale while the right-hand side is a predictable nite variation process. By
the martingale representation property which still holds in the shifted canonical spaces,
we deduce that forP-a.e.! 2 and fords dP" -a.e.(s;e)2[ (!);T] )

Z

S

b' (BA) b{)(BA) dr=0;

which is the desired result. u

5.4.2 Existence when isin UCy()

When is in UCy() , we know that there exists a modulus of continuity function for
and F in!. Then, forany06 t6 s6 T; (y;z; )2 [0;T] R RY V and
102 k2 Y

e M) 6 (ko 1%), B (kyiziu) BYC(kyiziu) 6 (kI 1 %)
We then de ne for all ! 2

()= sup (1); (5.4.3)

06 s6t

where
YA 1=2

;
((1):=sup EP +  jB¥ (0;0;0)%ds

P2P |, t

t;! 2

Now sinceBt s also uniformly continuous in! , it is easily veri ed that

(')<1 forsome! 2 iitholdsforall ! 2 (5.4.4)

Moreover, when is nite, it is uniformly continuous in ! under the L -norm and is
therefore Ft-measurable.

Now, by Assumption5.2.2 we have

()< 1 forall (t;!')2[0;T] : (5.4.5)
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To prove existence, we de ne the following value proce$4 pathwise

Vi(1):= sup YOE (T; ); forall (t1)21[0;T] (5.4.6)
P2P |;
where, for any(ty;!) 2 [0;T] P2 P;“ 't 2 [t1; T], and any F,-measurable

2 L2(P), we denoteY™" (ty; ) := yb™", where yPti!;zPtil; yPtiil s the solution
of the following BSDEJ on the shifted space '* under P
z Z,

to 2
ySP;tl;! — Ibrtl;! yf;tl;! ;Z:’;tl;! ©dr Zf:tl?! dB:l;C
Z 6 Z S S
ubttt (x)egua(ds;dx); P ais:; s2 [t;T]; (5.4.7)
s Rd
where as usuakg:,« (ds;dx) := gue(ds;dx)  bir(dx)ds.

In view of the Blumenthal 0 1 law, y™"' is constant for any given(t;! ) andP2 P} |
and therefore the value proces¥ is well de ned. Let us now show thatV inherits some
properties from andF.

Lemma 5.4.1. Let Assumptions5.2.1 and 5.2.2 hold and consider some in UCy() .
Then for all (t;!) 2 [0; T] we havejV; (! )j 6 C ((!). Moreover, for all (t;!;! 9 2
[0; T] 2 V(M) V(19 6 C (kI !%). Consequently,V; is Fi-measurable for
everyt 2 [O; T].

Proof. (i) For each(t;! ) 2 [0;T] andP 2 P,t_; , let be some positive constant which
will be xed later and let 2 (0;1). SinceF is uniformly Lipschitz in (y;z) and satis es
Assumption 5.2.1(iv) , we have

z 12"

P iziw 6 B (0:00) + C jyi+ B T juG)i* B (e

Now apply 1t6's formula. We obtain
Z Z-Z
Pt 2 T 1=2_pit1 2 T Pt:l 2
el yi o+ e® (By)tTtzY “ds+ e® ug™ (x) “bi(dx)ds
t t E
Z
=T 2 2 es ysP;t;! |bst;! (ysP;t;! .ZSP;t;! ;ug;t;! )dS
t
Z
Pt 2 P! P! t;
t e’ vy ds 2 t ey, zg" dBg°

es yPH P (x)+ UPH (x) ° egua (ds; dX)
Z Z
+ Tes =i (O;O;O)zds+ 1+2C+ act TeS yPi 2 ds
t 7.7 t
+ e (B)=2zP “ds+ es uP¥ (x) “bl(dx)ds
Z z.7Z ¢
2 es yP;t;! lea;t;! ngC es ZyP;t;! us;t;! (x) + usP;t;! (x) 2 g (ds; dX):

S S
t t E
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Now choose = 1=2 for instance and large enough. By taking expectation we obtain
easily

oy 2
vyt e Cj ()i
The result then follows from the arbitrariness ofP.

(i) The proof is exactly the same as above, except that one has to use uniform continuity
in! of % and P . Indeed, for each(t;! ) 2 [0;T] andP 2 Pf ,let be some
positive constant which will be xed later and let 2 (0;1). By Itd's formula we have,
since® is uniformly Lipschitz

Z
et YRy oty . @22 20 N5 R es (B WP Y200mi(ax) ds
2 Lz T 0 2
6e’ B’ 42Cc  es yPH P gs
Z - ‘
+2C yISDtl Pt' 0 (bs)l—Z(th' Zs;t;! 0) ds
'z, Z ) 1=2
+2C e® yot o ygvt ug™ () Ut bi(dx)  ds
ZtT Rd
+2C es ystl Pt' 0 |;bt| (yPtl -7 Ptl .us;t;! ) |bst;! 0 yISD;t;! ;ZSP;t;! ;usp;t;! ) ds
Z , Z -
ety M ds 2 ety yi )Y 2D )dBY
z.'z !
es Z(yPt' yg;t;! 0)(u§’;t;! uz;t;! 0) +( ug;t;! ug;t;! 0)2 (X)€ega (ds; dX):
t E
We then deduce
yA T
et YR PR e Y LR es B B O2(0bi(de) ds
2 2 2
6 et U (A |;bt| (yPtl -z Pt' .us;t;! ) |bst;! 0 ySP;t;! ;Zs;t;! ;us;t;! ) ds
zZ. t ) 7.7 i
e ()@Y YY) ds+ e> uf™ (x) uf™(x) bi(dx)ds
t oe2 7 . t E2
v 20+ Chr S e Yot Y2t ds
Z ‘
2 es (yPt' ystl )( ZPit! Zg;t;! O)ngc
Z.7
es Z(yPt' yg;t;! 0)(u§;t;! ug’;t;! 0) +( ug;t;! us;t;! 0)2 (X)€ga (ds; dX):
t E
Now choose =1=2and suchthat := 2C C2 22 > 0. We obtain the desired

result by taking expectation and using the uniform continuity in! of andF. u
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